In October 1972 *Wireless World* launched a circuit information system called CIRCARDS. The system was based on issued sets of 8\(\times\)5\(^{\prime}\) cards to complement personal filing systems. Published in conjunction with introductory articles in *Wireless World*, selected and tested circuits. CIRCARDS gave the subscriber descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs.

This book is for those who design, use or understand electronic circuits. It contains information previously included on sets 11 to 20 of CIRCARDS,* corrected where necessary and supplemented with 10 pages of additional circuits. Introductory articles originally published in *Wireless World* complement each section.

Sets 1 to 10 with all information was published in CIRCUIT DESIGNS No. 1, and is still in print.
circuit designs

Collected Circards

P Williams/J Carruthers/JHEvans/J Kinsler
Paisley College of Technology, Renfrewshire

A WIRELESS WORLD PUBLICATION
LONDON
IPC BUSINESS PRESS LTD
Contents

Preface page 5

Set 11: Basic logic gates page 7
Resistor-transistor and direct-coupled gates/d.t.l. gates/basic t.t.l. gate/NAND gate variations/c.m.o.s. gates/e.c.l./interfacing/threshold logic/optical logic/analogue gates/three-state and majority logic/up-date circuits.

Set 12: Wideband amplifiers page 25
C.m.o.s. amplifier/shunt-peaked amplifier/high-gain amplifier/voltage followers/bipolar cascode amplifier/e.c.l. amplifier/f.e.t. cascode amplifiers/amplifiers using t.t.l., r.t.l., d.t.l./d.c. feedback pair/gated video amplifier/high-speed op-amps/c.b. amplifier/up-date circuits.

Set 13: Alarm circuits page 43
Flame, smoke, gas detectors/bridge circuits/time delay and generator circuits/level sensing and load driving/uscs of 555 timer/frequency sensing/digital annunciators/filament lamps and relays/signal domain conversion/pressure, temperature and moisture-sensitive alarms/security, water level and automobile alarms/electromechanical alarms/up-date circuits.

Set 14: Digital counters page 59
Binary counters/one-out-of-n ring counter/Johnson counters/reversible counters/divide-by-n counters/high-power counters/high-speed counters/low-power counters/decade counters/m-sequence generators/glossary/up-date circuits.

Set 15: Pulse modulators page 77
P.a.m. with precision limiter/i.c. pulse duration modulator/p.a.m. with shunt gate/pulse duration-position modulator/variable slope modulator/pulse modulation using 555 timer/c.m.o.s. p.a.m.-p.d.m./d.c. motor control using p.d.m./delta modulators/d.c. amplifier-p.d.m./pulse position modulator/pulse code modulator/up-date circuits.

Set 16: Signal processing with current differing amplifiers page 95
Basic amplifiers/logic gates/high voltage amplifiers/power amplifiers/bandpass filters/notch filters/low-pass, high-pass filters/gain-controlled amplifiers/up-date circuits.

Set 17: Signal generation with c.d.as page 109
RC oscillators/voltage-controlled oscillators/voltage regulators/constant-current circuits/Schmitts and comparators/astable multivibrators/monostable multivibrators/flip-flops/staircase generators/up-date circuits.

Set 18: Measurement and detection with c.d.as page 123
Logic circuits/phase-locked loop/transducer driving/device testing/negative resistance/peak-mean rectifiers/sample and hold circuits/h.f. circuits/tachometers/up-date circuits.

Set 19: Monostable circuits page 137
Complementary circuits/op-amp circuits/t.t.l. circuit/c.m.o.s. circuit/emitter-coupled circuits/voltage-controlled monostable/long-delay circuits/dual monostable using 555 timer/high duty cycle circuit/up-date circuits.

Set 20: Transistor pairs page 153
High current-gain pairs/cascode amplifier/long-tailed pair/current mirrors/complementary switching transistors/complementary emitter follower/c.m.o.s. circuits/triples and mixed pairs/pot pourri/up-date circuits.
Preface

Authors write the books they would like to read themselves. It is easy to start a book with this kind of incentive, but less easy to sustain it. Soon it becomes obvious that the author might end up as the only reader—a receptive but uncritical audience. Circards began as a response to the inordinate amount of time taken to track down a variety of solutions to each problem in the field of circuit design as it occurred. Engineers working in industry must often produce rapid solutions to problems, and rely on the knowledge and skills acquired in related areas. It is valuable to reconsider alternative approaches, since producing solutions in a hurry can so easily become a reflex action with all the possibilities of error that this implies. The question then arose as to how to find a variety of approaches without this time delay. A first possibility was simply to make use of one of the excellent data retrieval systems (INSPEC, ISI, etc.). This would have given a list of articles on the topic together with an abstract of each—but not the circuit diagram. The time taken for the individual to track down each of the references was going to be too long, particularly as he would still have to digest them all sufficiently well to compare their merits and demerits for his particular application.

In our own work we were involved in such searches on a regular basis: in the preparation of lecture notes on unfamiliar topics; as a by-product of research for higher degrees; in the answering of queries passed on to us from local industry entering some area of electronics with which they were not yet familiar. As we had to carry out these functions anyway, it seemed to us that if we performed them in a more efficient and concentrated manner the results would be useful to a wide range of colleagues in the world of electronics.

We talked to colleagues from our own and other colleges at meetings and conferences; we quizzed industrial designers when visiting students carrying out their industrial training; we looked at the needs of amateurs trying to design their own equipment, and of technicians building circuits to often vague and contradictory specifications; and we tried listening to as well as talking to our students on their difficulties in converting theory into practice. To all these we would like to pass on our thanks. Their comments and advice of colleagues to fall back on. We try to blend bench investigations with as wide a study of the technical and professional journals as possible. Fortunately we have a varied background experience, and the help and advice of colleagues to fall back on. What none of this can provide is a sense of the present and ever-changing needs of readers. In choosing topics for future publication we would welcome advice from any source—we know that errors have slipped through in the past, and have corrected our proposals to Wireless World we were delighted to find that they were received sympathetically, and would like to record our appreciation of their efforts and skills in bringing this project to fruition. Our thanks must also go to the Principal, Governors and Staff of Paisley College for their continuing encouragement. To our wives and families we can only say that without their support and encouragement this task which has brought us much satisfaction might have been started but could never have been sustained.

Peter Williams, Paisley

Postscript

"Why didn't they ... ?" Inevitably this will be the reaction of readers experienced in the design of particular circuit types described in this book. The response is simple ... "We didn't know!".

We try to blend bench investigations with as wide a study of the technical and professional journals as possible. Fortunately we have a varied background experience, and the help and advice of colleagues to fall back on. What none of this can provide is a sense of the present and ever-changing needs of readers. In choosing topics for future publication we would welcome advice from any source—we know that errors have slipped through in the past, and have corrected in this book those that we have traced. It would be easy to minimize these errors, by sticking to standard and well-tried circuits, but that is not enough in our view. For Circards to meet the original aims there has to be a balance between the classical, the industrial standards and the novel; users and designers of electronic circuits can then take this material as the starting point for their own designs.

Information and comments on such developments would help us greatly in planning and writing future "Circuit Design" books, and would make sure that the balance of the material suits the needs of the user.
Set 11: Basic logic gates

The *W.W.* article introducing this subject must have been of limited value for newcomers to logic as a result of a few typographical errors that crept in. These are corrected of course, the main errors being in lines 29 & 30 of Table 1 and in Table 6. The article forms a good introduction to Boolean algebra rules, truth tables and logic symbology (but for details of the Karnaugh map technique see article on page 60). The cards detail the different realizations of logic gates, card 4 being especially useful in summarizing the different kinds of NAND gate (standard, low power, high speed and Schottky). Card 8 is arguably the most useful giving circuits for interfacing between different kinds of logic circuits. Interfacing with analogue circuitry to form shunt or series choppers, as used in multiplexers, is covered in card 11. Three cards deal with newer kinds of logic systems. Card 9 describes the nomenclature used in threshold logic—a generalized approach of which the simple gates form special cases. Optical logic gates, three-state logic and majority gates are covered on cards 10 & 12. Set 16 card 4, and set 18 card 2 give logic circuits using current differencing amplifiers.

Resistor-transistor and direct-coupled gates 1
Diode-transistor gates 2
Basic t.t.l. gate 3
NAND gate variations in t.t.l. 4
Complementary m.o.s. gates—I 5
Complementary m.o.s. gates—II 6
Emitter-coupled logic 7
Interfacing 8
Threshold logic 9
Optical logic 10
Analogue gates 11
Three-state and majority logic 12
Logical or arithmetic processes are extensively used in systems such as industrial control, computers, electronic instrumentation and automatic telephone exchanges. These processes often involve complex functions of several variables, the desired functions being realized by switching operations in a logical manner. Although much of the design of these systems now deals with the interconnection of complex functional blocks, successful results also depend on a knowledge of the basic elements that constitute the complex functional blocks.

The basic elements of such systems are logic gates, which may perform combinational operations on their inputs. These inputs will normally be in one of two allowed states that could be, for example, two different voltages, two different currents or two different resistance values such as the limiting cases of open circuit and short circuit. Whatever form the allowed states take, a logic gate is concerned with whether certain statements about its inputs, at a given instant, are true or false. If these statements are made using normal language they become unmanageable as the number of quantities involved increases, making some form of symbolic statement highly desirable.

If a certain statement is true it is assigned the value 1 and if it is false it is given the value 0. For example, if one of the inputs to a logic gate is called A and it can be either at 5 V or 0 V then the statement “input A is at 5 V” may be true or false. If it is true then A = 1 and if it is false then A = 0. If this gate has three inputs and its output, D, is only at 5 V (D = 1) when two of its inputs, A and B, are at 5 V and its other input, C, is at 0 V, then D = 1 when A = 1 AND B = 1 AND C = 0.

Now C = 0 implies that C is NOT 1 i.e. C = 1, where the bar indicates NOT or negation, so the above statement could be simply written as D = A AND B AND C. Using the multiplication sign of normal algebra (× or .) to represent the AND operation this statement becomes D = A × B × C, or D = A.B.C, or even D = ABC where the “multiplication” (AND) signs are implied. This type of algebra, based on logical statements that are true or false, is called Boolean algebra and it is a very useful tool in the development of logical thinking and in the design of digital circuits and systems.

As well as the AND and NOT operations it is necessary to postulate the OR operation which is represented by the (+) symbol of normal algebra. For example, if a logic gate has two inputs A and B, and its output D is in the logic 1 state when either A or B is in the logic 1 state this statement can be written as D = A OR B which is represented by D = A + B.

A logic gate is an example of a basic logical circuit, called a combinational circuit, the output of which at a given instant is determined by the state of its inputs. Irrespective of its complexity, certain relationships, laws and simplification rules of Boolean algebra can be used to represent or investigate the behaviour of a combinational circuit. Using up to three variables, Table 1 shows some of the properties of this algebra some of which are the same as ordinary algebra. In Boolean algebra division and subtraction have no meaning and the variables can only have the values 0 or 1. Table 2 shows the Boolean algebra relations of values 0 and 1 in terms of relay contacts that are either open (logic 0) or closed (logic 1). Table 3 illustrates the Boolean algebra relations in one variable A in similar terms, where A can have either of the states 0 (A-contact open) or 1 (A-contact closed). In Table 1 relations 26 & 27 together are known as De Morgan's theorem and 29 & 30 are identical with 26 & 27 except that the variables have been negated (or inverted or complemented).

Combinational logic circuits may take many different forms, one of which employs relay contacts which is useful for illustrating some of the simple Boolean relations. For example, in Figs 1 & 2, A and B are contacts operated by relay

Basic logic gates

Table 1. Properties of Boolean algebra.

<table>
<thead>
<tr>
<th>Number</th>
<th>Expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 + 0 = 0</td>
<td>A = A</td>
</tr>
<tr>
<td>2</td>
<td>0 + 1 = 1</td>
<td>A = B</td>
</tr>
<tr>
<td>3</td>
<td>1 + 1 = 1</td>
<td>A + B</td>
</tr>
<tr>
<td>4</td>
<td>0 + 1 = 1</td>
<td>A + B</td>
</tr>
<tr>
<td>5</td>
<td>1 + 0 = 1</td>
<td>A + B</td>
</tr>
<tr>
<td>6</td>
<td>1 + 1 = 1</td>
<td>A + B</td>
</tr>
<tr>
<td>7</td>
<td>0 + 1 = 1</td>
<td>A + B</td>
</tr>
<tr>
<td>8</td>
<td>1 + 0 = 1</td>
<td>A + B</td>
</tr>
<tr>
<td>9</td>
<td>A + A = A</td>
<td>A + A</td>
</tr>
<tr>
<td>10</td>
<td>A.A = A</td>
<td>A.A = A</td>
</tr>
<tr>
<td>11</td>
<td>A + A = A</td>
<td>A + A</td>
</tr>
<tr>
<td>12</td>
<td>A + A = A</td>
<td>A + A</td>
</tr>
<tr>
<td>13</td>
<td>A + A = A</td>
<td>A + A</td>
</tr>
<tr>
<td>14</td>
<td>A + A = A</td>
<td>A + A</td>
</tr>
<tr>
<td>15</td>
<td>A + A = A</td>
<td>A + A</td>
</tr>
<tr>
<td>16</td>
<td>A + A = A</td>
<td>A + A</td>
</tr>
<tr>
<td>17</td>
<td>A + A = A</td>
<td>A + A</td>
</tr>
<tr>
<td>18</td>
<td>A + A = A</td>
<td>A + A</td>
</tr>
<tr>
<td>19</td>
<td>A + A = A</td>
<td>A + A</td>
</tr>
<tr>
<td>20</td>
<td>A + A = A</td>
<td>A + A</td>
</tr>
</tbody>
</table>

Table 2. Boolean theorems in terms of relay contacts.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 + 0 = 0</td>
<td>A = A</td>
</tr>
<tr>
<td>0 + 1 = 1</td>
<td>A + B</td>
</tr>
<tr>
<td>1 + 1 = 1</td>
<td>A + B</td>
</tr>
<tr>
<td>1 + 1 = 1</td>
<td>A + B</td>
</tr>
<tr>
<td>0 + 0 = 0</td>
<td>A = A</td>
</tr>
<tr>
<td>0 + 1 = 1</td>
<td>A + B</td>
</tr>
<tr>
<td>1 + 1 = 1</td>
<td>A + B</td>
</tr>
<tr>
<td>0 + 0 = 0</td>
<td>A = A</td>
</tr>
<tr>
<td>0 + 1 = 1</td>
<td>A + B</td>
</tr>
<tr>
<td>1 + 1 = 1</td>
<td>A + B</td>
</tr>
</tbody>
</table>

Table 3. Boolean theorems in one variable.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A + A = A</td>
<td>A = A</td>
</tr>
<tr>
<td>A + A = A</td>
<td>A = A</td>
</tr>
<tr>
<td>A = A</td>
<td>A = A</td>
</tr>
</tbody>
</table>

All with Paisley College of Technology.
coils (not shown) to complete a path between input and output. Thus, we are concerned with the statement "the connection between input and output is complete".

When this statement is true $D = 1$ and when it is false $D = 0$. In Fig 1, $D = 1$ only when contacts A AND B AND C are closed simultaneously so the Boolean representation is $D = A \cdot B \cdot C$. Hence, series-connected contacts of the same type provide the AND operation. In Fig. 2, $D = 1$ when contacts A OR B or C are closed so the situation may be represented by $D = A + B + C$. If more than one contact is closed the above statement is still true, i.e. $D = 1$.

Thus, parallel-connected contacts of the same type provide the OR (or "inclusive" OR) operation and the order in which they are wired or considered does not affect the truth of the statement.

The validity of a Boolean statement representing the behaviours of a combinational logic gate can be checked by means of a truth table, which is a tabular listing of all possible logic combinations of the variables and the resulting output logic. Tables 4 & 5 are the truth tables for Figs 1 & 2 respectively and they show that a complete truth table requires 2^n rows to represent a gate having n variables. Table 6 is a listing of the truth tables for the commonly-used combinational logic operations and shows the names given to the logic gates used to realize these operations. The NOR (NOT OR) gate performs the complement of the OR function and the NAND (NOT AND) gate the complement of the AND function.

TABLE 4. Truth table for Fig. 1

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Unlike the OR gate, the "exclusive" OR gate only makes $D = 1$ when either $A = 1$ OR $B = 1$ but not when $A = B = 1$. The exclusive OR operation is used so frequently that it is given the symbol \oplus. Thus, $D = A \oplus B = A \cdot B$.

Examples have been given of basic logical operations realized by means of relay contacts but this technique can become unwieldy. A more general diagrammatic representation of logic gates is desirable as the logic diagram should be independent of the circuit techniques employed in their realization. Unfortunately, there is no universally accepted symbol to represent a particular logic gate, some of the different types of symbols that have been used being shown in Fig. 3.

While the operation indicated by a logic gate symbol is independent of the circuitry used, it should be realized that as there are two allowed states the user must decide which state is to represent the logical 1 condition. For example, if the two states are represented by voltage levels, one may be positive and the other 0 V, one may be negative and the other 0 V, one may be positive and the other negative, both may be positive or both negative. Irrespective of the values of these voltage levels, the system is said to use positive logic if the logical 1 state is represented by the more positive level and is said to use negative logic if the logical 1 state is represented by the more negative voltage level.

Although all the combinational logic gates appearing in Table 6 are available in various forms of hardware, it is possible to build complete logic systems with either only NOR gates or only NAND gates. Fig. 4 shows how the AND, OR, NOR and exclusive-OR operations may be realized using only NAND gates and Fig. 5 shows the sole use of NOR gates to

* Following a majority decision of the I.E.C., the B.S.I. have opted for the rectangular logic gate symbols (not shown in Fig. 3). BS3939 section 21 is currently being amended. — Ed.

Fig. 1. $D = 1$ when contacts A AND B AND C are closed, represented by $D = A \cdot B \cdot C$.

Fig. 2. $D = 1$ when A OR B OR C are closed, represented by $D = A + B + C$.

Fig. 3. Some of the symbols used for logic gates.
TABLE 8. Truth table for common combinational logic operations.

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>OUTPUT D =</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

NAME OF GATE AND OR NOR NAND EXCLUSIVE OR

realize the AND, OR, NAND and exclusive-OR operations. These illustrations also show the application of some of the relations given in Table 1. Figs 4(a) & 4(b) use relations 28 & 30 respectively on the output function and relation 30 is also used on the output from the three-input NAND gate in Fig. 4(c). In Fig. 4(d), relations 27, 21 & 11 are used in turn on both inputs to the final gate and relation 30 used on its output function. Figs 5(a) & 5(b) use relations 29 & 28 respectively on the output function, relation 29 also being used on the output of the three-input NOR gate in Fig. 5(c). In Fig. 5(d) relation 29 is used on the input to the final gate and relations 27, 26, 21 & 11 used in turn on its output function.

These examples show that more gates of a given type are required to realize any other particular simple logic function. Although this point has been illustrated by simple Boolean expressions, in the design of more complicated systems the algebra may be cumbersome and other techniques such as Karnaugh mapping would be used to obtain a minimal solution.

To synthesize a complex system it may be advisable to use gates of one type because of their availability and cost. Many different types of solid-state electronic logic-gate realizations are available such as resistor-transistor logic (r.t.l.), diode-transistor logic (d.t.l.), direct-coupled transistor logic (d.c.t.l.), transistor-transistor logic (t.t.l.), emitter-coupled logic (e.c.l.) and complementary metal oxide transistor logic (c.m.o.s.). These families of gates have different characteristics and one family may prove to be more suitable than another in a particular application. For example, the prime consideration may be highest possible speed of operation or lowest power consumption or greatest immunity to external noise or the simplicity of interfacing the gates with other circuitry. The successful design of a digital system therefore requires a working knowledge of the capabilities of the various types of electronic gates available.

Fig. 4. Logic operations of AND (a), OR (b), NAND (c) and exclusive OR (d), can be realized using only NAND gates.

Fig. 5. NOR gates can realize the logic operations of AND (a), OR (b), NAND (c) and exclusive OR (d).
Resistor-transistor and direct-coupled gates

Simple r.t.l.
The simplest resistor-transistor logic (r.t.l.) gate, which performs the positive logic NOR function, is shown left. A positive voltage applied to any input turns Tr1 on, causing Vout to fall from Vcc to a value that depends on the base drive. If sufficient base drive is applied, Tr1 saturates making \(V_{out} \approx V_{cc} \), representing the logical 0 state. Positive voltages applied to the other inputs increases the degree of saturation and only change \(V_{out} \) by a small amount.

If logical 0 voltages \((V_{ccmin} \approx 0.1 \text{ to } 0.4V) \) and \(V_{out} \approx +V_{cc} \). For useful logic functions the gate must feed some load, causing an additional current \(I_{L} \) to flow in \(R_C \) and hence reducing the logical 1 value of \(V_{out} \). The gate is also a negative-logic NAND gate.

Improved r.t.l.
Inclusion of a base bias resistor, \(R_B \), in the middle circuit, returned to a negative supply ensures that Tr1 is definitely turned off when all inputs are below the input logical 1 threshold and reduces the transistors turn-off time. Speed-up capacitors can be placed in parallel with each input \(R_C \) to produce resistor-capacitor-transistor logic. However, if all inputs are at logical 1 voltages and one of them rapidly switches to the 0-state, its speed-up capacitor couples the negative-going transition to the base-emitter junction of Tr1 which can cause the transistor to temporarily switch off. For this reason r.t.l. gates are normally only used at fairly low switching speeds.

A clamping diode D1, shown right, can be connected to a supply \(\pm V_D < \pm V_{cc} \) to make the logical 1 output voltage less dependent on the load current, provided that the drop across \(R_C \) does not cause \(D_1 \) to become reverse-biased.

Direct-coupled logic
Direct-coupled-transistor logic is also referred to as direct-coupled logic and collector-coupled-transistor logic, but it is strictly incorrect to refer to it as resistor-transistor logic as is done by some manufacturers since the input resistors have no logic function. The base resistors bottom serve only to divide the current between transistors when their inputs are paralleled. The gate is a positive-logic NOR gate which uses the transistors as summing elements. The transistors also provide input-output isolation and restoration of the logic levels in each gate in a cascade. A positive voltage at any input turns on its associated transistor causing \(V_{out} \) to fall to \(V_{cesat} \), the logical 0 level. With all inputs at logical 0 the transistors are virtually cut off, and \(V_{out} \) is determined by \(V_{cesat} \) and \(R_C \) only. However, if any input is at a logical 1 level, its associated transistor will be turned on, and \(V_{out} \), and hence \(V_{cesat} \), will be a function of the load current and base drive.

Typical r.t.l. parameters
\[\begin{align*}
+V_{ccmin} & = 20V \\
+V_{ccmax} & = 28V (4mA) \\
-V_{cc} & = 0V (with\ silicon\ transistors) \\
R_B & = 82k\Omega, \ R_C = 30k\Omega, \ R_e = 7.5k\Omega \\
& \quad \text{logical 0 level} 300mV \text{ max} \\
& \quad \text{logical 1 level} 14V \text{ min} \\
& \quad \text{Fan-in} 4 \\
& \quad \text{Fan-out} 6 \\
& \quad \text{Maximum frequency} 10kHz
\end{align*} \]

Further reading
Diode-transistor gates

Fig. 1 shows a diode-transistor logic (d.t.l.) NAND gate, using discrete components, which is effectively a diode-logic AND gate followed by an inverting transistor. Resistors R_A, R_B and R_C act as a level-shifting potential divider designed to provide enough base drive to allow T_{R_1} to saturate, making $V_{out} = V_{CE} \text{sat}$ (logical 0), when all input diodes conduct due to logical 1 levels being present at all inputs. If any input is at logical 0 V_{in}, its associated diode conducts, causing V_I to fall to the forward voltage of the diode. The transistor is then held in the cut-off state by the reverse bias obtained by potential division of V_B between R_K and R_B and the output goes to the 1-level as its collector rises towards $+V_{CC}$. The use of D_4 and D_5 in Fig. 2 leads to a much smaller required swing in V_I to achieve the desired base voltage swing. Hence the signal levels may be lowered to reduce gate dissipation which also falls due to the removal of R_B. Other diodes may be placed in series with D_A and D_B to improve noise immunity. While the input diodes should have a very short reverse recovery time, the level-shifting diodes D_A and D_B should be slow recovery types to ensure that they do not return to their high-impedance, reverse-biased state until T_{R_1} has cut off. Elimination of the V_B supply can simplify circuitry in many instances, a popular modified form of the d.t.l. NAND gate using a single supply being shown in Fig. 3. In comparison with Fig. 2, the offset diode D_4 is replaced by T_{R_1} and R_2. This transistor provides amplification that allows a higher level of base drive to be fed to T_{R_1}, achieving a higher fan-out capability, and also permits a reduction in the value of R_A compared with Fig. 2.

Gates used in industrial logic systems often require high noise immunity, rather than high speed and low power dissipation, as large transients can be produced in supply lines or picked up at inputs due to switching of relays, etc. Fig. 4 shows a modified form of Fig. 3 that exhibits higher noise margins largely due to D_1 being changed from a forward-biased diode to a reverse-biased diode exhibiting a zener-type characteristic when the p.d. across it reaches about 6.7 V. Thus the input threshold voltage is increased by an amount equivalent to the p.d. that would occur across a further four forward-biased diodes connected in series with D_5 in Fig. 3, but is achieved by using only one such diode operating on its reverse characteristic. A higher supply voltage is required in Fig. 4 but to prevent large increases in currents, and hence gate dissipation, all resistor values are also increased. Fig. 5 shows typical transfer characteristics for the circuits of Figs. 3 & 4. Fig. 5 shows the high noise-immunity gate of Fig. 4 with an active pull-up transistor T_{R_1}. When T_{R_1} is off R_2 supplies base drive to T_{R_1} which supplies load current via R_E. With the output in the 0-state T_{R_1} is off and T_{R_1} sinks load current through D_A which causes the low logic level to exceed $V_{CE} \text{sat}$ of T_{R_1}. The table shows a comparison of some typical parameters for integrated circuit versions of Figs. 2 to 5.

Further reading
Basic t.t.l. gate

Circuit description
Circuit shows the form of the basic transistor-transistor logic gate which performs the positive logic NAND function and which may normally have up to eight inputs. If all the inputs are at a high level (logical 1), base drive is provided to Tr4 through R3 and the base-collector junction of Tr1. If any one or more input is at a low level (logical 0), the current in R4 flows through the base-emitter junction of Tr1 to ground. The base will then be only VBR off above VTN and Tr4 cut off due to lack of base drive. Transistor Tr1 thus performs the AND function as its collector is only high if all its inputs are high. Transistor Tr3 acts as a phase splitter that saturates with only a moderate current gain—note the small ratio of R6/R1 with R5 ≈ R4. When Tr4 is cut off its collector and emitter are approximately at +V and 0V respectively. When Tr3 drives Tr4 on, its emitter rises to VDH and its collector falls to (VDH + VCEsat). In this state Tr3 will be saturated so that the output will be at VCEsat (logical 0) when all inputs are in the high state. In this condition the gate can sink current through Tr4 from a number of loads, normally a maximum of 10, in the 0-state, without causing VCEsat to rise above the acceptable 0-threshold.

If any of the gate inputs is in the low state, Tr4 will be off as Tr3 is cut off. Transistor Tr2 will be on to an extent determined by the emitter current demanded at the output. This current will be small when the gate feeds a number of similar t.t.l. gates and its base current will be smaller still. Hence the p.d. across R2 due to Tr2 base drive will be negligible and the output will be in the high state with VOUT at approximately +V - (VDS + VBR).

Switching action
When switching the output from the 0- to the 1-state, all inputs are initially high (logical 1). As the potential of one or more input falls, nothing happens until it reaches about 1.4V, when the source current via Tr1 base-emitter junction prevents base current flowing to Tr3 via the base-collector junction of Tr1, which rapidly removes the stored charge from Tr4 base and switches it off. The collector potential of Tr4 starts to rise as this transistor turns off, but stops rising as Tr4 begins to conduct heavily. This conduction occurs because Tr4 has not yet switched off, as the charge stored in its base decays only relatively slowly through R4. Therefore, a large current spike of short duration and limited in amplitude by R4 occurs in the supply line during the switch-off action due to Tr3 and Tr4 being simultaneously on. This conduction in Tr4 removes some of the stored base charge, allowing the output voltage and Tr3 collector potential to rise. The rise continues until Tr3 becomes cut off and the output settles to the 1-level. Typical input, output and transfer characteristics are shown in Figs. 2, 3 & 4 respectively. Width and amplitude of the current spike are virtually unaffected by the rate at which the gate is switched on and off. Hence a side effect of the current spike is an increase in power consumption as the switching frequency increases.

Outputs:
- "0" level 400mV max at + V min
- "1" level 2.4V min at + V min
- "0" level 16mA
- Short-circuit output current: 18 to 55mA at + V max
- Propagation delay* from "1" to "0" 15ns max
- Propagation delay* from "0" to "1" 22ns max
- "1" noise margin 400mV min
- "0" noise margin 350mV min
- Gate dissipation 10mW
- *With output loaded by 40Ω/15pF.

Typical parameters
- Temperature range: 0 to 70°C
- "0" level 4.5V, +V max 5.5V
- "0" supply current 22mA max
- "1" supply current 8mA max
- Fan out 10 t.t.l. loads
- Inputs:
 - "0" level 800mV max
 - "1" level 2V min
 - "0" level 1.6mA max at +V max
 - "1" level 40µA max with VIN = 2.4V

Unused inputs
Inputs that are unused in a particular application should be connected in parallel with used inputs for fastest switching speed. Unused inputs can be left open circuit, but excessive pick-up noise may result unless the open circuit is made at the integrated circuit package connection. If unused inputs are connected to the positive supply rail, it is advisable to do so via a resistor of around 1kΩ to prevent the gate being damaged by a supply line transient that exceeds the maximum rating.

Further reading
Scarlett, J. A. Transistor-Transistor Logic and its Interconnections, chapters 1 to 6, Van Nostrand, 1972.
NAND gate variations in t.t.l.

In the basic, or standard t.t.l. NAND gate (card 3), the resistor values affect performance. Resistor \(R_4 \) influences the rate of rise of voltage at \(T_{R2} \) base and turn-on time. Gate dissipation, when the output is in the 0-state is affected by the value of \(R_2 \). Stored base charge in \(T_{R3} \) is removed via \(R_5 \) when the output state changes from logical 0 to 1. Turn-off time of the gate when feeding a capacitive load is influenced by the value of \(R_4 \), which provides short-circuit protection.

Low-power t.t.l.

For low-power operation the resistor values must be increased to reduce the charging-discharging currents. But larger resistors imply slower switching speeds unless transistor size is reduced to lower their capacitances. This can be done due to the lower current levels and by reducing the degree of gold doping the transistors achieve higher current gains to better-utilize the smaller currents. The resulting gate, top left, has a power dissipation only one-tenth of that in a standard gate with a speed reduction penalty of only three times.

High-speed t.t.l.

To obtain higher switching speeds than are obtainable with standard t.t.l., the charge-discharge rates of the integrated and external capacitances must be increased. This implies larger transistor currents and hence lower resistor values. The higher currents require larger transistors having increased capacitances that tend to offset the speed increase due to higher currents. A distinct speed improvement is obtainable, the high-speed NAND gate shown above having about double the speed and slightly more than twice the dissipation of the standard gate.

The Darlington-connected pull-up transistors \(T_{R9} \) and \(T_{R3} \) provide higher active-region gain which reduces the output resistance and increases the ability to drive capacitive loads. Resistor \(R_4 \) is sometimes returned to the output point, rather than to the 0-V rail, to reduce the gate dissipation. Sometimes a by-pass transistor, \(T_{R6} \), is added to the pull-down transistor, \(T_{R4} \), as shown right. Resistance of the discharge path for stored base charge in \(T_{R5} \) is reduced, improving the turn-off time. Transistor \(T_{R2} \) cannot conduct through \(R_5 \) until its emitter voltage exceeds the turn-on \(V_{CE} \) of \(T_{R3} \) which is approximately the same as that of \(T_{R3} \). Hence, the output remains in the 1 state until \(V_{IN} \) rises to a level sufficient to turn on \(T_{R2} \) which removes the low-slope region from the transfer characteristic improving noise immunity.

Schottky-clamped t.t.l.

Excess base drive is shunted through the diode, which clamps the collector-base junction with a p.d. of 400mV which is insufficient to produce any significant forward conduction. The elimination of gold-doping provides higher-gain, physically-smaller transistors with very little charge storage and hence much higher switching speeds without the penalty of further increased power dissipation. Use of Schottky-clamped transistors increases the output 1-level improving its noise immunity. Transistor \(T_{R1} \) below has very little stored base charge, improving the turn-off time and reducing the supply current spike. As this transistor's \(V_{CE} \) determines the output 0-level, the level will be raised by about 100mV compared with the standard gate but its value will be far less temperature dependent. The table shows a comparison of some typical parameters of different t.t.l. NAND gates.

Input clamping diodes

Most t.t.l. gates have input clamping diodes to ground, as shown on right to reduce the negative excursions of input signals due to ringing caused by reflection of pulses along the interconnection transmission lines.

Further reading

Cross references

Set 11, card 3; set 10, card 11.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>low-standard</th>
<th>high-speed</th>
<th>schottky</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V)</td>
<td>5V</td>
<td>5V</td>
<td>5V</td>
</tr>
<tr>
<td>0 current</td>
<td>5.5mA</td>
<td>0.46mA</td>
<td>10mA</td>
</tr>
<tr>
<td>1 current</td>
<td>1.3mA</td>
<td>0.18mA</td>
<td>4.2mA</td>
</tr>
<tr>
<td>Fan out</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Gate dissipation</td>
<td>10mA</td>
<td>1mA</td>
<td>22mA</td>
</tr>
<tr>
<td>Output delay 1" to 0"</td>
<td>8ns</td>
<td>30ns</td>
<td>6ns</td>
</tr>
<tr>
<td>Output delay 0" to 1"</td>
<td>12ns</td>
<td>30ns</td>
<td>6ns</td>
</tr>
<tr>
<td>Noise margin 1"</td>
<td>400mV</td>
<td>400mV</td>
<td>400mV</td>
</tr>
<tr>
<td>(V_{IN}) max & 0"</td>
<td>800mV</td>
<td>700mV</td>
<td>800mV</td>
</tr>
<tr>
<td>(V_{IN}) min & 1"</td>
<td>2V</td>
<td>2V</td>
<td>2V</td>
</tr>
<tr>
<td>(V_{OUT}) 0"</td>
<td>400mA</td>
<td>300mA</td>
<td>400mA</td>
</tr>
<tr>
<td>(V_{OUT}) min</td>
<td>1.6mA</td>
<td>10mA</td>
<td>10mA</td>
</tr>
<tr>
<td>(I_{IN}) 0"</td>
<td>40mA</td>
<td>50mA</td>
<td>100mA</td>
</tr>
<tr>
<td>(I_{OUT}) 0"</td>
<td>16mA</td>
<td>2mA</td>
<td>20mA</td>
</tr>
</tbody>
</table>
Complementary m.o.s. gates—1

Description
The circuit shows the basic complementary-symmetry isolated-gate inverter stage, which uses both an n-channel and a p-channel enhancement-mode m.o.s.f.e.t. in a series-pair configuration. Such circuits can be directly coupled as either transistor will be in its non-conducting or off-state if its gate-source voltage is zero. Individual gates are tied together to form a single signal input gate, and the drains are commomned at the output. Assume that the input signal excursion is from +VDD to 0V. When the input is +VDD, the n-channel f.e.t. is biased to a high conducting state because VGS is a high positive value. Simultaneously, the effective gate-source voltage of the p-channel f.e.t. is zero, and hence this transistor will be off, and the output will be at ground potential. When the input goes to zero volts, the n-channel f.e.t. is biased off, but the p-channel transistor has now a large negative voltage between gate and source and is therefore biased into conduction, and the level then approaches +VDD (the high or 1-state). In either logic state, one transistor is conducting and the other is cut-off. It follows that the quiescent power dissipation is exceedingly low—the transistor that is off will only conduct leakage current, typically 1nA.

More significant power dissipation occurs during the switching from one level to the other, due to both a current spike which occurs when the inverter is in its linear region and to the charging and discharging of load capacitance. This depends on the frequency, the value of the capacitance and the square of the supply voltage. If the p-channel source is connected to ground, the n-channel source should be connected to −VDD and the drive signal excursion should be from −VDD to 0V.

Construction
A cross-section depicting the formation of n-channel and p-channel transistors on the same chip is shown below. The p-channel one is formed directly on an n-type substrate, but the n-channel device is formed in a p-region diffused into the substrate. This process creates parasitic diodes, and their relationship to the inverter terminals is shown below. As VDD is normally more positive than VSS, these diodes are in a reverse-biased state, and their leakage current contributes to quiescent power dissipation. It should be noted that if the voltage level at the output terminal is subjected to any transient condition, it is unable to go more positive than VDD or more negative than VSS, by more than the forward conducting voltage of these parasitic diodes.

Input protection
Because the input resistance of the device is so high, static charges may be sufficient to charge the input capacitance of the gate oxide to a high enough voltage to cause breakdown (~100V). The diode protection network, below right is one type designed into some gate. If the gate terminal voltage is greater than VDD, diodes D1 and D2 can conduct, and if less than VSS, D3 may conduct—the current magnitude should be limited to around 10mA (R may be around 2kΩ). For conditions where the diodes are either forward or reverse biased, the voltage across the oxide layer is limited to approximately 1 or 25V respectively.
Complementary m.o.s. gates—2

Basic gate structure
NOR and NAND functions are formed by series and parallel combinations of p and n pairs. For the NOR gate, the n-type f.e.t.s are in parallel and the p-type in series as shown left. The circuit configuration of the NAND is similar but the p-types are in parallel, the n-types are in series, and the supply connections are changed over, see diagram right. The NOR logic action is described assuming \(V_{DD} \) is a positive voltage and \(V_{SS} \) is at 0V. Input excursions at A and B will be within the range 0V to \(V_{DD} \). If either A or B is positive, then one of the p-types will be off and one of the n-types on, thus connecting \(V_{out} \) to 0V via the on-resistance of the conducting transistor. If both A and B are positive, again the output will be at 0V. If A and B are at 0V, then both p-types will be biased on, due to the negative voltage at their gates, and both n-types will be off, and hence \(V_{out} \) will be at \(+V_{DD} \).

General notes
Noise immunity. Typically the input may change by up to 0.45\(V_{DD} \) before the output begins to alter. Over the full range of \(V_{DD} - V_{SS} \) (3 to 15V), a noise immunity of 0.3\(V_{DD} \) is guaranteed.

Unused inputs. NOR gates: Connect input terminals together or to the lower voltage terminal \(V_{ss} \). NAND gates: Connect input terminals together or to the voltage terminal \(V_{DD} \).

Parallel gates. Gate outputs may be connected in parallel allowing greater output currents at the expense of increased power dissipation—current hogging need not be considered.

Pulse drive. Rise and fall times should be less than 5\(\mu \)s typically to prevent the device spending too long in the linear region during switching and thus increasing power dissipation.

Output characteristics
The two graphs shown left illustrate typical n-device and p-device drain current characteristics for the NAND and NOR gate. Drain currents for the n-type in the NOR gate are much higher than those available in the NAND gate for the same gate-source voltage.

Typical data

<table>
<thead>
<tr>
<th>Gate</th>
<th>Drive p(source) (V_{out}) (mA)</th>
<th>Drive n(sink) (V_{out}) (mA)</th>
<th>Quiescent power ((\mu)W)</th>
<th>Delay (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nor</td>
<td>1.0</td>
<td>9.5</td>
<td>0.5</td>
<td>0.05</td>
</tr>
<tr>
<td>Nand</td>
<td>1.2</td>
<td>9.5</td>
<td>0.6</td>
<td>0.05</td>
</tr>
<tr>
<td>Inverter-pair</td>
<td>2.5</td>
<td>9.5</td>
<td>0.5</td>
<td>0.05</td>
</tr>
<tr>
<td>Buffer</td>
<td>2.5</td>
<td>9.5</td>
<td>16.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Development
Devices have been produced which operate with \(V_{DD} \) values (\(V_{SS} = 0V \)) in the range 1.1 to 1.6V, and recently 0.7V.

Further reading
Ankrum, P. D., Semiconductor Electronics, Prentice-Hall.
Bishop, R. A. Complementary m.o.s. offers many advantages to both types of c.m.o.s., promises devices with propagation delays as low as 10ns.

Emitter-coupled logic

Circuit description
"Emitter-coupled logic" (e.c.l.) describes integrated logic circuits in which the switching transistors do not saturate as in other forms of bipolar transistor logic. Delays due to charge-storage effects in the saturated mode are avoided, leading to faster switching. The above diagram is one form of a three-input basic e.c.l. gate, whose outputs provide an OR and the complementary NOR logic functions. The reference voltage must be well regulated, and of a level midway between the logic swings. For nominal logic high and low output of −0.75V and −1.55V respectively, this indicates Vref = −1.15V. The following evaluation is for guidance only.

If inputs A, B, C, are at the low logic level, Tr1, Tr2 and Tr3 are cut off, Tr4 is conducting and hence the potential at VEE will be −1.53V. As there is no current through Tr4, the OR output will be −1.9V, and the voltage across R3 is Vref−VQ. Assume Vref is −5V, then I = 2.6mA. This means that the drop across R3 is 0.78V and therefore the OR output will be −1.53V. As there is no current through Rs, Vp is 0V, and the NOR output is thus −0.75V due to the base-emitter junction drop. When a logical 1 (−0.75V) is applied to, say, terminal A transistor Tr1 will conduct harder than Tr4, and the current in R3 is then supplied via R5, i.e. the current has been diverted from Tr4 because the input voltage to Tr1 is half a logic level more than that of Vref, and the resultant reduction of the base-emitter drops of Tr1 is sufficient to decrease its emitter's current to almost zero. Hence the base of Tr1 is now at 0V and the OR output will be logical 1 at −0.75V. The related NOR is determined from the new VQ value of −1.5V, and hence the p.d. across R3 is −3.5V and thus I = 2.9mA. Therefore the p.d. across R3 will be −0.78V and hence the NOR output is −1.53V.

A temperature-compensated regulator package of the form shown left is available as the reference voltage, also frequently on the same chip as the gate. Power dissipation of e.c.l. gate where the reference is at ground potential. With the supplies shown, logic levels nominally −400mV for logical 0 and +400mV for logical 1. Suitable for driving into 50Ω loads, and up to 25mA d.c. when terminated in 50- and 270-Ω pull-down resistor to −3.2V.

Gate dissipation ≈ 35mW
Worst noise margin 250mV

Other e.c.l. gates with a basic configuration similar to the first provide multi-input, multi-emitter follower OR/NOR outputs, with optional pull-down resistors. Vcc = 0V, Vref = −5.2V ± 20% Output (source) current: up to 2.5mA
Operating temperature range −55 to 125°C
Propagations delay (rising) 3.5 to 5ns
Fall-time propagation delays up to 15ns due to emitter-follower output resistance and capacitance loading.

Three outputs tied together (wired OR) gives output impedance of about 2.5Ω.

Suitable for driving 50-Ω loads (two pull-down resistors only for faster fall times).

Noise margin 175mV
To maintain high speed, limit interconnection length to < 25cm

Fan-in: 20; fan-out: 15 (a.c.)

Basic form of ECL circuit capable of propagation delay <1ns is shown right. A separate supply terminal Vcc is used for the output emitter-followers. Vcc = −5.2V. Pull-down resistors of 50 or 2kΩ provide a path for leakage currents (unused inputs can be open-circuit) and act as loads for driving gates. Power dissipation ≈ 55mW.

Fan-out= 70 for Rpd = 50kΩ.
Fan-out= 7 for Rpd = 2kΩ.
Propagation delay: 0.9ns for 50-Ω load.
1.1ns for 50-Ω load.
Interconnections should be 50-Ω microstrip transmission lines and termination connected to −2V supply.
Temperature range 0 to 75°C.

Logic swing typically −0.9V ("1") to −1.75V ("0").
Interfacing

d.t.l./t.t.l.-c.m.o.s.
The minimum t.t.l. 2.4V 1-level output is normally for a load current of 400µA, but as the c.m.o.s. gate input current is approximately 10pA, the more likely 1-output is 3.6V. This is an inadequate noise margin (0.1 V) and an active pull-up resistor typically 1 to 10kΩ depending on whether high speed or low power is required) is connected from the t.t.l. output to the positive supply rail of +5V.

Hence when Tr1 is off the c.m.o.s. input will be at +5V giving a 1.4V noise margin. The threshold values of switching for the c.m.o.s. gate is typically 30% and 70% of the supply voltage, i.e. 1.5V and 3.5V respectively. Note. Unshaded areas represent the 1- and 0-regions, the borders being the minimum l-level and the maximum 0-level for minimum and maximum t.t.l. supply voltages.

c.m.o.s.-t.t.l.
The c.m.o.s. gate must sink 1.6mA and source 40µA for the 0- and 1-state of the bipolar input respectively. Not all c.m.o.s. devices can cope with one t.t.l. load (1.6mA) but gates on the same package may be paralleled to increase their current sinking capability, or preferably buffers such as CD4009, CD4041, CD4049 should be used. These devices can sink two t.t.l. load currents and still have an output of 0.4V, thus retaining a 0.4V noise margin.

Low-power t.t.l.-c.m.o.s.
Most low-power t.t.l.-c.m.o.s. devices can drive c.m.o.s. directly as the logic zero-level sink-current is 0.18mA. Again for driving c.m.o.s., the t.t.l. output should have a pull-up resistor for adequate noise margin.

e.c.l.-c.m.o.s.
Output swing of e.c.l. (typically -1.55 to -0.75V) is inadequate to drive c.m.o.s. directly, i.e. switching levels are 30% and 70% of -5.2V. One technique is to use a two-input expandable gate driving a p-n-p transistor, with a pull-down resistor (~3kΩ) to the negative supply. This provides noise margins amplitudes of 1.56 and 0.66V.

c.m.o.s.-c.m.o.s.
Most high-threshold logic gates operate from a Vcc supply of 15 ±1V. Hence direct connection with c.m.o.s. gates is possible. Noise immunity is high, of the order of 3V for high and low h.t.l. outputs, though this may be improved using a pull-up resistor as shown (in some l.c.s this may be internal) which also improves the output rise-time. Rise and fall times of around 1µs should be the aim for the h.t.l.-c.m.o.s. interface.

c.m.o.s.-e.c.l.
Both may be operated from -5V ±20%, but speed is restricted to 1MHz. Speed is increased if Vss is taken to a separate supply between -5 and -15V. The clamp diode D1 keeps e.c.l. drive to a minimum of about -5.8V. Above typical figures indicate a high level noise margin of 225mV, and a low level of 4.3V.

c.m.o.s.-h.t.l.-c.m.o.s.
This may be improved using a pull-up resistor as shown (in some l.c.s this may be internal) which also improves the output rise-time. Rise and fall times of around 1µs should be the aim for the h.t.l.-c.m.o.s. interface.

c.m.o.s.-e.c.l.
Both may be operated from -5V ±20%, but speed is restricted to 1MHz. Speed is increased if Vss is taken to a separate supply between -5 and -15V. The clamp diode D1 keeps e.c.l. drive to a minimum of about -5.8V. Above typical figures indicate a high level noise margin of 225mV, and a low level of 4.3V.

Set 11: Basic Logic Gates—E
Threshold logic

Circuit description
Threshold logic gates are much more powerful and flexible than are the normal AND, OR, and NOT gates. Majority, minority, AND, and OR gates are simply particular cases of threshold logic. A threshold gate has inputs A, B, C... with weights a, b, c... associated with the respective inputs. The output Z from such a gate is then:

\[Z = \begin{cases} 1 & \text{if } \left< aA + bB + cC + \ldots \right> \geq T_1 \text{ and } \left< aA + bB + cC + \ldots \right> < T_2 \text{ for some value } T_1, \text{ the upper threshold, and } T_2=0 \text{ if } \left< aA + bB + cC + \ldots \right> \geq \text{ some value } T_2, \text{ the lower threshold.} \\
0 & \text{otherwise.}
\end{cases} \]

\[T_1 - T_2 = \text{the threshold gap and is that inadmissible sum which will give an ambiguous output. Generally } A, B, C, \ldots \text{ are binary (1 or 0); } a, b, c \ldots \text{ need not be, but generally are, integers in which case the weighted sum can only take on integral values. The threshold performance is then quoted by those to integers between which switching takes place. We then obtain:} \]

\[Z = \left< aA + bB + cC + \ldots \right>_{\text{in}} \text{ where } t_1 \text{ and } t_2 \text{ are integers, } t_1 - t_2 = 1, \text{ and } t_1 - t_2 > T_1 - T_2. \]

The symbol used is shown (left). Circuit shows a three-input threshold gate with identical current flows through each input. Basically it comprises three long-tailed pairs with a constant-current source (e.g., Tr1 and R1) in each tail. When A exceeds VRef by more than 100mV or more the tail current flows through Tr3 and R3, and when A is less than VRef, by more than 100mV the current flows through Tr2 and R2. Resistors R1 and R2 act as summing resistors, summing the currents from the long-tailed pairs. Transistors Tr4 and Tr5 act as emitter-follower output stages for Vc1 and Vc2 so that

\[Z = V_c2 - V_{BE} \text{ and } Z = V_c1 - V_{BE}. \]

When Z is in the high state it must exceed VRef by 100mV or more so that a succeeding stage will recognize it as logical 1. Likewise in the low state Z must be less than VRef by 100mV or more.

The following formulae apply to the circuit.

\[I_1 = \frac{V_{Ref} - V_{AB}}{R_1}; I_2 \text{ and } I_3 \text{ are obtained similarly.} \]

\[\text{When } I_1 \text{ is switched from } R_3 \text{ to } R_4 \text{ on application of logical 1 at } A, \text{ then the change in } V_{c2} = I_3 R_3. \text{ This change should be around 200mV or more to obtain decisive switching.} \]

1. Max \(Z = V_{c2} - V_{c1} \) and occurs when no current flows in R3.
2. Min \(Z = V_{c2} - V_{c1} - 3I_1 R_3 \).

This assumes that all the tail currents are identical and flowing in R3.

As shown, all three inputs must be applied before Z goes to logical 1. Hence:

\[Z = 1 \text{ if } aA + bB + cC + \ldots > \text{some value } T_1, \text{ the upper threshold, and } Z = 0 \text{ if } aA + bB + cC + \ldots < \text{some value } T_2, \text{ the lower threshold.} \]

Threshold logic, gates, functions as well as the basic function that one wants can be obtained within the restriction that the weightings will remain the same. Furthermore if, say, R3 is comprised of a string of series resistors then one can obtain a large number of different functions as well as the basic one. Reference 3 shows how one can improve the tolerance of the circuit to large input voltages which otherwise can cause saturation and incorrect current summation.

Further reading
Optical logic

Circuit description
All the simple logic functions can be performed using optical couplers. Fan-out or speed difficulties preclude the use of these gates in complete logic system but in systems where simple logic is required and/or the input is in optical form, they can be very useful and show the usual advantages of optical coupling (cross ref. 1). Circuit shows an OR gate using optical couplers. If V_{F1} is large enough (> 1.2V) to make D_1 conduct then Tr_1 conducts and V is applied. Similarly V is applied to R. Hence, in Boolean terms, $V_0 = V_{F1} + V_{F2}$. The transfer characteristic shown right for two different values of R indicates the static performance and shows noise immunities superior to that of t.t.l. For these two values of R with the given V the photo-transistors are being operated in their saturated mode (cross ref. 1) which permits a maximum current through each transistor of approximately 15mA. The normal parallel type of fan-out is, therefore, only one since the required I_F of succeeding stages is in the range 10 to 50mA. However, serial connection of succeeding stages could yield a fan-out of two or three if the appropriate resistance were chosen. This fan-out could be increased if V were increased or, if speed was not essential, by using opto-couplers with Darlington output stages. The fan-in can easily be increased. Note that basically the drive signal is the diode current rather than the applied voltage so that current driving can easily be employed. Moreover V_{F2} and V_{F4} need not be the same, nor indeed do the two diode currents. All that is necessary is that each transistor be driven into saturation. With the quoted data pulse repetition frequencies of 40kHz can be handled. Higher frequencies but with lower current handling capacity can be obtained using photo-diodes and lower frequencies with greater current handling capacity with photo-darlings (cross ref. 2).

Component changes
V can be increased to 30V. V_{F2} and R_1 can be varied so long as I_{F1} is in the range 10–50mA. Similarly for V_{F4} and R_2

Modifications

- A NOR gate can be constructed as shown left, in which the load R is placed in the positive supply rail.
- An AND gate can be constructed as shown centre. In this case V_o when in the I-state will be the supply volts minus the sum of the two saturated collector-emitter voltages.
- A NAND gate can be constructed by placing the load R in positive supply line.
- An exclusive-OR gate can be constructed as shown right. Current flows through D and D' only when A or B, but not both, are "1". R' serves to limit the current drawn from the supply when both A and B are "1".
- Negative supply voltages can be used if p-n-p opto-transistors are used.

Cross references
Set 9, cards 8 & 9.

Performance data
R_1, R_2 100Ω
R 10kΩ and 500Ω
V 6V
V_{F1}=0 and
V_{F2}=0 to 6V giving
I_{F1}=0 and
I_{F2}=0 to 50mA
Optocouplers TIL112

The above figures resulted in graph (right)

Circuit modifications

- A NOR gate can be constructed as shown left, in which the load R is placed in the positive supply rail.
- An AND gate can be constructed as shown centre. In this case V_o when in the I-state will be the supply volts minus the sum of the two saturated collector-emitter voltages.
- A NAND gate can be constructed by placing the load R in positive supply line.
- An exclusive-OR gate can be constructed as shown right. Current flows through D and D' only when A or B, but not both, are "1". R' serves to limit the current drawn from the supply when both A and B are "1".
- Negative supply voltages can be used if p-n-p opto-transistors are used.

Cross references
Set 9, cards 8 & 9.
Analogue gates

Typical data
IC: \(\text{NCD4016AE} \), \(\text{HMC14016CL} \)
Supplies (max): \(V_{DD} = +7.5V \), \(V_{SS} = -7.5V \)
or \(V_{DD} = +15V \), \(V_{SS} = 0 \)
Input analogue signal range: ±7.5V or 15V peak
‘on’ resistance: 300 to 1kΩ (typical)
‘off’ resistance: 1000MΩ (typical)
Feedthrough capacitance: 0.2pF
Transfer function linearity: <0.5% distortion
into 10kΩ load and \((V_{DD} - V_{SS}) > 10V \)
Frequency range: up to 10MHz

Circuit description
An analogue gate may be considered as an electronic switch which serially connects an analogue signal to a specific input point on the occurrence of a logic or control signal. This is the basis of many multi-channel multiplexers.

One gate that is particularly useful is the C.M.O.S. transmission gate. This comprises a series-pair inverter and two complementary transistors connected in parallel as shown, which allow bi-directional current flow when a control or logic signal is applied to the inverter. High and low signals are applied to the separate gates, and hence both transistors are either on or off simultaneously. The sources and drains of the parallel transistors are tied together, and either the p-type f.e.t. or the n-type f.e.t. will conduct harder because its gate-source voltage will increase negatively. At the same time the n-type f.e.t. conductance will begin to fall, as its positive gate-source voltage is decreasing.

The resultant effect is for the parallel arrangement to exhibit a fairly constant conductance and hence constant resistance. The graph is an idealized characteristic and assumes first-order linearity of n-m.o.s. and p-m.o.s. device conductance \(g_{ds} \) against input voltage, to give a constant \(g_{ds} \) for the parallel connection. The actual characteristics exhibit some non-linearity, but the effect on the output-input voltage transfer function is most evident only at low supply voltages (e.g., \(V_{DD} = V_{SS} = -2.5V \)).

Circuit modifications
- Circuit left is a shunt-series chopper circuit using p-channel junction f.e.t.s to gate the analogue signal. The f.e.t.s must be fed in antiphase and can be driven from t.t.l. logic provided the f.e.t. pinch-off voltage is less than 4V. When \(Q \) is high (Q low), \(Tr_2 \) is conducting and \(Tr_1 \) is off. As \(Tr_2 \) is connected to a virtual-earth point \(E \), then the signal level at this f.e.t. input is minimum and hence the gate voltage exceeds the sum of the signal voltage and the f.e.t. pinch-off value, a necessary condition for switching. When \(Q \) is high, \(Tr_1 \) is off, and the signal is grounded via the on resistance of \(Tr_1 \). The analogue swing is limited by the maximum signal swing of the i.e. amplifier, and the speed of switching will depend on the slew rate of the amplifier.
- \(Tr_1 \) & \(Tr_2 \) 2N5461, IC 741 or LM301A, \(R_1 = R_2 = 10 \) to 33kΩ
The junction f.e.t.s may be replaced by p-m.o.s. depletion types with similar pinch-off.
- Further, similar, chopper circuits may be connected to the virtual earth point to provide a signal multiplexer (middle).
- Signals \(V_1 \), \(V_2 \) and \(V_3 \) can be gated in turn by applying complementary control signals to the \(Q \), \(\bar{Q} \) terminals in sequence, say from a ring-counter.

The arrangement right, a series-shunt chopper, is best suited to voltage sources as neither the op-amp or \(Tr_2 \) draws significant current when \(Tr_1 \) is on, or when \(Tr_2 \) is off. The current from the source is negligible. Hence the input signal is gated to the op-amp with almost zero attenuation.

Further reading
CD4016A Data Sheet, RCA Solid State Databook Series SID 203A.
Three-state and majority logic

Three-state gates
Three-state logic (t.s.l.) is now available from at least three companies: National Semiconductor, Texas Instruments and Signetics. Flip-flops, multiplexers, demultiplexers, line drivers, counters and r.o.m.s are among the devices available in this form. The three states are normal 1 and 0 levels plus an off state which represents a high impedance condition in which the gate can neither sink nor source current—effectively an open circuit. Referring to the diagram, if the enable signal is logical 0 then normal logic inversion of the input signal is performed. However, if the enable signal is logical 1, then the input signals are overridden and the device goes into its hi-Z or off state as point A and with it point B are grounded. Hence, both Tr1 and Tr2 are switched off and present a high impedance to the load. This means, for example, that a large number of gates can be connected by means of a bus to a single load, only one gate at a time being connected to the load, all others being in the hi-Z state. If the number of gates connected to the bus is high then the leakage current (typically 40µA) of the off devices must be taken into account as the single on-device is supplying the load plus the leakage of all the off-devices. For this reason t.s.l. gates normally have a Darlington-connected upper output stage and this increases the source current capability by an order of magnitude over that for normal t.t.l. This in itself is an advantage of t.s.l. which in addition has the usual advantages of t.t.l. with respect to other logic families. The increased source current capability also carries with it a much reduced one-level output impedance which gives a one-level noise immunity an order of magnitude better than that for t.t.l.

To ensure in a bus-organized system that no two devices are ever on at the same time, all t.s.l. devices are arranged such that the time delay from on to off is less than that from off to on. Nevertheless, overlaps can occur and although no damage is done to the devices transients resulting from this or any other source can be longer than in a t.t.l. system, principally because more gates will probably be connected to the output of a t.s.l. device and this gives rise to increased load capacitance. Note that all t.s.l. devices are fully t.t.l. compatible and that three-state buffer gates are available to convert any d.t.l. or t.t.t.l. device into a t.s.l. element.

Further reading

Majority logic gates
A majority logic gate is a form of threshold logic gate where the numerical "weight" assigned to each of its inputs is unity. Majority logic uses combinational gates that provide an output in the 1-state (true) only when more than half of the inputs are in the 1-state. To realize this requirement when the number of inputs in the 1-state exceeds the number of inputs in the 0-state by only one (an input majority of one), majority gates normally have an odd number of inputs. It has only recently become possible to design systems based on standard integrated-circuit packages employing majority logic. These packages are of the 16-pin dual-in-line type and contain two identical majority logic gates, each having five inputs and using c.m.o.s. technology. Such majority logic gates allow the design of certain functions, such as those required for communication in the presence of noise and correlation methods, that are difficult to implement with other types of gate.

The flexibility of the majority gate can be seen by comparison with the normal AND, OR, NAND and NOR gates which select one input combination from a possible 2^n combinations of n inputs, whereas the majority gate can select 2^n-1 of the 2^n inputs. A majority gate with only three inputs is possible, as shown left, having an output function K = AB + AC + BC and, on inversion, this can produce the NOR majority function K = AB + AC + BC. The output function of the 5-input majority gate, shown centre, is more complex and is:

K = ABC + ABD + ABE + ACD + ACE + ADE + BCD + BCE + BDE + CDE.

By feeding this function to an exclusive-NOR gate together with another function, that may be at logical 0 or logical 1, further flexibility is introduced. When the W-input is at logical 1 (right) K provides the above 5-input majority logic function, K = M5 (say), and when W = 0 inversion occurs making K = M5. With D = 1 and E = 0, K provides the majority of the three inputs A, B and C when W = 1 (K = M3) and the NOT majority function K = M3 when W = 0. With D = E = 1, K provides the three-input OR function when W = 1 and the three-input NOR function when W = 0. With D = E = 0, the three-input AND function is realized when W = 1 and this becomes the three-input NAND function when W = 0.

Further reading

Cross references
Set 11, cards 5, 6 & 9.
1. A novel form of logic gate has been proposed recently that allows relatively complex logic functions to be constructed using a small number of components. They are compatible with existing i.c. processes and can be implemented using devices from standard i.c.s. No power gain is available as the active devices are used as series switches, i.e. cascaded gates suffer from loss of signal level as with earlier diode gating systems. In the example shown, two p.m.o.s. enhancement-mode transistors are used. With both inputs high, both devices are off and the output is low. With both inputs low, the devices are off because again each device has $V_{gs}=0$. Only if one input is high and the other low is one device put into a conducting state is the output taken high. The symmetrical nature of the circuit shows that it does not matter which is taken high, e.g. if A is high and B low, then T_{R_2} conducts raising the output close to A (the difference depending on the on-resistance of T_{R_2} compared with R_L). The circuit thus implements the exclusive-OR function, and the reference describes other arrangements both m.o.s. and bipolar for producing logic functions with fewer-than-normal components.

Reference

2. Integrated injection logic PL has the lowest speed-power product of presently available gates (1975), and a much higher packing density. The structure is such that the n-p-n transistor T_{R_1} is vertical and the lateral p-n-p transistor serves as both a current source and as an active load. T_{R_1} has multiple collectors c_1 and c_4. With the input of the PL gate high (or floating, corresponding to the previous gates being off), then T_{R_1} is biased on by the p-n-p current source. Then its outputs are capable of sinking the currents from the current sources at the inputs of the gates to which they are connected.

3. D.m.o.s. transistors are double-diffused metal-oxide devices, in which the channel length L of this n-type enhancement type can be controlled very accurately during production. Since R_{on} on-resistance, and input capacitance are proportional to L, while g_m and cut-off frequency are proportional to $1/L$ and $1/L^3$ respectively, then these devices provide better performance than conventional n-type i.c.s. Digital and analogue switch configuration are shown. For the digital switch, $(V_{DD} - V_{gs})$ can go up to $+30\text{V}$. With an input signal at V_{in}, $V_{out} = \left(\frac{R_{on}}{R+R_{on}} \right) V_{DD}$

This is the low level of V_{out} and is controllable by varying R. The following table shows the rise-time, and delay between input and output in nanoseconds.

<table>
<thead>
<tr>
<th>V_{DD}</th>
<th>$R(\text{k} \Omega)$</th>
<th>t_r</th>
<th>t_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.68</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>10</td>
<td>0.68</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>15</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9</td>
</tr>
</tbody>
</table>

The threshold voltage at which the transistor turns on is dependent on V_B when source and substrate are not connected as in the analogue switch application, and may have to be accounted for to avoid shift in operating point. The input signal is transmitted through the analogue switch when $V_C > (\text{most positive peak of } V_{in})$ and is disconnected when $V_C < (\text{most negative peak of } V_{in})$.

Reference
Set 12: Wideband amplifiers

After considering the suitability of various transistor equivalent circuits, the accompanying article describes the many ways to get extended h.f. performance from transistor circuits. As with valve circuits, there is the well-known limitation to the number of stages that can be cascaded for optimum gain-bandwidth product. To improve on it shunt and series peaking with inductors is the first line of attack, which soon runs into problems of instability and interaction when stages are cascaded. Incidentally, card 2 recalls the dodge, widely used in pulse circuits, of making a parallel RC input network equal in time constant to \(R_i C_i \). A popular method of reducing the effect of Miller (or should we say Blumlein) multiplication of input capacitance is the cascode arrangement (cards 5 & 7), considered as a common-emitter, common-base cascade.

There are other arrangements of two transistors (see also set 20) that can provide good bandwidth; card 12 shows a common-base, common-collector arrangement, related to the d.c. feedback pair of card 9. (For readers who are unclear of the various feedback arrangements around transistor pairs, see Fig. 8, the table and the text on pages 28 and 29.) Integrated circuits offer good solutions in many situations, useful types being variants of the standard 741, 301 devices, and compensation points to modify h.f. characteristics are provided on i.c.s such as the LM318 (card 11). A dodge not to be forgotten is to use digital i.c.s in a linearly-biased mode; cards 6 & 8 show how, the e.c.l. circuits offering bandwidths up to a few hundred megahertz.

High input impedance c.m.o.s. amplifier	1
Shunt-peaked wideband amplifier	2
High-gain wideband amplifier	3
Wideband voltage followers	4
Bipolar cascode wideband amplifier	5
Wideband amplifier using e.c.l.	6
FET cascode amplifiers	7
Wideband amplifiers with t.t.l., r.t.l., d.t.l.	8
Amplifiers using d.c. feedback pair	9
Gated video amplifier	10
High-speed operational amplifiers	11
Common-base wideband amplifier	12
Wideband amplifiers

Wideband amplifiers are extensively used in instrumentation and communication systems where the signals to be handled may be of an analogue or a digital nature. Such amplifiers are required to provide fairly equal amplification of a large range of frequencies with a lower frequency limit of zero or nearly zero. The high-frequency behaviour of the active devices must be considered in conjunction with the passive network elements to design an amplifier with required characteristics.

Many different circuit models are available for such devices, but not all are necessarily useful. Consider, for example, the bipolar junction transistor models shown in Fig. 1. The three versions of the intrinsic low-frequency equivalent circuit shown in (a), (b) and (c) are highly-idealized models that focus attention on the basic active properties of the device. The low-frequency T and h-parameter models shown in (d) and (e) are more useful, but are unsatisfactory for predicting amplifier performance in the region of its upper cut-off frequency.

Fig. 1. These intrinsic transistor models (a, b, and c) are unsatisfactory for h.f. design, as are the T and h-parameter models (d and e).

Models that are useful for high-frequency design must provide a more realistic representation of the transistor as a network element. The high-frequency model one chooses is often determined by availability of data, personal preferences and experience or whether the parameters of interest are readily determined by measurement. Fig. 2(a) shows the hybrid equivalent circuit which is a reasonable compromise between accuracy and complexity and which may be reduced to simpler forms for low-frequency and high-frequency calculations.

In high-frequency transistors, r_b and r_v are often sufficiently large to be neglected, the former being much larger than the load impedance and the latter much greater than the reactance of C_v, at high frequencies. The simplified form of Fig. 2(b) is often sufficiently accurate for assessing high-frequency performance and this may be reduced to that shown in Fig. 2(c), where C_v consists of C_{v-} in parallel with the Miller effect equivalent of C_{v-}. The base spreading resistance r_{bb} and the product $g_m r_{bb}$ may normally be assumed to be independent of the operating point, g_m, increasing and r_{bb}, decreasing as I_c increases. The value of C_{v-} increases with I_c and the depletion-layer capacitance C_{v-} varies as $1/(V_{ce})^4$ to $1/(V_{ce})^4$.

Fig. 2. The hybrid equivalent circuit (a) is a reasonable compromise between accuracy and complexity, and may be simplified for h.f. work to (b) and even (c).

To obtain a wide bandwidth with the simple cascade of common-emitter stages shown in Fig. 3, the collector coupling re-
sistors must be made small compared with the input impedance of the following stage, the capacitive component of which causes the gain to fall at high frequencies. Further reduction of R_e to exchange gain for bandwidth is limited by the presence of R_{w}. Also, if the gain per stage is reduced, more stages must be cascaded to achieve a desired amplifier gain and it becomes increasingly difficult to maintain the overall bandwidth which shrinks as the number of cascaded stages increases. The gain-bandwidth product of the transistors (f_r) attains a maximum value at a particular value of emitter current, which is often small. Adjusting the emitter current of each stage to its optimum value may result in a small signal-handling capability if significant distortion is to be avoided.

Several techniques are available for improving the achievable stage gain-bandwidth product, the simplest of which is the inclusion of an inductor to compensate for the falling response due to transistor input capacitance. The stages in Figs. 4(a) and 4(b) are said to be shunt-peaked and series-peaked respectively, the latter being far less effective in improving gain-bandwidth product. The effect of the shunt-peaking inductor is illustrated in Fig. 5 and by correct design the stage bandwidth, for a given gain, can be improved by a factor of about two without lifting the high-frequency gain above its low-frequency value. Too large a value of L results in overcompensation which produces overshoot and ringing in the transient response. Amplifiers using a number of these stages in cascade may suffer from instability and prove difficult to align.

This problem may be alleviated by making the effective load on each transistor resistive. Referring to Fig. 6, this can be achieved by considering L and R_e to be in parallel with the series equivalent of the CR input network, making R_C equal to the equivalent series input resistance and designing L to produce the same short-circuit time constant for each of the parallel branches. A disadvantage of this constant-resistance cascade is that it is no longer possible to vary a network element to adjust amplifier gain or bandwidth, which must be attempted by variation of the transistor parameters, e.g. by adjusting the individual collector currents. The foregoing techniques have the disadvantage that all the cascaded stages interact, any change in the design of one stage normally requiring changes in the others.

As the input capacitance, including that due to Miller effect, plays an important part in limiting the achievable bandwidth, a design approach that attempts to eliminate the effects of internal feedback is useful. The cascode amplifier shown in Fig. 7 employs this technique and it may be considered as a common-emitter common-base cascade. The common-base stage has a very low input impedance, so the common-emitter stage has a current gain approaching h_{fe} and a very small voltage swing at its collector, resulting in a large reduction of the internal feedback between collector and base. The bandwidth of the common-emitter stage approaches f_r and as that of the common-base stage is much larger, the cascode pro-
Satisfactory design of wideband amplifiers usually requires the interaction between individual stages or elementary building blocks to be negligible, or definable, the mid-band gain to be stable and input and output impedances to be adjustable to desired values. Use of feedback in the design allows these criteria to be approached without undue concern for the variations in transistor parameters and permits bandwidth to be extended at the expense of gain in a controllable manner. While the reduction in gain is a disadvantage it is not an expensive price to pay, bearing in mind the benefits obtained and the relatively low cost of adding extra feedback stages to meet the overall gain requirement.

Another disadvantage of feedback is the increased possibility of oscillation, which may be avoided at the design stage by using a sufficiently accurate circuit model. In a multi-stage amplifier designed for the highest possible bandwidth before the application of feedback, the cut-off frequencies of all stages will normally be similar. Hence there is a near certainty that the combined phase shift can reach 180° while the magnitude of the gain is well in excess of unity. To remove this possibility, by deliberately setting one of the cut-off frequencies much lower than the others, negates the original requirement for maximum pre-feedback bandwidth. General-purpose operational amplifiers, such as the 741-type, have internal stages with high cut-off frequencies, but a dominant lag at about 10Hz has to be introduced to cope with the possibility of 100% feedback.

Four basic feedback configurations may be used to create elementary building blocks. Fig. 8 shows these configurations which may be described in terms of the method in which the feedback is derived and applied. Thus, (a) is series-derived series-applied, (b) is shunt-derived series-applied, (c) is shunt-derived shunt-applied and (d) is series-derived shunt-applied. Alternative descriptions of these configurations are in common usage e.g. (a) transimpedance feedback, series-series or simply series, (b) voltage-ratio feedback or series-shunt, (c) transadmittance feedback, shunt-shunt or simply shunt, and (d) current-ratio feedback or shunt-series. Other descriptions include the use of the terms current feedback or voltage feedback. In the former case the signal fed back is proportional to the output current but may itself be a current or a voltage. With voltage feedback the fed-back signal is proportional to the output voltage.

All four arrangements have the property of increased bandwidth and reduced gain compared with the open-loop values. The input and output impedances become modified as shown in the table, shunt derivation (application) reducing the output (input) impedance and series derivation (application) increasing the output (input) impedance.

The two types of single-stage feedback, series and shunt, are shown in Fig. 9. In Fig. 9(a) the load impedance should be low and the input supplied from a voltage source.
Fig. 12. Widely differing input and output impedances make two-stage feedback circuits useful for cascading.

whereas in Fig. 9(b) the load impedance should be high and the amplifier input should be from a current source. The high-frequency response of these elementary blocks may be improved by the addition of peaking capacitors as shown in Fig. 10. Source and load impedance requirements for stable gain with single-stage feedback can be met by purposely creating a large mismatch between cascaded stages, i.e. by alternating series and shunt feedback stages as shown in Fig. 11. With this arrangement gain-bandwidth product is high, low-frequency gain may be determined with reasonable accuracy by multiplication of individual stage gains, and there is little interaction between stages. Feedback applied to two stages can offer similar merits, Figs. 12(a) and 12(b) showing series-derived shunt-applied and shunt-derived series-applied configurations respectively. Both networks have widely differing input and output impedances and are therefore attractive as basic building blocks for cascaded stages.

Although discrete devices may be used in a multistage realization, the availability of integrated-circuit transistor arrays, containing about five transistors with parameters inherently reasonably matched, are very attractive for many designs. Integrated circuits are available in the form of a long-tailed pair which can be operated as single-ended or differential-input wideband amplifiers by the addition of external passive components that allow a high degree of flexibility in the selection of gain, bandwidth and signal-handling capability. Other integrated circuit versions provide emitter-follower input and output transistors to make the input and output impedances high and low respectively. Integrated wideband power amplifiers can be obtained providing bandwidths up to about 8MHz and outputs of about 14V pk-pk. Integrated circuits containing pairs of cascode amplifiers and some with gating facilities are also very useful as wideband amplifiers. Modern integrated-circuit logic gates designed for high-speed switching applications may also be usefully employed as low-cost wideband amplifiers by setting the quiescent conditions in a linear part of the transfer characteristic and employing feedback to define the gain.

<table>
<thead>
<tr>
<th>Feedback type</th>
<th>Z_{out}</th>
<th>Z_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 8(a)</td>
<td>increases</td>
<td>increases</td>
</tr>
<tr>
<td>Fig. 8(b)</td>
<td>decreases</td>
<td>increases</td>
</tr>
<tr>
<td>Fig. 8(c)</td>
<td>decreases</td>
<td>decreases</td>
</tr>
<tr>
<td>Fig. 8(d)</td>
<td>increases</td>
<td>decreases</td>
</tr>
</tbody>
</table>
High input impedance c.m.o.s. amplifier

Circuit description
C.m.o.s. circuits have been designed for digital systems. Basic building block is the inverter consisting of a complementary pair of enhancement-mode m.o.s. devices with threshold voltages in the region of 1.7V and peak current capabilities of a few tens of milliamperes at maximum forward bias. Input resistance is extremely large with the leakage currents of the protection diodes as the limiting action. The individual device g_m is around 1 to 2mS for forward gate-source voltages in excess of 5V. Biased in the linear mode, the devices each have $|V_{th}| \approx V_s/2$, so maximum forward bias is $\approx 7.5V$ for the rated supply voltage of 15V. This restricts the upper value of g_m that can be attained. In the absence of an external load resistance the voltage gain is limited by the finite slope resistance. An unusual property of this circuit is that the voltage gain falls with increasing supply voltage, as the relatively small rise in g_m is more than offset by the fall in output slope resistance at the higher resulting currents.

The disadvantage of operating at low supply voltages (and hence currents) is that the voltage gain is more load-dependent and the upper cut-off frequency falls sharply. To maximize the input resistance while using d.c. negative feedback to stabilize the operating point, the feedback resistor is decoupled (see Fig. 2). Gate current is negligible and the input and output quiescent voltages are equal. Other c.m.o.s. devices using different fabrications, e.g. silicon gate, ion implantation, offer greater bandwidths and/or lower threshold voltages. Complementary m.o.s. circuits designed for the linear market have been recently announced.

Component changes
IC1: Any c.m.o.s. inverter including CD4001 NOR gate, CD4009/CD4049 inverting buffers, MC1407, MC14009 and other equivalents.
C1: Sets the lower frequency at which the negative feedback becomes operative, reducing the input impedances. 0.1 to 10pF (time constant $R_1C/2$).

C2: Depends on load which, with this circuit, cannot be very low unless transconductance properties alone required with little voltage gain. 0.1 to 100µF.

Ys: 3 to 15V. At voltages below 5V the quiescent current becomes very small and output impedance is very high.

Circuit modifications
- Negative feedback may be applied over any odd number of inverting stages, e.g. over three as in the circuit shown left. Multiple phase shifts within the amplifier, together with the high voltage gain available, make the method difficult to apply without precautions. Open-loop gains of 80dB and greater may occur. Even decoupling the feedback still allows oscillation at low frequencies via the coupling/decoupling/supply time-constants.
- A better method of controlling gain than simply attenuating it is to cascade stages with shunt and series negative feedback as shown centre where inserting a resistor in the source of each device in stage 1 reduces and defines the transconductance. Shunt feedback across stage 2 defines its transresistance and the combination has a lower but well-defined voltage gain.

Further reading
Ferranti Ltd., FET Source Follower and Bootstrapped FET Source Follower, FETs and Applications, no. 22, 1965.

Cross references
Set 12, cards 4 & 7.
Set 11, cards 5 & 6.
Shunt-peaked wideband amplifier

Circuit description
Bandwidth of a common-emitter amplifier may be extended by including an inductor in shunt with its input producing a shunt-peaked amplifier. The circuit is fed from a current source, or alternatively in a cascaded amplifier

Because the gain-bandwidth product of a transistor varies with its collector current,

R₁ was chosen to maximize the gain-bandwidth product for the following transistor.

Circuit data/
Supply: +6V, 4.5mA
Tr₁: 1/5 × CA3046
C: 10µF tantalum
R₁: 68Ω; R₂: 100kΩ
R₃: 680Ω
L: 1.83µH (38 turns 28 swg, close wound on 0.2in dia.)

Component changes
Useful range of supply +3 to +30V. Values of R₀ and R₃ should be adjusted to produce f_T max. for transistor if maximum stage gain-bandwidth product is to be achieved. Select

R₁ to give desired low-frequency gain, and C to give desired lower cut-off frequency. High-frequency response may be tailored to suit requirements by choice of L value. (See curves 2, 4, 5 & 6.)

Circuit modifications
- Up to five cascaded stages may be obtained with the same integrated circuit package but it may prove easier to obtain the desired response experimentally than by calculated design.
- A series-peaking inductor may be connected between a low-impedance source and the base, as shown centre, to extend the bandwidth. Stage gain-bandwidth product is less than that for the shunt-peaked arrangement and its maximum value cannot be achieved with a maximally flat response.
- Another high-frequency compensation network, widely used in pulse applications, is shown right. Bandwidth may be extended by making

Further reading

Cross references
Set 12, cards 5, 9 & 12.
Set 7, card 9
High-gain wideband amplifier

Circuit description
This amplifier uses an integrated circuit developed for consumer applications. It is simple in design, consisting of three common-emitter transistors directly coupled so that the collector potentials of Tr1, Tr2 are defined by the base potentials of Tr3, Tr respectively, i.e. they are at \(V_{be} \). Resistor \(R_4 \) has a low value with only a marginal effect on these potentials.

Output potential is forced by the feedback effect via \(R_6 \), \(R_7 \), \(R_8 \), to be some defined multiple of the base potential of Tr1. If \(R_6 < R_4 \) then the output p.d. to ground is \(\approx (R_6/ R_4 + 1) V_{be} \) and would typically be set near the supply mid-value. Current in each stage increases with increasing supply voltage, and as a result both open-loop gain and bandwidth increase. Increased current also reduces the input impedance. Resistor \(R_4 \) determines quiescent output current provided output voltage has been fixed by feedback as outlined above. As there are three stages all contributing phase shift, the total phase shift is in excess of 180° before the magnitude of the gain falls towards unity. Hence it is difficult to apply heavy negative feedback to extend the bandwidth at the expense of gain as can be done with amplifiers using common-emitter stages. (For audio frequency applications it is possible to control the feedback to produce defined characteristics as for tape recording/playback amplifiers.) As the high gain extends to high frequencies, \(A_\infty \approx 100 \) at \(f = 4 \text{MHz} \), proper grounding, decoupling and use of short leads, screened where appropriate are all important.

Component changes
IC: No direct replacements but groups of three transistors from CA3046 and similar multi-transistor packages may be used. \(R_4 \), \(R_7 \): Ratio fixes output quiescent voltage \(\approx (R_4/ R_7 + 1) 0.6V \). Resistors may be increased to minimize loading on output, but base current of Tr2 becomes significant factor in determining quiescent conditions. Typical range 5k to 50kΩ.

R5: Also limited by base current effects, but may be increased up to 10kΩ to maximize input resistance of circuit if required.

R7: Determines output stage quiescent current and hence maximum load current. No advantage to making too high since current in preceding stages fixed by internal resistors. 2kΩ to 22kΩ.

+Vs: 2 to 18V. At low voltages, gain falls sharply. Choose \(R_6 \), \(R_7 \) in conjunction with \(Vs \) to bias output near mid-point of supply for maximum output swing.

C1, C2, C3: Determine low frequency cut off. Maintain ratio increasing values for pro rata fall in cut-off. \(C_3 \) may be reduced greatly if feeding high impedance load.

Circuit modifications
- Any group of three transistors may be used in similar configurations. Simple arrangement (left) for low-voltage applications where output quiescent voltage of 0.6V would be adequate.
- By using complementary transistors, each transistor has current defined by \(V_{be} \) of succeeding stage. This makes current and gain/ bandwidth less dependent on supply voltage (middle).
- Complementary versions of each form are equally possible, reversing the supply voltage.
- The good high frequency gain allows its use in 10.7MHz i.f. applications (right) with the d.c. feedback applied via the input tuned circuit and the output taken to a ceramic filter.
- Similar principles apply at 470kHz but the high voltage gain makes careful design obligatory. In all r.f. applications drive from a 50Ω source is normal, but the output impedance of the circuit is relatively high.

Further reading
Motorola Linear Integrated Circuits Data Book, 2nd edition 1972, pp. 7-561 to 7-564.

Cross references
Set 12, cards 5, 10 & 11.
Wideband voltage followers

Circuit description
A specially-designed monolithic voltage-follower, the 310 has a combination of highly desirable parameters: high input impedance, low output impedance, and wide frequency range. The negative feedback is connected internally but some modifications to performance that can be made externally include offset zero by means of \(R_2, R_3 \) and some modifications to performance at the expense of increased offset. \(R_1 \) includes offset zero by means of \(C_1, C_2 \). This scheme may be used with discrete transistors or by a single resistor particularly if the supply voltages were closer to the supply voltages as close to the i.e. as possible—typically 0.01 to 1µF.

Performance
Upper cut-off frequency for small signals.
15MHz for zero source resistance, 2MHz for 10kΩ. At 1MHz, output impedance is 25Ω, output voltage swing is ±3V, and input impedance is 3pF plus strays.

Component changes
IC: Direct replacements from many manufacturers. Any op-amp compensated for 100% negative feedback may be used. In general it will not be possible to achieve the same spread of parameters, i.e., high input impedance may preclude wide bandwidth.

Cross references
Set 12, cards 1 & 11.
Set 7, card 3.

Further reading

Circuit data
IC: LM310
\(R_1 : 1kΩ \)
\(R_2, R_3 : 100kΩ \)
\(R_4 : 3.3kΩ \)
\(C_1 : 2.2µF \)
\(C_2 : 0.01µF \)
Supply: ±15V

Circuit data
IC: LM310
\(R_1 : 1kΩ \)
\(R_2, R_3 : 100kΩ \)
\(R_4 : 3.3kΩ \)
\(C_1 : 2.2µF \)
\(C_2 : 0.01µF \)
Supply: ±15V

Circuit data
IC: LM310
\(R_1 : 3.9kΩ \)
\(R_1 : 4.7kΩ \)
\(R_3 : 1kΩ \)
\(R_4 : 1kΩ \)
Supply: ±2.5V

Circuit description
Using the five transistors in an i.c. package (CA3046), this is a simple wide-band voltage follower. A similar circuit could be used with discrete transistors replacing current mirror \(Tr_1, Tr_2 \) by a similar current source or by a single resistor particularly if the supply voltages were higher.

Component changes
IC: CA3046, CA3045, CA3086. \(R_1 : 1kΩ \) to 100kΩ. Lower values increase bandwidth and dissipation.
\(R_2, R_3 \): Set to carry half current in \(R_1 \) (assuming unity ratio for current mirror). Typically \(R_1 \approx R_3 \).
\(R_4 \): Low values maximize output swing and dissipation.
\(V \): ±2 to ±7½V. Higher voltages possible if discrete transistors used.

Performance
Upper cut-off frequency ±4.5MHz.
Output impedance ±10Ω.
Input impedance: ±100kΩ.
Output voltage swing ±2.5V pk-pk at 100kHz.

Circuit modifications
• Replace \(Tr_1, Tr_5 \) by any other constant current source (or even resistor, with reduced stability against supply changes).
• Replace \(Tr_6 \) by common emitter p-n-p transistor taking signal from \(Tr_1 \) collector instead.

Cross references
Set 12, cards 1 & 11.
Set 7, card 3.
Bipolar cascode wideband amplifier

Circuit description
The bipolar transistor cascode amplifier offers very good isolation between its input and output ports, so that the possibility of instability is virtually non-existent for all types of load. Input transistor Tr2 acts as a common-emitter stage which is loaded by the upper transistor connected in the common-base configuration and having a very low input impedance. Thus the common-emitter stage has a current gain approaching hre and the voltage swing at its collector is very small, producing a significant reduction of the internal feedback between collector and base. Bandwidth of the common-emitter stage approaches fβ and as that of the common-base stage is much larger, the complete circuit behaves like a common-emitter amplifier as far as voltage gain and current gain are concerned, but has a wider bandwidth than is achievable with a simple common-emitter stage providing the same high voltage gain.

A reasonable estimate of the 3-dB bandwidth obtainable with the cascode amplifier may be made using available data and the relationship gain-bandwidth product (fβ)≈hre/fβ if it is assumed that hre and fβ are the approximate current gain and bandwidth values for the whole circuit. Each of the transistors in the integrated circuit array has typical hre and fβ values of 110 and 450MHz respectively, with IC ≈ 1.2mA giving fβ ≈ 4.1MHz. (Measured upper 3dB cut-off frequency was approximately 3.7MHz for the circuit.)

Component changes
Useful range of supply +2 to +30V. V_in(max) = 40mV(pk-pk). Midband gain falls by 3dB when output is loaded with approximately 6.8kΩ (capacitively coupled). Upper cut-off frequency largely determined by R1 for given transistors. Lower cut-off frequency adjustable by changing C1, C2 and C3. Tr1 and Tr2 may each be replaced by 1/5 x CA3018 or equivalent discrete devices e.g. 2N706-type.

Circuit modifications
● One of the differentially-connected pair of transistors in the CA3046 package may be connected as an output emitter-follower stage to provide a low output impedance cascode amplifier. If a CA3018 package is used, all four transistors may be used by following the cascode with a pair of cascoded emitter followers as shown left. In this form, with R1 = 3.3kΩ and R2 = 2.7kΩ a voltage gain of about 36dB is obtainable with an upper cut-off frequency of approximately 11MHz.
● A pair of cascode stages with a common tail resistor may be used as a differential cascode amplifier. This arrangement is the basis of the CA3040 integrated circuit wideband amplifier, which employs high-input-impedance emitter-follower buffer stages between the input terminals and the common-emitter sections of the cascodes. Outputs from the cascode common-base stages are fed to the output terminals via emitter followers to produce a reasonably low output impedance.
● Centre circuit shows the CA3040 connected to a pair of equal load resistors (RL) which receive antiphase outputs. With the amplifier connected to a 50Ω source and RL = 50Ω the voltage gain to each output is about 22dB with a bandwidth of approximately 30MHz. The values increase to about 32dB and 50MHz respectively when RL is raised to 1kΩ and the bandwidth may be increased to about 90MHz by including the input series peaking circuit shown right. Supplies must be decoupled with capacitors C1 and C2 at the integrated-circuit package pins and ferrite beads on the supply leads and careful printed circuit layout are necessary. Supply +6V, R1, 50Ω, C1, C2 100nF, C3 1nF, C4 is a small trimmer to adjust high-frequency gain and phase balance.

Further reading

Cross references
Set 12, cards 2, 3, 7 & 12. Set 7, card 5.
Wideband amplifier using e.c.l.

Circuit description
The integrated circuit is an emitter-coupled logic gate designed for high-speed digital applications. This type of gate has an input stage consisting of a long-tailed pair with multiple inputs to one half of the pair via separate transistors having their collector-emitter paths in parallel. Each half of this differential stage feeds an output stage, a number of which may be paralleled within the package. Thus, at least one inverted and one non-inverted output is available and the logic gate may be used as a linear, wideband amplifier provided it is correctly biased, for example by means of \(R_1 \) and \(R_a \) as shown above. This simple arrangement of connecting one of the logical NOR outputs back to the input provides self-biasing of the gate that ensures that the d.c. input and output voltages are the same except for the small drop across \(R_1 \) and \(R_a \). This is only possible if the gate is operating in the middle of its transfer characteristic, the arrangement automatically compensating for changes in bias and offset voltages.

Only the d.c. component of the output signal is fed back to the input, \(C_2 \) and \(C_3 \) decoupling the a.c. component. Capacitor \(C_1 \) prevents any d.c. component of the input signal from disturbing the self-biasing conditions. The a.c. signal voltage available at the NOR output used to derive the feedback, is typically 3 to 4% lower than that obtainable from other NOR outputs, and is approximately 9 to 10% higher than at the unloaded NOR outputs. Careful printed circuit layout is required if a smooth, high-frequency roll-off is to be obtained in the frequency response.

Component changes
Useful range of \(V_{\text{IN}} \approx -3 \) to \(-8\) V (see graph). Minimum load resistance for 10% fall in mid-band gain \(\approx 270\Omega \) (a.c. coupled via 100nF capacitor).
Distortion is less than 1% for \(V_{\text{IN}} \) in the range approximately 1 to 20mV and useful \(V_{\text{IN}} \) (max) without significant distortion is approximately 200mV pk-pk.
For bandwidths in excess of 300MHz use MC1660.

Circuit modifications
- More than one input of the gate may be used to increase gain by connecting others in parallel, but the offset voltage between output and input rises as the number of paralleled inputs increases. This may not be a severe disadvantage in certain applications.
- The simple self-biasing arrangement may be applied to several e.c.l.-gate amplifying stages, as shown left.
- A given total bias network resistance \((R_1 + R_2)\) may be decoupled asymmetrically. For example, if it is required that the bias-network loading of the output be reduced without changing \((R_1 + R_2)\), values such as those shown centre may be used. This will cause the input impedance of the amplifier to fall from about 390Ω to about 220Ω.

Further reading
MECL Integrated Circuits Data Book, Motorola, 2nd edition, 1972, pp. 5-3 to 5-6 and pp. 4-17 to 4-20.

Cross references
Set 11, card 7.
Set 12, cards 8 & 10.
FET cascode amplifiers

Circuit description
The basic principle of a cascode stage is that of a common-emitter or common-source amplifier feeding directly into a common-base or common-gate stage, so that the first stage feeds into a near short-circuit. This allows it to develop its maximum current gain or transconductance, but more important the voltage swing at the collector or drain is small. Large voltage swings produce relatively large currents in the inevitable feedback capacitance, with a corresponding heavy shunting effect at high frequencies. This reduction in feedback (commonly called the Miller effect though first discussed by Blumlein) is of particular importance in wideband and r.f. amplifiers. In particular, the better the isolation between input and output the higher the gain that can be achieved consistent with stability. The devices need not be in series for d.c. purposes though this is more common. In the circuit shown, based on a low-cost c.m.o.s. i.c., Tr1 is a common-source stage whose output signal current is diverted into Tr2, provided that Tr2 has a high dynamic impedance at a.c. (see circuit modifications). The voltage gain of the cascode pair is equal to or greater than the highest voltage gain obtainable from a single stage, while coupling between output and input is minimized.

An alternative version is shown in which a decoupled d.c. feedback path via Rb, Ra gives self-biasing (with a.c.-coupled source). The high input resistance of the m.o.s. devices together with the possibility of operation at Vth = 0 allows for simple biasing networks and offsets the disadvantage of the wider tolerance on m.o.s. devices as against bipolar transistors.

Component changes
IC: Equivalents of CD4007AE including MC14007, etc. Other combinations of enhancement-mode m.o.s.f.e.t.s may function but simpler circuits can be devised for these. This circuit was intended to make best use of this low-cost i.c.

Supply voltage: Positive voltage may need to be increased with some devices; negative rail is then reduced accordingly to stay within rating. R1, R2, R3, R4: Not critical. 100kΩ to 22MΩ. With low resistances, low-frequency time constants are raised unless large capacitances used, while input impedance falls for second version. Very high resistances bring noise/hum/leakage problems. C1, C2, C3, C4: High values to improve low-frequency response if required.

Circuit modifications
1. The high impedance of the circuit is possible because the p-channel enhancement-mode m.o.s.f.e.t. can still have the drain well beyond the knee of its characteristics if biased with drain and gate at equal quiescent potentials. Provided the a.c. applied to the drain is adequately decoupled by R1C1, the dynamic impedance approaches that of the drain-source (R1 may be very large and still achieve correct bias). The current mirror approach retains the high dynamic resistance down to d.c. at the expense of a second m.o.s.f.e.t., Fig. (b).
2. Cascode circuits may have larger dynamic impedance to higher frequencies, while the cascode configuration extends the high impedance to higher frequencies while allowing higher overall gain.
3. All f.e.t. circuits are equally possible provided Tr2 has a higher Vth than Tr1. Transistor Tr3 is a source follower to isolate the load Rl from stray and load capacitances, i.e., increasing bandwidth of output circuit.

Further reading

Cross references
Set 12, cards 1 & 5.
Set 11, cards 5 & 6.
Set 7, card 5.
Wideband amplifiers with t.t.l., r.t.l., d.t.l.

Circuit data
Supply: 5V, 19mA
IC: 1/4 × SN7400
C 1 : 10µF tantalum
R 1 : 220Ω; R 2 : 560Ω
V 1B : 50mV r.m.s.

T.t.l. gate description
Without the use of negative feedback, the normal transfer characteristic of the t.t.l. gate is designed to provide well-defined logic levels with a high-gain transition region between them causing the gate to rest in either the on or off condition. Compared with the static on or off state, the supply current drain increases sharply as long as the gate is switched through the narrow transition region. Although designed for medium-speed digital switching applications a t.t.l. NAND gate can be converted into a linear wideband amplifier. By addition of R 1 and R 2 , as shown, the shunt-derived shunt-applied negative feedback has the effect of linearizing the overall d.c. transfer characteristic, eliminating the well-defined logic states, widening the transition region, reducing the gain, and increasing the standing supply current. Thus, a suitable operating point may be established, with a quiescent supply current of about 19mA, which will allow linear amplification of input signals having levels up to about 800mV pk-pk in the frequency range of approximately 100Hz to 12MHz. Unused gate inputs may be paralleled with the used input rather than being left open-circuit. Alternatively, a logic signal may be applied to the unused input to provide a gating facility on the used input's signal.

Component changes
Useful range of supply −3 to +5.5V.
Changing R 1 varies gain, shape of the transfer characteristic, and signal-handling capability. In principle, all four gates in the package may be used simultaneously for linear amplification but the package dissipation is then too far in excess of that when used for logic operation.

R.t.l. and d.t.l. gate descriptions
A dual NAND/NOR r.t.l. gate, contained in a single 914 package (shown dotted), has Tr 1 , Tr 2 , and Tr 3 , Tr 4 connected as a long-tailed pair with R 1 returned to the —V rail and serving as an approximation to a constant-current Source below. Transistor Tr 5 is used as an inverting output stage having a gain of two, with the output at its collector fed back to Tr 3 via R 3 and R 4 . Thus, a non-inverted output is available for signals applied to Tr 4 base. The d.c. output voltage can be set to zero with the input grounded, by adjusting R 2 . A gain of 10 with bandwidth greater than 10MHz is obtainable with a supply of ±6V, Tr 2 2N3702, R 1 640Ω, R 2 450Ω (internal to 914), R 3 , R 4 1kΩ, R 5 10kΩ, R 6 2.2kΩ.

Further reading
Amplifiers using d.c. feedback pair

Circuit description
Transistor Tr1 is connected in the common-emitter configuration and feeds the emitter follower Tr2 with overall shunt-derived shunt-applied feedback via R3, which allows the overall gain and input impedance to be adjusted. If the circuit is supplied from an ideal voltage source the gain will be high and the bandwidth relatively small. Such a source could be heavily loaded when connected directly to the circuit shown above. This is due to the equivalent load on the source of hfe of Tr1 in parallel with R1/[1 + |Av|], where |Av| ~ gmRL1; R11 being the equivalent load resistance seen by Tr1. The signal generator available had an output resistance of 100 ohms which approximately matched the input resistance of the amplifier. This can be seen to be reasonable assuming hfe of Tr1 to be approximately 2.5kΩ and |Av| ~ 80 with R11 ~ 3kΩ. To define the overall gain and input impedance and to provide a wider bandwidth a resistor may be included in series with C1. Response shown applies with a 900-Ω resistance included and the overall gain = Vout/source e.m.f. If it is desired to match the amplifier input resistance to a defined source resistance, this can be achieved using the circuit as shown above and adjusting the value of R4.

The integrated-circuit package used contains a five-transistor array, two connected as a long-tailed pair. One of the single transistors has its emitter connected to the integrated circuit substrate which must be connected to the most negative supply rail, hence this transistor can be conveniently used as Tr1 and any other as Tr2. A discrete component version of the circuit is also viable.

Component changes
Useful range of Vcc ~ +3 to +15V.

Circuit data
Supply: +5V, 6mA
Tr1, Tr2: 1/5 × CA3046
C1: 10µF tantalum
R1: 3.9kΩ; R3: 10kΩ
R4: 150Ω
Vcc: 1.5V; VB1: 0.67V
VA: 0.77V
Source e.m.f.: 50mV r.m.s.

Maximum source e.m.f. 72mV r.m.s. with Vcc = +5V.
R3 adjustable to provide desired overall gain, bandwidth of input impedance, e.g. with R3 = 47kΩ and circuit as shown above; overall gain ~22 and bandwidth ~3.4MHz.
Resistance values may be scaled by a given factor, e.g. increasing values by factor of 10: overall gain ~28 and bandwidth ~1MHz.

Low cut-off frequency

Feedback provides stability of d.c. operating conditions and allows a gain-bandwidth tradeoff to be made. When supplied from a 50-Ω source, a voltage gain of 49dB with a bandwidth of approximately 32MHz is obtainable with a supply of +6V, C1, C3 1µF, C2 470nF, R2 3.5kΩ, R4 8.2kΩ, R3 22kΩ, R5 18kΩ, R6 1.8kΩ, R7 2.5kΩ, R8 1kΩ, R9 2.7kΩ, using input signals in the range 7µV to 4mV (r.m.s.). Lower cut-off frequency largely depends on the capacitors used and is about 800Hz with the above values.

Further reading

Cross references
Gated video amplifier

Circuit data
Supply: ±5V, 8mA
IC: MC1445L
Voltage gain: 19dB
Bandwidth: 60MHz
Output attenuation: 60dB with input gated off

Circuit description
The long-tailed pair is the key to the operation of this circuit, as so many linear i.c.s. The Vbe/Ic characteristic of a bipolar transistor is given by

\[I_c = I_e \exp(qV_{be}/kT) \]

Transconductance is obtained by differentiating Ic with respect to Vbe, and is found to be proportional to Ic. Thus controlling Ic gives proportional control of the voltage gain of an amplifier provided that the collector load is low enough to allow the full transconductance to be developed. Used with a single transistor an output signal may be gated on and off by such a means, but the shift in d.c. level carries the gate signal through into the output circuit. With long-tailed pairs as shown, Tr3 sustains a constant total current using common-mode feedback via the emitters of Trs, Trs. If Trs conduction increases the collector potentials of Trs, Trs must fall regardless of which the current is channelled through. This fall in potential at each collector is coupled via the emitter followers Trs, Trs to close the d.c. feedback loop and stabilize operating conditions. The base of Trs is fixed while that of Trs is normally more positive, ensuring that Trs, Trs are the conducting transistors, i.e. having sufficient gm to give an overall voltage gain of 18 to 20dB. Transistor Trs has negligible current and Trs, Trs contribute nothing to the output. If the potential at the base of Trs is lowered, either by placing a low direct voltage at the gate input (D5), or by taking the input to the negative supply rail through a resistor, then the currents in Trs, Trs increase at the expense of Trs, Trs. Hence the signals applied to these differential inputs are gated by a d.c. input. This input may be changed rapidly to allow gating for very short durations or may have intermediate values that allow the inputs to be summed in varying proportions.

Component changes
IC: MC1445, 1545; similar i.c.s with different bias arrangements include Silicon General SG1402/2402/3402. "Discrete" versions based on transistor arrays are also possible but no particular advantages would be expected except possibility of operating at unusual supply voltage/current levels. Balanced modulators/demodulators (MC1496) have similar input stages with free collectors suitable for coupling into tuned circuits. If the frequency range is more limited, it is possible to adapt analogue multipliers with one input switched between zero and some finite value. This also allows reversal of phase of the output if the control input polarity is reversed.

Vds: ±3.5 to ±12V.
Rls: At low supply voltages the output quiescent current may be increased by placing external resistors in parallel with the 5kΩ internal resistors. This increases the signal current that may be capacitatively coupled into a load, while lowering the output impedance. 10k to 1kΩ at ±5V supply. Observe maximum dissipation limits of device (dependent on package, ambient temperature, but up to 400mW at <50°C).

Circuit modifications
- By applying the mean value of the output to a standard op-amp, the output can be made to provide a sensitive error signal for departures of the mean i.c. potential from ground. If the op-amp is operated from a higher positive voltage than that required by the wide-band i.c., then d.c. feedback ensures that the positive voltage applied to the i.c. forces the mean output close to zero (depending on the op-amp offset of a few millivolts). This allows d.c. coupling of signal input to output of wide-band amplifier with negligible offset.

- For single-ended supplies the unused inputs are taken to a decoupled potential divider, with the option of a 50Ω resistance added to define the input impedance of any signal input, e.g. capacitively coupled as shown. The gate terminal then becomes compatible with a t.t.l., c.m.o.s. logic gate sharing a common ground line.
High-speed operational amplifiers

Circuit description
The bandwidth available from operational amplifiers has been extended by many manufacturers to the level where they can be applied to problems previously requiring specially-designed wideband amplifiers. The circuits (a)-(d) use monolithic i.e. the LM318, showing how manufacturers are able to provide compensation points to modify the high-frequency characteristics—trading in stability margins for increased slew rates, minimum settling times, etc. The internal structure of any particular i.e. at this level of performance is immensely complex and most users will have to treat them as black boxes.

Using hybrid techniques as well as discrete circuitry, amplifiers are available with slew rates in excess of 1000 V/µs and bandwidths greater than 100 MHz. Methods of construction are more costly than monolithic circuits and they are relevant to specialized applications. In general to achieve such very high bandwidths, the open-loop voltage gain has to be restricted to the range 1 to 5000, while the monolithic amplifier above is optimized for best bandwidth consistent with voltage gains > 100,000.

Further circuits
• As a standard operational amplifier, circuits commonly used with 741, 301 and similar devices may be adapted to high frequency units such as the LM318. Layout and decoupling are important, but high frequency amplifiers, oscillators, filters and the like follow similar configurations, generally with comparable resistance values and reduced capacitances. To combine the wide frequency range with high input resistance the technique shown may be adopted. At very low frequencies the high input impedance amplifier—LM312 or similar—develops its full gain applying its inverted output to the non-inverting input of the high-frequency amplifier. The overall characteristic is inverting and the feedback is negative, while the minimal input current of the high-impedance unit permits \(R_1 \) and \(R_2 \) to have megohm values. At high-frequencies the integrator configuration of the LM312 leaves the non-inverting input of the LM318 virtually grounded. The signal appears on the inverting input via the CR network and the feedback remains negative. The two time constants define the cross-over regions the overall gain being sustained to 1 MHz.

• Non-linear circuits may be extended to higher frequencies, and for example precision half- and full-wave rectifiers operate to an order of magnitude higher in frequency than with 741, etc. At these higher frequencies, Schottky diodes with their smaller forward voltage drop and absence of charge storage are worthwhile alternatives to even high-speed conventional diodes.

• Component values for the voltage follower mode are similar to those for the unity-gain inverter. Not all amplifiers are compensated for 100% feedback, but may be optimized for higher gains instead.

Further reading
Motorola application note—AN276, 14MHz wideband amplifier using the MC1530 op-amp.

Cross references
Set 12, cards 3 & 4.
Common-base wideband amplifier

Circuit data
Supply: +3V, 8mA
Tr1, Tr2: 1/5 x CA3046
C1, C2: 10µF tantalum
R1: 3.9kΩ; R4: 10kΩ
R2: 150Ω; R6: 470Ω
Source e.m.f.: 30mV r.m.s.
Source res.: 100Ω

Circuit description
The input stage consists of Tr1 in the common-base configuration with this transistor feeding Tr2 acting as an emitter follower with overall shunt-derived shunt-applied feedback through R3. This arrangement is similar to the circuit shown on card 9, except that the source feeds the emitter instead of the base of Tr1, indicating that the d.c. feedback pair is a convenient method of biasing a common-base stage.

Capacitor C1 prevents any d.c. component present in the input signal from affecting the biasing, or it may be thought of as necessary if the source cannot sink current from Tr1, cannot sink current from Tr1 emitter. Capacitor C2 grounds the base of Tr1 to a.c. signals. The input impedance of the circuit is low and may be adjusted or matched to a source, by means of R2 which controls the collector current and the emitter current of Tr1. This type of circuit is useful for applications where the common-base configuration offers advantages such as small non-linearity of its transfer characteristic and relatively constant gain with frequency, while providing moderate gain due to the impedance transformation between input and output.

The integrated circuit used is the same as that for card 9 where one transistor has its emitter connected to the substrate which must be connected to the most negative supply rail (0V in this case). Because neither Tr1 nor Tr2 has its emitter grounded in the above circuit the substrate-connected transistor cannot be used but its emitter must still be grounded.

Component changes
Useful range of Vee: +3 to +15V.
Maximum source e.m.f. ≈ 37mV r.m.s. (with Vee= +5V).
With other resistors in the same ratios R3 may be:
(a) raised as high as 100kΩ if low quiescent power is a major factor and maximum bandwidth less important.
(b) chosen to provide maximum gain-bandwidth product in Tr1.
(c) reduced to about 100Ω if maximum output current is required.
R2 may be reduced towards R1/hFE and R3 increased towards hFE.R1.

Circuit modifications
- If the signal source can sink direct emitter current of Tr1, C1 and R4 may be omitted and the source connected directly to Tr1 emitter as shown left, the rest of the circuit remaining the same.
- Where d.c. isolation of the source and Tr1 emitter is required, an alternative input arrangement to the original circuit using a transformer may be adopted as shown centre, again the remaining circuitry being unchanged. This input transformer may be used to match the source to the input impedance of Tr1 if desired.
- If it is required to use a common-base stage that provides an output current which is as nearly identical to the input current as possible, a compound transistor may be used as shown right. The base current of Tr1 is a very good measure of the extent by which its collector current falls short of its emitter current. By feeding back the base current of Tr1 to the common-base transistor Tr3 and adding its collector current to the input current, the output current more nearly approaches Ibe.

This technique also raises the output impedance from Zout1 to approximately Zout1 / hre1 / (1 - hre1) and reduces the distortion from D1 % to approximately D1(1 - hre1) % compared with Tr1 alone.

Further reading

Cross references
Set 12, cards 2, 5 & 9.
Set 7, card 9.
1. Both input and output compensation of an operational-amplifier (with 100mA capability) to provide high slew-rates are considered. Fig. 1 (a) shows input compensation, where $R_C=47\Omega$ and $C_C=0.01\mu F$, for unity gain. Table 1 indicates variations required to these components at higher gains. For gains greater than 5, a single capacitor across the output is adequate for stability with a sacrifice in bandwidth Fig. 1(b). The slew-rates possible are quoted in the lower part of the table and little change occurs for capacitive loads up to 50nF.

Reference

<table>
<thead>
<tr>
<th>Gain</th>
<th>C_C</th>
<th>R_C</th>
<th>Slew-rate</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>47</td>
<td>50</td>
<td>600</td>
</tr>
<tr>
<td>10</td>
<td>4.7</td>
<td>100</td>
<td>30</td>
<td>600</td>
</tr>
<tr>
<td>100</td>
<td>—</td>
<td>100</td>
<td>100</td>
<td>600</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>—</td>
<td>0.75</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>—</td>
<td>1.5</td>
<td>24</td>
</tr>
<tr>
<td>50</td>
<td>20</td>
<td>—</td>
<td>7.5</td>
<td>120</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>240</td>
</tr>
</tbody>
</table>

2. This circuit provides a pulse amplifier with a high voltage capability. The circuit is driven from t.t.l. levels, and can operate at frequencies up to 100kHz. High-voltage transistors T_{R1} and T_{R2} are alternately switched on and off via transistors T_{R3} and T_{R4}. The bias supply for transistors T_{R1} and T_{R2} is obtained from a 4.5V battery and an optical coupler allows T_{R4} to be switched by the t.t.l. gate. No isolation is required for the lower transistor network which can be driven by t.t.l. directly. When the input is high, T_{R2} is hard on, removing the bias from T_{R4} which is convincingly off because its base-emitter junction will be reverse-biased by about $-1.5V$. T_{R3} will be biased on giving a high output voltage depending on power supply level.

Reference

3. Figs. 3 (a) and 3 (b) are circuits for wideband amplifiers using computer aided design techniques. The first provides an 11dB gain over the range 100-500MHz, and the last provides 14dB gain over the range 100MHz to 1GHz. When two transistors are placed in parallel for medium power (10 to 100mW), emitter resistors are included for d.c. balance, and also provide series feedback for the stage. The emitter capacitor C_E provides a gain compensation. Resistor R_1 is the shunt feedback resistor, with an inductor in series to reduce the feedback at the high frequency end of the response, and thus maintain flat gain. The reactive elements being selected at input and output for matching purposes. The single transistor amplifier is designed for discrete components, but for microstrip and thin-film hybrid amplifiers, it is suggested that a transmission line approach is better, for the necessary inductance values. It is suggested that the design in Fig. 3 (b) can be packaged in a standard TO-8 can.

Reference
Set 13: Alarm circuits

Rather than dwelling on circuit techniques, the background article brings the concept of data domains to the fore. This interesting approach is an adaptation of that by Malmstadt and Enke, referenced in the article. Card 9, on signal domain conversion, loosely connects with the theme in presenting voltage-to-current and voltage-to-frequency converters and their converse.

Transducer circuits included in this set measure pressure and temperature on card 10, displacement, velocity and acceleration on card 12, and light on card 1. Another important group of circuits, for sensing variations in conductance, is applied to flame, smoke and gas detection on card 1, and as a water-level or moisture-sensitive alarm on cards 10 & 11. Most resistance sensors are bridge circuits, of course, & card 2 shows some useful variants, including a bridge/amplifier combination with both input and output referred to earth. The security alarm of card 11 is one application of the bridge. Cards 4 & 5 are of simple hysteretic level sensors.

Information on driving filament lamps and relays is provided on card 8, while card 4 gives various output stage configurations. Further load-driving circuits can make direct use of the 555—see cards 3 & 5, which also detail other uses of the I.C.

Flame, smoke and gas detectors 1
Bridge circuits 2
Time delay and generator circuits 3
Level sensing and load driving 4
Applications of 555 timer 5
Frequency sensing alarm 6
Digital alarm annunciators 7
Filament lamps and relays 8
Signal domain conversion 9
Pressure, temperature and moisture-sensitive alarms 10
Security, water level and automobile alarms 11
Electromechanical alarms 12
In this topic the viewpoint changes. Previously in Circards, circuits have been described as separate entities, with the articles laying a foundation, and the cards showing the practical alternatives. The dilemma is that the title used here, though commonly applied to the topic, can be misleading. This is because so many "alarm circuits" have several identifiable subsections each of which can be readily classified under headings such as those of previous series e.g. Schmitt trigger and astable circuits. Even heading this article "Alarm systems" might confuse since it could convey the idea of a conglomeration of alarms.

A typical alarm arrangement is shown in block diagram form in Fig. 1. An alarm signal is required from some output transducer when the signal from an input transducer indicates a particular fault condition. The intervening blocks are required to process the signal representing the fault condition, to detect a particular voltage/current level which is an analogue of the input parameter, and to deliver power to the output transducer. Before considering each of these sub-sections individually, there is a general principle which can be very helpful in considering such systems—the concept of data domains.

Data domains

Information on physical systems is obtainable in the form of physical quantities such as force, distance, energy. The required information may often have to be obtained by monitoring some more complex property involving a function of the more common parameters. In few cases is the information in such a form that it can be conveyed and displayed directly. It has to be transmitted through some medium or series of media first. To the practising engineer the medium is not the message but rather the barrier that hinders the appearance of that message.

In passing through these media the information takes on new forms or dimensions. For each new set of dimensions we may postulate a domain in which the data exists. Within that domain there may take place further conversions without going outside the domain. Thus the first main division is between inter-domain and intra-domain conversions. The division is arbitrary since the selection of domain interfaces is arbitrary. One possible division is discussed below but readers may have their own ideas on this.*

*For the purpose of this article, the domains are determined by the following considerations: is the data (a) continuous or discontinuous and (b) instantaneous or not. These conditions applied to electrical phenomena provide us with four domains.

<table>
<thead>
<tr>
<th></th>
<th>Continuous</th>
<th>Discontinuous</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An A or amplitude function e.g. voltage/current/resistance, is an electrical signal precisely and continuously related to some other function which may or may not be within the A domain itself. It has an instantaneous value which is a measure of some property of the unknown. An example is the electrical resistance thermometer where the resistance (A domain) is a continuously variable function of the instantaneous temperature (P domain) i.e. a P-A domain conversion occurs.

A t function is also continuously variable, but to represent the data a finite time must elapse i.e. it is not instantaneous. This property should not be confused with the finite delays imposed by the physical limitations of systems, which prevent the instantaneous change in an A function. A t function will have corresponding delays in responding to changes in the data, but even with a fixed input requires a finite time to complete the conversion. An example is an oscillator whose frequency is proportional to a voltage. To determine that frequency at least one period must elapse (often many) and the data conversion is non-instantaneous. Such a voltage-controlled oscillator is performing an A-t conversion, the amplitude of the output waveform being irrelevant as all the data resides in the time-function.

Conversions may take place through more than one domain, and the shortest route in a system is not necessarily the best. If we wish, for example, to convert from temperature to frequency (a P-t conversion) we can do so by constructing an oscillator whose frequency is temperature dependent, or we can use a thermocouple to generate a direct voltage that, amplified, controls a v.c.o. The latter can be considered as a P-A-A-t conversion with the voltage amplifier being an A-A converter i.e. input and output both existing in the amplitude or A domain. Better linearity of frequency against temperature could be achieved in this second approach.

Where the data is required in digital i.e. discontinuous form, a similar distinction can be made as to whether the data appears simultaneously at input and output (within the delay constraints mentioned above) or whether a finite time is required for the data conversion. The two categories resulting are the parallel and series modes respectively (Dp and Ds). They may also be thought of as a spatial and temporal ordering of the data—a pulse train representing the data in serial form conveys that information correctly regardless of the frequency if the order pattern is correct. In a digital voltmeter the data might be converted into serial form following an initial voltage-to-frequency/time conversion, while it would be stored and displayed in parallel form. The data domain conversion pattern would then be A-t-Dp-Ds.

Within each domain, there may be a great variety of possible forms for the data, and multiple conversions can and do take place. Even a "simple" amplifier may have individual stages best viewed as V-I and I-V converters, while a voltage amplifier can be regarded as a V-V converter.

Transducers

These are the interfaces between the physical (P) and electrical domains (A, t, Dp, Ds). The range and variety is too large to cover in such an article as this, but some obvious

*This approach was prompted by the excellent book "Digital Electronics for Scientists" by Malmstadt & Enke (Benjamin) which proposed a slightly different division.

†This can also be considered as a hidden form of P-A-t conversion since the temperature affects some A parameter such as R, C etc.

Fig. 1. Typical alarm circuit with input and output transducers.
examples are worth discussing. If an electrical conductor is subject to temperature variations its conductivity will vary. For metallic conductors the temperature coefficient of resistance is normally positive and the characteristic is sufficiently well-defined to allow precision thermometers to be based on it (platinum resistance thermometers). For semiconductors the coefficient may be negative or positive and of much greater magnitude though generally less well defined. This makes devices such as thermistors, which depend on this property, particularly useful in alarm circuits as a relatively sharp transition takes place in the resistance value and switching of a load is simplified.

If such a resistance which depends on a physical parameter is incorporated in a bridge circuit (Fig. 2) then by suitable selection of the other resistors the critical resistance value and switching of a load is simplified.

![Fig. 2. Bridge circuit for including a sensing resistor.](image)

The resistance value of the transducers may be made to correspond to the bridge balance point. Any high gain differential input amplifier may be used to detect this change of polarity about the balance point, providing a large output swing. Addition of positive feedback provides hysteresis, minimizing the output switching that would occur from noise or other stray input signals, when close-to-balance comparators or general-purpose operational amplifiers may be satisfactory in such applications.

Other physical parameters may affect the resistance of particular conductors and semiconductors. For example a polycrystalline film of cadmium sulphide in darkness has a very high resistance (> 1 MΩ), while exposure to sunlight may drop that resistance to a few hundred ohms. Where the changes are as extreme as this, the variable resistance could simply be placed in series with a supply voltage and the load to provide a direct if somewhat imprecise alarm.

Other semiconductors when exposed to particular gaseous impurities show similar large variations in resistance and are now used in gas and smoke detectors, though they require a separate power source to raise their operating temperature. Even the basic resistance thermometer mentioned above can be adapted to detect other physical parameters, for example the flow of air or other fluid across a heated filament removes the heat more rapidly causing the resistance to fall. Thus detection of fluid velocity is a possibility.

Other transducers give a voltage or current that is a function of a physical parameter; the e.m.f. of a thermocouple and the current flow in a reverse-biased photodiode are examples. Yet others may involve the variation of electrical parameters such as capacitance or inductance, coupling between coils, etc. In such cases a common alternative to the bridge technique, still viable with the substitution of a.c. drive to the bridge, is to make the frequency of an oscillator depend on the variation of the reactance used, and follow the oscillator by some form of frequency-sensitive switch.

Following the input transducer the signal may need to be amplified, filtered or modified (domain conversion of some form) in some signal-processing stage prior to being fed to a level-sensing stage. In some cases the two functions can be combined, as operational amplifiers having very high gain can suffice. If the output of the level-sensing device is insufficient in magnitude to drive the required load then a further power stage may have to be substituted (Fig. 1).

Additionally it may be required to cause this output signal to be an audible tone or an interrupted voltage for flashing a lamp. Either case could require an astable oscillator or similar form of generator (Fig. 3). A monostable circuit may be interposed to delay the onset of the alarm output for some period after the appearance of the fault signal and logic gating would be added in more complex systems to generate alarm outputs that depend on a particular combination of input parameters.

Thus most alarm systems can be broken down into simpler blocks and the block diagram of a burglar alarm could be identical with that for a circuit intended to sense icy conditions on a road. By appreciating and making use of this principle, it is often possible to make very economical designs of alarm circuits by adapting the best individual blocks from previously published alarm circuits. The major design problem is then that of making the blocks compatible in respect of supply voltage load requirements and the like.

![Fig. 3. Arrangement for operating a lamp and/or loudspeaker.](image)
Flame, smoke and gas detectors

Component values

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_1)</td>
<td>6.8kΩ</td>
</tr>
<tr>
<td>(R_2)</td>
<td>1.5kΩ</td>
</tr>
<tr>
<td>(R_3)</td>
<td>12kΩ</td>
</tr>
<tr>
<td>(R_4)</td>
<td>820Ω</td>
</tr>
<tr>
<td>(R_5)</td>
<td>15kΩ</td>
</tr>
<tr>
<td>(R_6)</td>
<td>2.7kΩ</td>
</tr>
<tr>
<td>(R_7)</td>
<td>4.7kΩ</td>
</tr>
<tr>
<td>(R_8)</td>
<td>12kΩ</td>
</tr>
<tr>
<td>(R_9)</td>
<td>22kΩ</td>
</tr>
<tr>
<td>(R_{10})</td>
<td>10kΩ</td>
</tr>
<tr>
<td>(R_{11})</td>
<td>2.7kΩ</td>
</tr>
<tr>
<td>(D_1)</td>
<td>1N914</td>
</tr>
<tr>
<td>(D_2)</td>
<td>1N4002</td>
</tr>
<tr>
<td>(C_1)</td>
<td>1nF</td>
</tr>
<tr>
<td>(R_{12})</td>
<td>4.7kΩ</td>
</tr>
<tr>
<td>(R_{13})</td>
<td>15kΩ</td>
</tr>
<tr>
<td>(C_{106})</td>
<td>0.1µF</td>
</tr>
<tr>
<td>(R_{14})</td>
<td>15MΩ</td>
</tr>
<tr>
<td>(R_{15})</td>
<td>2.2kΩ</td>
</tr>
<tr>
<td>(R_{16})</td>
<td>12kΩ</td>
</tr>
</tbody>
</table>

Flame detector

A flame offers a low conductance path to ground. In series with \(R_6 \) and \(R_7 \), that conductance defines a range of potentials on the gate of \(Tr_1 \), that leaves the emitter of \(Tr_2 \) at a high enough potential to keep \(D_1 \) out of conduction, but not so high as to bring \(Tr_3 \) into conduction via \(R_7 \). Hence \(Tr_3 \) conduct holding on the relay—interlocked with the supply for fail-safe operation. If the flame is extinguished \(Tr_1 \) gate goes high, driving \(Tr_4 \) on via \(Tr_3 \), \(R_3 \). This removes the drive from \(Tr_3 \), \(Tr_4 \) and the relay. A short circuit to ground at the input reduces the base potential of \(Tr_3 \) bringing \(D_1 \) into conduction and cutting off \(Tr_2 \) and hence the output.

The mid-section of the circuit offers a window action with the relay being held on for a restricted range of flame resistances, higher and lower values giving drop-out. The resistance is high requiring a high input resistance buffer; the output is conventional.

Smoke detector

When detecting the interruption of light by smoke, to avoid the effects of ambient illumination, etc., the light beam may be chopped at source and the resulting ac from \(Tr_1 \) above used via buffer \(Tr_2 \) to trigger the monostable circuit around \(Tr_3 \), \(Tr_4 \). This prevents the potential applied to \(R_{10} \) from rising sufficiently to fire the thyristor. If the load is a horn having an interrupter switch in series with its coil, the thyristor can cease conduction on removal of the gate drive (alternatively ac drive to the load would be required).

Gas detector

A particular gas-sensor (TGS from Figarao Engineering, Shannon, Ireland) has two fine wires embedded in a semiconductor. One is used to heat the material, with the resistance between it and the second being reduced on the absorption of deoxidizing gas or smoke. The sensor is sensitive to concentrations of \(<0.1\%\) with resistance falling from many tens of kilohms to as low as 1kΩ at high gas concentrations. Response is non-linear and with a recovery time in excess of one minute. Bridge unbalance is detected on \(M_1 \) and though repeatable has to be interpreted qualitatively unless special calibration procedures are available. When the unbalance brings \(Tr_1 \) into conduction, \(C_1 \) charges until the unijunction \(Tr_3 \) fires and the cycle recommences. The audible note in the loudspeaker rises from a succession of clicks to a continuous tone as the gas concentration increases. A Schmitt trigger would allow relay drive, while the audible alarm could be transferred to the flame-detector circuit, for example.
Bridge circuits

Components
ICs: 741, V_s ±15V
R_1 to R_4: 10kΩ, R_5: 1MΩ
Bridge voltage: 1.5V (Fig. 2)

Circuit description
Three bridge configurations are shown. In each case the bridge is composed of four resistors, R_1 to R_5, and the circuits are basically Wheatstone bridges with balance occurring for R_1/R_3 = R_2/R_4. Substitution of impedances Z_1 to Z_4 would leave the balance requirements unchanged, and other variants such as the Wien bridge can be produced. For resistive elements it may be possible to supply the bridge and amplifier from a common d.c. supply and a high-gain op-amp detects departure from balance. A small amount of positive feedback via R_5 helps reduce jitter in the output when close to balance, but gives hysteresis to the balance sensing.

- If a separate supply is required for the bridge, one bridge balance point may be grounded, removing the need for high common-mode rejection for the amplifier (Fig. 2).

The errors in all these circuits include voltage offset of the amplifier, 1 to 5mV for untrimmed general-purpose op-amps, and input currents/offset, 10nA to 1µA for conditions as before. For balance detection to within 0.1% this implies bridge voltages in excess of 1V and currents of up to 1mA.

- By opening the bridge and embedding the amplifier in the network as shown, balance is achieved for the same relationship between the resistances, but with input and output both with respect to ground. Fig. 3 has an output that is a linear function of the departure of R_3 from the balance condition (R_1, R_3, R_4 assumed constant as reference resistors). For d.c. applications the input may be one or other of the supply voltages. In all cases best sensitivity is achieved for R_1/R_3 = 1. If the resistor whose value is being sensed has to have a low resistance, power wastage is avoided by keeping the other pairs of resistances high.

- Another method of achieving input and output as ground-referred signals, is to use an amplifier with push-pull outputs and single-ended input. A simple case is the single transistor, Fig. 4, where the power supply, if properly by-passed, closes the bridge when used for a.c. measurement/sensing. The example shown would pass all frequencies except the notch frequency by 1/2πRC, though with appreciable attenuation near the notch.

- For many purposes, the availability of a centre-tapped supply provides a “phantom-bridge” action. If the ratio of positive to negative supplies remains constant then taking one input of the sense amplifier to the centre-tap leaves only a half-bridge externally. Used for example with photodiodes, the output voltage is proportional to the unbalance currents in the diodes, i.e., to the degree of unbalance in the illumination of the diodes. Because the diodes act as constant-current devices the circuit Fig. 5, is much more tolerant of drift in the centre-tap than for purely resistive elements. The negative feedback gives a linear output-unbalance characteristic. Reversal of the amplifier input terminals would give positive feedback, introducing a switching action and hysteresis as in the first diagram.

- Some i.c.s have internal potential dividers which can effectively form part of a bridge. The 555 timer, for example, has its two comparators tapped at ½ and ¾ of the supply voltage via a resistor chain with very good stability to the ratio of their values; the absolute values are not important for such an application (Fig. 6). The lower-threshold detector (“trigger”) when held high prevents any output change (input 1 is assumed high) regardless of the status of the reset terminal. The reset terminal regains control only when the trigger input falls below the level accurately defined by the potential divider. With the trigger taken from an external potential divider containing the required sensing element the bridge—balance sensing can be obtained.

Further reading

Cross references
Set 1, cards 9 & 10.
Set 9, cards 1 & 11.
Set 13, cards 1 & 3.
Time delay and generator circuits

Circuit description
An i.e. such as the 555, with internal comparators driving a set-reset flip-flop offers great flexibility in the design of alarm systems. With pin 2 high, the capacitor is held low via pin 7. A negative-going edge on 2 allows R1 to charge C1 until the potential on 6 passes \(V_{t} \), when the original state is restored.

- Linking the inputs of the two comparators (2 and 6) to the discharge path (7) causes the potential at the common point to cycle between \(V_{t}/3 \) and \(2V_{t}/3 \), which isolates C1 from the rapid charge/discharge imposed by the gate protection diodes in both these circuits. The resistor improves the timing stability.
- The output stage of an astable/monostable circuit is important where high voltage/current/power is required. For the 555 timer, the output stage is similar to the typical t.t.l. output (Fig. 7), but with a Darlington-connected top section. The positive output is thus at least 1V below supply while the low output can be to within 0.1V of ground at low currents. Above 50mA the voltage drops may reach 2V and 1V respectively.

- For some applications the open-collector output of t.t.l. devices such as SN7401 gives convenient driving of loads, while other devices such as SN7406 will withstand collector-emitter voltages of up to 30V.

Further reading
Level sensing and load driving

Circuit description

The basic level-sensing circuits shown may be used with or without positive feedback, to obtain an output change as the input passes a defined level or levels. For \(R_2 \rightarrow 0 \), \(R_1 \rightarrow 0 \), amplifier gain determines the range of input voltages for which the output is not switched hard to one or other extreme. (Typically 1 to 20mV for comparators, required to operate at high speeds; 0.1 to 5mV for op-amps where accuracy of level-sensing makes their slower operation an acceptable penalty.)

Hysteresis introduced by positive feedback allows the circuit to latch into a final state after the first excursion through a given level, while the reset action is a negative-going pulse over-riding the former, e.g., a resistor taken from the non-inverting input to the negative rail.

An adaptation of the output stage shown in Fig. 5 gives an output when the p.d. across either \(R_1 \) or \(R_2 \) exceeds about 0.6V. In the former case this corresponds to a positive input voltage defining sufficient positive supply current via \(R_p \), i.e., \(V_{in} R_p / R \approx 0.6V \). Similarly a negative input voltage switches the output via \(Tr_1 \).

The switching action is not particularly sharp as it uses only the gains of the transistors.

A standard window comparator gives sharper switching but requires two amplifiers/comparators and still requires an additional transistor if an output swing comparable to supply voltage is required, e.g. for efficient switching of lamps relays, etc. particularly at higher currents.

A previously-described output stage (set 2) gives push-pull drive using one op-amp as driver. Resistors \(R_1 \), \(R_2 \) are selected to keep \(Tr_1 \), \(Tr_2 \) out of conduction in quiescent state. The op-amp is used in any of the sensing/oscillating modes that result in p.d.s across \(R_2 \) sufficient to drive \(Tr_1 \), \(Tr_2 \) into conduction. Either may be used alone for driving lamps, relays, or the circuit as shown may be capacitively coupled to a loudspeaker for a.c. power drive.

An output stage using a bridge configuration requires antiphase switching at the inputs, but gives a load voltage whose peak-peak value is twice the supply voltage. This is equally applicable to audio alarms or to driving of servo systems for which it was designed.

Complementary m.o.s. devices may be used to drive complementary output transistors as shown and with the aid of an additional inverter a similar stage provides a bridge output. The transistor base current is limited to a few milli-amps but in all these output stages, short-duration current spikes may occur during the output transitions. Diode protection against inductive voltage spikes as in Fig. 5 should be used for loudspeaker, relay and solenoid loads.

Any of the output transistors may in principle be replaced by the compound transistor pairs if higher peak currents are needed. To reduce the above requirements it is worth considering the use of f.e.t. devices as the input transistor of the pair.

Further reading

Applications of 555 timer

Typical performance
IC: NE555V (Signetics), \(V_s = +10V \).
\(R_1 = 2.2k \Omega, R_2 = 10k \Omega \),
\(k = 0.6, D_1 : 5.6-V Zener diode \).
Upper set point: \(5.7V \) (\(V_z \)),

Circuit description
The 555, designed as a timing circuit with either monostable or astable operation, has internal circuit functions that allow it to be used for many other purposes. In alarm systems, the power output stage that permits currents of either polarity of up to 200mA (though 50mA minimizes voltage losses) means that lamps and relays can be driven quite readily. When used as an astable circuit the output square wave can be applied to a loudspeaker to give an audible alarm, while a voltage fed to the control terminal modulates the frequency for warble or two-tone effects. As a monostable circuit it can be used to provide delays from microseconds to minutes, allowing, for example, a warning alarm to be held for a defined period of time after the appearance of the condition being detected. In such cases the condition (closure of a switch in a burglar alarm for example) is converted into a negative-going pulse, applied to the trigger input. A further application for the device involves the controlled hysteresis provided by the two comparators biased from an internal potential divider. With \(V_s > V_{ref1} \) the output is driven negative via the flip-flop which ignores any further excursions of \(V_s \) about \(V_{ref1} \) in either sense. When \(V_s \) falls below \(V_{ref2} \) the flip-flop is reset, the output going positive. In the astable circuit \(V_s = V_{reset}, V_{ref1} = 2V_s/3 \), \(V_{ref2} = V_s/3 \) and the capacitor is charged and discharged between \(V_s/3 \) and \(2V_s/3 \).

Component changes
IC: Motorola MC1455.
Separate comparators could be used with independent reference voltages or a single comparator with hysteresis defined by feedback—see Series 2.
\(V_s : 4.5 \) to 18V. At low voltages the saturation voltages at the output may not allow adequate drive to electromechanical/filament lamp loads.

Circuit modifications
- Use as battery charger illustrates method well (Fig. 1).
 Upper threshold when \(k_1V_s = V_z \); lower threshold when \(k_2V_s = V_z/2 \). When upper threshold is exceeded output at pin 3 reverse-biases diode \(D_2 \) and battery discharges into load when present. As voltage \(V_s \) falls below lower threshold, voltage at pin 3 rises and charges battery through limiting resistor \(R_2 \). Hysteresis may be reduced towards zero for \(V_s/k_1 \rightarrow V_s/2k_2 \).
- To increase hysteresis, the potential at pin 5 may be reduced following a transition through the upper threshold. This may be done as in Fig. 2 by using output pin 3 via a diode—both thresholds are varied if the diode is replaced by a resistor.
- The increased swing simplifies the triggering of a following 555 used as a Schmitt trigger, as the capacitor voltage in Fig. 2 can approach zero.

Complete alarm systems can be based on such circuits combining level sensing, time delays and waveform generation, as well as audible alarms.

Further reading
Four articles, by De Kold, McGowan, Harvey & Pate, in Electronics, 21 June 1973, pp. 128-32.
Frequency sensing alarm

Circuit description
The circuit is a monolithic m.o.s. i.e. which uses external RC elements to fix the frequencies at which the circuit provides a switching action. It does so via two separate switching times defined by \(C_1 R_1 \) and \(C_2 R_2 \), as from a pair of monostable circuits with the second time interval being initiated at the end of the first. The input may be a repetitive signal of arbitrary waveform, provided the amplitude is in excess of 100mV pk-pk (though it should not exceed 20V pk-pk). Internally this is presumably squared by a Schmitt trigger type of circuit to trigger the monostables. Three distinct conditions may exist; if the period of the received signal is \(t = 1/f \) and the two delays are \(t_1 = k/C_1 R_1 \), \(t_2 = k/C_2 R_2 \), then \(t < t_1, t_1 < t < t_1 + t_2, t > t_1 + t_2 \). These conditions are distinguished by additional internal circuitry that allows sensing of frequencies above a given datum or within a given band with a switched output that can be made to latch on or off, toggle at a lower frequency \(f/20 \), and hold on during signal loss or for temporary interruptions of the signal. The upper frequency in the band mode or the datum in the datum mode is set by \(t_1 \) and the lower band-frequency by \(t_1 + t_2 \). The circuit provides frequency-sensing function similar to comparators Schmitt-triggers and window-comparators.

Component changes
\(V_{in} \) : 12 to -22V some samples operate with reduced accuracy down to -8V.
\(V_{in} \) : 0.1 to 20V pk-pk.
freq. set points: 0.01Hz to 50kHz.
response time: within 5 to 10 cycles of receipt of correct frequency.
\(R_1, R_2 \) : 100k to 1MΩ.
\(C_1, C_2 \) : 250pF to 1µF.
\(C_3 \) : 10nF to 1µF (not critical).

Circuit modifications
- As the lower frequency in the band mode is affected by time constant \(C_2 R_2 \) in the original circuit while the upper frequency is not, variation of \(R_2 \) increases the band by variation of its lower bound only. For \(C_1 - C_2 = C \), variation in the tapping point of \(R_C \) in (a) at left leaves the sum of the time constants unchanged at \((R_A + R_C + R_C)C \), i.e., it is the lower frequency that remains constant while the upper frequency is changed.
- Variation in both frequencies while retaining a reasonably constant ratio of \(f_2/f_1 \) (the equivalent of a constant Q), can be achieved by varying the common bias applied to the resistors. If strong dependence on supply voltage is to be avoided the bias voltage should be supply-proportional as in (b).
- Constant-current sources allow linear control of period against a separate reference voltage, which may be supply-proportional (centre).
- Filament lamps may be driven via an additional transistor, currents up to 100mA or so being provided by circuit on right. Direct drive of reed relays, i.e., is possible though current is marginal.

Further reading
Volk, A. M. Two i.e. digital filter varies passband easily, Electronics, 15 Feb. 1973, p. 106.
FX101: Consumer Microcircuits data sheet D/026.

Cross references
Set 1, cards 6 & 7.

Typical performance
IC: FX101 (Consumer Microcircuits) -12V supply, -3mA + load current.
\(V_{in} \) : 250mV pk-pk to pin 1.
\(R_1, R_2 \) : 470kΩ.
\(C_1 \) : 22nF, \(C_2 \) : 10nF, \(C_3 \) : 0.1µF.
Ground pins: 2, 3, 9.
Output on for: \(f > 150kHz \)
(\(f \approx 1/0.6C_1 R_1 \)).
Pin 1 signal input.
2 grounded, holds switch state during signal loss.
open, switch off.
ground via 'C', switch off after signal break of
200ms/µF for 'C'.
3 ground, circuit automatically resets on change off.
open, switch latches when turned off.
5 link to 8, switch latches when turned on. Ground 3.
link to 8 via 'C', hysteresis in datum point of 'C'/C₁ x
100%.
9 ground, datum mode, switches on for \(f > f_1 \).
open, band mode, on for \(f_1 < f < f_2 \).
link to pin 5, output toggles at \(f/20 \) when in band.
Digital alarm annunciators

Circuit function
It is assumed that a fault condition is the opening of relay contact RL₁, though any other sensor that maintains the NAND-gate input terminal at a low (0') level is adequate. A fault will turn off a “safe” green light and illuminate a “danger” red light, and operate an audible alarm. When the “recognize” push-button is depressed, the red light stays on, but the alarm is silenced. When the fault clears, the alarm is restarted, the green light comes on and the red light goes off. The “recognize” button is again pushed to reset circuit to its normal state.

Circuit operation
Consider the circuit in its normal state where inputs R, T, and F are at zero volts (or binary zero), i.e. $R = T = F = 0$ and $X = 0$, $Y = 0$ (and hence $A = 0$). If a fault occurs, RL₁ opens, F goes high (or binary one), i.e. $F = 1$, causing $X = 1$ (and hence $X = 1$). Therefore, A is forced to zero, but the state of Y remains as before. Hence A = 1, and triggers audible alarm. Pushing the recognize button causes $R = 1$, and since F is already low, $X = 0$. Memory circuit IC₁, IC₂ does not change. Also since $F = 0$, $Y = 1$, and hence A is forced to zero, therefore $A = 1$. This transition may be used to switch an audible alarm.

Circuit modification
As X, Y, and Y are available, the exclusive-OR function of A can be obtained as shown.

Further reading
Filament lamps and relays

Filament lamps are widely used as visual alarm indicators and often connected in the collector-emitter circuit of a bipolar transistor that is switched on and saturated under alarm conditions. These lamps have a positive temperature coefficient of resistance with a large difference of resistance between the cold and hot states—see graph 1 which is typical for a 6V, 100mA panel lamp. When switched on across a voltage source, a large current surge flows in the lamp, and switching transistor, which then decays exponentially to its normal or saturated value in the hot state. This surge may be ten times the rated current, or even higher, shortens the life of the lamp, may destroy the switching transistor or blow the power supply fuse.

Graph 2 shows the typical initial surge current characteristic of a 6V, 60mA panel lamp having a thermal time constant of about 2ms. When lamps are used as flashing alarms, the initial surge current is as shown in graph 2 but the surge current on successive pulses depends on the thermal time constant and the time between flashes. Graph 3 shows the typical variation in surge current when a 6V, 60mA panel lamp is switched on for 5s then off for 1550s.

If the p.d. applied to the lamp is gradually increased the current rises in a controlled manner to its normal operating value, and remains saturating with a low value of $V_{CE(sat)}$ holding T_R_1 and the lamp off. Under alarm conditions, the base drive to T_R_2 is removed and the capacitor charges through R_B. The base voltage of T_R_1 rises exponentially so that the lamp surge current is avoided.

To prevent damage to T_R_1 should the lamp become short-circuited, a resistor R_C could be included in T_R_1’s free collector, but this would reduce the lamp voltage in normal operation. Circuit Fig. 5 shows a modification that allows an almost normal lamp voltage and also limits the short-circuit current to the desired value by using only a small R_C value and a saturating transistor T_R_3.

Relays are used to actuate alarm devices that need to be isolated from their control circuitry for various reasons such as their current, voltage or power requirements being incompatible with the electronic circuitry. Circuit Fig. 6, of a commonly-used relay drive circuit which takes into account both the resistive and inductive properties of the relay coil. When actuated, the steady-state coil current is fixed by the coil resistance and supply voltage, but when T_R_1 is turned off the inductance of the coil causes the collector voltage to rise towards a level greatly exceeding V_{CC} if the protective diode D_1 were omitted. Diode D_1 allows V_{CE} to rise only slightly above V_{CC} before the diode conducts to dissipate the energy stored in the relay coil. When T_R_1 turns on D_2 is reverse-biased and does not affect the operation. The diode must be able to withstand a reverse voltage slightly greater than V_{CC} and be able to conduct the relay-coil discharge current for a brief time.

T_R_1 must have a V_{CE} rating exceeding V_{CC} and be capable of carrying the relay operating current. If a relay is required to operate when an input level exceeds a certain predetermined value, it may be included in a Schmitt trigger circuit; e.g., the relay coil and protective diode could replace R_1 in the basic circuit of series 2, card 2.

Further reading

Cross references
Series 2, card 2.
Series 9, cards 2, 5 & 6.
Series 13, cards 4 & 7.
Signal domain conversion

Voltage-to-current conversion
It is often required to supply signals to relatively long transmission lines in which case the signal is more convenient in current form rather than as a voltage. Thus, voltage-to-current converters are useful and may be realized using operational amplifiers especially if the load is floating. Figs. 1 & 2 show the more common forms the former being an inverting type and the latter non-inverting. In both Figs., \(i = V_{in}/R \) and is independent of the load impedance, but the source and operational amplifier must be able to supply this load current in Fig. 1, whereas little source current is needed in Fig. 2 due to the high input impedance of the amplifier. Fig. 3 shows another floating-load V-to-I converter which requires little source current if \(R_1 \) is large and allows \(i_i \) to be scaled with \(R_1 \), the operational amplifier supplying the whole of the load current; \(i_i = V_{out}(1/R_1 + R_2/R_1 R_3) \). The circuit of Fig. 4 is suitable for V-to-I conversion when the load is grounded. When \(R_1 R_2 = R_3 R_4 \) the load current is \(i = -V_{in}/R_4 \) and the current source impedance seen by the load is very high.

Current-to-voltage conversion
If a device is best operated when fed from a voltage source but the available signal is in the form of a current, a current-to-voltage converter will be required, one example being shown in Fig. 5. Current is fed to the summing junction of the operational amplifier which is a virtual earth so that current source sees an almost-zero load.

Voltage-to-frequency conversion
Many voltage-to-frequency converters exist, the circuit complexity often being a guide to the degree of linearity and maximum operating frequency. Fig. 6 shows one form of V-to-f converter (a v.c.o.) suitable for use at frequencies below about 10kHz, each amplifier being of the current-differencing LM3900 type. Amplifier \(A_1 \) is connected as an integrator with \(A_2 \) acting as a Schmitt trigger which senses the output from \(A_1 \) and controls the state of \(T_1 \) which either shunts the input current through \(R_2 \) to ground, making \(V_{out1} \) run down linearly, or allows it to enter \(A_1 \) causing \(V_{out1} \) to rise linearly with \(R_1 = 2R_2 \). So \(V_{out1} \) is a triangular wave and \(V_{out2} \) a square wave having a frequency that is linearly dependent of \(R_1, C_1 \) and the threshold levels selected for the Schmitt trigger.

Frequency-to-voltage conversion
Diode-pump, transistor-pump and op-amp pump circuits are widely used for low-cost frequency to voltage conversion. Another circuit, using a single LM3900 quad current-differencing amplifier package, is the phase-locked loop shown in Fig. 7 which uses the v.c.o. of Fig. 6. Amplifier \(A_3 \) is in the LM3900 package used as a phase comparator having a pulse-width modulated output depending on the phase difference between \(V_{in} \) and \(V_{out2} \) of the v.c.o. Resistor \(R_8 \) and \(C_2 \) form a simple low-pass filter which makes the d.c. output vary in the range +V to +V/2 as the phase difference changes from 180° to 0°. This direct voltage controls the frequency of the v.c.o. and its lock range may be increased by using the fourth amplifier in the package as a d.c. amplifier between the filter and the integrator. Centre-frequency of the p.l.l. is about 5kHz with: \(R_1, R_2 1\text{M} \Omega; R_3 510k \Omega; R_4, R_5, R_6 30k \Omega; R_7, R_8, 1.2 \text{M} \Omega; R_9, 62k \Omega; C_1 1nF; C_2 100nF; V = +4 \text{ to } +36V \).

Further reading
Linear Applications—application notes AN20 and AN72, National Semiconductor, 1973.

Cross references
Set 3, cards 3, 5 & 10.
Ser 13, cards 1 & 6.
Pressure, temperature and moisture-sensitive alarms

Pressure-sensitive alarm

A pressure-sensitive alarm may be made using a specially-modified transistor known as the Pitran. It is a planar n-p-n transistor having a diaphragm mounted in the top of its metal can which is mechanically coupled to its base-emitter junction. When a pressure is applied to the diaphragm a reversible charge is produced in the transistor characteristics. The mechanical pressure input can be used to directly modulate the electrical output of the transistor which may be fed to the alarm circuitry, e.g., via a comparator or Schmitt trigger which switches state when the input pressure to the Pitran either exceeds or falls below some critical level. The Pitran may be connected as a single-ended-input single-ended-output stage, as shown in Fig. 1 or as a differential-input balanced-output stage, Fig. 2.

Conventional transistor circuit design techniques may be used for the Pitran stages. Linear output voltages of up to one-fifth of the total supply voltage are obtainable.

Temperature-sensitive alarm

Circuit Fig. 3, shows the input circuitry of an alarm which may be operated by the output signal from the operational amplifier when the temperature monitored by the probe transistor exceeds a pre-determined value. The temperature-sensing transistor is a low-cost n-p-n type that can produce a resolution of less than 1 deg C in a temperature range of 100 deg C. If the operating current of the probe transistor is made proportional to temperature, the non-linearity of its base-emitter voltage may be minimized, being less than 2mV in the temperature range -55 to +125°C. Zener diodes set the input voltage to 1.2V and this is applied through R2 to fix the operating current of the probe transistor. Resistor R3 may be adjusted to make amplifier’s output zero at 0°C and R4 is used to calibrate the output voltage to 100mV/deg C, or any other scaling factor, independently of the Vout=0 condition. R1, R2 12kΩ; R3 5kΩ; R4 5kΩ; R5, R6 100kΩ; R7 300kΩ; Tr1, Tr2, Tr3, ZTX300; Tr4 OC71; LS 8-Ω loudspeaker; V±15V.

Moisture-sensitive alarm

A low-cost audible alarm which operates when the electrodes of the input sensor become damp due to increase in humidity, direct contact with water, rain or snow is shown in Fig. 4. The sensor is conveniently made from parallel-strip printed circuit board or commercial equivalent, so that increase in moisture at the strips produces a very small current to Tr1 base via R1 which forms a high-gain compound pair with Tr2 which switches hard on. Transistors Tr3 and Tr4 form the audible alarm multivibrator, that acts as a load on the compound pair, having a repetition rate determined by the C1R1 time constant. A piercing note at about 2.5kHz is produced with R1, R2 100kΩ; R3 1kΩ; C1 10nF; Tr1, Tr2, Tr3 ZTX300; Tr4 OC71; LS 8-Ω loudspeaker; V±9V.

A flashing display with a rate of about 2Hz may be obtained by replacing the loudspeaker with a 6V, 60mA panel lamp and changing the values of R2 to 470kΩ and C1 to 2.2µF.

Further reading

Linear Applications—application notes AN31, AN56 and AN72, National Semiconductor, 1973.

Security, water level and automobile alarms

Circuit description
Component R₃ is the resistance in the search loop which if obtained using two 100kΩ resistors allows one to include switches either in series with the loop or in parallel with either resistor, or both. In the latter case changing a switch condition from open to closed in the parallel case and from closed to open in the series case can give rise to either a positive voltage or a negative voltage being applied to the diode bridge; the bridge is, of course, balanced initially. The diode bridge being a full wave rectifier will apply a negative V₃b to the following circuit in either case. The bridge resistors are large valued to minimize current drain from the battery but require that the following circuit have a large input resistance. Hence the buffer Tr₁ is employed.

When V₃b goes negative, Tr₁ and with it Tr₃ conducts. Transistor Tr₃ then drives Tr₄ which is a higher power device capable of drawing a relay coil to produce the warning signal. At the same time when Tr₃ conducts, the collector of Tr₃ goes negative and hence via positive feedback through R₃ the base of Tr₄ remains negative, even if V₃b is set back to zero. Hence, a latching action is obtained, which keeps the warning signal on. The warning signal will only be removed if the power supply is removed.

Capacitors C₁ and C₂ are required to prevent spurious pulses from triggering the alarm, in the case of C₁, and to prevent switching transients from triggering the alarm when the alarm is being reset in the case of C₂.

Brake light monitor (Fig. 2.) Both of the identical counter-wound coils are wound round the reed relay. Hence the relay switch will only close, giving a dashboard warning, if either of the brake lights fails either with an open circuit or short circuit.

Water level alarm
Fig. 3 circuit is designed to produce a note from the loudspeaker when the sensor input terminals are shorted. As such it can be used for many applications apart from suggested water level/raint level sensing two applications for many applications apart from suggested water level/raint level alarm. When the input terminals are shorted base drive to Tr₁ via R₃ is obtained, and the supply voltage is switched to the unijunction relaxation oscillator comprising Tr₂, R₆, R₇ and C (card 4, series 3). A train of pulses of period mainly determined by the product R₂C is then presented to the base of Tr₄, thereby producing pulses of current through the loudspeaker. The loudspeaker alarm note can be altered by altering the product R₂C.

Considerable effective output can be obtained by selecting the note to correspond to the resonant frequency of speaker. In practice the alarm will sound for any resistance between zero and five megohms. The quiescent current of the unit is of the order of nanoamps so that battery life is many months even if the unit is switched off. Provision to test the battery condition is made by switch position 2 which should cause Tr₁ to switch on the oscillator provided the battery is in good condition.

For water level sensing two conducting rods spaced an inch, or less, apart and positioned at the required level is all that is required. For a rain alarm two rods separated by some blotting paper will suffice. When the blotting paper becomes wet contact between the rods is made, the alarm sounds and the washing is saved once more (provided the missus isn't away shopping).

Component changes
Resistor R₃ may be any value up to 5MΩ provided a true shorting of the sensor input terminals is obtainable. The R₂C product is dictated by the pitch of the note required. Resistor R₁ should be much less than R₂, e.g., R₁/10.

Further reading

Component values

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R₁</td>
<td>100kΩ</td>
</tr>
<tr>
<td>R₂</td>
<td>3.3kΩ</td>
</tr>
<tr>
<td>R₃</td>
<td>270Ω</td>
</tr>
<tr>
<td>C</td>
<td>0.5µF</td>
</tr>
<tr>
<td>Tr₁, Tr₂</td>
<td>2N2926 (G)</td>
</tr>
<tr>
<td>Tr₃</td>
<td>2N2646</td>
</tr>
<tr>
<td>LS</td>
<td>8-Ω loudspeaker</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>9V</td>
</tr>
</tbody>
</table>

Set 13: Alarm Circuits—II

Fig. 1

Fig. 2

Fig. 3

Diodes 0A81
Set 13:
Electromechanical alarms

Electromechanical transducers are obtainable in a wide variety of types; they may be d.c. or a.c., resistive, relutic or capacitive, contacting or non-contacting, analogue or digital, linear or angular, etc. Insofar as most alarm systems use a comparator (cross ref. 1) to compare the signal with a reference and as d.c. signals are easily compared we shall assume here that any a.c. systems are followed by signal conditioning equipment which includes a rectifier (cross ref. 2) of some sort so that the effective output is d.c.

Acceleration alarm

Acceleration transducers all have one feature in common, viz. the seismic mass, M. The basic acceleration transducer is shown below. The case of the system is attached to the body whose acceleration is required. Due to a constant acceleration the seismic mass exerts a force $M x$ which in the steady state will stretch or compress the spring by an amount x where $M x = K x$, K being the spring constant. The dashpot simply provides damping whilst the mass is moving. If we know M and K then a measure of x gives a signal proportional to the acceleration. This can be done by any displacement transducer of suitable dimensions and sensitivity. Frequently, however, the spring arrangement is a leaf spring arrangement with strain gauges attached. The spring deflection gives rise to changes in resistance in the strain gauges which if connected in a Wheatstone bridge circuit gives a voltage proportional to the deflection and, hence, to the acceleration. As the Wheatstone bridge can be supplied from a d.c. source there is no need for rectifiers before feeding to a comparator. Strain gauge bridges usable up to 750Hz have been built.

For higher frequencies piezoelectric crystals replace the spring. The crystal produces a charge or voltage across its terminals when subjected to the stress of the seismic mass under acceleration. However, the output impedance of the crystal is large and amplifiers with an input impedance in excess of 500MΩ typically have to be used. Furthermore, the cable between the crystal and the amplifier requires to have low capacitance and to be free from friction induced noise. On the other hand very large accelerations ($> 100g$) can be measured and they can be used over a large temperature range (570°C for a lead metaniobate crystal).

Further reading

Cross references

Set 2, Comparators and Schmitts.

Set 4, A.C. Measurements. Set 13, card 4.
1. The ability of the 555 timer to act as a monostable or astable and to deliver sufficient power to drive a loudspeaker directly is put to use in this burglar alarm. Switch S1 is closed arming the circuit, with Sn consisting of a number of normally-closed switches each detecting an entry point. If any of these switches is allowed to close by an opened window, etc. the relay is activated and power is applied to both monostable and astable. The audio output can be accompanied by a visual output via a second relay contact. The circuit remains latched by the relay throughout the monostable delay, further variation in Sn having no effect. The alarm ceases at the end of the selected delay (~12s) given in the source article regardless of Sn, but is re-triggerable once S2 has been opened and the stored charge in C1 has been dissipated through D2, R1, i.e. the alarm operates for only one cycle. No standby current flows as the contacts of S2 are normally open.

Frequency of oscillation of the astable section is around 1kHz and transformer coupling to a low resistance loudspeaker is suggested in the article.

Reference

2. Positive feedback around an operational amplifier may be used to provide either astable or Schmitt characteristics. This novel circuit combines both while needing only one operational amplifier. When the op-amp output is low D1 is reverse biased and R3 provides the I.E.D. with a zero gate-source voltage. Hence the I.E.D. shorts out the capacitor grounding the inverting input. As the input voltage increases, it overcomes the effect of the negative voltage across the zeners, raising the non-inverting input above zero. The op-amp output swings positive, reverse-biasing the I.E.D. gate source and allowing the capacitor to charge positively. This continues until the inverting input rises to equal the now positive potential on the non-inverting input. At this point the op-amp output switches back to its negative state and the capacitor discharges, with the cycle recommencing. The reference article gives equations representing the circuit performance and indicates that 0.1% stability of trip-point is achievable, though the frequency of oscillation is determined only to within about 30%.

Reference

3. The circuit is an astable gated by a single transistor that can be driven from a small positive current or from a low voltage (> 0.6V), including the output of t.t.l., c.m.o.s. etc. Alternatively Tr1 can be replaced by an open-collector t.t.l. gate. The novel property of this astable that it drives an I.E.D. from a low voltage supply with the I.E.D. permanently on for input level high and flashing at, say, 1-10Hz depending on choice of C for input level low. This allows a single I.E.D. to act as the on-off indicator for a battery instrument as a supply voltage of 2V is sufficient to initiate conduction; the same I.E.D. acts as the visual indicator of a fault condition if that fault is converted into a low voltage/current to drive Tr2. In the quiescent state the I.E.D. current may be typically 20mA. The three transistors may be any general purpose silicon devices including those from such multi-transistor packages as CA3046, CA3086, etc. The other two transistors in such a case are usable as part of a Schmitt trigger or amplifier stage.
Set 14: Digital counters

This set was the first in the revised format for Circards. But for this book, we re-set the first three cards so that they would conform to the rest. The four-column presentation allows greater flexibility of layout and we hope you agree that the "unjustified" type-setting makes for greater readability, with its equal word-spacing and jagged right-hand edge. We took this opportunity to up-date the title area and to rename "series" with the more logical "set".

Another excellent summary of the subject precedes this set of circuits. It covers all the essential points about the use of bistable circuits as counters, starting by setting out the different kinds (JK, RS, D and T, discussed in more detail on glossary card 12), defining ripple and parallel counters, design using Karnaugh maps, and concluding with sequence generators. In digital parlance notice that bistable circuits are referred to as flip-flops, whereas originally this term referred to monostable circuits, the words flip and flop indicating an unstable state and a stable state. (Anyone for flip-flip for astables and flop-flop for bistables?)

Content of the cards calls for little comment. Card 12 is useful for newcomers, listing various binary codes against decimal number, and in describing the different kinds of "flip-flops". It also shows connections for RS and JK types to give D and T functions.

Basic binary counters 1
One out of n ring counter 2
Johnson counters 3
Reversible counters—I 4
Reversible counters—I1 5
Divide by n counters 6
High-power counters 7
High-speed counters 8
Low-power counters 9
Decade counters 10
M-sequence generators 11
Glossary: flip-flops and b.c.d. codes 12
A digital counter comprises an interconnection of bistable or two-state memory circuits, or, colloquially, flip-flops. The counter embraces those circuits which accumulate pulses according to a specific code as they appear at the input, frequency dividers, sequence generators and pulse waveform generators. The application requirement will generally determine how the collection of flip-flops is identified, but in this article the generic name of counter will be used.

The basic flip-flop has one or two control inputs, and two outputs termed \(Q \) and \(\overline{Q} \) (not \(-Q \)), where \(\overline{Q} \) represents the opposite state of \(Q \). The logic state of these outputs may be termed set or reset, high or low, I or 0, and the change of state will only take place on the occurrence of a trigger pulse at the clock-input. A clock-pulse input, ensures that a change of state will not change state, but remain as it was before the clock pulse. However, if \(S = 1 \), \(R = 0 \), then \(Q \) becomes logic 1, i.e. if it was previously logic 0 a change of state occurs, and if it was logic 1, it remains so.

The indeterminate state of \(Q \) for the condition that \(R = S = 1 \) exists because of a race condition between gates and is one disadvantage of this flip-flop—such a condition must be avoided. The JK flip-flop, however, does not have this disadvantage—all output conditions are predictable, as shown in Fig. 4. The last combination of \(J = K = 1 \) permits a useful toggle action in which the output changes state on the occurrence of every clock pulse.

Counters are generally classified as asynchronous or synchronous. The basic asynchronous circuit is implemented with individual flip-flops, but some m.s.i. packages are available that permit variation of the modulus by a simple connection change or simple gating. If the outputs of ripple-counters are to be

triggering on positive or negative pulse edges or a combination of these as in master-slave flip-flops.

A basic RS flip-flop using NAND gates is shown in Fig. 2. To represent the dependence of the \(Q \) output on the control inputs when a clock pulse occurs, a truth-table is used to demonstrate the state of \(Q \) at the \(n \)th clock pulse \((Q_n)\), and after the next clock pulse \((Q_{n+1})\)—Fig. 3. For example, if \(S = 1 \), \(R = 0 \), then \(Q \) becomes logic 1, i.e. if it was previously logic 0 a change of state occurs, and if it was logic 1, it remains so.

In integrated circuit technology, these counters have the advantage that each flip-flop operates at half the frequency of the preceding one. This allows a trade-off in high-speed (high-power dissipation) circuits to be used in the first stage, with lower speed (low-power) configurations being used in later stages. The maximum count (including zero) of a counter containing \(n \) flip-flops is \(2^n \), feedforward or feedback techniques allowing counts less than this to be achieved. The number of distinguishable states through which the counter cycles is known as the modulus of the counter, and this may be fixed when implemented with individual flip-flops, but some m.s.i. packages are available that permit variation of the modulus by a simple connection change or simple gating.
decoded, care must be taken to ensure that the decoder network is enabled only when it is certain that all intermediate state changes have occurred.

The disadvantage of the asynchronous counter is avoided by the synchronous or parallel counter, in which all flip-flops are not used, the “can’t happen” or redundant states are denoted by a combination of one and zero (1) in the state table (Fig. 9) because the states are not specified and may be made 1 or 0 at will. In this case they will be considered as 1s. The state table shows the desired outputs at A, B and C on the occurrence of the numbered clock pulse, where 0 and 6 are equivalent, i.e. the 6th pulse resets the counter to zero. It will be assumed that the counter commences from the zero state.

The design technique requires the preparation of a Karnaugh map for the J and K input of each flip-flop to determine the control levels required at each input for every step of the sequence, by deriving a minimal Boolean expression for each map, though as these are derived independently the circuit may not necessarily be minimal. This then determines the internal gating required.

An excitation table for the JK flip-flop is derived from the JK truth-table shown earlier. This table (Fig. 7) shows the necessary J and K inputs to either hold the flip-flop in a 1 condition or a 0 condition.
condition, or to cause a 1 to 0 or 0 to 1 transition, all on the occurrence of an input clock-pulse. The X indicates that it does not matter what that particular J or K state is, provided the other control input is in the correct state.

For example, if it is assumed that Q = 1, and a transition to logic 0 is required on the occurrence of a clock-pulse, then from the truth-table either J = 0, K = 1, or J = 1, K = 1 will cause this change, i.e. provided K = 1, J may be either 0 or 1. As each input pulse occurs, the flip-flops should change in accordance with the truth-table of Fig. 8. The steps involved in filling the JK maps are as follows.

The can't-happen conditions of the state-table are transferred to equivalent squares on the separate J and K maps. Consider the J, and K maps. On the occurrence of the first pulse, Q should hold at logic 1, hence an X is put in the J, map square representing pulse no. 1, and a 0 in the K, map square. This is repeated for pulse no. 2. At pulse no. 3 a 1 to 0 transition is required, hence an X is put in J, map square for pulse no. 3, and a 1 in K, map. A 0 is maintained for pulse no. 4, hence a 0 in J and X in the K, square for pulse no. 4 is necessary. This is continued until all squares for each map are filled.

As an example of the minimization, notice that symbols 0 or X may be 1, hence a loop of four adjacent squares is available in the J, map, i.e. the minimal solution for J, is given by C. Similar loops of four are obtained for each of the other maps, the circuit being implemented in Fig. 11. No external gates are required in this circuit, because the complemented outputs are already available from each flip-flop.

Common arrangements using this technique are b.c.d. counters, decade counters, up-down counters, though some are also available in m.s.ti. packages.

The implementation of Fig. 11 has been described as a modulo-6 Johnson ring counter. However, examination of Fig. 8 shows that each output Q, Q, and Q, has one pulse for every six of the input so that the device could be regarded as a divide-by-six frequency divider. Most frequency dividers, on the other hand, allow one to divide by an arbitrary number so it cannot be regarded as a very good frequency divider.

The device of Fig. 11 can also be regarded as a sequence generator, in that, given an input pulse sequence, one obtains a different output pulse sequence—admittedly not a very interesting one.

There is an infinite number of sequence generators that one could build but of particular interest are those which produce so-called maximal length binary sequences (M-sequences). Used in many areas, such as data communication system identification and correlation methods, M-sequences are generated by synchronous shift registers with feedback from various stages being used to determine the next state to be fed in. Feedback complexity is not proportional to the register length and very long sequences can be generated by very simple feedback arrangements. Feedback is performed by modulo-2 addition, i.e. via exclusive-OR gates (Fig. 12).

The properties of these sequences depend on the clock rate, f, and on the number of stages in the shift register, n, but all of the sequences possess to some degree properties close to those of band-limited white noise. (Hence the name pseudo-random binary sequences or p.r.b.s.) The signal bandwidth is given approximately by /f, and the greater the value of n the more closely do the properties resemble those of random noise. The sequences are not in fact random because they are binary in nature and because they are cyclic, the cycle length being 2n - 1 clock periods. The binary nature of the signals is easily removed by passing them through simple first- or second-order filters so that the signal becomes continuous and has a probability density function which is close to Gaussian. The cyclic nature of the signal is in fact one of the advantages of M-sequence and is one of the non-random features one would wish to retain. This is because experiments can be repeated for checking purposes over a cycle length without the statistical difficulties of genuine random noise. From this point of view it is therefore desirable to limit n.

Design is greatly facilitated by tables which indicate what feedback paths are necessary to produce an M-sequence of given length. The problem comes down to one of choice of f, and of n for the particular application in mind.

![Fig. 11. Implementation of modulo-6 Johnson ring counter.](image1)

![Fig. 12. M-sequence generator using exclusive-OR gates.](image2)
Basic binary counters

Circuit operation
The bistable circuit is a T-type "flip-flop" in which the output changes state for a negative-going transition at the trigger-input. If the base-drive current is arranged so that \(T_1 \) is in saturation, its collector voltage will be about 0.2V. This is too low to forward-bias the base-emitter junction of \(T_2 \), about 0.7V, and hence \(T_2 \) will be off. This means its collector-emitter voltage is high, depending on \(R_1 \) and \(R_2 \), and the base-drive current for \(T_2 \) flows through \(R_1 \) and \(R_2 \). Hence the terminals identified (arbitrarily) as \(Q \) and \(\overline{Q} \) are low and high respectively (0 and 1 for binary coding). When the trigger input is high, the circuit is in a stable state. When the trigger input is driven near ground the negative-going pulse-edge is steered to \(T_2 \) base as \(D_2 \) is forward-biased. The anode of \(D_2 \) is approximately at \(V_{CRBST} \) and because its cathode is connected to a high potential via \(R_2 \) it is reverse-biased. Therefore \(T_2 \) collector current is reduced, causing a rise in its collector voltage, increasing base-drive current to \(T_2 \). This causes \(T_2 \) collector voltage to drop and \(T_1 \) base current decreases causing a further increase in \(T_2 \) collector voltage. The process continues until the other stable state, \(T_1 \) conducting and \(T_2 \) off, is sustained. The next negative-going trigger pulse resets the circuit to its previous state. It produces one output pulse for every two trigger pulses.

The interconnection of these bistable circuits to give a binary ripple counter demands that the \(Q \) output of a previous flip-flop is connected to the trigger (or \(T \)) input of the next flip-flop. This gives a natural count of \(2^n \) where \(n \) is the number of stages, and \(2^n \) is the number of states through which the counter progresses.

Circuit modification
Range of \(R_a \), \(R_b \): 4.7k to 47kΩ
Frequency variation: 150 to 30kHz
Range of \(C_1 \), \(C_2 \): 330 to 3300pF
Frequency variation: 140 to 90kHz
Increase turn-on speed with capacitors across resistors \(R_a \) and \(R_b \) typically 5 to 20% of \(C_1 \), \(C_2 \).
Increased frequency of operation possible with additional diodes connected across \(R_a \), \(R_b \) (anode to collector).
High-speed transistors BSX19, BSX20 permit counting speeds up to 10MHz.

IC binary counter
The ripple binary counter is commonly implemented with integrated circuits using J-K flip-flops e.g. the SN7493 is a 4-bit binary counter within one package allowing a typical count rate up to 18MHz for d.c. supply +5V, and a typical load of 400Ω and 15pF.

Synchroonic binary counters using dual J-K master-slave flip-flops are shown above. In all cases decouple the power supply—typically 0.01μF per package.

In Fig M1, since \(J = K = 1 \) (high), the first flip-flop acts as a toggle. The second flip-flop is triggered by alternate clock pulses the third flip-flop is gated by the \(Q_a \) and \(Q_b \) outputs and only changes when \(Q_a = Q_b = 1 \). Similarly, the last flip-flop only changes state when \(Q_a = Q_b = Q_c = 1 \). This counter has the disadvantage of long counter chains requiring AND gates with a large fan-in.

The situation is avoided with the counter of Fig. M2 where the fan-in is limited to two per gate. However this is a slower counter because the gatelpul ses must propagate down the AND gates before the next clock-pulse arrives. For both these counters, use the SN7473 dual J-K flip-flop package.

Another example (Fig. M3) employs the SN7472 which has effectively 3-input AND gates for each J and K input, within the package, which eliminate the need for external gates.

Further reading
Counter delay slashed in half with interconnection scheme, Electronic Design 13, 1972.

Cross references
Series 14, cards 4, 6 & 12.
One out of \(n \) ring counter

Circuit description
Component IC\(_1\) is a 4-bit shift left or right register, comprising master-slave R-S flip-flops, with a parallel-loading capability via the AND-OR-NOT gates at terminals U, X, Y and Z. This is conditioned by mode-centre terminal MC equal Clock pulse to binary one. When MC=0, information transfers serially through the register, the clock-xulses being applied to the commoned right-shift and left-shift inputs (not shown).

When used in conjunction with a positive-edge triggered flip-flop, IC\(_2\), this arrangement provides a self-starting, self-priming ring-counter for circulating a zero.

When the supply \(V_s \) is switched on, the clear-input of IC\(_1\) is pulled down to ground by CR network, setting \(Q_A = 1 \), and \(Q_R = 1 \). Hence MC = 0, and the counter is in the parallel mode. The left-hand AND gates are inhibited, and the voltage levels at inputs U, X, Y and Z are transferred to the set inputs, \(S_A \) to \(S_D \), of IC\(_1\). In master-slave flip-flops, the binary level at the set terminal is transferred to the Q terminal on the occurrence of the negative-going edge of the clock-pulse.

After the first clock-pulse, \(Q_A = 0 \), \(Q_B \) to \(Q_D = 1 \). Also, \(Q_A \) is connected to the preset input of IC\(_1\), and hence \(Q_B \) is set to binary one. Hence \(Q_B = 0 \), and the counter is switched to a serial-mode. The right-hand AND gates are now inhibited. Therefore \(S_A = 1 \), the low level of \(Q_A \) is gated to \(S_B \), \(Q_B \) to \(S_C \), and \(Q_C \) to \(S_D \).

Circuit modifications
- The number of bits can be extended by cascading IC\(_1\) packages as in Fig. M1.
- Circulate a 1 by inverting the counter outputs with t.t.l. NAND gates (SN7400) or c.m.o.s. hex buffers (CD4049).

Typical data
IC\(_1\): SN7495
IC\(_2\): SN7474
\(V_s \): +5V
\(R_1 \): 1kΩ
\(C_1 \): 47pF

Further reading
Texas Instruments application report CA102, Electronic Counting, Mullard, 1967.
Circuit description
This counter, also called a switch-tail ring counter, allows \(2^n \) counts where \(n \) is the number of cascaded flip-flops. It is a synchronous counter in that changes at the Q outputs only take place on the occurrence of a clock-pulse. If \(J = K \), the \(J \) input condition is transferred to the related Q output on the negative edge of the clock pulse, when the flip-flops are master-slave types. The above circuit has ten different states, the feedback via the AND gate causing self-correction after a few steps, should illegitimate states occur.

Consider all Q outputs to be in the 0 state. Hence \(J_A = 1 \) because \(Q_n = 1 \). On the occurrence of the first clock pulse, the counter will load according to the truth-table. At each subsequent pulse, "1"s will be fed through the counter from the left until \(Q_0 = Q_n = 1 \). It follows then that since \(J_A = 0, K_A = 1 \), that \(Q_A \) becomes 0 at the 6th clock pulse. Zeros are subsequently transferred through the register according to the truth-table, until \(Q_0 = Q_n = 0, \) then \(J_A = 1, K_A = 0 \), and the cycle repeats.

In general, when there are \(n \) states in the counter, feedback via an AND gate from the last \(x \) states, where \(x \) is the next larger integer to \(n/3 \) provides self-correction for \(n \) up to 25.

Decoding of each state is obtained using AND gates, as a unique pair exists for each state. These output pairs are indicated in the truth-table, and are applied to the gate inputs (these can be \(\frac{1}{2} \times \) SN7400 in series).

Typical data
Supply: 4.75 to 5.25V
\(I_C, I_{C_m} \): \(\frac{1}{2} \) SN7400
Min. clock width: 20ns (between 50% levels)
Typical pulse height: 3.5 to 4.5V

Circuit modifications
The same output sequence is obtained from dual D-type flip-flops (SN7474) as Fig. M1. In general, assuming up to eight JK flip-flops are employed, A, B, C, D, E, F, G, H, then the feedback functions for an even cyclic pattern are

\[
\begin{align*}
J_A = C, K_A = B.C & \quad (6) \\
J_A = D, K_A = C.D & \quad (8) \\
J_A = E, K_A = D.E & \quad (10) \\
J_A = F, K_A = E.F & \quad (12) \\
J_A = G, K_A = E.F.G & \quad (14) \\
J_A = H, K_A = F.G.H & \quad (16)
\end{align*}
\]

An odd sequence \((2n-1)\) counter can be implemented by bypassing the all "1"s state of the normal Johnson sequence i.e. the last two bits of the \(111 \ldots 10 \) state is detected, and the gating arranged to the first flip-flop so that the next state is \(011 \ldots 11 \). (Texas Ref.).

Other odd sequence counters can be implemented by J-K flip-flops without extra gating and are shown in Figs. M2 & 3. Fig. M2 uses feedforward gating and Fig. M3, feedback. In general, any \(2n \) counter can be made \(2n-1 \) by obtaining the K input of the first-flop from the second last Q output (cf. Fig. M3).

Further reading
Davies, A. C., Design of feedback shift registers and other synchronous counters, Radio and Electronic Engineer, April 1969.
Reversible counters—1

Circuit description
Up-down or reversible counters alter their mode of counting under electrical control. The circuits shown are binary up-down counters in which the count direction is controlled by steering logic and either the flip-flop Q outputs are used for toggling subsequent flip-flops (UP) or the Q outputs are used when the Q outputs are inhibited. Fig. 1 is an asynchronous type and Fig. 2, a synchronous counter.
The equation for the output of the selector gate is, for example, \(AX + AX \); the gating usually being implemented by the NAND gate interconnection of Fig. 3. When a logic 1 is applied to the up-down control line, the gates connected to Q are inhibited, and the flip-flops change state when their clock inputs undergo a 1 to 0 transition i.e. the Q outputs will change according to the normal binary sequence. If the control line becomes 0, the Q outputs will reverse sequence. To avoid a false triggering condition, the count/inhibit line must be 0 when the controlling function is altered from up to down or vice-versa.
In the synchronous counter of Fig. 2 such a condition is avoided. Each flip-flop will change state only if previous Q outputs are in the 1 state (when \(X = 1 \)) i.e. counting up, and for a down count (\(X = 1 \)), all the less significant Q outputs must be at 0 for a flip-flop to change on a 1 to 0 transition.

IC5 (CD4029A) is a presettable synchronous up-down counter providing either a binary or b.c.d. decade sequence with appropriate mode control, i.e.
binary: \(B/D = 1 \)
Decade: \(B/D = 0 \)
Up: \(U/D = 1 \)
Down: \(U/D = 0 \)
Preset: \(PE = 1 \)
\(J1 \) to \(J4 = 1 \) or 0
Parallel clocking allows cascading (Fig. 4)
Where separate “clock up” and

Integrated circuits
IC1: SN7473
IC2: \(\frac{1}{2} \times \) SN7400
IC3: SN7410
IC4: SN7420 and \(\frac{1}{2} \times \) SN7400
IC5: CD4029A
Supply: 4.75 to 5.25V

“clock down” clock pulses are available the circuit of Fig. 5 provides a simple interface to the up/down “clock” inputs.

Cross references
Series 14, cards 5 & 12.
Reversible counters—2

The AND-OR-NOT gates provide gating control for the up/down mode. The Boolean expression for the P output is

\[(UP)Q_n + (DWN)Q_b,\]

If the control line = 0, then

\[P = Q_n = 0,\]

Hence \[J_A = 1,\]

\[K_A = 0,\]

and on the occurrence of the first clock pulse \(Q_A = 1\).

The counter would subsequently count up in Johnson code. However, if for example, the counter state is 1110 and control = 1, only the S output causes a change to make \(Q_C = 0\) on the next pulse, and thus count down.

Circuit of Fig. 2 uses a 4-bit parallel adder and four D-type flip-flops. Consider the sum outputs \(S_3 - S_0\) show \(T_n\) i.e. 0111, where \(S_i\) is the least significant bit, and that the next pulse should cause a decrement, hence control = 1. Each sum variable \(S_i\) is transferred to the Q output on the occurrence of the clock pulse via each D-type flip-flop. Inputs \(B_1A_1, B_1A_0\) etc. are added and each produce 0 carry 1 except for \(B_1A_0\) which makes \(S_0 = 1\). When the "carry's" ripple through, the result is 0110 with \(C_{ext} = 1\), which can be ignored. (This is 2's complement arithmetic, where negative-one, represented by 1111, is added to achieve subtraction).

\[IC_1: SN7473, IC_2: SN7474\]

Typical operating frequency \(\approx 10\text{MHz}\)

An eight-bit shift register is used to provide a variable modulus counter in which maximum and minimum counts may be detected is shown in Fig. 3. Shorting any one pair of external terminals decides the maximum counter loading at which the counter may then be considered to reverse.

Assume a counter cleared and a link at \(Q_c\). Then, via gates \(X, Y, Z, S_A = 1, R_A = 0\). The sequence of \(Q_A, Q_B, Q_C\) for the first three clock pulses is 100, 110, 111 and then \(S_A = 0, R_A = 1\) and "detect max" goes high. For the next three pulses, the sequence is 011, 001, 000, when "detect min" goes high.

\[IC_1: SN74164 (DM8570), IC_2: SN7400\]

Further reading

Cross references
Series 14, cards 4 & 12.

Integrated circuits
\[IC_1: SN7473, IC_2: SN7451, IC_3: SN7400\]
Divide by n counters

Counters with N states (modulus N) may comprise a sequence of counters with different moduli, integers n_1, n_2, n_3, \ldots and

$N = n_1 \times n_2 \times n_3 \ldots$ Even numbers are achieved by cascading as in Fig. 2 (modulus 2^m, where m is the number of flip-flops).

Synchronous circuits for smaller odd numbers are shown below. Q_A is the least significant bit, the natural binary sequence is followed and positive logic assumed.

Components (typical)

IC1: SN7473. IC2: SN7410. IC3: SN7400. IC4: SN7472 (or SN7473 plus 3 input gates), IC5: SN7493. IC6: SN7408 (or SN7400). IC7: SN7410.

Description

For the small prime numbers, it is sufficient to consider Fig. 3 as an example. Q_A flip-flop acts as a toggle and will change state on every input pulse while $Q_C = 1$ ($Q_B = 0$). Q_B changes state whenever Q_A goes from 1 to 0. Q_C will only be set to 1 when both Q_A and Q_B are logic one i.e. on the 4th clock-pulse, because $J_1 = J_2 = 1$ and the K inputs are 0. Hence on the 5th pulse, since Q_C is now 0, Q_A will remain at 0 hence Q_A is logic zero, and Q_C will be reset to 0, because J_1 to $J_4 = 0$ and K_1 to $K_4 = 1$. The sequence then repeats.

Fig. 6 demonstrates an alternative technique. The counter is reset to zero when a negative-going edge is simultaneously applied to the CLEAR inputs. This is obtained from the NAND gate, when the predetermined binary number, 1101 (13), is detected. The minimum duration between input pulses depends on propagation delays of flip-flops, the gate delay, and the reset delay. If the output is to be read, the lines should be gated to avoid transmitting spikes that will appear on some lines depending on the divisor N.
High-power counters

Circuit description-1
Circuit shows a four-stage dynamic ring counter with power capabilities per stage of 20W at between 2 and 5A. Consider first the situation where all the SCR's are non-conducting. A set pulse applied at the gate of SCR causes it to conduct freely via the load resistor R, and this continues in the absence of a set voltage until the supply is removed, which occurs when a trigger pulse is applied as base drive to Tr is then shunted to ground, removing base drive to Tr. While the supply is applied to the counter and SCR is conducting, point B is at ground voltage and C1 charges via D3 so that VAB=VCC. When the supply is removed, C1 retains this charge as there is no discharge path (apart from leakage). When the supply is reapplied, SCR remains non-conducting and point B rises to the supply. Consequently, point A will rise to 2Vcc. If D4 is chosen so that its breakdown voltage lies between Vcc and 2Vcc, breakdown occurs and SCR conducts so that current flows in the second load, R2. Further trigger pulses will cause each succeeding stage to conduct. Resistor R4 allows C1 to continue discharging below the zener voltage of D4. Diode D4 arrests this discharge as the zener voltage is the initial condition of C1 prior to SCR conducting. Continual rotation of a single logic 1 is what has been described so far. Two adjacent logic 1’s cannot reliably be rotated by this scheme but there is no reason why any pattern cannot be rotated provided no two logic 1’s are adjacent. Should more than one logic 1 be rotated then the supply section comprising Tr, Tr2 and Tr3 will require re-design as the current drawn is i + (current for one stage), i being the number of on stages. To prevent noise falsely triggering any s.c.r., resistors between gate and ground should be provided.

Further reading
Strangio, High power counter drives 20W loads, Electronics, March 1, 1973

Circuit description-2
A stepper motor drive is required to rotate a magnetic field pattern in either direction and at variable speed. This can be achieved by supplying the stator coils from an up-down counter with a variable pulse rate (see Card 4). Circuit shows * of the drive circuitry for an 8-phase stepper motor with power consumption of 11W which is dissipated in only 4 of the phases at any one time. Two of these phases are shown in the diagram in the form of the 9Ω coils, W1 and W4. The motor operation requires that current flows in one of these coils at a time and this is achieved as shown. A and A are obtained from one stage of a 4-stage Johnson, up-down counter. If A is “high” then Tr will not conduct and base drive is presented to Tr and consequently current from the 23V supply will flow through W1. Likewise no current flows through W4 in this condition. However, if A is high the position is reversed. Tr and Tr are high current transistors capable of feeding inductive loads. R, C, and R, C serve to reduce the circuit time constant so that higher speeds may be achieved.

Further reading

Cross reference
Series 14, card 5.
High-speed counters

Circuit description
In most counting arrangements the decoding of the end of the sequence and the resulting resetting of the counter occur in the same clock period. This can be avoided by using the philosophy of the circuit of Fig. 1 and thereby obtain increased counting speeds, irrespective of the logic family used. Circuit shows a frequency divider in which the second last number to appear on the output of the counters is decoded. This is done by the AND gates A1 and A2 and occurs on the falling edge of the clock pulse when A0 goes to logic 1, corresponding to the number 97. Inputs J' and K' are then in the logic 1 state and the next clock pulse triggers the flip-flop and also the strobe pulse. The counter remains in this state until the clock pulse at the end of the 99th state toggles the flip-flop back again. The counter is then ready to start up-counting again from the initial state, which is, of course, dictated by the b.c.d. data inputs.

This arrangement allows the reset pulse to be a full clock period wide and unaffected by the counter states. Further, the decoding time and the reset time occur in different clock periods, rather than in the same period as in other methods. Hence the time taken for N to be fed in can be almost a full clock period and as a result higher clock frequencies can be handled.

With the devices quoted counting speeds of over 40MHz have been achieved. The second stage of the counter need not be such a high speed device (and, consequently, high power consuming device) as clock frequency to it is 1/10th of that to the first stage.

Higher frequencies are achievable if one uses faster logic families. Fig. 2 shows an e.c.l. device being used in a fashion similar to that of Fig. 1. In this case the device is a down counter, counting down from the preset state N and giving an output frequency f clock. Clock frequencies in excess of 110MHz can be handled. Again the second last number in the sequence is decoded, in this case 0100, and this causes the flip-flop to change state on the next clock pulse, thereby resetting the counter to N.

Components
Counters: 8290, decade up-counter for which the input data is on output when S is logic 0.
Flip-flop: 74H102 (high speed)
A1, A2, A3: MC3006

Further reading
Balph & Granden, Boost counting speeds to 110MHz, Electronic Design, April 1, 1973.
Low-power counters

Circuit description
The counter of Fig. 1 uses a Johnson configuration and obtains speeds in the region of 5 to 7MHz, each flip-flop operating at only one tenth of the input frequency. The counter is disabled if enable is high, reset to zero being achieved by applying a logic 1 level to reset. The counter sequences on the leading edge of each clock pulse, the Johnson code being maintained by ensuring that the \(D_c \) input is only high, when either \(Q_A \) and \(Q_n \) or \(Q_c \) and \(Q_B \) are high, via NOR gates 1 and 2.

Additional gating (not shown) provides ten decoded outputs, which sequentially are high for one full clock period. For count <ten, use quad-NOR i.e. CD4001. In Fig. 2 the cross-coupled pair is a reset latch, to ensure reset when flip-flops have different reset propagation delays. The decimal zero output is low except when counter is cleared, hence when the N output goes high, point X goes high, and a reset pulse is generated while the clock is high. When counter resets, zero terminal goes high. This can drive another counter.

Programmable counter
\(N = 1 \) to \(10 \) IC: CD4018
This is a 5-stage Johnson counter but with the Q outputs buffered with inverters to provide a Johnson BCD output. Counts less than ten achieved by feedback to the DATA input terminal, see Fig. 3. The odd count is obtained by ANDing the two Q outputs (table) with \(\frac{1}{2} \) CD4011. This ensures that the all '1's state of the counter is avoided.

The counter may be preset to any combination fed to the J inputs, by pulsing the preset-enable input. Voltage levels and speeds are similar to CD4017AE. As a preset counter, counter will advance from preset state to 11110, where the right-most bit is \(Q_6 \). The presence of \(Q_4 \) and \(Q_5 \) should be detected as shown in Fig. 4 to reset the counter.

Ripple counters
CD 4020AE
14 stages but outputs available from stage 1 and stages 4 to 14 inclusive.
Typical speed: 7MHz at 10V
2.5MHz at 5V
Power dissipation:
typical 1mW at 1MHz at 5V
10mW at 1MHz at 15V
CD 4040AE
12 stages
All 12 buffered outputs available
Typical speed: 8MHz at 10V.

Up-Down counter CD 4029AE
4 stage: Either BCD decade or binary by input control
Typical speed: 5MHz at 10V
Dissipation: 30mW
Load: 15pF
Typical speed: 100kHz at 3.5V
Dissipation: 1mW
Load: 15pF

Further reading
RCA Solid State Databook
Series SSD-203A 1973

Cross references
Series 14, cards 4 and 10.
Series 11, card 6.
Decade counters

Circuit description
The four master-slave flip-flops of Figs. 1 and 3 are contained within one i.c. package, SN7490, and provides separate +5 and +2 facilities. A symmetrical decade counter where the period of the output pulse at Q_A is ten times the input pulse period with equal mark-to-space ratio is shown in Fig. 1, with the associated waveforms of Fig. 2. The J-K terminals with no inputs are internally connected to be logic 1. Flip-flop C toggles for all 1 to 0 transitions of Q_B, and Q_D is set on the 4th pulse, but reset on the 5th pulse ($S = 0, R = 1$), thus setting Q_A. Q_B cannot change because $J_n = 0, K_n = 1$. For the next five pulses, the sequence of flip-flops B, C and D is similar, when Q_A is reset on the tenth pulse.

The connections of Fig. 3 allow the counter to sequence in an 8 4 2 1 b.c.d. code, where flip-flop D has the maximum weighting: gated direct reset lines (not shown) are provided to inhibit count inputs and return outputs to zero. Typical frequency and power dissipation is up to 18MHz, and around 160mW.

Another asynchronous 8 4 2 1 b.c.d. counter uses J-K flip-flops in a toggle mode (Fig. 4), has no logical hazards, and may be implemented with two SN7473 and one SN7400. Fig. 5 is an 8421 b.c.d. synchronous counter, which requires 3-input AND gates or triple input J-K flip-flops. Q_A changes state for every clock-pulse (unused J-K inputs may be connected to logic '1'). Q_A changes on the 2nd, 4th, 6th, 8th clock pulses, but is inhibited from a 0 to 1 transition on the 10th pulse, since $Q_B = 0$. Flip-flop C is toggled whenever $Q_A = Q_R = 1$, and Q_D undergoes a 0 to 1 transition when $Q_A = Q_R = Q_D = 1$, on the occurrence of the 8th pulse. Q_D resets to zero on the 10th pulse, because $J_n = 0$ and the K inputs are high.

Implemented with either two SN7473 and three SN7410, or four off SN7472. Figs. 6 & 7 are two other forms of b.c.d. synchronous counters. Fig. 6 counts in 8421 code, Fig. 7 in excess-3 code. In each case the least significant bit is flip-flop A.

Further reading

Cross references
Series 14, cards 3 & 9.
wireless world circard

Set 14: Digital counters—11

M-sequence generators

Description
Maximum length sequences (M-sequences) have many uses in data communications system identification and correlation methods. Some of them have properties very similar to that of band limited white noise, particularly if passed through simple first or second order R-C filters—hence the name pseudo-random-binary sequence (p.r.b.s.). They are produced by a simple synchronous shift register or counter with feedback from various stages determining the state of the first stage on receipt of each clock pulse. The feedback is basically by means of exclusive-OR gates (modulo-two gates). The basic diagram is as shown in Fig. 1, the output being taken from any stage. The sequence produced is cyclic and repeats itself after 2^n-1 pulses, the all-zero state being avoided. The maximum number of states for an n-stage register is 2^n but to prevent the all-zero state becoming a permanent state requires considerable extra logic and, hence, this state is avoided and the length 2^n-1 is described as maximal. Long sequences can be generated by simple feedback arrangements. The Table indicates the simplest feedback arrangements for all those registers up to length 18, and all those beyond 18 and up to 33 which require only one exclusive-OR gate. Fig. 2 shows how the characteristic polynomials of the Table are interpreted in terms of hardware for the particular case of $n = 8$. If JK flip-flops are used as the register stages some simplification is possible if the polynomial contains D to the power one. Column 3 or the table indicates the logic necessary for the J input and column 4 indicates the K input. If the output of stage 1 is regarded as the output, versions of this sequence delayed by L_dT, where L_dT is the clock period and $L = 0$ to $n - 1$, are clearly available from the remaining stages. Delays of up to N_dT, where $N = 2^n-1$ can also be generated by modulo-two addition of several of the output stages (ref. 1). When the sequence is being used as a noise source the output is arranged so that logic 1 = +a volts and logic 0 = −a volts. The r.m.s. value of the waveform is then a^2 and the mean value is a/N (this would be zero if $N = 2^n$ rather than 2^n-1). The power spectrum, which is discrete, is where $G(k)$ is the power in (volt)2 of the kth harmonic. $G(k)$ is shown in Fig. 3. The small d.c. term is often ignored.

Spacing between the lines of Fig. 3 is $1/N_dT$ and hence the power density spectrum (power per unit bandwidth) is $G(k)/N_dT$. The 3-dB point for the power density spectrum occurs at approximately $1/3N_dT$ so that for systems with bandwidth less than $1/3N_dT$ the signal appears as white noise. Further, the autocorrelation function for the signal is very similar to that for white noise (ref. 1). The probability distribution of the signal is not at all Gaussian because it consists of two lines at $\pm a$ respectively. However, when passed through a suitable R-C filter with a break point less than $1/3N_dT$ the distribution does become close to Gaussian i.e. that for band-limited white noise (ref. 2).

References

Further reading
Davies, A. C., Design of feedback shift registers and other synchronous counters, Radio and Electronic Engineer, April 1969.

<table>
<thead>
<tr>
<th>n</th>
<th>Characteristic Polynomial</th>
<th>J Input</th>
<th>K Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>11 1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>11 1 1 1</td>
<td>2 5</td>
<td>1 3</td>
</tr>
<tr>
<td>7</td>
<td>11 1 0 1 0 1 1</td>
<td>2 6 5</td>
<td>1 3 4</td>
</tr>
<tr>
<td>11</td>
<td>11 1 0 0 1 0 0 1 1</td>
<td>2 6 5 9</td>
<td>1 3 4 7</td>
</tr>
<tr>
<td>15</td>
<td>11 1 0 0 0 1 0 0 1 0 1 1</td>
<td>2 6 5 9 12</td>
<td>1 3 4 7 10</td>
</tr>
<tr>
<td>19</td>
<td>11 1 0 0 0 0 1 0 0 0 1 0 1 1</td>
<td>2 6 5 9 12 14</td>
<td>1 3 4 7 10 11</td>
</tr>
<tr>
<td>23</td>
<td>11 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1</td>
<td>2 6 5 9 12 14 16</td>
<td>1 3 4 7 10 11 13</td>
</tr>
<tr>
<td>27</td>
<td>11 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1</td>
<td>2 6 5 9 12 14 16 18</td>
<td>1 3 4 7 10 11 13 15</td>
</tr>
<tr>
<td>31</td>
<td>11 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1</td>
<td>2 6 5 9 12 14 16 18 20</td>
<td>1 3 4 7 10 11 13 15 17</td>
</tr>
<tr>
<td>33</td>
<td>11 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 1</td>
<td>2 6 5 9 12 14 16 18 20 22</td>
<td>1 3 4 7 10 11 13 15 17 19</td>
</tr>
</tbody>
</table>

\[
G(k) = \frac{a^2}{N^2} + \sum 2a^2 \left(\frac{N + 1}{N} \right) \left(\frac{\sin \frac{\pi k}{N}}{\pi k} \right)^8
\]

Fig 1

Fig 2

Fig 3

G(k)
Glossary: flip-flops and b.c.d. codes

Integrated circuit flip-flops are usually clocked i.e. the change of state is initiated by a timing pulse called the clock pulse. The outputs are commonly termed Q and Q'. If Q = 1, Q' = 0 (and vice versa). These states are dependent on the logical states of the flip-flop (or bistable) inputs and this dependence is shown in each associated TRUTH table, where Qn is the state of the Q output after the nth pulse, and Qn+1 is the new state after the next pulse.

When Q is made to be logical '1', the flip-flop is said to have been SET, and when Q is made '0', the flip-flop has been RESET or CLEARED. Edge-triggered and master-slave types are available. The time for which data must be present before the clock pulse threshold (set-up time) and the time for which data must be maintained after the clock edge (hold time) are normally specified. The transfer of information in the master-slave flip-flop is according to the numbers marked on the pulse shown, and it may be considered that the master and slave flip-flops are distinct, but isolated or connected by gates.

(1) slave isolated from master
(2) data entered into master
(3) master is isolated from input terminals
(4) data is transferred from master-to-slave

Further reading
Malmstadt & Elke, Digital Electronics for Scientists, W. A. Benjamin, 1969;
Texas Instruments Inc. Designing with TTL Integrated Circuits.

Cross references
Series 14, card 5.
Series 14, card 3.

D-type flip-flop
This has one data input, and may also have both outputs available. In the table, D is the input before clocking and Qn+1 is the Q output after clocking.

Note—CMOS flip-flops are cleared by a positive-going edge at the clear input.

Alternative toggle flip-flops
These are listed with the least significant bit (LSB) rightmost for the weighted codes, i.e. those in which a decimal numerical weighting is assigned to each bit position.
1. Control primarily depends on the logic simulation of the CD4048 gate where, if \(K_B = K_C = 0, K_A = 1 \), the gate acts like an eight-input AND gate i.e. output is 1 if all inputs are high. Also if \(K_A = 0 \), the gate acts like an eight-input NOR gate, and the output is 1 if all inputs are logic 0. Using exclusive-OR gates between the counter and the CD4048, the counter can then be arranged to cycle between any two symmetrical binary states by programming inputs B to H inclusive, e.g. if BCDEFGH is programmed to be 0001111, then when the counter reaches 1110000, the CD4048 will see all logic 1s at the inputs and provide an output which can be used to clock the D-type flip-flop, i.e. the maximum output is 240°. When the counter then starts to count down, an output is again obtained when the counter reaches 0001111, where the exclusive-OR gates will provide all 0s to the gate-inputs and as \(K_A \) is then 0. The effective NOR gate senses the 0s to provide a changeover signal.

2. The odd synchronous counter provides symmetrical high and low output levels although driven from an unsymmetrical clock pulse source. Flip-flop A is driven from an inverted waveform and hence will change state, depending on the D input, at a clock pulse rising edge, one clock pulse width earlier than any changes that occur in flip-flops B and C. Observe at clock pulse marked \(t_w \), flip-flop C changes at the leading edge of the clock pulse and flip-flop edge changes at the trailing, since it is driven via the inverter. The minimum clock pulse allowable depends on the propagation delay of flip-flop C and the data set up time of flip-flop B. Figures quoted are 45 and 20ns respectively giving a minimum pulse width of 65ns.

Reference

3. This arrangement of a 4-bit comparator and a 4-bit synchronous counter provides a programmable variable modulus counter in the range decimal 2 to 15. A binary number \(N \) is set up at the preset inputs \(B_0 \) to \(B_3 \) (where \(B_0 \) is the least significant bit), i.e. over the range 0001 to 0111. The clock input causes the counter to reach the number \((N+1) \), where the counter outputs compared with the programmed comparator value will show equality by generating an output pulse at the carry terminal. This is used to reset the counter to zero, and the sequence repeats. For initialising the counter, gate \(G_3 \) ensures that the exponential rise of voltage that will occur across \(C \) when the load terminal is driven low at commencement, will provide a fast logic level change at gate \(G_3 \) when the capacitance voltage reaches the threshold level of \(G_3 \). Cascade connexions of comparators allow an extension of the modulus to 256 for two stages, the carry from the first counter being ANDed with the driving clock pulse.

Reference
Set 15: Pulse modulators

The following article is intended to introduce techniques of conveying analogue information using pulse-train modulation. It describes all the important methods of coding pulse trains and discusses their properties. If you have no previous experience of pulse modulation, we recommend reading this concise summary.

Various ways of producing amplitude and duration-modulated trains are given on cards 1-4, 6, 7 & 10, including two cards whose circuits use the 555 timers. Card 8 is not really a modulator—it gives d.c. motor control schemes using pulse modulated trains. The results are especially interesting in that the motor is operated well outside its normal operating conditions. Card 11 shows how position modulated pulses are derived. Two techniques, relying on a monostable to convert p.d.m. to p.p.m., are described in the article (Figs. 7 & 8), the card giving appropriate waveforms and a circuit.

In pulse-code modulation, card 12, p.a.m. is first produced and quantized, linearly or otherwise, and then coded in a binary way. The attraction of the scheme is improved signal-to-noise ratio over the other methods (the noise hierarchy goes from p.a.m. to p.d.m. to p.p.m. to p.c.m.). Card 9 gives two modulator circuits that produce a train of binary pulses relating to the rate of change of modulating signal between sampling instants, as opposed to instantaneous values, for differential p.c.m. or delta modulation.

Two signals can be modulated onto a single pulse train in the variable slope modulator of card 5, by modifying the slope of both leading and trailing edges. A modification shows that by restricting the dynamic range of the two signals, a third may be modulated as amplitude.

Pulse amplitude modulator with precision limiter 1
IC pulse duration modulator 2
Pulse amplitude modulator with shunt gate 3
Pulse duration/position modulator 4
Variable slope modulator 5
Pulse modulator using 555 timer 6
CMOS pulse amplitude/duration modulator 7
DC motor control using p.d.m. 8
Delta modulators 9
DC amplifier/pulse duration modulator 10
Pulse position modulator 11
Pulse code modulator 12
Pulse modulators

Systems using amplitude modulation, frequency modulation and phase modulation use a sinusoidal carrier which has one of its characteristics—amplitude, frequency or phase—varied under the control of an analogue signal of message \(x(t)\). In pulse modulation systems the carrier may be considered to be a periodic, rectangular pulse train \(c(t)\) as shown in Fig. 1. The pulse train has an amplitude \(A_c\), a pulse width \(T_c\) and a fundamental frequency \(f_c = 1/T_c\).

Amplitude, width or position (in time) of the carrier pulses may be varied as a function of the lower-frequency analogue signal waveform to produce pulse modulation, p.a.m., pulse width (duration) modulation, p.d.m., or pulse position modulation, p.p.m. For all practical applications of pulse modulation, the analogue modulating signal should be band-limited with a suitable filter so that it contains a reasonably well-defined upper frequency component \(f_m\) which is the highest significant frequency in the modulating waveform.

Each pulse in a modulated carrier pulse train \(y(t)\) contains one sample of information regarding the “instantaneous” value of the modulating signal \(x(t)\). The sampling theorem states that all the information in \(x(t)\) will be preserved if the samples are evenly spaced and occur at a rate that is not less than \(2f_m\).

In practice the sampling rate normally exceeds this minimum value by a factor of at least about 1.2.

Pulse amplitude modulation may be considered to be the process of changing the amplitude of a periodic rectangular carrier pulse train in synchronism with, and in proportion to, the instantaneous variations of the modulating analogue signal. Using a sinewave as an example of the modulating signal the p.a.m. waveform shown in Fig. 2 is obtained. The basic form of a pulse amplitude modulator is shown in Fig. 3.

The unmodulated carrier pulse train shown in Fig. 1 has a Fourier series representation

\[
\varepsilon(t) = A_c T_c \left[1 + 2 \sum_{n=1}^{\infty} \left\{ \frac{\sin(\omega_m T_c/2)}{\omega_m T_c/2} \right\} \cos \omega_m t \right]
\]

where \(\omega_m = \frac{2\pi}{T_c}\) and \(n = 1, 2, 3 \ldots \infty\).

With a sinusoidal modulating signal of \(A \sin \omega t\), the amplitude of the pulses become \(A_c (1 + m_a \sin \omega t)\) where \(m_a\) is the modulation index \(A/A_c\) which must be \(< 1\) to avoid overmodulation of the pulse train.

The p.a.m. wave shown in Fig. 2 may be considered either as a sinewave amplitude modulating the pulse train, or as the unmodulated carrier sampling the amplitude function \(A_c (1 + m_a \sin \omega t)\) over an interval of \(T_c\) at a rate equal to the p.r.f. of the pulse train, \(f_c\). The frequency spectrum of the p.a.m. signal may be seen conceptually by considering initially that of the unmodulated carrier which will contain a d.c. component and a theoretically infinite series of sinuosoids at \(f_c\), \(2f_c\), \(3f_c\), etc, which have diminishing amplitude with increasing frequency.

The carrier pulse nomenclature.

Fig. 2. A p.a.m. waveform—a modulated pulse or a sampled input signal.

Fig. 3. The basic pulse-amplitude modulator.

The amplitude modulation will produce a lower sideband and an upper sideband to each of the carrier components \(f_c, 2f_c\), etc and a component at the original modulating frequency or band of frequencies. This latter component will have an amplitude of \(A m_a \tau / T_c\), and may be recovered by passing the p.a.m. wave through a low-pass filter, which also passes the d.c. component. P.a.m. signals are required to preserve the shape of the modulated pulses and therefore suffer from the same signal-to-noise ratio restrictions as a.m. but with a transmission bandwidth requirement of approximately \(3/\tau\) Hz. Consequently p.a.m. is more commonly used as a part of the signal processing in other systems than as a system in its own right.

Pulse duration modulation may be considered as the process of changing the width of the pulses in a periodic, rectangular carrier pulse train in synchronism with, and in proportion to, the instantaneous variations of the modulating analogue signal. In p.d.m., either the leading edges or the trailing edges or both edges of the carrier pulse train may be shifted in time due to the modulation. Fig. 4 shows an example of a p.d.m. wave where both edges have been shifted and
the time interval between the centres of successive pulses remains fixed at \(T_c \).
With a sinusoidal modulating signal the unmodulated pulse width \(\tau_p \) becomes
\[
\tau_p (1 + m \sin \omega t)
\]
where \(m \) is the modulation index \(T_m/T_c \) which must be \(\leq 1 \) as the pulses cannot have a negative width, \(\tau_m \) being the maximum deviation of the pulse width from its unmodulated value \(\tau_p \).

The p.d.m. wave contains a d.c. component, the original modulating frequencies and the harmonic series of carrier frequencies each of which has an infinite number of sideband pairs associated with it. In practice, not more than about three of these sideband pairs has significant amplitude so the original analogue signal may be recovered by passing the p.d.m. wave through a low-pass filter provided the carrier pulse train has a sufficiently high p.r.f. compared with \(\tau_p \). The signal-to-noise ratio obtainable with p.d.m. is greater than that obtainable with p.a.m. due to the use of a wider transmission bandwidth, the improvement being similar to that of phase modulation compared with amplitude modulation. One form of pulse duration modulator is shown in Fig. 5.

Pulse position modulation may be considered to be the process of varying the position in time of the pulses in a periodic, rectangular, carrier pulse train in synchronism with, and in proportion to, the instantaneous variations of the modulating analogue signal. These modulated pulses cannot be advanced in time so that they may be considered as being displaced continuously in time with respect to the positions in time where the unmodulated pulses would have occurred as indicated in Fig. 6. Pulse position modulation can be produced by generating a p.d.m. signal and feeding it into a monostable multivibrator. Figs 7 & 8 show two methods of generating a p.p.m. signal by using a pulse train \(p(t) \) having a normal leading or trailing edge with a negative-or-positive slope ramp. The method of Fig. 8 avoids the need to generate a p.a.m. signal as part of the process.

With a sinusoidal modulating signal the "instantaneous" position of the pulses in time may be represented by
\[
z(t) = f + m \sin \omega t
\]
where \(m \) is the modulation index \(T_m/T_c \). With \(T_m/T_c \), being the peak deviation of pulses from their unmodulated position. The p.p.m. signal may be converted back to p.d.m. or p.a.m. to recover the modulating signal by means of a low-pass filter. Because noise has less effect on the position of pulses compared with its effect on the amplitude or edges of pulses, p.p.m. can provide a better signal-to-noise ratio than either p.a.m. or p.d.m.

Sometimes it is useful to convey two modulating signals on the same pulse train without resorting to more complex time-division multiplexing techniques. For example, it is possible to first pulse-width modulate a pulse train with one signal and then pulse-amplitude modulate the p.d.m. wave with a second signal, the resulting p.d.m.-p.a.m. wave appearing like that shown in Fig. 9. Three signals may be made to modulate the same pulse train by using one source to vary the slope of the leading edge, one source to modulate the slope of the trailing edge and a third source to modulate the amplitude of the resulting pulses, as indicated in Fig. 10.

In pulse code modulation the analogue signal to be encoded is band-limited and passed to a sampling gate to produce p.a.m. The p.a.m. signal can have any instantaneous value within its allowed dynamic range and these variations are converted to a finite number of allowed levels by a quantizer. This process introduces an error into the signal, producing quantization noise which places a fundamental limit on the achievable signal-to-noise ratio. Each quantized p.a.m. sample is then encoded into a group of binary pulses to produce the p.c.m. signal. The number of pulses in each code group is determined by the number of allowed levels in the quantization scheme. For example, speech that has been band-limited to 0.3 to 3.4 kHz and sampled at a rate of 8 kHz is commonly represented by a 128-level quantization scheme so that a 7-bit code group is required since
\[
128 = 2^7.
\]

To avoid transmission of the d.c. component in the binary coded pulses the p.c.m. signal is often converted to a bipolar form. Because only the presence or absence of a pulse, rather than its shape, needs to be determined at the decoder a transmission bandwidth of only
about 1/τ_c is sufficient, where τ_c is the width of a pulse within a code group. The binary signals can be identically regenerated during transmission, so the overall signal-to-noise ratio obtainable with p.c.m. is much greater than that with the modulation methods already discussed.

With speech signals a further improvement is obtained by compressing its dynamic range at the encoder and expanding it at the decoder, a process known as companding. The basic processing in a p.c.m. transmitter is shown in Fig. 11 and that for a time-division multiplexed p.c.m. transmitter in Fig. 12.

Delta modulation (Δm), or differential p.c.m., does not transmit pulses related to the instantaneous value of the modulating signal at a sampling instant, but uses a one-bit code to convey information about the rate of change of the modulating signal between successive samples. The greater the rate of change of the analogue modulating signal the greater is the repetition rate of the output pulses.

The basic form of a delta modulator is shown in Fig. 13, where the pulse modulator transmits pulses from the pulse source to the integrator with one polarity if the comparator output is negative and with opposite polarity if the comparator output is positive. Thus the output from the integrator is a stepped waveform that “oscillates” about the continuous input signal waveform x(t), and always attempts to keep this difference at a small value.

As a delta modulator transmits information about the rate of change of the analogue signal, an overload condition can be reached if the analogue signal changes too rapidly for the successive pulses, of fixed amplitude, to follow the change. The modulating signal can be recovered by feeding the delta modulated signal into an integrator followed by a low-pass filter. Although only a 1-bit code is used in delta modulation, the sampling or pulse rate has a minimum value that is higher than that required by the sampling theorem for p.c.m. For similar performance delta modulation generally needs a wider bandwidth than p.c.m. and the signal-to-noise ratio decreases with increasing frequency. However, the circuitry required in the encoder and the decoder is much simpler than for p.c.m.

Fig. 12. Multi-channel operation in p.c.m. using time-division multiplex.

Fig. 13. The basic delta modulator.
Pulse amplitude modulator with precision limiter

Circuit description

In most pulse amplitude modulator realizations the unmodulated carrier is in the form of a low duty-cycle, unidirectional pulse train. So with a symmetrical modulating signal the amplitude of the carrier pulses may be varied over the maximum range of zero to twice their unmodulated value with 100% modulation.

The narrower the carrier pulses the greater the conservation of power but this is achieved at the expense of a wider transmission bandwidth for defined performance, as the shape of the pulse tops must be preserved.

A common method of producing p.a.m. is by the use of a diode bridge that allows and prevents transmission of the modulating signal under the control of a carrier switching pulse train. For many applications this technique is acceptable although its accuracy is determined by the characteristics of the diodes.

When more precise p.a.m. is required the effects of the diodes can be greatly reduced by using a precision full-wave rectifier, as shown above which effectively reduces the forward diode p.d. by the open loop gain of the operational amplifier A1. When V1n1 is a unidirectional positive pulse train, V1n2 is a symmetrical modulating signal and Vm is negative, the output (V2) from A1 is zero when (V1n2 + Vm) is less than V1n1 and is -(V1n2 + Vm).

when (V1n2 + Vm) exceeds V1n1. The p.a.m. output from the summing amplifier A2 is -V1n1 when Vx = 0 and is (V1n2 + Vm) when Vx is less than zero.

Component changes

Useful range of supply about ±4 to ±18V with suitable adjustment of V1n1, V1n2 and Vm levels.

V1n1 (max): 7.5-V pulses
V1n1 (min): 3.5-V pulses
Vm (max): 3.6V
Vm (min): 2.8V
Max. p.r.f. of V1n1: 70kHz (mark-space ratio of approximately unity required to retain output p.a.m. waveshape).

Circuit modifications

To produce a wholly positive pulse amplitude modulated output waveform instead of a purely negative output, the following changes should be made: V1n1 is changed to a unidirectional negative pulse train, diodes D1 and D2 are connected with reverse polarity and R7 is connected to the positive supply rail.

When a negative p.a.m. output signal the alternative biasing arrangement shown above may be used, i.e. a d.c. bias source can be connected in series with the modulation source, V1n2, and R1 and R2 removed. To produce a purely positive p.a.m. output waveform with this arrangement, the polarity of the Vm bias source and of D1 and D2 is reversed as well as that of the carrier pulse train V1n1.

Typical performance

Supply: ±15V, +3.4mA, -17mA
A1, A2: 741
R1 to R6, R8: 10kΩ; R7: 1kΩ
linear
D1, D2: PS101
V1n1: 4-V positive pulse train, p.r.f. 10kHz, m-s ratio 1:10
V1n2: 1-V pk-pk sinewave, f = 1kHz
Vm: -3.2V
Vout: p.a.m. output—see diagrams

Further reading

Graeme, J. G., Tobey, G. E. and Huelsman, L. P.

Cross references

Series 15, cards 3 & 7.
Series 4, card 3.
IC pulse duration modulator

Circuit description
In pulse width modulation, the unmodulated pulse train is often in the form of a square wave having a constant pulse repetition rate. The duty cycle of this square wave is then varied under the control of a d.c. or low-frequency modulating signal. The source waveform of the carrier signal may take various forms, e.g. a sinewave which is converted to a square wave for application to an integrator and comparator. The integrator converts the square wave to a triangular wave which is applied to one input of the comparator. The input to the integrator may be applied to the other input of the comparator, the output is a periodic pulse-train or square wave having a fixed duty cycle.

With a modulating signal applied to the second comparator input, the duty cycle of the output pulse train varies in sympathy with changes in the modulating waveform's instantaneous value, as the comparator's output state changes when the modulation input level exceeds or falls below that of the square wave applied to its other input. The above diagram shows an integrated circuit version using a voltage comparator and a general-purpose, externally-compensated operational amplifier for the integrator. Capacitor C1 removes any d.c. component from the input square wave and Rs provides d.c. negative feedback to define the mean output voltage of the triangular wave. The overall linearity obtainable is a function of the linearity of the triangular waveform applied to the comparator.

Component changes
Supply variation: ±2.2 to ±18V
f_{max} ≈ 200kHz with components shown. Change integrator time constant for different carrier p.r.fs. Unidirectional pulse width modulation can be produced by feeding the integrator with a train of narrow pulses and hence a sawtooth is applied to the comparator. The comparator may be fed directly from a triangular or sawtooth wave source.

Circuit modifications
If source voltage is large, the input to the integrator may be clamped using a pair of back-to-back diodes (PS101, 1N914, etc.) as shown left. When the available carrier source waveform is in the form of a sine wave it may be converted to a suitable form for application to the integrator by the circuit shown centre which amplifies and clips the output signal applied to the comparator. The input coupling capacitor of the original integrator can be dispensed with. Suitable components could be IC1: 741; D3: small silicon diode; R3: 100kΩ; R6, R8: 1.5kΩ; R10, R11: 1kΩ. Resistors R4 and R6 can be trimmed to provide a symmetrical triangular wave at the output of the integrator. Instead of allowing the comparator's output to swing between approximately ±V its excursions may be limited by including a pair of back-to-back zener diodes as shown right.

Further reading

Cross references
Variable slope modulator

Circuit description
When a capacitor is charged or discharged with a constant current, the p.d. across it changes linearly with time. In the circuit shown the unmodulated output pulse train is in the form of a trapezoidal wave having the same p.r.f. as the input square wave (V_{in1}) and having leading and trailing edge slopes determined by V_x and V_y respectively. When V_{in1} goes positive, Tr_3 is switched on and passes the constant current from Tr_3 to charge C_5. The magnitude of this current, and hence the rate of rise of V_out is set by R_1 and is linearly related to V_x. When V_{in1} goes negative, Tr_5 discharges C_5 with a constant current through Tr_4. The magnitude of this current is set by R_5 and is linearly related to V_y.

Thus the slopes of the leading and trailing edges of the pulse-train output waveform from the emitter follower Tr_4 are controlled by V_x and V_y respectively, which can be made to vary independently by sources of modulation V_{in1} and V_{in2}. The p.r.f. of the carrier pulse train V_{in2} is much greater than the modulating frequencies, so the square-wave half-cycles may be considered to be alternately sampling the signals V_{in1} and V_{in2}. During the sampling intervals, the instantaneous values of these signals therefore vary the slopes of the output waveform about their mean positions set by R_1 and R_5. Positive peaks of V_out are clamped by D_4 and +V_y.

Component changes

- Typical performance
 Supplies: ±25V, ±2mA, -5mA
 +V_x, +6V, +14mA, -13mA
 +V_y = +3V, 14mA
 Tr_1, Tr_2, Tr_5, Tr_7: BC125
 Tr_4, Tr_5, Tr_6: BC126
 Diodes: PS101; R_4, R_5, R_6, 10kΩ
 R_2, R_7: 2.7kΩ; R_3, R_8: 1.5kΩ
 R_1: 27kΩ
 R_4: 100Ω; R_{in2}: 820Ω
 C_1 to C_4: 50µF
 C_5: 1nF; V_x = +8.2V
 V_y = -8.8V
 V_{in2} IV pk-pk square wave, p.r.f.: 40kHz

See V_out waveform opposite for V_{in1} and V_{in2} available range.

- Typical performance
 p.r.f.: 40kHz

Further reading

Cross reference
- Series 15, card 7.
Pulse modulation using 555 timer

Typical performance
IC: NE555V
Supply: +12V
C: 4.7nF
R₁: 1kΩ, I = 100µA*
Vmod = 5V
Period: 150µs
Output: Duration of low-state 6µs,
for load resistance 1kΩ
*Current may be provided by
any constant-current circuit;
that shown is one example for
which Tr₁ to Tr₄ are elements
of IC type CA3084; R₁ = 47kΩ.

Circuit description
Modulation of pulse period or
repetition-rate may be carried
out independently by control
of the threshold voltages or the
charging rate of the timing
capacitor in astable circuits.
In the 555 timer a constant-
current charging C gives a
linear ramp. Upper threshold
is equal to the potential at
pin 5, Vmod, and the lower
threshold to Vmod/2 by virtue
of the internal potential divider.
The capacitor is thus charged
through Vmod/2 at a constant
rate, giving a period that is a
linear function of the
modulation potential provided
that the discharge time is very
short. This indicates a low
value for R₂, which may be
reduced to zero (except where
large values of C would result
in the 200mA current limit of
the discharge transistor being
exceeded for long periods).
The constant current is
critical to the linearity, since
for the usual astable with a
resistor from pin 7 to V₈, the
charging rate varies throughout
the cycle. For example, as
Vmod approaches V₈ the
fractional increase in period is
greater than that of the
modulation voltage. One
possible constant-current
circuit is the enhanced current
mirror. This requires a low
terminal p.d. for the constant-
current transistor Tr₄, i.e. the
constant-current stage does not
impose a limit on the upper
threshold/modulation voltage
that can be used. Since the
charging current is proportional
to the supply voltage (ignoring
V_be effects) the frequency
stability is supply-dependent,
in contrast with the basic mode
where increased threshold
voltages and charging currents
neutralize each others' effects
on frequency.

Component changes
V₈: +4.5 to +18V
C: 100p to 100µF. Taken in
conjunction with suitable
charging currents, the frequency
range extends from <1Hz to
>100kHz.
I: May be as low as 1µA for
very long periods, but should
exceed 10µA for reasonable
stability of period. Up to 10mA
permissible for high frequency
generation.
R₂: Should limit discharge
current at pin 7 to 200mA.
May be reduced to zero for
low values of C in most cases,
though peak currents exceed
this rating for very short times.
This reduces duration of low-
state of output towards zero.
V_mod: For V₈ of 12V, V_mod
may range from 1.5 to 9V.
The minimum value is of the
same order at other supply
voltages, while the upper is
about 70% of V₈ or greater for
V₈ > 10V. At low supply
voltages internal V_be drops
restrict the range further.

Circuit modifications
In circuits based on capacitor
charging to define the period
of the waveform, then constant
current charging linearizes the
waveform and, for defined
switching points, the period
will be inverse to the current,
i.e. the frequency will be a
linear function of the current.
A simple adaptation is to apply
the modulation to the current
generator—a simpler current
mirror is shown as an example
with the diode p.d. introducing
an offset to the V_mod/frequency
graph together with some drift.
Again, R₅ > 0 minimizes
flyback-time errors.
If a clock generator is applied
to the monostable in Fig. 2
then the output is at the clock
frequency but with a pulse
width controlled by the
modulation voltage, i.e. p.d.m.
Again, for linear modulation
the waveform at C has to be
linearized by the addition of a
constant-current stage.
The clock interconnection from
a previous 555 may be as
shown. The circuit may be
conveniently implemented with
a dual 555, but any other
astable giving a negative-going
drift approaching supply-
voltage magnitude may be used.

Cross references
Series 15, cards 2, 4, 7, 8, 10 &
11.
Series 3, card 9.
CMOS pulse amplitude/duration modulator

Typical performance
- $V_{DD} = +10V, 830\mu A; V_{SS} = 0V$
- $A_1, A_2: 1 \times CD4007$
- $T_1: 1/6 \times CD4007; R_1, R_2: 1M\Omega$
- $R_3: 10M\Omega; R_4: 10k\Omega$
- $V_{IN}: 11V \text{ pk-pk} 50kHz$
- Triangular wave superposed on $+2.1V$ d.c. bias to make V_{OUT1} a square wave
- $V_{IN}: $ Pulse-amplitude modulation source 2V pk-pk at 1kHz superposed on a d.c. bias of $+5V$

Circuit description
In the circuit shown a c.m.o.s. Schmitt-trigger circuit is formed by using A_1 and A_2 as a cascaded pair of inverters with positive feedback. In the absence of modulation, ($V_{IN} = 0$) the Schmitt switching action is determined by the ratio R_8 / R_1 and V_{IN}.

Provided R_9 / R_1 is less than the forward gain in the linear region of the inverters, the switching action of the Schmitt follows the threshold crossings of the triangular wave input, V_{IN}. With a 10-V supply the Schmitt switches to $+V_{DD}$ when V_{IN} exceeds about $+2.4V$ and switches back to V_{SS} ($0V$) when V_{IN} falls below about $+1.85V$.

For the purposes of pulse-width modulation it may be required to produce an unmodulated square-wave output (V_{OUT1}) and this may be obtained by superposing V_{IN} on a suitable d.c. bias ($+2.1V$) to produce unity mark-to-space ratio. This ratio may then be varied by causing the switching times of the Schmitt to be controlled by the p.d.m. signal (V_{IN}) which is conveniently fed to the A_1 input through R_9.

The p.d.m. signal is fed to T_1 which provides a similar output waveform but with its peak amplitude determined by the voltage to which R_4 is returned. Hence by returning R_4 to a second source of modulation (V_{IN}) a waveform (V_{OUT}) results which is simultaneously modulated in both amplitude and duration.

Component changes
Useful range of V_{DD}: $+3$ to $+15V$
- Maximum useful V_{IN} frequency: 150kHz
- Maximum pulse width modulation is achieved with $V_{IN} \approx 900mV \text{ pk-pk}$
- Maximum pulse amplitude modulation is obtained with $V_{IN} \approx 12V \text{ pk-pk}$ superposed on a d.c. bias of $+9V$

Circuit modifications
The d.c. bias on which V_{IN} is superposed to provide a square-wave output may be dispensed with if a unity mark-to-space ratio is not required. If a low-duty-cycle pulse train output is required, the d.c. bias may be removed and the amplitude of the triangular wave (V_{IN}) reduced so that it is only slightly in excess of the upper threshold level of the Schmitt but sufficient to allow modulation. An approximately square-wave output can be obtained without a d.c. bias if the input triangular wave has a much larger amplitude.

When a d.c. bias is used to control the unmodulated mark-to-space ratio of V_{OUT}, a constant-current source may be used for this purpose as shown above. One method is to use an integrated circuit current mirror to provide the constant-current bias to set the unmodulated duty cycle as shown right. Negative feedback obtained by the inclusion of the emitter resistor R_3 raises the output impedance of the current mirror above that of a common-emitter stage. Pulse duration modulation may be obtained by controlling I_E with the modulation signal.

Further reading
DC motor control using p.d.m.

Performance data
Supply: +40V
D1: 1N4004
Tr1: BFR41
Tr2: TIP3055
R: 1kΩ
Vp: 6V
Pulse frequency: 40 per sec
Motor: 240V, 0.1-h.p.
6500 rev/min universal motor

Circuit description
Circuit shows a pulse driven high-current switch Tr1 and Tr2 controlling the voltage applied to a motor. Basic principle involved is identical to that for thyristor driven motors viz that the average applied voltage controls the motor speed. During the pulse mark time Tr2 conducts and the supply is able to supply current to the motor and during the pulse space time Tr1 does not conduct and the supply is unable to deliver current. Clearly the greater the mark to space ratio of the pulse train the greater is the average applied voltage and with it the average motor current, Im.

Graphs show the results obtained. The linearity of these results, despite the fact that the motor was being used well outside its specifications, indicates the potential usefulness of the scheme.

Values of Vp and R are not critical so long as they provide sufficient base drive to Tr1 to effect satisfactory switching and at the same time do not destroy Tr1. In this case since we are switching currents less than 200mA and the current gain of Tr1 and Tr2 is greater than 1000 then the base drive to Tr1 should be of the order of 0.2mA.

Higher frequencies lack of switching speed in the transistor caused the motor speed to change. Diode D1 is the diode normally necessary with motors to prevent damage due to \(\frac{dI}{dt} \) effects.

Motor speed control by means of a voltage can be obtained by using the p.d.m. section of the p.p.m. shown in card 4; alternatively, the discrete p.d.m. shown in card 10 can be used with alterations to allow for the use of n-p-n rather than p-n-p transistors.

A possible closed-loop speed control scheme is shown left. This will, of course, reduce the effects of nonlinearities, disturbances, etc. If the motor and p.d.m. are known in advance the maximum value of \(e \) is fixed and this effectively dictates \(\text{Vin} \), \(k_T \) and the differencing amplifier.

Diagram right shows a position control system; the output transducer need not, of course, be a potentiometer. This scheme has a considerable advantage in performance terms over conventional continuous control systems, because the steady state error in response to a step input in the presence of coulomb friction is eliminated. This is important in small motors in which brush friction is frequently a large effect compared with the maximum torque developed by the motor.

In continuous systems the torque produced is proportional to the actuating signal ‘a’ and when this torque is less than the coulomb friction torque the motor shaft stops. Hence, ‘a’ can be non zero. However, if ‘a’ is feeding a p.d.m. as shown right, the motor develops maximum torque so long as ‘a’ is non zero, albeit for shorter and shorter intervals as ‘a’ reduces. Since the maximum torque is greater than the coulomb friction torque the motor can only come to rest when ‘a’ is zero.

Further reading
Pulse-width modulation for d.c. motor speed control, Semiconductors (Motorola) vol. 2, no. 2, 1971, pp.36-8.

Cross references
Series 15, cards 2, 4, 6, 7 & 10.
Delta modulators

Circuit description
A delta modulator encodes an analogue signal into a train of binary pulses that represent the difference between the levels of the input signal at successive sampling times. The encoded pulse train has a repetition rate governed by the rate of change of the analogue signal; the greater this gradient the higher the density of the output pulses produced.

The delta modulator shown above employs a monostable multivibrator with \(C_5 \) controlling the monostable period and \(C_4 \) acting as a "speed-up" capacitor. The voltage follower \(A_1 \) is used as a low-output-impedance buffer between the modulation source and the junction of \(C_8 \) and \(R_s \), \(R_s \) being included to reduce ringing on the pulses at this junction.

In the stable state \(T_{1} \) is on and \(T_{2} \) is off so that a complementary \(V_{out} \) waveform is fed to \(C_3 \) via \(R_6 \). This signal is added to the modulating signal at the junction of \(R_2 \) and \(C_4 \). This composite voltage is compared with a threshold voltage to determine whether the monostable will be triggered to its quasi-stable state. If the composite voltage across \(C_4 \) is less than the threshold, the differential clock pulses successfully trigger the monostable via \(D_1 \) until the voltage across \(C_8 \) is raised sufficiently to exceed the threshold. When this occurs the clock pulses fail to trigger the monostable circuit and \(C_8 \) discharges until the modulating signal input exceeds the voltage on \(C_8 \).

Typical performance
Supply (±V): ±12V, ±22mA, -2.2mA; +V CC: +12V
- V BB: -5V at 200nA
A\(_1\): 741; Tr\(_1\), Tr\(_2\): BC125
D\(_1\): PS101
R\(_1\): 10kΩ; R\(_2\): 1kΩ
R\(_4\): 4.7kΩ
R\(_5\): 10kΩ; R\(_6\): 22kΩ; R\(_7\): 330Ω
R\(_8\): 100Ω
C\(_1\): 50pF; C\(_3\): 1µF; C\(_4\): 47nF
C\(_5\): 220pF
V\(_{1n1}\): 10V pk-pk pulses, p.r.f.

Further reading

Cross reference
Series 15, card 11.
DC amplifier/pulse duration modulator

Circuit description
In the above circuit, C_1, R_1 and D_1 act as a d.c. restorer where the peaks of the sawtooth wave (V_{1n}) are clamped to a level determined by V_{1n_2}. In the usual application of such a circuit, V_{1n_2} is a fixed d.c. level and provided that the time constant C_1R_1 is very much greater than the periodic time of V_{1n_1} the latter will be clamped to the desired level.

If a modulating signal, which varies much more slowly than V_{1n_1}, is used in place of a fixed value of V_{1n_2} the level to which the peaks of the sawtooth wave is clamped will be controlled by the variations in V_{1n_2}. Thus, the voltage appearing at the junction of C_1 and R_1 is effectively due to the addition of V_{1n_1} and V_{1n_2}.

The combined signal is applied to the input of a two-stage, high-gain, d.c. amplifier containing T_{r_1} and T_{r_2} which has the same form as a Schmitt trigger but with the hysteresis removed. When the input to this amplifier is large enough to change the state of T_{r_1} an output pulse is obtained at T_{r_2} collector having an amplitude almost equal to that of the $-V_{cc}$ supply. As the switching threshold is controlled by the level of the modulating signal the duration of the V_{out} pulses is linearly related to V_{1n_2} over a wide range of the latter—superposed on a suitable negative d.c. bias. Hence, V_{out} is a pulse duration modulated pulse train.

Component changes
With a restricted range of pulse width variation $-V_{cc}$ and $+V_{bb}$ have useful minimum values of about -2 and $+2V$ respectively.

Circuit modifications
If required, the modulating signal V_{1n_2} may be superposed on a positive d.c. bias if the polarity of D_1 is reversed.

If n-p-n transistors are used in the d.c. amplifier, polarity of the supplies and that of D_1 should be reversed.

A different approach to linear pulse-duration modulation is shown here. This circuit uses a monostable multivibrator to set the width of the unmodulated output pulses which have a repetition rate determined by that of the input positive pulse train, V_{1n_1}. Output pulse width is a linear function of the modulating signal (V_{1n_2}) applied to the base of T_{r_2} which serves as a constant-current generator. With T_{r_1} off and T_{r_2} on and saturated D_1 is reverse-biased, if $V_{1n_2} < V_{ee}$, and C_1 charges.

When T_{r_1} is switched on by a V_{1n_1} pulse the charge on C_1 changes at a rate determined by the current to the constant-current transistor T_{r_2} until the base-emitter voltage of T_{r_2} rises sufficiently to switch T_{r_2} on and hence T_{r_1} off. Capacitor C_1 is now isolated from T_{r_2} collector which therefore switches off rapidly.

Typical performance
Supplies: $-V_{cc}$: $-12V$ 9.7mA
$+V_{bb}$: $+12V$ 1.8mA
T_{r_1}, T_{r_2}: BC126
D_1: PS101; R_1: 100kΩ
R_2: 22kΩ; R_3: 2.7kΩ
R_4: 470Ω; R_3: 6.8kΩ; R_4: 1kΩ
C_1: 100nF; C_2: 100pF
C_3: 470pF
V_{1n_1}: 3V pk-pk sawtooth at 50kHz

Further reading
Hughes, R. S. Pulse width vs. control voltage made linear by generator in "100 Ideas for Design", no. 5, Hayden, 1965, p.76.

Cross references
Series 15, cards 2, 4, 6, 7, 8 & 11.
Pulse position modulator

Circuit description
The pulse-position modulator employs a pulse-duration modulator feeding a t.t.l. integrated-circuit monostable package. Many different pulse-duration modulators could be used to drive the monostable provided that the output pulses are t.t.l. compatible. The one used was the d.c. amplifier type described in card 10. To provide the required t.t.l. compatibility, the circuit shown in card 10 was modified to use BC125 (n-p-n) transistors with supplies of +Vcc +5V and -Vbb -5V and D1 polarity reversed. See card 10 for circuit description.

The t.t.l. monostable package provides complementary output pulses which can be initiated in several ways. With the connections shown, input B (pin 5) is held high and input A1 (pin 4) which is unused is taken to +Vcc through a 1-kΩ resistor. In this form the package acts as a monostable circuit providing an output pulse of defined width whenever input A1 (pin 3) receives a logic-level negative-going trigger pulse. Width of the output pulses is determined by the value of C1 with R1 ensuring that this width is obtained accurately and repeatedly. Larger R1 values for a given C1 will widen the output pulses.

As the negative-going edges fed to the monostable circuit are produced from a pulse duration modulator, times of occurrence will vary in sympathy with the instantaneous values of V1n2. Hence the shift in time of the monostable output pulses is determined by V1n2 giving pulse-position modulation.

Component changes
Useful range of supply ~+3.5 to +5.25V (minimum value not guaranteed)
Max. range of V1n1 ~7V pk-pk superposed on a bias of +3.75V gives pulse shift of ~14µs at p.p.m. output
Change R2 and C1 for different output pulse widths

Circuit modifications
Pulse-position modulated signals may be produced by a variety of electronic circuits which normally perform the signal processing indicated left. In the upper diagram the modulating signal x(t) is added in a summing amplifier to a pulse train c(t) having a negative-slope ramp. The c(t) and p(t) signals are added as before and fed to a comparator producing a p.d.m. output w(t) which in turn feeds a monostable to produce the p.p.m. output y(t). Reversing the slope of the ramp in c(t) produces leading-edge p.d.m. to feed to the monostable.

Further reading

Cross references
Series 15, cards 2, 4, 6, 9, 10 & 12.
Series 3, cards 2, 4, 6.

Typical performance
Supply: +5V, +23.5mA
IC1: SN74121N
R1, R2: 1kΩ; C1: 6.8nF
Pulse duration modulator: see card 10 with Tr1, Tr2 BC125 (n-p-n) transistors, +Vcc: +5V; -Vbb: -5V and D1 polarity reversed.
V1n1: 3V pk-pk sawtooth at 50kHz
V1n2: Sinewave modulation superposed on a direct bias of +3.75V to give square wave output from modulator
Diagram shows in block form the basic processes used in a single-channel pulse-code modulator. The analogue signal to be encoded, x(t), is passed to a sampling gate via a low-pass filter which defines the bandwidth of the modulation. The sample pulses are of low duty cycle and have a constant p.r.f. (f_s) that is at least twice that of the highest modulating signal component (f_m). In practice f_s > 2f_m, e.g. for speech that has been bandlimited to 0.3 to 3.4kHz, f_s = 8kHz. The output of the sampler is a p.a.m. signal which has an infinite possible number of amplitudes that are quantized, uniformly or non-uniformly, into a finite number of allowed levels. Although each sample is converted to the nearest allowed level, quantization inherently introduces errors or quantization noise. Non-uniform quantization of speech produces an improvement in the signal-to-quantization noise ratio. Each quantized sample of the p.a.m. wave is then encoded into a group of pulses according to a binary code, with binary significance. See the works, and their bibliographies, listed under in further reading for detailed system and circuitry techniques.

Diagram over shows an adaptive pulse code modulator for encoding speech. In this technique the coding signals change to track the changes in the “envelope” of the speech input x(t) after it has been bandlimited by the filter to 0.25 to 2.4kHz. The output is fed simultaneously to the voltage comparators A_1, A_3 and A_2, A_4 together provide updated amplitude information by comparing x(t) with a feedback voltage V_r(t) and its inverse respectively. Comparator A_1 produces an output logic 1 when x(t) > +V_r(t) and A_3 produces a logic 1 output when x(t) is more negative than -V_r(t). The A_1 and A_3 outputs are fed to bistable circuit FF2 via an OR gate, the output of which is sampled at 4.8kHz. Thus, each amplitude information bit at the FF2 output is a logic 0 when the x(t) sample is in the range -V_r(t) < x(t) < +V_r(t) and is a logic 1 when x(t) is outside this range. The A_2 comparator provides x(t)-polarity information, producing a logic 1 at its output when x(t) is positive and a logic 0 when x(t) is negative. The A_4 output feeds bistable circuit FF1 which is sampled at 4.8kHz to produce polarity bits that are combined with the amplitude information bits in the multiplexer (M), which simply transmits its 2-channel inputs alternately at 9.6kbit/s. V_r(t) is obtained by feeding the FF2 output to a 10ms RC integrator giving a positive output V_a(t) to which is added a small d.c. bias (V_b) to ensure that V_r(t) never falls to zero.

Further reading

Cross reference
Series 15, card 11.
1. Pulse modulation is not restricted in its application to communication systems and data processing. Amongst the other areas of application is that of switching power amplifiers or class D systems. Recently, sub-divisions of class D have been identified which simplify the filtering of the output (class BD) and a reduction in the switching losses in the power elements (class ABD). In the former version, a set of comparators are fed with a triangular reference waveform and the signal, with a unity gain inverter goes to phase drive to one pair of comparator inputs. A pair of power output stages drives the load such that on large positive inputs comparator 1 output is high except at the positive peaks of the triangular reference wave; comparator 2 goes low at the negative triangular wave peaks. Hence S_A would be gated on except for small time intervals. Throughout the positive half-cycle of the input signal S_B would be held off. The mean load voltage is thus proportional to the fraction of the time for which S_A conducts during positive inputs. Non-linearity of the triangular wave leads to distortion; push-pull operation reduces even harmonics. For inductive loads S_C must be closed when both S_A and S_B are off.

References

2. This circuit is aimed at producing positive half-sinusoidal envelopes with respect to zero voltage reference, with modulation at 100%. For absolute rectification, the diodes are included in the feedback loop of the inverting operational amplifier. The gain constraint on the input pulses is then limited by the power supply levels of the op-amp. During the negative part of the modulating signal, the amplifier output swings positively by an amount depending on the ratio of R_3/R_2 plus the drop across D_1. The input pulses are therefore forced to swing within this limit, but note that the pulse amplitude must be sufficiently great relative to the modulation amplitude to obtain 100% modulation. Overdriving the pulse level by 20% more than required is suggested. Full sine wave modulation can be obtained by adding another resistor to the summing input X, and applying an appropriate negative bias level.

Reference

3. D.c. potentiometers normally depend on the precise ratio of a pair of resistances; that ratio has to be variable over a wide range to give the high resolution needed. This circuit replaces the precise ratio of resistances by the ratio of time intervals. These intervals are controlled by a digital clock, and the clock frequency is not critical as it is only the ratio of the times for which the input switch is connected to inputs 1 and 3 respectively. As with conventional chopper-circuits the switch should combine minimal input offset with maximum switching speed. The original paper uses a mechanical switch at the input, with a series-shunt switch at a later stage (not shown) to inhibit response to the switching transient. The final switch activates a sample-and-hold circuit that stores the integrator output. The final output thus has minimal ripple except during an input step to which it responds rapidly (99.9% within two sample periods is claimed). Additional applications noted include current comparison and cascaded voltage division from values as high as 1kV. The overall accuracy is claimed to be ±(0.1 p.p.m. + 5µV).

Reference
Set 16: c.d.as — signal processing

Current differencing amplifiers, or Norton amplifiers, are an ingenious solution to the need for single-supply op-amps. As there is superficial similarity in c.d.a. circuits to normal op-amp circuits, the following article warns against the transposing op-amp circuits into c.d.a. form, drawing a parallel with the days when the transistor was first introduced. Those new to circuits of the LM3900 kind should therefore make a point of reading the articles preceding sets 16 and 17, which introduce the ideas behind c.d.a.s in a gradual and easily assimilable way.

The first article provides a simple look at the c.d.a. circuit, the amplifier being considered as a d.c. feedback pair, fed by a current mirror. It is the current mirror that is responsible for the amplifier's name, in that it is used in such a way that the input to the feedback pair is the difference between two input currents. It is, in effect, the current dual to the voltage-differencing action of the long-tailed pair used in op-amps. For the next stage of circuit elaboration see card 1, which shows incorporation of an improved emitter follower output stage and an additional transistor which only operates when the input is over-driven. A third stage of elaboration is described in the article preceding set 17.

Some circuits can nevertheless be “borrowed” from conventional op-amp practice, for example, the bandpass and band stop filters shown on cards 7 & 8. But notice that the Sallen & Key filters cannot, because it isn’t possible to use series applied feedback (but see the final circuit modification on card 9).

Card 10 of set 5 also gives c.d.a. circuits.

Current differencing amplifiers 1
Basic amplifiers—I 2
Basic amplifiers—II 3
Logic gates 4
High voltage amplifiers 5
Power amplifiers 6
Bandpass filters 7
Notch filters 8
Low pass/high pass filters 9
Gain-controlled amplifiers 10
Current-differencing amplifiers

signal processing circuits

In the process of improving on previous designs a stage is reached where further advances are won only with great difficulty. At that point the problem has to be changed if it is to be solved. Conventional operational amplifiers have reached a very high level of performance but the demands from industry were for still lower cost and for more functions in a given space. This could be met by packing four amplifiers into a standard 14-pin dual in-line package, using two pins for the power supplies and two inputs/one output for each amplifier. Unfortunately the chip size then increases to a level where yields fall off and the cost-saving in the packaging is partially neutralized.

When this conclusion was set alongside the continuing demand for amplifiers capable of operating from a single supply such as car batteries, a discontinuity appeared in the design process—an integrated-circuit amplifier was designed that depended on the difference between two input currents for its performance rather than the voltage differencing action of the conventional operational amplifier with its input long-tailed pair. The resulting design is brilliant, simple in concept but very subtly implemented.

To take advantage of its novel characteristic the user must re-think his philosophy. Most functions that can be carried out with operational amplifiers can be carried out with current-differencing amplifiers; the configurations may look similar; the component values may be comparable. This surface conformity can obscure the underlying differences, and the user should be chary of attempting a direct transposition of familiar circuits. The problems are similar to those faced by valve designers when transistors first appeared—transistors could be forced to operate in the known valve circuits but alternative arrangements were soon found to exploit the unique properties of these cold and fragile new devices that lacked the warming glow of the familiar friends.

It is to be assumed that what we are now seeing is but the first generation of current-differencing amplifiers, devices that seek to capture the largest possible market by accepting compromises in many areas. Before this article is published there may be high frequency/low noise/high power current-differencing amplifiers on sale, but the basic design techniques should be applicable to these just as users of the 709 can transfer their skills to the super-β, infinite bandwidth, zero drift op-amps that every self-respecting manufacturer now seems able to offer. In this article two sub-circuits are discussed which when combined give the prototypical form of the current-differencing amplifier now available as a quad amplifier in 14-pin dual in-line form.

One of these sub-circuits is a very old friend. Fig. 1 shows a common-emitter amplifier driving a common-collector or emitter follower stage. The current in the input stage is low enough, while a high current gain minimizes the output impedance. If overall feedback is applied as in Fig. 2, the transimpedance of the amplifier is reasonably well-defined by \(R_3 \), i.e., for an input current \(i \), the output voltage swing is close to \(-iR_3 \). This is assuming high enough gains that the input behaves as a virtual earth to signals. The quiescent \(V_{q_u} \) of \(\approx 0.6V \) prevents accurate low-level d.c. amplification, and this is a limitation shared by the monolithic i.e. based on this concept.
Voltage transfer function, Fig. 3, is non-linear with a steep slope corresponding to a fairly high voltage gain, from a few tens to a few hundreds depending on supply voltage, resistance values, etc. An input resistor can be added to produce an elementary see-saw amplifier, Fig. 4; the resulting voltage transfer function as shown in Fig. 5 is linearized by the negative feedback. Use of a voltage source short-circuits the negative feedback in the circuit of Fig. 2 which is intended as a current in/voltage out or transimpedance stage.

The circuit is the d.c. feedback pair and is already one of the most versatile problem-solvers for the hard-pressed designer. In monolithic i.e. form the ready availability of constant-current sources allows them to replace R_1 and R_2, as in Fig. 6. Two benefits accrue. First, the increased dynamic resistance boosts the gain, and secondly the transistor currents can be tightly controlled against wide variations in supply voltage and temperature. This latter effect ensures that the voltage gain is stabilized as well as being increased.

A second sub-circuit which is also well known is now added. Fig. 7 shows the current-mirror which plays the dual role in these amplifiers, to that played by the long-tailed pair in operational amplifiers. For well-matched transistors operated at equal V_{be}, the collector currents are comparable. The differences arise partly from inevitable imbalance in the transistors, partly because as shown the base currents contribute an error and partly because the collector-emitter voltages may differ. When a current-mirror is added to the d.c. feedback pair from Fig. 6 then a complete, albeit limited performance, current-differencing amplifier results (Fig. 8).

With negative feedback added the third source of error listed above is removed, because the collector potential of Tr_2 is constrained to equal that of Tr_1 base, i.e., Tr_1 and Tr_2 have comparable V_{be} values as well as identical V_{be} values. With resistive feedback the output voltage is controlled by the difference between the two input currents. That at the inverting input would normally flow on through the feedback path (provided Tr_3 base current is small) while that at the non-inverting input is mirrored in the current drawn by Tr_2 collector, reducing the net input. Both currents are normally positive. Transistors Tr_1, Tr_2 are inoperative for negative currents while that in the inverting input may have either polarity. As a main advantage of the amplifier is that it can perform complex functions while requiring only a single-polarity supply, negative currents are not normally present except for some a.c./pulse circuits. Additional networks are provided in the practical amplifiers to clamp the inputs on negative voltage swings.

A more detailed description of the practical circuit will be given in a following article. This set of Circards (no. 16) is concerned with signal amplifying and processing, which will be followed by a series on the generation of signals and waveforms. In each of these areas novel solutions can be found, and we can only hope as users to match the ingenuity of the designers of these new amplifiers.
Three sets of cards deal with current differencing amplifiers of the LM3900 kind. This set covers signal processing applications, set 17 covers signal generation and a third set deals with various other circuits including test, measurement, detection, logic and driving circuits.

Typical performance
Supply: 15V
\(R_L = 5k\Omega \)
Voltage gain: 2,800 (69dB)
Output swing: 0.1 to 14.2V
Output current: source 10mA, sink 1.3mA

N.B. Data is for National Semiconductor LM3900. A similar amplifier is available from Motorola and other manufacturers are expected to “second-source” such devices. Refer to manufacturers data sheets particularly for maximum ratings. While other current-differencing amplifiers may be expected to have similar performance in the circuits to be described it is important that the ratings of particular devices are not exceeded.

Circuit description
Transistors \(T_{r1}, T_{r3} \) are a current mirror with the collector current of \(T_{r2} \) approximately equal to non-inverting input current, subtracting from inverting input current at base of \(T_{r3} \). The net input current to \(T_{r3} \) is \((I-) - (I+)\) and this is amplified by \(T_{r3} \) with \(T_{r5}, T_{r6} \) forming an improved emitter follower output stage. Constant-current generators define the operating conditions while \(T_{r4} \) comes into action on over-driving the input to maximize the sink-current. Output depends on the difference between two positive input currents with negative feedback taken to the inverting input when the gain is to be defined. The non-inverting input is outside the feedback loop, and behaves as a forward-biased p-n junction.

Further reading
Basic amplifiers—1

Circuit description—1
No direct current flows in \(R_1 \) and hence \(R_3 \) determine the d.c. operating conditions. For perfect balance between the input circuit transistors they will carry equal current and hence they will carry equal current. No direct current flows in \(R_1 \) and \(R_2 \) between the supply mid point. As there is swing with the output biased at the d.c. output conditions, and the technique may be called a “biasing method”. It is identical in principle to that used in the d.c. feedback pair and the “amplified-diode”. If the source has an internal resistance to ground \(< R_2 \), then direct coupling may be used.

![Circuit diagram](image)

Typical performance
Supply: \(+15\text{V}\)
\(R_1: 1/\text{M} \Omega \)
\(R_2: 470\text{k}\Omega \)
\(R_4: 47\text{k}\Omega \)
\(C_1: 0.1\mu\text{F} \)
Direct output voltage \(\approx 7\text{V} \)
Voltage gain \(\approx -10 \)

Circuit description—2
The base-emitter voltage of the input transistor is \(\approx 0.55\text{V} \) at room temperature, falling by \(\approx 2.5\text{mV} \) for every 1 deg C rise in temperature and by less than this (typically 0.5 to 1mV) for each 1-V increase in the supply voltage. This voltage is thus sufficiently stable to be used as the reference voltage for setting the d.c. output conditions, and the technique may be called the “n\text{Vbe}” biasing method. It is identical in principle to that used in the d.c. feedback pair and the “amplified-diode”. If the source has an internal resistance to ground \(< R_2 \), then direct coupling may be used.

![Circuit diagram](image)

Typical performance
Supply: \(+15\text{V}\)
\(R_1: 1/\text{M} \Omega \)
\(R_2: 47\text{k}\Omega \)
\(R_3: 1\text{M} \Omega \)
\(C_1: 0.1\mu\text{F} \)
\(C_2: 1\mu\text{F} \)
Direct output voltage \(\approx 7.5\text{V} \)
Voltage gain \(\approx +9.5 \)

Circuit description—3
A third variation on the biasing methods available, is to take the bias resistor \(R_4 \) to a separate reference voltage \(V_{\text{ref}} \) which can be decoupled to make the output voltage much less dependent on supply ripple. A single reference voltage (here equal to \(+V/2 \)) may be used for a number of separate amplifiers. Separate control of the quiescent output conditions is by variation of \(R_4 \) for each amplifier while adjustment of \(R_3 \) \(R_4 \) varies all of them simultaneously.

The amplifier is shown with the signal applied to the non-inverting input. No feedback is available at this input and so the impedance of the input transistor affects the input current. At room temperature, \(r_i \approx 0.026/\text{mA} \), giving a value \(\approx 3k\Omega \) for the values shown. This reduces the gain to about 3\% below the simple theoretical relationship \(R_2/R_3 \). This biasing method is equally applicable to the inverting amplifiers.

![Circuit diagram](image)

Typical performance
Supply: \(+15\text{V}\)
\(R_1: 1/\text{M} \Omega \)
\(R_2: 1\text{M} \Omega \)
\(R_3: 10\text{k}\Omega \)
\(R_4: 2.2\text{M} \Omega \)
\(C_1: 0.1\mu\text{F} \)
\(C_2: 4.7\mu\text{F} \)
Direct output voltage \(\approx 7\text{V} \)
Voltage gain \(\approx -95 \)

Circuit description—4
The value of the feedback resistor is limited to a few megohms for several reasons (bias instability, effect of stray capacitance, noise and hum). If it is required to have a high input resistance and high voltage gain than the a.c. and d.c. feedback must be different. As shown, \(R_4 \) and \(R_2 \) constitute a potential divider for the output signal while only \(R_4 \) is involved in the d.c. feedback. Output voltage has a quiescent value of \(+V(R_3+R_2)/R_2 \). Voltage gain is \(\approx (-R_3/R_1) \) \((R_3/R_4+1) \). Where \(R_3= R_4 \), a convenient condition, the voltage gain simplifies to \(-(R_3/R_4+1) \). However when the ratio \(R_3/R_4 \) is large the feedback theory demands that the limited open-loop gain be taken into account. In practice, a ratio that should set the gain to \(-20 \) will do so to within about 1\%, while a nominal gain of \(-100 \) would be nearer to \(-95 \).

![Circuit diagram](image)

Cross references
Set 5, cards 5, 8, 9, 10.
Set 7, cards 4, 10.
Set 10, cards 1, 9.
Set 16, cards 2, 5, 6, 10.
Basic amplifiers—2

Circuit description—1
Common-mode signals are a problem when transmission over lines has to take place in a noisy environment. By coupling the signals through a transformer such common mode signals are minimized, while the anti-phase inputs of the current differencing amplifier offer a further improvement. Any common-mode voltage at the transformer secondary produces equal currents at the two inputs largely cancelling each other because the gain at the two inputs is equal and opposite. Rsine is inserted to achieve the correct loading on the source with R1, R2 sufficiently large not to affect that loading. Quiescent output voltage \(\approx V(R_2/R_1) \); voltage gain \(\approx -R_2/R_1 \).

Typical performance
Supply: \(+15V \)
\(R_s: 220kΩ \)
\(R_1: 100kΩ \)
\(R_2: 10kΩ \)
\(C_1: 1µF \)
\(C_2: 1µF \)
Direct output voltage \(\approx 7V \)
Voltage gain \(\approx -10 \)
(transformer secondary to output)

Circuit description—2
Where the source is inductive or is to be transformer-coupled, a variant of the "nVe2" biasing method provides a simple solution. Again there is the restriction that the direct output voltage and the gain of the amplifier itself are controlled by the same resistor ratio but decoupling part of R1 to ground can make the ratio for signal frequencies \(\gg \) the ratio at d.c. if required. In the extreme case, R1 can be completely decoupled giving the full open-loop gain of the amplifier. This coupled with the step-up turns ratio of the transformer gives a very high overall gain. As shown, the overall voltage gain is \(\approx n(R_2/R_1 + 1) \) and the quiescent output voltage is \(\approx (R_2/R_1) + V_{be} \).

Because the input current required by the amplifier is very small (< 1µA) the effective input impedance remains high regardless of the gain, and high step-up ratios are possible. This yields on a very sensitive microphone amplifier though the noise performance is unlikely to allow use in audio applications.

Circuit description—3
The biasing techniques described above are easily adapted for dual supply operation, making the amplifier compatible with standard op.amp. \(\pm 15V \) systems. One method is to bias the non-inverting input from the same p.d. across R4 and R3 if \(R_5 = R_6 \), i.e. the output is substantially at 0V if the amplifier has well-matched inputs. This remains true for all values of positive and negative supply voltages including those cases where they are markedly unequal in value. R1 plays no part in the d.c. conditions and is chosen for the desired gain/input resistance. Voltage gain \(\approx -(R_3/R_2) \). Non-inverting gain is obtained as before simply by transferring R1 to the non-inverting input. The gain is less well-defined but the bandwidth is increased, because there is then no resistor to attenuate the negative feedback, i.e. the bandwidth can approach that of the amplifier with 100% feedback while the gain can approach the value defined by \((R_3/R_2) \).

Typical performance
Supply: \(+15V \)
\(R_1: 10kΩ \)
\(R_2: 10kΩ \)
\(R_3: 100kΩ \)
\(C_1: 1µF \)
\(C_2: 1µF \)
Direct output voltage \(\approx 0V \)
Voltage gain \(\approx -10 \)

Circuit description—4
The present form of current-differencing amplifier is not suited to low-level d.c. amplification and cannot replace standard operational amplifiers directly. The adaptation shown has a reasonable performance for d.c. signals of >100mV provided the offset adjustment is made and subsequent changes in temperature and supply are restricted. Effective input of the amplifier is point A and for \(R_1 = R_3 \) its potential is a 0V in the absence of feedback (the diode compensates for the input Veb). Adjusting \(R_3 \) sets the output voltage to 0V prior to the application of feedback with \((R_2 + R_4) \approx (R_1 + R_3)/2 \). The resistors \(R_1, R_3 \) then set the input resistance and gain as for previous amplifiers. Point A is no longer such a good equivalent to a virtual earth from the signal standpoint since the presence of \(R_1 \) lowers the amplifier gain, while \(R_3/R_1 \) is the equivalent resistance to ground at this point.

Cross references
Set 5, cards 5, 8, 9, 10.
Set 7, cards 4, 10.
Set 10, cards 1, 9.
Set 16, cards 1, 5, 6, 10.
Logic gates

Typical performance
Supply: +20V
IC: 4 LM3900
R1: 150kΩ
R2: 82kΩ
Output logic 0: 150mV
Output logic 1: 19.2V
For inputs commoned, output changes state for input voltage ≈ 20% of +V.

Circuit description
Availability of two current inputs simplifies the design of basic logic gates with these amplifiers. For example, a low current at one input can hold the output in one desired state while the other input receives the sum of the currents from two or more inputs. This sum can be set to overcome the bias when only one input is high or only if all are simultaneously high, leading to OR and AND-type circuits respectively. (The amplifier is working as a high-gain comparator and can also provide a majority-gate in which any two out of three inputs are enough to provide output logic 1 for the current to be diverted into the amplifier inputs.

Component changes
+V Normal voltage range is +4 to +36V, but some devices will operate to <3V without difficulty.
R, R Ratio of these resistances is chosen to ensure that with the lowest expected value of logic 1 to any one input that, the resulting current flow into the non-inverting input is sufficient to overcome the fixed current in the positive input. (Allow for 0.5V/R lost in each logic 0 input.) Typically R = R2/2 is a suitable starting point and R may vary from 10k to 10MΩ.
Fan-out To maximize this, R1, R2 should be large but there is no great advantage to raising them above 1MΩ.

Circuit modifications
- The AND/NAND functions are slightly more difficult to construct for multiple inputs. This is because for an n-input gate the sum of the currents produced by (n-1) inputs at logic 1 differs little from that produced by n inputs if n is large. Up to three inputs can be used with a reasonable margin of safety as in Fig. M1, where the resistor R2 reduces the current flow when two inputs are on. For a two-input AND gate R2 may be omitted and the values of the input resistors adjusted. For example, with R1 82kΩ, R 100 or 120kΩ.
- Again interchanging the inverting and non-inverting inputs gives a NAND gate. By scaling the resistors in some of these and/or feeding signals to both inputs, circuits which are intermediate between true analogue and true digital circuits become possible. (Fig. M2)
- If it is required to have multiple inputs to an AND gate, simple diode gating may be used, Fig. M3, with the amplifier serving a similar function to the transistors in d.t.l., but with the advantage that the ratio of output to input current, which determines the fan-in fan-out capability, is of the order 10^4 (25mA—25mA). If any input is at logic 0 the current in R flows through that diode. All inputs have to be at logic 1 for the current to be diverted into the amplifier non-inverting input to give a logic 1 out. The threshold voltage and hence the noise margin is low in this circuit. If all inputs but one are at logic 1 then that input need only rise to ≈ 0.5V to be recognized as logic 1. A NAND function is obtained by reversing the amplifier inputs.

Cross references
Set 11, cards 1, 2, 11.
High voltage amplifiers

Circuit description
Where a high output voltage swing is required the amplifier must be fed from a separate low-voltage supply, and a suitable high-voltage transistor employed to withstand the main supply voltage. The configuration depends on whether it is the output voltage or current that is to be defined. If the former, then the feedback is taken from in shunt with the load. For an inverting-gain amplifier and the transistor in the common-emitter mode, the inverting gain of the transistor necessitates that the feedback be applied to what is normally considered as the non-inverting input. For an input of 0V d.c., the current flow in R1 is small and that in R2 is forced by the feedback to equal that in R4. If in this condition the output is desired to be +HT then +HT/R4 = +V/R4 gives the required value of R4. Overall voltage gain is given by R5 to minimize loading on the output. R3 1M to 22MΩ. R3 Load resistance, dictated by user requirements. For use as an r.c.-coupled amplifier, R4 has to carry a quiescent current greater than peak load current required.

R4 Sets d.c. conditions at output. If V0 = +HT required for Vn = 0, then +V/R3 = +HT/R4. If output quiescent voltage to be +HT/2 as when used for amplifying a.c. input signal, then +V/R4 = +HT/2R2.

R5 Not critical. Raises amplifier output quiescent voltage to 1 to 3V range, i.e. into linear region. Value dependent on output quiescent current but might be 50Ω to 5kΩ.

+V Chosen to suit amplifier, and available supplies (+4 to +36V).

+HT Dictated by load requirements.

R4 Must have voltage rating in excess of +HT particularly if inductive loading possible.

Circuit modifications
- A non-inverting amplifier again using a common emitter output stage has the feedback applied to the amplifier non-inverting input, while the signal is applied to the inverting input (the inversion in the transistor ensuring the correct overall sign for the gain). For a transfer function that passes through the origin a pre-biasing network is required. Again the gain is set by the ratio of the feedback to the input resistor.
- For a high output-impedance, the feedback is taken from the transistor emitter. The method can be employed where the load is to be transformer coupled and the direct voltage drop across the primary is too small to allow of the d.c. feedback. The two 10-MΩ resistors define the potential at the transistor emitter as about 2Vbe and allows the output current to be fixed reasonably accurately, falling with rise in temperature. By decoupling the emitter and taking overall a.c. feedback from the load, the output impedance can still be made low if required.
- Increased output resistance is possible by using compound output stages of various kinds that can also increase the current capability, subject to device power limitations. An f.e.t. draws no current from the amplifier ensuring that the load and emitter resistor currents change together if the current in the transistor is made constant, either because of the high supply voltage and correspondingly high resistance R, or by a separate low-voltage constant-current stage.

Cross references
Set 7, cards 5, 7.
Set 16, cards 1, 2, 6.

Typical performance
Supply: ±15V, +300V (HT)
R1: 330kΩ
R3: 10MΩ
R4, R5: 470kΩ
R5: 1kΩ
C1: 100pF
Voltage gain: -31.2 (d.c. to 1kHz)
Cut-off frequency: 3kHz
Output impedance: <10kΩ (d.c. to 1kHz)
Input impedance: 330kΩ (d.c. to 1kHz)
Power amplifiers

Circuit description
Addition of a Darlington-connected pair of transistors increases the output current capability from 10mA to 1-5A depending on the ratings of the transistors used. One restriction is that the V_{be} of the transistors limit the output voltage to around 2.5V below the supply level allowing for the amplifier internal saturation. The additional phase shifts that may occur even in an emitter follower make external compensation desirable. For supply, input and output to be all positive, the configuration shown is adequate, where with R_{eq} = R_{in} V_{be} varies linearly with V_{i} provided V_{i} is above the amplifier internal V_{be}. The relationship is then V_{o} = V_{be} \left(R_{eq} / R_{in} \right) (V_{i} - V_{be}) as the currents in R_{in} and R_{eq} have to be equal. This means that as a d.c. amplifier it is of relatively low accuracy but is quite suitable for supplying small d.c. motors under the control of a phase-locked loop. A combination of the techniques for increasing the current ratings and voltage could allow the production of high-power amplifiers.

Replacing the emitter follower stages by common emitter amplifier increases the available positive output swing to within a hundred millivolts of the positive supply.

Component changes
R_{L} This sets the voltage gain particularly for V_{1} comparable to V_{be}, i.e. high gains are not compatible with good stability in this configuration. R_{1} 100kΩ to 10MΩ.
R_{S}, R_{S} These provide forward bias for each of the inputs allowing the output to be controlled for inputs down to zero. This is best achieved for R_{S} \approx R_{1} when V_{o} = V_{i} is the first-order approximation, the V_{be} effects at the two inputs cancelling.
R_{2} As suggested, R_{2} may equal R_{1} for optimum stability but with gain restricted to +1. R_{2} \geq 2.0 R_{1} except for a.c. amplifiers where some drift in quiescent conditions is acceptable.
R_{S} 1kΩ. Together with C_{1} is part of the suggested network for maintaining stability. Limits amplifier current under load short circuit conditions providing protection for amplifier and output stage.

Due not unproper heat-sinking used since limit of output current depends on transistors' current-gains and is ill defined.
C_{1}, C_{2} Control high frequency performance. C_{1} \approx 33pF to 2.2nF, C_{2} \approx 5.6 to 22pF.
Choose lowest values giving stability under operating conditions.
R_{S} Load resistance. This may range down to 10Ω as currents of several amps are possible.

Circuit modifications
- A simpler circuit based on the same principles is Fig. M1. The limiting and compensation components have been eliminated together with the high-power transistor. The bias network shown is suitable for a source with resistive path to ground \(\leq 470kΩ \), with the non-inverting input grounding. The bias method is then basically the "nV_{be}" method as in the "amplified diode". Alternatively a capacitively coupled source may be used with no direct current in R_{1} and R_{S} \approx 2 R_{1} to set V_{o} = \pm V/2.
- For higher efficiency the usual Class B technique can be applied with a complementary-symmetry output (Fig. M2). Not recommended for low-distortion applications, since additional bias networks to overcome crossover problems would lose the advantage of simplicity normally offered by this amplifier.
- Although the supply voltage capability is good (up to 36V) the output swing can be extended to \(\approx 70V \) (Fig. M3) using a bridge configuration. The simplest arrangement for a.c. signals has the 1MΩ and 470kΩ resistors setting the output quiescent voltages to \(\pm V/2 \) for maximum distorted voltage swing. Replacing the two input resistors by a potentiometer and applying the signal via the pot to opposite-phase inputs gives anti-phase outputs that can be set for equal magnitude with an overall voltage gain of about 18.

Cross references
Set 7, cards 2, 4, 7, 8, 10, 11. Set 16, card 5.
Bandpass filters

Circuit description
Active filter techniques based on operational amplifiers are applicable to recent-differencing circuits. That shown is a direct adaptation of Circard 1, Set 1. A Wien network is placed between source and output with the potential at its junction monitored by the amplifier input terminal. Resistor R_1 is a high-value resistance to minimize loading on the network. Resistor R_4 provides a variable amount of positive feedback to increase the Q of the circuit with minimal effect on the centre-frequency while R_1 sets the quiescent output voltage to allow for maximum signal swing. Because $R_4 > R_1$ would be required for stability, with R_4 taken directly to the output, and variable high-value resistors are inconvenient, the alternative is to tap R_1 onto a variable portion of the output voltage. The result is a band-pass filter with centre frequency given by $f = \frac{1}{2\pi CR}$ and with Q controlled by R_4. The limited gain and bandwidth capabilities of the amplifier does not allow the circuit to provide large stable Qs nor to operate successfully at frequencies $\gg 10\text{kHz}$. The input impedance falls as the Q is increased because of the increased output swing (gain $\propto Q$ to a first order). It is also true that the sensitivity of such circuits to variations in component values is proportional to the Q, i.e. for $Q = 10$ a 1% change in a critical resistor might produce $>10\%$ variation in the Q itself.

Component changes
R, C. The load on the output should not fall much below $10k\Omega$ at any frequency to avoid loss of loop gain, distortion, etc. $R = 10k$ to $1M\Omega$, $C = 220p$ to $10\mu F$.

R_1. Used to set a convenient level of current at amplifier inputs; too low and loading on Wien network disturbs Q, f_0; too high and stray capacitive coupling disturbs response. $220k$ to $10M\Omega$.

R_2. Convenient to set $R_2 = R_1$ using R_4 to control feedback. Alternatively for fixed Q particularly if low, eliminate R_4 taking R_1 directly to output. Then $R_2 > 1.5R_1$.

R_3. Not critical, but $>10k\Omega$ and $<R_4$.

R_4. Sets quiescent output voltage for maximum swing. Should be chosen after other components have been selected for desired response. Typically 2 to $10 \times R_1$, but for a given value, small variations in k and hence Q can be accommodated without serious bias changes.

Circuit modifications
- Multiple feedback circuits (Fig. M1) are the equivalent of the virtual earth circuits used with conventional operational amplifiers. With correct scaling of resistors, capacitors $Q > 1$ is achieved simultaneously with centre-frequency gain of unity. Again both are strongly dependent on component stability at high-Q values.
- A better approach to filter design with current-differencing amplifiers is to select passive networks whose transfer-function gives a defined output current. It is possible to adapt the Wien and similar networks, Fig. M2. Normally R_3 would be grounded and the p.d. across it fed back to a high impedance point on the amplifier. By feeding back the current in R_3 into what is almost equivalent to an a.c. virtual earth point, the overall transfer function can be varied more easily.

Components $R_4\ L\ C_3$, determine $f_0 = \frac{1}{2\pi (R_3 R_1 C_3)}$, while R_3 sets the Q and R_4 the quiescent output value.

- Any of the other RC networks used in bandpass filter designs are applicable and Fig. M3 gives almost identical performance for $R_1 = R_2 = R$, $C_3 = C_4 = C$.

Cross references
Set 1, cards 1, 3, 6, 7, 8, 12.
Set 5, cards 6, 10.
Set 10, card 8.
Set 16, cards 8, 9.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Multiple feedback circuits</td>
</tr>
<tr>
<td>M2</td>
<td>Wien network with current-differencing amplifiers</td>
</tr>
<tr>
<td>M3</td>
<td>Passive network for high-Q filter design</td>
</tr>
</tbody>
</table>
Notch filters

Circuit description
The circuit is again derived from a Wien Bridge to demonstrate the principles by which known circuits can be adapted to current-differencing amplifiers. It provides a notch or null in the response at a frequency set by the RC values \(f = \frac{1}{2\pi RC} \) with \(R_1 \), providing a trimming action to get as true a null as possible. If \(R_3 \) is a low resistance potentiometer, then the depth of the null is unaffected as the tapping point is varied, since both ends of the potentiometer are at zero for this condition. However, the positive feedback introduced has the effect of shifting the response so that the gain remains close to unity for frequencies close to the null. This makes the circuit useful for nulling out the fundamental (or particular harmonic) of a complex waveform with minimal effect on the other harmonics. A weakness of this particular circuit is that it relies on the matching of the inverting and non inverting input sensitivities making it prone to variation with supply/temperature changes, etc.

Component changes
\(R, C \) The difficulty with this particular circuit is that these should have a low impedance compared with \(R_3 \) so that the latter does not load them, while not in turn being disturbed by the varying source resistance of \(R_3 \) as \(k \) is varied. Typically \(R \) 10 to 10MΩ with \(C \) to give frequency as \(f = \frac{1}{2\pi RC} \), 220p to 10nF.

Typical performance
Supply: ±20V
\(R_1: 100kΩ \)
\(R_2, R_3: 1MΩ \)
\(R_4: 1kΩ \)
\(R: 47kΩ \)
\(C: 10nF \)
Notch frequency: 319Hz
Achieved for \(m \approx 0.35 \) for \(k = 0 \) and \(k = 1 \)

R\(_2\), R\(_3\) 1 to 10MΩ. At higher frequencies stray capacitance effects bring phase shifts preventing good null. \(R_3 \) 10 to 250kΩ. \(R_2 \) 1 to 10kΩ.
This circuit experiences shift in the null because of supply temperature changes and requires careful adjustment before use if sharp notch required.

Circuit modifications
- T-networks normally have the disadvantage that to control the frequency while retaining a sharp notch requires adjustment of a number of interacting components. Interconnected with an amplifier (top circuit), using positive feedback to steepen the sides of the notch (equivalent to varying the Q but not the centre frequency), it has the advantage that variations in the amplifier gain only affect the steepness leaving the depth unaffected. A further advantage accrues using the current-differencing amplifier in that the gain can be adjusted, while retaining a fixed input impedance, by varying \(R_4 \). This also affects the gain at frequencies well away from the notch, but the approach is often used where the gain is just less than unity the sides of the notch very steep and unity gain can be assumed off resonance. Independent adjustment of \(C \) and \(R \) are required to obtain a complete null and the system is easier to use if fine frequency control is possible at the oscillator, as may be possible when used as part of a distortion measuring system.

- Other passive networks have been described which give a good null at a specified frequency and though normally used as shown with a separate feedback attenuator and buffer, the network can also be used as above. By deriving the feedback directly from the output of the amplifier variable resistance of the attenuator is avoided and the need for the buffer eliminated.

Further reading
Rowe, N. B. Designing a low frequency active notch filter, Electronic Engineering, April 1972.

Cross references
Set 1, cards 9, 10.
Set 16, cards 7, 9.
Low pass/high pass filters

Circuit description
The most convenient configuration for most feedback circuits with these amplifiers is the virtual earth configuration; it is not possible to use series applied feedback as with standard Sallen & Key type filters. The network is not easy to analyse component-by-component because of the interactions between them but the overall transfer function is well defined particularly if the gain in the pass-band is low, e.g. unity. Then it is sufficient if the amplifier voltage gain is >100 to have a transfer function that is very close to the theoretical value. A second-order low-pass filter results where the cut-off frequency may range from 1Hz to >100kHz. A convenient means of adjustment of the filter properties is via C_1, C_2. It is their product that fixes the cut-off frequency (for R_1, R_2, R_4 fixed) while their ratio determines the shape of the transfer function (i.e. Butterworth, etc.). The output impedance is low and the input impedance may be up to 1MΩ if required allowing such filters to be cascaded with negligible loading.

As shown the output voltage is defined as $(R_2/R_1+1)V_{be}$ provided the input has a quiescent value of zero, as would be achieved by capacitive coupling from the previous stage. Since $R_1 = R_3$ is a convenient value for design of the filter characteristics this restricts the output to a quiescent value of about 1.2V regardless of the supply. This may be inconvenient where larger voltage swings are desired and alternative biasing schemes may be needed (see Circuit modifications).

Component changes
Transfer function (voltage gain)

$$F(s) = \frac{1}{R_2 R_3 C_1 C_2} \cdot \frac{1}{s^2 + \frac{1}{R_2 C_1} s + \frac{1}{R_2 R_3 C_1 C_2}}$$

where $s = j\omega$

This is the basic form of a second-order low-pass filter giving $\omega_0 = 1/\sqrt{R_2 R_3 C_1 C_2}$ and equivalent $Q = 1/2\xi$ where ξ is the damping factor given by

$$Q = \frac{\sqrt{R_1 R_2}}{R_1 + R_2} \cdot \frac{C_1}{C_2}$$

Setting R_1, R_2 to determine input impedance, C_1 and C_2 may be varied to control cut-off frequency and shape of response. Note that the equations proposed in National Semiconductor applications note AN72 pp.14-15 show a circuit as having $Q = 1$, for which the above equations suggest $Q \approx 0.4$. Measurements support the equations quoted above.

R_1, R_2: 10k to 1MΩ.

C_1, C_2: 47p to 10µF.

Circuit modifications
- If the filter is part of the system where it is convenient to bias input and output to $+V/2$ then the addition of resistor R_4 to the positive supply rail as shown permits this for $R_4 = (R_1 + R_2) = R_4$. The resistors R_1, R_3, R_4 are first selected to set the transfer function and the nearest preferred value for R_4 chosen using the given equation (Fig. M1.)

- The corresponding high-pass filter has the locations of the capacitors and resistors interchanged. Resistor R_4 is the only one contributing bias current to the inverting input leaving $R_4 = 2R_3$ as the condition for a quiescent output voltage of $+V/2$. (Fig. M2.)

- A current differencing amplifier can be adapted to behave as a voltage amplifier of defined gain—unity gain in the example, Fig. M3. R can be high in value and the loading effect on a separate passive network is light enough that filters similar to the Sallen & Key filters using voltage followers are possible.

Cross references
Set 1, cards 4, 5, 6, 7, 11
Set 5, cards 2, 3, 7, 10.
Set 16, cards 7, 8.
Gain-controlled amplifiers

Circuit description

The non-inverting input has a diode-connected transistor as part of a current-mirror. For a given feedback resistor to the inverting input, the current flowing in the non-inverting input gives a proportional output voltage. The non-linearity of the input impedance leads to output waveform distortion if any low-resistance parallel path is used to attenuate the signal. If the path consists of a suitably-biased silicon diode then its non-linearity is comparable with that of the input stage and the input signal division between the two paths has little variation with signal amplitude, i.e. little distortion results. This remains true while the bias current is well below the bias level. As the direct current in the diode is increased, the corresponding fall in slope-resistance by-passes more signal current reducing the gain. Resistor \(R_2 \) provides sufficient bias current to set the output potential to a minimum of \(V_b/3 \). This applies when the bias voltage is low with the direct current in \(R_b \) as well as the a.c. signal current via \(R_1 \) are all shunted away through \(R_a, D_2 \). The gain is virtually zero in this condition. As \(V_b \) approaches one diode voltage, the direct currents in \(D_a, D_b \) and the amplifier input become comparable. The slope resistances are also comparable and the input current divides equally between the amplifier and \(D_b \). For any further increase in \(V_b \) the signal current flows on through \(D_b \) to the amplifier with negligible attenuation by \(D_a \). At this extreme the direct current in \(R_a \) contributes to the amplifier bias and the output d.c. level rises to \(2V_b/3 \). The bias range from 0 to 1V may be raised to any higher level by adding a potential divider.

Component changes

- **R₁** Sets input impedance
- **R₃** Not critical but \(\ll R_1 \)
- **R_a, R_b** Normally equal, setting limits to output quiescent voltage.
- **R₂**=\(R_c = 3R_b \) for output levels ranging from \(V_b/3 \) to \(2V_b/3 \).
- **R₃** Ratio \(R_2/R_1 \) sets maximum value of voltage gain.
- **C₁** Not critical, but reactance \(\ll R_1 \) at lowest signal frequency.
- **D_a, D_b** Small signal silicon diodes.
- **V_b** Whole voltage range of amplifier, 4 to 36V.
- **V_n** Centre of gain-control region occurs for 0.6V but this is temperature dependent.

Output Voltage

- **V_{in}**-10V
- **V_o**+5V

Typical performance

- **Supply** +15V
- **A₁** 4LM3900
- **R₁** 2.2kΩ
- **R₂** 100Ω
- **R_b, R_c** 100kΩ
- **R₃** 33kΩ
- **C₁** 10μF
- **V_b** 0.9V
- **V_o** 5V pk-pk
- **V_n** 400mV pk-pk 10kHz

Cross references

- Set 16, cards 2, 3.
1. Of the standard op-amp active filters, the two-integrator loop is one of the best known—though under a variety of names including "bi-quad" and "state-space". The overall loop gain at d.c. has to be inverting to prevent d.c. latchup. This is usually achieved by inserting a unity-gain inverting stage in the loop. An alternative is to apply the feedback to the non-inverting input of one of the amplifiers while leaving the integrating capacitor at the inverting input. Using op-lamps, a high Q is only attainable using a wide spread of component values (see ref. 2). With a c.d.a. or Norton amplifier such as the LM3900 or MC3401, the natural Q of the system shown is in excess of 200. Lower, controlled values can be obtained by adding the damping resistor R_1, when the Q will be given by R_1/R to a reasonable approximation for Q in the range of 2 to 20. The Q can be increased by removing R_1 and adding R_2, even with high values of R_2, sinusoidal oscillations may occur. Both bandpass and low-pass outputs are obtained from the filter (quadrature outputs when oscillating).

References

2. The technique shown provides (i) a zener diode with an operating current stabilized by the zener voltage (ii) an output voltage controlled by the zener but having a temperature drift corresponding to a single V_{be} if the zener is a low-drift type. The p.d. across the resistor R must be V_2 to a good accuracy if the V_{be}s of T_1 and T_3 are well matched. The lower the current in R the more accurately this holds but in any case the current variation is very small (corresponding to a few tens of millivolts in perhaps 5 to 10V). Thus V_2 is well stabilized and the output voltage is $V_2 + V_{be}$. If this voltage is to be used to define the currents at other points in the system, for example the inputs of other comparators, then it has a drift which is small and of the right magnitude and sense to stabilize those currents against variations in the V_{be}s of the inputs. For the output voltage to be temperature-independent, the zener would need a temperature coefficient of voltage of around $+2.5$mV/deg C.

Reference

3. This modification to the v.c.o. described in set 17, number 3 was proposed a reader*, and converts the circuit into a sawtooth generator, accompanied by a pulse train with narrow pulse widths. The input potentiometer varies the frequency with the values of R_1, R_4 and R_6 controlling the waveform. If $R_3 + R_4$ are replaced by a 470kΩ potentiometer with R_4 set to 340kΩ and R_3 to 7kΩ then the pulse width is 1ms and the frequency range is 0 to 140Hz. Pulse width can be increased to 4ms with a frequency range of 6 to 86Hz with R_4, 22kΩ, R_6, 4kΩ. In each case the supply voltage was about 16.5V, but in common with most versions of this circuit the voltage is not critical.

Reference
*Saunders, L. R. Voltage-controlled pulse generator, Private communication, Auckland, N.Z., Sept. 6, 1975.
The following article discusses differences between c.d.as and op-amps as far as cut-off frequency and slew rate are concerned. It also gives a circuit that simulates a c.d.a. using a five-transistor i.e., such as the CA3046, so that the effects of different operating currents and compensation can be investigated. That it is the current into c.d.as that is of prime concern is reinforced in the article and best results with c.d.as obtain from networks requiring a low impedance load—the inverting input—with shunt feedback. An example is given on card 2 which shows an RC oscillator followed by a level sensing circuit to give a distortion of 0.1%.

The circuits on the cards show that some functions are achieved much more simply with c.d.as than previously: rectangular and triangular-wave generators are shown on cards 1, 3 & 10. The Schmitt trigger circuit (card 6) is also very simple, provided precise switching levels are not required. Constant-voltage circuits are easily produced by using a Zener diode or planar transistor in a negative feedback loop (card 4), while constant-current circuits require balancing of positive and negative feedback to give very high output impedance (card 5).

Generators 1
RC oscillators 2
Voltage-controlled oscillators 3
Voltage regulators 4
Constant-current circuits 5
Schmitts and comparators 6
Astable multivibrators 7
Monostable multivibrators 8
Flip-flops 9
Staircase generators 10
Current-differencing amplifiers
signal generation

The simple model of the current-differencing amplifier discussed in the previous article (August issue) is sufficient to explain the principles—but not enough to satisfy the customer placing his pennies on the counter. A fuller circuit is shown in Fig. 1 representing the relevant sections of one of these amplifiers, in this case the LM3900, though other manufacturers produce similar circuits. Transistors $Tr_{9,10}$ constitute the input current mirror coupling a current into the external feedback network that is the difference between the two input currents. Transistor Tr_8 is the only stage contributing voltage gain and its collector is the highest impedance point in the system—the most convenient point to place the compensation capacitor C since a small capacitance is sufficient to bring the cut-off frequency down to the required level. The single stage of voltage gain is buffered by Tr_4 to give a reasonably low output impedance with a current source capability of tens of milliamps.

The open-loop voltage gain is very much less than is available from standard op-amps, but at 60 to 70dB (1,000 to 3,000) is ample for most applications. The reduced gain allows the open-loop cut-off frequency to be increased to about 1kHz (c.f. the value of around 10Hz for 741 op-amp) without instability occurring at high frequencies when 100% negative feedback is applied (Fig. 2). As a result the open-loop gain is 10dB greater for these current-differencing amplifiers from 1kHz to 1MHz.

This is a fair statement for small-signal applications, but the slewing characteristics of the amplifiers are quite different. In the 741 and similar amplifiers the maximum current available for the capacitor is via Tr_1 base and the slew rate is limited by the low base current to about 0.5V/µs, giving asymmetry to the rise and fall times of a pulsed output (Fig. 3). The resulting large-signal response when used as an amplifier is limited to around 10kHz by this positive slew-rate.

This is but the first generation of current-differencing amplifiers, designed for simplicity and economy. It is to be expected that circuits will gradually appear offering improvements in this and other directions. With the example of operational amplifiers as a guide, we can hope to see multi-megahertz current-differencing amplifiers before long. This could be achieved by removing or reducing the compensation capacitance, provided the circuit was not then used with heavy feedback.

It is possible to experiment with a similar circuit to see the general effects of operating at different currents and with different degrees of compensation. The circuit is shown in Fig. 4 and is based on one of the low-cost five-transistor packages such as CA3086, CA3046 etc. These have gain-bandwidths in excess of 500MHz demanding care in construction if good results are to be obtained. Transistors Tr_1, Tr_2 comprise the current mirror, Tr_3 is the voltage amplifier and Tr_4 the emitter follower. Transistor Tr_5 acts as a constant-current load to the emitter follower though the slope resistance is less than that achieved by current mirrors. Bootstrapping the collector.

Fig. 1. Part of the LM 3900 current-differencing amplifier, to which the current mirror $Tr_{9,10}$ couples a current into an external feedback circuit, via emitter followers, that is the difference between the two input currents.

Fig. 2. Reduced gain of c.d.a. relative to 741 op-amp allows increased open-loop cut-off frequency. Open-loop gain is about 10dB greater from 1k to 1MHz.

Fig. 3. Positive slew-rate is limited by the low base current in Tr_1 (Fig. 1) to about 0.5V/µs, giving asymmetry to the rise and fall time of a pulsed output.

Fig. 4. Part of the LM 3900 current-differencing amplifier, to which the current mirror $Tr_{9,10}$ couples a current into an external feedback circuit, via emitter followers, that is the difference between the two input currents.
load of T_3 increases the voltage gain giving some of the effects provided by the constant-current stage in the commercial amplifier. This circuit is in no sense a competitor for the complete i.e. but may help in understanding the techniques and limitations. (Possible values are R_1, R_2, 47kΩ; R_3, 470kΩ; C, 10µF, with a supply of +10V.)

The control of direct voltages and currents is readily achieved with amplifiers of this class, with the simplest circuits requiring only the addition of a zener diode. Care has to be exercised if high stability is required since, as shown in Fig. 5, the output voltage depends on the direct voltage between the inverting input and ground. This is approximately 0.55V, changing with temperature by about $-2.2mV/\text{degC}$. As drawn, the zener current would be restricted to the amplifier input current of 30nA and an additional resistor between inverting input and ground would be needed to bring the current up to the level appropriate to the zener.

Sine-wave generation is by passive resonant or phase-shift networks, with the one change; that it is the current into the amplifier that is of concern. While conventional passive networks such as the phase-shift network of Fig. 6 can be adapted by using a suitably large resistance R' to force a current into the amplifier without loading the network, better results follow from designing alternative networks requiring a low-impedance load (i.e. the virtual-earth of the amplifier inverting input when used with shunt feedback).

A wide variety of waveforms can be generated by using the voltage across a capacitor subjected to alternate positive and negative current flows. Where the net charging current depends on the current-difference at the two inputs, novel circuits result. In particular, simplification of square-triangle generators is achieved by keeping V_1 or V_2 (Fig. 7) constant while switching the other from some positive value to zero under the control of a level-sensing circuit that monitors the output of the integrator.

With suitable scaling of the voltages and resistors the polarity of the net current is reversed using only a single diode/transistor/f.e.t., while the magnitude of that current is determined by an external control voltage. The resulting voltage-controlled oscillator is markedly simpler than is normally possible. If one or more of the voltages is replaced by a pulsed source, then staircase/ramp waveforms are produced depending on the magnitude, polarity and timing of the pulses. In each of these circuits, the use of a second amplifier can cancel the input current of the integrator amplifier to a first order, reducing the drift to a very small level.

There is no one-to-one correspondence between the circuits designed around operational and current-differencing amplifiers. It will take considerable time and effort to make sure that the advantages of the latter are exploited. The effort will not be wasted.

Fig. 4. By making a c.d.a. from a five-transistor i.e. the effect of altering the compensation capacitor can be investigated, gain-bandwidth products of 500MHz or more being possible.

Fig. 5. Stability of voltage level in c.d.a. can be improved by simple addition of a zener diode.

Fig. 6. Phase-shift network can be adapted for use with a c.d.a. by using a large resistance R' to force a current into the amplifier.

Fig. 7. Waveforms can be generated by subjecting a capacitor to alternate positive and negative current flows. Square/triangle generators can be simplified by fixing V_1 or V_2 and switching the other by a circuit that monitors integrator output.
Generators

Circuit description-1
Four types of generator are considered here. They can be summarized as sine, relaxation, square/triangle and d.c. The last of these, the group of circuits normally called voltage/current regulators, can be considered as generators of direct voltage or current. Alternatively, they can be dealt with as d.c. amplifiers with input signals provided by constant voltage/current reference elements, e.g. Zener diodes (see set 16). For cisoidal oscillators the basic requirement is a passive network giving a phase-shift of 0 or \(\pi \) at a single frequency. This may or may not be accompanied by a maximum in the magnitude of the transfer function, but in either case it dictates to which input the feedback should be returned. The circuit oscillates at the frequency for which the loop has zero phase-shift and amplifier phase-shifts cause errors at high frequencies. The classic phase-shift oscillator can be used as above, with the amplifier providing more than enough gain. Negative feedback from output to inverting input sets the amplifier gain to overcome the losses in the passive network. Largest signal at amplifier output, least distortion across last capacitor. Make \(R' \gg R \) to minimize loading of network. Any voltage controlled oscillator results. If the first circuit is adapted to have one stable state then it can be triggered by an external pulse into the unstable state where it remains until the capacitor has completed its charge (or discharge) sequence. The resulting monostable circuit may be edge- or level-triggered.

Circuit description-2
The common element to many non-sinusoidal waveform generators is a Schmitt trigger, implemented by an amplifier with positive feedback as shown below. In this amplifier the output changes state rapidly as the input passes through a given voltage level, reverting to its original state when the input returns to a different level. The difference between the switching levels is the hysteresis, and by using the circuit to monitor the voltage across a capacitor the charging current can have its direction reversed at each transition of the voltage through a switching level. The simplest arrangement is at top right where a single amplifier acts both as Schmitt trigger and as source of charging/discharging current. The current varies during the cycle according to the usual RC relationships since the output voltage has a constant value for each switched state. If the capacitor forms part of an integrator then the charging current has one of two fixed values, because the virtual earth action prevents the charging voltage across the capacitor from modifying the current. A further modification of this circuit uses an additional diode or transistor to reverse the net current flow to the amplifier by interrupting the current to either the inverting or non-inverting input. Selection of suitable resistors gives a net-charging current that reverses its direction while remaining of equal magnitude and being controlled by an external direct voltage i.e. a band-pass filter may be inserted into the feedback loop of a system, allowing the overall loop gain to reach the critical condition only at the filter centre frequency. To adapt the more usual Wien networks to current differencing amplifiers, it is sufficient to take any such network whose output has a grounded resistor, and use the current in the resistor as a feedback—the amplifier having a low enough input resistance to act as a virtual earth. No mechanism is shown for amplitude control, but the precisely defined input non-linearities allow for simple solutions as shown later.
RC oscillators

The circuit has two distinct sections. Amplifier A₁ together with R₁ to R₄ and C₁, C₂ constitutes a complete RC oscillator, in which the positive feedback via R₄ exceeds the negative feedback via R₄. Choosing R₄ ≈ 2R₃, the amplifier output is biased to ≈ Vₛ/2 since the d.c. feedback ensures almost equal currents in R₁, R₄. The second amplifier amplifies and filters the output of A₁ after a.c. coupling via C₁, R₆ and half-wave rectification via the non-inverting input of A₂. The addition of a reference voltage acting via R₄ causes the d.c. output of A₂ to vary the bias current in D₁ in such a way that it diverts a varying proportion of the a.c. feedback from the non-inverting input of A₂. Allowing for the time constants of the loop, the output of A₂ will vary until the half-wave rectified sine-wave output of A₁ is comparable with Vₛ. The non-linearity of D₁, V/I characteristics does not introduce serious distortion, since it matches that of the input characteristics of A₁. Because the amplifiers are current-differencing units, the conventional Wien bridge has been rearranged, i.e. instead of grounding R₅ and using the p.d. across it as the frequency-dependent feedback, the current through it is fed back, taking the amplifier input as a virtual-earth. The output voltage of A₁ has a d.c. term of ≈ Vₛ/2 and the superposed a.c. may have a peak-peak value of up to 80% of the supply voltage before the onset of clipping. The relatively low open-loop gain of the amplifier does not allow very low distortion levels but the ability to control the amplitude of oscillation by an external direct voltage, while using only two of the four amplifiers within the i.e. is very useful.

Component changes

R₁, R₄: Ratio 2:1 to bias A₁ output Vₛ/2, R₄ is chosen to provide less negative feedback than the positive feedback via R₄, R₅, C₃, C₄ i.e. R₄ > 3R₅. R₆, R₇, R₈, R₉, R₁₀: Together with C₆, C₇ defines the frequency of oscillation. R₄ 10k to 1MΩ, C₆, C₇: C₈ = C₉ 1000pF to 10nF. Large R values can be used with small C values for economy, but layout/screening need to be watched to avoid hum.

C₆: Not critical. 0.01 or to 100mF. Higher values only required for lower load resistances. Circuit output current should not exceed 1mA for lowest distortion.

C₇: Must have low reactance at signal frequencies—at least 0.5µF for 1kHz. R₃, R₅, R₆, R₇: Control mean current in and hence slope resistance of D₁. High values to minimize required value of C₃. Time constant period of waveform, Vₛ: 0 to 4V. Controls output voltage; R₃ can be varied to increase or decrease the control effect required via D₁.

Circuit variations

- The principle of the circuit is that of an RC oscillator using A₁ and a modified Wien-network, followed by a signal level sensing circuit (A₃) that modifies the loop-gain of the oscillator feedback loop. Any other RC oscillator can be substituted for A₁ circuit, but amplitude control via a biased diode is optimum, as the diode and amplifier input non-linearities cancel.
- A peak-sensing circuit is an alternative, and a diode peak detector can replace A₃ with power control of amplitude.

Typical performance

<table>
<thead>
<tr>
<th>Components</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁, A₃: LM3900</td>
<td></td>
</tr>
<tr>
<td>Supply: -20V</td>
<td></td>
</tr>
<tr>
<td>R₁: 220kΩ</td>
<td></td>
</tr>
<tr>
<td>R₄, R₆: 33kΩ</td>
<td></td>
</tr>
<tr>
<td>R₅: 120kΩ</td>
<td></td>
</tr>
<tr>
<td>R₇: 100kΩ</td>
<td></td>
</tr>
<tr>
<td>R₈: 1.8MΩ</td>
<td></td>
</tr>
<tr>
<td>R₉: 2.2MΩ</td>
<td></td>
</tr>
<tr>
<td>R₁₀: 5.6MΩ</td>
<td></td>
</tr>
<tr>
<td>R₁₁: 15kΩ</td>
<td></td>
</tr>
<tr>
<td>C₁: 0.68µF</td>
<td></td>
</tr>
<tr>
<td>C₄, C₅: 10µF</td>
<td></td>
</tr>
<tr>
<td>C₆, C₇: 0.1µF</td>
<td></td>
</tr>
<tr>
<td>C₈: 1µF</td>
<td></td>
</tr>
</tbody>
</table>

Typical output

- D₁: 1N914
- f: 500Hz
- Vₛ: 7V pk-pk ± 0.2dB
- for Vₛ 12 to 20V.
Voltage-controlled oscillators

Circuit description
A basic method of generating square/triangle waves is to interconnect an integrator and a Schmitt trigger circuit. With correct phasing the integrator output changes linearly with time between the threshold voltages of the Schmitt, causing the output to reverse and with it the direction of the integrator output slope. To bring the frequency under the control of an external voltage the switched output is used to reverse the net current into the integrator, but leaving the magnitude defined by the control voltage. A current differencing amplifier is particularly suited to this technique, since the net charging current is the difference between the two input currents. If these are set in the ratio 2:1 and the larger current is switched off, the net current changes sign, remaining of equal magnitude i.e. a triangular wave results at the integrator output with peak-to-peak voltage equal to the hysteresis of the Schmitt trigger circuit.

Consider the Schmitt output positive; the diode is reverse-biased and with \(R_1 + R_4 = R_2/2 \), the net integrator input current is negative. Integrator output ramps negatively until the lower threshold voltage of the Schmitt is reached. Output of the Schmitt falls almost to zero and the diode conducts by passing the current in \(R_4 \) to ground through the output of the Schmitt circuit. (A residual current flows in \(R_2 \) since the output of the Schmitt is typically a 100mV but the current is small compared with the normal charging current.) The net charging current is now positive and the integrator output ramps positively until the cycle is completed on chargeover at the upper threshold level. The rate of charging is proportional to \(V_{ref} \) which may be derived from a potentiometer across the supply or from an external source with \(f \propto V_{ref} \) to a good approximation.

Component changes
- \(R_1, R_3, R_4 \): For equal positive and negative slopes to the triangular wave (and hence unity mark-space ratio for the square wave), \(R_1 + R_4 = R_2/2 \). To minimize loading on source these resistors may range from 100k to 10MΩ, \(R_1 \approx R_4 \) but may be different to use preferred values while meeting above conditions.
- \(C \): sets frequency of oscillation and \(f \propto 1/C \) except at high frequencies where finite rise and fall times limit the response. Typically \(C \leq 10\mu F \).
- \(R_0, R_3, R_4 \): control upper and lower threshold voltages and have peak-peak value of triangular wave. For \(R_1 = R_4 \) and \(R_3 = kR_0 \), the hysteresis is \(\approx k \) (square-wave output). Reducing the hysteresis increases the frequency of oscillation, other components being equal. Amplifier slew-rate of 0.5V/µs makes it difficult to obtain outputs above 10kHz.
- \(D \): Not critical. Any general-purpose silicon diode.

Typical performance
- IC: LM3900
- Supply: ±5V
- \(R_1 = 220\, k\Omega \)
- \(R_2 = 270\, k\Omega \)
- \(R_3 = R_4 = 1\, M\Omega \)
- \(C = 1\, nF \)
- \(V_{ref} = 9V \)
- Triangular wave: 9V pk-pk
- Square-wave output: 7.5V pk-pk
- Frequency: 610Hz

- Improved performance at high frequencies is possible using a transistor rather than a diode to direct the integrator input current; inversion provided by the transistor requires inversion of one or other of the other circuits. Because the transistor conducts for a rise in the Schmitt output of little more than one \(V_{be} \), the rise time of the Schmitt no longer presents such a serious limitation to the frequency at which oscillation can be sustained.
- Adding bias resistors to \(+V \) sets a minimum value to the frequency of oscillation for \(V_{ref} = 0 \) i.e. the frequency can be controlled over any prescribed range.

\[\begin{align*}
V_+ & : +4 \text{ to } +30V, \\
V_{ref} & : 0 \text{ to } 30V \text{ (higher if } R_1 \text{ to } R_3 \text{ increased).}
\end{align*} \]
Voltage regulators

Circuit description
When negative feedback is applied around a current-differencing amplifier such as the LM3900, the inverting input terminal remains at 0.6V at 0 °C falling to nearly 0.4V at 75 °C. In the voltage regulator shown the voltage across R1 is defined by these values, fixing the current in Tr1 which acts as a Zener diode. Amplifier input current is very small (≈ 30nA) allowing currents between 1µA and 1mA to be adequately defined. Output voltage is the sum of the input Vbe and the Zener voltage. Two sources of variation exist:

- direct variation in input voltage (Vbe) as above of about -2.5mV/deg C together with a fall of 2 to 3mV for each 1°C increase in the supply.

- corresponding variation in Zener voltage caused by the resulting current variation together with its own temperature coefficient.

If a Zener diode is available with a positive temperature drift cancellation between that drift and the input drift is possible, though complicated by the current variations. The use of a small-signal planar transistor with Vbe breakdown of about 7V gives partial cancellation while using the Vbe breakdown adds about 0.6V because of the forward biased base-collector diode. The additional negative drift over-compensates, for the particular device tested, but the method allows good cancellation. Conventional Zener diodes would be preferred where a quick range of voltages is required or close tolerance (but see circuit modifications).

Component changes
Tr1: Any Zener diode may be used in principle since the output current is limited low-current operation is an advantage, and any planar transistor may be used as reverse base-emitter breakdown typically lies between 6 and 12V, being well-defined for a particular transistor type. R1: defines diode current as Vbe/R1, where Vbe is that of the i.e. input transistor (≈ 550mV at room temperature, -2.5mV/deg C). Select for Zener current of say 100µA to 2mA depending on type, down to 1µA for planar diode/transistor. Vd: 4 to 36V (down to 3V in some cases) Vz: up to 36V. Limited by available diodes but see circuit modifications.

L: 0 to 10mA. May be boosted by adding emitter follower at output of amplifier (inside feedback loop).

Circuit modifications

- To increase the output voltage Zener/transistor (e.g. selected for its temperature dependence) the diode is tapped onto a portion of the output voltage. The potential divider should not be significantly loaded, nor should it constitute a significant load on the output so a low current breakdown device is preferred. With a chain current pf 1mA the diode current should not exceed 10µA for good accuracy. (Middle circuit.)

- Relying on the Vbe alone to define output voltage gives too large a drift with temperature for most applications. Adding a germanium transistor as shown gives first-order temperature compensation particularly for m large and the difference in the Vbe values is in the range 400 to 450mV. (Bottom circuit.) The three techniques suggested may be used in various combinations as well as separately.

Cross references
Set 6, cards 1, 2, 7 & 10.
Constant-current circuits

Circuit description
Many circuits used with conventional operational amplifiers are adaptable for use with current differencing amplifiers. To provide a constant-current drive to a grounded load is difficult in both cases since each amplifier has its output referred to ground so that feedback can only be taken in shunt with the load, i.e. lowering the output impedance tends to infinity. By injecting voltages/currents at other points in the system, a load connected between that particular point and ground will carry a current independent of the load resistance. As shown, \(R_3 \) is used to adjust the negative feedback such that for very high load resistances, the negative and positive feedback are almost in balance. In the ideal case, this is achieved for \((R_3 + R_4)R_1 = R/R_2 \). Current in the load may then be varied in one of three ways, each of which has minimal effect on the output impedance: variation of the input voltage \(V \); insertion of an alternative/additional voltage in series with \(R_1 \); variation in the tapping point of the resistor \(R \). The last method can be used to obtain a 5:1 spread in sensitivity while retaining a high output resistance. Using a single polarity supply restricts the output to one polarity (+) but dual-polarity supplies would permit bipolar outputs for handling d.c. signals without the need for blocking capacitors.

Component changes
\(V_\text{s} \): +4 to +36V. Because of losses in feedback-defining resistors load voltage swing is always less than amplifier capability. \(R_1, R_2 \): 10k\(\Omega \) is near lower end of working range, with amplifier normally operating with input resistor of 100k\(\Omega \) upwards. However, values required where current of several mA required in load. \(R_3, R_4 \): If high impedance is sufficient and it is not required to trim for output impedance \(\rightarrow \infty \), replace by fixed resistance \(R_3 + R_4 = R \) for \(R_1 = R_2 \). Negative output resistance if feedback resistance to inverting input is too large. \(k \): Can be varied from 0.2 to 0.9. At high values, relatively large currents obtainable but with some loss of accuracy. \(V \): Variable over range 2 to 10V. For input voltages too low, \(V_{\text{be}} \) errors at input prevent linearity of \(I_l \) against \(V \).

Circuit modifications
- By adding transistors, the feedback may be taken from across one emitter resistor as would be the case for a voltage amplifier (top circuit.) The output is taken from the transistor collectors each of which carries a collector current almost equal to its emitter current if the transistors have high current gains.
- In the simplest arrangement the current is defined by the amplifier internal \(V_{\text{be}} \) with a consequent temperature dependence to the currents (which may be set to any required ratios by varying \(R_4 \), \(R_5 \), etc.). Any of the techniques used in voltage regulators may be used to achieve better control over the voltage across \(R_2 \).
- A voltage-controlled current sink as shown forces the voltage across the 1k\(\Omega \) resistor to match the input voltage giving an overall transconductance of 1mA/V. Bias provided by the 1M\(\Omega \) resistors linearizes the characteristic at low \(V_{\text{in}}/I_l \).

Typical performance
IC: \(\frac{1}{4} \) LM3900
Supply: \(\pm 15V \)
\(R_1, R_2 \): 10k\(\Omega \)
\(R_3 \): 8.2k\(\Omega \)
\(R_4 \): 2.2k\(\Omega \) for particular circuit
\(R \): 10k\(\Omega \)
\(k \): 0.5
\(V \): 7.7V for \(I_l \) 1.5mA

Cross references
Set 6, cards 4 & 12.
Schmitts & comparators

Circuit description

The input section of current-differencing amplifiers rely on the accuracy of matching of transistors in a current mirror to define the operating levels. It is not possible to obtain the precision of switching levels by such a method as can be achieved using a long-tailed pair and more conventional circuitry. Where a moderately wide hysteresis, say, 1V or greater, is acceptable and neither upper or lower thresholds need be defined to within a small percentage, Schmitt circuits can be simply constructed offering the other advantages of positive and rapid switching. The limited slew-rate of the amplifier makes it comparable in performance in this respect to op-amps such as the 741, but the internal compensation cannot be removed to allow speeds comparable to the uncompensated op-amps (301, 748, etc) let alone high-speed comparators. The main uses are likely to be as part of signal processing systems, alarm circuits, waveform generators, etc.

Switching takes place, assuming ideal current mirror action, when the current in R1 equals the sum of the currents in R2, R3. In each case the amplifier internal \(V_{be} \) of about 0.5V has to be taken into account, effectively raising both upper and lower thresholds by somewhat less than 0.5V. To a first order approximation, hysteresis depends only on the resistor values, while the input resistance may be made >1MΩ.

This is because the inverting stage input current of \(\approx 30\text{nA} \) allows reasonable accuracy of switching levels even though the currents in the resistors are only a few microamperes. Increasing R3 reduces the upper threshold without changing the lower one. Increasing R2 reduces both thresholds by the same amount leaving the hysteresis unchanged. Increasing R1 raises both threshold voltages proportionately, leaving the hysteresis in the same ratio to each as prior to the increase.

Component changes

Supply V: +4 to 36V. Usual range for given i.c. R1: 100k to 10MΩ. The lower value is particularly useful if voltage comparator action is required for voltages <1V. Each input is pre-biased to +V through 1M to 5MΩ resistors. R2: As above. If used as a comparator R3 is absent, and comparison is possible between unequal voltages i.e. the output can be made to swing between its limits as \(V_{in} \) passes \(V_{th} \) if \(R_2 = R_3/N \). Comparison of negative voltages are also possible provided bias network accommodates common mode currents. Since currents are being compared, the use of suitably large resistors allows comparison of very large positive or negative voltages, but with the limited accuracy implied by the current-mirror input.

\(R_4: 1M \) to 22MΩ. Sets hysteresis and would be absent for comparator action. Can generally be added to any comparator arrangement to introduce, for example, small amounts of hysteresis to prevent output jitter due to noise.

Circuit modifications

• The position of the input and reference voltages (+V was used in the circuit overleaf) may be interchanged to give a non-inverting Schmitt. The availability of inverting and non-inverting Schmitts is of importance in the design of such circuits as wave-form generators. The thresholds and hysteresis are approximately:

\[V_u = \frac{+V R_4}{R_1} \]

\[V_l = \frac{+V (R_2 - R_3)}{R_1} \]

\[\text{hysteresis} = \frac{+V R_3}{R_1} \]

• If a p-n-p long-tailed pair is added at the input the resulting amplifier may be used as a comparator or as a Schmitt (as shown). The input impedance is extremely high if high-gain low current transistors are available, and any degree of matching for the input transistors, may be chosen for high precision. It is necessary to clip the output voltage swing more precisely (with a resistor-Zener combination for example) if the hysteresis is to be equally precise.

• If two amplifiers are used then the matching is that between corresponding inputs which can be better than between + and — inputs of a single amplifier. One amplifier plus the output transistor has overall negative feedback (transistor is an inverter) and the equal current forced into the two non-inverting inputs forces the transition point in the second amplifier output to occur for equal currents at the two inverting inputs. Again comparison can be made between unequal voltages but more account has to be taken of the effects of the small input bias currents.

Cross references

Set 2, all cards.
Set 17, cards 3, 7, 8 & 9.
Astable multivibrators

Circuit description

The amplifier together with resistors R_1, R_2, R_3 constitutes a Schmitt trigger. The output switches between the two extremes (± 100 mV and ± 0.8 V below V_+). When the output is low, C_1 is discharged through R_1 until the lower threshold of the Schmitt is reached. The output switches rapidly to its most positive value and the capacitor is charged positively. When the upper threshold is reached the Schmitt output is reversed and the cycle restarts. If R_2, R_3, R_4 are chosen to make the threshold voltages $V_{\text{th1}}/3$ and $2V_{\text{th1}}/3$ respectively then the voltage across the capacitor swings between these limits, while the output approximates to a square wave with almost unity mark-space ratio. For the highest accuracy a number of conditions must apply: The current in R_1 must be very low compared with the charging current through R_1; the output voltage swing should be as nearly as possible equal to the supply voltage; and the accuracy of the current-differencing action should be high (this places a restriction on the minimum currents in R_1, R_2, R_3). If these constraints are met then both the frequency and the mark-space ratio remain substantially constant over a wide range of supply voltages. Any increase in supply voltage produces proportional and hence self-cancelling increases in the magnitude and rate-of-change of voltage across the capacitor. The potential difference across the capacitor is uni-directional permitting the use of electrolytic capacitors for low frequency generation.

Component changes

R_2, R_3, R_4: These must be chosen jointly such that the firing points of the Schmitt trigger they constitute are $V_{\text{th1}}/3$ and $2V_{\text{th1}}/3$ (see circuit description). $R_3 = R_4 = 3R_1$ gives this condition. Make resistors as high as possible to avoid loading R_1, C_1 charging circuit i.e. $R_3 > 100R_1$.

Typically $R_1 = 1$ MΩ, R_2, R_3: This sets oscillator frequency together with C. Too low a value loads the output, too low is loaded by R_3.

Typically 4.7 kΩ to 100 kΩ.

C: Max frequency of oscillation ≈ 20 kHz corresponding to $C = 470$ nF with $R_3 = 15$ kΩ.

Capacitor voltage always positive allowing use of electrolytic to give low frequencies.

R_1: Maximum output current ≈ 10 mA, giving minimum $R_1 = 1$ kΩ at V_+ = 10 V. Generally keep $R_1 > 2.2$ kΩ to allow output to swing close to supply.

Circuit modifications

- As with other astable multivibrators, this oscillator can be synchronized to an external waveform. Because the Schmitt action is achieved using high value resistors, the synchronizing input may also have a high input impedance, while locking can be achieved with 100 mV. Locking to a sub-harmonic of an incoming signal is also possible, though for frequency division ratios in excess of 5:1 carry the risk of locking to the wrong sub-harmonic. (Top circuit.)

- Other forms of multivibrator may require more than one amplifier but the bottom circuit has some similarity of behaviour to the programmable uni-junction. The capacitor charges through R_4 until the upper threshold is reached. The output swings towards zero rapidly discharging the capacitor. The long mark has its duration controlled by the direct voltage applied to R_4 ($+V$ may be replaced by an external control voltage giving a voltage controlled oscillator). The space is of short duration because of the relatively large discharge current.

Cross references

Set 3, cards 2, 4, 6 & 8.
Set 8, all cards.
Set 10, card 2.
Set 17, cards 3, 8 & 10.
Monostable multivibrators

Circuit description
The circuit is closely related to the pulse generator modification of the astable circuit, and to the unijunction equivalent (card 7). The feedback network is designed so that the circuit normally latches into one particular state, with the output high. This is because in the low stage the diode inhibits current flow into the inverting input. Current in R₂ drives the output high initially and with the sum of the currents in R₁ and R₃ exceeding that in R₁. The first negative-going pulse drives the output temporarily low, the diode becoming reverse-biased. The capacitor discharges through R₂, with only R₃ contributing any current to the non-inverting input. Discharging continues until the voltage across the capacitor is down to a fraction of the supply given by R₂/R₃. At this point, the inverting input current comes into balance with that at the non-inverting input, the output begins to rise and the positive feedback causes the cycle to complete itself rapidly. The diode conducts, rapidly changing the capacitor to a volt or so below the positive supply voltage and the circuit is ready for the following trigger pulse. The positive-going slew-rate limit of 0.5V/µs limits the minimum pulse-width that can be defined with any accuracy. For a 20-V supply and a pulse of nominal length 100µs this slew rate would add up to 45% to its effective length.

Component changes
+V: +4 to +36V. Monostable action with increasing pulse-width and lowered output is possible to below 2V with some samples though outside specification. C₁: Large values may be used (provided leakage resistance is 1MΩ) and with R₁ at 1MΩ time-delays of minutes are possible. C₂: Used to differentiate input signal to provide short-duration positive transients. 47pF to 220pF for first input pulses; increase for slower input rise times. R₃: Ratio R₂/R₃ sets fraction of supply voltage across C₁ at which the pulse period is completed. Typically R₂/R₃ = 0.1 to 0.3. If ratio is too low the period lengthens considerably but is ill-defined. R₄: Current in R₄ should not fall below 1µA if timing is to be controlled by RC values. R₅: With R₂ = R₃ the smaller current in R₅ is sufficient to keep the output high in the quiescent state. D₂: Any general-purpose silicon diode.

Circuit modifications
- Positive-going output pulses can be obtained with a similar circuit if the permanent bias is applied to the inverting input, the direction of the diode reversed and a changing path provided in parallel with the diode. The quiescent condition has the output low with the diode conducting and significant current only in the 10MΩ resistor. A positive-going input transition drives the input high, which state is held until the capacitor charges sufficiently to allow the current in the inverting input to exceed that in the non-inverting input. A major advantage of an amplifier having both inputs accessible is that the signal pulses can be transferred to the other input. In this version, the output pulses would then be triggered by negative rather than positive transitions, while in the previous case which required negative transitions the response would then be to positive edges.
- Two-amplifier monostable circuits can have two opposite polarity outputs and allows separation of the triggering timing and output sections more readily. The circuit shown is equivalent to a Schmitt trigger followed by a monostable although the functions are combined in a single circuit. Out₁ is normally low contributing no current to the inverting input of the lower amplifier. Hence Out₂ is only driven low when V₁₂ reaches ≈ 0.8V1₂. Provided the input falls below this level prior to the end of the pulse then generated, the circuit is suitable for resetting an oscillator when its ramp output exceeds a given d.c. level.

Typical performance
Supply: +10V
R₁, R₂: 1MΩ
R₃: 10MΩ
R₄: 100kΩ
C₁: 220pF
C₂: 100pF
D₁: 1N4148
f: 100Hz
V₁₂: 0.5V pk-pk square-wave
Pulse-width: 0.66ms

Pulse-width: 0.66ms
v1n: 0.5V pk-pk square-wave
f: 100Hz
Pulse-width: 0.66ms

Circuit modifications
- Positive-going output pulses can be obtained with a similar circuit if the permanent bias is applied to the inverting input, the direction of the diode reversed and a changing path provided in parallel with the diode. The quiescent condition has the output low with the diode conducting and significant current only in the 10MΩ resistor. A positive-going input transition drives the input high, which state is held until the capacitor charges sufficiently to allow the current in the inverting input to exceed that in the non-inverting input. A major
Flip-flops

Typical performance
IC: 74L3900
Supply: +10V
R₁, R₂: 100kΩ
R₃, R₄: 1MΩ
C₁: 100pF
C₂, C₃: 56pF
V₀: 9V pk-pk
Max input frequency for satisfactory toggle action: 10kHz
Min. input amplitude: 4V pk-pk

Circuit description
The circuit has strong affinities with standard two transistor flip-flop and could be triggered at either of the inverting inputs via diodes to provide a set/reset function. Non-inverting inputs provide the additional facility of triggering the flip-flop to provide a set-reset action. Equal currents are fed into the non-inverting inputs on receipt of a positive-going edge but that amplifier whose output is already high because its inverting input receives no current will be initially unaffected. The other amplifier receives a short-duration current flow at its non-inverting input that exceeds that at its inverting input, and its output begins its positive-going transition. The speed-up capacitor couples this to the inverting input of the other amplifier and the positive feedback around the loop causes the transition to complete itself. Thus each output changes state in opposite directions on the receipt of each positive-going input transition. Two such transitions are required to complete each cycle of the output, and the output waveforms are complementary square waves at half the frequency of the input.

Such circuits may be readily cascaded to develop simple counters. Their low speed offers no competition to c.m.o.s., t.t.l. etc. but the ease with which they can be combined with other analogue/digital functions gives them a considerable advantage in many systems.

Component variations
+V: Standard supply range +4 to 36V. Samples may operate down to <2V.
R₃, R₄: Sensitivity can be controlled by varying R₃, R₄ for fixed values of R₁, R₂ and vice versa. Values are not critical and may be adjusted to suit a wide range of input pulses. 10k to 1MΩ.
R₅, R₆: These provide the current to keep the opposing amplifier saturated and are again not critical. 33k to 10MΩ could be used but as in any pulse system high resistances can be accompanied by spurious triggering. Generally, the lower resistances are required at low supply voltages.
C₁, C₃: Speed-up capacitors ensure positive transitions but the maximum speed is limited by amplifier slew-rate.
C₂: Not critical. 47p to 470pF.

Circuit modifications
- Using a single amplifier, one or more diodes are used to channel the incoming pulses to the two inputs alternately, with overall positive feedback to latch the circuit. The quiescent state with the output high is sustained because both R₃ and R₄ contribute current to the non-inverting input, exceeding that in R₁. When the output goes low it remains there because now the non-inverting input receives current only via R₅, leaving the current through R₄ into the inverting input to dominate. In the latter state D₁ prevents any input positive-going pulse from reaching the inverting input and the circuit is triggered via R₄ into the high state. The succeeding positive pulse produces approximately twice the current through R₃, R₄ as through R₄ (D₂ is reverse biased), the output going low. C₃ is the speed-up capacitor and D₂ absorbs the negative transitions.
- Careful choice of the positive feedback in this circuit (middle) provides sufficient hysteresis to keep the output latched into a given state after an input pulse has returned to zero. Any further pulses on that input have no effect, and it requires a similar pulse on the other input to reverse the output. The input which drives the output to logic 1 is the set input, the other the reset and the circuit is an asynchronous RS flip-flop.
- To add set, reset facilities to the initial circuit, one of the amplifiers must be directly driven into its off-state by a current greater than the current pulse received from the input trigger. This overrides the trigger for that amplifier, while the other is automatically set with its output to logic 1 and the input pulses are again ineffective. A transistor may replace the switch. Shown in the bottom circuit.

Cross references
Set 2, cards 3, 8 & 9.
Set 14, card 1.
Set 17, cards 7 & 8.
Wireless World Circard Set 17: C.D.A.S.—Signal Generation—10

Staircase generators

A staircase waveform can be generated by feeding pulses of current to a capacitor. The resulting circuits are closely related to those used in frequency meters such as the diode-pump circuit and its variants. One version as shown feeds the pulses to either the inverting or the non-inverting input of the first amplifier. Depending on the state of the output of the second, consider output 2 positive. The diode is reverse biased and with \((R_1 + R_2) = R_1/2 \) the net positive current into amplifier 1 is positive. During each positive pulse output 1 ramps positively, remaining relatively constant between pulses. The smaller the mark-space ratio the more nearly the output waveform approaches a staircase waveform, with the rising steps occupying a small proportion of the time. At some positive voltage set by the resistors \(R_1, R_2, R_4 \) the Schmitt trigger operates, its output switching to near ground level. The diode becomes forward-biased diverting all subsequent positive pulses from the non-inverting input. The net negative input current via \(R_1 \) produces a staircase waveform in the negative direction until the lower threshold voltage of the Schmitt is reached and the cycle recommences. In essence the circuit is that of a square-triangle generator in which the direct control voltage is replaced by a succession of positive pulses giving a stepped characteristic to the triangular wave. The mean input voltage determines the mean charging current and the average slope of the ramp. If the frequency of the input signal is varied while maintaining a constant pulse height and constant mark-space ratio, then the basic repetition rate of the output remains unchanged. (It is composed of a number of steps dependent on the ratio of input frequency/output frequency.)

Varying the pulse height, the mark-space ratio or Schmitt trigger points varies the output frequency.

Component changes

- \(R_4, R_5, R_8 \): The magnitudes of these resistors are not critical and they may range from 10k to 10MΩ. Design procedure for the trigger levels is given on Schmitts and comparators card. Hysteresis \(\approx V_{c} / R_{c} \cdot R_{c} \), \(R_5, R_6, R_8 \): For comparable positive and negative slopes, \(R_5 + R_6 = R_1/2 \). Ratio \(R_5:R_6 \) is not critical but neither should be \(\leq R_1/10 \). \(R_5 \): 10k to 1MΩ.
- \(C \): Controls the basic repetition rate of the output for given input waveform. 220p to 10µF. Output frequency can be very much less than input frequency with division ratios in excess of 100.

Circuit modifications

- When the input is at zero, current flow to ground through \(R_1 \) allows the stored voltage on \(C \) to vary. Inserting a diode prevents this at the expense of a reduced effective pulse height. Most other v.c.o. circuits can be adapted to perform this function. Replacing the diode by a transistor and controlling the pulses to the inverting input leaves the phasing correct. (Top.)

Typical performance

- Input: pulse train ± 12V peak
- \(R_1, R_4 \): 1MΩ
- \(R_7 \): 120kΩ
- Repetition rate: 30kHz
- \(R_8 \): 330kΩ
- Output 1: staircase waveform
- \(R_9 \): 10MΩ
- Output 2: 6.8V pk-pk, frequency 800Hz
- \(C \): 1µF
- \(D_1 \): IN914

• To obtain a staircase waveform followed by a sharp transition, the Schmitt may be followed by a monostable circuit that provides a pulse of current to discharge the capacitor rapidly. Input pulses are fed to a single input as shown, and again alternative arrangements are possible by phasing input/feedback appropriately. Switching and timing actions can be combined in the single monostable shown, where the positive output pulse is initiated at a particular input amplitude, the timing remaining correct if the input voltage to the monostable falls below this firing level before the completion of the monostable output pulse. (Middle circuit.)

Circuits designed for tachometer applications give an inherent staircase output. Further, the step height is controlled only by the input pulse height and the values of \(C_1, C_2 \), provided that the input pulse width is sufficient to allow full charge and discharge of the capacitor \(C_1 \). The version shown has a frequency doubling action with the positive input transitions being fed to the non-inverting inputs and the negative transitions to the inverting inputs.

Cross references

Set 3, cards 3 & 7.

Design procedure for

Supply: 7.5V
Input: pulse train +12V peak
Mark/space ratio: 2:1
Repetition rate: 30kHz
Output 1: staircase waveform
3.6V pk-pk, frequency 800Hz
Output 2: 6.8V pk-pk, frequency 800Hz

(References for card are on the back of this page.)
1. A voltage-controlled oscillator is a basic tool in a number of instrumentation systems. In this example, a thermistor network having a linear variation of resistance with temperature is used as a temperature sensor. Placed in the feedback path of a current-differencing amplifier, the current through it can be controlled by the current injected into the non-inverting input. Thus the voltage output of A_1 is a linear function of temperature, and is buffered by A_2 to give a suitable offset scale—this allows the output frequency to be a desired multiple of the temperature on the scale chosen (10 x temperature in deg F in the example given in the reference). The resistance of the thermistor falls with rising temperature causing the output of A_1 to fall, and of A_2 to rise, thus increasing the frequency. The reference gives full calibration procedures for a particular thermistor network of U.S. origin but any element or network having a linear p.d. against temperature could be substituted. Using a diode or amplified diode network, the rate-of-change of voltage with temperature would be less and the temperature range might conveniently be 0 to 100°C rather than 14-113°F in the original circuit.

Reference

2. It is a commonplace of design that functions can be performed by particular devices/circuits, not planned for by the original manufacturer. They may be well within the device ratings, but just not mentioned on the data sheets. The circuit shown is a simplified form of basic uncompensated op-amps such as the 101/748 types and shows that both a current mirror and an output stage with inverting driver are present. These are normally driven by the input differential amplifier. The author of the reference article observed that the input stage can be inhibited by returning both inputs to the negative supply rail. This leaves pins 1 and 5 (normally used for compensation purposes) available to act as the inputs of what is effectively a current-differencing or Norton amplifier. In principle, all the circuits in sets 16-18 can be implemented, while returning the inputs 2 and 3 to their usual voltage levels would allow one set of inputs to override the other and provide complex functions. The reference uses an audio mixer circuit as an illustrative example using both single-ended and dual supply voltages.

Reference

3. Some of the circuits described in sets 16-18 use diodes and/or the input current mirror to rectify the input signal: careful design allows the mean or peak output to be a linear function of the input, but the circuits still cannot respond to a.c. signals with amplitudes below p.d.s. If the rectifying circuit is placed in the feedback path of the amplifier this limit is removed. With a bridge rectifier a peak-peak output swing of at least 2.5V is required excluding voltage drops across the meter movement. This is well within the amplifier capability for supply voltages of 5V and above, provided the output is biased appropriately—to the supply mid-point for maximum swing. Two additional components are then needed in the feedback path, viz. a blocking capacitor (220µF) and a resistor (4.7MΩ) to set the quiescent output voltage in conjunction with the resistor to the non-inverting input (10MΩ). The meter reads the full-wave-rectified mean value of the input current assuming an ideal amplifier, and that current is given by v/Rin. The frequency response covers the audio band but it is not suited to high frequency measurements.
Set 18: c.d.as—measurement and detection

A favourite theme of one of the Circard authors is to identify differences between and similarities of circuits of related function. Fitting circuits into a kind of family tree not only aids understanding, but can lead to development of new circuits. Peter Williams’ article on Wien oscillators (WW Nov. 1971 pp. 541–7) is a good example of studying circuits collectively, and you will see the theme recurring in the Circard background articles from time to time. Often different realizations of similar circuits are quite unrecognizable when dressed in the clothing appropriate to the application. As the next article shows, there are strong similarities between rectifier circuits and sampling circuits, the last-mentioned using a switch to replace the rectifier diode. Similarly, when the resistive load is replaced by a capacitative one, the peak rectifier becomes a sample-and-hold circuit (cards 7 & 8).

A feature of current differencing amplifiers in sampling circuits is the relatively long hold time possible but so far they are not able to compete with standard op-amps in respect of accuracy. The feature common to most of the circuits in this set is simplicity, whether the application be providing negative resistance, interfacing with transducer, frequency measurement or defining currents for subsequent voltage measurement. For example, use of matched transducers delivering a variable current and followed by the current differencing circuit is a very simple way to sense differences in light intensity and temperature. In this set, card 1 forms an excellent summary card: read it first for a quick look at some of the possibilities.

Measurement and detection 1
Logic circuits 2
Phase-locked loop 3
Transducer driving 4
Semiconductor device testing 5
Negative resistance 6
Peak/mean rectifiers 7
Sample and hold circuits 8
High-frequency circuits 9
Tachometers 10
Pattern recognition is one sign that a technology is reaching maturity. The early stages following new advances are a succession of bright ideas, half-worked-out theories and unrelated developments. This is inevitable as workers in many areas take from the original material that which meets their needs—or appeals to their prejudices.

In circuit design the same configurations appear under many guises and names, developed quite independently and for different applications. If we can recognize these similarities and construct the appropriate family tree this is worthwhile in itself.

But we can do more. If two circuits are similar in form because related in function, then by finding any other circuit designed for one of the functions there is a good chance that it can be modified to provide the other. A good designer is one who picks the best brains.

The present topic is a particularly good illustration of this thesis. The problem is to measure some property of the amplitude of an a.c. waveform. Four circuits have their properties listed in the table and circuit diagrams representing a basic feedback form of each are shown in Figs 1 to 4. The configurations are identical, the differences lying only in whether conduction is through a diode or a switch, and whether the load is resistive or capacitive. This identity of form is far from apparent in practical versions since there are so many additional components and sub-circuits to optimize the response or effect coupling between other circuits/transducers.

The half-wave rectifier uses a diode as does the peak rectifier. It begins conduction through the diode as soon as the input goes positive remaining in conduction for the phase angle range 0 to π for sine-wave input. The mean value of the output is normally required, and a moving-coil meter is suitable as the deflection is proportional to the mean current.

When the resistive load is replaced by a capacitor, conduction of the diode only takes place for those instants when the input voltage exceeds the voltage stored on the capacitor. For a steady state a.c. signal this corresponds to the positive peak of the input, and assuming no discharge of the capacitor in the intervening period the conduction angle is vanishingly small and is centred on \(\pi/2\). The resulting constant voltage across the capacitor is measurable with any d.c. voltmeter whose input current requirements are so small as to avoid significant capacitor discharge.

To accommodate varying signal amplitudes some discharge must be permitted since a small amplitude would otherwise never be sensed if following a larger input. The resistive path leads to a compromise time constant between maximum holding time of the peak voltage and minimum recovery time after large peaks. Conversely, the half-wave rectifier suffers from capacitive effects at high frequency with stray capacitance leading to partial peak rectification. The resulting output/frequency characteristic often shows a rise of 1 to 3dB prior to the cut-off frequency limits of the amplifier.

The sampling circuit replaces the diode of the half-wave rectifier by a switch which closes for a brief interval at some phase angle determined by external circuits. The output is zero for all instants except the sampling instant. With capacitive loading, provided the switch closure is for a period of time greater than the time constant of the capacitance together with the amplifier output resistance, then the capacitor volt-

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Load</th>
<th>Conduction</th>
<th>Conduction Voltmeter Device</th>
<th>Conduction Voltmeter Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half-wave rectifier</td>
<td>R, 0, π</td>
<td>diode</td>
<td>mean/d.c. moving coil</td>
<td></td>
</tr>
<tr>
<td>Peak rectifier</td>
<td>C</td>
<td>diode</td>
<td>d.c.</td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>R</td>
<td>arbitrary switch</td>
<td>instantaneous</td>
<td></td>
</tr>
<tr>
<td>Sample and hold</td>
<td>C</td>
<td>arbitrary switch</td>
<td>d.c.</td>
<td></td>
</tr>
</tbody>
</table>

Figs. 1-4. Types of circuit used to measure amplitude of a.c. waveforms (see Table). Complete circuits are given in cards 7 and 8 in set 18.
Fig. 5. LM3900 c.d.a. is well-suited to measurement of time period and frequency. An input capacitor can alternatively be charged through a diode to form a "pump" circuit (see card 10).

Fig. 6. Defining operating conditions for testing a zener diode with a c.d.a. (see card 5).

The sampling circuits are readily constructed with current-differencing amplifiers, and long hold times are possible. With careful adjustment the output drift can be < 5%/hour under controlled conditions which is a good performance from such a general-purpose circuit. The accuracy is less impressive since the current-mirror match is involved, and it cannot compete with standard op-amp circuits in this respect.

Measuring period and frequency
The measurement of time period and frequency is another field to which the circuit is well-suited. A pulse waveform of constant width and height but variable frequency is fed as in Fig. 5 to the amplifier with parallel RC feedback. The mean voltage across the capacitor is then directly proportional to the input frequency. Alternatively frequency and pulse height may be kept constant when the output becomes a measure of pulse width. The availability of two inputs extends this capability to the measurement of frequency difference or sum. Alternatively an input capacitor may be charged and discharged through a diode network to give the equivalent of a diode pump/transistor pump type of frequency meter (tachometer).

The d.c. characteristics of the amplifier can be used to simultaneously define the operating conditions of diodes, zeners etc, while providing a low output impedance point for ease of measurement (Fig. 6). Finally, the circuit may be used in conjunction with an external network of resistors and diodes to perform quite complex logic functions such as exclusive-OR. Though offering no competition for the usual logic families for large-scale applications, they are very convenient for providing a small number of logic functions in an existing system. The wide range of supply voltages particularly commend them for such applications.
Measurement and detection

Circuit description

These circuits operate largely in a switched or non-linear mode; one card deals with negative resistance circuits which can be considered as having controlled non-linearity. The amplifier gain is large enough that simple logic functions are readily performed as described in set 16 (Fig. 1). By scaling the resistors the output of Fig. 2 becomes $A + B$ and the smoothed output has a d.c. value dependent on the phase difference of the inputs if these are square waves. The phase detector combined with a v.c.o. (set 17) gives a p.p.1., see card 3. Scaled resistors can also be used to provide simple forms of threshold logic including the weighted comparator of Fig. 3, while the comparator, using equal-valued resistors if desired, forms part of the peak detector of Fig. 4. The capacitor charges through the diode until it matches the peak value of the input. Another application for the comparator is in coupling signals into and out of transducers. Positive feedback may be added to the system to provide hysteresis, or negative feedback to control the level of current/voltage in a load as when testing or measuring the properties of a device e.g. semiconductor breakdown voltages.

Circuit description

The integrator plays a large part in measurement circuits as in waveform generators. Sample-and-hold circuits are closely related to peak-detectors, in that a voltage is stored on a capacitor that is proportional to the input voltage at some defined instant (the sampling instant and the input peak voltage respectively). The ramp and hold circuit of Fig. 5 is an intermediate step between the two circuits. If a resistive path is placed in parallel with the capacitor then the mean voltage developed at the output is defined by the mean input. Access to both inverting and non-inverting inputs makes it possible to measure the mean value of the sum or difference of two inputs, with the capacitor minimizing the output ripple. The circuit of Fig. 6 formed part of a controlled-amplitude RC oscillator (set 17) detecting the mean value of a half-wave rectified sine-wave; that of Fig. 7 acts as a taclometer provided the inputs are of controlled amplitude and pulse width. The non-inverting input has a non-linear v/i characteristic. Overdriven with two high-frequency signals it injects a current into the amplifier which contains sum and difference frequencies. If $f_1 - f_2$ is a low frequency the filtering action of the RC network removes the high-frequency components while giving an output at $f_1 - f_2$. This input stage is outside the feedback loop and is not frequency limited by the amplifier compensation. Low-level high-frequency amplification is possible using this input.

Further reading

Motorola Linear Integrated Circuit Data Book, pp.7-446, 7-453, 7-456 and 7-463; data sheets on MC3301P and MC3401P amplifiers.

National Semiconductor, Linear Integrated Circuits, pp.226-33, data sheets on LM3900.

Logic circuits

Circuit description

Just as t.t.l., c.m.o.s. gates may be interconnected to produce more complex functions, so the simple gate functions described on card 1 may be used in identical configurations. The standard methods for producing such functions as the exclusive-OR gate which has the output high for one and only one high input require four two-input NAND gates. This may be acceptable where it is desired to implement a system with a single device type even though multiple exclusive-OR circuits are available within a single package.

The flexibility of the current-differencing configuration allows such circuits to be designed economically while retaining the advantages of wide supply voltage range and good noise immunity—provided again that the circuit is restricted to industrial applications not requiring fast response. The lower amplifier is a standard AND gate as discussed in set 16, card 4, while the upper amplifier is an OR gate. By feeding back the AND gate output to the inverting input of the OR gate the logic 1 resulting from A=1 B=1 is inhibited by the logic 1 simultaneously appearing at the AND gate output. The resulting truth-table shows the output to be an exclusive-OR gate, but the simultaneous availability of the AND function creates a half-adder.

It is obvious that such a circuit is no competitor to c.m.o.s. or t.t.l. for complex logic functions in view of the speed limitation. Where a small number of logic functions are to be introduced into an industrial system the availability of a circuit that will operate off virtually any available supply is a clear advantage. Being able to mix functions within a given package allows analogue and digital processes to be tackled efficiently.

Component changes

+V: ±4 to ±36V. In practice several samples of the device operated satisfactorily for supply voltages down to 2.7V at room temperatures. R1, R2. Values may range from <10k to >1MΩ. There is no obvious advantage to lowering the resistances, but at high values capacitive strays may produce input current spikes significantly larger than the quiescent currents. For the AND gate, the current in R1 must be less than current in R2 while with both inputs high the current through the pair of R1 must exceed that in R2. For a logic 1 signal nearly equal to +V this gives R2/2 < R1 < R2. R3: This has to provide enough current to override the OR gate action for A=1 B=1. Value is not critical and values from R3/2 down to R3/2 are satisfactory. Where the input is noisy, the input resistors may be centre tapped and the tapping point decoupled to ground. The high value of resistors used together with the wide noise margins possible at high supply voltages allows the circuit to accommodate high noise environments provided the supply is adequately decoupled.

Typical performance

<table>
<thead>
<tr>
<th>IC:</th>
<th>7LM3900</th>
</tr>
</thead>
<tbody>
<tr>
<td>+V:</td>
<td>±20V</td>
</tr>
<tr>
<td>R1:</td>
<td>82kΩ</td>
</tr>
<tr>
<td>R2:</td>
<td>120kΩ</td>
</tr>
<tr>
<td>R3:</td>
<td>33kΩ</td>
</tr>
</tbody>
</table>

Output logic 0: ±150mV
Output logic 1: ±19.2V (with load current 5mA output logic 1 still within 1V of positive supply)

Circuit modifications

- Interchanging inverting and non-inverting inputs on the OR gate converts it into a NOR gate (Fig. 1). Then the output in the absence of feedback through R3 would be logic 1 only when both inputs are at logic 0. The feedback forces the output of the NOR gate to go to logic 1 when both inputs are at logic 1, overriding the normal NOR gate function. The net result is that the output of the NOR gate becomes logic 1 for A=B and the circuit is an equality comparator. The output can also be seen as the negation of the exclusive-OR function.

- It is not necessary to use two amplifiers to perform the exclusive-OR function. Instead, a passive AND gate using D1, D2 and R1 keeps D2 out of conduction except when A=B=1 (Fig. 2). Under these circumstances the current in R1 is diverted through D2 into the amplifier inverting input and overrides the OR gate action to provide a logic 0 at the amplifier output. A limitation in this circuit is the low threshold to the AND gate, with input levels rising above about 0.4V bringing D2 into conduction i.e. 0-level noise margin is small.

- If the inputs of the original circuit are linked the result becomes a simple and readily-controlled window comparator. Replacing the paralleled resistors by single resistors the simplified form of Fig. 3 is obtained. For low input voltages both amplifier outputs are low. At some intermediate value, the lower threshold voltage V1, output X goes high assuming R2/R1 < R3/R4 (Fig. 4). Output Y remains low. At the upper threshold output Y goes high driving X low. At some still higher input voltage a suitable choice of R3, R4 also allows X to go high again if required as the current in R3 continues to increase while that in R4 is restricted to <V/R4.
Phase-locked loop

Circuit description
There are three identifiable subsections to this phase-locked loop. The first is a phase-detector which receives one input from the signal source and one from the square-wave output of the voltage-controlled oscillator. The output of the phase detector, when the oscillator is locked to the signal source, is a negative-going pulse train of the same frequency but of mark-space ratio dependent on the phase difference between the two waveforms (see circuit modifications). Smoothed by a simple RC filter, a direct voltage results that controls the rate of charging of a capacitor in the second subsection, the integrator. When the output voltage from the integrator reaches a critical level it causes a change in level from the output of the third subsection, a Schmitt-trigger circuit. This switches the transistor reversing the net current into the integrator and with it the direction of charging until the second trigger level is reached. This completes the cycle of the v.c.o., and if its frequency is close to that of the incoming signal, locking is achieved.

If the incoming signal changes its frequency slowly, the resulting phase difference produces a corresponding change in the direct voltage that controls the v.c.o. i.e. the frequency changes, remaining in lock, but with a new value of phase difference. If the frequency difference between the input and the v.c.o. becomes too great or if either varies too rapidly, locking can be lost. The lock-in range with this circuit is over a frequency range of about 2:1 while the capture range is somewhat smaller. In summary, frequency modulation of the signal source, if slow enough, produces pulse-duration modulation at the phase detector output. After filtering, which converts this p.d.m. into a varying direct voltage, the v.c.o. is frequency modulated causing it to track the original frequency variations of the signal.

Component changes
Schmitt: R6, R7. Design ranges are indicated on set 17 card 6. One change would be to design for smaller hysteresis. Increasing R7 reduces the positive feedback to achieve this.

Integrator: To operate at low frequencies R3, R4 may be increased. This disturbs the frequency stability of the v.c.o. if used in a free-running mode, but closure of the feedback loop via the phase detector accommodates this at the expense of drift in the phase difference.

Filter: If the signal is expected to change frequency only slowly if at all, the filter time-constant can be increased with advantage.

Circuit modifications
- Because the phase-comparator has an output with a minimum mark-space ratio of 1:1, the mean output voltage swings over the range -V/2 to +V allowing a maximum frequency range for locking of about 2:1 assuming a linear v.c.o. By introducing an amplifier this range can be increased to any desired extent since the amplifier may be biased to give an output →0 i.e. the v.c.o. frequency may be driven to a very low value while lock is retained (Fig. 2).
- Phase difference between the received and generated signals is frequency-dependent since at any given frequency there is a specific direct voltage required by the v.c.o. and hence a specific phase difference at which the phase comparator can deliver that voltage. If the filter is replaced by an integrator with a pre-set bias, then provided the integrator has a high gain (approaches the ideal integrator), its mean output takes up a value appropriate to the incoming frequency, while the phase difference can be controlled by varying R (35k to 70kΩ to provide phase differences from 0 to π with values shown in Fig. 3). This is because the net current into the integrator →0 when the output is to remain constant.

Typical performance

+V: +10V
R1, R2, R4: 33kΩ
R3: 68kΩ
R5, R6: 1MΩ
R7: 470kΩ
R8, R9: 1.2MΩ
C1: 0.1µF
C2: 1nF
Tr1: BC125
Capture range: 390 to 580Hz
Lock-in range: 320 to 660Hz
Vdc, over lock in range: 4.3 to 8.4V

Design

Set 18: c.d.as—measurement, detection—
Transducer driving

![Diagram of transducer driving circuit]

Typical performance

+\(V \): +10V

\(R_1 \): 10\(\Omega \)

\(R_2 \): 100\(\Omega \)

\(V_i \): >+10V

Circuit description

Where the input signal is from a transducer which has a floating and preferably low resistance output, the circuit shown gives a convenient means of setting the trip points symmetrically about the zero-voltage state of the transducer. With the output at zero and \(R_1 = R_2 \), the net current into the amplifier is \(V(1/R_1 - 1/R_2) \). With the output at +\(V \) the net input current is \(V(1/R_1 + 1/R_2) \). With the above conditions these currents reduce to \(\pm (V/R_1) \) respectively. The input sensitivity/impedance depend on \(R_1 \), \(R_2 \) increasing the former reducing the latter. Sensing of signals \(\leq 100\text{mV} \) is not recommended but the circuit has reasonable rejection of high frequency noise/strays because of the relatively large input resistances used together with the effective input capacitance (said to be around 2nF by the manufacturer).

![Diagram of transistor circuit]

Typical performance

+\(V \): +12V

\(R_1 \): 600\(\Omega \)

\(R_2 \): 100\(\Omega \)

\(V_i \): >+10V

Circuit description

The normal sink current is provided by a constant current stage of about 1.3mA. An additional internal transistor when over-driven can provide an output sink current of up to 30mA with a reasonable saturation voltage (>0.5V). This output current depends on the combined current gains of two internal transistors, allowing input currents as low as 100\(\mu \)A to provide sufficient drive. Output current is sufficient to drive small filament lamps and relays. As usual to protect the amplifier against reverse voltage spikes on switch-off a parallel diode is added. Driving of I.E.Ds requires precautions since the device p.d. is \(\approx +V \) leaving a large amplifier dissipation at high supply voltages. Either reduce supply voltage or use resistance in series with I.E.D. to limit current.

Typical performance

+\(V \): +10V

\(R_1 \): 10\(\Omega \)

\(R_2 \): 470\(\Omega \)

\(R_4 \): 100\(\Omega \)

\(R_L \): 4\(\Omega \)

Circuit description

A single transistor with a current gain in saturation of >10 increases the load drive capability to >250mA. Resistor \(R_4 \) is included to minimize the p.d. across the amplifier output transistor when switched to the low state. Feedback via \(R_4 \) to the inverting input provides positive feedback for sharply defined switching (because of additional inversion by the transistor). Output swing can be to within a few hundred millivolts of the supply with a suitable power transistor and this allows for a well-defined hysteresis. The value of \(R_4 \) is reduced to allow sufficient input current to the amplifier to hold the required output state as the switching point is approached. If hysteresis is not required, \(R_4 \) is eliminated and \(R_1 \) reverts to the value used in the previous circuit i.e. that value that results in an input current of about 0.1mA at the given size of input pulse.

Cross references

Set 17, cards 2, 4, 8.
Set 16, cards 2, 3, 5, 6.
Set 17, card 6.
Circuit description
One application to which the matching characteristics of the amplifiers can be applied is the testing of semiconductor devices. To find the d.c. characteristics of a zener diode for example, the current should be defined (or measured) and the terminal p.d. measured over a wide range of currents. If the currents are low then this makes the measurement of voltage more difficult. In the circuit shown the direct current in the diode is given by \(I_{\text{diode}} / R_1 \) where \(V_{\text{be}} \) is that of the amplifier input transistor. At very low currents the diode carries the 30-nA amplifier input current as well. If the amplifier output voltage to ground is measured it gives the zener voltage after subtraction of the \(V_{\text{be}} \) term. Output impedance is low even at low zener currents, simplifying the voltage measurement. For these amplifiers the \(V_{\text{be}} \) term is little dependent on the feedback current (though somewhat more so on the output voltage).

As the zener voltage is substantially constant, the \(V_{\text{be}} \) voltage can be conveniently measured when operating at a relatively high current yet will be valid for the lower currents. It is not necessary to make these two separate measurements since there are other amplifiers in the package with almost identical \(V_{\text{be}} \) values. One of these amplifiers is biased as shown and the voltage measurement taken between the two outputs. These are both low impedance points allowing a wide choice of voltmeters without significant loading. Matching between the amplifier \(V_{\text{be}} \) values is not perfect and improvement follows from operating the amplifiers at equal currents i.e. by placing equal resistance values to ground. By superposing an alternating voltage of peak-peak value \(< V_{\text{be}} \) at the input, as from a generator whose internal d.c. resistance \(= R \), an a.c. current is defined in the device under test. The alternating voltage at the output then gives a measure of the dynamic or slope resistance of the device.

Component variations
+ V: Must be \(> (V_2 + 2V) \) to allow for amplifier \(V_{\text{be}} \) plus output saturation voltage. Not critical within these limits. Rejection of supply changes improved when using compensating amplifier (to as little as 1\(\mu \)V/V effect on \(V_{\text{be}} \) differential).

\(R_1 \): 500\(\Omega \) to 10M\(\Omega \). The range corresponds to maximum output current of about 10mA down to minimum current of 50nA. At this lower level accuracy is poor because of amplifier input current of 30nA. If \(V_1 \), the input alternating voltage, is kept constant as \(R \) is varied, then since \(V_{\text{be}} \) is substantially constant, the alternating current superposed on the d.c. remains a constant fraction. With zener diodes operated in their normal region the zener voltage varies little, any variation in slope resistance shows clearly in the variation of the output a.c. component. \(V_1 \): Peak-peak voltage \(< V_{\text{be}} \). Typical values of 0.1 to 0.3\(V_{\text{be}} \).

Circuit modifications
- To define the current accurately it is not enough to rely on the constancy of the input \(V_{\text{be}} \) particularly if the temperature is subject to variation. A simple alternative is to take the resistor to the negative supply rail (if available) through a diode to give compensation against the remaining small effect of \(V_{\text{be}} \) variations (Fig. 1).

- Fig. 2 circuit varies the d.c. resistance to ground from the amplifier input terminal in 10:1 steps. The equivalent alternating voltage generated in series with this resistance is about 110mV pk-pk or about 20% of the \(V_{\text{be}} \) value. Current range as shown is 100nA to 10mA.

A p-n-p transistor may have its \(V_{\text{be}}/I_c \) characteristic plotted using a similar arrangement. Collector current is defined with the emitter taken to the output of one amplifier, the base to the other. \(R_2, C_1 \) control the h.f. characteristics to maintain stability. By varying \(R_2 \), the \(V_{\text{be}} \) value for the transistor can be controlled to show the small effect of \(V_{\text{be}} \) on the \(I_c/V_{\text{be}} \) characteristics; n-p-n transistors cannot be dealt with so simply using this form of circuit.
Negative resistance

A potent tool in the design of oscillators and certain classes of active filters is the negative-resistance circuit, which may also be a particular case of a negative-impedance converter. A previously described constant-current circuit may be adapted to give a controlled negative output resistance, by allowing the overall positive feedback to exceed the negative feedback. The circuit remains stable only when the external load re-establishes the supremacy of the negative feedback. In the circuit shown, a short-circuit load eliminates the positive feedback altogether indicating that the circuit is short-circuit stable. For $R_2/R_1 > R_1$, the open-circuit load condition has excess positive feedback and switching of the output would occur. For intermediate values of R_1, the load current as defined by the voltage V and potentiometer setting k is observed to fall as the load-resistance is reduced. For the values shown, $R_2 = 10k\Omega$ gives the limiting case of output resistance $\to \infty$, and increasing values of R_2 produce a negative resistance of falling magnitude. Maximum current in the load is restricted to about 2mA with $k=0.5$ but the amplifier itself restricts the current to around 10mA regardless of the resistance values chosen. In principle, emitter followers can be added at the amplifier output with all the resistor values lowered to increase the drive capability, but for most applications it is the small-signal performance that is of interest.

Circuit description

Typical performance

IC: LM3900

$k = 0.5$

R_1, R_2: 10k\Omega

R_3: 15k\Omega

Dynamic output resistance: $-9.3k\Omega$

$V_+: +15V$

$V: 5.3V$ (set for output current of 1mA with R_2 trimmed for output resistance $\to \infty$)

Component changes

R_1, R_2, R_3: It is often convenient to have these equal. Minimum value is dictated by loading effects on output and would not generally be much below 10kΩ. Negative slope resistance available is comparable to these values.

R_2: Controls the slope of the resistance, together with the tap on R. Range 10 to 20kΩ, $k = 0.2$ to 0.8. For application suggested later, where only small negative resistance effect required $k=0.5$ is satisfactory. $V_+: +4$ to $+36V$. Normal operating range for amplifier.

V: Used to set the output current to some range over which R_2 controls the negative slope $+1V$ to $+8V$ for $V_-, -15V$.

Circuit modifications

- A typical application is to introduce a negative slope resistance into a circuit normally used as a constant-current source. This may be either to overcome some positive resistance due to leakage paths etc., or simply to modify the waveform produced in a generator. Here the circuit provides the charging current to a capacitor that is part of an astable circuit having some similarity to a unijunction oscillator (Fig. 1). Capacitor imperfections plus external resistors would result in a ramp whose dV/dt fell at higher amplitudes. By increasing the negative slope, more current is fed into the capacitor as the p.d. across it increases. This can linearize the slope or with over-compensation cause the slope of the waveform to increase at higher voltages.

- For other applications a direct equivalent of the negative-impedance converter is required. In Fig. 2 the voltage gain of the amplifier is $+2$. Hence the voltage appearing across the resistor R' is equal to the input voltage in magnitude but in a sense that returns a proportional current to the source. This leads to an input resistance of $-R'$ (shunted by $+R$ where R can be up to 10MΩ is required representing a small error).

- The previous circuit is short-circuit stable in that a low source resistance ensures that the positive feedback is bypassed, leaving the negative feedback in control. With the alternative configuration in Fig. 3, the negative feedback overrides the positive feedback provided the source impedance is greater than R'. Additional bias resistors from the amplifier inputs to the positive supply line may be used to set desired output quiescent levels.

Cross references

Set 3, card 8.
Set 6, card 6 (AC constant-current circuits, see note on front).
Set 17, card 5.
Peak/mean rectifiers

Circuit description
The mean value of an alternating voltage can be obtained by rectifying the signal (half or full-wave) and applying the resulting output to a mean-sensing instrument such as a moving-coil meter. Alternatively the rectified waveform may be filtered and applied to a d.c. voltmeter (including a d.v.m.). In each case one or more diodes or transistors are required to perform the rectifying function, and they introduce two related errors into the response of the circuit. Non-linearity in the diode causes a corresponding non-linearity in the transfer function. In particular, at very low levels the signal is insufficient to bring the diode into conduction. This gives an offset to the transfer function. If other diode effects can be added, then the offset together with its temperature drift can be largely cancelled. Rectification of signals below about 0.5 V r.m.s. is still impossible but above this level the error can be small.

In the circuit shown the amplifier integrates the difference between the currents caused by the rectified input signal and the mean voltage at the transistor collector. For a particular value of R_1/R_2, the diode and V_{be} drops provide partial cancellation, and the transistor collector potential becomes a linear function of the mean half-wave rectified input. (Although the slope if extended would pass through the origin, rectification of low-level signals cannot be achieved with this circuit.) The value of R_4 obtained empirically for this circuit differs somewhat from that previously proposed for the related section of the Wien bridge oscillator. The values of R_4, R_5 can be adjusted over a wide range to accommodate differing load resistors/meters etc while the capacitor can be increased to give adequate smoothing for frequencies <1 Hz. At high frequencies partial peak rectification may occur in the input section because of stray capacitance while shunt capacitance across R_1 will increase the input current. A slowly rising response is observed up to 1 MHz.

Component changes
$+V$: Not critical, provided it is (V_o+1V). For higher output currents R_5 would become too low if supply/output differential is too small. T_1: Any silicon n-p-n small-signal transistor. No significant h.f. response required because of integrating action of C on rectified waveform. R_3 sets input impedance and should be high to minimize loading on source (important because of non-linear input impedance). If too high then capacitive strays become more significant. 100k to 10MΩ. R_4: Ratio to R_1 sets optimum slope to minimize offset effect. Empirical result suggests $R_4/R_1 \approx 1.25$, manufacturers suggest $R_4/R_1 \approx 1.6$ for similar circuit. R_5 has to carry maximum meter current at maximum output voltage i.e. should be $<10k\Omega$ for 1mA meter movement at 5V full-scale and 15V supply. R_7: Not critical, avoids excessive non-linear loading on amplifier output. 3.3k to 33kΩ. C sets degree of ripple reduction at low frequencies. $C>22\mu F$ is necessary for $f<1$ Hz if needle flutter is to be reasonable. C may be $<1\mu F$ for higher frequencies (self-inductance of electrolytes may cause problems at h.f.) D_1: Small-signal silicon diode.

Circuit modifications
- A very simple alternative circuit is that used for the basic tachometer (see also set 17 card 2). In this (Fig. 1) the input transistor of the amplifier non-inverting input provides the rectifying action directly. Reverse half cycles inject current into the damping circuit which may cause disturbance to the other amplifiers in the package. A low voltage-drop diode (germanium, Schottky) may be used to absorb this reverse current but leakage effects with germanium would force the use of lower resistance values. The mean current in the two inputs will become comparable because of the negative feedback while the capacitor removes the ripple as before.
- A peak detector with gain is shown in Fig. 2, in which the capacitor is charged until the current in R_4 equals the sum of the currents in R_5 and R_1 taken at the positive peak of the input voltage. At all other points in the cycle, the diode is non-conducting and some loss of charge takes place through R_5. Resistor R_9 provides a small forward bias. Resistor R_9 cannot be increased greatly without introducing a large error term due to the amplifier input current. The diode is within the feedback loop and the error term due to the diode drop -0 at low frequencies. Amplifier slew-rate limiting prevents the circuit from approaching the frequency response of the previous circuits.

Cross references
Set 4, cards 2, 3, 5, 9, 10. Set 9, card 12. Set 17, cards 2, 3.
Sample and hold circuits

Circuit description

If an ideal integrator is incorporated into an overall d.c. feedback loop, then the capacitor charges until it provides an output voltage equal to (or some set multiple of) the input voltage. It introduces a time delay into the loop by virtue of the maximum charging current that can be provided by the amplifiers and so the speed of response of the amplifier is limited. If the loop is interrupted at any instant such that the integrator input current is reduced to zero, the p.d. across the capacitor remains substantially constant at the value corresponding to the input just prior to that interruption i.e. the signal can be continuously or periodically sampled with the facility to hold the value of the input at any required instant. Amplifier input currents, capacitor leakage etc cause drift in this held value but with care drifts of < 5% are possible for periods of 5 to 30 minutes with simple circuitry. With the control input low (sample mode) the integrator receives current to its inputs via R_1 and R_2/D_1. It integrates the difference between those currents until the currents in R_1, R_2 are substantially equal, bringing v' into its linear region. Any increase in v_1 raises v' and hence the current into the integrator non-inverting input until v_0 tracks the charge in v_1. Allowing for an ideal current mirror at the amplifier input $v_{in}v_0=v_Rv_0$, though v_{be} effects only cancel well for $R_2=3.3k\Omega$ and the hold mode currents in R_3, R_4 are grounded and the only currents affecting v_0 are the amplifier input current plus capacitor leakage.

Component changes

R_2: Sets input resistance. If too high then amplifier input current becomes significant. 100kΩ to 10MΩ.

R_3: $R_2=R_1$ gives best compensation against v_{be} drifts, but unequal sensitivities at two inputs can be compensated for by trimming the ratio for $v_0=v_1$ at maximum output.

R_4: Set for sufficient current at v' maximum to override current in R_4. Typically $R_4 \approx 0.5$ to 0.8 R_5. Maximum current should not exceed, say 5mA; too low a current restricts maximum rate of charge.

R_5: R_5: In conjunction with hold/sample pulse must be sufficient to saturate Tr_1, Tr_2.

D_1: Low reverse leakage diode for least error in hold mode. C_1: High value increases time-constant for minimum drift in hold mode. High-leakage capacitors unsuitable, since leakage should be $< 30nA$ if capacitor is not to be limiting feature of circuit. Too high capacitance slows down charging rate forcing longer sample period.

Circuit modifications

- The four amplifiers in the package are closely matched, and the input current of one can be used to generate an output voltage that drives a comparable current into the other. Trimming the $2M\Omega$ resistor (Fig. 1) compensates for input-current induced drift while over-compensation can be used to minimize the additional leakage in C_1, D_1. Compensation can be exact at only one combination of C_1, temperature output voltage etc, but with care the output can remain stable to within 1% for several minutes using low cost capacitors.

- By using only one of the switching transistors, Fig. 2, the sample mode remains unchanged, while in the hold mode only input voltages below the stored value are ignored i.e. the output voltage is updated each time the input exceeds its previous peak value, holding the new peak pending any further increase. It is a form of peak-reading voltmeter.

- Using the other switching transistor (Fig. 3), then with the pulse input low the transistor is non-conducting and the sample mode is attained. When the pulse input is high the amplifier output is driven to its zero state regardless of the input.

Cross references

Set 4, card 7.
Set 11, card 11.
Set 18, card 7.

Typical performance

V: +15V

R_1, R_2: 1MΩ

R_3: 22kΩ

R_4, R_5: 47kΩ

R_6: $33kΩ$

C_1: 0.1µF

D_1: 1N4148

Tr_1, Tr_2: BC125

Input range: +1 to +14V

Output drift: +0.2V/s

in hold mode
High-frequency circuits

Component variations

+V: Normal supply range for amplifier. Higher voltages allow higher input bias current for given value of R_3. Hence input resistance at non-inverting input falls allowing gain to approach more nearly to R_2/R_1.

R_4: Sets input impedance; add on input resistance of non-inverting input $r_i \approx 25k\Omega/bias$, where I_{bias} is current in R_4. R_4 is $1k$ to $10k\Omega$.

R_5: Sets bias as $I_{bias} = +V/R_5$ and direct output voltage as $+VR_4/R_5$. Range 100k to 1MΩ.

R_6: Sets gain in conjunction with R_1. For $R_1 \rightarrow 0$ overall voltage gain $\rightarrow 20 \times$ magnitude of supply voltage in volts.

C_1, C_2: Chosen in conjunction with R_2 and load resistance to define low-frequency cut-off. Typically 0.1 to $10\mu F$.

Circuit modifications

- The non-inverting input is a current mirror with the input transistor behaving as an almost ideal p-n junction having transconductance g_m of 40mA/V (mS) at a current of 1mA with g_m proportional to the bias current. The exponential characteristic restricts the signal swing to a few millivolts if distortion is to be minimized. Such an input stage can be added to other amplifiers provided that the direct voltage at the amplifier input keeps V_{TR} out of saturation (Fig. 1).

- A second high frequency application takes advantage of this diode non-linearity, by injecting two high frequency signals at f_1, f_2. If the difference in frequency between these signals lies within the amplifier gain range and the amplitudes are large enough to give significant distortion products then a term at $f_1 - f_2$ appears at the amplifier output. Other terms f_1, f_2, $f_1 \pm f_2$ etc lie outside that range and the circuit has acted as a non-linear low-frequency mixer (Fig. 2).

- An alternative input is shown in Fig. 3 for use with signals of widely differing amplitude and is convenient for determining the frequency of an unknown signal in the low r.f. range if a large amplitude signal of comparable frequency is available; $(f_1 - f_2)$ is then measurable on audio-frequency equipment.

Cross references

Set 12, cards 1, 3, 8, 9,

Typical performance

+V: 10V

R_1: 1kΩ

R_2: 220kΩ

R_3: 100kΩ

C_1: 10μF

C_2: 1μF

Voltage gain: 60 @ 100kHz

Input impedance: 1.5kΩ

Output impedance: 100Ω
Tachometers

Circuit description
A tachometer using both inputs of the current-differencing amplifier can reduce the ripple in the output voltage for a given frequency. It has some similarity to the diode pump circuit, in which the two diodes are D1 and the equivalent input diode at the non-inverting input. When the input goes positive the amplifier input diode is driven into conduction and capacitor C1 charges through R1 until the p.d. across it is (V1 - Vbe), assuming that the positive peak is held for a time appreciably greater than R1/C1. The current mirror action at the amplifier input ensures that an equal current flows in the inverting input, causing C2 to charge with the output going positive. When the input returns to its most negative voltage, D2 comes into conduction and C1 discharges. Current drawn through R2/C1 is in the same sense in both cases i.e. the effects of charging and discharging C1 are additive at the output, doubling the effective frequency of the pulses. The mark/space ratio of the pulses is not important and need not even be constant provided only that the duration of each is sufficient to allow complete charge/discharge.

Overall sensitivity is controlled by C1 and R4 with R1 serving to limit the peak input current and C1 to smooth the d.c. In each cycle C1 gains and loses charge of C1V1. This corresponds to a net current in R1 of about 2C1V1 if f is the repetition frequency, a factor 2 coming from the fact that R4 has to carry current corresponding to the direct discharge of C1 via D1 and also a current equal to the charging current because of the current mirror action as outlined above. Hence the mean output voltage is \(\approx 2/C1V1R4 \) ignoring Vbe effects. The time constant C1R4 should be > period of waveform for low ripple.

Component changes
R1 limits peak current to < 1mA and preferably 100µA or less for high temperature operation. If too high prevents completion of charge/discharge cycles at high frequencies C1R1 < 0.1f.
C1 sets sensitivity contributing two units of charge C1V1 on each cycle to the output.
100µF to 1µF
R4: Average current flow in R4 is equal to the average of the charge gained and lost by C1 as above. Because amplifier input current is low a mean current in R4 of about 1µA is still sufficient to give moderate accuracy i.e. R4 can be as high as 10MΩ but better accuracy for values of 1MΩ or less.
C1: Time constant R4C1 determines ripple remaining on output with R4C1 > 1f/ for minimum ripple. C1 must be low leakage or leakage resistance will cause loss of accuracy 0.01 to 1µF.
D2: Not critical. Any silicon diode.

Circuit modifications

- Transfer function of circuit is linear but passes through the transposed origin. The offset has good temperature compensation (Fig. 1).
- Simpler tachometer circuits are possible with some relaxation in specifications. For input pulses of defined width t1 and current I, the mean current in the resistor R must be equal to that at the non-inverting input by current mirror action i.e. \(I_R \approx I1 \) and the output voltage smoothed by C is \(V_0 \approx I1R \). If the pulse width remains constant then \(V_0 \propto f \). No current flows in the non-inverting input when the input signal is at zero (Fig. 2).
- The output may be made to pass through zero by adding a diode at the output inside the feedback loop and with common-mode biasing. A load resistance \(\leq 200kΩ \) should be present to ensure that the current in R1 can flow to ground while developing a very small voltage (Fig. 3).

<table>
<thead>
<tr>
<th>Typical performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1: ±5V</td>
</tr>
<tr>
<td>V1: 5V pk-pk</td>
</tr>
<tr>
<td>R1: 10kΩ</td>
</tr>
<tr>
<td>R4: 1MΩ</td>
</tr>
<tr>
<td>C1: 1nF</td>
</tr>
<tr>
<td>C4: 0.1µF</td>
</tr>
<tr>
<td>for f: 500Hz,</td>
</tr>
<tr>
<td>v0: 2.78V</td>
</tr>
</tbody>
</table>

Cross references
Set 3, card 3.
Set 13, card 6.
Set 14, cards 6, 9, 10.

![Fig 1](image1.png)

![Fig 2](image2.png)

![Fig 3](image3.png)
1. In any signal-processing circuit, the input may contain transients which might damage the amplifier or interfere with its operation by saturating it etc. The usual technique of adding a pair of back-to-back diodes across the input with a resistive limiter is equally applicable to these amplifiers. It is shown preceding a Schmitt trigger, and clips the input to an approximate square-wave which is then applied to the Schmitt to produce a square-wave almost equal to the supply in amplitude.

2. Two other circuits help to augment the range of functions available to users of current-differencing amplifiers. In addition to active filters as usually understood there are amplifiers with defined frequency responses, i.e. having a number of low frequency and high frequency time-constants often widely spaced. These can be realized using purely passive networks though loading of one by the other can be a problem. The circuit illustrates a combination of lead and lag networks, with C_1, C_2 reducing the gain at low frequencies and C_3 reducing it at high frequencies. Such circuits are useful in audio frequency instrumentation when a response matching various CCIR, NAB, BS or DIN curves are required. In such applications information may be needed about the peak-peak value of the signal after such processing. An example is in the measurement of wow and flutter for a tape recorder, and the meter drive circuit shown is a simple solution.

3. Where many current differencing amplifiers are to be checked, the circuit shown can help. Each amplifier is connected to a l.e.d./transistor combination such that the transistor has to force a current into R (and hence the l.e.d.) sufficient to raise the inverting input to 0.5V, its normal value for linear operation. With $R = 100\,\Omega$ the 5mA current in the l.e.d. brings it to the level of visibility. A gross failure with either drive the output high (l.e.d. bright) or low (l.e.d. off). A more detailed check is to compare the potentials at the inverting inputs—these points have a low resistance to ground because of the $100\,\Omega$ resistors, and the meter used need only have a sensitivity capable of registering a p.d. of a few millivolts but its resistance is not critical. The matching between inputs on a given chip is quoted in the reference article as typically 2mV and between different amplifiers from a production batch as 20mV.

Reference
Set 19: Monostable circuits

Monostable circuits, often referred to as multivibrators, can take various forms. The term multivibrator seems to have been used for Abraham and Blochs astable two-triode circuit of 1918, and the related bistable Eccles-Jordan circuit of 1919. Flip-flop or monostable circuits were developed a few years later, for example the 1926 transitron of van der Pol. Many of the early circuits used two timing capacitors, being derived from the a.c.-coupled multivibrator, but all of the monostables described in this set of cards use one timing capacitor. The most well-known arrangement (card 1) can be thought of as derived from the cross-coupled bistable circuit, with one resistive coupling replaced by the timing capacitor.

Recovery time is often too long with this straightforward circuit. Cards 1 & 2 show a complementary arrangement that has short recovery time \((RC/\beta)\), but a possible disadvantage is that both transistors conduct in the quiescent state. Other methods are shown in the article, e.g. use of a diverting diode to prevent saturation (Fig. 3), addition of an emitter follower as shown in Fig. 4, and a circuit in which the on and off transistors are transposed, Fig. 6 (see also card 10). Emitter-coupled circuits, card 6, have the advantage of isolating the output point from the remainder of the circuit.

As with the astable circuits of set 8 this collection includes t.t.l. circuits (card 4), op-amp circuits (card 3) and circuits using c.m.o.s. devices (cards 5 & 8). Long delay circuits use the D-type flip-flop or unijunction transistors (card 8) and improved duty cycle is obtained with the circuits of card 10. A voltage-variable delay is provided by the circuits of card 7 of around 7 to 90\(\mu\)s and 40 to 200ms.

Basic discrete-component circuits 1
Complementary circuits 2
Op-amp/comparator circuits 3
Monostable using t.t.l. gates 4
Compensated c.m.o.s. circuits 5
Emitter-coupled circuits 6
Voltage-controlled monostables 7
Long-delay circuits using c.m.o.s. and unijunction devices 8
Dual monostable applications using 555 timer 9
High duty-cycle monostable 10
The monostable . . .
doth give us pause

Not quite the words of Hamlet, but delay is one outstanding property of the monostable circuit. De Bono, in *The Mechanism of Mind*, could be describing another function of the circuit when he writes, “a short-term memory is just a way of extending the influence of an event beyond the real time of its occurrence along the dimension of time”, e.g. a monostable will accept a transition at its input and respond with an output pulse, but for a finite time. A more formal description of the monostable (sometimes called a one-shot) is a circuit having one stable state in which it remains until triggered by an external signal into a quasi-stable state, where it remains for a time determined by circuit parameters and subsequently returns to its stable state. This basic action allows the monostable to be used for a variety of purposes such as lengthening, delaying and regenerating pulses, sequential timing and delay applications and frequency division.

The nature of the monostable circuits can be widely different because they can be designed using n-p-n and p-n-p bipolar transistors (in cross-coupled emitter-coupled and complementary modes), field-effect transistors, operational amplifiers, discrete and integrated-circuit logic gates, as well as purpose-designed monostable integrated circuits.

A very common type of monostable uses a cross-coupled configuration which can be thought of as being a modification of a symmetrical bistable where one resistive coupling is replaced by a capacitive coupling. Two possibilities are available; the timing capacitor can either be connected between the collector of a normally-off transistor to the base of a normally-on transistor, or between the collector of a normally-on transistor and the base of a normally-off transistor. Fig. 1 shows a circuit of the first type and Fig. 2 the associated current and voltage waveforms.

Transistor Tr_1 is in a stable on state, until triggered, due to the base drive supplied through R_7. Transistor Tr_2 is held in a stable off state as R_5 is connected to Tr_1 collector which is at the low saturation value of V_{ces} and R_3 is returned to the negative V_B rail. When a positive-going trigger pulse is applied to Tr_1 base via C_1, this transistor turns on causing its collector voltage to fall to almost zero.

Because the charge on C_j cannot change instantaneously, this negative-going transition is passed to Tr_2 base which switches off. The transistors remain in these states while the charge on C_j changes via R_j causing v_{be_2} to rise exponentially towards $+V_{cc}$. When v_{be_2} passes through zero and rises positively to a value depending on the type of transistor used, which causes base current to flow in Tr_2, this transistor begins.

![Fig. 1. A common monostable can be thought of as a bistable circuit with one resistive coupling replaced by a capacitive coupling. Two can be connected as shown.](image)

![Fig. 2. Waveforms associated with circuit of Fig. 1.](image)

![Fig. 3. Switching speed of Fig. 1 circuit is improved by preventing saturation with diodes D_1 and D_2. Clamping diode D_3 reduces recovery time by connection to a supply less than V_{ee}.](image)
to turn on. The resulting fall in \(v_c\) is coupled to \(Tr_7\) base via \(C_1\), \(Tr_7\) beginning to turn off; the regenerative feedback via \(C_2\) and \(C_7\) causes the circuit to return to its stable state of \(Tr_7\) off and \(Tr_1\) on, the capacitor \(C_1\) recharging through \(R_3\).

The switching speed of this kind of circuit can be improved by using higher speed switching transistors in a non-saturating circuit. To prevent saturation, germanium diode \(D_1\) and silicon diode \(D_2\) can be added as shown in Fig. 3. When \(Tr_7\) begins to turn on, to return the circuit to its stable state, \(D_1\) will be reverse-biased until \(v_{ce}\) falls below \((V_{be2} + V_{PD})\) causing the excessive base drive current, which would otherwise saturate \(Tr_7\), to be diverted through \(D_1\).

Two series-connected germanium diodes can be used in place of the silicon diode \(D_2\). The waveform at \(Tr_1\) collector can have a slow recovery time, especially when driving capacitive loads, and this can be reduced by the addition of the clamping diode \(D_2\) returned to a supply \(V_{CC}\). The output voltage \(v_{cc}\) attempts to rise towards a higher value with \(D_1\) present but becomes clamped at \((V_{cc} + V_{PD})\) when \(D_1\) conducts.

Another method of reducing the recovery time is to include an emitter follower between \(R_1\) and \(C_1\) of Fig. 1, as shown in Fig. 4. As \(C_1\) is charged to almost the supply rail voltage, the emitter of \(Tr_7\) is normally close to \(+V_{CC}\). The input trigger pulse switches the circuit to its quasi-stable state and as the charge on \(C_1\) changes, the emitter voltage of \(Tr_7\) rises above its base voltage \((v_{ce}\) on) cutting the transistor off. When \(Tr_7\) again begins to conduct, the circuit returns to its stable state with \(C_1\) being rapidly recharged by the emitter current of \(Tr_7\).

The output from \(Tr_1\) collector can be made to more closely approach a rectangular pulse by the inclusion of an isolation diode \(D_1\) as shown in Fig. 5. When \(Tr_7\) is on, the collector current flows through \(R_1\) and \(R_2\) in parallel and a faster recovery time is achieved by making \(R_1 < R_2\), so that as \(Tr_7\) switches off, \(D_2\) is reverse biased and \(C_1\) recharges more rapidly, through \(R_1\), than in the circuit shown in Fig. 1. Other methods of triggering this type of monostable include negative pulses to either \(Tr_1\) collector or \(Tr_7\) base or positive pulses to the base of another transistor having its collector and emitter respectively connected to \(Tr_7\) collector and emitter.

Another form of the cross-coupled monostable is shown in Fig. 6. The major difference compared with the foregoing circuits being that \(Tr_7\) is on and \(Tr_7\) is off in the stable state. This is achieved by correct choice of the potential-dividing chain and by \(D_1\) being forward biased via \(R_1\), holding the base-emitter junction of \(Tr_7\) reverse-biased. A negative-going input trigger pulse causes \(Tr_7\) to go off and hence \(Tr_7\) to switch on and to remain in that state as \(C_1\) charges, part of the charging current being base drive to \(Tr_7\). Diode \(D_1\) is reverse-biased in this quasi-stable state which ends when the base drive to \(Tr_7\) has fallen to a level which will not maintain conduction. Transistor \(Tr_7\) then switches off causing \(Tr_7\) to return to the stable on state.

No output is taken from \(Tr_7\) collector as a load at that point significantly changes the off time of \(Tr_7\). This circuit has a much faster recovery time than the previous ones discussed.

A cross-coupled monostable which besides producing a time-constant-dependent output pulse may provide one due to the input pulse duration is shown in Fig. 7. In the stable state \(Tr_7\) is on and \(Tr_7\) is off, so when a short-duration trigger pulse is applied via \(D_1\), the circuit remains in its quasi-stable state for a time determined largely by \(C_1/R_7\). However, when a long input pulse is applied, \(Tr_7\) will remain off until the input is removed even if \(C_1\) completes its discharge during that interval.

Fig. 8 shows an emitter-coupled monostable where \(Tr_7\) is on and \(Tr_7\) is off in the stable state. Compared with the cross-coupled circuits, this type has the advantages of only using a single supply and providing an output which is taken from a point having no internal coupling. When a negative-going trigger pulse is applied to \(Tr_7\) collector via \(C_1\), it is coupled to the base of \(Tr_7\) which switches off. The emitter output voltage falls allowing \(Tr_7\) to switch on for a time determined by that required for \(C_1\) to discharge sufficiently to allow \(Tr_7\) to begin to conduct. The emitter voltage then rises, causing \(Tr_7\) to begin to switch off, and the resulting rise in \(Tr_7\), collector voltage is coupled to \(Tr_7\) base which switches on, and \(Tr_7\) switches off to regain the stable state. Due to the presence of \(R_4\), the output voltage swing does not approach \(V_{CC}\) and the recovery time is not very fast, as \(R_3\) should be greater than \(R_4\) to ensure the correct switching action.
Fig. 7. This circuit produces an output pulse dependent on input pulse duration.

Fig. 8.Emitter-coupled circuit needs only one supply line and gives a more isolated output.

Complementary transistors enable both transistors to be normally off (Fig. 9, above) or normally on (Fig. 10, right). Opposite-polarity outputs are available from Fig. 10.

Recovery time can be improved by the addition of an emitter follower as was done in Fig. 4.

A monostable using a complementary pair of transistors, having both transistors off in the stable state, is shown in Fig. 9. A negative-going trigger pulse applied to Tr base causes this p-n-p transistor to switch on, its collector current in R, and R, causing the base of Tr, to go positive causing this n-p-n transistor to switch on also. The resulting collector current in R causes the output voltage to go negative and this change is coupled to Tr base through C, causing Tr and hence Tr, to be switched hard on. In this quasi-stable state C charges through R, and Tr towards \(-V_{ee}\) and when the charging current is insufficient to maintain conduction in Tr, this transistor switches off, as does Tr, and the circuit returns to its stable state.

Fig. 10 shows a complementary monostable in which both transistors are on in the stable state, and which provides a pair of opposite-polarity outputs simultaneously. A positive-going trigger pulse applied to Tr base turns both transistors off and after C, charges sufficiently, through R, and R, both transistors return to the stable on state regeneratively.
Basic discrete-component circuits

Typical performance

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>s</sub></td>
<td>5V</td>
</tr>
<tr>
<td>C<sub>1</sub></td>
<td>100pF</td>
</tr>
<tr>
<td>R<sub>1</sub></td>
<td>10kΩ</td>
</tr>
<tr>
<td>R<sub>2</sub></td>
<td>4.7kΩ</td>
</tr>
<tr>
<td>R<sub>3</sub></td>
<td>2kΩ</td>
</tr>
<tr>
<td>R<sub>4</sub></td>
<td>22kΩ</td>
</tr>
</tbody>
</table>

Min. trigger pulse width 0.5µs
Trigger pulse height in range 1.4 to 3.6V
Output pulse width τ_p depends on C₁R₃—see graph
Recovery time τ_r depends on C₁R₁—see graph
Output pulse height 4.6V

Circuit description

In the quiescent state with the trigger at 0V, Tr₃ is held on due to base drive via R₄. Point Q is therefore at zero volts and hence Tr₁ is off, its base being 0V. In receipt of the trigger pulse the base of Tr₁ is forced positive, Tr₁ conducts and its collector voltage drops. This is transmitted via C₁ to the base of Tr₂ and hence Tr₂ is forced off, raising its collector voltage. By potential division via R₃ and C₁, the base of Tr₁ is forced positive, thus forcing Tr₁ further into conduction. This positive feedback action forces a rapid change in state of both Tr₁ and Tr₂. C₁ then has one side at 0V, point Q, and the other side connected via R₃ to V_s. It thus commences to charge towards V_s. This continues until the potential at the base of Tr₂ reaches a value which causes Tr₂ to start conducting. Point Q then starts to fall in potential causing the base of Tr₂ to fall. This causes Q to rise, forcing the base of Tr₁ even higher and rapidly the two transistors change back to the quiescent state. Length of the output pulse depends on C₁R₃. See graph.

The original quiescent state is not reached until C₁ has returned to its original uncharged state. The discharge path is via R₃ and the base-emitter junction of Tr₂. Discharge time is what accounts for the recovery time, τ_r minus the minimum time after the output pulse trailing edge at which a further trigger pulse will give correct operation; see graph above.

Maximum trigger pulse height is fixed by the negative-going voltage applied to the base of Tr₁ on receipt of the trailing edge of the trigger pulse. If this is greater than the bias set by R₃ and R₄ then Tr₁ is switched off immediately and monostable action is prevented. Minimum trigger pulse height depends on C₂ and on the pulse rise time.

Circuit modifications

- Both of the above restrictions on the trigger pulse height may be reduced by applying the trigger pulse as shown Fig. 1. If this arrangement is used the min. pulse height should be about 0.7V and the maximum should be the breakdown voltage of the triggering transistor.
- A general-purpose diode e.g. 1N914 should be inserted in the base line of Tr₂ as shown Fig. 2, if the supply voltage used is above 6V or so which is the base-emitter breakdown voltage of most planar transistors. If this is not done the linearity of τ_p with respect to C is lost.
- If short recovery times are required between consecutive output pulses the circuit of Fig. 3 may be used. In the quiescent state both transistors are conducting, Q is low and Q is high. On receipt of the trigger pulse the p-n-p transistor (BC126) is switched off causing the base of the BC125 to fall in potential, thereby raising the voltage of Q and, via the 10kΩ resistor, the base of the BC126. The circuit thus latches into a condition where both transistors are off. Capacitor C₁ then charges via the 22k and 1kΩ resistors toward the supply and eventually turns the BC125 on and with it the BC126. Discharge of C₁ occurs more quickly in this case because the discharge path is through the collector-emitter junction of the BC126 and the base-emitter junction of the BC125. No external resistors are involved in this path as occurred previously. Hence, the circuit recovery time is considerably shorter.

Further reading

Complementary circuits

Circuit description
Monostable circuits using complementary transistors allow one to trigger either with respect to the positive supply line. In the circuit shown both transistors are non-conducting in the quiescent state. On receipt of a positive-going pulse at trigger point 1, Tr2 starts to conduct, dropping its collector voltage. This drop is transmitted via C to the base of Tr1 and hence Tr1 starts to conduct. This produces further base drive to Tr1 and pushes it further into conduction. Very quickly both transistors are fully conducting and the output, initially at V0 drops to 0V approximately.

Capacitor C, uncharged in the quiescent state, then begins to charge towards V0 via R3 and Tr2. When it reaches V0 = Vbe, Tr1 is cut off, Tr2 is cut on and the capacitor discharges via Di and R3 principally. Insertion of Di provides a low resistance discharge path giving a fast recovery time.

When Tr2 is cut off the output swings back to V0 so the output pulse period is determined by the charging time of the capacitor.

With the basic monostable circuit (card 1) the capacitor is, in the quiescent state, charged in one direction and this direction is reversed when triggered. Ignoring Vbe effects, the capacitor during charging is going from +V0 to -V0 and the 0V or 50% point is sensed to bring the circuit back to quiescence. Because one is sensing a particular percentage of the attempted swing, the time taken is not supply voltage dependent. This is not the case here since a particular voltage is being sensed; the graph over shows the variation of pulse width with supply voltage. This could conceivably be used to produce a voltage-dependent monostable action.

Component changes
Increasing the pulse height allows a reduced pulse width (trigger pulse). Reducing R4 to 4.7kΩ allows operation down to 6V and 0.1μs trigger pulse width. Value of R2 is not critical; R2 depends on Tr2; R4 and R3 not critical.

Similar circuits
- The circuit of Fig. 1 will have zero stand-by power consumption but in this case has a positive-going output pulse. Again the output pulse width will depend on V0 since in the quiescent state C is uncharged. In addition the VCEsat of Tr2 will affect the height of the pulse which should be V0 - VCEsat. The 0V level should be well defined.
- The circuit of Fig. 2 has a pulse width given by tr = 0.69(R1 + R2)C and a recovery time given by tr = R2C/β. As recharging current is supplied by Tr1, this recovery time is short.
- Pulse width is not supply dependent but since both transistors conduct in the quiescent state the standby power is large. Two outputs are available, at the collector of both transistors. They are the complement of one another (ref. 2).

Diodes are frequently included in monostable circuits to prevent too large a reverse voltage being applied to the base-emitter junction of a non-conducting transistor.

Typical performance
Tr1: BC126, Tr2: BC125
R1, R3: 33kΩ
R2: 1.2kΩ, R4, R3: 10kΩ
D1: IN914

With V0 = 12V, trigger frequency 500Hz, trigger pulse width and height 10μs and 2V respectively, graph opposite of output pulse width against C was obtained.

With C = 47nF and pulse width of 10μs, minimum trigger pulse height about 1.3V.

With pulse height at 2V, minimum pulse width about 2μs.

Output pulse height about 12V; maximum mark-space ratio is 10:1 at this frequency.

Fig. 1. A diode may be inserted in the emitter lead or in the base lead. The last-mentioned is generally preferred in that it will not affect the output pulse levels.

References

Cross references
Set 18, card 1
Set 10, card 4
Op-amp/comparator circuits

Typical performance
IC1: ± LM139
Vs: ±10V
C1: 1nF
C2: 470pF
R1: 330kΩ
R2: 10kΩ
R3: R4: 1MΩ
D1, D2: 1N914
Trigger pulse width: 30µs
Trigger pulse level: 6V
Output pulse width: 190µs
Output pulse level: 9V

Circuit description
This comparator features an open-collector output, and may be used with pull-up resistor R3 and a separate supply to give a wide switching range. Resistors R3 and R4 set the reference voltage equal to Vs/2, but also determine the trigger pulse level necessary for switching. Resistor R1 should be much greater than R3 to avoid loading the output. With \(V_{\text{ref}} = Vs/2 \) and the non-inverting input near 0V, the output transistor of the comparator is conducting and the output is at V_CCC.

A negative trigger pulse at the input causes this transistor to switch off and hence the voltage at the output rises to almost Vs. Capacitor C1 now charges at a rate mainly determined by R1 and C1, which also control the width of the output pulse. The potential of the non-inverting input now falls exponentially from Vs and the comparator switches to its original condition when the non-inverting comes below Vs/2. Diodes D1 and D2 prevent the inputs from being driven below zero volts, and D2 also provides a low impedance discharge path for C1.

Component changes
IC1: ± ·
Monostable using t.t.l. gates

Circuit description
The circuit above uses two of the four NAND gates available in the integrated circuit package. Positive trigger pulses are applied to the first gate which is connected as an inverter, the unused input being taken to the positive supply rail (logic 1 state) via a 1-kΩ resistor to prevent the gate being damaged by a supply line transient. With the trigger input in the logic 0 state (0V), the output of the first gate is at 1, as are both the inputs to the second gate in the steady state, causing its output to be at logic 0. A positive trigger pulse causes the output of the first gate to go to its logic 1 level. One of the two inputs to the second gate immediately goes to the logic 0 level but its other input receives the voltage across C1 which cannot change its charge instantaneously. The inputs to this gate are thus at logic 0 and 1 respectively, causing its output to switch to 1 where it remains until the trigger pulse returns to the 0-volt level. During this interval, capacitor C1 discharges towards 0 volt through R1, and the output impedance of the first gate and is recharged to the 1 level after the trigger pulse has returned to the 0-volt level.

Circuit changes
Useful range of \(V_{cc} \): +4.5V to +5.5V

Maximum useful \(R_1 \): 470Ω

Maximum useful \(C_1 \): 1.5µF

Minimum trigger pulse amplitude: +3V

Minimum trigger pulse width: 40µs

Output pulse shape improved by cascading a third gate (see waveform and graphs above).

Cascading the fourth gate in the package provides a pair of complementary outputs.

Circuit modifications
- The simple two-gate circuit shown in Fig. 1 has positive trigger pulses fed simultaneously to one input of each gate. These pulses appear at the output of the first gate inverted and delayed by the propagation time of the gate. Both of the inputs to the second gate are therefore at the 1 level for a short period, providing a narrow negative-going output pulse, delayed by the propagation time of one gate. This circuit has two defects: the output pulse is very narrow and non-adjustable and the trigger pulse must be wider than the output pulse.

- The circuit shown in Fig. 2 overcomes the first defect but still requires a trigger pulse wider than the output pulse. When the trigger input is at logic 0 the output of the first gate is at 1. Inputs to the second gate are at logic 0 and 1 since C is charged from the first gate, hence the output is at 1. When the trigger pulse goes to 1 the output of the second gate switches to the 0 state for an interval determined by the time constant, as C discharges through R, and the output impedance of the first gate. When C has discharged to a level where its voltage crosses the switching threshold of the 1 to 0 transition the output from the second gate switches back to its 1 level. Trigger pulse width must still be greater than the output pulse width, as the output of the second gate will always return to the 1 state whenever the trigger pulse returns to 0 volt.

- To overcome this problem the trigger pulses can be fed to the monostable via a third gate which has an output logic state determined by the monostable output, as shown in Fig. 3. Addition of this gate causes the monostable to be triggered when the input transition is from the 1 to the 0 state and the width of the input pulses is only that required to cause the input and output gates to change state. Since the same time constant controls the charge and discharge rates of C both circuits have relatively low maximum duty cycles, typically around 25%.

- Circuit of Fig. 4 uses only two gates but has a very similar mode of operation, the output pulses controlling the state of the input gate. This gate will normally have a 0 output since both its inputs will be at 1 until the trigger pulse goes to 0 volt. This causes the output to switch states for a time determined by that required for the CR network to cross the logic threshold.

Further reading

Wilke, W., Operating a logic gate as a flip-flop, Electronics, 21 March 1974, pp.120/1.

Cross reference
Set 11, card 3.
Compensated c.m.o.s. circuits

Circuit description

Complementary m.o.s. monostables using one time constant suffer from the fact that the transfer voltage (V_{tr}) of i.cs can vary by as much as $\pm 33\%$, so that replacement of an i.e. by another can result in a considerable change in the output pulse width. This defect can be removed by using two identical time constants with two inverters on the same chip. In this case the transfer voltage of both inverters is almost identical and the effect is cancellation of the variation in transfer voltage. This is taken advantage of in the circuit shown.

In the quiescent state with the input pulse low (ground), point 2 is high (V_{nn}), points 3, 4 and 5 are therefore low, low and high respectively. Capacitor C_1 is therefore in a charged state. Upon receipt of the input pulse this charge is removed rapidly via the source resistance and D_1 which is an internal protection device to prevent the input rising beyond V_{nn}. On the negative-going edge of the input pulse point 2 is taken down to ground and C_1 commences to charge towards V_{nn} via R_1. Point 3 will go high and remain in this state until C_1 passes through the transfer voltage of inverter 1. When point 3 goes low C_2 will commence to discharge via R_2. D_2 acting to prevent discharge into inverter 1. When point 4 passes through the transfer voltage of inverter 2 point 5 will go high and the operation is complete.

The graphs show that there are two possible outputs—at points 3 and 5. The output at point 5 is the only one in which there is compensation for transfer voltage variation. Due to lack of feedback in the circuit the risetime of the output is decidedly long (see performance data) but this is acceptable if the circuit is supplying further c.m.o.s. circuitry. Despite the protection of D_1, the fact that the circuit is being fed via a capacitor makes it advisable to ensure that the input pulse height is close to V_{nn}. This can be done if the pulse is fed via further c.m.o.s. supplied from V_{DD}.

Circuit modifications

- A positive-going output pulse, again triggered by the negative-going edge of the input is obtainable with the circuit shown top. In this case the output is obtained at the output of the first inverter viz point 3. Relevant waveforms are shown in Fig. 2. In this case re-triggering is not possible because any positive-going trigger pulse would reduce T_1 no matter the state of point 5.
- A negative-going pulse triggered on the positive-going edge of the input pulse is obtainable from the circuit shown in Fig. 3. For compensation, the output is taken from point 2 in this diagram. Relevant waveforms are as in Fig. 4. With this circuit re-triggering is also impossible because point 2 will stay low so long as point 5 is high, the trigger signal having no effect due to the normal NOR gate action.

Further reading

RCA applications note ICAN6267.

Components

- D_2: general-purpose diode
- Inverter 1 and 2: $\frac{1}{3}\times CD4007AE$

Performance

$R_1C_1 = R_2C_2 = RC$

$T \approx 1.4RC$; tested in range $10\mu s < T < 1\ms$

With clock rate of 1kHz and pulse width 400μs, T remains within 4% of the nominal value over supply range 5V to 10V. With T of 330μs fall time is minimal but rise time is 120μs.

Fig. 1

Fig. 2

Fig. 3

Fig. 4
Emitter-coupled circuits

Circuit description
In the stable state T_2 is on and saturated due to the base drive via R_5. The emitter current of T_2 causes the common emitter voltage to be at approximately 1.5V. Thus T_1 is held off by the R_1, R_2 potential divider which maintains its base at about 1.3V, slightly reverse-biasing the base-emitter junction. Output voltage at T_2 collector is at approximately 1.6V in this stable state.

Circuit modifications
- Adding an emitter-follower to the original circuit, as shown in the top left diagram, allows the output pulses to be obtained from a low-impedance source and to be referred to ground. By adjustment of the supply voltage these pulses may be made compatible with t.t.l. logic circuitry.
- A p-n-p common-emitter stage may be added, as shown top right, to use the output pulses for driving a ground-connected load. For example, the load could be in the form of a filament lamp for alarm or monitoring purposes and as collector currents of at least 50mA may be obtained, the load could be a relay coil to provide control of some other circuitry. The inductive load provided by the relay coil should be shunted with a protective diode.
- By adjustment of the supply voltage these pulses may be modified to be triggered by negative-going pulses as shown in the circuit shown bottom left. In this arrangement the trigger pulses are applied to the collector of T_1 via the small coupling capacitor C_3. The negative-going trigger pulse edge is passed to T_2 base through C_2 switching this transistor off. T_1 turns on and the remaining cycle of operations are as described previously. The circuit will function with C_1 omitted but the transition to the quasi-stable state will be more rapid when it is included in the circuit.

Output pulse—see waveform below

Typical performance
Supply: +6V, 4mA
T_1, T_2: BC125
R_1: 6.8kΩ
R_2: 1.8kΩ
R_3: 2.7kΩ, R_4: 330Ω
R_5: 22kΩ, R_6: 1kΩ
C_1: 100pF, C_2: 100nF
Input pulse amplitude: +2V
Input pulse width: 1μs
p.r.f.: 1kHz

Further reading

Cross references
Set 18, cards 1 and 7.
Voltage-controlled monostables

Circuit description
Transistors Tr1, Tr2 form a complementary-pair positive feedback switch, and are either both off or both on. In the rest state, this switch is closed, Tr3 is on, D1 is non-conducting, and C1 is charged. A negative trigger pulse applied at the trigger terminal causes the regenerative switch (Tr1, Tr2) to open. Collector current of Tr3 is now iL, where α is common base current gain and I = (Vs - VBE)/Rs. Hence C1 discharges at a constant rate giving a run-down linear sweep at point A. This sweep continues until the potential of point A is less than Vcontrol - Vn1 - VBE1 Tr2, when the complementary switch again conducts. The switch also acts as a comparator, besides providing a low impedance path for recharging capacitor C1.

Notice that the sweep termination depends on the level of the control voltage, which therefore controls the width of the output pulse.

Component changes
Tr1, Tr2: BSX28, Tr3: BSX29
Useful range of C1: 1 to 47nF
Useful range of R2: 10kΩ
Useful range of control voltage is in the range 10% to 90% of +Vs.

To minimize inductive and stray capacitive effects, this circuit was constructed on a p.c.b. to obtain above measurements.

Rise and fall times of output pulses less than 0.5μs.
Control voltage may be obtained from potential divider connected across supply.

Circuit modifications
• Connect additional buffer stage Tr4 (BC126) and R3 (390Ω) for increased output pulse amplitude (below). Trigger pulse amplitude is 7V, when coupling capacitor C2 increased to 1nF; provides timing graph shown above a (b).
• Circuit (centre) is basically an emitter-coupled monostable circuit. Time duration may be extended by the inclusion of a complementary pair (Tr6, Tr7) with breakdown fixed by zener diode D2. This effectively increases the cut-in voltage, Vb, of Tr8. Tr9 is normally on. Trigger pulses cause Tr8 to conduct (Tr9 off), and circuit returns to its stable state when the voltage at B brings the regenerative switch into conduction. Pulse duration depends on I, which is controlled by voltage applied to base of transistor Tr8.

Output pulse duration typically in the range 40 to 200ms for a control voltage of 3 to 6V.
• Operational amplifier IC1 (MC1530/MC1531), shown right, can provide variable delays by controlling the voltage at the inverting input. Diode clamps the negative amplitude of the output to about −0.7V. Positive output will approach +V.

Further reading
Motorola application note AN-258.

Cross references
Set 18, card 3, 6.
Long-delay circuits using c.m.o.s. and unijunction devices

Circuit description
The high input impedance of c.m.o.s. integrated circuits offers a low leakage path for capacitor C_1, and thus allows a wide range of delays from this D-type flip-flop configuration. The D-input is permanently connected to the positive supply rail, hence Q goes high when a positive trigger pulse is applied at the clock input. A positive voltage approximately $50\% (V_{DD} - V_{SS})$ at terminal R will reset Q to its initial condition of 0V.

On the occurrence of a trigger pulse, the reset threshold will be reached in a time defined by C_1 and R_1, which in turn defines the delay available at Q. This circuit is fairly insensitive to supply voltage change, because the threshold level for reset will alter pro-rata. However it should be noted that this level is not well defined, and hence the accuracy of time delays will depend on specific measurement with the components used. Unused inputs should be tied down to ground.

Component changes
Useful range of R_1: 10k to 10MΩ
Useful range of C_1: 47pF to 32µF
(For long time delays, low-leakage capacitors must be used)
Supply voltage range: $(V_{DD} - V_{SS})$ 3 to 15V
Minimum pulse width: 0.1µs
Minimum pulse height: 2 to 4V
Alternative IC: MM74C74

Unijunction Transistor monostable
The circuit shown right (top) employs a discrete transistor flip-flop, with the timing controlled by the firing of the unijunction transistor Tr_1. The normal rest condition of bistable FF1 is Tr_3 off and Tr_4 conducting. Hence the available voltage at point A is approximately V_{TR}sat of Tr_2. This is much less than the firing voltage V_F of the unijunction transistor which therefore is non-conducting, and the output voltage is at zero volts. A positive pulse applied at the trigger input brings Tr_3 into conduction, and due to positive feedback Tr_3 is rapidly switched off. Hence the potential of point A rises. Voltage across C_2 now rises exponentially toward $+V_s$. When it reaches V_F in a time determined by $R_2 C_2$, Tr_1 will conduct and discharge C_2 via the emitter and the resistor R_2. The output pulse developed across R_E is applied to the base of Tr_2 to turn it on again and hence reset the bistable, and turn off Tr_1. Well-defined output pulses are also available at the collectors of Tr_2 and Tr_3.

R_1 1MΩ, C_2 1µF, R_E 27Ω, Tr_2 2N4852, Tr_3/Tr_4 2N4123, V_s +10 to +30V.

An advantage is that the initial voltage across C_2 is always the same at the start of a period no matter the pulse repetition frequency. It is claimed that with the supply voltage variation noted above, pulse duration changes are 2%.

Circuit (bottom) uses the transistor array CA3095E. Diodes D_1, D_2 and Tr_3 act as a voltage-limiting network. Quiescent condition is with transistors Tr_1 and Tr_2 off, Tr_3 and Tr_4 on. A negative-going pulse at the trigger-input terminal is coupled to the base of Tr_3 via diode-connected transistor Tr_4. Hence Tr_3 and Tr_4 cut off and V_{out} rises to $+V_s$. Because Tr_3 and Tr_4 are emitter-coupled, Tr_3 can now conduct when Tr_3 is off, therefore the voltage across C_j i.e. V_L is near ground. Capacitor C_j now charges via R_3. When the base potential of Tr_4 is high enough to bring it into conduction, Tr_1 again goes off and V_{out} drops to its normal value of about 1.8V. Time duration is $t \approx 0.47 R_3 C_2$.

Typical performance
IC1: 1/4 CD 4013AE
V_{DD}: +5V, V_{SS}: 0V
R_1: 470kΩ, C_1: 10µF
Trigger pulse width: 1µs
Trigger pulse height: 4V
Delay: 9s
Typical waveforms and delays shown opposite.

Cross references
Set 18, cards 5, 9.

Further reading
Unijunction Transistor Timers and Oscillators. Motorola application note AN-294.
Dual monostable applications using 555 timer

Circuit description
The i.e. shown is a dual 555-type timer (internal details of which are shown in cross references 1 and 2). In this application the output of the first timer is capacitively coupled via \(C_0\) to the input of the second. Both timers are triggered when the input to each drops below \(\frac{1}{2} V_{cc}\). In this case the trigger pulse operates timer 1 and the output of timer 1 triggers timer 2. Both timers are connected in their monostable mode. Formulae for \(T_1\) and \(T_2\) quoted are valid for all conditions and are fixed entirely by the external \(R_1, C_1\) and \(R_2, C_2\). Any succeeding trigger pulses are ignored. Both \(T_1\) and \(T_2\) can be anywhere in the range 10µs to 100s with two provisos: \(T_1\) cannot be reduced below \(T_p\), but since \(T_p\) can be less than 3µs this is not serious. Secondly low values of \(T_1\) and \(T_2\) should not be obtained by reducing \(R_1\) and \(R_2\) to a level at which current drain from the supply is serious. A minimum value of 1kΩ is recommended for both \(R_1\) and \(R_2\).

The only restriction on \(R_1\) is that it must not be so low as to exceed the current rating (200mA) of the i.e. Typical waveforms are shown above. These are suitable for sequential timing circuits. Note that trigger pulses occurring during the period set by \(R_1, C_1\) and \(R_2, C_2\) are ignored.

Circuit modifications
- Obviously the i.e. may be used as two separate timers or monostables by omitting \(C_2\) and \(R_3\) and by applying the trigger pulses directly to pins 2 and 12.
- Referring to the main diagram, control over the total period \((T_1 + T_2)\) can be achieved by connecting the arm of a potentiometer to \(V_{cc}\) and the ends to pins 3 and 9, \(R_1\) and \(R_2\) being now the two segments of the potentiometer shown above. If \(C_1 = C_2 = C\) then \((T_1 + T_2) = C(R_1 + R_2)\) which is constant no matter the individual \(T_1\) and \(T_2\).
- Each individual timer can be regarded as a frequency divider in its own right. For example, in the waveforms shown over, the lower two graphs indicate that output 1 is running at half the trigger pulse frequency and output 2 is running at half the frequency of output 1. By correct choice of \(T_1\) one can make output 1 run at any submultiple frequency of the trigger and likewise with correct choice of \(T_2\) output 2 can run at any submultiple frequency of output 1.
- A combined frequency divider and pulse width controller can be achieved by setting \(T_1\) so that it is greater than the trigger period and by ensuring that \(T_2 < T_1\). The value of \(T_1\) sets the frequency division and the value of \(T_2\) sets the pulse width, the output being output 2. Furthermore, the “phase” of the output with respect to the trigger can be controlled since, for example, frequency division by 3 allows \(T_1\) to lie anywhere between two and three trigger periods. See waveforms above.

Further reading

Cross references
Set 3, card 9
Set 13, cards 3 and 5

Typical performance
- \(V_{cc}\): 10V (range 4.5 to 16V)
- Output pulse height: 9.3 to 9.9V
- \(C_3, C_4\): 10nF
- \(C_6\): 1nF
- \(R_1\): 470Ω
- \(R_2\): 33kΩ
- \(T_1\): \(1.1R_1C_1\)
- \(T_2\): \(1.1R_2C_2\)
- \(V_p\): \(V_{cc}\)
- IC: XR2556
High duty-cycle monostable

Circuit description
In this circuit the timing capacitor C₄ not only determines the width of the output pulse obtained from Tr₂ collector but also delays the setting-up of the circuit in readiness for the next cycle of operations. This prevents an early trigger pulse from producing an output pulse having too short a duration. Because the circuit may be re-triggered immediately after completing its cycle, an output-pulse duty cycle approaching 100% may be obtained. The conventional “cross-coupled” monostable allows only about 95% duty cycle, even when its timing capacitor is rapidly discharged from a low-resistance source. In the stable state, Tr₃ is biased off and Tr₁, Tr₂ and Tr₄ are on. Input trigger pulses are differentiated by C₁, R₁, the positive component passing to Tr₁ base via D₁. If of sufficient amplitude, these overcome the reverse bias on Tr₅, which switches on, Tr₁, Tr₂ and Tr₄ switching off. Transistor Tr₄ remains off for approximately 0.7τ₄ as its base potential rises under the control of C₃. When Tr₄ turns on again, Tr₉ collector potential rises as C₃ recharges with time constant τ₃ = C₃ R₃ until it exceeds approximately 0 V. Transistor Tr₁ and hence Tr₃ then switch on regeneratively and the circuit returns to its stable state and may be re-triggered immediately.

Component changes
Minimum useful supplies ±2 V
Useful range of R₁: 1k to 100kΩ
Useful range of R₂: 1k to 470kΩ

Typical performance
Vcc: ±6V, 6 to 18mA*, VEE
-6V, 6 to 12mA*
Tr₁: BC126, Tr₂, Tr₃, Tr₄
BC125
R₁: 10kΩ, R₄, R₇: 56kΩ
R₃, R₅: 47kΩ, R₆: 1.8kΩ
R₇, R₈: 2.2kΩ, C₃, C₄: 100pF
C₅: see graph opposite; D₁
PS101
Input: 4V positive pulses, pulse
width 1µs, p.r.f. about 10kHz
Output rise time: 0.5µs
Output fall time: 0.2µs
*depending on value of C₃.

Minimum trigger pulse
amplitude approximately 2.5 V
Minimum trigger pulse width
less than about 0.1µs
Maximum useful p.r.f.: 200kHz.

Circuit modification
- The circuit shown top is a logical representation of a high-duty-cycle monostable which may be realised with logic gates or discrete transistor circuitry. A pair of pulse-steering AND gates and a flip-flop used as a toggle cause the positive-going input trigger pulses to be alternately applied to the pair of monostables (M). The monostable outputs are combined in the OR gate to provide the output pulse and to toggle the flip-flop which changes state when the output pulse is completed. Hence, the start of the next output is only delayed by the time taken for the flip-flop to change its state, which can be a small percentage of the output pulse duration. A discrete version produced 700ns pulses every 705ms.

Typically, R₆, R₇ 1MΩ, R₈, R₉
10kΩ, R₁, R₅ 150kΩ, R₇
2.2MΩ, C₁, C₃, C₄ 20pF, C₅
500nF, D₁ 1N914, SD1
4E20-8, with Vcc +25V.

- Circuit shown bottom can provide a recovery time of only 1% of its period and may be triggered by positive pulses at Tr₁ base or negative pulses at Tr₃ base causing both transistors to switch from their on to off states. Transistor Tr₁ can recharge C₁ with a large collector current to rapidly regain its initial voltage. Diode D₁ and D₂ may be omitted if Tr₁ and Tr₃ have a large reverse VBR rating.

Further reading

Cross reference
Set 19, card 9.
Disadvantages of monostables in digital circuits caused by their sensitivity to noise on the output line or transients in the power supply are avoided by using integrated-circuit monostables such as the SN74121. Two applications are considered.

1. The normal timing resistor for the monostable connected between pins 14 and 11 is replaced by the impedance of a transistor. The input trigger pulses to pin 3 provide predetermined pulse width at the output of the monostable depending on C_2 and the effective resistance provided by the transistor which is changed by the feedback loop to maintain the duty cycle. The output pulse defines the time for which current I_3 flows into C_3.

 For V_{out} high,$$
 I_3 = \frac{V_{out_H} - V_{ref}}{R_1}.
 $$

 For V_{out} low,$$
 I_3 = \frac{V_{out_L} - V_{ref}}{R_1}.
 $$

 Average current in R_3 is

 $$
 I_{av} = \frac{\frac{V_{out_H} - V_{ref}}{R_1}}{\alpha} + \frac{\frac{V_{out_L} - V_{ref}}{R_1}}{(1-\alpha)}t.
 $$

 In steady-state operation, the average current to the capacitor is zero, when α has reached the correct value. The above expression for I_{av} is then zero and

 $$
 \alpha = \frac{V_{ref} - V_{out_L}}{V_{out_H} - V_{out_L}}.
 $$

 To avoid loading the monostable output and thus possibly varying V_{out_L} and V_{out_H}, an alternative output is taken from pin 1 via an inverter. Variable base drive due to V_{r} can cause the transistor impedance to vary between 500Ω and 500kΩ, allowing a pulse repetition frequency range of the order of 1000:1.

 Reference

2. Integrated-circuit CA3081 contains seven n-p-n transistors with the emitters commoned. The control of pulse width from the integrated-circuit monostable is achieved by the R-C combination across pins 14, 11, 10. Hence by driving the base of one of the transistors T_{r1} to T_{r7}, a different capacitor is switched across pins 10, 11. The absolute value of capacitor depends on which of the input terminals are taken high or low respectively, and this may be controlled sequentially, as in the specific application of the reference, using a read-only memory package. It is suggested that temperature compensation for the pulse width might be achieved by including a thermistor as part of the tuning resistor network R.

 Reference

3. The input impedance of c.m.o.s. gates is very high and therefore provide a useful means of obtaining long delays with relatively small capacitance values. This circuit provides a means of eliminating the slow rise of capacitor voltage, when it is normally connected between gate-input and the V_{ss} rail. When V_C reaches the lower threshold value, then V_{out} begins to go positive. As the charge on the capacitor cannot change instantaneously, V_C follows the output at a rate determined only by the c.m.o.s. gate. A similar regenerative effect will occur on a negative transition.

 Reference

 Electronic Design 1, January 4, 1974.
Set 20: Transistor pairs

Tweedledum's query seems an especially appropriate way of starting the following article on transistor pairs. Not only are the advantages of each configuration not always clear, but sometimes it's difficult to see the true operational nature of the configuration. In the cards, 20 different connections of two transistors are described, excluding c.m.o.s. circuits and triple or mixed pair arrangements. This set of circuits is an important one in that many form the basic building bricks of integrated circuits—long-tailed pairs, current mirrors, and even cascode circuits and high-gain pairs. Both the article and card 4 discuss the merits of the different long-tailed pair configurations, the card giving useful formulae for gain, common-mode rejection and temperature drift. Cards 1 & 2 contain a thorough investigation of the properties of high current gain pairs—Darlington, complementary Darlington and four-terminal pairs—the results being given in the 16 graphs, all of course derived from the compiler's measurements. Various circuits can be developed by mixing various pairs and two examples are given on card 9. One uses a long-tailed pair with constant-current tail feeding a current mirror to produce a triangular-wave generator; the other is an operational amplifier using bipolar and m.o.s. devices with a single supply.

The complementary transistor switch of card 6 is the transistor equivalent of unijunction and thyristor switches, but has the advantage of being faster than either as high-speed transistors can be used. Other cards show how the current capability of a c.m.o.s. inverter can be simply increased (card 8); how a cascode circuit is re-arranged to avoid the need for a biasing voltage (card 3); and card 5 gives performance and descriptions of m.o.s. and bipolar current mirrors—now an integral part of operational amplifiers.

High current-gain pairs—I 1
High current-gain pairs—II 2
Cascode amplifier 3
Long-tailed pair 4
Current mirrors 5
Complementary switching transistors 6
Complementary emitter-follower 7
CMOS circuits 8
Triples and mixed pairs 9
Pot pourri 10
Transistor pairs

“Supplementary or complementary, opposites or composites?” asked Tweedle-dum. “Contrariwise”, said Tweedledee. It is not the intention to rewrite “Alice . . .”, but it is not always clear what the advantages are in d.c.-coupled pair configurations—voltage gain plus impedance change, super current-gains, p-n-p simulation, thermal compensation or perhaps a current source as a stabilizing network.

The pièce de résistance might be the long-tailed pair or differential amplifier (where would the linear i.e. be without it?) which provides some satisfying amplifying properties—some possible variations for small-signal operation are shown in Fig. 1. For example, the connection shown in Fig. 1(a) converts a signal difference between two inputs to equal, but antiphase collector signals. Signals common to both inputs (e.g. superposed noise signals from the same source) are reduced without affecting the differential gain, which is that due to a single transistor.

The ability of this amplifier to prevent amplification of a common signal is called the common-mode rejection ratio, being the ratio of the differential voltage gain to the common mode gain, usually expressed in dB. The single-ended inputs of Fig. 1(b) and (e) produce an output at T_{R_2} collector, equivalent to T_{R_1} as an emitter-follower driving T_{R_2} as a common-base amplifier. In addition, the output of T_{R_1} is equal in magnitude but antiphase to that of T_{R_2}, on the assumption of constant total current (long-tail). Hence the differential output in Fig. 1(b) is twice the single-ended output. The voltage gains are approximately R/h_α and $R/2h_\alpha$ for Fig. 1(b) and (e) respectively, where h_α is the effective input resistance of the common base configuration. Fig. 1(c) and (f) are not used as amplifiers, but are useful as a means of determining the gain to common mode signals. This should be much less than unity to give good rejection.

The common-emitter, common-base, connection shown in Fig. 2(a) is the cascode amplifier, where the first stage transistor T_{R_1} has current gain, and the second stage T_{R_2} has voltage gain. The advantages are a large gain-bandwidth product and also, for high voltage outputs, the high breakdown value of the common base transistor T_{R_2} is essential.

The common collector-common collector pair of Fig. 2(b) is the familiar Darlington connection, where the effective current would be approximately β^2, if the transistors were identical. This would be true for short-circuit outputs, but a practical value for the β of each transistor

Fig. 1. Variations of the long-tailed pair include circuits with differential input, differential output (a), single input, differential output (b) & (c), differential input, single output (d), and single input and output (e) & (f).
Fig. 2. Other ways of connecting two transistors are common-emitter, common-base i.e. cascode (a), common-collector pair i.e. Darlington (b), complementary pair with only one V_{be} drop (c), complementary pair with no V_{be} drop (d), symmetrical complementary pair i.e. class B amplifier (e), and the regenerative pair (f).

would be to specify the minimum value quoted by a manufacturer (assuming that discrete transistors are being discussed, because it must be remembered that super-β packages are also available with defined current gains). The complementary connection of Fig. 2(c) provides only one V_{be} drop compared with Fig. 2(b), and that of (d) cancels the V_{be} drops, but offers some second-order residual offset between input and output, and requires a separate bias path (not shown) for Tr_1 emitter current and Tr_2 base current. Complementary versions may provide an advantage, in that the transistor choice for the first stage can be that with the highest current gain at low currents.

When opposite types of transistors are connected in complementary form, such as Fig. 2(e), we have the basis of a class-B amplifier. The circuit for each half-cycle of signal is essentially identical, and the load is driven from a low-impedance source, because each transistor acts as an emitter follower. An advantage is that interstage and output transformers are not necessary when such a circuit is used at audio frequencies.

The interconnection of n-p-n and p-n-p transistors as in Fig. 2(f) provides a regenerative switching action due to the positive feedback between collectors and bases. It is similar in operation to a unijunction transistor, and there are of course similarities with the thyristor. Switching speeds can be faster than a single unijunction device because high-frequency transistors can be employed. The same arrangement is the basis for a constant-current circuit (Circards set 6, card 5), while those sources which may be classed as current controlled tend to use the current mirror—no self-respecting operational amplifier would be without one!

The complementary-symmetry m.o.s. pair has been an excellent addition to the pair family. Besides being the basis of several logic gates, it also has application in multivibrators and as a linear amplifier.

A close study of most linear integrated-circuits will reveal the use of two or more of the pairs mentioned, to provide a composite arrangement which offers advantages that no single transistor or pair can do.
High current-gain pairs—1

Darlington pair

Components
Tr1: BFR41 Tr2: TIP3055

Description and characteristics
A Darlington pair as shown above is a frequently used two-transistor circuit, the purpose being to obtain high gain through cascading two transistors. Because large currents are obtained in the second transistor one frequently finds this to be a power transistor and that the arrangement is used in many switching applications. As the circuit has only three terminals it can be regarded as a single high-gain transistor. The basic action is that \(I_s \) produces, through \(Tr_1 \), a large base drive for \(Tr_2 \). The total \(I_r \) is the sum of the two collector currents although the contribution of \(Tr_1 \) to \(I_r \) will be small if the gain of \(Tr_2 \) is large.

The characteristics obtained for the components quoted are as shown. From graph 1 we obtained an \(h_{re} \) of about 25mS and an \(h_{re} \) of about 11,000. Graph 2 shows an \(h_{re} \) of around 70. These figures are in line with theory (see reference). Graph 2 also shows the dependence of \(V_{BR} \) on \(I_B \), the two graphs being indistinguishable because of the scales chosen.

For switching applications the value of \(V_{CE} \) is important. \(V_{CE} \) is defined as that \(V_{CE} \) corresponding to an arbitrarily low \(I_c/I_r \) ratio, in this case 1,000 (graph 3). With higher \(I_c/I_r \) ratios, corresponding to lower \(I_B \) values the value of \(V_{CE} \) will be lower. The corresponding graph of \(V_{BE} \)Sat. is shown in graph 4.

Graph 5 shows the dependence of \(h_{re} \) on \(I_c \), the drop in \(h_{re} \) at high \(I_c \) being due to saturation and that at low \(I_c \) being due to lack of base drive to \(Tr_1 \).

Complementary Darlington pair

Components
Tr1: BFR81 Tr2: TIP3055

Description and characteristics
The basic action of this circuit is the same as that of the normal Darlington pair. Note that the circuit in this format is acting as a single p-n-p transistor. An n-p-n version is shown below. It is the input transistor which indicates whether the combination is p-n-p or n-p-n but one can readily check the bias voltages.

Graph 1 shows the output characteristics: not eminently suitable for a small-signal amplifier, but as the circuit tends to be used for switching applications this is not too serious. We obtained for these components an \(h_{re} \) of 8,500 approx and an \(h_{re} \) of greater than 0.1S.

Graph 2 shows \(I_R \) and \(I_c \) against \(V_{BR} \) and these again coincide because of the scale chosen. Note in this case that \(V_{BR} \) during conduction is about 0.7V as opposed to 1.5V for the normal Darlington; this is due to the fact that there is only one junction between \(b \) and \(e \). This shows up again in graph 4.

By the same token, the graph of \(V_{CE} \)sat (graph 3) is much the same as that for the normal Darlington. Graph 5 again has much the same shape as that for the normal Darlington though with a lower maximum value, which is in line with the reduced \(h_{re} \).

Further reading

Reference
High current-gain pairs—2

Components
Tr\(_1\) : BFR41
Tr\(_2\) : TIP3055

Performance and description
The Darlington circuits on card 1 are both super \(\beta\) circuits but have the additional characteristic that they only have three terminals and so can be regarded as a single transistor. The circuit shown above also has high gain but has four terminals, three of which can be regarded as base, emitter and collector, the fourth being connected to a voltage which gives some control over the characteristics. The principal difference in performance of this circuit is that a low saturation voltage is obtained. From graph 1 we obtained an \(h_{fe}\) of 7,000 and an \(h_{fe}\) of 25mS for \(V_S=2.0V\).

Characteristics for \(V_S=4.0V\) are virtually identical. Graph 3 shows the low \(V_{cesat}\) values obtained, slightly lower values being obtained for \(V_S=4.0V\). Graph 4 shows the expected \(V_{cesat}\) values around 1.5V since two base-emitter junctions are between b and e. Again slightly lower values are obtained for \(V_S=4.0V\). The graph of \(h_{fe}\) is shown in graph 5, the figures being in line with the previously obtained \(h_{fe}\). Note that in this configuration Tr\(_1\) will have supply voltage \(V_S\) across it and will normally require a current-limiting resistor in its collector lead.

Graphs

Components
Tr\(_1\) : BFR81
Tr\(_2\) : TIP3055

Circuit description
First given by Baxandall and Shallow, this circuit has a gain producing action similar to that of the Darlington's and the circuit overleaf. Base current to Tr\(_1\) produces large base drive to Tr\(_2\) thereby giving large gain. In this case, however, bias (1\(_b\)) must be provided for correct action. As there are more than three terminals it cannot be considered as identical to a single transistor, and it disallows some characteristics that one does not obtain with single transistors. In particular, one obtains collector current \(I_C\) in the absence of any \(V_T\), this being due to the action of \(I_e\). The characteristics shown were obtained with \(V_{CE}\) of 1V and exhibit an overall \(g_m\) of 6A/V, obtained at \(V_T\) of zero. The components used were chosen for comparison with the other super \(\beta\) pairs but certain features would dictate other choices. For example, the circuit simulates a p-n-p transistor whilst having an n-p-n output stage. In monolithic i.c.s with lateral transistors, n-p-n transistors have low gain so that Tr\(_1\) would dictate the overall gain. As Tr\(_1\) has a very low voltage across it, viz \(V_{be}\) of Tr\(_2\), then Tr\(_1\) can be made to have high gain—see MC1538R.

When used as shown above right, the circuit exhibits extremely high output resistance which, allied to the high current gain, gives large voltage gain. The reason for this is that \(v_t=v_n+v_t+n_t\) and as \(v_n\) and \(v_t\) cancel, both being base-emitter voltages, then \(v_t=v_{be}\) and the current in \(R_L\) is thus defined by \(I_1\) and the current in \(R_t\), no matter the value of \(R_L\).

The circuit therefore, must have a large output resistance. Values as high as 50M\(\Omega\) have been quoted.

Further reading
Cascode amplifier

Circuit description
Tr1 is a common-emitter amplifier which is feeding Tr2 in common-base mode. The load on Tr1 is therefore a near short-circuit a.c.-wise. In addition, the current gain of Tr2 is near unity but its output impedance is high, due to the common-base mode of operation. The combination therefore shows the gain characteristics of a short-circuited c.e. stage plus the output impedance characteristics of c.b. It is therefore ideally suited for the driving of tuned resonant loads or indeed of any high impedance load.

The basic equations are

\[I_e = g_m V_{in} \]
\[I_e \approx I_L \]
\[g_m = I_e / 26mV \]
\[V_o = Z_L I_L \]

The second equation assumes unity current gain through Tr2 and the last equation assumes that h_{ob} (for Tr2) is very low. The net result is

\[V_o = V_{in} \approx g_m Z_L \]

Since \(I_e \) is almost linearly related to \(I_b \), particularly if \(V_{CE} \) of Tr1 is constant which it is in this case, then \(g_m \) is controllable by \(R_B \). The net result is the graph shown. For each result the circuit was retuned for resonance, the change in resonant frequency being around 1.5% over the complete range.

With \(R_b = 1M\Omega \), the resonant frequency was 924kHz and the bandwidth 18.5kHz giving a Q of 50, \(V_a \) is not critical—it is only required to produce correct transistor action. In these results it was 3V. A 1.5-nF supply decoupling capacitor was necessary.

Note that the graph represents a range of voltage gain from 50dB to 71dB and that the range of \(R_B \) is 20:1.

The circuit above has two disadvantages viz. it is not a three-terminal device and also requires a biasing voltage. The above circuit suffers from neither of these disadvantages. The circuit is self-biasing provided only that \(I_b \) is less than \(I_a \) by an amount sufficient that the resulting \(V_{gs} \) keeps the bipolar transistor well out of saturation. Typically \(V_{ss} \) would need to be in the range 0.2 to 1.0V (though a higher value would be preferable for higher gain).

This means that the operating current is restricted to the \(I_a \) of the f.e.t. with \(V_{gs} \) in the range of -0.2 to -1.0V. In practice the current is defined by some other requirement (drift, matching etc) and is often much less than \(I_{ds} \) — the f.e.t. current with \(V_{gs} = 0 \) (which would give no gain from the bipolar anyway). The f.e.t. would frequently be required to operate near pinch-off.

The circuit, above centre, is a less common form which loses the merit of low capacitive feedback. It does, however, have the merit of increased current capability since the f.e.t. can operate with \(V_{gs} = 0V \).

The circuit right is of a form found as the input of some commercially available differential amplifiers. Each two-transistor block can be regarded as a single transistor and the circuit isthen recognisable as a long-tailed pair. The tail uses the high output impedance of the pair to provide an excellent constant-current source the other two pairs being used for their high voltage gain.

Cross references
Set 20, cards 4, 10.
Long-tailed pair

(a) Differential in—differential out

Circuit description
This emitter-coupled differential amplifier should have a large value for $\frac{V_{BE}}{V_{TC}}$ to provide a high common-mode rejection ratio (c.m.r.r.). This implies that the differential output voltage between collectors for a common signal at the bases, is very small and ideally zero. In general, the output signal depends on the difference between the signals at the transistor bases. Each transistor receives half the signal i.e. the gain to each output is half of that provided by a single transistor under the same conditions.

Performance data
T_{R1}, T_{R2}: matched pair from CA3086. R_{L1}, R_{L2}: 100kΩ. R_{E}, R_{C}: 150kΩ. R_{V1}: 1kΩ. V_{E}: ±15V

Gain slope: typically 230. Variation in gain: ±1% for several choices of CA3086. Reducing R_{E}, R_{C} by similar ratios will maintain slope at same order of magnitude.

(b) Single-ended in, differential out

Useful relationships
Bipolar transistor collector current related to base-emitter voltage by
$\frac{I_{C}}{I_{E}} \approx \frac{qV_{BE}}{kT}$
$\frac{dI_{C}}{dI_{E}} \approx \frac{q}{I_{E}}$
$\frac{dV_{BE}}{dI_{E}} = \frac{g_m}{2}$
At room temperature
$g_m \approx \frac{I_{E}}{26}(mA/V)$

$V_{CE} = \frac{g_m}{2} \frac{V_{IN}}{R_C}$
$V_{CS} = \frac{g_m}{2} \frac{V_{IN}}{R_C}$
Differential output given by
$V_{O} = V_{CE} - V_{CS} = g_m V_{IN} R_C$
Voltage gain $A_V = \frac{V_{O}}{V_{IN}} = \frac{-g_m R_C}{I_C R_C / 26} = -V_C / 26$. For identical transistors the collectors are at equal potentials for common-mode signals. Hence they can be considered connected together
$V_{OUT} = V_C R_C / 26$. If c.m.r.r. high, effect of common-mode signals negligible. Hence single-ended input equivalent to differential input.

(c) Common mode input

V_{IN1}: 10mV d.c. (20mV)
V_{OUT}: 2.39V d.c. (4.79V)
i.e. gain slope similar to (a)
$\frac{AV_{OUT}}{AV_{IN}} = 240$
For single-ended output:
$V_{OUT} = \text{voltage between X and ground}$
$\frac{AV_{OUT}}{AV_{IN}} = 10.28V - 9.06V = 122.$
i.e. gain is halved.

$V_{OUT} = \frac{kT}{q} \frac{\log \left(\frac{I_C}{A} \right)}{A}$
A is dependent on transistor area. Two transistors on same chip, but different areas, provides a V_{BE} variation given by
$\frac{dV_{BE}}{dT} = \frac{kT}{q} \log \left(\frac{I_C}{A} \right) \frac{dA}{dT}$

$\frac{dV_{BE}}{dt} = \frac{kT}{q} \log \left(\frac{I_C}{A} \right) \frac{dA}{dT}$

A at room temperature (300K) drift is 3.3µV/deg C for each mV of initial offset.

Further reading

Cross reference
Set 12, card 10
Current mirrors

Description (bipolar)
The current mirror is an extremely useful two-transistor circuit extensively used as an integral part of monolithic operational amplifiers to define one current, the mirror current I_M, in terms of a reference current I_R. With identical transistors the base-emitter voltages are identical and if T_{r2} has a high current gain the collector currents I_R and I_M are matched, to a first order. Any matched pair of n-p-n transistors may be used but those on a single chip are preferred; the variable temperature sensitivity of discrete device reduces reliability of the circuit. An important requirement in many applications of the current mirror is a high output resistance. The left-hand graph above shows that the static output resistance ($R_o = V/I_M$) increases with V for a given reference current value. However, the right-hand graph shows that whilst the dynamic output resistance ($R_D = \delta V/\delta I_M$) also increases with V, the far more rapid rise in R_o causes the ratio of dynamic to static output resistance to fall rapidly with increasing V. Hence, a compromise must be made between the values of R_o and R_D to be used with a given value of I_M.

For currents in the microamp range the output resistance of the current mirror can be increased by inserting a negative feedback resistor in the emitter lead of T_{r2}. For higher current requirements, transistors on the same chip can be connected in parallel to increase the junction areas.

Description (m.o.s.)
Current mirror circuits can also be produced using m.o.s transistors, the basic form using n-channel devices shown above left. Transistor T_{r1} is diode-connected performing as a transistor with 100% feedback. Thus its drain current is still controlled by its gate-source voltage V_{GS}, i.e. $I_D = g_{DS}V_{GS}$ where g_{DS} is the forward transconductance. Forcing a current I_R into this diode-connected transistor causes V_{GS} to rise until a state of equilibrium is attained when T_{r1} sinks the reference current. The gate-source voltage of T_{r1} is identical to that of T_{r2}, due to the parallel connections. Hence if both have identical characteristics, T_{r2} is also capable of sinking an identical current, the mirror current I_M. A reasonably good degree of matching can be obtained between the n-channel devices on a monolithic chip, the mirror current being typically within 10% of the reference current. A current mirror using monolithic p-channel i.g.f.e.t.s, shown centre left, provides better performance than the n-channel type due to the ability to provide much closer matching of the characteristics of p-channel devices. Such a circuit provides an I_M/I_R ratio which is to a first order independent of V_{DS}, as shown centre right. The graph above right shows that the normalized ratio of I_M/I_R is within 1% of its nominal value over a wide range of ambient temperatures and I_R values.

Further reading

Typical data
T_{r1}, T_{r2}: part of CA3086
I_R: 1mA from commercial current generator, ±0.05%
I_M: measured using 4-digit multimeter.
Curves opposite show R_o and R_D as functions of $+V$.

RCA Solid State Databook

Cross references
Set 3, card 9.
Set 6, card 4.
Set 9, card 5.
Set 10, cards 1, 3, 7.
Set 12, cards 4, 7.
Set 15, card 6.
Set 16, card 1.
Complementary switching transistors

Circuit description
The arrangement of the complementary pair of transistors, with or without the resistor R, or connected between two other points, is a frequently used combination (see cross refs.). With the resistor R shown, the circuit acts over a portion of its I-V characteristics as a negative resistance, of value \(-R\) approximately. Graphs obtained for values of \(l_k\) and \(l_{okU}\) are shown for values of R.

Components
\(T_r_1: BFR81, T_r_2 : BFR41\)
\(R: 1k, 10k\Omega\)

Performance
Slope in negative resistance region 0.75k\(\Omega\) and 8k\(\Omega\) for \(R = 1k\Omega \text{ and } 10k\Omega\) respectively (see graph).

Initially with low I, V may be considered as \(V_{BE1} = V_R + V_{BE2}\). As \(V_R\) is low initially V is the sum of the two exponential emitter-base voltages. As I increases these two voltages tend to 0.6V but \(V_R\) continues to rise and because of the minus sign V starts to fall, at a value slightly less than 1.2V. The fall continues (negative resistance region) until both transistors saturate. At this point we can no longer assume that all the current is passing through both collectors and \(R\) and we are best to view V as being \(V_{CE1} + V_R + V_{CE2}\). Since the two transistor voltages are relatively fixed, V then starts rising again. The value of the trough is given by \(V_{CE1 sat} + V_{BE2 sat} = V_{BE1 sat}\) the voltage range of the circuit is readily increased by the modification shown opposite with Zener diodes appropriate to the application. These circuits are described as being open-circuit stable, i.e. for any current drive there is a unique voltage. The dual of this is the voltage driven, short-circuit-stable device. An 0.65V is required at the base of each transistor to maintain conduction, it will be provided by 0.65mA in each path. For high-speed switching it is important to prevent the transistors from saturating.

Addition of the anti-saturation diodes shown prevents the collector voltages from dropping below \(V_{BE}\). The base lead diodes are not essential. Increasing \(R_1\) increases the trigger voltage necessary and reduces the effect of trigger point transients. Transients in the supply line give rise to false triggering due to rate effect. This can be reduced as \(R_1\) is reduced although this increases the holding current necessary.

Further reading

Cross references
Set 10, card 5.
Set 8, card 3.
Set 6, card 9.
Set 3, card 4.
Complementary emitter-follower

Circuit description
The basic circuit comprises a complementary n-p-n/p-n-p pair operating under class-C bias, and is the basis for many audio power/amplifiers. When a positive-going input signal exceeds about 0.7V, transistor T_1 will turn on, increasing its collector current which develops a voltage across the load R_2, but with a voltage gain of less than unity. At the same time T_1 is biased off. Similarly, a negative-going input signal turns T_1 on and T_2 off, and the circuit thus provides bidirectional currents through the emitter load. The base-emitter diode characteristic is non-linear at low voltages, resulting in cross-over distortion (approximately $2V_{BE}$) across the load. The resulting distortion on a sine wave input is shown in Fig. 1. Without an additional bias network, the effect of this distortion can be minimized by ensuring that $V_{IN} > V_{BE}$. Using both positive and negative power supplies permits operation down to zero frequency. For a single supply a capacitor is required in series with the load, to provide the base and collector currents of T_2 during negative-going input signals.

Component changes
R_2: Range from 100 to 1kΩ. Variation in gain is minimal. Frequency: Up to 30kHz, little difference from lower frequency operation. Variation of mean current with input level in Fig. 2. R_3: Chosen to suppress parasitic oscillations. Alternative may be to keep interconnections very short to minimize series inductance.

Effect of bias (Figs. 5 & 6)
R_3 varied until transistors just on the point of conduction. Graph shows 3rd harmonic distortion optimized by R_3. The above is a basic method of biasing to ensure class B or AB operation. Diodes D_1, D_2 may be chosen to achieve temperature independence of quiescent current.

Where increased current gain is needed for high power outputs, the Darlington pair of Fig. 8 (a) and compound emitter followers of (b) and (c) are useful, but may provide more difficult biasing problems.

Line driver (Fig. 7)
Driving 50-Ω cable with line capacitance slows pulse edges.

Effect of bias (Figs. 5 & 6)
R_3 varied until transistors just on the point of conduction. Graph shows 3rd harmonic distortion optimized by R_3. The above is a basic method of biasing to ensure class B or AB operation. Diodes D_1, D_2 may be chosen to achieve temperature independence of quiescent current.

Where increased current gain is needed for high power outputs, the Darlington pair of Fig. 8 (a) and compound emitter followers of (b) and (c) are useful, but may provide more difficult biasing problems.

Improved using complementary pair. Typical fall time ~ 100ns but dependent on simulated cable capacitance (R_3: 50Ω, C: 3nF, t_f: 75ns).

Further reading
Williams, P. Voltage following, Wireless World, Sept., 1968.

Cross references
Set 7, cards 1, 3.
Set 20, card 1.
CMOS circuits

![CMOS inverter diagram]

Description
The CMOS inverter shown above comprises a p-type and n-type enhancement mode m.o.s. transistor on the same chip. $V_{DD} - V_{SS}$ may be in the range 3 to 15V. The pair is useful in digital circuits because of well-defined threshold that V_{IN} must exceed before the device turns on.

- n-type: V_{AS} positive for ON
- p-type: V_{AS} negative for ON

Where the output has to sink or source current, the pair can be envisaged as the series switches. Fig. 1 is a source condition, obtained for $V_{IN} = V_{SS}$ and $V_{OUT} = V_{DD} - I_{D}R_{O}$, where R_{O} is the output resistance of p-transistor in the on state. For $V_{IN} = V_{DD}$, the n-type sinks current for Fig. 2; $V_{OUT} = I_{D}R_{O}$.

Basic i.c. package CD4007 contains one inverter and two complementary pairs with the drains unconnected. This permits a variety of interconnections: n-types are paralleled to increase sink current capability, Fig. 3. p-types are paralleled to increase source current capability, Fig. 4.

Fig. 5 is a dual bi-directional transmission gate where the two outputs and input may be interchanged for two inputs and one output. Note that the position of the transistors in the middle pair have been reversed.

The CD4049 package contains six inverters with current drive capability almost an order of magnitude greater than basic package. Parallel connection for increasing current sinking indicates typical current sharing for d.c. condition, Fig. 6.

CD4016 i.c. package contains four analogue switches (transmission gates). Each switch comprises an inverter and a parallel pair of n- and p-channel transistors, Fig. 7. For a threshold of approximately 2V in each channel and control voltage 10V, the gate control voltage of the p-m.o.s. is 0V. If $V_{IN} > 8V$, the n-channel will be open, but the gate-source voltage of the p-m.o.s. is $-8V$ (greater than threshold) and signal is switched through.

Because the V_{DD} of each transistor never equals the threshold of the transistors, the full supply range can be switched through.

A.C. amplifier (Fig. 9)
Best linearity and voltage swing if $V_{OUT} = V_{DD}/2$ and this is provided by the resistive connections (Figs. 9 & 10). Supply drain $\approx 2mA$ for 10V supply.

Further reading
Design Ideas with COS/MOS New Electronics, April 30, 1974.
I.C. op-amp has CMOS output Electronics, Sept. 19, 1974.

Cross references
Set 8, card 1.
Set 10, card 7.
Set 11, card 5.
Set 12, card 1.
Triples & mixed pairs

The principle of using transistors in pairs can often be usefully extended to the use of devices in triples, the resulting equivalent transistor having a current gain equal to the product of those of the individual transistors. In all such arrangements, two of which are shown above, the equivalent transistor has the same “polarity” as the input transistor.

The three n-p-n transistors in Fig. 1 act as a compound emitter-follower having a current gain of approximately h_{fe}, for large h_{fe}, and is useful for driving currents of several amps from a driver stage delivering less than a milliamp. The complementary transistor triple in Fig. 2 is useful in voltage regulators as a low-dissipation series element, the V_{BE} and V_{CE} values of the equivalent transistor being the lowest possible for a triple. In this arrangement the temperature coefficient of only one transistor affects the output. The operating current in the input transistor will be very small, reducing its current gain. This effect can remove much of the benefit of using a triple instead of a pair. By using transistors as shown in Fig. 3 the operating currents in the earlier stages are increased and stabilized.

Thinking of the various pairs of devices discussed on other cards as elementary building blocks can prove a powerful method of developing more complicated circuit functions. For example, a long-tailed pair T_{r1}, T_{r2} and T_{r3} may be used to drive a current mirror T_{r4} and T_{r5} as shown in Fig. 4 to produce a waveform generator which provides a symmetrical switch a defined current into two paths; which combined with a closely-matched current mirror permits the capacitor to be charged and discharged at the same rate when the charging current is varied. This concept of mixing elementary pairs of devices can be developed to build a single-supply operational amplifier using bipolar and m.o.s. transistor pairs, as shown in Fig. 5, having a unity-gain bandwidth of about 10MHz. The operational amplifier, which requires two CA3600E and one CA3046 packages, has three stages. The differential input stage uses two p-channel m.o.s. transistors T_{r6}, T_{r8}, the second stage uses an n-p-n bipolar transistor T_{r5}, and the output stage is a complementary m.o.s. transistor pair T_{r9}, T_{r10}. The zener network, using two diode-connected transistors D_1, D_2 of the CA3046, feeds a p-channel current mirror T_{r9}, T_{r10} that establishes a 400µA constant current in the input stage. This differential-input amplifier is loaded by four resistors, R_{14} to R_{17}, and a bipolar current mirror, T_{r11}, T_{r12}, to provide optimum balance, any voltage offset being nulled with the potentiometer R_8. The current in the second stage, determined by R_8, is adjusted to equal the 400-µA first-stage current to provide similar negative and positive slew rates. The output stage is biased as a class-A amplifier by R_4 and may be driven to within a few millivolts of the ground rail. The overall voltage gain varies inversely with the load resistance which, as with a monolithic operational amplifier, would have a value of about 2kΩ. Compensation requires inclusion of the feedback capacitor C_1, with C_4 added when using the operational amplifier as a unity-gain follower. In this configuration, R_9 and C_5 should be added to avoid the possibility of latch up and D_3 and D_7 added to the inputs to prevent negative-going input signals exceeding about 700mV which could also cause latch up. Typical values are: $V \pm 15V$; R_{14}, R_{16}, R_4 200Ω ±1%; R_5 20kΩ ±1%; R_6 10kΩ ±1%; R_7 7kΩ ±1%; R_8 10kΩ; R_9 1kΩ; C_1 39pF; C_2 300pF; C_3 150pF; D_6, D_7 1N914.

Further reading

Typical values. Supply ±10V, V_c 0V, R_1, R_5 5kΩ, R_2 2kΩ, R_4 7kΩ, C_1 33nF, D_1 1N914, D_2 1N5234, D_4, D_6 HP5082-2800, T_{r1}, T_{r2}, T_{r3} 2N3546, T_{r6}, T_{r8} 1/2 × SL301-A. Triangular output when driven by input pulses. This circuit uses the long-tailed pair to...
n-p-n/p-n-p simulation at high voltage

Optical couplers are used to provide fast high voltage switching with a simulated complementary pair. Transistors Tr1 and Tr2 are high-voltage n-p-n types. Tr1 is on when Tr2 is off and vice versa. With Tr1 off, C charges to Vz, storing charge. This is used to turn Tr1 on fast when the optical coupler operates.

Optical coupler provides the polarity inversion when Tr1 and Tr2 are driven by SY pulses.

Tr1, Tr2: 2N4126
R1, R2: 4.7kΩ
V: +3 to 25V

Because the collector current of Tr1 is the base current of Tr2 and vice versa, then any change of current provides a positive feedback action.

B1, B2 and E are the equivalent unijunction terminals. When E is open-circuit

\[V_x = R_2 V/(R_1 + R_2) \]

When the potential at E exceeds VBB and VX, both transistors saturate, and R1 is short-circuited. This condition is maintained for a potential at E down to VBB - VCEsat of Tr1. Switching speed depends on maximum frequency of operation of the transistors. For Tr1, Tr2 silicon drift of VBB < 3mV/deg C.

Current fed back via RR is proportional to Tr1 collector current, and thus the circuit provides current-shunt negative feedback, which primarily controls the overall current-gain.

Effective current gain is \(A_i/(1+\beta A_i) \) where A2 is the current gain of the two stages, with R1 connected between Tr1 base and ground. \(\beta \approx R_0/R_1 \).

For \(\beta < 0.1 \), input resistance is \(R_1 (1+\beta A_i) \) where R1 is input resistance without feedback.

Voltage gain \(\approx \frac{R_2}{R_3} \frac{R_1}{R_0} \frac{R_8}{R_3} \) where R8 is source resistance. Voltage gain can be increased by by-passing R8 or by-passing the mid-point of the feedback resistor R1.

In this connection, the voltage gain is now mainly affected by the feedback, and the input resistance is increased. Voltage gain is \(A_i/(1+\beta A_i) \) ≈ 1/\(\beta \) if \(A_i \) is large. A2 is the product of the gains of each stage, with R2 connected from Tr2 collector to ground, and

\[\beta = R_0/R_2 \]

Input resistance is \(R_1 (1+\beta A_i) \), where R1 is effective input resistance of the first stage. Note: Biasing networks for those CE-CE amplifiers are not shown.

Common emitter pairs with composite transistors

Tr1, Tr2: 2N4355
VCC: 15 to 30V
Voltage gain > 200kΩ
By sacrificing voltage gain, a high input impedance can be obtained with the circuit shown.

Further reading for circuits 1-6

Cross references
Set 20, cards 6, 7.
Set 12, card 9.
1. The common-base and common-collector pair used in the d.c. feedback pair configuration has a low input impedance, low output impedance and wide bandwidth. Using high voltage transistors it is suitable as a pulse-amplifier to produce very fast positive edges even into capacitive loads (a complementary class B output stage would be needed to make the falling edge equally fast). It lacks d.c. stability but can be combined with a high speed op-amp as shown to give an output slew rate claimed in the reference to be 200V/μs and full power output of 60V peak to peak at 1MHz. The overall feedback brings the output stage within the loop reducing the offset and drift to that of the op-amp. The latter provides current drive jointly to the gate and substrate terminals. This parallel combination should also be amenable to other waveform processing methods by combining feedback networks with it.

Reference

2. A recent paper has considered the complex behaviour of apparently simple m.o.s. transistors. If the substrate connection is available then for a p-channel enhancement mode f.e.t. that substrate also acts as the base of a p-n-p transistor with source and drain representing the emitter and collector respectively. To a first-order approximation the devices are shown to be independent when conducting with the total current being equal to the sum of the individual currents.

The m.o.s. action is controlled by a square-law transconductance equation, while the bipolar transistor has a collector current proportional to the base current to a first order of magnitude (low current gain in this example). Thus the waveform in a load resistor connected to a negative supply could be varied by applying an input signal separately or jointly to the gate and substrate terminals. This parallel combination should also be amenable to other waveform processing methods by combining feedback networks with it.

Reference

3. This circuit is not strictly a two-transistor arrangement but illustrates how a circuit can be partitioned to reveal familiar pairs. It is a wide band precision rectifier that uses a high output impedance rather than negative feedback to overcome the diode non-linearities. A Darlington pair composed of T_r_2, T_r_3 is modified to remove the collector of T_r_3 from the circuit output, by returning it to ground. This leaves T_r_3 providing a low-capacitance constant-current sink. D.c. negative feedback defines the operating points (with negligible loading because (20Hz is quoted in reference) then parallel tantalum capacitors are added to maintain low impedance at high frequencies. The source has to be capable of carrying the base current of T_r_1. The reference indicates the upper cut-off frequency as 80MHz with good accuracy to 10MHz, and good linearity and repeatability for 200mV r.m.s. full-scale.

Reference