New Class-AB power amp
Self on audio power partitioning
Measuring RF power
Audio a-to-d and d-to-a
Behind the Schmitt trigger
Intelligent signal processing
The perfect transistor
The brief was clear. To create a next generation CAD system for electronic engineers that used state of the art desktop integration and customisability together with unrivaled ease of use.

From the creators of Quickroute, Electronic Design Studio (EDS) is an entirely new program designed for today's EDA performance needs. Integrating schematic and PCB design into a powerful design studio, EDS lets you view and edit all the files in your projects, and through OLE2, EDS integrates with your desktop letting you drag and drop documents into and from your favorite Office applications.

EDS also includes the new CADObjects engine with tools and flexibility that approaches the power of desktop publishing systems. With its comprehensive drawing and shaping tools, professional support for True Type fonts (even at the PCB stage), high resolution, large design size, polygon fill and shaping tools, EDS represents a genuine advance in EDA price performance. Visit our web site, or call now to find out how EDS can help you.

- State of the art multiple-document user interface offering unrivaled ease of use and customisability.
- OLE 2 support including drag and drop, allows integration with your favorite Office applications.
- Project Wizard and Project Manager make creating and navigating all the documents in your projects easy.
- New heirarchical symbol browser, makes creating, editing and managing symbols a breeze!
- High resolution (1um) and large design size (up to 2m x 2m) combined with IntelliSNAP makes metric/imperial design mixing easy!
- Unlimited schematic sheets, with full support for data busses, power rails, etc
- CADCheck automatically synchronises schematic and PCB designs. No more capture worries!
- Unlimited Undo/Redo, print preview and a wide range of import/export options including CAD-CAM.
- Up to 32 layers can be assigned to be copper, silk, gold, mask, drill, mechanical, or annotation layers.
- New CADObjects engine supports a wide range of graphic objects including professional True Type fonts, object shaping and property support, in-situ editing of symbols, high resolution and arbitrary rotation/scaling of objects.
- Unlimited range of pad and track sizes supported.
- Create flood fills and power planes quickly with the new polyfill tool.
- Fast fully customisable poly-algorithmic autorouter

TRY AND BUY TODAY ONLINE

ATT www.quickroute.co.uk

Prices exclude P&P and VAT where applicable. **30 DAY MONEY BACK GUARANTEE**

Electronic Design Studio

- £199 $319
- £149 $239
- £49 $79

PLUS Your first double-sided Eurosize PCB produced FREE by BETA-LAYOUT

CIRCLE NO. 101 ON REPLY CARD
971 COMMENT
Musical numbers

973 NEWS
- PCB makers and green tax plans
- ADSL-based television service
- Analog Devices' latest 16-bit DSP
- Memory capacity stretched
- Controllers go wireless
- Mobiles to outstrip fixed
- Transistors reach physical limit

978 INTELLIGENT SIGNAL PROCESSING
DSP, neural networks and time series – Chris MacLeod and Grant Maxwell look at how artificial neural networks can benefit signal processing.

1000 MEASURING RF POWER
Joe Carr looks at commercial instruments for measuring RF power and explains how they work.

1006 CIRCUIT IDEAS
- All-silicon Christmas lights
- 550MHz spectrum analyser add-on
- Controlling a voltage by a pc
- Automatic light and 'in-use' indicator

1015 NEW PRODUCTS
New product outlines, edited by Richard Wilson

1026 INTERFACING DIGITAL AUDIO
Patrick Gaydecki describes interfacing two new stereo audio converters to a microprocessor via serial links. Patrick's description revolves around a specific DSP56k processor, but the work will help anyone wanting to design with these high-performance, easy-to-interface audio d-to-a a-to-d converters.

1033 AUDIO POWER ANALYSIS
Doug Self's investigations into dissipation in audio power systems reveal startling information about the real efficiency of Class-A, and suggest that Class-G is worth a second look now that multi-amp audio systems are becoming the norm.

1038 LETTERS
THD meter distortion, Digital TV quality, Mains standby switching.

1040 PICTURING SCHMITT'S TRIGGER
Bryan Hart takes an in depth look at a sixty-year-old device that most designers today take for granted – the Schmitt trigger

1049 HANDS ON INTERNET:
The perfect transistor
Cyril Bateman looks at the nearest thing to a perfect transistor. Its output swings negative for negative base signals and vice-versa for positive ones. It has a 700MHz bandwidth, 737nV/√Hz noise and low distortion – even at 10MHz.

982 A NEW CLASS-AB DESIGN
This Class-AB audio power amplifier features excellent stability without needing stabilising networks. Its new driver stage eliminates crossover distortion and it has a saturation-preventing scheme for fast recovery from clipping. Wim de Jager and Ed van Tuy

992 READER OFFER
Scenix's new SX microcontrollers are the fastest eight-bitters available. You can develop and emulate them for under £140 if you take advantage of our exclusive reader offer – a full SX evaluation kit.

994 LOW VOLTAGE ROUND UP
Four leading researchers present a rail-to-rail output op-amp that runs from a 1.5V supply and has constant-gm. New applications for low-voltage building blocks are discussed, as is a new Spice model specifically for low-voltage design. Giovanni Stochino et al

January issue on sale 2 December
FEATURES

- Supports EPROMs, EEPROMs, Flash, Serial PROMs, BROMs, PSDs, PALs, GALs, FEELs, MACH, MAX, EPDIs, and over 200 Microcontrollers including 87C48/51, 89C51/52, PIC, MC705/711, ST6, Z86, COP etc.
- Hands-free programming so you can produce batches of the same chip without pressing a key
- Correct programming and verification at 1.8, 2.7, 3.3 and 5V
- Serial number mode supports date/time stamping, unique IDs
- Progress indicator shows number of devices programmed
- No adapters required for DIL parts up to 48-pins. Universal adapters for 44-pin PLCC, 44-pin PSOP and 48-pin TSOP parts
- Programmes and verifies Intel 28F400 in under 15 seconds
- Connects to parallel port - no PC cards needed
- Tests 7400, 4000, DRAM and SRAM
- Mains or battery operation
- FREE software device support upgrades via bulletin board and www

NEW Windows '95™ Software provides the best user interface on the market

PROGRAMMER MODELS AND PRICES

SINGLE SOCKET PROGRAMMER

<table>
<thead>
<tr>
<th>Programmer</th>
<th>Features</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEEDMASTER GLV32</td>
<td>48-pin universal programmer</td>
<td>£695</td>
</tr>
<tr>
<td>EPMASTER LV</td>
<td>48-pin EPROM/Flash programmer</td>
<td>£295</td>
</tr>
<tr>
<td>LV40 PORTABLE</td>
<td>As Micromaster LV, plus complete portable with built-in keypad and LCD display</td>
<td>£995</td>
</tr>
</tbody>
</table>

EMULATOR OPTIONS FOR ALL PC BASED PROGRAMMERS

<table>
<thead>
<tr>
<th>Emulator</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVCEMUL8</td>
<td>£125</td>
</tr>
<tr>
<td>LVCEMUL16</td>
<td>£195</td>
</tr>
</tbody>
</table>

GANG PROGRAMMERS

<table>
<thead>
<tr>
<th>Programmer</th>
<th>Features</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEEDMASTER GLV32</td>
<td>8-way 32-pin EPROM/Flash GanSet programmer</td>
<td>£695</td>
</tr>
<tr>
<td>SPEEDMASTER GLVCOP</td>
<td>8-way 40-pin gang programmer for National Semiconductor COP micros</td>
<td>£1500</td>
</tr>
</tbody>
</table>

ADAPTERS

- Full range of adapters for PLCC, SOIC, TSOP, PSOP etc...
- £65

Store your favourite projects...

NEW - Hands-free programming

Programming Speeds the fastest in the business: 28F008 in 29 sec

£695

SPEEDMASTER GLV32 £695

LV40 PORTABLE £995

See for yourself - download a demo from our Website at www.icetech.com

ORDER NOW - ALL PRODUCTS IN STOCK. CREDIT CARD ORDERS: 01226 767404

For a copy of our catalogue giving full details of programmers, emulators, erasers and adapters, call, fax or e-mail us. You can also access our BBS or Home page. All our products are in stock now for next day delivery - call our credit card hotline now.

ICE Technology Ltd. Penistone Court, Penistone Road, Penistone, Sheffield, UK S36 6HP
Tel: +44 (0)1226 767404 Fax: +44 (0)1226 370434 BBS: +44 (0)1226 761181 (14400, 8N1)
Web: www.icetech.com Email: sales@icetech.com

CIRCLE NO. 104 ON REPLY CARD
Musical numbers

You might expect the head of a government watchdog body to get his facts right. But not the unfortunate Don Cruickshank, former director-general of OFTEL. Addressing GMTV viewers on 13 April 1995, Cruickshank stated specifically that from Easter Sunday 1995, nobody's UK phone number starting 01 would ever change again.

On BBC2's Newsnight programme, under intense questioning from Jeremy Paxman, he repeated this assertion; it was the last time that anyone's phone number would be altered.

Five short years later - and once again in April - some 10 million telephone subscribers will nevertheless have new numbers forced upon them. The renumbering doesn't end there either, all mobile and pager: numbers that do not already begin with 07 will change as well, as will many freephone, local-rate and premium rate 'non-geographic' numbers.

Those living in London will feel particularly hurt since, setting aside the loss of the more memorable alphanumeric numbers such as W11 Hilburr 1212 and ABBey 1234 some 35 years ago, they have 'enjoyed' four different numbers in just ten years.

London's 01 zone was split between 071 and 081 in May 1990, renumbered 0171 and 0181 in April 1995, and will recombine under the new 020 code next year.

The cost of change is not trivial either; the true cost of the 1995 code change was £3.25 billion according to the Telecommunications Managers Association (TMA). This time around, it could be much more - not to mention user confusion.

Despite a £20 million information campaign, nearly 40 per cent of the population remained unaware of the changes in a September survey conducted by the British Market Research Board.

Phone users will have to learn and dial the new numbers, while printed literature and stationery as well as shop fronts, vehicles and all other signage will need alteration. Memory telephones and repertory diallers in automatic fire and burglar alarms will need reprogramming.

Look-up tables used in smart sockets and call connect systems for call routing and management will need changing. While the code lists programmed into privately owned payphones for assessing call charges will also need alteration.

So why the change? And what had OFTEL not foreseen in 1995? Contrary to popular perception, the answer is not growth in demand for telecommunications services per se. The unadapted demand comes from competing operators wanting their own number blocks, plus hefty dragging by all parties over introducing number portability.

The huge take-up of mobile phones - and the transfer of old subscription accounts to new pay-as-you-talk numbers - are putting the existing system under further strain. This could have been minimised if transferring customers had been allowed to retain their old numbers.

The service providers, whom OFTEL does not regulate, have declined to play ball, so the profligate solution is the creation of nine billion new numbers.

One thing Cruickshank's successor, David Edmonds, will not be doing is claiming this code change will be final. Not by a long chalk. Even though the 1995 code change was hailed by OFTEL as a numbering scheme for the 21st century, that was an impossible dream. All major cities that are not changing to 02 codes now will need to do so over the next decade. But two additional factors will inevitably bring further fundamental changes.

The first is the plan by the European Telecommunications Office (ETO) for a pan-European numbering scheme. According to the ETO, numbering is seen as, "a facilitator of telecommunications services," and a long-term numbering strategy should provide the means with which to achieve the goals of EU's telecommunications policy.

The strategy is also needed in order to prevent any initiatives that may impede the future implementation of this policy. Considered opinion sees this as a political pipedream that simply won't happen but it cannot be ruled out.

A more fundamental consideration is whether a telephone number should be treated as a name or an address. If I need to ring the editor of this magazine, I must first establish whether he's at home, in the office or perhaps on his mobile - and then ring a different number for each. If I send him an e-mail, however, a single address will reach him regardless of his location.

The build-up of network intelligence in the telephone system, there are strong arguments for redefining phone numbers as addresses that are entirely location-independent. As well as providing greater user convenience, it would also provide much greater flexibility for conserving number resources but further change is inevitable and the pundits will have their work cut out to avoid making fools of themselves and of the users.

One man who was right all along, however, was Nick White, chairman of the TMA back in 1992. With considerable foresight he then said, "The topic of telephone numbering and code changes does not attract widespread attention but the planned changes are widespread and will hit every customer's pocket. Therefore any changes must be optimised by an expert planning and consultation process to minimise the cost of the changes to the customer and to deliver a solution that will last well into the next century."

Andrew Emmerson
Simulation

- Berkeley SPICE3F5 analogue simulation kernel.
- True mixed mode simulation.
- New analysis types include multi-plot sweeps, transfer curves, distortion and impedance plots.
- Active Components: Switches, Pots etc.
- Over 1000 new library parts with SPICE models.
- Greater ease of use.

"a constant high level of capability throughout"
EWW CAD Review Round Up September 1998

Schematic Capture

- Produces attractive schematics like in the magazines.
- Netlist, Parts List & ERC reports.
- Hierarchical Design
- Full support for buses including bus pins.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and PCB design.

PCB Design

- Automatic Component Placement
- Rip-Up & Retry Autorouter with tidy pass.
- Pinswap/Gateswap Optimizer & Back-Annotation.
- 32 bit high resolution database.
- Full DRC and Connectivity Checking.
- Shape based gridless power planes.
- Gerber and DXF Import capability.

Available in 5 levels - prices from £295 to £1625 + VAT.
Call now for further Information & upgrade prices.
PCB makers worried over green tax plans

Circuit board manufacturers have warned the government of the impact on UK factories of its plans to introduce an environmental tax levy in April next year.

PCIF industry trade association director, Brian Haken said that the Chancellor’s plans to collect £1.9bn in the first year means that manufacturers could go offshore and board makers will go with them.

Haken said that the government was not sufficiently aware of the contribution made by the smaller PCB manufacturers. “The industry is restructuring rapidly. There were 450 PCB companies in 1990. Now there are 135, and by 2005 there could be between 15 and 20,” he said.

He added: “The increasing costs of production equipment has meant that the number of companies that can afford to stay in the business will fall.”

Haken, who was talking at the launch of an environmental best practice guide, does not disagree with the EU’s Waste from Electrical and Electronic Equipment Directive in principle but he believes the way it is being implemented will cost UK PCB manufacturers dear.

“It is estimated that compliance costs around two per cent of total (manufacturing) cost already, and this rises to seven per cent for the PCB sector - off the bottom line, bringing the UK industry total to around £40m a year,” said Haken.

The guide highlights areas of cost saving, such as recycled water and the reduction of tin and lead.

Kingston launches ADSL-based television service

Europe's first ADSL-based interactive TV service was launched by Kingston Communications recently.

The Kingston Interactive Television service provides digital TV broadcasts, video on demand, fast Internet access and interactive services. Initially 1550 Kingston customers will receive the service. A phased rollout to Kingston's 155,000 customers in Hull and east Yorkshire will then follow.

“This announcement maintains our position at the forefront of ADSL,” said Steve Maine, Kingston Group's chief executive. “It is a universal technology - there are 800 million copper telephone lines globally - and we believe the kind of services we are offering will be adopted worldwide.”

Newbridge Networks is providing the media distribution systems which combines ATM switching, ADSL technology and IP routeing. The services will be provided at data rates of up to 4.5Mbit/s.

- Kingston has just announced its interactive tv pricing structure, which includes the UK's first tv-based untimed high-speed Internet service - log on at up to 256kbit/s for £15 a month with no phone-call charges.

Multimedia future for phone networks

The end of traditional telephone networks based on circuit-switched transmission technology has been predicted at the world's biggest telecoms technology showcase Telecom '99, which took place last October.

According to Yoshio Utsumi, secretary general of the International Telecommunication Union, the future development of the global telecoms industry lies in multimedia services and packet-switched data networks.

"Circuit-switched voice will disappear as the basic architecture of future telecommunications networks and be replaced by packet-switched data," said Utsumi, speaking at the opening of Telecom '99.

The main reasons for this fundamental change in network technology, says Utsumi, are the increasing convergence of voice and data telecoms traffic on networks and the growth of multimedia services.

"Instead of having independent communication and information infrastructures we will see increasing competition between different multimedia services," he added.

Utsumi also hoped this technology change would mean that the most advanced telecoms systems would be "...available, accessible and affordable for all the world's people rather than today's minority."

The exhibition, which is held every four years, has almost 1200 exhibitors and is expected to attract over 200,000 visitors.

Melanie Reynolds Electronics Weekly

Ten-fold density boost for optical storage

An Israeli company has begun demonstrating a new type of 3D optical data-storage technology with its fluorescent multi-layer card (FMC) technology. The company called C3D claims a standard 120mm optical disk using the FMC technology could hold hundreds and potentially thousands of gigabytes of data. It is planning to demonstrate the system in the US to build support for its technology which it claims is cheaper than current optical data storage systems by as much as ten to a hundred-fold.

Pentium look-alike clocks 700MHz

Advanced Micro Devices (AMD) will announce this week its 700MHz Athlon microprocessor as it tries to maintain a performance lead over rival Intel. The announcement of the chip is expected to be accompanied by design wins from IBM and Compaq Computer. Intel is close behind AMD and will introduce 700MHz and 730MHz Pentium III chips towards the end of this month.
Analog Devices’ latest 16-bit DSP: there’s more to power than a high clock speed

Kevin Leary is rarely surprised when it comes to digital signal processors. A member of Analog Devices’ DSP division for 17 years, he has seen “a lot of things come and go”.

For him if there is any significance to the current era, it is that DSP has reached a critical mass. “The marketing people don’t like me saying it, but it is becoming commoditised,” said Leary, Analog’s DSP program manager.

In light of this, he argues that when judging a DSP, the issue is no longer its raw processing performance but myriad other factors too. This is what he believes Analog has achieved with its ADSP-219x family of DSPs.

In addition to its peak processing performance of 300Mips, the architecture builds on the existing software base by being code compatible with Analog’s existing 16-bit 218x family. It has also been developed with design reuse in mind: “We need a core that is reusable across multiple groups within Analog, and potentially outside,” said Leary.

The 219x family retains its forebear’s single cycle instruction execution, zero-overhead looping and single-cycle context switch. What is new are compiler and processing enhancements.

To aid the compiler, the 219x provides up to 16Mword paged memory support. “This allows large data sets to be addressed. For Internet routers, the URLs and IP addresses can be ported directly onto the DSP,” said Leary. The 219x treats memory as unified rather than segmented, making programming large systems easier.

Five data address generation modes have also been added to improve compiler support.

The family’s architectural enhancements include a doubling of the instruction pipeline depth to create a six-stage pipe with two-cycle delay. The adding of a transparent, 64-location two-way set-associative instruction cache enables an extra data operand to be loaded each cycle.

Tackling design reuse, Analog has chosen the open-standard ARM advanced high performance bus (AHB). “The state of intellectual property reuse is worse than people admit,” said Leary.

He describes the bus as a synthesisable wrapper around the hard 219x core to which peripherals are interfaced. The bus has very good performance, said Leary: “Up to 100Mwords [16-bit] and it is scalable to 128-bits wide.”

Analog has used the bus for its 10mm x 10mm mini-BGA IC which comprises four 219x 300MHz/300Mips cores and 16Mbit of embedded DRAM. The device is aimed at “ultra high subscriber applications”, offering a processing performance of 1.2 billion multiply-accumulate operation/s.

Using this device, a processing density of 150 V.90 modem channels/m², or 200 Voice over IP channels/m² is achieved. Samples of the device are expected next March with volume production in a year’s time.

Roy Rubenstein Electronics Weekly

Cheaper prototype PCBs

If you ask a PCB maker to produce you a prototype board, the chances are you will be charged for a piece of board big enough to hold nine Eurocards, regardless of the size of your prototype.

BetaLAYOUT is offering a service known as PCB-Pool. If you want just one Eurocard, Beta simply lays your design alongside that of other customers’ and all share the cost of the raw board.

The first question you will probably ask is, “How long might I have to wait before Beta has enough customers to fill a board?” “Not long,” is the answer - the company is currently fulfilling 1200 PCB-Pool orders a month. pcb-pool@beta-layout.com.
The Phantom Power Box
48 volt microphone phantom powering unit
Professional portable units operating from an internal PP3 battery or external mains adaptor

★ Suitable for converting any microphone amplifier to P48 standard phantom power ★ High efficiency DC to DC converter for extended battery life ★ Accurate line balance for high common mode rejection ★ Low noise and distortion ★ Extensive RFI protection

The Balance Box (mic/line amplifier) – The Headphone Amplifier Box – The OneStop DIN rail mounting radio frequency interference filter and voltage transient protector for voltage and current loop process signal lines

Confordon Electronics
Conford Liphook Hants GU30 7QW
Information line: 01428 751469 Fax: 751223
E-mail contact@confordelec.co.uk
Web http://www.confordelec.co.uk/icatalogue/

CIRCLE NO.106 ON REPLY CARD

*** NEW ARRIVALS ***

In this issue we have a selection of audio oscilloscopes.
Stretched memory capacity starts to hit supply...

Computer memory capacity may have to come down because the memory makers have no new factories coming on-stream — except for one.

At Infineon Technologies, Hans Pieter Bette, vice-president for memories, said: “We are 100 per cent full. We will do what we can, but to increase capacity quickly is impossible. We are not changing our initial plans.”

Infineon is relying on shrinking to increase output rather than new factory building. It is implementing a ‘hefty’ shrink from 0.22 to 0.19μm at its White Oak fab in the US.

At Hyundai/LG, Andrew Norwood said: “We have no extra capacity to bring on-line. The issues are: What effect will it have on the PC industry? And: Will we see PCs shipping with less memory?”

Agreeing, Helmut Schick, Toshiba’s European memory boss, said: “If synchronous pricing goes much higher it will start to affect the number of megabytes used per PC. We will not increase production in big quantities because we’re already running at high capacity.” Toshiba had been running Rambus wafers, squeezing synchronous DRAM production, but now these are unsellable following Intel’s Camiino hitch.

Samsung is suffering similarly. “Like a lot of memory makers we were making Rambus DRAM but all that output now has to be stocked because we can’t sell it”, says Ken Jones, vice-president for marketing at Samsung. “Synchronous DRAM will be really tight in Q4 but what happens in Q1?” Samsung is building another fab but it won’t produce product until the Spring.

Micron Technology is also full, but says it has the capacity to add another 20 000 wafers at its fabs in Avezzano, Italy and Miho, Japan — but, again, not until next Spring.

The one exception is NEC which opened a brand new fab in Shanghai in February. It is currently running 5 000 wafers per month, but this will be upped to 10 000 wafers per month from November 1999.

...and problems with Intel’s Camiino aren’t helping

Intel’s failure to bring out the Camiino chip-set to implement the Rambus memory architecture has caused confusion in the PC industry and losses to dynamic RAM manufacturers who have been making Direct Rambus DRAMs. It has also worsened the existing shortage of conventional synchronous DRAM.

“A lot of memory makers were producing Rambus DRAMs,” Ken Jones, v-p of marketing at DRAM market leader Samsung, told EW, “but the capacity now has to be stocked because we can’t sell it. Because we’ve been making Rambus, we have had less capacity for synchronous.

“However, personal computer companies have gone off Rambus because, without Camiino, they can’t make Rambus PCs. As a result, demand for synchronous has gone up. Synchronous will be really tight in the fourth quarter of 1999.”

At Toshiba the situation is much the same. “We’ve been making Rambus but it’s been delayed for some time – maybe for another quarter – so we are moving production to synchronous,” said Helmut Schick, Toshiba’s memory boss for Europe.

According to DRAM price trackers ICIS-LOR, the price of a 64Mbit synchronous DRAM rose from $6.50 in the first week of September to over $17 last week. With every DRAM manufacturer at full capacity and much of Taiwan off-line for the time being, prices may increase.

One result is, says Schick: “It will start to affect the Mbytes per PC”. Andrew Norwood of Hyundai asked: “Will we see PCs shipping with less memory?”

Camino was originally supposed to ship in August. Technical hitches delayed it. Then Intel announced last week, on the same day it was due to roll it out, that Camiino still had problems.

The result is confusion. “What’s going to happen in Q1 in 2000,” asked Andrew Norwood: “will Rambus be fixed? Should we be making Rambus DRAMS or synchronous? It takes a couple of months from wafer-in to product output.”

Controllers go wireless

Texas Instruments has announced a microcontroller and RF chipset aimed at adding low cost wireless links to products such as utilities meters, security systems and consumer products.

A combined standby power consumption of only 4μA makes it possible to build metering applications that can operate for more than five years from a single lithium battery, TI claimed.

Combining a 16-bit RISC processor and an 850 to 950MHz RF transceiver, the two chip system will enable data rates of up to 200Kbit/s.

TI claims the chipset allows designers to build a complete system with a bill of materials costing under $6.

Mobiles to outstrip fixed

Mobile phone users will out number fixed line telephone users in the world as early as 2001, according to figures published by the International Telecoms Union (ITU).

In a report the ITU predicted that the number of mobile phone users will overtake fixed telephone lines around the world sometime between 2001 and 2007.

It stated that there will be more than half a billion mobile phones in the world by the end of next year, this is almost double the number just a year ago.

Transistors reach physical limit

Intel research engineers are warning that the chip industry faces a potential problem in shrinking the size of transistors as they approach fundamental physical limits.

In a recent article in Science magazine, Paul Packan, a research engineer at Intel, said that there is as yet no way around basic physical limits to shrinking transistor features.

This could mean a slowing of Moore’s law, which describes a doubling of chip transistor counts every 18 to 24 months.
Hewlett Packard
8642A - high performance R/F synthesiser
(0-1-1050MHz) £5500
3335A - synthesiser (200Hz-81MHz) £2400

Hewlett Packard
436A power meter and sensor (various) from £750
437B power meter and sensor (various) from £1100

Hewlett Packard
8753A network analyser (3GHz) from £2500
8753B network analyser (3GHz) from £3250

Wandel & Goltermann
PRA-I Frame Analyser £5250

PRA-4 - channel measurement set £7500

Marconi
2305 - modulation meter £1250
6310 - programmable sweep counter (2 to 20GHz) - new £3250

Hewlett Packard
5342A - microwave frequency counter (500MHz-1GHz) ops 1 & 3 £700
5370B - universal time interval counter £1750

OSCILLOSCOPES
Brookdeal AS500A 20MHz 2 channel £150
Hewlett Packard 54110D - 8GHz Digital £1950
Hewlett Packard 54121A - 300MHz Digital £720
Hewlett Packard 54860A - 2 channel £1240
Hewlett Packard 53510A - 2 channel £725
Hitchcock V10000V 20GHz £1150
Intron 2560 - 20GHz, Dual channel G.S. (new) £1125
Iskakus 2S 270V 570MHz £125
Iskakus C/S 1100 - 1GHz, Dual channel £1125
Lecroy 9405A - 300MHz £1240
Minicord MSD 1210A - 20MHz, D.S.O. £950
Philco 3365 - 50MHz, Dual channel £450
Philco 3359 - 20MHz, 4 channel £300
Philco 3359A - 400MHz, 4 channel £1600
Philco 3359P - 200MHz, 4 channel £1150
Tektronix 2465A - 350MHz, 4 channel £2250
Tektronix 2245A - 100MHz, 4 channel £1250
Tektronix 2235 - 100MHz, Dual channel £1150
Tektronix 2225 - 200MHz, Dual channel £1250
Tektronix 2235B - 80MHz, Dual channel £1250
Tektronix 2244A - 150MHz, 4 channel £1500
Tektronix 2244B - 150MHz, 4 channel £1500
Tektronix 2243B - 150MHz, 4 channel £1250
Tektronix 6414B - 10GHz, 4 channel £5000

SPECTRUM ANALYSES
Accel 2011 - DSA £1500
Avcom PSA-65A - 2 to 100MHz £950
Avcom PSA-65A - 2 to 200MHz £1300
Avcom MS 618B - 100KHz - 30MHz - new £1150
Avcom MS 710F - 100KHz - 235GHz £1200
Advantest T4778A 9kHz - 102MHz £1800
Hewlett Packard 3562A Dual channel dynamic signal analyser £1500
Hewlett Packard 8561A - 1GHz - Network Analyser £1950
Hewlett Packard 8703B/8757A Scalar Network Analyser £1950
Hewlett Packard 8532A MUX (8900A Spec. A.B. 100MHz to 1GHz) £1950
Hewlett Packard 1672 Mainframe + 8548A Spec. (0.1 to 2GHz) £2150
Hewlett Packard 1677 Mainframe + 8548A Spec. (1.0 to 2GHz) £2150
Hewlett Packard 8565B - 1GHz - 1500MHz £2350
Hewlett Packard 85691A 0.1 to 2GHz £2350
HP 8753A - Network Analyser 450MHz-1.5GHz £3950
HP 8752D - 100MHz-1GHz - Portable £1950
Iskakus MS 300A-400A - 30GHz-50GHz £2950
Iskakus MS 4912 - 1GHz - 1GHz Spec. Analyser £1250
Iskakus & Goltermann T5A-3 system analyser (100Hz-180MHz) £750

All equipment is used - with 30 days guarantee and 90 days in some cases.
Add carriage and VAT to all goods.
Telnet, 8 Cavans Way, Binley Industrial Estate, Coventry CV3 2SE.

Fax: 02476 650 773

Tel: 02476 650 702

Telnet Communications Test Sets

Marconi 2955 £2000
Marconi 2955/2960 £2250
Anritsu MS555A2 £1200
Hewlett Packard 8920A £2200
Hewlett Packard 8922B (GSM) £9650
Schlumberger Stabilock 4031 £3950
Schlumberger Stabilock 4040 £1500
Racial 6111 (GSM) £1750
Racial 6115 (GSM) £3995
Rhode & Schwarz CM 54 (new) £6250
Rhode & Schwarz CM 94 (GSM) £5950
IRIF 1200S £2995

NEW PHONE CODE FOR COVENTRY 02476

Radio Communications Test Sets

Marconi 2955 £2000
Marconi 2955/2960 £2250
Anritsu MS555A2 £1200
Hewlett Packard 8920A £2200
Hewlett Packard 8922B (GSM) £9650
Schlumberger Stabilock 4031 £3950
Schlumberger Stabilock 4040 £1500
Racial 6111 (GSM) £1750
Racial 6115 (GSM) £3995
Rhode & Schwarz CM 54 (new) £6250
Rhode & Schwarz CM 94 (GSM) £5950
IRIF 1200S £2995

Quality second-user test & measurement equipment

Tel: 02476 650 702
Fax: 02476 650 773
Intelligent signal processing

DSP, neural networks and time series - Chris MacLeod and Grant Maxwell look at how artificial neural networks can benefit signal processing.

Artificial neural networks are one of the corner stones of modern artificial intelligence, or AI. Over the past year we have written two articles in Electronics World on their relationship with the more familiar aspects of electronics.

The first article in the June 1998 issue, dealt with their connection with digital electronics. The second, in the November 1998 issue, discussed how modern techniques are bringing us closer to systems that display real intelligence.

In this article we look at their relationship with signal processing technology – in particular with digital signal processing – and the importance of time-series signals to AI in general. These areas are of critical and growing importance to modern electronics. We will also tie up a few loose ends and try and show the ‘big picture’ of how the various technologies relate to each other.

Neural networks and DSP

In analogue electronics we use filters such as Sallen and Key circuits to process signals, in the digital domain the equivalent functions are performed by digital filters.

One of the most basic digital filters is the simple finite-impulse-response system. Several different filtering structures may be based on it. Such an FIR system can perform low-pass and high-pass type functions, Fig. 1. Those of you not familiar with DSP or wanting to brush up your skills should refer to the excellent book by Ifeachor and Jervis.

The difference between the filter and a standard neuron of the type commonly used in artificial neural networks is simply the delay line with unit delays Z^{-1} and the fact that the filter operates without a threshold or activation function. You might find it interesting to refer back to our first article to look at the model of the artificial neuron. In the case of the filter, the coefficients $h(n)$ are found using one of the standard design methods; in the artificial neural network they are learnt by the system.

A closer look at this system will help us to understand, at a much deeper level, what is happening. Previously, we pointed out that the artificial neural network was a mapping system; it takes one data distribution and maps it onto another – as combinational logic does – but with two important differences. Firstly, it maps continuous data and secondly, it can learn the mapping without need of a designer. This mapping capability is often used to produce artificial neural networks, which can recognise patterns by mapping the pattern onto a predetermined set of answers.

The effect of the unit delays in the filter above is to provide a ‘snap shot’ of the data, sampled at unit intervals, to the summation unit, i.e. neuron. In other words, it converts a time-varying signal into a spatial signal. The neuron can now process this data according to the mapping it has learned.

It should be quite clear that the artificial neural network and the FIR filter are therefore simply the same system viewed from different technology perspectives. One maps spatial data patterns, the other – with the aid of time delays – maps temporal or time series data.

Extending these basic ideas

By understanding the fundamental relationship described above, one can expand the ideas behind DSP filters and artificial neural networks further.

For example, you can use a network of neurons. This allows the system to produce more complex mappings than the single neuron. This idea is shown in Fig. 2. In the literature, it is sometimes referred to as a ‘time-delay artificial neural network’; another appropriate term might be ‘neuro-filter’. In fact, all the common DSP functions from comb filters to autocorrelation functions may be represented as neuro-filters.

The system can learn the mapping
using one of the common artificial neural network training rules such as back propagation. In fact the algorithms that have been developed for implementing adaptive filters - filters which can change their parameters in use - are identical to back propagation. This is another example of technological convergent evolution.

It is also possible to map one time series to another, as in Fig. 3.

Benefits of more layers

Adding another layer of neurons into the system allows more complex mappings to be performed. A three-layer network can theoretically perform any mapping - provided that there are enough neurons present. However, there are practical problems with this because of limitations in the learning algorithms.

The networks discussed so far have no feedback loops, the infinite impulse response (IIR) filter is the equivalent of the Hopfield neural network. The importance of the Hopfield type of network is its ability to store a mapping and recall it when presented with an incomplete version: compare this to sequential digital logic. In other words, apply a corrupted signal to a Hopfield-based neuro-filter and assuming that the filter has learnt the correct version, it will reproduce it.

Adding another layer of neurons into the same structure will allow one time series to map onto another, independent series. This is the equivalent in artificial neural network terms of the network known as a ‘bidirectional associative memory, or BAM. These ideas can extend the use of DSP beyond its current application in filtering to much more complex mapping functions.

Filtering in the brain?

The brain is a mass of 100 billion neurons; its structure has been formed by evolution over hundreds of millions of years. Because evolution is ‘blind’, it will simply form the best structures to perform a function regardless of their topology.

A small amount of thought shows that it is very likely that temporal filtering structures of the type discussed above are present in the nervous system. They could certainly be implemented quite easily, as in Fig. 4 for example. You can see from this that, to make a general neural network, another component is required – that of the time delay.

The dynamics of the mind

Quite apart from the filtering illustrated in the previous section, time series signals also play a deeper role in the operation of the brain and are perhaps vital to consciousness itself. Information in the nervous system is transmitted as pulses called ‘action potentials’, Fig. 5. These encode information by pulse frequency modulation and possibly pulse position modulation. This is in marked contrast to the way signals are represented in most artificial neural networks. As we will show, the difference may be critical, both to understanding the nature of thought and to synthesising electronic circuits that can mimic it.

The story starts with W. J. Freeman who was studying the olfactory (smell) system in rabbits. He found that each smell was encoded as a distinct pattern of pulses moving around the network, never exactly repeating itself - a chaotic attractor. It has been suggested that thought itself may be just such a pattern of pulses evolving and changing over time or in response to sensory input. In this view of the brain, therefore, it is not the wiring of the system that is important, or even the functionality of the building blocks. Rather it is the dynamics of the signals and how they interact with each other and the outside world.

We know that dynamic signals are important in the nervous system. Just think of how you breathe or how your heart always beats - a good example of a neuro-generated pattern.

Sensory deprivation

Further illustration is given by, for example, sensory deprivation. When the human body is deprived of sensory input, the brain goes wild, causing vivid dreams and even hallucinations. This can only be explained if the brain generates its own activity in the absence of sensory input.

Notice the marked contrast with artificial neural networks, which are usually designed to be stable and damp down any dynamic activity. They generally use a data representation not suitable for this type of activity anyhow.

A train of thought or a stream of consciousness is then a moving and
changing pattern of pulses, themselves made up of individual action potentials rushing hither and thither through the network. These pulses and therefore patterns may be altered in a number of different ways:

- By sensory input. This may have the effect of clamping the signals into a more rigid pattern.
- By the connections between the neurons themselves strengthening or weakening.
- By other feedback learning mechanisms.

Simulating complex dynamic patterns like these may help us to further understand the operation of the mind and also open applications and systems in advanced electronics.

Simulating complex dynamics using digital electronics

In our previous article, we described how Adrian Thompson of the University of Surrey (http://www.cogs.susx.ac.uk/users/adrian/ade.html) has used a technique called the 'genetic algorithm' to synthesise interesting digital circuits.

The circuits that Adrian produced are unusual in that to create their signals they operate asynchronously and use gate delays to produce complex outputs, as shown in Fig. 6. In other words they are not so much using the normal AND, OR and NOT functions, as the spikes, glitches and hazards that we normally strive to avoid!

These anomalies interact to produce the required output. The genetic algorithm is effectively designing the circuit.

Figure 7 shows how the outputs change as the circuits evolve. In this case the object was to produce a 4kHz oscillator; Figure 8 shows the actual circuit evolved. The circuit itself is difficult to analyse, its function having been dictated by evolution rather than design. Of course it is also possible to program the genetic algorithm to select networks that display programmability and stability.

The operation and output of these circuits bears a striking resemblance to the action potentials rushing around the brain. More importantly, this type of system may give us the opportunity to explore exactly the type of dynamics that were discussed above. This in turn may lead to a better understanding of brain function and the role of dynamics in biological and artificial intelligence.

Although Thompson uses gates to achieve this effect, further development of these ideas may be made easier by using specially constructed combinational elements of other types and variable delays.

A changing dynamic can also be added into this type of simulation by making the circuit delays variable. These delays can then be effected by outside learning signals, re-enforcement type strengthening or sensory input, so causing the patterns themselves to change in response to sensor and learning influence.

Tying it all together

We hope that in this, and the previous articles, we have managed to show that the different technologies - spatial mapping in the first article and temporal mapping and complex dynamics in this current one - are all aspects of the same general system. They are all synthesised from simple, basic building blocks.

Electronics can learn much from these natural examples and the relationship between the functions should be considered an important topic for research.

We said in our first article that there is a general theory of electronics, a new electronics, hiding behind the individual parts. Electronics can also learn other important lessons from biology. For example, current trends are for research into smaller and faster chips. Biology shows that where we should really be heading is for three dimensional circuit layout. This is what gives the brain its amazing packing density, although this may require a paradigm shift, for example in the development of self-wiring, or self-routing circuits.

In the case of biology, evolution knows only that it must define networks which work and so different levels of the system may operate in different ways - some as simple mapping networks and others as complex dynamic systems.

It is likely that biology uses them all. There are certainly indications that many of the lower, reflex-type actions are carried out by simple mapping networks, while the higher functions are complex dynamic systems; evolution is blind, it knows not which are which. It will use them all - and so will any technological attempts to design truly intelligent circuits.

For more discussion, visit our web site:
http://www.eee.rgu.ac.uk/research/neural/welcome.htm

References

Fig. 8. Evolved circuit of 4kHz clock.
After Thompson, reproduced with permission.
This Class-AB audio power amplifier features excellent stability without needing stabilising networks. The design incorporates a new driver-stage topology for eliminating crossover distortion and it has a saturation-preventing scheme for fast recovery from clipping.

A new Class-AB design

The design encapsulated

This is a three-stage class-AB common-emitter power amplifier using discrete bipolar transistors.

Thermal stability is achieved and switching distortion is avoided by using a new current mode class-AB driver circuit.

Total harmonic distortion varies from 0.01% at 20Hz to 0.1% at 20kHz driving 30W into 8Ω.

A phase margin of 85° for a β of 1/34 guarantees excellent stability without load stabilising networks.

Saturation of the power transistors is prevented, resulting in fast recovery from clipping.

Moreover a common-collector stage is not able to reach a rail to rail voltage output swing due to the base-emitter voltages.

Common-emitter output stages are usually based on a complementary feedback pair. However the local feedback loop around the pair can be a source of HF oscillation.

In order to achieve thermal stability without switching problems, and to allow maximum output voltage swing, we designed a common-emitter power amplifier based on a new current-mode class-AB driver circuit. Due to the absence of local feedback at the output, the stability of the amplifier is only dependent on the global feedback-loop.

Common-emitter design

The open-loop output impedance of a...
common-emitter amplifier is inherently high, but can be lowered by applying negative feedback. As a result, the output resistance becomes inversely proportional to the transconductance, g_m, and the feedback factor, β.

$$R_{out} = \frac{1}{g_m \beta}$$

In order to obtain a closed-loop gain of 34, the feedback factor must be $1/34$.

For an output resistance of $30\, \text{m\Omega}$ the transconductance should be approximately $1000\, \text{A/V}$. This requires a cascade of at least three gain stages: an input transconductance stage and two current gain stages.

How it works

The simplified circuit diagram of the amplifier is depicted in Fig. 1. Its input stage, consisting of a differential transistor pair, $T_{1,2}$, and a current mirror, $T_{3,4}$, converts the differential input voltage to a single output current. This current feeds the base of driver transistor T_9 and via the common base transistor T_8 feeds the base of the driver transistor T_{10}. The driver transistors supply their emitter currents to power transistors T_{11} and T_{12} respectively.

Biasing and class-AB control are achieved by means of a bias-control loop formed by $T_{6,9}$. Due to the buffer function of T_6 the base-emitter voltage of the power transistor T_{11} is isolated from the bias control loop. This is done to avoid thermal or HF switching distortion problems mentioned earlier.

This design is based on complementary n-p-n/p-n-p transistors. Their parameters can be assumed equal to make the equations easier. The class AB control is based on the well-known geometric class-AB control law,

$$I_{C3} \times I_{C6} = I_6$$

The DC collector current of the driver transistors is given by,

$$I_{C3} = I_{C6} = I_s / h_{FE}$$

Collector terminals of the driver transistors $T_{10,12}$ connect to the output terminal to minimise driver dissipation and to prevent the power transistors $T_{10,12}$ from saturating.

Power dissipation in the bias-control loop transistors is low compared to the dissipation in the output transistors. Hence, if $T_{6,9}$ share a small heat sink, thermal stability is achieved without emitter degeneration and switching distortion.

The remaining dominant source of temperature dependence is the temperature coefficient of the power transistor forward current gain. This coefficient
Fig. 4. Residual currents in the output transistors are well controlled.

Fig. 5. Curve for output voltage swing shows that this design can drive close to the ±25V supply rails.

Fig. 6. Dissipation of the power transistors when overdriven illustrates the efficiency of the bias control loop.

Fig. 7. Open-loop gain and phase characteristics for the amplifier.

Fig. 8. Magnitude and phase plots of the output impedance.

is approximately 0.6%/K^4. Maximum output current is determined by emitter current and the current gain of \(T_{R_9,11} \) or \(T_{R_{10,12}} \) respectively,

\[I_{Q\text{max}} = \pm I_{E} h_{FE} \]

It can be seen that, in contrast with many other designs, the maximum output current capability is symmetrical.

Optimisation

Figure 2 shows the complete amplifier as used for our PSpice simulations. Adding \(T_{R_8} \) simplifies equation (3) to,

\[I_{Q} = I_{C} = I_{R} \]

As a result, the quiescent current of the output stage is,

\[I_{C(T_{12})} = I_{C(T_{11})} = h_{FE} I_{E} \]

Note that the maximum available base current for \(T_{R_9} \) is increased with a factor square-root \(h_{FE} \) and the accuracy of the bias control loop is increased too.

Capacitors \(C_m \) and \(C_f \) perform frequency compensation. Capacitor \(C_m \) is a Miller capacitor, compelling the open-loop transfer to a first-order frequency behaviour. Capacitor \(C_f \) forms feed-forward frequency compensation around the common-base connected level-shift transistor \(T_{R_8} \).

Currents \(I_E \) and \(I_R \) are determined by \(V_{diode}/R_6 \) and \(V_{diode}/R_7 \) respectively. Emitter degeneration – \(R_1 \) and \(R_2 \) added to \(T_{R_1} \) and \(T_{R_2} \) respectively – is used to increase the amplifier’s input voltage range to reduce transient intermodulation distortion.
Fig. 9. Complete circuit of the prototype used to make the measurements described in the article.

Simulations and measurements
For a 40W/8Ω design of the common-emitter power amplifier of Fig. 2, the supply voltages are: $V_p=25V$ and $V_n=-25V$. For $R_e=100Ω$, giving an emitter current of around 6mA, and a Miller capacitor of 1nF, the calculated slew-rate is 6V/μs. The corresponding full-power bandwidth is approximately 40kHz.

We simulated the circuit of Fig. 2 using PSpice. By adjusting R_7 the quiescent current of the power transistors Tr_{11} and Tr_{12} was set to 100mA.

Using equation (4), the peak output current is approximately 20A. The closed-loop voltage-gain of the circuit is depicted in Fig. 3. The nearly sym-

Fig. 10. The authors' prototype amplifier.

Fig. 11. Measurement of THD+noise versus frequency, a), and THD+noise versus level in watts, b). Curve a in a) is 1W, b is 30W. In b) on the right, a is 1kHz and b is 10kHz.
metrical shape of the gain-curve of the common-emitter amplifier is mainly
determined by the h_{FE} roll-off of the driver- and power transistors.

<table>
<thead>
<tr>
<th>Table 1. Measured performance versus PSpice simulation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSpice</td>
</tr>
<tr>
<td>Open-loop gain</td>
</tr>
<tr>
<td>Open-loop -3dB b/w</td>
</tr>
<tr>
<td>Closed-loop o/p imp. (mΩ)</td>
</tr>
<tr>
<td>Closed-loop o/p imp. 3dB</td>
</tr>
</tbody>
</table>

Residual currents in the output transistors of the common-emitter amplifier are well controlled, see Fig. 4.

As you can see in Fig. 5, the maximum output voltage of the common-emitter amplifier is close to the rail to rail limit. The dissipation of driver and power transistors in overdrive is shown in Fig. 6. This illustrates the low power dissipation of the bias-control loop used in the common-emitter amplifier.

Open-loop gain and phase characteristics, Fig. 7, show a unity gain phase margin of 45°. The phase margin for β of 1/34 is 85°. Magnitude and phase of the output impedance are given in Fig. 8.

Setting up

We implemented Figure 9 on a pcb, Fig. 10, and used it for measurements.

By adjusting R_7, the quiescent current of the power transistors $T_{11,12}$ was set to 100mA. Note that due to the spread in transistor parameters, a manual control of the quiescent current is necessary. This is usual for power

Mathematical AC analysis of a common-emitter amplifier

In order to gain insight into the common-emitter amplifier, a mathematical AC analysis on a macro model like Fig. A can be used. Frequency-dependent behaviour of the open-loop transfer, the closed-loop output impedance and distortion are studied here.

The macro model of the common-emitter amplifier consists of a voltage to current converter, A_1, representing the input stage, followed by a current controlled current source, A_2, representing a two-stage current amplifier.

Miller capacitor C_m connects across the current-gain stage. The dominant source of distortion in A_2 is the current gain dependence of the emitter current $- h_{FE}$ roll-off. This distortion is modelled by a current source connected in parallel with the output current source.

The open-loop transfer function of the common-emitter amplifier can be written as,

$$ H_1(s) = H_{CO} \frac{Z_{HC}}{1 + P_{HC}} $$

where,

$$ H_{CO} = G_1F_1R_L $$

$$ P_{HC} = \left(\frac{R_1 + F_1R_i + R_2}{F_1} \right)C_m $$

$$ Z_{HC} = \frac{R_1}{F_1C_m} $$

Closed-loop output impedance is given by,

$$ Z_{CO} = Z_{CO} \frac{Z_{HC}}{1 + P_{ZC}} $$

where,

$$ Z_{HC} = Z_{HC} \frac{1}{1 + G_1R_1F_1} $$

$$ Z_{CO} = Z_{CO} \frac{1}{1 + G_1F_1R_1} $$

$$ P_{ZC} = \left(\frac{F_1 + G_1R_1F_1}{F_1G_1} \right)C_m $$

Closed-loop frequency dependence of the distortion is given by,

$$ V_{out, \text{dc}} = \frac{1 + s}{Z_{DC}} $$

where,

$$ Z_{DC} = Z_{ZC} $$

$$ P_{DC} = \frac{1 + G_1F_1R_1}{1 + G_1F_1R_1} $$

Note that the pole frequency of the open-loop transfer, see expression (9), differs from the closed-loop zero frequency of the output impedance and the variation of distortion with frequency, see the expressions (13) and (16) respectively.

This is in accordance with the results found in simulations and measurements and verified by making a comparison between macro model results and simulations/measurements. Therefore numerical values used for the variables in the macro model expressions are derived from the PSpice output files,

$$ G_1=50mAV, \quad R_p=4k\Omega \quad F_1=\text{driver } h_{FE} \quad F_2=20000 \quad \text{(product of } h_{FE}) $$

The macro-model results on gain, bandwidth and output impedance fit quite well in with those found in PSpice and measurements in Table 1. The deviating value of the 3dB frequency of the output impedance and the frequency dependence of the distortion - 40kHz instead of 16kHz in PSpice - is caused by the simplification of leaving out the parallel capacitance at the input of A_2. This is carried out in order to make the expressions 7-17 simpler.

Adding $C_p=800pF$ - extracted from PSpice - in parallel of R_p yields the far more satisfactory corner frequency of 20kHz.

Fig. A. Macro-model of the common-emitter amplifier allows mathematical analysis.
amplifiers based on discrete components.

Matched dual transistors, $T_{1,2}$ and $T_{3,4}$, a decoupling capacitor C, and equal values for R_b and R_f are used to minimise the DC offset.

A problem with power transistors driven by a current source is that there is no turn-off resistor for them. Under high-frequency, high-amplitude drive there will be a tendency for the effective bias current to rise dynamically.

By using HF power transistors with an f_T of 80MHz, this bias current rise is reduced to 60% at 20kHz at full drive.

Summary of measurements

The DC offset is 3.5mV and the slew rate 7V/µs. Distortion curves are presented in Fig. 11. Photographs of the square-wave response, in Fig. 12, demonstrate the amplifier's stability.

In the THD waveform at 30W, 20kHz, Fig. 13, no switching distortion occurs. The residual signal only contains low harmonics which are not very audible. Overdrive and recovery at 5kHz are shown in Fig. 14.

Thermal performance has been tested with an output power of 100W using a 1kHz sine wave and 2Ω load, which is 2.5 times the nominal value.

After two hours, the bias current rise was limited to 44 %, mainly due to the temperature coefficient of the current gain of the output transistors. This test confirms the thermal stability of the amplifier.

Table 1 is showing approximately equal results for PSpice simulations and measurements.

In summary

This class-AB common-emitter power amplifier incorporates a new current-mode class AB driver circuit to obtain good thermal stability of the quiescent current in the output stage. It also guarantees zero-current in the output transistor that is conducting the residual current, avoiding HF switching distortion.

Maximum output voltage is near to the rail-to-rail limit. Saturation in power transistors is avoided, resulting in fast recovery from clipping. The circuit has an excellent stability due to a phase margin of 85° with a β 1/34.

Finally, we would like to thank Elbert Kelholt, Eric Klumperink, Clemens Mensink, Rien van Leeuwen and Henk de Vries for their help in preparing this article.

References

The TELEBOX is an attractive fully-fitted mains powered unit containing all electronics ready to plug into a host of monitors or AV equipment which are also available from Distel, or any other supplier. All TELEBOX's are connected to a cable type service. Shipping on all TELEBOX's is code (B).

TELEBOX ST5
- **Description**: TELEBOX ST5 is fitted with integral speaker for composite video input type monitors.
- **Features**: For overseas PAL versions state 5.5 or 6 mHz sound specification.
- **Accessories**: Provides a composite video or SCART input. The composite video output is fitted with a composite video or SCART input. The composite video output is an integral 4 watt audio amplifier and low level Hi Fi audio output are provided as standard. Brand new - fully guaranteed.

TELEBOX ST6
- **Description**: TELEBOX ST6 is fitted with integral speaker for composite video input type monitors.
- **Features**: For overseas PAL versions state 5.5 or 6 mHz sound specification.
- **Accessories**: Provides a composite video or SCART input. The composite video output is fitted with a composite video or SCART input. The composite video output is an integral 4 watt audio amplifier and low level Hi Fi audio output are provided as standard. Brand new - fully guaranteed.

FLOPPY DISK DRIVES 2½″ - 8″

HARD DISK DRIVES 2½″ - 14″

TEST EQUIPMENT & SPECIAL INTEREST ITEMS

COLOUR CCD CAMERAS

SOFTWARE SPECIALS

DISTEL on the web: Over 16,000,000 items from stock!

IC's - TRANSISTORS - DIODES

VIDEO MONITOR SPECIALS

SUPERB QUALITY 6 foot 40U VIRTUALLY NEW, Ultra Smart - Less than Half Price!

32U - High Quality - All steel RackCab

DISTEL® 0208 653 3333

DISPLAY ELECTRONICS 1999
AQUILA VISION
http://www.aquila-vision.co.uk
Aquila Vision specialises in supplying and supporting Embedded Microprocessor Development products from PICs to DSPs. We also stock robotics boards, Linux and general interest CD-ROMs.

BEDFORD OPTO TECHNOLOGY LTD
http://www.bdt.co.uk
Optoelectronic products UK design development manufacture standard and custom, LED bargraphs, circuit board indicators, stand offs, transmissive/reflective switches, baseplate optocouplers tubular and surface mount, panel mount LED assemblies.

CAMBRIDGE MICRO PROCESSOR SYSTEMS LTD
http://www.cms.uk.com
Concept Keyboards are specialists in the design and manufacture of customer specified membrane panels and keyboards, and electronic design. Concept’s membrane manufacture is supported by a full electronic production facility to provide a complete turnkey keyboard and electronics service, fully accredited to ISO9001.

CONTROL SOLUTIONS
www.controlsolutions.co.uk
Data acquisition and control for beginners, hobbyists, and professionals. Perform mathematical and logical operations on data in real time. Email: info@controlsolutions.co.uk.

COOKE INTERNATIONAL
http://www.cooke-int.com
e-mail: info@cooke-int.com
A leading international supplier of communication and control technology to industry, Arcom provides leading edge solutions through a comprehensive range of market leading products.

CROWNHILL ASSOCIATES LTD
http://www.crownhill.co.uk
Crownhill supply low cost development tools for use with Micro-Controllers and Smart Cards. Products include Smart Card development tools, Smart cards, Micro Development tools and Bespoke Design Services.

CROWNHILL ASSOCIATES LTD
http://www.crownhill.co.uk
For the pick of the UK’s Top High-Tech Software and Hardware career opportunities - from fresh Grad/PhD to Senior Engineer/Manager -- £22,000 - £70,000.

DANIEL MCBREARTY
http://www.dannmb.demon.co.uk
Experienced engineer based in London, specialist in audio and control systems. Available for design, project engineering or general consultancy. Background of high-quality work.

DISPLAY ELECTRONICS
http://www.distel.co.uk
Equinox Technologies UK Ltd., specialise in development tools for the embedded microcontroller market.

ELECTRONICS WEEKLY
http://www.electronicsweekly.co.uk
Welcome to the home page of Electronics Weekly. Over 300 books and information packs available for those working with electronics and engineering technology. Visit our site for a free catalogue and downloads.

EPT EDUCATIONAL SOFTWARE
http://www.epsoft.demon.co.uk
Electronics, Electrical and Mathematics Principles V6. Over 700 colourful interactive topics from Ohm’s Law to PIC microcontrollers. Email sales@epsoft.demon.co.uk for full details.

FELLER UK
http://www.feller-at.com
Feller (UK) Ltd. manufacture fully approved cordsets (Moulded mains plugs and connectors) and Power Supply Cables for all industrial Countries to National and International Standards.

FLASH DESIGNS LTD
http://www.flash.co.uk
Flash supply low cost AVR ISP programmers (£39), MINI-ICE starter kits (from £69), Portable Easy-ICE emulators (from £199), ICE Adapters & 'C' compilers for any ATMEL AVR, MC68, Dallas, Hitachi H8 microcontroller. Download FLASH NEWS now, Watch out for Special Offers*, ARE YOU developing code in a Flash?

HPS LTD
http://www.dspace.dial.pipex.com/hps/
FILTER DESIGNER - Advanced analog and digital filter design software for the PC - Standard and Professional versions - Free download of Evaluation version.

LOW POWER RADIO SOLUTIONS
http://www.lprs.co.uk
LPRS markets low power radio transmitters, receivers and transceiver modules manufactured by ourselves, Radiometrix, Circuit Designs, RDT and Micrel. Applications for telemetry, video and remote control.

NEWNES - BOOKS FOR THE ELECTRONICS WORLD
http://www.newnespress.com
Over 300 books and information packages for those working with electronics and engineering technology. Visit our site for a free catalogue and downloads.
WEB DIRECTIONS

Put your web address in front of 21 000 electronics enthusiasts and experts.
Electronics World acknowledges your company's need to promote its web site, which is why we are now dedicating pages in every issue to announce your WEB ADDRESS.
This gives other readers the opportunity to look up your company's name, to find your web address and to browse the magazine page to find new sites.
We understand that cost is an important factor, as web sites are an added drain on budgets. But we are sure you will agree that the following rates make all the difference:

FOR 12 ISSUES:
- Lineage only will cost £150 for a full year just £12.50 per month.
- This includes your company's name, web address and a 25-word description.
- Lineage with colour screen shot costs £350 for a full year, which equates to just £29.17 per month.
This price includes the abovementioned information, plus a 3cm screen shot of your site, which we can produce if required.
To take up this offer or for more information ring:
Joannah Cox on 020 8652 3620 or fax on 020 8652 9388.
e-mail: joannah.cox@rbi.co.uk

<table>
<thead>
<tr>
<th>Company name</th>
<th>Web address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ABRITARY WAVEFORM GENERATOR-
STORAGE OSCILLOSCOPE-
SPECTRUM ANALYZER-
MULTIMETER-
TRANSIENT RECORDER-

- The HS801: the first 100 Mega samples per second measuring instrument that consists of a MOST (Multimeter, Oscilloscope, Spectrum analyzer and Transient recorder) and an AWG (arbitrary waveform generator). This new MOST portable and compact measuring instrument can solve almost every measurement problem. With the integrated AWG you can generate every signal you want.

- The versatile software has a user-defined toolbar with which over 50 instrument settings quick and easy can be accessed. An intelligent auto setup allows the inexperienced user to perform measurements immediately. Through the use of a setting file, the user has the possibility to save an instrument setup and recall it at a later moment. The setup time of the instrument is hereby reduced to a minimum.

- When a quick indication of the input signal is required, a simple click on the auto setup button will immediately give a good overview of the signal. The auto setup function ensures a proper setup of the time base, the trigger levels and the input sensitivities.

- The sophisticated cursor read outs have 21 possible read outs. Besides the usual read outs, like voltage and time, also quantities like rise time and frequency are displayed.

- Measured signals and instrument settings can be saved on disk. This enables the creation of a library of measured signals. Text balloons can be added to a signal, for special comments. The (colour) print outs can be supplied with three common text lines (e.g. company info) en three lines with measurement specific information.

- The HS801 has an 8 bit resolution and a maximum sampling speed of 100 MHz. The input range is 0.1 volt full scale to 80 volt full scale. The record length is 32K/64K samples. The AWG has a 10 bit resolution and a sample speed of 25 MHz. The HS801 is connected to the parallel printer port of a computer.

- The minimum system requirement is a PC with a 486 processor and 8 Mbyte RAM available. The software runs in Windows 3.xx / 95 / 98 or Windows NT and DOS 3.3 or higher.

- TiePie engineering (UK), 28 Stephenson Road, Industrial Estate, St. Ives, Cambridgeshire, PE17 4WJ, UK
 Tel: 01480-460028; Fax: 01480-460340
 Web: http://www.tiepie.nl

- TiePie engineering (NL), Koperslagersstraat 37, 8601 WL SNEEK The Netherlands
 Tel: +31 515 415 416; Fax +31 515 418 819
 Web: http://www.tiepie.nl
Save 18% on an emulation and development kit for the world’s fastest 8-bit micro

The fastest 8-bit controller in the world
SX chips manufactured by Scenix Inc are the world’s fastest 8-bit micros, with operating speeds up to 100MIPS. This blistering speed allows you to implement an increasing range of virtual peripherals in software, rather than relying on specific hardware functions pre-loaded into the chip – peripherals such as low speed modems, filtering and newly released single-chip Internet solutions. What’s more, the software for these is downloadable from Scenix’s web site www.scenix.com.

SX chips are fully re-programmable and available in 18 to 52-pin packages.

With a top throughput of 100 MIPS, the new SX series microcontrollers from Scenix are the fastest in their class. But however good a micro is, a major influence on its adoption by engineers is its programming environment. The SX-Key produced by Parallax – the first third-party supplier of SX-tools – has been designed for maximum productivity.

The integrated Windows environment is completely seamless, allowing code generation using Parallax’s assembler through to programming and full speed emulation modes up to 100MIPS provide many debugging options to help find those last few code problems!

Save 18%
To mark the launch of these latest tools, we are pleased to offer Electronics World readers an exclusive discount which is only available until the end of January 2000. Purchase the full SX-Tech Emulator/programmer kit for only £139.00 including shipping and VAT – a saving of 18% off normal retail pricing.

Please post the coupon below to Milford Instruments at Milford House, 120 High Street, South Milford, Leeds LS25 5AQ. Tel 01977 683665, fax 01977 681465.

Full-speed emulator, programmer and two 50MIPS processors for only £139 – fully inclusive...

What's in the SX-Tech kit?
- SX-Key emulator and programmer – suitable for all current production SX chips
- SX Tech Board
- Two SX 28AC/DP “A” 50 MIPS chips
- One Murata 50MHz resonator
- Printed manual
- CD ROM with software and PDF manual
Is your Spice simulator not quite hot enough? If not, read on...

Produced by the UK's leading simulation engineers, Spicycle offers...

- Analogue + mixed-mode digital simulation with SPICE and extended algebraic functions
- Schematic editing with TrueType fonts
- Drag and drop from component bins
- PCB layout facilities - optional extra
- PCB features, regional DRC, copper fill, BOM, rat's nest connectivity from schematic
- Back annotation from simulator to schematic
- Library includes electronic + mechanical engineering behavioural devices
- Convert Spice net lists into rat's-nested schematic - reverse engineering made easy
- CAM outputs (printer, plotter, drill and Gerber)
- Re-use existing PCB layouts with Gerber import
- Hook up the simulator directly to PCB for the ultimate in design validation
- Upgradable - buy what you need now and upgrade later

And much more. To get a better idea of the power of Spicycle, visit our web site at http://www.spiceage.com.

PROFESSIONAL Development Tools

BASIC Stamps
Still the easiest and fastest way to get your project up and going. 8 or 16 I/O pins, easy-to-read BASIC instructions plus onboard comms and simple interfacing to peripheral chips.

PIC Emulators from Tech Tools
- Mathias In-Circuit Emulator
 - 16CXX to 20MHz
 - 16CXX to 25MHz and data breakpoints
 - Modular design
 - True Integrated Windows Environment
 - Supports standard assemblers and compilers
 - True Bondout Chip set based
 - Programmers and adaptors also available

Scenix Emulators from Parallax
- SX-Key Emulator
 - SX chips are EEPROM-based, PIC16C5x pin compatible micros with up to 100mips performance
 - Full speed debugging on production chips
 - Integrated Windows environment
 - Software configured oscillator
 - 16 to 52 pin reprogrammable devices
 - SX Byte low-cost programmer also available. Full details and software at www.parallaxinc.com

ROM Emulators from TechTools
- EconoROM, FlexROM and UniROM

New to PICs or just wanting to learn new tricks?
We stock the excellent SquareI series of PIC primers. See our web site for contents.

December 1999 ELECTRONICS WORLD
It is well known that by placing two complementary differential pairs in parallel, it is possible to obtain a rail-to-rail input stage. The nMOS pair conducts while input common-mode voltages are high, in particular if,

\[V_{n,cm} > V_c + V_{sl,n} + V_{th,n} \]

When input common-mode voltages are low, the pMOS pair is in conduction,

\[V_{p,cm} < V_{DD} - V_{ph,p} - V_{th,p} \]

From these two equations, it is clear that both differential pairs can operate together for middle values of the input common mode voltage. In this case, the total transconductance of the input stage is not constant.

It is possible to bring the supply voltage down as far as the point where it starts to affect \(g_m \) by making the two edges that delimit the nMOS and pMOS operating regions coincide.

From the previous equations, this implies,

\[V_{DD} - V_c = V_{p,n} + V_{sl,p} + V_{th,n} + V_{th,p} \]

If the input transistors work in saturation, considering also a saturation voltage of about 0.2V and threshold voltages of 0.7-0.75V, a supply voltage of 1.9V results. But this value needs to be lower.

By simply reducing \(V_{DD} \), a constant transconductance can be obtained: for low input common-mode voltages, only the pMOS pair is active, where for high ones only the nMOS pair is in conduction.

For values between, both pairs are ‘on’, the nMOS pair gradually taking over from the pMOS pair as the input common-mode voltage rises.

Constant-\(g_m \) operation with low supply voltages is achieved by designing input transistors with large aspect ratios – \(W=1000\mu, L=1.2\mu \) for example – operating in weak inversion.

The authors

Giuseppe Ferri, Università di L’Aquila, L’Aquila, Italy.

Pierpaolo De Laurentiis, Università di L’Aquila, L’Aquila, Italy.

Amaudio D’Amico, Università di Tor Vergata, Roma, Italy.

Giovanni Stochino, Ericsson Telecomunicazioni SpA, Roma, Italy.
Four leading researchers in the field of low-voltage, low-power analogue building blocks present the culmination of their work – a low voltage rail-to-rail operational amplifier implemented in CMOS with a constant-g_m. New applications for low-voltage building blocks are also discussed, and there’s an outline of a new Spice model specifically for low-voltage design.

Variables W and L – i.e. width and length – refer to the channel width and length of the MOS transistor. Their ratio, W/L, called the aspect ratio, is fundamental because the drain current is proportional to it.

Normally we design a transistor by selecting W and L. The minimum value of L is limited by the technology available. A typical value is 0.35µm.

The value of L is also important for the output resistance value. Resistance R_{out} is inversely proportional to L.

Tail transistors M_{an} and M_{ap} work in the linear region for mid-range input values and in weak inversion for low and high input voltages. In this manner, being in weak inversion, g_m is proportional to current, it is enough to keep the sum of the tail currents constant to perform the constant-g_m operation. Under these conditions and from the circuit analysis, the previous equation becomes:

$$V_{out} = V_{in} + \frac{1}{2} \ln \left[\frac{I_{ds,n}}{I_{ds,p}} \right] + n U_T$$

where U_T is thermal voltage and n the slope factor.

The above equation gives the direct relationship between the total drain current of the input pairs $I_{ds,n}$ plus $I_{ds,p}$, and the corresponding supply voltage that ensures constant transconductance operation under the imposed conditions.

For example, for a given total current of 20µA, the supply voltage for the used technology is about 1.33V.

The complete low-voltage OTA

The complete OTA is shown in Fig. 1. Its feedback circuit gives an equal value of transconductance for low and high inputs. Two dummy circuits have been placed operating respectively at high input levels, M_{d1n}-M_{d2n} and low input levels, M_{d1p}-M_{d2p}.

A feedback MOS transistor, M_{5n}, controls the current in the pMOS input stage and makes it equal to the nMOS stage. The transistors are working in weak inversion.

To take into account the influence of the slope factor, transistor M_{6p} is designed with a slightly higher value of W of 1080µ instead of 1000µ.

Two secondary feedback loops appear on the dia-

<table>
<thead>
<tr>
<th>Table 1. Measured results obtained from a prototype of an operational transconductance amplifier for very low voltage operation. These results were obtained using a 1.5V supply and 15pF load.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input stage swing</td>
</tr>
<tr>
<td>Output stage swing</td>
</tr>
<tr>
<td>Input transconductance</td>
</tr>
<tr>
<td>Gain bandwidth (GBW)</td>
</tr>
<tr>
<td>Low-frequency gain</td>
</tr>
<tr>
<td>Power consumption (total)</td>
</tr>
<tr>
<td>Power consumption (in stages, 10µA; in output stage, 90µA)</td>
</tr>
<tr>
<td>Slew rate</td>
</tr>
<tr>
<td>Total harmonic distortion (1kHz, $V_{pp}=60%V_{dd}$)</td>
</tr>
<tr>
<td>Equivalent input voltage noise</td>
</tr>
<tr>
<td>Input offset voltage</td>
</tr>
<tr>
<td>Settling time</td>
</tr>
<tr>
<td>Overload recovery</td>
</tr>
<tr>
<td>CMRR</td>
</tr>
<tr>
<td>PSRR+</td>
</tr>
<tr>
<td>PSRR-</td>
</tr>
<tr>
<td>Chip area</td>
</tr>
</tbody>
</table>

December 1999 ELECTRONICS WORLD 995
Fig. 1. Operational transconductance amplifier capable of giving good results when working from a single 1.5V cell.
gram. These ensure a constant supply voltage by sensing the 'crossing-point' condition, implemented via equal transistors M9 and M13p.

The loops are formed by two duplicate circuits, M1p-M1p1-M1n2 and M2p-M2p1-M2n2 working in the 'crossing-point' condition; two current mirrors, M3p-M1p1-M12n-M13n; two feedback transistors, M9 and M14n, and a regulating MOS transistor, Mreg, working in its linear region.

The left-hand loop detects the 'crossing-point' condition and compares the mirrored current ID of MiP1 with a reference current flowing through M14n. In the right-hand loop is a voltage regulating system which, by means of external supply voltage Vext, controls the internal supply voltage Vint and keeps it constant. The external supply voltage may be a battery.

In this manner, the whole circuit is robust to possible discharges of the external supply. The feedback circuitry can work with values of external supply voltages Vext in the range 1.3-2.2V.

Circuit details
The diagram gives the main schematic of the op-amp. It is formed by the input stage, described in a previous article, a summing stage comprising M5a, M5b, M7a and M7b, which realises the inversion of some currents, and a traditional common source rail-to-rail output stage, Mout, Mout,p. The compensation of the op-amp doesn’t need nested loops, being performed by a Miller capacitance Cm of 20pF.

The operating principle is the following. For low input common-mode voltages, only the pMOS input pair is active. Current flowing on M1p and M2p is given by the drain current of M3p (Ids,p). Transistors M1n and M2n are both off and no current flows in M3n.

For high input common-mode voltages, only the nMOS pair is active. In this case, the input current flows into M1n, M2n and, hence, into M3n. This total current is kept equal to Ids,n by means of the feedback circuit. Since the input transistors are in weak inversion, the input transconductance is the same for low and high input common mode voltages.

For mid-way values of common-mode input voltages, a reduced value of current flows in both the input pairs. This current, in the 'crossing-point' condition, is exactly half of the value compared to low and high common inputs. But the total current flowing in the input transistors and, consequently, the input transconductance is always the same.

The input voltage that causes the 'crossing-point' condition is strictly linked to the value of Vint. In fact,

Spice and low-voltage transistors – a brand new model
The performance of analogue circuits depends heavily on transistor characteristics. In analogue design, an important aspect when developing a transistor model is that it is not only suitable for simulation, but also that it offers the possibility for exploring new circuit topologies.

The model has to contain hierarchical levels, in order to give both simple analytical expressions to support simple circuit and detailed expressions for precise simulations.

A good model for analogue design has to hold at low supply voltages. In this case, the model has to describe, in a continuous manner, the transistor behaviour from very low currents – weak inversion or sub-threshold operation – to large currents.

Initially, MOS transistor models involved only a few parameters such as the threshold voltage, the current parameter Kp, and the body-effect parameter gamma.

Reducing channel length has increased the number of parameters necessary for suitable transistor modelling. In Spice there is always a different model for the weak and strong inversion regions. Consequently, modelling in the transition region from weak to strong inversion is poor.

Recently a new model has been proposed – namely EKV, produced by Enz, Krummenacher and Vittoz – that gives a unique set of equations for the MOS transistors. However, it has not yet been implemented in commercial Spice.

In this model, weak and strong inversion are tightly linked to each other in a physical and continuous way. The new model is physically based, hierarchically structured and offers several coherent hierarchical levels. These range from simple analytical expression to support for creative synthesis and even more detailed expressions for precise simulations.

In particular, the new model is well suited for the design of circuits operating at low currents and voltages.

ANALOGUE DESIGN

Fig. 3. At very low supply voltages, switched capacitor techniques are unusable. This proposal however is. It involves switching op-amps as opposed to switching capacitors.

A switched-capacitor alternative

Our second example involves switched-op-amps. Switched-capacitor techniques allow a number of analogue functions to be realised conveniently and precisely. These include filters, sample-and-hold circuits and a-to-d or d-to-a converters. However, using switched capacitor techniques at extremely low voltages – less than 1.5V – needs a particular attention to the switches.

At such low voltages, solutions proposed in the literature – low-threshold devices and voltage multipliers for the clock drivers – are no longer feasible. In fact, technologies with low-threshold devices are costly and often not available. Similarly, voltage multiplication is not possible in scaled technologies.

To overcome these problems, we propose the switched op-amp approach. The basic idea is to avoid the critical switches connected in series to the output of the op-amp. These switches turn the op-amp on and off and don’t operate correctly when the supply voltage is lowered.

The new technique guarantees that the output switches have sufficiently high conductance for any output signal conditions.

Figure 3 is an example of the main stage of a switchable op-amp.

This is the final article in a four-article set discussing the state-of-the-art in low-voltage analogue ICs. The three previous articles, in the September, October and November issues, covered bipolar building blocks, CMOS input stages and CMOS output stages respectively.

References

CROWNHILL ASSOCIATES LIMITED
The Old Bakery, New Barns Road, Ely, Cambs. CB4 7PW
Tel: +44 (0)1353 666709 Fax: +44 (0)1353 666710

Low cost professional quality Smart Card Systems

CHIPDRIVE
This intelligent programmer for Smart Cards using the International Standard T=0 or T=1 protocols also Memory and Secure Memory using RC, 2-wire & 3-wire interfaces. From April 1 1999 all ChipDrives are supplied with software to read and write to most popular secure smart cards, inc. GSN, PIN PHONE and ACCESS CONTROL cards. Drivers are available for Apple Macintosh, Linux, Unix, Solaris, Microsoft PC/GC and of course WINDOWS 95/98 and NT.

CHIPDRIVE Intern
£49.95 + P&P £7.50 Exclusive of VAT

CHIPDRIVE Extern
£49.95 + P&P £7.50 Exclusive of VAT

CHIPDRIVE Micro
£39.95 + P&P £7.50 Exclusive of VAT

All ChipDrives are supplied with a Windows API and full documentation. ChipDrives are CE Compliant ChipDrives conorm to ISO7816, T=0 or T=1 or 3.579MHz, RS232 or 9600-115200 bps, Internal Supply+5V. Under normal conditions power is derived from the host Serial Port. Operation is simple, full telephone and email support is provided for Windows developers.

APP-LOCK
Protect any Windows applications from Unauthorised access under Win 95/98/NT
Inclusive of Chipdrive Intern, Smart Card and Software.
£79.95 + P&P £5 exclusive of VAT

CHIPDRIVE Developer Kit
Cdk includes: CD ROM containing cardserver.dll. Applications and Source code examples. CHIPDRIVE micro a selection of Smart Cards offering protected memory, processor and memory cards. Typical users are Control access, Pay Phone cards and Data transport. PIN codes for the cards are supplied along with data sheets and programming data for use with cardserver.dll. A useful application with source code shows how the CHIPDRIVE can be used to identify any Smart card inserted, giving manufacturer info, and memory map if available. Applications producted with the developer kit will operate under Windows 3.1/95/NT and are compatible with the whole CHIPDRIVE family. The Cdk uses easy to use 16 bit or 32 bit DLLs with just one function call to the 'CardServer' to identify the card or carry out any instruction. Cardserver is a powerful Background task which relieves the application of device and card administration. Featuring automatic protocol and card type detection. Allowing several applications to access one terminal dependent only on the type of card inserted.

£69.95 +
P&P £5 EXCLUSIVE OF VAT

FREE
GSM CARD READING application supplied with CHIPDRIVE micro

http://www.towitoko.co.uk
http://www.crownhill.co.uk
http://www.edsim2000.co.uk

CHIPDRIVE Extern
£49.95 + P&P £7.50

CHIPDRIVE Intern
£49.95 + P&P £7.50

CHIPDRIVE Micro
£39.95 + P&P £7.50

HTTP://WWW.CROWNHILLO.CO.UK
FULL TECH SUPPORT VIA EMAIL.

CIRCLE NO.115 ON REPLY CARD

Crownhill Associates Limited
The Old Bakery, New Barns Road, Ely, Cambs. CB4 7PW
Tel: +44 (0)1353 666709 Fax: +44 (0)1353 666710

Low cost professional quality Smart Card Systems

CHIPDRIVE
This intelligent programmer for Smart Cards using the International Standard T=0 or T=1 protocols also Memory and Secure Memory using RC, 2-wire & 3-wire interfaces. From April 1 1999 all ChipDrives are supplied with software to read and write to most popular secure smart cards, inc. GSN, PIN PHONE and ACCESS CONTROL cards. Drivers are available for Apple Macintosh, Linux, Unix, Solaris, Microsoft PC/GC and of course WINDOWS 95/98 and NT.

CHIPDRIVE Intern
£49.95 + P&P £7.50

CHIPDRIVE Extern
£49.95 + P&P £7.50

CHIPDRIVE Micro
£39.95 + P&P £7.50

All ChipDrives are supplied with a Windows API and full documentation. ChipDrives are CE Compliant ChipDrives conorm to ISO7816, T=0 or T=1 or 3.579MHz, RS232 or 9600-115200 bps, Internal Supply+5V. Under normal conditions power is derived from the host Serial Port. Operation is simple, full telephone and email support is provided for Windows developers.

APP-LOCK
Protect any Windows applications from Unauthorised access under Win 95/98/NT
Inclusive of Chipdrive Intern, Smart Card and Software.
£79.95 + P&P £5 exclusive of VAT

CHIPDRIVE Developer Kit
Cdk includes: CD ROM containing cardserver.dll. Applications and Source code examples. CHIPDRIVE micro a selection of Smart Cards offering protected memory, processor and memory cards. Typical users are Control access, Pay Phone cards and Data transport. PIN codes for the cards are supplied along with data sheets and programming data for use with cardserver.dll. A useful application with source code shows how the CHIPDRIVE can be used to identify any Smart card inserted, giving manufacturer info, and memory map if available. Applications producted with the developer kit will operate under Windows 3.1/95/NT and are compatible with the whole CHIPDRIVE family. The Cdk uses easy to use 16 bit or 32 bit DLLs with just one function call to the 'CardServer' to identify the card or carry out any instruction. Cardserver is a powerful Background task which relieves the application of device and card administration. Featuring automatic protocol and card type detection. Allowing several applications to access one terminal dependent only on the type of card inserted.

£69.95 +
P&P £5 EXCLUSIVE OF VAT

FREE
GSM CARD READING application supplied with CHIPDRIVE micro

http://www.towitoko.co.uk
http://www.crownhill.co.uk
http://www.edsim2000.com

CHIPDRIVE Extern
£49.95 + P&P £7.50

CHIPDRIVE Intern
£49.95 + P&P £7.50

CHIPDRIVE Micro
£39.95 + P&P £7.50

HTTP://WWW.CROWNHILLO.CO.UK
FULL TECH SUPPORT VIA EMAIL.

CIRCLE NO.115 ON REPLY CARD
Joe Carr looks at commercial equipment for measuring RF power and explains how it works.

Measuring RF power

The Bird 'ThruLine' sensor
Bird Electronics' ThruLine sensor is shown in Fig. 1a), while an equivalent circuit is shown in Fig. 1b). The sensor consists of a coaxial transmission-line section, and a wire-loop directional coupler that connects to a diode detector, D_1.

Consider the equivalent circuit in Fig. 1b). The factor M is the mutual coupling between the loop and the centre conductor of the coaxial line section, as well as the voltage divider consisting of R and C.

Potential E is the voltage between the inner and outer conductors of the coaxial line, while E_k is the voltage drop across the resistor, e_M is the voltage across the inductor and e is the output potential.

Voltage divider R/C produces a potential given by equation (1), provided that $R<<X_C$ and $e_M=j\omega M$.

$$e = \frac{RE}{X_C} = RE\omega C \quad \quad \quad (1)$$

The output voltage is,

$$e = e_x + e_M = j\omega (C E_x \pm MI) \quad \quad \quad (2)$$

Values of the components are selected such that $R<<X_C$ and $CR=M/Z_0$. It is now possible to state that the DC output voltage is,

$$e = j\omega \left[\frac{EM}{Z_0} \pm MI \right] = j\omega M \left[\frac{E}{Z_0} \pm I \right] \quad \quad \quad (3)$$

At any point along a transmission line the voltage appearing between the centre conductor and outer conductor E is a function of forward voltage E_F and the reflected voltage E_R.

By combining equations, it is evident that when the directional coupler is pointed at the load, the output voltage of the sensor reads the forward voltage, and produces an output voltage of,

$$e = \frac{j\omega ME_F}{Z_0} \quad \quad \quad (4)$$

And when pointed at the source,

$$e = \frac{j\omega ME_R}{Z_0} \quad \quad \quad (5)$$

Thus, this sensor produces a voltage that is a function of the direction of the RF signal flowing in the transmission line.
Figures 2 and 3 show two examples of Thruline instruments. The one in Fig. 2 is the Model 4410A. It is based on the classic Model 43 design.* It offers an insertion voltage- standing-wave ratio of 1.05:1 up to 1GHz.

The sensor elements are plug-in. Each element has an arrow on it to indicate the direction of the measurement — pointed towards the load or the source, depending on whether you measure P_F or P_R. Once you know P_F and P_R, you can compute the VSWR from equation (6),

$$VSWR = \frac{1 + \frac{P_R}{P_F}}{1 - \frac{P_R}{P_F}}$$

One difference between this instrument and earlier instruments is that there is a calibration factor control on the meter to optimise performance for the specific sampling element inserted.

The Bird APM-16 Advanced Power Meter is shown in Fig. 3. This meter is similar in concept to the older Model 43, but is considerably advanced. While the Model 43 measures RMS CW power, the APM-16 will measure analogue and digital complex waveforms, as well as CW — for example CDMA, TDMA, FDMA, COFDM and other modulations. It will measure both peak and RMS power levels.

Figure 4 shows a different approach. This meter uses a remote sensor head connected in-line between the source and load, and a multi-range digital readout display. It also has a computer interface that will permit running power-versus-frequency curves.

* My Model 43 has been banging around my toolkit for about 30-years and still works well.

Calorimeters
Calorimeters are capable of making very accurate measurements of RF power — especially at high power levels where other methods tend to fall down. These instruments measure the heating capability of the RF waveform. In this way, they produce an output proportional to the RMS power level that is independent of the applied waveform.
The First Law of Thermodynamics† is the basis for the operation of calorimeters: energy can neither be created nor destroyed, only changed in form.

There are two basic forms of RF power calorimeter: dry and flow (or wet). Dry calorimeters are used at lower power levels, and are represented by the thermistor and thermocouple methods discussed in last month’s article. Flow calorimeters are used at higher power levels. Flow calorimeters come in two varieties: substitution flow and absolute flow. Power can be measured using the following relationship,

$$ P = F_{\text{mass}} \times (T_{\text{OUT}} - T_{\text{IN}}) \times C(T) $$

where P is the power level, F_{mass} is the mass flow rate of the fluid used in the calorimeter, T_{OUT} is the fluid temperature after being heated by the RF load resistor, T_{IN} is the fluid temperature before being heated by the RF load resistor and $C(T)$ is the fluid specific heat as a function of temperature T.

Substitution-flow calorimeters. This form of RF power meter, Fig. 4, uses two fluid loops. Each fluid loop is heated by a separate termination resistor. Termination ‘A’ is heated by a low-frequency AC power source, and the power applied to this termination is measured by an AC power meter. The unknown RF power is applied to termination ‘B’. The differential temperature, $T_{\text{OUT}} - T_{\text{IN}}$, is measured by a differential thermocouple.

When the temperatures of the two fluids are equal to each other, then the output of the thermocouple is zero. When the AC power is adjusted to balance the temperatures while RF is applied, producing a zero output voltage from the thermocouple, the RF power is equal to the more easily measured AC power. A temperature stabiliser and heat exchanger returns the temperature of the fluid to base level after it is used to measure power.

This method will produce error of 0.28 percent or better, up to RF power levels of one kilowatt. Both water and oil are used as fluid coolants in various instruments.

Absolute-flow calorimeters. Figure 6 shows the absolute flow calorimeter. This type of RF power meter measures the mass flow rate of the coolant, as well as the temperature before the RF load resistor, T_{IN}, and after it, T_{OUT}. The mass flow rate is,

$$ F_{\text{mass}} = f \times W_{s}(T_{w}) $$

where W_{s} is the specific weight of the fluid at the input temperature and f is the volume flow rate (litres/min). All other terms are as previously defined.

Combining equations gives the equation for measuring RF power by this means,

$$ P = k \times f \times W_{s}(T_{w}) \times C(T_{\text{ave}}) \times (T_{\text{OUT}} - T_{\text{IN}}) $$

† I am told that numbering of the laws of thermodynamics differs in various parts of the world. In the USA we start with the “0th law.”
Here, T_{AVE} is $(T_{\text{OUT}}-T_{\text{IN}})/2$ and all other terms are as previously defined.

One of the advantages of the absolute flow approach is that it does not depend on nulling or calibration of a low-frequency power source, yet it produces good accuracy at high power levels up to 80kW.

Figure 7 shows a commercially available calorimeter RF power meter made by Bird Electronics Corporation.

Micropower and low-power measurements

At very low power levels the diode output voltage drops very low. At -70dBm for example, the diode produces about 50nV output potential. This level is too close to the noise and drift values of typical DC amplifiers to be useful. A solution is to use a chopper circuit, Fig. 8.

A chopper is an electronic switch that turns the DC signal from the diode output on and off at a high rate — typically 100 to 10,000 times per second. Either a square wave or sine-wave 'carrier' applied to the toggle input of the electronic switch creates the switching action.

The chopped signal is essentially an AC signal, so it can be amplified in an AC amplifier, which has a much smaller feedback-controlled drift than a DC amplifier. Also, the AC signal can be band-pass filtered to remove noise. The band-pass filter is centred on the frequency of the carrier oscillator.

The chopped, amplified and filtered signal is applied to a synchronous detector that is controlled by the same carrier oscillator that performed the chopping action. A low-pass filter following the synchronous detector removes residual components of the switching action at the carrier frequency. Finally, a DC amplifier provides scaling to the correct DC level, or as level translation for an analogue-to-digital converter.

Micropower measurements pose special problems because they are made at levels below the range of most practical RF power sensors. In some cases, the chopper approach can be used with a diode detector. At lower levels, however, some other method is needed.

Figure 9 shows a comparison method using a calibrated RF signal generator. The instrument selected must have a calibrated output attenuator that provides accurate outputs in dBm or microvolts.

The signal generator and the unknown micropower source are connected to a receiver equipped with an S-meter through a hybrid coupler. The coupler must have either equal port-to-port losses for the two inputs, or at least accurately known different losses.

Optional calibrated step attenuators are also sometimes used to balance the power levels. The receiver acts as a micropower wattmeter or voltmeter because it will produce an S-meter reading of even very weak signals.

Two methods can be used, namely 'equal deflection' or 'double deflection'. In the equal-deflection method, the unknown source is turned on, and the S-meter reading noted. The unknown source is then turned off, and the signal generator is turned on.

Next, the output of the signal generator is adjusted to produce the same S-meter deflection. The power level of the unknown source is therefore equal to the calibrated signal generator output level.

The double deflection method sets the signal gen-

Fig. 7. Bird calorimeter RF wattmeter (Photo courtesy of Bird Electronics Corporation).

Fig. 6. Absolute flow calorimeter. This alternative does not rely on comparison with a known LF power source, yet it remains accurate with measurements to 80kW.
erator output to zero, and then applies the unknown RF power to the receiver. The S-meter reading is noted; for practical reasons, adjust the attenuator to let the meter fall on a specific indicator marking.

Next, the signal generator output is increased until the S-meter reading goes up one S-unit, which will be either 3dB or 6dB, depending on the design of the receiver. The output level of the signal generator is therefore equal to that of the unknown power source.

Error and uncertainty sources

All measurements have some basic error, i.e. a difference between the actual value of a variable and the value read from a meter. The three dominant classes of error in RF power measurements are mismatch uncertainty, sensor uncertainty and meter uncertainty.

Meter uncertainty is error due to problems in the meter indicating device itself. It might be a measurement error, i.e. a difference between the actual output voltage and the displayed output voltage, which represents power. You might see zero set error, zero carryover, drift, noise and other sources of instrument error.

On analogue meters there are also additional error sources. For example, the width of the pointer covers a certain distance on the scale, so creates a bit of ambiguity. Also, there may be a parallax error if the meter is read at an angle.

Digital meters exhibit quantisation error and last-digit bobble error. The quantisation error comes from the fact that the digital representation of a value can only assume

Fig. 8. Chopper stabilised diode sensor for measuring very low RF power levels.

Fig. 9. Method for measuring micropower RF levels with some degree of comfort.

Need more information?

Bird Electronics, 30303 Aurora Road, Cleveland, OH, 44139, USA.
certain discrete values, and an actual value might be halfway between the two authorised levels. Last digit bobble – a ±1 count error – results from the fact that the least significant digit tends to bounce back and forth between two adjacent values.

Sensor error may come in a variety of guises, depending on the nature of the sensor. Thermistors and thermistors, for example, have different forms of error. Most sensors, though, exhibit an efficiency error due to losses in the sensor. This occurs when some of the applied RF energy is radiated as heat rather than being used to affect the output reading. The manufacturer of the sensor may express this problem as a calibration uncertainty or calibration factor.

Mismatch loss and mismatch uncertainty. The mismatch loss occurs when a voltage standing wave ratio – SWR or VSWR – exists in the system. Maximum power transfer occurs when a source impedance and a load impedance are matched. If these impedances are not matched, then a portion of the power sent from the source to the load is reflected.

The reflection coefficient, \(\rho \), is,

\[
\rho = \frac{V_{SWR} - 1}{V_{SWR} + 1}
\]

(10)

Table 1 shows the reflection coefficient for VSWR values from 1:1 to 3:1. Single-ended mismatch loss in decibels is,

\[
L_{\text{mismatch}} = 10\log(1 \pm \rho^2)
\]

(11)

If the system is mismatched on both ends, mismatch loss is,

\[
L_{\text{mismatch}} = 20\log\left(1 \pm \rho \times \rho \right)
\]

(12)

The mismatch uncertainty, expressed as a percent,

\[
L_{\text{uncert}} = \pm 2 \times \rho_1 \times \rho_2 \times 100\%
\]

(13)

Assume that there is a 1.75:1 VSWR at the source end, \(\rho_1 = 0.27 \), and a VSWR of 1.15:1, at the sensor/load end, \(\rho_2 = 0.07 \). The mismatch uncertainty is,

\[
L_{\text{uncert}} = \pm 2 \times 0.27 \times 0.07 \times 100\% = 3.78\%
\]

(14)

Total uncertainty. The total uncertainty in the measurement involves the mismatch uncertainty, calibration factor uncertainty and instrumentation uncertainty. If a reference power source is used in a comparison measurement, it also involves power source uncertainty.

There are several ways to state the total uncertainty. Two of these are worst-case uncertainty and root-sum-square uncertainty. The worst-case uncertainty is the sum of all individual uncertainties in the direction that maximises the overall uncertainty. For example, imagine a system with,

Mismatch uncertainty 3.78%
Calibration factor uncertainty 1.76%
Instrumentation uncertainty 0.95%
Power reference uncertainty 1.35%

The worst case uncertainty is their sum:

\[
\text{Uncertainty} = (3.78\% + 1.76\% + 0.95\% + 1.35\%) = 7.84\%
\]

Real errors are rarely worst case, but rather are uncorrelated to each other. The root sum squares, or RSS, method allows a single error term to represent the average errors of the system. For a system with four sources of error, as above, \(E_1, E_2, E_3, E_4 \) and \(E_5 \), the RSS error is,

\[
\text{RSS} = \sqrt{E_1^2 + E_2^2 + E_3^2 + E_4^2}
\]

(15)

In terms of the values above,

\[
\text{RSS} = \sqrt{3.78^2 + 1.76^2 + 0.95^2 + 1.35^2} = \sqrt{14.29 + 3.1 + 0.9 + 1.82} = \sqrt{20.11} = 4.48\%
\]

Compare the worst case error of 7.84% with the RSS error of 4.48%. Expressed in terms of decibels, the RSS percent loss is,

\[
\text{RSS(dB)} = 10\log\left(1 \pm \left(\frac{\text{RSS}\%}{100}\right)\right)
\]

(16)

In summary
This article, and its more background-oriented counterpart that appeared last month, has dealt with the technology of RF power measurement, from very low microwatt levels to the multi-kilowatt levels used by broadcasters.

Last month, Joe discussed some of the basic methods for measuring RF power, and some of the more common in-line bridge circuits.
The best circuit ideas are ones that save time or money, or stimulate the thought process. This includes the odd solution looking for a problem - provided it has a degree of ingenuity.

Your submissions are judged mainly on their originality and usefulness. Interesting modifications to existing circuits are strong contenders too - provided that you clearly acknowledge the circuit you have modified. Never send us anything that you believe has been published before though.

Don't forget to say why you think your idea is worthy.

Clear hand-written notes on paper are a minimum requirement: disks with separate drawing and text files in a popular form are best - but please label the disk clearly.
National Instruments sponsors Circuit Ideas

Over the next 12 months, National Instruments is awarding over £3500 worth of equipment for the best circuit ideas.

Once every two months for the next year, National Instruments is awarding an NI 4050 digital multimeter worth over £700 to the best circuit idea of the year.* The first winner, selected from this issue or the following one, will be announced next month.

LabVIEW

LabVIEW is a highly programmable graphical development environment that combines easy-to-use graphical development with the flexibility of a powerful programming language. It offers an intuitive environment, tightly integrated with measurement hardware, for engineers and scientists to quickly produce solutions for data acquisition, data analysis, and data presentation.

- Graphical programming development environment
- Rapid application development
- Seamless integration with DAQ, GPIB, RS-232, and VXI
- Full, open network connectivity
- Built-in display and file I/O

*All published circuit ideas that are not eligible for the prizes detailed here will earn an intuitive environment, tightly integrated with measurement hardware.

NI 4050

The NI 4050 is a full-feature digital multimeter (DMM) for hand-held and notebook computers with a Type II PC Card (PCMCIA) slot. The NI 4050 features accurate 5½ digit DC voltage, true-rms AC voltage, and resistance (ohms) measurements. Its size, weight, and low-power consumption make it ideal for portable measurements and data logging with hand-held and notebook computers.

- DC Measurements: 20mV to 250V DC; 20mA to 10A
- AC Measurements: 20mV rms to 250V rms; 20mA rms to 10Arms
- True rms, 20Hz to 25kHz
- Up to 60 readings/s
- UL Listed
- 5½ Digit Multimeter for PCMCIA

The remainder of the code is identical to that of the slow-twinkling routine. E-mail jackie.lowe@rbi.co.uk for both dumps complete, or send a blank disk with return postage to the editorial offices.

*This circuit is not eligible for the prizes detailed here.

CIRCUIT IDEAS

December 1999 ELECTRONICS WORLD

National Instruments - computer-based measurement and automation
National Instruments 21 Kingfisher Court, Hambridge Road, Newbury, Berkshire, RG14 5SJ. Tel (01635) 523545, Fax (01635) 524395 info.uk@ni.com www.ni.com.
£100 winner

10MHz spectrum analyser monitors 550MHz signal

N**eeding to monitor the output of a 500-600MHz amplifier and only having a 10MHz spectrum analyser brought to mind an article on the use of gates as oscillators. The design works reliably, but it is not without its limitations and could easily be improved. A 74AC04 inverter forms the oscillator, whose frequency is determined by the supply voltage, varying between 80MHz and 250MHz for a supply variation of 2-5.5V. Third harmonic is 750MHz, the fundamental at 16dBm being filtered out.

The mixer is based on the National LMX2216, which contains a low-noise amplifier, not used here. Output from the mixer goes through a simple band-pass filter to reduce aliasing on the spectrum analyser. Harmonics and sum-and-difference frequencies from the oscillator mean that one must take care in measurement to observe the correct signal.

Mixer and oscillator should be mounted on copper-clad board with all ground connections soldered to the copper. Any tracks should be kept few and short (a 1in wire represents 25nH). Active devices should be decoupled on supply pins. Small capacitors are s-m COG types and rf connections should be made via 5051 connectors.

Richard Jacklin
Midhurst, West Sussex
D52

Using a 10MHz spectrum analyser to monitor a 550MHz signal. Inverter gates used as an oscillator produce the necessary harmonics.
You Can’t Buy Better!

SIGNAL GENERATOR PRICE BLITZ

MARCONI 2019A Synthesised Signal Generators
- 80kHz to 1040Mhz AM-FM-CW
- LCD Displays
- Complete with Lids etc.
- FULLY TESTED and Warranted
- **NOW ONLY £475.00**

MARCONI 2022E Synthesised Signal Generators
- 10kHz to 1010Mhz
- LCD Display
- Fitted IEEE with covers Small and Lightweight
- FULLY TESTED and Warranted
- **NOW ONLY £495.00**

- **Frequency Counters**
 - Racial Dana 9918
 - 9 segment 560Mhz £75

- **Signal Generators**
 - Farnell PSG120
 - 10Mhz-520Mhz AM-FM Sinad
 - ONLY £295

 - Rohde and Schwarz APN62
 - 1hz to 260kHz with LCD display £995

 - Wavetek 155
 - Programmable VCG 0.01hz to 1Mhz sine, square, triangle £195

 - Schlumberger PFD30M
 - Remote Synthesiser to 120Mhz in 0.01hz steps
 - Was £175 ...Reduced, Now ONLY £125

- **Oscilloscopes**
 - **TEK 2445**
 - 150Mhz Four Trace/2 Time base with cursors, etc.
 - Now Only £495

 - **TEK 2445A**
 - 150Mhz Four Trace/2 Time bases with cursors, etc.
 - Now Only £595

 - **TEK 2465**
 - 300Mhz Four Trace/2 Timebases
 - Now Only £995

 - **GOULD G3500 with**
 - DN010 DMM fitted, 60Mhz
 - Dual trace, Dual Timebase
 - Was £350 ...Reduced, Now ONLY £250

 - **HP 1741A**
 - 100Mhz Storage, Dual Time base
 - Was £350 ...Reduced, Now ONLY £250

 - **TEK 465B**
 - 100Mhz Dual Trace/ Timebase
 - Now Only £295

 - **TEK 465M**
 - scope as 465B but built only for Military.
 - Now Only £350

 - **TEK 475**
 - 200Mhz Dual Trace/Timebase
 - Now Only £350

 - **PHILIPS PM3217**
 - DC-50Mhz 2 Trace 2 Timebase
 - Special ONLY £150

- **Regulated Power Supplies**
 - **Thorn Automation**
 - Variable power supply giving 0-40 volts at 0-50 amps DC. V and I limiting (advice calling... these are heavy).
 - 2 ONLY £125

 - **Lamberts Labs**
 - LME5V 5V at 40A DC...
 - ONLY £20

 - **LMD12V 12V at 10A DC**...
 - ONLY £20

 - **LMB24V 24V at 1.4A DC**...
 - ONLY £75

 - **LPS23 variable 0-60V at 0.5A**...
 - ONLY £45

 - Regulated + Stabilised Power supply, 0-30V @ 10A £60

- **Miscellaneous**
 - **SE labs SE7000 instrumentation recorder system**
 - 42 channel, 8 speeds from 15/16ips to 120ips, 1in tape complete with SE7000 patch panel...
 - 1 ONLY £500

 - **GIGA Pulse internal counter**
 - 2-8Ghz ONLY £150

 - **Fluke 80-40K**
 - High Voltage probe for DMM's 40kv. Cased.
 - NEW £45

 - **Beckman Industrial HD110**
 - LCD Multimeters in Leather case, 1000V, 10A
 - ONLY £50

- **NEW EQUIPMENT**
 - **DPA20 Oscilloscope 20Mhz**
 - Twin trace incl probes ONLY £225

 - **DPA40 Oscilloscope 40Mhz**
 - Twin Trace incl probes ONLY £299

 - **DT540 Oscilloscope 40Mhz**
 - Digital Storage twin channel
 - Cursars + readouts Incl. Probes. ONLY £399

 - **SE50 Synth Clock Gen.**
 - To 50Mhz, LED display ONLY £125

- **NEW SCOPE PROBES**
 - X1/10 switchable to 100Mhz
 - Complete with adaptors
 - Limit 2 sets per customer
 - ONLY £9.95

ANCHOR SUPPLIES LTD

All prices are EX VAT and Carriage

MAIL ORDER A PLEASURE

The Cattle Market Depot, Nottingham NG2 3GY, UK
Tel: (0115) 986 4902 Fax: (0115) 986 4667
Also at Ripley, Derby (01773) 570137 and Coalville, Leicestershire (01530) 811800

Visit our Web Site: www.anchor-supplies.ltd.uk email: sales@anchor-supplies.ltd.uk
Controlling a voltage by a pc

Needing two reference voltages to be pc-controlled, this simple and inexpensive circuit came into being. Only a single power supply is needed and there is an internal reference voltage in the AD7243 a-to-d converters.

Communication with the converters is by way of the pc parallel port, the converters being in series with sync. and LDAC connections to allow the use of only three wires from the pc.

You can see from the timing diagram that N is between zero and 4095, as the converters are 12-bit types, and the reference voltage is 5V. N is determined by $N = V (4095 / 5)$, where V is the required output voltage. As an example, to obtain a voltage of 4V at B and 30mV at A, $N_B = 3276$ and $N_A = 49$.

In the diagram, the data sent is the inverse of the calculated N, since it is inverted in the 7414 schmitt inverter. Firstly, the converters are validated by reset going low, the clock also going low as data input is active on rising edges, the converter reading data bits on positive-going edges. The data word for the second converter is sent first, being a 16-bit word to include four zeros, most significant bit first, the data word for the first converter then following. Reset and clock then return high and the transmission stops.

J M Terrade
Clermont-Ferrand
France

D47

Output voltage is adjustable from zero to 5V by data transmitted from pc's parallel port.
Simple routine, written in standard C, for controlling the interface.

/*
** 12-bit d-to-a for PC V1.01 -NA4PC- */
#include <stdlib.h>
#include <stdio.h>
#include <dos.h>
#include <bios.h>

>Data declaration and initialisation ********************
short LPT=0;
char RST=0, CLK=0, DQ=0;

InitLPT()
/* Find parallel port address */
LPT = peek(0x0040, 0x0008); /* initialisation of port adresses */
if(LPT == 0)
printf("No parallel port available.
");
else
printf("Parallel port installed at $%X
", LPT);
outportb(LPT, 0); /* port outputs initialisation */
return(LPT);

outLPT()
void byte = (RST«2) + (CLK«1) +
outportb(LPT, byte);

putl6b(short number)
/* write RST, CLK and DQ to LPT port */
DQ;
/* test and send each of 16 bits */
register unsigned short masque=0x8000;
do
if(number & masque)
DQ=0;
else
DQ=1;
wait
CLK=1;
wait
CLK=0;
wait
masque », 1;
while(masque);

writeval(short Na, short Nb)
/* transmits */
RST=1; CLK=0; DQ=1; outLPT();
outl6b(Nb);
outl6b(Na);
RST=0; CLK=0; DQ=1; outLPT();

#define ESCOx001B
main (short nbarg, char *tabarg[])
/* program output flag */
quit=0;
char car; /* key entered */
short Na, Nb; /* numbers to be write into converters */
printf("\n\n12 bits D/A for PC V1.01 - CopyRight (C) - J.M.TERRADE - 1998\n");
if(!initLPT()) exit(0);
quit=0; Na=0; Nb=0;
printf("\n\nA: Modify the value for output A.\n B: Modify the value for output B.\n ESC: Exit Program.\n");
do
while(!bioskey(1)); /* keyboard scan */
car = (bioskey() & 255);
switch(car)
{ case ESC: sortie=1; break;
case 'A': printf("Enter Value output A : "); ifflush(stdout);
scanf("%i", &Na);
if(Na>4095) Na=4095; break;
case 'B': printf("Enter Value output B : "); ifflush(stdout);
scanf("%i", &Nb);
if(Nb>4095) Nb=4095; break;
default : break;
}
writeval(Na, Nb);
while(quit);

Software description
According to Analog Devices’ datasheet, in order to write a 12-bit number, the algorithm has to follow these rules :
/Ldac=1 wait state
/Sync=0 data transmission validation
/Sclk=0 reset the clock
do 16 times : (16 bits to write : 4 zeros and 12-bit number)
/Sclk=1 set clock
Set SDIn MSB first, LSB last
/Sclk=0 reset clock
/Ldac=0 data transmission inhibition
/Ldac=1 return to wait state
Since the 74HC14 is an inverter, the following relations are to be considered before reading the simple C program witch is used to drive the converters.
RST = /Ldac = //Sync = Sync
CLK = /Sclk
DQ = /SDIn
The structure for the C program is:
Main loop :
Read numbers to be sent : Ng et Nb
Set RST=1
Send data for Ng /* call sub-routine */
Send data for Nb /* call sub-routine */
Reset RST=0
End
Sub-routine (Send word N) :
Set Numbit = 15 MSB first /* Numbit is the rank of the actual bit */
do :
/* 16 bits : 16 times */
CLk=0
If Numbit=1 then DQ=0
If Numbit=0 then DQ=1
wait
CLK=1 (write 1 bit)
wait
Numbit = Numbit - 1
while Numbit # 0
end of sub-routine

December 1999 ELECTRONICS WORLD
Automatic bathroom light and 'in use' indicator

This is for use in bathrooms with automatic door closers, it switches the light on and off and indicates whether anyone is in there. It uses one 5V supply, has no mechanical contacts and has proved reliable, Fig. 1.

On the door frame are an infrared led and detector, separated by an opaque strip that moves with the door. As the door opens, the strip uncovers the led and detector and the voltage across D_2 falls to a low level.

Comparator IC_{2a} output is therefore high when the door is closed and low when it is open; C_1 prevents any uncertainties while the door is opening and closing. For each closure of the door, there is therefore a low-to-high transition at A, as in Fig. 2a. Comparator IC_{2b} performs the reverse function, as seen in Fig. 2b.

The 7474 D-type flip-flop IC_{1a} indicates a presence behind the door, being driven by rising edges from UIC_{2a}, while IC_{1b} drives a relay to turn the light on and off and is driven by rising edges from IC_{2b}.

At switch-on, R_3C_3 clear the flip-flops and, since both Q outputs are low, the relay turns the light on, regardless of whether the door is open or closed, and the occupancy light is on.

When someone goes in, the door opens and closes, or just closes, and the light stays on and the indicator turns on. When the person leaves, the position reverses so that the light is turned off and the indicator goes out.

A R Jayan
Electronics Research and Development Centre
Vallayambalam
Thiruvananthapuram
D53

Fig. 1. Automatic bathroom light switch and occupancy indicator uses no mechanical contacts.

Fig. 2. Logic for the relationship between door openings/closings and indications.
Test equipment lacking functionality?

Easy choice? Then send for the Pico Technology full colour PC based test & measurement catalog and software demonstration disk. Alternatively, visit our web site at:

www.picotech.com

- Up to 100MS/s
- Up to 16 bit resolution
- Prices from £59
- Software included
- Easy to use
- Compact & portable units

Tel: +44(0)1954 211716, Fax: +44 (0)1954 211880, Email: post@picotech.com, Web: www.picotech.com

CIRCLE NO.117 ON REPLY CARD

The Technical Superstore that's always open

The Electromail CD-ROM Catalogue contains more than 107,000 technical products, all available from stock for same or next day despatch. All you have to do is make your selection from the CD-ROM and 'phone your order through to our 24 hour orderline - any day of the week.

Our sister company, RS Components, is the U.K.'s largest distributor of electronic, electrical and mechanical products to technical professionals. The Electromail CD-ROM makes this extensive product range available to technical hobbyists and small businesses, and there's a comprehensive library of product datasheets already on the CD-ROM which contain detailed information on the majority of our product range. There are also technical helplines, to answer more specific enquiries, relating to your actual intended application.

At just £3.99, the Electromail CD-ROM gives you everything at your fingertips, with the service back-up which is second to none.

Tel: 01536 204555 or Fax: 01536 405555 to order
Please quote stock number 342-6067 when ordering, and have your credit card information available.

CIRCLE NO.118 ON REPLY CARD
Unique reader offer:
x1, x10 switchable oscilloscope probes,
only £21.74 a pair, fully inclusive*

*Additional pairs as part of the same order, only £19.24 each pair.

Please supply the following:

Probes

Name

Address

Postcode

Telephone

Method of payment (please circle)
Cheques should be made payable to Reed Business Information
Access/Mastercard/Visa/Cheque/PO

Credit card no

Card expiry date

Signed

Please allow up to 28 days for delivery

Seen on sale for £20 each, these high-quality oscilloscope probe sets comprise:
- two x1, x10 switchable probe bodies
- two insulating tips
- two IC tips and two sprung hooks
- trimming tools

There's also two BNC adaptors for using the cables as 1.5m-long BNC-to-BNC links. Each probe has its own storage wallet.

To order your pair of probes, send the coupon together with £21.74 UK/Europe to Probe Offer, Electronics World Editorial, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

Readers outside Europe, please add £2.50 to your order.

Specifications

Switch position 1

Bandwidth
DC to 10MHz

Input resistance
1MΩ - i.e. oscilloscope i/p

Input capacitance
40pF + oscilloscope capacitance

Working voltage
600V DC or pk-pk AC

Switch position 2

Bandwidth
DC to 150MHz

Rise time
2.4ns

Input resistance
10MΩ ±1% if oscilloscope i/p is

Input capacitance
12pF if oscilloscope i/p is 20pF

Compensation range
10-60pF

Working voltage
600V DC or pk-pk AC

Switch position 'Ref'

Probe tip grounded via 9MΩ, scope i/p grounded
NEW PRODUCTS

Please quote Electronics World when seeking further information

Clock adapter
A single-chip, dual phase-locked loop for synthesising two simultaneous output clocks synchronised to a reference clock for WAN systems has been introduced by Exar. The XRT8001 has an ST Bus capability for WAN and ISDN applications. It synthesises two low-jitter clocks with standard frequencies, phased-locked to the system reference timing. Input frequencies accepted include 8kHz, nx56kHz, nx64kHz, nxT1 and nxE1. It can be programmed to generate output frequencies from 1.544 to 2.048MHz and one, two, four or eight times 2.048MHz.

Schottky diodes
Seven Schottky barrier diodes launched by Zetex include three seven Schottky barrier diodes Schottky diodes

Ethernet control on single-chip
To provide Ethernet capability for networking products and information appliances, National Semiconductor has launched the DP83915CVNG MacPhyter single-chip 10/100 PCI Ethernet controller and physical layer transceiver. It is for implementing 10 and 100Mbit/s Ethernet LANs for adapters, LAN-on-motherboard and information appliance applications such as set-top boxes and Windows terminals. The chip is capable of error-free reception at upwards of 140m and has a power consumption of 137.9 by 270.3mm respectively, 304.1 by 228.1mm and 43cm LT170E2 have display sizes of 304.1 by 228.1mm and 337.9 by 270.3mm respectively, and power consumption of 13 and 32W.

Op amp
Distributor Silicon Concepts has introduced Burr-Brown's OPA635 voltage-feedback operational amplifiers. They have single supply operation and rail-to-rail output for use in communications, consumer video and battery-powered applications. The family consists of the OPA631, OPA632 and the higher bandwidth OPA634 and OPA635 (150kHz for a gain of two). Features include ±3 and ±5V operation and zero power disable (OPA632 and OPA635). They are suitable for analogue-to-digital converter buffering and video line driving. The OPA631 and OPA634 are available in SO-8 and SOT23-5 packages. The OPA632 and OPA635 come in SO-8 and SOT23-6 packages.

DC/DC converter
Newport has introduced 2W, 2:1 input range DC/DC converters for input voltages between 9 and 18V. Supplied in 7-pin SIPs with standard voltages or voltages that can fluctuate with time. Available with up to 80° in all directions using coplanar electrode technology. Brightness is up to 200cd/m² and they can show 16 million colours. Supply voltage is 5V. The 38cm LTM150XS and 43cm LT170E2 have display sizes of 304.1 by 228.1mm and 337.9 by 270.3mm respectively, and power consumption of 13 and 32W.

CPU modules
The MOPS864 open PC system CPU with XGA graphics onboard has recently been launched by SST. Available in PC/104 size, it has a processing performance equivalent to a Pentium P7S. There are two RS232C, plus LPT, floppy and EIDE interfaces. Boot counter and real-time clock are integrated as standard control functions. The 4Mbyte of onboard main memory can be expanded with standard DIMM modules up to 38Mbyte using the lower DMSM socket. The upper socket is a Jumper intelligent panel adaption interface for connecting LCD
servers, routers and switches, the device connects legacy LANs to the ATM backbone and shapes VP and VC channel with arbitrary VPIs.

Toshiba Electronics

Tel: 00 49 211 52960

Enquiry No 511

Scat switching devices

A second device for managing scat switching functions has been launched by TDK. The Avpro 5002 provides two scat interfaces that support Canon+ and BskyB applications. Switching functions for analogue audio and video signals are performed. Applications include VCRs, televisions and set-top boxes for digital TV, satellite and cable. The device complements the 5003, introduced last year as a single chip way to get a three-scatt interface with control. The 5002 includes an encoder-DAC interface, audio and video drivers and a -5V power supply rail that eliminates the need for AC coupling capacitors on the audio outputs. Features include programmable RGB gain and flexible audio routing. The 5002B adds audio switching functions for the BskyB digital satellite service, including the control and summing of two external audio signals used with the on-screen programme guide.

TDK Semiconductor

Tel: 0208 443 7061

Enquiry No 512

Digital Voice Systems

Digital Voice Systems has made available the AMBE-2000 vocoder chip for commercial, consumer and military communications applications. It delivers speech at 4kbit/s and can operate at user-defined bit rates between 2 and 9.6kbit/s. An integrated convolutional FEC encoder with a built-in Vitterbi decoder is capable of 4-bit soft-decision decoding and operation at bit error rates of 10 to 20 per cent using R=0.25. Power consumption is 3V. Features include full or half-duplex operation, automatic voice and silence detection, adaptive comfort noise insertion, DTMF and call progress tone.

Digital Voice Systems

Tel: 011 781 272 4830

Enquiry No 509

Right angle connectors

AVX now has right angle, fixed single sided contact connectors for enclosures in the handheld and portable electronics markets. The 6250 and 6252 0.5mm pitch surface mount connectors are 0.9mm high. The 6250 has a single sided bottom contact and the 6252 a top contact. Both are ZIF connectors with between six and 30 contacts each capable of handling up to 0.4A and 50V. Packaging options include taped and reeled for SMT production.

AVX

Tel: 01252 770000

Enquiry No 515

3.3V preamplifier

Microcom Communications has announced the MC2007 transimpedance amplifier for small form factor transceiver applications. Made with a digital CMOS process, the amp's performance is equivalent to GaAs ICs. It is for use with modules with 65mW power consumption at +3.3V supply and continuous operation to over 0dBm. Its 1mm square die size fits into TO cans. It supports a 140MHz bandwidth, allowing an operating range suitable for 100, 125, 155 and 200MHz, typically more than 35dB power supply noise rejection and a typical –39dBm sensitivity at 155MHz.

Microcom Communications

Tel: 01179 302400

Enquiry No 514

Cable extension

Black Box has launched the Cat 5 KVM Micro Extender to let a workstation be placed away from its CPU. Extension can be up to 50m using a standard Category 5 cable. It can handle resolutions up to 1920 x 1024 and it is suitable for kiosks and service tills.

Black Box Catalogue

Tel: 0118 965 5100

Enquiry No 516

Infra-red module

Scenix has added a module to its virtual peripheral library that lets system OEMs incorporate standard wireless infra-red communications. The software module uses an SX microcontroller as a hardware platform and implements the lower levels of the IRDA standard and the high-level infrared interface protocol, providing short-range wireless communications for embedded applications. Its uses range from giving portable devices, printers and PCs IR connectivity capabilities to allow communications with toys. The module uses the SX's ability to re-send data on request to eliminate large data buffers. It also uses the 50Mbps performance of the new infrared standard that shapes the IRDA pulses without external hardware.

Scenix Semiconductor

Tel: 001 408 327 8888

Enquiry No 513

DC-to-DC converter

Victor has increased the output power of the 24V (21 to 32V) input VI-200 DC-to-DC converters from 150 to 200W. The increase applies to output voltages of 5, 10, 12, 15, 24, 28 and 48V. For output voltages under 5V, output current is increased from 30 to 90mA. There are 11 standard input ranges from 10 to 400V and nine standard output voltages from 2 to 48V.

Victor

Tel: 01276 678222

Enquiry No 510

Media bay connector

For media bay applications, a vertical media bay connector from AVX is available - 5.5 and 7.5mm - from contacts for power and 80 for signals, per peripheral has happened. It has eight click to confirm locking of the insulator, the connector makes a connection in the handheld and portable electronics markets. The onboard PC C&T graphics controller supports monochrome LCD, TFT and STN displays with resolutions up to 1280 x 1024. The 2MB byte of video memory allows colour depths up to 16 million colours. A bootable BIOS compatible flash hard disk drive is onboard.

Diamond Point

Tel: 01634 722390

Enquiry No 508

ATM SAR controller

Toshiba Electronics has announced an ATM Forum compliant 155Mbit/s segmentation and reassembly (SAR) chip. The TC358561F has multiple virtual path (VP) level rate shaper and individual 4095 virtual channel (VC) level rate shaper. For high-speed flat panels. The onboard PC C&T graphics controller supports monochrome LCD, TFT and STN displays with resolutions up to 1280 x 1024. The 2MB byte of video memory allows colour depths up to 16 million colours. A bootable BIOS compatible flash hard disk drive is onboard.

Toshiba Electronics

Tel: 00 49 211 52960

Enquiry No 511
HP New Colour Spectrum Analysers LAST FEW ONLY
8412-8413-8414-8418-8740-8741-8742-8743-8746-8650. From £1k.
Racal/Dana 9300 RMS voltmeter - £250.
Low pass - £150, other makes in stock.
Barr & Stroud Variable filter EF3 0.1Hz-100Kc/s + high pass + £600. MF only £250.
Racal/Dana 9303 True RMS Levelmeter + Head - £450. as new £2k.
Racal/Dana 2101 Microwave Counter - 10Hz-20GHz - with book
HP6131C Digital Voltage Source + -100V% Amp. 40GHz many types in stock.
HP3709B Constellation ANZ £1,000. 11664 Extra - 050 each.
SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE
IN STOCK
W&G PMG3 Transmission Measuring Set - £300.
W&G PCM3 Auto Measuring Set - £300.
EIP 548A Microwave Frequency Counter - 10HZ-26.5GHz - £1.5k.
EIP 545 Microwave Frequency Counter - 10Hz-18GHz - £1k.
EIP 351D Autohet 20Hz-18GHz - £750.
HP54100D - 1GHz digitizing - £1,000.
HP54200A - 50MC/S digitizing - £500.
EIP 588 Microwave Pulse Counter - 300MC/S-26.5GHz - £1.4K.
SD 564 Microsett Counter 20GHz - £1,000.
SD 564 Microsett Counter 100GHz - £2,000.
SD 565 Microsett Counter 100GHz - £3,000.
SD 568 Microsett Counter 1GHz - £4,000.
TEK 2465ACT 4ch-350MC/S - £1,750.
TEK D.S.O. 2440 -300MC/S + 2 probes - £2,000.
TEK 2445A 4ch 150MC/S + 2 probes - £350.
TEK 2440A 4ch 50MC/S + 2 probes - £300.
HP5414A - 10GHz digitalizing - £1,000.
HP54100D - 1GHz digitizing - £1,000.
HP54200A - 50MC/S digitizing - £500.
R&S APN 62 LF Sig Gen 0.1Hz - 260KHz c/w book - £250.
HP3325E1 SYN Function Generator 21MC/S - £2K.
HP3312A Function Generator AM-FM 13MC/S-Dual - £1K.
Anritsu MW97A Pulse Echo Tester.
Anritsu ML93A & Optical Lead Power Meter - £250.
Anritsu MN95E1 Variable Att. 1300 £100.
HP 3580A 5HZ-50KHZ - £750.
HP 3581A 100Hz-10KHz - £350.
HP 3582A 1KHz-80KHz - £450.
HP 3583A 80KHz-500KHz - £500.
HP 3586A 500KHz-5MHz - £600.
HP 3586B 5MHz-50MHz - £700.
HP 3587A 50MHz-500MHz - £850.
HP 3588A 500MHz-5GHz - £1K.
HP 3589A 5GHz-10GHz - £1.5K.
HP 3589B 10GHz-40GHz - £2.5K.
HP 3589C 40GHz-100GHz - £5.5K.
HP 3589D 100GHz-500GHz - £10K.
HP 3589E 500GHz-2.5GHz - £20K.
HP 3590A 2.5GHz-10GHz - £40K.
HP 3590B 10GHz-100GHz - £80K.
HP 3590C 100GHz-500GHz - £160K.
HP 3590D 500GHz-2.5GHz - £320K.
TEK 2445A 4ch 150MC/S + 2 probes - £350.
TEK 2440A 4ch 50MC/S + 2 probes - £300.
EIP 588 Microwave Pulse Counter - 300MC/S-26.5GHz - £1.4K.
Marconi TF2015 AM-FM-10-52OMC/S - £100.
Tested to £300, as new + book + probe kit in wooden box.
Racal/Dana Counter 9521H - £300.
Racal/Dana Counter 9121E - £300.
Racal/Dana Counter 9121H - £300.
Racal/Dana Counter 9121G - £300.
Racal/Dana Counter 9121F - £300.
Marconi TF2015 AM-FM-10-52OMC/S - £100.
Racal/Dana Counter 9121E - £300.
Racal/Dana Counter 9121H - £300.
Racal/Dana Counter 9121G - £300.
Racal/Dana Counter 9121F - £300.
Racal/Dana Counter 9121E - £300.
Racal/Dana Counter 9121H - £300.
Racal/Dana Counter 9121G - £300.
Racal/Dana Counter 9121F - £300.
Racal/Dana Counter 9121E - £300.
Racal/Dana Counter 9121H - £300.
Racal/Dana Counter 9121G - £300.
Racal/Dana Counter 9121F - £300.
NEW PRODUCTS

Please quote Electronics World when seeking further information

256Mbit SDRAMs
Toshiba is producing 256Mbit SDRAMs on its 0.18μm process for applications in servers, mainframes, networks and notebook computers. They are suitable for use in 1Gbyte DIMMs and 256Mbyte SO-DIMMs.

Toshiba Electronics
Tel: 00 49 211 52960
Enquiry No 518

Digital Ethernet physical interface
Texas Instruments has added Mysticom’s Mystiphy 110 digital Ethernet physical interface to its DSP-based Timebuilder ASIC family. When used with DSPs, the phy will let networking users integrate multiple Ethernet phis onto a digital Mac, making it suitable for applications such as network interface cards, hubs, routers, switches and voice-over-IP systems.

Texas instruments
Tel: 01604 663000
Enquiry No 520

60V DC/DC converter
The PKG 48 to 60V input DC/DC 60W power modules from Ericsson are for low voltage digital and broader analogue applications. They deliver power without needing a heatsink, and withstand case temperatures up to 100°C. Weighing 75g, the PKG 4319 PI provides a 2.5V 15A output, while the PKG 4625 PI offers dual 15V outputs, with either output capable of sourcing up to 3.2A within a total output of 60W. Protection and control facilities are included as standard for IT and telecoms systems. The 4625 PI can maintain 86 per cent efficiency from 25 to 60W output and the 4319 PI 78 per cent efficiency from 20 to 100 per cent of full load. Both can be operated in parallel and include overcurrent and short circuit protection. As well as remote control and automatic shutdown under low input voltage conditions, the output voltage can be adjusted using an external resistor. The output can be adjusted between 2.25 and 2.75V for the 4319 PI and 12.0 and 16.5V for the 4625 PI.

Ericsson
Tel: 01793 488300
Enquiry No 520

Interactive video display
Digital View Interactive has an integrated LCD-based interactive video kiosk, 35mm thick and operating from a 12VDC power supply. Designed as a single chassis, the Viewstream has an integrated video delivery system. It integrates full colour TFT LCD flat screens (from 6.4in. to 18in.), with all panel control electronics, interactive touch screen

Digital View
Tel: 0181 236 1112
Enquiry No 521

Interactive video display
Diamond Point is offering JUMPtec’s 80486-based DIMM-PC. It integrates the complete functionality of an 80486SX motherboard with CPU, system BIOS, 16Mbyte DRAM, keyboard controller and real time clock. The module runs at clock speeds of 33MHz or 66MHz and incorporates 16Mbyte IDE compatible flash hard disk. It measures 58 x 40mm.

Diamond Point
Tel: 01634 722390
Enquiry No 522

High value electrolytic cap
Designed for mounting directly onto a PCB, the high CV, OK-HH series of electrolytic capacitors from Nichicon (Europe), is available in a range of sizes: 35mm dia x 63mm long to 40mm dia x 100mm long. Auxiliary terminals are provided which ensures secure, anti-vibration mounting on the PCB. The series has an operating temperature range of -40 to +105°C (16 to 250V) and -25 to +105°C (400V). This provides a high load life,

Nichicon
Tel: 01793 488300
Enquiry No 520

BACK ISSUES

Back issues of Electronics World are available, priced at £3.00 UK and £3.50 elsewhere, including postage. Please send your order to Electronics World, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Available issues

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>January</td>
<td>January</td>
<td>April</td>
</tr>
<tr>
<td>April</td>
<td>February</td>
<td>February</td>
<td>May</td>
</tr>
<tr>
<td>May</td>
<td>March</td>
<td>March</td>
<td>June</td>
</tr>
<tr>
<td>July</td>
<td>May</td>
<td>July/August</td>
<td>August</td>
</tr>
<tr>
<td>August</td>
<td>June</td>
<td>September</td>
<td>September</td>
</tr>
<tr>
<td>November</td>
<td>July</td>
<td>October</td>
<td>October</td>
</tr>
<tr>
<td>December</td>
<td>November</td>
<td>November</td>
<td>November</td>
</tr>
<tr>
<td>February</td>
<td>January</td>
<td>June</td>
<td>April</td>
</tr>
<tr>
<td>April</td>
<td>February</td>
<td>August</td>
<td>May</td>
</tr>
<tr>
<td>May</td>
<td>March</td>
<td>September</td>
<td>June</td>
</tr>
<tr>
<td>June</td>
<td>August</td>
<td>November</td>
<td>September</td>
</tr>
<tr>
<td>August</td>
<td>October</td>
<td>October</td>
<td>October</td>
</tr>
<tr>
<td>September</td>
<td>November</td>
<td>November</td>
<td>November</td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td>1997</td>
<td>1998</td>
</tr>
<tr>
<td>January</td>
<td></td>
<td>June</td>
<td>February</td>
</tr>
<tr>
<td>February</td>
<td></td>
<td>August</td>
<td>March</td>
</tr>
<tr>
<td>March</td>
<td></td>
<td>September</td>
<td>May</td>
</tr>
<tr>
<td>May</td>
<td></td>
<td>October</td>
<td>June</td>
</tr>
<tr>
<td>June</td>
<td></td>
<td>November</td>
<td>September</td>
</tr>
<tr>
<td>September</td>
<td></td>
<td>October</td>
<td>October</td>
</tr>
<tr>
<td>1999</td>
<td>1997</td>
<td>1998</td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>June</td>
<td>February</td>
<td>March</td>
</tr>
<tr>
<td>February</td>
<td>August</td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>September</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>October</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>November</td>
<td></td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>October</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October</td>
<td>November</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The new edition of The RSGB Guide to EMC will prove an invaluable aid to all RF engineers and enthusiasts.

Readers’ Offer Price £27.50 inclusive

The RSGB Guide to EMC
Edited by Robin Page-Jones, G3JWI

The new edition of The RSGB Guide to EMC will prove an invaluable aid to all RF engineers and enthusiasts. It describes the causes of interference as well as the remedies, including reference data on suitable filters and braidbreakers. This book also incorporates details of the new EU EMC regulations. The essential ‘Good Housekeeping guide’ for the electronics enthusiasts.

Readers’ Offer Price £20 inclusive

How to order your copy of the Radio Communication Handbook or The RSGB Guide to EMC

Radio Society of Great Britain, Lambda House, Cranborne Road, Potters Bar, Herts EN6 3JE Cheque/postal order payable to Radio Society of Great Britain. All major cards accepted

01707 660888; FAX: 01707 645105 sales@rsgb.org.uk; WEB: www.rsgb.org

Please quote Electronics World to receive a free copy of the Society’s journal with your order

December 1999 ELECTRONICS WORLD
NEW PRODUCTS

Please quote Electronics World when seeking further information

which for this series is 64,000 hours at 55°C. Performance characteristics are working voltage 16 to 400V and capacitance range 560 to 68000pF, tolerance ±20 per cent. Nichicon Tel: 01276 685393 Enquiry No 523

Power resistors
Metal film moulded power resistors with a novel termination feature have been released by Vishay. The Vishay Dale SM power metal film resistors are available at both five per cent and one per cent tolerances. The three resistors include 0.5W (WSF0212), 1W (WSF2515), and 2W (WSF4527) versions offering a resistance range from 5Ω to 10Ω. The company says the resistors can be used as SM replacements for higher-wattage axial leaded components. A flexible wrap around terminal has been especially designed for automotive applications and eliminates the solder fill cracking issues that are common to larger-sized thick film components. Vishay Intertechnology Tel: 00 49 9287 71 2282

D-type speedy nut plates
Available from KEC is a range of D-type speedy nut plates that is designed for automotive applications and other components in confined spaces behind panels, inside boxes and in awkward bulkhead areas. The D-type nut plates consist of a stamped aluminium alloy plate, shaped and fitted with captive nuts to avoid the need for separate nuts and washers. Because tools are not required, less space is needed behind the panel and connectors can be assembled closer together. KEC Tel: 01189 811571 Enquiry No 524

D-type speedy nut plates can be used for assembling both circular and D type connectors and other components in confined spaces behind panels, inside boxes and in awkward bulkhead areas. The D-type nut plates consist of a stamped aluminium alloy plate, shaped and fitted with captive nuts to avoid the need for separate nuts and washers. Because tools are not required, less space is needed behind the panel and connectors can be assembled closer together.

EEPROM In small package
The first In a range of serial EEPROMs housed in the SBGA chip scale package has been launched by STMicroelectronics. The M24C16-REAST has an area of 3.3mm and a height of 0.7mm. The memory provides 16kbits of non-volatile storage organised as 2048 x 8 bits. In addition to byte-level read/write

Please send me a copy of "Newnes Interactive Electronics CD-ROM", normal RRP £49.99 DISCOUNTED PRICE only £39.99 (postage free)
Simply return this order to:
Jackie Lowe, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.
Name __________________________
Address (for delivery) __________________________
Pay by cheque (payable to Reed Business Information)
 Visa Access/Mastercard Amex
Card Number: __________________________
Expiry Date: __________________________
Signature __________________________

operation, the device also offers a page write mode (up to 16 bytes). The device operates over a 1.8-3.6V power supply range. STMicroelectronics Tel: 00 33 450 402532 Enquiry No 527

300MHz Cat 6 cable tester
Networking distributor Wadsworth is offering its first handheld tester to offer users and installers the ability to test structured cabling networks up to and beyond the draft Category 6 specifications. The Wavetek LT8600 is a 300MHz, Level III accuracy tester that exceeds the requirements for the emerging Category 6/Class E 250MHz testing standards and that can perform all power sum measurements up to 300MHz. To simplify testing the unit stores up to 1500 records and incorporates special "hard keys" that allow the user to perform single tests without scrolling through a series of menus. Providing up to 15 different tests that can be performed either Individually or as part of a test suite, the unit supports two-way return loss, power sum, NEXT, ACR and ELFEXT tests. Wadsworth Tel: 0181 268 6500 Enquiry No 529

Digital multimeter
Fluke’s latest range of digital multimeters, announced earlier this year, extended the capabilities of the firm’s 90 series meters. Designated the 87 and 89 series IV, it adds dBm, 100kHz bandwidth and true rms AC+DC voltage and current measuring capabilities. The meter supports 0.025 per cent accuracy and over 50,000 counts of resolution on a multiple reading display that includes a secondary display and a real-time clock to time-stamp critical measurements. Another feature is the meter’s improved startup sequence. In addition to the AC capabilities, the DMMs measure V and mVdc, ohms, amps, capacitance, conductance, frequency, and temperature. Fluke Tel: 01923 240511 Enquiry No 526

EEPROMs housed in the SBGA chip scale package has been launched by STMicroelectronics. The M24C16-REAST has an area of 3.3mm and a height of 0.7mm. The memory provides 16kbits of non-volatile storage organised as 2048 x 8 bits. In addition to byte-level read/write

Please send me a copy of "Newnes Interactive Electronics CD-ROM", normal RRP £49.99 DISCOUNTED PRICE only £39.99 (postage free)
Simply return this order to:
Jackie Lowe, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.
Name __________________________
Address (for delivery) __________________________
Pay by cheque (payable to Reed Business Information)
 Visa Access/Mastercard Amex
Card Number: __________________________
Expiry Date: __________________________
Signature __________________________

operation, the device also offers a page write mode (up to 16 bytes). The device operates over a 1.8-3.6V power supply range. STMicroelectronics Tel: 00 33 450 402532 Enquiry No 527

Digital multimeter
Fluke’s latest range of digital multimeters, announced earlier this year, extended the capabilities of the firm’s 90 series meters. Designated the 87 and 89 series IV, it adds dBm, 100kHz bandwidth and true rms AC+DC voltage and current measuring capabilities. The meter supports 0.025 per cent accuracy and over 50,000 counts of resolution on a multiple reading display that includes a secondary display and a real-time clock to time-stamp critical measurements. Another feature is the meter’s improved startup sequence. In addition to the AC capabilities, the DMMs measure V and mVdc, ohms, amps, capacitance, conductance, frequency, and temperature. Fluke Tel: 01923 240511 Enquiry No 526

300MHz Cat 6 cable tester
Networking distributor Wadsworth is offering its first handheld tester to offer users and installers the ability to test structured cabling networks up to and beyond the draft Category 6 specifications. The Wavetek LT8600 is a 300MHz, Level III accuracy tester that exceeds the requirements for the emerging Category 6/Class E 250MHz testing standards and that can perform all power sum measurements up to 300MHz. To simplify testing the unit stores up to 1500 records and incorporates special "hard keys" that allow the user to perform single tests without scrolling through a series of menus. Providing up to 15 different tests that can be performed either Individually or as part of a test suite, the unit supports two-way return loss, power sum, NEXT, ACR and ELFEXT tests. Wadsworth Tel: 0181 268 6500 Enquiry No 529

Data logger card
Keithley Instruments’ alternative to data loggers/recorders, plug-in card
Antennas and Propagation for Wireless Communication Systems

Antennas and propagation are the key factors influencing the robustness and quality of the wireless communication channel. This book introduces the basic concepts and specific applications of antennas and propagation to wireless systems, covering terrestrial and satellite radio systems in both mobile fixed contexts.

Including:
- Illustrations of the significance and effect of the wireless propagation channel
- Overview of the fundamental electromagnetic principles underlying propagation and antennas
- Basic concepts of antennas and their application to specific wireless systems
- Propagation measurement modelling and prediction for fixed links, macrocells, microcells, picocells and megacells
- Narrowband and wideband channel modelling and the effect of the channel on communication system performance
- Methods that overcome and transform channel impairments to enhance performance using diversity, adaptive antennas and equalisers.

Antennas and propagation is a vital source of information for wireless communication engineers as well as for students at postgraduate or senior undergraduate levels.

Distinctive features of this book are:
- Examples of real world practical system problems of communication system design and operation
- Extensive worked examples
- End of chapter questions
- Topical and relevant information for and about the wireless industry
Probing surface mount

Warwick Test Supplies claims its latest precision electronic test probe features one of the smallest outlines currently available. Manufactured by Pomona Electronics, the model 6341 probe is designed for use on surface mount and densely populated circuit board applications. In repair and test laboratory environments. The probe design is compliant with the latest international safety standard, IEC1010 with Category III, 1000V overvoltage protection and has a maximum current rating of 3A. The probe is also available in specialty test lead kits designed for specific applications and can be used with digital multimeters from the major manufacturers.

Warwick Test Systems
Tel: 01189 756666
Enquiry No 535

Fourier transform module

Tektronix has announced a plug-in module for its TDS2000 digital real-time oscilloscope. The TDS2MM module adds fast Fourier transform analysis and four extra measurement functions – automatic rise time, fall time, positive pulse width and negative pulse width capabilities. It includes serial (RS232), parallel (Centronics) and GPIB ports for printing and remote control of the oscilloscope. The module plugs into the back of the TDS2000. Applications include tests on DC power supplies, noise in mixed digital and analogue systems, line-current harmonics, signal distortions and vibration systems.

Tektronix
Tel: 01528 403446
Enquiry No 531

Pulse gen plug-in

Hewlett-Packard's latest pulse and pattern generator VXI plug-ins are designed to provide digital signals at up to 1650 Hz, 330Mbit/s for the E8311A or 330MHz, 660Mbit/s for the E8312A. The VXI C1 generators are full-featured plug-ins for automated test systems. Timing parameters can be adjusted for every amplitude or offset level to meet a range of test specifications, including 10V p-p (500Ω into 50Ω) when the transition time is 2ns.

Hewlett-Packard
Tel: 01344 366666
Enquiry No 534

42Hz to 5MHz LCR meter

Telonic Instruments is offering the Hioki 3532 LCR meter, which offers LCR measurement over the frequency range 42Hz to 5kHz, to a basic accuracy of ±0.08 per cent. Measurement frequency, signal level and other measurement conditions can be altered whilst monitoring measurement results, thus enabling trial measurements and evaluations to be made. A setup memory allows 30 sets of measurement conditions, including comparator values, to be stored to accommodate changes of component types during production test. Using the optional RS232C or GPIB interface, all functions other than power on/off can be controlled by PC. Measurement data can be downloaded to PC and displayed graphically, using standard spreadsheet software such as Microsoft's Excel.

Telonic Instruments
Tel: 01189 786911
Enquiry No 535

Signal analyser

Gould Introduce this year the Nicolet Compass eight channel dynamic signal analyser for in-vehicle applications or for transport between sites. Its 24-bit a-d converters have a dynamic range typically exceeding 120dB. Multiple floating point DSPs perform FFTs in less than 1ms. Analogue and digital anti-alias filters are standard. The user interface is the same as a Pentium PC running Windows. Features include removable 2GBByte Jazz drive, Ethernet network and IrDA wireless capability. It tackles dynamics application using the Prism spectral library.

Gould Nicolet Technologies
Tel: 0191 500 1000
Enquiry No 537

500MHz scope

Earlier this year Tektronix extended its family of digital phosphor oscilloscopes with a four-channel TDS3000, which has a bandwidth up to 500MHz and a 5Samples/μs rate. Logic and pulse triggering as well as the last Fourier transform (FFT) analysis capabilities are available in four windows – rectangular, Hamming, Hamming, and Blackman–Harris. First introduced in 1997, the company claims the DPO can combine the data processing capabilities of a digital storage oscilloscope with the real-time viewing attributes of the analogue scope display.

Tektronix
Tel: 01628 403446
Enquiry No 538

Functional test platform

Hewlett Packard's latest functional test platform is targeted at automotive electronics manufacturing and service applications. The HP TS-5400 series is delivered integrated with all necessary hardware, cabling and software, including a test executive with more than 200 automated tuned control module test routines. The scalable platform allows users to set up the resources necessary to meet current test requirements. They can add additional test capabilities as they move new electronics control modules (ECUs) or smart sensors into production. Four base platforms can test the full range of automotive ECUs, from immobilisers and remote keyless entry devices, to complex ECU/s and safety modules (airbag, ABS/TC) such as engine management systems. The platforms are tuned for functional tests of automotive ECUs, and include switching and control module tuned library routines, as well as rack mounting, cabling and optional fixturing. They also come with software development tools.

Hewlett-Packard
Tel: 01344 366666
Enquiry No 539
The range of 'FM-Controllers' provide most of the features required for embedded control at a very low cost.

FEATURES FM-200 Controller
- 68K Micro-Controller 14 MHz clock
- 512 Kbytes Flash EEPROM
- 512 Kbytes SRAM Battery Backed
- 2 RS232 Serial Ports
- 1 RS232/R5485 Serial Port
- Real Time Calendar Clock (Y2K Compliant)
- Watchdog & Power fail detect
- 10 Digital I/O Lines
- 2-16 bit Counter/Timers
- I2C Bus or M-Bus Expansion Bus
- Size 100x80 mm

OTHER FEATURES
- Up/Download removable card for data logging and re-programming
- STE VO Bus, 68000 and PC Interface
- Designed, Manufactured and supported in the UK

OPTIONAL EXTRAS
- Additional extra features to the FM 200
- LCD Port Graphics or Alphanumeric
- Up to 32 Digital I/O Channels
- Up to 8 Mbytes of SRAM Battery Backed
- 1 Mbyte EPROM Space
- Up to 8 Mbytes of SRAM Battery Backed
- 8 Channels 8 bit analogue in
- 8 Channels 8 bit analogue out
- 8 Channels 13 bit analog in
- 2 Channels 8 bit analogue out

DEVELOPMENT

The PC Starter Pack provides the quickest method to get your application up and running.

Operating System
- Real Time Multi Tasking
- Unlimited copy licence

Languages
- C, Modula-2 and Assembler
- Full libraries & device drivers provided

Expansion
- Easy to expand to a wide range of peripheral and I/O cards

Support
- Free unlimited telephone, FAX, email and Internet support

Custom Design
- CMS will design and manufacture to customers requirements

Get on board the Easy-PC For Windows revolution!!

Power-Packed PCB Layout for Windows ’95/98/NT at Computer Store Prices!!

- True 32 bit Windows application
- Schematic and PCB Design editors as standard
- Design in Imperial, Metric or mixed units (no rounding errors)
- Drawing area up to 1m x 1m (39" by 39")
- Design precision down to 10° Micron (0.000001mm)
- Rotation to 1/10th degree
- Intelligent Cut, Copy and Paste across designs
- Multi-level Undo and Redo
- Integrated component Autoplace
- Integrated shape based Autorouter (Optional extra)
- Intelligent bussing in schematics
- Supports SMT, Through-hole and mixed technology
- Intelligent supports SMT on both sides of the design
- Unlimited number of PCB design layers
- Cross probing schematics to PCB design and Projects
- Forward annotation of design changes from schematics
- Back annotation of net name/component name changes
- Dynamic Pan, Zoom In/Out and Frame Views
- Dynamic drag and drop to/from component bin
- All design elements per design are unlimited
- Graphical Design Rule Checker
- Integrity and Connectivity Checker
- Professional manufacturing outputs

Now with optional autorouter!!

For more information or a demo disk call Number One Systems on 01684 773662 or Fax 01684 773664
Email info@numberone.com
Number One Systems, at Sightmagic Ltd, Oak Lane, Bredon, Tewkesbury, Glos, GL2 7LR. UK
Visit our WEB site www.numberone.com
Without an engineering degree, a pile of money, or an infinite amount of time, the revised 289-page Interfacing with C is worth serious consideration by anyone interested in controlling equipment via the PC. Featuring extra chapters on Z transforms, audio processing and standard programming structures, the new Interfacing with C will be especially useful to students and engineers interested in ports, transducer interfacing, analogue-to-digital conversion, convolution, digital filters, Fourier transforms and Kalman filtering. Full of tried and tested interfacing routines.

Listings on disk – over 50k of C source code dedicated to interfacing. This 3.5in PC format disk includes all the listings mentioned in the book Interfacing with C. Note that this is an upgraded disk containing the original Interfacing with C routines rewritten for Turbo C++ Ver.3
Price £15, or £7.50 when purchased with the above book.

Especially useful for students, the original Interfacing with C, written for Microsoft C Version 5.1, is still available at the price of £7.50. Phone 0181 652 3614 for bulk purchase price.

Post your completed order form to:-
Jackie Lowe, Electronics World, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

<table>
<thead>
<tr>
<th>Please send me</th>
<th>Price</th>
<th>Qty</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced Interfacing with C book @</td>
<td>£14.99</td>
<td></td>
<td>£</td>
</tr>
<tr>
<td>Enh. Interfacing with C book @ + disk</td>
<td>£22.49</td>
<td></td>
<td>£</td>
</tr>
<tr>
<td>Interfacing with C disk @</td>
<td>£15.00</td>
<td></td>
<td>£</td>
</tr>
<tr>
<td>Original Interfacing with C book @</td>
<td>£7.50</td>
<td></td>
<td>£</td>
</tr>
<tr>
<td>Postage + Packing per order UK</td>
<td>£3.50</td>
<td></td>
<td>£</td>
</tr>
<tr>
<td>Postage + Packing per order Eur</td>
<td>£7.00</td>
<td></td>
<td>£</td>
</tr>
<tr>
<td>Postage + Packing per order UK</td>
<td>£12.00</td>
<td></td>
<td>£</td>
</tr>
<tr>
<td>Total</td>
<td>£</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How to pay

☐ I enclose a cheque/bank draft for £
(payable to Reed Business Information)
☐ Please charge my credit/charge card
☒ Mastercard ☐ American Express ☐ Visa ☐ Diners Club

Credit Card No: Expire Date:

Signature of Cardholder:

Send my order to: (please use capitals)

Name
Address
Tel:
Fax:

Post Code: Date:

Please allow up to 28 days for delivery.
Radio-Tech’s RTcom-Universal, available on 418MHz for the UK and 433.92MHz for Europe, is the easiest of wire-free modems to use. Simply plug one unit into one RS232 port and a second unit into another RS232 port and the two ports can then talk to each other at speeds of up to 19200 baud securely and without wires.

Serial data in gives serial data out, making the RTcom-Universal the ideal replacement for cabled point-to-point or star connected scanning cabled telemetry systems.

Units are fully approved and have EMC Class-1 type examination certificates.

The units normally sell for the trade price of £189.95 each + £10.00 carriage + VAT.

Radio-Tech is happy to offer a pair of these modems at the special price of £249.95 inclusive of postage, packing and VAT exclusively to readers of Electronics World. The offer is limited to one pair per person.

Send the coupon presented on this page to Radio-Tech at the address shown below, together with a cheque made payable to Radio-Tech Ltd, or send your credit card number, type and expiry date together with the address of the card holder.

RTcom-Universal wire-free modem normal price £469.90 per pair
Offer price £249.95 per pair inclusive*

* limited to one pair per reader

COUPON
This coupon entitles the holder to one pair of RTcom-Universal wire-free RS232 modems at the special all-inclusive price of £249.95.

* Licence Exempt in the UK to MPT1340 & Europe and Scandinavia to ETS-300-220
* Fully EMC Type Examinated to ETS-300-683, Passed at Class 1 level.
* RS232 + RS422 + RS485 interfaces, 2 or 4 wire operation, ESD and collision protected
* 4800, 9600 and 19200 bps half duplex with on air encryption and code balancing
* Transmission range from 25m to 100m depending upon antenna and topology
* Less then 60mA for 7.5V to 15V d.c operation
* Smart wall mounting enclosure with fixed 1/4 wave antenna.
* Operates without need of special drivers. Compatible with protocols such as Modbus.
* Automatic solid-state antenna switch for single antenna use.
* Microcontroller with watchdog timer for added security.
Patrick Gaydecki describes hardware and software issues relating to interfacing two new stereo audio converters to a microprocessor via serial links. Patrick’s description revolves around a DSP56k processor, but the information will help anyone wanting to design with these high-performance, easy-to-interface audio d-to-a and a-to-d converters.

In this article is information for interfacing the CS5330/31 stereo analogue-to-digital converter and CS4330/31 stereo digital-to-analogue converter to a DSP56002 digital signal processor. Technical issues include the hardware interconnection, critical system timing signals and software modules for receiving and transmitting digital data.

The CS5330/31 is a stereo a-to-d converter while the CS4330/31 is a stereo d-to-a converter. Both are 18-bits wide. We chose the DSP56002 digital signal processor for our design example since it’s an industry standard. There are many hardware and software strategies that could be used to interface these ICs, but we have narrowed our discussion down to the more straightforward techniques.

Analogue-to-digital conversion
The CS5330 and 31 are complete 18-bit stereo a-to-d converters. They perform anti-alias filtering, sampling, and analogue-to-digital conversion, generating binary data for both left and right inputs in serial form.

Alternate left and right channel data are transmitted via a single output. The sampling frequency can be adjusted infinitely between 2 and 50kHz, according to the frequency of a master-clocking signal.

These a-to-d converters use sigma-delta, shortened to ΣΔ, modulation with an oversampling rate equal to 128 times the equivalent sampling frequency. The sigma-delta stage is followed by digital filtering and decimation circuitry, which remove the need for an external anti-alias filter.

The linear-phase digital filter has a pass band to 21.7kHz, 0.05dB pass band ripple and greater than 80dB stop-band rejection. These devices contain a high-pass filter to remove DC offsets, which at a sampling rate of 48kHz, has a –3dB point of 3.7Hz.

Digitising analogue signals
Complementary to the CS5330/31, the CS4330/31 are complete stereo digital-to-analogue converter systems. They include an interpolator, a 1-bit d-to-a converter and an output analogue filter.

Analogue signals generated by these devices are output to separate pins. In essence, these d-to-a converters perform the inverse operations to those of their a-to-d converter counterparts described above.

A digital interpolation filter first up-samples the incoming digital data by a factor of 128. A ΣΔ modulator then generates a 1-bit data stream, which is input to a linear analogue switched-capacitor low-pass filter. This enables infinite adjustment of the sampling frequency between 2 and 50kHz.

Output analogue signals require a simple first-order RC filter to eliminate images of the input signal at multiples of 128x the input sample rate.

The CS5330 and the CS5331 differ only in the output serial data format. The CS4330 and the CS4331 differ only in the input serial data format. All devices are available as eight-pin plastic SOICs – a 5.28mm wide surface-mount package – with low power consumption, making them particularly attractive in power-conscious applications or in designs where space is at a premium.

Hardware interconnection
Figure 1 illustrates a simple interconnection strategy between the DSP56002, the CS533x and the CS433x. Both of the data converters are clocked by an external master-clocking signal, fed to their respective MCLK inputs. The serial data out pin of the CS533x, SDATA, connects to the SRD input of the processor.

In addition, the serial output connects to the ground rail by a 47kΩ resistor. This ensures that the CS5330/31 operates in master mode.

In master mode, the serial data clock, or bit clock, SCLK, and the left-right clock, LRCK, are generated as outputs.
by the CS5330/31, derived from the the a-to-d converter clock MCLK input. The LRCK output connects to the SC2 input of the DSP56002, used to accept the frame sync. The SCLK output of the CS5330/31, via an inverter, to the SCK input of the DSP56002. The inverter is necessary because the DSP56002 samples the data present on the SRD input on the negative edge of the bit clock, whereas the data generated by the CS5330/31 are valid on the rising edge of the SCLK.

Since the CS5330/31 is operating in master mode, both the LRCK and the SCLK are fed directly as input signals to the CS4330/31, which is operating in slave mode. Because this uses the same clock protocol as the CS5330/31, no inversion of the SCLK signal is necessary.

Finally, the digital data generated as an output by the DSP56002 are fed from the STD pin to the SDATA input of the CS4330/31.

Timing considerations and data formats
In master mode, the input clock rate of the CS5330/31 is 256 times the LRCK. This represents an over-sampling ratio of 128 for each channel.

In order to sample each channel at an effective rate of 48kHz for example, a clock frequency of 12.288MHz is required. Similarly, the CS4330/31 expects the same over-sampling ratio when driven by the CS5330/31, Fig. 1.

Figure 2 shows the output data format of the CS5330/31 as used here. Data for the left channel are output during the first half of the LRCK period, and data for the right channel are output during the second. A total of 32 bits is generated during each half period, and the data are left justified, with the most-significant bit appearing first, on commencement of each half of the LRCK cycle.

Since the CS5330 has 18-bit resolution, the final 14 bits are redundant. This may be viewed another way; as far as the DSP56002 is concerned, the data for each channel occupy four time slots, each one eight bits in length. Hence eight time slots period characterise the entire LRCK.

The data format for the CS5331 is similar, except that it uses the PS format. Here, the first most significant bit is delayed by one bit clock period, for handshaking purposes. Figure 2 also shows the input data format expected by the CS4330 and CS4331. In the case of the CS4330, the data are right justified; hence the first 14 bits of any LRCK half-cycle are redundant. For the CS4331 with an externally supplied LRCK – the case discussed here – the data are left justified using PS format, i.e. the most-significant bit commences after a delay of one bit clock period.

Reading and writing in network mode
The SSI of the DSP56002 may be configured in normal mode or in network

Fig. 1. Simple interconnection method between the DSP56002, the CS5330/31 and the CS4330/31.

Fig. 2. Timing waveforms for the CS5330/31 and the CS4330/31. These assume the CS5330/31 is operating in master mode, and the CS4330/31 is clocked externally.
In the case outlined here, the SSI of the DSP56002 is configured in network mode, assuming a time-slot length of 8 bits. The SSI can be configured to accept words that are 8, 12, 16 or 24 bits in length.

In the CS5330/31, the data are left justified. Hence, since the device has 18-bit resolution, only the first three slots of any channel are required.

Furthermore, only the first two bits of the CS5330, or first three bits of CS5331, time-slot 3, are used. These represent the two least-significant bits of the a-to-d converter word. The 8 bits from TS 1 and TS 2, together with the two bits from TS 3 are then combined into a single 18-bit word.

The procedure for writing to the CS4330/31 is similar, with the stages reversed. First, an 18-bit word is decomposed into three 8-bit time slots. For a CS4330, the most-significant bit commences at bit six of TS 2 for the left channel, TS 1 being blank. Lower-order bits follow accordingly in TS 3 and TS 4.

If instead, a CS4331 is being used, the most-significant bit commences at bit 1 of TS 1. The data are shifted one place right since bit 0 is ignored in I²S format. Lower order bits follow accordingly in the remainder of TS 1, TS 2 and TS 3.

Polled-network mode

Whether in network or in normal mode, data may be clocked into the DSP using polled or interrupt-driven communication.

In a network-mode polled system, the program waits in a loop while the program tests the status of a flag in a status register. When true, this flag indicates the start of the LRCK sequence – the start of the left channel.

The program then proceeds to wait in another loop, testing the status of the flag that indicates a word has been received into the data register. When this is true, it reads and stores the data corresponding to that time slot – time-slot 1 initially.

The program now continues to wait for and read the data words corresponding to subsequent time slots. To use the SSI, it must first be enabled as a synchronous interface, since it has a dual function; it may also operate as a general-purpose I/O port.

Thus, the appropriate bits must be set in the port-C control register, PCC. In this case, the upper five bits must be set. Next, the device must be configured for a particular mode by loading the appropriate words into the SSI control registers A and B (CRA and CRB), located at X:FFEC16 and X:FFED16 respectively.

For network-mode polled communication, in which the DSP56002 operates as a slave, the bits are set as in List 1.

List 2 shows an assembly code fragment that reads data from the CS5330/31 and writes data to the CS4330/31 during all eight time slots using network-mode, polled communication.

Important flags are the receive-frame...
Interrupt-driven network mode

Interrupt-driven I/O can be more efficient than polled I/O since the processor is only interrupted when a specific condition occurs; since the CPU is not locked in a polling loop, it can continue processing data until the status of a specific flag becomes true. When this occurs, the program automatically jumps to an interrupt service routine, which deals with the condition as required.

In order to use interrupt-driven I/O, bits 15 of the CRB, the receive-interrupt enable bit RIE must be set. Register CRA remains the same. When the RIE bit is set, an interrupt is generated when the RDF flag becomes true, i.e., the receive-data register holds a new datum word. Hence:

\[\text{CRB}=1011010000000000_2=\text{BA00}_{16} \]

The necessary bits in the interrupt-priority register IPR, located at X:FFFF, must now be set for the SSI; these are bits 12 and 13, i.e., the IPR must be loaded with 000016.

The interrupts must then be unmasked. This is achieved by ANDing the MR register with FC16, i.e., the lowest two bits are set to 0, enabling all interrupts. When an interrupt occurs, control passes to the interrupt vector whose address is at a specific location in program memory.

For the SSI receive data interrupt used here, the two-word vector space lies between P:000016-P:000D16. Hence a JSR instruction is simply placed here to the start of each time slot defined by the CS3330/31.

Interrupt -driven i/o Since the processor is only interrupted when a specific condition occurs; since the CPU is not locked in a polling loop, it can continue processing data until the status of a specific flag becomes true. When this occurs, the program automatically jumps to an interrupt service routine, which deals with the condition as required.

In order to use interrupt-driven i/o, bits 15 of the CRB, the receive-interrupt enable bit RIE must be set. Register CRA remains the same. When the RIE bit is set, an interrupt is generated when the RDF flag becomes true, i.e., the receive-data register holds a new datum word. Hence:

\[\text{CRB}=1011010000000000_2=\text{BA00}_{16} \]

The necessary bits in the interrupt-priority register IPR, located at X:FFFF, must now be set for the SSI; these are bits 12 and 13, i.e., the IPR must be loaded with 000016.

The interrupts must then be unmasked. This is achieved by ANDing the MR register with FC16, i.e., the lowest two bits are set to 0, enabling all interrupts. When an interrupt occurs, control passes to the interrupt vector whose address is at a specific location in program memory.

For the SSI receive data interrupt used here, the two-word vector space lies between P:000016-P:000D16. Hence a JSR instruction is simply placed here to the start of each time slot defined by the CS3330/31.

Interrupt-driven network mode

Interrupt-driven I/O can be more efficient than polled I/O since the processor is only interrupted when a specific condition occurs; since the CPU is not locked in a polling loop, it can continue processing data until the status of a specific flag becomes true. When this occurs, the program automatically jumps to an interrupt service routine, which deals with the condition as required.

In order to use interrupt-driven I/O, bits 15 of the CRB, the receive-interrupt enable bit RIE must be set. Register CRA remains the same. When the RIE bit is set, an interrupt is generated when the RDF flag becomes true, i.e., the receive-data register holds a new datum word. Hence:

\[\text{CRB}=1011010000000000_2=\text{BA00}_{16} \]

The necessary bits in the interrupt-priority register IPR, located at X:FFFF, must now be set for the SSI; these are bits 12 and 13, i.e., the IPR must be loaded with 000016.

The interrupts must then be unmasked. This is achieved by ANDing the MR register with FC16, i.e., the lowest two bits are set to 0, enabling all interrupts. When an interrupt occurs, control passes to the interrupt vector whose address is at a specific location in program memory.

For the SSI receive data interrupt used here, the two-word vector space lies between P:000016-P:000D16. Hence a JSR instruction is simply placed here to the start of each time slot defined by the CS3330/31.

Interrupt-driven network mode

Interrupt-driven I/O can be more efficient than polled I/O since the processor is only interrupted when a specific condition occurs; since the CPU is not locked in a polling loop, it can continue processing data until the status of a specific flag becomes true. When this occurs, the program automatically jumps to an interrupt service routine, which deals with the condition as required.

In order to use interrupt-driven I/O, bits 15 of the CRB, the receive-interrupt enable bit RIE must be set. Register CRA remains the same. When the RIE bit is set, an interrupt is generated when the RDF flag becomes true, i.e., the receive-data register holds a new datum word. Hence:

\[\text{CRB}=1011010000000000_2=\text{BA00}_{16} \]

The necessary bits in the interrupt-priority register IPR, located at X:FFFF, must now be set for the SSI; these are bits 12 and 13, i.e., the IPR must be loaded with 000016.

The interrupts must then be unmasked. This is achieved by ANDing the MR register with FC16, i.e., the lowest two bits are set to 0, enabling all interrupts. When an interrupt occurs, control passes to the interrupt vector whose address is at a specific location in program memory.

For the SSI receive data interrupt used here, the two-word vector space lies between P:000016-P:000D16. Hence a JSR instruction is simply placed here to the start of each time slot defined by the CS3330/31.

Interrupt-driven network mode

Interrupt-driven I/O can be more efficient than polled I/O since the processor is only interrupted when a specific condition occurs; since the CPU is not locked in a polling loop, it can continue processing data until the status of a specific flag becomes true. When this occurs, the program automatically jumps to an interrupt service routine, which deals with the condition as required.

In order to use interrupt-driven I/O, bits 15 of the CRB, the receive-interrupt enable bit RIE must be set. Register CRA remains the same. When the RIE bit is set, an interrupt is generated when the RDF flag becomes true, i.e., the receive-data register holds a new datum word. Hence:

\[\text{CRB}=1011010000000000_2=\text{BA00}_{16} \]

The necessary bits in the interrupt-priority register IPR, located at X:FFFF, must now be set for the SSI; these are bits 12 and 13, i.e., the IPR must be loaded with 000016.

The interrupts must then be unmasked. This is achieved by ANDing the MR register with FC16, i.e., the lowest two bits are set to 0, enabling all interrupts. When an interrupt occurs, control passes to the interrupt vector whose address is at a specific location in program memory.

For the SSI receive data interrupt used here, the two-word vector space lies between P:000016-P:000D16. Hence a JSR instruction is simply placed here to the start of each time slot defined by the CS3330/31.

Interrupt-driven network mode

Interrupt-driven I/O can be more efficient than polled I/O since the processor is only interrupted when a specific condition occurs; since the CPU is not locked in a polling loop, it can continue processing data until the status of a specific flag becomes true. When this occurs, the program automatically jumps to an interrupt service routine, which deals with the condition as required.

In order to use interrupt-driven I/O, bits 15 of the CRB, the receive-interrupt enable bit RIE must be set. Register CRA remains the same. When the RIE bit is set, an interrupt is generated when the RDF flag becomes true, i.e., the receive-data register holds a new datum word. Hence:

\[\text{CRB}=1011010000000000_2=\text{BA00}_{16} \]

The necessary bits in the interrupt-priority register IPR, located at X:FFFF, must now be set for the SSI; these are bits 12 and 13, i.e., the IPR must be loaded with 000016.

The interrupts must then be unmasked. This is achieved by ANDing the MR register with FC16, i.e., the lowest two bits are set to 0, enabling all interrupts. When an interrupt occurs, control passes to the interrupt vector whose address is at a specific location in program memory.

For the SSI receive data interrupt used here, the two-word vector space lies between P:000016-P:000D16. Hence a JSR instruction is simply placed here to the start of each time slot defined by the CS3330/31.
DIGITAL AUDIO

List 5. For single channel, normal-mode polled communication, in which the DSP56002 operates as a slave, bits are set as follows:

<table>
<thead>
<tr>
<th>Register</th>
<th>Bits</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRA</td>
<td>0-7</td>
<td>Pre-scale modulus: set to 0 (only used if DSP is master).</td>
</tr>
<tr>
<td>CRA</td>
<td>8-12</td>
<td>DC: set to 0, since this equals number-of-words/frame−1.</td>
</tr>
<tr>
<td>CRA</td>
<td>13-14</td>
<td>WL: both set to 1, giving a word length of 24-bits.</td>
</tr>
<tr>
<td>CRA</td>
<td>15</td>
<td>PSR: set to 0, as this is not needed in slave mode.</td>
</tr>
</tbody>
</table>

Hence CRA = 0110000000000000₂ = 6000₁₆.

<table>
<thead>
<tr>
<th>Register</th>
<th>Bits</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRB</td>
<td>0-3</td>
<td>Set to 0, as they are not used.</td>
</tr>
<tr>
<td>CRB</td>
<td>4-5</td>
<td>Set to 0, ext. frame and bit clocks supplied by CS5330.</td>
</tr>
<tr>
<td>CRB</td>
<td>6</td>
<td>Set to 0; MSB i/o is first and the LSB is last.</td>
</tr>
<tr>
<td>CRB</td>
<td>7-8</td>
<td>Set to 0, as the WL bit clock is used for both TX/RX.</td>
</tr>
<tr>
<td>CRB</td>
<td>9</td>
<td>Set to 1 for synchronic clock control.</td>
</tr>
<tr>
<td>CRB</td>
<td>10</td>
<td>Set to 0 for continuous clock.</td>
</tr>
<tr>
<td>CRB</td>
<td>11</td>
<td>Set to 0 for normal mode.</td>
</tr>
<tr>
<td>CRB</td>
<td>12-13</td>
<td>Both set to 1 to enable RX and TX.</td>
</tr>
<tr>
<td>CRB</td>
<td>14-15</td>
<td>Not set since interrupts not required; polled-mode is used.</td>
</tr>
</tbody>
</table>

Hence CRB = 0011000000000000₂ = 3200₁₆.

List 6. Reading a single channel of the CS5330 and writing to the CS4331 in normal mode.

```
ORG P:$0
MOVE $1P0,X:$FFEF ;Shift right 1 place for CS4331
MOVE X:$FFEF,A1 ;Send to CS4331
CLR A
JCLR #7,X:$FFEE,LOOP1 ;Wait for 24-bit word
CLR A
MOVE X:$FFEF,A1 ;Read data into a
LDR A ;Read right 1 place for CS4331
MOVE A1,X:$FFE1 ;Send to CS4331
JMP LOOP1
END
```

shown in List 3 should be capable of determining the start of the LRCK. This may be achieved by testing the status of the RFS flag when an interrupt occurs. If it is set, this means the LRCK has just commenced a new cycle and the data correspond to the first time slot.

A time-slot counter that records the current time slot should then be initialised to zero. If RFS is not set, then data corresponding to a later time slot are present in the receive data register. In this case, the time-slot counter should be incremented.

This scheme is very similar to the one described on page 6-137 of the DSP56002 Digital Signal Processor User’s Manual. List 4 provides a code fragment which uses interrupts and polling of the RFS to both determine the start of the LRK cycle and read the data with a positional knowledge of the time slots.

Reading and writing a channel in normal mode

The above examples omitted code details dealing with recombination of a single bit-pulse delay – due to the 2S format involved – a single right-shift operation is all that is required to make the input datum word compatible with the output.

When operating in normal mode, the CRA and CRB registers must be configured to accept 24-bit data. Trailing bits are simply ignored by the system.

The LRCK signal is treated as a true framing signal, with only the leading edge of significance to the SSI.

Once this framing signal has been detected, the SSI clocks in all 24 bits of the datum word generated by the CS5330 which may then be processed, shifted one place right and transmitted to the CS4331. For normal mode polled communication, in which the DSP56002 operates as a slave, the CRA and CRB are set as in List 5.

The code fragment in List 6 allows the DSP56002 to read in a full 18-bit word from the CS5330, shift it one place right, and output it to the CS4331. If processing is to be performed, the code would be included immediately after reading the data from the input register.

In summary

The interfacing strategies described here represent a small number of variations within a wide range of possibilities. In particular, it is possible to configure the DSP56002 as the master device. Alternatively the expected data input format of the CS4330/31 may be altered by changing its default configurations through the use of a control word. This word is sent via the SCLK input. This is described in detail in reference 4.

However, if you do not wish to change these, the code given here should provide a starting point for successfully exchanging data between these devices.

References

Over 50% Discount

EDWin NC

Over 50% Discount

• Genuine, professional EDA software with no limitations! - and YOU can afford it!
• EDWin NC comes from Visionics: one of the longest established, most experienced producers of professional EDA systems, so it’s fully proven in professional work.
• Now you can have this best-selling non-commercial version of the software at less than 50% of the normal price, with no limits in its capabilities.
• It does just about everything you could want!

Schematics, simulation, PCB layout, autorouting, manufacturing outputs, EMC and Thermal Analysis.
Many more advanced features are available and it runs in Windows 3.x, 95, 98 or NT.

• Where’s the catch? It’s for non-commercial use, but companies may order for evaluation purposes. Prices start from just £59.00 for the basic system!

Super Powerful 32 bit version for Windows 95, 98 & NT!

Don’t forget - Phone Today for Your 50% Discount!

• EDWin NC Basic: Schematics, PCB Layout, Manufacturing Outputs, Max. 100 Component Database, 500 Device Library.
• EDWin NC De Luxe 1: Basic + Professional Database and Libraries, Arizona Autorouter.
• EDWin NC De Luxe 2: De Luxe 1 + Mix-Mode Simulation, Thermal Analyser.
• EDWin NC De Luxe 3: De Luxe 2 + EDSpice Simulation, EDCoMX Spice Model Generator, EMC and Signal Integrity Analysers.

Plus Postage & Packing UK £5.00; Rest of World £10.00 (only one P&P charge per order)

Order hotline: +44 (0)1992 570006 Fax +44 (0)1992 570220 E-mail: swift.eu@dial.pipex.com

Please Visit Our Web Site http://www.swiftdesigns.co.uk

I enclose: £…………………total.

Cheque/PO/Credit Card:

Visa/Mastercard/Eurocard: No. ________________

Issue Date: ___________ Expiry Date: ___________

Name: ________________________________

Signature: _____________________________

Address: _______________________________

Postcode: _____________________________

Tel.: ____________________ Evenings

We aim to dispatch as soon as we receive payment, but please allow 28 days for delivery. Subject Unsold.

I wish to order:

<table>
<thead>
<tr>
<th></th>
<th>16 bit</th>
<th>32 bit</th>
<th>16bit/32bit</th>
<th>Total (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDWin NC Basic:</td>
<td>£59.00</td>
<td>£119.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDWin NC De Luxe 1:</td>
<td>£119.00</td>
<td>£177.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDWin NC De Luxe 2:</td>
<td>£155.00</td>
<td>£212.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDWin NC De Luxe 3:</td>
<td>£285.00</td>
<td>£340.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rest of World

(only one P&P charge per order) Total £

Postage & Packing UK £5.00

£10.00

Swift Eurotech Ltd.,
Twankhams Alley, 160 High Street,
Epping, Essex, CM16 4AQ, UK.
Electronics Weekly Hyperactive is more than just a magazine on the Web. Check out the site and you will see why thousands of electronics professionals around the world regularly log on to...

www.electronicsweekly.co.uk

If you are serious about Internet marketing, then sponsorship of the Electronics Weekly Hyperactive site is something you must consider.

Whether you have your own web site or not, Hyperactive offers you a great way of delivering your company's products or message to a worldwide buying audience.

By sponsoring a section of Hyperactive, users will have the opportunity to link directly to your web site - therefore generating new traffic.

For more information on how to develop your internet marketing activity please call Shaun Barton on 0181 652 3638.

Point your browser at http://www.electronicsweekly.co.uk
register now, it's free,

sponsored by TOSHIBA XILINX

The Programmable Logic Company
Audio power analysis

Doug Self's investigations into dissipation in audio power systems reveal startling information about the real efficiency of Class-A, and suggest that Class-G is worth a second look now that multi-amp audio systems are becoming the norm.

My last article on this topic showed how the power consumed by amplifiers of various classes was partitioned between internal dissipation and the power delivered to the load. This was determined for the usual sinewave case. The snag with this approach is that a sinewave does not remotely resemble real speech or music in its characteristics. In many ways it is almost as far from it as you could get.

In particular, it is well-known that music has a large peak-to-mean ratio, or PMR, though the actual value of this ratio in decibels is a vague quantity. Signal statistics for music appear to be in surprisingly short supply.

Very roughly, general-purpose rock music has a PMR of 10dB to 30dB, while classical orchestral material - which makes very little use of fuzz boxes and the like - is 20 to 30dB. The Muzak you endure in lifts is limited in PMR to 3 to 10dB, while compressed bass material in live PA systems is similar.

It is clear that the power dissipation in PA bass amplifiers is going to be radically different from that in hi-fi amplifiers reproducing orchestral material at the same peak level. The PMR of a sinewave is 4.0dB, so results from this are only relevant to lifts...

Recognising that music actually has a peak-to-mean ratio is a start, but it is actually not much help as it reduces the statistics of signal levels to a single number. This does not give enough information for the estimation of power dissipation with real signals.

To calculate the actual power dissipations, two things are needed; a plot of the instantaneous power dissipation against level, and a description of how much time the signal spends at each level. The latter is formally called the 'probability density function,' or PDF, of the signal, more on this later.

The instantaneous power partition diagram, or IPPD, is obtained by running the output stage simulation with a sawtooth input and no per-cycle averaging. Instantaneous power dissipation can therefore be read out for any input voltage fraction simply by running the cursor up the sawtooth.

Figure 1 is the instantaneous power partition diagram for the Class-B complementary-feedback pair case, where the quiescent current is very small. This looks very much like the averaged-sinewave power partition diagram in reference 1, but with the device dissipation maximum at 50% voltage rather than 64% for the sinewave case. The instantaneous powers are much higher, as they are not averaged over a cycle. There is only one device-power area at the bottom as only one device conducts at a time. Output device dissipation at the moment when the signal is halfway between rail and ground - input fraction 50% - is 76W, and the power in the load is 75W. This totals to 151W, on the lower of the two straight lines, while the power drawn from the supply is shown as 153W by the upper straight line. The 2W difference represents losses in the driver transistors and the output emitter resistors.

All the IPPDs for various output stages look very similar in shape to the averaged-sine PPDs in reference 1, but the peak values on the Y-axis are higher. The IPPD can be combined with any PDF to give a much more realistic picture of how power dissipation changes as the level of a given type of signal is altered.

The probability density function

The most difficult part of the process above is obtaining the probability density function. For repetitive waveforms the PDF can be calculated, but...
music and speech need a statistical approach. It is often assumed that musical levels have a Gaussian (normal) probability distribution, as the sum of many random variables. Positive statements on this are however hard to find. Benjamin3 says, “music can be represented accurately as a Gaussian distribution” while Raad4 states, “music and mixed sounds typically have Gaussian PDFs”. It appears likely this assumption is true for multi-part music which can be regarded as a summation of many random processes; whatever the PDF of each component, the result is always Gaussian as indicated by the Central Limit Theorem.

If the distribution is Gaussian, its mean is clearly zero, as there is no DC component, which leaves the variance - i.e. width of the bell-curve - as the only parameter left to determine. The Gaussian distribution tails off to infinity, implying that enormous levels can occur, though very rarely.

In reality the headroom is fixed. I have dealt with this by setting variance so the maximum value, 0dB, occurs 1% of the time. This is realistic as music very often requires judicious limiting of occasional peaks to optimise the dynamic range.

The PDF presents some conceptual difficulties, as it shows a density rather than a probability. If a signal level ranges between 0 and 100%, then clearly it might be expected to spend some of its time around 50%.

However, the probability that it will be at exactly 50.000% is zero, because a single level value has zero extent. Hence the PDF at \(x \) is the probability that the signal variable is in the interval \((x,x+dx) \), where \(dx \) is the usual calculus infinitesimal.

The cumulative distribution function

If the probability that the instantaneous voltage will be above - not at - a given level is plotted against that level, a cumulative distribution function, or CDF, results. This is important as it is easier to measure than the PDF.

If the variable is \(x \), then the PDF is often called \(P(x) \) and the CDF called \(F(x) \). These are related by:

\[
P(x) = \frac{d}{dx} F(x)
\]

or,

\[
F(x) = \int_{a}^{x} P(a)da
\]

where \(a \) is a dummy variable needed to perform the integration. The integration starts at zero in this case because signal levels below zero do not occur.

Generating a CDF by integrating a given PDF is straightforward, but going the other way - determining the PDF from the CDF - can be troublesome as the differentiation accentuates noise on the data.

Some probability density functions

Figure 2 shows the calculated PDF of a sinewave. As with every PDF, the area under the curve is one, because the signal must be at some level all of the time.

However, the function blows up - i.e. heads off to infinity - at each end because the peaks of the wave are ‘flat’, and so the signal dwells there for infinitely longer than on the slopes where things are changing. These ‘flat’ bits are infinitely small in time extent though, and so the area under the curve is still unity. This shows you why PDFs are not always the easiest things to handle.

The CDF for a sinewave is shown in Fig. 3; the probability of exceeding the level on the axis falls slowly at first, but then accelerates to zero as the rounded peaks are reached.
Measuring probability density functions
But is all music Gaussian? I was not satisfied that this had been conclusively established from just two brief references.
I decided it was essential to make some attempt to determine musical PDFs. In essence this is simple. The first thing to decide is the length of time over which to examine the signal. For most contemporary music the obvious answer is 'one track', a complete composition lasting typically between three and eight minutes.
Very simple circuitry can be used to determine a CDF, and hence the PDF, though the process is protracted. A variable-threshold comparator is driven by the signal to be measured, and its output applied to a long-period averaging time-constant, Fig. 4.
A comparator, IC_{1a}, rather than an op-amp, is used to avoid inaccuracies due to slew-rate limiting. Reference IC_7 is an inexpensive 2.56V bandgap type, while VR_1 sets the comparator threshold. When the signal level is below this threshold, the comparator open-collector output is off, and the voltage seen by the averaging network is zero.
When the signal exceeds threshold, the comparator output is pulled low, so this point carries an irregular rectangular waveform while signal is applied. The average value of this is derived by R_3 and C_2, buffered by IC_{3a}, and drives a moving-coil meter through a suitable resistance R_5.
Switch SW1 and R_4 enable a quick reset when no signal is present. A moving-coil meter allows much easier reading of a changing signal, though not to any great accuracy.
Potentiometer VR_2 sets the scale so that the meter deflects to full scale for a 100% reading. This is done with no input, so it is essential to check that the circuit offsets have put the comparator in the right state — i.e. output low; if not the inverting input will need to be pulled fractionally negative by a high-value biasing network.
The circuit only measures one polarity of the waveform, in this case the positive half, so signal symmetry is assumed. This is safe unless you plan to do a lot of work with solo instruments or single a cappella voices; the human vocal waveform is notably asymmetrical.
This minimal system is simple, but it only yields one data point at a time. Set the threshold level to say 50%, play the track — I'd pick a short one — and as it finishes the reading on the meter shows the percentage of time the signal exceeded the preset level.
Since twenty data points are required...
for a good graph, this gets pretty tedious. The four comparators of \(IC \) could give four points, if the time-constant section was also quadrupled, and some means of freezing the output voltages provided.

The CDF thus obtained for Alannah Myles' 'Black Velvet' is Fig. 5, and the PDF derived from it is Fig. 6. It comes complete with some rather implausible ups and downs produced by differentiating data that is accurate to ±1% at best.

I measured several rock tracks, and also short classical works by Albinoni and Bach. The results are surprisingly similar; see the composite CDF in Fig. 7. This is good news because we can use a single PDF to evaluate amplifiers faced with varying musical styles. However, I decided the method needed a reality check, by deriving the PDF in a completely different way.

Probability density functions via DSP
A digital signal processor offers the possibility of determining as many data points as you want on one playing of the music specimen. In this case a very simple 5601 program sorts the audio samples into 65 amplitude bins.

The result for 30 seconds of disco music is Fig. 8, which is somewhere between triangular and Gaussian, if the latter has appropriate variance. The important point is that the difference between them is very small, and either can be used. The triangular PDF simplifies the mathematics, but if like me you use Mathcad to do the work, it is easy to plug in whatever distribution seems appropriate.

Deriving actual power
Having found the PDF, it is combined with the power partition diagram. In this case the IPPD is divided into twenty steps of voltage fraction, and each one multiplied by the probability the signal is in that region.

The summation of these products yields a single number – the average power dissipation in watts for a real signal that just reaches clipping for 1% of the time. An obvious extension of the idea is to plot the average power derived as above, against signal level on the X-axis. This gives an immediate insight into how amplifier power varies as the general signal level is reduced, as by turning down the volume control.

Figure 9 shows how level changes affect the PDF. Line 1 is maximum volume, just reaching full volume at the right. Line 2 is half volume, -6dB, and so hits the X-axis at 0.5; it is above Line 1 to the left as the probability of lower levels must be higher to maintain unity area under it.

This process continues as volume is reduced, until at zero volume the zero-level probability is 1 and all other levels have zero probability. Having generated twenty PDF functions, the powers that result for each one are plotted with the volume setting – not the output fraction – as the X-axis. The results for some common amplifier classes are as follows.

Class-B. The instantaneous power plot for Class-B complementary feedback pair combined with a triangular PDF of Fig. 10 illustrates how the load and device power varies with volume setting. A signal with triangular PDF spends most of its time at low values, below 0.5 output fraction, and so there is no longer a dissipation maximum around half output. Device dissipation at bottom increases monotonically with volume. Load power increases with a square-law, which is a reassuring check on all these calculations.

Figure 11 is Fig. 10 replotted with a logarithmic X-axis, which is more applicable to human hearing. Domestic
amplifiers are rarely operated on the edge of clipping; a realistic operating point is more like -15 or -10dB. The plot reveals that here the efficiency is low, with much more power dissipated in the devices than reaches the load.

Class-AB. A decibel plot for Class-AB, biased so Class-A operation is maintained up to 5W RMS output is shown in Fig. 12. Quiescent current is now 370mA, so there is greater quiescent dissipation at zero volume. There is also substantial conduction overlap, and so sink and source would be different if the plot only considered voltage excursions in one direction away from 0V. When positive and negative half-cycles are averaged, symmetry is achieved. The total device dissipation is unchanged but the boundary between the source and sink areas is half way, as in Fig. 12.

Class-A push-pull. I have stuck with the same ±50V rails for ease of comparison, and this yields a very powerful Class-A amplifier. The power drawn from the load is constant, and as output increases dissipation transfers from the output devices to the load, giving minimum amplifier heating at maximum output.

The result for sinewave drive is bad enough, but Fig 13 reveals that with real signals, almost all the energy supplied is wasted internally - even at maximum volume. Class-A has always been stigmatised as inefficient; this shows that under realistic conditions it is hopelessly inefficient, so much so that it grates on my sense of engineering aesthetics. At typical listening volumes of -15dB the efficiency barely reaches 1%.

Class-G. This class of amplifiers was introduced by Hitachi in 1976 to reduce amplifier power dissipation by exploiting the high peak-mean ratio of music. Class-G made little headway in the hi-fi market as the power saving does not outweigh the increased circuit complexity, but the rise of five-channel home theatre applications has caused a revival of interest in improved amplifier efficiency.

I recently explained Class-G in reference 6. At low outputs, power is drawn from low-voltage rails; for the relatively infrequent excursions into high power, higher rails are switched in.

In Fig. 14 the lower rails are ±15V, 30% of the higher ±50V rails; I call this Class-G-30%. The lower area is the power in the inner devices - i.e. those in all the time. The larger area just above is that in the outer devices, i.e. those only activated when running from the higher rails. This is zero below the rail-switching threshold at a volume of 0.2.

Total device dissipation is reduced from 48W in Class-B to 40W, which is not a good return for twice as many power transistors. This is because the lower rail voltage is poorly chosen for signals with a triangular PDF.

If the low rails are increased to ±30V this becomes Class-G-60% as in Fig. 15. Here the low-dissipation region now extends up to a voltage fraction of 0.5, but inner device dissipation is higher due to the increased lower rail voltages.

The overall result is that total device power is reduced from 48W in Class-B to 34W, which is a definite improvement. I am not suggesting that 60% is the optimum lower-rail voltage. The efficiency of Class-G amplifiers depends very much on signal statistics.
Reactive loads

The disadvantage of using instantaneous power is that it ignores signal and circuit history, and so cannot give meaningful information with reactive loads. The peak dissipations that these give rise with real signals are difficult to simulate; it would be necessary to drive the circuit with stored music signals for many cycles, and that would only cover a few seconds of a CD or concert. The anomalous speaker currents examined in reference 7 show how significant history effects can be with some waveforms.

In summary

Tables 1 and 2 summarise how a triangular-PDF signal – rather than a sine-wave – reduces average power dissipation, and the power drawn from the supply.

These economies are significant; the power amplifier market is highly competitive, and it is essential to exploit the cost savings in heat-sinks and power-supply components made possible by designing for real signals rather than sine-waves.

In particular, Class-G shows valuable economies in device dissipation and power-supply capacity, though to reduce the supply, the lower voltage supply must be carefully chosen. This approach is unlikely to reduce the number of power devices required as real signals give no corresponding reduction in peak device power or peak device current.
Distorted or not?

I feel compelled to comment in Ian Hickman’s latest distortion analyser article in the August 1999 issue, p. 628.

The article places great emphasis on the notch filter design and little regarding the rest of the circuit. A few years ago, Mr Linsley-Hood also published a design for a complete distortion analyser, again placing emphasis on filter design.

I have no argument regarding both articles’ filter design techniques. However, I must part when it comes to ‘What comes after the notch filter’ and hence the rectifier stage.

All the rectifiers published use two diodes, or four as in Mr Hood’s design, which if studied carefully, reveals that there will be a modulus hysteresis level of 1.2V due to the two diode drops. In Hickman’s design, Fig. 4 will have a hysteresis level of 0.6V. This means IC2’s output will go into slew rate limiting between +0.6 and -0.6V when driven by an output signal amplitude of the same or below this level.

If the input of IC2B is grounded, you would expect the output to be 0V, but it will be +0.6V or -0.6V. This shows emphatically that any AC signal below the 1.2V differential threshold will be highly distorted – both designs are flawed.

I came across this problem when trying to design my own distortion analyser a few years ago. The solution is to use a true full-wave envelope detector or modulus detector, as found in AM receivers.

I also notice that Mr Hickman does not worry too much about op-amp drift compensation. I refer to IC2’s biasing resistors R8 and R1 which are hopelessly imbalanced.

Meter M1 is a current measuring device, hence 0-1mA, but it is driven by a voltage source as in Fig. 4, IC2D. For high accuracy, it should be driven by a 0-1mA current source or via V-to-mA converter.

Darren Heywood
Buckley
Flintshire

Ian replies

I do not quite understand Mr Heywood’s reservations concerning the meter circuit in my THD meter. The use of diodes in a negative feedback loop to implement a linear scale voltmeter is well established, and applied in many commercial instruments. The only drawback is that the response is average-of-modulus, rather than true rms. This pole was covered in detail in the article.

As Mr Heywood points out, between each half cycle, the op-amp output will traverse the dead space due to the diodes, in slew rate limit. But given an adequate slew rate, this is of no consequence. Tests show that a 20dB input in drop input causes the meter reading to fall from FSD by exactly one tenth of FSD at 200Hz. Thanks to the excellent performance of the Burr-Brown OPA4134 op-amp, this is duplicated exactly at input frequencies of 2kHz and 20kHz.

Due to the very low input bias current of the OPA4134, in the absence of any input, the output of IC2B in the prototype sits at +250mV, a 1N4148 is not a complete open circuit below 0.6V. Of course it could have been -250mV, or some other figure in that region, depending on component tolerances. But the exact figure is irrelevant: at inputs down to well under 10% of FSD, the action of the high loop gain takes charge.

The output of IC2B is certainly highly distorted, but the input to R14 or R15 is either an exact copy of a half cycle of the input, or zero on the other half cycle.

Mr Heywood notes that R3 and R15 are very different. At room temperature, input bias current of the OPA4134 could be as much as ±100µA, though it is typically 5µA. Thus the worst case contribution to the input offset voltage due to this imbalance is ±100µV.

The device’s worst case input offset voltage Vos – room temperature again – is ±2mV and for the typical figure is ±0.5mV, so Mr Heywood need not concern himself with the imbalance.

Mr Heywood’s point about the meter being a current operated device, driven from a voltage source, is a little obscure. The voltage ranges on an AVO meter model 8 are displayed on a moving coil meter, but no-one complains. In conjunction with a 1kΩ resistor R14, meter M1 of my circuit simply forms a voltmeter with a sensitivity of 1000ΩV.

A resistor of 1kΩ was adequate to mask the 0.4%/°C temperature coefficient of the particular meter used – with its 100Ω resistance reducing that of the meter circuit as a whole to 0.04%.

Why digital TV is better

Recently we’ve had rather poor TV reception. A bolt of lightning took out the Bromgrove transmitter a while ago. When it eventually came back, it was as though it was working on reduced power.

I waited for the signal to come back up to strength, but after several weeks it didn’t. When I looked on Ceefax for transmission information, I found that Bromgrove wasn’t listed as being on low power. When I approached the BBC about it, I was glibly told that I was experiencing “digital interference.”

I was amazed by this. If digital TV signals spoil analogue TV, this is bound to make digital TV pictures appear better but without actually having to be better.

Another serious complaint I have with current TV is the inter-program sound – announcements and adverts. It is much, much louder than the programs. This is so annoying that we often have to mute the sound.

RF Price
Worcester

Standby switching for mains equipment

In Douglas Self’s excellent article on speaker protection circuits, he laments the lack of a mains switch suitable for mechanical detection of powering-off.

Most TV sets, if switched on at the wall with the front-panel switch already on, will power up in standby mode; if switched on at the front panel with the wall switch on, they power up fully.

Since the panel switch and the wall switch are electrically indistinguishable, the panel switch is fitted with momentary contacts that make shortly after the power contacts close, and tell the system control to switch from standby to on. The diagram makes this clearer.

The momentary contacts also make shortly before the contacts open when switching off. This has no effect on the TV set, but could be useful in an amplifier to reset Mr Self’s power-up timer and so drop out the protection relays. Due to the length of the power-up delay, there would be no significant effect at switch-on.

Note, however, that in a sound system composed of several bits of kit, each with its own power switch, it is much more convenient to plug all the power leads into a multi-way adaptor, leave all the individual power switches on and turn the whole lot on and off at the wall. This also allows the use of a time switch to make timed recordings or as an alarm clock.

Electronic detection of power loss is therefore still necessary (and input protection maybe). These switches are not generally available from the usual component suppliers, but spare-part suppliers such as CPC in nearby Preston have a wide selection.

Should anyone want their TV set to power up fully when switched on at the wall, a permanent short across the momentary contacts usually does the trick.

Chris Bulman
Bedford

Letters to “Electronics World” Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS
e-mail jackie.lowe@rbi.co.uk

December 1999 ELECTRONICS WORLD 1039
Picturing Schmitt's trigger

Bryan Hart takes an in-depth look at a sixty-year-old device that most designers today take for granted – the Schmitt trigger.

In digital system design the normally preferred shape of a waveform resembles that of Fig. 1(a). The waveform is 'clean'. When the digital signal vs represents a '0', in the positive logic convention, it has a constant level VOL in the acceptable '0' range. Similarly, a '1' is represented by a constant level VIL in the acceptable '1' band.

Furthermore, transitions between levels are 'smooth'. Mathematically, the signal is said to increase monotonically from '0' to '1' and decrease monotonically from '1' to '0'.

However, as a result of crosstalk in interconnecting wires a practical waveform could resemble that shown in Fig. 1(b). Noise 'spikes' p, q, are shown as occurring after the main transitions but they could appear during the transitions themselves as a result not only of crosstalk but also of ringing on interconnection paths.

Spikes p and q might jeopardise intended system operation, so how can they be eliminated? The use of a differential voltage comparator might seem to be appropriate, so consider Fig. 2, in which Fig. 1(b) is repeated for convenience. The noise-contaminated waveform is applied to the non-inverting input of the comparator, Co, in Fig. 2b): Co is assumed to have ideal static and dynamic characteristics.

If the comparator reference level VR applied to the inverting input, is set at Vx then the output is as shown in Fig. 2c). Spike q is ignored but p causes two output pulses to appear instead of the single one required.

Similar conditions hold when VR = Vp, but in that case p is ignored not q. For the waveform illustrated, with Vp < VQ, it is not possible to eliminate the effects of both p and q using a comparator as a straightforward clipper/limiter.

The problem can be solved using a scheme known as a Schmitt trigger¹. Long before the advent of modern digital electronics, this name was given to a particular comparator circuit based on a pair of cathode-coupled thermionic tubes.

Originally, the Schmitt trigger was designed to produce abrupt changes in output voltage for slowly varying input signals. Nowadays the name is used to describe a generic circuit function, rather than a particular component assembly, though some form of comparator with a long-tailed pair input stage is commonly employed in bipolar transistor designs.

The purpose of this article is twofold: to explain some features of Schmitt-trigger operation which, though important in innovative design, are ignored in the general literature; to show how the Schmitt trigger can be designed to eliminate the effects of spikes p and q in Fig. 1b.

How the trigger works
Whatever the details of the internal circuitry, the Schmitt trigger may be regarded, from a system viewpoint, as a differential voltage comparator with positive feedback. Figure 3 shows this for the case of inverting-mode operation; the non-inverting case is mentioned, briefly, later.

Potential differences Vs, ε, Vo are the d.c. values of the signal voltage, differential input voltage and output voltage respectively.

A three section piecewise-linear approximation to the static transfer characteristic, of Co itself, is shown in Fig. 4 and a d.c. equivalent circuit for each region of operation is shown in the box above it.

In Regions 1, 3 corresponding to saturation, the output can be modelled by the batteries VH(L) , VL(L) respectively. In Region 2, the linear or active region, the output is modelled by a voltage-controlled voltage generator. For simplicity the
input is assumed to impose no loading effect on the drive circuit. This assumption does not affect the general conclusions that are reached regarding system operation.

With the help of Fig. 3, it can be determined that,

\[V_s = \varepsilon + \frac{\beta V_o}{\beta} \]

where,

\[\beta = \frac{R_1}{R_2 + R_1} \]

Rearranging eqn 1,

\[V_o = \frac{\varepsilon}{\beta} + \frac{V_s}{\beta} \]

When plotted on the transfer characteristic, eqn 3 represents a straight line, with a slope \(-1/\beta\), that passes through the axis point \(\varepsilon = V_s\). I will call this the operating line.

See what happens for various values of \(V_s\). Line 'a', in Fig. 5, shows conditions for an arbitrarily large negative value, \(V_{s1}\), of \(V_s\). The line cuts the transfer characteristic at a single point \(P_1\), where \(V_o = V_{HL}\). Following a small momentary change in \(\varepsilon\), owing to circuit noise, the operating point returns to \(P_1\); so this is a stable position of equilibrium.

Line 'b', for \(V_{s2}(>V_{s1})\), cuts the transfer characteristic at three points. The stable operating point is \(P_2\), where \(V_o = V_{HL}\). The other two intersections do not yet represent possible operating points because the comparator can exist in only one of its three regions at a given time. Until \(V_s\) is sufficiently positive for \(C_0\) to operate in Region 2, that is presently in Region 1.

For \(V_s = V_{s3}(>V_{s2})\) the operating line meets the transfer characteristic at two points \(P_3\), \(P_3'\). At \(P_3\), line 'c' is tangential to the transfer characteristic at one edge of Region 2 and \(C_0\) behaves as a linear amplifier with positive feedback.

A momentary positive change in \(\varepsilon\), once again due to circuit noise, now causes a regenerative switching action to occur as Region 2 is traversed. This action ceases when \(V_o\) reaches a limit and the circuit settles down into a stable state, at \(P_3'\) in Region 3. What happens in the switching process will be discussed later.

The words used to describe \(V_{s3}\) are 'upper trip' (or, trigger)
ANALOGUE DESIGN

Fig. 7. Lines 'd', 'e', 'f', refer respectively to operation with $V_S = V_{S4}$, $V_{S5}(<1/54)$, $V_{S6}(<V_{S5})$.

Fig. 8. Transfer characteristic of Fig. 3 for V_S decreasing, derived from Fig. 7.

Fig. 9. The hysteresis characteristic is a composite plot of Figs 6, 8; the horizontal sections for $V_S < V_{in}$ and $V_S > V_{out}$ are shown slightly separated for clarity.

Fig. 10. Static transfer characteristic for Fig. 3 is shown bold. Line sections S_1, S_2 refer to terms in eqn 8.

level', and the letter subscripts UTL are used: thus, $V_{S3} = V_{UTL}$.

Substituting,

$$e = -\frac{V_{in}}{\beta}$$

in eqn 3 and rearranging gives,

$$V_{S1} = V_{out} = -\frac{V_{in}}{A_0} + (\beta V_{HL})$$

(4)

For the normal case $\beta > (1/A_0)$,

$$V_{UTL} = \beta V_{HL}$$

(5)

Derived from Fig. 5, Figure 6 shows an apparent static plot of V_O versus V_S. The arrow direction indicates increasing V_S and, if the input voltage is changing, increasing time, t.

In Fig. 7, which should be compared with Fig. 5, lines 'd', 'e' and 'f' show what happens when V_S decreases from a value V_{S4} ($>V_{S3}$). The output remains at $-V_{LL}$ till $V_S = V_{S5}$; then, 'e' is tangential to the transfer characteristic at point P_5 on the other edge of Region 2.

A tiny change in e due to circuit noise, is sufficient to initiate a regenerative switching action which ends when the point P_5' in Region 1 is reached. Figure 8 is derived from Fig. 7 in the same way that Fig. 6 is derived from Fig. 5. The arrow direction indicates successively decreasing values of V_S. If the input voltage is continually changing, this also corresponds to increasing t.

Voltage V_{S5} is designated 'lower trip (or trigger) level' and from reasoning similar to that which produced eqn 5,

$$V_{S5} = -V_{out} = -\frac{V_{in}}{A_0}$$

(6)

Figure 9, a composite plot of Fig. 6 and Fig. 8, is the apparent static transfer characteristic of the system. The horizontal line sections for $V_S < V_{UTL}$ and $V_S > V_{UTL}$ should be shown coincident, but one is slightly displaced with respect to the other on this particular diagram to clarify the confusion that can arise when oppositely directed arrows are shown adjacent on the same line section.

The system exhibits 'memory', characterised by a hysteresis, or deadband, voltage ΔV_H,

$$\Delta V_H = (V_{out} - V_{in}) = \beta (V_{HL} + V_{LL})$$

(7)

Instead of the graphical procedure that led to Fig. 9, you can obtain a plot of V_O versus V_S as follows:

At any point $V_S = V_{S5}$, $V_O = V_{out}$ in Region 2, where,

$$e = -\frac{V_O}{A_0}$$

Equation 1 can be rewritten as,

$$V_S = -\frac{V_O}{A_0} + (\beta V_{HL})$$

(8)

Figure 10 shows a plot of the transfer characteristic, on which is constructed a line, with slope $1/\beta$, which passes through the origin. This line characterises the effect of feedback. At $V_{out} = V_{HL}$, V_S is obtained by the algebraic addition of the horizontal line sections S_1 and S_2 that represent the two terms on the right-hand side of Fig. 8. Thus, point P' on the overall system characteristic corresponds to P on the transfer characteristic and the locus of points such as P' is the Z-shaped characteristic shown bold.

The central section is a straight line of slope A'.

$$A' = \frac{-A_0}{1 - A_0 \beta}$$

(9)

This equation follows from a rearrangement of eqn 8, or from the standard relationship for an amplifier with feedback2: for $\beta > (1/A_0)$, $A' = 1/\beta$. It now seems that two different graphs describe the voltage transfer relationship for the
Schmitt trigger. Which one is correct?

Figure 10 relates to a d.c. model, only, of the system, i.e., the existence of energy storage elements is ignored. Hence, the effect of the regenerative action at \(V = V_{TH} \) and \(V = V_{LTH} \) is not evident.

Figure 9, with the horizontal sections lying outside the hysteresis loop shown coincident, indicates the actual form of the trace observed in a practical sweep test designed to show \(V_o(Y) \) versus \(V_s(X) \), using a pen recorder or oscilloscope.

Incidentally, following on from Fig. 10, a three-dimensional plot of \(V_o(Y) \) versus \(V_s(X) \) and \(\beta(Z) \) produces a folded surface similar to that encountered in elementary Chaos theory.

Some analogues in other areas of engineering science offer useful insight into the phenomenon of hysteresis. These are touched on next.

Analogues of hysteresis

The \(BH \) curve of a ferromagnetic material provides a familiar example of hysteresis. In that case it can be attributed to the ‘remembered’ angular orientation of domain magnetic moments.

An equivalent of hysteresis is the ‘backlash’ encountered in mechanical transmission systems, particularly those involving worn gear wheels, when the input drive is reversed. However, a more illuminating mechanical analogue is a see-saw with a sliding load.

Consider Fig. 11: this is a plan view of a light, rigid, beam pivoted in the middle. A smooth metal rod is attached to the side of the beam, like a curtain rail fixed to the wall above a window. A circular metal weight, \(m \), similar to those used by weight-lifters, can slide freely along the rod between the end-stops situated at a distance \(L_1 \) to the left of the pivot and \(L_2 \) to the right.

Figure 12 is a side view of this see-saw scheme. A person, \(n \)-times heavier than weight \(m \), walks from one end, \(G \), towards the pivot, \(J \), which is a height \(h \) above ground level. At this time the other end, \(K \), is \(2h \) above ground level.

When the person reaches a point \(L_1/n \) to the right of \(J \), the beam starts to tip down on that side. This follows from the Principle of Moments. As it does so, \(m \) slides towards \(J \), further aiding the motion of \(K \) towards the ground.

As the person walks back, Fig. 13, \(K \) does not move upward until he reaches a point \(L_2/n \) to the left of \(J \). A ‘transfer characteristic’ for the mechanical operation is shown in Fig. 14: in this particular drawing, \(n=2 \).

Switching and stability

Referring back to Figs 5, 7 it is necessary to use a dynamic model of \(C_0 \) to understand Schmitt-trigger behaviour on reaching points \(P_3, P_5 \). The simplest model, but one which highlights the main features of operation, is that shown within the broken-line triangular outline in Fig. 15.

The use of lower case letters indicates that voltage changes are being considered. Components \(R \) and \(C \) define a single-pole frequency response in Region 2. Thus,

\[
A' = \frac{-A_0}{1 + j\frac{\omega}{\omega_c}} \tag{10}
\]

or,

\[
A' = \frac{-A_0}{1 + j\omega_C} \tag{11}
\]

where,

\[
\omega_c = \frac{1}{R_C} = \frac{1}{CR} \tag{12}
\]

The input is shown connected to signal-earth because the switching process is governed by the parameters of the feed-
ANALOGUE DESIGN

back loop, not the input signal.
The charging current, \(i \), for \(C \) is given by,

\[
i = C \frac{dv}{dt} = (A_0 \beta - 1) \frac{V_O}{r}
\]

(13)

or,

\[
\frac{dv}{dt} = (A_0 \beta - 1) \frac{V_O}{r_c}
\]

(14)

Equation 14 follows from 13 by using eqn 12 and the fact that \(V_O = V_C \).

A general solution of eqn 14 is of the form,

\[
v_o \propto \exp\left((A_0 \beta - 1) \frac{t}{r_c} \right)
\]

(15)

Provided the loop-gain factor \(A_0 \beta \) exceeds unity, as is the case here, this equation describes an exponential growth once Region 2 is reached. In fact, eqn 15 is characteristic of the switch-over process not only in bistables but also monostables and astables.

Switch-over time \(t_s \) is proportional to the time constant \(r_c(A_0 \beta - 1) \), but \(\Delta V_L < \beta \) so \(t_s \) and \(\Delta V_H \) are inversely related. It is not possible to have, simultaneously, zero hysteresis and regenerative switching -- a fact overlooked by some authors.

The condition \(A_0 \beta > 1 \) implies \(A_0 > 1/\beta \). A graphical interpretation of this is that the fastest switching is obtained with the greatest angle between the slope of the operating line and the slope of the transfer characteristic in Region 2.

For the circuit of Fig. 3, there is a remaining problem to consider. What happens if \(V_S = 0 \) when the circuit is initially switched on?

Direct-current conditions are satisfied at point O in Fig. 16. However, this is not stable. Referring to eqn 14, if \(V_O > 0 \) then \((dv_o/dt) > 0 \) and operation moves to \(P_U \); if, however, \(V_O < 0 \), then \((dv_o/dt) < 0 \) and operation moves to \(P_L \). So, following switch-on, \(V_O = V_HL \) or \(V_O = V_LL \). It is impossible to say which it will be in advance. This is true at switch-on for any \(V_S \) lying between \(V_LTL \) and \(V_UTL \).

In practice, eqn 15 is only approximately true because there is a non-linear relationship between \(V_O \) and \(e \) in Region 2, which leads to daunting mathematics.

The differing conditions of stability at points \(P_1, P_3 \), in Fig. 5, are well-illustrated by the mechanical analogues in Fig. 17. In Fig. 17a), corresponding to \(P_1 \), a small spherical bead rests inside the bottom of a half-eggshell. It is a stable position of equilibrium because the bead returns to its initial position following a small disturbance.

Figure 17b) corresponds to operation at \(P_3 \). The bead cannot be stable on top of the inverted eggshell because, even if it was possible to balance it there initially, it would fall down the side after a small disturbance.

Design considerations

The operation of a Schmitt trigger in the non-inverting mode, Fig. 18a), is similar to that described for the inverting mode. Its graphical analysis resembles that associated with Fig. 5.
For a given V_S, the operating line, still has a slope $-1/R$ but it passes through a point $E = -(V_S(R_1+R_2)/R_2)$ on the horizontal axis rather than $E = V_S$.

With increasing V_S, the line moves from right to left and vice versa. Consequently, $V_{UTL} = V_{UTL}(R_1/R_2)$ and $V_{LTL} = V_{LTL}(R_1/R_2)$ and the hysteresis characteristic is shown in Fig. 18b. An unambiguous block schematic representation is shown in Fig. 18c. The hysteresis symbol in the box is reversed for inverting operation.

The non-inverting scheme does not provide the same degree of isolation from the driving source as the inverting configuration. This is because the output resistance, R_S, of the source must be included with R_1 for trip level calculations. When R_S is very large or poorly defined, a better procedure is to design for inverting operation and follow with an inverting buffer stage.

Applying a fixed reference potential to the inverting input of Fig. 18a has the effect of shifting the hysteresis loop bodily along the horizontal axis as is evident with the current-comparing trigger shown in Fig. 19.

Returning now to the problem of logic spike elimination mentioned at the beginning of this article, the effect of p, q in Fig. 1 can be avoided if the waveform is applied to an inverting trigger circuit with trip levels located as shown in Fig. 20a: the output is then as shown in Fig. 20b.

It might be possible to achieve this using a standard monolithic Schmitt trigger such as the TTL 7413, which has V_{UTL} fixed at 1.9V and V_{LTL} at 0.9V. When a standard unit is not applicable a suitable scheme, a development of Fig. 3, is shown in Fig. 21 in which V_S is the waveform of Fig. 1b. Resistors R_1, R_2 are chosen so that,

$$V_{UTL} = V_{LTL} = V_{OH} + (V_O - v_Q)$$

Current I is approximately V_S/R_1. It is supplied by the circuit within the contour shown and provides a facility for shifting the hysteresis loop along the axis by a voltage $IR_1/R_2 = IR_1$ without changing ΔV_H.

The design equations and design procedure are as follows.

$$V_{OH} > V_{UTL} > V_Q$$ \hspace{1cm} (16)

or,

$$V_{OH} > (IR_1 + \beta V_{HL} > V_Q)$$ \hspace{1cm} (17)

and,

$$V_P > V_{LTL} > V_{OL}$$ \hspace{1cm} (18)

i.e.,

$$V_P > (IR_1 + V_{LTL} > V_{OL}$$ \hspace{1cm} (19)

On a plot of IR_1 versus β, Fig. 22, condition (17) is satisfied if the operating point lies between the parallel lines (i), (ii) and condition (19) is satisfied for operation between parallel lines (iii), (iv).

The cross-hatched area thus defines parameter choices for satisfactory operation. To allow for tolerances in R_1, R_2, I, etc., it is advisable to operate at a point in the centre of the permitted area. If this area encompasses the β axis it is possible to design for $I = 0$.

This procedure only works precisely if C_O has a low output resistance at both of its output levels, as is the case with the long-established 710 comparator. The 311 requires an output pull-up resistor but, provided this is less than one tenth the resistance of R_2, the procedure given is still a useful starting point.

One further point; the speed-up capacitor C_F, in Fig. 21, is chosen to make the feedback network a compensated potentiometer so $C_F R_2 = C_S R_1$, capacitance C_S being the total capacitance appearing across R_1.

Reversing the roles of the current generator and the feedback network in Fig. 21 gives the circuit variation in Fig. 23. The design equations in this case are:

$$V_{UTL} = \beta V_{CC} + IR_1$$ \hspace{1cm} (20)

$$V_{LTL} = \beta V_{CC}$$ \hspace{1cm} (21)
ANALOGUE DESIGN

Fig. 23. A circuit variation of the technique of Fig. 21.

Fig. 24. Alternative Schmitt trigger configuration for spike elimination: \(V_x \), \(V_y \) are the voltage levels shown in Fig. 2a).

A graphical procedure, similar to that of Fig. 22, is applicable.

The design problems associated with Fig. 3 are eased and the resulting circuit is made more versatile if its two functions, trip-level definition and bistable-action, are performed separately as in the scheme of Fig. 24.

The common input signal for the comparators \(C_{01}, C_{02} \) is the waveform of Fig. 1b). The comparison potentials applied to them are, respectively, \(V_x \), \(V_y \) shown in Fig. 2a).

When \(V_y < V_x \) the bistable is set and remains set till \(V_x > V_y \), when it is reset. This scheme allows free choice of \(V_{LTL}, V_{UL} \) and provides both polarities of output. It is at the heart of the popular 555 timer IC.

When the device is used as an astable, the hysteresis voltage serves to define the voltage swing across a timing capacitor connected to the common input to the comparators.

References

WATCH SLIDES ON TV MAKE VIDEOS OF YOUR SLIDES DIGITISE YOUR SLIDES

"Liesgang diatv" automatic slide viewer with built-in high quality colour TV camera. It houses a composite video output to a phone plug (SCART & BNC adaptors are available). They are in very good condition with few signs of use £91.91 + VAT = £108.00
Board cameras all with 512 x 582 pixels 8.5mm 1/3 inch sensor and composite video out. All need to be housed in your own enclosure and have fragile exposed surface mount parts.

They all require a power supply of between 10 and 12v DC 150mA. £79.88 + VAT = £91.97
40MP size 39 x 38 x 28mm spy camera with a fixed focus pin hole lens for hiding behind a very small hole £50.00 + VAT = £58.75
40MC size 39 x 38 x 27mm camera for 'C' mount lenses these give a much sharper image than with the smaller lenses £38.79 + VAT = £45.58

Better quality C mount lenses
VSL121OF 12mm F1.6 15 x 15 degrees viewing angle £15.07 + VAT = £16.98
VSL6022F 6mm F1.22 32 x 24 degrees viewing angle £19.05 + VAT = £22.38
VSL6020F 6mm F1.22 24 x 16 degrees viewing angle £19.90 + VAT = £23.38

Blue and silver recordable CD ROM bulk £0.766 + VAT = £0.90
With jewel case £1.00 + VAT = £1.18

1206 surface mount resistors E12 values 10 ohm to 1M ohm in 10 ohm steps £0.55 + VAT = £0.66

Please add £1.66 + VAT = £1.95 postage & packing per order

JPG ELECTRONICS
276-278 Chatsworth Road, Chesterfield S40 2BH
Tel: 01246 211202 Fax: 01246 550905
Callers welcome 9.30am to 5.30pm Monday to Saturday

CIRCLE No.129 ON REPLY CARD

STEROEO STABILIZER 5

- Rack mounting frequency shifter for howl reduction in public address and sound reinforcement.
- Mono box types and 5Hz fixed shift boards also available.
- * Broadcast Monitor Receiver 150kHz-30MHz.
- * Advanced Active Aerial 4kHz-30MHz.
- * Stereo Variable Emphasis Limiter 3.
- * PPM10 In-vision PPM and chart recorder.
- * Twin Twin PPM Rack and Box Units.
- * PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN -50+6dB drives and movements.
- * Broadcast Stereo Coders.

SURREY ELECTRONICS LTD
The Forge, Lucks Green, Cranleigh GU6 7BG
Telephone: 01483 275997 Fax: 01483 276477
WANTED!
DEAD OR ALIVE
P.M.R. RADIOS
* ALL MAKES OF RADIO EQUIPMENT HAND PORTABLES OR MOBILES *
BEST PRICES PAID – CASH WAITING!!!
WE WILL COLLECT ANYWHERE IN THE UK

CALL: P.M.R. 2000
ON: 01502 531212 / 0142 693 4804
OR FAX US YOUR LIST ON: 01502 531111

Not just a pretty interface

B² Spice
B² Logic

Professionals, universities and designers need software that produces results they can rely on. B² Spice and B² Logic will give you the accurate results you need - fast.

The best way to find out if a package is really what you need is to try it, which is what we're giving you the chance to do, risk free for 30 days.

We guarantee you will be 100% satisfied with the results or your money back.

Research
Tel: 01603 872331
Research House, Norwich Road, Eastgate, Norwich NR10 4HA Email rd.research@paston.co.uk www.looking.co.uk/spice

Available on 30 day evaluation
Free technical support
Mac version also available

B² Spice for analogue simulation £199
B² Logic for digital simulation £199
Special bundle price £295
All prices shown exclude VAT
Postage & Packing £5.00
The new PicBasic Pro Compiler makes it even easier for you to program the fast and powerful Microchip Technology PICmicro microcontrollers. PicBasic Pro converts your BASIC programs into files that can be programmed directly into a PICmicro.

The PicBasic Pro Compiler features: BASIC Stamp I and II commands, direct and library routine access to pins on PORTA, C, D, E, as well as PORTB, arrays, real IF...THEN...ELSE and interrupt processing in BASIC.

The PicBasic Pro Compiler gives you direct access to all of the PICmicro registers – I/O ports, A/D converters, hardware serial ports, etc. – easily and in BASIC. It automatically takes care of the page boundaries and RAM banks. It even includes built-in commands to control intelligent LCD modules, 12C Read and Write. Serial comms to 19.2K, Smart Card routines are available.

The PicBasic Pro Compiler instruction set is upward compatible with the BASIC Stamp II and Pro uses B52 syntax. Programs can be compiled and programmed directly into a PICmicro, eliminating the need for a BASIC Stamp module. These programs execute much faster and may be longer than their Stamp equivalents. They may also be protected so no one can copy your code.

The PicBasic Pro Compiler is a DOS command line application (it also works in Windows) and runs on PC compatibles. It can create programs for the PIC12C67x, PIC12CE67x, PIC16Cxxx, PIC16C9x, PIC16F8x, and PIC17Cxxx microcontrollers and works with most PICmicro programmers including our EPIC Plus Pocket PICmicro Programmer. A printed manual and sample programs are included to get you started.

The PicBasic Pro Compiler can also be used inside Microchip’s MPLAB IDE. This allows programs to be edited and simulated within Windows.

PIC BASIC (Basic Stamp I compatible) – £49.95

PIC BASIC + EPIC programmer inclusive of utilities suite £84.95

PIC BASIC PRO (Basic Stamp II compatible) – £149.85

PIC BASIC PRO + EPIC programmer inclusive of utilities £184.95

Upgrade PIC BASIC to PIC BASIC PRO £99.95

EPIC PIC PROGRAMMER £49.95

Download full Compiler data sheet including manual from web site

Crownhill Associates Ltd
The Old Bakery, 54 New Barns Road, Elly
Cambridgeshire CB7 4PW
Tel: +44 (0)1353 666709 Fax: +44 (0)1353 666710
E-mail: Sales@crownhill.co.uk
www.crownhill.co.uk

ORDER via ON-LINE CATALOGUE
The 'perfect' transistor

Cyril Bateman looks at the nearest thing to a perfect transistor. Its output swings negative for negative base signals and vice-versa for positive ones. It has a 700MHz bandwidth, 7.7nV/√Hz noise and low distortion – even at 10MHz.

In the October issue, I discussed some circuit functions using transconductance amplifiers. A transconductance amplifier's gain can be set by altering its transconductance and load resistance. It can also provide a differential input instrumentation amplifier, without needing the carefully matched resistor networks needed for the conventional three op-amp circuit.

I chose to investigate this particular attribute when searching for a circuit I could use to design a balanced input probe for my oscilloscope. Many commercial instrumentation amplifiers provide excellent performance at lower frequencies, but I really hoped not to restrict my oscilloscope's 100MHz capability.

Prior to searching Internet, I already had one particular integrated circuit in mind – the AD830 from Analog Devices.

My Internet searches revealed several interesting transconductance amplifier designs and applications, some of these were described in the October issue. This time I will concentrate mainly on one particular versatile integrated circuit, which comprises an unusual wideband transconductance amplifier and an open-loop, wideband, unity gain buffer.

Burr-Brown produces the OPA660 integrated circuit. It has been named the 'diamond transistor' because of the complementary symmetry of the transistors used in its design.

The OPA660 provides a unity-gain, open-loop voltage buffer amplifier and a transconductance amplifier in an eight-pin package. This buffer amplifier provides low differential gain/phase errors at video frequencies, a 700MHz bandwidth and 3000V/µs slew rate.

An ideal transistor?
The operational transconductance amplifier, or OTA, section can be viewed as a quasi-ideal transistor. Like a transistor it has three terminals, a high impedance input (base), a low impedance input/output (emitter) and a current output (collector).

This OTA however differs from a transistor in that it is self biased and bipolar in that it exhibits a combined p-n/p-n-p-a characteristic. The output current is zero for zero differential input voltage. Alternating inputs centred on zero volts produce a bipolar output current also centred on zero volts.

This OTA can provide a consistent transconductance of 106mS/V at frequencies to 100MHz, reducing to some 10mS/V at 250MHz. The actual transconductance can be adjusted via an external resistor, allowing bandwidth, quiescent current and gain trade-offs to be optimised.

The three OTA terminals are labelled B, E and C to draw attention to the device's similarity to an ideal transistor.

With a positive base-to-emitter input voltage, current flows out of the collector terminal. Current then flows into the
Fig. 1. Simplified schematic drawing of Burr-Brown's OPA660 'Diamond Transistor' integrated circuit. This OTA is self biasing and with bipolar input signals, it provides a bipolar output.

Well on 24 August, I received an unwanted e-mail from <remember 132550@usa.net> which was complete with the Happy99.exe attachment. Since I use only OS/2 and the OS/2 version of Netscape 2.02 for all my Internet accesses, this attachment could not automatically run or be accidentally opened. Needless to say, I deleted it completely.

Other operating systems are more vulnerable. This week two new viruses have been reported. 'Toadie' sometimes called 'Termite' is now common in the e-mail freeware communities. It has been classified by Network Associates as of medium damage level risk. If activated it can infect as many as 100 executable files, in both DOS and Windows systems.

IE5 can leave Internet surfers vulnerable in two ways. According to Georgi Guninski, a security hole within ActiveX, allows hostile code buried in a Web page or in an e-mail message, to run on a user's computer without the user's knowledge, Fig. A.

SIMPLIFIED SCHEMATIC DRAWING OF BURR-BROWN'S OPA660 'DIAMOND TRANSISTOR' INTEGRATED CIRCUIT. THIS OTA IS SELF BIASING AND WITH BIPOLAR INPUT SIGNALS, IT PROVIDES A BIPOLAR OUTPUT.

BUGS

I reported on the Happy99.exe virus, which can be received via e-mail, in the August 99 issue. Perhaps like me, not having previously been troubled by e-mail viruses, you have wondered whether they exist or are simply alarmist propaganda.

Well on 24 August, I received an unwanted e-mail from <remember 132550@usa.net> which was complete with the Happy99.exe attachment. Since I use only OS/2 and the OS/2 version of Netscape 2.02 for all my Internet accesses, this attachment could not automatically run or be accidentally opened. Needless to say, I deleted it completely.

Other operating systems are more vulnerable. This week two new viruses have been reported. 'Toadie' sometimes called 'Termite' is now common in the e-mail freeware communities. It has been classified by Network Associates as of medium damage level risk. If activated it can infect as many as 100 executable files, in both DOS and Windows systems.

The virus has four variants with code sizes from 6585 bytes to 7585 bytes. It will run in DOS and attach itself to the executable files of 16 or 32 bit applications, including all Windows operating system executables.

Any modification to an infected file's time/date stamp, and the file will no longer run. Data files are not damaged, but application programs on infected machines will not run and the computer may crash. Most antivirus companies now have fixes available for this virus.

IE5 can leave Internet surfers vulnerable in two ways. According to Georgi Guninski, a security hole within ActiveX, allows hostile code buried in a Web page or in an e-mail message, to run on a user's computer without the user's knowledge, Fig. A.

Simply accessing an infected Web page, or reading an infected e-mail or news-group message, allows this code free access to your computer's files. It can then plant a Trojan Horse program into your computer, or overwrite your system files, unless ActiveX controls, plug-ins and scripting features have previously been disabled.

As I write, Microsoft had not posted a patch or an advisory notice, for this problem.

* 'Toadie' virus raises concerns in freeware community.
http://www.zdnet.com/pcweek/stories/news/0,4153,1016141,00.html

† Analysis: IE5 flaw makes PCs vulnerable.
http://www.zdnet.com/zdnn/

Fig. A. If you use Explorer 5 to access Internet, review your Active Desktop security and ActiveX scripting settings before logging on.
Fig. 2. The OPA660 configured as a current feedback amplifier with a gain of ten. For clarity the \(R_q \) resistor, which controls quiescent current, is not shown. It connects between pin 1 and the negative supply rail.

Benefits of the OTA

Unlike a transistor, this OTA configuration is self-biasing, simplifying design and reducing external components. It is far more linear than any discrete transistor, providing a constant transconductance over a wide range of collector currents and frequency.

As you can see in Fig. 1, both the unity-gain buffer and the OTA have similar configurations, apart from their final output stages. The buffer uses emitter-output drive while the OTA has an additional stage with collector output drive.

These two blocks can be arranged as a wideband current-feedback amplifier, with input going to the OTA. The buffer output is coupled back, via \(R_2 \), to the emitter terminal of the OTA. Set to a gain of 10, this arrangement provides an almost flat response to 100MHz at a 5V pk-pk output, Fig. 2.

Even wider bandwidth is available by using the buffer outside the feedback loop and direct feedback from collector to emitter of the OTA. With a gain of three, this combination provides a flat response to more than 500MHz at 2.8V pk-pk output, Fig. 3.

To assist circuit development using this integrated circuit, Burr-Brown provides three different, pre-assembled demonstration boards using the DIL package. These provide both current and direct feedback amplifiers as well as the diamond-transistor/buffer configurations.

Two other boards provide layouts suitable for these applications, using the surface mount SOIC and the DIP packages.

Fig. 3. Extended high-frequency performance is possible using the 'direct-feedback' connection. In this, the unity gain buffer is outside the feedback loop. Feedback is directly from collector to emitter of the OTA.
Fig. 4. The above, basic circuit arrangement functions as a multiplier. With $R_{qc}=250\Omega$, $g_m=67\text{mA/V}$ and R_{out} of 2.08$k\Omega$, provides a multiplication factor of 35$k\Omega$. Gain $G=\frac{35k\Omega}{250\Omega}$ or 140 times. Varying the value of R_w, changes the multiplication factor.

Fig. 5. Final schematic of the Burr-Brown AGC amplifier demonstration board. The peak level control section, at the bottom of the drawing, provides the variable R_{qc} needed to maintain a constant output voltage. Replacing the OPA621 amplifier with an OPA622 can extend bandwidth above this circuit's 80MHz limit.

Amplifier

Multiplier

Peak level control

Wideband differential amplifier

This final application note returns us to the original reason for my Internet searches. It is entitled 'Building a 400MHz wideband differential amplifier: it's a breeze with the Diamond Transistor OPA660'.

In just four pages, application note AN-188 describes a differential amplifier having a flat gain of 6dB up to 400MHz. It has low power consumption, so can be battery powered.

Other aspects of its performance are also excellent. At 2V pk-pk output at 10MHz, harmonic distortion is low, first and second harmonics being at -57 and -55dB respectively.

The device’s common-mode gain at 10MHz is -43dB and its pulse response rise and fall times are around 1ns. Resulting from its low noise density of 7.7nV/\sqrt{Hz}, the circuit is equally usable with much smaller signals, Fig. 7.

Should you prefer to roll off circuit gain below this 400MHz maximum, small changes of C_6, shown as 18pF in the schematic, should be evaluated.

A number of integrated differential amplifier circuits are available in OPA660. These include fast integrators usable with 8ns input pulses and low jitter, fast comparators working to 10MHz, RF signal rectifiers that work down to millivolt levels, variable-gain amplifiers and high-frequency active filters can also be made. Design of an AGC system usable above 80MHz is discussed in application note AB-185. This design uses the OPA660 together with a peak detector, to control its own gain, maintaining a constant output voltage without using a multiplier IC. This AGC is achieved by using the OPA660 quiescent-current control input pin to vary its transconductance, Fig. 4.

A self-contained AGC circuit using this approach, can be evaluated using the dedicated demo board. A full description of the function of each of the four circuit blocks shown in this schematic, appears in application note AB-185, Fig. 5.

Active filter designs are usually restricted to relatively low frequencies. Application note AB-190, entitled 'Designing active filters with the Diamond Transistor' discusses the design of high-frequency active filters having a stop-band performance exceeding 100MHz, Fig. 6.

At these high frequencies, package parasitics, component parasitics and input/output coupling, dominate circuit design.
addition to those I have detailed. Not being transconductance types though, they were not identified in my Internet searches.

Other worthwhiles...
While I do not intend to list all the possibilities, a small family of amplifiers from Linear Technology should be mentioned.

Classified as video difference amplifiers and typified by the LT1193, these were designed as cable-sense amplifiers that could be used to 'tap' into coaxial cable runs, without disturbing the cable’s loading.

The LT1189 amplifier, developed from the LT1193, is a gain-of-ten-stable, 35MHz bandwidth version. By increasing its feedback and using a small capacitor, typically 5pF, as a feedback zero across the feedback resistor, a stable gain of four up to 100MHz can be achieved. This application can be found in the data sheet for the LT1189.

Which circuit did I chose?
Superficially at least, the OPA660 circuit could produce my desired differential oscilloscope probe, except for two final requirements.

To accommodate the desired input voltage ranges, it may be necessary to attenuate the input voltage into the differential amplifier, then use gain after the differential stage, to restore signal levels.

To properly display small differential signals, it may also be necessary to provide a means of offsetting their DC levels.

If you are interested in building a similar, differential scope probe, you will find a number of helpful documents on Internet. These have been written by authors who work for companies manufacturing oscilloscope systems and probes. A small sample is appended in the reference.

Where to look...
1. Analog Devices Inc.
3. Linear Technology Corporation.

See also: Answers to frequently asked questions.

http://www.analog.com
http://www.burr-brown.com
http://www.linear-tech.com
http://preamble.com/faq.htm

Fig. 6. Illustrating the OPA660 demonstration board used to build a third order, 10MHz low-pass filter having extended stop-band performance using the BUF600 output.

Fig. 7. The 400MHz wideband differential amplifier built on the OPA660 demonstration board has a gain of four at the input to the BUF601 buffer output. Using a doubly-terminated 50Ω transmission line reduces overall input/output gain to 6dB. Using an 18pF for C5 as shown, the 3dB frequency is 400MHz.
ADVERTISERS’ INDEX

<table>
<thead>
<tr>
<th>Advertiser</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchor Supplies</td>
<td>1009</td>
</tr>
<tr>
<td>Beta Layout</td>
<td>999</td>
</tr>
<tr>
<td>CMS</td>
<td>1023 & 1048</td>
</tr>
<tr>
<td>Conford Electronics</td>
<td>975</td>
</tr>
<tr>
<td>Crownhill</td>
<td>999, 1019 & 1048</td>
</tr>
<tr>
<td>Dataman</td>
<td>OBC</td>
</tr>
<tr>
<td>Display Electronics</td>
<td>988</td>
</tr>
<tr>
<td>Electromail</td>
<td>1013</td>
</tr>
<tr>
<td>Ice</td>
<td>970</td>
</tr>
<tr>
<td>Johns Radio</td>
<td>1017</td>
</tr>
<tr>
<td>Jpg Electronics</td>
<td>1046</td>
</tr>
<tr>
<td>Labcenter Electronics</td>
<td>972</td>
</tr>
<tr>
<td>Langrex</td>
<td>1019</td>
</tr>
<tr>
<td>Milford Instruments</td>
<td>993</td>
</tr>
<tr>
<td>Pico</td>
<td>1013</td>
</tr>
<tr>
<td>Pmr 2000</td>
<td>1047</td>
</tr>
<tr>
<td>Ps Consultants</td>
<td>IBC</td>
</tr>
<tr>
<td>Quickroute</td>
<td>IFC</td>
</tr>
<tr>
<td>Radio Society of Great Britain</td>
<td></td>
</tr>
<tr>
<td>Radiotech</td>
<td>1019</td>
</tr>
<tr>
<td>Ralfe Electronics</td>
<td>1056</td>
</tr>
<tr>
<td>Rd Research</td>
<td>1047</td>
</tr>
<tr>
<td>Rom-Stuttgart</td>
<td>975</td>
</tr>
<tr>
<td>Seetrax</td>
<td>1048</td>
</tr>
<tr>
<td>Sightmagic</td>
<td>1023</td>
</tr>
<tr>
<td>Stewart of Reading</td>
<td>975</td>
</tr>
<tr>
<td>Surrey Electronics</td>
<td>1046</td>
</tr>
<tr>
<td>Swift Eurotech</td>
<td>1031</td>
</tr>
<tr>
<td>Telford Electronics</td>
<td>1038</td>
</tr>
<tr>
<td>Telnet</td>
<td>977</td>
</tr>
<tr>
<td>Tie Pie</td>
<td>991</td>
</tr>
<tr>
<td>Those Engineers</td>
<td>993</td>
</tr>
<tr>
<td>Ultimate Technology</td>
<td>973, 974 & 976</td>
</tr>
</tbody>
</table>
ARTICLES WANTED

TOP PRICES PAID
For all your valves, tubes, semi conductors and ICs.
Langrex Supplies Limited
1 Mayo Road, Croydon
Surrey CR0 2QP
TEL: 0181 684 1166
FAX: 0181 684 3056

WANTED
Valves & Semiconductors
All types e.g. Discrete & IC's
Good Rates Paid
CHELMER VALVE CO.
130 New London Road
Chelmsford, Essex
Tel: 01245 265865
Fax: 01245 490064

WANTED: Gemstar Video+ Plus+ programmer model VIP-185 (preferably). Must be in good working order. Instructions not required. £01736 367100.

WANTED: Briiel & Kjaer type 26/06 or later measuring amplifier in good working condition. Manuals not necessary. All reasonable offers considered. M. Edinger, Bjaelkevangen 10B, dk-2800, Lyngby, Denmark. Contact: Email: Muskelab@image.dk. phone +45 45 874977, fax +45 45 874976.

VALVES WANTED
All types considered
Wanted list on request.
eg ECC83, KT88, PX4
Avo Valve Tester: VCM163

VALVES SUPPLIED
Ask for our free catalogue, eg 4CX250B, 4CX1000A, 6C33CB, 300B, 6156, 6550B, CV2131
CRT and valves for transmitting, industrial, audio. Many obsolete types.
Competitive prices. Helpful service.
BILLINGTON EXPORT LTD
Biltinghurst, Sussex
Tel: 01403 784961 Fax: 01403 783519
VISITORS PLEASE PHONE FOR APPOINTMENT

ARTICLES FOR SALE

RF DESIGN SERVICES
All aspects of RF hardware development considered from concept to production.
WATERBEACH ELECTRONICS
TEL: 01223 862550
FAX: 01223 440853

TEKTRONIX 7313 mainframe type oscilloscope with 7A13 dual trace module and 7853A dual time base module fitted (one slot free). Limetrol cal due to non-functional storage facility, £150. Also Testequipment SS44 single trace generator suitable for audio and TV use, £45. Also Nishio 3016 A3 and A4 photocopier enlargers/reducers, sale includes an unlisted new drum. Working but could do with a service, £95. 01963 362143 evenings and weekends.

SHORTWAVE BROADCASTERS
Monitor reception from within your target area
GOVERNMENT AGENCIES
Control radio transceivers/receivers worldwide
Radphone 20000X from www.pca.co.uk
Intel+61-2-98889777
Fax+61-2-98050253

Power Supply Design
Switched Mode PSU
Power Factor Correction Inverter
Tel/Fax: 01243 842520
E-mail: eugen_kus@cix.co.uk
Lomond Electronic Services

M&B Radio
06 Bishopsgate Street Leets L3I 4BB
Tel: 0113 2702171 Fax: 0113 2426681

WANTED: Sony model CDP-X1 CD player. This has variable speed and microphone facility. Equivalent considered. – Reading 9428986.

Wave Analysers. Marconi type 2330 and 2330A. £20 onto. Tel: 01727 859653.

PRINTED CIRCUIT BOARD SERVICE.
Phone Mr Belt for details (01673 842338).

Avo Valve Tester VCM163

Power Supply Design
Switched Mode PSU
Power Factor Correction Inverter
Tel/Fax: 01243 842520
E-mail: eugen_kus@cix.co.uk
Lomond Electronic Services

Application Engineer
Future Radio Networks
Available to CS/Eng, graduates with an interest in radio, software radio, Internet technology and Mobility.

www.staffs-wireless.com
Tel: 01889 569928
Fax: 01889 569998

Electronic design and engineering services for the new millennium:
- Embedded control
- Telecommunication products
- Data communication products
- Interface electronics
- Audio processing
- Consumer products
-蓝天 decoding
- Front end
- Specialised military and medical
- Technical documentation & translation

Tel/ fax: +44 (0) 1872 223306
E-mail: designer.sys TEM@sentient.net

POWER SUPPLY DESIGN
Switched Mode PSU
Power Factor Correction Inverter
Tel/Fax: 01243 842520
E-mail: eugen_kus@cix.co.uk
Lomond Electronic Services

PRINTED CIRCUIT BOARD SERVICE.
Phone Mr Belt for details (01673 842338).

P&P Electronics Analogue and digital design services. Tel: 0121 4022951.

Printed Circuits manufacturing service. Production from artwork out of Magazine or Printed Circuits, Single- or double-sided Boards. Quantities and one-offs. For details telephone Mr. Belt on 01673 842338.

Courses
Sponsored Postgrad Research Positions in Future Radio Networks at Trinity College Dublin
Open to CS/Eng, graduates with an interest in radio, software radio, Internet technology and Mobility.

More details from http://ntrg.cs.tcd.ie

December 1999 ELECTRONICS WORLD

1055
WiNRADiO
TAKING THE EUROPEAN RADIO MARKET BY STORM

TAKE A LOOK AT WiNRADiO's DigiTAL SUiTE SOFTWARE (AWARDED 5 STARS BY WRTH)

1. WEFWAX / HF Fax
2. Packet Radio for HF and VHF
3. Aircraft Addressing and Reporting System (ACARS)
4. Audio Oscilloscope, real time Spectrum Analyzer with calibration cursors
5. Squelch-controlled AF Recorder
6. DTMF, CTSS decode and analyse

The DSP applet provided with the WR3100i spectrum monitor ISA card (£995+VAT) allows continuous control of audio bandwidth and other signal conditioning functions.

ONLY £81.07 inc vat (requires SoundBlaster 16 compatible sound card)

WiNRADiO™ PC RECEIVERS

Available as either an internal ISA card that slips inside your PC, or as an external (portable) unit. WiNRADiO combines the power of your PC with the very latest, and greatest, synthesised receivers.

YOU CAN USE WiNRADiO™ SCANNING PC COMMUNICATION RECEIVERS FOR:

Broadcast, media monitoring, professional & amateur radio communications, scanning, spot frequency, whole spectrum monitoring, instrumentation surveillance and recording.

If you're after the ultimate receiver-in-a-PC with full DSP then smile and say, "Hello" to the new WR3100i-DSP with its hardware for real-time recording, signal conditioning and decoding applications. It's all you need.

NEW EXTERNAL MODELS

"It's software is excellent.. more versatile and less idiosyncratic than that of the Icom IC-PCR1000"

WRTH 1999 Review

"Five stars for its mechanical design"

WRTH 1999 Review

"Most Innovative Receiver"

WRTH 1998 Awards

Model Name/Number	Construction of internals	Construction of externals	Frequency range	Modes	Tuning step size	IF bandwidths	Receiver type	Scanning speed	Max on one motherboard	Dynamic range	IF shift (passband tuning)	DSP in hardware	IRQ required	Spectrum Scope	Visitune	Published software API	Internal ISA cards	External units	PCMCIA Adapter (external)	PPS NiMH 12v Battery Pack and Charger	The WiNRADiO Digital Suite
WR-1000	WR-10000i/WR-1500i-3100iDSP- Internal full length ISA cards	WR-1000e/WR-1500e - 3100e - external RS232/PCMCIA (optional)	0.5-1300 MHz	AM,SSB,CW,FM-N,FM-W	100 Hz (5 Hz BFO)	6 kHz (AM/SSB), 17 kHz (FM-N), 230 kHz (W)	PPLL-based triple-conv. superhet	200mW	6 cards	65 dB	no	no-use optional DS software	no	yes	yes	yes	yes	yes	£299 inc vat	£369 inc vat	£1169.13 inc
WR-1500	AM,LSB,USB,CW,FM-N,FM-W	2.5 kHz(SSB/CW), 9 kHz (AM)	17 kHz (FM-N), 230 kHz (W)	17 kHz (FM-N), 230 kHz (W)	17 kHz (SSB/CW), 9 kHz (AM)	YES (ISA card ONLY)															
WR-3100	AM,LSB,USB,CW,FM-N,FM-W	2.5 kHz(SSB/CW), 9 kHz (AM)	17 kHz (FM-N), 230 kHz (W)	17 kHz (FM-N), 230 kHz (W)	17 kHz (FM-N), 230 kHz (W)	YES (ISA card ONLY)															

To receive your completely free (no obligation) info pack and WiNRADiO software emulation demo disk all you have to do is get on the internet and go to our website at http://www.broadcasing.com. If you don't yet have easy access to the internet then by all means feel free to telephone us or send a fax.

Please send all your enquiries to: info@broadcasing.com or Telephone: 0800 0746 263 or +44 (0)1245 348000 - Fax: +44 (0)1245 287057

Enformatica Limited, Unit B, Chelford Court, Robjohns Road, Chelmsford, Essex, CM1 3AG, United Kingdom

E&OE WiNRADiO and Visitune are trademarks of WiNRADiO Communications - copyright Broadcasing Communications Systems

CIRCLE NO. 102 ON REPLY CARD
STILL THE WORLD’S MOST
POWERFUL PORTABLE
PROGRAMMERS?

DATAMAN - 48LV
- Plugs straight into parallel port of PC or laptop
- Programs and verifies at 2, 2.7, 3.3 & 5V
- True no-adaptor programming up to 48 pin DIL devices
- Free universal 44 pin PLCC adapter
- Built-in world standard PSU - for go-anywhere programming
- Package adaptors available for TSOP, PSOP, QFP, SOIC and PLCC
- Optional EPROM emulator

S4 GAL MODULE
- Programs wide range of 20 and 24 pin logic devices from the major GAL vendors
- Supports JEDEC files from all popular compilers

SUPPORT
- 3 year parts and labour guarantee
- Windows/DOS software included
- Free technical support for life
- Next day delivery - always in stock
- Dedicated UK supplier, established 1978

DATAMAN S4
- Programs 8 and 16 bit EPROMs, EEPROMs, PEROMs, 5 and 12V FLASH, Boot-Block FLASH, PICs, 8751 microcontrollers and more
- EPROM emulation as standard
- Rechargeable battery power for total portability
- All-in-one price includes emulation leads, AC charger, PC software, spare library ROM, user-friendly manual
- Supplied fully charged and ready to use

SURELY NOT.
SURELY SOMEONE SOMEWHERE HAS DEVELOPED A PORTABLE PROGRAMMER THAT HAS EVEN MORE FEATURES, EVEN GREATER FLEXIBILITY AND IS EVEN BETTER VALUE FOR MONEY.
ACTUALLY, NO. BUT DON’T TAKE OUR WORD FOR IT. USE THE FEATURE SUMMARY BELOW TO SEE HOW OTHER MANUFACTURERS’ PRODUCTS COMPARE.

S4 GAL MODULE
- Programs wide range of 20 and 24 pin logic devices from the major GAL vendors
- Supports JEDEC files from all popular compilers

SUPPORT
- 3 year parts and labour guarantee
- Windows/DOS software included
- Free technical support for life
- Next day delivery - always in stock
- Dedicated UK supplier, established 1978

DATAMAN S4
- Programs 8 and 16 bit EPROMs, EEPROMs, PEROMs, 5 and 12V FLASH, Boot-Block FLASH, PICs, 8751 microcontrollers and more
- EPROM emulation as standard
- Rechargeable battery power for total portability
- All-in-one price includes emulation leads, AC charger, PC software, spare library ROM, user-friendly manual
- Supplied fully charged and ready to use

MONEY-BACK
30 DAY TRIAL
If you do not agree that these truly are the most powerful portable programmers you can buy, simply return your Dataman product within 30 days for a full refund

Orders received by 4pm will normally be despatched same day.
Order today, get it tomorrow!

Dataman Programmers Ltd, Station Rd, Maiden Newton, Dorchester, Dorset, DT2 0AE, UK
Telephone +44/0 1300 320719
Fax +44/0 1300 32012
BBS +44/0 1300 321095 (24hr)
Modem V.34/FCC 32bis
Home page: http://www.dataman.com
FTP: ftp.dataman.com
Email: sales@dataman.com