USB explained
Measuring RF power
Improve your CD audio
Switch debouncing

I/O with Java
PC engineering: EasyPC review
Stereo: creating the illusion
Class A 30W from a 12V rail
THE NEW FORCE IN EDA

The brief was clear. To create a next generation CAD system for electronic engineers that used state of the art desktop integration and customisability together with unrivaled ease of use.

From the creators of Quickroute, Electronic Design Studio (EDS) is an entirely new program designed for today's EDA performance needs. Integrating schematic and PCB design into a powerful design studio, EDS lets you view and edit all the files in your projects, and through OLE2, EDS integrates with your desktop letting you drag and drop documents into and from your favorite Office applications.

EDS also includes the new CADOObjects engine with tools and flexibility that approaches the power of desktop publishing systems. With its comprehensive drawing and shaping tools, professional support for True Type fonts (even at the PCB stage), high resolution, large design size, polygon fill and shaping tools, EDS represents a genuine advance in EDA price performance. Visit our web site, or call now to find out how EDS can help you.

- State of the art multiple-document user interface offering unrivalled ease of use and customisability.
- OLE 2 support including drag and drop, allows integration with your favorite Office applications.
- Project Wizard and Project Manager make creating and navigating all the documents in your projects easy.
- New heirarchical symbol browser, makes creating, editing and managing symbols a breeze!
- High resolution (1um) and large design size (up to 2m x 2m) combined with IntelliSNAP makes metric/imperial design mixing easy!
- Unlimited schematic sheets, with full support for data busses, power rails, etc.
- CADCheck automatically synchronises schematic and PCB designs. No more capture worries!
- Unlimited Undo/Redo, print preview and a wide range of import/export options including CAD-CAM.
- Up to 32 layers can be assigned to be copper, silk, gold, mask, drill, mechanical, or annotation layers.
- New CADOObjects engine supports a wide range of graphic objects including professional True Type fonts, object shaping and property support, in-situ editing of symbols, high resolution and arbitrary rotation/scaling of objects.
- Unlimited range of pad and track sizes supported.
- Create flood fills and power planes quickly with the new polyfill tool.
- Fast fully customisable poly-algorithmic autorouter.

Electronic Design Studio £199 $319
Electronic Design Studio Cross Grade £149 $239
Electronic Design Studio LITE £49 $79

PLUS Your first double-sided Eurosize PCB produced FREE by BETA-LAYOUT

TRY AND BUY TODAY ONLINE AT www.quickroute.co.uk

Prices exclude P&P and VAT where applicable.

30 DAY MONEY BACK GUARANTEE

Quickroute Systems Ltd Regent House, Heaton Lane, Stockport, SK4 1BS. UK - Tel 0161 476 0202 - Fax 0161 476 0505
http www.quickroute.co.uk Email info@quicksys.demon.co.uk

Copyright © 1999 Quickroute Systems Ltd. All rights reserved. Prices and specifications subject to change without notice. Overseas distributors wanted!
CONTENTS

883 COMMENT
Society gets the scientists it deserves

885 NEWS
- Euro chip R&D - UK could miss out
- Wireless LAN standard for 54Mbit/s
- NV memory breakthrough
- Internet via mains venture turned off
- Biggest computer ever fails to find ET
- Silicon-germanium makes its mark
- Digital camera sees only UV light

890 UNDERSTANDING USB
USB makes connection of peripherals to a PC easy, but the protocol needed to make the bus efficient and transparent to the user is complex, as Tony Wong explains.

902 THE ROUTE TO SIMULATION V
Rod Cooper investigates Easy-PC - a PCB design package with analogue and digital analysis add-ons. This suite has modules extending its use to the microwave region.

906 CIRCUIT IDEAS
- Wideband photodiode amplifier
- Programmable Sallen and Key filter
- Power-saving, switch-mode power
- Low-current battery monitor
- Delay-length-locked loop
- Audio modulator
- Push-button analogue voltage generator
- Multi-switch stairway light
- Two op-amp oscillator - MkIII

914 INS AND OUTS OF JAVA
Accessing serial and parallel ports via Java requires no additional operating system support, as Les Hughes explains.

920 STEREO FROM ALL ANGLES
In the third article analysing stereophonic reproduction and the way that we receive and perceive sound, John Watkinson considers how the stereo illusion is created.

927 NEW PRODUCTS

934 32W CLASS A FROM A 12V RAIL
Richard Burfoot's 32W Class-A push-pull FET power amplifier is inductance loaded, achieving power efficiency of around 45%. It delivers full power when running from a car battery and a small NiCd pack.

938 THE DIRT ON SWITCHING
If you have ever connected a mechanical switch to the input of a digital gate, you will know that they don't make and break cleanly. John Wettroth looks at new solutions to the problem of switch bounce.

942 MEASURING RF POWER
Joe Carr presents a backgrounder to RF power measurement and describes a number of circuits for measuring it.

949 LOW VOLTAGE III
Looking mainly at CMOS op-amp output stages, Giovanni Stochino et al also explain why traditional current mirrors are not suitable for the new range of analogue building blocks operating from a 1.5V rail.

956 LETTERS

962 IMPROVE YOUR DIGITAL AUDIO
Richard Brice's de-jittering circuit for digital audio can be inserted between a CD player and external d-to-a converter for improved fidelity – particularly at low frequencies. It also removes copy code and can convert between formats.

December issue on sale 4 November
Over 50% Discount

EDWin NC

- Genuine, professional EDA software with no limitations! - and YOU can afford it!
- EDWin NC comes from Visionics: one of the longest established, most experienced producers of professional EDA systems, so it’s fully proven in professional work.
- Now you can have this best-selling non-commercial version of the software at less than 50% of the normal price, with no limits in its capabilities.
- It does just about everything you could want!

Schematics, simulation, PCB layout, autorouting, manufacturing outputs, EMC and Thermal Analysis.
Many more advanced features are available and it runs in Windows 3.x, 95, 98 or NT.

Where’s the catch? It’s for non-commercial use, but companies may order for evaluation purposes. Prices start from just £59.00 for the basic system!

New
Super Powerful 32 bit version for Windows 95, 98 & NT!

Don’t forget - Phone Today for Your 50% Discount!

- EDWin NC Basic: Schematics, PCB Layout, Manufacturing Outputs, Max. 100 Component Database, 500 Device Library.
- EDWin NC De Luxe 1: Basic + Professional Database and Libraries, Arizona Autorouter.
- EDWin NC De Luxe 2: De Luxe 1 + Mix-Mode Simulation, Thermal Analyser.
- EDWin NC De Luxe 3: De Luxe 2 + EDSpice Simulation, EDCoMX Spice Model Generator, EMC and Signal Integrity Analysers.

Plus Postage & Packing UK £5.00; Rest of World £10.00 (only one charge per order)

Order hotline: +44 (0)1992 570006 Fax +44 (0)1992 570220 E-mail: swift.eu@dial.pipex.com

Please Visit Our Web Site http://www.swiftdesigns.co.uk

Swift Eurotech Ltd.,
Twankhams Alley, 160 High Street,
Epping, Essex, CM16 4AQ, UK.
Society gets the scientists it deserves

A few months ago Dr Peter Cochrane, the outspoken director of technology at BT, hit out at the media for its sloppy reporting of scientific issues like mad cow disease, genetically modified foods and mobile phone health scares. His view is that inaccurate reporting of half-understood scientific facts has unnecessarily stoked the fears of the public.

“There is nothing quite like widespread ignorance fuelled by a good advertising campaign to trigger panic,” said Dr Cochrane. “Judging from the media and popular press you might draw the view that science and technology are some kind of curse inflicted upon us.”

Good on yer Peter! Men and women researchers cheered in their laboratories from Bristol to Edinburgh. The scientists who could not defend themselves against the sensationalist tabloids and broadsheet newspapers had found someone prepared to fight for their corner.

Dr Cochrane, who is himself a regular newspaper columnist, seems to have made some perfectly valid claims. However, there was one important point that he failed to hit upon. That is the crucial fact that no one in society truly believes or trusts what scientists and technologists say any more. A healthy scepticism about all things scientific or technical is to be welcomed – even cherished. After all wasn’t it scientists who once argued that the Earth was flat and claimed that there was life on Mars?

But it is possible that this scepticism has spread into something altogether more serious. Science has an image problem and its practitioners are in danger of being bracketed along with priests and politicians as people we cannot wholly trust.

Society no longer trusts what our white-coated scientists tell it. This is unfortunate because science is particularly big news at the moment. Concern over the impact of the Millennium Bug, fears over the consequences of genetically modified foods and, “should I or shouldn’t I have this mobile phone so close to my head?” are big three issues making the headlines. You can forget clever inventions like optical fibre or the microprocessor. It is on the reporting and eventual outcome of these three issues that most people in the street judge our scientists. And many unfortunately are seen as laughing stocks.

Don’t take my word for it. Consider the British university being funded to carry a scientific investigation into the origin of the crop circles of Wiltshire.

Scientists are in danger of being put in glass boxes and having purple guuge poured over them on prime-time TV. For those with a passion for engineering innovation I must remind you that, Heinz Wolf’s Egg Race has been replaced with Craig Charles and Robot War.

Things have got more powerful and much more violent, but the science behind the TV programmes is being dumbed down and with it falls the credibility of the scientists. Dr Cochrane puts part of the blame with the scientists themselves. Seeking kudos for findings before they have been rigorously proved. “The scientific community, for reasons that escape me, has seen fit to break ranks, abandon the scientific principal and go public on the leanest of evidence,” said Cochrane. “If an experiment cannot be repeated by at least two independent groups across the planet, then going public is plain irresponsible.”

But that is just part of the cultural problem. Everyone wants to be a media star for five minutes and perhaps scientists are no different from anybody else.

Whether it is revelations about government’s genetically modified Soya crop research or observations about the heating effects of mobile phones, it is the scientific information that is the valuable commodity. If a scientist can get to the market first there is no saying what rewards may be waiting for them.

The very fact that a renowned scientist like Dr Cochrane felt strongly enough about sensationalism and misrepresentation in the media to...
ULTIboard, a leading PC-based Windows 95/98/NT design system, is supplied worldwide via a network of offices & distributors. ULTIboard's success with professional designers is primarily thanks to its superior interactive functionality.

REAL TIME Placement Help, REAL TIME Design Rule Check, Reroute-While-Move and Trace shoving, are all features which will dramatically reduce your design time.

Integration with ULTicap guarantees smooth data flow between Schematic and PCB editing. ULTIboard's 1 nanometre resolution ensures that rounding errors belong to the past.

Another of ULTImate Technology's strengths is our flexible growth path. Users may start with a low cost ULTIboard Challenger and grow, step by step, to advanced Autorouting & Placement, Analog/Digital Simulation. ULTIboard offers the best price/performance!

ULTIboard's success with professional designers is primarily thanks to its superior interactive functionality.

Regular User Meetings and Surveys result in 2 major Updates per year.

SPECIAL OFFER

Order our Challenger 700, a full-feature design system with 700 pin capacity, consisting of ULTicap schematic capture, ULTIboard PCB Design and ULTIroute GXR Autorouter (designed to route boards with thru-hole components) for the price of £ 249 (until 30.11.99). With the system you also get an evaluation copy of our high-end ULTIroute GT Autorouting and Autorouting (targeted at the most complex SMT designs). This way, you know exactly what you will buy, when you decide to upgrade later (based upon the price difference).

TOLL-FREE INTERNATIONAL PHONE: 0-800-ULTIMATE (00-800-85-846283)

Your design ideas are quickly and accurately designed. ULTIboard gives you 100% design integrity; your schematic design is converted to a Windows-compatible format. ULTIcap's auto snap to pin and gate technology automatically updates your ULTIcap schematic editor. ULTIboard's Auto junction features ensure your layout is correct; automatic via minimisation reduces production costs.

ULTIboard's Autorouter allows you to control which parts of your board are autorouted, either selected nets, or a user defined netlist. ULTIboard's backannotation automatically updates your ULTIcap schematic with any pin and gate assignments or component renumbering.

Your move

YOU want the best placement

YOU use SMD Technology

YOU want 100% design integrity

YOU want 100% automatic routing

YOU don't want Autorouters

ULTIboard's move

In addition to dynamic rats nets, force vectors and density histograms, ULTIboard's Direct Reconnect instantly displays the shortest possible connections. Automatic Gate- & Pin Swap with full Backannotation guarantee the best. Or... select our Auto-Placement option!

ULTIboard understands the different soldering techniques that apply to SMT. Flip your SMD to the other side of the board and ULTIboard automatically applies the pad definitions for either wave or reflow soldering.

ULTIroute GXR Ripup & Retry Autorouter is able to remove connections that cause a block and automatically reroutes the removed connections. The user can define the Autorouter parameters. Grid-based or gridless (shape based): the choice is yours!

ULTIboard's acknowledged powerful interactive features such as Reroute-While-Move and Trace shoving under REAL-Time DRC guarantee flawless designs in the shortest time. After all, this was an important factor to make ULTIboard Europe's #1 choice for Professional Designers!
UPDATE

Euro chip R&D - UK could miss out

The UK could lose out on an opportunity to play a role in the next phase of collaborative European microelectronics R&D unless the government gets its act together quickly.

This is the stark warning from a leading industry spokesman.

"If a country is not acknowledging that IT is the driving force of their economies they will condemn themselves to a low ranking in the economic league," said Dr Jürgen Knorr, chairman of the European Microelectronics Development for European Applications programme, known as MEDEA. "If you’re not participating, you’re not going to participate in wealth and job creation."

The programme is gearing up for MEDEA Phase-2, with Austria, Belgium, Finland, France, Germany, Ireland, Italy, Holland, Sweden and Switzerland taking part. The UK’s financial commitment is zero.

For Tony Blair’s government to pay the lip service it does to the benefits of high-tech, and then take no part in pan-European R&D is a surprise to many Europeans.

The value of high-tech consortia has been well proven with Europe’s collaborations on GSM and Jessi (MEDEA’s predecessor programme). "Jessi closed the technology gap and MEDEA realised that in products," said Knorr. "Phase-2 keeps Europe involved with the revolution that started with the invention of the transistor and became the IT industry."

Phase-2 will concentrate on process technologies and design, standardising software tools and interfaces, and specific applications such as advanced mobile voice and advanced digital audio and video systems.

David Manners
Electronics Weekly

New wireless LAN standard supports 54Mbit/s

A wireless LAN standard has been launched this week that will support data rates up to 54Mbit/s.

The HiperLAN 2 Global Forum — comprising Nokia, Ericsson, Telia, Bosch, Texas Instruments and Dell — is promoting the technology as a global standard for in-building and metropolitan applications.

HiperLAN 2 works at 5GHz, a frequency dedicated to wireless LANs globally, and features a radio interface with a guaranteed 'quality of service' for given data types such as video.

It will also work with the UMTS third-generation mobile phone standard. "That really gives you ultimate mobility," said Vesa Wallén, v-p of marketing for Nokia’s wireless business communications. Offering data rates from 9 to 54Mbit/s, HiperLAN 2 will adapt its data rate depending on channel conditions.

Wallén expects HiperLAN 2 to eventually be used in homes. "All wireless LANs and Bluetooth work on the 2.4GHz frequency," said Wallén. "Once we see the massive deployment of Bluetooth enabled devices we will run out of bandwidth — not today but soon."

Already specification work is under way to extend HomeRF, the wireless home networking standard. HomeRF offers 1.6Mbit/s links. According to Benno Ritter, wireless connectivity product marketing manager at Philips Semiconductors, HomeRF multimedia extensions promise data rates up to 60Mbit/s. The underlying technology for HomeRF multimedia is still to be decided and Nokia’s Wallén believes it could use HiperLAN 2.

The specification will be completed by November with products expected in late 2001.

Roy Rubenstein
Electronics Weekly

NV memory smaller than DRAM, fast as SRAM

An innovative memory replacing both DRAM and flash could be in production within five years, claim its inventors at Hitachi’s Cambridge Labs. The PLEDM, or phase-state low electron-number drive memory is being developed by Hitachi’s central research labs in Japan.

"We expect, or hope for, commercial success around the year 2005," said Dr Hiroshi Mizuta, head of the Cambridge research centre.

PLEDM seems to be the perfect technology — smaller than DRAM, non-volatile like flash, and can be made as fast as SRAM.

"Its area is half that of DRAM and is smaller vertically and simpler to manufacture," said Dr David Williams, senior researcher at the Hitachi Cambridge Labs.

The devices are made using standard CMOS processes and could easily be integrated with logic.

Since handing the PLEDM over to Japan, the researchers in Cambridge have been looking further at single electron memory and logic.

Initial research with micrometre-scale devices worked at close to absolute zero. Now at tens of nanometres, test circuits are working in liquid nitrogen and some even at room temperature.

However, these device are not expected to become commercially viable until at least the year 2015.

Richard Ball

DRAM beater? Hitachi’s PLED memory is based on a standard MOSFET. On top of the gate, a second vertical transistor is fabricated which writes, erases and stores the state of the cell. Unlike DRAM it needs no large storage capacitor.

November 1999 ELECTRONICS WORLD

885
Internet via mains venture turned off

Nortel Networks and United Utilities have decided to disband NOR.WEB, their jointly-owned Internet-over-the-mains company.

"The decision has been made to close the joint venture even though the technology is robust and well proven," said Kate Thomson, NOR.WEB's director of marketing programmes.

Launched two years ago, the company developed its digital powerline technology which used electricity substations to modulate data onto the mains. This provided homes and businesses connected to the substation with 1Mbit/s links for Internet access.

When the company first launched the technology it announced services would start a year ago. However, deployment of the technology suffered a year's delay.

The result of the delay has been increased competition from broadband technologies such as digital subscriber line (DSL) and cable modems, and ultimately the venture's closure.

"The projected volumes for digital powerline, with the roll out of xDSL and cable, are not significant enough," explained Thomson.

No redundancies are expected - the 50 NOR.WEB staff will be redeployed by the two parent companies.

There are also no plans to use the technology in other applications.

"The two companies still own the patents but there are no current plans at present," said Thomson.

Roy Rubenstein

New figures say Asian crisis is over

Further indication that the Asia crisis is over is provided by the latest figures from the Semiconductor Industry Association (SIA). Worldwide semiconductor sales in July were $11.55bn, up 19.3 per cent from the same period last year, with the upturn being led by the Asia Pacific market - up nearly 30 per cent.

"July's global sales continued the robust growth that began in mid-1998," said George Scalise, SIA's president.

The Americas market grew 18 per cent over the last year whereas European sales were up a modest 6.3 per cent.

The SIA cited strong PC demand which is driving microprocessor sales as well as the double-digit growth of DSP and flash memory as a result of the burgeoning communications market.

Welcome to the plasma dome... NEC has won a contract to supply the Millennium Dome with plasma TV screens and LCD projectors. The New Millennium Experience Company (NMEC) is expected to need up to 300 42in. plasma displays and 100 LCD projectors.

Screen-saver software designed to search for extra-terrestrial intelligence has become the world's biggest supercomputer.

Over a million users around the world have downloaded the SETI@home software which searches radio telescope data while the user's computer is idle.

Launched on May 17 this year, SETI@home has become the largest computation in history involving users in 224 countries. On August 14, Ed Bradburn from the UK became the millionth user of the screen-saver software.

Since May, over 54,000 years of computer time has been logged on the project, a number rising by 600 years per day.

Unfortunately, despite the massive resources being thrown at the project, not a shred of evidence has yet appeared to show that ET exists.

- The Arecibo Observatory in Puerto Rico, pictured left, is the world's largest radio telescope. It provides data for SETI@home - the world's biggest computer project.
The HS801: the first 100 Mega samples per second measuring instrument that consists of a MOST (Multimeter, Oscilloscope, Spectrum analyzer and Transient recorder) and an AWG (Arbitrary waveform generator). This new MOST portable and compact measuring instrument can solve almost every measurement problem. With the integrated AWG you can generate every signal you want.

The versatile software has a user-defined toolbar with which over 50 instrument settings quick and easy can be accessed. An intelligent auto setup allows the inexperienced user to perform measurements immediately. Through the use of a setting file, the user has the possibility to save an instrument setup and recall it at a later moment. The setup time of the instrument is hereby reduced to a minimum.

When a quick indication of the input signal is required, a simple click on the auto setup button will immediately give a good overview of the signal. The auto setup function ensures a proper setup of the time base, the trigger levels and the input sensitivities.

The sophisticated cursor read outs have 21 possible read outs. Besides the usual read outs, like voltage and time, also quantities like rise time and frequency are displayed.

Measured signals and instrument settings can be saved on disk. This enables the creation of a library of measured signals. Text balloons can be added to a signal, for special comments. The (colour) print outs can be supplied with three common text lines (e.g. company info) and three lines with measurement specific information.

The HS801 has an 8 bit resolution and a maximum sampling speed of 100 MHz. The input range is 0.1 volt full scale to 80 volt full scale. The record length is 32K/64K samples. The AWG has a 10 bit resolution and a sample speed of 25 MHz. The HS801 is connected to the parallel printer port of a computer.

The minimum system requirement is a PC with a 486 processor and 8 Mbyte RAM available. The software runs in Windows 3.xx / 95 / 98 or Windows NT and DOS 3.3 or higher.

TiePie engineering (UK), 28 Stephenson Road, Industrial Estate, St. Ives, Cambridgeshire, PE17 4WJ, UK
Tel: 01480-460028; Fax: 01480-460340

TiePie engineering (NL), Koperslagersstraat 37, 8601 WL SNEEK The Netherlands
Tel: +31 515 415 416; Fax: +31 515 418 819
Web: http://www.tiepie.nl
Silicon-germanium starts to make its mark

Until recently, IBM was the only volume semiconductor manufacturer to take silicon germanium (SiGe) seriously. Now, Motorola, Lucent Technologies and Infineon Technologies are among those companies following IBM’s lead on SiGe.

In recent weeks, two more alliances are a clear indication that SiGe technology is not just about producing transistors with transition frequencies of 75GHz. The technology is set to become the basis of a whole new generation of low-power communications chip sets for both wireless and broadband networking applications.

Atmel's Temic subsidiary, itself one of the first companies to produce commercial SiGe parts, has struck development and manufacturing alliances with RF component specialists M/A-Com, part of the AMP group, and Anadigics. The companies say that the alliances will produce new SiGe devices which will target both wired and wireless infrastructure especially LANs and the local loop.

What is significant about these deals is that it brings together established RF components specialists with Temic’s proven SiGe process technology. As Dr Charles Huang, chief technical officer for Anadigics describes the move: "Having access to Temic Semiconductors’ SiGe facility and technology provides us with an opportunity to complement our existing gallium arsenide (GaAs) and silicon programmes.”

Temic has already introduced RF components for the DECT cordless phone and GSM mobile telephone standards. Like IBM, it has been in volume production of SiGe parts since the start of the year.

But these alliances will now give Temic the specialist RF IC design capability it will need to capitalise on the emerging market for low-power RF SiGe components.

SiGe transistors can be integrated into devices with standard CMOS components but bring faster speed and lower power consumption. And it is the lower power consumption rather than high-frequency performance which is the key to this latest interest in SiGe technology.

Ask Dr Neil Morris, director of advanced technology development at Philips Semiconductors Albuquerque if SiGe is needed for IC design in the two to 4GHz range. "The answer is no," says Morris, "we’ve already shown that."

He is referring to the company’s QUIC3 0.5µm silicon BiCMOS process, which is being used for a range of RF communications devices including a digital cordless phone (DECT) transceiver and a family of frequency synthesisers operating at up to 3.7GHz.

Philips also has considerable SiGe expertise, but it still believes that it is not cost competitive with its 0.5µm BiCMOS process in the two to 4GHz band.

It is fine if you have the silicon process capability of a company like Philips to, “push the silicon envelope” to the limit, as Morris describes it. But there are sufficient big name semiconductor leaders going after SiGe to make one wonder whether there is something else in this new technology. After all neither IBM or Motorola are exactly novices when it comes to pushing silicon technology to the practical limits.

It seems that it is SiGe’s inherently lower power consumption, rather than high-frequency silicon process technologies, which is providing the trigger for this latest push for the technology.

Like most big producers, Infineon is using 0.25µm CMOS process technology for its mixed-signal parts. That produces transistors with 2GHz transition frequencies, says Danny Thomas, a marketing manager at Infineon. "With the silicon-germanium process, the fT is 75GHz.”

But if these silicon processes are more than adequate for today’s 900MHz and 1.8GHz mobile phones and inherently cheaper, why use SiGe? “We use SiGe for reduced current consumption,” answered Thomas, but not necessarily for its faster operation.

So it is the latest moves to make all electronic products from PCs to digital TVs battery-power and portable that probably lies behind SiGe’s new trendy status. Perhaps, unlike poor old GaAs, SiGe is an alternative process technology that is about to make its mark.

New digital camera sees only ultraviolet light

A team of scientists from North Carolina State University, the Night Vision Laboratory and the Honeywell Technology Center have demonstrated a digital camera that senses ultraviolet light.

The camera is destined for use in military night vision systems and environmental monitoring, the developers believe. Objects that emit UV include rockets, soldering and welding equipment and astronomical objects such as stars.

In order to sense only UV light, the team fabricated an array of p-i-n photodiodes using aluminium gallium nitride (AlGaN). So far the researchers have managed to fabricate a 32 by 32 array.

The array starts life as a sapphire wafer - transparent to UV. Metal organic vapour phase epitaxy is used to deposit the n-layer of AlGaN, followed by the undoped GaN and finally the p-type GaN.

The array is bonded to a standard CMOS chip containing the control and interface circuitry.

The array is sensitive to light between 320 to 365nm wavelengths, making it blind to visible light an infra-red.
PROTEUS

including **NEW SIMULATOR**

PRO SPICE 3F5

Simulation
- Berkeley SPICE3F5 analogue simulation kernel.
- True mixed mode simulation.
- New analysis types include multi-plot sweeps, transfer curves, distortion and impedance plots.
- Active Components: Switches, Pots etc.
- Over 1000 new library parts with SPICE models.
- Greater ease of use.

"a constant high level of capability throughout"

EWW CAD Review Round Up September 1998

Schematic Capture
- Produces attractive schematics like in the magazines.
- Nettlist, Parts List & ERC reports.
- Hierarchical Design.
- Full support for buses including bus pins.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and PCB design.

PCB Design
- Automatic Component Placement.
- Rip-Up & Retry Autorouter with tidy pass.
- Pinswap/Gateswap Optimizer & Back-Annotation.
- 32 bit high resolution database.
- Full DRC and Connectivity Checking.
- Shape based gridless power planes.
- Gerber and DXF Import capability.

Available in 5 levels - prices from £295 to £1625 + VAT. Call now for further information & upgrade prices.

"the BEST all-round PROGRAM"

EWW CAD Review Round Up September 1998

SHAREWARE VERSIONS
NOW WITH INTERACTIVE CIRCUIT ANIMATION
DOWNLOAD YOUR COPY NOW
http://www.labcenter.co.uk

"the BEST all-round PROGRAM"

EWW CAD Review Round Up September 1998

Labcenter Electronics

Write, phone or fax for your free demo disk, or ask about our full evaluation kit.
Tel: 01756 733440. Fax: 01756 732857. EMAIL: info@labcenter.co.uk
53-55 Main St, Grassington. BD23 5AA. WWW: http://www.labcenter.co.uk

Fully interactive demo versions available for download from our WWW site. Call for educational, multi-user and dealer pricing - new dealers always wanted. Prices exclude VAT and delivery. All manufacturer's trademarks acknowledged.
Devised to simplify the job of connecting peripherals to a PC, the increasingly popular universal serial bus communicates data at up to 12Mbit/s over two of its four wires. Simple connection, yes, but the protocol needed to make the bus efficient and transparent to the PC user is complex, as Tony Wong explains.

Universal serial bus, or USB, is recommended for the new generation of IBM-compatible PCs in the 'PC 98 System Design Guide'. It is also supported by Windows 98.

This bus provides an easier way of connecting a PC to a variety of peripherals via a serial bus. The universal serial bus is a four-wire cable of which there are two wires for power and ground — namely Vbus and Gnd — and two for data transfer, D+ and D-.

Up to 126 devices can be simultaneously connected to a PC via USB without the fear of running out of PC i/o addresses or having conflicts on IRQs and DMA channels used. The bus can also reduce cost and PCB space by removing the need for traditional attachment ports such as keyboard connector and serial ports.

Other benefits of USB are its low cost and that it supports data transfer at up to 12Mbit/s in 'full-speed mode'. This is described in USB specification 1.0/1.1. At this speed, it is possible to transfer data such as voice and compressed video signals in real time.

What is an 'end point'? An end-point, or device end-point, as used in USB terminology, is not the easiest of concepts to understand. In the specifications, an 'end-point', or EP, is described as, "A uniquely identifiable portion of a USB device that is the source or sink of information in a communication flow between the host and device." Physically, an end-point can be considered as a memory area for data flow.

Take, for example, a CD-ROM drive with USB interface. The drive can be accessed by the file manager tool to read a data file from the CD, but it can also be used as to play audio CDs. As a result, you need to use two end-points to handle these two functions. One end-point is configured as 'bulk transfer', for transferring data files, while the other end-point is configured as 'ISO transfer' for real-time audio data transfer.

At the end of 1999, the USB 2.0 specification will be officially released and will move the maximum transfer rate to between 120 and 240Mbit/s. However, behind of these features, there is a need for sophisticated USB embedded controllers to handle the unique protocol and algorithm for the data communication activities on the bus.

In this article, I present a summary of the USB protocol format based on USB 1.1.

As an example of how the bus is implemented, I describe the Infineon Technologies C541U embedded USB microcontroller. Infineon Technologies was formerly Siemens Microelectronics by the way.
USB terminology

Descriptor
A Descriptor carries the information used for identifying the device, for example, number of endpoints, or EPs, in the device and the end-point type for each. This information is usually accessed by the host from the device.

Function
This is a USB device that provides the host with a capability, such as an ISDN connection.

IN
A packet-identification, or PID, type used to perform the ‘in’ transaction. Data packets flow from device to host.

HID
Human Interface Devices class. Devices are used by humans to control the operation of computer systems. Examples are keyboards, pointing devices and bar-code readers.

Host
A computer system with the installed host controller driver is a host. This includes the hardware USB root port, which may be a PC system running under the Windows 98 operating system for example.

Host controller
The host’s USB interface.

Hub
A full-speed USB device that allows additional connections to the USB bus is know as a hub.

OUT
A packet-identification, or PID, type used to perform the ‘out’ transaction. Data packets flow from host to device.

PID
Packet identification – a field in a USB packet that indicates the types of packet. Examples are SOF, IN and ACK.

SETUP
A packet identification, or PID, command type used to perform the ‘set-up’ transaction. Data packets flow from host to device. One use of SETUP is to allocate an address to a device.

SIE
Serial Interface Engine is a hardware circuit and a part of USB module in silicon. It performs USB data processing tasks.

SOF
Start-of-Frame. SOF is a packet-identification type and also the first transaction of a frame. It allows end points to synchronise their internal clock to the host.

USB peripheral/USB device
A device that performs an USB function such as a hub, a USB keyboard, or USB speakers.

USB peripheral silicon
A USB embedded silicon chip.

Table: Some dedicated USB chips and microcontrollers with USB support

<table>
<thead>
<tr>
<th>Product Type</th>
<th>NetChip Technology</th>
<th>Motorola</th>
<th>Infineon Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-bit controller with USB</td>
<td>8-bit controller with USB</td>
<td>8-bit controller with USB</td>
<td>8-bit controller with USB</td>
</tr>
<tr>
<td>Part number</td>
<td>NE12888</td>
<td>MC68HC08K112</td>
<td>CY8C4113</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>EP transfers</td>
<td>Up to 64 bytes for data EPs</td>
<td>Up to 64 bytes for data EPs</td>
<td>Up to 64 bytes for data EPs</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
<tr>
<td>USB speed</td>
<td>Full</td>
<td>Full</td>
<td>Full</td>
</tr>
<tr>
<td>USB buffer</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
<td>8 bytes for control EP</td>
</tr>
<tr>
<td>Clock</td>
<td>16MHz</td>
<td>6MHz</td>
<td>6MHz</td>
</tr>
</tbody>
</table>
This device provides a simple solution to the USB peripheral implementation. Its hardware can handle the USB protocol transmissions automatically.USB system architecture
There are three basic hardware elements in the USB system architecture. They are host, hubs and devices, Fig. 1.

The connection uses the 'tiered-star' topology and can be connected up to five levels – i.e. have five hub tiers. Normally, the host controller and root hub are implemented via a chip set on the PC motherboard.
The host controller controls transactions over the USB system. There are two types of host controller. They are the 'open-host controller interface', or OHCI, and the 'universal-host controller interface', which is shortened to UHCI.

From an application point of view, the OHCI can support multiple transactions for a particular device end point, or EP, within a 1ms 'frame'. There's more on this later. On the other hand, the universal host controller supports one transaction for a particular end point in each frame. Software for USB devices should be able to handle transactions with either of these controllers.

A root hub acts as a port for attaching the USB device, Fig. 1. A USB hub allows multiple connections to the USB system and detects when devices are attached to or detached from the system. It also forwards the bus traffic between its upstream port and downstream ports.

Each USB device is allocated end-point numbers. End point number EPO is reserved for the device's configuration by the host. It provides a point of communication to the host by means of EP descriptors.

End-point descriptors communicate device attributes and characteristics to the host. According to this information, the host configures the device and locates the USB client software driver.

Other device end points can be considered as a function of the device and can be separately configured for one of the different transfer types to communicate with the host.

For example, a keyboard application, which comes under the USB standard's 'human interface device, or HID, class uses EPO for the device configuration and may use EP1 as an interrupt transfer to send the key-scanned data to the host. More details on the EP descriptors are discussed in references 3 and 4.

USB supports four types of data transfer:
- Control transfer – transfer request commands from host to device.
- Interrupt transfer – data transfer from an interrupt driven device to host.
- Bulk transfer – transfer for a large amount of data.
- Isochronous transfer – for applications requiring constant data transfer rate.

Implementing USB
Commonly, a USB embedded microcontroller is used to implement the USB functions. There are also other types of USB interface chip to suit different applications.

Table 1 shows some of the examples of USB chip. Only the USB related features are highlighted here; for details of other on-chip features and updated technical specification, refer to the corresponding company's product home page on the web site.

In the Table, the first two columns show two low-speed USB controllers with different clock frequencies and buffer sizes. The third column shows a full-speed chip, and the next one is a full/low-speed chip. The fifth column shows a USB interface chip without an integral controller and the last one is a controller with hub function.

Generally, a USB chip consists of a USB module in which the serial interface engine, or SIE, plays an important role in the USB activities. It performs all the front-end data processing functions such as NRZI and NRZ conversion, token packet decoding, bit stripping and bit stuffing, and cyclic
Low cost Boundary Element Method (BEM) Field Solver

Polar Instruments Ltd
Garenne Park, St. Sampson,
Guernsey, Channel Islands
GY2 4AF, UK.
Tel: +44 (0)1481 253081
Fax: +44 (0)1481 252476
Email: mail@polar.co.uk

Gus the Channel Islands.
Polar Instruments Ltd
GY2 4AF, UK.

CIRCLE NO.108 ON REPLY CARD

Why Settle for AM when you can afford High Quality FM!

Transmitters & Transceivers

418, 433, 868 & 916MHz
Prices from £5.00
Made in UK

We can offer the lowest prices on high quality FM Radio Data Modules both in the UK and overseas!
Our qualified engineers offer full technical support from simple advice to system design & integration.

For a free catalogue, wall chart or quotation just e-mail sales@radtec.demon.co.uk, alternatively fax or telephone quoting ref: WWRMI

Telephone: +44(0)1992 576107
Fax: +44(0)1992 561994
http://www.radio-tech.co.uk

CIRCLE NO.109 ON REPLY CARD

CROWNHILL ASSOCIATES LIMITED
The Old Bakery, New Barns Road,
Ely, Cambs. CB4 7PW
Tel: +44 (0)1353 666709 Fax: +44 (0)1353 666710

Low cost professional quality Smart Card Systems

CHIPDRIVE

The intelligent programmer for Smart Cards using the International Standard T=0 or T=1 protocols also Memory and Secure Memory using PC, 2-wire & 3-wire interfaces. From April 1999 all ChipDrivers are supplied with software to read and write in most popular secure smart cards, inc. GSM, PAY PHONE and ACCESS CONTROL cards. Drivers are available for Apple Macintosh, Linux, Unix, Solaris, Microsoft PC/SC and of course WINDOWS 95/98 and NT. Supplied with CARDSEVER API for easy development of SmartCard Applications using Visual Basic, Delphi or C++.

CHIPDRIVE INTERN £49.95 + P&P £7.50
Exclusive of VAT

CHIPDRIVE ExTERN £49.95 + P&P £7.50
Exclusive of VAT

CHIPDRIVE Micro £39.95 + P&P £7.50
Exclusive of VAT

All ChipDrivers are supplied with a Windows API and full documentation. ChipDrivers are CE Compliant ChipDrivers conform to ISO/IEC 7816, T=0 or T=1 (≥ 3.579MHz), RS232 @ 9600-11500 bps, Internal Supply/Nil-M. Under normal conditions power is derived from the host Serial Port. Operation is simple, full telephone and email support is provided for Windows developers.

APP-LOCK

Protect any Windows applications from未经授权 access under Win 95/98/NT
Inclusive of Chipdrive Intern, Smart Card and Software.
£79.95 + P&P £5 exclusive of VAT

CHIPDRIVE Developer Kit

CDK consists of: CD ROM containing cardserver.dll. Applications and Source code examples. CHIPDRIVE micro a selection of Smart Cards offering protected memory, processor and memory cards. Typical uses are Control access, Pay Phone cards and Data transport. The cards are supplied along with data sheets and programming data for use with cardserver.dll. A useful application with source codes shows how the CHIPDRIVE can be used to identify any smart card inserted. Full technical support is included. Applications produced with the developer kit will operate under Windows 3.1/95/NT and are compatible with the whole CHIPDRIVE family. The CDK uses easy to use 16 bit or 32 bit DLLs with just one function call to the 'CardServer to operate under Windows 3.11/95/NT and are compatible with the whole CHIPDRIVE family. The CDK uses easy to use 16 bit or 32 bit DLLs with just one function call to the 'CardServer' to identify the card or carry out any instruction. Cardserver is a powerful Background task which relieves the application programmer from device and card administration. Featuring automatic protocol and card type detection. Allowing several applications to access one terminal dependent only on the type of card inserted.

£69.95 + P&P £5 Exclusive of VAT

Supplied with CHIPDRIVE micro, Smart Cards and Source Code.
Full Tech Support via Email.

http://www.towitoko.co.uk
http://www.crownhill.co.uk
http://www.edsim2000.com

£149.95

13.5Mhz technology

Contactless Smart Card Development system

Access Control, Identification, Payment, Loyalty, Transport......

EasyIT the development tool for systems integrators and reader manufacturers, providing access to contactless Smart Card technology at an affordable price and with less than one week's integration effort.

EasyIT Integration system contains: 10 x Contactless Smart Cards, 10 x Contactless Reader Writer, 1 x 3.579MHz antenna with connector cable, Comprehensive technical documentation and a CD ROM containing all the necessary software drivers including an easy to follow integration users guide with detailed examples.

Communication distance of up to 10cm, data exchange at 106 Kbits per second

EasyIT Contactless Smart Card Reader Writer can read an existing Contact Card socket, pin for pin it may be connected directly to a PC or an embedded system.

Detailed documentation enables fast integration to existing systems, allowing contactless cards to be used with most existing applications.

Fastest integration time to an existing application to date........ 3 days!!!

CIRCLE NO.110 ON REPLY CARD
Transaction 1

Transaction 2

Transaction n

Frame length = 1 ms

Table 2: Packet transmission between host and device in full-speed mode.

<table>
<thead>
<tr>
<th>Start of frame</th>
<th>Sync</th>
<th>SOF</th>
<th>Frame #</th>
<th>CRC</th>
<th>EOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Sync</td>
<td>0x29</td>
<td>0x01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Sync</td>
<td>0x05</td>
<td>0x03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Setup</td>
<td>0x00</td>
<td>0x01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Data</td>
<td>0x00</td>
<td>0x01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Ack</td>
<td>0x01</td>
<td>0x01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Sync</td>
<td>0x04</td>
<td>0x02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Addr</td>
<td>0x00</td>
<td>0x01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Data</td>
<td>0x00</td>
<td>0x01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Ack</td>
<td>0x01</td>
<td>0x01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>Sync</td>
<td>0x05</td>
<td>0x03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>Sync</td>
<td>0x05</td>
<td>0x03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Out</td>
<td>0x07</td>
<td>0x01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>Data</td>
<td>0x02</td>
<td>0x01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>Ack</td>
<td>0x01</td>
<td>0x01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>Sync</td>
<td>0x05</td>
<td>0x03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>Reset</td>
<td>Start of Reset</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For full-speed mode, each transaction starts with an SOF packet.

For all transactions, the 'in' token should be sent to the device every 1 ms.

USB communication structure

Communication over the universal serial bus is performed with a series of frames. Within a frame, which is 1 ms long, there can be a number of transactions.

The number of transactions depends on the number of attached USB devices and how often the host needs to communicate with these devices. A transaction can be viewed as a transfer of data. It consists of three phases.

Figure 3 shows the elements forming a packet phase. A token-packet phase comprises commands sent from host to a device and has four possible packet identifiers, known as PIDs. They are SOF, IN, OUT, and SETUP.

Data is transferred during the data-packet phase. Two PID types are available for this, namely DATA0 and DATA1.

For each transaction, the host sets an address number to the device using the 'set descriptor' command transaction and a 'setup' token. The 'setup' phase for the device to send back data information. The device only performs the 'status' stage to acknowledge the host by sending a zero-length data packet.

In addition to the two control-transfer formats, USB provides another data transfer format that is used to perform interrupt, ISO, and bulk transfer types.

Figure 4 shows the data transfer procedure with two examples, namely 'interrupt' and 'ISO' transfers. For the interrupt transfer, the host keeps polling the bus by sending out 'in' tokens to the particular device.

Under the USB communication protocol, two kinds of control transfer can be performed. Figure 4 shows the sequence of the communication for a three-stage control transfer involving a 'get descriptor' command transaction and a 'setup' token. Three-stage control transfer consists of a setup stage, a data stage and a status stage. It is mainly performed by the host to get information from the device.

Figure 5 shows two-stage control transfer. Such transfers are used by the host to assign data to the device. For example, the host sets an address number to the device using the 'set descriptor' command as shown. Note that there is no data stage for the device to send back data information. The device only performs the 'status' stage to acknowledge the host by sending a zero-length data packet.

In addition to the two control-transfer formats, USB provides another data transfer format that is used to perform interrupt, ISO, and bulk transfer types.

Figure 6 shows the data transfer procedure with two examples, namely 'interrupt' and 'ISO' transfers. For the interrupt transfer, the host keeps polling the bus by sending out 'in' tokens to the particular device.

The time interval for polling end-point for data transfer is user-defined between 1 and 255 ms. If the device has data to send, it will transmit the data packets to the host following the 'in' token. If not, it will send an NAK response, which represents 'negative acknowledge'.

For an ISO transfer, which involves real-time data transmission, the 'in' token should be sent to the device every 1 ms.

In order to illustrate the protocol involved in a real application more clearly, we used a monitor system called CATC USB Inspector. It was set up to capture data transfers between a UHCI host and C541U device controller.

Figure 7 shows the test set-ups involved. The host was running Windows 98 and the device chip contained source code with USB keyboard function.

Test set-up 'A' captures the USB traffic between host and device directly. A full-speed hub and low-speed device are included in the test set-up 'B'. This second set-up can monitor the combined transmissions of full and low-speed packets on the bus at the same time.
The Electromail CD-ROM Catalogue contains more than 100,000 technical products, all available from stock for same or next day despatch. All you have to do is select your choice from the CD-ROM and phone your order through to our 24 hour orderline - any day of the week.

Our sister company, RS Components, is the U.K.'s largest distributor of electronic, electrical and mechanical products to technical professionals. The Electromail CD-ROM makes this extensive product range available to technical hobbyists and small businesses, and there's a comprehensive library of product datasheets already on the CD-ROM which contain detailed information on the majority of our product range. There are also Technical Help lines, to answer more specific enquiries, relating to your actual intended application.

At just £3.99, the Electromail CD-ROM gives you everything at your fingertips, with the service back-up which is second to none.

HOW TO ORDER

Tel: 01536 204555 Fax: 01536 405555

Please quote stock number 332-3996 when ordering, and have your credit card information available.

CIRCLE NO.112 ON REPLY CARD

Get on board the Easy-PC For Windows revolution!!

Power-Packed PCB Layout for Windows '95/98/NT at Computer Store Prices!!

- True 32 bit Windows application
- Schematic and PCB Design editors as standard
- Design in Imperial, Metric or mixed units (no rounding errors)
- Drawing area up to 1m x 1m (39" by 39")
- Design precision down to 10^-6 Micron (0.000001mm)
- Rotation to 1/10th degree
- Intelligent Cut, Copy and Paste across designs
- Multi-level Undo and Redo
- Integrated component Autoplace
- Integrated shape based Autorouter (Optional extra)
- Intelligent bussing in schematics
- Supports SMT, Through-hole and mixed technology
- Intelligenly supports SMT on both sides of the design
- Unlimited number of PCB design layers
- Cross probing schematics to PCB design and Projects
- Forward annotation of design changes from schematics
- Back annotation of net name/component name changes
- Dynamic Pan, Zoom In/Out and Frame Views
- Dynamic drag and drop from component bin
- All design elements per design are unlimited
- Graphical Design Rule Checker
- Integrity and Connectivity Checker
- Professional manufacturing outputs

For more information or demo disk call Number One Systems
on 01684 773662 or Fax 01684 773664
Email info@numberone.com
Number One Systems, at Sightmagic Ltd, Oak Lane, Bredon, Tewkesbury, Glos, GL20 7LR. UK

Visit our WEB site www.numberone.com

CIRCLE NO.111 ON REPLY CARD

November 1999 ELECTRONICS WORLD
Example of a setup/get-device descriptor command.

1. Set up stage
 - Set up token (from host)
 - Data packet (from host)
 - Handshake packet (from device)

2. Data stage
 - In token (from host)
 - Data packet (from device)
 - Handshake packet (from host)

3. Status stage
 - Out token (from host)
 - Data packet (0 length) (from device)
 - Handshake packet (from host)

Fig. 4. In the USB protocol, two types of control transfer are possible. This diagram represents a three-stage control transfer, mainly used by the host to get information from a connected device.

Example of a setup/set-address command transfer.

1. Set up stage
 - Set up token (from host)
 - Data packet (from host)
 - Handshake packet (from device)

2. Status stage
 - In token (from host)
 - Data packet (from device)
 - Handshake packet (from host)
 - Handshake packet (from device)

Table 3: Packet transmissions in low-speed mode.

<table>
<thead>
<tr>
<th>Packet#</th>
<th>Packet transmissions in low-speed mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>EOP() Idle(1497)</td>
</tr>
<tr>
<td>19</td>
<td>ECP() Idle(114)</td>
</tr>
<tr>
<td>20</td>
<td>Sync(0000001) SETUP(0x04) ADRR(0x00) ECKP(0x00) CRC5(0x08) Idle(4)</td>
</tr>
<tr>
<td>21</td>
<td>Sync(0000001) DATA0(0x13) DATAA(00 00 01 00 00 00 00 00) CRC5(0x08) Idle(6)</td>
</tr>
<tr>
<td>22</td>
<td>Sync(0000001) ACK(0x08) Idle(13)</td>
</tr>
<tr>
<td>23</td>
<td>Sync(0000001) IN(0x66) ADRR(0x00) ENDP(0x00) CRC5(0x08) Idle(5)</td>
</tr>
<tr>
<td>24</td>
<td>Sync(0000001) NAK(0x05) Idle(11)</td>
</tr>
<tr>
<td>25</td>
<td>Sync(0000001) IN(0x66) ADRR(0x00) ENDP(0x00) CRC5(0x08) Idle(5)</td>
</tr>
<tr>
<td>26</td>
<td>Sync(0000001) DATA1(0x0D) DMA(12 01 00 01 00 00 00 00) CRC5(0x08) Idle(6)</td>
</tr>
<tr>
<td>27</td>
<td>Sync(0000001) ACK(0x08) Idle(4)</td>
</tr>
<tr>
<td>28</td>
<td>Sync(0000001) OUT(0x87) ADRR(0x00) ENDP(0x00) CRC5(0x08) Idle(4)</td>
</tr>
<tr>
<td>29</td>
<td>Sync(0000001) DATA1(0x0D) DATA1 CRC5(0x0800) Idle(6)</td>
</tr>
<tr>
<td>30</td>
<td>Sync(0000001) ACK(0x08) Idle(87)</td>
</tr>
<tr>
<td>31</td>
<td>RST() Idle(238)</td>
</tr>
<tr>
<td>32</td>
<td>REQUIRE(Start of Reset)</td>
</tr>
</tbody>
</table>

Fig. 5. Two-stage control transfers are mainly used by the host to assign data to the device. In this case, the device is being assigned an address.

Table 2 shows part of the enumeration process of the device in full-speed mode. Enumeration is a procedure that allows a device to be recognised by the host and for setting up a communication pipe between them.

Packets 110 to 122 show a three-stage control transfer involving a 'get-descriptor' command. Packets 110 to 113 form the set-up stage, packets 114 to 117 form a data stage and packets 119 to 122 form a status stage.

Snapshot of the USB Protocol Table 2 shows part of the enumeration process of the device in full-speed mode. Enumeration is a procedure that allows a device to be recognised by the host and for setting up a communication pipe between them.

Packets 110 to 122 show a three-stage control transfer involving a 'get-descriptor' command. Packets 110 to 113 form the set-up stage, packets 114 to 117 form a data stage and packets 119 to 122 form a status stage.

Note that packets 110 to 113 are within one frame time, i.e. 1ms. Since there is only one device connected to the host,
Fig. 7 test set-up 'A', the transactions can not use up the whole time frame, resulting in an idle time of 11801 bit times. For full-speed mode, the data transfer rate is 12Mbit/s. By counting the number of bits in each packet as shown in Table 2, it can be worked out that there's around 12K bits within a 1 ms time frame. The table below shows the number of bits used for different tokens in the packet.

<table>
<thead>
<tr>
<th>Field name</th>
<th>No. of bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sync</td>
<td>8</td>
</tr>
<tr>
<td>ADDR</td>
<td>7</td>
</tr>
<tr>
<td>SOF</td>
<td>8</td>
</tr>
<tr>
<td>ENDP</td>
<td>4</td>
</tr>
<tr>
<td>Frame #</td>
<td>8</td>
</tr>
<tr>
<td>DATA0</td>
<td>5/16</td>
</tr>
<tr>
<td>CRC5/CRC16</td>
<td>5/16</td>
</tr>
<tr>
<td>DATA contents</td>
<td>64</td>
</tr>
<tr>
<td>SETUP</td>
<td>8</td>
</tr>
<tr>
<td>ACK</td>
<td>8</td>
</tr>
</tbody>
</table>

Low-speed mode
The captured packets transferred on the bus in low-speed mode are shown in Table 3. You can see that there is no start-of-frame SOF token. The time frame in this case is defined as being between 'end-of-packet' EOP tokens. Packets #20 to #31 are located within one frame.

Packets #23 and #24 show a negative-acknowledge NAK response issued by device to indicate that it is not available to respond to the 'in' packet from the host at that time. The descriptions on the packets are as follows:

- Three-stage control transfer with 8-byte data length:
 - Packets #20 - #22, setup stage
 - get-descriptor command
 - Packets #25 - #27, data stage.
 - Packets #28 - #30, status stage.

Full-speed and low-speed signals on the bus
This section looks at how full-speed and low-speed modes can operate simultaneously. Assume test set-up 'B' in Fig. 7. The USB bus between host and hub is in full-speed mode but...
the bus between hub and device is in low-speed mode since the device is low-speed.

We used the bus monitor to observe how the device packets are transmitted on a full-speed bus. Table 4 shows part of the packet sequences. Packets #777 to #782 are the data and status stages of communication between host and hub using the normal full-speed transfer format. Packets #784 to #794 perform three-stage control transfer between host and the low-speed device through the full-speed hub. In order to differentiate the low-speed signals from the high-speed for the hub to broadcast them to the downstream ports, a preamble (PRE) packet is required as shown. Packets following the PRE (0x3C) are the low-speed data. Packets #784 and #785 are the get-descriptor command from host to the device, and packet #786 is the ACK from device.

How USB signals are transmitted
USB protocol involves non-return to zero, inverted, or NRZI, encoding to encode the data before transmitting onto the bus. This encoding method does not need a separate clock signal. In NRZI encoding, a transition between two consecutive data bits represents logic '0' while no transition represents logic '1'.

Figure 8 shows a serial data stream transmitted on the USB bus, encoded in NRZI format. The waveform was captured at the host side by probing on the data lines, D+ and D- while the device was sending an NAK response to the host in full-speed mode. Logic bits for the D+ signal are shown in bold. For clarity, the D+ and D- signals are separated as in Figs 9 and 10 respectively.

The upper waveform in Fig. 9 shows two packet transactions and the bottom waveform shows the magnified view of the last part of data transfer. It is easy to work out the actual data value from the waveform. Figure 11 shows the transmitted NRZI data from Fig. 9.

The left-most bit '1' in the table of Fig. 11a) represents the last bit transferred from the previous packet. This bit is used to decode the following 8 data bits. The second NRZI bit is '0'. The change from '1' to '0' is a transition, so the first bit of actual data is logic '0'.

In Fig. 11b), logic '1' in the actual data row indicates that there is no data transition between the previous NRZI bit, in this case '0'. Following the same procedure for the rest of NRZI bits, the 8-bit actual data decodes as 00000001, which is a specific synchronisation data pattern.
CHELMER VALVE COMPANY

for High Quality Audio Tubes

The CVC Premium range offers an unrivalled range of high grade audio valves. Based on the best from world-wide sources, processed by us to suit audio applications. Pre-amp types tested/selected for LOW NOISE, HUM and MICROPHONY.

Valve Amplifiers sound better still fitted with CVC PREMIUM Valves!

Valves are given controlled BURN-IN to improve stability and to select-out those with weaknesses. MAJOR BRANDS also supplied as available.

STEWART OF READING

110 WYKEHAM ROAD, READING, BERKS RG6 1PL

Telephone: (0118) 9268041 Fax: (0118) 9351696

Callers welcome 9am-5.30pm Monday to Friday (other times by arrangement)

Telephone: (0118) 9268041 Fax: (0118) 9351696

CIRCLE NO.114 ON REPLY CARD

Available in CHART AUDIO LEVELS

In-vision colour display of hard copy printout

899
In Fig. 11c), the next 8-bit NRZI data stream is 11001102, so the decoded actual data will be 01011010 which is an negative-acknowledge NAK signal.

The three bit times at the end of the waveform in Fig. 9 indicate the end-of-packet (EOP). Both data lines D+/D– are driven low for two bit times and back to high again at the third bit time for D+. The D– line stays low after the EOP as shown in Fig. 10. Some more NRZI examples are shown below:

<table>
<thead>
<tr>
<th>Name</th>
<th>Actual data (packet ID)</th>
<th>NRZI code (hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data1</td>
<td>D2</td>
<td>00110110</td>
</tr>
<tr>
<td>SOP</td>
<td>A5</td>
<td>01101100</td>
</tr>
<tr>
<td>ACK</td>
<td>4B</td>
<td>11011000</td>
</tr>
<tr>
<td>IN</td>
<td>96</td>
<td>01001110</td>
</tr>
<tr>
<td>Setup</td>
<td>B4</td>
<td>01110101</td>
</tr>
</tbody>
</table>

The two data lines should be overlapped in order to show the cross-over point. Figure 12 shows a close-up view of the waveform of Fig. 8. The cross-over voltage point is about 1.7V and the maximum signal level is about 3.3V.

Signal quality issues

When measuring signals at the device side, a different signal quality can be obtained. The signal shown in Fig. 13 was captured at the device side while the device was driving NAK to the host.

The shape of waveform is not very smooth at the cross-over points; this is due to impedance mismatch. The signal sent out from the device is partially reflected at the host side to form a complete loop.

This can be done by turning on the signal receiving circuit of the transceiver, which is normally an embedded on-chip module. The rest of the on-chip modules can then be set to power-down mode in order to reduce power consumption.

In summary

More details on the USB HID class device, such as a keyboard interface, can be found in the application note mentioned in reference 7.

The introduction of the USB 1.1 standard provides an easy way for the connection of PC peripherals and more and more peripherals are being embedded with USB. Dedicated USB controllers play an important role in USB products.

The imminent USB 2.0 specification will enhance the capability of USB for transmitting multi-media signals. Its higher bandwidth provides a wider range of applications to the next-generation peripherals.

References

4. 'USB 1.1 Specification', http://www.usb.org/
6. 'USB Device Class Definition for Human Interface Devices', http://www.usb.org/
Test equipment lacking functionality?

Easy choice? Then send for the Pico Technology full colour PC based test & measurement catalog and software demonstration disk. Alternatively, visit our web site at:

www.picotech.com

Low cost
Embedded Control

...with extra BYTE!

CAMBRIDGE MICRO PROCESSOR SYSTEMS LIMITED
http://www.cms.uk.com

CIRCLE NO.115 ON REPLY CARD

Low cost
Embedded Control
Control Systems
Custom Design
Micro-Controllers
Logic Controllers
Data Loggers
Analogue & Digital I/O

Units 17-18, Zone 'D',
Chelmsford Road Industrial Estate,
Great Dunmow, Essex
UK CM6 1XG
Tel: +44 (0) 1371 875644
Fax: +44 (0) 1371 876077

CIRCLE NO.116 ON REPLY CARD

LAB PROG 48LV

LOW COST – HIGH PERFORMANCE DEVICE PROGRAMMING SYSTEM
• Programs and verifies at 2, 2.7, 3, 3.3, and 5 V
• True no-adaptor programming right up to 40-pin DIL devices
• Built-in 240v AC/12c AC PSU
• Package adaptors for TSOP, PSOP, SOIC and PLCC
• Optional EPROM emulator
• Plugs straight into the parallel port of PC or Laptop
• Download Comprehensive Device List

Includes:
• Connection Cable
• Diagnostic POD for Self Test
• User manual
• 3.5” diskette with software

£356.00
Plus Delivery
Plus VAT

Also Available:
SEEPROG
Universal EEPROM Programmer
£49.95 +Delivery +VAT

PREPROM
EPROM, E2EPROM, Flash
EPROM Microprocessors Programmer
£132.00 +Delivery +VAT

The Old Bakery, 54 New Barns Road, Ely, Cambs, CB7 4PW
Tel: +44 (0) 1353 66709 Fax: +44 (0) 1353 66710
E-mail: Sales@crownhill.co.uk
www.crownhill.co.uk

CIRCLE NO.117 ON REPLY CARD
Rod Cooper investigates Easy-PC – a PCB design package with separate analogue and digital analysis add-ons. Virtual instruments are not available, but this suite has modules that extend its usefulness to the microwave region.

The route to simulation V

Now owned by Sightmagic Ltd, Easy-PC for Windows is the latest version of the well-established Number One Systems product. The program is an example of a system using separate analogue and digital analysers; this aspect was commented on in the introduction in the August issue. Strictly speaking, "Easy-PC" is a PCB design package. It is the add-ons Analyser and Pulsar that allow the package to analyse analogue and digital circuits respectively.

Unlike Workbench, CircuitMaker and Tina, where the simulator is an inseparable part of the program, the separate analogue and digital analysers of Easy-PC can be purchased on their own, and can operate independently.

Reading matters
Three separate loose-leaf A5 binders cover Easy-PC, Analyser and Pulsar respectively. They are well-written and contain sufficient information to enable the first-time buyer to get started, as well as covering more advanced aspects.

The style of each book is similar, starting with a tutorial-style introduction. A reference section explains all the program commands and controls, and a library section lists the contents.

Links to other programs and net-lists are also discussed. All three books have an index, but no glossary, and are well complemented by the program’s Help files.

Capturing schematics
The latest version of Easy-PC reviewed – 2.1 – comes on a CD and security is via a registration number. Pin-limited versions are available, at various prices.

If you are interested in the schematic drawing section of Easy-PC, take a look at its review in the August '98 edition of Electronics World. In brief, the schematic capture program is a conventional system with symbols being loaded to the screen from the library. It is mainly menu-driven, but the most common functions are included in a single tool bar, which can be turned on or off. There is no parts bin as yet.

Figure 1 shows the graphics quality of a typical schematic and the economical

Requirements
A minimum of a 486 with 16Mbyte of RAM are required to run the package. Easy-PC, Analyser and Pulsar occupy 20Mbyte, 2Mbyte and 3Mbyte of hard-disk space respectively. The programs are designed for Windows 95/98 and NT.
Fig. 2, illustrating Fig. 1. The circuit indeed they have left of the circuit the labels on the simulation. The colours are the background of setting up the to be used for changed, as been in the changed, as described in the handbook.

The program comes on two floppy disks. Analyser's main theme is plotting graphs of frequency versus gain, phase, input and output impedance, group delay, input and output voltage standing wave ratio and Y and S parameters. It also plots maximum available gain and stability according to either Linvill, Stern or Rollett criteria.

Where appropriate, real and imaginary parts can be shown directly. This is quite a different range of simulations from the other programs in this review.

There is no transient simulation, or any of the simulations associated with transient analysis. Noise and distortion cannot be simulated either, and there is no dc analysis. So, the range of simulations is limited, and those available seem to be directed towards high-frequency work.

This does not prevent the simulator from being used on, say, audio-frequency circuits. Indeed, graphs from Analyser can be seen in published work on audio. But it clearly has less utility outside its intended area than a program offering a broad spectrum of analyses.

Analyser comes into its own though when combined with its sister programs, the electromagnetic simulator 'Layen', and the rf Smith-chart designer 'Z-Match'. These are outside the scope and the budget of this review, but should be borne in mind when assessing the package.

Analyser can be started from Easy-PC schematic capture, or operated on a stand-alone basis with a typed net-list. If you use the schematic-capture route, simulation is started automatically by simply choosing Analyser in the 'tools' menu by naming specific points in the schematic. This assumes that you are used. Input from the circuit under test is done not by a probe tool, but via a menu by naming specific points in the schematic. This assumes that you are using the schematic capture method.

Normally, graphs use both the left and right Y-axis to display two parameters simultaneously. For example the left axis displays gain and the right axis displays phase.

Graphs can be displayed in their own window over the schematic, as shown in Fig. 2, and can be resized and moved about in the normal Windows style to suit whatever is on the screen, and several can be displayed together if required.

Alternatively, graphs can be expanded full-screen to make measurement easier. The clarity and presentation style is uniformly good. The library for Analyser stands at about 650 device models.

Digital analyses
Pulsar is supplied on CD. Like Analyser, it runs automatically from Easy-PC schematic capture. Alternatively, it accepts a typed net-list from the net-list editor.

As you would expect, the style of operation is very similar to Analyser. There are no virtual instruments, and a menu system is used as before to set up the input, output, etc.

Two digital signal generators are provided. One gives a simple constant-frequency pulse chain; the other is more sophisticated and has user-defined parameters.

Both generators can be attached to any signal in the circuit, automatically disconnecting the existing signal. Removing the generator returns the circuit to its original condition. This procedure considerably speeds up investigation of the circuit under test. Step-by-step simulation is not possible.

Results are displayed in the familiar timing chart, and includes all glitches, down to a picosecond. There is no user-defined control over glitches, so they all appear regardless of duration down to the 1ps limit.

From a practical point of view, this is of more value in trouble-shooting than an idealised timing chart. A typical result, Fig. 3, shows the glitches, which are highlighted in red to make them easier to identify. When analysing glitches, a zoom feature allows you see it in more detail.
PC ENGINEERING

Easy PC for Windows

Number One Systems at
Sightmagic Ltd, Tewkesbury,
01684 773662, fax 01684
773663. E-mail
info@numberone.com,
Schematic drawing, capture and
pcb design from £64.
Analysers analogue simulator
£245. Pulsar digital simulator
£195.

Like other simulators in this review,
such as Labcenter’s Lisa, Pulsar recog-
nises more than just the two usual
strong high and low logic states. It can
also deal with weak high and low
states, high impedance and open cir-
cuit. This can give a better correlation
with circuits where the drive is via pull
up or down resistors, or where non-
ideal events occur. Each state can be
allocated a colour in the timing chart.
The library of digital models consists
of over 120 devices in the 74LS series,
the same in the 74HC series, over 110
in the 74HCT series and over 90 in the
4000 CMOS series. As already men-
tioned, these can be added to manually.
There is a library of about 50 logic
primitive elements.

Summary

Analyser addresses a somewhat differ-
ent field from the other simulators
reviewed. Although it can be used as a
general-purpose simulator, the range of
simulations is shorter, but includes
areas not covered by the other review
products.

If you are thinking of buying this
package, check that the scope of the
simulations, focussed as it is on a spec-
cific area, is suited to your fields of
work.

For those of you interested in audio
circuits and those who want more than
the basic analyses of gain, phase and
impedance, then Analyser may not
have much appeal. But if you design
microwave circuits, for example, the
availability of the sister programs men-
tioned earlier makes Analyser an attrac-
tive proposition.

I found Analyser straightforward and
pleasant to use. The fact that it can pro-
duce a default set of auto-scaled graphs
helps when you are in the early stages
of learning how to use it. This feature
also enables Analyser to produce quick
’snap-shot’ results when you are work-

I also found Pulsar pleasant to use.
It performs well as a basic no-frills
digital simulator. I would describe
the overall learning curve as moder-
ately steep.

Despite the commercial ups-and-
downs of this program in recent
months, Sightmagic has said that the
Easy-PC suite is to continue being
developed by them in the UK. It will
be interesting to see what the compa-
y does with it in the future.

Fig. 2. Analyser simulation of gain
and phase, showing the
menu system for setting up the
simulation. Note especially the
method of calibrating the x
axis – the same as that in
Electronics Workbench. The
graphs can be displayed
full-screen if required.

Fig. 3. Pulsar timing display of a
counter-decoder. Note that all the
glitches are shown, picked out in red.
To show the colour capabilities of the
chart, in this diagram I have
arbitrarily chosen strong high as
black, strong low green.
Quality second-user test & measurement equipment

NEW PHONE CODE FOR COVENTRY 02476

Radio Communications Test Sets

Marconi 2955
£2000
Marconi 2958/2960
£2250
Anritsu MS5552A
£1200
Hewlett Packard 8920A
£2000
Hewlett Packard 8922B (GSM)
£6950
Schlumberger Stabilock 4031
£3995
Schlumberger Stabilock 4040
£1500
Racial 6111 (GSM)
£1750
Racial 6115 (GSM)
£3995
Rhode & Schwarz CMS 54 (new)
£6250
Rhode & Schwarz CMTA 94 (GSM)
£5950
IFR 1200S
£2995

Class 2 Quality

All equipment is used - with 30 days guarantee and 90 days in some cases

Add carriage and VAT to all goods.

Telnet, 8 Cavans Way, Binley Industrial Estate, Coventry CV3 2SF.
Fact: most circuit ideas sent to Electronics World get published

The best circuit ideas are ones that save time or money, or stimulate the thought process. This includes the odd solution looking for a problem — provided it has a degree of ingenuity.

Your submissions are judged mainly on their originality and usefulness. Interesting modifications to existing circuits are strong contenders too — provided that you clearly acknowledge the circuit you have modified. Never send us anything that you believe has been published before though.

Don’t forget to say why you think your idea is worthy.

Clear hand-written notes on paper are a minimum requirement: disks with separate drawing and text files in a popular form are best — but please label the disk clearly.

555 oscillator with a linear frequency scale

Normally, the tuning dial of a 555 oscillator is linear with period, not frequency. For a linear frequency scale, it is necessary to vary the charging voltage of C, although it must be referred to the supply voltage of the 3V ICM7555 used here to obtain stability.

To adjust the circuit, set the voltage on MP1 to 20V±0.1V by P1. Dial adjustment consists of turning it to read 10 and setting maximum frequency by means of P2; then turn it to 1 and set minimum frequency by P3. If you find that the maximum frequency is not obtainable, vary R. Output is a narrow, negative-going pulse.

Ernst Schmid
München
Germany
D40a

Push-button analogue voltage generator

A MAX5504 serial controlled d-to-a converter is driven by the PIC12C509 microcontroller, which in turn is controlled by two switches, the result being a precisely set voltage output.

One switch increases the output and the other decreases it, but on reaching the limit, there are no sudden leaps from rail to rail. Pressing either button for more than two seconds increases the rate of voltage change, so that there are both coarse and fine settings. Zero is obtained by operating both switches simultaneously. The PIC code is exportable to larger systems or to other types of controller families.

Copies of the source code may be obtained by e-mail from simon-bramble@ccmail.mxim.com.

Kevin Bilke
Maxim Integrated Products
D28

£50 WINNER

Operating two push-buttons causes the d-to-a converter to produce an accurate analogue voltage, which may be set to change rapidly or more slowly for precise setting.
Programmable Sallen and Key filter

A digitally controlled potentiometer controls the Q and f_0 of a Sallen and Key low-pass filter, avoiding the critical specification of circuit components.

Figure 1 shows the usual circuit, in which the R_s and C_s determine frequency and Q. Since the two resistances are in series, they can be replaced by a digitally controlled Xicor X9418 potentiometer. A quantity k may be said to represent the position of the ‘wiper’, zero at one end and 1 at the other. Resolution depends on the number of programmed wiper positions, R representing the total resistance. The transfer function of the circuit is:

$$\frac{V_o}{V_i} = \frac{1}{s^2 + \frac{1}{k(1-k)RC} + \frac{1}{k(1-k)R^2C_1C_2}}$$

which is the expression for a second-order low-pass filter, where $A_0=1$.

$$\omega_0 = \sqrt{\frac{1}{k(1-k)R^2C_1C_2}}$$

and

$$Q = \sqrt{\frac{k(1-k)C_1}{C_2}}$$

Using the values shown in Fig. 2, a theoretical Butterworth response is obtained when $k=13/63$, giving a Q of 0.704 and a cut-off of 6.85kHz. With the potentiometer hard over in either direction, the circuit becomes a first-order low-pass filter.

Chuck Wojslaw
Xicor Inc.
Milpitas
California
USA
D34

Fig. 2. Replacing the two resistances by a digitally controlled potentiometer not only allows adjustment for tolerances but also computer control of filter characteristics.
Multi-switch stairway light

When a single light must serve several flights of stairs it is common to have a fairly complicated wiring to a number of switches or to have a delay circuit to keep the light on for a couple of minutes. This circuit avoids wiring problems and allows any switch to control the light, thereby avoiding the waste of power in a delay device.

The circuit is simple, consisting of a quad Xor CD4030, which allows up to five switches.

Ashraf Saad Awad Ebrahim
Farwaniyah
Kuwait

Power-saving, switched-mode power supply

An oscillator in this smps acts a voltage output detector to control the series switch; no inductors are needed and power consumption is extremely low.

A 7413 nand, with a capacitor and diode, form the oscillator. Initially, T_{R1} has insufficient base current to open and C_1 charges until the schmitt nand triggers. Pin 6 of the 7413 goes low and the diode discharges C_1 quickly to the point at which the nand again toggles and the capacitor starts to charge again. The second half of the nand is simply a waveform shaper to drive the series-pass pair. In the condition in which T_{R1} receives base current from the potentiometer, the oscillator stops.

In this way, the setting of the potentiometer determines whether the oscillator opens and closes the series switch or blocks it, using very little power in the process, assuming that T_{R1} is a high-beta type. The red leds blink at a rate depending on the current demand and therefore function as a kind of current meter.

As an example of performance, varying output current between zero and 2A causes an output variation of no more than 20-40mV when a small C_1 is in use. This capacitor may be between 8.2nF and 10µF to provide either high speed and lower current or the reverse.

Roland Vanthomme
Sambreville
Belgium

Switched-mode power supply
consumes little power and reacts to
Edited by Dick Biddulph, M0CGN and Chris Lorek, G4HCL

The Radio Communication Handbook has been one of the world’s largest and most comprehensive guides to the theory and practice of radio communication since it was first published in 1938. This new edition incorporates the latest technical innovations and techniques of practical radio, from LF to the GHz bands, for professionals and students alike. An invaluable reference for RF engineers and enthusiasts.

Readers’ Offer Price £27.50 inclusive

The new edition of The RSGB Guide to EMC will prove an invaluable aid to all RF engineers and radio enthusiasts. It describes the causes of interference as well as the remedies, including reference data on suitable filters and braidbreakers. This book also incorporates details of the new EU EMC regulations. The essential ‘Good Housekeeping guide’ for the electronics enthusiasts.

Readers’ Offer Price £20 inclusive

How to order your copy of the Radio Communication Handbook or The RSGB Guide to EMC

Radio Society of Great Britain, Lambda House, Cranborne Road, Potters Bar, Herts EN6 3JE
Cheque/postal order payable to Radio Society of Great Britain. All major cards accepted

01707 660888; FAX: 01707 645105 sales@rsgb.org.uk; WEB: www.rsgb.org

Please quote Electronics World to receive a free copy of the Society’s journal with your order.

CIRCLE NO.120 ON REPLY CARD

WATCh SLIDES ON TV
MAKE VIDEOS OF YOUR SLIDES
DIGITISE YOUR SLIDES
(Using a video capture card)

"Liesgang diatv" automatic slide viewer with built-in high quality color TV camera. It has a composite video output to a phone plug (SCART & BNC adaptors are available). They are in very good condition with few signs of use...£91.91 + VAT = £108.00

Board cameras as all with 512 x 582 pixels. 8.5mm 1/3 inch sensor and composite video out. All need to be housed in your own enclosure and have fragile expose surface mount parts.

They all require a power supply of between 10 and 12V DC 150mA:£50.00 + VAT = £58.75

400P size 39 x 39 x 28mm spy camera with a fixed focus pin hole lens for hiding behind a very small hole:£26.00 + VAT = £32.30

40MC size 39 x 39 x 27mm camera for "C" mount lens these give a much sharper image than with the smaller lenses:£38.79 + VAT = £45.58

Economy C mount lenses all fixed focus and fixed iris:

VSL1220F 12mm F1.6 15 degrees viewing angle...£15.97 + VAT = £18.76

VSL1220F 4mm F1.6 63 x 47 degrees viewing angle...£17.65 + VAT = £20.74

VSL1220F 6mm F1.6 42 x 30 degrees viewing angle...£19.05 + VAT = £22.30

VSL1220F 8mm F1.6 32 x 24 degrees viewing angle...£19.90 + VAT = £23.38

Better quality C Mount lenses:

VSL1614F 16mm F1.6 30 x 24 degrees viewing angle...£26.43 + VAT = £31.06

VWL8135F 8mm F1.6 with Iris 56 x 42 degrees viewing angle...£77.45 + VAT = £91.00

Blue and silver recordable CD ROM bulk £0.66 + VAT = £0.90

With jewel case...£1.00 + VAT = £1.18

PK1E103A 130v dooce...£0.69 + VAT = £0.84 + VAT = £1.15. 20 for £23.00 + VAT = £25.15

RCM50 Phillips universal remote control 5 for £24.45 + VAT (‡4.69 + VAT each) £27.53

Konig Ultrasonic remote control clearout, limited quantities. Quantity left in brackets:

Konig RC300 Philips universal remote control. 5 for £24.45 + VAT (£4.99 + VAT each). £27.53

P6KE103A 130v diode £0.98 + VAT = £1.15

20 for £13.00 + VAT = £15.28

Blue and silver recordable CD ROM bulk £0.66 + VAT = £0.90

VWL8135F 8mm F1.6 with Iris 56 x 42 degrees viewing angle...£77.45 + VAT = £91.00

Better quality C Mount lenses:

VSL1614F 16mm F1.6 30 x 24 degrees viewing angle...£26.43 + VAT = £31.06

VWL8135F 8mm F1.6 with Iris 56 x 42 degrees viewing angle...£77.45 + VAT = £91.00

Blue and silver recordable CD ROM bulk £0.66 + VAT = £0.90

With jewel case...£1.00 + VAT = £1.18

PK1E103A 130v dooce...£0.69 + VAT = £0.84 + VAT = £1.15. 20 for £23.00 + VAT = £25.15

RCM50 Phillips universal remote control 5 for £24.45 + VAT (‡4.69 + VAT each) £27.53

Konig Ultrasonic remote control clearout, limited quantities. Quantity left in brackets:

USB207 (15), USB208 (5), USB224 (5), USB225 (2), USB226 (2), USB233 (2), USB239 (8), USB240 (1), USB244 (12), USB265 (116), USB266 (2), USB305 (1), USB309 (1), USB466 (1), USB513 (21), USB514 (40), USB515 (19), USB516 (2), USB525 (83), USB578 (160), £3.50 + VAT each, £22.00 + VAT for 5, £85.00 + VAT for 25.

1206 surface mount resistors £12 valuates 10 ohm to 1m ohm 100 of 1 value £1.00 + VAT, 1,000 of 1 value £5.00 + VAT Please add £1.66 + VAT = £1.96 postage & packing per order

JPG ELECTRONICS
276-279 Chatsworth Road, Chesterfield S40 2BH
Tel: 01246 211202 Fax: 01246 550905
Callers welcome 9.30am to 5.30pm Monday to Saturday

CIRCLE NO.119 ON REPLY CARD

November 1999 ELECTRONICS WORLD

PIC BASIC

The new PIC Basic Pro Compiler makes it even easier for you to program the fast and powerful Microchip Technology PICmicro microcontrollers. PIC Basic Pro converts your BASIC programs into files that can be programmed directly into a PICmicro.

The PICBasic Pro Compiler features: BASIC Stamp I and II commands, direct and library source access to pins, PORTA, PORTB, PORTC, PORTD, as well as PORTR, array, real IP...THEN...ELSE and interrupt processing in BASIC.

The PICBasic Pro Compiler gives you direct access to all of the PICmicro registers - I/O ports, A/D converters, hardware serial ports, etc. - easily and in BASIC. It automatically takes care of the page boundaries and RAM banks. It even includes built-in commands to control intelligent LCD modules, 12C Read and Write. Serial ports to 19.2K, Smart Card routines are available.

The PICBasic Pro Compiler instruction set is upward compatible with the BASIC Stamp II and Pro uses BS2 syntax. Programs can be compiled and programmed directly into a PICmicro, eliminating the need for a BASIC Stamp module. These programs execute much faster and may be longer than their Stamp equivalents. They may also be protected so no one can copy your code.

The PICBasic Pro Compiler is a DOS command line application (it also works in Windows) and runs on PC compatible. It can create programs for the PIC12C67A, PIC12C677V, PIC14CXX, PIC16C551, 61x, 71x, 81x, 91x, PIC16C622, PIC16F8x and PIC16Cxx microcontrollers and works with most PICmicro programmers including our EPIC Plus Pocket PICmicro Programmer. A printed manual and sample programs are included to get you started.

The PICBasic Pro Compiler can be used inside Microchip's MPLAB IDE. This allows programs to be edited and simulated within Windows.

PIC BASIC (Basic Stamp I compatible) - £48.95
PIC BASIC + EPIC programmer inclusive of utilities suite £63.95
PIC BASIC PRO (Basic Stamp II compatible) - £149.95
PIC BASIC PRO + EPIC programmer inclusive of utilities £184.95
Upgrade PIC BASIC to PIC BASIC PRO £95.95
EPIC PIC PROGRAMMER £29.95

Download full Compiler data sheet including manual from web site

Crownhill Associates Ltd
The Old Bakery, 54 New Barns Road, Ely
Cambridgeshire CB7 4PW
Tel: 01208 872000 Fax: 01208 872001
E-mail: Sales@crownhill.co.uk
www.crownhill.co.uk

ORDER via ON-LINE CATALOGUE

CIRCLE NO.121 ON REPLY CARD
Low-current battery monitor

Frewin's circuit in the July issue uses Xnor gates to ensure that only one led is illuminated at a time to save battery current. In this circuit, the leds are connected between op-amp outputs and no gates are needed. LM324 outputs supply enough current to drive the leds, using reduced value series resistors; at the 2.5mA led current used in the Frewin design, there is about 2.85V to drive leds 1-3 and 3.7V for led 4, since the op-amps source 3.7V from a 5V supply and sink 0.85V.

With the values shown, led 1 lights at 8-11.4V, led 2 at 11.4-12.4V, led 3 at 12.4-13.5V and led 4 above 13.5V.

Paul Whiteley
Chester-le-Street
County Durham
D46

Delay-length-locked loop

It is often necessary to be able to adjust the delay in a delay line to equal the time lapse between analogue and reference signal inputs. This note describes, by analogy with a phase-locked loop, a delay-length-locked loop or DLLL, using the principle described above, in which a digital delay line is controlled in delay by a voltage-controlled oscillator. Here, there are 12 shift registers in cascade, so that the delay is \(v_d(n-12) \). A d-to-a converter produces \(v_d(nT) \), the analogue of the digital signal \(v_d(n) \).

A reference input becomes one input to a phase detector, the other being the delayed analogue output; for any delay between the two inputs, the pd produces a voltage proportional to the delay. This is low-pass filtered and used as the control input of the vco, the result being that the clock frequency is automatically adjusted to bring the analogue output and the reference input into coincidence, the delay line being now 'locked'.

The phase detector could use pulse-width modulation, as in Fig. 2, or analogue or digital subtraction, as seen in Fig. 3.

As regards uses, the arrangement may be used in applications where the received signal arrives after a delay from the transmitted one, as in radar, sonar and flaw detection, in which amplitude and quality of the received signal is lowish. The
Audio modulator

Again using the TAB1043 programmable op-amp, the modulation level and phase of this amplitude modulator are determined by the modulating op-amp, the mod. frequency being 10-600Hz. Modulation depth is

$$A = 1 + \frac{R_4}{R_5}$$

Kamil Kraus
Rokycany
Czech Republic
D7a

Audio modulator using the programmable op-amp TAB1043.

Details of significant new prizes for the best circuit ideas, sponsored by National Instruments, will be appearing next month – Ed.

Fig. 3. Phase detection using (a) analogue subtraction and (b) digital subtraction.

Fig. 4. Using the dll for signal detection where the received input is delayed on the transmitted one.

Fig. 5. Waveforms in the arrangement of Fig. 4.

Recirculated delay line with DLLL.
Wideband photodiode amplifier

In this dc-restored photodiode amplifier, the conflict between wide bandwidth and gain is resolved, the dc restoration reducing the effect of ambient light below a time-varying signal.

Current from the photodiode flows through R_g to drop a voltage at the non-inverting input of the op-amp, where it is subject to a gain of $1 + R_f/R_i$. Voltage output at mid-band is therefore,

$$V_o = \frac{1}{dR_g(1+R_f/R_1)}.$$

Using the values shown, equivalent resistance is $10\,\text{M}\Omega$. For the dc restoration, the inverting integrator drives the restoration current through R_g, cancelling diode current at frequencies below the IF cut-off.

Michele Frantisek
Brno
Czech Republic
D43

In this wideband photodiode amplifier, one resistor determines equivalent transimpedance and also provides the path for the dc restoration current.

£75 WINNER

Thrifty one-shot

For a simple and component-saving one-shot, use a spare D-type flip-flop and an inverter to give an output pulse width of CR, using a cmos inverter.

Ernst Schmid
München
Germany
D40b

Save components with this one-shot.

Two op-amp oscillator MkIII

An earlier design of two-integrator oscillator used an inverting integrator and a non-inverting one, gain setting being by allowing the first integrator just to clip at the ±5V rails.

The method of gain setting used in this new version is by the use of diodes, described by Hickman and others. This does cause more distortion unless measures are taken to reduce it, but the advantage is that of easier starting, as the diodes are not in conduction until oscillation is under way.

Op-amp A_1 in the diagram is the non-inverting integrator and A_2 the inverting one, A_1 being provided with increased gain by the ratio of R_2/R_3 to offset the reduction in gain caused by the diodes.

If the pot. is adjusted to give ±4V at the output, the output at V_1 is also around ±4V, together with distortion due to the diodes in the feedback path. Integrator A_2 reduces the distortion, but it is still present and is reduced by the presence of C_3 across the diodes to smooth their turn on/off.

With the values shown, frequency is 1kHz and, for a temperature change of +2°C, changes by about 0.1%; the amplitude falls by about 1%.

C J D Catto
Cambridge
D48

References

Radio-Tech's RTcom-Universal, available on 418MHz for the UK and 433.92MHz for Europe, is the easiest of wire-free modems to use. Simply plug one unit into one RS232 port and a second unit into another RS232 port and the two ports can then talk to each other at speeds of up to 19200 baud securely and without wires.

Serial data in gives serial data out, making the RTcom-Universal the ideal replacement for cabled point-to-point or star connected scanning cabled telemetry systems.

Units are fully approved and have EMC Class-1 type examination certificates.

The units normally sell for the trade price of £189.95 each + £10.00 carriage + VAT.

Radio-Tech is happy to offer a pair of these modems at the special price of £249.95 inclusive of postage, packing and VAT exclusively to readers of Electronics World. The offer is limited to one pair per person.

Send the coupon presented on this page to Radio-Tech at the address shown below, together with a cheque made payable to Radio-Tech Ltd, or send your credit card number, type and expiry date together with the address of the card holder.

RTcom-Universal wire-free modem

normal price £469.90 per pair

Offer price £249.95 per pair inclusive*

* limited to one pair per reader

COUPON

This coupon entitles the holder to one pair of RTcom-Universal wireless RS232 modems at the special all-inclusive price of £249.95.

Easy to use

Unlike other modems of this type, RTcom offers truly transparent operation. There are no buffers to introduce long delays so your receiving device can acknowledge receipt or reject errors within 5ms of the end of the data packet.

You can even avoid the cost of RS232 to RS485 conversion by using the RS232 port at one end and the RS485 at the other.

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Approval</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>418MHz, 0.25mW</td>
<td>MPT1340</td>
<td>UK</td>
</tr>
<tr>
<td>433.92MHz 0.1mW</td>
<td>MPT1340/ ETS-300-220</td>
<td></td>
</tr>
</tbody>
</table>

Radio-Tech Limited, Radio House, The Old Brewery, Lindsey Street, Epping, Essex. CM16 6RD

Telephone +44 (0)1992 576107
Fax +44(0)1992 561994

e-mail sales@radtec.demon.co.uk http://www.radiotech.co.uk

* Licence Exempt in the UK to MPT1340 & Europe and Scandinavia to ETS-300-220
* Fully EMC Type Examined to ETS-300-683, Passed at Class 1 level.
* RS232 + RS422 + RS485 interfaces, 2 or 4 wire operation, ESD and collision protected
* 4800, 9600 and 19200 bps half duplex with on air encryption and code balancing
* Transmission range from 25m to 100m depending upon antenna and topology
* Less then 60mA for 7.5V to 15V d.c operation
* Smart wall mounting enclosure with fixed 1/4 wave antenna.
* Operates without need of special drivers. Compatible with protocols such as Modbus.
* Automatic solid-state antenna switch for single antenna use.
* Microcontroller with watchdog timer for added security.
Serial and parallel ports require no additional operating system support and offer flexibility of use when it comes to interfacing. Les Hughes examines Java’s support for this type of connectivity.

Ins and outs of Java

In previous articles, I have peeked at the nature of the Java technology and investigated custom interfacing at a low level. This time, I examine how Sun’s Java Communications API - also known as javax.com - provides for a simple interface to RS232 and IEEE-1248 ports on Windows PCs and Solaris workstations.

Platforms
Both Win32 and Solaris platforms support javax.com. Version 2 of the package can be downloaded from java.sun.com free of charge. Its documentation is somewhat basic although the code examples provide help in getting started. Included with the download is a number of applications; a simple reader and writer, a black box tester, a serial port chat program, etc.

Installation is relatively simple. Some files need to be copied manually, but the instructions are clear and helpful.

Linux users are not yet supported by Sun but a third-party product in the form of the Java Communications Library is available from http://www.interstice.com/kevinhtml/linuxcomm.html. This package functions best with a newer 2.2 kernel, although certain features can be disabled during compilation to allow use with a 2.0.xx system. You will also need to obtain and install the Solaris version of javax.com.

Architecture
The Java Communications API is extensible, meaning that developers are able provide support for other platforms (Linux, MAC, etc.) and interfaces (USB, ISDN, etc.) without waiting for Sun.

Within javax.com is a basic communications framework around which extra classes can be built to provide support for specific hardware. As previously mentioned, this currently
extends to RS232 and IEEE-1248 ports.

Central to the whole package is the CommPortIdentifier class. CommPortIdentifier is a manager class used to determine available ports, negotiate access and to open ports. Actual hardware ports are represented by classes that extend CommPort. CommPort provides high level port methods, leaving specific things such as reading and writing to a subclass; examples of such subclasses are SerialComPort and ParallelComPort.

These classes, and their associated CommDriver, form the actual read/write interface to the hardware.

An example
Code examples are worth a thousand words and in the case of javax.comm, an example shows how simple the framework is to use.

The program below is a simple application to list all of the serial ports available to you on your particular platform. This program doesn't actually check that you have the correct hardware or that it is configured. It merely provides a list of ports that could be managed by Java. In list 1, the first three lines import various library classes. Note the way in which javax.comm is imported.

Two variables, known as fields in Java speak, are declared; a CommPortIdentifier and an Enumeration - an object that allows you to traverse through a collection or list of objects. The line:

 ports = CommPortIdentifier.getPortIdentifiers();

invokes a static method in the CommPortIdentifier class to obtain a list - or Enumeration - of manageable ports. Next, spin through this enumeration, checking each entry to see if it is a serial port. If the entry is of type PORT_SERIAL then print out its name.

At this point, you could also check for PORT_PARALLEL if we were trying to identify manageable parallel ports.

Reading and writing
Reading and writing to files or devices in Java is achieved using the 'Streams' input/output model. InputStreams act as a source of data to your program and OutputStreams are a sink for data to flow into from your program. In order to read and write to javax.comm ports, you need to obtain an InputStream and an OutputStream.

The abstract CommPort class provides methods called getInputStream() and getOutputStream() that enable us to obtain the required i/o objects. Once you have these objects, you can simply call read() and write() on them to send data to your hardware.

Figure 1 shows an interaction diagram of the steps involved in obtaining input and output objects. A Java code example shows this in action, List 2.

The main method in this case first creates a ReadWrite object and then tells that object to 'doSomething()'. This method writes three bytes (0x01,0x02,0x03) and then reads a byte from COM1 in this case.

Note Java's error catching mechanisms at work in this example with the try()...catch() blocks.

The streams-based i/o model allows us to add extra functionality to the i/o pipe by wrapping the basic InputStream or OutputStream with other stream objects.

For example, you could connect a stream capable of handling strings, decimal numbers or even serialised objects to our i/o channel. This would allow you to send different types of data to our hardware almost transparently. The full use of streams in this manner is beyond the scope of this article but extra information can be found in the references below.

List 1. A class that displays the ports that could be managed by Java.

```java
import java.io.*;
import java.util.*;
import javax.comm.*;

public class portLister {
    public static void main(String[] args) {
        Enumeration ports;
        ports = CommPortIdentifier.getPortIdentifiers();
        while (ports.hasMoreElements()) {
            System.out.println (ports.nextElement());
        }
    }
}
```

List 2. Java code example for the interaction diagram, Fig. 1, which shows the steps involved in obtaining input and output objects. It writes three bytes, then reads a byte from COM1.

```java
import javax.comm.*;
import java.io.*;

public class ReadWrite {
    public void doSomething() {
        try{
            port = (SerialPort) portIdentifier.open("ReadWrite",1000);
            port.getOutputStream();
            out.write(1);out.write(2);out.write(3);
            out.println("Oops..something went wrong:");
            out.printStackatrace();
            System.out.println("Oops....");
            System.exit(-1);
        }
        catch(IOException io) {
            System.out.println("Oops....something went wrong:");
            System.exit(-1);
        }
        catch (Exception e) {
            System.out.println("Oops....something went wrong:");
            System.exit(-1);
        }
    }
}
```

Port specifics
Serial and parallel ports both have specific behaviours and control signals. Each specific class - SerialCommPort and ParallelCommPort provides extra methods that enable the programmer to have full control over the device.

For example, the SerialCommPort class lets you set or check such lines as RTS/CTS, DCD, DSR, DTR, etc., while the ParallelCommPort class has methods for checking 'out of paper conditions', setting SPP/EPP/ECP mode, etc.

For a complete list of all available methods, refer to the API documentation included with the software download. Following on from the serial port example above, in order to use a serial line correctly, certain parameters need to be set. To change the line speed, parity, data and stop bits and flow control discipline, use the setSerialPortParams() and setFlowControlMode() methods.
These two methods allow you to set line speed, data, stop and parity bits and to enable hardware (RTS/CTS) or software (XON/XOFF) flow control if required.

Some serial devices do not actually use the handshaking lines as the standard intends. For example, some packet radio modems use these lines to provide power. To set or to check to status of these lines, you can use such methods as setRTS(), isCTS() etc. Again, a full list is provided in the API documentation.

Zen and the Art of RS232
Serial lines can often cause problems. Is the device a DTE or a DCE? Neither? Does your program expect and provide the correct flow control? The list is endless.

A break out box comes in handy but failing that, these diagrams show the most common connections, from a straight-through line to a full null-modem using 25 way connectors. Also 9 to 25way translations are shown.

Configuration (a) is a straight-through cable while (c) is a null modem. In (b) and (d), each side provides its own handshaking. Pin 8 is omitted for DCE/DCE. This diagram is based on the one in Horowitz and Hill's 'The Art of Electronics,' page 725 in my edition.

Listen here
The package javax.com also supports Java 1.1 lightweight event subscription model, as used by the AWT, Swing, Beans, etc. Although it may sound somewhat complex, event subscription is really a simple concept to understand.

When you buy Electronics World, you could visit the newsagent every day until the latest copy arrives, or you could take out a subscription and let the postman deliver the magazine when it becomes ready.

Subscribers to events act in this latter manner. Your program expresses an interest in certain events and then gets on with more interesting things. When an event occurs, for example data arrives on a serial line, your program is notified and can deal with the event. If, at a later time your program is no longer interested in certain events, it can cancel its subscription.

The object that registers its interests in events is called a listener and you will find many addXXXListener type methods all through the core API. For serial ports, you would subscribe using addSerialEventListener().

Unfortunately, javax.com only supports one listener per serial port at the present. However, when modelling the actual device on the end of the serial line, you could include a method that receives serial events and then 'multicasts' these events onwards.

Events can be triggered by a number of changes on the port. Data arriving is probably the most common, but the API allows you to receive serial events for changes to CTS, CD DSR, RI, etc.

The parallel port driver also offers this type of functionality but is somewhat restricted to error and buffer empty conditions.

Putting it all together
One of my current pet projects is an MP3 player for my car. For those of you not familiar with MP3 compression, it is sufficient to say that one CDR of MP3 compressed audio can hold about 15 'normal' audio CDs! For more information on this technology, see www.mp3.com.

The system is based on a single board PC, which runs RedHat Linux, in the boot of the car. This PC has no keyboard or monitor – but it does have an ethernet adaptor – so an interface was required for mounting on the dash.

Matrix Orbital manufactures a range of LCD and VFD modules, providing an RS232 and PC interface, keypad driver, programmable output lines, simple graphics capabilities and much more. Details of these modules can be found at www.matrixorbital.com or www.linuxcentral.com. For the MP3 player, I chose a 20 character by 4 lines LCD module with integrated 5V regulator. Its model number is LKD204V.

Of course, the system software was written in Java – what else? That is where javax.com comes in. The LKD204V module has an RS232 interface and javax.com is used to provide low level communications. Higher level processing of data is achieved through the use of various classes and abstractions.

Programming in the abstract
The code mentioned in this section can be obtained from my website, given later. One of the many tenets of object-oriented programming is to isolate things that can change from things that stay the same. Isolating areas of code allows you to unplug old code and plug in new code without breaking the system.

The serial interface is one area that could change in future. Perhaps a USB or TCP/IP aware version of the module may become available. In fact, you may well want to replace the entire user interface module, so you should allow for some
Fig. 1. Diagram illustrating interaction of the steps involved in obtaining input and output objects.

The complete listing for LKDSerialCommDriver is shown in List 3. The key operations are:

- Obtaining a CommPortIdentifier
- Opening the port and obtaining a SerialCommPort reference
- Setting the serial port parameters
- Obtaining input and output streams
- Registering as an event listener for the port.

Again, isolating things that change, this class has no references to actual COM ports (\dev\ttyS1) on my Linux.

More information

The Java Communications API pages: java.sun.com/products/XXX

JCL for Linux 2.0+
- www.interstice.com/kevinj/linuxcomm.html

Matrix Orbital
- www.matrix-orbital.com

MP3 resources
- www.mp3.com

MP3Mobile, inspiration for the author’s MP3 player - written in C not Java :-(
- utter.chaos.org.uk/~altman/mp3mobile

Full code examples are available from the author’s web site:
- www.parallax.co.uk/~leslieh

Formerly a Senior Lecturer in Software Engineering at the University of Greenwich, Les is now with Parallax, the Keane emerging technology practice (www.parallax.co.uk). He is a Sun Certified Java Programmer.
List 3. Complete listing for LKDSerialCommDriver. Key operations are, obtaining a CommPortIdenfer, opening the port and obtaining a SerialCommPort reference, setting the serial port parameters, obtaining input and output streams, and registering as an event listener for the port.

```java
public class LKDSerialCommDriver extends LKDCommDriver implements SerialPortEventListener{
    SerialPort serialPort;
    CommPortIdenfer portID;
    InputStream inp;
    OutputStream out;
    public LKDSerialCommDriver(){
        try{
            portID = CommPortIdenfer.getPortIdentifier(System.getProperty("LKD204.CommPort"));
            serialPort = (SerialPort) portID.open("LKD204",1000); //1 secs timeout on open request
            int baudrate = 19200;
            try{
                baudrate = Integer.parseInt(System.getProperty("LKD204.BaudRate"));
            }catch(NumberFormatException n){}
            serialPort.setSerialPortParams(baudrate,
                    SerialPort.DATABITS_8,
                    SerialPort.STOPBITS_1,
                    SerialPort.PARITY_NONE);
            serialPort.setFlowControlMode(SerialPort.FLOWCONTROL_NONE);
            out = serialPort.getOutputStream();
            inp = serialPort.getInputStream();
            serialPort.addEventListener(this);
            serialPort.notifyOnDataAvailable(true);
        }catch(TooManyListenersException a){
            a.printStackTrace();
        }catch (PortInUseException piue){
            piue.printStackTrace();
            System.exit(-1);
        }catch(NoSuchPortException nspe){
            nspe.printStackTrace();
            System.exit(-1);
        }catch(UnsupportedCommOperationException ucoe){
            ucoe.printStackTrace();
            System.exit(-1);
        }catch(IX0Exception e){
            e.printStackTrace();
            System.exit(-1);
        }
    }

    public InputStream getInputStream(){return inp;}
    public OutputStream getOutputStream(){return out;}

    public void serialEvent(SerialPortEvent e){
        switch(e.getEventType()){
            case SerialPortEvent.DATA_AVAILABLE:
                try{
                    data = inp.read();
                }catch(IX0Exception ioe){
                    return;
                }
                break;
            default:
                return;
        }
        for(Enumeration en = local.elements();en.hasMoreElements();)
            LKDEventListener lis = (LKDEventListener)en.nextElement();
        LKDEvent ev = new LKDEvent(LKDEvent.KEY_EVENT,data-64, this);
        lis.LKDEvent(ev);
    }
}
```

List 4

```java
import LKD204::*;
public class HelloLKD implements LKDListener {
    public void LKDEvent(LKDEvent ev) {
    System.out.println("Got an LKDEvent!");
    System.out.println("You pressed key" + ev.getData());
    }
    public static void main(String args[]) {HelloLKD theApp = new HelloLKD();}
}
```
Kompass Register, supported by the Confederation of British Industry, the Chartered Institute of Purchasing and Supply and the Chartered Institute of Marketing is accepted by users as the authority on British business.

It provides you with:
- Detailed information on 44,000 UK companies covering all areas of business
- Privately collected company information including trading addresses
- Over 100,000 contact names of key managers and directors
- 41,000 products and services - detailed information on each company's activities
- Up to 4 years' accounts - allowing you to evaluate a company's performance
- Trade names and parents and subsidiary details - research a company's structure and gain an insight into its size and scope.

Kompass Register CDs - all the information contained in the printed volumes of Kompass Register at the touch of a button.
- Easy to use, an invaluable tool for all your purchasing and research requirements
- Combine search criteria to carry out precise searches and pinpoint exactly the companies and people you need
- Fast and effective, it will save you time and money when sourcing UK companies
- Print/download the information you need
- Networking option available

KOMPASS IS THE IDEAL TOOL FOR:
- Carrying out research on companies and markets
- Marketing and direct mail activity
- Purchasing
- Finding new contacts
- Sourcing sales leads and prospects

Kompass Register CDs - all the information contained in the printed volumes of Kompass Register at the touch of a button.
- Easy to use, an invaluable tool for all your purchasing and research requirements
- Combine search criteria to carry out precise searches and pinpoint exactly the companies and people you need
- Fast and effective, it will save you time and money when sourcing UK companies
- Print/download the information you need
- Networking option available

FOR FURTHER INFORMATION

☐ I would like to receive further information about Kompass Register CDs and a FREE TRIAL CD
☐ I would like to receive further information about Kompass Register book format

Name:
Job title:
Job Function: (please tick)
- Sales/Marketing
- Purchasing
- Research
- Other
(please specify)
Company Name:
Nature of Business:
Address:
Postcode:
Tel:
Fax:
e-mail:

the form below to 01342 335998

return the form to: Kompass Marketing Department, Reed Business Information, Windsor Court, East Grinstead House, East Grinstead, West Sussex RH19 1XA

FREEPHONE 0800 018 5882

CIRCLE NO. 122 ON REPLY CARD
In the third article analysing stereophonic reproduction and the way that we receive and perceive sound, John Watkinson considers how the stereo illusion is created.

Stereo from all angles III

The term stereophony is derived from the Greek for 'solid sound' and is today invariably abbreviated to stereo. Stereo is based on two simultaneous audio channels feeding two spaced loudspeakers. The best listening arrangement for stereo is shown in Fig. 1 and is where the speakers and the listener are at different points of a triangle, which is almost equilateral.

Stereophony works by creating differences of phase and time of arrival of sound at the listener's ears. My last article showed that these are the most powerful hearing mechanisms for determining direction.

Figure 2a) shows that this time of arrival difference is achieved by producing the same waveform at each speaker simultaneously, but with a difference in the relative level, rather than phase. Each ear picks up sound from both loudspeakers and sums the waveforms.

The sound picked up by the ear on the same side as the speaker is in advance of the same sound picked up by the opposite ear. When the level emitted by the left loudspeaker is greater than that emitted by the right, you will see from Fig. 2b) that the sum of the signals received at the left ear is a waveform which is phase advanced with respect to the sum of the waveforms received at the right ear.

If the waveforms concerned are transient, the result will be a time of arrival difference. These differences are interpreted as being due to a sound source left of centre.

Figure 3 shows that the apparent position of the virtual sound source is a function of the level difference between the channels. This defines the characteristics that a microphone must have.

As I will explain in more detail in a subsequent article, a stereo microphone must produce a pair of in-phase signals whose relative amplitude varies with direction according to Fig. 3. If this is achieved, the spatial disposition of sound sources with respect to the microphone will be the same as the spatial disposition of virtual sources between the speakers.

Note that with only two channels, virtual sound sources can only be created between the speakers. At the
recording venue one hears sound from all around due to reverberation, but two speakers cannot recreate this. Stereo relies on some reverberation in the listening room to make up for that.

If you don't consider two channels to be good enough, then more channels will have to be used. The number of channels that can be used is anything from three to infinity.

Two channels is the best compromise
The fact remains though that two channels done properly gives by far the best realism to complexity and cost ratio. For a given budget it is entirely possible that a four channel surround sound system could sound a lot worse than a stereo because each loudspeaker can now only cost half as much.

The stereophonic illusion only works properly if the two loudspeakers are producing in-phase signals. In the case of an accidental phase reversal, the spatial characteristic will be ill-defined and lack images. At low frequencies the two loudspeakers are in one another's near field and so antiphase connection results in bass cancellation.

As the apparent position of a sound source between the two speakers can be controlled solely by the relative level of the sound emitted by each one, this format is called intensity stereo.

Moving sources by pan-potting
It is possible to 'steer' a monophonic signal from a single microphone into a particular position in a stereo image using a form of differential gain control. Figure 4 shows that this device, known originally as a panoramic potentiometer, or today as a pan-pot, will produce equal outputs when the control is set to the centre.

If the pan-pot is moved left or right, one output will increase and the other will reduce, moving or panning the stereo image to one side.

Pan-potted audio can never be as realistic as the results of using a stereo microphone because the pan-pot causes all of the sound to appear at one place in the stereo image. In the real world the direct sound should come from that location but reflections and reverberation should come from elsewhere. As a result, artificial reverberation has to be used on pan-potted mixes.

The mechanism of Fig. 2 only works as described at low to medium frequencies. As frequency rises the sound from the left speaker to the right ear and vice-versa will be attenuated in level due to shading by the head.

This phenomenon is shown in Fig. 5a). Note that as the wavelength of sound falls the head becomes a more significant obstacle. The result is that high-frequency sounds appear to have come from further apart in the stereophonic image than the rest of

Fig. 1. Stereo listening arrangement requires a near equilateral triangle. Higher quality equipment allows the speakers to be further apart. With poor equipment, this results in a 'hole in the middle' effect.

Fig. 2a). A virtual source partially offset to the left produces a larger amplitude signal in the left speaker than the right. As both ears hear both speakers, but with time delays on the 'opposite' ear, the result is a time-of-arrival difference which the ear uses as a directional cue.

Fig. 3. Apparent position of the virtual sound source is a function of the level difference between the channels. This defines the characteristics that a microphone must have.
the spectrum. This is a form of image smear which is shown in Fig. 5b).

The effect is that wideband sound sources grow wider as they are panned to the extremes of the sound stage. This shading smear can easily be distinguished from loudspeaker smear due to poor speakers because that is independent of pan position as Fig. 5c) shows.

Blumlein was aware of the smear
Shading smear was known to Alan Blumlein and the stereosonic sound system that he designed contained a compensator for it. This is basically a frequency-sensitive stereo width control which electrically narrows the high-frequency image by the same amount as the shading widens it.

Shading smear is unavoidable and occurs in all stereo speaker systems. The need for compensation is universal, as is the audibility of the improvement that results. Although Blumlein knew about shading smear and published the solution in papers, the number of commercially available systems which incorporate it is tiny.

An analogue shading compensator can be implemented by introducing controlled frequency-dependent HF crosstalk between channels. It is sometimes said that people prefer vinyl discs to CDs because they have crosstalk. Plausible as the argument seems, unfortunately it's a myth. While vinyl discs do indeed have crosstalk, the amounts are far too low to have any effect on imaging and the crosstalk does not vary with frequency in the appropriate way. As a result when properly set for the subtended angle of a particular pair of speakers, a shading compensator gives a similar degree of improvement on CD, vinyl and tape sources.

If this old wives' tale were correct, you would expect a shading compensator to make vinyl reproduction worse, but it doesn't.

Headphone listening and shuffling
For practical reasons, audio engineers sometimes have to use headphones for monitoring. Domestic listening on headphones minimises disturbance to others. Unfortunately conventional headphones are of no use for assessing the spatial characteristics of a stereo signal. Conventional headphones prevent both ears receiving both channels and so it should be clear that the result of Fig. 2 cannot be obtained.

Anyone who has worn conventional headphones will know that there is no similarity to the sound stage produced by speakers. Instead the sound appears, quite unrealistically, to be inside the listener's head.

Headphones can readily be made compatible with intensity stereo signals intended for loudspeakers using a signal processor known as a shuffler. This device, again devised by Blumlein, simulates the cross-coupling of loudspeaker listening so that both ears receive both signals once more.

Figure 6 shows that this is done by feeding each channel to the other ear via a delay and a filter. The delay simulates the additional path length to the distant ear and the filter attenuates high frequencies to simulate the effect of head shading.

The result is a sound image that appears in front of the listener so that
decisions regarding the spatial position of sources can be made. Although the advantages of the shuffler have been known for decades, the information appears to have eluded most equipment manufacturers. To my knowledge, the only commercially available headphone shuffler is made by Sennheiser.

You would particularly expect that a shuffler would be fitted in audio devices specifically designed for headphone use, such as personal cassette and CD players, but this is not the case. Over time one learns that the audio industry generally prefers tradition and empiricism to theoretical knowledge.

As an aside, highly realistic results can be obtained, on conventional headphones only, using the so-called dummy head microphone which is a more or less accurate replica of the human head with a microphone at each side. These will be considered in a subsequent article.

Analysing stereo via vectorscope

When trying to obtain the best results in any endeavour, the process is always easier when objective measurement tools are available. This is particularly true in audio where the impressions gained by listening can only be subjective.

The audio vectorscope is a useful tool which gives a lot of spatial information in stereo systems. If an oscilloscope is connected in X, Y mode so that the L signal causes vertical beam deflection and the R signal causes lateral deflection, Fig. 7a) shows that the result will be a trace which literally points to the dominant sound sources in the stereo image.

Unfortunately in this display, the straight ahead sound source, which produces identical L and R signals, results in a line inclined at 45 degrees to the horizontal and this makes interpretation difficult.

Figure 7b) shows the solution. The coincident stereo signals L and R are passed through a sum and difference unit which produces two signals, M and S. The M, or Mid, signal is the sum of L and R whereas the S, or Side, signal is the difference between L and R. The sums and differences are divided by two to keep the levels correct.

When signals in the M, S format are supplied to the X and Y inputs of an oscilloscope the straight ahead condition results in a display pointing straight up which is much better ergonomically.

Self-contained audio vectorscopes are available that perform the sum and difference processing internally. It is also possible to employ a unit that syntheses a video signal containing the vectorscope picture. This can then be keyed into the video signal of a convenient picture monitor.

With an audio vectorscope, visual estimation of the width of the stereo image and the disposition of sources within it is possible. An out-of-phase condition causes the trace to become horizontal. Intensity stereo signals should ideally not contain phase shifts between the channels. Any phase shifts would result in the vectorscope displaying a Lissajous figure of some kind, instead of straight lines.

Other uses for M & S

The mid and side signal format has many further uses in stereo systems. In audio production, the apparent width of the stereo image may need to be adjusted, especially in television to obtain a good audio transition where there has been a change of shot or to match the sound stage to the picture. This can be done using M, S stereo and manipulating the S signal gain.

Following this a second sum and difference unit is used to return to L, R format for monitoring.

Figure 7c) shows why this works. Considering a vectorscope display, the M signal produces a forward vector and the S signal produces a sideways vector. If the S gain is reduced, an off centre source will move inwards in the reproduced sound stage. The converse is not true. Increasing the S gain above unity causes sources on the edge of the sound stage to become anti-phase.

The use of M, S techniques is especially useful in microphones and this will be detailed in my next article.

And for mono listeners?

While almost all fixed audio equipment is now stereo, the portable radio or television set may well remain monophonic for some time to come. As a result, it will be necessary to consider the mono listener when making stereo material.

There is a certain amount of compatibility between intensity stereo and mono systems. If the S gain of a stereo signal is set to zero, only the M signal will pass. This is

Fig. 6. Headphone shuffler results in a forward image with intensity stereo inputs.

Fig. 7. If L and R are connected to X and Y of an oscilloscope, straight-ahead sound causes a trace at 45°, as in a). This can be resolved using a sum-difference unit, which outputs M and S signals to X and Y of the 'scope. Display then has forward axis straight up. In the M and S domain, changing S gain can alter image width as shown at c).
the component of the stereo image due to sounds from straight ahead and is the signal used when monophonic audio has to be produced from stereo.

Sources positioned on the extreme edges of the sound stage will not appear as loud in mono as those in the centre and any antiphase ambience will cancel out, but in most cases the result is adequate. Clearly an accidental situation in which one channel is phase reversed is catastrophic in mono as the centre of the image will be cancelled out.

Stereo signals from spaced microphones generally have poor mono compatibility because of comb filtering.

One characteristic of stereo is that the viewer is able to concentrate on a sound coming from a particular direction using attentional selectivity (the cocktail party effect). Thus it will be possible to understand dialog, which is quite low in level even in the presence of other sounds in a stereo mix.

In mono the listener will not be able to use spatial discrimination and the result may be reduced intelligibility, which is particularly difficult for those with hearing impairments. Consequently it is good practice to monitor stereo material in mono to check for acceptable dialog.

A mono signal can also be reproduced on a stereo system by creating identical L and R signals, producing a central image only. While there can be no real spatial information most people prefer mono on two speakers to mono on a single speaker, probably because more complex reverberation is created in the listening room.

Know left from right

In stereo systems it is important that the left and right channels display the same gain after line up. It is also important that the left and right channels are not inadvertently exchanged, and that both channels have the same polarity.

In some stereo equipment a twin PPM is fitted, having two needles operating coaxially. One is painted red (L) and the other green (R). In stereo line up tone, the left channel may be interrupted briefly so that it can be distinguished from the right channel. The interruptions are so brief that the PPM reading is unaffected.

Unfortunately the twin PPM gives no indication that the unacceptable out of phase condition exists. A better solution is the 'twin-twin' PPM which is two coaxial PPMs, one showing L, R and one showing M, S. When lining up for identical channel gain, obtaining an S null is more accurate. Some meters incorporate an S gain boost switch so that a deeper null can be displayed.

When there is little stereo width, the M reading will exceed the S reading. Equal M and S readings indicate a strong source at one side of the sound stage. When an antiphase condition is met, the S level will exceed the M level.

The M needle is usually white, and the S needle is yellow. This is not very helpful under dim incandescent lighting, which makes both appear yellow. Exasperated users sometimes dismantle the meter and put black stripes on the S needle.

In modern equipment the moving coil meter is thankfully giving way to the bargraph meter which is easier to read.
HP New Colour Spectrum Analysers LAST FEW ONLY
STC22460B + 2CH Function Generator 13MHz-2.5GHz. £250.
STC 5520X 14MHz + 2 CH Function Generator. £250.
HP5158B ATT OPT 003/O1/12000-1500MHz £300.
STC22460B + 2CH Function Generator 13MHz-2.5GHz. £250.
STC 5520X 14MHz + 2 CH Function Generator. £250.

COMMUNICATION EQUIPMENT
Anritsu ME5441X Microwave AM-Z. £350.
Anritsu ME5441X Microwave FM-Z. £350.
Anritsu VHS/2A Selt Level Meter £600.

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel: (01274) 684007. Fax: 651160

MCL: CLONE NO. 124 ON REPLY CARD

PHOTO Dyna 1950 XR Continuous Att. 1300-1500 £100.
Anritsu MN95B Variable Att. 1300 £100.
Anritsu ML96B Power Meter & Charger £450.
+ MH922A 0.8 & E unit + MH923A 1.3 & E unit £350.
Anritsu MZ118A 0/E Converter.
HP 8508A Vector voltmeter - £2500.
HP 8405A Vector voltmeter - late colour - £400.

SIGNAL GENERATORS
HP1046A - AM-FM 0.5-12-1000MHz - £90-£400.
HP1046B - Phase locked - AM-FM 4-13-6.5GHz - £600-£600.
HP1046C - Phase locked - AM-FM 4-13-6.5GHz - £600-£600.
HP1046D - Phase locked - AM-FM 4-13-6.5GHz - £600-£600.
HP1046E - Phase locked - AM-FM 4-13-6.5GHz - £600-£600.
HP1046F - Phase locked - AM-FM 4-13-6.5GHz - £600-£600.
HP1046G - Phase locked - AM-FM 4-13-6.5GHz - £600-£600.
HP1046H - Phase locked - AM-FM 4-13-6.5GHz - £600-£600.
HP1046I - Phase locked - AM-FM 4-13-6.5GHz - £600-£600.
HP1046J - Phase locked - AM-FM 4-13-6.5GHz - £600-£600.
HP1046K - Phase locked - AM-FM 4-13-6.5GHz - £600-£600.
HP1046L - Phase locked - AM-FM 4-13-6.5GHz - £600-£600.
HP1046M - Phase locked - AM-FM 4-13-6.5GHz - £600-£600.
HP1046N - Phase locked - AM-FM 4-13-6.5GHz - £600-£600.
HP1046O - Phase locked - AM-FM 4-13-6.5GHz - £600-£600.
HP1046P - Phase locked - AM-FM 4-13-6.5GHz - £600-£600.
HP1046Q - Phase locked - AM-FM 4-13-6.5GHz - £600-£600.
HP1046R - Phase locked - AM-FM 4-13-6.5GHz - £600-£600.
HP1046S - Phase locked - AM-FM 4-13-6.5GHz - £600-£600.
HP1046T - Phase locked - AM-FM 4-13-6.5GHz - £600-£600.
HP1046U - Phase locked - AM-FM 4-13-6.5GHz - £600-£600.
HP1046V - Phase locked - AM-FM 4-13-6.5GHz - £600-£600.
HP1046W - Phase locked - AM-FM 4-13-6.5GHz - £600-£600.
Electronics Weekly Hyperactive is more than just a magazine on the Web. Check out the site and you will see why thousands of electronics professionals around the world regularly log on to...

www.electronicsweekly.co.uk

If you are serious about Internet marketing, then sponsorship of the Electronics Weekly Hyperactive site is something you must consider.

Whether you have your own web site or not, Hyperactive offers you a great way of delivering your company's products or message to a worldwide buying audience.

By sponsoring a section of Hyperactive, users will have the opportunity to link directly to your web site - therefore generating new traffic.

For more information on how to develop your internet marketing activity please call Shaun Barton on 0181 652 3638.
Fan for 3m³/min
Papst's 4200N Megafans measure 119 by 119mm square by 38mm deep, providing air flows from 1.7 to 3m³/min. They use Sintec bearings offering claimed lifetimes up to 80 000h at 40°C. They operate from 12 and 24V DC supplies.
Papst
Tel: 01264 333388
Enquiry No 502

Bubble chokes
From Schaffner EMC are two PCB-mounting buckle chokes. The EV vertical and EH horizontal are common-mode suppression chokes with current ratings up to 5A. Typical dimensions are 32 x 22 x 35mm for a 5A-rated EV28 device or 29.5 x 30 x 22.5mm for a similarly rated EH28.
Schaffner EMC
Tel: 01189 770070
Enquiry No 503

SIM connector
A connector for use with SIM cards has been introduced by AMP. Applications include mobile phones and epos equipment. It is a stripped-down version of current connectors for the same application, and lets SIM cards be inserted and removed by hand.
AMP
Tel: 01189 770070
Enquiry No 504

Twenty Schottkys in glass
Vishay has introduced 20 Schottky glass diodes, including the first devices in the firm's Micromelf package. Applications include computers, cell phones and data storage systems. They combine a choice of 30, 40, 50 and 60V maximum reverse voltages with four package options – D035, SOD80 Minimelf, SOD80 Quadromelf and Micromelf. Typical forward voltage is from 320mV for the 30V devices to 410mV for the 40 and 60V devices.
Vishay Semiconductor
Tel: 001 610 644 1300
Enquiry No 501

RF coils
TFC encapsulates its moulded RF coils to provide mechanical stability. They can be supplied as fixed value or adjustable with a shielding can. The moulding material is polypropylene and the shielding cans are plated brass. Core material for the adjustable versions can be ferrite, carbonyl, brass or aluminium.
Total Frequency Control
Tel: 01903 740099
Enquiry No 505

Modem chip set
Semtech has released a modem chipset which delivers full duplex operation over a single fibre cable and allows sharing of up to 6.44Mbit/s bandwidth between four fully independent transmission channels. With the firm's ACS406 chipset, users can achieve 6.44Mbit/s on a single E2 channel or divide the bandwidth into four separate E1 channels at 2.04Mbit/s each with Independent clock domains for each channel. The modem chipset takes advantage a proprietary Ping-Pong time division duplexing architecture, which achieves full-duplex operation over a single fibre channel. The ACS406 is comprised of the ACS910 analogue chip, providing the laser and LED driver, and other analogue circuitry and the digital counterpart, ACS4060 which provides the logic necessary for time compression and decompression of data.
Thame Components
Tel: 01844 261188
Enquiry No 507

Miniature relay
Measuring 15.4mm high by 10.2mm wide, Finder's 43 miniature relay is for PCB applications such as alarm systems and medical equipment. Rated at 10A 250V, the relay is a single-pole double-throw device. Coil supply voltage is from 3 to 48V, and the coil dissipates 250mW, making it suitable for low-powered control signals, such as those sent from PLCs, and battery operated circuits. The standard unit is sealed to IP40, although protection to IP67 is available. Operating range is -40 to +85°C. It can be flow soldered, but a PCB mounting socket is available as an option.
Finder Components
Tel: 01785 816100
Enquiry No 598

GaAs diodes as a series pair
Alpha Industries has announced a GaAs diode in a series pair configuration for balanced and double balanced mixers. The DMK8001 is a single chip with a matched series pair suitable for flip chip mounting or wire bonding. For millimetre wave operating frequencies for broad and narrow band use, the diode has applications in LMDS, point-to-point, automotive collision awareness, VSAT, PRD, millimetre wave frequency conversion products and industrial sensors.
Alpha Industries
Tel: 001 781 935 5150
Enquiry No 506

November 1999 ELECTRONICS WORLD
Z80-compatible 8-bit micro
AB Semicon has introduced the AB181E-20 Z80-compatible 8-bit microprocessor using a one cycle architecture. Applications include copiers, digital cameras, digital signal processors, mobile phones, robot controllers and network connected devices such as printers. It incorporates 8080, Z180 and Z80 compatible code sets. In operations where the existing processor is already fully used, such as printer controllers, the AB181E-20 can take over the handling of network protocol stacks and provide the raw data to the printer controller. It will also handle SNMP data to and from the printer controller or NPMP information, without taking up any of the main controller or NPMP information. SNMP data to and from the printer controller. It will also handle SNMP data to and from the printer controller or NPMP information, without taking up any of the main controller or NPMP information.

Rack-mounting custom PSU
The PSE2 from Astec is a customisable rack-mounting PSU supporting redundant n+1 configurations with in-service swap-out. Applications include central-exchange telecoms racks, mobile-phone base stations, internet switches and servers, and industrial control systems. Based on the modular design of the firm's MVP series, the PSE has one to ten outputs factory preset to any value between ±2 and ±60V, and can deliver up to 600W. A single-wire current share facility on all outputs above 10A lets n+1 redundant systems be constructed. A built-in safety interlock system ensures that AC voltage cannot be applied until the module is engaged in the system backbone, so any unit can be isolated for field replacement. Astec Tel: 01384 842211 Enquiry No 512

16-bit micro with on-chip flash
Hitachi has available a 16-bit microcontroller with third-generation on-chip flash memory. The

Limiting amp
The SY88913 1.25Gbit/s limiting post-amplifier has been added to Micrel's three-chip fibre-optic set. To work with the firm's SY88902 laser-diode driver and SY88906 laser-diode controller, it is the sister device of the SY88903 limiting post amplifier. The chip set is for use with Gigabit Ethernet, S32 and 10Gbit/s fibre channel, and 622Mbit/s Sonet. The post amplifier has chatter-free loss-of-signal (LOS) generation and a PECL LOS output. The SY88903 has an open collector TTL LOS output. Micrel Semiconductor Tel: 01635 524455 Enquiry No 514

GSM modem
Telital Automotive has released a GSM modem for embedded applications. Available from REP Design, the GM360 transceiver has a serial interface, enabling control via standard AT commands and GSM-specific commands. The serial connection is via a Molex 50-pin connector on one face, letting the unit be mounted directly on a system motherboard, with no need for a cable. The serial connector operates at TTL voltage levels. Weighting 65g, it measures 192 (L) by 51.4 (W) by 13.6mm (D), and has an integral slot for the mini-SIM and SMB connector for an external antenna connection. It is suitable for Industrial, railway and automotive applications. Communication rate is 300 to 9600bit/s, supporting data, fax, SMS and voice. Pins on the serial connector are allocated for external microphone and 150Ω earphone connection for voice use. REP Design Tel: 01462 670770 Enquiry No 515
The World is onto Spicycle!

Jump onto the future today - tomorrow's electronic design software tools from the U.K.'s leading simulation engineers.

- Schematic editing with TrueType fonts
- Drag and drop from component bins
- Analogue + mixed mode digital simulation with SPICE and extended algebraic functions
- PCB layout facilities - optional extra
- PCB facilities include regional DRC, copper fill, BOM, ratsnest connectivity from schematic
- CAM outputs (plotter, plotter, drill and Gerber)
- Re-use existing PCB layouts with Gerber import
- Hook up the simulator directly to PCB for the ultimate in design validation
- Back annotation from simulator to schematic
- Library includes electronic + mechanical engineering behavioural devices
- Convert SPICE net lists into ratsnester schematic - reverse engineering made easy

Upgrade path for existing customers - competitive upgrades available.

Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP. Tel +44 (0) 20 8906 0155
FAX +44 (0) 20 8906 0960
e-mail sales@Those-Engineers.co.uk
web http://www.spiceage.com
ISDN adapter IC
Rohm has launched an ARM7 IC containing the microprocessor and peripheral functions needed for an ISDN terminal adapter. The BU6611KS processor doesn't need an external CPU, so it can replace the multiple ICs and discrete components normally used to construct ISDN terminal adapters. It is supplied in a 160-pin, SQFP with a PCB footprint of 31.2 by 31.2mm, and is based on an embedded, 24MHz 32-bit Risc.
Rohm Electronics
Tel: 01908 282666
Enquiry No 516

CPLD platform
DWA Technology is offering a CPLD development and prototyping platform to design, simulate, debug and prototype a logic design. Targeted at Altera's Flex 10K CPLDs, the Digital10K10 designed by El Camino is for logic designs up to 10,000 gates. It has a built-in Byteblaster download cable for device configuration and is supported by general purpose switches, LEDs and seven segment displays. The board contains a socket for an optional EPC2 configuration EEPROM to allow for nonvolatile designs. The platform supports the free Altera baseline version of MaxPlus II.
DWA Technology
Tel: 01234 241818
Enquiry No 518

Flash for digital machines
Ambar Components has added 32 and 48Mbyte densities to its Silicon Storage Technology family of memory cards. Using ATA controller technology and flash memory design, the CompactFlash cards have a sustained write performance up to 1Mbyte/s. Applications include digital audio players and digital video recorders. Features include dual port SDRAM buffer, direct memory access and flash file system.
Ambar Components
Tel: 01296 397396
Enquiry No 519

CAN micro development
Toshiba has expanded its family of microcontroller development platforms with a starter kit that provides programming, testing and implementation of CAN-based embedded systems. For automotive and other applications using the CAN bus, the Topas 900 kit incorporates the hardware and software developers need to evaluate and prototype applications based on Toshiba's TMP95PS54F 16-bit CAN microcontroller. The kit combines two TMP95PS54F evaluation and programming boards, (CAN-I and CAN-II) for CAN communication verification, C compiler, TMPro debugger and the IAR tool chain. A software library and CD-ROM containing supporting documentation are included. Both CAN boards are equipped with the TMP95PS54F CAN MCU.
Toshiba Electronics
Tel: 00 49 211 52960
Enquiry No 520

Micro debug modules
The latest addition to the Lauterbach BDM background debug mode embedded systems tool kit is a set of intelligent modules to speed the development and debugging of applications across various processors. Available from Noral Micrologics, the Power-Debug modules let users of Lauterbach's Trace32 BDM debugger download pure code to the target via an Ethernet network at speeds up to 600kbyte/s. Each module has a built-in 32-bit Risc controller operating at up to 40Mips.
Noral Micrologics
Tel: 01254 265800
Enquiry No 517

Back issues of Electronics World are available, priced at £3.00 UK and £3.50 elsewhere, including postage. Please send your order to Electronics World, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Available issues
The range of "FM-Controllers" provide most of the features required for embedded control at a very low cost.

FEATURES FM-200 Controller
- 68K Micro-Controller 14 MHz clock
- 512 Kbytes Flash EEPROM
- 512 Kbytes SRAM Battery Backed
- 2 RS232 Serial Ports
- 1 RS232/RS485 Serial Port
- Real Time Calendar Clock (Y2K Compliant)
- Watchdog & Power fail detect
- 10 Digital I/O Lines
- 2-16 bit Counter/Timers
- I²C Bus or M-Bus
- Expansion Bus
- Size 100x80 mm

OTHER FEATURES
- Up/Download removable card for data logging and or re-programming
- STE VO Bus, 68000 and PC Interface
- Designed, Manufactured and supported in the UK

OPTIONAL EXTRAS
- LCD Port Graphics or Alphanumeric
- Key Pad Port 64 Keys 8x8
- 8 Channels 8 bit analogue in
- 2 Channels 8 bit analogue out
- 8 Channels 13 bit analogue in
- Up to 32 Digital I/O Channels
- Up to 8 Mbytes of SRAM Battery Backed
- Up to 512 Kbytes of Flash EEPROM
- Up to 1 Mbyte EPROM Space

DEVELOPMENT
The PC Starter Pack provides the quickest method to get your application up and running.

Operating System
- Real Time Multi Tasking
- Unlimited copy licence

Languages
- 'C', Modula-2 and Assembler
- Full libraries & device drivers provided

Expansion
- Easy to expand to a wide range of peripheral and I/O cards

Support
- Free unlimited telephone, FAX, email and Internet support

Custom Design
- CMS will design and manufacture to customers requirements

The Complete Integrated Schematic PCB Layout Package

Cambridge Microprocessor Systems Limited
Units 17-18, Zone D, Chelmsford Road Industrial Estate, Great Dunmow, Essex UK CM6 1XG
Tel: +44 (0) 1371 875644 Fax: +44 (0) 1371 876077

Too good for words

The New Ranger XL Series

Ranger 2 for Windows £170
NEW Ranger 2XL £500
NEW Ranger XL £950
FREE Website Download Demo

The New Ranger XL Series

Ranger 2 for Windows £170
NEW Ranger 2XL £500
NEW Ranger XL £950
FREE Website Download Demo

SEETRAX Advanced Systems & Technology for PCB Manufacturers
Old Buriton Lime Works, Buriton, Petersfield, Hants. UK GU31 5SJ
Tel: (44) 01730 260062 Fax: (44) 01730 267273

November 1999 ELECTRONICS WORLD
Digital multimeter
The DL97 handheld digital multimeter from Kenwood has an accuracy of typically 0.05 per cent and a count rate of 4000 to 40 000. The measurement ranges include AC and DC voltage and current, resistance, diode and continuity, capacitance, frequency, temperature, square-wave frequency generation, and timer mode. It has a dual read-out backlit display with bar graph, enabling simultaneous read-out of combination measurements. Mathematical calculations are standard, as is peak data hold for voltage and current. It comes in an ABS case with rubber safety holster. Features include auto switch off, auto and manual measurement, maximum and minimum memory with recording time display, and a current input connection alarm. It comes with probes and there is an optional RS232 interface.

Kenwood Electronics
Tel: 01923 655291
Enquiry No 521

RF push-pull MOSFETs
Semelab has announced RF push-pull transistors in surface-mount eight-pin ceramic packages. The 28 and 12V parts are available in a choice of 10 or 5W at 1GHz. They are threshold-voltage matched to provide easier biasing and reduce distortion. The package has straight unformed leads, which are soldered to tracks on the top of the PCB in the usual way, while the body of the device occupies a hole cut in the PCB.

Semelab
Enquiry No 524

Shielded connectors
Thomas & Betts has announced Triad 01 shielded connectors with a maximum power rating of 3A and 360° shielding. They are for medical, instrumentation and other applications where airwave pollution can cause failure. The range includes crimp contact connectors, PCB-mounted connectors, retractile connectors and gender mates. They are available in three, four, five, seven or eight pole versions and in D-sub, PCB-mounted or standard style. They can be attached to any style of cable and use twisted contacts attached to the cable by a manual retraction clip with four points of retraction. The panel transfer connector permits female-to-female or male-to-male connection through a gender changer. Custom cable assemblies can be supplied that are shielded through a copper cable, moulded into the circular connector, providing a seamless seal to guard against noise pollution, magnetic fields and radio waves. They are rated to IP65 and DIN40050 for liquid and dust ingress.

Thomas & Betts
Tel: 00 32 2 359 8300
Enquiry No 523

Coax needs no solder
Siemens Electromechanical Components has introduced an IDC coaxial connector for transmitting high-frequency signals in telecoms and datacoms systems. The three-piece unit can be connected using one tool. There is no need for soldering or the removal of an intermediate cable layer, making it suitable for on site and field operations. Contact resistance is more than 0.5MΩ, even after mechanical and climatic stressing. Screening effectiveness is more than 100dB. It is available in various runner types and packaging, including designs for cables with a solid inner conductor.

Siemens EC
Tel: 01344 396000
Enquiry No 522

ARM7TDMI platform
LSI Logic has announced its AMCU silicon development platform, an integrated microcontroller for developing embedded ARM7TDMI Asic designs. It has peripherals, the ARM7TDMI core, 4kbyte of on-chip memory and power-saving modes. The chip can be used as a prototyping vehicle for system-level hardware and software development, and as a reusable modular microcontroller design database, which can be customised and used as part of an Asic design. The platform was designed using the firm’s Coreware Asic design methodology and is verifiable, testable and portable. It comes in a 176-ball MBGA. The peripherals that surround the core include Uarts, timer-counters and external memory interface. There is external interrupt capability on all 32 GPIO pins. Debug access on the development board is via a serial port and diagnostic software routines.

LSI Logic
Tel: 01344 413209
Enquiry No 525

£10 DISCOUNT
Electronics World is delighted to offer you £10 off Newnes CD-ROM library of Circuits, including simulations, from leading experts around the world.

Please send me a copy of “Newnes Interactive Electronics CD-ROM”, normal RRP £49.99 DISCOUNTED PRICE only £39.99 (postage free)
Simply return this order to:
Jackie Lowe, Quadrant House,
The Quadrant, Sutton, Surrey, SM2 5AS.

Name

Address (for delivery)

Pay by cheque (payable to Reed Business Information)

☐ Visa ☐ Access/Mastercard ☐ Amex

Card Number:

Expiry Date:

Signature

Please quote *Electronics World* when seeking further information
Antennas and Propagation for Wireless Communication Systems

Antennas and propagation are the key factors influencing the robustness and quality of the wireless communication channel. This book introduces the basic concepts and specific applications of antennas and propagation to wireless systems, covering terrestrial and satellite radio systems in both mobile fixed contexts.

Including:
- Illustrations of the significance and effect of the wireless propagation channel
- Overview of the fundamental electromagnetic principles underlying propagation and antennas
- Basic concepts of antennas and their application to specific wireless systems
- Propagation measurement modelling and prediction for fixed links, macrocells, microcells, picocells and megacells
- Narrowband and wideband channel modelling and the effect of the channel on communication system performance
- Methods that overcome and transform channel impairments to enhance performance using diversity, adaptive antennas and equalisers.

Antennas and propagation is a vital source of information for wireless communication engineers as well as for students at postgraduate or senior undergraduate levels.

Distinctive features of this book are:
- Examples of real world practical system problems of communication system design and operation
- Extensive worked examples
- End of chapter questions
- Topical and relevant information for and about the wireless industry

How to pay
- I enclose a cheque/bank draft for £________ (payable to Reed Business Information)
- Please charge my credit/charge card
 - Mastercard American Express Visa Diners Club

Credit Card No: __________________________ Expiry Date: __________________________

Signature of Cardholder: __________________________

Send my order to: (please use capitals)

Name: __________________________

Address: __________________________

Post Code: ________ Tel: __________________________

Fax: __________________________ Date: __________________________

Please allow up to 28 days for delivery
Richard Burfoot's 32 watt Class-A push-pull FET power amplifier is inductance loaded, achieving a power efficiency of around 45%. It is fully symmetrical and delivers full power when running from a car battery and a small NiCd pack for biasing.

Class-A amplifiers are generally regarded as inefficient but what, precisely, does this mean? One definition of efficiency is the ratio of maximum output power to input power, expressed as a percentage. It can range widely from, say, 2% for a loudspeaker to close to 100% for a heating element.

Efficiency can usually be determined with good accuracy, but inefficiency is a subjective matter. Take for instance the ubiquitous RC coupled Class-A common-emitter amplifier of Fig. 1a. What would its efficiency be; 25%? 12.5%?

In fact it cannot better 8.33%, and that is assuming idealised components. This amplifier is very inefficient yet it is probably the most widely used amplifier in electronics.

Another measure of efficiency is voltage efficiency. This is the ratio of maximum peak-peak output voltage - the output compliance - to supply voltage. Again this is expressed as a percentage. Voltage efficiency for the common-emitter amplifier is 67%. This is a lot better than its power efficiency but, as I will show, there is still room for considerable improvement.

A simple modification of Fig. 1a is to replace the resistor with an inductor, as in Fig. 1b. What then is the power efficiency of this amplifier, 12.5%? 25%? No, it is in fact 50%. And it isn't only power efficiency that improves. Voltage efficiency also goes up, from 67% to a full 200% - not quite as spectacular but still a very considerable improvement and even more surprising perhaps.

There is, of course, nothing new about inductive loading. It is very common in RF design, but it is rarely used for audio.

Inductance loading in the input stage
There is a price to pay to this performance increase. In Fig. 2, Tr2 and Tr6 form part of the input differential amplifier, biased for Class-A operation. Conventionally, these transistors would be loaded by a pair of resistors at a cost of 5 pence or so, but in this case they are loaded by L1, which retails at £10.55.

As specified, L1 is actually a transformer, which accounts, to some extent for its high cost. A purpose-designed - or even off-the-shelf - inductor should cost less, but even so it would take a very long time indeed for any efficiency improvement to offset this order of cost difference.

It would seem then that inductance loading for the input stage cannot be justified on efficiency grounds alone. In truth, this part of the design started out as just as a bit of fun. Nonetheless I retained it because it confers yet another desirable attribute, and that is an inherently low output offset voltage.

The weak point of differential amplifiers - output offset voltage - is a secondary effect of unbalanced collector current. It appears as a difference in the voltage across the two resistors. Replacing these resistors with a low resistance inductor removes the voltage, and with it the difference and its troublesome drift. It does so without the need for additional control.

As a bonus, inductance loading permits considerable freedom in setting and controlling the differential-amplifier output voltage. In this case R6 and R8, in conjunction with current source Tr3-4, set the output voltage, which in turn is stabilised by Tr8-9 via Tr9.

Emitter followers Tr1 and Tr9 then drive the output pair Tr10-11. Note that, because the differential amplifier is a push-pull stage, voltage efficiency is further doubled to a theoretical 400%. The actual figure is academic but it does provide the potential for Tr2 and Tr6 collectors to swing far below the -12V rail. This in itself is not a requirement of the design but it does mean that the stage operates well inside its linear range.

Inductance loaded output stage
Class-A output stages having efficiencies approaching the theoretical maximum of 50% have been published before, but many only achieve 25% with some as low as 8%. Such poorly specified amplifiers doubtless have their uses but their high heat flux must
compromise their application in the domestic situation.

The output stage of Fig. 2 provides its power with an efficiency of about 45%; idealised components would provide for 50%. It does this with a voltage efficiency of some 377% and this in turn has implications for the choice of power supply, as discussed later.

Drive voltage from followers \(\text{Tr}_1 \) and \(\text{Tr}_7 \) is set such that \(\text{Tr}_10 \) and \(\text{Tr}_11 \) draw 3A each, giving a quiescent current of 6A. These currents are supplied via \(L_2 \). Ignoring for now the small voltage drop across its windings, all three terminals of \(L_2 \) along with the loudspeaker terminals, are at 0V, i.e. at the positive level of battery \(B_2 \).

How it works

Suppose that a signal drives \(\text{Tr}_{10} \)'s gate positive. Its drain current will increase above 3A but this additional current cannot be sourced from \(L_2 \) because it is an inductor and will not permit such a change at the frequencies of interest. Instead the additional current must come from the loudspeaker, the resulting voltage drop then pulling \(\text{Tr}_{10} \)'s drain towards -12V.

Simultaneously \(\text{Tr}_{11} \)'s gate is driven negatively. Its drain current will fall below 3A, but again \(L_2 \) will not permit any change to the 3A quiescent current. Instead this current is diverted into the loudspeaker, the resulting voltage generated now pulling \(\text{Tr}_{11} \)'s drain up towards +12V.

At the limit, \(\text{Tr}_{10} \) will saturate at 6A drain current, with 3A coming from \(L_2 \) and 3A from the loudspeaker. Transistor \(\text{Tr}_{11} \) will cut-off with the 3A from its side of \(L_2 \) going to the loudspeaker. At this point, one side of the loudspeaker will be at -12V with the other at +12V for a total peak voltage of 24V. Note that at no point does signal current flow in \(L_2 \), which continues to supply its quiescent 6A as should be expected.

On the following half cycle, the general situation reverses, for a peak loudspeaker voltage of -24V, giving a peak-to-peak output of 48V. From a 12V supply this represents a voltage efficiency of 400%, though as stated earlier only about 377% is achievable in practice. The general performance can now be checked.

Input power, \(P_{in} \)

\[12V \times 6A = 72W \]

Output power, \(P_{out} \)

\[\sqrt{2} \times 48V \times 6A / 64 = 36W \]

Power efficiency is \(P_{out}/P_{in} \times 100\% \), i.e. 50%. Again these are idealised figures. In practice, achievable power is some 32W for an efficiency of 45%.

Inductors and other considerations

At the lower -3dB point, of, say, 40Hz, \(L_2 \) needs to have a reactance equal to the load, L.S. So,

\[L_2 = 2\pi \times \frac{40}{8\Omega} = 32mH \]

and of course the winding resistance should be as low as possible.

Knowing the value of the inductor is of limited help though because such components are neither readily available nor easily made. Instead I used a spare 15V-0-15V 50VA mains audio transformer, leaving the primary unconnected. This gives a surprisingly good result and rewinding the transformer as a choke - i.e. no mains primary - with a heavier gauge wire did not appear to improve the performance. Nevertheless this would be the first item to optimise given the necessary resources.

Prospective builders should be advised that a mains transformer, used in this way, will develop very high voltages at the unconnected primary. This in itself is hazardous and might also result in failure of the winding insulation, though I have not experienced problems with any of the transformers that I have used.

Similarly with \(L_1 \), because of the difficulties in specifying procuring and testing inductors, I chose it from Farnell's audio transformer selection, part number 149-840.

A feedback loop is used to establish the 6A bias current. The small voltage drop across \(L_2 \) referred to above is proportional to the bias current. This voltage is picked off by \(R_{18-19} \) and is compared, by differential amplifier \(\text{Tr}_{8-9} \), with a reference voltage set by \(R_{13-14} \).

Output from \(\text{Tr}_9 \) passes to \(\text{Tr}_{5} \), as previously indicated, to control the input differential amplifier and hence the FET drive, completing the loop. Overall feedback, taken from \(\text{Tr}_{15} \), is applied to the input differential amplifier via \(\text{R}_{10} \) and \(\text{R}_{12} \).

Input bootstrapping is not used because I did not want the complication of the switch-on delay relay needed to mask the thump. Instead, I prefer a low but acceptable input impedance of about 15k\(\Omega \) at a sensitivity of 750mV.

Output protection should not be necessary because the output topology featured poses no threat to the loudspeakers.

Powering the design

During initial experiments, a 9V NiCd battery supplied the differential amplifier bias, now shown as \(B_1 \), I used a battery because I wanted to be quite sure that hum was not coming in from the front end.

Still dissatisfied with the hum level, and having spent more than enough time and effort on the AC mains power supply, I also replaced this supply with a battery. Shown as \(B_2 \), this was an old lead-acid car battery.

The original aim was simply to allow the basic design to move forward but I became seduced by the total absence of all supply noise. There now seems to be no good reason to go back to AC mains power. The prospect of introducing hum along with transformer buzz and even more cooling problems is not at all attractive.

The original car batteries have since been replaced by 75Ah lead-acid Leisure batteries as used in caravans. There's one per channel. These are more tolerant of the occasional deep-discharge and have the capacity to provide for some 5 to 6 hours use between charges.

In its turn, battery power has implications for packaging. Free from a central power source, the attractions of organising the amplifiers as monoblocs arises. This permits mounting each amplifier to the back of its loudspeaker. This eases the cooling problem since the heat sinks can be mounted vertically in free cooling air.

It also eliminates the speaker cables and because the only electrical connection is 0V, cross-talk is reduced to zero.

Living with the amplifier

This amplifier has been designed entirely for my own domestic use. Decisions such as the choice of battery power and monobloc construction undoubtedly made it commercially

![Fig. 1. Fitting a Class-A amplifier with an inductive load instead of a resistance gives a dramatic increase in power efficiency.](image-url)
unattractive, but they also undoubtedly make it sound better, which is what I consider important.

The prototype has been in use for two years now. It is uncannily quiet and smooth playing a Mahler Adagio – as I write this. But it can also deliver the power and dynamics required for thumping Afro-Celt.

Distortion when it comes is a bit of a surprise. I had expected the soft clipping and gentle low frequency roll-off associated with valve amplifiers. After all they both feature large output inductors, and MOSFETs are reputed to sound like valves.

Certainly the clipping is soft from the mid-bass upwards, but it does not roll-off as expected. If a test signal of, say 400Hz, driving the amplifier close to clipping, is slowly reduced in frequency, full output is maintained until a point is reached, at around 80Hz, when L_2 can no longer supply the required current for the required time. The current first runs out at the end of each half cycle, the voltage falling abruptly to OV and looking a bit like crossover distortion. This distortion increases as the frequency is reduced unless the drive is also reduced.

Specific distortion figures are not provided because I do not have the equipment necessary to obtain them. However, the amplifier auditions well and is not at all difficult or expensive to build. Why not try it?

Finally I must credit Mullard Ltd, which published details around the early 1960s of a 5W single-ended inductance loaded amplifier using an AD149 p-n-p germanium transistor. I have tried for some time to replace my lost copy but without success. This was a truly delightful little gem and was the inspiration for the amplifier presented here.

Fig. 2. Complete Class-A power amplifier with inductive loading. Both inductors were transformers since they are much easier to obtain than large inductors. If you use transformers, make sure you insulate the unused mains side of L_2. It can give a nasty shock. Turning S_5 on activates the relay, switching the NiCd battery from 'charge' to 'on'.
The TELEBOX is an attractive fully cased mains powered unit, containing all electronics ready to plug into a host of video monitors or AV equipment which enable full tuning control via a simple 3 wire link to an antenna. It provides an input to your colour monitor or TV for Direct Connection to an antenna from which you can switch and tune all channels, including the Hyperband and all the weak UHF and VHF channels. Best used for video monitoring / security applications with direct connection to most colour cameras. High quality with many features such as remote tuning, audio switch, stereo inputs, full 15 pin RGB video inputs via SCART socket and separate phono jacks. It will connect direct to Amiga and Apple computers. Ideal for all TV applications from video cameras to supercomputers with direct connection to the most powerful colour monitors. All internal components are cased in high quality black plastic with an attractive front panel and a full specification. Dimensions: W14' x H123/4" x 151/2" D.

Just In - Microvitec 20" VGA (800 x 600 res.) colour monitors. Good SH condition - from £99 - CALL for info

PHILIPS HCS35 (same as CM8833) 14" Multiview colour monitor with this multi-view feature, the HCS35 can be configured to display 8 separate images on each monitor. Any combination of RGB and composite signals is selectable. Via the optional inputs, the HCS35 is ideal for use with any of the many video input options. The HCS35 is a fully cased professional monitor. High grade panel with certified 75% contrast ratio with integrated 40 MHz standard RGB and composite 15.625 KHz video inputs via SCART socket and separate phono jacks. It will connect direct to Amiga and Apple computers. Ideal for all TV applications from video cameras to supercomputers with direct connection to the most powerful colour monitors. All internal components are cased in high quality black plastic with an attractive front panel and a full specification. Dimensions: W14' x H123/4" x 151/2" D.

One of the highest specification monitors you'll ever see!

Visit our website

www.distel.co.uk

Visit our web site
The dirt on switching

Switches can do some really odd things. Most engineers learn this soon after connecting a switch or relay to a digital system. Switches don't make and break cleanly on the time scales of digital systems. Instead, a typical switch makes multiple transitions during the tens of milliseconds required to open or close it. Commonly called switch bounce, this behaviour is an inescapable fact of life, as John Wettroth explains.

After connecting a standard switch to a digital counting circuit, you can observe several counts on opening and several counts on closing, Figs 1-2. This erratic action can wreak havoc on data, because the exact number of counts does not necessarily repeat in the long term.

Switch bounce is not consistent from unit to unit, lot to lot, or even over the life of an individual switch. Membrane switches and some other types appear not to bounce when new, but all mechanical switches bounce sometimes. Nothing can ensure that another switch of the same type will act the same way, or that a particular switch will remain bounce-free as it ages.

In addition to bounce, switches and digital systems have other annoying habits. Strange things happen, for example, when you run switch wiring in a noisy industrial environment. An open switch has high impedance by definition, so interfering signals have an easy load to work against. Any noise impulse that is capacitively or inductively coupled to the switch wiring can cause phantom switch closures.

Imagine a PLC, i.e. a programmable logic controller, switching a motor through a hefty relay. A limit switch placed near the motor provides position feedback to a digital input on the PLC.

When the PLC tells the motor to start, a surge of current flowing to the relay and motor can couple to other conductors in the long wiring runs, causing ground bounce or a capacitively coupled spike in the digital input. If not properly designed, the PLC may interpret this spike as a premature switch closure and shut down the operation.

Similar things can happen when the PLC turns the load off, due to the effect of wiring capacitance, wiring inductance, and the inductive kick of the relay and motor. If the PLC and its digital inputs are not properly designed these spikes and transients can cause erroneous readings on the digital inputs.

The digital and analogue inputs on equipment used in the home, office, and industry are subject to the effects of overvoltage, voltage transients and ESD. Improper wiring, miscellaneous fault conditions and power-supply sequencing - in which one box with power off is connected to another with power on, even temporarily - cause overvoltage.

Voltage transients are often associated with capacitively or inductively coupled spikes, as discussed above. ESD can strike a connector, an operator console, or a terminal strip during installation. Any of these transients can cause destruction if the system latches up. If not destructive, they can cause CPU resets, watchdog overflows, and other erratic operation.

System designers should be aware of these problems and the methods used to combat them. One solution for such interface problems is a new series of ICs. Available in low-cost, easy-to-use configurations, these devices offer foolproof, software-free debouncing along with protection against overvoltage and ESD.

This article highlights the application of IC switch debouncers while describing the classic methods for thwarting overvoltage, voltage/current spikes, switch bounce, and ESD.

Switch bounce

If asked, most engineers would say that switches are debounced in software, and that debouncing is no problem. Both assumptions are true if you pay proper attention to the details. Software debouncing takes care of the bounce, but does not address the problems of overvoltage, ESD, or other transients.

Debouncing with resistors and capacitors is also possible. In general, you need a pull-up resistor, a resistor and capacitor in series, a resistor to the input of a Schmitt-trigger buffer, and often a diode to ensure that the capacitor charge doesn't force lots of current through the buffer's input-protection network during power-down.

The resulting parts count can be unwieldy for multiple-input systems, Fig. 3, so this approach will not be covered in any detail.
Debouncing via software

Debouncing via software is the primary method in use today. A good debouncing routine is actually real-time software that acts like a simple low-pass digital filter. Non-switch digital inputs are often routed through debounce filters as well. That technique can eliminate short transients at the input by ensuring a stable state before reporting the input open or closed.

The pseudo code in List 1 illustrates a software-debounce routine for one input. It accommodates multiple inputs if you generalise the routine and use pointer-based variables, etc. Though a mediocre approach at best, this type of routine is often used in spite of the problems and flaws outlined below.

The routine debounces switch closures, but it will accept 'open' as a legitimate state even when the switch is bouncing. Though unintentional, this asymmetrical operation might be acceptable in keypads and other systems that take action on closures but not on opens. For general-purpose inputs, you should debounce both edges.

Another shortcoming is that this routine assumes the switch is open if not closed, thereby ignoring a third state in which the switch is unstable - i.e. still bouncing. A better routine should therefore report the last non-bouncing state until the switch reaches a new debounced state. This action can also cause problems, however. In such cases, the software should recognise a third state of 'changing.'

Sampling wastes

Many debounce routines sample the input repeatedly, waiting for it to remain in the same state for a pre-arranged number of samples. If the switch changes state during that interval, the routine tests the new state for stability in the same way. This action can cause large delays that eat up a lot of CPU time.

As an extreme case, a programmable logic controller with high frequency applied to one of its general-purpose input ports - whether inadvertent, on purpose, or due to failure - would completely hang the processor. A watchdog timer might bring back the processor, but the problem would recur indefinitely; not a robust design.

Further, you need a lot of memory and code to debounce a large industrial system with lots of inputs, such as a PLC or general-purpose input board. Each input requires a closed counter, an open counter, and two bits to define its state.

Transients and ESD suppression

The standard prevention for ESD is a transient suppressor or MOV device at each external input. Quad and octal Tranzorbs, for example, are straightforward and relatively inexpensive devices that can reduce clutter and real estate requirements, but care must be taken to avoid cross coupling of fault currents. This approach is common in industrial and automotive systems, where engineers understand the peril of omitting such protection.

A good practice is to connect a 220Ω resistor in series with the Vcc line for port input devices. A common CMOS input device like the octal 74HC244 or 74HC573, for example, draws very little current. Should it latch up, the 220Ω resistor limits the current and power dissipation to a safe level.

Power cycling may still be necessary, though. In general, you should not connect the port pins of a microcontroller to the external inputs directly. Latchup is a problem, but radiated EMI is likely to be even worse.

Because a part cannot latch up unless sufficient current is injected into one of its pins, some designers believe that resistors in series with CMOS digital inputs prevent these problems. Indeed, the threshold for SCR latchup in modern CMOS ICs can exceed 50mA.

Overvoltage protection

Overvoltage protection enables a system to withstand continuous and longer-term-transient inputs that extend beyond the rails. As an example, an IC with no Vcc applied has 24V from an external source applied to the inputs. Such applied voltage often 'backdrives' the protection networks, forcing voltage onto the power rail inside a system.

One effective countermeasure is a transient suppressor or MOV device at each external input. Quad and octal Tranzorbs, for example, are straightforward and relatively inexpensive devices that can reduce clutter and real estate requirements, but care must be taken to avoid cross coupling of fault currents. This approach is common in industrial and automotive systems, where engineers understand the peril of omitting such protection.

A good practice is to connect a 220Ω resistor in series with the Vcc line for port input devices. A common CMOS input device like the octal 74HC244 or 74HC573, for example, draws very little current. Should it latch up, the 220Ω resistor limits the current and power dissipation to a safe level.

Power cycling may still be necessary, though. In general, you should not connect the port pins of a microcontroller to the external inputs directly. Latchup is a problem, but radiated EMI is likely to be even worse.

Because a part cannot latch up unless sufficient current is injected into one of its pins, some designers believe that resistors in series with CMOS digital inputs prevent these problems. Indeed, the threshold for SCR latchup in modern CMOS ICs can exceed 50mA.

One effective countermeasure is a transient suppressor or MOV device at each external input. Quad and octal Tranzorbs, for example, are straightforward and relatively inexpensive devices that can reduce clutter and real estate requirements, but care must be taken to avoid cross coupling of fault currents. This approach is common in industrial and automotive systems, where engineers understand the peril of omitting such protection.

A good practice is to connect a 220Ω resistor in series with the Vcc line for port input devices. A common CMOS input device like the octal 74HC244 or 74HC573, for example, draws very little current. Should it latch up, the 220Ω resistor limits the current and power dissipation to a safe level.

Power cycling may still be necessary, though. In general, you should not connect the port pins of a microcontroller to the external inputs directly. Latchup is a problem, but radiated EMI is likely to be even worse.

Because a part cannot latch up unless sufficient current is injected into one of its pins, some designers believe that resistors in series with CMOS digital inputs prevent these problems. Indeed, the threshold for SCR latchup in modern CMOS ICs can exceed 50mA.

List 1. Action sequence for debouncing using software.

<table>
<thead>
<tr>
<th>Action</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Input timer expired?</td>
<td>A timer bit is polled in the main routine</td>
</tr>
<tr>
<td>2. Return if no timer</td>
<td>Go do something more useful</td>
</tr>
<tr>
<td>3. Get input bit</td>
<td>The "bouncy" input</td>
</tr>
<tr>
<td>4. Count++ if high; clear else</td>
<td>Increment a counter if input is high</td>
</tr>
<tr>
<td>5. If count >4 state=1, else 0</td>
<td>Check counter and clamp it at 4</td>
</tr>
<tr>
<td>6. Return input state</td>
<td>State is debounced</td>
</tr>
</tbody>
</table>
COMPONENTS

Fig. 4. This general block diagram for the MAX6816 family of switch debouncers includes an input structure protected against ESD and overvoltage, followed by a digital filter that debounces the input and applies undervoltage lockout.

Fig. 5. In this typical single-debouncer application, the only components are a small bypass capacitor and the 4-pin SOT-23 package.

Fig. 6. Timing diagram for the MAX6816 switch-debouncer family shows that the outputs change state about 40ms after the inputs become stable. An additional MAX6818 output that indicates a change of state for any of the inputs. The CH output reduces polling overhead, especially in multiple-input systems.

Fig. 7. In a typical application, the MAX6818 data outputs remain three-stated until EN is pulled low. The change output, CH, is reset high following each read, and set low following a change of state at any input. It can either be polled by the system or tied to an interrupt as shown.

debouncer in a four-pin SOT-23 package, while the MAX6817 is a dual-switch debouncer in a six-pin SOT-23 package. They provide debounce logic and a digital filter, input overvoltage protection to ±25V, and ESD protection to ±15kV for harsh industrial environments.

Operating on single supply voltages in the range 2.7V to 5.5V, they draw typical supply currents of only 6µA. They also provide undervoltage-lockout circuitry that ensures correct output states on power-up.

Because the proprietary ESD-protection structure at each input includes an overvoltage clamping diode and 63kΩ pull-up resistor, these ICs provide a direct interface to the switch without external components. Their nominal debounce delay of 40ms ±20ms masks the bounce produced by even the ugliest of switches, Fig. 6.

An octal debouncer

The MAX6818 octal-switch debouncer is designed for data-bus interfacing, Fig. 7. It monitors eight switches, providing a change-of-state output, CH, and three-stated data-bus output in addition to the debounce and input-protection features of the single and dual parts. In particular, its CH output greatly simplifies the polling and interrupting of microprocessors.

Each time the system reads the data outputs by driving the enable line low, the IC resets high. Output CH then goes low when any input changes state. The MAX6818 is pin-compatible with the 74HC573 and other standard, 20-pin octal logic devices. It handles multiple inputs with ease.

These new switch debouncing ICs solve multiple problems associated with connecting digital systems to noisy, transient-prone, 'bouncing' inputs. They make systems more robust and reliable by simplifying design, reducing CPU time and overhead, and replacing multiple passive components.
This Month is Anchor’s Signal Generator MAYHEM Month

MARCONI 2019A Synthesised Signal Generators
- 80kHz to 1040MHz AM-FM-CW LCD Displays
- Complete with lids etc.
- FULLY TESTED and Warranted
- NOW ONLY £475.00

MARCONI 2022E Synthesised Signal Generators
- 10kHz to 1010MHz LCD Display Fitted IEEE with covers
- Small and Lightweight
- FULLY TESTED and Warranted
- NOW ONLY £495.00

Frequency Counters
- Racal Dana 9918 9 segment 560MHz £75

Signal Generators
- Farnell PSG520 10MHz-520MHz AM-FM Sinad ONLY £295
- Rohde and Schwarz APV62 1Hz to 260kHz with LCD display £995
- Farnell DSG2 Synthesised 0.1Hz to 110MHz £195
- Wavetek 155 Programmable VCG 0.1Hz to 1MHz sine, square, triangle £795
- Schlumberger FSD120M Remote Synthesiser to 120MHz in 0.01Hz steps
 - Was £175 ... Reduced, Now ONLY £125

Oscilloscopes
- TEK 2445 150MHz Four Trace/2 Time base with Cursors, etc. Now Only £495
 - TEK 2445A 150MHz Four Trace/2 Time bases with Cursors, etc. Now Only £995
 - TEK 2465 300MHz Four Trace/2 Timebases Now Only £1250
 - GOULD OS3500 with DVM10 DVM fitted, 600kHz Dual trace, Dual Timebase
 - Was £350 ... Reduced, Now ONLY £250
 - HP 1741A 100MHz Storage Dual Time base
 - Was £350 ... Reduced, Now ONLY £250
 - TEK 465B 100MHz Dual Trace/Timebase Now Only £295
 - TEK 465M scope as 465B but built only for Military. Only £350
 - TEK 475 200MHz Dual Trace/Timebase Now Only £395

Regulated Power Supplies
- Thorn Automation Variable power supply giving 0-40 volts at 0-50 amps DC. V and I limiting (advise calling... these are heavy), 2 ONLY £125
- Lambda Labs LME5V 5V at 10A DC... ONLY £20
 - LMD12V 12V at 10A DC... ONLY £20
 - LME24V 24V at 1.4A DC... ONLY £7.50
 - LPS23 variable 0-60V at 0.9A... ONLY £45
- Farnell 830/10 Regulated + Stabilised Power supply, 0-30V @10A £60

Miscellaneous
- SE labs SE7000 instrumentation recorder system
 - 42 channel, 8 speeds from 15/16ips to 129ips, 1in tape complete with SE7000 patch panel... 1 ONLY £500
 - GIGA Pulse internal counter 2-8GHz ONLY £150
 - Fluke 80-40K
 - High Voltage probe for DVMs 40kv. Cased. NEW £45
 - Beckman Industrial HD110 LCD Multimeters in Leather case, 1000V, 1A ONLY £59

NEW SCOPE PROBES
- X1/X10 switchable to 100Mhz
 - Twin trace incl probes ONLY £225
- DTA20 Oscilloscope 20MHz
 - Twin trace ind probes ONLY £225
- DTA40 Oscilloscope 40MHz
 - Twin Trace ind probes ONLY £299
- DTS40 Oscilloscope 40MHz
 - Digital Storage twin channel
 - Cursors + readouts incl. Probes. ONLY £399
- AMM255 Automatic Mod Meter
 - 1.5Mhz to 2GHz, LCD IEEE488 ONLY £275
- SCG50 Synth Clock Gen.
 - To 50MHz, LED display ONLY £125

NEW EQUIPMENT
- AVO Model 8 Mk 5/Mk 6 Multimeters
 - THE Standard
 - ONLY £65

Studio Quality AUDIO Equipment
- Studer A710
 - Cassette desk with Dolby C. 1 ONLY £325
- Uher 4000
 - Report monitor portable. To 9.5ips 1 ONLY £75

ANCHOR SUPPLIES LTD
All prices are EX VAT and Carriage

MAIL ORDER A PLEASURE
The Cattle Market Depot, Nottingham NG2 3GY, UK
Tel: (0115) 986 4902 Fax: (0115) 986 4667
Also at Ripley, Derbys (01773) 570137 and Coalville, Leicestershire (01530) 811800

Visit our Web Site: www.anchor-supplies.ltd.uk email: sales@anchor-supplies.ltd.uk
Measuring RF power

Joe Carr explains presents a backgrounder to RF power and describes a number of circuits for measuring it.

Radio-frequency power measurements are made for a variety of purposes. In this pair of articles, several different topics will be discussed: the nature of the power being measured, methods of measuring power, error sources in RF power measurement, and typical commercial instruments used for RF power measurements.

The assumption is that the RF power is being measured to determine the output level produced by a radio transmitter, or some associated circuit or device.

What is Power?
Electrical power is defined as energy flow per unit of time. The internationally accepted standard unit of power is the watt, abbreviated to W of course, which is defined as an energy flow of one joule per second.

Other electrical units are defined in terms of the watt. One volt for example is one watt per ampere of current flow. The watt is the product of the electrical potential and the current flowing,

\[P = V \times I \]

Other expressions of power include,

\[P = \frac{V^2}{R} \]

\[P = \frac{1}{2} \pi f L \]

Where \(P \) is power in watts, \(V \) is electrical potential in volts, \(I \) is current in amperes and \(R \) is resistance in ohms.

Decibel notation of power units
It is common practice to express power relationships in terms of decibel notation, which allows gains and losses to be added and subtracted, rather than multiplied and divided, somewhat simplifying the arithmetic.

For relative power levels,

\[dB = 10 \log \left(\frac{P_1}{P_2} \right) \]

And for absolute power levels 50Ω load,

\[dBm = 10 \log \left(\frac{P}{0.001} \right) \]

or,

\[dBm = 10 \log P_{\text{mw}} \]

where \(dBm \) is power level relative to one-milliwatt in a 50Ω load, \(P_1 \) and \(P_2 \) are two power levels (same units), \(P_w \) is power in watts and \(P_{\text{mw}} \) is power in milliwatts.

Types of RF power measurement
Measuring RF power is essentially the same as measuring low frequency AC power, but certain additional problems present themselves.

For a continuous wave, or CW, signal, the issue is relatively straightforward because the signal is a series of equal amplitude sine waves. For on-off telegraphy, the problem gets somewhat more difficult because the waves are not constant amplitude. The RF power depends on the ratio of on time to off time.

In the case of a sine wave, a peak reading instrument, such as a diode detector, can be calibrated for root-

<table>
<thead>
<tr>
<th>Waveform Description</th>
<th>PEV</th>
<th>PEP (PEV^2/Z_0)</th>
<th>Heating power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous wave (CW)</td>
<td>70.7</td>
<td>100W</td>
<td>100W</td>
</tr>
<tr>
<td>Amplitude modulation (100%)</td>
<td>141.4</td>
<td>400W</td>
<td>150W</td>
</tr>
<tr>
<td>Amplitude modulation (75%)</td>
<td>122.3</td>
<td>300W</td>
<td>127W</td>
</tr>
<tr>
<td>Single-sideband (one-tone)</td>
<td>70.7</td>
<td>100W</td>
<td>100W</td>
</tr>
<tr>
<td>Single-sideband (two-tone)</td>
<td>70.7</td>
<td>100W</td>
<td>50W</td>
</tr>
<tr>
<td>Single-sideband (voice)</td>
<td>70.7</td>
<td>100W</td>
<td>(Note 1)</td>
</tr>
<tr>
<td>TV black level</td>
<td>70.7</td>
<td>100W</td>
<td>60.1W</td>
</tr>
<tr>
<td>Pulse (10% duty cycle)</td>
<td>70.7</td>
<td>100W</td>
<td>10W</td>
</tr>
<tr>
<td>Multiple carriers (Note 2)</td>
<td>282.8</td>
<td>1600W</td>
<td>400W</td>
</tr>
</tbody>
</table>

NOTES:
Note 1: Depends on voice modulation characteristics
Note 2: Four 100W RMS CW carriers
Fig. 2. Thermistor R-versus-T characteristics, a); R-versus-P characteristics at different ambient temperatures, b); and thermistor sensor mount for measuring RF power, c).

Mean-square (RMS) power by the simple expedient of dividing the indication by the square root of two, which is 1.414.

If the meter is inherently RMS reading it is, for example, a thermally based instrument then the power measurement of the complex waveform is inherently RMS.

Table 1 shows the power relationships for assorted modulation waveforms. The figures are arbitrarily based on the peak envelope voltage (PEV) in each waveform, a 50Ω system impedance, and are compared with 100W RMS unkeyed CW power.

Methods for measuring RF power
RF power meters use a number of different approaches to making the measurement. Some instruments measure the current or the voltage at a resistive load, and depend on the equations $P = R$ or E^2/R.

Other methods are based on the fact that power dissipated in a resistive load is converted to heat, so the temperature change before and after the RF power is applied can be used as the indicator of RF power. This approach has the advantage of finding a DC equivalent RMS power.

Figure 1 shows the basic scheme. A load resistor, R_0, with a resistance equal to the system impedance, is enclosed in an isolated environment with some sort of temperature sensor.

Theoretically, you could place a dummy load resistor in a workshop room, and then use a glass mercury thermometer and stopwatch to measure the rise in temperature and elapsed time to find the power. That's hardly practical though.

The basic idea is to find a sensor, such as a thermistor or thermocouple, that will convert the heat generated in the load resistor to a DC, or low-frequency AC, signal that is easily measured with ordinary electronic instruments.

In the case shown in Fig. 1, the temperature sensor produces a voltage output that is proportional to the applied RF power level.

Thermistor RF power meters
A thermistor is a resistor that changes its electrical resistance with changes in temperature. Although all conductors exhibit some 'thermistor behaviour' actual thermistors are usually made of a metallic oxide compound.

Figure 2a) shows the resistance versus temperature curve for a typical thermistor device. A negative temperature coefficient, or NTC, device will decrease resistance with increases in temperature. A positive temperature coefficient device, or PTC, device is the opposite: resistance rises with increases in temperature.

Bolometers
Figure 2b) shows a family of resistance versus self-heating power curves for a single thermistor operated at different temperatures.

The resistance is not only nonlinear, which makes measurements difficult enough in its own right, but also the shape and placement of the curve varies with temperature. As a result, straight thermistor instruments can be misleading.

Bolometry is a method that takes advantage of this problem to create a more accurate RF power measurement system.

Self-heating power is caused by a DC bias flowing in the thermistor. Figure 2c) shows how self-heating can be used in bolometry. Thermistor RT_1 is adjusted to a specified self-heating point when no RF power is applied to the dummy load R_0. The resistance of thermistor RT_1 can be read from the voltmeter because the current from the constant-current source remains the same once it is adjusted to a set point.

When RF power is applied to the dummy load, heat radiated from the load causes the resistance of RT_1 to decrease. The bolometer current source is then adjusted to decrease the bias until the resistance rises back to the value it had before power was applied. This point is indicated by returning the meter reading to the same point as before.

The change of bias power required to restore the thermistor to the same resis-
tance is therefore equal to the power dissipated in the dummy load.

Self-balancing bridge instruments

The Wheatstone bridge circuit, Fig. 3, is used in a number of instrumentation circuits. In the null condition, when V_0 is zero, the ratios of the resistors are equal: $R_1/RT_1=R_2/R_3$. It is not strictly necessary that $R_1=RT_1=R_2=R_3$, only that $R_1/RT_1=R_2/R_3$. If one of the resistors is a thermistor, then the temperature can be measured by the unbalance of the bridge. Similarly, if the thermistor resistance is such that the equality $R_1/RT_1=R_2/R_3$ is satisfied, then you can infer the resistance of the thermistor by the null condition.

The self-balancing – also known as autobalancing or autonull – bridge shown in Fig. 4 uses a Wheatstone bridge thermistor to perform bolometry measurement of RF power. The thermistor mount sensor assembly contains a dummy load and a thermistor, R_T. The null condition is created when $R_1/RT=R_2/R_3$.

The self-balancing bridge uses a differential amplifier A_1 to perform the balancing. A differential amplifier produces an output voltage proportional to the difference in two input voltages.

When the Wheatstone bridge is in balance, then the output of the differential amplifier is zero. The bias for the Wheatstone bridge, hence the thermistor in the bolometer sensor, is derived from the output of the amplifier.

A change in the resistance of the thermistor unbalances the bridge, and this moves the amplifier’s differential input voltage away from zero. The amplifier output voltage goes up, thereby changing the bias current in an amount and direction necessary to restore balance. Thus, by reading the bias current, the RF power level that changed the thermistor resistance can be inferred.

Because the thermistor will have a different characteristic curve at different ambient temperatures, it is necessary to either control the ambient temperature, or correct for it. It is very difficult to control the ambient temperature. Although it is done, it is also not terribly practical in most cases. As a result, it is common to find RF power meters using two thermistors in the measurement process, Fig. 5.

One thermistor is mounted in the thermistor sensor mount used to measure RF power, while the other is used to measure the ambient temperature. The readings of the ambient thermistor are used to correct the readings of the sensor thermistor.

Thermocouple RF power meters

The thermocouple is one of the oldest forms of temperature sensor. When two dissimilar metals are connected together to form a junction, and the junction is heated, then the potential across the free ends, V_T, is proportional to the temperature of the hot junction. This phenomenon is called the Seebeck effect.

A thermocouple RF ammeter is constructed using thermocouples and a small value resistance heating element, Fig. 6. The meter will have a small wire resistance element in close proximity to a thermocouple element. The thermocouple is, in turn, connected to a DC meter.

When current flows through the resistance heating element, the potential across the ends of the thermocouple changes proportional to the RMS value of the current. Thus, the RF ammeter measures the RMS value of the RF current.

If the RF ammeter is used to measure the current flowing from an RF source to a resistive load, then the product PR indicates the true RF power. These meters can measure RF current up to 50 or 60MHz, depending on the instrument.

Thermocouples and thermistors share the ability to measure true RF power. Although thermocouple RF ammeters have been used since the 1930s, or earlier, the use of thermocouples in higher frequency and microwave power meters started in
the 1970s. Thermocouples are more sensitive than thermistor sensors, and are inherently square-law devices.

Figure 7 shows a solid-state thermocouple sensor that can be used well into the microwave region. Two semiconductor thermocouples are connected such that they are in series for DC, and parallel for RF frequencies. Thus, their combined output voltages are read on the DC voltmeter. Because of the capacitors, however, they are in parallel for RF frequencies, and if designed correctly will make a 50Ω termination for a transmission line.

Thermocouples suffer the same reliance on knowing the ambient temperature as thermistors. Figure 8 shows a method for overcoming this problem. A pair of thermistors is used. One is used either in a bolometry circuit or as a terminating sensor to measure the unknown RF power. The other sensor is used to measure a highly controlled reference power source.

Depending on the implementation, the reference power might be DC, low frequency AC or another RF oscillator with a highly controlled, accurately calibrated output power level.

Diode detector RF power meters

Rectifying diodes convert bi-directional alternating current

Figure 6. The thermocouple RF ammeter is useful for measuring frequencies to about 60MHz.

Figure 8. Using two thermocouples to compare unknown RF power with a known DC or low frequency AC power source.

Figure 7. RF wattmeter using a pair of semiconductor thermocouples.

Figure 9. I-versus-V curve of diode rectifier. Note that at Vy, the response enters a linear region.
to unidirectional pulsating DC. When filtered, the output side of a diode is a DC level that is proportional to the amplitude of the applied AC signal.

Figure 9 shows the unidirectional action in the form of the I-versus-V curve. When the applied bias is positive — i.e. forward bias — the current begins to flow, but not proportionally. At some point between 200 and 300mV in germanium diodes or 600 and 700mV in silicon diodes, marked \(V_1 \) in Fig. 9, the response enters a linear region. This response is termed the noise floor.

The nonlinear region of the I-versus-V curve is called the square-law region. In this region the rectified output voltage from the diode is proportional to the input power.

Fig. 10. Output voltage versus RF input power curve. In the square-law region, rectified output from the diode is proportional to input power.

In low-cost RF power measuring instruments, silicon and even germanium diodes are often used, but these are not highly regarded for professional measurements. Low-barrier Schottky diodes are widely used up to well into the microwave region. For higher frequencies in the microwave region, planar doped barrier (PDB) diodes are preferred. They work up to 18GHz or better, and power levels of -70dBm. It is claimed that PDB diodes are more than 3000 times more efficient than thermocouple detectors.

Circuits

Figures 11a) and 11b) show two similar circuits using a diode detector. Resistor \(R_L \) in Fig. 11a) is a dummy load that has a resistance value equal to the characteristic impedance of the transmission line connecting the system — 50Ω for example. Diode \(D_1 \) is the rectifier diode, while capacitor \(C_1 \) is used to filter the pulsations at the rectifier output into pure DC. A problem with that circuit is that it is limited to power levels consistent with the native characteristics of the diode.

Fig. 11. Simple diode detector for measuring RF power, a), and a similar circuit for higher power levels, b).

Figure 11b) shows the same circuit with a resistor voltage divider, \(R_1/R_2 \), to reduce the voltage associated with higher power levels to the characteristic of the diode. The actual voltage applied to the diode will be \(V_{RL} \times (R_2/(R_1+R_2)) \). This circuit is similar to the metering circuit built into a number of low-cost amateur radio dummy loads in the past.

Practical in-line bridge circuits

Low-cost in-line RF power meters, Fig. 12, are available using a number of different forms of bridge circuit. These are superior to the classical Wheatstone bridge because they can...
be left in-line while transmitting. Although the illustration in Fig. 12 shows a dummy load, it could just as easily use a radiating antenna.

Micromatch. One form of in-line RF power meter is the micromatch circuit of Fig. 13. This device is similar to a Wheatstone bridge in which the antenna impedance represents one arm, and a pair of capacitive reactances X_{C1} and X_{C2} represent two other arms.

Output voltage of the bridge is rectified by D_1, and filtered by R_2/C_3, before being applied to a microammeter. Note that this may be any meter from 100µA to 1 mA full-scale.

The bridge consists of X_{C1}, X_{C2}, R_1, and R_L - the antenna or load resistance. The null condition exists when $X_{C1}/X_{C2}=R_i/R_L$. For 50Ω antenna systems the ratio R_i/R_L is 1/50, so a value of C_2 around 15pF is needed to produce the correct C_1/C_2 ratio.

For a 75Ω system, about 10pF is needed.

Fig. 13. Micromatch RF watt meter, which is similar to a Wheatstone bridge.

Fig. 14. Printed circuit mono-match RF wattmeter useful from HF to VHF.
needed. A number of people prefer to make a compromise by assuming a 68Ω load, so the capacitance needed in C2 for a 1/68 ratio is about 12pF. Series resistor R1 is a one-ohm unit. In commercial micromatch RF wattmeters, this resistor is made using ten 2W, 10Ω resistors connected in parallel.

The RF power level is calibrated by adjusting the sensitivity control, R2. In at least one commercial micromatch, there are actually three switch selectable sensitivity controls. These are calibrated for 10W, 100W and 1000W ranges.

Monomatch. The classical transmission line monomatch RF wattmeter is shown in Fig. 14. It can be used in the HF through VHF ranges. It consists of three printed transmission line segments – A, B and C - connected as a directional coupler.

In older instruments, the transmission line directional coupler was made using a length of RG-8/U coaxial cable with a pair of thin enamel insulated wires slipped between the shield and inner insulator. In more recent instruments the three transmission line segments are etched on a printed circuit board.

Sampling lines A and C are terminated in either 50Ω or 75Ω noninductive resistors such as carbon composition or metal film types. Again, a compromise value of 68Ω is often seen, so that either 50Ω or 75Ω antennas can be measured with only a small error.

Figure 15 shows an alternative monomatch system that uses a broadband transmission line transformer, T1, made using a ferrite or powdered iron toroidal core. This circuit is usable throughout the HF range.

Detail for implementing the transformer is shown in Fig. 16. A 12 to 40mm toroid core is wound with 10 to 30 turns of #22 through #30 enamelled wire, leaving a gap of at least 30° between wire ends. A rubber grommet is inserted in the hole to receive the through transmission line.

Small diameter copper or brass tubing can be used, provided that it is a snug fit to the grommet.

In my second article on RF power measurement, I will discuss a commercial in-line RF wattmeter, and a calorimetry method used for high power RF measurements. I also intend to cover the problems of low-power measurement, and several error and uncertainty sources found in RF power measurements.
CMOS output stages capable of swinging from rail to rail – even when powered by a single 1.5V cell – are discussed by leading researchers in the field of low-voltage, low-power analogue ICs. This third article includes an outline of why traditional current mirrors are unsuitable for low-voltage operation – and presents an entirely new solution to the problem.

Low voltage design III

When designing analogue building blocks that can handle rail-to-rail signal swings, classical output stages have to be abandoned. Take Fig. 1, representing a common-drain output stage. Clearly, the output voltage can only swing to within one gate-to-source voltage of the supply rail. If the circuit is operating from a 1.5V cell, the loss of dynamic range is intolerable.

In a low-voltage operational amplifier, the simplest output stage that can be used is the common-source stage. For this stage, the minimum required supply voltage is,

\[V_{\text{sup(min)}} = V_{\text{gsr}} + V_{\text{dsat}} \]

where \(V_{\text{gsr}} \) is the gate-source voltage of the output transistor \(M_{b1} \), and \(V_{\text{dsat}} \) is the voltage across the current source \(h_{20} \).

This means that in a low-voltage environment, the common drain output stage has to be replaced by a common source output stage, as in Fig. 2. This has the advantage of giving an additive voltage gain, but it increases the output impedance.

Output voltage swing of this circuit is nearly rail-to-rail.

The authors
Giuseppe Ferri, Università di L’Aquila, L’Aquila, Italy.
Pierpaolo De Laurentiis, Università di L’Aquila, L’Aquila, Italy.
Arnaldo D’Amico, Università di Tor Vergata, Roma, Italy.
Giovanni Stochino, Ericsson Telecomunicazioni SpA, Roma, Italy.
ANALOGUE DESIGN

Fig. 1. Traditional common-drain output - not particularly useful for low-voltage op-amps since the nearest the output can swing to either rail is one gate-to-source voltage.

Fig. 2. In low-voltage designs, the common-source output stage allows rail-to-rail output swings and voltage gain at the expense of output impedance.

Fig. 3. Output transistor current versus current flowing into the load in a Class AB amplifier stage.

Fig. 4. Basic Class AB, left, in which generator V_{AB} provides a constant voltage difference between the gates to make sure that both devices remain turned on at all input voltages, and a method for implementing it, right.

Fig. 5. Rail-to-rail output stage with resistive feed-forward Class-AB control. This configurations is limited in that minimum supply voltage has to be equal to two stacked gate-source voltages.

Class-AB output stages

To efficiently use the supply power, an output stage should combine a high maximum output current with a low quiescent current. To fulfill this requirement, a class-B output stage can be used, because its quiescent current is nearly zero.

Using class-B however leads to a large cross-over distortion. To overcome this drawback, class-A output stages could be used, but the maximum output current of a class-A biased output stage is equal to its quiescent current. This leads to low power efficiency - only 25% for a rail to rail output sine wave.

For these reasons, and in order to achieve a good compromise between distortion and quiescent dissipation, the output stage has to be biased between class-A and class-B. This solution is not surprisingly called a class-AB output stage. Its behaviour is characterised by Fig. 3.

The class-AB transfer function can be realised by keeping the voltage between the gates of the output transistors constant. In order to make this relationship independent of both the supply voltage and process variations, the voltage source has to track these parameters. To achieve this, the circuit technique of Fig. 4 is used.

It is easily proved that,

$$I_q = \frac{W}{L}(V_{dd} - V_{th})$$

where the quiescent current I_q is given by

$$I_q = \frac{W}{L}M_{th} \times I_{ref}$$

and is consequently insensitive to process and supply variations.

Feed-forward. A straightforward implementation of a class-AB biasing is shown in Fig. 5.

The diode-connected transistors, together with resistor R_2, build up a reference chain that generates a bias current I_{bias}. This current, copied by current mirrors, is fed into R_1. This resistor, in turn, sets the voltage between the gates of the output transistors.

Feedback. The feed-forward class-AB control suffers from the limitation that the minimum supply voltage has to be equal to two stacked gate-source voltages and one saturation voltage. This prevents this circuit to operate under extremely low-voltage conditions.

The aforementioned limitation of feed-forward class-AB control can be overcome by using feedback class-AB control. In contrast to feed-forward control, this type of biasing does not directly control the current of the output stage, but the push and pull currents are first measured and then regulated in a class-AB manner. This allows the output stage to run on extremely low supply voltages. Figure 6 shows a straightforward implementation of a feedback class-AB controlled output stage.

In order to obtain a quiescent current that is insensitive to process and temperature variations, resistor R_3 has to match R_2 and R_1, the current source I_{bias} has to be half the value of I_{bias}, and the W/L of M_{th} has to be half the M_{th} aspect ratio. Using these values, it can be calculated that the quiescent current is given by,

$$I_q = \frac{W}{L}M_{th} \times R_2 I_{bias}$$

$$I_q = \frac{W}{L}M_{th} \times R_3 I_{bias}$$

$$I_q = \frac{W}{L}M_{th} \times R_4 I_{bias}$$

$$I_q = \frac{W}{L}M_{th} \times R_5 I_{bias}$$

(14)
Frequency compensation
An operational amplifier for use in mixed-mode systems has to be able to operate in a wide range of conditions. Among these conditions are unpredictable awkward loads and temperature fluctuations. Process variations also play a role.

Frequency compensation is a fundamental topic in op-amp design. It can be performed in different ways. Important considerations are Miller compensation and realising the pole splitting.

In low-voltage operational amplifiers, two different issues have to be considered. One is realising a constant-g_m input stage that allows simple compensation in all the operating regions of the input pairs.

The second is that, in general, a larger number of stages is needed relative to traditional topologies. This implies an increased accuracy in the frequency compensation, and, in particular, the need for a large number of capacitors. Nested Miller compensation has been developed in order to solve this problem.

Next, the main aspects of Miller compensation and pole splitting are discussed.

Current generators designed in CMOS technology are covered in the panel entitled 'Biasing CMOS in low-voltage commercial products operating at low supply voltages.'

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Supply voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorola</td>
<td>Power PC 750</td>
<td>Microprocessor</td>
</tr>
<tr>
<td></td>
<td>MC 12147</td>
<td>VCO</td>
</tr>
<tr>
<td>National Semiconductor</td>
<td>LMC 6582/84</td>
<td>Op-amp</td>
</tr>
<tr>
<td></td>
<td>LMC 6142/44</td>
<td>Op-amp</td>
</tr>
<tr>
<td></td>
<td>LMC 6442</td>
<td>Op-amp</td>
</tr>
<tr>
<td></td>
<td>LMC 6085/86</td>
<td>Op-amp</td>
</tr>
<tr>
<td></td>
<td>LMC 272</td>
<td>Op-amp</td>
</tr>
<tr>
<td></td>
<td>LMC 7101</td>
<td>Op-amp</td>
</tr>
<tr>
<td></td>
<td>LMC 6482/84</td>
<td>Op-amp</td>
</tr>
<tr>
<td></td>
<td>LMC 6462/84</td>
<td>Op-amp</td>
</tr>
<tr>
<td>Analog Devices</td>
<td>OP 191/291/491</td>
<td>Op-amp</td>
</tr>
<tr>
<td></td>
<td>AD 627 +2.2</td>
<td>Instr. Amp.</td>
</tr>
<tr>
<td>Philips</td>
<td>NE/SA 5230</td>
<td>Op-amp</td>
</tr>
<tr>
<td>Gennum</td>
<td>LC/LD505</td>
<td>Class A amp</td>
</tr>
<tr>
<td></td>
<td>LC/LV506</td>
<td>Pre-amp</td>
</tr>
<tr>
<td></td>
<td>LC/LD/LV549</td>
<td>Power-amp</td>
</tr>
</tbody>
</table>

Splitting poles
Pole splitting is a useful way to compensate the operational amplifier and make it stable in frequency operation. Here we look at the main pole-splitting compensation mechanisms, related to different numbers of stages for the op-amp.

This analysis involves CMOS circuits, but it applies equally to bipolar circuits.

Single-stage amplifiers are popular in VLSI circuits because of their excellent high-frequency behaviour. This makes them highly suitable for use in high-performance switched-capacitor circuits and analogue-to-digital converters. Because of the single-stage topology, there is no need for frequency compensation and the amplifiers are inherently compact.

A simplified schematic of a single-stage amplifier is shown in Fig. 7. The amplifier has only one dominant pole and is, therefore, always stable.
Biasing CMOS in low-voltage designs

In CMOS integrated circuits, a stable current generator capable of realising current references of any value is needed. Consider the topology universally used to generate DC currents, which can be a multiple of the reference current value. The circuit, – the current mirror – is shown in Fig. A1.

Here, the mirror comprises two transistors, matched with respect to their threshold voltages, but having different W/L ratios. Transistor M_{in1} is biased by reference current I_{ref}. Output current is taken via the drain of M_{in2}, which has to be in saturation.

Neglecting the effect of channel length modulation, for transistor M_{in1},

$$I_{out} = \frac{K P}{2} \frac{W}{L} \left(V_{gs} - V_t \right)^3$$

where V_{gs} is the gate-source voltage corresponding to a drain current equal to I_{ref}.

Since M_{in2} is connected in parallel with M_{in1}, it has the same V_{gs}. So, neglecting the effect of channel-length modulation,

$$I_{out} = \frac{K P}{2} \frac{W}{L} \left(V_{gs} - V_t \right)^3$$

From the two equations above,

$$I_{out} = \frac{I_{ref}}{W/L} \left(V_{gs} - V_t \right)^3$$

Ideally, I_{out} is a multiple of I_{ref} and its value is only determined by the geometry of the device.

In practice, this value of I_{out} can be precisely obtained if the drain-voltages of M_{in1} and M_{in2} are equal. However, the output impedance that MOS devices exhibit has not been taken into account; remember that a drain-voltage variation produces an I_{out} variation. The shortening of L is taken into account in the effect of channel-length modulation as,

$$I_{out} = \frac{K P}{2} \frac{W}{L} \left(V_{gs} - V_t \right)^3 \times \left(1 + \lambda V_s \right)$$

where $1/\lambda$ directly fixes the slope of the output characteristic of the transistor. Note that λ is inversely proportional to L.

Transistor output impedance can be calculated as the inverse ratio of the output current with respect to output voltage, expressed by,

$$r_o = \frac{1}{\lambda I_{out}}$$

This shows that r_o increases proportionally to L. So an optimal current mirror can be realised if two transistors have equal drain voltages and if the drain-voltage change of the output transistor is made as small as possible.

An easy way to increase the output impedance is use a cascode current mirror, Fig. A2. It is easily shown that,$$
\left(\frac{V}{I} \right)_o = r_o + r_{s1} + 8 \eta \frac{r_o r_{s2}}{I_r M_{in1}} \left(8 \eta M_{in1} \right) r_{s2}
$$

The cascode connection between M_{in2} and M_{in4} increases the output resistance from r_{s2} to $8 \eta M_{in1} r_{s2}$, with a gain factor equal to $8 \eta M_{in1}$.

Similar results can be obtained with the Wilson circuit, shown in Fig. A3a). This topology needs fewer MOS devices, but suffers
from the asymmetry of $M_{n1,2}$ biasing voltages; this causes the output current to be different from the reference current.

It is possible to overcome the asymmetry drawback using the structure shown in Fig. A3b), where the diode-connected transistor M_{n3} ensures a better symmetry of the circuit.

Though the cascode current mirror improves the output resistance, it has a smaller output dynamic range. As the graph of Fig. A2b) shows, the minimum voltage drop on the real current generator is quite large. This voltage is $V_{ds(sat)}$.

Even if $V_{ds(sat)}$ can be made very small by using both large width values and biasing transistors with low current, the threshold-voltage term represents an unacceptable loss of dynamic range – especially in low-voltage circuits.

A biasing scheme that improves the output range involves transistor M_{n2} of Fig. A2a) being biased near to its saturation region limit. This can be achieved by connecting a voltage translator in series with the gate of M_{n4}. The voltage translator is implemented with a source follower, M_{n5} in Fig. A4a).

The lowest voltage that the circuit works at is $2V_{ds(sat)}$. However, the circuit suffers from the fact that M_{n2} has a drain voltage entirely different from that of M_{n1}. This introduces an error in the output current, Fig. A4b).

To solve this problem, the circuit of Fig. A5a) is proposed. Here, the gate voltage of M_{n1} and M_{n2} is connected to the drain of M_{n3}. By a suitable choice of V_{bias}, the output voltage range can be reduced to about $2V_{ds(sat)}$. In particular, it has to be,

$$V_{bias} - V_{g}(M_{n1}) = V_{g}(M_{n2})$$

If $V_{bias} = V_{dd}(M_{n2})$, the current mirror of Fig. A6a), is obtained. This configuration works better in the subthreshold region, as shown in plot Fig. A6b).

As with all current mirrors, the drain voltage of M_{n2} needs to be kept above a certain value. In the subthreshold region, letting $V_{dd}(M_{n2})$ be larger than a few times U_T is sufficient. In this region the MOS current equation is given by,

$$I_s = \frac{W}{L} \cdot \frac{V_{ds}}{nU_T} \exp\left(\frac{-V_{ds}}{nU_T}\right)$$

where I_{ds} is reverse saturation current, n is the subthreshold slope factor, and $U_T = kT/q$ is the thermal voltage.

This output voltage can be obtained with a suitable sizing of transistors, since the following relationships are valid,

$$V_{out} = V_{g}(M_{n2}) - V_{g}(M_{n3}) = V_{g}(M_{n2}) - V_{g}(M_{n1})$$

$$= n \cdot \frac{kT}{q} \ln\left(\frac{W}{L} \cdot \frac{W}{L}\right)$$

If $V_{bias} = V_{dd}(M_{n2})$, the current mirror of Fig. A6a), is obtained. This configuration works better in the subthreshold region, as shown in plot Fig. A6b).

As with all current mirrors, the drain voltage of M_{n2} needs to be kept above a certain value. In the subthreshold region, letting $V_{dd}(M_{n2})$ be larger than a few times U_T is sufficient. In this region the MOS current equation is given by,

$$I_s = \frac{W}{L} \cdot \frac{V_{ds}}{nU_T} \exp\left(\frac{-V_{ds}}{nU_T}\right)$$

where I_{ds} is reverse saturation current, n is the subthreshold slope factor, and $U_T = kT/q$ is the thermal voltage.

This output voltage can be obtained with a suitable sizing of transistors, since the following relationships are valid,

$$V_{out} = V_{g}(M_{n2}) - V_{g}(M_{n3}) = V_{g}(M_{n2}) - V_{g}(M_{n1})$$

$$= n \cdot \frac{kT}{q} \ln\left(\frac{W}{L} \cdot \frac{W}{L}\right)$$
The unity-gain frequency of this amplifier, \(GBW \), is given by,

\[
GBW = \frac{g_m}{2\pi C_L}
\]

(15)

The dc voltage gain of the amplifier is determined by the transconductance \(g_m \) and the load resistance \(R_L \), which also incorporates the output impedance of the transistor.

\[
A_v = g_m R_L
\]

(16)

The gain of this amplifier is usually about 40dB. It is possible to add gain by using a transistor cascode or, for even more gain, the gain-boosting technique.

In many applications, the gain of a single stage is too low, especially when the output is heavily loaded. In addition, the existing cascoded stages - folded cascode for example - are not suitable for very low voltage electronics.

In those cases, using two gain stages increases the overall gain of an amplifier, Fig. 8. Each of these gain stages introduces a dominant pole at its output. Consequently, the amplifier behaves like a two-pole system.

The bandwidth of the two-stage amplifier is equal to the geometric mean of the two stages. For CMOS stages operating in strong inversion, the bandwidth is given by,

\[
GBW = \sqrt{\frac{g_m V_x}{2\pi C L}}
\]

(17)

The poles of the uncompensated amplifier are situated at the output of each stage. The first pole, at the output of the amplifier, is located at,

\[
p_1 = \frac{1}{R_L C_L}
\]

(18)

The output resistance of the input stage, \(r_{o2} \), and the gate-source capacitor, \(c_{gs1} \), of the output transistor, determine the second pole, located at the output of the input stage. It is given by,

\[
p_2 = \frac{1}{r_{o2} c_{ps1}}
\]

(19)

In order to ensure stability in feedback configurations, the amplifier has to act like a one-pole system up to its unity-gain frequency. It is possible either to insert a Miller \(R_M C_M \) network or to apply a parallel \(R_P C_P \) network.

The drawback of the parallel alternative is that the compensation method relies on matching with the load impedance, which is often not defined. On the other hand, the Miller technique is robust against parameter variations. This makes it the best compensation technique for two-stage amplifiers.

In order to appreciate Miller compensation, consider the effect of inserting only capacitor \(C_M \). If the loop is closed, poles p1 and p2 are split apart, as in Fig. 9. This clearly follows from the root locus of the two-stage amplifier for a varying Miller capacitor.

The root locus starts from the poles of the uncompensated amplifier, when \(C_M \) equals zero, and ends at the zeros, when \(C_M \) is infinite, or very large.

In practice, such large capacitors cannot be realised. Consequently, the non-dominant pole of the compensated amplifier ends up at a lower frequency. Simple calculations show that this non-dominant pole (see Fig. 10) ends up at a frequency of,

\[
P'_1 = \frac{g_m}{C_L\left(1 + \frac{c_{ps1}}{C_M} + c_{ps1}\right)}
\]

(20)

The Miller capacitor also gives a direct feed-forward path to the output at high frequencies. This results in a zero situated in the right plane, therefore an additional phase-shift is introduced. This zero is positioned at,

\[
z = \frac{g_m}{C_M}
\]

(21)

However, this zero can be exactly cancelled if resistor \(R_{M1} \) inserted in series with the capacitor \(C_{M1} \) is dimensioned such that,

\[
R_{M1} = \frac{1}{g_m}
\]

(22)
Three-stage amplifiers

Placing an additional gain stage between the input and output stages can further increase the gain of a two-stage amplifier.

The basic topology of a three-stage operational amplifier is shown in Fig. 11. This amplifier contains an input stage, M12, an intermediate stage, M13, and an output stage, M14. Each stage introduces a dominant pole at its output.

A simple and robust method to compensate this amplifier is the nested Miller compensation technique.2

Figure 12 explains the principle of this compensation technique. The output and intermediate stages can be conceived as a two-stage amplifier with two dominant poles, f1 and f2.

Capacitor CM1 closes the first Miller loop, which splits f1 and f2 to f'1 and f'2 respectively. The pole f'1 is 3dB below the unity-gain frequency. Therefore, the intermediate and output stage can now be treated as one stage with one dominant pole f'2.

The Miller splitting can be repeated by inserting CM2. This capacitor splits the pole f'2 and f'3 resulting in one dominant pole at f'2.

Our next article on this topic, planned for the December issue, explains why switched-capacitor techniques are not suitable for use at low voltages – together with an alternative that is. A new OTA for very low voltages is presented, together with a brief discussion of Spice in relation to low-voltage design.

References

A comprehensive list of references was presented with the first of these articles, in the September issue.
LETTERS

Letters to “Electronics World” Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS
email jackie.lowe@rbi.co.uk

Line-powered fault
The circuit idea for a line powered telephone monitor submitted by a reader from Holland on page 370 of the May 1999 issue will probably cause problems if connected to a System X exchange of the UK telephone network. Such exchanges carry out automatic line testing, and one of the tests appears to be a leakage test – a momentary line polarity reversal at a lower voltage than 48V. The inclusion of the diode bridge in the circuit will ensure that current will be drawn during this test. This is detected as unwanted leakage and the test is repeated, apparently ad infinitum. This is manifested as a slow flashing of the LED indicator. The cure is to omit the diode bridge, and ensure that the line polarity is correct.

Those proposing to use the circuit should also be aware that the connection of unapproved devices to the Public Switched Telephone Network is not permitted.

Steve Roberts
Bude
Cornwall

12 or 24V supplies accepted
A small comment on the ‘12V or 24V supplies accepted’ circuit idea published in August 1999 EW. This circuit regulates a 24V input to give a 12V output, regardless. There is a small flaw that when 24V is asserted on the input, the circuit delivers 24V on the output for the few milliseconds it takes the relay to open. This transient may be enough to destroy the following circuit.

Tim Herklots
Via e-mail

Pied pipings
The flute on the front cover of August 1999 issue appears to be a mirror image. There is no such thing as left handed flute.

Is this a subtle visual pun to illustrate the effect of phase inversion on stereo image perception or did someone simply get the photograph wrong way round?

Allan Winsor
Via e-mail

Please would you publish details of where to obtain the left handed flute illustrated on the front cover of the August 1999 issue of Electronics World. Please also pass my sympathies to the grossly deformed player whose left hand little finger is clearly twice as long as a normal finger and excessively arched. Just so you are in no doubt at my amusement, the illustration is laterally transposed, and whoever assembled the flute for the illustration set the foot joint about 90° away from the normal position. It would certainly be a challenge to play as illustrated.

Not the first journal to have musical egg on their faces. I can never understand why normally technically competent people get musical instruments so wrong.

John Holt
Via e-mail

I mentioned it to the photographer John, and he said, “Has he nothing better to do?” Needless to say, I reprimanded him severely. Ed.

Dropper memories
Regarding series valve heater chains fed by capacitors, I plead guilty to Bob Pearson’s charge of naivety in failing to consider switch-on transients.

However, in my humble job I was in no position to recommend anything – let alone 2μF capacitors. In fact I was naive enough to assume that the technique must be faulty because it was not commercially used at the time, in spite of the fact that none of the several portable radios I built ever suffered from blown heaters. I remember only being uneasy about what peak voltage was applied across the capacitor terminals and the lack of a specific terminal to case rating.

I was supremely unqualified for this work, having passed out as a conscient RAF Air Radar Mechanic only about a year before and having no experience of ’civvy’ radio or TV (such as it was) other than wiring up a crystal set. I was equipped with little more than a clumsy soldering iron, a copy of the 1938 Admiralty Handbook of Wireless Telegraphy Vol 1, and permission to stay in the Radar Section after working hours doing PJs (private jobs).

From page 500 of your sister magazine ’Television’ this month, I learned for the first time that Thorn fed the valves in their 960 series portable TVs via “Wattless” capacitor droppers. This belated use would have soon been rendered obsolete by solid-state devices, but I remain proud to share my naivety with such a renowned manufacturer.

John Norman MSERT
Via e-mail

Further to the correspondence on capacitor droppers for heater supplies, the last Rediffusion monochrome TV’s to use any valves (Marks 12/13 for those who remember) had series heaters for the tube, line output pentode, and efficiency diode.

If my memory serves, these were 300mA @ 63V in total. This was provided by an auto transformer which was of course quite bulky and expensive. We looked briefly at a capacitor dropper but the problem we hit was to keep the current within the limits – especially for the tube. The capacitor’s tolerance was if I remember rightly 4%, which coupled with 250V AC working would have probably cost more than the auto-transformer. It would not have been much smaller either.

Bryan Simmons
Surbiton
Surrey

With reference to the heater debate. I have been a service engineer over thirty five years and Ferguson has used both a capacitor and auto transformer for 300mA heater chains in TV’s.

Ferguson 900 series used an auto transformer. Ferguson 980, a portable mono set, used a series capacitor. The same set even had a delay in which one or two valve heaters were in the negative leg of the set’s ht voltage to produce a warm up delay.

The capacitor or transformer did not have any unduly high failure rates.

P. Edenbrow
Streetford
Lincolnshire

Engineering women
With reference to your response to John Phillips’ letter “Engineering women” in the August issue, I would accuse you of being more naive than patronising. Your metaphor either implies that women have just recently been allowed to become engineers, or even worse forget everything that they learn after a few days!

The women engineers that I have met are generally more competent than men. Unfortunately there are too many companies that share your view encouraging a predominantly male engineering workforce.

P. Edenbrow
Streetford
Lincolnshire

PROBLEMS IDENTIFYING EUROPEAN EMC STANDARDS?

Get the EMC Master Info CD instead of a consultant for only $395

EMC pre-compliance test sets for both Radiated and Conducted immunity as well as emission tests. LogPer antenna’s, Tern -off Source, Spectrum Analyser’s, Safety Logging and EMC generation of an Extensive, Software Controlled Spectrum Analyser, suitable for both US and European standards (June 1999). The unique EMC Master Info CD does not only help you to select the proper European EMC standards, it also supports the best set up and requirements.

Check www.emcmaster.com or call (International: +31-3569-41774) Innovative EMC Test Set for less

Where did the weekend go? Take 2

31 December 1999 will be a Friday.
1 January 2000 will be a Saturday.
1 January 1900 was a Monday.

Will computers that have not been modified revert to the 1900 calendar and hence jump from Friday to Monday losing two days?

R N Soar
Doncaster
Sorry Mr Soar. Fingers crossed I got it right this time. Ed.

Doncaster
Surrey

With reference to the heater debate. I have been a service engineer for over thirty five years and Ferguson has used both a capacitor and auto transformer for 300mA heater chains in TV’s.

Ferguson 900 series used an auto transformer. Ferguson 980, a portable mono set, used a series capacitor. The same set even had a delay in which one or two valve heaters were in the negative leg of the set’s ht voltage to produce a warm up delay.

The capacitor or transformer did not have any unduly high failure rates.

P. Edenbrow
Streetford
Lincolnshire

Engineering women
With reference to your response to John Phillips’ letter “Engineering women” in the August issue, I would accuse you of being more naive than patronising. Your metaphor either implies that women have just recently been allowed to become engineers, or even worse forget everything that they learn after a few days!

The women engineers that I have met are generally more competent than men. Unfortunately there are too many companies that share your view encouraging a predominantly male engineering workforce.

P. Edenbrow
Streetford
Lincolnshire
Aether way...

Recently, a book entitled 'Handbook of Wireless and Telegraphy - 1938 Volume 1', by the Admiralty came into my possession. Judging by its difficulty level, I would say it is equivalent to today's BTEC level 4 or first year HND.

The book kicks off by explaining waves, etc., and finally refers to what should be electromagnetic waves as 'Aether' waves. The book devotes two long paragraphs to the subject.

There are two very interesting sentences which I quote from the book, "All experience goes to show that light and electromagnetic energy generally are transmitted through space as a wave motion, and we are led to the supposition that all space is occupied by a medium which conveys the energy, and that this medium has properties different from those possessed by ordinary matter. We call this medium the 'Aether'. The medium called the 'Aether' must necessarily be universally diffused and must inter-penetrate all matter. It cannot be exhausted or removed from any place, because no material is impervious to it."

It is pointless for me to describe the countless experiments that have been done that agree accurately with both the Special and General theories of Relativity. As an example, electronic ballistics - as in oscilloscopes - are aptly described with use of Special Relativity theory.

What I find strange is that Michelson and Morley proved that no Aether exists as far back as 1887. The Special Theory of Relativity was first published in 1905, solving many problems in physics that Newtonian theory simply could not solve. It seems that the theory of Relativity had not yet filtered through to Admiralty - even after 33 years. Or had it? Was the Admiralty defiant of the new theory for various reasons?

Can anyone shed some light on the subject?

Darren Heywood
Buckley
Flintshire

Where did Otto go?

What happened to Dr Otto Schmitt?

This is a mystery that I have never devoted two long paragraphs to the subject.

The book kicks off by explaining waves, etc., and finally refers to what should be electromagnetic waves as 'Aether' waves. The book devotes two long paragraphs to the subject.

There are two very interesting sentences which I quote from the book, "All experience goes to show that light and electromagnetic energy generally are transmitted through space as a wave motion, and we are led to the supposition that all space is occupied by a medium which conveys the energy, and that this medium has properties different from those possessed by ordinary matter. We call this medium the 'Aether'. The medium called the 'Aether' must necessarily be universally diffused and must inter-penetrate all matter. It cannot be exhausted or removed from any place, because no material is impervious to it."

It is pointless for me to describe the countless experiments that have been done that agree accurately with both the Special and General theories of Relativity. As an example, electronic ballistics - as in oscilloscopes - are aptly described with use of Special Relativity theory.

What I find strange is that Michelson and Morley proved that no Aether exists as far back as 1887. The Special Theory of Relativity was first published in 1905, solving many problems in physics that Newtonian theory simply could not solve. It seems that the theory of Relativity had not yet filtered through to Admiralty - even after 33 years. Or had it? Was the Admiralty defiant of the new theory for various reasons?

Can anyone shed some light on the subject?

Darren Heywood
Buckley
Flintshire

What's all the fuss about?

The EU is about to remove one of the last Member State trading barriers; the requirement for radio and telecommunications apparatus to be independently tested and certified.

So where is the problem in this? After all, this is only the same as we currently have for EMC, LVD etc. and these work fine.

The pundits claim that the market will be flooded with substandard goods. Yes, they might, but what about the following?

Have you ever tried to sell a substandard product to a customer? Save yourself the effort. Consumers are not idiots, and they will see through your sales spiel instantly. From personal experience, you will be left with shelves full of a product, that fails to move, until you drop the price to some ridiculous level.

Even when you are lucky (unlucky) enough to make a sale, the resulting service returns will wipe out any profits you make on that, and the rest of your products.

Reputable manufacturers and distributors will still test their products to the relevant ETSI regulations before making their declaration of conformity. Whether they have the products independently tested, or continue to send them to a test lab, the cost is approximately the same, so there are no great savings there.

Ok, so a few substandard products may get onto the market. As with the LVD, EMC directives, the policing procedure will be complaint driven, and it really does work. Do not waste your time making unsubstantiated complaints to your local TSO; they are unlikely to take any action. If you believe a product is non-compliant, obtain a sample, carry out a complete test, and furnish Trading Standards with irrefutable proof of non-compliance. The speed of the results will astound you.

Kevin Aston
Via e-mail

Crossover error

The circuit on page 572 of the July issue is very interesting.

The author has, however, failed to verify the calculations. To achieve 0dB gain and the frequency responses shown, conductances are required in the calculations, so that the sum of these becomes 10µmho.

Thus for the average filter (c) instead of five 20Ω resistors being required five 2µmho conductances are required - i.e. five 500kΩ resistors.

Thus, for the optimised average filter (c), the resistance values become - R1 (and R2) 1.37MΩ (0.732µmho), R2,5 401.6kΩ (2.49µmho), R1 280kΩ (5.37µmho) - with similar recalculation being required for the other cases.

(Response has been verified for the optimised average filter with those values shown using the Tina simulator).

It is also not strictly true to call

LETTERS

What I find strange is that Michelson and Morley proved that no Aether exists as far back as 1887. The Special Theory of Relativity was first published in 1905, solving many problems in physics that Newtonian theory simply could not solve. It seems that the theory of Relativity had not yet filtered through to Admiralty - even after 33 years. Or had it? Was the Admiralty defiant of the new theory for various reasons?

Can anyone shed some light on the subject?

Darren Heywood

Buckley

Flintshire

What's all the fuss about?

The EU is about to remove one of the last Member State trading barriers; the requirement for radio and telecommunications apparatus to be independently tested and certified.

So where is the problem in this? After all, this is only the same as we currently have for EMC, LVD etc. and these work fine.

The pundits claim that the market will be flooded with substandard goods. Yes, they might, but what about the following?

Have you ever tried to sell a substandard product to a customer? Save yourself the effort. Consumers are not idiots, and they will see through your sales spiel instantly. From personal experience, you will be left with shelves full of a product, that fails to move, until you drop the price to some ridiculous level.

Even when you are lucky (unlucky) enough to make a sale, the resulting service returns will wipe out any profits you make on that, and the rest of your products.

Reputable manufacturers and distributors will still test their products to the relevant ETSI regulations before making their declaration of conformity. Whether they have the products independently tested, or continue to send them to a test lab, the cost is approximately the same, so there are no great savings there.

Ok, so a few substandard products may get onto the market. As with the LVD, EMC directives, the policing procedure will be complaint driven, and it really does work. Do not waste your time making unsubstantiated complaints to your local TSO; they are unlikely to take any action. If you believe a product is non-compliant, obtain a sample, carry out a complete test, and furnish Trading Standards with irrefutable proof of non-compliance. The speed of the results will astound you.

Kevin Aston
Via e-mail

Crossover error

The circuit on page 572 of the July issue is very interesting.

The author has, however, failed to verify the calculations. To achieve 0dB gain and the frequency responses shown, conductances are required in the calculations, so that the sum of these becomes 10µmho.

Thus for the average filter (c) instead of five 20Ω resistors being required five 2µmho conductances are required - i.e. five 500kΩ resistors.

Thus, for the optimised average filter (c), the resistance values become - R1 (and R2) 1.37MΩ (0.732µmho), R2,5 401.6kΩ (2.49µmho), R1 280kΩ (5.37µmho) - with similar recalculation being required for the other cases.

(Response has been verified for the optimised average filter with those values shown using the Tina simulator).

It is also not strictly true to call

November 1999 ELECTRONICS WORLD
this a finite-impulse-response filter as the individual delay sections actually have an infinite impulse response. They are also only approximately phase-linear—and then only within a narrow range of frequencies.

It is, however, one of the more interesting circuits that you have published recently and adequate for the purpose intended.

When audio amplification becomes digital, then true FIRs will be possible, approximating ideal loudspeaker crossover networks!

Trevor Bogg
via e-mail

Summing up crossovers

Ian Taylor wrote in August to claim that loudspeaker crossover networks have been done wrong all along, and that they should cross over with a gain of -3dB, or 1/√2 in amplitude, because we are summing the power from the two loudspeakers which is proportional to the square of the drive voltage, hence the sum is 2 times (1/√2)^2 = 1.

Life would indeed be strange if we perceived sound levels from loudspeakers as the square of the drive voltages. But perhaps this is what interests people in psychology departments?

Imagine what would have happened if two sine waves were presented to the loudspeaker: call them sin(ω1t) and sin(ω2t). For simplicity, they are both of unity amplitude. If the ear responded to the square of these signals, we would hear

\[\sin(\omega_1 t) + \sin(\omega_2 t) \]

which is

\[\sin(\omega_1 t) \cos(\omega_2 t) + \cos(\omega_1 t) \sin(\omega_2 t) \]

The 2sin(ω1t)sin(ω2t) term is interesting because my maths textbook says that this can be rewritten as

\[\cos(\omega_1 - \omega_2) t - \cos(\omega_1 + \omega_2) t \]

In other words, sum and difference frequencies. These appear, along with the square of the drive voltage, to the signal levels going in from the loudspeakers.

In other words, sum and difference frequencies. These appear, along with the square of the drive voltage, to the signal levels going in from the loudspeakers. These are sometimes called sin(ω1t) and sin(ω2t) with a similar amplitude.

Quite commonly, the two signals—one high-pass filtered, and one low-pass filtered—are not in phase. If they are 90° out of phase at the crossover frequency—which happens, for example, with third-order Butterworth filters—then to get unity amplitude as a sum, the two filtered signals must each be 1/√2, or -3dB. They are orthogonal, and so sum as the square root of the sum of the squares.

Inductance of a single wire:

Incidentally, I have what claims to be the full formula, derived from theory, for the inductance of a single piece of wire—the length of wire on a great distance. It comes from Inductance Calculations. Frederick Grover, Van Nostrand 1946. For circular cross-section wires, it is

\[L(\text{nh}) = \frac{2(\ln(2\pi r) - 1)}{\mu_0^4} \]

where \(r \) is the radius in mm, \(l \) is the length in mm, and the wire has a relative permeability of \(\mu \). This gives a value close to 1H per metre or 1nH per millimetre, for wire sizes of around 1mm.

Brian Pollard
Cranbrook
Kent

Phase-linear crossover

Mr Latsky's circuit on page 779 of the September issue suffers from a serious drawback: the slope of the low-pass output is 24 dB/octave, as should be the case for a fourth-order network, but the high-pass output rolls off at only 12dB/octave. This is shown in the graph above, calculated by the circuit simulator Time Plus, using ideal op-amps.

This behaviour is common to all filter circuits where the second output is formed by subtracting the first from the input and it can be mathematically explained by developing the formula for the transfer function for the high-pass part from that for the low-pass:

\[F(s) = \frac{1}{s + a + b s^2 + c s + 1} \]

Using the appropriate coefficients for the filter type shows zeros (in the numerator) nearly coinciding with poles (in the denominator) and therefore very nearly cancelling each other. This reduces the response from fourth to second order.

The consequence is that in practice the high-frequency speaker must be able to handle frequencies down to at least two octaves below the crossover frequency, because bass signals can contain large transients, especially when bass boost is applied.

The same goes for Mr Van Dormael's third-order circuit in the August issue, where his graph shows that the high-pass output, after a peak of 4dB (and not 2!) at crossover, rolls off at 6dB/octave, as a first-order circuit.

Exactly the same scheme has, indeed, been described before under the name 'asymmetrical crossover', in National Semiconductors 'Audio Handbook', first published in 1976. It has never become popular because of the abovementioned drawback.

S. de Boer
Veghel
Netherlands

Receiver radiation

In his worthwhile article RF Mixers in the February 1999 issue Joe Carr asks anyone with first-hand knowledge of detecting receiver radiation to contact him.

If he has not yet read Spy Catcher by Peter Wright, he may find the reference to RAFTER interesting.

I found out about receiver antenna leakage when trying to get 20 UHF receivers fed from one antenna to work properly. I hope Mr Carr can offer help on this topic in a later article.

P Robinson
Tadley

Correction

0-10 led display for digital input

On page 648 of the August issue, pin 7 of the leftmost 555 should have been connected to the junction of R2 and the 1kΩ resistor, just to the left of pin 7.

Josef Holecek
Prague

Phase-linear crossover

In the September issue, page 779, resistor R46 should be 464kΩ and not 46kΩ as marked. The incorrect resistor would give a stage gain of 1.84 which is not a fourth-order Bessel filter. If for some reason someone does not want to use such a high value for R46, they can leave it at 46kΩ, but then they have to scale R45 down to 3.9kΩ. The chart's second 1kHz should be 10kHz of course.

Peter Latsky

WHY BUY YOUR PRE-COMPLIANCE EMC TEST SET?

We are a truly dedicated EMC T&M vendor with unrivaled price performance.

EMC pre-compliance test sets for both Rohs and conducted immunity as well as emission tests. LapPre antennas, TernCells RF amplifiers and ESD generators at unbeatable prices. Software controlled Spectrum Analyzer suitable for both US and European Standards. (Peter Thal). The EMC Master USA does not only help you to select the proper European EMC standards. It also suggests the test set up and requirement.

Check www.emcmaster.com or call (International: +31-3569-41774) Innovative EMC Test Set for less.
November 1999 ELECTRONICS WORLD

AQUILA VISION
http://www.aquila-vision.co.uk
Aquila Vision specialises in supplying and supporting Embedded Microprocessor Development products from PICs to DSPs. We also stock robotics boards, Linux and general interest CD-ROM’s.

BEDFORD OPTO TECHNOLOGY LTD
http://www.bedot.co.uk
Optoelectronic products UK design development manufacture standard and custom, LED bar graphs, circuit board indicators, stand offs, transmissive/reflective switches, base50 optocouplers tubular and surfacemount, pannel mount LED assemblies.

CAMBRIDGE MICRO PROCESSOR SYSTEMS LTD
http://www.cmsl.co.uk
CONCEPT ELECTRONICS
http://www.conceptkey.co.uk
Concept Keys are specialists in the design and manufacture of customer specified membrane panels and keyboards, and electronic design. Concept’s membrane manufacture is supported by a full electronic production facility to provide a complete run out keyboard and electronics service, fully accredited to ISO9001.

CONTROL SOLUTIONS
www.controlstools.co.uk
Data acquisition and control for beginners, hobbyists, and professionals. Perform mathematical and logical operations on data in real time. Email: info@controlstools.co.uk.

COOKE INTERNATIONAL
http://www.cooke-int.com
e-mail: info@cooke-int.com

CROWNHILL ASSOCIATES LTD
http://www.crownhill.co.uk
Crownhill supply low cost development tools for use with Micro Controllers and Smart Cards. Products include Smart Card development tools, Smart cards, Micro Development tools and Bespoke Design Services.

DANIEL MCBREARTY
http://www.danmcb.demon.co.uk
EXPERIENCED ENGINEER BASED IN LONDON, SPECIALIST IN AUDIO AND CONTROL SYSTEMS. AVAILABLE FOR DESIGN, PROJECT ENGINEERING OR GENERAL CONSULTANCY. BACKGROUND OF HIGH-QUALITY WORK.

DISPLAY ELECTRONICS
http://www.distel.co.uk

EQUINOX TECHNOLOGIES UK LTD
http://www.equinotech.com
Equinox Technologies UK Ltd., specialise in development tools for the embedded microcontroller market.

ELECTRONICS WEEKLY HYPERACTIVE
http://www.electronicsweekly.co.uk/

FLASH DESIGNS LTD
http://www.flash.co.uk
Flash supply low cost AVR ISP programmers (£39), MINI-ICE starter kits (from £69), Portable Easy-ICE emulators (from £199), ICE Adapters & "C" compilers for any ATMEL AVR, MCS51, Dallas, Hitachi HB microcontroller. Download FLASH NEWS now. Watch out for Special Offers! ARE YOU developing code in a Flash?

FILTER DESIGNER
http://dspace.dial.pipex.com/hsps/
Low cost analog and digital filter design software for the PC. Standard and Professional versions. Free download of Evaluation version.

LOW POWER RADIO SOLUTIONS
http://www.lprs.co.uk
LPRI markets low power radio transmitters, receivers and transceiver modules manufactured by ourselves, Radiometrix, Circuit Designs, RDT and Micrel. Applications for telemetry, video and remote control.

NEWNES - BOOKS FOR THE ELECTRONICS WORLD
http://www.newnespress.com
Over 300 books and information packages for those working with electronics and engineering technology. Visit our site for a free catalogue and downloads.

WILFRADIO now brings you a complete choice in personnel computer controlled radio scanning and reception solutions ● Broadcast ● Media ● Monitoring ● Professional Amateur Radio communications.
Unique reader offer:
x1, x10 switchable oscilloscope probes, only £21.74 a pair, fully inclusive*

*Additional pairs as part of the same order, only £19.24 each pair.

Please supply the following:

Probes

<table>
<thead>
<tr>
<th>Probes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>Postcode</td>
<td></td>
</tr>
<tr>
<td>Telephone</td>
<td></td>
</tr>
</tbody>
</table>

Method of payment (please circle)
Cheques should be made payable to Reed Business Information
Access/Mastercard/Visa/Cheque/PO

Credit card no.

Card expiry date Signed

Please allow up to 28 days for delivery

Seen on sale for £20 each, these high-quality oscilloscope probe sets comprise:

- two x1, x10 switchable probe bodies
- two insulating tips
- two IC tips and two sprung hooks
- trimming tools

There's also two BNC adaptors for using the cables as 1.5m-long BNC-to-BNC links. Each probe has its own storage wallet.

To order your pair of probes, send the coupon together with £21.74 UK/Europe to Probe Offer, Electronics World Editorial, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

Readers outside Europe, please add £2.50 to your order.

Specifications

<table>
<thead>
<tr>
<th>Switch position 1</th>
<th>Switch position 2</th>
<th>Switch position 'Ref'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>DC to 10MHz</td>
<td>DC to 150MHz</td>
</tr>
<tr>
<td>Rise time</td>
<td>2.4ns</td>
<td></td>
</tr>
<tr>
<td>Input resistance</td>
<td>1MΩ - i.e. oscilloscope i/p</td>
<td>10MΩ ±1% if oscilloscope i/p is</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>12pF if oscilloscope i/p is 20pF</td>
<td>10-60pF</td>
</tr>
<tr>
<td>Compensation range</td>
<td>600V DC or pk-pk AC</td>
<td>600V DC or pk-pk AC</td>
</tr>
<tr>
<td>Working voltage</td>
<td>600V DC or pk-pk AC</td>
<td>600V DC or pk-pk AC</td>
</tr>
</tbody>
</table>

Probe tip grounded via 9MΩ, scope i/p grounded
Richard Brice’s de-jittering circuit for digital audio can be inserted between a CD player and external d-to-a converter for improved fidelity, particularly at low frequencies. It also removes copy code and can be modified to convert between formats.

Table 1. Aperture effect - even when the sampling pulse width equals the sampling period, loss at the pass-band edge is only -3.9dB.

<table>
<thead>
<tr>
<th>T_d/T_a</th>
<th>Attenuation at pass-band edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.9dB</td>
</tr>
<tr>
<td>0.5</td>
<td>0.9dB</td>
</tr>
<tr>
<td>0.25</td>
<td>0.2dB</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1dB</td>
</tr>
<tr>
<td>0.1</td>
<td>0.04dB</td>
</tr>
</tbody>
</table>

Jitter on a digital audio signal is known to cause appreciable signal degradation. All the more irksome then, that its elimination is extremely difficult by means of classical PLL-style digital audio interface receivers. This is especially so when the modulation is at a relatively low frequency, such as that caused by power-supply induced coupling.

This article describes a practical circuit for a digital interface unit that may be used to remove low-frequency jitter from a digital audio signal. Its use between a CD output and an external converter is described.

The unit has a number of useful ancillary provisions that allow it to be modified to transcode between the SPDIF consumer interface and the various AES/EBU interfaces. It also strips copy-code, allowing direct digital copies to be made.

Background

The quality of digital audio is mathematically definable in terms of; the sampling frequency employed, the bit ‘depth’, the sampling-pulse aperture and time uncertainty. Expressions for the first two are well known. The effect of the latter two parameters is less well appreciated.

Sampling pulse width (as a proportion of sampling period) simply has an effect on frequency response as defined in the expression,

$$20\log\left(\frac{\tau}{2} \times \frac{f_s}{f_n} \times \frac{f_c}{f_s} \right)$$

where, T_s is the duration of the sampling pulse (aperture) and f_s is the Nyquist frequency limit. Note that sinc is shorthand for $\sin(x)/x$. This is termed ‘aperture effect’ and is actually relatively benign.

As Table 1 indicates, even when the sampling pulse width is equal to the sampling period, the loss, at the band edge, is only -3.9dB. Provided $T_d<0.2T_a$, the effect is pretty negligible.
In any case, frequency response ‘droop’ can always be made up in the design of the reconstruction filter following the d-to-a converter – where it is often referred to as sin(x)/x correction.

Why is jitter a problem?

The effect of sampling-pulse time uncertainty or ‘jitter’ is much more destructive. Because all signals change their amplitude with respect to time, the effect of a slightly misplaced sampling point has the effect of superimposing a distortion on the original waveform, effectively reducing available dynamic range.

This next equation defines the limit of sampling uncertainty, dT, for a digital system of n bits,

\[
\frac{dT}{T_n} = \left(\frac{\pi}{2^m}\right)
\]

Working through an example, a sixteen-bit audio system with 48kbit/s sampling must have a jitter performance of less than 200ps in order to preserve the theoretical dynamic range available from the 16-bit system. In other words the jitter must be just 0.001% of the sampling period!

Even if this requirement has been met in the recording stage, for absolute fidelity to be preserved, this value must be ‘recreated’ in any subsequent conversion to analogue for playback.

Phase-locked loop receivers

Most digital-audio converters rely on a phase-locked loop front-end to extract clock from the self-clocking AES/EBU or SPDIF digital-audio interface and to use this in the reconstruction of the analogue signal.

Several very good chips exist for this purpose, one of the most famous being the CS8412 from Crystal Semiconductor. Should there be any high-frequency jitter on the interface, the PLL type receiver does a very good job in rejecting it. But, at low frequencies, it has no effect whatsoever, as Fig. 1 shows.

This is unfortunate for the audiophile because jitter very often exists at much lower frequencies, usually due to the interaction of other analogue or digital signals or to power-supply induced effects.

Experiments have shown that the effect of substantially monotonic jitter indicates that the limits defined in the second equation still apply - even on modern over-sampling a-to-d and d-to-a converters.

Asynchronous sample-rate conversion

The construction of high-frequency phase-locked loops with low-frequency rejection is no mean task. Effectively the circuit must behave like a resonant circuit with a Q of thousands; a design constraint that usually compromises lock-time and centre frequency variability without recourse to complicated multi-stage designs.

Fortunately there exists an alternative, in the form of chips from Analog Devices. These are based on asynchronous sample-rate conversion, or ASRC, technology.

There is no theoretical reason why the interpolation shouldn’t be carried out at a fast enough rate to make this viable. But there exist some very good practical reasons why it is not.

For instance, in order to achieve a reasonable performance - and this means, to achieve 16-bit levels of THD+N across the 0 to 20kHz audio band - the interpolation up-sample frequency would need to be over 3GHz! Clearly, this is an impracticable rate for a low-power IC, so the Analog Devices chips use a less commonly known method of sample-rate conversion called polyphase filtering.

Polyphase filtering

In the polyphase filter ASRC, the digital audio sample sequence is over-sampled - but at a manageable rate of megahertz. It is then applied to a digital FIR low-pass filter in which the required impulse response – 20kHz cut-off – is nearest appropriate value in a temporal sense.

There is no theoretical reason why the interpolation shouldn’t be carried out at a fast enough rate to make this viable. But there exist some very good practical reasons why it is not.

For instance, in order to achieve a reasonable performance – and this means, to achieve 16-bit levels of THD+N across the 0 to 20kHz audio band – the interpolation up-sample frequency would need to be over 3GHz! Clearly, this is an impracticable rate for a low-power IC, so the Analog Devices chips use a less commonly known method of sample-rate conversion called polyphase filtering.

Thinking of prototyping it?

For those interested in building the circuit, PCBs, are available. For more details contact Richard Brice via e-mail richard@perfect-pitch.demon.co.uk.
itself highly over-sampled. The filter is 'over-sampled' in the sense that it comprises many times the required number of coefficient sample taps to satisfy the Nyquist criterion. This means that, at any given moment, only a sparsely sampled subset of coefficients of this filter need be chosen to process the input samples.

These subsets of coefficients, create a kind of 'sub-filter', each possessing an identical 0 to 20kHz magnitude response but with a fractionally different group delay - hence the term 'polyphase'.

It is as if the input signal was being applied to a very great number - i.e. thousands - of digital delay-lines, each with a slightly differing delay. This is shown greatly simplified in Fig. 2.

The sample-rate conversion process works like this; if a request for an output sample occurs immediately after an input sample has arrived, a polyphase filter is chosen that imposes a short group delay. If a request for an output sample occurs late in the input-sample period, a polyphase filter that imposes a long group delay is chosen. In this fashion, the amplitude of the output sample is precisely computed at the desired output sample frequency.

Looking at the output commutator in Fig. 2, it's possible to imagine that, provided the relationship between the input and output frequencies is not completely random, there will be a pattern to the switch selection when looked at over a certain period of time.

Indeed, provided the input and output frequency are relatively stable, you can imagine the commutator revolving at the computed difference frequency between the input and output sample frequency.

This process is controlled, within the Analog Devices parts,
by an on-chip, digital servo-control system that bases its commutation decisions not on an instantaneous measurement, but rather on a digitally filtered ratio.

It is the effect of this powerful, low-pass filtering mechanism that greatly reduces any jitter that may be present on the sample clocks - even when the jitter frequency is just a few tens of hertz.

Implementing the design

Figure 3 is a practical implementation of the AD1892 used as a jitter rejection device for use between the output of a CD player and the input of an outboard d-to-a converter. The AD1892 is not just an ASRC. It is also an AES/SPDIF interface receiver too, so the circuit implementation is very simple.

The 1892 has some limitations, the most severe of which is that it only retains its performance over a limited range of upward sample-rate conversion and a very limited range of downward rate conversion.

For this design, I decided to use an up-conversion from 44.1kHz to 48kHz. The part works well at these two rates and the master oscillator - which must be 512 times output sample rate; 24.576MHz - is relatively easy to source at this frequency.

The SPDIF signal arrives at TX1 - one part of a 16-pin, four transformer data-bus isolator - and is terminated, on the far side of the transformer by R1. The signal is applied directly to the 1892 via coupling capacitors C4 and C5.

The master output clock is derived from a small 24MHz crystal oscillator. Having been broken down into separate clocks and data by the Analog Devices part, the composite AES/SPDIF signal is put back together again by the Crystal Semiconductor CS8402 transmitter chip. This too requires a master clock, but at one quarter of the frequency of the AD1892, hence the inclusion of the divide-by-two bistables IC3 and IC4.

SPDIF output is via transformer TX', which is another part of the same data-bus isolator used for the input. Note resistors R8, R9, R10: these produce an output impedance of 75Ω at a level of about 2V. This is above that specified for SPDIF, which is 1V and is therefore a bit non-standard.

I made the choice for two reasons. Firstly, I have found that outboard d-to-a converters like to have a bit more level. Secondly, by changing the position of LK1, the circuit may be used to encode a digital signal to the unbalanced form of the professional AES/EBU digital interface. This requires the higher output level.

Such provisions make the circuit useful if you need to interface a non-professional CD player in a digital studio. The output is also quite suitable for driving symmetrical a 110Ω AES-style interface, mutatis mutandis.

User indications

The circuit includes several user LEDs to indicate; validity, copy-code, pre-emphasis and signal loss. These are derived and decoded by the AD1892. The LEDs are driven by an HC14 and are primarily there for amusement since no user intervention is required.

Emphasis state and Copyright prohibit are decoded and re-coded by the CS8402. Pull-up, pull-down resistor positions are provided here to allow for various options. The most useful of these is the removal of R1 and R6, which strips copy-code and allows direct digital copies to be made.

The layout of my prototype is shown in Fig. 4. Note the extensive use of ground-plane. Note that the signal inputs and outputs are on BNC as I prefer this connector enor-mously to the RCA phono alternative.

The power supply input is squeezed between the input and output and the whole circuit is enclosed in a little anodised, aluminium extrusion box, no bigger than a household box of matches. It is ideally suited for sitting on top of a CD player or d-to-a converter.

Although it's unwise to be adamant in this area, everyone who has listened to the circuit has been amazed by the improvement in quality that it yields; especially in definition at the bass-end of the spectrum.
ADVERTISERS’ INDEX

ANCHOR SUPPLIES..................941
ANGLIA..............................OBC
CHELMER VALVE COMPANY.........899
CMS....................................901 & 931
CONFORD ELECTRONICS...........845
CROWNHILL.........................893, 901 & 909
DISPLAY ELECTRONICS............937
ELECTROMAIL.........................895
JOHNS RADIO........................925
JPG ELECTRONICS....................909
LABCENTER ELECTRONICS..........889
LANGREX..............................829
MILFORD INSTRUMENTS.............924
PICO..................................901
POLAR INSTRUMENTS...............893

PS CONSULTANTS....................IBC
QUICKROUTE........................IFC
RADIO SOCIETY OF GREAT BRITAIN..909
RADIOTECH.........................893
SEETRAX..............................931
SIGHTMAGIC.........................895
STEWART OF READING..............899
SURREY ELECTRONICS..............899
SWIFT EUROTECH...................882
TELFORD ELECTRONICS.............929
TELNET................................905
TIE PIE.................................887
THOSE ENGINEERS..................929
ULTIMATE TECHNOLOGY............884, 956, 957 & 958
RF and Comms

Project Manager
M4 Corridor - Open
Project Manager required, for this multinational player in the field of Mobile Communications, within their Base Transceiver Station Department Group. You will be responsible for the project management of hardware and software development which will involve agreeing and organising project schedules, liaison with other departments eg, Project Management, Manufacturing etc and ensuring the project is completed on time.

You should be a team player, with excellent communication skills with project management experience and an understanding of hardware and software development processes. Ref: AJ121EWd99

Microwave Design Eng
Essex - £Neg
A company who develop and manufacture various RF and Microwave products in the 70MHz to 18GHz frequency range for the telecomms market are seeking a Microwave Design Engineer.

You will be involved in component and subsystem design, mainly 800MHz - 18GHz.

Degree qualified, with at least 2 years design experience is required. Experience in isolators, circulators, amplifiers, mixers, filters etc from a PMR, Military, Mobile Comms, Radar or Satellite Communications background. Ref: AJ136EWd99

RF Design
Degree qualified Engineers with at least one year RF design experience are required for vacancies throughout the UK for companies involved in Mobile Communications - GSM/UMTS.

When applying please state locations preferred and whether you have experience/knowledge in any of the following (handset or basecell): LNA's, Receivers, Transmitters, Power Amplifiers, Power Control Loops, Synthesizers, Mixers, Filters, (LC, Ceramic), Antennas, Oscillators, SAWs, Demodulators, LF Linear Circuits. Ref: AJ160EWd99

Contact Alison Jones
Tel: 0181 652 3620 Fax: 0181 652 8938

CLASSIFIED

ARTICLES WANTED

For all your valves, tubes, semi conductors and ICS.

Langrex Supplies Limited

1 Mayo Road, Croydon
Surrey CR0 2QP

TEL: 0181 684 1166

FAX: 0181 684 3056

WANTED

Valves & Semiconductors

All types eg. Discrete & IC's Good Rates Paid

CHELMER VALVE CO.

130 New London Road
Chelmsford, Essex

Tel: 01245 265865

Fax: 01245 490064

WANTED, Censat Video Plus programmer model VIP-185 (perfectly). Must be in good working order. Instructions not required. 01736 367100.

WANTED TO BUY. Used Nortek chart recorder system. Fax USA 702/565/4828

Franklin Miller. Email info@swp.com

October Vacancies

Senior Eng
Midde
RF circuits £Neg

Team Leader
Herts
to 3GHz £30K

Product Development
Herts
Radio Comms £35K

Microwave/RF Circuit
Hants
MIC/MMIC £40K

Principa lEng
Hants
DECT/GSM £15K

RF System Eng
Bucks
Mobile/Sat £65K

Senior Eng
Hants
Paging/Radio £Neg

RF Design
Ireland
RF CI £150K

Senior Designer
Manchester
 £135K

Circuit Development
Wits
RF & Opto £25K

Ref: AJ132EWd99

Senior/Principal RF Design
Berks - £35-38K

Research and development department of this major mobile communications manufacture require 3 RF Design Engineers either at Senior or Principal level.

Senior engineers will be involved in the systems design of RF subsystems and RF integrated circuits, possibly involving staff supervision.

Principal Engineers will lead a team of RF Engineers on the development of GSM handportable products. Experience (3 years or more) is required in some of the following: Radios, Power Amplifiers, LNAs, Power Control Loops, Antennas.

Ref: AJ92EWd99

RF System/Subsystems Designer
South East - upto £35K

Research and Development facility that provides consultancy to government agencies and industry worldwide are seeking five RF System and Subsystem Design Engineers for their Radio Communications division.

You will need 2 years experience or more in any of the following key areas: GSM, TETRA, DECT, PCN, PCS, TACS, WLL, SATCOM.

More senior positions available for candidates with more than 5 years experience, including putting together the subsystems components in order to achieve the systems objective. Ref: AJ11EWd99

RECRUITMENT

Tel: 01442 212555 Fax: 01442 231555

FANTASTIC LOW PRICES FOR COMPONENTS

Valves Wanted for Cash

ECC83, KT88, PX25, EL34, EL37, AVO Valve Tester VCM163.

Please ask for our free Catalogue (20p stamp appreciated).

Valves Wanted for Cash

ECC83, KT88, PX25, EL34, EL37, AVO Valve Tester VCM163.

Please ask for our free Wanted List.

Courses

Sponsored Postgrad Research Positions in Future Radio Networks at Trinity College Dublin

Open to CS/Eng, graduates with an interest in radio, software radio, Internet technology and Mobility.

More details from http://integra.cs.tcd.ie

ADVERTISERS PLEASE NOTE

For all your enquires on advertising rates please contact JoannaH Cox on

TEL: 0181 652 3620 FAX: 0181 652 8938

Tel: 0181 652 3620

Fax 0181 652 8938
ARTICLES FOR SALE

RF DESIGN SERVICES
All aspects of RF hardware development considered from concept to production.

WATERBEACH ELECTRONICS
TEL: 01223 862550
FAX: 01223 440853
FAX: 01223 440853
e-mail: eugen_kus@cix.co.uk

POWER SUPPLY DESIGN
Switched Mode PSU
Power Factor Correction
Tel/Fax: 01243 842520
Inverter

ELECTRONICS WORLD
incorporating Wireless World 1971-1996 free to a good home.
Tel: Graham on 0118 973 2119.

SOLD

Rack Enclosures
New and Used most sizes
16U to 50U side and rear panels
main distribution 19" Panel mounts
optima eurocage. Prices from £45 + vat

HP5411D Colour DSO
500MHz BW, 1G S/sec, 2x2Ch,
4 Ch logic trigger,
2 x HP10430A 6p probes, full
set of monuds, £2,000 + VAT
HP1630D Logic Analyser
43 Ch, 100MHz, £450 + VAT
steve@csys.demon.co.uk

MARCONI TF2019A – 80KHz – £575.00
TEK 475 – 200MHz CRO – £235.00
HP141 SPECTRUM ANALYSER
10MHz – 18GHz – £550.00
PHILIPS PM 3217 – 50MHz CRO – £155.00

For more stock and details:
Tel: 01889 569282
www.staffs-wireless.com

Racal RA1975 RX F995, Dynamic Sciences Tempest RX, £995, HP 53528 400Hz Counter, £2,995, Thomson-CSP TRC 350H HF Ml
TSVR, £1,995, Icon IC-M800 HF Marine, £495, Tel/Fax: 01908 365726 or E-mail: PHi@f-cow fronnewor.co.uk

100MHz OSCILLOSCOPE with 50MHz probe set, £180, unboxed (5G1101), TG320 Function generator (200MHz output), 40MHz Oscilloscope, £50. Evenings 01264 391165.

DYNAMIC Sciences Tempest RX, £1,995,

SHORTWAVE BROADCASTERS
Monitor reception from within your target area
GOVERNMENT AGENCIES
Control radio receivers/transceivers worldwide
Radphone 2000/2X from www.pca.cc
Tel/Fax: +44 (0) 1872 223253
E-mail: steve@csys.demon.co.uk

TEKTRONIX 7131 multi-mode oscilloscope
with 7A13 dual trace module and 785A
time base module available (one slot free).
Limited set due to non-functional storage facility.
£150. Also Tektronix 554A single trace generator with 7A3 dual trace module and 7653A
scope with 7A13 dual trace module and 7653A
scope with 7A13 dual trace module and 7653A

TEMPERED GLASS
Various glass sizes
-SSOP, BGA, etc...
-PLCC, QFP, SOIC,

FAX: 01737 771908
TEL: 01737 780790
86 Bishopsgate Street Leeds LS1 488
86 Bishopsgate Street Leeds LS1 488

PRINTED CIRCUIT BOARD SERVICE.
Phone Mr Belt for details (01635 523545)
Printed Circuits manufacturing service.
Production from artwork out of Magazine or
CAD design. Single- or double-sided boards.
Quantities and one-offs. For details telephone Mr.
Belt on 01635 523545.

ELECTRONIC UPDATE
A regular advertising feature enabling readers to obtain more information on companies' products or services.

COMMUNICATIONS

PROGRAMMERS
- Hand held and bench top
- Single socket to 16 gang
- Stand alone and PC based
- DOS and Windows 3.1/95/NT
- Fast algorithms
- Vast range of adaptors:
- -PCC, QFP, 50IC,
- -SSOP, PGA, etc...

Tel: 44(0) 1819539292
Email: sales@smartcom.co.uk
Web: www.smartcom.co.uk

Unique PCB Test Tool
- handheld connectivity tester
- quickly locates shorts & opens
- ideal for SMT-based PCBs
- cost just £93.50 including p&p

Circuit Trace
PO Box 70
Retford DN22 0SY
Tel/Fax: 01777 248993
www.toneohm.com

NIDays 99 - Technical Conferences on Measurement and Automation
NIDays 99 are one-day conferences packed with technical sessions that include in-depth training on our hardware and software products. You will find critical information for your current and future applications. So if you are an engineer involved in test, measurement, data acquisition or automation request your information pack and registration form to join us for NIDays and learn about the latest technologies and techniques so you can build the future today!
Register NOW for NIDays on 01635 252545 or E-mail: info@natinst.com/nidays

PRODUCTS & TECHNOLOGIES

Concept to Production
Electronic design and engineering services
for the new millennium.
- Embedded computing
- Telecoms and defence products
- Oem application design services
- Internet transmission devices
- Wireless communication
- Analogue design services
- System products
- Terminal/telecommunication
- Technological advise
- Technical and experimental

Tel/Fax: +44 (0)1872 223253
Email: designer.systems@tinet.com

PRINTED CIRCUIT BOARD SERVICE.
Phone Mr Belt for details (01635 523545)
Printed Circuits manufacturing service.
Production from artwork out of Magazine or
CAD design. Single- or double-sided boards.
Quantities and one-offs. For details telephone Mr.
Belt on 01635 523545.

Please Mention Electronics World
When Replying to advertisements

Contact Joanna Cox on 0181 652 3620

WATERBEACH ELECTRONICS
TEL: 01223 862550
FAX: 01223 440853
FAX: 01223 440853
e-mail: eugen_kus@cix.co.uk
Lomond Electronic Services
WiNRADiO
TAKING THE EUROPEAN RADIO MARKET BY STORM

TAKE A LOOK AT WiNRADiO’s DIGITAL SUITE SOFTWARE (AWARDED 5 STARS BY WRTH)

1. WEFAX / HF Fax
2. Packet Radio for HF and VHF
3. Aircraft Addressing and Reporting System (ACARS)
4. Audio Oscilloscope, real time Spectrum Analyzer with calibration cursors
5. Squelch-controlled AF Recorder
6. DTMF, CTSS decode and analyse

SOFTWARE (AWARDED 5 STARS BY WRTH)
The DSP applet provided with the WR3100i spectrum monitor ISA card (£995+VAT) allows continuous control of audio bandwidth and other signal conditioning functions.

ONLY £81.07 inc vat
(requires SoundBlaster 16 compatible sound card)

WINRADiO™ PC RECEIVERS

Available as either an internal ISA card that slips inside your PC, or as an external (portable) unit. WINRADiO combines the power of your PC with the very latest, and greatest, synthesised receivers.

YOU CAN USE WINRADiO™ SCANNING PC COMMUNICATION RECEIVERS FOR:
Broadcast, media monitoring, professional & amateur radio communications, scanning, spot frequency, whole spectrum monitoring, instrumentation surveillance and recording.

If you're after the ultimate receiver-in-a-PC with full DSP then smile and say, "Hello" to the new WR31000-DSP with its hardware for real-time recording, signal conditioning and decoding applications. It's all you need.

EXTERNAL WINRADiO™
We are now able to offer you a complete range of stand-alone WINRADiO comms systems:
- WR1000e - £359 inc vat
- WR15000 - £429 inc vat
- WR31000 - £1169 inc vat

Each stand-alone unit connects to your PC through either the basic RS232, or through an optional PCMCIA adapter (for high speed control). The units are powered through either your existing 12v supply, or through an (entirely optional) NiMH rechargeable 12v battery pack.

"It's software is excellent.. more versatile and less idiosyncratic than that of the Icom IC-PCR1000"
WRTH 1999 Review

"Five stars for its mechanical design"
WRTH 1999 Review

"Most Innovative Receiver"
WRTH 1998 Awards

Model Name/Number Construction of internals Construction of externals
WR-1000i/WR-1500i-3100iDSP- Internal full length ISA cards
WR-1000e/WR-1500e - 3100e - external RS232/PCMCIA (optional)

Frequency range
0.5-1500 MHz
AM, SSB, CW, FM-N, FM-W

Modes
10 Hz (5 Hz BFO)
6 kHz (AM), 17 kHz (FM-N), 230 kHz (W)
17 kHz (FM-N), 230 kHz (W)
PLL-based triple-conv. superhet

Tuning step size
10 ch/sec (AM), 50 ch/sec (FM)

Receiver type
Interchangeable

Audio output on card
Yes

Max on one motherboard
8 cards

Dynamic range
65 dB

IF shift (passband tuning)
No

DSP in hardware
No - use optional DS software

IRQ required
Yes

Spectrum Scope
Yes

Visitune
Yes

Published software API
Yes

Internal ISA cards
£299 inc vat

External units
£359 inc vat

PCMCIA Adapter (external):
£69.00 inc vat when bought with e series unit (otherwise: £99 inc)

PSS NiMH 12v Battery Pack and Charger:
£99 inc vat when purchased with e series unit (otherwise: £139 inc)

The WINRADiO Digital Suite:
£74.99 inc vat when purchased with a WINRADiO receiver (otherwise: £81.05 inc)

To receive your completely free (no obligation) info pack and WINRADiO software emulation demo disk all you have to do is get on the internet and go to our website at http://www.broadcasing.com. If you don't yet have easy access to the internet then by all means feel free to telephone us or send a fax.

Please send all your enquiries to: info@broadercasting.com or Telephone: 0800 0746 263 or +44 (0)1245 348000 - Fax: +44 (0)1245 287057
Enformatica Limited, Unit B, Chelford Court, Robjohns Road, Chelmsford, Essex, CM1 3AG, United Kingdom

E&OE WiNRADIO and Visitune are trademarks of WiNRADiO Communications - copyright Broadcasing Communications Systems

CIRCLE NO. 102 ON REPLY CARD
10,000 products within one catalogue?

Impossible they said...

...well we've done it

Call now for your free, unique and exclusive to Anglia, 180 page ST databook.