dalf price wireless RS232 link - exclusive reader offer

 ELECTRONICS
WORLD

INCORPORATING WIRELESS WORLD

OCTOBER 1999 £2.55

VEA tester
Lervavoltage analogue circuits G-ystel oscillator circulte

Make prototype enclosures Look protessional

Denmark DKr. 70.00 Denmark DKr. 70.00
Germany DM 18.00 Greece Dra. 1400.00 Holland Dfl, 12.95 Italy L. 9400.00 Malta Lm. 1.80

 MORE CHOLCES FOR YOUR SMPS DESICNE. HEN:ET POWER MOSFEAS.

BENGMMARK SERIES
Best performance available

New PM	Package	BVdss	Riss(on)	Id	Ros (on) Improvement over incuustry Standard
IRFPS59N60C	Super-247 ${ }^{\text {mw }}$	600 V	$45 \mathrm{~m} \Omega$	59A	89%
IRFBA40N60C	Super-220'1	600 V	$70 \mathrm{~m} \Omega$	40A	94%
IRFBL10N60A	Super-D ${ }^{2 \times P a k}$	600 V	$600 \mathrm{~m} \Omega$	10A	50%
IRFB9N65A	T0-220	650 V	$930 \mathrm{~m} \Omega$	8.5A	No Equivalent
IRFIB5N65A	T0-220 Fullipak	650 V	930 ms	5.1A	No Equivalent

Available in UK from: Abacus Polar, Arrow, Farnell, Future Electronics, RS Components,

Solid State Supplies, WBC.

For technical assistance call $+44(0) 1883733309$ or the Fax-on-Demand system on +44 (0)1883 733420 .

CONTENTS

795 COMMENT

Aromatherapy and audiophools

797 NEWS
- Recovery for Europe's chip market
- 2000 fix turns off 2000 lights
- Tiny microphone responds to air flow
Phone tapping needed for mobiles, etc?
- Gigabit comms via light beam
E-commerce - UK industry boom?

802 VHF RECEIVER IN DSP
In this VHF broadcast band receiver, everything from tuning to demodulating is done in software by a highperformance DSP chip. Michael Slifkin et al explain how with a fully worked design example.

811 LOW VOLTAGE DESIGN II

Four leading researchers in the field of low-voltage, low-power analogue ICs explain how new topologies are being used to overcome the limitations of working with low supply voltages and currents.

818 CIRCUIT IDEAS

- Battery dynamo bicycle lighting
- Line-powered music on hold
- Sleep switches for lamps

AC continuity testing

- 10 V to 3 kV voltage converter
- Water detector
- Peak-video-to-dc converter
- Synchronous am detector
- Voltage control for a digital delay line

Quick-on, delayed-off switching

- Using a 555 for speed control
- Lead-acid battery charger
- Electronic load

831 THE ROUTE TO SIMULATION IV

Rod Cooper investigates the comprehensive circuit CAD package Proteus, which has recently benefited from a new simulation engine.

836 FINISHING OFF

Ian Hickman looks at some of the many short cuts for making a prototype or one-off instrument look professional.

841 NEW PRODUCTS

New product outlines, selected and edited by Richard Wilson

Save 45\% on an RS232 wireless link
Need a wireless RS232/485 link for your PC? As an EW reader, you can obtain two wireless serial-link modems almost for the price of one. These licence-exempt 19.2 kbaud units are complete plug-in-and-go modules. See page 840 for details.

849 CRYSTALS MADE CLEAR II

Joe Carr describes the benefits and trade-offs of a variety of quartz crystal oscillator circuits covering all frequencies ranging from 50 kHz to 110 MHz .

859 ANTI-JITTER: NEW CIRCUITS

Most analogue building blocks used today were invented decades ago. Here, Neil Downie details a brand new circuit that can offer significant advantages relative to the PLL in combating jitter.

865 HANDS-ON INTERNET

All-pass filters, instrumentation amplifiers, simulated inductors and single-wire bidirectional communications links among applications that can benefit from transconductance op-amps, as Cyril Bateman has been finding out.

870 SVGA GENERATOR

Roy Harding's complete test generator design uses a PIC variant that's so fast that it's capable of producing SVGA signals without any external timing circuitry.

Proteus differs from circuit simulation packages reviewed so far in that it has no virtual instruments. But might its alternative analysis tools suit you better? Turn to page 831 to find out.

A microphone whose sensing elements are so tiny that they react to air flow rather than sound pressure. Read how on page 797.

New sensor detects a moving human body using four 1.35 by 1 mm sensing elements - one of dozens of new products featured on pages 841-846.

CROWNHILL ASSOCIATES LIMITED
The Old Bakery, New Barns Road,
Ely, Cambs. CB4 7PW
Tel: +44 (0)1353 666709 Fax: +44 (0)1353 666710
Low cost professional quality Smart Card Systems

CHIPDPIVE

The intelligent programmer for Smart Cards using the International Standard $\mathrm{T}=0$ or $\mathrm{T}=1$ protocols also Memory and Secure Memory using I'C, 2 -wire \& 3-wire interfaces. From April 11999 all ChipDrives are supplied with sotware to read and write to most popular secure smart cards, inc GSM. PAY PHONE and ACCESS CONTROL cards. Drivers are available for Apple Macintosh. Linux, Unix, Solaris. Microsoff PC/SC and of course WINDOWS $95 / 98$ and NT.
Supplied with CARDSERVER API for easy development of SmartCard Applications using Visual Basic, Delphi or C++

All Chipdrives are supplied with a Windows API and full documentation. ChipDrives are CE Compliant ChipDrives conform to $1 \mathrm{SO} 7816, \mathrm{~T}=0$ or $\mathrm{T}=1$ (@) 3.579 MHz , RS232 @ $9600-11500 \mathrm{bps}$, Internal Supply/Ni-MH. Under normal conditions power is derived from the host Serial Port. Operation is simple, full telephone and email support is provided for
 Windows developers

FREE GSM CARD READING application GSM CARplied with CHIPDRIVE-micro

CHIPDRIVE Developer Kit	
CDK consists of: CD ROM containing cardserver.dll. Applications and Source code exampies. CHIPDRIVE-micro a selection of Smarl Cards offering protected memory, processor and memory cards. Typical uses are Control access, Pay Phone cards and Data transport. PIN codes for the cards are supplied along with data sheets and programming data for use with cardserver.dll. A useful application with source codes shows how the CHIPDRIVE can be used to identity any	
	Smart card inserted, giving manufacturer info, and memory map if available. Applications produced with the developer kit will operate under Windows $3.11 / 95 / \mathrm{NT}$ and are compatible with the whole CHIPDRIVE family. The CDK uses easy to use 16 bit or 32 bit DLLs with just one function call to the 'CardServer' to identify the card or carry out any instruction. Cardserver is a powerful Background task which relieves the application programmer from device and card administration. Featuring automatic protocol and card type detection. Allowing several applications to access one terminal dependent only on the type of card inserted.
£69.95 + P\&P £5 Exclusive of VAT	Supplied with CHIPDRIVE micro, Smart Cards and Source Code. Full Tech Support via Email.

htfp://www.towitoko.co.uk
http://www.crownhill.co.uk
http://www.edsim2000.com

hitex

DEVELOPMENTTOOLS

The First Ruing On The Microcontroller

Siemens uC starter kits are a great way to get into the world of embedded systems. With peripherals like ADC, Capture/ Compare and Controller Area Networking, you will be able to get your ideas going fast - you can choose between the popular 8-bit C 500 CPU family or the 12.5 MIPS 16-bit C167 family to get the best fit for your project.

For further details see our website www.hitexico.uk

Hitex (UK) Ltd. University of Warwick Science Park, Coventry, CV4 7EZ

Aromatherapy and audiophools

EDITOR

Martin Eccles
01816523614
CONSULTANTS
lan Hickman
Philip Darrington
Frank Ogden
EDITORIAL ADMINISTRATION
Jackie Lowe
0181-652 3614
EDITORIAL E-MAILS
jackie.lowe@rbi.co.uk

ADVERTISEMENT MANAGER

Richard Napier
0181-652 3620
dISPLAY SALES EXECUTIVE
Joannah Cox
0181-6523620

ADVERTISEMENT E-MAILS

joannah.cox@rbi.co.uk

ADVERTISING PRODUCTION

0181-6523620

PUBLISHER

Mick Elliott
EDITORIAL FAX
$0181-6528111$
CLASSIFIED FAX
0181-652 8938
NEWSTRADE ENQUIRIES
01712617704
ISSN 0959-8332

SUBSCRIPTION HOTLINE
 01622778000

SUBSCRIPTION QUERIES
rbp.subscriptions@rbi.co.uk
Tel 01444445566
Fax 01444445447

For a full listing of
RBI magazines:
http//www.reedbusiness.com

REED
BUSINESS
INFORMATION

In most fields of electronics charging $£ 120$ for a short piece of wire with a plug at either end would not win you many customers. The audiophile, or rather audiophool, business is different; it turns the rules of business - and of science apparently on their head.

Let me explain, for those of you unfamiliar with this fascinating market.

Successful retailing, they say, is the painless extraction of money from the pockets of satisfied customers. This is normally achieved by providing them with goods at competitive prices that meet their genuine needs.

Supplying audiophools is different; it's akin to selling aromatherapy essences, or those copper bracelets that combat heumatism.

It's a profitable business too, with apparently rational adults all men by the way; womankind is honourably exonerated - spending serious amounts of money on something they cannot see, cannot feel and cannot justify the cost of.
No scientific backup is offered for the claims made for the betterment of music. If these traders were selling patent medicines, they'd be outlawed within weeks, but in audiophool circles the Trades Descriptions Act appears not to apply.

Looking through current British hi-fi magazines I see vendors offering:

- mains plugs with rhodiumplated pins for better audio listening;
- 'sublime' glass platter mats for sheer three-dimensional detail resolution;
- overlay mats for realising better sound from CDs;
- interconnects (you mustn't called them connecting leads any more, oh no!) made from oxygen-free copper with crystals aligned in the direction of the music;
- other interconnects containing 'a particular inorganic chemical' to
improve sonic qualities;
- replacement capacitors of guaranteed 'musical' sound quality;
- long-grain pure silver wire for building better amplifiers.

The strange thing is that most audiophools are not ignorant peasants; far from it. To be duped in this way implies significant material achievement (put another way, deep pockets) and a maturity of personal development that properly appreciates highend sound and musicality, if not music for its own sake.

Music has to be chosen very carefully of course; most audiophools are aggressively analogue and will not countenance those silver beer mats. A few, however, will embrace CDs - so long as these are the remastered gold substrate variety. In either case, whatever individual preference the audiophool once had for music is now subjugated since he now listens only to reference recordings, for facilitating participation in comparisons with other audiophools.

In all this pursuit of aural excellence, the established techniques developed and proven over the years by audio professionals are studiously ignored. So signal cables made of sensible, affordable copper are rejected in favour of sexier affairs made of pure silver - or else of refined virgin unobtainium. Sensible, solid XLR connectors with contacts having large surface areas are abandoned for slender phono plugs with expensive gold plating. Proper balanced audio cables with a grounded lapped foil screen are ignored in favour of interference-prone twin-line.

Design logic counts for little in the equipment too. Even though MOVs for eliminating mainsborne transients are very cheap, it would not occur to the manufacturer of a $£ 1500 \mathrm{CD}$ player to build suppression into the device. Instead the solution is sold as an outboard add-on -
naturally with an audiophool seal of approval. Its price is a drop in a bucket compared with the price of the other toys so vendors are laughing all the way to the bank.
The effects of mains-related quackery may be positively dangerous too.

There's a story - it may be urban legend - of one audiophool who short-circuited his house fuses in order to reduce the internal resistance of the mains supply, thus improving his equipment's voltage regulation.

His house burned down.
Responsibility for perpetrating all this pseudo-science lies with the audiophool journals. An unhealthy collusion between advertisers and publishers perpetuates this aura of mystique, with few titles prepared to prejudice their revenue stream by exposing the emperor's new clothes.
Sanity still exists in some quarters of course, particularly in the letters department of this very journal. Anything to do with audio that's loopy or even slightly subjective soon gets knocked down to Earth here.

Some refreshing candour is also appearing in some of the Internet discussion groups for high-end audio; one pundit recently suggested that for genuine 'liquid sound' the only solution was to use mercury-filled speaker cables - and then devalued this advice by admitting this was an April Fool's joke.

But perhaps we should live and let live. If aromatherapists or other practitioners of fringe medicine can successfully relieve suffering and make the world a happier place, then why shouldn't audiophools enjoy their expensive pleasures too? It's easy to misjudge people anyway; some audiophools regard 'professionals' as cloth-eared cretins, who are too stupid and/or deaf to appreciate the audio art at the (superior) audiophool level.

Keep smiling!
Andrew Emmerson

[^0][^1]
Get on board the Easy-PC For Windows revolution!!

 Power-Packed PCB Layout for Windows '95/'98/NT at Computer Store Prices!!

For more information or a demo disk call Number One Systems on 01684773662 or Fax 01684773664 Email info@numberone.com Number One Systems, at Sightmagic Ltd, Oak Lane, Bredon, Tewkesbury, Glos, GL20 7LR. UK

Visit our WEB site www.numberone.com

- True 32 bit Windows application
- Schematic and PCB Deslgn editors as standard
- Design in Imperial, Metric or mixed units (no rounding errors)
- Drawing area up to $1 \mathrm{~m} \times 1 \mathrm{~m}$ ($39^{\prime \prime}$ by $39^{\prime \prime}$)
- Design precislon down to 10^{m} Micron $(0.000001 \mathrm{~mm})$
- Rotation to $1 / 10^{\text {th }}$ degree
- Intelligent Cut, Copy and Paste across deslgns
- Multi-level Undo and Redo
- Integrated component Autoplace
- Integrated shape based Autorouter (Optional extra)
- Intelligent bussing in schematics
- Supports SMT, Through-hole and mixed technology
- Intelligently supports SMT on both sides of the design
- Unlimited number of PCB design layers
- Cross probing schematics to PCB design and Projects
- Forward annotation of design changes from schematics
- Back annotation of net name/component name changes
- Dynamic Pan, Zoom In/Out and Frame Views
- Dynamic drag and drop to/from component oln
- All design elements per design are unllimited
- Graphical Design Rule Checker
- Integrity and Connectivity Checker
- Professional manufacturing outputs

Now with optional autorouter!!

CIRCLE NO. 106 ON REPLY CARD

Not just a pretty interface

Available on 30 day evaluation Free technical support Mac version also available

B^{2} Spice for analogue simulation $£ 199$ B^{2} Logic for digital simulation $£ 199$ Special bundle price $£ 295$

All prices shown exclude VAT
Postage \& Packing $£ 5.00$

B^{2} Spice B^{2} Logić

Professionals, universities and designers need software that produces results they can rely on. B^{2} Spice and B^{2} Logic will give you the accurate results you need - fast

The best way to find out if a package is really what you need is to try it, which is what we're giving you the chance to do, risk free for 30 days.

We guarantee you will be 100% satisfied with the results or your money back.

Research House, Norwich Road, Eastgate, Norwich NR10 4HA Email rd.research@paston.co.uk www.looking.co.uk/spice

UP
 DATE

Recovery showing for Europe's chip market

Despite the continuing DRAM debacle, the semiconductor market recovery in Europe is under way, according to a report from analysts Future Horizons of Sevenoaks, called "The European Semiconductor Market Report 1996-2004.
Describing the DRAM market as a 'Fubar’ (Fouled Up Beyond All Reason), Malcolm Penn, chairman of Future Horizons, commented: "lt's out and out obsession with who's going to be No 1 in worldwide DRAM production,
whatever the cost."
A price war between Micron of Idaho and the Korean companies has seen prices of 64Mbit DRAMs drop from $\$ 8$ to $\$ 4$. "At these prices no one is profitable," says the report.
On the upside, business at silicon foundries is growing at twice the industry rate, with product allocations threatened later this year. High-end logic and flash are also rebounding.
The report warns of a capacity shortage later this year and next which may accelerate plans for 12 in
wafer production. It believes the first users of 12 in wafers will be Infineon, Intel, NEC, Samsung, STMicroelectronics and TSMC.

European semiconductor market forecast. (\$bn)			
Year	1999	2000	2001
Discretes	3.3	3.7	4.1
Opto	0.9	1.2	1.6
IC	28.3	35.1	45.5
Total	32.5	40.0	51.2

2000 fix turns off 2000 lights

Two thousand Londoners were left without electricity recently when a Year 2000 upgrade to pre-pay meters went wrong.

London Electricity was trying to make its meters millennium compliant before the date change, but ended up cutting off over 2000 customers.
"Our Powerkey meters don't recognise the date change," said a London Electricity spokesperson. "They would continue to supply electricity, but wouldn't recognise
any price changes."
The electric company came up with a plan to upload new software when customers next recharged their meters.
"About 8000 people tried to do the fix, of which 2000 did not work," said the spokesperson. When the credit on these meters ran out, customers were left without power.
"The majority were put back on within 24 hours," he said "We're not aware of anyone that's been off any longer than 48 hours."

London Electricity's remaining 400000 Powerkey customers will wait until the problem with the keys is rectified before having their meters upgraded.
The government's Year 2000 watchdog, Action 2000, and Offer, the electricity watchdog, has graded 95 per cent of electricity firms as 'blue' in their traffic light grading system of compliance. This indicates 'no material risk of disruption', although the London Electricity case shows disruption several months before the date change.

Smaller, lighter microphone responds to air flow, not pressure

Researchers at the University of Twente in the Netherlands have developed a microphone that is smaller and lighter than conventional units.
Rather than measuring sound pressure, the device, called a 'microflown', measures particle velocity, or air flow.
Micromachining is used to create two closely spaced silicon-nitride wires. These are coated with a platinum resistor. Each wire is 1 mm long. Current passed through the platinum elements heats the wires to between $200^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$. The flow of air due to sound waves causes the wire closer to the sound source to be cooled, with the amount of cooling being linearly dependent on the velocity of the airflow.
Because the wires are close
together, convective heat flow causes the temperature of the other wire to rise. The temperature difference is measured as a voltage output by placing the resistive wires in a Wheatstone bridge.
The sensor acts as a low pass filter, because thermal mass of the wires limit their ability to follow fast changing signals. At low frequencies the response is flat while higher frequencies show a 6 dB /octave drop. Two types of microflown have different responses. The cantilever type (pictured) has a relatively low corner frequency of 400 Hz . The bridge type, where both ends of the wires are supported, has a higher corner frequency of 1 kHz .
Both types can be used for speech, providing the low pass behaviour is corrected electrically, or through
digital signal processing.
A frequency range of 100 to
3.4 kHz is possible, the researchers claim.

New tapping measures for Internet and mobiles

Are you and 'arf-a-dozen of yer chinas down the East End' planning a bank job? Are you worried about the old Bill listening in on your dog-and-bone?
No problem, my son. Today you can get instant, off-the-shelf, secure communications that will cost you only the price of a drink. Just buy a few pre-pay mobile phones down at Dixons. Set up a free Internet account, preferably with ready-made encryption software. The police will have no idea who owns them, or which company is transmitting your conversations. Throw your equipment away afterwards, and most of the incriminating evidence is gone forever.

This is the problem now facing the police. Because of the boom in new types of telecoms networks and the Internet, they can no longer

> With the boom in telecoms networks, phone tapping is getting harder for the police. Now the Home
> Office plans to bring police phone tapping into the era of mobiles and the Internet. Pete Mitchell reports

reliably eavesdrop on criminal activities through telephone tapping - or so claims the Home Office.
Authority for the police to listen in on suspects' phone conversations comes from the Interception of Communications Act. Passed in 1985, the IOCA merely confirmed the decades-old gentleman's agreement between the former GPO - which operated the public switched network - the exchange suppliers such as GEC and Plessey, and the Home Office. It enables the police to get a warrant to monitor any fixed subscriber line owned by a public telecommunications operator, using purpose-built functions in the BT switch.

But the IOCA's authors had obviously never heard of cellphones, satellites, the Internet, or even cable. They completely ignored the existence of private voice or data networks, which were much rarer and more localised then than they are today, and which now carry a substantial amount of public traffic for much of its journey.

An even bigger limitation is that the IOCA warrants only apply to licensed public telecommunications operators, whereas the industry now contains many unlicensed service providers. It, and the crooks, have moved on, and the Home Office now wants to move with them.
So it recently produced a consultation paper outlining its plans for an extended IOCA, and sent it for comments to the telecoms industry - an industry now consisting of cellular network operators, Internet service providers, about 150 fixed-line phone companies (rather than two when IOCA was written), bandwidth-resale companies, and private network owners.

ISPs, comms and net operators in panic These firms are now in some panic. Not only will the reborn IOCA require all firms to install new infrastructure - capable of secretly monitoring the entire traffic of any of their customers within a few minutes of receiving a warrant but it will also demand that the operators themselves pay the entire cost of this privilege. As the consultation paper puts it, "... communication service providers will be required to take reasonable steps to ensure that their system is capable of being intercepted. This will be an ongoing requirement which CSPs will have to consider each time they develop their network or introduce new services"

The costs will run into millions. And some of the functions that the Home Office is demanding cannot be delivered at all using current technology, said Keith Mitchell, chairman of the LINX association of Internet service providers.
"The requirements were constructed by police officers who seem to have assumed that the Internet works just like the voice telephone network, which it doesn't at all," he said. "They want listening devices installed on every Internet backbone router. Personally, I don't see how that could be done, but even if it could, it might be open to abuse and could potentially compromise the overall security of the Internet.
"Some of the services they want could degrade the performance seen by someone who was being monitored, and it's quite possible that they could detect that they were being monitored as a result."

Cost implications

Such performance penalties would affect the innocent Internet user too, he adds. So, of course, would the cost - estimated at between

20 and 40 per cent of the total infrastructure costs of a typical ISP - that would be passed on to customers. Some ISPs would probably even have to re-design their backbones to match the topology assumptions made in the proposals, he said.
"It's most unfair that they are proposing service providers should pay for this," he said. "Some of the technology isn't available off the shelf yet, so it's not just a question of ISPs going out and buying a box. The equipment manufacturers would have to commit R\&D money to develop it."
The cellphone operators are equally alarmed, and much less well prepared. The Federation of Communications Services, the mobile operators' trade association, has not yet agreed on its response. It is still consulting its members and trying to work out the financial impact on their business, said Chris Webb, an FCS spokesman: "What is certain is that it will affect both the service providers and the networks quite dramatically."
It is expected that some of the larger networks - those linked to telecoms companies who have dealt with the Home Office for many years - will have seen this coming and made at least some preparations for it. But the smaller operators have been caught completely on the hop.

What will the customers think?

And re-engineering their network management systems is not the only issue: operators are privately worried about how the new legislation will affect their relations with customers, too.
"It will be a tricky balancing act to convince our subscribers we are respecting their confidentiality at the same time as we have to work in the new framework," said one.
To forestall objections, the Home Office is trying to bluff the industry into believing that, "these proposals are consistent with existing legislation and practice in many other countries including France, Germany, the Netherlands, Sweden, the USA, Canada and Australia".
But, "What they mean is that other countries have signed up for this, but not implemented it yet," said Mitchell. He warns that the UK is in severe danger of giving its Internet industry the most stringent monitoring requirements in the world.
"Other countries will then choose not to route their traffic through here for fear that confidentiality safeguards will be breached, and that could be very harmful to our information economy."

PLUG IN AND MEASURE

STORAGE OSCILLOSCOPE SPECTRUM ANALYZER VOLTMETER TRANSIENT RECORDER

TiePie introduces the HANDYSCOPE 2

A powerful 12 bit virtual measuring instrument for the PC
The HANDYSCOPE 2, connected to the parallel printer port of the PC and controlled by very user friendly software under Windows or DOS, gives everybody the possibility to measure within a few minutes. The philosophy of the HANDYSCOPE 2 is:
"PLUG IN AND MEASURE".
Because of the good hardware specs (two channels, 12 bit, 200 kHz sampling on both channels simultaneously, 32 KWord memory, 0.1 to 80 volt full scale, 0.2% absolute accuracy, software controlled AC/DC switch) and the very complete software (oscilloscope, voltmeter, transient recorder and spectrum analyzer) the HANDYSCOPE 2 is the best PC controlled measuring instrument inits category.

The four integrated virtual instruments give lots of possibilities for performing good measurements and making clear documentation. The software for the HANDYSCOPE 2 is suitable for Windows 3.1 and Windows 95. There is also software available for DOS 3.1 and higher.

A key point of the Windows software is the quick and easy control of the instruments. This is done by using: - the speed button bar. Gives direct access to most settings.

- the mouse. Place the cursor on an object and press the right mouse button for the corresponding settings menu.
menus. All settings can be changed using the menus.

Some quick examples:
The voltage axis can be set using a drag and drop principle. Both the gain and the position can be changed in an easy way. The time axis is controlled using a scalable scroll bar. With this scroil bar the measured signal (10 to 32 K samples) can be zoomed live in and out.

The pre and post trigger moment is displayed graphically and can be adjusted by means of the mouse. For triggering a graphical WYSIWYG trigger symbol is available. This symbol indicates the trigger mode, slope and level. These can be adjusted with the mouse.

The oscilloscope has an AUTO DISK function with which unexpected disturbances can be captured. When the instrument is set up for the disturbance, the AUTO DISK function can be started. Each time the disturbance occurs, it is measured and the measured data is stored on disk. When pre samples are selected, both samples before and after the moment of disturbance are stored.

The spectrum analyzer is capable to calculate an 8 K spectrum and disposes of 6 window functions. Because of this higher harmonics can be measured well (e.g. for power line analysis and audio analysis).

The voltmeter has 6 fully configurable displays. 11 different values can be measured and these values can be displayed in 16 different ways. This results in an easy way of reading the requested values. Besides this, for each display a bar graph is available.

When slowly changing events (like temperature or pressure) have to be measured, the transient recorder is the solution. The time between two samples can be set from 0.01 sec to 500 sec , so it is easy to measure events that last up to almost 200 days.

The extensive possibilities of the cursors in the oscilloscope, the transient recorder and the spectrum analyzer can be used to analyze the measured signal. Besides the standard measurements, also True RMS, Peak- Peak, Mean, Max and Min values of the measured signal are available.

To document the measured signal three features is provided for. For common documentation three lines of text are available. These lines are printed on every print out. They can be used e.g. for the company name and address. For measurement specific documentation 240 characters text can be added to the measurement. Also "text balloons" are available, which can be placed within the measurement. These balloons can be configured to your own demands.

For printing both black and white printers and color printers are supported. Exporting data can be done in ASCII (SCV) so the data can be read in a
spreadsheet program. All instrument settings are stored in a SET file. By reading a SET file, the instument is configured completely and measuring can start at once. Each data file is accompanied by a settings file. The data file contains the measured values (ASCII or binary) and the settings file contains the settings of the instrument. The settings file is in ASCII and can be read easily by other programs.

Other TiePie measuring instruments are: HS508 ($50 \mathrm{MHz}-8$ bit), TP112 (1MHz12bit), TP208 ($20 \mathrm{MHz}-8$ bit) and TP508 ($50 \mathrm{MHz}-8$ bit).

Convince yourself and download the demo software from our web page http://muw.tiepie.nl.
When you have questions and / or remarks, contact us via e-mail: support@tiepie.nl

Total Package:
The HANDYSCOPE 2 is delivered with two 1:1/1:10 switchable oscilloscope probe's, a user manual, Windows and DOS software. The price of the HANDYSCOPE 2 is $£ 299.00$ excl. VAT.

TiePie enginering (UK), 28 Stephenson Road, Insdustrial Estate, St. Ives, Cambridgeshire, PE17 4WJ, UK
Tel: 01480-460028; Fax: 01480-460340
TiePie engineering (NL)
Koperslagersstraat 37
8601 W. SNEEK
The Netherlands
Tel: +31515415416
Fax +31515418819

Gigabit speed comms through air via a light beam

| ucent Technologies' Bell Labs has put dense wave division multiplexing, or DWDM, technology into use for transmitting data through the air using beams of light.
The optical system called WaveStar OpticAir is claimed to be the first to use DWDM directly through the air and can cope with voice, data or video traffic. The system builds on Lucent's existing fibre optic system using a lot of the same technology.
A high power optical amplifier is used to boost the signal up to 1 W before it is transmitted down a singlemode fibre optic cable to a telescope.
The signal is coupled to four 3 cm transmitting apertures in the telescope which are configured in a square pattern around a 20 cm
receiving aperture. The light from the apertures diverges as it is transmitted so at a distance of 2 km the diameter of the beam will be approximately a metre.
In the multichannel system each signal is sent on a different frequency boosted by its own amplifier. At the telescope the signals are mixed and each aperture sends all the signals.
The four transmitting apertures are all focused on the receiving aperture at the other end. When the signal is received it is sent down a multimode fibre into an avalanche photo diode. A DWDM multi-mode demultiplexer splits out the signals.
The system is still being worked on in the lab and Jim Auborn, Bell

Labs' head of communications technology department, is very enthusiastic about its performance. "In principle you can do just about what you can do with fibre systems," explains Auborn.
The first version is expected in March 2000 and will support one wavelength at speeds up to $2.5 \mathrm{Gbi} / \mathrm{s}$. This will be followed in the summer by a four wavelength system with a maximum capacity of $10 \mathrm{Gbi} / \mathrm{s}$ for distances up to 5 km .
Auborn says that the transmission distance can be greater depending on the atmospherics. "We can really transmit as far as you can see," he comments. "If the weather gets bad you can increase the power or transmit data at a lower rate."

E-commerce could spark UK industry boom

B ritish electronics manufacturers Bave a major opportunity to prosper through the use of the Internet. That is the message of Dr David Cleevely, a member of the government's steering group on e-commerce.
"The UK is very good at inventing and has a strong understanding of how things are made," said

Engineers patently spy on rivals

Engineers are using patent information to keep a close eye on their competitors, according to a survey commissioned by Derwent Information. The Europewide survey showed that 55 per cent of respondents use patent information for 'competitive intelligence'

Cleevely. Where it is less effective is in volume production.
What e-commerce offers, claimed Cleevely, is a way of bridging the gap between idea generation and innovation, and final distribution. "You don't need to manufacture here," said Cleevely, who is also managing director of telecoms consultancy Analysys. "What is important is to understand how things are made."
"I agree with him 100 per cent," said Cliff Hardcastle, chairman of display manufacturer Densitron. "I also think it [this approach] is the only way forward."
His belief is that the UK is unique in its ability to respond quickly to development
They're no test
dummies... Test
dummies certainly did
not design the airbag
deployment test system
that Rugged Systems is
offering to vehicle
manufacturers. The
system designed by
ARIES in Spain allows
manufacturers to
determine the
threshold trigger
speeds and
decelerations of
airbags.

opportunities. "It is good at design and it is good at organising it."
Hardcastle plans to exploit these strengths by setting up a propagation company that will use the Internet to offer customers access a raft of key companies not just for manufacturing but design too. "It will take advantage of opportunities wherever they occur," he said.
Meanwhile, Cleevely argues is that if UK manufacturers successfully exploit e-commerce, "we could start to see year-on-year growth way above anything we've seen since the Second World War."

Chips form part of pet passport plan

The government is to introduce a microchip-based pet passport scheme. A pilot scheme for Western Europe will start next April with a wider scheme planned for 2001. Under the scheme, the animals travelling from Britain or entering the country from abroad will have to be vaccinated against rabies and have an identifying microchip inserted under their skin. The process will cost $£ 150$ with a further $£ 30$ a year for annual booster injections, compared to $£ 2000$ for six months in quarantine.

TAKE A LOOK AT WINRADIO's DIGITAL SUITE SOFTWARE (AWARDED 5 STARS BY WRTH)

1. WEFAX / HF Fax
2. Packet Radio for HF and VHF
3. Aircraft Addressing and Reporting System (ACARS)
4. Audio Oscilloscope, real time Spectrum Analyzer with calibration cursors
5. Squelch-controlled AF Recorder
6. DTMF, CTSS decode and analyse

The DSP applet provided with the WR3100i spectrum monitor ISA card (£995+VAT) allows continuous control of audio bandwidth and other signal conditioning functions.
ONLY £81.07 inc vat
(requires SoundBlaster 16 compalible sound card)

WINADIOTM PC RECEIVERS

Available as either an internal ISA card that slips inside your PC, or as an external (portable) unit. WiNRADiO combines the power of your PC with the very latest, and greatest, synthesised receivers.

YOU CAN USE WINRADIOTM SCANNING

 PC COMMUNICATION RECEIVERS FOR: Broadcast, media monitoring, professional \& amateur radio communications, scanning, spot frequency, whole spectrum monitoring, instrumentation surveillance and recording.If you're after the ultimate receiver-in-a-PC with full DSP then smile and say, "Hello" to the new WR31000i-DSP with its hardware for real-time recording, signal conditioning and decoding applications. It's all you need.

NEW EXTERNAL MODELS

EXTERNAL WINRADIOM

We are now able to offer you a complete range of stand-alone WiNRADiO comms systems:
-WR1000e - £359 InC VAT -WR1500e - £429 Inc Vat - WR3100e - £1169 inc vat Each stand-alone unit connects to your PC through either the basic RS232, or through an optional PCMCIA adapter (for high speed control) The units are powered through either your existing 12 v supply, or through an (entirely optional) NiMH rechargeable 12v battery pack.
"It's software is excellent.. more versatile and less idiosyncratic than that of the Icom IC-PCR1000" WRTH 1999 Review
"Five stars for its mechanical design" WRTH 1999 Review
"Most Innovative Receiver" WRTH 1998 Awards

Model Name/Number

Construction of internals

Construction of externals
Frequency range
Modes
Tuning step size
IF bandwidths

Receiver type
Scanning speed
Audio output on card
Max on one motherboard
Dynamic range
IF shift (passband tuning)
DSP in hardware
IRQ required
Spectrum Scope
Visitune
Published software API
Internal ISA cards
External units

WR-1000	WR-1500	WR-3100
WR-1000i/WR-1500i-3100iDSP- Internal full length ISA cards WR-1000e/WR-1500e - 3100e - external RS232/PCMCIA (optional)		
$0.5-1300 \mathrm{MHz}$	$0.15-1500 \mathrm{MHz}$	$0.15-1500 \mathrm{MHz}$
AM,SSB/CW,FM-N,FM-W	AM,LSB, USB,CW, FM-N,FM-W	AM, LSB, USB, CW,FM-N,FM-W
100 Hz (5 Hz BFO)	100 Hz (1 Hz for SSB and CW)	100 Hz (1 Hz for SSB and CW)
6 kHz (AM/SSB),	$2.5 \mathrm{kHz}(\mathrm{SSB} / \mathrm{CW}), 9 \mathrm{kHz}$ (AM)	$2.5 \mathrm{kHz}(\mathrm{SSB} / \mathrm{CW}), 9 \mathrm{kHz}$ (AM)
17 kHz (FM-N), 230 kHz (W)	17 kHz (FM-N), 230 kHz (W)	17 kHz (FM-N), 230 kHz (W)
PLL-based triple-conv. superhet $10 \mathrm{ch} / \mathrm{sec}$ (AM), $50 \mathrm{ch} / \mathrm{sec}$ (FM)		
200 mW	200 mW	200 mW
8 cards	8 cards	3-8 cards (pse ask)
65 dB	65 dB	85dB
no	$\pm 2 \mathrm{kHz}$	$\pm 2 \mathrm{kHz}$
no - use optional DS software		YES (ISA card ONLY)
no	no	yes (for ISA card)
yes	yes	yes
yes	yes	yes
yes	yes	yes (also DSP)
£299 inc vat	£369 inc vat	$£ 1169.13$ inc
£359 inc vat	£429 inc vat	£1169.13 inc (hardware DSP only internal)

PPS NiMH $12 v$ Battery Pack and Charger: $£ 99$ inc when purchased with 'e' series unit (otherwise: $£ 139$ inc)
The WiNRADIO Digital Suite: $£ 74.99$ inc when purchased with a WiNRADiO receiver (otherwise: $£ 81.05$ inc) PCMCIA Adapter (external): $\quad £ 69.00$ inc when bought with 'e' series unit (otherwise: $£ 99$ inc)
PPS NiMH $12 v$ Battery Pack and Charger: $£ 99$ inc when purchased with 'e' series unit (otherwise: $£ 139$ inc)
The WiNRADIO Digital Suite: $£ 74.99$ inc when purchased with a WiNRADiO receiver (otherwise: $£ 81.05$ inc) PCMCIA Adapter (external): $\quad £ 69.00$ inc when bought with 'e' series unit (otherwise: $£ 99$ inc)
PPS NiMH $12 v$ Battery Pack and Charger: $£ 99$ inc when purchased with 'e' series unit (otherwise: $£ 139$ inc)
The WiNRADIO Digital Suite: $£ 74.99$ inc when purchased with a WiNRADiO receiver (otherwise: $£ 81.05$ inc) To recelve your completely free (no obligation) info pack and WiNRADiO software emulation demo disk all you have to do is get on the internet and go to our website at http://www.broadercasting.com. If you don't yet have easy access to the internet then by all means feel free to telephone us or send a fax.
Please send all your enquiries to: info @ broadercasting.com or Telephone: 08000746263 or +44 (0)1245 $348000-$ Fax: +44 (0)1245 287057 Enformatica Limited, Unit B, Chelford Court, Robjohns Road, Chelmsford, Essex, CM1 3AG, United Kingdom

A DSP VHF FM push-button receiver

Digital techniques are very much the in-thing in electronics, but most radio receivers still use analogue circuitry. Some fully-digital radios are available - as for example advertised on page 801 of this issue but they are expensive
The techniques used in digital receivers of this kind are very different from those used in their analogue counterparts. It would be a daunting task even for a very experienced radio ham to design such a receiver. Nevertheless, one who built his first 1-v-1 radio some forty-five years ago has attempted it with the aid of younger hands.
In this article we discuss digital signal processing, or DSP, techniques in radio and then describe a working push-button VHF FM radio that we have developed and built. A good introduction to DSP techniques can be found at http://www.bores.com/courses/intro/.

Note that this is not a cheap design. While prices of DSP ICs are going down all the time, they are currently still expensive.

Design outline

Controlling the receiver are an EPROM and a programmed microprocessor. If you intend implementing this design, you will need access to an EPROM programmer. Putting the design together is easy since most of the components are ICs.
The circuit diagrams are presented in two sections, the analogue section and the digital section. Using eight voltage regulators may seem rather excessive, but this reflects the rather specialised needs of the various ICs. Note the separation of digital and analogue earths.
Programming can be arduous, but Electronics World is supplying the necessary assembly language programs on disk for anyone wanting them.

So what's wrong with analogue receivers?

The big question is why would one want to abandon techniques of radio reception which have served us well for over 60 years? Currently the answer would be not to do so because of the high cost. But clearly in the not too distant future, the costs will plummet.
A major advantage of a digital receiver is that changing its programming can alter the entire reception mode, tuning range or channel width. The tuning frequency, bandwidth, mode etc., can all be entered through a key pad, making for very simple use. In addition, a digital receiver's characteristics remain constant throughout its lifetime, resulting in much lower maintenance costs and greater reliability.

By contrast, analogue communication receivers can be difficult to tune. Furthermore, their performance and features cannot be readily changed. In addition, their characteristics can drift, requiring periodic retuning for maximum performance.
In a digital receiver, the use of wide band receivers allows much of the hardware to be shared over all the channels. Thus a completely generalpurpose receiver can be built and then programmed to suit the user. It can be changed as conditions and requirements change simply by reprogramming.
Mass production of such radios could

bring the cost to less than that of the analogue communications receiver. In addition to being cheaper, digital radios should offer more versatility and features. An excellent summary of the advantages of digital radio receivers over analogue receivers has been given by B. Brannon. ${ }^{1}$

No superheterodyne

The techniques used for DSP in radio reception are quite different from the usual superheterodyne methods used in analogue radio receivers. A DSP receiver works as follows. The signal is digitised after being received on the aerial and will contain all signals in the
frequency range. This digitised signal is then down converted to zero frequency - i.e. base band.
The precess so far selects a particular signal at some frequency, which is now at zero frequency but still in the form of the original transmitted signal. A digital signal processor now applies a mathematical algorithm to transform the signal into audio, but still in a digitised form. This digital audio signal is converted to audio sound by a digital-to-analogue converter.

Receiver outline

First we'll describe the general arrangement of the receiver, then the
specific stages in more detail.
The radio signal enters the system via the aerial and is amplified by an RF amplifier with a band-pass filter. This amplifier includes an automatic gain control, or AGC, so that the output is about a volt, this being the optimal voltage for the following stage.

Normally of course with a superheterodyne arrangement, AGC is derived from the audio or IF stages, not the RF stage.
This 1 V signal now enters a 10 -bit analogue-to-digital converter. This converter samples the analogue signal but at a frequency less than the Nyquist frequency - a technique discussed in

Fig. 1. Schematic Diagram of the DSP VHF FM Receiver
 two mixing signals, 90° out of phase. It is fully programmable, but rather complicated.

RF DESIGN

RF DESIGN

RF DESIGN

Fig. 3. Schematic of signals as they pass through the VHF receiver.

What is under sampling?

Most of you will be familiar with the Nyquist criterion, which states that if one samples a signal at less than twice the highest frequency found in that signal then the restored signal will be distorted - a phenomenon known as aliasing.
A well-known version of this is seen at the cinema when the stagecoach rolls into town and the wheels appear to be moving backwards. This occurs because each film piece is shown at 24 times a second. When the spokes are rotating at more than 12 times a second, the wheel appears to be moving backwards.

The stroboscope works on the same principle by flashing a powerful light at a frequency just slightly lower or higher than that of some repetitive motion. This makes the motion appear to move very slowly backwards or forwards or be stationary.

However, where you have a band-pass limited signal - in our case we are looking at signals in a 20 MHz range from 88 to 108 MHz - then it can be shown that you only need to sample at very slightly more than twice this bandwidth. This means that you sample at 40 MHz , rather than 217 MHz , without distorting the reconstructed signal. This technique is known as under sampling.

Note that this is not a simple down conversion as used for instance in the synchrodyne receiver as described recently in Electronics World. ${ }^{2}$ Instead, in this IC there is a complex process in which the incoming digital signal is mixed with a local oscillator which has both sine and cosine components.
After some processing, the mixed signal becomes an output which is a digitised FM signal at DC. This is then passed through a low-pass filter to minimise the bandwidth.
Now, the FM signal has to be demodulated using a digital signal processor to reform the original signal in a digitised form. This signal is then passed through a 16 -bit digital-to-analogue converter to produce an analogue audio signal, which is passed through a low-pass filter to the speaker.
Control of the receiver is by an on/off switch and a simple six-key touch pad. There are up and down buttons for volume. In addition, a frequency up/down button moves up one FM channel or down one FM channel. There is also a button that searches up, and one that searches down. When a signal is encountered the search then stops.
The whole process is controlled by a microcontroller, which also functions as a user-interface. This microcon-
the box entitled 'What is under-sampling'.

Containing digitised components lying within a 20 MHz bandwidth, the sampled signal is down converted using a special digital IC called a digital down converter, or DDC. This device converts the signal in the frequencies between 88 and 108 MHz down to DC.

troller is responsible for getting the desired radio frequency by sending the mixing frequency to the DDC and outputting the frequency to an LCD display. It also searches for active channels and enables volume control.
The controller sends the volume control data to the signal processor, which is responsible for the output amplitude. Other than that, a program stored in the EPROM controls the signal processor.

Elements of the receiver

Figure 1 shows the various stages of this receiver in a pictorial form. The first stage is the antenna, a conventional ribbon dipole VHF aerial, which often comes with a music centre but can be bought from any radio shop.
The following RF stage is conventional. It consists of three MAR3 monolithic broad-band amplifiers and four band-pass filters to give good selectivity.
Each filter has 3 dB points at 80 and 145 MHz . While consistency might demand that we use only digital filters, this option provides us with the simplest and cheapest solution to get the correct selectivity and gain.
Automatic gain control is derived from the output of this stage via the Schottky diode, the OP27 operational amplifier and the $2 N 2219 \mathrm{~A}$ transistor.

The derived voltage is fed back to the first MAR3 in the chain to maintain the output at around 1 V peak to peak. The RF chokes are used as high pass filters to remove higher frequencies and maintain stability in the amplifier chain.
The RF signal is next fed to the a-tod converter for digitisation. The converter is a Harris HI5766 with a 250 MHz full-power input bandwidth and a maximum $60 \mathrm{MS} / \mathrm{s}$ sampling rate. The sampling frequency of 55.296 MHz is obtained as the third harmonic (second overtone) signal from an 18.432 MHz crystal.
Next, the digitised signal is fed to the DDC. This is a Harris HSP50016, made to be compatible with the a-to-d converter, having a maximum 75MS/s input data rate.
The DDC is fully programmable and is rather complicated. It consists of a complex sine generator to produce two mixing signals, 90° out of phase.
When two signals are mixed together in a non-linear device, i.e. mixer, the sum and difference of the two frequencies are obtained. Thus, one of the results of mixing two signals of the same frequency is an output riding on DC plus a signal at double the original frequency.
Frequency-modulated signals are rather complex. One cannot simply down convert by mixing with a frequency the same as the carrier, as with AM or SSB signals. Instead in-phase (I) and quadrature (Q) signals have to be produced and recombined to reform the FM, as is done in this device. The block diagram taken from the manufacturers data sheet is shown in Fig. 2.
To prevent the doubled frequency produced in the mixing process breaking through, a low-pass filter has to be added. This is accomplished with a decimation filter followed by a fixed finite-impulse-response filter.

The decimation filter is not quite as lethal as it sounds. It passes every N th pulse, not every tenth pulse, as its name implies. Its effect is to divide the clock frequency by N and to reduce the bandwidth by this ratio.
Output from the DDC is a digitised FM signal at DC. The signal processor performs the mathematical operation on this signal to convert it to a digitised audio signal. The signal processor is an ADSP-2181 from Analog Devices. It is a microprocessor optimised to carry out all kinds of arithmetical functions.
This signal processor is the heart of this receiver and it is only with the introduction of such devices that a digital receiver becomes possible. These devices are of course fully programmable. The software can be altered to operate on any kind of signal

Object code for the microcontroller.

: 0600000002002B0200CEFD
: 01000B0032C2
: 0100130032 BA
: 01001B0032B2
: 0100230032AA
: 10002B00C29775401FD540FDD29775A805758805F9 :10003B007581607520041202EA12007812025612C2 : 10004B0001D712022BD2AF80FED291D292C291C2B3 :10005B00927830754005E60875410833D29192903D : 10006B00C291D541F6D540EED291C29122C2927582 :10007B00507B7551E77552EC7558AC755988755AAC : 10008B00A2755B177544009000B075420675430569 : 10009B007830E54493F6080544D543F61154D54220 : 1000AB00EC753A4722380000000150000000007048 : 1000 BB00000000009000000069B002DA0B01D01DB7 : 1000CB00524003C0D0C0E07545FF309518309622E2 :1000DB0030934F30943C30B40630B50602013D02EC : 1000EB0001A202016C7407B5200302013D05200239 : 1000FB000106E520603C1520020106D2A3A2029264 : 10010B00A2A20192A1A20092B6D2A0C2A0D2A0023A : 10011B00013D74C9B53A06753A0102013A053A0236 : 10012B00013A7401B53A06753AC902013A153A1209 : 10013B0002561201D712022B8545407541FF7542BD : 10014B0001D542FDD541F7D540F175454030959528 : 10015B0030969F3093CC3094B9758805D0E0D0D0D1 : 10016 B0032C2A3C2A7D2A0C2A0D2A0000000C2A6D6 : 10017 B00D2A630A5 FD20A41B74CAB53A0B753A0064 : 10018B00D2A7C2A6D2A680D9053A120256C2A6D2CF : 10019 B00A680DF153A8098C2A3C2A7D2A0C2A0D274 : 1001 AB00A0000000C2A6D2A630A5FD20A41AE53AF5 : 1001 BB 00700 B 753 ACAD 2 A 7 C 2 A 6 D 2 A 680 DA 153 A122C : 1001CB000256C2A6D2A680E0053A213AC374C9955D : 1001 DB 003 A 75 F 00 A 8485 F 03 B 245875 F 00 A 8485 F 053 : 1001 EB 003 C 75 F 00 A8485F03DF53E12032DD2B1E546 : 1001FB003E6005243002020574201202FCE53D240A : 10020B00301202FCE53C24301202FC742E1202FC6C : 10021B00E53B24301202FCC2B190034512031322BA : 10022B00120332900351120313D2B1AB200B743D66 : 10023B001202FCDBF97408C39520FB74201202FC3C : 10024 B00DBF9C2B190035612031322E53AC3F553FF : 10025B008550F0A4F54685F047E5538551F0A4F59C : 10026 B004885F049E5538552F0A4F54A85F04BC318 : 10027B00854657E5472548F556E549354AF555E492 : 10028B00354BF554C3E5572558F557E5563559F514 : 10029B0056E555355AF555E554355BF554D291D2A3 : 1002AB0092C291C292743075410433D2919290C232 : 1002BB0091D541F67854754004E60875410833D260 :1002CB00919290C291D541F6D540EE7410754104D0 : 1002DB0033D2919290C291D541F6D291C29122C262 : 1002EB00B174381202FC740E1202FC74011202FC7F : 1002FB0022F580D2B012033CC2B012033C22D2B121 : 10030B0051FCC2B112033C22D2B1E4FB93B4000303 : 10031B00C2B122C083C08251FCD082D083EB048057 : 10032B00EA22748051FC2274C051FC22740151FCEE : 10033B00227F017E10DEFEDFFA224D487A20464DE9 : 0F034B00202020202000564F4C20002020200092 : 00000001FF

References

1. Brannon, B, 'Wide Dynamic Range A / D Converters Pave the way for Wide Band Digital Receivers,' EDN, 7 November 1996.
2. Slifkin, M and Dori, N , 'Synchrodyne and homodyne receiver,' Electronics World, Vol. 104, No 1751, Nov. 1998.
3. Shima, JM, 'FM Demodulation Using a Digital Radio and Digital Signal Processing,' MSC Thesis, University of Florida 1995.
for which a mathematical method for detection is available.
Finally, we have an audio signal, but in digitised form. The last stage is to convert the signal back to analogue form using a d-to-a converter. For this task, we chose the PCVM56P from Burr Brown.
Analogue output from the d-to-a converter is finally passed through a lowpass filter and an OC27 op-amp to the speaker. Controlling the output from the signal processor controls the volume. We included a liquid crystal display, which shows both the frequency and volume magnitude.
All of these operations are supervised by the microcontroller. This is an 8C751 eight-bit controller. This device has an-
board EPROM, into which the control program is loaded.
The control program for the signal processor is stored in a TMS27PC512 EPROM. Both programs were written in assembly language on a PC. When they had been thoroughly checked and debugged, they were downloaded to their respective EPROMs.
Writing the programs is the most difficult part of this design. There are over 400 lines of source code. It is not possible in this article either to discuss it or present it. However, copies of the two programs are available from Electronics World. The algorithm controlling the signal processor has already been published. ${ }^{3}$

Diagrammatic depictions of the signals as they pass through the receiver are shown in Fig. 3.

Further work

The receiver performs very well and has been the subject of much favourable comment.
The present limitation to a general purpose DSP receiver extending to the highest frequencies is the full-power bandwidth of the sample-and-hold circuit located at the front end of the analogue-to-digital converter, together with its aperture jitter. At the time of writing, it is at yet not possible to build a DSP receiver for the very popular 900 MHz band.

Object code for the DSP chip's eprom in S format.

S22500000040060093FE2040020093FE1040000093FE3040087093FE403C008C0000003C0083EF S22500002102800018020F00E S22500004200000000000000000000000000000000000000A001F0000000000000000000000006F S2250000630077 S2250000840056 S2250000A50035 S2250000C 60014 S2250000E7000F3
 S225000129000000000000000000000000000000401F5093FE2040000093FE1040008093FE30EE S22500014A40125093FE40028009A S22500016B006E S22500018C004D S2250001AD002C S2250001CE 000 B S2250001EF00000000000018030F000000000000000000180D8F0A001F0A001F0A001F0A001F68 S2250002100A001F0A001F0A001F0A001F0A001F0A001F0A001F0A001F0A001F0A001F0A001F05 S2250002310B000F0A001F0A001F0A001F0A001F0A001F0A001F0A001F0A001F0A001F0A001FF3 S2250002520A001F0A001F0A001F0A001F0A001F0A001F0A001F0A001F0A001F0A001F0A001FC3 S2250002730A001F0A001F0A001F0A001F0A001F0A001F3C017443E1F093FF6043E1F093FF20F2 S22500029447B30093FE603805A0381241380005380019381232380006380012381223380007B3 S2250002B538001B34001034000434001850000A23380F6800A034000234000634001A403240CC S2250002D668000A34002134000534001940324023380F6800A541C1F093FFF040000240000393 S2250002F74FFFF83C220302010F18058F0D03B80D03CA3FFF060E7B0F0E7C0F0D03A622621F0C S2250003180D009A0E43 OF0D006F0E440F0D007F0D0C860D0CA728889821810F2E7C5C180A24AB S22500033920800F51096A527CB518089356EC45526CCA0612000712000712000712000712006A S22500035A0712000712000712000712000712000712000712000712000712000712000712006A S22500037B0D002421800F0E340F0D0CBE0D03280D033A0A001FCB2C5A566CCF06120007120095 S22500039C07120007120007120007120007120007120007120007120007120007120007120028 S2250003BD0712000712000712000D006421800F0E340F0D0CBE0D03280D033A0A001F20800F2C S2250003DE51096A527CB5180BF3566C4562ECC0061200071200071200071200071200071200F2 S2250003FF07120007120007120007120007120007120007120007120007120007120000D0024AD S22500042021000F0E340F0D0CBE0D03280D033A0A001FCA6C5A672CC506120007120007120081 S22500044107120007120007120007120007120007120007120007120007120007120007120082 S2250004620712000712000D006421000F0E340F0D0CBE0D03280D033A0A001F3C007483FE5A43 S2250004832382DF1811B1380E0040000A93FE5A0A001F40000440000E40200540200F380E6045 S2250004A40A001F83FE5A238A9F180E6140000A93FE5A83FE5A238A9F180E90238ADF18110193 S2250004C540000040000120980F26105F380F600A001F0D03280D033A27100F18103021001F04 S2250004E6180FFC21011F180FFC0A001F22611F0D001A20980F0A001F0D000C22EF0F181132F3 S22500050718109422E60F18113522E90F1811321810E422E00F18113540030A93FE5A3805A098 S2250005283C01740A001F0D00F50D00E40D00510D004040020A93FE5A380E600A001F83FE5A54 S22500054940007423820F2262BF0D008A3C01740A001F096C000C9000000000FFFFFFFFFFFF65 S9030000FC

Four leading researchers in the field of low-voltage, low-power analogue ICs explain how new topologies are being used to overcome the limitations of working with low supply voltages and small currents, to help you get the best from these new buiding blocks.

Low voltage design II

The design of CMOS low-voltage op-amps is an important topic in low-voltage, low-power research. A primary aspect of this research is that amplifiers operating under these conditions have inherent limitations placed on their dynamic range and bandwidth. ${ }^{1}$
Dynamic range is limited by supply voltage and resistor noise. To achieve best results, both input and output stages have to be carefully designed.
In this article, input configurations compatible with lowpower, low-voltage operation are presented. These inputs are capable of handling rail-to-rail signal swings. Lowvoltage output stages also capable of handling rail-to-rail signal swings are the topic of a subsequent article. Their fundamental characteristics are: for the input stage; volt-

age efficiency and rail-to-rail swing: for the output stage; voltage and current efficiency. An output stage operating in class- AB is needed to minimise quiescent current.
Available bandwidth depends on how the frequency compensation is implemented. It needs an optimised con-stant- g_{m} input stage. In particular, the multipath nested

The authors

Giuseppe Ferri, Università di L'Aquila, L'Aquila, Italy. Pierpaolo De Laurentiis, Università di L'Aquila, L'Aquila, Italy. Arnaldo D'Amico, Università di Tor Vergata, Roma, Italy. Giovanni Stochino, Ericsson Telecomunicazioni SpA, Roma, Italy.

Fig. 1 Conventional differential pMOS input stage.

Fig. 2. Rail-torail input stage, for applications where both high and low common-mode inputs need to be handled.

Fig. 3. Total input transconductance versus input
common-mode voltage.

Fig. 4. CMOS rail-

Miller compensation configuration combines a high bandwidth with a high gain.
Traditional op-amps are typically single ended, but fully differential topologies can also be useful. In this case, common-mode feedback is needed to control the output common-mode level. ${ }^{2}$
Typical low-voltage op-amps target specifications are set out in Table 1.

New architectures for low voltage operation

Realising efficient CMOS low-voltage stages implies the design of new analogue circuit architectures. To make best use of the reduced supply voltage, each circuit has to be able to handle signals that swing from rail to rail at its outputs and inputs.
To maximise dynamic range, the signal voltages have to be as large as possible. Since the signal voltages can extend from rail to rail, the input and output stages of analogue systems - especially operational amplifiers - must be able to handle these signals correctly.
In the CMOS low-voltage field, it is possible to make a rough distinction based on the number of stacked gate-source voltages and saturation voltages. The term 'low-voltage' is consequently used for circuits capable of working at a supply voltage of two gate-source voltages and two saturation voltages; on the other hand, circuits that need only one gate-source voltage and a saturation voltage are called 'very low voltage' circuits.

Rail-to-rail input stages

The conventional differential pMOS input stage is shown is Fig. 1. It is appropriate where low commonmode input voltages are considered. For high input levels, a complementary input stage with nMOS transistors has to be used.
In applications where both low and high input values of common mode are needed, a rail to rail input stage is needed, Fig. 2. It comprises both a p-channel input pair and an n-channel input pair.
The n-channel pair allows the common-mode input voltages to reach the positive supply rail and the pchannel pair the negative rail. In this manner, the common-mode input range can extend from negative to positive supply rails.
The common-mode input range of Fig. 2 can be analysed considering the following three input signals:

- low common-mode input voltages (only the p-channel pair operates);
- intermediate common-mode input voltages (both the input pair operates);
- high common-mode input voltages (only the nchannel input pair operates).
A drawback of this input stage is the fact that its transconductance, g_{m}, changes by a factor of two

[^2]within the common-mode input range, as in Fig. 3. Here it is assumed that the g_{m} of the p -channel and the g_{m} of the n -channel input pairs are equal. This can easily be achieved by selecting the right W / L ratio of the input transistors.
Owing to the fact that the bandwidth of an operational amplifier is proportional to the g_{m} of its input stage,
varying g_{m} doesn't allow optimal frequency compensation. Moreover, it causes undesired additional distortion. In order to overcome these drawbacks, the transconductance has to be kept constant. The next section describes how to realise such input stages.

Constant- g_{m} rail-to-rail input stages. The total transcon-

A new universal input stage for low-voltage op-amps ${ }^{3}$

Several methods for achieving a constant $-g_{m}$ with complementary, rail-to-rail input stages are given in the literature. All of these are based on an opportune control of the $D C$ tail currents of the differential input stages
The proposed examples include bipolar and CMOS input pairs operating in weak inversion. To achieve this, the sum of tail currents flowing through both the n and p type input pairs has to be kept constant.
Another set of examples is represented by CMOS input pairs operating in strong inversion. Here, constant transconductance is achieved by keeping the sum of the square roots of the tail currents constant.
None of these types of control can be applied universally at the same time to both bipolar and CMOS input stages operating in weak and/or strong inversion. In this section though, we present a novel and universal concept that is independent of input transistor types and their operating regions.
The new concept is based on the processing of signal currents rather than handling DC tail currents, Fig. A. The operating principle is based on the well known equation of the total instantaneous output current of a simple differential pair,

$$
\begin{equation*}
I_{0, \mid a r 2}=\frac{I_{\text {tail }}}{2} \pm g_{m} \frac{V_{i d}}{2} \tag{P1}
\end{equation*}
$$

Here, $V_{\text {id }}$ is the small signal differential input voltage, and g_{n} is the transconductance depending on device type and its biasing.
With the notation and current direction shown in Fig. B, considering equation (P1) and assuming that $V_{\text {in }}>V_{\text {in-1 }}$ the drain current pairs $I_{\mathrm{n} 1}, I_{\mathrm{n} 2}$ and $I_{\mathrm{p} 1}, I_{\mathrm{p} 2}$ of the complementary input stage can be expressed as follows,

$$
\begin{align*}
& I_{n 1}=\frac{I_{n}}{2}+g_{m, n} \frac{V_{i d}}{2} \tag{P2}\\
& I_{n 2}=\frac{I_{n}}{2}-g_{m, n} \frac{V_{i d}}{2} \tag{P3}\\
& I_{p 1}=\frac{I_{p}}{2}+g_{m, p} \frac{V_{i d}}{2} \tag{P4}\\
& I_{p 2}=\frac{I_{p}}{2}-g_{m, p} \frac{V_{i d}}{2} \tag{P5}
\end{align*}
$$

With respect to the common-mode input voltage, three operating regions exist. In region I, when $V_{C M}$ is close to negative supply rail,

$$
\begin{equation*}
I_{n}<I_{p}\left(=I_{b}\right), \quad g_{m i n}<g_{m p}\left(=g_{m(\max)}\right) \tag{6}
\end{equation*}
$$

In region II, when $V_{C M}$ is at middle rail,

$$
\begin{equation*}
I_{n}=I_{p}=I_{b}, \quad g_{m n}=g_{m p}=g_{m(\max)} \tag{P7}
\end{equation*}
$$

And in Region III, when $V_{C M}$ is close to the positive rail,

$$
\begin{equation*}
I_{n}\left(=I_{b}\right)>I_{p}, \quad g_{m n}\left(=g_{m(\max)}\right)>g_{m p} \tag{P8}
\end{equation*}
$$

Considering equations (P2) to (P5), and under the condition developed for each region in equations (P6) to (P8), the main principle is that only $g_{m(\max)}$ is selected and used throughout the entire input common-mode voltage range. The result is a rail-to-rail constant $-g_{m}$ input stage.

ductance of the input stage, g_{mT}, is the sum of the transconductance of n and p -channel differential stages, respectively g_{mn} and $g_{\text {mp }}$;

$$
\begin{equation*}
g_{m T}=g_{m n}+g_{m p} \tag{1}
\end{equation*}
$$

If the input transistors operate in weak inversion, the total transconductance is given by,

$$
\begin{equation*}
g_{m T}=\frac{1}{n k T / q}\left(I_{n}+I_{p}\right) \tag{2}
\end{equation*}
$$

where I_{n} and I_{p} are the biasing currents, respectively of n and p pairs.
If the input stage is biased in strong inversion, the total g_{m} is given by,

$$
\begin{equation*}
g_{m T}=\sqrt{2 \beta_{n} I_{n}}+\sqrt{2 \beta_{p} I_{p}} \tag{3}
\end{equation*}
$$

or, from a voltage point of view,

$$
\begin{equation*}
g_{m T}=2 \beta_{n}\left(V_{g s n}-V_{T_{n}}\right)+2 \beta_{p}\left(V_{s p p}-V_{T p}\right) \tag{4}
\end{equation*}
$$

From equation (2), it can be concluded that the $g_{m T}$ of a rail-to-rail input stage operating in weak inversion can be controlled by the tail currents of the input transistors. In strong inversion, according to expressions (3) and (4), g_{mT} can be regulated by either the input tail currents, or the gate-source voltages or even the transistors aspect ratios.

Input stages with current-based g_{m} control

Several methods exist to make the g_{mT} constant by regulating the tail currents of the complementary input pairs. Constant g_{m} input stages operating in weak and strong inversion are now described.

Controlling g_{m} by one-time current mirror. In weak inversion, the transconductance of a MOS transistor is

Fig. 5. CMOS rail-to-rail input stage with constant g_{m} using 'three-times' current mirrors.

Fig. 6. In this CMOS rail-to-rail input stage g_{m} is held constant using a square root circuit.

directly proportional to its drain current. As a result, the $\delta_{m T}$ term can be held to a constant value simply making sure that the sum of I_{n} and I_{p} is kept constant.
In Fig. 4, the sum of tail currents is constricted to obey the following law, consistently with (4),

$$
\begin{equation*}
I_{n}+I_{p}=I_{r e f} \tag{5}
\end{equation*}
$$

If the input stage of Fig. 4 is biased in strong inversion, the dependence of the transconductance on the tail current changes; it follows a square-root law. As a result, the $g_{m T}$ of the complementary input stage can be proved to vary by about 41% over the common-mode input range. Therefore, for input stage transistors operating in strong inversion, a different method to control g_{m} has to be developed.

Controlling g_{m} via 'three times' current mirrors. From Fig 3 , you can see that if g_{m} is increased by a factor of two at the lower and the upper part of the common-mode input range, the same g_{m} is constant with all input signals.
In order to increase the g_{m} when only one input pair is operating, the tail-current of the actual active input pair has to be increased. Since the g_{m} of an input pair is proportional to the square root of its tail current, the tail-current of the actual active input pair has to be increased by a factor of four.
This principle can be realised as in Fig. 5, by using 'three-times' current mirrors.
In this manner, the sum of the square roots of the tail currents is held constant. In fact,

$$
\begin{equation*}
\sqrt{I_{n}}+\sqrt{I_{p}}=2 \sqrt{I_{r e f}} \tag{6}
\end{equation*}
$$

This yields in all the three common-mode input ranges, except in the turn over range of the current switch, where the g_{m} variation is only of about 15.5%.

Controlling g_{m} control by square-root current control. Controlling g_{m} with 'three times' current mirrors only roughly complies with equation (6). To obtain a more precise implementation of this control, I_{n} and I_{p} have to vary gradually with the input common-mode voltage.
In Fig. 6 is an input stage where the g_{m} control is implemented by means of a square-root circuit. The heart of this circuit is the translinear loop comprising transistors $\mathrm{MP}_{4,6,7 \& 8}$. Applying Kirchoff's voltage law to the

Fig. 8. Another way to keep g_{m} constant in a rail-to-rail input is to use a zener diode.
translinear loop, it can be easily proved that,

$$
\begin{equation*}
\sqrt{I d_{M P 6}}+\sqrt{I d_{M P 4}}=2 \sqrt{I d_{M P 7,8}} \tag{7}
\end{equation*}
$$

where the aforementioned transistors are all matched.
In order to obtain a constant transconductance, the translinear loop is biased so that equation (7) matches expression (6). The diode-connected transistors are biased with a constant current of I_{b}, fixed at $I_{\text {ref }} / 4$. Moreover, the currents through MP_{6} and MP_{7} are made equal to the tail current in the n - and p -channel input pairs, respectively.
As a result,

$$
\sqrt{I_{n}}+\sqrt{I_{p}}=2 \sqrt{I_{b}}
$$

Controlling g_{m} using current switch only. In the circuit of Fig. $7, g_{\mathrm{m}}$ control is implemented by four current switches. The current switches compare the commonmode input voltage with their respective gate voltage and subtract current to differential pairs in an opportune manner.
For low common-mode voltages, $\mathrm{MP}_{\mathrm{s} 1}$ and $\mathrm{MP}_{\mathrm{s} 2}$, and consequently the n-channel input pair, are off. In this case,
all of $L_{\text {ref }}$ is flowing through the p -channel pair. For high common-mode voltages, $\mathrm{MN}_{\mathrm{s} 1}$ and $\mathrm{MN}_{\mathrm{s} 2}$ and the p -channel input pair are off, so $I_{\text {tef }}$ is flowing through the n -channel pair.
For common-voltages between the $V_{\mathrm{ss}}+V_{\text {bias }}$ and $V_{\text {ss }}+V_{\text {bias }}+V_{\text {ref }}$, the current switches take away a portion of the current of both tail current sources, controlling the g_{m} over the whole common-mode input range.
If the input stage of Fig. 7 is biased in weak inversion, a constant $-g_{\mathrm{m}}$ can be obtained by connecting the gates of both pairs of current switches to the same voltage $V_{\text {bias }}$, provided that the input and switch pairs are equal. In Fig. 7 it is sufficient to make $V_{\text {ref }}$ equal to 0 .

This last circuit, with $V_{\text {ref }}=0$, can be improved for strong inversion operation by sizing the input transistors and the current switches as follows,

$$
\begin{equation*}
\frac{\left(\frac{W}{L}\right)_{M N s}}{\left(\frac{W}{L}\right)_{M N 1}}=\frac{\left(\frac{W}{L}\right)_{M P_{s}}}{\left(\frac{W}{L}\right)_{M P 1}}=3 \tag{8}
\end{equation*}
$$

This allows you to recover the condition (6).

Rail-to-rail input stages with

 voltage-based g_{m} controlIn the previous sections, examples of input stage with cur-rent-based control have been given.
If the input stage is biased in strong inversion, its g_{m} can also be made constant by manipulating the gate-source voltage. In fact the g_{m} of a MOS transistor is proportional to its gate-source voltage.
Now, for a constant g_{m}, the gate-source voltages of the input devices have to obey the following relationship,

$$
\begin{equation*}
\left(V_{s p p}-\left|V_{T p}\right|\right)+\left(V_{g s n}-V_{T n}\right)=V_{\text {ref }} \tag{9}
\end{equation*}
$$

As a result, in each part of the common-mode input range the following g_{m} is obtained,

$$
\begin{equation*}
g_{m}=\beta V_{r e f}=\sqrt{2 \beta I_{r e f}} \tag{10}
\end{equation*}
$$

where it is assumed that $\beta_{\mathrm{n}}=\beta_{\mathrm{p}}=\beta$.
The voltage reference can be realised with a zener voltage. A very simple implementation of an electronic zener is shown in Fig. 8.

In this diagram, the zener diode has been realised by means of two stacked diodes, MP_{z} and $\mathrm{MN}_{\mathbf{z}}$. In order to give a zener voltage according to (9) to the two diodes, the diodes' W/Ls are made six times larger than those of the input transistors.

Rail-to-rail input stages with W / L based g_{m} control. In the previous section, the g_{m}-control circuits work properly in either weak or strong inversion. This limits the programming range of these types of input stage.
A control method can be realised that works in weak as well as in strong inversion. The basic principle of this method is to double the g_{m} at the outer parts of the com-mon-mode input range by placing an additional input pair in parallel to the actual active input pair, Fig. 9.
Since this principle does not make use of transistor $I-V$ relationships, it operates not only in weak and strong inversion, but also in moderate inversion.
The panel entitled, 'A new universal input stage for lowvoltage op-amps,' shows a further solution for implementing constant $-g_{\mathrm{m}}$-input stages.

The next and final article in this set discusses CMOS output stages. The first article on this topic appeared last month. It introduced low-voltage analogue ICs and discussed bipolar designs in particular. It carried the full list of 19 references.

References

1. R. Hogervorst, J.H. Huijsing, 'Design of low-voltage lowpower operational amplifier cells', Kluwer Academic. 1996
2. G. Ferri, W. Sansen, V. Peluso, 'A low voltage fully differential constant $-G_{\mathrm{m}}$ CMOS operational amplifier', Analogue Integrated Circuits and Signal Processing Vol. 16 No 1 April 1998, pp. 5-15.
3. C. Hwang, A. Motamed, M. Ismail, ' Universal ConstantGm Input-Stage Architectures for Low-Voltage Op Amps, IEEE Transactions on Circuit and Systems - Fundamental Theory and Applications, Vol. 42, No 11, November 1995, pp. 886-894.

Fig. 9. To increase a rail-to-rail input stage's g_{m} at the outer limits of the common-mode input range, multiple input pairs can be

Hewlett Packard
8642A - high performance R/F synthesiser ($0 \cdot 1-1050 \mathrm{MHz}$)
$\mathbf{3 3 3 5 A}$ - synthesiser ($\mathbf{2 0 0 H z}-\mathbf{8 1 M H z}$)
£2400

Hewlett Packard

436A power meter and sensor (various) from $£ 750$
437B power meter and sensor (various) from $£ 1100$
Hewlett Packard

8753A network analyser (3 GHz)	from $£ 2500$
8753B network analyser $(3 \mathrm{GHzz})$	from $£ 3250$
' S ' parameter test sets 85046 A and 85047 A	

'S' parameter test sets 85046A and 85047A available at
$£ 2000$ \& $£ 3000$

Wandel \& Goltermann	
PFJ-8 - error and fitter test set (all options fitted)	$£ 9950$
PCM 4 - PCM chanuel measurement set	£7500
Marconi	
2305 - modulation meter	£1250
6310 - programmable sweep generator (2 to 20 GHz) - new	£3250
Hewlett Packard	
5342A - microwave frequency counter $(500 \mathrm{MHz}-18 \mathrm{GHz})$ ops $1 \& 3$	$£ 700$
5370 B - universal time interval counter	£1750

OSCILLOSCOPES

Beckman $9020-20 \mathrm{MHz}$ - Dual channel
Hewlett Packard 54100D - IGHz Digitizing
Hewlett Packard 54201A - 300 MHz Digitizing
Hewlett Packard 54512B (300 MHz Hz -1G s / s) -4 channel Hewlett Packard $54600 \mathrm{~A}-100 \mathrm{MHz}-2$ channel
Hitachi V152/N212/V222/V302B/V302FN353FN550B/V650F
Hitachi VI $100 \mathrm{~A} \cdot 100 \mathrm{MHZ}$ - 4 channel
Intron 2020-20MHZ. Dual channel D.S.O. (new)
KKusui $\operatorname{Cos} 5100$ - 100 MH
Lecroy $9450 \mathrm{~A}-300 \mathrm{MHz} / 400 \mathrm{MS}$ - D channel
Meguro MSO $1270 \mathrm{M}-20 \mathrm{MHz}$ - D/ D.S.O. 2 channel
Philips $3055-50 \mathrm{MHz}$. Dual channel
Philips PM $3335-50 \mathrm{MHZ}$ - D.S.O. Dual channel
Philips $3295 \mathrm{~A}-400 \mathrm{MHz}$ - Dual channel
Philips PM3392-200MHz-200Ms/s - 4 channel
Tektronix $465-100 \mathrm{MHZ}$ - Dual channe
Tektronix $465-100 \mathrm{MHZ}$ - Dual channe
Tektronix $464 / 466-100 \mathrm{MHZ}$ - (with AN . storage)
Tektronix $475 / 475 \mathrm{~A}-200 \mathrm{MH} / 250 \mathrm{MHZ}$
Tektronix 468 - 100 MHZ - D.S.O.
Tektronix $2213 / 2215-60 \mathrm{MHz}$ - Dual channel
Tektronix $2220-60 \mathrm{MHZ}$ - Dual channel D.S.O
Tektronix $2225-50 \mathrm{MHZ}$ - Dual channel
Tektronix $2235-100 \mathrm{MHZ}$ - Dual channel
Tektronix $2221-60 \mathrm{MHZ}$ - Dual channel D.S.O
Tektronix $2221-60 \mathrm{MHz}$ - Dual channel D.S.O
Tektronix $2440-300 \mathrm{MHz} / 500 \mathrm{MS} / \mathrm{s}$ D. S
Tektronix $2445 \mathrm{~A}-150 \mathrm{MHz}-4$ channel
Tektronix $2445-150 \mathrm{MHZ}$ - 4 channel + DMM
Tektronix TAS $475-100 \mathrm{MHZ}-4$ channel
Tektronix 7000 Series (100 MHZ to 500 MHZ)
Tektronix $2211-50 \mathrm{MHz}-2$ channel DSO
Tektronix $7104-1 \mathrm{GHz}$ Real Time
SPECTRUM ANALYSERS
Ando AC $8211=1.7 \mathrm{GHz}$
Avcom PSA $65 \mathrm{~A}-2$ to 1000 MHz
Anritsu MS 2601 B 9 KHz to 2.2 GHz
Annisu MS $628-50 \mathrm{~Hz}$ to 1700 MHz
Anritsu MS 610B $10 \mathrm{KHz}-2 \mathrm{GHz}$ - as new
Advantes TIAKEDA RIKEN $-4132-100 \mathrm{KHz}-1000 \mathrm{MHz}$
$64 \mu \mathrm{~Hz}=100 \mathrm{KHz}$ 3562A Dual channel dynamic signal analyser
Hewlett Packard $3585 \mathrm{~A}-20 \mathrm{~Hz}$ to 40 MHz
Hewlett Packard 8505A - 1.3GHz - Network Analyser
Hewlett Packard 8756A/8757A Scaler Network Analyser
Hewlet1 Packard 853A Mainframe + 8559A Spec. An. (0.01 to 21 GHz)
Hewlett Packard 182T Mainframe + 8559A Spec. An. (0.01 to 21 GHz)
Hewlett Packard 8569B (0.01 to 22GHz)
IFR A7550-10KHz-1 GHz - Portable 300 MHz
Meguro - MSA $4901-30 \mathrm{MHz}$ - Spec
Meguro - MSA 4912 - I MHZ - IGHZ Spec.Analyser
Wandel \& Goltermann TSA-1 system analyser ($100 \mathrm{~Hz}-180 \mathrm{MHz}$)
Tektronix 495P Spec analyser prog. - 1.8 GHz

Quality second-user test \& measurement equipment

NEW PHONE GODE FOR GOVENTRY 02476

Radio Communications Test Sets

Marconi 2955 - calibrated
Marconi 2958/2960
Antritsu MS555A2 £1200
Hewlett Packard 8920A £2000
Hewlett Packard 8922B (GSM) £6950
Schlumberger Stabilock 4031 £3995
Schlumberger Stabilock 4040
£1500
Racal 6111 (GSM) £1750
Racal 6115 (GSM) £3995
Rhode \& Schwarz CMS 54 (new) £6250
Rhode \& Schwarz CMTA 94 (GSM) £5950

IFR 1200S (calibrated)

£2995

Fax 02476650773

Wektronix 469P-1KHz to 1.8 GHz

MISCELLANEOUS
Eaton 2075 - 2ANoise Gain Analyser Farnell AP30250 - Power Supply 30v-250amp at $£ 2250$ Fluke $5100 \mathrm{~A} / 5100 \mathrm{~B} / 5220 \mathrm{~A} 5200 \mathrm{~A}$ - Calibration Units (various available) from $£ 1000$ Fluke 2625/2635 Data Buckets (various)
GN ELMI EPR31 - PCM Signalling Recorder
Hewlett Packard 6033A - Autoranging System PSU (20v-30a)
Hewlett Packard 6632A - System Power Supply (20v-5A)
Hewlett Packard 3784A - Digital Transmission Analyser
Hewlett Packard 3785A - Jitter Generator \& Receive
ewleth Packard 8660 - Synt'd Sig. Gen ($10 \mathrm{KHz}-2600 \mathrm{MHz}$)
Hewlett Packard 4192A - LF Impedance Analyser
Hewlett Packard 16501 AB \& C C - Logic Analyser System Expander Frame from
Hewlett Packard 6624A - Quad Output Power Supply
Hewlett Packard 6652A - 20V-25A System PSU
Hewlett Packard 8350B - Sweep Generator Mainframe
Hewlett Packard 75000 VXI Bus Controllers
HP 339A Distortion measuring set
HP 435A + 435B Power meters
HP 8656A Synthesised signal generator
HP 8656 Bynthesised signal generator
HP 86568 Synthesised signal generator
HP 8657 A . Signal generator $100 \mathrm{KHZ}-1040 \mathrm{MHZ}$
HP 37900D - Signalifing test set
HP 5385A - 1 GHZ Frequency counter
IP 89018 - Modulation Analyser
HP 8112A - 50 MHz - Pulse Generator
HP 16500A + B - Logic Analyser Mainframes
HP E4418A Powermeter with ECP-E18A Power Sensor
HP 778D Dual-Directional Couplers
HP 6622A - Dual O/P system p.s.u.
HP 6623A - Triple o/p system p.S.
Keytek MZ-15/EC Minizap ESD Simulator (15 kv - hand held)
Marconl 1066B - Demultiplexer \& Frame (15kv - hand held) $\quad ~ £ 1300$
NEW
Marconi 2610 True RMS Voltmeter
Marconi 6950/6960/6960B Power Meters \& Sensors from $£ 450$
Philips 5515 -TN - Colour TV pattern generator $£ 1400$
Leader 3216 Signal generator $100 \mathrm{KHz}-140 \mathrm{MHz}$ - AM/FM/CW with built in FM stereo
modulator (as new) a Snip at
Racal $9087-1.3 \mathrm{Ghz}$ Synthesised Signal Generator, low noise
Racal $9087-1.3 \mathrm{Ghz}$ Synthesised Signal
Rohde \& Schwarz SMY-01 Signal Generator ($9 \mathrm{KHz}-1040 \mathrm{MHz}$)
Rohde \& Schwarz NRV Power Meter \& NRV- 72 Senso 10 Mz)
Systron Donner $6030-26.5 \mathrm{GHz}$ Microwave Freq Counter
Tektronix 1721 - PAL Vectorscope
Wandel \& Goltermann PRA-1 - Frame Analyser
Wayne Kerr 3245 - Precision Inductance Analyse
\&1995
Tel: 02476650702
Fny. $n 2 \Delta 7 h 650772$
All equipment is used - with 30 days guarantee and 90 days in some cases
Add carriage and VAT to all goods.
Telnet, 8 Cavans Way, Binley Industrial Estate,

 IDEAS

Fact: most circuit ideas sent to Electronics World get published

The best circuit ideas are ones that save time or money, or stimulate the thought process. This includes the odd solution looking for a problem - provided it has a degree of ingenuity.
Your submissions are judged mainly on their originality and usefulness. Interesting modifications to existing circuits are strong contenders tooprovided that you clearly acknowledge the circuit you have modified. Never send us anything that you believe has been published before though.
Don't forget to say why you think your idea is worthy.
Clear hand-written notes on paper are a minimum requirement: disks with separate drawing and text files in a popular form are best - but please label the disk clearly.

Battery/dynamo bicycle lighting

A_{i}^{c}combination of battery and dynamoisolated from the frame - makes sure you have lights when your bike's stationary. You can use the circuit as a battery-backed dynamo system, or as a dynamo-backed
battery system, in which case the batteries would be charged periodically.
A / Bird
Burntwood
Staffordshire

Charge the bicycle lighting battery from the dynamo or run from battery alone for easier riding.

Line-powered music while you change 'phones

f you have two or more telephone handsets, this scr-based circuit holds the line while you go to another room to pick up the call, the handset having been replaced, and the caller hears music until you pick up the other handset.
The music comes from those little chips found in greetings cards, which need a 1.2 V button cell, provided here by the line voltage via a pair of 1 N4001 diodes and a $100-150 \mu \mathrm{~F}$ smoother. Output of the chip goes to the 'phone line by way of an audio output transformer, the $0.1 \mu \mathrm{~F}$ capacitor making the sound a little less shrill.
Pressing the switch and keeping it
pressed applies voltage to the chip, this being held on by the scr. The led illuminates and, when the 'phone is replaced on its hook, lights up a little brighter. When the handset is replaced the switch can be released. When the remote handset is picked up, the music stops and the led goes out since there is insufficient holding current for the scr.

Further such circuits may be used in parallel.
Robert L A Trost
Duiven
Holland
D33

Sleep switch for lamps

This device will switch off a reading lamp after about half an hour, the reader then probably being asleep. After switching the circuit on, the led illuminates for around 25 minutes; at 19 min , it starts to blink for two minutes, stops blinking for two minutes and blinks for another two, just before switching the lamp off.

The $\mathrm{n}-\mathrm{p}-\mathrm{n}$ and $\mathrm{p}-\mathrm{n}-\mathrm{p}$ combination are either both on or both off, taking very little current in the off state. Pressing P_{1} starts things off by turning the relay on to power the ics. The lamp comes on and the 4060 oscillator/counter is reset on pin 12. It oscillates at a frequency determined by its $C R$ and pin 3 goes high after around 30 min , turning the transistors off.
Blinking of the lamp is the function of the outputs 1, 2 and 15 of the 4060 to the nand gates, which are in parallel for a greater lamp current, the oscillator output at pin 9 setting the blinking frequency. You can connect a piezoelectric sounder, if required, to pins 1 and 14 of the nand pair.

Flavio Delliprave

Genoa
Italy
If you are in the habit of drifting off to sleep
D22 when reading in bed, this circuit switches off the reading lamp after half an hour or so.

Ten year index: new update

Hard copies and floppy-disk databases both available

Whether as a PC data base or as hard copy, SoftCopy can supply a complete index of Electronics World articles going back over the past nine years.

The computerised index of Electronics World magazine covers the nine years from 1988 to 1996, volumes 94 to 102 inclusive and is available now. It contains almost 2000 references to articles. circuit ideas and applications - including a synopsis for each.

The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512 K ram and a hard disk.

The disk-based index price is still only $£ 20$ inclusive. Please specify whether you need $5.25 \mathrm{in}, 3.5 \mathrm{in}$ DD or 3.5 in HD format. Existing users can obtain an upgrade for $£ 15$ by quoting their serial number with their order.

Photo copies of Electronics World articles from back issues are available at a flat rate of $£ 3.50$ per article, $£ 1$ per circuit idea, excluding postage.

Hard copy Electronics World index

 Indexes on paper for volumes 100,101, and 102 are available at $£ 2$ each, excluding postage.

Ordering details

The EW index data base price of $£ 20$ includes UK postage and VAT. Add an extra $£ 1$ for overseas EC orders or $£ 5$ for non-EC overseas orders
Pastal charges on hard copy indexes and on photocopies are 50 p UK, $£ 1$ for the rest of the EC or $£ 2$ worldwide. For enquires about photocopies etc please send an sae to SoftCopy Ltd. Send your orders to SoftCopy Ltd, 1 Vineries Close, Cheltenham GL53 ONU.
Cheques payable to SoffCopy Ltd, please allow 28 days for delivery.
e-mail at SoftCopy@compuserve.com, tel 01242241455

AC continuity testing

To provide a simple test of continuity in a multi-core cable, the ac tester injects an ac signal into one wire and indicates the signal on another resulting from interweave capacitance. This enables the correct end of the cable to be repaired. The circuit draws only $25 \mu \mathrm{~A}$ for most of the time.
Both halves of a Maxim MAX922
dual comparator are used: one to
form a 60 kHz relaxation oscillator and the other a detector. Output to the cable is a peak-to-peak signal at the supply voltage of $2.5-6 \mathrm{~V}$, this being rectified in the detector by the diode and integrated on a 10 nF capacitor with a bleed across it to discharge it between tests.
A certain amount of circuit protection is afforded by the 100Ω resistors in series with the cable and
by diodes $D_{1,3}$. A 2 m IEC mains lead makes a good test lead, having a lead-to-lead capacitance of 200 pF , although the circuit works with C less than 100 pF .
Output indicator is a led in this arrangement, but an audible device may be substituted.

Kevin Bilke

Maxim UK Ltd D35

Dc step-up voltage converter

F rom an input of $10-40 \mathrm{~V}$ DC, this circuit produces an output of up to 3 kV DC.Control voltage for the output stage comes from the op-amp buffer taking its input from either an
outside source such as a d-to-a converter or from the 723 voltage regulator driven by the voltage at $R_{\text {ctrr }}$. The free-running flip-flop produces base drive for the power

Voltage converter to give up to 3000 V DC from an input of 10 40 V DC, which may be a varying waveform.

Over 50% Discount

- Genuine, professional EDA software with no limitations! - and you can afford it!
- EDWin NC comes from Visionics: one of the longest established, most experienced producers of professional EDA systems, so it's fully proven in professional work.
- Now you can have this best-selling non-commercial version of the software at less than 50% of the normal price, with no limits in its capabilities.
- It does just about everything you could want!

Schematics, simulation, PCB layout, autorouting, manufacturing outputs, EMC and Thermal Analysis. Many more advanced features are available and it runs in Windows 3.x, 95,98 or NT.

- Where's the catch? It's for non-commercial use, but companies may order for evaluation purposes. Prices start from just $£ 59.00$ for the basic system!

New

 Super Powerful 32 bit version for Windows 95. 98 \& NT!Don't forget - Phone Today for Your 50\% Discount!

EDWin NC Basic: Schematics, PCB Layout, Manufacturing Outputs, Max. 100 Component Database, 500 Device Library.
EDWin NC De Luxe 1: Basic + Professional Database and Libraries, Arizona Autorouter.
EDWin NC De Luxe 2: De Luxe 1 + Mix-Mode Simulation, Thermal Analyser.
EDWin NC De Luxe 3: De Luxe 2 + EDSpice Simulation, EDCoMX Spice Model Generator, EMC and Signal Integrity Analysers.
Plus Postage \& Packing UK $\mathbf{£ 5 . 0 0}$; Rest of World $\mathbf{£ 1 0 . 0 0}$ (only one charge per order)
Order hotline: +44 (0) 1992570006 Fax +44 (0)1992 570220 E-mail: swift.eu@dial.pipex.com Please Visit Our Web Site http://www.swiftdesigns.co.uk

SWIt Eurotech

nclose: £....................total.
eque/PO/Credit Card:
isa/Mastercard/Eurocard: No.

Signature

ddress:
We aim to dispatch as soon as we receive payment, but please allow 28 days for delivery. Subject Unsold.
\qquad

I wish to order:

- EDWin NC BASIC:
- EDWin NC De Luxe 1
- EDWin NC De Luxe 2
- EDWin NC De Luxe 3:

Postage \& Packing UK
Rest of World
(only one P\&P charge per order) Total £

Qty.

Water detector

Normally, circuits using transistors are used in this type of circuit, but often need mains power because of the current drain when working constantly. This uses a fet and takes no current except when the buzzer sounds.
The circuit is simple: when the two probes are in water, or even damp earth, the positive 6 V supply is connected through the water to the gate of the fet, turning it on and sounding the buzzer. Resistance, set to around $50 \mathrm{k} \Omega$, between gate and 0 V dissipates stray voltages picked up by the high-impedance gate. Other types of sensor could be used: photocells or thermistors, for example. F O Eliason
Weston
Australia
D23

Peak-video-to-dc converter

Fig. 1. Comparator for detecting the positive peak.

Deak-to-peak video voltage is P converted by this circuit arrangement to a direct voltage.
Figure 1 shows the comparator circuit to detect the positive peak. Voltage at pin 2 follows that at pin 3, the input. If the input is greater than the voltage at pin 2 , the op-amp open collector is off and base current for $T r_{1}$ comes through R_{1}, allowing the capacitor to charge to the input voltage. When the input reduces, the position is reversed and the transistor
turns off, the peak voltage remaining on the emitter, since the emitter $C R$ is long.
Negative peaks require a modification, as shown in the complete diagram of Fig. 2, in which the extra n-p-n transistor ensures rapid tum-off of the p-n-p device after the peak input voltage is past.

JM Rowe

Kowloon
Hong Kong
D37

F50 WINN:R

We make our programmers

 work harder
Features

- Supports EPROMs, EEPROMs, Flash, Serial PROMs, BPROMs, PSDs, PALs, GALs, PEELs, MACH, MAX, EPLDs, and over 200 Microcontrollers including 87 C $48 / 51,89$ C51/52, PIC, MC705/711, ST6, Z86, COP etc
- Hands free programming so you can produce barches of the same chip without pressing a key
- Correct programming and verification at $1.8,2.7,3.3$ and 5 V
- Serial number mode supports date/time stamping, unique IDs
- Progress indicator shows number of devices programmed
- No adapters required for DIL parts upto 48 -pins. Universal adapters for 44 -pin PLCC, 44 -pin PSOP and 48 -pin TSOP parts
- Programmes and verifies Intel 28F400 in under 15 seconds
- Connects to parallel port - no PC cards needed
- Tests 7400, 4000, DRAM and SRAM
- Mains or battery operation
- FREE soffware device support upgrades via bulletin board and mwn

PROBRAMMER MIDELS AND PRIBES								
SINGLE SOCKET PROGRAMMER			EMULATOR OPTIONS FOR ALL PC BASEO PROGRAMMERS			GANG PROERAMMERS		
MICROMASTERLV48	48-pin universal programmer	$£ 695$				SPEEDMASTER GLV32	$\begin{aligned} & \text { 8-way } 32 \text {-pin } \\ & \text { EPROM/Flash GanolSet } \\ & \text { programmer } \end{aligned}$	$£ 695$
			LVECEMUL8	128kx8 ROMRAM emulator with modity on the tly feature Upgradable 10512×8	£125			
SPEEOMASTER MICROMASTER	40-pin programmer range (see website or call for model details)	$\begin{aligned} & \text { from } \\ & \text { £395 } \end{aligned}$					8-way 40-pin gang	
EPMASTER LV	40-pin EPROMFlash programmer	£295	LVECEMUL 16	128x16 ROM/RAM emulator with modity on the fly faature Upgradable to 512×16	£195		micros	
LV40 PORTABLE	As Micromaster LV, pius completely portable with buill in keypad and LCD display.	$£ 995$				SOCKET ADAPTERS	Full range of adapters for PLCC, SOIC, TSOP, PSOP etc.	$\begin{aligned} & \text { FROM } \\ & £ 65 \end{aligned}$

Al prices exclude VaT and delivery
See for yourself - download a demo from our Website at wwwicetech.com ORDER NOW - ALL PRODUCTS IN STOCK. CREDIT CARD ORDERS: 01226767404

E5O WINN:R

Synchronous am detector

This produces a low-distortion baseband output after a 455 kHz if strip, the NE564 linear phase-locked loop generating a 455 kHz signal in phase with the if carrier.
Output of the pll is 1820 kHz , set by C_{2}, applied to the 4027 divide-byfour ic to produce 455 kHz outputs in phase quadrature. One of these, from pin 15 of the 4027 , is fed back to the reference of the NE564 and is in quadrature with the if when the loop is locked. Outputs from pins I and 2 form a balanced drive, in phase with
the if, for the 1496 mixer/demodulator. Components $C_{1} R_{1}$ are the pll loop filter to set the open-loop characteristics and therefore the critically damped closed-loop response, bandwidth being around 5 kHz . The pll will track the input over $\pm 150 \mathrm{kHz}$.
The only adjustment is that of C_{2}, which is set to give a vco freerunning frequency of 455 kHz on pin 10 of the 4027 , with no input connected and after a warm-up time
of two minutes. A dc level at pin 14 of the 564 may be used to drive a centre-zero tuning meter. The pll needs a small heatsink to reduce temperature effects; all components are of 5% tolerance.
Distortion was measured at 0.2% although, since this was also the distortion of the rf generator used, it is probably a good deal less than that. P Goodson
Bracknell
Berkshire
D42

Test equipment lacking functionality?

Voltage control for a digital delay line

Figure 1 shows the arrangement of a tapped digital delay line, the precise delay between input and taps being determined by a control voltage. Input $v_{i}(t)$ is applied to a sample-and-hold whose clock is the output of a voltage-controlled oscillator. From the s / h, the sampled voltage $v_{i}(n T)$ goes to a fast a-to-d converter whose output shifts into the first 8 -bit parallel shift register of 12 in a line, the shift for the first being provided by the end-of-conversion signal from the a-to-d converter. Sampling clock pulses for the s / h are also used as
clock pulses for the shift registers, each of which shifts right on every clock pulse.
Output from the fourth, eighth and twelfth registers are taken to d-to-a converters, which then provide the delay-line output in analogue form after the relevant delay: $4 \mathrm{~T}, 8 \mathrm{~T}$ and $12 \mathrm{~T}, \mathrm{~T}$ being the clock period, so that the output from the fourth register will be

$$
\Phi_{1}=v_{\mathrm{i}}((n-4) T),
$$

and so on. The result of all this is that the delay periods are controlled by the
control voltage to the voltagecontrolled oscillator. More registers and taps would, clearly, be used and perhaps the delay line could be developed as an ic.
One use of this delay line would be as a phased antenna array to provide electronic scanning.
K Balasubramanian
K B Gayathri
H Camur
European University of Lefke
Turkish Republic of Northern
Cyprus
D25

Control analogue
voltage $v c(t)$
Digital delay line controls the delay at each tap by means of an analogue input to a voltagecontrolled oscillator.

FUROPE'S NUMBER ONF BROADBAND CONVENTION NATIONAL HALL OLYMPIA, LONDON 18, 19, 20 OCTOBER 1999

The most comprehensive exhibition The big names in broadband mcel at ECC. You'll see cverything from network hardware to the latest in broadband content.
"so much more to see"

BROADBAND bistro

Experience working demonstrations of borth hardware and broadband content.
"seeing the future of broudband"

www.eurocab.com

Be a part of the industry's future.
The confcrence addresses broadband's major topics. on a pan European level.
"speakers who really matter"

A place to meet.......
Meet key mombers of the industry at FCC's social progranume.
"really rounds off a great conuention"

Website: www.eurocab.com email: ecc@cable.co.uk
Fax: $+44(0) \quad 171 \quad 222 \quad 3198$
Tel: $+44(0) 171460 \quad 4220$

Technical Seminars
A free, continuous, |)rogiramine of seminars organised in conjunction with the SCTE.
"genuinely infornurutixe"

EIIROPEAN CABLE CONVENTION

Quick-on, delayed-off switching

t is sometimes required to switch a piece of lequipment on by means of a push-button switch operating a toggle of some kind, such as a flip-flop, immediate accidental switching off being prevented. This circuit consists simply of a 4013 flip-flop and part of a 40106 inverter.
Output Q is initially logic zero, operating the switch charging C through the diode and the flip-flop output impedance; the output now becomes 1 . Releasing the switch discharges C through R_{1}, further switching having no effect since the diode will not conduct. However, holding the switch on for long enough for C to charge via R_{2} clocks the flip-flop and the output goes back to logic zero.
For delays of around $1 \mathrm{~s}, R_{2}=10 \mathrm{M} \Omega$ and
$C=100 \mathrm{nF}$. On power-up, the flip-flop's set and reset inputs should be used to put the output into the required state.

B Vojnovic

R G Newman
Gray Laboratory Cancer Research Trust
Mount Vernon Hospital
Northwood

Using a 555 for speed control

Offset circuit avoids problems in the use of the 555
for pwm speed control.
S ince the capacitor voltage in NE555 applications must be limited to between 33% and 67% of V_{cc}, there are problems with the ic when used for pulse-width modulation in speed control, as the
speed setting is usually between, for example, zero and 10 V . This circuit provides an offset between capacitor voltage and the 555 sensed voltage to overcome that drawback.

Inserting R_{2} between R_{1} and C_{2}, makes the capacitor discharge to a lower level before it triggers the 555; the threshold is unaffected.
As shown, the capacitor starts to charge at 1.8 V and to discharge at 10 V . In this case, a pwm minimum duty cycle was 5%, so the capacitor voltage comes from pin 7 of the 555 to allow the negative input of the op-amp to stay near ground during the discharge. Bypassing the diode causes the pwm signal to disappear and the output to remain low during the capacitor discharge.
The reference voltage for the potentiometer comes from the internal reference in the 555, the transistor on the control-voltage pin, pin 5, allowing it to drive low impedances without affecting the control voltage.
Bernard van den Abeele
Evergem
Belgium D29

PROFESSIONAL Development Tools

from Milford Instruments

Milford Instruments Tel 01977683665 , Fax 01977681465 www.milinst.demon.co.uk info@milinst.demon.co.uk Milford House, 120 High Street, South Milford, LEEDS LS25 5AQ

PIC Emulators

from Tech Tools
Mathias In-Circuit Emulator

- 16C5X to 20 MHz
- 10 CXX to 25 MHz and data breakpoinis - Modular design
- True Integrated Windows Environment - Supports standard assemblers and compilers - True Bondour Chip set based - Programmers and adoptors also available Full details at www.techtools.com

BASIC Stamps

Still the easiest and fastest woy to get your project up and going 8 or $161 / O$ pins, easytoread BASIC instuctions plus on-boord comms ond simple interfocing to peripheral chips.

Scenix Emulators
from Parallax from Parallax

SX-Key Emulator
SX chips are EEPROM bosed, PIC 16C5x pin compatible micros with up to 100 mips performance.

- Full speed debugging on production chips - Integroted Windows environment - Software conligured oscillator - 18 to 52 pin reprogrammable devices - SX Blitz low cost programmer also available. Full delails and saftware at

ROM Emulators
from TechTools
 Fost 90 ns, 45 ns and 35 ns access times Live editing (UniROM only) Fost downlood (up to $2.5 \mathrm{Mbir} /$ second) 8 bit \& 16 bit up to 32 Mbit Read-back, Verify and Selties' modes EPROM, FIASH Read-back, Verity and Selites: modes EPROM, FLASH
Full editor and utilities included Full derails and demo software of www.tech-rools.com

SERIAL LCDs reduce disploy hassle-
We stock a range of alphanumeric and graphic displays oll fitted with serial RS232 interface boards- 2×16 to 4×40 and up to 128×64 graphics size.
RS232 data entry terminal unit also available

LANGREX SUPPLIES LTD
DISTRIBUTORS OF ELECTRONIC VALVES
TUBES AND SEMICONDUCTORS AND I.C.S. 0181684 0181684 TUBES AND SEMICONDUCTORS AND I.C.S. 0181684 11661 MAYO ROAD - CROYDON • SURREY CRO 2QP email: langrex@aol.com

Lead-acid battery charger

This battery charger for lead-acid batteries switches of the charge when the battery voltage rises above that of a fully charged battery, which has been used for calibration.
The potential divider incorporating $V R_{1}$ must be adjusted so that the op-amp output just becomes high when the calibrating battery is in position, so that when the battery under charge is in place, an increase in its voltage to more than 100 mV above that of a fully charged battery turns on the transistor by way of the led and the relay is activated to stop the charge.

Ejaz Ur Rehman

ACD-Pinstech
Islamabad
Pakistan

Lead-acid battery charger stops the charge automatically when the battery is fully charged.

Electronic load

There are several methods of testing DC power supplies using variable loads, but they turn out to be unwieldy and difficult to adjust (rheostats), or to need heat sinks and insulation (power transistors). Wirewound resistors suffer from neither defect and can be obtained in metal-clad types with insulation.
Figure 1 shows one method. A fast-switching mosfet with a choke in

its drain draws the supply current, dissipation being low in the Class-D operation adopted. Waste power is simply dumped in the resistor, which is of fixed value, the variation being taken care of by varying the pulse width. In testing the circuit, it became clear that the diode is unnecessary, which gives more current from the supply; the choke L_{1} may also be left out to leave only the resistor in circuit.
However, it is best to keep the choke as part of a filter using $C_{1,2}$ to smooth the pulses to the supply, as seen in Fig. 2. Variable-width pulses come from the 555, which takes its own supply from terminal B or from a secondary winding on the choke via $D_{2,3}$.

Pulse width is varied by P_{1} to
provide effectively a variable resistive load from around 33Ω to 2.7Ω.
Switching frequency, determined by $P_{1} R_{2,3} C_{3}$, is about $15-60 \mathrm{kHz}$, the off time of the mosfet being $15 \mu \mathrm{~s}$ and the on time variable from $1.5 \mu \mathrm{~s}$ to $50 \mu \mathrm{~s}$, so the duty cycle is theoretically 9% 77%, although switching times mean a lower limit of 6%.
The turns ratio of L_{1} is such that at least 12 V goes to $D_{2,3}$ from the ripple across the primary. Capacitor $C 2$ must withstand the ripple caused by switching and must be a multiple unit. Resistance R_{1}, which consists of five resistors, is fixed to a 25 by 15 cm aluminium sheet and the mosfet is fitted with a $10^{\circ} \mathrm{C} / \mathrm{W}$ heat sink.
C J D Catto
Cambridge
D32

Fig. 1. One way of providing a variable load for power supply testing is to pulsewidth modulate a mosfet and dump the power into a fixed resistor.

Review subjects

The first review covered Electronics Workbench version 5.12, whose maker is IIT Ltd of Canada. Workbench's UK supplier is Adept Scientific plc, tel 01462 480055. Electronic Workbench's price is $£ 199$.
Rod looked at CircuitMaker in the August issue. This $£ 199$ package is made by MicroCode in the US and supplied by Labvolt in the UK, tel. 01480 300695.

Tina Pro, priced at E299, was featured in the September issue. Quickroute supplies Tina in the UK, tel 01614760202.
Pulsar and Analyser from Number One Systems, which are modules from the Easy PC package, are the subjects of Rod's next review.

Rod Cooper investigates the comprehensive circuit CAD package Proteus, which has recently benefited from a new simulation engine. This design tool is different from those reviewed so far in that it has no virtual instruments. But does that matter?

The route to simulation IV

Prospice is the newly developed engine at the heart of the LISA simulator, which is part of the Proteus IV version 4.6 package. LISA is an acronym that simply stands for Labcenter Integrated Simulation Architecture.
The other two parts of Proteus are ISIS, the schematic drawing and capture program, and ARES, the pcb drafting and routeing program. All three are tightly integrated into Proteus, with the same style of operation, menus, graphics and screen layout. The considerable benefits of having all three combined into one package have already been extolled.
Labcenter's Prospice is based on Spice 3F5 and is a true mixed-mode simulator, and a complete replacement for the analogue and digital enginespreviously used. LISA is fully integrated with ISIS; that is, you do not have to transfer out of ISIS into LISA to run a simulation.
When it comes to simulation, LISA and ISIS are fully integrated. Graphs and other results appear as an overlay on the schematic screen, and in this respect it is very similar to the other programs reviewed to date.

Pay for what you need
There are several levels of ISIS with corresponding prices. The aspect usually of most interest here is the pin and node limit. The price starts at $£ 295$ for the low-
est level with a schematic limit of 1000 pins and a simulator limit of 250 nodes.
Having a node limit overcomes the frequent complaint that a pin-limited simulator gives a false impression of its capacity. This is because there can be several pins used up in just one node.
A few features are omitted from the lowest levels, such as the sweep ability. In view of so much variability, it is probably best to discuss your design requirement, and what you can afford, with the company. If you subsequently find the limit is too small, it is possible to upgrade at reasonable cost.

Documentation

Proteus's documentation is comprehensive. It covers every aspect of operation, including tutorials and technical reference. It comes as a single hefty A5 looseleaf book in three sections covering ISIS, LISA and ARES. Being loose leaf, the manual can be readily upgraded.
Like other makers, Labcenter has its own terminology, but this is well explained.
Background on the reasons for certain types of operation is also provided. This can be helpful in getting to grips with some aspects of Spice. Generally, the literature is clear, concise and plentiful. It is well complemented by the program's Help files. The CD includes a useful animated tutorial.

Fig. 1. This simple Sallen \& Key filter shows the uncluttered drawing area of the schematic capture and simulator, with the parts bin on the right set up for general work on filters, from which a handful of symbols has been chosen for this circuit. Note how the signal generator on the input is attached, and the voltage probe on the output.

Fig. 2. The signal generator - the symbol highlighted in red on the left - is set up by this menu, contrasting with the virtual instrument approach. This type of menu system is used throughout the simulator.

Schematic capture

In brief, ISIS is an efficient schematic drawing program. It is well-endowed with features without being over-complex, and it has notably good graphics quality.
ISIS has a different style from the other Windows programs reviewed to date. For example there are no Windows-style scroll bars.
Panning is carried out by bumping the mouse against the edge of the drawing area. There are no expandable tool and symbol bars. Instead there is Labcenter's own method of accessing symbols, tools, etc., Fig. 1. On the right of the screen, the map area, tool area and parts bin all take up a fixed part of the monitor screen.
There are several other features characteristic only of Proteus, but this is a well-developed system, which has stood the test of time. It takes a little getting used to, but is rapid and effective in use once you have familiarised yourself with it.
The package has maintained its consistency through several upgrades. If you are an existing user of an earlier version, you should find upgrading reasonably painless.
Unlike Tina, Workbench and CircuitMaker, ISIS does not have predetermined parts bins. However, it is easy to set up the ISIS parts bins with a permanent stock of symbols of your choice and save it if you wish. This makes ISIS suitable for experimental designing on-screen. I covered this important aspect in the Introduction in the August 1999 issue.
Figure 1 shows a parts bin set up as a type of permanent template for designing audio filters. It contains some generic and some specific devices. I could just as easily have loaded the template with all-generic devices for use as a purely experimental tool, and added other selections for, say, power supply or RF design.
On the subject of templates, Proteus has a sophisticated system where every detail from background colour to font type can be stored as a template.
The number of available symbols has been increased to 6000 , including a small volume of thermionic valves, backed by 4000 Spice models.
New symbols can be created or modified via a graphics editor. A substantial section of the manual describes how Spice models can be generated, either from scratch or imported from manufacturers' Spice data, and attached to them.

Labcenter offer the best support in this review for other makers' net lists, in addition to its own SDF format. These include Boardmaker (Tsien), EEDesigner, Futurenet, Multiwire, Racal, Tango, Valid, Vutrax, SpiceAge (Dos) and of course Spice.
If you want more detailed information on schematic capturein ISIS, you will find it in my review in the May 98 edition of Electronics World.

Simulation

The new Prospice true mixed-mode simulator brings Labcenter's product into line with the other simulators reviewed so far. Most importantly, Prospice fulfils all the requirements for basic analyses listed in the introduction to these reviews. There are also several additional features, such as Fourier analysis, parameter sweeping and temperature modelling. Two points of special interest are described later.
Prospice does not use the virtual instrument concept. Instead, it uses icons that are handled within ISIS like ordinary schematic symbols. The icons are not wired in to terminals or nodes as they are in Workbench or Tina for example. Rather, they are dragged from the appropriate toolbox on the righthand side of the screen, and dropped onto wires in the schematic as shown in Fig. 1. The various icons representing signal sources, probes, etc., are then edited by a menu like that shown in Fig. 2 to set up the required parameters.
If you are a first-time buyer, don't be

Requirements

The Proteus software comes on a $C D$ or six floppy disks. Installation is easy, with security by the registration name-andnumber method.
This is a 32 -bit program so runs naturally under Windows 95/98/NT. But it also runs under Windows 3.1 with the Win32s extension.
Labcenter has announced this is the last version that will run on Windows 3.1. All future versions will be for Windows 95/NT, or whatever OS Microsoft replaces them with.
A 50 MHz 486 DX with 12Mbyte RAM for Win3.1, or 16Mb RAM for NT are suggested as minimum hardware requirements. In addition, 20 Mb of hard disk space is needed.
put off by the absence of virtual instruments. True, the symbol/menu method is less intuitive, and and you will need to read the manual a little more. However, symbols and menus are easy to learn, and efficient in use. Some will
prefer this method.
Generally, the range and scope of the menu system was good, and not too complex.
Analysis graphs are placed directly onto, or over, the schematic drawing,

Fig. 3. Analysis graphs, like this one of input impedance, are drawn on the schematic drawing area at a size to suit the user.

Fig. 4. Once you have produced your graph, in this case gain and phase, it can be run full-screen for closer examination or taking measurements.

Fig. 5. A typical timing chart in digital analysis.
Note the glitches.
The glitch threshold time can be easily set in order to discriminate the various glitches by editing the properties of the devices in the schematic.

Fig. 3. First, the outline is drawn to whatever size and shape the user finds suitable. Conveniently, the graph is slotted into an unused corner of the drawing sheet, or over an unimportant part of the schematic. This is the opposite of other Windows programs, where you may get a pre-sized window after simulation, which you then have to resize and reposition.
For taking accurate measurements, the graphs can be expanded to fullscreen as shown in Fig. 4.
Signals are extracted for analysis by attaching probes to schematic wires in the same way that icons are placed. The required analysis is picked from the menu bar and can be run from the menu system. For example, if you want a graph of amplitude and phase versus frequency, you click on 'graph' then use the menu to set the graph up.
There is often a choice of routes for manipulating the analysis. Some of the setting up is intuitive, but not all. For example, to set up the graph of Fig. 4, one voltage probe was dragged onto
the left ' y ' axis to assign this to amplitude and another dragged onto the right to assign this to phase, to produce the familiar double graph. This method has to be learned from the manual, but once assimilated it is a rapid and adaptable system. Such methods are repeated throughout the program. They allow flexibility, but also demand a fairly steep learning curve.
Like CircuitMaker and Tina, Prospice can produce graphs of ${ }^{\text {sin }}$ put and output impedance versus frequency, as Fig. 3 shows. The method used is indirect, but easy to apply.
There are two features that I found interesting. One is the ability to listen to audio frequency signals, providing your PC has a sound card. If you are working on music effects such as flanging or phasing, frequency shifting for public address, or audio filters, this could be very useful.
Another feature offers an easy way for a part of a circuit to be simulated in isolation. This is an advantage on large or complex circuits.

[^3]In digital analysis Prospice has a good method of allowing the operator to set the glitch threshold time. Having this control enables you to view only the glitches that you deem significant, avoiding the large numbers of small and unimportant glitches that some circuits produce when simulated. This avoids the idealised timing diagrams that other programs favour.
The digital analysis recognises strong high and low, weak high and low, floating, contention and three other states. Colours are allotted to the first six states so that they can be readily observed on the timing chart.

There are no concessions to education in Proteus. This is not to say it could not be used for teaching students in the later stages of their education. Indeed it would give them a good insight into a system they could be using for commercial designs in the outside world
However, it is in the completeness and scope of the basic analyses where Prospice scores particularly well.

In summary

Once again, Labcenter has concentrated on the essentials and presented these in depth rather than providing a lot of peripheral features of marginal use. In doing so the company has produced an excellent all-round simulator.
You are unlikely to be in a position of needing a detailed basic simulation, but finding the program cannot do such a simulation. This is often the case with other programs in this sector of the market.
However, Prospice is not without its share of specialised features. The ability to listen to sounds is one example. Where these are provided though, they tend to have a strong practical purpose.
On the whole, Proteus has a moderately steep learning curve. This is offset by having the three functions of schematic drawing, simulation and pcb routeing all in one program. As I have pointed out, this means you only have to learn one system of operation.
The Labcenter method of offering a range of prices for various versions of the program, limited by the number of pins or nodes it can handle, is a good one. It means that, even if you are on a strict budget, you can start small and still get all the basic simulations. If you want, you can spread the capital expenditure by choosing to upgrade at a later date.

In last month's review, of Tina, Figs 4 and 5 were transposed. Sorry. Ed.

Advanced Systems \& Technology for PCB Manufacturers
Old Buriton Lime Works, Buriton, Petersfield, Hants. UK GU3I 5SJ
Tel: (44) 01730260062 Fax: (44) 01730267273

HOW DOES YOUR EQUIPMENT MEASURE UP? AT STEWART OF READING THERES ALWAYS SCOPE FOR IMPROVEMENT!

Finishing

Ian Hickman looks at some of the many ways a prototype or one-off instrument can be given a professional look without the expense of using professional techniques.

Ihave made a number of instruments for my own laboratory, and I have found that it is often possible to make them perform as well as expensive commercial equivalents, but at a fraction of the cost.
In the early stages of my career, I took a pragmatic view, being satisfied with the outcome however it looked, provided it functioned as desired. But for many years now, I have striven for a more professional looking finish. There are quite a few ways of achieving this and some of them are discussed below.

Working the enclosure

Unless you have a penchant for metalwork, and access to the necessary guillotine, bender etc, you will probably build most of your equipment in commercial ready-made cases. That way, whatever the innards may look like, you are guaranteed a professional finish, given only that the front panel legending is well laid out and neatly executed.
Legending can be done in various ways, of which one of the earliest was via 'Letraset'. This consists of rubdown lettering on transparent carrier sheets carrying letters, numbers and other symbols. Such sheets are available in various point sizes and colours, most commonly black.
With care and practice, a very neat front panel appearance can be created, on either metal or plastic surfaces. The art is to get all the letters of any particular legend exactly in line. This makes the process fairly time consuming, but that should not be a great problem for a one-off.
There are however one ar two drawbacks to applying Letraset directly to a front panel in this way. The first con-
cerns durability; it is advisable to protect the lettering with a clear coating of some description.

Clear copal varnish has been used, brushed over each legend individually. But the various varnished areas are usually visible - especially after a while when the varnish has yellowed a little.
A better result is obtained by spraying the whole panel with an aerosol clear lacquer, I use RS stock No $567-$ 480. This no longer appears in the current catalogue, having been replaced by clear lacquer 562-307. This newer spray should work as well as its predecessor, but I have not yet tried it. Alternatively, you could use clear acrylic lacquer 215-1217.
The second drawback concerns applying Letraset after an instrument has been built and tested. You are faced with an awkward choice. You can either dismantle the front panel controls, to enable the lettering to be applied in a straightforward manner to a flat surface, or you can try to work around projecting switch shafts, panel connectors, meters etc.

Dismantling the instrument can be undesirable for a number of reasons, but working round projections is extremely inconvenient, and furthermore requires masking of connectors, etc., when spraying lacquer.

Other panel techniques

Another very neat panel legending method that I have used in the past involved an RS photo-imaging system. This consisted of negative-working photo-imaging film 556-553, a choice of laminating film in various colours, and aerosol developer 556-610.
I used the white/yellow laminate 556-575 on an instrument of mine pub-
lished a while ago.' It resulted in smart yellow lettering on a black background.
Positive artwork of the required panel legend was used to expose the photoimaging film, using e.g. the small RS ultra-violet exposure unit. The exposure time is not critical, and indeed contact printing using daylight is possible.
After exposure, the matt black side of the film is sprayed with the aerosol developer and left for 15 seconds. It is then washed off under running cold water, leaving clear lettering against a black background.
The developed film is dried and stuck to the double sided sticky laminating film, the white or yellow surface of the latter showing through as lettering at choice, against the black background. The other side fixes the finished artwork to the front panel of the instrument.
Alternatively, the developed film may be used as an intermediate artwork, to expose another sheet of the material. This gives four possibilities: white or yellow lettering on a black ground, or black lettering on a white or yellow ground.
The material does not seem to feature in the current RS catalogue. But it is so useful that I am sure it must be available from stockists of supplies for the graphics industries, along with laminating film of other two-colour combinations, giving a wide choice of lettering or background colouring.

If you make your own PCBs...

Speaking of UV exposure units, many of you are doubtless geared up for making your own PCBs. The same facilities can be used for making a front panel overlay. The result will be copper letters on a light brownish background

Fig. 1. The front panel of the THD Meter, shown 75% full size.

- assuming the common SRBP base material.
Tinning the letters then results in attractive silver lettering, which should then however be lacquer-sprayed to prevent tarnishing.* If single sided SRBP is used, the lettered panel can be secured to the metal front panel of the instrument by means of the nuts securing the bosses of switches, pots, coax sockets etc.
If double sided material is used, it can do duty as the front panel in its own right, the rear copper providing screening.
Sometimes the technique is useful for just a small subpanel, to hold a BNC socket the outer of which must be insulated from the instrument case, for example. The single-sided material can also carry the legend relating to the function of the socket.
However, where the legend is carried on the same artwork as the rest of the front panel, the easiest solution to use an isolated BNC socket is the ready made variety, such as RS stock No 456-706 (50 $)$ or 456-946 (75).

Or if you don't...
Those of you not yet into making your own PCBs might find a transfer system involving a photocopier more interesting.

This scheme makes use of a transfer medium, consisting of a clear plastic
carrier sheet, obtainable in A4 size from a UK supplier. ${ }^{2}$ Onto this is printed the desired pattern, which should be in reverse, i.e. a mirror image. The printing is applied to the matt side of the sheet, which is indicated by its protective layer of paper.

The printed sheet is then laid onto the copper-clad board - which should be scrupulously clean - and the pattern is transferred under pressure and heat to the copper.

I have tried this material, transferring not a PCB pattern to copper-clad, but lettering onto a front panel. A little patience is needed to master the technique. If need be, any unsatisfactory results can be cleaned off the front panel with an organic solvent such as acetone (nail polish remover) \dagger prior to repeating the operation.

While an ordinary domestic iron on its hottest setting can be used to apply both the heat and the pressure, a better scheme is to lay the panel on a hotplate and apply the pressure with a rubber roller. A suitable roller can be obtained, also from the company mentioned in reference 2.

Afterwards, the panel should be allowed to cool to room temperature, before carefully peeling off the clear carrier sheet. The finished lettering should be protected, either with one of the clear sprays already mentioned, self adhesive library film, or any other
suitable method.
One wonders if the special sheets obtainable from some colour printer manufacturers, for printing tee shirts for example, could also be used for this purpose. This would allow the front panel to be livened up using colours rather than black.

My current method

I used the following method just recently to legend the front panel of my total harmonic distortion meter. ${ }^{3}$
This instrument was housed in a case previously used for another design. As a result, the front-panel layout of the new instrument was constrained by the already existing holes.

In the event, just two new holes were needed, one for the 'fine' tuning control, and one to accommodate the barrel of the meter. The panel of the meter also covered two redundant holes from the earlier use.

Positions of all the holes to be used were measured and plotted on half centimetre squared paper. Fortunately it turned out that I had been quite methodical with the original construction, all measurements being sensible metric quantities.
As the panel drawing would have been a tight fit across an A4 page, it was drawn rotated through 90° to a sideways 'portrait' orientation.
The circles drawn on the paper were

Fig. 2. Completed battery-powered THD meter, showing the flying supply lead, via which the unit can alternatively be powered from an external source of ± 15 to 18 V dc.
marked in at a suitable size to just clear the retaining nuts of rotary switches and pots, and the front-of-panel flanges of BNC sockets. This meant that later, applying the legending would require only the removal of knobs and the meter; the inconvenience of dismantling controls and sockets from the front panel being avoided.
The squared paper with its panel outline and hole positions was scanned in to my computer. It was exported from Paperport ${ }^{\mathrm{TM}}$ as a bit-mapped .BMP file, for use as a template in an Adobe Illustrator ${ }^{\mathrm{TM}}$.AI file. Illustrator files are vector files similar to Corel .CDR and .WMF files, as opposed to bit map files like .bmp and .tif.
As Illustrator complained that the area was too large to load as a template, it was suitably reduced in size first, using Paintshop $\mathrm{Pro}^{\text {TM }}$. Using the template as a guide, an Illustrator .AI file was created, showing the panel outline and the clearance holes.
The portrait panel drawing was then rotated through 90° so that the legending relating to the various controls and sockets could be added conveniently.
Afterwards, the drawing was rotated 270° to restore the portrait orientation. A copy was run off, and the panel outline dimensions as printed were measured. These were compared with the actual panel dimensions, and the AI file scaled to restore the required drawing size, the result being as shown in Fig. 1.

Protecting the print-out

The final version of Fig. 1 was printed out on white paper, the front surface of which was sprayed lightly with 3 M Spray Mount ${ }^{\text {TM }}$ adhesive. After waiting the recommended few seconds to allow the surface to become tacky, the print was carefully laid down onto a blank view-foil sheet, as used for overhead projectors.
Next, with a surgical scalpel, the holes were cut out, the ones for the BNC sockets being slightly undersize. The holes for controls were less critical, being completely covered by the flanges of knobs.
The view-foil/paper composite was then cropped to size using a small guillotine I bought many years ago for photographic work. The composite was offered up to the instrument, and slight enlargement adjustments made to the holes for the BNC sockets, to suit.
Finally, the reverse side of the composite was sprayed and, when tacky, placed in position on the instruments front panel. The result is a neat appearance, with the legending protected from dirt and smudging behind the plastic sheet.
Like some of the other methods mentioned, this scheme blanks off and hides any redundant holes, which is particularly useful when you are reusing an enclosure. However, two of the holes in the front panel that I originally intended to hide were in fact equipped with BNC sockets labelled
-V and +V . These sockets are connected directly to the internal +18 V and -18 V battery supplies.
These sockets make it possible to measure the battery voltages with the instrument switched either on or off. The difference between the on and off voltages provides an indication of the state of the batteries.

A variant for plastic cases

I recently produced a special-to-type test box for a well known electronics company. This was built in one of the popular range of glossy grey ABS boxes, namely RS stock No 503-650.
The grey lid of the box, forming the front panel, was entirely acceptable aesthetically. It just needed legending added. So in this case, the front panel legending was produced as a AI file, which was then reversed to give back to front lettering.
The legending was printed out on my Laserjet 5MP printer, on an overhead projector view-foil. The lettering thus looked the right way round when the foil was mounted on the front panel. Having the printing in contact with the panel protects it from dirt, abrasion etc.
A word of warning though. Do not use the grade of overhead projector foil sold for use in photocopiers. It might be alright, or it might result in an expensive repair. Be sure to use foil specifically stated as suitable for laser printers.
The foil could have been laid down as a whole, as described in the preceding section. However, this was another case where it was desirable to avoid dismantling the finished, tested product.
Most of the items on the front panel were LEDs, push-buttons, connectors etc., neatly arranged in rows. So instead of producing and fitting an overlay the size of the whole front panel, strips of the foil carrying the relevant legends were mounted where appropriate, as separate items, using 3M Spray Mount ${ }^{\mathrm{TM}}$ adhesive.
The result was a neat appearance produced in the minimum of time, the separate areas of foil with their bold lettering blending in almost invisibly with the light-grey front panel.

References

1. The EnviroSynth, Ian Hickman, Maplin Magazine, June 1992.
2. TEC 200 Image Film, obtainable from PSS Services Ltd, 217 Prestbury Road, Chettenham, Gloucs GL52 3ES.
3. Measure THD below 0.001%, Ian Hickman, Electronics World, Aug. 1999, pp 626-633.

The new PicBasic Pro Compiler makes it even easier for you to program the fast and powerful Microchip Technology PICmicro microcontrollers. PicBasic Pro converts your BASIC programs into files that can be programmed directly into a PICmicro.
The PicBasic Pro Compiler features: BASIC Stamp I and II conmands, direct and library routine access to pins on PORTA, C, D, E, as well as PORTB, arrays, real IF...THEN...ELSE and interrupt processing in BASIC.
The PicBasic Pro Compiler gives you direct access to all of the PICmicro registers I/O ports, A/D conventers, hardware serial ports, etc. - easily and in BASIC. II automatically takes care of the page boundaries and RAM banks. It even includes builtin commands to control intelligent LCD modules, I2C Read and Write. Serial comms to 19.2 K , Smart Card routines are available.
The PicBasic Pro Compiler instruction set is upward compatible with the BASIC Stamp II and Pro uses BS2 syntax. Programs can be compiled and programmed directly into a PICmicro, eliminating the need for a BASIC Stamp module. These programs execute much faster and may be longer than their Stamp equivalents. They may also be protected so no one can copy your code.
The PicBasic Pro Compiler is a DOS command line application (it also works in Windows) and runs on PC compatibles. It can create programs for the PIC12C67x, PIC12CE67x, PIC14Cxxx, PIC16C55x, 6xx, 7xx, 84, 9xx, PIC16CE62x, PIC16F8xx and PIC17Cxxx microcontrollers and works with most PICmicro programmers including our EPIC Plus Pocket PICmicro Programmer. A printed manual and sample programs are included to get you started.
The PicBasic Pro Compiler can also be used inside Microchip's MPLAB IDE. This HHows programs to be edited and simulated within Windows.

PIC BASIC (Basic Stamp I compatlble) - 249.95 PIC BASIC + EPIC programmer inclusive of utilities sulte $£ 84.95$ PIC BASIC PRO (Basic Stamp II compattle) - 149.95 PIC BASIC PRO + EPIC programmer incluslve of ullities $£ 184.95$ Upgrade PIC BASIC to PIC BASIC PRO $£ 99.95$ EPIC PIC PROGRAMMER $£ 49.95$ Download full Compiler data sheet including manual from web site

Crownhill Associates Ltd
 The Old Bakery, 54 New Barns Road, Ely Cambridgeshire CB7 4PW
 Tel: +44 (0)1353666709 Fax: +44 (0) 1353666710 E-mail: Sales © crownhill.co.uk www.crownhll. co.uk
 ORDER via ON-LINE CATALOGUE

CIRCLE NO. 111 ON REPLY CARD
Why Settle for AM when you can afford High Quality FM!

We can offer the lowest prices on high quallty FM Radlo Data Modules both in the UK and overseas !

Our quallfled englneers offer full technical support from simple advice to system design \& Integration.

For a free catalogue, wall chart or quotation lust e-mail sales@radtec.demon.co.uk. alternatlvely fax or telephone quoting ref: WWRM!

Your officlal Radiometrix Distributor

Reader offer - save over 45\%

Radio-Tech's RTcom-Universal, available on 418 MHz for the UK and 433.92 MHz for Europe, is the easiest of wire-free modems to use. Simply plug one unit into one RS232 port and a second unit into another RS232 port and the two ports can then talk to each other at speeds of up to 19200 baud securely and without wires.
Serial data in gives serial data out, making the RTcom-Universal the ideal replacement for cabled point-to-point or star connected scanning cabled telemetry systems.

Units are fully approved and have EMC Class-1 type examination certificates.
The units normally sell for the trade price of $£ 189.95$ each $+£ 10.00$ carriage + VAT.
Radio-Tech is happy to offer a pair of these modems at the special price of $£ 249.95$ inclusive of postage, packing and VAT exclusively to readers of Electronics World. The offer is limited to one pair per person.
Send the coupon presented on this page to Radio-Tech at the address shown below, together with a cheque made payable to Radio-Tech Ltd, or send your credit card number, type and expiry date together with the address of the card holder.

> RTcom-Universal wire-free modem normal price $£ 469.90$ per pair Offer price $£ 249.95$ per pair inclusive*

[^4]
COUPON

This coupon entitles the holder to one pair of RTcom-Universal wireless RS232 modems at the special all-inclusive price of
£249.95.

Easy to use

Unlike other modems of this type, RTcom offers truly transparent operation. There are no buffers to introduce long delays so your receiving device can acknowledge receipt or reject errors within 5 ms of the end of the data packet.
You can even avoid the cost of RS232 to RS485 conversion by using the RS232 port at one end and the RS485 at the other.

Frequency range	Approval	Country
$418 \mathrm{MHz}, 0.25 \mathrm{~mW}$	MPT1340 UK	UK
433.92 MHz 0.1 mW	MPT1340/	UK, Europe
	ETS-300-220	

Radio-Tech Limited, Radio House, The Old Brewery, Lindsey Street, Epping, Essex. CM16 6RD
Telephone +44 (0) 1992576107
Fax +44(0) 1992561994
e-mail sales@radtec.demon.co.uk. http://www.radiotech.co.uk

* Licence Exempt in the UK to MPT1340 \& Europe and Scandinavia to ETS-300-220
* Fully EMC Type Examined to ETS-300-683, Passed at Class 1 level.
* RS232 + RS422 + RS485 interfaces, 2 or 4 wire operation, ESD and collision protected
* 4800, 9600 and 19200 bps half duplex with on air encryption and code balancing
* Transmission range from 25 m to 100 m depending upon antenna and topology
* Less then 60 mA for 7.5 V to 15 V d.c operation
* Smart wall mounting enclosure with fixed $1 / 4$ wave antenna.
* Operates without need of special drivers. Compatible with protocols such as Modbus.
* Automatic solid-state antenna switch for single antenna use.
* Microcontroller with watchdog timer for added security.

NEW PRODUCTS

Please quote Electronics World when seeking further information

Potentiometers

Xicor has announced two non-volatile, digital potentiometers. The X9250 and X9258 are quad, 256-tap devices with a standby current of $1 \mu \mathrm{~A}$ maximum. They can be used to preset analogue system values or trim offset voltages during manufacture. The settings can be made automatically. The circuit has long-term temperature and time stability.
Xicor
Tel; 01993700544
Enquiry No 502

16-bit d-to-a converter

SPT has announced the SPT5510 16 -bit digital-to-analogue converter. This 200 MHz part has a settling time of 35 ns to 16 -bit accuracy and 15 ns to 14 -bit accuracy with glitch impulse energy of 30 pV -s. Non-linearity is less than 1LSB typical INL and DNL. It comes in a 44-lead metric quad flat pack and works from -40 to $+85^{\circ} \mathrm{C}$ Signal Processing Technologies Tel: 0017195282300
Enquiry No 503

Design software

Fast Analog Solutions has announced a version of its development sottware

with support for Windows NT for its Trac reconfigurable analogue circuit. The software has the look and feel of the existing versions, which support Windows 3.11, 95 and 98 . It provides design and simulation tools, and lets designs be downloaded and uploaded to and from the device. Fast Analogue Solutions
Tel: 01616224567
Enquiry No 504

Chip trio give voice to DSL

Ericsson has introduced three chips for voice over DSL, providing users with up to four addlitional telephone lines over their xDSL connection. The PBM 990 08/1 ATM multi-service chip handles circuit emulation for up to four POTS lines. The PBM $39706 / 1$ is a dual-channel PCM codec with on-chip DTMF support. The PBL 387 10/1 ring Slic is an analogue POTS interface, including voice, signalling and ringing. To incorporate them into existing data modems, no additional processing power is required
because most of the ATM handling and circuit emulation are performed by the multi-service chip.
Ericsson Microelectronics
Tel: +4687574700
Enquiry No 501

Dual UART

Philips Semiconductors has available the SC28L92 dual UART - the third member of its Impact line. It operates at 3.3 and 5 V with the Intel or Motorola bus and supports commercial and industrial temperature ranges. The single-chip CMOS LSI chip provides two full-duplex asynchronous receiver and transmitter channels. It interfaces directly with microprocessors and can be used in polled or interrupt driven systems. It is a pin and function

equivalent to the company's other dual UARTs. Features include 16 character receiver, 16 character transmit first-in-first-out buffers, watchdog timer for each receiver, and a mode register. The chip comes in a 44 -pin PLCC or PQFP. Philips semiconductors Tel: 0031402722091 Enquiry No 506

ADSL chip set
Two fully-programmable DSP-based ADSL chip sets for central office and customer premises applications are available from Texas Instruments. Both use the firm's TMS320C6000 DSP core. The TNETD4000C supports four full-rate or G. lite ADSL lines in central office applications while the TNETD4000R is for equipment such as external modems and remote access routers.
Texas instruments
Tel: 01604663000
Enquiry No 508

Motor controller

Omnirel has introduced the OMC507 three-phase brushless DC motor controller. Rated at a 5A continuous average phase current, 10A peak for 10 s and 28 V DC bus voltage without needing a heatsink, the unit provides linear control of motor current (torque) in proportion to the input current command. The controller contains the power, driver and logic

RF transistors

Zetex has introduced RF transistors in SOT323 surface mount packages. Six NPN types are available from the ZUMTS20 with a transition frequency of 450 MHz to the ZUMTSI7 at 1.3 GHz . Power dissipation is 330 mW at an ambient temperature of $25^{\circ} \mathrm{C}$. Typical noise performance is 4.5 or 6.0dB. The ZUMT5179 has a maximum collector-base capacitance of 1 pF at 1 MHz Maximum collector-emitter voltages are between 12 and 20 V . Applications include RF security systems, crystal oscillators, FM tuners and IF amplification.
Zetex
Tel: 01616224422
Enquiry No 505
circuits to regulate the speed of the motor, including a PWM controller, three-phase output power stage, onboard current sense resistor and 10 pF motor bus capacitor. It lets the user provide either an external

Please quote Electronics World when seeking further information

analogue or TTL PWM input command, or an analogue command can be provided onboard.
Omnriel
Tel: 01435867499
Enquiry No 509

Power relay

Matsushita has introduced the CP1-SA surface mount power relay for the automotive industry. Measuring $13 \times 14 \times 10.5 \mathrm{~mm}$, it has a nominal current rating of 20 A at 14 V DC, but it can switch 40A for up to two minutes.
Infineon Technologies
Tel: 01908231555
Enquiry No 511

IR sensor

Murata's IRA-E940ST1 IR sensor detects a moving human body using four 1.35 by 1 mm sensing elements and two outputs with an OR-AND logic circuit. Applications are security systems, lighting and household appliances. Typical response at 1 Hz is 5120 V/W. Field of view is $50 \times 55^{\circ}$

D-sub connectors

Conec has developed D-subminiature combination connectors using planar technology to increase attenuation, reducing EMI and RFI. Attenuation is up to 45 dB at 100 MHz and 90 dB at higher frequencies. Standard peak capacitance is 360 pF . Voltage capability is up to 1500 V DC as standard and up to 2500 V DC as an option. There are five shell sizes and various signal, power and coaxial pin combinations. Power pins are rated at up to 40A with AWG8 contacts.
Infineon Technologies
Tel: 01344396313
Enquiry No 510

It works from 2 to 15 V supply over a range of -25 to $+55^{\circ} \mathrm{C}$. Infineon Technologies Tel: 01252811777 Enqulry No 512

GTLP clock driver

Fairchild Semiconductor's latest addition to its GTLP portiolio is a low drive clock driver that is a device capable of LVTTL to GTLP (and vice versa) signal level translation in the same package. The device is designed for high-speed performance in back-plane and bus applications in data networking and telecoms. The GTLP6C817 is deslgned with internal edge-rate control and is process, voltage, and temperature compensated. The device also features 50 mA GTLP drive capability and bi-directional LVTTL to GTLP signal level translation. Fairchild Semiconductor
Tel: 01793856811
Enquiry No 514

0.5 to 2.5 GHz amplifier

Maxim's latest wideband buffer amplifier provides dual open-collector outputs capable of delivering -5 dBm while maintaining harmonic suppression of better than -25 dBc . The dual output of the MAX2472 makes these devices suitable for simultaneously driving two mixers, or a mixer and a PLL, according to the company.
There is also a single open-collector output version (MAX2473) with an

Modem chip set for VDSL
Infineon has introduced a modem chip set for the VDSL standard, using frequency division duplexing (FDD). VDSL over conventional twisted-pair copper provides symmetrical and asymmetrical data transmission up to 13Mbit/s. Based on the firm's Potswire technology, the three-device chip set uses FDD and QAM line code to handle POTS and ISDN services on the same twisted pair and XDSL services on the same bundle. It can also be configured to support spectral compatibility with amateur radio. The chip set comprises the PEB22810 VDSL line driver, the PEB22811 VDSL analogue IC and the PEB22812 digltal IC. The analogue IC handles analogue-digital conversion, pre and post filtering and power control, including a power down mode with warm-start capability in less than 100 ms .
Infineon Technologies
Tel: 01344396313
Enquiry No 507
added feature of a bias control pin to vary the output power as needed to save current. Output power can be adjusted from -10 dBm to -2 dBm while maintaining harmonic suppresslon of better than -25 dBc . Both amplifiers operate over a 500 MHz to 2500 MHz frequency range providing 12 dB gain and greater than 40 dB isolation at 900 MHz .
Maxim
Tel: 01189303388
Enquiry No 515

2.5Gbit/s I/O driver cores

LSI Logic claims that its current generatlon of Gigablaze integrated gigabit per second CMOS transceiver cores support the physical requirements of next generation I/O (NGIO). The cores meet NGIO's double-speed serial transfer rate of 2.5Gbit/s. The transcelver cores can be integrated into system-level Asics. The firm's I/O cores were the basis of number of Fibre Channel and Gigabit Ethernet products and it claims they will play their part in the volume launch of NGIO products LSI Logic
Tel:01344413204
Enquiry No 516

2.5Gbit/s SONET/SDH interface

Vitesse's latest chip set implements a 2.5Gbit/s channelised SONET/SDH interface for ATM, packet-overSONET and SONET/SDH transmission equipment. The V-Frame 2.5/SLT offers full SONET/ SDH section and line termination, including byte interleaving/de-

interleaving and multiplexing/ demultiplexing functions. The chip set is the second group of products in the company's V-Frame 2.5 family. It includes the VSC9111, a section/line terminator, which acts as the framer, and the VSC8140 16-bit transceiver with integrated clock generation capabilities. Both chlps work from a single 3.3 V supply rail.
Vitesse
Tel:01634 863494
Enquiry No 517

Switched regulator

National Semiconductor has launched its first dual output switched capacitor regulator designed for portable communications applications. The device integrates a switched capacitor doubler, a low-dropout (LDO) regulator and a switched capacitor

The World is onto Spicycle!

Jump onto the future today - tomorrow's electronic design software tools from the U.K.'s leading simulation engineers.

- Schematic editing with TrueType fonts
- Drag and drop from component bins
- Analogue + mixed mode digital simulation with SPICE and extended algebraic functions
- PCB layout facilities - optional extra
- PCB facilities include regional DRC, copper fill, BOM, ratsnest connectivity from schematic
- CAM outputs (printer, plotter, drill and Gerber)
- Re-use existing PCB layouts with Gerber import
- Hook up the simulator directly to PCB for the ultimate in design validation
- Back annotation from simulator to schematic
- Library includes electronic + mechanical engineering behavioural devices
- Convert SPICE net lists into ratsnested schematic - reverse engineering made easy
- Upgrade path for existing customers competitive upgrades available.
Those Engineers Ltd, 31 Birkbeck Road, LONDON
NW7 4BP. Tel +44 (0) 2089060155
FAX +44 (0) 2089060960
e-mail sales@Those-Engineers.co.uk
web http://www.spiceage.com

CIRCLE NO. 124 ON REPLY CARD

TELFORD ELECTRONICS

Id Officers Mess, Hoo Farm, Humbers Lan Phone: (00 44) 01952605451 Fax: $(0044) 01952677978$
e-mail: telfordelectronics @telford2.demon.co.uk Web: http://www.telford-electronics.com Carriage: $£ 10+$ VAT @ 17.5% to be added to all UK orders Overseas orders welcome - Please call
ALL OUR EQUIPMENT HAS A 30 DAY GUARANTEE We now accept all major credit cards - Visit our NEW Web Site

Please quote Electronics World when seeking further information

inverter in a low profile, TSSOP-14 package. The LM2685 provides a dual output $(+5 \mathrm{~V}$ regulated and $-5 \mathrm{~V}$ unregulated) power supply by using switched capacitor and LDO techniques. The +5 V regulated power supply is required for components such as audlo codecs, amplifiers and SIMs. The -5 V can be used for contrast bias for LCDs, and to increase the dynamic range of operational amplifiers used for analogue inputs.
National Semiconductor
Tel: 01634863494
Enquiry No 518

Voltage regulator

 with enableLow dropout voltage regulators from Semtech, designated the SC1540 and SC1540A are 300 mA and 500 mA
regulators with the new feature of an enable pin. This allows the user to turn on or turn off the regulator as required. This feature can be used to turn on voltage rails in a determined order to ensure start-up sequences are followed, or to turn a voltage rail off for power saving in perhaps a battery powered application
Thame Components
Tel:01844 261188
Enquiry No 519
In-circuit test platform
GenRad has enhanced its GR TestStation in-circuit test platform which can be configured from 256 to 7680 pins. Evolved from GenRad's GR228X technology the TestStation can be populated with any of the current CR228X pin cards or with the company's Ultra 121 all-real pin card. Existing CR228X fixtures and programs are fully compatible. The TestStation can be re-configured by adding modules to increase node count up to 7680 pins, or to populate the system with the Ultra 121 pin card.
Genrad
Tel: 00498996285303
Enquiry No 520

Current transducer

Electrically isolated measurements of DC, AC or complex waveforms currents can be accomplished with the HAS series of open-loop current transducers from LEM. There's a choice of nominal currents ranging

Flash/SRAM on one BGA
STMicroelectronics has introduced a device consisting of 8Mbit flash and 1 Mbit SRAM in a single BGA48 chip scale package. The M36W108A's footprint of $12 \times 10 \mathrm{~mm}$ occupies around 60 per cent less space than separate flash and SRAM devices, according to the supplier. The flash memory is functionally ldentical to the firm's M29W008A device and is organised as 1 Mbit x 8 in a boot block configuration and the device is available with Top and Bottom boot block options. Operation is from a single 2.7-3 .6V supply, with the high voltage required for erasure and programming being generated internally. The flash memory includes a Security Protection area factoryprogrammed with 256 bytes of ID. The SRAM component is a $128 \mathrm{k} \times 8$-bit SRAM with fully static operation requiring no external clocks or timing signals and with equal address access and cycle times.
STMicroelectronics
Tet: 01628890800
Enquiry No 513

from 50A to 600A and a measuring range of up to $\pm 1 \%$ with a response time of less than $3 \mu \mathrm{~s}$. Overload currents outside the recommended

measuring range are accepted without damage to the transducer, making the range suitable for current control or protection in many industrial applications
LEM
Tel: 00695720777
Enquiry No 521

CMOS IC targets

 hands-free phoneAustria Mikro Systeme's programmable chip for hands-free speaker phones is a mixed-mode CMOS integrated circuit for analogue telephones incorporating hands free speech circuit, CPU/dialler and tone ringer all in a 44 pin TQFP. The AS2525's software programmable

BACK ISSUES

Back issues of Electronics World are available, priced at $£ 3.00$ UK and $£ 3.50$ elsewhere, including postage. Please send your order to Electronics World, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Available issues

1994	1996	1998
January	January	February
April	February	March
May	March	April
July	May	May
August	June	June
November	July/August	July
December	September	August
	October	September
$\mathbf{1 9 9 5}$	November	December
February		
April	1997	$\mathbf{1 9 9 9}$
May	June	January
June	August	February
August	September	March
September		April
October		May
December		June
		July
		August

The range of 'FM-Controllers' provide most of the features required for embedded control at a very low cost
FEATURES FM-200 Controller

- 68 K Micro-Controller 14 MHz clock
- 512 Kbytes Flash EEPROM
- 512 Kbytes SRAM Battery Backed
- 2 R5232 Serial Ports
- 1 RS232/RS485 Serial Port
- Real Time Calendar Clock (Y2K Compliant)
-Watchdog \& Power fail detect
- 10 Digital I/O Lines
- 2-16 bit Counter/Timers
- $1^{2} C$ Bus or M-Bus

Expansion Bus

- Size $100 \times 80 \mathrm{~mm}$

OTHER FEATURES

- UprDownload removable card for data logging and or re-programming
STE VO Bus, 68000 and PC Interface
- Designed, Manufactured and supported in the UK

Additional extra features to the FM 200

- LCD Port Graphics or Alphanumeric Up to 32 Digital VO Channels
-Key Pad Port 64 Keys $8 \times 8 \quad$ Up to 8 Mbytes of SRAM Battery
- 8 Channels 8 bit analogue in
- 2 Channels 8 bit analogue out
- 8 Channels 13 bit analoguè in

Up to 512 Kbytes of Flash EEPROM

- 1 Mbyte EPROM Space

DEVELOPMENT

The PC Starter Pack provides the quickest method to get your application up and running

Operating System

- Real Time Multi Tasking
- Unlimited copy licence

Languages

- 'C', Modula-2 and Assembler
- Full libraries \& device drivers provided

Expansion

- Easy to expand to a wide range of peripheral and VO cards

Support

- Free unlimited telephone, FAX, email and Internet support

Custom Design

- CMS will design and manufacture to customers requirements

The Phantom Power Box

48 volt microphone phantom powering unit
Professional portable units operating from an internal PP3 battery or external mains adaptor

\star Suitable for converting any microphone amplifier to P48 standard phantom power \star High efficiency DC to DC converter for extended battery life \star Accurate line balance for high common mode rejection \star Low noise and distortion \star Extensive RFI protection

The Balance Box (mic/line amplifier) - The Headphone Amplifier Box - The OneStop DIN rail mounting radio frequency interference filter and voltage transient protector for voltage and current loop process signal lines

Conford Electronics Conford Liphook Hants Gu30 7QW Information line: 01428751469 Fax: 751223

E-mail contact@confordelec.co.uk Web http://www.confordelec.co.uk/catalogue/

EMC TESTING

For a Full Comprehensive EMC Test Service

- FULL TESTING TO CE MARK FOR EMC - COMPETITIVE RATES
- FREE TECHNICAL ADVICE

From Design to Compliance

R. N. Electronics are specialist Wireless Design Consultants, this expertise is available to our clients when undertaking EMC testing, AT NO EXTRA COST.

Arnolds Court, Arnolds Farm Lane, Mountnessing, Brentwood, Essex. CM13 1UT
Telephone: 01277352219 Facsimile: 01277352968 email: sales@ridesign.co.uk http://www.rfdesign.co.uk

Please quote Electronics World when seeking further information

parameters allow adaptation to various standards, such as ETSI (ETS 300001, TBR21, TBR38) and FCC Part 68. The AS2591 is capable of driving a 7 -segment LCD with up to 16 digits and 12 symbols
Infineon Technologies
Tel: 00433136500265
Enquiry No 523

Software radio

Harris has announced a digital software-radio chip for cellular base stations. The software-programmable down-converter integrates everything except the baseband processor on one chip. Called the Commlink HSP50216 PDC, it can support up to four cellular protocols simultaneously, including CDMA, TDMA, IS-95, GSM, 3G and legacy protocols such as

Amps. The IC contains four separate channels capable of simultaneous multiple channel processing. It lets cellular operators move between existing radio interface standards. Microchip
Tel: 01344350250
Enquiry No 524

CMOS image sensor

Toshiba Electronics claims to have the world's smallest CMOS image sensor with an integral lens measuring 3.6 mm . The sensor is fully compatible with the common intermediate format (CIF) for videoconferencing. It Is 10 mm wide and deep and 6 mm high. Available in both colour (TCM5023LU) and black and white (TCM5020LU) versions, samples of the sensor are available immediately, with commercial quantities available from September 1999. The low-power CMOS device is suitable for batterypowered camera and videophone applications. Operation requires a 2.8 V single power supply, and consumption is 15 mW .
Infineon Technologies
Tel: 0990550500
Enquiry No 525

Small 1k serial EEPROM

Microchip claims to have the world's smallest 1 k serial EEPROM in a 5-lead SOT-23 package. This means the 24LC01B offers a 50 per cent reduction In board space compared with a standard 8-lead TSSOP

In-circuit test platform

Infineon Technologies' latest chip for T1/El echo cancellation, the SIDEC (Smart Integrated Digital Echo Canceller), PEB20954 suppresses both electrical and acoustic echo and effectively compensates for these unwanted delays. It provides TI/EI echo cancelling for up to 32 channels in accordance with ITU-T G. 165, G. 168 and G. 168 (2000) standards. It Integrates an array of different functional blocks onto a single device. These include: speech control, dlsabling logic, adaptive echo estimation unit, PCM VO interface with selectable p-and A-law coding, non-linear processor, subtractor, microprocessor interface and Universal Control and Communication interface for signalling highways with direct hardware control.
Infineon Technologies
Tel: 0990550500
Enquiry No 522

package, and over 70 per cent compared with an 8-lead SOIC package. The EEPROM supports standard $\mathrm{I}^{2} \mathrm{C}$ protocol, $5 \mu \mathrm{~A}$ typical standby current and 1 mA read current, 200-year data retention and 1000000 erase/write cycles. Microchip Tel: 01189215858
Enquiry No 526
Portable virtual instruments
TiePie has introduced the Handyprobe model HP2, which is claimed to be the world's first combined multimeter, oscilloscope, spectrum analyser and transient recorder for connection directly to a portable computer without an external power supply or battery. Handyprobe is a compact, truly portable Instrument sampling at 20 MHz with resolution of eight bits and a memory depth of 128 Kbyte. Windows based software is used to implement the Handyprobe's four virtual instruments. TiePie Engineering Sneek, The Netherlands Tel: 0031515415416 Fax: 0031515418819 Enquiry No 527

456453104

=9.5ink

17E1+65

butint-3

over 2,000
electronics jobs
updated daily
www.electronicsweekly.co.uk

Portables with a Purpose

Reliable Tools that do the Job

FieldPac uniquely combines the power and expandability of a desktop PC with the mobility, strength and form-factor of a metal attaché case. One truly full-sized ISA or PCI expansion slot allows you the freedom to choose any add-in card on the market
I. ISA or PCI Full Sized Slot.

- High Brightness TFT Display.
- Pentium CPU, CD, Multimedia.
- Rugged, All Metal Attaché Case.
for applications such as: Network Testing \& Monitoring, Portable D/A systems, Image Capture \& Commissioning/Installation Tools. Trust the FieldPac anywhere you travel and feel confident it will survive the rigors of transport, ready to do the job, every time.

E Airline Hand Luggage.

- Universal Autoswitch Integral PSU.
- Removable Full-size Keyboard.
- CardBus / PCMCIA x 2.

Crystals made clear II

> With the theory out of the way, Joe Carr now presents a variety of practical oscillator circuits for use with crystals ranging from 50 kHz to 110 MHz .

Miller oscillators are analogous to the tuned-input/tuned-output variable-frequency oscillator. This is because they have a crystal at the input of the active device, and an $L C$ tuned circuit at the output.
Figure 1 shows a basic Miller circuit built with a junction field effect transistor, or JFET. Any common RF device can be used for $T r_{1}$, like for example the MPFIO2.
Direct-current bias is provided by R_{2}, which places the source terminal at a potential above ground due to the channel current flowing in Tr_{1}. The source must be kept at ground potential for AC , so a bypass capacitor, C_{4}, is provided. The reactance of this capacitor must be less than one-tenth the value of R_{2} at the lowest intended frequency of operation.
A parallel-resonant $L C$ tank circuit, L_{1} / C_{1}, tunes the output circuit of the oscillator. The tuned circuit must be adjusted to the resonant frequency of the oscillator, although best performance usually occurs at a frequency slightly removed from the crystal frequency.

If you monitor the output signal level while adjusting either C_{1} or L_{1} you will note a distinct difference between the high side and low side of the crystal frequency.
Best operation usually occurs at the low side. Whichever is selected though, care must be taken that the oscillator will start up reliably. Output can be taken either from capacitor C_{2} as shown, or through a link coupling winding on L_{1}.
The Miller oscillator of Fig. 1 has the advantage of being easy to implement, but it suffers from some problems as well. One is that the feedback is highly variable from one transistor to the next because it is created by the gate-drain capacitance of $T r_{1}$. There are also output level variations noted, as well as frequency pulling, under output load impedance variations. These are not good attributes for an oscillator.
Also, there is a large difference in starting ability between JFETs of the same type number, and between different crystals of the same type number from the same manufacturer. I

Surely an equivalent transistor will do?
Be careful when using 'universal' replacement lines of transistors. Crystal oscillators may operate in an unwanted overtone mode - i.e. at a higher frequency. Or because of stray LC components they may parasitically oscillate on a VHF or UHF frequency.
Because of this, you will want to keep the gainbandwidth product of the active device low. But many replacement lines use a single high-frequency transistor with similar gain, collector current and power dissipation ratings as a 'one-size fits all' replacement for transistors with lower gain-bandwidth products.
I've seen that situation in service replacements on older equipment. The original component may not be available, so a universal service shop replacement line device is selected. It is then discovered that there are parasitic oscillations and other problems because the new replacement has a gain-bandwidth product of, say, 200 MHz , whereas the old device was a 50 MHz part.
This problem can show up especially severely in RF amplifiers and low-frequency oscillators where LC components naturally exist, or in any circuit where the stray and distributed LC elements provide the required phase shift on some frequency above the unity gain-bandwidth point.

Fig. 1. Basic Miller crystal oscillator using a junction fet - easy to implement but sensitive to gate-drain capacitance differences and load
variations.

have also noted problems with this circuit when either the JFET or crystal ages.

In the case of the JFET, I've seen oscillators that worked well, and then failed. When the JFET was replaced, it started working again. What surprised me was that the JFET appeared OK when tested.
Figure 2 shows an improved Miller oscillator. This circuit uses a dual-gate MOSFET, such as the 40673, as the active element. It is a fundamentalmode oscillator that uses the parallel-
resonant frequency of the crystal. The crystal circuit is connected to gate 1 , while gate 2 is biased to a DC level. This circuit can provide a stability of 15 to 20 ppm if AT-cut or BT-cut crystals are used.
A problem that you might find with this circuit is parasitic oscillation at VHF frequencies. The MOSFETs used typically have substantial gain at VHF, so could oscillate at any frequency where Barkhausen's criteria are met.
There are two approaches to solving this problem. One approach is to insert a ferrite bead on the lead of gate 1 of the MOSFET. The ferrite bead acts like a VHF/UHF RF choke.
The second approach, shown in Fig. 2 , is to insert a snubber resistor $-R_{\mathrm{S}}$ in Fig. 2 - between the crystal and gate 1 of the MOSFET. Usually, some value between 10 and 47Ω will provide the necessary protection. Use the highest value that permits sure starting of the oscillator.
One interesting aspect of the Miller oscillator of Fig. 2 is that it can be used as a frequency multiplier - not to be confused with an overtone oscillator - if the tuned network in the drain circuit of $T r_{1}$ is tuned to an integer multiple of the crystal frequency.

Pierce oscillators

The crystal being connected between the output and input of the active device characterises the Pierce oscillator. Figure 3 shows the basic Pierce
crystal oscillator circuit using a bipolar n-p-n transistor such as a 2 N 2222 or 2N5179.
The crystal connects directly from the collector to the base of $T r_{1}$. Output is taken through capacitor C_{2} connected to the collector. This circuit is used extensively in low-cost receiver circuits, but is not recommended.
An improved Pierce oscillator is shown in Fig. 4. This circuit includes a capacitor, C_{1}, for pulling the crystal a small amount in order to tune the frequency precisely. With the capacitance values shown, this circuit operates at frequencies between 10 and 20 MHz . If the output is lightly loaded, and C_{4} kept small, then the oscillator will provide reasonable output stability at a level of near 0 dBm .
Figure 5 is a variation on the theme that works in the 50 to 500 kHz region. This circuit is almost the same as Fig. 4, except for increased capacitance values to account for the lower frequency.
In both circuits ordinary n-p-n devices such as the 2 N 2222 can be used successfully.

Butler oscillators

Superficially, the Butler oscillator looks like the Colpitts in some manifestations, Fig. 6. The difference is that the crystal connects between the tap on the feedback network and the emitter of the transistor.
This particular circuit is a seriesmode oscillator. The value of R_{1}

Fig. 2. Performance of the Miller oscillator is improved if a dual-gate MOSFET is used instead of the junction FET. Stability can be as good as 15ppm.

should be whatever value between 100 and 1000Ω that results in reliable oscillation and starting, while minimising crystal dissipation.
A table of capacitance values for feedback network C_{1} / C_{2} is provided. For the 3 to 10 MHz range, use 47 pF for C_{1} and 390 pF for C_{2}; for 10 to 20 MHz select 22 pF for C_{1} and 220 pF for C_{2}.

The collector circuit is tuned by the combination of C_{1} and L_{1}. This circuit may well oscillate with the crystal shorted, and care must be taken to ensure that the 'free' oscillation and the crystal oscillation frequencies are the same. The crystal should take over oscillation when it is in the circuit.
The Butler oscillator of Fig. 6 is
Fig. 4. In this improved Pierce oscillator, capacitor C_{1} pulls the crystal, allowing the circuit to be funed precisely. Works at $10-20 \mathrm{MHz}$ with

$$
\begin{aligned}
& \text { Works at } 10-20 \mathrm{MHz} \\
& \text { components shown. }
\end{aligned}
$$

Fig. 5. Pierce oscillator circuit with components modified for operation at 50 to 500 kHz .

Fig. 6. The Butler oscillator is capable of stability down to 10ppm if an output buffer with good isolation is used.

Fig. 7. In this enhanced Butler oscillator, two additional transistors provide buffering and facilitate feedback. Its range is 300 kHz to 10 MHz .

capable of 10 to 20 ppm stability if a buffer amplifier with good isolation is provided at the output. Otherwise, some frequency pulling with load variations might be noted.
The output signal is taken from a coupling winding over L_{1}. This winding is typically only a few turns of wire on one end of L_{1}. Alternatively, a tap on L_{1} might be provided, and the tap
connected to a low value capacitor. That approach might change some resonances unless care is taken.
Another alternative output scheme is to connect a small value capacitor to the collector of Tr $_{1}$. Keep the value low so as to reduce loading, and also to reduce the effects of the output capacitor on the resonance of L_{1} / C_{1}.
A somewhat more complex Butler
oscillator is shown in Fig. 7. This circuit is sometimes called an aperiodic oscillator circuit. It uses two additional transistors to provide buffering and also serve as part of the feedback circuit. The circuit will operate from about 300 kHz to 10 MHz , but the transistor may need to be selected carefully.
Many low-frequency crystals exhibit a lower equivalent series resistance, or

Fig. 9. Improved Butler oscillator based on Fig. 7 has two limiting diodes to enhance stability and cold start.

ESR, in one of the higher-frequency modes of oscillation than in the fundamental mode. As a result, you might find this circuit oscillating at some frequency in the medium wave or HF region, rather than at LF. The key to preventing this problem is to use a transistor with a lower gain-bandwidth product, such as a $2 N 3565$. An explanation is given in the panel entitled, 'Surely an equivalent transistor will do?'
The circuit of Fig. 7 produces a sine wave output, but not without relatively strong harmonic output. The second and third harmonics are particularly evident. However, if harmonics are desired - when the oscillator is used in a frequency multiplier for example then strong harmonics up to 30 MHz can be generated from a 100 kHz crystal if R_{5} is reduced to about $1 \mathrm{k} \Omega$.
The output of this oscillator is taken through an emitter-follower buffer. This circuit can be used as a general buffer for a number of oscillator circuits. It is generally a good practice to use a buffer amplifier with any oscillator in order to reduce loading and smooth out load impedance variations.
Another variation on the Butler theme is shown in Fig. 8. This circuit is similar to Fig. 7, but is a bit less sensitive to frequency pulling due to DC power supply voltage variations. It is good engineering practice to use a separate voltage regulator for all oscillator circuits though, in order to prevent such variation. The availability of low cost three-terminal integrated circuit voltage regulators makes this easy.

An improved Butler oscillator is shown in Fig. 9. This circuit is based on Fig. 7. Both circuits can be used at frequencies from LF up to the mid-HF region - about 12 to 15 MHz - if appropriate values of R_{3} and R_{5} are used.
The improvement of Fig. 9 over Fig. 7 stems from the limiting diodes $D_{1,2}$ between the two oscillator transistors, $T_{1,2}$. These diodes can be general-purpose 1N4148 small-signal types.
The circuit of Fig. 9 is preferred over Fig. 7 because it is more stable because crystal dissipation is limited, and it offers more reliable cold starting.
The Butler oscillators above are series-mode circuits, but because of the series capacitors, they are able to use parallel-mode crystals. For a strictly series-mode circuit, eliminate the capacitors in series with the crystal and replace them with a short circuit.

Colpitts oscillators

A feedback network consisting of a tapped capacitive voltage divider characterises the Colpitts oscillator. In Fig.

10 the feedback is provided by C_{1} and C_{2}, although the situation is somewhat modified by the gate capacitances of $T r_{1}$. This circuit can be used with parallel mode crystals from about 3 to 20 MHz with proper values of C_{1} and C_{2} as in the table in Fig. 10.

Frequency trimming of the oscillator can be done by shunting a small value trimmer capacitor across the crystal. Alternatively, the trimmer can be placed in series with the crystal.
If the oscillator tends to oscillate parasitically in the VHF region, then try
using the snubber resistor method, R_{4} in Fig. 10. This could occur because the JFET used at $T r_{1}$ will have sufficient gain at VHF to permit Barkhausen to have his due at some frequency where strays and distributed $L C$ elements produce the correct phase shift.
A value between 10 and 47Ω will usually eliminate the problem. Alternatively, a small ferrite bead can be slipped over the gate terminal of $T r_{1}$ to act as a small value VHF/UHF RF choke.

Fig. 12. Colpitts variant comprising an impedanceinverting oscillator. With the right components, its stability can be 10 ppm from 0 to $60^{\circ} \mathrm{C}$.

Freq (MHz)	C1 $(\mathbf{p F})$	C2 $($ pF $)$	C3 $($ pF $)$	R1	L1 (turns)
$2-4$	1000	270	270	1.5 k	60
$4-6$	1000	270	270	1.5 k	40
$6-10$	1000	270	270	1.5 k	25
$10-15$	100	220	220	680	15
$15-20$	100	100	100	680	10

Figure 11 is the same as Fig. 10, except for two features. First, the active device is an n-channel MOSFET rather than a JFET. Any of the single-gate devices, such as a 3 N128, can be used, but remember that such MOSFETs are very sensitive to ESD damage.
The other difference is a $1 N 4148$ small-signal diode that shunts the gatesource path to provide a small amount of automatic gain control action. When the signal appearing across the crystal and feedback network is sufficiently large, the diode rectifies the signal and produces a DC bias on the gate that counters the source bias provided by R_{2}. This diode helps smooth out amplitude variations, especially when more than one crystal is switched in and out of the circuit.
Another variation on the Colpitts theme is the impedance inverting oscillator circuit of Fig. 12. It provides stability of 10 ppm over a wide temperature range of $0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ provided that the components are carefully selected. Bear in mind that C_{1-3} and L_{1} are particularly troublesome here.
The circuit will also remain within $\pm 0.001 \%$ over a DC power supply variation of 2:1 - provided the crystal

Fig. 14. Alternative impedanceinverting third-overtone circuit based on the Colpitts oscillator. Again, this circuit works from 15 to 65 MHz .

Fig. 13. Third-overtone Butler oscillator for 15 to 65 MHz . Tuning inductor L_{1} helps ensure that the circuit oscillates at the desired overtone frequency.
dissipation is not exceeded. Harmonic output of this configuration is typically low.
Frequency of oscillation is set by adjusting inductor L_{1}. The turns counts shown in the table in Fig. 12 assume a 6.5 mm slug-tuned coil form designed for use in the frequency range 3 to 20 MHz . Some experimentation is needed depending on the particular former used. The idea is to set the resonant frequency of the coil and C_{1-3} combined to something near the crystal frequency.
It is sometimes appealing to add a tuned circuit to the output circuit of oscillators. The harmonics of the oscillator are suppressed when this is done. But in this case, a transistor equivalent of the old-fashioned TGTP oscillator will result because of the action of the output tuned circuit and the L_{1} / C_{1-3} combination. Don't do it!

Overtone oscillators

So far I have only discussed the fundamental oscillating mode. But crystals oscillate at more than one frequency.
The oscillations of a crystal slab are in the form of bulk acoustic waves, or BAWs. These can occur at any frequency that produces an odd halfwavelength of the crystal's physical dimensions, for example $1 \lambda / 2,3 \lambda / 2$, $5 \lambda / 2,7 \lambda / 2,9 \lambda / 2$, where the fundamental mode is $1 \lambda / 2$.

Note that these frequencies are not harmonics of the fundamental mode. They are actually valid oscillation modes for the crystal slab. The frequencies fall close to, but not directly on, some of the harmonics of the fundamental - which often causes confusion.
The overtone frequency will be marked on the crystal, rather than the fundamental. It is rare to find fundamental mode crystals above 20 MHz or so, because their thinness makes them more likely to fracture at low values of power dissipation.

The problem to solve in an overtone oscillator is encouraging oscillation on the correct overtone, while squelching oscillations at the fundamental and undesired overtones. Crystal manufacturers can help with correct methods, but there is still a responsibility on the part of the oscillator designer.

Figure 13 shows a third-overtone Butler oscillator that operates at frequencies between 15 and 65 MHz . Inductor L_{1} is set to resonate close to the crystal frequency, and is used in part to ensure overtone mode oscillation. If moderate DC supply voltages are used -9 to 12 volts in most cases

Fig. 15. Colpitts oscillator of Fig. 14 modified for higher overtone operation. This circuit is useful to around 110 MHz .

Freq (MHz)	$C 1(\mathrm{pF})$	$\mathrm{C} 2(\mathrm{pF})$	$\mathrm{C} 3(\mathrm{pF})$	L 1	L 2
$65-85$	15	150	100	$7 \mathrm{t}, \# 24,3 / 16 \mathrm{in} . \mathrm{CW}$	10 t \#34 over $10 \Omega \mathbf{1 / 4 W}$
$85-110$	10	100	68	$4 \mathrm{t}, \# 24,3 / 16 \mathrm{in} .1 \mathrm{WD}$	10 t \#34 over $10 \Omega 1 / 4 \mathrm{~W}$

- the harmonic content is low, at around -40 dB . In addition, stability is at least as good as a similar fundamental mode Butler oscillator.
Figure 14 is a third-overtone impedance inverting Colpitts style oscillator that operates over the 15 to 65 MHz range. As in similar circuits, inductor L_{1} is tuned to the overtone, and is resonated with C_{1}, combined with the capacitances of C_{2} and C_{3}. Values for C_{1} through C_{3}, and winding instructions for a 6.5 mm low-band VHF coil former are shown on the diagram.
Note the resistor across crystal Y_{1}. This resistor tends to snub out oscillations in modes other than the overtone, including the fundamental. Take care not to make L_{1} too large, otherwise it will resonate at a lower frequency with C_{1-3}, forming an oscillator on a frequency not related to either the crystal's fundamental or overtones. The oscillator may well be perfectly happy to think of itself as a series-tuned Clapp oscillator!
Operation of the circuit of Fig. 14 to 110 MHz , with fifth or seventh overtone crystals, can be accomplished by modifying this circuit to the form shown in Fig. 15.

In summary

The crystal oscillator is probably the best way to obtain a single-frequency source. Crystal oscillators are also used to provide accurate references and time base in such applications as frequency counters and frequency synthesisers.
With proper care and component selection, these circuits can be used to provide a stable, accurate signal.

Unique reader offer: x1, $\times 10$ switchable oscilloscope probes, only £21.74 a pair, fully inclusive*
*Additional pairs as part of the same order, only £19.24 each pair.

Please supply the following:
 Probes

Total \qquad
Name
Address \qquad
\qquad

Postcode Telephone

Method of payment (please circle)
Cheques should be made payable to Reed Business
Information
Access/Mastercard/Visa/Cheque/PO

Credit card no \qquad

Card expiry date
Signed
Please allow up to 28 days for delivery

Seen on sale for $£ 20$ each, these highquality oscilloscope probe sets comprise:

- two X1, x 10 switchable probe bodies
- two insulating tips
- two IC tips and two sprung hooks
- trimming tools

There's also two BNC adaptors for using the cables as 1.5 m -long BNC-to-BNC links. Each probe has its own storage wallet.
To order your pair of probes, send the coupon together with $£ 21.74$ UK/Europe to Probe Offer, Electronics World Editorial, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Readers outside Europe, please add $£ 2.50$ to your order.

Specifications

Switch position 1

Bandwidth
Input resistance
Input capacitance
Working voltage
Switch position 2
Bandwidth
Rise time
Input resistance
$1 \mathrm{M} \Omega$
Input capacitance
Compensation range
Working voltage

DC to 10 MHz
$1 \mathrm{M} \Omega$ - i.e. oscilloscope i/p $40 \mathrm{pF}+$ oscilloscope capacitance 600 V DC or pk-pk AC

DC to 150 MHz
2.4ns
$10 \mathrm{M} \Omega \pm 1 \%$ if oscilloscope i / p is
12 pF if oscilloscope i / p is 20 pF 10-60pF
600 V DC or pk-pk AC
Switch position 'Ref'
Probe tip grounded via $9 \mathrm{M} \Omega$, scơpe i/p grounded

Tlboard, a leading PC based Windows 98/NT design system, is supplied worldwide a network of offices \& distributors. board's success with professional signers is primarily thanks to its superior ractive functionality.
IL TIME Placement Help, REAL TIME Design e Check, Reroute-While-Move and Trace jving, are all features wich will dramatically uce your design time.
Sgration with ULTIcap guar antees smooth data N between Schematic and PCB editing. 'Iboard's 1 nanometre resolution ensures that nding errors belong to the past.
other of ULTImate Technology's strengths is - flexible growth path. Users may start with a cost ULTIboard Challenger and grow, step tep, to advanced Autorouting \& Placement, alog/Digital Simulation. ULTIboard offers the st price/performance!
Imate Technology looks after existing users! h valid maintenance they will be upgraded to lew system based on the original investment. instance, a 1987 ULTIboard-DOS system was jraded to Windows 95/98/NT with advanced toPlacement \& AutoRouting and Simulation. gular User Meetings and Surveys result in 2 jor Updates per year.

Imate Technology not only adds value to your estment in an ULTIboard system but backs it with the highest quality support.
ILL-FREE INTERNATIONAL PHONE: -800-ULTIMATE
(00-800-85-846283)

PECIALOFFER

er our Challenger 700 , a full-feature design system h 700 pin capacity, consisting of ULTIcap schematic Iture, ULTIboard PCB Design and ULTIroute GXR oRouter(designed to route boards with thru-hole aponents) for the price of $£ 249$ (until 30.11 .99). th the system you also get an evalution copy of our h-end ULTIroute GT AutoPlacement \& AutoRouting geted at the most complex/SMT designs). This way, know exactly what you will buy, when you decide ipgrade later (based upon the price difference).
£ 249
excl. VAT
Challenger 70

Kurdesignideas are quickly capturedusing the Ulitc ap schemalic design Tooi. ULTlcapuses REAL-TIME che cks to preventlogic errors. Schematicediting is painless; simply lick y your star and end points anduITcap autornatically wires them for you. UUTICap's aulo snap to pin and Tor you.utcticap satuo snap
auto itinction features ensure your auto junction eaauresensure your
netistist complete, thereby relieving

Goodmanual placementitools are vitalto the rogress of your design, therefore ULTIDoardglve youa powerful sulte of REAL-TME VECTORS, RATSNESTRECONNECT and DENSITY HISTOGRAMS. Pinand gate swapping allows you tofurthe oppirimise swapping allows you ioirthier
yourlayout for optimal design your layout. For optimal design
automation, consider our fully automatic automation, consio

ULTIboard's autorouters allows you to control which parts of your board are autorouted, elther selected nets, or a component, or a window of the board, or the whole board. ULTIboard's intelligent router uses copper sharing techniques tominimise route lengths Automatic via minimisation reduces the number of vias to decrease production costs. Thetrue 45 degree autorouter will handle up to 32 layers. Gridded or Shape based!

Now you can quickly route your critical tracks. ULTlboard's REAL-TIME DESIGN RULE CHECK wilt not allow you to make illegal connections or violate your design rules. ULTIboard's powerful TRACE SHOVE, and REROUTE-WHILE-MOVE algorithms guarantee that any manual track editing is flawless. Blind and buried vias and surface mount designs are fully supported.

ULTIboard's backannotation automatically updates your ULTIcap schematic with any pin and gate swaps or component renumbering. Finally, your design is post processed to generate penphoto plots, dot matrixllaser or postscript prints and custom drill files and Bill of Material.

NOT HAPPY WITH YOUR CURRENT CAD SYSTEM?

Call for a competitive upgrade!

TSA1000 1 GHz spectrum analyser

Designated the TSA1000, this spectrum analyser is in the form of an adaptor that converts any standard oscilloscope into a 1 GHz spectrum analyser.
The instrument has a dynamic range of 70 dB with a typical accuracy of 1.5 dB . Its frequency range is from 400 kHz to over 1 GHz , and its bandwidth - i.e. selectivity - is 250 kHz .
A built-in crystal-controlled marker provides a precision means of frequency and amplitude calibration. The centre frequency can be adjusted over the full $0-1 \mathrm{GHz}$ range using a ten-turn control, and is displayed on a large 3.5-digit liquid-crystal display.

Scan width is fully variable between 10 MHz and 1 GHz , and the scan rate can be set anywhere between 10 Hz and 200 Hz .

Reader offer

1GHz

 spectrum spectrumanaly
ceser
Easy to connect and use The adaptor connects to the oscilloscope via two BNC connectors using true 50Ω impedance for minimal vswr. A calibration button allows a standard -30 dBm 50 MHz marker signal to be superimposed
for precise amplitude and signal to be superimposed
for precise amplitude and frequency checks.

The TSA1000 is supplied with an operating manual describing the basics of spectrum analysis and EMC measurements. Its normal price is $£ 581$ including VAT in the UK. Electronics World readers can obtain it for just £499 - including VAT and carriage.

TSA1000 key specifications

Frequency range Centre adjust Bandwidth Meter accuracy Calibration marker

Scan width
Scan speed
400 kHz to 1000 Mhz 0 MHz to 1000 MHz 250 kHz (-6 dB typical) 1% of reading +1 MHz 50 MHz fundamental, harmonics to 1 GHz 1 MHz to $100 \mathrm{MHz} /$ div 0.5 ms to $35 \mathrm{~ms} / \mathrm{div}$
50Ω
-70 dBm to 0 dBm nominal Logarithmic, $10 \mathrm{~dB} / \mathrm{div}$ Typically $\pm 2 \mathrm{~dB}$
Typically $\pm 1.5 \mathrm{~dB}$ 4 MHz to 1000 MHz $+10 \mathrm{dBm}$ $-30 \mathrm{dBm} \pm 1 \mathrm{~dB}$ at 50 MHz

Max. input level
Calibration marker

Designed and manufactured to IEC1010-1- +5 to $+40^{\circ} \mathrm{C}, 20 \%$ to 80% RH operating range $260(\mathrm{~W}) \times 88(\mathrm{H}) \times 235(\mathrm{D}) \mathrm{mm}, 1.4 \mathrm{~kg}$
Runs from $220 / 240$ or $110 / 120 \mathrm{~V}$ at $50 / 60 \mathrm{~Hz}$ - Full operating ranges $198-264 \mathrm{~V}$ or 99-132V - Power consumption 8VA max

Use this coupon for your order
 Please send me:

TSA1000 Spectrum analyser(s) at the fully-inclusive price of $£ 499$.
Name:
Address:

Tel no
Total £
Cheques payable to REED BUSINESS INFORMATION
Or debit my visa, master, access or switch card
Card type:
Card No:
Expiry date: Switch iss no
Please post this order to TSA1000, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Overseas readers can still obtain this discount but details vary according to country. For more information, write or e-mail jackie.lowe@rbi.co.uk. We endeavour to dispatch as soon as possible, but please allow 28 days for delivery.

Anti-iitter: new circuits

Neil Downie reveals more details of a brand new building block for removing signal jitter, and presents some example circuits.

The anti-jitter circuit, or AJC, is a simple but novel configuration of circuit elements that has been overlooked until now. It is as fundamental and potentially as useful as time-honoured configurations such as the PLL or the active filter.
Practically all the circuit blocks we use today, from AGCs to PLLs, were developed in the first half of the twentieth century. Pioneers like Alan Blumlein or even Lee de Forest would have little difficulty in recognising most of the basic circuits we use today.
You might be forgiven for thinking that the electronics pioneers in the valve era had tried out every possible combination of fewer than a dozen circuit elements. Not so. Three years ago Professor Mike Underhill of Surrey University was looking for a simple circuit to reduce pulse time jitter or, equivalently, phase noise in communications systems.
New electronics technology such as digital radio and new cellular and satellite radios increasingly needs lower jitter values. Lower jitter would enhance the performance of key elements such as sigma-delta converters and make DSP subsystems better, Mike reasoned.
There were traditional solutions to reduce jitter around. If it is jitter from an oscillator that concerns you, for example, you can use high-Q LC combinations or other low-jitter designs. Alternatively, for externally sourced signals, locking onto the incoming sig-
nal with a phase-locked loop can reduce jitter.
However, Mike was unhappy with these solutions and their limitations and came up with a much simpler and more direct approach - a circuit to directly reduce jitter.
Mike, Mike Blewett, Thomas Bruchert, staff and students at Surrey and myself at Maran \& Co have worked for three years developing AJCs. There is now a number of versions of the AJC concept.
Discussions with semiconductor companies have begun, and it seems likely that commercially produced AJC chips will become available within a year.

What is an AJC?

The concept behind the anti-jitter circuit is to generate pulses from an input waveform containing jitter, feed them into an integrator, then pass the result through a comparator. The reconstituted pulses emerge equally spaced, with
jitter sidebands reduced by typically 20 dB or more - a factor of 10 x reduction in time jitter. The core of circuits adopting the AJC approach is shown in Fig. 1.
Note that there is no oscillator in this circuit. The output signal derives directly from the input, having been governed to the average input frequency by the action of the integrator and comparator.
The output can track the input over wide frequency deviations - around 3:1 to $10: 1$ with many simple designs. By making the monostable time constants track the input frequency to some extent, even wider ranges of frequency can be followed. The output can even track instantaneous frequency jumps up to a factor of two or so, as well as jitter values up to 150° in phase.

DC removal is required to keep the integrator circuit within the circuit voltage limits such as supply rails. Although this can increase the time needed for the circuit to begin func-

Fig. 1. Basic anti-jitter circuit note the absence of an oscillator.

Fig. 2. Basic functional blocks of the $A / C, a)$. Waveform b) shows jitter on the output from the input monostable. Sawtooth c) is output from the integrator, op2, and comparator switching level, op3, together.
(a)

tioning at switch on, there are ways to avoid this, as discussed later.
Note how the circuit can easily be cascaded. If 25 dB jitter suppression is insufficient in an application, connecting two AJCs in series will yield about 50 dB . In some applications, perhaps, three or more AJCs in series might be used, although there is an ultimate noise floor, below which AJCs will not reduce noise.
Finally, the AJC is also a 'drop-in' separate circuit block which can be added to existing designs in a simple way. In an existing circuit with a jitter problem, an AJC can - conceptually at least - be soldered in across a cut track.

Basic action of the AJC

Figure 2a) reveals the basic operation of the AJC.

In the absence of a pulse, the charge on the integrator capacitor simply leaks away at a constant rate, the waveform sloping gently downward. As the same size pulses come in they push the inte-
grator capacitor up by the same amount.

However, if a pulse arrives early, then that increment in charge builds on a higher base, and pushes the next downward slope to a higher point. Intriguingly though, that new downward slope, although it starts earlier and is longer, is actually coincident with the slope that would have occurred had the pulse arrived at the right time.
Think of the gentle sloping sides of the sawtooth as the sliding tubes of a trombone, and the pulse upward increment as the handle.This should give you an idea of how the waveform changes with different pulses arriving on an oscilloscope display.
Now the fact that the downward slopes are all in the same place means that a comparator placed between the sawtooth waveform and a reference can trigger output pulses at regular time intervals - i.e. without jitter. More picturesquely, the horizontal
reference line always cuts the trombone tubes in the same place, even though the handle has moved.

Simple AJC demonstration circuit

The block diagram of Fig. 1 can be implemented directly to make a practical AJC circuit. The demonstration circuit of Fig. 3 shows the principles of the AJC using only common lowfrequency glue logic circuits, and shows clearly the straightforward nature of AJC action.
For simplicity, a 4528 monostable wired to give a 200 ns pulse is used for both input and output pulse shaping. The CA3140 single supply CMOS operational amplifier is used for the integrator, with the LM31/ comparator comparing the integrator output with a half $V_{c c}$ reference. Voltage $V_{c c}$ is conveniently a 9 V battery.
To show the action of the circuit, a jittered input of $100 \mathrm{kHz}-300 \mathrm{kHz}$ is required. An FM signal generator can be used, or a VCO such as a 4046. Alternatively a pair of multivibrator circuits such as 555 s could be wired up. The input should be large enough 5 V or so - to trigger the 4528 monostable on the input.
Some elementary considerations apply to viewing the produced waveforms on an oscilloscope. Triggering on the input pulses, as given by the input monostable, and looking at the jitter on the next pulse(s) shows the jitter on the input signal.

Triggering on the output pulses and looking at the jitter on the next pulse(s) on the display shows the jitter on the output signal. Alternatively, the input and output frequency spectra can be compared.

At these low frequencies, no partic-

Fig. 3. Low-speed anti-jitter demonstration circuit. This configuration is useful from 100 to 300 kHz .

9 V

9 V
ular care is required over the construction of the circuit. A printed wiring board is not required, and because of the slow rise time of the low speed CMOS logic circuits, no radio-frequency or power supply precautions are necessary other than the decoupling capacitors indicated. Furthermore, standard oscilloscope and spectrum analyser probes can be used without disturbing the action of the circuit too much.

Figure 4 shows oscilloscope measurements of the integrator waveform at the top, with the input, 4a), and output, 4b), pulses below. Measurements were taken using a Tektronix TDS210 storage scope.

AJC refinements

For high-frequency operation, a variant called the 'adiabatic AJC' can be used. Here, the AJC integrator block is replaced by a diode/capacitor energy storage circuit, which is entirely passive: all its energy derives from the driving circuit.
The energy-conserving nature of this part of the circuit has led to it being dubbed an 'adiabatic AJC'. In this, a charging circuit pushes pulses of charge an integrator capacitor, while the charge on the capacitor is continuously leaked away.

The cup-and-leaky-bucket integrator. For high-frequency operation, a true integrator operation is difficult to achieve. A circuit that is faster and also simpler is what might be dubbed the 'cup-and bucket' integrator. In this, the input is arranged to transfer "cups' of a small standard charge to the 'bucket' (integrator capacitor), the charge being leaked away continuously by a constant current source.

The cup part of the circuit could be a diode pump or a grounded-base transistor stage. The constant current source could be a transistor mirror, or,

Fig. 4. Actual output from the anti-jitter demonstration circuit of Fig. 3. In each display shot, the upper waveform is integrator output. In the shot on the left, a), the pulses are the input while in the one on the right, b), the pulses represent output.

more simply, a FET with grounded gate, Fig. 5.

In a further refinement, using the FET current leak, a resistor and capacitor connected to the FET gate provide the DC subtract function as well.

Tracking large frequency changes. The 'lock on' time of an AJC - how long it takes to get pulses out - is not limited by the slewing of a voltagecontrolled oscillator output frequency, as a phase-locked loop jitter reduction system might be.

In the AJC, signals flow directly through the circuit and thus the 'lock on' time is often just a fraction of an input pulse. However, on power up, and with large changes in frequency, the DC-subtract circuit needs charging up to operational voltage. This can be speeded up by the addition of diodes around the resistor, as shown on the simulation circuit below.
With these additions, it is often found that the AJC will not lose a single pulse during frequency switches - an important advantage in communications sys-

tems such as cellular radio where rapid switching is an absolute requirement. Be aware though that jitter suppression is reduced during a frequency switch: clearly it is a logical impossibility to reduce jitter to zero during switching unless the circuit had prior knowledge that the switch was coming.
In practice, jitter suppression may be reduced to only 10 dB or so, with full $20-30 \mathrm{~dB}$ jitter suppression reappearing after a time constant set by the circuit's DC subtraction.

The logic-gate AJC. The logic-gate AJC is the latest development, and will allow the widespread adoption of AJCs. As announced at the recent Besancon EFTF/FCS Conference, the new AJC design uses only straightforward logic gates for its active components.
This most recent step in the development of the AJC replaces another part of the block diagram of the conceptual AJC: the comparator output circuit. At high speed, true comparator circuits are relatively unusual on large, otherwise digital chips, and somewhat difficult, being an analogue technology.
In the AJC, the comparator can be replaced by using the preset logic threshold of a standard logic gate as the 'reference input', the logic gate input being the signal input, in the language of the comparator. Note that the AC coupling into the comparator needs to have a time constant longer by a factor of ten or so than the closest-in jitter sideband that needs to be suppressed. At the same time, it should not appreciably load the integrator.
The latest refinement of the AJC makes it simpler to implement, especially in IC technology, and especially when the AJC needs to be incorporated in a larger IC using standard cells, which often do not include a differen-
tial comparator function.
There's a number of other AJC variants for which there is insufficient space in this article. For example, the AJC can be used in a different mode where the input frequency is doubled before the first monostable, and then divided by two on the output. This gives some important facilities, such as the capability to de-jitter both leading and trailing edge of an input waveform, and can give a 'quieter' sawtooth waveform at the integrator.
We expect to uncover yet more versions of the AJC.

Higher-speed demonstration circuits

The discrete higher-speed demonstration circuit is intended for demonstration only. But with a little further tweaking it could find practical application in digital systems at up to around 10 MHz .
The AJC is certainly capable of much higher speed than this, however. The simulation described below shows operation up to 50 MHz with discrete component values, and 5 GHz with micrometre-sized IC components, showing the kind of performance IC implementations of the AJC will have.
$1-10 \mathrm{MHz}$ logic-gate demonstration circuit. Still under development, this circuit illustrates some of the latest AJC design principles described above. Note that because of its higher operating frequency this circuit is sensitive to layout, can both emit and receive spurious signals, and is somewhat sensitive to oscilloscope probing, Fig. 6.
As explained earlier, the high-speed comparator action needed is supplied by means of a logic gate circuit, which is simpler and faster than a genuine comparator.
Note that the gate is connected to the

Need more information?

Contact Dr Neil Downie, Maran \& Co Ltd, via fax on $+44(0) 1483302112$ or via e-mail using n.downie@maran.co.uk for the latest information. Other sources of AJC information are: 'Jitter Buster,' Electronics World, June 1999 p. 516.
'The Adiabatic AJC Circuit,' MJ Underhill, European Frequency Time Forum (EFTF) Frequency Control Symposium (FCS) Conference, Besancon 1999.
'The anti-jitter circuit for low spurious DDS square waves and low cost fractional-N synthesis,' MJ Underhill, S Stavrou, M Blewett, N Downie, European Frequency Time Forum, Warsaw, 1998.
'Performance assessment of a delay compensation phase noise and time jitter reduction method,' MJ Underhill, M Blewett, European Frequency Time Forum, Neuchatel, 1997.
'Spectral improvement of direct digital frequency synthesizers and other frequency sources,' MJ Underhill, M Blewett, European Frequency Time Forum, Brighton, 1996
power supply rails via by-passed cur-rent-limiting resistors. Although these limit the output voltage swing to 2 V or so, they avoid any possible excess current flow in the gate. Here, the gate is being used as a quasi-analogue device so it could conduct strongly at certain input voltages and overheat.
As before the integrator is provided by the cup-and-leaky-bucket approach. The p-n-p transistor here forms the 'cup' part of the circuit, while the current source 'leak' is provided by the MOSFET. Finally, note the use of logic gates to form simple short-pulse monostables.
$\mathbf{5 0 M H z}$ simulated circuit. This circuit can be easily modelled in any Spicebased analogue circuit simulator. Many AJC circuits can easily be modelled. However, in using simulators, it is important not to use time constants that are too long in DC subtract.
It may also help to preset node voltages to the values to near their final settling values, once you have found out what those are. Although a second may not be long to wait with a real circuit on an oscilloscope, simulating 50 million cycles on the average PC-based simulator will require serious patience, to say the least!
The version below assumes a transistor of beta of $0.5 \mathrm{~mA} / \mathrm{V}^{2}$, gate capacitances around 0.5 pF and threshold 0 V . Other values of these parameters will work too. The diodes must be highspeed, low-capacitance devices.
In practice, it may be difficult to make the circuit work because of the effects of stray capacitance and inductance and the effect of extended connecting wires in discrete circuits.
Figure 7a) shows the circuit, while diagram 7b) gives the printout from the SPICE-based TINA simulator, showing rapid $0.5 \mu \mathrm{~s}$ lock-on of this simple circuit.

Removing jitter up to $\mathbf{5} \mathbf{G H z}$. With the components shown, the circuit achieves around 50 MHz . However, with components and stray capacitance values of the range normally encountered on submicron high speed IC circuits, the same simulator model can be made to run as high as 5 GHz .
We expect that early IC versions of the AJC will not run quite this fast, but IC versions will run faster than the discrete circuits given above - certainly in the hundreds of megahertz. Such circuits could also form functional blocks within a much larger IC, for example,
one of the ICs in a cellular or broadcast radio chip set

Who needs an AJC?

Anti-jitter circuits are not merely a laboratory curiosity. At least a dozen applications for the AJC are currently being explored. No doubt, more will occur to people as knowledge of the technology spreads.
The most obvious uses for AJCs involve the reduction of jitter in systems, where it occurs. The output of direct digital synthesisers for example typically contains significant spurious sideband components. Normally these are dealt with by spreading the sideband power over a wider band, the socalled 'noise spreading direct digital synthesiser'. However, an AJC would suppress jitter, eliminating the sidebands entirely, and giving a lower noise overall system.
Similarly, simply adding an AJC to a phase-locked loop may well turn out to be a popular application. A PLL with a wide bandwidth is easy to design and has the desirable properties of rapid lock and a large lock-in range. However, it has the less desirable property of a high jitter output.
The PLL used for locking CRT displays is a potential user of this approach: the AJC may allow very large displays to avoid completely the tendency to have 'crawling lines' down the edge of the screen.

Why not add some jitter?

Although many AJC applications will simply be to reduce jitter in an existing system, others will revolve around the concept of putting jitter deliberately into a system to obtain other advantages, and then using the AJC to get it out again.
The seasoned electronic engineers among you might observe that the noise-spreading algorithm used in direct digital synthesis follows a similar philosophy. An example will illustrate: consider the PLL-based frequency synthesiser of Fig. 8.
If it is a good one, the VCO will produce little output jitter, and the divider chain will further reduce any residual jitter. The relative time jitter is divided by two when a waveform is divided by two in frequency.
The phase comparator compares the reference with the divided waveform and outputs a signal via the loop filter to move the VCO either up or down in frequency. This locks the VCO output to the reference. All this is a standard

PLL frequency synthesiser
However, now consider the addition of the two blocks marked 'Pulse removal' and 'Fractional rate multiplier'. When it receives a signal from the rate multiplier, the pulse subtractor divides by 10 instead of 11 , or simply blocks a single pulse.
Clearly, the new waveform is now just a fraction lower in average frequency. However, it also has a very high degree of jitter. The divide-by- N_{p} circuit reduces this, but it does not not eliminate it.
Jitter penetrates the phase comparator and imposes a small variation on the loop-filter output. This results in the VCO having a small but highly undesirable frequency modulation. The addition of the AJC as shown allows this circuit to perform much better.
There are other circumstances where the ability to use circuits that add jitter can be useful. One example is clock restoration. On noisy lines, where a clock signal must be extracted, extra interference pulses may be present, or pulses may be missing. In this case, a pulse subtractor or pulse inserter may be used to correct the waveform.
Normally, such a situation is impossible, because the added pulses are too late, or the removed pulses are the wrong ones - the ones after the one that should have been removed. These problems raise the average jitter on the clock signal too much. With the AJC though, such circuits are practicable.

Other applications for AJCs

Anti-jitter circuit are likely be used in communications, for the main part. But there could be other significant application areas.
In high-quality oversampled digital audio systems for example, there may be a case for using an AJC to dejitter/retime the data. This would max-

FET is $300 \mu \mathrm{AVV}$, threshold oV op1 and op2 feed a high-speed comparator

imise the additional quality given by the oversampling and extrapolation circuits.
Similarly, complex multiphase clock circuits used on modern microprocessors could benefit from AJCs. A development of the AJC employs multiple comparators, which generate multiphase signals in a very natural and versatile way.
There may even be applications of the AJC that do not involve jitter. Mike Underhill observes, for example, that the DC subtract loop of the AJC can be modified so that it constitutes an FM/FSK demodulator.
Can you think of other AJC applications?

Note that the AJC and variants are covered by a number of patents and patent applications. Manufacture of AJC ICs or other uses of the AJC on a commercial scale may require a licence. Contact Maran \& Co for details.

Fig. 7. Dejittering at up to 50 MHz . This circuit simulation, a), works well, and locks in rapidly, as the plot in b) shows. This circuit will be difficult to implement though because of wiring inductance and stray capacitance.

You Can't Buy Better! This Month is Anchor's Signal Generator MAYHEM Month

MARCONI 2019A Synthesised Signal Generators
80 kHz to 1040 Mhz AM-FM-CW LCD Displays Complete with Lids etc. FULLY TESTED and Warranted NOW ONLY £495.00

MARCONI 2022E Synthesised Signal Generators

10 kHz to 1010 Mhz LCD Display Fitted IEEE with covers Small and Lightweight FULLY TESTED and Warranted

NOW ONLY $£ 595.00$

Frequency Counters
Racal Dana 9918
9 segment 560 Mhz £75

Signal Generators

Farnell PSG520
10Mhz-520Mhz AM-FM Sinad ONLY £295 Rohde and Schwarz APN62
1 hz to 260 kHz with LCD display $£ 995$ Farnell DSG2
Synthesised 0.1 mHz to $110 \mathrm{Khz} £ 195$ Wavetek 155
Programmable VCG 0.01 hz to 1 Mhz sine, square, triangle $£ 195$
Schlumberger FSD120M
Remote Synthesiser to 120 Mhz in 0.01 hz
steps
Was $£ 175$. . Reduced, Now ONLY £125

Oscilloscopes

TEK 2445

150 Mhz Four Trace/2 Time base
with Cursors, etc. Now Only $£ 495$
TEK 2445A 150Mhz Four Trace/2 Time bases with Cursors, etc. Now Only £995 TEK 2465 300Mhz Four Trace/2 Timebases Now Only £1250 GOULD OS 3500 with
DM3010 DMM fitted, 60 Mhz Dual trace, Dual Timebase Was $£ 350$. . Reduced, Now ONLY £250 HP 1741A 100 Mhz Storage. Dual Time base Was $£ 350$.. Reduced, Now ONLY £250 TEK 4658 100 Mhz Dual Trace/ Timebase Now Only £295
TEK 465 M scope as 465 B but built onily for Military. Only $£ 350$
TEK 475200 Mhz Dual Trace/Timebase Now Only £395

Studio Quality AUDIO Equipment

Studer A710
Cassette desk with Dolby C. 1 ONLY £325
Uher 4000
Report monitor portable. To 9.5ips 1 ONLY £75

THIS MONTH'S SPECIALS

Philips PM3217 Scopes DC-50Mhz 2 Trace/2 Timebase
A REAL Anchor Special ONLY £275

Gould OS300 Scopes DC-20Mhz 2 Trace SPECIAL NOW ONLY £150

Regulated Power Supplies
Thorn Automation
Variable power supply giving 0.40 volts at $0-50 \mathrm{amps} \mathrm{DC} . \mathrm{V}$ and I limiting (advise calling... these are heavy). 2 ONLY $£ 125$ Lambda Labs
LME5V 5V at 40A DC... ONLY £20 LMD 12 YV 12V at 10A DC... ONLY £20 LMB24V 24 V at 1.4 A DC.... ONLY $£ 7.50$ LP523 variable 0.60 V at 0.9 A ... ONLY O (45 Farnell B30/10
Regulated + Stabilised Power supply. 0-30V @10A £60

Miscellaneous

SE labs SE7000 instrumentation recorder system
42 channel, 8 speeds from $15 / 16 \mathrm{ips}$ to 120 ips , 1 in tape complete with SE7000 patch panel... 1 ONLY £500
GIGA Pulse internal counter
2-8Ghz ONLY £150
Fluke $80-40 \mathrm{~K}$
High Voltage probe for DMM's 40 kv . Cased. NEW E45
Beckman Industrial HD110 LCD Multimeters in Leather case, $1000 \mathrm{~V}, 10 \mathrm{~A}$ ONLYE50

ANCHOR SUPPMIRS LITD

All prices are EX VAT and Carriage

Robinair 14950A
Autobalance Refrigerant Leak Detectors in Leather case ONLY £35
Robin 3111 V
Insulation/Continuity tester, cased ONLY £75 ELF
16 mm Cine Projectors... Various... Model RM1... with sound ONLY £75 Model NT 1 with Sound ONLY $£ 145$

NEW THIS MONTH

High Power RF attenuators A pair of 10 db oil-filled attenuators. Mounted in a comon heat sink assy Each rated at 100 w 50 Ohms. BNC connectors. OK well into UHF range.

As new condition ONLY E25
Emerson PL400 UPS 400VA Uninteruptable Power Supplies. Built in $12 v$ battery to give $230 v$ (a) 400VA AC output to keep your computer running when the main fail!
Small, modern. Tested working. ONLY £45

AVO Model 8 Mk 5/Mk 6 Multimeters . THE Standard

NEW EQUIPMENT

DTA20 Oscilloscope 20Mhz Twin trace incl probes ONLY £225 DTA40 Oscllloscope 40Mhz Twin Trace incl probes ONLY £299 DTS40 Oscilloscope 40Mhz Digital Storage twin channel Cursors + readouts Incl. Probes. ONLY £399

AMM255 Automatic Mod Meter 1.5 Mhz to 2 Ghz , LCD IEEE488 ONLY £275

SCG50 Synth Clock Gen
To 50Mhz, LED display ONLY £125

NEW SCOPE PROBES
 $\times 1 \times 10$ switchable to 100 Mhz
 Complete with adaptors
 Limit 2 sets per customer ONLY £9.95

MAIL ORDER A PLEASURE

The Cattle Market Depot, Nottingham NG2 3GY, UK
Tel: (0115) 9864902 Fax: (0115) 9864667
Also at Ripley, Derbvs (01773) 570137 and Coalville, Leicestershire (01530) 811800
Visit our Web Site: www.anchor-supplies.ltd.uk email: sales@anchor-supplies.Itd.uk

> All-pass filters, instrumentation amplifiers, simulated inductors and single-wire bidirectional communications links are among applications that benefit from transconductance op-amps, as Gyril Bateman has been finding out.

,n the last issue of Electronics World, I mentioned a slightly unusual circuit function, the Norton current input amplifier, introduced by National in 1972. This month I take a look at circuits using an even earlier unusual technique - the transconductance op-amp, introduced in 1969.
I recall eagerly buying a CA3080, one of the first commercially available transconductance amplifiers, which I still have kept for posterity.
This early version was soon followed by improved versions. The most notable of these were the CA3094, which increased peak output current capacity to 300 mA , and the $L M 13600$, a dual transconductance amplifier

What is an OTA?
A transconductance amplifier converts its input voltage into an output curren proportional to the voltage difference at its differential input terminals, Fig. 1
Traditionally, transconductance amplifiers have been used in gain-control circuits, modulators, multiplexers, multipliers, voltage-controlled oscillators and sampling circuits. These applications and many more for the CA3080, can be found in AN6668 from Harris Semiconductor, which is available for downloading. ${ }^{2}$
Two other Harris notes concentrate on applications that make use of the increased current output available from the CA3094. Note AN6077 details how
to use the CA3094, together with three transistors to build a complete 12 W audio amplifier. This design is provided with bass and treble tone controls located in the amplifier's feedback loops. A companion RIAA preamplifier based on the CA3080 amplifier is also detailed. ${ }^{2}$

Class-A instrumentation amplifier
One especially useful aspect of the transconductance amplifier is its ability to produce a class-A instrumentation amplifier. Its differential voltage-input signal is converted to a single-ended output.
Obviously this can also be done using an off the shelf instrument amplifier, or the usual discrete three op-amp circuits.

Fig. 1. Basic structure of the CA3080 transconductance amplifier. Differential input voltage results in an output current that can be scaled as needed.
 matched resistors. A transconductance amplifier provides similar differential to single ended conversion but without needing precision resistors.

But these designs involving three opamps need accurately matched feedback resistor networks to provide acceptable common-mode rejection.
Gain of the transconductance amplifier's preamplifier section can be changed by altering its transconductance and load resistance. As a result, no matched resistor networks are needed, Fig. 2. It was this particular attribute that I choose to investigate using Internet. I was searching for a circuit that I could use in a balanced input probe for my oscilloscope. In the process, I found several other interesting transconductance applications.

OTA fast enough for a 100 MHz scope probe?

Many commercial instrument amplifiers provide excellent performance at low frequencies, but I wanted to avoid restricting my scope's 100 MHz capability.
Prior to searching the Internet, I already had one particular integrated circuit in mind. Analog Devices produces a high-speed video difference amplifier. Known as the AD830, it has a unity-gain bandwidth of 100 MHz . ${ }^{3}$ It combines a common mode rejection of 60 dB at 4 MHz with minimal video differential gain and phase errors.
This chip performs excellently as a high-speed differential amplifier up to

10 MHz , Fig. 3. Could this limit be bettered without too much design effort?
During my searches I came across two other especially intriguing integrated circuits. One was from Maxim, ${ }^{4}$ the other from Burr-Brown. ${ }^{5}$ These opened up many new design possibilities.
Maxim provides two similar wideband transconductance amplifiers, both having true-differential and fully-symmetrical inputs with relatively high impedance. Their unique architecture provides accurate gain without needing feedback, eliminating closed-loop phase shifts. Closed-loop phase shift is a primary cause of circuit oscillation in conventional high-speed amplifiers.

Unity gain bandwidth of 275 MHz

The MAX435 has a unity gain bandwidth of 275 MHz and provides both differential inputs and outputs. Its companion, the MAX436, has single ended output and a 200 MHz unity-gain bandwidth.
Both offer $800 \mathrm{~V} / \mathrm{hs}$ slew rates and a 1% settling time of 18 ns to a 0.5 V step input. This performance is accompanied by a common mode rejection of 53 dB at 10 MHz and a $300 \mu \mathrm{~V}$ DC offset voltage.
While these characteristics indicate an excellent high frequency perfor-

Y2K_Bugs

The recent conflict in Kosovo demonstrated the important role played by the US military Global Positioning System.
On 22 August a very different GPS civil role was also tested, perhaps the very first
world wide trial in the countdown to the Millennium Bug, will have commenced. The GPS navigation system relies on a precision clock which is used to calculate your position. This clock introduces its own particular version of the Millennium Bug consequently the GPS system

has to survive a double whammy, 21 August and 31 December.
For technical reasons, the GPS system time counts in weeks from 6 May 1980, the 1023 rd week ends on 21 August. On 22 August the week count 'rolls-over' from 1023 to restart at 0 . As with the year 2000 date change, some receivers and ground equipment will exhibit rollover problems in August, with consequent positional errors.
This End of Week roll-over has a second perhaps more significant bearing on everyone. You may not need or use a GPS system yourself, but many commercial

Fig. A. The Global Positioning System provides its own unique Y2K date bug, called End of Week roll-over, which repeats every 20 years. Many nonmilitary time clocks depend on the GPS atomic reference for time stamping, but will they be affected ?
institutions make use of its extremely precise global clock.

Some US banks use this clock to control their time locks, and to calculate the interest payable on international money transactions. Very fast digital networks, including Internet, can use this external clock to synchronise data transmissions. In the US, considerable fears have also been expressed concerning its use in electricity supply, switching control and power distribution.
Considerable data on the EOW roll over and its possible US implications can be found on Internet, but my searches revealed almost no details for other countries.
The US military performed its largest ever Y2K trial in April. This included all military uses for the GPS systems. ${ }^{1}$ While these systems now claim compliance, the detailed test results are not yet publicly available, Fig. A.
mance, both designs have a unique gain-control characteristic, which is even more interesting. Their gain is set by the ratio of two impedances and an internally set current gain factor, K .
The gain of many conventional instrument-amplifiers is set via the value of a resistor between two gain setting inputs. Gain of the MAX435 and MAX436 can also be set using a similar resistor. Amazingly though, both integrated amplifiers can also accept a complex impedance, rather than just a simple gain setting resistor. This is possible because their transconductance network's impedance has no interaction with output load impedance.
This complex impedance can be a series resistor and capacitor between the gain setting inputs. In this case the amplifier has a high-pass characteristic. The low corner frequency depends on the resistor and capacitor values. Adding a parallel capacitor resistor combination to ground at the amplifier's output then produces a band-pass amplifier.

Since no overall feedback is needed to control gain and ensure stability, these amplifiers can safely drive a highcapacitance load. Having no feedback network, the usual feedback phase shifts cannot occur, so the circuit remains stable.

The main effect of capacitive loading is a reduction in slew rate and output bandwidth, hence the low-pass amplifier characteristic.

Changing the OTA's
 characteristics

In similar fashion a series capacitor/inductor combination can be used between the gain setting inputs. This provides a sharply tuned amplifier

Where to surf

1. GPS systems achieve Y 2 K compliance
2. Harris Corporation
3. Analog Devices Inc
4. Maxim Integrated Products
5. Burr-Brown Corporation
http://www.cpf.navy.mil/ y $2 \mathrm{k} / \mathrm{y} 2 \mathrm{knews} / \mathrm{y} 2 \mathrm{kgps} . \mathrm{htm}$ http://www.harris.com http://www.analog.com http://www.maxim-ic.com http://www.burr-brown.com
whose resonant frequency is determined by the capacitor and inductor values.
Such an arrangement is especially useful in a differential input, tuned selective amplifier. The tuned circuit is placed as near as possible to the amplifier inputs, rejecting unwanted signals and noise. Using a conventional instru-ment-amplifier, several stages of broadband amplification precede any tuning circuits, reducing circuit performance
when subject to out of band signals.
Most surprising of all, to increase the Q of a tuned amplifier, the MAX 435 and 436 can even be used with a crystal connected between their gain setting inputs. The data sheet shows the measured performance of a MAX436 tuned amplifier with a 25 MHz crystal. The circuit produced a narrow gain peak of more than 40 dB , while driving a 25Ω load. This load can be a doubly terminated 50Ω coaxial cable.

Video over a 5 km twisted pair
The final data-sheet application shows a 435 and 436 being used to transmit a single baseband video channel over a

$f_{0}=$ corner frequency $-1 /(2 \pi V L C)$

$$
Q=V L C=1 /\left(R_{1} / / / R_{2}\right)
$$

Fig. 4. Using two MAX436 transconductance amplifiers to synthesise a 1.25 mH inductor provides a DC accurate 3.2 kHz notch filter.
twisted-pair wire. Using these two amplifiers, good quality video can be transmitted up to 5 km with a considerable cost saving compared to using coaxial cables.

Maxim application notes, available from the company's web page, provide a further five applications which use the unique properties of these chips. Three of these applications use

MAX436 amplifiers to simulate inductors, providing freedom from EMI and improved circuit performance. These can all be quickly downloaded as small PDF files.

*Note: to maintain OdB gain as required the inputs must see 50Ω sources. The outputs must also see 50Ω loads. You can also configure OdB gain by substituting 75Ω cables, 75 W terminations and 300Ω for the gm setting resistors R_{2}, R_{3}, R_{g} and R_{G}

Fig. 6. Simple and cost effective method for transmitting bidirectional signals along coaxial cables. This method provides for megahertz bandwidths with 30 dB discrimination between forward and reverse signals.

MAX436 connections

A DC accurate notch filter circuit is described in application note A2013.PDF. By separating the DC and AC paths, this circuit avoids using opamps in the DC path, making it free from DC offsets and gain errors.
The AC path uses a capacitor in series with a simulated inductor to ground. This simulated inductor is formed using two transconductance amplifiers, Fig. 4

Simulating inductance

A 3.2 kHz third-order high pass filter using two 436 op-amps to simulate a 1.25 mH inductor is detailed in A1315.PDF. This filter attains a slope of 58.6 dB per decade - very close to the theoretical 60 dB slope of a perfect filter.
Achieving similar performance in a passive filter could prove difficult. A practical inductor of this value has significant ESR and its inductance falls at low frequencies.
Application note A1616.PDF describes a 50Ω output 9.3 MHz sinewave $L C$ oscillator with 1% distortion, produced using a single 436.

While these are interesting application circuits, two others particularly caught my eye. Some time ago a reader asked for a circuit that could generate a 90° phase shift at moderate audio frequencies. Providing this phase shift at a discrete frequency is easy, but much more difficult with dynamic and mixed frequencies.
Application note A1610.PDF illustrates such a circuit. As presented it is intended for higher frequencies, but it can be re-scaled for audio frequencies. These transconductance amplifiers provide a current output. As a result, simply tying their output terminals together into a single resistor, Fig. 5, can sum the outputs from two or more amplifiers.
This application uses two transconductance amplifier pairs to form an allpass network. Each pair comprises one amplifier with a resistor between its gain setting terminals, the second having a capacitor between these terminals. Both amplifier outputs are then summed using a common output resistor.
By choosing appropriate comer fre-
quencies, one amplifier pair generates the cosine of the input waveform while the second pair generates the sine of the input, producing the desired 90° phase shift. It can be used with dynamic signals covering three octaves.

Bidirectional drive over coaxial cable

The last application note was the most interesting. Entitled 'WTAs provide wideband, bidirectional drive for coaxial cable', it describes four 436s in a circuit arrangement similar to that used in telephone systems. It is able to send signals in two directions simultaneously on the one cable, Fig. 6.
In this case the cable is coaxial. Signals from audio up to RF can be transmitted in both directions at the same time. Using these high-speed transconductance amplifiers with 1% resistors produces around 30 dB of cancellation of the unwanted signals on either output.
In my next piece, I will be looking at the versatile and interesting high speed 'diamond' transistor circuit from BurrBrown.

WATCH SLIDES ON TV MAKE VIDEOS OF YOUR SLIDES DIGITISE YOUR SLIDES

(Using a video capture card)

"Llesgang diatv" automatic slide viewer with built-in high quality colour TV camera. It has a composite video output to a phono plug (SCART \& BNC adaptors are available). They are in very good condition with few signs of use $£ 91.91+$ VAT $=£ 108.00$ Board cameras all with 512×582 pixels $8.5 \mathrm{~mm} 1 / 3$ inch sensor and composite video out. All need to be housed in your own enclosure and have fragile exposed surface mount parts
They all require a power supply of between 10 and 12 v DC 150 mA 47 MIR size $60 \times 36 \times 27 \mathrm{~mm}$ with 6 infra red LEDs (gives the same illumination as a small torch but is not visible to the human eye). $\Sigma 50.00+\mathrm{VAT}=£ 58.75$ 40 MP size $39 \times 38 \times 28 \mathrm{~mm}$ spy camera with a fixed focus pin hole lens for hiding behind a very small hole... VAT $=£ 58.75$ 40 MC size $39 \times 38 \times 27 \mathrm{~mm}$ camera for ' C ' mount lens these give a much sharper image than with the smaller lenses.
Economy C mount lenses all fixed focus and fixed irls.
VSL1220F $12 \mathrm{mmF} F 1.612 \times 15$ degrees viewing angie.................. $15.97+\mathrm{VAT}=£ 18.76$
 VSL6022F 6 mm F1.22 42×32 degrees viewing angle $\ldots \ldots \ldots \ldots \ldots19 .05+$ VAT $=£ 22.38$ VSL8020F 8 mm F1.22 32×24 degrees viewing angle $\ldots \ldots \ldots \ldots \ldots \ldots19 .90+$ VAT $=£ 23.38$ Better quallty C Mount lenses
VSL1614F 16 mm F1.6 30×24 degrees viewing angle.........................26.43 + VAT £31.06 VWL813M 8 mm F 1.3 with Iris 56×42 degrees viewing angle..........£77.45 + VAT $=£ 91.00$ Blue and silver recordable CD ROM bulk .. VAT $=£ 0.90$ With jewel case .. E + VAT $=£ 1.18$ P6KE103A 130v diode................... $£ 0.98 p+$ VAT $=£ 1.1520$ for $£ 13.00+$ VAT $=£ 15.28$ RC300 Philips universal remote control. 5 for $£ 24.45+$ VAT $(£ 4.69+$ VAT each $)=£ 27.55$ Konig Ultrasonic remote control clearout, limited quantities. Quantity left in brackets: US8207 (15), US8209 (5), US8220 (4), US8224 (5), US8225 (2), US8232 (3),
US 8233 (2), US8239 (8), US 8260 (1), US8264 (124), US8265 (116), US8302 (2) US8306 (1), US8309 (1), US8406 (1), US8513 (21), US8514 (40), US8516 (19), US8519 (2), US8535 (82), US8578 (182).
$\mathbf{\Sigma 5 . 5 0}+$ VAT each, $£ 22.00$ + VAT for $5, £ 85.00$ + VAT for 25. 1206 sufface mount resistors E12 values 10 ohm to 1 m ohm

100 of 1 value $£ 1.00+$ VAT, 1,000 of 1 value $£ 5.00+$ VAT Please add $\mathrm{f} 1.66+$ VAT $=\mathrm{f} 1.95$ postage \& packing per order

JPG ELECTRONICS
276-278 Chatsworth Road, Chesterfield S40 2BH
Tel: 01246211202 Fax: 01246550905
Callers welcome 9.30 am to 5.30 pm Monday to Saturday

SVGA GENERATOR

Roy Harding's VGA and SVGA test generator uses a PIC variant that's so fast that it is capable of producing the test signal without any external timing circuitry, making the hardware side easy to implement.

As an electronics design engineer in the computer industry, I often get asked by friends and relatives to check or repair computers and monitors. If someone arrives with just a monitor for checking this involves wiring up a PC with a keyboard and mouse, then loading software and waiting while the whole thing boots-up.
The addition of a computer also takes up valuable workspace if one is working in a confined area. There are a few SVGA generators already available on the market, but the cost of these can only be justified if you are doing servicing or repairs full time, rather than as a favour.
Last year I was introduced to a new microcontroller from Scenix. This micro uses a combination of PIC code with additional instructions to enhance performance.
The device can operate up to 50 MHz . It has a turbo setting to cancel the clock's internal divide-by-four, as found in PICs. This gives you 50MIPS performance, coupled with 2048 bytes of E2 flash memory, an eight-level stack and easy page switching. There's also 30 mA source/sink capability on the I/O pins, which makes the device very useful.
As this micro works so fast, I thought of the idea of using it to create a video

Fig. 1. Timings for a VGA signal's frame and line sync pulses.

[^5]generator that could work up to high resolutions. The generator described will generate standard VGA signals at 640 by 480 pixels and popular SVGA displays of 800 by 600 and 1024 by 768 , all at 60 Hz frame rate.

How it works

As already mentioned, the micro is the basic building block for the complete design, only a handful of additional parts being required to complete the implementation. All timings are created in software by the microprocessor
using an external 40 MHz -oscillator clock IC
Although a crystal and capacitors can be used for the oscillator circuit I have found crystals over 30 MHz difficult to obtain. A voltage regulator and a few LEDs are the only additional semiconductors.
My PCB has two buttons, a power connector, a 15 -way video connector and a few resistors and capacitors to complete the component count.
The LEDs indicate the display resolution setting, as it is not obvious from

the monitor display which resolution is being used. Also, if the monitor is not capable of displaying SVGA you will possibly be looking at a black screen.
Although the design can run on batteries and tags are provided on my PCB, I use a ready available 9 V mains adapter. After all, you need the mains to power the monitor anyway and batteries have a habit of going flat just when you need them.
There are five signal lines used to drive a standard video monitor, as in Table 1. There are also ground returns for all these signals at the connector.
An example of the timings for a VGA signal is shown in Fig 1. Vertical and horizontal sync signals are driven directly from the microprocessor. The RGB analogue signals are attenuated by a resistor divider network to give a maximum of 1 V output into a 75Ω load.

Software

The whole design revolves around software running on the Scenix microprocessor.
Timings for the functions are critical. Each scan line must be balanced to
within a couple of instructions or tearing of the image will result.
Button presses are checked at the beginning of each frame and a software trap waits for the button to be released for the changes to take place.
The first button changes the displayed output and the second button changes the resolution. Each button press changes the parameters of the main loop which are present in a software table.
The complete code is shown in List 1. Note that a special Parallax serial programming adapter is required to program the Scenix parts.

On my PCB, the programmer plugs directly onto the four-way connector next to the micro and the crystal oscillator link removed while programming, Fig 2.

Implementing the design

The unit can be housed in a twopiece plastic moulding with built-in mounting posts for the PCB. All parts can be mounted directly on the board and no wiring needs to be involved in the construction.
As the unit is based on a crystal

Fig. 2. On my prototype

PCB, the programmer plugs directly on to a four-way connector next to the microcontroller. The crystal oscillator link is removed while programming.
clock, no set-up procedure or calibration is required. I estimate only a two to three hour construction time if all parts are available. This will of course be extended if you decide to produce your own printed circuit board.
You may socket the microprocessor, but it can be reprogrammed on board making removal unnecessary.
The mains adapter can be regulated or unregulated, $9-12 \mathrm{~V}$ at $300-500 \mathrm{~mA}$. Test the unit by connecting a VGA or SVGA monitor to the output and switching on the unit. The generator will default to colour bars in standard VGA mode of $640 * 480$. Pressing the buttons should change patterns and resolutions.

Components

Resistors $1 / 8$ watt 5% carbon film:
$R_{1,2,3} \quad 220$
$\mathrm{R}_{4,5,6} \quad 10 \mathrm{k}$
$R_{7,8,9} \quad 150$
$\mathrm{R}_{10,11,12} 75$
Capacitors 50 V polyester or ceramic:
$\mathrm{C}_{1,3,4} \quad 0.1 \mu \mathrm{~F}$
$\mathrm{C}_{2,5} \quad 0.01 \mu \mathrm{~F}$
$D_{1,2,3} \quad 3 \mathrm{~mm}$ red leds
$B_{1,2} \quad$ vertical push switch
$P_{1} \quad 4$ way 0.1 pitch pins
$\mathrm{J}_{2} 2$ way 0.1 pitch pins + jumper
J_{1} is 15 -way min D-type 90°, Maplin part JW85G. Connector P_{7} is a 3.5 mm power connector from Farnell, part 224-959.
IC_{1} is a 40 MHz CMOS or universal oscillator 8-pin or 14 -pin, Farnell 704-738 for example
IC_{2} is the Scenix SX18/AC/DP processor, 18-pin version
$1 C_{3}$ is a 78055 V positive regulator
Suggested case, Farnell part 250-030. Mains adapter, $9-12 \mathrm{~V} 300 \mathrm{~mA}$ from CPC.
Approximate build cost $£ 20$ plus mains adapter.

New circuit board service from Quickroute

Electronics CAD specialist Quickroute, in conjunction Electronics World, is offering a new printed circuit board service to readers of Electronics World
You can obtain single-sided boards based on Roy's original design direct from Quickroute for a fully inclusive price of $£ 14.69$. To order, fax your credit card number and expiry date together with the cardholder's address to 01614760505 . Alternatively, ring Quickroute on 01614760202 . If you wish to order by post, write to Quickroute at Regent House, Heaton Lane, Stockport SK4 1BS and send a postal order or cheque payable to Quickroute Systems Ltd.
Overseas readers should contact Quickroute before ordering for details of postage.
Alternatively, you can obtain a disk of the PCB layout in Quickroute form by sending $£ 12.50$ via postal order or cheque payable to Reed Business Information to SVGA, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

Need a programmed controller?

All parts, pre-programmed chips and software on disk can be obtained from the author by sending an SAE marked 'SVGA software' to the Quadrant House address above for details.

A word of warning

If you try to run a monitor on a resolution that it is not capable of displaying, it is possible to cause damage to its internal circuitry. Therefore, if the display fails to appear on an increased resolution within a few seconds, switch back
immediately to a lower resolution.
I used a self-adhesive label on the front panel to make the unit more professional. The artwork was done on a PC and printed out on a colour ink jet printer using glossy self-adhesive paper.

WIIDIRECTIONS

To reserve your web site space contact Joannah Cox

Tel: 02086523620 Fax: 02086528938

AQUILA VISION

http://www.aquila-vision.co.uk
Aquila Vision specialises in supplying and supporting Embedded Microprocessor Development products from PICs to DSPs We also stock robotics boards, Linux and general Interest CD-ROM's.

ALCATEL COMPONENTS

http://www.components @alcatel.de

ASHWELL ELECTRONICS

http://www. ashwell-hq.com
Ashwell provide technical support for Apex Microtechnology op-amps and DC/DC'S; Aeroflex; EMP filtered connectors; M S Kennedy; Mintech obsolescence; NSC Mil/Aero;
Teledyne Relays and isocom mil/optocouplers

ARCOM

http://www.arcomcontrols.com/ew'

A leading international supplier of communication and control technology
to industry, Arcom provides leading edge solutions through a
comprehensive
range of market leading products.

BROADERCASTING

COMMUNICATIONS
SYSTEMS
www.broadercasting.co.uk
WINRADIO now brings you a complete choice in personne computer controlled radio scanning and reception solutions Broadcast - Media Monitoring - Professional Amateur Radlo communlcations

BEDFORD OPTO TECHNOLOGY LTD

http://www.bot.co.uk
Optoelectronic products UK design development manufacture standard and custom, LED bargraphs, circuit board indicators, stand offs, transmissive/reflective switches, baseefa optocouplers tubular and surfacemount, pannel mount LED assemblies.

CAMBRIDGE MICRO

 PROCESSOR SYSTEMS LTD http://www.cms.uk.comCONCEPT ELECTRONICS http://www.conceptkey.co.uk

Concept Keyboards are specialists in the design and manufacture of customer specified membrane panels and keyboards, and electronic design. Concept's membrane manufacture is supported by a full electronic production facility to provide a complete turnkey keyboard and electronics service, fully accredited to IS09001.

CONTROL SOLUTIONS

www.controlsolutions.co.uk
Data acquisition and control for beginners, hobbyists, and professionals.
Perform mathematical and logical operations on data in real time. Email:
info@controlsolutions.co.uk
COOKE INTERNATIONAL
http://www.cooke-int.com
e-mail: info@cooke-int.com

Stockists of Quality Used Electronic Test Instruments and Operating \& Service Manuals

CROWNHILL ASSOCIATES LTD

http://www.crownhill.co.uk
Crownhill supply low cost development tools for use with Micro-Controllers and Smart Cards. Products include Smart Card development tools, Smart cards, Micro Development tools and Bespoke Design Services.

DANIEL MCBREARTY
http://www.danmcb.demon.co.u keng.html

Experienced engineer based in London, specialist in audio and control systems. Availabie for design, project engineering or general consultancy. Background of highquality work.
DISPLAY ELECTRONICS
http://www.distel.co.uk
EQUINOX TECHNOLOGIES UK LTD
http://www.equinox-tech.com

Equinox Technologies UK Ltd. specialise in development tools for the embedded microcontroller market.

ELECTRONICS WEEKLY HYPERACTIVE
http://www.electronicsweekly.co .uk

ECM SELECTION
http:// www.ecmsel.co.uk
For the pick of the UK's Top HighTech Software and Hardware career opportunities - from fresh Grad/PhD to Senior Engineer/Manager £22,000-£70,000

EPT EDUCATIONAL SOFTWARE

http://www.eptsoft.demon.co.uk
Electronics, Electrical and Mathematics Principles V6.Over 700 colouful interactive topics from Ohm's Law to PIC microcontrollers. Email sales@eptsoft.demon.co.uk for full details.

FELLER UK

http://www.feller-at.com
Feller (UK) Ltd. manufacture Fully approved cordsets (Moulded mains plugs and connectors) and Power Supply Cables for all industrial Countries to National and International Standards

FLASH DESIGNS LTD http://www.flash.co.uk
Flash supply low cost AVR ISP programmers ($£ 39$), MINI-ICE starter kits (from £69), Portable Easy-ICE emulators (from £199), ICE Adapters \& 'C' compilers for any ATMEL AVR, MCS51, Dallas, Hitachi H8 microcontroller. Download FLASH NEWS now, Watch out for Special Offers'. ARE YOU developing code in a Flash?

HSPS LTD

http://dspace.dial.pipex.com/hsps/
FILTER DESIGNER - Advanced analog and digital filter design software for the PC. - Standard and Professional versions.- Free download of Evaluation version.

LOW POWER RADIO SOLUTIONS

http://www.Iprs.co.uk
LPRS markets low power radio transmitters, receivers and transceiver modules manufactured by ourselves, Radiometrix, Circuit Designs, RDT and Micrel. Applications for telemetry, video and remote control.

NEWNES - BOOKS FOR THE ELECTRONICS WORLD

http://www.newnespress.com
Over 300 books and information packages for those working with electronics and engineering technology. Visit our site for a free catalogue and downloads

OMEG POTENTIOMETERS

http://www.omeg.co.uk
Omeg 16 mm and 20 mm potentiometers and switched potentiometers with conductive polymer tracks. Web site has full product details, latest news, company contacts, stockists and distributors.

PCA:PHILIP COLLINS \& ASSOCIATES PTY. LTD

http://www.pca.cc
PCA manufactures Radphone 2000DX remote control systems for shortwave broadcasters and government agencies wantling worldwide control of communications receivers and transceivers from any tone phone.

POLY-FLEX CIRCUITS LTD

http://www.polyflex.com
Design, manufacture and population of printed polyester flexible circuits, including Flip Chip on Flex providing practical, low cost, reliable solutions for today's small lightweight products.

QUILLER ELECTRONICS

http://www.quiller.com
$100+$ pages of detailed technical
information on Schrack Relays, MEC
Switches, Hirose Connections.

RADIOMETRIX

http://www.radiometrix.co.uk
Radiometrix specialises in the design and manufacture of VHF \& UHF, RF data modules. We offer a broad range of PCB mounted miniature transmit, receive and transceiver modules for OEM use.

RD RESEARCH

http://www.looking.co.uk/spice
Analogue and digital SPICE modelling software. Full details available on this site. Available on a 30 day evaluation basis.

RALFE ELECTRONICS

professional test \& measurement www.ralfe-electronics.co.uk

RS COMPONENTS LTD

http://rswww.com
The award winning on-line service from RS

- 110,000+ products available
- Technical data library
- Stock availability check
- Integrated on-line purchasing
- Order by 8pm - with you tomorrow.

SUPRA AUDIO CABLES http://www.jenving.se Jenving Technology $A B$ is the manufacturer of Supra Audio Cables. OEM productions are also accepted.

SOFTCOPY

http://www.softcopy.co.uk
As a PC data base or hard copy. SoftCopy can supply a complete index of Electronics World articles over the past ten years. Photo coples of articles from back issues are also available.

SESCOM, INC.
http://www.sescom.com
SESCOM, INC. is a 30 -year manufacturer of audio "problem solvers" and transformers. We also offer easily-fabricated aluminum enclosures for small production runs and prototypes.

SWIFT EUROTECH

http://www.swiftdesigns.co.uk
EDWin NC - Professional EDA software at 90% discount! Integrated schematics, PCB layout and simulation. Plus CAMtastic! CAM software and netlist translators for most EDA systems.

THOSE ENGINEERS LTD

 http://www.spiceage.comWorking evaluations of SpiceAge mixed-mode simulator, Spicycle PCB design tools and Supertilter demo (synthesises passive, active, digital filters). Tech support, sales links and price list.

THERMOSPEED

http://www.thermospeed.co.uk
Temperature and pressure, control and instrumentation. Full on-line purchasing.
*Overnight ex-stock delivery

- Create your own hotlist
- Download datasheets
- Full technical support

TRIDENT MICROSYSTEMS LTD

http://www.trident-uk.co.uk
Visit the Trident website for details and datasheets on their entire LCD and printer product range. Download data and subscribe for our regularly updated newsleter.

TRUMETER

http://www.truemeter.com

TRANSONICS

http://www.transonic.com

VANN DRAPER
 ELECTRONICS LTD

http://www.vanndraper.co.uk
Test equipment from Grundig. Kenwood, Hitachi, Fluke, Avo, Glassman, Advance in a comprehensive site including oscilloscopes, multimeters, power supplies, generators, counters, soldering, digital tv etc.

vUTRAX PCB DESIGN SOFTWARE

http://www.vutrax.co.uk VUTRAX electronic schematic and pcb design system for Windows 95,98 and NT. Limited Capacity FREE version downloads available, all upgradeable to various customised levels.

WOOD \& DOUGLAS
http://www.woodanddouglas.co.uk Wood \& Douglas Ltd is the leading independent British designer and manufacturer of quality radio products for International telemetry, data, voice \& video wreless communications.

To reserve your
web site space
contact
Joannah Cox
Tel:
020 86523620
Fax:
02086528938

Put your web address in front of $\mathbf{2 1 , 0 0 0}$ Electronics fanatics.
Electronics World acknowledges your
companys need to promote your web site,
which is why we are now dedicating pages in
every issue to WEB ADDRESSES.
This gives our readers the opportunity to look
up your companys name, to find your web
address and to browse the magazine page to find new sites.
We also understand that cost is an important factor, as web sites are an added drain on budgets. I am sure you will agree these rates make all the difference.

FOR 12 ISSUES:
Lineage only will cost $£ 150$ for a full year just £12.50 per month.
This Includes your companys name, web address and a 25 word description.

Lineage with colour screen shot will cost £350 for a full year
just £29.17 per month.
This will include the above plus a 3 cm screen shot of your site, which we can produce if required.
To take up this offer or for more information ring Joannah Cox
on 02086523620 or fax on 02086528938.
E-mail: joannah.cox@rbi.co.uk

Company name	Web address			

INSTRUMENTATION \& TEST

INSTRUMENTATION \& TEST

THE AMAZING TELEBOX

TV SOUND \& VIDEO TUNER

UHF colour teievision channels. TELEBOX MB covers virtually all televmost cable TV operators. Ideal for desktop computer video systems \& PI (picture in picture) setups. For complete compat bility - even for monitors withou

TELEBOX ST for composite video input type monitors	$£ 36.95$
TELEBOX STL as ST but fitted with integral speaker	$£ 39.50$
TELEBOX MB Multiband VHF/UHF/Cable/Hyperband tuner	$£ 69.95$

IC'S -TRANSISTORS - DIODES

OBSOLETE - SHORT SUPPLY - BULK $10,000,000$ items EX STOCK CALL OR SEE OUR WEB SITE WWW, distel.co. UK VIDEO MONITOR SPECIALS One of the highest specification monitors you will ever see At this price
 ers niludin 1 IBM PCS in CCA
modes BBC, COMMODORE
ARC
 VGA cable for IBM PC includer. Extemal cables for other types of computers available - CAL

Ex demo 17" 0.28 SVGA Mitsubishi Diamond Pro

 monitors, Full multisync etc.Full 90 day guarantee. Only $£ 199.00$ (E)

$20^{\prime \prime} 22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS

Superbly made UK manufacture. PLL in solid state colour monitors.

 EXCELLENT little used condition with tull day guarantee. . .135 22".... $£ 155$ 26"....£185 (f) We probably have the largest range of video monitors inEurope, All sizes and types from $4^{\prime \prime}$ to $42^{\prime \prime}$ call for info. DC POWER SUPPLIES
Virtually every type of powe
supply you can imagine.ove
supply you can imagine. Over

Over 1000 racks, shelves, accessories
 $19^{\prime \prime} 22^{\prime \prime} \& 24^{\prime \prime}$ wide 3 to 46 U high. Available from stock !!

32U - High Quality - All steel RakCab

with top and side louvres. The top panel may be removed for fitting of Integral fans to the sub plate etc. Other features include: fitted cable / connector access etc. Supplled in excellent, slightly used condition with keys Color Roval blue Externat dimensions

A superb buy at only $£ 245.00$ 42 U version of the above only $£ 345$ - CALL

12V BATTERY SCOOP - 60\% off !!

信 most amazing savings on these ulra high spec 12v DC 14 Ah featuring pure lead plates which offer a far superior shell \& guaran1eed 15 year service life. Fully BT \& BS6290 approved. suppliedBRAND NEW And each Our Price £ 35 each (c) or 4 for £99 (E) RELAYS - 200,000 FROM STOCK covering types such as Military, Octal, Cradle, Hermetically Sealed,
Continental, Contactors, Time Delay, Reed, Mercury Wefted, Solid
State, Primed Circuit Mounting efc. CALL or see our web site

TEST EQUIPMENT \& SPECIAL INTEREST ITEMS

ALL 2 ENQUIRIES
02086533333
FAX 02086538888

DISTEL on the Web $I!-$ Over $16,000,000$ items from stock - WWW. is istel.co.uk

ALL MAIL TO
Dept ww, $29 / 35$ Ossorn
Thornton Heath
Surrey CR7 8 PD
Surrey CR7 8PD
pen Mon - Fri 9.00-5:30

CIRCLE NO. 136 ON REPLY CARD

masiercaro

 SUPPLIER OF QUALITY USED TEST INSTRUMENTS

VSA

Cooke International

Unit Four, Fordingbridge Site, Barnham, Bognor Regis, West Sussex, PO22 OHD, U.K. Tel: (+44)01243545111/2 Fax: (+44)01243542457

Web: http://www.cooke-int.com E-mail: info@cooke-int.com catalogue available

ADVERTISERS' INDEX

ANCHOR SUPPLIES 864
CMS 845
CONFORD ELECTRONICS 845
CROWNHILL 794, 829 and 839
DATAMAN OBC
DISPLAY ELECTRONICS 877
ECC 827
HITEX UK 794
ICE TECHNOLOGY 823
INTERNATIONAL RECTIFIER IFC
JPG ELECTRONICS 869
LABCENTER ELECTRONICS IBC
LANGREX 829
MILFORD INSTRUMENTS 829
PICO 825
PS CONSULTANTS 801
QUICKROUTE 825
RADIOTECH 839
RALFE ELECTRONICS 880
RAMCO
796
RD RESEARCH
835
SEETRAX
796
SIGHTMAGIC
835
STEWART OF READING
869
SURREY ELECTRONICS
821
SWIFT EUROTECH 82
TELFORD ELECTRONICS 843
TELNET 817
TIE PIE 799
THOSE ENGINEERS 843
TTI 839
ULTIMATE TECHNOLOGY 797, 798, 800 and 857

ARTICLES WANTED

TOP PRICES PAID

For all your valves, tubes, semi conductors and IC's.

Langrex
 Supplies Limited

1 Mayo Road, Croydon Surrey CRO 2QP
TEL: 01816841166
FAX: 01816843056

WANTED

Valves \& Semiconductors All types e.g. Discrete \& IC's Good Rates Paid CHELMER VALVE CO.

130 New London Road Chelmsford, Essex Tel: 01245265865 Fax: 01245490064

WANTED. Gemstar Video+ Plus + programmer model VIP-185 (preferably). Must be in good working order. Instructions not required. 01736 367100.

Wanted to buy. Used Neurik chart recorder system. Fax USA 702/565-4828 Franklin Miller. Email fjm@anv.net

UALVES WANTED

All types considered
Ask for a free copy of our wanted list.
eg ECC83, KT88, PX4
Avo Valve Tester VCMI63
ONE MILLION VALVES IN STOCK As for our free catalogue, eg 4CX250B, $4 \mathrm{CX1000A}, 6 \mathrm{C} 33 \mathrm{CB}, 300 \mathrm{~B}, 6156$ 6550B, CV2131
BILLINGTON EXPORT LTD Billingshurst, Sussex Tel: 01403784961 Fax: 01403783519 VISITORS PLEASE PHONE FOR APPOINTMENT

Wanted to Buy. Component Data, books/sheets, any age. Email list to: info@sentient. systems.co.uk. Fax list to: 01202884420 .

WANTED Sony model CDP-K1 CD player. This has variable speed and microphone facility Equivalent considered. - Reading 9428986.

WANTED USED COPY of PSPICE Dos or Windows. Phone: 01458210881

WANTED: Bruiel \& Kjaer type 2606 or later measuring amplifier in good working condition. Manuals etc not necessary. All reasonable offers considered. M. Edinger, Bjaelkevangen IOB, dk2800, Lyngby, Denmark. Contact: Email: Musiklab@image.dk, phone +4545 874977, fax +45 45874976.

ADVERTISERS PLEASE

 NOTE FOR ALL YOUR ENQUIRIES ON ADVERTISING RATES PLEASE CONTACT JOANNAH COX ONTEL: 01816523620
FAX: 01816528938

ARITCLES FOR SAIE

RF DESIGN SERVICES

All aspects of RF hardware development considered from concept to production.

WATERBEACH ELECTRONICS

TEL: 01223862550
FAX: 01223440853

HP54111D Colour DSO

500 MHz BW, $1 \mathrm{G} / \mathrm{sec}, 2+2 \mathrm{Ch}$,
4 Ch logic trigger,
$2 \times$ HP10430A 6 pF probes, full set of manuals, $£ 2,000+$ VAT
HP1630D Logic Analyser
$43 \mathrm{Ch}, 100 \mathrm{MHz}, £ 450$ + VAT steve@csys.demon.co.uk

SHORTWAVE BROADCASTERS

Monitor reception from within your target area

GOVERNMENT AGENCIES

Control radio receivers/transceivers worldwide
Radphone 2000DX from www.pca.cc
Intel+61-2-98889777
Fax+61-2-98050253

DYNAMIC Sciences Tempest RX, $£ 1$,695; HP $141 \mathrm{~T}>18 \mathrm{GHz}$, $£ 950$; Icom IC-M800 TSVR £695; Racal RA1795, 9995 ; Advantest TR413 Spectrum Analyser, $£ 2,750$. - Tel: 01908365726

ELECTRONICS WORLD incorporating Wireless World 1971-1996 free to a good home Tel: Graham on 01189732119.
$500,000+$ GPIOY glass passivated IA diode Offers - 01233750481

100 MHz OSCILLOSCOPE with 60 MHz probe set, £580, unused (OS5100); TG230 Function enerator, $£ 200$, unused; 10 MHz Oscilloscope, £50. Evenings 01264391165

FISCHER 5 PIN CABLE PLUGS type S103A054-120 with cable clamp E3 103.6/5.2 £4. Quantity available. Tel: 01476550826.

Quad II. Valve Power - Amplifier, good as new, unused. Only the one, unfortunately never found another to make pair $£ 300$. Tel: 01795585378.

ELECTRONIC circuit analysis program for PC. Provides graphical output to screen and printer. Many circuit examples. £10. - Tel. 01753 643384.

POWER SUPPLY DESIGN

Switched Mode PSU
Power Factor Correction Inverter
Tel//ax: 01243842520 e-mail: eugen_kus@cix.co.uk Lomond Electronic Services

Rack Enclosures
New and Used most sizes 16 U to 50 U side and rear panels mains distribution 19" Panel mounts optima eurocraft. Prices from $£ 45$ +vat

M\&B Radio
86 Bishopsgate Street Leeds LS1 4BB Tel. 01132702114 Fax. 01132426881

Racal RAI795 rx £995, Dynamic Sciences Tempest xx , £995, HP 5352B 40 GHz Counter, $£ 2,995$, Thomson-CSF TRC 350 H HF Mil TSVR, $£ 1,995$, Icom IC-M800 HF Marine, £495. Tel/Fax: 01908365726 or E-mail: Phil@g4zow.freeserve.co.uk

TEKTRONIX 7313 mainframe type oscilloscope with 7A13 dual trace module and 7B53A dual time base module fitted (one slot free). Limited cal due to non-functional storage facility. ©150. Also Telequipment $\$ 54 \mathrm{~A}$ single trace general purpose suitable for audio and TV use, £45. Also Nashua 3916 A3 and A4 photocopier enlarges/reduces, sale includes an unfitted new drum. Working but could do with a service, £ 95 . 01963362143 evenings and weekends.

Wave Analysers Marconi type 2330 and 2330A. £20 ono. Tel: 01727859653

SERVICES

PRINTED CIRCUIT BOARD SERVICE. Phone Mr Belt for details (01673 842338)

P\&P Electronics Analogue and digital design services. Tel: 01924402931.

Printed Circuits manufacturing service. Production from Artwork out of Magazine or CAD design. Single- or double-sided boards. Quantities and one-offs. For details telephone Mr. Belt on 01673842338.

T\&M EQUIPMENT

AOVANTEST TR9407 ft spectrum analyser to $1 \mathrm{MHz} £ 2000$ ANRITSU ML93A optical power meter with MA96A power sensor ($0.75 \cdot 1.8 \mathrm{UM}$) CHASE LFR1000 interference measuring receiver 9 kHz 150 kHz $£ 200$
ORANETZ 626 -PA-6006 ac neutral monitor, c / w TR2018 clamp FLANN MICROWAVE 27072 frequency meter 73 - 113 GHz MARCONI 2019A signal generator 10kHz-IGHz INCLUOING FREE CALIBRATION
RACAL OANA 1991 frequency counter, GPIB opt SCHLUMBERGER 4922 radio code analyser all test set SCHLUMBERGER SRTG-GA62 Se eci SYSTRON OONNER 6041A 100MHz 8-digit frequency counter IEEE £100 TEKTRONIX 2432A 100MHz 250M Sa/sec digital storage oscilloscope

TEKTRONIX 2236100 MHz analogue oscilloscope £500

> TAU-TRON MN302/M B302N bert transmiter/receiver WANDEL \& GOLTERMANN PCM4 test sets . . call for details \& options
WANDEL \& GOLTERMANN PCM4 pcm measuring set version 985/01, IEEE opt
WANDEL \& GOLTERMANN PF2 error ratio measuring se WANDEL \& GOLTERMANN OLM-20 data circuit test set WANDEL \& GOLTERMANN SPM31 level meter WANDEL \& GOLTERMANN WM30 level tracer WANDEL \& GOLTERMANN PF4 bit error re ate tester (BN911/01. Op: 00.01)
WAVETEK 23 synthesized function generator $0.01 \mathrm{~Hz}-12 \mathrm{MHz}$ WAVETEK 1080 sweep generator $1-1000 \mathrm{MHz}$ WAYNE KERR 322020 A bias unit for 3245 inductance analyser) $£ 100$

- ralfe electronics e poobecment 36 Eastcote Lane - South Harrow • Middx HA2 8DB - England . TEL (+44) 0181-422 3593. FAX (+44) 0181-423 4009

HEWLETT PACKARD

214B pulse generator

1640B serial data generator 10715A digital interferometer 42744 multi-frequency icr meter 3314A function generator
$33320 \mathrm{G} / 33322 \mathrm{G}$ programmable attenuators 4 GHz each 3561A dynamics signal analyser 3586A selective level meter 4093 B protocol tester base (PT300) 4142B OC source/monitor (with 41421B, 41420A, 41424A) 8018A serial data generator 5334 B frequency counter, option 060 5461C oscillo scope 83411C lightiwave receiver 100/1550nm 83440C lightwave detector $206 \mathrm{~Hz} 1300 \mathrm{~nm} / 1550 \mathrm{~nm}$ 350B sweep genarator mainframe 83572 B sweeper plug-in unit (for 8350B) $26.5-40 \mathrm{GHz}$ 5046A S-parameter test set 85053 B 3.5 mm verification kit 5640A tracking generator to 2.9 GHz 8672 A synthesized signal generator $2-18 \mathrm{GHz}$ 8671A synthesised signal gener ator $2-6.2 \mathrm{GHz}$ $86222 \mathrm{~A} 10 \mathrm{MHz}-2.4 \mathrm{GHz}$ sweep generator phug-in unit 86290B 2 -18GHz sweep generator plug-In unit 8684 B signal generator $5.4 \mathrm{GHz} \cdot 12.5 \mathrm{GHz}$ 8903B audio analyser with opts 10 and 05 904A/001/002 multifunction synthe sizer DC-600kHz E5200A broadband service analyser (STM1 options) J3458A fast ethernet Lanprobe
12215A FDOI portable multimode test set

> All equipment sold calibration-checked by independent laboratories and carries un-conditional refund and 90 -day guarantees.
> CALLERS WELCOME BY APPOINTMENT ONLY.
> FOR COMPLETE STOCK LISTING PLEASE CHECK OUR WEBSITE www.ralfe-electronics.co.uk

 products or services

CIRCLE NO. 139 ON REPL Y CARD

The widest range of colour LCDs, LCD monitors and plug and play kits available in the UK, all in one easy to use brochure, is now available FREE!
It includes information on products ranging from $2.9^{\prime \prime}$ monitors to $16.1^{\prime \prime}$ colour LCD screens, mono/colour STN TFTs and touch screen technology from the world's leading manufacturers.
Phone TRIDENT today for your free copy.
TEL: 01737780790
FAX: 01737771908
OR VISIT OUR WEBSITE: www.tridentdisplays.co.uk

CIRCLE NO. 141 ON REPLY CARD

FREE VISION

 EVALUATION CDThe IMAQ™ Vision Evaluation CD, from National Instruments, is a free evaluation package for its machine vision and image processing software, IMAQ Vision. With the IMAQ Vision Evaluation CD, users can go through tutorials and build actual programs, learning how to create custom imaging applications for factory and laboratory automation applications.
Call National Instruments now for your FREE copy on 01635523545.

E-mail: info@natinst.com
Website: www.natinst.com/uk

PROTIEUS including NEW SIMULATOR mPICE 3 F5
 NOW WITH Interactive Circuit Animation

SHAREWARE VERSIONS
NOW WITH INTERACTIVE CIRCUIT ANIMATION DOWNLOAD YOUR COPY NOW
http://www.labcenter.co.uk

uthe

BEST all-round
PROGRAM"
EWW CAD Review Round Up September 1998

Simulation

- Berkeley SPICE3F5 analogue simulation kernel.
- True mixed mode simulation.
- New analysis types include multi-plot sweeps, transfer curves, distortion and impedance plots.
- Active Components: Switches, Pots etc.
- Over 1000 new library parts with SPICE models.
- Greater ease of use.

"a constant high level of capability throushout"
 EWW CAD Review Round Up September 1998

Schematic Capture

- Produces attractive schematics like in the magazines
- Netlist, Parts List \& ERC reports.
- Hierarchical Design.
- Full support for buses including bus pins.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and PCB design.

PCB Desien

- Automatic Component Placement.
- Rip-Up \& Retry Autorouter with tidy pass.
- Pinswap/Gateswap Optimizer \& Back-Annotation.
- 32 bit high resolution database.
- Full DRC and Connectivity Checking.
- Shape based gridless power planes.
- Gerber and DXF Import capability.

Available in 5 levels - prices from $£ 295$ to $£ 1625$ + VAT. Call now for further information \& upgrade prices.

Write, phone or fax for your free demo disk, or ask about our full evaluation kit. Tel: 01756753440 . Fax: 01756 752857. EMAlL: info@labcenterco.uk 53-55 Main St, Grassington. BD23 5AA. WWW: https/wwwilabcenterco.uk

Fully interactive demo versions available for download from our WWW site.
Call for educational, multi-user and dealer pricing - new dealers always wanted Prices exclude VAT and delivery. All manufacturer's trademarks acknowledged.

men it woid d'

 On

poritale nrograminers

[illalugig]

- Programs 8 and 16 -bit EPROMs, EEPROMs, PEROMs, 5 and 12V FLASH, Boot-Block FLASH, PICs, 8751 Microcontrollers and more.
C. EPROM emulation as standard!

Rechargeable battery power for total portability.
D. All-in price includes emulation leads, AC charger, PC software, spare library ROM, user-friendly manual.
E Supplied fully charged and ready to use.

yif oily Yoidiog

[illa) icis

- Programs wide range of 20 and 24 pin logic devices from the major GAL vendors.
- Supports JEDEC files from all popular compilers.

- Plugs straight into your parallel port of PC or laptop.
- Programs and verifies at $2,2.7,3,3.3$ and 5 V
- True no-adàptor programming right up to 48 -pin DIL devices.
- Free universal 44 -pin PLCC adaptor.
- Built-in world standard PSU - for goanywhere programming.
- Package adaptors for TSOP, PSOP, QFP, SOIC and PLCC.
- Optional EPROM emulator.

Guppoit

[日iril||qis]

- 3 year parts and labour guarantee.
- Windows/DOS software included.
- Free software updates via BBS/Internet.
- Free technical support for life.
- Next day delivery - always in stock.
a Dedicated UK supplier, established 1978.

Intili - Criin | Ferifed

Secure for own use without delay. Order via credit card hotline - phone today, use tomorrow. Alternatively, request more detailed information on these and other market-leading programming solutions.

[^0]: Electronics World is published monthly. By post, current issue $£ 2.45$, back issues lif available $£ 3.00$). Orders, payments and general correspondence to L333, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tlx:892984 REED BP G. Cheques should be made payable to Reed Business Information Lid Newstrade: Distributed by Markefforce (UK) LId, 247 Toltenham Count Road London WIP OAU 0171 261-5108. Subscriptions: Quadront Subscription Services, Oakfield House Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 01444 445566. Pleose notify change of address. Subscription rates 1 year UK $£ 36.002$ years $£ 58.003$ years $£ 72.00$. Europe/Eu 1 year $£ 51.002$ years $£ 82.003$ years $£ 103.00$ ROW 1 year $£ 61.002$ years $£ 98.003$ years $£ 123$

[^1]: Overseas advertising agents: France and Beigium: Pierre Mussard, 18.20 Place de lo Madeleine, Paris 75008 . United States of America: Ray Barnes, Reed Business Publishing Lid, 475 Park Avenue South, 2nd FI New York, NY 10016 Tel; (212) 6798888 Fox; (212) 6799455
 USA mailing agents: Mercury Airfreight internotional Ltd Inc, $10(b)$ Englehard Ave, Avenel NJ 07001 . Periodicles Postoge Paid at Rahway NJ Postmaster. Send address changes to above.
 Printed by Polestor (Colchester) Ltd, Filmsetting by لf Typographics Lrd, Unit 4 Baron Court, Chandlers Way, Southend-on-Sea, Essex SS2 5SE.
 © Reed Business Information Lłd 1997 ISSN 09598332

[^2]: Table 1.
 Minimum supply voltage 1.8 V
 Quiescent current 250 mA

 DC gain
 250 mA
 GBW
 Maximum output current
 Input and output voltage range
 $\geq 1 \mathrm{MHz}$
 1 mA
 Full (rail-to-rail)

[^3]: Proteus
 Produced and distributed by Labcenter Electronics, tel. 01756 753440 , fax 01756752857 . Prices range from $£ 295$ to $£ 1625$ excluding VAT. Lower cost packages upgradable. E-mail info@labcenter.co.uk site address hitp://www.labcenter.co.uk.

[^4]: * limited to one pair per reader

[^5]: Table 1. Forms of the signals needed to drive an SVGA monitor.

 Vertical sync Horizontal sync
 Red
 Green
 Blue
 5 V TTL, negative going
 5 V TTL, negative going
 1 V analogue signal, positive going
 1 V analogue signal, positive going
 1 V analogue signal, positive going

