Self explains muting relays

Measure receiver sensitivity

Early effect in practice

Stereo analysis

Wilkes: pioneer of modern computers

Designing filters

Speaker coils: round wire, or square?

The route to simulation: new review series starts with Workbench
In the last three months we delivered more part numbers than any other power semi manufacturer did. Or could. Which means IR has more ways to meet your power needs from hundreds of distributor locations.

www.irf.com

WORLD'S ONLY 1200V POWER ICs.

There's only one way to design 400VAC inverters with just one IC for the complete 3-phase gate drive. Only one way to cut component count and board space by more than 60% (the IR 2233). IR's got the only 1200V power IC family. And it's only one way we do more to meet your power IC needs.

pic.irf.com

THE WORLD'S FASTEST IGBTs.

With the world's lowest switching losses. So they're the world's first way to replace MOSFETs. And they're just part of the world's broadest line of IGBTs from International Rectifier.

igbt.irf.com

1499 PARTS TO SET MOTION CONTROL STANDARDS.

The highest density and current handling capability. With the widest selection of power packages for motion control. Driving motors from 1-100 HP. Get it right, right now with IR.

motor.irf.com

262 POWER PACKAGES.

Only IR gives you a choice of 262 different power package types. So you can find one that delivers exactly the footprint, current handling and the thermal performance you need.

packages.irf.com

BUT WAIT, THERE’S MORE POWER SEMICONDUCTOR EXPERTISE WHERE THAT CAME FROM.

Because you asked us for specific answers to your power design questions, we’ve answered with more power solutions. Solutions that offer more performance and reliability. Because we have more power semiconductor design and manufacturing experience and invest in more R&D. Over two times more.

Now it’s time to do your part – visit our Web site today. For a free copy of our CD-ROM iractive® call +44 (0)1883 732 020.

For technical assistance call +44 (0)1883 733 309 or the Fax-on-Demand system on +44 (0)1883 733 420.

Available in UK from:
Abacus Polar
Arrow
Farnell
Future Electronics
RS Components
Solid State Supplies

www.irf.com
531 COMMENT
Digital terrestrial: a launch too soon?

532 NEWS
- UK high-tech firms turn recession tide
- No hot heads at BT
- LCD adapts to bright and dim
- Sub 100nm geometry from optical litho?
- 1000MHz PC has frisbee technology

537 STEREO FROM ALL ANGLES
Stereo image is ignored in hi-fi specifications, possibly because it is difficult to quantify, but it is a crucial factor as John Watkinson explains.

544 RELAY MUTING
Douglas Self tackles the vital subject of relay muting and protection in audio amplifiers. He reveals some secrets of relay operation and shows how to make them switch faster than is apparently possible.

550 THE ROUTE TO SIMULATION
Choosing a circuit simulation package is complex and making a mistake is costly. Starting with a review of Workbench, Rod Cooper's guide is essential reading – especially for first time buyers.

555 SENSITIVITY DEMYSTIFIED
Joe Carr explains not only how to decipher receiver sensitivity figures, but also how to verify them for yourself.

559 EARLY APPLIED
Bryan Hart illustrates the importance of the 'Early' effect by describing its influence on four common circuit configurations – common base, common emitter, current mirror and long-tailed pair.

560 RECRUITMENT SPECIAL

565 CIRCUIT IDEAS
- Non-intrusive continuity tester
- Liquid level controller
- Mosfet hf mixer
- Wide-band amplitude modulator
- Twilight switch
- Triode amplifier with bootstrapping
- New FIR speaker crossover
- Low-current battery monitor
- Two-op-amp sine generator, MkII

577 SPEAKERS' CORNER
John Watkinson looks at why the moving coil loudspeaker is so inefficient, and explains the trade-offs.

580 PIONEER OF MODERN COMPUTING
In 1949, innovator Maurice Wilkes built the first computer designed to store programs. Chris Hipwell has been researching Maurice's work.

585 HOTTER SPICE 2
In this second article presenting a breakthrough in power mosfet modelling for audio design, Ian Hegglun adds compensation for electrothermal effects and answers the question of whether sub-threshold conduction is needed for simulating crossover distortion.

591 BRIGHTER DRIVER FOR EL LAMPS
Andy Woolff outlines a new electroluminescent lamp driver that produces 220V pk-pk from a couple of penlight cells.

599 NEW PRODUCTS
New product briefs edited by Richard Wilson

604 COOL SOLUTIONS
James Stratford looks at thermal management products, including thermally-conductive pcb material.

611 PROGRAMMING THE EEPROM HC11
Peter Topping's step-by-step guide for programming the LW radio-code clock presented last month demonstrates how easy it is to program and develop a modern microcontroller.

If you want to know why stereo systems with identical specifications sound so different, turn to page 537.

This month's cover mount is an advanced thermally-conductive material that can fill air voids and surface irregularities without the need for silicone grease. See page 607 for more.

In 1949, Maurice Wilkes built the first computer designed to store programs in 1.6m long memories. Read more on page 580.

August issue on sale 24 June
Now the **WR3100e** external WiNRADiO arrives!

"WiNRADiO™ now brings you a complete choice in personnel computer controlled radio scanning and reception solutions."

With either the internal or external versions, you can couple all the power of the latest Windows PCs (not just the fraction that you can squeeze down an RS232 connection) to the latest synthesised receiver design techniques, and you'll get the ultimate in wide range, all mode programmable radio reception.

New external WiNRADiO™
(WR1000e, WR1500e and new WR3100e) provide complete comms systems connecting either via the basic RS232 - or with an optional PCMCIA adaptor, for high speed control. Power from existing 12v supplies, or our optional NiMH rechargeable 12v battery pack.

Use WiNRADiO scanning PC comms receivers for:
- Broadcast
- Media monitoring
- Professional & amateur radio communications
- Scanning
- Spot frequency & whole spectrum monitoring
- Instrumentation Surveillance (and recording)

If you want the ultimate receiver-in-a-PC with full DSP, then you need the WR3000-DSP with its hardware for real-time recording, signal conditioning and decoding applications. (DSP is available with the ISA card version only).

Use WiNRADiO scanning PC comms receivers for:
- Broadcast
- Media monitoring
- Professional & amateur radio communications
- Scanning
- Spot frequency & whole spectrum monitoring
- Instrumentation Surveillance (and recording)

Model Name/Number

<table>
<thead>
<tr>
<th>Model Name/Number</th>
<th>Construction of internals</th>
<th>Construction of externals</th>
<th>Frequency range</th>
<th>Modes</th>
<th>Tuning step size</th>
<th>IF bandwidths</th>
<th>Receiver type</th>
<th>Scanning speed</th>
<th>Audio output on card</th>
<th>Max on one motherboard</th>
<th>Dynamic range</th>
<th>IF shift (passband tuning)</th>
<th>DSP in hardware</th>
<th>IRQ required</th>
<th>Spectrum Scope</th>
<th>VisiTune</th>
<th>Published software API</th>
<th>Internal ISA cards</th>
<th>External units</th>
<th>PCMCIA adaptor (external)</th>
<th>PPS NiMH 12v battery pack & charger</th>
</tr>
</thead>
<tbody>
<tr>
<td>WR-1000</td>
<td>WR-1000i/WR-1500i-3100DSP - Internal full length ISA cards</td>
<td>WR-1000e/WR-1500e - 3100e - external RS232/PCMCIA (optional)</td>
<td>0.5-1300 MHz</td>
<td>AM, SSB, CW, FM-N, FM-W</td>
<td>100 Hz (5 Hz BFO)</td>
<td>6 kHz (AM/SSB), 17 kHz (FM-N), 230 kHz (W)</td>
<td>PLL-based triple-conv. superhet</td>
<td>10 ch/sec (AM), 50 ch/sec (FM)</td>
<td>200mW</td>
<td>8 cards</td>
<td>65 dB</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>£299 inc vat</td>
<td>£359 inc vat</td>
<td>£30 when bought at same time as the 'e' series unit, otherwise: £69 inc.</td>
<td></td>
</tr>
<tr>
<td>WR-1500</td>
<td>WR-1500-1500e - 3100e - external RS232/PCMCIA (optional)</td>
<td></td>
<td>0.15-1500 MHz</td>
<td>AM, LSB, USB, CW, FM-N, FM-W</td>
<td>100 Hz (1 Hz for SSB and CW)</td>
<td>2.5 kHz (SSB/CW), 9 kHz (AM)</td>
<td>17 kHz (FM-N), 230 kHz (W)</td>
<td>10 ch/sec (AM), 50 ch/sec (FM)</td>
<td>200mW</td>
<td>8 cards</td>
<td>65 dB</td>
<td>±2 kHz</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>£369 inc vat</td>
<td>£429 inc vat</td>
<td>£1169.13 inc (Hardware DSP only internal)</td>
</tr>
<tr>
<td>WR-3100</td>
<td>WR-3100i/WR-3100e-3100DSP - Internal full length ISA cards</td>
<td></td>
<td>0.15-1500 MHz</td>
<td>AM, LSB, USB, CW, FM-N, FM-W</td>
<td>100 Hz (1 Hz for SSB and CW)</td>
<td>2.5 kHz (SSB/CW), 9 kHz (AM)</td>
<td>17 kHz (FM-N), 230 kHz (W)</td>
<td>10 ch/sec (AM), 50 ch/sec (FM)</td>
<td>200mW</td>
<td>8 cards</td>
<td>85dB</td>
<td>±2 kHz</td>
<td>yes (ISA card ONLY)</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes (also DSP)</td>
<td>£1169.13 inc vat</td>
<td>£1169.13 inc (Hardware DSP only internal)</td>
<td></td>
</tr>
</tbody>
</table>

For your free info pack and software emulation demo disk contact Broadercasting Communication Systems - and please note all available information is also available 24 hours a day on the web.

http://www.broadercasting.com - FREEPHONE: 0800 0746 263 - PHONE: 01245 348000 - EMAIL: info@broadercasting.co.uk - FAX: 01245 287057

Unit B, Chelford Court, Robjohns Road, Chelmsford, Essex CM1 3AG

E&OE WiNRADiO and VisiTune are trademarks of WiNRADiO Communications
Digital terrestrial: a launch too soon?

Launching a brand-new entertainment product at a time when consumers are scarcely flush with spending money is a brave stratagem, yet digital television has successfully managed to allure around a quarter of a million viewers since its launch.

With an either/or choice between satellite (BSkyB) and terrestrial (British Digital Broadcasting, that's Ondigital to you and me), the pundits were expecting digital consumers to opt overwhelmingly for Sky with its established brand image and earlier launch date.

In point of fact Ondigital's 'through the air' sales pitch seems to have struck a chord. In its first four and a half months of operation, Ondigital succeeded in signing up 110,000 customers – only 10,000 fewer than BskyB achieved.

Digital terrestrial television, DTT, will receive a further boost this summer when the first TV receivers with built-in digital decoders appear in the shops, at a subsidised price of £500 or so; outboard set-top boxes are an unattractive solution.

So far so good: the road map for the digital replacement of analogue terrestrial transmissions is coming into clear focus and DTT has been proven as viable technology. Or has it?

Not if this viewer's experience is anything to go by. DTT has been oversold. In exactly the same way as BSkyB made extravagant claims for its miniature Squarial, the marketeers at Ondigital have convinced themselves that DTT can charm birds out of trees and turn base metal into gold.

Their technical advisers must be squirming...

To begin with, Ondigital's advertising claims of 'crystal-clear pictures' and 'the sharpest sound with the immediacy of CDs' are no more than claims. Although noise-free, the pictures are noticeably 'soft', while the data rate used for audio fails to reach the sampling levels necessary to match CDs and is in fact no better than the also digital NICAM used on analogue transmissions. Good analogue reception is every bit the equal of good DTT reception and to infer otherwise is a case of deceit.

The promotional literature is also less than honest with its promises of improved pictures. While the DTT set-top box can theoretically produce results on-screen that beat most analogue signals, these results will only be achieved on sets having a direct RGB input. Nowhere is this stated in the literature, and anyone stuck with the more commonplace arrangements of UHF or composite video input will enjoy pictures that are no more than average and probably no better than analogue.

Whereas analogue reception degrades gradually, receiving DTT is an either/or affair. It may be adequate in winter, when there are no leaves on the trees, yet disappear in summer.

The suggestion that viewers with indifferent analogue reception will see better pictures on digital is not borne out by experience. In fact the whole success of DTT is predicated on optimised antenna installations – a phenomenon that's extremely rare in reality.

Most viewers have corrected, misaligned rooftop aerials and a coaxial down-lead that is more attenuator than feeder, those that don't rely on loft antennas or set-top devices that is. All these may be adequate for indifferent analogue reception but for the more demanding DTT process they just don't cut the mustard.

Articles in the trade press also indicate that many antenna fitters are inexperienced in optimising installations for digital and are not equipped with the special meters and equipment necessary. Fortunately Ondigital is committed to replacing aerial installations – with some exceptions – but the company may end up having to change many more of these than anticipated.

Not everyone has the choice of Ondigital either. Coverage from the 81 digital transmitter sites currently being built is stated by the Digital TV Group to be between 73 and 90 per cent of population as opposed to the 99.4 per cent of analogue, meaning that many viewers will be disappointed. Significant areas of the country have no reception as yet and it will be a long time before all relay transmitters are digitised – if ever.

Even where viewers receive rock-solid analogue pictures, digital reception may suffer constant break-up on account of local impulsive interference. Causes include domestic light switches and thermostats, DECT cordless phones and passing road traffic, and for all the robustness that digital transmissions may show in the face of multipath reception, they are pitably vulnerable to the natural hazards of the electromagnetic spectrum.

Whereas these effects produce minor flecks and buzzing on analogue television, with digital they result in picture loss for two to three seconds and extremely unpleasant audible pops and cracks way above normal listening levels.

In short digital terrestrial television is flawed – significantly flawed. This is not to deny its advantages; the future is inevitably digital and eventually improved receiver design and increased transmitter power will eliminate the current bugbears.

Nor would I decry the commercial achievements of British Digital Broadcasting and the attractive assortment of programming offered. Time will tell if their business is a success – and we'll all be in trouble if it is not. It is nonetheless unfortunate that early adopters must pay the price of field-trialling at their own expense a system that is demonstrably inadequate and that may also prejudice further take-up.

Andrew Emmerson
UK high-tech firms turn recession tide

The UK is emerging from the risk of recession on the back of a reshaped high-tech industry, according to several reports out this week.

A study by Deloitte & Touche says the high-tech industry is benefiting from unprecedented growth, with the UK's top 50 fastest growing technology companies recording an average increase in turnover of 18.5% per cent from 1995 to 1997. At the same time, the government released figures showing a 0.1 per cent increase in gross domestic product, which analysts say means the country has avoided a recession.

"The main message from this survey is one of great optimism. The UK has a technology business that is driven by highly focused entrepreneurs," said William Touche, a partner with Deloitte & Touche.

Scotland is doing particularly well with one quarter of the top 50 firms located in the area, higher than in London and the south east. Other evidence of the UK's burgeoning high-tech industry came from the Invest in Britain Bureau (IBB) which reported an increase in overseas investment in UK high-tech firms.

"We looked back over the past three months to test our drive in attracting high-tech investments rather than large scale manufacturing jobs. Britain is doing exceptionally well," said an IBB spokesman. The IBB reported a 39% rise in overseas high-tech investments compared to the first quarter of 1997.

"Hopefully this news adds to the government’s White Paper. It makes clear where we are going," added the spokesman. The White Paper was introduced to encourage start-ups and investments in the high-tech industry.

However, a note of caution was offered by the Federation of Electronics Industry (FEI). "It depends what products you are selling, what industry you are serving. The fastest growing is the mobile telecoms market but if you are involved in the infrastructure - base stations - side of the market, it is not growing as fast as other areas," said Richard Hinds, the FEI's components director.

Alex Mayhew-Smith
Electronics Weekly

Copper chip interconnects "ready to roll"

IBM Microelectronics has a copper interconnect on silicon on insulator (SOI) process available for prototyping that can draw gate lengths on silicon down to 0.11µm.

"For the past couple of years our process technology has been very showy," said Dr Lisa Su, project manager for CMOS Logic Technologies at IBM Microelectronics, pointing out that the 0.11µm features are drawn using a 248nm ultraviolet wavelength.

At the moment, the process is available to customers only for prototyping but, "it is ready to roll," said Su.

Before volume production is available to OEMs, an ASIC library for the process has to be developed. According to IBM, this is currently underway.

The company has used the process internally to make PowerPCs and ASICS. It expects customers to use it for IBM BlueLogic system-level chips and for ASICS used in high-end servers.

Using copper interconnects speeds up chips by 10 to 20 per cent compared to aluminium, says IBM, while using SOI wafers improves transistor performance by up to 35 per cent and offers up to a threefold reduction in power.

Although SOI wafers cost three times the price of silicon wafers, according to Andre Auberton-Herve, president of SOI wafer suppliers SOITEC, the extra cost for finished silicon is only ten per cent, claims Su.

IBM calls its copper/SOI process SA27E. "The reason SOI is so attractive is that it is an ideal transistor," said Su. "The difficulties with it have been in getting good enough materials without defects. What has kept people away from SOI is that scaling has been going so fast that SOI couldn't catch up. It could only be useful if SOI and silicon scaling were equivalent. Now SOI has caught up."

David Manners Electronics Weekly
PLUG IN AND MEASURE

8-12 bit
200kHz-50MHz
100mVolt-1200Volt

STORAGE OSCILLOSCOPE
SPECTRUM ANALYZER
VOLTMETE
TRANSIENT RECORDER

The HANDYSCOPE 2, connected to the parallel printer port of the PC and controlled by very user friendly software under Windows or DOS, gives everybody the possibility to measure within a few minutes. The philosophy of the HANDYSCOPE 2 is: "PLUG IN AND MEASURE"

Because of the good hardware specs (two channels, 12 bit, 200 kHz sampling on both channels simultaneously, 32 KWord memory, 0.1 to 80 volt full scale, 0.2% absolute accuracy, software controlled AC/DC switch) and the very complete software (oscilloscope, voltmeter, transient recorder and spectrum analyzer) the HANDYSCOPE 2 is the best PC controlled measuring instrument in its category.

The four integrated virtual instruments give lots of possibilities for performing good measurements and making clear documentation. The software for the HANDYSCOPE 2 is suitable for Windows 3.1 and Windows 95. There is also software available for DOS 3.1 and higher.

A key point of the Windows software is the quick and easy control of the instruments. This is done by using:

- the speed button bar. Gives direct access to most settings
- the mouse. Place the cursor on an object and press the right mouse button for the corresponding settings menu
- menus. All settings can be changed using the menus.
- some quick examples: The voltage axis can be set using a drag and drop principle. Both the gain and the position can be changed in an easy way. The time axis is controlled using a scalable scroll bar. With this scroll bar the measured signal (10 to 32K samples) can be zoomed live in and out.
- the pre and post trigger moment is displayed graphically and can be adjusted by means of the mouse. For triggering a graphical WYSIWYG trigger symbol is available. This symbol indicates the trigger mode, slope and level. These can be adjusted with the mouse.
- the oscilloscope has an AUTO DISK function with which unexpected disturbances can be captured. When the instrument is set up for the disturbance, the AUTO DISK function can be started. Each time the disturbance occurs, it is measured and the measured data is stored on disk. When pre samples are selected, both samples before and after the moment of disturbance are stored.
- the spectrum analyzer is capable to calculate an 8K spectrum and displays it. Because of this higher harmonics can be measured well (e.g. for power line analysis and audio analysis).

The HANDYSCOPE 2 is the best PC controlled measuring instrument in its category.

HANDYSCOPE 2 is £299.00 excl. VAT.

TiePie engineering (UK), 28 Stephenson Road, Industrial Estate, St. Ives, Cambridgeshire, PE17 4WJ, UK
Tel: 01480-460028; Fax: 01480-460340
E-mail: contact@tiepie.nl
http://www.tiepie.nl

CIRCLE NO. 105 ON REPLY CARD
UK leads Europe in IC design capability

The UK has taken the lead in Europe in high-level IC design. Local firms now account for well over half of all the revenues generated by Europe's independent design houses, according to a report by analysts Future Horizons.

"The level of intellect that's there is staggering," said Malcolm Penn, chairman of Future Horizons.

The report says that out of 140 design houses in Europe, 60 are in the UK and that, out of total 1998 design revenues of $1.06bn generated in Europe, $604m are generated by UK design houses.

The reason why the UK generates more than half Europe's revenues with less than half Europe's number of companies is, "because of the UK background in telecoms and mixed signal where you have to have the real brainpower," said Penn.

"Where you're not just linking millions of gates together but you're hand-crafting the transistors to get performance - these are fabulously intellectual skills and a very scarce resource," he continued.

"It's back to the days when you had linear designers who would sit for months in the desert drinking Tequila and then come back with a brilliant design," said Penn.

Driving the growth of the design house is the move to system level chips. Because OEMs and semiconductor houses do not need to employ high-level designers permanently, it is cheaper to out-source design work.

"Typically these companies are five to 15 engineers with sophisticated software but inexpensive workstations," said Penn. "The software cost is horrendous but after that it's all brainpower."

Typically the UK's design houses are located in clusters: in Bristol where they have spun-off from Inmos, in Swindon where they have spun off from GEC-Plessey Semiconductors (now Mitel Semiconductor), and around the Universities of Edinburgh and Cambridge.

European high-level IC design revenues will grow at 34 per cent compound annual growth rate over the next five years, said the report.

David Manners

1000MHz PC has fridge technology

Advanced Micro Devices (AMD) has demonstrated a PC running at 1GHz using an innovative cooling system.

The prototype PC, called the Super-G, uses AMD's forthcoming K7 microprocessor cooled by a system from KryoTech. Cooling the microprocessor allows engineers to increase the clock speed without worrying about overheating the chip.

"The Super-G is derived from two years of technical co-operation between Kryo-Tech and AMD," said Al Quick, chairman and CEO of KryoTech.

The Super-G cooling system uses a vapour phase refrigeration technology similar to that used in refrigerators. KryoTech said it will ship Super-G PCs later this year and will release pricing information at a future date.

AMD competitor Intel has also demonstrated a 1GHz PC but it is believed to have used liquid nitrogen rather than a commercial system to cool the processor.

No hot heads at BT

BT has denied that it has instructed its staff to use headsets with their mobile phones in response to a former employee's plan to sue the telecom giant.

The company confirmed that hands-free sets are available to those employees requesting them but said this has been the case for some time.

"Our position hasn't changed on this issue at all," said a BT spokesman. "The fact we give employees the chance to have hands-free sets if they want doesn't change our view that there's no evidence that mobile phones are harmful."

Stephen Corney, a former BT engineer, is suing the company over permanent brain damage allegedly caused by using mobile phones for several hours a day as part of his job.

Tempo rivals Dixons with free Internet

In the latest battle to win subscribers to free Internet service, Dixons' rival Tempo has set up a service offering free calls.

The high street chain is offering a free service, the same as that offered by Dixons' Freeserve, but with the addition of free connection calls during off-peak hours.

Tempo's screaming.net service will offer 118 off-peak hours a week Internet connection at no charge. The service will be available at first from Tempo stores through free CDs containing the necessary software. Users will have to sign up with telecoms service provider Localtel to use the service, which will make a return on normal voice calls. This, the firm says, will be cheaper than BT rates.

Initially a limited number of CDs will be available so as not to swamp the service. Later on these will be on offer at the rate of 100 000 to 200 000 a month.

Midget mike... Bell Labs researchers have built a tiny microphone on a silicon chip in their goal towards building a low-power, single-chip radio. Peter Gammel and colleagues at Bell Labs, the research arm of Lucent Technologies, built the microphone using micromachining.
Digital radio waves hello to Web access

The BBC is working with UK start-up RadioScape to enable Web access through digital radio transmissions.

The initiative will mean that Web sites containing headline news and share prices can be transmitted to a PC without connection to the Internet. The information will then be continually updated using digital radio, or digital audio broadcasting (DAB) as it is called.

"This is where DAB is going to become compelling," said Peter Florence, managing director of London-based digital radio specialist Densitron, which has developed a display called Chameleon to other LCD environments and mobile phones.

"It's a major breakthrough for us," said Nick How, product manager at Densitron.

The display shows a negative image and uses a backlight in low light conditions. When light levels are high, the display is positive, and reflects light.

Called Chameleon, the technology has applications where there is both high and low ambient light, such as marine and automotive environments and mobile phones.

"The technology automatically senses the ambient light and adjusts the image on the display from a positive to a negative image," said How. "As ambient light stops getting reflected, transmitted light takes over."

The technique can be applied to any size of display, said How, with minimal cost increase to the glass. Because less backlighting is needed, overall system cost could be reduced, he claimed.

"And a by-product is that reflected light is double that of a normal LCD technology," said How. Up to 70 per cent of incident light is reflected.

Backlights can use LED or electro-luminescent techniques.

Densitron has no plans to license Chameleon to other LCD manufacturers, preferring to keep it for its own displays.

Richard Ball

LCD adapts to bright and dim

Biggin Hill-based liquid crystal display (LCD) manufacturer Densitron has developed a display technology that improves visibility in different ambient lighting conditions.

"It's a major breakthrough for us," said Nick How, product manager at Densitron.

The display shows a negative image and uses a backlight in low light conditions. When light levels are high, the display is positive, and reflects light.

Called Chameleon, the technology has applications where there is both high and low ambient light, such as marine and automotive environments and mobile phones.

"The technology automatically senses the ambient light and adjusts the image on the display from a positive to a negative image," said How. "As ambient light stops getting reflected, transmitted light takes over."

The technique can be applied to any size of display, said How, with minimal cost increase to the glass. Because less backlighting is needed, overall system cost could be reduced, he claimed.

"And a by-product is that reflected light is double that of a normal LCD technology," said How. Up to 70 per cent of incident light is reflected.

Backlights can use LED or electro-luminescent techniques.

Densitron has no plans to license Chameleon to other LCD manufacturers, preferring to keep it for its own displays.

Richard Ball

Sub 100nm geometry from optical litho?

Flash memory with a minimum feature size of just 0.08µm has been manufactured using conventional optical lithography by Bell Labs.

Researchers claim this is the smallest working device ever manufactured using optical lithography. Stepper manufacturers and semiconductor engineers believed optical techniques would reach a limit at 0.12µm, or 120nm.

The achievement could result in big savings for semiconductor makers, by not having to switch to new manufacturing technology.

To make the device, Bell Labs used a 193nm laser in combination with phase shift masks. Photore sist s were also developed to work with the shorter wavelength light.

The resulting flash storage cell has a floating gate measuring 80x160nm.

Beyond the 193nm used by Bell Labs, semiconductor manufacturers are looking towards extreme ultraviolet (EUV) lasers, ion-beam and electron-beam.

New chip solves music industry's web copyright fears

Lucent Technologies, Texas Instruments (TI) and e.Digital are developing a device that can download from the Internet copyright protected music.

The device will compete with other portable digital music products that play audio encoded in the popular MP3 format.

e.Digital will make the portable devices based on a TI DSP running Lucent's enhanced perceptual audio coder (EPAC) technology.

"The quality of the sound that we've heard with EPAC on our hardware platform is exceptional," said Fred Falk, CEO of e.Digital.

Lucent and its partners hope that their EPAC-based devices will find favour among main music publishers who are shunning MP3 because it lacks copyright protection.

EPAC uses an 11-to-1 compression ratio to provide CD-quality sound and was developed at Lucent's Bell Labs.

Richard Ball
Imagine an electronics design system that lets you draw schematics onto the screen and then simulate them at the touch of a button. Now imagine pressing another button and seeing the schematic replaced with a PCB rats-nest. Pressing another button starts the autorouter, and finally you can click on File then Save As to create a complete set of CADCAM files.

Too easy? We hope so. Quickroute has always been designed first and foremost to be easy to use. That’s why simulation, circuit capture, PCB autorouting and CADCAM support are all integrated into one package, so that you only have to learn one package.

If you would like to find out more about Quickroute, why not call us on FREEphone 0800 731 28 24, or visit our website on www.quickroute.co.uk. Prices start at under £100 including UK P&P and VAT for a complete system.

"modern, powerful and easy to use"

"modern, powerful and easy to use"

Ramco

GENUINE GOVERNMENT SURPLUS

We currently have in stock a selection of MOD surplus electrical equipment.

All items are untested and sold as seen. Please ring for more details.

Tektronix 212 Oscilloscope (AC/DC) £99,
Tektronix 2205 Oscilloscope (20MHz) £199
Tektronix 2445A Oscilloscope (150MHz) £399,
H.P. 1744A Oscilloscope (100MHz) £75,
Philips 3217 Oscilloscope (50MHz) £149,
Marconi 2305 Modulation Meter £999,
Solartron JM1861 Signal Generator £99,
Datalab DL1080 Transient Recorder £99,
Wavetek 178 Waveform Synthesiser £599,
Datron 1041 Voltmeter Multifunction £132,
Fluke 8800A Multimeter Digital £58,
Dana 5000 Multimeter Digital £92,
Philips PM5705 Pulse Generator 0.1Hz-10MHz £149

OFFICIAL SURPLUS CONTRACTORS TO THE BRITISH MINISTRY OF DEFENCE

Church Lane, Croft, Skegness, Lincs PE24 4RW
(Just off theA52) Telephone 01754 880880

Ramco

GENUINE GOVERNMENT SURPLUS

We currently have in stock a selection of MOD surplus electrical equipment.

All items are untested and sold as seen. Please ring for more details.
When considering a stereo system, most people look at distortion, frequency response and power output. Purists also look at things like damping factor, noise and slew rate. But what about the system's stereo image? Does it matter? If so, how can it be quantified? John Watkinson provides the answers.

Stereo from all angles

This set of articles looks at every aspect of stereo and in particular those areas where quality can be lost. Starting with the human ear, it considers the direction sensing mechanism, the way that the illusion of intensity stereo is created, the way stereo microphones should work and possible pitfalls, and then the way in which loudspeakers ought to work in stereo but frequently don't.

In addition to explaining the theory of stereo, I will present practical advice on what to do to make a tangible difference.

Where is it coming from?
Without doubt, the ability to convey some impression of the spatial nature of sound adds considerably to the realism of an otherwise accurate reproduction of the frequency and time domain information.

It is axiomatic that the more accurate a reproduction system is, the more realistic it will sound.

Various measurement techniques have evolved for audio equipment in which an objective measurement is made and compared with some criterion based on subjective tests of human hearing. Measurements of frequency response and linear and non-linear distortion are routinely made to assess the quality of audio equipment and all have internationally agreed measurement units.

The mechanism by which humans determine sound direction, and the accuracy to which it can be done are well known. Accordingly, this ought to be the criterion for the spatial accuracy of a stereo reproduction system - just as the ear's sensitivity
to distortion is the basis for audio linearity criteria.

I find it bizarre that there are no internationally agreed techniques for measuring the spatial accuracy of stereo reproduction systems. Nor are there even any units of measurement, although other industries purveying spatially-disposed images have evolved such means.

The consequences of this lack are all around us. It is well known that loudspeakers displaying identical conventional measurements sound different from each other and from the original. This confirms that existing measurements give an incomplete picture of performance.

In the absence of a psychoacoustically based unit of spatial perception, the comparison of speakers becomes a minefield of subjectivism and technical progress is hampered.

I have been carrying out fundamental research into stereo imaging accuracy and have

consistently found that whenever a traditional approach is replaced by an approach dictated by imaging theory, the results are simply more realistic.

As this series evolves, it will become clear that there is considerable scope for improvement in the realism of stereo reproduction and that an additional metric is required to help bring that about.

Enter the ear...

The ultimate criterion for sound reproduction is that the human ear is fooled into thinking it has heard the real thing. It follows that good understanding of human hearing has to form the basis for all of the value judgements which will be necessary as system design proceeds.

Figure 1 shows that the structure of the ear is traditionally divided into the outer, middle and inner ears. The outer ear works at low impedance, the inner ear works at high impedance, and the middle ear is an impedance matching device.

The visible part of the outer ear is called the pinna which plays a subtle role in determining the direction of arrival of sound at high frequencies. It is too small to have any effect at low frequencies. Incident sound enters the auditory canal or meatus.

The pipe-like meatus causes a small resonance at around 4kHz. Sound vibrates the eardrum or tympanic membrane rendering it conical. The malleus and the incus are firmly joined together to form a lever. The incus acts upon the stapes through a spherical joint. The area of the tympanic membrane is greater than that of the oval window, creating a further mechanical advantage. Small pressures over the large area of the tympanic membrane are converted to high pressures over the small area of the oval window.

The middle ear is normally sealed, but ambient pressure changes will cause static pressure on the tympanic membrane that is painful. The pressure is relieved by the eustachian tube, which opens involuntarily while swallowing.

The cochlea, shown in Fig. 3a), is a tapering spiral cavity within the bony walls which is filled with fluid. The widest part, near the oval window, is called the base and the distant end is the apex.

Figure 3b) shows that the cochlea is divided lengthwise into three volumes by Reissner’s membrane and the basilar membrane. The scala vestibuli and the scala tympani are connected by a small aperture at the apex of the cochlea known as the helicotrema.

Vibrations from the stapes are transferred to the oval window and cause fluid pressure variations reflected. The middle ear remedies that mismatch by providing a mechanical advantage.

The tympanic membrane is linked to the oval window by three bones known as ossicles. These act as a lever system such that a large displacement of the tympanic membrane results in a smaller displacement of the oval window, but with greater force.

Figure 2 shows that the malleus applies tension to the tympanic membrane rendering it conical. The malleus and the incus are firmly joined together to form a lever. The incus acts upon the stapes through a spherical joint. The area of the tympanic membrane is greater than that of the oval window, creating a further mechanical advantage. Small pressures over the large area of the tympanic membrane are converted to high pressures over the small area of the oval window.

The middle ear is normally sealed, but ambient pressure changes will cause static pressure on the tympanic membrane that is painful. The pressure is relieved by the eustachian tube, which opens involuntarily while swallowing.

The cochlea, shown in Fig. 3a), is a tapering spiral cavity within the bony walls which is filled with fluid. The widest part, near the oval window, is called the base and the distant end is the apex.

Figure 3b) shows that the cochlea is divided lengthwise into three volumes by Reissner's membrane and the basilar membrane. The scala vestibuli and the scala tympani are connected by a small aperture at the apex of the cochlea known as the helicotrema.

Vibrations from the stapes are transferred to the oval window and become fluid pressure variations reflected. The middle ear remedies that mismatch by providing a mechanical advantage.

The tympanic membrane is linked to the oval window by three bones known as ossicles. These act as a lever system such that a large displacement of the tympanic membrane results in a smaller displacement of the oval window, but with greater force.
which are relieved by the flexing of the round window.

Effectively the basilar membrane is in series with the fluid motion and is driven by it except at very low frequencies where the fluid flows through the helicotrema, bypassing the basilar membrane. Figure 3c) shows that the basilar membrane tapers in width and varies in thickness in the opposite sense to the taper of the cochlea.

How various frequencies affect the mechanism

The part of the basilar membrane that resonates as a result of an applied sound is a function of the frequency. High frequencies cause resonance near to the oval window, and low frequencies cause resonances further away.

The distance from the apex where the maximum resonance occurs is a logarithmic function of the frequency so that tones spaced apart in octave steps will excite evenly spaced resonances in the basilar membrane.

The existence of resonance at a location on the membrane which is a function of frequency is predicted by place theory. Essentially the basilar membrane is a mechanical frequency analyser.

A knowledge of the way it operates is essential to an understanding of musical phenomena such as pitch discrimination, timbre, consonance and dissonance and to auditory phenomena such as critical bands, masking and the precedence effect.

The vibration of the basilar membrane is sensed by the organ of corti, which runs along the centre of the cochlea and contains elements which can generate vibration as well as sense it. These are connected in a regenerative fashion so that the Q factor, or frequency selectivity, of the ear is higher than it would otherwise be.

The deflection of hair cells in the organ of corti triggers nerve firings and these signals are conducted to the brain by the auditory nerve.

Nerve firings are not a perfect analogue of the basilar membrane motion. A nerve firing appears to occur at a constant phase relationship to the basilar vibration, a phenomenon called phase locking, but firings do not necessarily occur on every cycle. At higher frequencies firings are intermittent, yet each has the same phase relationship.

Ear resonances

The resonant behaviour of the basilar membrane is not observed at the lowest audible frequencies below 50Hz. The pattern of vibration does not appear to change with frequency and it is possible that the frequency is low enough to be measured directly from the rate of nerve firings.

At its best, the ear can detect a sound pressure variation of only 20 micropascals RMS and so this figure is used as the reference against which sound pressure level is measured. The sensation of loudness is a logarithmic function of sound pressure level and consequently a logarithmic unit – the decibel – is used in audio measurement.

The dynamic range of the ear exceeds 130dB, but at the extremes of this range, the ear is either straining to hear or is in pain. The frequency response of the ear is not at all uniform. It changes with sound pressure level.

The subjective response to level is called loudness and is measured in phons. The phon scale and the sound pressure level scale coincide at 1kHz, but at other frequencies the phon scale deviates because it displays the actual sound pressure levels judged by a human subject to be equally loud as a given level at 1kHz.

Figure 4 shows the so-called equal loudness contours which were originally measured by Fletcher and Munson and subsequently by Robinson and Dadson. Note the irregularities caused by resonances in the meatus at about 4kHz and 13kHz.

Fig. 4. Contours of equal loudness showing that the frequency response of the ear is highly level dependent. The solid line is typical of someone aged 20 and the dashed line a 60-year old.

Where did the bass go?

The most dramatic effect of the curves of Fig. 4 is that the bass content of reproduced sound is disproportionately reduced as the level is turned down.

If an adequately powerful yet high quality reproduction system is available the correct tonal balance when playing a good recording can be obtained simply by setting the volume control to a level that sounds natural. Many musical instruments and the human voice change timbre with level and there is only one level that sounds correct for the timbre.

A further consequence of level-dependent hearing response is that recordings mixed at an excessively high level will appear bass-light when played back at a normal level. Such recordings are more a product of self-indulgence than professionalism.

Figure 5 shows an uncoiled basilar
Fig. 6. Critical bandwidth changes with sound pressure level.

Fig. 7. The resonant nature of the ear prevents accurate response to a tone burst, a). In b), response is seen to increase during the tone burst as resonance builds up.

Fig. 8. If the ear behaved like a fixed filter bank, the filter response could be derived as shown in a). This theory does not hold though, because a single tone would cause response in several bands, b).

Response in three bands due to single frequency

Amplitudes drawn as frequency response

Frequency

Fixed point on basilar membrane

Four different excitation frequencies

Envelope of vibration (exaggerated for clarity)

Attacks time

Decay time

Excitation tone burst

Motion of basilar membrane

Relative loudness (dB)

Tone burst duration (ms)

-20

-10

0

1

10

100

1000

Low level

High level

Frequency

ANALOGUE DESIGN

membrane with the apex on the left so that the usual logarithmic frequency scale can be applied. The envelope of displacement of the basilar membrane is shown for a single frequency at a). The vibration of the membrane in sympathy with a single frequency cannot be localised to an infinitely small area. Nearby areas are forced to vibrate at the same frequency with an amplitude that decreases with distance.

Note that the envelope is asymmetrical because the membrane is tapering and because of frequency dependent losses in the propagation of vibrational energy down the cochle.

If the frequency is changed, as in b), the position of maximum displacement will also change. As the basilar membrane is continuous, the position of maximum displacement is infinitely variable allowing extremely good pitch discrimination of about one twelfth of a semitone which is determined by the spacing of hair cells.

In the presence of a complex spectrum, the finite width of the vibration envelope means that the ear fails to register energy in some bands when there is more energy in a nearby band. Within those areas, other frequencies are mechanically excluded because their amplitude is insufficient to dominate the local vibration of the membrane.

The Q factor of the membrane is responsible for the degree of auditory masking, defined as the decreased audibility of one sound in the presence of another.

The term critical bandwidth is used in psychoacoustics to describe the finite width of the vibration envelope. The envelope of basilar vibration is a complicated function. It is clear from the mechanism that the area of the membrane involved will increase as the sound level rises. Figure 6 shows the bandwidth as a function of level.

Transform theory teaches that the higher the frequency resolution of a transform, the worse the time accuracy. As the basilar membrane has finite frequency resolution measured in the width of a critical band, it follows that it must have finite time resolution. This also follows from the fact that the membrane is resonant, taking time to start and stop vibrating in response to a stimulus.
There are many examples of this. Figure 7a) shows the impulse response and Fig. 7b) shows the perceived loudness of a tone burst increases with duration up to about 200ms due to the finite response time.

The ear has evolved to offer intelligibility in reverberant environments. It does this by averaging all received energy over a period of about 30ms. Reflected sound that arrives within this time is integrated to produce a louder sensation, whereas reflected sound arriving after that time can be temporally discriminated and is perceived as an echo.

A further example of the finite time discrimination of the ear is the fact that short interruptions to a continuous tone are difficult to detect. Finite time resolution means that masking can take place even when the masking tone begins after and ceases before the masked sound. This is referred to as forward and backward masking.

Some treatments of human hearing liken the basilar membrane to a bank of fixed filters each of which is the width of a critical band. The frequency response of such a filter can be deduced from the envelope of basilar displacement as has been done in Fig. 8.

The fact that no agreement has been reached on the number of such filters should alert the suspicions of the reader. The fact that a third-octave filter-bank model cannot explain pitch discrimination some thirty times better is another cause for doubt.

The response of the basilar membrane is centred upon the input frequency. No fixed filter can do this.

However, the most worrying aspect of the fixed filter mode, is that according to Fig. 8b), a single tone would cause a response in several bands which would be interpreted as several tones. This is at variance with reality. Far from masking higher frequencies, we appear to be creating them!

Figure 9 shows an electrical signal a) in which two equal sine waves of nearly the same frequency have been linearly added together. Note that the envelope of the signal varies as the two waves move in and out of phase.

Clearly the frequency transforms calculated to infinite accuracy is that shown at b). The two amplitudes are constant and there is no evidence of the envelope modulation. However, such a measurement requires an infinite time. When a shorter time is available, the frequency discrimination of the transform falls and the bands in which energy is detected become broader.

When the frequency discrimination is too wide to distinguish the two tones as in c), the result is that they are registered as a single tone. The amplitude of the single tone will change from one measurement to the next because the envelope is being measured.

The rate at which the envelope amplitude changes is called a beat frequency. This beat frequency is not present in the input signal. Beats are an artefact of finite frequency resolution transforms. The fact that human hearing produces beats from pairs of tones proves that it has finite resolution.

Measurement of when beats occur allows measurement of critical bandwidth. Figure 9d) shows the results of human perception of a two-tone signal as frequency difference changes. When it is zero, described musically as unison, only a single note is heard.

As the difference increases, beats are heard, yet only a single note is perceived. The limited frequency resolution of the basilar membrane has fused the two tones together. As it increases further, the sensation of beats ceases at 12-15Hz and is replaced by a sensation of roughness or dissonance.

The roughness is due to parts of the basilar membrane being unable to decide the frequency at which to vibrate. The regenerative effect may well become confused under such conditions. The roughness persists until the frequency difference has reached the critical bandwidth.

Beyond this bandwidth, two separate tones will be heard because there are now two discrete basilar resonances. In fact this is the definition of critical bandwidth.

My next article on this topic continues with how the human hearing mechanism senses direction.

Fig. 9. Section a) shows two sine waves of similar frequency added and b) shows the waveform's spectrum to infinite accuracy. Assuming finite accuracy, only a single frequency is distinguished, c), whose amplitude changes with the envelope of a), giving rise to beats. Perception of a two-tone signal as frequency difference changes is shown in d).
Unique reader offer: x1, x10 switchable oscilloscope probes, only £21.74 a pair, fully inclusive*

*Additional pairs as part of the same order, only £19.24 each pair.

Please supply the following:

<table>
<thead>
<tr>
<th>Probes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>Postcode</td>
<td>Telephone</td>
</tr>
</tbody>
</table>
| Method of payment (please circle)
Cheques should be made payable to Reed Business Information Access/Mastercard/Visa/Cheque/PO
Credit card no |
| Card expiry date | Signed |

Please allow up to 28 days for delivery

Seen on sale for £20 each, these high-quality oscilloscope probe sets comprise:
- two x1, x10 switchable probe bodies
- two insulating tips
- two IC tips and two sprung hooks
- trimming tools

There's also two BNC adaptors for using the cables as 1.5m-long BNC-to-BNC links. Each probe has its own storage wallet.

To order your pair of probes, send the coupon together with £21.74 UK/Europe to Probe Offer, Electronics World Editorial, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Readers outside Europe, please add £2.50 to your order.

Specifications

<table>
<thead>
<tr>
<th>Switch position 1</th>
<th>DC to 10MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>1MΩ - i.e. oscilloscope i/p</td>
</tr>
<tr>
<td>Input resistance</td>
<td>40pF + oscilloscope capacitance</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>600V DC or pk-pk AC</td>
</tr>
<tr>
<td>Working voltage</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Switch position 2</th>
<th>DC to 150MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>2.4ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>10MΩ ±1% if oscilloscope i/p is</td>
</tr>
<tr>
<td>Input resistance</td>
<td>12pF if oscilloscope i/p is 20pF</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>10-60pF</td>
</tr>
<tr>
<td>Compensation range</td>
<td>600V DC or pk-pk AC</td>
</tr>
<tr>
<td>Working voltage</td>
<td></td>
</tr>
</tbody>
</table>

Switch position 'Ref'
Probe tip grounded via 9MΩ, scope i/p grounded
Professional Electronics Design

EDWin NC

50% Discount

- Genuine, professional EDA software with no limitations! - and YOU can afford it!
- EDWin NC comes from Visionics: one of the longest established, most experienced producers of professional EDA systems, so it’s fully proven in professional work.
- Now you can have this best-selling non-commercial version of the software at just 50% of the normal price, with no limits in its capabilities.
- It does just about everything you could want!

Schematics, simulation, PCB layout, autorouting, manufacturing outputs, EMC and Thermal Analysis.
Many more advanced features are available and it runs in Windows 3.x, 95, 98 or NT.

Where’s the catch? It’s for non-commercial use, but companies may order for evaluation purposes.
Prices start from just £59.00 for the basic system, up to only £285.00 for the full system including all available modules!

Don’t forget - Phone Today for Your 50% Discount!

- EDWin NC Basic: Schematics, PCB Layout, Manufacturing Outputs, Max. 100 Component Database, 500 Device Library.
- EDWin NC De Luxe 1: Basic + Professional Database and Libraries, Arizona Autorouter.
- EDWin NC De Luxe 2: De Luxe 1 + Mix-Mode Simulation, Thermal Analyser.
- EDWin NC De Luxe 3: De Luxe 2 + EDSpice Simulation, EDCoMX Spice Model Generator, EMC and Signal Integrity Analysers.

Plus Postage & Packing UK £5.00; Rest of World £10.00 (only one charge per order)

Order hotline: +44 (0)1992 570006 Fax +44 (0)1992 570220 E-mail: swift.eu@dial.pipex.com
Please Visit Our Web Site http://www.swiftdesigns.co.uk

I enclose: £total.

Cheque/PO/Credit Card:
Visa/Mastercard/Eurocard: No.

Issue Date: Expiry Date:

Date Signature
Name:
Address:

Postcode
Tel.: Evenings

I wish to order:
- EDWin NC BASIC: £59.00
- EDWin NC De Luxe 1: £119.00
- EDWin NC De Luxe 2: £155.00
- EDWin NC De Luxe 3: £285.00
- Postage & Packing UK £5.00
- Rest of World £10.00

(only one P&P charge per order)

Total £

Swift Eurotech Ltd.
Twankhams Alley, 160 High Street, Epping, Essex, CM16 4AQ, UK.
Douglas Self tackles the vital subject of relay muting and protection in audio amplifiers. He reveals some little known secrets of relay operation and shows how to make them switch faster than is apparently possible. As a bonus, there's an upgrade to his precision preamp.

Most power amplifiers incorporate an output relay that not only provides muting to prevent transients reaching the loudspeakers, but also protection against destructive DC faults. Loudspeakers are expensive, and no amplifier should ever be connected to one without proper DC-offset protection. This applies with particular force to experimental amplifiers.

Sensible preamplifiers - ie those with AC-coupled outputs - do not require DC protection, but the muting of thumps is no less important. Electronic switching at preamp outputs is feasible, but still presents technical challenges if high standards of linearity are to be combined with a reasonably low output impedance.

Electronic output switching is impracticable at power amplifier signal levels; however, if the amplifier is powered by a switch-mode supply, then turning it off is an option if positive and negative rails can be relied upon to collapse quickly and symmetrically.

Protection circuit operation
Basic functions of a power-on thump elimination and DC protection circuit are as follows:
- Delay relay pull-in until amplifier turn-on transients are over.
- Drop out relay as fast as possible when DC fault occurs.
- Drop out relay on excess temperature, etc. Speed non-critical.

Figure 1 is a block-diagram of a system to perform these functions. Since this is in part a protection system, simplicity and bullet-proof reliability are essential.

The main dynamic parameters of a relay are the pull-in and drop-out time. For this kind of application, the pull-in time is more or less irrelevant, as it is milliseconds compared with the seconds of the turn-on delay.

Relay contacts bounce when they close, but the duration of pull-in contact bounce is not important for this application.

All the relays I examined showed clean contact-breaking on drop-out, and this is essential for fast muting. Table 1 gives details of three power-
Amp relays and the Fujitsu relay used in the Precision Preamplifier '96 article. The specifications for the P&B relay are very conservative. The example measured pulled-in at 72% of the must-operate voltage, and dropped out at 350% of the must-drop-out voltage. Likewise the real operating times are much less than those specified.

The critical parameter for audio muting is the drop-out time, for this puts a limit on the speed with which turn-off transients can be suppressed. It seems at first that the drop-out time must be solely a function of the relay design, depending on the force in the bent contact spring and the inertia of the moving parts. This is partly true, as mechanical factors set a minimum time, but that time is greatly extended by the normal relay-driving circuits.

Relay-on timing
The delay required at amplifier turn-on depends on the amplifier characteristics. If there are long time-constants, and voltages that take a while to settle, then the muting period will have to be extended to prevent clicks and thumps. Five seconds is probably the upper limit before the delay gets irritating; one second is long enough for a silent start-up with most conventional amplifiers.

This delay function can be performed in many ways, but there are a few points to consider. The tolerance on the length of the turn-on delay is not critical, and an RC time-constant is quite adequate to define it.

It is convenient – and significantly cheaper – to run the relay control circuitry directly from the main HT rails rather than creating regulated sub-rails or extra windings on the mains transformer. The emphasis is therefore on discrete transistor circuitry.

Figure 2 shows the relay control system 1 used in the Precision Preamplifier '96. Note that there was an error in the original diagram that is corrected here.

Capacitor C224 charges through R211 until D207 is forward-biased and T205 turns on. This turns on T206 and energises the relay; the extra current-gain of T206 enables the timing circuitry to run at low power. The on-timing delay here is 2 seconds.

A series dropper resistor for the relay is usually required; here it is R218. The highest voltage relay-coil available is usually 48V, though 24V is more common, and power amplifier rails are often much higher than this.

The reverse diodes across the relay coils prevent T206 being damaged by the inductive spike created when the coil is suddenly de-energised.

For relays of the size used in power amplifiers, signal diodes cannot cope with the voltage and current requirements. All diodes 1 N4001 D205R and D206.

Table 1a. Relay specifications as presented by their manufacturers.

<table>
<thead>
<tr>
<th></th>
<th>P&B</th>
<th>Oko</th>
<th>Schrack</th>
<th>Fujitsu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal voltage</td>
<td>24V</td>
<td>18V</td>
<td>12V</td>
<td>12V</td>
</tr>
<tr>
<td>Must-operate voltage</td>
<td>18V</td>
<td></td>
<td>8.4V</td>
<td></td>
</tr>
<tr>
<td>Drop-out voltage</td>
<td>2.4V</td>
<td></td>
<td>1.2V</td>
<td></td>
</tr>
<tr>
<td>Coil resistance</td>
<td>660Ω</td>
<td></td>
<td>320Ω</td>
<td></td>
</tr>
<tr>
<td>Pull-in time</td>
<td>15ms</td>
<td></td>
<td>5ms</td>
<td></td>
</tr>
<tr>
<td>Pull-in time typical</td>
<td>9ms</td>
<td></td>
<td>3ms</td>
<td></td>
</tr>
<tr>
<td>Drop-out time maximum</td>
<td>10ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drop-out time typical</td>
<td>7ms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1b. Measured relay specifications.

<table>
<thead>
<tr>
<th></th>
<th>P&B</th>
<th>Oko</th>
<th>Schrack</th>
<th>Fujitsu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operate voltage</td>
<td>13V</td>
<td>13V</td>
<td>7V</td>
<td>6V</td>
</tr>
<tr>
<td>Drop-out voltage</td>
<td>8.5V</td>
<td>6.5V</td>
<td>2.5V</td>
<td>2V</td>
</tr>
<tr>
<td>Pull-in time</td>
<td>14ms</td>
<td>10ms</td>
<td>10ms</td>
<td>2.7ms</td>
</tr>
<tr>
<td>Drop-out time</td>
<td>1.0ms</td>
<td>1.3ms</td>
<td>2.4ms</td>
<td>1.2ms</td>
</tr>
<tr>
<td>Diode drop-out time</td>
<td>5.4ms</td>
<td>6.9ms</td>
<td>11ms</td>
<td>4.2ms</td>
</tr>
<tr>
<td>27V-clamp drop-out time</td>
<td>1.8ms</td>
<td>2.4ms</td>
<td>2.7ms</td>
<td>1.3ms</td>
</tr>
</tbody>
</table>

*P&B is Potter and Brumfield
with the stored energy and the 1N4001 type should be used.

Off timing criteria
The relay drop-out must be as fast as possible. If a relay is powered directly from the supply rails, then it will drop out eventually as the rails collapse, but this will be far too slow to catch turn-off noises.

The drop-out voltage may well be less than a third of the pull-in voltage, and this slows things down even more. A specific fast off circuit is required, and there are several ways to achieve this.

Mechanical detection. This is a mains switch that closes or opens a control circuit before the mains power contacts are opened. It could give perfect relay operation, but I am not aware that any such mains switch has ever been produced.

Detecting the loss of DC supply. This technique involves a subsidiary supply rail with a small reservoir capacitor. When the mains is switched off, the capacitor discharges quickly and either removes the relay power directly, or resets the turn-on delay timer. The latter is usually easier to implement.

This method is inherently slow, because the relay-off threshold must be below the ripple troughs. Therefore in the worst case, an entire half-cycle of mains must pass before the capacitor becomes fully discharged, so the delay may be 10ms. In practice there are component tolerances to be allowed for, and the threshold must be set low enough to prevent spurious operation if the mains voltage is below normal. It is usually prudent to ensure circuitry works with mains down to at least -20%. This extends the minimum delay to about 16ms. The reservoir capacitor will have a large ripple voltage across it, and its ripple-current rating must be carefully observed.

AC loss detection
The most straightforward method of AC-loss detection exploits the fact that properly-defined zero-crossings are very brief; all that is required is a timer that will not complete and drop out the relay until a period greater than the width of the zero-crossing has expired. This delay can readily be reduced to less than 1ms.

Referring to Fig. 2, Tr203 is normally held firmly on by the incoming AC, via D205 on positive half-cycles and D206 on negative ones, and thus keeps C223 fully discharged. At the zero-crossings, Tr203 has no base drive and turns off, allowing C223 to begin charging through R208. If the absence of base drive persists beyond the preset period, which means the AC has been interrupted, then C223 charges until Tr204 turns on and rapidly discharges the main timing capacitor C210 through R207, dropping out the relay.

When a relay is driven by a transistor, it is standard to put a reversed diode across the coil. Without it, abrupt turn-off of current causes the coil voltage to reverse, driving the collector more negative. For the relays here, the worst spike measured was -120V, which is enough
to destructively exceed the V_{ee} of most transistors.

This apparently innocent, and indeed laudable practice of diode protection conceals a lurking snare; drop-out time is hugely increased by the reverse diode. It is roughly five times longer, which is very unwelcome in this particular application. This is because the diode gives a path for current to circulate while the magnetic field decays.

This is a good point to stop and consider exactly what we are trying to do: the aim is not to totally suppress the back-EMF but rather to protect the transistor.

If the back-EMF is clamped to about -27V by a suitable Zener diode in series with the reverse diode, the circulating current stops much sooner, and the drop-out is almost as fast as for the non-suppressed relay.

In general, drop-out is speeded up by a factor of about four on moving from conventional protection to Zener clamping. For the relays examined here, a 500mW Zener appeared to be adequate.

Preamp enhancement

The preamp relay controller can be improved upon; it works well under most circumstances, but it could be faster. Testing showed that the delay between loss of AC and the relay power being removed could be as long as 17ms, depending slightly on the phase of the mains when it was cut. The relay drop-out time was 5ms giving a total of 22ms before the preamp output is muted.

The following circuit improvements were made to speed up relay drop out.

The on-timing reference divider R_{205} is replaced with a 15V Zener diode. This sharpens up the relay pull-in, making a more 'precise' click. It also prevents the voltage on C_{224} rising beyond that required to turn on Tr_{204}, discharging it when the relay opens now was 9.5ms worst-case.

After adding Zener clamping to the relays this fell to 6.3ms worst-case, the average being 4.5ms; the improved circuit is four times faster.

The component changes can be simply retro-fitted to existing Preamp '96 circuit boards using Table 2.

Other relay functions

The extra protective functions of a power amp relay require OR-ing together several error signals for DC offset, temperature shutdown, etc.

If a DC fault occurs in a power amplifier, this typically means that the output slams hard to one of the rails and stays there. Assuming the loudspeaker does not suffer instantaneous mechanical damage, it will overheat after a relatively short period as the DC flows through it.

DC offset protection cannot prevent a loudspeaker hitting its mechanical limits, but it will stop it catching fire if the relay opens promptly. Once more, time is of the essence.

Usually, DC offset is detected by passing the amplifier output through an RC time-constant long enough to remove all audio, followed by a DC-detect circuit that responds to offsets of either polarity.

To allow a safety margin against false triggering on bass signals, I decided that the RC filter must accept full output at 2Hz without the detector acting. For example, if it triggers at $+2$V, then for supply rails of $+55$V there must be 29dB of attenuation at 2Hz; with a single pole this means a -3 dB frequency about 0.07Hz.

This sort of low-pass filtering inevitably introduces a time delay; if the output leaves 0V and moves promptly to one of the rails, this will be 50ms with the circuit of Fig. 3. Detecting offsets of either polarity requires a little thought. Figure 4 shows a common circuit; a positive voltage turns on Tr_8 by forward biasing its base, while a negative voltage turns on Tr_7 by pulling down the emitter. The presence of DC is indicated by the collector voltage falling.

This solution is simple but highly asymmetrical, requiring either $+1.05$V or -5.5V to pull the collectors down to 0V. For positive voltages the stage is common-emitter with high voltage gain, but for negative ones it works in common-base with a lower voltage gain, set by the ratio of R_{16} and R_9. It is difficult to make this ratio large without R_{16} becoming too small and hence C_4 inconveniently big.

If you're unlucky - and chances are you will be - the offset will have
the wrong polarity for C_4, which will degrade if left reverse-biased for long periods. Two ordinary electrolytes back-to-back is the cheapest solution.

The improved DC detector in Fig. 5 is fully symmetrical. Positive voltages turn on D_{11} and Tr_5; Tr_7 also conducts as its emitter is pulled up by Tr_5, while its base is held low by D_{14}. Negative voltages turn on D_{13} and Tr_7; Tr_9 conducts with its base fed by D_{12}. The threshold is now ±2.4V, as for each polarity there are two diodes and two base-emitter voltages in series. The higher threshold is not a problem as the typical amplifier fault snaps the output hard to one of the rails.

One exception to this statement is HF instability. If an amplifier bursts joyfully into HF oscillation, it will almost certainly show slew-limiting as well. This is unlikely to be very symmetrical so there will be a DC shift at the output.

The magnitude of this is not very predictable, but a 2.4V threshold will detect most cases. This should save your tweeters, though it may not save the amplifier from internal heating due to conduction overlap in the relatively slow output devices.

Figure 5 can be adapted for stereo simply by adding two more diodes, as in Fig. 3. Note that a positive offset on one channel and a negative one on the other - admittedly highly unlikely - do not cancel out; a fault is still signaled.

Power amplifier relay control

Figure 3 shows a power amp relay controller, designed for ±55V rails and 24V relays such as the P&B T90 type outlined in Table 1. The main differences are the inclusion of DC offset detection and an efficiency circuit to minimise dissipation in the relays, which are now larger than in the preamp, and require more power.

The DC-detect circuit rapidly discharges on-timing capacitor C_3 through D_3 when Tr_7 collector goes low. An extra OR input for thermal shutdown acts via a series diode in the shutdown line.

The circuit now uses MPSA42/MPSA92 transistors to withstand the higher supply voltages, as usual higher V_{CEO} means lower current-gain, which must be allowed for in the detailed design.

The electronic delay until coil switch-off averages 2ms, the timing being shown in Fig. 6. The AC was interrupted at centre screen, and a large positive-going off-transient can be seen just to the right. This is due to the leakage inductance of a large transformer.

The loss of AC cannot be detected until this transient decays to zero, so the delay is slightly extended. This was not a problem with the preamp version as it uses a small toroid with much less leakage inductance.

Figure 7 shows the relay coil voltage. At switch off it goes straight down through zero until clamped by the two Zeners at around ~30V. This puts 105V on Tr_4 collector, which is no problem as it is rated at 300V V_{CEO}. The relay contacts open just as clamping ceases and the coil voltage returns slowly to zero. Drop-out time is 1.8ms, giving a total delay of 3.8ms.

Efficiency circuit

All relays have a pull-in voltage that is greatly in excess of that required to keep them closed. It is therefore possible to save considerable power by applying full voltage only briefly, and then reducing it to a level which is still safely above the maximum drop-out voltage.

From Table 1 there is plenty of scope for this. By comparing the specified and measured performance, you will see that the P&B relay can be trusted to pull in at 18V and not drop out above 8.5V.

The initial pulse is provided by Tr_5 and R_{13}. At switch-on, Tr_3 is off and Tr_5 does nothing. After the on-timing delay Tr_4 conducts, Tr_3’s emitter is pulled up, and its base receives a pulse of current via R_{14} and C_3. Resistor R_{13} is shorted by Tr_5 and the relays get a voltage reduced only by R_{12}; see Fig. 8.

After 40ms, C_3 is fully charged and Tr_5 turns off; this is at least four times longer than the minimum pulse to pull-in the T90 relay, but may be adjusted to suit other types by altering C_3. Diode D_{10} protects Tr_5 at switch-off.

In Fig. 3, the initial voltage is 22V per relay and the holding voltage 12V, giving an initial power consumption of 1.85W, falling to 960mW long-term. The total power saving is just under a watt.

Running relays at a reduced holding voltage not only avoids the ineluctable consumption of power for no good reason, but also speeds drop-out time by reducing the magnetic energy stored. It could be argued that such a power saving is negligible. In a big Class-A amplifier it might be, but it makes sense in modest Class-B amplifiers idling for much of the time - which is of course almost all of them.

Reference

Real-Time Internet ActiveX Controls

Advanced User Interface Controls for the Web

ComponentWorks is a suite of ActiveX controls for designing scientific and engineering applications with highly configurable, real-time user interfaces.

- Graphs
- Charts
- Knobs
- Buttons
- Gauges
- Meters
- Dials
- Sliders
- Thermometers

Live Internet Data Streaming

Develop interactive Internet-based applications using DataSocket technology to stream data across the Internet for building distributed applications.

Advanced Mathematical Analysis

Perform sophisticated mathematical analysis using the extensive library of advanced analysis functions, including statistics, curve-fitting, signal processing, and array operations.

Free Evaluation Controls

Visit www.natinst.com/works to download full-featured evaluation controls.

Call today for a FREE ComponentWorks brochure as well as ordering information.

The NEW PC Platform for Measurement and Automation

Are you looking for a more cost-effective platform? Something that blends standard Windows software and high-speed PCI with rugged industrial packaging and built-in timing and synchronization? Would you benefit from a plug and play data acquisition, test, measurement, and industrial computing solution that's affordable and easy to use?

Take a look at PXI Modular Instrumentation - The new platform for measurement and automation.

Call today for the new SCXI product brochure.

Signal conditioning optimised for PC-based data acquisition.

Connect Any Signal to Your PC

- Thermocouples, RTDs, thermistors
- Strain gauges, load cells, pressure sensors
- Millivolt signals
- Voltages up to 250 V
- 0-20 mA current
- Counters, frequency inputs
- High voltage
- Digital I/O

SCXI Features

- Analogue and digital conditioning
- Expanded input ranges up to 250V
- High channel count
- Isolation; amplification
- Programmable filtering
- Simultaneous sampling
- Flexible switching
- Remote (RS-485), portable, desktop, and rack mount systems

Call today for a FREE copy of the PXI Modular Instrumentation brochure.

GIRLCE NO. 110 ON REPLY CARD
The route to simulation

Choosing a circuit simulation package is complex and making a mistake is costly. Starting with a review of Workbench and an outline of what the problems are, Rod Cooper's guide is essential reading for all first time buyers.

My recent series 'The route to pcb-cad' looked at CAD programs specifically written for designing printed circuits using a PC. The series comprised a set of reviews and was intended to help first-time buyers of such a package make the right choice.

At the end of this series, I pointed out that if you went to the trouble of generating a net list for autorouting a pcb, it was a natural progression to use the same net list for running a simulation of the circuit.

This set of reviews is intended primarily for those of you who, having bought your pcb-cad program, wish to take the almost irresistible step of adding a compatible budget-priced simulator.

For this reason, programs covered are either already adjuncts of the pcb-cad products reviewed previously, or they have an easy – or at least compatible – net-list interface. In addition though, these reviews will be of interest to those who just want to buy a stand-alone simulator.

Selecting what to review
People starting in the field of simulation require a program that is not too difficult to operate, so I have picked only simulation programs that I found relatively easy to use.

The second criterion is that they should not necessarily be equipped with every feature and every simulation under the sun. Rather they should have a number of basic simulations, with sufficient scope for broad, non-specialised use.

The third criterion is that, for the range of simulations offered, the programs should have a modest price tag. Programs that I felt did not meet all three criteria have not been included.

This review sets out to indicate what attributes the programs offer – or what is lacking, as the case may be. This gives the potential purchaser the chance to pick out a specific program that will suit the type of simulations he wants to run. It is then up to him to check through the demo version of the program to see if he likes it, and if it will do what he wants in his own field.

Spice, but you wouldn't know it
Spice in its raw form takes a lot of time and effort to learn properly. Most of the circuit simulators reviewed here are based on Spice. However, the GUI provided with some of them is so well
developed that for most of the time you would not realise you were using Spice. You do not need a full grasp of Spice in order to use the packages described here, but there are occasions when a basic grasp of Spice theory does help. Spice has some peculiarities, which cause the first-time buyer some unnecessary dismay. Typical of these was a program returned under a 30-day trial period.

The buyer wanted to simulate transformers. He noticed the Spice requirement that ‘all nodes in a circuit had to have a path to ground’. In the case of transformers, this seemed nonsensical, so he returned his software. All he had to do to satisfy Spice though was to emulate real life and put in the very high leakage resistances that all transformers have. Even easier, if he had read a little about Spice, he would have spotted a device called RSHUNT, which did this for him automatically, for all circuit nodes.

Another typical example of difficulties with Spice is in simulating two or more series-connected capacitors. The connection between them will be isolated from ground if the capacitor model is ideal. Also, getting oscillators to work can be a problem.

However, there are ways and means of getting round these difficulties. Indeed, for many Spice-induced obstacles, there is often a known work-around, so it’s usually just a question of reading the available literature.

Not all simulators use Spice. One of the advantages of using Spice-based simulators is that you can transfer Spice net lists relatively easily between programs.

Also, Spice data is available from device makers that can be added to the model library. These may be factors that influence your purchase.

Why bother to simulate?

The cynical would say that it’s just so much less effort, and more convenient to turn on the PC and play around with a simulation program, rather than go down the lab and set about plugging in scopes and signal generators. But there are several advantages of simulation compared to bench testing. The big attraction is the potential to save money.

Manufacturers see simulation as an inexpensive way of detecting design errors before any money is spent making and bench-testing even the prototype hardware. Investment in test-gear can be reduced — although it may be unwise to go too far down this road. Educators also see simulators as a way of saving money. For example, when teaching students it is possible to test circuits without destroying any expensive components — either deliberately, or in error. It is possible to fully demonstrate a design in the classroom, without incurring the cost of building it in an expensive laboratory.

There are also some good non-financial reasons for using simulation. The range of tests a simulator is usually much greater than that available in the average workshop. For example, simulator signal generators can typically be set to run from 1Hz to 1GHz in one sweep, the output amplitude can be adjusted from 0 to plus or minus a gigavolt, and duty cycle from 1 to 99% in a choice of waveforms. It would be difficult or impossible — and certainly expensive — to achieve such versatility in a laboratory with real instruments.

Another reason for simulating is that some simulator operations just have no easy, inexpensive real-world equivalent, such as the word generator in digital analysis. Also, the purity of signal sources in simulation is not compromised by physical constraints.

Often a simulator can avoid doing tedious mathematical calculation. Another advantage is that simulators can produce test results quicker than by the conventional tests on real instruments. However, this is not always true.

Sometimes a circuit that refuses to run on a simulator can consume disproportionate amounts of time, not because it is inherently difficult, but due to some peculiarity of the simulation program. It is very easy to fall into the trap of spending more time getting the simulator to comply than it would take doing a real test on the bench.

Against all these advantages, there is the initial difficulty of learning how to operate the program correctly. A simulator has to be learnt just like any program and the degree of difficulty experienced is wide and varied.

Net-lists or schematic capture?

Some users still prefer to type out a net list in order to make a simulation, instead of using schematic capture, maintaining that this gives a better insight into what is actually taking place. This may be true, but proponents of schematic capture regard such insight as a lengthy diversion from the main task of getting the simulations done.

Unless you have good typing speed, the net list is a slow and cumbrous method. It suffers from being abstract and unintuitive. I read in one net-list-entry program manual that ‘it takes only ten minutes to type out the circuit as a net list’. Using exactly the same circuit, it took just 90 seconds to schematic-capture it in CircuitMaker.

The net list does not have universal acceptability — show a group of engineers a net list and the chances are that some of them will not understand it. Designers have to ask themselves if they really want an insight into the workings of their simulator via the net list. It may all be very interesting, but is it relevant to the job? For some people, such as teachers, perhaps it will be, but for commercial designers who simply use simulators as just another tool, it may be merely a distraction.

There are better things to learn in an age of information overload than the particular way your work-tools operate. Therefore, I make no apology that the reviewed simulators all use schematic entry.

However, a simulator that uses schematic capture will stand or fall on the quality of its schematic drawing system. Some are excellent, others serviceable, but I believe none in this review is difficult to use.
priced simulator of the present generation, the results in the majority of cases are usually acceptable.

Another example of a source of error is that, at this price level, there is usually no compensation for strays introduced by the PCB design. You can of course make a guess what they are, based on experience, and add them into the circuit.

Now for the first of the reviews.

Review 1:

Electronic Workbench V5.12

This is the latest version of a popular program which has sold 100,000 copies to date. Workbench features a schematic drawing and capture program coupled with a mixed-mode simulator. The two sections are fully integrated, i.e. you don’t have to transfer out of the schematic program to work the simulator. For practical purposes, it is one program.

Simulations can be displayed on the same screen as the schematic. There is no pin limitation. The simulator, based on Spice 3F5, uses both the virtual instrument concept and conventional analyses. It is claimed to be 5 to 10 times faster than version 4.

The software comes on CD and installation is easy. Security is by registration number. Besides running on WIN95 and 98 and NT, there is a Windows 3.1 version. As Workbench V.5 is 32-bit, the Windows 3.1 version installs the W32s extension.

Recommended hardware is a 486 or later with 8MB RAM, or 12MB with Windows NT. Disk space needed is 20MB.

Documentation

The main documentation comes in four soft-back books, and there is a quick-reference card and an installation sheet as well.

The first book is a user guide that runs through the basic system and contains several tutorials. This is complemented by a larger technical reference book, which goes into more depth. The review copy contained references to the higher EDAta version of Workbench, but sorting out what was applicable to version 5 was no problem.

A third, slimmer volume lists all the ICs and models available in the library, and a final booklet explains how to import and export net lists.

All this documentation is very well presented and readable. There is plenty of explanation en route, but no glossary. A chapter in the technical reference book is devoted to a basic explanation of how Spice works, which is useful reading if you are not conversant with it.

A useful ‘Help’ section in the program complements the books.

Schematic capture

For an insight into the schematic-capture part of this program, refer to the review of Workbench version 4.0 already published in EW October 96.

Briefly, this indicated that generally, the schematic drawing section was easy to use, flexible and versatile. With its multiple parts bins, the schematic drafter is suitable for on-screen designing and experimentation.

Although there have been several small improvements to the drawing section since V.4, the fundamentals have not altered much since this earlier review with the big exception of the wiring-up system. Here there has been a significant change, as the auto-wirer has now been complemented with a manual system of wiring up the symbols. This removes one of the criticisms of earlier versions. Like most autowirers, the one in Workbench is acceptable for simple circuit diagrams but tends towards complicated routes and untidiness on larger diagrams. For this reason, a manual method is be welcomed.

As before, some sleight of hand has to be developed during wiring up to avoid selecting a component for editing instead of connecting it. Both are done with the left mouse button and it is easy to mix the two up until some manual skill has been gained.

A few moments with the demonstration program will illustrate this. However, most existing users of the package will find schematic drawing in version 5.12 generally much easier.

The notional size of the working area of the drawing sheet is about 7 by 20in. The enlarged library holds more than 100 analogue and 200 digital symbols backed by 4000 Spice device models.

With this version of the program it is not possible to make up and add your own symbols. You can, however, add extra Spice models, but these must be assigned to a generic ‘black box’ symbol. You can also alter existing models if you are conversant with Spice.

As well as a Spice net list, Workbench...
schematic capture can export files to several PCB design programs, namely OrCad, Tango, Eagle, Protel, Layo1.

Simulation section
 Simulation relies strongly on virtual instruments. These are made to resemble the operating panels of real instruments as far as is possible on a PC.

The virtual instruments consist of function generator, twin-beam oscilloscope, multimeter, bode plotter, logic converter, word generator, and 16-channel logic analyser.

In addition to these main instruments, there are ammeters and voltmeters, and an impressive range of signal sources, such as AM and FM, and various voltage-controlled waveforms. They are all easy to insert into the schematic and to wire up, behaving just like regular component symbols, and are also pleasantly intuitive to set up and use.

The method of use for the main virtual instruments is to expand the icon to a more usable size when you want to run a simulation. It then appears in the form of an overlay on the schematic drawing, Figs 1 and 2. By dragging the instrument to one side of the diagram, to get a view of the diagram, it is possible to change component values, or the components themselves, while the simulator is running. This is a useful attribute.

Two points to note about the instruments. Firstly the 'scope has two levels of expansion for more detailed examination. Secondly, the bode plotter has no graduated plot. If you want to make an accurate measurement you have to run a conventional analysis instead.

In general, all these virtual instruments have a wide choice of parameters and plenty of adjustment range. The actual figures occupy too much space to list here but can be viewed in the product's promotional leaflet.

To complement the virtual instruments, there is a range of analyses, viz. noise, distortion, AC frequency sweep for gain and phase, Fourier, transient, and DC operating point. There is no plot of output or input impedance versus frequency – a notable omission.

A typical analysis graph for the circuit of Fig. 1 is shown in Fig. 3. The analyses are menu-driven in a clear, easily understood format and plain terminology.

To run an analysis of this type you specify the circuit node you want to sample, from such a menu. To do this, you modify the circuit diagram to show the nodes, again through a menu, then select a node. Fig. 3 shows just one node, the output, but you could add more if required. Unlike the virtual instruments, you can expand the analyses to full-screen if you wish.

There is no probe tool as there is in Tina and CircuitMaker. The analyses are stored in a stack for ready reference so you can flip back to one if you wish to re-view it.

As with Workbench's predecessor, you can use a range of colours for individual wires on the more complex schematics to improve the readability of the diagram. This is a good, practical idea. Even better, you can transfer this colour scheme to the graphs. Figure 4 shows this in practice on the digital analyser. Note that there is no glitch control – this is explained next month.

If you are interested in transformer simulations, for switch-mode supplies for example, then you will find Workbench's transformer modelling better than many others in this price bracket.

Version 5 retains its educational bias with features useful to teachers, such as fault injection.

Summary
Workbench's comfortable learning curve, assisted by the excellent combination of printed manuals and complementary help files, makes it an attractive purchase for a first-time buyer. With the few exceptions detailed above, the program is easy to run.

The package also has appeal as a quick check for the more experienced designer. The range and scope offered by the package is excellent for the price, the range of signal inputs being particularly good.

You should still check carefully that the parameters you want to simulate are included. For example there is no glitch control and no input/output impedance graphs. Also check that the results are presented to your liking and that the schematic symbols provided cover everything needed. There is no way of adding to them.

Considering the range of simulations, at £199 the program represents very good value for money.
The essential in-depth reference manual for design, process and production engineers seeking practical, cost-effective surface mount solutions.

Whether used as a practical "how-to-do" manual, or in specifying denser and more complex surface mount projects, the Surface Mount Technology Handbook in over 300 pages provides a wealth of high quality reference data covering "state-of-the-art" surface mount processes:

- assembly and technical design issues
- cost-effective design
- processes and process control
- components including fine pitch
- applications and solutions
- the pitfalls and how to avoid them
- trouble-shooting and QA
- where to go to get further advice
- comprehensive sourcing guide for equipment and materials

Order your copy now
Benefit from the most comprehensive surface mount reference available and save £25.

307 Pages with 10 Chapters providing in-depth coverage of all aspects of the process.

No risk 28 day Refund Guarantee - if the Surface Mount Technology Handbook does not meet your expectations, simply return the book to us within 28 days for a full refund.

Discount Order Form

Special reader price of £50.00 (normal price £75) plus postage and packing of £5 per copy (UK/Europe)

Yes, please send me copy/copies of the Surface Mount Technology Handbook — ISBN 1 90158 842 4

Special Price £50 each copy total Add postage & packing of Total

European Customers please state your VAT number

Method of payment

- Payment enclosed (cheques payable to Reed Electronics Research).
- Please charge my credit card: Mastercard/VISA/AMEX

Cardholder Name ___________________________ Card Number ___________________________ Expiry Date ____________

Delivery

Name ___________________________ Job Title ___________________________ Organisation ___________________________

Address ___________________________

Town/County ___________________________ Postcode ___________________________ Country ___________________________

Tel ___________________________ Fax ___________________________ Email ___________________________ Date ___________________________

Signature ___________________________

Return to: Reed Electronics Research, Quadrant House, The Quadrant, Sutton SM2 5AS, UK. Credit Card Fax orders: +44 (0)181 652 8921

Reed Business Information Company. Registered in England (Registered number 151537). VAT No: GB 235 723565
Sensitivity demystified

Joe Carr explains not only how to decipher sensitivity figures for receivers, but also how to verify them for yourself.

Radio receiver specifications can be verified using test equipment and a few simple procedures. Such tests are made to evaluate receivers, to troubleshoot problems, and to verify performance. A number of receiver parameters are important, but perhaps the one that is most commonly discussed is sensitivity. Let's take a look at how these tests are done.

What is sensitivity?
Receiver sensitivity is a measure of how well a receiver will pick up very weak signals.

As with most engineering measurements, the notion of sensitivity is an operational definition. In other words, there are standard procedures that will yield coherent results by which different receivers—or the same receiver before and after repairs—can be compared.

Sensitivity is basically a game of SNR, i.e. signal-to-noise ratio. Or more properly, the signal-plus-noise-to-noise ratio, (S+N)/N. For every receiver or amplifier there is a basic noise level consisting of the noise produced external to the receiver and noise produced inside the receiver. Even a receiver with its antenna input terminated in a shielded matching resistor, rather than an antenna or signal generator, will show a certain amount of thermal noise.

One important consideration when making sensitivity measurements—or comparing receiver sensitivity specifications—is bandwidth. Thermal and other forms of noise are gaussian distributed over all possible bandwidths.

The value of the noise at any given instant depends on the bandwidth of the channel. For most receivers this means the IF selectivity bandwidth, although in some cases the audio bandwidth is less than the IF so that number would dominate.

Table 1 shows the thermal noise expected from a 50Ω resistor at various bandwidths. Always make sure that the bandwidths at which various sensitivity numbers are compared are the same.

Figure 1 depicts two different definitions of SNR. Basically, you can’t hear signals down in the noise. The minimum discernible signal is operationally defined as the...
signal level that is the same as the noise floor, or the signal level that is 3dB above the receiver's noise floor. But that sensitivity is not all that useful for most applications.

I'm sure that there are people out there who can listen to a signal that is only 3dB above the noise floor. Most of us, however, require a higher SNR to be practical.

Although some definitions use 6dB, 12dB or 20dB, the standard for practical sensitivity is that it is the signal level that produces a 10dB SNR. This definition is found on most CW, AM and SSB receivers.

Signal Generator. The signal generator selected to make sensitivity measurements must have very high isolation figures. Most 'service grade' signal generators are useful for doing troubleshooting, but they are not satisfactory for making sensitivity measurements. The reason is that signal escapes around the cabinet flanges and control bushings. If you have a sensitive receiver or spectrum analyser then you can detect this unwanted signal.

Want to give it a try? Connect a shielded dummy load to the output of the signal generator, and turn the signal generator's output down to zero. Connect a whip or wire antenna to the receiver's antenna input, and then tune the receiver across the signal generator frequency with the RF gain cranked all the way up.

The signal generator should also have a calibrated output control. The correct calibrations are either dBm – i.e. power decibels relative to one milliwatt in a 50Ω load – or microvolts.

Some signal generators have an output meter that can set relative output, but can become 'calibrated' if a calibrated step-attenuator is connected between the output of the signal generator and the receiver under test. You can find the exact level if you can measure the high level output of the signal generator.

'Laboratory grade' signal generators may be beyond the means of many people, but there is a relatively vigorous market in used or surplus equipment. Sources of such equipment are listed on the world wide web. If you don't need the latest digitally synthesised signal generators, then you will be able to find good signal generators at low cost.

Test set-up

Figure 2 shows the test set-up for most receiver sensitivity measurements. The attenuator is optional, and may not be needed if the signal generator is adequately equipped with a good quality calibrated output attenuator. When measuring an AM receiver, set the signal generator modulation for 30 percent depth and 1000Hz.

An audio AC voltmeter is used to measure the receiver's output level. Ideally, the instrument should be calibrated in decibels as well as volts, and should have RMS reading capability.

The receiver must be correctly set up, or the measurement will be in error. In most test set-ups, the receiver's RF and AF gain controls are turned to maximum, and the squelch is turned off. Further, the automatic gain control, or AGC, must be either turned off, or in the case of some models, clamped with a DC level according to the manufacturer's directions.

Minimum discernible signal sensitivity. To make the minimum discernible signal measurement you need to find the signal level in dBm or µV that is 3dB above the receiver noise floor. To do this,

- Connect the equipment as in Fig. 2, and set the receiver and signal generator to the same frequency.
- Turn the signal generator output fully down to zero.
- Set the RF gain and AF controls to maximum. You may want to set the audio output control to a convenient level if you don't have a dummy speaker load.
- To make the measurement, you first measure the RMS value of the noise – i.e. 'hiss' – output on the AC voltmeter, and then increase the signal generator output level until the receiver output level increases by 3dB.

You can also determine the numerical value of the receiver noise floor by the same approach. Measure the output noise level, and then find the minimum discernible signal by the procedure above. The receiver noise floor level will be the same as the signal generator output level (less any attenuation in line).

Standard output conditions. A sensitivity specification used for consumer radio receivers uses a standard output approach. A typical receiver sensitivity specification might read, "2mV for 400mW in an 8Ω load when modulated 30% by 1kHz."

The same equipment set up of Fig. 2 can be used for this measurement. A power of 400mW into an 8Ω load is the same as 1.789V RMS, which can be read on the AC voltmeter. I recommend using an 8Ω noninductive resistor for the load rather than the loudspeaker since the sound levels
involved in the measurements are pretty annoying.
Adjust the signal generator output level for an RMS output voltage of 1.789V, and read the output level from the signal generator controls.

Full-power sensitivity. Some older receivers use the full-power sensitivity figure. This is the signal level that will produce the full rated audio output power.
Set the signal generator for 1kHz modulation with 30% depth. Tune the radio and signal generator to the same frequency, and crank up the output until the audio output power is at the full-rated power level - for example 400mW, 1W, or in the case of one radio I owned 7.5W. The signal level that produces this condition is the 'sensitivity' of the receiver.

10dB (S+N)/N test. The 10dB test method is the same as the 3dB minimum discernible signal method, except that the signal generator level is increased until the output is 10dB above the noise floor.
An alternative method is sometimes used on AM receivers:
- Set up the signal generator and receiver as discussed above.
- Set the output of the receiver to produce at least 0.5W audio output, or if the rated output power is lower than 1W set it for at least 50mW audio output power.
- Turn off the modulation. If the audio output drops at least 10dB then the signal generator setting is 10dB S+N/N level. If the level drops less than 10dB, then readjust the signal generator output level upward a small amount and try again.

On-site effective sensitivity test. This test is only done on-site where the receiver is installed. It is intended to get some idea of how well the receiver performs in its actual installed environment. Figure 3 shows the test set-up.
- Measure the 10dB S+N/N sensitivity as discussed above (see Fig. 2 for set-up) and write down the figure.
- Connect the hybrid combiner, two-position coaxial switch, antenna and dummy load into the circuit.
- Set the switch to the dummy load and measure the sensitivity. It will be considerably worse than the 10dB sensitivity.
- Set the coaxial switch to the antenna, and again measure the 10dB sensitivity. It should be lower still.

The effective sensitivity is $SNR_{eff} = SNR_{LOAD} - SNR_{ANT}$. The figure $SNR_{LOAD} = SNR_{ANT}$ is the degradation factor. For example, suppose the 10dB SNR is -122dBm, the SNR when the load is connected is -77dBm and when the antenna is connected it is -70dBm. The effective on-site SNR is:

$$SNR_{eff} = SNR_{LOAD} - SNR_{ANT} = -122dBm - (-77dBm) = -45dBm$$

The effective sensitivity is only valid for the given site and conditions present when the test is performed. If the site is changed, or if the noise generators and other signals present change, then the test must be repeated.

FM receiver sensitivity

There are two basic methods for measuring the sensitivity of FM receivers: 20dB quieting and 12dB SINAD. The 20dB quieting method is typically used on FM broadcast band receivers. It was once popular for communications receivers as well. More recently, the 12dB SINAD method is preferred.

20dB quieting method. This method relies on the fact that the FM detector will suppress noise once the limiting signal level is reached. The well-known capability of FM to eliminate noise relies on the fact that most noise amplitude modulates the carrier.
If the amplitude can be clamped below the level where the noise is effective, then the frequency variations can be detected to recover the audio. This effect is called 'quieting,' i.e. the reduction of noise as the signal level increases.
To measure the 20dB quieting sensitivity:
- Connect the receiver and signal generator as in Fig. 2. Keep the signal generator output at zero. The modulation - deviation - should be set to whatever is appropriate for the class of receiver being measured.
- Turn the RF gain all the way up. Set the audio output to produce a convenient reading in the high end of the AC voltmeter scale.
- Measure the output noise level and write it down.
- With modulation off, turn the signal generator

The figure $SNR_{LOAD} = SNR_{ANT}$ is the degradation factor. For example, suppose the 10dB SNR is -122dBm, the SNR when the load is connected is -77dBm and when the antenna is connected it is -70dBm. The effective on-site SNR is:

$$SNR_{eff} = SNR_{LOAD} - SNR_{ANT}$$

The effective sensitivity is only valid for the given site and conditions present when the test is performed. If the site is changed, or if the noise generators and other signals present change, then the test must be repeated.
output level up until the reading on the AC voltmeter drops 20dB. The signal generator output level that accomplishes this is the 20dB quieting sensitivity—typically less than 1µV.

SINAD sensitivity. The sensitivity of FM receivers is often expressed in terms of SINAD. This approach to signal-to-noise ratio recognises that the problem of detection depends not simply on signal and noise level, but also distortion. The SINAD (signal-noise-distortion) method is described by equation (1).

\[
\text{SINAD} = \frac{\text{signal} + \text{noise} + \text{distortion}}{\text{noise} + \text{distortion}}
\]

In terms of decibels, the following equation is used:

\[
\text{SINAD}(\text{dB}) = 20 \log \left(\frac{V_{\text{signal}} + V_{\text{noise}} + V_{\text{distortion}}}{V_{\text{noise}} + V_{\text{distortion}}} \right)
\]

Here, \(\text{SINAD}(\text{dB}) \) is the SINAD sensitivity expressed in decibels; \(V_{\text{signal}} \) is the output voltage due to signal, \(V_{\text{noise}} \) is the output voltage due to noise and \(V_{\text{distortion}} \) is the output voltage due to distortion.

The standard 12dB SINAD sensitivity corresponds to a 4:1 S/N ratio, in which the sum of noise and distortion is 25 percent of the signal voltage. As signal levels get higher, the SINAD and 10dB S/N values tend to converge.

In summary

Measuring a receiver’s sensitivity is relatively easy if correct procedures and decent equipment are used. Now you should be able to tell whether the specifications claimed in advertisements are reasonably accurate—or not.

Music Engineering by Richard Brice

The Electronics of Playing and Recording

- Highly illustrated guide to the technology of music and recording.
- Written in an approachable style using examples of well-known songs, this book is a must-have guide for sound recording engineers and electronic engineers.

If you are an electronics engineer who needs specific information about music reproduction, or if you are a sound recording engineer who needs to get to grips with the electronic technology, *Music Engineering* is for you.

This handy volume is a technical guide to electric and electronic music, including the essential science, but concentrating on practical equipment, techniques and circuitry. It covers not only basic recording techniques and audio effects, but also valve technology, stereo and digital audio, sequencers and MIDI, and even a glance at video synchronisation and a review of electronic music.

Music Engineering lifts the lid on the techniques and expertise employed in modern music over the last few decades. Packed with illustrations, the book also refers to well known classic recordings to describe how a particular effect is obtained thanks to the ingenuity of the engineer as well as the musician.

Richard Brice has worked as a senior design engineer in many of Britain’s top broadcast companies and has his own music production company. He is the only writer who can provide this unique blend of electronics and music.

Contents:
- Soul Man – Science and sensibility; Good Vibrations – The nature of sound; Stand By Me – Microphones and their applications; Message in a Bottle – Valve technology; Roll over Beethoven – Electric Instruments; Wild Thing – Electronic effects; Pet Sounds – Electronic synthesis; Silver Machine – Sequencers & MIDI; Got to Get You into My Life – Sound recording; Bits ‘n’ Pieces – Digital Audio; Space Odyssey – Stereo and spatial sound; Let’s Stick Together – Recording consoles; Unchained Melody – Amplifiers; Shout – Loudspeakers; Synchronicity – Video and synchronisation; Dark Side of the Moon – Electronics and the music of the 20th century.

BOOK TO BUY

Plus FREE CD

Inclusive price: £22.50 UK, £25 Europe, £28 ROW.

To order by post, send a cheque or postal order to Jackie Lowe at *Electronics World*, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Please make your cheque payable to Reed Business Information. Alternatively, fax full credit card details to 0181 652 8111, e-mail jackie.lowe@rbi.co.uk.

ISBN: 0 7506 39032

Paperback, 256pp, 150 line illustrations.

- Copies of Richard’s previous book, *Multimedia and Virtual Reality Engineering*, are still available, inclusive hardback price: £27.50 UK, 29.50 Europe, £32 ROW.
Simulation

- Berkeley SPICE3F5 analogue simulation kernel.
- True mixed mode simulation.
- New analysis types include multi-plot sweeps, transfer curves, distortion and impedance plots.
- Active Components: Switches, Pots etc.
- Over 1000 new library parts with SPICE models.
- Greater ease of use.

"a constant high level of capability throughout"

EWW CAD Review Round Up September 1998

Schematic Capture

- Produces attractive schematics like in the magazines.
- Netlist, Parts List & ERC reports.
- Hierarchical Design.
- Full support for buses including bus pins.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and PCB design.

PCB Design

- Automatic Component Placement.
- Rip-Up & Retry Autorouter with tidy pass.
- Pinswap/Gateswap Optimizer & Back-Annotation.
- 32 bit high resolution database.
- Full DRC and Connectivity Checking.
- Shape based gridless power planes.
- Gerber and DXF Import capability.

Available in 5 levels - prices from £295 to £1625 + VAT.

Call now for further information & upgrade prices.

"the BEST all-round PROGRAM"

EWW CAD Review Round Up September 1998
A rough guide to Europe

For some people a time working abroad has been a natural part of expanding their life and career. As opportunities in former colonies have diminished so those in Europe have increased.

Yet, while we are all Europeans now – or so we are told – for most people the European dream of living and working on the continent is little more than someone else’s funny idea. Even so, you will not be a pioneer. Soldiers, footballers, construction workers and politicians have all been there before you.

European Union (EU) rules guarantee freedom of movement to nationals of all member countries, allowing you to work or set up business anywhere in the EU. As a British citizen you do not need a work permit, although in most EU countries you will need a resident’s permit if you intend to stay more than three months.

The changing rules make life easier but they do not guarantee success and happiness. Working in Europe is very different from holidaying there but at least a holiday can start the acclimatisation process.

While language will be the main stumbling block, electronics means you can run your life in English with cash and credit cards, e-mail, and telephone banking.

As for shopping, department store and supermarket staff rarely speak to you in Britain let alone abroad and there is always cyber shopping. All that is fine if you want to isolate yourself from the local community and so miss the point of being there in the first place.

The three basic recruitment questions apply just as much to working in Europe as in Britain.

Working abroad in Europe could awaken your mind and boost your career, says Tony Atherton

- Can you do the job?
- Will you do the job?
- Will you fit in?

The third one takes on a new dimension when you move to another country. It is not simply a question of will you get along with your new colleagues, but will you fit into the community?

If you are heading for a large city with an international presence then you can lose yourself in the expatriate community, speak English all the time, read British newspapers, drink British beer and be a little Briton in a different climate. If that is all you want then you could stay at home and turn up the central heating.

Alternatively, your may want to experience the culture, work with the nationals, learn their way of life and speak their language. There are advantages. If employers can recruit locally they will not risk employing someone who may be pining for home within three months.

For this total immersion approach you must learn the language. A national training company, such as Linguarama, will charge around £1500 per week for intensive training but check out local trainers in the Yellow Pages. Also try schools, Sixth Form Colleges and friends to see if anyone will tutor privately.

Research is the key. Do you know anyone who has lived and worked in the country of your choice, or retired there? Does your existing employer offer any opportunities to work with subsidiaries or partners elsewhere in the EU? Do you know any nationals of your chosen country who work here?

Job Centres can put you in touch with Euroadvisers from the Overseas Placing Unit of the Employment Service. These Euroadvisers are part of the European Employment Services partnership (EURES) and are in contact with their opposite numbers in other EU countries. Try the Eures Web site as some jobs are advertised there. The current shortages include IT specialists. Ask at your Job Centre for a copy of the booklet Working in [Country Name]. These include details of resident permits, taxation, social security, education, Job Centres, and so on.

Visit your local reference library for a good careers encyclopedia (such as Cassells) and the Executive Grapevine Volume 1. The latter identifies the recruitment agencies that deal with both electronic engineering and EU countries. The CEPEC Guide is similar.

In electronics one immediately thinks of the Netherlands, Germany, France, Italy and Ireland. However, all EU countries have some electronics industry. The telecoms and IT industries are universal and generate opportunities everywhere, sunny or not. Finally do not forget the EU itself. Someone must provide its IT and telecommunications services in Brussels and Strasbourg, for instance, likewise for the UN in Geneva.

Working abroad provides a huge range of experiences you will not get in the UK. As part of a career plan, especially in the early years, a spell in Europe will awaken your mind and possibly boost your career. You may even get a tan.

Tony Atherton: 01962 885534
tony.atherton@btinternet.com
PLACING ENGINEERS FIRST

DEVELOPMENT ENGINEERS

North East Salary £20,000 to £30,000
Vacancies for Engineers with good analogue and microcontroller/digital design skills (8, 16 and 32 bit). Ideally with control systems, sensors and/or actuators experience. C programming and serial comms, especially CAN Bus, an advantage.
Quote ref. WWB311

ASIC/FPGA ENGINEERS

West Midlands Salary £22,000 to £28,000
Candidates must have at least 2 years' ASIC/FPGA design experience using HDL, preferably Verilog. Skills in PLDs and Synthesis would be an advantage. An understanding of CAE technology and an interest in telecommunications ideal.
Quote ref. WWB023

HARDWARE ENGINEER

West Yorkshire Salary £18,000 to £24,000
At least 1+ year's experience with PIC or 8051 microcontroller hardware. Any Windows programming using C++ an advantage. To work on cellular radio communication systems thus RF design knowledge would be very useful.
Quote ref. WWB597

HARDWARE ENGINEER

Avon Salary £18,000 to £26,000
To design for microcontroller based products and peripherals, the ideal candidate will also have C/C++ and/or assembler programming experience. Any knowledge of designing for a production environment would be an advantage.
Quote ref. WWB389

DEVELOPMENT ENGINEER

Hants Salary £24,000 to £33,000
HND educated in Electronics or similar, with two or more years' experience in digital, analogue and RF techniques, ideally with a test bias. A background in broadcast or digital communications would be a distinct advantage.
Quote ref. WWB234

HARDWARE DESIGN ENGINEER

West Midlands Salary £22,000 to £27,000
An exciting opportunity exists for an Engineer with a bias towards analogue circuit design. There will also be digital design and some RF exposure. This is a hands-on role working for a market leader on a range of control technologies. Quote ref. WWB393

PCB DESIGNERS

Midlands Salary £14,000 to £26,000
With at least ONC, to be responsible for PCB design from receipt of customers requirements through to the generation of manufacturing outputs. PCB layout and routing by hand and using CAD such as Allegro, Veribest and Mentor Graphics.
Quote ref. WWB443

ELECTRONICS ENGINEER

North Salary £18,000 to £23,000
Engineer to work on the development of high-end Audio & Video Recording Equipment for the professional broadcast sector. Analogue and digital skills required. Any microcontroller exposure, EMC and product approval desirable.
Quote ref. WWB438

SENIOR ELECTRONICS ENGINEER

West Midlands Salary £24,000 to £30,000
At least two years' experience designing embedded microcontroller systems. You must be able to program in C and assembler. Desirable skills include the use of CASE tools, serial communications, CAN bus and Fuzzy Control applications.
Quote ref. WWB430

HARDWARE ENGINEER

South Midlands Salary £18,000 to £24,000
Consultants based in a pleasant rural setting require creative engineers with experience in digital and analogue design for microprocessor based systems. Software skills in C and assembler ideal. A wide variety of exciting design tasks.
Quote ref. WWB124

Contact Jon Hopkins in total confidence:
Telephone on: (01902) 326460
E-mail your CV: jon@arbour.co.uk
Fax your CV 24 hrs: (01902) 326465
Post your CV, quoting reference, to:
Arbour Appointments Ltd.
The Granary, High Street, Wombourne
West Midlands WV5 9DN
FPGA/ASIC Design

TV Broadcast
M3/M4 to £35K
Senior position to work on future ASIC technology for set top box applications. Minimum of three years ASIC design experience with knowledge of VHDL/VERILOG, logic synthesis, test insertion, verification, etc.
Ref: BC2200

Consultancy
M3 £20-40K
Junior and Senior position to work on analogue and mixed signal ASIC design. Good BSc with interest or experience in customer driven ASIC design.
Ref: BC2201

Processors
Middx to £50K
A number of positions to work on the design and verification of RISC and DSP processors. HDL/VHDL experience necessary with team/project leadership skills for senior position.
Ref: BC2202

Communications
M3 c. £45K
Team leader to run a group of ASIC Designers working on mobile comms, chip sets. A hands on role requiring substantial experience of embedded codes and customer devices.
Ref: BC2203

Satellites
Herts c. £35K
You will work on state of the art VLSI systems for space-borne DSP environment. Wide experience of CAE tools and in depth understanding of digital/DSP design.
Ref: BC2204

RISC Micro’s
Cambs to £30K
High calibre digital design engineers with 2 years experience including strong HDL and synthesis skills.
Ref: BC2212

Consultancy
Cambs to £40K
Minimum of 2 years experience in the mobile communications sector working on low cost high volume product design. VHDL/SYNOPSYS essential with the ability to specify and implement complex IC’s.
Ref: BC2206

Library Development
Surrey £30K
Creation of basic cell libraries, memory and complex IP models, model validation using simulation tools and technical support to field sales team.
Ref: BC2211

Mobile Comms
M3 c. £35K
Development of digital hardware for communications equipment. In depth experience of FPGA’s, ASIC’s and gate arrays with VHDL and some PCB design.
Ref: BC2209

Mixed Signal
North c. £30K
Senior position working on the design and development of mixed signal IC’s. Several years experience in a similar position with team leadership ability.
Ref: BC2210

Video
South Coast to £35K
Good degree plus 2 years solid ASIC design skills to work on digital video systems. Your experience should include VHDL, H/S digital systems, RF (to 2GHz), FPGAs, DSP, etc.
Ref: BC2205

Contact Brian Cornwell at...
ERS Technical
Ambassador House,
575-599 Maxted Road,
Hemel Hempstead
Hertfordshire HP2 7DX
te 01442 231691
eves/wkends 0411 467 185
fax 01442 215486
email brian_cornwell@ers.co.uk

ERS Technical is a member of Executive Recruitment Services plc group of companies
Solution

ASIC/VLSI

<table>
<thead>
<tr>
<th>Position</th>
<th>Area</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSI Group Leader</td>
<td>Berks</td>
<td>£45,000</td>
</tr>
<tr>
<td>ASIC Designer</td>
<td>Cambs</td>
<td>£40,000</td>
</tr>
<tr>
<td>DRAM Designer</td>
<td>Avon</td>
<td>£50,000</td>
</tr>
<tr>
<td>Full Custom Design</td>
<td>Avon</td>
<td>£45,000</td>
</tr>
<tr>
<td>ASIC Designer</td>
<td>Suffolk</td>
<td>£35,000</td>
</tr>
<tr>
<td>ASIC Designer</td>
<td>Wilts</td>
<td>£35,000</td>
</tr>
<tr>
<td>RF IC Designer</td>
<td>Wilts</td>
<td>£40,000</td>
</tr>
<tr>
<td>ASIC Designer</td>
<td>Cambs</td>
<td>£35,000</td>
</tr>
<tr>
<td>LSI Designer</td>
<td>Berks</td>
<td>£30,000</td>
</tr>
<tr>
<td>ASIC Designer</td>
<td>S. Coast</td>
<td>£40,000</td>
</tr>
<tr>
<td>ASIC Designer</td>
<td>Hants</td>
<td>£45,000</td>
</tr>
<tr>
<td>RF IC Designer</td>
<td>Hants</td>
<td>£45,000</td>
</tr>
<tr>
<td>ASIC Designer</td>
<td>Berks</td>
<td>£40,000</td>
</tr>
<tr>
<td>ASIC Designer</td>
<td>Cambs</td>
<td>£28,000</td>
</tr>
<tr>
<td>ASIC Designer</td>
<td>Avon</td>
<td>£35,000</td>
</tr>
<tr>
<td>ASIC Designer</td>
<td>Cambs</td>
<td>£45,000</td>
</tr>
<tr>
<td>RF IC Designer</td>
<td>Berks</td>
<td>£35,000</td>
</tr>
<tr>
<td>RF/Analogue IC Des</td>
<td>Berks</td>
<td>£35,000</td>
</tr>
<tr>
<td>RF/Analogue IC Des</td>
<td>Hants</td>
<td>£40,000</td>
</tr>
<tr>
<td>RF/Analogue IC Des</td>
<td>S. Coast</td>
<td>£40,000</td>
</tr>
<tr>
<td>RF/Analogue IC Des</td>
<td>Avon</td>
<td>£60,000</td>
</tr>
</tbody>
</table>

RF

<table>
<thead>
<tr>
<th>Position</th>
<th>Area</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior RF Designer</td>
<td>Berks</td>
<td>£38,000</td>
</tr>
<tr>
<td>RF Engineer</td>
<td>Berks</td>
<td>£33,000</td>
</tr>
<tr>
<td>RF Engineer</td>
<td>Surrey</td>
<td>£35,000</td>
</tr>
<tr>
<td>RF Group Leader</td>
<td>Surrey</td>
<td>£45,000</td>
</tr>
<tr>
<td>RF Engineer</td>
<td>Wilts</td>
<td>£35,000</td>
</tr>
<tr>
<td>Senior RF Engineer</td>
<td>Avon</td>
<td>£45,000</td>
</tr>
<tr>
<td>RF Engineers</td>
<td>Wilts</td>
<td>£25,000</td>
</tr>
<tr>
<td>Young RF Engineer</td>
<td>Wilts</td>
<td>£25,000</td>
</tr>
<tr>
<td>RF Team Leader</td>
<td>Yorks</td>
<td>£45,000</td>
</tr>
<tr>
<td>RF Engineer (Filters)</td>
<td>Cambs</td>
<td>£40,000</td>
</tr>
<tr>
<td>RF Designers</td>
<td>Bucks</td>
<td>£35,000</td>
</tr>
<tr>
<td>RF Designers</td>
<td>Middx</td>
<td>£38,000</td>
</tr>
<tr>
<td>RF Engineer</td>
<td>Beds</td>
<td>£35,000</td>
</tr>
<tr>
<td>RF Engineer</td>
<td>Lincs</td>
<td>£30,000</td>
</tr>
<tr>
<td>RF Engineer</td>
<td>Berks</td>
<td>£30,000</td>
</tr>
<tr>
<td>RF Engineer (Filters)</td>
<td>Surrey</td>
<td>£50,000</td>
</tr>
<tr>
<td>RF Designers</td>
<td>Herts</td>
<td>£45,000</td>
</tr>
</tbody>
</table>

DIGITAL/ANALOGUE

<table>
<thead>
<tr>
<th>Position</th>
<th>Area</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Dig/Ana Designer</td>
<td>W. Mids</td>
<td>£30,000</td>
</tr>
<tr>
<td>Senior Dig/Ana Designer</td>
<td>Surrey</td>
<td>£40,000</td>
</tr>
<tr>
<td>Dig/Ana Designer</td>
<td>Yorks</td>
<td>£30,000</td>
</tr>
<tr>
<td>Dig/Ana Designer</td>
<td>Berks</td>
<td>£28,000</td>
</tr>
<tr>
<td>Senior Dig/Ana Designer</td>
<td>Berks</td>
<td>£35,000</td>
</tr>
<tr>
<td>Dig/Ana Designer</td>
<td>Cambs</td>
<td>£30,000</td>
</tr>
<tr>
<td>Senior Dig/Ana Designer</td>
<td>Essex</td>
<td>£25,000</td>
</tr>
<tr>
<td>Dig/Ana Designer</td>
<td>Sussex</td>
<td>£25,000</td>
</tr>
<tr>
<td>Dig/Ana Designer</td>
<td>Avon</td>
<td>£30,000</td>
</tr>
<tr>
<td>Dig/Ana Designer</td>
<td>Surrey</td>
<td>£30,000</td>
</tr>
<tr>
<td>Dig/Ana Designers</td>
<td>Cambs</td>
<td>£45,000</td>
</tr>
<tr>
<td>Dig/Ana Designers</td>
<td>Herts</td>
<td>£30,000</td>
</tr>
<tr>
<td>Dig/Ana Designers</td>
<td>Sussex</td>
<td>£25,000</td>
</tr>
<tr>
<td>Dig/Ana Designers</td>
<td>Avon</td>
<td>£30,000</td>
</tr>
</tbody>
</table>

MANAGEMENT OPPORTUNITIES

<table>
<thead>
<tr>
<th>Position</th>
<th>Area</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSI Group Leader</td>
<td>Berks</td>
<td>£38,000</td>
</tr>
<tr>
<td>RF Group Leader</td>
<td>Surrey</td>
<td>£35,000</td>
</tr>
<tr>
<td>RF Team Leader</td>
<td>Surrey</td>
<td>£35,000</td>
</tr>
<tr>
<td>Hardware Team Leader</td>
<td>Cambs</td>
<td>£25,000</td>
</tr>
<tr>
<td>RF Applications Manager</td>
<td>Wilts</td>
<td>£30,000</td>
</tr>
<tr>
<td>DSP Group Leader</td>
<td>Surrey</td>
<td>£30,000</td>
</tr>
<tr>
<td>Hardware Project Leader</td>
<td>W. Mids</td>
<td>£30,000</td>
</tr>
<tr>
<td>HDL Manager</td>
<td>Cambs</td>
<td>£30,000</td>
</tr>
<tr>
<td>Hardware Manager</td>
<td>Berks</td>
<td>£30,000</td>
</tr>
</tbody>
</table>

Contact Steve Davis
Electronics Weekly **Hyperactive** is more than just a magazine on the Web. Check out the site and you will see why thousands of electronics professionals around the world regularly log on to...

www.electronicsweekly.co.uk

If you are serious about Internet marketing, then sponsorship of the Electronics Weekly **Hyperactive** site is something you must consider.

Whether you have your own web site or not, **Hyperactive** offers you a great way of delivering your company’s products or message to a worldwide buying audience.

By sponsoring a section of **Hyperactive**, users will have the opportunity to link directly to your web site - therefore generating new traffic.

For more information on how to develop your internet marketing activity please call Shaun Barton on 0181 652 3638.

Point your browser at: http://www.electronicsweekly.co.uk — register now, it's free.

Sponsored by

- [Toshiba](http://www.toshiba.co.uk)
- [Xilinx](http://www.xilinx.com) — The Programmable Logic Company
Non-intrusive continuity tester

Without injecting a direct current into the circuit being tested, or activating any semiconductor junctions by the millivolt-level ac, this tester provides an audio signal to indicate a low resistance between test points.

A switched-capacitor inverter provides both 6V for the hex Schmitt inverters and a square wave from its summing node. A reflected impedance of under 1Ω or 4Ω from the half or full transformer secondary provides a 4kHz tone from the piezoelectric transducer.

If required, a capacitor between pins 7 and 8 of the inverter lowers the frequency of the square wave to match the transducer resonant frequency.

John A Haase
Fort Collins
Colorado
USA
C92

Further reading
Einar Abill, 'Sense continuity below an ohm,' Electronic design, September 5, 1995.

Fact: most circuit ideas sent to Electronics World get published

Like life, Electronics World may seem surreal at times, but it is certainly not exclusive. Clearly, the best circuit ideas are ones that save time or money, or stimulate the thought process. This includes the odd solution looking for a problem – provided it has a degree of ingenuity.

Your submissions are judged mainly on their originality and usefulness. Interesting modifications to existing circuits are strong contenders too – provided that you clearly acknowledge the circuit you have modified. Never send us anything that you believe has been published before though.

Don’t forget to say why you think your idea is worthy.

Clear hand-written notes on paper are a minimum requirement: disks with separate drawing and text files in a popular form are best – but please label the disk clearly.
Liquid-level controller

Low power consumption, resistance to interference from mains spikes and low cost are features of this water level controller. A step-down mains transformer provides voltage for the control circuit and a step-up transformer for the sensor measuring voltage of 100-200Vac to avoid electrolysis. Measuring current is 1-3mA, limited by the 100nF, 1500V capacitor. If the vessel is empty, no current flows through the bridge rectifier, the transistor is off and the relay is activated. The normally closed contact is open and the low-level electrode is not in circuit, while the normally open contact is closed and the pump or valve starts to fill the vessel.

As the water rises, it first touches the low-level contact, but has no effect, since it is out of circuit; the level rises until the high-level contact is touched and the bridge takes current, the transistor turns on and the relay coil is short-circuited, so the low-level contact is in circuit and the pump stops. As the vessel empties and clears the low contact, the cycle starts again. Mains spikes have no effect, since they reinforce the actions of the circuit. Distance between the vessel and circuit may as much as 10m, but the ground line must not be near the other two lines to avoid stray capacitance.

Roland Vanthomme
Sambreville
Belgium
C98

Ten year index: new update

Hard copies and floppy-disk databases both available

Whether as a PC data base or as hard copy, SoftCopy can supply a complete index of Electronics World articles going back over the past nine years.

The computerised index of Electronics World magazine covers the nine years from 1988 to 1996, volumes 94 to 102 inclusive and is available now. It contains almost 2000 references to articles, circuit ideas and applications - including a synopsis for each.

The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512K ram and a hard disk.

The disk-based index price is still only £20 inclusive. Please specify whether you need 3.5in, 3.5in DD or 3.5in HD format. Existing users can obtain an upgrade for £15 by quoting their serial number with their order.

Photo copies of Electronics World articles from back issues are available at a flat rate of £3.50 per article, £1 per circuit idea, excluding postage.

Hard copy Electronics World index
Indexes on paper for volumes 100, 101, and 102 are available at £2 each, excluding postage.

www.softcopy.co.uk

Ordering details
The EW index data base price of £20 includes UK postage and VAT. Add an extra £1 for overseas EC orders or £5 for non-EC overseas orders.
Postal charges on hard copy indexes and on photocopies are 50p UK, £1 for the rest of the EC or £2 worldwide.
For enquiries about photocopies etc please send an sae to SoftCopy Ltd. Send your orders to SoftCopy Ltd, 1 Vineries Close, Cheltenham GL53 0UN.
Cheques payable to SoftCopy Ltd, please allow 28 days for delivery.

e-mail at SoftCopy@compuserve.com, tel 01242 241455

TABLE OF CONTENTS

Applications
Applications by description
Applications by part numbers
Calendar addresses
Author Index

Users
Circuit Ideas
Information
Subject Index
Analogue Design
Audio
Avionics
Broadcast
Communications
Components
Computing
Consumer Electronics
Control Electronics
Digital & DSP Design
History

The Electronics World SoftIndex runs from January 1990 to May 1996 and contains references to 1300 articles and 800 circuit ideas. There is a separate author index with full cross references. Reprints can be obtained for all the articles in this index - see the Information section for more details. For up to date information about Electronics World see our website at http://www.softcopy.co.uk.

www.ElectronicsWorld.co.uk

Ten year index: new update

Hard copies and floppy-disk databases both available

Whether as a PC data base or as hard copy, SoftCopy can supply a complete index of Electronics World articles going back over the past nine years.

The computerised index of Electronics World magazine covers the nine years from 1988 to 1996, volumes 94 to 102 inclusive and is available now. It contains almost 2000 references to articles, circuit ideas and applications - including a synopsis for each.

The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512K ram and a hard disk.

The disk-based index price is still only £20 inclusive. Please specify whether you need 3.5in, 3.5in DD or 3.5in HD format. Existing users can obtain an upgrade for £15 by quoting their serial number with their order.

Photo copies of Electronics World articles from back issues are available at a flat rate of £3.50 per article, £1 per circuit idea, excluding postage.

Hard copy Electronics World index
Indexes on paper for volumes 100, 101, and 102 are available at £2 each, excluding postage.

www.softcopy.co.uk

Ordering details
The EW index data base price of £20 includes UK postage and VAT. Add an extra £1 for overseas EC orders or £5 for non-EC overseas orders.
Postal charges on hard copy indexes and on photocopies are 50p UK, £1 for the rest of the EC or £2 worldwide.
For enquiries about photocopies etc please send an sae to SoftCopy Ltd. Send your orders to SoftCopy Ltd, 1 Vineries Close, Cheltenham GL53 0UN.
Cheques payable to SoftCopy Ltd, please allow 28 days for delivery.

e-mail at SoftCopy@compuserve.com, tel 01242 241455
Portables with a Purpose

Reliable Tools that do the Job

FieldPac uniquely combines the power and expandability of a desktop PC with the mobility, strength and form-factor of a metal attaché case. One truly full-sized ISA or PCI expansion slot allows you the freedom to choose any add-in card on the market for applications such as: Network Testing & Monitoring, Portable D/A systems, Image Capture & Commissioning/Installation Tools. Trust the FieldPac anywhere you travel and feel confident it will survive the rigors of transport, ready to do the job, every time.

- ISA or PCI Full Sized Slot.
- High Brightness TFT Display.
- Pentium CPU, CD, Multimedia.
- Rugged, All Metal Attaché Case.
- Airline Hand Luggage.
- Universal Autoswitch Integral PSU.
- Removable Full-size Keyboard.
- CardBus / PCMCIA x 2.

Tel: +44 1908 263622 Fax: +44 1908 263220 sales@dolch.co.uk www.dolch.com

CIRCLE NO. 115 ON REPLY CARD
Mosfet hf mixer

Figure 1 shows a typical dual-gate hf mixer, which provides reasonable, low-cost intermodulation and noise performance. The improved circuit in Fig. 2 employs the mosfet as an amplifier rather than a mixer, an arrangement that allows the mosfet to be biased for best noise figure.

Transistors Tr2,3 provide the multiplication needed for mixing and act as switches. Inductor L1 and C4 resonate at the if and represent the if load. Local oscillator input must be around 20mV pk-pk from a low impedance such as 50Ω and output inductor L2 is bifilar wound on a ferrite core for best balance. These modifications to the original circuit provide higher gain and a lower noise figure and higher intermodulation intercept to give an improvement in third-order dynamic range.

Improved rf mixer uses the mosfet as an amplifier for best bias and transistors as mixing element.

Wide-band amplitude modulator

Gain of this amplitude modulator is constant for carrier frequencies between 10kHz and 50MHz. The circuit linearly modulates the carrier by up to 100% using a modulation signal between 10Hz and 200kHz. Modulating input varies the current through Tr3 and therefore the gain of the emitter-coupled amplifier Tr1,2. Output of the amplifier is a composite of an am-modulated carrier and the modulating frequency, the latter normally being removed by a filter. Since the modulating frequency appears at the two collectors in common-mode, the differential op-amp amplifier rejects it, while amplifying the two am signals normally. The avoidance of filtering confers a wide-band performance.

Trimmer C1 increases the gain of the op-amp to counteract precisely the fall-off in gain of the emitter-coupled amplifier, while the potentiometer R1 sets symmetry of the rf envelope when modulated to 50% by a 200kHz input, the carrier being anything over 2MHz. The circuit is affected only minimally by temperature.
Telnet, 8 Cavans Way, Binley Industrial Estate, Coventry CV3 2SF.
Twilight switch

This circuit switches power to a load when ambient light falls below a set level. In some circuits of this type, the light sensor will switch the load off again if light impinges on it. In this circuit, the thyristor is supplied with a sustaining current from the rectified supply, so that the load remains on in the presence of mains power.

Capacitor C_2 and R_4 prevent rapid power-on voltage rises to avoid false thyristor firing. The variable resistor adjusts sensitivity.

Jean-Marc Brassart
Saint-Laurent-du-Var
France
C97

Once fired, the thyristor in this light switch stays on, regardless of light on the sensor.

Triode audio amplifier with bootstrapping

The use of triodes as the output stage in valve amplifiers has much to recommend it, but there is the problem of the large drive needed by some types of valve. It is found that a form of bootstrapping overcomes the problem, following similar design techniques used by Macintosh.

Positive feedback, applied to the anode load resistors of the driver stage, comes from taps on the ultra-linear output transformer, many of which are available. This removes the need for the drivers to supply the large voltage swings needed by low-µ triodes such as the 6080. An output transformer having 43% taps is suitable for use with the 6080 types or, with a µ of 4.5, 25% taps can be used.

A single 6080 with a 4300Ω impedance transformer, running from a 350V rail, produced 10W of clean audio, while another with two 6080s in push-pull and a transformer impedance of 2150Ω on a supply of 400V gave 30W. V_3 and V_4 are both sections of a 6080, each section having its own cathode resistor and bypass.

Feedback comes from the 852 tap of the transformer to point X, reversal of the output transformer secondary stopping any oscillation.

John L Stewart
King City
Ontario
Canada
C88
Easy choice? Then send for the Pico Technology full colour PC based test & measurement catalog and software demonstration diskette. Alternatively, visit our web site: www.picotech.com

Use a Pico ADC together with the supplied software and transform your PC into an oscilloscope, spectrum analyser, multimeter, data logger and chart recorder. Virtual instruments replace bulky and expensive test equipment, saving money and workbench space. They make switching between instruments quick and easy. Pico Technology virtual instruments are easier to use than traditional instruments: simple to use software and on-screen help makes you an expert within minutes.

Tel: +44 (0)1954 211716, Fax: +44 (0)1954 211880, E-mail: post@picotech.co.uk, Web: www.picotech.com

CIRCLE NO.117 ON REPLY CARD
New FIR speaker crossover

Finite impulse response filters produce a linear phase response and a constant group delay and may be designed using all-pass elements and a summing network, a linear phase response being obtained when all coefficients are symmetrical.

The two-way crossover filter shown here is a member of a new class of phase-linear FIR crossovers.

Varying the coefficients produces differing low-pass filters, as shown below. Taking the difference between the delayed input and the low-pass output produces a high-pass characteristic.

With four all-pass elements, you can obtain slopes up to 24dB/octave. Adding elements with an extended summation network produces higher-order crossover, but for use with standard high-quality speakers, second or fourth-order crossovers are adequate.

Corner frequency depends on R_0C_0 in each element and on values in the summation network.

For an average filter, $R_{1,5} = 20k\Omega$.

Least-squares filter:
$R_1 = 8.66k\Omega$
$R_{3,4} = 34k\Omega$
$R_3 = 48.7k\Omega$.

Optimised average filter:
$R_1 = 7.32k\Omega$
$R_{2,4} = 24.9k\Omega$
$R_3 = 35.7k\Omega$.

Optimal low-pass filter:
$R_1 = 6.19k\Omega$
$R_{2,4} = 24.9k\Omega$
$R_3 = 37.4k\Omega$.

Optimal high-pass filter:
$R_1 = 6.19k\Omega$
$R_{2,4} = 24.9k\Omega$
$R_3 = 61.9k\Omega$.

Low-pass filter with notch:
$R_1 = 12.4k\Omega$
$R_{2,4} = 24.9k\Omega$.

Gerd Schmidt
Frankfurt
Germany
C93

Characteristics of the two-way FIR filter, obtained by varying coefficients and the summing network. At (a) is the average filter; (b) shows the least-squares filter; (c) is an optimised average shape; (d) an optimal low-pass; (e) is the optimal high-pass and (f) is a low-pass with a notch.

New FIR filter for loudspeaker crossover applications.
THE IEC 320 CONNECTION

OFFICE FURNITURE CABLE MANAGEMENT WITH IEC 320 SHUTTERED SOCKETS MANUFACTURED TO BS 6396

DISTRIBUTION PANELS WITH IEC 320 SOCKETS INDIVIDUALLY FUSED AND NEON INDICATORS

PANELS with 10AMP CEE22/IEC SHUTTERED SOCKETS MADE FROM BRASS WITH MAINS FILTERS AND MCB PROTECTION

DISTRIBUTION PANELS WITH IEC 320 SOCKETS INDIVIDUALLY FUSED AND NEON INDICATORS

THE RACK RANGE CEE22/IEC SOCKETS

BUY DIRECT!

ELECTRONICS LIMITED

24 HOUR DELIVERY SERVICE

MASTERCARD AND VISA CREDIT CARDS ACCEPTED

OLSON HOUSE, 490 HONEYPOT LANE, STANMORE, MIDDLESEX HA7 1JX

TEL: 0181-905 7273 FAX: 0181-952 1232
Low-current battery monitor

The use of exclusive-Nor gates in this four-led battery monitor, which originally had three of the four leds illuminated for much of the time, has allowed only one of the leds to be on at a time, so saving current.

As a reminder, an exNor gives a 1 output if one input is 0 and a 0 output if both inputs are 0. In the circuit shown, a 78L05 regulator supplies a tapped resistor chain with 5V to give four reference voltages, the four op-amps in an LM324 being used as comparators, in which the voltage-divided input is compared with the four reference voltages. The use of the exNors means that as each led comes on, the one below it goes out, only the highest therefore being illuminated. Switching points with values shown are 8V, 11.4V, 12.4V and 13.5V. No led is on below 8V, since the circuit supplied by the battery is long gone at that voltage.

Neville Frewin
Fontainebleau
South Africa

Switching voltages
13.5V 12.4 11.4 8.0

Two-op-amp sine generator, MkII

An earlier contribution1 showed how two op-amps may be made to generate low-distortion sine waves, the circuit being based on a non-inverting integrator that needed two capacitors. This new circuit2 needs only one capacitor, but two extra resistors, which are easy to match and readily available in low-temperature coefficient form at low cost.

Op-amp IC1 is the non-inverter, IC2 being the inverting integrator. To obtain oscillation, phase lag from each integrator must be 90° and loop gain just greater than unity; adjustment of the gain to make v1 just clip at the ±5V rails is critical and is done here by reducing R2 and inserting a 20kΩ trimmer in its ground leg. Lowest distortion is gained if C2 is slightly greater than C1 or R5 slightly increased.

Common-mode signals into the inputs of IC1 are nearly ±3V and it is necessary to use an OP-291 or similar that has near rail-to-rail inputs as well as output. Frequency of the circuit shown is 1kHz.

CJD Catto
Cambridge

References

(Ref. 3 was inadvertently omitted from the article in Ref 1.)
Siemens uC starter kits are a great way to get into the world of embedded systems. With peripherals like ADC, Capture/Compare and Controller Area Networking, you will be able to get your ideas going fast - you can choose between the popular 8-bit C500 CPU family or the 12.5 MIPS 16-bit C167 family to get the best fit for your project.

For further details see our website
www.hitex.co.uk

CROWNHILL ASSOCIATES LIMITED
The Old Bakery, New Barns Road,
Ely, Cambs. CB4 7PW
Tel: +44 (0)1353 666709 Fax: +44 (0)1353 666710

Low cost professional quality Smart Card Systems

CHIPDRIVE
The intelligent programmer for Smart Cards using the International Standard T=0 or T=1 protocols also Memory and Secure Memory using IC, 2-wire & 3-wire interfaces. From April 1 1999 all Chipdrives are supplied with software to read and write to most popular secure smart cards, inc GSM, PAY PHONE and ACCESS CONTROL. Cards Drivers are available for Apple Macintosh, Linux, Unix, Solaris Microsoft PGPR and of course WINDOWS 95/98 and NT. Supplied with CARDSERVER API for easy development of SmartCard Applications using Visual Basic, Delphi or C++.

CHIPDRIVE INTERNAL
£49.95 + P&P £7.50
Exclusive of VAT

CHIPDRIVE EXTERNAL
£49.95 + P&P £7.50
Exclusive of VAT

CHIPDRIVE Micro
£39.95 + P&P £5
Exclusive of VAT

All Chipdrives are supplied with a Windows API and full documentation. Chipdrives are CE Compliant Chipdrives conform to ISO7816, T=0 or T=1 @ 3.579MHz, RS232 @ 9600-11500 bps, Internal SupplyN-MH. Under normal conditions power is derived from the host Serial Port. Operation is simple, full telephone and email support is provided for Windows developers.

CHIPDRIVE Developer Kit
CDK consists of: CD ROM containing cardserver.d11. Applications and Source code examples. CHIPDRIVE micro a selection of Smart Cards offering protected memory, processor and memory cards. Typical uses are Control access, Pay Phone cards and Data transport. PIN codes for the cards are supplied along with data sheets and programming data for use with cardserver.dll. A useful application with source codes shows how the CHIPDRIVE can be used to identify any Smart card inserted, giving manufacturer info, and memory map if available. Applications produced with the developer kit will operate under Windows 3.11/95/98/NT and are compatible with the whole CHIPDRIVE family. The CDK uses easy to use 16 bit or 32 bit DLLs with just one function call to the 'CardServer' to identify the card or carry out any instruction. Cardserver is a powerful Background task which relieves the application program from device and card administration. Featuring automatic protocol and card type detection. Allowing several applications to access one terminal dependent only on the type of card inserted.

£69.95 + P&P £5
Exclusive of VAT

Contactless Smart Card Development System

HiTag* Cards
The Contactless Reader/Writer is designed to communicate via an RF field with the HiTag* range of contactless cards. A simple ASCII based command set allows direct access to the powerful features that enable data to be read and written to the card at distances up to 150mm. A RS485 multi drop facility is built into the reader/writer unit allowing up to 32 devices to be controlled over a single drop. Communication is via an onboard configurable RS232 Port A sounder, two opto isolated outputs, 4 LEDs and 2 high current open drain Mosfets are available for interfacing.

£149.95 + P&P £5
Exclusive of VAT

http://www.towitoko.co.uk
http://www.crownhill.co.uk
http://www.edsim2000.com

For further details see our website
www.hitex.co.uk

July 1999 ELECTRONICS WORLD
Antenna Toolkit
by Joe Carr

Combined with antenna design software on CD-rom, Newnes’ new book Antenna Toolkit provides a complete design solution. Prepared by antenna expert Joe Carr, this package is written for beginners and advanced users alike. On the CD-rom is a suite of powerful software running on the pc. The software calculates the critical lengths and other parameters of the antennas in the book by having the user select the antenna type and set the frequency. The main menu screen is in the form of tabs, one for each chapter of the book plus other topics. This 220 page work includes 185 illustrations and 23 photographs.

** HF propagation predictor included **
Also included is a Windows freeware package, from the Voice of America organization, called VOACAP. This is an hf propagation predictor which some commercial sources have offered unmodified for hundreds of dollars.

UK Price: £27.50 Europe £30.00 ROW £32.50

** Price includes delivery and package **

Return to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following title:

Newnes Antenna Toolkit

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
</tr>
<tr>
<td>Postcode</td>
</tr>
<tr>
<td>Method of payment (please circle)</td>
</tr>
<tr>
<td>Access/Mastercard/Visa/Cheque/PO</td>
</tr>
<tr>
<td>Cheques should be made payable to Reed Business Information</td>
</tr>
<tr>
<td>Credit card no</td>
</tr>
<tr>
<td>Card expiry date</td>
</tr>
<tr>
<td>Signed</td>
</tr>
</tbody>
</table>

Please allow up to 28 days for delivery
Getting more copper inside a loudspeaker’s coil gap by using square cross-sectioned wire instead of circular has got to improve performance, hasn’t it? John Watkinson investigates.

As I have demonstrated in earlier articles, the efficiency of a moving coil speaker is pretty miserable. Anything that offers an improvement in efficiency is worth looking at.

The efficiency depends upon the Bl product and the overall moving mass. Making the magnet more powerful is an obvious approach, but this is expensive. An alternative is to look at ways of getting more Bl from an existing magnet.

This is where square and rectangular wire comes in to consideration. Figure 1a) shows a coil made with round wire. The packing efficiency is poor because circles don’t fit together at all well. The result is that only part of the magnetic field that we have paid for is being used. Figure 1b) shows that if square wire is used, the air voids are removed and the packing efficiency is better.

How much better?
The question is, how much better? I have kept coming across the above argument, but the result was never quantified, so I decided to work it out. It turned out to be more complex than might at first be thought.

It is important to compare like with like, so that as much as possible everything should be kept the same except for the cross-sectional shape of the wire. So consider two coils, having the same overall length, the same DC resistance and the same mass. They differ only in their wire cross section.

This isn’t easy because if the cross-sectional area of the wire is kept the same, the coil having the square wire will be shorter because of the better packing. This will reduce the linear travel of the cone and the overhung coil length and so we are not comparing like with like.

On the other hand, if the coils are made the same length, the coil having the square wire would have more turns and hence higher resistance.

I thought that one approach would be to compare coils of the same length and DC resistance. The cross-sectional area of the square coil would have to be greater so that the same resistance was obtained despite the larger number of turns. The result of this approach is that the coil wire itself would be heavier, but the effect of the changed moving mass could be estimated.

The panel entitled shows the calculations. The result is that the Bl product goes up by 8 percent because more turns are in the gap. The gap volume occupied by the wire can be reduced by 8 percent because of the improved packing. This means that the magnet could be smaller, or with the same magnet the field would be stronger.

Clearance and former losses
In practice, the magnet gap is wasted by clearance spaces and the coil former, so nothing like the 8 percent improvement is realised. The gain is more like 2 percent. The square wire has given about a ten percent improvement in Bl.

Unfortunately, the panel also shows that the mass of the coil has gone up by 17 percent, so we lose!

Another approach to the problem is to allow rectangular wire. This would make it possible to match the mass, resistance and coil length with that of an equal circular wire coil.

Figure 2 shows that if the rectangular wire has the same cross-sectional area it will have the same mass and resistance per unit length as the round wire. Also, if the diameter is the same as the section height, the coil will have the same length too.

Note that the Bl product doesn’t change. But the thickness of the coil falls to about three quarters of the value for round wire. This allows a smaller gap volume and consequently a smaller magnet for the same field strength.

However, the magnet won’t be three quarters as big because as before some of the gap is used up with coil former and clearance space. Maybe a ten percent reduction in magnet size, or a ten percent improvement in Bl for the same magnet would be feasible.

Bearing in mind the phenomenal cost of square wire and the enormous difficulty in obtaining it, it is likely that the saving on the magnet would be eclipsed by the extra cost of the wire below a certain size of drive unit. It is only in large drive units where the magnet cost becomes an issue and small magnetic efficiency gains become worthwhile.

So the efficiency argument for
Efficiency versus weight
If wire length is L, then for equal resistance,
\[
\begin{align*}
& L_x = L_y = \frac{L_z}{A_z}, \\
& L_y = L_z = \frac{L_x}{A_x}
\end{align*}
\]
(1)

If coil circumference is C, number of turns is L/C.

Length of coil, L_c, is number of turns multiplied by w or d.

\[
L_c = \frac{L}{C} C = \frac{L}{C} d
\]

From eqn 1,
\[
4L = \frac{L_x}{C} \times w = \frac{L_y}{C} d = \frac{L_z}{w} = \frac{d}{w}
\]
(2)

So assuming constant DC resistance and coil length, the coil using square wire is 8% more efficient, but 17% heavier.

\[
A_R = \frac{\pi d^2}{4} \quad A_S = w^2
\]

If mass is M,

square or rectangular wire is tenuous if used as a replacement for round wire in an existing design. It is certainly less effective than the improvement obtained by going from copper to aluminium. However, square or rectangular wire has the characteristic that successive turns can easily be bonded together so that the coil former can be dispensed with. This has a number of advantages.

Benefits of no former
The elimination of the coil former reduces the amount of wasted volume in the gap. The wasted volume is now only due to the inner and outer coil clearance spaces. A selfsupporting coil has better cooling because both sides are exposed and can radiate to both poles.

Combining the elimination of the coil former with the slightly better packing of the square wire gives a tangible reduction in gap volume. The more powerful the speaker, the greater the ratio of coil volume to clearance volume and the more relevant the approach becomes. Self-supporting coils of this kind are found in all kinds of applications such as vibration table actuators and in the positioners of giant disk drives.

For small or low powered speakers, it doesn't make economic sense except for manufacturers who operate at very high volumes and can get specialist wires at reasonable cost through volume purchase. If square or rectangular wire is contemplated, the speaker has to be designed from the outset to use it. If the coil isn't self-supporting, most of the advantage is lost.

"We never expected PCB Layout power at this price..."

EASY-PC FOR WINDOWS, the top selling advanced printed circuit board and schematic design system brings you a simple and intuitive user interface with a set of powerful features normally only found in the most expensive packages.

- True Windows graphical user interface
- Easy to learn and use
- Full connectivity between SCM and PCB
- Full multi-level Undo and Redo
- Multi-Sheet project based design
- 0.1 Micron system resolution
- Unlimited layers, electrical and non-electrical
- Uses technology files for 'fast start' designs
- OrCAD and IMT EDA Workbench netlist import
- Intelligent circuit copy and paste within and across designs
- Cut, copy and paste to external Windows applications
- Extensive design rules and connectivity checking / reporting
- Features a comprehensive set of libraries including SMT devices
- Automatic links to our Analogue, Digital & Electromagnetic simulators
- Runs under Windows 95/98™ and Windows NT™
- Available as Unlimited, 2000 pins, 1000 pins and 500 pins variants

Easy-PC For Windows from Number One Systems
The Electronics CAD Software Specialists
Visit our web site at www.numberone.com or Email us on sales@numberone.com or call sales on 01684 773662 or fax 01684 773664
Sightmagic Ltd, Oak Lane, Bredon, Tewkesbury, Glos, GL20 7LR, UK

Number One Systems and Easy-PC are trademarks of Sightmagic Ltd. All other trademarks are acknowledged to their rightful owners.
The range of 'FM Controllers' provide most of the features required for STE VO Bus, 68000 and PC Interface

- 12C Bus or M-Bus
- 10 Digital I/O Lines
- Real Time Calendar Clock
- 1 RS232/RS485 Serial Port
- 512 Kbytes SRAM Battery Backed

FEATURES FM-200 Controller

- logging and or re-programming (Y2K Compliant)
- 86 Bishopsgate Street, Leeds LS1 488

MARCONI TF2018 80 KHz-520 MHz signal generator £1,700
MARCONI TF2022 10 KHz-1,000 MHz signal generator £1,900
TEKTRONIX 2901 time mark generator
HP 80058 0.1 Hz -20 MHz pulse generator
HP 8620C/86220A 10-1300 MHz sweeper
HP 8620C/86230B 1.8 GHz-4.2 GHz sweeper
HP 8620C/86241A 3.2-6.5 GHz sweeper
HP 8904A DC -600 KHz multifunction synthesiser
HP 512010 300 MHz 2 channel digitising 127 channels logic level meter £1,300
AVO 215-L/2 AC/DC breakdown ionisation tester
ANRITSU MS65A 2 GHz error detector
HP 3582A 0.02 Hz -25.5 KHz dual channel venal analyser
HP 37708 telephone line analyser
HP 50041 1 universal systems counter£400
HP 5334A universal systems counter high stability OPT ...£600
HP 3702813705 monitor
HP 5335A universal systems counter £600
HP 59401* bus system analyser
FLUKE 5205A precision power amp
FLUKE 54408 direct volts calibrator
RACAL DANA 9302A true RMS RF millivoltmeter 10 KHz
RACAL DANA 9303B 10 MHz multimeter
RACAL DANA 9919 10 Hz -1,100 MHz frequency counter
RACAL DANA 9929A 10 Hz -1,100 MHz frequency counter
RACAL DANA 9929B 10 Hz -1100 MHz frequency counter
RACAL DANA 7903K 400 Hz 200 MHz 4 channel (as new) £1,450
MP 5328A 1 MHz 10 MHz 4 channel (as new) £1,950
MP 59401* bus system analyser

OPTIONAL EXTRAS

- LCD Port Graphics or Alphanumeric
- Key Pad Port 64 Keys 8 x 8
- 8 Channels 8 bit analogue in
- 2 Channels 8 bit analogue out
- 8 Channels 13 bit analogue in

CIRCLE NO.123 ON REPLY CARD
CIRCLE NO.124 ON REPLY CARD

FM Embedded Controllers at a groundbreaking price!

$9.95 each
210 100 UNITS

The PC Starter Pack provides the quickest method to get your application up and running.

Support
Free unlimited telephone, FAX, email and Internet support.

Custom Design
CAMS will design and manufacture to customers requirements.
Maurice Wilkes: pioneer of modern computing

Chris Hipwell has been talking to Maurice Wilkes, the innovator who, in 1949, built the first computer designed to store programs.

Fifty years ago, on 6 May 1949, a machine read a paper tape containing a program for computing a table of squares and printed the results. Edsac, the first computer designed to embody the concept of the stored program, was up and running. It would remain operational, providing a service for scientists and researchers at Cambridge University, until 1958.

Those bare facts hardly do justice to the achievement of Maurice Wilkes who had, with a team rarely numbering more than half a dozen people, transformed a concept proposed by American computing pioneers into a working system. It had taken two-and-a-half years but even so Wilkes' implementation of the stored program concept was completed ahead of its American counterpart, Edvac.

Remarkably Wilkes, now aged 85, still works as a consultant at the AT&T Research Laboratory in Cambridge. This institution, formerly funded by Olivetti and Oracle, is a think-tank that provides a link between academia and the commercial IT world.

In Wilkes' case it also provides a link with the present generation of researchers at the University Computing Laboratory, which he was director of for 34 years from 1946 to 1980.

Although Britain was on its knees in economic terms, "everybody was very co-operative, everybody was keen to re-establish peacetime values and this released an enormous amount of energy," remembers Wilkes. In consequence, he asserts, "there couldn't have been a more favourable time to establish an ambitious project of that sort."

Wilkes was then 33 and the whole of his life seemed to have been a preparation for the task that lay before him. As a schoolboy he had tinkered with electric batteries, lamps and bells. After the advent of broadcasting in 1922 he became a keen constructor of crystal sets and receivers, reading Wireless World - the main source of his knowledge of electronics. "As a boy," he said, "I used to lap up Wireless World." During his sixth-form years, Wilkes became a radio ham, building his own rig.

Wilkes went on to study mathematics at Cambridge, achieving first class honours in his finals in 1934. He stayed on to study for a PhD, joining the radio group at the Cavendish Laboratory, where he undertook research into the passage of long wave radio in the ionosphere.

During this period Wilkes attended a lecture by Professor Hartree of Manchester University on their differential analyser. He used a machine modelled on the analyser for his own research at Cambridge.

This work gave Wilkes an insight into mechanical calculation and the demand for such facilities among university researchers. He was appointed to a...
junior position in the new Mathematical Laboratory established in 1937.

The War years

For many, the war years marked a hiatus in their careers. For Wilkes, although physically removed from Cambridge, the war years marked a further stage in his progress as an electronics engineer capable of applying his knowledge to a variety of problems.

Early on he was introduced to the new technology of radar, briefly operating on radar sites, but later undertaking research into the development of radar for a range of wartime applications.

Wilkes returned to Cambridge as Acting Director of the Mathematical Laboratory in 1945. He soon came into contact with Professor Hartree who had recently visited the US. While there, he had seen the Eniac computer which was under development at the Moore School of the University of Pennsylvania.

In the following year, Wilkes read the 'Draft report on the Edvac' written by John von Neumann on behalf of the group at the Moore School. It laid out the principles on which the digital computer was to be based, prompting Wilkes to comment that, "I recognised this at once to be the real thing, and from that time on never had any doubt as to the way computer development would go."

This certainty was reinforced later in 1946 when Wilkes visited the US to attend a course on electronic computers at the Moore School. There he saw Eniac - a monster containing 18,000 vacuum tubes, 70,000 resistors, 10,000 capacitors and 6000 switches. It occupied three sides of a 40 feet by 20 feet room.

However, Eniac lacked a memory. Programs were set up manually by inserting plugs in sockets and via three function tables, large vertical panels or so-called 'tubes' but the word 'tank' was used to avoid confusion with vacuum tubes. With the help of Gold's experience, Wilkes soon designed and built his first memory tank.

When asked which aspect of the Edsac project had given him most satisfaction Wilkes replied, "I certainly enjoyed designing the memory batteries, enjoyed it very much. It was a bit of mechanical design, properly stressed and designed so that it could be made."

Electronic memory - 1.6m long

A single mercury tank 1.5 metres long would hold only 16 words of 32 bits. It was decided that in order to give a reasonable amount of memory, 32 tanks would be required. These all had to be the same length so to within a very close tolerance. Moreover the crystals at the opposite ends of each tube had to be aligned very accurately, within a few minutes of arc.

Rather than building each tank as an independent unit, Wilkes said, 'I

Typical logic gate circuit. A pulse train was fed to input 1 and a square wave to input 2. According to the description, "Pulses appear at the output for as long as the square wave lasts. They cease to pass as soon as the grid of the valve at input 2 returns to zero."
thought it would be much nicer to build these tanks in batteries of 16 and to have each battery made with sufficient precision so that when it was bolted up solid everything was in line and the crystals were the correct distance apart.

Short mercury tanks, an inch or so long and each holding only one short or long number, were used for the registers in the arithmetic unit, the accumulator and the multiply register. Short tanks were also used for the registers for holding instructions that had been called.

In all, Edsac contained around 3000 vacuum tubes. A typical gate used for switching comprised two cathode followers that applied inputs to the cathodes of two diodes the anodes of which were connected together. There was a pull-up resistor, marked R on the circuit diagram, and the output was fed into an amplifier.

Wilkes says, "I was very proud of my discovery. After quite a lot of experimental work, I found that the ideal sort of amplifier for that purpose was a cathode-coupled type." Dual diodes, namely EB34s, were used for the rectifiers and EF54s (RL7s) connected as triodes were used for the cathode followers.

The machine was AC-coupled. To keep the level baseline in a fixed position, DC restoring diodes were used; "We had to put these things everywhere and make sure they worked," commented Wilkes. Consequently, DC restoring diodes made up an appreciable proportion of the total number of valves in the machine.

The circuit assemblies were housed in purpose-built racks with long chassis to make access easier, rather than the more familiar 'Post office' racks.

"I never liked 19in racks"

Wilkes says, "I never liked 19-inch racks. Why something that appeals to people who design telephone exchanges should have exercised such a grip on the electronics industry, I have always failed to understand."

With the self-confidence of a born engineer, Wilkes has never been afraid to question conventional wisdom if he could see a better way to achieve his objectives. Following Edsac, he went on to demonstrate the concept of microprogramming in Edsac 2.

Wilkes also became involved in the time-sharing developments of the early 1960s, and to conceive the idea of the Cambridge ring - an early local area network - in the late seventies.

Even so, it will be for the work which culminated in the running of that program one day in May fifty years ago that Maurice Wilkes will be remembered.

Designing filters?

SuperFilter makes excellence easy

New Professional version optimises truncated digital coefficients, selects best op-amp for purpose and equalises group delay.

If you are comfortable in the complex plane, SuperFilter will support your expertise. If you prefer to work in terms of gain and corner frequencies, SuperFilter will do the job just the same. For impedance matching, all pass, low, band pass and high pass realised in active, passive, switched capacitor and digital networks with netlist output to SpiceAge, optimisation, library of preferred value components, Monte-Carlo tolerancing, non-ideal capacitors and inductors, this stunningly comprehensive program handles it all.

For a free demonstration disk, please talk to Those Engineers.

Those Engineers Ltd, 31 Birkbeck Road, London NW7 4BP. Tel +44 181 906 0155

FAX +44 181 906 0969 e-mail Those_Engineers@compuserve.com url http://www.spiceage.com

CIRCLE NO.125 ON REPLY CARD
EMC TESTING

For a Full Comprehensive EMC Test Service

- FULL TESTING TO CE MARK FOR EMC
- COMPETITIVE RATES
- FREE TECHNICAL ADVICE

From Design to Compliance

R. N. Electronics are specialist Wireless Design Consultants, this expertise is available to our clients when undertaking EMC testing, AT NO EXTRA COST.

R.N. Electronics Ltd
EMC TEST FACILITY & R.F. DESIGN SERVICES

Arnolds Court, Arnolds Farm Lane, Mountnessing, Brentwood, Essex. CM13 1UT
Telephone: 01277 352219 Facsimile: 01277 352968
e-mail: sales@rfdesign.co.uk http://www.rfdesign.co.uk

CIRCLE NO.126 ON REPLY CARD

ANTRIM TRANSFORMERS
Toroidal Transformers

- Large standard range / custom designs available
- Medical isolation, Audio Grade, 100V Line, Valve Output and Value psu Transformers
- Lead time typically 3 weeks with rapid quotation and prototype service
- 100% UK manufactured with full technical backup service

Antrim Transformers Ltd
Enkalon Industrial Park 25 Randalstown Road
Antrim N. Ireland BT41 4LD
Tel: +44 (0) 1849 428734
Fax: +44 (0) 1849 468745
www.antrimtransformers.com

CIRCLE NO.127 ON REPLY CARD

PIC BASIC

Write your PICmicro programs in BASIC!

- Quicker and easier than "C" or assembler
- Expanded BASIC Stamp I compatible instruction set
- True compiler provides faster program execution and longer programs than BASIC interpreters
- 120IN and 120OUT instructions to access external serial EEPROM
- More user variables
- Peek and Pout instructions to access any PICmicro register from BASIC
- Serial speeds to 9600 baud
- In-line assembler and Call support (call your assembly routines)
- Supports PIC12C67x, PIC14Cxxx, PIC16C55x, 6xx, 7xx, 84, 9xx and PIC16F8x microcontrollers
- Use in DOS or Windows
- Compatible with most PICmicro programmers

The low-cost PicBased Compiler (PBC) makes it easy to write programs for the fast Microchip PICmicros. PBC converts these programs into hex or binary files that can be programmed directly into a PICmicro microcontroller. The easy-to-use BASIC language makes PICmicro programming available to everyone with its English-like instruction set. No more scary assembly language!

The PicBasic Pro Compiler runs on Windows. It can create programs for the PIC12C67x, PIC12CE67x, PIC14Cxxx, PIC16C55x, 6xx, 7xx, 84, 9xx, PIC16CE52x and PIC16F8x microcontrollers. The PicBasic Pro Compiler instruction set is upward compatible with the BASIC Stamp II and Pro uses BS2 syntax. Programs can be compiled and programmed directly into a PICmicro, eliminating the need for a BASIC Stamp module. These programs execute much faster than their Stamp equivalents. They may also be protected so no one can copy your code!

Pic Basic = £49.95 PIC Basic Pro-£149.95
Bundled with manuals and sample basic programs
PBC programmers from £15.00 (kit) to £49.95
All plus VAT 17.5% VAT

Call Now for a brochure and full list of Basic Instructions
or http://www.crownhill.co.uk/picbasic/home.html

CROWNHILL ASSOCIATES LIMITED
The Old Bakery, New Barns Road,
Ely Cambs. CB4 7PW
Tel: +44 (0) 1353 666709 Fax: +44 (0) 1353 666710

CIRCLE NO.128 ON REPLY CARD

LOW COST

Embedded Control

...with extra BYTE!

Low cost
Embedded Control
Control Systems
Custom Design
Micro-Controllers
Logic Controllers
Data Loggers
Analogue & Digital I/O

Cambridge Microprocessor Systems Limited

http://www.cms.uk.com

CIRCLE NO.129 ON REPLY CARD
Professionally designed and manufactured printed circuit boards for Giovanni Stochino’s no compromise 100W power amp are available to buy.

These high-quality fibre-glass reinforced circuit boards are designed for Giovanni Stochino’s fast, low-distortion 100W power amplifier described in the August 1998 issue. Layout of the double-sided, silk screened and solder masked boards has been verified and approved by Giovanni.

This offer is for the PCBs only. The layout does not accommodate the power supply scheme shown in the article. Note that a copy of the article and a few designers’ notes are included with each purchase, but you will need some knowledge of electronics and thermal management in order to successfully implement this design.

You can receive a copy of the technical notes that accompany the PCBs and a copy of Giovanni’s original article for £3.50, refundable on purchase of one or more PCBs. Send a postal order or cheque payable to Reed Business Information to ‘Board notes,’ Electronics World Editorial, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Don’t forget to include your address.

<table>
<thead>
<tr>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power into 8Ω load</td>
</tr>
<tr>
<td>100W</td>
</tr>
<tr>
<td>20Hz (-0.1dB), 1.3MHz (-3dB)</td>
</tr>
<tr>
<td>Unity gain frequency before the output filter</td>
</tr>
<tr>
<td>22MHz</td>
</tr>
<tr>
<td>Output noise (BW=80kHz, input terminated with 50Ω)</td>
</tr>
<tr>
<td>42μV rms +32mV</td>
</tr>
<tr>
<td>Measured output offset voltage</td>
</tr>
<tr>
<td>+32mV</td>
</tr>
<tr>
<td>Distortion performance</td>
</tr>
<tr>
<td>(V_{\text{out}} \text{ pk-pk})</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>Slew rate</td>
</tr>
<tr>
<td>Positive slew-rate</td>
</tr>
<tr>
<td>Negative slew-rate</td>
</tr>
</tbody>
</table>
In this second article presenting a breakthrough in power mosfet modelling for audio design, Ian Hegglun adds compensation for mosfet electrothermal effects and answers the question of whether subthreshold conduction is needed for simulating crossover distortion.

The macromodels presented in the May issue do not show the effect of junction heating with time. This occurs when a curve tracer generates manufacturer data sheet curves.

Trying to fit models to published power mosfet curves will cause significant errors in the region where V_{DS} and I_D are both high and the sweep time is not short enough to limit junction temperature rise to only a few degrees.

The only way to simulate mosfets subjected to large cyclical junction temperature changes is to use an electrothermal model. The effect of junction temperature can be modelled to a first approximation using,

$$\beta = \frac{\beta T}{1 + J_f (T_j - T_0)}$$

$$V_{TH} = V_{TO} + J_{VTH} (T_j - T_0)$$

where J_f is the temperature coefficient for β, typically $-0.5 \text{mV/}^\circ\text{C}$ for vertical mosfets, and J_{VTH} is the temperature coefficient for the threshold voltage, typically $-5.5 \text{mV/}^\circ\text{C}$.

Spice fet models that include electrothermal feedback are rare. The Parker Skellern level 4 MESFET model is one. This is now included as standard in some of the latest versions of Spice. It can be adapted to behave like a mosfet by

$$I_D(0)(1 + \lambda V_{DS})$$

$$\frac{I_D(0)}{(1 + \lambda V_{GS})(1 + JT)}$$

Model symbols used in the Windows-based circuit simulation tool, Tina.
disabling the gate diodes, by setting $I_S=10^{-30}$ and $N=10$.
This also models subthreshold conduction and is reported
to run fast.2

Figure 1 shows an electrothermal model, which includes
subthreshold conduction, velocity saturation and smooth
pinch-off. A two-quadrant multiplier/divider subcircuit,
Fig. C in the ‘Maths’ panel, generates velocity saturation
and the overall drain conductance.

A four-quadrant multiplier, Fig. D, is used to calculate
the instantaneous power dissipated by multiplying $V_{DS} \times I_D$, which allows for power dissipation in drain and source
termination resistances.

The $V_{DS} \times I_D$ product is passed to a thermal model using a
three-stage RC low-pass network that models the thermal
impedance of the die and mounting. The resulting junction
temperature appears at the input of the RC network, which
then changes the threshold voltage and β parameter. If a
V_{CG} cell is included in the drain path the parameter λ
of the core mosfet must be set to zero as previously men-
tioned.

To set up the model, first fix the junction temperature to
25°C by inserting a fixed voltage source in place of the
output of the RC thermal network. Fit values for β, θ, V_{TH},
A, and ϕ, then raise the temperature setting to that of the
data sheet and vary the temperature coefficient for θ and
V_{TH} until correct curve is achieved, as Fig. 2a). Finally
remove the fixed source and reconnect the thermal model.

An oscilloscope in X-Y mode allows thermal looping of
the I_D/V_{DS} curve to be viewed Fig. 2b). Even at 2.5μs
(100kHz) the junction temperature rises by 20°C. Data
sheet curves do not usually show the return trace for 20µs pulses. It is significantly different from the forward trace at high currents.

Gain variations due to junction heating invariably affects large signal linearity in a power amplifier. As the frequency falls the amount of gain variation during each cycle will increase causing distortion to increase as frequency falls.

Note the peak transconductance depends on pulse duration for currents above 2A for Vps of 30V. Hence, large signal linearity in a power amplifier will depend on frequency, with deviation increasing as frequency falls.

In most cases this type of nonlinearity is swamped by crossover nonlinearity and the increasing amount of negative feedback as frequency falls will offset the thermal distortion increase. However, the longer term thermally-induced changes in the bias point for class AB circuits usually lead to a detectable increase in distortion, particularly after significant change in the output power level.

Lateral audio mosfets such as the 2SK134 are almost unaffected by thermally induced bias point changes because the zero temperature coefficient point lies in the region for optimum bias. But not all lateral mosfets have this property - the 2SK400/2SJ114 pair being one exception.

The thermal model

A three stage RC low-pass model is used for the IRF510 for accuracy down to 10µs pulses based on the data sheet. The roll-off slope of thermal impedance for the IRF510 falls by one decade every two decades of pulse duration reduction, or half the rate of a simple RC integrator.

A three-stage network has its time constants staggered over six decades of time. The slowest RC time constant is assigned the value of 200s, one decade higher than the devices time constant of 20ms as seen on the log \(R_\text{th}c/\log(t_p/\text{Pulse}) \) graph, Fig. 3. As a result, the shortest pulse is placed at 20µs, where the value of \(R_\text{th}c \) is read as 75mΩ. This value is used for the first resistor closest to the junction.

The next resistor is the value of \(R_\text{th}c \) at 2ms, two decades to the right, as 750mΩ. The final resistor value is \(R_\text{th}c \) at dc less the sum of the other resistors, i.e. 3.5-0.825=2.67552. The last capacitor is assigned the same numeric value as the first resistor, ie 75mF, and the second 0.75F. The last capacitor is the impedance extrapolated out to the slowest time - 200ms — giving 10°C/CW or 10F.

An infinite heat sink is simulated using shorted output at the case. This keeps the thermal time constant to a minimum to reduce the simulation time to approach the final temperature; around 50ms to reach 90% of the final value in this case.

All diode capacitances and time delays should be set to zero to avoid instability. Wherever possible, the internal circuitry has been level shifted to ground reference most of the circuit in an attempt to minimise convergence problems.

In some cases it was necessary to enable the 'calculate operating point' option when performing a transient simulation so the simulation can get started. When simulating very low frequencies with the electrothermal model, the first two capacitors in the thermal model can be removed or set to zero.

Simulating crossover distortion

Distortion simulations are run in transient mode with a sine source with 500 time steps per cycle and applying Fourier analysis to one complete cycle. 3

For most audio-frequency simulations, mosfet gate termination resistance, lead inductances and junction capacitances can be set to zero or left out to speed up simulations. Also, open loop simulations for the output stage only are faster and more likely to reach convergence than closed loop.

In closed loop, distortion of the entire circuit may be hard to measure due to limited numeric accuracy. With the Tina® circuit simulator, Fourier series analysis resolves to 0.0002% thd - sufficient for most closed-loop simulations.

Figure 4 shows results from a class AB simulation of a simple output stage using a matched 2SJ49/2SK134 pair tested open loop with an 8Ω load and 55V supply rails, Fig. 5. When subthreshold conduction is included, using the macromodel in Fig. 2 of my previous article, gain curves for various bias settings turn out to be surprisingly similar to the reference level 1 models once the 200mV difference in the bias settings is removed. Although I initially tried the level 3 mode, I could not get it to run.

With subthreshold conduction the curves are smoother. The results are similar - around 1% for 50Vpk swing using a similar bias.

In reference 6 of my previous article, the bias voltages were fixed at the bench test values. This suggests that the
simulated THD values are significantly different from the measured THD because of significantly different biasing points due to the choice of the V_{TH} parameter rather than the choice of model.

This seems to answer my question of whether subthreshold conduction is needed for simulating crossover distortion. In most cases it seems the simulated THD can be predicted reasonably well with a simple level 1 model if quiescent current is the reference parameter.

For cases where error correction is used to reduce distortion, the sensitivity to model error is increased. One way to discover whether the extra parameters are needed or not is to run a simulation with and without these effects.

If, when adding or dropping an effect, the results change significantly, then the parameter changed should be included in the model. Otherwise it can be left out to improve the simulation time.

Maths functions for Spice

The Schokley equation can be used to make log and anti-log subcircuits. By setting a user defined diode with zero series resistance, $I_s=1\, A$ and the diodes emission coefficient parameter n to 27.88 - ie, $1/V_T$ at $27^\circ C$ - gives $I_D=\exp(V_D)-1$. Converting I_D to voltage and adding $1V$ gives $V_{out}=\exp(V_D)$, Fig. A.

The natural logarithm can be generated by applying a voltage controlled current and measuring the diode voltage giving $V_{out}=\ln(V_D)+1$. Subtracting 1V from the input gives $V_{out}=\ln(V_D)$, Fig. B.

A multiplier can be constructed by adding logs then taking the antilog. Negative inputs can be handled by offsetting an input by a positive amount and the additional expansion terms are removed by subtraction. **Figure C** shows a combination two quadrant multiplier and divider.

Input 1 may vary in the range of $-99.9\, V$ to several kilovolts positive while inputs 2 and 3 must be greater than zero. Output voltage is given by $V_{out}=V_1\times V_2/V_3$. A four-quadrant multiplier can be constructed as in Fig. D while Fig. E, also a four-quadrant multiplier, uses mosfets. In Fig. E the output is valid when $|V_1|+|V_2|l<V_{offset}$.

Simulators may only allow V_{GS} to go to $30\, V$ but this restriction can be overcome by scaling the input to allow a much higher input level and then scaling the output to compensate. The mosfet drain supply also needs to be greater than the highest gate voltage for square law operation.

Some versions of Spice 2 allow the voltage-controlled voltage source, or
Getting started

Anyone who has used a circuit simulator before should not have too much difficulty translating these macromodels to suit their version.

Those beginning from scratch are best advised to choose a simulator with schematic capture, TINA and Electronics Workbench are two already mentioned.

There are several others available free as demos or student versions on the net, although most are too crippled to be used for these macromodels. A number of text based versions are not crippled but require more learning to get going.

In Electronics Workbench, subcircuits are called custom parts and can be placed into a circuit more than once, but in TINA there is no facility for subcircuits. Instead the copy and paste clipboard must be used to duplicate macromodels.

When defining circuit blocks in TINA it is best to avoid using the interconnect pins because the labels get copied and must be changed one by one, leading to possible errors. Instead run wires for all connections.

Test each subcircuit first and save it before copying. If you want to simulate a complex amplifier circuit, do it in stages by getting the output stage running first then add the other circuitry.

Anyone using Spice will sooner or later discover non-convergence problems. Tina's help file under 'Set Parameters' in the 'Analysis' section may help. More information can be found from references 1 and 5.

Simulators often require the same diagnostic skills as for real circuits just to get them to run properly. Once you get to know their limitations and shortcomings, you should find it possible to live with them.

References

VCVS, to be configured as a multiplier. This can be done using the POLY x x 0 0 0 0 1 statement, as described in the book 'Spice: Practical Device Modelling' by R. Kielkowski (McGraw Hill ISBN 0-07-911524-1). This statement simplifies some macromodels as well as making them run faster.

Some of the graphical-based simulators such as Electronics Workbench include a multiplier, but note that the multiplier in Workbench V4 cannot be used in negative feedback arrangement. Workbench version 5/EDA has overcome this problem.

Fig. D. A four-quadrant multiplier using logs and antilogs

Fig. E. A four-quadrant multiplier based on the difference of two square laws.
MARCONI TF 2019A
Synthesised Signal Generators
80Hz to 1040Mhz AM/FM, Memories, LCD
Complete with lid, plugs and leads
FULLY TESTED and WARRANTED
A REAL Anchor Special ONLY £750

Signal Generators
Hevlett Packard 8640B
As above but with
Digital Readout
ONLY £695
Farnell PSG520
10Hz-5200Mhz
AV-FM Slew
ONLY £295
Rohde and Schwarz APN62
1Hz to 20kHz with LCD display £995
Farnell DG52
Synthesised 0.1Hz to 110KHz £195
Wavetek 155
Programmable VCO 0-1Hz to 1Hz sine, square, triangle £195
Schlumberger FSO120M
Remote Synthesiser to 120Hz in 0.01Hz steps
Was £175 ... Reduced, Now ONLY £125

ANALOGUE SUPPLIES LTD
All prices are EX VAT and Carriage

This Month's Specials
Philips PM3217 Scopes
DC-50Mhz 2 Trace/2 Timebase
A REAL Anchor Special ONLY £275

Gould OS300 Scopes
DC-2Mhz 2 Trace
SPECIAL NOW ONLY £150

ITSC Colour Pattern Generator
Last One Was £125,
Now ONLY £75

Racal Dana 1991 60Mhz
NanoSecond Counters with Maths Fctns, etc
SPECIAL ONLY £295

NEW EQUIPMENT
DTA20 Oscilloscope 20Mhz
Twin trace incl probes ONLY £225
DTA40 Oscilloscope 40Mhz
Twin Trace incl probes ONLY £299
DTS40 Oscilloscope 40Mhz
Digital Storage twin channel
Cursors + readouts
Incl. Probes. ONLY £399
AMM265 Automatic Mod Meter
1.5Mhz to 2Ghz, LCD
IEEE488 ONLY £495
SCG50 Synth Clock Gen.
To 50Mhz, LED display
ONLY £125

NEW SCOPE PROBES
X1/X10 switchable to 100Mhz
Complete with adaptors
Limit 2 sets per customer
ONLY £19.95

Wangel & Golterman DF64
Error Rate Measuring set
Was £195 ... Reduced, Now ONLY £150
Huntron Tracker 2000 and DSI 700
Portable component tester with manuals
ONE ONLY £695
Beckman Industrial HD110
LCD Multimeters in Leather case,
1000V, 10A
ONLY £650
Robinair 14950A
Autobalance Refrigerant Leak Detectors in
Leather case
ONLY £35
Bird 43
Thru-Line Power Meters, Note: NO SLUGS
ONLY £50
Robin 3111V
Insulation/Continuity tester, cased
ONLY £75
Marconi Cellflex HCF
1/2" CU2Y, 50 Ohm Helical Coax... like
Andrews LDF. NEW approx 16m (50') coaxes
ELF
16mm Cine Projectors... Various...
Model RM1... with sound ONLY £75
Model N13 with Sound ONLY £145
AVO Model 8 Mk 5/Mk 6
Multimeters... THE Standard
ONLY £85

NEW SCOPE PROBES
xixix 0 switchable to 100Mhz
Complete with adaptors
Limit 2 sets per customer
ONLY £9.95

REFERENCES
Compare our prices
With the competition...
See how much you can save
at Anchor

Visit our Web Site: www.anchor-supplies.ltd.uk
email: sales@anchor-supplies.ltd.uk
Bryan Hart illustrates the importance of the ‘Early’ effect by describing its influence on four common circuit configurations – common base, common emitter, current mirror and long-tailed pair.

Last month I looked at the theory behind the ‘Early’ voltage, and explained its importance in the design of high-gain, small-signal amplifiers working at low frequencies. This article looks at the effect of the Early voltage on real discrete transistor configurations including the current mirror and long-tailed pair.

In the numerical examples that follow, it is assumed that, $\beta=100$, so $\beta V_T=2.5\,V$, $V_{BE}=0.7\,V$ and $V_A=100\,V$.

The common-emitter amplifier

Figure 1 shows a common-emitter amplifier stage with necessary DC bias components omitted. They set the quiescent output voltage at $V_o=V_C-VR$, but play no role in small-signal calculations based on the equivalent circuit of Fig. 1b). The input signal is v_i and output signal v_o. By the voltage divider principle,

$$G = \frac{v_o}{v_i} = \frac{r_o}{r_s + r_o} \times \frac{\mu R}{R + r_o} \quad (1)$$

Since $r_s=\beta V_T/\mu C_Q$, you can ignore r_s in comparison with r_o if you operate with,

$${I_C}\leq\frac{B_T}{10}$$

For design purposes this can be interpreted as,

$${I_C}\leq\frac{B_T}{10}$$

Provided $r_s<50\Omega$, this means $I_C\leq2.5mA$ – a condition I will assume from now on.

The maximum magnitude, $|G_{ul}|$, of G is achieved with $R_C>>R_E$ then, $|G_{ul}|=\mu=4000$. This value is only approached with an active load, one example of which is the output circuit of a current-mirror – dealt with later – using p-n-p transistors.

However, employing an active load necessarily involves the use, also, of a DC feedback network connected from a second or later stage to the input circuit of the stage in question, in order to guarantee a value for V_o in the linear amplifying region. This is the case with some operational amplifier designs.

For the present case of a resistive load, $R_C=\beta V_T/\mu C_Q$.

Fig. 1. Common-emitter amplifier stage, a), and its equivalent circuit, b).

Fig. 2. A common-base current generator, a), an equivalent circuit, b), and a simplified form of b) emphasising feedback action, c).
ANALOGUE DESIGN

Substituting for R_C and r_o in eqn 1 then gives,

$$G = -\frac{V_I}{V_A + V_R}$$

Since $V_A >> V_R$, this reduces to,

$$G = -\frac{V_I}{V_A}$$

Assume that V_{CC} is 10 V and suppose the bipolar-junction transistor is biased for maximum symmetrical output voltage swing, $V_p = V_{CC}/2$, then G is approximately -250.

Fig. 3. Relating the common-base output characteristics with constant R_E, a), to that of a common-emitter stage, b). Not to scale.

Fig. 4. Common-base output characteristics with I_E constant, bold lines, and I_B constant, faint lines.

Fig. 5. A practical circuit solution of a current generator design problem in the text.

Fig. 6. Basic current-mirror.

The common-base stage

Figure 2a) shows a common-base stage intended to operate as a current generator and Fig 2b) shows a small-signal equivalent circuit of it. The problem is to develop a design formula for the output resistance R_o for a given operating current.

By inspection, $V_A >> V_R$ because $r_o >> r_e$ and the current in r_e is much greater than that in r_o. Consequently, R_E, R_C can be omitted from the output circuit, but they cannot be omitted from the input circuit. This is because the fraction of the output current, i_o, flowing in r_e controls the current generator i_b.

Fig. 2c) - a simplified and redrawn version of Fig 2b) - emphasises the negative feedback action that leads to a resistance transformation at the collector of the bipolar junction transistor.

$$i_b = i_o = \frac{V_O}{R_E + r_o}$$

But,

$$i_b = -i_o = -\beta \frac{V_P}{R_E + r_e}$$

and,

$$R_o = \frac{V_o}{I_o} = \left[1 + \frac{\beta}{R_E + r_e}\right] r_o$$

Figure 3 is a graphical interpretation of eqn 2. It shows how the output characteristic for a fixed value of R_E, line b, is related to the characteristic for constant I_E, line a.

For fixed values of I_E, you obtain the common-base characteristics by making R_E infinity in eqn 2. These are shown in Figure 4: $R_E=0$ i.e. R_E=1+β R_o. The Early voltage may be regarded as increased by a factor β.

For design purposes, you should make the substitutions $R_E=V_p/I_{CQ}$, $r_o=V_p/I_{CQ}$ in eqn 2. Then,

$$R_o = \frac{V_o}{I_{CQ}} = \left[1 + \frac{\beta}{V_p + V_{BE}}\right] r_o$$

Problem: Design a simple temperature-insensitive current generator having an output current that can be set precisely at 1mA and an output resistance exceeding 3MΩ. The supply rail is 5 V.

Solution: Substituting figures in eqn 3, you will find that V_p is greater than 1.02V. Figure 5 is one possible solution to the problem. The V_{BE}s of Q_1 and Q_2 - part of a matched array - balance and track with temperature. This is because they operate at approximately the same current, so V_p is equal to the voltage provided by the 1.2V reference source.

The potentiometer permits precise setting of I_{CQ}.

The current mirror

For the basic current mirror shown in Fig. 6, Q_1 and Q_2 are assumed to have identical characteristics. The relevant circuit equations are,

$$I_b = \frac{I_{CQ}}{\beta_0}$$

$$I_b = I_{CQ} + 2I_b$$

$$I_b = I_{CQ} \left(1 + \frac{V_{BE}}{V_{T}}\right)$$
From these we obtain,

\[I_o = I_o \left(1 + \frac{V_{CB}}{V_A} \right) \left(1 + \frac{2}{\beta_0} \right) \]

Using the binomial theorem, then multiplying out and neglecting second and higher order terms, gives:

\[\lambda = \frac{I_o}{I_x} = 1 + \frac{2}{\beta_0} + \frac{V_{CE}}{V_A} \]

(4)

As \(\beta_0 \gg 1 \) and \(V_A \gg V_{CE} \), \(\lambda \) is close to unity: also, \(R_o \approx r_o \) because \(\Delta V_{BE} = \Delta V_o \) if \(V_BE \) is constant.

Both \(\lambda \) and \(R_o \) are improved using the scheme in Fig. 7a), which is the 'Wilson' current mirror with an additional transistor.

The \(V_{BE} \) of \(Q_3 \) balances that of \(Q_1 \), so \(Q_1 \) and \(Q_2 \) operate at the same \(V_{CE} \) and the third term in eqn 4 is zero. The second term also effectively disappears because the current \(2I_R \) is supplied from the emitter of \(Q_3 \) rather than by \(I_R \). Consequently, \(\lambda \) is unity with a tolerance that depends on the \(V_{BE} \) matching of \(Q_1 \) and \(Q_2 \) and can be as small as 1%.

Figure 7b) is an equivalent circuit for the calculation of \(R_o \). It has been simplified using the same reasoning that was employed to derive Fig 2c) from 2b).

By Kirchhoff’s current law, \(i_o = 2I_x \). Furthermore,

\[i_o = -\beta I_x + \frac{V_o}{r_o} \]

\[R_o = r_o \left(1 + \frac{\beta}{2} \right) = \frac{V_o}{2I_x} \]

Experimental results attest to the added benefits of the quad-transistor current mirror. Figure 8 shows the output characteristics using a CA3045 matched bipolar-junction transistor array. The near-vertical line close to the origin was obtained with a collector-base strap on \(Q_3 \) and denotes a boundary line for saturation.

A word of caution though. If source \(I_P \) is replaced by a resis-

Fig. 7. A quad-transistor current mirror, a), and a simplified equivalent of a) for finding the incremental output resistance, b).

Fig. 8. Output characteristics for circuit of 7(a) using a CA3045 bipolar-junction transistor array. Horizontal scale: \(V_{CE} = 0.5 \text{V/div.} \) For \(V_o > 1.5 \text{V} \), the vertical spacing between each characteristic is 100\text{\textmu}A.

Fig. 9. Section a) shows a long-tailed pair, b) shows an equivalent circuit for finding \(R_o \). Section c) shows a simplified form of b) assuming \(R_o \approx r_o / (\beta + 1) \) while d) shows how long-tailed pair output characteristics are derived from those of a common-emitter stage.
tor R_S across which the potential difference is V_R, it can be shown, after some tedious algebra, that,

$$R_o = \beta \frac{MR_L}{2V_T + V_T} \text{ (5)}$$

If $V_C = 5V$, R_o as calculated from eqn (5) is only some 75% of what would be obtained using an ideal current source at the input.

The long-tailed pair
To calculate R_o for a long-tailed pair, Fig. 9a), both bases are set at AC ground on the equivalent circuit, Fig. 9b). The base currents of $Q_{1,2}$ must be equal because they both experience the same change in emitter base voltage, v_e.

A simplified form of Fig. 9b) is shown in Fig. 9c); it assumes $v_C >> v_e$ as with the common-base stage, and that,

$$i_e = \frac{v_C}{r_e}$$

But,

$$i_e = \frac{v_C}{R + r_e}$$

In these equations, r_e, i.e. V_A/IC, is the collector resistance of Q_{2} and r_n, which is V_A/I_C, is the collector resistance of Q_{2}. Hence,

$$R_o = 2V_T \times \frac{V_A}{I_T \times (V_{IN} + V_{AP})} \text{ (8)}$$

Reference
SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR
Racal/Dana Modulation Meter Type 9009-9008 - 8Mc/s - 1.5GHz
110Mc/s - 0500 - £1000.

HP Sweep Oscillators type 8690 A+B + plug-ins from 20Mc/s to
TEK 2465B 4ch-400MC/S - £2,000.

TEK 2213-2213A-2215-2215A-2224-2225-2235-2236-2245-60-
PELLE 1744A - 100MC/S - large screen - £250.

TEK 2113-2113A-2115-2115A-2124-2125-2135-2136-2145-60-
HP5206A - 0.1-10kHz - £200.

HP8640B - Phase locked - AM-FM-0.5-512-1024MC/S - £500-
SIGNAL GENERATORS
HP2694-HP2695 Phase locked - AM-FM-0.5kHz-1GHz - £500-

TEK4936-A 1000MC/S - FS-1000MC/S - £1,800.

HP 3314A Function Generator AM-FM-0.1-20MC/S -£600.

HP8660C SYN AM-FM-PM-0.01-1300MC/S-2600MC/S - £2k.

HP8657A SYN AM-FM 0.1-1040MC/S - £2k.

MARCONI 2610 True RMS Meter - 0450.

MARCONI 2305 Modulation Meter-50KHZ-2.3 GHZ - 01,000.

MARCONI 2305 Modulation Meter-50KHZ-2.3 GHZ - 01,000.

MARCONI SIGNAL GENERATOR -6055.6056-6057-6058-6059 - FX
MARCONI 2960A RE Test Sets-1000MC/S - E2,500 each.

MARCONI 2955A RF Test Sets-1000MC/S - £2,000 each.

MOTOROLA R2600A plus RLN4260A RF Test Set - £3,000.

Digital Oscilloscope etc. 1000MC/S - £1,500 each.

SD 6244A Micro Counter 0.1-50MC/S - £400.

SD 6245 Micro Counter 0.1-50MC/S - £400.

EIP 5755 Microwave Source Locking - 10Hz-18GHz -£1.2K.

EIP 5755 Microwave Source Locking - 10Hz-18GHz -£1.2K.

EIP 5754A Micro Counter 10HZ-18GHz - Nixey - £500.

HP5352B Micro Counter OPT 010-005-46GHz - new in box - £5k.

HP5352B Micro Counter OPT 010-005-46GHz - new in box - £5k.

MARCONI TF2022E AM-FM SYN 10KC/S-1.01GHz -E1K-E1.2K.

MARCONI TF2008 AM -FM -Sweep 10KC/S-510MC/S -£200 Fully

HP3325B SYN Function Generator 21MC/S - £2K.

HP8673D SYN AM -FM -PM -0.01-26.5 GHz - £12K.

HP8660D SYN AM-FM-PM-0.01-1300MC/S-2600MC/S - £3K.

HP8660C SYN AM-FM-PM-0.01-1300MC/S-2600MC/S - £2K.

HP8657A SYN AM-FM 0.1-1040MC/S - £2k.

HP5166 ATT OPT B4-0201-1300-1500 £300.

HP1519A KD-DC-400MC/S-550-590 £250.

STC OF56/55 Machine joining eye - more magnifier - (£250).

COMMUNICATION EQUIPMENT
Anritsu ME453L RX Microwave ANZ - £350.

Anritsu MW88A lime Domain Reflector.

Anritsu ML93B & Optical Lead Power Meter - £350.

NITON XRF Analyser - £3,000.

MARC 2370 SPECTRUM ANALYSERS - HIGH QUALITY - DUAL STORAG-8
Marconi XRF analyser to be cleared from - Gov all sold is as pil complete or
Complete New Items - new in original Gov cartons as new condition - each fitted with IEEE
CIRCLE NO. 131 ON REPLY CARD

HEADS available to
FARNELL TVS70MKII PU 0-70V 10 amps - £150.

HP11715A AM -FM Test Source - 0350.

HP8755A+B+C Scalar Network Anz PI - £250 + MF 180C - Heads
HP8970A Noise Figure Meter + 3466 Noise Head - £3k.

HP4953A Protocol Anz - £400.

HP3744A Noise Figure Meter + 3466 Noise Head - £3k.

HP8444A OPT 059 Tracking Gen 5-1500Mc/s - £650.

HP8444A Tracking Generator 5-1300Mc/s - £450.

HP8443A Tracking Gen Counter 100KHz-1100Mc/s - £200

Detailed Power Requirements
- £200 - £1750 - spare heads available.

50Mc/s-3GHz - £100 - £400 - all fitted with FX standards.

Anritsu ME453L RX Microwave ANZ - £350.

Marconi 8520A RF Test Set - 01.250 each.

Marconi RCL Bridge type TF770 - £150.

Marconi Microwave 6600A 1 sweep osc., mainframe with

Marconi Microwave 6600A 1 sweep osc., mainframe with

Marconi TF2022E AM-FM SYN 10KC/S-1.01GHz -E1K-E1.2K.

Marconi TF2008 AM -FM -Sweep 10KC/S-510MC/S -£200 Fully

Racal/Dana 5020A Thu RVS Levelmeter - Hold - £490.

Racal/Dana 5020A Thu RVS Levelmeter - Hold - £490.

Racal/Dana 5020A Thu RVS Levelmeter - Hold - £490.

Racal/Dana 5020A Thu RVS Levelmeter - Hold - £490.

Racal/Dana 5020A Thu RVS Levelmeter - Hold - £490.

Racal/Dana 5020A Thu RVS Levelmeter - Hold - £490.

Racal/Dana 5020A Thu RVS Levelmeter - Hold - £490.

Racal/Dana 5020A Thu RVS Levelmeter - Hold - £490.

Racal/Dana 5020A Thu RVS Levelmeter - Hold - £490.

Racal/Dana 5020A Thu RVS Levelmeter - Hold - £490.

Racal/Dana 5020A Thu RVS Levelmeter - Hold - £490.
Brighter driver for EL lamps

Andy Wolff looks at a new electroluminescent lamp driver chip that produces 220V pk-pk from a couple of penlight cells with only five additional passives.

The popularity of electroluminescent lamps is shown by their almost universal use for backlights, signs and keyboards by the makers of pagers, cellphones and digital notepads.

IMP has made electroluminescent lamp drivers a major technology focus. By combining high-voltage process technology and clever analogue circuitry, IMP has become a major EL driver innovator in the last year.

The company’s newest product is the IMP528, an eight-pin surface-mount device packaged in both SOIC and MSOP that generates 220V pk-pk from a battery or from fixed inputs in the range 2 to 6.5V dc.

An internal feedback circuit makes battery operation especially efficient using several techniques. One of these, shown in Fig. 1, regulates the output by skipping pulses in its step-up oscillator when batteries are fresh, and restoring them as they age. This has the effect of making brightness appear constant almost to the point when the battery quits.

Figure 2 shows a generalised glimpse of the innards of the device, a), and the actual circuit connections, b). These diagrams show how the boost converter section charges C_S to high voltage of 110V dc and the high-voltage switching bridge that applies it to either side of the lamp at 220V pk-pk. The two oscillators are individually tunable via R_{SW} and R_{EL} for optimal efficiency and lamp colour.

While a single supply is the most common operating scheme, certain applications may separate the chip supply, V_{DD}, from the main supply to the inductor, V_L. This is frequently done in automotive applications – 5V for V_{DD}, 8-12V for V_L – and pagers – 1.5V for V_L, doubled to 3V for V_{DD}. IMP also supplies drivers that operate directly from one cell and require no doublers.
Fig. 2a) Generalised schematic of the integrated electroluminescent lamp driver and b), the complete circuit. This high-voltage CMOS chip eliminates the need for an external protection resistor in series with the EL lamp. Typical VDD current consumption is 420mA.

You can see in Fig. 2b) that an 'enable' function can also be achieved by connecting RSW to VDD or ground. The ability to optimise each component that contributes to efficiency and performance is the hallmark of these devices. Values for L can range from 100μH-1mH, and for CS, 10-100nF.

Final selection is made on the basis of the characteristics of the lamp selected - its size, colour and efficiency and performance is the basis for the characteristics of these devices. Values & efficiency and performance is the hallmark of these devices. Values for L can range from 100μH-1mH, and for CS, 10-100nF.

Values and performance is the hallmark of these devices. Values and performance is the hallmark of these devices. Values and performance is the hallmark of these devices.
NOW AVAILABLE

RANGER 2
The Complete, Integrated
Schematic & PCB Layout Package

Windows Ranger 2
- for Windows 95 & NT
- New Hierarchical Circuit
- Split Devices • Gate & Pin Swap
- New Edit Devices in Circuit
- Copper Fill • Power Planes
- Autorouter • Back Annotation

Windows Ranger 2 with Spectra SP2
- Ranger & Spectra Autorouter provide the most cost-effective PCB Design system available. A powerful, intuitive system at an outstanding price!

Windows Ranger 2 Upgrade
- Upgrade your existing PCB Package to Windows Ranger 2.

SPECIAL OFFER
- Ranger 2 Lite £35
- Demo Software - download from http://biz.ukonline.co.uk/seetrax

Call 01730 260062
Fax 01730 267273

The Balance Box
Microphone or line level amplifier for balanced or unbalanced signal lines

- Professional portable units operating from an internal PP3 battery or external mains adaptor
- Precision true floating transformerless balanced input and output at microphone or line level
- Simple interfacing and conversion between balanced and unbalanced signal lines
- Low noise and distortion
- High common mode rejection
- Switchable gain selection
- Extensive RFI protection

The Phantom Power Box - The Headphone Amplifier
Box - The OneStop DIN rail mounting radio frequency interference filter and voltage transient protector for voltage and current loop process signal lines

Conford Electronics
Conford Liphook Hants GU30 7QW
Information line: 01428 751469 Fax: 751223
E-mail contact@confordelec.co.uk
Web http://www.confordelec.co.uk/catalogue/
Flat panel controller
The HiQVideo 69000 mobile graphics/video accelerated flat panel controller provides 2MBytes of high speed SDRAM for notebooks, mini-notebook, industrial PC, and palmtop applications. It is the first member of the Chips HiQVideo family to integrate high speed SDRAM frame buffer memory on chip. The SDRAM supports up to 83MHz operation, which provides up to 664MBytes/s support of high-resolution graphics frame buffer bandwidth. The increase in the frame buffer bandwidth enables support of high-resolution graphics modes and real-time video acceleration.

Siemens Semiconductors is intended as an introduction to biometric fingerprint recognition technology. The evaluation kit's sensor can be plugged directly into the parallel port of a PC and can be powered directly from a PC mouse port or via the separate power adaptor supplied. The FingerTIP Software Developer's Kit contains all the software needed to easily integrate the system into any application.

Thame Components
Tel: 01844 261188
Enq No 502

Evaluation Kit
Comprising a sensor mounted in a small casing, a CD ROM containing software development kit and comprehensive documentation, and all the necessary cables, the FingerTIP Evaluation Kit from Siemens Semiconductors is intended as an introduction to biometric fingerprint recognition technology. The evaluation kit's sensor can be plugged directly into the parallel port of a PC and can be powered directly from a PC mouse port or via the separate power adaptor supplied. The FingerTIP Software Developer's Kit contains all the software needed to easily integrate the system into any application.

Thame Components
Tel: 01844 261188
Enq No 502

PCMCIA cardkit for DECT phones
Robinson Nugent has developed a custom PCMCIA cardkit for use in wireless data communications based on the DECT digital cordless telephone standard. It has a type III cardkit as the basic housing. In order to integrate with the DECT system a transmitter/receiver and antenna is built into the back of the frame assembly. When a signal is received by the antenna identifying a local base station a LED module, which is built onto the end of the PCMCIA card frame, is activated, the light being reflected through the transparent LED housing.

The FingerTIP Software Developer's Kit contains all the software needed to easily integrate the system into any application.

Thame Components
Tel: 01844 261188
Enq No 502

Four-channel, real-time, 100MHz digital oscilloscope
Tektronix's TDS224 is a four-channel, real-time, 100MHz digital oscilloscope. It is the latest member of the TDS200 series. The 60 and 100MHz scopes are designed for digital design engineers and technicians working with 8-bit microcontrollers. Using oversampling technology, all three models, the TDS210, TDS220, and the TDS224, sample at 1Gradepix/s, providing full-bandwidth single-shot acquisition simultaneously on all channels. This technology enables users to capture non-reflective signals that would be invisible to analogue oscilloscopes and distorted by DSOs without sufficient sample rate.

Tektronix
Tel: 01628 403453
Enq No 501

Gigabit Ethernet Fibre Channel ICs
Vitesse Semiconductor has announced a family of ICs for Gigabit Ethernet, Fibre Channel and serial interconnect applications at speeds up to 1.25Gbits/s. Initial products include the VSC7123 and VSC7133 10-bit transceivers. These two fifth generation devices provide the serialiser/deserialiser function for 10-bit, 8B/10B encoded data between Ethernet, Fibre Channel and serial interconnect applications at speeds up to 1.25Gbit/s. They feature low jitter generation, cable equalisation, reliable signal detection and reduced sensitivity to power supply noise and reference clock jitter.

Vitesse Semiconductor
Tel: 01634 683393
Enq No 507

Win CE platforms
Advantech has announced a system-level solution, which includes a compact chassis and a palm-size single board computer with an onboard solid-state disk. The disk comes pre-loaded with Windows CE v2.1 to reduce system integration time. Also available are boards with a disk loaded with Windows CE. According to the supplier, one difficulty in dealing with Windows CE is that it is very hardware dependent. There may often be times when no drivers are available for the desired device. Secondly, lack of both familiarity and support for Windows CE development tools may cause difficulties. One must also spend time looking for a suitable hardware platform on which to run Windows CE.

Advantech
Tel: 01908 618999
Enq No 506

Digital audio for set-tops
Micronas Intermetall has added a set-top box interface to its multistandard sound processor (MSP). In addition to all analogue TV audio standards, the MSP 34x8G also supports the digital interface with digital or hybrid (analogue/digital) set-top boxes and TV receivers. The audio devices are also capable of processing digital audio signals such as those delivered by the digital TV broadcasting decoders on the basis of the standards DVB (Europe) or ATSC (US). Micronas Intermetall
http://www.micronas.com
Tel: 01628 403453
Enq No 505

SM fuses
Bussmann has extended its range of surface mount circuit protection components, with the addition of a time lag fuse. The 0125TD Brick Fuse is rated at 125V AC or 60V DC, making it suitable for use in primary circuits and to replace glass tube fuses in certain applications. It is...
NEW PRODUCTS

Please quote Electronics World when seeking further information

designed for applications where it must withstand transient current surges, yet open safely when subjected to continuous fault currents. It is designed to carry 200 per cent of its rated current for a minimum of one second, ensuring it does not open prematurely due to harmless transients. It measures 6.1mm x 2.5mm x 2.5mm.

Bussmann
Tel: 01509 822702
Eng No 508

Comms adapter
Motorola has announced the MPC860 communications adapter in PCI mezzanine card format for T1 and E1 connectivity. Powered by the PowerQUICC MPC860 quad integrated communications controller, the adapter is for use in high-bandwidth voice and data switching systems. An optional controller allows connection to an SCbus switching system. Enq No 508

SM connectors
Harwin has launched surface mount connectors on a 2mm pitch. The Datasim connectors are for use in medical, computer and aerospace industries. They come with four to 44 positions and have a board stacking height of 7.85mm maximum. The termination, which incorporates a surface mount pad, keeps the solder point within the profile of the connector moulding, allowing for more tracking space outside the connector profile. The connectors are packaged in a tube as standard with tape and reel available as an option. Harwin
Tel: 01705 370451
Eng No 510

16Mbit 1.8V flash
AMD is offering the Am29SL160C 1.8V only, 16Mbit flash memory device. The device offers read access times of 100ns. The flash device features a power-management system, which conserves power by automatically putting the flash device into sleep mode during inactive periods. There is no latency/wake-up time when the system subsequently accesses the device. In addition it features electronic serialisation, accelerated programming mode and hardware write protection. AMD
Tel: 01276 803100
Eng No 511

Configurable enclosure
Rittal's Quickrack enclosure can be configured to specification. Dismantling and reassembly takes less than five minutes because of the design of the multi-folded frame sections. Supplied fully screw fixed, it comes with a glazed front door, sheet steel frame, changeable door hinge and single-pane safety glass window. The vented rear door is made of sheet steel. Also included are front 482.6mm mounting angles that are adjustable on depth stays to which a rear pair of mounting angles can also be fastened. Metric 535mm mounting angles can also be installed, and slide rails and component shelves can be attached to the punched holes of the mounting angles. Rittal
Tel: 01709 704000
Eng No 513

Miniature SM oscillators
A series of low-profile surface mountable digitally temperature compensated, voltage controlled crystal oscillators has been introduced by C-MAC Frequency Products. Intended for personal digital cellular, CDMA, GSM and other mobile communications devices, the IO2TCVX0-91 range offers frequency stability to ±1ppm over a temperature range from -30°C to +80°C. In addition to digital temperature compensation, the device incorporates an AFC function that allows the output frequency to be trimmed by at least ±5ppm through a voltage input of 1.5V±1.0V. Both functions are integrated within an SM ceramic package measuring 7 x 9 x 2mm. Frequencies offered include 13MHz and 19.2MHz. Ageing is specified to within ±1ppm for the first year (at 25°C). Designed to provide a 1V pk-pk output into a 10kΩ/10pF load, the devices operate from a 3V supply. C-MAC Frequency Products
Tel: 01462 74439
Eng No 515

PC Card reader on PCI bus
Elari Digital Systems has introduced PC Card (PCMCIA) card reader/writer for PCI Bus applications which offers support under Windows95/98 and NT for all PC Cards, including those requiring Interrupt control such as ATA, modem, LAN and DAQ. Model P128 allows a single PCI Bus motherboard slot, with two rear expansion slots, to be used for 2 PC Cards of any Type I, II and III simultaneously. This means that two large ATA cards may be inserted at the same time. A software driver is supplied with each unit and full Plug-n-Play features are available. Elan Digital Systems
Tel: 01489 579799
Eng No 512
the TYPEDET# is toggled. The SC1105 is set to a fixed 1.5V while the SC1106 regulates to a voltage programmed by the user. The SC1105/6 provides a more efficient solution than the conventional linear regulator, claims the supplier. For a switching solution, does not require heat sinking for the MOSFET or the rectifying diode.

Thame Components
Tel: 01844 261188
Enq No 517

Panel meters
Made by Sifam, Select Din sized digital panel meters are available for voltage-current, process, counting, totalising, rate-frequency, temperature, and strain gauge measurements. They have up to six digits on the LED displays. The case meets IP66 and Nema Four standards. For security, the setup can be restricted using password protection and there is a removable front bezel option to prevent unauthorised button access. Features include menu driven configuration, programmable smoothing and averaging features, display scaling, and remote control access via computer.

Sifam
Tel: 01803 407710
Enq No 518

Thick-film conductors
Errca-Remex has introduced silver Multisyst conductors for automotive, telecoms and RF circuitry. There is a choice of lead resistance, green strength and thermal-aged adhesion. Multisys 2075D thick film is a cadmium-free, mixed-bonded, 6:1 AgPd, screen-printable conductor material for automotive circuit applications requiring heavy aluminium wire bonding. It incorporates powder and vehicle technology, providing thermal-aged and temperature-cycled adhesion at 175°C on alumina and the 7001D and 7015D dielectrics. Recommended solder is 10Sn/88Pb/2Ag. Other solders with a solids above 250°C can also be used. Applications include automotive and telecoms hybrids. The 2060D is a mixed-bonded, Ag:Pd conductor for plug-hole applications in laser-drilled alumina substrates. It provides adhesion to laser-drilled holes in 96 per cent alumina. It reduces processing steps by letting ceramic through-holes be completely filled and fired only once at 850°C.

Errca-Remex Products
Tel: 001 908 685 5148
Enq No 519

Comms test set
Racal has launched a portable radio communications test set for GSM mobile repair and maintenance applications. The 6104 is claimed to let a typical GSM phone be checked in under 30 seconds. For GSM 900, 1800 and 1900 radios, the faster processing steps by letting ceramic through-holes be completely filled and fired only once at 850°C.

Racal Instruments
Tel: 01344 388000
Enq No 520

Plastic circular connector
A plastic circular connector from Channel Electric uses rapid push-pull locking. The 544 connector works by sliding the locking collar forward on
NEW PRODUCTS

Please quote Electronics World when seeking further information

Channel Electric Equipment
Tel: 01635 864866
Enq No 521

Sensor stand
The UZZ2 universal sensor-mounting stand is adjustable in height and angle when used to mount photoelectric and fibre-optic sensors. Available in four assembly sets – basic, lateral arm, reflector and fibre – the stand can be combined with other Matsushita mounting sets, letting two or more sensors be used on one assembly. The stand can be mounted in horizontal and vertical planes and is for use on conveyors and production machinery.

Ceramic chip caps
TDK has announced Ni electrode multilayer ceramic chip capacitors that meet the COG temperature characteristic standard. They are available from 100 to 10,000pF. Temperature coefficient with capacitance change is 0±30ppm/°C from -55 to +125°C. Provided in a surface-mount package, the devices are suitable for flow, reflow and high temperature soldering.

Noise generator
The ANG broadband noise generator from Atlantic is for the broadcast, wireless, satcom, radar and avionics industries. For laboratory and field operation, it generates white Gaussian noise over multi-octave bands at frequencies from 10Hz to 18GHz. Noise output can be varied over a 111dB range in 0.1dB steps by front panel step attenuators with the options of continuously variable control or remote digital control. The ANG6109 version provides typically +10dBm output power, equivalent to -80dBm/Hz noise density, over the 100Hz to 1GHz band with flatness better than +2dB into a 50Ω load. The ANG8109 has 1W, +30dBm output and -55dBm/Hz noise density from 1 to 300MHz. Fundamentally generated noise output is available up to 18GHz but, with up-conversion, this can be extended to 40GHz. Options include a signal combiner, which lets the user add the desired signal to the generated noise in making receiver sensitivity tests, and output filtering. The instrument measures 370 by 110 by 300mm and is also available in a 2U x19in, rack mounted version. Standard input power is 80 to 240V, 50 to 60Hz but operation from a DC supply can be specified.

Atlantic Microwave
Tel: 01376 550220
Enq No 525

8-bit microcontroller
Fairchild has announced a 2kbyte reprogrammable EEPROM version of its arithmetic controller engine (ACE) microcontroller with dedicated functions to improve central processor efficiency by offloading some coding operations. The ACE1202 is for battery powered applications including automotive security systems, home security systems and portable devices. As well as the EEPROM for code storage, it has 64byte of parameter storage EEPROM and 64byte SRAM on chip. It has a 16-bit multifunction timer with a dedicated difference capture function for independently capturing pulse widths to a resolution of 1μs. EEPROM data is memory mapped to the rest of the controller, eliminating the need to write instructions through a protocol, typically PC. Features include idle timer with watchdog and programmable low battery detection.

Fairchild Semiconductor
Tel: 01793 856831
Enq No 522

BACK ISSUES

Back issues of Electronics World are available, priced at £3.00 UK and £3.50 elsewhere, including postage. Please send your order to Electronics World, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Free copy of Electronics Engineer's pocket book with every order while stocks last

Available issues

1994
January
April
May
July
August
September
November
December

1995
February
April
May
June
July
August
September
October
November
December

1996
February
March
May
June
July/August
September
October
November

1997
June
August
September

1998
January
February
March
April
May
June
July
August
September
November
December

1999
January
February
March
April
May
June
Hi-Fi POWER AMPLIFIERS

ILP 2000 SERIES POWER AMPLIFIERS ARE FULLY ENCAPSULATED HIGH QUALITY MODULES WITH INTEGRAL HEATSINKS AND CARRY A FIVE YEAR GUARANTEE.
BY SELECTING THE APPROPRIATE MAINS TRANSFORMER AND THE PROGRAMMING LINK ON THE MODULE THEY CAN BE USED WITH 4 OR 80 LOADS WITH THE AUTOMATIC ADJUSTMENT OF INPUT SENSITIVITY.

HY2000 30W HYBRID AMPLIFIER $11.50
HY2001 30W HYBRID AMPLIFIER WITH P.S.U. BOARD $17.50
HY2002 60W HYBRID AMPLIFIER $17.75
HY2003 60W HYBRID AMPLIFIER WITH P.S.U. BOARD $24.75
HY2004 120W MOSFET AMPLIFIER $37.00
HY2005 120W MOSFET AMPLIFIER WITH P.S.U. BOARD $47.00
HY2006 240W MOSFET AMPLIFIER $83.50
HY2007 240W MOSFET AMPLIFIER WITH P.S.U. BOARD $99.00

HI-FI QUALITY AUDIO POWER TRANSFORMERS FINISHED IN BLACK WITH RESIN FILLED CENTRES FOR MAXIMUM NOISE ABSORPTION AND EASE OF MOUNTING.

ATT304 FOR ONE HY2000/1 IN 42 MODE $17.50
ATT305 FOR ONE HY2001/1 IN 42 MODE $17.50
ATT306 FOR ONE HY2002/3 IN 42 MODE $21.00
ATT308 FOR ONE HY2002/3 IN 82 MODE $21.00
ATT1204 FOR ONE HY2004/5 IN 42 MODE $28.00
ATT1205 FOR ONE HY2004/5 IN 82 MODE $28.00
ATT2404 FOR ONE HY2006/7 IN 42 MODE $39.00
ATT2405 FOR ONE HY2006/7 IN 82 MODE $39.00

PRICES INCLUDE VAT & POST AND PACKING

ILP DIRECT LTD
SPONG LANE, ELMSTED, ASHFORD, KENT TN25 5JU
PHONE +44 (0) 1233 750481 FAX +44 (0) 1233 750578

CIRCLE NO.137 ON REPLY CARD

CHART AUDIO LEVELS
In-vision colour display or hard copy printout

P_PP10 In-Vision PPM and Chart Recorder generates a display emulating the well known coaxial TWIN movements for monitoring stereo audio levels and mono compatibility. Also: STEREO TWIN METER BOX comprising two PPM boards, featuring inherent stability with law under microprocessor control. A free standing mains powered box frequently used for the final stereo monitoring when working to broadcast standards. Manufactured under licence from the BBC.

* Advanced Active Aerial 41Hz-30Hz * Stabilizer frequency shift units for howl reduction * 10 Outlet Distribution Amplifier * Stereo Variable Emphasis Limiter * P_PP9, P_PP5 hybrid and P_PP8 IEC/DIN -50v-6dB drives and movements * Broadcast Stereo Coders * Broadcast Monitor Receiver 150Hz-30Hz *

SURREY ELECTRONICS LTD
The Forge, Lucks Green, Cranleigh
Surrey GU6 7BG
Telephone: 01483 275997 Fax: 278477

WATCh SLIDES ON TV MAKE VIDEOS OF YOUR SLIDES DIGITIZE YOUR SLIDES
(Using a video capture card)
"Liesgang diatv" automatic slide viewer with built-in high quality colour TV camera. It has a composite video output to a phone plug (SCART & BNC adaptors are available). They all require a power supply of between 10 and 12v DC 150mA.

US8519 (2), US8535 (82), US8578 (182)
US8233 (2), US8239 (8), US8260

MAKE VIDEOS OF YOUR SLIDES

AT606 surface mount resistors E12 values 10 ohm to 1m ohm

100 of 1 value £1.00 + VAT, 1,000 of 1 value £5.00 + VAT

Please add £1.65 + VAT = £1.95 postage & packing per order

JPG ELECTRONICS
276-278 Chatsworth Road, Chesterfield S40 2BH
Tel: 01246 211202 Fax: 01246 550905
Callers welcome 9.30am to 5.30pm Monday to Saturday

CIRCLE NO.138 ON REPLY CARD

CHERLEH VALVE COMPANY
for High Quality Audio Tubes

The CVC Premium range offers continuity of supply of high grade audio valves. Based on the best from world-wide sources, processed by us to suit audio applications.
Pre-amp types tested/selected for LOW NOISE, HUM and MICROPHONICS.
Power valves are given controlled BURN-IN to improve stability and to select-out those with weaknesses. MAJOR BRANDS also supplied as available.

A selection of CVC PREMIUM Audio Tubes

<table>
<thead>
<tr>
<th>POWER TUBES</th>
<th>TUBE NUMBERS</th>
<th>VALVE AMPLIFIERS</th>
<th>POWER LEVELS</th>
<th>PRICE</th>
<th>INFO</th>
</tr>
</thead>
</table>

...and a few "Other Brands" (inc. Scarce types).

Valve Amplifiers sound better still fitted with CVC PREMIUM Valves!
Chelmer Valve Company, 110 New London Road, Chelmford, Essex CM2 0RG, England.

(44) 01245 355296/26598 Fax: (44) 01245 490064

CIRCLE NO.139 ON REPLY CARD
Cool solutions

Alternatives to thermally-conductive grease continue to be developed to overcome not only thermal management issues but also production issues. James Stratford gives an overview of the the options available from thermal product specialist Bergquist.

Think of how to dissipate heat in an electronic circuit and most of us think of heat sinks and fans – strap a large lump of aluminium to the hot component and blow air over it. This remains a popular method of dissipating heat – but it’s certainly not the only method.

Although there are innovations in electronics to reduce the wasted energy from active components, thermal management is an essential part of any modern circuit design. Moving the prototype from the R&D department and into production requires careful thought about how to build a product reliably and in volume.

As the demands for size and cost reduction increase, so traditional technologies for cooling become less plausible. Bulky heat sinks can also make up a noticeable cost within a product. Exacerbating this are the costs and time delays associated with manual heat sink assembly following PCB construction.

Production issues are best overcome by implementing good design practices to begin with. It is essential that engineers appreciate the thermal considerations of power devices as well as their electronic parameters. In this way engineers can explore complementary technologies to fans and extruded aluminium.

When is a fan undesirable?

When size constraints are placed on a design, heat dissipation becomes more problematic. Laptop PCs, for example, have a number of hot components critical to the operation of the product, but limited space for dissipating heat.

Forced convection using miniature fans is not desirable due to noise, excessive power consumption and reliability. As a result, hot components need to be laid out carefully on the PCB to ensure placement is close enough to an acceptable thermal transfer component such as a chassis.

Ensuring that a component as large and critical as a microprocessor remains in permanent contact with a suitable heatsink is difficult. Simple folding of the board, or thermo-mechanical stress could result in the component being separated from the heatsink. The tolerances that have to be worked to are stringent.

To remedy this Bergquist has developed Gap Pad, a conformal material with high thermal conductivity. During final assembly, the material is sandwiched between the hot device and heatsink, its shape conforming to take up the air gap and ensuring a uniform thermal transfer.

There’s more on this material in the panel.

Why not use the circuit board as a heat sink?

Why stop at creating a uniform thermal transfer from a component to a heat spreader? Why not mate the PCB to the heat spreader and use surface mount components?

The common PCB material FR4 is a poor thermal conductor. New package types such as D-PAK can exceed their safe operating temperature when mounted on FR4. The increasing use of surface mount components, driven by size constraints and simpler production techniques, leaves heat dissipation problems.

To accommodate the use of surface mount components, FR4 is typically manufactured to include thermal vias designed to carry the heat to the underside of the PCB where a heatsink can be added relatively easily. In many applications, this arrangement is adequate, but for more demanding thermal requirements, Bergquist has developed an insulated metal substrate material called Thermal Clad, Fig. 1.

Fig. 1. Thermally conductive pcb material. The base is a metal such as aluminium or copper while the thermally conductive dielectric layer provides galvanic insulation. The circuit layer is 1, 2 or 3oz copper.
Void-filling cooling pads

In power inverter capacitors, constant charging and discharging generates heat that has to be removed in the interests of reliability.
Forced air cooling requires noisy, relatively costly fans which, being electromechanical parts, introduce an additional reliability issue. They also need power to drive them.
Convection cooling removes the need for a fan, but it involves large open areas in which air can flow. Both forced-air and convection require additional enclosure space.
Conduction is the most efficient method of dissipating heat, but large can capacitors are, by nature, irregular in shape. Consequently mechanically pressing the capacitor against the casing leaves air gaps. This results in poor thermal transfer.
Dimensions of can capacitors of the same type can vary by up to 2mm either way. Expansion and contraction of the capacitor during temperature cycling exacerbates this variation. This forces engineers to resort to fans or convection cooling rather than the preferred thermally-efficient option of conduction.
Grease compounds are sometimes used, but they are undesirable due to mess, migration and application. Grease can also present significant problems should the assembly require re-work.
To remedy this, Bergquist has developed a conformal pad material with high thermal conductivity. Called Gap Pads, the range of products includes a number of alternative thermal performance versions as well as a pressure injectable material called Gap Filler. These products have a thermal conductivity of between 0.8W/mK and 3.0W/mK.
Gap Pad materials work by changing to conform to the required shape. This prevents the thermal interface from being broken, regardless of the fluctuations in physical shape or size.
Used with capacitors, Gap Pad conforms to the irregular shape of the can. Even with movement of the component relative to the case, Gap Pad conforms to maintain the thermal interface between the two. Gap Pad is also available in standard, soft and gel-like modulus formats to accommodate low stress applications or where very irregular shapes require thermal interfacing.
Thicknesses of these products range from 0.5mm to 6.0mm in 0.5mm increments.

Gap Pad materials work by changing to conform to the required shape. This prevents the thermal interface from being broken, regardless of the fluctuations in physical shape or size.
Used with capacitors, Gap Pad conforms to the irregular shape of the can. Even with movement of the component relative to the case, Gap Pad conforms to maintain the thermal interface between the two.
Gap Pad is also available in standard, soft and gel-like modulus formats to accommodate low stress applications or where very irregular shapes require thermal interfacing.
Thicknesses of these products range from 0.5mm to 6.0mm in 0.5mm increments.
This material is made up of three layers—a base plate, typically aluminium or copper, a thermally efficient dielectric layer which electrically separates the base plate from the active circuit layer.

This copper circuit layer is etched using standard PCB fabrication practices and surface mount components assembled, soldered, cleaned and re-worked using common equipment. Heat from components passes directly through the dielectric layer and into the base plate with minimal interruption. Mounting a heatsink to the metal base plate completes the assembly forming a thermally efficient product.

In high-frequency applications such as DC/DC converters, switch mode power supplies or motor controllers, Thermal Clad exhibits unwanted capacitance, affecting the operation of the circuit. If these capacitive effects are important there is a two layer version of the product with a buried layer that can be used as a Faraday shield, as well as additional tracking as required. This shield significantly attenuates unwanted capacitance.

If you must use a fan...
In some instances the heatsink and the fan are the only practical solutions, but even here there are practical considerations for engineers to take into account.

Traditionally, grease and mica is used to sandwich a hot component to a heatsink. As a cheap electrical isolator, mica does the job, but it is brittle and easily damaged. A reasonable heat transfer can be achieved with grease providing it is laid down in an even layer. However, grease cannot be applied to partially assembled PCBs as it contaminates solder and cleaning is not possible because of the risk of washing out the thermal interface. This means it is only possible to apply grease at the final assembly stage after the PCB has been soldered and cleaned. Grease is also difficult to clean once applied, making re-work after testing difficult.

The problems associated with grease are not limited to production, reliability is also in question. During development, engineers ensure the application of grease is even. However, during production inconsistencies in greasing up components are inevitable. Too much grease or an uneven application changes the thermal characteristics of the circuit, resulting in stressing of the component. An air hole in the grease layer may result in a hot spot on the component, also causing stress. Alternative silicon based greases can also deteriorate over time; migrating silicon molecules dry the grease out and contaminate the assembly.

Alternatives to thermally conductive grease
Grease-replacement materials overcome these inconsistencies by forming a uniform layer of thermally conductive, electrically insulating material. They also mean less mess. One of Bergquist’s grease alternatives is Sil-Pad. This range of high-performance dielectric films combines a tough carrier including fibreglass and silicone rubber as a binding material. Silicone rubber has a low dielectric constant, high dielectric strength, good chemical resistance and high thermal stability making it good for conducting heat away from the component. Supplied as a sheet, or pre-cut to suit common package formats and custom shapes, Sil Pad comes in a number of formats to suit the application, including a version with an embedded copper layer for shielding purposes.

These materials exhibit ‘cold flow’, which excludes air from the interface as it heats and conforms to the mating surfaces. The films achieve thermal resistance of down to 0.2°C/Watt and a breakdown voltage of typically 6kV.

The uniformity and stability of the material allow the product to be reliably manufactured to the same standards time after time. Re-work of faulty products is far simpler with such materials as the pads are simple to remove and replace.

And for high-volume applications
Greasing up components during production also introduces a delay and a break in the manufacturing process. Typically, this is a manual job and so inevitably impacts on production costs—especially as production volumes increase. Even with dielectric films such as Sil-Pad, a manual process is usually required.

For such high-volume applications, Bergquist has developed Softface. Supplied as a film, this interface material is transferred to the desired surface using commercial hot stamping equipment.

To apply the material, the heatsink or case is pre-heated. Next, the interface material is coated on in any pattern as required. The heatsink can then be supplied to the production line for final assembly.

The material softens at 43°C to form a uniform thermally conductive layer. Its anisotropic characteristics prevent the material migrating out of the interface, and the material can be reused after re-work should it be required.

Unlike grease, Softface is also able to withstand solder baths and cleaning equipment, allowing partial or full assembly without the danger of contamination or wash out of the thermal layer. The combined benefits make the material an ideal grease replacement for medium and high volume manufacturing.

Ultimately, the thermal management requirements of a product depend on the design requirements. With the number of techniques designers have at their disposal to overcome thermal management issues, they don’t have to totally rely on traditional heatsink arrangements.
Free with this issue

Gap Pad – an innovation in thermal management

The thermally-conductive pad on the cover of this issue isolates up to 6kV and has an operating temperature range of -40 to 200°C. But its really useful property is that it is flexible.

Being capable of conforming to its mating surfaces, the Gap Pad is clean and easy to apply and needs no grease – just a light pressure to ensure integrity of the joint. As a bonus, the Gap Pad doesn’t dry out like grease so any voids that might occur due to thermal cycling and the like are filled as they occur.

This sample, known as Gap Pad VO Soft, has a thickness of 1.5mm and a thermal performance of 0.8W/mK, depending on applied pressure. To use the pad, simply assure a slight pressure between the hot component, its cooling surface, and the Gap Pad between them. Other products in the range cover 0.8W/mK to 5W/mK in thicknesses from 0.5mm to 6.0mm in 0.5mm increments. There’s also a liquid version that can be pumped into a void, where it sets, providing effective thermal conduction between irregular surfaces.

Design engineers needing more information should call Bergquist on 01908 263663.

Thermal management specialist Bergquist

The Bergquist Company is a privately held family owned business started by Carl Bergquist in the sixties. The company began distributing electronic components in the upper Midwest of America and soon after developed their first proprietary product, Sil-Pad thermally conductive insulators.

This very successful product line has evolved into the Thermal Products Group which provides solutions to engineers for controlling and managing heat in electronic assemblies and printed circuit board designs. The other two main divisions of The Bergquist Company are Bergquist Switch and Bergquist Distribution, which includes the power cord product line.

The Thermal Products Group’s 84 000 square foot manufacturing facility is in Cannon Falls, Minnesota. Thermal Products has additional facilities in Germany and the United Kingdom. A new facility in Prescott, Wisconsin houses the Thermal Clad printed circuit board operations and the new Touch Screen manufacturing operations.

Bergquist products are used by many of the world’s largest OEMs in a variety of industries including automotive, computer, military/aerospace and telecommunications to name a few.

Over 260 materials have been developed to fit many different applications for transferring heat in electronic assemblies. Many of the new materials developed are the result of customer requests for a specific material that can perform for their particular application.
Communications Technology Dictionary of

gilbert held

you didn't know you needed to know
eyour communications technology

fourth edition

new edition

With over 9000 entries and 250 illustrations, this book is an invaluable reference work for anyone involved with electronics and communications. Dictionary of Communications Technology provides comprehensive coverage of data and communications and has entries on PC lans, the Internet, communications testing and client-server applications - in 500 pages.

Over 20 major companies helped prepare the Dictionary of Communications Technology, including AT&T, IBM and Digital Equipment Corporation.

Gilbert Held, author of Dictionary of Communications Technology, is an internationally author who has used his enormous expertise to make this work one of the most comprehensive sources of telecommunications information.

UK Price: £38.95 Europe £42.95 ROW £46.95

** Price includes delivery and package **

Fax your order to 0181 6528111 or post to Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following title:

Dictionary of Communications Technology

Total

Name

Address

Postcode Telephone

Method of payment (please circle)

Access/Mastercard/Visa/Check/PO

Cheques should be made payable to Reed Business Information

Credit card no

Card expiry date

Signed

Please allow up to 28 days for delivery
AQUILA VISION
http://www.aquila-vision.co.uk
Aquila Vision specialises in supplying and supporting Embedded Microprocessor Development products from PICs to DSPs. We also stock robotics boards, Linux and general interest CD-ROMS.

EQUINOX TECHNOLOGIES UK LTD
http://www.equinox-tech.com
Equinox Technologies UK Ltd., specialise in development tools for the embedded microcontroller market.

CONCEPT ELECTRONICS
http://www.conceptkey.co.uk
Concept Keyboards are specialists in the design and manufacture of customer specified membrane panels and keyboards, and electronic design. Concept’s membrane manufacture is supported by a full electronic production facility to provide a complete turnkey keyboard and electronics service, fully accredited to ISO9001.

COOKE INTERNATIONAL
http://www.cooke-int.com
e-mail: info@cooke-int.com
Stockists of Quality Used Electronic Test Instruments and Operating & Service Manuals.

COOKIE INTERNATIONAL
http://www.cooke-int.com
Stocks of Quality Used Electronic Test Instruments and Operating & Service Manuals.

CROWNHILL ASSOCIATES LTD
http://www.crownhill.co.uk
Crownhill supply low cost development tools for use with Micro-Controllers and Smart Cards. Products include Smart Card development tools, Smart cards, Micro Development tools and Bespoke Design Services.

CROWNHILL ASSOCIATES LTD
http://www.crownhill.co.uk
For the pick of the UK’s Top High-Tech Software and Hardware career opportunities - from fresh Grad/PhD to Senior Engineer/Manager -- £22,000 - £70,000

DISPLAY ELECTRONICS
http://www.distel.co.uk
For the pick of the UK’s Top High-Tech Software and Hardware career opportunities - from fresh Grad/PhD to Senior Engineer/Manager -- £22,000 - £70,000

ECM SELECTION
http://www.ecmsel.co.uk
ECM SELECTION
http://www.ecmsel.co.uk
For the pick of the UK’s Top High-Tech Software and Hardware career opportunities - from fresh Grad/PhD to Senior Engineer/Manager -- £22,000 - £70,000

Flash supply low cost development tools for use with Micro-Controllers and Smart Cards. Products include Smart Card development tools, Smart cards, Micro Development tools and Bespoke Design Services.

FELLER UK
http://www.feller-at.com
Feller (UK) Ltd. manufacturer Fully approved cordsets (Moulded mains plugs and connectors) and Power Supply Cables for all industrial Countries to National and International Standards

FLASH DESIGNS LTD
http://www.flash.co.uk
Flash supply low cost AVR ISP programmer (£39), MINI-ICE starter kits (from £69), Portable Easy-ICE emulators (from £199), ICE Adapters & 'C' compilers for any ATMEL AVR, MCS51, Dallas, Hitachi H8 microcontroller. Download FLASH NEWS now. Watch out for Special Offers - Are YOU developing code in a Flash?

HPS LTD
http://dspace.dial.pipex.com/hspsp/
FILTER DESIGNER - Advanced analog and digital filter design software for the PC. - Standard and Professional versions. - Free download of Evaluation version.

LOW POWER RADIO SOLUTIONS
http://www.lprs.co.uk
LPRS markets low power radio transmitters, receivers and transceiver modules manufactured by ourselves, Radiomrix, Circuit Designs, ROT and Micrel. Applications for telemetry, video and remote control.

MICRO CALL
http://www.microcall.memec.com
Micro Call is a distributor for the following Galileo, I/D T (Integrated Device Technology), Lattice. Level 1. Linear Technology, Memec Design Service, NPC, Siliconians, Silicon laboratories. WSI, Xilinux and Xicor.

M.K. CONSULTANTS (UK) LTD
http://www.mkconsultants.co.uk
A global supplier of low power modules designed and manufactured by MK in the UK. Nobody beats our prices. That’s the MK price challenge.

M&B RADIO
http://www.m-b-radio.co.uk
Visit Mitronics, the leading stocking distributor of obsolete and difficult to find Motorola parts. We carry electronic components, integrated circuits, and semiconductors

MITSERTRONICS
http://www.mitronics.com
Visit Mitronics, the leading stocking distributor of obsolete and difficult to find Motorola parts. We carry electronic components, integrated circuits, and semiconductors

NATIONAL INSTRUMENTS
http://www.natinst.com/uk
Visit Mitronics, the leading stocking distributor of obsolete and difficult to find Motorola parts. We carry electronic components, integrated circuits, and semiconductors

NEWNES - BOOKS FOR THE ELECTRONICS WORLD
http://www.newnespress.com
Over 300 books and information packages for those working with electronics and engineering technology. Visit our site for a free catalogue and downloads.

NEWNES - BOOKS FOR THE ELECTRONICS WORLD
http://www.newnespress.com
Over 300 books and information packages for those working with electronics and engineering technology. Visit our site for a free catalogue and downloads.
WEB DIRECTIONS

Put your web address in front of 21,000 Electronics fanatics. Electronics World acknowledges your companies need to promote your web site, which is why we are now dedicating page’s in every issue to WEB ADDRESSES. This gives our readers the opportunity to look up your companies name, to find your web address and to browse the magazine page to find new sites.

We also understand that cost is an important factor, as web sites are an added drain on budgets. I am sure you will agree these rates make all the difference.

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Web address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOR 12 ISSUES:
Lineage only will cost £150 for a full year just £12.50 per month.
This includes your companies name, web address and a 25 word description.
Lineage with colour screen shot will cost £350 for a full year just £29.17 per month.
This will include the above plus a 3cm screen shot of your site, which we can produce if required.
To take up this offer or for more information ring Joanna Cox on 0181 652 3620 or fax on 0181 652 8938.
E-mail: joannah.cox@rbi.co.uk
Programming the eeprom HC11

Peter Topping's step-by-step guide for programming the LW radio-code clock presented last month demonstrates how easy it is to program and develop a modern microcontroller. The software is freeware and the hardware is simply an RS232 interface.

A suitable method of programming the MC68HC811E2 is to use the PCbug11 software package. PCbug11 is a free program that runs on a PC. It talks to a small piece of code embedded in the HC11, or to code downloaded into its RAM using serial communication. The compact - in the case of the LW clock, downloaded - code is interrupt driven and is referred to as the talker.

This combination facilitates a debugging environment that can be used to download application code and then debug it by allowing the code to be modified and executed, breakpoints to be set, RAM locations to be inspected etc.

I used PCbug11 to develop the LW clock application described in last month's issue, but the only feature discussed here is its ability to download code into the EEPROM of the MC68HC811E2. This can only be done once communication has been established between the PC and the HC11.

The RS232 chip shown in the circuit diagram is required to establish communication. The LW clock digital board can be used by simply adding a small board containing this extra circuit. Only three wires, Tx, Rx and ground, connect the extra board which can use the MC145407 shown, or a MAX232. Both these chips contain charge pumps so they do not need the additional ±12 volt power supplies normally required for an RS232 interface. Connection to the PC's COM1 port with a default baud rate of 9600 is assumed.

There are two modifications that must be made to the HC11's circuit on the clock's digital board. These are the change of the crystal to 8MHz and the selection of a different mode.

To download simply short one pin

The circuit shown in last month's article uses single-chip mode by holding the MODA pin low and the MODB pin high. For PCbug11 the special bootstrap mode is used requiring both mode pins to be low. As the MODB pin is held high with a pull-up resistor it can simply be shorted to ground to select the appropriate mode for PCbug11. With this done, a reset will force the HC11 to enter it's special bootstrap mode. In this mode it runs pre-programmed ROM code that downloads data into on-chip RAM via the serial SCI interface. The interface is implemented via by pins D0 (20) and D1 (21).

When using PCbug11, the talker is first downloaded. Once downloaded, the talker can be used in conjunction with the PCbug11 program on the PC to download

Program download circuitry between the HC811E2 and a PC COM port is simply an RS232 interface. All you need to do to put the controller in download mode is to change the level on one of two mode pins and reset. This circuit even produces the ±12V levels needed for true RS232.

Peter is an MCU applications engineer at Motorola's East Kilbride plant.
and debug the user’s application code. This code can be loaded into RAM, EPROM or EEPROM. But for the purposes of the LW clock, the download is only into the MC68HC811E2’s 2Kbyte EEPROM.

The application has already been fully debugged so PCbug11’s many other features – breakpoints, code modification, RAM inspection etc. – are not used.

To use PCbug11, I recommend that the entire contents of the floppy disk available from Electronics World is copied into a new DOS directory – say pcbug11 – on your hard disk. You should then run with this as the default directory. A real implementation of DOS is required. Emulated DOS running within Windows NT will probably not work correctly.

Application code download into EEPROM is in S-record format, as is the listing printed last month on page 453. An S-record is in ASCII and contains the following information.

- The first two characters on each line are the record type – SO: header, Si: data, S9: terminator. The next two characters indicate, in hexadecimal form, the number of bytes of data that follow. The next four characters in hexadecimal form, the last byte being a checksum.

 In last month’s LW clock article, the penultimate line in Table 4 should have read Y:3/5(1999)W:13. Apologies.

Programming and LW-clock software

The disk available from Electronics World contains the following PCbug11 files:

- pcbug11.exe PCbug11 executable program
- codes.p11 Mnemonic tables for PCbug11
- offsets.p11 Addressing mode offsets for mnemonic tables
- pcbug11.hlp PCbug11 help information
- talk88.b00 Downloaded talker for the MC68HC811E2

As well as its executable file, PCbug11 requires the two .p11 files and the talker for the MC68HC811E2. The disk also includes a help file, which is accessed by typing “help topic” within PCbug11. For a list of commands simply type “help”. This disk also contains these LW clock application files.

- lwrd.s11 Source code (Introl assembler switch setting: -TI).
- lwrd.lst LW clock listing output from assembler.
- lwrd.doc LW clock listing (Word format).
- lwrd.bat Batch file for use with Introl relocatable linker.
- lwrd.id Address locations for use with linker.
- lwrd.o Object code in S-record format.

The lwrd.s11, lwrd.bat and lwrd.id files are only relevant if modification and reassembly are required. The assembly directives included are for the Introl assembler and may need modification for other assemblers. For programming the LW clock application described in last month’s magazine only the S-record object code file (lwrd.0) is used.

The object-code listing shown in last month’s article can be obtained as a text attachment to a text file by e-mailing jackie.lowe@rbi.co.uk. The annotated source code can be obtained on disk for £10 to cover copying, administration and postage. Send a postal order or cheque payable to Reed Business Publishing Group to Precise Clock, Jackie Lowe, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

Please note that the source-code listing will not be e-mailed due to network bandwidth limitations.

Procedure for using PCbug11 to download the LW clock program:

1. Connect the serial board to the PC and to the LW clock digital board. Power up in special bootstrap mode (8MHz crystal, both mode pins low).
2. On PC enter “pcbug11 -88”
3. If communication is correctly established – i.e. no error message – then continue. If communication between the PC and the HC11 is not established this will be intimated by an error message. If this occurs then the problem should be rectified before attempting to continue. The most common problem is incorrect connection of the Tx (D1) and Rx (D0) lines or the lack of a pull-up on the Tx line. This pull-up is missing from the circuit in some editions of the PCbug11 user’s manual. Communications can be checked by typing ctrl R. This will get a response of “communications synchronised” or display an error message. After a communications error a retry should be carried out by exiting PCbug11 (quit y), resetting the HC11 and restarting at step 2. This is required as the talker is downloaded into RAM and if this step has failed then typing ctrl R will not fix the problem as it doesn’t retry the download.
4. Once communication is functioning correctly enter the following PCbug11 commands:

   ```
   control base hex  (allow subsequent commands to specify addresses and data in hex)
   eeprom f800 ffff  (specify address range to be written as EEPROM, i.e. not RAM)
   ms 1035 00  (enable EEPROM writing)
   loads pcbug11\lwrd.0  (download S-record code into EEPROM, this takes 2 minutes)
   verf pcbug11\lwrd.0  (verify that EEPROM contains the correct code)
   quit y  (quit PCbug11)
   ```
5. If everything has occurred correctly the EEPROM will now contain the LW clock code. To convert the hardware back to run the clock: power down, remove the additional board containing the serial interface to the PC, replace the crystal with the application frequency of 2MHz, remove the short to ground on the MODB pin and connect the LW clock analogue board.
6. On power-up the LW reference clock should now be operational.

612 ELECTRONICS WORLD July 1999
THE AMAZING TELEBOX

Converts your colour monitor into a QUALITY COLOUR TV!

TV SOUND & VIDEO MONITOR SIGNALS - VHF-UHF-CABLE - HIFI COMPATIBLE!

The TELEBOX is an attractive fully case'd mains powered unit containing electronics ready to plug into a host of video monitors or AV equipment which are fitted with a composite video or SCART input. The composite video output which is designed to be connected to a standard AV monitor or to any of the leads not normally receivable on most television receivers (TELEBOX MB, TELEBOX ST, TELEBOX Multiband). A specially constructed SCART lead is also supplied with the TELEBOX MB to connect to PAL UHF colour television channels.

TELEBOX MB covers virtually all television programs you are likely to encounter - over 2,000 channels in the eastern European countries or over 1,700 channels in the western European countries. TELEBOX MB is supplied complete with simple working frequencies VHF and UHF including the HYPERBAND as used by 'off air UHF colour television channels. TELEBOX MB covers virtually all television programs you are likely to encounter - over 2,000 channels in the eastern European countries or over 1,700 channels in the western European countries. TELEBOX MB is supplied complete with simple working frequencies VHF and UHF including the HYPERBAND as used by 'off air UHF colour television channels. TELEBOX MB is supplied complete with simple working frequencies VHF and UHF including the HYPERBAND as used by 'off air UHF colour television channels.

Obsoletes - Short Supply - Bulk 10,000,000 Items Ex Stock For Major Savings Call 0845 345 3666.

TELEBOX ST for composite video input types.

Only £119 (M) MITS-MVS-TELEBOX ST.

External cables for other types of composite monitors.

As New - Ex Film Set 17" 0.28 SVGA Mitsubishi Diamond Pro monitors. Full multisync etc. Full 90 day guarantee. £275.00 (E)

Just In - Microtwee 20" VGA (600 x 600) colour monitors. Good SH condition - £299 - CALL FOR Info

Philips HCS31 (same style as CM8833) attractively styled 14" colour monitor with both RGB and standard composite sync inputs. Standard and high specular glossy black - superb value - £499.00 (E)

Only £599.00

PHILIPS HCS31 Ultra compact 9" colour video monitor with standard composite sync and RGB video inputs. Standard and gloss black - superb value - £499.00 (E)

Only £79.00

KME 10" 180000 high definition colour monitors with 0.28" pitch. Superb clarity and modern styling - £399.00 (E)

Only £135 22" £155 26" £185 (E)

We probably have the largest range of video monitors in Europe. Please call or see www.distel.co.uk for details.

DC POWER SUPPLIES

Virtually every type of power supply you can imagine. Over 100,000 Ex Stock Call or see our web site for details.

COLOUR CCD CAMERAS

Undoubtedly a miracle of modern technology & our special power pack feature absolutely superb results. Offering a full range of colour/ black & white cameras. We have a camera for every application. The highest quality CCD camera to give away price £1 Unit features full multisync etc. Applied to any application in the use of low light & high light conditions. A special bulk purchase from a cancelled export order brings you the most amazing savings on these ultra high spec 12V DC 14Ah rechargeable batteries. No applications. A 10mm inside locking and a wide angle lens gives excellent focus and sharpness. Highly acclaimed. Fully guaranteed. Current makers price over £70 each Our Price £35 each (c) or 4 for £99 (E)

Relays - 200,000 from Stock

Save £500's by contacting your nearest Distel office, for stock levels of the following stock types such as Millat, Oriel, Odyssey. Separately Complimenting our range is our extensive range of relays - 200,000 from stock. A special bulk purchase from a cancelled export order brings you all the amazing savings on these ultra high spec 12V DC 14Ah rechargeable batteries. No applications. A 10mm inside locking and a wide angle lens gives excellent focus and sharpness. Highly acclaimed. Fully guaranteed. Current makers price over £70 each Our Price £35 each (c) or 4 for £99 (E)

Only £99.00 or 2 for £180.00 (E)

SOFTWARE SPECIALS

NT4 Workstation, complete with service pack 3 and licence - OEM packaged. Only £89.00 (E)

Intel Pentium 233 MHZ + 32 MB RAM + Windows NT4 + 1GB + 16" monitor + 40GB = £299.00

Various models from £195.00 to £499.00. Please call or see our web site for more information. Many obsolete types from stock. Save £100's.

19" Rack Cabinets

Superb quality 6 foot 40U Virtually New, Ultra Smart Less Than Half Price!

Top quality 19" rack cabinets made in UK by Opticon & New Design. Made from the finest designer, acrylic enclosures which are coated with a special three coat finish. 3mm acrylic enclosing front and back panels. Full adjustable and removable side panels. Fully adjustable light strips. The 19" rack mount cabinets are designed for use in any application for any configuration of equipment mounting. Includes 19" x 1U flat front panel. A special bulk purchase from a cancelled export order brings you A special bulk purchase from a cancelled export order brings you all the amazing savings on these ultra high spec 12V DC 14Ah rechargeable batteries. No applications. A 10mm inside locking and a wide angle lens gives excellent focus and sharpness. Highly acclaimed. Fully guaranteed. Current makers price over £70 each Our Price £35 each (c) or 4 for £99 (E)

All models are available ex stock. Fully made to order. Please call or see our web site for full details.

Overall dimensions are: 771h x 350d x 27" W. Order as:

Opt. Rack 1 Complete with removable side panels. £345.00 (G)

Opt. Rack 2 Complete with removable side panels. £495.00 (G)

Over 1000 racks, shelves, accessories

19" 22" & 24" wide 3 to 4 6U high. Available from stock!!

32U - High Quality - All steel RackCab

Made by Eurocrust Enclosures Ltd to the highest possible spec. All steel construction with removable side, front and back doors. A special bulk purchase from a cancelled export order brings you A special bulk purchase from a cancelled export order brings you all the amazing savings on these ultra high spec 12V DC 14Ah rechargeable batteries. No applications. A 10mm inside locking and a wide angle lens gives excellent focus and sharpness. Highly acclaimed. Fully guaranteed. Current makers price over £70 each Our Price £35 each (c) or 4 for £99 (E)

Sold at LESS than a third of makers price!!

A superb buy at only £245.00 (E)

42U version of the above only £435 - CALL 42U version of the above only £435 - CALL

12V BATTERY SCOOP - 60% off!!

A special bulk purchase from a cancelled export order brings you A special bulk purchase from a cancelled export order brings you all the amazing savings on these ultra high spec 12V DC 14Ah rechargeable batteries. No applications. A 10mm inside locking and a wide angle lens gives excellent focus and sharpness. Highly acclaimed. Fully guaranteed. Current makers price over £70 each Our Price £35 each (c) or 4 for £99 (E)

RELAYS - 200,000 from Stock

Save £500's by contacting your nearest Distel office, for stock levels of the following stock types such as Millat, Oriel, Odyssey. Separately Complimenting our range is our extensive range of relays - 200,000 from stock. A special bulk purchase from a cancelled export order brings you all the amazing savings on these ultra high spec 12V DC 14Ah rechargeable batteries. No applications. A 10mm inside locking and a wide angle lens gives excellent focus and sharpness. Highly acclaimed. Fully guaranteed. Current makers price over £70 each Our Price £35 each (c) or 4 for £99 (E)

Only £99.00 or 2 for £180.00 (E)

EMAIL: admin@distel.co.uk

DISTEL on the web II

Over 16,000,000 items from stock - www.distel.co.uk

PHONE: 0181 679 4414

FAX: 0181 679 1927

Disclaimer: All prices for UK mainland customers include VAT at 17.5%. VAT at the rate of 17.5% applies. Minimum order £20. Rows of identically ordered parts are accepted only up to the maximum order amount shown. Installations subject to a 20% delivery charge. All prices subject to change. Distel reserves the right to cancel any order or to change the price of any item at any time. All orders subject to availability. Payment terms subject to credit check. Distel is liable only for the supply of the products described above, any other liability is excluded. No responsibility is accepted for any loss or damage caused by any products. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Distel Limited.
Cooke International

Unit Four, Fordingbridge Site, Barnham, Bognor Regis, West Sussex, PO22 0HD, U.K.
Tel: (+44)01243 545111/2 Fax: (+44)01243 542457
Web: http://www.cooke-int.com
E-mail: info@cooke-int.com
catalogue available

ADVERTISERS’ INDEX

<table>
<thead>
<tr>
<th>Anchor Supplies</th>
<th>..............</th>
<th>590</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antrim Transformers</td>
<td>........</td>
<td>583</td>
</tr>
<tr>
<td>arbour Appointments</td>
<td>........</td>
<td>561</td>
</tr>
<tr>
<td>Chelem valve Company</td>
<td>........</td>
<td>603</td>
</tr>
<tr>
<td>CMS</td>
<td>........</td>
<td>579 and 583</td>
</tr>
<tr>
<td>Conford</td>
<td>........</td>
<td>598</td>
</tr>
<tr>
<td>Crownhill</td>
<td>........</td>
<td>575 and 583</td>
</tr>
<tr>
<td>Dataman</td>
<td>........</td>
<td>OBC</td>
</tr>
<tr>
<td>Display Electronics</td>
<td>........</td>
<td>613</td>
</tr>
<tr>
<td>Dolch</td>
<td>........</td>
<td>567</td>
</tr>
<tr>
<td>Electromail</td>
<td>........</td>
<td>571</td>
</tr>
<tr>
<td>Electronic Recruitment Services</td>
<td>........</td>
<td>562</td>
</tr>
<tr>
<td>Eng – Inn Electronics</td>
<td>........</td>
<td>601</td>
</tr>
<tr>
<td>Equinox Technology</td>
<td>........</td>
<td>IBC</td>
</tr>
<tr>
<td>Hitek UK</td>
<td>........</td>
<td>575</td>
</tr>
<tr>
<td>Ilp Direct</td>
<td>........</td>
<td>603</td>
</tr>
<tr>
<td>International Rectifier</td>
<td>........</td>
<td>IFC</td>
</tr>
<tr>
<td>Johns Radio</td>
<td>........</td>
<td>595</td>
</tr>
<tr>
<td>Jpg Electronics</td>
<td>........</td>
<td>603</td>
</tr>
<tr>
<td>labcenter Electronics</td>
<td>........</td>
<td>559</td>
</tr>
<tr>
<td>M & B Radio</td>
<td>........</td>
<td>579</td>
</tr>
<tr>
<td>Milford Instruments</td>
<td>........</td>
<td>536</td>
</tr>
<tr>
<td>National Instruments</td>
<td>........</td>
<td>549</td>
</tr>
<tr>
<td>Olson Electronics</td>
<td>........</td>
<td>573</td>
</tr>
<tr>
<td>Pico</td>
<td>........</td>
<td>571</td>
</tr>
<tr>
<td>Polar Instruments</td>
<td>........</td>
<td>598</td>
</tr>
<tr>
<td>Ps Consultants</td>
<td>........</td>
<td>530</td>
</tr>
<tr>
<td>Quickroute</td>
<td>........</td>
<td>536</td>
</tr>
<tr>
<td>Rafle Electronics</td>
<td>........</td>
<td>616</td>
</tr>
<tr>
<td>Ramco</td>
<td>........</td>
<td>536</td>
</tr>
<tr>
<td>Rn Electronics</td>
<td>........</td>
<td>583</td>
</tr>
<tr>
<td>Seetrax</td>
<td>........</td>
<td>598</td>
</tr>
<tr>
<td>Sightmagic</td>
<td>........</td>
<td>578</td>
</tr>
<tr>
<td>Solution</td>
<td>........</td>
<td>563</td>
</tr>
<tr>
<td>Stewart of Reading</td>
<td>........</td>
<td>597</td>
</tr>
<tr>
<td>Surrey Electronics</td>
<td>........</td>
<td>603</td>
</tr>
<tr>
<td>Swift Eurotech</td>
<td>........</td>
<td>543</td>
</tr>
<tr>
<td>Telnet</td>
<td>........</td>
<td>569</td>
</tr>
<tr>
<td>Those Engineers</td>
<td>........</td>
<td>582</td>
</tr>
<tr>
<td>Tie Pie</td>
<td>........</td>
<td>533</td>
</tr>
</tbody>
</table>
APPPOINTMENTS

School of Health Sciences

Principal Technician in Psychology

£18,374 - £19,596 pa

To support the development of research in the division of psychology through the design, construction, maintenance and repair of a variety of equipment ranging from bio-amplifiers to standard computer hardware. Supervisory experience of other technical staff is desirable but not essential. You should be qualified to HND/HNC level or higher in electronics, must be highly computer literate and have had previous experience in providing technical support in a University or other research environment. Experience of electronics design, in particular interfacing analogue and digital technologies, is essential.

Ref C1790

For detailed further particulars and an application form (returnable by 11 June 1999) and quoting the reference number, contact the Personnel Services Department, University of Wolverhampton, Molineux Street, Wolverhampton WV1 1SB. Tel: 01902 321049 (ansaphone).

For hearing impaired candidates our is looking for a Minicom number 01902 321249. Email address: per@wlv.ac.uk

The University provides higher education services to all sections of the community and is committed to equality of opportunity.

ARTICLES WANTED

TOP PRICES PAID

For all your valves, tubes, semi conductors and IC's.

Langrex Supplies Limited

1 Mayo Road, Croydon
Surrey CR0 2QP
TEL: 0181 684 1166
FAX: 0181 684 3056

WANTED

Valves & Semiconductors
All types e.g. Discrete & IC's
Electrical/electronic/mechanical or speaking environment, in
German - English documentation or software, contact us
develop an old product or need professionally
or sub-assembly from scratch, want to re-
client companies and individuals. If you have a
experience designing innovative products for
supervisory equipment ranging from bio-amplifiers to standard computer hardware.
 Supervisory experience of other technical staff is desirable but not essential. You should be qualified to HND/HNC level or higher in electronics, must be highly computer literate and have had previous experience in providing technical support in a University or other research environment. Experience of electronics design, in particular interfacing analogue and digital technologies, is essential.

Ref C1790

For detailed further particulars and an application form (returnable by 11 June 1999) and quoting the reference number, contact the Personnel Services Department, University of Wolverhampton, Molineux Street, Wolverhampton WV1 1SB. Tel: 01902 321049 (ansaphone).

For hearing impaired candidates our Minicom number is 01902 321249. Email address: per@wlv.ac.uk

The University provides higher education services to all sections of the community and is committed to equality of opportunity.

ARTICLES FOR SALE

Workshop Clearout!

SPECTRUM ANALYSER

Marconi TF2270 £380 + VGT Audio to 110MHz digital storage display, also extender available.
Tektronix 466 Storage Oscilloscope £185.
Dynaquip analyser £1,695.
Marconi TF2370 £300 + VAT

DYNAMIC Sciences Tempest RX, £1,695,

HP141T > I8GHz, £950; Icom IC-M800 TSVR, £100.

500,000+ GOOD WINs

Electronic Circuit Analysis Program for PC.

Provides graphical output to screen and printer. Many circuit examples. £10. - Tel: 01375 63384.

ARTICLES FOR SALE

DYNAMIC Sciences Tempest RX, £1,695,

HP141T > 18GHz, £950; loan IC-M800 TSVR, £100; Racal 8A1755, £95; Advanced TR4131 Spectrum Analyser, £2,790. - Tel: 01908 305726.

CLASSIFIED

Tel: 0181 652 3620
Fax 0181 652 8938

June 1999 ELECTRONICS WORLD
Contact Joannah Cox on 0181 652 3620

INDUSTRIAL COMPUTER PRODUCTS

The widest range of colour LCDs, LCD monitors and plug and play kits available in the UK, all in one easy to use brochure, is now available FREE!

It includes information on products ranging from 2.9" monitors to 16.1", featuring colour LCD screens, mono/colour STN TFTs and touch screen technology from the world's leading manufacturers.

Phone TRIDENT today for your free copy.

TEL: 01737 780790
FAX: 01737 771908

FREE Interactive Encyclopedia of Instrumentation

Intrupedia™, from National Instruments, is the latest version of the company's free CD-ROM encyclopedia for instrumentation. Featuring an enhanced user interface and a new intuitive search engine, Intrupedia is updated with the entire National Instruments product catalogue and additional information useful to scientists and engineers when building PC-Based test, measurement and automation applications. For your FREE CD-ROM call National Instruments on 01635 523545.

Microprocessor Development Tools for the Professional Developer

Nohau UK Ltd distribute timesaving microprocessor development tools including in-circuit emulators, device programmers and CARD, USB, & IEEE 1394 bus protocol analysers.

Nohau's In-Circuit Emulators use state-of-the-art technology to provide true real-time non-invasive emulation. ALL-11 programmers have been developed with the semiconductor manufacturer's approval.

Most microprocessor families are supported, from manufacturers including Intel, Motorola, Siemens, Mitsubishi, Phillips and many more.

Tel: 01962 733140 Fax: 01962 725408 www.nohau.co.uk sales@nohau.co.uk
Setting the Standards for Embedded Solutions!

Micro-PRO PLUS

AVR Starter System

State-of-the-art In-System Programmer for Atmel AVR and 895 (8051) microcontrollers. Support for ATmega and low voltage microcontrollers now available.

Micro-ISP Series IV

System General

For the serious embedded systems developer who is looking to write up to 8K bytes of firmware in either C or assembler for the Dallas 87C520 microcontroller.

Adaptors

- Compilers
- Development Systems
- Educational Systems
- 8051/AVR Emulators
- Evaluation Modules
- 8051/AVR Microcontroller Sales
- OEM Modules
- Parallel/Serial Programmers
- Production Programmers
- Starter Systems
- Software

Universal Programmer supporting most microcontrollers, memory devices & PLD's.

Order Code: SG-ALLWRITER-1

Production Gang Programmer

The 'Multi-Arco Gang Programming System' is a next generation Universal Device Programmer supporting independent programming of up to eight target devices asynchronously. Device support includes memory, microcontrollers, CPLD's, FPGA's etc.

Order Code: SG-MULTI-APRO

For sales tel: +44 (0) 1204 529000, fax: +44 (0) 1204 535555, e-mail: sales@equinox-tech.com, Web Site: www.equinox-tech.com
Surely not. Surely someone somewhere has developed a portable programmer that has even more features, even greater flexibility and is even better value for money. Actually, no. But don’t take our word for it. Use the feature summary below to see how other manufacturers’ products compare.

Dataman-48LV
- Plugs straight into parallel port of PC or laptop
- Programs and verifies at 2, 2.7, 3.3 and 5V
- True no-adaptor programming up to 48 pin DIL devices
- Free universal 44 pin PLCC adaptor
- Built-in world standard PSU for go-anywhere programming
- Package adaptors available for TSOP, PSOP, QFP, SOIC and PLCC
- Optional EPROM emulator

Dataman S4
- Programs 8 and 16 bit EPROMs, EEPROMs, EPROMs, 5 and 12V FLASH, Boot-Block FLASH, PICs, 8751 microcontrollers and more
- EPROM emulation as standard
- Rechargeable battery power for total portability
- All-in-one price includes emulation leads, AC charger, PC software, spare library ROM, user-friendly manual
- Supplied fully charged and ready to use

S4 GAL module
- Programs wide range of 20 and 24 pin logic devices from the major GAL vendors
- Supports JEDEC files from all popular compilers

Still as unbeatable as ever!
Beware of cheap imitations. Beware of false promises. Beware of hidden extras. If you want the best, there’s still only one choice - Dataman.
Order via credit card hotline - phone today, use tomorrow.
Alternatively, request more detailed information on these and other market-leading programming solutions.