7362
DIFFERENT
POWER solvilons DELIVERED IN THE LASI Mir= MONHIS.

In the last three months we delivered more part numbers than any other power semi manufacturer did. Or could. Which means IR has more ways
to meet your power needs
from hundreds
of distributor
locations.

It's a fact. IR has the lowest V_{F}
Schotthys - from $1-400 \mathrm{amps}, 15-150$ volts, in surface mount, through-hole,
or powerful modules.
More ways to optimize your design.

Internationa IOR Recififier
diodes.irf.com

MORE BHNCHMARK

There's a HEXFET" power MOSFET with benchmark performance from IR for nearly every application. Like the first power MOSFET chipset that
meets Intel Mobile Guidelines '99. And there are thousands of others.
hexfet.irf.com gate drive. Only one way to cut component count and board space by more than 60% (the IR 2233). IR's got the only 1200 V power IC family. And it's only one way we do more to meet your

The highest density and current handling capability. With the widest selection of power packages for motion control. Driving motors from 1-100 HP. Get it right, right now with IR. Intemational Int Rectifier zearlectitier

Only IR gives you a choice of 262 different power package types. So you can find one that delivers exactly the footprint, current handling and the thermal performance you need.
packages.irf.com

BUT WAIT, THERE'S MORE POWER SEMICONDUCTOR EXPERTISE WHERE THAT CAME FROM.

Because you asked us for specific answers to your power design questions, we've answered with more power solutions. Solutions that offer more performance and reliability. Because we have more power semiconductor design and manufacturing experience and invest in more R\&D. Over two times more.

Now it's time to do your part - visit our Web site today. For a free copy of our CD-ROM iractive ${ }^{*}$ call +44 (0)1883732020.

For technical assistance call $+44(0) 1883733309$ or the Fax-on-Demand system on +44 (0)1883 733420.

Avaliable in UK from: Abacus Polar Arrow
Farnell
Future Electronics RS Components. Solid State Supplies

CONTIENTS

443 COMMENT

What comes around.

445 NEWS

- Strong pound is stifling industry
- Silicon LEDS show a promising light
- UK engineering skills shortage
- Young engineers are getting better off - UK business costs are lowest Will FEDs replace plasma panels?

Researchers at Toshiba have for the first time managed to produce silicon LEDs operating below 5 V , but quite how the light is being produced is a bit of a mystery. See page 445.

450 LW OFF-AIR REFERENCE CLOCK

Relying on Radio 4's often overlooked time reference on long wave, Peter Topping's precise alarm clock and calendar works anywhere in the UK without retuning.

458 IS THE BLOCKING OSCILLATOR DEAD?

Using an efficient LED-based torch as a design example, Ian Hickman demonstrates that the blocking oscillator still has its uses.

466 CIRCUIT IDEAS

- Hysteresis in a digital circuit - Enhanced zener voltage regulator - One-shot for microseconds to hours - Accurate stopwatch measures to 0.01 s
- Photographic flash meter

474 EARLY DEFINITION

Bryan Hart explains the Early effect - an important phenomenon not always well understood by analogue circuit designers.
480 WHO NEEDS A DEGREE?
Introducing our recruitment special, Richard Wilson shows that it is possible to succeed as an engineer without having a degree

484 CHECKING C IN SITU

Cyril Bateman presents possibly the best ever general-purpose meter for checking electrolytic capacitors without removing them from the board

493 SPEAKERS' CORNER

Why does the average 100 W moving coil loudspeaker only delivers two or three watts of sound? John Watkinson explains

499 ENHANCING SENSING

Joe Carr looks at an easy to apply and general-purpose technique for improving sensor resolution

505 YAGIS

With the aid of a 300Ω, 12-element design example, Richard Formato explains how high-impedance Yagis improve VHF antenna system performance.

511 NEW PRODUCTS

New product outlines, edited by Richard Wilson

516 JITTER BUSTER

Claimed to be at least as big a breakthrough as the PLL, this new antijitter technique does not suffer from recovery problems when its input frequency changes.

524 LETTERS

Crossover filters, Heater debate, New logic

Cover photography:
Mark Swallow

Can a 300Ω VHF antenna with open wire pair cable perform better than its low-impedance counterpart? Richard Formato shows that it can on page 505.

Why does the average 100 W moving coil loudspeaker only deliver two or three watts of sound? John Watkinson explains why on page 493.

July issue on sale 27 May

SPECIAL OFFER

Unique reader offer - two switchable $\times 1, \times 10$ oscilloscope probes currently selling at $£ 20$ each are yours for only $£ 21.74$ a pair. See page 464.

PROTEUS

 including NEW SIMULATOR mosPICE 3F5

crine
 - 28 ellmround - 0 ($B / 1$,

EWW CAD Review Round Up September 1998

Simulation

- Berkeley SPICE3F5 analosue simulation kernel
- True mixed mode simulation.
- New analysis types nincludie multi-plot sweeps, transfer curves, distortion and impedance p.ots.
- Active Components: Swilches, Pots etc.
- Over 100 u new library parts with SPICE models.
- Greater ease of use.

"a constant high level of capability ${ }_{\text {throughour" }}$
 EWW CAD Review Round Up September 1998

Schematic Capture

- Prodiuces attractive schematics like in the magazines.
- Netlist, Parts List \& ERC reports.
- Hierarchical Design.
- Full support for buses including bus pins.
- Extensive componenÜmodel libraries.
- Advanced Property Management
- Seamless integration with simulation and PCB design

PCB Design

- Automatic Component Placement
- Rip-Up \& Retry Autorouter with tidy pass.
- Pinswap/Gateswap Optimizer \& Back-Annotation.
- 32 bit high resolution database
- Full DRC and Connectivity Checking.
- Shape based gridless power planes.
- Gerber and DXF Import capability.

Available in 5 levels - prices from $£ 295$ to $\mathbf{\Sigma 1 6 2 5}+$ VAT. Call now for further information \& upgrade prices.

Write, phone or fax for your free demo disk, or ask about our full evaluation kit. Tel: 01756 753440. Fax: 01756752857. EMALL: info@labcenter.couk 53-55 Main St, Grassington. BD23 5AA. WWW: http/lwwwlabcenter.co.uk

Fully interactive demo versions available for download from our WWW site.
Call for educational, multi-user and dealer pricing - new dealers always wanted.
Prices exclude VAT and delivery. All manufacturer's trademarks acknowledged.

EDITOR

Martin Eccles
01816523614

CONSULTANTS

lan Hickman
Philip Darrington
Frank Ogden
EDITORIAL ADMINISTRATION
Jackie Lowe
0181-6523614

EDITORIAL E-MAIL. ADDRESS

jackie.lowe@rbi.co.uk

ADVERTISEMENT MANAGER

Richard Napier
0181-6523620
DISPLAY SALES EXECUTIVE
Joannah Cox
0181-6523620

ADVERTISEMENT E-MAIL. ADDRESS

joannah.cox@rbi.co.uk

ADVERTISING PRODUCTION 0181-6523620

PUBLISHER

Mick Elliott

EDITORIAL FAX

0181-6528111
CLASSIFIED FAX
0181-6528938
NEWSTRADE ENQUIRIES
01712617704
155N 0959-8332

SUBSCRIPTION HOTLINE 01622778000

SUBSCRIPTION QUERIES
rbp.subscriptions@rbi.co.uk Tel 01444445566 Fax 01444445447

For a full listing of
RBI magazines:
http//www.reedbusiness.com
REED
BUSINESS
INFORMATION

What goes around...

Who would ever think that the Japanese electronics majors would ever seek to model themselves on US and European companies? But they are.

It seems only yesterday that US and European companies were being urged to adopt the Japanese business model. In the mid-eighties, as kings of consumer electronics and semiconductors and bidding to overtake the Americans in computing, the Japanese electronics industry seemed unstoppable.

Japanese quality was a byword. Western businessmen were urged to adopt Japanese practices such as 'quality circles' and pre-competitive consortia. Western politicians abased themselves in pursuit of Japanese inward investment.

It was a period in which the Japanese expanded overseas and when Japanese restaurants, gardens and art galleries sprouted in the world's cities.
That was a time of great self-confidence; now is a time of great self-doubt. The Japanese don't seem inclined to moderation.

The reason for the change is the huge corporate losses being recorded by the big companies, a depressed home market and a stock exchange which collapsed a decade ago and has stayed collapsed.
The most outward and visible symptom of change is the abandonment of the lifetime employment tradition. The week before last, Sony announced job losses of 17500 ; the week before that NEC announced plans to lay off 15000 .

In a country with only four per cent unemployment, reducing blatantly overstuffed work-forces may seem acceptable. But in a country where social service provision for the unemployed is rudimentary, it could trigger social revolution. Behind-the-scenes, the companies are adopting Western accounting standards.

Broadly speaking these practices will promote transparency to allow the outside world to see how profitable, or not, companies are, how indebted or not they are, how much their assets are worth in current market value rather than book value, and how great are their liabilities for future retirement benefits and pensions.
In the boardroom, the accent is now on profits rather than on increasing turnover and market share. "To comply with global standards of management we have to focus on cash-flow," says Yoshihide Fujii, general manager of Toshiba's semiconductor business planning division, "Japanese companies now appreciate P\&L more. To run the business more healthily we have learnt that P\&L management is more important."

The new thinking of Japanese businessmen is towards seeking out new global opportunities, encouraging an entrepreneurial mind-set in their managements, and even thinking the previously unthinkable - takeovers and mergers.
The new chairman of NEC who took over on 26 March, Dr Hajime Sasaki, says: "We should be more transparent both internally and externally".

As well as adopting Western financial conventions Japan feels it has to accelerate its adoption of the new digital technologies - PCs, the Internet, LANs.

It seems surprising that, in the country that the world perceives as a high-tech stronghold, there is a feeling among the industrial elite that they have missed the digital bus.
"Japan is now lagging behind the direction in which the rest of the world is heading, especially in the digital revolution which has changed lifestyles," says Dr Tsugio Makimoto, Hitachi's Chief Corporate Technology Officer.

Language is another problem.
"In the US there are many start-up companies with good ideas using the digital revolution very effectively, particularly the Internet," says Makimoto, "such companies can do worldwide marketing via the Internet. That is a big change in favour of small companies."
"The way of management is changing because of email and information flows which makes for flat organisations," he says. "But most of the Japanese industries have hierarchical, bureaucratic styles of management and it's very difficult to move them very quickly. So the digital revolution is making it very difficult for big companies in Japan."
What goes around comes around.
David Manners

Electronics World is published monthly. By post, current issue $£ 2.45$, back issues (if available $£ 3.00$). Orders, payments and general correspondence to L333, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tlx:892984 REED BP G. Cheques should be made payable to Reed Business Information Ltd Newstrade: Distributed by Markefforce (UK) Lid, 247 Tottenham Court Road London WIP OAU 0171 261-5108.
Subscriptions: Quadrant Subscription Services, Oakfield House Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 01444445566 . Please notify change of address.
Subscription rates 1 year UK $£ 36.002$ years $£ 58.003$ years $£ 72.00$. Europe/Eu 1 year $£ 51.002$ years $£ 82.003$ years $£ 103.00$ ROW 1 year $£ 61.002$ years $£ 98.003$ years $£ 123$ Overseas advertising agents: France and Belgium: Pierre

Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Ltd, 475 Park Avenue South, 2nd FI New York, NY 10016 Tel; (212) 6798888 Fox; (212) 6799455
USA mailing agents: Mercury Airfreight International Ltd Inc, 10 (b) Englehard Ave, Avenel NJ 07001. Periodicles Postage Paid at Rahway NJ Posimoster. Send address changes to above.
Printed by Polestar (Carlise) Ltd, Newtown Trading Estate Carlisle. Cumbria, CA2 7NR
Filmsetting by JI Typographics Ltd, Unit 4 Baron Court, Chandlers Way, Southend-on-Sea, Essex SS2 5SE.

- Genuine, professional EDA software with no limitations! - and you can afford it!
- EDWin NC comes from Visionics: one of the longest established, most experienced producers of professional EDA systems, so it's fully proven in professional work.
- Now you can have this best-selling non-commercial version of the software at just $\mathbf{5 0 \%}$ of the normal price, with no limits in its capabilities.
- It does just about everything you could want!

Schematics, simulation, PCB layout, autorouting, manufacturing outputs, EMC and Thermal Analysis. Many more advanced features are available and it runs in Windows 3.x, 95, 98 or NT.
-Where's the catch? It's for non-commercial use, but companies may order for evaluation purposes. Prices start from just $£ 59.00$ for the basic system, up to only $£ 285.00$ for the full system including all available modules!

Kivy Don't forget - Phone Today for Your 50\% Discount!

- EDWin NC Basic: Schematics, PCB Layout, Manufacturing Outputs, Max. 100 Component Database, 500 Device Library.
- EDWin NC De Luxe 1: Basic + Professional Database and Libraries, Arizona Autorouter.
- EDWin NC De Luxe 2: De Luxe 1 + Mix-Mode Simulation, Thermal Analyser.
- EDWin NC De Luxe 3: De Luxe 2 + EDSpice Simulation, EDCoMX Spice Model Generator, EMC and Signal Integrity Analysers.
Plus Postage \& Packing UK £5.00; Rest of World $£ 10.00$ (only one charge per order)
Order hotline: +44 (0)1992570006 Fax +44 (0)1992570220 E-mail: swift.eu@dial.pipex.com Please Visit Our Web Site http://www.swiftdesigns.co.uk
swif Furotech ltd

Date \qquad Signature \qquad
Name:
Address: \qquad Postcode

Tel.: Evenings

I wish to order:

- EDWin NC BASIC: $\quad \mathbf{5 9 . 0 0}$
- EDWin NC De Luxe 1: $\quad £ 119.00$
- EDWin NC De Luxe 2: $\quad £ 155.00$
- EDWin NC De Luxe 3: $\quad £ 285.00$

Postage \& Packing UK $£ 5.00$
Rest of World $£ 10.00$
(only one P\&P charge per order) Total £

Qty. Total ($£$

\square

Swift Eurotech Ltd., Twankhams Alley, 160 High Street, Epping, Essex, CM16 4AQ, UK.

Strong pound is stifling industry

The unusually high strength of the pound is making life difficult for the UK's electronics manufacturing industry, according to managers and industry bodies.
The Sterling Index, which gauges the relative strength of the UK's currency, reached 103.9 points - a six-month high - at the end of March.
"It has probably had a significant influence on us," said Jeffrey Davis, Viasystems' European president.
"From our point of view it is a long term problem; we are not so much influenced by peaks and troughs."
The six month high, however, is part of a larger trend, said Elaine Barnett, an economic advisor at the Foundation for Manufacturing and Industry. "The Index was at 80 in January 1996, a 20 per cent rise is
quite a startling increase. [For electronics] I think there must be immense competition from Asia. The depreciation of their currencies could have an enormous detrimental impact on the electronics sector," she said.
What concerns the Federation of the Electronics Industry (FEI) is that when the pound is too strong, it curtails UK manufacturers' ability to take advantage of inherent strengths. "It can severely curtail manufacturing. The electronics industry operates on a global basis. International organisations are ready to move manufacturing from one place to another when this happens," said John Park, the FEI's deputy director general.
"We felt the Budget didn't address the strength of sterling. About 52 per cent of UK engineering [including
electronics] manufacturing is exported. If UK growth slowed down and European growth sped up, it would help the situation," said Barnett.
"When there is a problem with a currency, there is a trend to find continental based manufacturing," said Davis. "The PCB industry is complicated by the fact that a customer will approve only one or two plants. Generally it makes the PCB industry less flexible and it tends to hit harder."
Davis added: "Viasystems' main production assets are in the UK, about 65 to 70 per cent of our production. Therefore most of our production is influenced by the pound."

Alex Mayhew-Smith
Electronics Weekly

Silicon LEDs show a promising light - but why?

E

- xotic compound semiconductors have been needed to produce LEDs ever since General Electric used gallium arsenide (GaAs) to make the first practical one in 1962.
Since then, the materials and structures have become ever more complex. Today's LEDs often also include aluminium, nitrogen, indium and phosphorus and owe more to laser manufacture than to older LED processes.
All this complexity adds to cost. For some time, researchers have been hunting for a way to make LEDs using silicon on standard silicon processes.
There have been some successes, although none comes close to matching compound semiconductor devices for brightness or efficiency. This situation is unlikely to change for a while yet.
Porous silicon, for instance, has been shown to emit light, but making it requires processes not compatible with chip manufacture.

Silicon nanocrystals can also be persuaded to emit light. However, according to LED maker Toshiba, they have, up to now, required
between 10 and 25 V to operate; excessive for today's chips.
The latest announcement comes from the Advanced Research Laboratory of Toshiba in Japan. Scientists there have pushed nanocrystal device operating voltage below 5 V while using formation methods broadly compatible with current integrated circuit production.
Making Toshiba's devices involves depositing a layer of amorphous silicon around 2 nm thick onto a silicon wafer. This wafer is then heated to between 700 and $850^{\circ} \mathrm{C}$ in an oxygen or nitrogen atmosphere for a few minutes.
During this heating, silicon nanocrystals grow on the wafer surface inside the amorphous silicon.
Once cool, the nanocrystals emit visible light at room temperature when reverse biased through a Schottky contact.
The crystals are hemispherical and, by altering the amorphous silicon layer thickness, processing temperature, atmosphere and heating duration, the researchers have made different sizes.
Orange emission came from

samples processed at $700^{\circ} \mathrm{C}$ in nitrogen or oxygen.
Red came from $800^{\circ} \mathrm{C}$ processing in nitrogen (at $3.5-4 \mathrm{~V}$), but an oxygen atmosphere at these high temperatures caused the nanocrystals to oxidise away. Similar destruction of the nanocrystals happened with nitrogen above $850^{\circ} \mathrm{C}$ where they were converted to polysilicon.
The experiments have narrowed down the source of the

Over the

hump... Weak
but definitely red. Toshiba is producing visible light from silicon.

Metal electrode

Metal electrode
electroluminescence, but not identified it.
It is not due to defects in the amorphous silicon, or defects at either of its surfaces, or the amorphous silicon-nanocrystal boundary. However, it only happens in nanocrystals less than 2 nm across and 1.5 nm high, and wavelength is related to crystal size.
The team's best guess at the moment is that the light is coming

Hot technology... Baking thin
amorphous silicon layers produces the essential nanocrystals.
from within the nanocrystals themselves and that emission is due to "the quantum confinement effect" within them. More specifically, "the recombination of confined electrons and trapped holes".
The team's report says that efficiency, at the moment very poor, can be improved by increasing the number of nanocrystals and strengthening the carrier confinement. It concludes that: "The LEDs that have been demonstrated are promising devices for realising monolithic optoelectronic ICs".

Steve Bush Electronics Weekly

UK engineering skills shortage highlighted

Two-thirds of the UK's electronics companies consider a shortage in engineering skills to be one of the most serious problems affecting their business, a survey has found.
The survey by the Federation of the Electronics Industry (FEI) has found that the shortages are not confined to specific jobs, disciplines or industry sectors but includes all skilled activities in the electronics industry.
Telecommunications operator BT confirmed that there is an industry problem. "We do notice problems in recruiting in technical areas," said a

BT spokesman. "But we obviously have a bit of an advantage in that BT is a well known company." The company recruited 540 graduates last year.
Pace Micro Electronics is seeking to recruit $100 \mathrm{R} \& \mathrm{D}$ engineers this year to work on its digital TV products. "We're fortunate that we're in a rapidly growing business so we can attract engineers," said Tim Fern, director of engineering, broadcast, at Pace.
However, the shortage of suitable graduates is putting pressure on pay
and conditions as companies like Pace compete to recruit the best engineers. "We're offering increasing benefits and salaries," said Fern.
The UK education system is currently producing fewer than 3000 software engineers a year and an increasing number of them are going into IT. It is a situation that the government is well aware of, according to Fern, who has already lobbied DTI ministers, John Battle and Barbara Roche in his quest for action on the problem.

Melanie Reynolds

nbret

Interactive TV furned on

The UK's first interactive TV service is now available via NTL's TV-Internet set-top box.
The communication company's service, delivered via a BT phone line, offers customers access to shopping, news, sport, travel and local information through their TV. A keyboard is available for sending e-mail. The service will be offered via digital terrestrial TV and NTL's own cable network later this year.
The service has been designed for ease of use. "The whole essence of what we're doing is making the content feel like television," said Jason Rogers, technology director. "It doesn't look like small text and a million different frames like an Internet page."
The company intends to add games over its network from the autumn. "We've been developing relationships with a number of providers to develop games onto our set-top platform," said Rogers. The network connection offers the prospect of multi-player games.
NTL is already looking for enhanced set-top box performance next year to better display graphics and content. It is also
seeking to improve the box's connectivity using greater bandwidth ISDN, ADSL and cable modem lines. "We're trying to drive the whole level of functionality up by exploiting the power of these boxes along with increased Mips and richer graphics," said Rogers.

CRTs have a bright future, researchers conclude

CRTs remain the dominant display technology, despite the rapid growth of flat panels such as LCDs and plasma displays, claims Reed Electronics Research in its latest analysis of the European display market. Over 60 per cent of sales are down to CRTs. The European market was worth $\$ 3.8 \mathrm{bn}$ last year, and is expected to exceed $\$ 5$ bn by 2003. LCDs dominate the flat panel sector, accounting for over 82 per cent of sales. www.rer.co.uk

UK business costs are lowest

According to a survey by KPMG Consulting, the UK has the lowest business costs in Europe for the manufacture of electronics and telecommunications equipment.
The survey, which compared the cost of doing business among 64 cities in eight countries, saw the UK leading the way in

Europe, with France second and Italy third. Charles Thomas, a consultant with KPMG, said: "The results of this study are extremely good news for the UK's prospects of attracting inward investment, particularly for non-EU companies looking for a European base."
The survey, which included the G7 countries and Austria, showed the UK to have the lowest labour costs in electronics and telecoms manufacturing and the smallest corporate income tax rates along with Austria.
The three UK cities included in the survey - Cardiff, Manchester and Telford - were found to be lower cost locations than all but one US city: San Juan.

Comms antenna health probe call

A Commons call for new research into the health effects of telecommunications masts has been backed by 28 MPs.
A special Parliamentary motion expressed concern about the possibility of short-term memory loss and other illnesses caused by "low energy electromagnetic fields". It urged the DTI, and the Department of the Environment, Transport and the Regions to commission the research and, if necessary, introduce planning guidelines to stop the siting of the masts in populated areas such as on school roofs.
-

PLUG IN AND MEASURE

TiePie introduces the HANDYSCOPE 2
A powerful 12 bit virtual measuring instrument for the PC

The HANDYSCOPE 2, connected to the parallel printer port of the PC and controlled by very user friendly software under Windows or DOS, gives everybody the possibility to measure within a few minutes. The philosophy of the HANDYSCOPE 2 is:
"PLUG IN AND MEASURE
Because of the good hardware specs (two channels, $12 \mathrm{bit}, 200 \mathrm{kHz}$ sampling on both channels simultaneously, 32 kWord memory, 0.1 to 80 volt full scale, 0.2% absolute accuracy, software controlled AC/DC switch) and the very complete software (oscilloscope, voltmeter, transient recorder and spectrum analyzer) the HANDYSCOPE 2 is the best PC controlled measuring instrumentin its category

The four integrated virtual instruments give lots of possibilities for performing good measurements and making clear documentation. The software for the HANDYSCOPE 2 is suitable for Windows 3.1 and Windows 95. There is also software available for DOS 3.1 and higher.

A key point of the Windows software is the quick and easy control of the instruments. This is done by using: - the speed button bar. Gives direct access to most settings.
the mouse. Place the cursor on an object and press the right mouse button for the corresponding settings menu
menus. All settings can be changed using the menus.

Some quick examples.
The voltage axis can be set using a drag and drop principle. Both the gain and the position can be changed in an easy way. The time axis is controlled using a scalable scroll bar. With this scroll bar the measured signal (10 to 32 K samples) can be zoomed live in and out.

The pre and post trigger moment is displayed graphically and can be adjusted by means of the mouse. For triggering a graphical WY SIWYG trigger symbol is available. This symbol indicates the trigger mode, slope and level. These can be adjusted with the mouse.

The oscilloscope has an AUTO DISK function with which unexpected disturbances can be captured. When the instrument is set up for the disturbance, the AUTO DISK function can be started. Each time the disturbance occurs, it is measured and the measured data is stored on disk. When pre samples are selected, both samples before and after the moment of disturbance are stored.

The spectrum analyzer is capable to calculate an 8 K spectrum and disposes of 6 window functions. Because of this higher harmonics can be measured well (e.g. for power line analysis and audio analysis).

The voltmeter has 6 fully configurable displays. 11 different values can be measured and these values can be displayed in 16 different ways. This results in an easy way of reading the requested values. Besides this, for each display a bar graph is available.

When slowly changing events (like temperature or pressure) have to be measured, the transient recorder is the solution. The time between two samples can be set from 0.01 sec to 500 sec , so it is easy to measure events that last up to almost 200 days.

The extensIve possibilities of the cursors in the oscilloscope, the transient recorder and the spectrum analyzer can be used to analyze the meas ured signal. Besides the standard measurements, also True RMS , Peak- Peak, Mean, Max and Min values of the measured signal are available.

To document the measured signal three features is provided for. For common documentation three lines of text are available. These lines are printed on every print out. They can be used e.g. for the company name and address. For measurement specific documentation 240 characters text can be added to the measurement. Also "text balloons" are available, which can be placed within the measurement. These balloons can be configured to your own demands.

For printing both black and white printers and color printers are supported. Exporting data can be done in ASCII (SCV) so the data can be read in a
spreadsheet program. All instrument settings are stored in a SET file. By reading a SET file, the instument is configured completely and measuring can start at once. Each data file is accompanied by a settings file. The data file contains the measured values (ASCII or binary) and the settings file contains the settings of the instrument. The settings file is in ASCII and can be read easily by other programs.

Other TiePie measuring instruments are: HS508 ($50 \mathrm{MHz-8bit)}, \mathrm{TP112} \mathrm{(} 1 \mathrm{MHz}-$ 12bit), TP208 (20MHz-8bit) and TP508 ($50 \mathrm{MHz}-8 \mathrm{bit}$)

Convince yourself and download the demo software from our web page: http://munw.tiepie.nl.
When you have questions and / or remarks, contact us via e-mail: support@tiepie.nl

Total Package:

The HANDYSCOPE 2 is delivered with two 1:1/1:10 switchable oscilloscope probe's, a user manual, Windows and DOS software. The price of the HANDYSCOPE 2 is $£ 299.00$ excl. VAT.

TiePie enginering (UK), 28 Stephenson Road, Insdustrial Estate, St. Ives, Cambridgeshire, PE17 4WJ, UK
Tel: 01480-460028; Fax: 01480-460340
TiePie engineering (NL)
Koperslagérsstraat 37
8601 W SNEEK
The Netheriands
Tel: + 31515415416
Fax +31515418819

Printed light... Oxfordshire company Printed Field Emitters (PFE) is developing electron-emissive materials for use in field emission displays that can be printed. As with all FEDs, electrons hit a phosphor to create light. The pictures show a three-colour sample under test and, inset, an early 2.5 cm across large-area emitter in action. PFE claims to have materials now with around

Will printed FEDs replace plasma panels?

There's a number of up-and-coming emissive display technologies emerging at the moment.
The first is from Oxfordshire's Printed Field Emitters (PFE). It has been working on an electron-emissive material to go at the back of field emission displays (FEDs) as an alternative to micromachined Spindt cathodes, diamond films and diamond-like carbon films.
The advantage of its material, claims the company's Dr Richard Tuck, is that it can be applied using a printer rather than chemical vapour deposition or other 'high-tech' process.
So keen is the company on printing that it is also looking at printing the spacers essential for preventing FEDs from imploding.
Other FED companies are investigating at more elaborate schemes. Candescent, for instance, is
using short glass fibres stood on end. Printed spacers are not necessarily as fine as fibres, but large area displays - where PFE is aiming its technology - have big pixels which can accommodate fatter spacers
According to Tuck, the only non-printing process is a single self-aligning whole-panel lithographic stage used to open-up emission sites.
Tuck reckons that the Im diagonal hang-on-the-wall TV market is the one to go for and claims printed FEDs will undercut the price of similarly-sized plasma panels. He says panel costs will not differ between types, but drive electronics will be considerably cheaper for printed FED panels as lower voltage, lower frequency signals are required.

At the other end of the size scale, the confusingly named FED Corporation has just licensed organic
light emitting diode (OLED) technology from Kodak.
FED Corp began life five years ago as a field-emission display company. Three years ago it changed horses to LCD and OLED technology when it realised FEDs were less suitable as micro-displays - its target market.
Micro-displays are predicted to be a fast growing market as games head sets and wearable computers become more popular.
Now FED Corp aims to sample silicon-backplane miniature LCDs this year and silicon-backplane miniature OLED displays soon afterwards.
Many companies are in production or close to production with silicon LCDs, but FED Corp sees an advantage in moving to siliconbacked OLED displays. "We think an LCD headset display will use around 2 W of power. An OLED version will probably get down to 0.5 W ," said company executive v-p Susan James.
OLEDs are sometimes called molecular emitters, or small molecule emitters, to differentiate them from light-emitting polymer (LEP) displays of the type that Cambridge Display Technology (CDT) is working on and licensing.
OLEDs and LEPs have broadly similar characteristics and both CDT and Kodak have licensees who are making equipment with their technology. In the OLED case it is Pioneer which is using organic LEDs in car radio displays.
OLEDs, from Kodak, have been around the longest. The company is banking on this to promote its technology in the market. OLEDs can also provide a long-life blue emitter something that the LEP brigade is only just testing. On the other hand OLEDs need to be vacuum deposited, whereas LEPs can be printed

Young engineers are getting better off

The starting salary for engineering graduates is rising as a result of growing competition, according to the latest pay survey from the Institution of Electrical Engineers (IEE).
"We noticed that of the younger people who did respond, their salaries seem to have gone up quite a lot in certain areas," said Beryl Gurney, IEE professional development section. "Computer linked industry starting salaries seem quite high."
The survey based on 8510 responses from IEE members found that its

Associate Members i.e. engineers with degrees, enjoyed the sharpest rise in salary at nine per cent, bringing their median wage to $£ 28800$. But the IEE believes that this result was skewed due to younger associate members, traditionally having lower wages, failing to respond while the older ones with higher wages did.
Chartered Engineers' salaries increased by 4.7 per cent to a median of $£ 38000$ while Associates - engineers without degrees - achieved a rise of 2.8 per cent taking them up to $£ 29600$.

HSE plans PC health study
A year-long study to investigate the
potential health risks of using portable and handheld computers is being funded by the Health and Safety Executive. The study will be carried out by ergonomics consultancy, System Concepts, and will look at the issues arising from the extended use of portables.
"A lot of these things are issues which we can do something about if we know about them," said Tom Stewart, managing director of System Concepts.
According to Stewart, several manufacturers have contacted him since the study was announced and are keen to include any improvements needed in their designs.

Now the Wis100e external WINRADiO arrives!

"WiNRADIO ${ }^{\text {TM }}$ now brings you a complete choice in personnel computer controlled radio scanning and reception solutions.."

With either the internal or external versions, you can couple all the power of the latest Windows PCs (not just the fraction that you can squeeze down an RS232 connection) to the latest synthesised receiver design techniques, and you'll get the ultimate in wide range, all mode programmable radio reception.

VisiTune ${ }^{\text {TM }}$ spectrum tuning display

Your choice of virtual front panel

New external WiNRADIOTM
(WR1000e, WR1500e and new WR3100e) provide complete comms systems connecting either via the basic RS232-or with an optional PCMCIA adaptor, for high speed control. Power from existing 12 v supplies, or our optional NiMH rechargeable 12 v battery pack.

Use WiNRADiO scanning PC comms receivers for,
Broadcast . Media monitoring. Professional \& amateur radio communications. Scanning. Spot frequency \& whole spectrum monitoring . Instrumentation Surveillance (and recording)

If you want the ultimate receiver-in-a-PC with full DSP, then you need the WR3000-DSP with its hardware for real-time recording, signal conditioning and decoding applications. (DSP is available with the ISA card version only).

Take a look at WiNRADIO's Digital Suite Software.

For WR1000/1500/3100 internal or external

1. WEFAX / HF Fax
2. Packet Radio for HF and VHF
3. Aircraft Addressing and Reporting System (ACARS)
4. Audio Oscilloscope, real time Spectrum Analyzer
5. Squelch-controlled AF Recorder
6. DTMF, CTSS decode

ONLY £81.05 inc VAT

The DSP applet provided with the WR3100 spectrum monitor ISA card ($£ 995+\mathrm{VAT}$) allows continuous control of audio bandwidth and other signal conditioning functions

(requires SoundBlaster 16 compatible sound card)

Model Name/Number
Construction of internals
Construction of externals
Frequency range Modes
Tuning step size IF bandwidths

Receiver type
Scanning speed
Audio output on card
Max on one motherboard
Dynamic range
IF shift (passband tuning)
DSP in hardware
IRQ required
Spectrum Scope
Visitune
Published software API
Internal ISA cards
External units

WR-1000	WR-1500	WR-3100
WR-1000i/WR-1500i-3100DSP- Internal full length ISA cards		
WR-1000e/WR-1500e-3100e - external RS232/PCMCIA (optional)		
$0.5-1300 \mathrm{MHz}$	$0.15-1500 \mathrm{MHz}$	$0.15-1500 \mathrm{MHz}$
AM, SSB/CW,FM-N,FM-W	AM,LSB,USB,CW,FM-N,FM-W	AM,LSB,USB,CW,FM-N,FM-W
100 Hz (5 Hz BFO)	100 Hz (1 Hz for SSB and CW)	100 Hz (1 Hz for SSB and CW)
6 kHz (AM/SSB),	$2.5 \mathrm{kHz}(\mathrm{SSB} / \mathrm{CW}), 9 \mathrm{kHz}(\mathrm{AM})$	$2.5 \mathrm{kHz}(\mathrm{SSB} / \mathrm{CW}), 9 \mathrm{kHz}$ (AM)
17 kHz (FM-N). 230 kHz (W)	17 kHz (FM-N), 230 kHz (W)	17 kHz (FM-N), 230 kHz (W)
PLL-based triple-conv. superhet $10 \mathrm{ch} / \mathrm{sec}$ (AM), $50 \mathrm{ch} / \mathrm{sec}$ (FM)		
	200 mW	200 mW
8 cards	8 cards	3-8 cards (pse ask)
65 dB	65 dB	85dB
no	$\pm 2 \mathrm{kHz}$	$\pm 2 \mathrm{kHz}$
no - use optional DS software		YES (ISA card ONLY)
no	no	yes (for ISA card)
yes	yes	yes
yes	yes	yes
yes	yes	yes (also DSP)
£299 inc vat	£369 inc vat	£1169.13 inc vat
£359 inc vat	£429 inc vat	£1169.13 inc (Hardware DSP only internal)

> As an alternative to MSF, VHF broadcast data can be used for precise clocks - if you don't mind retuning as you move around the country. But relying on Radio 4's often overlooked RDS-type signal on long-wave, Peter Topping's reference alarm clock works anywhere in the UK without retuning.

LW off-air

 reference clockRadio 4's long-wave transmitter on 198 kHz carries data as well as the audio signal. This data has some similarities with the RDS data included in VHF radio signals in many European countries, but it has a much lower data rate and is used for a different purpose.
There are 16 data-block types. Type 0 is used for time, date and 'filler' data. The other blocks are used commercially. Each one is available to the company leasing it for use in a specific application. Typical uses are elec-
tricity tariff switching, foreign exchange rate board updating and lighting control.
The whole of the UK is covered by a 500 kW transmitter at Droitwich in England, with a little help from two 50 kW transmitters at Westerglen and Burghead in Scotland. All three transmitters use the same frequency. The specification of LF radio data is described in a BBC document ${ }^{1}$
Time data is transmitted every minute on the minute and provides a very accurate clock traceable to

Peter is an

 MCU applicatlons engineer at Motorola's East Kilbride plant.Table 1. Structure of clock-time blocks used in Radio 4 long-wave's RDS-like service.

Bit	Function	
1	Prefix (1)	Used only for synchronisation and error detection
2-5	Block type no	0000
6	Time/filler flag	0
7-8	Leap year cycle	00; this year leap
		01; last year leap
		10; leap year 2 or more years àway
		11; next year leap
9-11	Year start day	Day-of-week on 1 January (1: Monday, 0 not used)
12-17	Week number	Week number (1-53, 0 \& 54-63 not used)
18-20	Day of week	Current day of week (1: Monday, 0 not used)
21-25	Hours	0-23 UTC (24-31 not used)
26-31	Minutes	0-59 UTC (60-63 not used)
32-37	Local offset	Local deviation from UTC in 2's complement form in increments of 30 minutes ($B S T=C E T=000010$)
38-50	CRC	Used only for synchronisation and error detection

national standards. Local time variation, for example BST, is also transmitted.
In this application, time and date can be permanently displayed, while all incoming data can be displayed in hexadecimal form. The microprocessor converts the transmitted date information - day-of-week, week number and year type - into day-of-month and month.
The year is not transmitted and cannot be uniquely determined from the available data. The position in the 28year leap year/year-start-day cycle can, however, be worked out and this can be used to calculate a year in the range 1995 to 2022. It is not possible to distinguish between 1995 and 2023.

Hardware involved
Figure 1 shows a block diagram of the design: the microprocessor used for decoding is the $M C 68 H C(7) 11$ while an MC3371 is used for the radio receiver. Unlike RDS, where demodulation chips are available, the capability of retrieving the data bits has to be included in the hardware design.
The 3371 is a superheterodyne receiver including a mixer and limiting IF amplifier. It also has an FM demod-
ulator intended mainly for dual-conversion VHF communication equipment. The radio-data is modulated so the MC3371 is suitable, even though it works at an unusually low radio frequency.
The RF of 198 kHz is converted to a standard 455 kHz IF. Operational amplifiers are used to amplify, filter, integrate and limit the signal into a form that can be used by the microprocessor. Four keys control the decoder and a 16 -character dot-matrix LCD module displays the data, time, etc.
This design incorporates an alarm clock similar to that described in application note AN460 ${ }^{2}$. If the clock is permanently powered, the alarm can be used to switch on the radio supplying the data at the required alarm time. This control could be to the power supply of the radio, or to the audio stage only.
If an audio mute is used, radio-data time information can be updated even when the radio is 'off'. Alternatively the decoder can be used simply to display time and date with its power being supplied from the radio and manually switched on and off.

Radio data on long wave

Transmitted data is conveyed using linear phase-modulation of the carrier by a shaped and bi-phase-encoded waveform. This is applied to the main carrier as there is insufficient space in the $\pm 4.5 \mathrm{kHz}$ low-bandwidth AM signal for a subcarrier.
In order not to interfere with normal modulation, the data rate is a very low, at 25 Hz . Bi-phase coding and a small deviation of $\pm 22.5^{\circ}$ are used so that the transmission's use as a frequency standard is retained.
The data stream is partitioned into 50 -bit blocks but, like RDS data, there are no gaps between blocks. Additional cyclic-redundancy check word, or CRC, bits are added to allow synchronisation.
The bit rate of 25 Hz and the block length of 50 bits mean that a block takes 2 seconds, hence 30 blocks are transmitted every minute.
Each 50 -bit block contains a singlebit prefix - which is always logic 1 - a 4 -bit application code or 'block number', 32 bits of data and 13 extra CRC bits used for synchronisation and error detection and correction, Table 1.
The particular code used is the 49 , 13 shortened cyclic code ($G(\mathrm{x})=36365_{8}$) described by Kasami ${ }^{3}$. It is modified though by the addition of the fixed prefix to address the cyclic code's poor block-synchronisation capability.
The CRC is the remainder calculated
in the transmitter by dividing the 36 data bits - including the application code - by the generator polynomial.
As this remainder is then used as the 13-bit check word, the 49 received bits should give a remainder of zero when divided by the generator polynomial. Looking for a zero 13 -bit remainder thus carries out synchronisation.
Multiplication of the 49 -bit received data by the matrix shown in Table 2 is equivalent to this polynomial division and is the method used here. During synchronisation this calculation has to take place after each bit is received, using the last 50 bits - actually 49 as the first fixed bit is not used - until a valid zero remainder is found.
Once the valid remainder is found, the check need only be done after another 50 bits have been received, as this is when the next valid block would be expected. If, at that point, a zero remainder is not found the bit-bybit check is re-started.
The CRC bits make error correction possible, but this application does not include that facility. They are only used for synchronisation and error detection.

Burst error correction

Use of burst error-correction can allow good data to be received in the presence of errors, but it also increases the undetected error rate. This is because blocks with more errors than the code is capable of correcting - a single burst of up to 6 bits - may be deemed correctable and thus pass through undetected.
Blocks of type zero are used for transmitting the time and date information and for 'filler' codes. All other types, i.e. 1 to 15 , are user blocks. Their data is meaningless in this context, but it can be displayed in hexadecimal form as it comes in.
The first of the 32 data bits in a type 0 block determines whether it is a timecode block, in which case the first bit a zero, or simply a filler, when the first bit is a one. Time-code blocks are transmitted immediately prior to the

Table 2.13 by 49 decoding matrix used to process the 49 bits of incoming data.

Hex.	Binary	Octal
17 3B	1011100111011	13473
15 E7	1010111100111	12747
1489	1010010001001	12211
14 3E	1010000111110	12076
OA 1F	0101000011111	05037
1B 75	1101101110101	15565
13 CO	1001111000000	11700
09 E 0	0100111100000	04740
04 F0	0010011110000	02360
0278	0001001111000	01170
013 C	0000100111100	00474
009 E	0000010011110	00236
00 4F	0000001001111	00117
1E 5D	1111001011101	17135
1154	1000101010100	10524
08 AA	0100010101010	04252
0455	0010001010101	02125
1C 50	1110001010000	16120
0E 28	0111000101000	07050
0714	0011100010100	03424
03 8A	0001110001010	01612
01 C5	0000111000101	00705
1E 98	1111010011000	17230
OF 4C	0111101001100	07514
07 A6	0011110100110	03646
03 D3	0001111010011	01723
1F 93	1111110010011	17623
11 B3	1000110110011	10663
16 A3	1011010100011	13243
15 2B	1010100101011	12453
14 EF	1010011101111	12357
14 OD	1010000001101	12015
14 7C	1010001111100	12174
0A 3E	0101000111110	05076
051 F	0010100011111	02437
1C F5	1110011110101	16365
1000	1000000000000	10000
0800	0100000000000	04000
0400	0010000000000	02000
0200	0001000000000	01000
0100	0000100000000	00400
0080	0000010000000	00200
0040	0000001000000	00100
0020	0000000100000	00040
0010	0000000010000	00020
0008	0000000001000	00010
0004	0000000000100	00004
0002	0000000000010	00002
0001	0000000000001	00001

Fig. 1. Outline of the long-wave Radio 4 data decoder. Although the radio data on longwave is similar to that on VHF broadcasts, there are no specific hardware solutions for the long-wave version so the decoding needs to be done by a microcontroller.
minute epoch so that the exact time is indicated, although only hours and minutes are included in the data.
Structure of the time-code block is shown in Table 1.

Hardware details

The microprocessor used is the MC68HC811E2. A 711E9 or E20 could also be used. An MC3371 is used for the radio receiver. The 3371 is a superheterodyne receiver including mixer, limiting IF amplifier and FM demodulator.
The radio frequency of 198 kHz is converted to the standard 455 kHz IF. This would normally require a crystal of 653 kHz , which is not a standard frequency and would be difficult and expensive to obtain. To avoid an expensive crystal, higher standard frequency types were investigated to find one suitable for dividing down to approximately the correct frequency.
Two suitable crystals were found One was a 10.5 MHz type intended for 14 MHz to 3.5 MHz amateur-band conversion. Divided by $16,10.5 \mathrm{MHz}$ gives 656.25 kHz . The other was a 20.945 MHz type intended for 21.4 MHz to 455 kHz conversion. Divided by 32 , this one gives 654.53 kHz . An MC74HC4060 forms an oscillator and divider providing the signal for the 337I's mixer.

The complete circuit diagram of the analogue board is shown in Fig. 2. Radio-frequency signal is derived from a ferrite rod whose coil can be either a standard LW winding, or can be flatwound with thin insulated wire. On a standard 0.25 in ferrite rod using 36SWG wire, this winding is about 3.75 in long, i.e. 190 turns.

The easiest way to get the winding to the correct inductance is to wind it on a paper former so that it can be slid along the rod. If a 4.25 in winding of around 210 turns is made and the 330 pF capacitor and trimmer connected, resonance will be found by sliding the winding partially off the end of the rod.

Finding antenna resonance

Resonance of the antenna can be observed on an oscilloscope, but is most easily found by holding the rod close to a radio - preferably one with a signal strength meter - tuned to 198 kHz . The radio's signal will be noticeably affected as resonance is achieved.
The winding is then adjusted by slowly sliding it fully onto the rod, maintaining resonance by removing turns. If this is done with the trimmer in the mid position, the antenna can be completed and finally adjusted using the trimmer without any specialised equipment.

The Q is kept as high as possible by omitting a damping resistor. High Q is necessary because the 9 mV pk-pk output signal, which is small due to the low deviation employed, is proportional to it.
The voltage at the collector of the BC337 can be used to adjust the demodulator coil. It will jump from about 1.4 V to close to 5 V as the correct IF is passed. The coil should be adjusted for a collector reading of 2.5 V . The DC working voltage of the first two op-amps is derived from this voltage so any drift is cancelled.
The only other adjustment that may be needed is to the amplifier gain, but the two prototypes I tested worked well with the values shown. Overall gain including that of the BC337 and the first low-pass filter op-amp - is 110 . This gives a peak-to-peak signal of about 1 V at the op-amp's output.
The peak-to-peak signal at the output of the second integrating op-amp is also nearly a volt, but the DC level at this point is not well defined. As a result, AC coupling is used to pass the signal to the comparator. The op-amp in the MC3371 is suitable for use with this type of coupling and is used as a comparator.

The digital side

Figure 3 shows the circuit diagram of the digital board. It incorporates a parallel high-contrast LCD module based on an HD44780 driver with an HD44100 expansion chip.
A lower-contrast module using only a 44780 could be used. With this option, you will need to include additional code shown as comments in the listing discussed later.
The only link between the two

Software

The object-code listing shown can be obtained as a text attachment by e-mailing jackie.lowe@rbi.co.uk. The annotated source code can be obtained on disk for $£ 10$ to cover copying, administration and postage. Send a postal order or cheque payable to Reed Business Publishing Group to Precise Clock, Jackie Lowe, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.
Please note that this listing will not be e-mailed due to network bandwidth limitations. A photocopy of the listing is available by sending $£ 1$ and an A4 self-addressed and stamped envelope to the same address.

Object code for the long-wave RDS alarm clock

S121F8008E00FF8640B7102486B0B71039860BB710268634B7103018CE1000CC003C45 S121F81E18ED084A18A707186F04BDFF32C605BDFFE15A26FABDFF32BDFFE1BDF97A95 S121F83CBDFF32BDFF40860CBDFF340E181F0E1F0220F91301010796532603BDF927A6 S121F85A13000806BDFCD015000813011023DC214C813C26074F5CC11826015F1A9394 S121F878552610961B81DA260A181D0820BDF95C7C00541301020B9654260715010218 S121F896181C0820181F3480028D0220A5181C0008181D001018A60085032613181C7F S121F8B40010181D000818A600850326047F005739841B9157270597577F00587C0072 S121F8D2589658810326EB9657800926037EF9504A26037EF976800726037EF92E4AD4 S121F8F026D21301081D1301101912012007140160862820451201400515012020F325 S121F90E15014020EE8D12150102181F082005181D082039181C0820391501AD7FOOEB S121F92C59391301080E13011005150110200A14011020058DE5140108150120860CE3 S121F94A975314010139120120571201041212010207863C97541401028DC214010467 S121F96820089654800597542BEA8DD420A71201201014018015012D7C00599659815E S121F98604279E391201400E7C00559655813B2F117F0055200C7C0056965581172FBF S121F9A4037F00567EF9011201400B7A00552AF4863B975520EE7A00562AE9861797D4 S121F9C25620E318CE1000181D25BF7C001C961C810227013B7F001C7A005314000807 S121F9E07C001BD61B961D2604C1E42002C1E526E57F001B7C001F7A00547C001D96F6 S121F9FE1D810926037F001D961F813C26577F001F7C002096208118264B7F00207C77 S121FA1C000896088107233FC601D7087C00099609D60BC1042709C10326097D000C1C S121FA3A2604813520028134231FC601D7097C000B960C26037C000BDC0AC10723045C S121FA58C007DD0A960C4C8403970CBDFC113BF51C1F053E0A7C140D14EF142B15A3AD S121FA7616B311931FD303A6074C0F981EC5018A031407280E501C5504AA0854115D71 S121FA941E4F009E003C017802F004E009C013751B1F0A3E148914E715FC100EDD4AF9 S121FAB2934CDD4E8128250CDC4ADD4CDC4E816424038D503B818C240E120080038D50 S121FAD0423B1500808D3F20EB81C8240B130080071500808D3020E713008005150013 S121FAEE8020031400801500013B97508608975196527600502404A800E80108087A20 S121FB0C005126F0975239140080960049790014BDFBA3130001097A001926EA86327B S121FB2A9719130E022F9614D613C41F9752961384E0CEFA5D8DB796128DB396118DC6 S121FB48AF96108DAB960F8DA7130E0104883BC8174D26035D2719961A810F270F15CF S121FB6600014D270C7A00192607860F97197A001A39140001961A810E22034C971AB4 S121FB84863297198D198D178D15DC0FDD15DC11DD17960E840F971E2604131580147B S121FBA23979001379001279001179001079000F79000E39DC170505843F813B22F503 S121FBC09723DC1604545454C11722E9D724961646840727E09725DC15040454542791 S121FBDED6C13522D2D726840727CC970BD6154F050505970C9618843F970D7F001B8D S121FBFC7F001CDC25DD08DC23DD1F12004006BDF913140040DC1FDD219609D60BC1BC S121FC1A0524014AC6073DD307C30020930ADD02D60D130D202354CAF0240F96218B48 S121FC381E813B2305803C7C00229721DB222507CB18DE0209DF02C41F201F54240F17 S121FC5696218B1E813B2305803C7C00229721DB22C1172307C018DE0208DF02D7229D S121FC74130040217F0004DC02CEFC9AC3001E7D000C2603CEFCB27C0004A3000808F3 S121FC921AA30022F4DD0539001E001F001F001C001F001E001F001E001F001F001E14 S121FCB0001F001E001F001F001D001F001E001F001E001F001F001E001F001E001F68 S121FCCE001F12010422120108311301801F96594A2605BDFDA720264A2605BDFE166C S121FCEC201E4A2605BDFEC32016BDFEB72011181E0820048D3A2008BDFD712003BD90 S121FD0AFE71CE002AA600A1102607088C003A26F439BDFF408680BDFF34CE002ABD24 S121FD28FF40181C0420A600A710BDFF34088C003A26EC398D177EFDC2CEFFBEBDFE95 S121FD46A19656BDFF09DD2A9655BDFF09DD2C96228D0EDD359621BDFF09DD38863AD3 S121FD64973739BDFF09813026028620398DE2120110CAD608CEFF6E8D22DD2AA60226 S121FD82972C8620972D9730973496068DD7DD2ED604CEFF868D07DD31A6029733391B S121FDA086033D3AEC0039862097359737961ABDFF1AD736961B5FCE03D2028F17BD31 S121FDBEFF09DD38CC2D20D730D73413010202C62EDD2A13000111961E26081215801A S121FDDC04C6742003BDFF1AD72A9615BDFF1ADD2C9616BDFF1ADD2E9617D635C1201D S121FDFA260DBDFF1ADD319618BDFF1ADD3339BDFF1ADD309618BDFF1ADD3239CEFF87 S121FE18B3BDFEA1960C8B30972C960B8B30972E960B2721D60C86073DDB0B5ACEFED7 S121FE36553AE600861337C10423014CBDFF09DD30328B5FBDFEBE9609BDFF09DD3850 S121FE5439010D19091505110612020E1A0A16170713030F1B0B0C180814041000CE0B S121FE72FFC18D2B13011026863A97369656BDFD67DD349655BDFF09DD3713012010F9 S121FE90131B020C86201612014003DD3739DD3439C61018CE002AA60018A700081800 S121FEAE085A26F518CE100039CEFFD18DE596548D49DD3239CEFF608DD9B610314C98 S121FECCC6C88D298D37972ED7309650260286F08B30972DB610324CC6FA8D11780023 S121FEEA50488DOF8D19DD3896508B309736393D7F0050816425077C0050806420F57E S121FF083916840FC4F08B0019C01025058B161920F7160D460D464444813923028B24 S121FF2607C40FCB30C1392302CB0739863018A703181C0480181D048039181D04AOBF S121FF44181C0440186F07181C048018A603181D04802BF3186307181D044039423A95 S121FF62202D2D2E2D2020543A202D2E2D2D2D4D6F6E5475655765645468754672690E S121FF8053617453756E2D2D2D4465634A616E4665624D61724170724D61794A756EB1 S121FF9E4A756C4175675365704F63744E6F764465634A616E593A202F20282D2D2DA2 S121FFBC2D2920573A2020416C61726D202D20204F6666202020536C6565702020208E S116FFDA30206D696E2E20CE00006F00088C005A26F839AC
S113FFF0F9C5FAADF800F800F800F800F800F800C8
S9030000FC
boards is the four-wire connector shown in both diagrams. With the arrangement shown, this interface provides the 5 V supply to the analogue board.
Two signals are returned; the demodulated radio data signal and the signal level, or RSSI. The data signal goes directly into the IRQ interrupt-request input on the HC11.
As edge timing is used to decode the data, a timer-input capture scheme would be more appropriate. But the IRQ alternative works as well in this application, where the required accuracy is measured in milliseconds.
The IRQ was used simply because debug hardware - an HC11K 4 running PCbugll - was available and it used the $K 4$'s port A for the LCD.
Conditional assembly, using the Introl assembler, enabled differentiation between the $K 4$ and the intended target microcontroller, an 811E2. The link shown on the MODB pin is to allow the use of the bootstrap mode to program the $811 E 2$ or $711 E 9 / 20$.
If you are using bootstrap mode, remember to use a baud rate appropriate to the crystal being used. If the crystal is in a socket, it may be easier to change to an 8 MHz crystal and use the standard Pcbug11 rate of 9600 baud.

The MC34160 is used as a 5 V regulator to supply the analogue board. The regulator is switched off when the software is in standby mode. This arrangement requires a second regulator for the microcontroller and display.
If standby mode is not required then a single, simple regulator will suffice. The $10 \mathrm{k} \Omega$ and $3.3 \mathrm{k} \Omega$ resistors divide the battery voltage by four before the HCll's a-to-d converter reads it.
As the RSSI level is always in the range $0-5 \mathrm{~V}$ it goes directly into an a-tod input.

How it works

Table 3 shows the various functions available in each mode via the four-key keypad. Operation of the keys and modes is derived from the RDS application described in Motorola's note AN460. ${ }^{2}$
The 'on/off' key uses a subroutine in my software called ONOFF to toggle between 'on' and standby. Details of how you can obtain this software are given on page 453 .
Port pin PD5 controls power to the analogue section and can also switch a radio or other external hardware. In standby mode, time is displayed with the date if the alarm is disabled. If the alarm is enabled, the display shows the alarm time. In 'on' mode, the time is

Table 3. Four multi-purpose keys control all functions of the alarm and clock.

Mode	Key			
	On/off	Sleep	Alarm	Display
Standby	Normal mode	Sleep mode	Alarm	Data
(off)	(on)	(on)	mode	display
Normal	Standby mode	Sleep mode	Alarm	Data
(on)	(oft)	(on)	mode	display
Alarm	Standby mode	Sleep mode	Alarm on	Data
(off)	(off)	(on)	mode	display
Alarm	Alarm set-up	Sleep mode	Alarm off	Data
(on)	mode	(on)	mode	display
alarm	Toggle	Decrement	Alarm off	Increment
(set-up)	hr/min	hr/min	mode	hr/min

Table 4. Display formats. In 'standby' mode, time and date are displayed, but
in 'on' mode, the date is replaced by a display of the data currently being received, in hexadecimal form.

Display mode

Normal (on):	
	No radio data
Standby (off):	Alarm Off
	No time-code block
	Alarm armed
	Alarm off
Alarm:	Armed/set up
Sleep:	1
Altemative displays	2
	3

Format

--- 0 --- 0:00
0659 Alarm 19:37
Alarm - off
Alarm - 6:59
Sleep 60 min
t 74D3 2942 F 59
$\mathrm{Y}: 3 / 5(1995) \mathrm{W}: 22$
B: $9.0 \mathrm{~T}: 3.45$
t 74D32942 19:37

- 00000000 0:00

Mon 29 Mar 19:37
displayed with the current hexadecimal data. Table 4 shows these display formats.
The 'alarm' key calls the subroutine ALARM, which displays the current alarm status. A second press changes the alarm armed status.
When the alarm is armed, the alarm time is displayed. In this mode the on/off key can be used to select either hours or minutes - indicated by flashing - and the 'sleep' and 'display' keys used to increment and decrement the settings.
The alarm display has one of the two alarm formats shown in Table 4, according to whether or not the alarm is armed. All the keys have a special function in the alarm mode. If the alarm is armed, the only way to exit this mode is to wait for a timeout. If no keys are pressed, the mode returns to normal in ten seconds.
The alarm time can be entered as described above. When the alarm is enabled, the alarm time is displayed on first press of the 'alarm' key and permanently displayed in standby mode.
If the alarm is enabled, then at the alarm time the auxiliary control line PD5 goes low, activating the sleep timer for an hour. This takes place whether the decoder was previously on, off or running the sleep timer. It has the effect of switching the auxiliary line high again an hour after the alarm time, regardless of its condition prior to the alarm.

Sleep and display

The 'sleep' key controls the sleep timer. If the decoder is in standby mode, the first press of 'sleep' switches it on and initialises the sleep time to 60 minutes. When the sleep timer is running, this is indicated by a decimal point in the second character of the display module while the display mode is 'normal'.
Subsequent presses of 'sleep' decrement the time remaining by five minutes. When the sleep time has elapsed, the decoder returns to standby mode. In the alarm set-up mode this key decrements the alarm time.
The 'display' key selects the alternative displays of transmitted data, year and week information and battery and tuning voltages. In the alarm set-up mode, this key increments the alarm time.
The 'normal' display comprises the block identifier, the data in hexadecimal form split into two groups of four digits if there is room, and the time. If the block identifier indicates a timecode block, ' t ' is displayed.
The 'standby' display replaces the block data with the date, as the intention is that in this mode the analogue
circuitry is switched off.
The three alternative displays are available whether or not the unit is in standby mode. The first is similar to the normal display except that the time is replaced by the 'confidence' value and time seconds. When a good block is received, the confidence value is incremented up to F. If a block fails the CRC check, the value is decremented.
The second display alternative shows the year type as leap-year cycle and year starting day, the actual year and the week number. The year is assumed to be in the range 1995-2022 and is the 'week-number' year. This means that the year does not usually change at the transition between 31 December and 1 January, although it did, however, do this at the 95/96 transition. Instead, it advances to the next year when the week number goes from 52 or 53 back to 1.
While the local time offset adjusts the time and, if necessary, the date, it does not adjust the year. The method of adjusting the date can also use nonstandard week numbers during the time when the local offset causes a change from 31 Dec to 1 Jan or vice versa.

During this time, a week number of 54 or 0 is possible. These non-standard week numbers will not happen though as long as the current practice of using GMT in the winter in the UK continues.
The third display indicates battery voltage up to a maximum of 19.9 V , and the SSSI level up to 4.98 V .

Software

The complete source code for the software is available by post. There is only room here to show the object code.
The reset routine, START, sets up the registers and i/o ports. External interrupts are enabled on negative edges so that the signal from the demodulator can interrupt the microprocessor on each falling edge.
The real-time interrupt timer, RTI, is enabled to cause an interrupt every 133 ms to run the real-time clock. Correct operation of this clock in the absence of continuous data requires that a 2.0 MHz crystal be used. A trimmer on pin 7 could be added to adjust for accurate timekeeping.
The main free-running timer's prescaler is set up to divide by 1 . The
reset routine also enables interrupts, clears the RAM, initialises the LCD module and sets the mode to 'on' with alternative display 1 . When a valid time-code block is received the mode switches to standby.
The idle loop, IDLE, uses the main free-running timer to loop at 64 Hz . It regularly reads the keyboard for a key press, updates the display module, compares the current time with the alarm time and performs other timedependent functions related to the display module and the sleep and alarm functions.
To ensure that the radio is switched on prior to a time signal, the alarm operates two seconds before the set time. This is why the displayed time is incremented by a minute before the comparison is made.
The capabilities of stopping keyboard scanning using PE7 is included in case it causes interference on a connected, or nearby, radio.
Keyboard subroutine KBD scans the four-key matrix for a key press every 16 ms . If the same key is pressed on three successive scans, it executes the appropriate key function by calling the

Fig. 3. The clock's digital-processing section. Although the hardware is relatively simple, the clock provides precise electronic alarm switching and displays battery status and signal level.

Table 5. Bi-phase decoding.			
Previous bit	$\mathbf{1}$ bit time	$\mathbf{1 . 5}$ bit time	$\mathbf{2}$ bit time
0	0	1	lllegal
1	1	00	01

relevant subroutine - ALARM, ONOFF, SLEEP or DCK. Table 3 shows the various functions available in each mode.
The timer interrupt routine TINTB decrements the sleep timer. It also updates the RAM locations used to store hours, minutes, seconds and eighths of seconds so that the time and date remain valid in the absence of regular time information.

Keeping time with no signal

As the 2.0 MHz crystal used does not give exact eighth of a second ticks, the software compensates by counting 458 'eighths' of seconds in all but every ninth minute and 456 in the ninth minute.
The day of the week - and if necessary week number and year-type numbers are also updated. This is done in case the clock is required to keep track of the date as well as the time in the absence of radio data. It is not the easiest way to
__ organise a calendar, but it is necessary, as this is the form in which the timecode block provides the information.
There are 53 weeks if the year starting day was a Thursday or, in the case of a leap year, a Wednesday. The year starting day is incremented twice at the end of a leap year to allow for the extra day and wraps back from 7 to 1 . The year type simply increments and wraps from 3 back to 0 . The sequence repeats every 28 years until the year 2100 - which is not a leap year.
Hardware interrupts are vectored to jump to SDATA when a negative edge is received from the demodulator. This edge causes an interrupt and the data is calculated from the time interval from the previous edge.
The bi-phase coded data bit, or bits, also depends on the value of the previous bit, Table 5 . The bits are shifted into a seven-byte RAM register - DAT to DAT +6 - and the matrix multiplication performed.
The state of flag STAT2, $\$ 01$ determines if the multiplication is to take place after every bit or only after all 50 bits have arrived. The multiplication is performed using exclusive-or instructions for every bit.
As the bottom of the matrix, Table 2, is a unity matrix, the first 13 bits are transferred directly into the accumulators. The matrix multiplication is done in the loop MULT. This reduces the code required but increases the execution time of the algorithm.
In the source-code listing, the table B5-B1 represents the decoding matrix,

Table 2. In this case the execution time penalty is not a problem as the bit rate is very low. I carried out the same procedure using in-line code in the RDS application mentioned earlier ${ }^{2}$ as the bit rate was too high for a loop to be workable.
Because the interpretation of an edge depends on the previous bit, an error or a wrong guess at the start can cause all subsequent edges to be misunderstood. The illegal entry in the table is thus used to invert the current - perhaps the first guessed - previous bit, preventing decoding from getting stuck in this mode.
When a valid remainder is found, CONF is incremented and the 36 data bits saved in the four bytes of BLOCK. The confidence level CONF is used to decide when to switch to checking the CRC only every 50 bits. This is done once CONF has reached F_{16}, i.e. 15.

Processing valid data

If a valid block has been received, the data can be processed. A time block is used to initialise or update time, local time difference and date information. Any other block is meaningless in this application and so is displayed in its raw hexadecimal form.
The broadcast time is Universal Coordinated Time. Commonly referred to as UT0, this is effectively the same as GMT.
Time differences relative to UTC, including summer (daylight saving) time, are sent as a two's complement offset of up to ± 12 hours in half-hour increments. The time block is checked before it is used although most errors should have been detected by the CRC check.
If the minutes are over 59 , the hours over 23 , the day-of-week a zero, etc., then the block is not used.
The first successful receipt of a timecode block after power-up or a reset switches the mode to standby, switching off the analogue section. The time data is transferred to other RAM locations for local offset adjustment and display.
After this adjustment is made the date, i.e. month and day of month, are calculated by first working out a day-of-year number and then convierting to the usual month format using tables. A separate table is used for leap years.
The software drives a parallel LCD module based on an HD44780 driver with an HD44100 expander. Display routine MOD is executed in the idle loop if the STAT2 flag is set. It is set every 266 ms by RTI timer interrupts.
The LCD module is updated with new data only if there has been a change since the last time the routine was executed. This reduces the likelihood of ünnecessary i/o activity interfering with a rädio.

Before anything is written to the module, the subroutine WAIT is used. This ensures that the controller in the module is not busy, as indicated by a low on bit 7 of the LCD's bus.
The listing is for use with a divide-by8 multiplexing LCD module. To use a divide-by- 16 module using only the HD44780, the subroutine LCD16 should be enabled.

Selecting display formats

The different display formats are selected by checking the various flags and the relevant routine executed. As the locations in RAM used for hours and minutes contain binary numbers, they are converted to ASCII BCD using the subroutine CBCD before being written to the display buffer.
If this subroutine is entered at the label SPLIT, then the data is simply split into nibbles and converted to ASCII. This is used for the display of the raw hexadecimal data. If the alarm is not armed, the standby display converts the day of the week and day of the month numbers into three character strings using the tables at the end of the listing.
Subroutine MNAME has an additional month at each end to facilitate a correct display when the local time offset causes a transition to the next or previous year.
Year and week display routine ALTD2 calculates a year in the range 1995 to 2022 from the year type (leap year) and year start day information. This is done using the table YRTAR, which consists of the offsets from the start of the 28 year cycle - arbitrarily taken to be 1995 - according to the values of year type listed down the table and year start day listed across the table.

Peter is currently trying to find time to write a short piece on programming the controller, which I will to publish as soon as it arrives. The process is said to be fairly straightforward-Ed.

References

1. LF Radio Data: Specification of BBC phase-modulated transmissions on longwave, BBC, RD1984/19.
2. Application note AN460, 'An RDS

Decoder using the MC68HC05E0.
3. Tadao Kasami, 'Optimum Shortened Cyclic Codes for Burst-Error Correction,' IEEE Transactions on Information Theory. April 1963, pp. 105-109.
4, M68HC11 Reference Manual (M68HC11RM/AD rev. 3).
5. M68HC11 E Series Technical Data.
6. Data sheets for the MC3371 and MC34160.
7. AEL Crystals, Module D, Genner Rd., Crawley RH10 2GA, 01293524245 (Part No X198K000L001).

NOW AVAILABLE
 RANGER 2
 \section*{The Complete, Integrated}
 Demo Software - available from our Web Address

Schematic \& PCB Layout Package

Windows Ranger 2

For Windows 95 \& NT

- New Hierarchical Circuit
- Split Devices • Gate \& Pin Swap
- New Edit Devices in Circuit
- Copper Fill - Power Planes
- Autorouter • Back Annotation

Windows Ranger 2 with Specctra SP2
Ranger \& Specctra Autorouter provide the most cost
effective PCB Design system available. A powerful, intuitive system at an outstanding price!

Windows Ranger 2 Upgrade

Upgrade your existing PCB Package to Windows Ranger 2.

SPECLAL OFFER Ranger 2 Lite $\mathbf{5 3 5}$ (Prices exc VAT/P\&P)

Demo Software -download from

http://biz.ukonline.co.uk/seetrax

Call 01730260062

Ranger 2 Outputs: Full Windows Outputs Plus - HP-GL

Gerber
NC Drill
AutoCad DXF

for Windows 95

for Windows 95

Back in the fifties and sixties I, like many designers, had occasion to use that very useful circuit arrangement known as the blocking oscillator. At its simplest, a blocking oscillator was just a wildly overcoupled oscillator of the Hartley variety, usually with separate feedbackcoupling winding.
As normally designed, the Hartley oscillator was clean source of a continuous sinewave output. But if overcoupled, the heavy class-C operation would bias the device back to cut-off and the rf output would cease.

Fig. 1.
Continuous-
wave oscillator, squegger or blocker? It all depends.

Once widely used in applications ranging from radar sets to televisions, the blocking oscillator is little remembered today. But here, Ian Hickman demonstrates that it still has its uses. His discussion includes a blocking-oscillator-based long-life emergency light using bright LEDs.

Is the blocking oscillator dead?

There then followed a recovery period during which the grid bias returned to the point at which anode current could flow once more, and another burst of rf followed. This was known as a squegging oscillator, and apart from making an excellent source of general interference, it was not of a great deal of use
If the feedback coupling were made even tighter, then the device would bias itself back, by virtue of the heavy flow of grid, gate or base current, during the very first cycle of the rf. This, then was the blocking-oscillator circuit.
The blocking-oscillator was a popular pulse generator in the days of valves, and well into the transistor era. It was described in nearly all books on electronics, and a quick trawl through my limited library turning up several articles on the topic.
If you have, or come across, any of the references 1 to 5 , you can read all about it.

What is a blocking oscillator?

Figure 1 shows a valve continuouswave oscillator, where C and R would typically be 100 pF and $10 \mathrm{k} \Omega$. The tri-
ode might be the oscillator portion of a triode-hexode frequency changer in short, medium and long-wave table radio.
If R were raised to $330 \mathrm{k} \Omega$, then the radio would still operate normally on medium and long wave, but the oscillator would squegg at around 100 kHz on short wave, due to the excessive grid-bias time constant.
This dodge was sometimes used by unscrupulous radio dealers to 'rejuvenate' a set that no longer worked well on short wave, due to tired valves. The delighted customer would find that dozens of stations could be received again on short wave - just like when the set was new.
As the time constant $C R$ is made longer, relative to the period of the oscillation, and the coupling of the feedback made tighter, the number of cycles in each burst of oscillation becomes smaller and smaller. Finally with very tight coupling, the circuit biases itself back to cut-off during the first cycle of oscillation following each recovery period: it becomes a relaxation oscillator.
Figure 2a) shows how the grid may
be returned to a negative voltage just below cut-off, so that the circuit is monostable. It then only responds when it receives a trigger pulse.
Another common use for the blocking oscillator was as a frequency divider, Fig. 2b). Here, small positivegoing trigger pulses of defined amplitude were applied to the grid of a blocking oscillator. The oscillator was designed to free run at just below the desired frequency, and thus fired slightly earlier when the appropriate Nth trigger pulse appeared.
With valves running on stabilised supplies, values of N up to about 5 were practical. Thus with one blocking oscillator dividing by two and another by five, a double triode implemented a decade divider.

Transistor blocking oscillators

Figure 3 shows the circuit of a particularly brutal transistorised version of the blocking oscillator. When the transistor cuts off, the collector voltage flies up positive, and the base voltage is driven negative.
Note that as is the common - but not invariable - practice with blocking oscillators, a closed magnetic path core was used to ensure tight coupling between the collector and base windings. In this case, the core was an FX2754 two-hole balun core with an A_{1} of $3500 \mathrm{nH} /$ turn 2.
At switch-off, the current in the inductor cannot be instantly interrupted, and the collector voltage rises, in an attempt to maintain it. The collector voltage in fact reached +65 V , higher than the minimum C_{cbo} rating of the BC107.
Due to the tight coupling, the voltage across the collector winding is reflected into the base winding as per the turns ratio. The base voltage reached -10 V . This is well in excess of the rated $V_{\text {ebo }}$ minimum of -6 V , where it was clamped by the base emitter breakdown. Consequently, the voltage across the capacitor reached +25 V before the stored energy was dissipated, the circuit recovered and the cycle repeated.
The on pulse width was $1.5 \mu \mathrm{~s}$ and the off period, due to the very rapid dumping of the energy in internal breakdown of the device, was 300 ns . Thus the pulse repetition frequency, or PRF, was 550 kHz .
This is not a nice way to use a transistor, which is quite unlike a valve; that robust device can support enormous voltage excursions on anode and grid when cut off. The performance of the Fig. 3 circuit was therefore rendered more sanitary by connecting a diode to the collector, its cathode being returned to the +10 V rail. Now, the operation of the circuit is completely

Fig. 2a) The monostable blocking oscillator may be used as a triggered pulse generator, while b) shows how the astable blocking oscillator can act as a synchronised divide-by-N stage.

Grid (sync. divider mode)
changed. At no time does the voltage across the 100 pF capacitor exceed +0.6 V .
At $1.5 \mu \mathrm{~s}$, the on period was unchanged, but during the off period, the voltage across the collector winding was now just the small forward voltdrop of the diode. Consequently, the negative di/dt in the collector winding was also small, and the off period now extended to 15μ.
At the start of the on period, the voltage across the capacitor is driven negative, charge being drawn from it to supply the base current, charging it negative. However this source of base current soon becomes exhausted, and the available base current via the $330 \mathrm{k} \Omega$ resistor is inadequate to keep the collector bottomed as the collector current continues to rise.
So the collector voltage starts to rise. This is reflected at the base as a negative excursion, rapidly cutting the collector current off completely. The base is now left at almost the negative voltage to which C was charged during the on period, since there is little voltage across the feedback winding.
The base voltage then rises, following a very linear ramp, as C is charged via R. This continues until it reaches about +0.6 V , when the transistor starts to turn on and the cycle repeats.
With the circuit as described, the current in the collector winding does not quite have time to fall to zero before the base voltage reaches +0.6 V and the cycle repeats. With two $1 N 4148$ diodes

in series, the higher off-period collector volts gives a larger -di/dt, and the voltage across the collector winding collapses from two diode drops to zero after $7 \mu \mathrm{~s}$.

Blocking-oscillator uses

Some of the blocking oscillator's uses have been mentioned already. But one characteristic of the circuit largely explains its popularity in the days of valves. For a given rail voltage, the period is determined by C, R and the transformer. In other words, it is determined by passive components of good long term stability.
The same goes for the transistorised version of Fig. 3, provided the diode is included, although the gain of the transistor has a second order effect on the period. For this reason, a popular version of the blocking oscillator for transistor applications applied the feedback

Fig. 4. Circuit of a blocking oscillator or self-excited flyback converter, arranged as a pocket emergency light.
to the emitter, using the device in the grounded base mode.

Even considering only the grounded emitter versions, however, there are various ways in which the blocking oscillator can operate. One of these, namely whether or not the current in the collector winding falls to zero in the off period, has already been mentioned. The other major factor is what causes the termination of the on period.
In the circuit of Fig. 3, it is the limited available base current. When the required collector current rises to a value beyond what this can support, the collector voltage must rise and the off transient follow. But if enough base current is available, the collector current can continue to rise until the core saturates. At this point, the voltage across the collector winding must fall.

However great $+d i / d t$ may be, the increase in flux $d \phi / d t$ - and hence the back EMF - becomes negligible. In this entirely different mode of operation, the on period is determined by the core saturation characteristics.

This latter mode of operation gives a blocking oscillator which is in many ways similar to a currently much used circuit, the fly-back inverter. In the circuit of Fig. 3, with diode, instead of dumping the current back into the supply rail, the diode could be used to deliver it somewhere else. It could deliver it into a load, the other end of which is connected to ground for example.
Further, the voltage at which the energy is delivered to the load could be greater than the supply voltage: the blocking oscillator becomes a boost or flyback-inverter.

Efficient LED torch

I used a Zetex ZTX689B switching transistor in just such a blocking-oscil-lator/self-oscillating flyback inverter circuit as a handy compact emergency light. Two of these transistors were given away with the January issue of Electronics World.
In the interests of compactness, a single AA cell was used as the power source, and in the interests of efficiency, an LED was used as the light source.
The voltage of the cell is too low to power the LED directly. But even if two cells were used, there would be the problem of defining the current, given

Fig. 5. Collector voltage, upper trace, $2 \mathrm{~V} /$ div vertical, $5 \mu \mathrm{~s} /$ div horizontal. Lower trace shows current through the LED, monitored across a 0.2Ω resistor, $20 \mathrm{mV} / \mathrm{div}, 5 \mu \mathrm{~s} / \mathrm{div}$.
the variation of supply voltage over the life of the battery. The blocking oscillator action solves the problem, maintaining a constant efficiency over the supply voltage range 1.5 V down to 1 V .
Figure 4 shows the circuit diagram. Compared to Figure 3, the base drive resistor is very low, despite the high gain of the transistor. The reason is twofold: firstly the low supply voltage, not greatly in excess of the transistor's $V_{b e}$, and secondly the mode of operation. This is an example of a blocking oscillator, where the on period terminates due to saturation of the transformer core.

Figure 5, lower trảce shows current through the LED, monitored across a 0.2Ω resistor. Given the $20 \mathrm{mV} /$ division Y sensitivity, the peak current is seen to be 280 mA , while its average value measured 27 mA - well within the 50 mA dc maximum rating of the device used.
Just before the end of the off period, LED current falls to zero. This is indicated by the small ringing on the collector voltage trace, Fig. 5, upper trace $2 \mathrm{~V} /$ division vertical, $5 \mu \mathrm{~s} /$ division horizontal.

Note that when the transistor switches off, the current continues to flow unchanged through the transistor as the collector volts rise, until the point at which the LED conducts. Thus there is a turn-off switching loss in the transistor. This is unavoidable, but small, due to the fast switching speed of the transistor, the characteristics of which were published in the January issue.

However, with the LED current having fallen to zero just before switch-on, there is no corresponding turn-on loss. Note also the transistor's very low saturation voltage - only some 200 mV at 300 mA collector current shown in the upper trace of Fig. 5.

The upper trace of Fig. 6 illustrates the base voltage at $2 \mathrm{~V} /$ division being clamped at the transistor's $V_{\text {be(on) }}$ during the active part of the cycle, and being driven to -3.8 V peak at switchoff. The lower trace of Fig. 6 shows the voltage across the 10 nF capacitor.

Given the transformer's $1: 1$ ratio, during the active part of the cycle, this voltage sits negative with respect to the base by the same voltage as appears across the collector winding. Following switch-off, the capacitor charges up via the $2.2 \mathrm{k} \Omega$ resistor.

During the latter part of this process, the LED current having terminated, the voltage across the feedback winding is zero. So when the voltage across the 10 n capacitor reaches +0.6 V , the transistor turns on and the cycle repeats.

20000 mcd with one cell

The prototype torch used a Toshiba

Hewlett Packard	
8642A - high performance R/F synthesis ($0 \cdot 1-1050 \mathrm{MHz}$)	£6500
3335A - synthesiser ($\mathbf{2 0 0 H z - 8 1 M H z)}$	£2750
Hewlett Packard	
436A power meter and sensor (various)	
437B power meter and sensor (various)	from £1250
Hewlett Packard	
8753A network analyser (3GHz) from £	
8753 B network analyser (3 GHz)	
'S' parameter test sets 85046A and 85047A	
Wandel \& Goltermann	
PFJ-8 - error and fitter test set (all options fitted) £POA	
PCM 4 - PCM channel measurement set £95	
Marconi 2305 - modulation meter $£ 1750$ $6310-$ programmable sweep generator $(2$ to 20 GHz$)$ - new $£ 3500$	
Hewlett Packard 5342A - microwave frequency counter $(500 \mathrm{MHz}-18 \mathrm{GHz})$ ops $1 \& 3$ $£ 800$	
5370B - universal time interval counter	£2000

OSCILLOSCOPES

Beckman $9020-20 \mathrm{MHz}$ - Dual channel
Hewlett Packard 54100D - IGHz Digitizing
Hewlett Packard 54201A - 300MHz Digitizing
Hewlett Packard 54512 B ($300 \mathrm{MHz-1G} \mathrm{~s} / \mathrm{s}$) - 4 channel
Hitachi V152/N212N222N302BN302FN353FN550B/N650F
intron $2020-20 \mathrm{MHz}$. Dual channel D.S.O. (new)
Iwatstu SS $5710 /$ SS 5702 -
Kikusui COS $5100-100 \mathrm{MHz}$ - Dual channel
Lecroy $9450 \mathrm{~A}-300 \mathrm{MHz} / 400 \mathrm{MS} / \mathrm{s}$ D.S.O. 2 channel
Lecroy $9304 \mathrm{AM}-200 \mathrm{MHz}-4$ channel DSO
Meguro MSO 1270A - 20MHz - D.S.O. (new)
Philips $3055-50 \mathrm{MHz}$. Dual channel
Philips $3295 \mathrm{~A}-400 \mathrm{MHz}$ - Dual channel channel
Tektronix $465 \cdot 100 \mathrm{MHZ}$ - Dual channel
Tektronix $464 / 466-100 \mathrm{MHZ}$ - (with AN. storage)
Tektronix $475 / 475 \mathrm{~A}-200 \mathrm{MHz} / 250 \mathrm{MHz}$
Tektronix 468 - 100 MHZ - D.S.O.
ektronix $2213 / 2215-60 \mathrm{MHz}$ - Dual channel
Tektronix $2220-60 \mathrm{MHZ}$ - Dual channel D.S.O
Tektronix 2235 - 100 MHZ - Dual channel
Tektronix $2221-60 \mathrm{MHz}$ - Dual channel D.S.O
Tektronix $2245 \mathrm{~A}-100 \mathrm{MHZ}$ - 4 channel
Tektronix $2440-300 \mathrm{MHz} / 500 \mathrm{MS} / \mathrm{s}$ D.S.O
Tektronix $2445 \mathrm{~A}-150 \mathrm{MHz}$ - 4 channel
Tektronix TAS 475 - 100 MHZ - 4 channel
Tektronix 7000 Series (100 MHZ to 500 MHZ
Tektronix 2211 - 50 MHz - 2 channel DSO
SPECTRUM ANALYSERS
Ando AC 821 1-1.7GHz

$£ 1995$

Avcom PSA. $65 \mathrm{~A}-2$ to 1000 MHz
£850
Anrilsu MS $628-50 \mathrm{~Hz}$ to 1700 MHz
Anrisu MS $610810 \mathrm{KHz}-2 \mathrm{GHz}$ - as new
$100 \mathrm{KHz}-1000 \mathrm{MHz}$
Hewlett Packard 3562A Dual channel dynamic signal analyser $64 \mu \mathrm{~Hz}-100 \mathrm{KHz}$
$£ 4500$

Hewlett Packard 3585A - 20 Hz to 40 MHz
Hewlett Packard 8505A - 1.3GHz - Network Analyser
Hewlett Packard 8756A87557A Scaler Network Analyser
Hewlett Packard 853A Mainframe + 8559A Spec. An. (0.01 to 21 GHz)
Hewlett Packard 182T Mainframe + 8559A Spec. An. (0.01 to 21 GHz)
Hewlett Packard 8569 B (0.01 to 22GHz)
Meguro-MSA $4901-30 \mathrm{MHz}$ - Spec.Analyser
Meguro - MSA 4912 - 1 MHz - IGHZ Spec.Analyser
Stanford Research SR760 (100 KHz -FFT analyser)
Tektronix 495 P Spec analyser prog. -1.8 GHz

Quality second-user test \& measurement equipment

All equipment is used - with 30 days guarantee. Add carriage and VAT to all goods. Telnet, 8 Cavans Way, Binley Industrial Estate, Coventry CV3 2SF.

Table 1. Comparison of three torch 'technologies' - two using LEDs, the other an incandescent lamp.

	Current	Brightness*	Power (mW)	Efficiencyt \dagger
Red LED torch	91 mA	100	126	0.79
Amber LED torch \dagger	70 mA	500	96	5.2
2.5V bulb torch	250 mA	8500	643	13.2

\dagger at 1.37 V - the AA cell being used was not new.

* EAU, equivalent arbitrary units. $100=$ full scale on range 1 - the most sensitive - range 2 has a tenth of the sensitivity, range 3 one hundredth, etc.
$\dagger \dagger$ Relative values, calculated as EAU/mW.

Fig. 6. Base voltage, $2 \mathrm{~V} / \mathrm{div}$ vertical, $5 \mu s / d i v$ horizontal, lower trace and voltage across the 10 nF capacitor, upper trace, $2 V /$ div, $5 \mu \mathrm{~s} / \mathrm{div}$.

TLOH 190P amber coloured LED, a InGaAlP device with a very narrow beamwidth of less than 10° at half intensity. The on-axis luminous intensity of this is rated as 20000 mcd typical -8500 mcd minimum - at 20 mA .
I constructed an earlier version of the torch in one of the small transparent plastic boxes used by semiconductor manufacturers for supplying samples. However, 'transparent' is a relative term, and tests with my light meter ${ }^{6}$ showed that although water clear to look at, such a box passed only about 90% of the available light. So the new version was built in a similar box black, as it happens - but with the lens body of the device projecting through a hole in the end of the box.
I carried out some simple tests with the light meter, to compare the new version as per Fig. 4 with two earlier torches. One of the earlier designs used
a red LED rated at 3000 mcd at 20 mA , the other had two NiCd C-type cells and a 2.5 V 250 mA prefocus bulb.
The tests were carried out with the three torches, each at 1 m from the lightmeter, and the results are in Table 1. Performance of the amber LED torch with supply voltage is shown in Table 2. You can see that at 1.0 V , the unit provided 57% of the light for 51% of the power, compared with a supply voltage of 1.5 V

Finding a matching hat

The results quoted above should be interpreted with caution, for the light meter was fitted with an unfiltered silicon photodiode detector. For true photometric measurements, indicating apparent brightness to the human eye, a photometric filter would be needed. This has a greenish tinge when viewed against daylight, and so the red LED

Table 2. Benefits of using a LED relative to using an incandescent lamp become clear when battery voltage starts to fall. These figures are for the amber LED torch.

Supply	Current drawn	Power	Light out	Light/power
1.5 V	72 mA	108 mW	35	0.32
1.0 V	55 mA	55 mW	20	0.36

torch would have fared somewhat worse.
But some conclusions can be drawn. For efficiency, the incandescent bulb wins hands down - at least with fresh batteries. But to get that efficiency, you have to supply over half a watt. Scaling down lamp performance is simply not possible.
It is very difficult to obtain any reasonable bulb efficiency at much less than 250 mA . Thus while the amber torch gives only one seventeenth of the brightness at one seventh of the power, you would get even less light than the amber LED gives if you tried to run a filament bulb at 96 mW .
Furthermore, as shown above, the light output of the LED torch is proportional to the power drawn. But with the conventional torch, as the battery voltage falls, the lamp dims very rapidly. The cooler filament not only emits less light, but its resistance falls, so the current does not fall in proportion to the reduction in voltage. The result is a drastic reduction in both light output and efficiency as the battery ages.
There is a wide choice of LEDs for a small torch of the type described. If brightness is the chief criterion, a LED such as the Toshiba TLOH 190P or a high brightness type from another manufacturer is ideal. However, these devices concentrate the available light into a very narrow beam. If total light output, measured in lumens, is more important than brightness, measured in candelas, then a high-efficiency LED is more appropriate. Hewlett-Packard's HPWT-DLOO is a good example.
On this basis, the red-LED torch described was not so poor as might seem from the results. Its beam was a good deal broader than that of the amber LED, so its total light output, relative to the amber LED with its narrow beam, was probably not inferior.
But comparing total light output between devices is a much more complex task than merely comparing brightness, and quite beyond the capability of my equipment.

References

1. Ridenour, L N, 'Radar System Engineering,' McGraw-Hill 1947.
2. Williams, E, 'Thermionic Valve Circuits,' Pitman 1955.
3. FE Terman, F E, 'Electronic and Radio Engineering,' McGraw-Hill 1955.
4. 'The Encyclopaedia of Radio and Television,' Odhams 1957.
5. Martin Jr., T L, 'Electronic Circuits,' Prentice Hall 1959.
6. Hickman, I, A look at light, Electronics World, June 1997, pp. 466-471.

We make our programmers

 work harder
Features

- Supports EPROMs, EEPROMs, Flash, Serial PROMs, BPROMs, PSDs, PALs, GALs, PEELs, MACH, MAX, EPLDs, and over 200 Mierocontrollers including 87 C48/51, 89C51/52, PIC, MC705/711, ST6, Z86, COP etc.
- Hands free programming so you can produce batches of the same chip without pressing a key
- Correct programming and verification at $1.8,2.7,3.3$ and 5 V
- Serial number mode supports date/time stamping, unique IDs
- Progress indicator shows number of devices programmed
- No adapters required for DIL parts upto 48 -pins. Universal adapters for 44 -pin PLCC, 44 -pin PSOP and 48 -pin TSOP parts
- Programmes and verifies Intel 28F400 in under 15 seconds
- Connects to parallel port - no PC cards needed
- Tests 7400, 4000, DRAM and SRAM
- Mains or battery operation
- FREE soffware device support upgrades via bulletin board and wnw

Easy device selection.

Programming, Emulation, Testing
all in one easy to all in one easy to use application.

Full support for device-specific features

Store your favourite projects.
48-pin Universal Programmer
£695

See for yourself - download a demo from our Website at wwwicetech.com Order now - all products in stock. Credit card orders: 01226767404

For a copy of our cotalogue giving full details of programmers, omulators, erasers and adapters, coll, fax or ormel us.

ICE Technology Ltd. Penistone Court, Sheffield Road, Penistone, Sheffield, UK S36 6HP

Web: www.icetech.com. Email: sales@icetech.com

Unique reader offer: x1, $\times 10$ switchable oscilloscope probes, only $£ 21.74$ a pair, fully inclusive*

*Additional pairs as part of the same order, only £19.24 each pair.

Please supply the following:

Probes

Total \qquad
Name
Address
Seen on sale for £20 each, these highquality oscilloscope probe sets
comprise:

- two $\times 1, \times 10$ switchable probe bodies
- two insulating tips
- two IC tips and two sprung hooks
- trimming tools

There's also two BNC adaptors for using the cables as 1.5 m -long BNC-to-BNC links. Each probe has its own storage wallet.
To order your pair of probes, send the coupon together with $£ 21.74$ UK/Europe to Probe Offer, Electronics World Editorial, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.
Readers outside Europe, please add £2.50 to your order.

Specifications

Switch position 1

Bandwidth
Input resistance
Input capacitance
Working voltage
Switch position 2

Bandwidth
Rise time
Input resistance 1 MQ
Input capacitance Compensation range Working voltage

DC to 10 MHz
$1 \mathrm{M} \Omega$ - i.e. oscilloscope i/p 40pF+oscilloscope capacitance 600 V DC or pk-pk AC

DC to 150 MHz
2.4 ns
$10 \mathrm{M} \Omega \pm 1 \%$ if oscilloscope i / p is
12 pF if oscilloscope i / p is 20 pF 10-60pF
600 V DC or pk-pk AC
Switch position 'Ref'
Probe tip grounded via $9 \mathrm{M} \Omega$, scope i / p grounded

Please allow up to $\mathbf{2 8}$ days for delivery

Easy choice? Then send for the Pico Technology full colour PC based test \& measurement catalog and software demonstration diskette. Alternatively, visit our web site:

www.picotech.com

Use a Pico ADC together with the supplied software and transform your PC into an oscilloscope, spectrum analyser, multimeter, data logger and chart recorder. Virtual instruments replace bulky and expensive test equipment, saving money and workbench space. They make switching between instruments quick and easy. Pico Technology virtual instruments are easier to use than traditional instruments: simple to use software and on-screen help makes you an expert within minutes.

Up to $100 \mathrm{MS} / \mathrm{s}$ Up to 16 bit resolution Prices from $£ 59$

"We never expected PCB Layout power

 at this price..." EASY-PC FOR WINDOWS the top seling advanced printed circuit board and schematic design system brings you a simple and intuitive user interface with a set of powerful features normally only found in the most expensive packages.- True Windows graphical user interface
- Easy to learn and use
- Full connectivity between SCM and PCB
- Full multi-level Undo and Redo
- Multi-Sheet project based design
- 0.1 Micron system resolution
- Unlimited layers, electrical and non-electrical
- Uses technology files for 'fast start' designs
- OrCAD and IMT EDA Workbench schematics netlist import
- Intelligent circuit copy and paste within and across designs
- Cut, copy and paste to external Windows applications
- Extensive design rules and connectivity checking / reporting
- Features a comprehensive set of libraries including SMT devices
- Automatic links to our Analogue, Digital \& Electromagnetic simulators
- Runs under Windows 95/98 ${ }^{\text {TM }}$ and Windows $\mathrm{NT}^{\text {TM }}$
- Available as Unlimited, 2000 pins, 1000 pins and 500 pins variants

The Electronics CAD Software Specialists
Visit our web site at www.numberone.com or Email us on sales@numberone.com or call sales on 01684773662 or fax 01684773664

Sightmagic LId, Oak Lane, Bredon,
Tewkesbury, Glos, GL20 7LR, UK
Number One Systems and Easy-PC are trademarks of Sightmagic Ltd. All other trademarks are acknowledged to their rightful owners.

वाRCUHIIDEAS

Readers' circuit ideas published here earn their authors $£ 35$ or more. The month's top idea, or ideas, see anything up to $£ 100$ - sometimes more. All we ask is that the ideas you send in should be original to the best of your knowledge. Useful enhancements to previously published circuits are considered, but please be sure to acknowledge the original circuit.

Hysteresis in a digital circuit

|t may be useful to arrange digital hysteresis, whereby an event occurs at a certain digital input number in an 'upward' direction and at a lower digital input in the reverse direction; digital hysteresis, in fact.
This circuit performs that function.
Imagine that input nibble A_{1-4}, i.e. DA , to
the 4019 quad switch is fixed at eight, say
and the input on B_{1-4}, i.e. DB, is six.
When the input nibble DI at the top of the diagram is $0, \mathrm{o} / \mathrm{p}$ OUT 12 of the 4585 comparator is high. On the switch, select inputs G_{1} and G_{2} are 1 and 0 respectively, so nibble DA, i.e. 8 , is fed to the comparator's B input nibble.
When the input counts reaches 8, OUT12
goes low. Now DB is feeding the comparator so OUT12 only goes high again when input DI decreases to less than DB - i.e. 6.
Figure 2 shows the timing involved. W Dijkstra
Waalre
The Netherlands
C67

Fig.1. Digital circuit changes state at one count going up and at a lower count coming down - 8 and 6 as shown here. It is a form of digital hysteresis.

Fig.2. Timing diagram of the hysteresis switch, with switching points at 6 and 8.
(C67b)

Fact: most circuit ideas sent to Electronics World get published

Like life, Electronics World may seem surreal at times, but it is certainly not exclusive. Clearly, the best circuit ideas are ones that save time or money, or stimulate the thought process. This includes the odd solution looking for a problem - provided it has a degree of ingenuity.
Your submissions are judged mainly on their originality and usefulness. Interesting modifications to existing circuits are strong contenders too - provided that you clearly acknowledge the circuit you have modified. Never send us anything that you believe has been published before though.
Don't forget to say why you think your idea is worthy.
Clear hand-written notes on paper are a minimum requirement: disks with separate drawing and text files in a popular form are best - but please label the disk clearly.

CIRCLE NO. $11+$ ON REPLY CARD

CONTROL \& ROBOTICS
 from
 Milford Instruments

BASIC Stamps-- Re-Programmable - BASIC language - RS232 Serial ports - 8 or 16 / $/ \mathrm{O}$ lines - SPI/DTMF
- Fast development

Scenix

- Fastest 8 -bit micro
- 50MIPS
- Flash Eprom - 18/28 pins
- PIC16C5x pin replacement

Serial LCDs

- RS232 Serial interface - 2×16 to 4×40
- Simple 3-pin connection
- Integral Keypad option
- Large Numerics option
- Driver chips available for OEM use

3-Axis Machine

- Stamp 2 based
- Drills PCBs
- 3-Axis movement
- Stepper drive
- 4 thou resolution

Servo Controller

- Control up to 8 servos
- RS232 Commands

Milford Instruments 01977683665 www.milinst.demon.co.uk

CROWNHILL ASSOCIATES LIMITED
The Old Bakery, New Barns Road,
Ely, Cambs. CB4 7PW
Tel: +44 (0)1353666709 Fax: +44 (0)1353 666710
Low cost professional quality Smart Card Systems

CHIPDRIVE

The intelligent programmer for Smart Cards using the International Standard $\mathrm{T}=0$ or $\mathrm{T}=1$ protocols also Memory and Secure Memory using $\left.\right|^{2} \mathrm{C}$, 2 -wire \& 3 -wire interfaces. From April 11999 all ChipDrives are supplied with software to read and write to most popular secure smart cards, inc GSM, PAY PHONE and ACCESS CONTROL cards. Drivers are available for Apple Macintosh, Linux, Unlx, Solaris. Microsoff PC/SC and of course WINDOWS 95/98 and NT.
Supplied with CARDSERVER API for easy development of SmartCard Applications using Visual Basic, Delphi or C++.

All Chipdrives are supplied with a Windows API and full documentation. ChipDrives are CE Compliant ChipDrives conform to ISO7816, T=0 or T=1 @ 3.579 MHz , RS232 @ $9600-11500 \mathrm{bps}$, Internal Supply/Ni-MH. Under normal conditions power is derived from the host Serial Port. Operation is simple, full telephone and email support is provided for Windows

APP-LOCK
Protect any Windows applications from Unauthorised access under Win 95/98/NT Inclusive of Chipdrive Intern, Smart Card and Software. developers.

FREE GSM CARD READING application GSuplied with CHIPDRIVE-micr

CHIPDRIVE Developer Kit

CDK consists of: CD ROM containing cardserver.dll. Applications and Source code examples. CHIPDRIVE-micro a selection of Smart Cards offering protected memory, processor and memory cards. Typical uses are Control access, Pay Phone cards and Data transport. PIN codes for the cards are supplied along with data sheets and programming data for use with cardserver.dll. A useful application with source codes shows how the CHIPDRIVE can be used to identify any Smart card inserted, giving manufacturer info, and memory map if available. Applications produced with the developer kit will operate under Windows
 $3.11 / 95 / \mathrm{NT}$ and are compatible with the whole CHIPDRIVE family. The CDK uses easy to use 16 bit or 32 bit DLLs with just one function call to the 'CardServer' to identify the card or carry out any instruction. Cardserver is a powerful Background task which relieves the application programmer from device and card administration. Featuring automatic protocol and card type detection. Allowing several applications to access one terminal dependent only on the type of card inserted.
£69.95 +
P\&P £5 Exclusive of VAT

Supplied with CHIPDRIVE micro, Smart Cards and Source Code. Full Tech Support via Email.
http://www.towitoko.co.uk
http://www.crownhill.co.uk
http://edsim.cambs.net
CONTACTLESS SMART CARD DEVELOPMENT SYSTEM HITAG ${ }^{\text {min }}$ Cards
The Contactless Reader/Writer is designed to communicate via an RF field with the HITAG ${ }^{\text {NV }}$ range of contactless cards. A simple ASCII based command set allows direct access to the powerful features that enable data to be read and written to the card at distances up to 150 mm . A RS485 multi drop facility is built onto the reader/writer unit allowing daisy chaining of up to 32 devices.
Communication is via an onboard configurable RS232 Port A
sounder, two opto isolated outputs, 4 LED's and 2 high current open drain Mosfets are available for interfacing.
£149.95 + Supplied with cards.

P\&P $£ 5$ Exclusive of VAT

Programmable precise one-shot covers microseconds to hours

£100

 WINNERListing for a PIC-based one shot that provides precise
programmable pulse widths anywhere between $9 \mu s$ and three hours long.

TTraditional one-shot circuitry uses a resistor and a capacitor to determine the pulse width.

If the capacitor is fixed, a potentiometer can adjust the width within a certain range. For a longer pulse width, the capacitor becomes bulky and its leakage current could be an issue.

Figure 1 circuit uses a PIC16C84 to form a one-shot. Not only can the
pulse width be programmed from $9 \mu \mathrm{~s}$ to more than 3 hours, but it also maintains high accuracy - an error of less than 0.3% within a $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range.
Since the PIC16C84 has built-in EEPROMs, The pulse width information is stored in the PROM and is retrieved at power on.
An input trigger signal generates an
interrupt for the microcontroller. In the interrupt service routine, PB5 is set to high before going into a delay loop. In the delay loop, a 32 -bit counter that is formed by four 8-bit registers must decrease to zero before PB5 is set to low and then returns. Thus, the larger the number in the 32-bit counter, the wider the output pulse will be. The pulse width in

LIST p	6 C 84				bcf	STATUS, RP0	; bank 0		bsf	STATUS, C	;
\#include	16C84.IN				movf	EEDATA, W	; read data_3 from eeprom		rlf	data_4, F	;
ent_1	equ	0x 10	;		movwf	data_3		finish_sft			;
cnt 2	equ	0×11	;		movwf	temp_3	;		incf	bit_num, F	;
data_1	equ	0x12	;		incf	temp_3, F			bsf	PORTB, 4	; flash once
data_2	equ	0x13	;		incf	EEADR, F			call	dly_1	;
data_3	equ	0x14	;		bsf	STATUS, RP0	; bank 1		bcf	PORTB,4	;
data_4	equ	0x15	;		bsf	EECON1, RD			call	dly_1	;
bit_num	equ	0x16	;		bcf	STATUS, RP0	; bank 0	loop_3			;
templ 1	equ	0x17	;		movf	EEDATA, W	; read data_4 from eeprom		btfsc	PORTB, 1	;
temp_2	equ	0x18	;		movwf	data_4	;		goto	finish_prg	;
temp_3	equ	0x19	;		movwf	temp_4			btfss	PORTB, 3	;
temp_4	equ	0x1a	;		incf	temp_4, F	;		goto	loop_3	;
temp_s	equ	OxIb	;				;		call	dly_	;
				loop_1			; endless loop		btfss	PORTB, 3	;
org	0x0	;			bsf	INTCON, GIE			goto	loop_3	;
	goto	main	;		btfsc	PORTB, 1			goto	loop_2	;
	org	0x4	;		goto	loop_1	;	finish_prg			;
	bsf	PORTB, 5	;		call	dly_l	;		movf	data_1, W	;
loop	decfsz	temp_1, F	;		btfsc	PORTB, 1			movwf	temp_1	;
	goto	loop	;		goto	loop_1	' ${ }^{\text {c }}$		incf	temp_1, F	;
	decfsz	temp_2, F	;	prog			; programming routine		movwf	EEDATA	;
	goto	loop	;		bcf	INTCON, GIE			clrf	EEADR	;
	decfsz	temp_3, F	;		clrf	bit_num			call	write_ceprom	;
	goto	loop	;		bsf	PORTB, 4	; flash once		movf	data_2, W	;
	decfsz	temp_4, F	;		call	dly ${ }_{\text {d }}$			movwf	temp_2	;
	goto	loop	;		bcf	PORTB, 4	;		incf	temp_2, F	;
	bcf	PORTB, 5	;		call	dly_I	;		movwf	EEDATA	;
	movf	data_1, W	; re-load data		cliff	data_1	;		incf	EEADR, F	;
	movwf	temp_1	;		clif	data_2	;		call	write_eeprom	;
	incf	temp_1, F	;		clıf	data_3	,		movf	data_3, W	;
	movf	data_2, W	;		clif	data_4	;		movwf	temp_3	;
	movwf	temp_2	;	loop_2			;		incf	temp_3, F	;
	incf	temp_2, F	;		btfsc	PORTB, 1	;		movwf	EEDATA	;
	movf	data_3, W	;		goto	finish_prg	;		incf	EEADR, F	;
	movwf	temp_3	;		btfsc	PORTB, 3	;		call	write_eeprom	;
	incf	temp_3, F	;		goto	loop_2	,		movf	data_4, W	;
	movf	data_4, W	;		call	dly_1	;		movwf	temp_4	;
	movwf	temp_4	;		btfsc	PORTB, 3	,		incf	temp_4, F	;
	incf	temp_4, F	;		goto	loop_2	;		movwf	EEDATA	;
	bcf	INTCON, INTF	;	shift			;		incf	EEADR, F	;
	retfie		;		movlw	0x08	;		call	write_eeprom	;
			;		subwf	bit_num, W	;		moviw	0×03	;
main			;		btiss	STATUS, C	;		movwf	temp_5	;
	clrf	PORTA	;		goto	shift_1	;	flashes			; flash 3 times
	clrf	PORTB	;		movlw	0x10	;		bsf	PORTB, 4	:
	bsf	STATUS, RP0	; bank 1		subwf	bit_num, W	;		call	dly_l	;
	moviw	0x40	;		btfss	STATUS, C	;		bcf	PORTB, 4	;
	option		;		goto	shift_2	;		call	dly_l	;
	movlw	0x00	;		movlw	0x18	;		decfsz	temp_5, F	;
	movwf	TRISA	;		subwf	bit_num, W	;		goto	flashes	;
	movlw	0x0f	;		btfss	STATUS, C	,		goto	loop_I	;
	movwf	TRISB	;		goto	shift_3	;	dly_1			; delay 0.2 seconds
	moviw	0×10	;		goto	shift_4	:		clrf	ent_1	;
	movwf	INTCON	;	shift_1			; load into data_1		clrf	cnt_2	;
	bcf	STATUS, RP0	; bank 0		bcf	STATUS, C	;	lp_1	decfsz	cnt_1, F	;
	clif	EEADR	;		btfsc	PORTB, 2	;		goto	lp_1	;
	bsf	STATUS, RP0	; bank 1		bsf	STATUS, C	;		decfsz	cnt_2, F	,
	bsf	EECON1, RD	;		rlf	data_1, F	;		goto	lp_1	;
	bcf	STATUS, RPO	; bank 0		goto	finish_sft	;		return		,
	movf	EEDATA, W	; read data_1 from eeprom	shift_2			; load into data_2	write_eepr			;
	movwf	data_1	.		bcf	STATUS, C	;		bsf	STATUS, RP0	; bank 1
	mowwf	temp_1	;		btfsc	PORTB, 2	;		bsf	EECON1, WREN	: enable to write eeprom
	ince	temp_I, F	;		bsf	STATUS, C	;		movlw	0x55	;
	incf	EEADR, F	;		rlf	data_2, F	;		movwf	EECON2	;
	bsf	STATUS, RP0	; bank 1		goto	finish_sft	;		movlw	0xaa	;
	bsf	EECONI, RD	;	shift_3			; load into data_3		movwf	EECON2	:
	bcf	STATUS, RP0	; bank 0		bcf	STATUS, C	;		bsf	EECON1, WR	; start write
	movf	EEDATA, W	; read data_2 from eeprom		btfsc	PORTB, 2	;	write_dly			;
	mowwf	data_2	;		bsf	STATUS, C	;		btfsc	EECON1, WR	;
	movwf	temp_2	;		rlf	data_3, F	;		goto	write_dly	,
	incf	temp_2, F	;		goto	finish_sft	;		bcf	STATUS, RP0	; bank 0
	incf	EEADR, F	;	shift_4			; load into data_4.		return		;
	bsf	STATUS, RP0	; bank 1		bcf	STATUS, C	;				;
	bsf	EECONI, RD			btfsc	PORTB, 2	;		end		,

microseconds can be calculated using,

3*data_1+770*data_2+197,122*
data_3+50,463,234*data_4+9
The minimum pulse width of $9 \mu \mathrm{~s}$ happens when all four registers are set to zero. The maximum pulse width occurs when four registers are all set logic high, which is about 3 hours 35 minutes and 19 seconds.
Three pins of the microcontroller are used to program the pulse width. PB1 selects either programming or normal one-shot function. Port PB2 is the data input and PB3 is the programming clock input.

Once PB1 is connected to the ground, a LED flashes once to indicate that all registers are cleaned up and programming starts. The 32-bit counter number is programmed into the microcontroller in a serial format with the lowest bit first.
For instance, assume the number is 000000000000000010000000
00000000 . First of all, connect PB2 to the ground. Then push the button on PB3 15 times.

Note that each time the button is pushed, the LED flashes once to show that one bit of the data is accepted.
The next step is to release PB2 from ground. Since the microcontroller has built-in pull-up resistors, PB2 will become logic high.
Push the button one more time and the 16th bit - logic high - will be sent. It is not necessary to program
the rest of the bits since they are all zeros.
The last step is to release PB1 from ground. The LED will then flash three times to indicate the programming is finished and data have been stored into the EEPROM. Yongping Xia
Torrance, CA
USA
C62

Accurate stopwatch measures to within 0.01 s

T
[o crystal accuracy, this circuit measures time to a resolution of 0.01 s or 0.1 s on 100 s or 1000 s ranges.
A 1 MHz crystal oscillator drives a chain of two 74390 dual decade
counters and a single 7490 decade, a switch selecting the latter to give a total division of 10^{4} or 10^{5}, i.e. 100 Hz or 10 Hz .
The selected output of the divider chain is counted in the 4 -digit
counter, which provides a multiplexed seven-segment display driver for low power consumption.

Raj K Gorkhali

Katmandu
Nepal, C51

Photographic flash meter

Providing an eight-stop indication, this flash meter is of the analogue variety, although it could be said to be an a-to-d converter, using latches as led drivers.
The MEL12 phototransistor, in conjunction with the CA3140E mosfet op-amp gives good linearity, the op-amp output and total ladder resistance being made adjustable to take into account the range of indication for high or low light conditions.

Calibration was carried out using a photographic grey card, a
halogen lamp and by comparison with a professional light meter.
D A Williams
Sheldon
Birmingham
C68

Better zener voltage regulator drops out at 0.25 V

Figure 1 shows the usual type of zener regulator, in which the F zener diode becomes starved of working current on low supply inputs and can become overheated on high inputs. In the circuit of Fig. 2, the diode current is more or less proportional to the supply voltage, not the difference between the supply and zener voltages. Base current to the p-n-p transistor is amplified by the transistor, the collector current supplying the zener. Collector current is largely independent of the collector voltage.
Resistor R_{1} should be selected, in view of current-gain variations between devices, to give a 10 mA zener current at the lowest input voltage.
On a 13.6 V car battery supply, the output of 12 V was stabilised in the prototype for inputs down to 12.3 V .
PGoodson
Bracknell
Berkshire
C63

Three-component voltage regulator has a drop-out voltage of only 0.25 V .

Networks and
Telecommunications
Design and Operation
Second Edition
Martin P. Clark,
Telecommunications
Consultant, Frankfurt,
Germany
Telecommunications network
design and operation is now widely regarded as an issue of business management as well as electrical engineering. In this updated edition, Martin Clark, a pioneer of this perspective, applies it to the increasing complex and diverse realm of voice, and data and multimedia networks.
Written in an accessible style and clearly illustrated
throughout, this is a basic, practical and intuitive insight into modern network engineering and sections including:

- Technical accounts of modern voice, data and multimedia networks
- Coverage of ATM, B-ISDN, SDH, mobile radio and satellite networks, Internet and TCP/IP
- Practical aspects of running and setting-up networks
- Running a business based on telecommunications

A text specifically for readers new to the whole subject of telecommunications, and professional
telecommunications managers who need an introduction and reference work on all aspects of technology, operational techniques and regulation.

ISBN 0471973467

Introduction to Digital Mobile Communication
 Yoshihiko Akaiwa

A comprehensive treatment of the digital technologies that make personal mobile communication a reality
Although today's mobile communication engineers and designers can build upon the advances in digital
telecommunications, specific technical requirements robustness against fast fading,

spectrum and power efficiency, and the demand for low-priced equipment- post new technological challenges that demand creative solutions.
Introduction to Digital Mobile Communications is a comprehensive treatment of the digital technologies that are rapidly spawning new advances and applications. Written by a pioneer in the field, this book covers all the important concepts, from the fundamentals of signal analyses and digital communication to descriptions of the latest transmission systems. Rich in detail and broad in its coverage, this remarkable book:

- Describes equipment and circuit implementation methods and their performance characteristics
- Discusses elements of and methods for digital modulation and demodulation schemes
- Provides practical designs and circuits for spectrumefficient modulations
- Covers mobile radio channels and digital mobile radio systems
- Includes extensive
mathematical treatments and mathematical models
- Presents the latest research results with detailed references

This valuable resource provides a solid introduction to mobile radio communication for the students or professional in related fields. Most important, for design engineers and equipment manufacturers, its up-to-date findings will stimulate new research and creative design and system development efforts.
Yoshihiko Akaiwa is a leading researcher in the digital mobile communication field. Currently a professor at Kyushu University, he worked as a researcher for over twenty years at the NEC Corporation
ISBN 0471175455
UK £57.50 Europe $£ 60.50$ ROW £ 73

Cellular Mobile Radio Systems
 Designing Systems for Capacity Optimization
 Husni Hammuda, Ericsson (UK) Ltd

Rapidly increasing demand for mobile radio frequency subscription is already pushing cellular networks to the point of overload. Of the various methods which are being explored to tackle this problem one of the most notable is the integration of advance modulation and multiple access techniques. In this book, Husni Hammuda, a pioneer of this hybrid, shows how it can be applied in practice to optimise the efficiency of mobile radio cells.

- Provides detailed criteria for

Husn Hammuda
the evaluation of combinations of modulation and multiple access techniques

- Includes primary performance data as well as predictive models
- Theoretical material is explained using examples from first and second generation transmission systems
- Covers recent innovations in personal communications

For the practising cellular communications engineer this is a systematic set of solutions for improving traffic flow in cellular networks. It also includes complete theoretical and case material ideal for post-graduate network engineering researchers.

ISBN 0471956414
UK £37.50 Europe $£ 39.95$ ROW $£ 46.95$

Network-Based Images

A Practical Guide to Acquisition, Storage, Conversion, Compression and Transmission
Gilbert Held, 4-Degree Consulting, Macon, Georgia, USA

Network-Based Images offers a fresh approach to the acquisition and manipulation of visual images on computer by focusing on the network application side.
This practical Guide explains the methods used to store images electronically and discusses the popular image-based applications, such as storage, conversion and compression. Gilbert Held reviews the procedures used to minimize the effects of other image-based applications to increase efficiency.
This network oriented book provides detailed information on the transmission of images to other systems and includes an overview of the associated problems.
Features include:

- Use of images on LANs includes LAN-based World Wide Web Servers
- Use of HTML image related statements
- Techniques to avoid costly network upgrades
- How to segment LANs
- Network modifications to
counter the bandwidth effect of images upon LAN transmission

Essential reading for network managers and administrators as well as Web server administrators and personal computer users. This book will provide unique coverage of images oriented to efficient use on networks: storage, acquisition, and use in applications
ISBN 0471973572
UK $£ 37.50$ Europe $£ 39.95$ ROW $£ 46.95$

Stereophonic Sound Recording

Theory and Practice Christian Hugonnet and Pierre Walder

Recent advances in digital audio have heralded substantial innovations in sound recording techniques and increased the importance of applying the latest microphone techniques. The authors of this book focus on these innovations, giving numerous examples of their use within the framework of an analysis-based recording

engineering theory.
The book provides a complete overview of wellknown sound recording procedures practised worldwide, whilst also presenting a methodology that will provide the reader with an efficient approach to sound recording of classical music, rock and pop music, drama and speech. The widely illustrated theoretical knowledge is presented in clear and simple language.
Building on their considerable experience of creating innovative recording techniques, the authors
provide an authoritative analysis of the subject that offers valuable, practical guidance that will aid the development of new recording methods. Their inside knowledge of the requirements of the phonographic, broadcasting, film and other media industries ensures expert coverage of new products and approaches including:

- recording techniques for all types o microphones
- in-depth analysis of the principles and use of stereophonics
- influence and role of the venue acoustics on the sound recording
- guidelines for mastering and mixing different levels of sound from different sources

For professional audio engineers, this manual provides systematic advice for getting optimal performance from studio equipment. For students of audio engineering it will form a comprehensive introduction to the area of stereophonic recording, backed up by real-world case studies and a wealth of practical experience.
ISBN 0471974870
UK £32.45 Europe $£ 34.95$ ROW $£ 41.95$

Protect Your Privacy
 on the Internet

Privacy defense tools and techniques you can use right now
Bryan Pfaffenberger
CD-ROM includes a complete collection of Windows privacy software.
Is your complete life story available to anyone with Internet access? It's really not all that hard to snoop in

Continued over page

Protect Your Privacy on the Internet
Privacy defenase tools and teilniques yow can use right How

All prices are fully inclusive of packaging and delivery

Return to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following titles:

Qity	Title or ISBN	Price

Total \qquad
Name \qquad
Address \qquad

Postrode

\qquad

Telephone

\qquad
Method of payment (please circle)

Access/Mastercard/Visa/Cheque/PO

Cheques should be made payable to Reed Business Information

Credit card no \qquad
Card expirey
Signed

Please allow up to 28 days for delivery
cyberspace. As more and more business is conducted over the Internet, it has become increasingly difficult for both businesses and individual users to protect private information. Your reputation, Your finances, and your basic right to privacy are on the line every day. What can you do about it?
You can fight back. Protect Your Privacy on the Internet tells you everything you need to know to ensure your privacy and use the same technology that's being used against you to protect yourself. You'll get industrialstrength encryption tools to keep your affairs secret, the way they ought to be.
Bryan Pfaffenberger arms you with privacy defense strategies such as:

- Creating a bullet-proof password
- Getting your name out of the databases
- Cleaning up your browser's trails

Protect Your Privacy on the Internet gives you proven privacy defense strategies and techniques to help you make the Net a safer place to work and play. You'll get the names of Internet privacy organizations that are working to protect your privacy rights and find out what you can do to help. On the accompanying CDROM you'll find a collection of Windows Privacy freeware and shareware, including:

Pronto 96 - an e-mail program that works in conjunction with encryption software to protect your e-mail
Mutilate - software that thoroughly erases files beyond recovery, even by expert snoopers
Win-Secure-It® - a utility preventing unauthorised access to files on your computer
AMSD Ariadna ${ }^{\text {TM }}$ - a fullfeatured browser that reads tables and Java but ignores "cookies", text files that transparently save where you've been
Random Password Generator - a program enabling you to generate up to $1,000,000$ passwords to protect you against unauthorized access to your Internet account
Cyber Patrol ${ }^{T M}$ - parental
control software that prevents kids from uploading personal and demographic information to commercial sites
ISBN 0471181439
UK £27.45 Europe $£ 29.95$ ROW $£ 36.95$
Internet Audio
Sourcebook

The complete guide to Internet audio techniques and tools Lee Purcell and Jordan Hemphill
"The World Wide Web has spouted vocal cords, gained a voice, and begun to sing." Lee Purcell and Jordan Hemphill
Internet Audio Sourcebook offers you a quick, easy way to acquire the knowledge, skills, and some of the tools you need to build cutting-edge audio capabilities into your Web pages, including:

- Music, narration, and sound effects
- Streaming audio for realtime broadcasts
- Automated, spoken-voice instruction
- Audio conferencing and Internet telephony
- MIDI techniques for musical training and analysis

Taking a step-by-step approach, the authors get you up to speed on the latest audio tools and techniques. First they school you in the basics of creating, processing, and storing audio data.
You learn the various methods of working with digital sound and how to use available tools to shape audio content for the Internet. Then they show you how to deliver your digital sound over the Web. They explain the HTML coding used to access audio files and teach you techniques for integrating Java applets,

JavaScript code, and VBScript code into your HTML documents.
Finally, the authors show you how to get the most out of new audio technologies, including streaming audio, MID । applications, voice synthesis and recognition, and Internet telephony, as well as covering hot new products like the Headspace Beatnik audio engine and Liquid Audio.

The CD-ROM

You get fully functional demos of top-of-the-line sound processing applications, including Sonic Foundry's Sound Forge and Hohner Midia's Samplitude Studio. Authoring tools such as Symantec's Visual Café, Aimtech's Jamba, and Acadia Software's Infuse JavaScript editor are also included. ISBN 0471191507
UK £28.45 Europe £31.95 ROW $£ 39.95$

Web Security Sourcebook

A Complete Guide to Web Security Threats and Solutions Aviel D. Rubin, Daniel Geer, and Marcus J. Ranum

The front door is unlocked and wide open. The alarm's not working and no one's home. All of your valuable, money, and intimate details of your life are just sitting inside, waiting to be taken. No, it's not your house, it's your computer.
The Web now penetrates every aspect of our lives, from the home PC to the Business office. But with each advance in convenience comes a geometric increase in vulnerability to the integrity of data and software as well as to the confidentiality of information. Although the flaws inherent in the Web are real, solutions are available. Let Aviel Rubin, Daniel Geer, and Marcus Ranum give you the answers.
Here's a book that's valuable today and indispensable for the future. It includes basic and advanced techniques for client-side and server-side security, browser security, writing secure CGI scripts, firewalls, and secure ecommerce. There's a special appendix that demystifies the complex world of cryptography. And the book comes with access to a dedicated Web site containing
up-to-the minute information on the latest security threats and solutions.
So whether you're a Webmaster trying to close the door on sites and applications, or an everyday user hoping to keep your desktop safe, this is your essential source of:

- Protecting and securing Web pages, search engines, servers, and browsers
- Writing impregnable applets and scripts, and avoiding the dangers inherent in every language
- Using (and abusing) firewalls and cryptographic controls
- Securing commerce and payment transactions
ISBN 047118148 X
UK £27.45 Europe £29.95 ROW £36.95

Encyclopaedia of Acoustics

Edited by Dr Malcolm J Cracker, Auburn University

Sound Information in 167 detailed Chapters. Now there's a new four-volume reference that covers every imaginable area of acoustics, sound and vibration - from the design of a concert hall to the intricacies of the human ear. It's the Encyclopaedia of Acoustics
In this on-of-a-kind set, edited by well-known acoustical expert Dr Malcolm J. Cocker, you'll get:

- Extensive cross-referencing and indexing
- 2000-plus pages of insights from more than 200 international expert contributors
- An exhaustive examination of the fundamentals of acoustics and vibration in the first two volumes
- A revealing exploration of acoustic applications in Volumes Three and Four
- General Introductions at the start of every section

This up-to-date work is the definitive acoustics resource for students, engineers, scientists, and researchers in the field.
Casebound © 1997, fourvolume set approx. 2,000 pp. (750pps./volume) ISBN 0471804657

UK £372.45 Europe $£ 384.97$ ROW $£ 390$

Bryan Hart explains the Early effect - an important phenomenon not always well understood by analogue circuit designers.

Fig. 1a). An n-p-n bipolar transistor biased for analogue operation and b), idealised cross-section of the device base width grossly exaggerated.

What is a reasonable estimate for the maximum theoretical small-signal, low-frequency voltage gain that can be obtained with a single lowpower silicon bipolar junction transistor (bjt) operating at room temperature in the common-emitter configuration?
To be able to answer that question with confidence you will need to know about a parameter that, in my opinion, has not been covered sufficiently well in the general literature of circuit engineering. This parameter, which usually appears as if by magic, is the 'Early voltage'.
This pair of articles sets out to remedy this situation. The first article introduces a coherent explanation of the origin of this parameter and its role in device characterisation and modelling.
The second article, to be published later, considers its importance in the design of a range of widely used analogue circuits. These include the common-emitter and commonbase configurations, the current mirror and the long-tailed pair.

Early origins

Figure 1a) shows a low power n-p-n silicon bjt biased for analogue operation and Fig. 1b) shows a schematic crosssection of it. For clarity, this greatly exaggerates the width of
for a carrier to recombine in it.
The same is not necessarily true for high power transistors having relatively wide bases and it certainly was not true for alloy junction transistors.
If base region recombination is neglected how does a finite base current arise? The answer is, solely from holes injected from the base into the emitter. The equation for I_{B} is similar to that for I_{C}, the differences being that K_{B} and Q_{B} are replaced by their emitter counterparts K_{E}, Q_{E}.
Thus,

$$
\begin{equation*}
I_{B}=\frac{K_{E}}{Q_{E}} \exp \left(\frac{V_{B E}}{V_{T}}\right) \tag{2}
\end{equation*}
$$

The common-emitter direct current gain is β and from eqns (1) and (2),

$$
\begin{equation*}
\beta=\frac{I_{C}}{I_{B}}=\frac{K_{B} Q_{E}}{K_{E} Q_{B}} \tag{3}
\end{equation*}
$$

How we proceed from this point depends on the assumptions made for Q_{B}. A first-order model of the bipolar transistor assumes Q_{B} to be constant, independent of $V_{C B}$, for a fixed $V_{B E}$. A second-order model, considered from now on, takes into account the dependence of Q_{B} on $V_{C B}$.
The physical mechanism is this. The collector and base doping profiles fix the electrostatic field in the collector depletion layer. An increase in $V_{C B}$ - dimensionally, the product field multiplied by distance - can only be accommodated by an increase in junction layer width. This is at the expense of base width ('base-width modulation') and a reduction in Q_{B}.
Referring to eqn (1), this leads to an increase in I_{C}. Since I_{B} does not change $-K_{E}, Q_{E}$ are not dependent on $V_{C B}$ - this means β increases with $V_{C B}$.
The effect is quantified by taking logarithms of each side of eqn (1) and then differentiating with respect to $V_{C B}$.

$$
\begin{equation*}
\frac{1}{I_{C}} \times \frac{d I_{C}}{d V_{C B}}=-\frac{1}{Q_{B}} \times \frac{d Q_{B}}{d V_{C B}} \tag{4}
\end{equation*}
$$

When $V_{C B}$ increases by an increment $\delta V_{C B}, Q_{B}$ decreases by the same amount that the depletion layer charge Q_{D} increases: thus,

$$
\begin{equation*}
\delta Q_{B}=-\delta Q_{D} \tag{5a}
\end{equation*}
$$

But, the collector depletion layer capacitance $C_{J C}$ is defined by,

$$
\begin{equation*}
C_{J C}=\frac{d Q_{D}}{d V_{C B}} \tag{5b}
\end{equation*}
$$

Hence, from eqns (4), (5),

$$
\begin{equation*}
\frac{1}{I_{C}} \times \frac{d I_{C}}{d V_{C B}}=\frac{C_{J C}}{Q_{B}} \tag{6}
\end{equation*}
$$

Considering conditions at $V_{C B}=0$, for which $Q_{B}=Q_{B O}$, $I_{S}=I_{S O}, I_{C}=I_{C}(0), \beta=\beta_{0}, C_{J C}=C_{J C 0}$, we attach a meaning to the right hand side of eqn (6) by making the following definition,

$$
\begin{equation*}
V_{A}=\frac{Q_{B 0}}{C_{J C 0}} \tag{7}
\end{equation*}
$$

Furthermore, $d V_{C B} / d I_{C}$ is identified as the incremental resistance r_{0}.

> Now, eqn (6) can be re-written,

$$
\begin{equation*}
I_{C}(0) r_{O}=V_{A} \tag{8}
\end{equation*}
$$

I will now show this result graphically.

Characteristics and models

Figure 2 is a sketch of the observed characteristics of a bjt. The bold lines, for $V_{C B}$ zero or greater than 0 , correspond to the region under discussion; the feint lines, for $\mathrm{V}_{C B}$ less

ANALOGUE DESIGN

than zero describe the saturation region.
The saturation characteristics do not follow from eqn (1). Different equations apply. They are only indicated for completeness: they are ignored from now on.
Equation (8) states that the tangents to the output characteristics at $V_{C B}=0$, when extrapolated back, have a common point of intersection on the horizontal axis at $\mathrm{V}_{C B}=-\mathrm{V}_{A}$.
In honour of J. M. Early, who carried out pioneer work on bjt output conductance ${ }^{3}$ that led to the description 'Early Effect' for base-width modulation, V_{A} is known as the 'Early' voltage.
The choice of the relatively uncommitted subscript letter A rather than E saves possible confusion with an emitter voltage. Typically, V_{A} is around 100 V for an n-p-n bipolar transistor. This a useful default figure when none

Fig. 6. Common-emitter characteristics derived from Fig. 4.
$-\left(V_{A}-0.7\right) \approx-V_{A}$

Fig. 7a). Two of the family of mutual characteristics: $\mathrm{V}_{\mathrm{CEQ}} \gg \mathrm{v}_{\mathrm{c}}$. fig. 7b) is its detail in vicinity of Q point, showing parameter relationships.

is deducible from manufacturers' data. For an n-p-n device V_{A} is around 50 V .
What happens when $V_{C B}$ is greater than zero? As a result of current device design and fabrication technology the ratio $Q_{B} / C_{J C}$, in eqn (6), is not a strong function of $V_{C B}$ over a practically useful range of $V_{C B}\left(\ll V_{A}\right)$. So, for simplicity in characterisation and modelling, it is assumed that $Q_{B} / C_{J C}$ remains constant at the value, V_{A}, that it has for $V_{C B}=0$.
Now, equation (6) becomes,

$$
\begin{equation*}
\frac{1}{I_{C}} \times \frac{d I_{C}}{d V_{C B}}=\frac{1}{V_{A}} \tag{9}
\end{equation*}
$$

Integrating with respect to $V_{C B}$,

$$
\begin{equation*}
I_{C}=I_{C}(0) \exp \frac{V_{B E}}{V_{A}} \tag{10}
\end{equation*}
$$

or,

$$
\begin{equation*}
I_{C}=I_{S 0} \exp \frac{V_{B E}}{V_{T}} \times \exp \frac{V_{C B}}{V_{A}} \tag{11}
\end{equation*}
$$

Equation (10) is only valid while $V_{C B}$ is much less than V_{A} so using the following approximation is justifiable,

$$
\begin{equation*}
\exp \frac{V_{C B}}{V_{A}}=1+\frac{V_{C B}}{V_{A}} \tag{12}
\end{equation*}
$$

Then,

$$
\begin{equation*}
I_{C}=I_{S 0}\left(1+\frac{V_{C B}}{V_{A}}\right) \exp \frac{V_{B E}}{V_{T}} \tag{13}
\end{equation*}
$$

This equation describes a family of straight lines, each of which passes through $V_{C B}=0$ with a slope $I_{C}(0) V_{A}$. These linearised approximations to the actual characteristics for $V_{C B}>0$, Fig. 3, are the tangents to the characteristics at $V_{C B}=0$ that were mentioned earlier.
For a given $V_{C B}$, equal increments in $V_{B E}$ do not produce corresponding equal increments in I_{C} because of the exponential relationship between I_{C} and $V_{B E}$.
With $V_{B E}$ constant - and, hence constant base current collector current increases by a factor $\left[1+\left(V_{C B} / V_{A}\right)\right]$ as $V_{C B}$ increases from zero, so β must increase by the same factor.

Thus,

$$
\begin{equation*}
I_{C}=\beta I_{B}=\beta_{0} I_{B}\left(1+\frac{\dot{V}_{C B}}{V_{A}}\right) \tag{14}
\end{equation*}
$$

For a given $V_{C B}$, the relevant output characteristics with I_{B} the controlling parameter, are now equally spaced, Fig. 4. Rather than I_{C} as a function of $V_{C B}$, we are often more interested in I_{C} as a function of $V_{C E}$. To determine this we substitute $V_{C B}=\left(V_{C E}-V_{B E}\right)$ in eqn (13).

$$
\begin{equation*}
I_{C}=I_{S 0}\left(1+\frac{V_{C E}-V_{B E}}{V_{A}}\right) \exp \frac{V_{B E}}{V_{T}} \tag{15}
\end{equation*}
$$

A popular assumption in biasing a bjt for linear operation is $V_{B E}=$ constant $=0.7 \mathrm{~V}$, so a safe lower bound to the linear region is also $V_{C E}=0.7 \mathrm{~V}$.
In that case the output characteristics are shown in Fig. 5. They are those of Fig. 4 shifted horizontally to the right by 0.7 V . Figure 6 is derived, similarly, from Fig. 4.

The $I_{B Q}$ of Fig. 6 is chosen to correspond to $V_{B E Q}$ in Fig.
5. Incremental resistance at operating point Q is given by,

$$
\begin{equation*}
r_{0}=\frac{V_{C E Q}+V_{A}-0.7}{I_{C Q}} \tag{16}
\end{equation*}
$$

or,

$$
\begin{equation*}
r_{o}=\frac{V_{A}}{I_{C Q}} \tag{17}
\end{equation*}
$$

Figure 7a) is a general view of two of the transfer characteristics and Fig. 7b) is an expanded view of them in the
vicinity of \mathbf{Q}. For small changes $-\delta V_{C E Q}=v_{c}$ etc. - the curves can be considered straight and parallel.

The parameter $r_{o}=\left(v_{c} i_{c}\right)$ characterises the vertical spacing. The horizontal spacing is calculated by combining the exponential terms in equation (11).
If I_{C} is constant,

$$
\begin{equation*}
\frac{V_{B E}}{V_{T}}+\frac{V_{C B}}{V_{A}}=\text { constant } \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\therefore \frac{v_{b}}{V_{T}}+\frac{v_{c}-v_{b}}{V_{A}}=0 \tag{19}
\end{equation*}
$$

It is now convenient to make the definition,

$$
\begin{equation*}
\mu=\frac{V_{A}}{V_{T}} \tag{20}
\end{equation*}
$$

Then,

$$
\begin{equation*}
v_{b} \approx \frac{-v_{c}}{\mu} \tag{21}
\end{equation*}
$$

The approximation $\mu \gg 1$, made in obtaining eqn (21) from eqn (19), is also used in determining the slope of the characteristics.

Differentiating eqn (15) with respect to $V_{B E}$, with $\mathrm{V}_{C E}$ constant, gives the mutual conductance g_{m}.

$$
\begin{equation*}
g_{m}=\frac{I_{C Q}}{V_{T}} \tag{22}
\end{equation*}
$$

From eqns (17) and (22),

$$
\begin{equation*}
\mu=r_{o} g_{m} \tag{23}
\end{equation*}
$$

Older readers might remember this relationship first appearing with valves and μ being dubbed the 'amplification factor'.
The input characteristic is shown in Fig. 8. It is a single curve for $V_{C B} \geq 0$.

The incremental input resistance termed r_{π} is given by,

$$
\begin{equation*}
r_{\pi}=\frac{d V_{B E}}{d I_{C}} \times \frac{d I_{C}}{d I_{B}} \tag{24}
\end{equation*}
$$

or,

$$
\begin{equation*}
r_{\mathrm{n}}=\frac{\beta}{g_{m}}=\frac{\beta V_{\tau}}{I_{C R}} \tag{25}
\end{equation*}
$$

Three choices for the small-signal low-frequency equivalent circuit of the bipolar transistor are shown in Fig. 9. These are constructed from the parameters, already defined, by standard model building procedures as, for example, in ref. 4. Thus, the output circuit of Fig. 9a) is developed from Fig. 5 by considering small changes about the point Q and the output circuit of Fig. 9b) is similarly related to Fig. 6.
Fig. 9c) is derived from Fig. 9b) by the use of Thévenin's theorem. The input circuit of each model derives from Fig. 8. Resistance r_{x} has not been mentioned previously because we have considered only the idealised structure of Fig. 1.
A more practical structure is shown in Fig. 10. Here, r_{x} is typically 50Ω and represents the equivalent lumped resistance of the semiconductor material between the base terminal and the active base region. This region is that part in the vertical shadow of the emitter, i.e. inside the cylindrical region bounded by the vertical dotted lines.
As the junction areas are unequal, the Early voltage is V_{A}, as defined by equation (7), multiplied by the factor collector-junction area/emitter-junction area.

In my next article, I will show how to apply the characteristics and models to the solution of some circuit design problems, starting of with that mentioned at the beginning of this article.

References

1. Gummel, H K, and Poon, H C, 'An integral charge model for the bipolar transistor' Bell Syst. Tech. J., 49, 827-852 (1970).
2. Moll, J L, and Ross, I M, 'The Dependence of Transistor Parameters on the Distribution of Base Layer Resistivity'. Proc. IRE, 44, 72, (1956).
3. Early, J M, 'The Effects of Space-Charge Layer Widening in Junction Transistors', Proc. IRE, 40, 1401-1406 (1952).
4. Hart, B L, 'Introduction to Analogue Electronics', Chapter 4, Arnold (1997).
5. Hart, B L and Barker, R W J, 'DC matching errors in the Wilson current source,' Electronics Letters Vol. 12, No 15, pp. 389-390, July 1976.

Fig. 9. Showing three choices for a smallsignal low-frequency equivalent circuit of the bjt.

Fig. 10. Practical cross-section of a discrete bjt showing the existence of base bulk resistance (\mathbf{r}_{x}) and unequal junction areas.

ELECTRONICSAPPOINTMENTS

We would be glad to focus our efforts on securing your next move. Please call John Darby, ref 2984H. Tel: 01727818704 Fax: 01727838272 Email: johnd@jprecruit.com

JPR, The Courtyard, Alban Park, Hatfield Ad, St Albans; Herts AL4 ILA.

HARDWARE OPPORTUNITIES

SENIOR ELECTRONICS ENGINEERS Cambs

to $\mathbf{\varepsilon 4 5 , 0 0 0}$ Possibly unparalleled opportunity for an excellent all round design engineer to make full use of the skills you possess. You will work as part of a small team, but with minimal supervision covering a range of electronic engineering tasks including design, project management and consultancy.
With an excellent academic background and at least 5 years experience of product development in a high volume environment, covering microprocessor/digital design, analogue design and real-time software. In return a superb future awaits you in one of the UK's premier organisations. Contact Steve Davis

RF DESIGN ENGINEERS
 Middx/Berks/Surrey/Wilts/Avon/Cambs/Beds/Yorks/Hants

to $\mathbf{\varepsilon 4 5 , 0 0 0}$
There is, as always, a huge demand for Engineers with experience of RF circuit design, a majority of these positions exist within the mobile communications and digital broadcast marketplace with both manufacturers and consultancies. There are opportunities from Junior to Consultant level, all requiring a similar background in RF, i.e. baseband to 10 GHz , modulators, synthesisers, VCOs, mixers, PAs, LNAs, diplexers and antennas, with low cost, high volume production always being issues. If you would like to find out more about the specific opportunities in your area please call for a no pressure chat. Contact Steve Davis

RF TEST ENGINEERS
 Various

up to $£ 25,000$
Several of our clients are looking to recruit RF Test Engineers who have at least 3 years experience to work in test and development of RF products for telecoms and other coms related products such as cellular phones, base station equipment and network products. You will need previous experience of test to component level up to 20 GHz using spectrum analysers, oscilloscopes, meters etc. Other useful skills would include, circuit design skills, test skills in the VHF, UHF, LF and MHz ranges and project management. Contact Simon Allder

TEST TECHNICIANS

Bucks

up to $£ 22,000$
This company designs and manufactures microwave components, switches, oscillators and a number of very complex intergrations, and they are looking to recruit a number of Test Technicians to work in a clean room environment. The ideal candidate will be at least HNC qualified have experience in the alignment and testing of microwave products and be expected to use a range of test equipment. In return this company offers five weeks holiday a year, private medical cover and a very good contributory pension scheme.
Contact Simon Allder

TEST DEVELOPMENT ENGINEER Berks

This control systems company are looking to recruit a Test Development Engineer. The overall purpose of this position is to provide test engineering expertise to the test department and support to internal customers, developing cost effective test solutions to automate product testing. The ideal candidate will be BSc/HND qualified, have experience of anallogue and digital circuit design, ATE test techniques, software development (Visual Basic, HP VEE), fault finding to component level and experience of volume electronic test. Contact Simon Allder

MATERIAL MANAGERS
 Various

up to $£ 35,000$
We have a number of clients seeking Material Managers. The successful candidates preferably educated to degree standard will have a 'Hands-On' approach, proven man-management skills, experience in a materials function and excellent interface skills with customers on material issues/problems. If you are capable of developing systems and procedures to contribute towards the advancement of these companies and are looking for a challenge, please give us a call!! Contact Simon Allder

Who needs a degree?
 It seems nothing short of BEng will do if you want to succeed as an engineer.

 Someone should have told last year's award winning electronics engineers Kim Dennis and Amanda Box. Richard Wilson reportsApoint of view expressed during last year's Recognising the Engineer campaign was that you need to have spent at least three years at a university obtaining a degree before you could rightly call yourself an 'engineer.' It seems that for some engineers desperate to maintain their status, nothing short of a BEng - and probably one from a red brick university - will do if you want to succeed as an engineer.
This view of the world is surely misguided. If you still need convincing then look no further than the career paths of two award-winning electronics engineers, Kim Dennis and Amanda Box.

Kim Dennis, IT specialist skills group manager at Marconi Communications beat off stiff competition to take the title of 1998 Young Woman Engineer of the Year.
Dennis, who is responsible for career development resource management and work load scheduling, received her award and a cheque for $£ 1000$ in January from Her Royal Highness The Princess Royal.
Twenty-six year old Dennis
started her association with the telecoms manufacturer, formerly known as GPT, straight from leaving school in 1988. Under a technical apprenticeship with GPT she studied for her Ordinary National Diploma (OND) in electrical and telecommunications engineering at Coventry Technical College.
On completion of that course, Dennis studied for a further two years at college as a sponsored student with GPT. In 1992 she qualified with a Higher National Diploma (HND) in electrical and telecoms engineering.
The real benefit of being a sponsored student was that Dennis walked straight into the job she wanted at GPT. For Dennis the career ladder started as a systems support specialist with GPT's IT department. Within three years she became a team leader and by 1998 she was managing a team of 20 IT specialists within the company.
As a project manager Dennis is involved in planning and monitoring IT programmes. But she also accepts the importance of her role in managing and monitoring the career development of her team

Amanda Box, a senior software engineer with Thomson Marconi Sonar, was another electronics engineer commended in the awards.
She took an HND in software engineering and was sponsored by GEC Marconi Avionics in Rochester. Box spent three years with GEC before transferring to Thomson Marconi Sonar where she worked as a software engineer in the airborne anti-submarine warfare group.
With experience working on systems for the Royal Navy's Sea King and EH101 Merlin helicopters (pictured) under her belt she was promoted to a senior software engineer leading a team of ten staff.
As a team leader Box is involved in data processing software design and implementation, but she also has
 management tasks such as budget control for her area and the selection of training courses. for all the project engineers.

Radio Communications

DESIGN SUPPORT ENGINEER ~ Cambs
 to $£ 28 \mathrm{~K}$

The future in digital radio technology looks very rosy and you can be part of a design team writing product specifications and reviewing drafts for conformity in this area. 2 years radio experience (ideally PMR) is sought together with a relevant degree. Familiarity with MSOffice is also essential to write technical reports and outline specifications. Quote WW9903-51.
Contact Mark Wheeler for more information.

RF IC DESIGN ENGINEER ~ Bristol

to $£ 45 k$
Make a mark for yourself and be the first IC designer in this established and fast growing Radio Systems Design House. You'll be working alongside a very fine multidisciplinary team of Engineers involved in some of the most stimulating projects around. Competent hands on skills are required including experience up to 3GHz together with some good ideas. Quote WW9712-17.
∇ Contact Mark Wheeler for more information.

PRODUCTION ENGINEER ~ Bristol

to $£ 30 \mathrm{k}$
A sound knowledge of small to medium volume production and manufacturing techniques is required here. Experience of liaising with small multi-disciplined $R+D$ teams and being able to pro-actively work with outside contractors is essential. A general electronics background is required, ideally with radio communications experience. Quote WW9811-54.
7 Contact Mark Wheeler for more information.

RF PA DESIGN EXPERTS ~ Bristol

to $£ 40 \mathrm{k}$
Involved in projects that seem to go on forever? Stuck in a corner working on the bit your boss says you have to do? Yes? Then your salvation is at hand with this fast growing Wireless Communications company where your talents can be truly realised. Accomplished design skills up to 3.5 GHz in high power PA's ideal, receiver and synthesisers development experience very useful. Quote WW9707-56.
∇ Contact Mark Wheeler for more information.

BENCH TECHNICIANS ~ Notts $£ 10 \mathrm{k}-£ 22 \mathrm{k}$

Component level expertise? Board level diagnosis? Shiny new technical qualification? This leading cellular maintenance organisation wants you!! You don't have to have communications product experience (although it would help), but you'll be keen to keep abreast of the latest technology. All this in a positive, friendly environment too! Quote WW9703-37.
\checkmark Contact Mark Wheeler for more information.

DSP SOFTWARE ENGINEER ~ Bristol to E34k

For this one, you'll need to bring to the table at least a year's expertise in DSP Algorithm development, real time embedded software and an understanding of hardware design. You would be working on radio modems, linear amplifiers and many other interesting and challenging projects. A radio background is desirable but not essential. Call us today if it sounds like you. Quote WW9804-30.
Contact Mark Wheeler for more information.

SYSTEMS ARCHITECT ~ Wilts
to £44K
This prestigious company has risen to become a world leader in mobile communications. This has been achieved by attention to detail and quality systems second to none. To maintain this position, they are seeking UMTS systems specialists to define the core network architecture for mobile UMTS systems. A good team player with a flexible attitude, you should have experience in GSM protocols/simulation and data networking. Quote WW9811-30.
Contact Malcolm Masters for more information.

DIGITAL DESIGN ENGINEER ~ N. Wilts to $£ 35 k$

This role has been created to work within a small team on the latest digital communications systems. You will be involved in developing VHDL code for FPGA and ASICs for radio base stations. Significant experience in digital design, VHDL and FPGA is required along with strong academic achievements. Quote WW9811-34.
Contact Malcolm Masters for more information.

CELUULAR REPAIR SUPERVISOR ~N.W Lon. to $£ 19 k$
Our client is a significant player in the sales and service of cellular products. They are actively looking for a supervisor from the cellular/comms/ PMR industry to repair and test a wide variety of cellular phones and run a start-up service dept. C\&G/HNC or relevant industrial experience required. Quote WW9811-46.
Contact Rich Wootten for more information.

SERVICE REPAIR TECHNICIANS ~ Surrey c.£I8k

This is a great opportunity for a keen RF technician to work in a lively atmosphere for a major manufacturer of PMR equipment. You'll need to be able to service and repair to component level and have relevant mobile comms involvement. Some Band 3 and installation experience would be desirable but is not essential. Quote WW9811-52.
Contact Rich Wootten for more information.

TEST DEVELOPMENT ENGINEER - Bristol to £30K

Our client is a fast growing British company that specialises in PC based video telephony. They require an individual to design and implement test procedures and non-ATE hardware and software used in design and production. Experience in SMT, C/C++ embedded software for PC's and HP-Vee/Labview is desirable. Quote WW9902-32.
Contact Rich Wootten for more information.

PRODUCT SUPPORT ENGINEER ~ Berks to £25k
Our client is at the forefront of mobile telecoms, having released several of the most popular products on the market. Now it's your turn to get a slice of the action. You'll need to be able to support the introduction of complex mechanical parts into manufacture and maintain build standards in a demanding industry. HNC and electro-mech background required. Quote WW9811-09.
Contact Rich Wootten for more information.

ARBOUR APPOINTMENTS LTD
 PLACING ENGINEERS FIRST

SOFTWARE ENGINEER

Bath
Salary $£ 18,000$ to $£ 25,000$

Software development for embedded microprocessor and microcontroller based systems. Assembler and C are both required skills. Any hardware knowledge would be a distinct advantage, as would serial communications exposure.

Quote ref. WWA389

HARDWARE ENGINEERS

North Midlands Salary $£ 23,000$ to $£ 29,000$
Engineers required with experience of FPGA and/or ASIC. There will be system architecture design and some small signal digital \& analogue. Knowledge of current CE and EMC standards and PCB layout constraints would be ideal. Quote ref. WWA401

ELECTRONICS ENGINEER

North East
Salary $£ 18,000$ to $£ 22,000$
Engineer required to join fast growing company producing Audio \& Video Recording Equipment for the professional sector. Analogue \& digital skills required. PIC, 8051 \& 16 bit microcontroller exposure, EMC \& product approval desirable.

Quote ref. WWA438

SOFTWARE ENGINEERS

Birmingham Salary $£ 20,000$ to $£ 30,000$
Engineers with a good degree required to join a dynamic team working in an innovative environment. To work with leading edge technologies and high-end microprocessors/DSPs. Requires $\mathrm{C} / \mathrm{C}_{+}+$for real-time embedded systems.

Quote ref. WWA205

ELECTRONICS ENGINEER

Cotswolds
Salary $£ 18,000$ to $£ 25,000$
Design consultants based in a pleasant Cotswolds setting require creative engineers with experience in digital/analogue design for microprocessor based systems. Software skills in C and assembler ideal. Variety of exciting design tasks. Quote ref. WWA124

SOFTWARE ENGINEER

Midlands
Salary $£ 21,000$ to $£ 25,000$

Graduate ideally with design experience to work on projects employing Win 95/NT/98, Visual Basic, C, and M68000/TMS320/Z80 series microprocessors. Software \& firmware to control advanced materials testing equipment.

Quote ref: WWA295

SOFTWARE ENGINEERS

Derbyshire
Salary £20,000 to $£ 28,000$
Probably degree educated with two or more years' experience writing real-time software for embedded control systems. You must have knowledge in C and assembly language. Hardware design exposure is also essential.

Quote ref. WWA437

SOFTWARE ENGINEERS

South Midlands
Salary $£ 16,000$ to $£ 28,000$
A good degree, relevant industrial experience and a flair for embedded control applications, to join this leading edge technology driven company. Must have experience in either PIC assembler or TI TMS320 DSP development. Quote ref. WWA132

SOFTWARE ENGINEERS

North

Salary $£ 13,000$ to $£ 24,000$
Many vacancies exist from graduate entry level to Senior Engineers to work on real time process control projects. You will be using C/C++ to write software for embedded systems. Knowledge of Windows 95/NT would be an advantage.

Quote ref. WWA338

HARDWARE ENGINEER

West Midlands
Salary $£ 22,000$ to $£ 27,000$
An exciting opportunity exists for an Engineer with a bias towards analogue circuit design. There will be a little digital design and some RF exposure. This is a hands-on role working for a market leader on a range of control technologies. Quote ref. WWA393

ELECTRONICSAPPOINTMENTS

Find your future
 with Kelly Technical

Southern Area Vacancies

\rightarrow Service Manager - Berkshire

With extensive experience of digital/analogue audio and visual avionics equipment repair to component level. Management experience including recruitment, training and performance analysis is essential for this busy and challenging environment. To £28K plus an attractive package.
\rightarrow RF Test Engineer - Middlesex
As part of a small, friendly team your experience of RF equipment fault finding to component level will make an extremely important contribution to this well established specialist mobile radio company. Salary to $£ 18 \mathrm{~K}$ plus benefits.
\rightarrow RF System Design Engineers - Hampshire
Working to customer or published specifications, e g ETSI, CCITT, HMGITT and with a minimum of 5 years experience in GSM, PCN, PCS, SATCOM or related fields. Key experience areas are frequency and level planning, spurious identification/management and the understanding of time domain considerations. Salary to $£ 35 \mathrm{~K}$ plus a comprehensive benefits package.
\rightarrow RF Test Engineer - Berkshire
With a Degree or HND in Electronics or a similar discipline and extensive RF test experience, you will perform functional testing of equipment to customer requirements. An appreciation of Military Standards and PC applications for report writing and procedures will also be required. An attractive salary and benefits package is on offer.

- ASIC Designer - Hampshire

A minimum of 2 years experience of Signal Processing Design using HDL such as VHDL, Verilog or similar, Synthesis and Gate Development Simulation and a thorough understanding of ASIC Architecture design and Technology. Salary to £35K with an excellent benefits package and working environment.

For details of the above and other electronics vacancies in the South of England telephome
Roy Parrick on 01703237200 or fax on 01703634207.
Alternatively E-Mail to southtech@kellyservices.co.uk

Midlands Vacancies

Our Lincolnshire based client is an international market leader in the manufacture and sale of RF Communications Equipment and Systems. Due to continuing growth the following positions are available:

\rightarrow Procurement Mlanager

Degree In Economics, Business Studies or related discipline; knowledge of international purchasing and procurement strategies; 3-5 years experience in a procurement environment. Experience in an electronics or communications company would be an advantage Applicants who do not currently have manager status who feel they are ready to move into a management role will be considered Salary c£24-29k

Customer Support Engineer

To install and commission radio systems world wide, and to train customers personnel on the systems installed. Must have HNC in communications plus a minimum of 3 years experience in telecomm networks and VHF/UHF radios. Salary c£20-25k.

DSP/Digital Engineer

With real-time design experience in signal processing and simulation including DSPs (Analogue devices ADSP 2171, Assembler/c) and FPGAs. Must be experienced in the use of CAD tools, e.g. Mattab and MathCad with ISO9001 familiarisation. Salary c£30-35k.

- Systems Engineer / Manager

To carry out system design and supporting calculations for proposals and produce technical proposal documentation. Degree in Electronics, Communications Engineering or related discipline required. In depth knowledge of communications system design. At least 8 years in a communication systems engineering role with a minimum of 3 years in a senior position. Salary c£25-35k.
\rightarrow Commissioning Engineer - Cambridge
To install and commission complex analogue and digital communication systems including Base Station Radio, Wide Area VHF/UHF coverage systems etc. Degree in electronics or equivalent experience and the ability to fault find at component level. World wide travel required. Salary c£20-25k
Contact: Emma Eagle, Tel:(01733) 554315; Fax: 564132;
Emails peterboroughtech@kellyservices.co.uk

Checking C in situ

Abstract

Cyril Bateman presents possibly the best ever general-purpose meter for checking electrolytic capacitors without removing them from the board.

Diagnosing a failed aluminium electrolytic capacitor mounted on a printed circuit board is more difficult than for other capacitor types, which fail as short circuits. ${ }^{1}$ Normally, when an aluminium electrolytic capacitor fails, it exhibits a higher than normal impedance. But its capacitance value may be little changed, and usually stays well within tolerance so measuring capacitance does not help.
Aluminium electrolytic capacitors are self repairing. Defective areas in the oxide dielectric are replenished by new oxide growth, consuming some of the oxygen available from the electrolyte. This self-repairing action ultimately becomes the wear out mechanism. ${ }^{2}$
An aluminium electrolytic capacitor's service life ends when oxygen needed to maintain or repair the oxide dielectric cannot be provided by the electrolyte. Electrolyte conductivity is reduced, increasing the capacitor's equivalent series resistance, or ESR, and hence its impedance at all frequencies. There's more on this in the panel entitled 'Electrolytic capacitor ESR.'
This increase in impedance is analogous to inserting a resistor in series with the capacitor, affecting the phase angle of applied signals and lengthening the device's time constant.
Increased ESR, or impedance, of an aluminium electrolytic capacitor at room temperature indicates a failure or pending failure. The ESR and impedance of unused capacitors varies widely with capacitance value and voltage. So a change in impedance or ESR is almost impossible to diagnose reliably, except by comparing the capacitor being tested with an identical unused one, Table 1. This is discussed further in the panel entitled 'Impedance or ESR?'
By comparison, the measured tangent δ of unused capacitors at 100 Hz is a relatively constant number, regardless of value or voltage rating of the capacitor. Tan δ is a direct indicator of capacitor quality, Table 2.
At any chosen frequency, a capacitor's tan δ relates the capacitor's ESR and capacitance value. Any increase of ESR results in a corresponding, easily identified, increase of $\tan \delta$.

What is $\tan \delta$?

The $\tan \delta$ of a capacitor at any frequency, is directly related to its capacitance value and ESR at that frequency. ${ }^{3}$

$$
\begin{equation*}
\tan \delta=\frac{E S R}{X_{C}} \tag{1}
\end{equation*}
$$

where

$$
x_{C}=\frac{1}{2 \pi F C}
$$

Alternatively $E S R=X_{C} \times \tan \delta$ and $\tan \delta=E S R \times 2 \pi F C$.
You might find it easier to visualise these relationships by looking at a capacitor's current, voltage and impedance vector drawing, as in Fig. 1. As you can see, with the X_{c} vector unchanged, increasing the ESR vector reduces the loss angle θ, increasing the complementary angle δ. On the other hand, increasing the ESR vector only slightly increases $|\mathbf{Z}|$, the impedance vector.
As δ increases, so does its tangent. Known as tan δ, this figure indicates the quality of a capacitor. The smaller tan δ, the better the capacitor. Any increase in tan δ directly indicates a degraded component. The panel entitled 'Capacitor quality and tan δ^{\prime} expands on this aspect.

Why measure tan δ at 100 Hz ?

All aluminium electrolytic capacitors are tested in production for $\tan \delta$ at 100 Hz or 120 Hz , according to the frequency of the maker's mains supply. While many capacitor makers also table high-frequency impedance values, these are not production tested. To maximise yields, the measured tan δ of typical new capacitors will be around 50% of the stated limit value.

The range of 100 Hz tan δ measured for new, good capacitors, is extremely small, changing little with capacitance values and voltage ratings. ${ }^{4}$ Tan δ of typical commercial aluminium electrolytic capacitors ranges from a low of 0.02 to a high of 0.3 for large low voltage parts, Table 2.

Aluminium electrolytic capacitor tan increases rapidly as the capacitor wears out. It provides a sensitive, easily interpreted measurement. As a general guide, tan δ for typical good board-mounted capacitors should be less than 0.1 . Capacitors with a tan δ of greater than 0.2 should be replaced in the interests of reliability.

Good quality commercial electrolytic capacitance bridges measure tan δ, but they can be expensive and not easily portable. In addition, test voltages used may turn-on adjacent semiconductor junctions, invalidating the measurement.
Measuring the tan δ of a board-mounted capacitor requires a low cost, easily portable meter with four terminal contact probes. It also requires a suitably low test voltage and a quick unambiguous measured result. Unable to identify such an instrument I resolved to build one.

Measuring tan δ on a pcb

How then could the tan δ of a boardmounted capacitor be measured?

From equation 1, it is clear that the ratio of the capacitor's ESR to its capacitive reactance is needed. You do not need to know the true value of either, only the relative values. This simplifies the task.

Accurate measurement of individual values requires accurate control of the measurement current used and its exact frequency. Since ratios are being evaluated, circuit current is common to both

Fig. 2. PSpice plot of a simple series CR circuit representing a 'bad' $1000 \mu \mathrm{~F}$ capacitor having a $\tan \delta$ of 0.4 at 100 Hz . Generator source impedance is $\mathbf{2 . 2 \Omega}$. This 0.4 tan δ is represented by a 0.6366Ω series resistance. The phase angle between the generator current (cyan) and the voltage across the capacitor terminals (red), is not 90°. However the phase angle between the voltage developed across the capacitor's ESR (blue) and across the capacitor's reactance (green), is exactly 90°.

Table 1b). Typical impedances measured at 100 kHz - high capacitance values.

Capacitor	$\mathbf{1 0 0 0 \mu}$	$\mathbf{2 2 0 0 \mu}$	$\mathbf{4 7 0 0 \mu}$	$\mathbf{1 0 0 0 0} \mu$
25V polar AI.	0.090Ω	0.07Ω	0.045Ω	0.022Ω
63 V polar AI.	0.050Ω	0.025Ω	0.015Ω	0.010Ω

Table 2a). Typical tan δ values of new capacitors measured at 100 Hz - low capacitance values.

Capacitor	1μ	2.2μ	$\mathbf{4 . 7 \mu}$	10μ	22μ	47μ	100μ
50 V bipolar AI.	0.05	0.05	0.05	0.05	0.05	0.05	0.06
63 V polar AI.	0.04	0.04	0.035	0.035	0.035	0.045	0.04
450 V polar AI.	0.1	0.1	0.08	0.05	0.05	0.05	

$\begin{array}{lllll}\text { Table } 2 b \text {). Typical tan } \delta \text { values of new capacitors measured at } 100 \mathrm{~Hz} \text { - high capacitance values. } \\ \text { Capacitor } & 1000 \mu & \mathbf{2 2 0 0 \mu} & 4700 \mu & \mathbf{1 0 0 0 0 \mu} \\ \text { 25V polar AI. } & 0.06 & 0.075 & 0.09 & 0.1 \\ \text { 63V polar AI. } & 0.03 & 0.05 & 0.06 & 0.07\end{array}$

Fig. 3. Figure 2 repeated except the red trace now shows the synchronous detector voltage for the ' X ' channel, which represents the capacitor's reactance. This trace must be integrated to a steady average voltage before if can be used
parameters so its value need not be known.
Capacitance and ESR are treated as separate components in the simulations that follow. With a practical capacitor, neither parameter is available at the capacitor terminals. Circuit simulation ignores such constraints. By means of a series $C R$ circuit, a capacitor's internal voltage, current and its relative phases can all be explored.
Using PSpice and a series CR equivalent circuit, I plotted the current and voltage waveforms for a variety of capacitor $\tan \delta$ values. To illustrate a failed capacitor, I assumed a $1000 \mu \mathrm{~F}$ component with a $\tan \delta$ of 0.4 . A low generator source impedance was used to plot generator current, Fig. 2.

The phase angle between the voltage developed across the capacitor terminals and the source generator current, is clearly not 90°. It varies with capacitor tan δ or ESR and with generator source impedance, so it cannot be defined.
Current from the generator source is exactly in phase with the capacitor's through current and the voltage developed across its ESR. The voltage developed across the capacitor's reactance remains displaced in time by exactly 2.5 ms , representing a quarter cycle, or 90° of phase.

Full measurement schematic, less decoupling capacitors, used in my prototype meter. Additional circuitry is included, but not shown here, for the test signal source generator and the dry battery powered, stabilised switched-mode $\pm 5 \mathrm{~V}$ supplies. The small modification needed to my PM1 28/7106 display module is described in the text.

Readers interested in PCB and parts details please send an SAE marked 'Capacitors' to Electronics World's editorial offices, from where it will be forwarded to Cyril.

The problem now is how to measure these two voltages The only accessible voltage that can be measured is that across the capacitor terminals - i.e. its impedance.
Initially I planned to use two synchronous rectifiers. One would be timed to coincide with the generator current, representing the voltage developed by the ESR. The second would be delayed by a quarter cycle to measure the voltage developed by the capacitor's reactance. Averaging both then dividing the results would derive the capacitor's tan δ.
Further PSpice simulations show this simple approach was not practicable. Both sampled voltages contain large nega-tive-going elements, requiring long integration times. Illustrated is the waveform of the capacitor's reactance voltage, labelled as ' X ' channel, Fig. 3.

Towards faster results

Looking at Fig. 4, the curve for the capacitor's ESR in particular has nearly equal positive and negative elements and needs a long time constant to average. For the instrument to be useful as a diagnostic tool though, it is desirable for it produce results in less than a second. Assuming the standard electrolytic test frequency of 100 Hz and using PSpice simulations, I was unable to achieve satisfactory averaging in an acceptable time.

A better plan

While this basic timed sampling concept was obviously correct, a means to expedite averaging was required.
From further simulations, I found a reduction of the sampling periods to 90° or less was beneficial. It was even more

as sampling time was reduced. Short sampling periods require a sample-and-hold circuit together with timing and control logic. My original concept of a simple tester had suddenly become more complicated.
My first task was to generate two sampling waveforms, exactly 90° apart, one coinciding exactly with the peak of the generator's output current. I decided to use a 4046 CMOS phase-locked-loop. While locked to an input signal, the 'phase-comparator 1' phase detector of a 4046 is claimed to have a 90° phase difference between the input signal and its VCO output. ${ }^{5}$
Initial trials confirmed that this figure of 90° only applied while the input signal and the PLL centre frequency coincided. Small component changes - even ambient temperature drifts - affected this phase difference. Time for a rethink.
I evaluated several options, and eventually decided to double the signal's frequency, then halve it to ensure equal mark:space ratios. Application of some decoding logic to both frequencies could produce exactly 90° phases, as needed.
As before, the 4046 phase locked loop was used, but this time, its 'phase-comparator 2 ' detector output was fed into a 4018 configured to divide by two. I obtained two squarewave signals, both having equal mark:space ratios. The first was at 100 Hz and phase locked to the generator's current waveform. The second was at 200 Hz and had rising edges coincident with the 100 Hz waveform transitions.
These signals were easily decoded to identify the 90° and 180° points of the generator's current waveform using a pair of dual input Nand gates, $I C_{6 \mathrm{a}}$ and $I C_{9 \mathrm{a}}$ in the schemat-

ic. The rising edges of these decoded outputs were used to trigger two monostable multivibrators, Fig. 5.
Sample and hold circuits need a short time to track then hold the input waveform. Any change in voltage during the sample period causes errors. From my PSpice plots, I decided to sample this changing waveform for a minimal time of, say, 5° of the waveform maximum, Fig. 6.

Fig. 4. Figure 2 again, but this
time the red trace shows the synchronous detector voltage for the ' R ' channel, representing the capacitor's ESR. This waveform requires excessive integration time for use in my meter. Testing unused, small $\tan \delta$ capacitors, this trace after integration results in a very small output of just a few millivolts.

Fig. 5. This Pulsar simulation illustrates the method used to generate the logic control signals from the original 100 Hz and its doubled
frequency. These brief sampling pulses are used to control the ' R ' and ' X ' sample and hold integrated circuits.

The $L F 398$ sample-and-hold chip requires at least 20μ s to acquire the sampled signal. Practical experiments using an LF398 and test capacitors of varying tan δ indicated that 3°, or around 80μ s sampling time, gave good results.
Having a method to sample the ESR and X_{c} components in the capacitor voltage waveform, I could now design the generator and current sensing circuits.

Generator problems

One particular difficulty was the wide range of capacitance values. I wanted to include everything from $1 \mu \mathrm{~F}$ to $10000 \mu \mathrm{~F}$.
At 100 Hz , a $1 \mu \mathrm{~F}$ capacitor's impedance is around 1600Ω, but a $10000 \mu \mathrm{~F}$ component only exhibits around $160 \mathrm{~m} \Omega$ at the same frequency. A constant test current was not possible.
To avoid turning on any semiconductor junctions connected to the capacitor, a low test voltage is essential. Some HP5082-2080 low voltage Schottky barrier diodes were found to conduct at 200 mV AC. From experiments measuring tan δ of capacitors with and without a parallel

HP5082-2080 diode, I determined the maximum test voltage to be 150 mV . At this voltage, any effects on capacitor tan δ value from semiconductor junctions in the same circuit as the capacitor being measured are negligible.

Allowing a low generator source impedance and a 2.2Ω current-sensing resistor, this 150 mV signal requires some 50 mA of generator current. With the unfavourable voltage/current phase angles needed, this proved difficult using battery powered op-amps.

Having tried various options - including high current or booster op-amps and low power audio output amplifier chips - I decided to trade voltage for current. A low-cost miniature $L T 700$ audio transformer needing only $\pm 1.5 \mathrm{~V}$ push-pull drive at negligible current improves battery life.

Current sensing

Using the above generator and an LM31/ comparator for the logic channel input stage, I could finalise the values of the current sensing resistors. Ideally one would ensure the test capacitor's impedance was within a factor of ten of the sensing resistance used. Experimentation confirmed that a 2.2Ω sense resistor was usable for test capacitances of $100 \mu \mathrm{~F}$ or more.
Lower capacitance values proved more difficult. Ideally, three sense resistor ranges were needed but having only two would be more economical. Sense resistors larger than 100Ω were prone to trigger the comparator by noise picked up on the test leads.

Testing $1 \mu \mathrm{~F}$ capacitors with a 10Ω sense resistor the comparator did not provide reliable triggering. A compromise of 35Ω was chosen, allowing good measurements down to $2.2 \mu \mathrm{~F}$ - and even $1 \mu \mathrm{~F}$ with reduced accuracy.

As a final refinement, two Schmidt trigger Nand gates were used to clean up and slightly delay the comparator output. This was done to prevent comparator noise from triggering the phase locked loop.
My current-sensing logic circuits, needed for the sample and hold stages, were completed.

Impedance or ESR?

The impedance of any capacitor is easily measured. Simply subject the capacitor to a known current and measure the voltage developed across the capacitor terminals. Impedance

$$
|Z|=\frac{\text { voltage }}{\text { current }}
$$

using Ohm's law, much like measuring a resistance value. ${ }^{6}$
Searching Internet and trade publications revealed a few high frequency 100 kHz capacitor impedance testers, but not one single low cost meter to measure $\tan \delta$.
While many of these were labelled as ESR testers, this is a misnomer since all the meters I found measured impedance. Based on the mistaken belief that at 100 kHz capacitive reactance is zero, they thus claimed to measure ESR.
This presents a problem with smaller capacitance values of, say, $100 \mu \mathrm{~F}$ and below. Brand new, many makes exhibit 100 kHz impedances greater than 0.5Ω, simply because their capacitive reactance approaches this value. Regrettably these are the values most used on circuit boards.
When measured, the capacitance value of all aluminium electrolytic capacitors reduces substantially as frequency increases. Typical values at 100 kHz are perhaps 50% - and frequently much less - of the 100 Hz value.
One brand-new $100 \mu \mathrm{~F}$ capacitor I measured at 100 kHz using a precision bridge had an impedance of $570 \mathrm{~m} \Omega$. Its capacitance at 100 kHz was only $37.5 \mu \mathrm{~F}$. By comparison, a better make had an impedance of $170 \mathrm{~m} \Omega$, and $64 \mu \mathrm{~F}$
capacitance. Both these capacitors were new and well within their makers' specifications.
Capacitors of $1000 \mu \mathrm{~F}$ or more will be above self-resonance by 100 kHz and thus behave as DC blocking inductors. Good and bad capacitors then have an impedance of less than 0.5Ω.
These are just two of the problems met measuring impedance at 100 kHz . Measured results need interpretation. Impedance values cannot simply be read as good or bad, they must be compared with a similar and unused capacitor.
Some meters incorrectly claim to be able to distinguish between good and bad capacitors in circuit. I have seen them with scales marked 'good' for values below 0.5 to 1Ω, 'compare' for values up to 10Ω and 'bad' for all higher impedances.
I have measured 100 kHz impedance values ranging from 0.01Ω to 24Ω for known good, unused aluminium electrolytic capacitors. Clearly it is not possible to pre-define specific good/bad impedance values.
If their readings require interpretation, why then do these meters measure impedance? The answer is simply that it is an extremely easy measurement to perform, compared to measuring $\tan \delta$ or ESR.
The results of these 'ESR' meters require interpretation and comparison against known good capacitors. Measuring a suspect capacitor's high-frequency impedance however is better than simply guessing at good or bad.
As a long time capacitor engineer also experienced in designing and repairing circuits, I have learned that what is really needed is in-circuit measurement of $\tan \delta$ at 100 Hz .

Capacitor analogue voltage waveform

For my prototype, I wanted to provide two capacitor test methods, flexible four-terminal test leads and a four-terminal component jig.
Typical commercial test leads have a resistance of 0.1Ω. Since it is necessary to measure ESR down to 0.010Ω, a four terminal measurement system is essential. For those of you who are not familiar with this technique, four-terminal measurement involves supplying the test current along one pair of leads and measuring capacitor voltage via a second pair.
True four-terminal measurement requires complete separation of the current and voltage leads. Contact is made to the capacitor lead wires, using 'Kelvin' clips. This is not practicable when probing printed board mounted capacitors though.
As a compromise I found some test prods that could be wired four terminal except for the final 30 mm long brass probe points, which each measured $0.45 \mathrm{~m} \Omega$. As a result I was forced to accept $1 \mathrm{~m} \Omega$ of common contact resistance, resulting in a small but acceptable error when measuring the largest value capacitors.
The resistance of the earthy probe lead, together with the range sense 0.22Ω resistor, means the test capacitor's voltage is effectively floating. This necessitates the use of an instrumentation amplifier as the first input stage of the analogue measurement channel.
The 150 mV generator voltage, fed via the 2.2Ω sense resistor, means large test capacitance values develop very small voltages. To minimise sample and hold errors, these low level test signals were amplified in the INA118 in-amp, taking care to stay within the working range of the AD711 amplifier and $L F 398$ sample-and-hold circuits.
The small delay deliberately built into the comparator and logic channel circuits is offset using an adjustable $R C$ delay at the INA118 output. This delay is adjusted as part of the meter calibration.

Range switching

An adjustable, voltage-sensing comparator and reed relay was used to short out the 33Ω current sensing resistor when measuring capacitors bigger than $47 \mu \mathrm{~F}$.
Having completed the circuits needed to measure the volt-

ages relating the test capacitor's ESR and reactance, all that remains is to divide the ' R ' channel voltage by the ' X ' channel voltage and display the result.
Various options including multiplier/divider chips and log/antilog circuits were considered. Following some practical experimentation, I found that they could be dispensed with.
The 7106 DVM integrated circuit compares the measurement voltage against its pre-set reference voltage. This reference voltage is set to 50% of the desired full scale. Removing two resistors, R_{2} and R_{3}, I managed to disconnect this reference voltage from a PM128 pre-packaged display module.
An adjustable voltage was fed to the REF-HI input terminals, a second to the normal IN-HI terminals. Both commons went to the input ground. I found this package could divide and display the result extremely accurately, provided both voltages were within the meter's maximum 2 V input range.

Fig. 6. Sample-andhold logic control voltages, superimposed onto the Fig. 2 plot. The logic decoding circuitry, which permitted the successful design of my meter, occupies over 70% of the measurement section of the 140 mm by 74 mm printed board.

Electrolytic capacitor ESR

Aluminium electrolytic capacitor electrolytes are conducting solutions, usually a neutralised weak acid in a solvent. This electrolyte must not freeze or boil at the extremes of the capacitor's working temperature range, or attack pure aluminium at any temperature. Most modern electrolytes are made without adding water, but a small water content, as water of crystallisation in some of the ingredients, is inevitable.

In a capacitor, some of this electrolyte is contained within the minute voids and channels in the anode and cathode foils oxide coating. These channels can be tenuous and very long relative to their cross section. ${ }^{2}$ The effective electrolyte resistance in them increases with frequency.

Most of the electrolyte however will be absorbed in the separator, usually a paper tissue, interwound with the anode and cathode foils during assembly. The resistivity of the electrolyte/paper separating tissue is increased, compared to the bulk electrolyte, depending on paper type and thickness used.
The aluminium oxide films on the anode and cathode foils both contribute frequency dependent dielectric losses. A parallel loss resistor could represent these losses, but for aluminium electrolytic capacitors, equivalent series loss resistance is used.
The aluminium metal foils together with connecting leads,
etc., contribute a small metallic resistance element.
At any frequency the capacitor's ESR is the combined effect of the foils series loss resistance and these metallic resistances, added to the electrolyte paper resistance.

Consequently a capacitor's ESR varies with measurement frequency, tending initially to reduce as frequency increases. At intermediate frequencies it becomes nearly constant. Then at frequencies where the capacitor has become inductive, it increases more rapidly.

An aluminium electrolytic capacitor's ESR is strongly influenced by its internal temperature. An increase in temperature reduces ESR. Below $0^{\circ} \mathrm{C}$ the capacitor's ESR increases rapidly. The viscosity of the solvent in the electrolyte increases as it approaches its freezing point.

Most of all, ESR depends on the capacitance value and to a lesser extent its voltage rating. At a particular voltage rating, all other things being equal, doubling a capacitor's value will halve its ESR.

A particularly common mistake is to consider a capacitor's ESR as having a fixed value. Clearly from the above, that is not possible.

ESR for any particular aluminium electrolytic capacitance value and voltage rating, is a combination of many effects, especially measurement frequency, temperature, physical size of the capacitor element, and details of its construction.

Setting up

I tried to make this meter as free from calibration as possible. Calculating the ratio of the ' R ' and ' X ' channel voltages, the sense resistor value, and test current or voltage being common to both need not be accurately known. Only one adjustment using a known or relatively loss free capacitor is needed to calibrate the meter.
First, connect a stabilised power supply delivering +5 V and -5 V . With a capacitor connected to the test terminals of the meter to ensure the sample and hold circuits are triggered, temporarily remove the analogue input signal to both sample and holds. This is easily done by grounding the junction of their common inputs with R_{22}.
Measuring the DC output voltages of both sample and holds in turn, trim both to 0 V then unground R_{22}. Remove the test capacitor and adjust the offset of the current sensing comparator, I_{1}, for maximum output noise, then back off to just remove all noise while ensuring that the comparator output remains 'low'.
Apply a $47 \mu \mathrm{~F}$ capacitor to the test leads or jig and adjust the range switching comparator input voltage pre-set to just turn off the relay, extinguishing the range LED. Replace the capacitor with a $100 \mu \mathrm{~F}$ type and ensure the relay and LED just turn on when connecting the capacitor.
None of the above adjustments are particularly critical but they do help ensure consistent operation of the meter. This final adjustment sets the meter's accuracy.
Apply a $10 \mu \mathrm{~F}$ polycarbonate, polypropylene or P.E.T. metallised-film capacitor of known tan δ to the test leads or jig. Monitor the output voltage of the ' R ' sample and hold. Turn the delay-adjusting pre-set resistor on the INA118 output until the display reads the correct tan δ while ensuring the output from the ' R ' sample and hold remains a small but positive voltage. If you don't know the tan δ of the $10 \mu \mathrm{~F}$ capacitor, then adjusting the display to read 0.006 should ensure acceptable accuracy.

Supplying power. Standing idle or measuring low-value test capacitors, the meter consumes around 21 mA from the negative supply and 26 mA from the positive supply. Consumption increases with large capacitors to a maximum of 23 mA from -5 V and 45 mA from +5 V , but only for the few seconds while connected to a test capacitor.
Some 12 mA of this additional +5 V current is needed for the range switching reed relay and its indicator LED.
In practice, 6AA cells provide some 40 hours use. The prototype's power supply used a low drop-out linear +5 V stabiliser and a switched capacitor inverter for the -5 V side. A transistor switching stage provides the $\pm 9 \mathrm{~V}$ floating supply for the display. To conserve batteries, a 20 minute 'auto-switch-off' timer circuit disables the +5 V stabiliser, removing all power.

The LF398 sample-and-hold chips, fed with the test capacitor's amplified voltage, provide a maximum output of about 4V. A simple attenuator, halving these voltages, completed my design.
Compared with the very simple circuits using two quad opamps to measure capacitor impedance at say 100 kHz , this circuit is obviously larger and much more complex. Its setting up and calibration however is extremely simple, as described in the panel entitled 'Setting up.'

How does it perform?

In practice, this meter performs extremely well, returning a steady measured value within three display meter counts, or less than a second. As to its accuracy, this more than suffices to distinguish between good and bad board mounted capacitors.
With the exception of measurements on capacitors near $1 \mu \mathrm{~F}$ and $10000 \mu \mathrm{~F}$, where accuracy reduces, it is hard to tell whether my laboratory capacitor bridge or this meter is the more accurate.
If pressed to give a number, I would guess that this meter reads tan δ to within about ± 0.005 of the true value, except at the extremes of its capacitance range.
While I now only trouble-shoot new prototype designs, repair my own workshop equipment and the usual family TV, videos and satellite systems, I wish I had built this meter years ago. Being well equipped with laboratory capacitance bridges though, I had not seen the need.
I only built it now because when examining a 100 kHz impedance 'ESR' meter, I suddenly thought 'there must be a better way'. This meter is the result of that simple desire.
As a bonus, the meter could also be used as a circuit tracer. Presented with a resistance of less than 20Ω, the high range LED lights and the tan δ display shows over range. -

References

1. Bateman, C., 'Understanding capacitors,' Electronics World August 1998
2. Bateman, C., 'Understanding capacitors,' Electronics World June 1998
3. Reference Data for Radio Engineers, pub. Newnes, Oxford.
4. Data Handbook - Electrolytic Capacitors, pub. Philips Components.
5. Phase-Locked Loop Design Fundamentals, AN35 pub. Motorola Inc 1994
6. Bateman C. 'Looking into impedance,' Electronics World August 1997
7. Bateman, C., 'Understanding capacitors,' Electronics World December 1997

Capacifor quality and fono.

The quality of many high-frequency components, such as RF inductors and very low loss capacitors, is often defined by their ' Q ' factor. Q is the result of dividing a component's measured $A C$ reactance by its $A C$ resistive losses.
The reciprocal of ' Q ' is $\tan \delta$, which is defined as the capacitors ESR/reactance. Tan δ is used to describe the quality of almost all general-purpose capacitors.
All practical capacitors exhibit losses. There is a small DC leakage current and there are resistive dielectric losses, which combined dissipate some of the applied energy as heat. These losses reduce the theoretical 90° phase difference between the applied current and the capacitor's voltage.
At 1 kHz for example, the measured phase angle of a typical $1000 \mu \mathrm{~F} 25 \mathrm{~V}$ radial electrolytic capacitor was 67°, substantially less than the theoretical 90° of phase.
This phase angle could be reproduced in a circuit by using a
high value resistor in parallel with the capacitor. Electrolytic capacitors however, use the phase equivalent circuit of a low value resistor in series with the capacitor. The series resistance for the above $1000 \mu \mathrm{~F} \cdot 25 \mathrm{~V}$ capacitor was measured at 1 kHz and found to be $71 \mathrm{~m} \Omega, X_{\mathrm{c}}$ was $169 \mathrm{~m} \Omega$ and $\tan \delta$ was 0.42 .
At 100 Hz , the ESR of this capacitor measured 104 ms , X_{c} was 1.62Ω and $\tan \delta$ was 0.064 . This series resistance is the equivalent series resistance, or ESR, of the capacitor. ${ }^{7}$
The capacitor's reactance reduces in proportion to its capacitance value and frequency. Being a combination of fixed and variable losses, ESR also reduces with frequency but to a lesser extent. Having reached its minimum value, ESR then usually increases at some higher frequency.
The measured $\tan \delta$ of an aluminium electrolytic capacitor is frequency dependent. It always increases as frequency increases. From equation 1, $\tan \delta$ has no upper limit and can exceed unity - especially for a failed aluminium electrolytic capacitor.

Not just a pretty interface

Available on 30 day evaluation Free technical support Mac version also available

VA
0
B^{2} Spice for analogue simulation $£ 199$ B^{2} Logic for digital simulation $£ 199$ Special bundle price $£ 295$

All prices shown exclude VAT Postage \& Packing $£ 5.00$

B^{2} Spice B^{2} Logić

Professionals, universities and designers need software that produces results they can rely on. B^{2} Spice and B^{2} Logic will give you the accurate results you need - fast.

The best way to find out if a package is really what you need is to try it, which is what we're giving you the chance to do, risk free for 30 days.

We guarantee you will be 100\% satisfied with the results or your money back.

Research House, Norwich Road, Eastgate, Norwich NR10 4HA Email rd.research@paston.co.uk www.looking.co.uk/spice

CIRCLE NO. 117 ON REPLY CARD

Write your PICmicro programs in BASICl
Quicker and easier than "C" or assembler

- Expanded BASIC Stamp I compatlble instruction set BASIC interpreters
- 12 CIN and 12COUT instructions to access external serial EEPROMs
- More user variables
Peek and Poke instructions to access any PICmicro register from BASIC Serial speeds to 9600 baud
- Supperser PIC16F8x microcontrollers
Use in DOS or Windows
- Compatible with most PICmicro programmers
The low-cost PicBased Compiler (PBC) makes it easy to write programs for the fast Microchip PICmicros. PBC converts these programs into hex or binary fines that can be programmed directly into a PICmicro microcontroller. The easy-to-use BASIC language makes PICmicro programming available to everyone with its English-like instruction set. No more scary assembly languagel
The PicBasic Pro Compiler runs on PC compatibles. It can create programs for the PIC12C67x, PIC12CE67x, PIC14Cxxx, PIC 16C55x, 6xx, 7xx, 84, 9xx, PIC16CE62x AND PIC16F8x microcontrollers. The PicBasic Pro Compiler instruction set is upward compatible with the BASIC Stamp II and Pro uses BS2 syntax. Programs can be complied and programmed directly into a PICmicro, eliminating the need for a BASIC Stamp module. These programs execute much faster than their Stamp equivalents They may also be protected so no one can copy your code!

> Supplied withmanuals and sample basic programs PIc programmers from $£ 15.00$ (kit) to $£ 49.95$ All plus $£ 5$ P\&P \& 17.5% VAT Join the world wide PIC Basic mall list, emall:-
majordomo@qunos.net with "subscribe picbasic-L" In the message
Call Now for a brochure and full list of Basic Instructions or http://www.crownhill.co.uk/plcbasic/home.htmi
CROWNHILL ASSOCIATES LIMITED
The Old Bakery, New Barns Road,
Ely Cambs. CB4 7PW
Tel: +44 (0) 1353666709 Fax: +44 (0) 1353666710

Newnes

Antenna Tookkit

What's in the book?

Radio Signals On The Move; Antenna Basics; Wire, Connections, Grounds And All That; Marconi and Other Unbalanced Antennas; Doublets, Dipoles And Other Hertzian Antennas; Limited Space Antennas; Large Loop Antennas; Wire Array Antennas; Impedance Matching; Simple Antenna Instrumentation \& Measurements

> Includes free CD with antenna design software

Antenna Toolkit by Joe Carr

Combined with antenna design software on CD-rom, Newnes' new book Antenna Toolkit provides a complete design solution. Prepared by antenna expert Joe Carr, this package is written for beginners and advanced users alike.
On the CD-rom is a suite of powerful software running on the pc . The software calculates the critical lengths and other parameters of the antennas in the book by having the user select the antenna type and set the frequency.
The main menu screen is in the form of tabs, one for each chapter of the book plus other topics.
This 220 page work includes 185 illustrations and 23 photographs.

** HF propagation predictor included **

Also included is a Windows freeware package, from the Voice of America organization, called VOACAP. This is an hf propagation predictor which some commercial sources have offered unmodified for hundreds of dollars.
UK Price: £27.50 Europe $£ \mathbf{3 0 . 0 0}$ ROW £ $\mathbf{~} 2.50$
** Price includes delivery and package **
Return to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following title:
Newnes Antenna Toolkit
Total \qquad
Name
Address

Postcode
Telephone
Method of payment (please circle)
Access/Mastercard/Visa/Cheque/PO
Cheques should be made payable to Reed Business Information
Credit card no \qquad
Card expiry date
Signed
Please allow up to $\mathbf{2 8}$ days for delivery

SPEAKERS'
 CORNER 띠

Abstract

Why does the average 100W moving-coil loudspeaker only deliver two or three watts of sound? John Watkinson looks at why the moving coil loudspeaker is so inefficient, and explains the trade-offs.

The efficiency of a moving coil loudspeaker is doomed from the outset to be very low. The reason is that the density of air is low and so the acoustic impedance is correspondingly low.
To deliver power into a low impedance requires a high diaphragm or cone velocity. This in itself isn't a problem. The difficulty is that any practical cone and coil which isn't going to fall apart must have some structural mass and the impedance presented by this mass dwarfs the acoustic impedance in a real speaker.
Figure 1 shows that effectively we are transporting a massive cone in order to carry with it a tiny air mass. lts the equivalent of delivering pillows in an eight-wheeler; not very efficient.
The efficiency of a speaker is defined as the ratio of the acoustic power coming out to the electrical power going in. The electrical power is used in three ways. One is the ohmic heating of the coil. The second is the mechanical damping of the drive unit structure and the absorbent in the enclosure, which is very small above resonance and can be neglected. The third is the acoustic power transferred.

In practice, because the efficiency is so low, the acoustic power can also be neglected, leaving the input power as simply the ohmic loss in the coil. This is a great simplification. Coil dissipation is easy to calculate as it is the square of the current times the coil resistance
Next we need to calculate the acoustic output power. In electricity, the power would be the square of the current times the resistance. In acoustics, it's the square of the cone velocity times the acoustic impedance.

Acoustic impedance

Figure 2a) shows the expression for the acoustic impedance. I'm asking for this to be accepted for the moment, but I intend to explore it further in a future article.

The expression for acoustic
impedance can be simplified by taking out the fixed values and replacing them with a constant, K , which we can't change whatever we do to the drive unit. These fixed values are things like the density of air, the speed of sound and the correction factor for the kind of baffle. Note that the acoustic impedance is a function of frequency squared.
Figure 2b) shows how the cone velocity is obtained. Clearly it is proportional to the motor force, Bli Because the system is mass controlled, the velocity is inversely proportional to frequency and mass.
In Figure 2c), the acoustic power is derived by multiplying the acoustic impedance by the square of the velocity. Note that when this is done, the frequency term cancels out. This is the principle of the mass controlled speaker: the power is independent of frequency. In other words, there is a flat frequency response.
The efficiency is derived in 2 d). Note that the current disappears from the expression. Thus an efficient speaker is simply a matter of using a strong magnet with plenty of wire in the gap and a large cone area, while keeping the weight and the coil resistance down. Unfortunately those requirements are contradictory because the more powerful we make the motor, the heavier it gets. Not so simple after all.

Expressing efficiency efficiently A better approach is to express the efficiency in a different way so that the effect of the mass of the motor is easier to interpret. This is the approach taken in Fig. 3. If you assume a speaker whose coil is the same length as, or shorter than, the gap, then all of the coil is contributing to the motor force.
The mass of the voice coil, M_{c}, is given by its volume multiplied by the density of the coil material. The resistance of the voice coil also follows from its dimensions and resistivity.
With the efficiency re-expressed, it is
easier to see what to do. Firstly a powerful magnet helps, but as was shown last month, this can't be taken too far in a passive speaker because the result is an overdamped system. It is also clear that when choosing a coil material, the product of the density and the resistivity is what matters, hence the superiority of aluminium
It should be appreciated that M_{m}, the

Air mass
Fig. 1. Movingcoil speakers are doomed to be inefficient.

Fig. 2. Loudspeaker efficiency calculations.

$$
\begin{align*}
R_{m} & =1.57 \frac{p}{c} \omega^{2} r^{4} \\
& =K \omega^{2} r^{4} \tag{a}
\end{align*}
$$

where R_{m} is acoustic impedance, 1.57 is the baffle factor, ω^{2} is frequency in rad $/ \mathrm{s}, \mathrm{r}_{4}$ is cone radius.

$$
v=\frac{B l i}{\sigma M_{m}}
$$

Here, v is cone velacity, ω is frequency, B is magnetic flux density, l is the length of motor coil inside the gap, i is current and M_{m} is the moving mass. Below, W_{a} is acoustic power,

$$
W_{a}=v^{2} \times R_{m}
$$

$$
\begin{align*}
& =\left(\frac{B l i}{\omega M_{m}}\right)^{2} \times K \omega^{2} r^{4} \tag{c}\\
& =K r^{4}\left(\frac{B l i}{M_{m}}\right)^{2}
\end{align*}
$$

so,

$$
\begin{align*}
E f f & =\frac{K r^{4} B^{2} l^{2} i^{2}}{M_{i}^{2} i^{2} R_{E}} \tag{d}\\
& =\boldsymbol{K} r^{4} \times \frac{B^{2}}{M_{m}^{2}} \times \frac{l^{2}}{R_{E}}
\end{align*}
$$

moving mass, incorporates M_{c}, the coil mass. The most striking result of the efficiency expression - which is counter intuitive - is that making the coil heavier without changing the total moving mass increases the efficiency. As a result, for efficiency we want the cone to be as light as possible so that the largest proportion of the moving mass is concentrated in the coil. The
epitome of this is the ribbon speaker where the diaphragm is the coil.

Working together

The above expressions fail when the speaker coil and cone no longer move as a rigid body. In woofers, the cone and coil are certainly rigidly coupled over the useful frequency range. So the approach is useful except for the

Fig. 3. Efficiency considering motor construction.

$$
\begin{aligned}
& M_{C}=l a d \quad R_{E}=\frac{\sigma f}{a} \\
& a=\frac{\sigma l}{R_{f}} \\
& \text { and } \\
& M_{C}=\frac{l \sigma I d}{R_{t}}=\frac{I^{2} \sigma d}{R_{E}} \\
& \therefore \frac{l^{2}}{R_{E}}=\frac{M_{C}}{a d} \\
& \therefore E f f=\frac{K r^{4} B^{2}}{\sigma d} \times \frac{M_{C}}{M_{w}^{2}}
\end{aligned}
$$

Fig. 4.

Overhung coils in woofers
cause inefficiency

Thus $M_{C}=L$ Lad and $R_{E}=\frac{L \sigma I}{a}$
Efficiency become $\frac{K r^{4} B^{2}}{L^{2} \sigma d} \times \frac{M_{c}}{M_{w}^{2}}$
assumption that all of the coil was in the gap which is generally not true for woofers.
In order to have sufficient travel, woofers generally use overhung coils so that the $B l$ product remains constant as the coil moves.
If the coil length is described as L times the gap length, then L can be called the overhang factor. If the coil is simply extended by putting more turns above and below the gap, the coil is obviously L times as heavy and has L times as much resistance.
Figure 4 shows that the efficiency expression now contains L squared in the denominator, suggesting that a large overhang factor is bad news.
This is one of the reasons why really long throw woofers are rare. They are simply very inefficient because so little of the coil is producing thrust and the rest is adding to the mass and resistance. In practice, to obtain a given SPL it may be more efficient to put two normal woofers side by side rather than trying to engineer a long throw device.

The range of 'FM-Controllers' provide most of the features required for embedded control at a very low cost
FEATURES FM-200 Controller

- 68K Micro-Controller 14 MHz clock
- 512 Kbytes Flash EEPROM
- 512 Kbytes SRAM Battery Backed
- 2 RS232 Serial Ports
- 1 RS232/RS485 Serial Port
- Real Time Calendar Clock
(Y2K Compliant)
- Watchdog \& Power fail detect
- 10 Digital I/O Lines
- 2-16 bit Counter/Timers
- $1^{2} \mathrm{C}$ Bus or M-Bus
- Expansion Bus
- Size $100 \times 80 \mathrm{~mm}$

OTHER FEATURES

- Up/Download removable card for data logging and or re-programming
- STE VO Bus, 68000 and PC Interface
- Designed, Manufactured and supported in the UK

Additional extra features to the FM 200

- LCD Port Graphics or Alphanumeric Up to 32 Digital VO Channels - Key Pad Port 64 Keys 8×8
- Up to 8 Mbytes of SRAM Battery Backed
- 8 Channels 8 bit analogue in
- Up to 512 Kbytes of Flash EEPROM
- 8 Channels 13 bit analogué in
- 1 Mbyte EPROM Space

CAMBRIDGE
 MICROPROCESSOR SYSTEMS LIMITED

Units 17-18, Zone D Chelmsford Road Industrial Estate, Great Dunmow, Essex UK CM6 1XG Tel $+44(0) 1371875644$ Fax: $+44(0) 1371876077$

DEVELOPMENT

The PC Stanter Pack provides the quickest method to get your application up and running

Operating System

- Real Tíme Multi Tasking
- Unlimited copy licence

Languages

- 'C', Modula-2 and Assembler
- Full libraries \& device drivers provided

Expansion

- Easy to expand to a wide range of peripheral and I/O cards

Support

- Free unlimited telephone, FAX, email and Internet support

Custom Design

- CMS will design and manufacture to customers requirements

electromicomenemy

 HyDOIMACTIVE

Electronics Weekly Hyperactove is more than just a magazine on the Web. Check out the site and you will see why thousands of electronics professionals around the world regularly log on to...

WAMAN clectromicsweraly,

If you are serious about Internet marketing, then sponsorship of the Electronics Weekly Hyperactovesite is something you must consider.

Whether you have your own web site or not, Byperactive offers you a great way of delivering your company's products or message to a worldwide buying audience.

By sponsoring a section of Hyperactove, users will have the opportunity to link directly to your web sitetherefore generating new traffic.

For more information on how to develop your internet marketing activity please call Shaun Barton on 01816523638 .

Poiptiypur browserrath http://wwiwelectronicsweeldy.co.4la reqistermowisits frepa

Science World

 Discovery BookADVERTISEMENT: Some details are hereby given from the above book which will be published as soon as possible. Nigel Bryan Cook, publisher.
The BBC2 Horizon programme on 28 Jan 98 showed how astronomers have recently used constant-energy supernovae at different distances to discover that there is no long-range gravitational retardation in the big bang expansion. Gravity seems to be localised, not a universal law.
This was predicted by the mechanism of gravity based on 1. Catt's measurements of capacitor discharge speeds and the Catt Anomaly, and their implications for Maxwell's light "theory" and the true c-speed spinning electron, eg see Catt's March 1983 WIRELESS WORLD article "Waves in Space", his 2-vol "Electromagnetic Theory", his paper in IEEE Transactions on Electronic Computers, EC-16 (Dec 67), and especially SCIENCE WORLD magazine (ISSN 1367-6172) February 1997-current.

The old (incorrect) quantum theory of gravitons has the 377Ω dielectric of free space/vacuum/ather filled with a sea of colliding virtual particles which exert a pressure by hitting objects from all sides, except sides which face large objects which shield us from them. For example, the earth in graviton theory absorbs gravitons coming from below us, so we would be pushed down from gravitons from above, but not pushed up so much because we are walking on a massive shield (the earth). This theory, considered geometrically, gives the Newtonian inverse square equation. The two errors are that (a) gravitons would cause drag on moving objects, thereby slowing down the planets and causing them to spiral into the sun, and (b) gravitons, causing the measured deflection of starlight during eclipses, would scatter photons about instead of smoothly deflecting them as actually occurs.
To correct this theory, we must take space to be a continuous medium. Einstein in his 5 May 1920 lecture at Leyden University, Ether and Relativity (reprinted in Einstein's Sidelights on Relativity, Dover, New York 1952, 1983) said (pages 15, 16, 23): "The special theory of relativity forbids us to assume the ether to consist of particles... To deny the ether is ultimately to assume that empty space has no physical qualities whatever... Recapitulating, we may say that according to the general theory of relativity, space is endowed with physical qualities... therefore, there exists an ether. According to the general theory of relativity space without ether is unthinkable."
The continuous nature of the ether is demonstrated to readers of EW by the fact that electron (particie)-filled cables have an impedance in 5Ω metre' (thus depending on the number of discrete electrons), but ether has an impedance of 377Ω (not $\Omega /$ metre).
Aristotle in Physics (350 BC), and Louis de Broglie in Nont-Linear Wave Mechanics: A Causal Interpretation (Elsevier, Amsterdam, 1960) argued respectively that the momentum of objects and that particle-wave duality can be explained by a model which basically has particles moving through space like a fish or submarine in a frictionless, non-particulate water (the ether). The inertia to start motion is that of setting up a flow of ether around moving particles, hence an arrow continues to move after being released from the bow, and an electron sets up a motionsustaining wave of ether around it in the ether so that it diffracts through slits. I create a sideways wave of air from front to back as I move, or a vacuum would form behind me. Since all matter is made of sub-atomic particles, the ether waves are similarly small. Ether is a continuous, frictionless, medium which flows around moving subatomic particles.
Hubble showed that the Doppler shift of light spectra from stars at increasing distances gives $\mathrm{v} / \mathrm{d}=$ constant, where v is the recession speed of the star from us, and d is

the distance of the star from us at the time the light was emitted, which is a time into the past with increasing distance because starlight travels at $c=300 \mathrm{mega}-\mathrm{m} / \mathrm{s}$. In reality, the distance D that the stars are really at now (15 gigayears after big bang) is equal to: $D=d+$ (the distance the star has travelied in the time $t=d / c$ since the light was emitted). Hence: $D=d+v d / c$. Hence, the true Hubble ratio is not v / d, but v / D or $v /(d$ $+\mathrm{vd} / \mathrm{c})$. This is not constant. We can get a constant form of the original Hubble ratio only by dividing the speeds v into the travel times of the light, t, so v / t is a true constant, and is equal to ve/d or " Hc ". This, Hc , has units of acceleration. Acceleration is significant because multiplied with mass it gives force, such as force of gravity.
The big bang universe has known mass and size, with an energy of 10^{56} megatons of TNT equivalent. A nuclear explosion in an air medium produces a supersonic shock wave in air which pushes outwards in a dense, wall-like compressed air shock front. Behind the shock front (Dr Harold Brode of the Rand Corporation calculates, Ann. Rev. Nuc. Sci., y 18, pp $153-202,1968$) the air density drops to as little as just 1% of normal air density. In other words, a near vacuum is created near the middle. The phenomenon you see is the afterwind. This is a wind of air pushing back towards ground zero, filling in the partial vacuum.
The afterwinds of ether from the big bang may be calculated simply from a consideration of Einstein's proof that all that exists in volume V is matter M and ether A, or: $V=M+A$. When the big bang occurred, the matter M moving outward reduced the matter density in the inner volume V . This has to be compensated (according to the equation $V=M+A$) by an increase in the ether. Hence, ether flows in as matter moves outwards. (Using calculus, $\mathrm{dV} / \mathrm{dt}$ $=\mathrm{dM} / \mathrm{dt}+\mathrm{dA} / \mathrm{dt}$, which simplified to $-\mathrm{dM} / \mathrm{dt}=\mathrm{d} \mathrm{A} / \mathrm{dt}$, because $\mathrm{dV} / \mathrm{dt}=$ 0 , since V is a constant.)
There is a + and * 3 milliKelvin cosine variation in the 2.734 K microwave background radiation (diagram on left). This, from Doppler energy shift theory, shows our absolute motion in space relative to the microwave backround radiation. It turns out that the Milky Way as a whole has an absolute speed of $600 \mathrm{~km} / \mathrm{s}$, so given the 15 Gyr since the big bang it will have travelled 30 million light years from the point of origin of the big bang, which is only 0.3% of the radius of the universe, so we are probably very near the middle of the universe, which would explain why it looks fairly similar in all directions around us.
Physically combining the findings above (see diagram below), we begin by setting Newton's second law and universal law equal: $F=m a=$ $m M G / r^{2}$. Dividing out by $m M$ we obtain: $a / M=G / r^{2}$. The ratio a / M represents the true Hubble constant, " Hc ", divided by the mass of the universe concerned (the cylinder inscribing the universe in the diagram). Hence, $a / M=\mathrm{Hc} /\left(1 / 2 \pi r^{2} \cdot R \sigma\right)$, where σ is the density of the universe. As Newton says, $a / M=G / r^{2}$, so we find: $G / r^{2}=\mathrm{Hc}\left(1 / 2 \pi r^{2} R \sigma\right)$. Since the simple estimate of the radius of the universe is given by $R=d / H$, we see that $G=2 \mathrm{H}^{2} /(\pi \sigma)$, which implies: $\sigma=2 \mathrm{H}^{2} /(\pi \mathrm{G})$. If we take H to be 73
$\mathrm{km} / \mathrm{s} /$ Mparsec, $H=2.4 \times 10^{-18} \mathrm{~s}^{-1}$, and our predicted density of the universe (all matter, visible stars + invisible dust and neutrinos) is $5.3 \times 10^{-26} \mathrm{~kg} / \mathrm{m}^{3}$. Since the nearby density of illuminated matter in space is about $4 \times 10^{-28} \mathrm{~kg} / \mathrm{m}^{3}$, it is predicted that most of the matter in the universe is non-illuminated (agreeing with results from the rate of rotation of galaxies and the physics of neutrinos).

(1) 511

 THE IEC 320

 THE IEC 320 CONNECTION

 CONNECTION}OLSON HOUSE, 490 HONEYPOT LANE, STANMORE, MIDDLESEX HA7 1JX
TEL: 0181-905 7273

TSA1000 1GHz spectrum analyser

Designated the TSA1000, this spectrum analyser is in the form of an adaptor that converts any standard oscilloscope into a 1 GHz spectrum analyser.
The instrument has a dynamic range of 70 dB with a typical accuracy of 1.5 dB . Its frequency range is from 400 kHz to over 1 GHz , and its bandwidth - i.e. selectivity - is 250 kHz .
A built-in crystal-controlled marker provides a precision means of frequency and amplitude calibration. The centre frequency can be adjusted over the full $0-1 \mathrm{GHz}$ range using a ten-turn control, and is displayed on a large 3.5-digit liquid-crystal display.

Scan width is fully variable between 10 MHz and 1 GHz , and the scan rate can be set anywhere between 10 Hz and 200 Hz .

Reader offer

 1 GHz spectrum analyser Easy to connect and use The adaptor connects to the oscilloscope via two BNC connectors using true 50Ω impedance for minimal vswr. A calibration button allows a standard -30 dBm 50 MHz marker signal to be superimposed for precise amplitude and frequency checks.The TSA1000 is supplied with an operating manual describing the basics of spectrum analysis and EMC measurements. Its normal price is $£ 581$ including VAT in the UK. Electronics World readers can obtain it for just £499 - including VAT and carriage.

TSA1000 key specifications
Frequency range Centre adjust Bandwidth Meter accuracy Calibration marker
Scan width
Scan speed
400 kHz to 1000 Mhz 0 MHz to 1000 MHz 250 kHz (-6dB typical) 1% of reading +1 MHz 50 MHz fundamental, harmonics to 1 GHz 1 MHz to $100 \mathrm{MHz} / \mathrm{div}$ 0.5 ms to $35 \mathrm{~ms} / \mathrm{div}$
\section*{Amplitude} Input impedance Amplitude range Amplitude scale Amplitude linearity Amplitude flatness
Max. input level
50Ω
-70 dBm to 0 dBm nominal Logarithmic, $10 \mathrm{~dB} /$ div Typically $\pm 2 \mathrm{~dB}$ Typically $\pm 1.5 \mathrm{~dB}$ 4 MHz to 1000 MHz $+10 \mathrm{dBm}$ Calibration marker
Oscilloscope requirements
Oscilloscope mode X-Y mode, DC coupling; bandwidth not critical
X-Input sensitivity
Y-Input sensitivity
$0.5 \mathrm{~V} / \mathrm{div}$

Designed and manufactured to IEC1010-1 +5 to $+40^{\circ} \mathrm{C}, 20 \%$ to 80% RH operating range $260(\mathrm{~W}) \times 88(\mathrm{H}) \times 235(\mathrm{D}) \mathrm{mm}, 1.4 \mathrm{~kg}$
Runs from $220 / 240$ or $110 / 120 \mathrm{~V}$ at $50 / 60 \mathrm{~Hz}$ - Full operating ranges $198-264 \mathrm{~V}$ or 99-132V Power consumption 8VA max

Use this coupon for your order
 Please send me:

...... TSA1000 Spectrum analyser(s) at the fully-inclusive price of $£ 499$.
Name:
Address:

Tel no
Total £
Cheques payable to REED BUSINESS INFORMATION
Or debit my visa, master, access or switch card
Card type:
Card No:
Expiry date: Switch iss no
Please post this order to TSA1000, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Overseas readers can still obtain this discount but details vary according to country. For more information, write or e-mail jackie.lowe@rbi.co.uk. We endeavour to dispatch as soon as possible, but please allow 28 days for delivery.

Joe Carr looks at an easy to apply and general-purpose technique for improving sensor resolution.

There's a number of different forms of spatial sensor that are used to either detect the presence of some other object, or perform imaging of objects. All of these sensors have some sort of response curve that reflects their sensitivity to a target at varying distances or angles off centre.
In Fig. 1, the sensor is defined as some sort of generic electro-optical sensor, for example a photo-transistor or photo-op-amp. It could just as well be an ultrasonic imaging sensor, a radio antenna, or a radar set. When researching this article, the electro-optical sensor was easily at hand, so was used.
The response of the sensor in Fig. 1 is highest immediately opposite the lens, at point X_{0}, as indicated by the peak voltage V_{p}. If the sensor and target translate relative to each other along the X axis, then the signal voltage V will rise from near zero, to V_{P}, and then decrease to near zero again as the target passes through the field of view.
Although the curve in Fig. 1 looks suspiciously like a bell-shaped curve, actual curves might be shaped a bit differently, but the general form is correct.
Figure 2 shows a somewhat more practical situation found in many circuits. The response curve is the same, but there is a sensitivity threshold below which there is little or no output. This threshold might be generated by the brightness or size of the target, by
ambient lighting, or be an intentionally set circuit value. In the latter case, it is common to use such thresholds to combat the effects of noise.
In essence, the threshold level is a signal-to-noise ratio issue. The effect of the threshold is to improve the field of view, increasing the resolution, by narrowing the range of values of V that will be accepted. Even as improved by threshold detection, however, the field of view may be too great to provide adequate spatial resolution.
The resolution of the sensor is a measure of its ability to separate two equal targets. If the resolution is not matched to the objects being measured, then an ambiguity occurs. This is seen in popular films such as Top Gun where what the F-14 aircrew thought was two enemy fighters suddenly broke out to four dirty smelly bad guys - much to the dismay of the good guys. The radar resolution apparently wasn't able to distinguish two fighters flying close together.

Why improve resolution?

There's a number of practical situations where sensor resolution can cause problems. For example, if a photo sensor is used to count manufactured products coming down an assembly line, poor resolution means the items being counted would have to be further apart in order to avoid a miscount. In imaging systems the resolution can deter-

Fig. 1. A generic electro-optical sensor and its response curve.

Fig. 2. Sensor response curve. A practical threshold limit narrows the field of view, but not sufficiently for high resolution operation.

mine the smallest object that can be properly displayed.
Poor resolution might cause a distortion of the object being imaged, or completely miss some important feature. It simply wouldn't do for a medical imaging system to miss your kidney stone!
In robotics, if an electro-optical sensor is used as the eyes of the robot

Fig. 4. Resolution problems prevent breaking out the two targets, both of which fall within the sensor's field of view.
device, then poor resolution can hamper its ability to perceive and negotiate its environment. I recall one smart lad who built a robot that tooted around the room, and when its internal battery dropped below a certain point, then it would search the walls of the room for an electrical outlet.
The robot searched by comparing a pattern of an outlet stored in memory with what it saw in the room. Poor resolution might have caused it to mistake Aunt Annie's belt buckle for the outlet, and wouldn't that have caused a family row?
Figures 3 and 4 show these effects in graphical form. In Fig. 3 a single target is in the field of view of the optical sensor. Assume that the sensor moved left to right across the target, producing the output voltage shown.
It doesn't matter whether the sensor or target moves, so long as there is relative motion between the two along the X axis. Unfortunately, the sensor field of view, which determines the resolution, is too broad, so the target appears to be smeared in the X axis. The size and exact location data are thus distorted.
The situation in Fig. 4 shows two targets in a similar situation. Again we suppose that the sensor translated left to right across the two targets. Because both targets fall inside the field of view simultaneously, they will appear smeared, but maybe with a small dip to indicate the space.
If the dip is too small to detect, then it will not be seen.

Towards better sensor resolution

Sensor resolution cannot be improved without re-designing the device. In some cases, the laws of physics might prohibit further improvement. But there is something that can be done to correct the problem.

This method is derived from a radar technique called monopulse resolution improvement, also known as MRI. There are two versions of the circuit. One uses analogue methods, but requires two sensors - a case of two being much better than one. This first approach can also be implemented in a computer version. A related method can be implemented using a digital computer, but it proves difficult in analogue circuitry.
In radar the target is illuminated with two adjacent co-planar antennas, and the returned signal processed in a special way. Assume that the two signals are V_{1} and V_{2}. If we create sum, $V_{1}+V_{2}$, and difference, $V_{1}-V_{2}$, signals from this raw signal, then we can accomplish a tremendous resolution improvement. The equation is:

$$
\begin{equation*}
V_{0}=\frac{V_{1}+V_{2}}{\mathrm{k}+\mathrm{abs}\left(V_{1}-V_{2}\right)} \tag{1}
\end{equation*}
$$

Where V_{0} is the resolution-improved signal, V_{1} and V_{2} are the input signals, abs indicates the absolute value of $V_{1}-V_{2}$ and k is a small full-scale constant
By dividing the sum by the absolute

Fig. 5a) Two-sensor test device made by mating a pair of Burr-Brown OPT-101 devices; b) test fixture that allowed the LED target to be translated along the X axis in front the sensors.
value of the difference at each point along the X -axis you create the resolu-tion-improved signal V_{0}. The factor k is a small value constant, that is set to prevent a divide by zero error when $V_{1}=V_{2}$, or an extremely high value when V_{1} and V_{2} are very close in value. The value of k is set to produce a full-scale output when $V_{1}-V_{2}=0$.

Initial trials

The two-sensor approach was modelled first in an Excel spreadsheet. For the first attempt a curve similar to those in Figs 1 through 4 was converted to numbers and entered in successive cells of a single column.

Each cell represented another increment along the X -axis, while the value in the cell represented the signal voltage V at that point. When the method was applied, and graphed, there was a tremendous improvement in the resolution of the hypothetical sensor. The time came to 'cut metal' and build a real circuit model.
Figure 5 shows the actual test set-up used to acquire data. Two electro-optical sensors were obtained. The optical sensors were Burr-Brown OPT-10I devices. These sensors are operational amplifiers with a photodiode device built-in to the transparent 8 -pin DIP IC package.

The two OPT-101 devices were spaced 10 mm apart so that their cones of acceptance overlapped - which is also the minimum possible X -axis separation due to the size of the IC packages. This mounting was convenient because the two devices would fit nicely end-to-end in a single 16-pin DIP socket.
The mid-point between the two OPT-101 devices corresponds to X_{0}, while the distance between them corresponds to ΔX; any particular point along the path between S_{1} and S_{2} is designated X_{i}.

The target was a red light emitting diode mounted on a movable stage on a micrometer gear rack device that measured distance of travel in millimetres. The initial position of the LED target was set so that it was outside the field of view of both S_{1} and S_{2}.

The LED was then advanced 1 mm at a time until it had traversed the entire distance from the left-most extent of the field of view of S_{1} to the rightmost extent of the field of view of S_{2}. Output voltages V_{1} and V_{2} from S_{1} and S_{2} were measured with a $3^{1} / 2$-digit digital voltmeter at each 1 mm interval.
Those data were then entered into an Excel spreadsheet and plotted on a chart. Curves shown in Fig. 6 represent actual results from this experiment, rather than simulated results.

The experimental and modelled results were the same.
All of the curves are shown in Fig. 6: $V_{1}, V_{2}, V_{1}+V_{2}, V_{1}-V_{2}, \operatorname{abs}\left(V_{1}-V_{2}\right)$ and the resolution improved V_{0}. The V_{1} and V_{2} curves represent the normal field of view of the OPT-101 devices, and therefore the effective resolution of the devices.

Note how much narrower V_{0} is compared with either V_{1} or V_{2}. This response curve would resolve much finer separations and produce superior images than either S_{1} or S_{2} alone.

A single-sensor solution

The two-sensor method of sensor resolution improvement produces startling results - but at the cost of two sensors. It is easy to implement in analogue circuitry, and can also be implemented in digital circuitry.

Another approach uses a single sensor and a look-ahead technique to synthesise V_{2}. It is easily implemented digitally, but is quite difficult to implement in analogue circuitry.

Assume that the values of V_{1} from the sensor are a series V_{i} in which each value represents the signal amplitude at sequential locations along the X -axis: $V_{1} V_{2} V_{3} \ldots V_{i t h}$
Each value of V_{i} represents a value of V_{1} in eqn 1 above. The corresponding value of V_{2} in eqn 1 is found by taking a subsequent value of V_{1} that is displaced a distance N, which is an integer, from V_{i}. Thus, in terms of eqn 1 , $V_{1}=\mathrm{V}_{\mathrm{i}}$ and $V_{2}=\mathrm{V}_{\mathrm{i}+\mathrm{N}}$.

Equation I can be rewritten to the form:

$$
V_{0}=\frac{V_{i}+V_{i+N}}{\mathrm{k}+\left(V_{i}+V_{i+N}\right)}
$$

When the V_{1} data from the experiment are plotted, the resultant curves are very similar to those of Fig. 6 and
demonstrate very nearly the same degree of resolution improvement.
I also found that a limited amount of 'tuning' of resolution can be done by selecting values of N. However, with the 1 mm spacing used in the experiment, values of N that were greater than 5 showed essentially the same curves.

In both the single-sensor and twosensor methods there exists the possibility of creating a selectable beam width sensor system. Signal V_{0} could be the narrow beam-width signal, $V_{1}+V_{2}$ can be the wide beam-width signal, and V_{1} or V_{2} can be the medium beam-width signal.

In summary

This sensor resolution improvement method is a variant on the monopulseresolution improvement, or MRI, method used for many years in radar technology. It appears to have applications in ultrasonic imaging - which resembles radar in basic approach and in any instrumentation problem where sensor resolution is an issue.
Perhaps one day I will try it on a metal detector and go searching for artifacts on an American Civil War battlefield near my home in Virginia.

Further reading

Brown, John M. Brown and Joseph J. Carr, 1997, 'Introduction to Biomedical Equipment Technology - 3rd Edition,' New York: Prentice-Hall.
Carr, Joseph J., 1992, 'The Art of Science,' San Diego: Hightext
Publications, Inc.
Skolnik, Merrill, 1980, 'Introduction to Radar Systems,' New York: McGrawHill.
Stimson, George W., 1983, 'Introduction to Airborne Radar Systems,' El Segundo, CA: Hughes Aircraft Co.

MARCONI TF 2019A

Synthesised Signal Generators
80 Hz to 1040 Mhz AM/FM, Memories, LCD
Complete with lid, plugs and leads FULLY TESTED and WARRANTED A REAL Anchor Special ONLY $\$ 750$

TEK 2445 Scopes

DC-150Mhz 4 Trace/2 Timebase and Cursors A REALAnchor Special ONLY $£ 495$

Frequency Counters

Racal Dana 9903/4
7 segment 30 Mhz f 24
Racal Dana 9918
9 segment 560 Mhz £ 75

Signal Generators

HP 8683A

2.3-6.5 GHz AM/FM NOW ONLY €499
Hewlett Packard 8640A 500 Khz to 520 Mhz AM/FM/CW ONLY £245
Hewlett Packard 8640 B
As above but with Digital Readout ONLY £595
Rohde and Schwarz APN62 1 hz to 260 kHz with LCD display $£ 995$ Farnell DSG2
Synthesised 0.1 mHz to 110 Khz £ 195 Wavetek 155
Programmable VCG 0.01 hz to 1 Mhz sine, square, triangle £195 Schlumberger FSD120M
Remote Synthesiser to 120 Mhz in 0.01 hz steps $£ 175$

Marconi TF2015

 10-520Mhz NOW ONLY £95 Marconi TF2171 Synchronizer for 2015 NOW ONLY £95 BOTH TF2015 and TF2171 ONLY £180
Video Equipment

Panasonic AG6200 VHS ONLY £99
Panasonic AG6810
HiFi Duplication machines VHS NOW ONLY £99 SONY VO5630 Low Band Umatic ONLY $£ 225$ PANASONIC AG6100 VHS Players ONLY £100

TEK 2445

150Mhz Four Trace/2 Time base
with Cursors, etc. Now Only £495
TEK 2445A 150Mhz Four Trace/2 Time bases with Cursors, etc. Now Only 995
TEK 2465300 Mhz Four Trace/2 Timebases Now Only $£ 1250$ IWATSU SS-6711 100 Mhz Four Trace Dual Time base Now Only $£ 345$
NICOLET 2090-111
1 Mhz Digital Scope, Cursor ctr Now Only $£ 150$ GOULD OS3600 with DM3010 DMM fitted, 60 Mhz Dual trace, Dual Timebase Now Only $£ 350$

Oscilloscopes

HP 1741A 100Mhz Storage Dual Time base only $£ 350$
TEK 4658 100Mhz Dual Trace/ Timebase Now Only £295 TEK 465 M scope as 465 B but built only for Military. Only $£ 350$
TEK 475 200Mhz Dual Trace/Timebase Now Only £395

THIS MONTH'S SPECIALS
Philips PM3217 Scopes
DC-50Mhz 2 Trace/2 Timebase
A REAL Anchor Special ONLY £275

Philips PM5519 Colour Pattern Generator SPECIAL ONLY £125

Racal Dana 1991 60Mhz NanoSecond Counters with Maths f'ctns, etc SPECIAL ONLY £295

ANCHOR SUPPMIES LTID

All prices are EX VAT and Carriage

Miscellaneous

NEOTRONICS DigiFlam850
Portable Flammable Gas Det
CN Inst/charger
NOW ONLY £ 145
GIGA Pulse internal counter 2-8Ghz ONLY $£ 150$ Flike 80-40K High Voltage probe for DMM's 40kv. Cased. NEW £45

Farnell TTS520
Transmitter Test set to 520 Mhz NEW $£ 750$ HP8900C
Peak power meter with 84811 A sensor and attenuator $£ 250$

Farnell B30/10
Regulated + Stabilised Power supply. 0-30V @10A £60
Wangel \& Golterman DF64 Error Rate Measuring set £195

AVO Model 8 Mk 5/Mk 6
Multimeters . . THE Standard

NEW EQUIPMENT

DTA20 Oscilloscope 20Mhz
Twin trace incl probes ONLY £225
DTA40 Oscilloscope 40 Mhz
Twin Trace incl probes ONLY £299
DTS40 Oscilloscope 40 Mhz
Digital Storage twin channel
Cursors + readouts
Incl. Probes. ONLY £399
AMM255 Automatic Mod Meter 1.5Mhz to 2Ghz, LCD IEEE488 ONLY £495

SCG50 Synth Clock Gen. To 50 Mhz , LED display ONLY £125

NEW SCOPE PROBES

$\times 1 / \times 10$ switchable to 100 Mhz
Complete with adaptors
Limit 2 sets per customer ONLY £9.95

COMPARE OUR PRICES
WITH THE COMPETITION.
SEE HOW MUCH YOU CAN SAVE AT ANCHOR

MAIL ORDER A PLEASURE

The Cattle Market Depot, Nottingham NG2 3GY, UK

Tel: (0115) 9864902 Fax: (0115) 9864667
Also at Peasehill Road, Ripley, Derbys
Visit our Web Site: www.anchor-supplies.Itd.uk email: sales@anchor-supplies.Itd.uk

Power amplifier

circuit boards

Professionally designed and manufactured printed circuit boards for Giovanni Stochino's no compromise 100W power amp are available to buy.

These high-quality fibre-glass reinforced circuit boards are designed for Giovanni Stochino's fast, low-distortion 100W power amplifier described in the August 1998 issue. Layout of the doublesided, silk screened and solder masked boards has been verified and approved by Giovanni.
This offer is for the pcbs only. The layout does not accommodate the power supply scheme shown in the article. Note that a copy of the article and a few designers' notes are included with each purchase, but you will need some knowledge of electronics and thermal management in order to successfully implement this design.
You can receive a copy of the technical notes that accompany the pcbs and a copy of Giovanni's original article for $£ 3.50$, refundable on purchase of one or more pcbs. Send a postal order or cheque payable to Reed Business Information to 'Board notes,' Electronics World Editorial, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Don't forget to include your address.

£42 per pair fully inclusive or $£ 25$ each

Giovanni's high-performance power amplifier mounted on its heat sink.

Please send me \qquad pcbs @ £25 each or £42 a pair.	
Please debit my credit card for $£$	
Card type MasterCard/Visa.	
Card number	Expiry date
Signature	
Name	
Address	
Tel	
Cheques made payable to Reed Business Information.	
Post to: PCB Offer, Electronics Wo Sutton, Surrey, SM2 5AS. Please	dant House, T

Specifications			
Power into 8Ω lood			100W
Small-signal bandwidth before the output filter			$\begin{aligned} & 20 \mathrm{~Hz}(-0.1 \mathrm{~dB}), \\ & 1.3 \mathrm{MHz}(-3 \mathrm{~dB}) \end{aligned}$
Unity gain frequency before the output filter			22 MHz
Output noise (BW $=80 \mathrm{kHz}$, input terminated with 50Ω			42 NV rms
Measured output offset voltage			+32mV
Distortion performance			
$\mathrm{V}_{\text {out }}$, pk-pk	$\mathbf{1 k H z}$	20 kHz	
5	0.0030\%	0.0043\%	
10	0.0028\%	0.0047\%	
20	0.0023\%	0.0061\%	
40	0.0028\%	0.0110\%	
80	0.0026\%	0.0170\%	
Slew rate			
Positive slew-rate	+320V/us		
Negative slew-ra	-300V/ps		

practical, cost-effective surface mount solutions.
 Whether used as a practical "how-to-do" manual, or in specifying denser and more complex surface mount projects, the Surface Mount Technology Handbook in over 300 pages provides a wealth of high quality reference data covering "state-of-the-art" surface mount processes:

- assembly and technical design issues
- cost-effective design
- processes and process control
- components including fine pitch
- applications and solutions
- the pitfalls and how to avoid them
- trouble-shooting and QA
- where to go to get further advice
- comprehensive sourcing guide for equipment and materials

Order your copy now

Benefit from the most comprehensive surface mount reference available and save $£ 25$.

Contents ${ }_{\text {in }}$ Brief;

Chapter 1 Introduction to Surface Mount Technology
Chapter 2 Interconnecting Media
Chapter 3 Surface Mount Components

Chapter 4 Paste/Adhesive Application
Chapter 5 Component Placement
Chapter 6 Solder Reflow
Chapter 7 Cleaning

Chapter 8 Equipment Selection criteria
Chapter 9 Glossary of Terms
Chapter 10 Buyers Guide

307 Pages with 10 Chapters providing in-depth coverage of all aspects of the process.
No risk 28 day Refund Guarantee - if the Surface Mount Technology Handbook
does not meet your expectations, simply return the book to us within 28 days for a full refund.
REED
ELECTRONICS
RESEARCH

Electronio
packerl

Improving VHF Yagis

0ne of the reasons why building good antennas is a challenge is that key parameters are often incompatible. This note examines the incompatibility between very efficient transmission lines, which have a high characteristic impedance, and typical Yagis, which have low input impedance.
Antenna optimisation often ignores the transmission line. The line is selected only after the Yagi design is complete, and it is almost always coaxial. The antenna/transmission line system is then made to work by adding a matching network.
But this approach is not necessarily the best. Designing the antenna and transmission line together may provide better overall performance, a point which is illustrated by the 12 -element Yagi discussed below.

Feed-system-loss at VHF

The problem at VHF is that coaxial cable loss increases dramatically with frequency, often robbing the antenna system of its full potential.
On 2 metres, for example, the matched-line attenuation of widely used RG-8 foam-dielectric coaxial cable is about $2.1 \mathrm{~dB} / 100$ feet $^{\prime}$, which is quite substantial. And this is the minimum value, because attenuation increases as SWR goes up - which also reduces system bandwidth.

Another source of attenuation is the required matching network and balun. Even the simplest network introduces some loss in its electronic components and coax connectors, and these losses are usually much higher at VHF than at lower frequencies.
At VHF, where fractions of a decibel can make a difference, using a transmission line with the lowest possible loss is obviously very important. The best transmission line is air-insulated open wire (not 'window' line).
An open wire line made with \#12 AWG conductors has an attenuation of only $0.25 \mathrm{~dB} / 100$ feet on 2 metres $^{(1)}$. For comparison, 200 feet of open wire line delivers 89% of the input power to the antenna, while the same length of RG-8 delivers only 38%.
But there are problems with open wire line. Practical conductor spacings result in high characteristic impedance, which is difficult to match to a low impedance Yagi. Table 1 shows the centre-to-centre conductor spacing to achieve different line impedance with common wire sizes. The impedance is computed from the formula $Z_{0}=276 \log (2 S / d)$, where S is the centre-to-centre spacing and d is the conductor diameter, both in the same units. ${ }^{2}$

High-impedance Yagis

The easiest way to take advantage of the extremely low attenuation of open

> With the aid of a 300Ω 12-element design example, Richard Formato explains how high-impedance Yagis improve VHF antenna system performance, and why a 300Ω pair performs better than coaxial cable.

wire line is to design a good Yagi with a high input impedance. One approach is to use a half-wave folded dipole as the driven element ${ }^{(3)}$. Another is to increase the input impedance of the usual centre-fed linear dipole driven element (DE) by proper placement of the array's parasitic elements. The feasibility of this design approach will be demonstrated by a 12 -element Yagi that provides a nearly perfect match to 300 -ohm open wire line and excellent overall performance. An added advantage is that the antenna and transmission line are both balanced, so that the balun connecting the unbalanced transmitter output to the line can be placed at the transmitter instead of at the antenna.

Free modelling software -
YGO2
The high impedance array was
designed using Yagi Genetic Optimizer version 2 , which is a freeware program available on the web. ${ }^{4} Y G O 2$ models Yagis using NEC-2D (Numerical Electromagnetics Code, Ver. 2, Double Precision). This is also available on the web ${ }^{4}$ or directly from ACES. ${ }^{5}$ Essential data from the YGO2 config-
uration file, and the NEC-2D input file for the final optimised array, are in the panel entitled 'Yagi modelling data'.
The optimisation was done iteratively. The initial runs optimised only the input impedance by setting the coefficients d, e and f to zero, and by assigning a low value to coefficient a.

Fig. 1. Azimuthal pattern for the genetically-optimised 12-element Yagi using the NEC file YGO_1.40 listed later.

Fig. 2. Input resistance of the 12 -element high-impedance Yagi around the centre normalised frequency.

Table 1. Conductor spacing in inches for various wires
sizes and characteristic impedances.

AWG	Zo (Ω)			
	300	350	400	450
10	0.622	0.945	1.434	2.176
12	0.494	0.749	1.137	1.725
14	0.392	0.594	0.902	1.369

Once a geometry was evolved that was a good match to 300Ω, the corresponding chromosome was used to seed subsequent optimisation runs in which coefficients a, d, and e were gradually increased (f was always zero).
This process was repeated until the desired balance between $Z_{i n}$, gain, FB and FR was achieved. All runs were at

Table 2. High-Z Yagi geometry. Dimensions in wavelengths at $\mathrm{F}_{\boldsymbol{a}}$. Note that all elements are 0.0122 wave diameter.			
El \#	Length	Spacing	Position
1 (REF)	0.4839	0.0000	0.0000
2 (DE)	0.5992	0.2397	0.2397
3 (D1)	0.3865	0.0500	0.2897
4 (D2)	0.3453	0.2635	0.5532
5 (D3)	0.4094	0.2229	0.7761
6 (D4)	0.6000	0.1224	0.8985
7 (D5)	0.4306	0.2212	1.1197
8 (D6)	0.4412	0.1559	1.2756
9 (D7)	0.4271	0.1700	1.4456
10 (D8)	0.5647	0.0729	1.5185
11 (D9)	0.3141	0.3482	1.8667
12 (D10)	0.3824	0.3447	2.2114

one frequency, i.e. 146 MHz . The element diameter of 0.0122 waves is equal to $\operatorname{lin}(25.4 \mathrm{~mm})$ divided by the wavelength at 144 MHz (299.8/frequency in megahertz).

Somewhat fat elements were chosen to broaden the Yagi's response. Smaller diameter elements - but not too small - should provide more gain at the expense of bandwidth, but this was not investigated in detail.

A 12-element, 300Ω Yagi

The geometry of the YGO2-optimised Yagi appears in Table 2. I refer to this antenna as the 'high-Z' Yagi because it matches 300Ω line. All dimensions are in wavelengths at the design frequency F_{0}.
Length is the end-to-end element length. Spacing is the separation along the boom from the previous element. Position is the distance along the boom from element No 1 - the reflector. Element No 2 (DE) is driven at its centre - i.e. it's a centre-fed linear dipole. All elements have the same diameter of 0.0122 wave at F_{0}.

Figure 1 shows the YGO2 output screen, which plots the E-plane azimuthal radiation pattern and provides a scale representation of the array. The display is annotated with key performance data. The radiation pattern is very clean, and its structure is typical of well-designed Yagis.
One interesting aspect of this Yagi is its unusual geometry. Unlike 'standard' designs having progressively shorter directors with increasing spacing away from the DE , the element lengths do not follow any pattern. Some of them are quite out of the ordinary.
The DE, for example, is the secondlongest element at 0.5992 wave. The reflector, REF, is much shorter, at 0.4839 wave, and the longest element is element No 6, D4, which is 0.6 wave. Usually, the reflector is the longest element, DE is less than halfwave and the directors become progressively shorter.

Not quite a director

Another unusual feature is the position of director No 1, or DI, which is very close to DE, separated only by 0.05 of a wave. This director appears primarily to function as an impedance matching parasitic, rather than as a true director. Even though it contains 12 elements, this Yagi looks more like an 11-element array.
The similarity to an 11 -element array is even more apparent when the 12 -element high-Z Yagi is com-
pared to the 144 MHz family of designs in The ARRL Antenna Book. ${ }^{6}$
The ARRL 11-element array has a boom length of 2.2 waves and a gain of 14.15 dBi , i.e. 12 dBd . It has a front-to-back ratio, shortened to FB, of 19 dB , an input resistance of 38Ω, and an unspecified input reactance. This is presumably tuned out by a matching network. Because this array is intended to operate with a low-impedance transmission line, I will refer to it as the 'low-Z Yagi'.
The high- Z array in Fig. 1 is the same length as the low- Z antenna (2.21 waves), and has a gain of 11.53 dBi , and FB and front-to-rear (FR) ratios of 19.2 dB . The high- Z array is essentially resonant at $F_{0}\left(Z_{\text {in }}=299.3+\mathrm{j} 2.9 \Omega\right)$, which provides a nearly perfect SWR of 1.01 on 300Ω open-wire line with no matching of any kind. In contrast, the low-Z Yagi's SWR relative to 50Ω is 1.32 without matching, assuming the antenna is resonant - almost certainly not the case.

Relative performance

The performance of the high and low-Z arrays is similar in many respects, but there are differences. It appears that the extra element in the high-Z Yagi increases the DE input impedance while contributing little to the gain. In fact, taken together, DE and D1 look much like a folded dipole.
It is interesting that YGO2's solution places D1 as close as possible to DE at 0.05 waves. Had the minimum spacing in YGO2.CFG been lower, say 0.025 wave, YGO2 might have placed D1 even closer, which would make DE/D1 look even more like a folded dipole. There's more on YGO.CFG in the panel entitled 'Yagi modelling data'.

Another (and more important) difference is that the high-Z Yagi's gain is lower than the low-Z's by 2.62 dB . But, while this gain reduction would be significant if realised, it will not occur in practice because of the different levels of transmission line loss.
If the high and low-Z systems are
compared, taking into account line loss, then the high-Z Yagi may well be the better antenna. It provides more overall gain than the low-Z array for any transmission line longer than 142 feet comparing \#12 AWG open wire and foam-dielectric RG-8. This result excludes matching network and connector losses. These are likely to be much higher for the coaxial cable than for the open-wire line, which again gives the high-Z Yagi an edge.
Another advantage of the high- Z design is that open-wire line is easily coupled to an unbalanced-transmitter output. Simple, very low loss air-core inductive circuits that act as balun and impedance matching transformer are readily available. ${ }^{7}$ This circuit can be located at the transmitter, which is not possible with coaxial cable because the balun must then be at the antenna input.
Placing the network in the shack reduces the weather-related losses and maintenance that are inevitable with devices mounted outdoors.

Open-wire line is also favoured because of its effect on signal-to-noise ratio. In a receiver-noise limited system, SNR is reduced by the amount of transmission line attenuation.
At VHF, the extremely low attenuation of open wire line is advantageous both for receiving and transmitting. Open-wire line provides better SNR than coax, and it delivers more power to the antenna.

Input impedance and SWR

Figures 2-7 provide detailed performance data for the high-Z Yagi computed by NEC-2D. On each plot, the abscissa is the normalised frequency, F / F_{0}, where F_{0} is the design frequency at which the array dimensions are computed.
For convenience, the ratio F / F_{O} is denoted by a lower case, italic f. Each parameter is plotted over a 10% bandwidth ($0.95 \leq f \leq 1.05$).
Figure 2 shows the input resistance. The design value of 300Ω is achieved at three frequencies, $f=0.97,1.00$, and
1.006. Maximum resistance is 350Ω at $f=0.957$, with a secondary peak of about 330Ω at $f=1.003$. The resistance is between 200 and 350Ω for frequencies from 0.95 to just below 1.01 .
Input reactance is plotted in Fig. 3.

Input reactance.

Standing-wave ratio.

Forward gain

Front-to-back ratio.

Four resonances, i.e. where $X_{\text {in }}=0$, occur at $f=0.968,0.992,1.00$, and 1.044. The maximum reactance of about $+140 \Omega$ (inductive) occurs at $f=0.95$, while the minimum of -161Ω (capacitive) is at $f=1.008$.
Reactance is less than 10% of the desired 300Ω input resistance from
$f=0.963$ to 1.002 (3.9\%). For practical purposes, the high-Z Yagi may be considered resonant over this entire range of frequencies.
The most important antenna impedance parameter is SWR, which is plotted in Fig. 4. At the lower band edge, the SWR is just over 1.5. It is
below 1.5 from $f=0.953$ to 1.005 , yielding a 1.5:1 SWR bandwidth of 5.2%. The 2:1 SWR bandwidth is more than 5.9%, which is quite good.

Gain and FB/FR Ratios

Forward gain in dBi - i.e. decibels relative to an isotropic radiator - appears

Target FoM - 9999 (not normalised)
Crossover allowed only at gene boundary? YES
Print Percent - 20 (\% chromos/gen printed in output file)

Use Seed Chromosome? YES

Seed Chromo:
01100001000000000000000001011011000000000000000111111100000000 00000000001000010000000000000010011011101000000000010001101111 11110000000010010100111101100000000010000110000111100000000000 11110000110110000000000010001010000111000000001011000000110000 0000000010010101011000100000000011100101

Gene \#	Name	Length (bits)	Min (wvin)	Max (wvln)
1.	"Refl_Length ",	8.	0.3000,	0.6500
2,	"Refl_Radius",	8	0.00610,	0.00610
3,	"Refl_Spacing ",	8,	0.0000,	0.0000
4,	"DE_Length ",	8 ,	0.3000 ,	0.6500
5,	"DE_Radius",	8 ,	0.00610 ,	0.00610
6,	"DE_Spacing ",	8 ,	0.0500,	0.428
7,	"D1_Length ",	8 ,	0.3000,	0.6500
8 ,	"D1_Radius",	8 ,	0.00610 ,	0.00610
9,	"D1_Spacing ",	8,	0.0500,	0.428
10,	"D2_Length ",	8 ,	0.3000,	0.6500
11,	"D2_Radius ",	8 ,	0.00610,	0.00610
12,	"D2_Spacing ",	8,	0.0500 ,	0.428
13,	"D3_Length ",	8 ,	0.3000,	0.6000
14,	"D3_Radius ",	8,	0.00610,	0.00610
15,	"D3_Spacing ",	8,	0.0500,	0.500
16,	"D4_Length",	8 ,	0.3000,	0.6000
17,	"D4_Radius ",	8 ,	0.00610,	0.00610
18,	"D4_Spacing ",	8 ,	0.0500,	0.500
19,	"D5_Length ",	8 ,	0.3000,	0.6000
20,	"D5_Radius ",	8.	0.00610 ,	0.00610
21.	"D5_Spacing ",	8	0.0500 ,	0.500
22,	"D6_Length ",	8	0.3000,	0.6000
23,	"D6_Radius ",	8	0.00610,	0.00610
24,	"D6_Spacing ",	8	0.0500,	0.500
25,	"D7_Length ",	8.	0.3000,	0.6000
26,	"D7_Radius ",	8,	0.00610,	0.00610
27,	"D7_Spacing ",	8	0.0500,	0.500
28,	"D8_Length ",	8,	0.3000,	0.6000
29,	"D8_Radius ",	8	0.00610,	0.00610
30,	"D8_Spacing ",	8,	0.0500,	0.500
31,	"D9_Length ",	8,	0.3000 ,	0.6000
32,	"D9_Radius ",	8	0.00610,	0.00610
33.	"D9_Spacing ",	8	0.0500 ,	0.500
34,	"D10_Length ",	8	0.3000,	0.6000
35,	"D10_Radius ",	8	0.00610,	0.00610
36,	"D10_Spacing",	8,	0.0500,	0.500

**************** End of File YGO2.CFG ${ }^{* ~}$

NEC-2D Input file for YGO2-optimised array

CM NEC File: YGO_1.40 (Run ID: 11-16-1998, 23:40:45)
CM Chromosome \#1, Generation \#40
CM Figure-of-Merit $=12.993$
CM Feed System Zo $=300$ ohms resistive
CE
GW 1,7,0.,. $241961,0 ., 0 .,-.241961,0,, .0061$
GW 2,7,. $239741, .299608,0 ., 239741,-.299608,0 \ldots, .0061$
GW $3,7, .289741, .1932355,0, ., 289741,-.1932355,0 \ldots ., 0061$
GW $4,7, .5532, .172647,0,, .5532,-.172647,0,, .0061$
GW 5,7,.776141,.204706,0.,.776141,-. $204706,0, ., 0061$
GW 6,7, $898494, .3,0 ., .898494,-.3,0,, 0061$
GW $7,7,1.11967, .215294,0,1.11967,-.215294,0,, 0061$
GW 8,7,1.275552,.220588,0.,1.275552,-.220588,0.,.0061
GW $9,7,1.445552, .2135295,0,1.445552,-.2135295,0,, .0061$
GW 10,7,1.518493,.282353,0.1.518493,-, 282353,0.,.0061
GW $11,7,1.866728, .157059,0 ., 1.866728,-.157059,0 \ldots ., 0061$
GW 12,7,2.211434,.1911765,0.,2.211434,-.1911765,0.,.0061
GE
GN-1
FR 0,1,0,0,299.8,0.
EX 0,2,4,0,1.,0.
RP $0,1,181,1001,90 ., 0.0 ., 1,10000$.
XQ
EN
in Fig. 5. Maximum gain is 11.8 dBi at $f=1.003$. The gain is above 10 dBi from $f=0.993$ to 1.009 - a 10 dBi gain bandwidth of 1.6%. The half-power -3 dB frequencies are 0.986 and 1.011, yielding a -3 dB bandwidth of 2.5%.
The FB ratio in Fig. 6 peaks at 23.9 dB at $f=0.998$. FB is above 20 dB from $f=0.996$ to $1.00(0.4 \%)$, above 15 dB from 0.993 to $1.002(0.9 \%)$, and greater than 10 dB from 0.988 to 1.004 (1.6\%)

The FR in Fig. 7 shows similar behaviour, but its peak value is lower. Maximum FR is 19.2 dB at $f=1.00$. It is above 15 dB from $f=0.996$ to $1.002(0.6 \%)$, and greater than 10 dB from 0.988 to 1.004 (1.6\%).

In summary

The high-Z Yagi is a high-performance antenna. It directly matches extremely low loss, balanced 300Ω open wire line. As a system, this array fed by open wire line outperforms an optimised 11-element array
of the same boom length fed by RG8 coaxial cable, as long as the transmission line is longer than 142 feet ignoring matching network and balun losses.
The 12 -element high- Z system provides more overall gain and better SNR. If the coaxial matching network/balun has higher losses than the open wire network - which is very likely - the high-Z Yagi provides better performance even for lines shorter than 142 feet.
This design example shows that there are compelling reasons for designing high-Z Yagis to operate directly with high impedance open wire lines. The resulting antenna system can provide excellent performance which may well exceed that of more conventional designs.
High-Z Yagis merit serious consideration by any amateur who is concerned about optimising antenna system performance - especially at VHF where small differences are significant.

References

1. 'The ARRL Antenna Book,' 17th ed., R. Dean Straw, editor, American Radio Relay League, Inc., Newington, CT 06111, USA, 1994, Fig. 22,
p. 24-16.
2. ibid., Eq. (20), p. 24-14.
3. 'Antennas,' 2nd ed., John D. Kraus, McGraw-Hill Inc., New York, 1988, p. 483.
4. Ray Anderson, WB6TPU's, 'NEC Archive' website, URL: http://www.qsl.net/wb6tpu.
5. Applied Computational Electromagnetics Society (ACES) Attn: Dr Richard W. Adler, ACES Executive Officer, ECE Dept., Code ECAB, Naval Postgraduate School, 833 Dyer Road,
Room 437, Monterey, CA 93943-5121

USA.

6. 'The ARRL Antenna Book,' 17th ed., R. Dean Straw, editor, American Radio Relay League, Inc., Newington, CT 06111, USA, 1994, Table 11, p. 18-25.
7. ibid., Figs. 2(A), 2(C), p. 25-3.

HOW DOES YOUR ECUIPMENT MEASURE UP? AT STEWART OF READING THERE'S ALWAYS SCOPE FOR IMPROVEMENT!

PHILIPS PAR3217 -

This is really a very good
oscilloscope including 2 probes,
Pouch \& Front

GOULD OS300 Dual trace 20MHz. Lightweight.

$$
\begin{aligned}
& \text { BEST CHEAF } \\
& \text { SCOPE }
\end{aligned}
$$ YOU WILL EVER BUYIII

GOULD OS1100 Dual trace, 30 MHz delay, very bright. Supplied wit C201

TEKTRONIX 2215 - Dual Trace 60 MHz

TEKTRONIX 400 SERIES

468 Digita Storage Dual Trace 100MHz Delay......5550 466 Analogue Storage Dual Trace 100MHz Delay... $£ 250$ 485 Dual Trace 350 MHz Delay Sweep...............850
475 Dual Trace 200 MHz Delay Sweep.
E450
 465 Dual Trace 100 MHz Delay Sweep................ 335
 Dual Trace 20 MHz

Un.Used $£ 180$

THESE TWO HAVE NEVER BEEN SO CHEAP

ALL FULLL TESTED - IN GOOD CONOITION
MARCONI 2022A/C Synthesised AM/FM Sig Gen OKHz-1GHz from... MARCONI 6311 Prog Sweep Gen 100MHz-20GHz \ldots H.P. 8672A Synthesised Sig Gen 2-18GHz $£ 6000$ H.P. 8657 A Synthesised Sig Gen $100 \mathrm{KHz}-1040 \mathrm{MHz}$.. H.P. 8656 B Synthesised Sig Gen $100 \mathrm{KHz}-990 \mathrm{MHz} \ldots$ H.P. 8656 A Synthesised Sig Gen $100 \mathrm{~K} \mathrm{Mz}-990 \mathrm{MHz}$... H.P. 3325A Synthesised Function Gen 21MH2....... $£ 600$ H.P. 4275A LCR Meter 10 KHz -10 MHz.............. $£ 2750$ H.P. 4192 A LF Impedence Analyser $5 \mathrm{~Hz}-13 \mathrm{MHz}$
H.P. 8903 E Distortion Analyser............................ $£ 6000$ MARCONI 2305 Mod Meter 500 KHz -2GHz from.....
FARNELL AMM2000 Automatic Mod Meter 10 Hz 4GHz Unused. ARCONI 2955A Radio Comm Test Sot TABIL OCK 4031 Radio Comm Test 5 TABILOCK 4015 Radio Comm Test Set $£ 300$

H.P. 8640A AM/FM Sig Gen $500 \mathrm{KHZ}-1024 \mathrm{MHz}$ $500 \mathrm{KHz}-512 \mathrm{MHz}$ Version - $£ 250$

HILIPS PM3296A Dual Trace 400 Hz Dual TB Delay Cursors IEEE
STEWART of READING
110 WYKEHAM ROAD, READING, BERKS RG6 1PL Telephone: (0118) 9268041 Fax: (0118) 9351696 Callers welcome $9 a m \cdot 5.30$ pm Monday to Friday (other times by arrangement)

LEVELL TG200DMP RC Oscillator $1 \mathrm{~Hz}-1 \mathrm{MHz}$ Sine/Square. Meter. Battery Operated
(Batteries not supplied)
CLASSIC AVO METER
A Digital AVO DA 1163.5 digit $\begin{array}{ll}\text { Complete } \\ \text { \& Leadth Batteries } & \text { Only } \\ \text { K30 }\end{array}$

SOLATRON 7045
4.5 Dig Bench

OMM 6.5 digit

WAYNE KERR AMM255

BRAND NEW OSCLLLOSCOPES - NEVER USED

DMS 3850A Digital Storage/DMM

Handheld LCD display 2 Channeis $50 \mathrm{~ms} / \mathrm{s}$. Auto range 4 Digit OMM/Capacityffrequency counter. Battery operation or external 7.5 .9 .5 V DC ie. AC adaplor pouct complete with 2 scope probes; DMM leads; Manual. For only $£ 400$

DTS 40 Digital

 Storage

Dual Trace $40 \mathrm{MHz} 20 \mathrm{MS} / \mathrm{s}$ Storage. Cursors + On screen readout. Sweep Delay; interface etc etc. Supplied unused in original box complete with probes and manual. Amazing Value $£ 400$ Din Dual trace 20 MHz

Alt Mag TV Trig etc unused and boxed with 2 probes and manual.
probes
$\varepsilon 225$

PANASONIC VP8177A $100 \mathrm{KHz}-100 \mathrm{MHz}$ FM 0 100 KHz : Output - 19 dB - 99 dB AM $0-60 \%$; 32 prese memory; Digitai display frequency and output Used E450 Unused $£ 750$ FL180A WOWFHUTER METER 0.003% - 104 ; Freq 3 KHz 3.15 KHz RMS/AVERAGE PEAK: Weighted fitters; Digital display of rpm: 4 digit Freg coumter
$0.01 \mathrm{kHz}-9.999 \mathrm{KHz} .01 \mathrm{Kkz}-55 \mathrm{KHz}$

POWER SUPPLY Model HSP3010 0.30 volts; $0-10$ amps current limiting. 2 meters Used $£ 160$
G000WILL GVI427 DUAL CH
MILIVOLTMETER $10 \mu \mathrm{~V} 300 \mathrm{~V}$ in 12 ranges

Frequency 10 Hz -1 MHz | Frequency $10 \mathrm{~Hz}-1 \mathrm{MHz}$ |
| :--- |
| Used E 100 Unused E 125 |

This is VERY SMALL SAMPLE OF STOCK. SAE or telephone for lists. Please check availability before ordering. CARRIAGE all units $£ 16$. VAT to be added to total of goods and carriage.

TRANSFORMERS FOR BALANCED LINES IN HIGH PERFORMANCE AUDIO SYSTEMS

这 $\mathrm{S}^{\text {owter }}$

E A SOWTER LTD

PO Box 36 IPSWICH IP1 2EL ENGLAND
Tel: +44(0)1473252794
Fax: +44(0)1473236188
E.Mail: sales@sowter.co.uk

Web: http://www.sowter.co.uk
Design and Manufacture of all types of Audio Transformer using Nickel and Grain Oriented cores

Free catalogue

Free technical support service
Popular types from stock

IIIIII (1)릉
 Hi-Fi POWER AMPLIFIERS

ILP 2000 SERIES POWER AMPLIFIERS ARE FULLY ENCAPSULATED HIGH QUALITY MODULES WITH INTEGRAL HEATSINKS AND CARRY A FIVE YEAR GUARANTEE. BY SELECTING THE APP ROPRIATE MAINS TRANSFORMER AND THE PROGRAMMING LINK ONTHE MODULE THEY CAN BE USED WITH 4 OR 8Ω LOADS WITH THE AUTOMATIC ADJUSTMENT OF INPUT SENSITIVITY.
$\begin{array}{ll}\text { HY2000 } & \text { 30W HYBRID AMPLIFIER } \\ \text { HY2001 } & \text { 30W HYBRID AMPLIFIER WITH P.S.U. BOARD }\end{array}$ $\begin{array}{ll}\text { HY2001 } 30 W \text { HYBRID AMPLIFIER } \\ \text { HY2002 } & 60 W \text { HYBRID AMPLIFIER }\end{array}$
HY2003 60W HYBRID AMPLIFIER WITH P.S.U. BOARD HY2004 120 W MOSFET AMPLIFIER
HY2005 120W MOSFET AMPLIFIER WITH P.S.U. BOARD

HI-FI QUALITY AUDIO POWER TRANSFORMER FINISHED IN BLACK WITH RESIN FILLED CENTRES FOR MAXIMUM NOISE ABSORPTION AND EASE OF MOUNTING.

AT0304	FOR ONE HY2000/1 IN 4 4 MODE	$\Sigma 17$	
AT0308	FOR ONE HY2000/1 IN 8Ω MODE	£17.63	
AT0604	FOR ONE HY2002/3 IN 4 2 MODE	£21.1	
AT0608	FOR ONE HY2002/3 IN 8Ω MODE	£21.1	
AT1204	FOR ONE HY2004/5 IN 4 2 MODE	£28.2	
AT1208	FOR ONE HY2004/5 IN 8 8 MODE	£28.2	
AT2404	FOR ONE HY2006/7 IN 4Ω MODE	£39.	
PRICES INCLUDE VAT \& POST AND PACKING			
\\|LP DIRECT LTD			
SPONG LANE, ELMSTED, ASHFORD, KENT TN25 5JU			
PHON	+44 (0) 1233750481 FAX +44	0578	

$\varepsilon 17.63$
£17.63
£21.15
£21.15
£28.20
£28.20
£39.95

NEW/ PRODUCTS

Please quote Electronics World when seeking further information

Chip inductors

Pulse has announced 0603-slzed wirewound chip inductors in 20 values from 1.8 to 120 nH . The

PE-0603CD is compatible with Coucraft's 0603 series. RF applications include phase lock loop circuits and RF amplifiers in GSM mobile phones. They have a flat surface for pick-and-place compatibility, and tin-lead side metallisation.
Pulse
http://www.pulseeng.com
Tel: 01483401700
Enquiry No 501

Fast boot block flash

Supporting both Asynchronous Page Mode (21ns) and Synchronous Burst Mode (54 MHz) operation, Intel's fast
boot block memory is claimed to provide up to five times the system performance of standard low-voltage 80 ns asynchronous flash memory. The interface provides glueless connection to the leading high performance processors. The asymmetrically blocked architecture is supported by Intel's flash data integrator (FDI) software, to enable both code and data to be contained in the same fast boot block device. Suitable for pager, set-top box, handheld GPS, and automotive applications, the flash memory is available from Thame Components in 8 - and 16 -Mbit densities in industry standard 56 -lead SSOP, 56 -ball BGA packages.
Thame Components
Tel: 01844261188
Enquiry No 502

Transceiver chipset

Analog Devices has announced the Softcell multicarrier transceiver chipset for use in cellular, PCS, wireless local loop, micro and pico cell, and smart antenna base stations. It is a functionally complete end-to-end, IF-to-digital transceiver that lets software radios be deployed for wireless infrastructure applications. Base stations containing the chipset can be

TFT flat panel controllers

Philips Semiconductors has introduced video and graphics controllers for TFT flat panel displays. For use in multisync flat-panel colour monitors and LCD projectors, the SAA6712, SAA6712A (XGA resolution) and SAA6721 (SXGA resolution) RGB to TFT graphics engines perform horizontal and vertical scaling, colour adjustment, and on-screen display generation and insertion. Pixel and timing signals are generated to display the resulting images on various TFT displays. The SAA6712A and SAA6721 also accept 48 -bit YUV video inputs, making them suitable for multimedia display applications. All three accept RGB data in 24 -bit single-pixel format or 48 -bit double-pixel interlaced format. They are packaged in 292 -pln PBGAs.
Phillps Semiconductors
Tel: 0031402722091
Enquiry No 509

modified by adding services and channels, and changing wireless standards incrementally. Operators can use and move between air interface standards, for example GSM, PHS and D-Amps. The architecture eliminates redundant channel radios for transmitters and receivers. The chipset is optimised for four RF carrier channels but is expandable.
Analog Devices
http://www.analog.com
Tel: 01932266014
Enquiry No 504

Sensor subsystem

Wolfson has launched the WM8181 CIS and CCD sensor image processing subsystem for low power scanners. Available in a 14 -pin SOIC, it operates from single 5 or 3.3 V or split 5 V analogue and 3.3 V digital supplies. It has a 12 -bit, $2 \mathrm{Msample} / \mathrm{s}$ a-to-d converter with internal reference generation and a differential input. An optional clamp is available for linking to CCD linear image sensors. The serial output has a maximum data rate of $24 \mathrm{Mbit} / \mathrm{s}$. Requiring two clocks and supply decoupling, the product typically consumes 23 mW at 3.3 V operatlon and less than $1 \mu \mathrm{~W}$ in power down mode.
Wolfson Microelectronics
http://www.wolfson.co.uk Tel: 01316679386
Enquiry No 505

Video multiplexer

Linear Technology has introduced the LT1675-1 single 2:1 video multiplexer by combining a two-channel multiplexer with a fixed galn amplifier. It eliminates the need for an extemal buffer amplifier and two gain setting resistors. Channel switching time is 2.5 ns and it can toggle between sources over 100 MHz with a slew rate more than $1100 \mathrm{~V} / \mu$ s and a -3 dB bandwidth of 250 MHz . A disable function lets the output be put into a high impedance state for cascading stages, so multiple inputs can be multiplexed to one output. This function reduces power dissipation to nearly zero in the off parts. http://www. linear.com
Tel: 01276677676
Enquiry No 510

Audio accelerator

Atmel subsidiary Dream has added a PCl audio accelerator to its sound synthesis IC family. The Sam9777 delivers up to 64 streaming audio voices at up to 48 kHz sampling frequency. It provides interactive full

Pots and joysticks
Quiller Electronics has introduced potentiometers and joysticks from Tsubame Radio. The slider and rotary potentiometers are for use as faders and volume controls. Both types are available in SMT
versions.
Quiller Electronics
http://www.quiller.com
Tel: 01202436770
Enquiry No 503
bandwidth sound positioning on two to six speakers. Reverb, chorus, echo, pitch shifting, four band equaliser and surround sound 3DMidi have been combined with a GS compliant sound set under Roland licence.
Atmel
Tel: 01276686677
Enquiry No 508

CAN bus

 microcontrollerFujitsu has launched a CAN bus microcontroller for automotive and industrial control systems. The MB91360 is based on a modular building block idea and uses as its nucleus the firm's FR 32-bit Risc microprocessor core and CAN bus macro. Triple full-CAN bus interfaces are combined with onboard single voltage flash or ROM. The first device, the MB91F361, is fabricated in $0.35 \mu \mathrm{~m}$ technology and has a CPU that clocks at 64 MHz internally, with 512 kbyte flash memory, 1 kbyte instruction cache and 16 kbyte RAM. The device integrates

Please quote Electronics World when seeking further information

on-chip stepper motor controllers,
real-time watch timer, sound generator, LED drivers and PPGs for light
dimmers.
Fujitsu
http://www.fujitsu.com
Tel: 01628504600
Enquiry No 507

SM package

International Rectifier has introduced the SMD-0.5 package, which weighs 1 g and measures 7.5 by 10.1 by 2.9 mm . For power supply, motor drive and linear regulator applications, it can be used with any Rad-Hard MOSFET, Hexfred diodes, Schottky or standard Hexfet power MOSFET device.
International Rectifier
Tel: 01883732020
Enquiry No 506

LCD controller

Epson has introduced the SED1374 colour and monochrome LCD graphics controller with an embedded 40kbyte SRAM display buffer. Hardware portrait mode supports virtual display, allowing panning of larger images than panel size. Split screen display mode provides

Capacitors

Pedoka Is supplying Tokin capacitors with values from 0.022 to 5.0 F. For use as non-battery reserve power sources, they provide currents from 1 to 100 mA and protect microcomputers from power shutdowns of several seconds.
They can maintain the contents of low-dissipation CMOS volatile memories for several months. Each capacitor consists of an electric double layer at the interface between activated carbon particles, and sulphuric acid solution as an electrolyte. The two electrodes are separated by an lonically conducting but electrically insulating porous membrane. Conductive rubber membranes contain the electrode and electrolyte material and make contact to the cell.
Pedoka
Tel: 01462422433
Enquiry No 513
multiple images on screen simultaneously. Display formats supported including 4 and 8 -bit mono and colour LCD, 16 -bit colour LCD single panel and dual panel passives, and active matrix TFT and TFD. Display modes allow for up to 16 levels of grey scale and 256 level colour. Power saving capabilities include hardware and software suspend modes and LCD power down sequencing. Operating voltage s 2.7 to 5.5 V .
Epson Electronics
http://www.epson-electronics.de
Tel: 04989 140 05-349
Enquiry No 511

BGA sockets

Actel has announced ball-grid array sockets for use with its field programmable gate arrays. The sockets suit the prototyping environment and are compatible with the firm's MX and SX devices as well as upcoming reprogrammable FPGA families. The sockets have zero insertion force so the device is not stressed before, during or after testing. They use the same pad layout on the PCB that the device will eventually occupy. This avoids changes to the PCB during the crossover between prototyping and production.
Actel
Tel: 01256305600
Enquiry No 512

Multi-banked DIMM module

Ambar Cascom has introduced a multibank synchronous and synchronous burst, flow-through SRAM module from White Electronic Designs. Made on the dual-key 168 DIMM format, the 3.3 V device supports densities from 1 to 8 Mbyte and has a maximum height of 3.8 cm . Clock to data access times of 10,12 and 15 ns are available. Electrical characteristics include byte write, global write and global reads, and linear and sequential burst is supported via the mode pin. The multi-banked synchronous burst flow-through architecture alleviates additional propagation delays at address boundaries that can occur with address mapping schemes.
Ambar Cascom
Tel: 01296332264
Enquiry No 515

LCD controller

Harting has introduced sensors and actuators using the company's Harax

Connector cover

A nine-way D-subminiature connector cover from Stadium Cables has an inner area large enough to hold a small PCB. The PCB can be double sided if required. The two-part cover snap locks together using internal latches to give a finish similar in appearance to a moulded single-piece hood. The hood can be supplied in black plastic or be metallised for resistance to EMI and RFI. It is supplied in kit form, with two thumbscrews, grommet and strain relief. The grommet can be customised if required.
Stadium Cables
Tel: 01622690470
Enquiry No 514
termination system. The axial insulation displacement termination system is claimed to combine the advantages of connectors and screwed cable glands.

Harting

Tel: 01604766686
Enquiry No 516

LED lamps

QT Optoelectronics has announced suriace mount chip type LED lamps. The QTLP600C and QTLP601C come in 0603 packages. They have a 100° viewing angle and moistureproof packaging. Appllcations include panel illumination, push-button back lighting, LCD back lighting, and membrane switches. The QTLP600C is 0.8 mm and the QTLP601C 0.6 mm high. Both have water clear optics and come in four colours.
OT Optoelectronics
http://www.qtopto.com
Tel: 01296394499
Enquiry No 517

LCDs

Trident Displays is distributing Hexa-Chain video LCD products including component form modules from 6.4 to 16.3 cm at resolutions up to $0.25 \mathrm{VGA}(960 \times 234)$ and housed displays from 10.2 to 16.3 cm using the same modules. Features include input from typically 10 to 30 V , brightness up to $300 \mathrm{~cd} / \mathrm{m}^{2}$, temperature range typically -30 to $+80^{\circ} \mathrm{C}$, Pal and NTSC input autoswitching, and antiglare screens. Trident Displays http://www.tridentdisplays.co.uk/
Tel: 01737780790
Enquiry No 518

Embedded SBC

The EM-520 embedded single board computer from Steatlte Systems combines sound and display features with a 10 Mbps Ethernet LAN. The integrated graphics and audio sound package has VGA and LCD functionality with an NTSC and Pal TV output interface and sound blaster compatibility. It is for multimedia applications and is year 2000 tested. The graphics and audio features are supported by an onboard Cyrix Media GXi processor and Cx5520 companion chip. The processor is custom designed for multimedia applications supporting 1280×1024 $\times 8$ and $1024 \times 768 \times 16$ BPP, and including unified L1 cache memory. Steatite Systerms
http://www.steatite.co.uk
Tel: 01216786888
Enquiry No 519

DCP boards

Transtech DSP has announced a family of boards ready for the introduction of Analog Devices' Sharc II DSP for applications such as radar, sonar and imaging. The Analog Devices ADSP-21160 is a floatingpoint DSP with six link ports for scalability. It has up to 600 Mflops performance and $100 \mathrm{Mbyte} / \mathrm{s}$ datacomms per link port. Power consumption is 2 to 3 W . The boards include formats for PCI, VME, CompactPCI and PMC mezzanine, and are capable of up to 4.8 Gflops performance per board slot. Transtech
http://www. transtech-dsp.com
Tel: 01494464432
Enquiry No 520

Development kit

Toshiba has launched a development kit for embedded applications using the company's TX 32-bit Risc microcontrollers based on the MIPS R3000A architecture. The Topas TX Risc starter klt includes an evaluation board and an evaluation version of the MULTI development environment from Green Hills Software with C and $\mathrm{C}++$ compiler and a PC utility for flash programming.
Toshiba Electronics
Tel: 01276694730
Enquiry No 522

EMC analysers

Hewlett-Packard has introduced automated in-house precompliance measurement systems to help manufacturers meet EMC regulations. The E7400 A series analysers are for EMC testing throughout the design and evaluation processes. Users require no special knowledge or training to perform precompliance measurements. http:/hwww.hp.com/
Tel: 0049644192460
Enquiry No 523

3V SiGe power amplifier

Temic Semiconductors has announced a 3 V silicon germanium (SiGe) power amplifier, the TST0912, for GSM mobile phones. It is for single-band operation in the 900 MHz range (GSM900), and allows the use of single-cell Li-ion or three-cell NiMH batteries. SiGe does not require
negative supply voltage. The amplifier has 35 dBm maximum output power. Its power-added efficiency value is 50 per cent. Temic
http://www.temic-semi.com Tel: 01270252209
Enquiry No 524

LEDs

Surface-mount chip-type LEDs with integrated lenses have been introduced by Hewlett-Packard. These lenses concentrate the emitted light into a typical 70° viewing angle. Applications include illuminating buttons and switches on panels, transterring light to optical light plpes used to illuminate panel legends, backllghting legends on car radios and dashboard devices, and as status indicators on computers, datacomms equipment and other office systems.
Hewlett-Packard.
http:///www.hp.com/
Tel: 0049644192460
Enquiry No 525

PSUs

Astec has Introduced four 250W switched mode PSUs. Housed in a 51 mm high case, the LPS250-CEF models let the single rail output be configured by the user from 3 to 6,6 to 12,12 to 24 and 24 to 48 V DC. There are two supervisory outputs of 5 and 12 V DC at 100 and 500 mA respectively. The single wire current sharing feature supports the use of multiple units in parallel. This parallel

Processor board
The Mlcrobus MAT 900 combines two 450 MHz Pentium II processors, SCSI, 10 and 100Mbit autoswitching Ethernet, and AGP video on a board that fits into a slot in a PICMG backplane. The processors share a common sink-tunnel, creating a rigid box structure for secure retention of the processor assembly. This also allows fitting of the DIMMs above the processors, so OEMs can fit half-length cards in the slot next to the processor card in the PICMG backplane. The AGP video is based on the 3DLabs Permedla Two chipset and supports 4 or 8Mbyte SGRAM video memory. The PCI SCSI-3 supports transfers up to $40 \mathrm{Mbyte} / \mathrm{s}$.
Microbus
Tel: 01628537333
Enquiry No 521

Data logger
The TDS2020 data logger from Triangle can collect information such as pressure, temperature, rotation rate and doors open or closed in Excel spreadsheet compatible format. Applications include agriculture, security, transport and shipping. Using GPS satellites, informatlon on latitude,
longitude, date and time can be incorporated. The storage medium is a
PCMCIA or CompactFlash card for transfer to a PC. The module measures 100 by 80 by 30 mm . The recording format on the
CompactFlash card is Windows compatible.
Triangle
http://www.triangledigital.com/
Tel: 01845527437
Enquiry No 536
capability also allows $\mathrm{n}+1$ redundant configurations.
Astec
Tel: 01384842211
Enquiry No 535

LED bulbs

Switchtec has introduced Sirena LED bulbs to replace low voltage filament bulbs in panels where it is difficult to change dead bulbs. Life time is claimed to be 100000 hours. They

are resistant to vibration. There are six colours to choose from, including blue and bright green, and two sizes, 3 and 5 mm diameter.
Switchtec Electronics
Tel: 01785818600
Enquiry No 526

24-bit ADC

The LTC2400 24-bit analogue-todigital converter. Its accuracy with total unadjusted error is less than 10ppm and it operates without
external crystals, software and additional circuitry. Integral nonlinearity is 2 ppm at 2.5 V reference, with offset of 1 ppm and drift of $0.01 \mathrm{ppm} / \mathrm{C}$. Full-scale error is within 4 ppm with drift $0.02 \mathrm{ppm} /{ }^{\prime}$. RMS noise is 0.3 ppm at $1.5 \mu \mathrm{~V}$. Linear Technology
Tel: 0127667676
Enquiry No 527

64-bit PCI

compliant PLD

Thame Components is shipping fully $66 \mathrm{MHz}, 64$-bit PCl compliant programmable logic devices. Recent enhancements to Altera's FLEX10KE family of PLDs means that the this 2.2 V device family is specified to meet the required timing specifications contained within PCl Rev 2.1. In addition Thame has announced the availability of two intellectual property (IP) cores to support the $66 \mathrm{MHz}, 64$-bit master/target function. One was developed by Altera's in-house team and the other by a member of the Altera Megafunction Partners Program (AMPP). These cores provide designers with a 100 per cent soff implementation of the PCI Rev 2.1 specificatlon. The range comprises five devices. The EPF10K50E contains 2880 logic elements, with 40 kbits of memory contained in the patented EAB structure
Thame Components
Tel: 01844261188
Enquiry No 529

Chip capacitors

Syter has introduced 0805 feedthrough chip capacitors for EMI

Please quote Electronics World when seeking further information
suppression, broadband i/o filtering and DC power line applications. They are rated at 100 or 50 V . Capacitances are from 22 to 820 pF in COG and 470 pF to 47 nF in X7R dielectrics. Current rating is 300 mA

Broadcast interface

Faraday's extended range of Interface cards provides a small, convenient pre-designed solution to common conversions required between broadcast equipment.
Each card is a modular solution for a particular function, allowing easy addition of differing output and input options. This can ease design and production costs and logistics with guaranteed performance simplifying test procedures.
All relevant SMPTE and ITU specifications are adhered to. Each card contains all the filtering and buffering required to interface to external equipment and therefore require only the minimum of external components. They provide a complete drop in solution to conversion.

Common applicatlons include the production of analogue outputs for video monitoring in digital equipment by the addition of a single card as specified by the end customer, or a permanent SDI input for different grade broadcast monitors or LCD displays.
Faraday Technology Ltd. Tel., 01782 661501; fax 01782 630101
Enquiry No 534
and $D C$ resistance less than 0.6Ω. Applications include power supplies, automotive, and multimedia add-on cards.
Syfer Technology
Tel: 01603629721
Enquiry No 530

Schottky diode

Zetex has introduced a Schottky diode in the SOD323 surface mount package. The ZHCS400 supports a continuous forward current of 400 mA for a typical forward voltage of 425 mV . This Superbat device has continuous, average and pulsed current performance providing $400 \mathrm{~mA}, 1 \mathrm{~A}$ and 6.75A respectively. Power dissipation at an amblent temperature of $25^{\circ} \mathrm{C}$ is 250 mW . Forward voltage is 270 mV at 50 mA and 440 mV at 500 mA .
Zetex
Tel: 01616224422
Enquiry No 531

Microchlp

Microchip Technology has expanded its PIC16F87x family of 8 -bit flash microcontrollers with the 28 -pin PIC16F873 and 40-pin PIC16F874. To support these devices, the company has also introduced the MPlab in-circuit debugger evaluation kit that uses the MCU family and the firm's in-circuit serlal programming to debug source code in the application, debug hardware in real-time and program a target PICI6F87x device. Operating under the MPlab integrated development environment, the kit provides real-time code execution, incircuit debugging, built-in programmer and 3.0 to 5.5 V operating range.
Microchip Technology
Tel: 01189215858
Enquiry No 533

Debugger

The Huntsville BMD background mode debugger from Great Westem Microsystems is for use with PowerPC, $683 x x, 68 \mathrm{HC} 12$ and Coldfire devices and works with 3 or 5 V systems, with power supplied by the target or the included extemal power supply. It interfaces with Motorola debug or IBM

JTAG port connections and has flexible breakpoints, flash programming support, control over target resources and the CPU, multiple compiler
support, and HMI's Sourcegate II source level debugger.
http://Mww.gwg.co.uk
Tel: 01179830333
Enquiry No 532

Valve data

For restorers of vintage radios, G C Arnold Partners has re-introduced the Wireless World Valve Data Booklet at £2.95.
Tel. 01202658474
Enquiry No 533

BACK ISSUES
Back issues of Electronics World are available, priced at $£ 3.00$ UK and $£ 3.50$ elsewhere, including postage. Please send your order to Electronics World, Quadrant House, The Quadrant, Sulton, Surrey, SM2 5AS

Free copy of Electronics Engliwer s pucket book with every order whitle stocks last

Available issues

1994	1996	March
January	January	April
April	February	May
May	March	June
July	May	July
August	June	August
November	July/August	September
December	September	November
October	December	
$\mathbf{1 9 9 5}$	November	
February	1999	January
April May June	June	February
September October	September	March
December	1998	April
	January	
	February	

HP New Colour Spectrum Analysers LAST FEW ONLY HP141T+8552B IF $+8553 B$ RF $-1 \mathrm{KHZ}-110 \mathrm{Mc} / \mathrm{s}-£ 500$. HP141T $+85528 \mathrm{BF}+8556 \mathrm{ARF}-20 \mathrm{~Hz}-300 \mathrm{KHz}-\mathrm{£} 400$. $\mathrm{HP} 141 \mathrm{~T}+8552 \mathrm{~B} \mathrm{~F}+8555 \mathrm{~A} 10 \mathrm{MC} / \mathrm{S}-18 \mathrm{GHzS}-£ 1000$. HP8443A Tracking Gen Counter $100 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}$ - $\mathbf{E 2 0 0}$ HP8445B Tracking Preselector DC to 18 GHz - $\mathbf{E 2 5 0}$ HP8444A Tracking Generator - 5-1300Mc/s - E450.
HP8444A OPT 059 Tracking Gen - $5-1500 \mathrm{Mc} / \mathrm{s}$ - 650 . HP8444A OPT 059 Tracking Gen • 5-1500
HP35601A Spectrum Anz Interface - C300.
HP35601A Spectrum Anz Inte
HP 4953 A Protocol Anz- $\mathbf{£ 4 0 0}$.
HP8970A Noise Figure Meter + 346B Noise Head - $£ 3 \mathrm{k}$ HP8970A Noise Figure Meter + 346B Noise Head - £3k.
HP8755A $+\mathrm{B}+\mathrm{C}$ Scalar Network Anz PI $-\mathrm{f} 250+$ MF 180C. Heads HP8755A $+\mathrm{B}+\mathrm{C}$ Scalar Ne
11664 Extra - E 150 each.
HP3709B Constellation ANZ $£ 1,000$.
HP11715A AM-FM Test Source - E350
FARNELL TVS70MKII PU 0-70V 10 amps - $£ 150$.
MARCONI 6500 Network Scaler Anz - $\mathbf{f 5 0 0}$. Heads available to 40GHz many types in stock.
Mixers are available forANZs to 60 GHz .
HP6131C Digital Voltage Source $+-100 \mathrm{~V} / 2$ Amp.
HP5316A Universal Counter A+B.
Marconi TF2374 Zero Loss Probe - £200,
Racal/Dana 2101 Microwave Counter - $10 \mathrm{~Hz}-20 \mathrm{GHz}$ - with book as new $£ 2 k$.
Racal/Dana 1250-1261 Universal Switch Controller $+200 \mathrm{Mc} / \mathrm{s} \mathrm{PI}$ Cards and other types.
Racal Dana 9303 True RMS Levelmeter + Head - $£ 450$
TEK CT-5 High Current Transformer Probe - $£ 25$
HP Frequency comb generator type B406- $£ 400$.
HP Sweep Oscillators type $8690 \mathrm{~A}+\mathrm{B}+$ plug-ins from $20 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $18-40 \mathrm{GHz}$
HP Network Analyser type $8407 \mathrm{~A}+8412 \mathrm{~A}+8601 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}$
$110 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 500-\mathrm{E} 1000$. $110 \mathrm{Mc} / \mathrm{s}$ - f 500 - E 1000 .
HP $8410-\mathrm{A}-\mathrm{B}-\mathrm{C}$ Network Analyser $110 \mathrm{Ma} / \mathrm{s}$ to 12 GHz or 18 GHz - plus most other units and displays used in this set-up - 8411a-俍 Racal/Dana 9301 .
stock $£ 250-£ 400$.
Racal/Dana Modulation Meter Type $9009-9008-8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}$ - $1150 / £ 250-9009 \mathrm{~A}$ £350.

Marconi RCL Bridge type TF2700- $\mathbf{£ 1 5 0}$
Marconi Microwave 5600A 1 sweep osc., mainframe with 6650PI - 18-26.5 GHz or $6651 \mathrm{PI}-\mathbf{2 6 . 5 - 4 0 \mathrm { GHz } - \mathrm { f } 7 5 0 \text { or PI only }}$ c600. MF only $£ 250$.
Gould J3B test oscillator + manual - £150.
Marconi 6155A Signal Source-1 to 2 GHz - LED - $£ 400$.
Barr \& Stroud Variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{Kc} / \mathrm{s}+$ high pass +
low pass - $£ 150$, other makes in stock.
Racal/Dana 9300 RMS voltmeter - $\mathbf{£ 2 5 0}$
HP 8750A storage normalizer - $£ 400$ with lead + S.A. or N, A Marconi mod meters type TF2304- E250-TF2305- £1,000., $50 \mathrm{Mc} / \mathrm{s}-3 \mathrm{GHz}$ - £100-£400 - all fitted with FX standards. HP180TR. HP181T, HP182T mainframes $£ 300-£ 500$. HP432A-435A or B-436A-power meters + powerheads to 60 GHz - $£ 150-£ 1750$ - spare heads available.

HP3586A or C selective level meter - E 500.
HP86222A+B Sweep PI $-01 \cdot 2.4 \mathrm{GHz}+$ ATI $£ 1000 \cdot \mathrm{E} 1250$
HP86290A + B Sweep Pl- $2-18 \mathrm{GHz}$ - $\mathrm{E} 1000-\mathrm{E} 1250$.
HP8620C Mainframe - E250. IEEE £350.
HP3455/3456A Dititl voltmeter - $£ 400$ - MHZ - $50 \mathrm{Mc} / \mathrm{s}$ - $£ 1 \mathrm{k}$.
HP3455/3456A Dighal voltmerer - $£ 400$.
HP5335A Universal counter - $200 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 1000$
HP3552A Transmission test set - E350.
TEKTRONIX 577 Curve tracer + adaptors - $£ 900$.
TEKTRONIX 1502/1503 TDR cable test set - £40
HP8699B Sweep PI YIG oscillator . 01 - 4GHz - E300. 8690B MF E250. Both E 500 .
Dummy Loads \& Power att up to 2.5 kilowatts FX up to 18 GHz microwave parts new and ex equipt - relays - attenuators -
switches - waveguides - Ylgs - SMA - APC7 plugs - adaptors switches - waveguid
etc. qty. in stock.
B8K Items in stock - ask for list.
Power Supplies Heavy duty + bench in stock - Farnell - HP . Weir - Thuriby - Racal etc. Ask for list. Large quantity in stock HP8405A Vector voltmeter .
HP8508A Vector voltmeter - E2500
HP8505A Network Anz $500 \mathrm{KHz}-1.3 \mathrm{GHz}$ - $\mathbf{£ 1 0 0 0}$.
HP8505A + 8502A or 8503A test sets- $£ 1200-£ 1500$
HP8505A + 8502A or 8503A + 8501A normalizer- $£ 1750-£ 2000$ Phillips $321750 \mathrm{Mc} / \mathrm{s}$ oscilloscopes - $£ 150-\mathrm{E} 250$. Phillips $3296350 \mathrm{Mc} / \mathrm{s}$ IR remote oscilloscope - $\mathbf{E 5 0 0}$. Res APN 62 LF S/G $0.1 \mathrm{~Hz}-260 \mathrm{KHz}$ with book - $E 500$.
Wavetek-Schlumberger 4031 Radio communicatlon test set

LIGHT AND OPTICAL EQUIPMENT

Anritsu ML93A \& Optical Lead Power Meter - £250
Power Sensors for above MA96A - MA98A - MA913A - Battery Pack MZ95A.
Anritsu MW97A Pulse Echo Tester.
Pl available - MH914C 1.3-MH915B 1.3-MH913B 0.85
MH925A 1.3-MH929A 1.55-MH925A 1.3G1-MH914C 1.3SM £500 + one P.I.
Anritsu MW98A Time Domain Reflector
Pl available - MH914C 1.3-MH915B 1.3-MH913B 0.85
MH925A 1.3 - MH929A 1.55 - MH925A 1.3GI - MH914C 1.3SM
A500 + one P.I.

+ MG912B (LD 1.35) Light Source + MG92B (LD 0.85)
Light Source £350.
Anritsu MZ118A O/E Converter
+MH922A 0.8 O/E unit + MH923 A1.3 O/E unit $£ 350$.
Anritsu ML96B Power Meter \& Charger £450
Anritsu MN95B Variable Att. 1300 C100.
Photo Dyne 1950 XR Continuous Aft. 1300 - 1500 £ 100.
Photo Dyne 1800 FA. Att $£ 100$.
Cossor-Raytheon 108 L Optical Cable Fault Locator
0-1000M 0-10kM £200.
TEK P6701 Optical Converter $700 \mathrm{MC} / \mathrm{S}-850 \mathrm{C} 250$.
TEK OF150 Fibre Optic TDR - $£ 750$.
HP81512A Head 150MC/S $950-1700$ £250.
MP84801A Fibre Power Sensor $600-1200$

HP8158B ATT OPT 002+011 1300-1550 £300
HP81519A RX DC-400MC/S 550-950 £250.
STC OFR10 Reflectometer - $£ 250$.
STC OFSK 15 Machine jolnting + eye magnifier - £250.
COMMUNICATION EOUIPMENT
Anritsu ME453L RX Microwave ANZ - $£ 350$.
Anritsu ME453L TX Microwave ANZ - $£ 350$.
Anritsu ME453L TX Microwave ANZ - $£ 350$.
Anritsu MH370A Jitter Mod Oscillator - $£ 350$.
Anritsu MH370A Jitter Mod Oscillator
Anritsu MG642A Pulse Patt Gin. £350.
Complete MS65A Error Detector.
Anritsu ML612A Sel Level Meter - $£ 400$.
Anritsu ML244A Sel Level Meter - $£ 300$.
W\&G PCM3 Auto Measuring Set - $£ 300$.
W\&G PCM3 Auto Measuring Set - $£ 300$
W\&G SPM14 Sel Level Meter - $£ 300$.
W\&G SPM15 Sel Level Meter - $£ 350$.
W\&G SPM16 Sel Level Meter - $\mathbf{E} 400$.
W\&G PS 19 Level Gen - £500.
W\&G DA20 2 DA1 Data ANZ 400
W\&G DA20+DA1 Data ANZ E400.
W\&G PMG3 Transmission Measuring Set - $£ 300$.
W\&G PSS16 Generator - $\mathbf{C 3 0 0}$.
W\&G PS 14 Level Generator - $£ 350$.
W\&G EPM-1 Plus Head Milliwatt Power Meter - $£ 450$, W\&G DLM3 Phase Jitter \& Noise - $£ 350$
W\&G PS10 \& PM10 Level Gen. - $£ 250$.
MISCELLANEOUS ITEMS
HP 3852A Data Acquisition Control Unit + 44721A 16ch input £1,000.
HP 4261 LCR meter - $£ 650$
HP 4274 FX LCR meter - $£ 1,500$
HP 3488 Switch Control Unit + PI Boards - $£ 500$
HP 75000 VXI Bus Controllers + E1326B-DVM-quantity. HP 83220A GSM DCS/PCS 1805-1990MC/S convertor for use with 8922A - $£ 2,000$.
HP 1630-1631-1650 Logic ANZ's in stock
HP 8754 A Network ANZ 4-1300MC/S + $8502 \mathrm{~A}+$ cables - $\mathbf{£ 1} 1,500$.
HP 8754A Network ANZ H26 4-2600MC/S + 8502A + Cables -
E2,000.
12.4GHZ all 3 - 3 MF +83540 A PI $2-8.4 \mathrm{GHZ}+83545 \mathrm{~A}$ PI 5.9 12.4 GHZ all $3-$ E3, 500 .

HP MICROWAVE TWT AMPLIFER 489A 1-2GHZ-30DB - £400
HP PREAMPLIFIER 8447D $0.01-1.3 \mathrm{GHZ}$ - E400
HP POWER AMPLIFIER $8447 \mathrm{E} 0.01-1.3 \mathrm{GHZ}-\mathrm{E} 400$
HP PRE + POWER AMPLIFIER 8447F 0.01-1.3GHZ - 5500 . HP 3574 Gain-Phase Meter 1HZ-13MC/S OPT 001 Dual - $\mathbb{C 4 0 0}$ MARCONI 2305 Modulation Meter-50KHZ-2.3 GHZ - E1,000. MARCONI 2610 True RMS Meter - £ 450
MARCONI $893 B$ AF Power Meter (opt Sinad filter) - $£ 250-£ 350$. MARCONI $6950-6960 \mathrm{~B}$ Power Meters + Heads - $£ 400-£ 900$. Rance 4-18GHZ-
RACAL 1792 COMMUNICATION RX - $\mathbf{5} 500$ early - $£ 1,000$ - late model with back lighting and byte test. PLESSEY PR2250 A.G-H COMMUNICATION RX - E500. 9900. TEK MODULE MAINFRAMES - TM501-502-503-504-506. TM5003-5006.
TEK P1 5010-M1 - Prog Muiti interface - E250. FG Prog 20MC/S Function Gen - £400-S1 Prog Scanner - E250 - DM Prog DMM
-E400. 7834-7854-7904-7904A-7104- £150-£1,000
TEK 7000 Pl's - 7A11-7A12-7A13-7A18-7A19-7A22-7A24-7A26 TEK 7000-7S11-7S12-7S14-7M11-S1-S2-S3A-S4 S5-S6-S51 S53.S54.

RADIO COMMUNICATION TEST SETS
 BULK PURCHASE ONLY FROM JOHNS RADIO

HP 8920A RF Communication Test Set - Opts 003-004-007-01 unit contains Syn Signal Gen-Distortion Meter-Mod Meter Digital Oscilloscope etc. $1000 \mathrm{MC} / \mathrm{S}-\mathrm{f1}, 500$ each.
MOTOROLA R2600A plus RLN4260A RF Test Set - $\mathbf{~} 3,000$. MARCONI 2955 RF Test Sets-1000MC/S - $£ 1,200$ each. MARCONI 2958 RF Test Sets-1000MC/S - $£ 1,300$ each MARCONI 2960 RF Test Sets-1000MC1S - $£ 1,400$ each. MARCONI 2955A RF Test Sets-1000MC/S - E2,000 each. ANRITSU MS555A2 Radio Comm Anz-1000M/Cs - 11,200 each. ANRITSU M S555A2 Radio Comm Anz-1000M/Cs - 1 1,200 $80 \mathrm{KC} / \mathrm{S}-1040 \mathrm{MC} / \mathrm{S}$ - AM-FM all functions tested off the pile as received from Gov - in average used condition - 6650 each or in original Gov cartons 1st class condition each fitted with IEEE plus added protection front cover lid containing RF-IEEE-mains cables $+N$ to BNC adaptor - Attenuator etc. + Instruction Book - fully checked to high standards in our own workshop - $£ 1 \mathrm{k}$. MARCONI 2022E SYNTHESIZED SIGNAL GENERATOR $10 \mathrm{KC} / \mathrm{S}-1.01 \mathrm{GH}$ Z AM-FM - made small and light for portability being the naval version - all functions tested off the pile as recelved from Gov - in average used condition - $£ 1,000$ each or in original Gov cartons as new condition - each fitted with IEEE + added protection front cover lid containing RF-IEEE - mains Instruction Book - fully checked to high standards in our own workshop - $£ 1,250$ each
WE KEEP IN STOCK MP and other makes of RF Frequency doublers which when fitted to the RF output socket of a S/Generator doubles the output frequency EG. $50-1300 \mathrm{MC} / \mathrm{S}$ to $50-2600 \mathrm{MC} / \mathrm{S}$ price from $£ 250$ - $£ 450$ each.

SPECTRUM ANALYZERS

HP 3580A 5HZ.50KHZ - 6750
HP 3582A Dual 0.2HZ-25.5KHZ - $£ 1,500$.
HP 3585A 20HZ-40MC/S - $£ 3,500$.
HP 3588 A 10 HZ -150MC/S - $\mathrm{E7}, 500$
HP 8568A 100HZ.1.5GHZ - E3,500.
HP $8568 \mathrm{~B} 100 \mathrm{HZ}-1.5 \mathrm{GHZ}$ - $\mathrm{E4}, 500$.
HP 85908 9KC/S-1.8GHZ - £ 4,500 .
HP 8569 B 10MC/S $(0.01-22 \mathrm{GHZ})$ - $\mathrm{£} 3,500$.
HP 85698 10MC/S $(0.01-22 \mathrm{GHZ}$ - $\mathrm{f3}, 500$.
HP 3581 A Signal Analyer $15 \mathrm{HZ}-50 \mathrm{KHZ}-£ 400$.

TEK 492 50KHZ-21GHZ OPT $2-£ 2,500$. TEK492P 50 KHZ-21GHZ OPT $1-2 \cdot 3-£ 3,500$.

TEK 492 AP $50 \mathrm{KHZ}-21 \mathrm{GHZ}$ OPT 1-2-3- 4,000 .
TEK $495100 \mathrm{KHZ}-1.8 \mathrm{GHZ}$ - E2,000.
HP 8557A 0.01MC/S-350MC/S - $5500+$ MF180T or 180C - $£ 150-$ 182T - E500.
HP 85588 0.01-1500MC/S - E750-MF180T or 180C - £150-
182T-£500.

- 5500 .

HP 8901 AM FM Modulation ANZ Meter - $£ 800$
HP 8901 B AM FM Modulation ANZ Meter - $£ 1,750$.
HP 8903 A Audio Analyzer - $£ 1,000$
MARCONI 2370 SPECTRUM ANALYZERS - HIGH QUALITY -
DIGITAL STORAGE - 30HZ-110MC/S Large qty to clear as eceived from Gov - all sold as is from pile complete or add $£ 100$ for basic testing and adjustment - callers preferred - pick your own from over sixty units - discount on qtys of five or more.
A EARLY MODEL GREY - horizontal alloy cooling fins - £200.
B LATE MODEL GREY - vertical alloy cooling fins - $£ 300$.
C LATE MODEL BROWN - as above (few only) - $£ 500$.

OSCILLOSCOPES

TEK 465-465B 100MC/S + 2 probes - $£ 250-£ 300$
TEK $466100 \mathrm{MC} / \mathrm{S}$ storage +2 probes $-£ 200$.
TEK 475 - 475 A 200MC/S-250MC/S + 2 probes - E 300 - E 350 . TEK 2213-2213A-2215-2215A-2224-2225-2235-2236-2245-60100MC/S - £250-E400.
TEK $22454 \mathrm{ch} 150 \mathrm{MC} / \mathrm{S}+2$ probes - $\mathbf{~} 450$.
TEK $2245 \mathrm{~A} 4 \mathrm{ch} 150 \mathrm{MC} / \mathrm{S}+2$ probes - f600
TEK 2245B 4ch 150MC/S + 2 probes - $\mathbf{E 7 5 0}$.
TEK 468 D.S.O. $100 \mathrm{MC} / \mathrm{S}+2$ probes $-£ 50$
TEK $24654 \mathrm{ch}-300 \mathrm{MC}$ /S - $\mathrm{f} 1,150$
TEK 2465 4ch-300MC/S - © $1,150$.
TEK 2465 ACT $4 \mathrm{ch}-350 \mathrm{MC/S}$ - $\mathbf{~} 1,750$
TEK $2465 \mathrm{~B} 4 \mathrm{ch}-400 \mathrm{MC} / \mathrm{S}-£ 2,000$.
TEK D.S.O. $2230 \cdot 100 \mathrm{MC} / \mathrm{S}+2$ probes $-£ 1,000$ TEK D.S.O. $2430-150 \mathrm{MC} / \mathrm{S}+2$ probes $-\mathrm{E1}, 250$.
TEK D.S. $2430 \mathrm{~A}-150 \mathrm{MC} / \mathrm{S}+2$ probes $-£ 1,750$.
TEK D.S.O. $2440-300 \mathrm{MC} / \mathrm{S}+2$ probes $-\mathrm{E} 2,000$.
TEK TAS $475-485-100 \mathrm{MC} / \mathrm{S}-20 \mathrm{MC} / \mathrm{S}-4 \mathrm{ch}+2$ probes $-£ 900-£ 1.1 \mathrm{~K}$ HP1740A - $100 \mathrm{MC} / \mathrm{S}+2$ probes -f 250 .
HP1741A - $100 \mathrm{MC} / \mathrm{S}$ storage +2 probes - E200. HP1720A-1722A-1725A-275MC/S + 2 probes - E300-£400. HP1744A $-100 \mathrm{MC} / \mathrm{S}$ storage - large screen $-£ 250$
MP $1745 \mathrm{~A}-1746 \mathrm{~A}-100 \mathrm{MC}$. - large screen - $£ 350$ HP1745A-1746A - 100MC/S - large screen - £350. HP54100A - 1GHz digitizing - 2500 . HP54200A - $50 \mathrm{MC/S}$ digitizing - $£ 500$. HP54100D - 1 GHZ digitizing $-\mathrm{£} 1,000$.

MICROWAVE COUNTERS - ALL LED READOUT EIP 351D Autohet 20 Hz - 18 GHz - $\mathrm{E7} 70$ EIP 371 Micro Source Locking - 20 Hz -18GHz - 8850 . EIP 451 Micro Pulse Counter - $300 \mathrm{MC} / \mathrm{S}-18 \mathrm{GHz}$ - f 700 . EIP 545 Microwave Frequency Counter - $10 \mathrm{~Hz}-18 \mathrm{GHz}-\mathrm{E} 1 \mathrm{~K}$. EIP 575 Microwave Source Locking $-10 \mathrm{~Hz}-18 \mathrm{GHz}-\mathrm{E} 1.2 \mathrm{~K}$. EIP 588 Microwave Pulse Counter - 300 MC C/S- $26.5 \mathrm{GHz}-\mathrm{£} .4$. SD 5054 B Micro Counter $20 \mathrm{HZ}-24 \mathrm{GHZ}$ - SMA Socket - f 800 . SD 6054 B Micro Counter $20 \mathrm{HZ}-18 \mathrm{GHZ}$ - N Socket - E 700 . SD 6054 D Micro Counter $800 \mathrm{MC} / \mathrm{S}$. 18 GHz - $£ 600$. SD 6246 A Micro Counter $20 \mathrm{~Hz}-26 \mathrm{GHz}$ - f 1.2 K . SD 6244 A Micro Counter $20 \mathrm{~Hz}-4.5 \mathrm{GHz}-£ 400$. HP5352B Micro Counter OPT $010-005-46 \mathrm{GHz}$ - new in box - 55 k MP5340A Micro Counter 10 HZ - 18 GHz - Nixey - $£ 500$. HP5342A Micro Counter 10 HZ -18-24GHz - f800-f1K - OPTS 001-002-003-005-011 available. HP5342A + 5344S Source Synchronizer - $£ 1.5 \mathrm{~K}$. HP5345A 500MCIS 11 Digit LED Readout
HP5345A $+5354 A$ Plugin $-4 \mathrm{GHz}-\mathrm{f} 700$.
HP5345A +5355 A Plugin with 5356 A 18 GHz Head - E 1 K HP5385A 1GHz 5386A-5386A 3GHz Counter - E1K-E2K. Racal/Dana Counter 1991-160MC/S - $£ 200$. Racal/Dana Counter 1992-1.3GHz - £600. Racal/Dana Counter $9921-3 \mathrm{GHz}$ - £350.

SIGNAL GENERATORS
HP8640B - Phase locked - AM-FM-0.5-512-1024MC/S - E500 f 1.2 K . Opts 1-2-3 available.
HP8654A - B AM-FM 10MC/S-520MC/S - f300. HP8656A SYN AM-FM 0.1.990MC/S - 9900. HP8656B SYN AM-FM 0.1-990MC/S - $£ 1.5 \mathrm{~K}$. HP8657A SYN AM-FM 0.1-1040MC/S - E2K.
HP8657B SYN AM-FM $0.1-2060 \mathrm{MC} / \mathrm{S}$ - 53 K . HP8657B SYN AM-FM 0.1-2060MC/S - £3K. HP8660C SYN AM-FM-PM- 0.01 -1300MC/S-2600MC/S - E2K HP86600 SYN AM-FM-PM-0.01-1300MC/S-2600MC/S - £3K HP8673D SYN AM-FM-PM-0.01-26.5 GHz - E12K. HP3312A Function Generator AM-FM 13MC/S-Dual - E300 HP3314A Function Generator AM-FM-VCO-20MC/S - E600 HP3325A SYN Function Generator 21MC/S - £800
HP3325B SYN Function Generator $21 \mathrm{MC} / \mathrm{S}-£ 2 \mathrm{~K}$. HP8673-B SYN AM-FM-PH 2-26.5 GHZ - 16.5 K. HP3326A SYN 2CH Function Generator 13MC/S-IEEE - $£ 1.4 \mathrm{~K}$ HP3336A-B-C SYN Func/Level Gen 21MCIS - $5400-\mathrm{E} 300-\mathrm{E} 500$ Racal/Dana 9081 SYN S/G AM-FM-PH-5-520MC/S - E300. Racal/Dana 9082 SYN S/G AM-FM-PH-1.5-520MC/S - £400. Racal/Dana 9084 SYN S/G AM-FM-PH-001-104MC/S - $£ 300$. Racal/Dana 9087 SYN S/G AM-FM-PH-001-1300MC/S - E1K. Marconi TF2008 AM-FM-Sweep 10KC/S-510MC/S - E200 Full Tested to £300, as new + book + probe kit in wooden box Marconi TF2015 AM-FM- $10.520 \mathrm{MC/S}$ - E 100.
Marconi TF2016A AM-FM 10KC/S. 120MC/S - E100. Marconi TF2171/3 Digital Synchronizer for 2075/2016A - ©50. Marconi TF2018A AM-FM SYN 80KC/S-520M C/S - 5500 . Marconi TF2022E AM.FM SYN 10 KCIS -101GHz Marconi TF2022E AM.FM SYN 10KC/S-1.01GHz - E1K-E1.2K R \& S SMPD AM-FM-PH 5 KHz-2720MCIS - £3K. Anritsu MG3601A SYN AM.FM 0.1-1040MC/S - $£ 1.2 K$

Abstract

Claimed to be at least as big a breakthrough as the PLL, this new anti-iitter technique does not suffer from recovery problems when its input frequency changes.

Anew class of circuits, designated 'anti-jitter circuits,' or AJCs for short, has been identified by Professor Mike Underhill at Surrey University.
The most important function of an AJC is to reduce phase noise, or equivalently time jitter, in pulse streams used to carry data in communications systems. But since the concept in its current form has been shown to be capable of working from low frequencies to 5 GHz , potential applications are numerous.
The AJC involves feeding a series of pulses into an integrator then passing the result through a comparator after DC level adjustment. The pulses emerge with leading edges equally spaced and phase noise is reduced by as much as 30 dB .
A key benefit of the AJC is that it recovers from a frequency change
much more rapidly than a PLL, Fig. 1 In drawing attention to the simplicity of the basic idea, Prof Underhill comments: "The AJC is as fundamental, and is likely to be as useful, as the phase locked loop. Many of the applications for which PLL circuits are currently used might, with advantage, use a variation of the AJC instead."
Advantages of the AJC include lower phase noise and/or faster frequency switch time - the latter being key in mobile
communications where the cellular principle and frequency hopping demand frequent frequency switching.
In its basic form, the AJC only de-jitters the leading edges of pulses, so the output has to be half the input frequency. But with simple enhancements, AJCs allow two pulse edges to be de-jittered, enabling output at the input frequency.

In many circuits, the AJC could simply be a 'drop-in' enhancement.

How does it work?

The concept behind the anti-jitter circuit is to feed a series of pulses into an integrator, then pass the result through a comparator, Fig. 2.
The pulses emerge equally spaced. This approach is applied to incoming signals that have 'jitter' or phase noise errors to achieve a large reduction in that noise - as much as is achieved by present techniques.
The approach adopted in AJC technology is very different from that of PLL technology. In PLLs a voltage-controlled local oscillator is made to track the average frequency of the incoming signal.
When the incoming clock hops to a new frequency there is inherently a time delay before a PLL circuit can stabilise to the correct tuning. AJCs adopt the new frequency

Fig. 1. Anti-jitter circuits inherently recover from an input frequency change much more rapidly than a pll.

Fig. 2. Anti-jitter circuit outline. Note that there is no oscillator in this circuit. Output is derived directly from the input, having been governed to the average input frequency by the action of the integrator and comparator.
immediately. This is a significant advantage in channel-hopping systems, such as mobile telephones, where the output signals delivered by AJCs promise better reception at each frequency and much more stable reception when moving from cell to cell.
Wherever the capacity of communication systems is limited by the minimum frequency spacing at which PLL technology will reliably operate, the use of AJCs in combination with PLL circuits will multiply the utilisation of available frequencies.
The core of circuits adopting the AJC approach is shown in Fig. 2. Note that there is no oscillator in this circuit. The output signal derives directly from the input, having been governed to the average input frequency by the action of the integrator and comparator. This yields many advantages.
The core circuit just reduces phase noise. Circuits based on this core have been developed to achieve additional functions such as insertion of missing pulses, deletion of spurious pulses, fractional-N synthesis and high frequency operation.

Applications ${ }^{\wedge}$

Anti-jitter circuit technology is expected to be of value to manufacturers of all modern communications systems and their system designers.
In mobile telephone systems, the new circuit technology will deliver high noise reduction with faster lock-on and fewer dropped connections. Its use will enhance overall system utilisation and performance. It can be applied to digital cellular systems operating to any protocol, including GSM and next-generation UMTS systems.

Anti-jitter circuit technology applies widely to many other
communications systems, including high speed modems and ISDN connectors, wireless LANs, GPS, wireless local-loop telephony, satellite telephony, analogue cellular telephony, short wave radio, FMCW and hopping radar, and general electronics applications such as high performance analogue-to-digital converters and frequency synthesisers.
Circuits based on the technology are straightforward to use and can be deployed in discrete components, or in standardised ASIC cells, without any adjustment to the wider circuit environment.
They will operate from less than 1 kHz to above 5 GHz and are fully cascadable to achieve noise suppression in excess of 20 dB per stage.
Anti-jitter circuit modules can be used wherever phase noise is a problem. They can be used in place of phase-lock loop circuits, or as an enhancement to allow them to operate at much narrower frequency spacing, for example. They will also replace or enhance direct digital synthesis designs.
AJC is the subject of a family of six separate patent applications that are now available for licensing for first manufacture.

Key features

Frequency limit. AJC technology has been laboratory tested in discrete component circuits operating at low frequencies - up to 10 MHz - and modelled in high frequency circuits - up to 5 GHz using component specifications that match current silicon chip fabrication standards. Maximum operational frequency has been shown to be limited only by component performance.

Frequency range. Simple AJCs operate down to approximately 30% of their maximum operational
frequency. Modifications that provide either 'adaptive' or 'selfprogramming' modes allows this range to be extended to just 1% of the maximum where required.

Noise removal. AJCs have already achieved better than 20 dB reduction in phase noise, and greater reductions can be achie ved by cascading. Remaining time jitter can be reduced to subpicosecond levels. Unlike some other techniques, AJC technology achieves the reduction of total

Who needs anti-itter?

Maintenance of accurate clock pulses is a widespread requirement in electronics. Errors in the arrival time of pulses constitute 'phase noise' or 'time jitter'.
Phase noise is a particular problem in communication systems, where large phase deviations can arise from such effects as mutual interference between transmitters, fluctuations in propagation, changes in polarisation due to Faraday rotation, weather conditions, movement of antennas or reflectors, and movement of objects in the signal path. This noise degrades the signal considerably and can cause its complete loss when the receiver can no longer track the pulse train on which the signal is encoded.
Even in compact systems, phase noise can place a limit on speed or performance. Thermal noise and 'flicker' generated by semiconductor components can produce phase noise in both analog and digital circuits. Digital circuits suffer phase noise where circuit loading and fan-out vary, and asynchronous digital circuits are prone to phase noise from unwanted cross-coupling.
To alleviate these problems a number of approaches are presently available. Careful tailoring of key circuits can minimise the generation of phase noise at source. Complex phase-lock loop and direct digital synthesis circuits allow sophisticated RF receiver strategies, but suffer from phase noise problems.
Some circuits spread or dither the noise to other frequencies. Each has disadvantages in performance, spurious effects on - or loss of - the signal, design time and manufacturing cost.
AJC technology provides a fresh approach which promises to match or outperform other methods in most respects, and is considerably easier to deploy.

Need more information?

For more information, contact Dr Neil Downie, Maran \& Co Ltd via fax on +44 (0)1483 302112 or via e-mail using n.downie@maran.co.uk. Below are four references giving more information on this topic.
'The anti-jitter circuit for low spurious DDS square waves and low cost fractional-N synthesis,' MJ Underhill, S Stavrou, M Blewett, N Downie. European Frequency Time Forum, Warsaw, 1998
'Performance assessment of a delay compensation phase noise and time jitter reduction method,' MJ Underhill, M Blewett. European Frequency Time Forum, Neuchatel, 1997.
'Spectral improvement of direct digital frequency synthesisers and other frequency sources,' MJ Underhill, M Blewett. European Frequency Time Forum, Brighton, 1996.
'The Anti-Jitter Circuit for suppression of wide band phase noise,' MJ Underhill, Microwaves and Millimetre-wave Oscillators and Mixers, IEE, London December 1998 (to be published).

New work

Mike Underhill is currently working on a new implementation of the AJC in which the comparator is replaced by a simple logic gate and the integrator is replaced with a passive charge accumulator. This will make the circuit much easier to use and manufacture.
major advance over other technologies and a valuable contribution to better performance in cellular communication systems. Noise is reduced by typically $10-$ 15 dB while the change is tracked, full noise reduction is then progressively reasserted. Under typical conditions full noise reduction is restored within a few microseconds of the change in frequency.

Frequency spacing. AJCs should allow better use of the radio spectrum. By use of AJC technology, for example for fractional- n synthesis, operational frequencies are not limited in precision by the step size of a PLL analogue synthesiser, for example.

Circuit environment. The AJC normally needs an input to be in the form of pulses of equal length, which is the case in many applications. Simple variants can be adopted to deal with unequal pulse lengths. Its function is independent of its circuit environment, and so can be incorporated in almost any circuit as a 'drop-in' component or ASIC cell. Multiple AJCs can be cascaded for demanding applications.

Robustness. The tested designs are well-behaved, do not lock to the wrong frequency or stop completely, always provide phase continuity, and do not generate glitch pulses.

Wide performance envelope. In its high frequency form AJCs have been modelled at 5 GHz and beyond with an operational frequency range of up to $1000: 1$. Frequency jumps of up to 50% are tracked, as are phase jumps of up to $\pm 150^{\circ}$

Manufacturability. AJC circuits are MSI type circuits: relatively low in complexity and manufactured at low cost. Due to its wide performance envelope, only a small number of AJC design variants is needed to serve almost every application.

Extra capabilities. As well as noise reduction, AJC circuits have been designed which insert missing pulses and delete spurious pulses. AJC variants have been developed for tasks such as multiphase clock distribution and fractional-n synthesis.
The underlying technology is also capable of development to deliver other related functionalities: for example, clean-up of DDS spurious frequency outputs
AJCs can be used to enhance existing PLL and DDS technology and they are compatible with existing PLL and DDS technologies. This opens up the possibility for adding AJCs to conventional PLL circuits to make them effective at much narrower frequency spacings - an important benefit in communications
Added to DDS circuits, AJC technology produces cleaner output signals with improved spurious sidebands.
noise, rather than spreading the noise to other frequencies. It offers good wideband noise reduction - a unique feature - without increase in close-to-carrier noise. Good suppression of highest sideband frequencies is also achieved.

Tuning and locking. AJC technology is inherently self-tuning to lock on the average frequency of the pulse train. It tracks abrupt changes in frequency instantly, if they are small, or within typically 5 cycles if the changes are large. Very importantly, the output signal remains useful throughout - a

Comparison between the AJC and PLL.

	Anti-Jitter Circuit
Maximum frequency	5 GHz (high speed verslon)
Frequency range	down to 30% of maximum (standard)
	down to 1% of maximum (adaptive)
Noise (far out)	-160 dBc possible (improved 20db/stage)
Noise (close in)	-80 dBc
Spurious noise Switching delay	None so far detected
	5 cycles typical
Output while switching	Usable output - half normal noise reduction
Self-locking	Yes
Circuit environment	Drops-in to 'any' circuit
Cascadable	Yes, simple
Cost/complexity	single MSI chip

Phase Lock Loop

5 GHz (specialised designs)
Down to 50% of maximum
$-160 \mathrm{dBc}$
$-80 \mathrm{dBC}$
Generally minimal (some microphonic)
$>20 \times f_{d} / \Delta f$
(e.g. 200 cycles for typ. 100 MHz operation)

Unusable output, spurious signals
Yes, but only over narrow range
May require tailoring to circuit environment No
MSI chip + typically 10 external components

 HP 319 A distortion measurem 1,200
.2295
 LINIPLEX FI-2 HF recelver. MARCONI 6593 A VSWR indicior MARCONI $6960 \mathrm{~B} / 6910 \mathrm{RF}$ power meter $10 \mathrm{HHt}-20 \mathrm{GHz}$ MARCONI 2943 communication service monitior * ETAC Sbatery/GP-18

| MARCONI $2955 B$ RF communiations cest set $-\quad \mathbf{4 4 , 8 0 0}$ |
| :--- | :--- | :--- |
| 13,500 | MARCONI TF2877 daca communications montor -- $\quad 6500$ MARCONITF2610 crue AMS volemeter $\quad . \quad 600$ MARCONITF2305 mod meter $50 \mathrm{KHz-2.3} \mathrm{GHz} \quad \$ 1,000$

 NAROA 3044B-20 $3.0 \mathrm{GH}_{2}-6.3 \mathrm{GH} 2200$ drectuonal coupler NARDA 3004-10 4-10 GMz 1004 directional coupler - C 100 RACAL OANA 991910 Hz - 1100 MHz kequency counter... RACAL DANA $9911810 \mathrm{~Hz}-560$ MHz 2 g digt counter - 6100 RACAL DANA 991610 Hz -520 MHz requency countert 15 RACAL DANA 991410 Hz-200 MHz requency counter. 15 RACAL DANA 9301 A true RMS RF millwotemeter - 1400 RACAL DANA 9302A tue RMS RF millwohmeter $10 \times \mathrm{KH}$
 RACAL DANA 9300 RMS votemeter (new) $\quad 200$ RACAL 9343 M LCR dacabridge $\quad \mathbf{3 9 5}$ $\begin{array}{r}\text { RACAL } \\ \text { meter. } \\ \hline 0008 \\ 1.5 \mathrm{MHz}-2000 \mathrm{MHz} \text { automatic modulaion } \\ \hline 000\end{array}$ RACAL DANA 199210 Hz -1300 MAz nanosecond counter RACAL DANA 199110 Hz .160 MHz Universal counser timer - digit

 ROHDES \& SCHWARTZ URE 10 Hz -20 MHz RMS OHDES \& SCHWARTZ URVJS RF volumeter ___C400 YYCOM 6040 selective level meter - 6250 SAYROSA AMM $1.5 \mathrm{MHz}-2 \mathrm{C}$
meters
SCHLUMBERGER 7702 digutal Crnsmmission malyser (nnw)
TEKTRONIX A6902A Bolator \quad CES
 TEKTRONIX 145 pal gen lock lest signal generator - - 75 WAVETEK
 WALLSTLIOS 100 KV msulation tesser
 W \& G SPMII So Hz-25 MHz level measuring set ___ 1500

86 Bishopssate Street, Leeds Ls 1 PrB Tel:
ALL EQUIPMENT SUPPLIED WITH 30 DAYS WARRANTY • PRICES PLUS CARRIAGE ANDVAT

CIRCLE NO. 129 ON REPLY CARD

The Headphone Amplifier Box

Balanced or unbalanced microphone or line input to headphone output
Professional portable units operating from an internal PP3 battery or external mains adaptor

* Precision transformerless balanced input * Bridged headphones output drive * Sensitivity selectable over a wide range of input levels * Low noise and distortion
* High common mode rejection * Loop through facility * Extensive RFI protection

The Balance Box (precision mic/line amplifier)
The Phantom Power Box - The OneStop DIN rail mounting radio frequency interference filter and voltage transient protector for voltage and current loop process signal lines

Conford Electronics Conford Liphook Hants gu30 7QW
Information line 01428751469 Fax 751223
E-mail contact@confordelec.co.uk
Web http://www.confordelec.co.uk/catalogue/

Why Settle for AM when you

 can afford High Quality FM !

We can offer the lowest prices on high quality FM Radlo Data Modules both in the UK and overseas !

Our qualified engineers offer full technical support from simple advice to system design $\&$ integration.

For a free catalogue, wall chart or quotation just e-mail sales@radtec.demon.co.uk. alternatively fax or telephone quoting ref: WWRMI

Telephone +44(0)1992576107 Fax +44(0)1992 561994 http://www.radio-tech.co.uk
Radio-Tech Limited

Written by Nick Beer for service engineers, enthusiasts and students

This is the definitive practical guide to faultfinding, troubleshooting and servicing satellite television equipment, both indoors and outdoors. It will take you through all areas of satellite television system servicing from the simplest fixed dish to fully motorised systems. From PAL to Mac to MPEG all contemporary systems are covered.

Satellite TV systems have been installed in a wide variety of locations, using a bewildering range of equipment. That equipment is beginning to need maintenance and repair. To cope with the volume and variety of work, Nick Beer has written the first guide to satellite TV that concentrates on what to look for and what to do when it goes wrong. This book is up to date and crammed with real-life experience - not theoretical data or manufacturer's ideal specs.

Nick Beer has already written the best-selling Servicing Audio and Hi-fi Equipment and is a technical correspondent for many UK and international journals such as Television. He also works as an engineer and teaches satellite servicing to technicians.

- A practical guide to a new and important area for service engineers
- Covers indoor and outdoor equipment
- Written by an experienced author, teacher and engineer

Servicing Satellite TV Equipment

Contents

Introduction • Tools and test equipment • Dishes and feeds - De-polarisers and low noise blocks - Distribution systems

- Actuators and positioners - Tuners and tuning systems Video processing circuits \bullet Audio processing circuits Power supply circuits - System control circuits - RF amplifiers and modulators \bullet Decoders and descramblers \bullet MPEG Digital Television System - Repair techniques Appendix • Reference data • Appendix 2; Safety BEAB and BS415:1990 \bullet Appendix3; useful addresses.

This 224 page hard backed book contains 50 photographs and 50 line illustrations - price £34.99

** Price includes delivery and package **

Return to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following title:

Servicing Satellite TV Equipment

Total \qquad
Name
Address
\qquad

Postcode Telephone

Method of payment (please circle)
Access/Mastercard/Visa/Cheque/PO
Cheques should be made payable to Reed Business Information
Credit card no
Card expiry date
Signed
Please allow up to $\mathbf{2 8}$ days for delivery

WEB DIRECTIONS

To reserve your web site space contact Joannah Cox Tel: 01816523620 Fax: 01816528938

AQUILA VISION

http://www.aquila-vision.Co.uk
Aquila Vision specialises in supplying and supporting Embedded Microprocessor Development products from PICs to DSPs We also stock robotics boards, Linux and general interest CD-ROM's.

ALCATEL COMPONENTS

http://www.components @alcatel.de

AMBAR COMPONENTS

http://www.ambar.memec.com
Ambar Components, distributor for Cirrus Logic. Crystal, Cypress, Dense-Pac,
Dynachip, Fairchild, IMI, Micro Linear,
Mitel incorporating GEC Plessey Semiconductor, PowerDsine, QLogic, Scenix, SST and Summit.

APPLE RECRUITMENT

http://www.applerec.u-net.com/

BF COMPONENTS

http://www.bfcomponents.co.uk
Visit the site for Milgray-Bell in the U.K. Full e-mail facility with instant links to Bell and Milgray web sites for stock interrogation.

CAMBRIDGE MICRO

PROCESSOR SYSTEMS LTD
http://www.cms.uk.com

COOKE INTERNATIONAL

http://www.cooke-int.com e-mail: info@cooke-int.com Stockists of Quality Used Electronic Test Instruments and Operating \& Service Manuals

CROWNHILL ASSOCIATES LTD
http://www.crownhill.co.uk
Crownhill supply low cost development tools for use with Micro-Controllers and Smart Cards. Products include Smart Card development tools, Smart cards Micro Development tools and Bespoke Design Services.

CONCEPT ELECTRONICS

http://www.conceptkey.co.uk
Concept Keyboards are specialists in the design and manufacture of customer specified membrane panels and keyboards, and electronic design. Concept's membrane manufacture is supported by a full electronic production facility to provide a complete turnkey keyboard and electronics service, fully accredited to IS09001.

DISPLAY ELECTRONICS http://www.distel.co.uk

FELLER UK

http://www.feller-at.com
Feller (UK) Ltd. manufacture Fully approved cordsets (Moulded mains plugs and connectors) and Power Supply Cables for all industrial Countries to National and International Standards

ELECTRONICS WEEKLY

 HYPERACTIVEhttp://www.electronicsweekly.co. uk

ECM SELECTION
http:// www.ecmsel.co.uk
For the pick of the UK's Top HighTech Software and Hardware career opportunities - from fresh Grad/PhD to Senior Engineer/Manager £22,000-£70,000

EQUINOX TECHNOLOGIES UK LTD

http://www.equinox-tech.com
Equinox Technologies UK Lid., specialise in development tools for the embedded
microcontroller market.

FLASH DESIGNS LTD

http://www.flash.co.uk
Portable Easy-ICE - The world's fastest, Lowest Cost, Real-time Emulator + Starter kits from $£ 319$ with unique ICE connection interface for ATMEL AT89S/C, AVR AT90S, 103/603, MCS51 Dallas 80C320, Hitachi H8 + ISP programmers + 'C' Compilers

LOW POWER RADIO SOLUTIONS

http://www.|prs.Co. uk
LPRS markets low power radio transmitters, receivers and transceiver modules manufactured by ourselves, Radiometrix, Circuit Designs, RDT and Micrel. Applications for telemetry, video and remote control.

MICRO CALL

http://www.microcall.memec.com
Micro Call is a distributor for the following Galleo,IDT (Integrated Device Technology), Lattice. Level 1. Linear Technology, Memec Design Service, NPC, Siliconians, Silicon laboratorles. WSI, Xilinx and Xicor.
M.K. CONSULTANTS (UK) LTD
http://www.mkconsultants.co.uk
A global supplier of low power modules designed and manufactured by MK in the UK. Nobody beats our prices. That's the MK price challenge.

M\&B RADIO

http://www.mb-radio.co.uk
MITRONICS
http://www.mitronics.com
Visit Mitronics, the leading stocking distributor of obsolete and difficult to find Motorola parts. We carry electronic components, integrated circults, and semiconductors
national instruments
http://www.natinst.com/uk
NEWNES - BOOKS FOR THE ELECTRONICS WORLD
http://www.newnespress.com

Over 300 books and information packages for those working with electronics and engineering technology Visit our site for a free catalogue and downloads

OMEG POTENTIOMETERS

http://www.omeg.co.uk
Omeg 16 mm and 20 mm potentiometers and switched potentiometers with conductive polymer tracks. Web site has full product details, latest news, company contacts, stockists and distributors.

PCA:PHILIP COLLINS \& ASSOCIATES PTY. LTD
http://www.pca.cc
PCA manufactures Radphone 2000DX remote control systems for shortwave broadcasters and government agencies wanting wortdwide control of communications receivers and transceivers from any tone phone

QUILLER ELECTRONICS

http://www.quiller.com
$100+$ pages of detailed technical information on Schrack Relays, MEC Switches, Hirose Connections.

RALFE ELECTRONICS

professional test \& measurement
www.ralfe-electronics.co.uk

SWIFT EUROTECH

http://www.swiftdesigns.co.uk
EDWin NC - Professional EDA software at 90% discount! Integrated
schematics, PCB layout and simulation.
Plus CAM tastic! CAM software and netlist translators for most EDA systems.

RD RESEARCH
http://www.looking.co.uk/spice
Analogue and digital SPICE modelling software. Full details available on this site. Available on a 30 day evaluation basis.

SEETRAX LIMITED

 http://www.ukonline.co.uk/seetraxSUPRA AUDIO CABLES
http://www.jenving.se
Jenving Technology AB is the manufacturer of Supra Audio Cables. OEM productions are also accepted.

SYSONICS SYSTEMS LTD

http://www.sysonic.com
THOSE ENGINEERS LTD
http://www.spiceage.com
TRIDENT MICROSYSTEMS LTD
http://www.trident-uk.co.uk
Visit the Trident website for details and datasheets on their entire LCD and printer product range. Download data and subscribe for our regularly updated newsleter.

TRUMETER

http://www.truemeter.com

TOTAL FERQUENCY CONTROL

http://www.tfc.co.uk
TRANSONICS
http://www.transonic.com
VANN DRAPER ELECTRONICS LTD
http://www.vanndraper.co.uk
Test equipment from Grundig. Kenwood, Hitachl, Fluke, Avo, Glassman, Advance in a comprehensive site including oscilloscopes, multimeters, power supplies, generators, counters, soldering, digital tv etc.

VUTRAX PCB DESIGN SOFTWARE

http://www.vutrax.co.uk
VUTRAX electronic schematic and pcb design system for Windows 95, 98 and NT. Limited Capacity FREE version downloads available, all upgradeable to various customised levels.

VECTOR BUSINESS

COMMUNICATIONS
http://wwwectore.co.uk/vector/
Pressrelations, advertising web sites, direct marketing, corporate literature, exhibitions and events. Marketing communications for the electronics industry in the UK and across Europe.

WOOD \& DOUGLAS

http://www.woodanddouglas.co.uk
Wood \& Douglas Ltd is the leading independent British designer and manufacturer of quality radio products for International telemetry, data, voice \& video wireless communications.
WINRADIO
COMMUNICATIONS
http://www.broadercasting.com

XILINX

http://www.xilinx.com/
Xilinx is the world's largest supplier of programmable logic solutions producing industry leading device architecture and world class design software

Put your web address in front of 21,000 Electronics fanatics.
Electronics World acknowledges your companys need to promote your web site, which is why we are now dedicating page's in every issue to WEB ADDRESSES.
This gives our readers the opportunity to look up your companys name, to find your web address and to browse the magazine page to find new sites.
We also understand that cost is an important factor, as web sites are an added drain on budgets. I am sure you will agree these rates make all the difference

FOR 12 ISSUES:

Lineage only will cost $£ 150$ for a full year just $£ 12.50$ per month.
This includes your companys name, web address and a 25 word description.
Lineage with colour screen shot will cost $£ 350$ for a full year just £29.17 per month.
This will include the above plus a 3 cm screen shot of your site, which we can produce if required.
To take up this offer or for more information ring Joannah Cox on 01816523620 or fax on 01816528938.
E-mail: joannah.cox@rbi.co.uk

| Company Name | Web address | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |

HATELY ANTENNA TECHNOLOGY
1 Kenfield Place, ABERDEEN AB 15 7UW
Tel/Fax: +44 1224316004

e mail:- m.hately@talk21.com

CROSSED FIELD ANTENNA

Progress on the commercial application of the Crossed Field Antenna has been significant since our last announcement. Three milestones have been passed:-

1. At the NAB '99 Conference and Exhibition in Las Vegas during April a major new technical paper concerning the broadcasting use of the Ground Plane CFA has been given. The title was FOUR EGYPTIAN MW BROADCAST CROSSED-FIELD-ANTENNAS authors Kabbary, Khattab, Stewart, Hately and Fayoumi. The work of the Egyptian Radio and TV Union is presented in this presentation. At the exhibition arrangements to manufacture and supply broadcast antennas for Medium Wave throughout the USA and S. America were given, supplementing the schemes for Europe and the Middle East already in existance from out subsidiary in Egypt.
2. The Isle of Man will soon be the site of the first UK high power CFA for broadcasting. The IOM Government has announced that the Isle of Man International Broadcasting Company Ltd has been selected to be allocated the licence for the 279 kHz Long Wave broadcasting station. This company's application was attractive because of the minimal visual impact of the CFA only 30 metres high instead of the rival submissions using conventional masts of 260 metres height. Additionally the lower voltages and almost zero induction field of the CFA provides enhanced safety and minimal EMC problems.
3. Since October '98 there have been wide-ranging discussions on the Internet Magazine "Antennex". This can be seen at http://www.antennex.com.
Payment of a modest subscription gives the user access to archive pages which include constructional details for a small size GP CFA for the Amateur 80 Metre Band. Many constructors are reporting success and a widening understanding of the CFA is rapidly increasing throughout the professional and experimenter community.

Fax or e-mail for greater details of specific enquiries.

CIRCIE NO. 132 ON REPLY CARD

PHONE

LANGREX SUPPLIES LTD
0181684 TUBES AND SEMICONDUCTORS AND I.C.S. 0181684
11661 MAYO ROAD • CROYDON • SURREY CRO 2QP 3056

	$\varepsilon \mathrm{p}$	KT66 Special	20.00	524 G	6.00	6UBA	1.50
AZ31	6.00	KT88 Special	20.00	5Z4GT	3.00	6V6G	8.00
CL33	10.00	KT90	17.50	6AO5	2.00	6V6GT	5.00
E88CC	8.50	N78	8.00	6AR5	20.00	$6{ }^{6} 4$	3.00
E180F	3.50	OA2	3.00	6AS7G	7.50	6X5GT	3.00
E810F	20.00	OB2	3.00	6AU5GT	4.00	12AT7	3.00
EABC80	2.00	OC3	3.00	6AU6	2.00	12AU7.	3.50
EB91	1.50	OD3	3.00	6AWBA	4.00	$12 \mathrm{AX7}$	5.00
EBF80	1.50	PCF80	2.00	6B4G	22.00	12AX7A	7.50
E8F89	1.50	PCL82	2.00	6BA6	1.50	12AX7W	6.00
E8L31	15.00	PCLB5/805	2.50	68E6	1.50	12 BAG	2.00
ECC33	12.00	PCL86	2.50	6BH6	2.00	12BE6	2.00
ECC35	12.00	PD500	6.00	6807A	2.00	12BH7/7	10.00
ECC81	3.00	PL38	3.00	68R7	4.00	12BY7A	7.00
ECC82	3.50	PL81	2.00	68R8	4.00	12DW7	15.00
ECC83	3.00	PL504	3.00	68W6	4.00	12E1	10.00
ECC85	3.50	PLSos	3.00	68W7	3.00	$13 E 1$	85.00
ECC88	6.00	PL509/519	10.00	6BZ6	3.00	572B	85.00
ECC808	15.00	PL802	4.00	6C4	2.00	805	45.00
ECF80	1.50	PY500A	3.00	6CB6A	3.00	807	7.50
ECH35	3.50	PY800/801	1.50	6DC6G	5.00	811A	25.00
ECH42	3.50	QOV02-6	12.00	$6 \mathrm{CL6}$	3.00	812 A	55.00
ECH81	3.00	OOVO3-10	5.00	6CG7	7.50	813	27.50
ECL82	3.50	QQVO3-20A	-10.00	${ }_{6} \mathrm{CH}_{6} 6$	3.00	833A	85.00
ECL86	3.50	Qovoc-40A	12.00	6CW4	6.00	866A	20.00
ECLL800	25.00	419	8.00	$6 \mathrm{OQ5}$	17.50	872A	30.00
FE37A	3.50	UABC80	1.50	5006B	10.00	931 A	25.00
EF39	2.75	UCH42	5.50	6F6G	6.00	2050A	12.50
EF40	4.00	UCL82	2.00	6 FO7	7.50	5751	6.00
EF86	10.00	UCL83	2.00	6GK6	4.00	5763	6.00
EF91	200	UF89	4.00	6.5G	6.00	5814A	5.00
EF183/4	2.00	UL41	12.00	6.5 M	4.00	5842	12.00
EL33.	15.00	UL84	3.00	6.7	3.00	6072A	6.00
EL34	5.00	UY41	4.00	6JB6A	27.50	6080	6.00
EL34G	5.00	UY85	2.00	6JE6C	27.50	6146B	15.00
EL36	5.00	VR105/30	3.00	6JS6C	27.50	6201	8.50
EL41	3.50	VR150/30	3.00	6K6GT	4.00	6336 A	35.00
EL84	2.25	2759	10.00	${ }^{6 L 6 G}$	15.00	6550A	25.00
EL95	2.00	Z803U	15.00	6L6GC	15.00	6883 B	15.00
EL360	15.00	2 D 21	3.50	6L6WGB	10.00	7025	7.50
EL509/519	7.50	3828	12.00	607	3.00	7027A	25.00
EM34	15.00	$4 \mathrm{CX250B}$	45.00	6SA7	3.00	7199	15.00
EM81477	4.00	5 P 4 GY	7.50	$6 \mathrm{SC7} 7$	3.00	7360	25.00
EN91	7.50	5 U 4 G	10.00	6SG7	3.00	7581A	15.00
E280/81	5.00	5 LUGB	10.00	6S. 7	3.00	7586	15.00
Gz32	8.50	5 V 4 G	4.00	6SK7	3.00	7587	20.00
Gz33/37	6.00	5 Y 3 GT	2.50	6SL7GT	5.00	Prices correct when going to press.	
KT61	15.00	523	5.00	6SN7GT	5.00		

OPEN TO CALLERS MON-FRI 9AM-4PM. CLOSED SATURDAY
This is a selection from our stock of over 6,000 types. Please enquire for types no listed. Obsolete iterns are our speciallty. valves are new malniy original Britlsh or YISA

WATCH SLIDES ON TV MAKE VIDEOS OF YOUR SLIDES DIGITISE YOUR SLIDES

(Using a video capture card)
"Liesgang diatv" automatic slide viewer with built-in high quality colour TV camera. It has a composite video output to a phono plug (SCART \& BNC adaptors are available). They are in very good condition with few signs of use $£ 91.91+$ VAT $=\Sigma 108.00$ Board cameras all with 512×582 pixels $8.5 \mathrm{~mm} 1 / 3$ inch sensor and composite video out. All need to be housed in your own enclosure and have fragile exposed surface mount parts.
They all require a power supply of between 10 and 12 v DC 150 mA .
47 MIR size $60 \times 36 \times 27 \mathrm{~mm}$ with 6 infra red LEDS (gives the same illumination as a small torch but is not visible to the human eye).....................................50.00 + VAT $=\boldsymbol{\Sigma 5 8 . 7 5}$ 40 MP size $39 \times 38 \times 28 \mathrm{~mm}$ spy camera with a fixed focus pin hole lens for hiding behind a very small hole..
 40 MC size $39 \times 38 \times 27 \mathrm{~mm}$ camera for ' C ' mount lens these give a much sharper image than with the smatler lenses. $\mathbf{£ 3 8 . 7 9 + \text { VAT } = £ 4 5 . 5 8 ~}$
Economy C mount lenses all fixed focus and fixed iris. VSL 1220F 12 mm F1. 612×15 degrees viewing angle. $\mathbf{\$ 1 5 . 9 7 + V A T = \$ 1 8 . 7 6}$ VSL4022F 4mm F1.22 63×47 degrees viewing angle................... $\mathbf{\Sigma 1 7 . 6 5}+$ VAT $=\boldsymbol{\Sigma 2 0 . 7 4}$ VSL6022F 6 mm F1.22 42×32 degrees viewing angle........................ $\mathbf{\Sigma 1 9 . 0 5 + \text { VAT } = \boldsymbol { £ } 2 2 . 3 8}$
 Better quality C Mount lenses
VSL1614F 16 mm F1. 630×24 degrees viewing angle...................... $26.43+$ VAT £31.06 VWL813M 8mm F1.3 with Iris 56×42 degrees viewing angle........£77.45 + VAT $=\boldsymbol{£ 9 1 . 0 0}$ Blue and sllver recordable CD ROM bulk $50.766+$ VAT $=80.90$
With jewel case $\mathrm{E} 0.766+$ VAT $=£ 0.90$ P6KE103A 130 v diode... \qquad $£ 0.98 p+$ VAT $=£ 1.1520$ for $£ 13.00+$ VAT $=£ 15.28$ RC300 Philips universal remote control. 5 for $£ 24.45+$ VAT $(£ 4.69+$ VAT each $)=£ 27.55$ Konig Ultrasonic remote control clearout, limited quantities. Quantity lett in brackets: US8207 (15), US8209 (5), US8220 (4), US8224 (5), US8225 (2), US8232 (3), US8233 (2), US8239 (8), US8260 (1), US8264 (124), US8265 (116), US8302 (2), US8306 (1), US8309 (1), US8406 (1), US8513 (21), USB514 (40), US8516 (19), US8519 (2), US8535 (82), US8578 (182)
$£ 5.50$ + VAT each, $£ 22.00$ + VAT for $5, ~ £ 85.00$ + VAT for 25 1206 surface mount resistors E12 values 10 ohm to 1 m ohm

276-278 Chatsworth Road, Chesterfield S40 2BH Tel: 01246211202 Fax: 01246550905 Callers welcome 9.30 am to 5.30 pm Monday to Saturday

Horse play?

The letter from Mr Cahner in the April 1999 issue of Electronics World - if it was not an April Fool is easily answered because third-order Butterworth designs were indeed very common in the early seventies, in both passive and active form.
The problem, however, is not how to realise particular filter shapes with passive or active filters, but, how the sounds from the two drive units add up in a 3D acoustic environment.
In general, the output from a drive unit mounted in a box is not flat, so there will always be a requirement for some equalisation as well as the 'crossover' function of the filters.
The outputs of high and low pass third-order Butterworth filter sections are in quadrature - i.e. 90° phase difference. As the listener moves off axis, in one direction the summed output at crossover will rise and in the opposite direction there will be a dip. This led to some designs with the tweeter below the woofer in order to point the best listening axis upwards on floor standing models.
The desire to eliminate this effect fuelled a move towards 'in phase' squared Butterworth, or LinkwitzRiley, crossover design in the late seventies. Later efforts went into getting the HF and LF voice coils co-incident rather than just in the same plane.

E. Cecconi

Principal Electroacoustics
Engineer
KEF Audio (UK) Ltd.

Thhe transient response plot of Jim Cahner's crossover network shown here explains why the circuit is not 'perfect' - whatever that means.
To find out why the crossover circuit is not perfect, one should run the transient response simulation to see that the sum of the low and highpass section is far from the step response at the input - apart from being 6 dB down.
In fact it is more like a notch-filter response, although no notch is seen in the frequency response magnitude.
The phase diagram shows part of the story, but the envelope delay would show even more.
An ideal transient would have a flat envelope delay, meaning that the phase is a linear function of frequency - the envelope delay is a phase-derivative versus frequency.

Doing the maths, you can see that the sum of the two filters,

$$
H(s)=0.5 \times \frac{s^{3}+w^{3}}{s^{3}+A s^{2}+B s+w^{3}}
$$

and for $\mathrm{H}(\mathrm{s})=0.5$, the first and the second power-of-s terms are missing from the numerator.
Instead of using Butterworth tuning, you could try Bessel, or linear-phase, tuning and shift one of the filters in frequency to minimise the magnitude wiggling around the crossover point.
The result would be much better, but still not perfect
Erik Margan
Ljubljana
Slovenija

Newer logic

Some readers will have read my Sarticle 'New Logic' in the February 1999 issue of Electronics World. The article was on the subject of Boolean algebra.
If you have discovered the significance of this article you might like to read the second part of it. This part concludes my demonstration that Boolean algebra based on the exclusive-OR in place of the more familiar inclusive-OR is actually quite a useful and practical addition to the stock in trade of the digital circuits design engineer.
I have gone to some trouble to make the articles readable. I have now revised my web site at: http://users.senet.com.au/~dwsmith/ to include an html version of the second part of the 'New Logic' article.

Readers might like to take a look at this site. I would appreciate any feedback via my e-mail link which will be found on some of the pages, from serious readers, particularly if
they have read the New Logic article. You might find that html, in one of the up to date internet browsers, is a very practical way of reading an article. Html documents can have hyperlinks that make navigation easy.
The whole article can appear on one scrollable page with diagrams seamlessly incorporated.
David Warren-Smith
Elizabeth
South Australia

Phase sensitive

was interested to read the article entitled 'The phase-sensitive detector' in the April issue of electronics World. However I note that the reference information has accidentally been omitted.

The omitted reference is 'Lock-in

Heater debate

 valve heaters from the 230 V 50 Hz main supply.In the worst case, when switching on when at a peak instant of the supply voltage, approximately 325 V will suddenly be applied to the heater chain.
If feeding only one 12 V 0.15 A filament, this would cause a peak current of over 3.8 A - though admittedly, the pulse has a time constant of only about $170 \mu \mathrm{~s}$
Why not use an inductor, instead of a capacitor, I hear some of you ask? Another problem arises here, but now the worst case is switching on as the mains voltage goes through zero.
These were 'heated' topics of discussion when I was a lad.

Bob Pearson

Bourne Lincs

Amplifiers: Principles and
Applications' by M L Meade, 232 pp, published by Peter Peregrinus, 1983.

The book is out of print but copies are held in many technical libraries. I'm sure there are some readers who would appreciate this information. Fraser Robertson
Open University

Flash in the pan

\mathbf{R} egarding the circuit idea '4-bit
R flash makes 16 bit flash a-to-d' in the May issue, for this approach to work you have to make the assumption that the 4 -bit a-to-d converter has perfect 16-bit linearity - which it will not.

Any linearity errors will show up as errors on the d-to-a converters, which must also be linear to 16 bits.
Also, the resistors used would have to be accurate to 0.001% to retain 16 bit accuracy.
If you are lucky you may get 5 bits of performance out of this design. If it was this easy then both IC manufacturers and companies like ours would have done this long ago
I seem to remember a similar design was published a few years ago that made the same mistake - the author references Dec 91, but I think there was a more recent article than that.
Alan Tong
Pico Technology
Cambridge
ohn Norman - Letters p. 286 April issue - was a little naive in relying only upon J steady-state conditions in recommending the use of a $2 \mu \mathrm{~F}$ capacitor to feed 0.15 A

THE AMAZING TELEBOX

The TELEBOX is an attractive fully cased mains powered unh, con made by makers such as micROVITEC, ATARI, SANYO, SONY video output will also plug directly into most video recorders, allowin channels not normally recelvable on most telev
 channels. TELEBOX MB covers virtualiy all television frequencies
VHF and UHF including the HYPERBAND as used by most cable TV operators. A composite vldeo output is located on the rear panel ideo systems. For complate compatibility - even for monitors withTELEBOX ST for composite video input type monitors TELEBOX MB Multiband VHF/UHF/Cable/Hyperband tuner £69.
\qquad $160 \times 52 \mathrm{~mm}$ enable full software control via a simple 2 wire link pogram and documentation. Requires $+12 \mathrm{~V} \&+5 \mathrm{~V}$ DC to operate
BRAND NEW - Order as MYoo. Only $£ 49.95$ code (B)

FLOPPY DISK DRIVES

 slated) are BRAND NEW or removed from often brand new equipment and are fully tested, aligned and shipped to you withday guarantee. Call for over 2000 unlisted drives for spares
$31 / 2$ Panasonic JU363/4 720K or equivalent RFE

Teac FD-55GFR 1.2 Meg (for IBM Mc's) RFE
Teac FD-55F-03-U 720K 40/80 (for BBC's etc) RFE
BRAND NEW MItsubishi MF501日 360K
le top case with integral PSU for HH $51 / 4^{\circ}$ Flopp or HD Shugart 8108° SS HH Brand Now
"Shugart 8518° double sided refurbished \& tested - Mitsublshi M2896-63-02U OS slimline NEW

HARD DISK DRIVES

TOSHIBA. $(19 \mathrm{~mm}$ H) MK2101MAN 2.16 Gb . New TOSH. 12.5 mm H MK1002MAV 1.1 Gb laptop. Now

FUJI FK-309-26 20 mb MFM I/F RFE
CONNER CP3024 20 mb IDE I/F (or equiv.) RFE
CONNER CP3044 40 mb IDE I/F (or equiv.) RFE
RODIME RO3057S 45 mb SCSI I/F (Mac \& Acom)
QUANTUM 40 S Prodrlve 42 mb SCSI VF, New RFE
WESTERN DIGITAL 850 mb IDE I/F Now
MINISCRIBE 342520 mb MFM I/F (or equiv.) RFE
MINISCRIBE 342520 mb MFM I/F (or equiv.) R
SEAGATE ST-238R 30 mb RLL I/F Refurb
CDC $94205-5140 \mathrm{mb}$ HH MFM I/F RFE tested
HP 97548850 Mb SCSI RFE tested
HP C30102 Gbyte SCSI differentlal
HP C3010 2 Gbyte SCSI differential RFE tested
NEC D2246 85 Mb SMD interface. New
FUJITSU M2322K 160 Mb SMD I/F RFE tested
FUJITSU M2392K 2 Gb SMD VF RFE

IC'S -TRANSISTORS - DIODES

OBSOLETE - SHORT SUPPLY - BULK 6,000,000 items EX STOCK VIDEO MONITOR SPECIALS
One of the highest specification monitors you will ever see
 0.28 dot pitch tube and resolution of 1024×768. A
vanety of inputs allows connection to a host of comput
ers induding IBM PCs in CGA, EGA, VGA \& SVGA
modes, BBC, COMMODORE (ncluding Amiga 1200),
ARCHMMEDES and APPLE Many features. Etched
faceplate, tex switching and LOW RADUATVN MPR
specification. Fully guaranteed, supplied in EXCEL Tilt \& Swivel Base $£ 4.75$ Only $£ 119$ (E) Mrder as VGA cable for IBM PC included
External cables for other types of computers CALL

17" 0.28 SVGA Mitsublshi Diamond Pro monitors Full multisync etc. Full 90 day guarantee. £325.00 (E)

 Just In - Microvitec 20° VGA (800×600 res.) colour monitors.$$
\text { Good SH condition - from } £ 299 \text { - CALL for Info }
$$

Only £125 (E)
$20^{\prime \prime} 22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS Superbly made UK manufacture. PIL all solid state colour monitors,
complete with composite video \& optlonal sound input. Attractive leax styiv case. Perfect for Schoois, Shops, Disco, Clubs, elc
20"....£135 22"....£155 26"....£185(F)

DC POWER SUPPLIES

Virtually every type of pawer

supply you can
10,000 power Suppline. Over
Ex Stock

LOW COST PC'S

Always ovar 1000 PC's from sfock. Call or see our wab site for info.

TEST EQUIPMENT \& SPECIAL INTEREST ITEMS

IKW. to $400 \mathrm{~kW}-400 \mathrm{~Hz} 3$ phase power socurces

 IBM 8230 Type 1, Token ring base unit drive Wayne Kerr AA200 Audio trequency response analyser

19" RACK CABINETS

Superb quality 6 foot 40 U Virtually New, Ultra Smart Less than Half Price!
 cesigner smoted acryilic lockabel front door,
full height lockable half loueved back door
and lo and louvered removable side panels. Fully
adiustable internal fixing strust, ready punched
for for any configuration of equipment mounting
plus feay inounted integra $\begin{aligned} & \text { way } 13 \text { amp } \\ & \text { socket switchen mains distibution strip make }\end{aligned}$ have ever sold. Racks may be stacked side by side and thereforere squire only two side panels to stand singly or in multiple bays.
verall dimensions are: $77 \%^{\circ} \mathrm{H} \times 32^{2} \%^{\circ} \mathrm{O} \times 22^{\circ} \mathrm{W}$. Order as:

Over 1000 racks, shelves, accessories

19 " $22^{\prime \prime} \& 24^{\prime \prime}$ wide 3 to 46 U high. Available from stock !!.

32U - High Quality - All steel RakCab

 Made by Eurocratt Enclosures Lid to the highest possible spec,
rack features all steel construction with removable

 five secure 5 lever barrel locks.constructed of double walle
nable status indicators acylic front panel to
panel, yet remain unobtrusive. Internally the rack
features fully slotted reinforced vertical fixing
members to take the heavest of $19 "$ rack
equipment. The two movable vertical fixing struts
(extras availabie) are pre punched for standard
'cage nuts'. A malns distribution panel internat pin Euro sockets and 1×13 amp 3 pin switched pin Euro sockets and $1 \times 13 \mathrm{amp} 3$
utility
socket. Overall ventlation
with top and side louvres. The top panel may be removed for fitting of integral fans to the sub plate etc. Other features include fitted
castors and floor levelers, prepunched utility panel at lower rear for castors and floor levelers, prepunched utility panel at lower rear for
cable / connector access etc. Supplied in excellent, slightly used condition with keys. Colo

A superb buy at only $£ 245.00$

$42 U$ version of the above only $£ 345$-CALL

BATTERY SCOOP - 50\% off !!

A special bulk purchase from a cancelled export order brings you

 the most amazing savings on these ultra high spec 12v DC 14 Ahrechargeable batteries. Made by Hawker Energy Lid, type SBS15 featuring pure lead plates which offer a far superior shelf \& guaranteed 15 year service life. Fully BT \& BS6290 approvad. Supplied

RELAYS - 200,000 FROM STOCK

 stocks covering types such as - Milltary, Octal, Cradle, Hermetlcally Sealed, Contactors, Time Delay, Reed, MercuryWetted, Solid State, Printed CIrcult Mounting, CALL US WITH Wetted, Solid State, Printed Circult Mounting, CALL US WIT
YoUR NEEDS. Many obsolete types from stock. Save exef's

LOW COST RAM \& CPU'S

$£ 1450$

DISTEL on the web II - Over 16,000,000 items from stock - www.distel.co.uk
 - ELELTRLINHES-

LONDON SE19 3XF
On 68A Buas Routo
www.distel.co.uk
emall admin@distel.co.uk

OPERATING \& SERVICE MANUALS

Cooke International

Unit Four, Fordingbridge Site, Barnham,
Bognor Regis, West Sussex, PO22 OHD, U.K. Tel: (+44)01243 545111/2 Fax: (+44)01243 542457

> Web: http://www.cooke-int.com E-mail: info@cooke-int.com catalogue available

CIRCLE NO, 136 ON REPLY CARD

ADVERTISERS' INDEX

ANCHOR SUPPLIES 502
ANGLIA COMPONENTS OBC
ANTRIM TRANSFORMERS 491
ARBOUR APPOINTMENTS 482
CMS 494
CONFORD ELECTRONICS 519
CROWNHILL 467 and 491
DISPLAY ELECTRONICS 525
EQUINOX TECHNOLOGY IBC
FARADAY TECHNOLOGY 467
HAYELY ANTENNA 523
ICE TECHNOLOGY 463
ILP DIRECT 510
INTERNATIONAL RECTIFIER IFC
JOHN PRODGER RECRUITMENT 478
JOHNS RADIO 515
JPG ELECTRONICS 523
KELLY TECHNICAL 483
LABCENTER ELECTRONICS 442
LANGREX SUPPLIES 523
M \& B RADIO 519
MDM RECRUITMENT 481
MILFORD INSTRUMENTS 467
OLSON ELECTRONICS 497
PICO. 465
PS CONSULTANTS. 449
QUICKROUTE 457
RADIO TECH 519
RALFE ELECTRONICS 528
RD RESEARCH 491
SEETRAX 457
SIGHTMAGIC 465
SOLUTION 479
SOWTER TRANSFORMERS 510
STEWART OF READING 510
SURREY ELECTRONICS 519
SWIFT EUROTECH 444
TELFORD ELECTRONICS 509
TELNET 461
TIE PIE 447

ARIICIES WANIED

TOP PRICES PAID

For all your valves, tubes, semi conductors and IC's.

Langrex Supplies Limited

1 Mayo Road, Croydon Surrey CRO 2QP TEL: 01816841166 FAX: 01816843056

WANTED

Valves \& Semiconductors All types e.g. Discrete \& IC's Good Rates Paid CHELMER VALVE CO.

130 New London Road Chelmsford, Essex Tel: 01245265865 Fax: 01245490064

IMMEDIATE PAYMENT

 For all Surplus/Obsolete Electronic Components J.B.P. Components Phone: 01277211410 Fax: 01277260573 recorder system. Fax USA 702/565-4828 Franklin Miller. Email fjm@anv.net
VALVES WANTED

Courteous, Professional Service
Ask for a free copy of our wanted list.

BILLINGTON EXPORT LTD
Billingshurst, Sussex
Tel: 01403784961
Fax: 01403783519 Email:
billingtonexportld@btinternet.com VIITTORS PLEASE PHONE FORAPPOINTMENT

WANTED. Gemstar Video+ Plus+ programmer model VIP- 185 (preferably). Must be in good working order. Instructions not required. 01736 367100.

SERVICES

Colicent Protuctiction

Designer Systems has over a decade of experience designing innovative products for client companies and individuals. If you have a product idea, need to develop a new product or sub-assembly from scratch, want to redevelop an old product or need professionally written documentation or software, contact us for more information or see our web site.
Tel/Fax: 01872223306
Emall; designer.systems
@btintemet.com
web: http:// \rightarrow DiSIGIFIR $\begin{aligned} & \text { Web: http://t } \\ & \text { designersys. } \\ & \text { coltd.net }\end{aligned}>$ Bowpoke eloctronic solution

ADVERTISERS PLEASE NOTE FOR ALL YOUR ENQUIRIES ON ADVERTISING RATES PLEASE CONTACT JOANNAH COX ON TEL: 01816523620 FAX: 01816528938

APPOINTMENTS

Translation Partnership for German-English documentation is looking for a
FREELANCE
TECHNICAL
TRANSLATOR

- an engineer with professional and translation experience in a Germanspeaking environment, in electrical/electronic/mechanical or measurement technology. E-mail is vital, DTP useful. Detalled information please to: ACM C \& P Chadwick 15 Si Olaves Road York YO30 7AL

FREE CATALOGUE: Moreton Alarm Supplies/CCTV 2000. Unbeatable prices. Phone or a free catalogue 01516300000

ARTICLES FOR SAIE

EnTnTrin

VBI DECODER CARDS

(Teletext Receivers)

SALE

Manufacturer has surplus to requirements Printed Circuit Boards type CF2001. These through-hole unpopulated boards when built allow reception of BBC Datacast etc. VBI transmissions as well as ordinary www.citifax.co.uk or phone 01204 392397 office hours. Offered with programmed EPROM and Microsoft PnP Vendor ID EEPROM plus PC ISA bracket, with circuit diagram parts list and demo disk while stocks last at $£ 25$ each, $£ 200 /$ ten, inc. UK P\&P free.
Citifax Limited, 2nd Floor, 3 Atlas House, St George's Square, BOLTON BL1 2HB, Lancashire.

RF DESIGN SERVICES

All aspects of RF hardware development considered from concept to production.

WATERBEACH ELECTRONICS
TEL: 01223862550
FAX: 01223440853

SHORTWAVE BROADCASTERS
 Monitor reception from within your arget area
 GOVERNMENT AGENCIES
 Control radio receivers/transceivers worldwide
 Radphone 2000DX from www.pca.cc
 Intel+61-2-98889777
 Fax+61-2-98050253

COMPUTER AMD $\mathbf{K 6} \mathbf{6} \mathbf{2}, \mathbf{3 5 0 \mathrm { MHz } , 6 . 4 \mathrm { G }}$ hidrive, 8MB AGP, VGA, 3D PCl sound, $\times 36$ CD-RM, 15 svga, accessories, software, brand new. £685. Mike 01707 263953, Herts.

Workshop Clearout? SPECTRUM ANALYSER

Marconi TF2370 £300 + VAT Audio to 110 MHz digital storage display, also extender available. Tektronics 466 Storage Oscilloscope VGC £275.
Scanner AOR3000A (boxed) $£ 350$
PC Pentium 120 new 15" monitor, and new 3.4G HDD $\mathbf{£ 3 5 0}$.
Precision Pressure Gauges Barometric/Analogue $£ 100$. Digital absolute/differential Druck $\mathbf{5} 200$.
Camera gyroscopic stabiliser +PSU £100.
Gould sweep gen. 0 to $1.6 \mathrm{GHz} £ 100$. HP 1600A Logic state analyser $£ 100$. Sig gens, audio and RF - phone.
All guaranteed working
Derby 01332670707

POWER SUPPLY DESIGN

Switched Mode PSU
Power Factor Correction Inverter
Tel/Fax: 01243842520
e-mail: eugen_kus@cix.co.uk
Lomond Electronic Services

Rack Enclosures
New and Used most sizes
16 U to 50 U side and rear panels mains distribution 19" Panel mounts optima eurocraft. Prices from $£ 45$ +vat M\&B Radio
86 Bishopsgate Street Leeds LS1 4BB Tel. 01132702114 Fax. 01132426881

100 MHz OSCILLOSCOPE with 60 MHz probe set, £580, unused (OS5100); TG230 Function generator, $£ 200$, unused; 10 MHz Oscilloscope, £50. Evenings 01264391165.

DATAMAN $\mathrm{S4}$ as new, boxed with all accessories. $\mathrm{f350}$. Tel: 07971165335 (Dorset).

T \& M EQUIPMENT

ADVANTEST TR9407 fft spectrum analyser to 1 MHz £2000 ADVANTEST TR 4333100 kHz 220 GHz spectrum analyser f6000 ANRITSU ML93A optical power meter with MA96A power sensor (0.75-1.8uM)
£1000 ANRITSU MN95D fibre-optic attenuator 0.65 db BRADIEY 192 oscilloscope calibrator
CHASE LRR1000 interference measuring receiver 9 kHz
150 kHz
DATRON 1061 Avoltmeter, 10/20/30/40/50 ORANETZ 626 -PA. 6006 ac neutral monitor, c / w TR2018 clamp EIP 575 source locking frequency counter 18 GHzGPIB op
FLANN MICROWAVE 27072 trequency meter $73-113 \mathrm{GHz}$ FLANN precision rotary waveguide attenuator 201100 -60db 18.2
FLANN precision rotary waveguide atenuator $2211000-70 \mathrm{db} 26-40 \mathrm{Cl} \mathrm{Hz}$
IFR A- 7750 IGHz portable spectrum analyser with receiver options
AMIFM/SSB GIGATRONICS 8542 microwave power meter to 186
c/w sensors
£2000
KEITHLEY 192 programmable digital multimeter
MARCONI 2019 A signal generator $10 \mathrm{KHz-1GHZ}$ INCLUOING FREE calibration
MARCON1 $2380 / 23222400 \mathrm{MHz}$ high-performance spectrum analyser PHILIPS PM5580 I.F. modulator (PAL IIJP M5582 UHF-convertor ROHDE \& SCHWARZ AFGU function generator IUHZ-20MHZ ROHDE \& SCHWARZ UPA audio ana yser with B6 \& Bg options

THIS MONTHS SPECIAI
Hewlett Packard $8657 B$ synthesized signal generators $0.1-2060 \mathrm{MHz}$ with 001/003 (Mi-stab \& pulse mad) options. List >£10,500. Ours . . . $£ 4,000$

All equipment sold calibration-checked by independent laboratories and carries un-conditional refund and 90-day guarantees.
CALLERS WELCOME BY APPOINTMENT ONLY. FOR COMPLETE STOCK LISTING PLEASE CHECK OUR WEBSITE WWW.ralfe-electronics.co.uk

HEWLETT PACKARD

$8714 \mathrm{C} 300 \mathrm{kHz}-3 \mathrm{GHz}$ vector network analyser 3585A 40MHz spectrum analyser 1640B serial data generator 10715A digital interferome 3577 A network analyser $5 \mathrm{~Hz}-200 \mathrm{MHz}$ 3314 A function generator

£7500

54000 5500

$£ 500$
$£ 1000$

Abstract

RACAL OANA 1991 frequency counter, GPIB opt SCHLUMBERGER 4922 radio code analyser

 SCHLUMBERGER SRTG-GA62 selective call test set SYSTRON OONNER 6041A 100 MHz 8-digit frequen $£ 150$ TEKTRONIX 24324 . TEKTRONIX $2432 \mathrm{~A} 100 \mathrm{MHz} 250 \mathrm{M} \mathrm{Sa} / \mathrm{sec}$ digital storage oscilloscopeTEKTRONIX 2236100 MHz analogue oscilloscope
TAU-TRON MN302/MB302N bert transmitter/receiver
WANDEL \& GOLTERMANN PCM4 test sets . . call for details 8 options
call
WANOEL \& GOLTERMANN PCM4 pem measuring set version 985/01, IEEE opt
WANDEL \& GOLTERMANN PF2 error ratio measuring set WANDEL \& GOLTERMANN OLM-20 data circuit test set WANDEL \& GOLTERMANN SPM31 level meter WANDEL \& GOLTERMANN WM30 level tracer WANDEL \& GOLTERMANN PF4 bit error reate tester (BNSI1/01. Opt 00.01)
WAVETEK 23 synthesized function generator $0.01 \mathrm{~Hz}-12 \mathrm{MHz}$ WAVETEK 1080 sweep generator $1-1000 \mathrm{MHz}$ WAYNE KERR 322020 A bias unit for 3245 inductance analyser) WAYNE KERR SR268 source and detector

Hz (option 03) WILTRON 6637 sweeper generator $2-18 \mathrm{GHz}$ (option £200 WILTRON 6659A sweep generator $10 \mathrm{MHz}-26.5 \mathrm{GHz}$ (options $01 / 10 / 13$) WILTRON 6640B sweep generator $26.5-40 \mathrm{GHz}$ (option 03) $£ 3500$

with driver 11713A

As above but 18 GHz set
5561A dynamics signal analyser
6650

- $£ 5000$

3717 B communications performance analyser, call for option configs
4093 B protocol tester base (PT300)
4142 B OC source/monitor (with 44421B, 41420A. 41424A) f8500
(with 41421B, 41420A. 41424A) 334B trequal data generator
5334 B frequency counter, option 060
83411 C lightwave receiver $100 / 1550 \mathrm{~nm}$
83440 C lightwave detector $20 \mathrm{GHz} 1300 \mathrm{~nm} / 1550 \mathrm{~nm}$ 8350B sweep generator mainframe 83572 B sweeper plug-in unit (for 8350 B) $26.5-40 \mathrm{GHz}$ 8924C CDMA mobile station test set 85053B 3.5mm verification kit
85640A tracking generator to 2.9 GHz 8672A synthesized signal generator 2 -18GHz 8673 D synthesized signal generator $50 \mathrm{MHz}-26.5 \mathrm{GHz}$ 86222A 10MHz-2.4GHz sweep generator plug-in unit 6290B $2-18 \mathrm{GHz}$ sweep generator plug-in unit 6884 B signal generator $5.4 \mathrm{GHz}-12.5 \mathrm{GHz}$ B903B audio analyser $£ 2500$ - (specify your own filter requiremen add $£ 200$ for each filter)
8904A/001/002 multifunction synthesizer DC-600kHz 8970 B noise figure meter with option 020 J2215A FDDI portable multimode test set

ISO9002 ACCREDITED STOCKIST MEASUREMENT \& TEST EQUIPMENT

CIRCLE NO. 137 ON REPLY CARD

The widest range of colour LCDs, LCD monitors and plug and play kits available in the UK, all in one easy to use brochure, is now available FREE! It includes information on products ranging from 2.9" monitors to $16.1^{\prime \prime}$ colour LCD screens, mono/colour STN TFTs and touch screen technology from the world's leading manufacturers.
Phone TRIDENT today for your free copy
TEL: 01737780790 FAX: 01737771908 OR VISIT OUR WEBSITE: www.tridentdisplays.co.uk

FREE Interactive Encyclopedia of Instrumentation Instrupedia ${ }^{\text {u }}$ from Nationa Instruments, is the latest version of the company's free CD-ROM encyclopedia for instrumentation. Featuring an enhanced user interface and a new intultive search engine, Instrupedia is updated with the entire National Instruments product catalogue and additional information useful to scientists and engineers when bullding PC-Based test, measurement and automation applications.
For your FREE CD-ROM call National Instruments on 01635523545.
e-mail: info@natinst.com
Website: www.natinst.com/uk

CIRCLE NO. 138 ON REPLY CARD

CE
Year 3000 canstiance

INDUSTRIAL COMPUTER PRODUCTS

The latest ICP catalogue featuring a comprehensive range of CPU boards and enclosures, complete with price list, is now available from Wordsworth.
Further details from:
Wordsworth
Tel: 01732861000

Settinc the Standards for Fmbedded Solutions:

Adaptors

Compilers

Development Systems

Educational
Systems

8051/AVR Emulators

Evaluation
Modules

8051/AVR
 Microcontroller Sales

OEM Modules

Parallel/Serial

 ProgrammersProduction
Programmers
Starter Systems
Software

Universal programmer supporting most microcontrollers, memory devices \& PLD's.
Order code: SG-ALLWRITER-1

The 'Multi-Apro Gang Programming System' is a next generation Universal Device Programmer supporting independent programming of up to eight target devices asynchronously.
Device support includes memory, microcontrollers, CPLD's, FPGA's etc.

Order Code:
SG-MULTI-APRO

SYSTEM
GENERAL

For sales tel: +44 (0) 1204529000 , fax: +44 (0) 1204 535555, e-mail: sales@equinox-dech.com, Web Ste: www.equinoxdech.com
EQUINOX DISTRIBUTORS: AUSTRALIA Farnell +51296458888 AUSTRIA Codico +431863050 Farnell +4306608775 BELGIUM Akcom Electronics N/sa +3232273647 Farnell +32032273647 BRAZIL Hastec +55115221799 Anatom +55114535588 DENMARK ACic Denmark +4535869696 Farnell +4544536644 Jacob Hatteland +4570102211 EIRE Farnel +35318309277 FINLAND ACTE Finland +3589751761 Farnell +35893455400 FRANCE Fannell +334746594 66 Newtek +33146872200 GERMANY Elekirnik +441132311311 Grifo Italian Technology +39051892052 Newtek ladia +39233105308 JAPAN Akizuki Denshi Fsusho +81332511779 MALAYSIA Farnell +6037738000 NETHERLANDS Alcom Electronics BV +31102882500 Antratek +31104504949 Display Elektronika +31302650100 Farnell +31302412323 NEW ZEALAND Farnell +6493570646 NORWAY ACTE NC Nonway +4763898900 Jakob Hatteland Electronic AS +4753763000 PORTUGAL Anatronic +35119376267 Farnell +441132890040 SINGAPORE Farnell +657880200 SPAIN Anatronic SA +3413660159 Farnell +441132310447 SWEDEN ACTE NC Sweden +4684452870 Farnell +4687305000 Izcob Hatteland +4684457500 SWiTZERLAND Anatec Ag +41417483241 Farnell $+411204646450 U T H$ AFRICA +657880200 SPAIN Anatronic SA +3413660159 Farnel +441132310447 SWEDEN ACTE NC Swecen +4684452870 Farnell +4687305000 Iacob Hatteland +4684457500 SWITZERLAND Anatec Ag +41417483241 Farnell +4112046464 SOUTH
Avnett Kopp +27114442333 TURKEY Delta Trade Consultancy +903124402040 UNITED KINGDOM Farnell $+44(0) 1132636311$ Rapid Electronics $+44(0)-1206751166$ USA Keil Software +18003488051 Monterey Tools Web site: wuw.montereytools.com

[^0]
ST Microcontrollers Roadshows

Forthcoming dates:
TirHighbury - 24th Marh'99
©: Villa Park - 18th May '99
© Old Trafford - 15 th June ' 99

MSI ONS OF OUR RONDSHOWS AND YOUML CRT LUNGR A SLRDNM TOUR AND YOUM RecsTVB

FREE ST Development Kit - FREE CDs and Literature - FREE password to exclusive Website

Don't wait, get in touch NOW \& you'll see why everyone's changing to ST microcontrollers and Anglia!

[^0]: Equinox reserves the right to change prices \& specifications of any of the above products without prior notice. E\&OE. All prices are exclusive of VAT \& carriage. AVR ${ }^{\text {PM }}$ is a trademark of the Atmel Corporation

