Enhanced mosfet models for thd analysis

ELECTRONICS
 Austria Asch. 70.00

WORLD

Denmark DKr. 70.00 Germany DM 18.00 Greece Dra. 1400.00 Holland Dfl. 12.95 Italy L. 9400.00 Malita Lm. 1.80 IR $£ 3.30$ Singapore $\mathbf{\$} \$ 7.50$ Spain Pts. 925.00

Simple UHF amplifier Hickman on inductors Sine-wave generators Windows pointers for CAD Chedk Cs in situ

Now the WR3100e external WINRADIO arrives!

"WiNRADiOTM now brings you a complete choice in personnel computer controlled radio scanning and reception solutions.."

With either the internal or external versions, you can couple all the power of the latest Windows PCs (not just the fraction that you can squeeze down an RS232 connection) to the latest synthesised receiver design techniques, and you'll get the ultimate in wide range, all mode programmable radio reception.

VisiTune ${ }^{\text {TM }}$ spectrum tuning display

Your choice of virtual front panel

New external WiNRADiOTM

(WR1000e, WR1500e and new WR3100e) provide complete comms systems connecting either via the basic RS232 - or with an optional PCMCIA adaptor, for high speed control. Power from existing 12 v supplies, or our optional NiMH rechargeable 12 v battery pack

Use WiNRADiO scanning PC comms receivers for..
Broadcast . Media monitoring. Professional \& amateur radio communications. Scanning. Spot frequency \& whole spectrum monitoring . Instrumentation Surveillance (and recording)

If you want the ultimate receiver-in-a-PC with full DSP, then you need the WR3000-DSP with its hardware for real-time recording, signal conditioning and decoding applications. (DSP is available with the ISA card version only).

Take a look at WiNRADiOis Digital Suite Sóftware..

For WR1000/1500/3100 internal or external

1. WEFAX / HF Fax
2. Packet Radio for HF and VHF
3. Aircraft Addressing and Reporting System (ACARS)
4. Audio Oscilloscope, real time Spectrum Analyzer
5. Squeich-controlled AF Recorder
6. DTMF, CTSS decode

ONLY $£ 81.05$ inc VAT

(requires SoundBlaster 16 compatible sound card)

Model Name/Number
Construction of internals
Construction of externals
Frequency range
Modes
Tuning step size
IF bandwidths
Receiver type
Scanning speed Audio output on card
Max on one motherboard Dynamic range
IF shift (passband tuning)
DSP in hardware
IRQ required
Spectrum Scope
Visitune
Published software API
Internal ISA cards
External units

WR-1000

WR-1000i/WR-1500i-3100DSP- Internal full length ISA cards WR-1000e/WR-1500e - 3100e - external RS232/PCMCIA (optional)

$0.5-1300 \mathrm{MHz}$	$0.15-1500 \mathrm{MHz}$	$0.15-1500 \mathrm{MHz}$
AM,SSB/CW,FM-N,FM-W	AM,LSB,USB,CW,FM-N,FM-W	AM,LSB,USB,CW,FM-N,FM-W
$100 \mathrm{~Hz}(5 \mathrm{~Hz}$ BFO)	$100 \mathrm{~Hz}(1 \mathrm{~Hz}$ for SSB and CW)	$100 \mathrm{~Hz}(1 \mathrm{~Hz}$ for SSB and CW)
6 kHz (AM/SSB),	$2.5 \mathrm{kHz}(\mathrm{SSB} / \mathrm{CW}), 9 \mathrm{kHz}$ (AM)	$2.5 \mathrm{kHz}(\mathrm{SSB} / \mathrm{CW}), 9 \mathrm{kHz}$ (AM)
17 kHz (FM-N), 230 kHz (W)	17 kHz (FM-N), 230 kHz (W)	17 kHz (FM-N), 230 kHz (W)

PLL-based triple-conv. superhet
$10 \mathrm{ch} / \mathrm{sec}$ (AM), $50 \mathrm{ch} / \mathrm{sec}$ (FM)
200 mW
8 cards
65 dB
no
$\pm 2 \mathrm{kHz}$
no - use optional DS software
no no
yes yes
yes yes
yes yes
£299 inc vat £369 inc vat
£359 inc vat £429 inc vat

The DSP applet provided with the WR3100 spectrum monitor ISA card ($£ 995+\mathrm{VAT}$) allows continuous control of audio bandwidth and other signal conditioning functions

[^0]> For your free info pack and software emulation demo disk contact Broadercasting Communication
> Systems - and please note all available information is also available 24 hours a day on the web.

http:I/www.broadercasting.com - FREEPHONE: 08000746263 - PHONE: 01245348000
EMAIL: info@broadercasting.co.uk - FAX: 01245287057
Unit B, Chelford Court, Robjohns Road, Chelmsford, Essex CM1 3AG
E\&OE WINRADIO and Visitune are trademarks of WiNRADiO Communications

355 COMMENT

Cache 22

357 NEWS

- New mobile phones hampered
- Visually transparent loudspeaker
- RF tuning components on chip
- New, faster maths processor
- Power supply through human skin
- Electronics waste recycling
- Manufacturing decline slows

391 MICROSTRIPLINE UPDATE

Using a UHF amplifier as a design example Nick Wheeler explains how easy it is to apply microstripline.

394 HOTTER SPICE

Ian Hegglun's breakthrough involves four new mosfet models that allow you to produce realistic Spice distortion figures.

400 MOBILE PHONES

Reviewing the pending generation of mobile phones, Tim Forrester details the new technology involved-CDMA.

407 SPEAKERS' CORNER
John Watkinson analyses the behaviour of real loudspeakers based on an electrical equivalent model.

412 MOUSE HOLES

Through the eyes of a CAD user, Rod Cooper looks at a novel trackball, a high performance graphics tablet and a mouse with no moving parts.

417 HANDS ON INTERNET

Cyril Bateman presents a variety of sine-wave generation alternatives found on the net - including digital options.

423 NEW PRODUCTS

New product outlines, presented by Phil Darrington.

Cover illustration: Jamel Akib

Improved Spice power mosfet models mean that you can get a much better idea of how your latest amplifier design will perform, page 394.

If you use CAD frequently, you will have noticed that the conventional mouse is far from perfect. Rod Cooper reviews some alternatives on page 412.

June issue on sale 29 April

[^1]
Announcing Microchip Technology's 1999 PICmicro MCU and KeELoo' Seminars

 at locations throughout the UK and Eire. Starting from April 19th, the seminars cover PICmicro MCU's - at Introductory and Advanced levels - plus KeeLoo code hopping technologyCHOOSE the session best suited to your knowledge of designing with PICmicro MCUs.
DISCOVER how the newest devices streamline your applications.
LEARN the latest 'Tips \& Tricks' for optimising your design.
SAVE on selected Microchip development tools when you attend.

Where and when:

Date		Seminar	Location
April	19 th	KeELoQ	Manchester
	20 th	Introductory	Manchester
	21 st	KeELoQ	Gatwick
	22 nd	Introductory	Gatwick
May	10 th	Introductory	Reading
	11 th	Advanced	Reading
	12 th	Advanced	Gatwick
	13 th	Introductory	Bristol
	14 th	Advanced	Bristol
June	7 th	Introductory	Daventry
	8 th	Advanced	Daventry
	9 th	Advanced	Manchester
	10 th	Introductory	Edinburgh
	11 th	Advanced	Edinburgh
	22 nd	Advanced	Belfast
	23 rd	Advanced	Dublin
	24 th	Advanced	Cork

Microchip

For more information and easy registration options simply phone Nuala Henry on 07000-642762
Microchip House, 505 Eskdale Road, Winnersh Triangle, Wokingham, Berks, RG41 5TU

CONTROI \& from
 Milford ROBOTICS Instruments

BASIC Stamps-

- Re-Programmable - BASIC language
- RS232 Serial ports
- 8 or 16 I/O lines - SPI/DTMF
- Fast development

Serial LCDs

- RS232 Serial interface
- 2×16 to 4×40
- Simple 3 -pin connection

- Integral Keypad option

Large Numerics option

- Driver chips available for OEM use

3-Axis Machine

- Stamp 2 based

Drills PCBs

- 3-Axis movement
- Stepper drive
- 4 thou resolution

Scenix
Fastest 8 -bit micro

- 50MIPS
- Flash Eprom - 18/28 pins - PIC16C5x pin replacement

Milford Instruments 01977683665 www.milinst.demon.co.uk

CIRCLE NO. 105 ON REPLY CARD

Sharp Tools for Embedded Systems

CCS - PIC C Compilers

Develop PIC applications faster than you ever thought possible with CCS PIC C compilers. Generates fast efficient native PIC code. Built in library support for timers, serial comms, PWM, ADC, I ${ }^{2} \mathrm{C}$ etc. $1 / \mathrm{O}$ libraries use hardware support where available or else use sottware generated modules.

- DOS/Windows Development Environment
- Write interrupt service routines In C
- Supports in line assembly language
- Automatic linking of multiple code pages
- Supports BIT and BYTE variables at absolute positions
- PCW - Windows IDE for PIC 16C5X, 16CXX, 12CXXX, 14000-Euro342.00 - PCM - DOS IDE \& Cmd. line for PIC 16CXX, 12C6XX, 14000-Euro120.00 - PCB - DOS IDE \& Cmd. line for PIC 16C5X, 12C5XX - Euro120.00

BASIC Stamp Computers

BASIC Stamps are small computers which are programmed in PBASIC a powerful BASIC dialect that includes many enhancements specifically designed for embedded control. PBASIC programs are loaded directly from a PC to the BASIC Stamp where they are executed from on board EEPROM.
DOSWindows Development environment

- Program alrectly from PC.
- Reprogrammable up to 10,000 times.
- l/O pins can source/sink up to 20 mA .
- Easlly interfaced to ADCs, LEDS, motors, relays.
- Built In 5 volt regulator.
- Built In functions for Serial, PWM, pulse in/out etc.
- BASIC Stamp 1-8I/O, 2400 Baud serial, 16 pin SIP Module - Euro36.00
- BASIC Stamp 2-16 I/O, 50K Baud serial, 24 pin DIP Module - Euro53.00 - Starter Kits from Euro100.00 (All prices exclude V.A.T. and delivery)

For further information on CCS PIC compilers, BASIC Stamps and other sharp tools, please phone, email or visit our web site.

[^2]

EDITOR

Martin Eccles
01816523614

CONSULTANTS

lan Hickman
Philip Darrington
Frank Ogden

EDITORIAL ADMINISTRATION

Jackie Lowe
0181-6523614
EDITORIAL E-MAIL ADDRESS
jackie.lowe@rbi.co.uk

ADVERTISEMENT MANAGER

Richard Napier
0181-6523620
DISPLAY SALES EXECUTIVE Joannah Cox
0181-6523620

ADVERTISEMENT E-MAIL ADDRESS

joannah.cox@rbi.co.uk
ADVERTISING PRODUCTION
0181-6523620
PUBLISHER
Mick Elliort
EDITORIAL FAX
0181-6528111
CLASSIFIED FAX
0181-6528938
NEWSTRADE ENQUIRIES
01712617704

ISSN 0959-8332

SUBSCRIPTION HOTLINE
 01622778000

SUBSCRIPTION QUERIES
rbp.subscriptions@rbi.co.uk
Tel 01444445566
Fax 01444445447

The European Parliament has rapidly become the alternative comedian's equivalent of 'My mother-in-law' as a sure-fire way of setting-up an audience for a good belly-laugh at the
presumptions and follies of politicians - and of course largely foreign politicians at that.
You can hear the sniggers breaking out all over the room almost before the words are properly out. What is it this time, they're wondering. Another straight banana edict?
This time it's the vote to ban Internet service providers from cacheing. Not quite as rib-tickling as the straight banana, but just as absurd. And, for service providers and all of us who have come to rely on the Internet, just as serious.
Service providers routinely set up caches - simply temporary files - of websites in order to make it easier for subscribers to access them at busy times. They enable subscribers to access the content locally, speeding access and reducing traffic and hence congestion problems - on the Internet.
Cacheing is pretty much like distributing films to local multiscreens, rather them making everyone drive halfway round the M25 to watch them, but with one important difference. The process does not increase revenue for the ISPs. Indeed, where access is metered, it would actually mean less revenue.
Nor does it deprive rights owners of revenue - a vital point, given the context of the decision. The vote was taken as part of the first reading of a new draft directive on electronic copyright, and its specific intention was to prevent the theft of recorded music by illicitly downloading it off the Internet.
It's hard to see how such a measure would make it harder to steal pirated CDs over the net, except insofar as it would make it harder for everyone to access anything at all.
The inspiration for the move appears to be persistent lobbying by the record and film industry itself, which has waged a long-running campaign against 'theft' of electronically transmitted material a crime which it defines to include time-shifting of tv programmes.
The same draft directive would ban all forms of private copying of tv and radio programmes, effectively outlawing the domestic video recorder.
The industry does indeed have a serious problem

with criminal interests making illegal and unauthorised copies of discs or tapes on a large scale for profit. It is a problem which could admittedly increase with the Internet, and which needs addressing.
However, most of the measures it has sought to introduce over the years have not been to address this problem - which is covered by criminal law in any case. Rather they have been implemented to increase its profits by taxing what to most reasonable people looks like an aspect of the legitimate enjoyment of the material in question, which has been bought and paidfor. Time-shifting a tv show is one example, taping a CD for playing in the car is another.
It has succeeded to the extent that some European states now impose a levy on blank tapes and recording equipment. That the British government has so far robustly resisted such moves is probably a tribute to the visibility of our democratic processes and our ability to bring the cause of public interest and common sense to bear against the pressures of vested interest groups and lobbyists. That the European Parliament has yielded to those pressures demonstrates the exact opposite.
One of the problems with the European Parliament is its remoteness from each of the national communities it represents. If our own MPs at Westminster get a silly or inequitable idea into their heads, we soon get to hear of it, and bring our displeasure, anger and ridicule, if needed, to bear on them. Particularly if we think they've been stitched up by some special interest group.
In Brussels, or Strasbourg, it's different. We don't know what they're up to half the time, but the lobbyists sure as hell do.
The result is that an opportunity to align copyright legislation with the technology of the 21 st century has been hijacked and distorted by this interest group.
Curiously, at much the same time, another EU report, prepared by British MEP Christine Oddy for a draft law on e-commerce, was published, arguing that caching was essential if the Internet was to run smoothly.

What a tangled Web may be woven if we leave it to the MEPs.

Peter Willis

For a full listing of
RBI magazines:
http//www.reedbusiness.com

Mussard, 18-20 Place de la Madeleine, Paris 75008 . United States of America: Ray Barnes, Reed Business Publishing Lid, 475 Park Avenue South, 2nd Fl New York, NY 10016 Tel; (212) 6798888 Fox; (212) 6799455
USA mailing agents: Mercury Airfeight International LId Inc, 10 |b) Englehard Ave, Avenel NJ 07001 . Periodicles Postage Paid at Rahway NJ Postmoster. Send address chonges to above.
Printed by Polestar (Carlise) Ltd, Newtown Trading Estate Carlisle. Cumbria, CA2 7NR
Filmsetting by IJ Typographics Lid, Unit 4 Baron Court, Chandlers Woy, Southend-on-Sea, Essex SS2 5SE.

Portables with a Purpose

Reliable Tools that do the Job

FieldPac uniquely combines the power and expandability of a desktop PC with the mobility, strength and form-factor of a metal attaché case. One truly full-sized ISA or PCI expansion slot allows you the freedom to choose any add-in card on the market
for applications such as: Network Testing \& Monitoring, Portable D/A systems, Image Capture \& Commissioning/Installation Tools. Trust the FieldPac anywhere you travel and feel confident it will survive the rigors of transport, ready to do the job, every time.

[^3]
UPDATI:

New mobile phones hampered

UK third generation mobile phone operators will be handicapped by the inadequate spectrum allocation being proposed by the government for its new UMTS licences.
That is the claim of the UMTS Forum, a multinational group of manufacturers and mobile phone operators promoting the UMTS third generation standard.
The UK government is considering two spectrum proposals where either three or four of the five UK third generation operators get a $2 \times 10 \mathrm{MHz}$ band pair and single 5 MHz band.
"This is fine for just voice but it is not enough for multimedia services," said Dr Chris Wildey, a UMTS Forum vice chairman. "The minimum for UMTS just to get started is $2 \times 15 \mathrm{MHz}$ plus 5 MHz ."
If not enough spectrum is made available, said Wildey, it will adversely affect the services operators will be able to offer.
The Radiocommunications Agency (RA), charged with spectrum

ALLOCATION AT A GLANCE

First option

3 licensees with $2 \times 10 \mathrm{MHz}$ pair and $1 \times 5 \mathrm{MHz}$ single
2 licensees with $2 \times 15 \mathrm{MHz}$ pair

Second option

4 licensees with $2 \times 10 \mathrm{MHz}$ pair and $1 \times 5 \mathrm{MHz}$ single
1 licensee with $2 \times 20 \mathrm{MHz}$ pair
Total band is 155 MHz with 10 to 15 MHz for licence-free or "lightly licensed" private operation.
allocation proposals in the UK, says the situation is still under review.
"Our proposals went out for comment about four weeks ago and we are just receiving the last of the responses from interested parties, one of which is the UMTS Forum," said Jeremy Clayton, head of the RA spectrum auction team.
This month has been allocated to review comments and make firm proposals to ministers. "We should be finding a way forward by April-

May time," said Clayton.
The spectrum claims were backed
by UMTS Forum chairman, Dr
Bernd Eylert, who is also at
Deutsche Telekom's mobile subsidiary DeTeMobil: "Our $2 \times 12 \mathrm{MHz}$ spectrum band is not enough just for GSM [services]."
The RA's Clayton said UMTS will use the available spectrum better than GSM.
Roy Rubenstein and Steve Bush
Electronics Weekly

A loudspeaker you can see the tv screen through?

NXT, the flat-panel loudspeaker company, has developed a thin, transparent speaker that can be fitted over a display and produce stereo sound.
In the first public demonstration, one was fitted to a slim-line notebook computer, although the technology is said not to be limited to small screens. "It could be applied to a 60 inch television,"said company spokesman John Watson.
The company claims that the technology, which it is calling SoundVu, is ready for use. "If someone takes it up and runs with it, it could see production before the end of the year,"said Watson.
For NXT, it is too early to talk about licensees because last week's demonstration was the first time anyone outside the company had experienced SoundVu in action. "It is an in-house development, we did not have a development partner,"said Watson.

The display itself takes no part in the sound production, although Watson will not rule out using the display structure to make sound in the future. Instead the speaker sits in front of the display with an air gap. The speaker adds "a couple of millimetres, if that" to the display
thickness, said Watson.
Driving the speaker from the top or bottom allows stereo sound to be produced, although Watson thinks that it would also be possible by driving from one side only "but you would need a DSP"

Steve Bush

Track signalling... The microscopy department of the Florida State University has made a collection of the doodles chip designers have put onto the chip metallisation and has set up a Web Site called Silicon Zoo to show them to the world. The train found rolling on the tracks here is on a LeCroy MVV 200 chip. The tracks are a chargecoupled device analogue shift register

New Euro maths processor uses logs to speed up calculations

\triangle European project co-ordinated by Newcastle upon Tyne University aims to produce an arithmetic unit that is more accurate and twice as fast as existing designs.
The concept is stunningly simple. As every school child knows, multiplying and dividing numbers can be easily achieved by adding or subtracting their logarithms.
Expressing a 32 -bit floating-point value as its logarithm turns it into a 32-bit fixed point number and makes the maths easy. It reduces the computation time by a factor of five for multiplies and 15 for divides.
So why aren't all arithmetic units, microprocessors and DSPs organised this way? Unfortunately, while logarithms make multiplying and

Why Bother?

What's so great about a mere doubling of arithmetic speed? The inherent growth rate of the industry says performance will double within 18 months anyway.
Well, looking at it from another angle, for a specific application the clock speed can be halved. This has a corresponding effect on the power consumption, and improves electromagnetic compatibility to boot.
Offer any mobile phone manufacturer a painless way of doubling talk time and they'll snap your hand off. At the shoulder.

What about accuracy?

When arithmetic is performed on floating point numbers, each operation, such as the common multiply accumulate, can cause a half bit rounding error. Over the course of a long computation, a Fourier transform for instance, these errors can reach several bits.
Fixed-point numbers on the other hand do not suffer from such errors. And, hey presto, the log of a 32 -bit floating point number is fixed point. Newcastle claims the improvements in accuracy can be seen during simulations when 3D graphics data is being computed.
dividing a breeze, addition and subtraction are very tricky when the original numbers are expressed as logs.
The obvious answer is to do adds and subtracts in floating point and multiply and divides in logs. Indeed, if the data could be converted to and from logarithms on the fly, as and when needed, the problem would be solved.

But this would take far too much time. Therefore when data for the processor comes into the system, from an a-to-d converter for example, it has to be stored as a logarithm, never as a floating point number. And so additions and subtractions must be done in logarithms.
The sum of two numbers, x and y, when they are expressed in logs $i=\log (x)$ and $j=\log (y)-$ is $\log (2 j+2 i)$, which can't be calculated on a simple processor.

The project team has solved this problem by recourse to some clever maths techniques.
$\log (2 j+2 i)$ can be expanded to equal $i+\log (1+2 j-i)$. This is a nonlinear function which can be evaluated by storing the solutions in a look up table.
However, for 32 -bit numbers, the table would be enormous, so a small one is used with interpolation using the Taylor approximation. This adds errors, so the team has developed a brand new algorithm that runs in parallel with the look up table and calculates the error in the Taylor series which is subtracted out.
This process of addition or subtraction while in logs takes the same amount of time as it would in floating point. In typical algorithms, the acceleration of the multiplies and divides results in an overall doubling of speed.

Novel power supply gets to the heart

|ncreasingly, electrical devices are being implanted into people. Some of the more ambitious inbody systems, including artificial hearts, are too power-hungry to be

powered from batteries and have to be supplied from outside the body
One option for getting the power in is to run a cable right through the skin. This is possible, but infection is a constant threat.
Transformers, with one coil outside the body and one coil inside, avoid the infection problem. Unfortunately, coupling efficiency is compromised because the skin is thick, between 5 and 15 mm .
In a paper submitted to the IEE's Electronic Letters (volume 35,

> Body talk... Research team's transcutaneous transformer can transmit 20 W of power at 90 per cent efficiency.
number 2), a team from the Nanyang Technological University in Singapore has described a transcutaneous transformer which can transmit 20 W of power at 90 per cent efficiency.
The transformer employs an unusual geometry (see diagram). The primary core is ferrite around which a $2!$ turn coil is wound. The secondary core is made from amorphous metal ribbon and has 27 turns.
Litz wire, made from many thin insulated strands, is used for both windings to reduce losses due to the skin effect.
An external 100 kHz oscillator provides power which is rectified inside the body. The coupling coefficient between the coils is 0.65 with a 5 mm skin thickness.

Micromachining puts RF tuning and switching components on chip

Micromachining is coming to RF chips. The only important question remaining is when?
"It has been 20 years since a technology has come around that will give us such an improvement," said Professor Elliot Brown, a micromachine specialist at the University of California, Los Angeles.
Silicon semiconductors, so useful in digital and low-speed analogue circuits, are more limited in RF applications.
True, there are silicon processes that will work at 2 GHz , but any tuning components or signal path switches have to be off-chip. And the tuning problem extends all the way down the RF spectrum.
Only semiconductors with high bulk impedances, such as expensive GaAs, can be used to make filters with any appreciable selectivity
Making micro-electromechanical systems (MEMS)by micromachining looks set to side-step the switching and tuning problems by allowing the construction of low-loss relays, mechanically resonant filters, high-Q inductors and variable high-Q capacitors.

All of these have been constructed on-chip using modifications of standard semiconductor processes and are small enough to lay along-side other circuitry. The University of Michigan, for instance, has constructed a 92 MHz bandpass filter with a Q of 8000 which is only $13.1 \mu \mathrm{~m}$ long.
Soon, claimed UCLA's Brown, RF MEMS will be commonplace on chips. "You will start to think of them like inverters," he said.
First will come on-chip RF switches in the form of electrostatically deflected relays.
The standard solution to implementing a compact gigahertzrange RF switch is to use a PIN diode where more than IdBswitching loss is inevitable. A $3-6 \mathrm{GHz}$ PIN diode 8 -by-8 crossbar switch has an insertion loss of around 21 dB . Individual MEMS switches have already been constructed with losses of under 0.1 dB and isolation over 35 dB .
And they are fast, bounce-free switching in 4μ s has been recorded, $20 \mu \mathrm{~s}$ is more typical. Although 5 V is the target, it takes 40 V to operate a MEMS switch this quickly at the moment.

Tuning in... On-chip electronic filter components, inductors and capacitors, are getting the MEMS treatment at the University of California, Berkeley. The $200 \times 200 \mu \mathrm{~m}$ capacitor is an aluminum plate suspended in air above an aluminum layer by four springs. A 3V DC bias electrostatically causes the plate to pull down, increasing capacitance from 2.04 pF to 2.35 pF . Q is 60 at 1 GHz , ten times better than silicon on-chip capacitors. The inductor is made around a 650 nm by 500 nm former. Inductance is 4.8 nH with a Q of 30 at 1 GHz . VCO tuning range is from 855 MHz to 863 MHz .

Other drawbacks are low manufacturing yield and limited life. Pellon said: "We need to improve the single switch yield to greater than 95 per cent and want a 30 billion operation life, enough for five years of continuous operation."
MEMS frequency-control components for filters and oscillators fall into two types. One uses micromachining to make conventional capacitors and inductors without the limited Q of traditional on-chip reactive components. This is being championed by the University of California, Berkeley - see photographs on this page. These components require special packaging, but operate at atmospheric pressure.
The other approach is to micromachine mechanically resonant structures that are capacitively coupled to the signal path and profoundly affect the signal. These are being made at the University of Michigan by professor Clarke Nguyen. So far his devices, which use combinations of inter-linked
masses and cantilevers, have all operated at VHF frequencies.
Some suggest that this is the upper frequency limit of the technology, but he is strongly dismissive: "You could easily make 300 MHz without submicron lithography. Gigahertz frequencies are reasonable."
His work has shown that not only
can filtering devices be made, but that

Vibration problems?

"To make a sensitive accelerometer you need a large mass and a very compliant spring. Resonator devices operate at VHF, and in future, UHF. Mass has to be small and stiffness high. These resonators are very much 'anti-accelerometers', less sensitive than crystals and surface acoustic wave devices," said Professor Clarke Nguyen of the University of Michigan.
This said, variable capacitors made by micromachining are exactly masses on compliant springs and are therefore somewhat vulnerable to microphony under vibration. In addition, variable capacitors also suffer from Brownian motion noise, although this is not thought to be a big problem at this stage

New horizons... Architectures that are unthinkable using off-chip components become viable with a MEMS approach. For instance, rather than implement a variable filter at the front of a radio receiver, the diagram above shows one mechanically-resonant filter per reception band. Each performs all out-of-band rejection needed for the application and they are switched in and out using micromachined electrostatic relays. The whole thing could be built in the corner of a chip. The diagram below shows a phase-shifter, constructed simply from lengths of track and electrostatic micro-relays.
they can be as time-stable as quartz if they are fabricated from mono-crystalline silicon.
There are several factors holding back the introduction of RF MEMS.

Technology stability is one. Micromachined devices are made
using many types of wafer processing. What is needed is a standard process, even if it does have some limitations, so that fabs can offer it for production and IP developers can start making libraries
Michigan's Nguyen favours a fourmask addition to the usual CMOS process as a basic MEMS process.
Designers are another problem. Few of them think in terms of MEMS solutions yet.
Lastly, design tools are needed to develop micromachined products. These have to be able to handle the physics of the mass-spring structures used as well as the fluidics of surrounding atmospheres.
When will RF MEMS be qualified for production?
Professor Bernhard Boser of the University of California, Berkeley draws an analogy: "Micromachined accelerometers were five years from invention to qualification for use in airbags. RF MEMS have been around for two years so far."

Steve Bush

Companies advised to act now on electronics waste recycling
 But designers currently have little

ompanies need to start acting now to ensure they can comply with the electronic waste recycling directive even though its legal enforcement is several years away.
"One of the best ways to prepare is to start now and learn," said Claire Snow, director at ICER during a meeting on the subject at Sutton Borough Council. "It's no good putting our heads in the sand."

ICER is a cross-industry organisation that is seeking to influence the directive by giving feedback on the drafts. "We're trying to achieve sensible legislation and promote electronics recycling," said Snow.
awareness of environmental issues and their knowledge needs to be increased. "Eco-design is relatively advanced thinking so you cannot expect companies to get to that level without building up to it," said Martin Charter a co-ordinator at The Centre for Sustainable Design. One of the Centre's aims is to help designers gain this knowledge.
The EC's directive on recycling waste from electrical and electronic equipment (WEEE) is expected to be implemented nationally between 2002 and 2004. It will cover the recycling of 11 categories of
electrical and electronic equipment from large household appliances to telecoms and hi-fi equipment.

At a recent ERA conference on the subject the high cost of compliance was highlighted. Speaking at the conference, ICL's head of environmental affairs Joy Boyce said that it will be producers that have to face the cost, estimated to be between one and three per cent of turnover. But it will be an opportunity for producers to forge new links between themselves, their suppliers and their customers as an essential part of the recycler relationship.

DATAWEEK

Online* population, 1997-2005

[^4]
400 new jobs in mobile-phone sector

Motorola is to create 400 manufacturing jobs at its Easter Inch mobile phone plant in Silicon Glen, Scotland.
"We will be recruiting over the next few months,"said Motorola spokesman Derek Milne.
The jobs will be in assembly, inspection and testing of the handsets Many of the positions will be filled from staff brought in for the preChristmas rush. "Current temporary employees will be given the opportunity of applying for the new permanent positions," said Milne.

Motorola put its expansion down to the popularity of its existing handsets and its new product line-up. "This will be the only Motorola site worldwide that makes the GSM version of the
new V-series," said Milne. "Although the analogue version is made in the US," he added

Manufacturing decline may be bottoming out

Manufacturing decline may be bottoming out, according to the latest monthly order figures from the Chartered Institute of Purchasing and Supply. Manufacturing orders continued to decline in February but more slowly than in previous months.
The survey indicated the first signs of stronger demand in some sectors. New orders were down, but the monthly fall in February was far less than at the height of order book losses last October.

the complete awar treato the cenmation Eluaswarins worid electronics lab

 products now available in the UK. Seart with Edison. the fun multimedia electrorires 'rat that teaches electronics in 3D - ind then move onto TINA Pro - the new interactive mixed mode 32 bir simuliator with over 20 types of analysis. comprrehensive virtual instrumentation and over 10000 models. TINA Pro also leas you create custom schematic symbots from subcircuits, or SPICE models and now irctudes a parameter extractor for miculating nodel parameters from manufncoursem sata. Uniquely. TINA Pro can also be used to make real-time measurements using the TINA Lats card \& prototyping board. For more information call Quickroute Systems.

Ethas. :~0: -n+ : olus : : 9 -Tin: Dro E 299 -9 , Lab from exab Prese excude $p+p$ and 2 ?

QUICKROUTE
SYSTEMS

Quickroute Systems Ltd. Regent House Heaton Lane, Stockport, SK 4 IBS. U.K

Tel 01614760202 Fax 01614760505 Email TINA@quicksys.demon.co.uh www.quickroute.co.uk

15% off Pico oscilloscopes

Use the voucher in the booklet on the front of Electronics World and get 15% off the prices in this advert
The ADC-200 PC based oscilloscopes offer performance only previously available on expensive 'benchtop' scopes. As a general purpose lab scope, the large memory and advanced trigger functions make it ideal for designers of microcontroller and other digital circuits, whilst the spectrum analyser is an essential tool for tracking down noise in power supplies and amplifiers. For field engineers servicing and repairing equipment, a library of waveforms showing the correct signals at each test point (and typical problems) can save valuable time

The ADC-200 is available in three models, offering sample rates of 20,50 and $100 \mathrm{MS} / \mathrm{s}(100,000,000$ samples per second) all with 8 bit resolution.
ADe-200/100
ADC-200/50
AOC-200/20
Call for a free demo disk or visit our web site:
www. picotech.com

Tel: +44 (0)1954 211716 Fax: +44 (0)1954 211880, E-mail: post@ picotech.co.uk

Check Cs in situ

If you think that the best way to check an electrolytic capacitor is to measure its capacitance, think again. Cyril Bateman explains why it isn't, and starts a discussion on how to identify failed electrolytic capacitors without removing them from the board. This discussion ends next month with a design for a radically different in-circuit electrolytic tester.

Any capacitor that fails open or short circuit can be quickly identified without removing it from its circuit board. Most non-electrolytic capacitor failures result in a permanently short-circuited component. ${ }^{\text {. }}$
The traditional aluminium electrolytic capacitor though is different. While it is self-repairing, it also has a built-in ageing mechanism. ${ }^{2}$
Such a capacitor's useful life ends when the oxygen needed to maintain or repair its dielectric oxide film can no longer be provided by the electrolyte. At this point, the conductivity of the electrolyte is much reduced, increasing the capacitor's equivalent series resistance, or ESR, at all frequencies.
Failed aluminium electrolytic capacitors exhibit four common symptoms. The first two are visual and hence easily identifiable.

- Leakage of electrolyte, usually around one termination. This can result from internal gas pressures, caused by internal reverse cathode bias voltage.
- Discoloured insulating sleeve caused by excess heat. This may result from adjacent components raising the local ambient temperature or from the capacitor self-heating.
- Electrolyte exhaustion, commonly called 'drying up'. The measured capacitance may be little changed and still within tolerance. The electrolyte may still be liquid, but have insufficient conductivity for the capacitor to function properly.
- Cathode-foil oxide growth, called 'forming up', results when the cathode foil's normal voltage, 'reverses' to some 1.5 V positive, relative to the electrolyte. This internal 'reverse bias' induced cathode oxide growth can provoke the other symptoms. ${ }^{2}$

Aluminium electrolytic capacitors used correctly within their ratings usually fail due to the electrolyte being exhausted. Such capacitors are frequently described as 'dried up'.
Electrolyte exhaustion has two causes. These are consumption of the available oxygen by the capacitor leakage currents, and permeation of electrolyte through the capacitor seals.

Electrolyte exhaustion results in increased ESR, increase of tan δ and a measurable increase of impedance at higher frequencies. Aluminium electrolytic failures that result in a short circuit are rare. I have never seen one.

Understanding electrolytics

To identify a failed aluminium capacitor, you need to understand how the capacitor works. Capacitor ESR is a combination of three frequency-dependent mechanisms. These are the electrolyte resistance, the electrode foils with their connection resistances, and the anode and cathode foils' dielectric loss factors expressed as a series resistive loss, Fig. 1.
There's more on this in the panel entitled 'Equivalent series resistance.'
Figure 1 illustrates a conventional 'polar' electrolytic capacitor. ${ }^{2}$ Both anode and cathode foils posses capacitance. The capacitance of the cathode is very much larger than that of the anode. The measured value of the capacitor is the series sum of both values.
A 'bi-polar' or reversible electrolytic capacitor differs by having two anode foils formed to the same voltage. The diodes then have the same breakdown voltage. Both foils have similar capacitance values, each double the capacitor's marked value.

Leakage currents

This equivalent circuit of an electrolytic capacitor merits exploration. Aluminium is a 'valve' metal, so called because in the 1850 s , researchers first noted that insulating oxide films, grown on the anode metal in a bath of suitable electrolyte, exhibited a rectifying action. While this metal is connected to a positive voltage, the oxide film is an excellent insulator.
Immersed in electrolyte and connected to a few negative volts, this oxide film becomes a conductor. ${ }^{2}$ Current flow releases oxygen which travels to this negative voltage on the oxide film. If prolonged, hydrogen chemically 'reduces' some oxide back to aluminium, degrading its insulating properties.

Oxides of many other materials including niobium, zirconium, hafnium, uranium and silicon exhibit similar characteristics. Traditionally only aluminium and tantalum have been used to manufacture capacitors. ${ }^{3}$

Capacitor diodes?

Following my last series of articles, one reader asked how capacitor dielectric oxide could rectify. Alumina substrate used to manufacture thick film hybrid circuits is an excellent insulator. He posed the question, "Could this rectifying behaviour result from the electrolyte?" An explanation appears in the panel entitled, 'Substrates versus dielectric.'

Aluminium electrolytic capacitors do exhibit this rectifying behaviour. It easily demonstrated. Simply measure a polar capacitor's leakage current with forward and reverse DC bias applied. Under DC bias, if the dielectric film were non-rectifying, then regardless of polarity, similar leakage currents would flow. Any rectifying behaviour must result from the oxide films.

Take a new polar aluminium electrolytic capacitor and subject it to a low direct voltage of the correct polarity. To prevent any re-forming of the oxide films from influencing the results, charging currents should be limited. Supply this voltage via a $1 \mathrm{k} \Omega$ current limiting resistor in series with the test capacitor.

Wait two minutes for the capacitor to charge and for the leakage current to stabilise. Increment this voltage and again allow the current to stabilise. Then plot leakage current from zero to the capacitor's rated or surge voltage.

Now reverse the polarity of the DC supply and measure and plot leakage current from zero to, say, negative 5 V in 1 V steps. Leakage current for negative voltages is considerably higher than for the same positive voltage.
To avoid any possibility of oxide formation, as well as for safety, the stabilised capacitor leakage currents should not be

Leakage resistance

Fig. 1. Equivalent circuit of a polarised aluminium electrolytic capacitor. The cathode foil is etched, not formed. Its natural atmospheric oxide roughly equates to 1.5 V electrical formation. Using similar foil thickness and etch ratio as the anode foil, a 6 V rated capacitor's cathode capacitance will exceed that of the anode by a good margin. CV products on the other hand will be similar.

Alumina substrate versus dielectric oxide

The oxide dielectric of an aluminium electrolytic capacitor is grown on the surface of the anode foil by connecting to a positive voltage while it is immersed in a bath of suitable electrolyte. ${ }^{2}$
Oxygen, freely available from the electrolyte, combines with aluminium from the surface of the foil to form an aluminium oxide, namely $\mathrm{Al}_{2} \mathrm{O}_{3}$. This oxide is extremely thin, attaining some 14 ångstroms thickness for each volt applied. ${ }^{3}$
The best purity materials are used both for the aluminium anode foil and for the forming electrolyte, so the resulting oxide is extremely pure. It has a dielectric strength approaching the theoretical strength predicted by the ionic theory of crystals.
Growing anodically under this DC voltage stress ensures consistent alignment of the extremely small aluminium oxide particles as they form. This oxide growth is self-limiting. As thickness approaches $14 \AA$ for each volt applied, anode current falls. Oxide growth slows and almost stops.
A typical capacitor dielectric has an oxide thickness less than $1 \mu \mathrm{~m}$. For example, a 10 V capacitor has a dielectric oxide thickness of some $0.02 \mu \mathrm{~m} .^{2}$
A thick-film hybrid substrate is made in similar fashion to the ceramic capacitor dielectric, described in an earlier article. ${ }^{7}$ The Erie company, for which I then worked, was almost certainly the first major UK maker of thick-film circuits. Having considerable ceramic development and production resources, the company used these facilities to make alumina substrates for hybrid production.
The various processes of milling, spray drying, pressing or casting, followed by sintering, ensure a random alignment of alumina particles. These particles are much larger than those grown as the electrolytic capacitor dielectric.
The spray drying process typically produces dried powders in the form of minute hollow spheres. Subsequent processes of pressing or casting flatten these spheres, ensuring the deposited grains have a completely random alignment. Most substrates incorporate a significant glass or frit content. This acts as a flux during the sintering process, when these grains clump together and grow in size.
Typically manufactured as a 0.5 mm thick ceramic plate, alumina substrates comprise a large number of randomly-aligned grains, electrically in series with each other, to build up the required thickness of substrate. This makes them a good insulator.

Philips 135-4700 μ F/25 volt
Forward/reverse 'diode' voltage characteristic 100 kHz impedance - red $25 \mathrm{~m} \Omega$

Value measured wilh $1 \mathrm{k} \Omega$ limiting resistor
Unused capacitor.
Capacitance $4743 \mu F$, tandelta 0.0927
Fig. 2. Typical 'diode' forward/reverse characteristic common to all polar aluminium electrolytic capacitors. This capacitance value and voltage rating was plotted to answer the question Chris Green posed in the letters pages of the October 1998 issue. It was selected to provide easily measurable leakage currents for forward and reverse bias voltages.

The rectification effect permitted by the extremely thin, electrolytically grown capacitor dielectric oxide is easily measured, Fig. 2.
If you are interested in this topic, I recommend that you try this. The rate that leakage current increases when the capacitor's voltage is reached and exceeded is a good indication of the 'formation' voltage margin used, and hence the potential life time of the capacitor. Traditionally, long life or professional capacitors are built using foils with higher formation voltages than those used for miniature and commodity capacitors.
allowed to exceed 1 mA . The resulting graph displays typical diode behaviour, Fig. 2.
Should a suitable microammeter not be available, the voltage drop across this resistor can be used. A 200 mV DMM measures $1 \mu \mathrm{~A}$ as 1 mV .

Component quality

The quality of many components such as inductors and lowloss capacitors is usually defined by their ' Q ' factor. Q is the result of dividing a component's measured AC reactance by its AC resistive losses.
The reciprocal of Q , called $\tan \delta$, is defined as the capacitor's ESR/reactance ratio. Tan δ is used to describe the quality of almost all general-purpose capacitors.

$$
\begin{aligned}
& \tan \delta=\operatorname{abs} \frac{E S R}{X_{C}} \\
& X_{C}=\frac{1}{2 \pi f C}
\end{aligned}
$$

Conversely, $E S R=X_{\mathrm{C}} \tan \delta$.
The capacitor's reactance reduces in proportion to its
capacitance value and frequency. Being a combination of fixed and variable losses, ESR also reduces with frequency but to a lesser extent. ${ }^{2}$ Having reached its minimum value, ESR then increases with frequency.
The measured $\tan \delta$ of a capacitor therefore must always increase with frequency. From the first equation, $\tan \delta$ has no upper limit. It can exceed unity.
Equivalent series resistance is related to the construction of the capacitor, its voltage rating and capacitance value. A capacitor's ESR varies with frequency. At any frequency, ESR and impedance of each capacitor value and voltage rating varies widely. No single global good or bad figure can thus be assigned. ESR or impedance can be used to identify a worn capacitor, but only by comparison against known good identical capacitors.
At 100 or 120 Hz depending on supply frequency, $\tan \delta$ is used by capacitor makers to indicate aluminium electrolytic capacitor quality. Every capacitor is tested for tan δ in production. While many makers also table a 10 kHz or 100 kHz impedance or ESR value by capacitor, these parameters are not tested.
Variation of $\tan \delta$ for capacitor size and voltage rating is small compared to the wide range of ESR and impedance.

ESR is not a fixed volue

One extremely common mistake is to consider that a capacitor's ESR has a fixed value.

Electrolyticallyformed aluminium oxide is a low-loss dielectric, changing little with frequency. ${ }^{3}$ Expressed as the equivalent series loss, its contribution to ESR reduces with increasing frequency. The resistances of the metal foils and the electrolyte/paper combination, tend to increase but more slowly, with frequency. Dominated at low frequencies by the $\tan \delta$ of the oxide system, the capacitor's measured ESR initially reduces with frequency. With further increase of frequency, resistances of the metal foils and the electrolyte/paper combination, dominate. The capacitor's ESR and impedance become almost constant, finally rising with frequency, Fig. 3

Fig. 3. Plots of impedance and ESR against frequency for three $47 \mu F$ capacitors, typical of the range of impedances and ESR found at 100 kHz with medium voltage electrolytic devices. Lower and higher voltage capacitors will further increase this spread.

Tan δ provides a good figure of merit for all capacitors.
ESR is of interest to a capacitor designer to determine ripple current or power rating. ${ }^{4}$ But where capacitor quality issues are concerned, $100 \mathrm{~Hz} \tan \delta$ is the criterion used - not ESR.
From equation 1, tan δ responds to change of capacitance or ESR. A bad or failing aluminium electrolytic's capacitance usually reduces slightly, while ESR increases significantly. Tan δ reflects both changes.

Temperature effects

Capacitor leakage currents are temperature dependent, roughly doubling for each $10^{\circ} \mathrm{C}$ increase, according to Arrenhuis' law. Since the consumption of free oxygen from the electrolyte determines a capacitor's service life, so does its working temperature.
Subject to an AC ripple current, the capacitor's ESR results in the dissipation of real power as the product of $I^{2} E S R$. This raises the capacitor's internal temperature. Each aluminium electrolytic capacitor has a sinusoidal ripple-current rating, usually based on a frequency of 100 or 120 Hz . Correlation factors for other frequencies and change of ambient temperature are provided.
Assuming the circuit that the capacitor is used in applies a sinusoidal or other similar easily defined waveform, then compliance with the capacitor makers ratings is easily confirmed.
These ideal waveforms rarely occur in practical circuits though. Given a repetitive voltage or current waveform, power dissipation can be calculated, but this can be difficult.

Fig. 4. Simulations of capacitors charged to 25 V then discharged via a 10Ω resistor demonstrate how the cathode foil's voltage becomes positive, with respect to the electrolyte. With positive anode bias voltage, the cathode voltage stabilises slightly below that of the electrolyte. With similar anode and cathode foil CV product, the cathode foil charges to a positive voltage, compared to the electrolyte as in the green trace. When the cathode foil CV exceeds the anode's, red trace, a much lower voltage develops. In the blue trace, the cathode has 'formed up' and only half of original capacitance value remains.

In many instances - especially with non-repetitive waveforms - the only practicable method is measurement of the working capacitor's case temperature rise.
A full treatment of a mathematical method, applicable to any repetitive waveform, has already been published in Electronics World. ${ }^{4}$

$220 \mu \mathrm{~F} / 25 \mathrm{~V}$ new/used comparison
 Forward/reverse 'diode' voltage characteristic 100 kHz impedances - red $371 \mathrm{~m} \Omega$, green $243 \mathrm{~m} \Omega$

Value measured wilh $1 \mathrm{k} \Omega$ limiting resistor
Red, the used capacitor's cathode has 'formed up'
Capacitance now $199 \mu F$, tandelta 0.107
Fig. 5. The red curve shows the degraded forward leakage and increased reverse voltage sustain of a capacitor that has suffered from internal reversed cathode bias. The cathode foil has clearly 'formed up'. Total capacitance at 100 Hz has reduced to $199 \mu \mathrm{~F}$, but is still within tolerance. The cathode capacitance of this worn out capacitor has reduced to 30% of its initial value while tan δ has increased to 0.107. The green curve provides comparison with a similar unused capacitor, having $218 \mu \mathrm{~F}$ and a $\tan \delta$ of only 0.044 , a $2.4: 1$ ratio of tan δ. The 100 kHz impedances were 371 and $243 \mathrm{~m} \Omega$, a ratio of only 1.5:1. Clearly, tan δ is the much more sensitive test.

$220 \mu \mathrm{~F} / 63 \mathrm{~V}$ and 50 V new/used comparison

Forward/reverse 'diode' voltage characteristic 100 kHz impedances - red $77.4 \mathrm{~m} \Omega$, blue $119 \mathrm{~m} \Omega$ green $30 \mathrm{~m} \Omega$
Fig. 6. The red curve for the used low ESR 220 1 F compared with two unused general-purpose capacitors. This shows that after four years service, this higher voltage, low ESR replacement has not degraded. Measured values, red $220 \mu F, 0.016$ tan δ; blue $213 \mu \mathrm{~F}$ $0.024 \tan \delta$; green $214 \mu F, 0.028 \tan \delta$.

Value measured wilh $1 \mathrm{k} \Omega$ limiting resistor
Red, the used capacitor, has not degraded Capacitance now $220 \mu \mathrm{~F}$, tandelta 0.016

Used correctly within its ratings, an aluminium electrolytic capacitor's leakage current will slowly consume the oxygen available from its electrolyte. Its capacitance value will change and ESR will increase. A capacitance change of $\pm 10 \%$ or $\tan \delta$ or impedance increasing by 1.2 times the rated limits indicates that the capacitor's useful life has ended.
A capacitor used within its published ratings should provide many years of service though. Recently, I refurbished an elderly Hewlett Packard test instrument. Because of its age, as is good practice, I replaced all of its 43 aluminium electrolytic capacitors. These were all dated 1974 or 1975. Only two failed to meet their specifications when tested on a bridge.
Why then do some capacitor applications cause such a drastic reduction in a capacitor's life? Ignoring those obvious reasons - excess ambient temperature, voltage, ripple current or reversed polarity - most premature aluminium electrolytic capacitors failures occur because their cathode foil has become reverse biased internally. The foil has become what is known as 'formed-up'.

Internal cathode reversed bias

Forming up cannot easily be observed using an oscilloscope, except by manufacturing special capacitors to allow measurement of the electrolyte's voltage relative to the anode and cathode foils. Using the circuit of Fig. I, though, it can be simulated.
The anode and cathode foil diodes can be represented by the 'default' diode in PSpice. I used 'BV=1.5' to represent the unformed cathode foil diode and the capacitor's rated voltage for the anode foil diode. For accuracy, I also selected 'RS' values, which replicate the measured DC leakage current/voltage plots.
If prolonged, internal reverse bias can cause the cathode foil to form up above its natural atmospheric oxide's equivalent electrical value. This reduces its capacitance. ${ }^{2}$
Both anode and cathode foils exhibit capacitance. They are connected in series internally, back to back, by the electrolyte. When a capacitor is charged or discharged, charge transfers between anode and cathode foils. This develops voltages between the anode foil and electrolyte and between electrolyte and cathode foil, according to each foil's capacitance value, Fig. 4.
Under normal positive anode bias voltages, the cathode voltage is slightly negative with respect to the electrolyte voltage. When the capacitor is discharged, the charge transfer develops a cathode voltage which is positive compared to the electrolyte. The cathode has become internally reverse biased, relative to normal operation.
This transfer of charge may cause the cathode foil voltage to approach or exceed that sustainable by the cathode foil's naturally occurring oxide film. Considerable leakage current then flows between cathode foil and electrolyte, causing oxide growth on the cathode.
Once initiated, this oxide growth enters a runaway condition. With repeated capacitor discharge, the reducing cathode capacitance develops an ever higher voltage. Cathode foil oxide growth, cathode voltage, ESR, tan δ and leakage currents all increase until the capacitor fails.

Heavy-duty capacitors

Repetitive crash discharging, as needed for photoflash, requires a specially constructed capacitor. While photoflash presents an extreme case, many circuit applications use electrolytic capacitors to couple irregular waveforms but without ensuring adequate bias voltage. ${ }^{2}$
Depending on the applied waveform, these uses are considered as repetitive charge/discharge or AC applications. Commercial polarised capacitors are not suitable for either application so special capacitors are needed for each.

Frequently, the base drive waveforms of switching transistors include a small capacitor in parallel with a resistor to shape and couple the drive current into the transistor base. My satellite receiver's power supply originally had a $1 \mu \mathrm{~F}$ electrolytic paralleled with a $1 \mathrm{k} \Omega$ resistor to drive the base of a BUT11A transistor. This capacitor failed very quickly, destroying the power supply.
This is a well known design fault. Replacing the component with a $1 \mu \mathrm{~F}$ polyester film capacitor provided a permanent remedy.

Similarly, my TV set had a $220 \mu \mathrm{~F}, 25 \mathrm{~V}$ capacitor paralleled with a 12Ω resistor to drive the base of its BU508 linescan transistor. After only four years service, this TV exhibited an underscanning display area.

Causes of rapid failure

Capacitor anodes are made using super-pure aluminium. Cathodes are deliberately made using lower purity foils. This is done to discourage cathode formation under the normal charge/discharge cycles found during equipment switch-on or off.

Capacitors described as charge/discharge proof in compliance with CECC 30300 are tested to survive a million switch-on or off cycles using a time constant of 0.1 s .
When a capacitor is internally or externally reverse biased, abnormal amounts of oxygen are consumed from the electrolyte. The consequent excessive free hydrogen can force electrolyte past the capacitor seals.
Hydrogen collecting at the anode foil degrades its dielectric oxide, increasing leakage current when re-biased correctly. The cathode foil can form up, reducing its capacitance.
Capacitance values drop while leakage current, ESR and $\tan \delta$ all increase, until the capacitor or the equipment fails. For example, see the red plot of the $220 \mu \mathrm{~F}, 25 \mathrm{~V}$ capacitor removed from my TV in 1995. While its measured capacitance was still in tolerance, the display no longer filled the screen.

This damaged capacitor has changed dramatically. Its cathode foil has formed up and the cathode's capacitance has reduced to 30% of its original value, Fig. 5.
For this article I removed and measured the low-ESR 63 V capacitor that replaced the damaged original one. Although it had seen a similar length of service, as can be seen from the leakage current plots, the replacement has survived undamaged, Fig. 6.

Fig. 7. PSpice simulation showing voltages and currents of a $1000 \mu \mathrm{~F}, 0.4 \tan \delta$ capacitor. Note how the peaks of the voltage waveform for the capacitor's ESR coincide exactly with the generator's current waveform. The peak of the capacitor X_{C} voltage waveform is separated by exactly 90° phase. Similar simulations confirmed that these relationships hold over the range of tan δ. The generator voltage/current phases vary widely though, depending on the capacitor's ESR and the generator's source resistance.

Anode foil is considerably more expensive than cathode foil. To ensure meeting the charge/discharge requirements and reduce costs, aluminium electrolytic capacitor designers ensure the CV product of the cathode exceeds that of the anode. This maximises the available capacitance at minimum cost.
To avoid cathode formation in capacitors that could be subjected to internal cathode reverse bias, the CV product of the cathode foil should be increased. The best solution is to use a bi-polar capacitor. Alternatively, a low ESR capacitor of higher voltage than required for the circuit voltages may be the answer.
Low-ESR capacitors are made using high-gain cathode foils with more conductive paper and electrolyte relative to standard capacitors. This cathode foil provides more capac-

Electrolytic capacitor ESR

Capacitor electrolytes are conducting solutions, usually a neutralised weak acid in a solvent. This electrolyte must not freeze or boil at the extremes of the capacitor's working temperature range, nor attack pure aluminium at any temperature. Very pure ethylene glycol was for many years the standard solvent used in capacitors. ${ }^{2}$
Most modern electrolytes are made without added water.
Using only dry ingredients, such as super purity ammonium borate crystals, some water appearing as water of crystallisation is inevitable.

Low-voltage electrolytes have a low resistivity - typically a few millisiemens - and are not polarity sensitive. In a capacitor, some electrolyte is contained within the minute voids and channels in the anode and cathode foils' oxide coatings. These can be tenuous and very long relative to their cross section, ${ }^{2}$ so the effective electrolyte resistance in them increases quickly with frequency.
Most of the electrolyte however will be absorbed in the separator. This is usually a paper tissue, interwound with the anode and cathode foils during assembly. Resistivity of the
electrolyte/paper separating tissue is increased compared to the bulk electrolyte, according to paper type and thickness used.
Low-voltage capacitors use very low resistivity paper and electrolyte. To help lower ESR, a single open weave 'rag' tissue is often used. Higher voltage capacitors incorporate a higher resistivity paper/electrolyte combination, and more than one tissue thickness.
As the capacitor's rated voltage increases, electrolyte, paper and cathode-foil thickness are varied to minimise $\tan \delta$ losses, capacitor case size and production costs while ensuring a satisfactory capacitor service life and performance.
Low-ESR capacitors use thicker, higher surface gain cathode foils together with more conductive paper/electrolyte combinations than standard capacitors of the same voltage. Naturally, these carry a size and cost penalty.
Electrolyte/paper resistivity varies with temperature. Above room temperature, this resistivity reduces, but due to the paper's influence, it perhaps only halves by $85^{\circ} \mathrm{C}$. Below $0^{\circ} \mathrm{C}$ though, resistivity increases rapidly as the solvent approaches its freezing point.
itance, and hence CV product, for a similar foil area. Increasing capacitor voltage increases foil area. These contribute a much improved service life, Fig. 6.

In-circuit capacitor diagnosis

Having removed a suspect capacitor from a circuit board, you can confirm whether it has failed by measuring its tan δ using a bridge. ${ }^{5}$ But it is usually easier, quicker and much cheaper simply to remove and replace all suspect capacitors.
If you do this though, you will no doubt be throwing away a lot of good capacitors. Is there a better way?
Measuring a capacitor in situ poses three main problems. To avoid false readings, the test voltage must be sufficiently low that adjacent semiconductor junctions are not turned on. Measurement times must be much less than needed to remove and replace a suspect capacitor. The test result should be unambiguous, needing little or no interpretation.
Measurement of capacitance is of little help. As with my TV, most failed aluminium electrolytic capacitors still have a measurable capacitance and can appear well within tolerance.
At present, a few commercial in-circuit impedance testers, incorrectly called ESR meters, are available. These measure the capacitor's impedance at high frequency, wheih is a much easier measurement - and not its ESR.
A capacitor's impedance, $|\mathrm{Z}|$, comprises the vector sum of its ESR and its capacitive/inductive reactances. At low frequency, capacitor self-inductance matters little. But as frequency increases, every capacitor ultimately becomes a DCblocking inductive reactance. Its reactance then increases rapidly with frequency

$$
\begin{aligned}
& |Z|=\sqrt{E S R^{2}+\left(X_{C(s)}-X_{L(s)}\right)^{2}} \\
& X_{L(s)}=2 \pi F L_{(s)} \text { and } X_{C(s)}=\frac{1}{2 \pi F C_{(s)}}
\end{aligned}
$$

At any one frequency, the term $X_{\mathrm{Cs}(\mathrm{s})}{ }^{2}-X_{\mathrm{L}(\mathrm{s})}{ }^{2}$ can be simplified to $\pm j X_{s}$, giving the fundamental vector capacitor equation for impedance,

$$
|Z|=E S R_{\mathrm{s}} \pm \mathrm{j} X_{\mathrm{s}} .
$$

Many writers assume that capacitive reactance at 100 kHz is so small that impedance is the same as ESR. This is not correct. Many larger electrolytics - especially axial types may be above resonance, hence inductive. At 100 kHz , a the-

Table 1a). Typical impedances measured at 100 kHz - low capacitance values.

Capacitor	$1 \mu \mathrm{~F}$	$2.2 \mu \mathrm{~F}$	$4.7 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$	$22 \mu \mathrm{~F}$	$47 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$
50 V bipolar AI.	4.0Ω	3.2Ω	1.4Ω	0.9Ω	0.35Ω	0.3Ω	0.22Ω
63 V polar Al.	4.3Ω	3.5Ω	1.8Ω	1.4Ω	0.5Ω	0.4Ω	0.28Ω
450 V polar AI.	24Ω	11Ω	5Ω	3.8Ω	1.5Ω	1.0Ω	

Table 1b). Typical impedances measured at 100 kHz - high capacitance values.

Capacitor	$1000 \mu \mathrm{~F}$	$2200 \mu \mathrm{~F}$	$4700 \mu \mathrm{~F}$	$\mathbf{1 0 0 0 0 \mu \mathrm { F }}$
25V polar AI.	0.090Ω	0.07Ω	0.045Ω	0.022Ω
63 V polar AI.	0.050Ω	0.025Ω	0.015Ω	0.010Ω

Table 2a). Typical tan δ values of new stock capacitors measured at 100 Hz - low capacitance values.

Capacitor	$1 \mu \mathrm{~F}$	$2.2 \mu \mathrm{~F}$	$4.7 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$	$22 \mu \mathrm{~F}$	$47 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$
50 V bipolar AI.	0.05	0.05	0.05	0.05	0.05	0.05	0.06
63 V polar Al.	0.04	0.04	0.035	0.035	0.035	0.045	0.04
450 V polar AI.	0.1	0.1	0.08	0.05	0.05	0.05	

Table 2b). Typical tan δ values of new stock capacitors measured at 100 Hz - high capacitance values.
Capacitor
25 V Polar AI.
63 V Polar AI.

$1000 \mu F$	$2200 \mu F$	$\mathbf{4 7 0 0 \mu F}$	$10000 \mu F$
0.06	0.075	0.09	0.1
0.03	0.05	0.06	0.07

oretical $1 \mu \mathrm{~F}$ capacitor has a reactance of around 1.6Ω. A practical electrolytic capacitor's reactance will be considerably above this theoretical value, Fig. 3.
Most so-called ESR meters with a pre-set good/bad buzzer cause confusion when used to measure smaller value electrolytic capacitors. ${ }^{1}$ But smaller capacitors are the ones most frequently measured. Often the value and voltage of the capacitor being measured is not visible, making judgement difficult.
Because of the range of impedances involved, an 'ESR' meter's results require considerable interpretation and comparison against known good capacitors. Since 100 kHz impedance values for known good electrolytic capacitors range from 0.01Ω to 24Ω, it is clearly not possible to define an impedance value representing 'good' or 'bad', Table 1.
Compared to these impedance variations, the $\tan \delta$ of a good capacitor is a reasonably constant number. For a typical commercial aluminium electrolytic capacitor, tan δ ranges from a low of 0.02 to a high of 0.3 for very large low voltage parts.
Philips' capacitor data handbook requires general-purpose capacitors subjected to endurance testing to have a $\tan \delta$ of ± 1.5 times the catalogue limits or 0.4 , whichever is larger. ${ }^{6}$
As a general guide, the tan δ for typical good board mounted capacitors should be less than 0.1 . Medium sized capacitors having a $\tan \delta$ of 0.2 or more should be replaced for reliability, Table 2.

Advantages of looking at $\tan \delta$

Does in-circuit tan δ measurement have any particular disadvantages? Using the internet and various trade publications, I have been unable to locate a suitable low cost in-circuit tan δ meter, so I decided to build one to supplement my conventional capacitor bridges.

Using PSpice I plotted the waveforms simulating an electrolytic capacitor with $0.4 \tan \delta$, representing a failed capacitor. These demonstrate the difficulty measuring tan δ or true ESR, compared to the easy measurement of impedance.
While the vectors representing the capacitor's ESR and reactance remain separated by 90°, their phase relationship to the signal generator's voltage varies according to source impedance and test capacitor tan δ, Fig. 7.
This PSpice simulation confirmed that the signal generator's current and the current, and hence voltage waveforms, of the capacitor's ESR, do remain in phase. Simulation also confirmed that the voltage waveform for the capacitor's reactance is delayed by exactly 90° relative to that of the capacitor's through current.
Encouraged by these PSpice analyses, I set out to investigate the design of a suitable in-circuit tan δ tester. Its design proved rather more difficult than I at first expected. But I have managed to design and develop an easy to use tan反 incircuit tester. It will be described in my next article.

References

1. Bateman, C., 'Understanding capacitors,' Electronics World, August 1998.
2. Bateman, C., 'Understanding capacitors,' Electronics World, June 1998.
3. Reference Data for Radio Engineers, pub. Newnes, Oxford. 4. Bateman, C., 'Power dissipation in capacitors,' Electronics World, April 1995.
4. Bateman, C., 'Understanding capacitors,' Electronics World, July 1998.
5. Data Handbook - Electrolytic Capacitors, pub. Philips

Components.
7. Bateman, C., 'Understanding capacitors,' Electronics World, April 1998.

NOW AVAILABLE RANGER 2
 The Complete, Integrated Schematic \& PCB Layout Package
 Windows Ranger 2
 For Windows 95 \& NT
 - New Hierarchical Circuit
 - Split Devices • Gate \& Pin Swap
 - New Edit Devices in Circuit
 - Copper Fill - Power Planes
 - Autorouter • Back Annotation
 Windows Ranger 2 with Specctra SP2
 Ranger \& Specctra Autorouter provide the most cost effective PCB Design system available. A powerful, intuitive system an outstanding price!
 Windows Ranger 2 Upgrade
 Upgrade your existing PCB Package to Windows Ranger 2.
 Ranger 2 Ouzputs: Full Windows Outputs Plus - HP-GL Gerber NC Drill
 Auto Cod DXF

 SPECIAL OFFER Ranger 2 Lite $£ 35$ (Prices exc VAT/P\&P)

Demo Software -download from
http://biz.ukonline.co.uk/seetrax
Call 01730260062
Fax 01730267273
Old Buriton Limeworks, Kiln Lane,
CIRCLE NO. 111 ON REPLY CARD

TELFORD ELECTRONICS

Old Officers Mess, Hoo Farm, Humbers Lane Phone: (00 44) 01952605451 Fax: $(0044) 01952677978$ e-mail: telfordelectronics@telford2.demon.co.uk Web: http://www.telford-electronics.cam Carriage: £10+VAT@17.5\% to be added to all UK orders Overseas orders welcome - Please call ALL OUR EQUIPMENT HAS A 30 DAY GUARANTEE (EXCEPT CLEARANCE ITEMS WHICH ARE SOLD AS-IS)

OATATELECOMS

 Anritsu MS334A PCM Error Detector............... $£ 120.00$BT (Fulcrum) T120 Analyzer 20 Nework ransmission Perlormance
 GN Elmi GN EImi EPR 3i PCM Signalling Recorder............ 55000.00
HP1350A Graphics Translator.......................... 2000 HP16310 Logic Analyzer. HP3336A Syynthesizedt/ evel Generator....
HP3497A Data/Acquistion Control Unit. HP3497A Data/A cquisition Control Unit, HP37201A MP•B Extender

Adret $7100 \mathrm{~B} 300 \mathrm{KHz}-650 \mathrm{MHz}$.

 Cushman CE12 Two Tone Generator ---.................... $£ 150000$ Flann $03111 \mathrm{~A} 11-18 \mathrm{GHz}$...........

alrauli IDEAS

Readers' circuit ideas published here earn their authors $£ 35$ or more. The month's top idea, or ideas, see anything up to $£ 100$ - sometimes more. All we ask is that the ideas you send in should be original to the best of your knowledge. Useful enhancements to previously published circuits are considered, but please be sure to acknowledge the original circuit.

Line-powered telephone monitor

Since the state of an internal modem is sometimes a little indeterminate, this was intended to indicate whether the modem is on-line or off; it also
shows when the telephone is in use. It needs no batteries and may be fixed to the computer, possibly with Velcro.
At the base of $T r_{1}$ there should be a

(C49)
voltage of 1.9 V , the transistor being a $100 \mathrm{~V}, 1 \mathrm{~A}$ BC879 darlington, which therefore conducts when the modem is off-line. When on-line, the line voltage falls, $T r_{1}$ turns off and $T r_{2}$ conducts, activating the led, a low-current, high-brightness type.

Robert L A Trost

Duiven
Holland
C49

Line monitor indicates whether a modem is on-line or off-line and will tell you when your three-year-old has dialled the fire brigade from the bedroom.

Video muting circuit

W
hile maintaining sync. and colour burst signals so that the picture may be switched on or off as required with no effect on other equipment, this circuit switches
composite video to black, an advantage in video multiplexing
The LM1881 sync. separator provide composite sync and burst gate signals used to control $74 H C T 4053 \mathrm{cmos}$

switches A, B and C, shown here as mechanical types for simplicity.
Composite sync. is potted down and may receive colour burst at switch A to produce a video signal synchronised to the video input, albeit without picture content. Video input is clamped to the same level at switch B and both signals are selected by switch C.

Switching is best carried out in the vertical interval of the first field, which can be done by a little logic controlled by the odd/even flag on the sync. separator.

Jim Irlam

Wraysbury
Berkshire
C52

For use during operations such as video multiplexing, this simple circuit allows the picture to be turned on or off while keeping sync. and colour burst intact.

HOW DOES YOUR EQUIPMENT MEASURE UP? AT STEWART OF READING THERES ALWAYS SCOPE FOR IMPROVEMENT!

GOULD OS1100 Dual race, 30 MHz delay, very bright. Supplied with 8200 manual and 2 probes. s.

THESE TWO HAVE NEVER

 BEEN SO CHEAP

MARCON 2022AC Synthesised AMFM Sig Gen $10 \mathrm{KHz} \cdot 1 \mathrm{GHz}$ from MARCON 6311 Prog Sweep Gen $100 \mathrm{MHz}-20 \mathrm{GHz}$.... H.P. 8672 A Synthesised Sig Gen $2 \cdot 18 \mathrm{GHz}$...... $£ 6000$ H.P. 8657 A Synthesised Sig Gen $100 \mathrm{KHz}-1040 \mathrm{MHz}$.. H.P. 8656 Synthesised Sig Gen $100 \mathrm{KHz}-990 \mathrm{MHz} . . .$. H.P. 8656A Synthesised Sig Gen 100 KHz -990MHz.... H. 3325 A Symene............................. H.P. 3325 A Synthesised Function Gen 21 MHze600
H.P. 4275 L LCR Meter $10 \mathrm{KHz}-10 \mathrm{MHz}$ H.P. 4192 A L H.P. 4192 A LF Impedence Analyser 5 Hz -13MHz_..... H.P. 8903E Distortion Analyser....................... $£ 1500$ MARCONI 2305 Mod Meter $500 \mathrm{KHz}-2 \mathrm{GHz}$ from.... FARNELL AMM2000 Automatic Mod Meter 10 HZ 2.4 GHz Unused... STABII OCK STABIIOCK 4031 Radio Comm Test Set $£ 3000$ STABILOCK 4015 Radio Comm Test Set£250
468 .igital siorage Dual Trace 100 MHz Delay...... 5250 466 Analogue Storage Dual Trace 100 MHz Delay .. $\mathbf{5 2 5 0}$ 485 Dual Trace 350 MHz Delay Sweep................. $£ 750$ 465 Dual Trace 100 MHz Delay Sweep....................... $£ 350$ HC $3502 \quad 5 \mathrm{mV}$-20Div; 0.2 u secsDual Trace 20 MHz . 5 SedDiviv $X-Y: X 5$ Magnifier, TVSync etc

H.P. 8640 A AM/FM Sig Gen $500 \mathrm{KHZ}-1024 \mathrm{MHz}$ $500 \mathrm{KHz}=512 \mathrm{MHz}$ Version - $£ 250$

SPECTRUM ANALYSERS

H.P. $8595 \mathrm{E} 9 \mathrm{KHz}-6.5 \mathrm{GHz}$ with Opts $004 / 041 / 101$ 105/110. 857171A card \& 85024A high frea probe...... H.P. 8590 A $10 \mathrm{KHz}-1.8 \mathrm{GHz}$ (750 hms)......................... $£ 2500$ H.P. 85588 with Main frame 100 KHz -1500MHz. $£ 1500$ ADVANTEST TR4131 10KHz-3.5GHz............... $£ 3500$ ADVANTEST TR4132 100k Hz-1GHz 1200 HP141 Systems $85531 \mathrm{KHz}-110 \mathrm{MHz}$ from $£ 500$ $8554500 \mathrm{KHz} \cdot 1250 \mathrm{MHz}$ from $£ 750 ; 855510 \mathrm{MHz}$. 18 GHz ..from $£ 1000$

\qquad

BRANO NEW OSCLLLOSCOPES - NEVER USED DMS 3850A Digit al Storage/DMM

Handheld LCD display, 2 Channels $50 \mathrm{~ms} / \mathrm{s}$. Auto range 4 Digit DMM/Capacity/frequency counter Battery operation or external $7.5-9.5 \mathrm{~V} D C$ ie. AC adaptor pouch complete leads; Manual.

PANASONIC VP8177A 100 KHz -100MHz; FM 0. 100 KHz ; Output - 19 dB - 99 dB AM $0-60 \% ; 32$ preset memory; Digital display frequency and output Used E450

Unused 1750

.
KENWOOD
MEIER 0.003% F 10° F Fen $3 \mathrm{KHz} / 3.15 \mathrm{KHz}$ RMS/AVERAGEPEAK: Weighted fiters; Digitial display of rom; 4 digit frea counter

POWER SUPPLY Model HSP3010 $0-30$ volts; $0-10 \mathrm{amps}$ current Used \&160

G00DWILL

GVT427 DUAL CHANNEL AC
MILIVOLTMETER
Frequency $10 \mathrm{~Hz}-1 \mathrm{MHz}$
Fing
Used £100 Unused £125
USED EQUIPMENT - GUARANTEED. Manuals supplied
This is VERY SMALL SAMPLE OF STOCK. SAE or telephone for lists. Please check availability before ordering. CARRIAGE all units $£ 16$. VAT to be added to total of goods and carriage.

STEREO STABILIZER 5

- Rack mounting frequency shifter for howl reduction in public address and sound reinforcement.
- Mono box types and 5 Hz fixed shift boards also available.
\star Broadcast Monitor Receiver $150 \mathrm{kHz}-30 \mathrm{MHz}$.
\star Advanced Active Aerial $4 \mathrm{kHz}-30 \mathrm{MHz}$.
\star Stereo Variable Emphasis Limiter 3.
\star 10-Outlet Audio Distribution Amplifier 4.
\star PPM10 In-vision PPM and chart recorder.
\star Twin Twin PPM Rack and Box Units.
* PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN -50/+6dB drives and movements.
\star Broadcast Stereo Coders.

SURREY ELECTRONICS LTD

The Forge, Lucks Green, Cranleigh GU6 7BG Telephone: 01483275997 Fax: 01483276477

Semiconductor 'barretter'

To limit an inrush of current in, for instance, lamps, devices whose resistance varies with current are often used. Normally though, these so-called 'barretters' are not protected against overload and their limiting current cannot be set.
This circuit avoids these problems. When connected to a short circuit, current through T_{r} flows through R_{3} and potental divider $R_{4,5,6}$. Voltage on the potentiometer output, which is proportional to the load current, controls Tr $_{3}$ and consequently the base current of T_{2}, which in turn controls the power transistor $T r_{1}$. The result is that current increases smoothly to the point set by the potentiometer, where it stays with no
further increase. The diode and resistor R_{7} set initial bias on $\boldsymbol{T r}_{1}$ to 500 mV . Resistor R_{6} sets the maximum load current at $100-600 \mathrm{~mA}$ and R_{4} determines the minimum current of $10-100 \mathrm{~mA}$.
Time taken for current to increase to the steady state may be varied by C_{1} and $R_{1,2}$. Transistor Tr_{1} should be on a heat sink.
Michael A Shustov
Tomsk
Russia
C60
Transistor version of a current-limiting
barretter, this one with overcurrent protection and variable current limiting.

Ring of leds for first-year students

apacitor charging seemed a good subject for study in an electronics first year, so this collection of leds came about. Capacitors C_{1-3} in Fig. 1 charge in sequence with time constants $R_{1} C_{1}$, etc., with sufficient overlap to produce the timing diagram in Fig. 2. The result is that the leds come on in the sequence $D_{6} D_{1}, D_{1} D_{2}, D_{2} D_{3}$, $D_{3} D_{4}, D_{4} D_{5}$ and back to $D_{6} D_{1}$.
Reversing the connections of JP1 and JP2 reverses the sequence.
The leds are high-brightness types such as TLLR 4400 and the 220Ω resistor limits current in the leds and logic. The circuit will work at voltages down to 3 V , a current draw of 5 mA giving 50 h from a couple of CR2032 lithium cells.
JM Terrade Clermont-Ferrand
France
C53
ΔU_{A}

Fig. 1. As a project for students, this illustration of capacitor charging is also entertaining.

Fig.2. Waveforms at points A-C and the sequence of led illumination

ΔU_{C}

Buffer connects RGB monitor to a pc

F ive-wire VGA video produced by a F standard pc is incompatible with the three-wire standard used by highquality Unix workstation monitors. This circuit allows such monitors to be used with pcs, while also driving VGA displays.
Two three-way video buffers, $I C_{1,2}$, take the same video input from VGA in. Output to the VGA display is direct and includes the sync., ID lines and power management signals. The MAX499CWG is a 135 MHz full-power-bandwidth triple video switch, giving buffered outputs to the
workstation monitor.
Since, in Unix monitors, composite sync. is superimposed on the green signal, the buffer's 3 ns switching time is necessary here to switch between sync. and colour signal. Composite sync. is obtained by an Ex-Or operation between horizontal and vertical sync., $R_{10,11}$ setting composite sync. level.
The 200MHz MAX4219 buffer drives a VGA monitor from the original input, so that a workstation monitor may be used for the audience in a presentation, for example, while the
presenter sees a VGA display.
A convenient power source for the circuit is the standard four-wire lead in the pc , which gives +5 V and +12 V for peripherals. The 5 V is used and is filtered by $L_{1} C_{10}$. An inverter, the MAX735, provides the -5 V .
The graphics card must be carefully chosen to ensure that the refresh timing is adjustable to suit the workstation.

Tim Herklots

Maxim Integrated Products
Theale
Berkshire
C64

All inductors CD54-103

$V_{D D}$	$I_{D D}(\mu \mathrm{~A})$	$f_{\text {out }}(H z)$
2.5	0.24	0.87
3.0	0.37	0.71
3.5	0.51	0.93
4.0	0.88	2.2
4.5	2.4	7.1
5.0	9.1	32

This oscillator takes only $0.24 \mu \mathrm{~A}$ at a frequency of under 1 Hz .

Oscillator runs at $0.24 \mu \mathrm{~A}$
$\triangle C D 4007$ contains three pairs of n-channel and p tchannel fests and is used here to form an oscillator drawing $0.24 \mu \mathrm{~A}$ at an output frequency of 0.87 Hz and $9.1 \mu \mathrm{~A}$ at 32 Hz .

Two of the n -channel fets form a Schmitt trigger, the output of which on pin 5 drives an inverter input on pin 10. Capacitor C_{1} charges towards the supply rail through R_{1} and when its voltage reaches the threshold of the Schmitt, pin 5 goes high and the inverter output on pin 12 goes low, C_{1} discharging through a diode.
As the C_{1} voltage reaches the lower switching threshold of the Schmitt, pin 5 goes low, pin 12 goes high, blocking the diode. The cycle then repeats.
Output pulse width is $0.35-0.6 \mathrm{~ms}$ with a supply voltage of $5-2.5 \mathrm{~V}$.
Yongping Xia
Torrance
California
C61

Ramp timer

This is a voltage-variable timer delivering a ramp waveform, controllable by a voltage.
Capacitor C_{1} charges at a constant rate in Miller integrator fashion. When the op-amp output reaches 67% of the supply voltage, the 555 output goes low, turning on the $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor to discharge C_{1}. The transistor stays on while the 555 output is low, so the op-amp output and input are at the same voltage. A negative pulse from the trigger source drives the 555 output high to restart the cycle.
A voltage on the 555 control pin varying between 33% and 67% of the supply voltage will produce an output pulse varying in width between zero and $R_{1} C_{1}$.

Dinarte Santos

Brazil

C54

Triggered timer produces an output pulse controllable in width by voltage input.

4-bit flash makes 16-bit flash a-to-d

£100 WINNER

Ahigh-resolution a-to-d converter can be made using two or more low-resolution types, as has been described ${ }^{1}$. This note illustrates the use of a single 4-bit converter to obtain a 16 -bit circuit.
There are four phases of operation, in each of which an analogue 'nibble' is generated. Every such nibble output from the 4-bit converter is latched by 4 -bit latches, which in turn drive d-to-a converters.
To take the operation in sequence, analogue input v_{i} goes to the 4 -bit converter to produce the 4 -bit most significant output $D_{15}-D_{12}$. In the second phase of operation, the analogue of the most significant nibble of the d-to-a digital output is inverted (I_{1}), subtracted from v_{i} in S_{1} and amplified by 16 times, the result being the analogue of the most
significant nibble. Four such phases are carried out.
Five monostable flip-flops generate control pulses for the process of enabling the analogue input to the 4 bit converter and for latching its output, the chain of flip-flops being activated by the start conversion pulse.
K Balasubramanian
B Gayathri
Huseyin Camur
European University of Lefke Turkish Republic of Northern Cyprus
C50

Reference

1. Balasubramanian, K. High resolution a-to-d using low-resolution converters. Electronics World, December 1991, p. 1052.

Four-bit analogue to digital flash converter used sequentially to process nibbles of the input gives a 16-bit digital output.

(C50)

Fact: most circuit ideas sent to Electronics World get published

Like life, Electronics World may seem surreal at times, but it is certainly not exclusive. Clearly, the best circuit ideas are ones that save time or money, or stimulate the thought process. This includes the odd solution looking for a problem - provided it has a degree of ingenuity.
Your submissions are judged mainly on their originality and usefulness. Interesting modifications to existing circuits are strong contenders too - provided that you clearly acknowledge the circuit you have modified. Never send us anything that you believe has been published before though.
Don't forget to say why you think your idea is worthy.
Clear hand-written notes on paper are a minimum requirement: disks with separate drawing and text files in a popular form are best - but please label the disk clearly.

Power supply for photomultiplier tube

£100 WINNER

This circuit arose from the need to power a photomultiplier tube from a portable 12 V source. It drives a 931A tube, but may be used with other types, providing a voltage of -1 kV divided in a resistive chain to drive the tube dynodes. The use of a
zener diode to provide an error signal to the TL494 pulse-width modulation controller allows a negative output; improved stability can be obtained by the use of a voltage reference diode. The pot core for the transformer is an FX2242.

When setting the circuit up, set the potentiometer to maximum resistance before adjusting for the required output.
Matthew A Curlis
Melbourne
Australia

Telnet Tel: 01203650702

Hewlett Packard 8920A R/F Comms Test (various options) £4995 8922 BGH G.S.M. Test £POA

Rohde \& Schwartz
CM5 54 Radio Comms service monitor
$(0.4$ to1000MHz)
(6250

CMTA94 GSM Radio Comms Analyser £7500
Schlumberger - Stabilock
4031 Radio comms test (0.4 to $\mathbf{1 0 . 0 0 M H z}$) $£ 4995$ 4040 'High accuracy' Radio comms test
$£ 2995$
Wandel \& Goltermann

PFJ-8 Error \& jitter test set	£12500
(All options fited)	
PCM4 PCM Channel measurement set	£POA

Marconi
2305 Modulation Meter
£1995
Racal
6111 GSM test sets $\mathbf{~ E P O A}$
Hewlett Packard 8642A
High Performance R/F Synthesiser -
0.1 to 1050 Mhz
$£ 8500$
Textronix 2467B
400 Mhz - 4 channels -
high writing speed oscilloscope
£8500

OSCILLOSCOPES	
Beckman $9020-20 \mathrm{MHz}$ - Dual channel	£150
Hewlett Packard 54100D - IGHz Digitizing	¢1500
Hewlett Packard 54200A - 50MHZ Digitizing	§500
Hewlett Packard 54201A - 300MHz Digitizing	£1250
Hitachi V152N212N222N302B/N302F/N353F/N550B/V650F fromernemer	from £125
Hitachi VI 100A - 100 MHZ - 4 channel	£1000
Intron $2020-20 \mathrm{MHz}$. Dual channel D.S.O. (new)	£450
\|watstu SS 5710/SS 5702 . frorn	from £125
Kikusui $\operatorname{COS} 5100-100 \mathrm{MHz}$ - Dual channel	£350
Lecroy 9450A - $300 \mathrm{MHz} / 400 \mathrm{MS} / \mathrm{s}$ D.S.O. 2 channel	$£ 2250$
Meguro MSO 1270A-20MHz-D.S.O. (new)	£450
Philips $3055-50 \mathrm{MHz}$. Dual channel	£450
Philips PM 3335-50MHZ - D.S.O. Dual channel	£1200
Philips 3295A - 400 MHz - Dual channel	£1750
Panasonic VP574 I A - 100MHZ D.S.O. Dual channel	£1750
Tektronix $455-50 \mathrm{MHZ}$ - Dual channel	£275
Tektronix $465-100 \mathrm{MHZ}$ - Dual channel	£350
Tektronix 464/466-100MHZ - (with AN. storage)	£350
Teklronix $475 / 475 \mathrm{~A}-200 \mathrm{MHz} / 250 \mathrm{MHz}$ - fromer	from £ 450
Tektronix 468 - 100 MHZ - D.S.O.	£650
Tektronix $2213 / 2215-60 \mathrm{MHz}$ - Dual channel	£350
Tektronix 2220-60MHZ - Dual channel D.S.O	£1250
Tektronix 2225-50MHZ - Dual channel	£395
Tektronix 2235-100MHZ - Dual channel	$£ 600$
Tekrronix 2221 - 60 MHz - Dual channel D.S.O	£1250
Tektronix 2245A-100MHZ-4 channel	$¢ 900$
Tektronix $2440-300 \mathrm{MHz} / 500 \mathrm{MS} / \mathrm{s}$ D.S.O.	£2950
Tektronix 2445A - 150 MHz - 4 channel	¢1250
Tektronix 2445-150MHZ - 4 channel + DMM	£1200
Tekironix TAS 475-100MHZ - 4 channel	£995
Tektronix 7000 Series (100 MHZ to 500 MHZ)	from $£ 200$
SPECTRUM ANALYSERS	
Ando AC 821 1-1.7GHz	£2250
Avcom PSA-65A - 2 to 1000 MHz	$£ 850$
Anritsu MS $62 \mathrm{~B}-50 \mathrm{~Hz}$ to 1700 MHz	£2500
Anritsu MS 610B $10 \mathrm{KHz}-2 \mathrm{GHz}$	£4750
Advantest/TAKEDA RIKEN-4132-100KHz - 1000 MHz	£2500
Hewlett Packard 3561A - Dynamic Signal Analyser	£4750
Hewlett Packard 3562A Dual channel dynamic signal analyser	
$64 \mu \mathrm{~Hz}-100 \mathrm{KHz}$	£6250
Hewlett Packard 3585A -20Hz to 40MHz	£4500
Hewlett Packard 8591A -9KHz-1.8GHz with tracking generator, option	$10 £ 6500$
Hewlell Packard 8505A - 1.3GHz - Network Analyser	£1995
Hewletı Packard 8753A - 3GHz - Network Analyser	£4995
Hewlett Packard 8753B - Network Analyser	£6,500

Quality second-user
test \& measurement
equipment
Marconi

Radio Communications Test Sets

Fax 01203650773

Hewlett Packard 8756A8757A Scaler Network Analyser
Hewlett Packard 853A Maintrame +8559 A Spec. An $(0.01$ to 21GHz) from $£ 1000$ Hewlett Packard 182T Mainframe +8559 A Spec. An. $(0.01$ to 21 GHz) IFR A7550-10 K Hz-1 GHz - Ponable
Meguro - MSA 4901-30MHz - Spec. Analyser
Meguro-MSA $4912-1 \mathrm{MHz}-I \mathrm{GHZ}$ Spec.Analyser
Tektronix 495 P Spec analyser prog
Tektronix 495 P Spec analyser prog. -1.8 GHz
Wiltron $6409-10-2000 \mathrm{MHz}$ R/F Analyser
MISCELLANEOUS
ENI - 5501 Power Amplifer $(1.5-400 \mathrm{MHz}$) - 50 w
Farnell AP30250 - Power Supply 30v-250amp
GN ELMI EPR31 - PCM Signalling Recorder
Hewlett Packard 6033A - Autoranging System PSU (20v-30a) Hewlett Packard 6632A - System Power Supply (20v-5A
Hewlett Packard 3784A - Digital Transmission Analyser Hewlett Packard 3784A - Digital Transmission Analyser Hewlett Packard 3785A - Jitter Generator \& Recelver Hewlett Packard 5370B - Universal Time Interval Counter Hewlett Packard 8660D - Synth'd Sig. Gen ($10 \mathrm{KHz}-2600 \mathrm{MHz}$) Hewlett Packard 4192A - LF Impedance Analyser Hewlett Packard 16501A - Logic Analyser System Expander Frame HP 339A Distortion measuring set
HP 3488A - Switch/Control unit
HP 3488A - Switch/Control unit
HP4279A- 1 MHz - C-V meter
HP 436A Power meter + lead + sensor various availabte
HP 435A + 435B Power meters
HP 8656A Synthesised signal generator
HP 8656B Synthesised signal generator
HP 8657A - Signal generator $100 \mathrm{KHZ}-1040 \mathrm{MHZ}$
HP 37900D - Signalling test set
HP 5385A - 1 GHZ Frequency counter
HP 8901 B - Modulation Analyser
HP 8903 B and \mathbf{E} - Distortion Analyser
HP 5359A - High Resolution Time Synthesiser
Keytek MZ-15/EC Minizap ESD Simulator (15kv - hand held) Marconi 2610 True RMS Voltmeter
Philips PM 5193 Synthesised Function Gen 50 MHz
ps 5516 Signal
stereo modulator (as new) a snip at
Racal 9087-1.3Ghz Synthesised Signal Generator, low noise $\begin{aligned} & \text { E995 } \\ & \text { £2250 }\end{aligned}$
Systron Donner $6030-26.5 \mathrm{GHz}$ Microwave Freq Counter
Tektronix 1751 PAL Waveform/Vector Monitor

Wiltron $6747 \mathrm{~A}-20-10 \mathrm{MHz}-20 \mathrm{GHz}$ - Swept Frequency Synthesiser | E2200 |
| :--- |
| $£ 4950$ |

All equipment is used - with 30 days guarantee.
Add carriage and VAT to all goods.
Telnet, 8 Cavans Way, Binley Industrial Estate,

CROWNHILL ASSOCIATES LIMITED
 The Old Bakery, New Barns Road,
 Ely, Cambs. CB4 7PW
 Tel: +44 (0)1353666709 Fax: +44 (0)1353666710

Low cost professional quality Smart Card Systems

CHIPDRIVE

The intelligent programmer for Smart Cards using the International Standard $\mathrm{T}=0$ or $\mathrm{T}=1$ protocols also Memory and Secure Memory using $\mathrm{I}^{2} \mathrm{C}$, 2-wire \& 3 -wire interfaces. From April 11999 all ChipDrives are supplied with software to read and write to most popular secure smart cards, inc GSM, PAY PHONE and ACCESS CONTROL cards. Drivers are available for Apple Macintosh, Linux, Unix, Solaris. Microsoff PC/SC and of course WINDOWS 95/98 and NT.
Supplied with CARDSERVER API for easy development of SmartCard Applications using Vlsual Basic, Delphi or C++.

All Chipdrives are supplied with a Windows API and full documentation. ChipDrives are CE Compliant ChipDrives conform to ISO7816, T=0 or T=1 @ 3.579 MHz, RS232 @ $9600-11500 \mathrm{bps}$, Internal Supply/Ni-MH. Under normal conditlons power is derived from the host Serial Port. Operation is simple, full telephone and email support is provided for Windows

APP-LOCK

Protect any Windows applications from Unauthorised access under Win 95/98/NT Inclusive of Chipdrive Intern, Smari Card and Software.
developers. supplied with CHIPDRIVE-micro supplied with CHIPDRIVE-Mic

CHIPDRIVE Developer Kit

CDK consIsts of: CD ROM containing cardserver.dIl. Applications and Source code examples. CHIPDRIVE-micro a selection of Smart Cards offering protected memory, processor and memory cards. Typical uses are Control access, Pay Phone cards ano Data transport. PIN codes for the cards are supplied along with data sheets and programming data for use with cardserver.dll. A useful application with source codes shows how the CHIPDRIVE can be used to identify any Smart card inserted, giving manufacturer info, and memory map if available. Applications produced with the developer kit will operate under Windows
 .1 CHIPDRIVE family. The CDK uses easy to use 16 bit or 32 bit DLL.s with Just one function call to the 'CardServer' to identify the card or carry out any instruction. Cardserver is a powerful Background task which relieves the application programmer from device and card
administration. Featuring automatic protocol and card type detection. Allowing several applications to access one terminal dependent only on the type of card inserted.
£69.95 +
P\&P £5 Exclusive of VAT

Supplied with CHIPDRIVE micro, Smart Cards and Source Code. Full Tech Support via Emall.
http://www.towitoko.co.uk
http://www.crownhill.co.uk
http://edsim.cambs.net
CONTACT SMART CARD DEVELOPMENT SYSTEM HITAG ${ }^{\text {m }}$ Cards
The Contactess Reader/Writer is designed to communicate via an RF field with the HITAG ${ }^{\text {TM }}$ range of contactless cards. A simple ASCII based command set allows direct access to the powerful features that enable data to be read and
written to the card at distances up to 150 mm . A
RS485 mulfi drop facility is built onto the reader/writer unit allowing daisy chaining of up to 32 devices.
Communication is via an onboard configurable RS232 Port A
sounder, two opto isolated outputs, 4 LED's and 2 high current open
drain Mosfets are available for interfacing.
£149.95 +
Supplied with cards.
P\&P $£ 5$ Exclusive of VAT

CIRCLE NO. 118 ON REPI Y CARD
we make all the difference

Signal Convertors
Cable Equalisers
Low Pass Filters
High Pass Filters Bandpass Filters IF Filters
Data Pulse Shaping Filters
A-D \& D-A Anti-Aliasing Reconstruction Filters
A-D \& D-A Oversampling Filters High Definition TV Filters Pulse \& Video Delay Lines Bandlimiting Filters Amplitude \& phase (group delay) equalisation Hybrid Filters
Cable Simulators
Faraday Technology Limited Croft Road Industrial Etate Newcastle Stafiordshire ST5 OQZ England Tel: +44 (0)1782661501 Fax: +44 (0)1782 630101 email: sales@faradaytech.co.uk hitpJ/www.faradaytech.co.uk

REmixers

Joe Carr explains the importance of choosing the right rf mixer in all applications up to microwave.

My last two articles have developed the basic theory behind RF mixers, and introduced a simple mixer circuits. This month I take a look at higher performance mixer circuitry.
A mosfet double-balanced active mixer ${ }^{1}$ is shown in Fig. 1. The dualgate mixer is ideal for this type of application, but the fets need careful selection.
Instead of the 3 N 2 II mosfets shown, 40673 s could be used. These have the advantage of being relatively insensitive to casual electrostatic damage during handling, and are low cost. In addition, in a circuit such as this, the 40673 can provide between 15 and 20 dB of conversion gain.
However, this gain is not without cost. The devices are relatively easily overdriven in the presence of large RF input signals. When this occurs the advantages of the device evaporate in increased intermodulation products and degraded noise performance.
The same circuit using 3 N211 devices, or equivalent, will produce less conversion gain, of about -5 dB , but better overall performance. With localoscillator injection of 8 V peak-to-peak, and a 10 dBm RF input signal, this circuit will exhibit a respectable thirdorder intercept point of +17 dBm .

Bipolar alternative useful to 500 MHz

An active double-balanced mixer based on n-p-n bipolar transistors ${ }^{2}$ is shown in Fig. 2. This circuit is usable to frequencies around 500 MHz .
Normally, the use of non-IC transistors in a circuit such as this normally requires matching of the transistors for best performance. That need is overcome by using a bit of degenerative feedback for $\operatorname{Tr}_{1,2}$ in the form of unbypassed emitter resistors $R_{3,4}$.

The base circuits are driven with the

Fig. 1. The dual-gate mixer is useful, but the fets need to be chosen carefully for best performance.

LO signal from a balun transformer, T_{1} in a manner similar to the earlier junc-tion-fet circuit. The output transformer, however, is rather interesting.
It consists of four windings, correctly phased, with the IF being taken from the junction of two of the windings. The RF signal is applied to the remaining two windings of the transformer.
This mixer exhibits a third-order intercept of +33 dBm , with a conversion loss of 6 dB , and only 15 to 17 dBm of LO drive power.

Benefits of quad mos and junction fets

Although using bipolar transistors can result in an active double-balanced
mixer with a high third-order intercept point, or TOIP, there is a trend towards using junction and mos fets.
Typical designs use four active devices. This approach is made easier by the fact that many IC makers are producing RF mos and junction fet products that include four matched devices in the same package.
Figure 3 shows a mixer circuit based on the use of four junction-fet devices (Tr_{1-4}). These transistors are arranged such that the source terminals of Tr_{1-2} are tied together, as are the source terminals of $\boldsymbol{T r}_{3,4}$.
The source-pair terminals receive the RF input signal from transformer T_{2}. The gates of these transistors are con-

[^5]Fig. 2. Bipolar mixers such as this are useful to 500 MHz . Normally, discrete transistors in a circuit like this would need matching for best performance. Adding a little degenerative feedback gets round this
problem. round this
problem.

Fig. 3. Quad junction-fet balanced mixer. The fets need to be matched, but packages with four matched fets designed for such applications are readily available.

Fig. 4. Siliconix quad MOSFET device contains four fets that can be used independently. When connected as a ring, they form a mixer.
nected such that $\operatorname{Tr}_{1,4}$ and $\operatorname{Tr}_{2,3}$ are paired.
The local oscillator signal is applied differentially to these gates through transformer T_{1}. Drains of $\operatorname{Tr}_{1,3}$ and $\operatorname{Tr}_{2,4}$ are tied to the IF output transformer T_{3}.
There are several quad FET ICs on the market that have found favour as mixers in radio receivers. Siliconix's

SD5000 quad DMOS fet is shown in Fig. 4.
This device contains four fets that can be used independently. When connected as a ring, they form a mixer.

Calogic carries the theme a little further in its SD8901 DMOS quad fet mixer IC, Fig. 5. The fets, Tr_{1-4}, are connected in a ring such that opposite gates are connected together to form two LO ports, LO_{1} and LO_{2}.
The RF signals are applied differentially across drain-source nodes $\mathrm{Tr}_{1,2}$ and $\mathrm{Tr}_{3,4}$. Similarly, the IF output is taken from the opposite pair of nodes: $\mathrm{Tr}_{1,4}$ and $\mathrm{Tr}_{2,3}$. The SD8901 comes in an eight-pin metal can package.

The circuit for using the SD8901, Fig. 6, is representative of this class of mixers. The RF and IF output terminals are through transformers T_{1} and T_{2}, respectively.
The local-oscillator signal is applied directly to the LO_{1} and LO_{2} ports, but requires a divide-by-two circuit comprising a J-K flip-flop.
Note that this divider makes the LO signal a square wave rather than a sine wave. An implication of this circuit is that the LO injection frequency must be twice the expected LO frequency.

Gilbert-cell mixers

The Gilbert transconductance cell, Fig. 7, is the basis for a number of IC mixer - for example the NE602 shown in Fig. 8, and analog multiplier devices like the LM1496.
The Gilbert mixer consists of two cross-connected n - p-n pairs fed from a common current source. The RF signal is differentially applied to the transistors that control the apportioning of the current source between the two differential pairs. The local oscillator signal drives the base connections of the differential pairs.
Integrated Gilbert-cell devices such as the Philips/Signetics NE602 in Fig. 8 are used extensively in low-cost radio receivers. The Gilbert cell is capable of operating to 500 MHz . An on-board oscillator can be used to 200 MHz .
One problem seen on such devices is that they often trade off dynamic range for higher sensitivity.

Passive double-balanced mixers The diode double-balanced mixer, Fig. 9 , is one of the more popular doublebalanced mixer approaches. It has the obvious advantage over active mixers of not requiring a DC power source.
The circuit uses a diode ring, D_{1-4}, to perform the switching action. In Fig. 9, only one diode per arm is shown, but some commercial double-balanced mixers use two or more diodes per arm.
This configuration is capable of 30 to

60 dB of port-to-port isolation, and is not difficult to apply.
With proper design, it is easy to build passive diode double-balanced mixers with frequency responses from 1 to 500 MHz .
Commercial models that work into the microwave region are not hard to find. Intermediate-frequency outputs of typical diode double-balanced mixers can be DC to about 500 MHz .
The diodes used in the ring can be ordinary silicon small-signal diodes such as $1 N 914$ or $1 N 4148$, but these are not as good as hot-carrier Schottky diodes like the 1N5820, 1N5821 and IN5822.
Whichever diodes you choose though, they should be matched for use in the circuit. Diode differences can degrade a mixer's performance.
The usual approach is to match the diode forward voltage drop at some specified standard current, such as 5 to 10 mA , depending on the normal forward current rating of the diode. It is also important to match the junction capacitance of the diodes.

The mixer in Fig. 9 uses two balun transformers, T_{1} and T_{2}, to couple to the diode ring. The double-balanced nature of this circuit depends on these transformers, and as a result the LO and RF components are suppressed in the IF output.

Diode double-balanced mixers are characterised according to their drive level requirement, which is a function of the number of diodes in each arm of the ring. Typical values of drive required for proper mixing action are
$0 \mathrm{dBm},+3 \mathrm{dBm},+7 \mathrm{dBm},+10 \mathrm{dBm}$, $+13 \mathrm{dBm},+17 \mathrm{dBm},+23 \mathrm{dBm}$ and +27 dBm .
Figure $\mathbf{1 0}$ shows the internals of a commercially available passive doublebalanced mixer made by Mini-Circuits (PO Box 166, Brooklyn, NY, 11235 , USA:Phone 714-934-4500; Web site http://www.minicircuits.com). These type no. SBLx and SRAx devices are available in a number of different characteristics, Table 1.
The standard package for SRA/SBL devices is shown in Fig. 11. Non-insulated pins are grounded to the case. Pin-outs for common SRA/SBL devices are shown in Table 2.
The regular SRA/SBL devices use a local-oscillator drive level of +7 dBm , and can accommodate RF input levels up to +1 dBm . The devices will work at Iower drive levels, but performance deteriorates rapidly, so it is not recommended.
Note that the IF output port is split into pins 3 and 4 . Some models tie the ports together, but for others an external connection must be provided for the device to work.
The nice thing about this type of commercially available mixer is that the system impedances are already set to 50Ω. Otherwise, impedance matching would be necessary for them to be used in typical RF circuits.
Note, however, that if a circuit or system impedance is other than 50Ω, then a mismatch loss will be seen unless steps are taken to effect an impedance match.
The problem becomes considerably

greater when a mismatch occurs at the IF poit of the mixer. The mixer works properly only when it is connected to a matched resistive load. Reactive loads, and mismatched resistive loads deteriorate performance.
Figure 12 shows a circuit using a passive diode double-balanced mixer. The diplexer is a critical component to this type of circuit.

Proper loading

The diplexer is a passive RF circuit that provides frequency selectivity at the

Fig. 8. One IC based on the Gilbert-cell principle is the NE602.

Fig. 9. Involving diodes instead of active switches, the passive double-balanced mixer has the benefit of not needing a DC power source.

Fig. 11. Package details of the double-balanced mixer in Fig. 10.

Fig. 12. Terminating a passive double-balanced mixer with a diplexer.
output, while looking like a constant resistive impedance at its input terminal.

Figure 13 shows a generalisation of the diplexer. It consists of a high-pass filter and a low-pass filter that share a common input line, and are balanced to present a constant input impedance.
With appropriate design, the diplexer will not exhibit any reactance reflected back to the input terminal - eliminating the reflections and voltage/standingwave ratio problem. Yet, at the same time it separates the high and low frequency components into two separate signal channels.

The idea is to forward the desired frequency to the output and absorb the unwanted frequency in a dummy load.

Figure 14 shows the two cases. In each case, a mixer nonlinearly com-
bines two frequencies, F_{1} and F_{2}, to produce an output spectrum of $m F_{1}$ $\pm n F_{2}$, where m and n are integers representing the fundamental and harmonics of the two frequencies.
In some cases, you will only be interested in the difference frequency, so you will want to use the low-pass output of the diplexer, Fig. 14a). The high-pass output is terminated in a matched load so that signal transmitted through the high-pass filter is fully absorbed in the load.
The exact opposite situation is shown in Fig. 14b). Here we are interested in the sum frequency, so the high-pass output port of the diplexer is used, and low-pass output port is terminated in a resistive load. In this case, the signal passed through the low-pass filter section will be absorbed by the load.

Bandpass diplexers

Figures 15 and 16 show two different bandpass diplexer circuits commonly used at the outputs of mixers. These circuits use a bandpass filter approach, rather than two separate filters.

Figure 15 represents a π-network approach, while the version in Fig. 16 is an L-network. In both cases,

$$
Q=\frac{f_{o}}{B W_{3 d B}}
$$

and,

$$
\omega=2 \pi f_{0}
$$

Fig. 13. A passive diplexer following the mixer provides selectivity while looking like a constant resistive impedance at its input terminals.
where f_{0} is the centre frequency of the passband in hertz, $B W_{3 \mathrm{~dB}}$ is the desired bandwidth in hertz and Q is the relative bandwidth.
For the circuit of Fig. 15,

$$
\begin{aligned}
& L_{2}=\frac{R_{o} Q}{\omega} \\
& L_{1}=\frac{R_{o}}{\omega Q} \\
& C_{2}=\frac{1}{R_{o} Q \omega} \\
& C_{1}=\frac{Q}{\omega R_{o}}
\end{aligned}
$$

And for the circuit of Fig. 16,

$$
\begin{aligned}
& L_{2}=\frac{R_{o} Q}{\omega} \\
& L_{1}=\frac{R_{o}}{\omega Q} \\
& C_{1}=\frac{1}{L_{1} \omega^{2}} \\
& C_{2}=\frac{1}{L_{2} \omega^{2}}
\end{aligned}
$$

A dual double-balanced mixer

 The normal passive diode mixer provides relatively high third-order intercept and -1 dB compression points. It also provides a high degree of port-toport isolation. Because of the switching action of the diodes in the ring, they are shut off at the instances where they would feed through the other ports.But where an even higher degree of performance is needed, designers sometimes opt for the dual double-balanced mixer as shown in Fig. 17. The -1 dB compression point is usually $\leq 4 \mathrm{~dB}$.

Image-reject mixers

In cases where very good image rejection performance is needed in a receiver, a circuit such as Fig. 18 can be used. This circuit uses a pair of passive double-balanced mixers, a 0° power splitter and two 90° power splitters to form an image reject mixer.

The local oscillator ports of mixer-1 and mixer-2 are driven in-phase from a master local-oscillator source. The RF input, however, is divided into quadrature signals and applied to the respective RF inputs of the two mixers.
The IF outputs of the mixers are then recombined in another quadrature splitter, to form separate USB and LSB IF outputs.

VHF/UHF microwave mixers

When the frequencies used for LO, RF and IF begin to reach into the VHF and above region, the design approaches change a bit.
Figure 19 shows a simple single diode unbalanced mixer. Variants of this circuit have been used in UHF television and other types of receivers. The circuit is enclosed in a shielded space in which a strip inductor L_{1} and variable capacitor C_{1} form a resonant circuit.
The LO and RF signals are applied to the mixer through coupling loops to L_{1}. A UHF signal diode is connected to L_{1} at a point that matches its impedance.
External to the mixer chamber, an IF filter is used to select the mixer prod-

Fig. 17. Dual double-balanced mixer provides a -1 dB compression point of $4 d B$ or less.

Fig. 18. Image-rejection is improved by using two passive double-balanced mixers together with power splitters.

Fig. 19. Simple single-ended diode mixer for VHF/UHF.

Fig. 20. Such UHF single-balanced mixers suffer from RF and LO components appearing in the output.
quadrature hybrid coupler. The input and output filtering are made using printed-circuit-board transmission lines.

Each of the lines is a quarter wavelength, although the actual physical lengths must be shortened by the velocity factor of the printed circuit board being used. A printed circuit RF choke is used to provide a return connection for the diodes.

Note the RF and LO stubs at the output of the mixer, prior to the input of the IF filter. These stubs are used to suppress RL and LO components that pass through the mixer.

References

1. DeMaw, D. and G. Collins, 'Modern Receiver Mixers for High Dynamic Range'. QST, May 1981 ; Newington, CT, USA: ARRL.
2. Rohde, U., 'Key Components of Modern Receiver Design,' Pt I, QST, May 1994. Newington, CT, USA:ARRL, pp. 29-32.

Need more information?

Carr, Joseph J., 'Microwave and Wireless Communications Technology,' Boston: Newnes 1997.
Carr, Joseph J., 'Secrets of RF Circuil Design,' 2nd edition, New York, McGraw-Hill 1996.
Gilbert, B, 'Demystifying the Mixer,' self-published monograph, 1994.
Hagen, Jon B., 'Radio-Frequency Electronics: Circuits and Applications,' Cambridge UK,Cambridge Univ. Press, 1996.
Hardy, James, 'High Frequency Circuit Design,' Reston, VA: Reston Publishing Co. (a division of Prentice-Hall) 1979.
Hawker, P. (ed), 'Super-Linear HF Receiver Front Ends,' Technical Topics, Radio Communication, Sep 1993, pp. 54-56.
Hayward, W., 'Introduction to Radio Frequency Design,' (Newington, CT: ARRL, 1994).
Horowitz P. and Hill, W., 'The Art of Electronics,' 2nd ed, New York: Cambridge University Press, 1989.
Joshi, S., 'Taking the Mystery Out of DoubleBalanced Mixers,' QST, Dec 1993, pp. 32-36.
Kinley, R. Harold, 'Standard Radio Communications
Manual: With Instrumentation and Testing Techniques,' Englewood Cliffs, NJ: PrenticeHall, 1985.
Laverghetta, Thomas S., 'Practical Microwaves,' Indianapolis, IN: Howard W. Sams, 1984.
Liao, Samuel Y., "Microwave Devices \& Circuits,' Englewood Cliffs, NJ: Prentice-Hall, 1990.
Makhinson, J., 'High Dynamic Range MF/HF Receiver Fronl End,' QST, Feb. 1993, pp. 2328. Also see Feedback, QST, Jun 1993, p 73.

Rohde U., Whitaker, J. and Bucher, T., 'Communications Receivers,' 2nd Ed., New York: McGraw-Hill Book Co, 1988.
Rohde U. and Bucher, T., 'Communicalions Receivers: Principles and Design,' New York: McGraw-Hill Book Co, 1988.
Rohde, U., 'Key Components of Modern Receiver Design.' Pt 2, QST. June 1994, Newington, CT, USA: ARRL, pp. 27-31.
Rohde, U., 'Key Components of Modern Receiver Design,' Pt 3, QST, July 1994, Newington, CT, USA: ARRL, pp. 42-45.
Rohde, U., 'Testing and Calculating
Intermodulation Distortion in Receivers,' QEX, July 1994, Newington, CT, USA:ARRL, pp. 3-4
Sabin, Williams (1970). 'The Solid-State Receiver'. QST, May 1970; Newington, CT, USA: ARRL; pp. 35-43.
Sabin, William E., and Schoenike, Edgar O., editors, 'HF Radio Systems \& Circuits,' 2nd Ed., Atlanta: Noble Publishing, 1998.
Shrader, Robert L., 'Electronic Communication,'

Power amplifier circuit boards
 Professionally designed and manufactured printed circuit boards for Giovanni Stochino's no compromise 100W power amp are available to buy.
 £42 per pair fully inclusive or $£ 25$ each

These high-quality fibre-glass reinforced circuit boards are designed for Giovanni Stochino's fast, low-distortion 100W power amplifier described in the August 1998 issue. Layout of the doublesided, silk screened and solder masked boards has been verified and approved by Giovanni.
This offer is for the pcbs only. The layout does not accommodate the power supply scheme shown in the article. Note that a copy of the article and a few designers' notes are included with each purchase, but you will need some knowledge of electronics and thermal management in order to successfully implement this design.
You can receive a copy of the technical notes that accompany the pcbs and a copy of Giovanni's original article for $£ 3.50$, refundable on purchase of one or more pcbs. Send a postal order or cheque payable to Reed Business Information to 'Board notes,' Electronics World Editorial, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Don't forget to include your address.

> Inductance is the essential principle in applications as diverse as 50 Hz power transformers, metal detectors and tuned circuits in mobile phones. But how many electronics engineers are truly conversant with it? lan Hickman looks at inductance from the viewpoint of the practising rf engineer.

0ver the years, the experienced design engineer develops a feel for the right value of a component in any circuit - at least to a first-order guess. In the case of inductors and capacitors, this guess is based on knowledge of the reactance of any particular component value at any given frequency.
My introduction to this practical aspect of electronic engineering was as a sandwich student in GEC's Central Research Labs at Wembley, which has long since disappeared. Someone was developing a rather sensitive circuit, and was troubled by 100 Hz hum. Supply-line decoupling with a reasonably large electrolytic capacitor reduced it, but not enough.
A colleague jumped to his aid, brandishing a $1000 \mu \mathrm{~F}$ electrolytic, exclaiming that if this looked like 160Ω at one cycle per second it should be pretty effective at 100 cycles. Hertz hadn't been invented yet.
The figure stuck in my then impressionable memory, and was subsequently embroidered upon. So: it follows that $1 \mu \mathrm{~F}$ has a reactance of 160Ω or so at 1 kHz , and a $C R$ lowpass or high-pass combination of $1 \mathrm{M} \Omega$ and $1 \mu \mathrm{~F}$ has a time constant of 1 s . Hence it
will be 3 dB down at 0.159 Hz , while 1 nF and $1 \mathrm{k} \Omega$ will be 3 dB down at about 160 kHz .
And any budding rf engineer working with mobile phone technology would do well to remember that at 1 GHz , a 1 pF capacitor has a reactance of just 160Ω.

About inductance...

It is also handy to have a feel for the reactance of inductors of course - even though they are not so readily available in a wide range of close tolerance values, unlike resistors and capacitors.
Some years after graduation, I was working at a different firm, small but well known in the rf field. It produced, among other things, hybrids, baluns, attenuators and rf bridges. There, I soon developed a feel for inductance, similar to the feel I already had for capacitance. Just as the odd picofarad of strays can be disastrous at vhf and even more so at uhf, likewise too many nanohenrys in the wrong place can be a real headache.
To dimension the problem in practical terms, I experimented with an rf bridge, to get a feel for the inductance of an inch or so of wire.
Finding myself now, thirty years
later, working on L Band equipment, the odd bit of inductance here or there is of real consequence. So, having access to a network analyser the likes of which could only grace my home laboratory in my dreams, I decided to check up on my earlier measurements. These have led to a convenient aidemémoire, similar to the 'reactance of a capacitance at 1 Hz ' figure mentioned earlier.

Fixed inductance?

Capacitors come ready made. You can't add some more dielectric to increase the capacitance for example, even if you would want to.
Inductors are different. Frequently, you have to make your own inductor, either as a printed spiral on a pcb, or as a 'curly' - a coil which is either a self-supporting air-cored type, or wound on a former.
Using a former, the inductance can be increased by a ferromagnetic core or 'slug'. This increases the flux density within the coil. But the return path for the flux is still in air, so the resulting increase in inductance may only be in the region of 10% to 40% - even with a slug of high permeability material.

The important thing though is that the value of inductance is now readily adjustable, e.g. for tuning purposes, where the inductor forms part of a tuned circuit. It may also mean that the required inductance can be achieved with a fewer turns, reducing the coil's 'copper loss'. If the reduction of copper loss outweighs the 'iron loss' due to the slug, the \mathbf{Q} of the coil may even be increased - an additional benefit over and above tunability.

Where a larger inductance is needed in the available space, and/or screening of the inductor is required, a coil former complete with a ferrite or dust iron sleeve or pot can be used, in conjunction with the slug. Now, most of the flux path is in a material with a relative permeability μ_{r} of anything in the range 2 to 100 or more, so the inductance per turn will be greatly increased: or is it per turn squared?
Most of the flux path is within the core, yes, but not all. The design of the former and core will be such that, even with the slug set for maximum inductance, there is still an appreciable air gap in the flux path.
The air gap stabilises the inductance, at the expense of reducing it from the fully closed path condition. For the permeability of ferromagnetic materials is likely to vary somewhat with selection, temperature and life, especially if the winding of the inductor is carrying any dc.

A_{L} and all that

The case with hybrids, baluns and untuned rf transformers of all sorts is different. If there is no dc in the windings, then a fully closed flux path can usefully be used, and is always preferred. Thus, the necessary magnetising inductance for the primary can be achieved with the minimum number of turns, keeping down the copper loss.

With a fully-closed flux path in high permeability material, virtually all the flux will be contained within the core, with very little 'leakage inductance'. Apart from the question of screening, leakage inductance, which is associated with flux in air rather than in the core, is of no consequence as long as the flux links both primary and secondary.

The term leakage inductance is therefore usually reserved for inductance due to flux that links one wind-
ing but not the other. This adds a reactive component in the primary circuit, in series with the transformed secondary load, reducing the effectiveness of the transformer, especially at higher frequencies.

The inductance of two 'close-coupled' coils of inductance L_{1} and L_{2} connected in series and wound in the same sense is $L_{1}+L_{2}+2 M$. Here, the mutual inductance $M=\sqrt{ }\left(L_{1} L_{2}\right)$ and the assumption is made that there is no leakage, all the flux in each coil linking with all the turns of the other.

The reason for the $2 M$ is that M is the inductance due to the flux of coil L_{1} which links L_{2}, to which must be added as much again due to the flux of coil L_{2} which links L_{1}. So if the two 'coils' consists of two identical turns on the same core, then if the inductance of each is L nanohenries while that of the two together is $4 L$ nanohenrys. This is because the coils are closely coupled, so in this instance, $L_{1}=L_{2}=M$.

If there are three turns, the inductance will be $3 L$ plus $6 M$ or $9 L$ all told, since the flux of each turn links with both of the others. So extending the argument, the inductance of N turns on the said core will be $N^{2} L$ nanohenrys.

I have illustrated this graphically in Fig. 1 for an eight-turn winding. Each dot represents an inductance L - or equally well, M. Because of this result, you will find the inductance A_{L} of, for example, a two-hole balun core quoted as the inductance of a single turn, i.e. as so many $\mathrm{nH} /$ turns 2.

A challenge

Prove that $n^{2}=n+{ }_{n} P_{2}$. This sounds like
one of those arid academic exercises from Chapter N of an old maths textbook. But there is an application, right here. In Fig. 1, the left-hand column represents $8 L$, due to the eight individual turns.

The seven dots in the left-hand column of the lower triangle represent the inductance due to the flux from turn 1 , linking with turn 2 , with turn 3 , and so on to turn 8.

Likewise, the next column represents $6 L-$ or strictly speaking $6 M$, which is the same thing here. This is due to the flux in turn 2 linking with turns 3 to 8 , and so on, totalling in all 28 L . But the total due to mutual inductance is twice this, since turn 2 links with turn 1 , as well as turn 1 with turn 2.
This is represented by the upper inverted triangle. At a glance, you can see from the diagram that the grand total is $64 L$
It is also clear from Fig. I that $2(7+6+\ldots+1)=56$ - the block representing the two triangles -is equal to $7 \times 8=T$ where T is the total. Now $T=(8 \times 7 \times 6 \times 5 \ldots \times 1) /(6 \times 5 \ldots \times 1)$, which is conventionally denoted by the shorthand ${ }_{n} P_{2}$, where P stands for permutation. Add the column on the left, and QED.

There's more on permutation in the separate panel.

How long is a piece of inductance?

So what has all this to do with the inductance of a length of wire? Well, it turns out that the inductance of a length of wire depends on just how you measure it. The simplest way is as a single air-cored turn.

Fig. 1. Illustrating how the inductance of an eight-turn winding on a high permeability core is 64times that of a single turn.

The fact is, you can't measure the inductance of an isolated straight piece of wire. For the phenomenon of

Fig. 2. Showing the lines of flux surrounding a current carrying wire.

Perms and coms

Permutations and combinations are conveniently expressed by means of factorials. Factorial N, written $N!$, means $1 \times 2 \times 3 \ldots \times(N-1) \times N$. So factorials 4 ! is $1 \times 2 \times 3 \times 4=24$.
The permutation ${ }_{n} P_{\mathrm{r}}$ represents the number of ways of selecting r things from a group of n, the order being significant. So imagine for instance selecting four ornaments to range on the mantelpiece, from a choice of nine. For the item on the left there are nine possible choices. For the next, you have eight possibilities, seven for the third and six for the fourth.
The total number of ways therefore is 3024 . This is equal to $n!/(n-r)!$, where here, $n=9$ and $r=4$.
The combination ${ }_{n} C_{r}$ represents the number of ways of selecting r things from a group of n, the order not being important. So for instance the number of ways of selecting four apples to put in your shopping bag from nine on the greengrocer's shelf is smaller than ${ }_{9} P_{4}$.
As there are 4 ! ways of arranging the 4 apples, ${ }_{n} P_{r}$ is simply too large an answer, by a factor of 4 ! So $\left.{ }_{n} C_{r}={ }_{n} P_{r} / r!=n!/ /(n-n)!\times r!\right\}$
I'm told that a perm on the football pools is not a perm, it's actually a combination, but never having done the pools, I wouldn't know.

Meas.	Conditions	Impedance (Ω)	Q	Q'	Inductance (nH)
1	Both strands in parallel	0.195+j 2.88	14.8	30	91.5
2	As 1, but one turn disconnected	$0.265+$ j3. 19	12.0	19	101.3
3	The two turns in series	$0.455+$ j11.4	25.1	32	363.0
4	As 1, but connections reversed for one turn	$0.185+j 0.33$	1.8	4	10.7
5	As 2, but disconnected turn removed	0.249+j3.26	13.1	22	103.6
6	2 tin series as 1 t of $2 \times \mathrm{dia}$, (20 cm circ.)	$0.385+j 7.41$	19.2	26	235.5
7	Terminals short circuited	0.100-j0.09	-	-	

inductance to manifest itself, a current must flow. The current can only flow in a complete circuit, so even if you make a jig to hold a length of straight wire under test, what you actually measure is the inductance of the wire plus that of the jig.
Figure 2 shows a length of wire W centimetres carrying a current, and the resultant lines of magnetic flux. Some of these are only shown in part, as the ones passing through the turn near the centre are very long. The flux is naturally more concentrated near the wire, where the flux paths are shorter.

Measuring a length of wire

What should the inductance be? In
Fig. 2, if the length of the wire forming the loop were halved, the area of the loop through which all the flux must pass is reduced to a quarter of the previous figure. So it looks as though the reluctance S of the magnetic circuit - the equivalent of resistance R in an electric circuit - must be quadrupled.
Now inductance equals N^{2} / S, or here, with just a single turn, equals $1 / S$. So the inductance of a length of wire, as a single-turn loop, would appear to be proportional the square of the length. This is a somewhat surprising statement.
On the other hand, if a single loop of inductance L nanohenrys were formed into two tight-coupled turns of half the circumference, S being quadrupled, each would then have an inductance of $L / 4$.
By the earlier reasoning, the two together would have an inductance of 4(L/4). But would the inductance really be the same for one large or two small turns? Some careful mathematical analysis apart, there is only one way to find out.
Figure 3 shows an SMA connector terminating in an open spill, fitted

Puzzle corner
 If you followed the argument about $n^{2}=n+{ }_{n} P_{2}$ in the main article, you might like to try proving that $n^{3}=3 n^{2}+{ }_{n} P_{3}-2 n$. If you need a hint, imagine layers like Fig. 1 stacked up on top of each other.
 Is there a recurrence formula that will enable the value of n^{m+1} in terms of perms to be deduced from that of n^{m} ?

with a solder tag, connected to the coil. The SMA plug was connected to a 'between-series-adaptor' which picked up on the APC7 connector on the network analyser's front panel, as indicated.
Before connecting the coil, the test frequency of the HP8753D network analyser was set to 5 MHz , and the measurement plane calibrated as the spill and solder tag used as the test terminals.
A 20 cm length of wire was formed into a circle and connected to the terminals. The wire was 0.23 mm diameter, measured over the usual selffluxing insulation; this means it was probably 36 SWG.
The wire was actually bifilar, with two parallel untwisted strands glued together side by side along their length. Each strand has a different colour enamel. This type of wire is available from the better stockists, and is very convenient when winding baluns, Ruthroff type line transformers and the like.
Various connections were tried, the results being recorded in Table 1. The final measurement was with the test terminals shorted.

The outcome

The short is close to perfect - at least as far as the reactive term goes. It actually looks like a very large capacitance, of such low impedance as to be negligible relative to the measured inductance of the loop.
However, it measured as having $100 \mathrm{~m} \Omega$ in series with the small reactive impedance - although in principle the earlier measurement-plane calibration supposedly factored both terms out.
Consequently, in addition to the value of Q calculated for the coil from the measured R and X figures, a
corrected value is given in column \mathbf{Q}^{\prime}, with 0.1Ω subtracted from the measured value of R. Which figure is the more nearly correct is a moot point; it is probably some where in between.
Comparing row 5 with row 3 shows that two turns do not give four times the inductance of a single turn. This is because the shortest lines of flux surrounding each wire manage to sneak through the two thicknesses of insulation separating the turns.
This also happens when a high permeability core is present, as in a transformer. But the effect is then barely noticed, due to the muchenhanced flux linking both turns, resulting from the much greater flux density in the core. In fact, the leakage inductance is indicated by row 4 , where the two turns are in parallel, but with the connections to one reversed.
With perfect coupling, the inductance would of course have been zero.

Was it the right figure?

The results agree reasonably well with my previous idea that an inch of wire looks like 25 nH ; those of you brought up metricated might find $1 \mathrm{nH} / \mathrm{mm}$ an easier figure to bear in mind.
At $0.915 \mathrm{nH} / \mathrm{mm}$, the figure in the first row of Table 1 for two strands of 36SWG in parallel is about 10% lower. But the figures in the second and fifth rows are nearer. Comparing these results with row 3 shows that for an air-cored coil, lacking the flux concentration provided by a high permeability core, the inductance falls short of being proportional to N^{2}.
As a check, I repeated the experiment with 28SWG wire. Firstly, I measured a loop of 20 cm of 28 gauge EnCu wire, result 201 nH . This was then formed into two turns of exactly half the diameter, a couple of millimetres of extra wire at each end of the 20 cm having been allowed for the soldered connections: result, 306 nH .
One of the two turns was then removed, the measurement returning 86 nH . Finally, as a sanity check, the terminals were measured shorted, this

time the answer being 2.5 nH . And for good measure, the inductance of 1 turn of 20 cm circumference 16 SWG wire was also determined. The results for the three gauges are compared in Table 2.
The results confirm the story told by Table 1. In particular, rows 5 and 6 , like the figures 201 nH and 86 nH above, show that the inductance of a length of wire is certainly not proportional to the square of its length. Nor is it simply proportional to the length either, but somewhere in between.
In fact, the figures show that a single turn air-cored coil of twice the circumference will have about 2.33 times the inductance.

The final question

The other question I set out to answer was what happens to the inductance if the wire of a single turn coil is refashioned into a two-turn coil of half the diameter. Why did the inductance go up from 201 nH to 306 nH when the single turn was fashioned into two smaller ones - or 235.5 nH to 363 nH in the case of Table 1?
Well, it is true that the reluctance S of that part of the magnetic path where it passes through the loop is quadrupled due to the smaller area, but that does not apply to the path as

Fig. 3. The test set-up used to record the results in Tables 1 and 2.
a whole. So the overall increase in reluctance is less than four times. The figures show that when a single turn is rewound as two tightly-coupled smaller turns, the inductance increases by 53%.
This is the result of two separate effects; the increase in reluctance of the magnetic circuit, and the leakage resulting in less than perfect coupling. The effect of the leakage is dramatically shown by the measured results for 1 and 2 turns of 86 nH and 306 nH (28SWG wire, above) or 91 nH and 308 nH , Table 1.
So, if you are talking about 28 SWG or thereabouts, my earlier mental note that an inch of wire equals 25 nH equals 16Ω at 100 MHz was not far out. They are of course reactive or $+j \Omega$, assuming the inch of wire has a reasonable Q , as it usually will.
Now 16Ω is only a rough estimate; it depends on the gauge of the wire, a thin wire having greater inductance per unit length than a thick one. In the mean time, I still reckon $25 \mathrm{nH} /$ inch is a good figure to bear in mind.
Although I do think that having a feel for the reactance per unit length at any given frequency is more useful in practical terms than the inductance per unit length.

Table 2. Frequency 5 MHz , length 20 cm , again plus small allowance for soldered connections.

SWG	36	28	16
Inductance, 1 turn	235.5 nH	201 nH	142 nH

MARCONI TF 2019A

Synthesised Signal Generators 80 Hz to 1040 Mhz AM/FM, Memories, LCD
A REAL Anchor Special ONLY $£ 750$

MARCONI 6311

Digital Sweep Generator 10Mhz to 20Ghz Memories . . . LCD Display
A REAL Anchor Special ONLY £3,850

Frequency Counters
Racal Dana 9903/4
7 segment 30 Mhz E24 Racal Dana 9918
9 segment 560 Mhz E75

Signal Generators

HP 8683A

2.3-6.5 GHz AM/FM NOW ONLY £499
Hewlett Packard 8640A 500 Khz to 520 Mhz AM/FM/CW ONLY £245
Hewlett Packard 8640B As above but with Digital Readout ONLY £595

Marconi TF2015
10-520Mhz NOW ONLY E95 Marconi TF2171 Synchronizer for 2015 NOW ONLY $£ 95$
BOTH TF2015 and TF2171 ONLY £180

Video Equipment
Panasonic AG6200 VHS ONLY E99 Panasonic AG6810 HiFi Duplication machines VHS NOW ONLY E99 SONY VO5630 Low Band Umatic ONLY £225 PANASONIC AG6100 VHS Players ONLY E100

Oscilloscopes

HP 1741A 100 Mhz Storage Dual Time base only $£ 350$ TEK 465B 100Mhz Dual Tracel Timebase Now Only £295
TEK 465 M scope as 465 B but built only for Military. Only $£ 350$
TEK 475 200Mhz Dual Trace/Timebase

TEK 2445

150 Mhz Four Trace/2 Time base
with Cursors, etc. Now Only £495
TEK 2445A 150Mhz Four Trace/2 Time bases with Cursors, etc
TEK 2465300 Mhz Four Trace/2 Timebase sNow Only E1250
IWATSU SS-6711 100Mhz
Four Trace Dual Time base Now Only E345
NICOLET 2090-111
1 Mhz Digital Scope, Cursor ctrl Now Only E150
GOULD OS3600 with
DM3010 DMM fitted, 60 Mhz
Dual trace, Dual Timebase Now Only $£ 350$

THIS MONTH'S SPECIALS

Hewlett Packard 8640A Signal Generators 500 Khz to 520 Mhz AM/M/CW SPECIAL ONLY £245

Racal Dana 1991 60Mhz
NanoSecond Counters with Maths f'ctns, etc SPECIAL ONLY £295

ANCHOR SUPPIIES LTID

Miscellaneous

NEOTRONICS DigiFlam850
Portable Flammable Gas Det
CW Inst/charger EIP 451
uWave Pulse Counter
To 18 Ghz , Auto sweep. Variable sample rate. E350 GIGA Pulse internal counter 2-8Ghz ONLY £150

FARNELL SSG 520 Synthesised Signal Generator 10 Mhz - 520 Mhz AM-FM-Sinad ONLY £425
FARNELL TTS520 Transmitter Test Set which Matches SSG 520 (above) ONLY £425
BOTH SSG520 and TTS620
For ONLY $£ 795$

AVO Model 8 Mk $5 / \mathrm{Mk} 6$
Multimeters THE Standard

NEW EQUIPMENT

DTA20 Oscilloscope 20 Mhz
Twin trace incl probes ONLY £225
DTA40 Oscilloscope 40 Mhz
Twin Trace incl probes ONLY £299
DTS40 Oscilloscope 40 Mhz Digital Storage twin channel Incl Probs + readouts Incl. Probes. ONLY E399
AMM255 Automatic Mod Meter 1.5Mhz to 2Ghz, LCD IEEE488 ONLY f495
SCG50 Synth Clock Gen. To 50Mhz, LED display ONLY £125
Black Star Meteor 100 Counters With fitted TXO option to 100 Mhz REDUCED NOW - ONLY £50

The Cattle Market Depot, Nottingham NG2 3GY, UK
 Tel: (0115) 9864902 Fax: (0115) 9864667
 Also at Peasehill Road, Ripley, Derbys

Microstripline

 apply microstripline.My first article on this topic, 'Microstrip made easy,' described how most microstripline calculations refer to traces of width W on an infinite layer of dielectric whose dielectric constant is ε_{r} and whose thickness is $h .^{.}$The dielectric is backed by an infinite ground plane.
In practice, the electric field tends to concentrate in the volume of dielectric lying just under the track. This tendency increases with increasing frequency.
Some of the field is in air though. This leads to the concept of the effective dielectric, $\varepsilon_{\text {eff }}$, which is which is lower than the that of the dielectric alone.
The greater the width of the track, the more $\varepsilon_{\text {eff }}$ tends towards ε_{r}. While trace width is a strong determinant of impedance Z_{0}, it also has to be taken into consideration where the desired track length is frequency dependent, as in $\lambda / 4$ transformers.
I sacrificed a sheet of double-sided photo-etch circuit board by laying down a set of traces ranging in width from $0.007 \mathrm{in}(0.5 \mathrm{pt})$ to 0.5 in (36 pt). For such traces, Z_{0} can be determined from Fig. A, duplicated from my earlier article.
Resistive pads were constructed to match each trace to a 50Ω source, the other ends being left open-circuited. λ_{g} was then determined for each line by probing for nodes, Fig. B.

Findings

The 'velocity ratio', V, is $\lambda \mathrm{g}$ divided by the free-space wavelength, and for each trace $\varepsilon_{\text {eff }}$ is determined by squaring 1/V.
There are simple theoretical limits for $\varepsilon_{\text {eff. }}$ When the line is infinitely narrow, $\varepsilon_{\text {eff }}$ tends to $1 / 2\left(\varepsilon_{r}+1\right)$, where ε_{r} is the dielectric constant of the substrate. In this case 4.5 is assumed.
When the line is infinitely wide $\varepsilon_{\text {eff }}$ tends asymptotically to ε_{r}, since the
electric field is entirely within the substrate. The results obtained with the practical range of trace widths noted above are shown in Fig. 1.
Values taken from Fig. 1 are good enough for the production of artwork. In general, end effects tend to result in lines that are too long. They may need to be shortened by trial and error for best results. End effects include the parts attached to the lines at each end.

A UHF amplifier

Figure 2 is the circuit board artwork and circuit for the UHF amplifier. This is a broadband amplifier centred on 527 MHz - roughly the centre frequency of my local television transmissions from Crystal Palace.
I have disregarded the Channel 5 transmission, since I can only receive it at a very low level. Other signals here are so strong that I do not need a preamplifier, but a television set is a good way of detecting impedance mismatch, which produces multiple reflections in the antenna lead. The circuit includes two microstriplines, the dimensioning of which I shall now describe.
The input circuit, L_{1}, is a conventional $\lambda / 4$ strip earthed at one end and tapped to match the low impedance of the input from the antenna. With a dual-gate FET such as the CF739,
which has a very high input impedance at G_{1}, it can be fed directly from the 'high' end of the line. Its input capacitance of just over 1 pF will slightly reduce the optimum line length, as will other stray capacitances.

A wide, rather than a narrow, trace is chosen as a resonator. A wide trace has a lower Q than a narrow one, making the input circuit broadband.
The free-space wavelength of 527 MHz is 56.7 cm . From Fig. 1 you

Z_{0}, ohms
Fig. A. Derived from several sources, this graph is for finding trace widths for a useful range of Z_{0} assuming common glass-epoxy pcb material. (Duplicated from my earlier article)

Fig. B. 800 MHz set up for testing microstripline for standing waves and loss. Although 50Ω is the norm for Z_{0}, other impedances can be matched - at a loss - via a pad at point A. (Duplicated from my earlier article)

Fig. 1. A graph of effective
dielectric value $\varepsilon_{\text {eff }} v e r s u s$ trace width shows that the real dielectric value is different from that of the pch substrate material ε_{r}. Here, ε_{r} is 4.5 and the substrate thickness is 1.6 mm .

Fig. 2. UHF amplifier using a CF739 dual-gate mosfet and its circuit board artwork. Note that all component grounds shown on the circuit diagram go through to the ground plane on the reverse side of the pcb in

will see that for the chosen trace width of $2.8 \mathrm{~mm}, \varepsilon_{\mathrm{eff}}$ is 3.35 . Hence λ_{g} is $56.7 /\left(1 / \sqrt{ } \varepsilon_{\text {eff }}\right)$, or 30.98 cm , making $\lambda_{\mathrm{g}} / 4=7.74 \mathrm{~cm}$.

As I pointed out earlier, the actual length required will be less than this. A relatively wide trace such as this can be terminated at the earthy end by drilling a 1 mm hole through the centre line and earthing to the ground plane on the other side of the circuit board. Ordinary 'track pins' are suitable for this.
Start with the track too long and progressively shorten it, moving the input tap to be arbitrarily 1 cm from the earth point.
Positioning is not too critical. I ended up with a track 70 mm long. Resonance can be determined by the same means as was used for finding the nodes, though in this case we are looking for a voltage maximum, which cannot be done as accurately as finding a minimum.

Inductor L_{2} is a $\lambda / 4$ transformer, which matches the drain load of the the CF739 to the 75Ω of the output to the TV set. Because the output impedance of a dual-gate FET is very high, the termination seen by signals reflected
back from the TV set is equal to the drain load, as transformed, for all practical purposes.
In this case the dominant consideration is the Z_{0} of L_{2}, since this equals $\sqrt{\left(R_{\text {drain }} \times 75\right)}$.
Using a graphic program such as Serif Draw it is convenient to choose trace widths offered in the program menus - particularly if there are to be bends. If a straight trace is acceptable, almost any trace width can be closely approached.
In this case, I chose a trace width of 2 points, which is around 0.7 mm . Such a trace has Z_{0} approximately equal to 92Ω, whence $R_{\text {drain }}$ has to be 113Ω.
I used chip resistors of 150Ω and 470Ω in parallel.
With this trace width, $\varepsilon_{\text {eff }}$ is close to the limiting minimum value of 2.75 . From Fig. 1, I estimated it at 3.07 , so $\lambda \mathrm{g} / 4=80.9 \mathrm{~mm}$. Note that this is appreciably more than the equivalent at a track width of 2.8 mm .
I used 8 cm , and this proved to be satisfactory. The performance at the edges of the band, BBC2 and ITV was good, but not quite as good as in the middle. The Channel 5 signal was not improved.
This amplifier has a gain of $7-10 \mathrm{~dB}$ over the local TV band, but it is not intended as a serious contender in this field. It is described to illustrate the practical application of microstripline. The design also illustrates how microstripline complements SMD technology.

Experiments

I also tried to use a $\lambda / 4$ transformer with a 0.35 mm track. This worked well for one TV channel, but at the expense of the others.
The higher transformation ratio permits a larger drain load of 220Ω in parallel with $1.5 \mathrm{k} \Omega$, giving more gain. This is what you would expect. Broadbanding is always at the expense of gain.
The tracks were made straight for ease of experimentation, but provided they are curved on an adequate radius can be folded to give a more compact board layout

In summary

To get good results from a microstripline circuit board, practice and experimentation are necessary.
This brief article, read in conjunction my earlier one, sets out most of what you need to know. But because of the variables involved - not the least of which is the fact that circuit board obtained from ordinary sources is not tightly specified as regards ε_{r} - your first attempt may not work as well as you might expect.
I have rather taken to adding a few test tracks to each artwork print so that I can evaluate $\varepsilon_{\text {eff }}$ for the material being used.

Reference

1. Wheeler, N., 'Microstrip made easy," Electronics World, December 1997.

Drawing tracks to 0.001 in accuracy with Serif

I use a general-purpose drawing package called Serif Draw for laying out circuit boards. Its menus allow a useful variety of line weights to be selected in point steps. A point is a typesetting measure equal to $1 / 72 \mathrm{in}$ by the way.

With patience though, it is possible to draw lines of any width to an accuracy of $\pm 0.001 \mathrm{in}$. At a magnification of 1000%, the smallest divisions on the vertical and horizontal ruler scales are a sixteenth of 0.1 in , or 0.00625 in.
You should find it possible to draw 13 'hairline' traces, separately identifiable, in the space of two of these small divisions. Abutting a hairline trace to another trace which is just too narrow allows the narrow to be widened in steps of 0.001 in . This enables artwork to be created for microstripline to greater accuracy than is ever likely to be needed.
These lines can only be vertical or horizontal, since sloping or curved lines consist of a series of steps.

CIRCLE NO. 121 ON REPLY CARD

Why Settle for AM when you can afford High Quality FM!

We can offer the lowest prices on high quality FM Radio Data Modules both in the UK and overseas!
Our qualified engineers offer full technical support from simple advice to system design $\&$ integration.

For a free catalogue, wall chart or quotation iust e-mail sales@radtec.demon.co.uk. alternatively fax or telephone quoting ref: WWRMI

Your official Radiometrix Distributor

Wike your PICmicro programs in BASICl

- Quicker and easier than "C" or assembler
- Expanded BASIC Stamp I compatible instruction set
- True compiler provides faster program execution and longer programs than BASIC interpreters
- 12CIN and 12COUT instructions to access external serial EEPROMs
- More user variables
- Peek and Poke instructions to access any PICmicro register from BASIC
- Serial speeds to 9600 baud
- In-line assembler and Call support (call your assembly routines)
- Supports PIC12C67x, PIC14Cxxx, PIC16C55x, 6xx, 7xx, 84, 92x and

PIC16F8x microcontrollers

- Use in DOS or Windows
- Compatible with most PICmicro programmers

The low-cost PicBased Compiler (PBC) makes it easy to write programs for the fast Microchip PICmicros. PBC converts these programs into hex or binary fines that can be programmed directly into a PICmicro microcontroller. The easy-to-use BASIC language makes PICmicro programming available to everyone with its English-like instruction set. No more scary assembly language!

The PicBasic Pro compiler runs on PC compatibles. It can create programs for the PIC12C67x, PIC12CE67x, PIC14Cxxx, PIC 16C55x, 6xx, 7xx, 84, 9xx, PIC16CE62x AND PIC16F8x microcontrollers. The PicBasic Pro Compiler instruction set is upward compatible with the BASIC Stamp II and Pro uses BS2 syntax. Programs can be complied and programmed directly into a PICmicro, eliminating the need for a BASIC Stamp module. These programs execute much faster than their Stamp equivalents. They may also be protected so no one can copy your code!

Plc Basic - £49.95 Pic Basic Pro- £149.95
Supplied with manuals and sample basic programs Pic programmers from $£ 15.00$ (kit) to $£ 49.95$ All plus \&5 P\&P \& 17.5% VAT Join the world wide PIC Basic mail list, email:majordomo@qunos.net with "subscrlbe picbasic-L" in the message Call Now for a brochure and full list of Basic Instructions or http://www.crownhill.co.uk/picbasic/home.html
 allow you to produce realistic Spice distortion figures and dara sheet curves.
tion generated is sensitive to the bias setting. Subthreshold conduction is the conduction region where significant conduction begins and therefore plays a part in crossover distortion generation. ${ }^{7}$
Subthreshold conduction is not modelled in the level 1 mosfet. Since 1990, the level 3 parameter NFS has been included for subthreshold conduction, but not all simulators since then include the updated model.
In the following macromodels, several missing effects are added; namely subthreshold conduction, velocity saturation, a smooth pinchoff and electrothermal effects. Electrothermal feedback is present in practical power amplifiers where junction temperature change during a cycle affects linearity and hence distortion.

You may find that some of these effects are not essential for your application. But to discover whether they are needed or not, a simulation with and without these effects is usually necessary. The following four macromodels

also show various techniques for those who would like to develop their own macromodels.

Fig. 1a). A gis transconductance plot for a power mosfet and Spice models without subthreshold conduction.
Fig. 1b). Logarithmic current plot for the same mosfet.

Subthreshold conduction

On a transconductance plot with gate-to-

Simple curve tracer

A simple curve tracer can be made with a scope, signal generator, power supply and a few other discrete components. We have found this useful for demonstrating the various mosfet operating regions. Approximate values for $V_{T H}$ and $\beta_{\text {eff }}$ can be obtained from the $g_{\mathrm{ff}} / V_{\mathrm{Cs}}$ curve.
The circuit enables the I_{D} / V_{CS} curve and the $\mathrm{gif}_{\mathrm{f}} / V_{\mathrm{GS}}$ curve to be generated together. The value of $V_{T H}$ can be
found from the $g_{\text {is }}$ curve x-intercept and β from the slope.
To reduce self-heating, the sweep duty cycle is kept low, at around 0.15 , by offsetting the signal generator. An 18 V gate zener with a series resistor is a good idea to prevent the signal generator plus offset value exceeding the gate breakdown voltage.
The peak seen in the $g_{\text {fs }}$ curve is caused by the mosfet entering the resistance region. Here, $V_{D S}$ is only 5 V to minimise heating effects. When $V_{D S}$
is much higher and the pulse time short the g_{fs} curve levels off giving a linear I_{D} / V_{CS} curve.
The second circuit gives the $I_{D} / V_{D S}$ curve and $g_{D S} / V_{D S}$ curve. The value of λ can be calculated from $g_{D S} / /_{D}$ where g_{DS} is the drain conductance beyond the knee region. In this rig the drain conductance incorrectly peaks at low $V_{D S}$ because the $V_{D S}$ ramp is not maintained below 1 V. A power amplifier drive for $V_{D S}$ would overcome this problem.

The left-hand circuit allows an $I_{D} \mathcal{N}_{G S}$ curve and $g_{i S} \mathcal{N}_{G S}$ to be generated simultaneously. The curves shown are or an ECF16N20 lateral power mosfet for $V_{D S}$ of only $5 V$ indicating $V_{T H}=0.3 V$ and $\beta=2 A / V^{2}$. Scope x-axis represents $V_{G S}$ with $0.5 V / d i v$. For the y-axis $I_{D} \sim 2 A / d i v$ and $\mathrm{g}_{\mathrm{fs}} \sim 1.3 \mathrm{~S} /$ div.
The right-hand circuit generates an $\mathrm{I}_{D} \mathcal{N}_{D S}$ curve and $\operatorname{gDS} \mathcal{N}_{D S}$ curve. For the ECF16N20 the value of λ is around $0.01 \mathrm{~V}^{-1}$. The knee in gDS at pinch-off continues to fall until $V_{D S} \sim 7 V$ at which point $g_{D S}$ is around 20 mS . Here $V_{G S}=2.3 V, R_{s}=0.1 \Omega, R_{\text {diff }}=100 \Omega, C=10 \mathrm{nF}, f=1 \mathrm{kHz}$, time base $50 \mu s /$ div giving x-axis $V_{D S} \sim 2 V / d i v$, and y-axis $I_{d} \sim 0.5 A / d i v$ and $g_{D S} \sim 75 \mathrm{~ms} /$ div.

Fig. 2b). The resulting I_{D} curve, $g_{f s}$ curve and the diode network transfer function $\mathrm{V}_{\mathrm{g}}{ }^{\prime}$.

source voltage, i.e. g_{fs} or g_{m} versus V_{GS}, subthreshold conduction is seen as a knee region near the V_{TH} threshold voltage Fig. 1a).

On a log-linear plot, Fig. 1b), the lower end of the knee region appears as a straight line indicating an exponential relationship with $V_{\text {GS }}$. Approaching V_{TH}, the relationship changes to a square law for a limited range of gate voltage. There's more on this in the panel entitled 'Simple curve tracer.'
In the mosfet model world, the threshold voltage is defined as the x-intercept of a projection back from the square law region, Fig. 1a).
The initial slope of the $g_{\text {fs }}$ curve in the square law region is set by the value of β or K_{P} for the level 1. For the level 3, $\beta=K_{P} W / L$ and $K_{P}=\mu C_{O X}$ where μ is carrier mobility and C_{OX} is the dielectric capacitance per square metre of gate insulation. These process parameters may be ignored by setting $W=L=2 \mu \mathrm{~m}$ so $\beta=K_{p}$.
The transition region between the exponential and square law regions is the moderate inversion region. At higher currents, g_{fs} curve levels off giving a reasonably linear region with $V_{G S}$ as in Fig. 1b) once the gate voltage rises some 2 V more than the threshold voltage. ${ }^{8}$
Throughout this article upper case subscripts denote the voltages measured at the mosfet's terminals and lower case subscripts are for voltages at the mosfet channel. It is necessary to make this distinction because the effect of ohmic volt drops at the drain and source are usually significant in power mosfets.

Adding subthreshold conduction Figure 2a) shows a subcircuit or
macromodel that can add subthreshold conduction to the core mosfet. It uses the exponential nature of a diode for the region below the threshold voltage. With a series resistor the moderate inversion knee region in Fig. la) can be produced, closely resembling the behaviour of an actual power mosfet.
Series resistor R determines the threshold voltage while the shape of the knee region is determined by the diode emission coefficient parameter, n . To help use this macromodel an empirical method for determining parameter values has been developed.

Parameter setting

Several simulations are performed in transient mode to generate the $g_{\text {fs }}$ curve, Fig. 2. An input voltage source for $V_{\text {in }}$ provides a voltage ramp that effectively converts the x-axis to voltage as seen in Fig. 2b).

The diode circuit is terminated at the macromodel's source terminal for convenience. Unexpectedly, it can be alternatively terminated at the core mosfet's source terminal with little difference in the shape of the $V_{g}{ }^{\prime}$ transfer function.

Subthreshold conduction reduces the effective transconductance in the square law region, hence the effective values for $V_{\text {th }}, \boldsymbol{\beta}$ and $\boldsymbol{\theta}$ are reduced, requiring higher values in the core mosfet. Typically β must be set about 50% higher in this macromodel. The trial and error method for parameter setting can be used but β and θ parameters interact making this difficult. An empirical method based on several simulations is much easier.

Before simulations can be performed, a value for diode emission coefficient, n in the above macromodel, needs to be determined. It can be found either from data sheets or via simple measurement of drain current below the threshold region. The slope of the $\left(\log I_{\mathrm{D}}\right) / V_{\mathrm{GS}}$ graph gives n using,

$$
\mathrm{n}=\frac{2}{2.3 \times \text { slope } \times V_{T}}
$$

where $V_{T}=25.86 \mathrm{mV}$ at $27^{\circ} \mathrm{C}$ and slope is the slope of the $\log I_{\mathrm{DS}}$ graph expressed in decades/volt. The factor 2.3 comes from the $\log _{10}$ of e to convert decades to base e and the factor of two allows for the squaring effect of the mosfet.

A typical value of n for a vertical power mosfet such as the $5 \mathrm{~A} / 100 \mathrm{~V}$ IRF510 is five decades/volt giving $n=6.5$. For a lateral audio power mosfet such as a $7 \mathrm{~A} / 140 \mathrm{~V} 2 S K 134$ it is about

15 decades/volt or $n=2.3 \mathrm{~V}^{-1}$.
The effective or target velocity saturation parameter $\theta_{\text {eff }}$ can be determined from measured $I_{\mathrm{Dsat}} / V_{\mathrm{GS}}$ points. ${ }^{8}$ The value for θ for direct entry into the level 3 mosfet can be calculated using

$$
\theta \cong \theta_{\mathrm{eff}}\left(\mathrm{~A}+\mathrm{B} \theta_{\mathrm{eff}}\right)
$$

where constants A and B are found from simulated points, Table 1. Constants A and B can then be found by plotting the ratio $\theta / \theta_{\text {eff }}$ (y-axis) and $\theta_{\text {eff }}$ (x-axis), or use linear regression. The value for A is the y-intercept and B is the gradient.

The value of β for the core mosfet can be calculated from

$$
\beta \cong \mathrm{C} \beta_{e f f}\left(1+\mathrm{D} \theta_{e f f}\right)^{2}
$$

Constants C and D are found from points in Table 1 by plotting $\sqrt{ }\left(\beta / \beta_{\text {eff }}\right)$ with $\theta_{\text {eff. }}$. The resulting slope gives D, and C is found by squaring the y-intercept.

Table 2 shows the results for the 2SKI34 lateral audio mosfet and the IRF510 vertical mosfet. The resulting effective values are within 10% of the target values. This accuracy should not be confused with modelling accuracy
since it is only the accuracy for converting the β and θ values from raw extracted values to values need in this macromodel.
The final threshold voltage can be set by finding $V_{T H}$ from a simulation with $R=1 \Omega$ and $V_{\text {trim }}=0$. Then set $V_{\text {trim }}$ to the difference between the simulated and required values.

The value of R_{s} can be varied while θ is reduced according to $\theta_{\text {new }}=\theta-\beta R_{\mathrm{S}}$. This allows the high current end to be altered while not affecting lower currents.

Since the value of n is reasonably independent of die size, constants A-D

[^6] saturation. The value of β can be found accurately by differentiating g_{s} and reading the peak value.

Table 2. Values for the 2SK134 lateral audio power mosfet and the IRF510 vertical mosfet.

	n	A	B	C	D	$\beta_{\text {target }}$	$\beta_{\text {en }}$	$\theta_{\text {target }}$	$\theta_{\text {etr }}$	β	θ
2SK134	2.3	1.0	3.3	1.08	1.0.	0.636	0.628	300 m	332 m	1.15	595 m
IRF510	6.5	1.1	6.0	1.15	2.15.	1.30	1.26	90 m	91 m	2.13	151 m

Fig. 3. A macromodel for adding velocity saturation and subthreshold conduction. Only level 1 mosfets are used here to ensure convergence in difficult circuits, such as symmetric class AB.
above can be applied to other mosfets of the same family even where n differs by up to 20%.

Adding velocity saturation

Although the level 3 model includes the velocity saturation parameter θ, it has some unfortunate convergence problems. Also, for Spice 2 simulatorsm, it is reported that all mosfets should be of the same level. ${ }^{1}$
The level 1 model is quite reliable but does not include the velocity saturation parameter θ. Instead additional source resistance is usually used to emulate the effect of velocity saturation. The total value for R_{s} can be calculated using $R_{\mathrm{s}} \cong 0.8\left(\theta_{\text {eff }} / \beta_{\mathrm{eff}}\right)$.

The factor 0.8 minimises modeling error up to the devices current rating, giving an averaged error of around $\pm 5 \%$. The error increases rapidly at high currents and makes distortion prediction less realistic for large signal levels, both for class A and class B amplifiers.
Figure 3 shows a macromodel that emulates the level 3 model by adding the parameter θ. In the level 1 the model error increases with the square of the gate voltage, $\left.V_{\mathrm{GS}}-V_{\mathrm{TH}}\right)$. Generating $\left(V_{\mathrm{GS}}-V_{\mathrm{TH}}\right)^{2}$ with a second mosfet and subtracting it from the input voltage allows this error to be almost completely removed.
In Fig. 3, sensing the source current

Fig. 4a). Macromodel using a voltagecontrolled conductance $\mathrm{V}_{C G}$ cell to generate

Fig. 4b). Simulated and actual results for the 2SK134 with the dotted line showing the effect of reducing β_{0}. The lower family of curves shows drain conductance.

Sub circuit for a volfage-controlled conductance

Spice does not include a voltagecontrolled conductance. This diagram shows one constructed using the square law multiplier and a voltage-
controlled current source. The output current is given by $I_{\text {out }}=\beta_{0} V_{1} V_{2}$. Making V_{2} equal to $V_{\text {out }}$ gives $l_{\text {out }} / V_{\text {out }}=\beta_{0} V_{1}$

This is a linear voltage-controlled conductance. $V_{\text {out }}$ should be kept within the range of voltage allowable. This is increased by scaling $V_{\text {out }}$ by 0.1 in this case to increase the output voltage range.

Note that β_{0} determines the shape of the transition region and does not significantly affect the drain conductance for $V_{D S}$ is close to zero and hence $R_{\mathrm{DS}(\mathrm{n})}$. This makes set up easier.

More parameter setting

A starting value for β_{0} for lateral devices is around 5β of the core mosfet. Parameters $\beta, \theta, V_{\mathrm{th}}$, and n are found first from measurements in the saturation region. For vertical power mosfets R_{s} can be set at a typical value of $20 \mathrm{~m} \Omega$ for TO220 devices or 5% to 10% of their $R_{\mathrm{DS}(\text { on) }}$.
The usual method for finding $R_{\mathrm{d}}-\mathrm{a}$ fixed series resistance - is as follows. First set R_{d} to zero and β_{0} at around 5β. Next find the simulated $R_{\mathrm{DS}(\text { on })}$ at the gate voltage specified for the actual $R_{\mathrm{DS}(o n)}$. Then set R_{d} to the difference then vary β_{0} to fit the $I_{\mathrm{D}} / V_{\mathrm{DS}}$ curve at pinch-off.
Lateral devices have similar R_{s} and R_{d} values due to their geometry. The above method can be used for these devices if R_{s} is initially set to a likely value of R_{d}, such as 10% of $R_{\mathrm{DS}(o n)}$. If, after determining all the parameters, you find R_{d} is significantly different from R_{s}, then adjustment can be made to theta using $\theta_{\text {new }}=\theta-\beta \Delta R_{\mathrm{S}}$ where ΔR_{S} is $R_{\mathrm{S}(\text { new })}-R_{\mathrm{S} \text { (old) }}$.

In a second article, lan looks at maths functions for Spice, modelling crossover distortion and thermal considerations. He also outtines how to put the models into practice.

References

1. H. Schickman , D. A. Hodges, 'Modeling and Simulation of Insulated gate Field Effect Transistor Switching Circuits', IEEE J. Solid State Circuits, vol SC-3, Sept 1968.
2. P. Antogegnetti, G. Massobrio, 'Semiconductor Modeling with SPICE', McGraw Hill, 1988.
3. Anthony E. Parker and David J. Skellern, 'A Realistic Large-Signal MESFET Model for SPICE', IEEE Trans MTT, Vol 45, No. 9, Sept 97, pp1563-157.
http://www.mpce.mq.edu.au/elec/cnerf /publications/index.html (file MTT97.PDF).
4. http://www.ami.bolton.ac.uk/ami4005 /ach $2 /$ spice.html.
5. Andrei Vladimirescu, "The Spice book', John Wiley and Sons, Inc. ISBN 471609269.
6. J. Scott and A. Parker, 'A MOSFET Model for the Simulation of Amplifier Nonlinearity', AES 6th Australian Regional Convention, Sept 1996, reprint 4298.
http://www.mpce.mq.edu.au/elec/cnerf /publications/1996/ (file MTT96.pdf).
7. I. Hegglun, 'Squarelaw Rules in Audio Power', Electronics World, April 96, p751-756.
8. T. Finnegan, 'Mosfets go linear', Electronics World, part 1, Sept 95, p751-756.

Further reading

APLAC reports CT-8, CT-9, CT-10 for level 1, 3 and BSIM equations respectively.
http://www.aplac.hut.fi/publications/\#ct
BSIM level 9. http://www-
us.semiconductors.philips.com/Philips_Models/ (file m902.pdf)
Williams, R., Masarratii, I., Bautani A., 'Spice models power MOSFETs', EDN, 2 March 1995.
http://www.ednmag.com
http://www.temic.com/www/product/pwmosel.htm (eg Si 3441 DV pdf file)
Wheatley, C. F., Ronan, H.R. Jr., Donly, G.M., 'Spicing-up Spice II software for power MOSFET modeling', GE/RCA Solid State.
M. A. Wyatt, 'Spice runs thermal analysis, EDN, 18 August 1994. http://www.ednmag.com
D. Self, 'Thermal dynamics in audio power', Electronics World, May 96, p410-415
Harris Application Note AN8610.
http://www.semi.harris.com/families/an.htm (AN8610.pdf)

pose of this encoder is to provide a forward error correcting function, shortened to FEC. The convolutional coding process provides data redundancy, which the receiver uses to correct errors.
Symbol repetition reduces the amount of energy needed for each symbol, lowering the transmitted power requirement. This in turn reduces the interference levels to other users.
Subsequent interleaving is performed on 20 ms blocks of symbols. 20 ms is also the vocoder frame rate.
Noise in a radio channel tends to induce 'burst errors', but FEC coding copes better with randomly spaced errors. So by interleaving the symbols prior to transmission, any burst errors are effectively randomly scattered when the symbols are de-interleaved at the receiver.

Scrambling traffic

The next stage is to scramble the traffic channel with a pseudo-random noise sequence. Each symbol from the block interleaver is added modulo-2 with one chip of the 19200 chips per second scrambling sequence.
A device known as a long-code pseudo noise, or PN, code generator supplies the scrambling sequence. The mask for the PN generator is 42 bits long of which 32 are based on the mobile's electronic serial number, or ESN.
The long-code generator is a linear feedback shift register with pre-determined taps to generate the pseudo random scrambling sequence. It produces a signal at $1.2288 \mathrm{Mchars} / \mathrm{s}$, which is then divided by 64 in the 'decimator' for the purposes of scrambling.
Mobile transmit power control bits are added to the data stream at a rate of 800 Hz . These bits are essential for keeping the RF power output of the mobile as low as possible.
The power control bits actually overwrite data thus introducing errors into the data stream. However due to the heavy data protection provided by the FEC system, the mobile receiver is able to correct these errors.

In this manner the mobile transmitter power is adjusted 800 times per second.
The signal is now spread orthogonally using a Walsh code. The form of Walsh code and the meaning of orthogonal are explained later.
Each traffic channel in the forward direction involves a unique Walsh code. However certain Walsh codes are reserved for system purposes.
The pilot channel employs Walsh code 0 . Paging channels employ Walsh codes 1 to 7 and the sync channel is always code 32. The purposes of these dedicated Walsh codes are described later.
After the signal has been spread by the appropriate Walsh code, it is spread over both quadrants by means of a universal short code - actually the pilot channel.
Each base station can have a unique identifier since the same short code is fed to both quadrature modulators but with a specific offset between I and Q channels. This works because all base stations are synchronised to an accurate frequency reference, namely the Global Positioning System time reference.
The base-band signal is now ready for frequency conversion to the transmitters' intermediate frequency before final translation to the transmission frequency. However, it first needs to be band limited to meet FCC specification of -3 dB at 615 kHz . It is then applied to a quadrature phaseshift keyed modulator ready for frequency translation.
The panel entitled 'Functions of dedicated forward channels' contains extra information.

The reverse link

At mobile switch-on the initial function of the reverse link is to announce the presence of the mobile to the selected base station. Thus the system knows where the mobile is
located so it can direct paging and traffic accordingly.
However, as you can be seen from Fig. 3, the generation of the reverse link signal is substantially different to that of the forward link.
As with the forward link, the data to be transmitted by the reverse link first passes through a convolutional coder and interleaver to provide an FEC capability. The inter-

Mobile station
Fig. 1. The base station is controlled by the base station controller, which may also be responsible for controlling other base stations.

Fig. 2. Forward link signal generation.

COMMUNICATIONS

Functions of dedicated forward channels

- Pilot channel. The mobile demodulates the pilot channel and so receives a reference for time, phase and signal strength. In this manner the mobile can determine if the base station it is currently decoding is the best candidate in terms of signal strength. The use of the pilot channel as a phase reference enables the rake receiver to coherently demodulate the incoming signals.
Furthermore as different base stations have different short-code offsets, the mobile can determine which base station is the strongest even if they occupy the same channel. This is important for a mobile-assisted 'soft hand-off'.
- Traffic channel. As the name implies, this channel conveys the information to be transmitted between the mobile and base station.
- Sync channel. The sync channel transmits a repeating message that identifies the station and the absolute phase of the pilot sequence.
- Paging channel. The paging channel operates in a similar manner to the forward traffic channel, but as its name implies is used to 'page' the mobile and establish the call.
mediate symbol repetition is for system convenience only. The repeated symbols are not transmitted. Instead, the databurst randomiser will select only one copy of each symbol for transmission. To conserve power and minimise interference, the transmitter is turned off for the redundant symbols.
The purpose of the orthogonal modulation scheme - again using Walsh codes - is to provide easily identifiable isolation between symbols.
The chosen Walsh codes contain 64 possible combinations. The information to be transmitted is broken up into groups of 6 symbols. These 6 symbols then correspond to a value between 0 and 63 . This value is used to select a Walsh code for transmission.
As speech has a typical 'duty cycle' of 40%, during periods of reduced speech activity the vocoder will reduce its data rate - thus the overall transmitted power will also be reduced. This means that system capacity is freed up as the shared resource is if power.
Furthermore, the data-burst randomiser will turn off the transmitter when the symbol repetition module produces redundant information.
The signal from the data randomiser occupies a bandwidth of 307.2 kHz and is passed onto the long code spreader.
All reverse channels are isolated from one another by using the same long code but with different offsets. Thus
each mobile is allocated a specific offset from the start of the long code. As the long code takes 41 days to repeat at a clock rate of $1.2288 \mathrm{Mchars} / \mathrm{s}$ there are billions of offsets available to address individual mobiles.
Finally the signal is spread in quadrature with the short PN codes. No offset is employed, but the quadrature branch is delayed by $1 / 2$ of a PN chip to produce offset QPSK rather than QPSK.
This OQPSK relaxes the linearity requirement on the mobile transmitter, as there are no zero-amplitude phase transitions.
At the base station each mobile is separated from others by correlating the incoming signal containing a version of the long code with the appropriate offset. This offset is known to the base station.

Soft hand-off

One of the major benefits of CDMA is the 'soft hand-off' feature. What this means is that there is no fixed hand-off boundary. Instead, there is a hand-off region where the mobile may be in simultaneous communication with a number of base stations.
This is effectively a 'make before break' hand off. In this way there is inherent diversity, which helps to fill in any coverage 'holes' and reduce the probability of dropped calls.
Figure 4 shows the 'soft hand-off area' where a mobile might be in contact with a number of base stations. A soft hand-off area is typically on the fringe of a cell. It is exactly where coverage is normally patchy and might otherwise lead to dropped calls if a hard hand-off was employed - as in a typical TDMA system.
Therefore a soft hand-off not only minimises dropped calls, it also helps to improve signal integrity in locations which would otherwise have poor coverage from an individual base station.
Indeed if the mobile is being received by a number of base stations, the system will normally command the mobile to reduce power until it is only being received by one base station. This base station will then control the mobile transmit power as required to sustain the link.
Eventually, as the mobile moves away from its selected base station, the mobile transmit power will be increased to a point where another base station will detect the signal and the process of 'soft hand-off' starts again.

Walsh codes

In this particular CDMA application there are 64 Walsh codes, each 64 chips long. They are produced at a rate of 1.2288Mchars/s to spread the information signal. Each Walsh code is orthogonal.
Two binary sequence codes are called orthogonal if the process of carrying out an exclusive-or function on them results in an equal number of ones and zeros, i.e. the cross correlation is zero. An example is shown below.

0110
 1100
 1010

The Walsh codes are a particular set of orthogonal codes, which are easily generated as follows. Start with a 'seed' of 0 . Repeat to the right and below, then invert diagonally.

Seed

Repeat horizontally and vertically,

Invert diagonally,

The same rules are then applied to the whole pattern.

0	0	0	0
0	1	0	1
0	0	1	1
0	1	1	0

The above procedure is repeated until an array of 64 by 64 is generated.
When applied to the forward link, each information bit to be transmitted is spread, i.e. exclusive-ored, by a particular 64-chip sequence, or Walsh code, allocated to that traffic channel.
To retrieve the information bit at the receiver, the incoming 64 -chip sequence is 'de-spread' - i.e. exclusive-ored again with the same Walsh function.
If the wrong Walsh code is used for de-spreading, the resulting correlation produces an average of zero. Such is the power of orthogonal Walsh codes.

CDMA reception

So far this article has concentrated on the signal format of the forward and reverse links in a typical CDMA system. In many ways, the reception, demodulation and decoding of a spread spectrum signal is more challenging - and interesting.
However, due to space constraints it is not possible to cover all of the issues involved with the design of the rf receiver and subsequent digital signal processing, but I hope that the following paragraphs will give you an insight into the problems and solutions associated with CDMA reception.

The radio section

A typical CDMA receiver employs a conventional superheterodyne architecture but with special attention paid to certain aspects. A few of the main areas of concern are:

- Blocking performance
- IF group delay
- Transmitter broad band noise.

Blocking performance. The receiver de-sensitises when receiving a weak CDMA signal in the presence of a strong

Fig. 5. Multi-channel base-station receiver. A base station with a single rf front end might have a thirtyfingered rake receiver capable of serving ten mobiles with three fingers each. This give a significant reduction in rf hardware complexity and cost.

Fig. 6. Typical delays that a radio signal might experience in an urban environment.

blocking signal. This is especially critical when a CDMA system has to co-exist with a conventional cellular system.

Intermediate-frequency group delay. As the digital signal processing attempts to correlate multipath - time delayed - signals, it is essential that any additional signal delay distortion within the receive path is kept to a minimum

Transmitter broad-band noise. As the receiver may be operating in full duplex with the transmitter, any broad-band noise from the transmitter must be managed in such a way that it does not adversely de-sensitise the receiver. This requirement often imposes severe filtering and screening requirements on both the transmitter and receiver.

For these reasons, the design of a CDMA receiver is considered more of a challenge than that of an equivalent TDMA receiver.

Base-band dsp and the 'rake' receiver

Base band digital signal processing is at the heart of a CDMA system. Typically, companies will have spent many man-years in the design and execution of an optimum processing system. For this reason the detail of the algorithms, Asic hardware and digital signal processing code of a CDMA system are normally proprietary and closely guarded.
Other companies may have to make licence fee or royalty payments of tens of millions of dollars for access to the intellectual property rights for the sole purpose of being able to produce a CDMA phone. Therefore this article can only describe how a generic CDMA base-band section might operate.
One of the main advantages of CDMA is the ability of the receiver to constructively add multipath signals, which would otherwise be destructive in a narrow-band system.
A mobile receiver typically employs a three-channel rake receiver. Two of the channels are used to correlate incoming signals, while the third is used as a search receiver to detect the presence of pilot channels from other base stations which may be coming into range.
The name rake for the receiver is an apt description as each prong of the rake can be thought as a finger searching for a particular code signal. The greater the number of fingers on the rake the greater the number channels the receiver can handle.
Thus a base station equipped with single of receiver but with a thirty-finger rake receiver might employ three fingers per mobile, resulting in a channel capacity of ten. This results in a great reduction - and hence cost - in rf hardware complexity, Fig. 5.
The ability of a rake receiver to correlate signals dispersed in time is determined by the chip rate and the number of fingers. The faster the chip rates the finer the resolution in time and hence distances for multipath.
There are however good reasons for not having an
excessively high chip and thus signal bandwidth. Presently, domestic CDMA systems use a chip rate of 1.2288 Mchars/s, which equates to a time resolution of $0.8 \mu \mathrm{~s}$.
Likewise, due to power and size constraints, the mobile would normally have only three fingers used as described above. It will not be possible to correlate multipath signals arriving at the receiver at a time interval of less than approximately $1 \mu \mathrm{~s}$ with the main signal. However a delay of 1μ s equates to approximately 1000 feet. Provided the multipath signal path is greater than 1000 feet the rake receiver will either be able to correlate or ignore it.
Figure 6 shows the typical delays that a radio signal might incur in an urban environment. Clusters A and B are the main signals separated by a short delay. These signals are capable of being correlated if they have a sufficiently high chip rate and signal bandwidth.
Other signals, such as C and D, have a much longer delay and lower amplitude are effectively ignored. However if Fig. 6 were to represent a narrow band signal, it would be practically impossible to identify the individual components. There could be severe interference and probable signal destruction.
From the above descriptions it should be apparent that the combination of a multi-channel rake receiver and an adequately high signal chip rate offers excellent protection against multi-path interference. Thus the ability of a rake receiver to recover a signal under multi-path conditions combined with the power of Walsh codes and FEC coding makes for a robust data link.

Base-band signal decoding

Consider the mobile phone decoding the forward link. The mobile makes use of the base station's embedded pilot signal for a phase reference, enabling the use of coherent demodulation.

For the mobile to decode the base station transmission, it merely performs the reverse of the signal encoding, but with the appropriate Walsh code for channel selection.
Now consider the base station decoding the reverse link from the mobile phone. The base station cannot use coherent demodulation as there is no pilot. In any event, there is no practical means of keeping all mobiles synchronised at the base station.
However, demodulation of the signal is the reverse of the encoding, but with the appropriate offset for the long code for channel selection. Much of the above decoding is performed in hardware, such as Asics, which have been developed to perform FEC decoding.

In summary

The technology of mobile phones has advanced at a stupendous rate over the past twenty years - driven by the evergrowing need to communicate.
As the popularity of the mobile phone has increased, so has the demand on that most limited resource called 'bandwidth'. In turn this has driven the development of ever more efficient coding and modulation schemes.
As the new millennium approaches, so does the prospect of a whole new mobile phone standard - not just 3G but the advent of a satellite-based mobile phone system. When such a system is fully operational mobile phone users will at last be freed from dependence on a ground based infra structure - typically at its best in areas of high population and alongside major highways.
Thus not too far in the future - if all goes according to plan - mobile phone users will be able to roam the planet in sure knowledge that a low Earth-orbiting satellite will be able to provide a stable communication link in even the most remote areas.
When this happens the mobile phone will truly have become of age.

HP New Colour Spectrum Analysers LAST FEW ONLY HP141T+8552B IF +8553 B RF $-1 \mathrm{KHZ}-19 \mathrm{MC} / \mathrm{s}-$ E500.
HP $141 \mathrm{~T}+8552 \mathrm{~B} \mathrm{IF}+8554 \mathrm{BRF}-100 \mathrm{KHz}-1250 \mathrm{M}-\mathrm{E} 600$ HP $141 \mathrm{~T}+8552 \mathrm{~B}$ IF +8556 A RF $-20 \mathrm{~Hz}-300 \mathrm{KHz}-\mathrm{E} 400$. $\mathrm{MP141T}+8552 \mathrm{~B}$ IF $+8555 \mathrm{~A} 10 \mathrm{MC} / \mathrm{S}-18 \mathrm{GHzS}-\mathrm{E} 1000$. HP8443A Tracking Gen Counter $100 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 200$ HP8445B Tracking Preselector DC to $18 \mathrm{GHz}-\mathrm{E} 250$.
HP8444A Tracking Generator $-5-1300 \mathrm{Mc} / \mathrm{s}-\mathrm{£} 450$. HP8444A Tracking Generator $\bullet 5-1300 \mathrm{Mc} / \mathrm{s}-£ 450$.
HP8444A OPT 059 Tracking Gen $-5-1500 \mathrm{Mc} / \mathrm{s}-£ 650$. HP8444A OPT 059 Tracking Gen - 5-1500M.
HP35601A Spectrum Anz Interface - £300. HP35601A Spectrum Anz Interf
HP 4953 A Protocol Anz - f400.
HP8970A Noise Figure Meter + 346B Noise Mead - E3k HP8970A Noise Figure Meter + 346B Noise Head - £3k.
HP8755A + B + C Scalar Network Anz PI - $\mathrm{£} 250+$ MF 180C - Heads HP8755A+B+C Scalar Ne
11664 Extra - $£ 150$ each.
HP3709B Constellation ANZ $£ 1,000$.
HP11715A AM-FM Test Source - $£ 350$.
FARNELL TVS70MKII PU $070 \mathrm{~V} 10 \mathrm{amps}-£ 150$. MARCONI 6500 Network Scaler Anz - f500. Heads available to 40 GHz many types in stock.
Mixers are available forANZs to 60 GHz .
HP6131C Digital Voltage Source $+-100 \mathrm{~V} / 2 \mathrm{Amp}$.
HP5316A Universal Counter A+B.
Marconi TF2374 Zero Loss Probe - $£ 200$.
Racal/Dana 2101 Microw
Racal/Dana 2101 Microwave Counter - $10 \mathrm{~Hz}-20 \mathrm{GHz}$ - with book as new $£ 2 \mathrm{k}$.
Racal/Dana 1250-1261 Universal Switch Controller $+200 \mathrm{Mc} / \mathrm{s}$ PI Cards and other tvpes.
Racal/Dana 9303 True RMS Levelmeter + Head - £450.
TEKA6902A also A6902B Isolator - $£ 300-£ 400$.
TEK CT-5 High Current Transformer Probe - $\mathbf{f} 250$.
TEK CT- 5 High Current Transformer Probe - $£ 250$
HP Frequency comb generator type 8406 - $£ 400$.
HP Sweep Oscillators type $8690 \mathrm{~A}+\mathrm{B}+$ plug-ins from $20 \mathrm{MC} / \mathrm{s}$ to
18 GHz also $18-40 \mathrm{GHz}$.
HP Network Analyser type $8407 \mathrm{~A}+8412 \mathrm{~A}+8601 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}$ $110 \mathrm{Mc} / \mathrm{s}$ - E 500 - f 1000 .
MP $8410-\mathrm{A}-\mathrm{B}-\mathrm{C}$ Network Analyser $110 \mathrm{Mc} / \mathrm{s}$ to 12 GHz or 18 GHz - plus most other units and displays used in this set-up-8411a-8412-8413-8414-8418-8740-8741-8742-8743-8746-8650. From £ $7 k$. Racal/Dana 9301A-9302 RF millivoltmater $-1.5-2 \mathrm{GHz}$ - qty in stock $£ 250-\mathrm{f} 400$,
Racal/Dana Modulation Meter Type $9009-9008-8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}$ - $£ 150 / £ 250-9009 A £ 350$.

Marconi RCL Bridge type TF2700-£150.
Marconi Mich 18 -26.5 GHz or $6651 \mathrm{PI}-26.5-40 \mathrm{GHz}$. E600. MF only $£ 250$.
Gould J3B test oscillator + manual - $£ 150$.
Marconi 6155A Signal Source-1 to 2GHz - LED - $£ 400$.
Barr \& Stroud Variable filter EF3 0.1 Hz - $100 \mathrm{Kc} / \mathrm{s}+$ high pass +
low pass - £150, other makes in stock.
Racal/Dana 9300 RMS voltmeter - E250.
HP 8750 A storage normalizer - $£ 400$ with lead + S.A. or N, A Marconi mod meters type TF2304- $\mathrm{E250}$ - TF2305- $£ 1,000$. Racal/Dana counters-99904-9905-9906-9915-9916-9917-9921 $50 \mathrm{Mc} / \mathrm{s}-3 \mathrm{GHz}-£ 100-£ 400$ - all fitted with FX standar
HP180TR. HP181T, HP 182T mainframes $£ 300-\mathrm{E} 500$.
HP180TR. HP181T, HP182T mainframes $£ 300$ - $£ 500$.
HP432A-435A or B-436A-power meters + powerheads to 60 GHz - $£ 150-£ 1750$ - spare heads available.

- E 150- E 1750 - spare heads available.

HP86222 A + B Sweep PI -01-2.4GHz + ATT $£ 1000-£ 1250$.
HP86290A+B Sweep PI-2 - 18GHz - £1000- £1250. HP8620C Mainframe - E250. IEEE £350.
HP8615A Programmable signal source - 1 MHZ - $50 \mathrm{Mc} / \mathrm{s}-\mathbf{£ 1 k}$. HP3455/3456A Digital voltmeter- £ 400 .
HP5370A Universal time interval counter - £1k.
HP5335A Universal counter - $200 \mathrm{Mc} / \mathrm{s}$ - f 1000 .
HP5335A Universal counter - 200Mc/s-f
HP3552A Transmission test set - E350.
HP3552A Transmission test set - E350.
TEKTRONIX 577 Curve tracer + adaptors - £900.
TEKTRONIX $1502 / 1503$ TDR cable test set - £ 400
HP8699B Sweep PI YIG oscillator $.01-4 \mathrm{GHz}$ - £ 300.8690 B MF£250. Both $£ 500$.
Dummy Loads \& Power att up to 2.5 kilowatts $F X$ up to 18 GHz
microwave parts new and ex equipt - relays. attenuators. microwave parts new and ex equipt - relays - attenuators -
switches - waveguides - Yigs - SMA - APC7 plugs - adaptors switches - waveg
etc. qty. in stock.
B\&K Items in stock - ask for list.
Power Supplies Heavy duty + bench in stock - Farnell - HP . Weir - Thurlby - Racal etc. Ask for list. Large quantity in stock all types to 400 amp - 100 Kv .
HP8405A Vector voltmeter - late colour - $£ 400$.
HP8508A Vector voltmeter - $£ 2500$
HP8508A Vector valtmeter - $£ 2500$.
HP8505A Network Anz $500 \mathrm{KHz}-1.3 \mathrm{GHz}$ - f 1000 .
HP8505A +8502 A or 8503 A .
HP8505A +8502 A or 8503 A test sets- $\mathrm{£1200-£1500}$
HP8505A +8502 A or $8503 \mathrm{~A}+8501 \mathrm{~A}$ normalizer - $£ 1750-£ 2000$ Phillips $321750 \mathrm{Mc} /$ s oscilloscopes - E150-E250. R\&S APN $62 \mathrm{LF} \mathrm{S/G} 0.1 \mathrm{~Hz}-260 \mathrm{KHz}$ with book - $£ 500$. Wavetek-Schlumberger 4031 Radio communication test set

LIGHT AND OPTICAL EQUIPMENT
Anritsu ML93A \& Optical Lead Power Meter - £250, Anritsu ML93B \& Optical Lead Power Meter - 5350 . Power Sensors for above MA96A - MA98A - MA913A - Battery
Pack MZ95A. Pack MZ95A.
Anritsu MW97A Pulse Echo Tester.
PI available - MH914C 1.3-MH915B 1.3 - MH913B 0.85
MH925A 1.3-MH929A 1.55 - MH925A 1.3G1-MH914C 1.3SM f500 + one P.I.
PI available - MH914C 1.3-MH915B 1.3 - MH913B 0.85 MH925A 1.3-MH929A 1.55-MH925A 1.3GI - MH914C 1.3SM £ 500 + one P.I.
Anritsu MZ100A E/O Converter:

+ MG912B (LD 1.35) Light Source + MG92B (LD 0.85) Light Source $£ 350$.
Anritsu MZ118A O/E Converter.
+MH922A 0.8 O/E unit + MH923 A1.3 O/E unit $£ 350$. Anritsu ML96B Power Meter \& Charger £450. Anritsu MN95B Variable Att. $1300 £ 100$.
Photo Dyne 1950 XR Continuous Att. 1300-1500£100
Photo Dyne 1800 FA. Att £ 100
Cossor-Raytheon 108L Optical Cable Fault Locator
$0-1000 \mathrm{M} 0-10 \mathrm{kM} £ 200$.
$0-1000 \mathrm{M} 0-10 \mathrm{kM} £ 200$.
TEK P6701 Optical Converter $700 \mathrm{MC/S}-850 £ 250$.
TEK OF 150 Fibre Optic TDR - $£ 750$.
HP81512A Head 150MC S $950-1700$
HP81512A Head
HP 84801 F Fibre Power Sensor $600-1200 £ 250$.

HP8158B ATT OPT 002+011 1300-1550 £300.
HP81519A RX DC-400M C/S 550-950 £250.
STC OFR10 Reflectometer - $£ 250$.
STC OFSK 15 Machine jointing + eye magnifier - $£ 250$.

COMMUNICATION EQUIPMENT

Anritsu ME453L RX Microwave ANZ - E350.
Anritsu ME 453L TX Microwave ANZ - $£ 350$.
Anritsu MH370A Jitter Mod Oscillator - $£ 350$.
Anritsu MG642A Pulse Patt Gen. E350.
System MS02A Tumer a Dignal Printer
Complete MS65A Error Detector.
Anritsu ML612A Sel Level Meter - $£ 400$
Anritsu ML244A Sel Level Meter - $£ 300$.
W\&G PCM3 Auto Measuring Set - $£ 300$
W\&G SPM14 Sel Level Meter - $£ 300$.
W\&G SPM15 Sel Level Meter - $£ 350$
W\&G SPM16 Sel Level Meter - $£ 400$.
W\&G PS19 Level Gen - $£ 500$.
W\&G DA20+DA1 Data ANZ E400.
W\&G PMG3 Transmission Measuring Set - $£ 300$. W\& G PSS16 Generator - $£ 300$.
W\&G PS14 Level Generator - $£ 350$.
W\&G EPM-1 Plus Head Milliwatt Power Meter - $£ 450$
W\&G DLM3 Phase Jitter \& Noise - $£ 350$
W\&G PS10 \& PM10 Level Gen. $-£ 250$.

MISCELLANEOUS ITEMS

HP 3852A Data Acquisition Control Unit +44721 A 16 ch input £1,000.
HP 4261 LCR meter - $£ 650$.
HP 4274 FX LCR meter - $\mathrm{E} 1,500$
HP 4951 Protocol ANZ - f500.
HP 3488 Switch Control Unit + PI Boards - $£ 500$.
HP 75000 VXI Bus Controllers + E1326B-DVM-quantity.
HP 83220 A GSM DCS/PCS $1805-1$ G90MC/S HP 83220A GSM DCS/PCS 1805-1990MC/S convertor for use with 8922A - $\mathrm{E} 2,000$.
HP 1630-1631-1650 Logic ANZ's in stock.
HP 8754A Network ANZ 4-1300MC/S + 8502A + cables - $£ 1,500$. HP 8754A Network ANZ H26 4-2600MC/S + 8502A + Cables f2,000.
HP 8350A Sweeper MF + 83540A PI $2 \cdot 8.4 \mathrm{GHZ}+83545 \mathrm{~A}$ PI 5.9 12.4 GHZ all $3-£ 3,500$.
HP MICROWAVE TWT AMPLIFIER 489A 1-2GHZ-30DB - £400. HP PREAMPLIFIER 84474 0.1-400MCIS - f200. Dual - f 300 HP PREAMPLIFIER 8447D 0.01-1.3GHZ - £400. HP POWER AMPLIFIER $8447 E$ 0.01-1.3GHZ - E400 HP PRE + POWER AMPLIFIER 8447F 0.01-1.3GHZ - 5500 HP 3574 Gain-Phase Meter 1 HZ-13MC/S OPT 001 Dual - E400 MARCONI 2305 Modulation Meter-50KHZ-2.3 GHZ - $£ 1,000$. MARCONI 2610 True RMS Meter - E450.
MARCONI 893B AF Power Meter (opt Sinad filter) - £250-£350. MARCONI 6950-6960B Power Meters + Heads - E400-£900. Range 4-18GHZ- £250-E400.
madal 1792 COMMUNICATION RX - $£ 500$ early - $£ 1,000$ - late model with back lighting and byte test.
RACAL 1772 COMMUNICATION RX - 400 - 5500 . RACAL 1722 COMMUNICATION RX - $£ 400$ - 5500 .
PLESSEY PR2250 COMMUNICATION RX $-£ 500$ - 900. TEK MODULE MAINFRAMES - TM501-502-503-504-506 TM5003-5006.
TEK PI $5010-\mathrm{M} 1$ - Prog Multi Interface - $£ 250$. FG Prog $20 \mathrm{MC} / \mathrm{S}$ Function Gen - £400-S1 Prog Scanner - £250 - DM Prog DMM - £400.

TEK 7000 OSCILLOSCOPE MAINFRAMES - 7603-7623-7633-7834-7854-7904-7904A-7104 - £150-f1,000
TEK 7000 Pl's - 7A11-7A12-7A13-7A18-7A19-7A22-7A24-7A26-7A29-7A42-7B10-7B15-7B53A-7B80.7B85-7B92A-7D15-7D20. TEK 7000-7S11-7S12-7S14-7M11-S1-S2-S3A-S4-S5-S6-S51 S53-S54.

RADIO COMMUNICATION TEST SETS

HP 8920 RF Communication Test Set - Opts 003-004-007-011 unit contains Syn Signal Gen-Distortion Meter-Mod MeterDigital Oscilloscope etc. $1000 \mathrm{MC} / \mathrm{S}-£ 1,500$ each. MARCONI 2955 RF Test Sets-1000MC/S - $£ 1,200$ each MARCONI 2958 RF Test Sets-1000MCIS - $\mathrm{f} 1,300$ each MARCONI 2960 RF Test Sets-1000MC/S - $£ 1,400$ each. MARCONI 2955A RF Test Sets-1000MC/S - $\mathrm{E} 2,000$ each MARCONI 2960A RF Test Sets-1000MC/S - E2,500 each ANRITSU MS555A2 Radio Comm Anz-1000M/Cs - $£ 1,200$ each
MARCONI 2019A SYNTHESIZED SIGNAL GENERATORS MAKC/S - $1040 \mathrm{MC} / S$ - AM-FM all functions tested off the pile as
received from Gov - in average used condition - E 650 each or in original Gov cartons. 1st class condition each fitted with IEEE plus added protection front cover lid containing RF-IEEE-mains cables +N to BNC adaptor - Attenuator etc. + Instruction Book - fully checked to high standards in our own workshop - $\mathrm{f1k}$. MARCONI 2022E SYNTHESIZED SIGNAL GENERATOR 10KC/S-1.01GHZ AM-FM - made small and light for portability being the naval version - all functions tested off the pile as received from Gov - in average used condition - $£ 1,000$ each or in original Gov cartons as new condition - each fitted with IEEE + aded nstruction Book fully checked to high standards in our own Instruction Book - fully ch
workshop - $£ 1,250$ each.
WE KEEP IN STOCK HP and other makes of RF Frequency
doublers which when fitted to the RF output sockat of a S/Generator doubles the output frequency EG. $50-1300 \mathrm{MC} / \mathrm{S}$ to $50.2600 \mathrm{MC} / \mathrm{S}$ price from $£ 250-\mathbf{£ 4 5 0}$ each

SPECTRUM ANALYZERS

HP 3580A 5HZ-50KHZ - $£ 750$
HP 3582A Dual 0.2HZ-25.5KHZ - $£ 1,500$
HP 3585A 20HZ-40MC/S - $£ 3,500$.
HP 3588A 10HZ-150MC/S - $\ddagger 7,500$.
HP 8568A $100 \mathrm{HZ}-1.5 \mathrm{GHZ}-\mathrm{E} 3,500$.
HP 8568B $100 \mathrm{HZ}-1.5 \mathrm{GHZ}$ - $\mathrm{E} 4,500$.
HP 8569B 10MC/S (0.01-22GHZ) - $£ 3,500$.
HP 3581 A Signal Analyzer $15 \mathrm{HZ}-50 \mathrm{KHZ}$ - E 400 .
TEK491 10MC/S-12.4GHZ + 12.4-40GHZ - 5500
TEK492 50KHZ-21GHZ OPT $2-£ 2,500$.
TEK492P 50 KHZ -21GHZ OPT $1-2 \cdot 3-£ 3,500$.

TEK492AP 50KHZ-21GHZ OPT 1-2-3- £4,000.
TEK 495 100KHZ-1.8GHZ - 22,000
ANRITSU MS710F $100 \mathrm{KC} / \mathrm{S}-23 \mathrm{GHZ}$ - $£ 4,000$.
MP $8557 \mathrm{~A} 0.01 \mathrm{MC} / \mathrm{S}-350 \mathrm{MC} / \mathrm{S}-£ 500+\mathrm{MF} 180 \mathrm{~T}$ or 180 C - $\mathrm{f} 150-$ 182T-E500.
HP 8558B 0.01-1500MC/S - E750 - MF180T or 180C - E150-182T- £500.
HP 8559A 0.01-21GHZ - £1,000-MF180T or 180C - £150-182T - F 500.

HP 8901 A AM FM Modulation ANZ Meter - E 800 . HP 89018 AM FM Modulation ANZ Meter - $£ 1,750$. HP 8903A Audio Analyzer - $£ 1,000$.
MARCONI 2370 SPECTRUM ANALYZERS - HIGH QUALITY -
DIGITAL STORAGE - $30 \mathrm{HZ}-110 \mathrm{MC}$ /S Large qty to clear as DIGITAL STORAGE - 30 HZ -110MC/S Large qiy to clear as received from 100 for basic testing and adjustment - callers preferred - pick
your own from over sixty units - discount on atys of iive ar
A EARLY MODEL GREY - horizontal alloy cooling - $-\mathbf{£} 20$
C LATE MODEL BROWN - as above (few only) - $£ 500$.

OSCILLOSCOPES

TEK 465-465B 100MC/S + 2 probes - E250-E300.
TEK $466100 \mathrm{MC} / \mathrm{S}$ storage +2 probes - E 200 .
TEK $475-475 A$ 200MC/S-250MC/S +2 probes - $£ 300 \cdot £ 350$. TEK 2213-2213A-2215-2215A-2224-2225-2235-2236-2245-60100MC/S - 1250 -f 400 .
TEK $22454 \mathrm{ch} 150 \mathrm{MC} / \mathrm{S}+2$ probes - £ 450 .
TEK 2245A 4ch 150MC/S +2 probes - E 600.
TEK 2245B 4ch 150MC/S + 2 probes - 1750.
TEK 468 D.S.O. $100 \mathrm{MC} / \mathrm{S}+2$ probes - 5500
TEK $485350 \mathrm{MC} / \mathrm{S}+2$ probes - £550
TEK 24654 ch- $300 \mathrm{MC} / \mathrm{S}-\mathrm{E} 1,150$.
TEK 2465 A $4 \mathrm{ch}-350 \mathrm{MC} / \mathrm{S}-\mathrm{f1} 550$
TEK 2465 A 4ch $4 \mathrm{ch}-350 \mathrm{MC} / \mathrm{S}-\mathrm{E} 1,750$.
TEK $2465 \mathrm{ACT} 4 \mathrm{ch}-350 \mathrm{MC} / \mathrm{S}-\mathrm{f1}, 750$.
TEK $2465 \mathrm{~B} 4 \mathrm{ch}-400 \mathrm{MC} / \mathrm{S}-\mathrm{E} 2,000$
TEK $24674 \mathrm{ch}-350 \mathrm{MC} / \mathrm{S}-\mathrm{E} 2,000$.
TEK D.S.O. $2230-100 \mathrm{MC} / \mathrm{S}+2$ probes $-£ 1,000$. TEK D.S.O. $2430 \mathrm{~A}-150 \mathrm{MCIS}+2$ probes $-£ 1,750$ TEK D.S.O. $2440-300 \mathrm{MC} / \mathrm{S}+2$ probes $-£ 2,000$. TEK TAS $475-485-100 \mathrm{MC} / \mathrm{S}-20 \mathrm{MC} / \mathrm{S}-4 \mathrm{ch}+2$ probes $-£ 900-$ £1,100.
HP1740A - 100MC/S +2 probes -E250.
HP1741A - 100MC/S storage +2 probes $-£ 200$. HP1720A - 1722A - 1725A-275MC/S +2 probes $-£ 300 \cdot £ 400$. HP1744A - 100 MC /S storage - large screen - $£ 250$. HP1745A - 1746A - 100MC/S - large screen - E350. HP54100A - 1GHz digitizing - $£ 500$. HP54200A - 50MC/S digitizing - E 500 . HP54501A - 100MC/S digitizing - $£ 500$
HP54100D -1 GHZ digitizing - $£ 1,000$.

MICROWAVE COUNTERS - ALL LED READOUT
EIP 351D Autohet 20 Hz -18GHz - $\mathrm{E7} 50$.
EIP 371 Micro Source Locking - 20 Hz - 18 GHz - $£ 850$.
EIP 451 Micro Pulse Counter - $300 \mathrm{MC} / \mathrm{S}-18 \mathrm{GHz}$ - E 700.
EIP 545 Microwave Frequency Counter - $10 \mathrm{~Hz}-18 \mathrm{GHz}-\mathrm{f} 1 \mathrm{~K}$. EIP 548 A Microwave Frequency Counter - $10 \mathrm{HZ}-26.5 \mathrm{GHz}$ - $£ 1.5 \mathrm{k}$. EIP 575 Microwave Source Locking - $10 \mathrm{~Hz}-18 \mathrm{GHz}-£ 1.2 \mathrm{~K}$.
EIP 588 Microwave Pulse Counter $-300 \mathrm{MC} / \mathrm{S}-26.5 \mathrm{GHz}-£ 1$. SD 6054 B Micro Counter $20 \mathrm{HZ}-24 \mathrm{GHZ}$ - SMA Socket - $£ 800$. SD 6054B Micro Counter 20HZ-18GHZ - N Socket - 1700 . SD 6054D Micro Counter $800 \mathrm{MC} / \mathrm{S}-18 \mathrm{GHz}$ - f 600. SD $6246 A$ Micro Counter $20 \mathrm{~Hz}-26 \mathrm{GHz}-£ 1.2 \mathrm{~K}$. SD 6244A Micro Counter 20Hz-4.5GHz - $\mathrm{E400}$. HP5352B Micro Counter OPT 010-005-46GHz - new in box - $£ 5 \mathrm{k}$. HP5340A Micro Counter $10 \mathrm{HZ}-18 \mathrm{GHz}$ - Nixey - E 500 . HP5342A Micro Counter 10 HZ - 18 -24GHz - $£ 800$ - 11 K - OPTS $001.002 \cdot 003-005-011$ available.
HP5342A + 5344S Source Synchronizer - £1.5K.
HP5345A 500MC/S 11 Digit LED Readout - $£ 400$.
HP5345A + 5354A Plugin - 4GHz- E700.
HP5345A $+5355 A$ Plugin with 5356A 18GHz Head - $\mathrm{f1K}$ K
HP5385A 1GHz 5386A-5386A 3 GHz Counter - f1K HP5385A 1GHz 5386A-5386A 3GHz Counter - 1 1K-f2K. Racal/Dana Counter 1991-160MC/S - E 200 .
Racal/Dana Counter $1992-1.3 \mathrm{GHz}-\mathrm{f} 600$. Racal/Dana Counter $9921-3 \mathrm{GHz}$ - $£ 350$.

SIGNAL GENERATORS

HP8640A - AM-FM 0.5-512-1024MC/S - E200-£400. HP8640B - Phase locked - AM-FM-0.5-512-1024MC/S - $£ 500$ £1.2K. Opts 1-2-3 available.
HP8854A - B AM-FM 10MC/S-520MC/S - £300. HP8656A SYN AM-FM 0.1-990MC/S - £900. HP8656B SYN AM-FM 0.1-990MC/S - $£ 1.5 \mathrm{~K}$ HP8657A SYN AM-FM 0.1-1040MC/S - $£ 2 \mathrm{~K}$.
HP8660C SYN AM-FM-PM-0.01-1300MC/S-2600MC/S - E2K.
HP86660 S SYN AM-FM-PM-0.01-1300MC/S-2600MC'S - $£ 3 \mathrm{~K}$ HP8673D SYN AM-FM-PM-0.01-26.5 GHz - £12K.
HP3312A Function Generator AM-FM 13MCIS-Dual - $£ 300$. HP3314A Function Generator AM-FM-VCO-20MC/S - $£ 600$. HP3325A SYN Function Generator $21 \mathrm{MC} / \mathrm{S}-$ E800.
HP3325B SYN Function Generator $21 \mathrm{MC} / \mathrm{S}-£ 2 \mathrm{~K}$. HP8673-B SYN AM-FM-PH 2-26.5 GHz - £5K. HP3326A SYN 2CH Function Generator 13MC/S-IEEE - E1.4K. HP3336A-B-C SYN Func/Level Gen 21MC/S - $£ 400-£ 300-£ 500$. Racal/Dana 9081 SYN S/G AM-FM-PH-5-520MC/S - $£ 300$. Racal/Dana 9082 SYN S/G AM-FM-PH-1.5-520MC/S - $£ 400$. Racal/Dana 9084 SYN S/G AM-FM-PH-001-104MC/S - $£ 300$. Racal/Dana 9087 SYN S/G AM-FM-PH-001-1300MC/S - E1K. Marconi TF2008 AM-FM-Sweep 10KC/S-510MC/S - E200 Fully Tested to $£ 300$, as new + book + probe kit in wooden box. Marconi TF2015 AM-FM-10-520MC/S - E100 Marconi TF2016A AM-FM 10KC/S-120MC/S - £100. Marconl TF2171/3 Digital Synchronizer for 2015/2016A - £50. Marconi TF2018A AM-FM SYN 80KC/S-520MC/S - $£ 500$.
Marconi TF2019A AM-FM SYN $80 \mathrm{KC} / \mathrm{S}-1040 \mathrm{MC}$ - $£ 650-\mathrm{f} 1 \mathrm{~K}$ Marconi TF2019A AM-FM SYN $80 \mathrm{KC} / \mathrm{S}-1040 \mathrm{MC} / \mathrm{S}$ - £650-£1K.
Marconi TF2022E AM-FM SYN $10 \mathrm{KC} / \mathrm{S}-1.01 \mathrm{GHz}-£ 1 \mathrm{~K}-\mathrm{f} 1.2 \mathrm{~K}$. Farnell ESG1000 AM-FM SYN $10 \mathrm{~Hz}-1 \mathrm{GHz}-£ 500$. Farnell ESG1000 AM-FM SYN 10 Hz - 1 GHz - f 500
R \& S SMPD AM-FM-PH $5 \mathrm{KHz}-2720 \mathrm{MC} / \mathrm{S}$ - E 3 K . R \& S SMPD AM-FM-PH 5KHz-2720MC/S - $£ 3 \mathrm{~K}$.
Anritsu MG3601A SYN AM-FM 0.1-1040MC/S - 1.2 K .

ITEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS. SAE FOR ENQUIRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY ITEMS, AVAILABIUTTY OR PRICE CHANGE. VAT AND CARRIAGE EXTRA. ITEMS MARKED TESTED HAVE 30 DAY WARRANTY. WANTED: TEST EQUIPMENT-VALVES-PLUGS AND SOCKETS-SYNCROS-TRANSMITING AND RECEIVING EQUIPMENT ETC
 VAT AND CARRIAGE EXTRA. ITEMS MARIED TESTED HAVE 30 DAY WARRANTY. WANTED: TEST EQUIPMENT-VALVES-PLUGS AND SOCKETS-SYNCROS-TRANSMITTING AND RECEIVING EQUIPMENT ETC.

Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel: (01274) 684007. Fax: 651160

TV SOUND \& VIDEO TUNER

The TELEBOX is an atractive fully cased mains powered unit, co
taining all electronics ready 10 plug into a host of video monitor made by makers sulh as MATUNG, AMSTRAD etc. The composite video output will also plug directly into most video recorders, allowing
anel allow reception of 8 fully tuneable 'off arr' UHF colour television HF and UHF incox MB covers virtually all television frequencies TV operators. A composite video output is located on the rear pane ut sound - an integral 4 watt audio amplifier and low level Hi F TELEEOX ST for composite video input type monitors TELEBOX MB Multiband VHF/UHF/Cabie/Hyperband tuner ${ }^{869.95}$
 State of the art PAL (UK spec) UHF TV tuner module with composite 1V pp video \& NICAM hi fi stereo sound mm enable full software control via a simple 2 wire link any IBM type computer. Supplied complete with simple working

FLOPPY DISK DRIVES 21⁄2" - $14^{\prime \prime}$

 present prime product at hdustry boating low pricest All units (unless stated) are BRAND NEW or removed from othen brand ne

HARD DISK DRIVES

101MAN 2.16 Gb. NeW

3\%. FUJI FK-309-26 20 mb MFM I/F RFE
$3 \%^{\circ}$. CONNER CP3024 20 mb IDE I/F (or equiv.) RFE
31.2" CONNER CP3044 40 mb IDE I/F (or equiv.) RFE
$31 / 2$ RODIME RO 3057 S 45 mb SCSI I/F (Mac \& Acom
$31 / 2^{\circ}$ " QUANTUM 40 Prodrive 42 mb SCSI I/F, New RF
$3 / 2^{\prime \prime}$ WESTERN DIGITAL 850 mb IDE I/F Now
MINISCRIBE 342520 mb MFM I/F (or equiv)
SEAGATE ST-238R 30 mb RLL $1 / \mathrm{F}$ Refurb
CDC $94205-5140 \mathrm{mb}$ HH MFM I/F RFE tested
HP 97548850 Mb SCSI RFE tested
HP C30102 Gbyte SCSI differential RFE tested
NEC D2246 85 Mb SMD interface. New
FUJITSU M2322K 160 Mb SMD I/F RFE tested
FUJITSU M2392K 2 Gb SMD I/F RFE Iested

IC'S -TRANSISTORS - DIODES

OBSOLETE - SHORT SUPPLY - BULK 6,000,000 items EX STOCK VIDEO MONITOR SPECIALS
One of the highest specification - monitors you will ever see Mitsublshi FA3415ETKL

 specification. Fully guaranteed, supplied in EXCEL ENN little used condition. Only £119 (E) MTTS-SVGA VGA cable for IBM PC Included.
External cables for other types of computers CALL As New - Ex Demo
17"0.28 SVGA Mitsubishi Diamond Pro monitors Full multis ync etc. Full 90 day guarantee. $£ 325.00$ (E) Good SH conditlon - from £299-CALL for Info PHILIPS HCS35 (same style as CM8833) attractively styled $14^{\prime \prime}$ Khz video Inputs via SCART socket and separate phono jacks. Integral audio power amp and speaker fo video monitoring / security applications with direct connection front concealed flap controls, VCR correction button etc. Good
used condition-fully tested - guaranteed Only £99 (E)
Dimensions: W14" $141234^{4} \times 15 / 2^{4} \mathrm{D}$.
PHILIPS HCS31 Ultra compact $9^{\prime \prime}$ colour video monitor with stan dard composite 15.625 Khz vldeo input via SCART Sockel. ideal
for all monitoring / security applications. High quality, ex-equipment fully tested \& guaranteed (possible minor screen bums). In attrac
tive square black plastic case measuring $W 10^{\circ} \times H 10^{\circ} \times 13 / 2^{\circ} \mathrm{D}$
240 V AC mains powered.
Only E 79.00 (D) KME 10" 15 M 10009 high definition colour monitors win 0.28
 20" $22^{\prime \prime}$ and 26" AV SPECIALS
Supprbly made UK manufacture. PlL all solid state colour monitirs,
complete with composite video \& optional sound inpur. Atracive complete with composite video \& oplis. Shops. Disco, Cliuss, elc. 20"....£135 22".....£155 26"....£185 (F) DC POWER SUPPLIES
而

LOW COST PC's

Always over 1000 PC's from stock call or see our wob site for info.

TEST EQUIPMENT \& SPECIAL INTEREST ITEMS

MITS. LFA3445ETKL 14^{n} Industrial spec SVGA monit 1 kW to $400 \mathrm{~kW}=400 \mathrm{~Hz} 3$ phase power sources -

 1 kW to 400 kW - 400 Hz 3 phase power sources18 M 8230 Type 1, Token ring base unit driver
Wayne Karr RA200 Audio frequency response analyser IBM MAU Token ring distribution panel 8228-23-5050 N ALLGON 8360.11805-1880 MHz hybrid power combiner Trend DSA 274 Data Analyser with G703(2M) 64 Vo Marconl 6310 Programmable 2 to 22 GHz sweep
Marconi $2022 \mathrm{C} 10 \mathrm{KHz}-1 \mathrm{GHz}$ RF signal generato Marconl 2030 opt 0310 KH
HP16508 Logle Analyser
HP16508 Loglc Analyser HP3781A Pattern generator \& HP3782A Error Detector
HP6621A Dual Programmable GPIB PSU $0-7 \mathrm{~V} 160$ watts HP6264 Rack mount variable 0-20V © 20A metered PSU HP54121A DC to 22 GHz four channel test set
HP8130A opt 020300 MHz pulse generator, GPI日 etc HP A1, AO 8 pen HPGL. high speed drum plotters - from Vlew Eng. Mod 1200 computerised inspection system Sony DXC-3000A High quality CCD colour TV camera Kelthley 590 CV capacitor / voltage analyser
Fiskers 45 KYA 3 ph On Line UPS. New batem Fiskers 45KVA 3 ph On Line UPS - New batteries Mann Tally MT645 High speed line printer Mann Tally M 645 High speed line printer
Intel S8C $486 / 133 \mathrm{SE}$ Multibus 486 system. 8 Mb Ram

Intel SBC 486/125C08 Enhanced Multibus (MSA) Zeta 3220-05 A0 4 pen HPGL fast drum plotters

 Nikon HFX-11 (Ephiphot) exposure control unitMotorola VME Bus Boards \& Components List. Motorola $0-18$ vdc linear, metered 30 amp be
Fultsu M3041R 600 LPM band printer
Fujlisu M3041D 600 LPM printer with network interface
Perkin Elmer 2998 Infrared spectrophotometer
Perkin Elmer 597 Infrared spectrophotometer
VG Electronics 1035 TELETEXT Decoding Margin Meter LightBand 60 output high spec 2u rack mount Video VDA Sekonic SD 150H 18 channel digital Hybrid ch
Taylor Hobson Tallysurf amplifier / recorder ADC S8200 Carbon dioxide gas detector / m
ystem Video 1152 P
ANRITSU 9654A Optical DC-2.5G/D wavetorm monitor
ANRITSU ML93A optical power meter
ANRITSU Fibre optic chracateristic test set
VISION ENGINEERING TS3 Dynascopic microscope
RES FTDZ Dual sound unh
WILTRON 6630 B 12.4 / 20GHz RF sweep generator
TEK 2465300 Mhz 300 MHz oscilloscope rack moun
TEK 2465300 Mhz 300 MHz oscilloscope rack mount

19" RACK CABINETS
Superb quality 6 foot 40U Virtually New, Ulira Smart Less than Half Price! Top quality 19^{19} rack cabinets made in UK by Optima Enclosures Lid. Units feature full helght lockable half louvered back door, and louvered removable side panels. Fully or any configuration of equipment mounting socket switched mains distribution strip make have ever sold. Racks may be stacked side by side and therefore Overall dimensions panels to stand singly or in multiple bay

Over 1000 racks, shelves, accessories
19" $22^{\prime \prime} \& 24^{\prime \prime}$ wide 3 to 46 U high. Available from stock!!.

32U - High Quality - All steel RakCab
 fully louvered back dour of integral fans to the sub plate etc. Other features include: fitted castors and floor levelers, prepunched utility panel at lower rear for
cable / connector access etc. Supplied in excellent, slightly used conditlon with keys. Colour Royal blue. External dimensions

A superb buy at only $£ 245.00$ (G) BATTERY SCOOP - 50% off !!

BATTERY SCOOP - 50% off !!

the most amazing savings on these ultra high spec 12v DC 14 Ah echargeable batteries. Made by Hawker Energy Lid, type SBS15 featuring pure lead plates which offer a far superior shelf \& guaranteed 15 year service life. Fully BT \& 8S6290 approved. Supplied
 RELAYS - 200,000 FROM STOCK
 Save £e£e's by choosing your next relay from our Massive stocks covering types such as - Military, Octal, Cradie, Hermetlcally Sealed, Contactors, Time Delay, Reed, Mercury Hermetically Sealed, Contactors, hime Delay, Reed, Mercury YOUR NEEDS. Many obsolete types from stock. Save EEEE's
 LOW COST RAM \& CPU'S

$£ 1450$	Card is fully selectable for Expanded or Extended (286 processor
£1150	and above) memory. Full data and driver disks supplled. RFE.
¢1450	Fully tested and guaranteed. Windows compatible. E5
£POA	Half length 8 bit memory upgrade cards for PC AT XT expands
E550	memory either 256 k or 512 k in 64 k steps. May also be used to fill
$£ 1950$	in RAM above 640k DOS limit. Complete with data.
£1250	Order as: XT RAM UG. 256k. £34.95 or 512 k £39.95
£500	PECIALS
£3500	1 MB $\times 9$ SIMM 9 chip 120 ns (58.50
£3750	$1 \mathrm{MB} \times 9$ SIMM 3 chip $80 \mathrm{~ns} £ 10.50$ or 70 ns ¢11.95
£495	$1 \mathrm{MB} \times 9$ SIMM 9 chip 80 ns $£ 10.50$ or 70 ns E 11.75
$£ 1995$	4 MB 70 ns 72 pin SIMM -wlth parlty. Only £ 35.00
£75	NTEL 486-0X33 CPU £19.95 INTEL 486-DX66 CPU £59.00
£145	FULL RANGE OF CO-PROCESSOR'S EX STOCK - CALL FOR EXS
£5,650	MOTOROLA 25 Mhz 68040 (XC68040RC25M) CPU'S £59.00
£POA	shipping charges for RAM / CPU upgrades is code B
£POA	SOFTWARE SPECIALS
£1850	
¢650	NT4 WorkStation, complete with service pack 3
$¢ 775$	and licence - OEM packaged
85750	Special Price ONL Y $£ 99.00$
$\Sigma 1250$	Microsoft - Windows for Workgroups 3.11 \& DOS 6.22. Supplied
£1955	on 31/2" disks with licence \& concise documentation. £39.95
£600	DOS 5.0 on $31 / 2^{\prime \prime}$ disks with concise books c/w QBasic . Ei4.95
$\begin{array}{r} \text { £POA } \\ \text { £325 } \end{array}$	Wordperiect 6 for DOS supplied on $31 / 2^{\prime \prime}$ disks with manual E24.95

DISTEL on the web !I - Over 16,000,000 items from stock - www.distel.co.uk

ए®ா
-ELELTRLIHITS-

ALL MAIL \& OFFICES Open Mon - Fri 9.00-5:30 Dept WW, 32 Biggin Way Upper Norwood

LONDON en Mon - Sat 9:00 - 5:30 South Norwood
On 68A Bue Rout

ALL E ENQUIRIES 0181679414

FAX 01816791927

In his previous corner, John Watkinson looked at how loudspeakers can be modelled as electrical equivalents. In this one, he analyses the behaviour of real speakers based on the model.

The moving-coil loudspeaker is mechanically a simple mass, spring and damper system. But these characteristics are reflected into the load seen by the amplifier, making it complex.
Figure 1a) shows the equivalent circuit derived in my last article. It consists of a damped tuned circuit fed by a series resistance which is actually the coil resistance.
In most cases the output impedance of the amplifier will be zero because the amplifier uses heavy negative feedback which makes it a voltage source. As a result the coil resistance is essentially in parallel with the damping resistance.
In practice the damping effect of the coil resistance may be somewhat greater than the mechanical damping and so the equivalent circuit can be simplified to that of Fig. 1b).
It is important that the resistance of the cables between the amplifier and the speaker is low enough that the effective damping resistance isn't significantly changed. This is the only attribute a loudspeaker cable needs.

Boxing in

When a drive unit is mounted in a sealed enclosure, the enclosed air acts as a further stiffness in parallel with the stiffness of the drive unit. In other words the compliance seen by the moving cone goes down. This is modelled by Fig. 1c).
The result of the enclosure is that the fundamental resonant frequency of the cone goes up. Figure 2a) shows how this can be measured. A signal generator and a $1 \mathrm{k} \Omega$ resistor provide a nearly constant current source and the impedance can be plotted by using the expression shown. Of course modern computerised speaker testers can do this with a few instructions and plot the result automatically.
Figure 2b) shows the result for a medium sized woofer. The impedance peaks sharply indicating the value of the resonant frequency. This is as
might be expected from a tuned circuit.
Above the resonant frequency, the mass component in Fig. 1c) dominates. Clearly, the impedance of the capacitor falls at $6 \mathrm{~dB} /$ octave. As there is a series resistor R_{e}, the voltage across the capacitor, representing the cone velocity, also falls at $6 \mathrm{~dB} /$ octave. Because radiation is proportional to frequency, the result is that the two effects cancel and the frequency response under mass control is uniform.
Below the resonant frequency, compliance dominates. As the frequency falls the inductors in Fig. 1c) progressively shunt away cone velocity so that it goes down below resonance at $6 \mathrm{~dB} /$ octave. Now the radiation characteristic compounds the effect so that the frequency response falls at 12dB/octave.

Phase considerations

Under mass control, the velocity experiences a 90° phase lag whereas under compliance control there is a 90° phase lead. At resonance, the phase angle is zero. Around the resonant frequency the speaker undergoes a phase reversal. The sharpness of this reversal is a function of the Q -factor of the resonance.

Clearly, if this phase reversal is within the audio band it will do nothing for the time response of percussive transients. In other words a loudspeaker displaying resonant behaviour is not reproducing the input waveform, but is instead stamping a footprint of its own on the reproduced sound.
There are three approaches to the problem. One is to pretend it doesn't matter. Another is to make the fundamental resonant frequency so low that it is below the audio band. This is entirely feasible, but is does require physically large enclosures to avoid the compliance of the air spring becoming too low.
The third approach is to build an active speaker in which the resonant behaviour of the drive unit is cancelled
in amplitude and phase by an equal and opposite electronic transfer function. The low frequency roll-off of the speaker can then be set electronically below the audio band.

Fig. 2. Measuring resonant frequency, a).
Cone velocity is proportional to back emf, e, and

$$
e=V_{S}-i R_{e}=V_{S}-\frac{V_{R}}{1000} R_{e}
$$

Graph b) shows the peak in response at resonance.

(a)

AUDIO DESIGN

Fig. 3. Equations, a), showing that Q factor of speaker driven by amplifier is different from measured Q, Fig. 2.

$$
\frac{1}{Q}=\frac{1}{Q_{T}}+\frac{1}{Q_{E}}
$$

In the above, $1 / Q$ is total $Q, 1 / Q_{T}$ is mechanical Q from Fig. 2 and $1 / Q_{E}$ is electrical Q. From Fig. 1, electrical Q is,

$$
\begin{aligned}
& \frac{2 \pi_{o} M R_{e}}{(B l)^{2}} \\
& \therefore \frac{1}{Q}=\frac{1}{Q_{T}}+\frac{(B l)^{2}}{2 \pi f_{o} M R_{e}}
\end{aligned}
$$

Graph b) shows how Q factor affects low-frequency response.

Several circuits have appeared in this magazine from time to time that do just that and the results are well worth the effort.
The arrangement of Fig. 2 is designed to show the resonance clearly. Because a current source is used, the Q factor measured there is not the Q factor which will result when driven by an amplifier. The electrical Q due to the damping of the coil resistance appears in parallel with the Q of Fig. 2.
Figure 3a) shows how the electrical Q factor
is calculated once the resonant frequency is known. Figure 3b) shows the effect of different Q factors on the frequency response

No more juggling $B I$

In a traditional passive speaker, the designer had to juggle the $B l$ product to avoid an obviously 'honky' high Q response, but also to avoid a premature roll-off of response due to a low Q factor.

The efficiency of a loudspeaker goes as the
square of its $B l$ product. Nowadays, using rareearth magnets, some pretty impressive $B l$ products are now possible as a matter of straightforward design, resulting in highly efficient drive units.
Unfortunately the designer of the passive speaker can't use them. Such speakers have very low Q and suffer premature roll-off. However, this is not a problem in the active speaker, which simply equalises. There is thus a case for designing drive units specifically for active speakers. In my experience, commercially available drive units designed for passive use are seldom optimal for active applications.
Fortunately, designing a drive unit for an active speaker is easy, because the exact value of the parameters is not particularly important. When the parameters are being electronically equalised, what matters instead is consistency from one unit to the next.
By using a small enclosure, the compliance of the air spring dominates and this swamps variations in drive unit compliance. Moving mass and cone area will not change, nor will $B l$ or R_{e} and so an equalised speaker should not go out of adjustment as it ages.

Time saved designing the drive unit can be used to optimise other parts of the system.

"We never expected PCB Layout power

 at this price..." EASY-PC FOR WINDOWS the top selling advanced printed circuit board and schematic design system brings you a simple and intuitive user interface with a set of powerful features normally only found in the most expensive packages.- True Windows graphical user interface
- Easy to learn and use
- Full connectivity between SCM and PCB
- Full multi-level Undo and Redo
- Multi-Sheet project based design
- 0.1 Micron system resolution
- Unlimited layers, electrical and non-electrical
- Uses technology files for 'fast start' designs
- OrCAD and IMT EDA Workbench schematics netlist import
- Intelligent circuit copy and paste within and across designs
- Cut, copy and paste to external Windows applications
- Extensive design rules and connectivity checking / reporting
- Features a comprehensive set of libraries including SMT devices
- Automatic links to our Analogue, Digital \& Electromagnetic simulators

Number One Systems

The Electronics CAD Software Specialists
Visit our web site at www.numberone.com or Email us on sales@numberone.com or call sales on 01684773662 or fax 01684773664

- Runs under Windows 95/98 ${ }^{\text {TM }}$ and Windows $\mathrm{NT}^{\text {TM }}$

Sightmagic Ltd, Oak Lane, Bredon,
Tewkesbury, Glos, GL20 7LR, UK

- Available as Unlimited, 2000 pins, 1000 pins and 500 pins variants

Number One Systems and Easy-PC are trademarks of Sightmagic Ltd All other trademarks are acknowledged to their rightful owners.

Save over $£ 80$

Reader offer

 1GHz spectrum analyserEasy to connect and use
The adaptor connects to the oscilloscope via two BNC connectors using true 50Ω impedance for minimal vswr. A calibration button allows a standard -30 dBm 50 MHz marker signal to be superimposed for precise amplitude and frequency checks.

TSA1000 1GHz spectrum analyser

Designated the TSA1000, this spectrum analyser is in the form of an adaptor that converts any standard oscilloscope into a 1 GHz spectrum analyser.
The instrument has a dynamic range of 70 dB with a typical accuracy of 1.5 dB . Its frequency range is from 400 kHz to over 1 GHz , and its bandwidth - i.e. selectivity - is 250 kHz .
A built-in crystal-controlled marker provides a precision means of frequency and amplitude calibration. The centre frequency can be adjusted over the full $0-1 \mathrm{GHz}$ range using a ten-turn control, and is displayed on a large 3.5-digit liquid-crystal display.
Scan width is fully variable between 10 MHz and 1 GHz , and the scan rate can be set anywhere between 10 Hz and 200 Hz .

The TSA1000 is supplied with an operating manual describing the basics of spectrum analysis and EMC measurements. Its normal price is $£ 581$ including VAT in the UK. Electronics World readers can obtain it for just £499 - including VAT and carriage.

TSA1000 key specifications

Frequency range Centre adjust Bandwidth Meter accuracy
Calibration marker

Scan width
Scan speed
Amplitude
Input impedance
Amplitude range
Amplitude scale
Amplitude linearity
Amplitude flatness

Max. input level
Calibration marker

400 kHz to 1000 Mhz 0 MHz to 1000 MHz 250 kHz (-6 dB typical) 1% of reading +1 MHz 50 MHz fundamental, harmonics to 1 GHz 1 MHz to $100 \mathrm{MHz} /$ div 0.5 ms to $35 \mathrm{~ms} / \mathrm{div}$

50Ω

-70 dBm to 0 dBm nominal Logarithmic, $10 \mathrm{~dB} / \mathrm{div}$ Typically $\pm 2 \mathrm{~dB}$ Typically $\pm 1.5 \mathrm{~dB}$
4 MHz to 1000 MHz
$+10 \mathrm{dBm}$
$-30 \mathrm{dBm} \pm 1 \mathrm{~dB}$ at 50 MHz

Oscilloscope requirements
Oscilloscope mode X-Y mode, DC coupling; bandwidth not critical
X-Input sensitivity
$0.5 \mathrm{~V} / \mathrm{div}$
Y-Input sensitivity
$0.5 \mathrm{~V} / \mathrm{div}$

Designed and manufactured to IEC1010-1 +5 to $+40^{\circ} \mathrm{C}, 20 \%$ to 80% RH operating range $260(\mathrm{~W}) \times 88(\mathrm{H}) \times 235(\mathrm{D}) \mathrm{mm}, 1.4 \mathrm{~kg}$
Runs from $220 / 240$ or $110 / 120 \mathrm{~V}$ at $50 / 60 \mathrm{~Hz}$ - Full operating ranges $198-264 \mathrm{~V}$ or $99-132 \mathrm{~V}$ - Power consumption 8VA max

Use this coupon for your order

Please send me:
TSA1000 Spectrum analyser(s) at the fully-inclusive price of $£ 499$.
Name:
Address:

Tel no
Total £
Cheques payable to REED BUSINESS INFORMATION
Or debit my visa, master, access or switch card
Card type:
Card No:
Expiry date:
Switch iss no

Please post this order to TSA1000, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Overseas readers can still obtain this discount but details vary according to country. For more information, write or e-mail jackie.lowe@ rbi.co.uk. We endeavour to dispatch as soon as possible, but please allow 28 days for delivery.

Written by Nick Beer for service engineers, enthusiasts and students

This is the definitive practical guide to faultfinding, troubleshooting and servicing satellite television equipment, both indoors and outdoors. It will take you through all areas of satellite television system servicing from the simplest fixed dish to fully motorised systems. From PAL to Mac to MPEG all contemporary systems are covered.

Satellite TV systems have been installed in a wide variety of locations, using a bewildering range of equipment. That equipment is beginning to need maintenance and repair. To cope with the volume and variety of work, Nick Beer has written the first guide to satellite TV that concentrates on what to look for and what to do when it goes wrong. This book is up to date and crammed with real-life experience - not theoretical data or manufacturer's ideal specs.

Nick Beer has already written the best-selling Servicing Audio and Hi-fi Equipment and is a technical correspondent for many UK and international journals such as Television. He also works as an engineer and teaches satellite servicing to technicians.

- A practical guide to a new and important area for service engineers
- Covers indoor and outdoor equipment
- Written by an experienced author, teacher and engineer

Servicing Satellife TV Equipment

Contents

Introduction • Tools and test equipment \bullet Dishes and feeds - De-polarisers and low noise blocks \bullet Distribution systems - Actuators and positioners - Tuners and tuning systems Video processing circuits \bullet Audio processing circuits Power supply circuits • System control circuits \bullet RF amplifiers and modulators \bullet Decoders and descramblers \bullet MPEG Digital Television System - Repair techniques Appendix - Reference data - Appendix 2; Safety BEAB and BS415: $1990 \bullet$ Appendix3; useful addresses.

This 224 page hard backed book contains 50 photographs and 50 line illustrations - price £34.99

** Price includes delivery and package **
Refurn to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following title:

Servicing Satellite TV Equipment

Total \qquad
Name
Address
\qquad

Postcode
Telephone
Method of payment (please circle)
Access/Mastercard/Visa/Cheque/PO
Cheques should be made payable to Reed Business Information
Credit card no
Card expiry date
Signed
Please allow up to 28 days for delivery

Me. RAPIO Professional ELEctrowic TEST AND MEASUREMENT

SSIILescopis
Mp
TEETRONN(
TEKR
TEETTOONX
ONIXTM
TEWTOMNX
(e)
Could
Stemal centhators
(exter
Mose
MARCONIT FSO221
MARCONNT Foile
Flile
$\mathrm{CH}_{\text {cich }}$
400
Spectaun amalysens
TETM

HEST EOUIPMENT

86 Bishopsgate Street, Leeds LS 1 4BB
Tel: (+44) 113243564 Fax: (+44) 1131426881 ALL EQUIPMENT SUPPLIED WITH 30 DAYS WARRANTY - PRICES PLUS CARRIAGE ANDVA

CIRCLE NO. 128 ON REPLY CARD

家 VALVE COMPANY

If you need Valves/Tubes or RF Power Transistors e.t.c.
 then try us!

We have vast stocks, widespread sources and 33 years specialist experience in meeting our customers requirements.

Tuned to the needs of the Professional User

Chelmer Valve Company, 130 New London Road, Chelmsford, Essex CM2 ORG, England
8544-01245-355296/265865 Fax: 44-01245-490064

As I pointed out in last month's article, there are several advantages to staying with a mousetype device. The Digital Pro mouse uses a dedicated mat with a closelyspaced line grid to generate the digital signal. The grid is scanned with two fibre-optic coupled sensors, one at the top right and one bottom centre of the underside of the mouse.
Half of the grid on the mat has vertical lines and the the other half has horizontal lines. One sensor only generates a signal from any side-to-side movement and the other only generates a signal from up-and-down movement. With this method a resolution of $525 \mathrm{dot} /$ in can be achieved - an accuracy significantly better than most mechanical-optical mechanisms, and with impeccable consistency and reliability.
The digital system continues to func-

> Like many engineers using CAD on a daily basis, Rod Cooper soon became frustrated with the conventional mouse. So he set out to find a better solution. In this second article, Rod looks at a novel trackball and a high-performance graphics tablet. But first, the mouse with no moving parts.
system; returning the digital mouse to given position on its mat brings the screen pointer to exactly the same position time and time again - provided you don't lift the mouse off the surface. If you take the digital mouse off its mat, you will find that its motion is relative, just like a conventional mouse.
One benefit of a small but fully utilised mat is that it can be placed in front of the keyboard without taking up much room. Also, I tried it with one of the lap-mounted mouse-mat pads designed to relieve muscle stress and found the small size a distinct advantage. There is more on mouse ergonomics in last month's article.

Details are given of how to produce a new mat should the one supplied wear out. This overcomes one of the snags of previous digital mouse designs, which involved the purchase of a new mat.
In use, the screen pointer should be roughly centred, then the mouse should be moved to the centre of the mat to start work. The maximum vertical movement of the device is determined by the distance apart of the sensors, and is about 70 mm total.
The maximum horizontal movement is determined by the dimensions of the pad, about 100 mm . The overall movement can be configured by the driver software settings, and some experimentation is needed to get the configuration right for your own personal preference, as with any mouse.

Click-selectable modes

Although it uses the standard Microsoft mouse driver, this mouse can be operated in three modes. It also has a third, middle button mounted just right of centre.
In standard mode, the speed or gearing between movement of the mouse and pointer is the same as for a conventional mouse. This is useful for general use on word processors, spreadsheets, etc.
The second mode, which is accessed by pressing the middle and the right buttons together for one second, is intended for more detailed work. In this mode, the mouse needed to move more for the same pointer movement. I found this useful for some aspects of pcb-CAD, like wiring up the schematic symbols.
To get out of this mode, you simply press the middle button for more than one second. In practical terms, it is very easy to enter and leave these two modes to do different types of work inside one program. The main mouse

Look underneath and you will see no rubber ball. The two fibre optic sensor points can be seen at the bottom and top.
control is still held by the Windows driver menu so you can still adjust overall 'speed' of the pointer, etc. to your liking.
The third mode, accessed by pressing the middle and left buttons for a second, emulates a joystick - insofar as this is possible with a mouse. The literature claims that joystick mode is good for playing games like Doom, Quake, etc.
The middle button performs another function, that of a generator of doubleclicks. If you have a program that requires many double clicks as part of its normal operation, like the wiring-up and manual tracing in Easy-PC, then this feature is a practical addition.

In summary

This digital mouse has no intrinsic wear mechanism and performs consistently without cleaning. Where CAD and graphics are concerned, being able to switch rapidly from standard to graphics mode and back again is useful, as is the double-click feature. Although the price is more than an

Review subjects

Digital Pro mouse. Supplier of the Digital Pro ball-less mouse is Verkonix Ltd, tel/fax 0121354 5569. Price $£ 25$.

Easypen. Produced by Genius-Kye, the Easypen graphics tablet was reviewed last month and is supplied by Laton Technology, phone 01424422562 , fax 01424423460 . Price $£ 29.50$.

PenPartner. Made by Wacom, the PenPartner graphics tablet is supplied by Computers Unlimited, tel 0181358 5857, fax 01812003788 . Price $£ 74.95$.

Tabby 2. Maker and supplier of the Tabby 2 graphics tablet reviewed last month is Micrograf International Ltd, tel 01818383750 , fax 0181838 3650. Price $£ 49.95$.

Trackman Marble FX. Logitech manufactures the Trackman Marble FX trackball, which is available from PC World. Price $£ 49$.

Increased

 productivity. As mentioned in last month's article, I experimented by replacing the two push buttons on a graphics tablet pen with a pistol grip designed to be used in the left hand, as shown. This made using the tablet much easier and faster.ordinary mouse, its longer life should offset this.

Supplied by Verkonix Ltd, tel/fax 0121 3545569 at $£ 25$ in the UK or by Good Systems Inc in the US, tel. 1408739 4713, fax 14087394702.

Trackman Marble FX

Logitech has devised an interesting solution to the problems that beset the conventional trackball with a technique it calls Marble.
Shown on the first page of this article, the Marble FX trackball replaces the revolving spindles and interrupters found on conventional trackballs with an all-electronic system. The only moving part is the ball itself, which rests by gravity on a three-point suspension.
The 52 mm diameter ball is covered in numerous randomly-spaced black dots. These dots and the background are designed to give maximum contrast to infra-red light. The trackball is illuminated from within the trackball body
by two infra-red leds, via a window, and the reflected light focussed by a mirror/lens system onto a sensor. This sensor consists of 93 small photocells, and the output is passed to a microprocessor.

The cells work independently in a neural network and the average displacement of the dots from all these cells, caused by rotation of the trackball, is computed.
The image is sampled at 1 kHz and any shift between successive samples reported to the microprocessor. If there is any dirt or scratches on the trackball, or on the window to the optical system, the collective calculation from this system is only marginally affected. This will be below the level of perception of the user - i.e. you will notice no error in operation. At this rate of sampling the response to movement is as good as any mouse or tablet.

To protect the dot array, the trackball is given an infra-red transparent coating. This gives the trackball a smooth glossy finish that is easily cleaned. The

ball is readily removed from the body of the device by gently pressing it out. This also exposes the optical window for cleaning. Dirt is simply wiped off, which, compared to a conventional trackball, is very simple.
The trackball can be operated by lightly gripping the ball between thumb and forefinger - or between thumb and the first two fingers. A glance at the photo will show this design is intended for right-hand use.
The ball is so freely suspended that it can also be operated by just the thumb or one finger. Very little effort or grip is needed so operation is very relaxed, and knowing that there is not going to be any jerkiness or other malfunction helps to maintain this. Weighing 260 g , the base of the trackball rests solidly on the desk.

Marble $F X$ can be connected as a direct replacement for a mouse on a serial port or a PS/2 socket, so the existing Windows mouse driver may be used. You will have normal pointer control and left and right clicks covered by the trackball's lower left and right-side switches respectively. But in this mode you will not take full advantage of the extra features provided by Logitech.
The device has four buttons in all, and they have an extensive range of configurations if you use the software provided. This comes on two 3.5 in disks and is easily installed. Although advertised as a Windows 3.1 and 95 product, there is a readme file in the driver software describing Windows 98 and NT operation.
With this software, the buttons can be configured for such things as scrolling, escape, drag-lock, the F1 to F12 functions, and many more, as well as controlling the pointer style, speed and acceleration.
Also included are two aids to quicker operation, namely 'HyperJump' and 'CyberJump.' Basically, both of these bring together eight of the most commonly used functions on the screen in a small window. These functions include for example closing and scrolling. In this way, you don't have to travel to various parts of the screen to execute the commands. CyberJump is used for working the Internet, and HyperJump for Windows operations.

I checked out the effects of heavy grease and dirt contamination from the hand and the system did not falter. This bears out Logitech's claim to have overcome the dirt problem.

In summary

Logitech's Marble FX trackball is a well-constructed device. A lot of effort has clearly gone into the ergonomics of this design, successfully in my view. Operation is smooth and precise and noticeably consistent when compared to a conventional trackball.
If you currently use a trackball, this is the natural up-grade. Note that other design styles are available from Logitech using the Marble technology.

Price; £49, supplier; PC World.

PenPartner

Made by Wacom, PenPartner measures 182 by 205 mm and has an active area of 96 by 128 mm .
The tablet part is noticeably slimmer than the other tablets reviewed, and heavier than comparably-sized products, weighing in at 450 g . The weight gave it noticeably more stay-put stability when used with a desk-top setup.
Driver software for Windows 3.1, 95 and NT comes on a cd and installation was easy. The pen is electromagnetically coupled and has a range of about 10 mm . The resolution is 1000 line/in.
The product comes with a very brief installation guide and a small booklet describing the tablet's capabilities. There's also a spare nib for the pen.

Pressure-sensitive and cable-free pen

This digitising tablet represents the next level of sophistication in the review, the pen being both pressuresensitive and cable-free. The pen is self-powered and does not require batteries.

The body of the pen is shaped to give a waist where the fingers go, with extra thickness further up the pen, where it is about 11 mm diameter. I found this design very comfortable to work with. A rocker-type switch on the barrel can be configured to give right, middle, left single or double-click, or keyboard controls. To place the pen out-of-range, a free standing inkpot-type pen holder is provided.

The combined left switch and pressure sensor is in the tip of the pen, so pressing on the tip gives the left-click, and pressing harder gives a thicker line, more intense colour, or both, provided the application software will support this mode.
The reverse end of the pen has an eraser built in, so you do not need to select the erase function from the pro-
gram, you simply turn the pen round. With pressure-sensitive erase, it is possible to create shading effects. The eraser and pressure tip each provide 256 levels of pressure, and both features can be independently programmed from the configuration menu to give the pen a soft or hard feel.
For the pressure features to be of use, the application program has to have this control built in, so this tablet is available either on its own or bundled with special editions of a photo-editing program and a paint-type program at nominal extra cost.
I tried out the programs provided and the system worked well. A further touch of realism is provided on the tablet surface, which comes close to resembling the feel of pen on paper. Of the tablets reviewed, this felt the most natural when used for graphics.
With a typical pcb-CAD program, the tablet performed very much like its non-pressure sensitive cousins, with good positive action of the left and right clicks from tip and barrel switches.
The pc connection is different from that on the other tablets reviewed. On an AT machine, an in-line adaptor fits between the keyboard socket and the keyboard, and an additional lead is plugged into the 9 -pin serial port, i.e. two connections to the pc.
On a machine with a PS/2 port, the adaptor fits in between the PS/2 port and the mouse, the extension going again to the 9 -pin serial port. A single lead goes to the tablet and is permanently cabled. A led on the tablet shows that this set-up is working.
The tablet co-existed with the mouse,

but if you wish, you can configure it to replace the mouse as the pointing device.

In summary

PenPartner performed well with pcbCAD. No pcb-CAD program that I am aware of is pressure-sensitive, but as I pointed out in the introduction, if you use your pc for graphics as well as pcb-CAD, or if the pc is shared with another person in your company or household using graphics applications, it would make good sense to opt for this type of tablet.
A lot of design effort has clearly been expended to make this tablet act and feel like pen and paper and in this respect it is successful.

Supplier; Computers Unlimited, tel. 01813585857 fax 01812003788 , email general@unlimited.com. Prices are $£ 74.95$ for PenPartner, or $£ 84.95$ for PenPartner bundled with pres-sure-sensitive versions of Kai's Photo Soap 1.0SE and Dabbler 2.0SE.

PenPartner's

 write and erase functions are both pressure sensitive and adjustable via software.

PenPartner's cable-free and pressure-sensitive pen gives it more sophistication.

- Genuine, professional EDA software with no limitations! - and you can afford it!
- EDWin NC comes from Visionics: one of the longest established, most experienced producers of professional EDA systems, so it's fully proven in professional work.
- Now you can have this best-selling non-commercial version of the software at just 50% of the normal price, with no limits in its capabilities.
- It does just about everything you could want!

Schematics, simulation, PCB layout, autorouting, manufacturing outputs, EMC and Thermal Analysis.
Many more advanced features are available and it runs in Windows 3.x, 95,98 or NT.

- Where's the catch? It's for non-commercial use, but companies may order for evaluation purposes. Prices start from just $£ 59.00$ for the basic system, up to only $£ 285.00$ for the full system including all available modules!
 Don't forget - Phone Today for Your 50\% Discount!

- EDWin NC Basic: Schematics, PCB Layout, Manufacturing Outputs, Max. 100 Component Database, 500 Device Library.
- EDWin NC De Luxe 1: Basic + Professional Database and Libraries, Arizona Autorouter.
- EDWin NC De Luxe 2: De Luxe 1 + Mix-Mode Simulation, Thermal Analyser.
- EDWin NC De Luxe 3: De Luxe 2 + EDSpice Simulation, EDCoMX Spice Model Generator, EMC and Signal Integrity Analysers.
Plus Postage \& Packing UK £5.00; Rest of World $\mathbf{£ 1 0 . 0 0}$ (only one charge per order)
Order hotline: +44 (0)1992 570006 Fax +44 (0)1992 570220 E-mail: swift.eu@dial.pipex.com Please Visit Our Web Site http://www.swiftdesigns.co.uk
swift Eurotech ltd

Gyril Bateman presents a variety of sine-wave generation alternatives found on the net - including digital options.

Iam currently designing a piece of equipment that needs a compact and stable sine-wave generator operating at low audio frequencies with less that $1 \% \mathrm{~V}$ distortion. For the development work, I have been using a separate generator, but eventually the equipment will need its own oscillator.
This generator has to drive a load with a very high capacitance, hence it needs a low output impedance. Since the instrument is portable, battery consumption is important too. I had some ideas how I could achieve these targets, but I decided to see if there were any interesting alternatives on the Internet. Since my workshop's elderly, audio generator also needs updating, I decided to broaden my search to include very-low-distortion sine-wave oscillators.

Sine wave generators

Perhaps the most difficult part of any sine-wave generator is ensuring a constant amplitude output. Often this is
provided by a feedback AGC loop, which might be based on thermistors, lamps with low filament mass, variable resistance FET circuits or clipping diodes.
To stabilise amplitudes at the lowest

frequency needed, these control methods invariably use long time constants. Amplitude bounce on changing frequency is then almost inevitable. If the circuit has insufficient positive feedback, oscillation start-up

Fig. 1. Described as easily tuned, this filtered square-wave approach to sinewave generation can be tuned over a four to one range of frequencies by adjusting a single resistor.
Distortion is less
than 1%.

Fig. 2. Eight times over-clocking, this simple circuit produces a very low distortion sine wave at any one of 128 discrete frequency steps between 1 kHz and 25 kHz . All harmonics are more than 80 dB
can be erratic. Too much feedback on the other hand increases distortion.
A popular alternative way of obtaining a nominal 1% distortion, constant amplitude and stable sine wave is to remove harmonics from a square wave using either low-pass or bandpass active filter circuits. A constant amplitude, stable frequency square wave is extremely easy to generate without using AGC loops.

A Burr-Brown application note ${ }^{1}$ describes in detail how this filtering can easily be provided using their dedicated UAF42 integrated-filter circuit. An
easily obtained Q of 10 filter attenuates the third harmonic by 28 dB . This ensures that the filtered amplitude of the third harmonic is some 40 dB below the fundamental, resulting in a sine-wave output having a nominal 1% distortion. Higher filter circuit Qs can provide much lower distortions.
Filter 42 is part of the Burr Brown 'FilterPro' software package, which can be quickly downloaded. Dedicated to designing filters using the UAF42 integrated circuit, Filter 42 simplifies this design task.

A second filter design software

Fig. 3. This unusual 1% distortion LC oscillator performs up to radio frequencies. Losses in the $\mathrm{L}_{1} / \mathrm{C}_{4}$ tank circuit are cancelled using the Max436's ability to generate a controlled negative resistance.

Wireless design

Wireless design online is a meeting place for readers interested or involved in the design of wireless systems. It is strong on tutorial articles, and has recently covered antenna designs in some depth. Perhaps of most interest to new visitors, is the easy access to its archives of past topics this site provides.
I 'signed up' with this community some months ago. Since then I have received regular e-mails with a synopsis of its latest news and topics, together with useful references to other sites.

Wireless Design Online is at http://news.wirelessdesignonline .com

program called Filter2, completes the FilterPro package. Filter2 is used when designing Butterworth, Chebyshev or Bessel filters in the Sallen \& Key and MFB filter styles.
This filtered square-wave approach is excellent when a fixed frequency sine wave is needed. Change of oscillator frequency requires a corresponding change of filter frequency, which can be difficult.

Filtered square-wave oscillators
One of the first and oldest application notes to catch my attention provided a simple method of varying the filter's frequency.
Dating from March 1971, Linear Brief 16 from National Semiconductor ${ }^{2}$ describes two very simple 1% distortion circuits. Both can be continuously tuned over a $4: 1$ frequency range using only a single variable resistor. They provide stable amplitude outputs with change of frequency, avoiding the bounce often associated with slow AGC loops and common in many designs.
These circuits use a variable-
resistance $R C$ active filter circuit to remove harmonics from a square wave or clipped sine wave, leaving only the fundamental with noise and distortion. Both designs have feedforward compensation to speed up the relatively slow op-amps then available. This compensation method could be dispensed with however using modern op-amps.
The circuit shown, Fig. 1, differs from the usual arrangement used with filtered square waves, where the square wave oscillator determines the frequency. This circuit uses one op-amp as the active frequency determining filter. The second forms a comparator to square up the sine-wave output from the first stage.
Changing the filter frequency changes the frequency of the sine wave and the square wave in the circuit shown. Both waveforms are available for output.

Low THD to 25 kHz in 128 steps Another way that filter frequency can be changed is described in the "Three ICs produce pure sine waves' application note from Maxim. ${ }^{3}$ The circuit described produces very low distortion, variable frequency sine waves. Although the output frequency is not continuously variable, it does provide 128 discrete frequency steps, from 1 to 25 kHz , and at much lower distortion than the circuit of Fig. 1.

An eight-channel $D G 508$ analogue multiplexer is driven from the $\mathrm{Q}_{\mathrm{acc}}$ outputs of a 74 HCl 63 counter. The DG508 generates an eight-times oversampled staircase approximation to a sine wave. This is filtered and smoothed by the MAX270 circuit of two second order, continuous-time Sallen \& Key filters, Fig. 2.

The MAX270 filter cut-off frequency depends on the logic levels at its D_{0-6} inputs. Tying these all to ground as in the drawing sets the filter cut off to 1 kHz . This makes the input clock required 8 kHz .
With eight times oversampling, the third harmonic is 50 dB below the fundamental, reducing the degree of filtering needed. The first significant harmonic is now at seven times the fundamental frequency. Having been filtered, all harmonics in the output stage are more than 80 dB down, resulting in a low distortion, low noise, sine wave.
These two quite different examples illustrate how filtering a square wave can be extremely useful at audio frequencies. When higher frequencies are required, resonant inductor/capacitor circuits provide a practicable alternative.
At the heart of many high-frequency sine-wave oscillators is a parallel-

Fig. 5. Described as an ultra-low-THD sine-wave oscillator, this version of the Wien bridge claims to produce less than 5ppm - i.e. 0.0005% - distortion and noise.

resonant $L C$ tank circuit. A gain stage controlled by a feedback AGC loop, is used to overcome losses in the $L C$ tank circuit. But there is another way.
Due to resistive losses in the capacitor and inductor, unaided the oscillations in the $L C \operatorname{tank}$ circuit would die away. Application of a negative resistance, equivalent in value to these resistive losses, should allow oscillation to continue indefinitely. Negative resistance can be synthesised quite easily using a transconductance amplifier.
The MAX436 and its companion MAX435, are high speed, wideband transconductance amplifiers having true differential, high impedance inputs and a current output. ${ }^{4}$ Their unique architecture provides accurate gain control without using overall feedback, eliminating closed-loop phase shifts.
A single gain-control resistor across the two secondary Z inputs controls the
circuit's gain. The MAX435 integrated circuit has a 275 MHz bandwidth and 53 dB CMRR at 10 MHz . While it has a low noise figure of $7 \mathrm{nV} / \mathrm{NHz}$ at 1 kHz it also provides an $850 \mathrm{~V} / \mu \mathrm{s}$ slew rate.
The application example shows the circuit arranged as a 9.3 MHz oscillator with a 50Ω output, producing less than 1% distortion - mainly third harmonic. Higher oscillation frequencies are possible, provided a ground plane layout with short component connections is used, Fig. 3.

Generating waveforms digitally

When your circuit already incorporates a control processor, digital waveform generation becomes most attractive. In addition to being cheap, digital methods can generate accurate sine waves - or any other desired shape of wave.
Digital wave-shaping generators access a look-up table of X, Y coordinates held either in volatile or non-

Site references

1. Application bulletin AB058.PDF
2. Linear Brief 16
3. Three ICs Produce Pure Sine waves, A0415.PDF
4. LC oscillator has 1% THD, A1616.PDF
5. Micro Linear Application note 14
6. Linear Technology Corp., LT1115
7. Application Note 67, AN67.PDF
http://www.burr-brown.com
http://www.national.com http://www.maxim-ic.com http://www.maxim-ic.com http://www.microlinear.com http://www.linear-tech.com http://www. linear-tech.com
volatile memory. These X, Y co-ordinate values are passed in sequence to a digital to analogue converter. Stepping through this coordinate table step by step can generate any desired waveform.
Microlinear provides two programmable digital generator integrated circuits, namely the ML2035 and ML2036. These have built-in 512point sine look-up tables, dedicated to producing an accurate sine waveform. Both use a 16 -bit serial data-word input.
The chips are intended to generate low-cost but accurate tones for telecommunications use and modem applications. Housed in an eight pin package, the ML2035 includes this look up table, an eight-bit d-to-a converter and a smoothing filter, Fig. 4.
Originally intended for use under microprocessor control to provide multiple frequencies, they can be used without a processor to generate a single frequency. An application note ${ }^{5}$ gives details how to generate accurate 50,60 , 400 Hz and 1 kHz sine waves, at around 1% distortion, using only simple logic circuits. This distortion could be further reduced using external filter stages.
Modern digital waveform generators can produce the widest variety of wave shapes. When the lowest possible distortion sine wave at audio frequencies is needed however, many designers still favour the Wien bridge circuit.

And back to Wien

I was particularly intrigued by two
Wien bridge low-distortion circuits. The first a low-distortion, variable frequency generator, using only four integrated circuits, claimed less than 5ppm, or 0.0005% distortion at 1 kHz . The second circuit, designed for 10 kHz , was much more complicated, needing ten integrated circuits. Its distortion though is claimed to be 'unmeasurably low.'
An 'ultra-low THD oscillator' is described in Linear Technology's data sheet for the LT1115 op-amp. ${ }^{6}$ Comprising LT1022, LT1115, LT1010 and LTIOO6 amplifiers, this circuit used a Vactec 5 Cl0 pre-packaged LED/LDR combination in its amplitude control circuitry.
While claiming less than 5ppm distortion, apparently the circuit's actual distortion measurement in practice was limited by the resolution of the Audio Precision test set used, Fig. 5.

99.9999\% pure

Application note 67 also from Linear Technology' details 'An ultra-pure oscillator' by Dale Eager. This 10 kHz circuit was designed as a test source for use when calibrating 16 -bit analogue-todigital converters. Its distortion is stated
as beyond available measurement capability, probably into the parts per billion range, or much less than 0.0001%.
The key to this exceptional performance is the 'super gain block', identified as S_{1} and S_{2} in the diagram. These gain blocks comprise an LT1007 with two LT1230 separated by a passive $C R$ bridged-T phase-correction network, Fig. 6.
Unity gain stable, this composite super gain block has an open-loop gain of 180 dB at 10 kHz . This suggests that the Wien bridge distortion should be in the parts per billion range, Fig. 7.
Readers interested in following up this approach should download a copy of application note AN67. This 88-page 1.8Mbyte download covers many topics. The oscillator circuit will be found on pages 62 to 65 . Readers not having Internet access can request the printed copy from Linear Technology.

Which one did I choose?

Having explored these options, just what method did I finally choose for my design ?

Fig. 7. Detail of a 'super gain-block' as used for Figure 6. This combination provides a 180 dB open-loop gain block that is unity gain stable at 10 kHz .

PASSIVE AND ACTIVE COMPONENTS

Connectors and cabling

Fast connectors. SpeedPac from Siemens is a connector system for use with high speed data transfer up to $2.5 \mathrm{~Gb} / \mathrm{s}$. This system has been achieved without the use of extra pins, which have in the past required greater insertion forces. A clamp design opens the connector to allow insertion of a daughter board, a lever then closing the connector. There are no male and female contacts; the design is that of a beam-on-pad type using only one spring-loaded contact pressing on the daughter card contact pads and those of the backplane.
Quiller Switches Ltd. Tel., 01202 436777; fax, $01202421255 ; \mathrm{e}$-mail, sales@quiller.com; web,
www.quiller.com.
Enq no 501

Data converters

16-bit a-to-ds. Crystal analogue-todigital converters from Cirrus Logic, namely CS5521/23, minimise the need for external buffers and registers. Each has a low-drift, chopper-stabilised amplifier, a multichannel multiplexer and a chargepump drive with a programmable gain stage; they are resistant to $50 / 60 \mathrm{~Hz} \pm 3 \mathrm{~Hz}$ noise and cope with the full industrial temperature range. These devices are capable of precise voltage measurement with full-scale ranges from 25 mV to 5 V . The voltage reference is 5 V straight from the supply. Data settles in a single conversion, so that the converter automatically samples multiple channels and stores the data in an on-chip buffer, the microcontroller not being involved.
Cirrus Logic Inc. Tel., 01727 872424; fax, 01727875919.
Enq no 502

Displays

Industrial icds. NEC has new flatpanel displays for industrial use that are bright and have wide viewing angles. NL8060AC31-12 is a 12.1 in type with 800 by 600 pixels, taking 6 -bit digital RGB input. Brightness is $250 \mathrm{~cd} / \mathrm{m}^{2}$. A 10.4 in model, the NL6448AC33-24, has 640 by 480 pixels and a viewing angle of 80° away from the normal in any direction, with no preferred viewing angle. Brightness is $190 \mathrm{~cd} / \mathrm{m}^{2}$ and the contrast ratio is 150:1.
Sunrise Electronics Ltd. Tel., 01908 263999; fax, 01908 263003; web, www.sunrise.co.uk
Enq no 503

Digital video interface. As Icds are beginning to rival crts as regards the cost and performance in pcs, the need for a digital interface between digital video on a pc and the digital Icd has been addressed by REP Design. The result is PanelLink, which has been adopted by VESA and some leading makers of pcs. The interface is also in use in epos terminals, embedded graphics boards, in-car displays and the like. Transmitter and receiver chips are linked by tmds to allow a scaleable, high-speed digital interface over a twisted pair up to about 5 m or to 15 m with win-ax shielded cable. There are three pairs of Tx/Rx chips for data rates of $650 \mathrm{Mb} / \mathrm{s}$ to $1.12 \mathrm{~Gb} / \mathrm{s}$ per channel, all compatible. A developers' kit, the CuPipe, is available.
REP Design (UK) Lid. Tel., 01462 670770; fax, 01462 671670; e-mail, RepDesignUK@compuserve.com. Enq no 504

Bright lcd. Mercator offers the LTEO52T five-inch colour ift display handling composite video for Pal and NTSC or separate RGB. Resolution is 320 by 234 pixels and there is a replaceable cold-cathode backlight Brightness is $300 \mathrm{~cd} / \mathrm{m}^{2}$, controlled externally, and a reverse scan allows a 6 o'clock or 12 o'clock viewing position, the same facility being provided in the horizontal scan. An on-screen display switch allows the overlay of an RGB image on a composite video one.
Mercator. Tel, 01493 334000; fax, 01493334050.

Enq no 505

Hardware

Compact heatsinks. Thermalloy has announced a family of bonded-fin heatsinks for use when space is limited, the fins being either for forced ventilation or are made high and thin for natural convection. Powerfin sinks will fit into spaces where extruded types would be too large and may therefore be used in motor drives, ups and many other high-power applications. The bonded-fin technique enables the fin height to be over 100 mm , base and fins being made in copper or aluminium to choice.
Redpoint Thermalloy Lid. Tel., 01793 537861; fax, 01793615396.
Enq no 507

Linear integrated circuits

Alternative graphic equaliser. Audio semiconductor specialist Profusion is supplying Sanyo's 7 -band graphic equaliser. Only two capacitors and one potentiometer are needed on each band to provide an adjustable 12 dB of boost or cut over the audio
range. Typical distortion at 1 kHz and 1 V output with no boost or cut is 0.02%. With the inputs shorted and controls set for flat response, typical output noise is $7 \mu \mathrm{~V}$, provided that a 10 Hz to 30 kHz band-pass filter is used. Devices may be used in series to increase the number of equaliser channels.
Profusion plc, Tel. 01702 543500, fax, 01702543700 , e-mail sales@ profusion.co.uk.

Enq no 508

Materials

Anti-static matting. TBA can supply conductive neoprene and static dissipation matting. The materials resist chemical attack and all soldering temperatures, are flexible and durable, lay flat and comply with BS EN100015 Pt 1:1991, section 4.3.3. The matting comes in roll form or may be cut to any size in 1.3 mm and 2.3 mm thickness for floor or bench use. TBA Industrial Products Ltd. Tel., 01706 47718; fax, 01706 46170; email, info@tbaecp.co.uk; web, www.tbaecp.co.uk.
Enq no 509
Thermal insulators. High conductivity, low-cost thermal insulator pads by Warth use boron nitride to give lower thermal resistance than is usual, but higher voltage breakdown. They are for use with hot-running power transistors, giving a thermal resistance of $0.28^{\circ} \mathrm{C} / \mathrm{W}$ and a voltage breakdown of 1 kV . KoolPads K200 are made in silicone rubber compound on a layer of woven glass fibre and are flexible, clean and do not crack or age. Temperature range is $-60^{\circ} \mathrm{C}$ to $180^{\circ} \mathrm{C}$ and the pads are available with adhesive or non-adhesive coatings.
Warth International Ltd. Tel., 01342 315044; fax, 01342 312969; web, www. warth co.uk.
Enq no 510

Microprocessors and controllers

Otp microcontrollers. Siemens has produced a new family of one-timeprogrammable microcontrollers with six members, all with on-chip memory. There is the C505L, which has an on-chip Icd controller and driver; the C504 an 8-bit device with 16 K of otp memory and a pwm unit; and the C505CA with 32 K of otp memory and CAN 2.0B. The family consists of otp versions of the C501G, C504, C505CA, C513 and C515C. Starter kits are available. Siemens plc. Tel., 0990 550500; fax, 01344396721.
Enq no 511

'Thinnest' fan. Sunon's GB0535ACB blower measures 35 by 35 by 4.8 mm . It is claimed to be the world's thinnest, yet produces a static pressure of 0.28 in of water. Its aluminium housing allows it to be attached directly to the hot component without a baffle and also acts as a heat sink itself. The fan uses only 0.5 W and, at an airflow of $0.67 \mathrm{ct} / \mathrm{min}$ and $0.91 \mathrm{cf} / \mathrm{min}$, there is little noise.
Thermaco Ltd. Tel., 01684 566163; fax, 01684 892356; email,
thermaco@compuserve.com Enq no 506

Mixed-signal ics

1200 V gate drivers. International Rectifier has a range of half-bridge and three-phase gate driver ics to handle 600 V and 1200 V , while being compatible with existing 600 V parts in pin layout and function. This means that the same circuit design and layout may be used in different systems by choosing the relevant ic, in $115 \mathrm{~V}, 230 \mathrm{~V}$ and 460 V designs. The devices simplify the drive to fets and igbts, reducing component count by over 50% and are immune to voltage spikes. For use in ac drives to 20 hp and power supplies to 10 kW , the gate drive current is up to 2 A .
International Rectifier. Tel., 01883 732020; fax, 01883 733410; web, www.irf.com.
Enq no 512

Microwave components

Ku-band mmics. Toshiba's TMD1414-X series is a range of microwave ics working in the ku band of 13.75 GHz to 14.5 GHz . These are wideband devices to eliminate the need for multiple units on a board to cover the band TDM1414-02/1/2 provide output power of $23 \mathrm{dBm}, 31.5 \mathrm{dBm}$ and 34.5 dBm with power gains of 37 dB for the 02 and 26 for the others. Toshiba Electronics UK Ltd. Tel., 01276 694730; fax, 01276694800. Enq no 513

Protection devices

Small ptc fuse. Schurter offers the PFMC, a smaller, reseltable, positive temperature coefficient, polymer fuse, which trips fast enough for the protection of pc motherboards, for example. Ratings are 0.2A to 1.1 A with interrupt ratings of 40 A and 6 15 V . Packaging is 4.5 by 3.2 mm . Schurter AG. Tel., 0041413693111 ; fax., 0041413693333 ; e-mail, contact@schurter.ch; web. www.schurter.ch.
Enq no 517

Switches and relays

Optocoupled mosfet. PS7241-1A by NEC is an optocoupled mosfet, forming a solid-state relay with a drive current down to 2 mA . It is in a 4 -pin SOP and 2.1 mm high, 4.5 mm

Emi suppression chokes

Siemens has cut the cost of its emi suppression chokes by about 30% by the simple expedient of leaving the lids off. This procedure is made possible by a new approach to surface-mounting component design; in the new B82793 range of ring-core double chokes, full encapsulation is unnecessary. These chokes are meant for use in emi
suppression on data and signal lines and are a lower-cost and more compact alternative to ri shielded cables. They come in two varieties: B82793-C has bifilar windings and suppresses asymmetrical noise, passing symmetrical data signal at frequencies of several megahertz; $B 82793 S$ is a sector-wound type and suppresses both types of interference, reducing hf noise on data lines. The range of inductances is $5 \mu \mathrm{H}$ to 4.7 mH at currents in the range 0.4 A to 1.2 A , voltage ratings being 40 V ac or 80 V dc on all components.
Siemens plc. Tel., 0990
550500; fax, 01344396721.
Enq no 514

square. Isolation is provided by a GaAs led at the input and a photovoltaic array driving a thyristor, a dilode, and a pair of normally open-contact mosfets to form the single-channel output. Breakdown voltage is 400 V and leakage current $1 \mu \mathrm{~A}$. The device is relatively insensitive to rapid voltage changes, which also makes it insensitive to noise. IMO Precision Controls LId. Tel., 0181452 6444; fax, 0181450 2274; e-mail, imo@imopc.com; web, www.imopc.com.
Enq no 518
Shallow switches. EAO Series 71 panel-mounted switches only stick out from the front panel by 2 mm and 42.5 mm at the rear. All components are on a single pcb, so that a range of functions may be panel-mounted, includling full-travel push-buttons, emergency stops and keylock types. The contact block may be removed for maintenance or replacement. Switches are sealed to IP65 and may be backlit by lamp or led. EAO LId. Tel., 01444 236000; fax, 01444 236641; e-mail
uksales@eao.com; web, www.eaogroup.com
Enq no 51

EQUIPMENT

Cameras

Shielded cameras. Scout closedcircuit television cameras by Pulse Power \& Measurement are hardened against high-level electromagnetic fields. They are optically coupled and provided with remote control of focus, zoom, pan and tilt. A protective enclosure confers immunity to if fields of more than $200 \mathrm{~V} / \mathrm{m}$ at frequencies over 1 GHz with no effect on the picture and the cameras my be used in fields of more than $1 \mathrm{kV} / \mathrm{m}$ at 18 GHz . The cameras have two 75Ω video outputs Pulse Power \& Measurement Ltd. Tel. 01793784389 ; fax, 01793784391 ; email, sales@ppm.co.uk. Enq no 522

Production equipment

Transformer testing. Voltech has Introduced new software upgrades for its AT1600 and AT3600 transformer test platforms to provide fast, integrated transformer testing for frequencles in the 0.1 MHz range at a rate of 20 tests per second. Basic accuracies are 0.05% and the tests are concerned in the main with the characteristics needed by transformers in modems, telephone systems and the like. Tests include common-mode rejection ratio, insertion loss, return loss and impedance matching. All the new tests are set up and made using the company's pc-based test editor, programs being saved to a server disk for later downloading.
Voltech Instruments Lid. fel., 01235 861173; fax, 01235 861174; e-mail, sales@voltech.co.uk; wab, www.voltech.com.
Enq no 523

Power
semiconductors
Power transistors. Zetex has introduced SOT89 versions of its low saturation voltage bipolar. power devices, taken from the SuperSOT range; at present, there are four complementary pairs. FCX617/8 are rated at 300% of the power of the smaller devices, handling 2 W at 12A collector current. Saturation voltages for $n-p-n$ and $p-n-p$ types are 8 mV and 10 mV . Space saving is the outcome of a further variation in ranges: there are three SOT89 transistor pairs formerly only made in SOT223 and TO92 E -line form, reducing space taken up by about 50%. These are FCX688/789, FCX1047/1147, and FCX1051/1151 pairs. Zetex plc. Tel., 0161622 4422; fax, 0161622 4420; web,
www.zetex.com.
Enq no 516

Passive components

Class X2 capacitors. Arcotronics' R. 46 range of metallised polypropylene film capacitors is suitable for interference suppression and in particular where failure could lead to injury. The range comes in values between $0.01 \mu \mathrm{~F}$ and $2.2 \mu \mathrm{~F}$ in 10% and 20% tolerances at 1 kHz .
Voltage rating is 275 V ac . Windings are non-inductive, leads are tinned copper and the plastic casings are filled with polyurethane resin, the box material being resistant to solvents and flame retardant to UL94-V0.
Easby Electronics Ltd. Tel., 01748 850555; fax, 01748 850556; web, sales@easby.co.uk.
Enq no 515

Power supplies

Plug-top battery charger. Arlec Power announces a new version of its BCN charger, which offers a choice of British or European connection. The new range includes types using a negative delta-peak charge control where the unit detects a slight drop in voltage at full charge, switching at that point to a trickle charge to avoid damage to the battery. There are also models fitted with timers that charge for a set time. All models are protected against shorts, overload, and incorrect connection. In addition they all satisfy European and other safety and emc standards. Arlec Power UK Ltd. Tel., 01582 544520; fax, 01582544521.
Enq no 524
High-current dc. Kikusul PAN-A high-current, regulated supplies come in four powers: $175 \mathrm{~W}, 350 \mathrm{~W}, 700 \mathrm{~W}$ and 1 kW at voltages to 250 V and currents up to 50A. A preregulator uses fets and the series regulator is a power transistor type, temperature drift is reduced by forced-air cooling and fast transient response is achieved by a wide-band error amplifier. There is provision for extemal control by analogue voltage and current signals or by GPIB with an optional unit. All units in the series may be connected in series or parallel with master/slave control.
Telonic Instruments Ltd. Tel., 01734 786911; fax, 01734792338. Enq no 525

1U, 1500W. Vicor's new range of ac/dc power supplies in the Westcor PFC Mini family has increased available power from 600 W to 1500 W without derating for $24 \mathrm{~V}, 28 \mathrm{~V}$ and 48 V outputs. Units have 1 to 6 floating, Independently regulated outputs providing $1-95 \mathrm{~V}$ at up to 600 W per output. Input is power-factor-corrected to handle $85-254 \mathrm{~V}$ ac at $47-500 \mathrm{~Hz}$ or $100-380 \mathrm{~V} \mathrm{dc}$, and complies with the usual emc requirements. Case size is 304.8 by 152.4 mm n a 1 U height and a control interface provides for output sequencing and shutdown.
Vicor UK. Tel., 01276 678222; fax, 01276681269 , e-mail
vicor@ vicr.com; web, www.vicr.com Enq no 526

Test and measurement

Digital signal generator. Kenwood's
DG 2432 digital signal generator produces all the test signals needed in the measurement of performance in digital audio equipment, d-to-a converters, filters and other dsp instruments, all In the EIAJ CP-1201 digital audio interface form. The Instrument holds in memory 100 preset lest patterns, which may be modified to suit a particular application remotely by way of an RS232 interface. Output is provided via optical connectors at either -19 dBm or -27 dBm , or through coaxial connectors. Operation is by key entry on the front panel, annunciators providing the relevant information on set up and functions,

Please quote "Electronics World" when seeking further information
and a digital display gives a readout of pattern information
Kenwood UK Ltd. Tel., 01923 655291, fax, 01923655297.
Enq no 527
Digital wattmeters. WT1000 wattmeters from Yokogawa are accurate to within 0.1% at a bandwidth of 300 kHz , being made in single-phase and three-phase versions and in a special version for the evaluation of motors. Input range is $15-1000 \mathrm{~V}$ rms and a filter with a selectable cuit-off frequency facilitates the examination of inverter waveforms; built-in pll circuitry allows harmonic analysis to be done on fundamentals from 10 Hz to 440 Hz up to the 50th. The three-phase model measures phase difference between phases, active, reactive and apparent power of the fundamental. The WT1030M works with a torque meter and computes torque, speed, mechanical power, synchronous speed, slip, motor efficiency, and total efficiency of the motor under test.
Yokogawa Martron Ltd. Tel., 01494 459200; fax, 01494 535002; e-mail, info@martron.co.uk:web,
www.martron.co.uk.
Enq no 528
Temperature recorder. DS1615 from Dallas is a single-chip dil instrument to record temperature integrity and variation over time, incorporating a Year 2000-ready clock, a digital thermometer, non-volatile memory, control logic, and a serial interface. Data is stored in a conventional data log , and in the form of a histogram for later analysis. The instrument may be used on its own as a complete data logger or as an embedded unit. As an embedded unit, it uses no system resources to monitor and record temperature 2048 times at prese intervals, continuing to operate during power-down.
Dallas Semiconductor Corporation. Tel., 0121782 2959; fax, 0121782 2156.

Enq no 529
Burst generator. Schaffner announces a full-function burst generator for emc testing that is housed in a 342 mm by 134 mm bench-top case, the smallest available. NSG 3025 functions exceed the requirements of the relevant standards and is CE marked. Most IEC standards are programmed for fast recall and all pulse parameters are variable. Pulse amplitude is 200 4800 V , burst frequencles 0.1 kHz 1 MHz with $1-255$ spikes per burst. A coupling network is provided to allow the pulses to be superimposed on the supply lines of the equipment under test and the pulses are also available at the front panel for data and line testing. Control is by RS232 link using the company's. WIN 3105 software for Windows.
Schaffner EMC Ltd. Tel., 0118 9770070; fax 01189792969.

Instrument stack. QuanteC by ENGINN is a single tower case combining
the functions of signal generator, pulse generator, dual-channel, truerms 2 MHz voltmeter, dual-channel digital storage oscilloscope, gain/phase analyser, dual-channel frequency meter, white noise generator, power meter, arbitrary function generator, phase meter, lcr meter and spectrum and harmonic analysers. All functions are available as hardware and/or software upgrades and each has a single set of connections and an RS232 port for control and configuration by software The display is an electroluminescent type and there is a printer.
ENG-INN (Electronics) Ltd. Tel., 0116 2376467; fax, 0116 2376167; e-mail, sales@eng-inn.co.uk; web, www.enginn.co.uk.
Enq no 530
Frequency-stable function generator. TTi offers the TG550 5 MHz function generator. It has digital frequency locking to a crystal reference; after setting the required frequency, one presses the lock switch to activate a measuring and correction circuit to obtain an accuracy of one digit on the 4-digit display. A second display gives output level in pk-pk, rms or dc offset. For low frequencies, an auto-ranging reciprocal measurement is made to avoid long gate times. Output is sine, square, triangle, pulse and ramp in the frequency range 0.005 Hz to 5 MHz ; a sweep generator provides linear or log. frequency sweeps at periods of $20 \mathrm{~ms}-20 \mathrm{~s}$ and there is also am modulation from zero to 100%. The TG550 will also function as a seven-digit frequency counter to 20 MHz .
Thurlby Thandar Instruments Ltd. Tel., 01480412451 ; fax, 01480450409 ; email, sales@ttinst.co.uk.
Enq no 531

COMPUTER AND DATA HANDLING

Computers

Hardy computer. Panasonic invites its customers for the ToughBook 27 notebook computer to drop it onto concrete, attempt to drown it and generally treat it in a less than careful manner, since it has satisfied the IEC tests along these lines. The computer incorporates a 266 MHz Pentium with MMX, a shock-protected, removable hard disk drive, 32MB of EDO ram a 512 cache, a 12.1 -in tfl display, CD-rom, and two card slots. Its display panel is fitted with a reflection filter, to make the picture viewable in daylight.
Panasonic UK Ltd. Tel., 0500404041 ; web, www. panasonic.co.uk. Enq no 532

Compact sbc. The PCM-3345 In Advantech's PC/104 series is a selfcontained processor board that is only 90 by 96 mm and yet offers all the capability of a much larger design. It

uses a 66 MHz 486 DX cpu that needs no frequency or voltage configuration, the board also being provided with 16 Mb of memory (32Mb as an option). It supports ATX power to allow remote power-on and watchdog timing; there are one parallel and two serial ports, an FDD connector and one IDE connector. Flash card options are available up to 220 Mb for use as a simulated hard disk. Support for crts is provided, and for lcds as an upgrade, now available.
Semicom UK Ltd. Tel., 01279 422224; fax, 01279433339 ; e-mail,
sales@semicom.demon.co.uk Enq no 533

COMPUTER BOARDLEVEL PRODUCTS

Quad dsp board. Blue Wave Systems produces the VME/C6420 digital signal processor board, which is intended for applications such as radar and signal intelligence in which large amounts of data must be processed quickly. It is available with a choice of four C6201 fixed-point dsps or four C6701 floating-point processors and a fast multi-port crossbar controls data flow, enabling up to four 200Mbyte/s simultaneous, on-board, point-to-point links to be set up dynamically. All on-board housekeeping is the function of a PowerQUICC processor, which accesses 2 M bye of flash, a total of 16Mbyte of sdram being shared between the four dsps., control processor and i/o
Blue Wave Systems Ltd. Tel., 01509 634300; fax, 01509 634333; web, www.bluews.com.
Enq no 534

Transducers and sensors

Three-axis magnetometer. Honeywell has a new three-axis, strap-down magnetometer, the HMR2300r, intended to sense the strength and direction of the earth's magnetic field and send the x, y and z components to a navigation system by way of a serial port. The sensor is around 72 mm in diameter and fits an ML1 type of enclosure. The sensor is microprocessor-based with a range of ± 2 gauss to a resolution of $\pm 70 \mu$ gauss, heading accuracy being 0.02°. The device is meant to replace flux valve sensors and may be used in conjunction with systems such as GPS and remote vehicle monitoring.
Inertial Aerosystems Ltd. Tel.,
01252 782442; fax, 01252
783749; e-mail,
sales@inertialaero.demon.co.uk. Enq no 520

Tilt sensor. The Model $A B$ absolute tilt sensor from Control Transducers connects directly to any analogue data system. It is based on an optical absolute encoder with a pendulum referred to gravity and works from a single six-wire telephone connector and cable. Power supply is $9-36 \mathrm{~V}$ dc and its output is in the form of $1-4096 \mathrm{mV}$ in 1 mV steps for a 360° rotation while turning continuously. The unit comes complete with cables, plugs, sottware, power supply, control cards and can be supplied with matched, directreading indicators.
Control Transducers. Tel., 01234 217704; fax, 01234217083.
Enq no 521

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World" when seeking further information

Dsp coprocessor. Datel announces the PC-430M, a high-speed coprocessor board for use in recovering signal from noise, in distortion analysis and in the examination of vibration and resonance filtering, mapping and imaging, etc. It is an ISA analogue-to-digital dsp coprocessor data acquisition board with four slmultaneous sampling a-to-d converters and is suitable for continuous FFT processing, saving comms signal to disk or the simultaneous graphics display of spectra. With all four a-to-ds sampling in parallel, conversion rate is $200 \mathrm{kHz} /$ channel. An on-board crystal oscillator and timer/counter tracks phase precisely and up to 4 Mb of memory stores data and programs.
Datel (UK) Lid. Tel., 01256 880444; fax, 01256 880706; e-mail,
datel.ft@ge.geis.com; web,
www.datel.com.
Enq no 535

Data acquisition

PCI data acquisition. From Datel, the PCI-416M, a four-channel, analogue input board having 32 -bit architecture for PCl computers. There are four 16 -bit inputs with $\pm 10 \mathrm{~V}$ range single-ended, sampling at up to 200 kHz per channel, the front ends having low-noise, widebandwidth a-to-d converters. The design allows the movement of two a-to-d words in each 32 -bit PCl transfer, the fifo memory used for this purpose acting as a filter to dissociate the a-to-d timing from the block bursts of the PCI bus. The device is a temporary bus master to burst a-to-d blocks to memory, freeing the cpu for other tasks. Gapless sampling is provided with no data loss; a pretrigger collects data continuously to host circular ring memory of several megabytes. When an external trigger arrives, the PCI-416M counts down the number of preloaded samples after the trigger and stops when all are collected. No programming is needed.
Datel (UK) Lid. Tel., 01256 880444; fax, $01256880706 ;$-mail, datel./td@ge.geis.com; web, www datel.com.
Enq no 536

Dafa communications

Single-chip modem. TDK
announces the 73 M 2921 singlechip modem ic, which has all necessary to implement a V.23/V.22bis/V. 29 modem, plus handshaking for all data modes. It operates at data and fax speeds up to 9600bit/s in V. 29 and has microcontroller, data and analogue interfaces and an oscillator. The device consists of a dsp core with integrated ram and rom and codec; it is optimised for low power use and operates from 3.3 V and 5 V lines.
TDK UK Semiconductor Corp. Tel., 0181 4437061; fax, 0181 4437022; e-mail, europe.sales@ tsc.tdk.com; web, www.tdksemi.demon.co.uk. Enq no 537

Software

Wiring harness design. In partnership with Volvo, Analogy Inc. has produced a set of software for the design of wiring harnesses, including electrical analysis and the detection of possible hot spots in the harness. The software consists of the SaberHarness wiring editor, a dc simulator, an optional mixedsignal transient simulator, the SaberBundle editor to produce drawings for manufacture and the interfaces to mechanical 3D cad software. The physical wire model allows geometric and material wire characteristics to be simulated. Since SaberHarness is integrated with the 3D cad software, data may be passed to the mechanical cad program, manipulated and passed back to SaberHarness with changes affecting the electrical design shown. Many more features are provided to simulate the design and to predict possible electrical and mechanical failure.
Analogy Europe. Tel., 0049811 60093-23; fax, 0049811 60093-11; e-mail, acirkel@analogy.com. Enq no 538

Algebra. Maple V Release 5.1 is the latest edition of Waterloo, Maple's computer algebra system. It allows electronic publishing of mathematical information using IBM's Hypermedia Browser plug-in technique for Web browsing in LaTeX - a standard typesetting language for maths, using the Maple language. Output is of publication quality while producing smaller files than has been possible. Maple's newsletter describing the system is available free from Adept.
Adept Scientific Micro Systems Ltd. Tel., 01462480055 ; fax, 01462 480213; e-mail.
info@adeptscience.co.uk; web, www.adeptscience.co.uk.
Enq no 539

PUBLICATIONS

Catalogues

Web shopping: Adept Scientific's WebStore at
http://directory.adeptscie nce. co. uk is linked to the company's main site. It provides prices and will print quotations and customers may order hardware and software by credit card. The main site gives full information about the company's products, including those from Mathcad,
ComputerBoards, Electronics Workbench, NWA Quality Analyst quality control software and the Maple V computer algebra software.
Adept Scientific Micro Sysfems Ltd. Tel., 01462 480055; fax, 01462 480213; e-mail,
info@adeptscience.co.uk; web, www. adeptscience.co.uk. Enq no 540

Murata. Information on Murata's whole range of products is now contained on CD rom, the 1999 edition now being available, complete with a new search engine. You can search by product type, emi problem or part number and, having found the component, there is a worldwide contact list with addresses, telephone and fax numbers. Murata Electronics (UK) Ltd. Tel., 01252 811666; fax, 01252 811777.

Enq no 541
Guide to ics. Farnell's IC Master, the integrated circuit reference, is
in its 25 th year and is a threevolume set of books or on CD rom. In all, there are data sheets on 106000 ics, 8000 of them being new listings from 350 makers, the CD also giving data on obsolete devices to take its total to 152000 devices. The guide is easy to navigate, allowing selection by function, type number and keyword or package style. Links to makers' home pages are provided for on-line users.
Farnell Components Ltd. Tel., 0113 263 6311; fax, 0113263 3411, web, www.farnell.com. Enq no 542

BACK ISSUES

Back issues of Electronics World are available, priced at $£ 3.00$ UK and $£ 3.50$ elsewhere, including postage. Please send your order to Electronics World, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Free copy of Electronics Engineer's pocket book with every order while stocks last

Available issues		
\mathbf{l} 1994	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 8}$
January	January	January
April	February	February
May	March	March
July	May	April
August	June	May
November	July/August	June
December	September	July
	October	August
$\mathbf{1 9 9 5}$	November	September
February		November
April	1997	December
May	June	
June	August	$\mathbf{1 9 9 9}$
September	September	January
October		February
December		March
		April

Note that stocks of some of the above issues are low and will soon sell out. Please allow 21 days for delivery.

Newnes

Antenna

 Tockit

What's in the book?

Radio Signals On The Move; Antenna Basics; Wire, Connections, Grounds And All That; Marconi and Other Unbalanced Antennas; Doublets, Dipoles And Other Hertzian Antennas; Limited Space Antennas; Large Loop Antennas; Wire Array Antennas; Impedance Matching; Simple Antenna Instrumentation \& Measurements

Includes free CD with antenna design software

Antenna Toolkit by Joe Carr

Combined with antenna design software on CD-rom, Newnes' new book Antenna Toolkit provides a complete design solution. Prepared by antenna expert Joe Carr, this package is written for beginners and advanced users alike.
On the CD-rom is a suite of powerful software running on the pc. The software calculates the critical lengths and other parameters of the antennas in the book by having the user select the antenna type and set the frequency.
The main menu screen is in the form of tabs, one for each chapter of the book plus other topics.
This 220 page work includes 185 illustrations and 23 photographs.
** HF propagation predictor included **
Also included is a Windows freeware package, from the Voice of America organization, called VOACAP. This is an hf propagation predictor which some commercial sources have offered unmodified for hundreds of dollars.
UK Price: £27.50 Europe $£ 30.00$ ROW $£ 32.50$
** Price includes delivery and package **
Return to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following title:

Newnes Antenna Toolkit

Total \qquad
Name
Address
\qquad

Postcode Telephone

Method of payment (please circle)
Access/Mastercard/Visa/Cheque/PO
Cheques should be made payable to Reed Business Information
Credit card no \qquad
Card expiry date
Signed
Please allow up to 28 days for delivery

PROTEUS

 including NEW SIMULATOR \%о SPICE 3F5

cthe

$B=S$ all-round PROGRAM*
EWW CAD Review Round Up September 1998

Simulation

- Berkeley SPICE3F5 analogue simulation kernel.
- True mixed mode simulation.
- New analysis types include multi-plot sweeps, transfer curves, distortion and impedance plots.
- Active Components: Switches, Pots etc.
- Over 1000 new library parts with SPICE models.
- Greater ease of use.

"a constant high level of capability throughout"

EWW CAD Review Round Up September 1998

Schematic Capture

- Produces attractive schematics like in the magazines.
- Netlist, Parts List \& ERC reports.
- Hierarchical Design.
- Full support for buses including bus pins.
- Extensive component/model libraries.
- Advanced Property Management
- Seamless integration with simulation and PCB design.

PCB Design

- Automatic Component Placement.
- Rip-Up \& Retry Autorouter with tidy pass.
- Pinswap/Gateswap Optimizer \& Back-Annotation.
- 32 bit high resolution database.
- Full DRC and Connectivity Checking.
- Shape based gridless power planes.
- Gerber and DXF Import capability.

Available in 5 levels - prices from $£ 295$ to $£ 1625+$ VAT. Call now for further information $\&$ upgrade prices.

lobenter

 E I e c t ronicsWrite, phone or fax for your free demo disk, or ask about our full evaluation kit. Tel: 01756753440 . Fax: $01756752857 . \quad$ EMAlL: info@labcenterco.uk 53-55 Main St, Grassington. BD23 5AA. WWW: http:/www.labcenter.co.uk

Fully interactive demo versions available for download from our WWW site.
Call for educational, multi-user and dealer pricing - new dealers always wanted. Prices exclude VAT and delivery. All manufacturer's trademarks acknowledged.

Special offers
 Here are details of the special offers contained in this month's cover-mounted voucher booklet. *
 *UK issues only. Details for overseas readers vary so please contact companies concerned directly, quoting Electronics World special offers.

Interactive electronic circuits on CD ROM - save £20

Newnes is delighted to offer you £20 off a brand new CD-ROM library of circuits featuring simulations from leading experts around the world.
Entitled 'Newnes Interactive Electronic Circuits' this CD ROM normally sells at $£ 49.99$, but using the voucher, its yours for just £29.99- fully inclusive.

Compiled by Owen Bishop, Newnes' Interactive Electronic Circuits is an expert advisor, an encyclopedia, an analytical tool and a source of real design data - all in one CD-ROM.
Written by leading electronics experts including Ray Marston, Joe Carr, Bob Penfold, Mike Tooley, Owen Bishop, Geoff Bostock, Tony Brown, Steve Winder, Ian Hickman, and John Linsley Hood, the collected wisdom of the electronics world is at your fingertips.

Search the data base

The simple and attractive Circuits Environment is designed to allow you to find the circuit or advice notes of your choice quickly and easily using the search facility.
The text is written by our leading experts as if they were explaining the points to you face to face. The circuit diagrams are present-

- Hundreds of circuits to run, analyse, explore and modify
- Learn from the experts, with circuits designed and explained by a unique all-star team
- Introduces users to the powerful application, Spice Age
- A must for all professionals and serious students
ed in a standardised form, and you are given the option to analyse them by clicking on the Action icon.
The analysis tool chosen is the powerful and intuitive SpiceAge for Windows, a simple version of which automatically bursts into action when selected.

And there's more...
In addition, Newnes Interactive Electronic Circuits allows you to:

- clip your comments to any page and define bookmarks
- test your knowledge of component values by getting certain circuits, in which values have been altered, going again by calculating and inserting suitable values
- call up and display useful formulae which remain on screen
- look up over 100 electronic terms in the glossary

This new CD features:

 Amplifying circuits, Oscillating circuits, Power circuits, Sensing circuits, Slgnal processing circuits, Filtering circuits, Measuring circuits, Timing circuits, Logic circuits, Telecommunication circuits, Glossary, Search through keywords.

Newnes, Linacre House, Jordan Hill, Oxford OX2 8DP, http://www.newnespress.com

A 30W hi-fi audio power amplifier for just $£ 9.99$

ILP's HY2000 power amplifier is a fullyencapsulated, high-quality power amplifier with integral heatsink.
By selecting the appropriate mains transformer and PCB programming link, the amplifier can be used with 4Ω or 80Ω loads. Input sensitivity is adjusted automatically.
T-slots in the heatsink and nuts and bolts provided facilitate mounting.

Typical specifications

Parameter
Maximum output power
-3 dB frequency response
Total harmonic distortion @ 1 kHz
Signal-to-noise ratio (DIN Audio)
Slew-rate, typical
Rise time
Input sensitivity
Input impedance
Damping factor, 8Ω @ 100 Hz Load impedance (programmable) Maximum DC rails, 8Ω load
Size, width by height by extrusion cut $76 \times 75 \times 40 \mathrm{~mm}$ Weight

Value
30 W rms $15 \mathrm{~Hz}-50 \mathrm{kHz}$ 0.005\% 100 dB $10 \mathrm{~V} / \mathrm{\mu s}$ $5 \mu \mathrm{~s}$ 500 mV rms. $100 \mathrm{k} \Omega$ >400 4 or 8Ω $+30 \mathrm{~V}$ 240 g

Features

- 4 or 8Ω operation
- Enhanced specifications
- Anti-thump circuitry
- Integral heatsink
- Thermal protection
- Encapsulated
- Fully assembled
- Easy to mount

Power supply requirements

ILP has developed a range of hi-fi quality low noise audio power toroidal transformers for the HY2000 they are low profile with resin filled centres for maximum noise absorption and ease of mounting. Finished in black to match the amplifiers these transformers are the ideal choice to power the HY2000.

Mode
4ohm
$80 h m$
:---
AT0304
AT0308

RMS supply
$16-0-16 \mathrm{~V}$
$20-0-20 \mathrm{~V}$

ILP, Spong Lane, Elmsted, Ashford,
Kent TN25 5JU, phone +44 (0)1233 750481, fax +44 (0)1233 750578.

PLUG IN AND MEASURE

TiePie introduces the HANDYSCOPE 2

A powerful 12 bit virtual measuring instrument for the PC

The HANDY SCOPE 2, connected to the parallel printer port of the PC and controlled by very user friendly software under Windows of DOS, gives everybody the possibility to measure within a few minutes. The philosophy of the HANDYSCOPE 2 is:
"PLUG IN AND MEASURE"
Because of the good hardware specs (two channels, 12 bit, 200 kHz sampling on both channels simultaneously, 32 KWord memory, 0,1 to 80 volt full scale, 0.2% absolute accuracy, software controlled AC/DC switch) and the very complete software (oscilloscope, voltmeter, transient recorder and spectrum analyzer) the HANDYSCOPE 2 is the best PC controlled measuring instrument in its category.

The four integrated virtual instruments give lots of possibilities for performing good measurements and making clear documentation. The software for the HANDYSCOPE 2 is suitable for Windows 3.1 and Windows 95. There is also software available for DOS 3.1 and higher.

A key point of the Windows software is the quick and easy control of the instruments. This is done by using:
the speed button bar. Gives direct access to most settings.

- the mouse. Place the cursor on an object and press the right mouse button for the corresponding settings menu.
- menus. All settings can be changed using the menus.

Some quick examples:

The voltage axis can be set using a drag and drop principle. Both the gain and the position can be changed in an easy way. The time axis is controlled using a scalable scroll bar. With this scroll bar the measured signal (10 to 32 K samples) can be zoomed live in and out.

The pre and post trigger moment is displayed graphically and can be adjusted by means of the mouse. For triggering a graphical WYSIWYG trigger symbol is available. This symbol indicates the trigger mode, slope and level. These can be adjusted with the mouse.

The oscilloscope has an AUTO DISK function with which unexpected disturbances can be captured. When the instrument is set up for the disturbance, the AUTO DISK function can be started. Each time the disturbance occurs, it is measured and the measured data is stored on disk. When pre samples are selected, both samples before and after the moment of disturbance are stored.

The spectrum analyzer is capable to calculate an 8 K spectrum and disposes of 6 window functions. Because of this higher harmonics can be measured well (e.g. for power line analysis and audio analysis).

The voltmeter has 6 fully configurable displays. 11 different values can be measured and these values can be displayed in 16 different ways. This results in an easy way of reading the requested values. Besides this, for each display a bar graph is available.

When slowly changing events (like temperature or pressure) have to be measured, the transient recorder is the solution. The time between two samples can be set from 0.01 sec to 500 sec , so it is easy to measure events that last up to almost 200 days.

The extensive possibilities of the cursors in the oscilloscope, the triansient recorder and the spectrum analyzer can be used to analyze the measured signal. Besides the standard measurements, also True RMS, Peak-Peak, Mean, Max and Min values of the measured signal are available.

To document the measured signal three features is provided for. For common documentation three lines of text are available. These lines are printed on every print out. They can be used e.g. for the company name and address. For measurement specific documentation 240 characters text can be added to the measurement. Also "text balloons" are available, which can be placed within the measurement. These balloons can be configured to your own demands,

For printing both black and white printers and color printers are supported. Exporting data can be done in ASCII (SCV) so the data can be read in a
spreadsheet program. All instrument settings are stored in a SET file. By reading a SET file, the instument is configured completely and measuring can start at once. Each data file is accompanied by a settings file. The data file contains the measured values (ASCII of binary) and the settings file contains the settings of the instrument. The settings file is in ASCII and can be read easily by other programs.

Other TiePie measuring instruments are: HS508 ($50 \mathrm{MHz}-8$ bit), TP112 ($1 \mathrm{MHz}-$ 12bit), TP208 ($20 \mathrm{MHz}-8$ bit) and TP508 ($50 \mathrm{MHz}-8$ bit)

Convince yourself and downioad the demo software from our web page: http:/Innw.tiepie.nI.
When you have questions and / or remarks, contact us via e-mail: support@tiepie.nl

Total Package:

The HANDYSCOPE 2 is delivered with two $1: 1 / 1: 10$ switchable oscilloscope probe's, a user manual, Windows and DOS software. The price of the HANDYSCOPE 2 is $£ 299.00$ excl. VAT.

TiePie enginering (UK), 28 Stephenson Road, Insdustrial Estate, St. Ives, Cambridgeshire, PE17 4WJ, UK
Tel: 01480-460028; Fax: 01480-460340
TiePie engineering (NL)
Koperslagersstraat 37
8601 M SNEEK
The Netherlands
Tel: +31515415416
Fax +31515418819

Atomic Radio Time Clock Modules. Save up to 30\% Precise time now - and into the Millennium

With Atomic Radio Time modules, you can create your own atomic time receiver accurate to 1 second in 1000000 years - correct not only to the next millennium but for 998 millennia beyond.
In its modular form, Galleon's MSF receiver is cheap and small enough to build into embedded systems, eliminating clock drift and problems associated with RTC hardware. The basic module delivers raw MSF data from Rugby but there's an add-on controller for producing serial data.
Detailed on page 748 of the September 1997 issue of Electronics World, the decoder and antenna module are remarkably easy to assemble and feature an enhanced level matching circuit. The module has two pins for the antenna, ground and $V+$ connections and an output.
The timecode signal from the decoder is exactly as transmitted - i.e. raw data, whose format is described in the article just mentioned. If you want RS232 for feeding into a pc or controller system, simply feed the raw data into the MCM232 microcontroller. Connection details are supplied with the parts.
For price information, see the coupon in the booklet on the cover of this issue, or contact Galleon - details below.

Galleon Systems Ltd., The Custard Factory, Digbeth Birmingham, B9 4AA, phone 0870608 3615, fax 01216084477.

High-speed virtual instruments and hand-held oscilloscope

Save 15\%

Pico Technology is offering a 15\% discount on 20, 50 and 100 MS -s versions of the company's successtul ADC200 virtual instruments, and on the Ozif: OX handheld oscilloscope.

hitp:www.picotech.com

ADC200 Virtual Instrument

ADC200 is a range of PC based oscilloscopes that offer all the advantages of conventional scopes - and also features not normally available at this price range. The units simply plug into the parallel port of your PC: together with the supplied PicoScope software, they enable your computer to be used as:

- digital-storage oscilloscope
- spectrum analyser
- multimeter
- data logger

PicoScope provides all the functionality of a conventional benchtop DSO, with additional functions, such as storage and documentation, made possible by the PC connection. Spectrum analysis expands the instrument's usefulness, allowing you to examine the frequency components of waveforms seen on the oscilloscope. In addition, you get a DMM that has a frequency range!
The ADC200-20, 50 and 100 differ only in sampling rate, forming oscilloscopes of $10 \mathrm{MHz}, 25 \mathrm{MHz}$ or 50 MHz respectively. Drivers and examples for Visual basic, Excel, Delphi, C and Pascal are included.

Features

- Multiple views - simultaneous views of scope, spectrum and meters
- Waveforms can be saved, printed, faxed or e-mailed from your PC - Uses PC monitor to give large colour display, ideal for education and training
- Save multiple install for different tests and experiments
- Easy to setup and use - up and running in minutes
- Can be used with desktop or laptop PCs
- 32K Memory
- External trigger

A storage oscilloscope in the palm of your hand...

Despite its small size, OziFOX's performance can match that of a service oscilloscope. With a sample rate of up to $20 \mathrm{MS} / \mathrm{s}$ even signals in microprocessor circuits can be recorded. Using the voltmeter function, numeric AC and DC voltages can easily be measured.
OziFOX can be used for making measurements in amplifiers, digital circuits, telephone installations, hobby electronics, production line tests, servicing and on the spot measuring.
Software for DOS and Windows (3.1x WIN95) allows recorded signals can be shown simultaneously on a PC screen using the supplied serial cable.

30\% discount for EW readers on a hand held digital multimeter

To order simply post the coupon from the magazine front cover to:Vann Draper Electronics Ltd at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE18 2PL. Alternatively -
Tel: 01162771400
Fax: 01162773945
E-mail sales@vanndraper.co.uk

Features

3.5 digit 44 range dmm
$A C$ and DC voltage and current Resistance and capacitance Diode, continuity and Hfe Frequency to 20 MHz Logic test
Auto power off, data \& peak hold Overload protection Input warning beeper Gold plated switch contacts

Vann Draper Electronics Ltd
The test \& measurement specialists www.vanndraper.co.uk
Protective rubber holster
Vann Draper is offering over 30\% discount to readers of Electronics World on a professional quality hand held multimeter.
The LP310 is normally priced at $£ 69.33$ but for readers is just $£ 49$ fully inclusive of VAT and delivery.
The meter is supplied ready to use complete with test leads, rubber holster, battery, instructions and a 12 month guarantee.

Music Engineering by Richard Brice The Electronics of Playing and Recording

Key Specifications

DC volts AC volts DC current AC current Resistance Capacitance Frequency Size and weight
$200 \mathrm{~m}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$ basic accuracy 0.25% $200 \mathrm{~m}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 750 \mathrm{~V}$ basic accuracy 1.2% $200 \mathrm{uA}, 2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 2 \mathrm{~A}, 10 \mathrm{~A}$
$200 \mathrm{uA}, 2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 2 \mathrm{~A}, 10 \mathrm{~A}$
200, 2k, 20, 2000, 2M, 20M, 2000M
$2 n F, 20 n F, 200 n F, 2 u F, 20 u F$
$2 \mathrm{kHz}, 20 \mathrm{kHz}, 200 \mathrm{kHz}, 2 \mathrm{MHz}, 20 \mathrm{MHz}$ auto ranging $200 \times 95 \times 55 \mathrm{~mm}, 500 \mathrm{~g}$ (with holster)

\author{

- Highly illustrated guide to the technology of music and recording.
 - Written in an approachable style using examples of well-known songs, this book is a must-have guide for sound recording engineers and electronic engineers.
}

If you are an electronics engineer who needs specific information about music reproduction, or if you are a sound recording engineer who needs to get to grips with the electronic technology, Music Engineering is for you.
This handy volume is a technical guide to electric and electronic music, including the essential science, but concentrating on practical equipment, techniques and circuitry. It covers not only basic recording techniques and audio effects, kit such as microphones, amps and instruments, but also valve
technology, stereo and digital audio, sequencers and MIDI, and even a glance at video synchronisation and a review of electronic music.
Music Engineering lifts the lid on the techniques and expertise employed in modern music over the last few decades. Packed with illustrations, the book also refers to well known classic recordings to describe how a particular effect is obtained thanks to the ingenuity of the engineer as well as the musician.

Richard Brice has worked as a senior design engineer in many of Britain's top broadcast companies and has his own music production company. He is the only writer who can provide this unique blend of electronics and music.
Contents: Soul Man - Science and sensibility; Good Vibrations - The nature of sound; Stand By Me - Microphones and their applications; Message in a Bottle - Valve technology; Roll over Beethoven - Electric

Instruments; Wild Thing Electronic effects; Pet Sounds - Electronic synthesis; Silver Machine - Sequencers \& MIDI; Got to Get You into My Life Sound recording; Bits 'n' Pieces Digital Audio; Space Odyssey Stereo and spatial sound; Let's Stick Together - Recording consoles; Unchained Melody Amplifiers; Shout Loudspeakers; Synchronicity Video and synchronisation; Dark Side of the Moon Electronics and the music of the 20th century.

Inclusive price: $£ 22.50$ UK, $£ 25$ Europe, $£ 28$ ROW.

To order by post, send a cheque or postal order to Jackie Lowe at Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Please make your cheque payable to Reed Business Information. Alternatively, fax full credit card details to 0181652 8111, e-mail jackie.lowe@rbi.co.uk.
ISBN: 0750639032
Paperback, 256pp, 150 line illustrations.

- Copies of Richard's previous book, Multimedia and Virtual Reality Engineering, are still available, inclusive hardback price: $£ 27.50$ UK, 29.50 Europe, $£ 32$ ROW.

W
 DIRECTIONS

To reserve your web site space contact Joannah Cox Tel: 01816523620 Fax: 01816528938

AQUILA VISION

http://www.aquila-vision.co.uk
Aquila Vision specialises in supplying and supporting Embedded Microprocessor Development products from PICs to DSPs We also stock robotics boards, Linux and general interest CD-RDM's.

ALCATEL COMPONENTS

http://www.components @alcatel.de

AMBAR COMPONENTS

http://www.ambar.memec.com
Ambar Components, distributor for Cirrus Logic. Crystal, Cypress, Dense-Pac, Dynachip, Fairchild, IMI, Micro Linear, Mitel incorporating GEC Plessey
Semiconductor, PowerDsine, QLogic, Scenix, SST and Summit.

APPLE RECRUITMENT

http://www.applerec.u-net.com/
AKTECH LTD
http://www.reviver.com

BF COMPONENTS

http://www.bfcomponents.co.uk
Visit the site for Milgray-Bell in the U.K. Full e-mail facility with instant links to Bell and Milgray web sites for stock interrogation.

CAMBRIDGE MICRO

PROCESSOR SYSTEMS

LIMITED

http://www.cms.uk.com
COOKE INTERNATIONAL
http://www.cooke-int.com
e-mail: info@cooke-int.com

CROWNHILL ASSOCIATES LTD
http://www.crownhill. co.uk
Crownhill supply low cost development tools for use with Micro-Controllers and Smart Cards. Products include Smart Card development tools, Smart cards, Micro Development tools and Bespoke Design Services.

CONCEPT ELECTRONICS

http://www.conceptkey.co.uk
Concept Keyboards are specialists in the design and manufacture of customer specified membrane panels and keyboards, and electronic design. Concept's membrane manufacture is supported by a full electronic production facility to provide a complete turnkey keyboard and electronics service, fully accredited to IS09001.

DISPLAY ELECTRONICS
http://www.distel.co.uk

FELLER UK

http://www.feller-at.com
Feller (UK) Ltd. manufacture Fully approved cordsets (Moulded mains plugs and connectors) and Power Supply Cables for all industrial Countries to National and International Standards

ELECTRONICS WEEKLY

 HYPERACTIVEhttp://www.electronicsweekly.co. uk

NEWNES - BOOKS FOR THE ELECTRONICS WORLD

 http://www. newnespress.comOver 300 books and information packages for those working with electronics and engineering technology Visit our site for a free catalogue and downloads.

FLASH DESIGNS LTD

http://www.flash.co.uk
Portable Easy-ICE - The world's fastest, Lowest Cost Real-time Emulator + Starter kits from $£ 319$ with unique ICE connection interface for ATMEL AT89S/C AVR AT90S, 103/603, MCS51, Dallas 80C320, Hitachi H8 + ISP programmers + 'C' Compilers

LOW POWER RADIO SOLUTIONS

http://www.lprs.co.uk
LPRS markets low power radio transmitters, receivers and transceiver modules manufactured by ourselves, Radiometrix, Circuit Designs, RDT and Micrel. Applications for telemetry, video and remote control.

MICRO CALL

http://www.microcall.memec.com
Micro Call is a distributor for the following Galleo,IDT (Integrated Device Technology), Lattice. Level 1. Linear Technology, Memec Design Service, NPC, Siliconians, Silicon laboratories. WSI, Xilinx and Xicor.
M.K. CONSULTANTS (UK) LTD
http://www.mkconsultants.co.uk
A global supplier of low power modules designed and manufactured by MK in the UK. Nobody beats our prices. That's the MK price challenge.

M\&B RADIO
http://www.mb-radio.co.uk

MITRONICS

http://www.mitronics.com
Visit Mitronics, the leading stocking distributor of obsolete and difficult to find Motorola parts. We carry electronic components, integrated circuits, and semiconductors

NATIONAL INSTRUMENTS
http://www.natinst.com/uk

OMEG POTENTIOMETERS

 http://www.omeg.co.ukOmeg 16 mm and 20 mm potentiometers and switched potentiometers with conductive polymer tracks. Web site has full product details, latest news, company contacts, stockists and distributors

PCA:PHILIP COLLINS \& ASSOCIATES PTY. LTD

http://www.pca.cC
PCA manufactures Radphone 2000DX remote control systems for shortwave broadcasters and government agencies wanting worldwide control of
communications receivers and transceivers from any tone phone.

QUILLER ELECTRONICS

http://www.quiller.com
$100+$ pages of detailed technica information on Schrack Relays, MEC Switches, Hirose Connections.

RALFE ELECTRONICS

professional test \& measurement www.ralfe-electronics.co.uk

SUPRA AUDIO CABLES
http://www.jenving.se
Jenving Technology $A B$ is the manufacturer of Supra Audio Cables. OEM productlons are also accepted.

RD RESEARCH

http://www.looking.co.uk/spice
Analogue and digital SPICE modelling software. Full details available on this site. Avaitable on a 30 day evaluation basis.

SWIFT EUROTECH

http://www.swiftdesigns.co.uk
EDWin NC - Professional EDA software at 90% discount! Integrated schematics, PCB layout and simulation. Plus CAMtastic! CAM software and netlist translators for most EDA systems.

SEETRAX LIMITED

http://www.ukonline.co.uk/seetrax

SYSONICS SYSTEMS LTD

 http://www.sysonic.com
THOSE ENGINEERS LTD

http://www.spiceage.com

TRUMETER

http://www.truemeter.com
TOTAL FERQUENCY CONTROL
http.J/www.tfc.co.uk

TRANSONICS

http://www.transonic.com

VANN DRAPER ELECTRONICS LTD

http://www.vanndraper.co.uk
Test equipment from Grundig. Kenwood, Hitachi, Fluke, Avo, Glassman, Advance in a comprehensive site including oscilloscopes, multimeters, power supplies, generators, counters, soldering, digital tv etc.

Put your web address in front of 21,000 Electronics fanatics. Electronics World acknowledges your companys need to promote your web site, which is why we are now dedicating page's in every issue to WEB ADDRESSES.
This gives our readers the opportunity to look up your companys name, to find your web address and to browse the magazine page to find new sites.
We also understand that cost is an important factor, as web sites are an added drain on budgets. I am sure you will agree these rates make all the difference

vUTRAX PCB DESIGN SOFTWARE

http://www.vutrax.co.uk
VUTRAX electronic schematic and pcb design system for Windows 95, 98 and NT. Limited Capacity FREE version downloads available, all upgradeable to various customised levels.

VECTOR BUSINESS COMMUNICATIONS

http://wwwvectore.co.uk/vector/
Pressrelations, advertising web sites, direct marketing, corporate literature, exhibitions and events .Marketing communications for the electronics industry in the UK and across Europe.

WOOD \& DOUGLAS

http://www.woodanddouglas.co.uk
Wood \& Douglas Ltd is the leading
independent British designer and manufacturer of quality radio products for International telemetry, data, voice \& video wireless communications.

WINRADIO
COMMUNICATIONS
http://www.broadercasting.com

XILINX

http://www.xilinx.com/
Xilinx is the world's largest supplier of programmabie logic solutions producing industry leading device architecture and world class design software.

ZETEX PLC

http://www.zetex.com
Data sheets, Application notes, Spice models, Distributor details and more are all available on the Zetex website. CD-ROM version available free by request to infodirect@zetex.com.

FOR 12 ISSUES:
Lineage only will cost $£ 150$ for a full year just $£ 12 . .50$ per month.
This includes your companys name, web address and a 25 word description.
Lineage with colour screen shot will cost £350 for a full year just £29.17 per month.
This will include the above plus a 3 cm screen shot of your site, which we can produce if required.
To take up this offer or for more information ring Joannah Cox on 01816523620 or fax on 01816528938.
E-mail: joannah.cox@rbi.co.uk

| Company Name | Web address | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |

 than just a magazine on the Web. Check out the site and you will see why thousands of electronics professionals around the world regularly log on to...

MMMN.electrongeswarekiy.co.

If you are serious about Internet marketing, then sponsorship of the Electronics Weekly Hyperactivesite is something you must consider.

Whether you have your own web site or not, Hyperactive offers you a great way of delivering your company's products or message to a worldwide buying audience.

By sponsoring a section of Hyperactive, users will have the opportunity to link directly to your web site therefore generating new traffic.

For more information on how to develop your internet marketing activity please call Shaun Barton on 01816523638.

Point yourbrowservat
http://mownelectronicsweekly,co-ukt registernow, its freme

HARDWARE OPPORTUNITIES

ASIC CONSULTANCY Cambs

to $\mathbf{£ 4 0 , 0 0 0}$

VHDL, Verilog, Synopsys, Cadence, are you familiar with these tools and languages? Have you got a good academic background?
If the answer to the above is yes, then you could have a choice of attractive options in the Cambridge area. The top technical consultancies currently have exciting projects underway and need your skills. In addition to the excellent working environments you will also receive some of the best financial rewards available, in addition to being able to put a high profile company name on your CV which will undoubtedly 'open doors' for you in the future, guaranteeing a superb career.

DIGITAL HARDWARE ENGINEERS Berks

This company is regarded as a world force in the data communications marketplace, they are British and develop and manufacture in the British Isles. They are committed to offering a design environment where there is no bureaucracy and you are given freedom of expression, with the opportunity to directly see the part you played in bringing product to market, ensuring they have the most innovative and supportive organisation in the market. They now seek to recruit talented hardware engineers, with digital and FPGA design skills utilising high end tools. In return they offer what is probably the best and most comprehensive package in the market today.

RF DESIGN ENGINEERS Hants/Surrey

£25,000 to £50,000

Degree qualified engineers with at least 2 years relevant RF circuit design experience are required to work for this world leader in the design and development of GSM, PCN and Satellite communications products. You should have a high level of experience in designing Receivers, Synthesisers, LNA's, Filters and Transmitters up to 2 GHz and have experience in designing products for high volume manufacturing. You should also be willing to work at the bench testing designs. Excellent remuneration packages are on offer including full relocation and comprehensive benefit package plus bonuses.

HARDWARE DESIGN ENGINEERS Middx/Surrey/Berks

There are several companies looking to recruit Hardware Design Engineers around the M3/M4 to work on the development of high performance Video systems and products. It is expected that you will have experience in the design of digital and analogue circuits, FPGA's/CPLD's and embedded microprocessors. You should also be experienced in software development for embedded systems using high level languages.

ASIC DESIGN
 Wilts/Avon

to c.£40,000

Three different companies, three different market areas, are looking to recruit talented ASIC design engineers to work on large ASIC designs for applications including Graphics, Computing and Mobile Communications. All offer different but exciting and stimulating work environments working alongside other quality design engineers. You will need to have at least eighteen months experience of ASIC design, making extensive use of high end languages (VHDL, Verilog) and tools (Cadence, Synopsys). In return excellent basic salaries are on offer plus benefits packages including stock options and good bonus schemes.

For further details of these and other current vacancies
Contact Simon Allder, Solution
The Tower House, High Street, Aylesbury, Bucks. HP20 1SQ
Tel: 01296336036 Fax: 01296336037
Email: simon@soltech.co.uk Visit our Website: www.soltech.co.uk

Find your future

 with Kelly Technical

 with Kelly Technical}

Southern Area Vacancies

\rightarrow Service Manager - Berkshire

With extensive experience of digital/analogue audio and visual avionics equipment repair to component level. Management experience including recruitment, training and performance analysis is essential for this busy and challenging environment. To £28K plus an attractive package.

RF Test Engineer - Middlesex

As part of a small, friendly team your experience of RF equipment fault finding to component level will make an extremely important contribution to this well established specialist mobile radio company. Salary to $£ 18 \mathrm{~K}$ plus benefits.

\rightarrow RF System Design Engineers - Hampshire

Working to customer or published specifications, e g ETSI, CCITT, HMGITT and with a minimum of 5 years experience in GSM, PCN, PCS, SATCOM or related fields. Key experience areas are frequency and level planning, spurious identification/management and the understanding of time domain considerations. Salary to $£ 35 \mathrm{~K}$ plus a comprehensive benefits package.

RF Test Engineer - Berkshire

With a Degree or HND in Electronics or a similar discipline and extensive RF test experience, you will perform functional testing of equipment to customer requirements. An appreciation of Military Standards and PC applications for report writing and procedures will also be required. An attractive salary and benefits package is on offer.

ASIC Designer - Hampshire

A minimum of 2 years experience of Signal Processing Design using HDL such as VHDL, Verilog or similar, Synthesis and Gate Development Simulation and a thorough understanding of ASIC Architecture design and Technology. Salary to $£ 35 \mathrm{~K}$ with an excelient benefits package and working environment.

For details of the above and other electronics vacancies in the South of England telephone Roy Parrick on 01703237200 or fax on 01703634207.
Alternatively E-Mail to southtech@kellyservices.co.uk

Midlands Vacancies

Our Lincolnshire based client is an international market leader in the manufacture and sale of RF Communications Equipment and Systems. Due to continuing growth the following positions are available:

Procurement Manager

Degree in Economics, Business Studies or related discipline; knowledge of international purchasing and procurement strategies; 3-5 years experience in a procurement environment. Experience in an electronics or communications company would be an advantage. Applicants who do not currently have manager status who feel they are ready to move into a management role will be considered. Salary CE24-29k

Customer Support Engineer

To install and commission radio systems world wide, and to train customers personnel on the systems installed. Must have HNC in communications plus a minimum of 3 years experience in telecomm networks and VHF/UHF radios. Salary c£20-25k.

DSP/Digital Engineer

With real-time design experience in signal processing and simulation including DSPs (Analogue devices ADSP 2171, Assembler/c) and FPGAs. Must be experienced in the use of CAD tools, e.g. Matlab and MathCad with ISO9001 familiarisation. Salary c£30-35k.

- Systems Engineer / Manager

To carry out system design and supporting calculations for proposals and produce technical proposal documentation. Degree in Electronics, Communications Engineering or related discipline required. In depth knowledge of communications system design. At least 8 years in a communication systems engineering role with a minimum of 3 years in a senior position. Salary c£25-35k.
\rightarrow Commissioning Engineer - Cambridge
To install and commission complex analogue and digital communication systems including Base Station Radio, Wide Area VHF/UHF coverage systems etc. Degree in electronics or equivalent experience and the ability to fault find at component level. World wide travel required. Salary c£20-25k

Contact: Emma Eagle, Tel:(01733) 554315; Fax: 564132;
Email: peterboroughtech@kellyservices.co.uk

Cooke International

Unit Four, Fordingbridge Site, Barnham,
Bognor Regis, West Sussex, PO22 OHD, U.K Tel: (+44)01243545111/2 Fax: (+44)01243542457 Web: http://www.cooke-int.com E-mail: info@cooke-int.com catalogue available

CIRCLE NO. 139 ON REPLY CARD

ADVERTISERS' INDEX

ANCHOR SUPPLIES 390
ANGLIA COMPONENTS OBC
ARIZONA MICROCHIP 354
CMS 378 and 421
CROWNHILL 378 and 393
CHELMER VALVE COMPANY 411
DISPLAY ELECTRONICS 406
DOLCH COMPUTER SYSTEMS UK LTD. 356
EQUINOX TECHNOLOGY IBC
FARADAY TECHNOLOGY 378
JOHNS RADIO 405
JPG ELECTRONICS 411
LABCENTER ELECTRONICS 428
M \& B RADIO 411
MILFORD INSTRUMENTS 354
OLSON ELECTRONICS 422PAUL O'NEILL DESIGNS.354
PICO 361
POLAR INSTRUMENTS 371
PS CONSULTANTS IFC
QUICKROUTE 361
RADIO TECH 393
RALFE ELECTRONICS 440
SEETRAX 369
SIGHTMAGIC 408
STEWART OF READING 371
SURREY ELECTRONICS 371
SWIFT EUROTECH 416
TELFORD ELECTRONICS 369
TELNET 377
THOSE ENGINEERS 393
TIE PIE 430

ARTICLES WANTED

TOP PRICES PAID

For all your valves, tubes, semi conductors and IC's.

Langrex Supplies Limited

1 Mayo Road, Croydon Surrey CRO 2QP TEL: 01816841166 FAX: 01816843056

WANTED

Valves \& Semiconductors All types e.g. Discrete \& IC's Good Rates Paid CHELMER VALVE CO.

130 New London Road Chelmsford, Essex Tel: 01245265865 Fax: 01245490064

IMMEDIATE PAYMENT

For all Surplus/Obsolete Electronic Components J.B.P. Components Phone: 01277211410 Fax: 01277260573

VALVES WANTED

Courteous, Professional Service
Ask for a free copy of our wanted list.
BILLINGTON EXPORT LTD
Billingshurst, Sussex
Tel: 01403784961
Fax: 01403783519 Email: billingtonexportld@btinternet.com VIITTORS PLEASE PHONE FOR APPOINTMENT

WANTED 1940-45 German military radios, crypto equipment, all periods, "spy" radio. 028R0 R.Otterstad, Hosterko BV. 10 DK-3960 Birkerod, Denmark. Tel: 45-4581 5205.

SERVICES

Conicicpt
 Prodiction

Designer Systems has over a decade of Designer Systems has over a decade of
experience designing innovative products for expenence designing indient companies and individuals. If you have a
clation product idea, need to develop a new product product ldea, need to deveassembly from scratch, want to re-
of develop an old product or need professionally develop an old product or need professionally
written documentation or software, contact us for more information or see our web site.
Tel/Fax: 01872223306
Email: designer. Systems
@btintemet.com
Web: http:// DESIGMESR designersystems.
co-ltd.net

NWM/

ADVANTEST TR9407 ft spectrum analyser to $1 \mathrm{MHz} \quad$ E2000 ADVANTEST TR 4133100 kHz -20GHz spectrum analyser $f 6000$ ANRITSU ML93A optical power meter with MA96A power sensor (0.75-1.8uM)
ANRITSU MN95D fibre-optic attenuator 0-65db BRADLEY 192 oscilloscope calibrator £1000 CHASE LFR1000 interference measuring receiver 9 kHz 150 kHz
ATRON 1061 Avoltmeter, 10/20/30/40/50
DRANETZ $626-\mathrm{PA}$-6006 ac neutral monitor, c / w TR2018 clamp EIP 575 source locking frequency counter 18 GHz GPIB option LANN MICROWAVE 27072 frequency meter $73-113 \mathrm{GHz}$ FLANN precision rotary waveguide attenuator $201100-60 \mathrm{db} 18-26 \mathrm{GH}$ FLANN precision rotary waveguide attenuater $221100-70 \mathrm{db} 26-40 \mathrm{GH}$
IFR A-7550 1 GHz portable spectrum analyser with receiver options AM/FM/SSB
GIGATHONICS 8542 microwave power meter to 18 GH
c/w sensors
2 programmable digital multimeter
MARCONI 2019A signal generator $10 \mathrm{kHz}-1 \mathrm{GHz}$ INCLUOING FREE CALIBRATION
MARCONI 2380/2382 400 VHz high-performance spectrum analyser PHILIPS PM5580 I.F. modulator (PAL 1//PM5582 UHF-convertor ROHDE \& SCHWARZ AFGU function generator $1 u \mathrm{~Hz}-20 \mathrm{MHz}$ ROHDE \& SCHWARZ UPA audio analyser with B 6 \& 89 options RHOOE \& SCHWARZ UDS 5 , 5 - -digit muitimeter IEEE RHODE \& SCHWARZ URE rms digital vo tmeter IEEE

THIS MONTHS SPECIAL

 Hewlett Packard 8568Bhigh-specification spectrum analyser
Last list price over $£ 33,000$ II we're asking $£ 5000$
Tektronix 2236100 MHz analogue oscilloscopes f 500

- ralfe electronics - P porosesionamalt remo
- 36 Eastcote Lane - South Harrow - Middx HA2 8DB • England TEL (+44) 0181-422 3593. FAX $(+44)$ 0181-423 4009

EST

RACAL DAVA 991 frequency counter, GPIB opt SCHLUMBERGER 4922 radio code analyser
 SYSTRON DONNER 6041 A TOOMHz 8 -digit frequency coster E15 TEKTRONIX 2432 A 100MHz 250M Sa/sec digital storage

TEKTRONIX 2236100 MHz analogue oscilloscope
cope
$£ 1000$
TAU-TRON MN302MB302N bert transmiter//receive 1500 \& options
$£ 250$
IMN PCM4 test sels ... call for details WANDEL \& GOL
call 985/01, IEEE opt
WANVEL \& GOLTERMANN PF2 error ratio measuring set
WANDEL \& GOLTERMANN OLM-20 data circuit test Se:
WANOEL \& GOLTERMANN SPM31 level meter
WANDEL \& GOLTERMANN PF4 bit error reate taster
[BN911/01. Opt 00.01)
WAVETEK 23 synnthesized function generator $0.01 \mathrm{~Hz}-12 \mathrm{MHz}$ WAVEEKK 1080 sweep generator 1 -1000MHz WAVEEKK 1080 sweep generator 1-1000M M WAYNE KERR 322020 A biss unit for 3245 inductance analyser) WAYNE KERR SR268 source and detector

Hz loption 03) WIITRON 5659A sweer generator 10MHz-2656 Hz lopion $£ 200$ WILTRON 6659A sweep generator 10MHz-26 5 GHz (options $01 / 10 / 13$)
WLLTRON 6640B sweep generator $26.5-40 \mathrm{GHz}$ (option 03) \quad E3500

HEWLETT PACKARD

$8714 \mathrm{C} 300 \mathrm{kHz}-3 \mathrm{GHz}$ vector network analyser 3585 A 40 MHz spectrum analyser 1640B serial data generator 10715A digital interferometer 3577A network analyser 5 Hz -2000 MHz 33144 function generator

with driver $11713 A$

As above but 18 GHz set
3561A dynamics signal analyser
3586A selective level meter 3580 A selective level meter 55000
TV communications performance analyser, call for option configs 40938 protocol tester base (PT300) $4142 B$ DC source/monitor (with 41421B, 41420A, 41424A 8018A serial data generator
53348 frequency courter, option 060 83411C lightwave receiver $100 / 1550 \mathrm{~nm}$ 83440 C lightwave detector $20 \mathrm{GHz} 1300 \mathrm{~nm} / 1550 \mathrm{~mm}$ 8350 B sweep generator mainframe 835728 sweeper plug-in unit (for 83508) 26.5-40GHz 8924C CDMA mobile station test set 85053 B 3.5 mm verification kit 85640 A tracking generator to 2.9 GHz 8672A synthesized signal generator $2-18 \mathrm{GHz}$ 8673 D synthesized signal generator $50 \mathrm{MHz}-26.5 \mathrm{GHz}$ $86222 \mathrm{~A} 10 \mathrm{MHz}-24 \mathrm{GHz}$ sweep generator plug-in unit $86290 \mathrm{~B} 2-18 \mathrm{GHz}$ sweep generator plug-in unit $86290 \mathrm{~B} 2-18 \mathrm{GHz}$ sweep generator plug-in \qquad
 3903 B audio analyser $£ 2500$ - (specify your own filter requirements add $£ 200$ for each filter
$8904 \mathrm{~A} 0001 / 002$ multifunction synthesizer $\mathrm{DC}-600 \mathrm{kHz}$ 89708 noise figure meter with option 020 J2215A FODI portable multimode test set

All equipment sold calibration-checked by independent laboratories and carries un-conditional refund and 90-day guarantees.
CALLERS WELCOME BY APPOINTMENT ONLY.
FOR COMPLETE STOCK LISTING PLEASE CHECK OUR WEBSITE wWW.ralfe-electronics.co.uk

ISO9002 ACCREDITED STOCKIST MEASUREMENT \& TEST EQUIPMENT

CIRCLE NO. 141 ON REPL Y CARD

CIRCLE NO. 142 ON REPLY CARD

For sales tel: +44 (0) 1204529000 , fax: $\mathbf{+ 4 4}$ (0) 1204535555 , e-mail: sales@equinoxdech.com, Web Stie: www.equinox-tech.com
EQUINOX OISTRIBUTORS: AUSTRALIA Farnell +61296458888 AUSTRIA COdico +431863050 Farnell +4306508775 BEL GIUM Akcom Electronics NN/sa +3232273647 Farnell +32032273647 RRAZIL Hastec +55115221799 Anacom +55114535588 DENMARK ACTE Denmark +4535869696 Farnell +4544536644 Jacob Hatteland +4570102211 EIRE Farnell +35318309277 FINLAND ACTE Finland +3589751761 Farnell +35893455400 FRANCE Farnell +33474659466 Newtek +33146872200 GERMANY Elektronik Laden +4952328171 Famelt +498961393939 Ineltek GmbH +49732193850 , MSC Vertriebs GmbH +49089945532 12 GREECE Microiec +30153950424 HONG KONG Farnell 800968280 (HK Direct Toil Free) IND IA Electro 5 ystems +91803323029 ITALY Farnell +441132311311 Grifo Italian Tectnology +39051892052 Newtek ltalia +39233105308 JAPAN Akizuki Denshi Isusho +81332511779 MALAV5IA Farnell +6037738000 NETHERLANOS Akom ElectronIcs BV +31102882500 Antratek +31104504949 Display
 Avnett Kopp +27114442333 TURKEY Delta Trade Consuitancy +903124402040 UNITED KINGOOM Farnell +44 (0) 1132636311 Rapid Electronics +44 (0) 1206751165 USA Keil Software +18003488051 Monterey Tools Web site: wuw. montereytools.com

Equinox reserves the right so change prices \& specifications of any of the above products without prior notice. E\&OE. All prices are exclusive of VAT \& carriage AVR ${ }^{\text {Tw }}$ is a trademark of the Atmel Corporation

[^0]: PCMCIA adaptoi (external):
 $£ 30$ when bought at same time as the ' e ' serie's unit, otherwise: $£ 69$ inc. PPS NiMH. 12 v battery pack \& charger: $£ 99$ when purchased with ' e ' series unit, otherwise: $£ 139$

[^1]: For more information on products featured in our money-saving voucher booklet, turn to page 429.

[^2]: wha Paul O Neill Designs, Oublin, Iretand
 TelFax:+353-1-8215060
 Email - info@pond.ie Web - www.pond.ie
 pan os, 大ो

[^3]: - Airline Hand Luggage.
 - Universal Autoswitch Integral PSU.
 - Removable Full-size Keyboard.
 - CardBus / PCMCIA x 2.

[^4]: Source: Datamonitor
 Contect: 01713160001 of www. datamonifor.com

[^5]: Joseph J. Carr, MSEE

[^6]: Table 1. Simulations used to find a relationship between model settings and results.

 | | $\mathbf{n}=\mathbf{2 . 3}$ | $\mathbf{(2 S K 1 3 4)}$ | | |
 | :--- | :--- | :--- | :--- | :--- |
 | θ | $\mathbf{V}_{\text {TH }}$ | $\beta_{\text {eHI }}$ | $\mathbf{g}_{\text {IsIIm }}$ | $\theta_{\text {cH }}$ |
 | 0 | 1.50 | 0.998 | none | 0 |
 | 0.1 | 1.29 | 0.770 | 4.84 | 0.080 |
 | 0.2 | 1.26 | 0.694 | 2.47 | 0.140 |
 | 0.3 | 1.25 | 0.643 | 1.75 | 0.184 |
 | 0.4 | 1.23 | 0.603 | 1.24 | 0.243 |
 | 0.5 | 1.23 | 0.568 | 1.00 | 0.284 |
 | 0.6 | 1.23 | 0.540 | 0.83 | 0.325 |

 ## $\mathrm{n}=6$ (IRF510)

 | $\mathrm{V}_{\text {TH }}$ | $\beta_{\text {en }}$ | $\mathrm{g}_{\text {stum }}$ | $\theta_{\text {ent }}$ |
 | :--- | :--- | :--- | :--- |
 | 4.20 | 1.0 | none | 0 |
 | 3.74 | 0.650 | 4.82 | 0.067 |
 | 3.66 | 0.552 | 2.47 | 0.112 |
 | 3.64 | 0.489 | 1.65 | 0.148 |
 | 3.60 | 0.443 | 1.24 | 0.179 |

 Note: β is fixed at unity, $n=6, I_{s}=100 \mathrm{pA}$ and R is 1Ω. The term $\theta_{\text {eff }}=\beta / 2 g_{\text {sm }}$ is derived from the level 3 (Crawford) equation, where $g_{\text {sim }}$ is the simulated gain limit with large $V_{G S}$ such as 30 V - provided $V_{\text {DS }}$ is kept larger than $V_{G S}$ to ensure current

