Class-A for all

Medical imaging technology

Design rf mixers

Self debates amplifier classes

New generation motor drives

Electronics in music

Mobile phones: where next?

Measuring RMS via Internet

12 new Circuit Ideas - page 234
Now the **WR3100e**

external **WiNRADiO** arrives!

"**WiNRADiO™** now brings you a complete choice in personnel computer controlled radio scanning and reception solutions..."

With either the internal or external versions, you can couple all the power of the latest Windows PCs (not just the fraction that you can squeeze down an RS232 connection) to the latest synthesised receiver design techniques, and you'll get the ultimate in wide range, all mode programmable radio reception.

New external WiNRADiO™

(WR1000e, WR1500e and new WR3100e) provide complete comms systems connecting either via the basic RS232 - or with an optional PCMCIA adaptor, for high speed control. Power from existing 12v supplies, or our optional NiMH rechargeable 12v battery pack.

Use WiNRADiO scanning PC comms receivers for...

If you want the ultimate receiver-in-a-PC with full DSP, then you need the WR3000-DSP with its hardware for real-time recording, signal conditioning and decoding applications. (DSP is available with the ISA card version only).

Model Name/Number

<table>
<thead>
<tr>
<th>WR-1000</th>
<th>WR-1500</th>
<th>WR-3100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction of internals</td>
<td>Construction of externals</td>
<td>Construction of internals</td>
</tr>
<tr>
<td>Frequency range</td>
<td>Modes</td>
<td>Frequency range</td>
</tr>
<tr>
<td>0.5-1300 MHz</td>
<td>AM,SSB/CW,FM-N,FM-W</td>
<td>0.15-1500 MHz</td>
</tr>
<tr>
<td>100 Hz (5 Hz BFO)</td>
<td>100 Hz (1 Hz for SSB and CW)</td>
<td>100 Hz (1 Hz for SSB and CW)</td>
</tr>
<tr>
<td>6 kHz (AM/SSB)</td>
<td>2.5 kHz (SSB/CW), 9 kHz (AM)</td>
<td>2.5 kHz (SSB/CW), 9 kHz (AM)</td>
</tr>
<tr>
<td>17 kHz (FM-N), 230 kHz (W)</td>
<td>17 kHz (FM-N), 230 kHz (W)</td>
<td>17 kHz (FM-N), 230 kHz (W)</td>
</tr>
<tr>
<td>Receiver type</td>
<td>Spectrum Scope</td>
<td>Spectrum Scope</td>
</tr>
<tr>
<td>PLL-based triple-conv. superhet</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Scanning speed</td>
<td>Scanning speed</td>
<td>Scanning speed</td>
</tr>
<tr>
<td>10 ch/sec (AM), 50 ch/sec (FM)</td>
<td>10 ch/sec (AM), 50 ch/sec (FM)</td>
<td>10 ch/sec (AM), 50 ch/sec (FM)</td>
</tr>
<tr>
<td>Audio output on card</td>
<td>Audio output on card</td>
<td>Audio output on card</td>
</tr>
<tr>
<td>200mW</td>
<td>200mW</td>
<td>200mW</td>
</tr>
<tr>
<td>Max on one motherboard</td>
<td>Max on one motherboard</td>
<td>Max on one motherboard</td>
</tr>
<tr>
<td>8 cards</td>
<td>8 cards</td>
<td>8 cards</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>Dynamic range</td>
<td>Dynamic range</td>
</tr>
<tr>
<td>65 dB</td>
<td>65 dB</td>
<td>65 dB</td>
</tr>
<tr>
<td>IF shift (passband tuning)</td>
<td>IF shift (passband tuning)</td>
<td>IF shift (passband tuning)</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>DSP in hardware</td>
<td>DSP in hardware</td>
<td>DSP in hardware</td>
</tr>
<tr>
<td>no - use optional DS software</td>
<td>YES (ISA card ONLY)</td>
<td>YES (ISA card ONLY)</td>
</tr>
<tr>
<td>IRQ required</td>
<td>IRQ required</td>
<td>IRQ required</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Spectrum Scope</td>
<td>Spectrum Scope</td>
<td>Spectrum Scope</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Published software API</td>
<td>Published software API</td>
<td>Published software API</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Internal ISA cards</td>
<td>External units</td>
<td>External units</td>
</tr>
<tr>
<td>£299 inc vat</td>
<td>£359 inc vat</td>
<td>£299 inc vat</td>
</tr>
<tr>
<td>£369 inc vat</td>
<td>£429 inc vat</td>
<td>£369 inc vat</td>
</tr>
</tbody>
</table>

PCMCIA adaptor (external): £30 when bought at same time as the 'e' series unit, otherwise: £69 inc.

PPS NiMH 12v battery pack & charger: £99 when purchased with 'e' series unit, otherwise: £139

For your free info pack and software emulation demo disk contact Broadercasting Communication Systems - and please note all available information is also available 24 hours a day on the web.

EMAIL: info@broadercasting.co.uk - FAX: 01245 287057

Unit B, Chelford Court, Robjohns Road, Chelmsford, Essex CM1 3AG

E&OE WiNRADiO and Visitune are trademarks of WiNRADiO Communications

CIRCLE NO. 101 ON REPLY CARD
179 COMMENT
We Brits will put up with anything.

181 NEWS
- The end of the PC as we know it?
- C++ enhancements for hardware design
- Infra-red pc link — new standard
- Electronics job prospects on the up
- CRTs still shine brightest

186 IMAGING ALL THE PEOPLE
There are currently three main imaging technologies used in medicine. Roy Rubenstein examines their uses and discusses their potential.

188 CLASS A TO 300W
Colin Wonfor’s range of hi-fi audio amplifiers includes what is probably the most powerful single-ended Class-A design of its type ever produced.

190 CLASS DISTINCTION
Doug Self explores the inadequacies of the popular audio power amplifier classification system. His work reveals that there are amplifier class types that have not yet been explored.

196 HIGH-PERFORMANCE MOTOR DRIVES
John Wetroth and Damian Anzaldo give an overview of modern control technology, highlighting two mixed-signal chips for the next generation of motor drives.

202 ELECTRONIC EFFECTS IN MUSIC
Richard Brice looks at various ways in which intentional electronic signal distortion is used to enhance music.

208 UPWARDLY MOBILE
Mobile phones are marvellous — within their own mobile world. New developments will integrate them seamlessly into the mainstream network and add full multimedia capabilities. Andrew Emmerson reports.

212 SPEAKERS’ CORNER
John Watkinson expands on the topic of how motional feedback is used to improve a loudspeaker’s performance.

215 HANDS ON INTERNET
Measuring rms is the focus of Cyril Bateman’s web sleuthing this month. There’s also tips on finding data.

220 RF RECEIVER MIXERS
In the first of three articles explaining rf mixers, Joe Carr looks at their operation and demonstrates the basic single-ended diode mixing configuration.

224 ZERO DISTORTION?
Perfect amplifier fidelity is thought to be unattainable. But Ian Hickman explains that you could indeed make a distortionless amplifier, if only...

234 CIRCUIT IDEAS
- One telephone — two lines
- Faster charging for xenon flash
- High-Q, programmable notch filter
- Linear pwm demodulator
- Low loss active diode
- Regulator shutdown in battery systems
- Parallel port as microprocessor bus
- Monitor catalytic converters
- Positive/negative voltage reference.
- 1µs, 16-bit a-to-d converter
- Three two-gate oscillators
- Zero-crossing detector
- Monitor with 0.1°C resolution

246 LETTERS
Radio 4’s noisy floor, Fence EMC, Ionisation chamber, Lost charge, Barretter remembered, Oxide diodes, Vision by radio, Competition winners.

251 NEW PRODUCTS
New product outlines, presented by Phil Darrington.

April issue on sale 4 March
Quality second-user test & measurement equipment

Marconi

Radio Communications Test Sets

<table>
<thead>
<tr>
<th>Test Set</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2955</td>
<td>£2250</td>
</tr>
<tr>
<td>2955A</td>
<td>£2500</td>
</tr>
<tr>
<td>2958 (TACS)</td>
<td>£2750</td>
</tr>
<tr>
<td>2960 (TACS + Band III)</td>
<td>£2750</td>
</tr>
<tr>
<td>2960A (TACS)</td>
<td>£2950</td>
</tr>
<tr>
<td>2955B</td>
<td>£3750</td>
</tr>
</tbody>
</table>

Telnet

Fax 01203 650 773

OSCILLOSCOPES

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>Frequency</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tektronix 465P</td>
<td>2-channel</td>
<td>100 MHz - 1.8 GHz</td>
<td>£3750</td>
</tr>
<tr>
<td>Tektronix 495P</td>
<td>Spec. analyser prog.</td>
<td>1.8 GHz</td>
<td>£3750</td>
</tr>
<tr>
<td>Meguro - MSA 4912</td>
<td>2-channel</td>
<td>100 MHz - 1.8 GHz</td>
<td>£3750</td>
</tr>
<tr>
<td>Hokusa CS 0101</td>
<td>100 MHz</td>
<td>£350</td>
<td></td>
</tr>
<tr>
<td>Loczy 6040A</td>
<td>300 MHz/200 MHz</td>
<td>£350</td>
<td></td>
</tr>
<tr>
<td>Meguro MS8201</td>
<td>100 MHz</td>
<td>£350</td>
<td></td>
</tr>
<tr>
<td>Philips PM 3350</td>
<td>300 MHz</td>
<td>£350</td>
<td></td>
</tr>
<tr>
<td>Philips PM 3355</td>
<td>500 MHz</td>
<td>£350</td>
<td></td>
</tr>
<tr>
<td>Philips PM 3356</td>
<td>500 MHz</td>
<td>£350</td>
<td></td>
</tr>
<tr>
<td>Philips PM 3357</td>
<td>100 MHz - 1.8 GHz</td>
<td>£350</td>
<td></td>
</tr>
</tbody>
</table>

MISCELLANEOUS

<table>
<thead>
<tr>
<th>Test Set</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMI - 500L Power Amplifier</td>
<td>£1500</td>
</tr>
<tr>
<td>Faraday AP02805 - Power Supply</td>
<td>£995</td>
</tr>
<tr>
<td>IFI 12052 - Radio op amp set</td>
<td>£2500</td>
</tr>
<tr>
<td>GN ELM1 EPR11 - PDA Signal Recorder</td>
<td>£2500</td>
</tr>
<tr>
<td>Hewlett Packard 6032A - Acoustical System</td>
<td>£750</td>
</tr>
<tr>
<td>Hewlett Packard 6632A - System Power Supply</td>
<td>£800</td>
</tr>
<tr>
<td>Hewlett Packard 3704A - Digital Transmission Analyser</td>
<td>£5000</td>
</tr>
<tr>
<td>Hewlett Packard 3705A - Jitter Generator & Receiver</td>
<td>£3750</td>
</tr>
<tr>
<td>Hewlett Packard 5320B - Universal Time Interval Counter</td>
<td>£2000</td>
</tr>
<tr>
<td>Hewlett Packard 5350I - Synch. Eq. Gen (10 MHz - 1.8 GHz)</td>
<td>£3250</td>
</tr>
<tr>
<td>Hewlett Packard 4102A - LF Impedance Analyser</td>
<td>£7000</td>
</tr>
<tr>
<td>Hewlett Packard 16050A - Logic Analyser System Expander Frame</td>
<td>£2500</td>
</tr>
<tr>
<td>HP 3696A - Jitter measurement equipment</td>
<td>£1750</td>
</tr>
<tr>
<td>HP 3488A - Switch/Control unit</td>
<td>£1500</td>
</tr>
<tr>
<td>HP 3427A - 1 MHz - V-V meter</td>
<td>£1250</td>
</tr>
<tr>
<td>HP 4304A - Power meter + lead + sensor available from £995</td>
<td></td>
</tr>
<tr>
<td>HP 4355A - 100 MHz - 1.8 GHz</td>
<td>£3750</td>
</tr>
<tr>
<td>HP 4392A - Synthesised signal generator</td>
<td>£1750</td>
</tr>
<tr>
<td>HP 4397A - Signal generator 1000 MHz</td>
<td>£3750</td>
</tr>
<tr>
<td>HP 37960D - Signal test set</td>
<td>£4750</td>
</tr>
<tr>
<td>HP 3002A - Jitter measurement equipment</td>
<td>£1750</td>
</tr>
<tr>
<td>HP 3901B - Modulation Analyser</td>
<td>£3750</td>
</tr>
</tbody>
</table>

All equipment is used - with 30 days guarantee. Add carriage and VAT to all goods. Telnet, 8 Cavans Way, Binley Industrial Estate, Coventry CV3 2SF.
We Brits will put up with anything

In Britain we have grown accustomed to paying more than our European neighbours for most things. How many of us have marvelled at the lower cost of food and drink in French supermarkets? Even cars manufactured in this country will consistently cost us ten per cent more to buy than they would on the Continent.

Apples and Volvos are one thing, but when someone points out that as a nation we are paying more for our telephone calls than people in almost any other country in the world, then you know someone is taking the mickey.

Surely not, after all this is Britain - a country which has prized itself over the last dozen or so years on having one of the most open and highly competitive telecommunications markets in the world.

We are told that free-market competition will inevitably drive down prices by forcing companies to be more competitive. But it has not worked in the UK's deregulated telephone market, and what is more worrying for phone users is that the future telephone market in this country looks like it could become less, not more, open.

It seems that after a dozen years of free-market competition for both fixed-line telephones in the home and for mobile phones, the British telephone user has been ripped-off. That was the view of the man who up until 12 months ago was responsible for ensuring fairness reigned in the UK's telephone market.

Of course, BT and other telephone operators hotly dispute the merest suggestion that the cost of calls may be unjustifiably high. But in December some of those particular chickens came home to roost when the new industry regulator at the Government's Office of Telecommunications - OfTEL for short - accused BT and mobile phone operators Vodafone and Cellnet of overcharging customers and ordered them to slash the price of calling mobile phones by 25 per cent.

Remember that the deregulated UK telephone market has more public telephone operators and more mobile phone companies than nearly any other country outside of North America.

Deregulation of telephone services has not worked as effectively as we might have expected. After more than a decade, too much competitive power still remains in the hands of too few companies. Market leading operators like BT, Vodafone and Cellnet literally call the shots and the regulator OfTEL seems less than determined to act, despite last December's 25 per cent price cut.

If we thought that the last change of government would shake things up a bit and create a situation where the industry regulator has real teeth and the will to use them, then may be we will have to think again. It now seems that far from becoming more open the UK market is about to take a backward step, incredible as that may seem.

OfTEL may have ordered BT to slash its call-charges, but it is not prepared to tackle the relatively high cost of telephone services by opening up the market to even greater competition, as is happening in the US and soon to start in mainland Europe.

It is the level of cut-throat competition allowed in the US, which has driven telephone charges down and Internet usage up. It seems that the European Union - traditionally bastion of monopolistic telephone operators - is changing the colour of its spots with drastic plans to open up the provision of telephone lines to greater competition.

The cost of using the telephone and the Internet will plummet across Europe, but not in the UK.

OfTEL is dismissive about EU plans to compel market leading operators to rent lines to rival firms at cost prices. This is what already happens in the US and the benefits to the customer are obvious. But if OfTEL gets its way then it will not happen here - potentially making a mockery of the UK's deregulated telephone market.

OfTEL's argument is that the provision of telecommunications services is a high cost activity, requiring high levels of investment. If the market is divided up between too many smaller operators the ability to invest will be threatened.

This may be a valid objection if it were not for the fact that the competitive US market seems to break the rule. Not only does it have the lowest telephone charges in the world, but its operators are the most advanced at introducing broadband services like ADSL and cable modem technology.

OfTEL seems to accept that the provision of telephone services will remain the preserve of a small number of operators then the pressure to drive down the cost of telephone connections will be considerably less than in most other countries of the world.

We must be grateful for OfTEL's recent moves on the UK's high telephone charges, but it seems that the regulator's long term view of the telecoms market is more than a little short-sighted.

Richard Wilson, Editor Electronics Weekly

The cost of using the telephone and the Internet will plummet across Europe, but not in the UK.
TELEFONICS ELECTRONICS

Old Officers Mess, Hoo Farm, Humber Lane
Horton, Telford, Shropshire TF6 6DJ, UK
Phone: (00 44) 01952 605451 Fax: (00 44) 01952 677978
e-mail: telefonderelectronics@telford2.demon.co.uk
Web: http://www.telefonderelectronics.com

Carriage: £10 + VAT @ 17.5% to be added to all UK orders
Orders overseas welcome — Please call

ALL OUR EQUIPMENT HAS A 30 DAY GUARANTEE

(Excluding Clearance Items which are sold as-is)

FEATURES

- **FM -200 Controller**
 - RS232/RS485 Serial Port
 - 2-16 bit Counter/Timers
 - 512 Kbytes Flash EEPROM
 - 1-32 Digital VO Channels
 - Key Pad Port 64 Keys 8 x 8
 - LCD Port Graphics or Alphanumeric
 - 2 Channels 8 bit analogue in

OPTIONAL EXTRAS

- Additional extra features to the FM 200
 - Up to 32 Digital I/O Channels
 - Up to 8 8 bit Mbytes of SRAM Battery Backed
 - Up to 512 Keyboards of Flash EEPROM
 - 1 Mbyte EPROM Space

MISCELLANEOUS

DATALAB DL1000 Programmable Transient Recorder

- **Anritsu MS334A PCM Error Detector**
 - £120.00

HP33320A Attenuator 11dB.

- **HP33304A Programmable Attenuator 18GHz 0-11dB**
 - £176.00

HP X382A Variable Attenuator 0-50dB 8.2-12.4060

- **HP3717A 70MHz Modulator/Demodulator**
 - £300.00

HP3586B Selective Meter.

- **HP3497A Data/Acquisition Control Unit**
 - £400.00

CONTACT:

Phone: (00 44) 01952 605451 Fax: (00 44) 01952 677978

Carriage: £10+VAT @ 17.5% to be added to all UK orders

(Except Clearance Items Which Are Sold As-Is)

Old Officers Mess, Hoo Farm, Humbers Lane
Telford, Shropshire TF6 6DJ, UK

FM Embedded Controllers at a ground breaking price!

The range of ‘FM-Controllers’ provide most of the features required for embedded control at a very low cost

FEATURES FM-200 Controller

- 68K Micro-Controller 14 MHz clock
- 512 Keyboards Flash 8 bit Mbytes of SRAM Battery Backed
- 2 RS232 Serial Ports
- 1 RS232/RS485 Serial Port
- Real Time Clock (Y2K Compliant)
- Watchdog & Power fail detect
- 10 Digital I/O Lines
- 2.16 bit Counter/Timer
- PC Bus or M-Bus
- Expansion Bus
- Size 100 x 80 mm

OTHER FEATURES

- Up/Download removable card for data logging and operating
- STEP 9 Bus, 8050 and PC Interface
- Designed, Manufactured and supported in the UK

DEVELOPMENT

The PC Starter Pack provides the quickest method to get your application up and running

Operating System

- Real Time Multi Tasking
- Unlimited copy licence

Languages

- C, Modula-2 and Assembler
- Full libraries & device drivers provided

Expansion

- Easy to expand to a wide range of peripheral and I/O cards

Support

- Free unlimited telephone, FAX, email and internet support

Custom Design

- CMS will design and manufacture to customers requirements

CIRCLE NO.103 ON REPLY CARD

CIRCLE NO.104 ON REPLY CARD
CRTs still shine brightest

The good old cathode ray tube seems still to have some tricks up its sleeve to beat off the advance of potential rivals.

CRTs continue to out-perform all contenders when it comes to brightness and colour. Now the latest technology from Philips Display Components is claimed to improve picture quality even further.

"It can produce a smaller spot at higher brightness," said Fritz Gehring, responsible for the Philips development. "This will give you a brighter, crisper picture."

What Gehring and his team have done is develop a semiconductor replacement for the hot cathode electron-emitter, which has featured in CRTs since they first appeared more than a century ago.

Philips is calling it ACC, for avalanche cold cathode.

A conventional CRT cathode is a metal surface, coated and electrically heated to red hot to excite electrons within the material sufficiently to allow them to be pulled off by a local electric field. These electrons are then focused, deflected and further accelerated, forming the electron beam that writes the picture on the phosphors at the front of the tube.

By modulating the local extraction field, the beam strength is altered to produce a grey scale in the image. The ACC electron source works in a completely different way.

It consists of a buried diode junction, made just below the surface of a silicon chip, as in the junction diagram. The p-type material is biased negative, reverse-biasing the junction, but the voltage applied is high enough, at 5V, to push electrons through the junction by Zener action. These electrons, flowing from the p-type material, accelerate as they cross the barrier. Some have enough energy to escape from the material surface into the vacuum beyond.

"The junction is less than 1µm below the surface and you get a lot of field strength," said Gehring. "With a single atom layer of cesium on the surface to lower the work function, we get between five and ten per cent of the electrons flowing through the junction emitted."

He added: "This gives us a lot more electrons per square mm, in comparison with thermionic emission."

Adjusting the junction current varies the number of electrons emitted.

The electrons are 'hot', flying out of the surface. Gehring said: "In comparison, the thermionic electrons in a CRT are only evaporating out."

An electrostatic lens, made on the surface, forms the fleecing electrons into a beam where they can be deflected and further accelerated.

For a colour display, three ACCs are needed. "We can get six to ten thousand cathodes from a wafer," said Gehring, "The final system cost, in a monitor for instance, will be the same as the conventional approach, but the image will be better."

The future of the ACC is currently uncertain. "We are not sure if it will be introduced," said Gehring, explaining: "Lifetime and reliability need to be assessed."

Steve Bush, Electronics Weekly

Electronics job prospects on the up

The electronics industry is optimistic about employment prospects despite the overall job trend being at its lowest since 1994.

According to the latest Manpower Survey of Employment Prospects, the electronics industry is leading the manufacturing sector with 26 per cent of electronic employers forecasting increased job prospects for the first quarter of 1999. Against this, nine per cent anticipate a decrease which gives a balance of 17 per cent. While this is above the national average it still represents a downsing of 21 points on the same quarter in 1998.

The survey also shows evidence that the economy is faltering with the overall job trend being similar to that which preceded the recession in the early 90s.

Over 2000 employers were questioned in December 1998 by Manpower about their intentions for staffing levels for the first quarter of 1999. For this period 16 per cent predicted an increase in job levels and 16 per cent forecast a decrease. The balance of 0 per cent is 10 points lower than the same period in 1998 and also the largest year on year downsing since 1991.

The most optimism came from the telecoms sector, which showed a balance of 19 per cent.

Sir Clive Thompson, president of the Confederation of British Industry, has warned of the likelihood of recession in the manufacturing industry this year.

A recent survey by the Chartered Institute of Purchasing and Supply indicated that the slowdown in manufacturing business may be easing although output and new order levels remain near their all-time lows.
C++ enhancements announced for hardware design

Belgium's inter-university microelectronics centre, IMEC, has developed a version of C++ for designing hardware. The C++ programming language is used to directly generate hardware description language (HDL) code ready for synthesis to logic gates.

"We didn't change anything in C," said Marc Engels, director of IMEC's telecom department, which developed the system. "We designed a set of C++ classes of basic objects. These enable a parallelism not normally found in C++.

"We have now done three chips with the system, and there are no hits on area and performance," Engels claimed.

These devices are a DECT equaliser, 10Mbit/s cable modem and part of an MPEG-4 compression chain. "This silicon is all processed and working," said Engels.

Such a development system offers two essential benefits, not available using a traditional design environment.

First, if hardware and software use the same programming language, then making trade-offs between the two is easier. "And we can co-simulate the whole thing in C which gives you an incredible speed," said Engels.

Second, the object oriented nature of C++ makes it good for design reuse.

Hyundai to buy LG Semicon chip fab

After fighting tooth and nail for months against merging with Hyundai, LG will sell Hyundai its semiconductor division.

The deal followed a meeting between the Korean president and the president of LG. The company will now sell LG Semicon outright to Hyundai.

Infra-red pc link: more speed, less haste

Added flexibility in proposals for a new 16MHz IrDA infrared communications standard may reduce rather than increase data throughput. This is the finding of research at Bournemouth University.

IrDA ports, which were originally only to be seen on handheld computers and portable digital assistants, are increasingly appearing on desktop computers and peripherals like printers - so much so that Windows 98 includes an IrDA protocol stack as standard.

The initial specification drawn up by the Infrared Data Association, IrDA, called for a maximum data rate of 115.5kbit/s. This was subsequently raised to 4Mbit/s and now there are proposals to further raise this to 16Mbit/s.

For various good reasons, an IrDA transmitter can only send for up to 500ms before it must switch to receiving. In this time, called a window, it sends multiple frames of up to 16,384 bits.

The research at Bournemouth is that, allowing for reception errors, using all 127 frames will slow data transmission in many situations.

"A window size of around 60 frames looks like it will give better throughput," said Bournemouth researcher Peter Barker.

A second issue arises with the increase in data rate. To allow a terminal's receiver to come out of saturation (caused by its own transmitter) there is a period called the turn-around time allocated between finishing transmission and starting reception. The maximum available is 10ms; most terminals use 1ms.

Making full use of the turn-around time makes an extensive dent in the data transfer rate at 16Mbit/s. "IrDA is a low cost technique and so-called 'zero turn-around time' transducers are expensive. Some cheaper alternatives are needed to make full use of 16Mbit/s IrDA," said Barker.

Bournemouth's analytical technique is probabilistic, using random errors in the raw receive data stream and taking into account the duration of re-sends necessary to correct them, and the likelihood of these needing further correction.

The research at Bournemouth is sponsored by BT Laboratories.
The Telexbox MB is a cable television receiver with a variety of features and options. The Telexbox MB can receive a variety of TV channels, including those from the VHF, UHF, and HYPERBAND bands. It is designed for cable or hyperband signal reception and offers a variety of options for connecting to a variety of television and audio equipment.

One of the main features of the Telexbox MB is its compatibility with various types of cable systems. It can be used with a variety of different cable types, including coaxial and optical fiber. The Telexbox MB is also compatible with a variety of different audio and video output formats, including standard television and Hi-Fi audio systems.

The Telexbox MB also includes several additional features, such as a built-in audio amplifier, a remote control, and a variety of different connectors for connecting to different types of equipment. It is designed to be easy to use and to provide a high level of performance and reliability.

In addition to its main features, the Telexbox MB also includes a variety of other options and accessories, such as different types of remote controls, different types of cables, and different types of connectors. These options and accessories can be used to customize the Telexbox MB to fit the specific needs of the user.

The Telexbox MB is available for purchase through a variety of different retailers, including consumer electronics stores, online retailers, and specialty stores. It is also available for purchase through a variety of different online marketplaces, including Amazon, eBay, and Newegg.

Overall, the Telexbox MB is a versatile and reliable cable television receiver that offers a wide range of features and options. It is suitable for use in a variety of different situations, including homes, businesses, and other locations where cable television is available.
The end of the pc as we know it?

The future of the pc could be set in 1999. Many believe it is a different future from the one expected between 1968 and 1998. The expectation was, that sometime around 2000, pcs would have gigahertz processors accessing a gigabyte of wide-bandwidth DRAM. Now the future could be pcs so cheap that they could be free to the user – and so easy to use they'll be usable by everyone.

From racing up the hertz and bytes trail, Intel and Microsoft are said to be diverting their focus towards the never-have-adopters, those technological laggards representing about 70 per cent of the western world who have never bought a pc.

At the same time, pc manufacturers are discussing with Internet service providers and telcos the possibility of subsidising pc sales in the same way as mobile phones are funded in a move towards the 'free pc'.

And pc retailers – which include supermarkets these days – are linking with pc assemblers to provide cheap machines and subsidise their selling price by doubling them as advertising channels.

The moves to commoditising the pc look irresistible, and the strongest influence towards commoditisation is the move to cheap processors. New Celerons at 400MHz are being introduced at £100. At 333MHz they are under £50.

With AMD and Cyrix selling equivalent processors even cheaper, the most expensive component in a pc is now a commodity.

Many remember in the mid-eighties the shock at seeing Intel selling commercial processors for $1000 – a price which, up to then, had been reserved for military processors.

Intel was pricing for a monopoly market, not pricing to cost. It has taken some fifteen years for processors to get back to being priced on cost.

What does this mean for the future of the pc? Some might say it's the end of the over-complicated, ultra-fragile concoctions of Microsoft and Intel which continually crash, refuse to do what you want, and purvey incomprehensible error messages.

Does Bill Gates wake up laughing every night at the hair-tearing frustration his products cause to users every day?

Commoditisation might mean that pcs will be tailored to the needs of consumers – easy to use, performing simple functions like e-mail, word processing and web browsing, efficiently and reliably, sending error messages in clear comprehensible English, and which don't crash.

Commoditisation might mean that these machines will get cheaper to produce by 30 per cent every year, like other electronics goods, and that manufacturers will pass on these cost reductions to consumers.

Commoditisation might mean the end of the creeping obsolescence of pcs as new, more powerful models running new software make last year's machine old hat.

Commoditisation could even mean the end of evolution of the PC at 450MHz processors, 128Mbyte of DRAM and 10Gbyte hard disk drives. Will it? If pcs are just going to provide e-mail, word processing and web browsing, then they can be made on a single chip and sold as cheap consumer items called 'information appliances'. Or they can be incorporated into tvs, set-top boxes, or even telephones.

However, if pcs are to handle large amounts of graphics – as in games playing and in new features such as videophone, speech control and translation – then the pc's technological evolution is not yet ended.

Accepting voice instructions like 'find me the most economical flight to reach Rome by 2pm on Jan 22nd from Gatwick' and delivering the output in speech, or accepting dictation in one language and displaying it in another, are applications which will require huge amounts of processing power and memory.

If these sorts of uses are what people want – and many think they are – then the evolutionary future of the pc is assured. Having supercomputer-type power in the home will be justified.

But many people won't want these uses, requiring only e-mail, web browsing and word processing.

For these people, the over- elaborate Intel/Microsoft model can be junked and, if clever financing arrangements like those for mobile phones can be devised, simplified PC/IT technology will at last get into the majority of homes.

It has taken a long time. Back in the 70s the French government tried to kick-start the process with the "Minitel" data terminal, and the UK tried to do the same with Teletext.

Like many government schemes of that era, people liked them, but no one could find a way to make money from them.

Then came the runaway success of the mobile phone and everyone was carrying around sophisticated technology. But would mobile phones have succeeded if they'd been sold at cost?

Now it's the turn of the set-top box which is following the subsidised route pioneered by the mobile phone. As well as extra entertainment, they provide telecoms and datacoms via the tv – e.g. e-mail, web-browsing and even word processing.

Next may come the subsidised – even free – pc. Will it be the vehicle which finally turns on the non-techie majority to IT? Or has the pc's future already been overtaken by events.

David Manners, Electronics Weekly
M&B RADIO

PROFESSIONAL ELECTRONIC TEST AND MEASUREMENT

86 Bishopsgate Street, Leeds LS1 4BB Tel: (+44) 113 2435649 Fax: (+44) 113 2426881
ALL EQUIPMENT SUPPLIED WITH 30 DAYS WARRANTY • PRICES PLUS CARRIAGE AND VAT
Visit M&B Radio's Website: http://www.mbradio.co.uk e-mail: info@mbradio.co.uk

Technical products

The Electromail CD-ROM Catalogue provides a virtual technical supermarket, product encyclopedia, and a help line with round-the-clock service - the moment you slip it into your computer! It's quite amazing just how much you can get out of it. Products from batteries to bearings, fuses to fans, semiconductors to computers, hard to power tools. On-line advice, and access to a full library of data sheets, providing detailed information on almost every product in our range. But the best thing about Electromail, is that it's open just when you want to go shopping. 24 hours a day. 365 days a year.

And in most cases your order will be despatched on the very same day you order (failing that, the next working day).

The Electromail CD-ROM Catalogue offers you more products and services than any of the alternatives. Send for your copy and get a head start in your business, your home or hobby... and at just £3.99 with free delivery, it's not worth struggling on without it!

HOW TO ORDER

Tel 01536 204555 or Fax 01536 405555
When ordering by fax or phone quote stock no. 322-9793 and have your credit card details handy. Alternatively, you can open your own Electromail account - please ask for details.

Electromail, P.O. Box 33, Corby, Northants, NN17 9EL Tel: 01536 204555 Fax: 01536 405555
Imaging all the people

There are several different techniques currently doing the doctor's rounds in the medical diagnostic imaging market. Roy Rubenstein examines their progress.

It's a mixture of wonderment, excitement and - when all is well - immense relief. Such are the emotions an ultrasound scan evokes when parents gain the first glimpse of their child - even if the image is of questionable quality.

Ultrasound is just one of several approaches that comprise the diagnostic imaging market, valued worldwide at $14.6bn. The others are computed tomography (CT), magnetic resonance imaging (MRI) and X-ray. There's more on these in the panel on the right.

While their underlying technologies differ, all share several common elements: a source - an X-ray tube or an rf coil in a magnetic field, for instance; a detector that senses what happens to the source as it travels through the body; and circuitry to create a digitised image from the detected data.

Once digitised the information is treated like any other data: it can be stored, transmitted or processing prior to viewing.

"This is a fantastic time to work in the field," said Dr Kirby Vosburgh, director of the electronic systems laboratory at General Electric's research and development centre in Schenectady, New York. "Not only have there been significant advances in the physics and materials - much higher power X-rays, more sophisticated transducers and more successful magnetic configuration in MRI - but there have been massive increases in computational power, displays and in storage."

The result has been a transformation in medicine in the last 25 years. "Lots of diseases which were then undiagnosable now have highly successful treatments," said Vosburgh.

While the techniques have their own characteristics, there are no hard rules as to when each is used. "For different applications there is certainly some overlap," said Dr Guy Sohie, a US medical systems specialist. Ultrasound and MRI are used to look at soft tissue, whether it is to find internal injuries or to scan a brain. CT is used for both bones and soft tissue while X-ray uses include skeletal injuries and breast cancer.

Jan-Kees van Soest, chief technology officer at Philips Medical Systems, stresses that MRI is the most universal diagnostic tool, capable of imaging 'almost anything'. It is also a non-ionising technique - unlike CT and X-rays. The complementary nature of diagnostic techniques also means that they can be used in tandem. For head injuries CT can help view the skull while MRI scans brain tissue. "The two high-resolution images can then be blended; where they don't match, landmarks can be looked for and stretched [to fit the two]," said van Soest.

The various imaging techniques are now at a level that they are proving valuable aids during non-
invasive and minimally-invasive surgery. “Their greater sophistication allows more subtle, specific surgical approaches,” said Vosburgh.

He cites GE’s latest ‘double doughnut’ vertical MRI system, which is used while removing brain tumours. “It allows surgeons to see below the knife; you can even watch the bones holding the scalpel.”

Another development is pain management, selectively injecting highly localised anaesthetic. Other MRI uses include the implanting of radioactive seeds to treat prostate cancer. Here the key is to accurately distribute the seeds over a volume to best ‘denature’ the tissue. MRI is also being used to focus ultrasound, acting as a virtual scalpel, to burn tissue within the body.

Temperatures of 100°C can be achieved within seconds.

For all designers of diagnostic equipment, one driving factor is cost reduction. “All health-care systems are under horrendous pressure to reduce costs,” said Sohie – especially when an MRI machine can cost between $2m to $3m.

Increasing machine efficiency, enabling it to treat more patients, is one obvious requirement. “In radiology, the biggest delay is developing the X-ray film and once the film is viewed a further X-ray may be needed,” said Sohie. This has resulted in the development of flat panel detectors.

According to van Soest, Thomson, Siemens and Philips are collaborating on developing flat detectors to better compete with Japan.

Another way to improve efficiency is to use advanced imaging software and pattern recognition techniques.

“Mammography is a difficult field, detecting a cancer growth is not easy to see on an X-ray,” said Sohie. “If you make the doctor more successful, you save a lot.”

van Soest agrees: “The earlier you detect a lesion the better.” However, he stresses that current techniques give resolutions no finer than 2 to 3mm. “That represents millions and

Diagnositc imaging techniques

Ultrasound
Ultrasound is ideal for viewing soft tissue. Current state-of-the-art machines are fully digital. This includes the beam-forming which transmits and receives the ultrasonic waves. Another development is colour Doppler flow imaging. By measuring frequency shifts in the ultrasound, movement can be detected and shown using a colour code. This is a particularly effective way of showing blood flow. 3D ultrasound images are another advancement.

Magnetic Resonance Imaging (MRI)
MRI uses electromagnetic resonance of atoms to image cross sections of the body. The various body locations are distinguished by subjecting them to various magnetic fields. This makes the atoms resonate at different frequencies, resulting in high-resolution images. As such, MRI, unlike X-rays, can detect both soft tissue and bone.

Computed tomography (CT)
CT typically involves a single X-ray detector and a single source which circle the body. X-ray provides a portrayal of the density of matter and is therefore ideal for viewing hard material such as bones. Advances in CT include the number of slices that can be processed in a single scan. Intensive computation is needed to calculate the intensity at each point of the 2D slice after it has been exposed from all the various directions. Hence the name.

X-Ray
X-ray involves projecting the human body onto a plate. Because X-ray machines are widely used and relatively cheap, much work is being undertaken to extend their capabilities. This includes volumetric X-ray, essentially an extension of CT using a two-dimensional detector. This allows for a full volumetric reconstruction of the image, as opposed to reconstruction of separate slices. Of particular importance is the arrival of direct X-Ray: flat panel detectors which produce a direct digital image which is more faithful to the anatomy.

Vosburgh cites recent pattern recognition software that is proving a valuable tool for radiologists: “It helps identify areas of interest [on an X-ray film], acting like a ‘spellchecker for radiologists’.”

Another development helping to reduce cost is the increasing use of commodity technologies: communication and pc technologies through to database software. This not only addresses cost: it is also reducing the very long product cycles that characterise diagnostic machines.

So what significant developments are in the pipeline? Vosburgh believes that as imaging accuracy improves, automated surgery will become possible. But he believes this is still at least five years away. van Soest suggests that future advances in MRI will allow functional processes to be monitored. “This will allow chemical content to be viewed, potentially nipping disease in the bud.”
The first time I designed this amplifier was in the late seventies. At the time, the only Class-A designs were push-pull types or valve based. Some had very large inductors to provide the output bias. None was single ended and solid state throughout.

At the time, the problem was that the output devices did not have sufficient safe-operating-area parameters to insure long-term stability. In the late eighties, I redeveloped the design using much better devices. But the biggest single ended version was still only 25W. It had massive heat sinks and much better devices. But the biggest improvement on the earlier designs. The heat sinks for each channel had 40mm fins and measured 300mm high by 300mm deep. Total power consumption was about 500W - all of which had to be dissipated as heat. This was a massive improvement on the earlier designs.

In the early nineties, I looked at the design yet again and set out to build the most powerful ever range of class-A amplifiers. That was some challenge.

I started with the 25W stereo version using much better components and five output devices. This was a massive improvement on the earlier designs. The next step was a 50W version, followed by 100W, 200W and 300W mono-blocks. The largest has a power consumption of about 1500W per channel.

The input stage is a standard long-tail pair or differential input pair T_2 and T_4, with a constant current source T_6 and T_9 in the common emitters. Output from this stage drives the n-p-n transistor T_7, with its collector current controlled by T_9 and T_{11}. In turn, the output of T_7 drives the emitter-follower stage T_2. Again, T_{10} and T_{11} provide constant current. All this so far is in Class A.

For every five output fets, one emitter follower T_{12} is needed to provide sufficient drive current to the gates of the fets in dynamic conditions. If this rule is not followed, frequency roll off becomes excessive.

Each output fet has a separate constant current source via a current limit resistor connected as a source follower. The simple current limit senses the voltage across the R_{10} resistors and shunts the drive to the fets T_{12}. This shuts down the output positive voltage swing, protecting the fets. To protect the speakers a series fuse is recommended.

Set all output current adjust potentiometers, R_{15}, so that the wiper voltage is the same as the emitter voltage on T_7, the Darlington constant current driver. Then adjust current limiting via each R_{15} according to the output device and power level required.

The dc offset can be fine-tuned to a few tens or less millivolts by adjusting R_{11}. Settings should be made after the amplifier has settled, and rechecked after about half an hour.

This circuit is designed for simplicity. It uses standard, readily available components or equivalents and is basically self-explanatory. I used natural

<table>
<thead>
<tr>
<th>Recommended components for the range of amplifiers.</th>
<th>20W</th>
<th>50W</th>
<th>100W</th>
<th>200W</th>
<th>300W</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>BD140</td>
<td>BD140</td>
<td>BD986</td>
<td>2SA986</td>
<td>MJE350</td>
</tr>
<tr>
<td>T_2</td>
<td>BD139</td>
<td>BD139</td>
<td>BD955</td>
<td>2SC2238</td>
<td>MJE340</td>
</tr>
<tr>
<td>T_3</td>
<td>TIP29C</td>
<td>TIP29C</td>
<td>2SC2238C</td>
<td>2SC2238</td>
<td>TIP47</td>
</tr>
<tr>
<td>T_4</td>
<td>2SC2547</td>
<td>2SC2547</td>
<td>2SC3467D</td>
<td>2SC3467D</td>
<td>2SC3467D</td>
</tr>
<tr>
<td>T_5</td>
<td>2SC2547</td>
<td>2SC2547</td>
<td>2SC3467D</td>
<td>2SC3467D</td>
<td>2SC3467D</td>
</tr>
<tr>
<td>T_6</td>
<td>2SC2547</td>
<td>2SC2547</td>
<td>2SC3467D</td>
<td>2SC3467D</td>
<td>2SC3467D</td>
</tr>
<tr>
<td>$T_{10,11}$</td>
<td>ZTX450</td>
<td>ZTX450</td>
<td>ZTX450</td>
<td>ZTX450</td>
<td>ZTX450</td>
</tr>
<tr>
<td>R_{8} feedback (Ω)</td>
<td>18k</td>
<td>28k</td>
<td>39k</td>
<td>47k</td>
<td>47k</td>
</tr>
<tr>
<td>Gain</td>
<td>18</td>
<td>28</td>
<td>39</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>R_{9} const (Ω)</td>
<td>0.42</td>
<td>0.83</td>
<td>0.94</td>
<td>1.02</td>
<td>1.24</td>
</tr>
<tr>
<td>R_{9} max (Ω)</td>
<td>0.21</td>
<td>0.42</td>
<td>0.48</td>
<td>0.52</td>
<td>0.63</td>
</tr>
<tr>
<td>R_{9} (Ω)</td>
<td>3k9</td>
<td>6k2</td>
<td>9k</td>
<td>12k</td>
<td>15k</td>
</tr>
<tr>
<td>R_{9} power (W)</td>
<td>0.103</td>
<td>0.145</td>
<td>0.223</td>
<td>0.300</td>
<td>0.375</td>
</tr>
<tr>
<td>Heat sink ($^\circ$C/W)</td>
<td>0.248</td>
<td>0.109</td>
<td>0.062</td>
<td>0.040</td>
<td>0.033</td>
</tr>
<tr>
<td>Redpoint EF range</td>
<td>30030040</td>
<td>130070040</td>
<td>300100040</td>
<td>300150040</td>
<td>300180040</td>
</tr>
</tbody>
</table>
A Class-A design to suit all power needs. By modifying the output and driver stage, the circuit can be made to deliver a maximum power output of 20W, 50W, 100W, 200W or 300W.

<table>
<thead>
<tr>
<th>Specification</th>
<th>20W/8Ω</th>
<th>20W/4Ω</th>
<th>50W/8Ω</th>
<th>50W/4Ω</th>
<th>100W/8Ω</th>
<th>100W/4Ω</th>
<th>200W/8Ω</th>
<th>200W/4Ω</th>
<th>300W/8Ω</th>
<th>300W/4Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input power/channel</td>
<td>201.21</td>
</tr>
<tr>
<td>RMS o/p (V)</td>
<td>12.60</td>
</tr>
<tr>
<td>RMS o/p (A)</td>
<td>1.56</td>
</tr>
<tr>
<td>Max o/p (W)</td>
<td>91.91</td>
</tr>
<tr>
<td>Qf1/2 (A)</td>
<td>5.00</td>
</tr>
<tr>
<td>P<sub>C</sub> Darlington Tr<sub>7</sub> (W)</td>
<td>100.00</td>
</tr>
<tr>
<td>Darlington P<sub>Dis</sub> each (W)</td>
<td>20.00</td>
</tr>
<tr>
<td>Recommended Tr<sub>7</sub> & Tr<sub>13</sub> power total (W)</td>
<td>100.00</td>
</tr>
<tr>
<td>Fets needed</td>
<td>5</td>
</tr>
<tr>
<td>Tr<sub>13</sub> f<sub>e</sub> P<sub>Dis</sub> each</td>
<td>20.00</td>
</tr>
<tr>
<td>Recommended Tr<sub>13</sub></td>
<td>IRFP048</td>
<td>IRFP140</td>
<td>IRFP240</td>
<td>IRFP250</td>
<td>IRFP264</td>
<td>IRFP048</td>
<td>IRFP140</td>
<td>IRFP240</td>
<td>IRFP250</td>
<td>IRFP264</td>
</tr>
<tr>
<td>+ve HT (V)</td>
<td>20</td>
</tr>
<tr>
<td>-ve HT (V)</td>
<td>20</td>
</tr>
<tr>
<td>HT +15V</td>
<td>35</td>
</tr>
<tr>
<td>Qf1/2 Tr<sub>7,10</sub> (mA)</td>
<td>0.55</td>
</tr>
<tr>
<td>R<sub>W</sub> Tr<sub>7</sub> (Ω)</td>
<td>0.55</td>
</tr>
<tr>
<td>Optimuff load (Ω)</td>
<td>2.52</td>
</tr>
<tr>
<td>Optimum load power (W)</td>
<td>63.00</td>
</tr>
</tbody>
</table>

The power supply needs to be either regulated or have large reservoir capacitors, somewhere around 12000μF/5A for each main power rail. The +15V HT supplies need about 10 000μF. This means about 250 000μF for the positive and negative HT rails of the 300W versions to achieve the best performance.

In summary

Be warned. These amplifiers get very hot, and can cost a fortune to repair if you are careless.

A drawback of this form of Class-A is poor ripple rejection, so you need a smoothed power supply and intolerance to non-standard loads. In addition, the lower power versions are not sufficiently powerful to drive speakers with a sensitivity of less than 88dB and the output is intolerant of non-standard loads.

But the sound reproduction quality is fantastic.

Requirements and components for the 20 to 300W range of Class-A amplifiers.

[Diagram of amplifier circuit with components listed nearby.]
Doug Self explores the inadequacies of the popular audio power amplifier classification system and puts forward an enhanced method to cover all existing designs. His work reveals that there are amplifier class types that have not yet been explored.

Class distinction

Power amplifiers are usually distinguished by their operating class - A, AB or B, and so on. Unfortunately this classification scheme only begins to address the problem, as amplifiers come in many more than three kinds. There is current-dumping, Class-G, error-correction, and so on. Amplifiers that work in quite different ways are all called 'B' or 'AB' and there is still confusion between B and AB in many quarters.

Traditionally, further letters such as G, H, and S have been used to describe more complex configurations. It occurred to me that rather than proliferating amplifier classes on through the alphabet, it might be better to classify amplifiers as combinations of the most basic classes of device operation.

It may be optimistic to think that this proposal will be adopted overnight, or indeed ever. Nevertheless, it should at least stimulate thought on the many different kinds of power amplifier and the relationships between them.

Class structure

At the most elementary level, there are five classes of device operation, as outlined in the panel. More sophisticated amplifier types such as Class-G, Class-S, etc., are combinations of these basic classes. Class-E remains an rf-only technology, while Class-F does not apparently exist.

All the operating classes above work synchronously with the signal. The rare exceptions are amplifiers that have part of their operation driven by the signal envelope rather than the signal itself.

Krell® has produced Class-A amplifiers with a quiescent current that is rapidly increased by a sort of noise-gate side-chain, but slowly decays. An interesting study of a syllabic Class-G amplifier with envelope-controlled rail switching was presented in ref. 9.

Combinations of classes

The basic classes mentioned in the panel on the right have been combined in many ways to produce the amplifier innovations that have appeared since 1970. Since the standard output stage could hardly be simplified, all of these involve extra power devices that modify how the voltage or current is distributed.

Assuming the output stage is symmetrical about the central output rail, then above and below it there will be at least two output devices connected together, in either a series or parallel format. Since these two devices may operate in different classes, two letters are required for a description, with punctuation - a dot or plus sign - between them to indicate parallel or series connection.
Five basic classes

Class-A. The device conducts 100% of the cycle. This includes Class-A push-pull, where at full output, device current varies from twice the quiescent current to almost zero in a cycle, and Class-A constant-current mode, also known as single-ended Class-A. Any intermediate amount of current swing clearly also qualifies as Class-A, so unlike Class-B there exists an infinite range of variations on Class-A operation.

Class-AB. Conducts less than 100% but more than 50% of the cycle. This is essentially over-biased Class-B, giving Class-A operation up to a certain power level, but above that at least twice as much distortion as optimal Class-B. Once more there is a range of variations on Class-AB, depending on the amount of overbias chosen.

Class-B. The device conducts very nearly 50% of the cycle. The exactness of the 50% depends on the definition of 'conducts' because with Class-B optimally adjusted for minimum crossover distortion, there is always some conduction overlap at crossover, otherwise there would be no quiescent current. This will be 10mA or so for a complementary feedback pair stage, or about 100mA for an emitter follower version. With bipolar transistors, collector current tails off exponentially as \(V_{CE} \) is reduced, and so the conduction period is rather arguable. So-called 'non-switching' Class-B amplifiers, which maintain a small current in the output devices when they would otherwise be off, such as the Blomley\(^1\) and Tanaka approaches\(^2\) are treated as essentially Class-B.

Class-C. The device conducts less than 50% of the cycle. It is frequently written – indeed I have written it myself – that Class-C is inapplicable to audio and – indeed I have written it myself – that Class-C is inapplicable to audio and never used therein. A little more thought showed me that this is untrue. The best-known example is Quad current-dumping, a scheme specifically intended to allow the high-power output stage – the 'current-dumpers' – to be run at zero quiescent.\(^3\)

An emitter-follower output stage with no bias has a fixed dead-band of approximately ±1.2V, so clearly the exact conduction period varies with supply voltage; ±40V rails and a 1mA criterion for conduction give 48.5% of the cycle. This looks like a trivial deviation from 50%, but crossover distortion prevents direct audio use.

Class-D. The device conducts for any percentage of the cycle but is either fully on or off. Class-D usually refers to a pulse-width modulation scheme where the mark/space ratio of an ultrasonic squarewave is modulated by the audio signal.\(^4\),\(^5\),\(^6\) However, in this case I am concerned only with the on-off nature of operation, which can be of use at audio frequencies, though not of course for directly driving the load. The conduction period during a cycle is not specified in this definition of Class-D.

Parallel or series connection

In parallel, i.e. shunt, connection, output currents are summed, the intention being either to increase power capability, which does not affect basic operation, or to improve linearity.

A subordinate aim is often the elimination of the Class-B bias adjustment. The basic idea is usually a small high-quality amplifier correcting the output of a larger and less linear amplifier. For a parallel connection the two class letters are separated by a dot, i.e. \(A.B \).

In a series connection the voltage drop between supply rail and output is split up between two or more devices, or voltages are otherwise summed to produce the output signal. Since the collectors or drains of active devices are not very sensitive to voltage, such configurations are usually aimed at reducing overall power dissipation rather than enhancing linearity. Series connection is denoted by a plus sign between the two Class letters.

The order of the letters is significant. The first letter denotes the class of that section of the amplifier that actually controls the output.

Table 1. Sub-class definitions.

<table>
<thead>
<tr>
<th>Parallel</th>
<th>Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+B</td>
<td>A+B</td>
</tr>
<tr>
<td>A+C</td>
<td>A+D</td>
</tr>
<tr>
<td>B+B</td>
<td>B+C+C</td>
</tr>
<tr>
<td>B+C+C</td>
<td>B+D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parallel</th>
<th>Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandman Class-S scheme</td>
<td>'Super Class-A'</td>
</tr>
<tr>
<td>Quad current-dumping</td>
<td>Stochino error correction</td>
</tr>
<tr>
<td>Self Load-Invariant amplifier</td>
<td>A possible approach for cooler Class-A</td>
</tr>
<tr>
<td>Crown and Edwin types</td>
<td>Totem-pole or cascade output: No extra rails</td>
</tr>
<tr>
<td>Class-G shunt. (Commutating) 2 rail voltages</td>
<td>Classical series Class-G, 2 rail voltages</td>
</tr>
<tr>
<td>Class-G shunt. (Commutating) 3 rail voltages</td>
<td>Classical series Class-G, 3 rail voltages</td>
</tr>
<tr>
<td>Class-G with outer devices in D</td>
<td>Class-H</td>
</tr>
</tbody>
</table>

Fig. 1. Sandman 'Class-S' scheme. Resistors \(R_{4,5,6} \) implement the feedback loop controlling amplifier \(A_2 \), so as to raise the load impedance seen by \(A_2 \).
Audio

Fig. 2. Edwin type amplifier; standard Class-B except for the unusually low driver output follower resistors. Effectively B+C.

Fig. 3. A Class-G-shunt output stage, composed of two emitter-followers output stages with the usual drivers. Voltages $V_{bias3,4}$ set the output level at which power is drawn from the higher rails. B+C.

Class A+B. Class A+B describes an output stage in which the circuitry that actually controls the output is in Class-A, while a second Class-B stage is connected in parallel to provide the muscle.

The best-known example is probably the Sandman output configuration, in which the high-power amplifier A_2 is controlled by its own negative feedback loop so as to increase the effective load impedance until it is high enough for the Class-A stage to drive it with low distortion.10

In Fig. 1, A_1 is the Class-A controlling amplifier while A_2 is the Class-B heavyweight stage. As far as the load is concerned, these two stages are delivering current in parallel. The aim was improved linearity, with the elimination of the bias preset of the Class-B stage as a secondary goal.

If A_2 is unbiased and therefore working in Class-C, A_1 has much greater errors to correct. This would put the amplifier into the next category, Class A+C.

Class A+C. The power stage A_2 is now working in Class-C, the usual motivation being the reduction of power dissipation because current is flowing for less of the cycle. The absence of any bias for a Class-B-type output stage puts it in into Class-C, as conduction is less than 50%—though probably not much less.

If the bias voltage is dispensed with then a number of problems with setting and maintaining accurate quiescent conditions are eliminated. A good example of such use of Class-C is the Quad current-dumping concept. Here, the use of feedback-forward error-correction allows the substantial crossover distortion from a heavyweight Class-C—i.e. underbiased Class-B—stage to be effectively corrected by a much smaller Class-A amplifier.7

Class B+B. At first there seems little point in using one Class-B stage to help another, as they both have inherent crossover distortion. However, since reducing the current handled by an output stage reduces both crossover and large-signal distortion, the concept can be useful.

An example is my load-invariant amplifier, which can be considered as two Class-B output stages collapsed into one.12

Class B+C. Here, the controlling stage A_1 is Class-B, accepting that some crossover distortion in the output will be inevitable. This approach appears to have been introduced by Crown (Amcron) around 1970.13

Once more two stages are combined; the drivers—usually compound—are required to deliver significant power in Class-B, while the main power devices only turn on when the output is some way from the crossover point, and are in Class-C.

Similarly, the 'Edwin' type of amplifier, Fig. 2, was promoted by Elektor in 1975.14 It was claimed to have the advantage of zero quiescent current in the main output devices; though why this might be an advantage was not stated; in simulation linearity appears worse than usual.

Another instance of B+C is Class-G-shunt.11 Figure 3 shows the principle; at low outputs only T_{R4} conduct, delivering power from the low-voltage rails. Above a threshold determined by V_{bias3} and V_{bias4}, D_1 or D_2 conducts and $T_{R6,8}$ turn on, drawing from the high-voltage rails.

Diodes $D_{3,4}$ protect T_{R4} against reverse bias. The conduction periods of the Class-C devices are variable, but much less than 50%. Class-G-Shunt schemes usually have A_1 running in Class-B to minimise dissipation, giving B+C; such arrangements are often called 'commutating amplifiers'.

Class B+C+C. Some of the more powerful Class-G-shunt public-address amplifiers have three sets of supply rails to further reduce the average voltage-drop between rail and output.

The extra complexity is significant, as there are now six supply rails and at least six power devices. It seems most unlikely that this further reduction in power consumption could ever be worthwhile for domestic hi-fi, but it is very useful in large PA amplifiers, such as those made by BSS. Three letters with intervening dots are required to denote this mode, Fig. 4.

Series connection category

In the second group of configurations, voltages are summed by series connection. The intention is usually the reduction of total power dissipation, rather than better linearity.

192 ELECTRONICS WORLD March 1999
Since the devices are not usually operating in the same class, two letters are again required for a description, and I have used a plus-sign between them to indicate the series connection.

Class A+B. Figure 5 shows the so-called 'Super-Class-A' introduced by Technics in 1978. The intention is to combine the linearity of Class-A with the efficiency of Class-B.

The Class-A controlling section A1 is powered by two floating supplies of relatively low voltage, around ±15V, but handles the full load current. The floating supplies are driven up and down by a Class-B amplifier A2. This amplifier must sustain much more dissipation as the same current is drawn from much higher rails, but it need not be very linear as in principle its distortion will have no effect on the output of A1.

The circuit is complex and costs more than twice that of a conventional amplifier. In addition, the floating supplies are awkward. This seems to have limited its popularity.

Another A+B concept is the error-correction system of Stochino. The voltage summation — the difficult bit — can be performed by a small transformer, as only the flux due to the correction signal exists in the core. This flux cancellation is enforced by the correcting amplifier feedback loop. Complexity and cost are at least twice that of a normal amplifier. In addition, the floating supplies are awkward. This seems to have limited its popularity.

Class A+D. The 'Super-Class-A' concept mentioned above can be extended to A+D by running the heavyweight amplifier in the usual high-frequency pwm Class-D configuration. Alternatively, an A+D amplifier can be made by retaining the Class-A stage but powering it from rails that switch at audio frequency between two discrete voltages. Recall that this definition of Class-D does not mean high-frequency pwm.

Class B+B. Sometimes called a totem-pole stage to emphasise the vertical stacking of output devices, this arrangement shares the power dissipation between two devices. However, a parallel connection does the same thing more simply and with lower voltage losses.

Class B+C. The basic series Class-G with two rail voltages — i.e. four supply rails, as both voltages are positive and negative — is shown in Fig. 8. This configuration was introduced by Hitachi in 1976 with the aim of reducing amplifier power dissipation. Musical signals spend most of their time at low levels, and have a high peak:mean ratio, so dissipation is greatly reduced by running from the lower ±V1 supply rails when possible. When the instantaneous signal level exceeds ±V1, Tr6 conducts and D3 turns off, so the output current is now being drawn from the higher ±V2 rails, with the dissipation shared...
between \(T_{R3} \) and \(T_{R6} \). The inner stage \(T_{R3,4} \) normally operates in Class-B, though AB or A are equally possible if the output stage bias is increased.

In principle movements of the collector voltage on the inner device collectors should not affect the output voltage, but practical Class-G is often considered to have worse linearity than Class-B because of glitching due to diode commutation. However, glitches if present occur at moderate power, well away from the crossover region.

Class B+C+C. An obvious extension of the Class-G principle is to increase the number of supply voltages, typically to three. Dissipation is reduced and efficiency increased, as the average voltage from which the output current is drawn is kept closer to the minimum.

The inner devices will operate in Class B/AB as before, the middle devices will be in Class-C, conducting for significantly less than 50% of the time. The outer devices are also in Class-C, conducting for even less of the time. Three letters with intervening plus signs are required to denote this.

To the best of my knowledge three-level Class-G amplifiers have only been made in shunt mode. This is probably because in series mode the cumulative voltage drops become too great. If it exists, such an amplifier would be described as operating in B+C+C.

Class B+D. Since the outer power devices in a Class-G-series amplifier are not directly connected to the load, they need not be driven with waveforms that mimic the output signal. In fact, they can be banged hard on and off so long as they are always on when the output voltage is about to hit the lower supply rail.

The outer devices may be simply driven by comparators, rather than via a nest of extra bias generators as in Fig. 8. Thus the inner devices are in B with the outer in D. Some of the more powerful amplifiers made by NAD - like the Model 340 - use this approach, shown in Fig. 9.

The technique known as Class-H is similar but uses a charge-pump for short-term boosting of the supply voltage. In Fig. 10, at low outputs \(T_{R6} \) is on, keeping C charged from the rail via \(D \).

During large output excursions, \(T_{R6} \) is off and \(T_{R5} \) turns on, boosting the supply to \(T_{R3} \). The only known implementation is by Philips, which is a single-rail car audio system that requires a bridged configuration and some clever floating-feedback to function.

Full circuitry has not been released, but it appears the charge-pump is an on/off subsystem, i.e. Class-D.

In summary
The test of any classification system is its gaps. When the periodic table of elements was evolved, the obvious gaps spurred the discovery of new elements; convincing proof the table was valid.

Table 1 is restricted to combinations that are, or were, in actual use, but a full matrix showing all the possibilities has several intriguing gaps; some, such as C+C and C+C are of no obvious use, but others like A+C are more promising - a form of Class-G with a push-pull Class-A inner stage. Glitches permitting, this might save a lot of heat.

The amplifier table really gets interesting when it becomes clear that there are gaps in the entries - things that could exist but are not currently known.

![Fig. 7. A totem-pole or cascade series output. Resistors \(R_d \) divide the voltage between rail and output in half, and drive the outer power devices. Inner and outer devices turn on and off together. B+B.](image)

![Fig. 8. Class-G-series output stage. When the output voltage exceeds the transition level, \(D_3 \) or \(D_4 \) turns off and power is drawn from the higher rails through the outer power devices. B+C.](image)

194 ELECTRONICS WORLD March 1999
References

Fig. 9. Class-G output stage with outer devices in Class-D. Described as B+D.

Fig. 10. The Class-H principle applied to a bridged output stage for automotive use. B+D.
High-performance motor drives

John Wettroth and Damian Anzaldo provide an overview of modern motion control technology and highlight two mixed-signal devices designed for use in the new generation of motor drives.

Direct current drives are the oldest servo drive scheme and are still widely used. The DC drive shines in applications with large torque variations or in low power applications. It is also good for variable speed control because it can easily achieve good torque and speed response with high accuracy using simple control schemes.

Field orientation of the motor is achieved using a mechanical commutator with brushes. Simple commutation makes for a lower cost controller, but it also makes for an expensive and less reliable motor.

Control however, is very straightforward; varying current controls torque and speed is controlled by voltage, minus back emf. A typical block diagram of a simple DC drive for a portable medical device is shown in Fig. 1.

The main drawback of this technique is the limited reliability of the brushed DC motor. As AC drive systems improve, they are eroding even the special areas where DC drives have prevailed.

Note that there is a class of motors called 'brushless DC motors' that can be confusing to sort out. These aren’t actually DC motors, but an AC motor with an embedded electronic commutator making them look to the outside world like a DC motor.

Brushless DC motors are common in high run life, constant speed applications like small fans. They represent the simplest type of AC drive covered in the next section.

AC drives

The evolution of AC variable speed drives is mainly driven by the desire to emulate the performance of a DC drive.
with its fast torque response and speed accuracy, while using low cost, reliable and most importantly brushless, AC motors. It is ironic that even today, the highest tech motors and controls still compare their performance to that of a DC drive.

Most motor control systems are physically built as two or more separate units. The first unit is called a motor or motion controller. This section generates the command signals and gets overall system feedback. It is usually implemented as a proportional-integral-derivative, or PID, controller that tracks position and velocity or velocity and acceleration.

The second unit is called the drive. This unit takes a velocity or torque command as input and operates the motor. The drive is often further divided into a control portion and a power portion with the power portion located with the motor.

What all the boxes do in a sophisticated motion control system can be confusing since both the motion controller and the drive contain a digital signal processor or some other form of processor. To make matters worse, there is also another computer that feeds commands to the motion controller.

To clarify the situation of what all these processors are doing; the digital signal processor in the drive is intimately involved with the details of commutating and controlling the current and voltage in the motor. The motion controller runs the real time servo-positioning portion of the customer’s application code. It provides command signals to the drive usually in the form of analogue signals.

The motion controller is often located in a personal computer as an ISA or PCI plug-in card. The pc’s processor runs the final customer application code and user interface. Its job might be for example to interpret G-codes for a computer numerical control program and feed X, Y and Z values to the motion control card over the bus. These values would ultimately control the axes of a CNC milling machine.

While the entire motor control market is buoyant, it is the drive portion where tremendous development is taking place in algorithms, semiconductors and signal processors. The drive is what really allows for the efficient variable speed or servo operation of a low-cost AC motor, Fig. 2.

AC inverter drive

Inverter drives are the simplest form of AC drives. All AC drives contain an inverter output stage as the final power output amplifier. The inverter operates by generating multi-phase AC signals for the motor under the control of a pulse-width modulator. The motor sees a low variable frequency drive that is generated by a high-frequency class-D style amplifier.

Typical pulse-width modulation, pwms, frequencies used are in the high audio range up to about 25kHz. These higher frequencies have advantages acoustically but cause problems with EMI and parasitic losses.

Supply for the DC inverter is rectified line power. The inverter switches this high voltage DC using high-voltage saturated switches such as insulated-gate bipolar transistors, i.e. IGBTs.

The speed of the motor is proportional to frequency. Voltage is also variable and a fixed voltage-to-frequency ratio is maintained as frequency is changed to maintain torque. Temperature corrections are also used to compensate for copper losses.

Inverter drives vary significantly in sophistication. When they are operated open loop, they are usually fine for simple industrial requirements but open-loop operation presents problems at low speeds and with loads of variable torque.

The trend is towards higher pwm frequencies and lower sine wave distortion to meet EMC standards such as IEEE 519 and European CE requirements. More advanced control techniques such as those that follow are more common today as the cost of these techniques fall and the shortcomings of a straight inverter drive are felt in other areas.

Flux-vector control

Simply adding a resolver and closing a velocity loop around an inverter drive will improve steady-state velocity accuracy but will do little to improve transient behaviour.
as load torque is varied. Synchronously measuring stator currents, voltages and rotor position and then applying some significant calculations can independently control the torque and flux of an AC motor. This technique, called flux-vector control, is used to control the position and magnitude of the stator flux relative to the position and magnitude of the rotor flux. Independent control of flux and torque is inherent in DC motors. Flux-vector control brings this independent control to AC motors. Low-cost real-time data acquisition required for this method is made possible by a new class of a-to-d converters like the MAX125 described later.

The trigonometric transformations required are made possible by high-speed digital signal processors. A block diagram of a vector-controlled drive is shown in Fig. 3. A detailed description is beyond the scope of this article. Flux-vector control offers very high levels of performance across a wide power range, comparable to that of DC drives. It has the disadvantage though of requiring a sensor for rotor position that is costly and can require additional maintenance.

A refinement to flux-vector control which maintains nearly all the benefits but eliminates the position feedback sensor is called ‘sensorless flux-vector control.’ This method measures stator currents and voltages and infers rotor position from a precise mathematical model of the motor.

Sensorless control involves still more precise data acquisition and dsp calculation. Several vendors claim further proprietary refinements of vector control scheme.

Mixed signal ICs for motor control

A block diagram of sensorless flux-vector control drive is shown in Fig. 4. This diagram highlights a simultaneous sampling a-to-d converter that is tailored to the motor control market. The converter provides 14-bit conversion accuracy with fast aperture times that allow precise measurement of stator parameters in the latest motor controls.

Maxim’s MAX125 and MAX126 are 14-bit, multi-channel data-acquisition systems designed for AC motor drive control, Fig. 5. These devices contain four simultaneous-sampling track/hold amplifiers. Having four such amplifiers allows four input channels to be sampled simultaneously, preserving relative phase information of the four input signals. This is not possible in a system using a single track/hold amplifier.

For applications demanding optimum motor speed control and good regulation at close to zero speed, additional velocity and position sensors can be digitised using spare channels. Being highly integrated, these devices improve system performance while lowering overall cost and reducing board space.

As motor control software becomes increasingly burdened with system tasks, improvements in a-to-d converter accuracy, sampling time and aperture delay can relieve the processor of software overhead. The MAX125 and MAX126 have DC accuracy specifications of 14-bit resolution combined with ±2 lsb inherent linearity error. Monotonicity is guaranteed. This accuracy reduces processor maths in motor control applications involving precision vectors. Aperture delay of the devices is specified at 5ns with channel matching of 500ps, eliminating phase errors between sampled signals.

Conversion time for both ICs is 3µs with a track-and-hold amplifier acquisition time of 1µs, allowing fast throughput per channel at rates of 250k sample/s for one channel, 142k sample/s for two channels, 100k sample/s for three and 75k sample/s with four channels.

Combining high accuracy with improved track-and-hold amplifier performance, these controllers free the system designer from bandwidth limitations and computation errors that result from intensive software needed to support lower resolution a-to-d converters.

The input signal range of the MAX125 is ±5V and the MAX126 is ±2.5V. The inputs are fault protected to ±16.5V. Input fault protection...
structures allow input voltages to ±16.5V without adversely affecting conversions on other channels.

Track and hold with 8MHz bandwidth

The track-and-hold input tracking circuitry has an 8MHz small-signal bandwidth. This makes it possible, using undersampling techniques, to digitise high-speed transient events and measure periodic signals with bandwidths exceeding the a-to-d converter's sampling rate. For this application, anti-alias filtering is recommended to avoid high-frequency signals being aliased into the frequency band of interest.

The ICs have a buffered internal 2.5V reference with an initial accuracy of ±1% and temperature coefficient of 30ppm/°C. For applications requiring operation over a wider temperature range an external reference can be used.

The parallel digital interface of the devices has data-access and bus-release timing specifications that are compatible with most popular digital signal and 16/32-bit processors. As a result, direct digital interfacing is possible without resorting to wait states.

Both ICs have eight modes of operation plus power-down. These modes are programmed through the bi-directional parallel interface.

An internal microsequencer can be programmed to perform four simultaneous channel conversions of selected input banks per sample. Once programmed the converter continues operating in this mode until reprogrammed or power is removed. Digitised data are stored in memory to be read out via the parallel interface.

Fig. 4. Block diagram of the sensorless flux vector control drive highlighting a new 14-bit a-to-d converter from - the MAX125. It simultaneously samples four inputs to maintain phase information for motor control. It provides an additional bank of four inputs that make it ideal for other polyphase power applications such as synchronising two systems. It also off-loads the digital signal processing by including a microsequencer that automatically initiates and stores a-to-d converter readings internally.

Fig. 5. Block of the MAX125 14-bit 2-by-4 channel simultaneous sampling analogue-to-digital converter for motor control.
Quad 12-bit d-to-a converter with serial i/o

The MAX525 comprises four 12-bit, digital-to-analogue converters and four precision output amplifiers intended for motion control applications, Fig. 6.

This device has a double-buffered input organised as a 16-bit input register followed by a d-to-a converter register, allowing the input and d-to-a converter registers to be updated independently or simultaneously with a single software command. These features and a three-wire serial interface facilitate optically isolated industrial control designs.

Accuracy of the MAX525 is 12-bit resolution with an inherent non-linearity error of ±1/2 lsb. Linearity matching is specified at ±1 lsb and gain-error matching at ±2 lsb, ensuring matched tracking amplitudes in three-phase sine wave generation applications.

Precision amplifiers internally buffer the 525's d-to-a converter outputs. The amplifiers slew at 0.6V/µs and settle to 1/2 least-significant bits in 12µs.

The output voltage swing extends from 0V to VDD providing rail-to-rail outputs. Also, the inverting input of each output amplifier is accessible which provides greater flexibility in output gain setting and signal conditioning.

A typical application for this feature is a digitally programmable current source. Here, the amplifier output drives the base of an n-p-n transistor and the amplifier feedback pin monitors a sense resistor within the current loop. The output amplifier acts as an error amp comparing the d-to-a converter output to the current loop sense voltage.

The 525 has two reference inputs each input internally connected to a pair of d-to-a converters. The reference inputs accept DC and AC signals ranging from 0V to VDD-1.4V.

Both reference inputs have a 10kΩ guaranteed impedance. When the two are driven from the same source the effective minimum impedance is 5kΩ. When driving the reference inputs simultaneously at 2.5V, a reference with load regulation of 6ppm/mA would typically deviate by 0.025 of a least-significant bit. A MAX873 voltage reference could be used in this application.

The 525 has an internal power-on-reset which clears all registers and d-to-a converters to zero upon initial power up. In addition, hardware clear, designated CL, and power-down lock-out, PDL, functions are provided. The PDL function disables software shutdown and can also be used to asynchronously wake up the device.

The software shutdown feature reduces supply current to 10µA. In power-down mode, the device's serial interface remains active and data in the input registers is retained.

A unique feature of the 525 is its user-programmable output, designated UPO. This logic output can be used to control an external device via the 525's serial interface. A DC motor control application using UPO is a motor shutoff relay that operates if the power mosfet fails. The shutoff relay disconnects power to the motor.

A high-side driver switch controlled via a microprocessor output port typically drives the relay. To free up processor port pins the high-side driver can be controlled by the UPO pin by way of a serial-interface program command.

The 525 operates from a single 5V supply with a current requirement of 0.98mA or less.

In summary
Motor control is a refined and rapidly growing field. Advanced control techniques demand high performance, specially tailored semiconductors. The MAX125 and MAX525 are examples of these advanced ICs, which will enable designers to develop the next generation of advanced motor controls.
The Alternative Oscilloscope

Pico Technology provides an alternative to costly, bulky and complicated oscilloscopes. Our range of virtual instrumentation enables your PC to perform as an oscilloscope, spectrum analyser and digital multimeter.

- Upto 100 MS/s sampling and 50 MHz spectrum analysis
- A fraction of the price of comparable benchtop DSOs
- Simple Windows based user interface

The practical alternative

Connection to a PC gives virtual instruments the edge over traditional oscilloscopes: the ability to print and save waveforms is just one example. Advanced trigger modes, such as save to disk on trigger, make tracking down elusive intermittent faults easy. Combining several instruments into one small unit means it is lighter and more portable. When used with a notebook computer, field engineers can carry a complete electronics lab in their PC.

The simple alternative

Virtual instruments eradicate the need for bewildering arrays of switches and dials associated with traditional 'benchtop' scopes. The units are supplied with PicoScope for Windows software. Controlled using the standard Windows interface, the software is easy to use with full on line help. Installation is easy and no configuration is required; simply plug into the parallel port and it is ready to go. We provide a two year guarantee and free technical support via phone, fax or E-mail.

The low cost alternative

The Pico range of PC based oscilloscopes work with your PC - anything from a budget-ready 8086 to the latest pentium. The PicoScope software utilises your monitor to display data. This gives you a larger, clearer display than any scope, at a fraction of the price. The savings don’t stop there: All those expensive upgrades needed for traditional oscilloscopes: such as FFT maths, disk drives and printers are already built into your computer. The PC has made computing affordable, now Pico has made test equipment affordable too.

See ing is understanding

Call for a FREE demo disk or visit our web site.
Fax: (0)1954 211880 Tel: (0)1954 211716
E:mail: post@picotech.co.uk http:www.pico-tech.com

Broadway House 149-151 St Neots Road Hardwick Cambridge CB3 7OJ, UK

CIRCLE NO.109 ON REPLY CARD

The World is getting onto Spicycles!

Jump onto the future today – tomorrow’s electronic engineering CAD from the UK’s leading simulation author.

- Schematic editing – publication quality images
- Analogue + mixed mode digital simulation with extended SPICE-like functions
- Upgrade path to extensive range of drawing tools each with high definition visuals
- TrueType fonts
- Back annotation of components from simulator
- Simulate directly from your drawings for the ultimate in design checking
- Import & reverse engineer SPICE net lists
- Library includes electronic + mechanical engineering behavioural devices
- Upgrade path from Geswin (existing customers)
- 12 months maintenance included (limited introductory offer)

Please contact Charles Clarke at Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP.
Tel +44 (0) 181 906 0155
Fax +44 (0) 181 906 0960
E:mail Those_Engineers@compuserve.com
web http://www.spiceage.com

CIRCLE NO.110 ON REPLY CARD
The contribution of electronics to the recording and reproduction of music is not solely limited to its capacity to transmit the musical performance. Electronics engineers have contributed—and continue to contribute—the means by which modern music is created. This is an act which is a part of the common ongoing creative enterprise we call ‘art’.

I don’t think it’s stretching the truth too much to say that a host of today’s trade names will become the Stradivarius or Broadwood of tomorrow. Nowhere is this contribution clearer than in the design of electronic musical effects.

Echo and reverberation

A true echo is only heard when a reflected sound arrives a twentieth of a second or more after the direct sound first reaches our ears. Compare that with the sound that accompanies the voice of a priest or of a choir as their effusions stir the roar of reverberation in the atmosphere of a vast, medieval cathedral.

Reverberation is made up of echoes too, but by a mass of echoes following more swiftly than those of a discrete echo.

Clearly most recording studios are not large enough for an echo to be a natural consequence of their design. Neither are most cavernous enough to possess the acoustics of a cathedral. And a good thing too for it is far easier to add artificial reverberation and echo electronically than it is to eliminate the natural form.

Electronics thereby underpins the philosophy embraced by most modern recording studio designers—aim for a dry natural acoustic and augment this with artificial reverberation, as required.

Artificial echo was originally accomplished by means of a tape delay device as illustrated in Fig. 1, the signal being fed to the record head and the ‘echo’ signal picked off the replay head which was situated separately and ‘downstream’ of the record head. The distance between the two heads and the tape speed determined the delay.

On commercial units, the tape speed was usually made continuously variable so as to realise different delay times. This arrangement, obviously, only produced a single echo. In order to overcome this limitation, to this simple device a circuit was added which allowed a proportion of the output of the replay head to be fed back and re-recorded. By this means was an infinitely decaying echo effect performed.

By altering the degree of feedback—known in this context as re-circulation—differing reverberant ‘trails’ could be achieved. Just as the early microphones had, in their time, fathered the vocal style of crooning—because they per-
formed best when capturing slight sounds very close to the diaphragm—so the tape-based echo unit spawned an entire vocal technique too.

Modern digital delay devices have shunned tape techniques but accomplish the same effect by delaying suitable digitised audio signals written into, and read out of, a random-access memory store, Fig. 2. Alternatively hybrid digital/analogue techniques are utilised which exploit 'bucket-brigade' delay lines.

Both these techniques have all the obvious advantages of a purely electronic system over its electromechanical precursor. But there is one exception. Often, the rather poor quality of the tape transport system in the early devices introduced a degree of randomness—in the form of wow and flutter—into the replay system which help ameliorate a 'mechanical' quality which the resulting echo otherwise has.

Digital devices exhibit this quality quite distinctly—particularly at short delay times when the tail takes on a characteristic 'ring'. This unwanted outcome manifests itself more clearly still when the initial delay shortens. When a simple delay and re-circulation technique is employed to synthesise a reverberant acoustic, it can take on a very unnatural quality indeed.

Better results are obtained when a number of unequally spaced delay points, or taps, are used and these separate signals fed back in differing proportions, i.e. weightings, for recirculation.

Top quality delay and artificial reverberation units go so far as to introduce quasi random elements into the choice of delay taps and weightings so as to break up any patterns which may introduce an unnatural timbre to the artificial acoustic. Fortunately digital techniques have come so far that reasonable results are obtainable at very low cost. Artificial delay and reverberation are almost always incorporated in the audio system via the audio console effect send and return.

Guitar amplifiers—distortion and fuzz

Usually an effect to be guarded against in both design and operation of any audio circuit is the severe amplitude distortion known as clipping. But for guitarists, this effect is amongst their stock-in-trade. 'Grunge' has re-established a degree of randomness in the form of wow and flutter into the replay system which help ameliorate a 'mechanical' quality which the resulting echo otherwise has.

Table 1. Even harmonics tend to be musically related to the original input tone, whereas high-order, odd harmonics are musically unrelated to the original guitar signal.

<table>
<thead>
<tr>
<th>Harmonic</th>
<th>Musical note</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamental</td>
<td>C</td>
<td>octave</td>
</tr>
<tr>
<td>2nd (1st overtone)</td>
<td>c</td>
<td>twelfth (octave + fifth)</td>
</tr>
<tr>
<td>3rd</td>
<td>g</td>
<td>fifteenth (two octaves)</td>
</tr>
<tr>
<td>4th</td>
<td>c'</td>
<td>seventeenth (two octaves + major third)</td>
</tr>
<tr>
<td>5th</td>
<td>e'</td>
<td>nineteenth (two octaves + perfect fifth)</td>
</tr>
<tr>
<td>6th</td>
<td>g</td>
<td>dissonant; not in natural scale</td>
</tr>
<tr>
<td>7th</td>
<td>b-flat' (nearest note)</td>
<td>three octaves</td>
</tr>
<tr>
<td>8th</td>
<td>c''</td>
<td>major 23rd (three octaves + second)</td>
</tr>
<tr>
<td>9th</td>
<td>d''</td>
<td>major 24th (three octaves + third)</td>
</tr>
<tr>
<td>10th</td>
<td>e''</td>
<td>dissonant; not in natural scale</td>
</tr>
<tr>
<td>11th</td>
<td>f'' (nearest note)</td>
<td>major 26th (three octaves + fifth)</td>
</tr>
<tr>
<td>12th</td>
<td>g''</td>
<td>dissonant; not in natural scale</td>
</tr>
<tr>
<td>13th</td>
<td>a''</td>
<td>dissonant; not in natural scale</td>
</tr>
<tr>
<td>14th</td>
<td>b-flat''</td>
<td>major 28th</td>
</tr>
<tr>
<td>15th</td>
<td>c'''</td>
<td>four octaves</td>
</tr>
<tr>
<td>16th</td>
<td>d'''</td>
<td>major 30th</td>
</tr>
<tr>
<td>17th</td>
<td>C#''</td>
<td>dissonant; not in natural scale</td>
</tr>
<tr>
<td>18th</td>
<td>d#'''</td>
<td>major 31st</td>
</tr>
<tr>
<td>19th</td>
<td>e'''</td>
<td>dissonant; not in natural scale</td>
</tr>
<tr>
<td>20th</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gibson Maestro Fuzztone amplifier† In developing the Fuzztone, Gibson crossed something of a Rubicon in audio electronics design. Before it, the role of the audio amplifier was not intended to be a feature of the sound; indeed many of the amplifiers were intended to be 'distortionless'. But guitarists pushed the equipment to its limits in search of expressive potential and thereby uncovered corners of the performance-envelope unforeseen by the equipment's designers.

Ironically, often it was precisely at these boundaries that the greatest potential for artistic utterance was found, thereby establishing the sonic signature of a particular perfor-
mance limitation as a de facto standard for acolytes and imitators alike.

In turn, manufacturers have been forced to continue to build equipment which is deliberately designed to expose a design limitation or else find a way of simulating the effect with more modern equipment. Hence the inclusion of the apparently objective subject of amplifier design in this article on creative effects.

Relieved of a duty to be accurate, instrumental amplification is very difficult to analyse objectively. However a few observations may be made with some certainty: Firstly, most amplification is not usually designed with a deliberately modified frequency response. This is more usually a function of the designer's choice of loudspeaker and housing. Amplifiers - both low-level and power-level - are more usually engineered for their distortion characteristics.

Difficult to see - easy to hear

Research has been done to connect various transfer curve characteristics with subjective perceptions. Once again the ear proves to be a remarkably discerning apparatus. So that, in spite of the fact that all distortion mechanisms perform roughly the same 'function', each commercially available amplifier has its own distinctive sound and loyal adherents - some units having acquired an almost cult status.

While many of these differences might be difficult, if not impossible, to analyse, a number of distinguishing characteristics are obvious enough. Firstly, the forward gain of the amplifier has an effect on the rate of discontinuity between the linear and non-linear portions of the transfer characteristic.

A unit with a low forward gain and a small degree - or no - negative feedback will show a sluggish transition into the overload region. Such a unit will produce a distortion on a sine wave input like that illustrated in Fig. 3b. On the other hand, unit with a high forward gain and a good deal of negative feedback, and thus a faster transition into the non-linear region, will produce an output waveform more like that shown in Fig. 3c.

Secondly, the character of the distorted sound depends to a large measure on the degree of asymmetry imparted to the output waveform by the overdriven amplifier stage. An asymmetrically distorted waveform - like the one in Fig. 3d - has a far higher proportion of even harmonics than the waveform shown in Fig. 3c, which has a high proportion of odd harmonics.

Even harmonics tend to be musically related to the original input tone, whereas high-order, odd harmonics are musically unrelated to the original guitar signal, Table 1. This suggests that an amplifier producing a symmetrical overload characteristic will tend to sound 'harsher' than a unit yield-
ing asymmetrical distortion, and subjectively this is indeed the case.

Why valves?

Valve amplification is almost certainly preferred for its asymmetrical transfer characteristic and for its longer transition band from 'non-distorting' to 'distorting' regimes. This gives the instrumentalist a wider and more controllable tonal and expressive palette. This characteristic is enhanced by very limited amounts of negative feedback.

More elaborate semiconductor-amplifier counterparts, due to a high level of derived linearity and very high forward gain, tend to elicit a rasping, strident tone when in overload. Unfortunately, the designer has little or no option when faced with the design of a solid state amplifier.

Being of essentially Class-B design, these amplifiers cannot function without large amounts of negative-feedback therefore the designer of such an amplifier is forced to adopt up-stream electronics to try to emulate the gradual distortion characteristics of a valve amplifier.

With the advent of digital electronics, this philosophy has blossomed. Inside digital sound processors, distortion can be carefully controlled by passing the linear pulse-code modulated signal through a look-up table stored in read-only memory with any desired transfer-function — Fig. 4.

Nevertheless analogue alternatives are often preferred and may be extremely simple. A design which has been used for some years, and which has appeared on many professional recordings, is illustrated in Fig. 5. Effectively the transistor pair creates a high gain amplifier — enough to drive the output signal well beyond the supply rails.

The collector load on the second stage is split. This reduces the overall gain back to around unity and provides an adequately low output impedance. Control of the ac emitter load of the first transistor alters the gain of the amplifier and therefore the depth and character of the distorted output.

Wah-wah

Wah-wah is a dramatic effect derived from passing the signal from the electric guitar's pickup through a medium-Q band-pass filter, the frequency of which is adjustable usually by means of the position of a foot-pedal as illustrated in Fig. 6.

The player may use a combination of standard guitar techniques together with associated pedal movements to produce a number of instrumental colours from an almost percussive strumming technique to a lead guitar style — usually in combination with fuzz effect — in which the guitar almost 'cries' in a human-like voice.

Pitch shifting

Pitch shifting is used for creating 'instant' harmony.

Simple pitch shifters create a constant musical interval above or below the input signal. You might think that such a limitation was pretty devastating. However, various automatic transpositions produce acceptable results. For instance, a harmony at a perfect fifth produces the scale in Fig. 7. This scale is usable except for the F-sharp.

Harmony at a perfect fourth is even better, Fig. 8. It has only one note that is not present in the key of C major, like the harmony at the perfect fifth. But the note is B flat which is a prominent 'blue' — i.e. blues scale — note in C major. For this reason, it is often acceptable in the context of rock music.

The instant transpositions of perfect fourth up — or its lower octave equivalent, perfect fifth down — are the most common transpositions employed in simple pitch shifters, with the exception of octave transpositions. Guitarists in particular most often employ a pitch shifter in one or other of these two roles.

<table>
<thead>
<tr>
<th>Interval</th>
<th>Frequency ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octave</td>
<td>2 : 1</td>
</tr>
<tr>
<td>Fifth</td>
<td>3 : 2</td>
</tr>
<tr>
<td>Fourth</td>
<td>4 : 3</td>
</tr>
<tr>
<td>Major third</td>
<td>5 : 4</td>
</tr>
<tr>
<td>Minor third</td>
<td>6 : 5</td>
</tr>
<tr>
<td>Major sixth</td>
<td>5 : 3</td>
</tr>
<tr>
<td>Minor sixth</td>
<td>8 : 5</td>
</tr>
</tbody>
</table>

Pitch shifting

Pitch shifting by various musical intervals is achieved by adjusting the ratios of the input and output clocks.

| Table 2. For pitch shifting, natural ratios of input versus output clock are preferred since they are related by simple numerical ratios. |

Intelligent pitch shifters can be programmed to produce a harmony related to a selectable musical key, so that a musical harmony can be created.

Technically, pitch shifting is achieved by converting the input signal to a pulse-code modulated digital signal, writing audio data into a short term store, and reading it back out at a different sample rate. Thereafter, the resulting pcm signal is converted back to an analogue signal. Because the short-term store is used over and over again it is referred to as a circular buffer, Fig. 9.

Pitch shifting by various musical intervals is achieved by adjusting the ratios of the input and output clocks.

Natural ratios are preferred for — as Pythagoras noticed two-and-a-half thousand years ago — these are related by
The principal feature of the vocoder is its two inputs – one for an instrument and another for a microphone.

Fig. 12. The principal feature of the vocoder is its two inputs – one for an instrument and another for a microphone.

Vocoder
The vocoder is a device which allows the unique expression of the human voice to modulate an instrumental sound which may be monophonic or, more often, polyphonic. In order to understand the vocoder, it's worthwhile taking a few minutes to understand the production of vocal sounds.

The fundamental sound source involved in vocal production is a rather low frequency complex tone produced when air from the lungs travels up the windpipe and excites the vocal folds, and between which the air from the lungs is forced, is known as the glottis.

The vocal tract, comprising the pharynx (throat) the nose and nasal cavities and the mouth, subsequently modifies the spectrum of this glottal source. The vocal tract's shape can be varied extensively by moving the tongue, the lips and the jaw. In so doing, the spectrum of the glottal source is modified as it is filtered by the various resonances formed in the discrete parts of the vocal tract. Each of these resonances is known as a formant and each is numbered; the lowest frequency formant being termed the first formant, the next – a discrete part of the vocal tract's shape.

Vocoder
The vocoder is a device which allows the unique expression of the human voice to modulate an instrumental sound which may be monophonic or, more often, polyphonic. In order to understand the vocoder, it's worthwhile taking a few minutes to understand the production of vocal sounds.

The vocal tract, comprising the pharynx (throat) the nose and nasal cavities and the mouth, subsequently modifies the spectrum of this glottal source. The vocal tract's shape can be varied extensively by moving the tongue, the lips and the jaw. In so doing, the spectrum of the glottal source is modified as it is filtered by the various resonances formed in the discrete parts of the vocal tract. Each of these resonances is known as a formant and each is numbered; the lowest frequency formant being termed the first formant, the next – a discrete part of the vocal tract's shape.

A common problem encountered in microphone technique is the accidental establishment of multiple path lengths between sound-source and microphone element.

Attempts at non tape-based analogue flange techniques involved the use of adjustable, cascaded all -pass filters providing the necessary delay elements. These circuits only produce a very small amount of delay per circuit. Even with a relatively large numbers of delays cascaded together, the delay was small in comparison to that required for a full flange effect. Because of this, these devices produced a particular, gentle effect, sonically apart and worthy of its own name – 'phasing'; a term based on the fact the circuits produce phase-shift, rather than full delay.

Even more interesting is the effect as the microphone is moved in relation to sound source and reflecting body. This causes the frequency bands of reinforced and cancelled out to change. Imparting on the captured sound a strange, liquidity – a kind of 'swooshing, swirling' ring.

Of course, such an effect is not practically obtainable using moving microphones.
The principal feature of the vocoder is its two inputs - one for an instrument and another for a microphone. The block diagram for a simple instrument is given in Fig. 12. Vocoder operation relies on the amplitude envelope of the vocal formants modulating the instrumental inputs via audio signal multipliers: these are voltage-controlled amplifiers in an analogue vocoder.

In circuitry terms this involves splitting the vocal signal and the instrumental signal into a number of frequency bands by means of band-pass filters. The greater the number of bands, the better the performance of the vocoder function. In a digital vocoder, the frequency spectrum can be split into a great many bands by means of a wave filter.

Following the band-dividing filters, the vocal signal path passes to a number of amplitude envelope-detector circuits, i.e. peak rectifiers in an analogue circuit). These envelope signals are then used as the variables applied to each of the multipliers following every band-dividing filter in the instrumental signal path. In this way, the frequency spectrum of the speech is 'imprinted' on the instrumental sound.

A physiological analogy
You can draw a physiological parallel by saying it is as if the lungs and vocal folds were replaced with the instrumental sound while the function of larynx, mouth and nasal cavities remain the same.

Not only is the Vocoder capable of some exotic 'colouristic' effects. An example of this is found in Laurie Anderson's _Superman_. But the physiological analogy may also have suggested to you an application whereby the instrumental input can be a synthesised tone similar to that produced by the lungs and vocal folds.

If that synthesised tone - or tones - is under MIDI control, the vocoder can be used as an artificially enhanced voice - always in tune and able to sing in perfect harmony with itself. In this variation, the vocoder is worthy of the separate name - 'harmoniser'.

Note that the harmoniser is not a pitch shifter. If harmonisation was achieved as described above - and it can be for certain effects - the vocal formants would be transposed along with the pitch, producing an effect termed 'munchkinisation'.

Talk-box guitar effect
Lying somewhere between the wah-wah pedal and the vocoder is the talk-box guitar effect.

The talk box exploits the unique and expressive acoustic filter formed by the various resonances of the vocal tract and mouth to modify the sound of an electric guitar. This is done by driving a small loudspeaker with the amplified guitar signal, feeding it through a horn and into a plastic tube. The tube is then clipped or gaffer-taped up the microphone-stand into a position so that it can be fed into the mouth of the guitar player.

The resulting sound is recorded via the microphone feed. Talk boxes feature in the recordings of Aerosmith, Frampton and Joe Walsh among others.

Reference
Mobile phones are marvellous - within their own mobile world. New developments will integrate them seamlessly into the mainstream network and add full multimedia capabilities.

Andrew Emmerson reports.

Upwardly mobile

In Britain and many other countries, the modern mobile phone has reached a high standard. Prices are affordable, performance is generally excellent and radio coverage is remarkably good in most locations.

The sole aggravation is that mobile phones are poorly integrated into the main public telephone system; they have separate numbers, they behave differently and hinder 'reachability'.

It's precisely this shortcoming that the next generation of UMTS is not just another radio access system; it embraces fixed telecommunications as well and creates an opportunity for complete fixed-mobile convergence.

Nor should UMTS be seen as merely 'GSM-plus'; it is much more than a mere enhancement for GSM and offers major new functionality above and beyond second generation digital radio.

UMTS is not a replacement for GSM either; the two networks will co-exist, leaving GSM to remain in place for customers who are satisfied with its simpler capabilities.

What UMTS is not

UMTS is not just another radio access system; it embraces fixed telecommunications as well and creates an opportunity for complete fixed-mobile convergence.

Nor should UMTS be seen as merely 'GSM-plus'; it is much more than a mere enhancement for GSM and offers major new functionality above and beyond second generation digital radio.

UMTS is not a replacement for GSM either; the two networks will co-exist, leaving GSM to remain in place for customers who are satisfied with its simpler capabilities.
to be at home, at work or on the move. UMTS is different; not only does it embrace speech, data and multimedia, it also actually integrates fixed and mobile communication in a seamless way to achieve something that is far more valuable to users," says Nigel.

This integration of connectivity is what differentiates UMTS. The system will also support interconnection with wireless LANs and other kinds of radio network.

The driver for UMTS is the growing market for mobile ‘reachability’ and the increasing requirement for multimedia-type data communication. UMTS will support user applications in both real-time and non-real-time modes, using a single method of connection and integrated networks that support both wireless and wired access.

As Nigel elaborates, "UMTS takes the fixed phone into the mobile environment. You'll be able to personalise your service package to work in a uniform, seamless manner across networks and operators independently of the different radio access mechanisms actually used. We call this concept the 'virtual home environment'; it means you can use your phone, radio-enabled palmtop computer or whatever the same way wherever you happen to be."

"You won't worry about dialling codes that vary between networks and locations - such as for accessing your voice mailbox or for call return. All this will be handled for you by intelligence in the network and terminal. The fact that full rollout of UMTS won't happen overnight will not concern you either; UMTS phones will be dual-band and will revert to GSM networks where UMTS service is unavailable."

Countdown to airtime
Commercial availability of UMTS is not far off. Japan is committed to launching its third generation networks in just two years time, while most European countries - Britain included - are targeting the year 2002. By this time service providers will need to have planned and tackled all the requirements of switching and routeing, i.e. Internet Protocol and ATM. They will also need to have sorted out all aspects affecting network intelligence, processing, management and the operational support systems.

To describe this as a major challenge would be understatement. While a common vision of third generation mobile networks is shared by all operators and equipment manufacturers, there is less agreement on the precise wireless access technologies that will enable users to make their calls.

Squabbles over intellectual property rights make it look unlikely that a single unified air interface will be agreed, although total agreement looks probable over the network interface. The end result for users is that mobile telephones should work globally but some enhanced features will not work in all territories.

Finding radio frequencies for the new service is no trivial matter either. The WARC 92 allocated three frequency bands in the region 1.9-2.2GHz to accommodate future terrestrial and satellite mobile services. Of this allocation, the ITU has designated 1.55MHz for third generation mobile services, under its IMT-2000 initiative. This has already been declared woefully inadequate for supporting a technically adequate and commercially viable service in mature or mass-market conditions. It remains to be seen how this aspect is managed.
It would be easy to dismiss UMTS as just another cellular system to confuse customers, with a few extra bells and whistles. Nigel Lobley denies this emphatically, however and sums up, “The combination of a far more feature-rich multimedia mobile service plus the uniform method of use and service presentation is an extremely attractive and powerful proposition that ‘power user’ customers will readily perceive; it’s also something that service providers can customise and differentiate in order to win market share. UMTS is the key technology that will enable phone companies to integrate their fixed and mobile networks and create something that meets customer needs far more closely than before. Soon the universal pocket communicator may no longer be just a dream.”

Change for change’s sake?
When many mobile phone users have yet to change up to GSM – the current ‘second-generation’ technology – you might ask why telecoms operators around the world are expending so much energy on devising next-generation systems. The answer lies in the user imperative – the expanding number of mobile radio customers, their continually maturing aspirations and the sheer range of new applications for mobile communication.

In fewer than fifteen years, the market for cellular radio has seen total shift from a high-cost, low-volume operation to mass-market affordability. All branches of business and commerce now find mobile communication essential, while a whole new generation of students, job entrants and other young people make a low-cost mobile phone their primary means of contact. Some of them don’t even have a fixed-line phone.

Coupled with this transformation is the data wave. Voice and even simple data are old hat; users expect to be able to send and collect e-mail on the move, and to consult the Internet. Broadcasters and newspaper people may need to send photographs in high-resolution, while the emergency services are already sending moving pictures of incidents back to base.
Power amplifier
circuit boards

Professionally designed and manufactured printed circuit boards for Giovanni Stochino's no compromise 100W power amp are available to buy.

These high-quality fibre-glass reinforced circuit boards are designed for Giovanni Stochino's fast, low-distortion 100W power amplifier described in the August 1998 issue. Layout of the double-sided, silk screened and solder masked boards has been verified and approved by Giovanni.

This offer is for the pcbs only. The layout does not accommodate the power supply scheme shown in the article. Note that a copy of the article and a few designers' notes are included with each purchase, but you will need some knowledge of electronics and thermal management in order to successfully implement this design.

Please send me ____ pcbs @ £25 each or £42 a pair.
I enclose my cheque for £_____
Please debit my credit card for £_____
Card type MasterCard/Visa
Card number
Expiry date
Signature

Name
Address

Tel
Cheques made payable to Reed Business Information.
Post to: PCB Offer, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS. Please allow 28 days for delivery.

Specifications

Input Power	100W
Small-signal bandwidth before the output filter	20Hz (−0.1dB), 1.3MHz (−3dB)
Unity gain frequency before the output filter	22MHz
Output noise (BW=80kHz, input terminated with 50Ω)	42μV rms
Measured output offset voltage	+32mV

Distortion performance	1kHz	20kHz	
V_out, pk-pk	5	0.0030%	0.0043%
	10	0.0028%	0.0047%
	20	0.0023%	0.0061%
	40	0.0028%	0.0110%
	80	0.0026%	0.0170%

Slew rate

Positive slew-rate | +320V/μs |
Negative slew-rate | −300V/μs |
Motional feedback II. Last month’s Speakers’ Corner showed how feedback improves the performance of certain loudspeakers. Here, John Watkinson expands on the topic.

In a real low-frequency loudspeaker, the main sources of distortion will be the drive unit itself and the non-linear air spring due to the enclosure. In principle, motional feedback can reduce the effect of both.

The performance of any feedback mechanism is limited by the accuracy of the feedback signal. If the feedback signal does not represent the cone motion accurately, then the cone motion cannot be controlled accurately.

Designers have found various ways of measuring the cone motion. It doesn’t matter whether the displacement, velocity or acceleration is measured, as these parameters can be exchanged in signal processing circuitry by integration or differentiation.

One approach is to use an accelerometer. Fig. 1 shows this is simply a small inertial mass mounted via a force sensor on the cone. The force sensor is typically a piezo-electric crystal requiring a high input impedance amplifier.

An alternative is to measure the cone velocity using a separate moving coil as shown in Fig. 2. This is mechanically complicated and expensive, but, when well engineered, the coil voltage is directly proportional to the velocity.

Some low-frequency drive units designed for sub-woofers have dual coils so that a stereo amplifier can drive a single unit. The two channels are simply mechanically added in the coil former.

Amateur designs have appeared ingeniously using one of the dual coils as a velocity feedback coil. While this works, the efficiency is low because half of the magnetic energy in the gap is wasted. There is also a possibility of mutual inductance between the two coils that are effectively an accidental transformer.

Sensing drive current

Figure 3 shows another possibility, which uses a relatively conventional drive unit. Here, a sense resistor samples the current passing through the coil, and the voltage across the coil is measured. If the coil resistance is known, the voltage across the coil due to ohmic loss can be calculated from the current. Any remaining voltage across the coil must be due to back emf, which is proportional to the coil velocity.

A suitable signal processor can extract the back emf, which can then be used in a feedback loop. One difficulty with this method is that as the temperature of the coil changes, its resistance will change, causing an error in the emf calculation.

One solution is to connect a length of the same type of wire used in the coil in series with the main coil so that it experiences the same heating current. The voltage across this compensating coil can be sensed to allow for temperature changes. The compensating coil may conveniently be fitted at the end of the coil former but it is important that it is screened from the magnetic circuit.

The back emf extraction approach seems attractive, but it does rely heavily on the linearity of the main magnetic circuit and coil. The integral of the flux cutting the coil must be independent of coil position so that it experiences the same heating current. The voltage across this compensating coil can be sensed to allow for temperature changes. The technique can’t be used to linearise a cheap drive unit because these invariably have position dependent flux problems. As a result it only works in drive units which are already quite linear.

Accelerometer benefits

The attraction of the accelerometer approach should now be clear. The addition of the accelerometer to the drive unit is fairly simple, and its operational accuracy is independent of the drive unit so that a less-than-perfect driver can be linearised.

The degree of linearisation achieved with motional feedback is a function of the open-loop gain available. The more gain that can be used, the smaller the residual error will be. The natural conclusion is that the ideal gain is infinite, like an operational amplifier.

Unfortunately this can’t be
achieved because real drive units have a sub-optimal phase response. Negative feedback will fail in the presence of phase shifts within the loop, because these can result in positive feedback if the loop gain is above unity when 180° of shift has occurred.

An earlier Speakers' Corner explained how a real woofer has a fundamental resonance. Below this frequency it is stiffness controlled, above it is mass controlled. There is a change in phase response of 180° as the resonant frequency is traversed. The rapidity of the phase change is a function of the \(Q \) factor of the resonance. This is affected by the design of the drive unit and by the nature of the enclosure and its filling.

Clearly if the feedback loop contains a speaker whose phase response can reverse, an equivalent but opposite phase compensation circuit must be included in the loop so that the feedback will remain negative at all frequencies. Once the phase reversal of the drive unit is compensated, the feedback can be used to flatten the response of the driver well below its natural resonance.

The low-frequency response is now determined electronically. It cannot be set arbitrarily low, however, as the drive unit may not have enough displacement to reproduce very low frequencies. Thus a motional feedback speaker may have a small enclosure, but it will have to contain a drive unit that would be considered disproportionately large in a conventional speaker.

The end of the road

One of the problems with motional feedback is the overload condition. If the cone meets resistance, feedback will cause the driver to receive an increasing signal to overcome the resistance. If this resistance is due to the driver reaching the end of its travel then the result could be damage.

The solution is that the input signal has to be limited in some way so that the feedback loop is never asked to follow an impossible signal. In this way high gain can be safely used at all times. The amplitude limit will have to be frequency dependent as the displacement rises at 6dB per octave as frequency falls.
MARCONI TF 2019A
Synthesised Signal Generators
80Hz to 1040Mhz AM/FM, Memories, LCD
A REAL Anchor Special ONLY £750

Frequency Counters
Racal Dana 9903/4
7 segment 30Mhz £24
Racal Dana 9916
8 segment 520Mhz £65
Racal Dana 9918
9 segment 560Mhz £75

Signal Generators
HP 8683A
2.3-6.5 GHz AM/FM
NOW ONLY £489

Marconi TF2015
10-520Mhz NOW ONLY £95
Marconi TF2171 Synchronizer for 2015 NOW ONLY £95
BOTH TF2015 and TF2171 ONLY £180

Conference Equipment
Elite OHP's
Choice of 4 types from ONLY £35
UNICOL
Stands Choice from ONLY £45
KODAK SAV1030
Carousel Slide Proj ONLY £175
KODAK EKTAPRO 3000
Carousel Slide Projectors
NOW ONLY £225

Video Equipment
Panasonic AG6200
VHS ONLY £99
Panasonic AG6810
HiFi Duplication machines
VHS NOW ONLY £99
SONY VO6830
Low Band UHF only ONLY £225
PANASONIC AG6100
VHS Players ONLY £100

Audio Equipment
Sonifex
Cartridge Decks Only £75
Marantz
Cassette decks, Choice of 2
Only £45

Oscilloscopes
HP 1741A 100Mhz Storage Dual
Time base only £350
TEK 465B 100Mhz Dual Trace/Timebase
Now Only £295
TEK 465M scope as 465B but built only
for Military, Only £350
TEK 475 200Mhz Dual Trace/Timebase
Now Only £395
TEK 2445 150Mhz Four Trace/2 Timebase
with Cursors, etc. Now Only £495
TEK 2445A 150Mhz Four Trace/2 Timebases
with Cursors, etc. Now Only £495
TEK 2465 300Mhz Four Trace/2 Timebase
show Only £1290

NEW EQUIPMENT
DTA20 Oscilloscope 20Mhz
Twin trace incl probes ONLY £225
DTA40 Oscilloscope 40Mhz
Twin Trace incl probes ONLY £299
DTS40 Oscilloscope 40Mhz
Digital Storage twin channel
 Cursors + readouts
 Incl. Probes: ONLY £399
DSM3850A Multiscope
Digital Scope, Multimeter,
Logic anal in one box,
5" LCD panel. Incl case
ONLY £399
AMM255 Automatic Mod Meter
1.5Mhz to 2Ghz, LCD
IEEE488 ONLY £495
SGC50 Synth Clock Gen.
To 50Mhz, LED display
For ONLY £125
Black Star Meteor 100 Counters
With fitted TXO option to 100Mhz
REDUCED NOW - ONLY £50

New Scope Probes
X1/10 switchable to 100Mhz
Complete with adaptors
Limit 2 sets per customer
ONLY £9.95

Compare our prices
with the competition...
see how much you can save at anchor

THIS MONTH'S SPECIALS
TEK 2445 Scopes
DC-150Mhz 4 Trace/2 Timebase and Cursors
A REAL Anchor Special ONLY
£495

Philips PM3217 Scopes
DC-50Mhz 2 Trace/2 Timebase
A REAL Anchor Special ONLY
£275

Hewlett Packard
8640A Signal Generators
50kHz to 520Mhz AM/FM/CW
SPECIAL ONLY £245

Philips PM5519
Colour Pattern Generator
SPECIAL ONLY £125

Gould OS300 Scopes
DC-20Mhz 2 Trace
SPECIAL NOW ONLY
£150

Racal Dana 1991 60Mhz
NanoSecond Counters with maths Fctns, etc
SPECIAL ONLY £295

ANCHOER SUPPLIES LTD
The Cattle Market Depot
Nottingham NG2 3GY, UK
Tel: (0115) 986 4902
Fax: (0115) 986 4667
http://www.anchor-supplies.ltd.uk
sales@anchor-supplies.ltd.uk
MAIL ORDER A PLEASURE
Also at
Peasehill Road, Ripley, Derbys
All prices are EX VAT and carriage

214
Hands-on Internet

The focus of Cyril Bateman’s web sleuthing this month is measuring rms – but first some tips on finding data...

S
o-called data-mining software packages are intended to help you search for technical data. These search engines tour the Internet looking only for Web page content that matches the chosen search criteria. As with a conventional search engine, such as AltaVista, you can then access the data miner’s much smaller and targeted database.

PartMiner is a free software package that is downloadable from the partminer.com page. It can be run as a background task while you work. This parts locator is primarily designed as an aid for component buyers, but it also has facilities useful to engineers. It works by visiting on-line component distributors, to check their inventory and price levels.

Partminer.com is linked to the The Electronic Design Technology and News network. The EDTN design resources section comprises a reference library of 4000 application notes, an application note searcher, an EDA tools search facility and an IC selector.

My application note search on thermocouples initially found 22 hits. Curiously a later repeated search found only 12 hits.

Measuring alternating waveforms
Whether intended for performance verification or application, every electronic design shares a common need – the measurement of voltages. While direct voltage or current is easily measured, alternating waveforms are usually first converted to dc then measured via a dc instrument.

Alternating voltage meters and converters can measure a waveform’s peak, average or rms values. Of these, a waveform’s rms value – which is related to its capacity to heat up a load...
Most average or peak responding meters are calibrated as rms equivalent, assuming a sine-wave is being measured. If the required waveform is sinusoidal or has a recognisable and regular shape, mathematical conversion between these values is simple. When the waveform is irregular or contains unknown harmonics though, alternating waveform measurements can become a trap for the unwary.

While all digital multimeters can measure low-frequency ac, by 1kHz most have significant errors which can also be amplitude dependent. Some time ago, I built a true rms meter, accurate from dc to 2MHz, but I now need to be able to measure higher frequencies. While I could measure the peak amplitudes with an oscilloscope, the waveshape made converting these to rms much too difficult. So before committing to a new purchase, I decided to use Internet to explore other options.

Using the three search sites featured in my February 1998 Internet article, together with this month’s partminer.com site, I found several useful tutorials, as well as application notes and data sheets.

Optimised measurements

Low-frequency voltages and currents can be rectified to dc for measurement using simple diode circuits. With diodes connected in the feedback loop of a high-gain amplifier, their threshold voltage is overcome, allowing millivolt level signals to be measured.

The 30-year-old National Semiconductor briefing note LB-8, discusses accurate methods to measure millivolt level sinewave signals up to 100 kHz, using relatively slow op-amps. This note describes a precision, average-responding ac-to-dc converter. Built using LM101A op-amps with feedforward compensation and 1N914 diodes, it attained 1% accuracy at 100kHz, Fig. 1.

This circuit's high-frequency performance is determined in part by the switching speed of the diodes used and the op-amp's loss of gain in overcoming the diodes threshold voltage.

Synchronous detection systems perform full wave rectification without using diodes offer improved accuracy at high frequencies and with millivolt signals. Two widely used examples – the Motorola MC1330 and Mullard TCA270 – working at 39.5 MHz, were responsible for greatly improving video detector performance in domestic solid state colour televisions in the early seventies.

The AD630 commutating modem...
IC from Analog Devices, simplifies synchronous detection. I mentioned this chip in the October 1998 issue, where it was used to recover a wanted signal from overwhelming background noise.

The AD630 is essentially two switch-selectable, identical op-amps. Output from the selected input amplifier is directed to the communal output buffer. The device can be used as a precision rectifier absolute value detector. With some -100dB of input channel crosstalk at 10kHz, this chip is optimised for wide-dynamic-range, low-frequency use. At higher frequencies I find it outperforms the traditional diode feedback op-amp arrangement, Fig. 2.

Burr-Brown offers a similar arrangement, but intended for high frequencies, which they call a SWOP-amp. Their OPA678 features a 200MHz bandwidth and 4ns input switching.

Root-mean-square
The above circuits all respond to the average level of the detected signal. They can be adjusted or calibrated to indicate the peak or rms equivalent values, of a rectified sinewave. The ratio of volts peak to volts rms, called the 'crest factor' of the waveform, is important. A sinewave has a crest factor of 1.414. Given a 1V peak input signal, an average reading meter will be adjusted to read 0.707V rms. This meter will then over-read by 11% when measuring a 1V peak symmetrical square wave, i.e. a unity crest factor.

Since the rms value of a waveform is defined as its heating value in a load, calorimetric methods could be used. These would provide the most accurate results.

Fig. 2. The AD630 balanced modulator/demodulator integrated circuit is easily configured to provide a no-diodes, full-wave synchronous rectifier. The phase shifting circuit compensates for signal delays in the AD524 pre-amp, ensuring precise waveform coincidence. This 'ideal' behaviour is clearly seen in the attached oscillogram.

Fig. 3. Using only standard devices from the early seventies, this true rms detector was usable to 500kHz. Accuracy was typically 2% for a 20V pk-pk input signal from 50Hz to 100kHz.
While using two expensive components, this true rms detector provides an exceptional 80dB dynamic range and a constant bandwidth, which is limited to 2MHz by the AD636. The AD600 variable gain 'X' amplifier has a 35MHz bandwidth.

accurate measurements for laboratory use, but can be slow and cumbersome.

A quick responding and portable electronic version of the calorimetric method has been devised. It has two identical heating elements each coupled to a temperature sensor and mounted in an insulated, isothermal enclosure. The heating effect of the unknown waveform, applied to one heating element, is temperature matched by a known dc supply to the comparison element.

These techniques were used in 1965 to produce the Hewlett Packard HP3400A voltmeter, which provided accurate rms measurements from 1mV to 300V at frequencies to 10MHz.

To reduce costs, semiconductor makers explored simpler integrated circuit methods to solve the rms equation. One early method was to first square then integrate the voltage waveform, and finally to compute the square root of this running average. Known as an 'explicit' computation, this system works well with low crest factor waveforms. But it has problems coping with the dynamic range of the squared signal peak amplitudes, of high crest factor waveforms.

To eliminate this problem, the method of 'implicit' computing was devised, in which the near constant output value is used to divide the
squared signal prior to its integration.

In 1973, National Semiconductor published a true rms detector application note using five op-amps and diodes with four transistors. Called Linear Brief 25, this application note can be downloaded from National's Web site, Fig. 3. A similar arrangement but integrated into one 16-pin dual-in-line package, was later marketed as the LH0091 true rms to dc converter.

The 500-page 'non-linear circuits handbook', first published in 1974 by Analog Devices, still appears in the company's literature list. It explores all aspects of the various methods, used to measure or compute the rms of any waveform.

Today, most commercially available integrated circuit rms to dc converters are based on this implicit computation method, as typified by the xx536A and xx636 converters available from both Analogue Devices and Maxim. Depending on input signal magnitude, these parts can accurately convert waveforms having a crest factor of six at frequencies up to 1MHz. The informative 'RMS-to-DC Converters Ease Measurement Tasks' application note can be downloaded from the Analog Devices Web page.

If you need a wider dynamic signal range than offered by these packages, the AD636 can be used together with the AD6000 low noise variable gain amplifier. This combination provides a constant 2MHz bandwidth with 80dB dynamic range and a 2MHz upper frequency limit. It produces a decibel-scaled output voltage.

I have used just this combination for one of my test meters. Due to the very wide gain bandwidths of this configuration though, much care is needed with your layout, Fig. 4. Analog Devices' data sheet for the AD834 describes how to use two of these extremely fast, four-quadrant multiplier chips, to produce a 1kHz to 300MHz rms-to-dc converter.

Designed to accept a +15dBm maximum input, the accuracy of the circuit at small signal levels is limited by the inevitable offset voltages. Correct physical construction and layout is critical to realising the potential of this very high speed circuit, Fig. 5.

Linear Technology has devised an integrated circuit solution for the calorimetric techniques. The company's LT1088 – a 14-pin DIL device first listed in their 1990 databook – is still available. It provides both 50 and 250Ω matched heater pairs together with matched diodes which are used to sense both heaters temperature.

This circuit, used with six op-amps, replicates the rms-to-dc functions used in the Hewlett-Packard HP3400A meter. This sensitive, thermally based true rms-to-dc converter integrated circuit provides conversion from dc to 10MHz with less than 1% error and a voltage gain of 10, Fig. 6.

The LT1088 converter is capable of exceptional performance. It has a 300MHz 3dB bandwidth and 2% accuracy at 100MHz. Its heater systems can handle extreme crest factors of 50:1, it has a 35V peak maximum heater input together with a 20:1 dynamic range.

Full details can be found in the company's application note 61. This publication highlights how easy it is to implement the design using modern components – relative to the problems that Hewlett Packard faced when implementing the same design in 1965.

Fig. 6. Best considered as an HP3400A on a shoe string. I plan to develop this circuit to form the basis of my new true-rms meter.
Mixer circuits are used extensively in radio frequency electronics. Applications include frequency translators - in radio receivers - demodulators, limiters, attenuators, phase detectors and frequency doublers.

There is a number of different approaches to mixer design. Each of these approaches has advantages and disadvantages, and these factors are critical to the selection process.

Linear versus non-linear mixers
The word "mixer" is used to denote both linear and non-linear circuits. And this situation is unfortunate because only the non-linear is appropriate for the rf mixer applications listed above.

So what's the difference? The basic linear mixer is actually a summer circuit, as shown in Fig. 1a). Its schematic symbol is shown in Fig. 1b). Some sort of combiner is needed. In the case shown, the combiner is a resistor network. There is no interaction between the two input signals, F_1 and F_2. They will share the same pathway at the output, but otherwise do not affect each other. This is the action one expects of microphone and other audio mixers.

If you examine the output of the summer on a spectrum analyser, Fig. 2, you will see the spikes representing the two frequencies, and nothing else other than noise.

The non-linear mixer is shown in Fig. 3a), and the circuit symbol in Fig. 3b). While the linear mixer is a summer, the non-linear mixer is a multiplier. In this particular case, the non-linear element is a simple diode, such as a 1N4148 or similar devices.

Mixing action occurs when the non-linear device, such as diode D_1, exhibits impedance changes over cyclic excursions of the input signals. In order to achieve switching action one signal must be considerably higher than the other. It is commonly assumed that a 20dB or more difference is necessary.

Whenever a non-linear element is added to the signal path a number of new frequencies will be generated. If only one frequency is present, then we would still expect to see its harmonics. For example, F_1 and nF_1, where n is an integer. But when two or more frequencies are present, a number of other products are also present. The output frequency spectrum from a non-linear mixer is,

$$\pm F = mF \pm nF_2$$ \hspace{1cm} (1)

Detecting receiver radiation

There is a number of possibly apocryphal legends from World War II of receiver local-oscillator radiation back through the antenna circuit being responsible for an enemy detecting the location of the receiver, so this effect is rather important.

One such legend is from British airborne radar history. According to one source of doubtful authority, German submarines sailing on the surface learned to listen for Beaufighter centimetric radars using a receiver that was poorly suppressed. The aircrews then learned that they could locate the submarine with just the radar's receiver tuned to listen for the submarine receiver's local oscillator. Anyone with first hand knowledge of this matter please let me know.
where \(F_0 \) is the output frequency for a specific \((m,n)\) pair, \(F_1 \) and \(F_2 \) are the applied frequencies and \(m \) and \(n \) are integers or zero, i.e. 0, 1, 2, 3...

There will be a unique set of frequencies generated for each \((m,n)\) ordered pair. These new frequencies are called mixer products or intermodulation products. Figure 4 shows how the output would look on a spectrum analyser. The original signals \(F_1 \) and \(F_2 \) are present, along with an array of mixer products arrayed at frequencies away from \(F_1 \) and \(F_2 \).

The implication of equation (1) is that there will be a large number of \((m,n)\) frequency products in the output spectrum. Not all of them will be useful for any specific purpose, and may well cause adverse effects.

So why do we need mixers? There are other ways to generate various frequencies, so why a frequency translator such as a heterodyne mixer?

The principal answer is that the mixer will translate the frequency, and in the process transfer the modulation of the original signal. So, when an amplitude-modulated signal is received, and then translated to a different frequency in the receiver, the modulation characteristics of the AM signal convey to the new frequency essentially undistorted. Those of you who know that there is no such thing as a 'distortionless' circuit, please refrain from snickering. Perhaps the most common use for mixers, in this regard, is in radio receivers.

The receiver mixer

The vast majority of radio receivers made since the late twenties have been superheterodynes. The process of heterodyning is the translation of one frequency to another by the use of a mixer and local oscillator, or LO, Fig. 5a).

The antenna picks up a radio signal of frequency \(F_{RF} \), and mixes it with a local oscillator signal \(F_{LO} \). This produces a number of new frequencies in the spectrum defined by equation (1), but those of principal interest are the cases where \((m,n)=(1,1)\), i.e. the sum and difference frequencies \(F_{RF}+F_{LO} \) and \(F_{RF}-F_{LO} \).

An intermediate-frequency filter will select one of these second-order products, and the other is rejected. Why would receiver designers use this approach?

The principal reason is that it is very much easier to design the receiver using this approach. It is much easier to provide the gain and selectivity filtering needed to make the receiver work properly at a single frequency. This frequency, regardless of whether the sum or difference product is used, is called the intermediate frequency, or IF, or \(F_{IF} \). The high gain stages, and the bandpass filtering, are all provided in the IF stages.

At one time, it was universally the practice to select the difference frequency, but today the sum frequency is often selected. It is quite common to find high-frequency short-wave receivers with a dual conversion scheme in which \(F_{RF} \) is first up-converted to the sum frequency, and then a new mixer down-converts it to a lower second intermediate frequency.

In the remainder of this article, \(F_1 \) and \(F_2 \) will be expressed much of the time as \(F_{RF} \) and \(F_{LO} \) in view of the receiver being the most common use for mixer devices.

The sum or difference second-order products are selected for the IF, but the other frequencies don't simply evaporate. They can cause serious problems. But more of that later.

Simple diode mixer

Figure 5b) shows a block diagram circuit for a simple form of mixer. Although not terribly practical in most cases, the circuit has been popular in a number of receivers in the high uhf and microwave regions since World War II.

The two input signals are the rf and local oscillator. The oscillator signal is at a very much higher level than the rf signal. It is used to switch the diode in and out of conduction, providing the non-linearity that mixer action requires.

There are three filters shown in this circuit. The rf and local oscillator filters are used for limiting the frequencies that can be applied to the mixer. In the case of the rf port it is other radio signals on the band that are being suppressed.
RF DESIGN

Fig. 5a) Block diagram of a superheterodyne receiver; b) basic single-ended unbalanced mixer circuit.

In the case of the local oscillator it is oscillator noise and harmonics that are suppressed. The rf filter also serves to reduce any oscillator energy that may be transmitted back towards the rf input. Take a look at the panel entitled, 'Detecting receiver radiation' for more on this.

The question of ‘balance’

One of the ways of classifying mixers is whether or not they are unbalanced, single balanced or double balanced. Although there are interesting aspects of each of these categories, the important aspect for the moment is how they affect the output spectrum.

Unbalanced mixers. Both F_{RF} and F_{LO} appear in the output spectrum, and there may be poor LO-RF and RF-LO port isolation. Their principal attraction is low cost.

Single-balanced mixers. Either F_{RF} or F_{LO} is suppressed in the output spectrum, but not both. In other words, if F_{RF} is suppressed, F_{LO} will be present, and vice versa.

The single balanced mixer will also suppress even order local-oscillator harmonics, $2F_{LO}$, $4F_{LO}$, $6F_{LO}$, etc. High LO-RF isolation is provided, but LO-IF isolation must be provided by external filtering.

Double-balanced mixers. Both F_{RF} and F_{LO} are suppressed in the output. The single-balanced mixer will also suppress even order local-oscillator and rf harmonics, $2F_{LO}$, $2F_{RF}$, $4F_{LO}$, $4F_{RF}$, $6F_{LO}$, $6F_{RF}$, etc.). High port-to-port isolation is provided.

Spurious responses

The IF section of a receiver will use one of the second-order products in order to convert F_{RF} to F_{IF}. Ideally, the receiver would only respond to the single radio frequency that meets the need. Unfortunately, reality sometimes rudely intervenes, and certain spurious responses might be noted.

A spurious response in a superheterodyne receiver is any response to any frequency other than the desired F_{RF}, and which is strong enough to be heard in the receiver input. Most of these ‘spurs’ are actually mixer responses, although overloading the rf amplifier can cause some responses as well.

The mixer responses may or may not be affected by pre-mixer filtering of the rf signal. Candidate spur frequencies include any that satisfy the following equation,

$$F_{spur} = \frac{nF_{LO} \pm mF_{IF}}{m}$$ \hspace{1cm} (2)

Image

The image response of a mixer is due to the fact that two frequencies satisfy the criteria for F_{IF}.

Figure 6 shows how the image response works. The frequency that satisfies the image criteria depends on whether the local oscillator is high-side injected, in which case $F_{LO}>F_{RF}$, or low-side injected, when $F_{LO}<F_{RF}$.

In the high-side injection case $(m,n)=(1,-1)$, shown in Fig. 6, the image appears at $F_{RF}+2F_{IF}$. If low-side injection, $(m,n)=(-1,1)$, is used, then the image is at $F_{RF}-2F_{IF}$. The image always appears on the opposite side of the LO from the RF, so will be $F_{LO}+F_{IF}$ for high-side injection and $F_{LO}-F_{IF}$ for low-side injection.

Consider an actual example based on an AM broadcast-band receiver. The IF is 455kHz, and the receiver is tuned to F_{RF} of 1000kHz.

The usual procedure on AM broadcast-band receivers is high-side injection, so,

$$F_{LO}=F_{RF}+F_{IF}=1000kHz+455kHz=1455kHz$$

The image frequency appears at,

$$F_{RF}+2F_{IF}=1000kHz+(2(455kHz)=1910kHz$$

Any signal on or near 1910kHz that makes it to the mixer rf input port will be converted to 455kHz along with the desired signals.
The problem is complicated by the fact that it is not just actual signals present at the image frequency, but noise as well. The noise applied to the mixer input is essentially doubled if the receiver has any significant response at the image frequency.

Pre-mixer filtering is needed to reduce the noise. Receiver designers also specify high intermediate frequencies in order to move the image out of the passband of the rf pre-filter.

Half-IF. Another set of images occurs when \((m,n)\) is \((2,-2)\) for low-side or \((-2,2)\) for high side. This image is called the half-IF image, and is illustrated in Fig. 7. An interesting aspect of the half-IF image is that it is created by internally generated harmonics of both \(FRF\) and \(FLO\). For our AM broadcast-band receiver where \(FRF=1000\)kHz, \(FLO=1450\)kHz and \(FIF=450\)kHz, then the half-IF frequency is \(1000+(450/2)=1222.5\)kHz.

IF feedthrough. If a signal from outside passes through the mixer to the IF amplifier, and happens to be on a frequency equal to \(FIF\), then it will be accepted as a valid input signal by the IF amplifier. The mixer RF-IF port isolation is critical in this respect.

High-order spurs

Thus far we have considered only the case where a single radio frequency is applied to the mixer. But what happens when two radio frequencies \(- FRF_1\) and \(FRF_2\) - are applied simultaneously? This is the actual situation in most practical receivers. There is a large number of higher order responses - i.e. where \(m\) and \(n\) are both greater than 1, defined by \(mFRF_1±nFRF_2\).

The worst case is usually the \(2FRF_1-FRF_2\) and \(2FRF_2-FRF_1\); third-order products because they fall close to \(FRF_1\) and \(FRF_2\) and may be within the device passband.

Although any of the spurs may prove difficult to handle in some extreme cases, the principal problems occur with the third-order difference products of two rf signals applied to the rf port of the mixer, \(2FRF_1-FRF_2\) and \(2FRF_2-FRF_1\).

Figure 8 illustrates this effect for our AM broadcast-band receiver. Suppose two signals appear at the mixer input: \(FRF_1=1000\)kHz and \(FRF_2=1020\)kHz. This combination is highly likely in the crowded AM broadcast band!

The third-order products of these two signals hitting the mixer are \(980\)kHz and \(1040\)kHz, and appear close to \(FRF_1\) and \(FRF_2\). If the pre-mixer filter selectivity is not sufficiently narrow to suppress the unwanted radio frequency, then the receiver may respond to the third-order products as well as the desired signal.

LO harmonic spurs. If the harmonics of the local oscillator are strong enough to drive mixer action, then signal clustered at \(±FLO\) from each significant harmonic will also cause mixing. Figure 9 shows this effect. The passband of the pre-mixer filter is shown as dotted line curves at \(FLO±FIF\), \(2FLO±FIF\) and \(3FLO±FIF\).

LO noise spurs. All oscillators have noise close to the LO frequency. The noise may be due to power supply noise modulating the LO, or it may be random phase noise about the LO. In either case, the noise close to the LO, and within the limits imposed by the IF filter, will be passed through the mixer to the IF amplifier.

What's next?

In part two of this three-part series on rf mixers, Joe looks at intermodulation distortion, third-order intercept point, mixer losses, noise figure and noise balance, and gets into actual circuits by considering the single-ended unbalanced active mixer circuit.
Perfect amplifier fidelity is thought to be unattainable. But Ian Hickman explains here that you could indeed make a distortionless amplifier, if only...

Zero distortion?

Wisdom says beauty is in the eye of the beholder, and surely high-fidelity audio is in the ear of the hearer. If a system sounds good to you, then it is good – for you.

Strangely, the reverse also seems to hold true. If you are an ardent advocate of this or that particular amplifier architecture, then that sort of amplifier will sound best to you.

Distortion background
In the earliest days of wireless, distortion was not an issue; inadequate sensitivity and sound output were the main concern of designers. But in the later 1930s, once battery valves with their 2V filaments, and balanced iron-armature loudspeakers had been replaced by mains superhets with a few watts of output, distortion became an important consideration.

Output triodes, such as the 4V directly heated PX4 used in my father’s pride and joy – a Cossor model 365 – were much favoured for their purity of tone. True, they were far from distortion free, but the distortion they introduced was mainly second harmonic.

This introduces not only second harmonics of all the tones present, but also sum and difference terms. However, the distortion was only severe on very loud passages, with the volume control turned well up, and the ear soon became used to it. At all other times, distortion was minimal, certainly much less noticeable than the muddy sound produced by the sound tracks of movies of the era.

Later, pentodes as output valves became popular with designers, perhaps because the extra gain they provided enabled adequate performance to be achieved with a line-up including one less valve. But pentodes were said to exhibit larger amounts of third-order distortion. This brings not only third harmonics, but third-order intermodulation products, producing, it was said, a shriller tone.

The designer’s answer was the incorporation of a vicious tone control. This enabled the listener to chop off such treble response as had managed to survive the selectivity of the intermediate-frequency transformers – and most listeners did. A common view was that the ‘mellow position’ of the tone control was best for music, and the ‘bright position’ for speech, which was otherwise often so muffled as to be difficult to follow.

The current scene
Nowadays, power amplifiers are available that contribute only very small amounts of distortion – far less than anything that has been available in the past. Yet specialist designers are still seeking ever lower levels of distortion in the power amplifier – an obsession which may seem perverse, in view
of the blithe way they ignore distortion in pick-ups and particularly loudspeakers.

Perhaps the reason is that a quoted power-amplifier distortion level of nought point umpteen noughts one is seen as a selling point, whereas loudspeaker manufacturers trumpet their wide frequency response but, wisely, do not quote distortion levels.

The fringe
In addition to the more orthodox school of power-amplifier designers, there is a fringe world of would-be audio gurus who strenuously maintain the superiority of this or that type of amplifier, usually with no recourse to quoted performance measurements. Thus there are those who swear by valve amplifiers in general.

Others are even more specific, expounding the virtues of triode valve single ended amplifiers in particular. After all, they only produce a little second harmonic, which isn’t important, is it? And they don’t produce any of those terrible third-order products.

The more extreme exponent of this school even advocates the abandonment of negative feedback, though what reasoning there is behind this view is usually not stated. At least with no negative feedback, transient intermodulation distortion due to overload of intermediate stages when the output stage clips, cannot occur.

Benefits of negative feedback
As is well known, negative feedback reduces not only the gain, but also gain variation with frequency. It flattens the frequency response. It also reduces noise and hum, assuming of course that these have originated within the loop. But probably its most highly regarded effect is the reduction of distortion that it can offer.

The higher the 'gain within the loop', the greater is the reduction of distortion. The gain within the loop is given by the open-loop gain minus the gain reduction effected by the application of the negative feedback, or nfb.

A large degree of nfb, evidenced by a large gain reduction when the loop is closed, reduces the distortion substantially: \(D_f = \frac{D_0}{1 - |\beta| A_0} \). Thus if the open-loop gain \(A_0 \) is 1000 and the feedback fraction \(\beta \) is \(-\frac{1}{100}\), the distortion with feedback \(D_f \) will be one eleventh of the open loop distortion \(D_0 \), while the gain has fallen from \(x^{1000} \) to \(x^{1000/11} \).

It looks like a pure performance improvement, apart from the need to make up for the lost gain with a preamplifier. But as pointed out in that excellent text of reference 1, in certain circumstances nfb can make the distortion worse. By way of demonstration, the reference's author reproduced a graph from ref. 2, shown here as Fig. 1.

No such thing as a free lunch
The logic seems inescapable. If an open-loop amplifier displays only second harmonic distortion, then a modest amount of nfb will result in the introduction of third and higher harmonics not previously there. For with only a modest amount of nfb, the improvement is limited so there must still be some second harmonic \(2f_0 \) at the output.

A fraction of the \(2f_0 \) content will be fed back and produce an even smaller component at \(4f_0 \) and so on.

The lesson seems clear; if you are considering negative feedback, use lots, or none at all. However, this seems to go against my own experience, and that of many a designer. It is common knowledge that even a modicum of nfb is highly beneficial in many instances. For instance it is commonly used to improve the fidelity of a tranny portable from shocking to poor.

What do you mean by distortion?
If an amplifier shows only even-order distortion, and a lot of it at that - say 10% - then it must be true that a little nfb will

![Fig. 1. Effect of different amounts of negative feedback on an amplifier with predominantly second harmonic distortion. (Reproduced by courtesy of Newnes)](image1)

![Fig. 2. Anode characteristics of a typical 6J5 triode.](image2)
introduce an appreciable amount of third harmonic, as per Fig. 1. And if you subscribe to the view that a given amount of third-order distortion sounds worse than the same percentage of second, which I would not dispute, then heavy nfb sounds a good idea, subject to the usual stability criteria.

But how many amplifiers really show nothing but second harmonic distortion? How about a big output triode like a PX4 or even the much beefier 300B? This latter device is frequently advertised in these pages at a mere £50 or so. Add a suitable output transformer, power supply and driver stages, and for only one or two hundred pounds you could build yourself a single ended class A leviathan - with or without nfb to taste.

In practice though, second-order distortion effects seldom appear on their own. I do not have characteristics of a large triode output valve to hand, but Fig. 2 shows those of a small amplifier triode, the 6J5, copied more or less exactly from reference 3. Two different values of load line are shown, the exact load chosen being, as usual, a compromise between power output and distortion.

Note the two volt increments of grid bias, and the load line distances A, B, C, etc., cut off between them. If $A=B=C$, etc., then the change in anode current for each 2V step is constant, and the stage is perfectly linear. This is clearly not the case. Now suppose that $A-B=X$ and that $B-C$ also equals X, and so on. Then by the algebra of finite differences - closely related to differentials - the second differences of anode current are constant. As a result, only second-order distortion is present.

If however, X is not constant over the whole range of grid input voltages, then third-order and or higher order distortion will be present.

Suck it and see

Not having a large triode to hand, or even a 6J5, I still wanted to look at the effect of a modest amount of nfb, like 10dB, on second harmonics. So I built up the circuit of Fig. 3, with a diode to provide a deliberate amount of second harmonic distortion built in.

Figure 4 shows the input and output, in stored traces. The input was a 1.12V peak to peak 1kHz sinewave from a very low distortion oscillator, ref. 4. Its trace is visible in Fig. 4 reaching to top of screen at one division in from the left, and remaining below the spectrum analyser's noise floor thereafter.

The gain of the HP3580A spectrum analyser was then adjusted so that the fundamental component of the circuit's output was superimposed on the stored input trace. You can see that, at -20dBc, the distortion is indeed principally second harmonic, as would be expected from a diode. But there are substantial harmonics up to the fifth, whilst the sixth and seventh are also visible above the analyser's noise floor, which is almost 90dB down.

Table 1 gives the levels of the harmonics, relative to the fundamental, as the amplitude of the fundamental is decreased in 10dB steps.

Thus, for example, for each 10dB reduction in the fun-
damental, the level of the second harmonic falls by 10dB relative to the fundamental – a reduction of 20dB in absolute terms. Likewise, for a 10dB reduction in input level, the third harmonic falls by 30dB in absolute terms, as expected. For in general, for every 1dB reduction in input level, the level of the nth harmonic falls by ndB.

Now 10% second harmonic was a bit much for the experiment I had in mind. Even triode output valves without feedback generally have their power output rated at the 5% distortion level. So the circuit was modified as shown in Fig. 5.

With the negative feedback not connected, the 25kΩ potentiometer was adjusted so that the gain from A to B was unity, and the input amplitude set to 1.12V pk-pk as before. The output spectrum was measured and stored, appearing as the trace slightly offset to the left in Fig. 6.

Next, the 4.7kΩ feedback resistor was connected, reducing the gain by 10dB. The input was increased to restore the previous output level, the spectrum measured and recorded as the trace slightly offset to the right in Fig. 6.

Application of a modest 10dB of negative feedback can be seen to have reduced the level of the second harmonic by about the expected 10dB, but the reduction in third harmonic is nearer 15dB. This is presumably due to the third harmonic component, generated from the second harmonic by the mechanism discussed earlier, combining with the third harmonic component that was present originally.

However, besides demonstrating the reduction of distortion by negative feedback, the main conclusion I drew from the experiment and the triode characteristic mentioned earlier, is an important one. It is that in the real world, second harmonic distortion in a single-ended stage is always accompanied by third, albeit often at a lower level.

By contrast, although a well balanced push-pull stage may exhibit some odd-order distortion, it can achieve very low levels of second-harmonic distortion – even before the application of any nfb.

The ideal amplifier

There may be those who deny that second-harmonic distortion is always accompanied in practice by third, saying that I just haven’t looked hard enough. But if it is indeed possible to make an audio amplifier with no third harmonic distortion, using a big thermionic triode or whatever, then a fortune awaits its inventor. And this is so, however bad the second-harmonic distortion may be, as I shall demonstrate.

Figure 7 shows the outputs of two amplifiers, the distortion in each consisting solely of 10% second harmonic, driven in antiphase. Also shown is the difference between them, which is the voltage which would be applied to a BTL loudspeaker. Fig. 8. Waveforms in the lower diagram are as Fig. 7, but show the sum of the two distorted outputs. This consists purely of the second harmonic component with respect to ground. But as it is a common-mode signal, it does not appear across the speaker terminals, assuming the speaker is floating.

![Image of waveforms](https://example.com/image.png)

Table 1. Levels of harmonics relative to the fundamental as its amplitude is decreased in 10dB steps.

<table>
<thead>
<tr>
<th>Input level</th>
<th>Harmonic output, decibels re input level</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1kHz sinewave)</td>
<td>2nd</td>
</tr>
<tr>
<td>1.12V pk-pk=0dBRef</td>
<td>-20</td>
</tr>
<tr>
<td>-10dB</td>
<td>-50</td>
</tr>
<tr>
<td>-20dB</td>
<td>-40</td>
</tr>
</tbody>
</table>

Figs 7, 8. The upper waveforms are simulations of the outputs of two amplifiers, the distortion in each consisting solely of 10% second harmonic, driven in antiphase. Also shown is the difference between them, which is the voltage which would be applied to a BTL loudspeaker. Fig. 8. Waveforms in the lower diagram are as Fig. 7, but show the sum of the two distorted outputs. This consists purely of the second harmonic component with respect to ground. But as it is a common-mode signal, it does not appear across the speaker terminals, assuming the speaker is floating.
ANALOGUE DESIGN

Fig. 9. Given a distortion-free preamplifier and phase-splitter, this system is completely distortion free, provided solely that the output amplifiers show only even order distortion – 2nd, 4th, 6th etc. harmonics.

peaks fed to the loudspeaker, representing odd order distortion.

Figure 8 shows the two distorted outputs again, together, this time, with their sum. This appears as a common-mode component at the outputs, which will not affect the loudspeaker, assuming that it is operated as a floating BTL. The arrangement of a distortion free amplifier is shown in Fig. 9.

The arrangement shown is such a crucial assumption that the two amplifiers individually exhibit zero odd-order distortion. This is probably more likely to be achievable – if at all – if each amplifier is single ended. For a push-pull arrangement will usually convert even-order distortion in each half of the pair, into odd order distortion in their output.

Each amplifier in Fig. 9 could consist of a large triode, bipolar transistor of fet. For matching, the triode would require an output transformer. Having lower operating impedance levels, a bipolar transistor or fet stage could use choke coupling, or some other high impedance arrangement, such as a constant current source.

The possibilities are endless – provided only that you can design that elusive but essential odd-order-distortion-free amplifier. If you can, negative feedback is not needed, so there can be no nfb-induced transient intermodulation distortion in the event of overdrive.

HOW DOES YOUR EQUIPMENT MEASURE UP? AT STEWART OF READING THERE'S ALWAYS SCOPE FOR IMPROVEMENT!

Distortion - 2nd, preamplifier and output speaker, assuming that it is operated as a floating BTL.

References

STEWART of READING

110 WYKEHAM ROAD, READING, BERKS RG2 1PL

Telephone: (0118) 9269041 Fax: (0118) 9351986

Callers welcome 9am-5.30pm Monday to Friday (other times by arrangement)

CIRCLE NO.118 ON REPLY CARD
TiePie introduces the HANDYSCOPE 2

A powerful 12 bit virtual measuring instrument for the PC

The HANDYSCOPE 2, connected to the parallel printer port of the PC and controlled by very user friendly software under Windows or DOS, gives everybody the possibility to measure within a few minutes. The philosophy of the HANDYSCOPE 2 is:

"PLUG IN AND MEASURE"

Because of the good hardware specs (two channels, 12 bit, 200 kHz sampling on both channels simultaneously, 32 Kbyte memory, 0.1 to 60 volt full scale, 0.2% absolute accuracy, software controlled AC/DC switch) and the very complete software (oscilloscope, voltmeter, transient recorder and spectrum analyzer) the HANDYSCOPE 2 is the best PC controlled measuring instrument in its category.

The four integrated virtual instruments give lots of possibilities for performing good measurements and making clear documentation. The software for the HANDYSCOPE 2 is suitable for Windows 3.1 and Windows 95. There is also software available for DOS 3.1 and higher.

A key point of the Windows software is the quick and easy controlof the instruments. This is done by:

- the speed button bar. Gives direct access to most settings
- the mouse. Place the cursor on an object and press the right mouse button for the corresponding settings menu.

menus. All settings can be changed using the menus.

Some quick examples.

The voltage axis can be set using a drag and drop principle. Both the gain and the position can be changed in an easy way.

The time axis is controlled using a scalable scroll bar. With this scroll bar the measured signal (10 to 32K samples) can be zoomed live in and out.

The pre and post trigger moment is displayed graphically and can be adjusted by means of the mouse. For triggering a graphical WYSIWYG trigger symbol is available. This symbol indicates the trigger mode, slope and level. These can be adjusted with the mouse.

The oscilloscope has an AUTO DISK function with which unexpected disturbances can be captured. When the instrument is set up for the disturbance, the AUTO DISK function can be started. Each time the disturbance occurs, it is measured and the measured data is stored on disk. When pre samples are selected, both samples before and after the moment of disturbance are stored.

The spectrum analyzer is capable to calculate an 8K spectrum and displays 11 different values can be measured and these values can be displayed in 16 different ways. This results in an easy way of reading the requested values. Besides this, for each display a bar graph is available.

When slowly changing events (like temperature or pressure) have to be measured, the transient recorder is the solution. The time between two samples can be set from 0.01 sec to 500 sec, so it is easy to measure events that last up to almost 200 days.

The extensive possibilities of the cursors in the oscilloscope, the transient recorder and the spectrum analyzer can be used to analyze the measured signal.

To document the measured signal three features is provided for. For common documentation three lines of text are available. These lines are printed on every print out. They can be used e.g. for the company name and address. For measurement specific documentation 240 characters text can be added to the measurement. Also "text balloons" are available, which can be placed within the measurement. These balloons can be configured to your own demands.

For printing both black and white printers and color printers are supported. Exporting data can be done in ASCII (SCV) so the data can be read in a spreadsheet program. All instrument settings are stored in a SET file. By reading a SET file, the instrument is configured completely and measuring can start at once. Each data file is accompanied by a settings file. The data file contains the measured values (ASCII or binary) and the settings file contains the settings of the instrument. The settings file is in ASCII and can be read easily by other programs.

Other TiePie measuring instruments are:

HS508 (50MHz-8bit), TP112 (1MHz-12bit), TP208 (20MHz-8bit) and TP508 (50MHz-8bit).

Convince yourself and download the demo software from our web page: http://www.tiepie.nl.

When you have questions and / or remarks, contact us via e-mail:
support@tiepie.nl

Total Package:
The HANDYSCOPE 2 is delivered with two 1:1:1:10: swichtable oscilloscope probes, a user manual, Windows and DOS software. The price of the HANDYSCOPE 2 is £ 299.00 excl. VAT.

TiePie engineering (UK), 28 Stephenson Road, Industrial Estate, St. Ives, Cambridgeshire, PE17 4WJ, UK.
Tel: 01480-460028; Fax: 01480-460340

TiePie engineering (NL), Koperslagenstraat 37
8801 VL SNEEK, The Netherlands.
Tel: +31515415416; Fax: +31515418819
NOW AVAILABLE

RANGER 2

The Complete, Integrated Schematic & PCB Layout Package

Windows Ranger 2

For Windows 95 & NT
- New Hierarchical Circuit
- Split Devices • Gate & Pin Swap
- New Edit Devices in Circuit
- Copper Fill • Power Planes
- Autorouter • Back Annotation

Windows Ranger 2 with Spectra SP2

Ranger & Spectra Autorouter provide the most cost effective PCB Design system available. A powerful, intuitive system at an outstanding price!

Windows Ranger 2 Upgrade

Upgrade your existing PCB Package to Windows Ranger 2.

SPECIAL OFFER

Ranger 2 Lite £35

(Prices exc VAT/P&P)

Demo Software - download from http://biz.ukonline.co.uk/seetrax

Call 01730 260062
Fax 01730 267273

Advanced Systems & Technology for PCB Manufacture
CIRCLE NO.120 ON REPLY CARD

ADVANCED ACTIV AERIAL

The aerial consists of an outdoor head unit with a control and power unit and offers exceptional intermodulation performance: SOIP +90dBm, TOIP +55dBm. For the first time this permits full use of an active system around the II and mf broadcast bands where products found are only those radiated from transmitter sites.
- General purpose professional reception 4kHz-30MHz.
- 10dB gain, field strength in volts/metre to 50 Ohms.
- Preselator and attenuators allow full dynamic range to be realised on practical receivers and spectrum analysers.
- Noise - 150dBm in 1Hz. Clipping 16 volts/metre. Also 50 volts/metre version.

- Broadcast Monitor Receiver 150kHz-30MHz.
- Stabilizer and Frequency Shifters for Howl Reduction
- Stereo Variable Emphasis Limiter 3
- 10-Outlet Distribution Amplifier 4
- PPM10 In-vision PPM and chart recorder
- Twin Twin PPM Rack and Box Units
- PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN - 50+/+6dB drives and meter movements
- Broadcast Stereo Coders

SURREY ELECTRONICS LTD
The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG.
Telephone: 01483 275997. Fax: 276477.
TSA1000 1GHz spectrum analyser

Designated the TSA1000, this spectrum analyser is in the form of an adaptor that converts any standard oscilloscope into a 1GHz spectrum analyser.

The instrument has a dynamic range of 70dB with a typical accuracy of 1.5dB. Its frequency range is from 400kHz to over 1GHz, and its bandwidth – i.e. selectivity – is 250kHz.

A built-in crystal-controlled marker provides a precision means of frequency and amplitude calibration. The centre frequency can be adjusted over the full 0-1GHz range using a ten-turn control, and is displayed on a large 3.5-digit liquid-crystal display.

Scan width is fully variable between 10MHz and 1GHz, and the scan rate can be set anywhere between 10Hz and 200Hz.

The TSA1000 is supplied with an operating manual describing the basics of spectrum analysis and EMC measurements. Its normal price is £581 including VAT in the UK. Electronics World readers can obtain it for just £499 – including VAT and carriage.

TSA1000 key specifications

Frequency range	400kHz to 1000MHz
Centre adjust	0MHz to 1000MHz
Bandwidth	250kHz (-6dB typical)
Meter accuracy	1% of reading +1MHz
Calibration marker	50kHz fundamental, harmonics to 1GHz
Scan width	1MHz to 100MHz/div
Scan speed	0.5ms to 35ms/div

Amplitude

Input impedance	50Ω
Amplitude range	-70dBm to 0dBm nominal
Amplitude scale	Logarithmic, 10dB/div
Amplitude linearity	Typically ±2dB
Amplitude flatness	Typically ±1.5dB
Max. input level	+10dBm
Calibration marker	-30dBm ±1dB at 50MHz

Oscilloscope requirements

Oscilloscope mode	X-Y mode, DC coupling; bandwidth not critical
X-Input sensitivity	0.8V/div
Y-Input sensitivity	0.8V/div

Easy to connect and use

The adaptor connects to the oscilloscope via two BNC connectors using true 50Ω impedance for minimal vswr. A calibration button allows a standard -30dBm 50MHz marker signal to be superimposed for precise amplitude and frequency checks.

Designed and manufactured to IEC1010-1 +5 to +40°C, 20% to 80% RH operating range 260(W) x 88(H) x 235(D)mm, 1.4kg

Runs from 220/240 or 110/120V at 50/60Hz Full operating ranges 198-264V or 99–132V Power consumption 8VA max

Use this coupon for your order

Please send me:

TSA1000 Spectrum analyser(s) at the fully-inclusive price of £499.

Name:
Address:
Tel no
Total £

Cheques payable to REED BUSINESS INFORMATION

Or debit my visa, master, access or switch card
Card type:
Card No:
Switch iss no
Expiry date:

Please post this order to TSA1000, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Overseas readers can still obtain this discount but details vary according to country. For more information, write or e-mail jackie.lowe@rbi.co.uk. We endeavour to dispatch as soon as possible, but please allow 28 days for delivery.
Electronics World ten-year index
A genuine £20’s worth.
The Electronics World softindex on CD contains information covering issues from January 1988 to May 1998. There are over 1300 references to articles and over 800 circuit ideas listed. Items can be selected by subject or author. The softindex runs in Windows 3.x, Windows '95 and NT.
To install, open the folder called Index on the CD and run the file called Setup.exe either by double clicking on it or by typing d:\index\setup.exe in the Run box accessible via the Start button in Windows 95/8.
The program follows the usual Windows conventions. There’s plenty of on-screen help. Items in the index are fully cross-referenced – click on dates preceded with the > symbol to jump that reference. To go back, click on the Link button.
You can append your own notes to each of the sections of the index – click on the Notes button.

Spice CAD software
A working version of Spiceage from Those Engineers is included on the CD. This version is limited to 200 nodes and file saving is inhibited, but otherwise the program is fully working. Spiceage is in a folder, the name of which you will probably guess. The file to run for installing Spiceage is called Setupeval.exe. There’s a readme.txt file if you need help with installing. Those Engineers can be reached on 0181 906 0155.

Spice models
In the folder called IRSpice, you will find the complete library of spice models from International Rectifier – over 300 files.

Need data via fax?
International Rectifier's European fax-on-demand service provides automated document delivery by means of a touch-tone phone. The system is available 24 hours a day; 7 days a week all year round and contains data sheets, application notes, design tips and other useful documents. To use the system call ++44 (0)1883 733420 – standard rate – and follow the easy to use voice menu system. Document numbers can be obtained from the system, our shortform catalogue or via our website <www.irf.com>.

Data and applications information
In the folder misnamed Zetex\Spice, you will find an applications handbook covering discrete components and linear ICs from Zetex. There are 28 pdf-format application notes in the subfolder called ‘An’ and 40 design notes in the ‘Dn’ subfolder. Four further subfolders contain hundreds of data sheets on ICs, sensors and through-hole and surface-mount discretes. There are copies of the Acrobat reader V3.01 for Windows 3.1 and 95 on the CD in case you do not already have a copy. Spice models are available via Zetex’s Web site http://www.zetex.com.

MARCH PA month's free Internet trial
Evaluate one of the favourite paid-for Internet service providers – Demon – free for a month. For full details of the offer and an installation guide, open the Demon folder and view or print the Write file called

Design analogue FPGAs
Design the analogue equivalent to an fpga. To find Windows software for designing and simulating a Trac circuit, look in the Zetex\Trac folder. There’s a readme file and the Trac CAD software installation file, Start.exe.
Low cost professional quality Smart Card Systems

CHIPDRIVE EXTERN
Intelligent programmer for Smart Cards using the International Standard T=0 or T=1 protocols also Memory and Secure Memory using PIC, 2-wire & 3-wire interfaces. Supplied with software to read and write to most popular secure smart cards, inc GSM, PAY PHONE and ACCESS CONTROL.T=0 or T=1 @ 3.579 MHz RS232 @ 9600 - 11500 bps T=0 or T=1 © 3.579 MHz
generated modules.

- DOS/Windows Development Environment
- Write Inturrupt service routines in C
- Supports in fine assembly language
- Automatic linking of multiple code pages
- Supports BIT and BYTE variables at absolute positions

- PCV - Windows IDE for PIC 16C5X, 16CXX, 12CXXX, 14000 - IRE270
- PCI - DOS IDE & Command line for PIC 16CXX, 27CXX, F4000 - RE95
- PCB - DOS IDE & Command line for PIC 16CXX, 12CXX - IRE95

BASIC Stamp Computers
BASIC Stamps are small computers which are programmed in PBASIC, a powerful BASIC dialect that includes many enhancements specifically designed for embedded control. PBASIC programs are downloadable directly from a PC to the BASIC Stamp where they are executed from on board EEPROM.

- DOS/Windows Development environment.
- Program directly from PC.
- Nonprogrammable up to 10,000 times.
- I/O pins can source/sink up to 20mA.
- Easily interfaced to ADCs, LEDs, motors, relays.
- Built in functions for Serial, PWM, pulse interf bit etc.

- BASIC Stamp 1 - 8 IO, 2400 baud serial, 16 pin SIP Module - IRE29
- BASIC Stamp 2 - 16 IO, 2500 baud serial, 28 pin dip module - IRE42
- Starter Kits from IRE79 (All prices exclude V.A.T. and delivery)

For further information on CCS PIC compilers, BASIC Stamps and other smart tools, please phone, email or visit our web site.

CIRCLE NO.124 ON REPLY CARD

CHIPDRIVE - micro
Fully compatible with TOOLBOX for application development. Featuring the same functionality as Chip Drive Extern but in a small neat low cost package, similar in size to a smart card. Supplied with CARDSERVER API.

£69 + VAT
PAP £7.50
CE Compliant

CHIPDRIVE Developer Kit
CGK consists of: CD-ROM containing cardserver.dll. Applications and Source code examples. CHIPDRIVE-micro a selection of Smart Cards offering protected memory, processor and memory cards. Typical uses are Control access, Pay Phone cards and Data transport. PIN keys for the cards are supplied along with data sheets and programming data for use with cardserver.dll. A useful application with source codes shows how the CHIPDRIVE can be used to identify any Smart card inserted, giving manufacturer into, and memory map if available. Applications produced with the developer kit will operate under Windows 3.1/95/NT and are compatible with the whole CHIPDRIVE family. The CDK uses easy to use 16 bit or 32 bit DLLs with just one.

function call to the 'CardServer' to identify the card or
carry out any instruction. Cardserver is a powerful
Featuring automatic protocol and card type detection.

supply with CHIPDRIVE micro
£99.95
plus £5 p&p + VAT
(Includes Smart cards)

http://www.towitoko.co.uk
http://www.crownhill.co.uk
http://edsim.cambs.net

SMARTCARDS Available from Stock:
GemPlus, Atmel, Xicor, Siemens, SOG Crownhill and more....
SLE4442, 4432, 4418, 4428, 4404. AT88SCxxx, AT24c01-16.
Supplied with CARDSERVER API for easy
development of SmartCard Applications using Visual Basic.

Delphi or C++. Supplied with Sample Memory
Development of SmartCard

CE Compliant

CE Compliant

Delphi or C++. Supplied with Sample Memory
Development of SmartCard Applications using Visual Basic.

CE Compliant

Delphi or C++. Supplied with Sample Memory
Development of SmartCard Applications using Visual Basic.

CE Compliant

Delphi or C++. Supplied with Sample Memory
Development of SmartCard Applications using Visual Basic.

CE Compliant

Delphi or C++. Supplied with Sample Memory
Development of SmartCard Applications using Visual Basic.

CE Compliant

Delphi or C++. Supplied with Sample Memory
Development of SmartCard Applications using Visual Basic.

CE Compliant

Delphi or C++. Supplied with Sample Memory
Development of SmartCard Applications using Visual Basic.

CE Compliant

Delphi or C++. Supplied with Sample Memory
Development of SmartCard Applications using Visual Basic.

CE Compliant

Delphi or C++. Supplied with Sample Memory
Development of SmartCard Applications using Visual Basic.

CE Compliant

Delphi or C++. Supplied with Sample Memory
Development of SmartCard Applications using Visual Basic.

CE Compliant

Delphi or C++. Supplied with Sample Memory
Development of SmartCard Applications using Visual Basic.

CE Compliant

Delphi or C++. Supplied with Sample Memory
Development of SmartCard Applications using Visual Basic.

CE Compliant

Delphi or C++. Supplied with Sample Memory
Development of SmartCard Applications using Visual Basic.
CIRCUIT IDEAS

Over £600 for a circuit idea?

New awards scheme for circuit ideas

- Every circuit idea published in Electronics World receives £35.
- The pick of the month circuit idea receives a Pico Technology ADC42 - worth over £90 - in addition to £35.
- Once every six months, Pico Technology and Electronics World will select the best circuit idea published during the period and award the winner a Pico Technology ADC200-50 - worth £586.

How to submit your ideas

The best ideas are the ones that save readers time or money, or that solve a problem in a better or more elegant way than existing circuits. We will also consider the odd solution looking for a problem - if it has a degree of ingenuity.

Your submission will be judged on its originality. This means that the idea should certainly not have been published before. Useful modifications to existing circuits will be considered though - provided that they are original.

Don't forget to say why you think your idea is worthy. We can accept anything from clear hand writing and hand-drawn circuits on the back of an envelope. Type written text is better. But it helps us if the idea is on disk in a popular pc or Mac format. Include an ascii file and hard-copy drawing as a safety net and please label the disk with as much information as you can.

Turn your PC into a high-performance virtual instrument in return for a circuit idea.

The ADC200-50 is a dual-channel 50MHz digital storage oscilloscope, a 25MHz spectrum analyser and a multimeter. Interfacing to a pc via its parallel port, ADC200-50 also offers non-volatile storage and hard-copy facilities. Windows and DOS virtual instrument software is included. ADC42 is a low-cost, high-resolution a-to-d converter sampling to 12 bits at 20ksample/s. This single-channel converter benefits from all the instrumentation features of the ADC200-50.
One telephone - two lines

If you have two telephone lines, this circuit allows the use of one 'phone, automatically switching lines when one is in use. Connection is normally to line 1 and the circuit switches incoming calls to line 2 if that rings. Putting the receiver down briefly changes lines.

The circuit is controlled by a PIC12C508 and, since the logical process is wholly in the PIC, it is easily adaptable for individual needs. It is line powered and takes 5-10µA normally or 20-30µA when in use and, since this is much less than that taken by most telephones, several switches may be used.

The PIC is an eight-pin controller with an internal 4MHz oscillator; it runs here on interrupts generated by its watchdog timer at 144ms intervals. It executes a short burst of code and returns to "sleep"; this method of timing is not accurate but power is low.

Since power comes from the line, whose voltage may peak at 100V, most ic regulators were out and zeners or reference diodes need bias of several tens of microamps - far too much. The PIC needs lmA for startup, but operates at 3-6V. Current is acceptable at 4V.

A green led is used as voltage reference, working well at 1µA. The power supply does not work until Vdd is at least 0.7V and bias current flows through R8, the 0.7V being provided by a slow charging current through R6 by lifting the phone to connect R3 to Vss. GP1 on the PIC acts as an input to detect online/off-line and as a negative bias for the green led, this increasing when the attached 'phone is off the hook to ensure reliable reset for the PIC at startup. The PIC drives a latching double-pole changeover relay, an 8ms pulse at 3.5V minimum from the power supply.

Three inputs go to the PIC. Firstly, a ring on line 2 is detected by the ac optoisolator, which uses the PIC's internal pull-ups, a simple arrangement but so sensitive that software has to reject false signals.

Secondly, the line-current sensing reed switch detects an off-hook 'phone. And thirdly, resistors R5,6 detect line voltage of 10V off hook and 40-50V on hook.

If readers would like details of the short PIC program, e-mail g.rutter@thefree.net and quote 'Phone switch.'

GGR Rutter
London NW2
C14

Faster charging for xenon flash

This circuit reduces the time taken to recharge a xenon flash capacitor using a resistor by about ten times.

In the modified current source the 680kΩ resistor reduces current supplied while capacitor voltage is low since the 470kΩ resistor is supplying plenty of current.

As capacitor voltage rises, current through the 470kΩ falls and that through the BUV46 rises to keep the transistor power dissipation in the safe area.

Neville Ward
Norwich
Norfolk

From about three seconds to recharge a flashgun capacitor, this circuit reduces the time to 0.3s.
High-Q, programmable notch filter

A logarithmic amplifier such as the TL441 may be used as a multiplier to give an output $V_o = X_1 X_2$, as in Fig. 1. It may also be used to give the nth root or nth power of an input, depending on the resistance values. If $R_2 = R_1 = n R_1$, the output is, for $n=1$, a multiplier; for $n=1$ the nth power output and, for $n<1$, the nth root.

This arrangement is used in the circuit shown in Fig. 2 to give a programmed notch at high Q. One multiplier provides a dc output and the other takes the dc as input and converts it back to the input frequency.

The low-pass filter and a 5MHz local oscillator then form a band-pass filter having an effective Q of 5000 and a 5MHz centre frequency, the low-pass section determining the bandwidth of $2f_c$.

Kamil Kraus
Rokycany
Czech Republic
C13

Fig. 1. A logarithmic amplifier used as a multiplier, which will also provide nth root or nth power output. Two such circuits are used in Fig. 2 to form a very high-Q notch filter, which is programmable.
Linear pwm demodulator

Pulses from a pwm demodulator are converted to an analogue output that is directly proportional to the pulse width.

Positive and negative edge detectors were described in June 1998, p. 475. Here, the positive edge detector resets the counter and the negative edge detector triggers an eight-bit latch fed by the counter which, in turn, feeds a digital-to-analogue converter to produce the output analogue.

K Balasubramanian
Husseyin Camur
European University of Lefke
Turkish Republic of Northern Cyprus
B98

Low-loss active diode

Since all diodes lose power as heat, this circuit was developed to reduce the loss and consequently the size of heat sink necessary. In the original large 400Hz, six-phase power supply, each diode dissipated 18W. With this active diode design, the loss is reduced to 3.6W.

Cmos comparator LMC7211 by National Semiconductor senses that the anode voltage is high with respect to the cathode, its output turning the fet hard on. All power mosfets conduct in the reverse direction, although the V_f of the body diode inhibits the use of the effect; in low-voltage fets the problem is less. As the anode voltage falls at each half cycle, the fet turns off again.

The isolated supply comes from a photovoltaic coupler, the only high peak current needed being to turn the fet on. This can be supplied by the charge from C_1.

If a large current is needed to charge a reservoir capacitor at startup, the body diode prevents short-term overheating since its V_f is 0.7V.

Colin Wonfor
Bay Designs Consultants
Dunfermline, Scotland,

Positive regulator shutdown in battery systems

In portable equipment, a linear regulator often runs from the battery voltage, voltage monitoring circuitry shutting the regulator down if its output reaches the drop-out voltage. This disconnects the load, which allows the battery voltage to recover slightly, which causes the monitor to turn the regulator back on and so on...

The diagram shows a way of avoiding this chatter. The MAX709L is an inexpensive microprocessor supervisor used here to monitor the regulator output; when this reaches the regulator’s internal threshold of 4.65V, the supervisor’s reset output turns the regulator off and removes the supply to the supervisor, reset remaining low. Close the switch momentarily before applying power. Other versions of the supervisor with different thresholds are available.

Nigel Brooke
Maxim Integrated Circuits
Reading
C20

To prevent chatter when battery voltage falls below the threshold of the voltage monitor, the regulator turns off and remains off.
Parallel port as microprocessor bus

With any modern PC, this circuit may be connected to the parallel port to form a complete, eight-channel, 2kHz/channel data acquisition system costing less than £35. It is based on the National Semiconductor LM12458 programmable 'datac', which has a 12-bit-plus-sign analogue-to-digital converter, an eight-channel multiplexer, a 32-word FIFO buffer and a programmable RAM to allow control of input and watchdog modes.

The 12458 is intended to run with a microprocessor and with the circuit shown connected to the PC parallel port, the chip 'sees' the PC as a microprocessor bus. The RAM in the 12458 is first programmed and conversions timed by an oscillator driving flip-flops to give the required sampling frequency.

A 74LS221 dual monostable sends a pulse to the PC, triggering IRQ7 to signal that data is ready to download from the FIFO - the 74HC573 latches an address to allow the selection of different registers in the 12458 for read and write.

A software virtual device driver handles communication with the circuit in a Windows environment; this software and a board layout may be obtained from David.Burke@UCD.IE.

David Burke
University College Dublin
C25

£50 Winner

National's LM12458, connected to the parallel port of a PC, effectively turns the PC into a microprocessor bus for data acquisition.
Simulator

- Berkeley SPICE3F5 analogue simulation kernel.
- True mixed mode simulation.
- New analysis types include multi-plot sweeps, transfer curves, distortion and impedance plots.
- Active Components: Switches, Pots etc.
- Over 1000 new library parts with SPICE models.
- Greater ease of use.

"a constant high level of capability throughout"

EWW CAD Review Round Up September 1998

Schematic Capture

- Produces attractive schematics like in the magazines.
- Netlist, Parts List & ERC reports.
- Hierarchical Design.
- Full support for buses including bus pins.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and PCB design.

PCB Design

- Automatic Component Placement.
- Rip-Up & Retry Autorouter with tidy pass.
- Pinswap/Gateswap Optimizer & Back-Annotation.
- 32 bit high resolution database.
- Full DRC and Connectivity Checking.
- Shape based gridless power planes.
- Gerber and DXF Import capability.

Available in 5 levels - prices from £295 to £1625 + VAT. Call now for further information & upgrade prices.

EWW CAD Review Round Up September 1998

“the BEST all-round PROGRAM”

Labcenter Electronics

Write, phone or fax for your free demo disk, or ask about our full evaluation kit.
Tel: 01756 753440, Fax: 01756 752857. EMAIL: info@labcenter.co.uk
53-55 Main St, Grassington, BD23 5AA. WWW: http://www.labcenter.co.uk

Fully interactive demo versions available for download from our WWW site.
Call for educational, multi-user and dealer pricing - new dealers always wanted.
Prices exclude VAT and delivery. All manufacturer's trademarks acknowledged.

CIRCLE NO. 126 ON REPLY CARD
Monitoring catalytic converter operation

Vehicles fitted with catalytic converters must achieve complete combustion to avoid damage or degradation of the converter. This circuit indicates rich or lean running by a bicolour LED on the dashboard.

An oxygen sensor fitted to the exhaust detects an excess or deficiency of oxygen, denoting lean or rich running, its output consisting of a rectangular wave between 0.8V (rich) and 0.2V (lean) at very high impedance and at a frequency of around 1Hz. In Fig. 1, IC1 takes the sensor output and produces a square wave, D1 showing the fact; the preset copes with various sensor levels. Oscillator IC2 drives the bicolour LED in a 50:50 duty cycle, which turns on both LEDs and gives the effect of yellow.

After filtering, output from IC1 modulates the oscillator duty cycle according to the action of the sensor, causing either the red or green LED to glow - red for rich, green for lean. A steady throttle opening shows both LEDs to give yellow.

The sensor output appears on only one of the possibly four wires at high impedance and care is necessary to avoid deforming the signal.

Figure 2 shows an oscillator to simulate the sensor action, which may be used for testing the circuit.

One further point — the exhaust pipe can reach temperatures in the region of 600°C!

K V Samson
Thornton Cleveleys
Lancashire
C22

Dashboard LED indicates rich or lean running of a vehicle's engine, avoiding damage to its catalytic converter.
SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK.
Adjustable positive/negative voltage reference

Negative voltage references are not common. Most are positive types of 5V or 10V. This circuit provide either polarity and may be adjusted from -10V to 10V.

A +10V fixed reference with a temperature coefficient of 10ppm/°C provides the input to the variable-gain amplifier whose gain is variable from -1 to 1. Its output is determined by

\[V_{\text{out}} = V_1 \left(1 + \frac{R_2}{R_1}\right) - V_{\text{ref}} \left(\frac{R_2}{R_1}\right), \]

so that if \(R_1 = R_2 \) and \(V_{\text{ref}} = 10V \), \(V_1 \) is 2V from -10V to 10V.

Moving the slider of the preset from bottom to top varies \(V_1 \) from 0V to 10V, changing from -10V to 10V.

Resistors \(R_1, R_2 \) must be matched and care should be taken to ensure low input offset voltage and drift in the op-amp. Both types suggested have input offset of 10µV, drift of 0.2µV/month and drift with temperature of 0.2µV/°C.

V Manoharan
Naval Physical & Oceanographic Laboratory
Kochi India
C24

Not only providing a rarely found negative voltage reference, this circuit is fully adjustable from -10V to 10V.

1µs, 16-bit analogue-to-digital converter

For fast a-to-d conversion, a flash device is the best choice. But the cost of such a device of more than six bits becomes excessive, since each extra bit doubles the complexity.

On the other hand, successive-approximation converters are somewhat slower, but a one-bit increase in capacity only increases conversion time by the period of the internal clock, so that a 10-bit, 10MHz converter converts in around 1µs and 1.6µs for 16 bits.

By combining a 20ns 6-bit flash converter with a 10-bit successive-approximation type, to obtain a 16-bit converter, conversion time is still about 1µs.

As analogue input is applied to the flash converter, output appears in 20ns and forms the six most significant bits, the ten least significant bits coming from the successive-approximation a-to-d converter. The start-conversion input to the successive-approximation converter triggers it. Output from the d-to-a converter is compared with the analogue input and the comparator output used to control the s-a a-to-d converter. After ten clock periods, the s-a produces an end-of-conversion signal and sets the latch to produce the combined digital output.

Conversion time of the circuit is therefore that of ten periods of the s-a a-to-d converter internal clock, whether the converter is an s-a type or a counting a-to-d converter.

K Balasubramanian
H Camur
European University of Lefke
Turkish Republic of Northern Cyprus
C32

Using a fast digital to analogue converter for the most significant bits and a slower one for the least results in a combined circuit that is still acceptably rapid but less complex and cheaper.
Without an engineering degree, a pile of money, or an infinite amount of time, the revised 289-page Interfacing With C is worth serious consideration by anyone interested in controlling equipment via the PC. Featuring extra chapters on Z transforms, audio processing and standard programming structures, the new Interfacing with C will be especially useful to students and engineers interested in ports, transducer interfacing, analogue-to-digital conversion, convolution, digital filters, Fourier transforms and Kalman filtering. Full of tried and tested interfacing routines.

Listings on disk - over 50k of C source code dedicated to interfacing. This 3.5in PC format disk includes all the listings mentioned in the book Interfacing with C. Note that this is an upgraded disk containing the original Interfacing With C routines rewritten for Turbo C++ Ver. 3. Price £15, or £7.50 when purchased with the above book.

Especially useful for students, the original Interfacing with C, written for Microsoft C Version 5.1, is still available at the special price of £7.50. Phone 0181 652 3614 for bulk purchase price.

Use this coupon to order

<table>
<thead>
<tr>
<th>Title</th>
<th>Price</th>
<th>Qty</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced Interfacing with C book @</td>
<td>£14.99</td>
<td></td>
<td>£14.99</td>
</tr>
<tr>
<td>Enh. Interfacing with C book + disk @</td>
<td>£22.49</td>
<td></td>
<td>£22.49</td>
</tr>
<tr>
<td>Interfacing with C disk @</td>
<td>£15</td>
<td></td>
<td>£15</td>
</tr>
<tr>
<td>Original Interfacing with C book @</td>
<td>£7.50</td>
<td></td>
<td>£7.50</td>
</tr>
<tr>
<td>Postage + packing per order UK</td>
<td>£3.50</td>
<td></td>
<td>£3.50</td>
</tr>
<tr>
<td>Postage + packing per order Eur</td>
<td>£7</td>
<td></td>
<td>£7</td>
</tr>
<tr>
<td>Postage + packing per order ROW</td>
<td>£12</td>
<td></td>
<td>£12</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>£243</td>
</tr>
</tbody>
</table>

Name
Address
Phone number/fax

Make cheques payable to Reed Business Publishing Group Ltd
Or, please debit my Master, Visa or Access card.
Card type (Access/Visa) Card No
Expiry date

Mail this coupon to Electronics World Editorial, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS, together with payment. Alternatively fax credit card details with order on 0181 652 8956 or e-mail them to jackie.lowe@rbp.co.uk. Orders will be dispatched as quickly as possible, but please allow 28 days for delivery.
Three two-gate oscillators

Oscillators in Figs 1-3 use one element from a 4001 and one from a 4011. They look a little like ordinary cross-fed RC types, but in this case the output of each gate in Figs 1, 2 is used as the supply for the other; in Fig. 3, the negative supply for I_{C1} is the positive supply to I_{C2}. The frequency of the symmetrical output square wave is around 1kHz when R is 1MΩ and C 1µF, the layout of the two ics being mirror images of each other.

Vasiliy D Borodai
Zaporozhje
Ukraine
C21

Elements in 4001 and 4011 devices are mirror images, leading to symmetrical outputs in these novel oscillators.

Zero-crossing detector

Output voltage from this simple zero-crossing detector is at V_{CC}; at all other times it is at $V_{CE}(sat)$ of T_{R2} or T_{R3}. With a positive input large enough to turn T_{R1} on, output is held low and when it is sufficiently negative to turn T_{R2} on, output is still low. Only when neither transistor conducts, the input being close to zero, is the output high.

On a positive-going edge, gain is set by the beta of T_{R1} and on a negative-going edge by the beta of T_{R3}, so that rise and fall times should be fairly equal with typical transistors. The input resistors may be adjusted for the required switching threshold.

Gregory Rubinstein
Bogotá
Colombia
C28

Temperature monitor with 0.1°C resolution

Controllable gain and zero offset give a linear output to a digital meter of 10mV/°C, using a surface-mounted transistor as the sensor to obtain a rapid response at low cost.

Resistor R_0 determines the factor by which normal V_{BE} is increased – in this case from $-2.1mV/°C$ to $-10mV/°C$ while operating from the constant-current sink formed by the LM317LZ voltage regulator with a 619Ω load. The 1.25V reference from the op-amp follower is also used as a current sink, adjusted by the 100Ω trimmer.

If R_0 is now made 1.5kΩ, meter voltage is zero at 0°C and, since both ends of the meter are referred to V_{CC}, it is insensitive to battery voltage between 6.5V and 9V. Resolution using a digital meter is 0.1°C from -50°C to 100°C. Power used is less than 40mW.

John A Haase
Colorado State University
Colorado
USA
C31

£50 Winner
‘THE RACK RANGE’
MAINS DISTRIBUTION PANELS FOR
19" RACK MOUNTING
HORIZONTAL
Radio 4's noisy floor
Charles Coultas is correct that the 'Today' program on BBC Radio 4 suffers from an excessively high noise floor in his February issue letter.

This has been going on for some time. Listening on precision speakers, it is easy to determine that the source is an inadequate air-conditioning installation. The blade passing frequency of the blower adds a dominant tone to the broad-band noise and the comb filtering due to standing waves in the ducting can be clearly heard.

There is no doubt that the studio concerned does not meet the BBC's own standards. I have a high regard for the BBC's technical staff and it is inconceivable that they don't know about the problem.

This suggests that the reason nothing has been done is political or financial. This is consistent with the BBC refusing to reply to Mr Coultas' justifiable complaint - a problem.

I suggest that Mr. Coultas write to the Director General and to the BBC refusing to reply to Mr.

The rumble is on BBC Radio 4 long wave in the February issue Letters column.

This sounds to me like the long wave version of the Radio Data System, RDS. This encodes binary data for transmission on the BBC Radio 4 carrier at 198kHz. In brief, the data, at 25bit/s, is biphase modulated onto a 25Hz digital carrier which then phase-modulates the 198kHz carrier at ±22.5°. The combination of low data-rate and low angle of modulation is supposed to ensure that there is no interference with the audio signal - but perhaps this is what Mr Coultas was detecting?

There are 30 blocks of 50 bits of data, which are repeated every minute. The last block before the minute contains data and time information. All blocks include a cyclic redundancy check word.

For an example of a typical receiver design, see: GEC Plessey Semiconductors, "Low-cost 198kHz Radio Data Receiver", Application note AN86. This was published in Electronics World, 99 (1992), pp. 960-1, Nov. 92.

The long-wave RDS does not carry the same information as the VHF system, which uses a higher data rate. This takes a bit stream at 1187.5Hz, and generates from this a DPSK signal (i.e. it is differentially encoded and bi-phase modulated). This signal generates raised-cosine pulses that are DBSC modulated onto at 57kHz sub-carrier.

I was certainly as the Bakerloo line underground train, which it almost certainly is as the Bakerloo line must pass close to Broadcasting House.

Charles Coultas' letter in the Feb 99 issue mentions a low frequency rumble on the today programme.

I too have heard it while sitting in the Radio Theatre (formerly Concert Hall). It sounds like an underground train, which is almost certainly as the Bakerloo line must pass close to Broadcasting House.

Mystery solved?

John Winn
Upminster

A window of misunderstanding
Mr Dennis (February, 1999) also demonstrates a certain lack of understanding.

At no time did I say that I was trying to run Windows 95 on a 33MHz 386 and 4MB of ram; that would have been, as I said, a bit limiting!

I 'upgraded' from that to the new one, which has a 32MB ram and runs at 166MHz.

Shocked, I am

Regarding EMC and the problems experienced by Mr Elvis, there are several answers to his problems.

Firstly the EMC legislation is hardly worth the paper it is written on. I have experience on this for my own pet hate is EM pollution.

In this area, electric fences are extremely popular during the grazing seasons with the result that the long and medium wave broadcast bands are rendered useless.

These fence energisers resemble a plastic can be used as an input window, replacing part of a wall or of the bottom. This alternative is suitable for measuring larger radiation sources. Changing the window type and thickness offers wide discrimination between radiation types and energy.

There is a wide scope for clever solutions in the design of the chamber itself to avoid current leaks and to limit the field gradient at the passage of the central electrode. The electronics associated will be also challenging.

Unfortunately I am not a specialist in radiation measurement, but information on this topic can be found in open literature and textbooks on the subject. You should be able to find dimensions, voltages, tips for insulation and characteristics of the devices.

I have seen an ionisation chamber being used in a radioactive laboratory that was no larger than a fountain pen. It was in form of a pen, and intended to be carried in a pocket.

Inside it, gold covered quartz fibre acting as central electrode was charged at high voltage against the walls when 'zeroing' the device.

During measurement, the quartz fibre also acted as an electrometer: its deflection against a small internal graduation was checked by means of a small lens system at the lip of the 'pen'. It was mostly a safety device, of modest precision, but very simple indeed.

Finally, there are other potential radiation sources that I did not mention in my earlier letter. Uranium salts are commercially available at specialist chemical suppliers. They should be easily purchased in small quantities.

As a pure chemical, the radiation will be only that of uranium, as quoted in literature, with the exclusion of the rest of the decay chain.

Health and safety can be cared for by using one of the oxides, which are almost totally insoluble. Even so, you should avoid breathing in the powder. Even better will be pure thorium oxide, which is a refractory untreatable oxide. The same safety precautions apply.

Dr G. Itzi, and
Menton
France
capacitor-discharge ignition system: most will produce a 'fat' spark and it is claimed that the premier models will 'energise forty miles of fence and kill back vegetation'. Some years ago I wrote to the European Parliament regarding the interference that these fences cause. I have highlighted the lack of compliance with the EMC Directive, and requested that it be made compulsory for low pass filters to be fitted. I am sorry to report that the response was pathetic and defisory. Although I did receive a large folder of waffle, it was evident that farmers must not be upset at any cost.

On a practical basis it would appear that equipment can easily be made to comply with the directive. But once you connect wires to it, it is a different story.

Help is at hand though, in the form of the book 'EMC for product designers' by Tim Williams. I have no connection with the author, but I would recommend the book as good groundign in the subject.

Finally Mr Elvis's relay problem can be solved by fitting recirculating diodes across the coils. Standard or slow recovery types are best. The 1N400x range is recommended. Standard or slow recovery types are best.

D Benyon
Bude
Cornwall

Missing charge

In the January issue's letter column, Mr Cox, seeks a physical level explanation for the 'lost' energy when two capacitors share a charge, and then uses an idealised zero resistance model which does not conform to physical reality.

A proper calculation shows the energy dissipated in the switch and interconnection resistance is half the original energy - a value that is unaffected by the precise resistance value.

If the resistance is zero, the initial current is infinite, and the time-integrated power, which is the energy dissipated in the resistance is still a finite $\frac{1}{2}CV^2$.

Consequently both energy and charge are conserved to the great comfort of physicists everywhere.

Dr A M B Shaw
Baldock
Hertfordshire

Brian Cox's thought experiment has instantaneous voltage changes across its capacitors. Charge in a capacitor is proportional to the product of the voltage and capacitance, or:

$$q \propto V$$

With a fixed capacitance, the rate of change of charge is proportional to the rate of change of voltage, or:

$$\frac{dq}{dt} = \frac{C}{V} \frac{dV}{dt}$$

Rate of change of charge is current, so Mr Cox's experiment invokes infinite current. It is not possible to connect the capacitors directly without losing energy in the resulting bang.

The two capacitors may be connected without a bang using a series inductor which does allow instantaneous voltage changes across its terminals. Doing so causes the voltage across C_1 to drop as charge flows across, building up current in the inductor. The current reaches a peak when the capacitor voltages are equal. Energy stored in both capacitors is then a quarter of the original value, and the remaining half is stored in the magnetic field of the inductor.

The current then falls to zero as the voltage across C_1 drops to zero and the voltage across C_2 rises to the starting value. This oscillatory process then reverses, repeating ad infinitum since my thought experiment ignores loss components of resistance, radiation, dielectric, hysteresis, etc. But at least it doesn't cause a bang.

Chris Ward
Via e-mail

Did you write in?

Brian Cox's letter on capacitor discharge in the January issue prompted an unprecedented level of response. Bryce Smith's letter on light gates also had a surprising effect on you. All of the replies were good reading, and some were so comprehensive as to merit the title 'article'. Space permitting, more response to Brian's letter will be published later. Many thanks to all of you who have written in. Ed.

Problem ironed out

In his letter 'Filament failure' in the January issue, Mr Ziemiacki mentions the barretter but fails to realise that the essence of this device was that it used an iron filament in a hydrogen atmosphere. It can be designed to work between about 200mA and several amps by varying the gauge of wire. A typical device maintains a constant current within perhaps 1% over a range of 95 to 165V. The use of an iron wire means that it must be kept away from magnetic fields which could cause the filament to vibrate, with detriment to its life, its characteristics, or both. Although barretters dissipated a deal of heat, I always considered them more reliable than the series resistor used in valve television sets.

J C Taylor
Heywood
Lancashire

Rusty diodes

There has been discussion in recent years over the linearity of cable resistance - in particular the existence of oxide diodes and their effect on audio performance.

I have come across an application note from Microwave Associates that suggests that such non-linearity does exist in rf connectors. It is also a concern in high capacity cell phone systems.

However the company makes it plain that the non-linearity is only an issue with high capacity systems where several transmitted and received signals share the same physical channel, and where IMD levels of -160dBc - i.e. 0.000001% or ten parts per billion - are required.

I think we can safely say that this has little or no relevance to hi-fi. The document in question is 75.pdf and it is available at www.macom.com. The easiest way to find it is to do a search using 'intermodulation'.

Phil Dennis
School of Physics
University of Sydney
Australia

Vision by radio

I greatly enjoyed Don McLean's story of his inspired recovery of video images from early Baird 30 line television transmissions. And I have no doubt that Baird was the

And the winners are...

Here are the winners of the two competitions we ran recently. Sincere thanks for all your feedback on favourite topics. Circuit ideas were most popular, followed by audio design, and then rf design.

Audiophobes note that this issue is a little audio heavy. This is not indicative of a change of direction. I didn't anticipate that Ian Hickman would offer me an article on audio distortion at the last minute. But could you have refused such an enlightening account? Ed.

Grundig oscilloscope winner:
David Paterson, Glasgow

Multimeter winners:
Dominic Steele, Altrincham
Jose Cavassi, Argentina

Factfinder winners:
Brian J Aitken, Stevenage
Gill Rickards, Charfield, Gloucestershire
John Winn, Camberley, Surrey
Peter Meinertzhagen, Sevenoaks, Kent
David Reid, Oldham, Lancashire
Doug Webster, Amphilth, Bedfordshire
Huw Jones, Llantrisanat, Mid Glamorgan
R J Philips, Basingbourn, Hertfordshire
Peter Ferrell, Orpington, Kent

C M Taylor, Shaw, Lancashire.
catalyst who made broadcast television a reality.
That said, I felt it was unfair to dismiss the work of other pioneers using film and silhouettes as not ‘true television’. This debate has run since the late 1920s, when the Baird lobby was economical with the truth about rival experimenters to enhance his priority claim.
To me, television is the instantaneous transmission of moving images between two points. There is no doubt that Baird’s transmission of images of real objects using reflected light was technically more difficult, but true television existed before he demonstrated his advance in the art. I consider the real inventor of television was Francis Jenkins, an American motion picture technologist who laid all the foundations of practical television. More importantly, he recognised the true entertainment value and scope of the new medium. This can be clearly seen from the 1925 picture attached, which shows a television more like today’s than any Baird Television.
In his book ‘Vision by Radio’, 1925, Jenkins outlined and demonstrated all the elements of a practical television system, which he said was capable of handling picture modulation signals in excess of 1MHz to give the image quality needed for home entertainment. Without in wishing to devalue Baird’s achievements, the tight definition of ‘true television’ as the transmission of images lit by reflected light is illogical. We might as well define true radio as transmitting speech and music rather than morse, so the inventor of the radio was Fessenden in 1906 – not Marconi in 1895. Anthony Hopwood
Upton-upon-Severn
Worcestershire

I wired into this, and...
This is a brief reply to Jean-Marc Brassart’s little circuit puzzle. A neat little puzzle, but his estimation of how long it would take to solve is woefully extravagant.
I would expect someone with an interest in electrical/electronics to solve it in less than ten minutes. I took (I think) less than 5 minutes. So I expect Jean Marc to be very surprised.
Andrej Chomyn
Via e-mail

Lighting emergency
In George Goh’s emergency lighting article in the January issue, details of the transformer were omitted – sorry. For 2.4V operation, use an FX3440 core with 0.55mm spacer or FX3670 with 0.65mm spacer on a DT2484 coil former. For the first winding, use 500 turns of 0.18mm wire. Use insulating tape then bifilar wind the three turns each of W2 and W3, using 0.5mm wire. Finally, apply the 0.18mm wire wound neatly. Use insulating tape then bifilar wind the path between direct and reflected wave should have been: $r_{d} = ((h_{t}+h_{r})^{2} + (d)^{2})^{1/2} - ((h_{t}-h_{r})^{2} + (d)^{2})^{1/2}$
In both terms of the above equation the square of the distance is used instead of the distance, in accordance with Pythagoras’ law.
The receiving area of the dipole is 0.131 x 2. Also in this case the square of the wavelength against wavelength is used.
Marco Arecco
Via e-mail

Measuring Yagis
In the December issue, in the article on measuring Yagis, the difference path between direct and reflected wave should have been:
$r_{d} = ((h_{t}+h_{r})^{2} + (d)^{2})^{1/2} - ((h_{t}-h_{r})^{2} + (d)^{2})^{1/2}$
In both terms of the above equation the square of the distance is used instead of the distance, in accordance with Pythagoras’ law.
The receiving area of the dipole is 0.131 x 2. Also in this case the square of the wavelength against wavelength is used.
Marco Arecco
Via e-mail

Negative voltage converter
In Circuit Ideas, January 1999, the idea ‘Negative voltage converter’ will not work. The rectifier circuit needs a path to ground for positive half cycles of the clock signal so that C_{1} can charge. This is prevented by diode D, but adding a second diode provides such a path. The revised circuit charges capacitor C_{1}, when the clock signal is positive, through diode D_{2}. During the negative half cycle, when the clock signal is at ground potential, C_{1} discharges and creates a negative current flow. Diode D_{2} is reverse biased, so does not conduct. The negative current flow passes through diode D and produces a negative voltage at the output, assuming that the load provides a dc path to ground.
Steve Winder
Ipswich
Suffolk

High-voltage fuses found
In the February issue, I noticed that Mr Gentle was having problems obtaining high voltage fuses as spares for a microwave oven. He might care to contact CPC in Preston, tel. 01772 654455. This company stocks seven values of high voltage encapsulated fuses in various ratings from 500ma to 1A.
The devices have a rated voltage of 5kV and they are fitted with leads ending in 6.3mm right angle female spade connectors. The catalogue price is £2.45 for individual fuses and on small orders will also add 3.99 p+p before also including VAT. This represents a significant reduction from the mentioned £50.00 he is supposed to have been quoted for the alternatives – a high proportion of the replacement cost of the complete oven.
Dave Turtle
Enith

Jeez – I told you we’d be able to pick up Baird’s tv signals. This one’s one of them there whacky corn circles that the Brits are always on about.

In George Goh’s emergency lighting article in the January issue, the difference path between direct and reflected wave should have been: $r_{d} = ((h_{t}+h_{r})^{2} + (d)^{2})^{1/2} - ((h_{t}-h_{r})^{2} + (d)^{2})^{1/2}$
In both terms of the above equation the square of the distance is used instead of the distance, in accordance with Pythagoras’ law.
The receiving area of the dipole is 0.131 x 2. Also in this case the square of the wavelength against wavelength is used.
Marco Arecco
Via e-mail

In the December issue, in the article on measuring Yagis, the difference path between direct and reflected wave should have been: $r_{d} = ((h_{t}+h_{r})^{2} + (d)^{2})^{1/2} - ((h_{t}-h_{r})^{2} + (d)^{2})^{1/2}$
In both terms of the above equation the square of the distance is used instead of the distance, in accordance with Pythagoras’ law.
The receiving area of the dipole is 0.131 x 2. Also in this case the square of the wavelength against wavelength is used.
Marco Arecco
Via e-mail

In George Goh’s emergency lighting article in the January issue, the difference path between direct and reflected wave should have been: $r_{d} = ((h_{t}+h_{r})^{2} + (d)^{2})^{1/2} - ((h_{t}-h_{r})^{2} + (d)^{2})^{1/2}$
In both terms of the above equation the square of the distance is used instead of the distance, in accordance with Pythagoras’ law.
The receiving area of the dipole is 0.131 x 2. Also in this case the square of the wavelength against wavelength is used.
Marco Arecco
Via e-mail

In George Goh’s emergency lighting article in the January issue, the difference path between direct and reflected wave should have been: $r_{d} = ((h_{t}+h_{r})^{2} + (d)^{2})^{1/2} - ((h_{t}-h_{r})^{2} + (d)^{2})^{1/2}$
In both terms of the above equation the square of the distance is used instead of the distance, in accordance with Pythagoras’ law.
The receiving area of the dipole is 0.131 x 2. Also in this case the square of the wavelength against wavelength is used.
Marco Arecco
Via e-mail

In George Goh’s emergency lighting article in the January issue, the difference path between direct and reflected wave should have been: $r_{d} = ((h_{t}+h_{r})^{2} + (d)^{2})^{1/2} - ((h_{t}-h_{r})^{2} + (d)^{2})^{1/2}$
In both terms of the above equation the square of the distance is used instead of the distance, in accordance with Pythagoras’ law.
The receiving area of the dipole is 0.131 x 2. Also in this case the square of the wavelength against wavelength is used.
Marco Arecco
Via e-mail

In George Goh’s emergency lighting article in the January issue, the difference path between direct and reflected wave should have been: $r_{d} = ((h_{t}+h_{r})^{2} + (d)^{2})^{1/2} - ((h_{t}-h_{r})^{2} + (d)^{2})^{1/2}$
In both terms of the above equation the square of the distance is used instead of the distance, in accordance with Pythagoras’ law.
The receiving area of the dipole is 0.131 x 2. Also in this case the square of the wavelength against wavelength is used.
Marco Arecco
Via e-mail
T & M Equipment

ADVANTEST T14427 Pn spectrum analyser to 110MHz £2900
ANRIT**S**U MU5836A pxm error rate test set 114b/sec £1750
ANRIT**S**U MU5841A fibre-optic power meter with MA516A power sensor 0.75-5.4GHz £1000
ANRIT**S**U MX5190 fibre-optic attenuator 0-65db £220
BRI**Z**EL 1054 octal scanner/collimator £750
CHASE UFL5000 interference measuring receiver 15kHz-150kHz £290
DIR**C**ON 101A vnometer £250
DILANET 200 PA-1000 ac neutral monitor, conv. T163018 clamp £770
ER*P*570 source locking frequency counter 10GHz 10GHz optical option £1270
FLANN Oscilograph/2017 frequency meter 20kHz-125kHz £225
FLANN precision rotary waveguide attenuator 21100 0-70db 26-40GHz £790
FLANN precision rotary waveguide attenuator 20110 0-60db 18-26GHz £790
FLANN MICROWAVE 27072 frequency meter 73-1136Hz £250
EIP 575 source locking frequency counter 18GHz GPIB option £150
IFR A-7550 spectrum analyser 1GHz with tracking generator option £2500
IFR A-7550 1GHz portable spectrum analyser with receiver options £3000
I**F**R A-7560 spectrum analyser 1GHz with tracking generator option £3000
KED**I**THE 130 programmable digital multimeter £1400
MARCONI 2019A signal generator 10kHz-19GHz INCLUDING FREE CALIBRATION £1500
MARCONI 20320/20322 40KHz high-performance spectrum analyser £2750
PHILIPS PR050/01 modulator (PAL/NTSC) UHF-converter £101
PHILIPS PR050/01 modulator (PAL/NTSC) UHF-converter £101
RACAL-DARA 9021 synthesised signal generator 1-3000MHz £195
RO**H**E & SCHWARZ U45 5.5-digits multimeter IEEE £550
RO**H**E & SCHWARZ U55 5.5-digits digital multimeter IEEE £290

FLANN precision rotary waveguide attenuator 21100 0-70db 26-40GHz

FLANN precision rotary waveguide attenuator 20110 0-60db 18-26GHz

FLANN MICROWAVE 27072 frequency meter 73-1136Hz

EIP 575 source locking frequency counter 18GHz GPIB option

IFR A-7550 spectrum analyser 1GHz with tracking generator option

IFR A-7550 1GHz portable spectrum analyser with receiver options

IFR A-7560 spectrum analyser 1GHz with tracking generator option

KEDI**THE 130 programmable digital multimeter

MARCONI 2019A signal generator 10kHz-19GHz INCLUDING FREE CALIBRATION

MARCONI 20320/20322 40KHz high-performance spectrum analyser

PHILIPS PR050/01 modulator (PAL/NTSC) UHF-converter

PHILIPS PR050/01 modulator (PAL/NTSC) UHF-converter

RACAL-DARA 9021 synthesised signal generator 1-3000MHz

ROH**E & SCHWARZ U45 5.5-digits multimeter IEEE**

ROH**E & SCHWARZ U55 5.5-digits digital multimeter IEEE**

Sightmagic Limited, Oak Lane, Bredon, Tewkesbury, Glos GL20 7LR UK

Layout power at this price...

Easy-PC For Windows

Easy-PC For Windows is the latest evolution of one of the most popular affordable CAD systems available. With powerful new features and a true Windows graphical user interface, it is also one of the easiest to learn and use. Using full manufacturing outputs using Gerber, Windows printers and pen plotters it is one of the most complete systems.

Run multisheet schematics, PCB layouts and library managers in the multiple document interface and switching between each is simply case of selecting it with the mouse.

Runs under Windows 95™ and Windows NT™

Number One Systems

The Electronics CAD Software Specialists

Call 01684 773662 for more information or fax 01684 773664
Sightmagic Ltd, Oak Lane, Brendon, Tewkesbury, Glos GL20 7LR UK

IS09002 ACCREDITED STOCKIST MEASUREMENT & TEST EQUIPMENT

HEWLETT PACKARD

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>8711C 30kHz/50GHz vector network analyser</td>
<td>£5000</td>
</tr>
<tr>
<td>3560A 20kHz spectrum analyser</td>
<td>£1600</td>
</tr>
<tr>
<td>1648B valfield data generator</td>
<td>£2000</td>
</tr>
<tr>
<td>1625A digital interferometer</td>
<td>£2000</td>
</tr>
<tr>
<td>11257D 10MHz input ports</td>
<td>£570</td>
</tr>
<tr>
<td>3314A function generator</td>
<td>£1500</td>
</tr>
<tr>
<td>33206G/33205 programmable attenuators 4GHz, with driver 11713A</td>
<td>£950</td>
</tr>
<tr>
<td>All above test 16869 set</td>
<td>£1600</td>
</tr>
<tr>
<td>3563A transmission test set</td>
<td>£330</td>
</tr>
<tr>
<td>3562A dynamic signal analyser</td>
<td>£380</td>
</tr>
<tr>
<td>3569A selective level generator</td>
<td>£600</td>
</tr>
<tr>
<td>37711B communications performance analyser, call for option configs</td>
<td>£500</td>
</tr>
<tr>
<td>4040B protocol tester base FT1308</td>
<td>£2950</td>
</tr>
<tr>
<td>4126B DC source/follower (w/4121B, 4125A, 4142A)</td>
<td>£2500</td>
</tr>
<tr>
<td>4168A 31-digits frequency/TM set</td>
<td>£350</td>
</tr>
<tr>
<td>8018A serial data generator</td>
<td>£1100</td>
</tr>
<tr>
<td>5348B frequency counter, option 180</td>
<td>£1600</td>
</tr>
<tr>
<td>6311C highspeed receiver 10/1500cm</td>
<td>£2500</td>
</tr>
<tr>
<td>6340C highspeed detector 5/10MHz, 1500cm/1500cm</td>
<td>£2050</td>
</tr>
<tr>
<td>8026B sweep-generator mainframe</td>
<td>£600</td>
</tr>
<tr>
<td>8201B sweep plug-in (for 8209B) 26-146Hz</td>
<td>£1800</td>
</tr>
<tr>
<td>8023A COMA mobile station test set</td>
<td>£3500</td>
</tr>
<tr>
<td>8018B 3.5mm verification kit</td>
<td>£2000</td>
</tr>
<tr>
<td>8019B synthesised signal generator 10kHz-250Hz</td>
<td>£4500</td>
</tr>
<tr>
<td>8034B synthesised signal generator 1-1GHz</td>
<td>£6500</td>
</tr>
<tr>
<td>8103D synthesised signal generator 5MHz-2GHz</td>
<td>£10000</td>
</tr>
<tr>
<td>8232A 10GHz 2-4GHz sweep generator plug-in</td>
<td>£1500</td>
</tr>
<tr>
<td>81250B 1-8GHz sweep generator plug-in</td>
<td>£1500</td>
</tr>
<tr>
<td>8030B signal generator 5GHz-12GHz</td>
<td>£1000</td>
</tr>
<tr>
<td>8334B audio analyser (500 - Especially for own filter requirements... add £500 for each filter)</td>
<td>£1500</td>
</tr>
</tbody>
</table>

All equipment sold calibration-checked by independent laboratories and carries un-conditional refund and 90-day guarantees.

FOR EXCLUSIVE ACCESS TO OUR COMPLETE STOCK INVENTORY AND SPECIAL BARGAIN DISPOSAL DEALS PLEASE CHECK OUR WEBSITE

www.ralfe-electronics.co.uk

March 1999 ELECTRONICS WORLD
EDWin NC

- Genuine, professional EDA software with no limitations! - and YOU can afford it!
- EDWin NC comes from Visionics: one of the longest established, most experienced producers of professional EDA systems, so it's fully proven in professional work.
- Now you can have this best-selling non-commercial version of the software at just 10% of the normal price, with no limits in its capabilities.
- It does just about everything you could want!

Schematics, simulation, PCB layout, autorouting, manufacturing outputs, EMC and Thermal Analysis. Many more advanced features are available and it runs in Windows 3.x, 95 or NT.

- Where's the catch? It's for non-commercial use, but companies may order for evaluation purposes.
Prices start from just £49.00 for the basic system, up to only £235.00 for the full system including all available modules!

Don't forget - Phone Today for Your 90% Discount!

- EDWin NC BASIC: Schematics, PCB Layout Basic
 Autorouter, manufacture outputs, Max. 100 component database, 500 device Library £49.00
- EDWin NC De Luxe 1: BASIC + Professional Libraries and unlimited database £79.00
- EDWin NC De Luxe 2: BASIC + Professional Libraries and Mix-mode simulation £79.00
- EDWin NC De Luxe 3: BASIC + Professional Libraries, unlimited database, Mix-mode Simulation and Arizona Autorouter £115.00
- EDWin NC De Luxe 4: De Luxe 3 + Thermal Analyser, EDSpice Simulation, EDCoMX Spice model kit £199.00
- EDWin NC De Luxe 5: De Luxe 4 + ED-EMA (EMC Analyser) ALL FOR ONLY £235.00

Plus Post & Packing UK £5.00; Rest of World £10.00 (only one charge per order)

Order hotline: +44 (0)1992 570006 Fax +44 (0)1992 570220 E-mail: swift.eu@dial.pipex.com

Swift Eurotech Ltd., Twankhams Alley, 160 High Street, Epping, Essex, CM16 9AQ, UK

I enclose: £..........................total.
Cheque/PO/Credit Card:
Visa/Mastercard/Eurocard/Amex: No.

I wish to order:

- EDWin NC BASIC: £49.00
- EDWin NC De Luxe 1: £79.00
- EDWin NC De Luxe 2: £79.00
- EDWin NC De Luxe 3: £115.00
- EDWin NC De Luxe 4: £199.00
- EDWin NC De Luxe 5: £235.00

Post & Packing UK £5.00
Rest of World £10.00

(only one P&P charge per order) Total £
NEW PRODUCTS CLASSIFIED

Please quote “Electronics World” when seeking further information.

PASSIVE AND ACTIVE COMPONENTS

Connectors and cabling

Wire-to-board connector. AMPMODU Wire Lock connectors from AMP are for use in the connection of solid, tinned wires to a board, assembly being simply a matter of stripping the insulation and inserting the conductor into the connector receiver, where it is held to the phosphor-bronze-plated contact. It may be removed by a standard screwdriver. There are right-angle and vertical forms with 2, 4, 6 and 8 positions at 3.96mm centres, plastic holders being supplied to retain the connector during wave soldering. Current rating is 1.5A/contact and connector during wave soldering.

Data converters

DVD DAC. AKM’s AK4393 is a 24-bit, 96kHz sampling, stereo d-to-a converter that complies with DVD standards, having a dynamic range of 102dB and sampling at 32, 44.1 and 48kHz as well as 96kHz. Outputs are filtered on-chip by a switched-capacitor filter that tolerates clock jitter of several tens of nanoseconds, and can be controlled by an external voltage reference and not the clock. No exotic PLL is therefore needed and neither is level conversion because the digital interface is at 3V levels.

Connectors for specific applications. E-Eden 1400 parallel printer driver for latching, writing and control since it provides a standard serial data interface. One unit in the range is the EDE1400 parallel printer driver that takes serial data in; the EDE1200 stepper-motor driver providing full control in any mode, and the EDE300, which controls external devices via a pc when connected to its serial port. Dannell Electronics Ltd. Tel., 01737 347415; fax, 01737 550019; e-mail, sales@dannell.co.uk; web, www.dannell.co.uk

Eng no 504

On-screen display module. LS Designs has a range of on-screen display modules to superimpose text directly on composite-video signals. Four units in the range provide displays from basic time and date information to serial-controlled text. They are on single-in-line boards, but need no external components and special versions can be provided for specific applications. LS Designs. Tel., 0115 9324498; fax, 0115 9325588; e-mail, info@lsdesigns.co.uk; web, www.lsdesigns.co.uk

Eng no 505

Hardware

Pentium II cooler. Combining the Sunon Clip Fan with a heat sink designed by Thermallyx has enabled the thickness of this Pentium II processor cooler to be reduced to 18mm, while its claimed performance is 150% more efficient than standard Pentium II types. Exhaust of the warm air is over 360° and the fan motor has no direct contact with the housing complete with heat sink and an automatically dispensed if sealant. The housing is nickel-plated, machined, stove-enamelled and sealed to IP54.

Eng no 506

Linear integrated circuits

Roll-to-rail comparators. Two SOT23-5 roll-to-rail cmos comparators by Micrel are designed to operate from 2.5-12V and are for use where space is limited, being five-pin devices. MCT7211 has a conventional output stage and the MIC7221 an open-drain output; both exhibit a common-mode range to exceed the rail voltages. Supply current is 7mA and response time under 5ps. Micrel Semiconductor Europe. Tel., 01635 524465; fax, 01635 524466; web, www.micrel.com

Eng no 509

Materials

Shielding gaskets. Combination gaskets from Warth combine ME and MS electromagnetic shielding strips bonded in parallel to a closed-cell neoprene or silicone sponge elastomer. Shielding is in excess of 128dB between 1MHz and 1000MHz. In addition, the gaskets provide sealing to IP65 against water and dust. Operating temperatures are –60°C to 200°C for the silicone types. To help with mounting, pressure-sensitive adhesive can be supplied. Warth International Ltd. Tel., 0118 9342277; fax, 0118 9342896; e-mail, sales@warth.co.uk.

Eng no 511

133/3Hz fiftos. IDT’s SuperSync II first-in-first-out memories are said to be the first to achieve 4Mb density and to run at 133MHz. They also only take 35mA from 3.3-V rails and come in densities of 126K-by-4Mb. In addition to conventional bus configurations, these devices provide 8x16 bus matching on read and write ports. Other features include zero-latency transmission, eight preselected default offsets for the almost-empty and almost-full flags storage drives and DVD players. The 512s are organised as 64K by 8, the 512s as 32K by 16 and the 4096s as 256 by 16, all 012s allocating 8K for boot block and 68Kbyte for main memory, while the 4096s provide a 16Kbyte boot block with programming lockout, two 8Kbyte parameter blocks and a 48Kbyte main memory block. GD Technik Ltd. Tel., 0118 9342277; fax, 0118 9342896; e-mail, sales@warth.co.uk.
NEW PRODUCTS CLASSIFIED

Please quote “Electronics World” when seeking further information

and selectable async/async programmable flag modes.
IDT Europe. Tel., 01372 363339; fax, 01372 376851.
Enq no 512

Microprocessors and controllers
Embedded Pentium conversion. Hitex has produced a conversion board to allow developers to incorporate the new 0.25μm Intel Pentium MMX processor in existing and future embedded applications. The board may be plugged onto a standard Pentium processor and contains a 3.3V to 2.5V voltage converter and level shifters needed for the conversion. The Hitex DProbe PENTUM-emulators support the new 2.5V form.
Hitex (UK) Ltd. Tel., 01203 692206; fax, 01203 692131; e-mail, sales@hitex.co.uk; web, www.hitex.co.uk.
Enq no 513

New PICS. PIC16F627/8 are new flash microcontrollers by Microchip. New PICs. PIC16F627/8 are new flash microcontrollers by Microchip.
Enq no 515

Peripheral-rich micro. Dallas Semiconductor has announced the DS76C55014f prom high-speed microcontroller, which has an analogue-to-digital converter and digital/analog module modulation on the chip. Its processor is the fastest 8051 type with extra circuitry, although still compatible with the standard 8051. Processing speed is up to three times faster at the same clock speed, using four cycles instead of twelve to produce an instruction. The 8051-ic is a 10-bit type taking up to eight inputs and having a window function to allow the conversion to proceed with no processor interruption until a value of interest is found. Four pwm channels are provided, two being cascaded for 16-bit resolution. Many registers and memory are incorporated – registers and comparison registers, an 8kbyte eprom, power management, timers and radiation reduction.
Dallas Semiconductor Corporation. Tel., 0121 782 2959; fax, 0121 782 2156.
Enq no 516

Motors and drivers
Stepper drivers. Two new dual stepper motor drivers by Ericsson, the PSL7712/3, are based on the PBL7711 but now offer higher motor voltage, lower power dissipation and more efficient packages. Output to the motor may be up to 60V, the 37712 providing 750mA continuously per channel and the 37713 up to 900mA. These are dual-channel, switched-mode, constant-cURRENT drivers – one for each winding of a two-phase stepper motor and, as well as microstep operation, give full and half stepping modes; both work with the company’s PBM960 controller. Slow or fast current decay in the output stage is selectable by logic level from the controller to give better positioning and less noise at high stepping rates.
Ericsson Components AB. Tel., 01793 488300; fax, 01793 488301.
Enq no 517

Optical devices
Led modules. Rohm's family of high-brightness modular displays is now expanded with the addition of a compact, 256-dot, three-colour type using surface-mounted chips and complete with the driving and control circuitry. These LUM-256 modules, measuring 96 by 96mm, provide a 16 by 16 resolution, with a dot size of 2.1 by 2.3mm pitched at 6mm. Colours available are red, green and orange. Modules may be stacked in either direction to form larger displays. Current taken is 1.8A and there is anasic driver/controller with a display memory large enough for two screens. Typical brightness is 100cd/m² and a fine-control allows matching between units.
Rohm Electronics UK Ltd. Tel., 01908 262666; fax, 01908 262528; web, www.rohm.co.jp.
Enq no 518

Oscillators
Voltage-controlled crystal oscillators. Compact 14-pin, 4mm oscillators by C-MAC in the CFPV-1000 Series are meant for use in timing circuitry in applications such as telephone switching and transmission equipment. They provide voltage control up to ±2000ppm over the ±0.96MHz-1.15MHz frequency range. J-led packages, these devices are supplied on tape and are usable with pick-and-place and reflow soldering. Standard tolerance is within ±25ppm over the range -20°C to 70°C or ±50ppm down to -40°C and up to 85°C. Ageing is under ±5ppm in the first year and within ±15ppm in ten years. Output drives Hcmos and is ±5V tolerant. With the option of epitaxial wafers, the C-MAC Quartz Crystals Ltd. Tel., 01460 74433; fax, 01460 72576; e-mail ctp@europe.cfpwww.com; web, www.cfpwww.com.
Enq no 520

Passive components
Pulse transformers. Timonts’ JT high-voltage, high-voltage pulse transformers are said to be 30% smaller than conventional types. They come in through-hole and s-m form and have an insulation rating of 3.2kV, with small coupling capacitance. They are meant for use in the control of semiconductors and have an unlimited service life. Timonts UK. Tel., 01292 555800; fax, 01292 555801; e-mail, sales@timonts.co.uk.
Enq no 521

Protection devices
Io protection. Semtech’s LCDA15C-6 is a transient voltage suppressor for the protection of multi-mode transceivers in telecomms, networking and wans. It will protect up to six I/O lines or three pairs working at 5-15V in all multi-mode levels. Capacitance is under 15pF per line to make the device suitable for high-speed interfaces and the clamping voltage is low to avoid stressing the protected device. Surge rating is 400V in an 8-20µs pulse and the low inductance protects against overvoltage caused by lightning and hot plugging; eSD protection is up to 25kV.
Semtech Ltd. Tel., 01952 777520; fax, 01952 777478; Enq no 522

Transducers and sensors
Doughnut load cells. Control Transducers’ has the Modcl PC range of load washers for the measurement of forces such as bolt stresses, overloads, clamping forces, die loads, etc. These are self-contained, calibrated load cells designed for fitting directly onto the component. Circuitry is a full Wheatstone bridge with the strain elements fixed to the load column in such a way as to promote maximum linearity and temperature compensation. Operating temperature range is -10°C to 65°C with compensation extending an optional 200°C. Repeatability is ±0.5%, non-linearity and hysteresis better than ±0.2%, with an output of 2mV/V up to 25V input. Capacity range is 100 to 100,000kg.
Control Transducers. Tel., 01234 217704; fax, 01234 217803.
Enq no 519

Traceable capacitors. AVX offers the MRS2506 and TAP ranges of traceable capacitors with documented CECC release. MRS series types are radial, multilayer ceramics in epoxy cases, in three types of dielectric and two working voltages, while the TAP models are dipped tantalum capacitors with radial leads, operating at voltages from 6.3V to 50V and in the -55°C to 125°C temperature range.
Enq no 517
Circuit-breaker replacement. Teledyne's EFRQ series of four-pole relays are industrial solid-state units and are effectively four relays in a single housing. The relays have scr output handling 55A at 1.2kV and use optical isolation between control circuits and output to reduce transients. Teledyne's Powertherm process of thermal management increases the efficiency of heat dissipation and reduces the stress caused by different expansion rates. Teledyne. Fax, 01634 863494. Enq no 525

Movement switch. From Assemtech comes the MS24 movement detection switch, which is a non-mercury type intended for use in self-tamping circuits and output to detect movement. It has gold contacts and a sealed metal body. It is not sensitive to mounting position. The switch's sensitivity to vibration allows it to detect the starting of motors or other equipment. Normally, the contact may be open or closed, vibration or movement causing the contacts to open and close repeatedly, the output being damped if necessary to reduce sensitivity. It is suggested that battery-powered equipment may use the switch as a wake-up device from sleep mode. Farnell Components Ltd. Tel., 0113 263 6311; fax, 0113 263 3411, web, www.farnell.com. Enq no 526

Test and measurement
Inductance analyser. Wayne Kerr's IA3255 analyser offers the functions selected as being in most common use: L, Z, R, X, X, phase, Q, turns ratio, C and dissipation factor. Its ability to measure using a range of voltages allows the measurement of air gaps, core material and tums, the low-level dc resistance test avoiding overheating and magnetisation. There is an 15ms hold-up time. They comply with all the relevant standards for safety and emi. Wayne Kerr Ltd. Tel., 01243 825811, fax, 01243 824698; e-mail, sales@wayne-kerr.co.uk. Enq no 532

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World" when seeking further information

Radio systems
GSM transceiver. TDK has the GSM900/DCS1800 calibrated radio transceiver module for the GSM market, as an entry module or as an upgrade to dual-band operation. It complies with GSM phase-2 specifications, meets GSM power class 4 at 2W and DCS power class 1 at 1W and supports inter-band handover. Used with a base-band system, the module provides all transmit and receive circuitry for dual-band GSM. Applications include mixed systems such as quad-band GSM/GPRS or GSM with personal communication, in addition to providing GSM functions in a laptop personal computer. This device was designed in partnership with TTP Communications of Cambridge. TDK UK Semiconductor Corp. Tel., 0181 4437061, fax, 0181 4437022; e-mail, europe.sales@tdk.tdk.com; web, www.tdksemi.demon.co.uk. Enq no 531

Power pulse generator. Models 1440 and 2430-C Digital Source Meters are announced by Keithley for the production test of active or passive components needing transient power pulses. The instruments put out pulses with widths of 300ps to 2.5ms at up to 10A at 100V. In addition, Model C

Test and measurement
Emissions tester. Schaffner EMC has introduced a range of emissions-test equipment — ProfLine 6000 — comprising six equipments for those needing to test to Euro Norms, FCC and CISPR emission standards. Each comes with the SCH 3000 series receiver covering 9kHz-22GHz, one for CISPR requirements to 1GHz and the other for applications such as mobile telephones and microwave oven monitoring. Both are CISPR compliant and are fitted with IECEE488 and RS232 for automation. The receivers have internal storage of transmitter factors and limit lines and also removable memory cards for data and device settings. Software is supplied. Schaffner EMC Ltd. Tel., 0118970070, fax, 0118 9729699. Enq no 535

March 1999 ELECTRONICS WORLD 253
has a contact check circuit to verify contact with the component being tested in under 350µs – a facility needed in fast production test in which contacts have a tendency to degrade. Each has a 5:1-digit multimeter for measuring digital i/o voltage and comparators for fast parts binning when used with handlers; there is also memory for test sequences. The instruments will provide continuous voltages from ±5µV to ±100V dc and measure voltages to within ±0.012%. Current sourcing and measurement is also provided.

Keithley Instruments Ltd. Tel., 0118 9575666; fax, 0118 9566469.
Enq no 534

Electronic load. Start Spellman’s electronic load handles inputs of 75-10000V dc in either polarity and is an active, solid-state type, the load value being varied by front-panel control or remotely by an analogue 0-10V dc input. Power is dissipated by element cards in a backplane carrying fets, an arrangement allowing best power transfer into cooling air. There is protection for single-card failure and fan failure, cooling air. There is protection for local fio a-to-d memory and a bidirectional PCI bus fio allows analogue samples to be stored while dsp maths is continuing and previous data blocks are sent to the pc. Model D has sixteen single-ended, 14-bit a-to-d channels with parallel sampling at up to 300kHz/channel, while the L has a similar number of of 12-bit channels sampling at up to 600kHz/channel. A user clock can be used or an on-board frequency synthesizer will give a-to-d clocking. Several on-board sub-controllers allow the dsp to process blocks while the a-to-d section samples and stores.

Datel (UK) Ltd. Tel., 01256 880444; fax, 01256 880706; e-mail, datel.td@ge.is.com; web, www.datel.com.
Enq no 540

Back issues of Electronics World are available, priced at £3.00 UK and £3.50 elsewhere, including postage. Please send your order to Electronics World, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Free copy of Electronics Engineer’s pocket book with every order while stocks last

Available issues

<table>
<thead>
<tr>
<th>Year</th>
<th>January</th>
<th>April</th>
<th>May</th>
<th>July</th>
<th>August</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that stocks of some of the above issues are low and will soon sell out. Please allow 21 days for delivery.
Please quote “Electronics World” when seeking further information.

NEW PRODUCTS CLASSIFIED

Development and evaluation

68HC12 debugger. Hot insertion is the feature of the Noral Micrologic
Flex-8DM/68HC12 handheld background debug tool, allowing
connection to a live, embedded target with no need for system reset in
systems that must operate continuously with zero down time. It
operates with all members of the family of processors and is meant for
the location and fixing of problems that vanish at reset. The tool may be
the location and fixing of problems

Software

Electromechanical component analysis. Denstrot software for analysing the behaviour of
electromechanical components uses finite element analysis to allow users to
to predict the behaviour of designs before they are made, pin-pointing
areas likely to need modification. After programming with the design
details, the software measures force and torque against displacement or current or both, modelling the
magnetic field intensity to validate the choice of materials.

Mass storage

120MB floppy drive, Panasonic's
3.5in SuperDisk120MB floppy disk
drive is now available as an upgrade package - cables, media, mounting
accessories, software and a manual. The drive takes Iamation and
Maxwell disks, but is read/write-
compatible with existing 1.44MB and
720KB 3.5in disks. It measures 101.6
by 150 by 25.4mm.
Panasonic Tel., 0800 444220.
Eng no 541

Software

Electromechanical component analysis. Denstrot software for analysing the behaviour of
electromechanical components uses finite element analysis to allow users to
to predict the behaviour of designs before they are made, pin-pointing
areas likely to need modification. After programming with the design
details, the software measures force and torque against displacement or current or both, modelling the
magnetic field intensity to validate the choice of materials.

Books

Music Engineering by Richard Brice
The Electronics of Playing and Recording

- Highly illustrated guide to the technology of music and recording.
- Written in an approachable style using examples of well-known songs, this book is a must-have guide for
sound recording engineers and electronic engineers.

If you are an electronics engineer who needs specific information about music
reproduction, or if you are a sound recording engineer who needs to get to grips with the
electronic technology, Music Engineering is for you.

This handy volume is a technical guide to electric and electronic music, including the
essential science, but concentrating on practical equipment, techniques and
circuitry. It covers not only basic recording techniques and audio
effects, kit such as microphones, amps and
instruments, but also valve
technology, stereo and digital
audio, sequencers and MIDI, and even a glance at video
synchronisation and a review of
electronic music.

Music Engineering lifts the lid on the techniques and
expertise employed in modern music over the last few
decades. Packed with
illustrations, the book also refers to well known classic
recordings to describe how a particular effect is obtained thanks to the ingenuity of the
engineer as well as the
musician.

Richard Brice has worked as a senior design engineer in
many of Britain's top broadcast
companies and has his own
music production company. He
is the only writer who can
provide this unique blend of
electronics and music.

Contents: Soul Man - Science and sensibility; Good Vibrations
- The nature of sound; Stand By Me - Microphones and their
applications; Message in a Bottle - Valve technology; Roll
over Beethoven - Electric

Inclusive price: £22.50 UK, £25 Europe, £28 ROW.

To order by post, send a cheque or postal order to Jackie Lowe at
Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Please make your cheque payable to Reed Business
Information. Alternatively, fax full credit card details to 0181 652
8111, e-mail jackie.lowe@rbi.co.uk.

ISBN: 0 7506 39032
Paperback, 256pp, 150 line illustrations.

- Copies of Richard's previous book, Multimedia and Virtual
Reality Engineering, are still available, inclusive hardback
price: £27.50 UK, 29.50 Europe, £32 ROW.

BOOK BUY Plus FREE CD

Richard Brice

Music Engineering
The Electronics of Playing and Recording

Inclusive price: £22.50 UK, £25 Europe, £28 ROW.

To order by post, send a cheque or postal order to Jackie Lowe at
Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Please make your cheque payable to Reed Business
Information. Alternatively, fax full credit card details to 0181 652
8111, e-mail jackie.lowe@rbi.co.uk.

ISBN: 0 7506 39032
Paperback, 256pp, 150 line illustrations.

- Copies of Richard's previous book, Multimedia and Virtual
Reality Engineering, are still available, inclusive hardback
price: £27.50 UK, 29.50 Europe, £32 ROW.

March 1999 ELECTRONICS WORLD 255
Temperature-controlled soldering stations – over 15% discount

Electronics World readers are eligible for an exclusive discount on both the SL20 and SL30 soldering stations from Vann Draper Electronics.

Normally, the SL20 with bar-graph temperature indicator costs £55 while the SL30 with digital read-out costs £65 excluding VAT and delivery. *Electronics World* readers using the coupon alongside can obtain either of these stations for the prices above – but without adding delivery charges and 17.5% VAT.

Designed for servicing and manufacture, these irons feature 24V/48W heating elements and an iron-coated bit for long life. The SL20 has a control range of 150 to 420°C while the 30 spans 160 to 480°C. As standard, an 0.8mm diameter bit is fitted, but 1.6 and 3.2mm alternatives can be obtained by adding £1.65 inclusive to your order for each extra bit required. Please make enquiries to Vann Draper on 0116 2771400, fax 2773945.

Use this coupon to order your SL20/SL30

Please send me

- SL20(s) at the fully inclusive special offer price of £55 incl vat and del
- SL30(s) at the fully inclusive special offer price of £65 incl vat and del
- Extra bits £1.65 incl vat and del

Name

Company (if any)

Address

Phone number/fax

Total amount £

Make cheques payable to Vann Draper Electronics Ltd
Or, please debit my Master, Visa or Access card.

Card No

Expiry date

Please mail this coupon to Vann Draper Electronics, together with payment. Alternatively fax credit card details with order on 0116 2773945 or telephone 0116 2771400. Address orders and all correspondence relating to this order to Vann Draper Electronics at Unit 5, Premier Works, Canal Street, South Wigston, Leicester, LE18 2PL. Overseas readers can also obtain this discount but details vary according to country. Please ring, write or fax to Vann Draper Electronics.
AQUILA VISION
http://aquila-vision.co.uk
Aquila Vision specialises in supplying and supporting Embedded Microprocessor Development products from PICs to DSPs. We also stock robotics boards, Linux and general interest CD-ROM's.

ELECTRONICS WEEKLY HYPERACTIVE
http://www.electronicsweekly.co.uk/
DISPLAY ELECTRONICS
http://distel.co.uk
FELLER UK
http://www.feller-at.com
Feller (UK) Ltd. manufacture Fully approved cordsets (Moulded mains plugs and connectors) and Power Supply Cables for all industrial Countries to National and International Standards

FLASH DESIGNS LTD
http://www.flash.co.uk
Portable Easy-ICE - The world's fastest, Lowest Cost, Real-time Emulator + Starter kits from E319 with unique ICE connection interface for ATMEL, AT89S/C, AVR AT90S,103/603, MCS51, Dallas 80C320, Hitachi H8 + ISP programmers + 'C' Compilers

LOW POWER RADIO SOLUTIONS
http://www.lprs.co.uk
LPRS markets low power radio transmitters, receivers and transceiver modules manufactured by ourselves, Radiometrics, Circuit Designs, RDT and Vicircl. Applications for telemetry, video and remote control.

MICRO CALL
http://www.microcall.memec.com
Micro Call is a distributor for the following: Galileos, JDT (Integrated Device Technology).

M.K. Consultants (UK) Ltd
http://www.mkconsultants.co.uk
A global supplier of low power modules designed and manufactured by MK in the UK. Nobody beats our prices. That's the MK price challenge.

NEWNES - BOOKS FOR THE ELECTRONICS WORLD
http://www.newnespress.com
Over 300 books and information packages for those working with electronics and engineering technology. Visit our site for a free catalogue and downloads.

SUPRA AUDIO CABLES
http://www.jenving.se
Jenving Technology AB is the manufacturer of Supra Audio Cables. OEM productions are also accepted.

VANN DRAPER ELECTRONICS LTD
http://www.vanndraper.co.uk
Test equipment from Grundig, Kenwood, Hitachi, Fluke, Avo, Glassman, Advance in a comprehensive site including oscilloscopes, multimeters, power supplies, generators, counters, soldering, digital tv etc.

VUTRAX PCB DESIGN SOFTWARE
http://www.vutrax.co.uk
VUTRAX electronic schematic and pcb design system for Windows 95, 98 and NT. Limited Capacity FREE version downloads available, all upgradeable to various customised levels.

WOOD & DOUGLAS
http://www.woodanddouglas.co.uk
Wood & Douglas Ltd is the leading independent British designer and manufacturer of quality radio products for international telemetry, data, voice & video wireless communications.

ZETEX PLC
http://www.zetex.com
Data sheets, Application notes, Spice models, Distributor details and more are all available on the Zetex website. CD-ROM version available free by request to infodirect@zetex.com.
Electronics Weekly HyperACTIVE is more than just a magazine on the Web. Check out the site and you'll see why thousands of electronics professionals around the world regularly log on to www.electronicsweekly.co.uk/

For News HyperACTIVE's Daily News Service brings you the latest news in the industry - as it breaks. For Jobs HyperACTIVE has the largest and most varied collection of jobs available in the electronics market. Now we bring you the improved Jobs and Careers service with a whole range of new and exciting features.

All this plus, the latest technology, market information, toolkit's, a searchable archive, and loads more....

Don't miss out.

Point your browser at http://www.electronicsweekly.co.uk/ register now (it's free)
Simulation Circuit Capture PCB Autorouting CADCAM

Imagine an electronic design system that lets you draw schematics onto the screen and then simulate them at the touch of a button. Now imagine pressing another button and seeing the schematic replaced with a PCB rats-nest. Pressing another button starts the autorouter, and finally you can click on File then Save As to create a complete set of CADCAM files.

Too easy? We hope so. Quikroute has always been designed first and foremost to be easy to use. That’s why simulation, circuit capture, PCB autorouting and CADCAM support are all integrated into one package, so that you only have to learn one package.

If you would like to find out more about Quikroute, why not call us on FREEphone 0800 731 28 24, or visit our web site on www.quikroute.co.uk. Prices start at under £100 including UK P&P and VAT for a complete system.

"modern, powerful and easy to use"

Lites Electron 97

FREEphone
0800 731 28 24
Int +44 161 476 0202 Fax 0161 476 0505

CIRCLE NO.115 ON REPLY CARD

CIRCLE NO.116 ON REPLY CARD

LANGREX SUPPLIES LTD
TUBES AND SEMICONDUCTORS AND I.C.S.
0181 684 3056

PHOTOGRAPHIC
1 MAYO ROAD CROYDON SURREY CR9 2QP

24 HOUR EXPRESS MAIL ORDER SERVICE ON STOCK ITEMS
email: langs@iol.com

open to callers Mon-Fri 9AM-4PM, closed Saturday

OPEN TO CALLERS MON-FRI 9AM-4PM, CLOSED SATURDAY

This is a selection from our stocks of over 4000 types. Please enquire for types not listed. Discounted items are our speciality. Values are now mainly original British or American brands. Terms CWO min order VI 0 for credit cards.
P&P 1.3 values £2.00 4-5 values £3.00
Add 17.5% VAT to total including P&P.

CIRCLE NO.117 ON REPLY CARD
SUPPLIER OF QUALITY USED TEST INSTRUMENTS

Cooke International
Unit Four, Fordingbridge Site, Barnham, Bognor Regis, West Sussex, PO22 OHD, U.K.
Tel: (+44)01243 545111/2 Fax: (+44)01243 542457
Web: http://www.cooke-int.com
E-mail: info@cooke-int.com
catalogue available

CIRCLE NO.132 ON REPLY CARD

OPERATING & SERVICE MANUALS

Cooke International
Unit Four, Fordingbridge Site, Barnham, Bognor Regis, West Sussex, PO22 OHD, U.K.
Tel: (+44)01243 545111/2 Fax: (+44)01243 542457
Web: http://www.cooke-int.com
E-mail: info@cooke-int.com
catalogue available

CIRCLE NO.133 ON REPLY CARD

ELECTRONIC UPDATE

CABLING SOLUTIONS
FROM THE LCD EXPERTS

Trident Microsystems' new LVDS system, provides the cabling solution to overcome all the problems associated with driving Digital TFT over long distances.

Trident's new LVDS system now allows for digital drive of up to 20 metres in length.

For further details call Trident today
Tel: 01737 760790
Fax: 01737 771908

CIRCLE NO.134 ON REPLY CARD

INDUSTRIAL COMPUTER PRODUCTS

The latest ICP catalogue featuring a comprehensive range of CPU boards and enclosures, complete with price list, is now available from Wordsworth.

Further details from:
Wordsworth
Tel: 01732 861000

CIRCLE NO.136 ON REPLY CARD

1999 Measurement and Automation Catalogue

The National Instruments 1999 catalogue features hundreds of software and hardware products for your computer-based measurement and automation applications. New products include additions to our modular Compact PCI (PXI) platform, new computer-based instruments, and the latest versions of our instrumentation and automation software such as LabVIEW. Call to reserve your copy of our FREE 1999 Catalogue!

National Instruments
Phone: 01635 523545
Fax: 01635 523154
e-mail: info.uk@natinst.com
Website: www.natinst.com/uk

CIRCLE NO.135 ON REPLY CARD

LCR & IMPEDANCE METERS

The 3522 LCR HiTESTER and 3531 Z HiTESTER together provide a wide range of test frequencies. The 3522 offers DC and a range from 1mHz to 100kHz and the 3531 covers the range from 42Hz to 5MHz. Test conditions can now come closer to a component's operating conditions. The high basic accuracy of ±0.04%, combined with ease of use and low price give these impedance meters unparalleled characteristics.

TELONIC INSTRUMENTS LTD
Tel: 0118 9786911
Fax: 0118 9792338

CIRCLE NO.137 ON REPLY CARD
ARTICLES WANTED

TOP PRICES PAID
For all your valves, tubes, semi conductors and IC's.

Langrex Supplies Limited
1 Mayo Road, Croydon
Surrey CR0 2QP
TEL: 0181 684 1166
FAX: 0181 684 3056

ARTICLES FOR SALE

RF DESIGN SERVICES
All aspects of RF hardware development considered from concept to production.

WATERBEACH ELECTRONICS
TEL: 01223 862550
FAX: 01223 440853

IMMEDIATE PAYMENT
For all Surplus/Obsolete Electronic Components
J.B.P. Components
Phone: 01277 211410
Fax: 01277 260573

SERVICES

EPROM PROGRAMMING SERVICE
Also microcontrollers, FLASH, EEPROMS, FPGAs etc.
Same day service from £15.00 inclusive postage and VAT.

Power Supply Design
Switched Mode PSU
Power Factor Correction Inverter
Tel/Fax: 01243 842520
E-mail: eugen_kus@cix.co.uk

Established Optical Component Engineering
Company requires INSTRUMENT TECHNICIAN
with broad mechanical/electronic engineering experience for work on analytical instruments, vacuum coating and electronic systems.
Send CV to:
Optiglass Ltd,
52/54 Fowler Road
Hainault, Essex IG6 3UT

ELECTRONICS, COMPUTING AND MOTION CONTROL ENGINEER
Bristol
Salary - Negotiable
A world leader in 3D model animation is looking for an Electronics Engineer to join their busy team based in Bristol.
Applicants must have a thorough knowledge of electronics - preferably applied to film, video and motion control equipment. Candidates should also possess design and small scale manufacturing experience and ideally, will have experience in processing microprocessors. Good problem solving skills are essential. Candidates should also be comfortable working on their own initiative in a pressurised environment and to strict deadlines. The post will be based in Bristol, although occasional travel may be necessary. If you would like to be considered for this post, please send your CV, with covering letter, to The Personnel Department, Aardman Animations, Gas Ferry Road, Bristol BS1 1UN. Closing date for applications - Friday 15 January 1999.

SUCCESSFUL APPOINTMENT

ECM SELECTION

FOR THE PICK OF THE TOP UK DIGITAL, ANALOGUE & RF DESIGN

APPOINTMENTS...
PhD, MSc, '1st, 2.1 Honours?
then visit www.ecmsel.co.uk

or call
01638 742244
Calling all Radio Engineers

We have excellent opportunities within Research, Design and Test for Radio Engineers to work at all levels in the fields of:

- GSM
- Fixed Radio Access / WLL
- Military CIS
- PMR DECT TETRA
- Satellite Communications
- Mobile Switching

John Prodgcr Recruitment
Connecting people with opportunities

We would be glad to focus our efforts on securing your next move. Please call John Darby, ref 2984H. Tel: 01727 818704 Fax: 01727 838272 Email: johnd@jprecruiit.com

JPR, The Courtyard, Alban Park, Hatfield Rd, St Albans, Herts AL4 OLA.
Radio Communications

RELIABILITY ENGINEER ~ Bristol to £26k+
We are looking for an individual to shake, rattle and roll this company's wireless products ready for the demanding environments they'll be working in. The successful applicant will be the 'find it' in this type of role and our client seeks someone to bring in the necessary expertise. A background in radio technology would be a distinct advantage. Quote WW9881-53.
Contact Mark Wheeler for more information.

PRODUCTION ENGINEER ~ Bristol to £30k
A sound knowledge of small to medium volume production and manufacturing techniques is required here. Experience of liaising with small multi-disciplined R&D teams and being able to pro-actively work with outside contractors is essential. A general electronics background is required, ideally with radio communications experience. Quote WW9881-54.
Contact Mark Wheeler for more information.

RF IC DESIGN ENGINEER ~ Bristol to £45k
Make a mark for yourself and be the first IC designer in this established and fast growing Radio Systems Design House. You'll be working alongside a very fine multidisciplinary team of Engineers involved in some of the most stimulating projects around. Competent hands on skills are required including experience up to 3GHz together with some good ideas. Quote WW9712-17.
Contact Mark Wheeler for more information.

RF PA DESIGN EXPERTS ~ Bristol to £40k
Involved in projects that seem to go on forever? Stuck in a corner working on the bit your boss says you have to do? Yes? Then your salvation is at hand with this fast growing Wireless Communications company where your talents can be truly realised. Accomplished design skills up to 3.5GHz in high power PA's ideal, receiver and synthesers development experience very useful. Quote WW9707-56.
Contact Mark Wheeler for more information.

TEST ENGINEER ~ Surrey to £25k
Working within a group responsible for the design of switching software for UMTS mobile comms infrastructure, you will be involved in setting up and undertaking complex test and systems integration processes. Ideally HNC qualified, it would be useful if you had experience in mobile, cellular, GSM, etc and an appreciation of switch signalling. Quote WW9808-86.
Contact Malcolm Masters for more information.

RF STANDARDS ENGINEER ~ Surrey to £30k
Working within a new group, you will be ultimately responsible for setting in place procedures, policies and strategies to comply with international regulations for mobile comms equipment. You should be qualified to HND standard and have several years experience in a similar environment, ideally in 3rd generation mobile technology. Quote WW9808-82.
Contact Malcolm Masters for more information.

DIGITAL DESIGN ENGINEER ~ N. Wilts to £35k
This role has been created to work within a small team on the latest digital communications systems. You will be involved in developing VHDL code for FPGA and ASICs for radio base stations. Significant experience in digital design, VHDL and FPGA is required along with strong academic achievements. Quote WW9811-34.
Contact Malcolm Masters for more information.

CELLULAR REPAIR SUPERVISOR ~ N.W. Lon. to £19k
Our client is a significant player in the sales and service of cellular products. They are actively looking for a supervisor from the cellular/comms/PMR industry to repair and test a wide variety of cellular phones and run a start-up service dept. C65/HNC or relevant industrial experience required. Quote WW9811-46.
Contact Rich Wootten for more information.

SERVICE REPAIR TECHNICIANS ~ Surrey c.£18k
This is a great opportunity for a keen RF technician to work in a lively atmosphere for a major manufacturer of PMR equipment. You'll need to be able to service and repair to component level and have relevant mobile comms involvement. Some Band 3 and installation experience would be desirable but is not essential. Quote WW9811-52.
Contact Rich Wootten for more information.

PROJECT SUPPORT ENGINEER ~ Berks to £25k
Our client is at the forefront of mobile telecoms, having released several of the most popular products on the market. Now it's your turn to get a slice of the action. You'll need to be able to support the introduction of complex mechanical parts into manufacture and maintain build standards in a demanding industry. HNC and electro-mech background required. Quote WW9881-09.
Contact Rich Wootten for more information.

For more vacancies visit our website http://www.mdm.co.uk
UK – Wide Vacancies

Graduate Electronics Engineer – Hampshire. Qualified to degree level, to work with the design team developing and proving new hardware and software for engine management and power conditioning systems. Training in various disciplines including embedded micro-controller design and power electronics systems to 250kW. Salary negotiable.

Test & Repair Engineer – Hampshire. Minimum of HNC with at least 2 years experience of fault diagnosis of analogue and digital circuits to component level. Computer literate, familiarity with Windows packages and able to work under pressure. Salary negotiable.

Project Manager – West Yorks. RF/Microwave. To ensure a development project is delivered in line with customer prototype commitments and that the product is developed to enable cost effective manufacture in volume. To £35k.

Test Design Engineer – Hampshire. Minimum of HND and knowledge of Visual Basic and/or C in a Windows environment to design, maintain and document test procedures, systems and software using PCs and telecommunications test equipment. Familiarity with telecommunications protocols and report writing ability would be helpful.

Electronics Engineer – Cheshire. Embedded Controllers. To develop electromechanical devices for the test of PCBs using embedded controllers, analogue instrumentation and PC based software (VB, C++, Win NT/95). Must be able to fault find complex electronic systems with at least 2 years experience in a related field.

Software Development Engineer – Hampshire. For low power embedded systems using C and assembly languages. Knowledge of NEC 75X, 75XL 4 bit and 78K/0 8 bit microprocessors and digital or analogue hardware design ability would be useful. To £28k.

Senior RF Development Engineer – Hampshire. Development of low power RF circuitry up to 1Ghz and experience of LNA, oscillator, mixer and IF design. Experience of synthesiser design and low power transmitter work would also be useful. Supervision of junior engineers and project management is also envisaged as part of the role. Salary to £32k.

Electronics Design Engineer – Cheshire. Development of high frequency analogue circuits (to 500Mhz) Degree qualified with a minimum of 2 years experience of analogue circuit design. Exposure to DFM issues and PCB design using Cadstar. £Neg.

For details of these and other electronics vacancies telephone Roy Parrick on 01703 237200 or fax on 01703 634207. Alternatively E-mail to southtech@kellyservices.co.uk

RECRUITMENT CONSULTANTS – AN EQUAL OPPORTUNITIES EMPLOYER

ADVERTISERS’ INDEX

ANCHOR SUPPLIES. 214
ANGLIA COMPONENTS. OBC
ANTRIM TRANSFORMERS. 207
BETA LAYOUT. 210
CMS. 180
CHELMER VALVE COMPANY. 233
CROWNHILL. 233
DISPLAY ELECTRONICS. 183
ELECTROMAIL. 185
EQUINOX TECHNOLOGY. IBC
INTERNATIONAL RECTIFIER. 210
JOHNS RADIO. 241
JPG ELECTRONICS. 219
LABCENTER ELECTRONICS. 239
LANGREX SUPPLIES. 219
M & B RADIO. 185
MILFORD INSTRUMENTS. 230
OLSON ELECTRONICS. 245
PAUL O’NEILL DESIGNS. 233
PICO. 201
PS CONSULTANTS. IFC
QUICKROUTE. 219
RADIO TECH. 207
RALFE ELECTRONICS. 243
RD RESEARCH. 243
SEETRAX. 230
SIGHTMAGIC. 249
STEWARD OF READING. 228
SURREY ELECTRONICS. 230
SWIFT EUROTECH. 250
TELFORD ELECTRONICS. 180
TELNET. 178
THOSE ENGINEERS. 201
TIE PIE. 229
VANN DRAPER. 256
Micro-PRO PLUS

£124.95

The complete programming solution for 8051 & AVR microcontrollers and Atmel memory devices. Order Code: MP-PLUS

AVR Starter System

£99.95

A feature-packed Starter System for the Atmel AVR microcontroller Family. Order Code: AVRA-ST

AllWriter

£399.95

Universal programmer supporting most microcontrollers, memory devices & PLD's. Order Code: SG-ALLWRITER-1

8051 Starter System

£124.95

Micro-ISP

From £39.95

State-of-the-art In-System Programmer for Atmel AVR and 89S(8051) microcontrollers. Support for ATmega and low voltage devices now available.

Micro-ISP

From £490.00

State-of-the-art In-System Programmer for Atmel AVR and 89S(8051) microcontrollers. Support for ATmega and low voltage devices now available.

icePROM

Price: from 490.00

icePROM EPR OM/FLASH Emulation System Fast download, 8/16/32-bit 80ns

Adaptors

Compilers

Development Systems

Educational Systems

8051/AVR Emulators

Evaluation Modules

8051/AVR Microcontroller Sales

OEM Modules

Parallel/Serial Programmers

Production Programmers

Starter Systems

Software

Equinox reserves the right to change prices & specifications of any of the above products without prior notice. E&OE. All prices are exclusive of VAT & carriage. AVRT' is a trademark of the Atmel Corporation.
Now every ST part has the same number

01945 474747

If you're looking for ST parts and samples, you now only need one number - ours.

With dedicated ST field applications support engineers and a UNIQUE designer's ST handbook containing all the information you need to design-in over 10,000 ST products, you'll find Anglia delivers the support the others talk about. Together with stocks ready to go, it's easy to see why we're the number one choice for STMicroelectronics.

Call NOW for your free copy

Anglia

- Number one choice for STMicroelectronics

Sandall Road, Wisbech, Cambs., PE13 2PS U.K. Tel: 01945 47 47 47 Fax: 01945 47 48 49 E-mail: info@angliac.co.uk

CIRCLE NO. 172 ON REPLY CARD