WEB DIRECTORY - see page 169...

Five-chip logic analyser

Super-regen
receiver
Remioving noise
New logic
design aid
400 Hz power inverter
Image portrayal
TV history
DSP or controller?
Recruitment ads start on page 170

 More cholces
 external WINRADIO arrives!

WiNRADiO now brings you a complete choice in computer controlled radio scanning and reception
With either the internal or external versions, you can couple all the power of the latest Windows PCs (not just the fraction that you can squeeze down an RS232 connection) to the latest synthesised receiver design techniques, and you'll get the ultimate in wide range, all mode programmable radio reception
New external WiNRADiO ${ }^{\text {TM }}$ (WR1000e and WR1500e) provide complete comms systems connecting either via the basic RS232 - or with an optional PCMCIA adapter, for high speed control. Power from existing $12 v$ supplies, or our optional NiMH rechargeable 12 v battery pack.

If you still want the ultimate receiver-in-a-PC with full DSP, then you need the WR3000-DSP with its hardware recording, signal conditioning and decoding applications. (This is available as an ISA card only).

Your choice of virtual front panel

Use WiNRADiO scanning PC comms receiver systems for... Broadcast Media monitoring . Professional \& amateur radio communications . Scanning . Spot frequency \& whole spectrum monitoring - Instrumentation Surveillance (and recording)

Model No
Construction
Frequency range Modes
Tuning step size IF bandwidths

Scanning speed
Audio output on card
Max on one motherboard
Dynamic range
IF shift (passband tuning)
DSP in hardware
IRQ required no

Spectrum Scope
Visitune
Published software API Internal ISA cards External units PCMCIA adapter (external)

The DSP applet provided with the WR3000 spectrum monitor ISA card (£995+VAT) allows continuous control of. audio bandwidth and other signal. conditioning functions

Digital Suite Software

1. WEFAX / HF Fax
2. Packet Radio for HF and VHF
3. Aircraft Addressing and Reporting System (ACARS)
4. Audio Oscilloscope, real time Spectrum Analyzer with calibration cursors
5. Squelch-controlled AF Recorder
6. DTMF, CTSS decode and analyse $£ 81.05$ inc VAT (requires SoundBlaster 16 compatible sound card)

PPS NiMH 12v battery pack \& charger: $£ 79$ with 'e' series unit, otherwise: $£ 139$
For your free info pack and software emulation demo disk contact Broadercasting Communication Systems http://www.broadercasting.com

FREEPHONE: 08000746263
email: info@broadercasting.co.uk
Fax: 01245287057
Unit B, Chelford Court, Robjohns Road, Widford Industrial Estate, Chelmsford, Essex CM1 3AG

[^0]
Contents

91 COMMENT

Copyright, and the right to copy
93 NEWS

- EMP bullet detects land mines

C\&W pips BT in broadband race

- $£ 7 \mathrm{~m}$ for extreme-uv litho
- UK flat panels for video
- Java chips
- Morphing dashboard
- Euro dumping damage

98 PLDS/LOGIC ANALYSER
In-system programmable devices and free software have made plds cheap - provided you have a pc. To illustrate their power, Colin Attenborough describes a five-chip logic analyser using the simplest pld.

107 LETTERS

50W from a 3.6 W mains adaptor?
Students' lots
Digital audio far from perfect
Have you seen a microwave fuse?
Wideband fet amplifier
Windows commentary

109 HANDS ON INTERNET

Cyril Batemen reveals three clearing houses for data sheets and application notes - all accessible via the net, free of charge. And there's design information for those interested in temperature measurement.

How can the Internet help you solve your thermal management problems? Find out on page 109.

113 NEW LOGIC

David Warren-Smith's rethink of Boolean algebra fills in the gaps, making it even more useful to digital designers.

120 CIRCUIT IDEAS

- Chopper-stabilised bridge amplifier
- Set/reset and bistable flip-flops
- Simple linear sawtooth
- Lf signal rectifier
- Medium-power inverting driver
- Capacitance bridge

127 400HZ IKW INVERTER

Paul Bennett's three-phase power inverter uses high-frequency switching to avoid the bulky, expensive inductive components.

133 KNOW NOISE

Joe Carr looks at noise from the viewpoint of the receiver designer.

138 SUPER-REGEN OR SUPER-REPLACEMENT?

Performance in a receiver usually goes hand-in-hand with complexity. Ian Hickman describes an exception.

145 NEW PRODUCTS

New product outlines, presented by Phil Darrington.

153 SPEAKERS' CORNER

This month, John Watkinson looks into the basket - the chassis part of an electromagnetic loudspeaker.

156 IMAGE PORTRAYAL

Technologies for image portrayal in computer graphics, film and television were once very different, but digital electronics is causing them to converge, as John Watkinson explains.

160 DIGITAL VISIONS

Don McLean has new evidence to show that Baird's television system was better than we were led to believe.

166 DSP VERSUS THE MICROCONTROLLER

DSPs at the bottom end of the market are finding themselves used in ever increasing applications, but how will they compete against the likes of Risc and microcontrollers? Steve Bush finds out

Cover pholography: Mark Swallow

On impact, this 30 mm bullet blasts a 10 MW pulse - making land mines visible to detectors. Read about it on page 94.

Did Baird get it so wrong? Evidence that he didn't is the Tomado's airborne reconnaissance system. For more see page 160.

$$
x \oplus y=x y^{\prime}+x^{\prime} y
$$

If this means anything to you, you'll find a good read on page 113.

March issue on sale 4 February

Telmet Tel: 01203650702

Hewlett Packard 8920A R/F Comms Test (various options) $£ 4995$
8922 BGH G.S.M. Test £POA

Rohde \& Schwartz
CM5 54 Radio Comms service monitor
(0.4 to1000MHz)
CMTA94 GSM Radio Comms Analyser
Schlumberger - Stabilock
4031 Radio comms test (0.4 to $\mathbf{1 0 . 0 0 M H z}$) $£ 4995$
4040 'High accuracy' Radio comms test
£2995

Wandel \& Goltermann	
PFJ-8 Error \& jitter test set	£12500
(All options fited)	
PCM4 PCM Channel measurement set	$£ P O A$

Marconi
2305 Modulation Meter
$£ 1995$
Racal
6111 GSM test sets
£POA
Hewlett Packard 8642A
High Performance R/F Synthesiser -
0.1 to 1050Mhz
£8500
Textronix 2467B
400 Mhz - $\mathbf{4}$ channels
high writing speed oscilloscope
$£ 8500$
OSCILLOSCOPES

Beckman $9020-20 \mathrm{MHz}$ - Dual channel Hewlett Packard 54100D - IGHz Digitlzing	$\begin{array}{r} \mathbf{\Sigma 1 5 0} \\ \mathbf{1 1 5 0 0} \end{array}$
Hewlett Packard 54200A - 50 MHZ Digitizing	£500
Hewlett Packard 54201A - 300MHz Digitizing	£1250
Hitachi V152/V212/V222/V302B/V302FN353FN550BN650F	from £125
Hitachi VI 100A - 100 MHZ - 4 channel	£1000
Intron 2020-20MHz. Dual channel D.S.O. (new)	£450
Iwatstu SS 5710/SS 5702.	from £125
Kikusui COS $5100 \cdot 100 \mathrm{MHz}$ - Dual channel	£350
Lecroy 9450A - 300MHz/400 MS/s D.S.O. 2 channel	£2250
Meguro MSO 1270A - 20MHz - D.S.O. (new)	£450
Philips $3055 \cdot 50 \mathrm{MHz}$. Dual channel	$\underline{540}$
Philips PM 3335-50MHZ - D.S.O. Dual channel	£1200
Philips 3295A - 400 MHz - Dual Channel	£1750
Panasonic VP574 \| A - 100MHZ D.S.O. Dual channel	£1750
Tektronix 455.50 MHZ - Dual channel	£275
Tektronix $465-100 \mathrm{MHZ}$ - Dual channel	£350
Tektronix $464 / 466-100 \mathrm{MHZ}$ - (with AN. storage)	£350
TekIronix $475 / 475 \mathrm{~A}-200 \mathrm{MHz} / 250 \mathrm{MHz}$ -	from $£ 450$
Tektronix 468 - 100 MHZ - D.S.O.	£650
Tektronix $2213 / 2215-60 \mathrm{MHz}$ - Dual channel	£350
Tektronix 2220-60MHZ - Dual channel D.S.O	£1250
Tektronix 2225-50MHZ - Dual channel	£395
Tektronix 2235 - 100 MHZ - Dual channel	£600
Tektronix 2221 - 60 MHz - Dual channel D.S.O	£1250
Tektronix 2245 A - 100MHZ - 4 channel	$¢ 900$
Tektronix $2440-300 \mathrm{MHz} / 500 \mathrm{MS} / \mathrm{s}$ D.S.O.	£2950
Tektronix $2445 \mathrm{~A}-150 \mathrm{MHz}-4$ channel	£1250
Tektronix $2445-150 \mathrm{MHZ}$ - 4 channel + DMM	£1200
Tektronlx TAS $475-100 \mathrm{MHZ}$ - 4 channel	$¢ 995$
Tektronix 7000 Series (100 MHZ to 500 MHZ)	from $£ 200$
SPECTRUM ANALYSERS	
Ando AC 821 1-1.7GHz	$£ 2250$
Avcom PSA-65A - 2 to 1000 MHz	$\Sigma 850$
Anritsu MS $628-50 \mathrm{~Hz}$ to 1700 MHz	£2500
Anritsu MS $610 \mathrm{~B} 10 \mathrm{KHz}-2 \mathrm{GHz}$	£4750
Advantest/TAKEDA RIKEN - $4132-100 \mathrm{KHz}-1000 \mathrm{MHz}$	£2500
Hewlett Packard 3561A - Dynamic Signal Analyser	£4750
Hewlett Packard 3562A Dual channel dynamic signal analyser $64 \mu \mathrm{~Hz}-100 \mathrm{KHz}$	£6250
Hewlett Packard 3585A - 20 Hz to 40 MHz	£4500
Hewletl Packard 8591A -9KHz-1.8GHz with tracking generator, option 10	10 £6500
Hewletl Packard 8505A - 1.3GHz - Network Analyser	£1995
Hewlett Packard 8753A - 3GHz - Network Analyser	£4995
Hewlell Packard 8753B - Network Analyser	£6,500

Quality second-user test \& measurement equipment

Marconi

Radio Communications Test Sets

2955	$£ 2250$
2955 A	$£ 2500$
2958 (TACS)	$£ 2750$
2960 (TACS + Band III)	$£ 2750$
2960 A (TACS)	$£ 2950$
2955 B	$£ 3750$

Fax 01203650773

Hewlett Packard 8756A/8757A Scaler Network Analyser
Hewlett Packard 853A Mainframe 8559 Srom $£ 1000$ Hewlett Packard 853A Mainframe + 8559A Spec. An. (0.01 to 21 GHz) Hewlett Packard 182T Mainframe + 8559A Spec. An. (0.01 to 21 GHz)
FR A7550-10KHz-1 GHz - Portable
Meguro - MSA 4912 - 1 MHz - IGHZ Spec.Analyser
Tektronix 495P Spec analyser prog. - 1.8 GHz
rektronix $469 \mathrm{P}-1 \mathrm{KHz}$ to 1.8 GHz
wiltron 6409-10-2000 MHz R/F Analyser

MISCELLANEOUS

ENI - 550 L Power Amplifer ($1.5-400 \mathrm{MHz}$) - 50 w
Farnell AP30250 - Power Supoly $30 \mathrm{v}-250 \mathrm{amp}$
Farnell AP30250 - Power Supply 30v-250amp
FR 1200 S - Radio comms test set
GN ELMI EPR31 - PCM Signalling Recorder
Hewlett Packard 6033A - Autoranging System PSU (20v-30a)
Hewlett Packard 6632A. System Power Supply (20v-5A
Hewlett Packard 3784A - Digital Transmission Analyse
Hewlett Packard 3785A - Jitter Generator \& Receiver
Hewlett Packard 3785A - Jitter Generator \& Receiver
Hewlett Packard 5370B - Universal Time Interval Counter
Hewlett Packard 8660D - Synth'd Stg. Gen ($10 \mathrm{KHz}-2600 \mathrm{MHz}$)
Hewlett Packard 4192A - LF Impedance Analyser
Hewlett Packard 16500C - Logic Analyser Mainframe
Hewlett Packard 16501A - Logic Analyser System Expander Frame
HP 339A Distortion measuring set
HP4279A - $1 \mathrm{MHz}-\mathrm{C}-\mathrm{V}$ meter
HP 436A Power meter + lead + sensor various available
HP 435A + 435B Power meters
HP 8656A Synthesised slgnal generator
HP 86568 Syn thesised signal generator
HP 8657 A - Signal generator $100 \mathrm{KHZ}-1040 \mathrm{MHZ}$
P 37900D - Signalling test set
PP 5385A - 1 GHZ Frequency counter
HP 8903 B and E - Distortion Analyser
HP 5359A. High Resolution Time Synthesiser
Keytek MZ-15/EC Minizap ESD Simulator (15kv - hand held)
Marconi 2610 True RMS Voltmeter
Philips PM 5193 Synthesised Function Gerl 50 MHz
Philips 5515 - TN - Colour TV pattern generator
eader 3216 Signal generator $100 \mathrm{KHz}-140 \mathrm{MHz}$. AM FMCW witern generator
stereo modulator (as new) a snip a1
Racal $9087-1.3 \mathrm{Ghz}$ Synthesised Signal Generator, low noise
Systron Donner 6030-26.5GHz Microwave Freq Counter
Tektronix 1751 PAL Waveform/Nector Monitor
$\begin{array}{ll}\text { Wiltron } 6747 \mathrm{~A}-20-10 \mathrm{MHz}-20 \mathrm{GHz} \text { - Swept Frequency Synthesiser } & £ 2200 \\ £ 4950\end{array}$

All equipment is used - with 30 days guarantee. Add carriage and VAT to all goods.

EDITOR

Martin Eccles
01816523614

CONSULTANTS

lan Hickman

Philip Darrington
Frank Ogden
EDITORIAL ADMINISTRATION
Jackie Lowe
$0181-6523614$
EDITORIAL E-MAIL ADDRESS
jackie.lowe@rbi.co.uk
ADVERTISEMENT MANAGER
Richard Napier
0181-6523620
display sales executive
Joannah Cox
0181-6523620
ADVERTISING PRODUCTION
0181-6523620

PUBLISHER

Mick EllioH
EDITORIAL FAX
0181-6528111
CLASSIFIED FAX
0181-652 8938
NEWSTRADE ENQUIRIES
01712617704
15SN 0959-8332

SUBSCRIPTION HOTLINE
 01622778000

SUBSCRIPTION QUERIES
rbp.subscriptions@rbi.co.uk
Tel 01444445566
Fax 01444445447

Copyright, and the right to copy

Arecent report in the Daily Telegraph said that television viewers could be stopped from videoing programmes at home or be forced to pay a new tax on blank tapes under a directive being drawn up in Brussels to harmonise copyright laws across the European Union.
The Government was said to be "not happy" with plans to reduce the right of individuals to record programmes for personal use and does not want a return to the situation before 1990. In those dark days, video recorders were sold with dire warnings printed in their manuals: "The recording and playback of any material may require consent" and "the user must refer to the provisions of the Copyright Act 1956 and the Dramatic and Musical Performers Protection Act 1958" etc etc.
This was clearly a joke. The law was
unenforcable and everyone knew it. Anyway, what was wrong recording a programme and watching it later - even if you skipped over the adverts? But it took a long time to come up with the words that would protect the livelihoods of performers and legalise the use of videos at home. Let's hope that we don't have to go back.
But there is a wider issue here; copyright laws are difficult to enforce.
There is always a sneaking suspicion amongst the general public that companies are not being 'fair' and are trying to take too much. This engenders a culture where people have no qualms about copying software because they think that Bill Gates is rich enough already. Or, as another example, photocopying music without regarding it as stealing despite the clear printed warnings.
There are other instances where copyright is felt to be too tightly held. For example the British Standards Institution, which is a public service, does not allow any reproduction of its work even if it is just a quotation. Another example was the school in the North of England not being able to perform a musical because it happened to be in a London West End theatre at the time. This only adds to the feeling of unfairness.
They may have the law on their side, but companies find that litigation is expensive and risky. So the response has been to develop sophisticated copy protection mechanisms. Programmes can search your hard drive to see if you qualify for the new version. Digital
'fingerprints' can be put on to cds literally in the noise, using spread spectrum techniques, to enable authentication.
There are some clever virus-like software copy
protection methods used in games; if the cd is copied then the hard drive is completely filled up with junk. Satellite tv has had VideoCrypt in place for several years and this will no doubt be enhanced by digital television.
On the photocopying side, there was special printing ink patented that could not be photocopied (does anyone know what happened to that?).
There is a school of thought which says that all information should be free. And the main vehicle of this freedom is of course the Internet (who could have predicted it?). The main driver may have been the adult web sites but it is certainly a very beneficial institution. And there's freeware and shareware. Maybe "one day all software will be sold this way"?
This brings us on to the problem of quality. There's lots of useful stuff out there on the Internet. But you have to search very carefully for it to avoid 'info-glut'. The quality of some data can be poor and often links are missing, referred to by that wonderful expression 'web rot'. And all that free software. Who supports it? It is alarming how many companies depend completely on a piece of free software - the web browser.
I believe that the integration of the browser into the operating system, as in Windows 98, is essential, because then its supported.
But I digress. The point is that you get what you pay for, and you also value what you pay for. For example, when all those electronics magazines fall through the letter box which one do you read first? The one you pay for. Good information costs money in all the sifting, analysis, presentation and marketing. So we need copyright to protect livelihoods and to maintain quality, and that copyright needs to be protected.
But what happens next? No doubt protection mechanisms will improve and become easier to implement in the digital world. Material that is currently free could be protected. The argument goes like this: if people want something and you can protect it, you can sell it.
Media companies would see this as an opportunity here to corner the market. Huge technical monopolies could be created which could control access to and the use of published works.
Perhaps they would eventually decide what is good or bad for us. Big Brother by the back door. Of course it could never happen here.

Peter Marlow

For a full listing of
RBI magazines:
http//www.reedbusiness.com

REED
BUSINESS
INFORMATION

Electronics World is published monthly. By post, current issue $£ 2.45$, back issues (if available $£ 3.00$). Orders, payments and general correspondence to L333, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tix: 892984 REED BP G. Cheques should be made payable to Reed Business Information Lid
Newstrade: Distributed by Markerforce (UK) Ltd, 247 Tottenham Court Road London WIP OAU $0171261-5108$.
Subscriptions: Quadrant Subscription Services, Oakfield House Perrymount Road, Haywards Heath, Sussex RHI 6 3DH. Telephone 01444445566 . Please notify change of address. Subscription rates 1 year UK $£ 36.002$ yeors $£ 58.003$ years $£ 72.00$. Europe/Eu i year $£ 51.002$ years $£ 82.003$ years $£ 103.00$ ROW 1 year $£ 61.002$ years $£ 98.003$ years $£ 123$

Overseas advertising agents: France and Belgium: Pierre
Mussard, 18-20 Place de la Madeleine, Paris 75008 . United States of America: Ray Barnes, Reed Business Publishing Lid, 475 Park Avenue South, 2nd Fi New York, NY 10016 Tel; (212) 6798888 Fox; (212) 6799455
USA mailing agents: Mercury Airfeight International Ltd Inc, 10(b) Englehard Ave, Avenel NJ 07001. Periodicles Postage Paid at Rahway NJ Postmaster. Send address changes to above. Printed by Polestar (Carlise) Ltd, Newtown Trading Estote Carliste. Cumbria, CA2 7NR
Filmsetting by il Typographics Lid, Unit 4 Baron Court, Chandlers Way, Southend on-Sea, Essex SS2 5SE.
© Reed Business Information Ltd 1997 ISSN 09598332

PROTEUS

including NEW SIMULATOR

mos
 ICE3F5

Simulation

$-\cos$

cthe

BEST all-round PROGRAM"
EWW CAD Review Round Up September 1998

- Berkeley SPICE3F5 analogue simulation kernel.
- True mixed mode simulation.
- New analysis types include multi-plot sweeps, transfer curves, distortion and impedance plots.
- Active Components: Switches, Pots etc.
- Over 1000 new library parts with SPICE models.
- Greater ease of use.

"a constant high level of capability throughout"

EWW CAD Review Round Up September 1998

Schematic Capture

- Produces attractive schematics like in the magazines.
- Netlist, Parts List \& ERC reports.
- Hierarchical Design.
- Full support for buses including bus pins.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and PCB design.

PCB Design

- Automatic Component Placement.
- Rip-Up \& Retry Autorouter with tidy pass.
- Pinswap/Gateswap Optimizer \& Back-Annotation.
- 32 bit high resolution database.
- Full DRC and Connectivity Checking.
- Shape based gridless power planes.
- Gerber and DXF Import capability.

Available in 5 levels - prices from $£ 295$ to $£ 1625+$ VAT. Call now for further information \& upgrade prices.

E Jeccironiccs

Write, phone or fax for your free demo dlsk, or ask about our full evaluation kit.
Tel: 01756 753440. Fax: 01756752857 . EMALL: info@labcenter.co.uk
53-55 Main St, Grassington. BD23 5AA. WWW: http:iwww.labcenter.co.uk

Fully interactive demo versions available for download from our WWW site.
Call for educational, multi-user and dealer pricing - new dealers always wanted. Prices exclude VAT and delivery. All manufacturer's trademarks acknowledged.

C\&W pips BT in broadband race

Cable and Wireless looks like pipping BT to the post in providing broadband links to the home. But the UK's top two telecom operators will be going down different routes - Cable and Wireless via cable modem and BT via asymmetric digital subscriber line, adsl
The need for a broadband strategy from the two companies has sharpened in the wake of Compaq Computer's decision to ship pcs with G.Lite $1.5 \mathrm{Mbit} / \mathrm{s}$ dsl modems. Purchasers wanting to use the several megabits per second data
rates offered by dsl modems will be disappointed if the operators refuse to support them by providing a dsl service at the exchange end of their telephone line.
BT refuses to say when it will allow customers to take advantage of the twenty times plus improvement in access speeds which adsl offers.
"We are trialling adsl," said a BT spokesman. The trials will last until March 1999. They are consumer trials - the technology has already been proven in technical trials.
BT said "it is not appropriate to
speculate" about when, and at what cost, adsl will be provided. Since BT's business customers pay upwards of $£ 25000$ for broadband leased lines, it could be put in a quandary when customers start demanding cheaper dsl access.
Cable and Wireless customers look luckier. Cable modems offering $37 \mathrm{Mbit} / \mathrm{s}$ downstream, and 2 to $10 \mathrm{Mbit} / \mathrm{s}$ upstream, will be available either in television set-top boxes which can also connect to the PC, or as stand-alone items, by the end of 1999.

David Manners Electronics Weekly

£7m Euro money for extreme-UV litho

The European Commission is to put $£ 7 \mathrm{~m}$ (10 m ECU) into a programme to develop sub $0.1 \mu \mathrm{~m}$ manufacturing processes based on extreme UV lithography (EUVL).
"This will be the third consortium to study EUVL, the others are the Intel-backed group in the US and one formed between the big Japanese semiconductor companies,"said Dr Dean Morris of Oxford Instruments, part of the EC consortium.

Extreme UV lithography, using electromagnetic radiation between deep ultra-violet at 150 nm and X -rays at Inm , is one of the contenders for a future sub $0.1 \mu \mathrm{~m}$ lithography process.

The Semiconductor Industry Association roadmap released in 1997 calls for the first ICs with $0.07 \mu \mathrm{~m}$ features to be produced by 2009. For this, commercial tools will be needed by 2008 .
Oxford will head group efforts to determine which type of particle accelerator will be best-suited to EUV generation. The company has built and sold two X -ray generating synchrotrons, one of which is being used by IBM for X-ray lithography.
Another programme member is the Dutch firm ASM Lithograph. ASML is an established maker of lithography equipment, claiming to have over 1000 systems
installed worldwide.
The third, final member of the European consortium is Germany's Carl Zeiss which will look at the production of focusing optics and masks.
"EUV cannot be focussed by refraction and is only weakly reflected. Carl Zeiss is going to make highly accurate multi-layer reflectors, with over 50 layers, to act as focussing optics and reflective masks," said Morris.
The European project is to be called Euclides, short for Extreme UV Concept Lithography Development System. Steve Bush Electronics Weekly

UK group demonstrates video-speed flat panels

Aconsortium of UK organisations has produced a video-rate, limited-colour display by combining a light-emitting polymer (LEP) backlight with a passive ferroelectric lcd (FLCD) shutter.
"It has video capability without using expensive thin-film transistors or colour filters," said Dr Karl Heeks, technical manager at CDT, supplier of the LEP backlight. The light source for the display is alternate narrow stripes of green and red-emitting LEPs, laid down to make a square.
All the red strips are energised simultaneously followed by all the green strips in a repeating cycle.
By synchronising the timing of the

CRL-supplied ferroelectric LCD, which is a matrix of individually addressable 330 by $330 \mu \mathrm{~m}$ pixels, either green, red, or a combination of the two can be selected per pixel
"The display is only possible because LEPs and FLCDs are fast enough for time-sequential operation," said Heeks.
The University of Cambridge provided material characterisation and failure analysis for the project, while funding was supplied by the government.
Currently there is no blue in the backlight. The development of a blue LEP has lagged red and green types. "We will be making some announcements about blue LEPs very shortly," said Heeks.

Two display companies, together with the University of Cambridge, have developed a display that combines the strengths of light emitting polymers and ferroelectric liquid crystals to make a limited colour display. The technology demonstrator is 7.5 cm square and displays red, green and colours in between.

EMP bullet helps detect land mines

Desearchers at the University of RMissouri, Columbia are developing a landmine detector based on a high-power rf source in a projectile.

The projectile is fired vertically into the suspected minefield, where it emits a high power electromagnetic pulse. Buried metallic objects are detected when a phased-array antenna

Magic bullet... Not a new way of killing people, but a high-fech way of detecting mines. Kinetic energy is converted to an electromagnetic pulse as this projectile buries itself in the ground. The pulse bounces of nearby mines giving away their position.

Ground breaking technology... The University of Missouri is aiming to detect landmines by firing electromagnetic pulse generators into the soil from a helicopter. The system, says the university, will detect reflections from metallic objects as small as $1 \mathrm{~cm}^{3}$ around a 15 m radius from 100 m up. In keeping with current mine detection theory, the system will be multi-sensor. Not only are electromagnetic reflections sensed, but acoustic activity caused by the impact will be analysed as well, then mixed with thermal image data. The work is sponsored by the US Army and is currently still in the laboratory.
mounted on the helicopter 'sees' the pulse reflected from them.
Producing the pulse underground, claims the university, couples far more energy into the locality than an above-ground source, which looses most of its power in reflections from the air-soil boundary.
Key to the project is the projectile This must be a powerful emitter - the target is 10 MW - but small enough to be fired from a gun, in this case 30 mm in diameter.
The power source that the Missouri team has chosen is the kinetic energy of the projectile itself. They are looking at two ways of turning this into an electromagnetic pulse.
The first is magnetic induction. The induction projectile has a ferromagnetic slug at its rear which sits inside a shortcircuited multi-turn coil.
Just prior to firing, a current is induced into the coil which continues to flow during flight.
As the projectile hits the ground, the slug flies forward into a space provided. This leaves the coil coreless and reduces its inductance quickly and dramatically. Current rises with the ratio of the inductance change and the coreless coil acts as an antenna radiating half the energy $L_{\text {final }} I_{\text {final }}{ }^{2}$.
The other projectile type is piezoelectric. In this case a mass at the rear of the projectile bears down on a

The numbers

The projectile weighs between $50-100 \mathrm{~g}$ and travels at $500-1000 \mathrm{~m} / \mathrm{s}$, giving it between 6 and 50 kJ of energy when it hits the ground.
Because not all of its mass is involved in conversion, and conversion is inefficient, only ten per cent of this is converted to electrical energy. This means that there is a minimum of around 1 kJ to be radiated. This is converted in around 1 ms , resulting in a 1 MW pulse.
piezoelectric block as the collision occurs. This produces a high voltage which is switched into a coil antenna around the projectile by a spark gap.
Both types have proved successful and 100 kW pulses are expected from prototypes before the end of this year.
The next phase of the project calls for changes, based on findings so far, to create MW pulses from smaller projectiles. Work will also be done on the coil antennas to control the frequency content of the output pulse.
The helicopter part of the system, still in its early stages, may contain acoustic and thermal imaging arrays alongside the passive radar array to aid the differentiation of mines from other objects.

Steve Bush

Dumping gone bananas

Bananas or semiconductors? Although the EU is fighting its corner on imported bananas, Sir Leon Brittan, v-p of the EU, has succeeded in scuppering European anti-dumping moves against imported semiconductors.
While the US government has supported its local semiconductor industry by imposing anti-dumping duties on Hyundai and LG and pursuing anti-dumping actions against Taiwan, the EU announced its decision last week not to fight for Europe's semiconductor industry.
"The US government is aware of the importance of semiconductors for its economy. The EU is not," said Dr Eckhard Runge, director-general of the European Electronics Components Association (EECA). "The closure of two fabs in the UK could have been avoided if pricing had been normal."
Reckless over-investment by the Korean chaebols flooded the market and killed prices. EECA asked the EU to take action against low dumping
prices, personally lobbying Brittan, but he refused support.
In the ensuing bloodbath, Siemens Semiconductors lost $£ 400 \mathrm{~m}$ and is now being put up for sale by its parent company Siemens AG. "The Koreans should have been hit for what they have done," said Runge. "It is very disappointing that the EU does not consider the industry important."
The reason given by the EU for not taking action against the Koreans is that, because everyone is selling below cost price, action against the Koreans would be discriminatory.
The US government refused to take that view despite the fact that their own domestic producer, Micron Technology of Idaho, has pursued one of the most aggressive pricing policies in the industry.
EECA points out that, between 1990 and 1997, Japanese DRAM market share in Europe dropped from 45.3 per cent to 27.8 per cent, while Korean market share grew from 14.7 per cent to 42 per cent.

David Manners

PLUG IN AND MEASURE

$8-122^{\text {bit }}$
$200 \mathrm{kHz}-50 \mathrm{MHz}$
$100 \mathrm{mVolt}-1200 \mathrm{Volt}$
STORAGE OSCILLOSCOPE SPECTRUM ANALYZER VOLTMETER TRANSIENT RECORDER

TiePie introduces the HANDYSCOPE 2
A powerful 12 bit virtual measuring instrument for the PC
The HANDYSCOPE 2, connected to the parallel printer port of the PC and controlled by very user friendly software under Windows or DOS, gives everybody the possibility to measure within a few minutes. The philosophy of the HANDYSCOPE 2 is:
"PLUG IN AND MEASURE"
Because of the good hardware specs (two channels, 12 bit, 200 kHz sampling on both channels simultaneously, 32 KWord memory, 0.1 to 80 volt full scale, 0.2% absolute accuracy, software controlled $A C / D C$ switch) and the very complete software (oscilloscope, voltmeter, transient recorder and spectrum analyzer) the HANDYSCOPE 2 is the best PC controlled measuring instrument inits category.

The four integrated virtual instruments give lots of possibilities for performing good measurements and making clear documentation. The software for the HANDYSCOPE 2 is suitable for Windows 3.1 and Windows 95. There is also software available for DOS 3.1 and higher.

A key point of the Windows software is the quick and easy control of the instruments. This is done by using:
the speed button bar. Gives direct access to most settings.
the mouse. Place the cursor on an object and press the right mouse button for the corresponding settings menu.

- menus. All settings can be changed using the menus.

Some quick examples:
The voltage axis can be set using a drag and drop principle. Both the gain and the position can be changed in an easy way. The time axis is controlled using a scalable scroll bar. With this scroll bar the measured signal (10 to 32 K samples) can be zoomed live in and out.

The pre and post trigger moment is displayed graphically and can be adjusted by means of the mouse. For triggering a graphical WYSIWYG trigger symbol is available. This symbol indicates the trigger mode, slope and level. These can be adjusted with the mouse.

The oscilloscope has an AUTO DISK function with which unexpected disturbances can be captured. When the instrument is set up for the disturbance, the AUTO DISK function can be started. Each time the disturbance occurs, it is measured and the measured data is stored on disk. When pre samples are selected, both samples before and after the moment of disturbance arestored.

The spectrum analyzer is capable to calculate an 8 K spectrum and disposes of 6 window functions. Because of this higher harmonics can be measured well (e.g. for power line analysis and audio analysis).

The voltmeter has 6 fully configurable displays. 11 different values can be measured and these values can be displayed in 16 different ways. This results in an easy way of reading the requested values. Besides this, for each display a bar graph is available.

When slowly changing events (like temperature or pressure) have to be measured, the transient recorder is the solution. The time between two samples can be set from 0.01 sec to 500 sec , so it is easy to measure events that last up to almost 200 days.

The extensive possibilities of the cursors in the oscilloscope, the transient recorder and the spectrum analyzer can be used to analyze the measured signal. Besides the standard measurements, also True RMS, Peak- Peak, Mean, Max and Min values of the measured signal are available.

To document the measured signal three features is provided for. For common documentation three lines of text are available. These lines are printed on every print out. They can be used e.g. for the company name and address. For measurement specific documentation 240 characters text can be added to the measurement. Also "text balloons" are available, which can be placed within the measurement. These balloons can be configured to your own demands.

For printing both black and white printers and color printers are supported. Exporting data can be done in ASCII $\begin{array}{lll}\text { Exporting data can be done in ASCII } & \text { Tel: }+31515415416 \\ (S C V) \text { so the data can be read in a } & \text { Fax }+31515418819\end{array}$
spreadsheet program. All instrument settings are stored in a SET file. By reading a SET file, the instument is configured completely and measuring can start at once. Each data file is accompanied by a settings file. The data file contains the measured values (ASCII or binary) and the settings file contains the settings of the instrument. The settings file is in ASCII and can be read easily by other programs.

Other TiePie measuring instruments are: HS508 ($50 \mathrm{MHz}-8$ bit), TP112 ($1 \mathrm{MHz}-$ 12bit), TP208 (20MHz-8bit) and TP508 ($50 \mathrm{MHz}-8 \mathrm{bit}$)

Convince yourself and download the demo software from our web page: http://unw.tiepie.nl.
When you have questions and / or remarks, contact us via e-mail: support@tiepie. nl

Total Package:
The HANDYSCOPE 2 is delivered with two 1:1/1:10 switchable oscilloscope probe's, a user manual, Windows and DOS software. The price of the HANDYSCOPE 2 is $£ 299.00$ exd. VAT.

TiePie enginering (UK), 28 Stephenson Road, Insdustrial Estate, St. Ives, Cambridgeshire, PE17 4WJ, UK
Tel: 01480-460028; Fax: 01480-460340
TiePie engineering (NL)
Koperslagersstraat 37
8601 W SNEEK
The Netherlands

Java chips on show

Prototype Java chips made their first public appearance at the recent Comdex trade show in Las Vegas, writes Tom Foremski.
Sun Microsystems, LG Semicon, NEC and Fujitsu showed evaluation boards that contained Java-based chips, and Patriot Scientific showed its Javachip
Sun was keen to arrange such demonstrations because of criticism from industry analysts that its Java chip program had run out of steam and that there has been little to show since Sun licensed Java core designs to major chip companies over the past two years.
"This shows that Java chips are a reality and that they have applications in different types of systems," said a Sun representative. "Although these are just initial demonstrations of what our licensees are working on, there is a bright future for Java chips."

The advantage of Java chips is that they can be used in applications where there is no overhead for a Java-based operating system and the memory required to run a Java Virtual Machine. Instead of using software to interpret the Java instructions, the chips directly process the Java byte code. Sun says
that with the cross-platform capabilities of Java, it is possible to build a large number of embedded applications in areas such as automotive control systems and factory production lines, where small Java applications can be run.
Sun showed an evaluation board containing its prototype MicroJava 701 microprocessor, based on its picoJava core design. This will be released to developers in the second quarter of 1999 along with an operating system and development tools.
NEC demonstrated a picoJava based evaluation board which it is targeting at embedded systems developers and said that it is also working on semi-custom chip products that are more closely targeted at specific applications.

Fujitsu demonstrated a picoJava-based board but says that its main focus is system-on-a-chip type applications where the picoJava core is just one part of an overall design that includes microprocessor and other cores.

LG Semicon was showing its prototype MJ/ chip which is designed to be a discrete part to be combined with other chips in various
applications. It also said that another Java chip, designated MJ501, is being developed and it will offer improved performance.
Sun admitted that it has changed strategy with its Java chip program.
"Instead of separate Java chips, we recognise that the industry is moving more towards a semi-custom model and we are encouraging our licensees to move in that direction," said Harlan McGann, head of the architectural and technology group in Sun's Microelectronics division.
Sun has been criticised for its Java chip plans. Jim Turley, senior industry analyst at MicroDesign Resources says that Java is too slow for embedded chip applications. "Java does have a place but in embedded systems I'm not convinced that it has the performance that makes it useful," Turley said
McGann notes that Java is becoming faster and that Java chips will be found in a wide variety of embedded applications such as cell phones, set-top tv boxes and industrial control systems. But it will be a while before Sun can show actual real-world applications for Java chips.

Dashboard that can change as you drive

F
F ord subsidiary Visteon has designed a reconfigurable concept car dashboard that uses Texas Instruments' Digital Micromirror Device (DMD).
The dashboard is 350 by 85 mm and can display traditional mechanical instruments, user customised instruments and even navigational data.

Visteon has selected the TI part despite strong competition from LCD
colour-shutter technology from various manufacturers.
"We are using the DMD because of its resolution, fill-factor and temperature performance. The high fill-factor, which is over 90 per cent. means that there are no difficult issues if we want to increase screen size," said Alex Calton, product marketeer at Visteon.
Poor yield of the DMD has been rumoured to be a problem for TI.

Does getting hold of the devices worry Calton? "No," she said. "If we sell the product concept to a customer, TI will be able to produce the devices."
Another feature Visteon is promoting is a "baby-watch function" to keep an eye on the kids in the rear seat - which can only be used when stationary. It is also developing a 350 by 255 mm unit for centre console use.

Easy PC, Tina, where?

ad packages Tina and Easy-PC have both had changes of UK address recently. The Tina Windows circuit simulation suite is now distributed by Quickroute and complements the company's established and successful autorouter.
Easy-PC is now owned by Sightmagic in Tewkesbury. "We intend to make Easy-PC For Windows by far the best value sub- $£ 500$ pcb layout product on the market today," Sightmagic's Marketing Manager Bob Williams told us.
Sightmagic Tel. 01684773662
Quickroute Tel. 01614760202

The Alternative Oscilloscope

Pico Technology provides an alternative to costly, bulky and complicated oscilloscopes. Our range of virtual instrumentation enables your PC to perform as an oscilloscope, spectrum analyser and digital multimeter.
-Upto $100 \mathrm{MS} / \mathrm{s}$ sampling and 50 MHz spectrum analysis
∇ A fraction of the price of comparable benchtop DSOs ∇ Simple Windows based user interface

The practical alternative Connection to a PC gives virtual instruments the edge over traditional
"..the most powerful, flexible
test equipment in my lab."
oscilloscopes: the ability to print and
save waveforms is just one example.
Advanced trigger modes, such as
save to disk on trigger, make tracking
down elusive
intermittent
faults easy.
Combining
test equipment in my lab."
save waverm is just one example save waveforms is just one example. Advanced trigger modes, such as
save to disk on trigger, make tracking down elusive intermittent Combining several instruments means lighter and more portable. When used with a can carry a complete electronics lab in their PC. ear guarantee and free software. Controlled using the standard Windows interface, the software is easy to use with full on line help.
 E-mail. installation is easy and no configuration is required; simply plug into the parallel port and it is ready

The simple alternative
Virtual instruments eradicate the need for bewildering arrays of oscilloscopes work with your switches and dials associated PC - anything from a with traditional 'benchtop'scopes. FROM $\$$ sustbin-ready 8086 to the The units are supplied with \langle E59 latest pentium. The PicoScope for Windows $259 \sqrt{ }$ PicoScope software utilises This gives you a larger clearer display than any scope, at a fraction of the price. The savings don't stop there: All those expensive upgrades needed for traditional oscilloscopes: such as FFT maths, disk drives and printers are already built into your computer. The PC has made computing affordable, now Pico has made test equipment affordable too.
Seeing is understanding

""pico

Call for a FREE demo disk or vist our web site.
Fax: (0)1954 211880 Tels (0) 1954211716
E:mail: post@ picotech.co.uk http:www.picotech.com Broadway House 149-151 St Neots RoadHardwick Cambridge CB37QJ UK

CIRCLE NO. 106 ON REPLY CARD

Edison, TINA and TINALab are a unique family of 32 bit simulation products now available in the UK. Start with Edison, the fun multimedia electronics lab that teaches electronics in 3D - and then nove on
to TINA Pro - the new interactive mixed mode 32 bit simulator with over 20 types of analysis, comprehensive virtual instrumentation and over 10000 models. TINA Pro also lets you create custom schematic symbols from subcircuits, or SPICE models and now includes a parameter extractor for calculating model parameters from manufacturers data. Uniquely, TINA Pro can also be used to make real-time measurements using the TINA Lab card \& prototyping board. For more information call Quickroute Systems.

QUICKROUTE
SYSTEMS

the 0 "a serious threat to the competition"

 for Mindoy electronics lab Heaton Lane, Stockport, SK 4 IBS, U.K.Tel 01614760202 Fax 01614760505 Email TINA@quicksys.demon.co.uk www.quickroute.co.uk

There was a time when plds were

 the domain of the wealthy, but as Colin Attenborough explains, in-system programmable devices and free software have brought them down to pocketmoney level provided you already have a pc. To illustrate how much digital processing power you get from even the smallest pld, Colin describes a five-chip logic analyser capable of capturing 4096 byte-wide words at sampling rates to 10 MHz .

A11 too often, a bright idea for a logic-based device loses its appeal when you draw up a detailed design and find that the circuit is not as simple as you first thought. There's the added disincentive that when you have finished implementing the design, it will not work as expected and you will have the dubious task of rewiring it.
For such applications, modern programmable logic devices, or plds, are an excellent alternative. There are design tools that make implementing and simulating the logic easy, and making a modification is simply a matter of reprogramming the device.
There was a time when programmable logic was inac-

[^1]cessible to most because of the high cost of development equipment. For devices like the one I use as an example in this article, the development software is free and the hardware is little more than a cable that links your target design to the pc for programming.

All you need is a pc, a free cd and a cable To illustrate just how accessible plds have become, I describe here a logic analyser comprising just five ICs. It is based on a Lattice Semiconductor's ispLSI1016, a 60 MHz version of which costs under $£ 10$.
Given Lattice's software, installed from the company's free cd onto a pc^{*}, a design specified at the gate/flipflop/adder sort of level can be drawn, checked, compiled, and programmed into the device. The only additional hardware needed is a simple adaptor that goes between the pc's printer port and the device being programmed.
And if the design doesn't work, debug the error, amend the circuit diagram, and simply reprogram the device. With a few restrictions you can even reprogram it without removing it from its circuit board.

Design example -10 MHz logic analyser

My logic analyser using the ispLSIIO16 has only five ics excluding the power regulator, yet it can acquire 4096 samples of an eight-bit word at rates up to 10 MHz .
Operation of the analyser is controlled via a pc's printer port using a dynamic link library written in Visual C++ V5 to access the printer port, and Visual Basic 5 to provide a Windows user interface. But note that you don't need either language to use the software; it can be installed on any pc running Windows 95 or later.
The analyser's software lets you set the acquisition rate,
the trigger word, and an internal or external clock source. You can also search for chosen logic words - zeros, ones or don't cares - among the acquired data, and bring each occurrence of the chosen word to the centre of the screen. The number of samples displayed on screen can be set to between 8 and 256 .
For use in the logic analyser, the ispLSIIO16 incorporates a 12 -bit counter, an 8 -bit counter and a 21 -bit shift register. It also has sundry gates, latches and flip-flops.
Pre-programmed devices are being made available for those of you who don't want to do the programming.

Fig. 1. Outline of a logic analyser, whose job it is to read a sequence of logic levels on an eight-bit bus and display the results on the screen of a pc. Note that asterisks denote active-low signals in this article.

Details of IspLSI1016 supplies and programming connections

Fig. 4. Bus_cf trigger and rate setting details. This section compares the input word with the trigger word and produces an output when

Fig. 6. Clocking counters Sync8 and Sync12 - eight and 12 bits respectively - are made up of cascaded four-bit synchronous counters.

What is a logic analyser?

For fault-finding analogue systems, the most useful single test instrument is the oscilloscope. For digital systems though, the oscilloscope has limitations. Triggering isn't just a matter of setting a voltage level and polarity; it's useful to trigger from a combination of zeroes and ones. And of course the oscilloscope's two channels are not sufficient to examine the relationships between all the lines in, say, an eight-bit wide bus.
What is needed is a logic analyser, where rather than two analogue channels you have eight binary channels, and where the trigger criteria are set as a word rather than signal levels and polarity. It is also useful to be able to store results, so they may be examined at leisure, and 'this-causes-that' relationships checked.

Logic analyser basic requirements

A logic analyser needs memory to store acquired data. Static ram is cheap and readily available in byte-wide amounts sufficient to store an adequate number of samples. It is also available to work at a speed fast enough to allow 10 MHz analyser clocking.

An analyser also needs a reference oscillator to define the acquisition rate and clock-rate logic to allow data to be acquired at defined rates below that of the reference oscillator. Trigger logic is needed to compare the incoming data with a trigger word and stop acquisition when a match occurs.
An address counter for the ram is clocked by the selected clock rate, in order to put successive input data bytes into successive locations of the ram. Control logic supervises getting data into and out of the system.
All the above elements are shown in Fig. 1. Figure 2 is the detailed overall circuit; a tri-state input buffer is needed not only to allow read/write operation of the memory, but, if you connect an input to an excessive voltage, makes it more likely that you'll vapourise something comparatively cheap.
Figure 3 is the top level circuit of the pld, showing that it implements a large fraction of Fig. 1's circuitry.

How it works

To prepare for acquisition of data, the pc sets the ' Clr ' line, clearing the sync8 and sync 12 counters, and all the D types and latches shown in Fig. 3.

Trigger-word data, acquisition rate selection, internal/external clock selection and external clock polarity settings are communicated as a serial word. This word is sent to the shift registers in the BUSCF block. Acquisition-rate selection is

Tip: re-using circuit designs

Suppose you copy a top level circuit by using
File/Save As, intending to use it as the basis of a new design project. You will find that, in the Sources window, the sub-circuits are marked with queries. The system doesn't know where to find the subcircuits. Tell it where to look by clicking on an unknown subcircuit and then use Source/Import to import it.
carried out via the 8 -to- 1 multiplexer.
The eight-to-one multiplexer selects one of the outputs of the sync8 counter; if an internal clock is used, this will be selected by the four-to-one multiplexer and clocks the syncl2 counter which addresses the ram.
To acquire data, 'Clr' is set to logic zero and 'Not_Download' to logic one. The input buffers in Fig. 3 are enabled, and input data are written to the ram. The 'Not_WR' signal is identical to the clock and provides a write signal to the ram.
Acquisition starts to end when the 'match' output of BUS_CF goes to logic one, Fig. 4. This happens when all eight inputs of the and gate - assembled from two four-input and gates and a two-input and gate - go to logic one.
The logic to detect a match between incoming data and the trigger word consists of an exclusive-or gate and an or gate, repeated for each of the eight lines of the data bus. It is convenient to represent the exclusive-or and or gates as iterated (repeated) components, and their input and output connections as busses.
The control input to the exclusive-or gates is the One[0:7] bus; a logic zero in the input word and a logic one in the corresponding position of the One[0:7] bus gives a logic one at the output of the exclusive or gate. This feeds the $\mathrm{b}[0: 7]$ bus driving the or gates, because the gates are fed from a bus and are iterated, the connections between the gates are themselves a bus.
That's how we detect a logic zero in the incoming data; we set a logic one in the One[0:7] bus. (You're right, it isn't a well-chosen name.) To let either state of the incoming data
end acquisition, we set a logic one in the corresponding bit of the $\mathrm{X}[0: 7]$ bus which feeds the or gates.
A logic one at the 'match' output does not stop acquisition immediately, Fig. 3. After deglitching by the D type, it is held by a set:reset latch. It is only when the sync 12 counter next reaches its final state, with Togg_out at logic one, that a second s:r latch clears the sync12's Togg_in line. This inhibits further clocking, and puts a logic zero on the 'still_counting' output to tell the pc that acquisition is complete.

Applying the pld

This outline covers the sequence of events from circuit diagram to programmed device. I'll use the circuits of the logic analyser as examples to show you how to turn your ideas into a programmed device.
First, install both ISP Synario and ispDS+ then start a new project. The top level circuit Fig. 3, contains some simple gates and flip-flops, as well as the blocks bus_cf, sync8 and sync 12, which are made up from such simpler elements.
From Lattice's cd, install the ispSynario and ispDS + programs: both are needed. Start ispSynario and you'll get the 'Project navigator' window. Select 'File/New project'; name and store the 'syn' file.
Double-click 'Virtual device' in the 'Sources' window; select 'ISP Synario starter device' and then, in the lower window, 'ispLSI 1016-60 PLCC44'. Click OK and accept the Yes option.

Entering circuits. Now you can start entering circuits. Click 'Source/New/Schematic/OK'. Name and store the new '.sch'
file. You'll see two windows; a schematic editor where you'll draw your circuit, and a tools palette with seven rows and three columns.
Most tool palette functions are also available in menus. The prompt line at the bottom of the schematic editor is a useful guide to what to do next in any command. Start by entering the sync4 circuit, Fig. 5; this will be used as part of sync12 and sync8 counters.
Begin with a toggle flip-flop with clear. Click the 'Add component' icon in the top left of the tools palette. A Symbol Libraries window appears; click on
c: \. . . \GENERIC \backslash REGS.LIB ,
and then scroll down the lower part of the window until you see 'G_TC'
When you move the mouse onto the circuit diagram, you'll see a symbol for the flip-flop at the end of the mouse pointer. Click on the circuit diagram to place the symbol. Place the other three flip-flops while you're about it.
Click on
c: \. . \GENERIC\GATES.LIB
and import the gates you need. The term 4AND is a four-input AND gate; less obviously, 4AND1 has one input inverted.

Wiring components. After you have placed all the gates and flip-flops, you need to wire them up. At this point you will probably realise that you haven't placed them quite correctly.
Two items in the centre row of the tools palette let you move components. The centre one lets you click on an individual component and drag it, breaking any connections; the

Software download

The ISP Synario Starter software is available for downloading on www.latticesemi.com. This software includes all the tools that you need for designing with Lattice ispLSI $1000,1000 \mathrm{E}, 2000,2000 \mathrm{~V}$, and GAL device families. The ISP Synario Starter runs under Windows NT and Windows 95, and includes:

Lattice ispDS+(tm) Starter (Part 1)
ispDS+ HDL Synthesis-Optimised Logic Fitter
Explore Tool
Pin Assignment Editor
ispTA(tm) Timing Analyser
ispDOWNLOAD (tm) and ispATE(tm) Utilities
VITAL and Non-VITAL VHDL Simulation Libraries
OVI-Compliant Verilog Simulation Library
ISP Synario Software Starter (Part 2)
ISP Synario Project Navigator GUI
ISP Synario ABEL-HDL Entry and Compiler
ISP Synario Functional Simulator
ISP Synario Schematic Capture
GAL Compiler

Minimum System Requirements

The ISP Synario Starter software for the PC environment has the following system requirements: 486/Pentium pccompatible; mouse; Windows NT or 95; 16 megabytes of ram; SVGA resolution display (800×600); 35 megabytes of free hard-disk space.
The full procedure for downloading is given on the site. Note that you will be asked to open an account in order to use the software, but this does not entail any money changing hands. Full Acrobat documentation is available for downloading, as is a copy of the Acrobat reader.

right hand one lets you lasso a group of components and connections, and move them all, preserving connections.
The wiring tool is at the centre of the top row of the tools palette. Click it to select it, click a component lead end - or an existing lead - to start a wire, click again to anchor at a bend, and click on the destination wire or component lead end.
Double click to end a wire in the middle of nowhere. Use the zoom in and out controls, shown as magnifying glasses at the top of the circuit editor, as needed. At some point you'll doubtless need the eraser tool at the right hand end of row five of the tools palette; it works on wire segments and on components, and on lassoed areas. And - a useful feature - F9 is the 'Undo' button.

Naming i/o. Name the inputs and outputs and give them connectors. To name an input or output, click the centre icon in the second row of the tools palette.
Enter, for example, CLR and hit return. Then click the mouse on the end of the appropriate wire. Note that there must be a wire; it won't work on device pins themselves. Repeat this for each of the i/os.
To attach an i/o marker, use the right-hand icon of the second row of the tools palette. Up pops a window to let you select input or output; choose the right one and lasso the names you've just added. Lasso several at a time for speed, but make sure they're all inputs or all outputs.
It is essential to realise that these i/os are merely for this section of the circuit, they are not pins on the completed pld.
You can name any wire - not just i/os. This is useful, say, when you want to tie an input to one or zero: in this case, you can give the input the more useful name of GND or V_{CC} respectively.
Make a symbol for your circuit block, and check your work so far. Use 'Add/New Block Symbol', click 'Use Data From This Block', and 'Run'. This will make a symbol for the sync4 counter, which can be imported to future circuits just like any other gate or flip-flop. It will appear in the 'local' section of the Symbol Libraries menu.
To check your work, click the tick mark at the top of the schematic editor. A window listing errors will be opened, and if you click on the error description the error will be highlighted on the circuit diagram.

Pins 1 and 19 are output
enables for groups of 4 gates in the 74HC244

Building the pld

The logic analyser uses a 12-bit (sync12) and an 8-bit (sync8) counter; both are made up from sync 4 counters.
To make sync12, start a new circuit diagram as for the sync4. Import three sync4s from the 'local' section of the 'Symbol Libraries' menu. Connect them up as shown in Fig. 6, add i/os and names, give sync12 a block symbol, check it

ispLSI 1000/E families: overview

The ispLSI(r) 1000/E families are high-density devices with applications ranging from registers, to counters, to multiplexers, to complex state machines.
Densities of the the ispLSI 1000/E families range from 2000 to 8000 gates.
Each device contains multiple generic logic blocks. These are designed to maximise system flexibility and performance. A balanced ratio of registers and i/o cells provides the optimum combination of internal logic and external connections.
A global interconnect scheme ties everything together, enabling utilisation of up to 80% of available logic.

1000/E family attributes

Family Member	1016E	1024	1032E	1048 E
Density: (PLD Gates)	2000	4000	6000	8000
Speed - $\boldsymbol{f}_{\text {max }}(\mathrm{MHz})$	125	90	125	125
Speed - $t_{\text {pd }}$ (ns)	7.5	12	7.5	7.5
Macrocells	64	96	128	192
Registers	96	144	192	288
Inputs and i/o	36	54	72	110
Pin/Package	44-pin PLCC	68-pin PLCC	84-pin PLCC	128-pin TQFP
	44 -pin JLCC	68 -pin JLCC	100-pin TQFP	128-pin PQFP
	44-pin TQFP	100-pin TQFP	84-pin CPGA	133-pin CPGA

For more ambitious designs, there are five more pld families with progressively higher component counts.
For more information, or to register for your free CD, see www. latticesemi.com.

Logic analyser software

Two sets of logic analyser driving software are available on disk - one for readers with Visual Basic 5 and the other for readers without. Note that this is software for Windows 95. Notes on how to use the software are included on the two-disk set.
Free CD. Electronics World has obtained 30 Lattice CDs with life-long licence for the 1016 and 1024 parts. The first 30 requests for Colin's software will receive one each. Send a postal order or cheque for $£ 15$ payable to Reed Business Information to Logic Analyser, Electronics World, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.
Programmed pld. Colin will program your pld for you if you send it to him sealed in its original packaging together with reply-paid return postage and packing and a cheque or postal order for $£ 8$ payable to Colin Attenborough. Send your request clearly marked PLD to Electronics World Editorial, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.
and save it. Repeat this process for sync8.
The bus_cf circuit, Fig. 6 introduces the idea of busses - i.e. groups of wires - and of iterated components - or components repeated for each line of a bus. Make a bus by drawing a wire and naming it data[0:7] for example. Use the centre icon in the second row of the tools palette, just as you did when naming i/os. The wire thickens to show that it is now a bus.
To add eight exclusive-or gates, import one gate from the symbols library. Now name the instance of the gate, using the left-hand icon of the second row of the tools palette, as $x[0: 7]$. Enter the name, hit return, and click the mouse over the gate. You can now wire the iterated gate to the bus.
Add the iterated Or gate and name it; add the other buses. Note that the connection between the iterated gates must itself be a bus.
To connect individual signals to a bus, use the icon at the top right comer of the toolbox palette. Follow the prompts at the bottom of the schematic editor window, clicking first on the bus and then on the destination connection.
Name the wire you've added, as you've done before. If you
try to name a wire to mybus[0:7] as yourbus[3], or as mybus[8], you'll get an error message.

Device i/o pads

The only thing left to explain about the circuit diagram is the addition of device i / o pads at the top level. These represent the connections on the programmed pld. They are imported in the same way that any other components from the c: 1. . IGENERICIOPADS.LIB section of the Symbol Libraries window are.
Add names and i/o markers as for the lower level circuits. Notice the use of a clock driver to connect the clock input of sync8 to a device i/o pad.
There are three possibilities when allocating device pins. Before making the '*.jed' file which programs a blank device to your specification, you must decide how many restrictions to impose on the pin allocation process.
The simplest option is to do nothing; the system will choose pins for you. You're giving the system an easy time, and if your circuit can be connected, it will be. This is the best route to take for a complex circuit which may stretch the capacity of the device.
By default, the system may use some of the programming pins as i/o connections. This means that you may need to disconnect other devices if you want to reprogram the ispLS11016 in circuit.
To stipulate that the programming pins shall be put to no other use, as I did for this project, go to the project navigator window, click on the top level circuit in the sources window, on 'Compile Schematic' in the processes window, and on 'Process/Properties' on the navigator menu bar. Make sure that ISP (in-system programming) is set to "True', and close the window.
The last, most restrictive, option is to stipulate which pin number shall be associated with each i/o. Select 'Symbol Attribute Editor', which is the centre icon in third row of tools palette. Use the mouse to draw a line around the i/o pad and buffer in question.

The left window of the symbol attribute editor contains

Fig. 8. With a few minor sacrifices, the pld can be programmed in situ. Here, the top diagram shows a development adaptor using two cables. I chose this option, and used one of programming cables to control the analyser in use.

three entries; the second is named the 'Synario Pin'. Enter the pin number you want in the 'Attribute' window, then click elsew here in the schematic editor window.
This approach is also useful when you want to make minor changes to an already-programmed device which has been committed to a printed circuit board, where changing the pinout would involve changing the board. You can force the pin numbers to be identical to those of a previous version.
But first I must show you how to find what pin numbers the system allocates when given a free hand.

Making the programming .jed file

In the project navigator window, click the device, in this case, ispLSII016-60 PLCC44, in the sources window. Then double-click 'Fitter Report' in the processes window. The process may complete successfully with or without warnings, or may fail if there are errors. In any event, the Report Viewer window will open.
If the process completes successfully, you will see a <projectname $>$ rpt, with, at the end, a list of which $\mathrm{i} /$ s have been allocated to which pins. If errors or warnings arise, they will be shown in a. \log file.
Use F2 - the 'Find' function - to examine descriptions of errors and warnings in the log file.

Programming the device

To program the device, you need a programming adaptor, Figs 7, to go between the pc's printer port and the device being programmed.
Details of the hardware connecting pc, programming adap-
tor and target ispLSI1O16 are left to the you since there are different implementations to choose from. You will have to decide whether you want a separate programming board for the pld, or whether you will program the device in the final circuit board.
Because my final circuit needed to communicate with the pc via its printer port, I used a 25 -way D to 26 -way IDC cable to connect the printer port either to the programming adaptor or to the final circuit board. I then used a 16 -way IDC cable between programming adaptor and final circuit board, Fig. 8.
Once the printer port is connected to the programming adaptor and the cable linking the adaptor to the final circuit board is in place, and the ispLSIIO16 is fitted, double click on 'ISP Download System'. The download window appears; choose 'Configuration/Scan Board' and check that the system can find the pld.
Now click Browse, find the <projectname.jed> file and press OK. Hit the Run icon - the running figure - on the download system icon bar. All being well, after a few seconds, you'll get a 'programming successful' message.
I haven't touched on the simulation tools available, or on the graphical tools available under ispDS+. Everything I've described so far has used the isp Synario program. These additional facilities can be found by looking at the help files and on-line manuals provided with the software.
I am grateful to my employers, Cambridge Consultants, for permission to publish this article, and particularly to Julian Coles for giving me the idea and to Neil Johnson and Karl Swepson for their enlightenment.

HOW DOES YOUR ECUIPMENT MEASURE UP? AT STEWART OF READING THERES ALWAYS SCOPE FOR IMPROVEMENT:

GOULD OS1100 Dual frace, 30 MHz delay, very bright. Suppled with manual and 2 probes.
$\overline{\text { TEKTRONIX } 2215 \text { - Dual Trace } 60 \mathrm{MHz}}$ \square Sweep Delay, Includes 2 probes, Only
250

TEKTRONIX 400 SERIES

468 Digital Slorage Dual Trace 100 MHz Delay..... $£ 550$ 466 Analogue Storage Dual Trace 100 MHz Delay..... 2250 485 Dual Trace 350 MHz Delay Sweep................ $£ 750$ 475 Dual Trace 200MHz Delay Sweep.................. 450 465 Dual Trace 100 MHz Delay Sweep................ 5350 $\begin{array}{ll}\text { HC } 3502 & 5 m \mathrm{~V} \text { 201Div: } 0.2 \mathrm{~s} \text { secs. } \\ & 0.5 \text { SecDiv, } X \cdot Y: X 5\end{array}$ Dual Trace 20 MHz 0.5 Secciviv $X . Y: X 5$
Magrier: Magrifier; TVSync etc.

PHILPS PM3296A Dual Trace 400 Hz Dual TB Delay
Cursors IEEE
TEKTAONIX $2465 \mathrm{~A} \quad 4 \mathrm{Ch} 350 \mathrm{MHz}$ Delay Sweep

 Sweep Cursors etc. Dual Trace 100MHz Delay Cursors....... 2235 Dual Trace 100 MHz . Delay TEKTAONIX 2235 Dual Trace 100 MHz Delay
Cusisus... 7000

NOW THIS IS RIDICULOUS!!!

H.P. 8640A AM/FM Sig Gen

$500 \mathrm{KHZ}-1024 \mathrm{MHz}$ $500 \mathrm{KHz}-512 \mathrm{MHz}$ Version - $£ 250$ FARNELL PSG1000 Syn AMIFM Sig Gen 10 KHz 1GHz. Portable. Farnell PSG520 Syn AM/FM Slg Gen 10 KHz 520 MHz Portable. RACAL 9081 Syn AMFM Sig Gen 5-520M Mz_...E 8400 MAACON TF2015 AMFM Sig Gen 5-520MHz . 1 I75 MAACONL 6311 Prog Sweep Gen 10MHz-20GHz . $E 4000$

 MARCONI 2305 Modulation Meter $500 \mathrm{KHz}-2 \mathrm{ZHz}$ FARNELL AMM2000 Automatlc Mod Meler, 12 Hz . 2.46Hz.Unused............................... $\$ 1250$ RACAL 9008 Aulomatic Mod Meler 1.5MHz-2GHz.2.2000

STEWART of READING

110 WYKEHAM ROAD, READING, BERKS RG6 1PL
Telephone: (0118) 9268041 Fax: (0118) 9351696
Callers welcome 9am-5.30pm Monday to Friday (other times by arrangement)

H.P. 8562 A Synithesised 1 KHz. $22 G H Z$
 H.P. 8565 A 0.01-22GHz.

 MARCONI 2382100 Hz -400MHz High Resolution MAACON 2370 OOHZ-110MHz_ from $£ 2300$
 $8554500 \mathrm{KHz}-1250 \mathrm{MHz}$ from E 750 ; 855510 MHz .
18 GHz . 18 GHz .

LEVELL TG2000MP AC Oscillator $1 \mathrm{~Hz}-1 \mathrm{MHz}$ LevEL TG200DMP RC Oscillator $1 \mathrm{~Hz}-1 \mathrm{MHz}$
SineSquare. Meter: Battery Operated (Batteries not supplied)..................

 | $\begin{array}{l}\text { Complete with Batteries } \\ \text { \& Leads } \\ \text { Only }\end{array} 530$ |
| :--- | METROHM 9A. 500 V

Battery Meggar (a useful back up for Battery Meggar (a usetul back up for
taut finding) Complete with Batheries \&
 volis $D C$ current 10 amps; 17 ranges; Conlinutity
Buzzer; Transistor Tester
Unused $£ 15$

USED EQUIPMENT - GUARANTEED. Manuals supplied
This is VERY SMALL SAMPLE OF STOCK. SAE or telephone for Ilsts. Please check availability before ordering. CARRIAGE all units £16. VAT to De added to total of goods and carriage.

MARCONI TF 2019A

Synthesised Signal Generators 80 Hz to 1040 Mh AM/FM, Memories, LCD A REAL Anchor Special ONLY $£ 750$

Frequency Counters

Racal Dana 9903/4
7 segment 30Mhz £24
Racal Dana 9916
8 segment 520 Mhz £65
Racal Dana 9918
9 segment $560 \mathrm{Mhz} £ 75$

Signal Generators

HP 8683A
$2.3-6.5 \mathrm{GHz}$ AM/FM
NOW ONLY £499

Marconi TF2015 10-520Mhz NOW ONLY £95 Marconi TF2171 Synchronizer for 2015 NOW ONLY $£ 95$ BOTH TF2015 and TF2171 ONLY £180

Conference Equipment

Elite OHP's
Choice of 4 types from ONLY $£ 35$ UNICOL
Stands Choice from ONLY £45 KODAK SAV1030 Carousel Slide Proj ONLY $£ 175$ KODAK EKTAPRO 3000
Carousel Slide Projectors NOW ONLY £225

Video Equipment

Panasonic AG6200 VHS ONLY £99

Panasonic AG6810

Hifi Duplication machines VHS NOW ONLY £99

SONY VO5630 Low Band Umatic ONLY $£ 225$

PANASONIC AG6100 VHS Players ONLY $£ 100$

Audio Equipment

Sonifex
Cartridge Decks Only £75 Marantz
Cassette decks. Choice of 2 Only £45

Oscilloscopes

HP 1741A 100Mhz Storage Dual Time base only $£ 350$ TEK 465B 100Mhz Dual Trace/ Timebase Now Only £295
TEK 465M scope as 465 B but built only for Military. Only $£ 350$
TEK 475 200Mhz Dual Trace/Timebase Now Only £395
TEK 2445 150Mhz Four Trace/2 Time base
with Cursors, etc. Now Only £495
TEK 2445A 150Mhz Four Trace/2 Time bases with Cursors, etc. Now Only £995
TEK 2465300 Mhz Four Trace/2 Timebase sNow Only $£ 1250$

IWATSU SS-6711 100Mhz Four Trace Dual Time base Now Only £ $\mathbf{~} 345$
NICOLET 2090-111
1 Mhz Digital Scope, Cursor ctrl Now Only E 150
GOULD OS 3600 with
DM3010 DMM fitted, 60 Mhz Dual trace, Dual Timebase

Now Only $£ 350$
TEK T822R 20 Mhz
Dual trace, single timebase ONLY £225

Miscellaneous
NEOTRONICS Digifiam850
Portable Flammable Gas Det
CN Inst/charger NOW ONLY £ 145 EIP 451
uWave Pulse Counter
To 18 Ghz , Auto sweep. Variable sample rate. $£ 350$ GIGA Pulse internal counter 2-8Ghz ONLY £150

FARNELL SSG 520 Synthesised Signal Generator 10Mhz - 520 Mhz AM-FM-Sinad ONLY £425

FARNELL TTS520

 Transmitter Test Set which Matches SSG 520 (above) ONLY £425BOTH SSG520 and TTS620
For ONLY £795

AVO Model 8 Mk $5 / \mathrm{Mk} 6$ Multimeters ; THE Standard

NEW EQUIPMENT

DTA20 Oscilloscope 20Mhz
Twin trace incl probes ONLY £225
DTA40 Oscilloscope 40 Mhz
Twin Trace incl probes ONLY E299
DTS40 Oscilloscope 40Mhz
Digital Storage twin channel Cursors + readouts Incl. Probes. ONLY €399
DSM3850A Multiscope
Digital Scope, Multimeter,
Logic anal in one box, 5" LCD panel. Incl case ONLY £399
AMM255 Automatic Mod Meter 1.5 Mhz to 2 Ghz , LCD IEEE488 ONLY £495
SCG50 Synth Clock Gen. To 50 Mhz , LED display ONLY $£ 125$
Black Star Meteor 100 Counters
With fitted TXO option to 100 Mhz REDUCED NOW - ONLY £50

COMPARE OUR PRICES WITH THE COMPETITION SEE HOW MUCH YOU CAN SAVE AT ANCHOR

Philips PM3217 Scopes DC-50Mhz 2 Trace/2 Timebase A REAL Anchor Special ONLY E275

Gould OS300 Scopes DC-20Mhz 2 Trace SPECIAL NOW ONLY E150

Hewlett Packard
8640A Signal Generators
500 Khz to 520 Mhz AM/M/CW
SPECIAL ONLY $£ 245$
Philips PM5519
Colour Pattern Generator
SPECIAL ONLY $£ 125$

Racal Dana 199160 Mhz
NanoSecond Counters with Maths fictns, etc SPECIAL ONLY £295

ANCIIOR SUPPMITS LID

The Cattle Market Depot Nottingham NG2 3GY, UK Tel: (0115) 9864902 Fax: (0115) 9864667

bttp://www.anchor-supplies.Itd.uk sales@anchor-supplies.Itd.uk

MAIL ORDER A PLEASURE

Also at
Peasehill Road, Ripley, Derbys
All prices are EX VAT and Carriage

Letters to "Electronics World" Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

E-MAIL jackie.lowe@rbi.co.uk

Students' lots

In response to Dr Allen Brown's opening article in EW October 1998, it is indeed much harder to be a student than 25 years ago. From 1984 till 1990, I studied electronics at a Netherlands university and moved abroad in 1992. That would seem to underline Dr Brown's article. But nothing is further from the truth, as I will try to explain.
The Dutch grant and pay-back system is similar to the one recently introduced in the UK. Tuition fees were introduced in 1986. This met with opposition, obviously. From me too. But the numbers of new students did not drop.
By the time I finished my course, my debt had build up to an equivalent of $£ 4000$. That meant I could not buy a house in 1991. Not that that was a problem, since a lot of engineers are not totally sure where they are going to work for the next five years at the start of their career.
On the other hand, the gap between my student lifestyle and the first salary was so big - going up from about $£ 300$ to $£ 800$ per month - that I was able to pay off my debt within 18 months. To allude to twice the debt for couples is unfair since you either have a double income or you don't have to start to paying back right away.
The fact that Holland, Germany or France still has some engineers left should also undermine the validity of Dr Brown's view. And not everyone is happy to give up their country, friends and family for a good salary. My reasons for moving abroad were certainly not the money since I work
for the NHS.
Dr Brown also forgets to mention that there is another side to the coin. Governments struggle to eke out their available resources. You can bet that if the system remains the same, future cuts in the grants system are inevitable unless other government departments are sacrificed.
I think it is not unfair to ask students - most of whom will be a lot better off later compared to workers without a degree - to invest a little in their own future to avoid breakdown in other parts of the education system.

Frank Cook

Oswestry
Shropshire

Watt exposé

I read Lawrence Woolf's article 'RMS watt, or not?' with particular interest. I had just bought a pair of small amplified loudspeakers to use with my pc and had been enjoying a boggle at the numbers on the box.
The front of the box claimed 50W PMPO, peak music power output. On the back of the box, the specification claimed 10 watts rms (2×5 W). But the plug-top power supply included was rated at 6 V , 600 mA - i.e. 3.6 W .
The amplifiers inside consist of eight-pin DIL chips of the type usually rated at 2 W into 8Ω using a 12 V supply. The speakers are 4 in , 8Ω units. Realistically with a 6 V supply, I would expect about a watt of output.
They work well and sound about as loud as a portable radio. I am not
complaining. They are just what I needed, and were remarkably good value at $£ 6$ the pair - new and boxed. Some pc loudspeakers on offer are rated at 400 W . I settled for the 50 W jobs - fearful of the wrath of my neighbours.
It would be great if we could believe specifications at face value without the chore of trying to understand what's watt.
Manufacturers take note: I for one am more impressed by a realistic specification as opposed an unlikely sensational one. But then I expect your marketing people know better.

John Cronk

Prestatyn
Clwyd

Digital dog's dinner

Digitised tv sound production and transmission promised to be the panacea of sound quality, but has it delivered?
I can't remember hiss being a problem recently, but distortion is. Viewing on old-fashioned terrestrial fm in mono, it seems that as studio facilities are updated to digital working, the distortion gets worse. Live sound is quite acceptable, first generation tape is a little distorted, while edited, second generation sound is appaling.
In the summertime, the BBC 'Working Lunch' programme was extolling the virtues of its new OB truck which had won awards. Yet the very same truck was, and is, producing horrendous distortion when broadcasting edited stories.
What does this distortion sound like? Usually very sibilant, a
pumping, rough, muddy,
intermodulational noise, akin to recordings made without bias. The sound is dynamically distorted both in frequency response and amplitude.
News 24' items from America can be even worse. Presumably these have been processed a greater number of times.
When combined with a strong accent, words can be unintelligible. Music seems to be less affected, due to fewer generations, maybe, of the fact that music is a more continuous signal than speech.
If digital should be so transparent, can anyone explain why it is so cloudy? M. Gentle London

HV fuses?

A friend recently asked me if I could obtain a replacement for the highvoltage fuse in his microwave cooker. I tried all my sources to no avail. He tried service shops and was told they were not available, or that they could only be fitted by trained personnel, or was offered a fudge, consisting of replacing the fuse with a diode. The cost was about $£ 50$ in each case. Where can one buy highvoltage fuses? They seem to be made by only one company in the Far East. M. Gentle

London

There's more to
 Radio 4...

BBC Radio 4 is broadcasting a strange signal which I would like to draw to the attention of readers. Listen to 'Today' on Radio 4 any

Wire into this

Imagine you want to make a simple luxmeter in a hurry. You haven't time to order cornponents so you have to use what's to hand: an LDR03 light-dependent resistor, some linear resistors, a $350 \mu \mathrm{~A} 250 \Omega$ galvanometer, a 9 V battery and two bipolar push switches.
As the resistance of the LDRO3 will vary from some 10Ω to $500 \mathrm{k} \Omega$, you need two scales. For low light levels, you just put together the ldr, battery, galvanometer, a $24 \mathrm{k} \Omega$ resistor and a $5 \mathrm{k} \Omega$ trimmer as in Fig. 1a). The trimmer is necessary to adjust full scale, Fig. 1b). For the strong light you adopt the layout of Fig. 1c).
Here comes the problem. All available items are in Fig.
1d). Switch S_{1} selects the first scale and S_{2} the second one. Pressing both switches together allows you to adjust full scale.

Of course there is no current through the battery when neither S_{1} or S_{2} are pressed. Try wiring the circuit up. I will be surprised if you found the solution in the first half-hour. Jean-Marc Brassart
Saint Laurent Du Mar
France

Fig. 1. Luxmeter with two ranges. All you have to do is wire it up so that each switch selects a range, both switches on allows fsd setting and both switches off disconnects the battery.
time from 6 am until 9 am weekdays. You'll need an audio system with a good bass response. From time to time, you will hear a rumble, not unlike that from vinyl records. The bandwidth of the rumble is quite narrow; a sub-woofer doesn't bring it out much. I have phoned the BBC and e-mailed them. I got an e-mail in reply but it simply said that they wouldn't be replying.
Charles Coultas
Wokingham

Seeing through Windows

There have been a few editorials about Microsoft, Windoze, etc, in your journal recently, and being a reluctant user of the stuff I thought I would throw in my two bob's worth.
Phil Darrington's piece in the June issue, bemoaning the poor performance of ' 95 , indicates some lack of understanding of the beast on his part. Trying to run it on a 33 MHz 386 with a minuscule 4 Mb of ram is
simply asking for trouble. It really needs a minimum 16 Mb of ram, and more is better. Rod Cooper pretty much confirms this in the August issue. Windows 98 requires about twice as much - presumably because you must have Internet Exploder loaded all the time. The entry level for a pc these days is 64 Mb of ram. Windows 3.x was much less forgiving in my experience, and it was less graceful when it did fall over. On several occasions it has locked up so tight on me that even the DOS configuration would hang the pc , and the only option was complete reinstallation of Windows after deleting it. If Phil is tired of waiting for the 'disk-scanner' he can surely bypass it with a few quick keystrokes, although why one keystroke is not sufficient is beyond me.
In the August issue Rod Cooper wonders at the value of FAT 32 with its ability to make clusters as small as 4 Kb . My system at work is a lowly 586 with a 1.6 Gb drive. With the current state of research funding I
am unlikely to get it upgraded in the near future.
My old system at home had a 2.6 Gb drive, and both of these systems are squeezed for hard disk space. I partitioned both drives to minimise the cluster size but even so there is some 80 to 100 Mb of lost 'slack space' in a 1 Gb partition due to the cluster size - a loss of nearly 10%. Most of this would be reclaimed with FAT 32.
Win 95 revision B supports FAT 32 and a drive can be converted without loss of data with Partition Magic.
Broadly, however, I agree with Phil. I also think Windows 95 really requires more intervention on the part of the user or system manager to make it user friendly. I recommend that all 95 users obtain and install Power Toys, TweakUI being the most important component. Why it is not a standard part of the package is a mystery, unless Micro\$oft has a policy of denying its customers the ability to be able to set their systems

Wide-band fet amplifier

I have some commentary regarding the circuit, 'wide-band, variable-gain FET amplifier,' submitted by Frantisek Michele in your August 1998 issue. In particular, because the 2 N 5486 fet is outside the feedback loop, the circuit will not follow the gain equation given in the text.
In practice, the fet follower suffers gain loss, although this is correctable by trimming the feedback ratio to achieve the overall desired circuit gain. Also, the feedback path should be returned to Tig's emitter, as opposed to $T r_{2}$'s.
This circuit is of special interest to me because it is identical to a circuit that appears in the Linear Technology Corporation application note 21, 'Composite Amplifiers' dated July 1986. The sole difference is that our circuit used feedback trimming to avoid the previously mentioned problem.
The circuit also appeared, with LTC's approval, in the January 1987 issue of $E D N$ magazine. Your readers and Mr Michele may wish to reference these publications for expanded discussion of this circuit's operations Jim Williams
Staff Scientist
Linear Technology Corporation
Milpitas
USA
up the way the user wants it, rather than how Microsoft wants it. As for not supplying manuals, they are an optional extra these days, a way for to cut costs and boost profits.
By all accounts Windows 98 is no real improvement on 95 . In fact the advice I have seen is that there is little or no advantage in changing to 98 unless there is a specific feature you need.
From all I have seen it requires more resources than 95 , and since Internet Explorer is such an integral part of the system, the system hangs when Explorer hangs, which could lead to loss of data. This is not the case with Netscape. Furthermore, every review and all the advice I have seen suggests that $J E$ is inferior to Netscape.
The issue of Microsoft's near monopoly is perhaps more serious. The Internet is becoming more important as a communications medium for news, etc, and I believe that the bun fight over Internet Explorer has more to do with that than Microsoft's desire to provide a browser.
In Australia we already have an alliance of Microsoft with one of our biggest media groups (PBL, owned by the Packers), called NineMSN. A friend recently bought a new pc which had ' 98 loaded, and there were dozens of shortcuts in menus up to five deep - to various sites for news, sports, movie, etc, owned or operated by PBL, Microsoft, and their associates.
We certainly don't want Bill Gates and Microsoft - or PBL for that matter - to be in a position exercise control over the information we have access to, any more than we want that other well known US citizen, Rupert Murdoch, to. It is essential for democracy that they don't.
For more details on how flaky Windows 95 is, and some useful information that will help, I direct you to
www.iarchitect.com/msoft.htm and www.creativelement.com
To conclude I proffer this small piece for your amusement. I don't know its origins.

Definition of Windows95:

Windows95: /win-doz-nin-te-fiv/ \boldsymbol{n}.
32-bit extensions and a graphical shell for a
16-bit patch to an
8 -bit operating system originally coded for a
4-bit microprocessor, written by a
2-bit company, that can't stand
1-bit of competition.

Phil Dennis

School of Physics
University of Sydney
Australia
Bang go my chances of a review
copy of NT5-ed.

Cyril Bateman reveals three clearing houses for data sheets and application notes here - all accessible via the net, free of charge. He also focusses on design information for those of you interested in thermal management and temperature measurement.

For many designers, the Internet can be used to quickly ascertain potential design options, reducing time to market. It contains a wealth of electronics design data, both data sheets for specific components, application notes and design guides. But how best can these be accessed?
Assuming that you know the component part number and manufacturers name, a data sheet is easily retrieved. You simply visit the manufacturer's web site and search against this part number.
If you do not have enough information to take you directly to a site, you might visit and search each maker's site in turn. This can prove time consuming though - particularly for readers outside North America.
Especially when Internet is slow, to minimise on-line time, I try,
whenever possible, to download three or four files concurrently. While each individual file transfer rate may then be reduced, I find that as one site slows down, another usually speeds up. My modem then tends to run continuously close to maximum speed and my total download time is minimised.

Searching for applications information

When starting a new design, you will know what the application is, but often, you will not know the designations of parts suitable for the design, nor who makes them.
Using a conventional Internet search engine, such as Alta Vista, to search against the required application might provide the needed data. More often that not though, you will be left with countless hits to sift
through, and even after sifting there is no guarantee that you will find what you are looking for.
Specialist library search sites can be useful here. In recent issues, I have mentioned several specialist topical magazine-based sites that can provide useful background information and articles. They also offer links to other sites, but not usually to specific device or application note numbers.
To date I have found only three large, specialist data-sheet and application-note libraries that can be searched free of charge. These are popular sites, so again can be very slow to access.

Questlink.com ${ }^{3}$ hosts the EE Design Center community page, which can be electronically searched. You can have free access to this site, but downloading information

Where to look...

1. IE bug opens users' hard drives.
2. Cuartango Security WEB Site.
3. EE DESIGN CENTER.
4. Electronic Designer Interface.
5. Global Semiconductor Datasheets Library.
6. Electronics Cooling Magazine.
7. Application Note AN-225.
8. Application Note AN28.
9. Application Note AN-369
http://www.news.com/News/ltem/0,4,27482,00.html
http://pages.whowhere.com/computers/cuartangojc/index.html
http://www.questlink.com
http://www.info-quick.com
http://www.semi.com.tw
http://www.electronics-cooling.com/Resources/EC_Articles
http://www.national.com
http://www.linear-tech.com
http://www.analog.com

Bugs

As features are added, operating system and application software becomes more vulnerable to software bugs and hacker attacks. According to a CINET ${ }^{1}$ report, on-line Windows or NT users of Internet Explorer 4 with active scripting enabled, have been exposed.
A malicious VBScript received via HTML email or directly from a Web page could copy or even delete files from your hard disk without your knowledge.
Details of fixes for these new bugs can be found in the Microsoft bulletin ms98-015. Until these fixes have been applied, Microsoft recommends you turn off active scripting for Explorer.
Juan Cuartango ${ }^{2}$ posted on his Web site details of four recent security problems. His demonstration test pages let you confirm whether your system is vulnerable.

Hopefully the last of a year long series of 'scripting' enabled hacks, which could affect Internet Explorer 4 users.

Fig. 1. Result of searching the user friendly QuestLink application notes database, for 'thermocouple' applications.
requires you to first register. One nice feature is that while QuestLink redirects your download to the manufacturer's site, your search result page stays on-screen, facilitating multiple simultaneous file downloads. My application-note search on 'thermocouple' for this article found only three hits. One each from Analog Devices, Maxim

Integrated Products and National Semiconductor, Fig. 1.
Info-quick. com^{4} I find less useful, mainly because I use Netscape 2. With this early version of the browser, I experience pull-down menu bugs. These are listed in Infoquick's help files. On my first visit to this site, I was unable to access any data at all until I referred to the help files. Using version three or later of Netscape is said to overcome this problem.
In the March ' 98 issue, I mentioned the Icesoft library which can be accessed at the semi.com.tw Web site ${ }^{5}$ based in Taiwan. Although this site can be slow, it remains my first port of call when seeking a list of datasheets and application notes.

Of the three sites mentioned here, Icesoft regularly returns the most hits. My search on 'thermocouple' returned 23 hits. It included many from Linear Technology, which the other sites missed. But it failed to find the Maxim or National hits found by QuestLink.
Icesoft provides a listing of potentially suitable parts, then routes your selected item directly to the
manufacturers site files. But in the process, it removes your search results page. Having commenced a download, returning to this results page can be quick, but this intermittent page loss inhibits my practice of concurrent file downloads.

Managing component heat

 Every electronic design shares a common characteristic - its components heat up. Excessive operating temperatures dramatically reduce the equipment's service life. Frequently, electronic circuit design becomes a trade-off between performance, cost and component temperature.While specialised circuit-board thermal-simulation software is available, it requires you to input many parameters, some of which may not be available. Choice of circuit-board materials and printed track design further complicate these calculations Fig. 2.
As a practical alternative, component temperatures on the finished board can be measured. Heatsinks and other large parts are easily measured, using sensors made from diodes, diode connected transistors, thermistors, sense resistors, dedicated integrated circuits and pre-packaged thermocouple probes.
Smaller - and especially surface mounted components - ideally require use of the non-contact temperature-measurement methods. Such methods were outlined in Hands-on Internet in the January '99 issue. But non-contact measuring equipment is costly, and can be difficult to obtain. This month I look at lower cost methods.
PTFE-insulated naked bead thermocouples made using 0.2 mm diameter wires are a readily available and economical alternative. The thermocouple wires conduct heat from the device being measured, particularly when attached to 1206 size or smaller components, understating its true temperature. So
the thinnest possible thermocouple wires should be used
In principle, it is feasible to simply measure the thermocouple's output voltage. Connection of the thermocouple wires to a measuring instrument imposes a second dissimilar metal, 'cold' junction. The difference voltage generated by these hot and cold thermocouple junctions depends on their temperature difference. Published thermocouple characteristic tables assume this cold junction be maintained at exactly $0^{\circ} \mathrm{C}$.

Thermocouple linearity issues

 All thermocouples have a non-linear temperature/voltage characteristic which requires compensation. In practice, most electronic components run at temperatures between $25^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$, so the type ' K ', Chromel/Alumel thermocouple is preferred.Several tutorials on minimising errors when using thermocouples can be found on Internet. The Electronics Cooling Magazine ${ }^{6}$ site allows its back issues to be accessed. Two tutorial articles, 'Notes on using

Fig. 2. Heat dissipated from printed board mounted components, is a complex combination of heat dissipated by the component, the pcb and its tracks.

Fig. 3. An electronic method of maintaining a true zero degrees Centigrade, reference cold junction, for accurate thermocouple measurements.

thermocouples' by Dr. R J Moffat of Stanford University and 'Heat transfer measurements in electronic cooling applications' by Dr. N R Keltner of Ktech Corporation are especially relevant. They can be found in its January '97 and September ' 98 issues.
Many makers produce
thermocouple meters and DMM adapters, with varying claims for accuracy. The $40.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ 'Seebeck' coefficient of type ' K ' thermocouples generates some 3 mV at typical component temperatures.
Common-mode noise pickup can be a problem when measuring component temperatures on 'live' circuits. Using applications data found on the Internet though, you can quickly understand how to minimise errors for 'in-circuit' temperature me asurement of components.

Optimised thermocouple measurements

For laboratory use it is possible to maintain an extremely accurate $0^{\circ} \mathrm{C}$ reference cold junction for many hours by simply using melting ice held in a thermos flask. But electronic compensation would be more portable and practicable, so thermoelectric coolers are used to provide a $0^{\circ} \mathrm{C}$ cold junction, Fig. 3.
Temperature is one of the most commonly measured physical parameters. As a result, dedicated electronic integrated circuit solutions for thermocouple cold-junction compensation have been developed by many makers.
This technique adds a voltage into the thermocouple loop, equal in value but opposite in polarity to that generated by the cold junction, Fig. 4. One simple method of coldjunction compensation is described in the twenty-year old National Semiconductor application note AN$225 .{ }^{7}$ It uses their $L M 335$ integrated thermometer circuit to measure the

Fig. 5. An integrated circuit method which supplies a switch selectable cold junction compensation voltage, suitable for use with common thermocouples.

Fig. 6. A totally analogue, continuous function linearisation circuit, which can correct for all thermocouple non-linearities.

Fig. 7. A modern integrated thermocouple cold junction compensation circuit, used with multiple switch selectable thermocouples, for rapid multipoint temperature measurements.

COUPLE TYPE	$\begin{aligned} & \text { SEEEECK } \\ & \text { CDEFFICIENT } \end{aligned}$ $\left\{\mu^{W} / /^{\circ} \mathrm{C}\right\}$	$\begin{aligned} & \text { IC1 } \\ & \text { FII } \end{aligned}$
E	60.9	1
J	51.7	8
K. T	40.6	7
R. 5	5.95	6

cold junction temperature. This circuit then applies a "best straight line' fit correction voltage.
While best straight-line fit correction is acceptable for small temperature changes, even near room temperature, thermocouple output follows a curve. Improved coldjunction compensation using a 'bow' correction circuit was provided by dedicated cold-junction compensation integrated circuits. Switch selection of the appropriate correction pin permits cold junction compensation for a variety of thermocouples, Fig. 5.

Twenty pages of thermocouple info...
Linear Technology's application note

AN28, titled 'Thermocouple Measurement' is a twenty page tutorial which includes thermocouple background and many practical measurement circuit drawings. ${ }^{8}$ These detail both linear and digital correction methods for thermocouple hot junction non-linearity as well as the improved cold junction compensation techniques, Fig. 6
Analog Devices' application note AN-369 describes a single integrated circuit which combines the required cold junction compensation with an 'in-amp' for signal amplification in the one package. ${ }^{9}$ Thermocouple hotjunction linearisation however is not included, so external compensation
for this needs to be added. Thin thermocouple wires and junctions are fragile, and this package also includes an on-board broken thermocouple alarm circuit. Electronic cold-junction compensation requires the cold junction, correction circuitry and printed circuit tracks all be at thermal equilibrium. Correct printed board layout and thermal shielding or heat sinking, is needed to minimise measurement errors.
Having provided an accurate thermocouple compensation circuit, multiple thermocouples may be switch selected, for near simultaneous temperature measurement of many component parts, Fig. 7.

New

 logichave developed a complete Boolean algebra using the exclusive-OR and AND operators. This article demonstrates that this algebra complements the more familiar Boolean algebra using the inclusive-OR operator. In doing so, it greatly increases the scope of Boolean algebra for use in the design of digital circuits.
Simplification methods are are available for this algebra. The use of conventional Karnaugh maps is described here, but I have also developed a systematic algebraic method that allows you to equate up to six variable using with just pencil and paper. I hope to discuss this in a second article.
The material in this article requires nothing more than a basic understanding of digital design theory.

Introduction

My first digital project in the late fifties was a plant-species counter for a botanist. The counter was constructed from decatrons - gas discharge display devices for the younger among you. To implement a logic gate that was needed, we used a valve rectifier.

This, and subsequent projects, gave me my introduction to digital design - then called switching-circuit theory. We used the mathematical logic invented by George Boole and described in 'An investigation of the Laws of Thought', in 1854. I came across this emerging concept on visits to a local technical book shop and bought several books about it.
One of these books gave an interesting account of Charles Babbage's attempts to invent a mechanical computer out of gears and levers - i.e. the Difference Engine for compiling tables and later in 1833 the Analytical Engine. This machine was to be driven by a steam engine. Note that this was some 20 years before Boole published his account of his algebra.
The concept of the finite mathematical structure of logical design theory, and the way in which it solved digital design problems, for me became of great interest. I discovered that Boolean algebra was a whole new algebra based on a finite number system.
Instead of having an infinite number of integers, you only had two numbers or values, one and zero, or 1 and 0 . The digits 1 and 0 are used for convenience; they could be called any-

David N. Warren-Smith, MSC, CPENG

Fig. 1. The familiar elements of AND, OR invert algebra.

AND operator

A 0011
Fig. 2. The 16 possible binary operators and the 4 possible unary operators.

0000 Open circuit (stuck low)
$\sqrt{ } 0001$ AND operator
0010 AND operator with B inverted
0011 A
0100 AND operator with A inverted

0101 B
$\checkmark 0110$ Exclusive OR operator
$\sqrt{ } 0111$ Inclusive OR operator
$\sqrt{ } 1000$ NOR operator
$\sqrt{ } 1001$ Exclusive NOR operator
1010 Inverse of B
1011 OR operator with A inverted
1100 Inverse of A
1101 OR operator with B inverted
$\checkmark 1110$ NAND operator
1111 Short circuit (stuck high)
thing such as 'true and false', 'high and low' or 'on and off'.
The algebra was the same whatever names you used, but the application of the algebra could vary depending on what you wanted to apply it to. You have constants and variables in this algebra, but they take on only one or the other of the two values that you have assigned to the algebra.
Some of the early books that I bought were written by Post Office engineers and applied to relay circuits. I discovered that in a digital design problem, you could separate the logical analysis or synthesis of a problem from the implementation of the final hardware solution. The algebra was just as applicable to logic gates, and diode gates as it was to relay circuits.
Another thing I discovered was that after the initial bit of thinking to get used to the new algebra and concepts, it was quite easy to understand and use for practical problems. Just a little persistence was needed to get used to the new way of thinking.
Digital design was launched by Claude Shannon in 1938 in his account of his thesis 'A Symbolic Analysis of Relay and Switching Circuits', Trans AIEE, Vol. 57, pp. 713-723. Shannon made a good account of relating Boole's mathematical logic to switching circuits.
By the way, Shannon is better known for his major contributions to communications theory. Logical design is therefore quite a young subject and has grown with the development of computers and other digital systems. Further development of logical design theory is possible and ongoing.
The incredible and rapid development of personal com-

A 01
00 Open circuit
01 No inversion
$\checkmark 10$ Inversion
11 Short circuit
puters has been made possible by the invention first of point contact transistors by Brattain, Bardeen and Shockley in 1948. Soon after, integrated circuits appeared with the development of planar transistors in about 1959.

First encounters

In the sixties, my first encounter with integrated circuits was with Fairchild resistor-transistor logic, known as rtl. This was quickly superseded by diode-transistor logic and then tran-sistor-transistor logic, or ttl , that is still sometimes seen.
These developments were based on a sound understanding of the physics of solid state devices. The design of computers and other digital applications similarly requires a sound understanding of logical design theory and the Boolean algebra on which it is based.
In this article, I take a look at Boolean algebra as it is presented in popular books on digital design theory. In doing so, I hope to change some of the ways of thinking depicted in these books.
My aim is that you should discover that the Boolean algebra that is usually taught in technical schools or undergraduate universities is incomplete and inadequate. I redress this situation by filling in the missing bits.

My starting point is a detailed look at the exclusive-OR gate - ex-OR for short. This device is an essential part of Boolean algebra and should be treated as such. In order to reach the objective of being able to deal with these gates easily I will develop basic theorems relating to these gates. I have also developed a method of using conventional Karnaugh maps to deal with them.

You will find that my approach is more decisive than the pattern matching idea given in some digital text books. I also explain why my approach has not been generally recognised, as far as I can tell, from reading books on digital design.
To get the most out of this article you will need to keep in mind my ground rules. I don't feel that I understand something unless I can see how each part of it is arrived at. Consequently you will find that each step in my explanation depends on earlier steps described, down to the initial concepts that I describe first. If you start in the middle, the topic will look more complicated than it is.
Also, this article would have become too long if I had gone over ground well covered in existing books. Consequently I assume that you are familiar with basic Boolean algebra, as it is presented in popular books on digital design. This includes concepts such as a canonical expansion, the duality principle, and Karnaugh maps, abbreviated to K-maps. The way I display K-maps is the way I feel most comfortable
with them. I find that this method makes them easier to draw too.
Exclusive-OR algebra is sometimes referred to as a ReedMuller algebra. If you are familiar with R-M, then you might like to compare it with my approach. My approach has not originated from R-M, and you don't need to understand this form of algebra in order to benefit from this article.
You might also have come across the concept of a Galois Field - GF(2) in particular. Exclusive-OR functions have a very wide spectrum of applications - particularly in communications and data storage applications, where GF(2) is used. I don't go into this in this article.
If you have done any work with digital circuits, you will have noticed the rapid emergence of application-specific integrated circuits or ASICs. Many digital designers are now using programmable-logic devices, or plds. These are ASICs that offer instant digital designs.
A popular class of these devices are cplds, or complex plds, to distinguish them from the earlier programmable-array logic, and similar devices. Some of these cplds are reprogrammable. You can program them directly from your pc through a simple cable attached to your computer's parallel port.
The whole process takes seconds. You don't even have to remove the device from the printed circuit board for your application. This significantly speeds up the development process. The once popular ttl devices have gone into the junk box and discrete cmos logic is not far behind.
Many complex plds contain an exclusive-OR gate in their logic structure. Consequently, an easy way of dealing with these gates is useful.
This article offers such a way. If you are using a cpld development system such as Altera's MaxPlus II, or one of the many other similar systems on the market, then you are being spoiled. These systems will do all your logical design drudgery work for you.
There are Altera systems in use at literally thousands of universities, technical colleges and design laboratories throughout the world. With this system you just have to type in what you want or draw it on the screen, make a few choices and press a button.
As an instructor in digital design I believe that you still benefit from understanding the theory. You will know what the system is doing, why it is doing it, and what the shortcomings and limitations in the system are.
Due to the convenience and capacity that these devices offer for development and small production run applications, new families of devices and new manufacturers of cplds, eplds, fpgas, etc., are still appearing. Devices keep getting bigger, faster, more efficient and more of them.
The proper use of these devices demands an understanding of the underlying theory that they all depend on. Think equations rather than circuits. In the context of cplds, circuits are both unnecessary and clumsy.
I believe that my use of K-maps for exclusive-OR algebra and my simplification method were original when I first investigated the material for this article in 1965. They may still be.

The derivation of Boolean algebras

To make the matter a bit more intelligible you need to go back briefly to the AND, OR invert algebra.

Figure 1 shows truth tables for the AND, OR and invert operators, together with the symbols commonly used for these operators. If you look at the right-hand columns of these truth tables you can see the characteristic patterns of four possible values of two variables for the AND and OR operators and the characteristic pattern of two possible values for the inverse operator. For example the pattern for the AND operator is 0001 looked at from top to bottom.
I like to call the AND and OR operators binary operators

Basic theorems

$A \& 0=0$	$A+0=A$
$A \& 1=A$	$A+1=1$
$A \& A=A$	$A+A=A$
$A \& A^{\prime}=0$	$A+A^{\prime}=1$

Commutative law $A B=B A \quad A+B=B+A$
Associative law $A(B C)=(A B) C \quad A+(B+C)=(A+B)+C$
Distributive law $A(B+C)=A B+A C \quad A+B C=(A+B)(A+C)$

DeMorgan's theorem:

The inverse of a logic function can be obtained by replacing all + operators with \& operators, replacing all \& operators with + operators, priming all unprimed variables and unpriming all primed variables.

Simplification relationships:

$A+A B=A \quad A+A \cdot B=A+B$
and the inverter a unary operator due to the number of variables involved in each case. To be more general you could construct 16 possible binary operators by making use of all possible patterns for the binary operators. And you could construct four possible unary operators. Figure 2 illustrates the possibilities.
In this diagram, six of the binary operators are identified as non trivial by a tick along side them. Note that only one unary operator is non-trivial. The names for the operators are shown.
Trivial operators include such cases as the output stuck high or low, the familiar operators with one input inverted and cases where the output reduces to the case of a single input or the input inverted.
Looked at in this light, the AND, OR operators can be seen to be an arbitrary selection of two of the six possible nontrivial binary operators from which the well known Boolean algebra has been constructed. The fact that this is a complete algebra, in the sense that any arbitrary function of Boolean variables can be constructed from it, can be seen from the canonical expansion for this algebra.
Of course the AND and OR operators appear naturally when physical switches are connected together or where the construction of logic gates is considered, which has contributed to their popularity. This is a bit like the natural development of the decimal number system because we have ten fingers. We know we can develop other number systems. By the same token, we can also develop other Boolean algebras.
The theorems of AND, OR, inverse Boolean algebra can be derived by use of the truth tables in Fig. 1. Take the truth tables in Figure 1 as the postulates - i.e. starting point - for the algebra. From here, you simply plug the results from these truth tables into the truth tables constructed for the various theorems to prove the theorems.
This is the truth table method of proof - or proof by exhaustion. It is possible because there are only a finite number of possible combinations of values of Boolean variables so we can consider all possibilities. This method of proof allows you to derive all the results that we need directly.
Keep in mind that all mathematical structures are abstractions. I won't do the derivation here since the results are well known. To refresh your memory the theorems are shown in Fig. 3. Note the way that they are arranged.
Considered first is the case of each binary operator with one variable and 0 or 1 as the second variable, then the case of each binary operator with one variable and the same variable uninverted or inverted as the second variable.

Fig. 3. Summary of $A N D, O R$, Invert Boolean algebra theorems.

Fig. 4. Truth table and circuit diagrams for the exclusive-OR operator.

Next the three laws are dealt with - namely the associative, commutative and distributive laws. These allow you to perform manipulations with parenthesis and with rearrangements. Next, inversion is dealt with, given by DeMorgan's theorem for AND, OR Inverse algebra
Finally, two simplification results are included with the theorems. When you derive the exclusive-OR algebra you would of course expect to find some new or different results.

Exclusive-OR algebra basics

Now you can make another arbitrary choice of binary operators and develop another Boolean algebra. Take the exclu-sive-OR and AND operators. You don't specifically need the inversion operator for this algebra since the exclusive-OR function has an inversion property built in. But you will need the inverse of variables.
Also, there is nothing to stop you using results already obtained for the AND, OR invert algebra, so all the results from this algebra carry over. You are actually extending this algebra.
Other choices of operators are possible. For example I could have chosen the exclusive-NOR operator with one of the AND or OR operators. Out of the six non-trivial binary operators, three of them are the same as the other three, but with outputs inverted. This gives them a degree of relatedness. A complete development of Boolean algebra should therefore include at least the AND, OR, exclusive-OR and Invert operators.
To start the process I will first extend Fig. 1 to show the exclusive-OR function as in Fig. 4. This diagram also shows the symbol that we will use for the exclusive-OR operator.
The basic theorems can be derived algebraically using the results from AND, OR, Invert logic. This is simpler than drawing up the truth tables.
In terms of the inclusive-OR, the exclusive-OR is given by

	$x \oplus y=x y^{\prime}+x^{\prime} y$
T1.	$x \oplus x=x x^{\prime}+x^{\prime} x=0$
T2.	$x \oplus x^{\prime}=x x+x^{\prime} x^{\prime}=1$
T3.	$x \oplus 0=x 1+x^{\prime} 0=x$
T4.	$x \oplus 1=x 0+x^{\prime} 1=x^{\prime}$

where \oplus represents the exclusive-OR operator.
The theorems have been labelled for convenience in referencing, as will be the following ones.
Equation T1 shows that applying the same signal to both inputs gives an output stuck low, while T2 shows that applying a signal and its inverse to an exclusive-OR gives an output stuck high.
In T3, applying a logic low signal to one input gives an of the inversion theorems.
output that is the same as the other input. Equation T4 shows

$x y$	$(x \oplus y)$	($x \oplus y$)	$\mathrm{x}^{\prime} \oplus \mathrm{y}$	$x \oplus y$
00	0	1	1	1
01	1	0	0	0
10	1	0	0	0
11	0	1	1	1

T5. $(x \oplus y)^{\prime}=x^{\prime} \oplus y=x \oplus y^{\prime}$

T6. $x \oplus y=x^{\prime} \oplus y^{\prime}$
that applying a logic high to one input gives an output that is the inverse of the other input.
Both T 3 and T 4 show the well known result that the exclu-sive-OR gate can be used as a means of controlling the polarity of a logic signal under the control of one of its inputs. This result is frequently used for toggling a bit in a microcontroller output between high and low by exclusiveORing the bit with a logic-I bit.

Inversion theorems

Equations T5 and T6 derived in Fig. 5 are theorems relating to inversion. In addition, T6 follows from T5 by double inversion. These are in addition to T 4 .

$$
\begin{array}{lr}
\text { T5. } & (x \oplus y)^{\prime}=x^{\prime} \oplus y=x \oplus y^{\prime} \\
\text { T6. } & x \oplus y=x^{\prime} \oplus y^{\prime}
\end{array}
$$

Many of these results can be seen by considering physical arguments. However, by representing all results in the form of equations you can avoid having to depend on physical arguments - which can quickly get you in a tangle.

Commutative, associative and distributive laws

The commutative, associative and distributive laws are similar to the case of the inclusive OR. Proofs can be made by the truth table method or by expanding both sides and using the results for the inclusive-OR case. The proofs are omitted here.
These theorems show how to deal with parenthesis and rearrangements

T7. $x \oplus y$	$=y \oplus x$	
T8. $(x \oplus y) \oplus z$	$=x \oplus(y \oplus z)$	
Associative law		
T9. $x(y \oplus z)$	$=x y \oplus x z$	
Distributive law		

Converting AND, OR Invert logic

The next theorem provides a way to convert AND, OR logic to AND, exclusive-OR logic. This will be the starting point in the development of a systematic approach to finding forms of functions that include an exclusive-OR operator.
Theorem T10 states that if g , h are functions of the same switching circuit variables, then if $\mathrm{f}=\mathrm{g} \oplus \mathrm{h}$ and $\mathrm{gh}=0$, then $\mathrm{f}=$ $\mathrm{g}+\mathrm{h}$. Disjunction theorem T10 can be proved as follows:

$$
\begin{aligned}
f & =g \oplus h=g h^{\prime}+g^{\prime} h \\
& =g h^{\prime}+g^{\prime} h+g h
\end{aligned}
$$

since $\mathrm{gh}=0$,

$$
\begin{aligned}
& =g\left(h+h^{\prime}\right)+h\left(g^{\prime}+g\right) \\
& =g+h
\end{aligned}
$$

which is the required result.

Canonical forms for the exclusive-OR logic

Theorem T10 can be used for expressing a function given in terms of the + operator in terms of the \oplus operator. The function in terms of the + operator is expanded to minterm form, so that all terms are disjoint - i.e. the product of any two terms is 0 . The + operators can then be replaced with \oplus operators.
This means that any function can be expressed in exclu-sive-OR form directly from its truth table or Kamaugh map. A canonical form for the exclusive-OR operator is therefore with three variables:

$$
\text { c1. } \begin{aligned}
£(a b c)= & \alpha_{0} a^{\prime} b^{\prime} c^{\prime} \oplus \alpha_{1} a^{\prime} b^{\prime} c \oplus \alpha_{2} a^{\prime} b c^{\prime} \oplus \alpha_{3} a^{\prime} b c \oplus \\
& \alpha_{4} a b^{\prime} c^{\prime} \oplus \alpha_{5} a b^{\prime} c \oplus \alpha_{6} a b c^{\prime} \oplus \alpha_{7} a b c
\end{aligned}
$$

where α is 1,0 depending on whether the i th term is present or not. Expressions like this are sometimes referred to as exclusive-OR sum-of-products or ESOPs in the literature.
An alternative canonical form is found by expanding primed variables with $\mathrm{T} 4\left(\mathrm{x}^{\prime}=\mathrm{x} \oplus 1\right)$ multiplying out and cancelling duplicate terms with T 3 and T 1 . It is:

```
C2. f(abc)
= \beta
```

where β is 1,0 again depending on whether the i th term is present or not.
The canonical expansions imply that any Boolean function can be expressed in terms of the AND and exclusive-OR operators. Exclusive-OR algebra is therefore a complete Boolean algebra.

The majority function

Certain functions are true in both inclusive and exclusive-OR form. Take, for example, the majority - or arithmetic carry function:

$a b \oplus a c \oplus b c=a b+a c+b c$

Alternative representation of basic theorems

Equations T1-4 are dual theorems and are frequently labelled to reflect this property.
Alternative expressions for T 1 and T 3 are:
T1a. $\quad x \oplus x \ldots \oplus x=0$,
for an even number of x,
T3a. $\quad x \oplus x \ldots \oplus x=x$,
for an odd number of x,
Tlb. $\quad x \oplus y \oplus z \ldots=0$,
if an even number of variables $x, y, z \ldots$ have the value 1 $x \oplus y \oplus z \ldots=1$,
if an odd number of variables $x, y, z \ldots$ have the value 1 .

Alternative systems

Equations T1 to T10 are a system of exclusive-OR-AND logic. A dual system of Exclusive-OR-OR logic is also possible. In such a system T9 would have to be replaced by the following:

$$
\text { T9' } \quad x(y \oplus z)=\left(x^{\prime}+y\right) \oplus\left(x^{\prime}+z\right)
$$

This follows from applications of the distributive law, DeMorgan's theorem and T6.

The exclusive-OR operator can be thought of as a second addition operator, known as modulo-2 addition, giving switching circuit algebra two addition operators.

Duality in the exclusive-OR theorems

The duality principle states that "Given any of the basic theorems of Boolean algebra, changing OR operators to AND operators, AND operators to OR operators and changing zeros to ones and ones to zeros where these occur leads to another of the basic theorems." This applies specifically to the AND and inclusive OR operators.

However, if you apply the inversion theorems to both sides of the basic theorems of the exclusive-OR operator you can see that T1 becomes T2 and vice-versa. The same holds for T3 and T4. This gives a sort of duality to exclusive-OR theorems.

A useful theorem

A theorem that gives exclusive-OR logic an unusual degree of freedom is T 11 : If $\mathrm{f}, \mathrm{g}, \mathrm{h}$ are functions of the same switching circuit variables and $f=g \oplus h$, then $g=f \oplus h$ and $\mathrm{h}=\mathrm{g} \oplus \mathrm{f}$.

Theorem Tll can be derived as follows. Given that $f=g \oplus h$, then adding ' h ' to both sides of the equation gives:

```
f}\oplus\textrm{h}=\textrm{g}\oplus\textrm{h}\oplus\textrm{h}=\textrm{g
```

since $\mathrm{h} \oplus \mathrm{h}$ disappears due to Tl and T 3 . As a result,
$g=f \oplus h$. Similarly, $h=g \oplus f$.
By means of this theorem any given term or expression can be made to be a part of any other expression of the same variables.

For example, let $\mathrm{x}=\mathrm{ac}^{\prime} \oplus \mathrm{a}^{\prime} \mathrm{bc}$ and suppose that the term $\mathrm{h}=\mathrm{ac}$ is to be made a part of this expression. Now,

$$
g=x \oplus h=a c^{\prime} \oplus a^{\prime} b c \oplus a c=a\left(c^{\prime} \oplus c\right) \oplus a^{\prime} b c=a \oplus a^{\prime} b c
$$

So,

$$
\mathrm{x}=\mathrm{g} \oplus \mathrm{~h}=\mathrm{a} \oplus \mathrm{a} \cdot \mathrm{bc} \oplus \mathrm{ac}
$$

As a check, this could have been obtained in this simple case directly from the given expression for x by replacing c^{\prime} with $1 \oplus \mathrm{c}$ and expanding by T 9 the distributive property.
You might want to use this idea if you want to find out if a single variable, with a single exclusive-OR operator will give an expression with fewer product terms than the original expression. Let p be the single variable in function f, then evaluate $\mathrm{g}=\mathrm{f} \oplus \mathrm{p}$. If this expression or its inverse has fewer product terms as required then g is the required result. i.e.

$$
\mathrm{f}=\mathrm{g} \oplus \mathrm{p} \text { or } \mathrm{f}=\mathrm{g}^{\prime} \oplus \mathrm{p}
$$

You would need to evaluate $g=f \oplus p$ for each variable in turn and take the best result, or you might stop with the first good result if any.

Another example of the use of this theorem is to find a Gray code to binary code converter circuit, given the circuit for a binary code to Gray code converter. It is known that the Gray code is constructed from the binary code by the exclu-sive-OR of adjacent binary bits. You can see this from Fig. 6. For four bits:

$$
g_{0}=\mathrm{b}_{0} \oplus \mathrm{~b}_{1}, \quad g_{1}=\mathrm{b}_{1} \oplus \mathrm{~b}_{2}, \quad g_{2}=\mathrm{b}_{2} \oplus \mathrm{~b}_{3}, \quad g_{3}=\mathrm{b}_{3}
$$

The most significant bit, b_{3}, is the same for both the Gray code and the binary code.
If you want a Gray-to-binary code converter you can simply apply T11 to the above equations to get,

$$
\mathrm{b}_{0}=\mathrm{g}_{0} \oplus \mathrm{~b}_{1}, \quad \mathrm{~b}_{1}=\mathrm{g}_{1} \oplus \mathrm{~b}_{2}, \quad \mathrm{~b}_{2}=\mathrm{g}_{2} \oplus \mathrm{~b}_{3}, \quad \mathrm{~b}_{3}=\mathrm{g}_{3}
$$

Or by substitution,

```
b
b}\mp@subsup{\textrm{b}}{1}{}=\mp@subsup{g}{1}{}\oplus\mp@subsup{g}{2}{}\oplus\mp@subsup{g}{3}{
b}\mp@subsup{\textrm{b}}{2}{}=\mp@subsup{g}{2}{}\oplus\mp@subsup{\textrm{g}}{3}{
b
```


Exclusive-OR operator on a Karnaugh map
 Take the problem of expressing the function,

$$
f=a c+b^{\prime} c+a^{\prime} b c^{\prime}
$$

in exclusive-OR form.
If you are observant you could solve this problem as follows:

$$
\begin{aligned}
f & =a c+b^{\prime} c+a^{\prime} b c^{\prime} \\
& =c\left(a+b{ }^{\prime}\right)+a^{\prime} b c^{\prime} \\
& =c\left(a^{\prime} b\right)^{\prime}+a^{\prime} b c^{\prime} \\
& =c \oplus a^{\prime} b
\end{aligned}
$$

There are many cases like this for functions of three variables. Often though, this approach may not be so easy to carry out. Fortunately the K-map technique can be readily adapted for the purpose.

First consider the exclusive OR function plotted on a Kmap as in Fig. 7. The K-map technique for the exclusive-OR function depends on T 10 and the extended forms of Tl and T3. This leads to the relatively simple and more conclusive method I mentioned earlier.
Plotting the variables x and y individually on the map results in minterm $x y$ being plotted twice, consequently by the extended form of T , this term will disappear from the exclusive-OR form.

$\mathbf{b}_{\mathbf{3}} \mathbf{b}_{\mathbf{2}} \mathbf{b}_{\mathbf{1}} \mathbf{b}_{\mathbf{0}}$	$\mathbf{g}_{\mathbf{3}} \mathbf{g}_{\mathbf{2}} \mathbf{g}_{\mathbf{1}} \mathbf{g}_{\mathbf{0}}$
0000	0000
0001	0001
0010	0011
0011	0010
0100	0110
0101	0111
0110	0101
0111	0100
1000	1100
1001	1101
1010	1111
1011	1110
1100	1010
1101	1011
1110	1001
1111	1000

Fig. 6. Binary to Gray code conversion.

Fig. 7. Exclusive-OR function plotted on a Karnaugh map.

Similarly by the extended form of T3, where the minterm is plotted once or an odd number of times it will be retained.
Generalising this observation for the exclusive-OR form gives the rules: 'any minterm included in the function must be plotted an odd number of times,' and 'any minterm that is to be excluded from the function must be plotted an even number of times, or zero.'
Two examples of this result are shown in Fig. 8. The first result is the example given at the start of this section. You can see that one term $a^{\prime} b c$ has been plotted twice and is therefore excluded from the equation.
The second example is the function that had the same form for the exclusive-OR operators as it had for the AND, OR, Invert operators. Here, one term has been plotted three times and is therefore included in the function.

Fig. 8.
Examples of exclusive-OR forms of logic equations.

The function:
$A^{\prime} B C^{\prime}+A C+B^{\prime} C=C \oplus A^{\prime} B$

Fig. 9. Four variable examples of exclusive-OR functions.

The function: $a b \oplus a c \oplus b c=a b+a c+b c$

C $0 \quad 0 \quad 1 \quad 1$ D $0 \quad 1 \quad 1 \quad 0$

$$
f 2=(a+b) \oplus(c+d)
$$

$$
=a^{\prime} b^{\prime} \oplus c^{\prime} d^{\prime}
$$

(b)

(d)

$$
y=a \oplus c \oplus a b^{\prime} c
$$

(a)

Fig. 11. Another example of using a Karnaugh map to find an expression for a function in terms of the exclusive-OR function.

(c)

(a)

(c)

(b)

(d)
$y=a \oplus b \oplus c$

With a little practice, the exclusive-OR forms can be readily found for three variable functions and sometimes for four variable functions. Figure 9 shows two examples of four variable exclusive-OR functions.
A procedure for using the K-map to find opportunities for simplification of a logic expression by using exclusive-OR gates, by inspection, is to look for a grouping of ones that could be simplified if an extra square or squares between them are filled in with ones to combine the terms. This is applicable if only one exclusive-OR is needed to represent the function. The following examples show a more general approach where more than one exclusive-OR is needed.
To plot a function given in exclusive-OR form, simply plot individual terms by placing ones in all squares for the term and cancel all squares that have an even number of ones.

Don't care conditions are treated in the K-map approach the same way as for the inclusive-OR case: the don't care term is used or not, as required. For the exclusive-OR function, don't care terms can be plotted an even or odd number of times.
In the case of f_{1} in Fig. 9, the minimal exclusive-OR form of the equation may not be so easily found by inspection. Here it would be useful to have an algebraic simplification procedure. I hope that the description of my algebraic simplification procedure will appear in a subsequent article.

Using a K-map to find ex-OR representations

Two more examples are shown in Figs 10 and 11. Here, more than one exclusive-OR is required to represent the function. These figures shows the step-by-step procedure to be followed.
Consider the function plotted on the K-map shown in Fig. 10a). You might start by plotting variable a , as in 10b). This covers three of the ones in the map but places an additional 1 at position abc. The additional ones in Figs 10 and 11 are shown in lighter text.
Next, you might plot variable c as shown at 10c). This cancels the extra one at abc, covers the ones at position a'bc and $a^{\prime} b^{\prime} c$ but cancels the one at position $a b^{\prime} c$. To regain a one at this position, place an additional one there and map that position as shown at $\mathbf{1 0 d}$). This gives the final result as shown below the K-map at 10 d).
From a practical point of view, you might implement the resulting expression as follows, since there is generally only one exclusive-OR function available in a complex pld macrocell:

$$
\begin{aligned}
y & =a \oplus c \oplus a b b^{\prime} c \\
& =a \oplus c\left(1 \oplus a b{ }^{\prime}\right) \\
& =a \oplus c\left(a b^{\prime}\right) \\
& =a \oplus c\left(a^{\prime}+b\right) \\
& =a \oplus\left(a^{\prime} c+b c\right)
\end{aligned}
$$

or,
$a^{\prime} \oplus\left(c\left(a b^{\prime}\right)^{\prime}\right)^{\prime}$
for NAND gate implementation. Remember that a NAND gate has the form (ab)'.
Another example is shown in Fig. 11. The same steps are taken as for Fig. 10. The function is shown plotted on a Karnaugh map at 11a). As before, you start by plotting variable a as in 11b), since this looks like a suitable starting point. This covers two of the ones in the function but introduces two additional ones.
Next you plot variable b as shown in 11c). This cancels one of the unwanted ones introduced in 11b) but also cancels one of the ones that need to be kept and introduces an additional one at a'bc.
Finally, add the plot for variable c. As you can see this restores the one at abc covers the one at $a^{\prime} b^{\prime} c$ and cancels the unwanted ones at $a^{\prime} b c$ and $a b^{\prime} c$. The final well known result is shown under the K-map at 11d) as it was in Fig. 10. The
method is somewhat heuristic but at least in general the method gives the result in a direct way.
The last example show a slightly different way of using the Karnaugh map. Assume that you entered the following expression into your complex-pld hardware-description language software:
$y=a c^{\prime} d^{\prime}+a b c+a b^{\prime} d+b^{\prime} c^{\prime} d+a^{\prime} b^{\prime} c d^{\prime}$
The compiler in your cpld software has came up with the following expression for this logic function and you would like to confirm that it is the same function,
$y=a \oplus\left(b^{\prime} c d^{\prime}+a b c^{\prime} d+a^{\prime} b^{\prime} c^{\prime} d\right)$
The Karnaugh map shown in Fig. 12 confirms the identity. Note that you can plot all the terms in parenthesis as a function and use this as a whole with the exclusive-OR approach with the term a.
A reduction of five product terms to three is achieved with this function. The use of the Karnaugh map is obviously a lot less work than expanding out the exclusive-OR function.

In summary

Figure 13 is a round up of the theorems for the exclusive-OR operator. This may be about as far as you need to go with this subject. But, it is possible to treat the simplification of exclu-sive-OR forms of equations by a systematic algebraic procedure. I hope to bring you my description of this procedure in a later article.
This article has demonstrated that a complete Boolean algebra can be developed in terms of the exclusive-OR operator
in place of the inclusive-OR operator. Examples have been given that demonstrate the use of this approach to Boolean algebra. The exclusive-OR algebra adds to and does not replace inclusive-OR algebra. The algebra is complete with simplification methods including the use of conventional Karnaugh maps.
I hope that reading this paper will have given you a few new ideas about using Boolean algebra and that you will no longer be put off when you see exclusive-OR operators in logic expressions.

$a b$	d0 011	
00		
11	11	
10	1	11

David is based in Adelaide, South Australia where he pursues his interest in the theory and design of digltal circuits. Some of the material in this article is already in use in Technical and Further Education institutes in South Australia.

Fig. 12. Confirming the identity of these functions with a Karnaugh map.
$y=a \oplus\left(b^{\prime} c d^{\prime}+a b c^{\prime} d+a^{\prime} b^{\prime} c^{\prime} d\right)$
$=a c^{\prime} d^{\prime}+a b c+a b^{\prime} d+b^{\prime} c^{\prime} d+a^{\prime} b^{\prime} c d^{\prime}$
Fig. 13. Summary of theorems for the exclusive-OR operator.

T1. $x \oplus x=0$	T2. $x \oplus x^{\prime}=1$
T3. $x \oplus 0=x$	T4. $x \oplus 1=x^{\prime}$
T5. $(x \oplus y)^{\prime}=x^{\prime} \oplus y=x \oplus y^{\prime}$	$T 6 \cdot x^{\prime} \oplus y^{\prime}=x \oplus y$

T7. $x \oplus y=y \oplus x$
T8. $(x \oplus y) \oplus z=x \oplus(y \oplus z)$
T9. $x(y \oplus z)=x y \oplus x z$
T9' $x(y \oplus z)=\left(x^{\prime}+y\right) \oplus\left(x^{\prime}+z\right)$ Distributive law with OR function
T10. If: $f=g \oplus h$ and $g h=0$, then $f=g+h$

CIRCUIT IDEAS

Over $£ 600$ for a circuit idea?

New awards scheme for circuit ideas

- Every circuit idea published in Electronics World receives $£ 35$.
- The pick of the month circuit idea receives a Pico Technology ADC42 - worth over $£ 90$ - in addition to $£ 35$.
- Once every six months, Pico Technology and Electronics World will select the best circuit idea published during the period and award the winner a Pico Technology ADC200-50 - worth

How to submit your ideas

The best ideas are the ones that save readers time or money, or that solve a problem in a better or more elegant way than existing circuits. We will also consider the odd solution looking for a problem - if it has a degree of ingenuity.
Your submission will be judged on its originality. This means that the idea should certainly not have been published before. Useful modifications to existing circuits will be considered though provided that they are original.
Don't forget to say why you think your idea is worthy. We can accept anything from clear hand writing and hand-drawn circuits on the back of an envelope. Type written text is better. But it helps us if the idea is on disk in a popular pc or Mac format. Include an ascii file and hard-copy drawing as a safety net and please label the disk with as much information as you can.

Medium-power inverting driver

S ince the 555 can sink and source up to 200 mA , it provides sufficient power to drive small lamps, relays, motors and low-power inverters.
As shown, it can be used as a static or alternating inverting 200 mA driver capable of operating at moderately high frequencies. In H -bridge inverters, it replaces the normal gate and power transistor, with the bonus that it has in-built protection
Make sure that the input cannot exceed the supply voltage. If there is no risk of negative input excursions, the diode can be left out.

K Samson
Thornton Cleveleys, Lancashire C8

Too trivial to publish? Yes, unless you need a very cheap and simple inverting buffer/driver with 200 mA switching.

Capacitance bridge omparing two time constants is

Cthe method used in this bridge. Two integrators producing triangular waves are connected to one comparator to produce a comparison between the unknown and a standard Balance is indicated by leds.
At balance, $R_{y} C_{y}=R_{x} C_{x}$ and

$C_{\mathrm{x}}=R_{\mathrm{y}} C_{\mathrm{y}} / R_{\mathrm{x}}$ where C_{y} is constant, R_{y} is a calibrated variable resistor and R_{x} is the range-selecting resistor. In the balance condition, both integrators produce a triangular wave of the same frequency. Their outputs A and B are capacitively coupled to a rectifier and smoothing capacitor to drive comparator $I C_{3 a}$.
Output from $I C_{3 \mathrm{a}}$ drives the indicator amplifier $I C_{3 \mathrm{~b}}$, which illuminates 'high' and 'low' leds. In the out-of-balance state, one of the integrators will have too long a time constant and lower amplitude than the other, the leds indicating the fact.
Since only relative values are important, the only components whose absolute values need care are the range-selecting resistors and C_{y},

ADC42 Winner

which may be selected to match a known calibration capacitor. Frequency of the waveform depends on the setting of R_{y} and remains within $500-5000 \mathrm{~Hz}$ to keep the error detection simple.
The zero volts line is obtained from a divider and p-n-p transistor to give a voltage close to the centre of the LF353 comparator; it tracks as battery voltage falls and allows the use of a single on/off switch.

J D Gray
 London

C6

Time constant measurement of two CR circuits, translated to a voltage output with led indication, is the basis of this capacitance bridge.

Chopper-stabilised bridge amplifier

T
his instrumentation amplifier with a bridge input is stabilised against input offset voltage drift by means of a chopper driven by a microcontroller and is of the type used in load cell measurement, pressure sensors and others. 'Chopping' is removed in software. Between points A, B to point C, the circuit is that of a conventional instrumentation amplifier, before which comes the 4066 cmos switch ic, receiving its switching input from the microcontroller. During alternate switching intervals, points
X, Y are connected to point A, B and vice versa. Input voltage plus drift is amplified in one state of the switch and amplified in the reverse condition in the other. It is then converted to digital form in the ICL7I35 a-to-d converter and stored in the controller's memory.
Since the resistance from A to B and from both to ground is to close tolerance, any drift and offset drift is cancelled, i.e:

$$
\begin{aligned}
& V_{\text {even }}=k\left(+V_{\text {in }}+V_{\text {offsel }}\right) \\
& V_{\text {odd }}=k\left(-V_{\text {in }}+V_{\text {offset }}\right) .
\end{aligned}
$$

Subtracting,
$V_{\text {out }}=k V_{\text {in }}$.
The whole thing goes in a thermally insulated case, care being taken with thermocouple and leakage current effects. The 100Ω and 1Ω resistors should be matched pairs of metal-film types.
In the original, all calibration data is held in an eeprom.
Popovici Dan Iancu
Bucharest
Romania
C17

Switch-operated set/reset and bistable flip-flops

T
he main feature of these two flipflop circuits is their very low off current - about $65 \mu \mathrm{~A}$ - and they always start in the off state.
At (a) is the sel/reset type, which has separate switches for each state and which may have a relay instead of S_{1} or S_{2}. For lowest off state current, R_{5} may be $150 \mathrm{k} \Omega$ and R_{6} $270 \mathrm{k} \Omega$, off current being $65 \mu \mathrm{~A}$ and
current in the on state 4 mA - a ratio of more than $60: 1$.
Circuit (b) is a bistable arrangement, in which the same switch triggers both states. Cycling rate is slow at about 100 ms with C_{1} at $0.47 \mu \mathrm{~F}$; contact bounce may cause problems with lower values.
Current gain spreads cause no trouble, several examples of the
transistors shown have been tried successfully. Increasing the value of $R_{1,2}$ to $10 \mathrm{k} \Omega$ reduces on-state current; at $1 \mathrm{k} \Omega$, the on voltage across these resistors is 4 V .
For other supply voltages, resistors must be scaled accordingly.
Peter Kenyon
Almancil
Portugal, C19

Two flip-flops for manual operation by switches. At (a) is a set/reset type, which could be modified to take a split power supply and a centrebiased toggle switch. The bistable at (b) uses one switch. Both exhibit an off-state current of as low as $65 \mu \mathrm{~A}$.

Surplus always

wanted for cash!
UR VAST EVER CHANGING STOCKS

 TV SOUND \&
 VIDEO TUNER

The TELEBOX is an attractive fully cased mains powered unit, containing all electronics ready to plug into a host of video monito
made by makers succ as MICROVITEC, ATARI, SANYO, SONY made by makers such as MATUNG, AMSTRAD etc

 present prime product at industry beating low pricest All units (unles
stated) are BRAND NEW or removed from often brand new equip ment and are fully tested, aligned and shipped to you with a full 90
day guarantee. Call for over 2000 unlisted drives for spares or repair

34/" Panasonic JU363/4 720K or equivalent RFE	£24.95(8)
3\%/2" Mitsubishl MF355C-L. 1.4 Meg. Laptops only	£25.95 B
$31 / 2 "$ Mitsubishl MF355C-D. 1.4 Meg. Non laplop	ع18.95 (B)
51/4" Teac FD-55GFR 1.2 Meg (for IBM PC's)	ع18.95 (B)
5\%/ - Teac FD-55F-03-U 720K $40 / 80$ (for BBC's etc) RFE	£29.95(B)
$51 / 4$ - BRAND NEW Mitsubishl MF501B 360	£22.95(B)
Table top case with integral PSU for $\mathrm{HH} 51 /{ }^{\circ}$. Flop	£29.95 (B)
$8^{\prime \prime}$ Shugart 800/801 8° SS refurbished \&	£210.00 E
$8^{\prime \prime}$ Shugart 8108° SS HH Brand New	£195.00 (E)
$8^{\prime \prime}$ Shugart 8518° double sided refurtished \& tested	£260.00(E)
8" Mltsublshl M2894-63 double sided NEW	£295.00(E)
8" Mitsublahl M2896-63-02U DS slimline NEW	£295.00 (E)
Dual $8^{\text {® }}$ cased drives with integral power supply 2 Mb	£499.00(E)

IC'S -TRANSISTORS - DIODES

OBSOLETE - SHORT SUPPLY - BULK $6,000,000$ items EX STOCK VIDEO MONITOR SPECIALS One of the highest specification monitors you will ever see At this price - Don't miss it!!

LENT Iithe used condition. VGA cable for IBM PC included

Only £119 (日) MTS-SVGA Extomal cabibes for other types of computers CALL
As New - Ex Demo
$17^{\prime \prime} 0.28$ SVGA Mitsublsh/ Diamond Pro monitors
Full multisync etc. Full 90 day guarantee. £325.00 (E) Just In - Mlcrovitec $20^{\text {P }}$ VGA (800×600 res.) Colour monito
 Kht video inputs va scant soket and separate phono acks.
Integral audio power mp and speaker for alil audio visual uses Will connect direct to A Algan and Atarl B BC computers. Ideal for all
vidoo monitoring $/$ securty applications with direct connection 10 most colour cameras. Hith qualily with many features such as
 PHILPS HCS31 Ulira compact ${ }^{9}$ colour video monitor with stanfor all monitoring / security applications. High quality, ex-equipmen
fully tested 8 guaranteed (possible minor scroen bums) In attrac tive square black plastic case measuring W10 $\times \mathrm{H} 10^{\circ} \times 13 \%^{\circ} \mathrm{D}$
240 VAC mains powered.
Only $£ 79.00$ (D)
KME $10^{\circ} 15$ M 10009 high definititon colour monitors with 0.28° dot

Only £125 (E)

20" $22^{\prime \prime}$ and 26" AV SPECIALS

$$
\begin{aligned}
& \text { Superbly made UK manuiacture. PLL all solid state colour monitors. } \\
& \text { complete with composite video \& opllonal sound input. Attractive }
\end{aligned}
$$

$$
20^{\prime \prime} \ldots . . £ 135 \quad 22^{\prime \prime} \ldots . . £ 155 \quad 26^{\prime \prime} \ldots . £ 185(\text { (F) }
$$

DC POWER SUPPLIES

$$
\begin{aligned}
& \text { Viriually every typeof powe } \\
& \text { supply you cantmagine.ove }
\end{aligned}
$$

$$
\begin{aligned}
& \text { supply you can imagine. Over } \\
& \text { to,ooppower supplis Ex Stoon }
\end{aligned}
$$

LOW COST PC's

Always over 1000 PC's from stock 1oon's ofspares and accessorles Callor see our web site for info

19" RACK CABINETS

 Superb quality 6 foot 40U Virtually New, Ultra Smart Less than Half Price! Top quality ${ }^{19}{ }^{4}$ rack cablints madi in UK byOptima n nclos full heig fuli height lockable half louvered back dool adjustable internal fixing struts, ready punched plus ready mounted integral 12 may mounting socket switched mains distribution strip make these racks some of the most versatlla we have ever sold. Racks may to stand singly or in multiple bays.

Over 1000 racks, shelves, accessories 19 " 22 " \& 24" wide 3 to 46 U high. Available from stock!!.

32U - High Quality - All steel RakCab Made by Eurocraft Enclosures Ltd to the highest possible spec,
rack features all steal construction with removable side, tront and back doors. Front and back do ors are inged for easy access and al are lockabie with
five secure 5 lever barral locks. The toont door designer style' smoked acrylic front panel to enabel status indicators to be seen through rae eatures fully slotted reinforced vertical fixing nembers to take the heaviest of $19^{\prime \prime}$ rack
equipment. The two movable vertical fixing struts extras available) are pre punched for standard 'cage nuts'. A mains distributlon panel internalpin Euro sockets and 1×13 amp 3 pin switched pin Euro sockets and 1×13 amp 3 pin switched
\qquad of Integral fans to the sub plate etc. Other features include: fitted cable / connector access, prep. Suphed utility panel at lower rear for condition with keys. Colour Royal blue. External dimensions

A superb buy at only 2245.00 (G)

$42 U$ verslon of the above only $£ 345$-CALL

BATTERY SCOOP - 50\% off !!

 rechargeable eatlaries. Made by Hawker Enargy Lto, type SBS15 Ieaturing pure lead plates which offer a far superior shelf \& guaran-teed 15 year senvice life. Fully BT \& B 6290 approved. Supplied BRAND NEW And boxed. Dimensions 200 wide, 137 hight, 77 deep. each IOur Price $£ 35$ each (c) or 4 for $£ 99$ (p)

RELAYS - 200,000 FROM STOCK

Save eEEE's by choosing your next relay from our Massive stocks covering fypes such as - Milltary, Octal, Cradle,
Hermetlcally Sealed, Contactors, Time Delay, Reed, Mercury Hermetlically Sealed, Contactors, Time Delay, Reed, Mercury
Wetted, Solld State, Printed Clrcult Mounting, CALL US WITH YOUR NEEDS. Many obs olete types from stock. Save exee's

LOW COST RAM \& CPU'S

TEST EQUIPMENT \& SPECIAL INTEREST ITEMS

MTTS. FA3445ETKL $14^{\text {n }}$ Industrial spec SVGA monito
1 WW to $400 \mathrm{~kW}=400 \mathrm{H} 3$ phase power sources - ex stock 1BM 8230 Type 1, Token ring base unit driver

Intel SBC 486/125C08 Enhanced Mutibus (MSA)
Zeta $3220-05$ AO 4 pen HPGL fast drum plotters
Zeta 3220-05 A0 4 pen HPGL fast drum plotters
NIkon HFX-11 (Ephiphot) exposure control unit Motorola VME Bus Boards \& Components List. SAE / C Trio 0-18 vdc linear, metered 30 amp
Fujltsu M3041R 600 LPM band printer
Fulltsu M3041D 600 LPM printer with network interface
PerkIn Elmer 2998 Infrared spectrophotometer
PerkIn Elmer 597 Infrared spectrophotometer
Perkin Elmer 597 Infrared spectrophotometer Light Band 60 output high spec $2 u$ rack mount Video VDA Taylor Hobson Tatlysurf amplifier / recorder
Taylor Hobson Taltysurf ampliner / recorder
System VIdeo 1152 PAL waveform monitor
ANRITSU MS9001B1 0.6-1.7 uM aptical spectrum analyse
ANRITSU ML93A optical power meter
ANRITSU Fibre optic chracateristic test set
VISION ENGINEERING TS3 Dynascopic micron
VISION ENGINEERING TS3 Dynascopic microscope
R\&S FTDZ Dual sound unit
R\&S SBUF-E1 Vision modulator
R\&S SBUF-E1 Vision modulator
WILTRON $6630 \mathrm{~B} 12.4 / 20 \mathrm{GHz}$ RF sweep generator
WILTRON $6630 \mathrm{M} 12.4 / 20 \mathrm{GHz}$ RF swe
TEK 2445150 MHz 4 trace oscilloscope
TEK 2465300 Mhz 300 MHz oscilloscope rack mount
PHILPS PW1730/10 66KV XRAY generator \& access

INTEL 'ABOVE' Memory Expansion Board. Full length PC-XT

 Card is fully selectable for Expanded or Extended (286 processor Fully tested and guaranteed. Windows compatible. Hem length 8 biremory upgrade cards Malso be used to fill in RAM above 640k DOS limit. Complete with data. $1 \mathrm{MB} \times 9$ SIMM 9 chip $\frac{\text { SIMM SPECIALS }}{120 \mathrm{~ns}}$
4 MB 70 ns 72 pin SIMM -with parlty- Only $£ 35.00$
$\mathbb{N T E L} 486$-DX 33 CPU £19.95 INIEL 486-DX66 CPU 559.00
\mathbb{N} IEL 486 -DX 33 CPU £19.95 INTEL 486-DX66 CPU £59.00
FUL RANGE OF CO-PROCESSOR'S EX STOCK-CAL FOR
MOTOROLA 25 Mhz 68040 (XC68040RC25M) CPU'S $£ 59.00$

SOFTWARE SPECIALS

NT4 WorkStation, complete with service pack 3 and licence - OEM packaged

Special Price ONL Y 199.00
Microsoft - Windows for Workgroups 3.11 \& DOS 6.22. Supplied
\qquad with manual $£ 24.95$ shipping charges for software is code \mathbf{B}

DISTEL on the web !! - Over 16,000,000 items from stock - www.distel.co.uk वefle
 LONDON SHOP
 DISTEL© Www.distel.co.uk

Universities and Local Authorites - minimum acoount order $£ 50$. Cheoves over $£ 100$ are subiect tor 10 working days doarance. Camage charges (A) 10 =23.00, (A1)=\&4.00,

Linear sawtooth from a 555

A
555 free-running oscillator provides a amp output, but not one sufficiently linear for measurement purposes. This one uses a constant-current source to charge the capacitor C_{1} in a linear manner. The resulting output was used to simulate a chart recorder output on a crt display.
Output from pin 3 is a sync., the input to pin 2 sync. in for one-shot working and the sawtooth comes from pin 6 and is buffered for use.
M J Nicholas
Bournemouth
Dorset
C18

Lf signal rectifier

M
any signal rectifiers have diodes in the signal path. This one doesn't; instead, there is a variable 'ground' that is only present during half-cycles of the input, making it possible to obtain an output with little or no distortion.

Looking at the circuit diagram in Fig. 1, diode D_{1} does not conduct during negative half-cycles and $R_{1,3}$ form a potential divider, pin 2 of $I C_{2 \mathrm{a}}$ being held at ground by its feedback through D_{4}. Loss of amplitude in the divider is compensated in $I C_{1 \mathrm{a}}$ by the addition of R_{7} to change it from a unity-gain follower to a amplifier.
During positive excursions, D_{1} conducts and maintains the non-inverting input of $I C_{1 \mathrm{a}}$ at ground. As the inverting input is at the same level, the op-amp is now an inverting amplifier, so that the input appears as a negative output with the same amplitude. Resistor R_{7} has no effect at this time since both connections are at the same level. Waveforms are shown in Fig. 2.
Diode D_{4} clamps $I C_{2 \mathrm{a}}$ output at 0.6 V to prevent saturation, which would introduce distortion at crossover, since there would be a delay between change in polarity and the start of regulation of the ground level, as shown in Fig. 3.
A certain amount of distortion is caused by the level at the non-inverting input of $I C_{2 \mathrm{a}}$ being added to the input signal when it is working as an inverter, which does not happen when it is a non-inverter. The distortion is clearly worse with small signals. There is also a difference in input impedances in the two half-cycles.

Van den Abeele Bernard

Evergem
 Belgium

C15

Fig. 2. Waveforms in the circuit of Fig. 1.

Fig. 3. Without the inclusion of D_{4}, crossover distortion would occur, caused by saturation in $\mathrm{IC}_{2 \mathrm{a}}$

TELFORD ELECTRONICS

Old Officers Mess, Hoo Farm, Humbers Lan Horton, Telford, Shropshire TF6 6DJ, UK Phone: (0044) 01952605451 Fax: (0044) 01952677978 e-mall: telfordelectronics@telford2.demon.co.uk Web: http://www.telford-electronics.com Carriage: £10+VAT @ 17.5% to be added to all UK orders Overseas orders welcome - Please call ALL OUR EQUIPMENT HAS A 30 DAY GUARANTEE (EXCEPT CLEARANCE ITEMS WHICH ARE SOLD AS-IS)

MISEEL LANEOUS

miscellaneous

1. LX. LIGHTWAVE EQUIPMENT:

PDAG424 Ptoto Diode Amplifier
LOX3742 Laser Diode Controller
LOX 32078 Precision Current Source
3 M Fibre Splice Preparation Kit
Cossor Optical Cable faulh Locator Type. OFL108L Laser Preciston Type: O82900 Slingle Mode Variable Attenuator
Schlumnerger Type: S17780 OTOR + S177823 Pluc-in Solomat MPM4000 Martix Processor c/w Soltware. Po multichannel, dataloggoer, alarm monitor. BatteryMMains Operatec
Kane-May: KM4003 Air Veloctiy $0-30$ In metress/s.
Temperature (C) -30 to +200 C . Battery Operated. Portallow MK11: Portable diagonal beam flowmete. Made by: Micronics
Bacharach: Combustion Analyzer/Environmental monhor Type:
Kane-May Combustion Analyzer Type: 9004
Kane-May Temperature Sensor Type: 1204 C/w 8004
Temperature \& Humie

+ KM801 Infratrace
ing System Type: AMS950 Ranges
CEL Instruments: Preciston Intergrating Impulse Meter Typ
CEL 493 cw . CEL 296 Octave \& third octave scan filier soi CEL $284 / 2$ Calibrator
CEL $281+281$ Keypad + Programmable Noise Dosemeter Neotronics Exotox 75 Ambilog + Char ger. Portabie atmosphere
monitor. monitor.
HP 4275A Multh- Frequency LC. R. Meter.................... $53,250.00$

Sharp Tools for Embedded Systems
 CCS - PIC C Compilers

Develop PIC applications faster than you ever thought possible with CCS PIC C compilers. Generates fast efficient native PIC code. Built in library support for timers, serial comms, PWM, ADC, $I^{2} \mathrm{C}$ etc. I/O libraries use hardware support where available or else use software generated modules.
DOSWindows Development Environment
Write Interrupt service routines In C
Supports in line assembly fanguage
Automatic linking of multiple code pages
Supports BIT and BYTE variables at absolute positions
PCW - Windows IDE for PIC 16C5X, 16CXX, 12CXXX, 14000 - IR£270 PCM - DOS IDE \& Command line for PIC 16CXX, 12C6XX, 14000-IRE95 PCB - DOS IDE \& Command line for PIC 16C5X, 12C5XX - IRe95

BASIC Stamp Computers

BASIC Stamps are small computers which are programmed in PBASIC a powerful BASIC dialect that includes many enhancements specifically designed for embedded control. PBASIC programs are downloaded directly from a PC to the BASIC Stamp where they are executed from on board EEPROM

- DOSFWindows Development environment. Program directly from PC.
Reprogrammable up to 10,000 times. VO pins can source/sink up to 20 mA . Easily Interfaced to ADCs, LEDS, motors, relays. - Bullt in functions for Serial, PWM, pulse in/out etc.

BASIC Stamp 1 - $8 \mathrm{I} / \mathrm{O}, 2400$ baud serial, 16 pin SIP Module - IR£ 29 BASIC Stamp 2-16 I/O, 50K Baud serial, 24 pin DIP Module - IR£ 42 Starter Kits from IRe79 (All prices exclude V.A.T. and dellvery)
For further information on CCS PIC compllers, BASIC Stamps and other sharp tools, please phone, emall or visit to our web site.

Mran Paul O Neill Designs, Dublin, Ireland. TelFax:+353-1-8215060
 Email - info@pond.ie Web - www.pondie

CONTROL \& from POBOTIC Milford ROBOTICS instruments

BASIC Stamps-- Re-Programmable - BASIC language - RS232 Serial ports - 8 or 16 //O lines - SPI/DTMF

- Fast development

Serial LCDs

- RS232 Serial interface
- 2×16 to 4×40
- Simple 3-pin connection

- Integral Keypad option

3-Axis Machine

- Stamp 2 based
- Drills PCBs
- 3-Axis movement
- Stepper drive
- 4 thou resolution

IR Decoder

- Uses any remote
- 7 digital outputs - Toggle/momentary

[^2]| Amiga genlock pxb (uncased) for tititing sideos it has a 23 pin lexd to plug into the computer and peb pins for composite vic In and oft. When no video input is connected the norm computer display is shown on the composite video out when video input is added the white areas on the screen are replaca by the video image. The peb is powered from the computa | |
| :---: | :---: |
| WATCH SLIDES ON TV "Liesgang diatv" automatic with built in high quality colour to camera. comp outpul with a BNC plug In very good condition with | Sub C with sokier tags
 AAA (HP16) 180 mAH .
 1/3 AA with tags (philpsC.TV) |
| Boand carneras all with 512×582 pixels $4.4 \times 3.3 \mathrm{~mm}$ sensor w composite video out. All need to be hawsed in your o | Nickel Metal Hydryde AA cells high capacily with no memory. If charged at 100 ma and discharged a: 250 ma or less 1300 mAH capacity flower capacity for high discharge rates) £2.95 |
| with 6 infra red leds gives the same illumination as a small tort would \qquad $\mathrm{E} 50.00+\mathrm{vat}=£ 58$. | Special offers please check for availability stick of $442 \times 16 \mathrm{~mm}$ nicad batteries 171 mrnx 16 mm dia with red \& black leads 7.8 su |
| | ton cell 6V 280mAh battery with wires (Varta 5x25000 |
| 40MC size $39 \times 38 \times 28$ nurn catrera for ' C ' mount lens this ghue a much cleares pecture than with the small lenses $\mathbf{E 6 8 . 7}$ | Orbitel 866 battery pack $12 v 1.60 \mathrm{AH}$ contains 10 sub C cells with sokler tags the size most commonly used in cordless screwdrivers and drills 22 dia $\times 42 \mathrm{~mm}$ tall) it is easy to crack open and was manulactured in 1994, $£ 8.77$ each or $£ 110.50$ per box of 14 BC box $190 \times 106 \times 50 \mathrm{~mm}$ with shots to house a ptb the lid contains an edge connector (12 way 8 mm pitch) and screw terminals to connect in wires and 5 slide in cable blanks |
| standard 'C' mount lens F1. 616 mm for 40 MC | |
| waterproof camera with stylish tilt \& . $£ 92.76+$ | |
| | 7 segarent common anode led display 12 mm . \qquad GaAs FET low leakage current $\$ 8873$ E12.95 each $£ 9.95$ $\cdot 10+$ E7.95 100 + BC547A transistor 20 for................. $£ 1.00$ |
| | |
| DCA50 component analyser with icd readout identifies transistors moslets diodes \& L.EDs lead connection | S1.952 UHF Limiting amplifier LC 16 surface mounting package with cala sheet |
| | DC.DC convertor Relizbility model V12P5 12 vim 5 v 200 ma out |
| Speaker cabinets 2 way speaker systems with motorda tweet | 300 v input to output lsolation with data $£ 4.95$ each or pack of $10 £ 39.50$ Airpax A82903-C large stepping moter 14v 7.5 step 27 ohm 68 mm dia body 6.3 mm shaft E 8.95 or $£ 200.00$ for a box of 30 |
| | |
| | Polyester capacitors box type 22.5 mm kead pich 0.9 uf 250 udc 18 p each $14 p 100+9$ p $1000+1$ lu 250 Vdc 20 p each. 15 p $100+10 \mathrm{p} 1000+$ Polypropylene 1 uf 400 ad (Wima MKP10) 27.5 mm pitch $32 \times 29 \times 17 \mathrm{~nm}$ case 75 p each $60 \mathrm{p} 100+$ Philips 123 senes solid àhminium axial leads $33 \mathrm{uf} 10 \mathrm{v} \& 2.2 \mathrm{ff} 40 \mathrm{v}$ 40 peach, 25 p $100+$ Solid carbon resistors very low inductance ideal for RF circuits 27 ohm $2 \mathrm{~W}, 68$ ohm 2 W 25 peach 15 p each $100+$ we have a range of 0.25 w 0.5 w lw and 2 w solid carbon resistors please send SAE for list MX180 Digital multimeter 17 ranges 1000 udc 750 vac 2 Mokm 200 mA transistor Hie 90 and |
| | |
| weight $\quad 21.1 \mathrm{~kg} \quad 16.8 \mathrm{~kg} \quad 7.4 \mathrm{~kg}$ | |
| | |
| grey lett coating E159.97 El19.97 E64.9 | |
| ${ }^{\prime \prime}$ - not normally in stock allow 1 week for delivery) Power amplifiers $19^{\prime \prime}$ rack mount with gain controls | |
| STA150 | 1.50 battery test ... - - $£ 9.95$ |
| | Hand hekd utrasonic remote control £3.95
 CV2486 gas relay $30 \times 10 \mathrm{mum}$ dia with 3 wife lerminak will also work as a neon light 20 peach or $£ 8.50$ per 100 Varbatim: R300NH Streamer tape commonly used on nc machines and printing presses etc. it looks like a rormal cassette with a siot cut out of the top $£ 4.95$ each ($£ 3.75100+$) Heatsink compound tube $£ 0.95$ HV3-2405-E5 $5.24 \mathrm{v} \quad 50 \mathrm{~mA}$ regulator ic $18-264 \mathrm{ara}$ imput 8 pm DII. package $£ 3.49$ each $(100+2: 25)$ |
| LEDs 3 mm or 5 mm red or green 7 p each yellow 11 peach cat ties 1p each
 . 5.95 per 1000
 $£ 49.50$ per 10,0 | |
| | |
| AAIHP7) 500 mAlf AA 500 mAH with soker tags.. | |
| All products adverised are new and unused unless otherwise stated. Wide range of CMOS TTL. 74HC 74F Linear Transistors kits rechargeabie battenes, capacitors, tools etc always in stock. Please add $£ 1.95$ towards P\&P forders from the Sconish Highlands, Northern lreland, ise of Man, sle of Wight and overseas may be subject to higher $P \& P$ for heavy items.. VAT included in all prices. | |
| JPG Electronics 276-278 Chatsworth Road Chesterfield S40 2BH Mastercard/Visa Orders (01246) 211202 Fax 550959 Callers welcome $9-30 \mathrm{am}$ to $5-30 \mathrm{pm}$ Monday to Sa.,turday | |

PHONE 0181684	LANGREX SUPPLIES LTD dISTRIBUTORS OF ELECTRONIC VALVES TUBES AND SEMICONDUCTORS AND I.C.S.					$\begin{array}{r} \text { FAX } \\ 0181684 \end{array}$	
1166	1 MAYO ROAD - CROYDON • SURREY CRO 2QP 24 HOUR EXPRESS MAIL ORDER SERVICE ON STOCK ITEMS email: langrex@aol.com						
	5	KT66 China	10.00	5Z4GT	3.00	${ }^{6}$ V6G	8.00
${ }_{\text {Az31 }}^{\text {Cl33 }}$	6.00 10.00	${ }_{\text {K }} \times 188$ China	12.00 8800	6AO5	2.00 2000	${ }^{\text {6VGGT }}$	5.00
$\mathrm{CLL33}^{\text {E83 }}$	10.00	N78	8.00	6AR5	20.00		3.00
E88CC	8.50	OA2	3.00	6AS7G	7.50	6X5GT	3.00
E180F	3.50	OB2	3.00	6AU5GT	4.00	${ }^{12 A T 7}$	3.00
E810F	20.00	OC3	3.00	6Aug	2.00	12Au7	3.50
EABCBO	2.00	OD3	3.00	6AW8A	4.00	${ }^{12} 2 \times \times 7$	5.00
EB91	1.50	PCF80	2.00	${ }^{6 B 4 G}$	22.00	12Ax7A	7.50
E8F80	1.50	${ }^{\text {PCL } 282}$	2.00	6Bab	1.50	12Ax7w	6.00
E8F89	1.50	PCL85/805	2.50	6BE6	1.50	12Ba6	2.00
EBL31	15.00	PCL86	2.50	${ }^{68 \mathrm{H} 6}$	2.00	12BE6	2.00
ECC33	12.00	PD500	6.00	6807A	2.00	128н7/1	10.00
ECC35	12.00	PL38	3.00	${ }^{68 P 7} 7$	4.00	12BY7A	7.00
ECC81	3.00	PL81	2.00	${ }^{68 R 8}$	4.00	120w7	15.00
ECC82	3.50	PL504	3.00	${ }^{68 W 6}$	4.00	12E1	10.00
ECC83	5.00	PL508	3.00	${ }^{68 W 7}$	3.00	13E1	85.00
ECC85	3.50	PL509/519	10.00	6BZ6	${ }^{3.00}$	572B	85.00
ECC88	6.00	PL802	4.00	${ }^{6} \mathrm{C} 4$	2.00	805	45.00
ECC808	15.00	PY500A	3.00	6CB6A	3.00	807	7.50
ECFF80	1.50	PY800/801	1.50	60C6G	5.00	811A	25.00
ECH35	3.50	QQVo2-6	12.00	${ }^{\text {6CLL } 6}$	3.00	812A	55.00
ECH42	3.50	Qovo3.10	5.00	6CG7	7.50	813	27.50
ECH81	${ }_{3}^{3.00}$	aovo3-20A	10.00	${ }^{6 \mathrm{CH}} 6$	3.00	833A	85.00
ECL82	3.50	oovo6-40A	12.00	6 CW 4	6.00	866A	20.00
ECL86	3.50	U19	8.00	6005	17.50	872A	30.00
ECLL800	25.00	UABC80	1.50	6006B	10.00	931A	25.00
FE37A	3.50	UCH42	5.50	6F6G	6.00	2050A	12.50
EFF39	2.75	UCL82	2.00	${ }^{6 F O}$	7.50	5751	6.00
EF40	4.00	uCL83	2.00	6GK6	4.00	5763	6.00
EF86	10.00	UF89	4.00	${ }^{6} \mathbf{J 5 G}$	6.00	5814A	5.00
EF91	2.00	UL41	12.00	6.55M	4.00	5842	12.00
EF183	2.00	UL84	3.00	6.7	3.00	6072A	6.00
EL33	15.00	UY41	4.00	${ }^{6 . J B 6 A}$	27.50	6080	6.00
EL34	8.00	UY85	2.00	6JE6C	27.50	6146B	15.00
EL34G	6.00	VR105/30	3.00	${ }_{6}^{6 J S 6 C}$	27.50	6201	8.50
EL36	5.00	VR1550/30	3.00	${ }^{6 K 6 G T}$	4.00	6336A	35.00
EL41	3.50	2759	10.00	6L6G	15.00	6550A	25.00
EL84	2.25	28034	15.00	${ }^{6 L 6 G C}$	15.00	${ }^{68838}$	15.00
EL95	2.00	2 D 21	3.50	6L6WGB	10.00	7025	7.50
EL360	15.00	${ }^{3828}$	12.00	${ }_{6} 67$	${ }^{3.00}$	7027A	25.00
${ }_{\text {ELLSO9,5 }}$ 19	12.00 15.00	${ }_{5 R 4 \mathrm{Cr}}^{4} \mathrm{CX} 20 \mathrm{~B}$	45.00	${ }_{6 S A}^{6 S C 7}$	3.00 3.00	7199	15.00
EM344/7	15.00 4.00	SR4GY	7.50 10.00	6SG7	3.300	7360	25.00
EN91	7.50	5U4GB	10.00	6SS7	3.00 3.00	${ }^{75814}$	15.00 15.00
EZ80/81	3.50	${ }^{5 V 4 G}$	4.00	6SK7	3.00	7587	20.00
Gz32	8.50	${ }^{\text {5Y3GT }}$	2.50	6SL7GGT	5.00		
$\begin{aligned} & \text { GZ33 } \\ & \text { G2 } \end{aligned}$	$\begin{array}{r} 6.00 \\ 15.00 \end{array}$	$\begin{aligned} & 523 \\ & 5 Z 4 \mathrm{G} \end{aligned}$	$\begin{aligned} & 5.00 \\ & 6.00 \end{aligned}$	6SN7GT 6U8A	$\begin{aligned} & 5.00 \\ & 1.50 \end{aligned}$	Prices co	
OPEN TO CALLERS MON-FRI 9AM-4PM. CLOSED SATURDAY This is a selection from our stock of over 6,000 types. Please enquire for types not Ilsted. Obsolete items are our speciality. Valves are new mainly original British or American brands. Terms CWO/min order $£ 10$ for credi cards.							
\square		P\&P 1.3 valves $£ 2.004-5$ valves $£ 3.00$ Add 17.5% VAT to total Including P\&P.					

NOW AVAILABLE RANGER 2
 The Complete, Integrated Schematic \& PCB Layout Package
 Windows Ranger 2 For Windows 95 \& NT
 - New Hierarchical Circuit
 - Split Devices • Gate \& Pin Swap
 - New Edit Devices in Circuit
 - Copper Fill • Power Planes
 - Autorouter • Back Annotation
 Windows Ranger 2 with Specctra SP2
 Ranger \& Specctra Autorouter provide the most cost
 effective PCB Design system available. A powerful, intuitive system a an outstanding price!
 Windows Ranger 2 Upgrade
 Upgrade your existing PCB Package to Windows Ranger 2. for Windows 95
 Demo Software - available from our Web Address

SPECIAL OFFER Ranger 2 Lite $£ 35$ (Prices exc VAT/P\&P)

Demo Software -download from http://biz.ukonline.co.uk/seetrax

SEETMAX

Advanced Systems \& Technology for PCB Manufacture

400 Hz inverter

This design is for a three-phase 400 Hz inverter for running 200 V aircraft equipment from a normal 230 V mains supply. High-frequency techniques are used, i.e. there are no 400 Hz magnetics or other special components. Each phase is separately regulated and isolated from the mains, output neutral being connected to earth. Maximum output is around 1 kVA , about 3 A per phase.

Input converter

This design divides into two parts - the mains input converter and the three phase output bridge.
For the input side, a half-bridge forward converter is used, sometimes called an asymmetric half bridge. This provides two outputs, $\pm 200 \mathrm{~V}$ either side of ground. Only the positive side is sensed for regulation. Acceptable regulation is achieved for the negative output by cross coupling the smoothing inductors.
Mains supply is filtered, rectified and smoothed. A thermistor with a negative temperature coefficient provides inrush limiting. Two igbts are used for the switching transistors, type 1 RGP440U from International Rectifier ${ }^{1}$. These are 500 V die-size 4 types but size 3 or above, 500 or 600 V ultra-fast types should prove satisfactory. Size 5 mosfets could also be used.
When igbts are used, a reverse diode across the transistor is needed to clamp any reverse voltage transient. The devices are rated for some reverse voltage, but at unrealistically low current for most power-switching applications. A fast turn on diode should be used such as a slow or moderate reverse recovery speed type.
Generally with low voltage output switch mode power supplies, diode reverse recovery can be ignored. The resulting current spike at turn on of the power switches is very short and requires little energy.
As the output circuit impedance level increases with higher output voltages, the diode recovery transient becomes
more significant - even with the latest ultra fast types. This can be tolerated, but it causes higher EMI, extra stress in the switch and diode, and fast current sensing problems.
The spike can be reduced by slowing the turn on of the power switch, but this increases losses. The technique I have used is a current snubber. This device slows down the current rise by placing an inductor in series with the switch.
At turn off, some energy is returned to the supply by the BYW96C diodes. The igbts now turn on at zero current and the current wave form is very clean.
Another bonus is that during output short circuits, such as with the output capacitors uncharged, the snubber lengthens the pwm duty cycle required. This reduces demands on the current limit speed and propagation delays.
Drive to the igbts is provided by an RM8 size transformer. The driver IC and IN4148 diode network is effectively the same topology as the power converter. This arrangement ensures proper reset of the RM8 core every cycle under all conditions, including under current limit when the duty cycle may vary rapidly.
The pulse-width modulation IC is the popular voltage mode $S G 3525 A$, running at around 30 kHz and 50% maximum duty cycle. Digital current limiting is employed which terminates the pwm on a pulse by pulse basis.
The LM319 provides more accurate limiting than the SG3525A's shut-down pin. An RM6 transformer senses current at the collector of the lower igbt. The current limit sets the inverter's maximum overall power output to around 1 kW , giving a peak switch current of about 7A.

Output bridge

Design of the three-phase output bridge is conventional. It uses closed-loop pwm at 25.6 kHz .
Three reference sine waves are generated by the crystal oscillator, counter/divider, eprom and d-to-a converter circuit. All three phases are identical, apart from a 120° and 240°

Warning

In addition to live mains, this circuit involves equally lethal dc voltages. Don't forget that highvoltage capacitors can hold lethal charges when the circuit is switched off too.

CONTROL ELECTRONICS

Packaged inverter

Inverter breadboard

Artificial horizon and motors

phase shifts encoded in the eproms.
The most significant address line is used to swap between two look up tables which swap the codes around for the A and B phases. This reverses the phase rotation.
The algorithm used, in floating-point decimal, is:

$$
\begin{aligned}
& \left.\mathrm{A}=\operatorname{INT}\left(128^{*}(1+\operatorname{SIN}(2 * \mathrm{PI} *(\mathrm{X}+0.5) / 4096))\right)-0.5\right) \\
& \left.\mathrm{B}=\operatorname{INT}\left(128^{*}(1+\operatorname{SIN}(2 * \mathrm{PI} *(\mathrm{X}+1365.83) / 4096))\right)-0.5\right) \\
& \mathrm{C}=\operatorname{INT}(128 *(1+\operatorname{SIN}(2 * \mathrm{PI} *(\mathrm{X}+2731.17) / 4096)))-0.5)
\end{aligned}
$$

To check the rounding errors, etc., the resulting sine wave should look perfect with no flat on the peak or trough. The resulting code should contain equal numbers of 0s and 255 s and change from 127 to 128 as the address changes from 2047 to 2048 for phase A.
The reference signal is compared to a sample of the output by an LF347 op-amp. This modifies the reference to the pwm generator to remove any distortion in the output. I chose the compensation to give a good compromise between stability and transient response.

Mains input converter. Its main task is to produce a $\pm 200 \mathrm{~V}$ supply from the mains. At the bottom is the 3525 pulsewidth modulator.

An LM319 compares the modified reference to a 25.6 kHz triangle wave derived from the crystal. Basic pwm is then modified by the monostables to give two outputs including some dead time to avoid cross conduction in the bridge.
The modified reference is not bounded to the triangular wave so the pwm could saturate positive or negative. This is undesirable as the bridge current is sensed with transformers which cannot pass dc.
To prevent total saturation addition pulses are added to the pwm by the NAND gates. Current limiting is achieved by terminating each pwm pulse on detection of over current at each switch. The $74 \mathrm{HC74}$ bistable device is set by an over-current turning off both pwm drives. It is then reset twice each cycle at 51.2 kHz .
As with the input converter igbts are used, type IRGBC20U. Other ultra-fast igbts, size 2 or 3,500 or 600 V , should prove suitable or size 4 mosfets.

Recovery problems

Diode recovery is potentially a bigger problem in pwm inverters, where the duty cycle swings close to 0 or 100%.
The snubber used in the input converter cannot be used as
there is insufficient time for it to properly reset. Instead, after much experimentation, I simply limited the turn on speed by inserting a 100Ω gate resistor. A $1 N 4148$ diode across this resistor makes sure that turn off is still as fast as possible.
Electromagnetic interference is not a significant problem as the converter is referenced to true ground. Gate drives are provided by high-speed opto couplers and buffer ICs. This means that four floating gate drive supplies are needed, provided by a simple dc-to-dc converter.
The low side switches use a common supply. Current sensing is by six RM6 size transformers. Each transistor is individually sensed so that all combinations of phase-to-phase and phase-to-neutral faults are protected against.
A single potentiometer sets the current-limit comparator references. This determines the overall kVA rating of the inverter and is set to approximately 5 A for 3 A rms output.

Output filtering

The output filter inductor and capacitor have to be chosen carefully and an exacting compromise is required.
Too large a value for L will cause droop at the 400 Hz output frequency necessitating a higher dc supply. Too low a

One phase of the intermediate driver circuitry. Sine-waves are constructed by a d-to-a converter from information in eprom. A crystal-controlled clock feeds the 4040 counter that addresses the eprom sequentially.
Analogue ICs
powered from $\pm 12 \mathrm{~V}$, power pins decoupled with 47nF.

value will increase the peak transistor current and associated losses and output 25.6 kHz ripple. Too high a value for C will increase circulating current inside the bridge legs, and again if the value is too low, 25.6 kHz ripple will increase.
Further constraints are placed on L by available core sizes and materials. The values chosen just allow 115 V output with 400 V dc bus and give around 1.5 V rms 25.6 kHz ripple.

The complete inverter was spread out on an aluminium sheet ground plane then repackaged in a custom-made box.
A $12 \mathrm{~V} 100 \mathrm{ft}^{3} / \mathrm{min}$ fan was used for cooling with the +12 V and +5 V supplies derived from $78 / 79$ series regulators and a 12 VA 50 Hz transformer. Both converters have fuses between the converters and electrolytic capacitors.
It is surprising how many commercial power switching designs have inadequate fusing. Without it, all manner of expensive blow-outs can occur.
Five neons indicate, mains present, intermediate dc voltage present and output phases on. The output was tested using various 400 Hz loads, small fans and blowers, an artificial horizon and array of 115 V 100 W lamps.

Simplifications and enhancements

Various simplifications and enhancements appear possible. Numerous possibilities exist for the sine wave references, with perhaps reduced precision. One techniques is to have a six-pole filter extract the fundamental from the 400 Hz square wave.
Three 120°-spaced square waves are easy to generate with logic. PWM signals can be directly encoded in eprom with a simple $R C$ filter to decode the pwm back to a sinewave. A 1.6384 MHz clock would allow 64

Electrolytics shared with input converter

Output bridge. At the top is the final conditioning circuit for current limiting. In the middle is one power driver.
Below is power supply circuitry for producing the isolated low voltage needed for the high-side driver.
samples per 400 Hz cycle with 65 levels. All six drive signals for the bridge could be encoded in eprom. This would reduce the component count significantly but would not allow closed loop waveform or voltage regulation. Only the overall output could be regulated by regulating the dc input.

Recently Micro Linear ${ }^{2}$ has brought out a sine-wave reference generator IC series, the ML2037/8/9, and a simple three-phase pwm driver IC including sine reference, the ML4423. The former works well and is very flexible with regard to clock and output frequencies. Synchronising three at 120° may be tricky or anologue means will be needed for the other phases. The MLA423 proved less satisfactory with various stability and output purity problems. It is intended for low cost driving of three phase motors. Linfinity ${ }^{3}$ has brought out an audio pwm controller for class D amplifiers. This is designed to drive two full bridges for stereo, and features closed loop and current limiting. Fully independent operation of each phase may be a problem but these should match the precision of the eproms with far fewer components.
My prototype included a little extra circuitry to offer 50 Hz , variable frequency, variable amplitude and linear voltage-to-frequency operation for motor driving. Slightly more logic or different clock frequency could give 60 Hz .

The output control loop may benefit from refinement for difficult loads. The system may even benefit from open-loop operation in some circumstances.

Various ICs are available for high side driving bridges. These would eliminate the need for the dc-to-dc converter and opto couplers. These may not be able to cope with the split rails about
ground though. The HCPL3120 and HCPL3150 igbt opto-coupled gate drivers from Hewlett Packard ${ }^{4}$ are simpler and cheaper than the HCPL2201 and ICL7667CPA employed here.
The input converter needs little regulation, so a power-factor correction scheme could be added. This would do away with the electrolytic and surge suppressor. But it would also result in much higher peak currents in the input converter.

If the inverter only needs to run at one output frequency, say 400 Hz , then a transformer could be used at the output. This could be wired delta/star fashion to produce a neutral and provide isolation. The three phase bridge could then work directly from rectified mains or the usual boost power-factor correction circuit.

Only one current sense per phase would be needed. The disadvantage would be getting hold of a suitable transformer.

Thanks to Chris Clarke for programming the eproms and to Graeme Penhorwood for taking the photographs.

References

1. International Rectifier, Hurst Green, Oxted, Surrey RH8 9BB, tel. 01883713215.
2. Micro Linear, 2092 Concourse, Drive San Jose, CA 95131 Tel. 408 433-5200. Distributed in the UK by Ambar Components Ltd, tel. 01844261144.
3 Linfinity Microelectronics, 11861 Western Ave, Garden Grove, CA. 92841 , tel +1 7148988121
3. Hewlett Packard Lid, Amen Corner, Cain Road, Bracknell, Berkshire, RG12 1HN, tel. 01344 360000. Distributed in the UK by Farnell Electronic Components, tel. 01132636311.

PPM10 In-Vision PPM and Chart Recorder generates a display emulating the well known coaxial TWIN movements for monitoring stereo audio levels and mono compatibility. Also: STEREO TWIN METER BOX comprising two PPM9 boards, featuring inherent stability with law under microprocessor control. A free standing mains powered box frequently used for the final stereo monitoring when working to broadcast standards. Manufactured under licence from the BBC.
\star Advanced Active Aerial $4 \mathrm{kHz}-30 \mathrm{MHz} \star$ Stabilizer frequency shift units for howl reduction $\star 10$ Outlet Distribution Amplifier \star Stereo Variable Emphasis Limiter * PPM9, PPM5 hybrid and PPM8 IEC/DIN -50/+6dB drives and movements \star Broadcast Stereo Coders \star Broadcast Monitor Receiver $150 \mathrm{kHz}-30 \mathrm{MHz}$

SURREY ELECTRONICS LTD
The Forge, Lucks Green, Cranleigh Surrey GU6 7BG
Telephone: 01483275997 Fax: 276477

The Stereo Headphone Amplifier Box

Balanced or unbalanced line inputs to stereo headphone output
Professional portable units operating from an internal PP3 battery or external mains adaptor

*Precision transformerless differential left and right inputs *Wide range of headphone drive impedances *High common mode rejection *Low noise and distortion *Low quiescent power consumption for extended battery life *Extensive RFI protection

The Balance Box (mic/line amplifier) - The Phantom Power Box - The OneStop DIN rail mounting radio frequency interference filter and voltage transient pretector for voltage and current loop process signal lines

Conford Electronics Conford Liphook Hants gu30 7Qw

 Information line 01428751469 Fax 751223 E-mail contact@confordelec.co.uk Web http://www:confordelec.co.uk/catalogue/HP New Colour Spectrum Analysers
HP 141T $+8552 \mathrm{BIF}+8553 \mathrm{~B}$ RF-1KHZ-110MC/S - $£ 700$. HP $141 \mathrm{~T}+8552 \mathrm{~B}$ IF +8554 B RF $-100 \mathrm{KHz}-1250 \mathrm{M}-\mathrm{E} 900$ $\mathrm{HP} 141 \mathrm{~T}+8552 \mathrm{IF}+8556 \mathrm{~A}$ AF $-20 \mathrm{~Hz}-300 \mathrm{KHz}-\mathrm{E} 700$. $\mathrm{HP} 141 \mathrm{~T}+8552 \mathrm{BIF}+8555 \mathrm{~A} 10 \mathrm{MC} / \mathrm{S}-18 \mathrm{GHzS}-\mathrm{E} 1200$ HP8443A Tracking Gen Counter $100 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}-£ 200$ HP8445B Tracking Preselector DC to 18 GHz - E 250 HP8444A Tracking Generator $\bullet 5-1300 \mathrm{Mc} / \mathrm{s}$ - $£ 450$. HP8444A OPT 059 Tracking Gen - 5 -1500 Mc/s - E650. HP35601A Spectrum Anz interface - $£ 500$.
HP4953A Protocol Anz - E400.
HP8970A Noise Figure Meter + 346B Noise Head - £3k. HP8755A+B+C Scalar Network Anz PI - $£ 250+$ MF 180 C Heads 11664 Extra - $£ 150$ each.
HP8920A RF communication test set- EPOA HP8901A+B Modulation meter AM-FM - $£ 1000$. A HP8903A+B Audio anz from - $£ 1000$. A.
HP8656AAB $100 \mathrm{KC} / \mathrm{S}-990 \mathrm{Mc} / \mathrm{S}$ AM-FM S/G from $\mathrm{E} 1000 . \mathrm{A}$. HP8657B $100 \mathrm{KC} / \mathrm{S} 2060 \mathrm{MC} / \mathrm{S}$ AM-FM S/G - EPOA. HP3709B Constellation ANZ $£ 1.5 \mathrm{k}$.
HP11715A AM-FM Test Source - E500.
FARNELL TVS7OMKII PU 0.70 V 10 amps - $£ 150$.
TEK 475 Oscilloscopes $200 \mathrm{Mc} / \mathrm{s}$ - $£ 300$.
TEK 475A Oscilloscopes $250 \mathrm{Mc} / \mathrm{s}$ - £ 350
MARCONI 6500 Network Scaler Anz - $£ 500$. Heads available to 40 GHz many types in stock.
HP3580A 5 Hz -50KHz Spectrum ANZ $£ 750-£ 1000$ HP3582A . 02 Hz to 25.6 K Hz Spectrum ANZ E 1.5 k .
TEK 7L12-100KHz-1800Mc/s - E1000.
TEK 7L18-1.5-60GH2s - £1000.
TEK2445 $150 \mathrm{Mc} / \mathrm{S} 4$ ch oscilloscope - book 2 probes - E 500 . TEK2445A $150 \mathrm{Mc} / \mathrm{S} 4 \mathrm{Ch}$ oscilloscope - book 2 probes - E 000 TEK2465-2465A-2465B Oscilloscopes from- $£ 1250$. TEK2430 $150 \mathrm{Mc} / \mathrm{S}$ DS oscilloscope - $£ 1,250$. TEK2430A $150 \mathrm{Mc} / \mathrm{S}$ DS oscilloscope - 11800 TEK2440 $500 \mathrm{Mc} / \mathrm{S}$ OS oscilloscope - $£ 2000$. TEK $2467400 \mathrm{Mc} / \mathrm{S} 4 \mathrm{ch}$ oscilloscope - £POA. Mixers are available for the above ANZs to 60 GHz . HP8673D Signal Generator . $05-26.5 \mathrm{GHz}$ - E15k. Systron Donner 16188 Microwave AM FM Synthesizer $50 \mathrm{Mc} / \mathrm{s}$ - 18 GHz £ 2 k .
ADRET 3310A FX Synthesizer 300 Hz - $60 \mathrm{Mc} / \mathrm{s}$ - E 600 . HP Plotters 7470A - 7475A. Up to $£ 250$.
HP3730A + 3737A Down Convertor Oscillator $3.5-6.5 \mathrm{GHz}$. HP Microwave Amps 491-492-493-494-495-1GHz -12.4 GHz . £250 each.
HP6034A System Power Supply 0-60V 0-10A - E500. HP6131C Oigital Voltage Source $+-100 \mathrm{~V} / 2 \mathrm{Amp}$. HP3779A Primary Multiplex Analyser - £200 qty. HP3779C Primary Multiplex Analyser- E 300 qty. HP5316A Universal Counter A+B.
Marconi TF2374 Zero Loss Probe - E200.
Marconi TF2305 Modulation Meter - $£ 1000$.
Racal/Dana 2101 Microwave Counter - $10 \mathrm{~Hz}-20 \mathrm{GHz}$ - with book as new $£ 2 k$.
Racal/Dana 1250-1261 Universal Switch Controller $+200 \mathrm{Mc} / \mathrm{s}$ PI Cards.
Racal/Dana 9303 True RMS Levelmeter + Head - E450. IEEE Interface - 5500 .
TEKA6902A also A6902B Isolator - E 300 - E 400 .
TEKFG5010 Programmable Function Genr 20Mc/s - $£ 600$.
TEK CT-5 High Current Transformer Probe - £250.
TEK J16 Digital Photometer + J6523-2 Luminance Probe £300.
HP745A+746A AC Calibrator - $\mathbf{E 6 0 0}$.
Marconi TF2008 - AM-FM signal generator - also sweeper $10 \mathrm{Kc} / \mathrm{s}-510 \mathrm{Mc} / \mathrm{s}$ - from $£ 250$ - tested to $£ 400$ as new with manual - probe kit in wooden carrying box.
HP Frequency comb generator type 8406 - $£ 400$.
HP Sweep Oscillators type $8690 \mathrm{~A}+\mathrm{B}+$ plug-ins from $20 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $18-40 \mathrm{GHz}$.
HP Network Analyser type $8407 \mathrm{~A}+8412 \mathrm{~A}+8601 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}$ - $110 \mathrm{Mc} / \mathrm{s}$ - $£ 500$ - $£ 1000$.

HP Amplifier type 8447A - $1-400 \mathrm{Mc} / \mathrm{s} £ 200$ - HP8447A Dual £300.
HP Frequency Counter type 5340A - 18GHz $£ 800$
HP $8410-\mathrm{A}-\mathrm{B}-\mathrm{C}$ Network Analyser $110 \mathrm{Mc} / \mathrm{s}$ to 12 GHz or 18 GHz - plus most other units and displays used in this set-up-
$8411 \mathrm{a}-8412-8413-8414-8418-8740-8741-8742-8743-8746-8650$. 8411a-8412-8413-8414-8418-8740-8741-8742-8743-8746-8650. From $£ 1000$.
Racal/Dana 9301A-9302 RF millivoltmeter - $1.5-2 \mathrm{GHz}$ - qiv in stock £250-£400.
Racal/Dana Modulation Meter Type 9009-9008-8Mc/s $1.5 \mathrm{GHz}-£ 150 / \mathrm{E} 250$.
Marconi RCL Bridge type TF2700 - $£ 150$.
Marconi/Saunders Signal Sources type - 605B-6070A-6055A-6059A-6057A-
$6056-\mathrm{f} 250-\mathrm{E} 350.400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz .
Marconi Microwave 6600A 1 sweep osc., mainframe with 6650 PI - $18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5-40 \mathrm{GHz}-\mathrm{E} 750$ or Pl only £600. MF only E 250 .
Tektronix Plug-ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12-S1-S2-S6-S52-PG506-SC504-SG502-SG503-SG504-DC503-DC508-DD501-WR501-DM501A-FG501A-
TG501-PG502-DC505A-FG504-7B80 + 85-7B92A.
Gould J38 test oscillator + manual - $£ 150$.
Tektronix Mainframes - 7603-7623A-7613-7704A-7844-7904-
TM501-TM503-TM506-7904A-7834-7623-7633-7844-7854-
7104.

Marconi 6155A Signal Source-1 to 2GHz - LED - £400. Barr \& Stroud Variable filter EF 30.1 Hz -100Kc/s + high pass + low pass - $£ 150$.

Racal /Dana 9300 RMS voltmeter - $£ 250$.
HP 8750 A storage normalizer - $£ 400$ with lead + S. A. or N, A Interface. Board fitted.
TEKTRONIX - 7 S 14 -7T11-7S11-7S12-S1-S2-S39-S47-S51-S52-S53-7M11.
Marconi mod meters type TF2304- $£ 250$.
Systron Donner counter type $6054 \mathrm{~B}-20 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}$ - LED readout - $£ 1 \mathrm{k}$.
Farnell electronic load type RB1030-35- £350.
Racal/Dana counters-99904-9905-9906-9915-9916-9917-9921$50 \mathrm{Mc} / \mathrm{s}-3 \mathrm{GHz}-£ 100-£ 450$ - all fitted with FX standards. HP180TR. HP181T, HP182T mainframes $£ 300$ - $£ 500$. Marconi 6700 A sweep oscillator - 18 GHz Pls available. Racal/Dana VLF frequency standard equipment. Tracer Raca//Dana VLF frequency standard equipment. Tracer
receiver type 900 A + difference meter type $527 \mathrm{E}+$ rubidium receiver type $900 \mathrm{~A}+$ differe
standard type 9475 - E 2750 .
HP $432 \mathrm{~A}-435 \mathrm{~A}$ or $\mathrm{B}-436 \mathrm{~A}$-power meters + powerheads to 60 GHz - $£ 150-£ 1750$ - spare heads.
HP8614A signal gen $800 \mathrm{Mc} / \mathrm{s}-2.4 \mathrm{GHz}$, new colour - $£ 400$.
HP8616A signal gen $1.8 \mathrm{HGz}-4.5 \mathrm{GHz}$, new colour $£ 400$.
HP3336A or B syn level generator - 5500 - E600.
HP3586A or C selective level meter - $£ 500$.
HP8683D S/G microwave 2.3-13GHz-opt 001-003-£1k. HP8640B S/G AM-FM $512 \mathrm{Mc} / \mathrm{s}$ or $1024 \mathrm{Mc} / \mathrm{s}$. Opt 001 or 002 or 003 - $5800-\mathrm{E} 1250$.
HP86222A+B Sweep PI -01-2.4GHz + ATT $£ 1000-\mathrm{E} 1250$. HP86290A + B Sweep Pl-2 - 18 GHz - $\mathrm{£} 1000-\mathrm{E} 1250$ HP86 Series Pls in stock - splitban from $10 \mathrm{Mc} / \mathrm{s}-18.6 \mathrm{GHz}$ £250- £1k.
HP8620C Mainframe - L250. IEEE.
HP8615A Programmable signal source - 1 MHZ - $50 \mathrm{Mc} / \mathrm{s}$ - opt 002-f1k.
HP8601A Sweep generator. $1-110 \mathrm{Mc} / \mathrm{s} £ 250$.
HP8349A Microwave Amp $2-20 \mathrm{GHz}$ Solid state - $£ 1500$. HP 1980B Oscillascope measurement system - $£ 300$. HP3455/3456A Digital voltmeter - $£ 400$.
HP5370A Universal time interval counter - $£ 1 \mathrm{k}$. HP5335A Universal counter - 200 Mc/s-E1000.
HP5328A Universal counter - $500 \mathrm{Mc} / \mathrm{s}$ - $\mathbf{£ 2 5 0}$.
HP6034A Power supply - $0-60 \mathrm{~V}-0-10 \mathrm{amps}$ - f 500 . HP3710A 3715A-3716A-3702B-3703B-3705A-3711A-3791B-3712A-3793B microwave link analyser.
HP3552A Transmisslon test set - £350.
HP3552A Transmisslon test set
 HP3770A Amp delay distortion analyser - 4400 . HP3770B - £450.
HP3780A Pattern generator detector - $£ 400$. HP3781A Pattern generator - $£ 400$.
HP3782A Error derector - $£ 400$.
TEK TRONIX 577 Curve tracer + adaptors - $£ 900$.
TEKTRONIX 1502/1503 TDR cable test set - E400
Racal 1991-1992-1998-1300Mc/s counters - E400- 5900 . Fluke $80 \mathrm{~K}-40$ high voltage probe in case - BN - $\mathrm{E} 50-\mathrm{f} 75$. EIP545 micorwave 18 GHz counter - £ 1200 .
Fluke 510A AC ref standard - 400 Hz -E200.
Fluke 355A OC voltage standard - $£ 300$.
Wiltron 610 D Sweep Gen $+6124 \mathrm{C} \mathrm{Pl}-4$-8GHz-E400. Wiltron 610D Sweep Generator +61084 DPI - $1 \mathrm{Mc} / \mathrm{s}$ $1500 \mathrm{Mc} / \mathrm{s} \mathrm{£} 500-10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHz}-£ 1000$.
HP8699B Sweep PI YIG oscillator . $01-4 \mathrm{GHz}-\mathrm{f} 300.8690$ B MF-£250. Both E500
Dummy Loads \& Power att up to 2.5 kilowatts FX up to
18 GHz - microwave parts new and ex equipt - relays attenuators - switches - waveguides - Yigs - SMA - APC7 plugs - adaptors etc. qty. in stock.
B\&K Items in stock - ask for list.
Power Supplies Heavy duty + bench in stock - Farnell - HP Weir - Thuritby - Racal etc. Ask for list. Large quantity in stock, all types to $400 \mathrm{amp}-100 \mathrm{kv}$.
Marconi 6960/6960B Power meter P head - $5600-900$. Marconi TF2955 radio test set - E1600. Marconi TF2958 radio test set - E1800,
Marconi TF2960 radio test set - E2000
Marconi TF2015 S/G $10 \mathrm{Mc} / \mathrm{s}$ - $520 \mathrm{Mc} / \mathrm{s}$ AM/FM - $£ 100$. Marconi TF2016A S/G $10 \mathrm{KC} / \mathrm{s}-120 \mathrm{Mc} / \mathrm{s}$. AM/FM - $£ 100$. Marconi TF2171 Digital syncronizer for 2015/20 16 - 550. Marconi TF2018 $\mathrm{S} / \mathrm{G} 80 \mathrm{~K} / / \mathrm{s}-520 \mathrm{Mc} / \mathrm{s}$. AM/FM - $£ 500$. Marconi TF2018A S/G $80 \mathrm{KC} / \mathrm{s}$-520Mc/s. AM/FM - $\mathrm{E600}$ Marconi TF2019 S/G 80kc/s-1040MC/s. AMFM - E800 Marconi TF2019A S/G 80Kc/s-1040 MC/s. AM/FM - 1000 Marconi TF2022E S/G $10 \mathrm{Kc} / \mathrm{s}-1.01 \mathrm{GHzs}$. AM/FM - E1260. Marconi TF6311 Microwave Sweep S/G $10 \mathrm{Mc} / \mathrm{s}-20 \mathrm{GHz}$ c/w TF6501 amplitude Anz. plus heads $10 \mathrm{Kc} /$ s-20GHz. Heads available to 40 GHz - $£ 4000$.
Farnell S/G ESG1000 10 Hz -1000 Mc/s. AMFM - E 800 . TF2370 Spectrum Anz's $30 \mathrm{~Hz}-110 \mathrm{Mc} / \mathrm{s}$. Large qty to clear as received from Gov- all sold as is from pile complete or add £100 for basic testing and adjustment. Callers preferred Pick your own from over sixty units.
A. Early Model - Grey - Rear horizontal alloy cooling fins - qty of 5 - $£ 750$ lot - singly- $£ 200$
B. Late Model - Grey-Vertical alloy cooling fins - £ 300 Marconi TK2373 Extender to $1.25 \mathrm{GHz}-£ 300-£ 400$. HP3325A Synthesized function generator - $£ 1000-£ 1500$. HP3325B Synthesized function generator - $£ 2500$. HP8405A Vector voltmeter - late colour - £ 400. HP8508A Vector voltmeter - $£ 2500$.
HP8505A Network Anz 500KHz-1.3GHz - 11000 .
HP8505A +8502 A or $8503 A$ test sets- $£ 1200-£ 1500$. HP8505A +8502 A or $8503 \mathrm{~A}+8501$ A normalizer - $£ 1750$ £2000.

HP8557A . $01 \mathrm{Mc} / \mathrm{s}-350 \mathrm{Mc} / \mathrm{s}-8558 \mathrm{~B} 0.1-1500 \mathrm{Mc} / \mathrm{s}-8559 \mathrm{~A} .01$ 21 GHz 180 T or $180 \mathrm{C}-\mathrm{D}-\mathrm{T} 5500$ - $£ 2000$.
TEK 492 Spectrum Anz-OPT $2-50 \mathrm{Kc} / \mathrm{s}$-21GHz - $\mathbf{2} 2.5 \mathrm{~K}$.
TEK 492 P S.A. opt $1-2-3-50 \mathrm{Kc} / \mathrm{s}-21 \mathrm{GHz}$ E4k.
TEK 495 S.A. $100 \mathrm{~Hz} \cdot 1.8 \mathrm{GHz}-\mathrm{E} 3 \mathrm{k}$.
TEKTRONIX - HP Oscilloscopes - $100 \mathrm{Mc} / \mathrm{s}-465-465 \mathrm{~B}$-17401741 etc - $\mathbf{E 3 0 0}$ - qty in stock.
Phillips $321750 \mathrm{Mc} / \mathrm{s}$ oscilloscopes - $\mathrm{E} 150-\mathrm{E} 250$.
Phillips $3296350 \mathrm{Mc} / \mathrm{s}$ IR remote oscilloscope - $£ 500$. Hitachi VC6041 Dig storage oscilloscope - $40 \mathrm{Mc} / \mathrm{s}$ - C 500 . TEKTRONIX 2445 + DMM - $250 \mathrm{Mc} / \mathrm{s}$ - $\mathrm{E800}$. R\&S APN 62 LF S/G $0.1 \mathrm{~Hz}-260 \mathrm{KHz}$ with book - E 750 . Wavetek-Schlumberger 4031 Radio communication test set EPOA
LIGHT AND OPTICAL EQUIPMENT Anritsu ML93A \& Optical Lead Power Meter Anritsu ML938 \& Optical Lead Power Meter. Power Sensors for above MA96A - MA98A - MA913A Battery Pack MZ95A.
Anritsu MW97A Pulse Echo Tester.
PI available - MH914C 1.3-MH915B 1.3 - MH913B 0.85 MH925A 1.3-MH929A 1.55 - MH925A 1.3GI - MH914C 1.3 SM .

Anritsu Mw98A Time Domain Reflector. Pl available - MH914C 1.3-MH915B 1.3-MH913B 0.85 MH925A 1.3-MH929A 1.55-MH925A 1.3GI-MH914C 1.3 SM .

Anritsu MZ100A E/O Converter

+ MG912B (LD 1.35) Light Source + MG92B (LD 0.85) Light Source
Anritsu MZ118A O/E Converter
+MH922A 0.8 O/E unit + MH923 A1.3 O/E unit.
Anritsu ML96B Power Meter \& Charger.
Anritsu MN95B Variable Att. 1300.
Barr \& Stroud LS10 Light Source.
BT Power Unit 850-1300-1500.
Photo Dyne 1950 XR Continuous Att. 1300-1500
Photo Dyne 1800 FA. Att.
NKT Electronic QAM30 Att Meter (MN3032TX) 1300 out. Electo Optic Developments FO-500 TX Laser. Cossor-Raytheon 108L Optical Cable Fault Locator $0-1000 \mathrm{M} 0-10 \mathrm{kM}$.
Intelco 220 Single Mode Att 1532.
TEK P6701 Optical Converter $700 \mathrm{MC} / \mathrm{S}-850$.
TEK Orionics 7000 Type Pl OTDR-103A. HP81512A Head 150MC/S 950-1700. HP84801A Fibre Power Sensor 600-1200. HP81588 ATT OPT 002+011 1300-1550. HP81519A RX DC-400MC/S 550-950. STC OFTX-3 Laser source.
STC OFRX-3.
STC OFR10 Reflectometer.
STC OFSK15 Machine jointing + eye magnifier. Anritsu MS555A2 Radio communication anz - $£ 1500$ Anritsu MG3601A Syn S/G 0.1 - 1040 Mc/S AM-FM - $£$ POA Anritsu ME453L RX Microwave ANZ. Anritsu ME 453LTX Microwave ANZ. Anritsu MH370A Jitter Mod Oscillator. Anritsu MG642A Pulse Patt Gen. Anritsu SA MS 2601A $10 \mathrm{KHz}-2.2 \mathrm{GHz}$ - £2500. Anritsu SA MS $710 \mathrm{~F} 100 \mathrm{KC} / \mathrm{S}-23 \mathrm{GHz}-$ EPOA. Complete MS65A Error Detector. System MS02A Timer \& Digital Printer. Anritsu ML612A Sel Level Meter. Anritsu ML244A Sel Level Meter. Advantest TR98201 Signal Gen. Advantest TR9402 Digital Spectrum ANZ. Siemens D2108 Level Meter. Siemens D2150 Bit Error Meter. W\&G PCM3 Auto Measuring Set. W\&G SPM14 Sel Level Meter. W\&G SPM15 Sel Level Meter. W\&G SPM16 Sel Level Meter. W\&G SPM 16 Sel Level Meter W\&G PS19 Level Gen - El k. W\&G PMG3 Transmission Measuring Set. W\&G PSS 16 Generator. W\&G PS14 Level Generator. W\&G EPM-1 Plus Head Milliwatt Power Meter - 4450 . W\&G DLM3 Phase Jitter \& Noise - $£ 500$ W\&G DLM4 Data Line Test Set - 7750 . W\&G PS 10 \& PM10 Level Gen. HP53528 Microwave counter Opt 010--005. 46 GHz brand new $£ 5000$.
HP8342A+5344A Microwave counter +Syn 18GHz - $£ 1600$. HP8112A Pulse Gen $50 \mathrm{Mc} / \mathrm{S}$ - $£ 1400$. HP8660C S/G AM/FM - Phase $\bullet 01-110 \mathrm{MC} / \mathrm{s}-1300 \mathrm{MC} / \mathrm{s}$ $2600 \mathrm{MC} / \mathrm{s}$ £1-£2k.
HP4274A LCR Meter + Adaptor.
HP8754A Network ANZ 4 - $1300 \mathrm{MC} / \mathrm{s}+8502 \mathrm{~A}+$ cables. HP8754A Nerwork ANZ H26-2600MC/s $+8502 \mathrm{~A}+$ cables. HP8754A Network ANZ H26-2600M Pulse function Gen E2200.
HP3588A S.A. 10 Hz - 150MC/s opt 001-003. HP3588A S.A. 10Hz - $150 \mathrm{MC} / \mathrm{s}$ opt
HP54100A DIG Oscilloscope 1 GHz - - .0 . O . . HP54100A DIG Oscilloscope 1GHz - P.O.R.
HP54501A DIG Oscilloscope $100 \mathrm{MC} / \mathrm{s}$ - P.O.R. TEK OF 150 Fibre Optic TDR.
MAR S/G 2022D $10 \mathrm{KC} / \mathrm{s}$ - 1 GHz - White - E 1400 .
HP 1630-1631-1650 Logic ANZs.
NEW REVISED LOW PRICES FOR OLDER EQUIPMENT

Knownoise

Joe Carr looks at noise from the receiver designer's perspective and explains which elements of the receiving system are the biggest contributors to it.

f you are in electronics, and you work with signals, then you will undoubtedly have to deal with noise. A radio receiver for example must detect signals in the presence of noise. Indeed, radio reception - especially at the weak signal level - is essentially a game of signal-to-noise ratio.
The signal-to-noise or s-to-n ratio is the key here because a signal must be above the noise level before it can be successfully detected and used.
Noise affects other electronics systems as well as receivers. In medical electronics, for example, the very low electrical potentials generated by the human brain are displayed by an electroencephalograph, or EEG, machine. Those signals are of the order of 1 to $100 \mu \mathrm{~V}$. Because they exist in a highimpedance source and high 50 or 60 Hz electrical mains fields, they are often obscured. But they can also be obscured by noise generated in amplifier circuits.
Noise comes in a number of different guises, but for sake of this discussion we can divide noise sources into two classes: sources external to the receiver or amplifier and internal sources.
There is little you can do about external noise sources. They consist of natural and man-made electromagnetic signals that fall within the passband of the receiver. Figure 1 shows an approximation of the external noise situation from the middle of the amplitude-modulation broadcast band to the low end of the vhf region. One has to select a receiver that can cope with external noise sources - especially if the noise sources are strong.
Some natural external noise sources are extraterrestrial.

Joseph J. Carr, MSEE

These signals that form the basis of radio astronomy. For example, if you aim a beam antenna at the eastern horizon prior to sunrise, a distinct rise of noise level occurs as the Sun slips above the horizon - especially in the vhf region. The reverse occurs in the west at sunset, but less dramatically, probably because atmospheric ionisation decays much slower than it is generated.
During World War II, it is reported that radar operators noted an increase in received noise level any time the Milky Way

R_{i}

(a)

(b)

Fig. 2. Model of an ideal resistor, a) and a real resistor - i.e.
pure resistance plus a noise source, b).

Fig. 3. Noise voltage for bandwidths to 10 kHz for a 50Ω
resistor.
was above the horizon, decreasing the range at which they could detect in-bound German bombers. Radio astronomy was only then in its infancy, so the effect was apparently not anticipated.
There is also some well-known, easily observed noise from the planet Jupiter in the 18 to 30 MHz band. ${ }^{1}$

Internal noise sources

A receiver's internal noise sources are affected by the design of the receiver. Ideal receivers produce no noise of their own, so the output signal from the ideal receiver would contain only the noise that was present at the input along with the radio signal. But real receiver circuits produce a certain level of internal noise of their own.
Even a simple fixed-value resistor is noisy. Figure 2a) shows the equivalent circuit for an ideal, noise free resistor, while Fig. 2b) shows a practical real-world resistor. The noise in the real-world resistor is represented in Fig. 2b) by a noise voltage source, V_{n}, in series with the ideal, noise free resistance, R_{i}.
At any temperature above absolute zero - 0 K or about $-273^{\circ} \mathrm{C}$ - electrons in any material are in constant random motion. Because of the inherent randomness of that motion, however, there is no detectable current in any one direction.
In other words, electron drift in any single direction is cancelled over even short time periods by equal drift in the opposite direction. Electron motions are therefore statistically decorrelated. There is, however, a continuous series of random current pulses generated in the material, and those pulses are seen by the outside world as noise signals.
If a shielded 50Ω resistor is connected across the antenna input terminals of a radio receiver, the noise level at the receiver output will increase by a predictable amount over the short-circuit noise level. Noise signals of this type are called by several names: thermal agitation noise, thermal noise, or Johnson noise. This type of noise is also called 'white noise' because it has a very broadband - near gaussian - spectral density.
The thermal noise spectrum is dominated by mid-frequencies -104 to 105 Hz - and is essentially flat. The term 'white noise' is a metaphor developed from white light, which is composed of all visible colour frequencies. The expression for such noise is,
$V_{N}=\sqrt{4 \mathrm{KTBR}}$
(1)

Where Vn is the noise potential in volts, K is Boltzmann's constant $(1.38 \times 10-23 \mathrm{~J} / \mathrm{K}), T$ is the temperature in kelvin, R is the resistance in ohms and B is bandwidth in hertz. Temperature T is normally set to an average room temperature of 290 K by convention.

Table 1 and Fig. 3 show noise values for a 50Ω resistor at various bandwidths out to 10 kHz . Because different bandwidths are used for different reception modes, it is common practice to delete the bandwidth factor in equation 1 and write it as,

$$
\begin{equation*}
V_{N}=\sqrt{4 \mathrm{KTR}} \frac{V}{\sqrt{H z}} \tag{2}
\end{equation*}
$$

With this equation, you can find the noise voltage for any particular bandwidth by taking its square root and multiplying it by the equation. It is essentially the solution of the previous equation normalised for a 1 Hz bandwidth.

Signal-to-noise ratio

Receivers are evaluated for quality on the basis of signal-tonoise ratio, also known as S / N or SNR and sometimes denoted Sn . The goal of the designer is to enhance the s-to-n ratio as much as possible.
Ultimately, the minimum signal level detectable at the output of an amplifier or radio receiver is that level which appears just above the noise floor level - usually measured in dBm . Therefore, the lower the system noise floor, the smaller the minimum allowable signal. Designers of weak signal receivers spend a great deal of effort on suppressing the noise floor as low as possible.

Noise factors, figures and temperatures

The noise performance of a receiver or amplifier can be defined in three different, but related, ways: noise factor, or F_{N}, noise figure, or $N F$, and equivalent noise temperature, Te ; these properties are definable as a simple ratio, decibel ratio or kelvin temperature, respectively.

Noise factor, $\boldsymbol{F}_{\mathbf{N}}$. For components such as resistors, the noise factor is the ratio of the noise produced by a real resistor to the simple thermal noise of an ideal resistor.
The noise factor of a radio receiver - or any system - is the ratio of output noise power, P_{no}, to input noise power, P_{ni} :

Table 1. Noise voltage for bandwidths to 10 kHz .

Bandwidth (kHz)	Noisex $10^{-8}(\mathrm{~V})$
1	2.83
1.5	3.46
2	4.00
2.5	4.47
3	4.9
3.5	5.29
4	5.66
4.5	6.00
5	6.33
5.5	6.63
6	6.93
6.5	7.21
7	7.49
7.5	7.75
8	8.00
8.5	8.25
9	8.49
9.5	8.72
10	8.95

$$
\begin{equation*}
F_{N}=\left[\frac{P_{N O}}{P_{N I}}\right] T=290 K \tag{3}
\end{equation*}
$$

In order to make comparisons easier, the noise factor is usually measured at the standard temperature T_{0} of 290 K , i.e. standardised room temperature; in some countries though, 299 or 300 K are commonly used, but the differences are negligible.
It is also possible to define noise factor F_{N} in terms of the output and input signal-to-noise ratios:

$$
\begin{equation*}
F_{N}=\frac{S_{N \prime}}{S_{N O}} \tag{4}
\end{equation*}
$$

where S_{NI} is the input signal-to-noise ratio, S_{NO} is the output signal-to-noise ratio.

Noise figure, $N F$. The noise figure is frequently used to measure the receiver's 'goodness,' i.e. its departure from 'idealness.' Thus, it is a figure of merit. The noise figure is the noise factor converted to decibel notation,

$$
\begin{equation*}
N F=10 \log F_{\mathrm{N}} \tag{5}
\end{equation*}
$$

where $N F$ is the noise figure in decibels and F_{N} is the noise factor. Note that the \log here is base 10 .

Noise temperature, T_{e}. The noise 'temperature' is a means for specifying noise in terms of an equivalent temperature. That is, the noise level that would be produced by a resistor at that temperature, expressed in kelvin.
Evaluating the noise equations shows that the noise power is directly proportional to temperature in kelvin, and also that noise power collapses to zero at the temperature of absolute zero (0 K).
Note that the equivalent noise temperature T_{e} is not the physical temperature of the amplifier, but rather a theoretical construct that is an equivalent temperature that produces that amount of noise power in a resistor.

Noise temperature is related to the noise factor by:
$T_{\mathrm{e}}=\left(F_{\mathrm{N}}-1\right) T_{\text {。 }}$
and to noise figure by

$$
T_{e}=290\left(10^{N F / 10}-1\right)
$$

Noise temperature is often specified for receivers and amplifiers in combination with, or in lieu of the noise figure.

Noise in cascade amplifiers and receivers

A noise signal is seen by any amplifier following the noise source as a valid input signal.
Each stage in the cascade chain, Fig. 4, amplifies both the signals and the noise from previous stages. Each stage also contributes some additional noise of its own. Thus, in a cascade amplifier the final stage sees an input signal that consists of the original signal and noise amplified by each successive stage plus the noise contributed by earlier stages.
The overall noise factor for a cascade amplifier can be calculated from Friis' noise equation,

$$
\begin{equation*}
F_{N}=F_{1}+\frac{F_{2}-1}{G_{1}}+\frac{F_{3}-1}{G_{1} G_{2}} \ldots+\frac{F_{N}-1}{G_{1} G_{2} \ldots G_{N-1}} \tag{8}
\end{equation*}
$$

Noise calculations for a configuration such as Fig. 5, obtained via Excel from gain and noise figure entered into the spreadsheet in decibels.

Stage	Gain/loss (dB)	Gain/loss (lin.)	Noise figure	Noise factor	Noise Temp.
Preamplifier	15	31.62	2.2	1.66	191
Transmission line	-2	0.63	2.00	1.58	170
RF amplifier	10	10.00	3	2.00	289
Mixer	-6	0.25	4.5	2.82	527
Overall	17	50.12	2.398	1.737	214

where F_{N} is the overall noise factor of N stages in cascade, F_{1} is the noise factor of stage $1, F_{2}$ is the noise factor of stage $2, F_{\mathrm{N}}$ is the noise factor of the nth stage, G_{1} is the gain of stage $1, G_{2}$ is the gain of stage 2 and $G_{N^{-}}-1$ is the gain of stage $n-1$.
As you can see from Friis' equation, the noise factor of the entire cascade chain is dominated by the noise contribution of the first stage or two. High-gain, low-noise rf amplifier chains, or receivers, typically use a low-noise amplifier circuits for the first stage or two in the cascade chain.
As an example, you will find a low-noise amplifier at the feedpoint of a satellite receiver's dish antenna, and possibly another one at the input of the receiver module itself. Other amplifiers in the chain might be more modest, although their noise contribution cannot be ignored at radio astronomy signal levels.

Receiver noise floor

The noise floor of the receiver is a statement of the amount of noise produced by the receiver's internal circuitry, and directly affects the sensitivity of the receiver.
The noise floor is typically expressed in dBm . Its specification is evaluated as follows: the more negative the better. The best receivers have noise floor numbers of greater than -130 dBm , while some very good receivers offer numbers of -115 dBm to -130 dBm .
The noise floor depends directly on the bandwidth used to make the measurement. Receiver advertisements usually specify the bandwidth, but remember to compare the figure given with the bandwidth that you'll need for the mode of transmission you want to receive. If, for example, you are interested only in weak 6 kHz wide amplitude-modulated signals, and the noise floor is specified for a 250 Hz cw filter, then the noise floor might be too high for your use.

Receiving-system example

Figure 5 shows a receiving system that is common in the vhf through microwave regions of the spectrum. An antenna is used to obtain the signal, and a low-noise amplifier, A_{1} in Fig. 5, is provided to boost the antenna signal.
It is common practice to place the low-noise amplifier at

Fig. 4. In a cascaded amplifier chain like this one, each stage not only adds its own noise, but amplifies noise from the preceding stage.

Fig. 5. Typical receiver system front-end. Low-noise amplifier A_{1} is put before the transmission line. If it came after, it would have to deal with a signal subjected to more loss.
the antenna terminals so that it does not have to overcome the loss of the transmission line.
The receiver may or may not have an of amplifier, but in this model one is used, namely A_{2}. The mixer then converts the rf signal to the intermediate frequency used by the receiver.
Loss in the coaxial cable transmission line can be a significant cause of noise in the system. The cable loss is usually expressed in decibels, and is taken from the manufacturer's data sheets if no actual measurements are available.
Typically, the manufacturer will provide a chart that relates loss in decibels per metre $(\mathrm{dB} / \mathrm{m})$ to frequency. Find the loss factor appropriate to the desired frequency, and correct for the actual length of the line.
The noise temperature of the transmission line is:

$$
\begin{equation*}
T_{\mathrm{e}(\mathrm{line})}=T_{\mathrm{L}}(L-1) \tag{9}
\end{equation*}
$$

where $T_{\text {e(line) }}$ is the noise temperature of the line and L is the loss of the line expressed in linear terms, as a ratio.
Table 1 shows the results of making the noise calculations on a receiving system such as Fig. 5 when the following specifications are used,

Stage	Gain (dB)	Noise figure (dB)
Preamp	15	2.2
Trans. line	-2	2.0
RF amp	10	3.0
Mixer	-6	4.5

Overall gain for this part of the receiver is the sum of the gains, or 17 dB The results of the Friis equation shows an overall noise figure of 2.398 .

If you program a spreadsheet with the noise equations so that you can vary the noise figure parameters, it becomes apparent that the first stage dominates.
Let's do a little ceterus paribus ${ }^{\dagger}$ exercise in which one noise figure is changed by 1 dB . If the preamplifier noise figure is increased to 3.2 dB , then the overall noise figure rises to 3.36 dB .
Increasing the transmission line noise figure to 3 dB only raises the noise figure to 2.47 dB . Increasing the rf amplifier noise figure to 4 dB increases the overall noise figure to 2.46 dB . This finally increases the mixer noise figure to 2.41 dB .
For a 1 dB increase in noise figure, the overall noise figure changes to:

Stage	New NF (dB)	Change
Low-noise amplifier	3.20	+0.8 dB
Transmission line	2.47	+0.072 dB
RF amplifier	2.46	+0.062 dB
Mixer	2.41	+0.012 dB

Note that the increase in overall noise figure is greatest for the first stage in the chain, and that the change for each succeeding stage is less than for the stage before. The lesson here is to put as much effort as possible into the first stage in order to reduce the noise figure overall.

Reference

1. Carr, J., RadioScience Observing, Vol. 1.
\dagger All else remaining unchanged.

The World is getting onto Spicycles!

Jump onto the future today - tomorrow's electronic engineering CAD from the UK's leading simulation author.

- Schematic editing - publication quality images
- Analogue + mixed mode digital simulation with extended SPICE-like functions
- Upgrade path to extensive range of drawing tools each with high definition visuals
- TrueType fonts
- Back annotation of components from simulator
- Simulate directly from your drawings for the ultimate in design checking
- Import \& reverse engineer SPICE net lists
- Library includes electronic + mechanical engineering behavioural devices
- Upgrade path from Geswin (existing customers)
- 12 months maintenance included (limited introductory offer)
Please contact Charles Clarke at
Those Engineers Ltd,
31 Birkbeck Road, LONDON NW7 4BP.
Tel $\quad+44(0) 1819060155$
Fax $\quad+44(0) 1819060960$
e-mail Those_Engineers@compuserve.com
web http://www.spiceage.com

'THE RACK RANGE’ MAINS DISTRIBUTION PANELS FOR 19" RACK MOUNTING HORIZONTAL

HIETRONICS IIIITED

> Conventional wisdom has it that high performance in a receiver goes hand-in-hand with complexity. Compare a comms receiver with a crystal set. But there is a notable exception, as lan Hickman explains.

Super-regen or super-replacement?
 But all this is effectively automated

Aa lad, my introduction to wireless technology was a crystal set, given me by my grandmother.
Wanting something better, I was soon building battery sets of my own, and experiencing the thrill of DXing receiving distant stations - thanks to the greatly increased sensitivity afforded by an expertly wielded reaction control.
Reaction - or in simple terms, positive feedback at rf - is the key to obtaining a receiver with high sensitivity while keeping the component count low. With reaction as it is normally implemented though, you need to be skillful in using both the tuning and reaction controls, in order to achieve the best performance.
in the 'super-regenerative' receiver, which dates from well before the Second World War. It was described but not explained - in reference 1 . This description left me unclear about how the super-regenerative receiver worked. The author gives a reference to another description, reference 2 , which I hope is more illuminating, although I have not seen it.
While I could find no mention of the 'super-regen' in the Admiralty Handbook of Wireless Telegraphy of 1925, by the 1939 edition it had duly made its appearance. Army veterans of the Second World War may remember a super-regen set used for communication between tanks, and operating in the uhf range.

The receiver with reaction
In a simple receiver with reaction, sensitivity and selectivity both increase as the degree of positive feedback is increased. This increase continues until the set is on the verge of oscillation, or actually oscillating very weakly. Any further increase in the positive feedback actually reduces the sensitivity, as the following explanation shows.
In any oscillator circuit, the gain of the active device - at the fundamental, i.e. the resonant frequency of the tuned circuit around which reaction is applied - falls with increasing amplitude. This is the mechanism which stabilises the amplitude of oscillation.
In a circuit suitably designed for use as a receiver with reaction, the way the loop gain changes with amplitude is all
important. Several characteristics are shown in Fig. 1.
Characteristic a) - and even more so c) - is ideal for a high-stability lownoise oscillator. The rapid change of loop gain with amplitude, in the region of unity loop gain, results in low amplitude modulation noise sidebands. The fm noise sideband performance is governed mainly by other factors.
But for a receiver with reaction, characteristic d) is just what is wanted. The shallow angle at which the characteristic cuts the unity gain level makes the oscillator extremely susceptible to influence by any outside factor, such as an incoming signal.
Characteristic b), on the other hand is no good to man nor beast. As an oscillator, it will usually start, being kicked into life by the switch-on transient, but may occasionally fail too. As a reac-tion-aided receiver, as the degree of reaction is increased, it will suddenly burst into oscillation. It will not stop until the reaction control is wound back down some way, where the gain is low again - an annoying sort of hysteresis effect.
Many ingenious attempts have been made to harness reaction, automating it so as always to be at the optimum level. Older readers may remember the 'Sobellette' small valve table radio from the fifties. This was a superhet, with but one IF transformer and no IF stage! Instead, the usual double-diode triode detector stage was replaced by a pentode leaky grid detector with reaction.
The theory was that, at the fixed IF, a fixed degree of reaction could be applied, achieving gain and selectivity equivalent to a conventional superhet four-valve-plus-rectifier line-up, but with one less valve.
So much for the theory: the output impedance of the frequency changer varied across the band. This changed the damping on the IF transformer, severely limiting the degree of factorypreset reaction that could safely be applied.

The super-regenerative receiver

The super-regen receiver is another attempt at harnessing the gain increase achievable with reaction. Reverse bias on an initially cut-off valve or transistor rf amplifier with feedback is gradually reduced, until the stage begins to oscillate. When the oscillation has built up to the intended design amplitude, the beyond-cut-off bias is again applied, and the oscillation dies away again.
There are two ways of implementing the periodic cut-off of the device.
In the externally quenched superregen, a separate quench oscillator is

Fig. 1. Showing various ways the open-loop gain of an oscillator can vary with signal level.
used, resulting in a fixed quench frequency, Fig. 2. This is usually in the supersonic or low-rf range, typically 50 to 100 kHz .

Alternatively, the oscillator can be provided with self biasing, with an over-long time-constant, so that it 'squegs'. This results in bursts of classC operation, each burst cutting off the device until the reverse bias dies away again sufficiently for oscillation to recommence. The self-quenching frequency is again typically in the range 50 to 100 kHz in the absence of an incoming signal, but will increase somewhat in the presence of a signal.
The arrangement is usually similar to Fig. 2, but with the time-constant $C R$ increased, and the separate quench oscillator replaced by a short circuit.

External versus internal quenching

Figure 3 shows the build-up of amplitude of rf oscillation, lower trace, in sympathy with the quench waveform, middle trace, in the absence or presence of an incoming signal, top trace. The external quench waveform is shown as sinusoidal, but in the case of a self-quenching circuit, it would be the typical sawtooth waveform of a squegging oscillator.
In the absence of an incoming signal, the oscillation has to build up from the level of the noise floor in the circuit. With an on-tune incoming signal, the build-up starts from a higher level. Consequently, the amplitude reaches any given level sooner than would otherwise be the case.
Thus in the externally quenched case, the burst of oscillation is longer, as in Fig. 3, while in the self quenched case,

Fig. 2. Simplified circuit diagram of a basic super-regenerative receiver.

the amplitude reaches the level needed to cut off the circuit sooner, Fig. 4. Either way, the current drawn from the supply increases, and as in Fig. 2 this may be taken as the detected signal level.

Whether self or externally quenched, a super-regenenerative receiver can be designed to run in either of two modes. In the linear mode, each newly started burst of oscillation is quenched before ever reaching its maximum possible value. The result is a detected signal which varies linearly with the incoming signal level, over a wide range.

Fig. 3. Illustrating the circuit action of a basic superregen receiver.

Alternatively, the amplitude of oscillation may be designed to reach almost the maximum possible for the given supply rail, before being quenched. This 'logarithmic mode' provides the greatest sensitivity to the smallest signals, giving a kind of limiting or auto-matic-gain control action with larger signals. Thus the dynamic range of the output is compressed to a manageable value, over a wide range of input levels.

Under the floor

It is important to note that, whether using linear or log mode, external or self-quenching, the off period must be long enough to allow the amplitude of oscillation in the tuned circuit to die down to below the level of the noise floor in the circuit.
Thus each burst of oscillation starts in a random noise-initiated phase, rather than a phase coherent with the previous burst of rf. Otherwise, the

receiver will 'hear' itself, as well as any external signal, with resultant reduced sensitivity.
The super-regen circuit, in common with the reactive receiver, provides great sensitivity with a low component count. But it does not enjoy the other virtue of the receiver with reaction.
The reactive receiver shows enhanced selectivity as well as enhanced sensitivity, due to the Q multiplying effect of reaction. But clearly, the faster build-up of oscillation in the super-regen will be caused by any signal within the bandwidth of the tuned circuit.
At this early stage in the process,
there is as yet no Q enhancement. As a result, the relevant bandwidth is simply the natural, unenhanced bandwidth of the tuned circuit.
The other main drawback of the super-regen receiver, besides its poor selectivity, is its antisocial behaviour towards other users of the band in which it operates. In addition to being a receiver, the super-regen also acts as a very effective broadband jammer.
The narrow pulses of rf, seen in the time domain in Fig. 4, correspond to a forest of spectral lines, spaced at the receiver's pulse repetition frequency. These appear in the frequency domain

Fig. 5. Typical spectrum of the stray radiation from a super-regen receiver, actually from that shown in Fig. 4. The broad band of interference makes the super-regen a social outcast among receiver architectures.

Fig. 4. Bursts of rf in a self quenching superregen receiver. The no-signal quench frequency - upper trace - is about 80 kHz . The increased pulse rate - with a consequent
increase in supply current drawn - is seen in the lower trace. The ragged appearance of the rf pulses is due to sub-sampling of the waveform by the digital storage oscilloscope used.

Fig. 6. Block diagram showing the internals of the MICRF001 uhf superhet receiver.

as in the spectrum analyser display of Fig. 5. The typical appearance shown has earned the super-regen the fanciful, if not entirely inappropriate, nickname of the 'hedgehog'.
One ingenious scheme to render the super-regen receiver somewhat less obnoxious appeared in the literature a year or two ago. In this, an additional grounded-gate junction-fet stage preceded the receiver proper, in an attempt to prevent the quench-frequency-modulated rf getting back up the aerial. How effective this was I am unable to report, but the idea does not seem to have caught on.

Simple, but not a super-regen

 Imagine your boss comes in one lunchtime, saying that he wants a receiver design for the UK low power radio 418 MHz licence-exempt band to MPT1340, and he wants it on his desk by the following morning.For a quick solution, a super-regen might appear to be the answer. But they are tricky things to get right, and there's not enough time for a superhet design. The answer - ready by teabreak that same afternoon - might be a functional replacement for the super regen, which has recently appeared. This offers the same low component count combined with high sensitivity as the super-regen circuit, but without any of the troublesome stray radiation of the latter.
The MICRFOOI QwikRadio ${ }^{3}$ is in fact a fully functional superhet receiver, but the level of integration is so great that an absolutely minimal component count is achieved.
Figure 6 shows the internal workings of the device, which comes in either a 14 -pin plastic DIL package or a 14 pin SOIC. Both options operate over -40 to $+85^{\circ} \mathrm{C}$ and draw just 6.3 mA from a +5 V supply. The claimed sensitivity is -95 dBm , making it directly comparable with a super-regen receiver.
The design range of receive frequencies is 300 to 440 MHz , over which the device handles on-off keying, data rates of 100 up to $4800 \mathrm{bit} / \mathrm{s}$. Talking to the Micrel rep. on the company's stand at the recent Low Power Radio Association Exhibition and Conference, he boasted that the MICRF001 was the only uhf radio chip you could build into a working radio on experimenter's plug-board.

A uhf radio on bread board?

I obtained a sample for evaluation and, decided to put his boast to the test. My circuit was just about the crudest, simplest that one could devise, Fig. 7. Built on the well known Experimentor white plug-board, testing commenced as soon as a suitable reference fre-

Technical support
MICRF001 - Micrel
Semiconductor (UK)
Ltd., 21 Old Newtown
Road, Newbury, RG14
7DP. Tel: 01635
524455, fax: 10635
524466, e-mail:
info @ micrel.co.uk, Website
www.micrel.com
3.1969 MHz crystal, Golledge Electronics Limited, Ashwell Park, IIminster, Somerset, TA19 9DX. Tel: 01460 256100, fax: 01460 256101, e-mail: sales@golledge.co.uk, Website www.golledge.co.uk.
quency crystal had been procured. This was at 3.1969 MHz , which is effectively multiplied by a factor of 130 in the device's synthesiser to produce a local oscillator frequency of 415.602 MHz .
Given the device's intermediate frequency, which is itself a weak function of the reference frequency, this sets the receive frequency as 418 MHz . There's more on this in the panel entitled 'The single-chip superhet'
Being temporarily without a uhf signal generator, I connected 18 cm of wire to the output terminal of a Leader $L S G-16100 \mathrm{kHz}$ to 100 MHz signal generator, to act as a quarterwave whip. The receiver, a metre or so away, was similarly equipped. With internal 1 kHz AM selected, the signal generator's output frequency was set to 83.6 MHz .

The MICRFO01 receiver picked up the generator's fifth harmonic, slicing the envelope cleanly to recover what looks like a 010101 data stream running at $2 \mathrm{kbit} /$ second, Fig. 8 , top trace. This is quite a feat, given the low level of the fifth harmonic. In addition, the low modulation depth - barely 20% hardly resembles on/off keying by a long margin, Fig. 8, lower trace. However, it gave no real indication of the range that I could expect in practice.
Fortunately, an open-site test range on the extensive flat rooftop of a factory, plus a wide range of test equipment, was available to me at the time. This permitted a more quantitive measurement approach.
A Marconi 2022 D 10 kHz to 1 GHz signal generator, with its front panel horizontal and standing on a 1 m high parapet, was set to 418 MHz and 18 cm of wire left poking up from its output

socket. The output level was set to $-33 \mathrm{dBm}(500 \mathrm{nW}$), with 99% amplitude modulation depth at 1 kHz .

Range testing

I monitored the receiver's data output at pin 8 with a crystal earpiece. Walking away with the receiver handheld at about the same 1.5 m height, the clear 1 kHz tone held out to a range of about 20 m . Beyond this distance, it disappeared in the noise. Clearly, this brief test involved no danger of interference with other, off-site users.
The permitted transmitter power in the 418 MHz band, per MPT1340, is $250 \mu \mathrm{~W}$, or some 500 times as much as the signal generator was delivering. So taking the optimistic free space loss figure of -6 dB per doubling of range would predict a working range of 450 m . This assumes a transmitter working within the legal limit of power.
The flat earth loss figure of -12 dB PDOR is more realistic than the free

Fig. 8. Upper trace-a 010101 data stream at $2 \mathrm{kbit} / \mathrm{s}$, recovered from the fifth harmonic of the 83.6 MHz output of a signal generator. $2 \mathrm{~V} /$ div. vertical, $500 \mu \mathrm{~s} /$ div horizontal. In the lower trace is the signal generator output, showing just 20\% amplitude modulation depth. $50 \mathrm{mV} / \mathrm{div}$ vertical,
$500 \mu \mathrm{~s} / \mathrm{div}$
horizontal.
space loss, and predicts a range of just under 100 m in a clear site.
Clearly, under more cluttered conditions, the useful range would be less, but then the circuit of Fig. 7 really does not take full advantage of the IC's potential. The pin 4 antenna input impedance at uhf is about $6 \mathrm{k} \Omega$ in par-
allel with 2 pF , whereas the impedance of a quarter wave whip working against a ground plane is $37 \Omega-$ a horrendous mismatch.

The antenna

In the typical application circuit of Fig.
9, some simple antenna tuning is incor-
porated. This provides some selectivity to reduce the possibility of blocking or desensitisation by large out-of-band signals. Matching the antenna into a tap on the inductor would further increase sensitivity.
The arrangement in Fig. 9 provides protection against response to other

The single chip superhet

An rf amplifier feeds the mixer, the local oscillator for which is supplied by the synthesiser. The mixer output is fed to an IF amplifier stage, followed by the IF filter.
The filter has a 1 MHz bandwidth, centred on 2.25 MHz nominal. But as equation 1 shows, the exact value is a function of $F_{\text {ref. }}$. The IF filter output passes to a final IF amplifier stage, and thence to a peak detector.
A post-detection low-pass filter with programmable cut-off frequency permits selection of the optimum bandwidth for the data rate used. The filter output supplies automatic gain control to the mixer and IF stages, as well as driving the demodulator via a programmable single-pole low-pass filter.
The time constant of this filter is usually in the range 5 to 50 ms , its output forming the comparator reference level. The comparator slices the recovered analogue data relative to the reference level, converting it to a 5 V logic output. The slicing action, for typical data, is shown in Fig. 10.
The device is designed primarily as a more sanitary replacement for the super-regen receiver. One 'advantage' of the super-regenerator is that its selectivity is so poor that it can be used in conjunction with a very cheap transmitter whose frequency, being determined simply by an LC circuit, is poorly defined.
To achieve the same broad bandwidth, the MICRFOO1 uses a low IF, so that signals can be received with the local oscillator either high or low. Furthermore, two modes of working are available, in one of which, namely the sweep mode, the effective bandwidth is further increased as described later.
The equation relating the the intermediate frequency $F_{\text {if }}$ and the synthesiser reference frequency $F_{\text {ref }}$ is,

$$
\begin{equation*}
F_{i f}=\left(\frac{F_{r e f} \times(M+\alpha)}{390}\right) \times 2.25 \tag{1}
\end{equation*}
$$

where all frequencies are in megahertz, $M=128$ and $\alpha=1$ for Sweep mode or $\alpha=2$ for Fixed mode.

Fixed mode. This mode is used with transmitters having a good frequency stability. These would have, for example, a SAW or crystal frequency reference. In this mode the transmitter, receiver

IF and local oscillator frequencies are related by,

$$
\begin{equation*}
F_{i f}=F_{t t}-F_{l o} \tag{2}
\end{equation*}
$$

and the synthesiser reference frequency becomes,

$$
\begin{equation*}
F_{r e f}=\frac{F_{l o}}{(M+2)} \tag{3}
\end{equation*}
$$

This assumes low-side mixing. From these three equations,

$$
\begin{equation*}
F_{l o}=F_{t x} \times\left(1+\frac{2.25}{390}\right)^{-1} \tag{4}
\end{equation*}
$$

So, for a given transmitter frequency, F_{lo} is determined from equation 4 , where $F_{\text {ref }}$ is given by equation 3.
As an example, for operation in the UK's 417.9 to 418.1 MHz band, as specified by MPT1340, operation at 418.000 MHz would require an $F_{\text {ref }}$ of 3.1969 MHz . Manufacturers may use other frequencies in the band, which is intended for a variety of applications including those requiring a wide bandwidth.
In various European countries, the band $433.050-434.709 \mathrm{MHz}$ is available for non-specific SRDs, as per CEPT Recommendation CEPT/ERC/REC 70-03, which may be viewed at www.ero.dk

Sweep mode. In sweep mode, the local oscillator sweeps a band centred on the nominal transmit frequency, so that the effective bandwidth is much greater than the IF pass bandwidth F_{bp}, as shown in Fig. 11.

In this mode,

$$
\begin{align*}
F_{\text {lo(min) })} & =F_{\text {ref }} \times M \\
F_{\text {lo(max) })} & =F_{\text {ref }} \times(M+2) \tag{5}
\end{align*}
$$

thus the sweep range $\Delta F_{\text {sw }}=2 \times F_{\text {ref. }}$. The resultant coverage is $\Delta F_{\mathrm{sw}}+\left(2 \times F_{\mathrm{if}}\right)+F_{\mathrm{bp}}$. In Sweep mode, $F_{\text {ref }}$ is simply given by,

$$
\begin{equation*}
F_{r e f}=\frac{F_{t x}}{(M+1)} \tag{6}
\end{equation*}
$$

So, for example, given $F_{\mathrm{tx}}=387 \mathrm{MHz} \pm 0.5 \%$, including initial tolerance, temperature and ageing, then from equation 6 , $F_{\text {ref }}=387 / 129=3.00 \mathrm{MHz}$ - a standard ceramic resonator frequency.

Fig. 9. A typical application circuit for the MICRF001 for North American use.
transmissions, which may appear on the same channel. It does this by virtue of the coding supplied by the Holtek HT12D address/data decoder shown, and its companion coder in the transmitter.

Data receipt

The receiver only responds to the appropriate one of 64 different codes, providing on receipt up to four different commands which can be decoded from data bits D_{11} and D_{12}. Note that in Fig. 8, a 3MHz ceramic resonator is used as the reference frequency. This arrangement is possible due to the
more generous spectrum allocation and relaxed frequency accuracy requirements for srds (short range devices) in North America and some other countries.
Even allowing for the additional cost of a crystal or surface-acoustic-wave device to provide the greater frequency accuracy demanded by the European market, clearly the device provides a quick and economical answer for anyone needing to design a receiver for the 418 MHz or 433 MHz licence exempt bands.
Note that while srd transmitters and receivers for these bands are licence
exempt as far as the user is concerned, the manufacture must obtain type approval to the relevant specifications for any countries in which he intends to sell his products.

References

1. The Manual of Modern Radio, J. Scott-Taggart, The Amalgamated Press Ltd., London 1933
2. See an article on the super-regenerative receiver by J. Dent, Wireless World, June 16, 1933
3. Produced by Micrel Inc. 1849 Fortune Drive, San Jose, CA 95131, USA.

Just one of our wide range of hand held, bench top and gang programmers

- in the pocket!

 Pocket Sized Multi-Programmer- 8 and 16 bit EPROMS, E²PROMs and Flash to 8 Mbits
- Serial E²PROMs
- EPLD's and microcontrollers - including 8051 and PICs
- Self-contained battery power - with mains charger
- Easy PC connection via parallel port
- Simple PC menu system
- with built in editor
- supports hex, JEDEC and binary files
- Software runs under DOS and Windows 3.1/95/98/NT
- Unlimited free software updates

Complete Programmer for just $£ 249$
(plus VAT)

...the experts' expert

CROWNHILL ASSOCIATES LIMITED The Old Bakery, New Barns Road,

Ely, Cambs. CB4 7PW
Tel: +44 (0)1353 666709 Fax: +44 (0) 1353666710
Low cost professional quality Smart Card Systems

CHIPDRIVE EXTERN

Intelligent programmer for Smart Cards using the International Standard $\mathrm{T}=0$ or $\mathrm{T}=1$ protocols also Memory and Secure Memory using $I^{2} \mathrm{C}, 2$-wire \& 3 -wire interfaces.
Supplied with software to read and write to most popular secure smart cards, inc GSM, PAY PHONE and ACCESS CONTROL cards $\mathrm{T}=0$ or $\mathrm{T}=1$ @ 3.579 MHz
RS232 @ 9600-115200 bps
£69+1
Internal Supply / Ni-MH
P\&P $£ 7.56$
Size: $100 \times 70 \times 80 \mathrm{~mm}$ Weight 660 Gram P\&PE7.56
Supplied with cardServer.dII API for easy development of SmartCard
Applications using Visual Basic,
Delphi or C++. Supplied with Sample Memory cards and Secure Smart cards.

CE Compliant

Chip Drive Intern

3.5 " floppy bay version of the CHIPDRIVE

Applications are available to provide SmartCard controlled access of data on Hard Drives or "PC-LOCK", to control access to the whole PC Fully Compatible with TOOLBOX for systems development.
Supplied with cardServer.dII API $£ 85.00+£ 5$ P $\& P+V A T$

CE Compliant

CHIPDRIVE - micro

Fully Compatible with TOOLBOX for application development. Featuring the same functionality as Chip Drive Extern but in a small neat low cost dackaae. similar in size to a smart card. Supplied with cardServer.dII API

CHIPDRIVE Developer Kit

CDK consists of: CD ROM containing cardserver.dII. Applications and Source code examples. CHIPDRIVE-micro a selection of Smart Cards offering protected memory, processor and memory cards. Typical users are Control access, Pay Phone cards and Data transport. PIN codes for the cards are supplied along with data sheets and programming data for use with cardserver.dll. A useful application with source codes shows how the CHIPDRIVE can be used to identify any Smart card inserted, giving manufacturer into, and memory map if available. Applications produced with the developer kit will operate under Windows $3.11 / 95 / \mathrm{NT}$ and are compatible with the whole CHIPDRIVE family. The CDK uses easy to use 16 bit or 32 bit DLLs with just one function call to the 'CardServer' to Identify the card or
 carry out any instruction. Cardserver is a powerful Background task which relieves the application programmer from device and card administration. Featuring automatic protocol and card type detection. Allowing several applications to access one terminal dependent only on the type of card inserted. USE WITH CHIPDRIVE-micro CHIPDRIVE-Intern CHIPDRIVE-Extern (Includes Smart cards)
http://www.towitoko.co.uk
http://www.crownhill.co.uk
http://edsim.cambs.net

[^3]Why Settle for AM when you can afford High Quality FM!

We can offer the lowest prices on high quality FM Radio Data Modules both in the UK and overseas I

Our qualifled engineers offer full technical support from simple advice to system design \& integration.

For a free catalogue, wall chart or quotation just e-mail sales@radtec.demon.co.uk. alternatively fax or telephone quoting ref: WWRMI

> Telephone +44(0)1992576107
> Fax $+44(0) 1992561994$
> http://www.radio-tech.co.uk

Your official Radiometrix Distributor
CIRCLE NO. 125 ON REPLY CARD

Antrim Transformers Ltd
 Toroldal Transformers

Large standard range + custom designs on 15 core sizes approved to EN60742 (KEMA agreement 919691)
Large standard range + custom designs on 23 core sizes approved to UL506 \& C22.2 No.66-1988 (UL file no.E179800)

Medical isolation transformers approved to EN60601-1

Audio grade, 100 V line, valve output \& valve psu transformers

Lead time typically 3 weeks, minimum batch size of $\mathbf{1 0}$ off

Rapid quotation \& prototype service

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World" when seeking further information

PASSIVE AND ACTIVE COMPONENTS

Connectors and cabling

Heavy-duty connectors. Han Series connectors by Harting are designed for a hard life, during which mechanical strength and tolerance of vibration are needed. They conform to a number of international standards and come in various hood and housing sizes. Mixed contacts provide for the connection of optical fibres, pneumatics and electrical cables and signals in the one connector. Many different termination forms work at different voltage and current ratings. Arrow-Jermyn. Tel., 01234 270027; fax, $01234214674 / 791501$.
Enq no 502

Arrays

Memory/logic asics. Samsung now has available new asics based on $0.25 \mu \mathrm{~m}$ merged memory and logic. Up to 8.2 million gates combine to form three types of device: STD110 standard cell; MOL 110 merged dram and logic; and MFL110, which is merged flash memory and logic, allowing users to begin with a logic design, addling dram or flash. Libraries are available for products such as notebooks, cellular handsets and cellular graphics
acceleration, all needing low power and high density; a second library concerns networking and desktop systems needing high performance and somewhat higher power.
Samsung Semiconductor
Europe Lrd. Tel., 01813807200 ; fax, 01813807220.
Enq no 501

Cable repeater. For connecting 1394 cables and products in a large network, DDK's 1394 Cable Repeater allows a continuous signal strength to be maintained on all 1394 serial-bus networks over a cable extension of up to 72 m . It conforms to 1394 IEEE standards, uses an IBM three-i/o port physical layer chip, may be connected up to 16 hops and gives automatic detection of data transfers up to $400 \mathrm{Mb} / \mathrm{s}$.
DDK Electronics (Europe) Ltd. Tel., 01959 561224; fax., 01959561034 Enq no 503

Discrete active devices

$\mathrm{H}-\mathrm{v}$ p-n-ps. New p-n-p transistors are able to handle a maximum collector/emitter voltage of 500 V . Two types are available: the FZT560 in SOT223 and the FMMT560 in the smaller SOT23 package. Both provide the same high-voltage performance, the power dissipations being $2 W$ and 0.5 W . Current handling for both is 500 mA peak pulse and 150 mA continuously. At 50 mA , typical gain is 80 at 500 V .
Zetex plc. Tel., 0161622 4422; fax, 0161622 4420; web,
www.zetex.com.
Enq no 504

Displays

12.1 in svga tft. A 30000 h life, high brightness ift liquid-crystal display panel from Toshiba, the
LTM12C289, is meant for industrial applications and not necessarily for those involving personal
computers. It provides wide viewing angles and brightness levels in excess of $250 \mathrm{~cd} / \mathrm{m}^{2}$ with a typical contrast ratio of 200:1. Since the lighting ecfls are both at the top of the screen, size has been kept to 278 by 209 by 14 mm to provide an active display of 245 by 184 mm to an 800 by 600 pixel resolution. Voltage needed is 3.3 V and the unit can be supplied with an inverter designed to optimise backlight life.
Toshiba Electronics UK Ltd. Tel., 01276 694730; fax, 01276694800. Enq no 505

SXGA Icd controller. Digital View's AC-1280 analogue Icd interface controller resolves to SXGA (1280 by 1024) at 75 Hz , comes in single-board form and will drive 3.3 V and 5 V panels from all major makers. It provides fullscreen image expansion for VGA, SVGA and XGA modes of operation, using 24 -bit working to give millions of colours. There is auto-detection for sync-on-green inputs and the board takes interlaced and non-interlaced signal. Various accessories are

offered and there are different housings available for desk-fop, industrial use and panel mounting. Digital View Ltd, Tel., 0181 2361112; fax, 0181 2361116; web, www.digitalview.com.
Enq no 506
19in monitor. Panasonic's SL90 ZenTan crt monltor uses a 100° deflection tube, with the result that it takes up no more back-to-front space than a 15 in type. Image quality is not compromised by the design, since the shorter gun-toscreen distance and the use of the company's specialised signal processor is claimed to actually improve performance. Use of a Crystal Pigment phosphor reduces ambient light reflection for better contrast, as does the screen coating. The monitor supports a number of power-saving standards, including Energy Star.
Panasonic UK Ltd. Tel., 0500 404041; web,
www.panasonic.co.uk.
Enq no 507

Filters

Emc filters for machines. Steatite's Sentinel filters are designed to reduce conducted noise from electrical machinery and motors, In compliance with UL 1283 and EN 133200 emc standards. Operating current is 6-180A and voltage ratings up to 520 V . For currents to 25 A , singlestage filtration is used; for currents between 36A and 180A, there are two-stage filters. All have versatile

Memory
Direct Ram-bus dram. Toshiba offers working samples of the new generation of 64 M and 72 M rdrams, which provlde a data transfer speed of 800 MHz or $1.6 \mathrm{~Gb} / \mathrm{s}$. Organisation is 4 Mword by 18 bits with a 1 kbyte page size. Refresh cycle is
$8 \mathrm{kcycle} / 32 \mathrm{~ms}$, voltage supply is 2.5 V , power 2.2 mW , or 260 mW in standby and 10 mW asleep.
Toshiba Electronics UK Ltd. Tel., 01276 694730; fax, 01276 694800.

Enq no 512
mounting flanges on the aluminlum enclosures and the filters themselves are relatively small. As a result, they will often fit inside equipment control panels. Transient protection is available as an option.
Steatite Insulations Ltd. Tel., 0121 678 6888; fax, 01216938804. Enq no 508

Hardware

Spot cooling fan. Micronel's new fans use vanes within the housing to impart a "turbo" effect, which increases airflow and pressure by 20%. The fans are for low-power working and localised cooling, the airflow being straighter than is usual Speed is $13000 \mathrm{rev} / \mathrm{min}$ and operating voltage 12 V or 24 V .
Radiatron Components Ltd. Tel., 01784439393 ; fax, 01784477333. Enq no 509

Small fan. Designed to cool small components such as individual semiconductors, the Model 2008 by Shicoh measures 20 by 20 by 8 mm and weighs 5.3 g . It uses a linear motor on ball bearings and is virtually silent, although alrflow is $0.015 \mathrm{~m}^{3}$ per minute. It is designed to work from 70 mA at 12 V dc , but starts working at 7 V and still turns at 2.5 V . It is suitable for flush mounting on a gasket or metal and insulation resistance is $10 \mathrm{M} \Omega$ at 500 V ac.
Key Electronic Components. Tel., 0118 9351546; fax, 0118 9660294; email, sales@keyelectronic.com; web, www. keyelectronic.com.
Enq no 510

Materials

Conductive paints. IVC has three new paints for use with its Spraycoat process of emi/rfi shielding. They are made using very mild solvents to withstand the higher built-in stresses found in some plastics. They have passed the requirements of the Underwriters' Laboratory. AG1010 contains pure silver particles for the highest shielding performance, providing sheet resistlvity of $0.05 \Omega /$ square in a $10 \mu \mathrm{~m}$ thickness. AGCU120 has blended silver and silver-plated copper particles to give a

Thin-film terminators. PCS terminators are capable of stable working at up to 10 GHz and offer a vswr between 1.1 and 1.3. Stray inductance and capacitance are negligible and stability with temperature and time is down to $0.2 \% \pm 0.5 \Omega$ following the cycling and load life tests. Power ratings in the serles cover 125 mW to 80 W in 50Ω or 75Ω versions.
Rhopoint Components Ltd. Tel., 01883717988 ; fax, 01883 712938; e-mail, components @rhopoint.co.uk Enq no 520
sheet resistivity of 0.05-0.1 Ω /square In a $15 \mu \mathrm{~m}$ thickness; and CS725 uses silver-plated copper for plastic surfaces, for which it has excellent adhesion. The paints may be applied selectively to plastic surfaces manually or robotically. IVC Ltd. Tel., 0121511 1115; fax, 01215445253.

Enq no 511

Microprocessors and controllers

Micro supervisor ics. Five microprocessor ics from IMP contain power management circuitry to switch the power source to a backup battery when the main supply fails. They also have a watchdog function and initialisation to reset the system after fallure or lockup. MP690A/692A and IMP802LMM805L are equivalent to Maxim devices with the same names but with the addition of thermal and short-circuit protection. Current consumption on the IMP versions is $100 \mu \mathrm{~A}$.
IMP Inc. Tel., 001408432 9100; fax, 001408434 0335; web,
http://www.impweb.com Enq no 513

64-bit microprocessors. From IDT are two RISController micros for communications systems. Avallable in speeds of 180,200 and 250 MHz , they are 3.3 V devices tolerating 5 V i , a Jtag interiace and an enhanced write mode to simplify support of synchronous dram. They are also compatible with Windows CE and other op. systems and deliver a 330-Dhrystone periormance at 250 MHz . Two-way set-associative caches have cache locking and the RC64474 has a 33 -bit interface bus to provide 64-bit processing and lowcost 32 -bit memory. The RC64475 uses 64 blts throughout to give over $1 \mathrm{~Gb} / \mathrm{s}$ bus bandwidth and $4 \mathrm{~Gb} / \mathrm{s}$ system bandwidth.
IDT Europe. Tel., 01372 363339; fax, 01372378851. Enq no 514

Optical devices

Optical transceiver. When used with low-cost optical fibre of up to 100 m long, NEC's NL2100 optical transcelver handles data at between $1 \mathrm{Mb} / \mathrm{s}$ and $156 \mathrm{Mb} / \mathrm{s}$. It uses a 650 nm led, a silicon PIN detector and a preamplifier. Power supply is 5 V , the electrical interface is high-speed and connectors are of the FO7 PN type. The unit is contained in a standard 1-by-9 sip package and the mounting arrangement makes the device suitable for network interface cards and other uses in which it must take hard use. It complies with the ATM Forum standard and the path length may be increased from 100 m to 1000 m by the use of plastic-clad fibre. NEC Electronics (UK) Ltd. Tel., 01908 691133; fax, 01908670290. Enq no 515

Oscillators

Ovened v-c crystal oscillators. Tele Quartz GmbH has a new range of oven-controlled, voltage-trimmed crystal oscillators. OCO1000 oscillators are stable to within $0.03 p p m$ over the $0-70^{\circ} \mathrm{C}$ range, annual ageing being less than 0.1 ppm . A cheaper AT-cut type gives a stability of 0.15 ppm over the temperature range and ageing of $0.2 \mathrm{ppm} /$ year; both types provide Homos output. Frequencies lie in the range $10-26 \mathrm{MHz}$, with specific frequencies at $10,13,16.384$ and 26 MHz . The company also has a version designed for use in switching and transmission systems, operating from 3.3 V at 350 mA . This type has a stability of 0.1 ppm at $8.192-26 \mathrm{MHz}$, with voltage trimming. Output is LVHcmos.
Webster Electronics Ltd. Tel., 01460 57166; fax, 01460 57777; e-mail, sales@ websterquartz.com Enq no 516

Passive components

Chip inductors. Surface-mounted chip inductors from BI Technologles now come in three standard sizes of 0603, 0805 and 1206, instead of only the last. In the 0805 size, the inductors cover a range of $0.047 \mu \mathrm{H}$ to $33 \mu \mathrm{H}$, the same as in the 1206 type,

Photosensor. UZE is a new photoelectric sensor by Matsushita that operates from $12-240 \mathrm{~V}$ dc or $24-240 \mathrm{~V} \mathrm{ac}$. It offers sensing ranges of 30 m for through-beam applications, 7 m in the retro-reflective mode and 0.7 m with diffused beam. The sensor is only 18 by 62 by 35 mm in size; retro-reflective and diffuse versions have automatic cross-talk protection and may be mounted next to each other. Its case is IP66 sealed. There is also the option of dark-on or light-on switching. To ease alignment, some models have a red led light source.
Matsushita Automation Controls Lid. Tel., 01908 231555; fax, 01908 231599; email, info © macuk.co.uk; web, www.mac-europe.com. Enq no 527
in 34 values; maximum and minimum current ratings are 300 mA and 5 mA . In 0603, the range is $0.047 \mu \mathrm{H}-27 \mu \mathrm{H}$ at $50 / 2 \mathrm{~mA}$. All are shielded and are compatible with vapour-phase and ir reflow soldering.
B1 Technologies Ltd. Tel., 0116 2781133; fax, 01162781199.
Enq no 517
Chip attenuators. Kamaya RAC16 chip attenuators replace three resistors with the one chip, which measures 1.6 mm square by 0.55 mm . They take the form of an unbalanced pi section and exhibit a vswr of less than 1.2. Characteristic impedances are $50 \Omega, 75 \Omega$ or up to 100Ω on request, attenuating by $1,2,3,6$ or 10 dB at temperatures between $-40^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$.
Surtech Distribution Ltd. Tel., 01256 840055; fax, 01256479785
Enq no 518
Sensing resistors. Sensors with virtually zero inductance are offered by VTM. Materials are resistance alloys, allowing values down to R0005 to be produced with temperature
coefficients down to $40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Power ratings are $0.6 \mathrm{~W}-6.8 \mathrm{~W}$ in straight strips or preformed in 5 mm to 25 mm steps. Resistance values are 5% or 3%. VTM (UK) Ltd. Tel., 01494 738600, fax, 01494738610.
Enq no 519

Power semiconductors

Low $\boldsymbol{R}_{\text {on }} \mathbf{p}$-channel power mosfet. This SO-8 power mosfet by International Rectifier has the lowest on resistance of any available in this outline. The IRF7210 is a 12 V type with an on resistance of $7 \mathrm{~m} \Omega$ at a gate/source voltage of 4.5 V , which is about the same as that quoted for n-channel devices and around half that previously achieved in SO-8. International Rectffier. Tel., 01883 732020; fax, 01883733410.
Enq no 521

Protection devices

Surge protection for Ericsson slics. TISPPBL programmable telecomms surge protectors by Power Innovations are for use with Ericsson's PBL $3 x x x$ series of subscriber-line interface circuits; these require a complex voltage/time protection envelope. The devices are rated for the full voltage range of the slic up to 90 V . Programming is done by reference to battery voltage, providing minimum stress to the slic, regardless of the supply. Two models are produced: the TISPPBL 1 for standard use; and the TISPPBL2 for

Radio remote control. Using RF Solutions' Globemaster Pager Decoder, one can operate systems remotely by making a telephone call. What happens is that you call a pager service, which then transmits the relevant command code to the Globemaster receiverdecoder, activating its four highcurrent switched outputs. Each unit has its own identification code to validate the caller's identification number. Power needed is 5 V or 12 V dc and the standard outputs at cmos $/ \mathrm{tt}$ level may be replaced by relay outputs. The device is normally a board-mounted module, but is also avallable as a complete system in a case.
RF Solutions Ltd. Tel., 01273 488880; fax, 01273480661 ; email icepic@pavilion.co.uk; web, www.risolutions.co.uk.
Enq no 538
line currents over 60 mA . Two buffer transistors are used to lower supply loading and to prevent the slic power supply being charged.
Power Innovations Lid. Tel., 01234 223001; fax, 01234 223000; e-mail, info@powinv.com.
Enq no 522

Swiltches and relays

Rubber keypads. Keypads in rubber by Radiatron give a proper response to touch, choices of keystroke and travel and a range of actuation forces. there are also printing choices, backlighting and a number of surface finishes, including simulated plastic keytops with no tooling cost.
Radiatron Components Ltd. Tel., 01784439393 ; fax, 01784477333. Enq no 523

Automotive relay. Matsushita has a range of twin relays designed for vehicle use. CT relays measure 17.4 by 7 by 13.5 mm for the single changeover type, the twin and H -bridge types double the width. Switching capability is $20 \mathrm{~A} / 14 \mathrm{~V}$ dc per contact. Three package styles are available. There is a single
changeover with spdt operation, a dual changeover with a twin-coil relay with two spdt operation and an H -bridge version. This last version is for use where the simultaneous forward and reverse operation of a motor drive must be avoided, as in electric sunroofs and windows. Matsushita Automation Controls Ltd. Tel., 01908 231555; fax, 01908 231599; e-mail, info@macuk.co.uk; web, www.mac-europe.com.
Enq no 524
Solid-state relays. Omron's range of relays provides output currents in the $100 \mathrm{~mA}-40 \mathrm{~A}$ range. Smallest is the G3VM mosfet type that switches ac/dc loads to 350 V in spst-no and dpst-no versions. There are double-throw types in 8 -pin packages and singlethrow types in 4-pin or 6-pin packs, all in through-hole or surface-mounted versions. Also in the range are single-in-line types and i/o relays for use between logic and load.
ICE Electronics. Tel., 01480496466 ; fax, 01480498335.
Enq no 525
Sealed push-buttons. ITW 49-59 series of momentary-action push-button switches are sealed to IP67. They are available with or without led status lighting and can be panel mounted with a series 16 microswitch or with flying leads. Maximum current is 10A and the action is spdt, double break to provide reliable dc switching. They come in round or square bezels in six colours and are made in PBT thermoplastic.
Townsend Coates Ltd.
Tel., 01162744488.
Enq no 526

Transducers and
 sensors

Small load cell. Wherever a very small toad cell is needed, Control

Transducers' Model ME should fill the bill, being 12 mm in diameter and 6 mm thick. Ranges are 250 g to 5 kg in 14 steps, errors due to non-linearity, hysteresis and repeatability combined amounting to less than $\pm 0.15 \%$. The units are in the form of a four-arm Wheatstone bridge using bonded strain gauges. Overload is 150% full-scale. A 10 V ac/dc excitation is needed, output is 20 mV and bridge resistance 350Ω
Control Transducers. Tel., 01234 217704; fax, 01234217083.
Enq no 528

EQUIPMENT

Production equipment

Power screwdrivers. Mains-powered
Model ET screwdrivers from
Toolworld are meant for bench assembly operations, the power supply being capable of running two such tools simultaneously. The range includes six models with torques of 0.4 kgf cm to 20 kgf cm , three of them taking 4 mm or 6.35 mm hexagonal bits and the others 6.35 mm or 5 mm ; the $E T-7000$ R is a right-angled version. A catalogue is on offer
Toolworld Ltd. Tel., 01249 821234; fax, 01249816723.
Enq no 530
Miniature power tool. New from Minicraft is the MiniMax 230, a small, mains-powered rotary tool turning at speeds variable from 8000 to $21000 \mathrm{rev} / \mathrm{min}$ and taking all the standard accessories in the company's range in its four-jaw keyless chuck. It fits the standard lathe attachment and drill stand, as well as those of other makers. The tool is available on its own or in a case with a 100 -piece set of accessories.
Minicraft. Tel., 01388 420535; fax, 01388817182.

Enq no 531

Power supplies

Battery chargers. Hitec battery chargers by Merlin are flexible enough to handle a number of different battery types, keep them topped up or charge them quickly. They detect environmental variations that would result in incorrect charging regimes in simpler chargers. Switched-mode charging is used to provide bulk, absorption and float characteristics for rapid charge to 80%, followed by absorption for the other 20% and float to maintain the charge. High currents can be supplied to allow the battery to power a heavy load without going flat. The chargers will cope with badly regulated mains. When batteries are left on charge for a long period, the Hitec analyses battery state and gives whichever charge is needed. Various protection alarms are provided. Merlin Equipment. Tel., 01491 824333; fax, 01491824466.
Enq no 532
Universal bench supplies. From Kenwood comes the PDS range of

Microwave bulb. Primarc UV
Technology offers the Primarc electrodeless bulb for ultraviolet curing in optical-fibre coating, cd manufacture, etc. It is excited by magnetron, ignition being by means of a low-pressure mercury lamp in the bulb, which irradiates the gas and ionises it. Warm-up takes a few seconds. Standard gas fill is mercury/gas, but halides may be added to modify the output.
Primarc UV Technology.
tel., 01753528678
fax, 01753811678
e-mail, uv@primarc.com
Enq no 529

Data/telemetry transceiver. A synthesised transceiver for use in portable and hand-held equipment to provide two-way radio communlcation, the Wood \&
Douglas SX500 is approved to ETS 300 220. The unit mounts on a board and measures 60 by 40 by 17 mm , works in the $400-500 \mathrm{MHz}$ band and provides up to 100 mW output power from a $5.5 \mathrm{~V}-15 \mathrm{~V}$ supply. It has 128 frequencles, selected via the serial interface and programmed over 5 MHz switching bandwidth without being realigned. Modulation may be digital or analogue. Other versions will soon be available to work in the $130-185 \mathrm{MHz}$ and $860-880 \mathrm{MHz}$ bands. A development kit is available.
Wood and Douglas Ltd. Tel, 0118 981 1444; fax, 01189811567 email,info@woodanddouglas.co.uk; web, www.woodanddouglas.co.uk. Enq no 539
bench dc supplies, providing outputs of 20 V at 36 A to 120 V at 6 A . Light weight and small size have been achieved by the use of combined switching and linear operation. Performance is said to be as good as as that of large, fully linear types. Line and load regulations are both better than 0.005%, transient response time is $100 \mu \mathrm{~s}$ and temperature coefficient 100 ppm . All have 3.5 -digit displays showing voltage and current simultaneously and there is provision for an internal GPIB, RS232 or analogue inferface. Kenwood UK Lid. Tel., 01923 655291; fax, 01923655297. Enq no 533

Low drop-out regulators. Toko's TK112xxB linear regulators have built-in switching and provide a 2% output. They are avaliable in 0.1 V steps from 1.3 V to $5 \mathrm{~V}, 5.5 \mathrm{~V}$ and 8 V . Quiescent current is $170 \mu \mathrm{~A}$ no load and 1 mA with a 30 mA load; standby current is 100 nA . The Internal $p-n-p$ transistor gives a dropout of, typically, 80 mV at 30 mA . Internal switching is controllable by ttl or cmos levels and there are the usual protective circuits.
Cirkit Distribution Ltd. Tel., 01992 444111; fax, 01992 464457; e-mail, enquiries@cirkit.co.uk
Enq no 534
150 W dc-dc converters. New to the Artesyn Technologies $B X B$ family of dc-to-dc converters is 150 W series meant for use in communications and distributed power applications. These come in the industry-standard
half-brick package and have the same footprint as BXB50/75/100 types, being drop-in replacements to provide increased power. All have remote sensing and adjustment. Operation is permitted to $100^{\circ} \mathrm{C}$, heat-sink mounting increasing the limit. Isolation input:case and output:case is 1500 V dc. Artesyn Technologies. Tel., 00353 2425272; fax, $003532493510 ;$ email, jackie.day@artesyn.com. Enq no 535

Multiple-supply controller. Cherry's CS-51313 synchronous buck controller allows the generation of a number of different supply voltages to power computer motherboard core logic with just the one switching regulator. A 1\% Internal bandgap reference is taken to an output pin, where if may be used with external components and power transistors to supply various voltages to a Pentium I/ processor and its support logic. There is also a pair of signals to drive n-channel mosfets supplying the processor core. Transient response is 200 ns . There is a range of protective measures.
Cherry Semiconductor. Tel., 001401 885-3600; fax, 001401 885-5786; web, www.cherry-semi.com. Enq no 536

Radio systems

Downconverter/mixer ic. TQ5M31 by TriQuint is a general-purpose mixer and down-converter ic for use in cellular and PCS mobile 'phones,

80-channel logic analyser. Thurlby Thandar's TA4000 logic analyser series is capable of asynchronous data capture at 400 MHz with a memory depth of 8 K word. There are three versions with 32,48 or 80 channeis. An eight-level random branching trigger sequencer provides trace control, each trigger term consisting of up to four words, Or-ed or Not-ed, the latter triggering on the absence of a word. All this goes at 50 MHz without restriction or at 100 MHz if a 20 ns delay between steps can be tolerated. The instrument works as a timing analyser with a resolution of 2.5 ns and the screen displays any 16 channels and a marker. Up to 512 Kbyte of data card storage is available and there are RS232 and GPIB interfaces, with a Centronics for printing. Thurlby Thandar Instruments Lfd. Tel., 01480 412451; fax, 01480 450409; e-mail, sales@tinst.co.uk.
Enq no 540

ISM bands, GPS and pagers. Ri input range is $500-2500 \mathrm{MHz}$ and if output $45-500 \mathrm{MHz}$. Very few extemal components are needed, although the lo buffer amplifier frequency response and lf gain response are externally trimmable. Conversion gain is $2-3.5 \mathrm{~dB}$ within $\pm 0.3 \mathrm{~dB}$ over a wide temperature range. Input thirdorder intercept is 9 dB minimum at a
noise figure of 9.5 dB . $1 / 0$ is 50Ω. TriQuint Semiconductor. Tel., 001 503 615-9000; fax, 001503 6158900; web, www.triquint.com. Enq no 537
Test and measurement Virtual instruments. National Instruments has a new family of computer-based Instruments, which

BACK ISSUES

Back issues of Electronics World are available, priced at $£ 3.00$ UK and $£ 3.50$ elsewhere, including postage. Please send your order to Electronics World, Quadrant House, The Quadrant, Sulton, Surrey, SM2 5AS

Free copy of Electronics Engineer's pocket book with every order whille stocks last

Available issues		
1994	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 8}$
January	January	January
April	February	February
May	March	March
July	May	April
August	June	May
November	July/August	June
December	September	July
	October	August
1995	November	September
February		October
April	1997	November
May	January	December
June	June	
September	August	$\mathbf{1 9 9 9}$
October	September	January
December	December	

[^4]includes digital oscilloscopes, digital multimeters, arbitrary waveform generators, Fast Fourier analysers and serial data analysers. Advantages of virtual instruments in, for example, an oscilloscope, include faster set-up, fast sampling, deep memory buffering, multiple acquisition records, advanced triggering and small size.
National Instruments UK. Tel., 01635572400 ; fax, 01635524395 ; web, www.natinst.com/uk. Enq no 540

COMPUTER AND DATA HANDLING

Computers

233 MHz Pentium sbc. ICP's NOVA- 600 is a 233 MHz single-board computer that complies with the Ampro/Motorola EBX specification, which is a non-backplane form for embedded boards. The processor supports MMX and PC/104-Plus (PCl -enhanced $\mathrm{PC} / 104$). It offers up
to 128 Mb of dram, 72 Mb solid-state flash, four serial ports, an EPP/ECP parallel port, an Ultra DMA/33 enhanced PCI IDE interface, $10 / 100 \mathrm{Mb} / \mathrm{s}$ Ethernet controller, floppy disk interface and muse and keyboard interfaces. There is also an Icd/crt display controller to handle a 36 -bit Icd and 2Mbyte of video memory.
Wordsworth Technology. Tel., 01732 861000; fax, 01732 863747; e-mail, sales@ wordsworth.co.uk; web, www.wordsworth.co.uk
Enq no 541
Data communications
Modem/audio card. Smart has announced its internal Data/Fax Modem and Audio PCI Combo card, which is said to be the first for oems and which meets V. 90 and K56flex standards for 56 K transmission speed. It is Soundblaster Procompatible. The card runs under Windows 98/95/NT and has power management for wake-up-on-ring and caller identification.
Smart Modular Technologies. Tel., 01908 234030; fax, 01908234191 ; e-mail, infouk @ smartm.com. Enq no 541

Development and evaluation

MBX 860/821 development. Two development platforms for use with MBX compact PowerPC 821/860 embedded computer boards are available from Crellon. One of them, CMS-MBX-SDC, is for software development and the other, the CMS-MBX-HDC, is for hardware. The SDC unit is based on a 5.25 in half-height disk-drive chassis, its panel having leds to show power in Ethernet activity, while the rear has connectors for one serial port and a 10BaseT Ethernet port, further expansion being possible from the front panel.
Hardware development is the province of the HDC, which has a 150 W supply and space for a 3.5 in drive and two 5.25 in peripherals. The MBX is on top of the chassis to provide access to the links and connectors and allow a backplane to be fitted.
Crellon Microsystems. Tel., 01734
776161; fax, 01734776095.
Enq no 542
Interfaces
Data security. Compblock by Adital is designed to prevent unauthorised
access to computer data and, indeed, the computer itself. The unit connects between keyboard, screen and pc with many security screws, disarming the keyboard, mouse and screen when armed. An electronic key using a secure code allows access, up to eight keys for each Compblock being allowed. The keys may not be scanned to obtain the code and they need no batteries, although they can be cancelled and new ones issued. The unit automatically arms at switch-on and again when the user leaves the pc, so that no passwords or rebooting are needed.
Adital Ltd. Tel., 01803 844455; fax, 01803846032.

Enq no 543
Mass storage
USB floppy drive. TEAC has a stand-alone 3.5 in floppy disk drive that connects directly to the USB port of notebook or palmtop computers, avoiding the situation where small computers are sometimes without a drive or where the drive must be removed to allow the insertion of a cd-rom. Capacities supported are $720 \mathrm{~KB}, 1.25 \mathrm{MB}$ and 1.44 MB , transferring data at $250 \mathrm{~kb} / \mathrm{s}$ and

Music Engineering The Electronics of Playing and Recording

BOOK TO BUY Plus FREE CD

- Highly illustrated guide to the technology of music and recording.

- Written in an

 approachable style using examples of well-known songs, this book is a must-have guide for sound recording engineers and electronic engineers.If you are an electronics engineer who needs specific information about music reproduction, or if you are a sound recording engineer who needs to get to grips with the electronic technology, Music Engineering is for you.

This handy volume is a technical guide to electric and electronic music, including the essential science, but concentrating on practical equipment, techniques and circuitry. It covers not only basic recording techniques and audio effects, kit such as microphones, amps and instruments, but also valve
technology, stereo and digital audio, sequencers and MIDI, and even a glance at video synchronisation and a review of electronic music.
Music Engineering lifts the lid on the techniques and expertise employed in modern music over the last few decades. Packed with illustrations, the book also refers to well known classic recordings to describe how a particular effect is obtained thanks to the ingenuity of the engineer as well as the musician.
Richard Brice has worked as a senior design engineer in many of Britain's top broadcast companies and has his own music production company. He is the only writer who can provide this unique blend of electronics and music.
Contents: Soul Man - Science and sensibility; Good Vibrations - The nature of sound; Stand By Me - Microphones and their applications; Message in a Bottle - Valve technology; Roll over Beethoven - Electric

Instruments; Wild Thing Electronic effects; Pet Sounds - Electronic synthesis; Silver Machine - Sequencers \& MIDI; Got to Get You into My Life Sound recording; Bits ' n ' Pieces Digital Audio; Space Odyssey - Stereo and spatial sound; Let's Stick Together Recording consoles; Unchained Melody - Amplifiers; Shout Loudspeakers; Synchronicity Video and synchronisation; Dark Side of the Moon Electronics and the music of the 20th century.

Inclusive price: $£ 22.50$ UK, $£ 25$ Europe, $£ 28$ ROW.

To order by post, send a cheque or postal order to Jackie Lowe at Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Please make your cheque payable to Reed Business Information. Alternatively, fax full credit card details to 0181652 8111, e-mail jackie.lowe@rbi.co.uk.
ISBN: 0750639032
Paperback, 256pp, 150 line illustrations.
Copies of Richard's previous book, Multimedia and Virtual Reality Engineering, are still available, inclusive hardback price: $£ 27.50$ UK, 29.50 Europe, $£ 32$ ROW.

Please quote "Electronics World" when seeking further information

Posters

Free EMC wall chart. Schaffner EMC has produced a wall chart on emc emissions, which provides information on a variety of test topics including the scope and required test equipment for common world-wide commercial standards. It also covers technical data such as field-strength conversion tables.
Schaffner EMC. Tel, 0118 9770070; fax, 01189792969.
Enq no 546
$500 \mathrm{~kb} / \mathrm{s}$. The drive complies with USB specification Rev.1.0 and may be used with Win 95, 98 and NT 5.0 up. Power is 500 mA from 5 V . TEAC UK Lid. Tel, 01923 225235; fax, 01923236290.
Enq no 544
Software
TriCore development. TASKING offers the first programming package for the Siemens TriCore processor and its derivatives. It consists of the Nucleus PLUS realtime kernel, Ansi C and C++ compilers, a macro assembler, linker/locator and Crossview Pro debugger. All elements together form the Embedded Development Environment, which provides a Windows-based facility for the generation of TriCore applications software. Features include additional data types for fractional numbers and the automatic generation of multiply/divide operations; the C++ package also has a set of dsp classes for fixedpoint data types.
Tasking Software BV. Tel., 003133 4558584 ; fax, 0031334550033. Enq no 545

PUBLICATIONS

Catalogues

Switches. Catalogue No 4 from Mec is avaitable, in which are described process-compatible/sealed switches and surface-mounted types, together with full specifications.
Quiller Switches Ltd. Tel., 01202 436777; fax, 01202421255. Enq no 547

Application notes

Flexible circuits. Designers' Guide to Flexible Circuit Technology is published on a cd-rom by Flextronic and provides technical data on almost every aspect of flexible circuit design (the word being used here in the sense of 'bendy'). There are sections on materials, applications, markets, sculptured circuits, interference, and economical design. A hypertext form of presentation is used to give an easy path through the information. Flextronic Ltd. Tel., 01243 784515; fax, 01243 774376; e-mall, flextronicsales @ dial.pipex.com. Enq no 548

The range of 'FM-Controllers' provide most of the features required for embedded control at a very low cost
FEATURES FM-200 Controller

- 68 K Micro-Controller 14 MHz clock
- 512 Kbytes Flash EEPROM
- 512 Kbytes SRAM Battery Backed
- 2 RS232 Serial Ports
- 1 RS232/RS485 Serial Port
- Real Time Calendar Clock (Y2K Compliant)
- Watchdog \& Power fail detect
- 10 Digital I/O Lines
- 2-16 bit Counter/Timers
- $1^{2} C$ Bus or M-Bus
- Expansion Bus

Size $100 \times 80 \mathrm{~mm}$

OTHER FEATURES

- Up/Download removable card for data logging and or re-programming
- STE VO BUS, 68000 and PC Interface
- Designed, Manufactured and supported in the UK

OPTIONAL EXTRAS

Additional extra features to the FM 200

- LCD Port Graphics or Alphanumeric Up to 32 Digital VO Channels Key Pad Port 64 Keys $8 \times 8 \quad$ Up to 8 Mbytes of SRAM Battery
- 8 Channels 8 bit analogue in
- 2 Channels 8 bit analogue out
- 8 Channels 13 bit analogué in

Backed

- Up to 512 Kbytes of Flash EEPROM
- 1 Mbyte EPROM Space

(u) $\begin{aligned} & \text { CAMBRIDGE } \\ & \text { MICROPROCESSOR } \\ & \text { SYSTEMS LIMITED }\end{aligned}$

Units $17-18$, Zone D Chelmsford Road Industrial Estate, Great Dunmow, Essex UK CM6 1XG Tel. +44 (0) 1371875644 Fax:+44 (0) 1371876077

DEVELOPMENT

The PC Starter Pack provides the quickest method to get your application up and running

Operating System

- Real Time Multi Tasking
- Unlimited copy licence

Languages

- 'C', Modula-2 and Assembler
- Full libraries \& device drivers provided

Expansion

- Easy to expand to a wide range of peripheral and I/O cards

Support

- Free unlimited telephone, FAX, email and Internet support

Custom Design

- CMS will design and manufacture to customers requirements
- Genuine, professional EDA software with no limitations! - and you can afford it!
- EDWin NC comes from Visionics: one of the longest established, most experienced producers of professional EDA systems, so it's fully proven in professional work.
- Now you can have this best-selling non-commercial version of the software at just 10% of the normal price, with no limits in its capabilities.
- It does just about everything you could want!

Schematics, simulation, PCB layout, autorouting, manufacturing outputs, EMC and Thermal Analysis.
Many more advanced features are available and it runs in Windows 3.x, 95 or NT.
-Where's the catch? It's for non-commercial use, but companies may order for evaluation purposes. Prices start from just $£ 49.00$ for the basic system, up to only $£ 235.00$ for the full system including all available modules!
 Don't forget - Phone Today for Your 90\% Discount!

- EDWin NC BASIC: Schematics, PCB Layout Basic

Autorouter, manufacture outputs, Max. 100 component database, 500 device Library \quad £ 49.00

- EDWin NC De Luxe 1: BASIC + Professional Libraries and unlimited database $\quad \mathbf{7 9 . 0 0}$
- EDWin NC De Luxe 2: BASIC + Professional Libraries and Mix-mode simulation $\quad \mathbf{7 9 . 0 0}$
- EDWin NC De Luxe 3: BASIC + Professional Libraries, unlimited database,

Mix-mode Simulation and Arizona Autorouter
£115.00

- EDWin NC De Luxe 4: De Luxe 3 + Thermal Analyser, EDSpice Simulation, EDCoMX Spice model kit
$£ 199.00$
- EDWin NC De Luxe 5: De Luxe 4 + ED-EMA (EMC Analyser) ALL FOR ONLY $£ 235.00$ Plus Post \& Packing UK $\mathbf{£ 5 . 0 0}$; Rest of World $£ 10.00$ (only one charge per order)
Order hotline: +44 (0)1992570006 Fax +44 (0)1992570220 E-mail: swift.eu@dial.pipex.com CIRCLENO. 128 ON REPIY CARD
Swift Eurotech Ltd., Twankhams Alley, 160 High Street, Epping, Essex, CM16 9AQ, UK
I enclose: $£$ \qquad total.

We aim to isipact as soon as werceclive payment.
but p pease allow 28 days sor delivery.

\qquad

- EDWin NC BASIC:
- EDWin NC De Luxe 1:
- EDWin NC De Luxe 2:
- EDWin NC De Luxe 3:
- EDWin NC De Luxe 4:

E15.00

- EDWin NC De Luxe 5: $£ 235.00$

Post \& Packing UK $£ 5.00$
Rest of World $£ 10.00$
Postcode
Tel.:

Total (£)

\square

Total $£$

Dictionary of Communications Technology

With over 9000 entries and 250 illustrations, this book is an invaluable reference work for anyone involved with electronics and communications. Dictionary of Communications Technology provides comprehensive coverage of data and communications and has entries on PC lans, the Internet, communications testing and clientserver applications - in 500 pages.
Over 20 major companies helped prepare the Dictionary of Communications Technology, including AT\&T, IBM and Digital Equipment Corporation
Gilbert Held, author of Dictionary of Communications Technology, is an internationally author who has used his enormous expertise to make this work one of the most comprehensive sources of telecommunications information.

UK Price: $£ 38.95$ Europe $£ 42.95$ ROW $£ 46.95$
** Price includes delivery and package **
Fax your order to 01816528111 or post to Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following title:
Dictionary of Communications Technology
Total \qquad
Name
Address
\qquad

Postcode Telephone

Method of payment (please circle)
Access/Mastercard/Visa/Cheque/PO
Cheques should be made payable to Reed Business Information
Credit card no
Card expiry date
Signed
Please allow up to 28 days for delivery

This month, John Watkinson looks into the basket - the chassis part of an electromagnetic loudspeaker that holds everything together - and explains how it can affect reproduction quality.

Fig. 1. Chassis locates surround, spider and magnet. It also protects against operational loads and transit shocks.

Aloudspeaker's chassis or basket is a part which is often taken for granted, but it can have an effect on performance. At a basic level, the chassis provides mounting points, so that the drive unit can be fixed in an enclosure, and it supports the cone and the magnet assembly. A little thought shows that the chassis material and construction can affect the magnetic and thermal properties of the speaker, as well as being a potential source of colouration.
Take the example of a woofer, Fig. 1. This shows that the cone is supported in two planes. The first is the plane of the surround which serves as a flexible pressure seal between the moving cone and the stationary chassis. The second is the plane of the 'spider' or centring device which supports the neck of the cone.
The cone is located within the spider plane so that it can only move axially, and a (sometimes) linear restoring force is provided against cone travel to keep the cone in the centre of its range of travel.
Figure 1 also shows that the magnet assembly is supported by the chassis. Magnets and steel pole pieces are inevitably heavy, and the chassis has to be rigid enough to ensure that the rela-

tionship between the spider and the pole pieces is held constant. If this is not achieved, the coil may rub on the pole pieces.
In many applications it has to be accepted that the loudspeaker will be dropped or handled roughly. The chassis has to withstand very high transient forces from the magnet under these conditions.

Benefits of rare earth

In addition to the audible advantages of rare-earth magnets already advanced in this column, we now have a nonaudible advantage. This is that the lighter rare earth magnet will place less stress on the chassis during rough handling, giving a distinct reliability advantage in applications such as PA, as well as making the unit easier to move.
When the cone is driven forwards, the magnet assembly experiences the Newtonian reaction backwards. It is often heard that the chassis of a loudspeaker has to be incredibly rigid to withstand the reaction of the magnet. This is a myth. If the relative masses of the cone and the magnet assembly are considered, it is clear that with a ratio of about 1000 : 1 the magnet isn't going anywhere.
Figure 2a) shows what really happens when the cone is driven forwards. The pressure in the enclosure goes down, and atmospheric pressure flexes the front of the enclosure inwards, actually moving the entire drive unit.
Some designers install the tweeter in a separate enclosure which is mounted on springs so that its position is not modulated by any enclosure flexing caused by the woofer. This is a nearplausible argument which justifies a high price tag on 'high-end' hi-fi equipment. But if such an approach
results in an audible improvement, this must be an admission that the woofer enclosure isn't rigid.

Brace it

The solution is properly to engineer the enclosure for rigidity, a technique which is actively avoided in tradjtional wooden box speakers. A useful improvement can be obtained by bracing the rear of the woofer magnet against the opposite wall of the enclosure with a suitable strut.

Figure 2b) shows that the atmospheric pressure forces cancel at the magnet which stays put. Unfortunately it is difficult to be hyperbolic about an invisible block of wood, and so in certain markets it has no advantage at all.
Chassis can be made from a wide variety of materials, but the choice is far from obvious and depends upon the production volume and power handling requirement. Candidates include cast alloys, pressed steel and injection moulding
With ferrite magnets, a steel chassis can increase flux leakage, requiring a larger magnet for the same performance. Alnico and rare-earth designs do not have this problem. Aluminium or plastic chassis avoid flux leakage in ferrite magnets.
The high strength and ductility of steel means that chassis can be made in quantity by pressing from a relatively thin sheet with a very low material cost. For rigidity, thin sheet cannot be left flat over any significant area and so the pressing will need to be complex to ensure that every edge is flanged. The press tool also has to punch out holes to allow the pressure from the back of the cone to escape. This results in a loss of strength, and many pressed steel chassis tend to err
on the side of plenty of metal rather than freedom of air movement.

Thermal considerations

For high-power speakers, thermal considerations are usually uppermost. The coil dissipates a lot of heat, most of which has to be removed through the magnet.
Mounting the magnet on a substantial cast aluminium chassis is a good way of losing that heat with minimum temperature rise. Casting allows the complex ribbed structures needed for rigidity to be replicated with ease. For volume production, die-casting is a natural technique. The die tools may cost thousands of pounds, but the unit cost is very low.
Cast chassis will also be found on low volume, prototype and special-purpose drive units. These may be sand cast because the tooling costs are quite low, requiring only very basic wooden patterns which are well within the scope of the home builder. Sand casting is, however, labour intensive and becomes uneconomic as quantity rises.
Casting may advantageously be

Fig. 2. An easy way of preventing 'woofer reaction' is to brace the back of the speaker against the back of the cabinet, as in b).
taken further than just the chassis. In production engineered active speaker designs, one casting may form the entire front of the speaker, having integral woofer and tweeter chassis, mountings for the power transformer and also acting as the heat sink for the amplifier.
Advances in composite materials
have meant that chassis can practicably be moulded. It is easy to mould in any required details, and as plastic is nonconducting, the connecting tags can be mounted directly in the plastic, rather than on a separate tag strip. Plastics tend to be poor thermal conductors though, so their use is limited to drive units of moderate power.

escimioscopes	25
TEKTRONIX 79037A26 $\times 278880200 \mathrm{MHz} 4$ channel $\quad . \quad 6450$	RHODES \& SCHWARTZ APN6 $20.1 \mathrm{~Hz}-260 \mathrm{KHz}$ LF gen (new) \qquad
TEKTRONIX 7603/7AIAA 2 278853A 4 channel - Cuso	
TEKTRONIX 2465/2465A 300 MHz 4 chamel - from 41,800	SAYROSA MA $3010 \mathrm{~Hz}-100 \mathrm{KHz}$
TEKTRONIX 2443 S I 50 MHz 4 channel - 11,000	
TEKTRONIX 2445150 MHz 4 channel GP.IB	SPESTAUH AMALYSEAS
TEKTRONIX 22464100 MHz 4 channel autocal	
TEKTRONIX 2245100 MHz 4 channel (NEW) --	TEKTRONIX 498P 10 KMz-1800 MHz
TEKTRONIX 2235100 MHz 2 chamnel- 6600	TEKTRONIX 494P $10 \mathrm{KHz-21} \mathrm{GHz} \mathrm{(1)} \mathrm{rear} \mathrm{Cal} 8$ martanty) - 80.000
	TEKTRONIX 492P 10 KHz 21 CHz OPT 0017002003 - 65,500
TE KTRONIX 2223550 MHz 2 channel - 400	ANRITSU MS $610810 \mathrm{KHz} \cdot 2 \mathrm{GHz}$ spectrum analyser._-
TEKTRONIX 2222060 MHz 2 channel digral scorge -- - - - - -	TAKEDA RIKEN TR 4172400 Hz -1800 MHz specrum'network anayser ___ 65.500
TEKTRONIX 221560 MHz 2 channel	
TEKTRONIXTM5044 slor mantrame	
TEKTRONIX 475200 M Hht 2 channel -- from 1400	HP CALAN J010R sweepingress ralyser - 41,000
TEKTRONIX 468100 MHz 2 channel diqual storge (new) m, 6600	
TEKTRONIX 1658100 MHz 2 channel OPt OS .-............ 6500	
FLUKE PM3082 100 MHz 4 Channel (new) 61,200	MP 85S9日/1827 10 MHz 21 GHz
PHILIPS PM 3263X 100 MHz delarievenss	HP $85588100 \mathrm{KHz-1.500} \mathrm{MHz} \mathrm{analyser} \mathrm{+} \mathrm{nuliframe}$
PMILIPS PM 321750 MHz 2 chame	HP ESS 7 A 100 KHz-350 MHz znay yer \& mainfrime
PHILIPS PM 305750 MHz 2 chamel -	HP 8407A/8412B network analyser 0.1-110 MHz
PHILIPS PM 3055, 50 MH2 2 channel - . 0350	
IWATSU SS 5711100 MHz 4 chammel (as rew) -	HP 1417/85528/8555 ${ }^{\text {a }}$ / $10 \mathrm{MHz-18} \mathrm{GHz}$
IWATSU $5 S 571060$ MMz 4 channel (as new) -	MP 140 T/E3528/85338 $10 \mathrm{KHz} \cdot 110 \mathrm{MHz}$
KIKUSUI COS5041 40 MHt 2 chanmel -	MARCON1 238002382 $100 \mathrm{~Hz}-400 \mathrm{MHz}$
KENWOOD CS 402520 MHz 2 charnet -	MARCONITE2370 $30 \mathrm{Ht-110} \mathrm{MHX} \mathrm{digral} \mathrm{storage}$
NICOLET 40944562/F43 dyral scope - 6250	CUSHMAN CEI5 I MHz-1000 MHz spectrum montor
HITAC HIVI 100100 Mitz 4 Chamel whth cursors .-.	
	spreial afices
	O BMk 5 texmeter weth
OS2508 15 MHz 2 c	RCO NITE2371 dqugal synchronsers (for MARCONT 2015).
StcMal gimerators	IWATSU SS5711 100 MHt 4 channel oxilloscopes (1)
HP 8904A DC-600 K	
	RACAL RAI 7 L . 30 MHz recelimess
MP 8640A $20 \mathrm{Hz-512} \mathrm{MHz} \mathrm{symal} \mathrm{generator} \mathrm{-}$	
HP $86408600 \mathrm{KHz-S512} \mathrm{MHz} \mathrm{sgral} \mathrm{generator}$	
HP $8620 \mathrm{Cl} / 88242 \mathrm{D} 5.9 .9 \mathrm{GHz}$ meeper $\quad 1.000$	Test ECULIENT
HP 8620C/84241A 3.1-65 GHz sweper .-.	ANRITSU MSESA 3 GMz error detector - [500
	ANRITSU MSOPCI rotkeband monitor (boxed new with manuak) .- 4400
HP B820C/B62 20 A 10.1300 MHz sweeper	
HP 8620C sweper mainframes (as new) [250	AVO CTI 60 vive tester + into SISO
MP 8005B $0.3 \mathrm{Ht-20} \mathrm{MHz} \mathrm{pulse} \mathrm{generator} \quad$ - 2250	BALL EFRATROM MAT.H rubduum frequency randard -
MP 3320A frequency smmesiser 0.1 Hz .13 MHz	BIRD A323 HOWW 30d8 areenuator -_ 2200
	BRADLEY 192 oscilloscope calibrater
HP $3312 \mathrm{~A} 0.1 \mathrm{~Hz}-13 \mathrm{MHz}$ function generator	GRUEL KJAER 1515 vibration andyser (AS NEW -- 0.000
ADRET $7424100 \mathrm{KHz-24} \mathrm{GHz} \mathrm{Opt} 01-\quad \mathbf{-}$	BRUEL \& KJAER 1023 sme generator.-u-
THURLBY TG 2302 MHz sweep funclion genertor....	BRUEL L KIAER 2616 messuring amplifier
TEKTRONIX 2901 ume mark geerator - \quad C200	DATRON 1085 autocal digital mulimeter -
MARCONITF2022 10 KHz -1000 MMHz sggna generator $\quad 11.500$	EIP S 98A 10 Hz -26.5 GHz microwave counter
	EIP 331125 GHz autoher microwne counterC350
MARCONITF2016 $10 \mathrm{KHz-120} \mathrm{MHz} \mathrm{(2200)} \mathrm{TF2016A} \mathrm{}$.	
	ARNELL RB 1030135 electronik lozd -
MARCONITF2015 10 MHz -520 MHz $\quad 1250$	

ALL EQUIPMENT SUPPLIED WITH 30 DAYS WARRANTY • PRICES PLUS CARRIAGE AND VAT
86 Bishopsgate Street, Leeds LSI 4B:
Fell: $(+44) 1132435649$
Fax: $(+44)$

Visit M\&B Radio's Website http://www.mb-radio.co.uk e-mail info@mb-radio.co.uk

"We never expected PCB Layout power at this price..."

Easy-PC For Windows is the latest

evolution of one of the most popular affordable CAD systems available. With powerful new features and a true Windows graphical user interface, it is also one of the easiest to learn and use. Using full manufacturing outputs using Gerber, Windows printers and pen plotters it is one of the most complete systems.

Run multisheet schematics, PCB layouts and library managers in the multiple document interface and switching between each is simply case of selecting it with the mouse.

Runs under Windows $95^{\text {mM }}$ and Windows $\mathrm{NT}^{\mathrm{TM}}$

Number One Systems

The Electronics CAD Software Specialists

- True Windows graphical user interface
- Integrated SCM and PCB environment
- Analogue and Digital simulators
- Electromagnetic simulator
- Shape based gridless Autorouter
- No limits on anything !!
- Very competitive pricing

Download a working demo from our web site at www.numberone.com
or Email us at sales@sightmagic.co.uk

Call 01684773662 for more information or fax 01684773664
Sightmagic Ltd, Oak Lane, Bredon, Tewkesbury, Glos GL20 7LR UK

Complete Range of SBC's
(386 to 586 MMX) for ISA, PCI, PC/104
\& All-In-One Motherboards.
Chassis: 3 slot to 14 slot
ISA-PCI-PCIMA \& Combinations.
Complete LCD Solutions: SBC cable set \& NEC 10.4" \& 12.1" System Integration. EMC Testing.

Control G Ltd, 4 Sommerville Rd, Bristol BS7 9AA Tel: 01179249231 Fax: 01179249233
Email: Sales@iosls.co.uk Website: www.iosls.co.uk

CIRCLE NO. 132 ON REPLY CARD

My last article looked at the characteristics of the eye and introduced the concepts of the optic-flow axis and dynamic resolution. When examined using these concepts, the shortcomings of interlaced video scanning were revealed.
This article continues the theme by examining the performance of film and then looks at how progress can be made across all image portrayal systems

Making films

Good dynamic resolution is essential for realism, and will only be achieved if the motion portrayal is accurate. Accurate motion poitrayal requires that the optic-flow axis is reproduced without distortion.
Figure 1a) shows how movie film is shot. Originally a frame rate of only 18 frames per second was used, for economy reasons. The optic flow axis
is correctly preserved on the film for moderate motion. However, 18 frames per second is below the critical flicker frequency of human vision and is unwatchable.
The traditional palliative was to present each frame three times. The projector had a three-bladed shutter which produced three flashes of light for each frame pull-down.
Development of the 'talking picture'

Technologies for

 image portrayal in computer graphics, film and television were once very different, but digital electronics is causing them to converge. Some features of the oldtechnologies will remain useful.
Others - among them interlacing

- will be a
hindrance, as
John Wafkinson explains in this second article.

meant that an optical soundtrack was added to the film. The resolution of the sound-head optics was such that the film speed at 18 frames a second was too low and so the speed was raised to 24 frames a second to improve the audio bandwidth. Now a two-bladed shutter could be used to produce a flicker frequency of 48 Hz .
Figure 1b) shows that this corrupts the optic flow axis because there cannot be motion between the repeated frames. The eye tries to track the motion the best it can, but the optic flow axis of the film now oscillates with respect to the retina as shown in Fig. 1c).
Unlike interlace - which is worst on vertical movement - this effect is equally powerful in all directions. To a tracking eye, the two identical versions of a frame appear in different places on the retina. For slow movements, this results in an aperture effect which damages dynamic resolution. For rapid movements, the result is visible as judder or multiple images.
Assuming the film has a thousand lines of static resolution, dynamic resolution will be halved by aperture effect when a speed of one picture height in 40 seconds is reached. This is too slow to be useable, so the best dynamic resolution achieved by film hardly ever reaches half the static resolution that the film is capable of.
The best that cinematographers can do is to mount cameras on very solid and smooth supports and move them slowly to avoid judder. Rapidly moving objects of interest must be panned. Quality films are shot like this because the film makers know the restrictions.

Background strobing

In my last article, the concept of background strobing was described. When a tracking eye follows a moving object of interest, the background is presented in a different place on each frame. In television the background is at 50 or 60 different places per second, whereas in film there can only be 24 background locations per second. In other words the background strobing is twice as bad.
As a result, good cinematographers use shallow depth of focus in order to blur the background and disguise the effect of background strobing.
The damaging effect of picture repeat in film means that although film manufacturers have dramatically improved the static resolution of film in recent years, the improvement cannot be seen by the movie-goer in the presence of even very slow motion. As I have shown, there is more to moving picture quality than static resolution.
The picture repeating of film projec-
tion is carried over into telecine machines which convert film into television signals. To produce 50 Hz video in Europe, the 24 Hz film is run at 25 Hz and two fields are made from each frame.
Figure 2a) shows the traditional 'fly-ing-spot' telecine which uses a crt as a
light source and a photocell behind the film to produce the video signal. The film moves at. constant speed, driven by a capstan.

To produce a progressive scan picture the crt would only need to scan from side to side in a line. However, to produce an interlaced scan, the crt

With frame repeat in cinema

Relative to tracking eye causes aperture efect and motion judder

Fig. 1. Frame repeat damages optic flow axis.

Fig. 2. Telecine basics. The 'flying-spot' telecine, a), uses a crt to develop a twodimensionally scanned spot which is focussed onto the film. The vertical scan of the crt allows interlaced fields to be created in real time from steadily-moving film. In the more modern line-scan telecine, b), vertical scanning is based solely on film motion. The film is focussed onto the
line sensor. Interlace is achieved by reading alternate lines from a frame store.

'Flying spot' telecine imaging on source side

Fig. 3. To obtain 60 Hz video from 24 Hz film, a process called 3:2 pull-down is used. Resultant demolition of the optic flow axis causes judder.

Relative to tracking eye - worse judder and aperture effect
requires vertical deflection as well so that it can scan each film frame twice in succession even though it has moved to a different location in each scan.
Figure 2b) shows the more modern line-scan telecine. The light source illuminates the whole gate and a cod line sensor is used. The steady motion of the film performs a vertical progressive scan, but the signal is stored in a frame-store. To obtain an interlaced output alternate lines of the frame-store are read out to produce two fields.

Producing 60 Hz video

The production of 60 Hz video from 24 Hz film in USA requires $3: 2$ pulldown, where one frame is made into three fields and the next is made into two fields. Pull-down with a $3: 2$ ratio has a devastating effect on the opticflow axis, as shown in Fig. 3. With respect to a tracking eye, images are portrayed in three places, leading to serious judder.
Figure 3 shows that the action of the interlaced telecine is to display a frame, sampled at one point in time, as fields at two (or three) separate times. In the presence of motion, the opticflow axis turns and these fields no longer superimpose.
The shift of the fields with respect to one another causes an aperture effect which reduces the visibility of interlace aliasing. Consequently a motion artifact of film has the result of concealing an interlace artifact in video.
Bearing this in mind, using $24 / 25 \mathrm{~Hz}$ film material to test or demonstrate hdtv systems must be a very suspect practice indeed, and the results are meaningless. The dynamic resolution of the television system under test could be - and often is - quite poor yet the artifacts due to film judder could well conceal the fact.
The damage done to the optic-flow axis by $3: 2$ pull-down is bad enough.

But there is an even worse option, and that is to convert $3: 2$ pull-down 60 Hz telecine video to 50 Hz video in a standards convertor. This is known in the industry as the 'Dallas' effect after the television soap opera which first tried it out - briefly.

Film and MPEG

MPEG is a set of standards for video compression, i.e bit-rate reduction, which will be used for services such as digital television broadcasting and dig-ital-video disc, or dvd.
Figure 4 reveals that MPEG achieves much of its compression by sending only the differences between pictures. In the case of motion, an MPEG coder can send motion vectors telling the decoder how to shift a previous picture to make it more similar to the current picture.
In an MPEG environment, the damaged optic-flow axis from telecine causes compressors a lot of trouble. The field repeating means that motion vectors are zero between repeat fields but of doubled amplitude elsewhere. This alternating vector data means that the data available for picture differences fluctuates, causing quality loss.
The current approach to MPEG compression of telecine video is to use a preprocessor which de-interlaces the fields back to progressively scanned frames. In 3:2 pull-down systems, the third field is entirely redundant and is discarded. The adoption of progressive scan at the same frame rate as the film material allows MPEG to work at its most efficient as the vector data is more stable from frame to frame.
Set-top boxes receiving MPEG film frames at $24 / 2 \mathrm{~Hz}$ have no trouble accurately decoding the frames, but display them by reading the output frame-store at 50 Hz using interlace and at 60 Hz using interlace and $3: 2$ pull-down. This interlacing process recreates the damage to the optic-flow axis which took

Fig. 4. MPEG achieves much of its compression by sending vectors to shift a previous picture so that it more closely resembles the current picture. A prediction error is sent to cancel the remaining small differences.

place in the original telecine material.
Telecine machines are actually standards converters because the input and output picture rate is different. It is obvious that the only way to overcome the poor motion portrayal of the telecine machine is to use motion compensation in the conversion process. In this way, the optic flow axis is not distorted. A telecine which does not do this cannot be regarded as having high definition.
The advantage of the motion compensated telecine is that the output video has the same motion characteristics as video from cameras. As a result, it doesn't need handling differently by MPEG. Motion-compensated telecine machines are currently almost unknown, but will come to prominence in due course.
There is an enormous archive of 35 mm 24 Hz film material which will be heavily used to attract customers to new television services. The advantages of a high quality television system will be lost if primitive field repeating telecines are used.

High-definition film

Traditionally, film and television were in competition and incompatibility was often quite deliberate. With the convergence of technologies though, these traditional incompatibilities have become an obstacle to progress and an holistic solution is required.
The clear solution is to use modern technology to remove the compromised motion portrayal of both film and television and to make them truly interchangeable and compatible with computer imaging.
Anamorphic optics are frequently used with film cameras to get widescreen pictures. Effectively, the magnification of the camera lens is different horizontally and vertically so that a wide picture is squeezed into a regularshaped frame. This is a lossy non-perceptive technique which is inefficient.
Resolution of the film - and that of the eye - is axisymmetrical. The result on the screen with anamorphic film is that the vertical resolution is in excess of the horizontal resolution. The eye judges quality on the worst axis so that vertical resolution - and film and money - is wasted.

Anamorphic optics

Practical anamorphic optics are not ideal and cause further loss of quality. Non-axisymmetrical systems are inefficient and sub-optimal as the input to an MPEG compression system.
There is a worse case than that. Pass anamorphic film with impaired horizontal resolution into an interlaced telecine machine which has impaired
vertical resolution. Pay for 35 mm film - and get the resolution of 16 mm film.

Consequently if film is being used as the source for an advanced imaging system, it should use axisymmetrical lenses (note the similarity with the use of square pixels giving the same vertical and horizontal resolution in graphics). In film this means that the greatest efficiency or the lowest film cost is achieved when the aspect ratio of the film frame is the same as that of the screen, just as in video the number of horizontal pixels should be given by the number of vertical pixels multiplied by the aspect ratio.
The 24/25 frames per second rate of conventional film corrupts motion portrayal and is incompatible with television and computer displays. The use of anamorphic optics is inefficient. Both problems can be solved instantly by adopting 2-perf 35 mm film frames running at 50 or 60 frames per second for tele vision filming. This doesn't change the film speed, so running costs are unchanged.
Judder and aperture effect are eliminated by correct motion portrayal so that the dynamic resolution will be extremely good. A further advantage of 2-perf is that by halving the height of the frame it is automatically given a wider aspect ratio. Now spherical optics can be used. These are lighter and cause less resolution loss.
Technicolour introduced 2-perf years ago as Techniscope, but running at conventional frame rates for economy. All that is proposed here is to run it at a more appropriate speed. There is no technical problem whatsoever in using 50 or 60 Hz as a film frame rate, especially as the pull-down distance is halved.
Existing telecine machines can easily be adapted to use 2-perf. Existing optics and transports are suitable. Telecine machines are naturally progressive scanning devices and have to go to great lengths to obtain interlace. Disabling the interlacing processes yields a simpler machine.

Oversampling

People seem to think that high-definition television needs lots of lines. But that's a myth. Cameras and displays need lots of lines to overcome aperture effects and to render the raster invisible, but the transmission medium between does not.
In the early days of television the capture, transmission and display formats had to be identical for simplicity, but that is no longer true or desirable.
A 525 line camera cannot give 525 lines of resolution, but a 1050 line camera with down-conversion can. Effectively the camera is using oversampling.

Fig. 5. Spatial oversampling. Modulation transfer function, or m mf, of camera plus sensor has gradual rolloff, a). In b), sampling at high spatial frequency avoids aliasing. In the digital domain, c), a low-pass filter restricts the spectrum. In b), the output sampling rate has dropped and the output has no aliasing or aperture effect.

Although oversampling has totally dominated digital audio because of its obvious merits, it is harder to use it in conventional television because of interlace. Interlace puts half the picture data at another time and reduces the performance of spatial resamplers. Once interlace is dispensed with, oversampling becomes an obvious and attractive technology.
Oversampling overcomes practical limitations in optical filters. In a ccd camera, the sensor elements sample the image spatially. The sensors are large for maximum light sensitivity and so a serious aperture effect is experienced.
Ideally, an optical anti-aliasing filter is needed between the lens and the sensor. Unfortunately it is difficult to make a filter which has a sharp cut-off and it is usually necessary to compromise between visible aliasing and picture softness.
Using oversampling makes this compromise unnecessary. Figure 5 shows that in an oversampling camera, the spatial sampling rate must be increased by using a larger number of pixels in both dimensions - i.e. use a high-definition camera. The optical anti-aliasing filter then only needs to prevent aliasing at the higher sampling rate.
Output of the ccd element is spatially low-pass filtered and decimated to produce a television signal with the target pixel count. It will contain no spatial aliasing, but will not suffer loss at the band edge.
As a crt is a sampled device, breaking the picture up into lines, it should ideally be followed by an optical filter. As before, this is not done because in order to eliminate the raster it would intrude into the passband.

Removing the raster

Oversampling can also be used to render the raster invisible. Once more a form of standards convertor is required, but this now increases the number of input lines using interpolation. The aperture effect of the display filters out the raster, leaving the passband unaffected.
Oversampling can also be used in the time domain in order to reduce or eliminate display flicker and background strobing. A different type of standards convertor is necessary, which increases the input picture rate by interpolation. Such an oversampling convertor must use motion compensation. If it doesn't, moving objects will not be correctly positioned in an interpolated picture and the result will be judder.
The adoption of progressive scan allows spatial oversampling to be easily implemented in both camera and display. The number of lines needed in the channel between is then quite moderate.
Progressively-scanned sensors and displays having 700 to 1000 lines connected by a 480P channel are all that is required to deliver a truly high definition television service. The up-converter in the display is optional and lower cost receivers could omit it. Equally, large expensive receivers could incorporate motion vector steered frame rate up-conversion to reduce background strobing.

John Watkinson is an independent international consultant on audio and video technology. He is a Fellow of the AES and a Chartered Information Systems Practitioner. John is currently writing a book on helicopters. His web address is www.culinaire.se/JWA.

Is digital television new? Maybe not, but Baird's television system was certainly a pig in a poke: wasn't it? Don McLean has some new evidence.

The much-hailed start of digital television may not be quite the giant leap you think. Digital television broadcasting - converting programme distribution to a fully digital environment - is just one small step in a steady 'technology refresh'.
This engineering process started over twenty years ago and will continue for many years yet. Fully digital television, and digital scanning standards, will emerge when the flat-screen tv replaces the cathode-ray tube in our television sets. Then, analogue tv and all its trappings, such as PAL (or NTSC) coding, sync pulses, colour bursts and interlace, will be history.
That digital future, with our current analogue tv obsolete, will give us a new view of television's engineering history. The early years of mechani-

[^5]cally-scanned television - viewed for decades with disdain - will then, I believe, sit alongside electronic analogue tv as an equally valid engineering solution to 'television'.

Mechanically-scorned tv

Today though, most of us have accepted a view originating from the BBC back in the late thirties. We think of John Logie Baird's low-definition television system of the twenties and early thirties as somehow 'wrong', and of electronic television as being 'right'.
Part of this comes from 'technology arrogance'. In the sixties, the BBC $^{\prime}$ seriously questioned Baird's achievements because no part of his technology was in sixties' television systems. But, today, nothing directly of sixties' technology is in a nineties' consumer digital video camcorder - with its chip sensor, image stabilisation, digital auto-
focus, led, digital data recorder and computer interface.
We should neither revere nor ridicule historic technologies - they are merely the best solutions available at the time, Fig. 1.

A new view on the past
To be objective about early television, what we need - and have not had up until now - is evidence. Without it, historians have had to rely on written or eyewitness accounts, some of them made decades after the event and most of them dismissive and derogatory.
In 1996^{2} and early 1998, hard evidence turned up in the form of home video recordings made from BBC tv programme transmissions in the thirties. Until then, the entire mechanical-ly-scanned era of television was thought to be devoid of any such recording. These digitally restored

Fig. 2. One of the many consumer devices that recorded audio onto aluminium discs. On more than one occasion, machines such as this were used by viewers to record the video signal of the BBC's 30 -line broadcasts.
recordings now challenge the longestablished view.

To understand why this is so, let us fast rewind to just after Baird's experimental period of the years around 1930.

BBC chooses Baird's 30 -line system. In 1932 the BBC chose Baird's 30-line standard for its television service, despite higher definition being available. It was chiefly the lack of suitable wide-band transmitter hardware that forced the BBC into using an existing solution.

The 30 -line video signal was low enough in bandwidth to be transmitted on an existing BBC medium wave frequency normally used for audio. The public simply used their existing radio for the audio channel and a second radio receiver for the video channel. Only the display had to be bought - or in some cases built.

Baird's mature 30 -line system developed in the late twenties - provided the BBC with an exceptionally low-cost engineering solution that
exploited their existing broadcast infrastructure to the full.

No recordings? If the BBC or the Baird Company ever attempted recording their programmes, there is today no record of it. Fortunately for us, a few enthusiastic viewers made crude video recordings on their domestic audio equipment, Fig. 2, from BBC broadcasts. They had been inspired by Baird's attempts to make a practical videodisc player in the late twenties ${ }^{3}$ and were encouraged by articles describing how to do it. ${ }^{4}$
Recently, Jon Weller, a collector of old electronics equipment, retrieved a collection of direct-cut aluminium discs from a house clearance. The discs were previously owned and possibly recorded by Marcus Games, a keen amateur movie enthusiast. Jon later discovered that several discs in that collection had unusual material on them, Fig. $3 .{ }^{5}$

What are the recordings of? Although the discs were recorded at

Fig. 1. Mechanically-scanned television is in use today by the military. In airborne reconnaissance, the high-resolution television cameras on RAF Tornado GR1A aircraft use mirrordrum scanning. Coincidentally the aspect ratio is similar to that of Baird's 30-line standard. (from Crown Copyright original)

different speeds, the starting point was that the signal matched Baird's 30 -line video standard. Without a date to go by, I had to rely on comparing the video content with knowledge of the development of 30 -line television in order to determine whether they were authentic or recent.

The evidence

Once restoration started, the clues began to appear. In the collection, there are eleven separate recordings of 30 line video. Each recording is a fragment from a programme and lasts no more than a minute. There were two types of programme - one type featuring four individual singers and the other containing what may be material from children's programmes.

Fig. 3. With no clue as to date or authenticity, one of the discs has a hand-written message "Woman. Large Head". This unflattering message describes the main disc of Betty Bolton's BBC tv performance in the thirties.

Scanning options

Two main types of mechanical scanning were used for 30 -line cameras and displays: Nipkow disc and mirror-drum. The Nipkow disc - a spiral ring of apertures around the outer edge of the disc - created a curved image that was scanned in an arc. The mirror drum, shown in Fig. 4, however scanned in straight lines with a slight 'bow-tie' distortion.
The BBC transmitted its images from a mirror drum camera system, yet most viewers used receiver-displays based on the Nipkow-disc. They were cheaper and easier to make. Viewers accepted the minor distortion - just as today they surprisingly accept a normal television picture stretched to fit a wide-screen display.

Fig. 4. The mirror-drum camera of the thirties scanned the scene using a projected flying spot. The Nipkow camera disc of Baird's video recording experiments of the fwenties used more traditional - but less efficient - lens-based imaging.

Fig. 5. Betty Bolton. The photo on the left and its simulated 30-line equivalent show Betty in 1929. The two pictures on the right have been restored offdisc. One shows
the glint off Betty's hair and the other, her distinctive profile with kiss-curl and hair clasp.

The digitally restored images from the set of discs do not show the distortion caused by arc-scanning. The only alternative camera was one based on a mirror-drum.
Mirror-drum cameras for 30 -lines had a fixed vertical field-of-view of just over 20°, excluding blanking. Hence the singers who we see in medium shot were around $9-10$ feet, i.e. 2.73 m , from the camera.

With the bottom of the back wall of the studio in shot, the images show that the studio was large and the camera system was sensitive. Showing camera features common with the 1933 'Looking In' recording, the quality of camera-work appears superior, implying a later date.
Relative to what amateurs today achieve ${ }^{6}$ and relative to a genuine 30 line re-make of a 1930 play 7, the inherent quality of the vision signal is excellent. With no detectable image errors, the mirror drum camera was a preci-sion-built mechanism. Lighting, cam-era-work and production have all been perfectly matched to the 30 -line system.
Allowing for the almost "dictaphone' recording quality, the home-recorded discs show details that have been talked about before, ${ }^{8}$ but not seen

$B B C$'s first television service

These then are undoubtedly recordings made from the first BBC television service of 1932-35. The clues above suggest the transmissions came from the BBC tv studio at Portland Place between 1934 and ' 35 .

With the 1933 programme, 'Looking In', ${ }^{9}$ we now have the total complement of video recordings of broadcast television - at least in the UK - before the fifties. Since they were discovered and restored only in the last two years suggests that more material may yet appear.

Singer without the song. Only one of the singers is easily recognisable by her distinctive features and hair-style Betty Bolton, Fig. 5. As an accomplished contralto, she recorded many dance-band songs in the late twenties and early thirties.
Between 1929 and 1935 she performed well over a dozen times on 30line broadcasts including being the first performer on the opening night of the BBC Television Service in August 1932.

Betty's performance exudes professionalism. Here is a highly accomplished performer, perfectly natural in front of a television camera. When I showed the images to her, she immediately recognised herself from her appearance and actions.

Fig. 6. An unknown male operatic singer. Details of his collar, tie and jacket show up well considering that the computer-restored sequence originated from a dictaphone quality audio recording.

Fig. 7. An unknown female singer performs in silence through a rain of high disc-surface noise. On the right she is caught part-way through blowing a kiss at us.

Fig. 8. Captured at 120rev/min, this female singer's performance is spread across three of the eleven separate recordings. They have been brought back together digitally as one long sequence.

The glossy shine of her hair, the glint of her tiny silver hair-clasps, her gem necklace and the pattern on her dress are all remarkably clear. A welldefined dark streak either side of her nose and dark eye shadow seemed to be the only make-up. Betty confirmed that only her eyebrows, nose and lips had been enhanced in dark-blue.
The other recordings of singers, Figs $6,7,8$, are not distinctive enough to be identified. Hence it is difficult to establish when the recordings were made.
For the first time ever, we can truly appreciate something close to the original scene quality from a 30 -line broadcast. The only surviving Baird

Company engineer described these digitally restored pictures as about as bad as they got. ${ }^{10}$

The first commercial video

disc...
In mid-1935 - rather late in the day to be of much use - the first video disc was offered for sale. It was a doublesided 30 -line vision-only test disc, bearing a 'Major Radiovision' label, Fig. 9. It comprised a series of twenty still cartoon images - ten per side of the disc.
These stills are slid in, left for about twenty seconds, then pulled out. They are transparencies - lantern-slides -

Fig. 10. Animated binary images of the mid-twenties pre-dated Baird's successful demonstration in 1926. The Major Radiovision disc of 1934-5 has more in common with those early images than 'true' television.
because one of them is slid in twice, the second time backwards. The recording shows the characteristic distortion from using a Nipkow disc as a camera - at a time when cameras used mirror-drums.
Back in the early twenties, people laid down rules to establish what was and was not 'television'. They decided that 'true' television should encompass the ability to see subjects in reflected light.
For many years before Baird's suc-

Fig. 11. The time-base corrected image directly off-disc shown on the left suffers from 'ringing' at around 5 kHz . On the right, signal processing has greatly reduced the distortion and the proper arc-scan pattern has been restored.

Fig. 12. A composite of most of the pictures from the 'Major Radiovision' test disc. The strange pattern at bottom right is a high frequency test
pattern.

cessful demonstration of 'true' television in 1926, the early pioneers demonstrated video pictures of silhouettes and shadows. Here, an intense light was shone on the scanning area with the photocell behind it. Animated silhouettes, Fig. 10, a Maltese cross, even waggling fingers were all 'subjects'. However this was not 'rrue' television. Likewise, the 'Major Radiovision' test disc, made in that way is not 'true'.
Although sold as a test disc, the whole recording is marred by a 5 kHz 'ringing' on transitions, Fig. 11. The fact that these are stills without movement means that the full capability of the 30 -line system is not realised, Fig. 12.

There is a 'sister' disc of stills ${ }^{11}$, made in the same way as the 'Major Radiovision' disc but containing different subject matter. Strangely, whilst the recording is clear, none of the lantern-slides are even remotely recognisable, Fig. 13.

The new television system

Low definition TV had virtually national coverage with at least eight thousand viewing sets. After the last of 1,500 programmes was transmitted on 11 September 1935, these viewers found that their 30 -line TV receivers had become obsolete. The new high definition service began a year later.

True revolution. Unlike digital television today, the transition from the 30 line service to the new high definition service was not an enhancement, it was a total revolution.
Thirty-line tv was designed to use existing radio channels intended for audio broadcasting. The BBC had used mature technology for its 30 -line television studio. It had also used its existing audio distribution channels and radio frequencies for vision transmission, leaving the public to buy or even build their own receivers.
In sharp contrast, a totally new infrastructure supported the high definition system. Virtually everything had to be developed from scratch - cameras, cables, distribution amplifiers, routers, transmitters, receivers and displays.
The investment was enormous but the time was right and the public were crying out for a full television service. The potential returns for the right solution made the investment appear secure.

Trial by television

When test transmissions started in 1936 from RadioOlympia, the price of receivers, full of the latest technology, left the public far behind. Much like the start of BBC Choice in September

Fig. 13. Identical in every way but content to the 'Major Radiovision' 30 line fest disc, a second disc confains test stills that are clear yet unrecognisable.

1998 on the digital service, hardly any of the public had the new receivers to watch it.
Television coverage shrank from most of Britain to London and the immediate vicinity. Initially, television sets had to be dual-standard: the choice between the Baird Company's totally new 240-line progressive scan system and rival Marconi-EMI's 405-line interlaced system was to be resolved on-air.

Dual standard reception made the first electronic televisions even more costly. By January 1937, the all-electronic 405-line system had been selected.
Viewers outside the London area, who switched off their 30-line receivers for the last time in 1935, had to wait more than fifteen years for television to return. It took until 1952^{12} for coverage to reach Scotland and Wales and 1953-54 for prices of receivers to become affordable to the average working family.

But what of Baird?

John Logie Baird, Fig. 14, has easily earned the acclaim of Britain's foremost television pioneer. His list of achievements is legendary. He developed and demonstrated the world's first practical solution to television.

Uniquely amongst the tv pioneers,

Fig. 14. John Logie Baird - Britain's foremost television pioneer, 1888-1946.

Baird developed, demonstrated and patented almost every aspect of television including colour, infra-red, 3D, and video recording. He introduced and funded a broadcast television service. His 30 -line system was adopted - and hence sanctioned - by the BBC for their first television service.
That he lost the prime competition for supplying the BBC's high definition service to Marconi-EMI in 1936 is unfortunate - the all-electronic system was simply better. This does not detract from his remarkable achievements and innovations throughout the dawn of television and, indeed, for the rest of his life.
Baird received only one honour honourary Fellowship of the Royal Society of Edinburgh. ${ }^{13}$ If we recognise comedians and retired politicians and their secretaries through our country's honour system, then the time is long overdue to bestow proper honours on John Logie Baird.

Acknowledgments. I would like to thank Jon Weller, the owner of aluminium discs described here and to Eliot Levin of Symposium Records, who freely gave up his time to transfer the discs expertly and professionally. Final thanks go to Betty Bolton, the earliest video star, who has charmed me both on disc and in person.

References

1. BBC, "The Discovery of Television", Documentary celebrating 25 years of Television, 1961
2. McLean, D F "First Frames", Electronics World, November 1998
3. McLean, D F "Restoring Baird's Image", Electronics World, October 1998
4. Practical Television, "Canned Television", Barton Chapple, November 1934
5. Weller, J. Private Communication, JanMarch 1998
6. NBTVA - Narrow Band Television Association - uses low definition TV as an alternative amateur radio mode
7. Remake of "The Man With The Flower In His Mouth", 1967, ILEA, produced by Lance Sieveking (the original 1930 producer) and filmed entirely in 30 -lines by Bill Elliott.
8. Bridgewater, T H "Just a Few Lines", British Vintage Wireless Society, 1992
9. McLean, D F ibid Electronics World, November 1998
10. Herbert R M. Private Communication, June 1998
11. A tape copy of this disc was supplied by Doug Pitt, NBTVA, 1982. The source of this tape is unknown.
12. Briggs, A. "The BBC: The First Fifty Years". OUP 1985
13. Baird, Prof M H I, private communication, Sep 1998

Don will be describing his work in a lecture to be given at the IEE, Savoy Place, London on 11 May 1999 at 6pm. Admission is free and open to nonmembers. The multimedia presentation will rely heavily on the video restorations "and will be entitled "Restoring Baird's Image: the restoration of the world's earliestknown television recordings."

> DSPs at the bottom end of the market are finding themselves used in an ever increasing number of applications. But how will they compete against the likes of Risc and microcontrollers? Steve Bush reports.

takes control

with hugely powerful super-scalar digital signal processors grabbing the limelight, it is easy to forget the bottom end of the market - the 16 -bit fixed-point processors that sell in increasing numbers into products as unlikely as video baby alarms and fridges.

It is a highly competitive sector which is also the target of Risc processors and microcontrollers.

What are chip manufacturers doing to keep their share - or even increase it?
Jean-Marc Darchy is Texas Instruments' European dsp spokesman. He said: "There is still a lot we can do. The first thing is that dsps will be adopting the latest production technology. With an 0.18 or $0.15 \mu \mathrm{~m}$ process, you can deliver for $\$ 5$ three to four times the performance compared with a dsp from two to three years ago. For instance, our 5402 [due to sample next month] will deliver 100 Mips for $\$ 5$. There will be a variety of products on the market at this performance."
With 100 Mips for $\$ 5$, dsps will become more attractive in a market that is awash with Risc processors, microcontrollers, and existing dsps.

In some cases, fast dsps will have an inherent advantage. "DSPs will be better than microprocessors for voice coding and data transmission," said Darchy.

According to Darchy, there is a second factor that will affect forthcoming sales. "To win against microcontrollers, dsps will become more specialised and will focus on an application, or a cluster of applications, with specific on-chip peripherals. This will need a good understanding of the market and the products that will use the processors."
An example he cites is motor controllers, where TI, Analog Devices and Zilog already have dedicated dsp products. "This is a success. It was a pure microcontroller market which is now switching to medium performance dsps because the on-chip peripherals, pulse-width modulators and timers, focus the product on the application," said Darchy.
Applications likely to receive the attention of dsp makers in the near future, according to Darchy, include: point of sale terminals, payphones, imaging systems and remote data acquisition. "One dsp
could handle all of the usual functions in a sales terminal, plus implement a modem to communicate with the store computer. It could perhaps do some voice recognition as well. For data logging, you will be able to measure parameters, perform calculations and transmit the results down a phone, all with a $\$ 5$ dsp."
One company that already incorporates a wide range of peripherals on its dsps is Zilog.
"Typically a dsp has hardly any i/o," said Adam Provis, an application engineer with Zilog. "We add the sort of peripherals found in microcontrollers. For instance: a phase-locked loop to allow the chip to run from a low-cost 32 kHz crystal, countertimers, SPI serial port, 8-bit a-to-d converter and i/o ports."
He sees this as an advantage in simple consumer products. "Typically, a microcontroller cannot handle voice compression for storage into flash memory or for transmission, whereas a dsp can. In walkie-talkies, baby alarms and similar products, you can choose to use a dsp for compression and a microcontroller to handle the housekeeping

Peripherals are appearing on dsps, moving them on in the same way that they turned microprocessors into microcontrollers.
functions like battery management and operating the human interface, or you can use a single dsp part that does everything."
This 'everything' includes storing its own program code, as Zilog's range includes one-time programmable and mask-rom on-chip memory options, but not yet flash. "We will have flash memory in the second quarter of next year," said Provis.
He sees two other ways to make dsps more attractive.
One is to offer them in small packages. Zilog has one in a 44 -pin PLCC; the other is to keep development tool costs low. Provis said, "Our lowest cost incircuit emulator is $\$ 99$. This is a full function emulator, the only thing that it hasn't got is a hardware trace."
Motorola's 56800 family, currently at 35 Mips and mapped to 100 Mips in 2000 , is another with multiple microcontroller-like peripherals laying claim to a similar range to Zilog's.
Power consumption is also important, not only in portable equipment, but as a way of reduced fixed and recurring costs in mains-powered installations.

DSP chip makers are not blind to this and are taking steps to drop power consumption even as performance increases.
"Because of the processes used," said Analog Devices' Andrew Lanfear, "in some cases 32-bit dsps can cost less than 16 -bit alternatives."
This can make the 32 -bit device look attractive, even when the application only demands 16 -bit capability. "But the 16 -bit dsp is likely to consume less power in the application," said Lanfear.
As an example of low power consumption, he puts forward the ADSP2189. "It is a 75 Mips device that can run two V. 90 [56kbit/s] modems simultaneously. But it consumes only $0.4 \mathrm{~mA} / \mathrm{Mip}$ at a core voltage of 2.5 V ."
The core behind the ADSP21xx family has been around for a while now, constantly increasing in performance. Now at 75 Mips , "we expect it to top-out at 100Mips," said Lanfear, "In future we are looking at a new instruction set architecture and a new core. This will be further down in power consumption and with much higher performance.

But we are not releasing dates yet."

Analog Devices and TI are the 'big two' in dsp. Is TI looking at architectural changes for its lowend processors?
"I suspect not," said TI's Darchy. His argument is largely financial: "Going to smaller, faster processes is quickly moving low-end dsps towards top-end microprocessors. A \$40 to \$50 dsp three years ago is only $\$ 10$ now."
There is also a reason why moves to new architectures are actively undesirable. "Keeping the same architecture is a more robust, efficient and economic way to get the best out of a company's existing software base and tools," said Darchy.
Up-to-date semiconductor processes, combined with microcontroller peripherals are pushing 16 -bit fixed-point dsps into applications formally reserved for microcontrollers. Power is going down and speed is going up.
The likely result is 'high-tech' consumer goods that feature voice and video compression; speaker phones, security products and baby alarms are the kind of products that should benefit.

30\% discount for EW readers on two bench multimeters

APPA $201 \mathbf{3}^{1 ⁄ 2}$ digit $£ 99$ inc vat and del
Vann Draper is offering 30\% discount to readers of Electronics World on two of their professional quality, battery/mains powered, bench digital multimeters.

Th APPA 201 normally sells for $£ 139.83$ but for readers of EW the price is only $£ 99$ fully inclusive of vat and delivery. The APPA 203 is normally priced at $£ 175.08$ and is available to readers of $E W$ for just $£ 125$ fully inclusive.

Both models are supplied ready to use complete with test leads, mains lead, carrying strap, operating manual, and a 12 month guarantee.

To order simply post the coupon to:
Vann Draper Electronics Ltd at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE18 2PL.
Alternatively tel 01162771400 , fax 01162773945
or email sales@vanndraper.co.uk.
APPA 201 specification
Display
Ranging
DC voltage
AC voltage
DC current
AC current
Resistance
Continuity test
Diode test
Additional functions
: 2000 count, back lit lcd
: Auto and manual
: $200 \mathrm{mV}, 2,20,200,1000 \mathrm{~V}$ Accy 0.5%
: 2,20,200,750V Accy 1.5\%
: 200uA, $2 \mathrm{~mA}, 20,200,10 \mathrm{~A}$ Accy 0.8%
: 200uA, $2 \mathrm{~mA}, 20,200,10 \mathrm{~A}$ Accy 1.5%
: 200, 2k,20,200,2M,20M Accy 0.8\%
: Threshold less than 50 ohm
: Test current 1.0 mA
: Data hold
Power requirement : 120/240Vac or $6 \times$ AA batteries

APPA 203 specification

Display
Ranging
Bar graph
DC voltage
AC voltage
DC current
AC current
Resistance
Capacitance
Frequency
Continuity test
Diode test
Additional functions
: 4000 count, back lit Icd : Auto and manual
: 42 segment
: $400 \mathrm{mV}, 4,40,400,1000 \mathrm{~V}$ Accy 0.4%
: 4,40,400,750V Accy 0.8\%
: $4 \mathrm{~mA}, 40,400,10 \mathrm{~A}$ Accy 0.7%
: $4 \mathrm{~mA}, 40,400,10 \mathrm{~A}$ Accy 1.3%
: $400,4 \mathrm{k}, 40,400,4 \mathrm{M}, 40 \mathrm{M}$ Accy 0.6%
: $4 \mathrm{nF}, 40,400,4 \mathrm{uF}, 40 \mathrm{uF}$
$: 100 \mathrm{~Hz}, 1 \mathrm{KHz}, 10,100,1 \mathrm{MHz}$
: Threshold less than 50 ohm
: Test current 0.6 mA
: Min, Max, Hold, Relative, Delay hold
Power requirement

APPA 203 3³/4 digit $£ 125$ inc vat and del

Vann Draper Electronics Ltd
The test and measurement specialists
wwW.vanndraper.co.uk
Kenwood, Grundig, Hitachi, Fluke, Kathrein, Glassman

Use this coupon for your order

Please supply me:
........... APPA 201 meter(s) at $£ 99$ inc vat and del
........... APPA 203 meter(s) at $£ 125$ inc vat and del
Name:
Address:

Tel No:
Total: £....................
Cheques payable to Vann Draper Electronics Ltd or debit my visa, mastercard or switch card:
Card type:
Card No:
Expiry date: Switch iss no:
Signature:
Overseas readers can still obtain this discount but carriage charges vary according to country. Please telephone, fax, email or write to Vann Draper.

DIRECTIONS

To reserve your web site space contact Joannah Cox

Tel: 01816523620 Fax: 01816528938

AQUILA VISION

http://aquila-vision.co.uk
Aquila Vision specialises in supplying and supporting Embedded Microprocessor Development products from PICs to DSPs. We also stock robotics boards, Linux and general interest CD-ROM's.

BF COMPONENTS
http://www.bfcomponents.co.uk
Visit the site for Milgray-Bell in the U.K. Full e-mail facility with Instant links to Bell and Milgray web sites for stock interrogation.

CAMBRIDGE MICRO PROCESSOR SYSTEMS LIMITED

http://www.cms.uk.com

COOKE INTERNATIONAL

http://www.cooke-int.com e-mail: info@cooke-int.com

Contact	Stock
Manuals	
Enquirles	Order
Location	
Legal Nollce	Specials Snall Mall
	Download

CROWNHIL ASSOCIATES LTD http://www.crownhill.co.uk
Crownhill supply low cost development tools for use with Micro-Controllers and Smart Cards. Products include Smart Card development tools, Smart cards, Micro Development tools and Bespoke Design Services.

ELECTRONICS WEEKLY HYPERACTIVE
http://www.electronics weekly.co. ukI
DISPLAY ELECTRONICS
http://distel.co.uk

FELLER UK

http://www.feller-at.com
Feller (UK) Ltd. manufacture Fully approved cordsets (Moulded mains plugs and connectors) and Power Supply Cables for all industrial Countries to National and International Standards

FLASH DESIGNS LTD

 http://www.flash.co.ukPortable Easy-ICE - The world's fastest, Lowest Cost, Real-time Emulator + Starter kits with unique ICE MODE for ATMEL AT89S/C, AVRmega103/603, MCS51, Dallas 80C320, Hitachi H8 + ISP programmers + 'C' Compilers

LOW POWER RADIO SOLUTIONS

http://www.lprs.co.uk
LPRS markets low power radio transmitters, receivers and transceiver modules manufactured by ourselves, Radiometrix, Circuit Designs, RDT and Micrel. Applications for telemetry, video and remote control.

MICRO CALL

http://www.microcall.memec.com
Micro Call is a distributor'for the following: Galileo, IDT (Integrated Device Technology).

MITRONICS

http://www.mitronics.com
Visit Mitronics, the leading stocking distributor of obsolete and difficult to find Motorola parts. We carry electronic components, integrated circuits, and semiconductors, plus much more.

NEWNES - BOOKS FOR THE

 ELECTRONICS WORLD http://www.newnespress.comOver 300 books and information packages for those working with electronics and engineering technology. Visit our site for a free catalogue and downloads.

NATIONAL INSTRUMENTS

http://natinst.com.uk

OMEG POTENTIOMETERS

http://www.omeg.co.uk
Omeg 16 mm and 20 mm potentiometers and switched potentiometers with conductive polymer tracks. Web site has full product details, latest news, company contacts, stockists and distributors.

PCA:PHILIP COLLINS \& ASSOCIATES PTY. LTD

http://www.pca.cc
PCA manufactures Radphone 2000DX remote control systems for shortwave broadcasters and government agencies wanting worldwide control of communications receivers and transceivers from any tone phone.

RALFE ELECTRONICS

professional test \& measurement

www.ralfe-electronics.co.uk

SWIFT EUROTECH

http://www.swiftdesigns.co.uk
EDWin NC - Professional EDA software at 90% dlscount! Integrated schematics, PCB layout and simulation. Plus CAMtastic! CAM software and netlist translators for most EDA systems.

SUPRA AUDIO CABLES

 http://www.jenving.seJenving Technology $A B$ is the manufacturer of Supra Audio Cables. OEM productions are also accepted.

VANN DRAPER

 ELECTRONICS LTD http://www.vanndraper.co.ukTest equipment from Grundig. Kenwood, Hitachi, Fluke, Avo, Glassman, Advance in a comprehensive site including oscilloscopes, multimeters, power supplies, generators, counters, soldering, digital tv etc.

vUTRAX PCB DESIGN

SOFTWARE
http://www.vutrax.co.uk
VUTRAX electronic schematic and pcb design system for Windows 95,98 and NT. Limited Capacity FREE version downloads available, all upgradeable to various customised levels.

WOOD \& DOUGLAS http://www.woodanddouglas.co.uk
Wood \& Douglas Ltd is the leading independent British designer and manufacturer of quality radio products for International telemetry, data, voice \& video wireless communications.

ZETEX PLC

http://www.zetex.com
Data sheets, Application notes, Spice models, Distributor details and more are all available on the Zetex website. CDROM version available free by request to infodirect@zetex.com

ELECTRONICSAPPOINTMENTS

Power Supply/ANALOGUE

 W.London DC-DC, Magentics to 630 K Kent SMPS Designer $620-30 \mathrm{~K}$ Sussex Power/Anatogue, MedicalW.Sussex Power Elec, Servo, amps Power Elec, Servo, amps

Essex
Switch Mode P.S.U's witch to $£ 28 \mathrm{~K}$
Midlands Switch Mode P.S.U's E34K
Herts PWM, PS.U's \quad 18.30K Hants Power Elec, Motors E32K Staffs

Power Elec, GBT, GTO to 630 K
Herts/Cambs Power Elec, P.S.U, Orives c18-35K

ANAL./DIG/FPGA |ASIC
 South Wales
 C18-30K

New positions for 5 Engineers with experience of Analogue/Digital or FPGA VHOLIASIC design experience to work new major project developing Secure Networking systems.
The first position will involve the design of electronle hardware including: digital/ microprocessor, analogue, test equipment and EMC, and the second position will have responsibility for the design of devices ASIC's and FPGA's using VHOL design techniques.
If your experience covers (1) Analogue Digital, Microprocessor, or (2) FPGA VHDL ASIC and you'd be interested in working in S.Wales please get In rouch.

Ref: AL592EWd

ASIC/FPGA/ VHDL

M25/M3 Digital/ASIC Team Ldr
624-30K

Ref: ALs77EWd

Medical

ELECTRONICS
28-38K
28-38K L. Verilog, ASIC $\mathbf{E 2 5}-35 \mathrm{~K}$ ASIC, FPGA, Comms, Broad 23-33K -30K

-

 development andRECRUITMENT Tel: 01442212555 Fax: 01442231555

W.Sussex

Senior design role with a British
company who are at the forefront of
medical electronics in the field of high dose rate brachy therapy used for internal radiation therapy treatment. Expansion within thei R\&D team has created a position for a Hardware Engineer to design circuit boards using digital/microprocessor! programmable logic and analogue electronics together with some software in C. A good base in digital/analogue electronics is essential. plus experience of software in C/Windows would be useful, Interested?
c dlgital
systen

systems.

Experience of: ATM, LAN, 9906, XILINX FPGA's, VHOL or PCI bus would be useful but not essential. Ref: AL584EWd Firmware

Engineers

cez30K + Pension \& Bens New position for a Hardware Engineer $t 0$ join one of the world leaders in
the design and manufacture of PC's and PC peripherals. You will joln à team and be responsible for the

to $\mathrm{c} £ 30 \mathrm{~K}$

DATACOMMS Hardware

N... Sunaer

E23-28K
This is a new position with a company who design/manufacture a successful range of Datacommunications products - ATM, LaN/WAN and who are looking to recruit, a Senior Hardware Engineer to joint their expanding R\&D team
You will be responsible for product development from initial design through to tomer support using VHOL high speed ritish 13 - 5
 support of firmware slos for motherl daughter and control boards eneration systems. Your experience should include 2 years plus of Intel/Motorola processors, PCBIOS, C, and a good background in hardware electronics.

Rel: AL58IEWd

Contact - Andrew Langridge on 01442403513

Hardware \& Music

CAMBS

Do you have an interest in Music, and would you like to progress your career designing digital electronic systems for the music business?
We currently have three companies who have positions for qualified Hardware Engineers to work on new products for the professional recording and sound mixing/distribution market.
Ideally you will have a $8 \mathrm{SC} / \mathrm{HND} / \mathrm{HNC}$ qualification with experlence of digital electronics/microprocessors, programmable logic devices (PLD \& FPGA, EPLD etc) and have a keen interest in Music, either from work or social activities. Interested?

Ref: AL586EWC

Digital Designers

IsLE OF Wight CE25K New posltions for Digital Hardware Engineer to join one of Britain's expanding companies who are a major force in the defence/ avionics industry.
Their Radar design site on the isle of Wight s looking for a couple of Hardware Engineers to work on control/signa processing systems which form the basis of the central processing unit for their next generation system.
We are looking for Engineers with a good base digital hardware (primarily discrete devices) and high speed synchronous design, experience of control, OSP, VHDL or FPGA's would be very useful.
Interested? Ref: AL589EWd

RF/Gomins

SENIOR/PRINCIPAL RF Engineers

Herts

UPTO 445 K
This company offer varled and interesting design positions of a senior nature in the Test and Measurement industry.
You will be responsible for RF and analogue circult design up to 6 GHz : wideband RF amplifiers, control components, up/down converters, modulators demodulators and synthesls (PLLL).
Degree qualified with a minimum of 3 years experience in any of the following environments - basestations, satellite communications, microwave or TV/ broadcast. Able to use simulation tools eg. HPEesoff, Libra etc.

Ref: Al43EWd98

RF Design

Engineers $\times 3$

Wilts

\&20-40K
A company who manufacture and develop wireless products, software and support for the service providers within the mobile communications industry require Senior/Principal RF Design Engineers. You will be responsible for control loop. poweramplifiers, receiver and transmitter design and will therefore require knowledge of GSM systems architectures. With a flexible approach to problem solving you should be able to work in cross-functional teams.
MSC/BSc in Electronics or Communications with high frequency design knowledge (GSM/CDMA frequencies/rechnology) and RF simulation experience ($\mathrm{HP} / \mathrm{EESOF}$ SPICE etc). Ref: Aj82EWd98

RF/Analogue Design
E.Anglia

620-27K
A world leader in the supply of advanced electronic systems, is seeking an RFI Analogue Design Engineer to carry out the design and development of radio based Mllitary Electronies equipment.
You will be involved from initial design studies and concepts through to manufacture and product support.
Working as part of a team. you will require a minimum of an HND or equivalent and 3 years practical design/ development experience in transmitters, receivers etc. You should have a proven ability with RF and Analogue circuitry up to at least 400 MHz Ref: AJI 35 EWd98

Microwave!

Antenna
Design

Essex CNEG A company who design

 and manufacturem a rine
communications Engineer with Web: microwave andantenna skills in the 3 to 10 GHz range.
Responsible for the development of antennas, waveguide systems, coaxial components, radar systems and measurements.
You will need to be Degree qualified in a relevant discipline with 5 years experience in a microwave field. Ret: AJ/23EWd98

Systems Engineers

 - Satellite
M4 CORRIDOR UPTO $\mathbf{6 3 5} \mathrm{K}$

 A major player in the Defence Sector, supplying advanced electronic warfare systems, military radars and command information systems for land, sea and air applications require Systems Engineers. Working in the Satellite Communications Department, currently on a project to develop and manufacture a man-portable system.Degree qualified in a relative discipline with In-depth knowledge of datacomms and systems engineering as well as digital hardware design preferably from a commercial manufacturing environment.

Ref: A/97EWd98
RF Test

Engineer

E.Anglia

 614-20K A company with over 20 years experience in the design and manufacture of Isolators and circulators, circulators,amplifiers and subsystems have an immediate vacancy for an
RF Test Engineer RF will be responsiber finding on amplifiers, power splitters and other products for use in cellular base stations. Two years experience in an RF or MW test role is required coupled with the ability to faultfind to component level and carry out circuit tuning/testing. Ref: \mathbf{A} / $34 E W \mathrm{~d} 98$

Contact - Alison Jones on 01442403522

RF Design x4 NORTH CE20-30K A company involved in the research, development and manufacturling of microwave filters and subsystems for both defence and civil applications is experiencing continuous growth and therefore requires four RF Design Engineers to work on their high technology products. You will need to be degree qualfied with a You will need to be degree qualfied with a mivimum of 2 years experience in either a of components (filters and filter modules upto 45 GHz) or sub-systems (active microwave for Electronic Warfare and Radar applications).
Relocation is offered with this company who also believe in encouraging their Engineers to continue part-time higher education. Previous applicants with the above experience need to re-apply.

Ref: AJI37EWd98

STANDARDS Engineer UMTS

BERKSHIRE $\mathbf{6 2 0 - 3 5 K}$

 A company involved in the research and development of the '3rd generation network' - UMTS are seeking a Standards Engineer. You will be responsible for developing network architectures for UMTS, representing the company at standards meetings and preparing standards meetings and preparing docuDegree qualified with 2 years standards experience, good communication skills and ability to meet deadlines under pressure with a good knowledge of tele/dat comms. Ref: AJi4iEWdes

Radio Communications

RELIABILITY ENGINEER ~ Bristol

We're looking for an individual to shake, rattle and roll this company's wireless products ready for the demanding environments they'll be working in. The successful applicant will be the 'first in' in this type of role and our client seeks someone to bring in the necessary expertise. A background in radio technology would be a distinct advantage. Quote WW9811-53.
Contact Mark Wheeler for more information.

PRODUCTION ENGINEER ~ Bristol to E30k

A sound knowledge of small to medium volume production and manufacturing techniques is required here. Experience of liaising with small multi-disciplined $R+D$ teams and being able to pro-actively work with outside contractors is essential. A general electronics background is required, ideally with radio communications experience. Quote WW9811-54
Contact Mark Wheeler for more information.

RF IC DESIGN ENGINEER ~ Bristol to $£ 45 \mathrm{k}$

Make a mark for yourself and be the first IC designer in this established and fast growing Radio Systems Design House. You'll be working alongside a very fine multidisciplinary team of Engineers involved in some of the most stimulating projects around. Competent hands on skills are required including experience up to 3 GHz together with some good ideas. Quote WW9712-17.
Contact Mark Wheeler for more information.

RF PA DESIGN EXPERTS ~ Bristol

to $£ 40 \mathrm{k}$
Involved in projects that seem to go on forever? Stuck in a corner working on the bit your boss says you have to do? Yes? Then your salvation is at hand with this fast growing Wireless Communications company where your talents can be truly realised. Accomplished design skills up to 3.5 GHz in high power PA's ideal, receiver and synthesisers development experience very useful. Quote WW9707-56.
∇ Contact Mark Wheeler for more information.

BENCH TECHNICIANS ~ Notts EIOk - £22k

Component level expertise? Board level diagnosis? Shiny new technical qualification? This leading cellular maintenance organisation wants you!! You don't have to have communications product experience (although it would help), but you'll be keen to keep abreast of the latest technology. All this in a positive, friendly environment too! Quote WW9703-37.
Contact Mark Wheeler for more information.

DSP SOFTWARE ENGINEER ~ Bristol to £34k

For this one, you'll need to bring to the table at least a year's expertise in DSP Algorithm development, real time embedded software and an understanding of hardware design. You would be working on radio modems, linear amplifiers and many other interesting and challenging projects. A radio background is desirable but not essential. Call us today if it sounds like you. Quote WW9804-30.
∇ Contact Mark Wheeler for more information.

TEST ENGINEER ~ Surrey

 to $£ 25 \mathrm{k}$Working within a group responsible for the design of switching software for UMTS mobile comms infrastructure, you will be involved in setting up and undertaking complex test and systems integration processes. Ideally HNC qualified, it would be useful if you had experience in mobile, cellular, GSM, etc and an appreciation of switch signalling. Quote WW 9808-86. \checkmark Contact Malcolm Masters for more information.

RF STANDARDS ENGINEER ~ Surrey to £30k

Working within a new group, you will be ultimately responsible for setting in place procedures, policies and strategies to comply with international regulations for mobile comms equipment. You should be qualified to HND standard and have several years experience in a similar environment, ideally in 3rd generation mobile technology. Quote WW9808-82.
\square Contact Malcolm Masters for more information.

DIGITAL DESIGN ENGINEER ~ N. Wilts to $£ 35 k$

This role has been created to work within a small team on the latest digital communications systems. You will be involved in developing VHDL code for FPGA and ASICs for radio base stations. Significant experience in digital design, VHDL and FPGA is required along with strong academic achievements. Quote WW9811-34.
Contact Malcolm Masters for more information.

CELLULAR REPAIR SUPERVISOR ~ N.W Lon. to $£ 19 k$

Our client is a significant player in the sales and service of cellular products. They are actively looking for a supervisor from the cellular/comms/ PMR industry to repair and test a wide variety of cellular phones and run a start-up service dept. C\&G/HNC or relevant industrial experience required. Quote WW9811-46.
Contact Rich Wootten for more information.

SERVICE REPAIR TECHNICIANS ~ Surrey c.EI8k
This is a great opportunity for a keen RF technician to work in a lively atmosphere for a major manufacturer of PMR equipment. You'll need to be able to service and repair to component level and have relevant mobile comms involvement. Some Band 3 and installation experience would be desirable but is not essential. Quote WW9811-52.
∇ Contact Rich Wootten for more information.

PRODUCT SUPPORT ENGINEER ~ Berks to E25k

Our client is at the forefront of mobile telecoms, having released several of the most popular products on the market. Now it's your turn to get a slice of the action. You'll need to be able to support the introduction of complex mechanical parts into manufacture and maintain build standards in a demanding industry. HNC and electro-mech background required. Quote WW9811-09.
7 Contact Rich Wootten for more information.

ELECTRONICSAPPOINTMENTS

UK - Wide Vacancies

Graduate Electronics Engineer - Hampshire. Qualified to degree level, to work with the design team developing and proving new hardware and software for engine management and power conditioning systems. Training in various disciplines including embedded micro-controller design and power electronics systems to 250 kW . Salary negotiable.
Test \& Repair Engineer - Hampshire. Minimum of HNC with at least 2 years experience of fault diagnosis of analogue and digital circuits to component level. Computer literate, familiarity with Windows packages and able to work under pressure. Salary negotiable.
Project Manager - West Yorks. RF/Microwave. To ensure a development project is delivered in line with customer prototype commitments and that the product is developed to enable cost effective manufacture in volume. To £35k.
Test Design Engineer - Hampshire. Minimum of HND and knowledge of Visual Basic and/or C in a Windows environment to design, maintain and document test procedures, systems and software using Pcs and telecommunications test equipment. Familiarity with telecommunications protocols and report writing ability would be helpful.
Electronics Engineer - Cheshire. Embedded Controllers. To develop electromechanical devices for the test of PCBs using embedded controllers, analogue instrumentation and PC based software (VB, C++, Win NT/95). Must be able to fault find complex electronic systems with at least 2 years experience in a related field.
Software Development Engineer - Hampshire. For low power embedded systems using C and assembly languages. Knowledge of NEC 75X, 75XL 4 bit and 78K/0 8 bit microprocessors and digital or analogue hardware design ability would be useful. To £28k.
Senior RF Development Engineer - Hampshire. Development of low power RF circuitry up to 1Ghz and experience of LNA, oscillator, mixer and IF design. Experience of synthesiser design and low power transmitter work would also be useful. Supervision of junior engineers and project management is also envisaged as part of the role. Salary to £32k.
Electronics Design Engineer - Cheshire. Development of high frequency analogue circuits (to 500 Mhz) Degree qualified with a minimum of 2 years experience of analogue circuit design. Exposure to DFM issues and PCB design using Cadstar. £Neg.

For details of these and other electronics vacancies telephone Roy Parrick on
01703237200 or fax on 01703634207.

ADVERTISE FREE OF CHARGE
 Subscribers* to Electronics World can advertise their electronics and electrical equipment completely free of charge

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words. Remember to include your telephone number as one word.
You must include your latest mailing label with your form.

* This free offer applies to private subscribers only. Your ad will be placed in the first available issue. This offer applies to private sales of electrical and electronic equipment only.

Trade advertisers - call Joannah Cox on 0181-652 3620

All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondence with readers using this service, we also reserve the right to reject adverts which do not fulfil the terms of this offer.

Please send your completed forms to:

ELECTRONICSAPPOINTMENTS

Calling all Hadio Engineers

We have excellent opportunities within Research, Design and Test for Radio Engineers to work at all levels in the fields of:

Fixed Radio Access / WLL Military CIS PMA DECT TETRA
Satellite Communications Mobile Switching

Recruitment Connecting people with opportunities

We would be glad to focus our efforts on securing your next move.
Please call John Darby, ref 2984H. Tel: 01727818704 Fax: 01727838272 Email: johnd@jprecruit.com

JPH, The Courtyard, Alban Park, Hatitield Rd, St Albans, Herts AL4 DLA.

Cooke International

Unit Four, Fordingbridge Site, Barnham,
Bognor Regis, West Sussex, PO22 OHD, U.K. Tel: (+44)01243 545111/2 Fax: (+44)01243542457

Web: http://www.cooke-int.com E-mail: info@cooke-int.com

 catalogue available

OPERATING \& SERVICE MANUALS

Cooke International

Unit Four, Fordingbridge Site, Barnham,
Bognor Regis, West Sussex, PO22 OHD, U.K. Tel: (+44)01243545111/2 Fax: (+44)01243542457

Web: http://www.cooke-int.com E-mail: info@cooke-int.com

 catalogue available
ADVERTISERS' INDEX

ANCHOR SUPPLIES 106
ANTRIM TRANSFORMERS 144
BETA LAYOUT 119
CMS 150,155
CONFORD ELECTRONICS 131
CROWNHILL 119, 144
DATAMAN OBC
DISPLAY ELECTRONICS 123
EQUINOX TECHNOLOGY IBC
IOSIS 155
JOHNS RADIO 132
JPG ELECTRONICS 126
LABCENTER ELECTRONICS 92
LANGREX SUPPLIES 126
M \& B RADIO 154
MILFORD INSTRUMENTS 125
OLSON ELECTRONICS 137
PAUL O'NEILL DESIGNS 125
PICO 97
PS CONSULTANTS IFC
QUICKROUTE 97
RADIO TECH 144
RALFE ELECTRONICS 176
SEETRAX 126
SIGHTMAGIC 155
SMART COMMUNICATIONS 143
STEWART OF READING 105
SURREY ELECTRONICS 131
SWIFT EUROTECH 151
TELFORD ELECTRONICS 125
TELNET. 90
THOSE ENGINEERS 136
TIE PIE 95
VANN DRAPER 168

ARIICLES WANTED

TOP PRICES PAID

For all your valves,
tubes, semi conductors and IC's.
Langrex Supplies Limited
1 Mayo Road, Croydon Surrey CRO 2QP TEL: 01816841166 FAX: 01816843056

VALVES WANTED

Courteous, Professional Service
Ask for a free copy of our wanted list.
BILLINGTON EXPORT LTD Billingshurst, Sussex
Tel: 01403784961 Fax: 01403783519 Email:
billingtonexportld@btinternet.com VISITORS PLEASE PHONE FOR APPOINTMENT

PLEASE MENTION

ELECTRONICS WORLD
WHEN
REPLYING TO ADVERTISEMENTS

ADVERTISERS
PLEASE NOTE FOR

ALL YOUR

ENQUIRIES ON ADVERTISING RATES

PLEASE CONTACT JOANNAH COX ON
TEL: 01816523620
FAX: 01816528938

WANTED

Valves \& Semiconductors All types e.g. Discrete \& IC's Good Rates Paid CHELMER VALVE CO. 130 New London Road Chelmsford, Essex Tel: 01245265865 Fax: 01245490064
engineering experience for work on ngineering experience for work
analytical instruments, vacuum coating and electronic systems. Send CV to: Send CV to:
Optiglass Ltd, 52/54 Fowler Road Hainault, Essex IG6 3UT

Established Optical Component Engineering Company requires

INSTRUMENT

TECHNICIAN
with broad mechanical/electronic

ARTICLES FOR SALE

Rack Enclosures

New and Used most sizes 16 U to 50 U side and rear panels mains distribution 19" Panel mounts optima eurocraft. Prices from $£ 45$ tvat

86 Bishopsgate Street Leeds LS1 4BB Tel. 01132702114 Fax. 01132426881

SHORTWAVE BROADCASTERS monitor reception from within your target area
GOVERNMENT AGENCIES Control radio receivers'transceivers worldwide
Radphone 2000DX from www.pca.cc
Intel+61-2-94168799
Fax+61-2-94168761

POWER SUPPLY DESIGN

Switched Mode PSU
Power Factor Correction Inverter
Tel/Fax: 01243842520
e-mail: eugen_kus@cix.co.uk Lomond Electronic Services

RF DESIGN SERVICES

All aspects of RF hardware development considered from concept to production.

WATERBEACH ELECTRONICS

TEL: 01223862550
FAX: 01223440853
RHODE \& SCHWARZ. Anritsu, Racal, WJ, Dynamic Sciences, Plessey Rx's. HP, Advantest Spectrum Analysers. WTB: MW or SW Broadcast Tx's. Tel/Fax/Email for list: 01908 365726 - BigMobile@g4zow.freeserve.co.uk

TEKTRONICS 145/148, SPG test, Waveform generator, all manuals, need space hence bargain price $£ 1.200$. Telephone 01383419282.

PHILIPS 5390 S

1GHz RF SYNTHESIZER

WITH SERVICE MANUAL ع1099 + VAT
100 KHz to $1020 \mathrm{MHz}-127 \mathrm{dBm}$ to 13 dBm Unique video modulation + sound at $4.5 / 5.5 / 6.0 \mathrm{MHz}$, in or ext AN (to 1.02 GHz) or FM (10340 MHz)
RF sweep - 8 settings memories - IEEE intertace Anode Laboratories Ltd Tel: 01353649412 Fax: 01353648128

APPOINTMENTS

ELECTRONICS, COMPUTING AND

 Aardman MOTION CONTROL ENGINEER
Bristol

Salary - Negotiable A world leader in 3D model ani
their busy team based in Bristol.
Applicants must have a thorough knowledge of electronics - preferably applied to film, video and motion control equipment. Candidates should also possess design and small scale manufacturing experience and ideally, will have experience in processing microprocessors.
Good problem solving skills are essential. Candidates should also be comfortable working on their own initiative in a pressurised environment and to strict deadlines. The post will be based in Bristol, although occasional travel may be necessary. If you would like to be considered for this post, please send your cv, with covering letter, to The Personnel Department, Aardman Animations, Gas Ferry Road, Bristoll BS1 GUN.
Closing date for applications - Friday 15 January 1999.

ADVANTEST TR9407 fft spectrum analyser to $1 \mathrm{MHz} \quad £ 2000$ ANRITSU ME518A pcm error-rate test set $1 \mathrm{kbit} / \mathrm{sec} \cdot 150$ Mbit sec sensor $10.75 \cdot 1$ Bu M ensor $(0.75 \cdot 1.8 \mathrm{Bu}$) NAITSU M N95D fibre-optic attenuator 0.65 db 3RADLEY 192 oscilloscope calibrator CHASE LFR1000 interference measuring receiver $9 \mathrm{kHz}-150 \mathrm{kHz}$ DRANETZ 626 -PA-6006 ac neutral monitor, c/w TR2018 clamp EIP 575 source locking frequency counter 18GHz GPIB option LANN MICROWAVE 27072 frequency meter $73-113 \mathrm{GHz}$ LANN precision rotary wavequide attenuator 201100 -60,
 IFR A-7550 1GHz portable spectrum analyser with receiver options $£ 750$ M/FM/SSB IFR A. 7550 (22500 PHILPS PM5 580 I 5 modulator (PAL IVPM55B2 UHF.convartor PHILIPS PM5580 I.F modulator (PAL I) 'PTC'* ACAL-DANA 1995 option 01 200MHz unive RHODE \& SCHWARZ UDS 5, 5.5-digit multimeter IEEE RHODE \& SCHWARZ URE rms digital voltmeter IEEE

MARCONI 2955 MOBILE RADIO TEST SETS SPECIAL PURCHASE SO WE BELIEVE WE'RE THE CHEAPEST PRICE ANYWHERE, JUST f1500 with IEEE interface, and 2960 cellular adaptor included!!

36 Eastcote Lane. South Harrow . Middx HA2 8DB . England TEL $(+44)$ 0181-422 3593. FAX $(+44) 0181-4234009$

EST EST
45
YRS

DISTRIBUZIONE E ASSISTENZA, ITALY: TLC RADIO, ROMA (06) 87190254

$8713 \mathrm{C} 300 \mathrm{kHz} \cdot 3 \mathrm{GHz}$ vector network analyser 3585 A 40 MHz spectrum analyser 1640B serial data generator 10715 A digital interferometer $33320 \mathrm{G} / 33322 \mathrm{G}$ programmable attenuators 4 GHz
$£ 250$
$£ 150$ 51500
5750 $£ 250$
$£ 250$

SCHLUMBERGER 12544 -channel frequency response analyser $£ \mathbf{£ 3 5 0 0}$ SCHLUMBERGER 4922 radio code analyser SCHLUMBERGER SRTG-GA62 selective call test set SYSTRON DONNER 6041 A 100 MHz 8 -digit frequency counter IEEE E100 TEKTRONIX 2432A 100MHz 250M Sa/sec digital storage oscilloscope

TEKTRONIX 1481 R video waveform monitor PAL version TAU-TRON MN $302 / \mathrm{MB} 302 \mathrm{~N}$ bert transmitter/receiver WANDEL \& GOLTEMANN PCM4 Est sets. Call for detais \& 250 WANDEL \& GOLTERMANN PCM4 pcm measuring set version 985/01, LEEE opt
WANDEL \& ©OL~ £10x
WANDEL EOLTRMANN PF2 error ratio measuring set £400
WNEL \& GOLTERMANN DLM-20 data circuit test se:
WANDEL \& GOLTERMANN SPM31 level meter
WANDEL \& GOLTERMANN WM 30 level tracer
WANDEL \& GOLTERMANN PFA bit error reate tester (BN911/01. Opt 00.01)
WAVETEK 23 synthesized function generator $0.01 \mathrm{~Hz}-12 \mathrm{MHz}$ WAVETEK 1080 swésp generator $1 \cdot 1000 \mathrm{MHz}$ WAYNE KERR 322020 A bias unit for 3245 inductance analyse WAYNE KERR SR26B source and detector WILTRON 6637 sweeper generator 2 -18GHz (option 03) WILTRON 6637 sweeper generator $2 \cdot 18 \mathrm{GHz}$ (option 03) $£ 2000$ WILTRON 6659A sweep generator $10 \mathrm{MHz}-26.5 \mathrm{GHz}$ (options $01 / 10 / 13$)
$\begin{array}{ll}\text { WILTRON 6640B sweep generator } 26.5-40 \mathrm{GHz} \text { foption 03\} } & \left.\begin{array}{ll}\text { 03 } & \\ £ 3500 \\ \hline\end{array}\right)\end{array}$
MLTAN
with driver 11713 A As above but 18 GHz ser 3552A transmission test set 35561A dynamics signal analyser 3586A selective level meter 37717 B commurications perfor

4948A (/04) in-service TIM set

 4093 B protocol tester base (PT300) 436A digital power meter$5343 \mathrm{~A} / 5344 \mathrm{~A} 26.5 \mathrm{GHz}$ frequency counter/synchronizer 54100 A 1 GHz digitizing o'scope, $40 \mathrm{MSa} / \mathrm{s}$ c/w Hi-Z probes 8018A serial data generator 53348 frequency counter, option 060 83411C lightwave receiver $100 / 1550 \mathrm{~nm}$ 8344 CC lightwave detector $20 \mathrm{GHz} 1300 \mathrm{~nm} / 1550 \mathrm{~nm}$ 8350B sweep generator mainframe 83572 B sweeper plug-in unit (for 8350 B) $26.5-40 \mathrm{GHz}$ 8924C CDMA mobie station test set 85618 portable spectrum analyser 6.56 Hz 8590 A 1.8 GHz spectrum analyser 86222A $10 \mathrm{MHz}-2.4 \mathrm{GHz}$ sweep generator plug-in unit 86290 B 2 -18GHz sweep generator plug-in unit 86848 signal generator $5.4 \mathrm{GHz} \cdot 12.5 \mathrm{GHz}$ 8903 B audio analyser $£ 2500$ - - specify your own filter requirement add $£ 200$ for each filter J2215A FDOI portable multimode test set

All equipment sold calibration-checked by independent laboratories
and carrys un-conditional refund and 90-day guarantees.
FOR EXCLUSIVE ACCESS TO OUR COMPLETE STOCK INVENTORY AND SPECIAL BARGAIN DISPOSAL DEALS PLEASE CHECK OUR WEBSITE www.ralfe-electronics.co.uk

ISO9002 ACCREDITED STOCKIST MEASUREMENT \& TEST EQUIPMENT

Contact Joannah Cox on ELECTRONICUPDATE 01816523620

A regular advertising feature enabling readers to obtain more information on companies' products or services.

1999 Measurement and Automation Catalogue
The National Instruments 1999 catalogue features hundreds of software and hardware products for your computer-based measurement and automation applications. New products include additions to our modular Compact PCI (PXI) plafform, new compurer-based instruments, and the latest versions of our instrumentation and automation soffware such as LabVIEW. Cail to reserve your copy of our FREE 1999 Catalogue!

National Instruments
Phone: 01635523545
Fax: 01635523154
e-mall: info.uk@natinst.com
Website: www.natinst.com/uk

CIRCLE NO. 137 ON REPLY CARD

LCR \& IMPEDANCE METERS

The 3522 LCR HiTESTER and 3531 Z HiTESTER togeher provide a wide range of test frequencies. The 3522 offers DC and a range from 1 mHz to 100 kHz and the 3531 covers the range from 42 Hz to 5 MHz . Test conditions can now come closer to al component's operating conditions. The high basic accuracy of $\pm 0.08 \%$. combined with ease of use and low price give these impedance meters charateristics.

π

TELONIC INSTRUMENTS LTD
Tel: 01189786911
Fax: 01189792338

CABLING SOLUTIONS FROM THE LCD EXPERTS

 Trident Microsystems' new LVDS system, provides the cabling solution to overcome all the problems associated with driving Digital TFT over long distances.

Trident's new LVDS system now allows for digital drive of up to 20 metres in length.

For further details call
Trident today
Tel: 01737780790
Fax: 01737771908

CIRCLE NO. 138 ON REPLY CARD

The latest ICP catalogue featuring a comprehensive range of CPU boards and enclosures, complete with price list, is now available from Wordsworth.
Further details from:
Wordsworth
Tel: 01732861000

PROFESSIONAL AVRTM MICROCONTROLLER STARTER SYSTEM

System Contents

- Combined Serial \& Parallel Device Programmer
- Evaluation module for $8,20 \& 40$-pin DIL devices
- In-System Programming (ISP) Cable
- Integrated Windows ${ }^{T M}$ Development Environment
- AVRTM Basic LITE (1 k bytes code) Compiler
- AVR ${ }^{\text {TM }}$ Assembler
- Mains Power Supply Adaptor
- PC Serial Cable (Connects to PC COM Port)
- Atmel CD-ROM Datbook
- One AT90S1200 DIL Microcontroller

WRITE IN BASIC RUN IN A FLASN

- Compiled BASIC generates tight AVR ${ }^{\text {TM }}$ machine code - Not a Run-Time Interpreter NO code overhead!
- Target speeds comparable with assembler
- Breaks the cost barrier for small projects
- Ideal for educational, hobbyist and professional use

Order Code: AVR2-ST

Micro-ISP

Serial Programming System for the Atmel AVRTM \& 895 microcontroller families

Typical In-System Programming (ISP) Scenario shown below:
Supports: Atmel 89S, 89LS, 90S(AVR)

The embedded Setutions Compiany 3 Atlas House St Georges Square Bolton BL1 2 HB England पता चाता \because रुल

For sales tel: $\mathbf{+ 4 4}$ (0) 1204529000 , fax: $\mathbf{+ 4 4}$ (0) 1204 535355, e-mail: sales@equinox-tech.com, Web Site: www.equinoxtech.com

 +4419256262626 , Farnell +441132631311 Rapid Electronics +4411206751166 Quarndon Electronics +441332332651 USA Hitools Inc +14082989077 Newark Electronics +18007181997 , Peachtree Technology +17708884002 Phoneer Standard +18888323976

Equinox reserves the right to change prices \& specifications of any of the above products without prior notice. E\&OE. All prices are exclusive of VAT \& carriage. AVRTm is a trademark of the Atmel Corporation

[^0]: E\&OE WINRADIO and Visitune are trademarks of WiNRADIO Communications

[^1]: *This particular ca has recently become obsolete. The new cd allows you to design an expanded range of parts, but requires you to register for a six-month licence. Use is still completely free though. Electronics World is due to obtain around 30 of the original life-long licence Lattice cds for 1016 and 2023 parts only. These will distributed free with requests for the author's sottware until they run out. Details later in the article. Ed.

[^2]: Milford Instruments 01977683665 www.milinst.demon.co.uk

[^3]: SMARTCARDS Available from Stock:
 GemPlus, Atmel, Xicor, Siemans, SGS Crownhill and more... SLE4442, 4432, 4418, 4428, 4404. ATB8SCxxx, AT24c01-16. GPM103, GFM1K, 2K, 4K, GPM416 Phone Cards, Loyally Cards
 THE SMARTEST SOLUTION

 Crownhill can offer a broad range of smart cards from just $£ 1.00$ and Smart Card sockets for Just $£ 1.45$ ea. PIC Microchip based Smart Cards now avallable from just £3.50 ea......DEVEL OP YOUR OWN SMART CARDI
 Crownhill can supply over 150 different types of IC from more than 12 sllicon suppliers, which can all be Incorporated into smart card format. Some cards are avallable from stock, most are manufactured to the customers' specification.

[^4]: Note that stocks of some of the above issues are low and will soon sell out. Please allow 21 days for delivery

[^5]: Donald F McLean BSc(Hons) CEng FIEE

