ELECTRONICS

WORLD
INCORPORATING WIRELESS WORLD

Austria Asch. 65.00 Denmark DKr. 66.00 Germany DM 15.00 Greece Dra. 1000.00

G秫 W/RED Iwo new tests for speaker cables

Ultrasound

 defect detector
Magnetic sensor circuits

Using the PC's timer

Easy rectifier design steps

RF oscillators from AC gates

Thoughts on demodulation

Dual PCB CAD reviews: Quickroute and Propak

Small

PRobLEMS? Big

 No TimePIC based TOOLS to help you realise your project: from single applications to full scale production

BASIC STAMPS

PIC based BASIC Stamps are perfect for one-off and low volume applications.
Their easy to learn but powerful BASIC syntax (with familiar instructions such as GOTO, FOR ... NEXT, and IF ...THEN as well as instructions for serial I/O, pulse measurement, button debounce, DTMF, X-10 etc) will get your application up and running in hours. Once programmed, the Stamp runs independantly of your PC and programs are stored in non-volatile EEPROM so they can be changed at will. Detailed manuals cover many commonly needed routines and the Stamp is well supported by a growing list of custom application kits to cut development time even further. Available in two formats:

Stamp 1 (BSI-IC) 8 I/O Lines up to 80 program lines Comms to 2400 baud $35 \times 10 \mathrm{~mm}$ size £29 single price

Application note 1: Using the BASIC Stamp as a simple interface terminal Typical Application
 16 I/O Lines up to 500 program lines Comms to 50 kbaud 24pin DIP package £49 single price

BASIC Stamp Development Kits including PC software, manuals, 24+application notes, downloader cables, Stamp (BS1-IC or BS2-IC) and corresponding Project Board - £99 / £119

PIC16Cxx DEVELOPMENT TOOLS

For medium to large volumes and high speed requirements, the popular range of PICs is hard to beat. We offer an extensive range of programmers, emulators and associated hardware to support the following PICs: 52545556575862062162261626364657172737484

PIC16Cxx Programmer

Also stocked

* ZIF sockets
* SOIC/SSOP/PLCC adapters
* Prototyping boards
* Compilers/Simulator

Milford Instruments

Milford House, 120 High Street,
SOUTH MILFORD LS25 5AQ
01977683665 Fax 01977681465

In Circuit Emulators

*True hardware emulation of program memory, registers and I/O

* Unlimited breakpoints.
* Single stepping

* Software-programmable oscillator
* Windows Environment
* Runs from 32 Khz to 10 Mhz ('xx) and 20Mhz ('5x)
* Source level debugging for PASM(X), MPASM and MPC
* Optional trace facility

Please call or fax to receive our catalogue and price list.

All prices exclude VAT and E 3 shipping.
BASIC Stamp et the Parallax logo are

PAFALAX
3805 Atherton Road, $\neq 102$
Rocklin, CA 95765 USA
916-624-8333, Fax 916-624-8303

Contents

918 THE ROUTE TO PCB CAD

Rod Cooper investigates Quickroute and Propak in this fourth article examining lowcost pcb cad packages.

925 SPEAKER CABLES

Cyril Bateman has found a new loudspeaker cable measurement technique that could be just what the subjectivists are looking for.

930 SPEAKER CABLES PULSE TESTED

Eric Foster's measurement technique shows clear cable performance differences, but at frequencies too high to hear.

937 CABLE SCIENCE?

Signals passing through a conductor are affected by a complex combination of field and semiconductor effects, says Geoff Williams.

941 HANDS -ON INTERNET

This month, net explorer Cyril Bateman has found an electronics manufacturers directory and yet more useful design software.

947 EVENT TIMING VIA THE PC

Alan Bradley explains how to program the timer chip in the pc for precise event timing.

952 FINDING FAULTS WITH SOUND

Component damage caused by the thermal stresses occurring during pcb assembly are notoriously difficult to detect. Steve Martell describes a new detection method.

956 WHEN IS A GATE NOT A GATE?

74 AC gates make handy and low cost rf oscillators - Ian Forster shows a variety.

959 NEW THOUGHTS ON DEMODULATION

Edward Forster examines the amplitudelocked loop and its use as a demodulator.

969 APPLYING MAGNETO RESISTANCE

Applications for magneto-resistive sensors range from detecting Earth's magnetic field to protecting igbts.

980 DESIGNING RELIABLE RECTIFIERS

Half-wave rectifiers are simple, but they still need to be designed properly.

907 COMMENT
Market forces rule?

908 NEWS

Video camera chip under \$20, Mixedsignal fpga, More efficient igbts.

912 RESEARCH NOTES

Computers detect facial expressions, Higher chip performance from flat silicon, Glass curtains, Water hammer.

962 CIRCUIT IDEAS

200 MHz spectrum analyser, Video switch for 1 km links, Linear scr trigger, PC-based battery meter.

975 NEW PRODUCTS

Pick of the month - classified for convenience.

986 LETTERS

Motional feedback headphones, antigravity, Marconi, Power amp design.

Special offer extended
This 10 Hz to 1 MHz audio signal generator is available for a second month to Electronics World readers at 20\% discount - page 935

Win a CD-ROM writing and development package - see page 946.

Exclusive offer
Information on over 70,000 products available exclusively to Electronics World readers for just £2.50-page 946.

Want an easy to implement, low-cost 200 MHz spectrum analyser that performs to -75 dB ? Turn to page 962.

JANUARY ISSUE ON SALE 5 DECEMBER

Practical Wireless July 96

?

Quickroute 3.5 is a powerful, affordable and easy to use integrated schematic \& PCB design system for windows. With its multiple button bars, ' tool tips' , and ' parts bin' Quickroute helps you to get working quickly and efficiently

Quickroute is available in 4 different versions (see Table) all of which offer great value for money. Quickroute is available with multi-sheet schematic capture, 1-8 layer auto-routing, copper fill, engineering change, and a range of popular file import/export features allowing connection to simulators and other software packages (details on request). Prices are Personal ($£ 68$), Designer ($£ 149$), PRO ($£ 249$) and PRO+($£ 399$). Please add P\&P and V.A.T to total (see below").

THE 32 BIT AUTO-ROUTER WITH FLEXIBILITY \& POWER

SMARTRoute 1.0 is a new 32 bit auto-router that offers amazing flexibility \& power at an affordable price! Compatible with Windows $3.1 / 95 / \mathrm{NT}$, SMARTRoute gives you total control over routing strategies including layers used, track \& via sizes, design rules, etc.

SMARTRoute is completely compatible with Quickroute
3.5 and offers improved completion rates compared with Quickroute' s built in autorouter (ask for details) SMARTRoute is available for \& 149 plus P\&P and V.A.T. Special bundle pricing for Quickroute and SMARTRoute when purchased together.
906

VISUALISATION, DATA ANALYSIS \& APPLICATION DEVELOPMENT

MExpress is a powerful tool that can be used
interactively to load, analyse and display data - or by using its powerful BASIC-like scripting language - you can create technical applications with buttons, menu 2D \& 3D graphics, and powerful numerical methods (ask for details).

MExpress is available in Standard (£99) and Developers Editions (£299). Prices exclude P\&P and V.A.T (see below"). The Developers Edition includes tools for turning MExpress script files into $\mathrm{C}_{+}+$code. This can then be compiled by an MExpress compatible C++compiler into a stand alone executable!

- . ${ }^{m}$ "The Engineering \& Scientific Software People"

बuckpour Quickroute Systems Ltd., 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, U.K.

Tel/Fax 01614497101

WWW: www.quickroute.co.uk EMail: info@quicksys.demon.co.uk *Post \& Packing 55 (UK), £8 (Europe), £12 (Word). Please add V.A.T to total
Prices and specifications subject to change without notice. All trade marks are acknowledge \& respected. All products sold subject to our standard terms \& conditions favailable on reque

EDITOR

Martin Eccles
01816523128

CONSULTANTS

Jonathan Campbell
Philip Darrington
Frank Ogden

DESIGN

Alan Kerr
editorial
ADMINISTRATION
Jackie Lowe
0181-6523614

E-MAIL ORDERS

jackie.lowe@rbp.co.uk

ADVERTISEMENT

MANAGER
Richard Napier
0181-6523620
display sales executive
Malcolm Wells
0181-6523620

ADVERTISING

PRODUCTION
0181-6523620
PUBLISHER
Mick Elliott
EDITORIAL FAX
0181-6528956
CLASSIFIED FAX
0181-6528956
SUBSCRIPTION HOTLINE
01622778000
SUBSCRIPTION QUERIES
01444445566
FAX 01444445447
ISSN 0959-8332

NEWSAGENT ENQUIRIES
Contact MarketForce
(UK) Ltd.
Telephone:
0171-261 5555
Fax: 0171-2616106

Market forces rule?

Market forces are supreme. They always ensure the best price and the widest choice of goods and services. Or do they?
Look at the state of the consumer electronics industry. Desperately low margins and retail bankruptcies. High customer expectations of the products themselves, but an equal expectancy of low prices. Unfortunately, you get what you pay for, so generally the quality is questionable and customer satisfaction is low. Given this climate, what encourages manufacturers to invest in new ideas? Isn't it all too risky?
No, there are still great prizes to be won. Many homes do not have computers, mobile phones or satellite television. There is no need for any 'quantum-leap' products, like the change from mono to stereo radio or the move from black and white to colour television. Just bigger, faster and more features will do. The direction the market is taking seems to be quite predictable.
For example, the market driver in personal computers is speed and size of storage, but it is almost self sustaining in that software developers guzzle up extra features without much return in performance. Why does Windows 95 need over 50 megabytes of hard disk space? So pcs have to get bigger.
There are some interesting developments and huge investment in mobile communication with the advent of GSM and, shortly, hand portable satellite telephones linked to Iridium, Inmarsat or a Bill Gates variant. Maybe wrist-watch telephones are just around the comer; the pagers are already here. But no videophone yet. With its slow changing images, the worthy Amstrad attempt a couple of years ago wasn't quite what the market wanted.
The world of radio and television is less fast moving. Digital broadcasting is almost here together with wide screen tv and surround sound. The technology may be brilliant but will there be anything worth watching with the mushrooming number of mediocre tv channels?
Occasionally life is not always so predictable. Look at the Internet. No one designed it, and yet it is here. What use is it I hear you say? A massive library, a low cost communication medium, a

place for pastimes? Its applications will develop in time - did not the mobile phone develop from amateur radio?
Generally speaking market forces have delivered progress, using an incremental approach with minimal risk. However, the stage is set for another quantum leap, but one which market forces cannot deliver. It's not new but it needs saying again.
It is the provision of a terrestrial high bandwidth communications infrastructure - a proper fibre connection to businesses and homes provided that they want it. It has been talked about for a long time but the time is right to do it.
BT has offered install the infrastructure but is prevented by its license. Cost-conscious cable-lv companies are installing coaxial cable with separate lines for telephones, but no fibre optics. Surely, if you are going to dig up the road and disrupt the traffic why not do the job properly? The trouble is that the provision of this infrastructure benefits lots of different applications, but one application on its own cannot afford to do it. Hence there is a vacuum.
What can this connection give us? A real videophone service - hopefully compatible with the rest of the world and fully developed on-line services including banking and reference services. Or interactive leaming which could boost further education perhaps, and video-on-demand, which could turn broadcasting upside down. It could also offer telecommuting, giving a flexibility to working that companies will not countenance at the moment. And interactive television.
I think the latter is the most revolutionary application of all. It goes
> "Lef us harness these ideaslook forward and don't be afraid of the future."

further than tv talent shows or phoneins. Imagine watching a parliamentary debate on tv - presented with proper visual aids - and then having a chance to vote. To have your say on devolution, European integration, a single currency - or even the proposed local bypass scheme.
Of course there would be the same arguments against it as referendums; these are that the questions can be loaded, computer security, people voting against an unpopular govemment rather than addressing the question, people unqualified to vote, or just plain old apathy. But isn't it worth trying?

We have to cable up. The benefits are enormous and the opportunities for industry are massive. But then the investment will be massive and it won't happen unless the Government takes the lead and defines the playing field to enable and encourage things to happen, and perhaps throw in a little vision. We must think of it in terms of supplying water, electricity and gas to people's houses - is there any argument about this?
The moral of the tale is that we cannot rely on market forces to completely shape the future that we want. We could easily get stuck in a rut. The Government must take an active role. It should facilitate change, cajole and encourage, and above all think long term. But first, let's all get connected. Peter Marlow

Electronics World is published manthly. By post, current issue $£ 2.35$, back issues fif available $£ 2.50$. Orders, payments and general correspondence to L333, Electronics World, Quadrant House, The Quadrant, Suttan, Surrey SM2 SAS. Tlx: 892984 REED BP G. Cheques should be made payoble to Reed Business Publishing Group Newstrade: Distributed by Markefforce (UK) Lid, 247 Tottenham Court Road tondon WIP OAU 0171261.5108.
Subscriptions: Quadrant Subscription Services, Oakfield House Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 01444445566 . Please notify change of address. Subscription rates 1 year $£ 30$ UK 2 years $£ 48.003$ years $£ 70.00$. Surface mail 1 year $£ 35.002$ years $£ 56003$ years $£ 80.00$ Air mail Europe/Eu 1 year $£ 43.002$ years $£ 68.00$ ROW 1 year $£ 52.002$ years $£ 83.00$

[^0]
New mixed signal FPGA technology developed in UK

Mixed signal Asic design house, WML, is developing a field programmable system-on-a-chip (Fipsoc) that mixes analogue and digital blocks on the same device.
The analogue sections can be configured to implement filters, amplifiers, drivers and d-to-a/a-to-d converters. The logic section comprises some 10,000 gates configured with look-up tables and registers.
Device programming is controlled by an on-chip 8051 microprocessor. Two different configurations can be stored and swapped with a command to the processor.

The actual programs themselves are held within a separate e^{2} prom - much like a ram-based fpga.
A CAD system has been developed by WML to design circuits and program the devices. The design flow includes mixed signal design specification, simulation, place and route, programming and emulation.
The company claims the Fipsoc can be used for analogue systems in the same way that gpgas can be used in the digital world. Designs could be prototyped on a Fipsoc and migrated to a mixed-signal Asic for volume production.

First silicon of the Fipsoc is expected next month.

Rooms for rent... A full range of EMC test equipment including screened rooms is available on lease purchase ferms from Seaward Electronic. Both emissions and immunity testing kits can be hired for around $£ 100$ and $£ 150$ respectively. Equipment includes spectrum analysers, a harmonics meter, a mains interference simulator and a surge generator.

Design awareness initiative is extended

D
TI gives Microelectronics in Business design centres 18 months to become self-financing operations The government has extended its fpga and Asic awareness campaign in the hope that its university design centres can become self-financing within the next year and a half.
The original three-year MIB programme - which remains the government's most direct support for the microelectronics design sector was due to end this month when funding would have run out for the project's nine design and support centres.
The DTI will now spend $£ 800,000$ to keep the design centres running for a further 18 months, after which the DTI expects many of them to be self-financing design. and technology transfer centres.

Last year, existing commercial Asic design houses criticised the MIB programme for using DTI money to set up university design houses rather than supporting the existing industry. At the time the DTI denied this.

Now it seems the intention is to enable the university-based support centres to become self-financing businesses. Professor Sa 'ad Medhat, head of the school of electronics at Bournemouth University, where he runs an MIB support centre, believes it is likely that some MIB centres will be self-financing technology transfer and design businesses. "Eighteen months was the period we chose and I think it is possible, if we ramp up our technology transfer node activities," he said.
Richard Wilson, Electronics weekly

Imaging sensor for under \$20

A CMOS imaging sensor, priced at under $\$ 20$ in large quantities, has been introduced by US company Marshall Electronics.
Specifications of the monochrome camera-on-a-chip are near-identical to that of Vision's CMOS sensor. However, Roy Warrender, commercial director of the Edinburgh-based company, said: "This equates to an early generation of our product."

Leonard Rogers, vice-president of Marshall, responded:"Unlike Vision, we have something working, in production and being sold into products."

Marshall's camera, developed by Omnivision Technologies, features a 300×240 pixel array and EIA composite video output. The chip runs from a 9 V battery, consuming less than 100 mW .

A special feature allows for an unlimited number of cameras to be connected in series or parallel on a single coax cable. The multiple cameras can be mounted on buildings, for example, removing the need for expensive motors and lenses.

LOW COST DEVELOPMENT SYSTEM

ECAL comprises a versatile relocatable assembler with integral editor which runs about ten times faster than typical assemblers. Support includes 4, 8, 16 \& 32 bit processor families including 75X, 6502, 6809, 68HC05/11, 8031/51, H8-300, 78K, PICs, ST6 \& Z80/180, 68000, 80C196, H8500 \& Z280.

ECAL is either available for a single processor family or all families.

Single processor version $£ 295$ Multiprocessor version.... £395

Overseas distributors required
OEMA Ltd.,
7 \& 7A Brook Lane,
Warsash,
Southampton S031 9FH
Tel: 01489571300
Fax: 01489885853

The PC based ECAL hardware emulator is fully integrated with the assembler. Connection is made to the target through the eprom socket so a single pod can support all processors. Facilities include windows for the inspection or change of registers or memory. You can even watch your program executing at source level!
Download time is about two seconds!

Pods can be daisy-chained for 16/32 bit systems.

Applications include software development, hardware debug, test and, finally, teaching about microcontrollers in education.

ECAL emulator
£475
Quantity discoumts of up to 50\% make ECAL software ideal for education.

TiePie engineering (NL)
P.O. Box 290

Koperslagersstraat 37
8600 AG Sneek 8601 WL Sneek
The Netherlands
Tel: +31515415416 Fax: +31515 418819

TiePie engineering (UK)
28, Stephenson Road, Industrial Estate, St. Ives, Cambs, PE17 4WJ,
United Kingdom
Tel : +44 1480460028 Fax: +44 1480460340

Video codec based on fractals

|terated Systems, the Atlanta-based image compression company, has released a video codec based on fractal technology.
Called ClearVideo, the video decoder is available as shareware whereas the encoder is licensable and has already been taken up by Electric Switch, which offers a video compression service, and Pro-Sieben, for use on its Web site. ClearVideo is claimed to be capable of compressing all classes of content, from talking heads to full action video. Resulting data rates are dependent on the image resolution and the amount of image movement, but rates as low as $28.8 \mathrm{kbit} / \mathrm{s}$ are reported and QCIF $15 \mathrm{frame} / \mathrm{s}$ full action video can be squeezed into $120 \mathrm{kbit} / \mathrm{s}$.
"Compression is non-real time, whereas decompression can be performed in real time on a 486 PC running Windows 95 . WindowsNT and Macintosh versions are also available," said an Iterated spokeswoman.

New Asics carry 12 million gates

Heavy metal...
Cross sectional view of TI's $0.18 \mu \mathrm{~m}$ process showing
the six layers of metal. have designs being put through which are of about five million gates complexity," Mohan Maheswaran, TI's Asic manager in Dallas, told EW.

Currently the largest gate count gate arrays on offer in the market are the 3.5 million gate Asics offered by IBM Microelectronics.
"Our technology (called TImeline)
gives us 12 million gate count gate arrays with 70 per cent utilisation and 30 m gate count standard cells also with 70 per cent utilisation", said Maheswaran. Metal layers are currently up to five, with the capability to go to six.
"It allows people to start thinking in totally new ways", said Maheswaran, "you can actually implement a number of PC boards on one chip." Current applications are in high end telecommunications uses and in high end computing, says TI.
Gate delays on the TImeline technology are 19 ps ('the time it takes light to travel 6 mm ') and power dissipation is $0.008 \mathrm{~mW} / \mathrm{MHz} /$ gate.
In smaller densities some very high speed/low power circuits can be fabricated. "At 100,000 gates and 200 MHz frequency, circuits can be implemented which use $0.01 \mathrm{~mW} / \mathrm{MHz} /$ gate," said Maheswaran.
Cores include DSPs, ARM, ATM and MPEG. Memory cells are SRAM, ROM, flash and DRAM (up to 10 Mbit).

Pace looks at cable tv

Pace Micro Technology, the Yorkshire-based volume set-top box manufacturer, is currently in discussions with four UK cable operators for a deal over digital set-top boxes. In its plans to capture the digital cable market, Pace has been in discussion with a number of cable operators worldwide.
"The opportunity for us in cable in the next few years is probably larger that when we started in Direct-to-Home," said Steve Barnes, sales and
marketing director at Pace.
"Today Pace is talking to over 160 .different broadcasters and operators. But not all of these will come out in a service and not every one will grant Pace their contract."
Meanwhile, BSkyB is still evaluating the bids for the next generation of digital set-top boxes for a digital satellite service expected to be launched in the autumn of 1997. One of the interested parties is Pace.

Faster fast Fouriers

Fast Fourier transforms, FFTs, can F now be implemented on programmable logic from Altera as part of the company's Megafunctions library of cores.

It is claimed that the execution speed can be increased by a factor of ten to 15 over conventional dsp-based solutions.
The company quotes a 1024 point FFT running in 0.2 ms when programmed into an EPFIOKIOO - the company's flagship device.
The length and data width of the transform can be set by the designer. Suggested applications include if communications systems in cable and wireless and spread spectrum modems.

Book-to-bill looks up

Chip demand jumped in September with a book-to-bill ratio of 0.99 , its largest jump this year, according to the Semiconductor Industry Association.
"From any perspective, these are the most positive numbers we've seen all year," said Douglas Andrey, analyst at the SIA. "The modest increases in orders for August and September suggest that the 1996 slowdown in growth hąs bottomed out."

The book-to-bill ratio is still far below its most recent peak of 1.16 in September of 1995 but it is a welcome sign of better times ahead for numerous chip companies suffering from a downturn in the market largely because of over production.

IR advances igbt efficiency

International Rectifier has introduced a new range of igbts, called Gen 4, that are 20 to 40 per cent more efficient than their predecessors.
Tim Munday, a field application engineer for IR, said: "The gains in efficiency come from a combination of lower saturation voltage and reduced switching losses. Much of the advance has come because we are using our new fab which has reduced the manufacturing tolerances."
Insulated-gate bipolar transistors are power devices that are used predominantly in motor drives. Current Gen 4 devices are rated at 600 V with 1200 V devices to follow soon.

Transform your PC

into a digital oscilloscope, spectrum analyser, frequency meter, voltmeter, data logger . . for as little as $£ 49.00$

The ADC-10 supplied with PicoScope gives your computer a single
Pico Technology specialises only in the development of PC based data acquisition channel of analog input. instrumentation. Call for your guide on 'Virtual Instrumentation'.

Virtual Instrumentation

Pico's PC based oscilloscopes simply plug into the parallel port turning your PC into a fully featured oscilloscope, spectrum analyser and meter. Windows and DOS software supplied.

ADC-100 Dual Channel 12 bit resolution

The ADC-100 offers both a high sampling rate 100 kHz and a high resolution. Flexible input ranges ($\pm 50 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$) make the unit ideal for audio, automotive and education use. ADC-100 £199. ADC-100 with Picolog £219 ADC-200 Digital Storage Oscilloscope

- 50 MSPS Dual Channel Digital Storage Scope

25 MHz Spectrum Analyser
Windows or DOS environment $\pm 50 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$
Multimeter

- 20 MSPS also available

ADC 200-20 £359.00 ADC 20050 £499.00 Both units are supplied with cables, power supply \& manuals.

Data Logging

Pico's range of PC based data logging products enable you to easily measure, display and record temperature, pressure and voltage signals.

TC-08 Thermocouple to PC Converter

- Supplied with PicoLog software for advanced temperature processing, min/max detection and alarm. - 8 Thermocouple inputs - No power supply required.

TC-08 £199

TC-08 £224 with cal. Cert. complete with serial cable \& adaptor. Thermocouple probes available.

Call for free demo disk and product range catalogue Post \& Packing UK $£ 3.50$, Export customers add $£ 9$ for carriage \& insurance.

SEETRAX CAE RANGER PCB DESIGY

 WITH COOPER \& CHYAY AUTOROUTER
RANGER3 - DOS
 $£ 2500$
 - Windows\MT $£ 2900$

Hierarchical or flat schematic linked to artwork. Unlimited design size, 1 micron resolution Any shaped pad, definable outline library Pin, gate \& outline swapping - auto back annotation Split power planes, switchable on - line DRC COOPER \& CHYAN SPECCTRA autorouter (SP2) Inputs: OrCAD, Cadstar, PCAD, AutoCAD DXF

Outputs: Postscript, Windows bit map
R2 \& R3 Outputs: 8/9 \& 24 pin printers, HP Desk \& Laser Jet, Cannon Bubble Jet, HP-GL, Gerber,
NC Drill, AutoCAD DXF ${ }^{\circ}$

RANGER2 £150

Upto 8 pages of schematic linked to artwork Gate \& pin swapping - automatic back annotation Copper flood fill, Power planes, Track necking, Curved tracks, Clearance checking, Simultaneous multi-layer auto-router

COOPER \& CHYAY SPECCTRA auto-router (SPI) Gerber-in viewer, AutoCAD DXF in \& out

UPGRADE YOUR PCB PACKAGE

 TO RANGER2 £60ECT is being used at Mist to unravel the mysteries of water hammer.

ECT used to nail hammer

Most of us know what water hammer sounds like and are aware that it can cause stress in a system: but what does it look like? Researchers at Mist in Manchester think they have the answer, by developing an electrical capacitance tomography (ect) technique that promises the first accurate method of characterising this common yet complex phenomenon.
Typically, water hammer can occur when a valve is suddenly closed at the end of a long pipe. The water flow is abruptly stopped resulting in a pressure wave that travels back up the pipe. In turn this causes an expansion at the supply end which reverses the wave making it travel back to the valve, where the processes is repeated until it runs out of energy.
The problem has been that, up to now, recording techniques have not been fast enough to capture the very rapid transients that characterise hammer, while complexity of the effect has made modelling difficult and inaccurate.
But the Mist researchers have
based their technique ("Monitoring water hammer by capacitance tomography", WQ Yang et al, Electronics Letters, Vol 32, No 19, pp. 1778-1779) on the fact that the expansion cause cavitation - pockets of air - within the pipe.
To make the measurements, a set of capacitance electrodes are mounted around the pipe, so that the interelectrode capacitance-changes caused by variations of permittivity within the pipe can be used recorded. Cross sectional images can them be constructed from the data. The Mist system uses 12 measurement electrodes, 10 cm long, mounted onto the outside of 41 mm uPVC pipe, just upstream of the valve. When the valve is closed, a vapour bubble is formed then collapses, its life captured by the electrodes.
Though the transient process in the Mist experiment lasts only 0.27 s , the system can collect measurements at $100 \mathrm{frame} / \mathrm{s}$ allowing detailed behaviour of the water hammer to be observed.
Next step for the team is correlate data between an upstream and downstream sensor to find the transport speed of the water hammer waves and to find the velocity profile of the flow.
More information contact: WQ Yang, Process Tomography Group, Department of Electrical Engineering and Electronics, Mist, PO Box 88, Manchester M60 IQD.

Silicon fab goes flat out

Δ new technique that enables fabrication of atomically-flat silicon surfaces as opposed to the 'terraced' surfaces that exists in current devices could bring big improvements to performance and yield of silicon microelectronic and optical devices.
The technique, developed by materials scientists at Cornell University, uses high pressure and temperature to force atomic steps on the silicon surface to migrate to specially created boundaries. Though the slight irregularities, on the nanometre scale in current silicon layers, do not have much effect on the operation of the present generation of devices, future miniaturisation is going to make smoothness a critical factor.
Normal surfaces of silicon, though looking flat, consist of short, smooth terraces each ending in a step of atomic dimensions at about 1.5 nm .
But using their new manufacturing procedure, the Cornell team has been able

Scanning tunnelling microscope image of a typical silicon wafer surface, taken at Cornell, shows steps each of a height corresponding to one atom spacing. Here, four atomic steps are separated by flat atomic planes, or terraces. Rows of silicon atoms are clearly visible on the terraces. Cornell materials scientists have developed a process to increase the areas of perfect atomic terraces by a factor of greater than 1000, producing a step-free surface.
to create extensive regions on a silicon wafer that have no atomic steps at all. They have achieved this by creating a grid of ridges, $0.5 \mu \mathrm{~m}$ high and $1 \mu \mathrm{~m}$ wide on the surface of the wafer and clearing the intervening squares of their atomic steps by forcing them into the ridges.
The grid is created using electron beam lithography, and each square, about $10 \mu \mathrm{~m}$
wide, has about a billion atoms on it, with several thousand atomic steps all across the square. The sample is then subjected to ultra-high vacuum and then high temperatures of $1020-1150^{\circ} \mathrm{C}$.
At these temperatures, silicon atoms are detached from the atomic steps so that in effect the steps migrate to the ridges at the boundary of the square, leaving the surface of the square atomically flat.
"The benefit is that it should now be feasible to make smaller devices with better control of the dimensions, at the atomic level, and it should eliminate the harmful features of the surface that could get through the manufacturing process," says Jack Blakely, Cornell professor of materials science and engineering who has led the work
"Circuits built on step-free surfaces can be designed with smaller dimensions and utilise thinner semiconductor channels and insulating layers to increase performance and decrease power consumption. By having it flat, this could be an ideal surface on which to build an integrated circuit."
More information from Jack Blakely, Materials Science and Engineering, Cornell University Ithaca, NY, USA.

PCB Designer

Amex/Access/Delta/Visa
For Windows 3.1, '95 or NT

Also available from,
South Africa: JANCA Enterprises, PO Box 32131, 9317 Fichardtpark at R299,00. Phone/FAX: (051) 223744 France: Telindel, Quartier Les Pradets, Chemin des Veys, 83390 Cuers. Phone: 94286667

RADIO DATA MODULES MODEM TRANSCEIVERS

UK, E.E.C, Scandinavia, Eastern Europe, North \& South America, Middle East, South Africa, New Zealand, Far East or Australia. Wherever you are, we have a module on the right frequency for you! UHF Transcelver for the Worldt - 400 to 500 MHz Versions

- Range up to 5 Km .

Compact Slze ideal for Hand Helds - UK, North American, Australian * - MPT, I-ETS \& FCC Approval ${ }^{\circ}$ - Up or 64 selectable channels ${ }^{\text {. }}$ Starter Kit only £299.95*
Low Cost High Speed Data Transmitters: UK, EEC and Beyond -Available UK Approved MPT1340 418MHz

- Export I-ETS-300-220, $433.92 \mathrm{MHz}{ }^{\circ}$
- Reduce Component Count, Cost, Size \& Power Drain * - Operate to $20,000 \mathrm{bps}$.

- Transceiver also available with up to 40K data rate * TXM-418-F Transmitter

Licence Exempt Spread Spectrum on 2.45Gitz
With up to 1 MBit data rate, RS485 interface and 100 mW of output power these units are ideal for many high speed industrial or office data transfer applications. Even compressed colour video may be transferred. Price $£ 480.00$ each or starter kit for only $£ 799.95$.

VHF Modules for UK, Australia and Beyond I *UK, 173 MHz to MPT1344 \& MPT1328 Licence Exempt * - Miniature Low Cost or canned 1 \& 10 mW Transmitters *

- 173.500 MHz Transmitters \& Transceivers for Australia \& RSA - PCB mount or canned, Superhet Receivers
- Low Cost Meter Reading Transceivers on 183.8875 MHz * - Prices from £19.00 to £200.00 per unit ${ }^{\text {• }}$

Radio - Tech Limited, Overbridge House, Weald Hall Lane Thomwood Common, Epping, Essex CM16 6NB.
Sales +44 (0) $1992576107 \mathrm{Fax}+44$ (0) 1992561994 Technical Support +44 (0) 1992576114 Internet: http:IMww.radio-tech.co.uk

Design \& Verify Gircuits FAST

Electronics Workbench

you design and verify circuits faster
than it would take on a real bench. Mix analogue and digital
components and ICs in any combination

Electronics Workbench:

- Click \& drag schematic capture
- Mixed analogue/digital SPICE simulator
- Instant Bode plots and scrollable waveforms
- 50 analogue components with 350 models
- 140 digital components and ICs in TTL and CMOS
- Windows 95/NT/3.1, DOS and Macintosh versions - FREE unlimited technical support
- 30-day money-back guarantee

1 Robinson Marshall (Europe) Plc
$44-(1)-223-25326$
Fox: 44-(0)-1203-233210
Nadella Building, Progress Close,
Leofric Business Park, Coventry CV3 2TF
E-mail: sales@rme.co.uk.
Shipping chorges UK £6.99 All prices ore plus VAT.
Electronics Workbench is a trademark of
Interactive Image Technologies LId., Toronto, Conado
Al other trademarks ore the property of their respective owners.

Analysing our expressions. The upper left quadrant shows the intensity image, the upper right shows the gradient image, the lower left shows the optical flow field with the rectangles enclosing the face regions of interest and the mapping of colours onto
directions, and the
lower right shows the mid-level descriptions that were computed.

Put a smile on your interface

Sometimes your computer does something so stupid like trashing a vital file it really should have know you wanted - that words just stick in the throat. But work being carried out at the University of Maryland could mean that your computer will one day be able to recognise those looks of open-mouthed disbelief and face-twisting fury, and react accordingly. (In the Research Notes office that would involve quietly sliding its keyboard out of the reach of a fast moving fist).
Aim of the research being undertaken by Yaser Yacoob and Larry S Davis at the Computer Vision Laboratory is to recognise facial expressions from image sequences. The work has been prompted by the fact that visual communication plays such a central role in human communication and interaction. If successful, the research will allow computers to sense our moods, concentration and understanding, while also opening up possibilities for better video tranismission of facial expressions across lowbandwidth systems.

According to the authors ("Recognising human facial expressions from long image sequences using optical flow", IEEE Transactions on pattern analysis and machine intelligence, Vol 18, No 6, pp. 636-642), low bandwidth transmission of facial data can be made more efficient by using mid- and high-level visual representation of the facial actions. Or as the researchers put it: "Send a smile and a few parameters that determine the mouth actions involved".
Previous researchers have analysed the six principal expressions of happiness, sadness, surprise, fear, anger and disgust, but have tended to concentrate on static "mugshots."

However Yacoob and Davis have developed algorithms that use optical flow computation to identify the direction of rigid and non-rigid motions caused by human facial expressions, and have so far demonstrated recognition of the six expressions on a large set of image sequences.

Analysis involves tracking rectangles that enclose the facial features. Every rectangle encloses one feature of interest. Each of the 32 subjects so far tested was asked to display the expressions of emotion in front of a video camera, while minimising head movement - though subjects inevitably did move their heads during the experiment.
The experiments showed, through analysis of the optical flow field in the rectangles, that cues to detect the beginning of "fear" include the inward raising of the eyebrows and opening of the mouth.
Some confusion still exists between fear and surprise,

anger and disgust and sadness and surprise. There is also some difficulty where one expression begins then transforms into another.
Despite that, in the more than 30 subjects that were studied in the laboratory environment, the researchers were able to report a "good" classification of facial expressions in a very large database.
For more information contact Yaser Yacoob at the Computer Vision Laboratory, Center for Automation Research, University of Maryland, College Park, MD 20742-3275, USA.email yaser@cs.umd.edu

Millimetre antenna has no moving parts

A prototype antenna that operates at millimetre wave frequencies and has no moving parts, no phase shifters and can be implemented in plastic has been built by researchers at Georgia Institute of Technology. The electronically-scanned device, which is believed to be the first Rotman lens to operate at a frequency as high as 37 GHz , could offer an inexpensive, rugged, reliable and compact alternative to current millimetre wave antenna technologies.
Most antennas operating at millimetre wave frequencies use mechanical scanning or phase shifters, both of which have disadvantages. Mechanically steered antennas are slow in response and suffer reliability problems due to shock and vibration. Phase shifters are costly to fabricate and introduce considerable if losses.
But in a Rotman lens, such as the Georgia Tech device, millimetre wave energy coming from a particular direction is focused by passing the electromagnetic energy through a pair of parallel plates shaped like a lens. Beam-forming or focal ports are located on one side of the plates, fed by a switch array. The array ports are on the opposite side, each connected to an antenna element. Energy fed into a specific focal port will emerge from the antenna elements and produce a beam along a particular direction. Switching the input from focal port to focal port steers the
continued on page 916.

THE Autorouter for EASY-PC Pro' XM!

MultiRouter is "the best Autorouter that I have seen costing less than $£ 10,000$!" R.H. - (Willingham, UK)

- MultiRouter uses the latest 32 bit, Shape based, Multi-pass, Shove-aside, Rip-up and Re-try Technology
- 100\% routed 140 Components on a $210 \mathrm{~mm} \times 150 \mathrm{~mm}$ board in less than 10 minutes! (75 MHz Pentium)
- 100% Completion where other autorouters fail
- Only £295! Could Easily Pay For Itself On The First Project!

Number One Systems

Write, fax, phone or email for full information.
UKIEEC: Ref: WW, Harding Way, St.Ives, Cambridgeshire, ENGLAND, PE17 4WR. email: sales@mumberone.com Telephone UK: 01480461778 (7 lines) Fax:01480 494042
USA: Ref: WW, 126 Smith Creek Drive, Los Gatos, CA 95030
Telephone/Fax: (408) 395-0249
International +44 $1480461778 / 494042$

Electronics Workbench

New 4.1 32 Bit Version Electronics Workbench uses a powerful SPICE simulator to - VER 70,000 ensure that circuits work like the USERE real thing. And since you have complete control over the value and behaviour of all components, you control the design process.

Electronics Workbench:

- Click \& drag schematic capture
- Mixed analogue/digital SPICE simulator
- Instant Bode plots and scrollable waveforms
- 50 analogue components with 350 models
- 140 digital components and ICs in TTL and CMOS
- Windows 95/NT/3.1, DOS and Macintosh versions
- FREE unlimited technical support
- 30-day money-back guarantee

MRobinson Marshall (Europe) Plc

44-(0)-1203-233216

Fax: 44-(0)-1203-233210
Nadella Building, Progress Close,
Leofric Business Park, Coventry CV3 2TF
E-mail: sales@rme.co.uk.
Shipping charges UK £6.99 All prices ore plus VAT.
Electronics Workbench is o trademork of
Interactive Image Technologies Lid., Toronto, Conoda
All oher trademarks ore the property of their respective owners. INTERACTIVE

Otto Rausch attaches wave guides to his prototype Rotman lens that offers a low cost and rugged method of electronically scanning millimetre waves.

beam electronically in one direction across a 45° arc, and can be accomplished with pin diode switches, which are also simple, reliable and inexpensive.
Previous Rotman lens antennas have been developed at frequencies of 18 GHz or below, most in microstrip. Unfortunately microstrip is very lossy at high frequencies, and so is not suitable in the millimetre wave region.
Now, with help from colleagues, Georgia Tech senior research scientist Otto Rausch has designed and fabricated an antenna milled out of a solid block of aluminium.
Rausch's prototype required extreme machining and finishing tolerances, but the researcher says that production antennas could be hot-pressed in plastic, and then coated with a conductor such as gold. The antenna feed-horns and switch-array could be made the same way, keeping the costs down.
Besides the low cost, compact size and ruggedness, the lens antenna is also reported to offer very low throughput loss and sidelobe emissions. In the prototype, sidelobe power can be suppressed by a factor of one-thousand below the energy of the main beam, and power loss through the lens itself is less than 2 dB .
To fulfil its potential, Rausch says the antenna's operating frequency must be expanded, and the capability to scan in two dimensions added. however potential applications include autonomous aircraft landing systems, synthetic vision for ground vehicles and automobile collision avoidance systems More information is available from Otto Rausch at the Georgia Institute of Technology, Atlanta, Georgia 30332-0828 email ekkehart.Bausch@gtri.gatech.edu

Architects get wise to electrochromic windows

One of the 'simplest' concepts for reducing air conditioning bills while keeping office buildings cool in summer is to install window glass that can be darkened or lightened automatically, or at the touch of a button. Unfortunately, how to produce practical systems with acceptable life and cost has proved anything but simple. However, work being carried out at the National Renewable Energy Laboratories in Colorado could help overcome many of the present technical barriers to electrochromic (ec) windows.
The breakthrough made at NREL ('Low-voltage electrochromic device for photovoltaic-powered smart windows', C Bechinger et al, J. Appl. Phys, Vol 80, No 2, $\mathrm{pp} .1226-1232$) is in developing an all-solid state electrochromic device that can be switched over a range of optical transmissions by voltages of less than IV. This voltage is smaller than any other device tested so far, and at these levels, the researchers say, it should be possible to power the devices by an integrated semi-transparent photo-voltaic (pv) cell, so removing the associated wiring costs that substantially push up investment in ec windows.
In the NREL system, indium-tin-oxide (ito)-coated glass forms the electrically conductive transparent substrate for the device, onto which thin films of WO_{3}, MgF_{2} and $\mathrm{V}_{2} \mathrm{O}_{5}$ are deposited, topped by a semitransparent gold electrode.
Colouration occurs by a complex reaction between the clear WO_{3} and a light-absorbing compound of lithium and WO_{3}. The reaction involves injection and extraction of electrons and metal ions. But, according to the team, the key to the low voltage switching is inclusion of the
MgF_{2} layer which acts as the lithium ion conducting layer.
When electrical connection is made, the device transmission drops to about 40% of its bleached-state level in around 60 s . To return to the original transparent state, the device simply needs to be short circuited to cause spontaneous bleaching within minutes.
In the tests, voltage was supplied by a semi-transparent photo-voltaic powered cell connected to the ec device.
But the researchers say they expect a monolithic pv-ec device to function in a similar manner.
Degradation seems much improved over other types and the NREL devices are reported to have been cycled in air at $\pm \mathrm{IV}$ with almost no change in optical behaviour after 5000 cycles. Eventual degradation was thought to be due to corrosion caused by reaction of lithium with water that has penetrated the device. The researchers say that in practical devices the gold electrode would be replaced with a much thicker transparent electrode that would also control the water content of the device.
Current cost of ec windows is estimated to be somewhere between $\$ 100$ and $\$ 1000 / \mathrm{m}^{2}$. However the integration of the power source into a self contained window could make the NREL devices much more attractive than other designs and also allow smart windows to be retrofitted to existing buildings.
With the cost of energy becoming much more of an issue in building-economics, electrochromic smart windows could one day become a familiar part of architectural design.
More information contact: Clemens Bechinger now at the Universitaet Konstanz, D-78434 Konstanz, Germany. email clemens.bechinger@uni-konstanz.de

CIRCLENO. IIGONREPLY(ARD

Electronics Workbench

New 4.132 Bit Version
 ○VER Electronics Workbench is the first affordable integrated tool to offe 70,000 true mixed-mode simulation. It USERS delivers the power you need to design and

verify analogue, digital and true mixed-mode circuits-fast.

Electronics Workbench:

- Click \& drag schematic capture
- Windows 95/NT/3.1, DOS and Macintosh versions
- Mixed analogue/digital SPICE simulator
- Instant Bode plots and scrollable waveforms
- 50 analogue components with 350 models
- 140 digital components and ICs in TTL and CMOS

Robinson Marshall (Europe) Plc 44-(0)-1203-233216

Fax: 44-(0)-1203-233210
Nadella Building, Progress Close,
Leofric Business Park, Coventry CV3 2TF
E-mail: sales@rme.co.uk.
Shipping charges UK $£ 6.99$ All prices are plus VAT.
Electronics Workbench is a trademark of

PCB CAD review subjects

This review, which began in the September issue and continues next month, covers the following ten products.
PCB Designer: Niche Software Ltd, tel. UK 01432 355414. £49 inclusive (see
September issue).
PIA: AW Software, tel. Germany +49 89 6915352. PIA std 99DM: extended 171DM 32bit 286DM inc tax (see September issue).
Easytrax: Protel International pty, tel. Australia 4084377771,
UK PDSL, tel. 01892663298 (see September issue).
£6 copying charge.
Ranger2: Seetrax CAE Ltd. 01705591037 , (see October issue) $£ 150$ exc
$£ 10 \mathrm{p}+\mathrm{p}$ and VAT.
Electronics Workbench: Interactive Image Technologies Ltd (Canada), tel. 0014169 775550. UK Robinson Marshall, tel. 01203233 216, (see October issue) $£ 199$ exc $p+p$ and VAT.
CircuitMaker: MicroCode Engineering (USA) UK agent Labvolt, tel 01480 300695. Circuitmaker and Traxmaker cost $£ 199$ each excluding vat and $p \& p$, see November issue.
Quickroute 3.5 Pro+: Quickroute Systems LId, fax or phone 0161449 7101. Pro is priced at $£ 249$ while Pro+ is $£ 399$. Smartroute is $£ 149$ or $£ 99$ supplied with Quickroute.
Propak: Labcenter Electronics, tel 01756 753440, fax 01756 752857, £495 exc VAT. Proteus: Labcenter Electronics.
EasyPC Pro XM: Number One Systems.
Note that although this set of reviews started in the September issue with a couple of smaller packages, this review is not in any order of complexity or competence.

In the penultimate article in this comprehenive series of PCB CAD reviews and discussions, Rod Cooper investigates Quickroute and the Propak suite.

Review 1 -

Quickroute 3.5

Quickroute3.5 - QR35 for short - is a development of the popular Quickroute3 that was reviewed in Electronics World, January 1995.

Most of what that review said still applies, but there have been some major changes. For example, the manual that was criticised for being written in the wrong order now starts with schematic design, and works through pcb design to the autorouter making it one of the most logically compiled manuals available!
I remember seeing Quickroute some time ago as a dos-based shareware program. The version was 1.5 and I believe it was written for the American market as the pricing was in dollars. It was then a tiny 256 K byte in size and would run on virtually any pc. For historical interest a screen from this program is shown in Fig. 7 and the similarities with the latest version will be apparent.

I used the top two versions, Quickroute 3.5 Pro and Prot,
for this review, priced at £249 and £399 respectively. Both Pro and Pro+ are integrated schematic capture/autorouter packages, combined with manual pcb design, but Pro+ has some extra features such as of Spice and Spiceage netlist export, DFX export to mechanical cad programs, Tango and Gerber net-list import, and copper fill.

Quickroute programs are intuitive and easy to use, and perhaps because of that are easy to review, and are thus firm favourites with reviewers. The ease of use comes not just from being in Windows but also from their relative simplicity. There is for example, no autosave or autopan, no autonecking of tracks, no snap-to function for drawing, and there is not much configuration to do on the autorouters. Simplifying the structure while retaining the essentials gives a program which will have considerable appeal to those starting out in cad.
To run $Q R 35$ you need Windows 3.1, or better and a fairly powerful pc. Although the package will run on a 396 SX with 4 MB of ram, it will be noticeably tardy. It would not run at all on a 286 . The recommended machine is a 486 running at 60 MHz or higher with at least 8 MByte ram. Like most of the Windows-based programs, if you use less than

to
 pcb cad

the recommended hardware, you may find parts of the program such as screen redraws and autorouting irritatingly slow.

The drawing area on a 14 in monitor is about 7.5 in by 5 in with the parts bin on screen, and 9 in by 5 in without it. The parts bin takes up a lot of room, and it is difficult to understand why it is quite so big. It can of course be turned off, but if I were running QR35 with the parts bin, I would be inclined to use a larger monitor with higher definition in order to see more of the circuit. The button bar has been increased to a double bar and this also diminishes the size of the drawing area. Some of these buttons you use only once per design - such as the 'New Schematic' and 'New PCB' buttons and could be easily dispensed with. I think a return to the original single button bar and a smaller parts bin would help those people with 14 in and 15 in screens.

Interesting features

QR35 has some interesting features. Starting with the schematic drawing section, it made a refreshing change to see a lattice grid used for layout instead of the usual dot matrix. The default colour for line drawing is a yellow initial line on a white background - very difficult to see, as any graphics technician will tell you. But mercifully the colours can be changed. I chose a grey background with blue lines.
The schematic drawing program is not orthogonal, permitting lines in any direction. I found it required sustained attention to maintain a neat orthogonal layout during long drawing sessions. After a while, it is tempting to take few short cuts and put in a diagonal line or two, but this instantly gives any schematic an untidy look.
There is no positive confirmation that a drawn line is connected - at least not at the time of drawing. To check connectivity, you press the redraw button after drawing and visually check each connection. Properly connected lines are given a circle symbol. Although this was acceptable on small designs, on large boards this became a very tedious process. It was easy to miss some connections. I fell into the trap of just scanning the schematic, which led to error messages at later stages, which in turn meant retracing my steps back to the schematic to correct them.
The schematic sections of Ranger 2, Propak, CircuitMaker and Electronic WorkBench have means of confirming a connection at the time it is made combined with a strong snap-to
function. I think this is the way it should be done.

Zoom in and out is controlled either from the button bar or by the function keys F1-7. Key F8 is a custom zoom option. These keys can also be used for panning by pointing the mouse to where you wish to pan and pressing the function key at whatever zoom level you are in.
Function keys are more helpful if you want to zoom or pan while you are already using the mouse to draw a line. You can also pan using the scroll bars. To centre the drawing and show it fully there is another function, 'Page View', which adjusts the zoom to fill the screen.
Many cad programs use the left mouse button to select or start something and the right button to stop it, but QR35 uses the right button for various other actions. It can activate the library volumes from the button bar or pan the drawing area for example. This takes some getting used to if you have experience in other areas of cad.
The nominal drawing area is 32 in by 32 in . Multi-sheet schematics are supported, as are global nets. There is no map diagram showing where you are, but Page View can be used to find lost drawings.

Graphical library
 presentation

One of the best features of Quickroute is the graphical presentation of the library volumes. Clicking on the icon on the button bar gives a large screen of one page of a library volume, and you can see exactly what you are selecting from the high-quality symbols. This is a big improvement on textonly libraries.
If the library volume consists of more than one page, it is easy to flip though the pages.

Fig. 2. Same screen with parts bin on, after processing, so many of the circles are now junction dots, indicating net formation. Note area taken up by parts bin.

Fig. 3. The initial rat's nest formed from the above screen with components on a linear grid.

Fig. 4. Rat's nest after interactive editing. Note outline of board now inserted.

PC ENGINEERING

Fig. 5. Results of autorouteing with standard autorouter. Note that several ratlines cannot be turned into tracks by this autorouter. The grid has been left on in this shot.

Fig. 6. Results of routeing exactly the same rat's nest with the more powerful new AR3 autorouter, completing the board. The beta version of the AR3 used here can only do thin tracks, the commercial version will not have this limitation. (Grid off).

You might think this leads to some odd-looking schematics, and perhaps it does, but it has great practicality. However, there is a limitation on this method at present because the standard autorouter puts a ceiling on the maximum size of the track. If the track width exceeds 60% of the grid, a smaller track is substituted. In effect, this limits track size to less than 0.03 in with the standard autorouter, but with Quickroute's new AR3 autorouter, I am told this limit should disappear. It should be

Transferring to another volume was similarly quick and easy. For discrete devices like transistors, you do not get a long list of specific types, but a generic symbol with the package type. Information about the device is entered manually, so for this you would need a good memory or a data book. Component text is non-manoevrable so you may need to expand the diagram a little to avoid crossing lines, other components etc.
An interesting feature of the track libraries is that track thicknesses can be entered at the schematic stage and processed through schematic capture to re-appear in the finished pcb at the correct size. This is a good system, as you can check from the schematic stage the current ratings you have designed into various parts of the circuit.
ing components
The standard autorouter is very easy to operate, has only a few pre-run configuration controls, and was unable to route the test circuit completely, see Fig. 5. This puts it in category C. The new $A R 3$ autorouter was able to route the test circuit, putting it in category A , as shown in Fig. 6.

Note that the version of AR3 that I testedcould not route all sizes of track, so those shown in Fig. 6 are thin. It is a gridded autorouter with rip-up-and-retry added to its strategy bank. It also has increased configurability; each net can, if required, be configured individually. This autorouter has considerable potential.

Summary

Quickroute 35 is probably the most intuitive of the integrated schematic-drawing and autorouter products. However, do not think you can get away with not reading the manual from cover to cover - you can't.

Being comparatively easy to leam, QR35 will be attractive to those seeking a less fraught introduction to pcb cad, to educationalists, or to those who design pcbs only occasionally.

The relative simplicity of $Q R 35$ has its drawbacks. Professional designers - those designing pcbs for a living - may quickly reach the limits of Quickroute 3.5 and may be frustrated by its lack of certain features. For example it would benefit from the addition of orthogonal drawing and inhibition of incorrect lines in the schematic program, and autosave. The standard autorouter is limited in power and ability.
However, Quickroute is being developed further, with a policy of responding to users' comments, so this observation may not apply for very long. For example, from what I have seen of the new $A R 3$ autorouter, this will be both powerful and versatile.

The most attractive feature of $Q R 35$ is the excellent library presentation - quite the best of this set of reviews - while the extended library pack included with both $P R O+$ and $P R O$ versions gives better than average coverage of most of the commonly used components.

Fig. 8. For comparison, one page from the latest version of Quickroute.

Fig. 7. One page from the early dos version of Quickroute showing even then the library presentation was exceptionally good. Note the single button bar and large available screen area for drawing.

Review 2 - Propak

There are two parts to Propak, which are integrated and both run under Windows.
Isis Illustrator + is the schematic drawing and capture part of this program. It runs on a 386 pc running Windows 3.1 with 2 Mbyte of ram, but more memory than this is recommended in the manual. It was not satisfactory on a 286 with 2 M byte of ram.
Ares - the pcb routing part - is a full 32-bit application, so will work best on Windows 95 or Windows NT. However, it will also work with Windows 3.1 and the WIN32S extension that most readers will be familiar with.
Propak is supplied with WIN32S. I installed the whole package on a 386 SX running at 20 MHz , at first with 4 Mbyte of ram. I thought this would be a reasonable minimum set-up for this type of Windows program as the handbook is not clear about the hardware requirements for Ares. Although it ran, I soon increased the ram to 8 Mbyte to get it to run to my satisfaction. Needless to say, on the 486, it ran very quickly.

The manual for Propak is contained in a single volume with individual sections for 1 sis and Ares, emphasising the two-part nature of the product. For such a multi-featured program the manual is relatively short and to the point. It assumes a slightly higher level of knowledge of cad and computer literacy than the other programs and does not go into basics much, but this should not trouble most of the designers that Propak is aimed at.
Isis has a non-standard Windows format which gives a drawing area of 7.5 in by 6 in on a 14 in moni, which is not very large. There is a menu bar at the top, but an icon area in a box to the right of the screen, see Fig. 9, replaces the customary Windows button bar.
Some of the icons are mode select buttons, which lead to groups of other buttons controlling graphics, symbols, pins etc. All these buttons are in a similar style and I found it very difficult to remember which were which. I only solved this by pinning an icon explanation chart next to the monitor, reminiscent of a practice common in dos.

Although there is a small icon text reference,

Fig. 9. Typical Propak schematic screen. Note 'map' at top right corner, icon box and parts bin. Any prompts appear on the bottom left of the screen.
it is at the bottom left of the screen - i.e. nowhere near the icons; Labcenter could improve this system by adopting pop-up help, like the other Windows packages, or re-organising the system into a standard Windows button bar, or better still, doing both.
Isis is a sophisticated program with automatic junction dots, adjustable autosave, auto name generation and a component finder handy for very large schematics. It also has a type of autopan, and many other worthwhile features, some of which distance it considerably from other drawing programs.

Most noteworthy of these is the "wire autorouter', or WAR, which enables drawing to be speeded up by putting in the drawn connections between symbols automatically. You just click on the pins you want to connect and the autorouter inserts an orthogonally draw line, putting in corners as required.
I timed myself on transferring a drawing from a rough sketch on paper and found it cut down the transfer time by about 30%. As the drawing fills up, and lines get more difficult to place, WAR gets slower just like a human operator, but it's still quicker than hand drawing. The results with WAR depend very much on the component layout, so if you need to present a good-looking schematic you may need to do some editing. Its chief advantage lies in speed.
Also of note is support for radiused comers, and this can give the drawing a smooth professional appearance if this is what you require. The ability to move component text i.e. text such as R2, 100 k , C5 etc - independently of the component also assists in making the schematic look neat and compact. Text stays upright during component editing.
The schematic drawing section is not orthogonal, but maintaining a neat diagram seemed easy due to the good snap-to system. Drawn lines can only be placed between pins; incorrectly drawn lines are inhibited just like Ranger 2 so you cannot accidentally hang lines in space etc. In this way, positive connectivity of pins is assured.

The small 's' that appears
when you are in within drawing range of a pin is of great assistance, and is comparable to Circuitmaker's SmartWire method. Snap-to distance can be set to suit yourself and I suggest it is one of first parameters to set before starting drawing in Isis. It is tempting with the 's' system to set the snap distance too small, as I did, to get more circuitry into a small screen, but then you will need to maintain a constant high level of concentration to draw. It then too easy to miss a connection and engage some other function with the mouse button. Increasing the snap distance solves this.

Another good feature is the electrical rules check - an automatic check for simple errors in design. I suppose everyone has made an embarrassing error like leaving an output pin disconnected at some time or other, only to discover it after making the pcb. If you are prone to such errors, this feature will definitely be of interest.
The sheet size can be varied from A4 to A1, and Isis supports multi-sheet designs in an interesting hierarchy of root sheets, which should contain the core of the design, and subsheets, containing peripheral designs. This could be useful for large schematics such as an active filter stereo audio amplifier: The left and right preamplifiers could be drawn on two root sheets, and three or more identical power amps per channel handling the high,medium and low frequencies, drawn on sub-sheets. Any circuit changes to one sub-sheet could then be automatically replicated in the others, a big saving in effort.

Visiting the library

Access to libraries was easy, and parts are transferred in the logical way, to the parts bin first, not to screen.. Note that in /sis, the parts bin is called the object selector.
Isis gives you a good graphical representation of the component before it goes to the parts bin. In most other programs, the libraries contain long lists of components. All the electrical and package information is included with each one and when you select a specific

Fig. 10. Enlarged schematic showing graphics quality.

PC ENGINEERING

component, say a BC108 transistor all this information is transferred with it to the netlist when the schematic is captured.
In Isis, the libraries are much shorter. There are indeed library volumes for analogue and digital ICs with transferable package information, but only generic library volumes for discrete components such as transistors, thyristors etc. When you select such a generic component, the package outline has to be selected manually from a drop-down menu at the ratsnest stage. So a transistor like the BCl 08 is represented by the generic n-pn transistor symbol in Isis. It could in theory exist in any package from TO3 to TO92 at this point. The package information is entered later manually from the package selector as TO18.
The benefit of this arrangement appears to be much shorter and more accessible libraries. They will not be full of devices you never use, but it does mean an extra step to be done later. However, if you are moderately computer literate there is a system in Isis which can be set up to do this automatically. This is called 'Ascii Data Import', or ADI, and it means getting out the data books and entering in your most-used devices in a simple table in text in a file called Package.ADI. You can use Window's Notebook accessory to do this.
If you set up such a library, my strong advice is to copy it immediately so that your painstaking work will not be lost if your hard disk takes a holiday. When this file is activated on any specific schematic you have drawn, the outline for each device in Isis is then automatically provided for Ares to use.
I suggest that you try the two systems from the evaluation programs and compare both methods. It would be a good idea for Labcenter to provide as an optional extra some readymade extended library packs like other makers, for busy engineers who do not have the time to sort out their own libraries.
The zoom control in Isis is easy to use, with seven levels, so is the autopan. Like other programs the zoom is a coarse control, but there is a custom zoom feature, and I found it very useful for making a schematic fill the screen. A map at the top right of the screen - called the 'overview window' by Labcenter - shows you where you are on the drawing area and assists in panning and finding lost drawings.
Generating a net list is also straightforward and can be in several formats besides Labcenters's own SDF format - including Tango, Spice and Futurenet. I tried connecting to a third party simulator with the Spice net list and it was both easy and successful.
Although Isis and Ares are separate entities, the transfer of the schematic net list to Ares is painless; one click generates the netlist and triggers Ares, so the connection between the two for all practical purposes is seamless.

The Ares pcb layout format is very similar to the Isis schematic format and if you master one then the other will come easily. There are of course a few alterations as you would expect,

Fig. 11. Results of the Ares autorouter. Note the necked track at U1 putting this autorouter in category B.
but these are minor.
Ares consists of two parts - a manual drawing program and an autorouter. The manual drawing part can be used on a ratsnest generated from Isis, or you can, if you wish, start from scratch in Ares and put the package outlines on the board manually, and then connect the traces. However, the latter would be a waste of Ares' resources.

If you start with a net list from Isis, the first thing to do is to position the parts on the board. This is done in a way similar to Ranger 2 , and is a good system. The parts are selected and placed one at a time from a parts bin, or 'Object Selector', in the desired position. The rat's nest can then be automatically generated with a couple of clicks in the 'Tools' menu.
Manual routeing from the rat's nest is accomplished by selecting a track size, and clicking on a component pad to start the track and tracing the track as you would in any manual system. When the far component is reached, clicking on a pad will complete the track.
There is no rubber-banding. You draw the track as you would normally in any manual pcb program. For some, this will be a most welcome feature. The rat line stays in place until the track is fully drawn, showing you the

Propak but cheaper

A similar package to Propak is produced by the same company in dos for about $£ 100$ less. The screen layout is in the same style and the control methods much the same.
Unless you are a hardened, blinkered Windows addict, this alternative is well worth considering, especially if your pc will not handle Propak for Windows.

An notable feature of this Dos version is that it overcomes the Dos memory barrier by using Expanded memory. Even if you have no expanded memory, it can be simulated from extended memory using software. MSDOS 6 for example has a facility for doing this.
target pad for your track. Only when you complete the track does the rat line disappear.

If you make an error, on erasing the track the rat line re-appears, and you can re-draw the track. This is an excellent system, and for manual drawing from schematic capture it is the program I would recommend from those reviewed.

There is support for curved tracks, autonecking, and auto via placement. Also of interest is the plotter driver, which avoids complete reliance on the Windows plotter driver. The Windows driver is only used to draw straight lines, and Ares own plotter driver does the rest. This speaks volumes about the plotter driver provided in Windows 3.1.
The autorouter is moderately configurable, easy to set up and was comparatively quick. It is not a rip-up-and-retry or push-and-shove autorouter, so it would be unreasonable to expect too much of it. It worked best, as you would expect, on double-sided boards, but as the autorouter test shows, it could do a reasonable job on single-sided boards as well, falling into category B

Summary

I spent more than the allotted time on assessing Propak and even then was still discovering interesting features tucked away in the program.
Isis would suit the professional designer who regularly uses it, particularly if large multi-sheet or multi-layer boards are involved. The user is unlikely to become frustrated by quickly reaching the limits of the system as it is a fully featured, sophisticated program. By the same token, anyone not using the package regularly will find the steep re-learning curve an obstacle after an absence from use.
On small boards, Propak would be a sledgehammer to crack a nut. For presentation of a schematic drawing, where appearance was important, Isis would be my choice from the programs reviewed.

The Ares part of the product is of particular interest to those who wish to avoid rubberbanding when manual routing from a rat's nest. It is the only schematic-capture type of manual drawing program I recommend.
The benefit of using schematic capture and then manual drawing is that you can use the built-in connectivity check to verify that your handiwork corresponds to the netlist and as a result, the schematic you have drawn. With this system it is difficult to make an unusable pcb.

For double-sided boards that are not too dense or complex, the autorouter will usually be satisfactory provided you are prepared to put some time and effort into sorting the ratsnest. For single-sided boards some manual editing or reducing of the design rules may be needed.

- 80 C 188EB Processor Clocked at 24 Mhz
[128k Battery Backed RAM (512k option)
- 128k Eprom ($32 \mathrm{k}-512 \mathrm{k}$ options)
$\square \quad 128 \mathrm{k} 5$ voll Flash Eprom (512 k option)
- Real Time Clock (On board Battery)
\square Watchdog Timer/Reset with Brow nout detection
- 2 Scrial Ports - 1 RS232. 1 RS232/422/485
- 8 Channel 12 bit ADC (optional)
\square Direct Connection to Alphanumeric LCD Display
[48 Digital I/O lincs
- Sct-up and Driver routines with Full C Source Code

FAST START - Use our Full ANSI compatible Embedded C Compiler for super fast application development. Supplied complele with Editor. Compiler. Assembler. Linker. Embedded Debug and comprehensive Manual. you can compile and downoad and be in Generate ROMable Code direct. no slruggling with. EXE conversions or messing around with reset code. Just $\mathbf{£ 5 9 5}$.

For further information
Call now - 01379644285 - Fax 650482
Please ask for our cataloguc
Devantech Ltd - 2B/2C Gilray Road - Diss - Norfolk - IP22 3EU

and that's jusi * the half of it!..

FEATURES

- $16 / 32$ bit 68307 CPU for fast operation - Up to 1 Mbyte of EPROM space onboard - Up to $\$ 12 \mathrm{~K}$ byte SRAM space onboard - 32 Kbyte SRAM fitted as standard
- RS232 serial with RS485 option
- MODBUS \& other protocols supported
- Up to 22 digital IVO channels
- 2 timer/counter/match registers - Large Proto-typing area for user circuits - Up to 5 chip selects available
- Program in C. C+t, Modula-2 \& Assembler - Real Time multitasking Operating System
- Real or MINOS with free run time license

Ops or M
oprion

- Manufacturing available even in low

A full range of other Controllers available
P.C. 'C' STARTER PACK AT ONLY $£ 295$ + VAT The Micro Module will reduce development time for quick turnaround productsprojects and with the P.C. 'C' Starter pack allow you to start coding your application immediately, all drivers and libraries are supplied as standard along with MINOS the real time oper ating system all ready to run from power on. The ' C ' Starter pack includes: A Micro Module with 128 Kbyte SRAM, PSU, Cables, Manuals, C compller, Debug monitor ROM, Terminal program, Downloader, a single copy of MINOS. Extensive example software, and free unlimited technical support all for $\mathbf{2} \mathbf{2 9 5}+$ VAT.

Bids
 Cambridge Microprocessor Systems Limited

Finally an upgradeable PCB CAD system to suit any budget ...

Boord Coptare

BoardCapture - Schematic Capture
 - Direct netist link to BoardMaker2

- Forward annotation with part values
- Full undo/redo lacility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information

Automatic on-line annotation

- Antomatic on-itine annotation
- Context sensitive editing
- Extensive component-based power control Back annotation from BoardMaker2

BoardMaker

BoardMakert - Entry level

PCB and schematic drafting
Easy and inturitive to use
Surfaco mount sugport
90,45 and curved track corners
Ground plane fill
Copper highlight and clearance checting
BoardMaker2 - Advanced lovel
All the features of BoardMakert plus
Full nellist support - Orcad, Scherna, Tango, CadStar
Full Design Rule Cheoking - mechanical \& efectrical
Top down modification from the schematic
Component renumber with back annotation
Report generator - Database ASCl, BOM
Thermal power plane support with full DRC

Boord Router

BoardRouter - Gridless autorouter

- Simultaneous mutti-tayer routing
- SMD and analogus support
- Full interrupt, resume, pan and zoom while routing

Output drivers - Included as standard
Printers - 9 \& 24 pin Dot matrix, HPLaserjet and PostScript
Penplotters - HP, Graphtec, Roland \& Houston
Photoplotters - All Gerber 3×00 and 4×00

- Excellon NC Drill / Annotated drill drawings (8M2)

Contact Tsien for further information on
Tel 01354695959
Fax 01354695957

New from Crossware

ANSI C for Embedded Development

Our new range of Professional Standard C compilers protect your investment by conforming to the ANSI specification. In addition our target specific extensions will help you get the best from your embedded system.

To find out more about this new range of products, call us today or visit our Website.

68000

68020/CPU32

8051

Distributors Wanted Worldwide!
http://www.crossware.com

Crossware Products
St John's Innovation Centre, Cowley Road, Cambridge, CB4 4WS, UK
Tel: + 44 (0) 1223 421263, Fax: + 44 (0) 1223421006
E-mail: sales@crossware.com

CIRCLE NO. 121 ON REPLY CARD

New Special Offers	
New mini waterproofTV camer tox 0 OX 15 mm requires 2high retoducion of 450 TV lines Verical and 380 TV out) ${ }^{693.57+}$ E109.95	U,ed 8748 Microcontroller SL.932 UHF SL932 UHF Limiing amplifier LC 16 surfiace mouning ${ }^{2}$ DC. DC convertor Reliabilit model V12P5 12 v in 5 v 200 ma out 300 v input to output Isolation with data Hour counler used 7 digin 240 VAC AOHz OWERTY keyboard 58 key good new
High quality sepping motor kits 	Airpax A82903-C large sepping motor 14v 7.5's step 27 ohm 68 mm dia body 63 mm shafi or $£ 200.00$ for a box of 30 Polyester capacitors box type 22.5 mm lead pinch
Stepper kiot (ma	+
Hand based bed	0.22uf 250 p polyester axial leads, .-.
15	27.5 mm pitch $32 \times 29 \times 17 \mathrm{~mm}$ case..............75p each
rash cable rics 1 peach 55.95 per 1000 . 449.50 per	
	+
A8, 54.95 Sub C with woider	
aza	
ndaxd charger charges 4 AA cells Ds in 12 -14 hours +1 xPPS $(1,2$,	each 100 + d carbo
charg	fandard
than cell 6 VV 280mAh batery with wires (Varta	
Shaded pole moi	Disk drive boxes for 5.25 disk drive with room for a power supply, Ligh grey plasic, $67 \times 268 \times 247 \mathrm{~mm}$
VAC 80 v DC molor $4 \times 22 \mathrm{~mm}$ shaft 50 mm dia $\times 60$ long body (excluding the shaft) it has a replaceable therma 95 each ($5895100+$	Hand held ultrasonic remote control CV2 495 gas may sor 10 mm dia with 3 wire terminals, will
mito	
${ }_{\text {ch }}^{+}$	
${ }_{7} 71.1505$ hex inveror	6p...... 8 pin Dill socket 6 p
Wide range of CMOS Prodmets advertlised are new and unused unless otherwine stated, 74 H . always in stock. Please add $£ 1.95$ towards p \& p. VAT included in all prices.	
JPG Electronics, 276-278 Chatsworth Road, Chesterfield S40 2BH Access/Visa Orders (01246) 211202 Fax: 550959 callers welcome 9.30 am to 5.30 pm Monday to Saturday	

CIRCLE NO. 122ON REPLY CARD

Get out of a pickle get into SpiceAge!

Hands up all who have been there? A great idea turns into sleepless nights: getting one thing right breaks something else.

Some circuits require the refining of many interdependent variables. SpiceAge provides a virtually limitless inventory of components, signal functions and instruments with facilities for sweeping values, with am and fm through arbitrary functions. It can guide you to a solution that could take much longer to find using
 hardware.

SpiceAge up your design without burning a hole in your pocket. Prices from just $£ 85+$ VAT to $£ 695+$
VAT. Friendly technical help comes free (dreadful puns optional). For a demonstration kit and details of our other and third party support programs lincludes schematics, PCB layout, filter synthesis and model synthesis), please contact:
Charles Clarke at Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP. Tel: 01819060155 Fax: 01819060969 Email 100550.2455@compuserve.com

Subjectivists claim to hear considerable differences in loudspeaker cable performance, but traditional distortion measurement methods do not bear this out. Cyril Bateman argues that traditional measurement methods are inappropriate.

TThe claim that loudspeaker cables can and do cause distortions in hi-fi sound reproduction systems has resulted in two schools of thought. One school maintains that this is impossible since these distortions cannot be measured, the other disregards the measurement problem but maintains their ability to hear a different sound with change of cables.
Consequently discussions on these cable distortions have aroused more controversy than almost any other electronics design debate. Mystical diodes, over emphasised skin effect and magical properties of differing materials have all been proffered as reasons to explain these audible distortion effects.
Much of my working life has been spent measuring the s -parameters of anomalous components at all frequencies from dc to 3 GHz . As a result, I fully appreciate how important load matching and characteristic impedance of cable or test jigging are - even for extremely short electrical lengths.
I had long assumed that cable characteristic impedance remained important, even at the lengths used for audio. This was confirmed on examining the measured results in Duncan's recent articles ${ }^{1,2}$ and my own 42strand cable test result.
This article, and a follow up, presents evidence that loudspeaker cables do behave as transmission lines and that the cable's characteristic impedance, propagation delay and mismatch behaviour is maintained down to audio frequencies.
I will also show that audible distortion results not from the cable itself, but principally from the amplifier, cable, loudspeaker combination's mismatched impedance. Simple, easily replicated methods involving both measurement and simulation confirm my results.

Hi-fi components interact

Since the combination of amplifier, cable, crossover networks and speakers all interact, speaker cables cannot be properly measured or evaluated in isolation.

Amplifiers have forward propagation delay around 1μ s and considerable closed-loop feedback. Cables have characteristic impedance and one way transit delays around $6 \mathrm{~ns} / \mathrm{m}$, while loudspeakers have extremely wide impedance/phase changes with frequency. Additionally - and perhaps most importantly a moving-coil loudspeaker generates substantial voltage and current long after its drive signal has ceased, easily observed by physically disturbing a speaker cone.
Conventional distortion measurements are based on a continuous sine wave. Many musical sounds however, those from pianos and cymbals for example, start as a fast transient and decay slowly. This envelope is similar to that of the exponentially-damped waveform included in the PSpice simulator. No doubt with electronic synthesisers the converse waveshape having instantaneous turn off, as used by Duncan, is also possible. Both transient signals should be evaluated.

Turn-off transient effects

Since badly matched or undamped loudspeakers generate a back emf into the amplifier, my first test, which approximates to Duncan's, involved two amplifiers. These were configured back-to-back, but separated by the test cable and a load-sensitive voltage drive circuit.
One amplifier. was driven at 10 kHz by a signal generator. The test amplifier input was earthed via a $4.7 \mathrm{k} \Omega$ resistor and both amplifiers were powered. The drive circuit was resonant at 10 kHz , and current energised by the driven amplifier. The cable and test amplifier impedance damped the resonating voltage, which undamped attained more than 100 V .
I made measurements of various test cables and observed the voltages at both cable ends. Care was taken to space both amplifiers as far apart as permitted by the leads of the two 250 MHz scope probes used. The ADCl00 virtual oscilloscope was placed well away from

Test set-up for comparing loudspeaker cables. Channel A of the oscilloscope was connected to terminal A at one end of the cable under test and channel B was connected at the other end, on terminal B.

Fig. 1. Measured result of 42-strand as-purchased cable tested via a Douglas Self 50W amplifier.

Fig. 2. Measured result of 42 -strand cable modified to higher impedance using Douglas Self's test amplifier. Comparison with Fig. 1 clearly shows importance of the cable's characteristic impedance.
the computer to minimise stray pickup and the test cables were dressed in air in a wide U shape, similar to that used by Duncan. To avoid earth loops when using the $A D C I O 0$, the scope probes were earthed to a single point at the test amplifier end of the test cable.
In each case, the driving amplifier was a low-cost mosfet design from Maplin (part No LP56L). I also carried out tests using Douglas Self's 'Blameless' class B^{4} as the driven amplifier. It was built with better than 1% metal film resistors and matched semiconductor pairs. This was unhappy with less than $4.7 \mathrm{k} \Omega$ input shorting impedance. Also, at 10 kHz it had a somewhat higher output impedance than the mosfet design.
Since much debate has centred on the effects of the cable's resistance, inductance and capacitance, I bought a variety of readily available cables, all cut to 4.9 m long. These represented a mix of known and unknown impedance and resistance, in both coaxial and figure-of-eight constructions. They ranged in style and cost from Duncan's bell wire to Jenving Supra Ply 2.0 constructions.
This mix of cable structures was deliberate; simple examination of their impedance equations confirms that low impedance cabling with both minimal inductance and minimal

Transmission lines

Transmission lines cables are made in two main formats each comprising two separated conductors. These formats are coaxial and line pairs.
In both cases, reduced conductor separation reduces series inductance, increases shunt capacitance and reduces the cable's characteristic impedance, $Z 0$.

$$
Z 0=\sqrt{\frac{R+j \omega L}{G+j \omega C}}
$$

which, from ref. 7, at high frequencies approximates to,

$$
Z 0=\sqrt{\frac{L}{C}}
$$

This characteristic impedance assumes an infinitely long length or a shorter length terminated by this impedance and produces no reflected wave. All other termination impedances (mismatch) produce a reflection which is returned to the source. If both ends are mismatched and the cable has no loss, these reflections continue indefinitely dependant on the degree of mismatch.
At low frequencies, since the inductive reactance is small and capacitive reactance is large, the characteristic impedance can increase. If
$R / L=G / C$, the special case of a 'distortionless' line, then Z 0 is frequency independent.
Certain constructs can be designed for characteristic impedance by their physical dimensions.

For coaxial cable,

$$
Z 0=\frac{138}{\sqrt{\varepsilon}} \log \frac{D}{d}
$$

where ε is the dielectric constant of the insulator. Capacitance C, also from ref. 7, is,

$$
C=\frac{24.16 \varepsilon}{\log \frac{D}{d}} \mathrm{pF} / \mathrm{m}
$$

For the line pair,

$$
Z 0=\frac{276}{\sqrt{\varepsilon}} \log \sqrt{\frac{2 D}{d}\left(1+\left(\frac{D}{2 H}\right)^{2}\right)}
$$

where H is height above ground. Capacitance, see ref. 8 , is,

$$
C=\frac{12.07 \varepsilon}{\log \frac{2 D}{d}} \mathrm{pF} / \mathrm{m}
$$

Transmission lines have a propagation delay that depends on length and dielectric materials used. In practice this approximates to $6 \mathrm{~ns} / \mathrm{m}$ for commonly used plastics.

Resonant drive circuit

The resonant circuit comprised a 5.4 mH inductor and 50 nF capacitor. The inductor was in shunt to ground thus replacing the speaker voice coil, the capacitor was used to feed current from the driven amplifier via an 8.2Ω short circuit protection resistor. A second resistor of 3.9Ω used to simulate the voice coil resistance, was used to feed the inductor's voltage into the test cable and thus into the test amplifier.
Due to the very high unloaded 10 kHz voltage and current which the capacitor must sustain, I used two in series $100 \mathrm{nF}, 400 \mathrm{~V}$ Siemens polypropylene B32650 (Electrovalue part 50.1400).
The inductor used was a 5.4 mH super power low-loss 1 mm wire having a Q of 15 at 10 kHz , from Falcon Acoustics, Tabor House, Mulbarton, Norwich, contact Malcolm Jones. The two resistors were HSA25 wire wounds.
capacitance, is most easily manufactured using coaxial methods. On the other hand, twin-line or figure-of-eight cable, with its much increased inductance and reduced capacitance, is better suited to higher impedances.
While lowered impedance is possible using twin line, the penalty is a considerable increase of shunt capacitance, as with the Supra Ply 2.0.
While series resistance is important, I found the damping of the resonant voltage at the loudspeaker end to depend principally on the cable impedance. To confirm this, I took two equal lengths from a reel of 42 -strand and arti-

Fig. 3. Simulated behaviour of typical amplifier output configuration when driving into a capacitive and shunt resistor load. Voltage $V(1)$ is taken as the location of the feedback connection.

Fig. 5. Basic PSpice Net-List as used for Figs 3 to 7. This can be simulated using the evaluation version of PSpice.

Fig. 4. Simulation of configuration identical to Fig. 3, except for the addition of 5 m of high impedance Figure 8 style cable. This distortion should be clearly audible on fransients. Voltage $V(3)$ is waveform at amplifier output terminals for all simulations.

Fig. 6 Simulation of Identical configuration as Fig. 3, except for increased value of amplifier output inductor to $5 \mu \mathrm{H}$. This distortion should be clearly audible on transients.
ficially increased the characteristic impedance of one by unzipping it. This increased its separation to around 8 mm , which was retained by laminating in adhesive tape. In this way, the two cables have identical resistance, but differ in impedance.
While initial measurements used a 100 MHz twin-beam scope, the published plots were obtained using the Pico ADC100 computer attachment, recently on special offer in Electronics World. With two channels operating, its analogue-to-digital conversion rate is 55 kHz - well above the Nyquist minimum for a 10 kHz measurement. Care was also taken to ensure that at least two peaks were measured for both channels in each plot, Figs 1,2.
These results of two different cable impedances but with constant resistance, using only low cost and simply applied techniques,
are similar to those reported by Duncan for his more complex AP test method. These results prove the significance of cable impedance in controlling overhang from the speaker for the bipolar and mosfet amplifiers used.

Slowly decaying transients

Audio power amplifiers are often tested with a load of 8Ω with 1.5 or $2 \mu \mathrm{~F}$ in parallel. Continuous sine-wave simulations with and without 5 m of a typical figure-of-eight cable show negligible distortion when 'Fourier' transformed. Since distortion of the first cycle was clearly visible however I changed the stimulus to simulate a transient using the exponentially damped sine wave in PSpice. This clearly shows the transient distortion noted, which would be audible within a music program, Fig. 3.
Further simulations to explore this show that
distortion increases with increase of load resistance or output inductor value. Regardless of load resistance however, an inductive load caused smaller distortions, Figs 4, 5, 6.
Predictably these distortions reduced as cable impedance was lowered, even though the shunt resistor remained high. This is because the input impedance of the cable/amplifier combination, now provided the necessary damping, Fig. 7.

Applying the proof

These results prove that cable characteristic impedance is important in audio systems. With this in mind I will now examine Duncan's plots.
In two articles ${ }^{1,2}$ Duncan concentrated on two cables. These were an undefined mains cable and Jenving Supra Ply 2.0. Both were tested at 1 kHz using an unspecified Tannoy

15in dual-concentric loudspeaker.
In a Studio Sound article ${ }^{5}$, he also used an unspecified 15 in dual-concentric Tannoy loudspeaker with tests performed at $125 \mathrm{~Hz}, 1 \mathrm{kHz}$, and 15 kHz on eight additional cables. Examination of the published test report of Tannoy's $D 700$ speaker system ${ }^{6}$ indicates that if similar to Duncan's speaker, you could expect impedance of 3.1Ω resistive, 6.5Ω inductive and 5Ω resistive respectively. You could also expect resonant impedance peaks at around $45 \mathrm{~Hz} / 7 \Omega$ and $2700 \mathrm{~Hz} / 20 \Omega$.
From his measurements, these cables have an estimated high frequency impedance of 79.6 and 37.5Ω respectively. At 1 kHz , the inductive reactance is reduced and capacitive reactance is increased. Because of this, both impedances will be higher, but making some allowance for this also the missed peak in Fig. $\mathbf{3}$ for reference 2 , cable C, you can see that Duncan's voltage ratios closely follow the mismatch ratios at the speaker end of the line.
These results clearly demonstrate how transients can be distorted in speaker/cable systems while continuous sine waves are not. They could bridge the chasm presently existing between the two opposing schools of thought.
In my next article on this topic, I explore other published test methods. I also look at how all these results pertain to a complete amplifier, cable and speaker system and pro-

Fig. 7. Much reduced distortion resulting from change in cable impedance, otherwise circuit is identical to Fig. 4.

vide all measured results by plots and tables. I would however ask that anyone wishing to shoot these findings down in flames - first repeat the experiments.

References

1. Duncan, B., Modelling Cable, Electronics World, p. I19, Feb. 1996
2. Duncan, B., Measuring Speaker Cable Differences Electronics World July/Aug. 1996.
3. Pass, N., Speaker Cables, Science or Snake Oil,

Speaker Builder, 2/1980
4. Self, D., Distortion in power amplifiers, EW\&WW, p. 129, Feb. 1994
5. Duncan, B., The Cable Connection, Studio Sound, Dec. 1995
6. Colloms, M., A Big-Hearted Monitor, HI -FI News, July 1993.
7. Reference Data for Radio Engineers, Howard Sams \& Co. Inc.
8. Royal Signals Handbook of Line

Communication, HMSO.

NEW programmers start at only £295

$W^{\text {ith }}$ prices starting as low as $£ 295$, ICE Technology's new range of parallel port programmers offers something for every budget. All programmers support dual in line devices directly in the socket - no adapters or modules are needed for any families of devices, providing extensive device coverage at very affordable prices. The full range of programmers is shown in the panel on the right. Our new easy to use device support checklist will help you to choose the programmer that is right for you, just call or use our faxback for a copy. All programmers come with FREE software updates on our BBS or our ftp site, full technical support direct from the manufacturer and one year's guarantee. All models can run from batteries or mains - ideal for use with laptops.

Low cost EPROM programmer

A t only $£ 295$, the EPMaster $L V$ is a powerful A EPROM programmer which offers so much more than other EPROM programmers. With it's 40 pin socket it can support all types of EPROMs including 16 bit wide with no need for additional modules. Serial PROMs, Serial EEPROMs, Flash and EEPROMs are all included in the device support at no extra cost. In addition, low voltage parts are fully supported with the programmer's separate $1.8 \mathrm{~V}, 3.3 \mathrm{~V}$ and 5 V logic circuits. EPMaster LV connects to the parallel port of any PC compatible and can be operated from batteries or mains electricity. You can also add a built in ROM/RAM emulator with a capability of up to 512 k by 16 , turning the EPMaster LV into a powerful development tool.

CIRCLE NO. 162 ONREPLY CARD

High Speed Gang Programming

The Speedmaster GLV-32 Gang/Set programmer offers simultaneous high speed programming for up to 8 EPROMs and Flash (up to 8 Mbit) at 3.3 V and 5 V . The 3.3 V facility ensures that programmed devices will work correctly at their nominal operating voltage. Functions include gang programming, set programming and full editing. The Speedmaster GLV32 works in PC or stand alone mode.

CIRCIE NO. 163 ON REPI Y CARD

Universal programmer only $£ 525$

The Speedmaster $1000+$ and Micromaster $1000+$ offer new levels of affordability in device programming. At only $£ 395$, the Speedmaster $1000+$ supports all types of memory devices, plus $8748 / 51$, BPROMs, GALs and erasable PALs. The Micromaster $1000+$ at just $£ 525$ extends this support to include PALs, EPLDs, MACH, MAX, PSDs and over 180 microcontrollers including PIC,

ST6, MC68HC705, MC68HC711, TMS370, TMS320, 87Cxxx, 89Cxxx, COPs etc. The Micromaster $1000+$ can support all device types, even Motorola micros, with NO ADAPTERS or MODULES for any dual in line devices up to and including 40 pins. As with all our programmers free software updates are included via BBS or our ftp site.
CIRCLE NO. I6U ON REPLY CARD

LV40 Portable

Reaching the parts other programmers can't reach

TThe NEW LV40 Portable stands head and shoulders above other portable programmers with it's comprehensive device support which includes EPROMs, EEPROMs, Serial PROMs, BPROMs, Flash, NVRAMs, PSDs, PALs, GALs, PEELs, EPLDs, MACH, MAX and over 180 microcontrollers. Unlike other portables, no adapters or modules are needed for any of these devices up to 40 pins dual in line. With socket adapters the LV40 is capable of supporting devices of over 40 pips and other package types. At $£ 995$ for the complete package yol'll soon see why the LV40 Portable is the best value, most powerful portable programmer in the world.

CIRCIE NO. IGI ON REPIY CARD

- Portable Universal	- Supports memory,	- Support for 1.8, 3.3 and
Programmer	programmable logic,	5V devices
- High speed	high density logic, and	- Batiery or Mains
- PC software included	over 180 micros.	operation
- No modules to buy		- Lifetime free updates

Procrammer models and priges

LV MODELS (SUPPORI 1.8V, 3.3V and 5V DEVICES)			SPEEDMASTER 1000+	EPROMs, EEPROMs, Flash, NVRAMs, Serial PROMs, Serial EEPROMs, BPROMs, GALs, 8748/51	£395
EPMASTER LV	EPROMs, EEPROMs, Flash, Serial PROMs, Serial EEPROMs 8 to 40 pins all without adapters. Built in emulator modules: 128k by 8 : £395 128k by 16 : $£ 465$	£295	MICROMASTER 1000+	EPROMs, EEPROMs, NVRAMs, Flash, Serial, BPROMs, PALs, GALs, PEELs, MACH, MAX, PSD, over 180 microcontrollers without adapters.	E525
SPEEDMASTER LV	EPROMs, EEPROMs, Flash, NVRAMs, Serial PROMs, Serial EEPROMs, BPROMs, GALS, PALS, EPLDS, MACH, MAX, 8748/51.	£495	SPEEDMASTER GLV32	High speed EPROM/Flash 8 way Gang/Set Programmer. Supports 3.3 V and 5 V	E645
MICROMASTER LV	EPROMs, EEPROMs, NVRAMs, Flash, Serial, BPROMs, PALs, GALs, PEELS, MACH, MAX, PSD, over 180 microcontrolers without adapters.	£625	$\begin{aligned} & \text { COP GANG } \\ & \text { PROGRAMMER } \end{aligned}$	8 way Gang programmer for National Semiconductor COP family of micros	£1500
LV40 PORTABLE	All devices supported by Micromaster LV, plus completely portable with buith in keypad and LCD display.	$£ 995$	SOCKET ADAPTERS	for PLCC, TSOP, OFP, SOIC, SSOP etc.	from £65

[^1] Homepage: http://www.icetech.com BBS: +44 (0)1226761181 (14400 baud, 8N1)

Speaker cables pulse tested

Abstract

By feeding cables with fast pulses and looking at the resulting waveforms, Eric Foster has been able to illustrate clear capacitive, inductive and eddy differences between cables suitable for speaker driving. Sadly for the cable marketers though, these differences are too high in frequency to be audible.

Pulse induction is normally associated with metal detectors. However it can also be used as a unique method of testing loudspeaker cables to determine differences that may relate to audible effects. The measurement waveform takes place after the primary pulse has ceased and is dependent on the cable inductance, capacitance and cross sectional eddy currents. In the system outlined, cable resistance is not of
major significance as the pulse generator impedance is deliberately made high. This is done to limit the power supply current and to keep the test pulse amplitude constant over widely varying cable types and lengths.

Injecting a pulse
The essence of the method is to inject a current pulse into a known length of cable with the far end shorted.

At the termination of the current pulse a wide band op.amp. amplifies any low level decay effects due to induced eddy currents in the wire cross section or to polarisation signals in the insulating material - if they occur.
One metre lengths were chosen as these were easier to obtain, and the measured effect can easily be extrapolated to longer lengths. For the more readily available, and inexpensive, cables such as mains lead and coaxial, 5 m lengths were measured in addition to the shorter ones.
This method is unique because the resultant waveform is solely due to the cable under test

Fig. 1. Output from the 709 op-amp resulting from a test on a 1 m length of mains cable. There is an initial positive excursion, followed by a short negative safuration period caused by the cable's reverse emf. This negative transition is the area of interest.

Fig. 2. Reference waveform. The nearer the cable test comes to this shape, the lower the inductance, capacitance and cross-sectional eddy currents.

Fig. 3. Shark Wire is inexpensive speaker cable comprising 129 strands of 0.1 mm oxygen-free copper.
and is not complicated by speaker impedances, reflections or power amplifier characteristics.

Implementing the test system

Transistor $T r_{1}$ provides the current pulse to the cable via R_{2} and D_{1}. Resistor R_{2} limits the amplitude of the pulse to about 0.36 A . This corresponds to the current that would flow for IW peak in an 8Ω load.
Duration of the pulse can be varied between 50 and 150μ s by means of $V R_{1}$ and the pulse frequency varies correspondingly between 5 kHz and 1.5 kHz . In practice, for the cables tested, the pulse duration and frequency had no effect on the recovery waveform as the cable time constants measured were very much faster. Diode D_{1} isolates the cable under test from the drain capacitance of $T r_{1}$ after switch off which would otherwise lower the cable's resonant frequency.
Resistor \dot{R}_{1}, across the driven end of the cable, damps out any ringing which is due to the cable-under-test's inductance and self capacitance. Without the damping resistor the ringing frequencies measured in the range $10-20 \mathrm{MHz}$ for the 1 m lengths. This is well outside the audible band.

Wide band amplifier $/ C_{5}$ exhibits a gain of 400. Although the 709 is an early IC, dating back to the late 1960s, it has excellent gain, bandwidth and recovery characteristics. These characteristics are difficult to find in more modern ICs. This is no doubt due to its straightforward bipolar architecture.

The cable-under-test's recovery waveform is viewed on an oscilloscope connected to $/ C_{5}$ output. As $/ C_{5}$ is wired as an inverting amplifier the cable-under-test waveforms are inverted, but this is of no consequence in demonstrating cable recovery. If you want to pursue this further, you could re-connect $/ C_{5}$ as a non-inverting amplifier or follow the existing circuit with a fast inverting buffer.

Figure 1 shows the output waveform of the test circuit with a 1 m length of two-core mains cable connected as the cable-under-test. Initially, there is a positive excursion of $100 \mu \mathrm{~s}$ where the amplifier is driven into saturation by the drive pulse. This is followed by a short negative saturation period caused by the reverse emf generated by the cable's series inductance.

The subsequent plots are triggered by this negative excursion and the circled area of interest magnified.

Reference waveform criteria

To generate a reference waveform, the terminals of the test unit are shorted by soldering them together. The initial negative excursion in this case is the amplified result of the back emf generated in the stray inductance of the pcb tracks associated with Tr_{1} and its immediate components.

It is vital to keep this inductance to a minimum, so that the amplifier has returned to a flat baseline in $3-4 \mu \mathrm{~s}$. This constitutes the reference waveform, Fig. 2, with which to compare cable-under-test waveforms.

Cables with low inductance, low capacitance and low cross-sectional eddy currents will depart little from the reference waveform. The negative spike adjacent to the right cursor is a clock generator spike while the ripples and bumps are largely op-amp noise.
The cursor is set at $1 / \Delta T$ of 21 kHz , which corresponds to the highest frequency that can be obtained from a standard cd. Any transient or absorbed energy decay should have vanished well before this so as not to affect the audio band.
Measurement terminals of the test unit consisted of two 25 mm lengths of $7 / 0.2$, twisted as far as possible to minimise their inductance.

Fig. 4. Van den Hul CS122 speaker cable has seven bunches comprising 21 strands of 0.15 mm silver-plated copper.

Fig. 5. Jenving Supra Ply 2.0 normally shows a small eddy current decaying within $10 \mu \mathrm{~s}$, but when twisted, the eddy current and time constant increase.

Fig. 6. When twisted, Jenving Supra Ply 2.0 performs less well under this test.

AUDIO

The cable-under-test was then soldered in turn to these to ensure good electrical contact. Proprietory speaker terminals or connectors were not used because they could contribute their own eddy current effects.

Figure 3 shows response from a 1 m length of inexpensive speaker cable from Shark Wire Co. This is a parallel wire consisting of $129 / 0.1 \mathrm{~mm}$ strands of oxygen-free copper and a conductor separation of 5 mm . The negative excursion and overshoot due to the series inductance settles down in under $5 \mu \mathrm{~s}$ and

Fig. 7. Eddy currents are not a problem here, but Heywire gave the highest series inductance. Overshoot decay was short though, at $4 \mu \mathrm{~s}$.

Fig. 8. Cable Talk 4 had the largest eddycurrent loss, the signal taking 25μ s to decay into the noise floor.

Fig. 9. Lawnmower flex performed surprisingly well, eddy currents dying away in 10μ s.
there is no evidence of cross sectional eddy currents. Having experience in pulse-induction metal detection, this came as no surprise to me. It is usual to use fine stranded wire in the search coil winding to minimise cross section effects.
By comparison, Fig. 4 shows the response from 1 m of Van den Hul CS/22. The conductors in this cable consist of seven bunches of 21 strands of 0.15 mm silver-plated copper encased in an inner conductive plastic material with a conductor separation of 11 mm .
The exponentially decaying waveform is due to eddy currents in the overall wire cross section aided by the higher conductivity of the silver coating. Even so they have decayed away within $20 \mu \mathrm{~s}$, or $1 / \Delta \mathrm{T}$ of 50 kHz .
Jenving's Supra Ply 2.0 was an interesting cable to try, endorsed as it was by Ben Duncan in his tests! . Figure 5 shows a small eddy current signal decaying within $10 \mu \mathrm{~s}$. If the cable is twisted or bent however, the braided 0.14 mm strands make better contact with one another and the eddy current amplitude and time constant increases, as in Fig. 6.
Heywire from Heybrook Audio uses single solid copper cores of 0.6 mm diameter. This is small enough not to exhibit eddy currents, but combined with the 8 mm conductor spacing gave the highest series inductance. However, the resulting overshoot decayed in 4μ s, Fig. 7, and is similar to Shark Wire cable.
Of the cables measured, Cable Talk 4 had the largest eddy current loss - the signal taking a full $25 \mu \mathrm{~s}$ to decay into the noise level, Fig. 8. The conductor bunches consist of 42 strands of 0.3 mm copper separated by a 6 mm spacing.

Non audio cables

Mains lead is often derided for audio use and I have never seen rf cable advocated for this application. So I tested 10A lawnmower flex and RG58C/U coaxial cable to see how they would fare.
The lawnmower cable, Fig. 9, with $32 / 0.2 \mathrm{~mm}$ conductors spaced at 2 mm , came out surprisingly well; the eddy currents dying away in $10 \mu \mathrm{~s}$. Type RG58 coaxial cable, Fig. 10, was the cleanest of all, showing no overshoot and the eddy currents in the braid decaying in $7 \mu \mathrm{~s}$.
Slightly less pick-up noise is also evident due to the screening effect of the coaxial braid. It is important to stress that the rf characteristics of coaxial cable have no bearing on these tests. It is simply the series inductance, capacitance and eddy current losses which affect the pulse induction tests recorded here.

Noise performance and inductance

Other waveforms can be observed with the test circuit. If the probe is connected across the damping resistor the back emf spike can be measured which relates to the series inductance.

Comparison of the paraliel conductor cables with the coaxial cable shows the coaxial type to have the lowest series inductance. Compare Figs 11 and 12.
If the damping resistor is removed, the ringing frequency of the cable can be measured. Both the inductive spike and ringing are displayed on a time base ten times faster than the previous cable responses so you can see that the signal is well into the r.f. region, even for 5 m lengths.

Fig. 10. Cleanest of all - plain and simple RG58 coaxial cable. There is no overshoot and eddy currents in the braid decayed within $7 \mu s$.

Fig. 11. RG58A/U coaxial cable again, but tested for series inductance. Compare this with Fig. 12.

Fig. 12. Inductive spike resulting from Heywire shows that it performs less well relative to coaxial cable in this test.

While the 5 m lengths were connected to the test unit, it was interesting to observe the relative noise pickup. All the tests were conducted in an electronics workshop on an industrial estate, where there is a fairly high electrical noise level.
As you can see from Figs. 15 and 16 the coaxial cable braid affords considerable screening of rf noise. The larger overshoot spike is because we now have more series inductance resulting from the greater length.

Fig. 13. Performance of a longer length of lawnmower cable - 5m - with no damping and a ten times faster time base indicates that the frequencies involved are well outside the audio range..

Fig. 14. RG58 coaxial cable performance for a $5 m$ length with damping removed.

Fig. 15. Noise pickup of lawnmower cable in a noisy environment, length 5 m .

Copper oxide and diode effect

Two forms of distortion mentioned in other articles on speaker cables are current jumping between strands and a diode effect ${ }^{2}$ due to copper oxide on the strand surface.
No evidence of these phenomena were seen on the foregoing waveforms. However some tests were conducted on deliberately oxidised cable to see if there was any measurable effect.
Experiences with underwater pulse-induction metal detectors have shown that leakage of salt water into a cable very quickly causes oxidation of the strand surface, which takes on a dark red mat appearance. Under such conditions the conductor acquires a surface layer of copper hydroxide and copper chloride.
I injected salt water under pressure into a 1 m length of lawnmower cable until it emerged from the strands at the far end. The cable was left for a couple of days and then tested. There was no change in the oscilloscope waveform.
On the third day the cable was immersed in salt water which was heated to $50^{\circ} \mathrm{C}$ and left overnight. The dull red coating was now in evidence to show oxidation was taking place. Again there was no measurable difference in the waveform which was again checked after one week, Fig. 17.
Some of you may object that the salt water test is not realistic, and that the oxide layer is not the same as would occur naturally in a speaker cable. However it is interesting that such a drastic contamination with a corroding electrolyte had no measurable effect on the waveform.
Another rather different oxidising test was done. This was to strip all the insulation off of a metre of one conductor of lawnmower cable and measure its eddy-current response, Fig. 18. The smaller amplitude is due to the shorter length but, as stated previously, the decay time is independent of this.
Using a butane blow torch, the cable was heated along its length until the strands took on a black appearance and the wire was in a softer annealed state. The response was then as in Fig. 19. In this case the oxide layer has broken up the eddy current paths between strands and all but removed that part of the response.
It appears, therefore, that the formation of a normal oxide layer on the strands of a speaker cable will do very little to alter the cable's characteristics. Over the long term, however, it could even serve to improve the high frequency response of a cable, if only at ultrasonic frequencies.

In summary

This relatively simple method, derived from the front end circuit of a pulse induction metal detector, can give valuable information about the characteristics of loudspeaker cables.
The signals being examined result purely from the cable itself, and occur after the drive
pulse has ended. In particular, this method clearly shows the effect of eddy currents in the cable cross section.
All of the waveforms, except where otherwise indicated, are for 1 m lengths which are obviously shorter than would normally be used in a hi-fi system.
Tests on 5 m lengths of lawnmower flex and coaxial cable show that all the effects increase in proportion to length. As the length increases so do the series inductance and capacitance,

Fig. 16. In the same environment used for Fig. 15 , the same length of coaxial cable picks up far less noise.

Fig. 17. Some hi-fi enthusiasts advocate the use of oxygen-free copper in audio cables. Here, lawnmower cable was injected with salt water, left for three days and tested again. No change is apparent in these tests.

Fig. 18. A 1 m length of lawnmower cable with its insulation removed.
and they affect the amplitude of the inductive spike and ringing frequency. Cross sectional eddy currents increase in amplitude but the decay time constant remains the same.
Increasing the pulse current to simulate higher wattages will increase the inductive spike and eddy current amplitudes proportionally. There is no evidence of dielectric polarisation or diode effect which, if it existed, would be expected to show with this method which can resolve signals down to $50-100 \mu \mathrm{~V}$ across the cable.
There are obvious measured differences between cables using the pulse induction technique. But I will leave it to professional audio engineers to decide whether these effects can in any way impinge on what we actually hear, as they all occur well above the audio band.

If I had to buy a dedicated speaker cable I would probably opt for the Sharkwire at around $£ 2.50$ per metre. This displays no cross sectional currents and has a reasonably low series inductance due to its 5 mm conductor spacing. Its dc resistance is $0.04 \Omega / \mathrm{m}$, which falls midway between V an den Hul at $0.012 \Omega / \mathrm{m}$. and Heywire at $0.119 \Omega / \mathrm{m}$.
Currently, however, I am using RG58. It embodies all of the characteristics that I consider a good speaker cable should have. The

Fig. 19. Lawnmower cable stripped and subjected to a blow torch indicates that older, oxidised cable may even perform better at high frequencies.
coaxial configuration gives not only the lowest series inductance but also screening from external interference which can find its way to the amplifier input via the feedback loop.
The 0.1 mm strands in the outer braid and the $19 / 0.18 \mathrm{~mm}$ core, both of which are tin plated copper, give a low eddy current loss and a d.c. resistance of $0.053 \Omega / \mathrm{m}$. The insulation between
the outer braid and core is solid polyethylene and the capacitance $100 \mathrm{pF} / \mathrm{m}$. Best of all, the retail price is about 50p a metre.

These few tests have hardly scratched the surface in terms of the variety of cables on the market, in fact none of the cables tested falls into the super-cable class. The most expensive one tested is the Van den Hul at $£ 9.50 / \mathrm{m}$.

Cables are available that cost $£ 100$ s and even $£ 1000$ s per metre. It. is not at all clear what measured improvement one would see that could possibly affect audio quality. The only electrical parameters that can be changed are the series inductance, parallel capacitance, resistance and eddy current losses.
If a perfect cable were available you would simply end up with a response identical to the reference waveform in Fig. 2. Cheap cables already come close to this. Perhaps suppliers of really high end cables would loan one for a few days for the foregoing tests to be done; or perhaps construct their own test circuit and publish the results.

References

F. Duncan, B., What a Difference a Wire Makes, Stereophile, Dec. 1995
2. Duncan, B., Modelling Cable, Electronics World, Feb. 1996.

PHONE
LANGREX SUPPLIES LTD 0181684 TUBES, SEMICONDUCTORS ANDI.C.S. FAX
0181684 11661 MAYO ROAD - CROYDON - SURREY CRO 2GP 3056 24 HOUR EXPRESS MAIL ORDER SERVICE ON STOCK ITEMS

	¢ p	E186	2.75	PY500A	4.00	68A7	5.00	6SK]	3.00
A231	5.00	E19]	3.00	PY800	1.50	6BE6	1.50	6SLTGI	4.50
C8131	¢12.50	Et95	2.00	PY801	1.50	68Н6	2.50	6SN7GT	4.50
C133.	10.00	E1360	18.50	00v02-6	12.00	68/6	2.25	6SS7	3.00
DY86/7	1.50	E1509	12.00	OCVO3-10	5.00	68N6	2.00	6U8a	1.50
EB8CC Mull	8.50	EM34	15.00	OOVO3-20a	15.00	6807A	3.50	6V6GT	4.25
E180F	3.50	EM81	4.00	OQVO6-40A	17.50	68R7	8.00	6×4	3.00
E8IOF	22.00	EM84	4.00	Qv03-12	10.00	68R8A	4.00	6x5GT	2.50
EABC80	2.00	EM87	4.00	419	10.00	6857	5.00	12AT7	3.00
E891	1.50	ENG1 Mull	7.50	ЧАВС80	1.50	68W6	4.50	12407	3.00
EBF80	1.50	EY51	250	U8C41	400	68W7	1.50	120×7	3.50
E8F89	1.50	EY86	1.75	UBF89	\$1.50	6826	2.50	12AX7A GE	7.00
68.31	15.00	EY88	1.15	UCH42	4.00	$6 C_{4}$	2.00	12845	2.50
ECC33	1.50	E280	3.50	UCH81	2.50	6C6	5.00	128E6	2.50
ECC35	1.50	E281	3.50	UCL82	2.00	6CB6a	3.00	128H7A GE	7.50
ECC81	300	GY501	3.00	UC183	3.00	6casca	5.00	12897a GE	1.00
ECC82	3.00	G732 Mull	8.50	UF89	4.00	6C16	3.15	12 E 1	15.00
ECC83	3.50	G733	6.00	UL41	12.00	6CG7	1.50	12HG7/12GN7	6.50
ECC85	3.50	G734 GE	7.50	U184	3.50	${ }^{6} \mathrm{CH} \mathrm{H}^{\text {a }}$	6.00	30FL1/?	1.50
ECC88 Mull	6.00	G237	6.00	UN41	4.00	6CW4	8.00	30 P 19	2.50
ECC91	2.00	${ }_{\text {NT61 }}$	10.00	UY85	2.25	606	5.00	$3008\left(P_{\text {P }}\right)$	110.00
ECF80	1.50	*T66	10.00	VR105/30	2.50	6005 GE	17.50	5728	70.00
ECH35	3.50	*T88	15.00	VR150/30	2.50	60068	12.50	805	50.00
ECH42	3.50	N78	9.00	2759	25.00	6EA8	3.50	807	5.75
ECH81	3.00	OA2	2.70	28034	25.00	6EH5	1.85	8114	18.50
ECLI80	150	082	2.70	2021.	3.50	$6{ }^{6} 6$	3.50	812 A	65.00
EC18?	3.00	CC3	2.50	3828	15.00	$6 \mathrm{FO7}$	17.50	813	27.50
ECL83	3.00	003	2.50	4 CX 250 BST	55.00	6GK6	4.00	833A	85.00
ECL 86 Mull	3.50	PCF80	2.00	SR4GY	6.00	6H6	3.00	866A	25.00
ECL300.	25.00	PCF88	1.50	${ }^{5046}$	5.25	6HS6	4.95	8724	20.00
EF37A	3.50	PCF86	2.50	5v46	4.00	615	3.00	931A	25.00
EF39	2.75	PCF801	250	${ }^{57367}$	2.50	616	3.0	2050A GE	12.50
EF40	5.00	PCF802	250	523	4.00	617	4.00	5751	6.00
E54	3.50	PC182	2.00	52467	2.50	6JB6a GE	19.00	5763	10.00
Ef42	4.50	PC183	3.00	6AH6	400	6JIE6C	20.00	5814A	5.00
E580	1.50	PC184	2.00	6ak5	1.50	6156C GE	20.00	5842	1200
EF85	1.50	PCLIS5	2.50	6AL5	1.00	${ }^{6} \mathrm{~K} 669$	3.00	5080	1.50
Ef86	10.00	PC186	2.50	6AM6	2.00	6K7	4.00	61468 GE	15.00
E¢91	200	PCLI805	2.50	6AMS	5.00	6 K 8	4.00	6550A GE	20.00
EF92	2.00	POS00	6.00	6AN8A	4.50	6166	10.00	68838 GE	15.00
E183	2.00	P136	2.50	6405	3.25	616CCSY	12.50	7025 GE	7.00
EF184	2.00	P181	1.75	6AR5	25.00	616CC Siemens	1.50	7027a GE	11.50
El32	2.50	P182	1.50	6AS6	3.50	6166C GE	12.50	7199	12.00
E133	1000	P183	2.50	64576	9.50	6.7	3.50	7360	25.00
E134 Siemens	1.00	Pl84	2.00	6a76	2.00	6106	20.00	7581A	15.00
El36	400	PL504	2.50	bAlugi	5.00	607	4.00	7586	15.00
EL4	3.50	P1508	5.50	6AU6	2.50	6RHH/6/SYQ	12.00	1587	23.00
EL80	25.00	PL509/PL519	6.00	6AW8A	4.00	6SA7	3.00	7868	12.00
- E181	5.00	Pl802	6.00	687	4.00	$6 \mathrm{SC7}$	3.00	Paces correct when going to press	
E184	2.25	PY81	1.50	688	100	${ }_{6 S 6} 6$	2.50		
E184 Mull	6.00	PY88	2.00	6896	1.50	65517	${ }^{3} .00$		

OPEN TO CALLERS MON-FRI 9AM-4PM, CLOSED SATURDAY
OVER 6,000 TYPES AVAILABLE FROM STOCK. OBSOLETE ITEMS A SPECIALITY. QUOTATIONS FOR ANY TYPES NOT LISTED.
TERMS: CWO/VISANACCESS. POST \& PACKING: 1-3 VALVES. $£ 2.00$, 4-6 VALVES £3.00. ADD 17.5\% VATTO TOTAL INC. P\&P.

20% EW reader discount

Audio signal generator

AG2601 is a portable mains-powered instrument covering 10 Hz to 1 MHz in five overlapping decades. Sinewave distortion between 500 Hz and 50 kHz is just 0.05%.

The AG2601 audio signal generator spans 10 Hz to 1 MHz in five overlapping ranges and features floating output and low distortion. This stable sine and square-wave oscillator is being made available to Electronics World readers at the fully-inclusive special price of $£ 129$. Its normal selling price is £ 129 excluding VAT and delivery.
Please use the coupon to order your signal generator, and address all correspondence relating to this order to Vann Draper Electronics at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE18 2PL, fax 01162773945 or tel. 0116 2771400.

AG2601 audio generator - specifications

General
Frequency range 10 Hz to 1 MHz
Frequency stability within $\pm 2 \mathrm{~Hz}$
Output waveforms sine, square
Output impedance 600Ω
Accuracy $\quad \pm 5 \%+2 \mathrm{~Hz}, 10 \mathrm{~Hz}-1 \mathrm{MHz}$
$\pm 3 \%+2 \mathrm{~Hz}, 100 \mathrm{~Hz}-100 \mathrm{kHz}$
O / P floating voltage within $\pm 1.5 \mathrm{~dB}$
Sinewave characteristics

Distortion	$<0.05 \%, 500 \mathrm{~Hz}$ to 50 kHz
Output voltage	$<0.5 \%, 50 \mathrm{Vrms}, \max$
Output flatness 500 kHz	
$\pm 1.5 \mathrm{~dB}(1 \mathrm{kHz})$	
Output impedance 600Ω	

Squarewave characteristics

Output voltage 15 V pk-pk, min
Rise time $\quad 0.5 \mu \mathrm{~s}$

Synchronization input

Input impedance $10 \mathrm{k} \Omega$
Maximum input 10 V rms

Supply

$115 / 230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Physical data
Dimensions
Weight
150 by 250 by 130 mm
*Test leads supplied as standard

Use this coupon to order your AG2601

Please send me AG2601 Audio Generator(s) at the fully inclusive special offer price of $£ 129$.

Name
Company (if any)
Address
Phone number/fax

Total amount

Make cheques payable to Vann Draper Electronics Ltd Or, please debit my Master, Visa or Access card.

Card type (Access/Visa)
Card No

Expiry date
Please mall this coupon to Vann Draper Electronics, together with payment. Alternatively fax credit card details with order on 01162773945 or telephone on 0116 2771400. Address orders and all correspondence relating to this order to Vann Draper Electronics at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE18 2PL.
-Overseas readers can also obtain this discount but details vary according to country.

 936

EIECTRONICS IIMITED

Cable science?

Abstract

Geoff Williams believes that audio signals passing through a cable are affected not just by copper cross-section, but also by a complex combination of field and semiconductor effects.

Fig. 1. Magnetic field around a wire radiates outward. It is zero at the core, maximum at the surface of the wire, and falls off exponentially as it radiates outward.

Transmission of alternating current through a cable produces a magnetic field, an electrostatic field and these are affected by the physical structure of the wire.

Magnetic field considerations

Electrons exhibit a rotating magnetic field and all magnetism derives from this. The field round a wire radiates outward in concentric circles from the centre. At the centre, the field is zero, reaching a maximum at the wire surface. It then falls off inversely proportionally to distance, Fig. 1.
Relevant expressions are inductance L which is change-of-flux divided by change-ofcurrent, and impedance R in ohms which is $2 \pi f L$ where f is frequency. In an ac circuit, the flux (field) and the current both change together with frequency. Since flux is greatest at the surface, it follows that the change of flux is also greatest at the surface for the same change of current. Consequently, the inductance will be greatest at the surface and so will be the impedance.
This increasing impedance results in a loss of efficiency as frequency rises. Considering also the eddy currents set up in the wire, the situation worsens. Eddy currents force electrons toward the surface, and the higher the frequency, the more they are forced outward into this region of high impedance, decreasing high frequency efficiency. This is the skin effect, whereby high frequencies travel down the skin of the conductor.
In Fig. 2, the circle represents the conductor and its associated magnetic field. The direction of rotation is as if the current is going into the paper as depicted by the cross in the middle. Though the field is made up of concentric circles, at an arbitrary point A, the electrons see the relative flux and direction as shown. Electrons are moving into the paper, so to speak, through a magnetic field at right angles relative to the current. From Fleming's righthand rule, the electrons move in the direction shown. Arbitrary point A can be considered anywhere in the conductor and the direction of motion is always toward the outside of the conductor.
Flux changes with frequency so, the higher

Fig. 2. High frequencies travel along the surface of a conductor - a phenomenon known as skin effect. This diagram illustrates how electrons are forced toward the skin.
the frequency, the greater the change of flux in a given period of time and the greater the tendency for electrons to be forced to the surface Because the flux density is stronger and electrons are effectively cutting a faster moving flux at the surface, this effect is intensified at the surface.

Transients and high frequencies

Because of the skin effect, if you increase the surface area of the conductor, for example, by having a rectangular cross-section, you will improve the high-frequency performance and transient response. But this is not an elegant solution. What is best is to prevent the eddy currents using Litz wire. Being made up of separately insulated strands, Litz wire effectively prevent eddy currents moving from the centre to the outside of the conductor. Each strand however can still be considered as a solid core with its own internal eddy currents, these are tiny compared to what they would be in one large solid-cored wire.
To achieve maximum efficiency, the strands

Fig. 3. Frequency response of a solid-core cable with plastic sheath. In listening tests the response dip is audible.

Schematic capture

- Easy to Use Graphical Interface under both DOS and Windows.
- Netlist, Parts List \& ERC reports.
- Hierarchical Design.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and

Stmulation

O Non-Linear \& Linear Analogue Simulation.

- Event driven Digital Simulation with modelling language.
- Partitioned simulation of large designs with multiple analogue \& digital sections.
- Graphs displayed directly on the schematic.

PCB DBSign

- 32 bit high resolution database.
- Multi-Layer and SMT support.
- Full DRC and Connectivity Checking.
- RIP-UP \& RETRY Autorouter.

O Shape based gridless power planes.
O Output to printers, plotters, Postscript, Gerber, DXF and clipboard.

- Gerber and DXF Import capability.

Call now for your free demo disk or ask about the full evaluation kit. Tel: 01756753440 . Fax: 01756752857. 53-55 Main St, Grassington. BD23 5AA. Prices exclude VAT and delivery. All manufacturer's trademarks acknowledged.

EMAIL: info@labcenter.co.uk WWW: http://www.labcenter.co.uk
need to be bunched into the minimum crosssectional area, meaning a circle.

Fields and insulation

Looking at the electrostatic field around wire carrying a current, the flux is considered to emanate from the positive (protons) and go to the negative (electrons) The strength of the field (voltage) falls away inversely proportionally to the distance from the surface, as in the magnetic situation.
Things change, however, when you consider the effect of encasing the wire in a plastic insulating sheath. The plastic acts as a dielectric and effectively suppresses the extemal electrostatic field, reducing the voltage detected at various distances from the wire.
The amount of suppression by a material is related to its dielectric constant - relative permittivity. Basically, the higher the dielectric constant, the greater the field suppression.
All insulators exhibit dielectric loss. This means that the insulator retains a small amount of electrostatic charge when excited by the signal. It does so in much the way steel retains its magnetism when it is subjected to an external magnetic field. Consequently, the insulator must be forcibly discharged by the signal when it changes polarity. This leads to signal loss and cancellation. The smaller the dielectric loss, the better.
From the above, you would expect that a material with low dielectric loss and high dielectric constant would be the best material to use as an insulating sheath for an audio cable. The best materials are polypropylene, polyethylene, teflon and, slightly down the scale, polyester. PVC is lower still and inferior. The worst insulators are probably rubberbased compounds, including polyolefins. So although the relevant electrostatic field lies outside the wire bounderies, whether you place something next to it or not can have a serious effect on the sound quality where loudspeaker cables are concerned.

The dielectric is charged and discharged by the electrostatic field of the audio signal. The more the dielectric suppresses the field, the less it is charged and discharged. The lower the dielectric loss, the less tendency there is

Proximity effects

How audio cables are arranged in space is important. As a rule, cables that are adjacent to each other carrying current in opposite directions must be at least ten times the wire diameter apart to avoid signal cancellations due to magnetic coupling. This does preclude the use of non inductive (bifilar) winding for audio purposes. Such an arrangement causes signal loss due to phase cancellation and is clearly audible.
Consequently, it is better to have signal and return wires separate rather than combined into one cable. Avoid twisting cables together because this will create inductive turns.

Conductivity of metals	
Silver	$1.620 \mu \Omega / \mathrm{cm}^{3}$
Copper	$1.682 \mu \Omega / \mathrm{cm}^{3}$
Gold	$2.420 \mu \Omega / \mathrm{cm}^{3}$
Aluminium	$2.825 \mu \Omega / \mathrm{cm}^{3}$
Rhodium	$5.100 \mu \Omega / \mathrm{cm}^{3}$
Zinc	$6.000 \mu \Omega / \mathrm{cm}^{1}$
Iron	$9.800 \mu \Omega / \mathrm{cm}^{3}$
Platinum	$9.970 \mu \Omega / \mathrm{cm}^{3}$
Nickel 2	$10.900 \mu \Omega / \mathrm{cm}^{3}$
Tin 3	$11.500 \mu \Omega / \mathrm{cm}^{3}$
Chromium 4	$13.100 \mu \Omega / \mathrm{cm}^{3}$
Lead 5	$20.650 \mu \Omega / \mathrm{cm}^{3}$
1 used in brass	
2 used in resistance wire and screening	
3 used in solder and in plating copper	
4 used in nichrome resistance heating wire	
5	

for the material to remain charged when the accompanying field in the wire has long been and gone.

The difference in sound I perceive between bare wire and insulated wire indicates that a bare solid core wire has a curtailed top end compared to a sheathed piece of the same. Figure 3 represents the frequency response of a solid-cored cable with a plastic covering. My listening tests bear this out, with a noticeable dip in the response. The thicker the wire, the more apparent the effect. However, the eddy current losses are greater than the dielectric lift and the response stars to fall off again at higher frequencies.
Unfortunately, it is not possible to use the dielectric properties of the insulating sheath to correct the drop in response caused by eddy current losses. The electrostatic repulsion does not penetrate far enough into the wire, and we end up with the characteristic dip in the response. The magnetic effect is stronger than the electrostatic effect.
For audio cables, copper needs to be of a higher purity than the standard 99.99%. Impurities affect electrical transmission of complex waveforms. Non-copper atoms can cause undesirable semiconductor activity. Each crystal junction has a strong electrostatic plane (it is these electrostatic forces that create the crystal structure in the first place) and it is reasonable to assume that these planes will deflect somewhat the electron flow.
Wire with larger crystals has fewer junctions. Such wire is often advertised as monofilament or linear crystal.

Directional cables

A cable with directional qualities is undesirable. If a cable has a lower impedance in one direction than the other, it is acting to some degree as a diode.
Copper oxide is a semiconductor. Early rectifiers used copper oxide. Attempts have been made to limit the amount of oxygen in the copper in the production process, but it is impossible to eliminate all of it. Much socalled oxygen-free cable is in fact anything but
oxygen free. Many of these cables have managed to eliminate surface oxidation only.
The wire surface needs to be gas-tight to avoid oxidation after the wire has been sitting for a few months. Enamelled copper wire is gas-tight, but even this acquires a small amount of surface oxidation in the enamelling process. Plating the copper with a metal that resists oxidation might appear to solve the problem. Metals commonly used are tin, silver, gold and, more recently, rhodium. This is all very well, but there is a body of opinion that asserts that plated wire is not as good as unplated.
As far as I know, there are three aspects to consider: thermoelectricity, conductivity and crystallinity.

Thermoelectricity and conductivity

A junction of dissimilar metals makes a thermocouple. Copper is one of the commonest thermocouple metals.

If there is a temperature difference between the metal's junction and another part of the circuit, a small voltage is developed across the junction. Loudspeaker cables are heated slightly by the current flowing in them, but I think that this thermoelectric problem is very small and not one to worry unduly about.
Table 1 is a list of conductivity, as specific resistivity, of metals used in electronics. You can see that silver has only a very slightly better conductivity than copper but is far more resistant to oxidation than is copper, and this is where it scores.
Plating interferes with the skin effect. Tinplating is a disaster, increasing even further the high-frequency resistance at the surface. Plating introduces another set of crystal boundaries which will deflect and reflect the signal, and adds credence to the arguments for non-plated wire.

Fig. 4. Preferably, dielectric thickness should be greater than the total wire diameter.

Solid versus stranded

Early audio cable, particularly speaker wire, was made of separate strands, bunched and sheathed. These strands had a certain amount of surface oxidation contributing to the semiconductor effect. When people switched to solid core, the reduction of oxidation increased the clarity of the signal.
I have found that stranded cable outperforms solid-cored at higher frequencies. This is due to the reduction of eddy currents and the greater surface area, but this top end is certainly confused. Hence we have definite but different advantages for both types of cable and, as one would expect, both types of wire
are on the market.
The only real answer is a Litz-type cable, which combines the advantages of both while eliminating the disadvantages. Litz cable has a very coherent top end, and a superior transient response.

Current density

Loudspeaker cable cable should not have an appreciable rise in temperature and integrity of the waveform should be preserved.
Transients are the most troublesome waveforms. Although a moving coil loudspeaker is a voltage-driven device, it is current that makes it work. Maximum current occurs is when the drive unit changes direction or starts moving from rest. In practice, an $8 \Omega, 50 \mathrm{~W}$ continuous bass driver could take more than 10A peak when changing direction under a transient. The peak power handling of the cable will need to be much greater than the speaker rating in order to avoid power loss. The audible effect of this is a shortening of the bass and a slowing of transients.
Peak current output of a fast, powerful amplifier will easily exceed 10A. If you assume a perfect amplifier operating under ideal conditions, a cable rating for bass purposes may well need to be of the order of 50A continuous. For a 2 m run, my experiments indicate a cross-sectional area of at least $4.5 \mathrm{~mm}^{2}$, a longer run requiring $6 \mathrm{~mm}^{2}$ or more for a mean power handling of only 50 W rms.

Antenna and proximity effects

To a much lesser degree, there is the possibility of the screen acting as an antenna, introducing of into the signal ground. For very low level signals, some sort of screening is essential if a balanced line is not used, ie for moving magnet or moving coil cartridges. One possible answer is the use of a carbon loaded screen. The high resistance will curtail considerably any eddy currents induced into the screen. It is also possible to use a Litz type braided screen where the screen is made up of separately insulated strands.

The final aspect of audio cables is their arrangement in space. As a rule, cables that are adjacent to each other carrying current in opposite directions must be at least ten times the wire diameter apart to avoid signal cancellations due to magnetic coupling. This does preclude the use of non-inductive (bifilar) winding for audio purposes. Such an arrangement causes signal loss due to phase cancellation and is clearly audible.
Consequently it is better to have signal and return wires separate rather than combined into the one cable. Avoid twisting cables together because this will create inductive turns.

Most hi-fi amplifiers and speakers are unable to respond accurately to fast transients, and changing to larger cables will not necessarily bring an improvement in sound quality.

In summary

First of all, a Litz arrangement is necessary if we are to get the best transient response, highfrequency coherence and power handling. Second, insulation is needed and one of the best dielectrics is polypropylene.
Following is a suggestion for a set of practical cables.
For a bass cable, strand diameter should be of the order of $0.1-0.2 \mathrm{~mm}$. Taking 0.15 mm as an example, a cross-section of $4.5 \mathrm{~mm}^{2}$ re-
quires 254 strands in a circular bunch, whereas $6 \mathrm{~mm}^{2}$ requires 339 strands, etc. For a treble cable, strand diameter should be smaller, at around 0.8 mm . Area can be derated to about $1 \mathrm{~mm}^{2}$. This will require 200 strands.
Clearly, the best speaker cable is no cable at all, so runs should be as short as possible 1.5 m to 2 m at most. Any longer and the cable diameter may need to be increased.
Dielectric thickness should preferably be greater than the total wire diameter so, for a $4.5 \mathrm{~mm}^{2}$ cable, the insulation thickness should be at least 2.7 mm . Total cable diameter will end up at about 9 mm . For a $1 \mathrm{~mm}^{2}$ cable, insulation thickness should be at least 1.7 mm .

AN EXTEMSIVE RANGE OF TEST EOUIPMENT IS AVALLABLE. PLEASE SEND FOR OUR NEW CATALOGUE - Postoge ond pocking must be added. Please phone for price. VAT © I7 178 to be added to oll orders. Please send lirge SAE for defoik.
Telford Electronics, Old Officers Mess, Hoo Farm, Humbers Lane, Horton, Telford TF6 6DJ Tel: 01952605451 Fax: 01952677978

Hands-on Internet

> Cyril Bateman discusses a standardised document format and presents this month's findings - among them an electronics manufacturers directory and design software.

As the Internet Web pages continue to grow in number and sophistication, many electronics manufacturers use them to provide their traditional data packs. With the final on-screen appearance being under the control of the users Browser, not the creator of the script and the limited page formatting capability of HTML, the Adobe PDF format was plugged into Netscape to provide full page control.
Adobe's Acrobal 2.1 reader 1 for PDF, gives access to documents in their original form independent of the users computer platform, can be downloaded from most Web pages using PDF format.
An offshoot of Postscript, Portable Document Format uses the ATM font technology to render the document in your browser, ensuring WYSIWOG - an acronym for what you see is what others get. It is compatible with Netscape 1.1, Spyglass Mosaic 20 and newer equivalents, Fig. 1.
To date PDF usage has been restricted due to the software needed. While the reader is now freeware, the production suite was costly. All this is about to change. The beta version of Acrobat 3.0 (Amber Beta) has been available since end May. Acrobat 3.0, with a full suite of tools, is due to release in USA this October at the incredibly low cost of $\$ 295$. It provides PDF generation from your word processor and even from scanned documents.
The version 3.0 reader, available for most browsers and operating systems, provides searching and linking as with HTML. Being fully WYSIWOG does have a down side though. HTML, unless specifically formatted, wraps a text line round if your browser width is less than the designed page width. PDF on the other hand simply chops it off. By design it cannot wrap text lines for you.
The Argus Clearinghouse ${ }^{2}$
claims to be the premier Internet Research Library, and can be a most useful data source and Internet search tool. It is managed by librarians, and founded on their belief that to encompass ambiguities of language and ideas, human effort and qualitative assessments must be combined with searching and browsing techniques, Fig. 2.
This month's bookmark site just has to be found at eenet.com, home of the Electronics Industry Inforum and Interactive Workplace ${ }^{3}$. A sample search on 'capacitors' resulted in details of some 60 capacitor makers, mostly not having their own Web presence. This site includes a facility called Info Fax. With this facility, any company wanting an Internet listing needs only a fax machine to receive and send data requests. The facilities offered by eenet provide services both for designers and marketeers. They should be sampled, words alone are inadequate, Fig. 3.
Webscope.com ${ }^{4}$ is among the top 5% sites and offers two directories of Internet resources, in addition to its main role as a provider. While the guide to hotels and travel is interesting, Webscope's unique directory of electronic manufacturers is an essential directory service. It is indexed by manufacturing categories, and is most relevant, Fig. 4

Simulation software

The AVX SpiCap software ${ }^{5}$ calculates the effective capacitance, esr and self inductance parameters of AVX ceramic multilayer range by frequency, temperature and applied voltage.
Described last month, this software is now available on two 3.5 in disks, facilitating its use by all spice designers. Copies can be ordered on-line or from the company's sales offices. Obviously while targeted to spice users, these same parameters can be applied to any simulator, whether frequency or time domain.
Readers wanting further clarification of the need to derive capacitor models with parasitics, are directed to two useful papers, the Microsim FAQ ${ }^{6}$ and a piece called ' 12 Simulation program tips/tricks/bugs.
Should you want to try out a frequency domain rf simulator. or need S parameters for Hewlett Packard rf semiconductors, a three-disk freeware package called

ANCHOR SURPLUS Ltd The Cattle Market Depot Nottingham NG2 3GY. UK Telephone: + 44 (0115) 986 4902/ +44 (0115) 986404124 hr answerphone Fax: +44 (0115) 9864667

Micro Video Cameras
Following our recent Readers Offer for the 721-S Micro Camera many readers have contacted us asking about
 other items in our range of Micro Cameras and Security

Surveillance equipment.

We are SOLE AUTHORISED IMPORTERS of the entire range of Cameras and Video Surveillance equipment produced by the world's leading manufacturer. ALL items in the range carry a full 12 Months Guarantee. If you would like to receive our comprehensive catalogue of Cameras and associated equipment please send a large SAE with 48p postage, marked "Camera Catalogue"

Here is a sample of the available stock.
 A-921-S Camera with AUDIO ... $30 \mathrm{~mm} \times 30 \mathrm{~mm}$... $£ 95$
A-1211 C/CS Mount Camera ... $110 \mathrm{~mm} \times 60 \mathrm{~mm} \times 60 \mathrm{~mm}$... $£ 110$
A-521 Micro Cased Camera $43 \mathrm{~mm} \times 48 \mathrm{~mm} \times 58 \mathrm{~mm}$... metal cased ... $\mathbf{5 1 2 0}$
6001-A High Resolution COLOUR Cameras (420 lines) ... 0.45 lux ... $£ 210$
Outdoor Camera Housings ... Aluminium ... £45 Camera Mounting Brackets ... Universal Mounting ... $£ 5.95$
Camera Switchers ... for up to 8 Cameras ... $£ 85$
Auto Record Controllers ... Allow NORMAL VHS Videos to operate
like professional Time Lapse or Security Recorders ... $£ 75$
QUAD-1 Multi Vision Processors ... Digital Freeze ... Quad Pictures etc $£ 275$
QUAD-2 Full COLOUR QUAD version of QUAD-1 ... $£ 695$
SCI ... SCANNER ... 350 ${ }^{\circ}$ PAN ... Automatic / Manual ... £105
IRA ... Infra Red Illuminator for "Total Darkness Surveillance" ... 20m range ... $£ 125$
VMS-1 .. Video Motion Sensor ... replaced alarm sensors with totally electronic video monitoring system that detects changes in the video signal .. £175
C/CS Format lenses ... Premium $\mathbf{3 . 6 m m}=£ 22.50$ Superior $\mathbf{8 m m}=£ 27.50$
PLEASE NOTE:
AS A CONTINUED SPECIAL OFFER ALL THE ABOVE CAMERA AND ACCESSORY PRICES INCLUDE VAT AND CARRIAGE TO UK ADDRESSES

Government Surplus Electronics Equipment on Special Offer This Month

TIME Electronics $\mathbf{4 0 4 N} / 1021$ Voltage/Current Calibrators ... $\mathbf{0 . 0 5 \%}$ accuracy ... ONLY $\mathbf{£ 2 7 5}$
FRANKLIN Wavetek 3600 Power Line Disturbance Monitor + Printer ... LAST 2 NOW ONLY $£ 350$ MARCONI TF9693 + TF2361 + TF9695 VHF Sig Gen / Sweeper sets ... $1 \mathrm{Mhz}-300 \mathrm{Mhz}$... $0.01-100 \mathrm{Khz}$ sweep rate. .0 . $\mathbf{0} 0 \mathrm{db}$ attenuators ... INCL Cased Adaptor sets ... LAST FEW NOW ONLY $£ 125$
COMARK $2007+3$ "K" type probes ... 0.1° res ... $\pm 0.5 \%$ acc ... Cased As New ... ONLY ... $£ 65$ Other Digital Thermometers always in stock ... Please Phone
SINERGY TRILINE PC5A Energy Monitor LCD Screen ... Colour Plotter 1+3ph ... ONLY $£ 195$
MARCONI TF2300S FM/AM Mod Meter 3.5Mhz-1Ghz AM/AM ... ONLY $£ 75$
TEK 491 Spectrum Analysers ... 10Mhz to 2Ghz ... Few Left at ONLY $\mathbf{9 9 5}$
TEK $7603+7$ A18 $+7 B 50 \mathrm{~A} 4$ Channel 100 Mhz Scope ... Rack version ... FEW left ... Only $£ 325$ FARNELL TM8 Sampling RF Millivoltmeters 1 mV -3V 10Khz-1.5Ghz ... FEW left ... ONLY $£ 125$

MARCONI TF2603 RF Millivoltmeters + Accessory Kit ... LAST FEW ... ONLY £60
TEK 466 Storage Scopes ... Twin Trace and Timebase ... Dc-100MHz ... ONLY £475 TELEQUIPMENT D61A Scopes ... Twin Trace DC-20MHz ... ONLY $£ 120$
MARCONI TF2018 Signal Generators ... 80KHz-520MHz AM/FM ... Fully Digitally Synthesised Internal/External Modulation ... ONLY £995
OPEN 6 DAYS A WEEK
Mon-Fri 9am-6pm Sat 8am-4pm NO APPOINTMENTS NEEDED. CALLERS ALWAYS WELCOME All Prices are Ex VAT \& Carriage

Fig. 2. Argus Clearinghouse - a value added central access point. Provides topical guides to Internet only based resources.

AppCad is available. Its HP part number is HAPP-0001, and it has proved invaluable to me.
This small-scale package is described as a "unique combination of application notes and rf design tools combined with an interactive product selection guide". Its capability ranges from simple two port S parameter analysis to design of printed circuit spiral inductors. It can be downloaded from Intemet. Archie located the files only at ftp.funet.fi but FTP Search ${ }^{7}$ at Norway found two more sites both having newer files.
A rather different but equally useful catalogue on disc is available for K\&L Microwave Inc's rf signal resonator filters. Choose the desired characteristics, view the passband response to be given their catalogue number.
Having designed and simulated your circuit you need a printed circuit board layout package. PADS Software Inc. supplies professional circuit design software at suitable prices ${ }^{9}$. The company also offers a more restricted but perfectly usable shareware version with schematic editor and autorouteing, which I have used. The Electronic Design Software page mentioned in the last issue, describes its download from the SimTel archives, Fig. 5.
Now that prices have settled, I have finally replaced my $14.4 \mathrm{kbit} / \mathrm{s}$ modem used for the past two years with a a 28.8 k alternative. However, I still use $57,600 \mathrm{bit}$ /s serial port rate, not having upgraded to a 16550 -type uart. Since most data downloaded is already fully compressed, when Internet permits, the modem runs at full speed. Mostly, however, Internet is much slower, so it seems unnecessary to upgrade the serial card - at least until Internet access improves for the UK.

References

1. Adobe Systems Incorporated,p http://www.adobe.com/acrobat
2. Argus Associates Incorporated, http://www.clearinghouse.net
3. EENET Corporation, http://www.eenet.com
4. Stetcom Incorporated, http://www.webscope.com/elx
5. AVX Corporation, http://www.avxcorp/software
6. Microsim Corporation, http://www.microsim.com/
7. FTPSearch Trondheim Norway,
http://ftpsearch.unit.no/ftpsearch
8. K\&L Microwave Incorporated,
http://www.klmicrowave.com/klmicrowave/k\&l.html
9. PADS Software Incorporated, http://www.pads.com.

Fig. 5. PADS Software home page for pcb layout software. The company's shareware software can be downloaded or bought from shareware libraries.

Fig. 3. EENET Corporation service for electronics.
Provides listings of Internet and non-Internet based resources.

Fig. 4. Webscape division of Stetcom provides an exclusive directory. This is a good directory of electronic sources by product category.

NOW, THE BATLE IS OVER

The Phantom Power Box

48 volt microphone powering unit
Professional portable units operating from an internal PP3 battery or external DC supply

*Suitable for converting any microphone amplifier to P48 standard phantom power * High efficiency DC to DC converter for extended battery life * Accurate line balance for high common mode rejection * low noise and distortion

* Extensive RFI protection

The Balance Box (mic/line amplifier) - The Headphone Amplifier Box - The OneStop DIN rail mounting radio frequency interference filter and voltage transient protector) for voltage and current loop process signal lines

WE ONLY USE THE BEST TEST AND MEASUREMENT INSTRUMENTS ON OUR OWN PRODUCTS...

OSCILLOSCOPES

Over 34 models including: Digital, Analogue and Portables. Bandwidths from 5 MHz to 150 MHz . Sophisticated triggering. single and dual timebases, Multiple channels and large memory Dso's. Prices start from $£ 235$ (20MHz 2 Channel £399)

POWER SUPPLIES

Four separate ranges comprising of 40 models from low cost analogue displays to the latest high performance digital units. Providing up to 250 volts and 120 amps with Master-slave, RS 232 and GPIB are available on many models, as are optional rack mount facilities.

A UDIO VIDEO iF
Audio Oscillators, Analysers Wow and Flutter, Millivolt Meters and Distortion Meters Pattern
Generators, Vectorscopes, Waveform Monitors Video

Analysers and Noise Analysers.
Five models of AM/FM Standard RF Generators offering a
highly stable frequency range of IOKHz to 2GHz with
digital readouts for Level, Frequency, Modulation and
Memory address.

GENERAL PURPOSE Frequency Counters, Function Generators plus a complete range of accessories to complement the complete range of instruments.

...NOW YOU CAN DO THE SAME

If you like the idea of working with the best. contact us, we can provide brochures with a complete specification for all our measurement products.
Kenwood UK Ltd, Kenwood Mouse. Dulght ioad, Watiord MD1 8FB, England

$$
\begin{aligned}
& \text { TEL: +44 (0) } 1923218794 \\
& \text { FAX: +44 (0)1923212905 }
\end{aligned}
$$

Exclusive to Electronics World readers Electromail's catalogue on
 Plus the chance to win a CD-ROM development kit worth $£ 649$

 CD for just $£ 2.50$The Electromail CD-ROM Catalogue is an invaluable tool for anyone involved with electronics. Normally, this CD sells for $£ 5$, but Electromail is making it available - exclusively to Electronics World readers - at the special price of $£ 2.50$ while stocks last.

The Electromail CD-ROM Catalogue makes selecting the products you need - and ordering them - unbelievably quick and easy. It also puts an incredibly powerful source of technical reference at your fingertips

All you need is a 386 or higher PC compatible with 4Mbyte RAM, CD-ROM drive,
 VGA monitor, Windows 3.1^{TM} software and a mouse. Just click on the product screen and you get the choice of searching by product type, word or part word, stock number, manufacturer's part number - or any number you care to give a part you use regularly.
If you want to search for several items, Electromail has developed an idea called Virtual Page ${ }^{T M}$ that allows you to search and view all your selections together.

A wealth of technical data

 In addition to product information, certain product groups are backed by extra technical information. To find out more, all you do is click on another icon and a window appears containing the relevant RS data sheetThe Catalogue also helps you write your order form and prints it out for you - as well as maintaining a history of your recent orders.

The Electromail CD-ROM Catalogue is one of the most advanced technical product Catalogues available, and no one involved in electronics should be without it - at work or at home.
Please address all correspondence relating to this offer to Electromail, P.O, Box 33, Corby, Northants, NNI7 9EL, quoting reference number 234-4857. Tel: 01536 204555, fax: 01536405555.

Use this coupon to order your CD-ROM and/or enter the competition

Please send me copies of the Electromail CD-ROM Catalogue at the special reader offer price of $£ 2.50$ each, including VAT and P\&P. Total value $£$.

Name
Address

Postcode
Tel.
Please debit my VISA \square Mastercard \square Amex \square Delta (please tick one box)
Card No
Expiry date

Or, I enclose a cheque for the total order value

 of $£$.Post your order to Electromail, P.O, Box 33, Corby, Northants, NN17 9EL. Tel: 015636 204 5555. Fax: 01536405555.

Competition

No CD-ROM purchase necessary. Tick here if you wish to enter the competition only \square

Questions

1. How many search functions does the Electromail CD-ROM offer?
2. What is the unique feature that enables you to see several selected items on screen at the same time?
(tick one box)
Product preview \square
Slide show
Virtual page \square
3. In addition to full Electromail Catalogue information, what other powerful source of data does the Catalogue contain? (tick one box)

OEM catalogues \square
Full RS data sheet library a
Press cuttings trom this magazine \square
4. Write in the most apt or appropriate way, in fewer than 12 words how you feel the Electromail Catalogue will add advantages to your technical endeavours.

Signed

Your pc is a programmable event timer capable of precision gating up to 55 ms . Alan Bradley describes how to configure it.

Timer channel 2 is present in all pcs. It is normally used as a variable frequency square wave generator for the pc's speaker. But this timer can also be used as an interval timer that is independent of the processor type and speed. This article describes how.

Overview

Timer 2 is within the pc's programmable universal counter/timer. This IC contains three counter/timers each with an associated control register. The original IBM pc used an Intel 8253, the IBM AT an Intel 8254. Modern clones may use custom ICs, but all have the same programming model. This universal counter/timer operates at 1.193 MHz irrespective of the processor's type or clock speed. All three counters are 16 bits wide.

The three counter/timer channels, namely 0 ,

Event timing via the pc

1 and 2 , are accessed through ports $40_{16}, 41_{16}$ and 42_{16} respectively within the pc's i/o port address space. The command register is located at port 43_{16}. It selects the mode for reading and writing values to the chosen channel, selects the type of use for that channel, and selects the channel to which the previous selections apply. Examples of uses for the channel are square wave generation, one shot pulse production and terminal down count.

Applying the counter/timer

Timer channel 0 is used to calculate the time of day. This channel is set up by the bios to give 18.2 pulses per second. Each pulse causes the timer interrupt, IRQ 0 , after which the counter is reset. A four-byte counter for these timer pulses is stored in the bios data area at $0040: 006 \mathrm{C}_{16}$. This counter also synchronises
disk operations. Reprogramming it might therefore damage disk reads and writes.
Timer channel 1 is used by ram refresh and also by disk operations. Reprogramming this channel may also cause loss of disk data.
Timer channel 2 is connected to the pc's internal speaker, generating the variable frequency square waves necessary to make simple sounds. The speaker can be turned on and off via the pc's parallel-peripheral interface chip. As this channel controls no vital hardware, and the speaker can be turned off, it can be set up as a timer. A possible use is determining the waiting period for an analogue to digital conversion.

The 8255 programmable peripheral Timer 2 is also controlled by the pc's 8255 peripheral interface chip, or PPI. This device

Applying the timer

This pseudo-code program illustrates how the pc can form a monostable multivibrator by using timer-channel 2 in conjunction with the parallel printer port. The printer port is provides the digital i / o lines for the trigger and o/p.
This pc monostable is not retriggerable, although it could easily be made so. It has a timed period of 40 ms . The parallel-port input line that normally signals printer error, abbreviated PE , is used as the monostable trigger input. If it goes low, the monostable is triggered. Parallel port output line D_{0} is used as the monostable output. It goes high when triggered, remains high until chosen time period has passed.

```
Pseudo code for a 40ms monostable multivibrator
Find location of printer port registers.
Reset monostable: set its output low: ie set printer port
    output data line DO low (pin 2 on D connector).
Set up PPI B register to allow timer-channel 2 to be used
    as a down counter
Set up Timer channel 2 to select down count mode, a binary
    count, and READ/WRITE msb and lsb consecutively mode.
For a downcount from FFFF16
    Calculate FinalTimerDownCount for a 40ms delay.
Print title message.
WHILE (forever)
    IF printer port input pin PE (pin 12 on D
    connector) is low then:
    Trigger monostable output: ie set printer port data
    output line Do high.
    Load counter with maximum count value (FFFF16) and
    start down count.
    Print "triggered: output ( }\mp@subsup{D}{0}{}\mathrm{ ) goes high"
        Wait for 40ms
```

```
Reset monostable: ie set printer port D D (pin 2
on D connector) low.
    Print "Reset: output (D}\mp@subsup{D}{0}{})\mathrm{ goes low"
        END_IF
```

 END_WHILE
 END

The pc parallel port
A pc can have up to three parallel printer ports LPT1, LPT2, and LPT3. Each port interface has three 8bit registers, the data latch, the status register and the control register.

Data latch: writing to this register causes the byte sent to be latched and appear on the parallel port's 25 -way D connector on pins 2 to 9 . Normally reading this register returns the contents of the latch.

Status register: this register represents input lines from the printer with functions as follows: b_{7} BUSY, b_{6} ACK, b_{5} PE b_{4} SLCT and $b_{3} E R R$. Bits b_{2-0} are unused. This is a read only register. The BUSY input is inverted between the D connector and the register.

Control register. Bit functions of this register are, b_{4} IRQ DISABLE, b_{3} SLCTINP, b_{2} INIT, b_{1} AUTOFEED, b_{0} STROBE. Bits b_{7-} ${ }_{5}$ are not used.
This is a latch holding printer control signals. Interrupt is disabled on a falling ACK input when b_{4} is low. I always disable this interrupt as it is rarely used by printer software so the associated IRQ channels 5 and 7 are considered free, and available for other expansion cards.
STROBE, AUTOFEED and SLCT INPUT are inverted between the register and D connector output pins although this inversion is corrected again when the control register is read.

PC ENGINEERING

controls the keyboard and is used to obtain information about the pc's configuration. It also controls the pc speaker and the speaker's associated timer on channel 2
Port A of the PPI is a read/write port associated with the keyboard. Port B controls the reading mode for ports A and C . It also controls the speaker and timer channel 2. Port B is located at port 61_{16} in the pc's i/o address space.

Using timer 2 as an interval timer

I wrote the interval timing code in a mixture of C and assembly language. This is because the C compiler generated a much slower shift-by- 8 loop. It did not make use of the 80×86 processor's ability to treat 16 -bit data registers as 8 -bit pairs, ie $\mathrm{AX}=\mathrm{AH}+\mathrm{AL}$, $\mathrm{BX}=\mathrm{BH}+\mathrm{BL}, \mathrm{CX}=\mathrm{CH}+\mathrm{CL}$ and $\mathrm{DX}=\mathrm{DH}+\mathrm{DL}$
The 80×86 has four more registers, SP, BP, SI and DI. These are normally used as pointer and index registers. In my program I used the DI register simply to store 16 -bit data. Turbo

Block diagram of the pc's 8253 programmable universal counter/timer. Timer channel 2 counting is enabled when GATE2 is taken high.

```
Programmable peripheral interface
B register bit usage
PPI B register PC i/o address is 061 16.
Bit Purpose
O Set Timer channel }2\mathrm{ gate i/p high or low
1 Link/unlink timer 2o/p from speaker:
    0=off if unlinked
2 Must be 0
3 Read high or low dip switches
4 0=enable ram parity check, 1=disable
5 0=enable i/o channel check
0=hold keyboard clock low
7 0=enable keyboard, 1=disable
```

C uses SP, BP and SI itself. The DX data register is also used in some IN/OUT instructions cx results and so cannot be used by my program. Dx
The 8086 has four segment registers, namely CS, DS, SS, ES. These allow addressing over 64 K . The C compiler sets these to appropriate values automatically. The 8086 has an instruction pointer, similar to a program counter. It also has a FLAGS register, recording the result of instructions such as NONZERO and OVERFLOW.
Counting is interrupted if the GATE2 input is switched to a low level and restarted when the GATE2 input is switched back to a high level. Hence GATE2 should be high for a down counting interval timer.
Therefore my program sets bit 0 of the PPI B register to logic 1. I also disable the pc speaker by setting bit 1 of the PPI B register to 0 . Inset 1 shows the Timer control register bit pattern required to select down count mode for Timer channel 2 and the timer control register bit pattern required to perform a latch operation on Timer channel 2.
After the latching command has been writ-

15	87		Accumulator	
AX	AH	AL		
X	BH	BL	Base	
cx	CH	CL	Count	
Dx	DH	DL	Data	

SP, Stack pointer
BP, Base pointer
SI, Source index
DI, Destination index

	CS		
	DS		
SS			
ES		\quad	Segment
:---			
registers			

80×86 registers, common to all IBM pcs. My C compiler could not treat 16-bit registers as 8-bit pairs, and a shift-by-eight loop is much slower than it needs to be. I used assembly language instead.

Control register bit usage for the $\mathbf{p c}^{\prime} \mathbf{s} 8253$ timer ic
PC I/O address of timer control register is 043 hex.

Location	Bits 7,6	Bits 5,4	Bits 3,2,1	Bit 0
Function	Select counter channel	Select latch operation or type of read/write	Mode	Select binary or BCD count
Code	Number of the channel to be programmed (0,1 or 2)	00 Latch current value of counter (done before a read operation) 01=Read/Load Isb $10=$ Read/Write msb $11=$ Read/Write Isb followed by msb	Select counter/ timer mode $000=$ Terminal down count 001 = Programmable one shot $\times 10=$ Rate Generator $\times 11=$ Square Wave Generator $100=$ Software triggered strobe 101 = Hardware triggered strobe	$\begin{aligned} & 1=\text { BCD } \\ & 0=\text { Binary } \end{aligned}$

C pseudo code for pc timing

Calculate final count value for a 10μ s delay. Calculate number of clock ticks in a $40,000 \mu \mathrm{~s}$ delay.
PRINT"Preparing Count Down"
FINAL COUNT VALUE FOR $40,000 \mu \mathrm{~s}$ DELAY:=FFFF-(number of clock ticks in a $40,000 \mu \mathrm{~s}$ delay)
Now set up Port B of the PPI so that Timer2 can be used as a terminal down counter and disable speaker: ie set Timer gate 2 high (via PPI Port B, bit 0) (allow counting in Timer channel 2) and disable speaker (via PPI Port B, bit 1)
Set Timer Gate 2 HIGH (allow counting)
Now set up channel 2 of the timer to count in binary, perform a terminal down count and choose option: read/write Isb, msb one after the other, by writing appropriate value to the timer control register.
PRINT"Starting Count Down"
write FF_{16} (lsb) to timer channel 2
write FF_{16} (msb) to timer channel 2
REM: down count from FFFF_{16} has now begun.
Loop until $10 \mu \mathrm{~s}$ has passed
Print"Ten microseconds have now passed"
Loop until whole $40,000 \mu$ s delay has elapsed.
PRINT"Entire chosen timed interval of $40,000 \mu \mathrm{~s}=40 \mathrm{~ms}$ has now passed"
END
ten to the timer control register, the latched value can be read from timer channel 2 $\left(042_{16}\right)$, least-significant bit first. According to the 8253 data sheet, a counter value of 0000 can not be read.

Programming the chosen delay

First calculate the number of counter clock ticks that equal the chosen delay interval. This is the number which the counter must count down past before the chosen interval has passed. The number of timer clock ticks before interval has passed is equal to the chosen delay interval in microseconds, multiplied by 1.193 MHz .
I always start the down count from FFFF $_{16}$. In this way, when the current counter value is less than or equal to FFFF_{16} minus the number of clock ticks before interval has passed, then the chosen delay interval will have expired. For example, for a $40,000 \mu$ s delay:

> No. of clock ticks=
> $40,000 \times 1.193=47720=$ BA 68_{16}

Final timer downcount=
$\mathrm{FFFF}_{16}-$ BA68 $_{16}=4597_{16}$.
The maximum delay is 55 ms .

Example timing program in \mathbf{C}

This timing program example is derived from my printer port sound sampler program, where I needed to wait $10 \mu \mathrm{~s}$ for the a-to-d converter to complete a conversion, process this value, then wait until the end of the sample period before repeating the loop.

Outlined in the timer software panel Inset 2, this routine waits until the first 10μ s of a $40,000 \mu \mathrm{~s}$ delay has elapsed, then waits until the whole $40,000 \mu \mathrm{~s}$ delay has passed.

C and Assembler details of Timer.C

The program compiles under Borland Turbo C++ and Borland C++. This allows the 80×86 registers to be used by name within a C program's asm \{ \} assembly blocks. Registers can also be accessed from C by preceding the register name with an underscore, eg _AX,_AH, _AL...
The program uses \# defines to give PPI Port B, and timer control register and timer channel 2 port addresses meaningful names.

Timer channel 2 is read by sending a latch command via the Control register, then simply reading the lsb, then the msb from Timer channel 2, port 042_{16}.

Software on disk

The Timer.c routine and the full monostable example in c can be obtained by sending a cheque of postal order for $£ 7.50$ to Electronics World's editorial offices. Please mark the envelope Timer software and make your cheque payable to Reed Business Publishing Group.

Timer control register usage for interval timing.

PC i/o address 043_{16}.
Using terminal down count mode, this is timer control register bit usage to set up a down count.

Timer control register bit usage to perform a latch operation, current counter value prior to a read operation.
$\left.\begin{array}{llllllll}\text { Bit } & \mathbf{7} & \mathbf{6} & \mathbf{5} & \mathbf{4} & \mathbf{3} & \mathbf{2} & \mathbf{1} \\ \text { Setting } & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Accuracy of the pc as a timer

Instructions for reading and checking the current value of timer channel 2 take a finite amount of time, adding inaccuracy to the timing. I have calculated the worst-case delay between timer-channel 2 reaching its chosen final count value. With the program Timer.c, described later, the worst case inaccuracy for an 8 MHz ISA i/o bus pc should be $7.144 \mu \mathrm{~s}$:

Calculation of Timer.c program timing limits:
$\left.\begin{array}{llll} & \begin{array}{l}\text { 80x86 instr }\end{array} & \mathbf{8 M H z} \text { i/o cycle } & 80386 \text { cycle } \\ \text { START TIMER channel } 2 \text { count: } \\ \text { mov reg, immed } \\ \text { OUT immed, al } \\ \text { OUT immed,al }\end{array}\right)$ (no jump occurs)
Total clock cycles=54 i/o clock+13 processor clock cycles
For a 33 MHz 386 pc this would give a worst-case error of:
inaccuracy $=$ i/o clock delay+processor clock delay
$=6.75 \mu \mathrm{~s}+0.4 \mu \mathrm{~s}=7.144 \mu \mathrm{~s}$
According to my assembly language book, IN/OUT 386/486 instructions vary in the number of clock cycles they need. I have used the slowest timing, which is similar to that of the 8086/8. The 286 IN/OUT instructions are about twice as fast as those of an 8086/8.
Greater accuracy in small delays would need interrupt programming, which is more difficult to write. This would involve reprogramming timer-channel 0 , which needs care to avoid affecting disk operations; timer-channel 2 has no associated interrupt.
Small delays are often needed. When reading an a-to-d converter value for example, the $7 \mu \mathrm{~s}$ inaccuracy can be important. In longer delays the $7 \mu \mathrm{~s}$ may be insignificant. The inaccuracy should reduce on local-bus machines and on fast ISA buses that unofficially run at 11 MHz .

PC ENGINEERING

C code for controlling the pc's timer

This program, Timer.c, demonstrates using timer 2 as a down counter to measure time intervals. Written in Turbo c with in-line 8086 assembler. Small memory model: 64 K code 64 K data and stack. Register keyword enabled.
\#include <stdio.h>
\#include<dos.h>
\#include<conio.h>
\#include<stdlib.h>
\#include<io.h>
/* Prog PPI port B, TimerControl, \& Timer2 regs */
\#define PPIportB 0x061
\#define TimerCtlReg 0x043
\#define Timer2 0x042
/* 'register' vars: \#defs for direct access to */
/* DI,CX,CH,CL via meaningful names */
\#define FINALTIMERDWNCOUNT DI
\#define MSB CH
\#define LSB CL
\#define COUNT CX
/* if counter starts at FFFF_{16} then : */
/* (val of cntr after $10 \mu \mathrm{~s}) \geq \mathrm{FFFF}-(10 \mu \mathrm{~s} * 1.193 \mathrm{MHz})$ */
/* thus tenMicroSecDwnCount=(FFFF-C)hex=FFF3hex */
\#define tenMicroSecDwnCount Oxfff3
/* clock frequency is 1.193 MHz */
/* \#def to set No of 1.193 MHz clock tick decrements)*/
/* to pass before chosen timed interval has passed: */
/* noofclockticks=chosen interval in $\mu \mathrm{s} * 1.193 \mathrm{MHz}$ */
/* $=40,000 * 1.193=47720$ dec=BA68hex */
\#define NoOfClockTicks_inFortyMilliSecDelay 0xba68
/* temporary store for B register of PPI IC */
unsigned char breg;
int main() (
puts("\nPreparing count down\n");
/* set FINALTIMERDWNCOUNT: /*
/* = Oxffff - NoofClockTicks_in... delay */
asm
mov ax, Oxffff;
sub ax, NoOfClockTicks_inFortyMilliSecDelay; mov FINALTIMERDWNCOUNT, ax
\}
/*Set portB of PPI for timer2 as down counter instead of driving speaker */
/* lst get a copy of PPI port's B register *! breg = inp(PPIportB);
/* logic OR with 00000001 to set bit 0 (timer gate)
high */ breg $=$ breg $\mid 0 x 01$
/* AND with 11111101 to set bit 1 (spkr data) off */ breg = breg \& 0xfd;
/* set up 8255 PPI port B for speaker off \& timer gate high */ outp(PPIportB , breg);
/* Now set up channel 2 (Timer2) of Timer chip:- */
/* send 10110000 to Timer control reg to select: */
/* Channel2,oper 11 (r / w both h\&l
bytes), terminalcount, binary data */ outp (TimerCtlReg, 0xb0); puts("\nStarting count down\n");
/* set value (FFFF) from which timer counts down */ asm
/* first $0 / p$ count low byte (FF) */ mov al, Oxff;
out Timer2, al
/* o/p high byte (FF); timer starts on writing high byte */
out Timer2, al
)
/* down count from ffff has now started */

* now wait until ten microseconds has passed */
/* 10000000 is 8 hex*/
/* 10:ch 2, $00:$ ctr latch, $000:$ term cnt, $0:$ bin data*/
/*store above in ah for speed*/
asm\{ mov ah , 0×80 \}
/*loop until 10μ s or more has passed */
label1DO: asm
\{
/* read ctr latch command from ah into al for I/O
instr */
mov al, ah
/*now send latch command to timer*/ out TimerCtlReg, al
/* now read lsb from timer2 */ in al, Timer2
* now store lsb */ mov LSB, al
/* now read msb from timer2*/ in al, Timer2
/*now move msb into highbyte of counT */ mov MSB, al
* while COUNT holds value > tenMicrosecDwncount */
/* ie while timer2 value > tenMicroSecDwnCount*/ cmp COUNT, tenMicroSecDwnCount ja labelldo
\} /* WHILE COUNT > tenMicroSecDwnCount */
puts("InTen microseconds has now passed\n");
/* now wait until end of chosen interval */
/* (wait for count down past FINALTIMERDOWNCOUNT) */
/* 10:chann 2, 00:counter latch command, */
/* 000:terminal down cnt, 0:bin data */
/* store above 10000000 b byte in ah for speed*/ asm $\{$ mov ah , 0×80
label2DO: asm
1
/* read ctr latch command from ah into al for i/o instr */ mov al, ah
/* send latch (0×80) command to Timer*/ out TimerCtlReg, al
/* read lsb from timer 2 */ in al, Timer2
/* store lsb in low byte of count*/ mov LSB, al
/* read msb from timer2*/ in al, Timer2
/*move msb into highbyte of count */ mov MSB, al
/* while timer2 value > FINALTIMERDWNCOUNT*/ cmp COUNT, FINALTIMERDWNCOUNT ja label2DO
\}
/* NOTE ! timer count value of 0000 cannot be read */
printf(
" InEntire chosen timed interval of $40,000 \mu \mathrm{~s}=$ 40 msecs has now passed $\backslash n \backslash n^{\prime \prime}$);
return 0 ;
\}

Field Electric Ltd. Tel: 01438-353781 Fax: 01438359397 Mobile: 0836-640328 Unit 2, Marymead Workshops, Willows Link, Stevenage, Herts. SG2 8AB	VISA 97 $A B$
TEAC New \& Boxed N/Book: LTop Floppy Disc Drive FD 05HF 4630V	$£ 24$
Sony 9 " Super Fine Pitch Trinitron RGB VDU £	£35 c/p 12.50
AT Keyboards for IBM Compatibles	¢5.99
$12^{\prime \prime}$ Colour SVGA 800×600 NEC	£45.95 c/p 14
Marconi Inst = Data Comms Tester	£385
Marconi Inst = Digital Line Monitor	£350
Marconi Inst = Dlgital Analyser	£375
Farnell PSU 0-70V 0-5A/0-30V 0-10A	£245
Siemens Data Line Analyser K1190 with manual	£300
Black Star Multimeter 3225	$£ 55$
Tektronix DAS9100 Digital Analysis System	£175
Tektronix 7 A18 D.T. Amp	£75
Tektronix 7B53A D.T. Base	$£ 75$
Tektronix 7A15A Amp	£150
Tektronix 7511 Diff $=$ Comp $=$	£100
12 VAC 200 Watt Transformer	£15
27 VAC 30A Transformer New	£15
Tseng Labs 1 Mb 16 bit ISA SVGA Card $£ 16$	£16.75 c/p 4.00
Contains 50W PSU. Fan 2×16 bit. 1×8 bit Slot. New \& Boxed	ed £24.99
Philips PM 3240. 50 Mhz. Scope D/Trace	£165
Philips PM 323310 Mhz D/Trace Scope	£65
Leader LMV 181A AC Millivoltmeter	£145
Racal Inst. 9915 UHF Freq: Meter 500 Mhz	£100
Racal Inst. 9916 UHF Freq: Counter 500Mhz	£145
HP 8413A Phase Gain Ind:	$¢ 90$
HP 74758 Pen Plotter RS232	£55
HP Colour Pro 8 Pen Plotter RS232	£75
HP 7470A Plotter HPIB	$£ 95$
Compaq 14" Mono VGA (Paper White) Refurb: 720×400. Text	
640×480 Graphics	£29.50
Roland DG XY DXY 980A 8 Pen Plotter. Needs PSU	£60
Roland DG XY DXY 880A 8 Pen Plotter. Needs PSU	£60
14" VGA Colour Monitors. Various makes from	£75
PLOTTERS • COMPUTERS - COMMUNICATIONS • PSU • VDU'S • VIDEO - FANS • TEST - CABLE • NETWORK • PRINTERS • disk drives always in stock. overseas ena. Welcome. TELEPHONE ORDERS ACCEPTED. C/P DETAILS PLEASE RING. ALL PRICES PLUS 17.5% VAT.	

CIRCLE NO. 135 ON REPL Y CARD
‘OFF-AIR’ FREQUENCY STANDARD CIRCLE NO. 136

- Provides $10 \mathrm{MHz}, 5 \mathrm{MHz} \& 1 \mathrm{MHz}$

- For ADOED VALUE also phase locks to ALLOUIS (ceslum
controlled and traceable to OP - French
- Brtush deslgned a and Bntish manufactured

TEST EQUIPMENT Circleno. i3:7
We are well known for our quality, new and used Test Equipment. Our list is extensive, ranging through most disciplines. Call for details and a complete list

Marconi Spectrum Analyser	Marconi LCR Bridge TF2700.....£149
TF2370 $£ 895$	Marconi LCR Bridge
Bradley Oscilloscope Calibrator	TF1313A 125
156...................................... $£ 395$	Mahogany Cased 5kV Megger
Bird Termaline, 2.5kW 50』.......£295	(Collectors).......................... £POA
Philips Function Generator	Taylor Valve Tester 474 559
PM5134................................£995	Philips RF Generator PM5326 £395
Hitachi Oscilloscope V222,	HP Frequency Counter
20MHz£249	HP5340................................£595
Rapid Oscilloscope 7020,	Taylor AM/FM Generator 62A£69
20 MHz£249	Marconi Attenuator TF2163£195
Philips Pulse Generator	RE Mega-Ohmmeter/pica-
PM5716...............................£495	Ammeter IM6.........................£295
Amprobe AC Recorder LAV3X.... $\mathbf{8 7 5}$	Ferrograph Recorder test Set
Amprobe Temperature Recorder	RTS2.....................................£95
LT8100.................................. $\mathbf{8 7 5}$	HP Vector Voltmeter
Emerson UPS 1.5kW $£ 599$	HP8405A..............................£24

2. HALCYON ELECTRONICS vsA
3. KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR SHOP HOURS 9-5.30 MON-SAT. TEL 0181-542 6383. FAX 0181-542 0340

When the success of your products depends on radio telemetry modules, you need a business partner you can trust. A skilled and experienced manufacturer that can offer modules of the highest quality, operating over a wide range of frequencies.

In other words, a partner like Wood \& Douglas. Founded on technical excellence, Wood \& Douglas is a British company that specialises in the design, development and production of radio-based products. With over 30 staff dedicated to meeting your requirements, the company is able to provide true one-stop purchasing - whatever your RTM needs.

All radio modules are highly functional, capable of meeting a wide range of requirements. Designed to offer efficient, easy-to-use radio telemetry components for system designers, they can open up a whole new world of product possibilities.

From portable bar-code readers to earthquake monitors, Wood \& Douglas can help you make the most of the opportunities in radio telemetry.

To find out more about the possibilities, contact.

Lattice House, Baughurst, Tadley, Hampshire RG26 5LP, England Telephone: 01189811444 Fax: 01189811567 email: info@woodanddouglas.co.uk web site: http://www.woodand douglas.co.uk

Abstract

Once a component is packaged, it is notoriously difficult to check the integrity of the package's content.

 Steve Martell describes a new ultrasonic defect detection method that allows surprisingly detailed board inspection.Fig. 1. Scan head visits each on-board component to perform non-destructive acoustic imaging for hidden internal defects.

The term 'hidden internal defect' has particular meaning to companies who manufacture or mount plastic integrated circuit packages. Hidden defects are defects in, or related to, the physical structure of the package; they include delaminations, disbonds, voids, cracks, and the like. They cannot be seen optically, and few can be detected by xray. Still, it is vital to find these defects. They frequently worsen due to thermal cycling causing the system they are installed in to fail unexpectedly. In short, hidden internal defects are flaws just waiting to turn into field failures.

Understandably, much research has gone into the characterising of the numerous types of hidden defects which may be lurking in an IC package. Delaminations in the die attach material are one type. Military and commercial specifications generally state, for example, that small delaminations in the die attach are not sufficient cause to reject the IC package unless the delaminations happen to be at the corners of the die.
Even small comer delaminations, experience has shown, will grow because of the stresses located there. Eventually they detach so much of the die from the die paddle that heat sink capability is lost. The die then overheats and fails. Other hidden defects - die face delaminations of the molding compound, for example, or voids in the underfill near a flip-chip bump - are considered lethal in virtually all applications.

The sound option

Acoustic microscopes are by far the most useful tools for finding and characterising hidden internal defects. Almost all such defects consist of gaps in material, and very-high-frequency ultrasound is extremely sensitive to gap-type defects.
Failure analysis laboratories use acoustic microscopes to image the interior of IC packages for 'popcorn' cracks, lead frame delaminations, voids (bubbles) in the molding compound, cracked die, and many other defects. Some defects are imaged even though they do not consist of gaps: tilted die and irregular dis-
tribution of filler particles in the molding compound epoxy are two examples.

Finding hidden defects as early as possible in the production process is important to makers and users of IC packages. Failure analysts therefore often look at packages fresh from the mold machine which has encapsulated the dielead frame assembly in epoxy. But failures can occur at many points in production, and it is not unusual for a manufacturer to be faced with a large quantity of populated boards some of whose IC packages are known to harbour hidden defects. This is a very significant inspection problem; no one wants to remove all of the packages from all the boards and submit each package to acoustic inspection.

A scanner for board-level inspection

A new system performs acoustic microscopy inspection on IC packages while they are still mounted on the board. It handles different types, sizes and elevations of IC packages on the same board, and can also image ceramic chip capacitors and some types of resistors.
The system operates automatically, can handle any number of components per board, and can handle two-sided boards. Its output shows both good and bad components and the locations of internal defects. Sonoscan, Inc. of Bensenville Illinois, the firm which developed and manufactures the system, call it UltraBoard.
Observing the system in operation, you see the board being inspected resting in a shallow water bath; a fluid is necessary to acoustically 'couple' the components to the transducer above the board, since very-high-frequency ultrasound does not travel through air.
The transducer is guided by software which has learned the coordinates of each IC package or other component it will inspect. Following this route, the transducer arrives at each component and then, because components are sometimes not placed precisely, uses ultrasound to find the actual location of the component. It then spends about 15 s scanning the component.
As the head scans, very high frequency
ultrasound - generally between 10 MHz and 100 MHz - is beamed into the component. The return echoes from the interior of the component are collected by the same transducer for analysis.
When ultrasound is emitted by the transducer, it travels through the water couplant and enters the top surface of the IC package beneath the transducer. The speed of ultrasound through the various materials inside the IC package varies from about $3000 \mathrm{~m} / \mathrm{s}$ to about $9000 \mathrm{~m} / \mathrm{s}$.
In a typical IC package, ultrasound travels first through the epoxy at the top of the device, and then encounters the face of the die. At this point some of the ultrasound is reflected back to the transducer, which has already switched over to its receiving mode. Data in this return echo is used to image the die face. At the same time, some ultrasound passes downward into the die itself, where it successively encounters the die-to-die attach interface, the die attach material itself, and the die attach-todie paddle interface. Each interface in turn sends its return echo back to the transducer.

Returned signal

Each echo arrives back at the transducer bearing a given amplitude, or intensity, as well as polarity information. Polarity describes the change in acoustic velocity between two successive materials. If the ultrasound passes from a material of lower acoustic velocity to a material of higher acoustic velocity, the polarity change is positive; if the reverse, the polarity change is negative.
If no defects are present in the IC package, the pseudocolor image which appears on the monitor will show the die, the die paddle, the lead frame, and any other normal internal features. If a hidden internal defect is present, though, something quite different occurs.
Suppose there is a delamination at the top of the die, between the die surface and the molding compound. When ultrasound strikes this

Fig. 2. Digital image analysis of a single UltraBoard image. Original image with 256 grey levels - here in pseudocolor - is reduced to two levels at left for analysis. 'Window' refers to whole area of the chip. 34.6% of whole die attach area is delaminated, as is 75.0% of the upper left quadrant of the chip. 'Large' gives percentage covered by largest delamination in each area; i.e., the large delamination in the top-left quadrant covers 19.5% of chip area.

Fig. 3. Optical photograph of ceramic chip capacitor mounted on board.

Fig. 4. Effect of electronic gating to limit internal level being imaged: when gating is near top surface, multilayer ceramic chip capacitor shown in Fig. 2 displays only merest suggestion of an internal crack at its lower edge.

Fig. 5. When gating is lowered to mid-point of capacitor, substantial internal cracking becomes evident.
delamination - which is a gap - all of the ultrasound is reflected back to the transducer. Just as very-high-frequency ultrasound will not travel through air, it will not travel across an internal gap. The thickness of the gap is unimportant; if two internal layers are in contact but not bonded, all of the ultrasound is still reflected.
The amplitude of the echo returned from a gap is of course high; this is a very energetic echo. The echo also contains its own polarity information. As the transducer scans back and forth over the area of the IC package, it is collecting data points from hundreds or thousands of return echoes, including those echoes returned by gap-type defects at interfaces or in the bulk of a material. The data points are assembled electronically to produce the visible crt image of the interior of the IC package, and to analyse the package in various ways.
The echoes returning from the interior of the package are also separated in time as they arrive back at the transducer. In most applications, the echoes are electronically gated to accept echoes only from a defined level within the package and to ignore all other echoes. The die attach, for example, may be a suspected location for defects such as voids or delaminations.
Return echoes are then gated to accept echoes from the bulk of the die attach materi-
al and from the two interfaces at top and bottom of the die attach material. In other situations, gating may be wide or narrow, depending on the thickness of the zone to be inspected. Multiple gates - die face plus die attach, for example - can also be used.

And for smaller defects...

In addition to large defects, such as a delamination covering the entire face of a die, very-high-frequency ultrasound is capable of imaging very tiny defects and of detecting even smaller ones. Ultrasound of 100 MHz , for example, is used analytically to map the distribution of individual filler particles in molding compounds.
Sonoscan has recently developed and introduced a long-reach transducer which puts out ultrasound at the very high frequency of 180 MHz . This transducer was specifically designed to image the solder bumps and underfill which lie beneath the die in flip-chip devices. Its resolution is so good that it has imaged voids and cracks in the interior of individual solder bumps.

Output methods

Information from a board whose components have been scanned by the system takes several forms. The acoustic representation of each image is stored; this image is not normally
viewed, but is available for analytical purposes if it is needed.
If a defect is present, the data is also used to perform an area analysis of the defect. The analysis is based on definitions set up by the user of the system. A die attach delamination, for example, may be acceptable if it covers less than a given percentage of the die attach area, or if it is in a given location, for example, anywhere other than a corner. Similar definitions can be set up for die face delaminations, cracks in the molding compound, delaminations along the lead frame, and numerous other defect types.
Software can sort the components on the board into any defined number of accept/reject categories. Often three categories - accept, marginal, and reject - are used, because this gives the user the opportunity to examine the images of marginal components before making a decision about rework.
The system also prints out a table for each board, showing the location of each inspected component and its accept/reject status. The table then travels with the board as a guide to the rework which will transform it into a defect-free board.

Sonoscan, Inc. is at 530 East Green St, Bensenville IL USA 60106, phone: 630766 7088, Fax: 630 766-4603, E-mail: sonoscan@worldnet.att.com.

aiv

Cooke International Services
 Cooke Intern wishes you a

SANTA'S STOREHOUSE for all your TEST EQUIPMENT also OPERATING AND SERVICE MANUALS plus accessories

Gould. $054000 . \mathrm{DC}-10 \mathrm{MHz}$. Por table Digital Storage Scope with; OS4002. Analogue $0 / \mathrm{P}$ to $\mathrm{X}-\mathrm{Y}$ or Y-T Recorder Hitachi. V212. DC-20M Hz. Portable Dual Trace Scope(6) $£ 250$ Hitachi. V222. DC-20MHz. Portable Dual Trace Scope \& Ch 1 Mag(8) $£ 255$ Kikusui. COS5020-PC.DC-20MHz. Por table Dual Trace Scope(1) £225 Kikusui. COS5021. DC-20MHz. Portable Dual Trace Scope \& Delay etc......(1) £225 Tek. 5440 . DC-50MHz. Three Slot Rack-mount Mainframe with Read Out..(1) $£ 95$ Tek. 7504. DC- 90 MHz . Four Slot Mainframe Tek. 7603. DC-100MHz. Three Slot Mainframe with Read Out $£ 135$ Tek. 7603. DC-100MHz. Three Slot Rack-mount Mainframe \& Read Out (2) $£ 125$ Tek 5A19N. DC-2MHz. Differential Amp Plug In ...(2) £35 Tek. 5A48. DC-50MHz. Dual Trace Amp Plug In . \qquad Tek. 5B10N. Single Sweep Time Base Plug In. 100 ns
Tek. 5 B 12 N . Dual Time Base Plug In. $100 \mathrm{~ms} 5 \mathrm{~s} /$ div.
Tek. 5B12N. Dual Time Base Plug ln. $100 \mathrm{~ms} 5 \mathrm{~s} / \mathrm{div}$.....
Tek. 7A12. DC-105MHz. Dual Trace Amplifier Plug In with Offset(3) $£ 130$
Tek. 7A18. DC-75MHz Dual Trace Amp Plug In ..(5) $£ 128$
Tek. 7A26. DC-200MHz. Dual Trace Amp Plug .. $£ 187$
Tek. 7B53A. Dual Time Base. 5ns5s/div. Triggering to 100 MHz(10) $£ 149$
Tek. 7B53AN. Dual Time Base Plug In without Read Out Opt(1) £145
Tek. 7D10. Digital Events Delay Plug in. 1 to 10.7 Events................................. $£ 81$
Tek. 7SII. Sampling Unit $2 \mathrm{mV}-200 \mathrm{mV}$ /div... $£ 450$
Tek. S-3A. Sampling Head. DC-1GHz .. (2) $_{180}$
Telequipment. D1010. Portable DC-10MHz Dual Trace Scope......................(1) $£ 95$ Telequipment. D63. DC-15MHz. Scope with $2 \times$ V5 Single Amplifiers...........(1) £135
Tek. 5440 . DC. 50 MHz . Three Slot Rack-mount Mainframe with:
Read Out and 1x50A19N, 1x5A48. 1x5B12N Plug Ins
(1) $£ 172$

Tek. 7504. DC 90 MHz . Four Slot Mainframe with:
1x7A12, 1x7A18, 1x7B53A, 1x7B53A Plug Ins) $£ 518$ Tek. DC 503A Universal DC-125MHz. Counter/Timer. 8 Digit Display......(1) $£ 225$ Tek. DC 504 A. DC-100MHz. Counter/Timer. 5 Digit Display........................(1) 2200 Tek. DM 501. D.M.M. AC/DC Volts. AC/DC mA, Ohms 4.5 Digit Display ...(1) £100 Tek. DM 502A Autoranging D.M.M. AC RMS DC, etc. 3.5 Digit Display .. (1) £165 Tek. FG $501 \mathrm{~A} .0 .002 \mathrm{~Hz}-2 \mathrm{MHz}$. Function Generator. SIne, Square etc …(1) 2235 Tek. FG 501A. 0.002Hz-2MHz. Function Generator. Slre, Square etc(1) $£ 235$
 $\begin{array}{ll}\text { Tek. PS50 } \\ \text { Tek. TM } 503 \text {. three Slot Mainframe Power Supply(1) } & £ 175\end{array}$

flerry Amas

H.P. 8505 A. Network Analyzer. $500 \mathrm{kHz}-1.3 \mathrm{GHz} .50$ Ohm Complete with 8503A. SParameter Test Set. $500 \mathrm{kHz}-13 \mathrm{GHz} .50 \mathrm{Ohm} .(1) ~ £ 4950$ H.P. 8552A. IF Section. (Plug In for 1417) .. .P. 8553B. RF Section. $1 \mathrm{kHz}-110 \mathrm{MHz}$. (Plug In for 141T 2200 H.P. 8553B. RF Section. 1kHz-110MHz. (Plug in for 1411)(2) £200 4.P. 11600B. Transistor Fixture with Case \& Accessories(1) $£ 485$ H.P. 11608A. Transistor Fixture with Case \& Accessories.........................(2) $£ 350$ Bird. 8322. Coaxial Attenuator. $30 \mathrm{~dB}, 500 \mathrm{hm}$. 200 Watt., "N"Type(1) $£ 350$ Narda 7573. "N" Type attenuator. 3 dB at 1 GHz(1) £25 Narda. 757-6. "N" Type attenuator 6 dB at 1 GHz .. (1) £25 Narda. 757-10. ${ }^{\mathrm{N}} \mathrm{N}^{\text {" }}$ Type attenuator. 10 dB at 1 GHz ... (1) £25 Cropico. Type SC2. Std 1.01861 Colt Cell. Twin Outputs. \qquad E.D.C. MV-116G. DC Voltage Standiard;

Range + or -100 m Volt, 1 Volt \& 10 Volt
Meter Sensitivity 10 uV to 10 Volt Galvo Input. (AS NEW) (1) $£ 675$ Elmeasco. 700A.04. Std 1.0181 Volt Cell Enclosure
Mains/Internal Stand by Battery, Oven Controlled. 4 Terturnal O/P(1) $£ 275$
B \& K 2425. Electronic AC. Voltmeter. $0.5 \mathrm{~Hz}-500 \mathrm{kHz} \operatorname{lm}-300 \mathrm{~V}$.............................) 1185
 Levell. TM-10. Microvoltmeter. $30 \mathrm{LV}-300 \mathrm{~V}$, $30 \mathrm{pA}-30 \mathrm{pA}$ (Analog) …......................(1) 835促 Marconi. TF-2600. Sensitive Valve Voltmeter. $1 \mathrm{mV}-300 \mathrm{~V} .10 \mathrm{~Hz} \cdot 10 \mathrm{MHz}$ B \& K 1405. Noise Generator. $20 \mathrm{~Hz}-100 \mathrm{kHz}$. 0.3Volt 0/P...
\qquad evell. TG.66A. Transistor Decade Oscillator. $0.2 \mathrm{~Hz}-1.22 \mathrm{MH}_{2}$ Levell. TG200D. R.C. Oscillator. $2 \mathrm{~Hz}-\mathrm{IMHz}$. Sine/Square. 600 Ohm Levell. TG200DM. R.C. Oscillator. 1 Hz 1 MHz . Sine/Square. 6000 hm Levell. TG200DMP. RC. Oscillator. $1 \mathrm{~Hz}-1 \mathrm{MHz}$. Sine/Square 600 Ohm Marconi 2017. AM/FM Signal Generator. 10kHz-1024MHz;

Micropropcessor Direct Keybaord Entry with Memory Facilities Internal AM/FM Variable Modulation Built In Frequency Sweep, High Output up to 4 Volt e.m.f. External Mode Frequency Counter $10 \mathrm{~Hz}-520 \mathrm{MHz}$
GPIB/IEEE-488 Programmable, Internal Reference Standard
Calibration 2-7-96 Expire 1-7-97. With Certificate \& Results............................(3) $£ 2275$ Philips. PM5571. Pulse Generator. 1 hz -100MHzz. 80 mV -10Volt. 50 Ohmn............(3) $£ 750$ Farnell. L30-1. 0-30V 0-1A Metered. Variable PS.U..() 145 Racal-Dana. 9232.Q. Quad Mode Dual Bench Digital Power Supply; .30V 0.2A Isolated, Paraliel, Series, Tracking. ($0-60 \mathrm{~V} 0-4 \mathrm{~A}$) \& K K 2511. Vibration Meter. $0.3 \mathrm{~Hz}-15 \mathrm{kHz}$ B \& K 2970. Sensitivity Comparator .. 350 Bird. 8135. Coaxial Resistor. 50 Ohm, 150 Watt, "BNC" Type(1) $£ 125$

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham Bognor Regis, West Sussex, PO22 0EB

\title{

When is a gate

\section*{Ian Forster has found that

Ian Forster has found that AC logic gates can be used to form simple, cheap yet repeatable rf oscillators.

n a recent article in Electronics World ${ }^{1}$ I showed how 74AC series logic gates could be used in power conversion and switching applications. This article makes use of another useful feature of this logic gate series namely their fast response speed and low propagation delay - to implement a series of vhf oscillators ideal for the experimenter.
All the following circuits have been tried with dual-in-line parts from different manufacturers and have proved very reliable. Good vhf construction techniques need to be used, as, linearly biased, the gates act as high-gain highfrequency amplifiers.
Most of the following circuits would not be well suited to battery powered applications. They tend to be current hungry In addition, care must be taken when using multiple gates in one package not to exceed the maximum dissipation limits - 74AC gates are tough, but not indestructible.

Ring-of-three oscillator for high frequencies

AC gates can be used to produce a high-frequency equivalent of the standard 'ring-of-three' type oscillator. Again, operating frequency is controlled by varying the supply and hence the propagation delay of the gates. Power output is approximately 8.3 dBm at 2 V and +17 dBm at 5 V , with the third harmonic at -10 dBc and the fifih at -16 dBc , corresponding to +1.5 dBm at 417.5 MHz .

Voltage / Frequency Characteristic for Ring Of Three Oscillator

Oscillator for vhf

This is the simplest implementation of a vhf oscillator using a single inverter from a 74 AC 04 . Oscillation occurs at the frequency at which the delay of the gate is equal to 180° phase shift. Output frequency is controlled by varying the supply, and hence varying
the propagation delay of the gate. Power output is approximate$1 \mathrm{y}+6.5 \mathrm{dBm}$ at 2 V and +16 dBm at 5 V , with the third harmonic at -16 dBc (corresponding to -4 dBm 840 MHz at 5 V).

Voltage / Frequency Charactersistic for Single Gate Oscillator

Oscillator uses coaxial cable

For a given supply voltage, the oscillator here gives good performance as a fixed frequency source. Operating frequency is determined by a combination of the delay in the coaxial and the propagation delay of the gate. Using a 5 V supply power output was constant at approximately +16 dBm .

RG174U LINE LENGTH AGAINST FREQUENCY

LC oscillator

For a more compact oscillator the circuit is more suitable. This is a fairly standard $L C$ type oscillator, with the output frequency being a function of the inductance, stray and wanted capacitance and gate delay. With L at 39 nH and C at 1.5 pF , measured noise was $-90 \mathrm{dBc} / \mathrm{Hz}$ at 10 kHz offset with an associated +17 dBm output.

Oscillator for $\mathbf{2 m}$ band

An $L C$ voltage-controlled oscillator designed to cover the 2 m amateur band, can be formed from AC gates, when used with a synthesiser IC such as the National Semiconductor LMXI501A. High output level of the oscillator makes it well suited to driving. a level 17 double balanced diode mixer. This, with a high intermodulation performance front-end amplifier, such as the MAVII from Mini Circuits, could form a high immunity receiver front end for cluttered signal environments.

$L_{1} \quad 68 \mathrm{nH} 32 \mathrm{CS}$ smt
$\mathrm{IC}_{1} \quad 74 \mathrm{ACO}$
$\mathrm{R}_{1-3} \quad 18 \mathrm{k} \Omega$
$C_{1,2} \quad 100 \mathrm{pF}$ ceramic
$C_{3} \quad 10 \mathrm{nF}$ ceramic
$D_{1,2} \quad$ BB405B varactor

The Home of Hi- Finesse. Its not what you do, its HOW you do it that counts!.

VISATON® SPEAKER KITS \& DRIVE UNITS

New to the UK, VISATON offer a range of speaker kits and drive units that give the home builder access to unlts and designs that are unrivalled for quality, performance and value. Their designs are very well known in Germany, where they are based, and over 25 years they have built up an enviable reputation for high quality sound. All their designs come from a solid background of the best in design and equipment This quality of rains one cility added to design collaboration with major universities and vigh end mazazes, produces equipment. This quality of research faciity, added to design collaboration with major universities and high end magazines, produces products of impeccable periormance and value that are the best available to the home speaker builder!. Their range of products covers the from $15^{\prime \prime}$ woofers to ribbon tweeters. Speaker design software and database are available for the home user who wants to try his hand, or for commercial manufacture. A small selection follows, our lists will give you more!.

ASM100 ACTIVE SUBWOOFER MODULE

This attractive module consists of a low pass filter and powe amplifier ready for you to mount in a suitable sub-woofer cabinet. The combined unit can then be combined with any new or existing hil fi or home cinema speaker syst missing from most setups
The ASM 100 module comes as a ready-to-mount unit on a solid diecast aluminium frame/heatsink. Input signal can be at line o speaker level for easy system integration. There are three separate
stereo inputs at line level and the unit will use any signal presented stereo inputs at line level and the unit will use any signal presented are used by simply wiring the unit in parallel with the existing speakers to provide them with strong bass support. Crossover frequency can be selected to 50,100 or 200 Hz and the bass level can be adjusted by a front panel control. The 'Green' power supply switches the unit to standby it no slgnal is present. Drawlngs are included free for the compact $418 \times 380 \times 303 \mathrm{~mm}$ cablnet.
With its powerful 125 watt output and versatile filtering the ASM 100 is the ideal universal active driver module for all subwoofer requirements.
ASM ASM - W20 cabinet drawings. Pt. No. V7000. $£ 185.29$ cabinet.

FIESTA 30 LOUDSPEAKER KIT

An Uitra High Efficiency speaker, speclally suitable for Valve Amplifiers.
Specially selected as the ideal partner for the new John Linsley Hood 15 W Valve Sound Amplifier, or indeed any actual valve amplifier, the
FIESTA 30 features the FIESTA 30 features the
astonishing efficiency and astonishing efficiency and sensitivity needed to achieve a amplifiers of Ilmited power output.
To complement the sound purity of such amplifiers a full three speaker system is used with a $300 \mathrm{~mm}\left(12^{\prime \prime}\right)$ woofer, $200 \mathrm{~mm}\left(8^{\prime \prime}\right)$ mid-range and high quality horn tweeter in vented bass reflex enclosure. All these drive units have been carefully selected for their individual virtues, and collective excellence, the tweeter for instance being a pulse response as a result of its combination of Kapton former, aluminium diaphragm and aluminium voice coil.
Nomlnal Power Rating is 150W. Max. Muslc Powe 250W, Impedance 8 ohm Mean Sound Pressure 91dB. Speaker kit comes with all parts to make a pair of
speakers, but not the cabinet speakers, but not the cabine factory assembled, ready to fit.

Kit No.LK5963 Per Pair.
$£ 424.93$

HOME CINEMA SPEAKERS.
The VISATON range of speaker kits includes all you will ever need The VISATON range of speaker kits includes all you will ever need
for your surround sound home cinema setup. The Hi-Tower Kit is ideal as a super luxury pair of stereo main speakers. The "Centre 80^{n} uses special magnetically screened drivers to avold picture disturbance and a pair of "Effect 80"s are used as rear speakers. Any of a range of sub-wooters then adds weight to the sound of the robot feet!. Centre 80 Kits include drive units, crossover, terminals and grille. (You make the box) Price each. Effect 80, Rear Speaker Kits, per pair,
£39.00

Now you can throw out those noisy ill-matched carbon pots and replace with the famous Hart exclusive ALPS 'Blue Velvet' range components only used selectively in the very top flight of World class amplifiers. The improvement in track accuracy and matching really is incredible giving better tonal balance between channels and rock solid image stability. Motorised verslons have $5 v$ DC motor.
MANUAL POTENTIOMETERS
2-Gang 100K Lin
£15.67
2-Gang 10K, 50 K or 100 K Log
$£ 26.20$
MOTORISED POTENTIOMETERS
2.Gang 20K Log Volume Control loss in centre position.
than 10%
$-\quad 26.98$

Special set of toroidal transformers, 2 output \& 1 mains for the "Hot Audio Power" valve amplifier design described in the Oct. 1995 issue of "Wireless World". Total Wt 4.8 Kg . Special price for the set. £99, Post £8. Photocopies of Article by Jeff Macaulay. $£ 2.00$

JOHN LINSLEY HOOD SINGLE ENDED CLASS 'A' POWER AMPLIFIER

A new concept in amplifier design to meet the needs of modern users who want the warmth and punity of sound given by valve
amplifiers from the vintage years, without the problems of cost, ampifiers from the vintage years, without terioration and danger associated with trying to use valves today. It employs the newly re-discovered single-ended circuit configuration to give total freedom from crossover artifacts and to give a sound that is indistinguishable from the famous Williamson design, the undisputed leader of the field, with its triode connected KT66s and all-triode drivers. Described in the September 19 and purity of the original but with modem components and an increased power rating of 15 W RMS per channel. Full KIt in 3u high Rackmount Case. Set of 3 PCBs only.

All Prices include

 of our HSTS
New thoughts on

 demodulation
Abstract

Edward Forster investigates the performance of Archie Pettigrew's award-winning amplitude-locked loop demodulation technique in both AM and FM receivers.

The amplitude-locked loop, or ALL, was not described as an automatic-gain system*, but it clearly is a distinct form of one. Generally, agc systems use gain-controlled amplifiers, i.e. multipliers, with a logarithmic or semi-log law to obtain large dynamic range. The dynamic range of an ALL with linear multiplier is described as 26 dB .
Automatic gain control is rarely used to entirely suppress the amplitude modulation, but this is only a matter of bandwidth. It is true that the ALL outputs the reciprocal of envelope amplitude together with a fully compressed envelope signal within its operating range. But how useful this is remains to be seen.

Demodulating AM

The ALL is used here to provide a constant envelope signal to the demodulator which is of the square law carrier recovery type ${ }^{1}$ using a phase locked loop, or pll. This might be unexceptional were it not for the claims made for this circuit. This is certainly not an advance in the art nor is it an optimum system. The ALL is said to provide special features which cannot be met by a limiter.
At threshold levels, I suggest that a soft limiter having a gain of 26 dB put in place of the ALL would yield identical results. This is
*June 1996 issue, page 466, Demodulation - a nerw approach by Archie Pettigrew.
because at the end of its range, the ALL also has a constant gain of 26 dB and it would be impossible to distinguish between the two. At high carrier levels it also makes no difference which is used.
The subsequent pll shown in the circuit as the carrier recovery device is not an optimum type. This is a common mistake. It raises the question of what the point of the system is in the first place. The problem of AM full carrier reception in conditions of multipath interference and doppler shifts - such as found on the hf broadcasting bands - was successfully solved in the Liniplex F1/2 receiver made by Phase Track Limited throughout the eighties. This used a synchronous pll AM demodulator ${ }^{2}$ at intermediate frequency in a superheterodyne receiver.
Figure 1 shows the pll carrier recovery system of that receiver which is a type II system, ie, it contains two perfect integrators these being an active integrator and the voltage controlled oscillator (vco). In servo parlance this is known as a proportional plus integral feedback loop. Although this is well known some of its characteristics as applied to this problem are apparently not well known.
Figure $\mathbf{1 b}$ shows that the active filter can be redrawn as the equivalent sum of the proportional ' P ' component and the integral ' I ' component. This allows you to see more clearly what happens. Figure 2 is the idealised
response to a step offset of the vco. The 'P' component has a fast response but it eventually returns to zero. The 'I' component response is to gradually ramp towards the final control voltage needed.
When the response subsides, there is zero static error in the system. The loop may be opened without any effect. The same thing results if the input carrier also disappears for some time during a fade. The loop remains essentially locked and can provide the necessary carrier for effective synchronous demodulation of sidebands to continue undisturbed. When the carrier returns there is no re-locking as the loop never lost lock.
Another feature of the type II pll is that it offers the freedom to optimise the loop bandwidth without any restriction other than that the loop should follow any doppler shifts and vco drift. In the type I loop, setting the bandwidth correctly can result in the hold-in range of the pll being too small for practical use.
It is also necessary to have as small a loop bandwidth as possible. This is to prevent the control signal from frequency modulating the vco within the modulation band as this produces distortion.
Many such pll AM demodulators have appeared in up-market broadcast receivers. But because of this distortion, their audio quality was indistinguishable from the conventional envelope demodulator.
fig. 1. Carrier recovery by type II PLL; b) equivalent to a).

RF DESIGN

Fig. 2. Dynamics of type /I PLL.

The Costas loop

However, for the future, another old system brought up to date is preferred; this is the Costas loop ${ }^{3-5}$, Fig. 3. It is suitable for AM full carrier or double sideband, or dsb, suppressed carrier reception. It relies directly on sideband information in the I, in-phase, and Q, quadrature channels which when multiplied together give an error signal.
The feedback error signal is intermittent in sound transmission and a special pll is required. Again the type II loop serves the purpose as its, in principle, infinite memory capability allows the loop to stay in lock during modulation pauses. This time instead of acting from direct carrier phase information, it is the sidebands alone from which the virtual carrier phase is derived.
The great opportunity of the I/Q Costas loop is in I/Q direct conversion receivers where much of the former intermediate frequency processing can be equivalently replaced by on-chip audio processing whether analogue or digital. Multiconversion superhets can be replaced by direct conversion receivers with equivalent performance but at a far cheaper cost and lower power consumption.

Although the synchronous receiver produces optimum results and also allows for electricity saving dsb broadcast transmission, a simpler non-synchronous technique ${ }^{6}$ has been devised for the AM I/Q receiver. The superheterodyne is fast becoming obsolete.

Demodulation for FM

The hyperbole accompanying Pettigrew's FM demodulation circuit has in many ways obscured any real understanding of how it works. But, by separating the functions and using a simple test signal, its effectiveness can be clarified.
Figure 4 shows an unmodulated carrier of unit magnitude in the presence of an offset carrier of amplitude k. It is clear that both amplitude and phase modulation are produced. When k is small, say below 0.1 , the difference fre-

Fig. 4. Unmodulated carrier ωc rad/sec plus interfering carrier ω n rad/sec.
quency modulations are nearly pure sinusoids in phase quadrature. With this information you can examine how the circuit performs with relative ease.
Figure 5 shows the simplified system. The ALL is assumed perfect as is the pll fm demodulator, which differentiates perfectly the phase modulation at its input. In being differentiated, the phase modulation is shifted by 90° to appear at the output of the fm demodulator, let us say for simplicity, as $\cos a$.
Output from the ALL for small percentage amplitude modulation is also a cosine in-phase, say $\cos a$ again. The final processing is the puzzle. As shown, there can never be cancellation however the amplitudes are manipulated. Therefore, at small values of carrier interference the system cannot work.
For large levels of interfering carrier it is necessary to use computer simulation. This is, in fact, not too difficult. Using numerical differentiation it was possible to simulate the large signal case with less than 2 k of Basic.
Results are as follows:

k	Improvement over pll o/p in dB
0.1	0
0.5	1
0.7	3
0.8	6
0.9	18
0.95	0

The improvement obtained is the result of some highly non-linear interactions but the significant improvement occurs within 3 dB of the threshold, $k=1$, within a 2.2 dB overall range from $k=0.7$ to $k=0.9$. Where the peak improvement occurs is a matter of adjustment but the above results are probably typical.
Outputs of both the amplitude and phaselocked loops under these circumstances are pulses, which are not necessarily well matched. This indicates that the ALL pulse is being used more as a gating or sampling pulse. You might therefore suppose that the AM related pulse could be generated elsewhere. Synchronous demodulation of the envelope, without ALL or limiter, could be devised to enable a pulse generator in this small range of k.
That aside, the pll frequency demodulator described by Pettigrew is fed from a constant carrier even at threshold. Presumably, it is considered that the best results will be obtained by simulating a limiter. But it is known that a limiter is detrimental to threshold extension in phase locked loops.
Schilling ${ }^{7}$ has noted that type II loops produce better threshold performance by virtue of the extra integrator. It is also shown ${ }^{8}$ that above threshold, a limiter is of no value and that near threshold it is positively damaging.
This is because, as the resultant carrier instantaneously falls to a low amplitude at the maximum rate of change of phase, the loop gain also falls to a low value. Consequently the loop does not track the rapid phase change and does not reproduce a sharp spike at its output. Maintaining full carrier level in all circumstances prevents this beneficial effect. Again we come back to the pll design. Is it a type I or type II?
If a type II pll were used for comparison in a receiver with slow agc but no limiter then any benefits may not look so great.

References

1. Rieke, J.W. and Graham, R.S., 'The L3 Coaxial System: Television Terminals', BSTJ, July, 1953. 2. Patent GB 2077 533, Phase Track Ltd., 1980. 3. Costas, J.P., 'Synchronous Communications', Proc. IRE, December, 1956.
2. Patent application, Phase Track Ltd, 1991.
3. Electronics World, p84, January, 1992.
4. Forster, E.C., patent application, 1994.
5. Schilling, D.J., and Taub, H, Principles of Communications Systems, 1971.
6. Gardner, F.M., Phaselock Techniques, 2nd ed., 1979.

Eight year EW index Hard copy or disk

Includes over 600 circuit idea references
Whether as a PC data base or as hard copy, Sofflopy can supply a complete index of Electronics World articles going back over the past eight years.
The computerised index of Electronics World magazine covers the eight years from 1987 to 1995 - volumes 94 to 101 inclusive - and is available now. It contains almost 2000 references to articles, circuit ideas and applications - including a synopsis for each.
The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512 k ram and a hard disk.
Even though the disk-based index has been expanded significantly from five years to eight, its price is still only $£ 20$ inclusive. Please specify whether you need $51 / 4 \mathrm{in}, 3.5 \mathrm{in}$ DD or 3.5 in HD format. Existing users can obtain an upgrade for $£ 15$ by quoting their serial number with their order.

Hard copy Electronics World index
Indexes on paper for volumes 100 and 101 are available at $£ 2$ each, excluding postage.

Ordering details

The $E W$ index data base price of $£ 20$ includes UK postage and VAT. Add an extra $£ 1$ for overseas EC orders or $£ 5$ for non-EC overseas orders.
Postal charges on hard copy indexes and on photocopies are 50 p UK, $£ 1$ for the rest of the EC or $£ 2$ worldwide.
For enquiries about photocopies, etc,
please send an sae to SoftCopy Ltd at the address below.
Send your order to SoftCopy Ltd., 1 Vineries Close, Cheltenham GL53 0NU, tel 01242 241455, or e-mail at 100556.112@compuserv.com. Please make cheques payable to SoftCopy Ltd - not $E W$ or Reed Business Publishing. Please allow up to 28 days for delivery.

HM604-3

Multifunction Oscilloscope $£ 764.00 \quad 60 \mathrm{MHz}$

- Autoset, Save and Recall

6 Saved setups \& built-in RS-232
$\square 2$ Channels, DC to 60 MHz $1 \mathrm{mV} / \mathrm{div} .20 \mathrm{~V} /$ div., Vert. Sens.
\square Time Base: 0.5 s to $5 \mathrm{~ns} /$ div. Triggering: DC to 100 MHz
Trigger-after-delay Automatic Peak to Peak Trig. Alternate Trigger TV-Sync-Separator Component - Tester, 1 MHz Calibrator.

HM1004
Multifunction Oscilloscope
£ $990.00 \quad 100 \mathrm{MHz}$

\square Autoset, Save and Recall 10 Saved setups \& built-in RS-232
\square Readout and Cursor. Display: Instrument \& Cursor functions.
$\square 2$ Channels, DC to 100 MHz
$1 \mathrm{mV} / \mathrm{div} .-20 \mathrm{~V} / \mathrm{div} .$, Vert. Sens.
\square Dual Time Base with 2nd Trigger
Time Base A: 0.5 s to $5 \mathrm{~ns} /$ div.
Time Base B: 20 ms to $5 \mathrm{~ns} / \mathrm{div}$. Triggering: DC to 200 MHz TV-Sync-Separator, Delay Line 1 MHz Calibrator, 14kV CRT.

HM1007

\square Analog: $2 \times$ DC to 100 MHz $1 \mathrm{mV} / \mathrm{div} .-20 \mathrm{~V} / \mathrm{div}$., Vert. Sens.
\square Digital: $2 \times 40 \mathrm{MS} / \mathrm{s}$ Storage $4 \times 2048 \times 8$ bit
\square Time Base: 50 s to $5 \mathrm{~ns} /$ div. Triggering: DC to 150 MHz Pre-Trig., Reference memory
\square Digital operating modes:
Roll, Refresh, Single and XY.
\square Interface for Graphic-Printer. Delay line, $\mathbf{1 4 k V}$ CRT.
\square Optional Interface: IEEE-488, RS-232 and Centronics.

Call now for more Information

Do you have an original circuit idea for publication? We are giving £100 cash for the month's top design. Additional authors will receive £25 cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

WIN A TTI PROGRAMMABLE BENCH MULTIMETER

"High accuracy, resolution and bandwidth performance beyond the capability of handhelds"

This high-performance bench multimeter could be yours in exchange for a good idea. Featuring a dual display, the 4.5 -digit 1705 multimeter resolves down to $10 \mu \mathrm{~V}$, $10 \mathrm{~m} \Omega$ and $0.1 \mu \mathrm{~A}$ and has a basic de accuracy of 0.04%. Frequency measured is 10 Hz to 120 kHz with an accuracy of 0.01% and resolution to 0.01 Hz . Capacitor and true rms measurements are also featured.
Recognising the importance of a good idea, Thurlby Thandar Instruments will be giving away one of these excellent instruments once every six months. This incentive is in addition to our monthly $£ 100$ 'best circuit idea' award and £25 awards for each circuit published.

200MHz spectrum analyser displays to -75dB

Used with an ordinary oscilloscope, this circuit forms a spectrum analyser for the $0-200 \mathrm{MHz}$ range of frequencies. To simplify examination of the wanted frequency, span and centre frequency controls are arranged to make signals in the
middle of the trace stay there as span decreases.

Amplifers A_{1} and A_{2} produce a sawtooth waveform, symmetrical about the 12 V rail, which is amplified in A_{3} with control of amplitude for span and offset for
centre frequency. The discharge goes to the oscilloscope as a timebase trigger.
Driven by the sawtooth, the Mini Círcuits POS-400 voltage-controlled oscillator provides a liner voltage/frequency output over the

TII PROGRAMMABLE

 BENCH MULTIMETER WINNERFig. 1 Complete circuit diagram of the 200 MHz analyser, which will display inputs at $-75 \mathrm{~d} B$.

Window detector has high input-impedance

- ysteresis at both upper and lower trip points and a high input impedance are the advantages of this detector, which uses only a dual comparator and a transistor.
There is little to say about the circuit shown but to give some formulae for trip points and hysteresis.
Lower trip point:

$$
\frac{T_{1}}{E_{p}}=\frac{R_{3}}{R_{1}+R_{2}+R_{3}} .
$$

Lower trip point hysteresis

$$
\frac{H_{1}}{E_{p}}=\frac{R_{3}\left(R_{1}+R_{2}\right)}{R_{5}\left(R_{1}+R_{2}+R_{3}\right)} .
$$

Upper trip point:

$$
\frac{T_{2}}{E_{p}}=\frac{R_{2}+R_{3}}{R_{1}+R_{2}+R_{3}} .
$$

Upper trip point hysteresis:

$$
\frac{H_{2}}{E_{p}}=\frac{R_{1}}{R_{4}} \cdot \frac{R_{2}+R_{3}}{R_{1}+R_{2}+R_{3}} .
$$

It is usually required that the hysteresis of both points should be equal, so:

$$
R_{4}=R_{5} \frac{R_{1}}{R_{3}} \cdot \frac{R_{2}+R_{3}}{R_{1}+R_{2}} .
$$

If the hysteresis of the lower trip point is zero or negative, it may be that the circuit will oscillate.

$$
R_{5} \leq R_{4} \frac{R_{1}+R_{2}}{R_{1}}+R_{2}
$$

W Dijkstra

Waalre
The Netherlands

Window detector has designable hysteresis at upper and lower trip points and, unusually, high input impedance.

$180-380 \mathrm{MHz}$ range and drives the SLB- 1 double-balanced mixer directly, signal input to the mixer coming via the low-past filter.
After filtering by the Toko 272MT$1127 F$, mixer output is impedance matched to the NE605. This device converts down to a standard if of 10.7 MHz , the local oscillator being a SAW type. A voltage proportional to the log. of the internally amplified 10.7 MHz if appears at pin 7 of the
$N E 605$ and is buffered in A_{4} to be used as the oscilloscope input.
Symmetry of response is maintained by the CFSK ceramic filters, which also determine the bandwidth.

A limitation is the fairly slow response of the output of the NE605. It is usable, but reduces the amplitude of the display at faster sweep rates. It may be that the ME625, which is pincompatible and faster, would

improve
matters.
Glyn
Roberts
Walsall

Spectrum of the local fm
broadcast band, 88 to 108 MHz , top, and 20 MHz square wave, demonstrating sweep linerarity, bottom.

Y/Div: 500 mV Timebase: 5.00 ms Trace: ch1 Trigger: 10:35 Time: 07:56 Date: 16-03-1992

HP New Colour Spectrum Analysers
HP $141 \mathrm{~T}+8552 \mathrm{~B} \mathrm{IF}+8553 \mathrm{BRF}-1 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}-£ 700$.
HP $141 \mathrm{~T}+8552 \mathrm{BFF}+8554 \mathrm{BRF}-100 \mathrm{KHz}-1250 \mathrm{Mc} / \mathrm{s}-£ 900$
$\mathrm{HP} 141 \mathrm{~T}+8552 \mathrm{BIF}+8556 \mathrm{ARF}-20 \mathrm{Hzz} 300 \mathrm{KHz}-£ 700$
Special Offer just in from MOD Qty 40 HP8555 A RF Unit
Special Orer idst
HP ANZ Units Available separately - New Colours - Tested
HP 141 Mainframe - $£ 350$.
HP 8552 IF - $£ 300$.
HP8553B RF 1 KHz to $110 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 200$.
HP8554B RF 100 KHz to $1250 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 500$
HP8555A RF $10 \mathrm{Mc} / \mathrm{s}$ to $18 \mathrm{GHzS}-\mathrm{E} 800$.
HP8556A RF 20 Hz to $300 \mathrm{KHzS}-£ 250$.
HP8443A Tracking Generator Counter $100 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}-£ 300$.
HP8445B Tracking Preselector DC to $18 \mathrm{GHz}-£ 350$.
HP 3580 A $5 \mathrm{~Hz}-50 \mathrm{KHz}$ ANZ - $\mathrm{E750}-\mathrm{E} 1000$.
HP 3582 A .02 Hz to $25.6 \mathrm{KHz}-£ 2 \mathrm{~K}$.
HP8568A $100 \mathrm{~Hz}-1500 \mathrm{Mc} / \mathrm{s}$ ANZ-E6k
HP8569B $10 \mathrm{Mc} / \mathrm{s}-22 \mathrm{GHz}$ ANZ- E 6 k .
HP Mixers are available for the above ANZ's to 40 GHz
TEK $492-50 \mathrm{KHz}-18 \mathrm{GHz}$ Opt $1+2-£ 4 \mathrm{k}-£ 4.2 \mathrm{k}$.
TEK $492-50 \mathrm{KHz}-18 \mathrm{GHz}$ Opt $1+2+3-£ 4.5 \mathrm{k}$
TEK $492 \mathrm{P}-50 \mathrm{KHz}-21 \mathrm{GHzOpt} 1+2+3-55 \mathrm{k}$.
TEK 494AP 1KCJS - 21 GHz - E7k.
TEK $496 \mathrm{P} 1 \mathrm{KHz}-1.8 \mathrm{GHz}-£ 4 \mathrm{k}$.
TEK 5 L 4 N O- 100 KHz - $£ 400$.
TEK $7 \mathrm{~L} 5+\mathrm{L} 1-20 \mathrm{~Hz}-5 \mathrm{Mc} / \mathrm{s}-£ 700$.
TEK $7 \mathrm{~L} 5+\mathrm{L3}-$ Opt 25 Tracking Gen - $£ 900$.
TEK $7 \mathrm{~L} 12-100 \mathrm{KHz}-1800 \mathrm{Mc} / \mathrm{s}-£ 1000$
TEK $7 \mathrm{~L} 18-1.5-60 \mathrm{GHzs}-£ 1500$
TEK 7L18-1.5-60GHzs - £1500.
TEK $49110 \mathrm{Mc} / \mathrm{s}-12.4 \mathrm{GHzs}-40 \mathrm{GHzs}$ - $£ 750.12 .4 \mathrm{Ghzs}-40 \mathrm{Ghzs}$ with Mixers.
Tektronix Mixers are available for above ANZ to 60 GHzs
ystron Donner 763 Spectrum ANZ + 4745B Preselector. $01-18 \mathrm{GHz}+$ Two Mixers $18-40 \mathrm{GHz}$ in
HP8673D Signal Generator $05-26.5 \mathrm{GHz}-£ 20 \mathrm{k}$.
Systron Donner 1618 B Microwave AM FM Synthesizer $50 \mathrm{Mc} / \mathrm{s} 2-18 \mathrm{GHzs}$ R\&S SWP Sweep Generator Synthesizer AM FM 4-2500Mc/s - 53.5 k .
ADRET 3310 A FX Synthesizer $300 \mathrm{~Hz}-60 \mathrm{Mc} / \mathrm{s}$ - f 600 .
HP8640A Signal Generators - $1024 \mathrm{Mc} / \mathrm{s}$ - AM FM - $\mathrm{E800}$.
HP3717A $70 \mathrm{Mc} / \mathrm{s}$ Modulator - Demodulator - E 500 .
HP3717A 70Mc/s Modulator - Demodulator - $£ 500$.
HP8651A RF Oscillator $22 \mathrm{KC} / \mathrm{S}-22 \mathrm{Mc} / \mathrm{s}$.
HP8651A RF Oscillator $22 \mathrm{KC} / \mathrm{S}-22 \mathrm{M}$.
HP5316B Universal Counter A +B
HP6002A Power Unit 0-5V 0-10A 200 W.
HP6825A Bipolar Power Supply Amplifier.
HP461A-465A-467A Amplifiers.
HP81519A Optical Receiver DC- $400 \mathrm{Mc} / \mathrm{s}$.
HP Plotters 7470A-7475A.
HP3770A Amplitude Delay Distortion ANZ.
HP3770B Telephone Line Analyser.
HP8182A Data Analyser.
HP59401A Bus System A
HP6260B Power Unit 0-10V 0-100 Amps.
HP3782A Error Detector.
HP3781A Pattern Generator.
HP 3730A + 3737A Down Convertor Oscillator $3.5-6.5 \mathrm{GHz}$.
HP Microwave Amps 491-492-493-494-495-1GHz-12.4GHz - E 250 .
HP 1058 Quartz Oscillator - $£ 400$.
HP6034A System Power Supply 0-60V O-10A-200W - $£ 500$.
HP6131C Digital Voltage Source $+-100 \mathrm{~V} 1 / 2$ Amp.
HP4275A Multi Frequency L.C.R. Meter.
HP 3779A Primiary Multiplex Analyser.
HP3779C Primary Multiplex Analyser.
HP8150A Optical Signal Source.
HP 1630G Logic Analyser.
HP5316A Universal Counter A+B.
HP5335A Universal Counter $A+B+C$.
HP59501B Isolated Power Supply Programmer.
HP8901A Modulation Meter AM - FM - also 89018.
HP5370A Universal Time Interval Counter.
Marconi TF2370-30 $\mathrm{Hz}-110 \mathrm{Mc} / \mathrm{s} 750 \mathrm{HM}$ Output (2 BNC Sockets + Resistor for 500 HM MOD with
Marconi MOD Sheet supplied - $£ 650$.
Marconi TF2370 $30 \mathrm{~Hz}-110 \mathrm{Mc} / \mathrm{s} 50$ ohm Output - $£ 750$.
Marconi TF2370 as above but late type - £850.
Marconi TF2370 as above but late type Brown Case - $£ 1000$.
Marconi TF2374 Zero Loss Probe - $£ 200$.
Marconi TF2440 Microwave Counter $-20 \mathrm{GHz}-£ 1500$
Marconi TF2442 Microwave Counter $-26.5 \mathrm{GHz}-£ 2 \mathrm{k}$
Marconi TF2305 Modulation Meter - $£ 2.3 \mathrm{k}$.
Racal/Dana 2101 Microwave Counter $-10 \mathrm{~Hz}-20 \mathrm{GHz}-\mathrm{f} 2 \mathrm{k}$.
Racal/Dana 1250-1261 Universal Switch Controller $+200 \mathrm{Mc} / \mathrm{s}$ PI Cards.
Racal/Dana 9303 True RMS Levelmeter + Head - £450. IFFE - £500.
TEKA6902A also A6902B isolator - $\mathrm{f} 300-\mathrm{f} 400$.
TEK 1240 Logic Analyser - $£ 400$.
TEK FG5010 Programmable Function Generator $20 \mathrm{Mc} / \mathrm{s}-\mathbf{£ 6 0 0}$
TEK2465A $350 \mathrm{Mc} / \mathrm{s}$ Oscilloscope $-\mathbf{£ 2} .5 \mathrm{k}+$ probes $-\mathbf{£ 1 5 0}$ each
TEK2465A 350Mc/s Oscilloscope $-£ 2.5 \mathrm{k}+$ probes
TEK CT-5 High Current Transformer Probe $-£ 250$.
TEK J16 Digital Photometer + J6523-2 Luminance Probe - £300.
ROTEK 320 Calibrator +350 High Current Adaptor AC-DC $-£ 500$.
FLUKE 5102 B AC-DC Calibrator - E4k.
FLUKE 1120A IEEE-488 Translator - $\mathbf{E 2 5 0}$.
Tinsley Standard Cell Battery $5644 \mathrm{~B}-\mathbf{£ 5 0 0}$.
Tinsley ransportable Voitage Reference - $\mathrm{E500}$
HP745A + 746A AC Calibrator - $£ 600$.
HP8080A MF + 8091A 1GHz Rate Generator + 8092A Delay Generator + Two 8093A 1GHz Amps +15400 A - $£ 800$.
HP54200A Digitizing Oscilloscope.
HP $11729 B$ Carrier Noise Test
HP 11729 Carrier Noise Test Set. 01 - 18GHz - LEF - £2000.
HP3311A Function Generator - E300.
Marconi TF2008 - AM-FM signal generator - also sweeper - $10 \mathrm{Kc} / \mathrm{s}$ - $510 \mathrm{Mc} / \mathrm{s}$ - from $\mathbf{E 2 5 0}$ HP Frequency comb generator type 8406 - $£ 400$
HP Vector Voltmeter type $8405 A-E 400$ new colour.
HP Sweep Oscillators type 8690 A \& $\mathrm{B}+$ plug-ins from $10 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $18-40 \mathrm{GHz}$. P.O.R
HP Network Analyzer type 8407A $+8412 \mathrm{~A}+8501 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-£ 500-£ 1000$.
HP Amplifier type 8447A-1-400M C/s $£ 200$ - HP8447A Dual - £300.
HP Frequency Counter type $5340 \mathrm{~A}-18 \mathrm{GHz} £ 1000$ - rear output $£ 800$.
HP $8410-A-B-C$ Network Analyzer $110 \mathrm{Mc} / \mathrm{s}$ to 12 GHz or 18 GHz - plus most other units and displays used in this set-up - 8411a-8412-8413-8414-8418-8740-8741-8742-8743displays used in this set-u.
$8746-8650$. From f 1000 .
Racal/Dana 9301A - 9302 RF Millivoltmeter $-1.5-2 \mathrm{GHz}-£ 250-£ 400$.
Racal/Dana Modulation Meter type $9009-8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}-\mathrm{£} 250$.
Marconi RCL Bridge type TF2700- 150.
Marconi/Saunders Signal Sources type - 6058B-6070A - 6055A - 6059A - 6057A - 6056 $£ 250-\mathrm{f} 350.400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz .
Marconi TF1245 Circuit Magnification meter +1246 \& 1247 Oscillators - $£ 100-\mathrm{f} 300$.
Marsoni microwave 6600 A sweep osc., mainframe with $6650 \mathrm{PI}-18-26.5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5-$
Marsoni microwave 6600 A sweep osc., mainfra
$40 \mathrm{GHz}-£ 1000$ or PI only E 600 . MF only $£ 250$.
Marconi distortion meter type TF2331-£150. TF2331A - £200.

Tektronix Plug-Ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12-S1
-S2-S6-S52-PG506-SC504-SG502-SG503-SG504-DC503-DC508-DD501WR501 - DM501A - FG501A - TG501 - PG502 - DC505A - FG504-7B80 + 85-7B92A
Gould J3B test oscillator + manual - f 150 .
Tektronix Mainframes - 7603-7623A - 7613-7704A - 7844-7904 - TM501 - TM503 - TM506 7904A-7834-7623-7633.
Barr \& Stroud Variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}+$ high pass + low pass - F 150.
Marconi TF2163S attenuator-1GHz. £200.
Farnell power unit H60/50 - £400 tested. H60/25-£250.
Racal/Dana 9300 RMS voltmeter - $\mathbf{~} 250$.
Racal/Dana 9300 RMS voltmeter - $£ 250$.
HP 8750A storage normalizer - $£ 400$ with lead + S.A or N.A interface.
Marconi TF2330-or TF2330A wave analysers - £100-E150
Tektronix - 7S14-7T11-7S11-7S12-S1 - S2 - S39-S47 - S51 - S52 - S53-7M11
MP 5065A rubidrum vapour FX standard -
Systron Donner counter type $6054 \mathrm{~B}-20 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}$ - LED readout - El k .
Racal/Dana 9083 signal source - two tone - $£ 250$.
Systron Donner - signal generator 1702 - synthesized to 1 GHz - AM/FM - 6600
Tektronix TM515 mainframe + TM5006 mainframe - $£ 450-£ 850$.
Farnall electronic load type RB1030-35- $£ 350$
Racal/Dana counters - 9904 - 9905 - $9906-9915-9916-9917-9921-50 \mathrm{Mc} / \mathrm{s}-3 \mathrm{GHz}-\mathrm{f} 100-$
£450 - all fitted with FX standards.
Marconi TF2092 noise receiver. A B or C plus filters - $£ 100$ - $£ 3$
Marconi TF2091 noise generator. A, B or C plus filters - $£ 100-\mathrm{f} 350$
Marconi $2017 \mathrm{~S} / \mathrm{G} 10 \mathrm{Khz}-1024 \mathrm{MHz}$.
HP180TR, HP 182 T mainframes $£ 300$ - 5500 .
Philips panoramic receiver type PM7900-1 to 20GHz- $£ 400$.
Marconi 6700 A sweep oscillator +18 GHz Pl's available.
HP8505A network ANZ +8503 A S parameter test set +8501 A normalizer - E4k.
Racal/Dana VLF frequency standard 8503 A.
527E + rubidium
HP signal generators type 626-628-frequency $10 \mathrm{GHz}-21 \mathrm{GHz}$.
HP 432A - 435A or B -436A - power meters + powerheads - Mc/s - 40GHz - E200-£1000.
Bradley oscilloscope calibrator type 192 - $\mathbf{E 6 0 0}$.
HP8614A signal generator $800 \mathrm{Mc} / \mathrm{s}-2.4 \mathrm{GHz}$, new colour $£ 400$.
HP8616A signal gen $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$, new colour E 400 .
HP 3325A syn function gen $20 \mathrm{Mc} / \mathrm{s}-£ 1500$.
HP 3586 B or C selective level meter - $£ 750-\mathrm{f} 1000$.
HP 3575A gain phase meter $1 \mathrm{~Hz}-13 \mathrm{Mc} / \mathrm{s}$ - E 400 .
HP 8683D S/G microwave $2.3-13 \mathrm{GHz}$ - opt 001 - 003 - $£ 4.5 \mathrm{~K}$.
HP $8660 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ syn S/G. AM + FM $+10 \mathrm{Kc} / \mathrm{s}$ to $110 \mathrm{Mc} / \mathrm{s} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}$ to $1300 \mathrm{Mc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$ to $2600 \mathrm{Mc} / \mathrm{s}-$ E500-f2000.
HP 8640B S/G AM-FM 512Mc/s or $1024 \mathrm{Mc} / \mathrm{s}$. Opt 001 or 002 or 003 - $\mathbf{~} 800-\mathrm{E} 1250$.
HP 86222BX Sweep PI-01-2.4GHz+ATT- $£ 1750$.
HP 8629A Sweep PI $-2-18 \mathrm{GHz}$ - $£ 1000$.
HP 86290 S Sweep PI $-2-18 \mathrm{GHz}-£ 1250$.

HP 8620C Mainframe - E250. IEEE - E500.
HP $8615 A$ Programmable signal source - $1 \mathrm{MHz}-50 \mathrm{Mc} / \mathrm{s}$ - opt 002 - £1k.
HP 8601A Sweep generator. $1-110 \mathrm{Mc} / \mathrm{s}-£ 300$.
HP 3488A HP - IB switch control unit - $£ 500+$ control modules various - f 175 each.
HP 8160A 50Mc/s programmable pulse generator $-£ 1000$.
HP 853A MF ANZ - $£ 1.5 \mathrm{k}$.
HP 8349A Microwave Amp $2-20 \mathrm{GHz}$ Solid state - $£ 1500$
HP 3585A Analyser $20 \mathrm{~Hz}-40 \mathrm{Mc} / \mathrm{s}-£ 4 \mathrm{k}$.
HP 8569B Analyser $.01-22 \mathrm{GHz}-£ 5 \mathrm{k}$.
HP 35880A Analyser. $01-22 \mathrm{GHz}-£ 5 \mathrm{k}$.
HP 1980 B Oscilloscope measuremerit system - $£ 600$.
HP 3455 A Digital voltrneter - $£ 500$.
HP 3437A System voltmeter - E300.
HP 5370A Universal time interval counter - $\mathrm{C450}$
HP 5335 A Universal counter $-200 \mathrm{Mc} / \mathrm{s}-£ 500$
HP 5335 A Universal counter $-200 \mathrm{Mc} / \mathrm{s}-£ 500$.
HP 5328 U Universal counter $-500 \mathrm{Mc} / \mathrm{s}-£ 250$.
HP 6034 A System power supply - $0-60 \mathrm{~V}-0-10 \mathrm{amps}$ - E 500.
HP 5150 A Thermal printer - $£ 250$.
HP 1645A Data error analyser - $£ 150$.
HP 4437A Attenuator - E150.
HP 3717A 70Mc/s modulator- $£ 400$.
HP 3710 - $3715 A-3716 A-3702 B-3703 B-3705 A-3711 A-3791 B-3712 A-3793 B$
microwave link analyser - P.O.R.
MP $3730 \mathrm{~A}+\mathrm{B}$ R down converter - P.R.
MP 3730A + R RF down converter - P.O.R
HP 3763A Error detector - E500.
MP 3764A Dlgital transmission analyser - £600.
HP 3770 A Amp delay distortion analyser - $£ 400$.
HP 3780A Pattern generator detector - $\mathbf{~} 400$.
HP 3780 A Pattern generator detector - $£ 400$
HP 3781 A Pattern generator $-£ 400$.
HP 3781 B Pattern generator (bell) - $£ 300$.
HP 3782 Error detector - $\mathrm{E400}$.
MP 3782 BError detector (bell) - $£ 300$.
HP 3785A Jitter generator + receiver - $£ 750-\mathrm{E} 1 \mathrm{k}$.
HP 8006A Word generator $-£ 100-\mathrm{E} 150$.
HP 8006A Word generator - $£ 100-$ - 150 .
MP 8170A Logic pattern generator - $\mathbf{5 5 0 0}$.
HP 59401 A Bus system analyser - $£ 350$.
HP 59500A Multiprogrammer HP - IB - $£ 300$.
Philips PM5390 RF syn -0.1-1GHz-AM + FM - £ 1000
S.A. Spectral Dynamics SD345 spectrascope 111 - LF ANZ - $£ 1500$.

Tektronix R7912 Transient waveform digitizer - programmable - £400.
Tektronix TR503 + TM503 tracking generator $0.1-1.8 \mathrm{GHz}$ - £ kk - or TR502.
Tektronix 576 Curve tracer + adaptors $-£ 900$.
Tektronix 577 Curve tracer + adaptors $-£ 900$.
Tektronix $1502 / 1503$ TDR cable test set - $£ 1000$.
Tektronix AM503 Current probe + TM501 m/frame - f 1000
Tektronix SC501 - SC502 - SC503 - SC504 oscilloscopes - 775 -E350.
ektronix 465-465B-475-2213A-2215-2225-2235-2245-2246-f250-£1000
Nikusui $100 \mathrm{Mc} / \mathrm{s}$ Oscilloscope 3091 LF oscilloscope $-£ 400$
Racal 1991-1992-1988-1300 M c/'s counters - 5500-£900
Fluke $80 \mathrm{~K}-40$ High voltage probe in case - BN - f 100.
Racal Recorders - Store 4-4D-7-14 channels in stock - £250-£500.
Racal Store Horse Recorder \& control- £400-£750 Tested.
EIP 545 microwave 18 GHz counter $-£ 1200$.
Fluke $510 \mathrm{~A} A C$ ref standard $-400 \mathrm{~Hz}-\mathrm{E} 2$
Wiltron 610 D Sweep Generator +6124 C PI $-4-8 \mathrm{GHz}-£ 400$
Wiltron 610 D Sweep Generator $+61084 \mathrm{D} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}-1500 \mathrm{Mc} / \mathrm{s}-£ 500$
Time Electronics 9814 Voltage calibrator - £750.
Time Electronics 9811 Programmable resistance - $\mathbf{5 6 0 0}$.
Time Electronics 2004 D.C. voltage standard - $£ 1000$.
HP 8699B Sweep PI YIG oscillator $01-4 \mathrm{GHz}-£ 300.8690 \mathrm{~B}$ MF - $£ 250$. Both $£ 500$.
Schlumberger 1250 Frequency response ANZ- $£ 1500$.
Dummy Loads \& power att up to 2.5 kilowatts FX up to 18 GHz - microwave parts new and ex
equipt - relays - attenuators - switches - waveguides - Yigs - SMA - APC7 plugs - adaptors.
W\&G Items in stock - ask for list.
Power Supplies Heavy duty + bench in stock - Farnell-HP-Weir-Thurlby-Recal etc. Ask for list.

ITEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS. SAE FOR ENQUIRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY ITEMS, AVAILABILTTY OR PRICE CHANGE VAT AND CARRIAGE EXTRA
ITEMS MARKED TESTED HAVE 30 DAY WARRANTY. WANTED: TEST EQUIPMENT-VALVES PLUGS AND SOCKETS-SYNCROS-TRANSMITING AND RECEIVING EQUIPMENT ETC.
Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD112 2ER. Tel. No: (101274) 688407. Fax: 651160

Simple, latching audio/visual alarm

A pulse of greater than 1V amplitude applied to this alarm circuit illuminates a led and activates a piezoelectric sounder.
On the arrival of a pulse, the scr Tr_{3} triggers, lighting the led which, with the $2.2 \mathrm{k} \Omega$ resistor passes the scr's holding current once it has triggered.
Programmable unijunction Tr_{1} and its associated components form a relaxation oscillator, enabled when $T r_{3}$ triggers, driving the mosfet and the sounder at a frequency and duty cycle dependent on the $R C$ time constant and the gate voltage of $T r_{1}$.
Pressing the normally closed switch resets the alarm. R. McGillivray

Ontario, Canada

Simple alarm circuit for both visual and audible output.

Video switch transmits up to $\mathbf{1 k m}$ on a twisted pair

This four-channel, differential input/output video switch was built for a computer-controlled security system, in which one of the 100 MHz video signals had to be selected and tramsmitted 1 km to control room.
Using two MAX4141 cross-point video switches confers the benefits of differential working; $\pm 5 \mathrm{~V}$ input and twisted-cable transmission. Terminating resistors of 50Ω
or 75Ω, depending on the type of cable in use, should be used at the inputs to avoid reflections, and the cable receiving end must be properly terminated.

Gain response is flat at 0.98 from zero to 100 MHz .
Shyam Sunder
Kalpakkam
India

LOW COST 486DX-33 SYSTEM Fully featured with standard simm connectors $30 \& 72$ pin. Supplied
with keyboard, 4 Mb of RAM, SVGA monitor output, 256 k cache and integral 120 Mb IDE drive with single 1.44 Mb 3
Fully tested and guaranteed. Fully expandable

FLOPPY DISK DRIVES $31 / 2^{\prime \prime}-8^{\prime \prime}$

$51 / 4$ " or $31 / 2$ " from only $£ 18.95$!

HARD DISK DRIVES

drive with industry standard SMD interface, replaces Fujitsu equivalent model. Full manual. Only $£ 299.00$ or 2 for $£ 525.00$

31/2" FUJI FK-309-26 20 mb MFM IF RFE
CONNER CP 302420 mb IDE I/F (or equiv) RFE
CONNER CP 304440 mb IDE I/F (or equiv.) RFE
RODIME RO3057S 45 mb SCSI IF (Mac \& Acorn)
WESTERN DIGITAL 850 mb IDE IF F Brand New WESTERN DIGITAL 850 mb IDE $1 / \mathrm{F}$ Brand New
MINISCRIBE 342520 mb MFM I/F (or equiv.) RFE SEAGATE ST-238R 30 mb RLL I/F Refurb
CDC $94205-5140 \mathrm{mb}$ HH MFM IF RFE tested HP 9754 B 850 Mb SCSI RFE tested
HP C30102 Gbyte SCSI differentlal RFE tested

THE AMAZING TELEBOX

 TV SOUND \& VIDEO TUNER

The TELEBOX is an atractive fully cased mains powed taining all electronics ready to-plug into a host of video monitors made by makers such as MICROVITEC, ATARI, SANYO, SONY,
COMMODORE, PHILIPS, TATUNG, AMSTRAD et. The composite video output will also plug directly into most video recorders, allowing
reception of TV channels not normally recelvable on most television recelvers* (TELEBOX MB). Push bution controls on the front Channels. TELEBOX MB covers virtually all television frequencies TV operators. A composite video output is located on the rear panel video systems. For complete compatibility e even for monitors with audio output are provided as standard. TELEBOX STL as ST but fitted with integral speaker E36.95
E39.50 TELEBOX MB Multiband VRF/UHF/Cable/Hyperband tuner $\mathbf{8 6 9 . 9 5}$

to a cable type service. Shing code an Teleboxe's is (B)

DC POWER SUPPLIES

Virtually every type of powe supp 0,000

IC's -TRANSISTORS - DIODES

OBSOLETE - SHORT SUPPLY - BULK

 6,000,000 items EX STOCK VIDEO MONITOR SPECIALSOne of the highest specification monitors you will ever see At this price - Don't miss it!

19" RACK CABINETS

 Superb quality 6 foot 40 U Virtually New, Ultra Smart Less than Half Price! Top quality $19^{\prime \prime}$ rack cabinets made in UK byOptlma Enclosures Ltd. Units feature Optima Enclosures Lid. Units feature full height lockable hall adjustable internal fixing struts, ready punched plus ready mounted integral 12 way 13 amp these racks some of the most versatile we
have ever sold. Racks may be stacked side by side and therefore
require only iwo side panels to stand singly or in mutiple bays.
Overall dimensions are: $7712^{\prime \prime} \mathrm{H} \times 32^{\prime \prime} \mathrm{D} \times 22^{\circ} \mathrm{W}$. Order as:
OPT Rack 1 Complete with removable side panels. $£ 335.00$ (G) $£ 335.00(\mathrm{G})$
$£ 225.00(\mathrm{G})$
Tilt \& Swivivel Base Ea.75 Only E119细 MrTs-SVGA

Extemal cables for other types of computers CAL

As New - Used on film set for 1 week only!!
$15^{\prime \prime} 0.28$ SVGA 1024×768 res. colour monitors.
Swivel \& tilt etc. Full 90 day guarantee. E145.00 (E)

PHILIPS HCS35 (same stye as CMB833) atractively styled 14" coiour, monitor with both RGB and standard composite 15.625 Integral audio power amp and speaker for all audio visual uses. Will connect direct to Amiga and Atari BBC computers. Ideal for all
video monitoring / security applications with direct connection video monitoring / security applications with direct connection
to most colour cameras. High quality with many features such as front concealed flap controls, VCR correction button etc. Go
used condition-fully tested - guaranteed Only eg
Dimensions: W14

11 . Good used condition. Only $£ 125$ (E)

20" $22^{\prime \prime}$ and 26" AV SPECIALS
Superbly made UK manufacture. PIL all solid state colour monitors,
complete with composite video \& optlonal sound inout. Altractive complete with composite video \& optlonal sound input. Attractive
20"....£135 22"....£155 26"....£185 (F)

	SPECIAL INTERESTITEMS	
	IBM 823	
	M $53 F 5501$	
	IBM MA	
	AlM 501 Low distortion Osc	
	DS	
	arconi 6310 Programma	
	1650B Logic Analyse	
	3781 A Pattem generator \&	
	P621A Dual P	
	HP3081A industrila	
	HP54121A DC to 22 GHz four channel test set	
	7580A A1 8 pe	
	+ +G B	
	w	
	Computer controlled $1056 \times 560 \mathrm{~mm} \mathrm{X} \mathrm{Y} \mathrm{table} \mathrm{\&} \mathrm{controller}$	
	Keithley 590 CV capacitor / voltage analyser	
	Racal ICR40 dual 40 channel voice recorder system	
	Fiskers 45 KVA	
	1 R 5030	
	el SBC	
	ta 3220-05 AO 4 pen HPGL fast drum plotter	
	Motorola VME Bus Boards \& Components List SAE / CALL	
	10 0-18 vdc linear, metered 30 amp b	
	Fujitsu M 3041 R 600 LPM band printer	
	Fujitsu M3041D 600 LPM printer with network interface	ع125
	Perkin Elmer 2998 infrared spectrophotometer $\begin{aligned} & \text { VG Electronics } 1035 \text { TELETEXT Decoding Margin Meter } \\ & \text { £3750 }\end{aligned}$	
	Andrews LARGE 3.1 m Satelitit Dish + mount (For Voyager!) $£ 950$	
	TAYLOR HOBSON Tallysurf amplifier / recorder	
	System Video 1152 PAL waveform	
	st Lab-2 2 tr square quietised acoustic test cabinets	

32U - High Quality - All steel RakCab rack features all steel construction with removabse
side, front and back doors. Front and back doors are rack features all steel construction with removable
side, front and back doors. Front and back doors are
ninged for easy access and all are lockable with
five secure 5 lever barrel locks. The front door
is constructed of double wailed steel with a
'designer style' smoked acrylic front panel to is constructed of double walled steel with a
'designer style' smoked acrylic fron panel to
enable status indicators to be seen through the panel, yet remain unobtrusive. Internally the rack
leatures fully slotted reinforced vertical fixing
members to take the heaviest of $19{ }^{\prime \prime}$ rack equipment. The two movable vertical fixing strut (extras available) are pre punched for standar
cage nuts'. A matns distributlon panel internal

utilly
fuly
with
of integral fans to the sub plate etc. Other features include: fitted castors and floor levelers, prepunched utility panel at lower rear for

Sold at LESS than a third of makers price ! A superb buy at only $£ 195.00$ (G)

Over 1000 racks - $19^{\prime \prime} 22^{\prime \prime} \& 24^{\prime \prime}$ wide 3 to 44 U high. Available from stock !! Call with your requirements.
 TOUCH SCREEN SYSTEM

LOW COST RAM \& CPU'S

and PC-AT compatible card with 2 Mbytes of memory
Card is fully selectable for Expanded or Extended (286
Fully tested and guaranteed. Windows compatible. $£ 59.95$ (A1)Hall length 8 blt memory upgrade cards for PC AT XT expands
in RAM above 640k DOS limit. Complete with data.

SIMM SPECIALS

$1 \mathrm{MB} \times 9$ SIMM 3 chip $80 \mathrm{~ns} £ 19.50$ $1 \mathrm{MB} \times 9$ SIMM 9 chip 80 ns $£ 21.50$ 1 MB 9 St

\qquad

FANS \& BLOWERS

	£7.95 10 / $£ 65$
PAPST TYPE $61260 \times 60 \times 25 \mathrm{~mm} 12 \mathrm{~V}$ DC	ع8.95 10 / £75
MITSUBISHI MMF-D6D12DL $60 \times 60 \times 25 \mathrm{~mm} 12 \mathrm{v}$ DC	£4.95 10 / £42
MITSUBISHI MMF-08C12DM $80 \times 80 \times 25 \mathrm{~mm} 12 \mathrm{~V}$ DC	£5.25 10/£49
MITSUBISHI MMF-09B12DH 92x92x25 mm 12v DC	£5.95 10 / £53
PANCAKE 12-3.5 92x92x18 mm 12v DC	£7.95 10 / £69
EQUIP AC fans. ALL TESTED 120×120	specify 110
240 V [6.95. $80 \times 80 \times 38 \mathrm{~mm}$ - specify 110 or	V $£ 5.95$
261900 rack mnt 34×19 " Blower 110/2	NEW 879.95

Issue $\mathbf{1 3}$ of $\operatorname{Display}$ News now available - send Iarge SAE - PACKED with bargains!

DISTEL©

Linear, $\mathbf{9 0}^{\circ}-180^{\circ}$ scr trigger

When $90^{\circ}-180^{\circ}$ scr firing control is needed in an scr-controlled power supply and a simple capacitor filter is in use, this arrangement reduces non-linearity of control characteristic near 180°, where the slope of the sine wave is steep.
A comparator 741 compares the rectified output of the bridge with the control voltage, its output falling edge triggering a 555 -based monostable to trigger
the scr. Firing angle now varies bwteen 90° and 180° for a control voltage varying from the peak of the full-wave rectified ac to zero.
Output voltage on the capacitor is now stable to within about 0.05%, even at a firing angle near 180°. M Revathi, Ved Prakash and R Yogesh Cat-Indore
India

Comparator volatge

Trigger pulse

Linear firing control for scr. Full-wave rectifier enables linear control even near 180°, where sine slope is steep and small control voltage variations normally give large changes in output.

Pc tests rechargeable battery capacity

This little circuit and some software, plus the pc, constitute a tester for rechargeable batteries.
The circuit shown takes its power from the pc's serial port, the voltages being set up in software. Diode D1 holds the inverting input of the op-amp to 0.6 V so that a voltage over IV from the battery, divided by $R_{2,3}$, takes the op-amp output high.
Resistor R_{4} discharges the battery at 100 mA , the op-amp output going low when the battery voltage falls below 1 V . The C program measures the time during which the voltage is greater than 1 V and, as soon as it falls below this figure, calculates the battery capacity and displays it on screen.
Yongping Xia
Torrance
California
USA
Listing for checking cells on the pc
\#include <stdio.h>
\#include <dos.h>
\#include <time.h>
\#include <conio.h>
\#define DISCHARGE_CuRRENT 0.12
\#define MCR
\#define MSR
struct time t;
time_t start_time, read_time;
int i, base_addi=0x3f8, base_add2=0k2f8;
double bat_time;
uoid set_port(uoid)
\{
outportb(base_addi+MCR, Br01:


```
delay(1000);
}
int read_port(uoid)
{
int data;
data=(inportb(base_addl +MSR)& 0x80)/128;
return (data);
}
void dis data(uoid)
{
long run_time, run_hour, run_min, run_sec,j;
read_time=time(NULL);
run_time=(long)difftime(read_time,
                start_time);
run_hour=run_time/3608;
run_min=(run_time-run_hour*3600)/60;
run_sec=run_time-run_hour*3600-
                run_min*60;
bat_time=DISCHRRGE_CURAENT*(float)
                run_time/3.6;
gotoxy(2, 1);
printf("Battery has %.2fmRH", bat_time);
gettime(8t);
gotory(1,24);
if (run_hour<10)
    printf("0");
printf("%d:", run_hour);
if (run_min<10)
```

printr("0");
printf("\%d:", run_min);
if (run_sec<1日)
printf("b");
printf("\%d", run_sec);
void main(void)
int read_data;
clescr();
set_port();
start_time=time(NULL);
gotoxy(60,24);
printf ("Hit any key to quit");
bat_time $=0$;
do\{
read_data = (read_port ());
dis_data();
delay(1000);
\} while(!kbhit() \&\& read_data!=0);
if (read_data==0)
\{
gotoxy(1,24);
printf("Test is done");
getch();
\}

B. BAMBER ELECTRONICS

Philips FM Stereo Generator Type PM6456, 100MHz .
Philips Pal TV Pattern Gene rator Type PM5509, 10 Patterns
Tatung Early Bird DMac Satellite Receivers Model TRX2801
Farnell Portable Synthesized Signal Generator $10-520 \mathrm{MHz}$ Type PSG520
Dosimeter Charging Units, Model 1548
...................Es
Diodes Plastic Encapsulated, 6 amp, 200 volt Type P600D
Transistors Type MJ11028, T03, NPN, 300W, 60V, 50A ... 1.60
Iransistors Type MJ11029, TO3, PNP, 300W, 60V, 50 A
Processors Type TS68000 CFN12.
Eproms Type M27128 AF1 (Pulls)
Electrolube Freezer, 400 ml Cans.
Valves QQV06-40A (Ex Equip)..
Stepper Motor Drive Boards. 750 V/5A Step and Microstep Type GS-D500
Victron Invertors Type VBB48/1000, 48V dc Input, 230V ac Output © 10 KV $£ 200$
Super Twist Graphics Blue Mode LCDs 320x320 Pizel Size, 132x103mm Overall .
Densitron Liquid Crystal Displays, 5 Digit, Type LSH5060RP
Ceramic Trim Capacitors 50pf (orange) .. 8 for
Ceramic Trim Capacitors 20 pf (red)... 10 for f
Capacitors Radial Electrolytic, 330 Mfd , 63 volt
Capacitors Radial Electrolytic, 330 Mrd , 63 vol
Capacitors Radial Electrolytic, 470 Mfd , 50 volt
Capacitors Radial Electrolytic, 2200Mfd, 16volt
Hochikd Thermal Detectors Model DFF-60ELPC
System Sensor Automatic Smoke Detector Model 2424F
System Sensor Automatic Smoke Detector
Crabtree Ceiling Switches, 6 amp, Red Cord
Crabtree Celling Switches, 6 amp, Red Cord ..
Mains Filters Chassis Mounting, 5amp, $115 / 250 \mathrm{~V}$ ac
Mains Filters Chassis Mounting, Samp,
Belling Lee IEC Plug Filter Type L2133CL
Rittal Steel Cabinet Enclosers $800 \times 1000 \times 300 \mathrm{~mm}$

All prices exclude Carriage \& VAT. Callers by appointment only.
5 STATION ROAD, LITTLEPORT, CAMBS CB6 1QE PHONE: ELY (01353) 860185 FAX: ELY (01353) 863245

If you need Valves/Tubes or RF Power

 Transistors e.t.c. ... then try us!We have vast stocks, widespread sources and 33 years specialist experience in meeting our customers requirements.

Tuned to the needs of the Professional User
Chelmer Valve Company, 130 New London Road, Chelmsford, Essex CM2 ORG, England
8『44-01245-355296/265865 Fax: 44-01245-490064

M\&B RADIO (LEEDS) THE NORTH'S LEADING USED TEST EQUIPMENT DEALER

EEECHOUTPMENT
\$(M)
\$(M)

EEKTRONIX 521 Avecorscoces
EEKTRONIX 521 Avecorscoces
EKTRONX AGYOZA isolator.
EKTRONX AGYOZA isolator.

M,
M,

AARCON1 6950/6910 10 MH-20 GHz RF power meter
AARCON1 6950/6910 10 MH-20 GHz RF power meter

AMCONITF2432 TFOR Hz-500 MHz frocuency.0
AMCONITF2432 TFOR Hz-500 MHz frocuency.0
*)
*)
*)
*)

*)
*)
\$36A RF power mecers
\$36A RF power mecers
B47/A RF powar mater calibrator.
B47/A RF powar mater calibrator.

\$17 distorion zonempor, ar.
\$17 distorion zonempor, ar.
*)
*)

T Tk Tro 1
TEKTRONX K2u2 5

TEKTRONX 475200 MHz 2 channel
TEKRONNX 466100 MHz 2 chane itione
TETRONIX 4658100 MHz 2 channel.....
TEKTRONX ${ }^{465} 100 \mathrm{MHz} 2$ channel .
TEKTRONXX ${ }^{634} 25 \mathrm{MHHz} 2$ channel storabe.

WATSU SS 5122100 MHz 4 chanel with cursors

SPECTYUMANAAYSERS
TEKTRONIX 271010 KHz I 18 GHz OHP ooinoiioit

SIGNAL GENERATORS \qquad

$3683 \mathrm{D} 2.3 \mathrm{HKZ-13} \mathrm{GHz} \mathrm{OPT} 001003$ solid

TEKTRONIX 2920 MHz pulse generto
ALL PRICES PLUS VAT AND CARRIAGE • ALL EQUIPMENT SUPPLIED WITH 30 DAYS WARRANTY
86 Bishopsgate Street, Leeds LSI 4BB
Tel: (0|l3) 2435649 Fax: (0|l3) 242688|

웅윤

Applying magnetoresistance

With circuits examples including a sensor for the Earth's magnetic field and an overcurrent switch for protecting igbts, Neil Chadderton demonstrates the

Layout of a typical magnetoresistive chip is shown in Fig. 1 , and is for example the chip used in the ZMY20 sensor. Thin film stripes are a characteristic feature of a magnetoresistive chip. These stripes are made by photolithography and consist of permalloy, $\mathrm{Ni}_{18} \mathrm{Fe}_{19}$ - a magnetic material evaporated on an oxidised silicon wafer. The electrical resistivity of the stripes is changed by a magnetic field H_{y} due to the magnetoresistive effect. The field H_{y} causes a rotation of the magnetisation in the stripe, Fig. 2. Resistivity R of a permalloy stripe depends on the angle between the directions of electric current, I, and magnetisation M :

$$
R=R 0_{0}+\Delta R_{0} \cos 2 \alpha .
$$

where ΔR_{o} describes the strength of the magnetoresistive effect.
The maximum relative change of resistivity $\Delta R_{0} / R$ is approximately 2 to 3% for permalloy. The relationship between an external field H_{y} and angle α is determined by the geometrical dimensions of the stripe and the magnetic anisotropy of permalloy. This is taken into account by introducing a field H_{0} that represents the demagnetising and anisotropic field. One obtains,

$$
\begin{array}{ll}
\sin ^{2} \alpha=\frac{H_{p}^{2}}{H_{0}^{2}} & \text { for } H \leq H_{0} \\
\sin ^{2} \alpha=1 & \text { for } H \geq H_{0}
\end{array}
$$

The characteristic of a magnetoresistive stripe as a field sensor is:

$$
R=R_{0}+\Delta R_{0}\left(1-\frac{H_{y}^{2}}{H_{0}^{2}}\right) \text { for } H \leq H_{0} .
$$

A linear characteristic of the magnetoresistive sensor is required to measure a small magnetic field. The linear behaviour of the magnetoresistive sensor is achieved by
using a 'Barber-pole' geometry. The stripes in Fig. 1 are covered with aluminium bars having an inclination of 45° to the stripe axis. Aluminum has a low resistivity compared to permalloy. Therefore the Barber poles cause a change of the current direction. The angle between current and magnetisation is shifted by 45°, Fig. 3. The relationship between resistance and magnetic field is now,

$$
R=R_{0}+\frac{\Delta R_{0}}{2} \pm \Delta R_{0}\left(\frac{H_{y}}{H_{0}}\right) \sqrt{1-\frac{H_{v}^{2}}{H_{0}^{2}}}
$$

A linear characteristic of the sensor is given around $H_{y}{ }^{2} / H_{0}{ }^{2}=0$. The sign in this equation is determined by the inclination of the Barber poles, $\pm 45^{\circ}$, to the stripe axis. The characteristic of a sensor with and without Barber poles is presented in Fig. 4.
The stripes of the magnetoresistive chip are arranged as a meandering pattem. They form a Wheatstone bridge which is

Fig. 2. Magnetoresistive effect depends on the angle between the direction of electric current I and magnetisation M . A rotation of the magnetisation in a permalloy stripe takes place when a magnetic field in the y direction is applied. Without an external field the magnetisation is along the x direction due the shape of the stripe.

Fig. 1. Above, magnetoresistive magnetic field sensor chip photograph.
\qquad

Fig. 4.
Characteristics of magnetoresistive sensors. The barber-pole structure enables a linear behaviour of the sensor for a small magnetic field.
shown schematically in Fig. 5. The applied voltage is V_{b}. Each half bridge consists of two resistors with different Barber-pole orientations. Voltage between the resistors of a half bridge changes upon application of a magnetic field.
The resistance of one resistor increases, while the other

Fig. 5. Wheatstone bridge of a magnetoresistive sensor with barber-pole structure. The bridge is balanced by laser trimming.

resistor has a lower resistance due to the differing field characteristic. Adding a second half bridge with an opposite arrangement of Barber poles provides a Wheatstone bridge.
Voltage difference V_{0} is the output signal of the sensor. Each half bridge is trimmed to $V_{b} / 2$ with an additional resistor in order to get an output voltage close to zero when no external field is applied. The trimming structures of the resistors in Fig. 1 mark off the meander stripes on the left and right side of the chips.

Operating conditions and parameters

The shape of the stripe and the anisotropy of permalloy only define an axis along the x -direction for the magnetisation without external field H_{y}. This means that in this state the stripe can have areas with a different direction of magnetisation (magnetic domains) and the sensor does not work in a stable way. A safe operation of the sensor is achieved by applying an auxiliary field $H_{\mathbf{x}}$. This field defines the direction

Fig. 6. Safe operating area of ZMY20/ZMZ20 magnetoresistive sensors. $\mathrm{H}_{\mathbf{x}(t) t)}$ is $\mathrm{H}_{\mathrm{x}}+\mathrm{H}_{d}$, ambient temperature is $-25^{\circ} \mathrm{C}$ and H_{d} is the disturbing field.

Appendix B. Extract from the ZMY20/30, ZMZ20/30 magnetoresistive sensor data sheet. Most of these characteristics assume an ambient temperature of 25° and H_{y} of $3 \mathrm{kA} / \mathrm{m}$.

Parameter
Bridge resistance
ZMY20/ZMZ20
ZMY30/ZMZ30
Output voltage range $\quad V_{0} / V_{B}$
ZMY20/ZMZ20
ZMY30/ZMZ30
Open-circuit sensitivity
ZMY20/ZMZ20
MYY30ZMZ30

Hysteresis of output
Offset
Operating frequency
Temp. coeff. of offset
Temp. coeff. of bridge resistance Temp. coeff. of open circuit sensitivity $\mathrm{V}_{\mathrm{B}}=5 \mathrm{~V}$ Temp. coeff. of open circuit sensitivity $\mathrm{I}_{\mathrm{B}}=3 \mathrm{~mA}$ TCS,

Symbol R_{b}
$1.2 \quad 1.7$
$2.0 \quad 3$

16 12
3.24 .0
$2.0 \quad 3.0$

Max. Unit
2.2
4.0

22
20
4.8
4.0
$+1.0 \mathrm{mVN}$
1 MHz
$+3$
0.3
-0.4
-0.1
$50 \quad \mu \mathrm{~V} / \mathrm{V} \quad \mathrm{Hy} \leq 2 \mathrm{kA} / \mathrm{m}$
Test conditions
$k \Omega$
mV / V
(mV/V)/ No disturbing
(kA/m) field, H_{d}, allowed

MHz
$(\mu \mathrm{V} / \mathrm{V}) / \mathrm{K} \mathrm{T}_{\text {amb }}-25 \ldots+125^{\circ} \mathrm{C}$
$\% / \mathrm{K} \quad \mathrm{T}_{\text {amb }}-25 \ldots+125^{\circ} \mathrm{C}$
$\% / \mathrm{K} \quad \mathrm{T}_{\text {amb }}-25 \ldots+125^{\circ} \mathrm{C}$
$\% / \mathrm{K} \quad \mathrm{T}_{\text {amb }}-25 \ldots+125^{\circ} \mathrm{C}$
of the magnetisation. The range of H_{y} for safe sensor operation is determined by the strength of the auxiliary field. The safe operating area of the sensor is demonstrated in Fig. 6.
Field $H_{\mathrm{x}(\mathrm{tol})}=H_{\mathrm{y}}+H_{\mathrm{d}}$ determines the allowed field values for H_{y}, where H_{d} is an external disturbing field in the x-direction.
There is no limitation for H_{y} in the case of $H_{\mathrm{x}(\text { (tot })} \geq 2.6 \mathrm{kA} / \mathrm{m}$. A small permanent magnet is sufficient to create the auxiliary field. Where ZMZ 20130 or $Z M Y 20 / 30$ devices are used, the magnet can be glued on the sensor package. Another option is the ZMY2OM which provides a very compact sensor including an integrated magnet, and is available in surface mount packaging.
The operating data sheet parameters of the Wheatstone bridge are referred to an input voltage $V_{\mathrm{b}}=1 \mathrm{~V}$, due to the linear relationship between input and output voltage in this region.
The sensitivity $\mathrm{S}[\mathrm{mV} / \mathrm{V} / \mathrm{kA} / \mathrm{m}]$ of the magnetoresistive sensor is defined as the slope of the output voltage versus external field for $-1 \mathrm{kA} / \mathrm{m} \leq H_{y} \leq 1 \mathrm{kA} / \mathrm{m}$. This parameter depends on the geometry of the permalloy meander and the auxiliary field. The latter is demonstrated in Fig. 7 for $H_{\mathrm{x}}=3 \mathrm{kA} / \mathrm{m}$ and $H_{\mathrm{x}}=6 \mathrm{kA} / \mathrm{m}$. Note the small operating area in the case of $H_{y}=0 \mathrm{kA} / \mathrm{m}$. A high sensitivity of the sensor leads to a small operating area for H_{y}.

The Wheatstone bridge is balanced without the application of an external field of $H_{y} \leq 0.1 \mathrm{kA} / \mathrm{m}$.

Fig. 7. Sensor output characteristic of ZMY20/ZMZ20. Sensitivity of the sensor can be controlled by applying auxiliary field H_{x}. This auxiliary field is necessary for sensor operation in a large field range, $V_{o}=f\left(H_{y}\right) ; H_{x}$-paramefer; $V_{b}=$ const $; T_{a m b}-25^{\circ} \mathrm{C}$.

Fig. 10 Sensor system for monitoring movement in the Earth's magnetic field.

In this case, output voltage of the sensor is close to zero at room temperature.

Deviation of the output voltage from zero is called the offset voltage $V_{\mathrm{off}} / V_{\mathrm{b}}[\mathrm{mV} / \mathrm{V}]$. The offset is caused by small geometric variations of the bridge which occur during the photolithographic process. The offset of the bridge is adjusted by laser trimming. The voltage output of each half bridge is $V_{\mathrm{b}} / 2$.
Bridge resistance $R_{\mathrm{br}}[\% / \mathrm{K}]$ of the magnetoresistive sensor depends linearly on temperature. The temperature coefficient of bridge resistance $\mathrm{TCR}_{\mathrm{br}}[\% / \mathrm{K}]$ is positive. This is typical for metals. The temperature coefficient of sensitivity, TCS [$\% / \mathrm{K}]$ of the sensor is negative for $V_{\mathrm{b}}=$ const $(T C S ⿱ \mathrm{~V})$, because the strength of the magnetoresistive effect becomes smaller with increasing temperature.
In the case of $I_{\mathrm{B}}=$ const $\left(\mathrm{TCS}_{\mathrm{I}}\right)$, when the sensor is powered by a constant current supply, the temperature dependence of the sensitivity is reduced due to the linear relationship between input and output voltage. A higher bridge resistance caused by a rise in temperature leads to an increased applied voltage, partly compensating the change of sensitivity.

The Wheatstone bridge cannot fully compensate the temperature dependence of the resistors. The temperature coefficient of offset voltage $T C V_{\text {off }}[\mu \mathrm{V} / \mathrm{V} / \mathrm{K}]$ is due to local changes of resistivity in the permalloy thin film and photolithographic variations. This characteristic of the magne-
toresistive sensor limits the measurement of small magnetic fields in a wide temperature range, especially in the case of static fields. Two sensors can be selected having a comparable temperature coefficient.

Offset drift is partly eliminated by using the difference of the output voltages of both sensors. Another elegant way to avoid offset drift is to invert the direction of the auxiliary field, thus inverting the output voltage of the sensor. This can be done by small coils providing an auxiliary field that can change its direction.
Hysteresis of output voltage $V_{\text {off(}} /{ }^{\prime} / V_{\mathrm{b}}[\mathrm{mV} / \mathrm{V}]$ describes the accuracy of the magnetoresistive sensor. The magnetisation of the permalloy stripe is not completely homogeneous. There are small areas of the meander, especially at the corners of the stripes, where the magnetisation is pinned and does not correctly follow the external field. The hysteresis is measured in a magnetic field loop, where H_{y} goes from $-3 \mathrm{kA} / \mathrm{m}$ to $3 \mathrm{kA} / \mathrm{m}$ and back to $0 \mathrm{kA} / \mathrm{m}$ ($H_{\mathrm{x}}=3 \mathrm{kA} / \mathrm{m}$). $V_{\text {off }(H)} / V_{\mathrm{b}}$ denotes the shift of the offset voltage caused by this loop.
The maximum range of output voltage $\Delta V_{0} / V_{\mathrm{b}}[\mathrm{mV} / \mathrm{V}]$ is defined as the difference of output voltage for $\alpha=0^{\circ}$ and $\alpha=90^{\circ}$, where α denotes the angle between current and magnetisation of the magnetoresistive stripe. This means that $\Delta V_{0} / V_{\mathrm{b}}$ represents the strength of the magnetoresistive effect. This parameter decreases with temperature and determines the sensitivity of the sensor.

Applications

Some examples of applications for magnetoresistive sensors are presented in the panel.
Figure 8 shows a ZMC20 current sensor being used as a basis for an overcurrent trip switch used to protect power igbts within a motor driver system. The circuit reacts within $3 \mu \mathrm{~s}$ to prevent latch-up related failure under transient/pulse conditions, and was built within a module measuring $35 \times 20 \times 25 \mathrm{~mm}$. An external $10 \mathrm{k} \Omega$ preset potentiometer is required for offset adjustment. Supply voltage is $+5 \mathrm{~V} \pm 10 \%$ at 10 mA ; output is via an open-collector transistor rated at $1 \mathrm{~A}, 20 \mathrm{~V}$; operating temperature range is 0 to $80^{\circ} \mathrm{C}$.
Figure 9 provides a method for revolution measurement by reacting to a modulated magnetic field due to a rotating cog. The circuit gives a signal whose frequency is proportional to
the rotarional velocity of the cog, and a high level output for no rotation.
Figure 10 shows an application circuit for three-dimensional magnetic field observation. When the unit is enabled, it calibrates itself to the existing magnetic field of the earth, and then generates a warning signal if it is moved. The system employs three ZMY20 sensors - one for each dimension - and a c-mos e-prom microcontroller with an a-to-d converter. Similar circuits have been designed for automotive immobiliser/alarm systems that monitor the position of the vehicle by sensing the magnetic field of a movable permanent magnet. This magnet is necessary to shield the sensor from disturbing fields (generated by supply lines, car alternators, etc.) Supporting software for these systems is available on request.

Magnetic sensors

 discussed in this article are available from 2001 Electronics Components Lid, StevenageBusiness Park, Pin Green, Stevenage ST1 4SU, tel. 01438 742001, fax 742002.

Application outlines for the magnetoresistive sensor.

Position sensing

Measurement of the Earth's Magnetic Field

COMPUTERICS	
TMS $9900 \mathrm{NL}-40$ PULLS	c20 88
S9900 NEW AMD EQUIVALENT	£30 ه
MC6802 PROCESSOR	E2＊à
AM27C020－125L1 SURFACE MOUNT EPROM USEDNI	PED ． 1.50
P6271 BBC DISC CONTROLLER CHIP EX EOPT	c25
2817 A －20（2K X 8）EPROM ex eqpt	$\varepsilon 2$
D41256C－15 256K X 1 PULLS	9 fOR $£ 5$
P8749H MICRO	£5
D8751－8 NEW	£10
MK48Z02－20 ZERO POWER RAM EQUIV 6116 P	［4
USED 4164－15	60p
BBC VIDEO ULA	$\varepsilon 10$
8051 MICRO	£1．25
FLOPPY DISC CONTROLLER CHIPS 1771	816
FLOPPY DISC CONTROLLER CHIPS 1772	£17．50
68000－8 PROCESSOR NEW	86
H06384－8	c5
27C4001 USED EPROMS	54
$27 \mathrm{C2001}$ USED EPROMS	£2．50
1702 EPROM NEW	c6
2114 EX EQPT ．．．．．．． 50 p ．．．． 4416 EX EOPT	70p
6264.158 k STATIC RAM	E1．50
Z80A SIO－O	ع1．25
$712631 / 2$ DIGIT LCD DRIVER CHIP	$\varepsilon 2$ ea
2816A－30 HOUSE MARKED	12
USED TMS2532JL ．．．．．22．50 ．．．．．．．． 2708 USED	c2
HM6167LP．8	．65p
68000－10 PROCESSOR	ع\％
8255.5	£1．40
2114 CMOS（RCA 5114）	£1．60
WD16C550－PC UART	c5
ZN427E－8	¢
27C256－26 USED	81.50
REGULATORS	
LM323K 5 V 3A PLASTIC	E3
LM323K 5V 3A METAL	$\underline{5}$
LM350K（VARIABLE 3A）	¢3
78H12ASC 12V 5A	． 5
LM317H TO5 CAN	1
LM317T PLASTIC TO220 variable	11
LM317 METAL	c2．20
7812 METAL 12 V 1A	1
7805／12／15／24	．30p
7905／12／15／24	．30p
C43085 TO99 variable reg	$2 / 1$
78HGASC＋79HGASC REGULATORS	530 e0
LM123 ST93 5V 3A TO3 REGS	¢3 8
UC3524AN SWITCHING REGULATORIC	${ }^{60 p}$
78 L 12 SHORT LEAOS	．1081
LM2950ACZ5．0	60p

CRYSTAL OSCILLATORS

 SMOKHOOO 5M06800 5M760000 6M000000 6M 1440 7MOO000 3M372800 7M5 8M00000 9M21610M000 10MO 12M000000 19M2 19M440 20 MO 00 MOM 015021 M 67622 M 118423 M 587 $24 \mathrm{M} 000025 \mathrm{M} 1748.25 \mathrm{M} 17525 \mathrm{M} 188927 \mathrm{M}+36 \mathrm{M} 27 \mathrm{M} 00000$ 28M322 32M000000 32M0000＂S／MOUNT $33 M 3330$ 35M4816 38M100 40M000 41 M 39 L2MOOOOO 44M444 $4 \mathrm{M} 900 ~ 44 \mathrm{MO}$ 80MO 84 MO

CRYSTALS

32K768 1MHZ 1 M8432 2M000 2M1432 2M304 2M4576 3M000 4M 000 4M190 4 M 579545 3M58564 3M600 3M6864 3M93216 5M0688 6M000 6M041952 6M200 6M 400 7M37280 8M000 BM06400 8M448 8M863256 8M8670 9M3750 9M8304 10M240 10M245 10 M 36810 M 7000011 M 00011 M 06211 M 9813512 M 00012 M 5 13M000 13M270 13M875000 14M000 14M318 14 M 745014 M 7456 15M0000 16M000 17M6250 18M432 20M000 21M300 21M400M15A 24M000 25M000 26M995 gi 27M045 RD $27 \mathrm{MO95}$ OR
27M145 BL 27M145 YW 27 M 195 GN 28 M 4696 30M4696 31 M46 31 M 469634 M 36836 M 75625 36M 76875 36M78125 36 M 79375 З6M80625 36 M 8187536 M 83125 З6MB4375 38 M 90048 M 000 51 M05833 54M 191655 M 50057 M 741657 M 7583 69M545 69M550 96 M 000111 M 800114 MB

TRANSISTORS

MPSA92

2N2907A
BC477 BC4B8
BC107 BCY7O PREFORMED LEADS
tull spe
BC557，BC238C，BC308B
BC548B SHORT LEADS
POWER TRANSISTORS
OC29
TIP $141 / 2$ \＆1 © TIP $112 / 428$
IRF620 TO． 220 12A 200
SE9301 100V 1DA DARL SIM TIP 121
PLASTIC 3055 OR 2955 equiv 50 p
$10 / \mathrm{E} 1$
10／81
$\varepsilon 1$ ع4／100 £30／1000 c1／30 $83.50 / 100$ E3／100 E20／1000

3／1 $100 / \mathrm{c} 22$
．．．2ร1
$2 / 1$
$2 \Sigma 1$
$4 \varepsilon 1$

TEXTOOL ZIF SOCKETS
28 PIN USED 64 WAY SHFINK DIP SKT TEXTOOL 264－1300－00 1．78ma SPACING ON PCB WITH 4 mHz RESONATOR ．．．．．．．．．．．．．．．．$£ 10$ SUINGL IN LINE DEVICES ．．．．COUPLING SUPPLIED ．．．．2／E1．50

TEL．01279－505543
FAX．01279－757656 po box 634 BISHOPS STORTFORD

MISCELLANEOUS

AAA NICADS HI CAPACITY 360 mH MR 3 CELL PACK 25A SOLID STATE RELAY 240 V AC ZERO VOLTS SWIT．．．．．．． XENON STRORE TURE
Narrow angle infra red emitter LEDSSC
CNY65 OPTO ISOL 3000 available
CNY65 OPTO ISOL 3000 availabl
PTO ICS also available TLP550 TLP666GF ilable． .81 .60 68 way PLCC SKT 100 avallable． 1250 pF POSTAGE STAMP COMPRESSION TRIMMER M324（Quad 741）．

I）STAMP COMPRESSION
RITE MAGNETS $4 \times 4 \times 3 \mathrm{~mm}$
MINIATURE FERRITE LO NOISE OP AMP
TL081 OP AMP ．．．．．．． 51

AMP ．．．．．．．．．．．．．．．．．．．．．．．．．．． 5 for $£ 1$
200U 25v SPRAGUE $36 D$.4 for $£ 1$ 12 way dill sw le
SWITCHED MODE PSU 40 WATT UNCASED OTV．AVAILABLE +5 V
SWITCHED MODE PSU 40 WATT UNC
$5 A, 12 \mathrm{~V} 2 \mathrm{~A}, 12 \mathrm{~V} 500 \mathrm{~mA}$ FLDATING
22OR 2．5W WIREWOUND RESISTOR GOK AVAILABLE
£9．95（£2）

MOS 555 TIMERS．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．2／と1
PASSIVE INFRA RED SENSOR CHIP + MIRROR + CIRCUT $\quad 2 / \varepsilon 1.50$ EUROCARD 9G－WAY EXTENDER BOARD
$290 \times 100 \mathrm{~mm}$
DIN 4161296 WAY A／B／C SOCKET＇PCB RIGHTT ANGLE ．．．．． 1.30 DIN 4161296 －WAY ABB／C／SOCKET WIRE WRAP PINS ．．．．．． 81.30
DIN 41612 64－WAY AC SOCKET WIRE WRAP PINS ．
N 41612 WAY SOCLG WRE WRAP I2 ROW BODM
OIN4161264－WAYA
BT PLUG＋LEAB
IN．TOGGLE SWITCH 1 POLE c／o PCB type ．．．．．．．．．．．．．．． $5 / \Sigma 1$
40×2 characters $182 \times 35 \times 13 \mathrm{~mm}$
6－32 UNC 5／16 POZI PAN SCREWS
ع1／100
PUSH SWITCH CHANGEOVER ．．．．．．．．．．．．．．．．．．．．．．．．．．25／100
RS232 SERIAL CABLE D25 WAY MALE CONNECTORS
5.90 ea
（ $\mathbf{(1 . 3 0)}$
25 FEET LONG， 15 PINS WIRED BRAID $~+$ FOIL SCREENS
AMERICAN 23 PIN CHASSIS SOCKET
IRE ENDED FUSES 0.25
NEW ULTRASONIC TRANSDUCERS 32 kHz
BNC SOOHM SCREENED CHASSIS SOCKET
SMALL MICROWAVE DIOOES AE1 OC1026A
D．IL SWITCHES 10 －WAY E1 8 －WAY 80 p $4 / 5 / 6$－WAY
180 VOLT 1 WATT ZENERS also $12 \mathrm{~V} \& 75 \mathrm{~V}$
MIN GLASS NEONS
RELAY 5 V 2 －pole changeover looks like RS $355-741$ marked STC 47WBost
IINIATURE CO－AX FREE PLUG RS 456－071 IINIATURE CD－AX PCB SKT RS 456 －093 CB WITH 2N2646 UNIJUNCTION WITH 12 V 4．POLE RELAY TRAN GAUGES 40 em Foil
TRAIN GAUGES 40 ohm Foil type polyester backed
ELECTRET MICROPHONE INSERT ．．．．．．．．．．．．． 51.50 es $10+\varepsilon$
Linear Hall effect IC Micro Switch no 613 SS4 smn RS 304－267
pole 12 way rotary switch £2．50 $100+£ 1.50$
AUDIO ICS LM380 LM386
555 TIMERS 81741 QP AM
ZN414 AM RADIO CHIP
COAX PLUGS nice ones
COAX BACK TO BACK JOINERS
NDUCTOR $20 \mu \mathrm{H}$ 1．5A
.25 inch PANEL FUSEHOLDERS
STEREO CASSETTE HEAD
MONO CASS．HEAD \＆1 ERASE HEAD
THERMAL CUT OUTS $507785120^{\circ} \mathrm{C}$
THERMAL FUSES $220^{\circ} \mathrm{C} / 121^{\circ} \mathrm{C} 240 \mathrm{~V} 15 \mathrm{~A}$
TRANSISTOR MOUNTING PADS TO．5TO： 18
TO－3 TRANSISTOR COVERS
CB PINS FIT 0.1 inch VERO
－-220 micas + bushas
O－3 micas + bushes ．
arge hieat shrink sleeving pack
EC chassis plug filter 10A
K
Ok UIS TRANSOUCERS EX－EOPT NO DATA
M2347 CONST CURRE．
M2342 CONST．CURRENT I．C
IIN PCB POWER PEG POST SIM RS $455-961$

CD MODULE 10 CHar xi Liv．．．．．．．．．．．．．．．．．．．
CD MODULE 16 CHAR．$X 1$ LINE（SIMILAR TO HITACHI LM10）－ 55
OPII264A IOkV OPTO ISOLATOR．．．．．．．．．．． 1.35 es $100+$
＇LOVE STORY＇CLOCKWORK MUSICAL BOX MECMANISM
LOVE STORY＇CLOCKWORK MUSICAL BOX MECMANISM
MADE BY SANKYO
ADE BY SANKYO
$10,000 \mu \mathrm{~F}$ 1GV PCB TYPE 30 mm DIA $\times 31 \mathrm{~mm}$
.5180
.5001 cz
$0,000 \mu \mathrm{~F} 16 \mathrm{~V}$ PCB TYPE 30 mm DIA $\times 31 \mathrm{~mm}$
C CHASSIS FUSED PLUG B－LEE 12728.
2A CERAMIC FUSE 1.25 inch $Q B$
2／E1
46 WAY IOC RIBBON CABLE 100 FOOT REEL
20 mm PCB FUSEHOLDER ．．．．．．．．．．．
ع5＋CARR

ASTEC MODULATOR VIDEO＋SOUNO UM 1287
BARGRAPH DISPLAY 8 RED LEDS
E567 PHASE LOCKED LOOP
NE564
R2432 SHARP 12 LED VU BAR GRAPH ORIVER
DA CORCOM MAINS RFI FHTER EX EOPT
OHM MYLAR CONE LOUDSPEAKER 55 mm DIA ． 12100
DEEP．

DIODES AND RECTIFIERS

AII5M 3A 600 V FAST RECOVERY DIODE
1N5407 3A 1000V．
IN4004 SD4 1 A 300 V
1N5401 3A 100V．
1N5819RL 20K Ex stock
BA158 1A 400 V fast recovery
BY254 800V 3A．
GA IOOV SIMILAR MR751
1A GOOV BRIDGE RECTIFIER
4A 100V BRIDGE
6A 100 V BRIDGE
6A 100V BRIDGE
25A 200V BRIDGE 2
25A 400V BRIDGE £2．50
BY297
KBPC3O4 BRIDGE REC $3 A 400 \mathrm{~V}$
SCRS
PULSE TRANSFORMERS 1．1－1 $\ldots \ldots \ldots$ ．．．．．．．．．．．．．．．．．．． 25
MEU21 PROG UNIJUNCTION
3／と1

TRIACS．
 DIACS 4／乏1

TXA TRIAC ACOBF 8A goov TO220
TXAL225 BA 500 V 5 mA GATE． 5／22 100／E30
BTA 08.400 ISO TAB 400 V 5 mA GATE 2／E1 100／E35

TRAL 22300 O 30 A 400 V ISOLATED STUD
5 FOR 15 en

РНОTO DEVICES

HI BRIGHTNESS LEDS COX24 RED
SLOTTED OPTO－SWITCH OPCOA OPB815
TILBI PHOTO TRANSISTOR
TIL38 INFRA RED LED．
4N25，OP12252 OPTO ISOLATOR
PHOTO DIODE SOP
MEL12（PHOTO DARLINGTON BASE N／C）
LEDs RED 3 or 5 mm 12／21
LEDS GREEN OR YELLOW $10 / \mathrm{E}$
FLASHING RED LED 5 mm 50 p
HIGH SPEED MEDUM AREA PHOTODIODE RS 651 ．．．．．100／E40
HIGH SPEED MEDIUM AREA PHOTODIODE RS651－995 ．．£10 ea
OPTEK OPB745 REFLECTIVE OPTO SENSOR
RED LED－CHROME BEZEL
OP｜I $10 B$ HI VOLTAGE OPTO ISOLATOR
MOC 3020 OPTO COUPLED TRIAC．
E1．50
$.3 / \mathrm{E} 1$
1

STC NTC BEAD THERMISTORS
G22 220R，G13 1K，G23 2K，G24 20K，G54 50K．G25 200K，RES $20^{\circ} \mathrm{C}$ DIRECTLY HEATED TYPE ．． $20^{\circ} \mathrm{C} 200 \mathrm{~F}$ ．
A13 DIRECTLY HEATED BEAD THERMISTOR 1 k res．ideal for audio Wien Bridge Oscillator．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2 oe
CERMET MULTI TURN PRESETS $3 / 4$ inch 10R 20R 100R 200R 250R 500 2 K 2 K 2 2K5 5K 10K 47 K 50 K 100 K 200 K 500 K 2 M

50p ea

IC SOCKETS

14／16／18／20124／2＠／40－WAY DIL SKTS ．．．．．．．．．．．． 81 per TUBE
8－WAY DIL SKTS
32－WAY TURNED PIN SKTS
E1 per TUBE
per TUBE
SIMM SOCKET FOR 2×30－way SIMMS
3 for E 1
POLYESTER／POLYCARB CAPS
330nF $10 \% 250 \vee$ AC X2 RATED PHILIPS TYPE 330
100n， 220 n 63 V 5 mm ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $20 / \mathrm{E} 1100 / \mathrm{cz} 3$
$10 \mathrm{n} / 15 \mathrm{n} / 22 \mathrm{n} / 33 \mathrm{n} / 47 \mathrm{n} / 66 \mathrm{n} 10 \mathrm{~mm} \mathrm{rad} ~ 100 / \mathrm{E} 3.50$

$2 \mu 2160 \mathrm{~V}$ rad $22 \mathrm{~mm}, 2 \mu 2100 \mathrm{~V}$ rad $15 \mathrm{~mm}$.

$1 \mu 600 \mathrm{~V}$ MIXED DIELECTRIC．．．．．．．．．．．．．．．．．．．．．．．．．．50p es
$1 \mu 0100 \mathrm{~V}$ rad $15 \mathrm{~mm}, 1 \mu 022 \mathrm{~mm} \mathrm{rad}$
$1 \mu 0100 \mathrm{~V}$ rad $15 \mathrm{~mm}, 1 \mu 022 \mathrm{~mm} \mathrm{rad}$
$0.22 \mu 250 \mathrm{~V}$ AC X 2 RATING

RF BITS

SAW FILTERS SW662／SW661 PLESSEY SIGNAL TECHNOLOGY
FX3286 FERRITE RING ID 5 mm OD $10 \mathrm{~mm}$.
ASTEC UM1233 UHF VIDEO MODULATORS（NO SOUND） 1250
STOCK
 DC4229F1／F2．

ALL TRIMMERS ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3 for 50p
RED 10－110pF GREY 5－25pF SMALL MULLARD

CERAMIC FILTERS 4M5／6M／9M／10M7．．．．．．．．．．．．．．．．．．． 60 op ea
FEED THRU CERAMIC CAPS 1000 pF SL610．
6 VOLT TELEOYNE RELAYS 2 POLE CHANGEOVER ．．．．．．．．．\＆ε （BFY51 TRANSISTOR CAN SIZE）
2N2222 METAL，
P2N2222A PLASTIC ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．10／E． 11
74N16 TACS CAR PHONE ORP MODULE
5／51
EQUIV MHW806A－3 RF IN 40 mW O／P6 $\rightarrow 8 \mathrm{w} 840 \rightarrow 910 \mathrm{mHz}$ ．c c éa
MONOLITHIC CERAMIC CAPACITORS
10 n 50 V 2.5 mm ．
100 n 50 V 2.5 mm
$00 / 84.50$
100 n 50 V 2.5 mm or 5
100 n ax short leads．
100 n ax long leads
$1 \mu \mathrm{~F} 50 \mathrm{~V} 5 \mathrm{~mm}$ ．
．．．．．．100／58

QUARTZ HALOGEN LAMPS

12V 50wath LAMP TYPE M312
51 at HOLDERS 60p es

NEW PRODUCTS

ACTIVE

A-to-D and D-to-A converters

Low-power a-to-ds. Fully operational on a 2.7 V supply, Philips' TDA8766 high-speed a-to-d converter offers 10 -bit resolution at $20 \mathrm{Msample} / \mathrm{s}$, the TDA8790 giving 8 -bit operation at $40 \mathrm{Msample} / \mathrm{s}$. These devices dissipate 53 mW and 33 mW respectively and both have a standby mode at 4 mW . Differential nonlinearity (step-to-step variation) is $\pm 0.25 \mathrm{lsb}$ and s:n ratio 47 dB . Gothic Crellon Lid. Tel., 01734 788878; fax, 01734776095.

Dual dac. MaxIm's MAX549 dual, serial 8 -bit, voltage-output digital-toanalogue converter uses one $2.5-5.5 \mathrm{~V}$ supply, taking about $150 \mu \mathrm{~A}$ or under $1 \mu \mathrm{~A}$ when shut down. Its interface operates at up to 10 MHz and is compatible with 3 -wire SPI, QSPI and Microwire standards. An input shift register is of 16 bits: eight for data and the rest for selection and control. There is an internal power-on reset to zero all registers. Maxim Integrated Products UK Ltd. Tel., 01734 303388; fax, 01734305511

> Close-tolerance lasers. NEL's DFB lasers are for use in the safe delection of loxic and flammable gases. For this purpose, the emitted wavelengths must be accurate to within ± 1 nm, and these are. BF! IBEXSA Electronics Ltd. Tel., 01622 882467 ; fax, 01622882469 .

Linear integrated circuits

Isolation amplifier. An Isolation amplifier from Analog Devices, the AD215 features 1.5 kV rms isolation voltage, 120 kHz bandwidth and -80 dB thd. There is an uncommitted op-amp for input buffering or amplification, which drives low-impedances and has offset trim. The 115 V dc power supply is on-chip and can provide 110 mA for various front ends or transducers. Analog Devices Ltd. Tel., 01932 266000; fax, 01932247401.

Memory chips

Folding rams. Framms are foldable, rigid-assembly memory modules, which means that you can fold them in two to maximise memory density or, to put it another way, to cram more in. ED14G3232F and ED14G3632F are $32 \mathrm{Mb}-$ by- 32 and $32 \mathrm{Mb}-$ by- 36 types respectively, both drams meeting the 72 -pin simm standard. They are direct replacements for existing modules. EDI (UK). Tel., 01276472637 ; fax, 01276473748.

Microprocessors and controllers

New $Z 8$ microcontroller. The $Z 8$ family is not yet for the chop, for Zilog has introduced new members, the Z86C02/E02/LO2, which are 8-bit devices having 512 byte of rom and 61 byte of ram. Operating frequency is 8 MHz and the supply is $3-5.5 \mathrm{~V}$ for the C02, 4.5-5.5V for the EO2 and 1-3.9V for the L version. There are $14 \mathrm{i} / \mathrm{o}$ lines and five vectored prioritised interrupts from five different sources, 14 digital inputs at cmos level and a fast instruction pointer. Options
include a software-enabled permanent watchdog timer and an

Television components

Catv amplifiers. For cable television, Motorola has two hybrid amplifiers for 750 MHz , the MHW7272/7292, working from 24 V and glving power gains of 27 dB and 29 dB , broadband noise figure of 6.5 dB and good stability. Motorola. Fax, 01354688248.
oscillator taking RC timing, a crystal or ceramic resonator, LC tuning or external drive. Gothic Crellon Ltd. Tel., 01734788878 ; fax, 01734 776095.

PC/104 expansion. Industrial expansion modules from Arcom for machinery and automation applications provide combinations of digital and serial i/o and have either built-in signal conditioning or an interface to the standard SignalConditioning System. The AM104 range is used with Arcom's PC/104 processor boards or any compatible host. There are four digital functions with combinations of 16 opto-isolated Inputs and outputs or relay outputs, a 32-channel bit-programmable i/o and a model having four programmable comms channels. All come with a free driver library with its C source code. Arcom Control Systems Lid. Tel., 01223411200 ; fax, 01223410457.

Communications controllers.

Mitsubishi's M37733/4/5 are 16-bit microcontrollers meant for DECT and portable communications and featuring direct output external bus signalling and a 32 kHz dual clock. These devices are based on the 7700 series core and have a cpu and bus interface. The 37734 runs at 25 MHz to give 160 ns cycle time, incorporates 103 basic instructions and has

SOKbyte of rom and 1048byte of ram. Power supply is $2.7-5.5 \mathrm{~V}$. M37733/5 are compatible and also have three serial i/o and a 10 -bit a-to-d converter. Gothic Crellon Ltd. Tel., 01734 788878; fax, 01734776095.

Micro with CAN module. An 8-bit microcontroller in Siemens' C500 family, the new C515C is 80 C515Acompatible and also has an SPI interface and an on-chip version 2.0B controller area network module, which will run the extended CAN protocol with 29 -bit identifiers. Maximum clock rate of the $C 515 \mathrm{C}$ is 10 MHz and instruction cycle time 600 ns ; it has 64 Kbyte of rom, 2.5 Kbyte of ram, three 16 -bit counters, a 4 -channel capture-and-compare unit for pwm generation and full duplex serial interface. Emi/rfi performance is better than in earlier C500 family members. Siemens plc. Tel., 01344 396313; fax, 01344396721.

8-bit flash PICs. Microchip has a new family of 8 -bit PIC microcontrollers which have flash program memory and eeprom data memory. PIC16F84/83 are the first and provide 1024 by 14 and 512 by 14 program memory respectively, with 64byte of eeprom. Both use 35 single-word, 400 ns instructions, work from a $2-6 \mathrm{~V}$ rail and take a 10 MHz clock. There are also $13 \mathrm{i} / \mathrm{opins}$ with individual direction control, an 8 -bit timer/counter with a pre-scaler, 15 hardware registers, an 8 -level-deep stack and led drive. All PICs have the support of a development system and other development tools. Arizona Mlcrochlp Technology Ltd. Tel., 01628 851077; fax, 01628850259.

Mixed-signal ICs

Deserialiser. Maxim has the MAX3680, a bipolar chip which contains input and output buffers, a shift register and a parallel output
register. Its function in life is to convert a $622 \mathrm{Mb} / \mathrm{s}$, serial, 8 -bit-wide input to $77 \mathrm{Mb} / \mathrm{s}$ parallel output. Power needed is 265 mW from 3.3 V , and there is a ttl-sync. input for data realignment and framing as part of the interface to the real world. Maxim Integrated Products UK Ltd. Tel., 01734303388 ; fax, 01734305511.

Optical devices

Quad optoisolators. ISQ204 optoisolators by Isocom consist of four low-power devices in the one package, each offering isolation resistance of $5 \times 10^{6} \Omega$ and peak differential voltage between input and output of 7.5 kV . Drive current needed is 0.5 mA for full output, at which level current transfer ratio is 50%, rising to 100% at 1 mA . Output saturation voltage is 0.4 V . Isocom Components Ltd. Tel., 01429863609 ; fax, 01429 863581

PASSIVE

Passive components

High-value resistors. Philips' VR37 and VR68 series of high-value, highvoltage metal-glaze resistors now have UL 1676 approval; they now meet all relevant standards, including VDE 0860 and BS 415. Temperature

Power meter. Covering from 10 MHz to 26 GHz , the Krytar 9000A tow-cost power meter digitally displays power between -30 dBm and 20 dBm , three detectors are designed for broad coverage laboratory and limited coverage field work and there is a type N detector for portable, batterypowered applications. Tony Chapman Electronics Ltd. Tel., 01992578231 ;lax = 01992 576139.
coefficients are under 200ppm. Values subject to the approval are $510 \mathrm{k} \Omega-11 \mathrm{M} \Omega$, the full range being $100 \mathrm{k} \Omega-220 \mathrm{M} \Omega$ over the two ranges. Philips Components. Tel., 003140 722790 ; fax, 003140724547.

Data line chokes. Surface-mounted, four-element chokes for the protection of data on lines in noisy environments are introduced by Siemens, giving up to 90% saving in space over leaded types. These chokes are primarily for the So basic access and $\mathrm{S}^{2} \mathrm{~m}$ multiplex interface of an ISDN system, but will find application in other areas as well, such as CAN buses in vehicles. Inductances in the range vary from 4 by $470 \mu \mathrm{H}$ to 4 by 4.7 mH . A variety of characteristics is available for the different applications. Siemens plc. Tel., 01344 396313; fax, 01344396721.

Audio products

Single-chip surround-sound codec. The first single-chip surround-sound codec to support Dolby Digital Surround (AC-3) and Dolby Pro Logic is available from Crystal Semiconductor. CS4226 contains 95 dB stereo a-to-d converters, six d-to-a converters, each with its volume control (which only varies volume at zero-crossings to minimise clicks) a mono a-to-d converter and a Sony/Philips digital interface format recelver, the chip replacing up to nine earlier ics. The S/PDIF receiver supports stereo pcm data and compressed 5.1 channel AC-3 and MPEG audio. Crystal Semiconductor Corporation. Tel., (USA) 001512442 7555; fax, 0015124457581.

Connectors and cabling

Microwave connectors. Transradio has a range of coaxial terminations for commercial microwave equipment in SMA and N forms. Both types cover $0-3 \mathrm{GHz}$, have resistance and impedance of $50 \Omega \pm 5 \%$, are rated at 1W and exhibit a voltage standing wave ratio of between 1.08 and 1,2

over the frequency range. The type N has a peak power rating of 500 W for $1 \mu \mathrm{~s}$ and the smaller SMA 100W for $1 \mu \mathrm{~s}$. Transradio Ltd. Tel., 0181-997 8880; fax, 0181-997 0116.

Cabling wall sockets. HideOut multimedia wall outlets by AMP are a convenient method of hiding and protecting connections to mixed media cabling in networks and telephone systems. The face plate is flat and almost flush with the wall and the cables enter the bottom edge, so being protected from furniture. The sockets use exiting AMO inserts for ST and SC fibre connections and Cat. 3 and 5 unshielded and shielded twisted-pair cables. They take four copper and two fibre cables or four fibre connections. AMP. Tel., 01819542356; fax, 0181-954 7467.

Displays

High-contrast Icd. Using a black mask, Densitron has increased the contrast of transmissive Icds to 100:1 in displays with bright led or fluorescent backlighting. The first avaliable provides a total of 20 digits and 12 graphics symbols for use in consumer equipment, displays with red and green backlighting, allowing viewing in all lighting conditions from a distance of 5 m . Results are similar to those from a vacuum fluorescent display, but with a lifetime of 50,000 hours. Densitron Perdix. Tel., 01959 700100; fax, 01959700300.

13-in colour lcd. NEC's NL 128102AC20-07 13in colour Icd is meant principally for cad and desktop workstations, providing a highbrightness display to a resolution of 1280 by 1024. It is an active-matrix type working from rgb input, with builtin backlight and inverter and giving a good viewing angle. Vertical screen expansion (multiscan) allows images of different resolutions to fill the display area. Sunrise Electronics Ltd. Tel., 01908 263999; fax, 01908 263003.

Filters

If filter for DECT telephones. An if surface-wave filter from Siemens takes up 30% less surface area than the QCC10 case; the B4539 measures 9.1 by 4.8 by 1.8 mm .

Inter-board connectors. Siemens' surface-mounted board-to-board connectors use no pins or sockets but, instead, springloaded contacts on one board that mate with contact pads etched and plated on the other. The result is no need for throughboard holes and a space between boards of between 2.5 and 3.2 mm . Connectors come in 6 way and 30 -way form and provide a $20 \mathrm{~m} \Omega$ contact resistance and 0.5 A current-carrying capacity. Siemens plc. Tel., 01344 396313; fax, 01344396721.

Insertion loss is about 8 dB and group delay 250 ns ; adjacent-channel rejection $32 \mathrm{~dB}, 52 \mathrm{~dB}$ and 54 dB for first, second and third. Although designed for use in the Siemens PMB 2420 DECT chip set, the output is 150Ω, making the device suitable without an impedance network - for the National Semiconductor set. Siemens plc. Tel., 01344 396313; fax, 01344396721.

Hardware

Tailored boxes. Bafbox can now deliver small numbers of customdesigned plastic enclosures by mail order at volume prices. The company has developed cad/cam software to allow customers to specify the size and shape of box and where holes should be, so eliminating expensive machining of standard cases. If the holes are then found to need moving, it can be done at no "significant" cost difference. Rfi/emi shielding can be supplied, as can screen printing and various paint finishes. Prototypes in a few days, production in five weeks. Batbox Ltd. Tel., 01280 705777; fax, 01280706320.

Test and measurement

Handheld multimeters. Tektronix has a series of multimeters that are small and tough and have a 40,000count display. The DMM800 meters possess a dual display for taking two simultaneous readings, with an analogue type of indication, and measure true rms values in addition to the full range of voltage, current, resistance, diode test, frequency and capacitance. Type DMM870 also
offers a 1 ms peak hold, dB and dBm readings and has a backlit display. Thurlby Thandar instruments Ltd. Tel., 01480412451 ; fax, 01480 450409.

High-voltage oscllloscope amp. Gould's DP9010 is a differential amplifier for floating, high-voltage measurement on a grounded oscilloscope. Its bandwidth is $0-80 \mathrm{MHz}$ and the differential inputs are balanced to $1 \mathrm{M} \Omega$; standard probes are suitable. Input voltage range with direct input is $\pm 30 \mathrm{~V}$ and, with suitable probes, extends to 20 kV ; cmirr with direct input is 70 dB at 1 MHz . Gould Instrument Systems Lid. Tel., 0181-500 1000; fax, 0181-501 0116.

Interfaces

Keypad, drlver/micro interface. Rohm's BU9768K interface controller ic contains all keypad and lcd driver functions in the one device, operating on a three-wire bus back to the microprocessor, which is relieved of much of the routine and can therefore be of lower performance. It handles keypad scanning without attention from the processor, which downloads data to the BU9768K through a serial link, the interface controller doing the

Vibration sensors. Used with a zener barrier, the MTN/1101 vibration sensors by Monitran are centified by BASEEFA as intrinsically safe for use in all hazardous areas and gas groups, being rated to EEx ia IIC T6. These piezoelectric devices with internal electronics give an ac output of $100 \mathrm{mV} / \mathrm{g}$ and can be processed in a DIN-railmounted unit to give a $4-20 \mathrm{~mA}$ current-loop signal. They are made in stainless steel and sealed, a choice of
attachments for mounting being available. Monitran Ltd Tel., 01494 816569; fax, 01494 812256

rest. The BU9768K draws $200 \mu \mathrm{~A}$ active, $30 \mu \mathrm{~A}$ on standby. Flint Distribution. Tel., 01530 510333; fax, 01530510275.

Literature

Programmable analogue. Imp, of San Jose, offers the Electrically programmable Analog Circuit Design Handbook, which describes these epac devices that are the analogue equivalent of field-programmable gate array. It also provides application notes and development tool details, with a collection of seminar reprints. Imp also offers Animal Magic, which is Windows-based design sottware for analogue and mixed-signal epacs. Tel., 001408434 1467; fax, 001408 434 0335. E-mail http://www.impweb.com

Drams on cd. A cd-rom from NEC provides all details on all NEC drams and srams, including 64 Mb devices. There is also information on applications, reliability and quality. The cd runs under Windows, is menu-driven and has copy-and-paste facilities, with text search and printing to speed things up. NEC Electronics (UK) Ltd. Tel., 01908691133 ; fax, 01908670290.

Harris. Harris Semiconductor offers a new brochure, Semiconductor Solutions for Multimedia, Video and Imaging, the solutions being op-amps and buffers, data converters,
standards converters and various other video ics for these areas. There is also a section on dsps. Harris Semiconductor UK. Tel., 01276 686886; fax, 01276682323.

Thermal analysis on the Web. Flomerics has a World Wide Web slte on http:/www.flomerics.com, on which the company describes its Flotherm thermal analysis software, together with case studies from some of the blgger companies who have used it. Also described is DELPHI which is a collection of thermal models for electronic components and hardware to assist engineers in system design. The site contains Electronic Cooling, a magazine published by Flomerics. Flomerics Ltd. Tel., 0181-941 8810; fax, 01819418730

Materials

Anti-static plastic compound. TBA ECP is shortly to announce some new static-dissipating plastic compound that can be moulded and made in many colours, as opposed to earlier types which have also been in any colour as long as it was black. Some of them were coloured, but only because they were laced with additives which did not last. This now material is injection moulded ABS alloy with a resistivity of around $10^{9} \Omega /$ square, with the appropriate

static decay characteristic. The company offers a moulding service TBA Industrial Products Ltd. Tel., 01706 47718; fax, 0170646170.

Cleaning fluids. Since the more ferocious solvents formerly used to clean electronic assemblies are now banned under the Montreal Protocol, new ones are now appearing. Loctite, for example, has Loctite 7070 and Loctite 7063, both alternatives to 1,1,1, Trichlorethane. 7070 is for open tanks and brush use, drying in around two minutes and pervading the air with a scent of lemons, while 7063 dries in 15 seconds and is very good at cutting through oil; it has to be used in closed tanks and doesn't smell of lemons, so far as we know. Both types come in air-rechargeable aerosols, pump sprays, cans and drums. Loctite UK Ltd. Tel., 01707 821000; fax, 01707821200.

Heat-shrink tubing. Methode offers ShrinkMate (why do so many people insert a capital half-way through a name?), which is heat-shrink tubing based on polymer thick-film silver ink technology to give efficient connections and eliminate emc problems on signal and power lines. The material is easily applied using a heat gun or oven and is meant for use on spliced cables or connectors,

Keylock switches. EAO offers a new range of multiposition keylock switches to the 04 Series of push-buttons. Bezels are round or square and the switches come in a variety of forms from three-position, 60° throw, to 12 positlon, 30° throw, with up to 16 contacts. EAO-Highland
Electronics Ltd. Tel., 01444 236000; fax, 01444236641.

Digital wattmeter. Yokogawa's WT130 is a three-phase wattmeter with three input modules for independent measurement on each phase. Bandwidth is $0-50 \mathrm{kHz}$ to allow measurement on pwm variablespeed drives. High-speed measurement is followed by calculation of effective power, apparent power, reactive power, power factor and phase individually and for the three phase system. The instrument carries out 32 -bit FFTs using a rectangular window and analyses harmonic content of voltage, current and power waveforms by amplitude and by phase to the fundamental. The WT130 has an RS 232 interiace. Martron Instruments Ltd. Tel., 01494 459200; fax, 01494535002.

where it gives a circumferential seal round the cable shielding and the base of nearly every connector type, also obviating the need to solder braided cable shielding. Shielding rating of a connector so treated is $40-82 \mathrm{~dB}$ over the $30-1000 \mathrm{MHz}$ range. Methode Electronics Europe Lid. Tel. 01389732123 ; fax, 01389732777.

Printers and controllers

Fast thermal printer. Star Micronics TMP-200 is a high-speed device for oems; it provides easy access to the head with a view to simple maintenance. It prints at eight dots $/ \mathrm{mm}$, at up to $1.5 \mathrm{in} / \mathrm{s}$ and there are options of auto cutter and interface boards. Paper feed is from the rear or bottom. Roxburgh Electronics Ltd. Tel., 01724 281770; ax, 01724281650

Production equipment

Ultrasonic cleaning. Since some of the cleaning agents previously in use

Man-machine interface

design. National Instruments
announces BridgeVIEW, which is a graphics package for process and
manufacturing application.
Using techniques taken from the company's LabVIEW, it provides real-time process monitoring, trending, on-line configuration and programmable logic controller connectivity. It has a gui and the G development language for data acquisition and analysis, man-machine interfacing and supervisory application. National
Instruments UK. Tel., 01635 572400; Iax, 01635523154.
are now prohibited, new types of ultrasonic cleaners are needed to give the same results with new, flammable solvents. Caresonic has new equipment for this purpose which enable these vicious-sounding solvents to be used harmlessly by providing interlocking lids, purging and venting, and automatic timing. Solvent is contained under the tank, is pumped in for use and then pumped out again before the lid can be opened. Heat is not needed. Care Ultrasonics Ltd. Tel., 0151-356 4013; fax, 0151-356 4037.

Vacuum cleaner. Among life's minor irritations are items of equipment that have been computer-designed to be virtually impossible to clean, such as keyboards and cameras. Jessop, in an effort to ease the stress, have introduced the Mini Vacuum batterypowered cleaner kit, which also blows, possibly through various nozzles and brushes. It has a dust bag and an array of cloths, sprays, tissues and cotton buds to further the process. It cost £9.99 from Jessop photographic shops. Jessop Group Lid. Tel., 0116-232 0033; fax, 01162320066.

Power supplies

60 W dc-to-dc. Emi/fi-shielded on all sides of an aluminium case, Amplicon's RW Series of $50-60 \mathrm{~W}$ dc-to-dc converters are current-mode types giving an efficiency of 83% from $10-72 \mathrm{~V}$ input. There are 48 V models for telecomms use with case to positive, 24 V ones for process control and 12 V versions for use in vehicles. Single, dual and triple versions combine $5 \mathrm{~V}, \pm 12 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ in various ways and the units have a remote on/off control. They switch at 300 kHz , are isolated to 500 V dc and are short-circuit protected, with autostart. Temperature coefficient is $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$, stability $\pm 0.05 \%$, ripple

and noise $1 \% \mathrm{pk}-\mathrm{pk}$ and transient response $500 \mu \mathrm{~s}$. Amplicon Liveline Ltd. Tel., 0800525335 (free); fax, 01273570215.

Integrated power supply. Working without external components, National's LM2825 is said to be six times more reliable than a psu module, provides a power density of $35 \mathrm{~W} / \mathrm{in}^{3}$ and meets Class B of CISPR 22 for radiated emissions. It handles inputs up to 40 V and gives output of 1 A from 3.3 V and 5 V at 80% efficiency and is protected against overcurrent, shorts and high temperatures. Avnet Access. Tel., 01462 480888; fax, 10262488567

Low-voltage Schottkys. New Schottky diodes from Philips are for use in 3 V and 3.3 V switch-mode power supplies and have a 0.33 V forward drop at rated forward current. Low capacitance and no stored charge in nickel silicide junctions make them suitable for highfrequency use. PBYR1025CT is a single diode rated at 20A and PBYR1525CT/2025CT dual types rated at 15A and 20A respectively, all withstanding 25 V reverse. Philips Semiconductors (Eindhoven). Tel., 00 3140 2722091; fax, 003140 2724825.

New Klippon range. Weidmuller Klippon has a new range of psus, including switched-mode types and dc-to-dc converters meeting a large number of standards and CE marked. All the s-m types have short-circuit, thermal, overvoltage and inrush protection, universal ac and dc inputs and variety of housings, including a 1A unit in an EG case, claimed to be the smallest available. Weidmuller (Klippon Products) Ltd. Tel., 01795 580999; fax, 01732844444.

Minute 40W supply. XP's NLP40 is claimed to be the smallest emccompliant 40W supply available, measuring 4.25 by 2.5 by 1.25 in and meeting low-voltage Directives and EN55022 for conducted noise. The company ascribes its power density of $3 W / i^{3}$ to a new type of switch-mode operation and a fixed switching frequency, together with a patented integrated boost flyback topology. Input is unlversal and nine models cover outputs of 5 V single to 5 V with $\pm 15 \mathrm{~V}$ triple. XP plc. Tel., 01734 845515 ; fax, 01734843423

Radio communications products

Broadband amplifiers. Advanced Control Components Inc. announces a range of ultra-broad-band and octave band amplifiers for mobile communications between 10 MHz and 4000 MHz . ACAM 8928 and 7932 both give 1 W and are meant for use in level test or integration into test systems. Frequency ranges are
$10-2500 \mathrm{MHz}$ and $100-4000 \mathrm{MHz}$, both including the cellular, SMR and PCN/PCS bands. Gain of the 7928 is $36 \mathrm{~dB} \pm 0.75 \mathrm{~dB}$, while the compact 7932 has a $24 \mathrm{~dB} \pm 1 \mathrm{~dB}$ gain. There are also three 10-octave amplifiers in rack-mount form covering $100-500 \mathrm{MHz}, 500-1000 \mathrm{MHz}$ and $1000-2000 \mathrm{MHz}$. Anglia Microwaves Ltd. Tel., 01277630000 ; fax, 01277 631111.

Protection devices

Shielded windows. Emc shielding for display panels and other transparent areas is available from TBA ECP. Conductive coatings based on indium tin oxide are applied to glass or plastic such as polycarbonate and acrylic and give conductivity down to 10Ω /square and up to 90.5% transparency. Tooling exists to coat complex shapes and coatings can extend up to 350 by 320 mm . The company also makes windows using fine wire meshes or metal oxide interlayers in laminated glass or plastic. TBA Industrial Products Ltd. Tel., 01706 47718; fax, 0170646170.

Switches and relays

Miniature relay. A minlature, hermetically sealed relay from Finder, the Series 30 , meets BT47 and BT51 specifications and is suitable for most telecomms applications. It is rated at 250 V ac for resistive loads and comes with 20 mW (BT47) or 40 mW coil voltages of between 5 V and 48 V dc. Two changeover contacts are silver/gold-plated and power handling is 125 VA ; maximum switching frequency is $600 \mathrm{cycles} / \mathrm{h}$. AX Electronic Component Distribution. Tel., 01403 240055; fax, 01403 255657.

Reed relay. CP Clare's MVS Series of reed relays use the company's MH4 bounce-free, mercury-wetted reed switch and have a life of up to 10^{10} operations at low to intermediate levels. Contact resistance is stable at $\pm 5 \mathrm{~m} \Omega$ from the $100 \mathrm{~m} \Omega$ rated figure, maximum switching voltage 1 kV and switching current 2A (carry current 3A). Several of the devices in the range are fitted with diodes as an option and one has an electrostatic shield. Clare UK Sales. Tel., 01823 352541; fax, 01823352797.

Semiconductor relays. Matsushita would like to point out that its PhotoMos relays do not suffer from most of the disadvantages found in electromechanical ones or even thyristor or transistor types, while providing true relay switching. You can get versions to switch very low currents or up to more than 4A, with multiple contact arrangements of the n.o. or n.c. type. Matsushita

Automation Controls Ltd. Tel., 01908 231555; fax, 01908231599.

W95 keyboard. A new version of Cherry's keyboard. the Model 3000, works with Windows 95 and gives a better choice of "feel". It has 104 or 105 keys, two or three of them for Windows use, and the F and J keys are dished for touch typists, the 5 key on the numeric pad having a dimple for the same reason. A dil switch copes with PC, AT, XT or PS/2 modes of operation. The keyboard meets all relevant standards. Cherry Electrical Products Ltd. Tel., 01582 763100 ; fax, 01582768883.

Bipolar Hall switch. Allegro offers the 3134 low-hysteresis, bipolar Halleffect switch for automotive and industrial use. It has a novel Schmitt trigger built in which compensates for temperature changes to maintain trigger and release points. Further compensation is provided by magnetic switch points that become more sensitive with temperature. Also on-chip are a voltage regulator, a quadratic Hall generator, temperature compensation, an amplifier and a buffered opencollector output stage. Allegro MicroSystems Inc. Tel., 01932 253355; fax, 01932246622.

High-current relay. Matsushita's LK relay is designed to handle inrush currents up to 100A, with a barrier between coil and contacts to improve creepage, to give a 6 mm clearance and to provide noise immunity. It measures 24 by 25 by 11 mm , is rated at $5 \mathrm{~A}, 277 \mathrm{~V}$ ac and will withstand 10 kV surges. Matsushita Automation Controls Lid. Tel., 01908 231555; fax, 01908231599.

Snap switches. Cherry has two new switches in its Snap Switch range. The 048 high-power microswitch operates at up to $150^{\circ} \mathrm{C}$, has a current rating of 21 A at 240 V , long life and silver contacts, while the D3 type has a contact gap of over 3 mm to take high inrush currents; this one switches continuous loads of 16A at 380 V , with short-period overloads. Cherry Electrical Products Ltd. Tel., 01582763100 ; fax, 01582768883.

Sealed switches. C\&K offers a range of sealed toggle, rocker and pushbutton switches, which are available with both through-hole and surfacemountings to withstand flow-solder, vapour phase and infrared reflow operations. All have ultrasonically sealed bodies, O-ring bushes and epoxy sealed terminals. Roxburgh Electronics Ltd. Tel., 01724281770 fax, 01724281650.

Transducers and sensors

Optical encoder. HS Series optical shaft encoders by Control
Transducers are of low cost and are meant for use on machinery for feedback and positioning. The range
covers resolutions from 96 to 2048 lines per revolution in 16 models. The encoders measure from 1 in to 2 in diameter with mounting plates and two ball bearings handle speeds up to $10,000 \mathrm{rev} / \mathrm{min}$. Components such as cable, line drivers, power supplies are available. Control Transducers. Tel., 01234 217704; (ax, 01234217083.

Audlble alarms. Kingstate

piezoceramic alarms operate from dc and provide the requisite racket while measuring only 13.8 mm diameter, and even more racket from 42 mm types. They come with flying leads or pins to standard formats, most of them being sealed for soldering and cleaning. Roxburgh Electronics Ltd. Tel., 01724 281770; fax, 01724 281650.

More audible alarms. Piezoceramic alarms from Full also make a very loud noise - 108 dB at 1 kHz - from 5 V rms and are only 2 mm thick and use less power while doing it than many others. Connection is by flylng lead, through-hole or surface mounting. Distributed Micro Technology Ltd. Tel., 01276 33391; fax, 0127636703.

Current measurement. JJ Systems announces a range of flexible transducers for contactless current measurement, which take the form of air-cored, toroidal winding, the
Rogowski coil, which is placed around a conductor carrying from 1A to 1MA to give an accurate waveform reproduction for oscilloscope or dvm; the coil is completed by plug and socket. Frequency range is $0.1 \mathrm{~Hz}-1 \mathrm{MHz}$ with an accuracy within 1%. Sensitivity is insensitive to the position of the coil. JJ Systems Ltd. Tel., 01256895111 ; fax, 01256 896100.

COMPUTER

Development and evaluation

68HC11 development. MD

Electronics introduces the MC11, which is a development or training aid based on Motorola's 69HC11 microcontroller. The kit can also be used as a low-cost controller. It is linked to a pc by way of a standard serial port, a monitor in read-only memory allowing programs to be developed and debugged or, for longer programs, developed on the host pc and downloaded. The 40way input/output port is compatible with much equipment used in education. Further connectors allow access to the eight analogue-todigital channels and permit system expansion. MD Electronics. Tel., 01926850315.

Software

Maths library. Mathtools announces Matcom v. 2 maths library, a C++ matrix library having more than 300 maths functions, including basic unary and blnary operations, indexing, signal processing, linear algebra and 2D and 3D graphics. Matrices are supported. E-mail
info@mathtools.com; fax, 001215 9571719.

Image analysis. Image-Pro Plus from Media Cybernetics, which runs on all Windows variants and Mac 7 . provides accurate image processing and analysis of monochrome, grey scale and 24 -bit colour images. It has a range of counting, sizing, statistical and image-enhancement tools and is meant to be used in any area where an image can help one to understand a process, to make comparisons or to Identify objects. Examples are: measuring areas, perimeters, roundness, population density; display measurements as histograms; calculate line areas; perform FFTs; read files from a camera, disk or cd And a great deal more. DataCell. Tel., 01628415415 ; fax, 01628415400.

8xC186 C compiler. IAR Systems and Intel introduce a C compiler for the $8 \times C 196$ embedded microcontroller. ICC196 v.5.10 is dosbased and includes compiler, assembler, linker and library. The ANSI-compliant compiler supports all current $8 \mathrm{xC1} 96$ controllers and is future-proof. Malloc and realloc are supported to confer flexibility in controiling processor heap size. Four memory models support code and data from 64 Kb to 16 Mb and bank switching to 8 Mb is available. Efficiency gains from the use of mixed C and assembly language listings, in which each C line is followed by the equivalent assembly code, compiler

Virtual instruments. The result of cooperation between ComputerBoards Inc. and Hewlett-Packard, Vivalue brings together a range of data acquisition boards (ISA or PCMCIA) for the pc at low cost, and H-P's HP-VEE software, the total package enabling the design and realisation of virtual instruments at much lower cost than has been common. The software allows the creation of programs graphically rather than by writing code and will run existing C, Basic, Pascal and Fortran programs; it supports hundreds of GPIB and VXI plug\&play instruments, all drivers being supplied. Adept Scientific Micro Systems Ltd. Tel., 01462480055 ; fax, 01462 480213.
errors being reported with line number, syntax and pointer to the error. IAR Systems Ltd. Tel., 01719243334.

Graphing for Mathcad 6.0. The acquisition of the Axum graphics and analysis software by Mathcad publishers MathSoft now allows the integration of the two packages to provide drag-and-drop graphs, including 3-D surface mesh, linear and non-linear curve-fitting, automatic error bars and colour-filled contours, in Mathcad and any OLE 2-compliant application, to publication quality. Both Mathcad Plus 6.0 and Mathcad 6.0 standard edition now come with an Axum link and there is a patch disk for existing users. Adept Scientific Micro Systems Ltd. Tel., 01462 480055; fax, 01462480213.

Designing reliable

In this second article*, Ray Fautley runs through the steps necessary to design a reliable half-wave rectifier psu.

*Ray's first article, in the September issue, ran through design steps for a full-wave bridge rectifier.
n the conventional half-wave rectifier, alternating voltage is applied to diode D, where it is rectified and the output smoothed by the reservoir capacitor C. The fundamental frequency of the ripple voltage is the same as the supply frequency, Fig. 1.
The half-wave rectifier is mainly used for low-current supplies. This is because the dc load current flows through the mains transformer secondary winding. If this current is too high, it can produce saturation of the transformer core. This current thus lowers transformer efficiency.

Table 1. Using the percentage ripple voltage to find value X.

$\boldsymbol{V}_{\mathbf{r}} \%$	$R_{\mathrm{S}} / R_{\mathrm{L}} \%$						
	$\mathbf{0 . 1}$	$\mathbf{0 . 3}$	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{5 . 0}$	$\mathbf{1 0}$	$\mathbf{3 0}$
0.1	1783	1748	1632	1602	1573	1502	1342
0.2	855	844	807	791	776	739	654
0.3	565	556	525	515	505	481	432
0.4	422	404	392	386	379	364	322
0.5	334	330	315	305	303	288	258
0.6	278	274	261	257	253	243	216
0.7	241	236	221	219	216	211	186
0.8	206	203	193	190	187	180	163
0.9	186	183	171	168	166	160	145
1.0	164	159	155	152	150	144	131
2.0	81	80	76	75	74	72	66
3.0	53	52	50	49	49	47	43
4.0	40	39	37	37	37	36	33
5.0	32	31	30	29	29	28	26
6.0	26	25	25	24	23	23	22
7.0	22	21	21	20	20	20	19
8.0	19	18	18	17	17	17	16
9.0	17	16	16	15	15	15	14
10	15	15	15	14	14	14	13
20	7.6	7.4	7.2	7.0	6.9	6.8	6.3
30	5.0	4.9	4.7	4.6	4.5	4.5	4.1
40	3.6	3.5	3.5	3.4	3.3	3.3	3.0
50	2.8	2.7	2.7	2.6	2.5	2.5	2.3
60	2.2	2.1	2.1	2.0	2.0	2.0	1.8
70	1.8	1.7	1.7	1.6	1.6	1.6	1.4
80	1.4	1.4	1.4	1.3	1.3	1.3	1.1
90	1.2	1.1	1.1	1.1	1.1	1.1	0.9
100	1.0	1.0	0.9	0.9	0.9	0.9	0.8

Fig. 1. The conventional half-wave rectifier is simple and useful in that it has a low component count. It is however inefficient, only suitable for low current loads and ripple is 50 Hz , not 100 Hz as is the case for fullwave rectifiers.

Design steps for a half-wave rectifier

1) Specify required dc output voltage at full load $E_{\mathrm{dc}(\mathrm{load})}(\mathrm{V})$.
2) Specify required maximum load current $I_{\text {de(load) }}(\mathrm{A})$
3) Specify maximum ripple acceptable $V_{\mathrm{r}(\mathrm{rms})}(\mathrm{V})$
4) Specify the ac mains supply voltage $V_{\text {pri(rms) }}$ (V)
5) Specify the frequency of the ac mains supply $f(\mathrm{~Hz})$
6) Determine the value of the equivalent load resistance R_{L} :
$R_{\mathrm{L}}=E_{\mathrm{dc}} / I_{\mathrm{dc}}$
where E_{dc} is the design value of the dc output voltage. This is the voltage across the load $E_{\text {dc(load) }}$ added to the voltage drop across the rectifier diode:
$E_{\mathrm{dc}}=E_{\mathrm{dc}(\text { load })}+V_{\text {rec }}$
and $V_{\text {rec }}$ is the 0.9 V drop across the rectifier diode.
So:
$R_{L}=\frac{E_{d c(l o a d)}+0.9}{I_{\text {dc(lood })}}$
7) Determine the average current through the diode, I_{0}. As all the current must flow through the diode: $I_{0}=I_{\text {dc(load })}$.
8) Determine a value for the source resistance of the supply, R_{s}. As only low current supplies are being considered the
resistance of the transformer windings will predominate. Thus: $R_{\mathbf{s}}=R_{\mathrm{sec}}+R_{\mathrm{pri}} / N^{2}$ If the transformer winding resistances are not known, assume that R_{s} is about 5% of R_{L}. Then: $R_{\mathrm{s}}=R_{\mathrm{L}} \times 5 / 100$.
9) Calculate the ratio of R_{s} to R_{L} as a percentage:
$R_{5} / R_{\mathrm{L}} \times 100 \%=5 \%$, as assumed in (8).
10) Determine percentage ripple voltage from the specified maximum ripple voltage and the dc output voltage: $V_{\mathrm{r}} \%=V_{\mathrm{r}(\mathrm{mms})} / E_{\mathrm{dc}(\mathrm{load})} \times 100 \%$
11) From Table 1, determine the value of X required to provide the percentage ripple voltage, $V_{\mathrm{r}} \%$ in (10) above, for $R_{\mathrm{s}} / R_{\mathrm{L}} \%$ calculated in (9). If the figures for $V_{\mathrm{r}} \%$ and $R_{\mathrm{s}} / R_{\mathrm{L}} \%$ are not exactly the same as those found in the table headings, then the required value for X must be interpolated as described in (11) for the bridge-rectifier design procedure (September issue).
12) Calculate the value of the reservoir capacitor C, required to provide the ripple voltage $V_{\mathrm{r}(\mathrm{rms})}$ from:

$$
C=\frac{X}{2 \pi f \times R_{L}} \times 10^{6} \mu \mathrm{~F}
$$

13) Find the nearest standard value for the reservoir capacitor C, close to or preferably just above, the value calculated in (12). If the value is different from that in (12), call it C_{1} and determine a new value for X (call it X_{1}) from: $X_{1}=2 \pi f R_{\mathrm{L}} C_{1}$, with C_{1} in $\mu \mathrm{F}$:
$X_{1}=\frac{2 \pi f R_{L} C_{1}}{10^{6}}$
14) From Table 2 , determine the value of Y for X in (11), or X_{1} in (13), and $R_{\mathrm{S}} / R_{\mathrm{L}} \%$ in (9).
15) Determine the transformer secondary voltage $V_{\text {sec }(\mathrm{rms})}$ required, from the value for Y in (14):

$$
V_{\mathrm{sec}(t m s)}=\frac{E_{d c}}{\sqrt{2} \times Y}
$$

Table 2. Using X and R_{S} / R_{L}, find the value of Y.

x	$R_{\text {S }} / R_{\mathrm{L}}$										
	0.05	0.1	0.5	1.0	2	4	6	8	10	12.5	15
0.1	0.31	0.31	0.31	0.31	0.31	0.31	0.30	0.30	0.29	0.28	0.27
0.2	0.32	0.32	0.32	0.31	0.31	0.31	0.30	0.30	0.29	0.28	0.27
0.3	0.32	0.32	0.32	0.31	0.31	0.31	0.30	0.30	0.30	0.29	0.28
0.4	0.32	0.32	0.32	0.32	0.32	0.32	0.31	0.31	0.30	0.30	0.29
0.5	0.33	0.33	0.33	0.33	0.33	0.32	0.31	0.31	0.30	0.30	0.29
0.6	0.34	0.34	0.34	0.34	0.33	0.33	0.32	0.32	0.31	0.30	0.30
0.7	0.35	0.35	0.35	0.34	0.34	0.34	0.33	0.33	0.32	0.31	0.31
0.8	0.36	0.36	0.36	0.35	0.35	0.35	0.34	0.33	0.32	0.31	0.31
0.9	0.37	0.37	0.37	0.36	0.36	0.36	0.35	0.34	0.34	0.33	0.32
1.0	0.38	0.38	0.38	0.37	0.37	0.37	0.37	0.36	0.35	0.34	0.33
1.5	0.44	0.44	0.44	0.43	0.43	0.42	0.41	0.40	0.39	0.38	0.37
2.0	0.49	0.49	0.48	0.48	0.47	0.46	0.45	0.44	0.43	0.42	0.41
2.5	0.54	0.54	0.53	0.53	0.52	0.50	0.49	0.48	0.47	0.46	0.44
3.0	0.57	0.57	0.57	0.56	0.56	0.55	0.54	0.53	0.51	0.49	0.47
4.0	0.63	0.63	0.62	0.61	0.60	0.59	0.58	0.57	0.55	0.53	0.50
5.0	0.68	0.68	0.67	0.66	0.65	0.63	0.62	0.59	0.57	0.55	0.52
6.0	0.71	0.71	0.70	0.70	0.69	0.67	0.64	0.61	0.59	0.56	0.53
7.0	0.74	0.74	0.73	0.73	0.71	0.69	0.66	0.62	0.60	0.57	0.54
8.0	0.77	0.77	0.76	0.75	0.75	0.70	0.67	0.63	0.60	0.57	0.54
9.0	0.79	0.79	0.78	0.77	0.76	0.71	0.68	0.64	0.61	0.58	0.55
10	0.80	0.80	0.79	0.78	0.77	0.72	0.69	0.65	0.61	0.59	0.55
15	0.86	0.85	0.84	0.82	0.80	0.74	0.70	0.67	0.63	0.59	0.56
20	0.89	0.88	0.87	0.85	0.82	0.76	0.71	0.68	0.64	0.60	0.57
25	0.91	0.90	0.89	0.86	0.83	0.77	0.71	0.68	0.64	0.60	0.57
30	0.92	0.91	0.90	0.88	0.84	0.78	0.72	0.68	0.65	0.60	0.57
40	0.94	0.92	0.91	0.89	0.84	0.78	0.72	0.69	0.65	0.61	0.57
50	0.95	0.93	0.92	0.89	0.84	0.78	0.72	0.69	0.65	0.61	0.57
60	0.96	0.94	0.93	0.90	0.85	0.78	0.73	0.69	0.65	0.61	0.57
70	0.97	0.95	0.93	0.90	0.85	0.78	0.73	0.69	0.65	0.61	0.57
80	0.97	0.95	0.93	0.90	0.85	0.78	0.73	0.69	0.65	0.61	0.57
90	0.98	0.96	0.94	0.90	0.85	0.78	0.73	0.69	0.65	0.61	0.57
100	0.98	0.96	0.94	0.90	0.85	0.78	0.73	0.69	0.65	0.61	0.58
200	0.99	0.97	0.94	0.91	0.85	0.79	0.73	0.69	0.65	0.61	0.58
300	0.99	0.97	0.95	0.91	0.86	0.79	0.73	0.69	0.65	0.61	0.58
1000	1.00	0.98	0.95	0.91	0.86	0.79	0.73	0.69	0.65	0.61	0.58

confinued over..
where $E_{\mathrm{dc}}=E_{\mathrm{dc}(\text { load })}+V_{\text {rec }}$,

$$
=\frac{0.707 \times E_{d c}}{Y}
$$

16) Determine the peak voltage, or peak
inverse voltage, that the rectifier diode must withstand. For the half-wave rectifier, the peak inverse voltage varies with the degree of load. The worst case occurs when the load is zero or very

X	$R_{5} / R_{L} \%$										
	20	25	30	35	40	50	60	70	80	90	100
0.1	0.26	0.25	0.24	0.21	0.23	0.21	0.20	0.19	0.18	0.17	0.16
0.2	0.26	0.25	0.24	0.24	0.23	0.21	0.20	0.19	0.18	0.17	0.16
0.3	0.27	0.26	0.25	0.24	0.23	0.21	0.20	0.19	0.18	0.17	0.16
0.4	0.27	0.26	0.25	0.25	0.24	0.22	0.21	0.20	0.18	0.17	0.16
0.5	0.28	0.27	0.25	0.25	0.24	0.22	0.21	0.20	0.18	0.17	0.16
0.6	0.29	0.27	0.26	0.26	0.25	0.23	0.22	0.21	0.19	0.18	0.17
0.7	0.29	0.28	0.26	0.26	0.25	0.23	0.22	0.21	0.19	0.18	0.17
0.8	0.30	0.28	0.27	0.26	0.25	0.23	0.22	0.21	0.19	0.18	0.17
0.9	0.31	0.29	0.28	0.27	0.26	0.24	0.22	0.21	0.19	0.18	0.17
1.0	0.32	0.30	0.28	0.27	0.26	0.24	0.23	0.21	0.19	0.18	0.17
1.5	0.35	0.33	0.31	0.30	0.29	0.26	0.24	0.22	0.20	0.19	0.18
2.0	0.38	0.36	0.34	0.32	0.31	0.28	0.25	0.24	0.22	0.20	0.19
2.5	0.41	0.38	0.36	0.34	0.32	0.30	0.26	0.25	0.23	0.21	0.20
3.0	0.43	0.40	0.38	0.36	0.34	0.32	0.28	0.26	0.24	0.22	0.21
4.0	0.46	0.42	0.40	0.38	0.36	0.33	0.29	0.27	0.25	0.23	0.21
5.0	0.48	0.44	0.41	0.39	0.37	0.33	0.30	0.27	0.25	0.24	0.22
6.0	0.49	0.45	0.42	0.40	0.37	0.34	0.30	0.28	0.26	0.24	0.22
7.0	0.49	0.45	0.42	0.40	0.38	0.34	0.30	0.28	0.26	0.24	0.22
8.0	0.50	0.46	0.43	0.40	0.38	0.34	0.30	0.28	0.26	0.24	0.22
9.0	0.50	0.46	0.43	0.40	0.38	0.34	0.30	0.28	0.26	0.24	0.22
10	0.50	0.46	0.43	0.41	0.38	0.34	0.30	0.28	0.26	0.24	0.22
15	0.50	0.47	0.43	0.41	0.38	0.34	0.30	0.28	0.26	0.24	0.22
20	0.51	0.47	0.44	0.41	0.38	0.34	0.31	0.28	0.26	0.24	0.22
25	0.51	0.47	0.44	0.41	0.38	0.34	0.31	0.28	0.26	0.24	0.22
30	0.51	0.47	0.44	0.41	0.38	0.34	0.31	0.28	0.26	0.24	0.22
40	0.51	0.47	0.44	0.41	0.38	0.34	0.31	0.28	0.26	0.24	0.22
50	0.51	0.47	0.44	0.41	0.38	0.34	0.31	0.28	0.26	0.24	0.22
60	0.51	0.47	0.44	0.41	0.38	0.34	0.31	0.28	0.26	0.24	0.22
70	0.51	0.47	0.44	0.41	0.38	0.34	0.31	0.28	0.26	0.24	0.22
80	0.51	0.48	0.44	0.41	0.38	0.34	0.31	0.28	0.26	0.24	0.22
90	0.51	0.48	0.44	0.41	0.38	0.34	0.31	0.28	0.26	0.24	0.22
100	0.51	0.48	0.44	0.41	0.39	0.34	0.31	0.28	0.26	0.24	0.22
200	0.52	0.48	0.44	0.42	0.39	0.34	0.31	0.28	0.26	0.24	0.22
300	0.52	0.48	0.45	0.42	0.39	0.35	0.31	0.28	0.26	0.24	0.22
1000	0.52	0.48	0.45	0.42	0.39	0.35	0.31	0.29	0.26	0.24	0.22

low, when:
$P I V=2 \times V_{\text {sec(peak) }}=2 \sqrt{ } 2 \times V_{\text {sec (rms) }}$
$=2.828 \mathrm{~V} \sec (\mathrm{~ms})$
17) Find Z from Table 3 for X in (11), or for X_{1} in (13), and for $R_{\mathrm{s}} / R_{\mathrm{L}} \%$ in (9), where $Z=I_{(\mathrm{ms})} / I_{0}$
18) From the value of Z found in (17), determine current through the rectifier diode: $I_{(\mathrm{rms})}=I_{0} \times Z$
19) Determine recurrent peak current $I_{\text {(peak) }}$ through the diode, from Table 4 for X (or X_{1}) and for $R_{\mathrm{s}} / R_{\mathrm{L}} \%$ find W, which is $I_{\text {(peak) }} / I_{0}$. Thus find $I_{\text {(peak) }}=I_{0} \times W$.
20) Determine the initial switch-on current $I_{\text {on }}$. As C (or C_{1}) will be initially discharged, load on the rectifier diode will be nearly a short-circuit at the instant of switch-on, limited only by the source resistance R_{s}. Then:
$I_{\text {on }}=V_{\text {sec (peak) }} / R_{\mathrm{s}}$ and
$V_{\text {sec (peak) }}=\sqrt{2} \times V_{\sec (\mathrm{rms})}$
where $V_{\sec (\mathrm{ms})}$ was found in (15). This very high current flows for only a very short time, but the rectifier diode must be capable of withstanding it. If a suitable device with such a high pulse current rating is not available, the source resistance R_{s} must be increased by
adding an external resistor $R_{\text {ext }}$ between the rectifier and reservoir capacitor C or C_{1}. The value of $R_{\text {ext }}$ to limit the switchon current to an acceptable lower value $I_{\text {on(L) }}$, is determined in (28).
21) Decide on a suitable rectifier diode type. The device must have ratings equal to, or greater than, the following: PIV or $2 V_{\text {sec(peak) }}$, sometimes called $V_{\text {RRM }}$, see (16); initial switch-on current or $I_{\text {on }}$, sometimes $I_{\text {FSM }}$, see (20); average current or I_{0}, sometimes $I_{\text {FAV }}$), see (7).
22) Determine the rms ripple current $I_{c(r \mathrm{~ms})}$ flowing through the reservoir capacitor C (or C_{1}):

$$
I_{c(r m s)}=\sqrt{I_{r m s}^{2}-I_{d c(l o a d)}^{2}}
$$

23) Decide on the specification for the reservoir capacitor to be used. The capacitor must have ratings equal to, or greater than, the following: Capacitance C or C_{1}, see (12) or (13); dc working voltage $V_{\text {sec(peak) }}$, see (16); ripple current $I_{\mathrm{c}(\mathrm{ms})}$, see (22).
24) Total transformer secondary current $I_{\mathrm{t}(\mathrm{ms})}$ is the same as the current through the diode: $I_{1(\mathrm{rms})}=I_{(\mathrm{rms})}$
25) Transformer volt-amp, or VA, rating T_{VA} decides size of the transformer: $T_{\mathrm{VA}}=V_{\text {sec }(\mathrm{ms})} \times I_{\mathrm{t}(\mathrm{ms})}$
26) Transformer requirements: volt-amp rating T_{VA}
primary winding $V_{\text {pri(rms) }}$
secondary winding $V_{\text {sec }(\mathrm{ms})}$ secondary current $I_{1(\mathrm{rms})}$
27) When a suitable transformer has been chosen, measure resistance of both windings. If measured source resistance:

$$
R_{s(m)}=R_{\mathrm{sec}}+\frac{R_{p r i}}{N^{2}}+R_{r e c}
$$

is less than R_{s} calculated in (8), then an external resistor of $R_{\text {ext }}=R_{\mathrm{s}}-R_{\mathrm{s}(\mathrm{m})}$ must be added, see (28), to limit $I_{\text {on }}$ to the value found in (20).
28) If external resistor $R_{\text {ext }}$ was found necessary in (20) or (27) to be fitted between the rectifier and the reservoir capacitor C or C_{1} to limit the switch-on current to $I_{\text {on(L) }}$, its value will be:

$$
R_{e x u}=\frac{V_{\sec (p k)}}{I_{o n(L)}}-R_{s}
$$

29) Power P_{r} dissipated in $R_{\text {ext }}$ (if used) is given by: $P_{r}=\left(I_{t(\mathrm{~ms})}{ }^{2}\right) \times R_{\text {ext }}$. A suitable resistor should have a power rating of about twice the value of P_{r} for reliable operation.
30) If external resistor $R_{\text {ext }}$ is used, regulation of the supply can be improved by adding a shorting-out device as recommended for the bridge rectifier circuit in Figs. 2 and 3 of my first article.

A worked example

Here is a worked example for a half-wave rectifier design to be used as a bias supply of 100 V at 10 mA .

1) $E_{\text {dc }(\text { load })}=100 \mathrm{~V}$
2) $I_{\text {dc(load })}=10 \mathrm{~mA}$
3) $V_{\mathrm{r}(\mathrm{rms})}=1.0 \mathrm{~V}_{\mathrm{rms}}$
4) $V_{\text {pri(mss) }}=240 \mathrm{~V}_{\text {rms }}$
5) $f=50 \mathrm{~Hz}$
6) $R_{\mathrm{L}}=E_{\mathrm{dc}} / I_{\text {dc(load) }}$ where $E_{\mathrm{dc}}=E_{\text {dc(load) })}+V_{\text {rec }}$ $=100+0.9=100.9 \mathrm{~V}$ so $R_{\mathrm{L}}=100.9 / 10 \times 10^{-3}=100.9 \times 10^{3} / 10$ $=10,090 \Omega$ or $10.09 \mathrm{k} \Omega$
7) $I_{0}=I_{\text {dc(load) }}=10 \mathrm{~mA}$
8) $R_{\mathrm{s}}=R_{\mathrm{L}} \times 5 / 100=10.09 \times 10^{3} \times 5 / 100$ $=504.5 \Omega$
9) $R_{\mathrm{s}} \times 100 / R_{\mathrm{L}} \%=504.5 \times 100 / 10.09 \times 10^{3} \%$ $=5 \%$
10) $V_{\mathrm{r}} \%=V_{\mathrm{r}(\mathrm{rms})} \times 100 / E_{\text {dc(load) }} \%$

Table 3. Find value \mathbf{Z} here to determine current through the rectifier.

X	$\boldsymbol{R}_{\mathrm{S}} / R_{\mathrm{L}} \%$										
	0.02	0.05	0.1	0.2	0.5	1.0	2	5	10	30	100
1	1.80	1.80	1.79	1.79	1.79	1.78	1.77	1.77	1.73	1.70	1.66
2	2.03	2.02	2.01	2.00	1.99	1.98	1.97	1.96	1.89	1.77	1.67
3	2.19	2.17	2.16	2.14	2.13	2.11	2.10	2.03	1.95	1.79	1.67
4	2.32	2.30	2.28	2.26	2.24	2.22	2.17	2.08	1.98	1.80	1.68
5	2.43	2.40	2.36	2.32	2.27	2.23	2.19	2.10	2.01	1.82	1.68
6	2.50	2.48	2.46	2.44	2.42	2.40	2.28	2.13	2.04	1.83	1.68
7	2.58	2.53	2.51	2.49	2.47	2.45	2.31	2.16	2.05	1.84	1.68
8	2.66	2.63	2.61	2.60	2.58	2.50	2.35	2.17	2.06	1.84	1.68
9	2.73	2.70	2.68	2.66	2.64	2.57	2.38	2.18	2.07	1.85	1.68
10	2.80	2.78	2.75	2.73	2.70	2.62	2.40	2.19	2.08	1.86	1.68
20	3.30	3.20	3.17	3.15	2.83	2.82	2.53	2.26	2.12	1.88	1.68
30	3.64	3.50	3.40	3.29	3.05	2.89	2.59	2.30	2.15	1.90	1.68
40	3.91	3.72	3.55	3.40	3.13	2.92	2.62	2.32	2.16	1.90	1.68
50	4.08	3.87	3.68	3.48	3.22	2.93	2.64	2.33	2.17	1.91	1.68
60	4.23	3.97	3.78	3.55	3.25	2.94	2.66	2.35	2.18	1.91	1.68
70	4.35	4.03	3.87	3.60	3.27	2.95	2.67	2.36	2.18	1.91	1.68
80	4.45	4.10	3.94	3.65	3.30	2.96	2.68	2.36	2.18	1.91	1.68
90	4.52	4.18	3.98	3.67	3.31	2.97	2.68	2.37	2.19	1.91	1.68
100	4.62	4.23	4.02	3.69	3.32	2.98	2.69	2.37	2.19	1.91	1.68
200	5.03	4.60	4.27	3.86	3.37	2.99	2.69	2.38	2.19	1.91	1.68
300	5.20	4.79	4.33	3.88	3.38	3.00	2.69	2.38	2.19	1.91	1.68
400	5.35	4.86	4.37	3.88	3.38	3.00	2.70	2.38	2.19	1.91	1.68
500	5.45	4.90	4.38	3.89	3.38	3.00	2.70	2.39	2.19	1.91	1.68
600	5.51	4.93	4.38	3.89	3.39	3.00	2.70	2.39	2.19	1.91	1.68
700.	5.60	4.96	4.39	3.90	3.39	3.01	2.70	2.39	2.19	1.91	1.68
800	5.67	4.98	4.39	3.90	3.39	3.01	2.70	2.39	2.19	1.91	1.68
900	5.70	4.99	4.39	3.90	3.39	3.01	2.70	2.39	2.19	1.91	1.68
1000	5.75	5.00	4.39	3.90	3.39	3.01	2.70	2.39	2.19	1.91	1.68

Table 4. Value W is needed to find peak current.

X	$\mathrm{R}_{\mathbf{S}} / R_{\mathrm{L}} \%$										
	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 1}$	$\mathbf{0 . 2}$	$\mathbf{0 . 5}$	$\mathbf{1 . 0}$	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{3 0}$	100
1	3.70	3.70	3.70	3.64	3.62	3.60	3.60	3.59	3.58	3.57	3.46
2	4.60	4.57	4.55	4.53	4.52	4.50	4.28	4.20	4.08	3.72	3.51
3	5.50	5.40	5.33	5.30	5.20	5.10	5.00	4.67	4.33	4.00	3.55
4	6.20	6.17	6.13	6.10	6.00	5.98	5.45	5.20	4.95	4.05	3.57
5	7.30	6.95	6.90	6.85	6.80	6.75	6.51	5.60	5.00	4.10	3.62
6	8.00	7.90	7.70	7.60	7.50	7.30	6.90	5.84	5.09	4.19	3.63
7	8.70	8.55	8.50	8.30	8.10	7.82	7.30	6.00	5.10	4.22	3.64
8	9.60	9.50	9.35	9.00	8.50	8.20	7.69	6.15	5.14	4.23	3.64
9	10.3	9.80	9.60	9.50	9.10	8.55	7.72	6.23	5.21	4.25	3.65
10	10.9	10.7	10.5	10.1	9.50	8.64	7.74	6.30	5.28	4.26	3.66
20	16.0	15.0	14.4	13.0	11.1	9.44	7.83	6.47	5.29	4.27	3.66
30	19.7	18.0	16.3	14.3	11.7	9.60	7.92	6.50	5.31	4.27	3.66
40	21.9	20.0	17.3	14.7	12.1	9.64	8.01	6.51	5.33	4.28	3.66
50	23.7	20.8	18.2	15.2	12.2	9.70	8.10	6.51	5.34	4.28	3.66
60	24.9	21.1	18.5	15.4	12.3	9.77	8.12	6.51	5.34	4.29	3.66
70	25.9	21.4	18.9	15.6	12.4	9.84	8.14	6.51	5.34	4.29	3.66
80	26.7	21.8	19.4	15.7	12.4	9.90	8.16	6.51	5.34	4.30	3.66
90	27.5	22.2	19.5	15.8	12.5	9.93	8.18	6.51	5.34	4.30	3.66
100	28.5	22.5	19.7	15.9	12.5	9.96	8.19	6.52	5.35	4.31	3.66
200	30.5	23.0	20.0	16.3	12.6	10.0	8.19	6.52	5.36	4.31	3.67
300	31.6	23.3	20.5	16.9	12.7	10.0	8.20	6.53	5.38	4.32	3.67
400	32.8	23.5	20.9	17.0	12.7	10.0	8.20	6.54	5.40	4.32	3.67
500	33.3	23.8	21.0	17.1	12.8	10.0	8.20	6.55	5.42	4.33	3.68
600	33.8	24.0	21.1	17.2	12.8	10.1	8.20	6.56	5.44	4.33	3.68
700	34.2	24.5	21.2	17.3	12.9	10.1	8.20	6.57	5.46	4.33	3.69
800	34.4	24.9	21.4	17.4	12.9	10.1	8.20	6.58	5.48	4.33	3.69
900	34.5	25.8	21.5	17.5	13.0	10.1	8.20	6.59	5.52	4.33	3.70
1000	34.7	27.0	21.6	17.6	13.0	10.1	8.20	6.60	5.56	4.33	3.70

$=1 \times 100 / 100 \%=1.0 \%$
11) Value of X for $V_{\mathrm{r}} \%$ and for $R_{\mathrm{s}} / R_{\mathrm{L}} \%$ i.e.
$V_{\mathrm{r}} \%=1.0$ and $R_{\mathrm{s}} / R_{\mathrm{L}} \%=5.0$
from Table 1 is found to be 150.
12) $C=X / 2 \pi f \times R_{L} \times 10^{6} \mu \mathrm{~F}$
$=150 \times 10^{6} / 2 \pi \times 50 \times 10.09 \times 10^{3} \mu \mathrm{~F}$ $=47.3 \mu \mathrm{~F}$
13) $47 \mu \mathrm{~F}$ is a standard value for an electrolytic capacitor and would be a suitable choice.
14) The value of Y for X and for $R_{\mathrm{S}} / R_{\mathrm{L}} \%$ i.e. $X=150$ and $R_{\mathrm{s}} / R_{\mathrm{L}} \%=5.0$.
from Table 2 is found to be 0.76
15) $V_{\text {sec(rms) }}=E_{\mathrm{dc}} / \sqrt{ } 2 \times Y=100.9 / \sqrt{ } 2 \times 0.76$ $=93.9 \mathrm{~V}$
16) $\operatorname{PIV}=2.828 \mathrm{~V}_{\mathrm{sec}(\mathrm{mss})}=2.828 \times 93.9=266 \mathrm{~V}$
17) The value of Z for X and for $R_{S} / R_{\mathrm{L}} \%$ i.e. $X=150$ and $R_{\mathrm{S}} / R_{\mathrm{L}} \%=5.0$
from Table 3 is found to be 2.375
18) $I_{(\mathrm{rms})}=I_{0} \times Z$
i.e. $Z=2.375$ and $I_{0}=10 \mathrm{~mA}$ (see (7))
$=10 \times 10^{-3} \times 2.375=0.02375 \mathrm{~A}$ or 23.75 mA
19) The value of W for X and $R_{\mathrm{s}} / R_{\mathrm{L}} \%$
i.e. $X=150$ and $R_{\mathrm{s}} / R_{\mathrm{L}} \%=5.0$
from Table 4 is found to be 6.52 and so:
$I_{\text {(peak) }}=I_{0} \times W=10 \times 10^{-3} \times 6.52$
$=0.0652 \mathrm{~A}$ or 65.2 mA .
20) $I_{\text {on }}=V_{\text {sec (peak) }} / R_{\mathrm{s}}=\sqrt{2 \times} V_{\text {sec }(\mathrm{mss})} / R_{\mathrm{s}}$ $=\sqrt{ } 2 \times 93.9 / 504.5=0.263 \mathrm{~A}$ or 263 mA
21) Diode ratings required:

PIV (or $V_{\text {RRM }}$) $=266 \mathrm{~V}$
$I_{\text {on }}\left(\right.$ or $\left.I_{\text {FSM }}\right)=263 \mathrm{~mA}$
$I_{0}\left(\right.$ or $I_{\mathrm{F}(\mathrm{AV})}=10 \mathrm{~mA}$
22)

$$
\begin{aligned}
I_{c(m s)} & =\sqrt{I_{(m s)}^{2}-I_{d c(l o a d)}^{2}} \\
& =\sqrt{23.75^{2}-10^{2}}=\sqrt{564-100} \\
& =\sqrt{464}=21.54
\end{aligned}
$$

Both $I_{\text {(rms) }}$ and $I_{\text {dc(load) }}$ are in mA .
23) Reservoir capacitor ratings required: $C=47 \mu \mathrm{~F}$
$V_{\text {sec (peak) }}=V_{\text {DC(} \mathbf{w k g})}=\sqrt{2} \times V_{\text {sec (rms) }}$
$=\sqrt{2} \times 93.9=132.7 \mathrm{~V}$
$I_{\mathrm{c}(\mathrm{ms})}=21.54 \mathrm{~mA}$
24) $I_{(\mathrm{tms})}=I_{(\mathrm{mss})}=23.75 \mathrm{~mA}$
25) $T_{\mathrm{VA}}=V_{\mathrm{sec}(\mathrm{mms})} \times \mathrm{I}_{\mathrm{t}(\mathrm{mss})}$
$=93.5\left(23.75 \times 10^{-3}\right)=2.22 \mathrm{VA}$
26) Mains transformer ratings required:
$T_{\mathrm{VA}} \mathrm{VA}=2.22 \mathrm{VA}$
$V_{\text {pri(rms) }}$ primary winding $=240 \mathrm{~V}_{\text {rms }}$
$V_{\text {sec(rms) }}$ secondary winding $=93.9 \mathrm{~V} \mathrm{rms}$
$I_{(t \mathrm{~ms})}$ secondary current $=23.75 \mathrm{~mA} \mathrm{rms}$
In a subsequent article, Ray will describe the steps needed for designing full-wave centretapped rectifier circuits. The September issue contained the procedure for full-wave bridge rectifiers.

Dictionary of
 Communications Technology

Terms, definitions and abbreviations
Gilbert Heid, 4-Degree Consulting,
Macon, Georgia, USA
In response to the changing face of the
telecommunications industry and the rapid expansion in the use of microprocessors, fibre optics and satellites, Gil Held has updated his earlier telecommunications dictionary to bring readers in line with the very latest developments and terms in communications technology.

Features Include:

- Over 9000 references and $250+$ illustrations
- Comprehensive coverage of data and computer communications
- New entries on PC LANs, the Internet, client/server operations and communications lesting
- Trade name information

First Edition Review:

"For a consultant or
telecommunications operative, this book is a must. It is comprehensive and timely ... an excellent reference for the IS professional."
Data Processing Digest
ISBN 0471955426 , 512 pp, hardback, UK £68.50, Europe $£ 73$, ROW $£ 85$
ISBN 0471951269,512 pp, poperback, UK £38.50, Eurape £43, ROW $£ 55$

Testing, Troubleshooting and Tuning Local Area Nefworks
 Techniques and tools to isolate problems and boost performance
 Gilbert Held, 4-Degree Consulting,
 Macon, Georgia, USA
 Recognising the problems

encountered by network users and administrators on a daily basis, this book is designed to assist readers by focusing on testing, troubleshooting and tuning of Ethernet and TokenRing networks. It is devoted exclusively to: how things go wrong how to recognise, monitor and test for problems; network analysis and network management products that assist users in examining the flow of data in a complex network.
ISBN 0471958808 , 27 Spp, hardback, UK £37. 50 , Europe $£ 40$, ROW $£ 50$

Wireless Information Networks

Kaveh Pahlavan, Worcester Polytechnic Institute and Allen H Levesque, GTE Government Systems Corporation.
Wireless Information Networks organises all major elements of wireless rechnology - cordless and cellular telephony, Personal Communications Systems (PCS), mobile data networks and Wireless Local Area Networks (WLANs), presenting them from a logical, systems engineering perspective. Technical material is thoroughly integrated with special applications and focuses on four main areas: Wireless

standards and descriptions of syslems and products; Measurement and modelling of radio and optical wave propagations; Wireless transmission techniques and Wireless multiple access techniques.
Contents: Overview of Wireless Networks. Frequency Administration and Standards Activities. Characterisation of Radio Propagation. Channel Measurement and Modelling for Narrow-band Signaling. Measurement of Wide-band Channel Characteristics. Computer Simulation of the Radio Channel. Modem Technology. Signal Processing for Wireless Applications. Spread Spectrum for WIN Systems. Wireless Optical Networks. Networks and Access Methods. Standards and Products.
ISBN $0471106070,304 \mathrm{pp}$, hardback, UK £63.50, Europe £68, ROW £81

Applied Crypfography

2nd Edition
Protocols, Algorithms and Source Code in C Bruce Schneier, Security Consultant and President of Counterpane Systems, USA This revision of the programmer's and system designer's guide to the practical applications of modern cryptography

provides the most comprehensive, up-to-date survey of modern cryplographic techniques, along with practical advice on how to implement them.

New to this edition:

- Detailed treatment of the US government's Clipper Chip encryption program
- New encryption algorithms (eg. 'GOST') recently obtained from the former Soviet Union
- More detailed information on incorporating algorithms and programming fragments
into working software
- The latest developments in the fields of message authentication /'digital signatures') and digital cash. ISBN 0471 $128457,816 \mathrm{ppp}$, hard badk, UK E59, Europe E64, ROW $£ 78$
ISBN 0471 117099,816 pp, ppperbock, UK $£ 44$, Europe $\mathrm{E} 49,^{\text {ROW }} \mathfrak{£ 6 3}$

Data and Image Compression

4th edition
fools and techniques
Gilbert Held, 4-Degree Consulting,
Macon, Georgia, USA
Data and image compression are key issues in computer communications with the increasing demand for data transmission capacity.

Guiding the reader through the main techniques, this book explains how practical data and image compression techniques are now vital for efficient, low-cost transmission and data storage requirements. Building on the success of the previous editions of Data Compression, the scope of the fourth edition has been considerably expanded. Now covering image and fax compression, the text has been restructured to take account of the many new advances in this important field. It is also accompanied by an updated disk containing compression routines.
ISBN 0471952478 8, 450pp+disk, hardback,
UK £58.50, Europe £63, ROW $\mathbf{£ 7 5}$

Handbook for Digital Signal Processing

S.K. Mitra, University of California and J.F. Kaiser, Bell Communications Research, New Jersey, USA
This is the definitive source of detailed information on all important topics in modern

digital signal processing. The only current handbook of its kind, it meets the needs of practising engineers and designers of hardware, systems and software. Written by world authorities, the Handbook for Digital Signal Processing is supplemented with hundreds of informative tables and illustrations. For professional engineers, designers and researchers in electronics and telecommunications, this work will be an indispensable reference - now and for years to come.

Contents: Introduction; Mathematical Foundations of Signal Processing; Linear TimeInvariant Discrete-Time Systems, Finite-impulse Response Filter Design; Digital Filter Implementation Considerations; Robust Digital Filter Structures; Fast DFT and Convolution Algorithms; finite Arithmetic Concepts; Signal Conditioning and Interface Circuits; Hardware and Architecture; Software Considerations; Special Filter Designs; Multirate Signal Processing; Adaptive filtering Spectral Analysis; Index.
ISBN 0471619957 , I302pp, hordback, UK £110.50, Europe £118, ROW £ 138

Solving Interference Problems In Electronics

R. Morrison, Eureka California, USA Interference in electronic equipment is a constant source of difficulty for the design and systems engineer. Until now, there has not been a coherent theory that engineers can refer to in their design work and the solution of interference problems has therefore often considered to be an 'art'. Written by an acknowledged expert in the field, this new title provides methods and techniques for testing and evalualing
designs, and covers interference questions in computer manufacturing and systems design.
ISBN 047112796 5, 206pp, hardback, UK £47.50, Europe £48.50, ROW £54

Diode Lasers and Photonic Integrated Circuits

L. A. Coldren and S. W. Corzine, both of the University of California, Santa Barbara, USA. Diode lasers are found in numerous applications in the optoelectronics industry,

telecommunications and data communications, ranging from readout sources in compact disc players to transmitters for optical fibre communications systems. This new title provides a comprehensive treatment of diode laser technology, its principles and theory, treating students as well as experienced engineers to an in-depth exploration of this fast growing field.
ISEN 047111875 3, 620pp, hardback, UK £63.50, Europe £67, ROW £78

All prices are fully inclusive of packing and delivery

Return to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Card expiry date

Signed

Please allow up to 28 days for delivery

Music in Mind

In response to Ian Hickman's challenge in the October 1996 issue, as to why his gyroscope headphone system did not work on stereo, I offer the following thoughts.
Firstly, there is more to head movement than just delay shift. The acoustic signal reaching the ear is turned toward the sound source is increased in level at high frequencies, while the other ear receives less high frequency. This is due to the head attenuating the directional signal.
Secondly, and perhaps more importantly, is that classical recordings are made for reproduction on loudspeaker systems. In stereo, two techniques for obtaining the stereophonic effect exist: intensity differencing and time differencing. If the signal from the left speaker arrives at the ear earlier than the signal from the right speaker, the apparent source location is shifted to the left. For a source to be perceived to be entirely at the left or right, quite large time differences are needed.
In practice, it appears that stereo through time differences gives a more widespread - and often more pleasing - stereo sound on loudspeakers than does intensity stereo. Also, the omnidirectional microphones suitable for this technique are superior. As a result, most classical music recordings use time-difference stereo.
The microphones are spaced about a meter or so apart, giving spatial cues containing time differences of up to 3 ms between the left and right speaker. As you can imagine, adding some 150μ s extra delay to this difference to obtain an in-front Iocalisation on head
phones, as Ian did in his experiment, would not have a noticeable effect.
If this theory is right, there should be a solution. Try listening to a stereo recording with intensity differences solely. I think that recordings from Nimbus would demonstrate this. The clue is to look for recordings that are made using coincidental, or nearly coincidental, microphone techniques. Maybe a special artificial head-recording would do.
It would be interesting to see
whether this theory gives any result.

Eelco Grimm

Editor

Pro-Audio Magazine
Congratulations to Ian Hickman for his attempts at correcting for head rotation with headphone listening, The use of the piezo-vibrating gyroscope is a worthwhile contribution.

However, the parameters under control are inadequate and I suggest are the reason why sound sources remain stubbornly localised within the head.
The secret of auralisation with headphones is the accuracy to which the required signals can be reconstructed at the entrance to the ear canal, to match those produced by a real-life source. It is well known that an external sound source will have two associated transfer functions between the source and each ear. These are called the head related transfer functions, or hrtfs.

Each point in space has a unique pair of hrtfs (one for each ear) with respect to head orientation. The transfer functions are influenced by the head shape, pinna geometry and, to a lesser extent, the effect of the torso. Even more frustrating is that each listener will have a unique set of transfer functions, although fortunately there is some degree of commonality between listeners, though head size can play a role too.

When the head rotates with respect to an external point source, the transfer functions change dynamically. Any system that is intended to recreate the correct ear signals must therefore include a knowledge of these filters and an ability to process them dynamically. Computing purely on a basis of amplitude and time differentials is insufficient to recreate accurate out-of-head spatialisation. This also implies that information that is encoded using normal stereo will not readily be amenable to such processing. Binaural sources obviously have an advantage, but when the head moves the signals are so interwoven that they cannot accurately be processed into their correct perspective, although better results should in theory be possible.

Mr Hickman, however, should not feel too disheartened. I have heard several systems claiming to do this
with low-cost electronics, some using multiple drive unit headphones, and all have failed to impress. The only system (for me) so far to work using an orientation measurement was demonstrated to me by Dr Mike Hollier at British Telecom Research Laboratory.
The system used the 'Huron' manufactured by Lake, which is a digital filter costing $£ 60,000$ or so and capable of very long impulse responses that can be controlled dynamically. The system incorporates a set of hrtfs and a positional sensor is located on the headphones. Listening in real time to a person talking into a microphone, and rotating my head, an external image was perceived that was localised accurately within the room's frame of reference.

Note, however, that the Huron is a bit of overkill in this application. Its power is intended to incorporate the long impulse responses that are encountered when simulating a large acoustic environment where the aim is to be able to move around within an artificially created space. That is the acoustic wing of virtual reality.
So, any working system must use real-time dsp and include accurate hrtf data. It must also use appropriate headphones, preferably feeding directly into the ear canal as there can be significant errors introduced into the hrtfs due to the vague coupling between headphone and ear canal. Multiple drive units within headphones do not solve this particular problem. Sometimes a slight adjustment of the headphone can compromise the whole system by differentially changing the leftear and right-ear hrtfs.
Prof Malcolm Omar Hawksford Director
Centre for Audio Research \&
Engineering
University of Essex

Anti-gravity and the aether

In EW May 1996, p. 429, Dr. David Fisher advised you to "double-check the work of anyone who is known to believe in dowsing, ball lightning, 'free energy' and/or anti-gravity." He fears incitement of panic. In EW August 1996, p. 590, when challenged by his prey, Anthony Hopwood, Dr. Fisher stated that in
fact he was thinking of me, for my belief in this nonsense! See my article ($E \& W W, \mathrm{pp} .29-31,1989$).
I have not written anything on the subject of dowsing and am now wondering if Dr. Fisher has conveyed similar advice to the editor of the Sunday Telegraph who reported in the 1 September 1996 issue, a breakthrough in antigravity. The report concerns research at Tampere University of Technology in Finland and declares that objects on every floor of the laboratory that were positioned directly above the anti-gravity machine lost some weight when the machine on the lower floor was set spinning.
I believe that this is because the flywheel was developing spin-off owing to precessional motion in globules of aether, a weak version of thunderballs, which rose through the intervening floors. Why this causes a loss of weight is explained in my paper "The Theory of Anti-Gravity' in Physics Essays, (Vol. 4, pp. 1319; 1991).
Readers of Electronics World do not panic when there is noise in their radio reception; they just seek to understand the cause. However, maybe NASA might panic when faced with the dilemma of having anti-gravity space travel technology at the price of making radio communication incoherent.
Whether one induces that aether precession by magnets acting on superconductive flywheels or mechanically as in Laithwaite's faster-than-natural precession of an offset flywheel, those aetherial eddies have the power to reduce the weight of matter they occupy. They also affect the speed of light.
There is some evidence that they are produced by earthquakes because they seem to affect fm signals but not am signals. See
'Earthquake-Related EM
Disturbances', Quarterly Journal of the Royal Astronomical Society,
Vol. 28,535536 (1987).
Harold Aspden
Chilworth, Hampshire

Victoria listened in too

Tom Ivall's article on Marconi's patent of 1896 characterises the era by commenting: "Queen Victoria was still on the throne". But she was

MOONSHINE BIBLE 270 page book covering the production of alchohol from potatoes, rice, grains etc Drawings of simple home made stills right through to commercal systems. $£ 12$ ref MS3 NEW HICH POWER MINI BUG With a range of 800 metres or more and up to 100 hours use from a PP3 this will be populat Bug measures less than $\mathbf{1}^{1}$ squarel $£ 28$ Ref LOT102
SINCLAIR C6 MOTORS We have a new ones available withou gearboxes at $£ 50$ ref LOT25
BUILD YOU OWN WINDFARM FROM SCRAP New publication gives step by step guide to building wind generators. Armed with this publication and a good local scrap yard could make you self sufficient in electricity! $£ 12$ ref LOT81
PC KEYBOARDS PS2 connector, top quality suitable for all 286 386/486 etc $£ 10$ ref PCKB. 10 for $£ 65$.
TRACKING TRANSMITTER range $1.5-5$ miles, 5,000 hours on AA batteries, also transmits info on car direction and motonlWorks with any FM radio. 1.5" square. £65 ref LOT101
ELECTRIC DOOR LOCKS Complete lock with both Yale lock and 12v operated deadlock (keys included) £10 ref LOT99 GALLIUM ARSENIDE FISHEYE PHOTO DIODES Complete with suggested
SURVEILLANCE TELESCOPE Supert Russlan zoom telescope adjustable from $15 \times$ to $60 x$! complete with metal tripoo (imposible to use without this on the higher settings) 66 mm lense. leather carrying case £149 rel BAR69
WIRELESS VIDEO BUG KIT Transmits video and audio signals from a minature CCTV camera (included) to any standard television! All the components including a PP3 battery will itt into a cig arette packet with the lens requiring a hole about 3 mm diameter. Supplied with telescopic aerial but a plece of wire about 4^{*} long will still give a range of up to 100 metres. A single PP3 will probably give less than 1 hours use E99 REF EP79. (probably not licensablel) CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}, 30$ grams, 12 v 100 mA . auto electronic shutter, 3.6 mm F2 lens. CCIR, 512×492 pixels, video output is Iv p-p (75 ohm). Works directy into a s
video input on a tv or video. IR sensitive. £79.95 ref EF137.
IR LAMP KIT Suitable for the above camera, enables the camera to be used in total darkness! $£ 5.99$ ref EF138
INFRA RED POWERBEAM Handheld batiery pow ered lamp, 4 Inch reffector, krypton bulb, gives out pow erful infrared lighti 4 D cells required. $£ 39$ ref PB1.
MONO VGA MONTTORS, Perfect condition, Compaq, 14*, 3 months warranty $£ 29$ rel MVGA

9 WATT CHIEFTAN TANK LASERS

Doubie beam units designed to fit in the gun barrel of a tank, each unit has two semi conductor lasers and motor drive units for allgnement. 7 mile range, full circuit dlagrams, new price $£ 50,000$? us? $£ 349$. Each unit has two gallium Arsenide injection lasers, 1×9 watt, $1 \times$ 3 watt, 900 nm wavelength, $28 \mathrm{vdc}, 600 \mathrm{hz}$ pulse frequency. The units targets. five or more units $£ 299$ ea. £349 for one. Ref LOT4.
TWO WAY MIRROR KIT Indudes special adhesive film tomake two way mirror(s) up to $60^{\circ} \times 20^{\circ}$. (glass not included) includes full instructions. £ 12 ref TW1.
NEW LOWPRICED COMPUTERWORKSHOP/HLFIRCB UNTS Complete protection from faulty equipment for everybodyl Inline unit fits in standard IEC lead (extends itby 750 mm), fitted inless than 10 seconds, resettesi button, 10A rating. £6.99 each ref LOT5. Or a pack of 10 at $£ 49.90$ ref LOT6. If you want a box of 100 you can have one for E2501
RADIO CONTROLLED CARS FROM £6 EACHIH! AI returns from famous manufacturer, 3 types available, single channel (left, right, forwards backwards) $\varepsilon 6$ rel LOTI. Two channel with m ore features $£ 12$ ref LOT2.
THOUSANDS AVAILABLE RING/FAX FOR DETAILSI MAGNETIC CARD READERS (Swipes) $£ 9.95$ Cased with flyleads, designed to read standard credit cards! they have 3 wires coming out of the head so they may write as well? complete with controt elctronics PCB. Just ©9.95 ref BAR31
WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collated 140 business manuals that give you information on setting up different businesses, you peruse these at your leisure using the text editor on your PC. Also Included is the centificate enabling youto reproduce (and sell) the manuals as much as you like! £ 14 ref EP74
PANORANIC CAMERA OFFER Takes double width photographs using standard 35 mm film. Use in horizontal or vertical photograp hs using standard 35 mm film. Use
mode. Complete with strap $£ 7.99$ ref BAR1
COIN OPERATED TIMER KIT Complete with coinslot mechanism, adjustable time delay, relay output, put a coinsiot on anything you likel TV,s, videos, fridges, drinks cupboards, HIFI. lakes 50 p's and $\varepsilon 1$ coins. DC operated, price just $£ 7.99$ ref BAR27 ZENITH $900 \times$ MAGNIFICATION MICROSCOPE Zoom metal construction, bult in light, shrimp farm, group viewing screen, lots of accessories. $E 29$ ref ANAYLT.
AA NICAD PACK Pack of 4 tagged AA nicads $£ 2.99$ ref BAR34 PLASMA SCREENS $222 \times 310 \mathrm{~mm}$, no data hence $\mathbf{£ 4 . 9 9}$ ref BAR67
NIGHTSIGHTS Model TZSA with infra red illuminator, views up to 75 metres in fulldarkness in infrared mode, 150 m range, 45 mm lens 13 deg angle of view, focussing range 1.5 m to infinity. 2 AA Datteries required. 950 g welght. £ 199 ref BAR61. 1 years warranty
LIQUID CRYSTAL DISPLAYS Bargain prices,
16 character 2 line. $99 \times 24 \mathrm{~mm}$ £2.99 ref SM1623A
20 character 2 line, $83 \times 19 \mathrm{~mm} £ 3.99$ ref SM2020A
16 character 4 line, $62 \times 25 \mathrm{~mm} £ 5.99$ ref SMC1640A
TAL-1110MM NEWTONIAN REFLECTORTELESCOPE
Russian. Superb astronomical 'scope, everything you need for some serious star gazingl up to 169x magnification. Send or fax for further information ref TAL-1, £249
SOLAR ENERGY/GENERATOR PLANS For your nome, loads of info on designing systems etc $£ 7$ ref PV1
SOLAR COOKERS Comprehensive guide to building solar powered cookers, includes plans, recipes, cooking times etc $£ 7$ rel

WOL YRAHAMPTON BRA MCL

 NOW OHRN AT WORCESTERSI WHAMITON TEL 0190222039CENTRAL POINT PC TOOLS Award winning software, 1,300 virus checker, memory optomiser, disc optmiser, ile compression, low level formatting, backup scheduier, disk defragmenter, undelete. 4 calculators, Dbase, alsc editor, over 40 view ers, remote computing. password protection, encryption, comprehensive manual supplied etc $£ 8$ ref lot 973.5° disks.
GOT AN EXPENSIVE BIKE? You need one of ourbottealarms, thoy look like a standard water botte, but open the top, Inserl a key to activate a motion sensor alarm built inside. Fits all standard botte

C O L O U R CCTV VIDEO CAMERAS, BRAND NEW, CASED, £119.

PERFECTFOR SURVEILLANCE INTERNET
VIDEO CONFERENCING SECURITY
DOMESTIC VIDEO
Works with most modern video's, TV's, Composite monitors, video grabber cards etc Pal, 1v P-P, composite, $760 \mathrm{hm}, 1 / 3^{\prime \prime}$ CCD, 4 mm F2.8, $600 \times 682,12 \mathrm{vde}$, mounting bracket, auto shutter, $100 \times 50 \times 180 \mathrm{~mm} .3$ months warranty, 10 or more $£ 99$ ea.

Check out our WEB SITE

http://www.pavilion.co.uk/bull-eleotrical

GOT AN EXPENSIVEANYTHING? You need one of our cased vibration alams, keyswitch operated, fully cased just fit it to anything from videos to caravans. provides a years protect
PP3 battery. UK made. SALE PRICE E4,99 REF SA 33 .
DAMAGED ANSWER PHONES These are probably beyond epar so Just $£ 4.99$ each. BT response 200 machines. REF SA30. IBM PS2 MODEL $150 Z$ CASE AND POWER SUPPLY Complete with tan etc and 200 watt power supply. E9.95 ret EP67 DELL PC POWER SUPPLIES $145 \mathrm{watt},+5,-5,+12,-12$, 150 $150 \times 85 \mathrm{~mm}$ complete with switch, fiyeads and IEC socket. 150x $150 \times 85 \mathrm{~mm}$ complete with
SALE PRICE E9.99 ref EP55
1.44 DISC DRIVES Standard PC 3.5° dirives but retums so they 1.44 DISC DRIVES Standard PC $3.5{ }^{\circ}$ dives
will need attention SALE PRICE E4.99 ret 1.2 DISC DRNES Standard 5.25° dives but retums so they will need attention SALE PRICE NOW ONLY $£ 3.50$ ret EPG9
PP3 NICA DS Unused but some storage marks. £4.99 ref EP52 DELL PC POWER SUPPLIES (Customer retums) Standard PC psu's complete with fy leads, case and fan. $+12 v,-12 v,+5 v,-5 \mathrm{~V}$ SALE
PRICE $E 1,99$ EACH worth iffor the bits alone! refDL1, TRADE PACK OF 20 E29.95 Ref DL2.
GAS HOBS ANDOVENS Brand new gas appliances. perfect for small nats etc. Basic 3 bumer hod SALE PRICE E24.99 ref EP72. smail farts etc. Basic 3 bumer hob SALE PRICE E2
Basic small built in oven SALE PRICE $€ 79$ rel EP73
ENERGY BANK KTT $1006^{\prime} \times 6^{\circ} 6 \mathrm{~V} 100 \mathrm{~mA}$ panels, 100 diodes. ENERGY BANK KT $1006^{\circ} \times 6^{\circ}$ 6v 100
connection details etc. $\mathbf{E 6 9 . 9 5}$ ref EF112.
PASTEL ACCOUNTS SOFTWARE, does everything for all sizes of businesses, Indudes wordprocessor, reportwilter, windowing. networkable up to 10 stations, pulitple cash books etc. 200 page
comprehensive manual. 90 days free technical support (01342 -

- Some of our products may be unlicensable in the uk

BULL ELECTRICAL

AII ORDER TEMMS: CASM, FOOR CMBGHE
WIH ORDER PL USES PRT Wils M,
wicou
TLL: 1123203501
1A X 012\%3323077
E-mail hall ©pavilon.co.ul:

326009 try before you buyl) Current retall price E 129 , SALE PRICE $£ 9.95$ ref SA 12. SAVE £1201I

RACALMODEM BONANZAI 1 Racal MPS 1223120075 modem,

 telephone lead, mains lead, manuai and comms sotware, the cheapest way onto the net! all this for just $£ 13$ ref DEC13.BULL TENS UNIT Fully built and tested TENS (Transcutaneous Electrical Nerve Stimulation) unit, complete with electrodes and full instructons. TENS is used for the rellef of pain eic In up to 70% of sufferers. Drug free pain rellef, safe and easy to
conjunction with anaigesics etc. $£ 49$ Ref TEN/1
PC PAL VGA TO TV CONVERTER Converts a colour TVinto a basic VGA screen. Complete withbuilt in psu, leadand s/w are.. Ideal for laptops or a cheap upgrade. Supplied in kit form for home assembly. SALE PRICE E25 REF SA34
EMERGENCY LIGHTING UNIT Complete unit with 2 double bulb floodilghts, builtin charger and auto switch. Fully cased. 6y 8AH lead acid req'd. (secondhand) $£ 4$ ref MAGAP11
YUASHA SEALED LEAD ACID BATTERIES Two sizes currently available this month. 12V 15AH at£ 18 ref LOT 8 and 6 V 10AH suitable for emergency lights above) at just $£ 6$ ref LOT7.
ELECTRIC CAR WINDOW DE-ICERS Complete with cable, plug etc SALE PRICE JUST E4.99 REF SA28
AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solarpanel with diode and 3 metre lead fitted with a cigar plug. 12v 2watt. $\mathbf{6 8 . 9 9 \text { REF SA25. }}$ MICRODRNE STRIPPERS Small cased tape drives ideal for stripping. lots of useful goodies including a smatt case, and lots of components. SALE PRICE JUST E4.99 FOR FIVE REF SA26 SOLAR POWER LAB SP ECIAL You get TWO $6^{\circ} \times 6^{\circ} 6 \mathrm{~V} 130 \mathrm{~mA}$ solar cells, 4 LED's, wire, buzzer, switch plus 1 relay or motor. Supert
RGB/CGA/EGA/TTL COLOUR MONTTORS 12' in good
condition. Back anodised metal case. SALE PRICE E49REF SA $16 B$ condition. Back anodised metal case. SALE PRICE E49 REF SA $16 B$ PLUG IN ACORN PSU 19 AC 14w , £2.99 REF MAG3P 10 13.8V 1.9A PSU cased with leads. Just £9.99 REF MAG10P3 UNNERSAL SPEED CONTROLLER KTT Designed by us for the C5 motor but ok for any 12v motor up to 30A. Complete with PCB etc. A heat sink may be required. £17.00 REF: MAG17
PHONE CABLE AND COMPUTER COMMUNICATIONS
PACK Kit contains 100 m of 6 core cable, 100 cable clips, 2 line drivers with RS232 interfaces and all connectors etc. Ideal low cost method of communicating between PC's over a long distance utillzing the serial ports. Complete kit $£ 8.99$. Ref comp 1 .
VIEWDATA SYSTEMS made by Phillips, complete with Intemai 120075 modem, keyboard, psu etc RGB and composite outputs, menu driven, autodialler etc. SALE PRICE £ 12.99 REF SA 18.
AIR RIFLES.22As used by the Chinese army for training puposes, so there is a lot about $£ 39.95$ Ref EF78. 500 pellets $£ 4.50$ ref EF80. VIDEO SENDER UNTT. Transmits both audio and video signals from either a video camera, video recorder. TV or Computer etc loany standard TV set in a 100^{\prime} rangel (tune TV to a spare channel) 12 V DC Op. Price is $£ 25$ REF: MAG15 $12 v$ psu ls $£ 5$ extra REF: MAG5P2 *MINATURE RADIO TRA NSCENERS A pair of walkie talkies with a range up to 2 kmin open country. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. Induding cases and earp'ces. $2 \times P$ PP 3 req'd. £ 30.00 pr.REF: MAG30 - FM TRANSMITTER KIT housed in a standard working 13A adapter!l the bug runs directly off the mains so lasts foreven why pay $£ 700$? or price is $£ 15$ REF: EF62 (kit) Transmits to any FM radio. *FM BUG BUILT ANDTESTED superior design to kit. Supplled to detective agencies. 9v battery req'd. £14 REF: MAG14
GAT AIR PISTOL PACK Complete with pistol, darts and pellets $£ 12.95$ Ref EF82B extra pellets (500) $£ 4.50$ ref EF80.
$6^{\prime \prime} \times 12^{\circ}$ AMORPHOUS SOLAR PANEL $12 \mathrm{~V} 155 \times 310 \mathrm{~mm}$ 130 mA SALE PRICE E4.99 REF SA24.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ref MAG5P 13 ideal for experimenters! 30 m for $£ 12.99$ ref MAG13P1

MIXED GOODIES BOX OF
 MIXED COMPONENTS WEIGHING 2 KILOS
 YOURS FOR JUST $\mathrm{E}_{6} .99$

4×28 TELESCOPIC SIGHTS sutable for all air ines, ground lenses, good light gathering properties. $£ 19.95$ ref $\mathrm{R} / 7$ GYROSCOP ES Rememberthese? well we have found a company that stil manufactures these popula
educational use etc. $£ 6$ ref EP70
educational use etc. $£ 6$ ref EP70
HYPOTHERMIA SPACE BLANKET $215 \times 150 \mathrm{~cm}$ aluminised foll blanket, reflects more than 90% of body heat. Also suitable for the constuction of two way mimors! £3.99 each rel O/L041.
LENSTATIC RANGER COMPASS Oil filled capsule, strong metal case, large luminous points. Sight line with magnifying viewer 50 mm dia, 86 gm . £ 10.99 ref O/K604.
RECHARGE ORDINARY BATTERIES UP TO 10 TMESI With the Battery Wizardl Uses the latest pulse wave charge system to charge all popular brands of ordinary batteries AAA, AA, C, D, four at a timel Led system shows when battenes arecharged, automatically rejects unsuitable cells, complete with mains adaptor. BS approved Price is $£ 21.95$ ref EP31.
TALKING WATCH Yes, it actually tells you the time atthe press of a button. Also features a voice alarm that wakes you up and tells you what the time is Lithium cell induded. $£ 7.99$ ref EP26

PHOTOGRAPHIC RADAR TRAPS CAN COST YOU YOUR LICENCEI The new multiband 2000 radar detector can prevent even the mostresponsible of d rivers from losing their licence Adjustable audible alarm with 8 flashing leds gives instant waming o radar zones. Detects X, K, and K a bands, 3 mile range, over the hil 'around bends' and 'reartrap facilities. micro size just $4.25^{\prime \prime} \times 2.5^{\prime \prime} \times .75$. 3" DISCS As used on
etc $£ 3$ each ref BAR400. etc £3 each ref BAR400
STEREO MICROSOPES BACK IN STOCK Russian, $200 x$ complete with lenses, lights, filters etc etc very comprehensive
microscope that would normally be around the $£ 700$ mark, our price

WE BUY SURPLUS STOCK
 FOR CASH
 BUYERS DIRECT LINE 0802660377

far from being a passive observer of events. Two years later, in the summer of 1898 , she was buying "wireless sets".
Edward Prince of Wales, convalescing after a knee injury, elected to spend some weeks aboard the Royal Yacht, which was moored two miles away in Cowes bay, discreetly out of sight of Osbome.
The 80-year old Queen-Empress determined to have some easy means of communication with him. Never one to overlook the latest technology, she commissioned Marconi to install wireless telegraphy apparatus. This was done, and a 100 -foot aerial was erected in the grounds of Osborne; a similar affair with a somewhat smaller aerial was provided aboard the Royal Yacht.
The resulting traffic was irredeemably trivial, being mainly
on the "when are you coming to dinner?" level, though some sea trials were also carried out.
But: "The Prince of Wales and other Royalties gave expression to Mr. Marconi of their high appreciation of his system... " (Electrical Review). The publicity was immensely useful to the infant Marconi Company.
This incident, and much more fascinating material too, may be found in W.P. Jolly's biography of Marconi (Constable, London, 1972). Ashby Tabb
Taunton, Somerset

Thermal compensation: why bother?

Of course if the only circuits available for Class B
complementary pair use were the standard ones such as those shown in Fig. 6 of Douglas Self's 'Night thoughts on crossover distortion', EW Nov. 1996, it would fully justify not just the article itself, but all his preceding articles.
As I have shown in 1982, (Class S, Wireless World, Sep. 1982) there another way.
Quite simply, using this legally protected circuit, crossover distortion is hard to measure and the circuit needs no setting up. It is tolerant of ageing and temperature effects. As a bonus it also has lower large signal distortion.
Why is this? Referring to page 793 of this magazine for October 1996, the output impedance of the voltage amplifier A_{1} is very low, ideally zero. This forms a heavy attenuator when combined with the upper 22Ω resistor for any distortion generated
by the push-pull power stage A_{2} and its transistors.
This attenuation holds just as well for low value cross over voltages as for large value amplitudes. All A_{2} and its components do is provide, ideally, the load current, leaving A_{1} to provide very little current while seeing a high impedance load.

Because A_{1} sees for most of the time this high impedance load and only for a few millivolts of excursion (in the crossover region) has to drive the real low impedance load, which it can easily do, the net result is an amplifier with excellent performance and a clear method of operation.
Finally, apologies for the trumpet blowing but it is partly the result of exasperation and partly the result of needing the publicity in order to obtain work.
Aubrey Sandman
London

Feedback feedback please

Having built two new power amps and then found out that in use their gain was about 12 dB too much, 1 shuddered at the thought of all the work involved to redesign for the lower gain. I thought for the umpteenth time that there must be a simpler way, like using low gain linear stages with little or no overall negative feedback.
I was happy with the output stage, Fig. 1, which is a fet version of the Texas Instruments Texan amplifier and has been described in $E W+W W$, April and September 1990. It needed a bit of experimentation with R_{1} to get equal positive and negative half cycles, open loop, but that is all it needs.

Applying negative feedback to give a gain of four, the stage has quite a reasonable performance, except that the output impedance is about 1Ω. Also, when loaded, the stage distorts because there is nothing to increase the drive. I tried all sorts of comparators to apply feedback only when there was a difference between output and input, but none worked effectively.

I was about to give in when I came across a reference to an error cancelling technique by Hawksford in the Siliconix Mospower Applications Handhook (Application 6.6.3). Figure 2 gives the theory and Fig. 3 the way I applied it. Having got the gains right, the results were astounding.
If the gain from P-R-Q to P is less than unity, Z_{0} will have some small value. If the gain is unity, Z_{0} will be close to zero. If the gain is slightly greater than unity, Z_{0} will have a negative resistance characteristic. The gain from P-S-Q-P must be the reciprocal of the closedloop gain of the corrected amplifier.
During testing, it was found that a capacitive load of more than 22 nF caused a high output at high frequency. This was a surprise as the output stage itself would happily drive a $10 \mu \mathrm{~F}$ at 1 kHz . More experimenting gave the feeling that this was not parasitic oscillation, but rather amplified and filtered noise. While loading the output with increasing values of capacitor, the output of A_{1} became increasingly noisy until it burst into oscillation at about 2 MHz . Putting a small capacitor across $R_{8}\left(A_{1}\right)$ stopped the oscillation but was not the best place as only the error signal

was being filtered. The best solution was a 22 pF across $R_{12}\left(A_{2}\right)$ to filter signal and error. The amplifier now drives $10 \mu \mathrm{~F}$ with no problem.

The only explanation I can give at the moment is that a capacitor across the output filters out high frequency noise at that point $(22 \mathrm{nF}=3 \mathrm{R} 6$ at 2 MHz). This would mean that the noise at S would not be cancelled in A_{1} by noise from P and would be fed back as a signal. 1 am not entirely happy with that idea since there is not much noise at those points anyway. Resistor R_{15} is chosen to give required gain.
1 would welcome your comments on this technique.
K H Ellis
Wolverhampton
England

Fig. 2. Hawksford's error-cancelling
technique. Output stage has-error signal added to it. Input signal has +error added to it and so cancels the error out. S_{1} creates the error signal.

DC TO DC CONVERTERS

DRM58 input $10-40 \mathrm{Vdc}$ output 5V 8A $£ 15$
DRM128 input $17-4$ Ovdc output 12 V 8 A £50
DRM158 input $20-40 \mathrm{~V} d \mathrm{c}$ output $15 \mathrm{~V} 8 \mathrm{~A} £ 50$
DRM248 input $29-40 \mathrm{vdc}$ output 24 V 8A $£ 40$ DRS 123 input $17-40 \mathrm{Vdc}$ output $12 \mathrm{~V} 3 \mathrm{~A} £ 20$
DRS 153 input $20-40 \mathrm{Vdc}$ output $15 \mathrm{~V} 3 \mathrm{~A} £ 20$
DRS243 input $29-40 \mathrm{Vdc}$ output $24 \mathrm{~V} 3 \mathrm{~A} £ 15$
SOLID STATE RELAYS
CMP-DC-200P 3-32vdc operation, 0-200vdc 1A E2.50
SMT20000 3 3-24vdc operation, 28 -280vac 3 AA $£ 4.50$
ZRA6025F 28-280va/ac operation, 28-280vac 25A $£ 7.00$
200 WATT INVERTERS Nicely cased units +2 v input 240 V Ouput 150 watt continuous. 200 max. E49 re1 LOT62.
6.8MW HELIUM NEON LASERS New Units. $£ 65$ ref LOT33

COINSLOT TOKENS You may have a use for these? mixed bag of 100 tokens $£ 10$ ref LOT20.
PORTABLE X RAY MACHINE PLANS Easy to construct plans on a simple and cheap way to build a home X-ray machinel
Efiective device, X-ray sealed assemblles. can be used for plans on a simple and cheap way to duild a home X-ray machinel
Efrective device, X-ray sealed assemblies. can be used for
expenmental purooses. Not a toy or for minorsi $£ 6 /$ set. Ref $F I X P$. TELEKINETIC ENHANCER PLANS Mystiry and amaze your Inends by creating motion with no known apparent means or cause. Uses no electrical ormechanical connections, no special gimmicks yetproducesp ostive motion and effed. Excellent tor sciencep rojeds,
magic shows. party demonstrations or serious research \& magic shows. party demonstrations or serious research \&
development of this strange and amazing phychic phenomenon. development of this
ELECTRONIC HYP NOSIS PLA \&S \& DATA This data shows several ways to put subjects under your control. Induded is a full volume reference text and several construction plans that when assembled can produce highiy effective stimuli. This materlal must be used cautously. Itis for use as entertainment at parties etc only. by those expenienced in its use. $£ 15 /$ set Ret F /EH2
GRAVITY GENERATOR PLANS This unique plan demonstrates a simple electrical phenomena that produces an anti-
gravity effect. You can actually bulid a small mod spaceship out of gravity effect. You can actually build a small mod spaceship out of
simple matenals and without any visible means- cause it to levitate. £10/sel Ref F/GRA1.
WORLDS SMALLEST TESLA COILILIGHTENING DISPLAY GLOBE PLANS Produces up to 750,000 volts of discharge, expeniment with extraordinary HV effects. 'Plasma in a jar, St Elmo's fire, Corona, excellent science project or conversation piece. $£ 5 /$ set Ref $\operatorname{F/BTC1/n}$ G5.
COPPER VAPOUR LASER PLANS Produces 100 mw of vistble green light. High coherency and spectral quality similar to Argon laser but easer and less costly to build yet far more efficient. This partculardes gnwas developed at the Alomic Energy Commision of NEGEV in Israel. £ $10 /$ set Ref FICVL 1
VOICE SCRAMBLER PLANS Minature solid state system turns speech sound into indecipherable no so that cannot be
understood without a second matching unit. Use on telephone to understood without a second matching unit. Use on telephone to
prevent third party listening and bugging. 66 /set Ref $\mathrm{FNS9}$ prevent third party listening and bugging. £6/iset Rel FNS9.
PULSED TV JOKER PLANS Litte hand held device utilises pulse techniques that will completely dilsupt TV picture and sound! purks on FM tool DISCRETON ADVISED. $£ 8 /$ Set Ref $F I J 5$.
BODYHEAT TELESCOPE PLANS Highly directional tong range device uses recent technology to detect the presence of living bodies, warm and hotspots, heat leaks etc. Intended for security, law enforcement. research and development. etc. Excellent security
device or very interesting science project $£ 8 /$ set Ref $/$ F/BHT1
BURNING, CUTTING CO2 LASER PLANS Protis
BURNING, CUTTING CO2 LASER PLANS Proects an
invisible beam of heatcapable of burning and metting materials over invisible beam of heat capable of burning and metting materials over
a considerable distance. This laser is one of the most efficent. a considerable distance. This laser is one of the most efficient.
converting 10% inputpowerinto useful output. Notonly is this device converting 10% Inputpower Into useful output. Notonly is this device a workhorse in welding. cuttong and heatprocessing matenals buth
is also a likely candidate as an effective directed energy Deam is also a llkely candidate as an effective directed energy beam
weapon against missiles, aircraft. ground-to-ground, etc. Partlde weapon aganst missiles, aircraft. ground-to-ground, etc. Partlde
beams may very well utiize a lase of this type to blast a channel in the atmosphere for a high energy stream of neutrons or other particies. The device is easily applicabie to burning and etching wood, curting. plastics. texties etc $£ 12$ /set Ref F/LC7.
MYSTERY ANTI GRAVITY DEVICE PLANS Uses simple concept. Objects float in alr and move to the touch. Defes gravity. amazing gife conversation prece, magic tidid or science project. E6i set Ref FIANT1K
ULTRASO NIC BLASTER PLANS Laboratory source of sonic shock waves. Blaw holes in metal, produce 'cold' ste am, atomize liquides. Many cleaning uses for PC boards. jewllery, coins, small ULTRA HIG H GAIN AMPISTETHOSCOPICMIKESOUND AND VIBRATION DETECTOR PLANS UItrasensitive device enables one to hear a whole new wond of sounds. Listen through
walls, windows. floors etc. Many appllications shown, from law walls, windows. floors etc. Many appllcations shown, from law
enforcement, nature listening, medical hearteat, to mechanical enforcement, nature listening,
devices. $\mathbf{\Sigma 6 / \text { set Ref }}$ F/MGA7
ANTI DOG FORCE FIELD PLANS Highly effective circult produces time variable pulses of accoustical energy that dogs
cannot tolerate $£ 6 /$ set Ref F FOOG2 LASER BOUNCE LISTENER SYSTEM PLANS Allows you to hear sounds from a premises without galning access. E12/set Ref
LASER LIG HT SHOW PLANS Doil yourself plans show three methods. $£ 6$ Ref FתLLS1
PHASOR BLAST
PHASOR BLAST WAVE PISTOL SERIES PLANS Hannheld, has large transduc
controis. E6/set Ref F/PSP4
INFINTY TRANSMITER PLANS Telephone line grabber/ room monitor. The ulbmate in home/ofice securty and satety! simple to usel Call your home or office phone, push a secret tone on your telephone to access either: A) On premises sound and voces or B) Existing conversation whth break-In capability for emergency messages. $£ 7$ Ref FTELEGRAB.
BUG DETECTOR PLANS is that someone getung the goods on you? Easy to construct device locates any hidden source of radio
energy! Sniffs out and finds bugs and other sources of bothersome

WOLVERHAMPTON BRANCH NOW OREN AT WORCESTER ST WHIAMPTON TH1. 0190222039

\section*{| inter |
| :--- |
| BD1. |}

ELECTROMAGNETIC GUN PLANS Projects a metal object a considerable distance requires adult supervision $£ 5$ ref FIEML . ELECTRIC MAN PLANS, SHOCK PEOPLE WITH THE TOUCH OF YOUR HANDI £5/set Ref F/EMA1
PARABOLIC DISH MICROPHONE PLANS Listen to distant sounds and vaces. open windows. sound sources in 'hard to get or hostile premises. Uses satelitite technology to gather distant sounds and focus them to our ultra sensitive electronics Plans also show an and tocal wireless link system. $£ 3 /$ set ref $F / P M 5$
optor
2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARLABLE 100,000 VDC OUTPUT GENERATOR PLANS Operates on $9-12 \mathrm{Vdc}$, many possible experiments $£ 10$ RefF/HVM7/ TCL4.
INFINTTY TRANSMITTERS The ultimate 'bug' its to any phone or line, undetectable, listen to the conversations in the room from anywhere in the world! 24 hours a day 7 days a weekj just call the number and press a button on the mini controller (supplied) and you can hear everything! Monitor conversations for as long as you choose $£ 249$ each, complete with leads and mint comrolier! Ref LOT9. Undetectable with nomal RF detectors, fthed in seconds, no batteries required. lasts forever!
SWTCHED MODE PSU'S 244 watt, $+532 A+126 A_{1}-50.2 A$, 120.2 A There is also an optional 3.3 v 25 A rail avalable. $120 / 240 \mathrm{v}$ I/
P. Cased $175 \times 90 \times 145 \mathrm{~mm}$. IEC Inlet Sultable for PC use (6 d/dive P. Cased, $175 \times 90 \times 145 \mathrm{~mm}$, IEC inlet Suitable for PC use (6 d/dive VIDEO PROCESSOR UNTS?/6v 10AH BATTS/12V 8A TX Not too sure what the function of these units is but they certainly make good stripperst Measures $390 \times 320 \times 120 \mathrm{~mm}$, on the front are contris for scan speed, scan delay, scan mode, loads of connectors 12 v toroidial transformer (mains m). Conditon not known, may have 12 toroidilal transformer (mains in). Condititon not known, may
one or wo broken knobs due to poor storage. $£ 17.50$ ref VP2
One or wo broken knobs due to poor slorage. $£ 17.50$ ref VP2
RETRON NIGHT SIGHT Recognition of a slanding man at 300 m
in $1 / 4$ moonlight, hermatically sealed, runs on 2 AA Dattenes, 80 mm F1.5 lens, 20 mw infrared laser induded. $£ 325$ ref RETRON.
MINI FM TRANSM TTER KTT Very high gain preamp, supplied complete with FET electre1 microphone. Designed to cover 88-108 Mhz but easily changed to cover $63-130 \mathrm{Mhz}$. Works with a common gv (PP3) battery. 0.2W RF. EV7 Rel 1001.
3-30V POWER SU PP LY KT Variable, stablized power supply for lab use. Short circuitp rotected, suitable for profesional or amateur use 24v 3A transformer is needed to complete the kit. £14 Ref 1007 1 WATT FM TRANSMITTER KTT Supplied with piezo electric mic. $8-30 v a c$. At $25-3$ Qr you will get nearly 2 watts' $£ 12$ rel 1009 . FMIAM SCA N ER KIT Well not quite, you have to turn the knob your seif but you will hear things on this radio that you would not hear on an ordinary radio (even TV). Covers $50-160 \mathrm{mhz}$ on both AM and FM. Built in 5 watt amplifier, inc speaker, $£$ is ref 1013.
3 CHANNEL SOUND TO LIGHT KTT Wireless system, mains operated, separate sensitivity adjustment for each channel, $1,200 \mathrm{w}$ operated, separate sensitivity adustment for each cha
power handling, microphone included. $£ 14$ Ref 1014 .
WATT FM TRANSMITER KT Small Dut powerful FM
4 Power handing, microphone included. El4 Ref ransmitter, 3 RF stages, microphone and audio preamp included, £20 Rer 1028.
STROBE LIGHT KTT Adjustable from $1-60 \mathrm{hz}$ (a lot faster than conventional strobes). Mains operated. $£ 16$ Ref 1037.
COMBINATION LOCK KT 9 key, programmalie, complete with keypad, will switch $2 A$ mains. $9 v$ dc operation. $£ 10$ ref 1114 . PHONE BUG DETECTOR KIT This device w
ROBOT VOICE KTI Interesting arcuit that distorts your voicel adjustable, answerthe phone with a differentvoicel $12 \mathrm{vdc} £ 9$ ref 1131 TELEPHONE BUG KIT Small bug powered by the 'phone line, starts transmiting as soon as the phone is picked up! $\Sigma 8$ Rel 1135 .
3 CHANNEL LIGHT CHASER KIT 800 watts per channel, speed and direction controlssupplied with 12 LEDS (you can fit tracs instead to make bit mains. not supplied) $9-12$ vdc $£ 17$ ref 1026 . 12VFLOURESCENT LAMP DRNER KTLIGhtup 4 foot tubes rom your car battery! $9 v 2$ a transtomer also required. $£ 8$ ref 1069 . VOXSWTCH KTT Sound activated switchldeal formaking bugging tape recorders etc, adjustable sensitivity. £8 ref 1073.

Check out our WEB SITE
https//www.pavilion.co.uk/bull-electrical
PREAMP MIXER KTT 3 input mono mixer, sep bass and treble controls plus individual level controls, 18 vdc, Input sens 100 mA . £15
ref 1052. - Some op our products may ae unlicrensable in the us

BULL ELECTRICAL

IDH, $0,2 \%$ 203 500
$1.2 \times 01273,2377 \%$
E-mail bullopavilionco.uk

SOUNDEFFECTS GENERATOR KTT Produces sounds ranging from brd chips to sirens. Complete with speaker, add sound effects to your projects for just $£ 9$ ref 1045
16 WATT FM TRANSMITER (BUILT) 4 stage high power preamp required $12-18 v d c$. can use ground plane, yagl or open puaidy
HUMIDTY METER KIT Builds into a precision LCD numidity meter, 9 ic design, pcb, lod display and all components Included. E29
PC TMER KT Four channel output controlled by your PC, will switch high current mains with relays (supplied). Sofware supplied so you can program the channels to do what you want whenever you want. Minimum system configeration is 286 , VGA, $4.1,640 \mathrm{k}$, serial port, hard drive with min 100k free. £24.99
FM CORDLESSM ICROPHON E This unitis an FMbroadcasting station In minature, 3 transistor transmitter with electret condenser mic + fet amp design resultinm aximum se nsitivity and broad frequency response. $90-105 \mathrm{mhz}, 50-1500 \mathrm{hz}, 500$ foot range in open country! PP3 battery required. $£ 15.00$ ref 15P42A.
MAGNETIC MARBLES They have been around for a number of ears but still give nise to curiosity and amazement. A pack of 12 is just E3.99 ref GI/R20
NICKEL PLATING KTT Proffesional electroplating kit that will transform rusting parts into show pieces in 3 hours! Will plate onto steel, iron, bronze, gunmetal, copper, welded, silver soldered orb razed joints. Kitincludes enough to plate 1,000 sqinches. You will also need a 12 v supply, a container and 212 v light bulbs $£ 39.99$ ref NIK39. Minature adjustable timers, 4 pole c/o output 3A 240v, HY1230S, 12 VDC adjustable from $0-30$ secs. $£ 4.99$ HY1260M, 12 VDC adjustable from $0-60$ mins. $£ 4.99$ HY2405S, 240N adjustable from $0-5$ secs, £4.99 HY24060m, 240 v adjustable from 0.60 mins. $£ 6.99$ BUGGING TAPE RECORDER Small voice activated recorder ses mioro ca ssette complete with headphones. $£ 28.99$ reIMAR29P POWER SUPPLY fully cased with mains and of leads 17 v DC 900 mA output. Baigain price $£ 5.99$ rel MAG6P9
9y DC POWER SUPPLY Standard plugin type 150 ma 9 V DC with lead and DC power plug, price for two is E2.99 rel AUG3P4.
COMPOSTTE VIDEO KTT. Converts composite video into sepaate H sync, V sync, and video. 12v DC. $£ 8.00$ REF: MAGsP2. FUTURE PC POWER SUPPLIES These are $295 \times 135 \times 60 \mathrm{~mm}$ 4 dnve connectors 1 mother board connector. 150 watt, 12 V fan, iec nlet and on/off switch. £12 Ref EF6
VENUS FLY TRAP KIT Grow your ow n carnivorous plant with this
simple kit E3 ref EF34.
6"X12" AMORPHOUS SOLAR PANEL $12 \mathrm{v} 155 \times 310 \mathrm{~mm}$ 130 mA Bargaln price just $£ 5.99$ ea REF MAG6P 12.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ef MAG5P13 ideal for experimenters! 30 m for $£ 12.99$ ref MAG13P ROCK LIGHTS Unusual things these, two pieces of rock that glow when rubbed togetherl belived to cause rain!£3 a palr Ref EF29.
3' by 1' AMORP HOUS SOLAR PANELS $14.5 \mathrm{v}, 700 \mathrm{~mA}$ watts, aluminium frame, screw terminals. £44.95 ref MAG45.
ELECTRONIC ACCUPUNCTURE KIT Builds intoan electronic version Instead of needles! good to experiment with. £7 ref 7P30 SHOCKING COIL KTT Build thls litwe battery operated device into all sorts of things, also gets worms out of the ground! £7 ref 7P36. FLYING PARROTS Easily assembled kit that buids a parrot that actually flaps its wings and flies! 50 m range $£ 6$ ref EF2
HIGH POWER CATAPULTS Hinged arm brace for stability, tempered steel yoke, super strength latex power bands. Departure
speed of ammunitonis in excess of 200 miles per hour! Range of over speed of ammunitonis in excess of 200 miles per hour! Range of over 200 metres! $£ 7.99$ ref R/9.
BALLON MANUFACTURING KTT British made, small Dlob blowsinto alarge, longlasting balloon, hours offun! £3.99 ret GI/E99R 9-0-9V 4A TRANSFORMERS, chassis mount $£ 7$ ref LOT19A 2.5 KILOWATT INVERTERS, Packed with batteries ate but as they woigh about 100 kg CALLERS ONLYI £120. M EGA LED DISP LAYS Build your seff a clock or something with these mega 7 seg displays 55 mm high. 38 mm wide. 5 on a pco for just £4.99 ref LOT16 or à bumper pack of 50 displays for just $£ 29$ ref LOT17.

CLEARANCE SECTION, MINIMUM ORDER £15, NO TECHNICAL DETAILS AVAILABLE, NO RETURNS, TRADE WELCOME.
2000 RESISTORS ON A REEL (SAME VALUE) 99P REF BAR340 AT LEAST 200 CAPACTORS (SAME VALUE 99P REF BAR342 INFRA RED REMOTE CONTROLS JUST 99P REF BAR333 CIRCUTT BREAKERS, OUR CHOICE TOCLEAR 99P REFBAR335 WICROWAVE CONT ROL PANELS TO CLEAR E2 REF BAR 329 2 TUBES OF CHIPS(2 TYPES OUR CHOICE) 90P REF BAR305 LOTTERY PREDICTOR MACHINEI! JUST E1.50 REF BAR313 HELLALROVERELECTRIC HILAMP LEVELLERE2 REF BAR31 SINCLAIR C5 16" TYRES TO CLEAR AT JUST 75P REF BAR318 ARGE MAINS MOTORS (NFW)TOCLEARAT 75P REF BAR310 MODEMS ETC FOR STRIPPING $£ 2.50$ EACH REF BAR324 110 V LARGE MOTORS (NEW) TO CLEAR AT 50P REF BAR332 MODULATOR UNITS UNKNOWN SPEC JUST 50P REF BAR323 GX4000 GAMES COSOLES JUST E4 REF BAR320 SMART CASED MEMORY STORAGE DEVCE, LOADS OF BITS INSIDE, PCB, MOTOR, CASE ETC. BUMPER PACK OF 5 COMPLETE UNITS TO CLEAR AT E2 50(FOR 5) REF BAR 330. 2 CORE MAINS CABLE 2 M LENGTHSPACK OF 4 E1 REF BAR 33 PC USERIBASIC MANUALS, LOADS OF INFO. © 1 REF BAR30 PCB STRIPPERS TO CLEAR AT 2 FOR 99P REF BAR341
3 m 3CORE MAINS CABLE AND 13A PLUG. $60 P$ REF BAR325
WE BUY SURPLUS STOCK
FOR CASH
BUYERS DIRECT LINE 0802660377
FREE CATALOGUE
100 PAGE CATALOGUE NOW aVAlable, 45P STAMPS.

CLASSIFIED

ARTICLES FOR SALE

0

 SUPPLIER OF QUALITY USED TEST INSTRUMENTS

CONTACT

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 OEB, U.K.
Tel: (+44)01243545111/2 Fax: (+44)01243542457
CIRCIENO. 1.50 ONREPLYCARD

Consider

Your costs to continue to stock
UNWANTED SURPLUS . . . EXCESS . . . OBSOLETE STOCKS OF:
ELECTRONIC-ELECTRICAL COMPONENTS \& ACCESSORIES

K.B. Components,

21 Playle Chase, Gt. Totham, Maldon, Essex, CM9 8UT
Tel:- 01621893204 Fax:- 01621893180 Mobile:- 0802392745 REGISTER TO RECEIVE MONTHLY PUBLISHED STOCK LISTS AT NO CHARGE OF ALL EXISTING NEW, UNUSED, STOCKS OF ALL COMPONENTS AND ACCESSORIES.

HP59306A RELAY ACTUATOR, HP59313A A/D, HP59303A D/A, HP8750A, HP8709A HP8418A, IEEE leads, $£ 50$ each. Time Electronics current calibrator, $£ 150$. Tel: 01273 707346.

MINISTRY OF DEFENCE ASSISTANT TELECOMMUNICATIONS TECHNICAL OFFICER (ATTO)

Royal Air Force Sealand is Europe's premier electronic repair facility. We have vacancies for Assistant Telecommunications Technical Officers for permanent positions.
In addition to RAF Sealand based posts some successful candidates will need to spend time at RAF North Luffenham, Leics, on detached duty effective from their start date until'Autumn ' 97 to receive training before the work is transferred to Sealand
An ability to work at heights of 12 metres or more is a requirement, however, a short training course is available. Many of the North Luffenham jobs also involve regular duty travel both within Great Britain and abroad attracting the usual departmental allowances. The ATTO grade is part of the Defence Engineering and Science Group within the Ministry of Defence and is primarily concerned with aspects of repair and maintenance of aircraft avionics and electronics, and Ground Radio Support Services. OUALIEICATIONS
An EC approved Eng Tech qualification at Stage 1 in an appropriate electronics or telecommunications specialism or equivalent, plus 3 years recent relevant experience which may include a period of study/training.
or
BTEC/SCOTVET NC in Electronics or Telecommunications plus 3 years recent relevant experience which may include a period of study/training.
Selected aplicants will be required to take an aptitude test.
The aptitude test has been upgraded and previous applicants are welcome to re-apply
SALARY
The salary ranges from $£ 12,865$ pa to $£ 16,168$ pa with starting salary being determined by experience. The grade maximum is $£ 19,477$. The range between $£ 16,168$ and $£ 19,477$ must be attained through performance in the grade
GENERAL
The Civil Service is an Equal Opportunities Employer.
A 'No Smoking In Work Areas' policy is in force at RAF Sealand.
HOW TOAPPLY
For an application form and further details please send a large stamped addressed envelope to:
Manning and Recruitment/ATTO
No. 30 MU
RAF Sealand
Deeside
Flintshire CH5 2LS.
The last date for sending out application forms is 22 November, 1996

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity.

Prompt service and cash.
M \& B RADIO
86 Bishopgate Street Leeds LS1 4BB
Tel: 01132435649
Fax: 01132426881

WRNTMED
 TOP PRICES PAID

For all your Test Equipment, Receivers, Transmitters etc Factory Clearance, Prompt Service and Payment.

HTB ELEKTRONIK

Alter Apeler Weg 5
27619 Schiffdorf, Germany Tel: 004947067044
Fax: 004947067049

$\star \star$ WANTED $\star \star$

Test equipment, Electronic Scrap, Valves, Transmitters/Receivers, Factory \& Warehouse Clearance Confidentiality Assured.
TELFORD ELECTRONICS
Phone: 01952605451
Fax: 01952677978

ELECTRONICS ENGINEER

Qualified Engineer required, with proven design experience in HF \& VHF communications equipment, especially receivers. Ability to combine software and hardware expertise advantageous.
An exceptional opportunity for the selected candidate, who will be in at the start of a new venture, future prospects being limited only by the individual's success.
The candidate will push a product design from the ' A ' model through to production with minimal support, therefore a high level of commitment and expertise is required.
A generous salary commensurate with experience is available.
Location: Sussex

Please reply in writing to:

Box No. 300, Electronics World, Room L329, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

VALVES, and CRTs AVAILABLE

ONE MILLION VALVES stocked for Audio, Receiving, Transmitting \& RF Heating. Rare brands such as Mullard \& GEC available. Also MAGNETRONS, KLYSTRONS, CRTs and SOCKETS. Large stocks of Russian \& Sovtekitems.
Please ask for our free catalogues of valves or CRTs.

VALVES, etc. WANTED

Most types considered but especially KT88 (£48), PX4/PX25 (£50), KT66 (£35), KT77 (£15), EL34 (£10), EL37 (£9), ECC83 (£3). Valves must be UK manufacture to achieve prices mentioned. Also various valve-era equipment e.g. Garrard 301, (up to) $\mathbf{f} 80$. Ask for a free copy of our wanted List.
Whor

WE WANT TO BUY!!

$$
\begin{gathered}
\text { IN VIEW OF THE EXTREMELY } \\
\text { RAPID CHANGE TAKING PLACE } \\
\text { IN THE ELECTRONICS } \\
\text { INDUSTRY, LARGE QUANTITIES } \\
\text { OF COMPONENTS BECOME } \\
\text { REDUNDANT. WE ARE CASH } \\
\text { PURCHASERS OF SUCH } \\
\text { MATERIALS AND WOULD } \\
\text { APPRECIATE A TELEPHONE } \\
\text { CALL OR A LIST IF AVAILABLE. } \\
\text { WE PAY TOP PRICES AND } \\
\text { COLLECT. } \\
\text { R. HENSON LTD. } \\
\text { 21 Lodge Lane, N.Finchley, } \\
\text { London N12 8JG. } \\
5 \text { Mins, from Tally Ho Corner. } \\
\text { TELEPHONE } \\
\text { 0181-445-2713/0749 } \\
\text { FAX 0181-445-5702 }
\end{gathered}
$$

TEL $(+44) 0181-4223593 \cdot$ FAX $(+44)$ 0181-423 4009 YRS

DISTRIBUZIONE E ASSISTENZA, TTALY: TLC RADIO, ROMA (06) 87190254

ANRITSU MS420」 10 Hz -30MHz network/spectrum analyser £5000
AVCOM - portable, battery operated, to 1000 MHz
TEKTRONIX 4922 1GHz portable spectrum analyser, with options 1.2 and $3 £ 6500$ or $£ 7500$ with multiplexor and mixers to 40GHz
HP8711A $300 \mathrm{KHz}-1.3 \mathrm{GHz}$ network analyser
HP8753A vector network analyser, 3 GHz
HP8702B lightwave component analyser
(options $0056 / 011$) 6 GHz
HP8559A182T 21 GHz
HP8557A182T 350MHz
HP8590A 1.8 GHz portable, RS232 option
MARCONI INSTRUMENTS

2018 synthesized AM/FM signal generator $80 \mathrm{kHz}-520 \mathrm{MHz}$
2019 synthesized AM/FM signal gen 80 KHz -1040MHz 2305 modulation meter
$2828 \mathrm{~A} / 2829$ digital simulator/analyser
2955 radio communications test set
6460/6421 power meter \& sensor $10 \mathrm{MHz}-12.4 \mathrm{GHz}$ $65 x x$ waveguide detector for use with $6501 / 2$-scalar analysers
TF2910 TV interval timer

TEST EQUIPMENT

ADRET 740A synthesized signal generator 0.1-1120MHz $£ 2500$ ANRITSU MSA2OJ networkspectrum analyser $10 \mathrm{~Hz}-30 \mathrm{MHz} £ 500$ BRUEL\& KJAER 2307 level recorder $£ 1000$ BRUEL \& KJAER 2308 analogue X - Y pen recorder £1000 BRUEL \& KJAER 2308 analogue X-Y pen recorder £750 HASE LFR1000
$9 \mathrm{kHz}-150 \mathrm{kHz}$
$£ 1000$
DATRON 1061 \& 1061 A - various, digital multimeter \& 1065-call
from $£ 500$
DATRON 1065 digitial multimeter all ranges plus IEEE $£ 500$
FARNELL SSG2000 synthesized signal generator
$10 \mathrm{~Hz}-2000 \mathrm{MHz}$
$£ 2500$

3324A synthesized function generator 3324A synthesized function generator $33320 \mathrm{G} / 33322 \mathrm{G}$ programmable attenuators 4 GHz , with driver 11713 A

As above but 18 GHz set

3581C selective voltmeter
3779D primay multiplex analyser
379000 sinalling test $£ 5000$
37900 D signalling test set with $2 \times 37915 \mathrm{~A}$ interface cards $£ 5500$
$41408 \mathrm{DA} /$ meter, DC voltage source
4272A multi-frequency lcr meter
4358 microwave power meter, analogue
5386 A 3 GHz frequency cóunter
54100 A 1GHz digitizing osellloscope,
now inc $2 \times 1 \mathrm{GHz}$ active probes
54502 A digital oscilloscope $400 \mathrm{MHz} 400 \mathrm{MSa} / \mathrm{s}$ 8007B pulse generator 100 MHz
8018A serial data generator
8082A pulse generator 250 MHz
8111A pulse generator 20MHz
8146A optical todr, with options $2 / 3 /$ /plug-in 81465 SH (single-mode)
816 A slotted line $1.8-18 \mathrm{GHz}$ with $809 \mathrm{C} \& 447 \mathrm{~B}$ probe 8444A tracking generator with option 059 86222AN8620C $10 \mathrm{MHz}-2.4 \mathrm{GHz}$ sweep generator 87510A gain-phase analyser $100 \mathrm{kHz}-300 \mathrm{MHz}$ 8753A 3 GHz vector network analyser
J2215A FDOI portable multimode test set
J2219A 486-based, colour option main-frame
J2219AJJ2171A 486-based colour screne option network advisor
$£ 500$
$£ 1500$
£2000
£1000
$£ 2000$
$£ 1000$
£1500
E5000
$£ 4000$
£400
£1500
£2000
$£ 2500$
$\begin{array}{r}2950 \\ \mathbf{2} \\ \hline\end{array}$
£1000
$£ 2000$
£1250
$£ 8500$
$£ 500$
$£ 1000$
£2000
£6500
£7500
£1500
$£ 1000$
\qquad
SEND FOR LATEST STOCK LIST. WE FAX LISTS AND SHIP WORLDWIDE. ALL FULLY LAB-TESTED AND NO-QUIBELE GUARANTEED

CIRCIE NO. 154 ON REPLY CARD

ELECTRONIC UPDATE

Contact Malcolm Wells on 0181-652 3620

A regular advertising feature enabling readers to obtain more information on companies' products or services.

New Flight Electronics

 International Catalogue SetYou now have access to the world's latest: * Electronics Training Equipment - Microprocessor Training Equipment - Test and Measurement Equipment - PC Cards
via "Flight's" latest catalogue set. We are specialists in the provision of innovative top quality electronics trainers, breadboards, test and measurement, PC cards and microprocessor evaluation equipment.
Our extensive range covers every need, call today for your free catalogue set.
CIRCLE NO. 155 ON REPIY CARD

NEW Feedback T\&M Catalogue

The latest edition of the Feedback Test \& Measurement catalogue is now available. Over 60 pages packed with more than 800 products divided into over 20 sections. The catalogue is indexed for both product and manufacturer and is fully illustrated. Whether you are looking for an individual product, a complete workstation, or a solution to a particular Test \& Measurement need the NEW Feedback catalogue will sove your problems, send for a copy NOW!

CIRCLE NO. 157 ON REPIY CARD

LabVIEW 4.0 Brochure.

LabVIEW Graphical Programming for Instrumentation, illustrates how users can increase productivity and save money by using LabVIEW to build virtual Instrumentation systems. The brochure includes examples of realworld test and measurement, process monitoring and control applications developed with LabVIEW.
NATIONAL INSTRUMENTS, For your FREE brochure call 01635523545

CIRCLE NO. 1.56 ON REPLY CARD

NEW JENSEN TOOLS

 CATALOGUEColourful new Catalogue, hot off the press from Jensen Tools, presents unique new tool kits for service/support of
communications equipment. Also latest test equipment from many major manufacturers. Includes hard-to-find tools, PC/LAN diagnostics, bench acccessories, static control, technical manuals and more.
Ring 0800833246 or Fax 01604785573 for a free copy. Jensen Tools, 10-12 Ravens Way, Northampton NN3 9UD

State ofthe
aby family

- Programing cippor or ine entie Atmel $89 C$ and 895 miscocontroller fiantiles
- Also supports many Philipsithey. Dallas \& Stemens 8051 dervarivy
- Field programmabe hardw are zisule tuars device support
Order code: MP51.5YS $£ 125.00$

Products are now available from Farnell Components

Mierocontrollor in-circuit re-programming adaptor

Now you can re-program the entire Atmel microcontroller family in-circuit!
No more re-moving chips - ideal for 8051 single-chip project development.
Supplied with AT89C2051 and AT89C52 + 11.0592 MHz Crystal. (Requires Micro-Pro 51 programmer to operate - see above) Order code: AD-MICRO-ICR $£ 125.00$

Padkoge Adaptors

501C 20-pin adaptior Suitable for Atmei Argecto51 \& Argecz251 Ordee code: AD.SOIC20-A 875.00 Please enquire for our full range of adaptors

The World's Most Powerful, Portable Programmers

 other programmer and you'll see why it's the world's undisputed number one.

54 is capable of programming 8 and 16 -bit EPROMs, EEPROMs, PEROMs, 5 and 12V FLASH, Boot-Block FLASH, PICs, 8751 Microcontrollers and more. 54 also emulates ROM and RAM as standard!

54 is the only truly hand held programmer that ships complete with all emulation leads, organiser-style manual, AC charger, spare library ROM, both DOS and Windows terminal software, and arrives fully charged and ready to go! Who else offers you all this plus a three year guarantee?

Customer support is second to none The very latest programming library is always available free on the Internet, and on our dedicated bulletin boards. Customers NEVER pay for upgrades or technical support.

hotline 01300320719 VISN $\because B=0$
 嘘

Orders received by 4 pm will normally be despatched same day. Order today, get it tomorrow!

S4 GAL module

Programs a wide range of 20 and 24 pin logic devices from the major GAL vendors. Supports JEDEC files from all popular logic compilers.

NEW

The Dataman Challenge

Try the Dataman S4 or Dataman-48 without obligation for 30 days. If you do not agree that these are the most effective, most useful, most versalile additions you can make to your programming toolbox, we will refund your money in full.

Dataman-48

Our new Dataman-48 programmer adds PinSmart(8) technology to provide true no-adaptor programming right up to 48 -pin DIL devices. Dataman-48 connects straight to your PC's parallel port and works great with laptops. Coming complete with an integral world standard PSU, you can take this one-stop programming solution anywhere!

As with 54 , you get free software upgrades and technical support for life, so now you don't need to keep paying just to keep programming.

The current device library contains over 1800 of the most popular logic and memory devices including GALS, PALS, CEPALS, RALS, 8 and 16 bit EPROMs, EEPROMs, PEROMs, FLASH, BOOTBLOCK, BIPOLAR, MACH, FPGAS, PICs and many other Microcontrollers. We even include a 44 pin universal PLCC adaptor.

If you need to program different packaging styles, we stock adaptors for SOP, TSOP, QFP and SDIP. The Dataman-48 is also capable of emulation when used with memory emulation pods.

Order your Dataman programming solution today via our credit card hotline and receive it tomorrow. For more detailed information on these and other market leading programming products, call now ànd request your free copy of our new colour brochure.

[^0]: Overseas advertising agents: France and Belgium: Pierre Mussard, 18.20 Place de la Madeleine, Paris 75008 . United States of America: Ray Barnes, Reed Business Publishing Ltd, 475 Park Avenue South, 2nd Fl New York, NY 10016 Tel; (212) 6798888 Fax; (212) 6799455 USA mailing agents: Mercury Aifreight International $\mathrm{Itd} \operatorname{Inc}, 10$ (b) Englehard Ave, Avenel N 07001. 2nd class postage paid at Rahway N Postmaster. Send address changes to above.
 Printed by BPCC Magazines (Carlisle) Ltd, Newtown Trading Estate Carlisle. Cumbria, CA2 7NR
 Typeset by Wace Publication Imaging 2-4 Powerscrott Raad, Sidcup, Kent DAt 4 SDT,
 © Reed Business Publishing Ltd 1996 ISSN 09598332

[^1]: For details on any of our range of programmers, call or fax us now.
 You can obtain information immediately by using our faxback service or homepage.
 ICE Technology Ltd, Penistone Count, Penistone, South Yorkshire S30 6HG. United Kingdom
 Tel: +44 (0$) 1226767404$ Fax: +44 (0$) 1226370434$ Faxback: +44 (0) 1226761844 email: sales@icetech.com

