Solfd-stafe gyro - special. reader offer

Austria Asch. 65.00

Motional foodback headphones

New voltage multiplier

Selling the radio spectrum

Analogue pe interface Digits to speech chips

Low-loss rf coupler

Phono
preamplifier

Contents

730 MUSIC IN MIND

With headphones, when you turn your head, the sound source moves with you. Ian Hickman has been investigating a cure involving a low-cost gyroscope.

736 A-TO-D VIA THE COM PORT

Interfacing via the pc's COM port and accessible using simple Basic routines, David Gains' converter logs four sensors.

743 THE ROUTE TO PCB CAD

Rod Cooper complements his second set of pcb cad reviews - for Ranger2 and Electronics Workbench - with a discussion of standards and display limitations.

750 A-TO-D AND D-TO-A CONVERTER

Although simple, Yongping Xia's LPT analogue pc interface resolves to 12 bits.

754 THERMAL DYNAMICS IN AUDIO POWER

Douglas Self explains how to reduce power amplifier distortion via tighter bias accuracy.

758 A RATIONALISED PHONO PREAMPLIFIER

Simon Bateson's RIAA phono preamplifier is economical - yet offers benefits over existing designs.

760 HANDS-ON INTERNET

Cyril Bateman looks at 'mirrors', electronics design data and new ways to search old services on the Web.

763 HIGH DIRECTIVITY RF COUPLER

Paolo Antoniazzi has developed a method of producing couplers usable at gigahertz frequencies but made from standard low-cost fibreglass printed circuit.

769 FILTER VARIATIONS

Active filters are the subjects of many indepth discussions, but Ian Hickman believes that some important design aspects are frequently overlooked.

773 VIDEO INSERTER

Ian Polczynski discusses software required for the video time, date and text inserter.

781 HESITANT PRICING OF THE RADIO SPECTRUM

DTI's proposals for spectrum pricing promise large benefits to the UK economy - provided some traditional assumptions can be relinquished, reasons David Rudd.

786 APPLYING SPEECH STORAGE CHIPS

Colin Attenborough shows how easy it is to apply speech storage and playback chips using talking weighing scales as an example.

795 STEPPING OUT

Ian Hegglun's new voltage multiplier configuration promises higher efficiency and simpler implementations.

723 COMMENT
Testing time for EMC.
724 NEWS
Multi-level cell, Digital Ceefax, EMC down under, European CDMA, New CE guidelines, Drop in pay rises, MPEG-4, Linear radio, New FPGA tool for designers, JPEG 2000, Anti-terrorism identification chip.

727 RESEARCH NOTES

Gel for snorers, Darts in space, Gyroscope in orbit, Robot gardener, DSP helps understanding, Xenon ion rocket engine.

790 LETTERS

Questions and Answers, followed by Ball lightning, Crossover networks, Power amplifier thermal effects and more on p. 793.

This directional coupler works at gigahertz frequencies but is fabricated using standard fibreglass pcb - page 763.

Gyroscopes aboard the Gravily probe B mission could answer a ot of questions posed by Einstein's theories on gravity as a field - page 728.

Measuring 21.5 by 8.5 by 7.6 mm , the ENC-O5E gyroscope handles up to 50 changes in direction a second and a maximum angular velocity of $\pm 90^{\circ} / \mathrm{s}$. EW readers can buy one for around $£ 80$ - see page 734.

799 NEW PRODUCTS

Pick of the month - classified for convenience.

807 CIRCUIT IDEAS

12-bit current loop, Message module, Diac lamp flasher, FM communicator, Fund raiser. for such a comprehensive package"

Practical Wireless July 96

Quickroute 3.5 is a powerful, affordable and easy to use integrated schematic \& PCB design system for windows. With its multiple bution bars, ' tool tips' , and ' parts bin' Quickroute helps you to get working quickly and efficiently

Quickroute is available in 4 different versions (see Table) all of which offer great value for money. Quickroute is available with multi-sheet schematic capture, 1-8 layer auto-routing, copper fill, engineering change, and a range of popular file import/export features allowing connection to simulators and other software packages (details on request). Prices are Personal ($£ 68$), Designer ($£ 149$), PRO ($£ 249$) and PRO+($£ 399$). Please add P\&P and V.A.T to total (see below*).

SMARTRoute 1.0 is a new 32 bit auto-router that offers amazing flexibility \& power at an affordable price! Compatible with Windows $3.1 / 95 / \mathrm{NT}$, SMARTRoute gives you total control over routing strategies including layers used, track \& via sizes, design rules, etc.

SMARTRoute is completely compatible with Quickroute 3.5 and offers improved completion rates compared with Quickroute's built in autorouter (ask for details) SMARTRoute is available for £149 plus P\&P and V.A.T. Special bundle pricing for Quickroute and SMARTRoute when purchased logether.

VISUALISATION, DATA ANALYSIS \& APPLICATION DEVELOPMENT

EXPRESS

"The Engineering \& Scientific

Software People"

Quickroute Systems Ltd., 14 Ley Lane,
Marple Bridge, Stockport, SK6 5DD, U.K.

Tel/Fax 01614497101

WWW: www.quickroute.co.uk EMail: info@quicksys.demon.co.uk *Post \& Packing f 5 (UK), £ 8 (Europe), £ 12 (Word). Please add V.A.T to total
Prices and specifications subject to change without notice. All trade marks are acknowledged \& respected. All products sold subject to our standard terms \& conditions (available on requesit)

EDITOR

Martin Eccles
01816523128
EDITORIAL ASSISTANT
Mark Hefley
01816528638

CONSULTANTS

Jonathan Campbell
Philip Darrington
Frank Ogden

DESIGN

Alan Kerr
EDITORIAL ADMINISTRATION
Jackie Lowe
0181-6523614
E-MAIL ORDERS
jackie.lowe@rbp.co.uk

ADVERTISEMENT

MANAGER
Richard Napier
0181-6523620
dISPLAY SALES EXECUTIVE
Malcolm Wells
0181-6523620
ADVERTISING
PRODUCTION
0181-6523620
PUBLISHER
Mick Ellioit
EDitorial fax
0181-6528956
CLASSIFIED FAX
0181-652 8956
SUBSCRIPTION HOTLINE
01622778000
Quote ref INJ
SUBSCRIPTION QUERIES
01444445566
FAX 01444445447
IS5N 0959-8332
NEWSAGENT ENQUIRIES
Contact MarketForce
(UK) Lłd.
Telephone:
0171-261 5555
Fax: 0171-261 6106

Testing time for EMC

While most engineers would agree with Anthony Hopwood, Letters EW March, that there is too much pollution of the electromagnetic spectrum, the way that the European EMC laws have been drafted by our politicians is sure to stifle innovation at grass-roots level. What small company can risk such swingeing fines or what individual engineer can risk three months in prison? To a professional engineer this is comparatively more devastating than similar sentences presently being handed out to low-life rapists and muggers, so I am sure the attitude of many engineers and small firms will be 'why bother bringing a new product to the market place in Europe?'
I have never believed that membership of the EEC has been, per se, a good idea for UK industry. The theory that the UK would sink without EEC membership has never been proved. It must rank as one of the more nebulous political arguments promulgated by Euro-fanatics but despite this it is always trotted out on a regular basis to silence critics of the EEC as though it were irrefutable truth.

Any benefit from the EEC - if there has in fact been any - has been overshadowed by such dismal concepts as the Common Agricultural Policy and the monetary policy. Both of these have been disasters for the UK. Industry has also had an extra bureaucratic burden in the form of Value Added Tax - that most European of taxes. And now we have the EMC harmonisation laws. But if you think these were bad, wait until the Low Voltage Directive comes into effect on 1 January next year. I can see many small electronics firms just giving up when faced with both.
I expect that many of those small businessmen who voted us into the Common Market expecting to enjoy a free trade area are now wringing their hands at the never-ending avalanche of bureaucracy aimed at them from that very source.

These two pieces of legislation have all the hallmarks of having been put together by that fatal combination of big business, bureaucrats, and lawyers; fatal that is for entrepreneurs and innovation. Under this legislation, the outlook for any aspiring small electronics company in Europe is grim. The large multinational conglomerates probably had a large say in how the legislation was drafted and will not feel the pinch at all. They are sure to use the legislation against any small competitor if they attempt self-certification, but the only altemative to selfcertification is the high cost of third party certification.

I recently observed the demise of two projects due to the new EMC legislation. Due to both the cost and the uncertainty associated with complying with the new EMC regulations, the plug was pulled on these specialised short-run projects. It doesn't take much imagination to see that this will be happening to a greater or lesser extent all over Europe, with many of those useful electronic gadgets and devices produced by small firms - which oil the wheels in industry, commerce and the home - not being brought to market.
One reason why this legislation has been thrust upon the industry is that engineers have never organised themselves into a quasi-political pressure group in the way that other professionals like doctors, lawyers and those running Britain's newspapers and financial institutions have done. This could explain engineers' low status in society, relatively low pay and the almost total lack of political clout that could have prevented the present predicament with the EMC laws - a situation that shows every sign of persisting indefinitely. The professions mentioned above all have

"Common sense should have
dictated that the EMC problem be resolved in a different way..."
self-regulation in their chosen field of operations. If it were suggested that the heavy hand of the law were applied to them as it has been proposed often enough - there would be political uproar.
Even in the absence of such an engineering body to protest against such severe legislation, common sense should have dictated that the EMC problem should have been resolved in a different way from this big-stick approach. In particular, small companies and individual engineers should have been provided with an easier route to conformity. In their case, a type of test similar to the MoT test for cars, at a flat rate, and at govemment approved laboratories would be sufficient.
Such tests could be limited to interference emission only and the tests for EMI susceptibility could be omitted. A case could be made that EMI susceptibility tests are unnecessary, except in some obvious applications such as in aviation, where they may well be critical. In other areas, tests are unnecessary because at lower technical levels, market forces can sort out susceptibility offenders in the usual way. For example, hi-fi amps that are susceptible to EMI are soon picked out by reviewers in the hi-fi press. With an active consumer press - for example magazines such as Which? few products which do not work because of susceptibility to EMI can escape the glare of publicity.

We often hear the maxim that 'tall oaks from little acoms grow'. And we have all seen examples of that in the pc sector of the electronics industry very recently. It is obvious that no acom will grow in an unfavourable climate, so why have the people who are in control of the industrial climate in Europe created such hostile conditions for small electrical/electronics firms? At the root of this problem is, I believe, the almost total lack of understanding of the electronics industry by our politicians. They are in the curious position of looking enviously at the immense revenues generated by the electronics-based high-lech, relatively unregulated and bureaucracy-free tiger economies of the Far East, most of which sprouted comparatively recently from small beginnings, while at the same time putting another nail in the coffin of their own local small businesses.

How else can such oppressive pieces of legislation be explained?
Rod Cooper

Electronics World is published monthly. By post, current issue £2.35, back issues lif available $£ 2.50$. Orders, payments and general correspondence to L333, Elecironics World, Quadrant House, The Quadrant, Sufton, Surrey SM2 5AS. Tlx: 892984 REED BP G. Cheques should be made payable to Reed Business Publishing Group Newstrade: Distributed by Morkefforce (UK) Ltd, 247 Tattenham Court Road Landon WIP OAU $0171261-5108$.
Subscriptions: Quadrant Subscription Services, Oakfield House Perrymount Road, Hayward's Heath, Sussex RH16 3DH. Telephone 01444445566 . Please notify change of address. Subscription rates 1 year $£ 30$ UK 2 years $£ 48.003$ years $£ 70.00$. Surface mail 1 year $£ 35.002$ years $£ 56003$ years $£ 80.00$ Air mail Europe/Eu 1 year $£ 43.002$ years $£ 68.00$ ROW 1 year $£ 52.002$ years $£ 83.00$

[^0]
New memory technology holds more than one bit per cell

TThe first use of multi-level cell (MLC) technology - storing more than one bit on a memory cell - is likely to come in the form of a rom from NEC in the next few months. Early next year, SGS-Thomson expects to introduce a one-time programmable eprom based on the technology and, by mid-1997, Intel expects to have an MLC-based flash memory.
"We are developing a 64Mbit mask rom using multi-level technology for a games cartridge," Dr Hajime Sasaki, senior executive vice-president of NEC told $E W$, "the price target for a games cartridge is very tough; by using multi-level you can reduce the chip size. We already have
a prototype and we are discussing it with customers." NEC's MLC technology stores two bits of memory on one cell, which in the case of a rom is made up of a single transistor.
SGS' implementation of MLC technology also uses two bits per cell. "A test vehicle has been made at Bologna University and the first product, a multi-level one time programmable eprom, will be laid out in Q4 this year", said SGS' Tony Watts. "First silicon is expected in Q1 1997."

MLC technology has been pursued by the Big Three flash suppliers Intel, AMD and Fujitsu - as a way of increasing density without reducing process geometries. Intel demon-
strated MLC-based flash at this year's International Solid State Circuits Conference (ISSCC) and, according to Anne Hall of Intel, an MLC-based product will be introduced in the first half of next year. Samsung also demonstrated MLC at the ISSCC - a 128 Mbit , two bit-percell, memory made on a 0.4 micron process.
Peter Heinrich at AMD said MLC was some years away for them. Asked if NEC was considering using multi-level technology for flash, Sasaki laughed, replying: "It's difficult enough, for the moment, making ordinary flash."
David Manners,
Electronics Weekly

BBC sends Ceefax via digital radio

A
non-interactive Internet-style information service is being broadcast to radios in the UK. The BBC is transmitting Ceefax information in HTML format over its digital audio broadcast (DAB) network.
Glyn Jones, the BBC's DAB project director, said: "We are calling the experimental transmissions BBC Digital Text, but will probably think up a snappier if we provide the service long term."

The transmission illustrates two points. Jones said: "It shows that HTML, which is universally recognised and requires no expensive licensing, can be used with DAB. It also proved we can transfer data from the Ceefax data base fully automatically through to the

DAB multiplex, making broader use of our Ceefax information gathering capability.
Part of Jones' brief is to explore the possibilities of DAB. "We have also tried transmitting live RDS-type data along with programmes. This kind of service might be used to provide the 'story so far' if you switched on the radio mid-way through a play," continued Jones.
While the Ceefax information transmission is designed to be displayed on pes linked to DAB receivers, at least one potential receiver manufacturer is thinking of incorporating a graphics display. Jones said: "DAB radios could display photographs and graphics along side station names and music titles."

A motorcycle simulator system from Virtuality is the first product to be EMC pre-compliance tested using Chloride Powerline's free service. Dr Paul Sheppard, Virtuality's senior engineering manager, said: "Powerline's free service was very useful as it allowed us to ensure that the simulator hardware would pass its formal EMC compliance at an approved laboratory." The simulator allows learner riders to experience dangerous situations without the worry of crashing a real bike.

New guidelines clear CE confusion

Confusion that exists in the CE-marking of power supplies is being addressed with the issue of new guidelines for manufacturers.
The guidelines have been drawn up by a working party of the European Power Supply Manufacturers Association (EPSMA)
EPSMA Chairman Mr Jan Tipps said: "Our objective in drawing up these guidelines was to clear up the confusion surrounding the interpretation of the regulations as far as the power supply is concerned."
The guidelines summarise the following: what a CE mark is; and how the low voltage and EMC directives apply to both stand alone and component supplies. The EPSMA represents 28 European manufacturers responsible for the sales of $\$ 1.3 \mathrm{bn}$ worth of power supplies into the European market.

EMC checks down under

Our friends down under are soon to experience the joys of Euro-style EMC regulations, with a vengeance.
Based on the European EMC directive, the new Australian system will initially cover emissions only. New products must comply from 1 January 1997, older products from the start of 1999.
Even low-volume manufacturers, originally excluded from the regulations, will now have to comply.
Unlike in Europe, where the issue of enforcement is yet to be fully resolved, compliance documentation in Australia will be audited on a random basis.
The Australians' no-nonsense approach is typified by its Spectrum Management Agency, overseer of complaints of interference, which has said it will investigate any bona fide complaints received.

'Independence Day' for MPEG-4 standard

The latest multimedia hardware standard, known as MPEG-4, moved a step closer to commercial products with new component standards agreed at a meeting in Finland last month.
MPEG-4 is being developed to enable the efficient communication of, and interaction with, audio and video objects.
Paul Fellows, a project manager at SGS-Thomson involved in MPEG4

JPEG 2000 proposed

|PEG 2000, a new still image comJpression standard, is being proposed by the Joint Photographic Expert Group (JPEG) and the Joint Bi-level Image Experts Group (JBIG).
The intention is to improve on the current JPEG standard in several areas, including low bit-rate and bi-level (text) encoding performance.
JPEG is said to introduce unacceptable subjective distortion of detailed grey-level images at low bit-rates (less than 0.25 bpp). It is also optimised for natural images, and does not perform well on bi-level and computer generated images. This poor performance has precluded the widespread acceptance of JPEG for use on compound documents.
In addition, JPEG 2000 will offer both lossy and loss-less compression, and feature a single decompression architecture (JPEG has 44 decompression modes, many of which are application specific).
Moves are also afoot to provide the coding tool, or tools, for JPEG 2000 compression with an interface to those proposed for use in MPEG4 video encoding.
JPEG 2000 will remove JPEG's 64,000 by 64,000 pixel limitation without tiling.
development work, said: "The encoding and decoding of various shaped video objects has already been demonstrated in MPEG-4. Now it's just a case of refining the techniques used."
According to Fellows, the standard is still on course for ratification in November 1998.
The scope of the new standard means that whereas MPEG-2 was concerned with the delivery of TV to enable more channels or reduce cost, MPEG-4 reflects the advent of multiple, separate audio and video 'objects'. Fellows cited 'virtual' TV studios and films such as 'Independence Day' as examples of what is being done at present with composited objects. The current MPEG-4 work includes the
development of verification models (VMs) for video, audio and the systems and description language. Currently over 150 contributions to the video VM are being evaluated
The audio group is investigating an audio standard which is nonbackward compatible to MPEG-2's audio standard. It uses multiple channels and offers comparable quality at a lesser bit rate. Meanwhile, the systems group is working on the definition of how the various objects are to be multiplex into a single bit-stream. The group is also defining the various Application Program Interfaces (APIs) for the various decoding and composition tools.

Ambulances to test linear radio

Thhe National Health Service (NHS) is to test a new 5 kHz narrow band, linear modulation, radio system for its ambulances, to replace an existing fm system before the introduction of Tetra digital systems.
The system, based on products from Securicor Linear Modulation, will replace its traditional 2.5 kHz fm system in a trial in Kent.
John Burnside, chief executive of Kent Ambulance, said: "We are faced with a pressing need to replace our current radio system. In the period prior to Tetra digital systems coming on-stream, LM is claimed to offer a number of potentially useful advantages in both spectral efficiency and data transmission."
Richard Percy, a spokesman for Securicor, said: "The linear modulation technique was developed at the Bath University. It uses dsp for modulation and demodulation, relying on an "invisible tone" introduced by the transmitter to act as a reference for the receiver." Securicor has licensed the technology through the British Technology Group.
Data relies on a variable rate modem at up to $9.6 \mathrm{Kbit} / \mathrm{s}$. Dependent on the outcome of the trial, LM may be allowed to go forward as a technology option for ambulance trusts currently procuring radio services under the government's Private Finance Initiative.

Euro trial for CDMA

Anti-terrorism ID chip from Micron In an effort to combat terrorism, Micron Technology has introduced a new chip designed to be used as an identification device on shipping containers or luggage. Dubbed MicroStamp, the postage stamp sized chip, includes radio telemetry, processing and memory functions. The emitted signal can be detected within a range of three metres by an electronic scanner. Along with replacing bar codes, the company believes that the chip can be used to help combat terrorism through its ability track packages throughout their journey.
Sources state that Micron has been awarded a research contract by the Federal Aviation Administration involving the use of
MicroStamp in the development of a luggage security system.

Drop in pay rises

Pay rises are at an 18 month low in the engineering industry according to the Engineering Employers' Federation (EEF).
The EEF's July Pay Bulletin analysed 449 company's settlements, with a June average of 3.11%.
Pay settlements are continuing to fall, with 85% of rises at 4% or less and 44% of companies offering 3% or less.

New FPGA aimed at designers

 A new field programmable gate array (fpga) synthesis tool from Exemplar Logic aims to convince designers to move from schematic capture to VHDL design entry. Dubbed VHDL Discovery, the new tool is a simplified version of the company's Galileo software. Priced at $\$ 4,000$, the software can be updated to either Galileo or Leonardo, adding simulation, timing verification other features.
HART AUDIO KITS - YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

Hart Aucio Kits and tactory assembleo unils use the unique combination of circuit designs by the renowned John Linsley Hood, the very best audiophile components. and our own engineering expertise, to give you unbeatable performance and unbelievable value for money. We have always led the fieid for easy home construction to protes-
sional standards, even in the sixties we were using easily assembled Slonal slandards, even in the sixties we were using easily assembled printed circuits when Heathkit in America were still using tagboardst.
Many years of experience and innovation, going back to the early Many years of experience and innovation, going back to the early
Dinscale and Balley classics gives us incomparable design backDins aate and Batey classics gives us incomparable design background in te needs or the nome constructior. This simply means that that not only saves you money but you will be proud to own.
Why not buy the reprints and construction manual tor the kit you are interested in to see how easy it is to buld your own equipment the HART way. The FULL cost can be credted against your subsequent purchase.
K1100 AUDIO DESIGN 80 WATT POWER AMPLIFIER.

This fantastic John Linsley Hooc designed amplifer is the llagship of our range, and the ideal powerhouse for your utimate hiff system. This kit is your way to get uik petformance at bargain basement prices. Unique design ieatures such as clanty and rransparency of sound. allied to the tamous HART quality of components and ease of construction.
Useful options are a stereo LEO power meter and a versatile passive
front end giving swithed inputs, with ALPS precision Blue velvet front end giving switched inputs, with ALPS precision Blue Velvet low-nolse volume and balance coniris. Construction is very simien is preterminated, ready tor instant use!. All versions are available with is preterminated. ready lor nsiant use.! Acters supser Audiophile components at $£ 29.60$ extra per channel, plus ur. 40 it you want to include Gold Plated speaker terminals.
K1 100 B Complete STANDARD Amplifier Kit...
Al1008 Factory Assembled..
K 1100 SC Complete SLAVE Ampifier Kin..
A1100SC Factory Assembled.
K 1100 M Compiete MONOBLOC Ampifier Kn.
A1100M Factory Assembled.
$\underset{.}{.} \mathbf{.} 3959.21$
ᄃ333.62
. 5422.62
RLL11 Reprints of latest Amplifer articles.

"CHIARA" SINGLE ENDED CLASS "A" HEADPHONE AMPLIFIER.

> Wis unt provides a high quality headphone output for 'stand alone' se or to supplement those many power amplifiers that do not have a headphone facility. Easily installed with special link-through feature the unit draws its power from our new Andante Ulitra High Quality linear torordal supply. Housed in the neat, black finished. Hart minibox it features the wide frequency response. low-distortion and 'musicality' that one associates with designs from the renowned John Linsley Hood. Pre-terminated interconnecting leads and PCB mounfed sockvisual indication of supply line integnity. Volume and balance controls "re Aps "Blue Velvet" components Very easily buit even by beginners, since alf components fit directly on the single printed circuit board. The kit has very detalled instructions, and even comes with a complementary roll of Hart audiograde silver solder. It can also be supplied factory assembled and tested. Selling for less than the total cost of all the components, if they were bought separately, this unit represents incredible value for money and makes an attractive and harmonious addition to any hifi system. $\$ 2100$ Complete Kit.
> components.
> componenis
> K2100SA Series Audiophule version, factory Assemble "Andante" Power Supply Kit to suit "Chiara" A3565 Power Supply, Factory Assembled. CM2100 Construction Manual.
> SPECIAL OFFER. Both units logether. Kit Form Factory Assembled and Tested.

"Andante" SERIES 20VA AUDIOPHILE POWER SUPPLIES

Specially designed for exacting audio use requiring absolute mmimum noise, low hum field and total freedom from mechanical noise this unit is a logical development from our highly successful 1550
Utilising Inear technology throughout for smoothness and musicality makes it the perfect partner for any module requiring fully stabilised $\pm 15 \mathrm{v}$ supplies.
Two versions are available. K3550 has $2 \pm 15 \mathrm{v}$ supplies and a single 15 v for relays etc. and can be used with our K1400 preamp and our K1450 RIAA pickup preamp, as well as other useful modules soon to be introduced. The K3565 is identical in appearance but only has the $\pm 15 \mathrm{v}$ lighter current supply for use with the K1450 RiAA plckup pre
amplifier or "Crlara" headphone amplifier. K 3550 Full Supply with all outputs. K3565 Power Supply for K1450 \& K2100.

ALPS "Blue Velvet" PRECISION AUDIO CONTROLS.

Now you can throw out those noisy ill-matched carbon pots and replace with the famous Hart exclusive ALPS 'Blue Veivet' range components only used selectively in the very top flight of World class ampififiers. The improvement in track accuracy and matching really is incredible giving better tonal balance between channels and rock solid image stability. Motonsed verslons have 5 vDC motor MANUAL POTENTIOMETERS
2-Gang 100K Lin.
£15.67
2-Gang 10K, 50 K or 100 K Log
\&16.40
2-Gang 10K Special Batance, zero crosstakk and zero
MOTORISED POTENTIOMETERS
2-Gang 20K Log Volumte Control
2-Gang 10K RD Special Balance, zero crosstalk and less than 10%
loss in centre position.. 26.98 E26.98

JOHN LINSLEY HOOD SINGLE ENDED CLASS 'A' POWER AMPLIFIER

This amplifier represents an extremely novet concept in that it has

 been developed from a design in an earlier part of the evolutionary cycle, to meet the needs of modern users who want the warmh and purity of sound given by valve amplifiers from the vintage years without the problems of cost,with trying to use valves today.
It employs the newly re-discovered single-ended circuit contiguration to give total freedom from crossover artifacts and to give a sound that is indistingushable from the farmous 'Williamson' design, the undisputed leader of the field, with its trode connected KT66s and alltrlode drivers.
The new circuit, described in the September 1996 issue of Eleclonics and Wireless World, the same magazine that published the Williamson desilgn back in 1947, it itself a development of an earlier 10 wat design by he Author. The new version relains me basic simplicny increased power rating of 15 W RMS per chánnel.
Hart have developed a completely new and highty sophis licated kit incorporating all the important options, within a very tugh quality 30 high 19^{*} rack mountable case.
Please ask for you free copy of our list which gives full details.

> Our List of these and many other Kits $\&$ Components is FREE in UK. Ask for your copy now. Overseas customers are very welcome, but PLEASE send $\mathbf{2}$ IRCs if you want a list sent surface post, or 5 lor Aumait. Ordering is easy. Simply write, telephone or tax your order anytime. Let us know what you require, with your name address, cheque of credit card number and expiry date. Your daytire phone number is usefut in case we need to get back to you. Futher information on all ourkitw is given in our fREE lists. Overseas/trade orders are welcome and we can send anywhere in the World. Post on UK Orders up to E25 is $£ 1.50$. over $£ 25-£ 4.50$. Express Courier $£ 10$. OVERSEAS postage-please enquire.

VALVE \& EARLY CLASSIC BOOKS

THE VTL BOOK David Manley BKVT1....................
LOUDSPEAKERS; THE WHY AND HOW OF GOOD REPRODUC. LIONSEAKERS; THE WHY AND HOW OF GOOD REPRODCMULLARD TUBE CIRCUITS FOR AUDIO AMPLIFIERS BKAA. 27
"THE WILLIAMSON AMPLIFIER." 0-9624-1918-4 AN APPROACH TO AUDIO FREQUENCY AMPLIFIER DESIGN. GEC 1957. 1-882580-05-2
AUDIO ANTHOLOGIES, articles from Audio Engineerlig. Six voumes covering the days when audio wasyoung and valves were king! BKAA3/1 to 6. Al $£ 13.95$ each A SIMPLE CLASS A AMPLIFIER" J.L.Linsiey Hood M.I.E.E. 1969. Postage on all books, unless starred, is only ul 1.50 per book, maxımum ù 4.50 for any number, any sizel Starred items are heavy books costing
No waitingl. All listed books are normally in stock!. SPECIAL OFFER. All book orders over $£ 15$ will recetve a FREE John Unsley Hood monograph entitled "Dignal versus Analogue, Black Dlsks or Silver?"

SPECIAL OFFER

 PRECISION Triple Purpose TEST CASSETTE TC1D.Aey iniple purpose test cassette checks thethree most important tape parameters without test equipment. Ideal when fitting new heads. A protessional quality, digitally mastered test tape at a pnce anyone

HC80 Replacement Stereo Cassette Head.

excelent performance of modern cassette recorders depends totally on the quality of the R/P head. Even the stightest amount of wear can impair the frequency response and distortion levels. Our
HCBO Japan, easily fitted to most standard stereo recorders (except Sony) and will transform the pertormance over a worn head. Onty the fact that we buy these in vast quantities enables us to offer them at the amazing prce of only $£ 11.70$ each or 2 for $£ 17.60$ We also stock a range of other heads, including ${ }^{\top}$ reel-to-reel stereo heads.

SOLDERING

The size of madern components makes ine right soldering equipment essential lor good results. Everthing we offer we actually use in our own workshops! See our Lists for the full range. 845-820 XS240 ANTEX 240v 25w Soldering Iron. This is the ideal Multi-purpose iron as the bit is designed to totally surround the element giving the best small trandter. Wis oxcellent design also means hat although it is is better than larger rons of conventional construction Excollent is oetter than larger trons of conventional construction. Excellent $845-080$ ST4 Lightweight Soldering Iron Sland. This has provision for the classic damp sponge for bit wiping................................83.95

HART SUPER AUDIOGRADE SILVER SOLDËR.

Hart Super Audiograde Silver Solder has been specially formulated for the serious audiophile. Not only does it give beautitul easy-to-make oints but it is designed to melt at normal soldering temperatures avoiding the possibility of thermal damage to components or the need or special high temperature irons. A very low residue flux makes per ect joints easy but eliminates the need for board cleaning after

845-007 3mers 22SWG in Har Mini Tube
. 83.90
845-007 3mitrs 22SWG in Han Mini Tube £12.90 $845-009100 \mathrm{~g}$. Precision PCB Grade, 22swg $845-110100 \mathrm{~g}$
easy working Reel Superfine 24 swg for ultra

ALL PRICES INCLUDE
UK/EC VAT

RESEARCH NOTES

Jonathan Campbell

Gel helps take the pressure off snorers

Development of a new optical fibre transducer could mean good news for serious snorers. Researchers at Leicester University who have designed the probe hope that the transducer will be used to provide valuable feedback on the pressure profile in the upper airways. The fibre transducer is able to measure pressure at various sites in the airway simultaneously. It could indicate if the snoring is a result of the potentially serious obstructive sleep apnoea syndrome, osas.
Many of us snore at one time or another, with little harmful effect except to the sanity of our partners. But for some, the snoring is a result of the involuntary occlusion of the airway that occurs in osas, where breathing stops for ten or more seconds. Periodic hypoxaemia and sleep fragmentation are the result.
The problem for doctors is that the condition is only apparent when we are asleep, when our muscles including those of the upper airway relax. During respiration, the ensuing
negative gauge pressure causes the airway to collapse. Then the patient awakens momentarily, tone returns to the muscles and the obstruction is overcome. The airway may be collapsing at the palate, behind the tongue or at both sides. Unfortunately, successful treatment demands that the site of the obstruction must be identified reliably.

This has been the impetus behind the work of Paul Goodyear and colleagues who have developed a seven transducer system within a single 3 mm diameter catheter, allowing measurements to be taken at selected points along the airway ("The design of an optical fibre pressure transducer for use in the upper airways," IEE Transaction of Biomedical Engineering, Vol 43, No 6, pp. 601-606) .
Each transducer is less than Imm in diameter, and consists of one emitting and two receiving fibres. The second receiving fibre sits in a slightly different location and at a different distance from the transduction element,

so that when the transducer is bent on its progress through the airway, the second fibre will be available as a reference to determine signal loss.

But the real breakthrough in the design of the miniature transducer has been in development of a replacement of the normal rigid diaphragm which would be too brittle at these diameters. Here the team has used a gel coated with reflective titanium dioxide. In response to pressure changes, the meniscus deforms and modulates the intensity of light reflected back into the optical fibre system.
Contact Paul Goodyear at the Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH or email at pdg@leicester.ac.uk

Three-fibre

 pressure transducer designed to overcome amplitude modulation problems caused by optical fibre micro-bending.The reflective surface is a coated silicone gel.

Darts in space: You're floating around with your other astro-buddies twiddling your thumbs and gently bumping around inside the confines of the multi-million rouble 'tin can' (© David Bowie) that is the Mir space station. "How about a nice game of darts?"

As unlikely as it might seem, darts is very much on the approved list of activities, as part of an experiment designed by engineers at MIT to produce a better understanding of how crew members physically affect their environment. The data could save millions in the design of future space structures like the scheduled international space station.
Currently there is very little data on the forces astronauts exert on spaceships, so engineers must over-design the racks housing sensitive experiments that could be disturbed by astronauts' movements.

As part of the experiment, the researchers will videotape crew members playing darts to study how they adapt to zero gravity. With the help of four cameras, scientists back on Earth will be able to trace out the entire arm motion to obtain three-dimensional data. The plan is to have the Mir travellers perform the experiment as soon as possible after they arrive on Mir, then at the middle and end of their time there, to show how they adapt to their new environment.

As part of the same study, data will also be collected on the forces applied as the crew uses specially instrumented footloops, a handhold, and a push-off pad to get around or anchor themselves.

Back in 1994, aboard the Space Shuttle Columbia, related experiments yielded the first data on the forces associated with astronauts' everyday activities, and showed that previous estimates of those forces were off by an order of magnitude. That study showed each astronaut had an average force value of 28 N , while for the spacestation models, 800 N was being used for crew input, based on experiments in the 1970s with astronauts aboard Spacelab. Those studies, however, represented the 'extreme', with astronauts 'pushing off one wall and soaring to another wall as fast as they could',

Has anyone seen my dart? MIT have put game into space to see how space travellers aboard the Mir space station react to weightlessness.
according to MIT.
But as anyone who has ever tottered up to the ockey in their local on a Friday night with a beer in one hand and a dart in the other will know, such behaviour is anything but extreme.

Gyroscopes that could put Einstein in a spin

Gyroscopes built to provide a reference system a million times better than the best inertial navigation gyroscopes currently available are at the heart of a space mission to be launched in year 2000 that could lead to a rethink of our understanding of time and space. Researchers at Stanford University are working with scientists at NASA on the project which some physicists believe could lead to a possible rewriting of Einstein's General Theory of Relativity.

The gyroscopes, part of the gravity probe B project, are designed to be so free from disturbance that they can provide an almost perfect space-time reference system. As such, scientists hope they will be able to measure how space and time are warped by the presence of the Earth, and how the Earth's rotation drags space-time around with it.
Calculations suggest that a gyroscope in polar orbit at 400 miles should turn with the Earth through an angle amounting after one year to 42 milliarc-seconds. Up to now this vitally important framedragging effect has never been seen. But gravity probe B should be able to measure it to a precision of 1% or better.
A second, much larger change in spin direction is the geodetic effect, following from the gyroscope's motion through the space-time curvature. For a gyroscope, the predicted effect is a rotation in the orbit-plane of 6600 milliarc-seconds per year - quite a large angle by relativistic standards. Gravity probe B will measure the change to 1 part in 10,000 or better, the most precise qualitative check yet of any effect predicted by general relativity.
The Stanford team explains that the experiment itself will comprise four gyroscopes and a reference telescope sighted on Rigel, a binary star in Orion. In polar orbit, with the gyro spin directions also pointing toward Rigel, the frame-dragging and geodetic effects come out at right angles, each gyroscope measuring both.
To be able to make the measurement, the gyroscopes must provide a reference system stable to $10-11^{\circ} /$ hour. Fortunately, two factors space and near zero temperature - help to make the problem slightly less impossible.
Electrically suspended gyroscopes have long been among the best inertial navigation instruments but ordinarily their performance is limited by support forces. Space, enhanced by 'drag-free control', allows the support to be reduced almost to nothing. Low temperature operation greatly improves the mechanical stability of the instrument; and it also brings means of shielding the gyroscopes against non-

Gyroscopes aboard the Gravity probe B mission could answer a lot of questions posed by Einstein's theories on gravity as a field.
gravitational disturbances and of reading their directions of spin.
The complete Gravity Probe B instrument is made of a core of fused quartz 530 mm long, bonded to a quartz telescope and containing the four gyroscopes plus the drag-free proof mass.
The gravity probe B Mission is planned for launch aboard a Delta II rocket from Vandenberg Air Force Base in October 2000.

- Information on the gravity probe-B mission, a great deal of interesting background on relativity and Einstein, can be found on the Internet World Wide Web at
http://stugyro.stanford.edu/RELATIVITY/GPB/GPB.html

Weeds get the robot treatment

How do you tell a plant from a weed? It's sometimes difficult for the ordinary person (and impossible for the Research Notes office gardener). So how do you lay down the rules to enable a robot to make that distinction? R Brivot and J A Marchant at the Silsoe Research Institute think they have found the answer, and hope they have the basis of a robot that can move along lines of plants, selectively picking out the weeds to spray them with chemicals.
Motivation for the work is the huge amount of chemicals currently used in crop protection programmes, and pressure from consumers and environmentalists to make reductions. Using a robot sprayer to put the chemicals only and precisely where they are needed could help achieve that goal.
But first the robot has to be able to
see the difference between the weed and plant. Brivot and Marchant have developed an infrared-based system that, under the right conditions, is showing good results ("Segmentation of plants and weed for a precision crop protection robot using infrared images", R Brivot and J A Marchant, IEE Proc Vis Image Signal Process, Vol 143, No 2, pp. 118-124).
The system relies on a high resolution sensor in the form of a ced camera, permitting the use of grey-level distribution of the infrared images as well as texture information. The camera is fitted with a near-infra-red filter and is linked to a data acquisition system which stores 256×256 pixel image sequences.
Key to successful discrimination is the strength of the algorithms used to process the images and these are based on a number of hypotheses - for
example plants are defined by single blobs which do not touch each other. Most of the time the grey level distribution is sufficient for discriminating plants and weeds (and certainly good enough for discriminating plants and soil). But where it isn't, texture information can be used, because the grey-level surface of the plants is more constant than the weeds and the plants appear brighter than their centres.
Results so far show a 92% correct classification with "good" images and up to 72% with "bad" images. The processing can be carried out in realtime too as most of the algorithms do not need a knowledge of the whole image so multiprocessors can be used.
Unfortunately, there is some way to go yet before a robot can be built to keep the Research Notes garden free of weeds - and in that case it would need
to be fitted with a flame thrower rather than a chemical spray. For instance, the Silsoe study was carried out on the specific problem of tending cauliflowers transplanted from greenhouses into lines in a weed-free bed. The plants are nearly always bigger than the weeds, but the situation does reflect commercial practice. The work was also carried out in diffuse lighting conditions rather than direct sunlight. Even so, with 23,000 tonnes of chemicals used for treating crops last year, the incentives for continuing with the work are high.
More information from Biotechnology and Biological Sciences Research Council, Silso Research Institute, Wiest Park, Silsoe, Bedford MK45 4HS, UK.

Rocket engine shows promise

Tests on the prototype of NASA's xenon ion engine, which fires electrically-charged atoms from its thruster, are reportedly progressing well at the Jet Propulsion Laboratory, Pasadena, California. Once validated by the test, a similar engine will power the first New Millennium mission, called Deep Space-1, to an asteroid and a comet in 1998. The comet will be West-Kohoutek-Ikemura and the asteroid will be McAuliffe, named after the school teacher Christa McAuliffe who died in the Challenger accident.
In space, the 300 mm diameter engine will use xenon gas as fuel and be powered by more than 2000 watts from large solar arrays provided by the Ballistic Missile Defence Organisation. The actual thrust comes from accelerating and expelling the positively-charged ions. The thrusting action is similar to that of chemical propellant engines which expel burning gases, except that such engines can produce up to millions of pounds of thrust.
The roaring engines in rockets that lift the Space Shuttle quickly lift the Shuttle to more than $17,000 \mathrm{mile} / \mathrm{h}$. An ion engine, however, starts with only about 20-thousandths of a pound of thrust and there is no roar, just an eerie blue glow. While the atoms, charged by an electric arc which removes one of the 54 electrons around its nucleus, are fired in great numbers out the thruster at more than 70,000 miles an hour, their accumulative mass is so low, the spacecraft moves only millimetres per second in its early stages of flight.
However the advantage of ion propulsion is that is more propellantefficient than chemical propulsion because it expels molecules from the engine at a much higher speed.

DSP slows speech - and speeds understanding

It makes sense to speak a little more slowly to elderly people who are hard of hearing - particularly in the light of studies that have shown that temporal processing factors other than peripheral hearing loss can be involved.
Now Japanese researchers have used recent improvements in digitalsignal processing technology, dsp , to design a portable speech converter that can be used by a listener to slow down speech in real time conversation - without affecting pitch.

A user simply operates the device by pressing a button, to cause speech
 signals to be recorded into memory while previously-recorded signals are being slowed and generated. A 16 Mb random-access memory allows two to three minutes of speech to be recorded at once, which should be enough for normal conversation.

To keep the size of the device small and reduce the complexity of dsp operation, a simplified pitch-synchronous time-scaling algorithm has been developed. Time scaling expands only the duration of those signals above a certain power level and does not change the duration of signals below that level - such as consonants. This dynamic processing feature helps minimise extra distortion in the output device.
The device's hardware, which has been squeezed into a unit that fits in the hand, consists of a 33 M flops 32 bit dsp , the 16 Mb memory and 14 bit 13.3 kHz analogue-digital interface circuits specially designed for the dsp. The dsp program itself is stored in a 256 K eprom.
Initial results (A portable digital speech-rate converter for hearing impairment," Yoshito Nejime et al, IEEE Transactions on Rehabilitation Engineering, Vol 4, No 2, pp. 73-83) showed improved understanding by seven out of ten elderly subjects who had hearing difficulties and were allowed to use the device.
The researchers say the results suggest that speech-rate conversion can be used to overcome the deterioration of peripheral ability by helping auditory memory processing. In this it may have a function complementary to that of conventional hearing aids and could be used in conjunction with them.
A smaller version of the device, with lower power consumption and using a low-voltage risc chip is currently under development.

Contact J Nejime at the Central Research Laboratory, Hitachi Ltd, Kokubunji, Tokyo 185, Japan or email at nejime@crl.hitachi.co.jp

16Mb dram gives enough storage to handle twothree minutes of speech which should enable listeners to get through a normal conversation.

AUDIO

A problem with

 headphones is that when you move your head, the sound source moves with you. As an exercise in applying a low-cost gyroscope, lan Hickman has designed a headphone rig that emulates a stationary sound source - but why does it only work in mono?Listening to music through headphones has several advantages, perhaps the main being that you can have the volume as loud as you like without disturbing anyone else. But the main disadvantage is perhaps that the music sounds as though it is inside your head.
Many years ago, I was told by a colleague that this is because there is no differential change in the phase of the signals reaching the ears when the head is turned. Normally, there would be, this being the mechanism that allows you to determine which direction a sound is coming from.
I had long wanted to check out whether adding delays to the signals to the left and right earpieces - delays which varied whenever the head was turned - could 'externalise' the sound. But the opportunity to do so had not arisen. Doubtless the experiment has been performed before, but that is no reason for not trying it oneself. Besides, implementing such a concept presents some very interesting design problems.
Recently I saw an advertisement for a miniature all solid-state gyroscope. Here surely was a solution in search of a problem. One of the uses envisaged by the manufacturer is automobile navigation systems. Clearly there are many others - among them the aforementioned psychoacoustic experiment. The gyro-
scope could be used to sense rotation of the head, and this signal used to adjust the delays in the left and right channels.

Gyroscope details

The piezo-vibrating gyroscope uses a triangular prism of Elinvar metal, to which are attached piezo-electric transducers. These transducers are maintained in a flexural mode oscillation by an oscillator operating at the assembly's resonant frequency, Fig. 1a). Vibration is maintained by a set of three electrodes, Fig. 1b), two of which are also used as sensors. When the unit is rotated about the longitudinal axis of the prism, an additional component of force is applied to the piezoelectric material, Fig. 1c). This results in a differential component in the voltage at the two detection electrodes as in Fig. 1d). The differential component is picked off and synchronously detected, filtered and smoothed, providing a voltage proportional to the rate of change of direction.

Figure 2 shows an application circuit from the manufacturer's data sheet for the device. Note that the signal output is ac coupled. This is to allow for a possible standing offset between the signal output and the reference voltage to which it relates - in particular for temperature variation of this offset. There is

Fig. 1a) Murata's piezoelectric vibrating gyroscope uses a triangular prism, maintained in a flexure-mode vibration.
also a temperature coefficient of the nominal $1.11 \mathrm{mV} / \% / \mathrm{s}$ scale factor.
In an automotive navigation system, it is assumed that the vehicle will return to a straight-line course after each turn before the high-pass filter introduces too much signal loss. If you were to drive round and round a roundabout however, the system might presumably lose track of the vehicle's direction. Since the device produces a signal output relative to the reference, which indicates the rate of turn, this signal must be integrated to obtain an output giving the actual direction of travel.
It is however possible to engineer a 3 dB corner frequency much lower than the 0.3 Hz , Fig. 2 , avoiding this problem while still blocking the much slower variations in output offset due to temperature variations.

Head-mounting gyroscope

For the purposes of the psychoacoustic experiment, I fixed the gyroscope to the headband of a pair of earphones, to detect head movements. The gyroscope was mounted on a small piece of 0.1 in matrix copper strip board. A couple of metres of screened lead was usedfor the signal and earth connections, and two other wires, for the +5 V supply to the unit and its reference output $V_{\text {ref. }}$. Signal output was passed through an ac coupling with a time constant of 300 s, giving a low-frequency cut-off of about 0.0005 Hz .
Figure 3 shows the arrangement, in which the gyroscope output is applied via a low-pass filter to the input of a unity gain buffer stage A_{1}. Designed to further suppress switching ripple in the signal output, the filter before the buffer comprises a $100 \mathrm{k} \Omega$ resistor plus 10 n capacitor.
The $10 \mathrm{M} \Omega$ resistor at the non-inverting input of A_{1} is returned not to $V_{\text {ref }}$, but to a point at 97% of A_{1} 's output. This effectively

Fig. 1c) When rotation about the longitudinal axis occurs, force transmitted to the prism contains extra component 'a'.

Fig. 1d) This results in a corresponding differential voltage between the detection electrodes, proportional to the rate of rotation.
multiplies its value by a factor of 30 , giving in conjunction with the $1 \mu \mathrm{~F}$ capacitor, a time constant of 300 s .
For A_{1-4}, I used a TLE2064 quad op-amp on account of its low bias current I_{b} of 3 pA and offset current I_{0} of 1 pA - both typical values, at $25^{\circ} \mathrm{C}$. Buffered high and low-passed signal output, together with the reference output, are applied to A_{2}. This op-amp is connected as a bridge amplifier providing rejection of the common-mode reference voltage. Its output is thus ground referenced, adequate common mode rejection being obtained due to the use of 1% metal film $100 \mathrm{k} \Omega$ and $270 \mathrm{k} \Omega$ resistors.
Op-amp A_{2} provides a gain of $\times 2.7$. A further gain of $\times 10$ is raised in A_{3}, at which stage an offset adjustment is introduced, to allow for offsets in A_{1} and A_{2}.
In practice, at switch-on, it was necessary to temporarily short the $10 \mathrm{M} \Omega$ resistor at the non-inverting input of A_{1}, to avoid a very long wait for the dc conditions to settle. On removing the short, there was still an offset due to I_{b} flowing in $10 \mathrm{M} \Omega$ rather than a short circuit. So a $10 \mathrm{M} \Omega$ resistor was included in the inverting input also, bypassed by a 330 pF capacitor, to maintain stability.

A normally-open two-pole switch was used to short both $10 \mathrm{M} \Omega$ resistors at switch-on, to allow for settling. Even so, drift of the output of A_{1} was still experienced. I finally removed the $1 \mu \mathrm{~F}$ capacitor and the resistors, and reconnected A_{1} as a simple dc coupled unity gain buffer.
Offset between the signal and reference outputs of the gyroscope turned out to be only a few millivolts, and could thus be nulled with the offset adjustment at A_{3} 's input. As ambient temperature changes in a domestic environment are small and slow-acting, this proved acceptable for the purposes of this experiment.
To obtain the absolute rotary position of the headphones, the output of A_{3} was integrated. But here there is a problem; integrators have an annoying but unavoidable habit of heading off, over the long term, to one or other of the supply rails. This is because in practice, the input voltage never remains exactly at zero.
The solution used was twofold. Firstly, when the listener's head is stationary, giving no output from the gyro and hence none from A_{3}, the $27 \mathrm{k} \Omega$ resistor at the integrator's input is effectively disconnected by the two diodes.
Furthermore, to prevent the integrator from integrating its own input bias current, a $3 \mathrm{G} \Omega$ resistor was connected across the $1 \mu \mathrm{~F}$ integrating capacitor. Actually, a $10 \mathrm{M} \Omega$ resistor was used, but since only one thirtieth of the integrator's output is applied to it, its effect is that of a $3 G \Omega$ resistor. This means that, in the absence of head movements, the 'sound stage' will over a period of many minutes, revert to straight ahead. This is where it should be of course, assuming that you will not want to spend long periods with your head cocked uncomfortably to one side or the other.
Note that considerable gain has been used ahead of the integrator. As a result, even comparatively small, slow movements of the head produce a large enough output from A_{3} to turn on one or other diode. This effectively reconnects the $27 \mathrm{k} \Omega$ resistor at the integrator's input.

Checking the delays

Output of the integrator, indicating the rotational position of a listener's head, was used to control the relative time delay of the sounds reaching the ears. To find out what this should be, some simple measurements and calculations were needed.
With the aid of a ruler and a mirror, I determined that my ears were about 14 cm apart. Thus, when the head is turned through an angle of 45° to left or right, one ear moves to a position, in the fore-aft direction, 10 cm ahead of the other. So each channel needs to be able to produce a delay equivalent to $\pm 5 \mathrm{~cm}$, or, given the speed of sound is about 1100 feet per second, $\pm 150 \mu$ s, Fig. 4 .
Bucket-brigade devices were used to produce a delay in the signal to each earphone. The delay was varied by altering the clock frequency used to drive the bucket-brigade devices. The 1024 stage bucket-brigade chips used, namely Panasonic MN3207s, were each

The high-pass filter's cut-off frequency is approximately 0.3 Hz The low-pass filter's cut-off frequency is approximately 1 kHz

Fig. 2. Sample amplifier circuit from the ENC-05EA1 solid state gyro data sheet. Note that the base diagram shown is confusing; $V_{\text {ref }}$ is actually on the same side of the device as $V_{c c}$.
driven by a matching MN3102 cmos clock generator/driver. This generator contains a string of inverters which are usually used in conjunction with an external R and C, setting the clock frequency.
For this application, the R and C were omitted, and the first inverter driven by an externally generated clock. The two clock generator/drivers were driven by two voltagecontrolled oscillators, or vcos. These in turn were controlled by an long-tailed pair, driven from the output of the integrator in Fig. 3.
Initially, an elegant vco using an opera-tional-transconductance amplifier and a TLO8x op-amp was designed and tested. This had the advantage of providing a unity mark/space ratio independent of output frequency. However, I abandoned the transconductance amplifier as it would not run fast enough.

Drive to the clock generator/driver chips has to be at twice their clock output frequency. So a pair of simple vco circuits, using two sections of a CD4093 quad two-input schmitt nand gates, were used, Fig. 5. These gates run at about 230 kHz , providing a clock frequency of around 115 kHz from the MN3 102 s for each bucket-brigade device.
The output waveform of the vcos is distinctly asymmetrical, and varies with the longtail pair control input. But the MN3102 device turns this into two antiphase non-overlapping clock waveforms with near unity mark/space ratios.

Differential delays

The long-tail pair provides differential control by subtracting a greater or lesser amount from the available charging current via the $27 \mathrm{k} \Omega$
 conditioning stages, plus the integrator which turns the rate-of-rotation signal into an azimuth position signal.
resistor, at the input of each vco. In this way, as one vco frequency increased, the other reduces by the same percentage - at least, to a first approximation - Fig. 5. The bucketbrigade device provides delays of 2.56 to 51.2 ms for clock frequencies in the range 200 kHz down to 10 kHz . As a result, at the 115 kHz clock frequency used, the delay is nominally 4.45 ms . So to provide the required $\pm 150 \mu$ s delay variation for a head movement of 45°, the frequency of the voltage-controlled oscillators must be varied $0.15 / 4.45$, or about $\pm 3.4 \%$.
As this is but a small variation, the integrator output is attenuated before being applied to the long-tail pair, the transconductance of which is adjustable by means of a $10 \mathrm{k} \Omega$ potentiometer between the emitters. This potentiometer provides an adjustment for the spacing between the ears of a listener. A fat-headed person will require a lower resistance setting of the potentiometer than a narrow-minded type.
Non-overlapping clocks from each MN3 102 are applied to the corresponding MN3207 bucket-brigade device. These also each receive an audio input, see Fig. 6a). Delayed audio output from each bucket-brigade device is applied to a three-pole Chebychev filter, to suppress the clock ripple which appears in the bucket-brigade device outputs.
The filters are of a slightly unconventional kind, taking into account the output impedance of the bucket-brigade devices, the input capacitance of the opamps, circuit strays etc.. As a result, the capacitor values are not what you would obtain from the usual tables of normalised filters. Nevertheless, the response is flat to within 1 dB to beyond $15 \mathrm{kHz}, 4 \mathrm{~dB}$ down at 20 kHz and already 33 dB down at 50 kHz .
The output filter op-amps could not be expected to cope well with the loads imposed

10 cm is equivalent to 150 us

Fig. 4. Showing the differential delay to binaural sounds as a function of head rotation. 10 cm is equivalent to $150 \mu \mathrm{~s}$.
by 32Ω headphones, so a dual audio amplifier was added. This was a National Semiconductor LM4880 dual 250 mW audio power amplifier, which operates on a single supply rail in the range $2.7-5.5 \mathrm{~V}$. On a 5 V supply it provides 85 mW continuous average power into 32Ω or 200 mW into 8Ω, at 1 kHz with 0.1% thd. It features a shut-down mode, which reduces current drain from a typical 3.6 mA no-signal quiescent drain, to around a microamp.
For speed and convenience, I used National's 'Boomer' evaluation board, carrying the small outline version of the device. Its circuit is shown in Fig. 6b). Output coupling capacitors C_{0} are each two $100 \mu \mathrm{~F}$ electrolytics in parallel. Strapping the shut-down input to

Fig. 5. Showing the differentially controlled voltage-controlled oscillators driving the clock generators which service the bucket-brigade chips.
V_{DD} activates the shut down feature, but as this was not required, the SD pad was strapped to ground.

Testing the prototype

During design and implementation - which proceeded in parallel - each section of circuitry was tested for functionality as it was added, starting with A_{1} and working through to the audio output stage. But any serious overall evaluation of the scheme was obviously not possible until the whole equipment was complete.
As I mentioned earlier, the ac coupling at A_{1} was discarded due to extended settling problems, the alternative dc coupling being adequate for an experimental set-up.
With the circuitry complete, a 250 Hz sinewave was applied to the two audio input channels strapped in parallel. The offset potentiometer had been set up for zero output at A_{3} while the gyroscope was stationary, and the integrator output zeroed. Strapping the two inputs together provided a path for a little leakage of bucket-brigade chip clock frequency between devices. This resulted in some low level 'birdies' being audible in the background, which were ignored at this stage.
On turning my head to either side, a most bizarre effect was noted. The pitch of the sound in the advancing ear, i.e.the right ear when turning the head to the left, momentarily rose while that in the other ear fell. At this point I realised that the attenuator between the integrator output and the long-tail pair input had been omitted. The result was an enormous transient delay, i.e. phase change, in the signal, resulting in Doppler effect shifting of the frequency. This would indeed occur on turning your head provided that your ears were a few tens of metres apart.
With a suitable degree of attenuation added, as shown in Fig. 5, the long-tail pair emitter potentiometer was adjusted to give $\pm 0.15 \mathrm{~ms}$ delay in one channel and $\pm 0.15 \mathrm{~ms}$ in the other for a 45° rotation of the head. The result was quite distinct. While facing front, the sound appeared to be arriving centrally, but from the right as the head was turned to the left and vice versa.
Interestingly, the sound in the ear nearest the front actually sounded louder than that in the other ear, although of course the two signals were identical, except for their phase. Evidently the ear/brain system is quite capable of resolving differential times of arrival of sound of the order of $100 \mu \mathrm{~s}$.
Next, tests were carried out using program material, from an fm radio. The signal was taken via a couple of two-pin DIN speaker plugs from the set's external speaker outlets. Taking the signal from two separate low impedance outputs like this largely suppressed the birdies mentioned earlier.
With reception switched to mono, program material of all sorts behaved in exactly the same way as the continuous sinewave, the 'direction' of the source being readily identifiable. Much the same applied to speech in stereo, but since a microphone is usually used

Fig. 6a) The BBD audio delay stages, followed by three pole Chebychev low pass filters to remove clock ripple from the output of the BBDs.

Fig. 6b) The audio output stage, using an LM4880 dual 250 mW audio power amplifier with shutdown mode (not used in this application). Note, if the sound stage moves to the left instead of the right when the head is turned to the left, the audio connections between a) and b) should be interchanged.
which is near - or actually on - the speaker, stereo speech is usually virtually mono anyway.

Why no effect on stereo?

Disappointingly, results with an extended sound source, such as orchestral music in stereo, were not noticeably amenable to 'exter-
nalisation' by the gyroscope system. The sound stage remained doggedly stuck to the head, turning with it . The reason for this is not clear to me, so I hope that one of you is able to provide enlightenment.
Possibly the ear/brain system is so dominated by the abundance of positional information cues contained in a stereo signal, that it
cannot but hear the sound as coming from a sound stage fixed relative to the head. Whatever the explanation, the scheme is virtually ineffective on stereo material.
But that's engineering for you; the results of an experiment are what they are, not what one might like them to be. Hypotheses have to fit the facts, not the other way round.

Solid-state gyroscope - 15% reader discount

Until 31 December, Willow Technologies is offering Murata's ENCO5E solid-state gyroscope for the discount price of $£ 70$ instead of the normal price of $£ 82$, excluding VAT and delivery.
Measuring 21.5 by 8.5 by 7.6 mm , the ENC-05E gyroscope handles up to 50 changes in direction a second and a maximum angular velocity of $\pm 90^{\circ} / \mathrm{s}$. This velocity produces a swing of about $\pm 200 \mathrm{mV}$ dc about the zero angular velocity output reference of 2.3 V dc. Requiring a maximum of 5 mA , the ENC-05E is suitable for portable navigation systems.
Rotational sensing applications of the ENC-05E include camera stabilisation, model-aircraft control, virtual-reality headsets and robotics. Willow Technologies Ltd is at Shawlands Court, Newchapel Road, Lingfield, Surrey RH7 6BL, tel. 01342 835234, fax 01342834306.

In common with all viratory gyroscopes, the ENC-05E relies on the Coriolis effect, where rotation of a vibrating beam about the vertical axis produces a force perpendicular to applied rotation.

ENC-05E ORDER COUPON

PLEASE PRINT CLEARLY

Please send me ENC-05E gyroscope(s) at $£ 70$ each excluding VAT and $£ 7.95$ postage and packing, for which I enclose a total of $£$.
Your name.
Company (if applicable)
Address. \qquad
\qquad
\qquad
\qquad
\qquad
Phone number. \qquad .Fax. \qquad
Please make your cheque payable to Willow Technologies Ltd and send it to Willow at Shawlands Court, Newchapel Road, Lingfield, Surrey RH7 6BL, tel. 01342 835234, fax 01342 834306. Note that this offer is limited to five units per reader. Please allow 28 days for delivery.

Measuring 21.5 by 8.5 by 7.6 mm , the ENC-05E gyroscope handles up to 50 changes in direction a second and a maximum angular velocity of $\pm 90 \%$.

$\mathbf{W}^{\text {ith }}$Tith prices starting as low as $£ 295$, ICE Technology's new range of parallel port programmers offers something for every budget. All programmers support dual in line devices directly in the socket - no adapters or modules are needed for any families of devices, providing extensive device coverage at very affordable prices. The full range of programmers is shown in the panel on the right. Our new easy to use device support checklist will help you to choose the programmer that is right for you, just call or use our faxback for a copy. All programmers come with FREE software updates on our BBS or our ftp site, full technical support direct from the manufacturer and one year's guarantee. All models can run from batteries or mains - ideal for use with laptops.

Low cost EPROM programmer

A
t only $£ 295$, the EPMaster LV is a powerful 1 EPROM programmer which offers so much more than other EPROM programmers. With it's 40 pin socket it can support all types of EPROMs including 16 bit wide with no need for additional modules. Serial PROMs, Serial EEPROMs, Flash and EEPROMs are all included in the device support at no extra cost. In addition, low voltage parts are fully supported with the programmer's separate $1.8 \mathrm{~V}, 3.3 \mathrm{~V}$ and 5 V logic circuits. EPMaster LV comects to the parallel port of any PC compatible and can be operated from batteries or mains electricity. You can also add a built in ROM/RAM emulator with a capability of up to 512 k by 16 , turning the EPMaster LV into a powerful development tool.

CIRCLENO. 15 I ON REPIY CARD

High Speed Gang Programming

The Speedmaster GLV-32 Gang/Set 1 programmer offers simultaneous high speed programming for up to 8 EPROMs and Flash (up to 8 Mbit) at 3.3 V and 5 V . The 3.3 V facility ensures that programmed devices will work correctly at their nominal operating voltage. Functions include gang programming, set programming and full editing. The Speedmaster GLV32 works in PC or stand alone mode.

CIRCIE NO. 152 ON REPLY CARD

Universal programmer only $£ 525$

The Speedmaster $1000+$ and Micromaster $1000+$ offer new levels of affordability in device programming. At only $\mathrm{L395}$, the Speedmaster 10000^{+} supports all types of memory devices, plus $8748 / 51$, BPROMs, GALs and erasable PALs. The Micromaster $1000+$ at just 6525 extends this support to include PALs, EPLDs, MACH, MAX, PSDs and over 180 microcontrollers including PIC,

ST6, MC68HC705, MC68HC711, TMS370, TMS320, 87Cxxx, 89 Cxxx , COPs etc. The Micromaster $1000+$ can support all device types, even Motorola micros, with NO ADAPTERS or MODULES for any dual in line devices up to and including 40 pins. As with all our programmers free software updates are included via BBS or our ftp site.
CIRCLE NO. 149 ON REPLY CARD

LV40 Portable

Reaching the parts other programmers can't reach

TThe NEW LV40 Portable stands head and shoulders above other portable programmers
 comprehensive device support which includes EPROMs, EEPROMs, Serial PROMs, BPROMs, Flash, NVRAMs, PSDs, PALs, GALs, PEELs, EPLDs, MACH, MAX and over 180 microcontrollers. Unlike other portables, no adapters or modules are needed for any of these devices up to 40 pins dual in line. With socket adapters the $\mathrm{LV} \%$ is capable of supporting devices of over 40 pinfand other package types At $£ 995$ for the complete package val'll snon see why the LV40 Portable is the best value, mosf powerful portable programmer in the world.

CIRCLE NO. 150 ON REPI Y CARD

- Portable Universal	- Supports memory,	- Support for $1.8,3.3$ and
Programmer	programmable logic,	SV devices
- High speed	high density logic, and	- Bathery or Mains
- PC software included	over 180 micros.	operation
- No modules to buy		- Liferime free updates

PROGRAMMER MODELS AND PRIGES

[^1]
PC ENGINEERING

A-to-D via the COM port

Interfacing via the pc's COM port and accessible using simple Basic routines, David Gains' a-to-d converter can log up to four differential sensors with fast sampling.

My requirements were for a data acquisition system that would acquire analogue signals from transducers such as temperature sensing integrated circuits. The system had to use my PC's unused COM2 port, and it had to be capable of sampling a single channel at, say, $1-2 \mathrm{kHz}$, or a few channels on demand at infrequent intervals. Further, to accommodate signals of different voltage levels, and to improve resolution, each channel had to have software programmable gain.
The resulting design, Fig. 1, provides the following features:

- four differential input channels,

Table 1. Receiver output bits from the uart are used to configure the a-to-d conversion circuitry.

$\mathbf{R B R}_{8}$	RBR $_{7}$	$\mathbf{R B R}_{6}$	$\mathbf{R B R}_{5}$	$\mathbf{R B R}_{4,3}$	$\mathbf{R B R}_{2,1}$
Unused	Unused	Conversion Scan	Gain	Channel	
x	x	$0=$ single	$0=0$ ff	$0,0=\times 1$	$0,0=$ channel 1
x	x	$1=$ running	$1=0$ on	$0,1=\times 2$	$0,1=$ channel 2
x	x			$1,0=x 4$	$1,0=$ channel 3
x	x			$1,1=x 8$	$1,1=$ channel 4

Table 2. Three bits configure the uart serial data
framing as follows.

- four gains of $1,2,4$, and 8 ,
- single-conversion, or free-running conversion mode, and
- single-channel, or scanning channel mode.

All of the above features are software programmable. In addition, the capture module can be configured for either unipolar or bipolar input signals.

Serial interface

The MAX232 line driver-receiver, IC_{1}, provides the communications interface between the computer and the data acquisition system. Ostensibly, it converts signals between RS232 compatible levels of $\pm 12 \mathrm{~V}$ and 5 V ttl levels, but only requires a single 5 V rail.
A single byte-long character command is passed to the CDP6402 universal asynchronous receiver-transmitter, IC_{3}. This uart takes the serial data from the receiver input RRI and converts it into a parallel word. Provided that this word has been received correctly, it then appears at the receiver buffer register output, RBR_{1-8}.
In my design, if a framing error or an overrun error occurs, it is ignored. In any case, if an error does occur, the RBR $_{1-8}$ outputs adopt a high impedance state. The RBR $_{1-8}$ outputs are then decoded to provide the functions shown in Table 1.
The uart is configured for a data format of eight data bits, and one stop bit, Table 2. In addition, there is no parity bit; the parity inhibit PI input is held high.
The serial data rate is set by programmable oscillator, IC_{2}, which is an $E X O-19.6608$. This device allows data rates of 4800 baud up to 1228800 baud. However, the MAX232 supports RS-232C standard, and this is only guar-

```
Listing 2. Object-oriented implementation of the functions used to interface to pc and a-to-d converter, in Turbo C++
// Standard libraries
#include <bios.h>
#include <conio.h>
#include <dos.h>
#include <process.h>
#include <stdio.h>
// Function key codes
#define F1 0x3B
#define F2 0x3C
#define F2 0x3C
#define F4 0x3E
#define F5 0\times3F
#define F6 0x40
#define F7 0x41
#define F8 0x42
#define F9 0x43
#define FlO 0x44
// COM port settings
#define COM2 1
#define DATA READY 0x100
#define SETTĨNGS
#(_COM_9600 | _COM_CHR8 | _COM_STOP1 | _COM_NOPARITY)
// Implementation of interface to unit. No error checking.
class serial {
private:
    unsigned _port; // Port identity
    unsigned _settings; // Port settings
    // Configuration
    unsigned channel, _gain, _scan, _run;
    char str[\overline{40];}
public:
    // Constructor - Configures serial port 
    serial(unsigned p, unsigned s) : _port(p), _settings(s) {
        _bios_serialcom(_COM_INIT, _port, _settings);
        _chan\overline{nel=_gain=_scan=_run=0;}
    1:
    // Change run mode
    void run() {
        _run=!_run;
    // Change scan mode
    void scan() {
        _scan=!_scan;
    }
    // Change gain
    void gain(unsigned g) {
        _gain=g;
}
    // Change channel
    void channel(unsigned c) {
        _channel=c;
    } -
    // Get port status
    int status() {
        unsigned s=_bios_serialcom(_COM_STATUS, _port, 0);
        return s;
    }
    // Read value from port
    unsigned read(unsigned& v) {
        return v=_bios_serialcom(_COM_RECEIVE, _port, 0);
}
    // Write a value to port
    void write() {
        _bios_serialcom(_COM_SEND, _port,
            _bios_serialcom(_COM_SEND,_port, 
    }
    // Get a-to-d unit's configuration
    char* config() {
        sprintf(str, "Channel:%1x Gain:%1d %s %s", channel, 1<<_gain,
                scan?"Scanning":"Fixed", _run?"Running": "Single");
        /T If scanning, keep track of channel
            if (_scan) !
                channel++;
            }
            return str;
}
    |; // End of class definition
Listing 3. Turbo C++ routine applying the objected-oriented software, liting 2. void main(void) \{
unsigned in, out;
class serial s(COM2, SETTINGS);
// Define and setup port
clrscr();
for(;;) {
    if (s.status() & DATA_READY)
        // Print unit's configuration and
value read
    cprintf ("%s % %3d\r", s.config(),
s.read(in)):
    if (kbhit()) {
    out=getch();
    if (out=='\x1B')
    // Escape key pressed. Quit.
    exit(1);
    else {
        if (out=='\x00') {
        // Extended key pressed
        out = getch();
        switch (out) {
            case F1: s.channel(0); break;
            case F2: s.channel(1); break;
                case F3: s.channel(2); break;
                case F4: s.channel(3); break;
                case F5: s.gain(0); break;
                case F6: s.gain(1); break;
                case F7: s.gain(2); break;
                case F8: s.gain(3); break;
                case F9: s.run(); break;
                case F10: s.scan(); break;
            |
            s.write();
        }
        }
    }
}
}
}
    }
    // Configūration (
```

anteed to work up to 19200 baud. Switches, S_{1-3}, program the oscillator, Table 3.

Selecting channels

Selection of the analogue channel is carried out by the MPC509 four-channel differential multiplexer, IC_{6}. This device offers up to $70 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ over-voltage protection, and should it lose power, it does not cause problems for the signal sources.
Channel addressing for the multiplexer is produced by the asynchronous presettable two-bit counter-latch formed by the JK bistable devices, IC_{10} and the steering logic, IC_{11}. Operation is as follows.
When scan mode is off, i.e. RBR_{5} is low, the JK bistable device clocks are disabled, and the channel address on RBR_{1-2} is used to preset the counter-latch outputs. The PRESET signal, created by data-received signal DR going high and triggering monostable $\mathrm{IC}_{8 \mathrm{~b}}$, enables the NAND gates, IC_{11}. These then derive suitable logic levels for the bistable clear and set inputs. These inputs are clock independent, or asynchronous. Since the multiplexer's ENABLE line is tied high, the analogue input channel is immediately selected.
In channel scanning mode, with RBR_{5} high, the counter-latch is preset with the channel address, as before. In this case, however, after each conversion has completed, the counter is incremented by the NEXT pulse. This pulse is derived from the BUSY signal going inactive, and enabled by the inputs RBR $_{5-6}$ on NAND gate $\mathrm{IC}_{12 \mathrm{c}}$. It results in the next analogue channel being selected.

Programmable-gain amplifiers

The PGA205 programmable amplifier, IC_{5}, provides fixed programmable gains of $1,2,4$, and 8. Its gain-selection inputs are ttl-compatible and bits RBR_{3-4} are connected directly. With the a-to-d converter configured with a reference voltage of 2.5 V , the $P G A 205$ gives the system the full scale ranges and resolutions shown in Table 4.

Conversion mode

The conversion mode allows the unit to make either a single conversion when requested, or continually provide conversions, i.e. free run, at a rate governed by the uart.
If the single conversion mode is selected, i.e. RBR_{6} is low, the a-to-d converter starts converting the selected channel shortly after

the command is received from the computer. The data received status line DR goes high, and edge-triggered monostable $\mathrm{IC}_{8 \mathrm{~b}}$ provides a low level pulse of about $82 \mu \mathrm{~s}$ duration to the WRITE input of the a-to-d.
On the rising edge of the same low-level pulse, the a-to-d converter starts converting. The duration of the pulse is long enough to ensure the PGA205 gain network and multi-
plexer have settled. It is also fast enough for conversions to be performed and transmitted at up to about 19.2 kilobaud, i.e. the sampling rate is about 1.9 kHz .
NAND gates within IC_{9} select the source to be used for the start conversion signal. With RBR_{6} low, only DR is used as the basis for the WRITE signal. When RBR_{6} is high however, the start conversion signal is derived initially

from $D R$, but then from the transmitter register empty, TRE, status flag of the uart. This signals that the last conversion has been sent to the computer, and that the UART is ready for new data. Again, the pulse is about 82μ s duration.

Analogue-to-digital conversion

The a-to-d converter, IC_{4}, is a ZN448 $^{8} 8$-bit successive approximation converter with internal band-gap reference and clock.
The converter is configured, by connecting the 100 pF capacitor to the clock input, pin3, for conversion times of about 100 ns . The input to the a-to-d converter can be either unipolar or bipolar according to the position of switch S_{4}. The resistor network sets the input voltage range to either 2.5 V for unipolar operation or $\pm 2.5 \mathrm{~V}$ for bipolar.
During a conversion, the BUSY signal, active low, goes low, and when finished it goes high. On this rising edge, monostable multivibrator $\mathrm{IC}_{7 \mathrm{a}}$ creates a pulse that: - automatically increments the channel
address of the multiplexer,

- load the converted data into the uart's TBRL transmitter buffer register,
- reset the data received status flag of the uart, by taking DRR low.

Configuration and control

When the unit is powered up, the transistor, $T r_{1}$ and associated passive components apply a low going pulse of $15 \mu \mathrm{~s}$ to the uart's master reset MR input, and so ensures all the error/status flags, and transmitter buffers are reset.
The unit is easily configured and controlled by outputting byte commands - or appropriate ASCII characters - to the serial port.
An example Quick-Basic program is given in Listing 1. It shows how samples can be acquired from one channel, namely channel 0 with unity gain.
A further example is given by way of an object-oriented program using Borland Turbo C++, Listings 2, 3. Listing 2 gives the class implementation of the functions used to interface with the unit, while Listing 3 is an exam-
ple of the class being used. The pc's function keys are used to configure the unit's operation, and the escape key exits the program.
Neither of these examples check for framing errors nor overrun errors, which would be necessary to ensure samples are not missed, or, if scanning channels, that the channel being sampled does not become misaligned with what the program thinks is being sampled.
The serial communications functions provided by Turbo C++ are implemented with hardware handshaking. In this case, a null modem can be used; link the request-to-send line RTS and clear to send, CTS, together, and link data set ready DSR, data carrier detect, DCD, and data terminal ready, DTR. In Quick Basic, setting parameters in the OPEN statement that ignore handshaking is possible.

Setting up

The only setting up required is that of the ZN448. This is easily achieved with either of the above example programs, set to sample a channel continually.
Zero adjustment is required for the unipolar range. This is done by applying 5 mV to a channel, and adjusting $V R_{1}$ until the most significant bit flickers between one and zero with all the other bits at zero. No gain adjustment is provided in this design.
Only offset adjustment is required for the bipolar range, as this design offers no gain adjustment. In a similar way to the unipolar zero adjustment, apply -2.49 V to a channel, and adjust VR_{2} until the most significant bit flickers between one and zero with all the other bits at zero.

Further development

There are two bits of the uart's received data word spare, namely RBR $_{7-8}$. These could easily be used to expand the unit's capability. Obvious enhancements are to provide eight channels of differential input, or 16 channels of single-ended input, or to make the unipolar/bipolar modes software selectable.
If greater accuracy is required, gain adjustment for both unipolar and bipolar input ranges could be added to the ZN448.

Further reading

MAXIM Integrated Products, MAX230-241
Data Sheet, pp 2-25 to 2-40
Universal asynchronous receiver transmitter, RS Data Sheet 4046, March 1985
Crystal Oscillators - KSS Kinseki, KSS-EXO-3 Series Data Sheet.
MPC508A, Burr Brown Data Sheet.
8 -bit A to D converter ZN448, RS Data Sheet 5291, March 1985.
PGA205, Burr Brown Data Sheet, pp 4.175 to 4.187.

MM74HC221A Dual Non-retriggerable monostable mulitvibrator, National Semiconductor Data Sheet, pp 3:204-3:208.

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REOUIREMENTS WHICH MAY BE IN STOCK

HP ANZ Units Available separately - New Colours - Tested
HP 1417 Mainframe - $\mathbf{F 3 5 0}$.
HP H 85528 IF- E 300 .
HP8553B
HPB5538 RF 1 KHz to $110 \mathrm{Mc} / \mathrm{s}$ - f 200 .
HP8554B RF 100 KH to $1250 \mathrm{Mc} / \mathrm{s}$ - F 500 .
HPP555A RF $10 \mathrm{MCl/s}$ to $18 \mathrm{GHzS}-£ 800$.
HPP556A RF 20 Hz to $300 \mathrm{KHzS}-\mathrm{f} 250$.
HP8556A RF 20 Hz to 300 KHzS - $£ 250$.
HP4434A Tracking Generator Countor 100 KHz - $110 \mathrm{Mc} / \mathrm{s}$ - E 300 .
HP9445B Tracking Preselector DC 10 18GHz- $£ 350$.
HP3580A 5Hz-50KHz ANZ - $2750-£ 1000$.

HP85698 $10 \mathrm{Mc} / \mathrm{s}-22 \mathrm{GHz}$ ANZ -66 k .

TEK $492-50 \mathrm{KHz}-18 \mathrm{GHz} \mathrm{Opt} 1+2-£ 4 \mathrm{k}-44.2 \mathrm{k}$.
TEK $492-50 \mathrm{KHz}-18 \mathrm{GHz} \mathrm{Opt} 1+2+3-£ 4.5 \mathrm{k}$.
TEK $492 \mathrm{P}-50 \mathrm{KHz}-21 \mathrm{GHz}$ Opt $1+2+3-£ 5 \mathrm{k}$.
TEK 494AP $1 \mathrm{KC/S}$ - 21 GHz - $\mathrm{E7k}$.

TEK $745+L 1-20 \mathrm{~Hz}-5 \mathrm{Mc} / \mathrm{s}$ - $\mathrm{E7} 700$.
TEK $75++15-$ OOt 25 Tracking Gen - 5900 .
TEK $7 \mathrm{LL12}-100 \mathrm{KHz-1800Mck/s-£1000}$.
TEK 7L18-1.5-60GHzs - 11500 .
TEK $49110 \mathrm{Mc} / \mathrm{s}-124 \mathrm{GHzs}-10$.
TEK $49110 \mathrm{Mc} / \mathrm{s}$ - $12.4 \mathrm{GHzs}-40 \mathrm{GHzs}$ - -750 . $12.4 \mathrm{Ghzs}-40 \mathrm{Ghzs}$ with Mixers.
Tektronix Mixers are available for above ANZ to 60 GHzs
Systron Donner 763 Spectrum ANZ + 4745B Preselector .01-18GHz + Two Mixers $18-40 \mathrm{GHz}$ in
HP8673D Signal Generator $05-26.5 \mathrm{GHz}$ - $£ 20 \mathrm{k}$.
Systron Donner 1618 B Microwave AM FM Synthesizer $50 \mathrm{Mc} / \mathrm{s}$ 2-18GHzs R\&S SWP Sweep Generator Synthesizer AM FM 4-2500 Mc/s- $£ 3.5 \mathrm{~K}$.
ADRET 3310A FX Synthesizer 300 Hz - $60 \mathrm{Mc} / \mathrm{s}$ - f 600 .
HP8640A Signal Generators - $1024 \mathrm{Mc} / \mathrm{S}$ - AM FM - E 800 .
HP $3717 \mathrm{~A} 70 \mathrm{Mc} / \mathrm{s}$ Modulator - Demodulator - E 500 .
HP8651A RF Oscilator $22 \mathrm{KC} / \mathrm{S}-22 \mathrm{Mc} / \mathrm{s}$.
HP6551A RF Oscillator $22 \mathrm{KC} / \mathrm{S}-22 \mathrm{Mc} / \mathrm{s}$.
HP5316B Universal Counter A+B.
HP6825A Bipolar Power Supply Amplifier.
HPL
HP461A-465A-467A Amplifiers.
HP81519A Optical Receiver DC $-400 \mathrm{Mc} / \mathrm{s}$.
HP Plotters 7470A-7475A.
HP3770A Amplitude Deiay Distortion ANZ.
HP370B Tole
MP370B Telephone Line Analyser.
HP8182A Data Analyser.
HP59401A Bus System Analyser.
HP6260B Power Unit 0-10V 0-100 Amps.
HP62608 Power Unit 0-1
HP3782A Error Detector.
HP3781A Pattern Generator
HP $3730 \mathrm{~A}+3737 \mathrm{~A}$ Down Convertor Oscillator $3.5-6.5 \mathrm{GHz}$.
HP Microwave Amps 491-492-493-494-495-1GHz-12.4GHz- £250.
HP 1058 Quartz Oscillator - $£ 400$.
HP5087A Distribution Amplifler.
HP6034A System Power Supply O-60V O-10A-200W - 5500.
HP6131C Digital Voltage Source $+-100 \mathrm{~V} 1 / 2$ Amp.
HP4275A Multi Frequency L.C.R. Meter.
HP3779C Primary Multiplex Analyser.
HP8150A Optical Signal Source.
HP1630G Logic Analyser.
HP5316A Universal Counter A+B.
HP5335A Universal Counter A+B+C.
HP59501B Isolated Power Supply Programmer.
HP 8901 A Modulation Meter AM - FM - also 890
HPP901A Modulation Meter AM - FM - also 8901B.
MP5370A Universal Time Interval Counter.
Marconi TF $2370-30 \mathrm{~Hz}$-1 $10 \mathrm{Mc} / \mathrm{s} 750 \mathrm{HM}$ Output (2 BNC Sockets + Resistor for 500 HM MOD with
Marconi TF2370 30 Hz - $110 \mathrm{Mc} / 550 \mathrm{ohm} \mathrm{O}$
Marconi TF2370 as above but late type - E850.
Marconi TF2370 as above but hate type Brown Case - $£ 1000$.
Marconi TF2374 Zero Loss Probe - $£ 200$.
Marconi TF2240 Microwave Counter - 20 GHz - $£ 1500$.
Marconi TF2422 Microwave Counter - 26.5 GHz - $£ 2 \mathrm{k}$.

Racal/Dana 1250-1261 Universal Switch Controller $+200 \mathrm{Mc} / \mathrm{s}$ PI Cards.
Racal/Dana 9303 True RMS Levelmeter + Head - E 450 . IFFE - E 500 .
TEKA6902A also A6902B isolator - $£ 300-$ E400.
TEK 1240 Logic Analyser - E400.
TEK FG5010 Programmable Function Generator 20Mc/s - $£ 600$.
TEK2465A 350Mc/s Oscillo scope - $£ 2.5 \mathrm{k}+$ probes $-£ 150$ each.
TEK CT. 5 High Current Transformer Probe - E250.
TEK $J 16$ Digital Photometer $+J 6523-2$ Luminance Probe - E 300 .
ROTEK 320 Calibrotor + 350 Migh Current Adaptor AC-DC - 5500.
FLUKE 5102 BAC -DC Calibrator - £4k
FLUKE 1120 A AEEE-C 48 Translator- $£ 250$.
Tinsley Standard Cell Battery $56448-£ 500$.
Tinsley Transportable Votitage Reference - f 500 .
FLUE Y5020 Current Shunt- $£ 150$.

HP8080AMF +8091.
$+15400 \mathrm{~A}-\mathrm{EBOO}$.
HP54200A Digitizing Oscilloscope.
HP117298 Carrier Noise Test Set. 01 - 18 GHz - LEF - 22000.
HP3311A Function Generator - $£ 300$.
Marconi TF2008 - AM-FM signal generator - also sweeper - $10 \mathrm{KC} / \mathrm{s}$ - $510 \mathrm{Mc} / \mathrm{s}$ - from $£ 250-$ tested to 8400 as new with manuall- probe kit in wooden carrying box.
HP Frequency combenerator tyue 8406 - $£ 400$
HP Frequency comb generator type 8406 - $£ 400$.
HP Sweep Oscillators type 8690 A \& $\mathrm{B}+$ + plug-ins from $10 \mathrm{Mic} / \mathrm{s}$ to 18 GHz also 18-40G Mz. P.O.R.. HP Network Analyzer type $8407 \mathrm{~A}+8412 \mathrm{~A}+8501 \mathrm{~A}-100 \mathrm{~K} / \mathrm{s}-110 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 500-\mathrm{E} 1000$.
HP Amplifier type 8447A -1-400 Mc/s $£ 200$ - HP8447A Dual - $£ 300$.
HP Frequency Counter type 5340A-18GHz $\mathbb{1 0 0 0 0}$ - rear output C 800 ,
HP $8410-A-B-C$ Network Analyzer $110 \mathrm{Mc/s}$ to 12 GHz or 18 GHz - plus most other units and
displays used in this set-up -8411a $-8412-8413-8414-8418-8740-8741-8742-8743-$
8746-8650. From £1000.
Racal/Dana 9301A - 9302 RF Millivoltmeter - 1.5-2 $\mathrm{GHz}_{\mathrm{L}}$ - $£ 250-\mathrm{E} 400$.
Raca/Dana Modulation Meter type 9009
Marconi RCL Bridge type TF2700- 150.
Marconi/Saunders Signal Sources type - 6058B - 6070A - 6055A - 6059A - 6057A - 6056-
£250-£350. $400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz .
Marconi TF 1245 Circuit Magnification meter + 1246 \& 1247 Oscillators - $\mathbb{E 1 0 0}$ - $£ 300$.
Mareoni microwave 6600 A sweep osc., mainframe with 6650 PI $-18-26.5 \mathrm{GHz}$ or 6651 PI - 26.5 40 GHz - $£ 1000$ or Pl only $£ 600$. MF only $£ 250$.
Marconi distortion meter type TF2331- $\mathbb{1} 150$: TF2331A - $\mathbb{C 2 0 0}$.

Tektronix Plug-Ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12-S1
-S2-S6-S52-PG506-SCOU4-SG502-SG503-SG504-DC503-DC508--DD501-WR501-DM501A-FG501A-TG501-PG502-DC505A - FG504-7B80 + 85-7B92A Gould $J 3$ B test oscillator + manual -E 150
Tektronix Mainframes -7603-7623A -7613 -7704A -7844 -7904 - TM501 - TM503 - TM506 -7904A-7834-7623-7633.
Barr \& Stroud Variable filter EF3 0.1 Hz - $100 \mathrm{kc} / \mathrm{s}+$ high pass + low pass - E 150.
Marconi TF2163S attenuator-1 GHz. £200.
Farnell power unit H60/50- $£ 400$ tested. H60/25- $£ 250$.
Racal/Dana 9300 RMS voltmeter - E 250 .
HP 8750A storage normalizer - $£ 400$ with lead $+S$. A or N, A interface.
Marconi TF2330-or TF2330A wave analy sers - $£ 100-\mathrm{E} 150$.
Tektronix - 7S14-T111-7S11-7S12-S1-S2-S39-S47-S51-S52-S53-7M11.
Marconi mod meters type TF 2304 - E250.
Systron Donner counter type $6054 \mathrm{~B}-20 \mathrm{Mc} / \mathrm{s}-24 \mathrm{GHz}$ - LED readout - $£ 1 \mathrm{k}$.
Racal/Dana 9083 signal source - two tone - $£ 250$.
Systron Donner - signal generator 1702 - synthesized to 1 GHz - AM/FM - $£ 600$.
Tektronix TM515 mainframe + TM5006 mainframe - £450- ᄃ850.
Farnall electronic load type RB $1030-35$ - $\mathbf{E 3 5 0}$.
Racal/Dana counters - 9904 - 9905 - 9906 - 9915 - 9916 - $9917-9921$ - $50 \mathrm{Mc/s}-3 \mathrm{GHz}$ - £100 £450 - all fitted with FX standards.
HP4815A RF vector impedance meter chw probe - $£ 500$ - $£ 600$ -
Marconi TF2092 noise receiver. A, B or C plus filters - $£ 100$ - 355
Marconi TF2091 noise generator. A, B or C plus filters - $£ 100-\mathrm{F} 350$.
Marconi $2017 \mathrm{~S} / \mathrm{G} 10 \mathrm{Khz}-1024 \mathrm{MHz}$.
HP180TR, HP182T mainframes $£ 300$ - 5500 .
Philips panoramic receiver type PM7900-1 to $20 \mathrm{GHz}-£ 400$.
Marconi 6700 A
Marconi 6700 A sweep oscillator +18 GHz Pl's available.
MP8505A network ANZ +8503 A S parameter test set +8501 A normalizer - $-£ 4 \mathrm{k}$
HPB55 netw OMF ANZ $5505+8501$ A 8503 A
Racal/Dana VLF frequency standard equipment. Tracer receiver type 900A + difference meter
HP signal generators type 626 - 628 - frequency $10 \mathrm{GHz}-21 \mathrm{GHz}$.
HP $432 \mathrm{~A}-435 \mathrm{~A}$ or $\mathrm{B}-436 \mathrm{~A}$ - power meters + powerheads - Mc/s -40 GHz - £200-£1000.
Bradley oscilloscope calibrator type 192-£600.
HP8614A signal generator $800 \mathrm{Mcis}-2.4 \mathrm{GHz}$, new colour $£ 400$.
MP8616A signal gen $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$, new collour E 400 .
HP 3325 A syn function gen $20 \mathrm{Mc} / \mathrm{s}$ - $£ 1500$.

HP 3586B or C selective level meter- $\mathrm{E7} 75-\mathrm{E} 1000$.
HP 3575A gain phase meter $1 \mathrm{~Hz}-13 \mathrm{MC/s}-\mathrm{E} 400$.
HP 8683 D SIG microwave $2.3-13 \mathrm{GHz}-\mathrm{opt} 001-003-£ 4.5 \mathrm{~K}$.
$\mathrm{HP} 8660 \mathrm{~A} \cdot \mathrm{~B}-\mathrm{C}$ syn S / G. $\mathrm{AM}+\mathrm{FM}+10 \mathrm{Kc} / \mathrm{s}$ to $110 \mathrm{Mc} / \mathrm{s} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}$ to $1300 \mathrm{Mc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$ to
$2600 \mathrm{Mc} / \mathrm{s}$ - $\mathrm{E} 500-\mathrm{E} 2000$.
HP 8640B S/G AM-FM $512 \mathrm{Mc/s}$ or $1024 \mathrm{Mc/s}$. Opt 001 or 002 or 003- $\mathbf{~ E 8 0 0 - £ 1 2 5 0 . ~}$
HP $86222 B X$ Sweep PI $-01-2.4 \mathrm{GHz}+A T T-£ 1750$.
HP 8629A Sweep PI - 2 - 18 GHz - $£ 1000$.
HP 86290 B Sweep PI $-2-18 \mathrm{GHz}-\mathrm{E1250}$.
HP 86 Series Pl's in stock - splittoand from $10 \mathrm{Mc} / \mathrm{s}-18.6 \mathrm{GHz}-\mathrm{f} 250 . \mathrm{E} 1 \mathrm{k}$
HP 8620 C Mainframe - E250. IEEE -E 500 .
HP 8615 A Programmable signal source - $1 \mathrm{MHz}-50 \mathrm{Mc} / \mathrm{s}$ - opt 002 - $£ 1 \mathrm{k}$.
HP 8601 A Sweep generator $.1-110 \mathrm{Mc} / \mathrm{s}-£ 300$.
HP 3488A HP 1 IB switch control unit - $£ 500+$ control modules various - $£ 175$ each.
HP 8160 A A MC/s programmable pulse generator $-£ 1000$.
HP 853A MF ANZ- 11.5 k .
HP 8349A Microwave Amp 2-20GHz Solid state $-£ 1500$
HP 3585A Analyser $20 \mathrm{~Hz}-40 \mathrm{Mc} / \mathrm{s}-£ 4 \mathrm{k}$.
HP 3585A Analyser $20 \mathrm{~Hz}-40 \mathrm{Mc} / \mathrm{s}-54 \mathrm{k}$.
HP 8569B Analyser . $01-22 \mathrm{GHz}-£ 5 \mathrm{k}$.
$H \mathrm{HP} 3580 \mathrm{~A}$ Analyser $5 \mathrm{~Hz}-50 \mathrm{kHz}-\mathrm{E} 1 \mathrm{k}$.
HP 1980B Oscilloscope measurement system - $£ 500$.
HP 3455A Digital loltmeter - -5500 .
HP 3437A System voltmeter - $£ 300$.
HP 3437A System voltmeter - $£ 300$.
HP 3581C Selective voltmeter $-£ 250$.
HP 3581 C Selective volitmeter - $£ 250$
HP 5370A Universal time interval counter - $\mathrm{C450}$.
HP 5335 A Universal counter - $200 \mathrm{Mc} / \mathrm{s}$ - $\mathrm{f5} 50$.
HP 5328 U Universal counter - $500 \mathrm{Mc} / \mathrm{s}$ - f 250 .
HP 6034 A System power supply $-0-60 \mathrm{~V}-0-10$ amps - f500
HP 503150 A Systern power supply $-0-60 \mathrm{~V}-0-10 \mathrm{amps}-£ 500$.
HP 1645A Data error analyser - $£ 150$.
HP 4431A Attenuator - 1150 .

microwave link analyser - P.O.R.
HP $3730 A+B$ RF down converter - P.O.
HP 3730A +B RF down converter - P.O.R.
HP 3763A Error detector- E 500 .
HP 3764 A Digtral transmission analyser - $£ 600$.
HP 3770 A Amp deiay distortion analyser - $£ 400$.
HP 3780 A Patern generator detector - $£ 400$.
HP 3781A Pattern generator $-£ 400$.
HP ${ }_{H} 3781$ A P attern generator - E 400 .
HP 3782 A Error detector - $£ 400$
HP 3782 Error detector (bell)- C 300 .
HP 3783 A A itter generator + receiver- $\mathrm{E750-E1k} \mathrm{}$. HP 8006A Word
HP 8006A Word generator- $\mathcal{E 1} 100-£ 150$.
HP 8016 A Word generator - C250.
HP 8170A L Logic pattern generator- $£ 500$.
HP 59500A Multiprogrammer HP-IB- E 300
Philips PM5390 RF SyA $-0.9-1 G H z-A M+F M-£ 1000$.
S.A. Spectral Dynamics SD345 spectrascope 111 -LF ANZ - $£ 1500$.

Tektronix 87912 Transient waveform digitizer - programmable - $£ 400$.
Tektronix TR503 + TM503 tracking generator $0.1-1.8 \mathrm{GHz}$ - $£ 1 \mathrm{k}-$ or TR502.
Telkr onix 576 Curve tracer + adaptors $-£ 900$.

Tektronix AM503 Current probe + TM501 m/frame - $£ 1000$.
Tektronix SC501 - SC502 - SC503 - SC504 oscilloscopes - $\mathrm{E75}$ - E 350 .
Tekrronix $465-4658-475-2213 A-2215-2225-2235-2245-2246-£ 250-£ 1000$
Kikusui $100 \mathrm{Mc} / \mathrm{s}$ Oscilloscope COS6100M - E350.
Nicotet 3091 LF oscililoscope - 4000 .
Racal 1991-1992-1988-1300 Mc/s counters - $£ 500-\mathrm{f} 900$
Fluke $801 \cdot 40$ High voltage probe in case - 8 N - $\mathbf{~} 100$
Aacal Store Horse Recorder \& control - $£ 400$. 775 Testoc
EIP 545 microwave 18 GHz counter - $\mathbf{E 1 2 0 0}$.
Fluke 510 A AC ref standard $-400 \mathrm{~Hz}-£ 200$.
Fluke 355 ADC voltage standard $-£ 300$.
Fluke 355A DC voltage standard - $£ 300$
Wiltron 610 D Sweep Generator $+6124 \mathrm{C} \mathrm{PI}-4-8 \mathrm{~Hz}-\mathrm{E} 400$
Witron 610 D Sweep Generator +61084 DPI - $1 \mathrm{Mc} / \mathrm{s}-1500 \mathrm{Mc} / \mathrm{s}-\mathrm{E} 500$.
Time Electronics 9811 Programmable resistance
Time Electronics 9811 Programmable resistance- E 600
Time Electronics 2004 D.C. voltage standard - $£ 1000$.
HP 8699 B Sweep PI YIG oscillator $01-4 \mathrm{GHz}$ E $£ 300.8690$ B MF- £250. Both E500.
Schlumberger 1250 Frequency response ANZ - $£ 1500$.
Dummy Loads \& power att up to 2.5 kilowatts FX up to 18 GHz - microwave parts new and ex
equipt - relays - attenuators - switches - waveguides - Yigs - SMA -APC7 plugs - adaptors. B\&K ltems in stock - ask for list.
W\&G Items in stock - ask for list.
Power Supplies Heavy duty + bench in stock-Farnell-HP-Weir-Thurlby-Racal etc. Ask for list.
TEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS. SAE FOR ENQUIRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY TTEMS, AVAILABILTY OR PRICE CHANGE VAT AND CARRIAGE EXTRA
TEMS MARKED TESTED HAVE 30 DAY WARRANTY. WANTED: TEST EOUIPMENT-VALVES PLUGS AND SOCKEIS-SYMCROS-TRANSMTTING AND RECEIVMG EQUIPMENT ETC.
Johns Radio, Whitehall Works, 84 Whitetall Road East, Birkenshaw, Bradiord BD11 2ER. Tel. No: (10127|1684007. Fax: 651160

SUBSCRIIEE TODAY

 And Electronics World will help you keep the leading edge
EVERY MONTH

- the best writing on Electronics design applications

ELECTRONICS WORLD
INGORPORATING WIRELESS WORLD

1 Year $£ 30$ UK, $£ 43$ Europe, $£ 52$ Row
2 Years SAVE 25\% £45 UK, £65 Europe, £75 Row Phone: +44 01444445566 , Fax (+44) 01444445447

SUBSCRIPTION DORAM

YES, I WOULD LIKE TO SUBSCRIBE TO ELECTRONICS WORLD
Name

Job Title
Company Name
Address

Address	
Postcode	Country
Telephone	Fax

- Please tick box if you do not wish to recieve promotions from other companies.

Free circuit design software TINA for Windows

This month's cover disk* is a working, interactive version of TINA for Windows. Newly launched, this comprehensive package is an electronics toolkit integrating all the functions. needed for the design, development and test of electronic circuits. TINA makes it easier and faster to simulate circuits with realistic characteristics.
TINA comprises a soffware simulation and analysis package, together with a complete range of 'virtual' test and measurement instruments for testing design theories as well as breadboards, prototypes or any other electronic product.
The demonstration version of TINA presented free with this issue of Electronics World allows circuits of any size to be constructed but analysis only works on a limited number of nodes. Save and print facilities are also disabled.

PSpice compatibility

Unlike many circuit design systems, TINA can save your designs as an industry standard PSpice format netlist - which means that design concepts are based on the specifications of actual components. This makes simulation more realistic and the identification of faults easier. It also simplifies 'what if' questions, and allows different components to be tested quickly, easily and without the need to build breadboards. This obviously saves considerable time, as well as the cost of components
Comprising all the necessary hardware and software, Tina is a complete system which allows digital, analogue or mixed-mode circuits to be simulated. Tina is also a powerful analytical tool and can perform AC, DC or transient analysis as well as noise, tolerance and Fourier analysis.

Comprehensive library

A comprehensive library of components contains power supplies, resistors, capacitors, inductors, amplifiers, switches etc. Using familiar Windows-style commends, these are simply selected, dragged and dropped into the desired circuit diagram Component values can then be changed to create and test the feasibility of the ideal circuit
The library features digital components, including a large selection of TTL and CMOS standard devices.

Low price

Tina, is very cost effective. A single copy of the software costs only $£ 299$ and a 20 -user site licence is only $£ 1,800$, excluding hardware. Special discounts are available for educational establishments.
For further information contact: Tandem Technology Limited, Breadbare Barns, Clay Lane, Chichester, West Sussex, PO18 8DJ, telephone: 01243576121 fax: 01243576119 , e-mail 101626.3234@compuserv.com
*Available to UK readers only.

Virtual instruments - supplied with the Tina circuit design tool is a complete range of test and measurement 'virtual instruments' - including a function generator, multimeter, power supply and oscilloscope. These are used to analyse test circuit designs as well as providing real time test and measurement of actual circuits, profotypes and breadboards. The benefit of these 'virtual' instruments is that they operate via the PC. This makes it easy to incorporate measurement values into calculations and analyses.

Until 4 Oct ber, this voucher is woth $£ 100$ off TINA's normolprice of $£ 299$ excluding VAT and delivery. Simply send this voucher together with £237.93 - fully inclusive - to Tandem Technology Limited, Breadbare Barns, Clay Lane, Chichester, West

Loading your free software

Full instructions on loading the demonstration version of Tina are given in the README.TXT file on the disk. This file is accessed by inserting the disk in drive A and double-clicking on the file under Windows' File Manager. Once the software is installed, this read-me file appears as a Windows icon.

Rod Cooper's second set of reviews covers Ranger2 and Electronics Workbench.

PCB CAD review subjects

This review, which began last month and continues next, covers the following ten products.

PCB Designer: Niche Software Ltd, tel. UK 01432 355414. £49 inclusive (see September issue).
PIA: AW Software, tel. Cermany +49 89 6915352. PIA std 99DM: extended 171 DM 32bit 286DM inc tax (see September issue).
Easytrax: Protel International pty, tel. Australia 4084377771,
UK PDSL, tel. 01892663298 (see September issue).
£6 copying charge.
Ranger2: Seetrax CAE Ltd. 01705591037 , $£ 150$ exc $£ 10 p+P$ and VAT.
Electronics Workbench: Interactive Image Technologies Ltd (Canada), tel. 0014169775550 . UK Robinson Marshall tel. 01203233 216, £199 exc p+p and VAT.
Quickroute 3.5 Pro+: Quickroute Systems Ltd.
CircuitMaker: MicroCode Engineering.
Propak: Labcenter Electronics.
Proteus: Labcenter Electronics.
EasyPC Pro XM: Number 1 Systems.
Note that although it started last month with a couple of smaller packages, this review is not in any order of complexity or competence.

Acommon draw back in computer-based pcb design programs is that the small crt screens often used are not an ideal drawing board. This fact is never mentioned in the glossy brochures. A standard 14 in screen on a typical pc does not give you 11 in by 8 in to draw on. Do not be surprised if you find that you have a drawing area of 7 in by 6 in or less; you are not going to get much circuitry in that area.
The rest of the screen is taken up with program controls, and most irritating, the program maker's name, logo or other useless clutter. Fortunately, some programs give a much better performance in this region than others, as detailed in the individual reviews.
Most programs use a large sheet for drawing on - A3 for example - and you are supposed to pan around with your small viewing window if you want to see the rest of the circuit. This illustrates the importance of having auto-pan or a good manual panning method.
Larger circuits will have more than one page which will of course be out of sight altogether until you make a page-change request. This is not as easy as turning over a page of a circuit diagram, although some people would have you believe otherwise.
Because components appear small on a small screen, you will have to zoom in to get resolution of the parts and their pads, and zoom out again to see the circuit. This makes it essential to have an efficient method of zooming and panning.
I think relative to having the circuit drawn out before you on real paper, all methods of repre-
senting the circuit on screen are inferior if are planning a circuit from scratch - ie actually designing rather than just drafting. You could of course buy a larger monitor - say 17in or 21 in , with higher resolution - but these are still very expensive and very bulky compared to the common 14in model and you still will not solve the problem completely.
Neither is the mouse a good drawing tool; a pencil and paper is much better than a mouse and mat if you are experimenting. Some people prefer a digitising tablet. Proponents of the tablet system say that it is more accurate than a mouse, easier to use in CAD, faster, and comes more naturally to someone used to drawing with a pen and paper.
I use a digitising tablet for CAD, and a mouse for everything else, and I have to agree. However, on the down side, tablets are at least twenty times more expensive than a mouse and it will come as no surprise to leam that some programs that work well with a mouse do not work well with a digitising tablet. I tried every program with both mouse and tablet.

Standards and formats - or not

Unfortunately, there is not much standardisation in this branch of computer-aided design. Each maker has its own way of presenting component outlines, drawing schematics, etc. etc. Few commands or menus are standard. This means that if you take the time and effort to learn a program produced by one company, you will have to go through the same time-consuming process all over again if you change to another.

The good news is that there is a trend towards standardisation in the output format for net lists and component lists and for computeraided manufacturing although there is a long way to go in this respect.

Windows or dos?

The choice between dos and Windows will be of prime interest to the prospective buyer, with many opting for Windows simply because that is the trend. Much of what is presently available runs under dos. The many advantages of running a program in Windows that apply to business and accounting programs and the like, is to a large extent lost on pcb design software.
Free of the constraints of Windows, dos programmers can sometimes come up with a superior user interface. You can expect Windows programs to be more intuitive initially. But this will not enable you to operate a Windows system straight away unless it is very simple or small. You will find that you still need to read the manual, just as with a dos program. Although I am a Windows enthusiast myself, when it comes to pcb design, I regard dos as a viable alternative.
Programs written solely for dos are usually much cheaper, often have modest ram requirements, and take up less hard disk space than the equivalent Windows program. In addition, dos programs are nearly always quicker, for a given hardware setup.
Another good reason for choosing a dos program is that XT, AT, and 286 pcs that have been left behind in the Windows revolution will probably run it perfectly well. The money you save may be better spent on a 2 lin monitor and a digitising tablet.
Finally, most dos programs are mature products with the bugs and snags already designed out. If you buy a newly-produced Windows program it would be unreasonable to expect no bugs at all.

Printers or plotters?

Windows 3 x provides a wider range of printer drivers than dos programs but on the other hand, pen plotters are not as well supported. Ironically this may provide a good reason for sticking to dos if you want to use your existing plotter.

With a few exceptions, most popular pen plotters, laser printers and matrix printers are well supported by the dos programs under review, so a list for every product is not included. Such lists are regularly updated so it is best to check that your printer is supported with the software distributor before buying.

Regarding the speed relationship between dos and Windows, if you want a bench-mark, then try screen redraws. These are fast in dos, and annoyingly slow in Windows. In fact, you need a very fast pc to make a Windows redraw to equal a dos redraw. Redraws are very important because they occur all the time in computer-aided design; for example, every time you pan, zoom or refresh.

Next month - Rod presents more reviews and explains what to watch out for with autorouters.

Review 1
 Ranger 2 by Seetrax

Ranger2 is another dos-based product that will run on any pc from an XT upwards. The minimum requirements are modest - an IBM PC XT, 640 kB of RAM, 20 MB hard disk, EGA card and monitor. To test this, I ran it on a 286 , and found no problem. It ran very well on the 386SX.
Ranger 2 consists of a schematic drawing program with schematic capture, and an autorouter. The two are fully integrated and there is not much scope for connecting to another system. However, there is a facility to import a net list in the Futurenet format, and if you wanted to connect to a simulation program, you can export a net list in the PSpice format. For the latter, it is necessary to type in the PSPICE model types for each component before compilation.
A very good evaluation package is available which is fully-operational and will allow circuits with up to 64 components or 128 pins to be completed. The evaluation obtained via Seetrax is just $£ 5$ but, unusually, includes an excellent short-form printed manual. This is a sound marketing technique - Seetrax clearly realise that people starting out in CAD, such students and fledgling engineers, will use the full process of their evaluation package to make real boards, get to like the system and then go on to buy the full product.
This contrasts sharply with some other makers, whose evaluation packages are either of the non-usable or slideshow variety, or sometimes so cut-down and disabled that they cause more irritation than desire to buy the product. The manual for Ranger2 is comprehensive and well-written. The order in which subjects are placed is a little odd, but then most other manuals were like this.
The schematic drawing part of Ranger 2 has a large working area, about 8.5 in by 6.5 in on a 14 in monitor. You can chose a page size from Al to A5 to work on, and combine up to 8 pages in one design. The system is partly menudriven by full-screen menus to start the job, leading to the drawing screen with a single vertical 17 - button bar on the left with an abbreviated name
of the control on each button.
You quickly get to know the buttons from their names, and personally I think this is a much better system than using icons, even if the icons have pop-up help text added. It has been said that a well-designed GUI for dos can beat a poorly-designed Windows presentation. If so, then Ranger 2 is a good example of this.
A second horizontal sub-bar can be generated from the first bar as required to give various options. I found this to be a very acceptable operating method, giving maximum drawing area without sacrificing control. The drawing method is a proper orthogonal system with automatic junction dot placement.

One excellent feature of Ranger 2 is that the drawing of any one connection is not enabled until you have located a component pin or pad, and then the drawn line is not fixed until you have connected it to another permitted point. A good snap-to system means that you do not have to hit the pin exactly as required in some

Fig. 1. Schematic of the fest circuit. The lower horizontal button bar is generated from one of the vertical buttons on the left.

Fig. 2. Close-up of part of schematic showing clarity and definition of symbols.
other systems. This ensures the connectivity of your schematic.
You cannot hang lines in space by accident, your drawing cannot wander off to tie you in knots, and you cannot go wrong. This type of system, which is used in other programs as well as Ranger2, is a boon.

Power lines to ics are not shown in the schematic, just like most conventional circuit diagrams, but are automatically added later in the process.

Locating parts from the library system is easy and quick once you have read how to do it. Until you become familiar with the library, you have to refer to the manual to find out which volumes contain which parts. There is no on-screen help, but the manual provided with both the evaluation disk and full package is clear and concise.
The library size is adequate for general-purpose use. Parts are transferred to a parts bin on the screen which can be turned off to give more screen area; normally you would do this once the parts are on the screen. This is akin to the practice you would use on the real bench. Parts are described in text and only assume graphic form (ie as a symbol) when they are in the drawing area.
Moving the symbols around the drawing was smooth and precise. Text moves with the sym-

Fig. 3. Typical Ranger2 rat's nest, used for above autorouter tests. Note power rat-lines in blue.

Fig. 4. Results of standard autorouter on single-sided test circuit. Note incomplete rat-lines in green.
bol and stays upright if the symbol is rotated, and can be moved anywhere independent of the symbol in order to tidy up the diagram. There is no autopan, but pan is easily selected by a single click and works well. Autosave is included and the time between saves is adjustable.

Generating a net list

Generating a net list from the schematic (which incidentally Seetrax call a parts/wiring list) was a simple one-step operation. The parts/wiring list can be readily viewed to check for mistakes, but with Ranger2's connectionconfirmation drawing program there are unlikely to be any errors arising from the processing system.
Defining the board profile was easy compared to other programs, but what impressed me was the way in which Ranger 2 generates the rat's nest. Many programs dump a pile of components in a comer of the screen, and on big circuits it can be difficult to sort them out. Not so with Ranger - the parts are fed in one at a time and in another smooth and precise mouse manoeuvre you place them into the position you want. When all the components have been fed in, a message tells you so. This is one of the better rat's nest systems of the systems I have inspected, in my opinion.

The rat-lines move with the component, except for the power lines which are treated separately in Ranger 2. However, they can be reconnected by a single mouse-click on the appropriate button, and it is a method you soon get used to. Rat-lines self-optimise as you move components, ie they choose the shortest route, which is a considerable help.
Having arranged the rat's nest, the next step is to digitise the lines and pads prior to autorouteing. This is an extra step peculiar to Ranger 2 and it is hard to see why it has not been designed out. It is required less if you have the more powerful Specctra autorouter. In most circuits being routed in Ranger 2 you would digitise and then autoroute the power lines first, then repeat the process for the signal lines. You could autoroute all the lines at once if you wanted but the Ranger2 approach gives the power lines priority, which in most cases is the correct way.

Pre-run configuration of the autorouter is reasonably comprehensive, but was easy to understand and perform. The operation of the autorouter can be biased for or against such things as the number of vias, 45° tracks, and tracks going in
the 'wrong' direction, ie away from the directline route. Interestingly, one of the parameters you can specify is how long the autorouter is allowed to take for each track it attempts. This feature is not seen on many autorouters, and on large boards it can be useful to limit overall run time. The grid size could be also varied.
One would suppose that such an autorouter would have problems with the amount of memory it would use on large boards. The notorious dos memory problem is side-stepped in Ranger 2 by dividing the board into windows and doing each window in turn. This takes more time and it would be better if the autorouter utilised expanded or extended memory like other dos programs.

Routeing double-sided boards

The standard autorouter does a fair job on dou-ble-sided boards. The performance on singlesided boards was not so good, despite a type of Lee's algorithm being listed as one of the autorouter's strategies. An example is shown in Fig. 4. Here, it has failed to route some of the tracks even though they are obvious to a human, and despite a generous time allowance being provided at the programming stage. This is not to single out Seetrax for criticism, because none of their competitors' autorouters at this price level were any better on singlesided boards. This autorouter falls into category C. For category system see next review.
The big advantage of the Ranger 2 standard autorouter is its speed - it was comparatively quick even on large boards. Another advantage is that if a large number of un-connectable tracks is reported by the autorouter, it is particularly easy in Ranger2 to delete just the autorouter artwork, re-arrange the rat's nest and have another go.
Manually routeing of the tracks that the autorouter failed to connect is performed by the rubber-banding technique. I don't think Ranger 2 is intended for making boards by manual routeing - it is really meant as an fully automated program with a manual routeing option for completing boards.

Summary

Ranger2 is an excellent product for doublesided and multilayer boards and is recommended. At only $£ 150$ it represents the best value for money for a full system, of the programs reviewed. It is easy to learn how to operate, and is relatively vice-free. There are two ways to upgrade, as follows.
As well as the standard autorouter, another type called the 386 Rip-up autorouter is available to purchasers of Ranger2, in an optional utilities bundle priced at $£ 50$. This bundle includes Autocad in/out and Gerber import. As the name suggests, this autorouter needs a 386 or better to make it work, as it uses the 386 protected mode to access extended memory. I used it firstly with 4 MB of extended memory, but it ran better with 8 MB .
It uses rip-up-and-retry strategies which improve its efficiency over the standard autorouter very considerably, but does not have push-and-shove. It can autoneck, and can route

Fig. 5. Results of Specctra autorouter on the same rat's nest 100% completion at first attempt.

Fig. 6. Results of 386 Rip-up autorouter. Again, 100\% completion.
at angles as well as in the usual orthogonal mode. It is a grid-type autorouter with an adjustable grid size. There are comprehensive means to configure it, much more so than with other autorouters in this review, and although the set-up therefore takes longer to perform than the standard Ranger2 autorouter, it is time well spent, as the results produced are much more satisfactory.
The 386 Rip-up autorouter has no difficulty in routeing 100% on double-sided boards. In addition it can route small single-sided boards 100% given a good rat's nest layout, and the test circuit results put it in category \mathbf{A}. It can be a little slow, but this can be used to advantage as you can see where it is having trouble routeing - ie on a 386 the process is not so fast that it is too quick for the human eye.

This can help with re-arranging the rat's nest if you decide to re-route. I would rate the power of this 386 autorouter as lying well above the standard Ranger2 autorouter but a little below the Specctra product which is dealt with next.

The manual for the 386 Rip-up is supplied on the disk and is 34 pages of A4. Because Seetrax have fully incorporated the Specctra autorouter into Ranger2, they say they are doing no more development work on the 386 Rip-up autorouter.

Besides these two autorouters and perhaps in recognition that the standard autorouter, albeit capable, is a medium power router, Seetrax offer Ranger 2 coupled to a much more powerful autorouter for $£ 250$ extra. This is the well-known Cooper (no relation) and Chyan gridless, re-entrant Specctra autorouter. Again, this is good marketing technique since someone starting out in CAD with Ranger2 has a well-defined path if he wants to up-grade.

With other systems, there is often no option for a more powerful autorouter, and if one is required (perhaps for a especially tough job) the only way forward is to buy a complete new system and undergo the relearning process, or buy a third-party autorouter, with the attendant problems with transfer of information between systems.
How much better is this autorouter? Amongst its many features Specctra has rip-up-and-retry, plus push-andshove, and I quickly discovered these make it probably the most efficient autorouter in this price bracket, being able to route 100% on doublesided boards, with the fewest vias, and in very reasonable times. Specctra is one of the few autorouters that could route small to medium single-sided boards 100%, and to achieve this it is only necessary to put in just a little extra work on the rats-nest to get optimum parts placement.

This autorouter requires a 386DX and a coprocessor and 8 Mb of RAM minimum, 80 MB of hard drive and at least MS-DOS 5.0. Even with this it will still page to disk on medium sized boards due to lack of RAM. If you increase RAM to 16 Mb or more this becomes less noticeable. 32 MB is recommended for large boards.

Protected autorouter

Unfortunately this autorouter is protected against piracy by a dongle. If you have not come across this device before, it is a small gadget which plugs into the pc's parallel port and without it you cannot run Specctra. It should (in theory) be transparent to printers, plotters and other devices that use the parallel port. Dongles got themselves a bad name in the early days for unreliability, so you don't see many of them around today. However, the Specctra dongle seems to work quite well.

The snags the dongle brings with it are threefold. First, it is inconvenient to scrabble about at the back of the pc just to get one program to work. This may be acceptable if you have only
one dongle, but it can become a nightmare if you have two or more to contend with from other programs.
Secondly, like any exposed piece of hardware fixed to the outside of the pc, it is vulnerable to damage, either physical or electrical. Snapping or bending a pin is a favourite. You then have to go cap-in-hand to the supplier for a new one.
Thirdly, I have found that it is very easy to misplace or lose completely such a small item as a dongle, and you are then in the same position as if you had damaged it. This isn't too bad if the supplier is still in business, at least you can buy a new one, but if the firm has been taken over or has ceased trading it means your program is then useless. There are other ways to secure software against piracy, many of them better than a dongle and cheaper too; dongles add a significant amount to the cost of software. This autorouter is the only product in this review that is routinely supplied with a dongle.
The Cooper and Chyan autorouter has extensive and flexible configuration controls. The instruction book at 120 pages long is larger than some manuals describing full systems. Most unusually, a manual on the Specctra design language - intended for use by programmers - is also provided. All this may appear daunting to those who are not fully computer-literate or who have turned their back on dos.

However, to Seetrax's credit they have provided their own Ranger 2 interface and shortform configuration for Specctra, and this gets round any possible objections to the complexity of the autorouter. In addition, this approach eliminates one of the main objections to using a third-party autorouter, and that is having to learn another set of rules, another terminology, another screen format and another programmer's foibles.
In operation, Specctra is configured for routeing in Ranger2, the work is done in Specctra, then a file is automatically passed back to Ranger2, so the results are viewed in Ranger 2 format and processed from then on in the normal Ranger2 system - all very straightforward. Indeed, using the Seetrax interface you would not notice you are using a thirdparty autorouter were it not for the Specctra pages flashing past during routeing.

I found Ranger2/Specctra combination easy to operate, which, considering the whole thing is in dos, and from two different sources, is remarkable. The version of Specctra provided by Seetrax gives improved manufacturability by putting an optional mitre on track corners and also by spreading tracks out to take maximum advantage of available space. This gives a very satisfactory finished product.

Summary of 386 and Specctra routers.

 The 386 autorouter is a worthwhile and inexpensive addition to the standard Ranger2 package and is recommended.The Cooper and Chyan autorouter gives even better results, and is much quicker than the 386. It is altogether a superior autorouter perhaps the best of this review. However, there is the dongle aspect to consider.

Review 2 - Electronics Workbench

This is a essentially a simulation product, ie a schematic drawing and capture program with integrated digital, analogue and mixed simulations, but there is the capability to connect it with a third-party pcb-design program. There is no specific pcb package allied to it, but an add-on program at $£ 49.95$ translates the schematic into Orcad, Tango, Eagle, Protel, Ultimate and Layol net lists for export. (This add-on is sometimes provided free - contact Robinson Marshal for details) Another add-on at $£ 49.95$ transfers SPICE net lists in and out. I tested the Tango and SPICE transfers - see later.

There are various versions of Electronics Workbench which can run under Windows $3.1(4 \mathrm{MB})$ as a 16 -bit program, or as 32 -bit program under Windows 3.1 (6 MB) with Win32s, or under Windows 95 (4MB) or NT (12 MB). The figures in brackets indicate the minimum amount of RAM you will need for each version. Of course, more RAM will help whichever version you choose. They are all supplied on the same set of three disks, which incidentally include Win32s if you don't already have it. The recommended minimum pc is the 486 , with co-pro if you have the 486 SX cpu , but I ran both 16 and 32 bit versions with Windows 3.1 on a 386 SX with copro and 8 MB of RAM and they both performed well.

Two books are supplied, one a user guide, the other a technical reference. These are well-written, but include large sections that refer to a dos version, and these can be a little distracting as they constantly get in the way. A third booklet is available as a teachers' guide with the educational version of Electronics Workbench, a version which enables faults to be set for student exercises. Of particular interest to teachers will be the many sample circuits already drawn and set up with instruments, ready to go. There is comprehensive on-line Help including a very good itemised explanation of the symbols in the generic libraries.
At first glance, Electronics Workbench may appear to be very similar to CircuitMaker. Indeed, they are both aimed at the same sector of the market, and both include facilities like fault injection for educationalists. However, both style and operating modes are different in many ways.

Using Workbench

The screen drawing area is about 9 in by 5 in without the parts bin, and about 7.5 in by 5 in with it. The actual drawing area is about four times bigger than this, with no support for multi-sheet schematics. There is a dot grid to assist drawing but I did not find it very useful because it did not appear well defined and the pale green dots did not show up well against the grey-white background. There are no colour options for the grid.

Fig. 7. Shows manually generated schematic. Note the active parts bin, how the voltmeter is connected and how readings are presented on it, and the realistic on/off switch at the top r.h.s.

Fig. 8. This is a screen from Quickroute after a TANGO net list has been imported from Electronics Workbench for subsequent pcb artwork production. Note the rat-
lines to the missing connector footprint are absent - see text for explanation.

However, use of the grid is not a high priority and is confined mainly to part placement because there is an automatic orthogonal drawing facility - you just point the mouse at the pins you want to join and the rest is done for you. This is a system similar to Propak's WAR and CircuitMaker's SmartWire. Unlike those two, there is no alternative facility for manual drawing to the automatic system.
If you do not like the results - and this can happen frequently as the schematic grows in size and density, and the auto-wiring program finds it harder to route - then you edit the connections using a technique very similar to rub-ber-banding, except in this case the results remain orthogonal. I prefer to have both methods at hand, using the auto-wire on small diagrams for speed, then reverting to manual if the diagram gets congested or large, because even if you are only moderately skilled at diagrams this combination saves on time otherwise spent editing. However, I should emphasise this is a personal preference.

Improved button bar?

Electronics Workbench does not use the familiar button-bar style to access functions like delete, pan, rotate etc. Where you would normally find the button-bar there is a row of simulated instruments such as signal genera-
tors and 'scopes. Underneath this there is a type of button bar, but the buttons do not implement tools; instead each of ten buttons opens a library volume. Most of the other functions you would expect to find in a button bar are in the drop-down menus. In practice, I found this a good arrangement.

The library of generic symbols is presented, one volume at a time, in a parts bin on the left-hand side of the screen, which can be scrolled to reach those symbols not on view. The method used here is to select a generic part, position it on the drawing area using drag and drop, then open the Circuit Menu and select the specific label, value and simulation model for that part.

This is repeated for each individual part you cannot specify a group of identical parts such as resistors of the same type, for example. Although a logical system, and though I liked it, I found it to be rather slow. A few of the common symbols have default values, such as the op-amps, which are assumed to be 741 type unless re-labelled manually. The labels and values usually stay upright during rotation, although the manual advises some may rotate.
There are a little over a hundred or so generic symbols and 350 models in the basic version of Electronics Workbench. This is

PC ENGINEERING

Fig. 9. Shows schematic automatically generated from imported SPICE net list from Quickroute. Note how instruments have been removed from instrument bar and connected. The 'scope window has been maximised.
probable sufficient for schematic drawing for making pcbs and for general-purpose usage as a simulation tool. An option of a further 2,100 models is available on a separate disk costing f99. A significant omission in the libraries was a volume on connectors. This does not matter in simulation, but it is of major importance when it comes to transferring a net list to a pcb program, because most circuits have connectors of one sort or another. This limits the usefulness of Electronics Workbench outside the simulator field as it stands at present.
To start drawing a connection you click on a component pin with the left mouse button. This button is also used to select symbols for editing, and at first I found it was all too easy to select symbols instead of drawing connections. It needed some practice until I was able to sort out one from the other. I would prefer to see the right-hand mouse button used for selecting symbols for edit, as in other programs. There is inhibition of bad connections and automatic junction dot placement, so it is easy to avoid making connectivity errors.
Panning the drawing area is done with the usual Windows scroll-bars. I was mildly surprised to discover there is no zoom feature for magnifying/reducing the diagram in the drawing area. The menu item called Zoom is used for something else - opening up instrument or circuit icons. With a 14 in 640×48016-colour screen, the symbols are just about sufficient in size and resolution to get away without zoom, and after a while I discovered I could carry on reasonably well, but I am sure someone with less than good eyesight would experience difficulty - they would need a larger monitor. Zoom is included with so many programs for good
reasons. Apart from this, the schematic drawing program was intuitively easy and pleasant to use.

Virtal instruments

Using the 'instruments' from the instrument bar bears an uncanny resemblance to taking a real instrument down from the shelf and making real connection to an actual circuit. The instruments in Electronics Workbench are designed to look something like the real thing, and connection to a circuit (although idealised) is also intended to re-assure the designer, and this is a success. As an added touch of realism, any plots or readouts on the 'scopes, dvms etc., appear on the actual instrument itself instead of in a window on the monitor screen.
This graphical technique is so easy and intuitive that anyone accustomed to working with proper instruments would feel at home with it. There are nine instruments provided in Electronics Workbench; voltmeter, ammeter, dual-beam oscilloscope, signal generator, d.v.m., word generator, logic analyser, logic converter and bode plotter covering the usual digital, SPICE-based analogue and mixed simulations. Like CircuitMaker, there is no plot of input/output impedance in the analogue section, and no peb simulation such as Nol's Layan.
Creating a net list in one of the formats mentioned above for export to a pcb drawing program is also straightforward. I generated a Tango net list in Electronics Workbench and exported it to Quickroute 3.5 Pro+. I chose Quickroute for this because the net list transfer is particularly easy as both products are in Windows, and if you look at the Quickroute data, you will see that Tango is the preferred format for imports.

As Fig. 8 shows, this was successful except for the connectors; no fault of Quickroute's - I expected the connectors to be missing as there is no connector library in Electronics Workbench, as mentioned earlier, so no connector footprint can be transferred. No doubt you could overcome the connector problems by making up your own connector symbols for Electronics Workbench and then tying them in with the connector libraries in Quickroute but this is a lot of work.
You could also try adding the missing connectors by editing the rat's nest, but this is also fraught with difficulty. I think many designers would say - why go to this trouble when there are packages that are fully integrated and where these difficulties do not exist?
If you already had a schematic capture/pcb package and wanted a simulator, you might consider using Electronic Workbench as an add-on package. I tried exporting a SPICE net list from Quickroute (although I could equally well have used Propak) into Electronic Workbench, and it worked well. The schematic came out a little awry, but it was intact, and you could easily re-arrange it if you wanted to. But by adopting this system you would end up with two schematic drawing programs, one of which would be mainly redundant.

Summary

As this review is about pcb artwork production it may seem unusual to include Electronic Workbench, which is really a simulator, but as part of a pcb producing program Electronics Workbench has good potential, hence the provision of a net list exporter. The lack of a connectors volume in the symbols library is an impediment at present.
What Electronics Workbench would need in order to be considered seriously for pcb artwork production is a fully integrated Windows pcb program with autorouter, preferably with rip-up-and-retry strategies, or alternatively an alliance at the technical level with an already established pcb product. It comes so very close to meeting these criteria when allied to Quickroute 3.5 (with the new AR3 autorouter) that it would be astonishing if the omission in Electronic Workbench's library was not put right. Such a combination would make a very attractive proposition indeed to a much wider group of engineers and designers.
As a simulation program, Electronics Workbench has many good points, but the absence of the zoom feature will not please many people, and this needs to be corrected. The lack of plots for input and output impedance make the analogue simulation less attractive to the serious engineer, and this feature really needs to be added. These points excepted, the presentation style of simulations is excellent for educational and demonstration purposes.

Second User Test Equipment

We are well known for our quality used Test Equipment Our list is extensive, ranging through most disciplines.
Here are a few examples - telephone for further details.

Marconi Spectrum Analyser TF2370.
Bradley Oscilloscope Calibrator 156
Bird Termaline, $2.5 \mathrm{~kW} 50 \Omega$
Philips Function Generator PM5134.
Hitachi Oscilloscope V222,
20 MHz
Rapid Oscilloscope 7020,
20 MHz
20 MHz
PM5716.
£249
PM5716.................................... £495
Amprobe AC Recorder LAV3X....£75
Amprobe Temperature Recorder
LT8100. \qquad
Emerson UPS 1.5kW................. 599

Marconi LCR Bridge TF2700.... £149 Marconi LCR Bridge
TF1313A $£ 125$
Mahogany Cased 5kV Megger
(Collectors)............................ £POA
Taylor Valve Tester 474£59
Philips RF Generator PM5326 £395 HP Frequency Counter

HPS AMFM Generator 62A
Taylor AM/FM Generator 62A£69
Marconi Attenuator TF2163£195 RE Mega-Ohmmeter/pica-
Ammeter IM6.............................£295
Ferrograph Recorder test Set RTS2.
.. $£ 95$
HP Vector Voltmeter
HP8405A..................................£249

HALCYON ELECTRONICS vSA 423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR SHOP HOURS 9-5.30 MON-SAT. TEL 0181-542 6383. FAX 0181-542 0340

The Headphone Amplifier Box

Balanced or unbalanced microphone or line input to headphone output
Professional portable units operating from an internal PP3 battery or external DC supply

\star Precision transformerless balanced input \star Bridged headphone output drive \star Sensitivity selectable over a wide range of input levels \star Low noise and distortion \star High common mode rejection \star Loop through facility \star Extensive RFI protection

The Balance Box (precision mic/line amplifier)

- The Phantom Power Box - The One Stop DIN rail mounting radio frequency interference filter and voltage transient protector for voltage and current loop process signal lines

Conford Electronics Conford Liphook Hants gu30 7QW Information line 01428751469 Fax: 751223

- Field Electric Ltd.
 Tel: 01438-353781 Fax:01438 359397
 Mobile: 0836-640328
 Unit 2. Marymead Workshops.
 Willows Link. Stevenage. Herts. SG2 8AB.

Sony New 1.44Mb 3.5" D/Drives
$£ 14.50 \mathrm{c} / \mathrm{p} £ 2.50$
Sony 9 " Super Fine Pitch Trinitron RGB VDU
£35 c/p 12.50
AT Keyboards for IBM Compatibles
£7 c/p 3.50
$12^{\prime \prime}$ Colour SVGA 800×600 NEC
£ $45.95 \mathrm{c} / \mathrm{p} 14$
Marconi Inst = 2830 Multiplex Tester
£ $45.95 \mathrm{C} / \mathrm{p} 14$
$£ 300$
Marconi Inst = Data Comms Tester
£385
Marconi Inst = Digital Line Monitor
£350
Marconi Inst = Digital Analyser £375
Famell PSU 0-70V 0-5A0-30V 0-10A £245
Siemens Data Line Analyser K1190
£375
Avo AC/DC Breakdown/lonisation Tester RM 215L1
£175
Tektronix DAS 9100 Digital Analysis System
Tektronix 7CT 1N Curve Tracer
$£ 295$
Tektronix 7A15A Amp
Tektronix 7511 Diff $=$ Comp $=$
Tektronix 7A13
$£ 100$
12 VAC 200 Watt Transformer
£140
27 VAC 130A Transformer New
7 VAC 130A Transformer New
Acer Expansion Chassis (Box) for Notebook/Laptop etc. Contains 50W
PSU. Fan. 2×16 bit. 1×8 bit Slot. New \& Boxed
Philips PM 3240.50 Mhz. Scope D/Trace
Gould OS300 20 Mhz . Scope D/Trace
Leader LMV 181A AC Millivoltmeter
Racal Inst: 9915 UHF Freq: Meter 500 Mhz
Racal Inst: 9916 UHF Freq: Counter 500 Mhz
HP 8413A Phase Gain Ind:
Siemens Pattern Error Detector 140 mbiv S
HP 74758 Pen Plotter RS 232
HP Colour Pro 8 Pen Plotter RS232
HP 7470A Plotter HPIB
Hand held microscope fibre optic
PLOTTERS COMPUTERS COMMUNICATIONS PSU . VDU'S VIDEO FANS • TEST - CABLE - NETWORK PRINTERS
DISK DRIVES ALWAYS IN STOCK. OVERSEA'S ENQ. WELCOME.
TELEPHONE ORDERS ACCEPTED.
C/P DETAILS PLEASE RING. ALL PRICES PLUS 17.5\% VAT.

```
(INCIE\O. IIION REPL} (ARI)
```

The MICRO MODULE A NEW LOW COST controller ethat gives you customisation 0 2 4

FEATURES

- $16 / 32$ bit 68307 CPU for fast operation
- Up 101 Mbyte of EPROM space onboard
- Up to 512Kbyte SRAM space onboard 32 Kbyte SRAM fitted as standard R 5232 serial with RS485 option - MODBUS 8 other protocols supparted Up to 22 digital VO channels
- 2 timerlcounter/match registers
- HC port or Mbus \& Watch dog facilities

Large Proto-typing area for user circuits
Up to 5 chip selects available

- Program in C. $\mathrm{C}++$, Modula-2 \& Assembler
- Real Time multitasking Operating System

OS9 or MINOS with free run time lisense
option
Manufacturing available even in low
volumes
A full range of other Controllers available
P.C. 'C' STARTER PACK AT ONLY £295 + VAT The Micro Module will reduce development time for quick turnaround productsprojects and with the P.C. ' C ' starter pack allow you to start coding your application immediately, all drivers and libraries are supplied as standard along with MINOS the real time operating system all ready to run from power on.
The ' C ' Starter pack includes: A Micro Module with 128 Kbyte SRAM, PSU, Cables, Manuals, C compiler, Debug monitor ROM, Terminal program, Downloader, a single copy of MNNOS. Extensive example software, and free unlimited tectnical support all for $£ 295$ + VAT

Cambridge Microprocessor Cambridge Micror
Systems Limited

Unit 17-18, Zone 'D', Chelmsford Road Ind. Est.
Grea: Dunmow, Essex. U.K. CM6 1XG
Phone 01371875644 Fax 01371876077

PC ENGINEERING

12-bit analogue i/o via LPT

Although simple, Yongping Xia's LPT analogue interface resolves to $\mathbf{1 2}$ bits.

Equipped with a-to-d and d-to-a converters, a pc can perform many measurement and control functions. Figure 1 shows an easy way of providing 12 -bit a-to-d and d-to-a conversion. Driven by the software below, the circuit interfaces with the pc through its printer port.
The MAXI76 is a complete serial 12 -bit a-to-d converter with a builtin track/hold circuit and a voltage reference. Two signals - clock and convert start - are needed to drive the chip. Once started, the a-to-d conversion result is sent out through the DATA pin in two's complement, high-to-low serial order. Analogue input is buffered by $I C_{1 B}$ with range of -5 V to +5 V . The MAX176 needs +5 V and -15 V power supplies and provides a -5 V reference output.
The MAX543 is a 12 -bit serial d-to-a converter. Its current output is converted to voltage by $I C_{\mathrm{IA}}$. Required -5 V reference is provided by a MAX176. Resistors $R_{1,4}$ adjust the d-to-a converter offset and gain respectively. The d-to-a converter's output range is also -5 V to +5 V .
The a-to-d and d-to-a conversion procedures shown are in \mathbf{C}. In this application, two printer port addresses $(0 \times 37 \mathrm{c}$ and $0 \times 37 \mathrm{~d})$ are used. One is for output and the other input. Note that the base address may differ between computers. You should find details in your user guide.
The d-to-a conversion procedure converts 12-bit data in serial order and sends it to MAX543 through the printer port pin 5. Conversion data is stored in 'data out'. An output register named 'out' is used to map the base address printer port. The a-to-d conversion procedure generates

MAXI76 required CL(oc)K and CONV(ersion start) signals through pins 2 and 3 of the printer port, reads serial data via printer port pin 15 , and returns the reorganised a-to-d conversion result.
These procedures can be included in any C-based application program. If an a-to-d conversion is needed, call the a-to-d procedure and it will return the result. If a d-to-a conversion is required, simply call the d-to-a procedure and pass the data to the procedure. Conversion time depends on the type of pc is used. It takes around $75 \mu \mathrm{~s}$ for a-to-d and 68μ s for d-to-a on a 50 MHz 486 machine.

Fig. 1. This circuit provides 12-bit a-to-d and d-to-a converters for the pc through its printer port.

Assembly language for reading and writing the analogue data converters via the pc's LPT port.
\#include cstdio.h~
\#include <dos.h>
\#include <conio.h~
\#define OUT PORT $0 \times 37 \mathrm{c}$ \#define IN PORT 0x37d \#define CLOCK HICH 0×01 \#define CLOCK LOW Oxfe \#define CONVST HIGH 0×02 \#define CONVST LOW 0xfd \#define LOAD HIGH 0x04 \#define LOAD LOW 0xfb \#define DAC HIGH 0x08 \#define DAC LOW 0xf7 void dac(int data out); int adc(void);
/* D-to-A conversion procedure */ void dac(int data out)
int i, out;
out $=0 \times 04 ; \quad \quad$ * set DAC's LOAD to be high */
for $(i=0 ; i<12 ; i++) \quad / *$ send out 12-bit DAC data */
if (data out $<0 \times 800$)
/* if bit 11 is low, *)
$\{$
out $=$ out \& DAC LOW; $\quad / *$ set output bit $=0$ and */ data out * $=2 ; \quad /^{*}$ double DAC data */
else $\quad / *$ if bit 11 is high, */
out = out | DAC HICH; $/$ * set output bit $=1$ and */ data out $=($ data out-O 800) * $2 ; / *$ double DAC data after set */
/* bit 11 to be 0 */ outportb(OUT PORT, out); out = out | CLOCK HICH; outportb(OUT PORT, out); out = out \& CLOCK LOW; outporth(OUT PORT, out);
/* base address */
/* base address + 1 */
/* set clock bit high *)
/* set clock bit low */
/* set start conversion bit high */
/* set start conversion bit low */
/* set load bit high */
/* set load bit low */
/* set data out bit high */
/* set data out bit low */

* send out */
/* turn CLOCK high */
/* send out */
*
* send out */

Take a look inside the ELECTROMAIL catalogue and you're in for a surprise. If you're looking for Electronic Components, Electrical Equipment or Mechanical Tools, with over 60,000 product lines, there's a whole galaxy of choice.

Electromail is one of Europe's largest stockists dedicated to the Home Based Professional and Electronics Enthusiast.

The fully comprehensive catalogue provides detailed descriptions, full technical information and (in most cases) colour pictures of each product to make selection easy.

Our orderline staff are light years ahead in friendly and efficient service and above all, they're committed to helping you find exactly what you need.

You'll find our despatch just as advanced, with a nominal $p \& p$ charge and range of delivery options to suit, even a Sonic Screwdriver* won't take an age to materialise.

Simply telephone or fax your order anytime between 8.00am and 8.00 pm Monday to Friday Earthtime.

So - whatever your current project, anywhere in the universe, save yourself time, call Electromail.

WITH OVER 6O,OOO PRODUCTS INSIDE

You're Bound To SAVE TIME

[^2]Telephone 01536204555 or Fax 01536405555.

The Service For Home Based Professionals and Electronics Enthusiasts

SUBSCRIIE TODAY

 the leading edge

EVERY MONTH

- the best writing on Electronics design applications

ELECTRONICS WORLD

1 Year £30 UK, £43 Europe, £52 Row 2 Years SAVE 25\% £45 UK, £65 Europe, £75 Row

Phone: +44 01444 445566, Fax (+44) 01444445447

SUBSCRIPTION NORM

YES, I WOULD LIKE TO SUBSCRIBE TO ELECTRONICS WORLD

Name

Job Title
Company Name
Address

Address	
Postcode	Country
Telephone	Fax

Fax

PAYMENT DETAILS

\square year $£ 30$ UK $\quad \square £ 43$ Europe $\quad \square £ 52$ Rest of World
\square 2 years $£ 45$ UK \square £65 Europe $\quad \square £ 75$ Rest of World
\square Please invoice me/my company. Purchase Order No
\square I enclose cheque made payable to Electronics World
\square Please charge my Visa/Access/Amex/Mastercard

Expiry date

Thermal dynamics in audio power

Douglas Self explains how to achieve lower power amplifier distortion by improving bias accuracy.

The first part of this series demonstrated how quite complex problems in thermal dynamics could be simply solved by using electrical analogues and a circuit simulator; the second part showed how this approach could be used to produce techniques for power amplifier thermal compensation that were much faster and more accurate than the
conventional methods. These methods explicitly assumed it would be possible to design a bias-generator with a temperature coefficient either higher or lower than the standard result ${ }^{1}$.
Fig. 1 shows two versions of the classical V_{be}-multiplier bias-generator. Each has its lower rail grounded to simplify the results. The first (Fig. 1a) is set up for an emitter-follower output stage, where the voltage $V_{\text {bias }}$ is $\left(4 \times V_{\mathrm{be}}\right)+V_{\mathrm{q}}$, which comes to +2.93 V . Voltage V_{q} is the small quiescent voltage across the emitter resistors R_{e}; it is this quantity that must be kept constant, rather than the quiescent current, as is usually assumed. The optimal V_{q} for an emitter-follower stage is about 50 mV .
The second (Fig. 1b) is suitable for a com-plementary-feedback-pair output stage, for which the required $V_{\text {bias }}$ is less at $\left(2 \times V_{\text {be }}\right)+V_{\mathrm{q}}$, or about 1.30 V . Note that the optimal V_{q} is smaller for the complementary-feedback pair, at about 5 mV .
It is assumed that $V_{\text {bias }}$ is trimmed by varying R_{2}, which will in practice be a preset in series with an end-stop resistor that limits the maximum $V_{\text {bias }}$ setting. This is important, because a preset normally fails by the wiper becoming disconnected, and if it is in the R_{2} position the bias will default to minimum. In the R_{1} position an open-circuit preset gives maximum bias, which may damage the output stage.
Since the emitter-follower version of the bias generator has a higher $V_{\text {bias, }}$, there must be a larger V_{bc}-multiplication factor to generate it, and this is reflected in the higher temperature coefficient, see Table 1.

Raising temperature coefficient

There are many approaches possible, but the problem is complicated because the bias generator may have to work within two rails only 1.3 V apart. Additional circuitry outside this limit can be accommodated by bootstrapping, as in the Trimodal amplifier biasing system ${ }^{2}$, but this adds complexity.
Often the thermal losses to the temperature

| Table 1. The emitter follower needs a larger $V_{\text {be }}$ multiplier. | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $V_{\text {blas }}$ | $\boldsymbol{R}_{1}(\Omega)$ | $\boldsymbol{R}_{\mathbf{2}}(\Omega)$ | $\boldsymbol{R}_{3}(\Omega)$ | Coeff. $\left(\mathrm{mV} /{ }^{\circ} \mathrm{C}\right)$ |
| | 2.93 | 120 | 470 | 22 | -9.3 |
| Emitter follower | 1.30 | 470 | 470 | 150 | -3.6 |
| Complementary feedback pair | 1.30 | | | | |

 follwer (at 1a) and complementary-feedback-pair output stages (at 1b). The emitter-follower requires more than twice the bias voltage for optimal crossover performance.
sensor are the major source of steady-state $V_{\text {bias }}$ error, and to reduce this a tempco is required that is larger than the standard value given by: ' $V_{\text {be }}$-multiplication factor times $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}^{\prime}$.
A simple new idea is shown in Fig. 2. The aim is to increase the multiplication factor and hence the negative temperature coefficient - required to give the same $V_{\text {bias. }}$. The diagram shows a voltage source V_{1} inserted in the R_{2} arm. To keep $V_{\text {bias }}$ the same, the value of R_{2} must be reduced, and since the multiplication factor $\left(R_{1}+R_{2}\right) / R_{2}$ is increased, the tempco is similarly increased.
In Table 2, a complementary-feedback-pair bias circuit has its temperature coefficient varied by increasing V_{1} in 100 mV steps; in each case the value of R_{2} is then reduced to bring $V_{\text {bas }}$ back to the desired value.

A practical circuit is shown in Fig. 3, using a 2.56 V band-gap reference to generate the extra voltage across R_{4}. This has to work outside the bias generator rails, so its power-feed resistors R_{7}, R_{8} are bootstrapped by C from the amplifier output ${ }^{2}$.

Ambient temperature changes
Power amplifiers must be reasonably immune

Table 2. Complementary feedback pair bias data, showing increasing temperature coefficient.

V_{1}	$V_{\text {blas }}$	R_{2}	Coeff
mV	V	Ohms	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
0	1.287	470	-3.6
100	1.304	390	-4.0
200	1.287	330	-4.4
300	1.286	260	-5.0
400	1.285	190	-6.9

to ambient temperature changes, as well as changes due to dissipation in power devices. The standard compensation system does this pretty well, as the $V_{\text {be- }}$-multiplication factor is inherently almost the same as the number of junctions being biased.

This is no longer true if the tempco is significantly modified. Ideally we require a bias generator that has one increased tempco for power-device temperature changes only, and another standard temperature coefficient for ambient changes affecting all components.
One approach to this is Fig. 4, where V_{1} is derived via R_{6}, R_{4} from a silicon diode rather than a bandgap reference, giving a voltage

Fig. 3. Shows a practical version of a $V_{\text {be }}$ multiplier with increased tempco. The extra voltage source is derived from the bandgap reference by $R_{6,}, R_{4}$ and the tempco is increased to $-5.3 \mathrm{mV} /{ }^{\circ} \mathrm{C}$

Valles for CFP output stage.

Fig. 2. Theoretical basis of $V_{\text {be }}$ multiplier with increased tempco. Adding voltage-source V_{1} means the voltage-multiplication factor must be increased to get the same $V_{\text {bias. }}$. The temperature coefficient is therefore also increased, here to $-4.4 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

Table 3.					Reducing temperature coefficient.
V_{1}	$V_{\text {bias }}$	R_{1}	Coeff.		
mV	V	Ω	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$		
0	1.287	470	-3.6		
100	1.304	390	-3.3		
200	1.287	330	-3.1		
300	1.286	260	-2.8		

reducing with temperature. The tempco for temperature changes to Q_{1} only is $-4.0 \mathrm{mv} /{ }^{\circ} \mathrm{C}$, while the tempco for global temperature chianges to both Q_{1} and D_{1} is lower at $-3.3 \mathrm{mv} /{ }^{\circ} \mathrm{C}$.

Lowering temperature coefficient

In Part I ${ }^{1}$, I showed that an emitter-follower output stage can show 'thermal gain' in that the changes in V_{q} make it appear that the tempco of the $V_{\text {bias }}$ generator is higher than it really is. This is because the bias generator is set up to

Fig. 4. Practical $V_{b e}$ multiplier with increased tempco, and also improved correction for ambient temperature changes, by using D_{1} to derive the extra voltage.

Fig. 5. The principle of a $V_{b e}$-multiplier with reduced tempèrature coefficient. The values shown give $-3.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

Fig. 7. Circuit of a two-transistor $V_{b e}-$ multiplier. The increased loop gain holds $V_{\text {bias }}$ more constant against current changes.
compensate for four base-emitter junctions, but in the emitter-follower output configuration the drivers have a roughly constant power dissipation with changing output power, and do not change much in junction temperature.
The full benefit of the temperature coefficient is thus felt by the output junctions, and if the sensor is placed on the power device itself rather than the main heatsink, to reduce thermal delay, then the amplifier is likely to be seriously over-compensated for temperature. In other words, after a burst of power V_{q} will become too low rather than too high. We now need a $V_{\text {bias }}$ generator with a lower temperature coefficient than the standard circuit.

The principle is exactly analogous to the method of increasing the temperature coefficient. In Fig. 5, a voltage source is inserted in the upper leg of potential divider R_{1}, R_{2}; the V_{be}-multiplication factor is reduced, and so therefore is the temperature coefficient.
Table 3 shows how this works as V_{1} is increased in 100 mV steps. Resistor R_{1} has been varied to keep $V_{\text {bias }}$ constant, in order to demonstrate the symmetry of resistor values with Table 2 ; in reality R_{2} would be the variable element, for safety reasons described above.

Fig. 6. Simulation results for standard $V_{b e}$ multiplier, showing how currentcompensation resistor R_{3} is chosen. When R_{3} is fitted, $V_{\text {bias }}$ peaks very broadly at a particular current, giving much smaller variation with current.

Fig. 8. The two-transistor configuration gives a consistently lower series resistance, and hence $V_{\text {bias }}$ variation with current, compared with the standard version without R_{3}.

Current compensation

Both bias-generators in Fig. 1 are fitted with a current-compensation resistor R_{3}. The V_{be}-multiplier is a very simple shunt regulator, with a low loop gain, and hence a significant series resistance. Resistor R_{3} is therefore added to give first-order cancellation of $V_{\text {bias }}$ variations caused by current changes, by subtracting a correction voltage proportional to this current.
Rather than complete cancellation, this gives a peaking of the output voltage at a specified current, so that current changes around this peak value cause only minor voltage variations. This peaking philosophy is widely used in IC bias circuitry.
Resistor R_{3} should never be omitted, as without it mains voltage fluctuations can seriously affect V_{q}. Table 1 shows that the optimal value for peaking at 6 mA depends strongly on the $V_{\text {be }}$ multiplication factor.
Figure 6 shows variation of $V_{\text {bias }}$ with current for different values of R_{3}. The slope of the uncompensated, $R_{3}=0$, curve at 6 mA is $\approx 20 \Omega$. This linear term is cancelled by making $R_{3} 18$ or 22Ω.
Current through the bias generator varies because the voltage amplifier current-source is not a perfect circuit element. Biasing it with the
usual pair of silicon diodes is not sufficient to make it wholly immune to supply-rail variations. I measured a generic amplifier (essentially the original Class-B Blameless design) and varied the incoming mains from 212 V to 263 V , a range of 20%. This, in these uncertain times, is perfectly plausible for a power amplifier travelling around Europe. The voltageamplifier stage current-source output varied from 9.38 mA to 10.12 mA , which is a 7.3% range.
Thanks to the current-compensating resistor in the bias generator, the resulting change in quiescent voltage V_{q} across the two R_{e} 's is only from 1.1 mV (264 V mains) to 1.5 mV (212 V mains). This is a very small absolute change of 0.4 mV , well within the V_{q} tolerance bands. The ratio of change is greater, because $V_{\text {bias }}$ has had a large fixed quantity (the devices' $V_{\text {be }}$) subtracted from it, so the residue varies much more. Variation in V_{q} could best be further suppressed by making the current source more stable against rail variations.
The finite ability of even the current-compensated bias generator to cope with changing standing current makes a bootstrap voltageamplifier stage collector load much less attractive than the current-source version; from the above data, V_{q} variations will be at least three times greater.
A wholly different approach to reducing $V_{\text {bias }}$ variations increases the loop gain in the $V_{\text {be }}$-multiplier. Fig. 7 shows the circuit of a two-transistor version that reduces the basic resistance slope from 20 to 1.7 . The advantage is that $V_{\text {bias }}$ variations will be smaller for all values of voltage-amplifier stage current, and no optimisation of a resistor value is required. The drawback is slightly greater complexity in an area where reliability is vital. Figure 8 compares the two-transistor configuration with the standard version, without R_{3}.

Conclusion

This final part of the 'Thermal Dynamics' series shows how to build simple $V_{\text {bias }}$ generators with temperature coefficients ranging from -2.5 to $-6.9 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.
This, in combination with the techniques described in the earlier parts of this series, should allow you to design of Class-B amplifiers with greater bias accuracy, and therefore lower crossover distortion.

References

1. D. Self, 'Thermal Dynamics In Audio Power' Electronics World, May 1996, p411.
2. D. Self, 'Trimodal Audio Power' Part 2 Electronics World, July 1995, p585.
3. D. Self, 'Distortion In Power Amplifiers, Part 7 ' Electronics World, Feb 1994, p139 (Peaking effect of current-compensation).

Issue 13 of $\mathcal{D i s p l a y ~ N e w s ~ n o w ~ a v a i l a b l e ~ - ~ s e n d ~ l a r g e ~ S A E ~ - ~ P A C K E D ~ w i t h ~ b a r g a i n s ! ~}$

EEEETREXHIS

A rationalised

Simon Bateson's RIAA preamplifier is economical and offers benefits over existing designs.

Agreat number of phono preamplifier designs have been published over the years. Perhaps this is because the subject can span any realisation between the very cheap and the outrageously expensive, or because there are interesting design features hidden within an apparently simple function.
One trend was the preoccupation in the early 1980s with low noise and RIAA accuracy, another was the move from series to shunt feedback, widely promoted by John LinsleyHood.
John has published several excellent reviews

Fig. 1. There are no electrolytic capacitors in the signal path of the preamp and its noise is low.
and designs of amplifiers and preamplifiers and it will be clear that the circuitry described here is but a rearrangement of his work. However there are a couple of worthwhile advantages in this configuration. I am not about to launch into a defence of vinyl discs, but I do have a number of records and this preamp seems to make the best of them.

Circuit elements

Figures $1 \& 2$ are the design's block diagram and circuit. The first stage is a straightforward dc-coupled amplifier with a stage gain of 21 dB . This is followed directly by a thirdorder Butterworth rumble filter based on a standard equal value Sallen-Key circuit with a gain of 6 dB . The filter is in circuit permanently. I have large, accurate speakers, namely ATC SCM50A active monitors, and it is sad to see the woofer wobbling about without the filter. After some experimentation the I set the turnover frequency at 19 Hz .
The third part of the filter is formed by C_{4} and R_{9} which feed the RIAA equalisation stage. Although this is a shunt feedback stage,

Advantages of this RIAA preamplifier configuration

The unusual aspect of this design is the rearrangement of conventional circuit blocks so that the rumble filter appears before the RIAA equalisation. Several advantages accrue from this arrangement: - Na electrolytic capacitors appear in the signal path and the lowfrequency characteristic is closely defined. Additionally, since there are no high-value capacitors to charge, the circuit settles almost immediately on switch-on.

- Large low-frequency rumble signals never reach the RIAA stage so do not compromise headroom. The mid-band gain is 40 dB giving an input clip point of about 130 mV with $\pm 15 \mathrm{~V}$ supplies. In any case, it is a lrivial matter to adjust the gain of $/ C_{1}$ to suit whatever cartridge is in use, including moving coil types.
- The rumble filter is not a configuration subject to excess noise due to high impedances, since the capacitors C_{2} and C_{3} present a low impedance at high frequencies. $1 /$ noise from the op-amp is reduced due to the high-pass characteristic of C_{4} / R_{9}. Meanwhile, ordinary
amplifier noise is reduced because the filter is followed by the lowpass RIAA stage.
- The input amplifier does not suffer a high dc offset due to mismatched input terminal resistances since the dc cartridge resistance is fairly close to that of R_{3} and the gain is low. Therefore there is no need for a high value electrolytic in series with R_{3}, or in series with the input. I do not believe that a minute bias current passing through the cartridge causes a problem althaugh this might upset owners of $£ 3000$ handcrafted banana wood and platinum specimens.

DC feedback resistance of the RIAA stage is fairly high, af $100 \mathrm{k} \Omega$, so although the overall stage dc gain is zero due to C_{4} it is better to use a fet op-amp such as the excellent OPA2604. Under these conditions there is no significant output offset voltage so the output coupling capacitor is not needed. The RIAA stage needs to achieve quite a high maximum gain, but only at low frequencies where, of course, the op-amp has the greatest open-loop gain available.

Fig. 2. The unusual aspect of this RIAA preamplifier is the rearrangement of conventional circuit blocks so that rumble filtering appears before RIAA equalisation.
it operates at a high signal level. As a result, small-value capacitors can be used in a relatively high-impedance network without any noise penalty.

This is an inverting configuration. If absolute phase is considered important, it is a matter of moments to reverse the phono cartridge connections. Concerning component choice; the rumble filter capacitors should be the 5%
tolerance miniature polyester film types (available from RS), while the RIAA network uses cheap and accurate Philips 1% polyester types.
Using integrated operational amplifiers such as the NE5532, the circuit is easily constructed on a small pcb, the layout of which is available from the editorial office. I recommend this pcb as carefully laid out and tested. I suspect poor pcb layout is responsible for far
more under-performing equipment than is popularly thought.
Details to note are that low-value resistors are provided at the input and output to ensure stability with capacitive loads, while a single electrolytic is placed across the supply rails close to $/ C_{1}$. High-performance op-amps do not take kindly to poor power supply decoupling and will oscillate at several megahertz to vent their feelings.

In summary

When the configuration first came to mind, my satisfaction at its economy and effectiveness was a little dampened by the thought that it came to mind about twenty years too late. Still, it probably won't be the final RIAA design to be published. There are a few possibilities which come to mind, such as using an SSM2015 differential amplifier for the first stage. This would offer slightly lower noise along with zero offset current through the cartridge and the usual benefits of balanced operation - which are inherently available from the cartridge if you rearrange the turntable wiring. Its surprising that balanced operation never came into fashion. You could use discrete instrumentation amplifiers and military grade capacitors.

Thoughts on power supply decoupling

Power rails should not be decoupled to the local earth with the usual pair of large electrolytics. Decoupling is a frequently misunderstood subject and the heary-handed application of capacitors actually couples power rail disturbances into the ground rail. The major problem with all practical circuit layout is that the ground line is simultaneously an input signal reference point, an output signal reference point and a power ground. When the opamp delivers transient current into a load, the current is drawn from the nearest source - the decoupling capacitor - hence output current flows in the local earth line. This line acts as a reference for the input signal and if badly laid out the earth current couples back to the op-amp inputs, inducing instability or even oscillation.
One mode of coupling back is shown above, right, where the earth connections are simply in the wrong order. A good way to induce op-amp hysteria is the pcb layout below right. Similar comments apply to non-inverting configurations. The better the opamp, the more important it is to get the earth layout correct.
I have found the best arrangement to be rail-to-rail decoupling adjacent to the IC, with rail-to-ground decoupling at the power connection to the board; this lowers the power-supply impedance at high frequencies without confusing the issue of 'what is ground?' too much.

Power rail decoupling methods, good and bad.

Cyril Bateman looks at mirrors, electronics design data, and new ways to search old services.

Hands-on Internet

Wth the ever growing dominance of the World Wide Web, it is easy to overlook the original Internet uses; e-mail, FTP and News Groups. While for regular use, dedicated software is preferred, most Web browsers now provide working access to these functions.
While the Web browser search methods covered in my previous articles are targeted to Web page and FTP searches, Deja_News ${ }^{1}$ searches only within the Usenet News Groups, eliminating the time consuming manual searching previously needed to locate a topic, Fig. 1.
Growing interest in emc has caused the formation of a specialist news group - sci.engr.electrical.compliance - which is dedicated to emc and safety compliance. Maintained by Bill Lyons of Claude Lyons Ltd^{2}, this group's FAQ contains much essential reading.
Closely related to emc, Texas Instruments ${ }^{3}$ recently issued an application report detailing the Bergeron Graphical Method, used to determine line reflections during transient phenomena.

Reflections on Windows

Two FTP software download sites catering for Windows systems are widely mirrored, i.e. backed up and available via different sites. Winsite ${ }^{4}$ has 44 mirrors while Simtel. Net^{5} has 64 mirrors. Winsite - formerly the CICA Windows FTP archive - went live on 13 October last year, Figs 2, 3.
For the UK, the Hensa ${ }^{6}$ archive at Lancaster University and Sunsite North Europe ${ }^{7}$ at Imperial College London, are particularly good FTP sources.

Fig. 1. Using Deja News to search for topics within Usenet. Some claim the Usenet archives hold the largest information base in Internet.

Both carry Winsite and Simtel.Net mirrors for pcs and also hold Amiga, Atari, Apple, Archimedes RiscOS and $O S / 2$ software archives. Note external access to Hensa is not permitted during normal working hours.
Software for downloading is freely available from all mirror sites, but software for uploading is only accepted at parent sites. Uploads not conforming to the published instructions is rejected. Accepted software will be available from all mirrors after a few days delay and the Archie servers will automatically be advised.
With the enormous amounts of data and software already available, your unpublicised upload will raise little interest. By way of example, in early June I uploaded evaluation copies of my EMCFiltr.zip software, used to illustrate the 'Understanding emi filters' article ${ }^{8}$, to three sites. These were Winsite, Simtel.Net and Funet. Fi^{9}. Within two days, archie.funet.fi located this file, but four weeks later several Archie servers remained unaware. On acceptance of the software, the upload site administrator posts an Internet announcement. However, it is advisable to seek further publicity. Send mail to net-happenings ${ }^{10}$ and try Submit It^{11} to advise the popular search engines.
While Netscape 2.01 incorporated improved security features, the latest Beta version 3.0, available by download ${ }^{12}$, adds features and further enhances security. It also provides support for SSL3.0 and permits 'personal certificates' to prove your on-line identity.

Sourcing semis

QuestNet ${ }^{13}$ helps designers to select and source semiconductors or integrated circuits world wide. It provides product briefs, application notes and datasheets. In addition, there are Internet facilities for semiconductor houses not yet having a Web page. Present searches are by product function, search by manufacturer and part number is being implemented, Fig. 4.
Continuing the on-line support theme, Motorola ${ }^{14}$ has an extensive Web presence. With its vast product ranges, the site is full of information and should be visited.
Elantec ${ }^{15}$ provides its full range of application notes for download and has a page devoted to interactive technical support and samples request.
Electric Library ${ }^{16}$ has now been sampled. Unlike other search methods listed, it is only available by a $\$ 9.95$ monthly subscription. And you can take advantage of the free trial offer. If sufficient of the 780 magazines and journals listed prove useful, the subscription fee can easily be recovered. This resource is similar to a conventional library of books and journals, except that it is electronically searchable using plain English. Having found the relevant document, click and it is downloaded. Unlike other search tools, you are not linked to Internet resources, it delivers the document to you, Fig. 5.
While all search engines covered to date have been US based, if all else fails, you can perhaps try a UK one ${ }^{17}$ which has an appropriate if irreverent address. While the present Web page differs, this version noticed recently, has a certain artistic appeal, Fig. 6.

References

1. Dejanews - http://www.dejanews.com
2. FAQ EMC and Safety - http://world.std.com/~techbook/compliance_faq.html
3. The Bergeron Method - http://www.TI.com
4. Winsite - http://www.Winsite.com
5. Simtel.Net - http://www.cdrom/simtel.net
6. Hensa - http://micros.hensa.ac.uk
7. Imperial College - http://src.doc.ic.ac.uk
8. C. Bateman, Understanding emi filters, Electronics World, May '96 pp 384-388.
9. Funet. Fi. Finland - ftp.funet.fi
10. net-happenings - net-happenings@is.internic.net
11. Submit It - http://www.submit-it.com
12. Netscape - http://www.netscape.com
13. QuestNet - http://www.questlink.com
14. Motorola - http://www.motorola.com
15. Elantec Semiconductors - http://www.elantec.com
16. Electric Library - http://www.elibrary.com
17. Global Online Directory - http://www.god.co.uk

Fig. 4. Dedicated to searching for semiconductor sources world wide. Also can provide product briefs, application notes and datasheets.

The battle of OS

Expect more clashes in the operating system war, now that the latest Beta version of OS/2 Merlin has been shipped to testers for hands-on evaluation. Available to registered OS/2 users is a demo compact disk for Merlin. With built in support for Java, object-oriented technology and voice input/control allowing hands-off and eyes-off operation, Merlin claims to set the standards for ease of use.

Fig. 5. Maintains its own database of material but requires your regular subscription. Register by e-mail to gain a month's free access, without needing a credit card number. Maintains its own knowledge base and unlike some, does not pass you on to other Web links.

Fig. 6. Lord knows what this is. The site is organised rather differently from the established US search engines.

proteus New for Windows 3.1. 95 \& NT

PCB Design

32 bit high resolution database.

- Multi-Layer and SMT support.
- Full DRC and Connectivity Checking.
- RIP-UP \& RETRY Autorouter.
- Shape based gridless power planes.

Output to printers, plotters, Postscript, Gerber, DXF and clipboard.

- Gerber and DXF Import capability.

Write, phone or fax for your free demo disk, or ask about our full evaluation kit. Tel: 01756 753440. Fax: 01756752857.
53-55 Main St, Grassington. BD23 5AA.

HIGH DIRECTIVITY

Paolo Antoniazzi has
 developed a method of producing couplers usable at gigahertz frequencies using standard low-cost fibreglass printed circuit.

Fig. 1. Cross section of transmission systems: (a) shows the wire above ground and (b) illustrates the microstrip.

At the beginning of the 1950 's, a transmission line corresponding to a flattened coaxial with the sides removed was described ${ }^{1}$. While yielding configurations that were somewhat simpler to fabricate, this approach still required that close tolerances be maintained as in the case of coaxial construction. The relative simplicity of the parallel-line system - or stripline - suggested further study of this type or of some equivalent open system.

This work has resulted in an interesting variation of the parallel-line system which avoids the requirements for extreme accuracy and dimensional symmetry. Because of the ease of manufacture and the apparent similarity to conventional wiring, the generic name of microstrip has been given to this transmission system ${ }^{2}$. A cross section of the wire-aboveground system, as well as a cross section of the variation using a strip conductor microstrip in place of the round wire - are shown in Fig. 1.
In the idealised case using a simple uniform dielectric and a lossless conductor, the type of transmission corresponds to the TEM mode ${ }^{3,4}$. This has been confirmed approximately by theoretical work and by measurements performed on practical microstrip circuits comprising composite dielectrics and finite conductor dimensions.
As the frequency is increased, however, the

Inset 1. TEM - Transverse-ElectroMagnetic waves. These waves are characterised by the fact that both the electric vector (E vector) and the magnetic vector (H vector) are perpendicular to the direction of propagation. This is the mode commonly excited in coaxial and open-wire lines. It cannot be propagated in a waveguide.
dispersion effect becomes more obvious, and the characteristic impedance and the phase velocity defined under the quasi-TEM analysis, Inset 1, must be modified.
An important characteristic of the microstrip circuits is the power-flow distribution between the conductor and ground plane. Figure 2 gives the calculations of the ratio of powerflow in a particular cross section to the total flow of power for a given b / h ($b=$ width of the microstrip conductor, $h=$ thickness of dielectric substrate).
While the distribution shown is approximate, it is possible to conclude that most of the power-flow is adjacent to the conductor. Essential characteristics necessary to design a microstrip system are shown in the box, Figs. 3-5. In particular using the information in Fig. 4 it is possible to design the correct length of the near $\lambda / 4$ coupler, for fibreglass material about 0.5 referred to air.

Fig. 2. Power-flow distribution in a microstrip system.

Fig. 3. Characteristic impedance versus E and W / h.

The directional coupler

A directional coupler is ideally a lossless reciprocal four-port device. It normally provides two unequal amplitude outputs when a signal is fed to one of its inputs. Depending on which port is fed, the outputs may be in-phase or out-of-phase (90° or 180°).
Directional couplers are usually described by indicating the coupling ratio of the low signal level output. Thus a 20 dB directional coupler will provide a 'coupled' output which is 20 dB below the input, while the through path (main line) has only a little loss, 0.04 dB in this case. Naturally the main line loss increases for lower coupling ratios as indicated in Table 1.

Directional couplers can be used effectively in systems to monitor power or match, branch

Table 1.

Coupling ratio (dB)	Coupled output (dB)	Main line loss (dB)
3	-3	3.00
6	-6	1.25
10	-10	0.46
20	-20	0.04

signals, feedback power in amplifiers and for signal injection. Designer who understand the unique features of directional couplers will find many other applications where coupler properties can solve particular system problems.
A directional coupler has the ability to separate and sample signal components based on the direction of signal flow. Referring to Fig.

Fig. 5. Ratio of line wavelength to free space wavelength.

6, the diagram shows a 20 dB directional coupler with a signal source at Port (1).
Ports (2) and (3) are terminated in Z_{o} while Port (4) is loaded with an unknown impedance Z_{1}. We can see that if $Z_{i}=Z_{0}$ the return loss of Z_{1} becomes infinite and no signal reaches Port (3). This, of course, should follow from the consideration that Ports (1) and (3) and (2) and (4) are isolated when the directional coupler is terminated with Z_{0}.
Practical directional couplers have finite isolation and this introduces an error in the comparative levels at Ports (3) and (2). Directional coupler directivity is a limiting parameter in the ability to accurately measure the return loss of a unknown load. As an example, if isolation (S 31) is 43 dB and coupling (S 21) is 13 dB , then directivity is $43-13$, or 20 dB .
The calculated error limits for a given directivity of coupler are shown in Fig. 7 and the following Table ${ }^{5}$. For example, if a coupler with 25 dB directivity is used to measure the return loss of an antenna for wireless LAN systems and the measured value is 22 dB , then the true return loss value can be anywhere between 17.3 and 32.7 dB . Inserting different lengths of cable between the coupler and the antenna quickly shows that the match is not perfect, since the readings will change. The need for higher values of directivity by simple

Fig. 6 Incident and reflected signal flow for a 20 dB directional coupler.

couplers was the starting point for our experiments.

Measured Range of true return loss (dB)
return loss with $20 \mathrm{~dB} \quad$ with 25 dB
(dB)
10
14
$18 \quad 12.9$ to $31.7 \quad 15.0$ to 23.1
$22 \quad 15.0$ to $33.7 \quad 17.3$ to 32.7
High directivity via standard pcb A difficulty with stripline couplers in homogeneous dielectric, where the centre board has a lower dielectric constant than the outer boards, is that the even-mode circuit will be electrically longer than the odd-mode circuit. For side coupled microstrip directional couplers of the type shown in Fig. 8, the well known even-and-odd-mode theory shows different phase velocity for the even mode (E) and odd mode (O) of propagation ${ }^{6}$.
Figure 9 shows the electric field of the two
modes. The system has different values of E for the different modes of propagation, since their fields are not distributed in the same way between air and dielectric. In this way, the two modes have different phase velocity.

Taking this effect into account, we can design simple high directivity couplers. A conyentional microstrip 13 dB directional coupler has only 26 to 28 dB of isolation (directivity of 13 to 15 dB) according to our tests at $900-1200 \mathrm{MHz}$, Fig. 12.
The measured values are in good agreement with the theory. More expensive directional couplers realised with triplate techniques or meander-folded coupled lines ${ }^{7}$ have better directivity because of symmetrical distribution of the electric field. However, for microstrip circuits that also contain other passive or active components, this design is not practical.
The improved directivity of the coupler described in this article, with the layout of Fig. 8 and shown in photos of Figs 10, 11, is obtained simply by covering the central cou-

Fig. 10. Improved coupler - track side.
Fig. 7. Error limits due to insufficient directivity.

Fig. 8. Layout of the side coupled $13 d B$ directional coupler realised with standard 1.6 mm fibreglass printed circuit - dual sided.

Fig. 9. Even mode $(\dot{\dot{E}})$ and odd mode (o) propagation. Electric field of the two modes.
pler structure with an unmetallized dielectric layer that consists of the same material as the microstrip substrate. This assumes standard 1.6 mm fibreglass copper-clad circuit board.

Owing to this 'overlay substrate', of about $12 \times 50 \mathrm{~mm}$, the electric field propagates almost entirely in an homogencous dielectric and therefore the even and odd modes show nearly the same propagation velocity.
A comparison between conventional and 'overlay' couplers (with the same layout) is shown in Fig. 12. The reverse coupling was plotted against frequency after various adjustments of the side coupling space (s) and linewidth in the coupling zone (W_{1} and W_{2}).
The final optimised 'overlay' coupler design shows high directivity, with reverse coupling better than 35 dB in the range $950-1200 \mathrm{MHz}$. The four type-N connectors - used only to permit a special high-power test - passed through the ground plane and made contact to the microstrip conductor. Compensation aluminum transitions are used in the mounting of the 'big' connectors.

References

1. R.M.Barrett and M.H.Barnes, Microwaves

Printed Circuits, Radio and TV News, Vol. 46,

Fig. 11. Improved coupler, showing the connector layout.
pp. 16, Sept. 1951.
2. D.D.Grieg and H.F.Engelmann, Microstrip-A New Transmission Technique, Proceedings of IRE, pp. 1644-1650, December 1952.
3. Reference Data for Engineers, Howard W. Sams \& Co., pp. 23-29 and 30-33, 1989. 4. E.Hammerstadt and O.Jensen, IEEE International Microwave Symposium, pp. 407-409, June 1980.
5. Microwave Handbook, Vol. 2, pp. 10.13, RSGB 1991.
6. T.Bryant and J.Weiss, Parameters of Microstrip Transmission Lines and Coupled Pairs of Microstrip Lines, IEEE Transactions MTT-16, pp. 1021-1027, 1968.

7. S.Renmark, Meander-Folded Coupled Lines, IEEE Transactions MTT-26, pp. 225-231, April 1978.
8. G.L.Matthaei, L.Young and E.Jones,

Microwave Filters, Impedance Matching
Networks and Coupling Structures, Mc Graw
Hill.
9. News from Rohde \& Schwarz, Number 148,

Vol. 35, pp. 44-45, 1995/2.

Fig. 12. Comparison between standard and 'overlay' coupler (1.6 mm fibreglass, layout of Fig. 8.).

EW reader offer - multi-instrument - discount and free dmm

Maxcom's MX9300 is a four-function multi-instrument featuring,

- 1 Hz to $1 \mathrm{GHz}, 8$-digit frequency counter
- 0.02 Hz to 2 MHz swept function generator
- $3^{1 / 2}$-digir DMM with 10A range
- 0 to 30V, 3A-variable psu
- 15V, 1 A fixed output
- 5V, 2A fixed output

Normally, this instrument costs $£ 399$ excluding VAT and delivery but Vann Draper is making it available to EW readers at the special price of $£ 399$ - fully inclusive - and this price includes a free hand-held digital multimeter
Incorporating full overload protection, the MX9300 allows a significant reduction in lab bench space needed while being more convenient than separate instruments. The free $3^{1} / 2$-digit dmm accompanying this offer features 10A de measuring capability and transistor 0 to $1000 h_{\text {FE }}$ test.

Frequency counter feafures - wide range, 10 s to 10 ms gating, 25 mV sensitivity at 1 GHz , autoranging, $1 \mathrm{~Hz}+1$ dgt accuracy.
Function generafor feafures - 0.1 to 20Vpp \circ / p, linear/log $20 \mathrm{~ms}-2 \mathrm{~s}$ internal or external sweep, sine, square, triangle, skewed sine, pulse, HI.
DMM features - auto/manual ranging, DCV ACV Ω DCA ACA, 10 MS input, $\pm(0.5 \%+2$ digit $)$ basic accuracy.
PSU features - variable voltage and current, floating outputs, 2 mV max. ripple on all outputs, 0.01% load regulation on 30 V output.

Please send a cheque for $£ 399$ payable to Vann Draper Electronics, or your full credit-card detoils including expiry date and cord type to Vann Draper Electronics at Unit 5, Premier Works, Canal Street, South Wigston, Leicester, LE 18 2PL. Alternatively fax credit card details with your order on 01162773945 or telephone on 01162771400. Address orders and all correspondence relating to this offer to Vann Draper Electronics.

Design and Verify Circuits Faster

Join over 40,000 customers using the affordable mixed-signal simulator

Design faster with Electronics Workbench. Mix the analog and digital components and ICs in any combination. And with a click of the mouse, try 'what if' scenarios and fine tune your designs. The built-in SPICE simulator gives you real-world waveforms.

All without programming or netlist syntax errors.

And in minutes. Not hours or days.
You'll be up and running sooner. And create better designs faster with Electronics Workbench. We guarantee it!

R9 Robinson Marshall (Europe) Plc

Nadella Building, Progress Close, Leofric Business Park, Coventry CV3 2TF
E-mail: sales@rme.co.uk.
Fax: 44 (0) 1203233210
Shipping charges UK 56.99 All prices are plus VAT.
All trade marks are the property of their respective owners.
Electronics Workbench ia a trademark of Interactive Image Technologies Ltd., Toronto, Canada.

Electronics Workbench:

£199

- Click \& drag schematic capture
- Mixed analog/digital SPICE simulator
- Instant Bode plots and scrollable waveforms
- 50 analog components with 350 models
- 140 digital components and ICs in TTL and CMOS
- Windows 95/NT/3.1, DOS and Macintosh versions
- Free unlimited technical support
- 30-day money-back guarantee

Engineer's Pack:

£399

- Electronics Workbench
- 2,450 models
- Import/Export SPICE netlists
- Export to PCB packages

To discover more about the affordable mixed-signal simulator, call us today at:

44-(0)-1203-233216

Fax: 44-(0)-1203-233210

[^3] choice

Many applications call for the filtering of signals, to pass those that are wanted, and to block those that are outside the desired passband. Sometimes digital filtering is appropriate, especially if the signals are in digital form already, but oftentimes, analog filters suffice indeed are the only choice at rf. At lower frequencies, where inductors would be bulky, expensive and of low Q, active filters are the usual choice. Some of these are documented in every text book, but there are some useful variations upon the them which are less well known. This article explores one or two of these.

A basic active filter

Probably the best known active filter is the Sallen and Key second order circuit, the lowpass version of which is shown in Figure 1. Interchanging the $C s$ and $R s$ gives a highpass version. There has been considerable discussion recently of its demerits, both in regard to noise and distortion, from Dr D. Ryder and others in the Letters section of this magazine, see the November 1995 to April 1996 issues inclusive. But for many purposes it will prove adequate, having the minor advantage of very simple design equations. Moreover, the circuit is canonic - it uses just two resistors and two capacitors to provide its two-pole response.
Being a second order circuit, at very high frequencies the response falls away forever at 12 dB per octave, at least with an ideal opamp. In practice, opamp output impedance rises at high frequencies, due to the fall in its open loop gain, resulting in the attenuation curve levelling out, or even reversing. In the maximally flat amplitude response design, at frequencies above the cutoff frequency, the response approaches 12 dB /octave asymptotically, from below. At dc and well below the cutoff frequency, the response is flat, being $O \mathrm{~dB}$ (unity gain), again a value the response approaches asymptotically from below. The corner formed by the crossing of these two asymptotes is often called, naturally enough, the 'comer frequency'. The comer or cutoff frequency f_{0} is given by $f_{0}=1 /\left(2 \pi \sqrt{ }\left\{C_{1} C_{2} R_{1} R_{2}\right\}\right)$ where, usually, $R_{1}=R_{2}$.
The dissipation factor $D=1 / Q$ where $Q=0.5 \sqrt{ }\left(C_{1} / C_{2}\right)$ and for a maximally flat amplitude (Butterworth) design, $D=1.414$, so $C_{1}=2 C_{2}$. The Butterworth design exhibits no peak, and is just 3 dB down (ie $V_{\text {out }} / V_{\mathrm{in}}=0.707$, or equal to Q) at the corner frequency. If $C_{1}>2 C_{2}$, then there is a passband peak in the response below the corner frequency, being more pronounced and moving nearer the corner frequency as the ratio is made larger. This permits the design of filters with
four or six poles, or of even higher order, consisting of several such stages, all with the same comer frequency but each with the appropriate value of Q.

It is easy to see that the low frequency gain is unity, by simply removing the capacitors from Figure 1, for at very low frequencies their reactance becomes so high compared to R_{1}, R_{2}, that they might as well simply not be there. At a very high frequency, way beyond cutoff, C_{2} acts as a near short at the non-inverting (NI) input of the opamp, resulting in the lower plate of C_{1} being held almost at ground. As C_{1} is usually greater than C_{2}, it acts in conjunction with R_{1} as a passive lowpass circuit well into its stopband, resulting in even further attenuation of the input. At twice this frequency, both of these mechanisms will result in a halving of the signal, which thus falls to a quarter of the previous value, ie the rolloff rate is $20 \log (1 / 4)$ or $-12 \mathrm{db} /$ octave. But what about that peak in the passband, assuming there is one?

Fig. 1. The Sallen and Key second order lowpass active filter. Cut-off 'corner' frequency is given by $f_{o}=1 /\left(2 \pi C_{1} C_{2} R_{1} R_{2}\right)$ and $Q=0.5 \sqrt{ }\left(C_{1} / C_{2}\right)$ and dissipation $D=1 / Q$. For a maximally flat amplitude (Butterworth) design, $D=1.414$, so $C_{1}=2 C_{2}$. The Butterworth design exhibits no peak, and is just 3dB down at the corner frequency.

Fig. 2. Breaking the loop and opening it out helps to understand the circuit action (see text).

ANALOGUE DESIGN

Fig. 3. Cascaded lowpass and highpass CR responses, and their resultant, (dotted).

The best way to approach this is to break the loop at point X , in Figure 1 and consider what happens to a signal $V_{\text {in }}$, going round the loop, having removed the original $V_{\text {in }}$. Note that as the source in Figure 1 is assumed to have zero internal resistance, it has been replaced by a short circuit in Fig. 2. To $V_{i n}^{\prime}, C_{1}$ with R_{1} now forms a passive lead circuit highpass or bass-cut. The resultant voltage across R_{1} is applied to C_{2}, R_{2}, a passive lag circuit - lowpass or top-cut.
Each of these responses exhibits a $6 \mathrm{~dB} / o c t a v e$ rolloff in the stopband, as shown in Fig. 3. Thus the voltage reaching the NI input of the opamp at any frequency will be roughly the sum of the attenuation of each CR section (actually rather more, as $C_{2} R_{2}$ loads the output of the $C_{1} R_{1}$ section), as indicated by the dotted line in Figure 3. At the frequency where the highpass and lowpass curves cross, the attenuation is a minimum, and the phase shift is zero since the lag of one section cancels the lead of the other.
If C_{1} is now made very large, the bass cut will only appear at very low frequencies - the highpass curve in Figure 3 will shift bodily to the left. If in addition, C_{1} is made very small, the top cut will appear only at very high frequencies - the lowpass curve will shift bodily to the right. Thus the curves will cross while each still contributes very little attenuation, so the peak of the dotted curve will not be much below 0 dB , unity gain. Consequently, at this frequency the voltage at X is almost as large as $V_{\text {in }}$, and in phase with it. The circuit can almost supply its own input, and if disturbed in any way will respond by ringing at the frequency of the dotted peak, where the loop phase shift is zero.
But however large the ratio C_{1} / C_{2}, there must always be some attenuation, however small, between V^{\prime} in and the opamp's NI input, so the circuit cannot oscillate, although it can exhibit a large peak in its response, around the corner frequency. In fact, if the peak is large enough, the response above the corner frequency will approach the -12 dB /octave asymptote from above, and below the corner frequency will likewise approach the flat 0 dB asymptote from above.

Variations on a theme

The cutoff rate can be increased from $12 \mathrm{~dB} /$ octave to 18 dB /octave by the addition of just two components; a series R and a shunt C to ground between $V_{\text {in }}$ and R_{1}. And such a third order section can be cascaded with other second order section(s) to make filters with 5, 7, 9 poles etc. Normalised capacitor values for filters from 2 to 10 poles for various
response types (Butterworth, Chebychev with various passband ripple-depths, Bessel etc.) have been published in Refs. 1 and 2, and in many other publications as well. However, these tables assume $R_{1}=R_{2}$ ($=$ the extra series resistor in a third order section), with the Q being set by the ratio of the capacitor values. This results in a requirement for non-standard values of capacitor, which is expensive if they are specially procured, or inconvenient if made up by parallelling smaller values.
While equal value resistors is optimum, minor variations can be accommodated without difficulty, and this can ease the capacitor requirements. Ref. 3 gives tables for the three resistors and three capacitors used in a third order section, with the capacitors selected from the standard E3 series (1.0, $2.2,4.7$) and the resistors from the E24 series, for both Butterworth and Bessel (maximally flat delay) designs.

The Kundert filter

The formula for the Q of the Sallen and Key filter is $Q=0.5 \sqrt{ }\left(C_{1} / C_{2}\right)$, so given the square root sign and the 0.5 as well, one finishes up with rather extreme ratios of C_{1} to C_{2}, if a high Q is needed, as it will be in a high order Chebychev filter. In this case, the Kundert circuit of Fig. 4 may provide the answer. The additional opamp buffers the second $C R$ from the first, so that the attenuation at any frequency represented by the dotted curve in Figure 3 is now exactly equal to the sum of the other two curves. Removing the loading of $C_{2} R_{2}$ from $C_{1} R_{1}$ removes the 0.5 from the formula, which is now $Q=\sqrt{ }\left(C_{1} / C_{2}\right)$ - assuming $R_{1}=R_{2}$. And due to the square root sign, the required ratio of C_{1} to C_{2} for any desired value of Q is reduced by a factor of four compared to the Sallen and Key version.
A further advantage of this circuit is the complete freedom of choice of components. Instead of making $R_{1}=R_{2}$ and setting the Q by the ratio of C_{1} to C_{2}, the capacitors may be made equal and the Q set by the ratio of R_{1} to R_{2}, or both C s and $R \mathrm{~s}$ may differ, the Q being set by the ratio of $C_{1} R_{1}$ to $C_{2} R_{2}$. Given that dual opamps are available in the same 8 pin DIL package as single opamps, the Kundert version of the Sallen and Key filter, with its greater freedom of choice of component values, can come in very handy for the highest Q stage in a high order filter.

The equal C filter

In addition to filtering to remove components outside the wanted passband, signals also frequently need amplification. The basic Sallen and Key circuit only provides unity gain, and with this arrangement, equal resistors are optimum. For, due to the loading of the second stage on the first, if R_{2} is increased to reduce the loading, then C_{2} will have to be even smaller, whilst if R_{2} is decreased to permit a larger value of C_{2}, the loading on $C_{1} R_{1}$ increases.
Where additional signal amplification is needed, there is no reason why some of this should not be provided within a filtering stage and Fig. 5 shows such a circuit. Clearly the dc and low frequency gain is given by ($\mathrm{RA}+\mathrm{RB}$)/RB. A convenience of this circuit is that the ratio $R A$ to $R B$ can be chosen to give whatever gain is required (within reason), with C_{1}, C_{2}, R_{1} and R_{2}, chosen to give the required comer frequency and Q. An analysis of this most general form of the

Fig. 4. The
Kundert filter, a variant of the Sallen and Key, has some
advantages.

circuit can be found in Ref 4. If there were a buffer stage between R_{1} and R_{2} as in Figure 4 , and the two CR products were equal, then at a frequency of $1 /(2 \pi C R)$ there would be exactly 3 dB attenuation round the loop due to each CR.
So if RA were to equal RB, giving 6 dB gain in the opamp stage, there would be no net attenuation round the loop and the Q would equal infinity - you have an oscillator. Without the buffer opamp, the sums are a little more complicated due to the second CR loading the first. But the sums have all been done, and the normalised values for R_{1} and R_{2} (values in ohms for a cutoff frequency of $1 / 2 \pi \mathrm{~Hz}$, assuming $C=1 \mathrm{~F}$) are given in Ref. 5 for filters of 1 to 9 poles, in Butterworth, Bessel and $0.1 \mathrm{~dB}-0.5 \mathrm{~dB}$ - and 1 dB -Chebychev designs.
For odd numbers of poles, this reference includes an opamp buffered single pole passive CR , rather than a three pole version of the Sallen and Key filter, as one of the stages. To convert to a cutoff frequency of, say, 1 kHz , regard the ohms figures in the tables as Mohms and the capacitors as $1 \mu \mathrm{~F}$. Now divide the resistor values by 2000π. As the values are still not convenient, scale the capacitors in a given section down by say 100 or any other convenient value, and the resistors up by the same factor.
Reference 5 also gives the noise bandwidth of each filter type. The noise bandwidth of a given filter is the bandwidth of a fictional ideal brick wall sided filter which, fed with wideband white noise, passes as much noise power as the given filter. Ref. 5 also gives, for the Chebychev types, the 3 dB bandwidth. Note that for a Chebychev filter, this is not the same as the specified bandwidth (unless the ripple depth is itself 3 dB). For a Chebychev filter the bandwidth quoted is the ripple bandwidth; e.g. for a 0.5 dB ripple lowpass filter, the bandwidth is the highest frequency at which the attenuation is 0.5 dB , beyond which it descends into the stopband, passing through -3 dB at a somewhat higher frequency.

Other variants

In the Sallen and Key filter, the signal appears at both inputs of the opamp. There is thus a common mode component at the input, and this can lead to distortion, due to 'common mode failure', which, though small, may be unacceptable in critical applications. Also, as already mentioned, the ultimate attenuation in the stopband will often be limited by another non-ideal aspect of practical opamps - rising output impedance at high frequencies, due to.the reduced gain within the local NFB loop back to the opamp's inverting terminal. Both of these possibilities are avoided by a different circuit configuration, shown in its lowpass form, in Figure 6a).
This is variously known as the infinite gain multiple feedback filter, or the Rausch filter, and it has the opamp's NI terminal firmly anchored to ground - good for avoiding common mode failure distortion. Another plus point is that at very high frequencies, C_{1} short circuits the signal to ground, while C_{2} shorts the opamp's output to its inverting input good for maintaining high attenuation at the very highest frequencies. The design equations and tabulated component values are available in published sources; the filter is well known and is shown here just as a stepping stone to a less well known filter section, the SAB (single active biquad) with finite zero.

In some filtering applications, the main requirement is for a very fast rate of cutoff, the resultant wild variations in group delay not being important. The Chebychev design provides a faster cut off than the Butterworth, the more so, the greater ripple depth that can be tolerated in the passband. But the attenuation curve is monotonic, it just keeps on going down at $(6 \mathrm{n}) \mathrm{dB} /$ octave, where n is the order of the filter (the number of poles), not reaching infinite attenuation until infinite frequency.
A faster cutoff still can be achieved by a filter incorporating one or more 'finite zeros', frequencies in the stop band at

Fig. 5. The equal C version of the Sallen and Key circuit.

Fig. 6a). The mixed feedback or 'Rausch' filter - lowpass version.

Fig. 6b). The mixed feedback or 'Rausch' filter - bandpass version.
which the response exhibits a notch. In a design with several such notches, they can be strategically placed so that the attenuation curve bulges back up in between them to the same height each time. Such a filter, with equal depth ripples in the passband (like a Chebychev) but additionally with equal returns between notches in the stop band is known as an 'elliptic' or 'Caur' filter.
In a multipole elliptic filter, each second order section is designed to provide a notch, but beyond the notch the attenuation returns to a steady finite value, maintained up to infinite frequency. The nearer the notch to the cutoff frequency, the higher the level to which the attenuation will eventually return above the notch frequency.
So for the highest cutoff rates, while still maintaining a large attenuation beyond the first notch, a large number of poles is necessary. It is common practice to include a single pole (eg an opamp buffered passive CR lag) to ensue that, beyond the highest frequency notch, the response dies away to infinite attenuation at infinite frequency, albeit at a leisurely -6dB/octave.

The elliptic filter

The building blocks for an elliptic lowpass filter consist of second order lowpass sections of varying Q, each exhibiting a notch at an appropriate frequency above the cutoff frequency.

Vin

Fig. 7. The SAB circuit, with finite zero (or notch, above the passband).
A number of designs for such a section have appeared, based on the twin-tee circuit, but they are complex, using many components, and hence difficult to adjust. An alternative is provided by the SAB section mentioned earlier. This can be approached via the Rausch bandpass filter, which can be seen in Figure 6b) to be a variant on the Rausch lowpass design of Figure 6a). Clearly, due to the capacitive coupling, the circuit has infinite attenuation at 0 Hz , and at infinite frequency, the capacitors effectively short the opamp's invert ${ }^{-}$ ing input to its output, setting the gain to zero. Either side of the peak response; the gain falls off at 6 dB per octave; the centre frequency Q being set by the component values. If the Q is high, the centre frequency gain will be well in excess of unity.

Figure 7 shows the same circuit with three extra resistors (R_{2}, R_{3} and R_{6}) added. Note that an attenuated version of the input signal is now fed to the NI input of the opamp via R_{2}, R_{3}. Consequently, the circuit will now provide finite gain down to OHz ; it has been converted into a lowpass section, although if the Q is high there will still be a gain peak. If the ratio of R_{5} to R_{4} is made the same as R_{2} to R_{3}, then the gain of the opamp is set to the same as the attenuation suffered by the signal at its NI terminal, so the overall OHz gain is unity.
If the other components are correctly chosen, the peak will still be there, but at some higher frequency, the signal at the opamp's inverting input will be identical in phase and amplitude to that at the NI input. The components thus form a bridge which is balanced at that frequency, resulting in zero output from the opamp, ie a notch.
Figure 8 shows a five pole elliptic filter using SAB sections, with a 0.28 dB passband ripple, a -3 dB point at about 3 kHz and an attenuation of 54 dB at 4.5 kHz and above. The design equations for elliptic filters using SAB sections are given in Ref. 6. The design equations make use of the tabulated values of normalised pole and zero values given in Ref. 7.

Some other filter types

Simple notch filters - where the gain is unity everywhere either side of the notch - can be very useful, eg for suppressing 50 Hz or 60 Hz hum in measurement systems. The passive TWIN TEE notch is well known, and can be sharpened up in an active circuit so that the gain is constant, say, below 45 Hz and above 55 Hz . However, it is inconvenient for tuning, due to the use of no less than six components. An ingenious alternative ${ }^{8}$ provides a design with limited notch depth, but compensating advantages. A notch depth of 20 dB is easily achieved, and the filter can be fine tuned by means of a single pot. The frequency adjustment is independent of attenuation and bandwidth.
Finally, a word on linear phase (constant group delay) filters. These are easily implemented in digital form, FIR filters being inherently linear phase. But most analog filter types, including Butterworth, Chebychev and elliptic are anything but linear phase. Consequently, when passing pulse waveforms, considerable ringing is experienced on the edges, especially with high order filters, even of the Butterworth variety. The linear phase Bessel design can be used, but this gives only a very gradual transition from pass- to stop-band, even for quite high orders. However, a fact that is not widely known is that it is possible to design true linear phase filters in analog technology, both bandpass ${ }^{9}$ and lowpass ${ }^{10}$. These can use passive components, or - as in Reference 10 active circuitry.

References

1. Active Filters: part 12 - Short Cuts to Network Design, R R Shepard, Electronics Aug. 18 1969, pp 82-91.
2. Active Filter Design, A B Williams, Artech House Inc. 1975
3. Linear Technology Magazine, May 1995, p 32.
4. Theory and Design of Active RC Circuits, L P Huelsman, McGraw Hill Book Company 1968. p 72.
5. Gain of two simplifies LP filter design, A Delagrange, EDN March 17 1983, pp 224-8. (Reproduced in 'Electronic Circuits, Systems and Standards', Ed. Hickman, Butterworth Heinemann 1991, ISBN 075060068 3).
6. Ian Hickman, Analog Electronics, Butterworth Heinemann 1993, ISBN 0750616342.
7. A. I. Zverev, Handbook of Filter Synthesis, John Wiley and Sons Inc. 1967.
8. D. Irvine, Notch Filter, Electronic Product Design, May 1985, p 39.
9. R.M. Lerner, Bandpass Filters with Linear Phase, Proc. IEEE March 1964, pp 249-268.
10. A. Delagrange, 'Bring Lerner filters up to date: replace passive components with opamps', Electronic Design 4, Feb. 15 1979, pp 94-98.

Fig. 8. A five-pole elliptic filter with $0.28 d B$ passband ripple and an attenuation of 54 dB at 1.65 times the cutoff frequency and upwards. The $-3 d B$ point is 3 kHz , approx. All capacitors $C=1 n F$, simply scale C for other cutoff frequencies.

VIDEO DESIGN

Video inserter

TThe program for controlliong the video insertion hardware described last monthbegins at address 0000_{16}. The microprocessor begins execution at this location after a hardware reset.
Address 0000_{16} contains a jump instruction to the routine which initializes the cpu and clears the software flags. Next the program sets up the real time clock by writing two state words to Reg. A and Reg. B of the 6818's ram. Table 1 shows the address map of the real-time clock while Tables 2 and $\mathbf{3}$ describe functions of registers A and B. Register details for the 6818 are shown in the Inset 1. For further information on other features of the 6818 refer to the manufactures manual. As the realtime clock IC resides in the external ram area, the MOVX instructions are used to communicate with it.
Within the real-time clock, the 24/12 control bit establishes the format of the hours bytes as either the 24 -hour mode (logic one) or the 12 hour mode (logic zero). This bit is affected only by the software.

Table 1. Locations within the 6818 realtime clock. Registers A and B are used for control. Address		
Locn	Function	Range
0	Seconds	0-59
1	Seconds alarm	0-59
2	Minutes	0-59
3	Minutes alarm	0-59
4	Hours - 12 hour mode	1-12
	Hours - 24 hour mode	0-23
5	Hours alarm - 12 mode	1-12
	Hours alarm - 24 mode	0.23
6	Day of week ($1=$ Sun)	1-7
7	Day of month	1-31
8	Month	1-12
9	Year	0-99
OA	Register A	x
OB	Register B	X

[^4][^5]
Ian Polczynski outlines the software needed for overlaying text on standard video picture using hardware described last month.

Ventical Sync pulse
Fig. 1. The Hposition and Vposition define the top left hand corner of the displayed area.

For example, if number A6 ${ }_{16}\left(10100110_{2}\right)$ is written to register A, the time-base frequency will be 32768 kHz and the SQW output frequency is 1024 kHz .
If $0 \mathrm{~A}_{16}\left(00001010_{2}\right)$ is written to register B , it disables all interrupts, activates SQW pin, indicates bed format and 24 -hour mode.

The following is the machine code starting

B8, 0A MOV	R0, \#0Ah
23, A6 MOV	A, \#0A6h
90 MOVX	@R0, A ; Reg. A=A6h
B8, 0B MOV	R0, \#0Bh
$23,0 A$ MOV	A, \#0Ah
90 MOVX @R0, A ; Reg. B=0Ah	

The same instructions are used for a read time or calendar operation. For example,

B8, 00 MOV
 R0, \#00h

; Set the R0 register to the RTC RAM location 00 .
80 MOVX A, @R0
; Read SECONDS from the RTC.
The second and last circuit requiring setting up is the μ PD6145 on-screen display chip. As stated in the hardware article in the September issue, the μ PD6 145 commands consist of nine bits, but the shift register for the serial interfacing operates with eight bits. As a result,
List 1. Serial communication routine for sending a byte from the cpu to the on-screen display chip - in 8039 assembly language. OSD_Ser: 9A, 7F ANL P2, \#7Fh
; OSD CS line (OSD 1) goes Low. BF, 08 MOV R7, \#08h ; Bit Counter R7 loaded with 8. FE MOV A, R6
OSD Rotate:F7
it to Ca
F6, AC JC Was_H
; Is it 1 or 0 ?
9A, EF ANL P2, \#OEFh
; If 0, Data (OSD 4) goes Low
04, AE AJMP Time_Call
; Skip next instruction.
Was_H: 8A, 10 ORL P2,
\#10h
; If 1, Data (OSD 4) goes High.
Time_Call: 14, F9 ACALL
OSD_Time
Call time delay routine.
9A, DF ANL P2, \#ODFh
Now OSD Clock line goes Low.
14, F9 ACALL OSD_Time
Wait a while again.
8A, 20 ORL P2, \#20h
Clock line goes High.
EF, A5 DJNZ R7, OSD_Rotate
; Go to OSD_Rotate if not last
bit
8A, 40 ORL P2, \#40h
Byte completed, Strobe High
9A, AF ANL P2, \#OAFh
Now Strobe goes Low.
00 NOP
3 cycles of time delay.
00 NOP
$\begin{array}{lll}00 & \text { NOP } \\ 8 A, ~ A O ~ O R L ~ & \text { P2, \#0AOh }\end{array}$
Strobe and Data are kept low.
83 RET
; Byte transferred, return.
The time delay routine is located at address
08F9 ${ }_{16}$. It corrupts only cpu register R5:
OSD_Time: BD, 10 MOV R5,
\#10
; Load the loop counter.
OSD_Time_St: 00 NOP
Do nothing inside the loop.
$\begin{array}{lll}\text { OO } & \\ \text { FDOP } & \\ \text { FD } & \\ \text { DJNZ }\end{array}$
$\begin{array}{ll}\text { OD NOP } \\ \text { FD, FB } & \\ \text { DJNZ }\end{array}$
OSD_Time_St
; Is the loop counter zeroed?
83 RET
; Return to the OSD subroutine.
To set up the μ PD6145 OSD IC, first input the
Format Reset Command at 0830_{16}.
MOV R6, \#OFE
Load R6 with "FE"
MOV R6, \#OFE
Load R6 with "FE"
(Format Command for Bank1)
CALL OSD_Ser
And CALL OSD serial subroutine:

Table 4. Command list for the 6145 on-screen display chip.

Content	Fo	D7	D6	D5	D4	D3	D2	D1	D0
Bank-0 commands Fo=0									
Display character data	0	0	C6	C5	C4	C3	C2	C1	C0
Colour blink data for each character	0	1	0	0	0	Bk	R	G	B
Character display line address	0	1	0	0	1	R3	R2	R1	R0
Character display column address	0	1	0	1	C4	C3	C2	C1	C0
Background specification	0	1	1	0	S4	S3	Rb	Gb	Bb
Display on/off, smoothing etc.	0	1	1	1	0	0	Sy	Sm	Do
Blinking/oscillator control	0	1	1	1	0	1	B1	B2	Os
Format Selection	x	1	1	1	1	1	1	Fo	Fr
Bank-1 commands Fo=1									
CRAM write address	1	0	0	A5	A4	A3	A2	A1	AO
CRAM word address	1	0	1	0	0	W3	W2	W1	W0
CRAM line address	1	0	1	0	1	L3	L2	L1	LO
Display position vertical address	1	0	1	1	V4	V3	V2	V1	Vo
Display position horizontal address	1	1	1	0	H4	H3	H2	H1	Ho
Character size specification	1	1	0	S5	S4	R3	R2	R1	Ro
Test mode setting	1	1	1	1	0	T3	T2	T1	TO

Control suggestions

These button functions were implemented on the prototype for programming the onscreen display via software.
+(up arrow): To position the overlayed screen upwards Change DATE and TIME Select character
-(down arrow): Position overlayed screen downwards Change DATE and TIME Select character
(left arrow): Position the overlayed screen to the left Step blinking text character backward
(right arrow): Position the overlayed screen to the right DATE/TIME: Selects date and time adjustment mode (4s)
TEXT: To select text adjustment mode (4s)
TEXT OFF: To switch text line on and off
SET: To complete setting and move blinking character forward.
instructions are divided into two banks. Table 4 shows the μ PD6145 command list.
Initially, the format reset command must be input to the μ PD6145 (Fr at logic one). To do this, first consider the serial communication routine. It transmits a hexadecimal byte from the cpu to the μ PD6145. The byte to be transmitted must be stored in cpu register R6 before entering this routine. The CALL to OSD_Ser routine, located at the $08 \mathrm{AO}_{16}$, starts transmission; List 1:
Next the horizontal and vertical display positions must be specified. As shown in Table 4, these functions belong to the Bank-1 Command Set. That is why R_{6} was loaded with FE_{16} in the previous transfer. Figure 1 shows how to calculate a position of the 24 -column-by-12-row screen.
As shown in Fig. 1, Hposition and Vposition define the top left hand corner of the displayed area. Formulas are as follows:

[^6]and,
Vposition=
$9 \mathrm{Hdot} \times\left[2^{4} \times \mathrm{V} 4+2^{3} \times \mathrm{V} 3+2^{2} \mathrm{~V} 2+2^{1} \times \mathrm{V} 1+2^{0} \times \mathrm{V} 0\right]$
Note that $\left(\mathrm{H}_{4} \ldots \mathrm{H} 0\right)=(0 \ldots 0)$ is not a valid combination, and Hdot represents a single tv line. The CCIR standard has 625 lines per screen. If, for example, the on-screen display chip's oscillator generates 6 MHz . This frequency is determined by L_{1}, C_{17} and variable capacitor C_{18}.
If $(H 4, H 3, H 2, H 1, H 0)=(0,0,1,0,0)$ then calculated Hposition is $8 \mu \mathrm{~s}$. This is about 12.5% of the duration of a single tv line ie. the position of the first displayed column will be shifted by 12.5% from the left screen edge, and so on. These sets of bits (H4... H0 and V4.
... V0) combined with value of capacitor C_{18} determine the position and width of the overlayed screen.
Now back to the assembler language, located at 0834_{16} :

MOV R6, \#60h

; Display position Vpos=0.
CALL OSD_Ser
MOV R6, \#C1h
; Display position Hpos=0
CALL OSD_Ser
Next, the size of the displayed character has to be set. This size is defined by bits S 4 and S5 from the character size command. Four size options are available: size 1 occupies 9 tv lines, size 218 lines, etc. The following code specifies displayed character size:

MOV R6, \#80h
; Size-1.
CALL OSD_Ser
To complete the OSD set up the cpu has to send some additional properties. All belong to the Bank-0 command set. The first byte to be sent is the format reset command for Bank-0 and then the other outstanding parameters.

This code is located at 0840_{16} of the program memory eprom:

MOV R6, \#0FCh
; "FC" specifies Bank-0.
CALL OSD_Ser
MOV R6, \#88h
; "88" defines Blinking on and colour Blk.
CALL OSD_Ser
MOV R6, \#0C0h
; "C0" means No Background.
CALL OSD_Ser
MOV R6, \#0E7h
; Turns the entire display ON.
CALL OSD_Ser
MOV R6, \#0E9
; Turns On oscillation and Blinking Off.
So, that is it. Now you can try to display something on the screen. To display ' 8 ' in row three and column five for example.

MOV R6, \#92h
; "90" would indicate Row 1
CALL OSD_Ser
MOV R6, \#A4
; "A0" would indicate Column 1
CALL OSD_Ser
MOV R6, \#08h
; " 08 " is the number we want to display.
CALL OSD_Ser
and the desired number ' 8 ' will be displayed where we wanted.
After the initialization, most of the time the program will rotates around a loop, waiting for a key to be pressed or seconds from the time counter to be elapsed.
Publishing the whole firmware's source code - about 4 kbyte - with assembler and explanations is not feasible, but I think that ther should be enough here to give you some idea of what is involved in writing/modifying the software for the on-screen display unit.

Technical support

Readers interested in a designer's kit incorporating the 6145 on-screen display IC, osd and keypad pcbs and a pre-programmed e-prom can obtain one from Polvision at 77 Glanton Way, Dianella, Western Australia 6062 for AU\$99. The NEC μ PD 6145 is difficult to obtain in small quantities in the UK, but it is freely available in Australia. NEC's head office there can be reached on 0061392621111. The μ PD6 151 appears to be a drop-in replacement, but this device will not allow you to define your own characters. The μ PD6 156 could also be used, with minor circuti alterations. Thuis device's command set is also slightly different.

Specialist in Parts - Broad in Outlook

The 1996 Cirkit Catalogue includes components from these and many other leading manufacturers:

AlliedSignal

ADVANCED MATERIALS

HMWHMN:
roRTM

mintata NEC Capacitors

(B) Richco reTOKO

Get out of a pickle get into SpiceAge!

Hands up all who have been there? A great idea turns into sleepless nights: getting one thing right breaks something else...

Some circuits require the refining of many interdependent variables. SpiceAge provides a virtually limitless inventory of components, signal functions and instruments with facilities for sweeping values, with am and fm through arbitrary functions. It can guide you to a solution that could take much longer to find using hardware.

SpiceAge up your design without burning a hole in your pocket. Prices from just $£ 85+$ VAT to $£ 695+$ VAT. Friendly technical help comes free (dreadful puns optional). For a demonstration kit and details of our other and third party support programs (includes schematics, PCB layout, filter synthesis and model synthesis), please contact:
Charles Clarke at Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP.
Tel: 01819060155 Fax: 01819060969 Email 100550.2455@compuserve.com

Dictionary of Communications Technology

Terms, definitions and abbreviations
Gilbert Held, 4.Degree Consulting, Macon, Georgia, USA
In response to the changing face of the telecommunications industry and the rapid expansion in the use of microprocessors, fibre optics and satellites, Gil Held has updated his earlier telecommunications dictionary to bring readers in line with the very latest developments and terms in communications technology.

Features Include:

- Over 9000 references and 250 + illustrations
- Comprehensive coverage of data and computer communications
- New entries on PC LANs, the Internet, client/server operations and communications testing
- Trade name information

First Edition Review:

"For a consultant or telecommunications operative, this book is a must. It is comprehensive and timely ... an excellent reference for the IS professional."
Dafa Processing Digest ISBN 047195542 6, 512 pp, hardback, UK £68.50, Europe $£ 73$, ROW $£ 85$ ISBN 0471951269 , 512 pp, paperbock, UK £38.50, Europe $£ 43$, ROW $£ 55$

Testing, Troubleshooting and Tuning Local Area
 Networks

Techniques and tools to isolate problems and boost performance
Gilbert Held, 4-Degree Consulting,
Macon, Georgia, USA.
Recognising the problems

encountered by network users and administrators on a daily basis, this book is designed to assist readers by focusing on testing, troubleshooting and tuning of Ethernet and TokenRing networks. It is devoted exclusively to: how things go wrong how to recognise, monitor and test for problems; network analysis and network management products that assist users in examining the flow of data in a complex network.
ISBN 047195880 8, 275 pp, hardback, UK £37.50, Europe £40, ROW £50

Wireless Information Networks

Kaveh Pahlavan, Worcester Polytechnic Institute and Allen H Levesque, GTE Government Systems Corporation.

Wireless information

Networks organises all major elements of wireless technology - cordless and cellular telephony, Personal Communications Systems (PCS), mobile data networks and Wireless Local Area Networks (WLANs), presenting them from a logical, systems engineering perspective. Technical material is thoroughly integrated with special applications and focuses on four main areas: Wireless

standards and descriptions of systems and products; Measurement and modelling of radio and optical wave propagations; Wireless transmission techniques and Wireless multiple access techniques.
Contents: Overview of Wireless Networks. Frequency Administration and Standards Activities. Characterisation of Radio Propagation. Channel Measurement and Modelling for Narrow-band Signaling. Measurement of Wide-band Channel Characteristics. Computer Simulation of the Radio Channel. Modem Technology. Signal Processing for Wireless Applications. Spread Spectrum for WIN Systems. Wireless Optical Networks. Networks and Access Methods. Standards and Products.
ISBN 0471106070 0, 304pp, hardback, UK £63.50, Europe £68, ROW £81

Applied Cryptography

2nd Edition
Protocols, Algorithms and Source Code in C Bruce Schneier, Security Consultant and President of Counterpane Systems, USA This revision of the programmer's and system designer's guide to the practical applications of modern cryplography

provides the most comprehensive, up-to-dale survey of modern cryptographic techniques, along with practical advice on how to implement them.

New to this edition

- Detailed treatment of the US government's Clipper Chip encryption program
- New encryption algorithms (eg. 'GOST') recently obtained from the former Soviet Union
- More detailed information on incorporating algorithms and programming fragments
into working software
- The latest developments in the fields of message authentication ('digital signatures') and digital cash. ISBN 0471128457,81 ppp. hard bock, UK ES9, Europe 664 , ROW E78
${ }^{1}$ SEN 0471117099,816 Pp., PqParback, UK E44, Europe E49, ROW $^{\text {f63 }}$

Data and Image

 Compression4th edition tools and techniques Gilbert Held, 4-Degree Consulting, Macon, Georgia, USA Data and image compression are key issues in computer communications with the increasing demand for data transmission capacity.

Guiding the reader through the main techniques, this book explains how practical data and image compression lechniques are now vital for efficient, low-cost transmission and data storage requirements. Building on the success of the previous editions of Data Compression, the scope of the fourth edition has been considerably expanded. Now covering image and fax compression, the text has been restructured to take account of the many new advances in this important field. It is also accompanied by an updated disk containing compression routines.
ISBN 047195247 8, 450pp+disk, hardback, UK £58.50, Europe £63, ROW £75

Handbook for Digital Signal Processing

S.K. Mirra, University of California and J.F. Kaiser, Bell Communications Research, New Jersey, USA
This is the definitive source of detailed information on all important topics in modern

digital signal processing. The only current handbook of its kind, it meets the needs of practising engineers and designers of hardware, systems and software. Written by world authorities, the Handbook for Digital Signal Processing is supplemented with hundreds of informative tables and illustrations. For professional engineers, designers and researchers in electronics and
telecommunications, this work will be an indispensable reference - now and for years to come.

Contents: Introduction; Mathematical Foundations of Signal Processing; Linear TimeInvariant Discrete-Time Systems, Finite-impulse Response Filter Design; Digital Filter Implementation Considerations; Robust Digital Filter Structures; Fast DFT and Convolution Algorithms; finite Arithmetic Concepts; Signal Conditioning and Interface Circuits; Hardware and Architecture; Software Considerations; Special Filter Designs; Multirate Signal Processing; Adaptive filtering Spectral Analysis; Index. ISEN 0471 61995 7, 1302pp, hardbeck, UK £110.50, Europe £118, ROW £138

Solving Interference Problems In Electronics

R. Morrison, Eureka California, USA Interference in electronic equipment is a constant source of difficulty for the design and systems engineer. Until now, there has not been a coherent theory that engineers can refer to in their design work and the solution of interference problems has therefore often considered to be an 'art'. Written by an acknowledged expert in the field, this new title provides methods and techniques for testing and evaluating
designs, and covers interference questions in computer manufacturing and systems design.
ISBN 047112796 5, 206pp, hardbork, UK £47.50, Europe $£ 48.50$, ROW $£ 54$

Diode Lasers and Photonic Integrated Circuits

L. A. Caldren and S. W. Corzine, both of the University of California, Santa Barbara, USA. Diode lasers are found in numerous applications in the optoelectronics industry,

telecommunications and data communications, ranging from readout sources in compact disc players to transmitters for optical fibre communications systems. This new title provides a comprehensive treatment of diode laser technology, its principles and theory, treating students as well as experienced engineers to an in-depth exploration of this fast growing field.
ISEN 047111875 3, 620pp, hardback, UK £63.50, £urope £67, ROW £78

All prices are fully inclusive of packing and delivery

Return to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following titles:

Qry	Title or ISBN	Price

** All prices on these pages include delivery and package **
Total
Name
Address

Postcode

Telephone
Method of payment (please circle)
Access/Mastercard/Visa/Cheque/PO
Cheques should be made payable to
Roed Business Publishing

Credit card no

Card expiry date

Signed

Please allow up to $\mathbf{2 8}$ days for delivery

Exclusive $\mathbf{E W}+\mathbf{W W}$ reader offer versatile dmm \& tester for £14.95

Featuring 10A dc measurement capability and transistor $h_{\text {FE }}$ test facility, the DT830B is a compact, 3.5 digit multimeter with six measurement functions. This attractive meter normally sells at $£ 23.44$, excluding postage. As a special introductory offer exclusive to $E W+W W$ readers in the UK* - instrument distributor Vann Draper Electronics is offering this meter for just $£ 14.95$, fully inclusive of vat and postage.
In addition to reading dc and ac voltage, dc current and resistance, the DT830B has a diode-test function and a transistor $h_{F E}$ range indicating gains from $0-1000$. Supplied with test leads and battery, this compact multimeter weighs just 170 g and measures 70 by 126 by 24 - truly a pocket sized instrument. Its liquid crystal display has high-contrast 0.5 in high characters.
*Overseas readers, please read the note on the coupon.
Use this coupon to order your meter
Name
Company (if any)
Address

Phone number
Post code

Make cheques payable to Vann Draper Electronics Ltd Or, please debit my Master, Visa or Access card.

Card No
Expiry date
Please mail this coupon to Vann Draper Electronics, together with payment. Alternatively fax credit card details with order on 01162570893 or telephone on 01162813091 . Address orders and all correspondence relating to this offer to Vann Draper Electronics at Alexander House, Bampton Close, Wigston, Leicester LE18 2RZ.

* Overseas readers can also obtain this discount but details vary according to country. Please ring, fax or write to Vann Draper Electronics.

DT830B key specifications
DC voltage
Basic accuracy
$0.2 / 2 / 20 / 200 / 1000 \mathrm{~V}$
Input impedance
$\pm 0.5 \%$
Max input
AC voltage
$1 \mathrm{M} \Omega$
1000 V dc
$200 / 750 \mathrm{~V}$
Basic accuracy
$\pm 1.2 \%$
Input impedance
0.45 M

Frequency range
Max input
DC current
Basic accuracy Overload protection

Resistance
$45-400 \mathrm{~Hz}$
750 V ac
$200 \mu / 2000 \mu / 20 \mathrm{~m} / 200 \mathrm{~m} / 10 \mathrm{~A}$ $\pm 1.0 \%$
0.2A fused

10A nol fused
200/2000/20k/200k/2M
$\pm 0.8 \%$
250 V dc/ac

Next issue - November - on sale 26 October Free with EW+WW

Cover-mounted TO-92 three-terminal voltage regulator
Manufactured by Zetex, this high-performance 5 V regulator is similar to the industry standard 78L05, except that it has a quiescent current of around $350 \mu \mathrm{~A}$ as opposed to $2-3 \mathrm{~mA}$. In addition, it has double the output current, at 200 mA , and improved line and load regulation.
Remember... you can reserve your copy of Electronics World with your local newsagent.
Simply fill in the card in the magazine to guarantee your monthly copy.

ANCHOR SURPLUS Ltd

The Cattle Market Depot Nottingham NG2 3GY. UK Telephone: +44 (0115) 986 4902/ +44 (0115) 9864041 24hr answerphone Fax: +44 (0115) 9864667

Micro Video Cameras

Following last Month's Readers Offer for the 721-S Micro Camera many readers have contacted us asking about other items in our range of Micro Cameras and Security

Surveillance equipment.
We are SOLE AUTHORISED IMPORTERS of the entire range of Cameras and Video Surveillance equipment produced by the world's leading manufacturer. ALL items in the range carry a full 12 Months Guarantee. If you would like to receive our comprehensive catalogue of Cameras and associated equipment please send a large
SAE with 48 p postage, marked "Camera Catalogue"

Here is a sample of the available stock.
A-721-S Micro Camera $32 \mathrm{~mm} \times 32 \mathrm{~mm}$... $\mathbf{£ 8 5}$
A-721-P Micro PIN-HOLE Camera ... $32 \mathrm{~mm} \times 32 \mathrm{~mm}$... $£ 85$
A-921-S Camera with AUDIO ... $30 \mathrm{~mm} \times 30 \mathrm{~mm}$... £95
A-1211 C/CS Mount Camera ... $110 \mathrm{~mm} \times 60 \mathrm{~mm} \times 60 \mathrm{~mm} . . . £ 110$ A-521 Micro Cased Camera $43 \mathrm{~mm} \times 48 \mathrm{~mm} \times 58 \mathrm{~mm}$... metal cased ... $£ 120$ 6001-A High Resolution COLOUR Cameras (420 lines) ... 0.45 lux ... £210

Outdoor Camera Housings ... Aluminium ... £45
Camera Mounting Brackets ... Universal Mounting ... $£ 5.95$
Camera Switchers ... for up to 8 Cameras ... $£ 85$
Auto Record Controllers ... Allow NORMAL VHS Videos to operate
like professional Time Lapse or Security Recorders ... £75
QUAD-1 Multi Vision Processors ... Digital Freeze ... Quad Pictures etc $£ 275$

PLEASE NOTE:

AS A CONTINUED SPECIAL OFFER ALL THE ABOVE CAMERA AND ACCESSORY PRICES INCLUDE VAT AND CARRIAGE TO UK ADDRESSES
Government Surplus Electronics Equipment on Special Offer This Month
THANDAR TC200 LCD Hand Held Digital Meters ... 0-200uF ... 0-2H ... 0-20M Ω... ONLY $£ 50$
THURLBY 1905a Intelligent 51/2 Digit MultiMeters ... 0.015\% acc ... Log, Filters, Math ... ONLY $£ 175$
TIME Electronics 404N/1021 Voltage/Current Calibrators ... 0.05\% accuracy ... ONLY £275
FRANKLIN Wavetek 3600 Power Line Disturbance Monitor + Printer ... LAST 2 NOW ONLY $£ 350$
MARCONI TF9693 + TF2361 + TF9695 VHF Sig Gen / Sweeper sets ...
$\mathbf{1 M h z}-300 \mathrm{Mhz} . . .0 .01-100 \mathrm{Khz}$ sweep rate. $.0 \mathbf{0 - 6 0 d b}$ attenuators ... INCL Cased Adaptor sets ... LAST FEW NOW ONLY $£ 125$
COMARK $2007+3$ "K" type probes ... 0.1° res ... $\pm 0.5 \%$ acc ... Cased As New ... ONLY ... £65
Other Digital Thermometers always in stock ... Please Phone
SINERGY TRILINE PC5A Energy Monitor LCD Screen ... Colour Plotter 1+3ph ... ONLY £195
MARCONI TF2300S FM/AM Mod Meter 3.5Mhz-1 Ghz AM/AM ... ONLY £75
HP8616A Signal generators $1.8 \mathrm{Ghz}-4.5 \mathrm{Ghz}$ AM/FM/Pulse $\mathbf{£ 1 2 5}$
TEK $7603+7$ A $18+7$ B50A 4 Channel 100 Mhz Scope ... Rack version ... FEW left ... Only $£ 325$ CLARE A217 Earth Bond Testers .. 0-30A ... 0-250M Ω... FEW left ... Only $£ 75$
FARNELL TM8 Sampling RF Millivoltmeters 1 mV - 3 V 10Khz- 1.5 Ghz ... FEW left ... ONLY $£ 125$
MARCONI TF2603 RF Millivoltmeters + Accessory Kit ... LAST FEW ... ONLY £60

OPEN SEVEN DAYS A WEEK
 Mon-Fri 9am-6pm Sat 8am-4pm Sun 10am-4pm NO APPOINTMENTS NEEDED. CALLERS ALWAYS WELCOME All Prices are Ex VAT \& Carriage and carry our Unique 30 Day Un-Conditional Warranty

Finally an upgradeable PCB CAD system to suit any budget ...

BoardCapture - Schematic Capture

- Direct netlist link to BoardMaker2
- Forward annotation with part values
- Full undo/redo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotatlon
- Integrated on-the-fly library editor
- Context sensitive oditing
- Extensive component-based power control Back annotation from BoardMaker2

Board Maker

BoardMaker1 - Entry level

PCB and schematic oratting
Easy and Intuitive to use
Surface mount support
90,45 and curved track comers
Ground plane fill
Copper highlight and clearance checking
BoardMaker2 - Advanced level
All the features of BoardMakert plus

- Full netlist support - OrCad, Schema, Tango, CadStar
- Full Design Rule Checking - mechanical \& electrical
- Top down modification from the schematic

Component renumber with back annotation

- Report generator - Database ASCII, BOM Thermal power plane support with full DRC

BoardRouter - Gridless autorouter

- Simultaneous multi-layer routing
- SMD and analogue support
- Full interrupt, resume, pan and zoom while routing

Output drivers - Included as standard
Printers - 9 \& 24 pin Dot matrix, HPLaserjet and PostScript

- Penplotters - HP, Graphtec, Roland \& Houston
- Photoplotters - All Gerber 3×00 and 4×00 Excellon NC Drill / Annotated drill drawings (BM2)
 information on
Tel 01354695959
Fax 01354695957

Hesitant pricing of the

DTI's proposals for

 spectrum pricing offer the prospect of very large benefits to the UK economy - provided some remaining traditional assumptions can be relinquished, reasons David Rudd.David Rudd, Ph.D., F.IE.E., C.Eng., is an engineering and economics consultant. He can be contacted at 14 Colcokes Road, Banstead, Surrey, SM7 2EW, telephone number 01737356427.

Fig. 1. Private business radio - PBR - shared local $2 \times 12.5 \mathrm{kHz}$ channel, 10 mobiles, 25 W in two regions. The first region covers London, Manchester and Birmingham, the other the remainder of the country.

The DTI white paper, 'Spectrum Management: into the 21 st Century', proposes to introduce a radically new method of charging for radio transmission licences - known as 'spectrum pricing': It follows a two-year consultation, to which more than 400 spectrum users, industry bodies and others responded. The method of charging will come into operation when Parliament can find time for the legislation.
The purpose of spectrum pricing is to alleviate the present congestion in some parts of the spectrum. Spectrum pricing will also make future allocations and assignments.(see Inset 1) depend on the scarcity value of the spectrum in those parts. In this way, users can make better informed choices and potential users who are currently denied licences may be able to obtain them. This will allow them to improve their services to their customers. The principle was discussed in last month's issue ${ }^{2}$.
The proposals are largely a revival and further development of a proposal that I wrote for the Department of Transport's contribution to the Merriman Report in 1983^{3} and published again in 1986^{4} but which was then pigeon-holed. The main objectives are the same, as are the parameters of the charges, see Inset 2. Even the options by which the spectrum users who face increased charges will be able to avoid or reduce them, so releasing spectrum for other potential users, are the same Inset 3. But there are some serious differences.

Setting the prices

The white paper recognises that the prices should be set to reflect the value of the spectrum - not to maximise revenue. DTI's Radiocommunications Agency (RA) is considering two methods of setting the prices in the parts of the spectrum which come. under its management, namely:

- Auctions - the Government's comparable basis."
preferred method for users in the private sector, on the supposed grounds of economic efficiency, transparency and speed. Also because auctions are thought to enable the market rather than the spectrum manager to set the prices;
- Administrative pricing - so called - under which the RA will have to set the initial prices without knowing the true value of the spectrum but which the responders to the consultation markedly prefer.
Perhaps because of the above preference, the RA

"How should we develop this new policy on spectrum pricing, Sir Humphrey?"
"Well, Bernard, the principle is that all spectrum users are equal. It means they must all pay for their spectrum on a
"Will that include the broadcasters and the MOD, sir ?"
"Certainly, but we know of course that some users are more equal than others.".
"Yes Min- er, Sir Humphrey!"

COMMUNICATIONS

Inset 1 - Allocation and assignment
Allocation is the identification of frequency ranges for specific applications, e.g. broadcasting.
Assignment is the authorisation for a transmitter to use a specific frequency or channel. These two are roughly analogous to wholesaling and retailing respectively in commerce. Source - glossary of the white paper.

Inset 2 - Parameters of the charges

Administratively determined charges will depend on:

- bandwidth - pro rata,
- effective power - pro rata for private business radio,
- position in the spectrum - specific frequency or channel,
- geographical location

All are as proposed in the IEE paper of 1986

Inset 3 - Options for users

Users who face higher charges will have the following options or some of them:

- more spectrum-éfficient technology, such as trunking,
- greater sharing with other users,
- migration to less congested bands,
- modifying operating procedures,
- using different means of communication, such as cable or optical fibre
Again, all are as previously proposed.
intends to price the spectrum for the first affected services administratively. They are:
- private business radio (PBR, previously known as private mobile radio),
- public access mobile radio (PAMR),
- personal communication networks (PCN)
- cellular telephony (CT),
- point-to-point fixed links.

The figures show the present charges and some illustrative future charges. The RA intends to phase in the new charges over three years and then review them.
For PBR, Fig. 1, there will be two regions. First is MR1, covering the major cities London, Manchester and Birmingham. Here, the charges will more than double over the three years. Second is MR2, covering the rest of the UK, in which the charges will not rise and may fall.
For PAMR, Fig. 2, the charges will rise by more than five times over the three years and for PCN and CT, Fig. 3, by more than three
and six times respectively
For point-to-point fixed links, Fig. 4, there will also be two regions. FRI will cover links with one or both ends in major population centres - Greater London, West Midlands, Greater Manchester, Tyneside, Liverpool, Glasgow or Leeds. Charges in FR1 will rise by up to nearly twelve times, depending on spectrum band and availability. Secondly, FR2 will cover the rest of the UK. Charges will also not rise and may fall.
Those are large increases. Some implications for the users are given in Inset 4. Unfortunately the way in which the prices have been estimated reveals some vagueness - or perhaps misunderstanding - about the objectives of spectrum management. The white paper acknowledges that the prices should reflect the scarcity value of the spectrum - as proposed in 1983 and 1986. However, the initial prices have been calculated by consultants from estimates of the marginal value of the spectrum to the user. Marginal value in that sense is not the same as scarcity value and so may lead to the spectrum being substantially over-priced or under-priced, Inset 5.

Balancing supply and demand

When the charges for spectrum begin to reflect its scarcity value, some users will begin to exercise their options for reducing their charges. This will reduce the demand for spectrum and in turn reduce its scarcity value in those bands. That is the intended effect of spectrum pricing, but that elasticity of demand cannot be measured in advance.
So the initial prices will have to be reassessed as soon as they begin to affect the demand for spectrum. This means it is probably unavailing to try and improve the estimates in advance. However the over-riding, longterm objective - which the white paper fails to emphasise - must be to try and balance the availability of spectrum in any band and the demand for it in that band.

Ideally, as the earlier proposal stated,
"any applicant should be able to obtain a licence at the going rate in any geographical location and any region of the spectrum, but there should be no unoccupied band where the rate is greater than zero. Inevitably, in practice, the rate will often be higher or lower than that, resulting in some queuing for spectrum and some bands being unoccupied, if only temporarily, where the rate is not zero."

Such imperfections have to be accepted in the interest of making the best use of the spectrum in the long term. They are not adequate grounds

Inset 4 - Implications of new charges

The implications of charges for a user will depend on their amount relative to the user's turnover. The white paper estimates that the charges are unlikely to be prohibitive, even for small firms, but of course there may be a few individual exceptions. The crucial question is whether the increases will be large enough to induce some businesses to relinquish spectrum in the congested bands (see Inset 3), thus enabling other businesses, which value that spectrum more highly, to move in. If they are not, they will have to be increased until they begin to have that effect.
for changing or weakening the objective.
Those difficulties, coupled with fear of uninformed public criticism if there are unused bands and/or queues, are probably the underlying reasons for the Government's preference for auctions in the private sector. Here, high prices, unused spectrum and queues can all be blamed on market forces, which are widely acclaimed though poorly understood. The users, on the other hand, probably associate auctions with the much publicised sales by auction of works of art, where speculation and hoarding are rife and prices fluctuate wildly from year to year.
Fluctuating prices are anathema to engineers who are trying to plan long-term projects. Some references to the RA's regulatory powers to prevent major users from hoarding spectrum to exclude competition are too vague to be reassuring. It is significant that the Government does not intend to make the public-sector users bid for spectrum in auctions. Perhaps it will reconsider its preference for auctions in the private sector when the RA has some practical experience of administrative pricing.

The principle of equality

The white paper mentions some well-known technical and international constraints on the extent to which the price mechanism can be applied to the spectrum. They are on a par with the way in which planning legislation effectively constrains the prices at which land is sold or leased. Within those constraints, the earlier proposal emphasised the importance of equality in the treatment of spectrum users. Any discrimination between commercial and non-commercial, public and private, civil and military or major and minor users will inevitably weaken the benefits of pricing on the economically efficient use of spectrum.
Inset 6 shows the percentage allocations to the major and minor user categories over four frequency ranges in 1994. The three major categories - broadcasting (BBC \& ITV), defence and telecommunications (BT \& Mercury) together predominate. They occupy roughly two thirds of the total spectrum below 30 GHz and one third of the spectrum so far allocated above 30 GHz . Minor users - in some nineteen categories - are interspersed between them.
It follows that a small percentage improvement in the spectrum efficiency of a major user, who then relinquishes spectrum, would be worth as much in congestion relief as a large improvement in that of any minor user. So DTI's plans for the future allocations in those three major categories will be particularly important to the success of spectrum pricing.
BT and Mercury are in the private sector and the RA will presumably charge them at the new rates for their point-to-point fixed links. They can have no legitimate complaint. This is because BT's privatisation prospectus warned that the Government intended to commission a feasibility study into "some form of pricing for the radio spectrum in place of or in addition to the present licence fee basis." In the event, the study report ${ }^{5}$ turned out to be mainly about deregulating and privatising the congested parts
of the spectrum. It was critically reviewed in $E W \& W W$ - Inset $7-$ after which no action was taken on it, but the warning had been given.

Special pleading

However, as regards defence, the white paper states that: "the public sector [including the armed services and the emergency services, one of the minor categories] should have the same incentives for spectrum efficiency as the private sector. Accordingly public sector users will pay administrative charges on a comparable basis to the private sector." That looks like a move towards equality, but 'comparable' is not the same as 'equal' and there is no mention of applying the price mechanism to determine

Inset 5 - Value definitions

The scarcity value is the amount which those who do not use the spectrum would be able and willing to pay for it and derive a net benefit from it.
The marginal value, on the other hand, is according to the white paper - "a measure of the worth of the assignment to the user. It reflects the amount the user would have to pay [for an equivalent service] if deprived of it." But that amount may be much greater or less than what a different user, with different problems and priorities, would be able and willing to pay.

Inset 6 - Percentage allocations

Allocation to:	BBC \& ITV	Defence	BT \& Mercury	Other	Unallocated
$<1 \mathrm{GHz}$	39.9	28.8	-	31.3	-
$1-3 \mathrm{GHz}$	11.7	30.4	20.0	37.9	-
$3-30 \mathrm{GHz}$	-	37.8	32.0	26.5	3.7
$>30 \mathrm{GHz}$	-	14.3	3.6	28.8	53.3

Source: 'The Future Management of the Radio Spectrum - A Consultative Document', Radiocommunications Agency, March 1994.
the size of those public-sector allocations.
On the contrary, the statement is followed by: "the Government's control of spectrum allocation will ensure that the bodies concemed continue to have access to fulfil their operational needs", without stating how such needs will be measured. Those allocations are man-

Fig. 2. Public-access mobile radio - PAMR national $2 \times 12.5 \mathrm{kHz}$ channel. Charges will rise by more than five times over three years.

Fig. 3. Personal communications networks and cellular telephony - PCN and CT - over three years, charges will rise by more than three times for PCN and six times for CT.
aged by the Ministry of Defence, the Home Office and so on, not by the RA.
The white paper also applies what it calls 'particular considerations' to the broadcasting allocations, which are managed by the Radio Authority and the Independent Television Commission - again not by the RA. It claims that the competition for Broadcasting Act licences "imputes a market-determined scarcity value for spectrum". But again there is no mention of allowing market forces to determine the overall broadcasting allocations. This alone would ensure genuine equality of treatment between the broadcasters and other users and applicants.
The prospect which unfortunately emerges is of several government departments putting forward competing assessments of operational needs on behalf of their sponsored users to justify their retention of their privileged allocations - at much lower rates per kilohertz of bandwidth than private-sector users in immediately adjacent bands. Now an abrupt change in the price of land at, say, the edge of a marsh or a precipice may be justifiable, but the radio spectrum does not have such natural edges. It is continuous from zero to 100 GHz and beyond.
Any abrupt change in its price per kilohertz will be a sure indication that it is not being used economically on the lower-price side. By pushing up the prices in the congested parts of the spectrum without inducing the privileged users to relinquish spectrum, such discrimination might bring the whole concept of spectrum pricing into disrepute.
In spite of that argument, many people will probably assume instinctively, as does the white paper, that at least the emergency services - police, fire and ambulance - ought to have special treatment. The counter-arguments have been set out more than once but so far

Inset 7 - 'Privatisation of the radio

 spectrum' $\mathbf{E W}+W W$, September 1987 The study reviewed in a my earlier article Privatisation of the radio spectrum ${ }^{6}$ had been commissioned by DTI to consider the practicality of spectrum pricing, as had been mooted in 1983 in the Merriman Report. The article criticised the study report for its change of emphasis from pricing to deregulation and in particular for two major departures from the 1983 proposals plus a remarkable privatisation proposal.The first departure was to exclude both defence and broadcasting from the pricing system, thus leaving only a rump of mainly small users in the system. That would have undermined the operation of the price mechanism so seriously as to invalidate it.
The second departure was to allow revenue maximisation to become the guiding principle in pricing the spectrum instead of the principle of balancing supply and demand. That would have distorted the decisions of the paying users to the detriment of the whole UK economy.
The report went on to assert that there was no prospect of a general spectrum shortage for the next ten or twenty years - which was completely belied by events - and to propose that spectrum management licences should be granted to a limited number of 'Frequency Planning Organisations', or FPOs, in the private sector.
By defining the band(s) within which each FPO would operate exclusively, the proposal would have effectively negated their inducements to compete with one another. Moreover they would not have had to pay for the scarcity value of their spectrum but would have been allowed to charge their users as much as they could get. The article dubbed that as a remarkable example of privatisation by gift.
The white paper recognises that revenue maximisation should not be the objective in setting the prices and it does not exclude defence or the broadcasters from the pricing system, but it still instinctively tries to protect both of those categories. It does not propose any FPOs but it talks about the possibilities of 'Spectrum Management Organisations', which would undertake some administrative and technical management functions of parts of the spectrum.
have not been much heeded. They are there fore repeated in Inset 8.

Second-hand opinions

The white paper asserts that: "broadcasters have little scope to increase spectrum efficiency using existing technology" but that "digital broadcasting offers the prospect of considerable spectrum efficiency gains." So the Government "wishes actively to promote the switch to digital" in the hope of generating "exciting wealth creation opportunities."
continued on page $812 .$.

Transform your PC
 into a digital oscilloscope, spectrum analyser, frequency meter, voltmeter, data logger . . for as little as $£ 49.00$

The ADC-10 supplied with PicoScope gives
Pico Technology specialises only in the development of PC based data acquisition instrumentation. Call for your guide on 'Virtual Instrumentation'.

ADC-10 £49 with PicoLog £59

Virtual Instrumentation

Pico's PC based oscilloscopes simply plug into the parallel port turning your PC into a fully featured oscilloscope, spectrum analyser and meter. Windows and DOS software supplied.

ADC-100 Dual Channel 12 bit resolution

The ADC-100 offers both a high sampling rate 100 kHz and a high resolution. Flexible input ranges ($\pm 50 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$) make the unit ideal for audio, automotive and education use.
ADC-100 £199 ADC-100 with PicoLog £219
ADC-200 Digital Storage Oscilloscope

- 50 MSPS Dual Channel Digital Storage Scope

25 MHz Spectrum Analyser
Windows or DOS environment
$\pm 50 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$
Multimeter
20 MSPS also available
ADC 200-20 £359.00 ADC 200-50 £499.00

Both units are supplied with cables, power supply \& manuals.

Data Logging

Pico's range of PC based data logging products enable you to easily measure, display and record temperature, pressure and voltage signals.

TC-08 Thermocouple to PC Converter

- Supplied with PicoLog software for advanced temperature processing, min/max detection and alarm - 8 Thermocouple inputs - No power supply required.

TC-08 £199

TC-08 £224 with cal. Cert. complete with serial cable \& adaptor. Thermocouple probes available.

Call for free demo dist and product range catalogue Post \& Packing UK £3.50, Export customers add $£ 9$ for carriage \& insurance.

Pico Technology Ltd. Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 7QJ UK
Tel: + 44 (0) 1954211716 Fax: + 44 (0) 1954211880 E-mail: post@picotech.co.uk Web: http://www.picotech.co.uk/

Eight year EW index Hard copy or disk

Includes over $\mathbf{6 0 0}$ circuit idea references
Whether as a PC data base or as hard copy, SoffCopy can supply a complete index of Electronics World articles going back over the past eight years.
The computerised index of Electronics World magazine covers the eight years from 1987 to 1995 - volumes 94 to 101 inclusive - and is available now. It contains almost 2000 references to articles, circuit ideas and applications - including a synopsis for each.
The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512 k ram and a hard disk.
Even though the disk-based index has been expanded significantly from five years to eight, its price is still only $£ 20$ inclusive. Please specify whether you need $51 / 4 \mathrm{in}, 3.5 \mathrm{in}$ DD or 3.5 in HD format. Existing users can obtain an upgrade for $£ 15$ by quoting their serial number with their order.

Hard copy Electronics World index

Indexes on paper for volumes 100 and 101 are available at $£ 2$ each, excluding postage.

$[0] * 3 / 4$ Circuit Ideas R	
Remote motor control	SIMULATOR, INSERTION \& RETURN LOSS
Resistance multiplier	C J Hall
SCR Inverter	
Sample-and-infinite hold	May 1992, p422
Schmitt trigger, prag. thresholds	
Self-ID for plugs and sensors	"Simultaneous insertion and return
Sensor, Liuear Current	loss plots".
Seruo, High-torque position	Modelling a return-loss bridge at
Seruo, Simple Simulator, insertion a return los	the relevant port allow plot of insertion loss, and, without
- ingle-pot Polarity \& Gain adjust	further conputation, return loss
Soft-start filament driver	plot simultaneously.

Photo copies of
Electronics World orticles Photo copies from back issues of Electronics World ore available at a flat rate of $£ 3$ per article or 50 p per circuit idea, both excluding postage.

Ordering details

The $E W$ index data base price of $£ 20$ includes UK postage and VAT. Add an extra $£ 1$ for overseas EC orders or $£ 5$ for non-EC overseas orders.
Postal charges on hard copy indexes and on photocopies are 50 p UK, $£ 1$ for the rest of the EC or $£ 2$ worldwide.
For enquiries about photocopies, etc,
please send an sae to SoftCopy Ltd at the address below.
Send your order to SoftCopy Lid., 1 Vineries Close, Cheltenham GL53 0NU, tel 01242 241455, or e-mail at 100556.112@compuserv.com. Please make cheques payable to SoftCopy Ltd - not EW or Reed Business Publishing. Please allow up to 28 days for delivery.

Marlow Industries have been leaders for over 20 years in manufacturing fine quality thermoelectric (Peltier) devices, offering a wide range of standard products alongside a custom cooler design service. As a result of listening to our customers, we have applied more resources to the provision of design services for thermal assemblies and their manufacture. If you have a thermal management problem then contact us for assistance.

In addition to the custom assembly route we can provide ready built solutions to thermal management problems.
One such product is the ST3337 (pictured) which provides up to 40 Watts of pumping in a small, convenient package that needs only a 12 Volt supply and is ideal for pic-nic boxes, serum transportation, educational and experimental use, equipment cabinet cooling, dehumidifiers and component cooling.
For further details, to place an order, or to arrange for an engineer to call, contact:

> Marlow Industries Europe
> 7 Laura House, Jengers Mead
> Billingshurst, W. Sussex RH14 9NZ Telephone: 01403784849

> Fax: 01403782901

WE ONLY USE THE BEST

 TEST AND MEASUREMENT INSTRUMENTS ON OUR OWN PRODUCTS...

OSCILLOSCOPES

Over 34 models including: Digital, Analogue and Portables. Bandwidths from 5 MHz to 150 MHz . Sophisticated triggering, single and dual timebases, Multiple channels and large memory Dso's. Prices start from $£ 235$ (20MHz 2 Channel £399)

POWER SUPPLIES

Four separate ranges comprising of 40 models from low cost analogue displays to the latest high performance digital units. Providing up to 250 volts and 120 amps with Master-Slave, RS 232 and GPIB are available on many models,
 as are optional rack mount facilities.

	A DDIOVIDEO RF	
-00=0-7mm	Audio Oscillators, Analysers Wow and Flutter, Millivolt Meters and Distortion Meters Pattern	
Generators, Vectorscopes, Waveform Monitors Video Analysers and Noise Analysers. Five models of AM/FM Standard RF Generators offering a highly stable frequency range of 10 KHz to 2 GHz with digital readouts for Level, Frequency, Modulation and Memory address.		
GENERAL PURPOSE		
Frequency Counters, Function Generators plus a complete range of accessories to complement the complete range of instruments.		

...NOW YOU CAN DO THE SAME

If you like the idea of working with the best, contact us, we can provide brochures with a complete specification for all our measurement products.

Kenwood UK Led, Kenwood House,

 Dwight Road, Watford WD1 8EB, England> TEL: + $44(0) 1923218794$
> FAX: $+44(0) 1923212905$

COMPONENTS

Applying sspeech §forage echipsp s

Colin Attenborough shows how easy it is to apply speech storage and playback chips, using talking weighing scale to illustrate his discussion.

*In the UK, the ISD parts are distributed by Sequoia, 01734258000.

Ihave designed several sets of speaking weighing scales during the past decade, chip counts dropping as technology advances. The availability of the ISD1016 speech storage/playback chip, together with Microchip Technology's PIC16C5x microprocessors, set my fingers itching to see ifI could do the job with just two integrated circuits.
Weight-to-electrical-signal conversion? I cheated by buying a set of low-cost kitchen scales with a digital readout from a wellknown chemist. I was rewarded by finding a signal of 10 kHz in addition to a $2 \mathrm{kHz} / \mathrm{lb}$ signal accessible inside, which formed an excellent starting point.
This article summarises what I had to learn about the ISD1016 speech storage/playback chips before I could complete the scales. Complete details about the scales are not given, but you will learn how to generate speech output for you own application.

Speech storage and playback chips

The ISD1016 is one of a family of speech/sound storage chips manufactured by Information Storage Devices*, Fig. 1. It stores up to 16 seconds of sound.
All members of the family run from single 5 V supplies, draw 20 mA when quiescent, and a fraction of a microamp when powered

down. Up to 50 mW of audio power can be driven into a 16Ω speaker. Sound input is supplied as a simple analogue signal and a microphone preamplifier with agc is built in.
Different members of the family, which comprises the ISD1012, ISD1016 and ISD1020, store differing lengths of sound, of 12 seconds, 16 seconds and 20 seconds respectively. Upper frequency limits differ too, at $4.5 \mathrm{kHz}, 3.4 \mathrm{kHz}, 2.7 \mathrm{kHz}$ respectively.
Sound data are stored in an analogue electrically erasable and programmable rom with 128 K elements, so messages are retained when the chip is unpowered or unplugged.

Analogue inputs and outputs

The main analogue input accepts signals at a maximum level of $50 \mathrm{mV} \mathrm{V}_{\mathrm{p}-\mathrm{p}}$. A microphone preamplifier with an associated age circuit provides a maximum gain of 24 dB at low levels. As a result, microphone inputs of a little over a millivolt will drive the device fully.
During playback of a stored message, the amplifier takes its input from the analogue eeprom; however, when /CE is high, the amplifier is fed from an auxiliary input.

Digital inputs and outputs

Eight address lines, A_{0-7}, allow the definition of 160 starting points for record or playback yes, 160 not 256 . When the two most significant address lines are both taken to logic one, the device enters one of several different operational modes, depending on which of the other address lines is taken to logic one. I'll describe these modes later.
Three inputs, PD, /CE and $P / / R$, control the state of the device. Their functions are explained in the sections on simple record and playback. One active-low output, /EOM, is provided which goes to logic zero at the end of a message.

Fig. 1. Almost all the elements needed for recording and playing back speech are integrated into the ISD1016.

Not surprisingly, the play/record input, P / R, selects play when logic zero or record when logic one. Active-low chip-enable /CE starts and stops recording, and starts playback. The power down pin, PD, reduces current consumption to a fraction of a microamp when taken to logic one.

Recording speech

Let's deal with recording first. Lines PD and $\mathrm{P} / / \mathrm{R}$ are taken low; recording starts at the address defined by the address lines when /CE is taken low, and ends when / CE is taken high. If this process is repeated, a second message is recorded. It overwrites the first message, unless the address lines are changed.
There's the problem for applications which, like the talking kitchen scales, make a large number of phrases by selecting and concatenating chosen words. You need to know the length of a word so that the address can be appropriately set before the next one is recorded. If this is not done, the second word may overwrite some of the first one.
This problem is solved by using a mode where messages are recorded one after the other, without needing to know the address. One of the modes which have address lines A_{6} and A_{7} high simultaneously provides this function; it requires that A_{4}, A_{6} and A_{7} are all taken high. As before, P / R must be low, and recording is started and stopped by lowering and raising the chip-enable line. However, the messages are recorded sequentially with an end-of-message marker at the end of each message; the address is not reset unless the state of $\mathrm{P} / / \mathrm{R}$ or PD is changed.

There is a corresponding method of selecting a word for playback without knowing the address at which it is recorded. The address pointer must be reset by raising PD for at least 12.5 ms . Of course, $\mathrm{P} / / \mathrm{R}$ must be high; take $\mathrm{A}_{0}, \mathrm{~A}_{4}, \mathrm{~A}_{6}$ and A_{7} high, and apply ($n-1$) brief (between 100 ns and $10 \mu \mathrm{~s}$) low-going pulses to /CE. This skips over the first $(n-1)$ messages at 800 times the normal playing speed with the output muted. If A_{0} returns to logic zero and /CE pulsed low briefly once more, the nth word will be played.

Optimising multi-message recording

With only 16 seconds of recording time available, it is obviously desirable to record only the words that are absolutely necessary, and to trim off leading and trailing silences. This is an obvious job for a pe with a Soundblaster system.
As for logic signals to control the recording process, the ubiquitous printer port will give us more than sufficient outputs. However, the obvious approach of, in C terms,

```
outp(PRINTER_PORT, 1);
system("PLAY"<filename>");
outp(PRINTER_PORT, 0);
```

is unsatisfactory. There are delays between the issuing of the PLAY command and the beginning of playback, and between the end of playback and the second change of printer port state. These delays are more predictable, but not eliminated, if the file to be played is stored in ram disc rather than on the hard disc; the delays re-introduce the waste of recording

Software on disk

A disk to accompany this article is available and contains the following files:

ISD_FILL.EXE recording control software.
PORTDEF printer port definition file, which allows the printer port address used by the software to be set to the correct value for the computer used. By default, an address of 378_{16} is assumed.

SOUNDS directory containin g example .VOC files.

FILELIST file, allowing chosen files to be loaded into an ISD1016 in a chosen order. As supplied, it looks for files in the SOUNDS directory, which should be installed as $\mathrm{C}:$ ISOUNDS.

PLAY.EXE file which takes a parameter which selects the message to be played PLAY 2 plays the third message, as messages are numbered from 0 .

Object and C code files for ISD-FILL.EXE and PLAY.EXE are also included. Simply send $£ 14$ with a request - including your address - to Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS or fax your request with credit card type, number, expiry date and cardholder address on 01816528956.
time removed by editing with the Soundblaster system．
I am indebted to Ifor Powell of Creative Labs UK for providing a solution．He was able to send me the source code of a program， written in Borland Turbo $\mathrm{C}++$ ，which takes a

Soundblaster＊．VOC format file and plays it without the delays associated with more direct methods．The program only works with 8 －bit mono，or 16 －bit mono or stereo files．I have augmented the program to read a list of ＊．VOC files representing sounds to be stored
on the $I S D 1016$ ，and to provide logic signals via the printer port to control the recording process．

Figure 2 shows the hardware needed to record and play a selected message． $\mathrm{A}_{0}, \mathrm{~A}_{4}$ ， $\mathrm{A}_{6}, A_{7}, / \mathrm{CE}$ and PD are controlled by software

Fig．3．Interface between PIC processor and speech chip．

List 1．Partial PIC code for speaking weighing scales

sub－routine for PIC processor（see fig．3）to say a word stored in ISD1016
澕\＃\＃\＃\＃\＃\＃\＃\＃register allocations \＃\＃\＃\＃\＃\＃\＃\＃\＃\＃
㳻\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃，and their bits \＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃

RTCC	equ 1
status	equ 3
C	equ 0
Z	equ 2

；ins connect to port A－define port direction in main section of program

$$
\begin{array}{ll}
\text { in } & \text { equ } 5 \\
\text { not_eom } & \text { equ } 1
\end{array}
$$

；outputs are port B－define port direction in main section of program
output equ 6

A0 equ 7
not＿enable equ 6
power＿down
equ 5
；\＃\＃\＃\＃\＃\＃\＃\＃to say word N，load register word＿ptr with N \＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃ word＿ptr
equ 7

；\＃
；START OF SEEKING \＆SAYING A WORD
；set AO，enable high
say

$$
\begin{array}{ll}
\text { movlw } & 192 \\
\text { movwf } & \text { output }
\end{array}
$$

㳯華\＃
；power down for $>12.5 \mathrm{~ms}$ to reset
；set max prescaler＝256
；internal clock 000111
；256us output rate ASSUMING 4 MHz clock
；so go round 50 times
moviw 7
option
；actual power down
bsf output，power＿down
movlw（255－50）
movwf RTCC
movf RTCC， 0
btiss status，Z
goto delay 1
；counter is zero
；power up again
bef output，power＿down
；apply appropriate number of／CE pulses
；is word＿ptr at zero？
cue＿again
movf word＿ptr， 0
btfsc status，Z
goto cued
send＿enable
；apply not＿enable pulse
bcf output，not＿enable
bsf output，not＿enable
；wait for not＿eom
wait＿eom
btisc in，not＿eom
goto wait＿eom
；and wait for it to disappear
wait＿end＿eom
btfss in，not＿eom
goto wait＿end＿eom
decf word＿ptr
；if bit 7 of word＿ptr is set，must have been 0 before
；and thus have spoken，so end
btfsc word＿ptr， 7
goto endit
goto cue＿again
cued
；drop A0
bcf output，A0
goto send＿enable
；\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃end of subroutine \＃ endit
retlw 0
via the printer port; $\mathrm{P} / / \mathrm{R}$ is switched manually. End of message is fed back to the computer via pin 15 , an input, of the printer port.

Playback hardware and software
Figure 3 is the circuit of processor/speech chip interface as used in the talking scales. The ISD1016 needs only four connections to the microcontroller. These are A0, /CE, PD outputs from controller and the /EOM input.
List 1 is a subroutine for a PIC16C56 processor, it forms part of the code for the talking kitchen scales. To speak the N th word, load the register 'wordptr' with N, counting from zero.
It should be possible to add limited speech output to a computer with no Soundblaster card by making a unit to connect to the printer port. Such a unit would contain an ISD device and a PIC processor to wait for a printer enable pulse, produce an appropriate word, and reply with an acknowledge pulse at the end of the speech output.

Recording messages

It is convenient to record the words onto a tape recorder, rather than directly into the SoundBlaster card. When asked to make a recording of text, many people remember whatever they were told about public speaking, and speak at a low rate, ie words per minute. This is to be avoided as the time available for recording is limited, and the user of the talking scales wants to know weights, not listen to a poetry recital.
One rather morbid thought - the user of the complete equipment may want messages recorded by an anonymous person. I've

Fig. 4. Low power player; circuit outline. Playback starts when PD is sent low by a rising edge on the D type clock. The message appropriate to the state of the address lines is played. At the end of the message, the /EOM output goes low, resetting the D type and sending PD high. In this state, the ISD1016 draws a fraction of a microamp.
encountered the "I couldn't keep using it if you fell under a bus" phenomenon.

By the way...
Has anybody noticed how the old imperial weights, with 16 ounces to the pound, sit very nicely with a binary word where the bit zero represents half an ounce, bits one to five represent ounces, and bits six to eight represent pounds? The downside comes in the logic needed to give the correct grammar; for example 'one pound and half an ounce', 'one pound three and a half ounces'. On the other hand, the 'grammar logic' is simpler for metric. Probably the simplest route between metric and imperial is to use loz=(255/9) gram - a relationship with an error of much less than 1%.

A simpler system

For a small number of short messages, it is
possible to calculate the start address of each message so that messages don't overwrite each other during recording. A simpler playback circuit can then be used. To record, PD and $\mathrm{P} / / \mathrm{R}$ are taken low; recording starts (at the address defined by the address lines) when /CE is taken low, and ends when /CE is taken high. The circuit of Fig. 4 can then be used for playback. /CE is permanently low. A zero-toone transition on the clock of the D type sends PD low to start playback; PD is reset to logic 1 when the /EOM output goes low at the end of the message. Where several messages are recorded, the address lines define the message to be played. An advantage of this method of playback is that, as the chip is powered down except during actual playback, the standby current can be very low.
I'm grateful to Cambridge Consultants for permission to publish this article.

LOW COST DEVELOPMENT SYSTEM

ECAL comprises a versatile relocatable assembler with integral editor which runs about ten times faster than typical assemblers. Support includes 4, 8, 16 \& 32 bit processor families including 75X, 6502, 6809, 68HC05/11, 8031/51, H8-300, 78K, PICs, ST6 \& Z80/180, 68000, 80C196, H8500 \& Z280.

ECAL is either available for a single processor family or all families.

Single processor version £295
Multiprocessor version.... $£ 395$

Overseas distributors required
 OEMA Ltd.,

7 \& 7A Brook Lane,
Warsash,
Southampton S031 9FH
Tel: 01489571300
Fax: 01489885853

Free demo disc!

The PC based ECAL hardware emulator is fully integrated with the assembler. Connection is made to the target through the eprom socket so a single pod can support all processors. Facilities include windows for the inspection or change of registers or memory. You can even watch your program executing at source level!

Download time is about two seconds!

Pods can be daisy-chained for $16 / 32$ bit systems.

Applications include software development, hardware debug, test and, finally, teaching about microcontrollers in education.

ECAL emulator \qquad $£ 475$
Quantity discounts of up to 50\% make ECAL software ideal for education.

LETTERS

Shifting phases?

I am looking for a circuit to phase shift by 90° the components of a signal with frequencies in the range 10 Hz to about 350 Hz . Although simple integration or differentiation can achieve this, they do so at the expense of a frequency dependent change in the signal amplitude which I cannot use.

In Electronics World of April 1993, Terrence Finegan mentions that such 'a useful analogue function' may be realised differentially with 'all-pass' filters, but this hint has proven insufficient. Text books even mentioning all-pass filters seem to be the exception, at my level of mathematical sophistication anyway.
Are there any readers with a solution to this problem? It would help me and being an unusual function may inspire other interesting designs.
Alan Scrimgeour
London

Looking for diode amplifiers

I am interested in diode amplifiers and their circuit design with regard to: a) detector or power diodes and b) variable capacity varicap diodes. Perhaps several stages would be required to obtain good amplification.I would appreciate any information about their operation and simple circuit to demonstrate the diode amplifier for low frequency of and also af stages.
Ray Stead
Hampton, Middlesex

Looking for a small uhf $t x / r x$ unit

To me, rf design is still a bit of a black art. Although an experienced analogue engineer, 1 am woefully short of rf knowledge.
I am working on a direction-finding project that requires a very small uhf transmitter, of about 1 mW output and run from a 3 V battery. Are there any of engineers out there who can supply such a circuit or help with the design of such a device?

Mike Bull

Balsham, Cambs
Problem with computer read caches
Standard usage of hard disk integral caches assumes a high percentage of hits. My special requirements normally give zero hits and a greatly increased run time. Logically, with suitable hardware/software, 100% cache hits should easily be possible but so far no one has been able to suggest how. Writing to a cached disk is OK. The problem is reading delays where single runs may last hours, days - even months.

Each run uses four or more files. At any one time programs write to one file and read from two different files. Files are all the same size and may be up to 512 Mbytes each. With a fast processor reads can occur tens or hundreds of times per second continuously - with each block, of any size up to a maximum of 32 Kbytes , usually in 'random' sequence from anywhere in the relevant file.
The important point is that alf read locations are always known before that read file is opened.
My problem is how to advise the disk cache - well in advance of each memory need - to preload the required read blocks. Surely someone has the answer to this problem? Is my type of use really unique? R.G. Silson

Herts.

Answers to questions

In the July/August issue, P W
 Fry asked:

"If a short pulse is generated at one end of an open circuit transmission line then that same pulse can be observed to return at a time proportional to the line length and the line velocity factor. Conducting the same test but with the line terminated in a short circuit returns an inverted pulse. Why does this pulse inversion take place?

If you take a snap-shot of the voltage and current when the pulse was half way down the line, eg at a quarter of total elapsed time, what would we see that would indicate if the pulse was going away from or towards the generator? That is, how does the pulse, when it is half way down the cable, know in which direction it is supposed to be travelling?

Bryan Hart, of Leigh-on-Sea, Essex was one of a large number of readers who replied. Space permitting, we will show you more replies next month. Thank you to all who replied.
Physically, reflections occur on a line because all the energy in an incident waveform cannot be accepted at a termination. Consider the setup of Fig. 1: a) shows an ideal 50Ω line 10 ns 'long'; b) shows a $2 \mathrm{~V}, 2 \mathrm{~ns}$ pulse applied at $\mathrm{x}=0, \mathrm{t}=0$, through a 50Ω source-matching resistance and its composition from step edges. The progress of the pulse down the line

Fig. 1a). Ideal 50Ω line, 10 ns long, top, and pulses applied to it, b).
and back again can be visualised using a 'reflection chart' (see, eg, 'Digital signal transmission: line circuit technology' by B. L. Hart, published by Van Nostrand Reinhold, 1987).
Fig. 2a) shows a chart for $\mathrm{RT}=\infty$. In this case there can be no current in the termination and this condition can only be met by having a positive going reflected pulse equal in amplitude to the incident pulse.
Fig. 2b) shows a chart for $\mathrm{RT}=0$. In this case the boundary condition $\mathrm{VT}=0$ can only be met by having a negative going reflected pulse.
Figs. 2c) and d) show the conditions at $\mathrm{x}=\mathrm{L} / 2$ for $R T=\infty$ and $R T=0$ respectively. In the case discussed, the negative-going pulse in Fig. 2d) is indicative of motion towards the generator.

Fig. 2.
a) Chart for
$R t=\infty$, b) for $R t=0$ and c / d) for the same, with $x=L / 2$.

OPEN TO CALLERS MON-FRI 9AM-4PM, CLOSED SATURDAY.
OVER 6,000 TYPES AVAILABLE FROM STOCK. OBSOLETE ITEMS A SPECIALITY. QUOTATIONS FOR ANY TYPES NOT LISTED. TERMS: CWONISA/ACCESS. POST \& PACKING: 1-3 VALVES £2.00, 4-6 VALVES £3.00. ADD 17.5\% VAT TO TOTAL INC. P\&P.

10 OUTLET DISTRIBUTION AMPLIFIER 4

A compact mains powered unit with one balanced input and ten AC and DC isolated floating line outputs.

- Exemplary RF breakthrough specifications giving trouble-free operation in close proximity to radio telephones and links.
Excellent figures for noise, THD, static and dynamic IMD.
- Any desired number of outlets may be provided at microphone level to suit certain video and audio recorders used at press conferences.
- Meets IEC65-2, BS415 safety.
*Advanced Active Aerial $4 \mathrm{kHz}-30 \mathrm{MHz}$ *PPM10 in-vision PPM and chart recorder "Twin Twin PPM Rack and Box Units *Stabilizers' and Fixed Shift Circuit. Boards for howl reduction *Broadcast Monitor Receiver $150 \mathrm{kHz}-30 \mathrm{MHz}$ "Stereo Variable Emphasis Limiter 3 *Stereo Disc Amplifier
*PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN -50/
+6 dB drives and movements *Broadcast Stereo Coders.

SURREY ELECTRONICS LTD
 The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG
 Telephone: 01483-275997 • Fax: 276477

When the success of your products depends on radio telemetry modules, you need a business partner you can trust. A skilled and experienced manufacturer that can offer modules of the highest quality, operating over a wide range of frequencies

In other words, a partner like Wood \& Douglas. Founded on technical excellence, Wood \& Douglas is a British company that specialises in the design, development and production of radio-based products. With over 30 staff dedicated to meeting your requirements, the company is able to provide true one-stop purchasing - whatever your RTM needs

All radio modules are highly functional, capable of meeting a wide range of requirements. Designed to offer efficient, easy-to-use radio telemetry components for system designers, they can open up a whole new world of product possibilities.

From portable bar-code readers to earthquake monitors, Wood \& Douglas can help you make the most of the opportunities in radio telemetry.

To find out more about the possibilities, contact.

Lattice House, Baughurst, Tadley, Hampshire RG26 5LP, England Telephone: 01189811444 Fax: 01189811567 email: info@woodanddouglas.co.uk web site: http://www.woodanddouglas.co.uk

Used EquIpment-GUARANTEED. Manuals supplled If poes ltho.
This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for lists. Please check availability before ordering.
STEWART of READING
110 WYKEHAM ROAD, READING, BERKS RG6 1PL Telephone: (01734) 268041 . Fax: (01734) 351696 Callers Welcome 9am-5.30pm Monday to Friday (other times by arrangement)

CARRIAGE all units £16. VIT to be added to Total of Goods and Carriage.

E

M\&B RADIO (LEEDS)
 THE NORTH'S LEADING USED TESTEQUIPMENT DEALER

Nomele				
AMAI YCERS				
		(e)		
		\% Mive		
L PRICES PLUS VAT AND CARIAGE - ALL EQUIPMENT SUPPLIED WITH 30 DAYS WARRANT				
86 Bishopgate Street, Leeds LSI 4BB				

Letters to "Electronics World"
Quadrant House, The Quadrant,
Sutton, Surrey, SM2 5AS

Great balls of fire

In July/August 1996's Research Notes, you had an item entitled 'Ball Lightning Comes Down to Earth'. I experienced ball lightning as a young farm boy in southem Minnesota back in the late forties. I also have acquaintances who have had such experiences, including a couple of physicists, of which I am now one.
Mr. Lowke's description may explain some of the movement, but, it falls short of explaining how it is formed. I have studied this quirk extensively. Unfortunately, it never lasts long enough to be properly measured, nor does it seem to occur when one is ready to study it. However, experience and observations do aliow this tenative conclusion; the soap bubble model seems to at least first order describe its general characteristics.
Generally, when ball lightning does occur, there have been 'sheet lightning discharges' in the vicinity. A strong breeze, turbulent wind or other that can form a distortion in the plasma sheet that makes up sheet lightning will under certain circumstances allow a closed plasma bubble to form. It can be anywhere from a few centimeters to tens of centimeters in diameter. It is generally blue-white in color and has the distinct sound of bacon frying along with the smell of ozone and NxOx products.

The one 1 encountered as a youngster was about 10 to 15 cm in diameter. It appeared shortly after an extremely loud and bright lightning discharge near the house and drifted
through an open window of the upper floor bedroom that 1 was occupying.

As I remember, it moved about the foot board of my brass-pole bed and illuminated the room with blue-white light. It lasted only about 5 to 10 s at the most. The ball quickly drifted up and over to a wall, dissipating itself with an enormous flash similiar to a photo flash bulb going off.
The next morning my father inspected the wall for damage but found none - no sign whatsoever that it had touched the wall. There is no doubt in my mind that this was a spherical shell of ionized air molecules that was comprised of a great deal of charge. One could feel the electric effect it produced, similiar to having a hand on a high-voltage generator.
Another story by a physics professor that I had at the university was about one that came down from an elaborate transformer platform at a linear accelerator facility during a lightning storm. This ball was similiar in size, color, noise, etc., and followed a 440V, three phase conduit to where a large polarized receptical was located. When the ball went in front of the receptical, it was reported that eye witnesses saw a brilliant flash and the entire receptical exploded outward with bits of insulator and other over the area. The breaker was opened at the event.
Now that I am ready and know what to look for in clues on the subject, I have yet to experience another.

D. D. Schendel

Arizona
USA

Forget thermal effects

Douglas Self's article on 'Thermal dynamics in audio power' was well done, but was it necessary?

As J. Linsley Hood has explained in 'The art of linear electronics, Butterworth, 1993', there is another way to approach Class B amplifier design. It is to use my 'Class S' design shown on p. 165. fig. 9.34.
My original 1982 article in this magazine (Class 'S', Wireless World, p. 38. Sep. 1982) explained the operation of the circuit. It clearly implied that Class 'S' is immune to thermal variations and can be built without setting up. The cross over distortion performance is excellent, even if a normal tolerance variation exists on the bridge resistors. Only the large signal performance is affected by such resistor tolerances.
Dr Aubrey Sandman
London

Ether or not?

No physical theory can unify electricity and gravity. Or can it?
In response to Ivor Catt's call for new ideas in electromagnetic theory (Letters May 1995), a paper which seems to mechanistically and numerically unify electricity and gravity - apparently proving the ether hypothesis correct - has been written by Nigel Cook.

Interested readers may obtain eight-page copies of the complete theory for a copying, postage and administration charge of $£ 4.50$ by writing to the editorial offices.

Setting the record straight

Regarding the abusive letter from Mr M.Jones on crossover networks, I spent a substantial amount of time in the Keele University library, so the comment about homework I shall ignore.
Taking some of his points in order:
a) If correctly designed networks are specifically designed for a predetermined unit, then why do companies like Maplin sell crossovers at up to $£ 99$ each to put in your own enclosure?
c) Is Mr Jones seriously suggesting that the average hifi enthusiast who wants to build up a loudspeaker unit, get hold of an Audio Precision test set (at huge cost) and measure the performance of the unit, before they actually build their crossover network. Come on, be realistic.
d) The purpose of the article was to provide a cheaper alternative to buying the expensive crossover units.
e) The article specifically mentioned the use of emi power toroids. Toroids as anyone knows don't interact magnetically with each other, due to the closed magnetic circuit. So orientation is irrelevant. 10 years of working in the video filter industry verify this. For example using T20-2 toroids actually touching each other for the filter and group delay equaliser sections does not cause any major problems. The unit that was built up was tested at 100 Wrms without problems, apart from the neighbours.

At 50 p each, the toroids aren't expensive.

g) Cascading high and low pass sections to achieve a band pass response is quite a commen technique actually. See the relevant sections in Williams. This also elliminates the problem of requiring more inductors at ridiculously high Q values as generated by the low pass to band pass transform. Again see Williams. If Mr Jones had bothered to look at the plots. he would have seen (in Fig 4a) that it is entirely possible to cascade sections as long as an adequate bandwidth is maintained. The reason for using C (not C_{++}) was that it was available. Any language could have been used, or even a spreadsheet as Mr Jones suggests, however the output from the program is a bit neater as to documentation purposes. If I had only used 1 decimal digit precision, someone would have complained. You can't please everyone. If you don't want the 6 digit precision, then its a trivial matter to change the output formatting, that is unless Mr Jones cannot understand a simple language like C .
Finally, it is obvious that Mr Jones works for a crossover manufacture, by what he says at the end of point d, so he obviously doesn't want to lose business, well, thats the way the cookie crumbles, I'm afraid.

Bill Teleki

Newcastle-Under-Lyme
Staffordshire

Raked over the coals

In his letter in the July/August issue, G.E. Miller writes: "I have long ago learned that if one side in a debate or discussion resorts to personal abuse then it is clear that that person cannot make a case for his views."
The next paragraph of Mr. Miller's letter is devoted to personal abuse. Therefore...
J.S. Linfoot

Oxford

Self Preamplifier '96

On Fig. 11 of Doug Self's preamplifier article in the September issue, R_{55} should have been 100Ω. One potentiometer is unmarked. As mentioned in the text, all potentiometers are $10 \mathrm{k} \Omega$.
Also, R_{207} should be reduced to 10Ω to accommodate a $B C 184 L$ whose gain specification is on its minimum. Finally, C_{32} should be polyester, not ceramic as indicated. Apologies for these misprints.

Sell Out af Europe's Biggest Cable Show!

ECC'96, Europe's cable communication showcase, has completely sold out of stand space, over four months before it is due to take place.

A 30\% increase in the size of the event has required a move to a larger venue, the National Hall Olympia, and now even this extra space has been taken.

ECC'96 takes place in London between 15 \& 17 October 1996. Asked to explain the event's success Sharon Chapman comments: "ECC'96 is the only forum where there is significant representation from cable, telecoms and programming companies. I know many exhibitors are using the event to launch new products, making ECC'96 one of the few truly international exhibitions held in the UK".

200 Companies

With over 200 companies on display, the exhibition is an event in itself. By far the largest show outside the US, ECC'96 will be welcoming visitors literally from around the world.

Top Names in Cable, Telecoms \& Programming ECC'96 is the forum to launch new to market products. Among its 200 plus exhibitors, the show sees existing favourites such as Motorola, GI, Ericsson, United Artists, Sky and Nortel, joined by newcomers IBM, GEC Marconi, Nordex, Pace, Paramount and Fujikura,

Arena

Free to all exhibition visitors and one of the most dynamic parts of the convention is the ECC Arena. A show within a show, the Arena allows visitors to see launches, demonstrations, product applications as well as put top industry personnel through their paces.

Comprehensive Conference

Many visitors take advantage of the modular conference programme. Ian Lang, President of the Board of Trade and Martin Bangemann, Director DGXIII of the European Commission lead the plenary session on day one, Tuesday 15 October. This focuses upon the future and new challenges facing the industry and covers topics from digitalisation to finance and strategy.
Day two, Wednesday $16^{\text {th }}$, has top names from the BBC, Sky and BT discussing cable's competition. The European dimension has a complete session in the afternoon.

Thursday $17^{\text {th }}$ deals in marketing with highlights on new programming, customer services, market penetration and customer retention.

Social Programme

"The emphasis we place on networking has contributed to the success of the event" says Sharon Chapman. ECC'96 provides a unique setting for making contact with the industry's movers in an informal and relaxed atmosphere. This year is no exception with the World Cable Dinner for 800 on the evening of Tuesday $15^{\text {th }}$, and the ECC Gala Party the following evening for 1000 .

FOR YOUR FREE TICKET:

TEL: +44-171-222 2900
FAX: +44-171-791 1471 OR RETURN THE COUPON

For full details Call : +44-171 2222900 Fax: +44-171 7991471

\square Please send me my free ticket plus travel \& hotel information

- Please send me detailed conference booking information

Name.
Company.
Address. \qquad
\qquad Zipcode. Country. Fax.

STEPPING > implementations.
 lan Hegglun's new voltage multiplier promises higher efficiency and simpler

Cockroft-Walton voltage multipliers or charge-pumps can eliminate inductors in some power converters such as negative rail generators and voltage doublers. Higher conversion steps are possible by cascading doubler stages. But losses increase rapidly with higher ratios making high ratio multipliers less practical than inductor based converters.
A recent multiplier arrangement improves efficiency ${ }^{1}$. To demonstrate this a 12 V to $\pm 50 \mathrm{~V}$ dual rail 300 W converter is presented. The Mosmarx multiplier ${ }^{2}$ is another technique that achieves high efficiencies, but it is limited in voltage by mosfet voltage ratings. The new arrangement is not limited and can produce hundreds of kilovolts.
Recent improvements in low-impedance electrolytics, mosfet drivers, mosfets and lower cost schottky diodes make voltage multipliers attractive for a wider range of power converter applications. Adding the improved multiplier gives higher efficiency, power density, i.e. W / kg, and specific power, $\mathrm{W} / \mathrm{cm}^{3}$, with values similar to inductor based dc-to-dc converters at similar frequencies. Also, the problem of efficient voltage regulation with multipliers appears to be overcome in the demonstration circuit.

Fig. 1. The Cockroft-Walton doubler is the simplest voltage multiplier.

Conventional half-wave multipliers

The simplest multiplier, the Cockroft-Walton voltage doubler, is shown in Fig. 1. Output voltage reaches twice the peak input voltage, but when loaded the output voltage falls by two diode volt drops plus an ac ripple component. This is because of current flow in the capacitors.
Figure 2a is a simple voltage doubler based on a popular mosfet half-bridge driver. Negative rail generator Fig. 2 b is similar to the doubler circuit but it sits on the 0 V rail with diodes and capacitors reversed. These circuits can be very efficient with low on resistance mosfets, schottky diodes and low impedance electrolytics. Mosfet driver ics greatly simplify the circuitry.
Higher multiples are made from cascading

Fig. 2. a) Simple voltage doubler based on a popular mosfet half-bridge driver. Negative rail generator b) is similar to the doubler circuit but it sits on the 0 V rail with diodes and capacitors reversed. b) is a negative rail generator

Fig. 3. Higher multiples of the input voltage are obtained by cascading several doubler sections.

Fig. 4. Improved half-wave pentupler. Compared to Fig. 3, this multiplier needs three fewer diodes and two fewer capacitors.
several doubler sections as shown in Fig. 3. Voltages indicated are those for a multiplier that sits on the dc bus. This enables a dc-to-dc pentupler to be made with only four stages instead of five, increasing efficiency and reducing cost.
Note the difference in output when a multiplier is fed from an ac source such as from a transformer as in Fig. 1, rather than a pulsed dc waveform as in Fig. 2. With an ac source, input capacitor C_{1} charges to the peak input voltage on the negative half cycle. When the input reverses, $2 \mathrm{~V}_{\mathrm{pk}}$ is presented to C_{2} ultimately charging it to $2 \mathrm{~V}_{\mathrm{pk}}$. But in Fig. 2 b , a pulsed dc waveform is fed to C_{1}. When the low-side mosfet $T r_{2}$ conducts the input capacitor C_{1} is charged to $\mathrm{V}_{\text {bus }}$ via D_{1} and when the high side mosfet $T r_{1}$ conducts C_{2} is charged ultimately to $\mathrm{V}_{\text {bus }}$, not $2 \mathrm{~V}_{\text {bus }}$ as might be expected from Fig. 1.
This can be explained by looking at the Fourier series for a pulsed dc waveform. A dc component of $0.5 \mathrm{~V}_{\text {bus }}$ is present which is blocked by C_{1}. The remaining ac component, a square-wave with a peak value of $0.5 \mathrm{~V}_{\text {bus }}$, is doubled giving $\mathrm{V}_{\text {bus }}$ across C_{2} and $2 \mathrm{~V}_{\text {bus }}$ at the output to 0 V .
As a rule, the peak-to-peak input voltage determines the output voltage of each stage and each additional stage adds another component of peak-peak input voltage.

Improved half-wave multiplier

Fig. 4 shows lan Hickman's improved halfwave multiplier ${ }^{1}$. Compared to Fig. 3, only five diodes are needed rather than eight for a pentupler that sits on the de bus, and only five capacitors are required rather than seven. However, two drivers are required to generate the complementary squarewave drive but this can be done relatively simply these days with ics.

Full-wave multipliers

A full-wave pentupler is shown in Fig. 5. This circuit is effectively two half-wave multipliers in parallel. Hence the output current can be
doubled for the same output ripple and efficiency.
Apart from the complications of the extra diodes, capacitors and a differential drive either from a full-bridge converter or a transformer, these complications are partly offset by the double pulse frequency in the dc capacitors. As in conventional full wave rectifiers, the value of the filter capacitor can be half that of half-wave for a given ripple content. Also, as I discovered, the dc capacitors can be eliminated when the input is fed with a square wave.

Improved full-wave multiplier

When Fig. 5 is fed with a squarewave such as from a full H bridge, the dc capacitors can be removed without upsetting operation since the output duty cycle is close to 100%.
With the capacitors removed there is a current path through the junction of the four diodes in Fig. 6a. These current paths are independent so the junctions can be broken. Since there are now two diodes in series in

Safety hazard

The high voltage multiplier described here is potentially lethal. Do not attempt to build or use it unless you fully understand the dangers of extremely high-voltages and follow the safety warnings given in this text.
each path, the circuit can be simplified to Fig. 6b. Although I have not done an exhaustive literature search, this full-wave circuit appears to be new.
Fewer diodes means lower cost - especially in low voltage converters when using schottky diodes. Reducing diode numbers also improves efficiency; in low voltage converters diode losses tend to predominate. Eliminating the de capacitors also reduces cost and improves efficiency because there are fewer charge transfers. In Fig. 6 for example, there are four charge transfers. This includes one from the supply reservoir capacitor, compared to eight charge transfers for a conventional full-wave pentupler. Comparing diodes, there are five diode volt drops compared to eight.
In general, there are $2 n$ diodes where n is the multiplication factor and where $V_{\text {bus }}$ is used to reduce the number of stages by one. Note that there are two diodes more than the number of capacitors; the last two diodes can be seen as termination diodes. Adding an extra two diodes at any point can tap-off different voltage steps if required.
All these improvements are achieved with the same voltage and current ratings of both diodes and capacitors and without compromising output power. Compared to the simpler half-wave multiplier the only extra components, apart from the two extra diodes, is the extra half bridge, which is relatively simple these days.

Capacitor losses

The law of charge conservation can be used to show that capacitor losses are independent of how much or little resistance is in the circuit when two capacitors are connected together. Energy loss when transferring charge from C_{1} initially at V_{1} to C_{2} initially at V_{2} is,

$$
\Delta E=\frac{1}{2}\left[\frac{C_{1} \times C_{2}}{C_{1}+C_{2}}\right]\left[V_{1}-V_{2}\right]^{2}
$$

Even if diode losses could be eliminated, the efficiency of a charge pump multiplier is limited by the sum of the squares of the individual capacitor ripple voltages. Capacitors for power converters are costly so it is important to choose capacitors carefully.

Choosing capacitor values

To minimise the cost of capacitors you need to know how much output ripple is acceptable

Fig. 5. Conventional full-wave pentupler. This circuit is effectively two half-wave multipliers in parallel.
and the output current. Electrolytic capacitors are useful up to several hundred volts and work best in the $3-30 \mathrm{kHz}$ range. Electrolytics are usually chosen for their ripple rating rather than for minimum capacitance because they have high losses. Typical D figures are 0.1 to 0.2 compared to non-electrolytics with 0.001 to 0.01 , where D, and $\tan \delta$, is the dissipation factor.
I have used various types of electrolytics in multipliers. Standard electrolytics can be used but they are more bulky and require a lower frequency for minimum impedance and hence maximum efficiency. The XYB series miniature low impedance $105^{\circ} \mathrm{C}$ electrolytics from Rubycon are used in my recent designs. The RS catalogue provides useful ripple current data.
I have found the continuous ripple current rating of $105^{\circ} \mathrm{C}$ capacitors can be more than doubled for an ambient temperature not exceeding $50^{\circ} \mathrm{C}$. The Philips electrolytic capacitor data book gives useful information on temperature over-rating.
In the absence of suitable data, run a test to measure the temperature rise at maximum current. From this the highest safe ambient temperature can be found. For example, a temperature rise of $45^{\circ} \mathrm{C}$ means $105^{\circ} \mathrm{C}$ capacitors can operate up to an ambient temperature of $60^{\circ} \mathrm{C}$, so a $50^{\circ} \mathrm{C}$ ambient temperature will be safe.
Bipolar types that are non-electrolytic are chosen on the basis of output ripple voltage; for 5% peak-peak output ripple the final capacitors reactance should be a hundredth of the load resistance ${ }^{3}$. Given an operating frequency and reactance, the value of the final capacitor in the multiplier chain can be calculated.
Grading capacitor values in proportion to current helps to minimise charge transfer losses. For Figs 3 and 5, capacitors closer to the input carry more current than the final stages, increasing linearly along the chain starting from the load. For example, if I_{L} is the average current flowing through the load in Fig. 3 then the input capacitor carries $4 \mathrm{I}_{\mathrm{L}}$.

12V-to-100V 300W converter

Fig. 7 shows a 13.8 V to $\pm 50 \mathrm{~V} 300 \mathrm{~W}$ dc-dc converter. It demonstrates that output power of several hundred watts are relatively easy to
achieve. An efficiency of over 90% can be maintained from a few watts up 300 W - even with a multiplication ratio of eight times If load current must be returned to 0 V , this reduces to 150 W and ± 4 times. Peak efficiency was $95-96 \%$ for loads from 0.2 A to 1 A .
Comparing this multiplier to that in Fig. 6b, shows that the capacitors are arranged slightly differently; they are common to the input rather than in a string. This improves efficiency of electrolytic based multipliers, where higher voltage electrolytics generally have lower losses (D) per microfarad. Note that the capacitor voltages increase toward the output in this arrangement. Also, capacitor currents are similar so each capacitor needs to be rated for the output current. For the values shown the highest capacitor case temperature rise was $30^{\circ} \mathrm{C}$ with 2.2 A load.
The W/kg power density and W / cm^{3} specific power compare favourably to inductor based converters. For example, an ETD 34 ferrite core measures about $50 \mathrm{~cm}^{3}$ and weighs 50 gm . At 200 W the power density and specific power are $400 \mathrm{~W} / 100 \mathrm{gm}$ and $4 \mathrm{~W} / \mathrm{cm}^{3}$ respectively. For this multiplier (capacitors, diodes and pcb) the values are similar at $300 \mathrm{~W} / 100 \mathrm{gm}$ and $6 \mathrm{~W} / \mathrm{cm}^{3}$. If schottky diodes are not used to maximise efficiency, the cost per watt for this converter is better than inductive converters. These comparisons are valid for non-isolated step-up converters with ratios of $u p$ to ± 5 or so - ten or so for a floating load.
Although Fig. 7 includes voltage regulation, it is easily removed if not required. By adding C_{1} and $R_{1}, I C_{1}$ can run in self-oscillating mode. If you only require a single output, then simply remove one of the multipliers. Also, given higher voltage mosfets, diodes (not forgetting D_{1} and D_{2}) and capacitors, the bus voltage can be as high as 500 V .
With no regulator circuitry, the operating frequency is preset with R_{1} for maximum efficiency. This can be found by making R_{1} variable. Best efficiency is seen as a peak in the output voltage (or input current) as the frequency is raised and for the values shown it is 12 kHz .
There is little change in efficiency until 35 kHz , but at 100 kHz and full load the output power falls by 15% and efficiency falls from 91% to 88%. The reduction in efficiency and
power can be attributed mainly to the IR2I5l's 1μ s dead time. Setting the operating frequency too high reduces efficiency at light loads because of the increased gate drive losses. Too low a frequency requires larger and more expensive capacitors.
The unregulated version gives 90% efficiency down to 2 W . This is possible because the frequency is only 12 kHz , resulting in only 4 mA supply current for the ics plus 10 mA from the supply bus. The regulated version is less efficient at light loads because it operates up 100 kHz when lightly loaded.
This converter was intended to feed a standard 100 W amplifier for operation from a nominal 12 V supply. For this application it is desirable to keep the frequency above 20 kHz to prevent audible interference and preferably above 40 kHz to prevent intermodulation products being heard at low audio levels.
To drive a 100 W amplifier, the peak current required into 8 W is 5 A and the minimum voltage to the amplifier should be 45 V . The converter in Fig. 7 is rated for 2.5 A average and can deliver 5A peak without large reservoir capacitors ($C_{6,7}$).
By delivering the peak current directly rather than from say two $10,000 \mu \mathrm{~F}$ reservoir capacitors, for 30 Hz low frequency roll-off, the converter is more compact. If reservoir capacitors.are added it is possible to run two 100W amplifiers on music signals, but amplifier clipping needs to be avoided.
The right-hand $I R 215 I$ is slaved from the oscillator of $I C_{1}$ via R_{1} to the comparators of the 555 type internal oscillator. Propagation delay through the comparators is insignificant compared to the $1 \mu \mathrm{~s}$ dead time delay for the mosfets. Using two IR2151 drivers was a lower cost option than full H -bridge drivers advertised at the time. This circuit does not require a separate oscillator for the unregulated option. Resistor R_{2} is added as a precaution in the event of $I C_{2}$'s under-voltage shutdown being enabled before $I C_{1}$.

Regulating the output

It is difficult to regulate the output voltage of a multiplier by the usual means, such as pulse width modulation. Attempting to reduce the frequency to increase capacitive reactance also increases losses in proportion to voltage
continued on page 805...

Fig. 6a. Improved full-wave pentupler. Compare with Fig. 5. Dotted components can be removed. b) is the improved pentupler redrawn.

SEETRAX CAE KANGIER PCB DESIGY

WITH COOPER \& CHYAN AUTOROUTER

RANGER3	DOS
	- Windows\NT
	$£ 2900$

Hierarchical or flat schematic linked to artwork. Unlimited design size, 1 micron resolution Any shaped pad, definable outline library Pin, gate \& outline swapping - auto back annotation Split power planes, switchable on - line DRC

COOPER \& CHYAY SPECCTRA
autorouter (SP2)
Inputs: OrCAD, Cadstar,
PCAD, AutoCAD DXF
Outputs: Postscript, Windows bit map
R2 \& R3 Outputs: 8/9 \& 24 pin printers, HP Desk \& Laser Jet, Cannon Bubble Jet, HP-GL, Gerber,
NC Drill, AutoCAD DXF

TRADE IN YOUR EXISTING PACKAGE TODAY

Seetrax CAE, Hinton Dạubnay House, Broadway Lane, Lovedean, Hants, PO8 OSG Call 01705591037 or Fax 01705599036 + VAT \& P.P

ACTIVE

Arrays

'Fastest' pld. GAL16LV8D is the first member of the Lattice Semiconductor UltraMOS VI 3.3V low and high density plds. Its $\mathrm{e}^{2} \mathrm{cmos}$ process enables a $T_{\text {pd }}$ of 3.5 ns and typical supply current is 45 mA , which provides a power consumption up to 70% lower than 5 V 16 V 8 devices. The pld operates with 200 MHz system clocks and interfaces with 100 MHz buses where both clock edges are used. Compiler software is the same as that for standard 16V8 devices. Future Electronics Ltd. Tel., 01753763000 ; fax, 01753689100.

Bipolar asics at cmos prices. NEC has introduced the QB-8 aslc technique to provide the power, price and short development time of cmos with the high speed of bipolar devices, using a new architecture named Puzzle. A special 622 MHz version of $Q B-8$ is intended for embedding in high-speed telecomms applications. Puzzle uses mos input and Bicmos output to provide low input capacitance and drivability. These devices contain up to 223,000 used gates. NEC Electronics (UK) Ltd. Tel., 01908691133 ; fax, 01908 670290.

A-to-D and D-to-A
 converters

14 -bit, 100 MHz d-to-a. Harris announces the first digital-toanalogue converter to give 14 -bit resolution at 100 MHz . The HI5741 simultaneously converts 20 voice channels at a 70 dB thd - better than the requirement for single-channel cellular base stations; single-tone spurious-free dynamic range is 86 dBc at Nyquist frequency. A significant feature is its capability of handling eight channels in one package, rather than the eight separate signalprocessing chains that have until now been needed. Harris Semiconductor UK. Tel., 01276 686886; fax, 01276 682323.

Low-noise a-to-ds. Two new cmos 12-bit converters by Crystal Semiconductor are of the successiveapproximation type, offer a 100 kHz processing rate, 75 mW power dissipation and 73 dB s:r ratio. CS7870 ($\pm 3 \mathrm{~V}$) and CS7875 (5V) are pin-compatible with existing 12 -bit types and give a performance improvement without circuit modification. A self-calibrating
capacitor eliminates time and temperature drifts. Crystal Semiconductor Corporation. Tel., (USA) 001512442 7555; fax, 001 5124457581.

Multimedia data converter. Said to be meant for use in multimedia and audio, the AKM AK4510 is a 16 -bit stereo a-to-d and d-to-a converter, using fourth-order delta-sigma modulation for accuracy and low cost. The a-to-d section has an on-chip anti-aliasing filter and the d-to-a a post filter to afford tolerance of system clock jitter to 100 ns . Switched-capacitor and continuous time filters give out-of-band noise down to -83 dB at 44.1 kHz sampling. DIP International Lid. Tel., 01223 462244; fax, 01223467316.

Linear integrated

circuits

General-purpose op-amps. BurrBrown's OPA234 series of gp opamps feature low power and good dc performance and come in single (234), dual (2234) and quad (4234) versions. They work on single or dual supplies; in single-supply working, input common-mode range extends below ground, output swinging to within 50 mV of ground. Capacitive loads up to $10,000 \mathrm{pF}$ are acceptable in unity gain and the multiple versions are independent for lowest crosstalk. Specifications include a supply range of 2.7 to $36 \mathrm{~V}(\pm 1.35$ to $\pm 18 \mathrm{~V})$, $250 \mu \mathrm{~A}$ /amplifier quiescent current, 25 nA input bias and $100 \mu \mathrm{~V}$ input offset. Burr-Brown International. Tel., 01923233837 ; fax, 01923233979.

Microprocessors and controllers

8 -pin microcontroller. Microchip has 8 -pin, one-time programmable microcontroller, the PIC12CXXX family, which uses the risc-based PIC16/17 architecture in a SOIC package to make, it is claimed, the world's smallest 8 -bit controller. It provides maths and Boolean operation which, with its small size, makes it competitive with asics and types with greater pin numbers. Two are available: PIC12C508 with 512 word of program memory and 25 byte of user ram; and the the PIC12C509 with 1024 word and 41 byte. Both have six i/o and an on-chip oscillator, 33 singleword instructions, 1μ s instruction cycle at 4 MHz , seven special-function hardware registers and direct led drive. Operating power is $2.5-5.5 \mathrm{~V}$ at 2mA. Arizona Microchip Technology Lid. Tel., 01628851077 ; fax, 01628 850259.

Dsp, risc microcontroller. Hitachi's SuperH family of 32-bit microcontrollers is joined by the SH-DSP, which is claimed to be the first single, integrated core to include full dsp and risc functions. It gives 60Dhrystone mips as a controller or 120 mops as a dsp, or any point in between. The device is based on the SH-2 with dsp extension and operates at $60 \mathrm{MHz}, 3 \mathrm{~V}$, accepting SuperH code with no need for modification. There is a good base of software tools available. Hitachi Europe Ltd. Tel., 01628 585163; fax, 01628 585160.

Supervisors. MAX6301/2/3/4 from Maxim are microprocessor supervisor chips, issuing resets on powerup/down, brownout or failure in software execution, model difference being concerned with the nature of the reset outputs. Two external resistors set trip thresholds, resets being emitted when the supply drops below the threshold and maintained until an adjustable time after it rises again. Resets are guaranteed for supplies down to 1 V . There is an internal watchdog timer to issue a reset when the the adjustable timeout ends after an absence of transitions indicates a software failure. Maxim Integrated Products UK Ltd. Tel., 01734303388 ; fax, 01734305511.

Optical devices

'Smallest' ir transceiver. A new optical transceiver pair by Sharp is compatible with the IrDA 1.0 standard for infrared communication. Normally external components are integrated to reduce the board area needed to about 20% of that required by earlier designs. Wait time is reduced by using the half-duplex mode and the delay between transmit and receive

Power semiconductors
Rf power. New from Motorola, the MRF927T1 if power n-p-n silicon transistor for low-voltage, lowcurrent use, particularly in pagers and hand-held telephones. It operates in the 2 GHz region and exhibits an 8 GHz gain./bandwidth product at $3 \mathrm{~V}, 5 \mathrm{~mA}$. Unilateral gain is 15 dB and noise figure 1.7 dB . The company also offers the MRF6401 rf power device, specified with a gain of 10 dB minimum at 1.66 GHz , output power 0.5 W . Motorola Semiconducteurs SA. Tel., 00133 61 199981; fax, 0013361199565.
modes is down to $30 \mu \mathrm{~s}$. Since the two devices are separate, the receiver cannot 'see' the light from the transmitter and a sunlight saturation prevention circuit is automatically matched to the receiver. Data transmission rate is in the 2.4 to $115 \mathrm{~kb} / \mathrm{s}$ range. Microelectronics Technology Ltd. Tel., 01844 278781; fax, 01844278746.

PASSIVE

Passive components

 Transformers for valves. Variable Voltage Technology offers the VTM range of transformers intended for use with valves. They are designed for valve-age but using modern methods and materials such as annealed copper wire and grainoriented laminations. All meet emc and low-voltage directives and are CE marked where approprlate. The transformers are either frame or vertically mounted and are for use as mains transformers for ht, with orwithout heater windings; as heater transformers; as mains smoothing chokes; or as output transformers for triodes, pentodes or in ultratinear mode using EL34 and EL84. Variable Voltage Technology Ltd. Tel., 01983 280592; fax, 01983280593.

Thin inductors. TDK's NLU series of thin-film, surface-mounted inductors are for $1-3 \mathrm{GHz}$ application and are only 0.58 mm thick. The copper spiral inductors are available in values from 1.2 nH to 100 nH and come in the 0805 and 0603 sizes for flow and reflow soldering. Flint Distribution. Tel., 01530510333 ; fax, 01530510275.

Resistor networks. BCN 164 A resistor networks in the 1206 size are eight-terminal units containing four isolated resistors, with either internal or external termination. Resistance range is 10Ω to $1 \mathrm{M} \Omega$ at a tolerance of $\pm 5 \%$, with $\pm 2 \%$ also available. BI Technologies Ltd. Tel., 01384 442393; fax, 01384440252.

Emc chokes. Wearnes Hollingsworth offers a range of common-mode chokes, which are designed to prevent noise entering or leaving

Audio connectors. Cliff Electronics has a range of audio connectors and terminations, including the Plastic XLR range of light, three pole plugs and sockets for audio connection, in cable, panel and pcb mounting forms. All are mateable with the metal-bodied XLR connectors and all have cable strain-relief and silver-over-nickelplate brass contacts rated at 16 A , 250 Vac . there is also the Clifcon series of four-pole locking connectors for use in professional audio systems and instrumentation. In addition, the Quick Connect terminals are for loudspeakers having spring-loaded levers to trap the wire in the terminal.
Electrospeed. Tel., 01703644555 ; fax, 01703610282.
equipment by way of power or signal lines, all to do with the current preoccupation with electromagnetic compatibility. Both standard and custom-made chokes are available, mainly using toroidal cores of iron powder, ferrite or amorphous alloy, in sizes from 3 mm to 30 mm diameter. Inductance values are in the $1-100 \mu \mathrm{H}$ range and they operate at frequencies to 30 MHz . Wearnes Hollingsworth Ltd. Tel., 01433 621555; fax, 01433 621290 .

Vari-C diodes. Variable-capacitance diodes from Zetex in the SOT-23 zC930 range give octave tuning from a $1-4 \mathrm{~V}$ voltage change. At 1 V , the seven devices in the range have a minimum capacitance range of 8.7 pF to 95 pF ; as an example, the ZC932 gives 17 pF at 1 V and 5.5 pF at 4 V , with a 'hyperabrupt' CN characteristic. Stray capacitance is 0.08 pF and lead inductance 2.8 nH . Zetex plc. Tel., 0161627 5105; fax 01616275467.

Small trimmer capacitors. TZVX2 series capacitors by Murata measure 2.3 by 3.2 by 1.2 mm , which makes them, says Murata, the world's smallest trimmers. The capacitance range is $2.5-20 \mathrm{pF}$ in five values, with temperature stability $0 \pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for $2.5-10 \mathrm{pF}$ and $-750 \pm 500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for 20 pF . Settling drift is said to be extremely low. Murata Electronics (UK) Ltd. Tel., 01252 811666; fax, 01252811777.

Connectors and cablling

 Two-in-one optical fibre connector. Molex SC optical-fibre connectors use two NTT-SC standard connectors in one housing. Insertion loss is typically under 0.15 dB for single-mode and below 0.34 dB for multi-mode. The connectors are available in flange or snap-mounting versions. Molex Electronics Ltd. Tel., 01420 477070; fax, 01420478185.

Solderless coax. connectors. Transradio offers the Coaxipress range of coaxial connectors fitted with solderless, press-fit terminations, for use in existing plated-through holes in diameters from 0.94 mm to 1.09 mm on $1.6-7 \mathrm{~mm}$ board material. Designs are available for MCX, SMB and DIN series of miniature connectors with right angles or straight receptacles Detailed procedures for insertion and removal, and information on tooling are available. Transradio Ltd. Tel., 0181-997 8880; fax, 0181-997 0116.

Displays

Better tft Icds. Major features of Sharp's Super-V Icd 13.8in XGA module are a 140° horizontal viewing angle, $250 \mathrm{~cd} / \mathrm{m}^{2}$ brightness, $300: 1$ contrast and 10 W power
consumption. The module is only a quarter the weight, a third the thickness and uses a fifth the power of a crt of the same size. Sharp Electronics (Europe) GmbH. Tel., 00490402376 2215; fax, 0049040 23762991.

Test and measurement

Dso with 'analogue' display. Aside from its other claims to fame, Gould's Classic 60004 -channel, 200 MHz digital storage oscilloscope has TruTrace, which is a technique to make the dso traces look like those on an analogue instrument, with variable intensity. This allows fine details, normally invisible on the usual dso display, to be seen; particularly useful for complicated signals in noise. The instrument has a range of options, from a low-end monochrome model up to a colour type with mass storage, auto sequencing and maths functions. Up to eight traces can be viewed simultaneously, to allow live traces on four channels to be compared with four reference traces or zoomed versions. Sampling rate is 100Msample/s and basic, segmentable memory $10 \mathrm{k} /$ channel with options of 50 k or 200 k . Gould Instrument Systems Lid. Tel., 0181 500 1000; fax, 01815010116.

Line-impedance stabiliser. Thurlby Thandar offers the LISN1600, a lineimpedance stabllisation network, to measure the level of conducted emissions at the supply of electrical equipment operating from a singlephase ac supply. It works with a spectrum analyser or measuring receiver to allow these measurements to be done without the need for testhouse facilities. Its current rating is 16A continuous and various output connectors are available. The instrument meets CISPR16 for Band A measurement of $10-150 \mathrm{kHz}$ and Band B in the range $150 \mathrm{kHz}-30 \mathrm{MHz}$ A switchable 150 kHz filter limits if signals in Band B to reduce the dynamic range requirements.

Connection is to either supply line, or the unit can be disconnected to check noise floor. Thurlby Thandar Instruments Ltd. Tel., 01480 412451; fax, 01480450409.

Differential oscilloscopes. OX802 and OX8022 differential oscilloscopes by Metrix are believed to be the only differential types available. Both are 20 MHz instruments; OX802 is an analogue model, while the 8022 will also work in digital mode at a $40 \mathrm{Msample} / \mathrm{s}$ rate. Both operate in normal or differential mode, the diff. inputs giving true floating measurement and channel-to-channel isolation. A maximum input voltage of 500 Vrms and the diff. inputs enable direct examination of single and three-phase mains voltage. Conversely, a sensitivity of 10 mV .div is available for small signal work. The 8022s digital facilities include roll, refresh and single shot, a pre-trigger in steps of 1 Kword from 0 to 4 Kword , a 2 by 4 Kword memory and an RS232 port. Metrix Electronics plc. Tel., 01384402731 ; fax, 01384 402732.

20 MHz and 50 MHz rsos. Two lowcost real-time and storage oscilloscopes from Hitachi Denshi, the VC-6523 and VC-6524 have hard copy by way of a plotter interface and waveform transfer via an RS232 interface. Bandwidths are 10 MHz (6523) and 50 MHz with sampling rates of $20 \mathrm{Msample} / \mathrm{s}$ and $2 k w o r d / c h a n n e l ~ m e m o r y . ~ T w o ~$ waveforms may be captured and saved for 72 hours or longer if malns power has been used. Both offer roll mode, averaging, smoothing, interpolation and pre-trigger. Hitachi Denshi (UK) Ltd. Tel., 0181202 4311; fax, 01812022451.

Paperless chart recorder. Yokogawa's VR100 chart recorder is a paperless type using 3.5 in floppy disks and samples at 125 ms with 14 -bit resolution. Display is a $320-\mathrm{by}-240$ pixel, 5.5 in colour ift Icd, showing the data in a variety of forms with splitscreen, magnification and reduction. Data is saved continuously in the builtin memory and is saved to disk at any time, each disk holding up to a month's recording of four channels with samples at 60 s intervals. Software enables interaction with Windows and Lotus 1-2-3, Excel or Ascii files are supported. Martron Instruments Lid. Tel., 01494 459200; fax, 01494535002.

Low-cost, 20 MHz oscilloscope. Leader offers the $L S 102020 \mathrm{MHz}$, dual-trace oscilloscope, which has a maximum Y sensitivity of $0.5 \mathrm{mV} / \mathrm{div}$ and sweeps at $50 \mathrm{~ns} /$ div. Trigger modes include alt. trigger, which allows a stable display of nonsynchronous signals on both channels at the same time; hold-off time is variable from the start to the end of a
sweep. One channel can be used as an amplifier to provide $50 \mathrm{mV} /$ div output and the two channels can be used to give an XY display. Thurlby Thandar Instruments Ltd. Tel., 01480 412451 ; fax, 01480450409.

Emc tester. Newly announced by Schaffer Is BEST 96, which is a complete electromagnetic compatibility test set in one box, providing all the functions needed to for full EU compliance of electronic products; CE mark pre-compliance and compliance testing can be carried out in-house. The set comprises a generator to give burst, electrostatic discharge, surge and power quality pulses for single-phase powerline and dataline compliance test to EN-500821, plus ground plane, cables, ground strap and resistor and coupling clamp for dataline test. All functions are controllable from the front panel or remotely using Windows software.
Schaffner EMC Ltd. Tel., 0118 9770070; fax, 01189792969

Literature

Suppresslon filters. Murata's 108page catalogue on suppression filters and ferrites has much data on other emi products, including applications a list of emi kits and a guide to noise suppression. Murata Electronics (UK) Ltd. Tel., 01252 811666 ; fax, 01252811777.

Emc filters. Arcotronics,
specialising in emc filters, has a new catalogue, which contains an informative introduction to the filters and their characteristics and complete electrical and mechanical data on the range on offer. The catalogue is available free. Arcotronics Ltd. Tel., 01327 351515; fax, 01327353761

Relays, switches, etc. A new edition of the Hhv short catalogue of thermal overload and circuit protection devices is available. New this time are extensions to the thermal circuit breaker range and new ranges of power relays and rocker switches. One of the relays is the mintature (1 in cube) normally open type 691, which switches 30A at 240 V , equivalent to a 2 hp motor. Hhv Components Lid. Tel., 01543 416667 ; fax, 01543416140.

Fpga data book. Actel offers, free, the FPGA Data Book and Design Guide for anyone considering using Actel programmable logic arrays. Apart from technical details of fpgas and development tools,
there is information on the Designer Series development system, which allows the specification of delay through logic blocks. Application notes on design and software tools are also included. It can be obtained
through the company's web site on http:/www.actel.com. Actel Europe Ltd. Tel., 01256 29209;
fax, 0125655420.
Production equipment Soldering system. From Production Equipment Sales, the AS 2000 industrial five-axis automated soldering system for post-process work. It is an in-line conveyorised station, using a high-speed positioning system and multt-tasking computer control to cope with all automated soldering applications including thermally sensitive components, flexible circuitry, connectors and others that cannot be mass reflowed or wave soldered. Temperature control is $\pm 3^{\circ} \mathrm{C}$ with a programmable dwell time in milliseconds. An RS232 port allows communlcation to a computer, soldering routines being taught or derived from cad data. Production Equipment Sales Ltd. Tel., 01825766644 ; fax, 01825766464

Power supplies

Switching regulators. Semtech's LM2575/2576 1A and 3A miniconverter switchers are pincompatible with Natlonal's devices. They are buck or buck/boost converters needing only four external components to provide fixed or adjustable outputs in the $3.3-35 \mathrm{~V}$ range. Input is 40 V and efficiency 82% at 5 V . Semtech Ltd. Tel., 01592 773520; fax, 01592774781.

Wide-range de converters. The Mascot dc-to-dc converter range accepts all common input voltages from 6 V up to 140 V . Sixteen models, both linear and switched-mode types, provide all the usual voltage outputs, some being adjustable, at powers from 27 W to 158 W . For demanding application, there are four models with inputs and outputs isolated from each other and ground. Inputs and outputs are all fully protected against acts of God and absentmindedness. Relec Electronics Ltd. Tel., 01962 863141; fax, 01962855987.

Low-noise dc converters. Interpoint claims that its MHV serles of single and dual output dc-to-dc converters have the lowest output noise in the military/aerospace industry, at 10 mV . Input range is $16-50 \mathrm{~V}$ and the choice of outpuls is $3.3,5,12,15, \pm 5, \pm 12$ and $\pm 15 \mathrm{~V}$ and the units will cope with transients of up to 80 V for 120 ms . Interpoint UK Ltd. Tel., 01252 815511; fax, 01252815577.

Cv/ci battery charger. The Linear Technology LT1511 current-mode pwm battery charger ic will charge a battery pack while the equipment it is powering continues to work, a control loop in the charger regulating current drawn to allow rapid charging without overwhelming to power-management

chip. The ic is 90% efficient and gives 3A out for all popular battery types, operating from an input of $8-28 \mathrm{Vdc}$ Micro Call Lid. Tel., 01844 261939: fax, 01844261678.

Temperature-stable zener

regulator. Zetex has augmented its wide range of adjustable shunt regulators with an extended temperature version of the ZR431, claiming the widest temperature range available for this type of device. The ZHT431 copes with temperatures from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, a 44% increase on the typical range. It is temp. compensated over its whole working range and has a temperature coefficient of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Tolerance is 1% or 2% and quiescent current $35 \mu \mathrm{~A}$. The device is simply programmed between 2.5 V and 20 V by two resistors. Package is the ultra small SOT23, but the SOT223 and SO8 surface mounts are also available. There is also a through-hole TO92 type. Zetex plc. Tel., 0161-627 5105; fax, 0161-6275467

Radio communications

Synthesised video Tx/Rx. Mainly for use in security applications, Wood \& Douglas's VFMT-2NFMR-2 uhf transmitter and receiver modules offer comparable performance to that found in crystal-controlled equipment, with the advantage that frequencies are programmable. The units are in separate aluminium cases and provlde a mid-range video link over a line-of-sight 20 km range. Working in the $280-500 \mathrm{MHz}$ band, the units provide two sound channels for line or microphone level; frequencies, which are stored in eeprom for front-panel programming, are selected by internal switches, up to four video channels being available over a 50 MHz operating range. Two versions of the transmitter have rf output of 2.5 W or 8 W. Wood and Douglas Ltd. Tel., 01734811444 ; fax, 01734811567

Protection devices

SCSI circuit breaker. Designed particularly for 5 V SCSI application or

Surface-mounted inductors. Toko's new D10F range of s-m inductors is now obtainable from Cirkit. The inductors measure 9.7 mm in diameter and 5 mm in height and come in values from $10 \mu \mathrm{H}$ to 1.5 mH in current ratings of $0.25-2.6 \mathrm{~A}$. A magnetically shielded version is also available. Mounting pads are separate from the coil terminations to eliminate strain on the windings. Clrkit Distribution Ltd. Tel., 01992444111 ; fax, 01992 464457.
any system needing 1.5A hot plug protection, Unitrode's UCC3916 fixed trip-current circult breaker provide unidirectional current flow, to emulated a series diode, and limiting in an 8-pin SOIC package. It replaces fuse/diode protection, providing a more accurate threshold and more rapid response. Trip current is 1.65 A and has a programmed maximum current of 2.1A. Unitrode (UK) Ltd. Tel., 0181318 1431; fax, 0181318 2549.

Switches and relays

10 mm reed switch. Mini-DYAD reed switches by C P Clare resist damage when leads are formed for mounting and exhibit a switching speed of 0.5 ms . They carry 2A and switch 0.5A at 200 V . C P Clare International NV. Tel., 0032 12/39 0400 ; fax, 0032 12/23 5754.

Transducers and sensors

Inclinometer. Model 10 is a $£ 74$ digital tilt sensor by Control Transducers, used to show the angle of an object with respect to gravity. Output is ttl in two or three channels, suited to equipment designed to ensure, for example, the machinery is level or that off-road vehicles or cranes are not going to topple over. An optical encoder disc, resolving to $0.25^{\circ}, 0.1^{\circ}$ or 0.05° is supported by two micro ball bearings, a

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World" when seeking further information

weight on the disc causing it to take up a constant position with respect to gravity. Internal magnetic damping provides fast response and minimises oscillations of the disc after a disturbance. Power needed is 5 Vdc at 40 mA maximum. Control
Transducers. Tel., 01234 217704; fax, 01234217083.

Crash accelerometer. The 7264B2000 piezoresistive accelerometer from Endevco weighs 1 gram and has integral mechanical stops to enable the unit to survive $10,000 \mathrm{~g}$ shocks in all axes. It is designed for rough road testing, flight tests and tests where a perfectly good vehicle is driven full tilt into a concrete wall, in which the small size of the accelerometer allows it to be put into a dummy person without altering its mass too much. The unit is undamped and produces minimum phase shift over its useful frequency range of 0-5kHz. Endevco UK Ltd. Tel., 01763 261311; fax, 01763261120

S-m pressure sensors

 MPXS4100A is the first in a new family of surface-mounted pressure sensors from Motorola, this one handling $20-105 \mathrm{kPa}$ absolute (manifold or barometric) pressure and incorporating bipolar amplifier circuitry and thin-film resistor networks for high output and temperature compensation. Motorola

Semiconductors. Tel., 01355 565000 fax, 01355234582.

Hall-effect latch. Allegro has the A3197LU, a protected open-collector Hall-effect latcg ic for operation in the temperature range $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$. It senses magnetic fields in applications such as vehicle transmission speed sensing and whee! bearing speed sensors, the latching assisting in pulse counting when used with a multi-pole ring magnet. Position and speed information are provided by a digital output when the field exceeds predefined switch points, which are stable against temperature and voltage variation. The transducer is followed by a temperaturecompensated comparator, a regulator and 35 mA output buffer. Allegro MicroSystems Inc. Tel., 01932 253355; fax, 01932246622.

COMPUTER

Computer board-level products

486 cpu card. By IMS, the PCA6144 V is a full-function, half-sized 486DX/DX2/DX4 cpu card with VGA display and other enhanced i/o Interfaces. There is a local-bus VGA controller with Windows accelerator and 1 Mby te of display memory and the card takes up to 64Mbyte of onboard dram and a secondary-level cache of 128 Kbyte . Other interfaces are an enhanced IDE hd controller, floppy controller, PC/104 interface bus connector for expansion, RS232 and RS232/485 ports, a parallel port and a PS/2 mouse connector. This is an industrial grade card. Integrated Measurement Systems Ltd. Tel., 01703771143 ; fax, 01703704301

Computer

Industrial workstation. Fairchild's AWS-822 is a fully specifled, rackmounted pc for use on the factory floor, fully sealed against dust and water, shock mounted and pretty well

human-proof. There is a 14 in monitor and a membrane keypad on the front panel containing 37 keys, which may be combined with a conventional ATtype keyboard plugged into the panel. Fairchild Ltd. Tel., 01703 211789; fax, 01703211678

Software

Autorouter for EASY-PC. Designed for use with Number One Systems' EASY-PC Professional XM. MultiRouter offers a number of features that make it, in spite of its £295 price, equivalent to much more expensive packages. For example, it is not based on a grid, but on shapes, s that components whose pins do not lie on a grid can still be used. Tracks can be pushed aside to let more through, providing this can be physically done. Routing is usually 100%, and if not, further passes are very rapid. Track widths and corners are made suitable for production and vias and track lengths are minimised, vias being eliminated for one-off boards, if required. Number One Systems Ltd. Tel., 01480 461778; fax, 01480494042

Bootstrap for C16x

microcontrollers. Hitex offers this utility to allow embedded communication, test and programming of a microcontroller with a pc via lts serial port and is meant for the Slemens C16x Flash devices. It runs with Windows and uses the pc link to communicate with the device and allows reading of registers to confirm selected bus modes; reads and writes to external memory to test address and data bits; programs the application into the Flash; and programs external Flash. Extensive testing can then be carried out. Hitex (UK) Ltd. Tel., 01203 692066; fax, 01203692131.

MicroSim Schematics v. 6.3. Enhancements in this new version of MicroSim's Windows-based analogue and mixed-signal design and development software include a graphical parts browser, error traceback and 'wizards' to make symbols and goal functions, expanded libraries and improved

Programming hardware Low-cost programmers. Two new programmers from ICE, the Speedmaster $1000+$, which handles eproms and pals, and the Micromaster $1000+$, taking eproms, pals, plds and micros, sell at $£ 395$ and $£ 525$ respectively, both being easily upgraded to cope with more devices and to support LV devices with a voltage down to 1.8 V . No adaptors are needed for dil devices with up to 40 pins and adaptors are available for other packages. All are compatible with the company's builfin rom/ram emulator upgrade and also include chip test for $\mathrm{tt}, \mathrm{cmos}$, dram ans sram. Ice's home page is on http:/wwwficetech.com. ICE
Technology Ltd. Tel., 01226
767404 ; fax, 01226370434.

Windows 95 and NT network licensing. The browser has a 40,000part symbol library, accessible by name, number or description in seconds with a window to show its graphic before it is selected. Error traceback features a pop-up window to give warning of errors during netlisting, packaging, etc.; doubleclicking on the message moves the cursor to the problem on the circuit diagram. If the penny has still not dropped, a more detailed message will appear. MicroSim Corporation. Tel., 001714 770-3022; fax, 001714 455-0554.

DASYLab v.3. DASYLab, the Windows-based data-acquisition package, is now in version 3 , with many Improvements. There ave better trigger functions, to ease the definition of pre-trigger and post-trigger data to specify the area of interest; VITool allows a test rig or process to be visualised and documented, with icons combined with bitmap images, control buttons, switches and text to mimic the process; global strings allow sample or product batch data to be entered directly or via dde and stored in a single fle with raw data and derived values. The package is in two versions: a basic edition and the extended form with VITool. Adept Scientiflc Mlcro Systems Ltd. Tel., 01462 480055; fax, 01462480213.

CIRCLE NO. I.BOON REPLY CAKD

EASY-PC Professional XM Schematic and PCB CAD

From Super Schematics

To Perfect PCB's

Runs on:- PC/ 386/ 486 with VGA display

- Links to PULSAR (logic), ANALYSER III (analogue) \& LAYAN (electromagnetic) simulators.
- Design:- Single sided, Double sided and Multi-layer boards.
- Provides full Surface Mount support.
- Standard output includes Dot Matrix / Laser / Ink-jet Printer, Pen Plotter, Photoplotter and N.C. Drill.
- Optional, powerful, 32 bit, Multi-pass, Shape based, Shove Aside, Rip-up and Re-try Autorouter.

Number One Systems

UKJEEC: Ref: WW, Harding Way, St.lves, Cambridgeshire, ENGLAND, PE17 4WR. Email: sales@numberone.com Telephone UK: 01480461778 (7 lines) Fax: 01480494042 International +44 1480461778
USA:
Ref: WW, 126 Smith Creek Drive, Los Gatos, CA 95030 Telephone/Fax: (408) 395-0249

MOONSHINE BIBLE 270 page book covering the production of alchonol from potatoes, nice, grains etc Drawings of simple NEW HIGH POWER MINI BUG With a range of 800 metres or more and up to 100 hours use from a PP3 thas will be populan Bug measures less than 1 " squaret £28 Ret LOT102
SINCLAIR C6 MOTORS We have a new ones available withour
gearboxes at $£ 50$ ref Lot25
BUILD YOU OWN WINDFARM FROM SCRAP New publication gives step by step guide to building wind generators. Amed with this publication and a good local scrap yard could make you self sufficient in electncity! $£ 12$ ref LOT81
PC KEYBOARDS PS2 connector, top quality suitable for all $286 /$ $386 / 486$ etc $£ 10$ ref PCKB. 10 for $£ 65$.
TRACKING TRANSMITTER range 1.5 .5 miles, 5,000 hours on AA batteries, also transmits Info on car direction and motion!Works with any FM radio. 1.5° square. $£ 65$ ref LOT101
ELECTRIC DOOR LOCKS Complete lock with both Yale lock and 12 voperated deadiock (keys included) £10 ref LOTg9 GALLIUM ARS ENIDE FISHEYE PHOTO DIODES Complete with suggested circuits for long range communicationslswitching £ 12 compiete.
SURVEILLANCE TELESCOPE Superb RUssian 200 m (imposible to use without this on the higher seltings) 66 mm lense
(leather carying case £149 ref BARg9
WIRELESS VIDEO BUG KIT Transmits video and audio signals from a minature CCTV camera (included) to any standard signals from a minature CCTV camera (included) to any stancard
felevisiont All the components including a PP3 battery will fit into a lelevislont All the components including a PP3 battery will fit int a
cigarette packet with the lens requiring a hole about 3 mm diameter. cigarette packet with the lens requiring a hole about 3 mm diameter.
Supplied with telescopic aerial but a piece of wire about 4^{4} long will Supplied with teescopic aerial but a piece of wire about 4° long will
still give a range of up to 100 metres. A single PP3 will probably give less than 1 hours use. $£ 99$ REF EP79. (probably not licensablel) CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}$, 30 grams, 12 V 100 mA . auto electronic shutter, 3.6 mm F2 lens, CCIR, 512×492 pixels, video output Is iv P-p (75 ohm). Works directy into a s
video input on a Nor video. IR sensitive. $£ 79.95$ ref EF 137 .
video input on a N or video. It sensitive. $£ 79.95$ ref EF 137 .
IR LAMP KIT Sultale for the above camera enables the camera to be used in total darknessl £5.99 ref EF 138.
REMOTE CONTROLTANDATA TD1400 MODEMI VIEWDATA Complete system comprising $1200 \pi 5$ modem, auto dialler, Infra red remote keyooard, (could be adapted for PC use?)
psu. UHF and RGB outut, phone lead, RS232 output. composite

outbut. Absolute bargain for parts aionelig9 95 ref BAR33

9 WATT CHIEFTAN TANK LASERS
Double beam units designed to f in the gun barrel of a tank, each unit
has two semi conductorlasers and motor dive units for alignement. has two semic conductor lasers and motor divive units for alignement.
7 mile range, full circuit diagrams, new price $£ 50,000 ?$ us? $£ 349$. 7 mile range, full circuit diagrams, new price $£ 50,000$? us? $£ 349$.
Each unit has two galium Arsenide injection lasers. 1×9 watt, $1 \times$ Each unit has two gallium Arsenide injection lasers. 1×9 watt, $1 \times$
$3 w$ ant, 900 nm wavelength, 28 vdc , 600 hz pulse frequency. The units aiso contain an electronic receiver to detect refiected signals from targets. five or more units $£ 299$ ea. $£ 349$ for one. Ref LOT4.

TWO WAY MIRROR KT Indudes special ad hesive ilm tomake two way mirror(s) up to $60^{\circ} \times 20^{\circ}$. (glass not included) includes full instructions. $£ 12$ rel TW1.
NEWLOWPRICEDCOMPUTERWORKSHOPIHLFIRCB UNTTS Complete protection from faulty equipment for everybody! Iniine unit fitsin standard IEC lead (extends ltby 750 mm), fitted inless than 10 seconds, resettest button, 10A rating. $£ 6.99$ each ref LOT5. Or a pack of 10 at $£ 49.90$ ref LOT6. If you want a box of 100 you can have one for $£ 250$!

RADIO CONTROLLED CARS FROM £6 EACHI!!! All retums from famous manufacturer, lypes available, single channel (left,right,forwards, backwards) $£ 6$ ref LOT1. Two channel with more features $£ 12$ ref LOT2.

THOUSANDS AVAILABLE RING/FAX FOR DETAILS! MAGNETIC CARD READERS (Swipes) £9.95 Cased with fyleads, designed to read standard crecit cards! they have 3 wires coming out of the head so they may write as well? complete with control elctronics PCB. Just $£ 9.95$ rei BAR3
WANT TO MAKE SOME MONEY? STUCK FOR AM IDEA? We have collated 140 business manuals that give you information on setting up different businesses. you peruse these at your leisure using the text editor or your PC. Also included is the certifcate enabling you to reproduce (and sell) the manuals as much as you like! £14 ref EP74
PANORAMIC CAMERA OFFER Takes double width photographs using standard 35 mm film. Use in horizontal or vericical mode. Complete with strap $£ 7.99$ ref BAR
COIM OPERATED TMER KT
COIN OPERATED TIMER KIT Complete wht coinslot mechanism, adjustable time delay, relay ouplt, put a coinsiot on
anyming you likel TV.s, videos, fidges, dninks cupboards, HIFI. anything you likel TV.s, videos, fridges, dinks cupboards, HIFI,
takes 50 .'s and $£ 1$ cons. DC operated, price just $£ 7.99$ rel BAR27. ZENTH $900 \times$ MAGNIFICATION MICROSCOPE Zoom, metal construction, built in light, shimp farm, group viewing screen. lots of accessonies $£ 29$ ref ANAYLT
 PLASMA SCREENS $222 \times 310 \mathrm{~mm}$, no data hence $£ 4.99$ rel BAR67
MIGHTSIGHTS Model TZSA with infra red illuminator, views up to 75 metres in full darkness in infrared mode, 150 m range, 45 mm lens,
13 deg angle of view, focus 13 deg angle of view, focussing range 1.5 m toinfinty. 2 AA batteries required. 950 g weight. $£ 199$ ref BAR61. 1 years warranty
L1OUID CRYSTAL DISPLAYS Bargain prices, LIQUID CRYSTAL DISPLAYS Bargain prices, 16 character 2 line, $99 \times 24 \mathrm{~mm} £ 2.99$ ref SM1623A 20 character 2 line, $83 \times 49 \mathrm{~mm} £ 3.99$ ref SM2020A 16 character 4 line, $62 \times 25 \mathrm{~mm} £ 5.99$ ref SMC1640A TAL- 1110 MM NEWTONIAN REFLECTORTELESCOPE

WOLVERIA MITON BRANCH NOW OPEN AT WORCESTER ST

details 5249 ref TAL

CENTRAL POINT PC TOOLS Aw ard winning sotware, 1,300 virus checker, memory optimiser, disc optimiser, fie compression, low level formating, backup scheduler, disk defragmenter, undelete, 4 calculators. Obase, disc editor, over 40 viewers, remote computing, password protection, encryption, comprehensive manual supplied etc $£ 25$ ref lot 973.5° disks.
GOT AN EXPENSNE BIKE? You need one of our bottle alarms, they look like a standard water botte, but open the top, insert a key to activate a motion sensor alarm built inside. Fits all standard botte camiers, supplied with two keys SAI E PRICE 6799 R
GOTAN EXPENSIVE ANYTHING? You need one of our case vibration alarms, keyswith operated, fully cased just it it to anything from videos to caravans. provides a years protect
PP3 battery, UK made. SALE PRICE 84.99 REF SA33.
DAMAGED ANSWER PHONES These are probably beyond repar so just E4. 99 each. BT response 200 machines. REF SA30. COMP UTER DISC CLEAROUT Weare lef with a lot of softw are packs that need clearing so we are selling at disc value only! 50 dis for 24 . hats jus op eachin(our choice of discs) E_{4} refEP6 IBM PS2 MODEL $160 Z$ CASE AND POWER SUPPLY Complete with fan etc and 200 watt power supply. $£ 9.95$ ref EP67
DELL PC POWER SUPPLIES 145 watt, $+5,-5,+12,-12$ $150 \times 150 \times 85 \mathrm{~mm}$ complete with switch, flyeads and IEC socke SALE PRICE 69.99 ref EP55
1.44 DISC DRIVES Standard PC 3.5° drives but retums so they will need attention SALE PRICE $\mathbf{E 4 . 9 9}$ rel EP68
1.2 DISC DRNES Standard 5.25° drives but retums so they will need attention SALE PRICE NOW ONLY 83.50 ref EP69
PP3 NICADS Unused but some storage marks. £4.99 ref EP52 DELL PC POWERSUPPLIES (Customerretums) Standard PC psu's complete with fly leads, case and fan, $+12 v_{-}-12 v,+5 v,-5 v$ SALE
PRICE E1,99 EACH worth if for the bits alonel ref DL1. TRADE PACK PRICE E1.99 EACH worth lif for the bits alone! ref DL1. TRADE PACK OF 20 E29.95 Ref DL2
GAS HOBS ANDOVENS Brand new gas appllances, perfect for small flats elc. Baslc 3 bumer hob SALE PRICE $£ 24.99$ ref EP72. Basic small built in oven SALE PRICE $\varepsilon 79$ ref EP73
RED EYE SECURTTY PROTECTOR 1.000 watt outdoor PIR witch SALE PRICE $£ 6.99$ ref EP57
ENERGY BANK KIT $1006^{\circ} \times 6^{\circ}$ 6v 100 mA panels, 100 diodes, connecton details etc. £69.95 ref EF112.
PASTEL ACCOUNTS SOFTWARE, does everything for all sizes of businesses, ind udes wordprocessor, rep oft writer, windowing. networkable up to 10 stations. multiple cash books etc. 200 page comprehensive manual. 90 days free technical support (01342 326009 ty before you buyl) Current
PRICE $£ 9.95$ ref SA12. SAVE £12011
COMPLETE PC 200 WATT UPS SYSTEM TOD of the range UPS system providing protection for your computer system and valuable sotware against mains power fuctuations and cuts. New and boxed, UK made Provides up to 5 mins running ome in the event of complete power fallure to allow you to nun your system dow BIG BROTHER PSU Cased PSU, $6 v 2$ A out ut, 2 m op lead, 1.5 m input lead. UK made, 220 v . SALE PRICE 84.99 REF EP7

Check out our WEB SITE

http://www.pavillon.co.uk/bull-electrical
RACAL MODEM BOMANZA! 1 Raca MPS 1223120075 modem. telephone lead, mains lead, manual and comms software, the
4.5mw LASER POINTER. BRAND NEW MODEL NOWIN sTOCKI, supplied in fully built form (looks like a nice pen) oomplete with handy pocket clip (which also acts as the ondoff switch.) About 60 metres rangel Runs on 2 AAA batteries. Produces thin red beam ideal for levels, gun sights, experiments otc. just $\mathbf{E} 39.96$ rof DEC49 TRADE PRICE \& 28 MIM 10 PIECES

BULL TENS UNIT Fully built and tested TENS (Transcutaneous Electrical Neve Stimulation) unit, complete with electrodes and full instructions. TENS is used for the relief of pain eic in up to 70% of instructions. TENS is used for the relief of pain eic in up to 70% of
sulferers. Drug free pain relief, sate and easy to use, can be used in sufterers. Drug free pain reiti, saie and easy conjunction with analgesics etc. £49 Ref TEN/9
PC PAL VGA TO TV CONVERTER Converts a colour TV into a basic VGA screen. Complete with builtin psu, lead and s/ware.. Ideal for laptops or a cheap upgrade. Supplied in kit form for home assembly. SALE PRICE E25 REF SA34
EMERGENCY LIGHTING UNTT Complete unit with 2 double

- GOME OF OUR PRODUCTS MAY BE UNLICENSABLE IN THE UK

BULL ELECTRICAI
250 POHTL , RO ROM. HOV L, SUSSEX

14X 01273 323077
C-maill bullepavilionicouls

Uulb foodights, built in charger and auto switch Fully cased 6v 8 AH ead acid req'd. (secondhand) $£ 4$ ref MAG4P11
YUASHA SEALED LEAD ACID BATTERIES Two sizes currently available this month. 12v 15AH at 18 refLOT8 and $6 v$ 10AH (suitable for emergency lights above) at just $£ 6$ ref LOT7. ELECTRIC CAR WINDOW DE-ICERS Complete with cable. plug elc SALE PRICE JUST E4.99 REF SA28
AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panel with diode and 3 metre lead fitted with a eigar plug. 12v 2watt. E8.99 REF SA25. MICRODRNE STRTPPERS Small cased tape dives ideal for stripping. lots of useful goodies including a smart case, and lots components. SALE PRICE JUST E4.99 FOR FIVE REF SAZ6 SOLAR POWER LAB SPECIA L You get TWO $6^{\prime \prime} \times 6^{\circ} 6 \mathrm{v} 130 \mathrm{~mA}$ olar cells, 4LED's, wire, buzzer, switch plus 1 relay or motor. Superb value kit SALE PRICE JUST E4.99 REF SA27
RGBICGAEGATTL COLOUR MONITORS 12° in good condition. Back anodised metal case. SALE PRICE E49 REF SA 16 B PLUG IN ACORN PSU 19v AC 14w , $£ 2.99$ REF MAG3P 10 13.8V 1.9A PSU cased with leads. Jusi £9.99 REF MAG10P3 UNNERSAL SPEED CONTROLLER KTT Designed by us for the C5 motor but ok for any 12 V motor up to 30A. Compiete with PCE tc. A heat sink may be required. £17.00 REF; MAG17
PHONE CABLE AND COMPUTER COMMUNICATIONS PACK Kit contains 100 m of 6 core cable, 100 cable clips, 2 line drivers with RS232 interfaces and all connectors etc. Ideal low cost method of communicating between PCs over a long distance utilizing he serial ports. Complete kit 88.99 . Ref comp 1.
VIEWDATA SYSTEMS made by Phillips, complete with intemal $1200 / 75$ modem, keyboard, psu etc RGB and composite outputs, menu driven, a utodialler etc. SALE PRICE $£ 12.99$ REF SA 18
AIR RIFLES . 22 As used by the Chinese army fortraining puposes, so there is a lot aboutl $£ 39.95$ Ref EF78. 500 pellets $£ 450$ ref EF80. PLUG IN POWER SUPPLY SALE FROM \&1.60 Plugs in to 13A socket with outputlead. three types avalable, 9 vodc $150 \mathrm{mAE1} .50$ ef SA19, $9 \mathrm{vocc} 200 \mathrm{~mA} \mathbf{E} 2.00$ ref SA20, $6.5 \mathrm{vdc} 500 \mathrm{~mA} £ 2$ ref SA21. VIDEO SENDER UNIT. Transmits both audio and video signals from either a video camera. video recorder, TV or Computer etc to a ny stancard TV set in a 100 range! (the TVio a spare channel) 12V DC p. Proe is E25 RE. MAG1s $12 r$ psu is LS exra Ref. MAGsP2 - MINATURE RA DIO TRANSCENERS A pair of walkie talkies with a range up to 2 km in open country. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. Induding cases and eap'ces. $2 \times$ PP3 req'd. $£ 30.00$ pr.REF: MAG 30 *FM TRANSMITER KIT housed in a standard working 13A adapterl the bug runs directly off the mains solasts forever! why pay $£ 700$? or price is $£ 15$ REF: EF62 (kit) Transmits to any FM radio.

- FM BUG BUILT ANDTESTEDsupentor design to kit. Supplied to detective agencies. gv battery req'd. £14 REF: MAG14
TALKING COINBOX STRIPPER COMPLETE WITH COINSLOT M ECHA NISMS originally made to retail at£79 each. these units are designed to convert an ordinary phone into à
payphone. The units have the locks missing and sometimes broken hinges. How ever they can be adapted for their original use or used for something else?? SALE PRICE JUST E2.50 REF SA23
GAT AIR PISTOL PACK Complete with plstol, darts and pellets £12.95 Ref EF828 extra pellets (500) £4.50 ref EF80.
$6^{\prime \prime} \times 12^{\prime \prime}$ AMORPHOUS SOLAR PANEL $12 \mathrm{v} 155 \times 310 \mathrm{~mm}$ 130 mA . SALE PRICE E4.99 REF SA 24.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ef MAG5P 13 ideal for experimenters 30 m for $£ 12.99$ ref MAG13P1

MDXED GOODIES BOX OF
 MDED COMPONENTS WEIGHING 2 KILOS YOURS FOR JUST E5.99

4X28 TELESCOPIC SIGHTS Sútable for ali air nites, ground lenses, good light gathering properties. £19.95 ref R/7.
GYROSCOPES Rememberthese? well we have found acompany that still manufactures these popular saentic toys, perfect giff or for educational use etc. £6 ref EP70
HYPOTHERMLA SPACE BLANKET $215 \times 150 \mathrm{~cm}$ aluminised foll blanket, reflects more than 90% of body neat. Also suitable for the construction of two way mirrors! $£ 399$ each
LENSTATIC RANGER COMPASS Oil filled capsule, strong metai case, large luminous points. Sight line with magnitying view er.
50 mm dla, 86 gm . $£ 10.99$ ref OKK604. 50 mm dla, 86 gm . £ 10.99 ref OK 604 .
RECHARGE ORDIMARY BATTERIES UP TO 10 TMESI With the Battery Wizardi Uses the latest pulse wave charge system to charge all popular brands of ordinary batteries AAA, AA, C, D, four ata tme! Led systemshows when batteries are charged, automatically rejects unsuitable cells, co
Price is $£ 21.95$ ref EP31.
TA LKING WATCH Yes, it actually tells you the time at the press of a button. Also features a voice alarm that wakes you up and telis you what the time is Lithium cell ind uded. $£ 7.99$ ref EP26.

PHOTOGRAPHIC RADAR TRAPS CAN COST YOU YOUR LICENCEI The new multiband 2000 radar-detector can prevent even the most responsible of drivers from losing theirlicencel Adjustable audible alarm, with 8 flashing leds gives instant warning of radar zones. Detects X, K, and Ka bands, 3 mile range, 'over the hill' around bends' and 'reartrap facilities. micro size jus $14.25^{\circ} \times 2.5^{\circ} \times .75^{\circ}$, Can pay for itself in just one day! $£ 79.95$ ref EP3.
3" DISCS As used on older Amstrad machines, Spectrum plus3's etc $£ 3$ each ref BAR400.
STEREO MICROSOPES BACK IM STOCK Russian, 200x complete with lenses, lights, filters etc eic very comprehensive WE BUY SURPLUS STOCK FOR CASH
BUYERS DIRECT LINE 0802660377 FREECATALOGUE

> 100 PAGE CATALOGUE NOW
> available, 50P STAMP OR FREE
> ON REGUEST WITH ORDER.

Fig. 7. 300 W voltage multiplier featuring over 90% efficiency. It can be used to supply a standard 100 W split rail amplifier using a 12 V source.

...continued from page 797

dropped. Both methods give the same losses; the same as adding series resistance or a series regulator, which is inefficient with large voltage drops.
I concluded that the only way to efficiently vary the output voltage over a wide range is to use an a inductor, either a separate switching regulator, or as part of the multiplier. The latter method was chosen, where a series inductor is inserted between the dc-to-dc converter and the multiplier.
This method of efficient regulation is possible, but only over a limited current range down to about 10 or 20% of full load. This is because frequency is increased to reduce the output current. In turn, this increases gate drive losses at light loads which pulls efficiency down. This places a practical limit on the upper frequency of around 200 kHz .
The inductor value is chosen so only a small fraction of the output voltage, around 1V or 2%, is lost at full load where frequency is at its lowest. A relatively small air-cored coil is sufficient, similar to two Zobel inductors but bifilar wound It should consist of dual seventurn coils of 1.3 mm wire on a 20 mm former. Note the connection polarities.
Efficiency at half full voltage, i.e. a quarter of full power, is around 90%. The other methods mentioned above are 50% efficient. If independent regulation of the plus and minus
rails is required then two single mosfet H bridges are needed. A separate regulator circuit including a level shifted feedback signal is needed, via an opto-coupler for example.
If regulation down to no load is required, a low drop-out linear pre-regulator can regulate from the point where the main regulator loses regulation. In this way dissipation in the series regulator will be at most $1 / 25$ th of full output power. In Fig. 8a, both low-side mosfets $T_{1,4}$ can be used as regulators by controlling their on resistance at low loads. However, output capacitances C_{6} and C_{7} need to be $22 \mu \mathrm{~F}$ or more to ensure linear regulation rather than burst or on-off regulation. Burst regulation can generate annoying interference in the audio range for some applications.
Figure $\mathbf{8 b}$ can be used where the fm regulator and inductor are omitted. A $2.2 \mathrm{k} \Omega$ resistor is placed in the emitter of the feedback transistor to ensure linear operation. Output capacitors C_{6} and C_{7} should be at least $10 \mu \mathrm{~F}$.
These additions prevent the multipliers capacitors and/or diodes from being destroyed if the input voltage rises too high. The ratings of the diodes and capacitors can be rated closer to levels for normal output which reduces size and cost.
A 4046 voltage-controlled oscillator is used with an op-amp for closed loop voltage regulation. The full load (minimum) frequency is set with R_{7} and the light load (maximum) frequency is set with R_{6} to 100 kHz in my circuit.

With the improved full-wave multiplier, voltage regulation and response time is very good since only a minimal value of output capacitance is required to remove ripple due to deadtime in the H bridge - about 10% of the multipliers capacitance. Again, $10 \mu \mathrm{~F}$ is sufficient. However, if the output capacitance is too large, the feedback loop may become unstable and require lag-lead compensation around $I C_{3 \mathrm{a}}$. Capacitor C_{9} speeds up the oscillator's voltage follower and provides some overall loop phase advance.
Transient response time for a multiplier is related to the number of stages. Output increases from 0 V at start up in an exponential way. The time constant was noted to be equal to n times the oscillators period. Here, n here is the number of multiplier stages. For example, four stages with an input frequency of 20 kHz has a time constant of $200 \mu \mathrm{~s}$, which can be represented by a pole at 796 Hz .

A multiplier for high voltage

The combination of a multiplier and transformer allows extremely high voltage dc to be generated - far higher than a transformer with a simple rectifier can achieve due to the limitation of secondary winding capacitance. The multiplier in Fig. 9 has been used to generate 160 kV from 12 V using two pentuplers parallel fed similar to Fig. 7. Feeding two multipliers in this way reduces the number of charge transfers and the size of capacitors.

ANALOGUE DESIGN

Fig. 8a) Add on circuit for Fig. 7 controls on resistance of the low side mosfets for over-voltage protection of capacitors and diodes. In b), also an add on for Fig. 7, the inductor regulator is not used.

Since the secondary is isolated, any one of the three output terminals can be earthed. This gives the option of either a positive supply, a minus supply, or a split supply. The secondary of a television line transformer provides 16 kV peak with five turns on the primary using a an ht lead that can withstand 80 kV . Alternatively 2 mm thick SCL tubing from Raychem Corporation can be applied to normal wire.
Secondary resonance at around 30 kHz is used to advantage to lift the secondary voltage from $3 \mathrm{k} V_{\mathrm{pk}-\mathrm{pk}}$ to 16 kV . Varying the frequency from above, or below, resonance can be used for voltage control. A string of BYV96E $1.5 \mathrm{~A} / 1 \mathrm{kV}$ avalanche rated diodes - all 384 of them - were used to prevent over-voltage destroying diodes and capacitors by acting like zener diodes. Although the circuit in Fig. 4 can reduce the diode count to 192, the fullwave version provides a low ripple dc output without the very high voltage output capacitor in Fig. 4.
Note that the resistors in the output prevent high peak currents from damaging the diodes if the terminals flash over or are shorted. For those of you wanting to design a high voltage converter and experiment with the effects of high voltage dc, Reference 4 is a good starter. Take care with this converter - high peak currents can be delivered from the capacitors and discharge capacitors after use. When the centre rail is not earthed, the transformer core
must be isolated to withstand 80 kV to ground. A provisional patent on the improved fullwave multiplier, regulator and high voltage generator has been filed ${ }^{5}$. Intellectual property enquiries should be directed through Intellpro, GPO Box 1339, Brisbane 4001, Australia, Fax $\begin{array}{lllll} & 61 & 7 & 3221 & 4762 .\end{array}$ Experimenters are free to use these circuits for non-commercial purposes.

References

1. Ian Hickman, Multiplier Lowers Impedance, EDN, 6 June 1991, p 173.
2. P. E. K. Donaldson, The Mosmarx Voltage Multiplier, Electronics \& Wireless World, Aug 1988, p 748-750.
3. Ralph E. Tarter, Solid State Power

Conversion Handbook, Wiley 1993, pp 244251.
4. Robert E. Iannini, Build your own working Fibre-optic, Infrared \& Laser space-age
projects, 1987 TAB Books, pp 229-255, ISBN
0830627243 (pbk).
5. Australian Patent Application No. PN9832
filed 15/5/96.

Fig. 9. This 160 kV multiplier, made up from two pentuplers in parallel, outputs up to 100 W . Compared with conventional designs, it is more efficient and uses fewer
components

CIRCUIT IDEAS

Do you have an original circuit idea for publication? We are giving £100 cash for the month's top design. Additional authors will receive £25 cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

WIN A TTI PROGRAMMABLE BENCH MULTIMETER

"High accuracy, resolution and bandwidth performance beyond the capability of handhelds"

This high-performance bench multimeter could be yours in exchange for a good idea. Featuring a dual display, the 4.5 -digit 1705 multimeter resolves down to $10 \mu \mathrm{~V}$, $10 \mathrm{~m} \Omega$ and $0.1 \mu \mathrm{~A}$ and has a basic de accuracy of 0.04%. Frequency measured is 10 Hz to 120 kHz with an accuracy of 0.01% and resolution to 0.01 Hz . Capacitor and true rms measurements are also featured.
Recognising the importance of a good idea, Thurlby Thandar Instruments will be giving away one of these excellent instruments once every six months. This incentive is in addition to our monthly $£ 100$ 'best circuit idea' award and £25 awards for each circuit published.

Simple, isolated, 12-bit current loop

A $4-20 \mathrm{~mA}$ analogue current loop is the recognised method of transmitting signal between instruments in the presence of noise. This circuit provides a simple, isolated interface.
Digital data, by way of the CNY17 low-cost optoisolator, go to the LTC1257 digital-to-analogue converter, which is controlled by an external processor through the other isolators and contains a 2.048 V reference. Pull-up resistors of $10 \mathrm{k} \Omega$ are needed to give
less than 4 mA total current consumption, which limits bit rate to around 1 kHz . The d-to-a converter gives $500 \mu \mathrm{~V} /$ count into the LT1006, which supplies $10 \mu \mathrm{~A} /$ count to the loop. If a different op-amp is to be used, it must operate with both inputs near the negative rail and source nearly 20 mA .
Mark McLean
Skelmersdale
Lancashire

This $4-20 \mathrm{~mA}$ current loop for low-speed operation features optical isolation.

Message module

Cs in the SD10XX range, made by Information Storage Devices in San Jose, store analogue information in nonvolatile eeprom cells with no data conversion. They include a microphone amplifier, agc, antialiasing and smoothing filters and a 50 mW speaker amplifier. A general-purpose message module based on one of these chips will record and play back messages from 12 s to 60 s . A message can be re-recorded many thousands of times and the device retains the message for years.
The analogue part of the circuit shown is based on the data sheet, while the rest consists of a 4023 Nand for chip control to simplify operation.
Input to the /CE pin is always held low; the s / r latch drives the power-down input, which is normally high to reset the chip, $R_{1} C_{1}$ ensuring correct initial conditions.
Pressing the record switch takes the play/record input low, power-down goes low and the device starts to record microphone input, the process stopping when the switch button is released; if the led comes on, the memory filled up, part of the message was lost and should be done again. If the Play input on the header goes low, the message is played back and repeated once if the signal is still low. During this time, the power-on amp output is high and is usable to control an external amplifier.
Audio power of 50 mW to a 16Ω speaker - or an 8Ω one with 10Ω in series - comes from the $\mathrm{SP}+/$ - outputs To drive an external speaker, use $\mathbf{S P}+$ and disconnect SP-. Do avoid shorting the two or grounding them, since disaster will inevitably ensue. Power consumption is 2.4 mA when idling, 18 mA recording

and $21-60 \mathrm{~mA}$ during playback.
Costas Toufexis
Athens
Greece

Note - without proper mains isolation and insulation, this circuit is deadly - Ed.

Diac lamp flasher

hile the bimetallic switch is difficult to beat from the expense point of view, this diac flasher circuit offers some advantages in that the flash rate and number of lights are variable, it has a longer life expectancy and it accepts any mains voltage from 110 V ac to 250 V ac. With one or two limitations, it can be assembled inside a mains plug.
The zener diode prevents capacitor overcharging, should the chain be interrupted or fed from a different mains socket; zener and capacitor voltage are determined by the number of leds $x_{\text {in }} 1.5\left(V_{\text {diac }}+x\right)$.
Flashing frequency depends on the number of leds, the mains voltage and the $R C$ combination. On 220 V mains and with 16 leds, the circuit shown flashes with a period adjustable from 1.1 s to 4.3 s , giving a 0.5 s flash.
If the circuit is to go in a mains plug, you might need to use a smaller capacitor, giving a lower light output, and a fixed resistor.
D Di Mario
Milan
Italy

Fm communicator for under-water use

Intended for use in underwater communications, though not yet tried in that role, this transmitter and receiver operates on 32 kHz . For reception, the if and detector section of a GEC Plessey SL6652 is used, together with the rssi output, which provides a stable 90 dB -range log. signal.
The transmitter uses a 555 to produce a frequencymodulated output to the transducer under the control of the audio input to pin 5 .
Input from the receiving transducer goes to the if amplifier of the SL6652, which drives the detector to provide output at pin 3 . The audio stage is simple and power consumption is reduced by the application of the received signal strength indicator signal, by way of the op-

Place ISD1020AP in IC C_{1} for 20 seconds message duration Place ISD2560P in IC_{1} for 60 seconds message duration

Message record/playback for such applications as shop displays, emergency instructions and exhibitions. If you only need to play back pre-recorded messages, omit the components marked with an asterisk.
amp on pin 11, to remove the supply to the output amplifier.
Since the rssi is a current output of the order of microamps, it may be advisable to use a fet-input op-amp, but the bipolar type used here works reasonably well.

S Mason

Stoke-on-Trent
Staffordshire

Meant for future use underwater, this communicator needs little power and operates at 32 kHz . Transmitter is on the left.

Fund raiser with odds switches

This electronic version of the "combination lock" seen at church fêtes, in which you have to guess the combination to open a door to win a prize, can be adjusted to vary the odds - high for when children try, since they always seem to do better than adults.
If the three ten-position rotary switches select an invalid combination, pressing the on/off switch activates the sounder; if it does not sound, you get a prize. It could clearly be made to operate a lock to prevent people grabbing a prize anyway, but the idea was cheapness and simplicity. Use the dil switches to vary the odds.

Keith Read

Fleet
Hampshire

Entertainment at the fête. Select the correct combination to win a prize.

RADIO DATA MODULES MODEM TRANSCEIVERS

UK, E.E.C, Scandinavia, Eastern Europe, North \& South America, Middle East, South Africa, New Zealand, Far East or Australia. Wherever you are, we have a module on the right frequency for you ! UHF Transcelver for the World $\quad 40010500 \mathrm{MHz}$ Versions

Only $55 \times 73 \times 15 \mathrm{~mm}$ - UK, North American, Australian * - MPT, I-ETS \& FCC Approval -- Up or 64 selectable channels ${ }^{\text {. }}$ - Starter Kit only £299.95

Low Cost High Speed Dats Transmiterss UK, EEC and Boyond"

-Available UK Approved MPT1340 418MHz

- Export I-ETS-300-220, 433.92MHz ${ }^{\circ}$
- Reduce Component Count, Cost, Size \& Power Drain ${ }^{\text {- }}$
 Operate to $20,000 \mathrm{bps}$

TXM-418-F Transmituer

- Transceiver also available with up to 40 K data rate .

With up to 1 MBit data rate, RS485 interface and 100 mW of output power these units are ideal for many high speed industrial or office data transfer applications. Even compressed colour video may be transferred. Price $£ 480.00$ each or starter kit for only $£ 799.95$.

VHF Modules for UK. Australla and Beyond - UK, 173 MHz to MPT 1344 \& MPT 1328 Licence Exempt ${ }^{\circ}$ - Miniature Low Cost or canned $1 \& 10 \mathrm{~mW}$ Transmitters * - 173.500 MHz Transmitters \& Transceivers for Australia \& RSA - PCB mount or canned, Superhet Receivers *

- Low Cost Meter Reading Transceivers on 183.8875 MHz .
- Prices from £19.00 to £200.00 per unit ${ }^{\text {- }}$

Radio - Tech Limited, Overbridge House, Weald Hall Lane Thornwood Common, Epping, Essex CM16 6NB.
Sales +44 (0) $1992576107 \mathrm{Fax}+44$ (0) 1982561994 Technical Support +44 (0) 1992576114 Internet: ittp://www.radio-tech.co.uk

CIRCIE NO. I.SY ON KEPI) (ARI)

PCB Designer

Amex/Access/Delta/Visa

Also available from,
South Africa: JANCA Enterprises, PO Box 32131, 9317
Fichardtpark at R299,00. Phone/FAX: (051) 223744
France: Telindel, Quartier Les Pradets, Chemin des Veys, 83390 Cuers. Phone: 94286667

- 80C188EB Processor Clocked at 24Mhz
- 128k Battery Backed RAM (512k option)
- 128 k Eprom (32 k - 512 k options)
$\square \quad 128 \mathrm{k} 5$ volt Flash Eprom (512 k option)
\square Real Time Clock (On board Battery)
\square Watchdog Time:/Reset with Brownout detection
$\square 2$ Scrial Ports - 1 RS232. 1 RS232/422/485
- 8 Channcl 12 bit ADC (optional)
\square Direct Connection to Alphanumeric LCD Display
- 48 Digital $1 / O$ lines
\square Set-up and Driver routines with Full C Source Code

Abstract

FAST START - Use our Full ANSI compitible Embedded C Compiler for super fast application development. Supplied complete with Editor. Compikr. Assembler, Linker Embedded Debug and comprehensive Manual, you can compile and download and be in the Debugger with a single keypress - or hack in the editor at just the right place. Generate ROMable Code direct, no struggling with. EXE conversions or messing around with reset exde. Just $\mathbf{E 5 9 5}$.

For furher information
Call now - 01379644285 - Fax 650482
Please ask for our catalogue
Devantech Ltd - 2B/2C Gilray Road - Diss - Norfolk - IP22 3EU

For all your future enquiries on advertising rates

Please contact Malcolm Wells on

Tel: 0181-652 3620 Fax: 0181-652 8956

DC TO DC CONVERTERS

DRM58 input $10-40 \mathrm{vdc}$ output $5 \mathrm{~V} 8 \mathrm{~A} £ 15$ DRM 128 input $17-40 \mathrm{Vdc}$ output $12 \mathrm{~V} 8 \mathrm{~A} £ 50$ DRM 158 input $20-40 \mathrm{Vdc}$ output $15 \mathrm{~V} 8 \mathrm{~A} £ 50$ DRM 248 input $29-40 \mathrm{VdC}$ output $24 \mathrm{~V} 8 \mathrm{~A} £ 40$ DRS 123 input $17-40 \mathrm{vdc}$ output $12 \mathrm{~V} 3 \mathrm{~A} £ 20$ DRS 153 input $20-40 \mathrm{vdc}$ output $15 \mathrm{v} 3 \mathrm{~A} £ 20$ DRS 243 input $29-40 \mathrm{Vdc}$ output $24 \mathrm{~V} 3 \mathrm{~A} £ 15$

SOLID STATE RELAYS

CMP-DC-200P 3-32vdc operation, 0-200vdc 1A E2. 50
SMT 20000/3 3-24vdc operation, 28-280vac 3A £4.50
SMT20000/4 3-24vdc operation, 28-280vac 4A E5.00
ZRA6C25F 28 -280vd/ac operation, 28-280vac 25A £7.00
200 WATT INVERTERS Nicely cased unils 12 V input 240 V output 150 watl continuous, 200 max. $£ 49$ ref LOT62
6.8MW HELIUM NEON LASERS New Units, 665 rel LOT33

COINSLOT TOKENS You may have a use for these? mixed bag of 100 tokens $£ 10$ ref LOT20.
PORTABLE X RAY MACHINE PLANS Easy to construct plans on a simple and cheap way to build a home X-ray machinel Elfective device, X-ray sealed assemblies can be used for experimental purposes. Not a loy or for minors! $£ 6 /$ set. Ref F/XP1
TELEKIN ETIC ENHANCER PLANS Mystify and amaze you finends by creating motion with no known apparent means or cause Uses no electrical or mechanical connections, no special gimmick yetproducespositive mofónand effect. Excellent tor scienceprojects. magic shows, party demonstrations or serious research \& development of this strange and amazing phychic phenomenon. E4/sel Ret FTKKE1.
ELECTRONIC HYPNOSIS PLANS \& DATA This data shows several ways to put subjects under your comrol. Included is a full volume reference text and several construction plans that when assembled can produce highly effective stimuli. This matenal must e used cautiously it is for use as entertainment at parties etc only. by those experienced in its use. $£ 15 /$ set Rel F/EH2.
GRAVITY GENERATOR PLANS This unique plan demonstrates a simple electrical phenomena that produces an antgravity effect. You can actually build a smalt mock spaceship out of E10/set Ref F/GRA1. WORLDS S鵖ALLEST TESLA COILIIGHTENIMG DISPLAY GLOBE PLANS Produces up to 750,000 volts of dischaige, experiment with extraordinary HV effects, 'Plasma in a ar', St Elmo's îre, Corona, excellent science project or conversation piece. £5/set Ref F/BTC1/LG5.
COPPER VAPOUR LASER PLANS Produces 100 mw of visible green light. High coherency and spectral quality similar to Argon laser but easier and less costly to build yet far more efficient. Thisparticul ardesign was developed at the Atomic Energy Commision of NEGEV in Israel, $£ 10 /$ set Ref F/CVL1
VOICE SCRAMBLER PLANS Minature solld state system turns speech sound into Indecipherable noise that cannot be understood without a second matching unit. Use on teieohone to prevent third party listening and bugging. £6/set Ref FNS9.
PULSED TV JOKER PLANS Litte hand held device utilises putse techniques that will completely dlsrupt TV picture and sound works on FM tool DISCRETION ADVISED. E8/set Ref FTTJ5
BODYHEAT TELESCOPE PLANS Highly directional long range device uses recent technology to detect the presence ofliving bodies. warm and hot spots, heatleaks etc. Intended for security, Idw enforcement. research and development, etc. Excellent secun device or very interesting science project. $£ 8 /$ set Ref F/BHTI BURNING, CUTTING CO2 LASER PLANS Projects an Invisible beam of heat capable of burning and melting materiais over considerable distance This laser is one of the most efficient. converting 10% inputpower into usef ul output. Not only is this device a workhorse in welding, cuttong and heat processing materials but hi is also a likely candidate as an effectve directed energy beam weapon against missiles, arrcratt, ground-to-ground. etc. Particle eams may very well ulize alaser of sis type io blasi a channel in the atmosphere for a high energy s1ream of neutrons or other particles. The device is easily applicable to burning and etching wood, cutting, plastics. textiles etc $£ 12$ /set Rel F/LC7
WAYSTERY ANTI GRAVITY DEVICE PLANS Uses simple concept. Objects float in aur and move to the fouch. Deffes gravity. amazing gith, conversation piece. magic trick or science project. £6 set Ret F/ANTIK.
ULTRASONIC BLASTER PLANS Laboratory source of sonic shock waves. Blow holes in metal, produce 'cold' steam, atomize parts etc. £6/set Ref FNLB1
ULTRAHIGHGAN AMPISTETHOSCOPICMIKE/SOUND AND VIBRATION DETECTOR PLANS Ultrasensitive device enables one to hear a whole new world of sounds. Listen through walls, windows, noors etc. Many applications shown, from law enforcement, nature listent
devices. $\mathrm{E} / \mathrm{set}$ Ref $F / \mathrm{HG} A 7$
ANTI DOG FORCE FIELD PLANS Highly effective circuit produces time variable pulses of accoustical energy that dogs cannot tolerate $£ 6 /$ set Ref F/DOG2
LASER BOUNCE LISTENER SYSTEM PLANS Allows you to hear sounds from a premises without gaining access. £12/set Ref F/LLIST1

LASER LIGHT SHOW

methods $£ 6$ Ref F/LLS1
PHASOR BLAST WAVE PISTOL SERIES PLANS
Handheid, has large transducer and battery capacity with extemal controls. £6/set Ret F/PSP4
INFINTT TRANSMITTER PLANS Telephone line grabberl room monitor. The ulbmatein home/office security and safetyl simple to usel Call your hame or office phone, push a secret tone on your telephone to access either: A) On premises sound and voices or B) telephone to access either: A) On premises sound and voices or B)
Existing conversation with break-in capability for emergency messages. $£ 7$ Ref FIT ELEGRAB
BUG DETECTOR PLANS Is that someona getting the goods on you? Easy to construct device locates any hidden source of radio energy Snifts out and finds bugs and other sources of bothersome

WOL YERIIMMPTO समFANCT NOW OPIN AT WORCESTER ST W11. MPION I N. 01902.2039

BD1

ELECTROMAGNETIC GUN PLANS Projects a metal object a considerable distancerequires aduli supervision $£ 5$ reef F/EML ELECTRIC MAM PLANS, SHOCK PEOPLE WITH THE TOUCH OF YOUR HAND! E5/set Rel FIEMA
PARABOLIC DISH MICROPHONE PLANS Listen to distam sounds and voices. open windows. sound sources in 'hard to get' or hostile premises. Uses satellite technology lo gather distant sounds and focus them to our ultra sensitive electronics. Plans also show an oplional wireess link system. $£ 8$ set ref $\mathrm{F} / \mathrm{PM} 5$
2 FOR 1 MULTIFUNCTIOMAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARLABLE 100,000 VDC OUTPUT GENERATOR PLANS Operates on $9-12 \mathrm{Vdc}$, many possible expenments $£ 10$ Ref FMVM7/ TCL4.
INFINTTY TRANSMITTERS The utimate 'bug' its to any phone or line, undetectabie, listen to the conversations in the room rom anywhere in the worddl 24 hours a day 7 days a week! just call the number and press a button on the mini controller (supplied) and you can hear everythingl Monitor conversations for as long as you LOTS. Undetectable with nommal RF detectors. ntied in seconds, no batteries required, lasts forever!
SWITCHED MODE PE'J's 244 watt $+532 \mathrm{~A},+126 \mathrm{~A},-50.2$ A 120.2A. There is also an optional 3.3225 A rail avalable. $120 / 240 \mathrm{~V}$ II P. Cased, $175 \times 90 \times 145 \mathrm{~mm}$. IEC inlet Sultable for PC Use (6 d/drive connectors 1 mboard). E10 rel PSU1.
VIDEO PROCESSOR UNITS?/GV 10AH BATTS/12V 8 A TX Nottoo sure what the function of these units is but they certainly make good stripperss Measures $390 \times 320 \times 120 \mathrm{~mm}$, on the front are contras ior scan speed, scan delay, scan mode, loads of connecions 12 v torridial tansformer (mains in). Condition nots, known, may have one or two broken knobs due to poor storage. $£ 17.50$ ref VP2 RETRON MIGHT SIGHT Recognition of a standing man at 300 m In 1,4 moonlight, hernatically sealed. runs on 2 AA battenes. 80 mm F1.5 lens, 20 mw infrared laser induded. $£ 325$ rel RETRON. MINI FM TRA NSMTTER KTT Very high gain preamp, supplied complete with FET electret microphone. Designed to cover 88-108 Mhz but easily changed to cover $63-130 \mathrm{Mhz}$. Works with a common 9v (PP3) battery. 0.2W RF. £7 Ret 1001.
3-30V POWER SUPPLY KTT Variable, stabilized power supply for lab use. Short circuit protected, suitable for prolesional or amate ur use 24v 3A transformer is needed to complete the kil. $£ 14$ Ref 1007 1 WATT FM TRANSMITTER KIT Supplied with piezo electric mic. $8-30$ vdc. At $25-30$ y you will get neanty 2 wattst E 12 ref 1009. FM/AM SCANNER KIT Well not quite, you have to turn the knob your sald but you will hear things on this radio that you would not hear on an ordinary radio (even TV. Covers 50.160 mhz on both AM and FM. Bullt in 5 watt amplifier, inc speaker. $£ 15$ ret 1013
3 CHANNEL SOUND TO LIGHT KT Wireess system, mains operated, separate sensitivity adjustment for each channel, $1,200 \mathrm{w}$ power handing, microphone included. $£ 14$ Ref 1014.
4 WATT FM TRANSMITTER KIT Small but powerful FM transmitter, 3 RF stages. microphone and audio preamp Included. E20 Ref 1028 .
STROBE LIGHT KTT Adustable from $1-60 \mathrm{hz}$ (a lot faster than conventional strobes). Mains operated $£ 16$ Rel 1037. COMBINATION LOCK KIT 9 key, programmable, complete with keypad, will switch 24 mains. 9v dc operation. E 10 rel 1114.
PHONE BUG DETECTOR KIT This device will warn you if somebody is eavesdropping on your line. $\mathrm{E6}$ ref 1130 . ROBOT VOICE KT Imeresting circuit that distorts your voicel adjustable, answert he phone with a difierentvoicel 12 vdc£9 ref 1131 TELEPHONE BUG KIT Small bug powefed by the 'phone line starts transmiting as soon as the phone is picked upt $£ 8$ Ref 1135 . 3 CHANMEL LIGHT CHASER KTT 800 watts per channet. speed and direction conirolssupplled with 12 LEDS (you can fintina
Instead to make bit mains. not supplled) $9-12$ vdc $\mathbb{1} 17$ rel 1026 . 12 F FLOURESCENT LAMP DRNER KTT Light up 4 foottubes from your car batteryl ov 2a transtorner also required. E8 ref 1069. VOX SWITCH KIT Sound activated switch hideal formaking bugging tape recorders etc, adjustable sensitivity. £8 ref 1073

Check out our

 WEB SITEhttpz//www.pavilion.00.uk/bult-eleotrleal
PREAMP M XER KTT 3 input mono mixer, sép bass and treble controls plus individual level controls, 18 Vdc , input sens 100 mA . $£ 15$ ref 1052.

BULL ELECTRICAI

1H2 6123332377
E-mail bullopavilimicouk

SOUND EFFECTS G ENERATOR KTT Produces sounds ranging from bird chips to sirens. Complete with speaker, add sound effects 10 your projects for just $£ 9$ ref 1045
16 WATT FM TRANSMITTER (BUILT) 4 stage high power, dieamp required 12
HUMIDITY METER KTT Bullds into a precision LCD humidity meter, 9 ic design, pcb, lce display and all components induded $£ 29$ PC TMER KTT Four channel oup ut controlled by your PC, will switch high current malns with relays (supplied). Sottware supplied so you can program the channels to do what you want whenever you want. Minimum system configeration is 286, VGA, 4.1,640k. senia port. hard dnive with min 100k free. $£ 24.99$
FM CORDLESS MICROPHONE This unitis an FMbroadcasting station in minature, 3 transistor 1ransmitter with electret condenser mictret amp design resurin maximum sensituvity and broadifrequency response. $90-10.5 \mathrm{mhz}$. $50-1500 \mathrm{hz}, 500$ foot range in open country PP3 battery required. $£ 15.00$ ref 15P42A
MAGNETIC MARBLES They have been around for a number of years but still give
E3.99 rel GIR20
NICKEL PLATING KIT Profiesional electroplating kit that will transform rusting parts into showpleces in 3 hours: Will plate onto stee, Iron, bronze, gunmetal copper, welded , sitver sadered orbrazed joints. Kitincludes enough toplate 1,000 sq inches. You will alsoneed
a 12v supply, a container and 212 v lightbulbs. £39.99 ref Nik39.
Minature adjustable timers, 4 pole c/o output 3A 240v, HY1230S, 12VDC adjustable from 0-30 secs. $£ 4.99$ HY1260M, 12vDC adjustable from 0-60 mins. $£ 4.99$ HY2405S, 240 v adjustable from $0-5$ secs. $£ 4.99$ HY $24060 \mathrm{~m}, 240 \mathrm{~V}$ adjustable from $0-60 \mathrm{mins}$. $£ 6.99$ BUGGING TAPE RECORDER Small varee activated recorder uses microca ssette complete with headphones E 28.99 refMAR29P1 POWER SUPPLY fully cased with mans and op leads 17v DC 900 mA output. Bargain price $£ 5.99$ rel MAG6P9
gv OC POWER SUPPLY Standard plug intype 150 ma $9 v$ DC with lead and DC power plug. price for two is $£ 2.99$ ref AUG3P4. COMPOSTE VIDEO KT. Converts composite video into sepa rate H sync. V sync, and video. 12 V DC. $£ 8.00$ REF: MAG8P2 FUTURE PC POWER SUPPLIES These are $295 \times 135 \times 60 \mathrm{~mm}$, 4 dive connectors 1 mother boand connector. 150wath, 12v fan, iec inlet and onfor switch. $£ 12$ Ref EF6.
VENUS FLYTRAP KTT Grow your own carnivorous plant with this simple bot $£ 3$ rel EF34
6"X12" AMORPHOUS SOLAR PANEL $12 \mathrm{~V} 155 \times 310 \mathrm{~mm}$ 130 mA Bargan price |ust $£ 5.99$ ea REF MAG6P12
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ rel MAGSP13ideal for experimenters! 30 m for $£ 12.99$ rel MAG $13 P 1$ ROCK LIGHTS Unusual things these, two pieces of rock that glow when rubbed togethen beived to cause rainic3 a pair Rel EF29. 3^{\prime} by 1^{\prime} AMORPHOUS SOLAR PANELS $14.5 \mathrm{v}, 700$ ELECT RONIC ACCUPUNCTURE KTT Builds into an electronic ELECT RONIC ACCUPUNCTURE KTR Builds into an electronic SHOCKING COIL KT Build this litte battery operated device into all sorts of things, also gets worms out of the groundl $\Sigma 7$ ref $7 P 36$. FLYING PARROTS Easily assembled kit that buillds a parrot that actually faps its wings and fies 50 m range E 6 ref EF2.
HIGH POWER CATAPULTS Hinged am brace for stability. tempered steel yoke, super strength latex power bands Departure speed of ammunition is in excess of 200 miles per hourl Range ofover 200 metres $£ 7.99$ ref R R9
BALLON MANUFACTURIMG KIT Bntish made, small blob olow sinto a large, Ionglasting ballcon, hours off funl $£ 3.99$ ref GI/E99R 9-0-9V 4A TRANSFORMERS, chassis mount £7 ref LOT19A. 2.5 KILOWATT INVERTERS, Packed with batteries ete but as they weigh about 100 kg CALLERS ONLYI \&120. MEGA LED DIS PLAYS Build your selfa clock or something with these mega 7 seg of splays 55 mm high. 38 mm wide. 5 on a pcb for just £4.99 rel LOT16 or a bumper pack of 50 displays for just $£ 29$ rel LOT17.

CLEARANCE SECTION, MINIMUM ORDER £15, NO TECHNICAL DETAILS AVAILABLE, NO RETURNS, TRADE WELCOME.
2000 RESISTORS ON A REEL (SAME VAL UE) 99P REF BAR 340 AT LEAST 200 CAPACTTORS (SAME VALUE 99P REF BAR342 INFRA RED REMOTE CONTROLS JUST 99P REF BAR33 CIRCUT BRE AKERS, OUR CHOICE TOCLEAR 99P REFBAR335 MICROWAVE CONTROL PANELS TO CLEAR E2 REF BAR 329 2 TUBES OF CHPS(2 L LOTTERY PREDCTOR WACHINE! JUST E1.50 REF BAR313 HELLALROVER LARGE MAINS MOTORS (NEW) TOCLEAR AT T5P REF BAR310 LARGE MAINS MOTORS (NEW) TOCLEAR AT 75P REF BAA
MODEMS ETC FOR STRIPPING E2. 50 EACH REF BAR 324 MODEMS ETC FOR STRIPPING E2.50 EACH REF BAR 324
$110 V$ LARGE MOTORS (NEW) TO CLEAR AT 50 P REF BAR $110 V$ LARGE MOTORS (NEW) TO CLEAR AT 50P REF BAR 332
MODULATOR UNITS UNKNOWN SPEC JUST 50P REF BAR 323 GX4000 GAMES COSOLES JUST EA REF BAR320
S MART CASED MEMORY STORAGE DEVICE, LOADS OF BITS INSIDE, PCB, MOTOR, CASE ETC. BUMPER PACK OF 5 COMPLETE UNITS TO CLEAR AT E2 SO(FOR 5) REF BAR 330. 2 CORE MAINS CABLE 2 M LENGTHS PACK OF 4 E 1 REF BAR 337 PC USERIBASIC MANUALS, LOADS OF INFO. E1 REF BAR304 PCB STRIPPERS TO CLEAR AT 2 FOR 99P REF BAR341
WE BUY SURPLUS STOCK

FOR CASH

BUYERS DIRECT LINE 0802660377
FREE CATALOGUE
100 PAGE CATALOGUE NOW AVAILABLE, 45P STAMPS.

COMMUNICATIONS

..continued from page 783

That opinion may be sound, but the DTI has obtained it at second hand. Only the broad-casters and their equipment suppliers can know at first hand how much scope they have for greater spectrum efficiency and the costs of their options. And even they can have only a vague idea until they study them in earnest, which they will not do until they are faced with a real prospect of having to pay for the true value of their spectrum. Meanwhile they have a vested interest in playing down the scope for better

Inset 8 - Allocations to emergency services Police, fire and ambulance services require, and pay for, a large range of equipment and materials. They also pay salaries which are at least large enough to retain their work forces and they trade off the costs of equipment and materials against each other and against the cost of personnel like any other employer. The commercial environment is generally beneficial to those services and raises their standards, compared with countries where the price mechanism is suppressed.
Having to pay for spectrum would not undermine their ability to catch criminals, put out fires and treat injured people any more than having to pay for police cars, fire engines and ambulances, which nobody suggests should be provided free of charge.

Fig. 4. Point-to-point fixed links between 4 and 15 GHz . In the first of two regions involved, FR1, which includes Greater London and West Midlands, charges will rise by nearly 12 times.
spectrum efficiency and exaggerating its cost.
Elsewhere the white paper speaks of using licensing powers to promote strategic objectives and develop innovative technical approaches. The white paper also speaks of giving financial assistance to accelerate desirable changes and using spectrum pricing to achieve specific management objectives. In other words the intention is for the spectrum managers to continue using their judgment of how radio communications should develop instead of relying on the price mechanism.
How much any government is wise to rely
on second-hand information from financially interested parties to decide which industrial developments to promote is always controversial. Before spectrum pricing that was the only way in which the RA or its predecessors could prevent waste in the use of spectrum. In the future however, when spectrum pricing has bedded down, it will not have to be so proactive. It could allow the users and manufacturers to take those decisions, in the knowledge that spectrum pricing will curb any tendency to extravagance. Perhaps in due course the penny will drop in ministerial circles.

References

1. HMSO Cm 3252, £9.10. (DTI invites comments on or before 25 October.)
2. D. Rudd, 'Pricing versus rationing',

Electronics World, September 1996.
3. Report of the Independent Review of the

Radio Spectrum $(30-960 \mathrm{MHz})$, chairman Dr.
J.H.H. Merriman C.B. O.B.E. F.Eng., July 1983, HMSO Cmnd 9000.
4. D. Rudd, 'A renting system for radio spectrum?', IEE Proceedings, Part A, January 1986.
5. CSP International, 'Deregulation of the radio spectrum in the UK', March 1987, HMSO.
6. D. Rudd, 'Privatisation of the radio spectrum' $E W+W W$, September 1987.

Highh-quality circuit boards for Douglas Self's precision preamplifier '96

A high quality double-sided circuit board is available for Doug Self's precision preamplifier, exclusively via Electronics World. The board takes the full stereo preamplifier, including all power supply components except the transformer. Its layout is optimised to provide exceptionally low crosstalk.
Codesigned by Gareth Connor, the board is glass-fibre with plat ed-through holes and roller-tinned. It features solder masking and full component identification. Component lists and assembly notes - containing extra information about the preamplifier - are supplied with each order.
Each board is $£ 59$ inclusive of package, VAT and recorded
postage. Please include a cheque or postal order with your request, payable to Reed Business Publishing. Alternatively, send your credit card details - i.e. card type, number and expiry date. Include the delivery address in the order, which in the case of credit card holders must be the address of the card holder. Add a daytime telephone and/or fax number if you have one.
Send your order to Electronics World Editorial, PCBs, Quadrant House, The Quadrant, Sulton, Surrey SM2 5AS. Alternatively fax us on 01816528956 or e-mail jackie.lowe@rbp.co.uk. Credit card details can be left on the answering machine on 01816523614 . Please allow 28 days for delivery.

Features of Douglas Self's precision preamplifier

- Very low noise and distortion.
- Moving-coil - sensitivity switchable 0.1 or $0.5 \mathrm{mV}, \pm 0.05 \mathrm{~dB}$ RIAA accuracy.
- Moving-magnet input with $\pm 0.05 \mathrm{~dB}$ RIAA accuracy, 5 V rms sensitivity.
- Three 150 mV line inputs.
- One dedicated compact-disc input.
- Tape-monitor switch.
- Active-balance control.
- Tone control - switch defeatable - with $\pm 10 \mathrm{~dB}$ range.
- Tone control treble and bass frequencies variable over 10:1 range.
- Active volume control for optimal noise/headroom and enhanced interchannel matching.
- Intelligent relay muting on outputs.
- CD input sensitivity IV rms.

CLASSIFIED

ARICCIES WANITED

WE WANT TO BUY!!
 IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R. HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8JG. 5 Mins, from Tally Ho Corner. TELEPHONE 0181-445-2713/0749 FAX 0181-445-5702

TOP PRICES PAID

For all your valves, tubes, seml conductors and IC's.
Langrex Supplies Limited 1 Mayo Road, Croydon Surrey CRO 2QP
TEL: 0181-684 1166
FAX: 0181-684 3056

ELECTRONICS VALVES \& SEMICONDUCTORS

Phone for a most courteous quotation

We are one of the largest stockists of valves etc, in the U.K.

> COLOMOR ELECTRONICS LTD
> 170 Goldhawk Road, London W12 8HJ England.
> Tel: 01817430899
> Fax: 01817493934

WANTIED TOP PRICES PAID

For all your Test Equipment,
Receivers, Transmitters etc. Factory Clearance, Prompt Service and Payment.
HTB ELEKTRONIK
Alter Apeler Weg 5
27619 Schiffdorf, Germany
Tel: 004947067044
Fax: 004947067049

HP TEST EQUIPMENT

 WANTED!WE ARE ALWA YS LOOKING FOR - HP8510A, B OR CSYSTEMS + PARTS

- NON WORKING HP8510 PARTS - IF SECTIONS FOR HP8510 SYSTEM - HP8350B + PLUGINS
- HP84XXX POWER SENSORS
- HP436, HP437 POWERMETERS
- HP436, HP437 POWERMETERS
- HP MANUALS + SOFTWARE
- HP 70000 SERIES PARTS
L. BAIER TEST EQUIPMENT PH: +49925192163 FAX: +4992517846

HP478A or similar thermistor mount needed (can be burned out!). Mueller, Zum Goldesacker 10, D52459 Inden Pier, Germany (49) 2461614259. WANTED: Schematic or manual airmec 7325 kV ionisation tester. R J Ritter, Buttlershof 18 CH-9424, Rheineck, Switzerland.

VALVES, and CRTs AVAILABLE

ONE MILLION VALVES stocked for Audio, Receiving, Transmitting \& RF Heating. Rare brands such as Mullard \& GEC available. Also MAGNETRONS, KLYSTRONS, CRTs and SOCKETS. Large stocks of Russian \& Sovtek items. Please ask for our free catalogues of valves or CRTs.

VALVES, etc. WANTED

Most types considered but especially KT88 (£48), PX4/PX25 (£50), KT66 (£35), KT77 (£15), EL34 (£10), EL37 (£9), ECC83 (£3). Valves must be UK manufacture to achieve prices mentioned. Also various valve-era equipment e.g. Garrard 301, (up to) $\mathbf{£ 8 0}$. Ask for a free copy of our wanted List.

BILLINGTON EXPORT LTD., Billingshurst, Sussex RH14 9EZ.
Tel: 01403784961 Fax: 01403783519
VISITORS STRICTLY BY APPOINTMENT.
MINIMUM ORDER $£ 50$ plus VAT

WANTED: TEST EQUIPMENT + SURPLUS

WE ARE ALWAYS BUYING:

- TEST EQUIPMENT RF + MICROWAVE PARTS - TEST EQUIPMENT MANUALS
- NON-WORKING OR SCRAP TEST EQUIPMENT FAX YOUR LIST TODAY FOR AN INSTANT QUOTE!

LOTHAR BAIER TEST EQUIPMENT BLUMENSTRASSE 8 D-95213 MUENCHBERG PHONE: +49 925192183 FAX: +49 92517846 WE ALWAYS PAY THE BEST PRICE!!!

WANTED

Test equipment, receivers, valves transmitters, components, cable and electronic scrap and quantity

Prompt service and cash. M 8e B RADIO
86 Bishopgate Street Leeds LS1 4BB
Tel: 01132435649
Fax: 01132426881

$\star \star$ WANTED $\star \star$

Test equipment, Electronic Scrap, Valves, Transmitters/Receivers, Factory \& Warehouse Clearance. Confidentiality Assured.
TELFORD ELECTRONICS Phone: 01952605451
Fax: 01952677978

VALVES, and CRTs AVAILABLE

ONE MILLION VALVES stocked for Audio, Receiving, Transmitting \& RF Heating. Rare brands such as Mullard \& GEC available. Also MAGNETRONS, KLYSTRONS, CRTs and SOCKETS. Large stocks of Russian \& Sovtek items.
Please ask for our free catalogues of valves or CRTs.

VALVES, etc. WANTED

Most types considered but especially KT88 ($£ 48$), PX4/PX25 (£50), KT66 (£35), KT77 (£15), EL34 (£10), EL37 (£9), ECC83 (£3). Valves must be UK manufacture to achieve prices mentioned. Also various valve-era equipment e.g. Garrard 301, (up to) $£ 80$. Ask for a free copy of our wanted List.

BILLINGTON EXPORT LTD., Bllingshurst, Sussex RH14 9EZ.
Tel: 01403784961 Fax: 01403783519
VISITORS STRICTLY BY APPOINTMENT.
MINIMUM ORDER 550 plus VAT

ARTICLES FOR SALE

OVERSTOCKED TEST EQUIPMENT FOR SALE

-HP435A, HP438B, TEK 7L14, HP8569A, EATON 767, HP36241, HP3683B, HP64110D, HP8756A, MAR 6500, WIL 560, WIL 6648B, EIP 598, HP70301, HP70900A, HP70205, HP70206, FLUKE 6070, HP85101B-010
ALL ITEMS IN WORKING ORDER !!!
FAX YOUR OFFERS TO: +4992517846

CLASSIFIED

ARTICLES FOR SALE

```
    Consider
    Your costs to continue to stock
UNWANTED SURPLUS . . . EXCESS . . . OBSOLETE
                STOCKS OF:-
ELECTRONIC-ELECTRICAL COMPONENTS &
                    ACCESSORIES
                    RELEASE
    K.B.Components,
21 Playle Chase, Gt. Totham, Maldon, Essex, CM9 8UT
    Tel:-01621 893204 Fax:- 01621 }893180 Mobile:-0802 392745
REGISTER TO RECEIVE MONTHLY PUBLISHED STOCK LISTS AT NO CHARGE OF
ALL EXISTING NEW, UNUSED, STOCKS OF ALL COMPONENTS AND ACCESSORIES.
```


MAINS HARMONIC

CURRENT CORRECTOR
will assist in compliance with EN61000-3 and overcome supply voltage distortion.
Demonstration Model, Design Notes and Circuits for Sale D. Thomas

01279-428935

SPECTRUM ANALYSERS Marconi TF2370 £550, H.P. $141 \mathrm{~T} 110 \mathrm{MHz} £ 550$, $1300 \mathrm{MHz} £ 650$. Manuals, Scopes, Sig, Gens. Many others 0134427869.

WW2 ROTARY TRANSFORMER Type 29. Input $24 \mathrm{~V}, 16 \mathrm{~A}$. Output $1230 \mathrm{~V}, 200 \mathrm{MA}$. New boxed p / p §100.00. 01472813144.

ADVERTISERS PLEASE NOTE

For all your future enquiries on advertising rates

Please contact Malcolm Wells on

Tel: 0181-652 3620 Fax: 0181-652 8956

Memory Simms

256K e2.50 each Min Oty $4-$ E10
512K £5.00 each Min Oty $2-£ 10$
1 MB E14.00 each
DRAM
HY53C256LS - 10 TMS4256-10L MB81256-10 HB81256-10 MCM6256-10
MN41256A - 08
1MB
V53C104P-12
GM71C4256A - 80 M514256-10 KM44C256AP - 10 MN41C4256-08

EPROMS 1MB - E2.00 512K-E1.25 256K - ع1. 00 256K - £1.00 128K - E0.75 64K- £0.50 $32 K-E 0.40$ $16 K-\varepsilon 0.35$ SRRM

1000's MORE COMPONENTS IN STOCK - PLEASE CALL
ALL ITEMS PRE-USED AND TESTED MINIMUM ORDER CHARGE E10 ALL TTEMS EXCLUDE VAT @ 17.5\% CREDT CARDS WELCOME
WOODVIILE LTD TEL:01923213350 FAX:01923211650

HOW TO

PROTECT your

 POWERBASEwith the NEW Galatrek Elite UPS range
50\% smaller, 40\% lighter

- Superior, Intelligent, on-line 'plug and play' operation
- High surge and spike protection
- PowerBoost advanced battery management
- Runtime battery extension packs
- FREE PowerSave UPS management software
- Part of a range from 280VA to 700 KVA
For your FREE edition of our Autumn 96 Power Information Pack

FREEPHONE 0800269394 GALATREK Ext 312
…t................ or fax 01492641828

EN+WWPCTEEEEXX, Aug 1994 prgeprovivoccwin

 Citiliax Ltd 9 coose Cote fill Boltonebigua Tel/Fxx +411204417210

25 A LISN, $85 \mathrm{KHz}, 30 \mathrm{MHz}, 50 \mathrm{R}, 1 \mu \mathrm{~V}$ receiver, pre-tuner with 2 loop and 1 rod aerials, all by Schwarzbeck $£ 450$. 01234219756.

MARCONI 2022A signal generator for sale $£ 2,000$. Phone: 09565756 72. Fax: 01813165627.

RECRUITMENT

Electronics, Computing and Motion Control Engineer

The Applicant must have a thorough lenowledge of electronics, preferably as applied to film, video and motion control equipment. He or she should have design and small scale manufacturing experience and, ideally, will have experience processing microprocessors.
An ability to problem solve, work on your own initiative to deadlines and under pressure is essential.
The job will be based in Bristol, but occasional travel may be necessary. SALARY will be commensurate with experience.
Please send CV with covering letter, before October 1 , to:
Box Number 111
ELECTRONICS WORLD, Room L329
Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

CLASSIFIED

ARTICLES FOR SALE

INDEX TO ADVERTISERS

	PAGE		PAGE	PAGE	
Anchor	779	John's Radio	740	Quickroute Systems	722
Bull Electrical	804	JPG Electronics	792	Radio-Tech	810
Bull Electrical	811	Kenwood UK	785	Ralfe Electronics	816
CMS	749	Labcenter Electronics	762	Robinson Marshall	767
Conford	749	Langrex Supplies	791	Seetrax	798
Dataman Programmers	OBC	M \& B Radio	792	Stewart of Reading	792
Devantech	810	Marlow Ind. Europe	785	Surrey Electronics	791
Display Electronics	757	Milford Instruments	IBC	Telford Electronics	798
Electromail	751	Niche Software	810	Telnet	803
Equinox Technologies	IFC	Number One Systems	803	Tie Pie	775
Field Electrics	749	Oema	789	Tsien	780
Halcyon	749	Olson Electronics	768	Ultimate Technology	752
Hart Electronics	726	Pico Technology	784	Wood \& Douglas	791
				780	

HP $3580 \mathrm{~A} 5 \mathrm{~Hz} \cdot 50 \mathrm{kHz}$ audiofrequency spectrum
〔750 10؟1250

DISTRIBUZIONE E ASSISTENZA，ITALY：TLC RADIO，ROMA（06） 87190254
anayser
MP8568B high－specification 1.5 GHz spectrum analyser
MARCONI $2386100 \mathrm{~Hz}-26.5 \mathrm{GHz}$（in 1 Hz steps！）
AVCOM－poriable，battery operated，to 1000 MH EKTRO M
 storage and Rack－mount option）$£ 6000$ or $£ 7000$ with mixers 1060 GHz ． TEK7623A7L18 $(1.8 \mathrm{GHz})$ with lracking generator in TM503
MARCONIINSTRUMENTS

16408 serial data generator 3561A dynamics signal analyser（opt 01） 3764A digital transmission anatyser 3335A synthesizerllevel generator 3400 A voltmeter，analogue $10 \mathrm{~Hz} \cdot 10 \mathrm{MHz}$

3235A switchtest unit

3324A synthesized function generator 3325A synthesizerfunction generator， 21 MHz 3580 A audio frequency spectrum analyser 3581 C selective voltmeter
3779D primary multiplex analyser
4140 BA Dimeter，DC voltage source 4339A high resistance meter c／w lead set 161178 2275A multi－frequency lcr meter 4358 microwave power meter，analogue 5386 A 3 GHz frequency counter 54100A 1GHz digitizing osc：lloscope 80078 pulse generator 100 MHz 3018A seriai data generator 8082 A pulse generator 250 MHz 8111A pulse generator 20 MHz 816A siotted line $1.8-18 \mathrm{GHz}$ with 809 C \＆ 447 B probe 8444A tracking generator with option 059 3656 B synthes $z 20 \mathrm{~d}$ signal generator to 990 MHz 87510 A gain－phase analyser $100 \mathrm{KHz}-300 \mathrm{MHz}$ 8901A modulation analyser with option 02010 J2215A FDOI portable multimode lest set J2219A 486－based，colour option main－frame 2219 AJ2171A 486－based colour screen option netwonk advisor

〔500 £5500 ©1500 2000 £250 §1000 2000 2000 $£ 750$ to $£ 1250$ £1250 £5000 §4000 £2000 3500

2018 A S
2019A synthesized AM．FM signal gen $80 \mathrm{kHz}-1040 \mathrm{MHz}$ 2828A2829 digital simulator／analyser

2955 r radio communication test sets－LATEST＇B＇MODEL $6460 / 6421$ power meter \＆sensor $10 \mathrm{MHz}-12.4 \mathrm{GHz}$
6514 waveguide detector for use with 6500 －scalar analyser $26-40 \mathrm{GHz}$
6960 microwave power meter with 6910 power sensor
$10 \mathrm{MHz}-20 \mathrm{GHz}$
TF2910 TV interval timer
$؟ 1250$

$£ 2000$

§500
RACAL－DANA 9301 A true RMS RF mili－votmeter
TEKTRONIX P6201 FET PROBE
WANDEL \＆GOLTERMANN WM 30 level tracer WANDEL \＆GOLTERMANN FJM 45 Jititer meter for 5 ONET \＆SDH〔5500 WAVETEK 23 synthes ized function generator $0.01 \mathrm{~Hz} \cdot 12 \mathrm{MHz}$ WAVETEK 1067 opt $5221-500 \mathrm{MHz}$ sweep generator WAYNE KERR 322020 A bias unit（for 3245 induclance analyser）〔250 TEKTRONIX 1502 B 10304 shont－range metal－cabe tor tester

SEND FOR LATEST STOCK LIST．WE FAX LISTS AND SHIP WORLDWIDE．ALL FULLY
LAB－TESTED AND NO－QUIBBLE GUARANTEED

CIRCLE NO． 144 ON REPIY CARD

ELECTRONIC UPDATE

Contact Malcolm Wells on 0181－652 3620

A regular advertising feature enabling readers to obtain more information on companies＇products or services．

New Flight Electronics International Catalogue Set

You now have access to the world＇s latest： ＊Electronics Training Equipment
＊Microprocessor Training Equipment
－Test and Measurement Equipment －PC Cards
via＂Flight＇s＂latest catalogue set． We are specialists in the provision of innovative top quality electronics trainers，breadboards，test and measurement，PC cards and microprocessor evaluation equipment．
Our extensive range covers every need，call today for your free catalogue set．
CIRCLE NO． 145 ON REPL Y CARD

NEW Feedback T\＆M Catalogue

The latest edition of the Feed－

 back Test \＆Measurement cata－ logue is now available．Over 60 pages packed with more than 800 products divided into over 20 sections．The catalogue is indexed for both product and manufacturer and is fully illus－ trated．Whether you are looking for an individual product，a com－ plete workstation，or a solution to a particular Test \＆Measure． ment need the NEW Feedback catalogue will sove your prob－ lems，send for a copy NOW！CIRCLE NO． 147 ON REPLY CARD

FREE DEMO DISK

The LabWindows／CVI Demo Disk is a free evaluation copy of LabWindows／CVI You can follow instructions to build Windows applications using GPIB，VX1， Serial，and plug－in DAQ instrumentation．The guide illustrates code－generation techniques，GUI development tools，event－driven programming techniques，instrument drivers， debugging and editing tools．
NATIONAL INSTRUMENTS
For your Free Demo Disk call， 01635523545

CIRCLE NO． 146 ONREPL Y CARD

Colourful new Catalogue，hot off the press from Jensen Tools， presents unique new tool kits for service／support of
communications equipment．Also latest test equipment from many major manufacturers．Includes hard－to－find tools，PC／LAN diagnostics，bench acccessories static control，technical manuals and more．

Ring 0800833246 or Fax 01604785573 for a free copy． Jensen Tools，10－12 Ravens Way， Northampton NN3 9UD
CIRCIE NO． $1+8$ ON RFPLYCARD

\title{

Small

Small No Time

PIC based TOOLS to help you realise your project: from single applications to full scale production

BASIC STAMPS

PIC based BASIC Stamps are perfect for one-off and low volume applications.
Their easy to learn but powerful BASIC syntax (with familiar instructions such as GOTO, FOR ... NEXT, and IF ...THEN as well as instructions for serial I/O, pulse measurement, button debounce, DTMF, X-10 etc) will get your application up and running in hours. Once programmed, the Stamp runs independantly of your PC and programs are stored in non-volatile EEPROM so they can be changed at will. Detailed manuals cover many commonly needed routines and the Stamp is well supported by a growing list of custom application kits to cut development time even further. Available in two formats:

Application note 1: Using the BASIC Stamp as a simple interface terminal Typical Application
 up to 500 program lines Comms to 50 kbaud 24pin DIP package £49 single price

BASIC Stamp Development Kits including PC software, manuals, 24+application notes, downloader cables, Stamp (BS1-IC or BS2-IC) and corresponding Project Board - £99 / £119

PIC16GXX DEVELOPMENT TOOLS

For medium to large volumes and high speed requirements, the popular range of PICs is hard to beat.
We offer an extensive range of programmers, emulators and associated hardware to support the following PICs: 52545556575862062162261626364657172737484
PIC16Cxx Programmer

Also stocked

* ZIF sockets
* SOIC/SSOP/PLCC adapters
* Prototyping boards
* Compilers/Simulator

Milford Instruments

Milford House, 120 High Street, SOUTH MILFORD LS25 5 AQ 01977683665 Fax 01977681465

In Circuit

Emulators
*True hardware emulation of program memory, registers and I/O

* Unlimited breakpoints.
* Single stepping

* Software-programmable oscillator
* Windows Environment
*Runs from 32 Khz to 10 Mhz (' xx) and 20Mhz ('5x)
* Source level debugging for PASM(X), MPASM and MPC
* Optional trace facility

Please call or fax to receive our catalogue and price list. All prices exclude VAT and $£ 3$ shipping.
BASIC Stamp of the Parallax logo are

PAPALAX
3805 Atherton Road, $\neq 102$ Rocklin, CA 95765 USA
916-624-8333, Fax 916-624-8303
http://www.parallaxinc.com

The World's Most Powerful, Portable Programmers

[^0]: Overseas advertising agents: France and Belgium: Pierre Mussard, 18.20 Place de lo Madeleine, Paris 75008 . United States af America: Ray Barnes, Reed Business Publishing Lid, 475 Park Avenue South, 2nd FI New York, NY 10016 Tel; (212) 6798888 Fax; (212) 6799455 USA mailing agents: Mercury Airfreight International Lid Inc, 10 (b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway NJ Posimaster. Send address changes to above.
 Printed by BPCC Magozines (Carlisle) Lid, Newtown Trading Estate Corliste. Cumbria, CA2 7NR
 Typeset by Wace Publication Imaging 2-4 Powerscrott Road, Sidcup, Kent DAt 4 SDT,
 © Reed Business Publishing Lid 1996 ISSN 09598332

[^1]: For details on any of our range of programmers, call or fax us now.
 You can obtain information immediately by using our faxback service or homepage.
 ICE Technology Ltd, Penistone Court, Penistone, South Yorkshire 530 6HG. United Kingdom
 Tel: +44 (0$) 1226767404$ Fax: $+44(0) 1226370434$ Faxback: $+44(0) 1226761844$ email: sales@icetech.com
 Homepage: http://www.icetech.com BBS: +44 (0)1226761181 (14400 baud, 8N1)

[^2]: * Not available on this planet

[^3]:

[^4]: Table 2. Functions of RTC register A. MSB
 LSB
 b7 b6 b5 b4 b3 b2 b1 b0 UIP DV2 DV1 DV0 RS3 RS2 RS1 RSO

[^5]: Table 3. Functions of RTC register B.
 MSB
 LSB
 b7 b6 b5 b4 b3 b2 b1 b0 SET PIE AIE UIE SQWE DM 24/12 -

[^6]: Hposition($\mu \mathrm{s}$)=
 $\left[12 / F_{\text {osc }}(M H z)\right] \times\left[2^{4} \times \mathrm{H} 4+2^{3} \times \mathrm{H} 3+2^{2} \mathrm{H} 2+2^{1} \times \mathrm{H}\right.$ $\left.1+2^{0} \times \mathrm{H} 0\right]$

