Multi-instrument = discount and free dmm

ELECTRONICS

WORLD

Austria Asch. 65.00 Denmark DKr. 66.00 Germany DM 15.00 Greece Dra. 1000.00 Holland Dfl. 11.50 Italy L. 8500.00 Malfa Lm. 1.45

INCORPORATING WIRELESS WORLD

PCB CAD multi-review

Hands-on Infernet

Reliable linear supplies

 Linsley-Hood Class-A powerGigahertz prescaler

Intelligent opto

Video inserter

 \title{
Small
 \title{
Small
 PRoblems?
 No Time
}

SOLUTIONH
PIC based TOOLS to help you realise your project: from single applications to full scale production

BASIC STAMPS ${ }^{\circ}$

PIC based BASIC Stamps are perfect for one-off and low volume applications.
Their easy to learn but powerful BASIC syntax (with familiar instructions such as GOTO, FOR ... NEXT, and IF ...THEN as well as instructions for serial I/O, pulse measurement, button debounce, DTMF, X-10 etc) will get your application up and running in hours. Once programmed, the Stamp runs independantly of your PC and programs are stored in non-volatile EEPROM so they can be changed at will. Detailed manuals cover many commonly needed routines and the Stamp is well supported by a growing list of custom application kits to cut development time even further. Available in two formats:

BASIC Stamp Development Kits including PC software, manuals, 24+application notes, downloader cables, Stamp (BS1-IC or BS2-IC) and corresponding Project Board - £99 / £119

PIC16Cxx DEVELOPMENT TOOLS

For medium to large volumes and high speed requirements, the popular range of PICs is hard to beat. We offer an extensive range of programmers, emulators and associated hardware to support the following PICs: 52545556575862062162261626364657172737484
PIC16Cxx Programmer

In Circuit Emulators

* True hardware emulation of program memory, registers and I/O
* Unlimited breakpoints.
* Single stepping

* Software-programmable oscillator
* Windows Environment
* Runs from 32 Khz to 10 Mhz (' xx) and 20Mhz ('5x)
* Source level debugging for PASM(X), MPASM and MPC
* Optional trace facility

Please call or fax to receive our catalogue and price list.

All prices exclude VAT and $£ 3$ shipping.
BASIC Stamp ei the Parallax logo are registered trademarks of Parallax, Inc.

PAPALAX $\overline{7}$
3805 Atherton Road, $\neq 102$ Rocklin, CA 95765 USA
916-624-8333, Fax 916-624-8303 http://www.parallaxinc.com

Contents

644 THE ROUTE TO PCB CAD

Comprehensive - and possibly unique - guide to the first three of ten pcb design packages, by Rod Cooper.

650 VIDEO INSERTER

Ian Polczynski's module superimposes text - together with time and date - on composite video in any colour-standard.

654 DESIGNER WEB FILES
Useful Web sites for electronics designers.

659 A NEW VARIABLE CAPACITOR?

Martin Grove proposes a new device whose capacitance can be varied digitally. It could form the basis of a variety of transducers.

663 DESIGN LAB BYTES

Exclusive review - Tina is a new pc based circuit design lab with virtual instrumentation including a scope and spectrum analyser.

669 PRESCALE TO 1GHz
Nick Wheeler describes a low-cost prescaler designed to extend the useful range of your frequency counter to just over 1 GHz .

675 LIGHT UPDATE

A look at how Texas' light sensors are evolving. Line inlagers are added to the product range and there's emphasis on easier interfacing with increased performance.

681 CLASS-A POWER

John Linsley-Hood's original Class-A power amp is still rated among the best. Here he explains how to bring the design up to date.

691 DESIGNING RELIABLE RECTIFIERS

Ray Fautley's easy-to-follow procedures take the guesswork out of reliable linear power supply design.

696 HANDS-ON INTERNET

Cyril Bateman discusses new search tools and looks at hardware and software support on the World-Wide Web.

708 PRECISION

 PREAMPLIFIER '96"Could this be the quietest audio preamplifier design in existence?" asks Douglas Self. Part II concludes, detailing circuits and performance. It also reveals a new concept in hi-fi tone control.

Requlars

635 COMMENT
Pricing versus rationing.

636 NEWS

Tethered satellite report, Flat satellite tv antenna, Summarising software, Police radio and emc effects, DVD, Wristphone, R\&D drop in '95, Solar power for schools, Virtual Stonehenge.

EW reader discount
Obtain over 30\% discount on Tina - a Windows-based circuit design lab that receives its UK debut in this issue - Review page 663, offer, page 666

Multi-instrument with free DMM

 A 1 GHz frequency meter, 2 MHz function generator, $3 \frac{1}{2}$ digit DMM and 30 V, 3 A power supply - all in one unit. Readers can obtain this with over 17% discount and a free hand-held DMM - p. 698.

641 RESEARCH NOTES
Nanotubes, Finer chip interconnects, Northern aurora from space, Smart needle for tumours, Diesel pollution, Towards better fuel cells, Aid for night drivers.

Find out how you can fly round this virtual stonehenge - see page 636.

700 LETTERS

Strange science, Bach and the clavicord, Historical units, loudspeaker cables, loudspeaker networks, Capacitive cables, Call Waiting ID, Bipolar transistors.

703 NEW PRODUCTS
Pick of the month - classified for convenience.

"..it certainly gets my vote!"

Computer Shopper Nov 1995

a very capable package which will be of interest to many electronic designers, especially because of its low price."

CADCAM, March 1996

For Just £249* Quickroute 3.5 PRO provides a complete schematic \& PCB design system for Windows 3.1, '95 and NT. The system Includes multi-sheet schematic capture with power rail and bus support, auto-routing on 1 to 8 layers, netlist, CAD-CAM and WMF file export as well as design rule and connectivity checking.

More advanced functionality is provided by Quickroute 3.5 PRO+ which for just $£ 399^{*}$ offers all the features of PRO as well as copper fill, enhanced auto-routing, netlist import, Gerber import/viewing, DXF file export, and links to a wide range of simulation packages. PRO + also includes englneering change/enhanced connectlvity checking which will updote your PCB from a schematic, addling or removing nets and components automaticolly.

Call now and we will send you our free demonstration pack.
*Prices are PRO $£ 249$ and PRO $+£ 399$. Post \& packing is $£ 5$ (UK), $£ 8$ (Europe), and $£ 12$ (worldwide). Please add V.A.T to the total amount Lower cost versions are also available.

Tel/Fax 01614497101 www.quickroute.co.uk

EMail: info@qulcksys.demon.co.uk Quickroute Systems Ltd., 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, U.K

Prices and specifications are subject to change without notice All trademarks are acknowledged \& respected.

New Speclal Offers	
	or Reiliadiliy model V ViPs i2vin 3 V
Cui. lis filcd with of wre	
motors) 'Comstep' independent control of 2 stepping or $£ 200.00$ for a box of 90 0.9 f 250 vdc .	
	$9 \mathrm{p} . .1000+$
LEDH 3 mm or 3 mm red or green. . 7 peach yellow, 11 p earh cable ties 1 p each $\$ 5.95$ per 1000 . $£ 49.30$ per 10.000	
Nickel Metal Hydryde AA cells high capacity with no memory. If charged at 100 ma and discharged at250 ma or less 1100 mAH capacity (lower capacity for	
high disc harge rates)Special offers, please check for availability.	
Sitk of $442 \times 15 \mathrm{~mm}$ Nicad baureries $171 \times 16 \mathrm{~mm}$ dia min	
$115 \mathrm{VAC} 80 \cdot \mathrm{DC}$ motor $4 \times 2 \mathrm{~mm}$ shaff 50 mmm dia $\times 60$ long body (excluding the shaft) it has a replaccable thernal	
Wide range of All products advertised are new and unused unless otherwise suted. CMOS TTL 74 HC C7F Linear Transitoors kita. Rechargeable batterien, capacitors, tools etc always in stock. Please add $£ 1.95$ towards $\mathrm{p} \& \mathrm{p}$. VAT included in all prices.	
JPG Electronics, 276-278 Chatsworth Road, Chesterfield S40 2BH Access/Visa Orders (01246) 211202 Fax: 550959 callers welcome 9.30 am to 5.30 pm Monday to Saturday	

CIRCITNO. HFON KEPLI (ARO

\qquad

Black STAR EqUIPMENT (PRP all units $£ 5$)

Used Equipment-GUARANTEED, Manuals supplled If possiblo.
This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for lists. Please check availability before ordering.

STEWART OF READING

110 WYKEHAM ROAD, READING, BERKS RG6 1PL
visi Telephone: (01734) 268041. Fax: (01734) 351696
Callers Welcome Gam-5.30pm Monday to Friday (other times by arrangement)

EDITOR

Martin Eccles
01816523128
EDITORIAL ASSISTANT
Mark Hefley
01816528638
CONSULTANT5
Jonathan Campbell
Philip Darrington
Frank Ogden

DESIGN

Alan Kerr
editorial
ADMINISTRATION
Jackie Lowe
0181-652 3614
E-MAIL ORDERS
jackie.lowe@rbp.co.uk

ADVERTISEMENT

MANAGER
Richard Napier
0181-6523620
DISPLAY SALES EXECUTIVE
Malcolm Wells
0181-6523620
ADVERTISING
PRODUCTION
0181-652 3620
PUBLISHER
Mick Elliott
EDITORIAL FAX
0181-652 8956
CLASSIFIED FAX
0181-6528956
SUBSCRIPTION HOTLINE
01622721666
Quote ref INJ
SUBSCRIPTION QUERIES
01444445566
FAX 01444445447
ISSN 0959-8332

NEWSAGENT ENQUIRIES

Contact MarketForce
(UK) Ltd.
Telephone:
0171-261 5555
Fax: 0171-261 6106

REED
REED
PUBLISHING

Pricing versus rationing

Karl Marx rejected capitalism and free markets in favour of public ownership of the means of production and distribution. He did this on the premise that people would work better for the common good than for their own profit But he - or at least his followers in the USSR - went further than that. They virtually eliminated the operation of any price mechanism and substituted the command economy, which was a euphemism for rationing by central bureaucrats.
Those two issues - private versus public ownership and pricing versus rationing - should not be confused. There is now widespread acceptance in this country that private ownership generally leads to more prosperity in peace time than public ownership, but that there are exceptions. On the other hand, the price mechanism has an engineering function which is indispensable under either kind of ownership. It does not stem from any judgment of human motivation.
For example, power station designers invest in improving their stations' thermal efficiencies because fuel is generally expensive. Where fuel is cheap, they are correspondingly less concerned. In any case, they use large quantities of excess air for combustion because air is plentiful and free. They apply that principle of balancing costs against benefits to all their decisions, and so do their consumers, fuel suppliers and so on. It has produced a web of interlocking prices which co-ordinate the efforts of engineers across the whole economy.

Prices are often disdained as a sordid necessity in a vulgar world, but in truth they are the life blood of engineering, quite apart from their role in free markets. By removing them, the communists reduced their engineers to copying - as best as they could with inadequate information - the designs of their opposite numbers in non-communist countries. That was what doomed communism and would have done so even if the people and their leaders had been altruistic beyond belief.
Within our pricing web, telecommunication engineers have invested in increasing the information transmission rates of cables because cables are expensive to manufacture and lay. But they have paid much less attention to economising with radio spectrum because the supply has seemed to be plentiful. Spectrum has been freely allocated (except for administration charges) on the principle of first come first served But it is a finite resource and serious congestion appeared in the 1970s in the private mobile radio bands.
The Merriman Report recognised the problem in

Power station designers use large quantities of excess air for combustion because air is plentiful and free.

1983 and included a pricing scheme for the whole spectrum, proposed by the Department of Transport to reflect the scarcity values of the various bands. But the engineering function of pricing was not understood and the large established users, notably in broadcasting, civil telecommunications and defence, opposed spectrum pricing.
Some consultants proposed instead to deregulate the congested bands but $E W+W W$ exposed the irrelevance and failings of that idea in September 1987. The central regulators were left to ration out spectrum in the congested bands without knowing which users could make the most cost-effective use of it. The congestion worsened.
Now a DTI white paper on 'Spectrum Management into the 21 st Century' (Cm 3252) proclaims a welcome change of government policy, albeit with some reservations. It proposes legislation to introduce spectrum pricing on the lines proposed by the Department of Transport thirteen years ago. The congestion is worse now than it was then, so the cure will be correspondingly more painful but, if they really mean what they say, the DTI will extend the pricing web across that part of our economy, which badly needs to be strengthened there. The white paper and some implications of those reservations will be reviewed next month.
David Rudd, independent engineering and economics consultant.

Electronics World is published monthly. By post, current issue $£ 2.35$, back issues lif avoilable $£ 2.50$. Orders, poyments and general correspondence to L333, Electronics World, Quadrant House, The Quodrant, Sution, Surrey SM2 5AS. Tx: 892984 REED BP G. Cheques should be made payable to Reed Business Publishing Graup Newstrade: Distributed by Markefforce (UK) Lid, 247 Tonenham Court Rood London WIP OAU $0171261-5108$.
Subscriptions: Quadrant Subscription Services, Oakfield House Perrymount Rood, Haywords Heath, Sussex RH16 3DH. Telephone 01444445566 . Please notify change of address. Subscription rates 1 year $£ 30$ UK 2 years $£ 48.003$ yeors $£ 70.00$. Surfoce mail 1 year $£ 35.002$ years $£ 56003$ years $£ 80.00$ Air mail Europe/Eu 1 year
£43.00 2 years $£ 68.00$ ROW 1 year $£ 52.002$ years $£ 83.00$ Overseas advertising agents: France and Belgium: Pierre Mus sard, 18-20 Place de la Madeleine, Paris 75008. United Stotes of America: Ray Barnes, Reed Business Publishing Ltd, 475 Park Avenue South, 2nd FI New York, NY 10016 Tel; (212) 6798888 Fox; (212) 6799455 USA mailing ogents: Mercury Airfeight International Ltd Inc, 10 (b) Englehard Ave, Avenel NJ 07001 . 2nd class pastage paid at Rahway NJ Postmaster. Send address changes to above. Pinted by BPCC Magazines (Carlisle) Ltd, Newtown Trading Estote Carlisle. Cumbria, CA2 7NR Typeset by Wace Publlcation Imaging 2-4 Pawerscran Road, Sidcup, Kent DA\& 4 SDT .
Reed Business Publishing LId 1995 ISSN 09598332

Copyright protection delays DVD

ore non-technical wrangling over the digital video disk specifications is further delaying the introduction of the format. Previously, the debate was over which audio format to use with DVD video, now it is over intellectual property protection, again, predominantly with video.

Frank Carrubba, chief technical officer of Philips Electronics, said: "Some companies say they are bringing out DVD products this September. Don't believe it; they can not. There will be no products this year."
Philips is one of the companies
intending to make DVD players and also owns a record label.

Six bodies dominate the group discussing the specification. These represent: equipment makers, film makers, the computer industry, record companies, business software sellers and CD-ROM publishers.

Research and development investment fell in '95

- lectronics companies' investment in - research and development (r\&d) in the UK fell significantly last year, a DTI report has shown. The UK r\&d Scoreboard reveals that within the electronic and industrial equipment sector, the r\&d expenditure as a percentage of turnover fell from 4.2% in 1994 to just 3.2% in 1995.

Although $r \& d$ expenditure worldwide also fell in the same period, the average remained higher than that of the UK.

The amount spent on r\&d is far greater among foreign-owned companies than their UK rivals. The top five spenders in the global electronics industry were, in order, Siemens, Hitachi, Matsushita, IBM and Toshiba. Toshiba spent $£ 1.89$ bn on r\&d, while GEC, which headed the UK electronics rankings, spent just $£ 412 \mathrm{~m}$.

Mike Pilbeam, managing director of Cray Communications (part of Cray Electronics), pointed out that, to compete in R\&D spending with US firms, UK electronics companies must recognise Europe as their home market.
"The biggest problem is the UK home market is only a fraction of the American home market," he said. "Consequently the sales turnover spent on r\&d is much less."

For the first time the scoreboard includes foreign-owned companies based in the UK.
"Much of the electronics industry in the UK is owned by international companies," said Peter Jones, seconded from Thorn EMI to the DTI's Innovations Unit. Jones explained that including UK based arms of interna-
tional companies "gives a much fairer representation of the UK electronics industry.'

Richard Freeman, chief economist at ICI, said increasing r\&d spending does not automatically lead to commercial success.
Jon Mainwaring
Electronics Weekly

EMC effects of Police radio

Concerns over the effects of stray electromagnetic radiation have surfaced again. Following a recent report that electromagnetic interference is causing motorists to be locked out of their cars, the latest scare is that 'police radio system can trigger bombs'.
This headline reported in a national newspaper recently, while sensationalist, does highlight an emc issue: users of radio transmitting equipment, including mobile phones, should not use them without regard to the situation and location.
There are police guidelines against transmitting from its its handsets in hospitals, computer rooms and other places with electronic equipment. In addition, a police spokeswoman said: "There is a longstanding guideline from the Association of Chief Police

Officers that radio handsets should not be used within 25 m of a suspected explosive device."
The police radio handset in the report is the Motorola MTS2000 which forms part of the Metropolitan Police's new cellular Metradio system. The uhf handset produces IW effective radiated power, less than most mobile phones and slightly more than the older vhf police handsets which radiate around 0.7 W .

A spokesman for Motorola said: "There is nothing magic about our handset. The police guidelines are precautions that could easily apply to mobile phones. Indeed, airlines will not allow mobile phones to be used on their aircraft and mobile phone instructions carry similar warnings not to operate them in petrol stations."

Virtual Stonehenge
A virtual reality model of Stonehenge
is available on the Internet.
Developed by Intel, Superscape and English Heritage, the model can be navigated in ten different eras from 8500BC to 2000AD by pc users. A photo realistic model has also been developed, on a 200 MHz Pentium Pro processor, by VR Solutions Limited of Salford, who worked with English Heritage archaeologists to generate it. The Internet-based Stonehenge can be accessed on Intel's website:
http://www.intel.com/

ANCHOR SURPLUS Ltd

Micro Video Cameras

Following last Month's Readers Offer for the 721-S Micro Camera many readers have contacted us asking about other items in our range of Micro Cameras and Security Surveillance equipment.
We are SOLE AUTHORISED IMPORTERS of the entire range of Cameras and Video Surveillance equipment produced by world's leading manufacturer. ALL items in the range carry a full 12 Months Guarantee. If you would like to receive our comprehensive catalogue of Cameras and associated equipment please send a large SAE with 48 p postage, marked "Camera Catalogue"

Here is a sample of the available stock.
A-721-S Micro Camera $32 \mathrm{~mm} \times 32 \mathrm{~mm} . . . £ 85$
A-721-P Micro PIN-HOLE Camera ... 32mm x $\mathbf{3 2 m m}$... $£ 85$

A-1211 C/CS Mount Camera ... $110 \mathrm{~mm} \times 60 \mathrm{~mm} \times 60 \mathrm{~mm}$... $£ 110$
A-521 Micro Cased Camera $\mathbf{4 3 m m} \times 48 \mathrm{~mm} \times 58 \mathrm{~mm}$... metal cased ... $\mathbf{5 1 2 0}$
6001-A High Resolution COLOUR Cameras (420 lines) ... 0.45 lux ... $£ 210$
Outdoor Camera Housings ... Aluminium ... £45
Camera Mounting Brackets ... Universal Mounting ... $£ 5.95$
Camera Switchers ... for up to 8 Cameras ... $£ 85$
Auto Record Controllers ... Allow NORMAL VHS Videos to operate like professional Time Lapse or Security Recorders ... $£ 75$
QUAD-1 Multi Vision Processors ... Digital Freeze ... Quad Pictures etc £275 PLEASE NOTE:
AS A CONTINUED SPECIAL OFFER ALL THE ABOVE CAMERA AND ACCESSORY PRICES INCLUDE VAT AND CARRIAGE TO UK ADDRESSES

Government Surplus Electronics Equipment on Special Offer This Month
 THANDAR TC200 LCD Hand Held Digital Meters ... 0-200uF ... 0-2H ... 0-20M Ω... ONLY $£ 50$
 THURLBY 1905a Intelligent 51/2 Digit MultiMeters ... 0.015\% acc ... Log, Filters, Math ... ONLY £175
 TIME Electronics $\mathbf{4 0 4 N} / \mathbf{1 0 2 1}$ Voltage/Current Calibrators ... 0.05% accuracy ... ONLY £275
 HOIKI 8832 HiCorder ... 4 analog/32 digital channels ... Printer ... LCD Screen ... AS NEW ... ONLY ... £750 EATON 2075 Noise Gain Analysers + 7618 Noise Source ... 10Mhz-18Ghz ...
 LAST 2 Cased with paper work ... NOW ONLY £1350
 FRANKLIN Wavetek 3600 Power Line Disturbance Monitor + Printer ... LAST 2 NOW ONLY $£ 350$
 MARCONI TF9693 + TF2361 + TF9695 VHF Sig Gen / Sweeper sets ...
 $1 \mathrm{Mhz}-300 \mathrm{Mhz} . .0 .01-100 \mathrm{Khz}$ sweep rate ... 0 - 60 db attenuators ...
 INCL Cased Adaptor sets ... LAST FEW NOW ONLY £125
 COMARK $2007+3$ "K" type probes ... 0.1° res $\ldots \pm 0.5 \%$ acc \ldots Cased As New ... ONLY ... £65
 Other Digital Thermometers always in stock ... Please Phone

OPEN SEVEN DAYS A WEEK
 Mon-Fri 9am-6pm Sat 8am-4pm Sun 10am-4pm NO APPOINTMENTS NEEDED. CALLERS ALWAYS WELCOME All Prices are Ex VAT \& Carriage

 and carry our Unique 30 Day Un-Conditional Warranty

Tethered satellite investigation report is released

NASA and the Italian Space Agency (ASI) have released the report of the investigative board appointed to determine factors which resulted in the Feb 25 tether break and loss of the Tethered Satellite during the STS-75 Space Shuttle mission.
"The tether failed as a result of arcing and burning of the tether, leading to a tensile failure after a significant portion of the tether had burned away," the report concludes.
Arcing occurred because of either external foreign object penetration (but not orbital debris or micrometeoroids) or a defect in the tether caused a breach in the layer of insulation surrounding the tether conductor. The
insulation breach provided a path for the current to jump, or arc, from the copper wire in the tether to a nearby electrical ground.
The break occurred when approximately 12.2 miles (19.7 km) of tether was unreeled, in a period when the tether was experiencing normal stresses of approximately 15 pounds (65newtons)

- Scientific papers recently presented at an American Geophysical Union conference reported that currents generated by the tether were three times higher than theoretical models had predicted prior to the flight.
The system was generating
$3,500 \mathrm{Vdc}$ and up to 0.5 A of current during satellite deployment. That high level of electrical energy resulted from the length of conducting tether extending from the Shuttle, coupled with the 17,500 mile/h speed at which the Shuttle and tether were cutting through Earth's magnetic field lines.
"This arcing produced significant burning of most of the tether material in the area of the arc," the board found. The tether was designed to carry up to $15,000 \mathrm{Vdc}$ and handle tensile forces of up to 400 pounds (1780newtons). It used super-strong strands of Kevlar as a strengthproviding member, wound around the copper and insulation.

Software that summarises

BT's research centre at Martlesham has developed a text summarising program that can reduce pages of text into paragraphs, or sentences. The program, called
'Netsumm', is currently being trialed on the Internet, but BT plans a stand-alone version, for use with Microsoft Windows, soon.
The software has come about because of the modern complaint of information bombardment. Keith Preston manager of BT's intelligent systems group, explained that people now "have so much information available that they won't make any use of it."
This textual intimidation can be overcome using Netsumm, which uses statistical methods to summarise a piece of text. The summariser program accepts any plain-text document and automatically picks out sentences it considers to be the most relevant part of the text.

At present, Netsumm exists only as a prototype and will be demonstrated in the coming months to City dealers. Netsumm would be used by dealers to draw out key elements from detailed company reports.
The 'Dealing Room' will feature other technologies including speech-to-text conversion and videoconferencing, as well as improved presentation of market information. The overall aim is to improve the speed and efficiency of City dealers.

Dawn of the Solar Age

Solar electric power will soon be seen in all parts of the country as part of a Government programme to support important British technologies needed in the next 10 years.
Children who already study solar electricity (photovoltaics) in theory will be able to experience it working in reality in 100 schools and colleges Although the technology is made in Britain, it is still virtually unknown and most of the panels are exported abroad. The scheme is aiming for maximum impact as all the systems
will be linked via the Internet to reach a wider national and international audience.
The Scolar Programme is part of the government's Foresight Initiative and is the brain-child of Philip Wolfe.
"This is excellent news for Britain," commented Philip. "The Foresight Award means we can bring the technology faster to a whole generation. By using photovoltaics on a bigger scale today we are also helping to avoid the energy problems of the future."

Dick Tracy arrives

A wristwatch phone weighing just 70 grams has been developed by Nippon Telegraph and Telephone (NTT) in Japan. The prototype personal handyphone system (PHS) is said to weigh 20% less and be 50% more compact than existing handsets.
This level of miniaturisation is achieved through the use of voice
recognition for dialling, removing the need for a keypad. The voice recognition software is located in the base unit, reducing the PHS's software requirements.
Users can either say a number or a previously recorded name. The system transforms the instruction into a telephone number.

Flat antenna for satellite tv

Anntech has developed a satellite receiving antenna halfway between the BSB 'squarial' and a dish -the panel is flat but a feedhorn projects.
The panel is plastic, $5-8 \mathrm{~mm}$ thick, incorporating a metal element to focus the satellite signal onto the feedhorn by diffraction.
This allows it to be flush mounted on any wall or roof with an unobstructed view of the satellite. Installation is similar to that of a dish but, because the electrical axes are offset, an additional pair of angles (facus and rotation) must be determined from a set of tables. Four panel type numbers will be produced to
cover all installation possibilities, with fine-tuning by adjustment of the feedhorn position. The sensitivity is about 60%, which is comparable to an average dish.
$60-70 \mathrm{~cm}$ panels will be launched at the end of August, with prices 'very competitive'. Any size is possible, using multiple panels for those over 1.2 m , with the cost advantage increasing along with the size.
The panels will not only minimise 'unsightliness' in suburbia and help to spread satellite tv to poorer areas of the world, but will also reduce the time and cost of temporary installations and find uses for non-satellite microwave applications.

Complete PIC Development System

All you need including ICE \& Programmers at a low, low cost

 Plus training package if required

Overseas Distributors Wanted!

Please Call or Fax for Full Details

- Fully Integrated Package of Hardware and Software for the 16 C 5 X series.
- Low cost upgrades for the 16C71,
- Real In Circuit Emulation
- Includes Everything Except the PC
- Supplied in Custom Case
- Development Hardware Includes In Circuit Emulator, Modules for other processors, programmers and Proto-Typing Boards
- Software Includes :

Full Function Multi-Window Editor, Assembler, Simulator, ICE, Programmers, Plus Other Features in One Program

- Training Package available which Covers Real World Applications, with Case Studies

Kanda Systems, Innovation Centre, Pendre Hafod, Pontrhydygroes, Ystrad Meurig, SY25 6DX Tel : (+44)(0) 1974282670 Fax : (+44)(0) 1974282356 email : Info@Kanda.demon.co.uk

Data Acquisition for your PC

Pico＇s Virtual Instrumentation enable you to use your computer as a variety of useful test and measurement instruments or as an advanced data logger．

Hardware and software are supplied together as a package－no more worries about incompatibility or complex set－up procedures．Unlike traditional＇plug in＇data acquisition cards，they simply plug into the PC＇s parallel or serial port，making them ideal for use with portable PC＇s． Call for your Guide on＇Virtual Instrumentation＇．

PicoLog
Advanced data logging software．

S\＆A－16／SムA－32 Logic Analysers
Pocket sized 16 Channel Logic Analyser －Connects to PC serial port
－Up to 50 MHz Sampling －Internal \＆external clock modes 8K Trace Buffer SLA－16 £219 SムA－32£349 with software，power supply and cables
 from Pico Thermocouple to PC Converter TC－08 \＆199 N ADC－100 Virtual Instrument Dual Channel 12 bit resolution －Digital Storage Scope－Spectrum Analyser －Frequency Meter－Chart Recorder －Data Logger
－Voltmeter
The ADC－100 offers both a high sampling rate（ 100 kHz ） and a high resolution．It is ideal as a general purpose －test instrument either in the lab or in the field． ADC－ 100 with PicoScope $£ 199$ with PicoScope \＆PicoLog £219

TELECOM DECODERS

FX633 \＆FX643

Setting new standards for Call Progress Monitoring．

These unique devices detect the audible tone signals used by the world＇s telecom systems to indicate： \star Dial tone \star Ringing tone \star Busy tone \star Special tones Both the FX633 and FX643 use the latest digital processing techniques to provide the following features：

Feature	FX633／FX643	Other Call Progress Products
Minimum Supply Voltage	3.0 V	4.5 V
Typical Supply Current	$300 \mu \mathrm{~V}(3.3 \mathrm{~V})$	up to 4 mA
False on Noise	Low	High
False on Voice	Low	High
Voice－Detect＇Facility	Yes	No
Fast＇US Busy＇Indication	Yes	No

FX602 Multi－standard caller line identification Providing CLI data decoding for analogue telephone systems， the FX602 operates to the following specifications：
\star British Telecom \star Bellcore
\star Cable Communications Association
\star Mercury Communications \star ETSI CLI
The FX602 is available in a compact
16－pin small outline package．

to indicate：
Special tones
digital
ing features：
up to Progress Products
High
High
No
No

ALL THREE DECODERS ARE 3.0 VOLT WORKING WITH LOW POWER CONSUMPTION

RESEARCH NOTES

Jonathan Campbell

Nanotubes get wired up Yarbon nanotubes - hollow tubes
 80 nm -wide tungsten leads directly to

Cmanufactured on the atomic scale - could offer an attractive method of connecting together circuits in tomorrow's highly miniaturised nanocircuits. Now, researchers at NEC and Micrion Europe have taken a step forward to exploitation of nanotube technology with the first detailed electrical measurements of individual tubes.

Various types of nanotubes have already been produced, but precise data on their properties has been scarce. However, the NEC/Micrion research is showing that each nanotube has unique electronic properties, including both metallic and non-metallic behaviour. It is also becoming clear that the differences between nanotubes are far greater than expected. And the results confirm that, at this scale, geometry and electronic properties are closely linked.
The method used for the investigation has been to attach four
individual nanotubes, enabling accurate evaluation of their electronic properties, using a focused ion beam system. The experiment has shown that the current carrying capacity of the nanotubes is very high and also that the temperature dependence of the conductivity differs greatly between nanotubes. Also revealed is that different segments of a nanotube may have different temperature profiles and that nanotubes in general show significant variations in resistivities.
Early data suggests that nanotubes can be fabricated with a wide range of electronic properties. Interest has been greatly stimulated by theoretical predictions that their electronic properties would be strongly modulated by small structural variations. In particular, the diameter and helicity of carbon atoms in the nanotube are believed to determine whether the nanotube is metallic or semiconductor. The beguiling

prospect for researchers is that if they can be accurately characterised, they offer the possibility of being used as wires, with diameters about 1% the line width used in current 16 Mb memory chips.
Contact William Gear, NEC Research Institute, Princeton, New Jersey, USA.

Nanotubes could dramatically reduce memory cell size. Here, four 80 nm leads help reveal a tube's electrical properties.

Extreme chip production

Working microelectronic devices, with electrical gate widths of $0.1 \mu \mathrm{~m}$, have been fabricated at Sandia National Laboratories in California. The tiny dimension is more than three times smaller than that used for devices found on current chips, and has been made possible using extreme ultraviolet light as part of the lithographic process. The device is a field
effect transistor, a common building block of all integrated circuits.
Current leading edge chip patterns are printed with the photographic-like optical lithography, creating features that are $0.35 \mu \mathrm{~m}$ wide. But, optical lithography is reaching physical limits. The shorter wavelengths of extreme ultraviolet light enable printing smaller features at high resolution

Lithography has been targeted as a key technology for semiconductors as they continue to be made smaller, faster and more powerful. The Semiconductor Industry Association aims for commercial production of microchips with $0.1 \mu \mathrm{~m}$ features in the year 2007.
Contact Sandia National Laboratories, Albuquerque, USA.

Crowning achievement: A spectacular view of the full northern auroral oval in ultraviolet light, just released by Goddard Space Flight Center, is a testament to the work of University of lowa scientists who have developed the visible imaging system on the Polar spacecraft. The Earth is imaged from an altitude of $25,740 \mathrm{~km}$ over the southern border of Alaska, and the auroral oval is seen as a 'crown' in the top portion of the image. Advances in technology for the construction of the cameras has allowed the auroral light to be extracted from the sunlit atmosphere with unprecedented clarity, as amply demonstrated by this picture of a complete auroral oval that extends well into the sunlit atmosphere. An extended region of light in the centre and bottom of the image is the glow from the Sun's illumination of Earth's upper atmosphere. The filter for this image passes ultraviolet emissions that are not directly visible to the human eye. Intensities of this light from atomic oxygen in Earth's atmosphere at altitudes in the range of about 100 to 500 km are colour coded in the image with dark red as lowest intensities and whitish yellow as the brightest. A coastline superposed on the image shows that the aurora is positioned just north of the Great Lakes on the dayside of the Earth and over the Scandinavian peninsula on the far nightside of the Earth. Principal investigator for the visible imaging system instrument is Louis Frank and the instrument scientist and manager is John Sigwarth, both from The University of lowa.
Goddard Space Flight Centre, Greenbelt, MD.

Smart needle helps tumour treatments

More effective curing of cancerous tumours could be the result of work being carried out at MIT into development of a prototype sensor needle that contains integral microchips. The electronics give medics direct feedback on the progress of hyperthermic treatment in a cost-effective and simple manner so improving control. MIT's special needles could replace several of the probes currently used by doctors to characterise tissues, and should be less expensive than current probes while being 30\% smaller in diameter.
The researchers, led by Research Affiliate Kenneth Szajda of the Harvard-MIT Division of Health Sciences and Technology (HST), have so far built a device that measures temperature. But the ultimate goal is a needle that measures a variety of parameters, such as pH , oxygen concentration, and radiation dosage.
Effectiveness of hyperthermic treatment of tumours is critically dependent on temperature control and is why it is so important to be able to measure temperature precisely during treatment.
In the prototype device, eight microchips are embedded in a channel milled down the length of the needle. Each smart chip not only senses temperature, but also processes and digitises the temperature signals so they can later be read by a computer. A separate chip near the head of the needle coordinates data flow between the microchip sensors and a personal computer.
The entire system consists of a series of 7 mm long, $600 \mu \mathrm{~m}$ wide integrated circuits mounted in the channel milled into a 22 gauge solid stainless steel needle. At its core is a low-noise, high resolution diode-based sensing circuit. The output of this sensor is then buffered by pre-amplifier, using correlated double sampling to maintain integrity of the signal. An oversampled modulator
digitally transmits the analogue temperature signal from the needle, and further digital signal processing is performed to complete the analogue to digital conversion. The process eliminates signal corruption caused by sensitive analogue signals travelling off chip.
A custom digital controller chip coordinates transactions between the sensors and a personal computer that processes and displays the data. The circuits are fabricated using a specially developed (2-poly, 2-metal) biocmos process, a non-optimised bicmos extension of the $\mathrm{ccd} / \mathrm{cmos}$ process developed at MIT.
A silicon nitride passivation process is incorporated into the biocmos process to prevent cross contamination between the circuits and the patient since the devices will be operated in a hostile physiologic environment.
Purpose of this project is not only to measure temperature but also to demonstrate the feasibility of 'active needle' techniques.
The researchers say the system approach used for the project can easily be extended to other types of sensors, including - but not limited to - oxygen, radiation, and pH sensors, and Szajda is currently working on radiation and oxygen sensors with Thermal Technologies of Cambridge.
Other advantages of the needle include its size and potential cost. Use of microelectronic technology could reduce costs because, among other things, the sensors could be mass-produced.
In addition to the continuing development of radiation and oxygen sensors, the researchers are also working on the next generation of the temperature-sensor microchip, and the team has recently succeeded in cutting the length of each chip in half to about 4 mm . This means that more chips can be packed into each needle, increasing the spatial resolution of the system.

Targeting diesel engine pollution

 ago was being developed to knock enemy missiles out of the sky is being refined at the University of Southern California to repel an even more insidious air-borne invader -vehicle pollution
US researcher Martin Gundersen and Russian scientist Victor Puchkarev are working on a high energy plasma system fitted to a diesel engine that will do to pollutants

Missile technology
helps clean up car exhausts.

what it was once hoped it could do to satellites.

Current experimental test bed for the trial is an elderly green Volkswagen Golf wired up in a USC basement. A special prototype chamber attached to the car's exhaust contains a mechanism that, each second, sends between 100 and 1000 100 ns extremely high-voltage spikes of electrical energy through the stream of exhaust gases.

The electrical emissions create a high-density flux of energetic, fastmoving electrons. These don't heat the gas. Rather, they set off a cascade of chemical changes in the exhaust, which breaks down one of the main raw materials that cause smog - the oxides of nitrogen - into harmless pure nitrogen and pure oxygen.
The new system is already working. But a crucial measure of its potential is going to be the efficiency by which the process is achieved.

As Gundersen puts it: "How much engine power does it take to remove
how much pollutant?."
To be economical, less than 5% of the engine's output should be used for pollution control. Gundersen and Puchkarev believe this goal is feasible.
Diesel engines are highly fuel efficient. Unfortunately their exhaust contains more nitrogen oxides ($N O_{x}$) and other pollutants than conventional engines, and strategies that control emissions in non-diesel, automobile engines either don't work as well for diesels or considerably depress the diesel engine's efficiency.
Working under contract with the US Navy - which operates large fleets of diesel-driven ships and is under pressure to conform to environmental emission standards the researchers are hoping to devise a simple unit that can be attached to the exhaust of any diesel-driven vehicle and bring it into compliance.
"A plasma system would allow continued use of existing efficient designs, and also permit costeffective clean up of dirty older trucks and ships," says Gundersen.
Several problems remain to be solved before their electron plasma
method can live up to its potential. First, there's some theoretical evidence that the device would be more efficient if the pulse were even shorter - about 20ns. That interval is beyond the reach of existing devices, but the researchers are working on a way to reduce the pulse time.
Second, the reactions produced by the high speed electrons need further study. While scientists have a general idea of the chemistry that takes place when a plasma hits exhaust gases, detailed data on the subject is virtually non-existent and the theoretical foundations for studying these reactions are not well developed. So hard data needed for modelling is not available and is extremely difficult to predict.
Nonetheless, Gundersen and Puchkarev have made enough progress that they will be testing a version of their system on a stationary diesel engine at Port Hueneme, in Ventura County, California later this year.

More information from Martin Gundersen, University of Southern California, Los Angeles CA 900892538, USA

Fuel cells get 100\% power boost

RD esearchers at Ernest Orlando Lawrence Berkeley National Laboratory have developed a thin-film electrolyte that both doubles the power output and significantly reduces the cost of solid oxide fuel cells (sofcs).
Fuel cells, which transform hydrocarbons into electricity without combustion, are highly fuel-efficient and almost nonpolluting. But, until now, sofcs have been most fuel-efficient operating at $1000^{\circ} \mathrm{C}$ - increasing the cost of materials and decreasing the lifetime of cells.
In fact, as sofes are solid-state devices, researchers know how to drop their operating temperature, but the problem has been that when the temperature is dropped, electrolyte conductivity is lost. One way to deal with this is by making the electrolyte thinner, and scientists around the world have looked for a way to thin down the electrolyte, from a 100 um film
down to about $10 \mu \mathrm{~m}$.
But now the Berkeley team says it has devised a technique that doesn't just preserve performance at a lower temperature of 800° but, with a new, ultra-thin ceramic electrolyte, actually doubles the power output to $2 \mathrm{~W} / \mathrm{cm}^{2}$ of cell surface area.
Berkeley electrolyte, a yttriastabilised zirconia film, starts out as a ceramic powder suspended in solution and is painted onto the anode and then fired. What has held back development is that the paint tends to fill in the pores and can crack during sintering due to thermal stresses. The Berkeley researchers say they have simply got the processing of both the anode and the electrolyte right.

More information from Steve Visco, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California.

Looking into a dark future

At night, driving at speed, how far ahead can you see with your headlights? A system currently being tested in the US promises to reveal the road ahead for three to five times further, using thermal imaging cameras and heads-up display (hud) technology to project a picture of the road ahead into the driver's field of view.
NightSight, under development by Texas Instruments, uses a Delco Electronics hud to project realtime thermal images onto the lower section of the car's windscreen. In this way the image, created by a thermal array which translates infrared heat into stark, high-contrast video images, is displayed in the same perspective as the driver's own vision, so is superimposed on the view through the screen.
Differences in heat emitted by objects are recorded and used to generate a real-time black-and-white video picture of the scene.
For automotive applications,

thermal imaging has the advantage of separating people, hazards and other objects from cluttered backgrounds in full daylight or total darkness.
The energy being sensed is heat and not light, so the system should work even in total darkness, and will not 'bloom' or shut down when hit directly by visible light. So it will not be affected by oncoming headlights, and will help reduce glare and distraction of oncoming traffic.
Texas Instruments has high hopes for the system, and says that feedback from automobile manufacturers suggests that the technology will prove to be as important to vehicle and driver safety as the air bag has been.
The motivation for the work has been the US statistics that show that though only 28% of driving takes place at night, 55% of all driving fatalities occur in darkness.
The military routinely use thermal systems and the police are also evaluating them. Could they become as common on the family car as air bags?

> Thinking of buying PC software for making your own pcbs? Rod Cooper's comprehensive - and possibly unique run down of ten medium, low and nocost packages will help you make the right choice. Part 1 covers PIA, Easytrax and PCB Designer.

AIthough the multi-thousand pound CAD system for designing pcbs has been in use by larger companies and specialist electronics firms for many years, the combined cost of hardware and software has undoubtedly deterred most small firms, many of whose core activities may not even be directly in electronics but who still use pcbs, designed by outside contractors.
Also deterred have been individual designers who would dearly have liked to get their hands on these design aids but who could not justify the expense. In addition, stories of program bugs and especially user unfriendliness have prompted others to hold back deliberately from buying a software package - not just until the price became more affordable, but also until performance had improved. This review is for these people.

Review scope

The range covered here is restricted to so-called 'budget' or entry-level systems, defined by an arbitrary limit of around $£ 500$ for a system. This review is only intended as a guide which will, in conjunction with the appropriate evaluation disk, point the way to the system that's right for you.
When choosing your first CAD package, bear in mind that some makers produce a low-cost, entry-level package that can be upgraded later. Suppliers often offer generous upgrading allowances.
To assess a pcb-design CAD program takes a lot of time. Engineers are often reluctant to spend time on a wide-ranging assessment. Time spent learning about systems that are not going to be purchased is naturally almost completely wasted. Also, you do not accumulate much general knowledge of operating CAD because each maker has its own way of doing things.
On the other hand, a quick scan of a few chosen programs can give a completely false impression. I found that a good deal of time was required not just for working the computer but for reading through the manual and making sense of it. And after that, you need to go through the steps of converting a schematic into a real board. To make assessment even more difficult, program manufacturers often have different terminology for the same thing.
It is symptomatic of the pcb CAD makers that they cannot even agree on a common name for the area on screen that holds the symbols that are about to be used - ie a parts bin. In Quickroute, it is called the parts bin, but in Ranger 2 it is called the tray, while in Isis it is called the object selector. Similarly, the area on screen where you put your drawing is called variously the edit window, main design window, the sheet or the drawing area.
In some cases, the description of the program glosses over or omits to mention shortcomings or over-emphasises the product's supposed superiority. All this disinformation takes time to sort out.

Big discrepancies

Products from the USA, the Continent and the UK - shareware, freeware and evaluation versions - were collected for this review. What I found was astonishing; big discrepancies in value for money, wide and unexpected variations in the time taken to learn the program, a large spectrum of user-friendliness and an even wider spectrum of features provided. There was not a lot of correlation between cost and benefit.
This collection was then pared down to those that I thought would be of most interest to the intended audience. Each program was checked on a variety of computers ranging from an IBM $286,12 \mathrm{MHz}$, with just 2 Mb of ram, through a couple of Compaq 386 machines, 20 MHz with 4 and 8 Mb ram, and a 'brand x ' $486 \mathrm{DX}, 66 \mathrm{MHz}$ with 16 Mb ram.
The computer chosen for a particular program was the one thought most suitable for testing the producer's stated minimum requirements. Outputs were checked on dot-matrix, bubble jet printers and a pen plotter.
In compiling this review, I omitted those programs that did not offer either shareware or usable evaluation disks. It is vital for the prospective purchaser not simply to watch a demonstration or to read about the features, but to try out the process of making a small pcb from start to finish for themselves.
Most of the program producers offer a working version of their product which is either limited by having the library files cut down, or by restricting the number of components in a diagram. In some cases the limitation is by preventing the artwork from being printed.
Some so-called evaluation disks are so cut-down that they almost refuse to work. I believe the disparaging buzz-word for these is 'crippleware'. If you cannot try out a program - and by this I mean produce a real pcb - my advice is to avoid it. It is inviting disaster to watch a slide-show demonstration disk, read the manufacturers claims, and then buy.

There are no long lists of every feature for the programs in this review, as this method would make very dull reading. Instead, as all the programs had strengths and weaknesses, these have been highlighted together with salient features. For example, no mention is made of how easy or difficult installation of the programs is, unless there is something out of the ordinary about it. Therefore if any special feature is required for a specific need, you will best find this feature by operating the evaluation program.
The review is not intended to enable the reader to choose one program to suit his or her particular requirements, but to point the way to a shortlist, and so avoid having to plough through numerous evaluation disks, sales leaflets, and operating manuals.

Do you really want CAD?

Firstly, you should ask yourself why you want CAD. There are four reasons or categories as far I can see. In the first category, if you merely want to present a smart-looking schematic to a prospective purchaser of your design, or if you want to publish the circuit, then a schematic
drawing program may not be what you want.
You could be better off with a general CAD drawing program. KeyCad for Windows*, for instance, is only $£ 20$. It has a library of electronic symbols which can be added to as required and gives excellent drawing quality. A big advantage is that you can also use it for simple 2D engineering drawing, for example designing the case or rack system, which you won't be able to do with a specialised electronic program.
In the second category, if you only want to test your circuit by means of a simulator, and have no interest in pcb artwork generation, then a schematic computer-aided design package with schematic capture and a netlist output in at least a couple of recognised formats can be the answer. Some have a built-in simulator. Such packages need not be very expensive.
In the third category, you may simply want to get that circuit diagram you scribbled down changed into a pcb without having to go to the trouble of re-drawing the whole thing again as a schematic on a computer screen. In this case, a manual pcb drawing program without schematic drawing will give you the precision and professional appearance that the computer offers. You will also be able to cut out the timewasting ultra-violet exposure and development if you follow the suggestions that I make at the end of this review.
In the last, and probably largest category, are those who want to short-cut the whole tedious business of making a pcb design altogether. In this case, a schematic drawing program with schematic capture and an integrated autorouter may be the solution. But there are many snags to this last CAD alternative. An autorouter can be a big timesaver, but it can just as easily turn out to be exactly the opposite.

And if so, which type?

Before deciding on which CAD type to go for, you should analyse your motives for acquiring CAD. The advantages are that in laying the pads and tracks with CAD it is easy to get the precision that previously only a skilled draughtsman could achieve. Another advantage of those systems with a built-in library of components is that you may no longer need numerous component data books on your desk. Pin-out information is often included.
In addition, it is very easy to make a change to a board layout on the computer. With the conventional 'hard' artwork method, it was difficult to rip up and re-lay a track. There was a chance of destroying your whole artwork in the process. With CAD it can be quicker to get from schematic to finished board once you are familiar with the program you have selected, although reaching this stage may take longer than you think.
CAD certainly circumvents all the man-power usually needed to turn your circuit into a board. And light-boxes, multi-layer transparencies, transfers, fragile stick-on component outlines, and all the other paraphernalia of the conventional process can be thrown out. There is no need for careful storage of the finished artwork.

Review 1 - PCB Designer

This is a small and inexpensive Windows program for purely manual design of pcbs. It is about as basic as it is possible to get. Nevertheless it will still competently handle single-sided and double-sided boards. In effect, it is the computer equivalent of the conventional light-box and transfer method.
Most of the information needed to run Designer is in a tutorial on the disk. I found that there was really no need for anything else. The package has a good on-screen Help, and the system is very intuitive.
This product was obviously written from scratch as a Windows program - not as a conversion from DOS. It needs Windows 3.0 or 3.1 and MS-DOS 3.3 or above, or the equiva-
lent, so you will need at least a 286 and 2MB of RAM minimum.
Screen area available is good at about 9.5 in by 5.5 in . At the top is the usual Windows menu bar, and underneath a button bar with 27 buttons. Button coverage of the functions is sufficiently extensive that you will rarely have to resort to the menu system. Most of the pad outlines and tracks are directly available from the button bar, with an small extra library in reserve.
A pop-up reminder of all the button functions appears on selection, and these are reinforced by a longer explanation of functions at the bottom of the screen. With this system you should be able to switch on Designer even after a long absence from CAD and still be

Fig. 1. Note unusual cross-hair cursor with PCB Designer.

Typical PCB Designer screen with grid on. Note extra pad library on lhs and text at button bar.
able to work it straight away. You cannot claim that for many CAD programs. There are no endless, meaningless, DOS commands to forget - its all there for you read on screen.
Surprisingly for such a small program, it has autosave, and its supplier, Niche, is to be commended for including it. Equally surprising is the absence of a grid system until the zoom is
operated. I found this a little disconcerting at first. Based on three fixed levels, the zoom system is very easy to use, and there is a custom zoom feature.
Another novel feature is that when placing parts on the board with the grid off, the mouse cursor is replaced by a large graduated crosshair arrangement. This cross-hair is moved by the mouse just as the cursor is, Fig. 1. Although I did not get on well with this system, I could envisage some people liking it. I think it is another area where personal preference reigns.
The only thing I did not like about Designer was the lack of a library of component outlines. Only pads are visible, and I found this was not enough to make a good layout. Also, if you are without a built-in component library you will of course need a pile of data books for the pin-out.
I feel that the lack of a library in Designer is not making the best use of the computer's potential. Niche should rectify this with a small library of the common outlines, with the facility for users to add their own. They would then have a thoroughly commendable product.
PCB Designer uses the standard Windows
printer drivers. It has no Gerber or NC file outputs.

PCB Designer in summary

The first step away from light-boxes, transfers, tapes and transparencies and towards CAD provides the biggest gain. PCB Designer, although a small program, gives all the major advantages of using CAD at small cost and is a good introduction to pcb CAD.

Niche Software Ltd,

tel. UK 01432 355414, £49 all inclusive.

Review 2 PIA

PIA is the next step up in terms of sophistication, as it has both pad and component outlines in its library and an autorouter. PIA is a relative newcomer, so as you would expect, it's a Windows program. It comes in three

Terms used in PCB CAD

CAD for schematics and pcbs has its own jargon, which may be unfamiliar if you have not encountered CAD before. Here is a brief glossary of commonly used terms.
Autopan. Because the screen often displays only a small part of a circuit diagram, it is necessary to pan across the drawing area with your relatively small viewing window. With an autopan system, when the mouse reaches any side of the screen, the diagram is made to move into view from that side automatically. A useful but not essential - feature which not many programs have. Manual panning is more common and some prefer it.
Autosave. There is always a possibility that you will tie yourself up in knots especially while you are learning - or that the system will crash. What autosave does is to save your work to the hard disk every 5-15 minutes, overwriting the previous save. When you crash, you will - with luck - only have lost the last few minutes of work. This is a valuable timesaving feature and far superior to manual saving
Autoneck. A system in which, if a routed track goes between two adjacent pads, track width is automatically reduced to pass between and maintain the specified clearance in the drc. A feature worth having, but not as useful as Autoshave, Fig. A.

Fig. A. Example of autoneck on Dil-8 pads.

Autorouter. A program which attempts to turn netiist, via a rat's nest, into a piece of pcb artwork using various strategies. (Read Lee's Algorithm and Gridless Techniques.) Although autorouters are, by definition, automatic, you will still have to manipulate the rat's nest to get the autorouter to work properly. You will also have to draw manually any tracks left uncompleted by the autorouter
Autoshave. A similar feature to Autoneck above, but instead of reducing the track width, the pads are reduced in the area of the track to maintain clearances specified in the drc. This feature is not often seen, but is the way I prefer to treat tracks passing between DIL pads, Fig. B.

Fig. B. Example of auto shave on Dil-8 pads.
Backwards annotation. If you constantly make changes to your finished board design, this feature may interest you. With it, you can make an annotation change to the board design and the program will automatically make corresponding changes to up-date the other parts of the design e.g. the schematic. The converse of this is Forward Annotation.
Connectivity check. It may seem obvious, but you expect a track drawn between two points on the schematic to be processed by the netlist/rat's-nest/autorouter as such. Unfortunately, it is not that simple. There
are many ways in which a track that appears perfectly ok, is not acceptable to the system, leading to a missed connection. Most programs allow an automatic check to ensure that the integrity, or connectivity, is kept.
Design rule check. (drc) On most programs the designer is required to set a list of parameters for track width, spacing between tracks, distance from the edge of the board, etc. Programs have a method of checking these design rules automatically. This is vital feature when using an autorouter. Without running a check you are almost certain to have short-circuits, open tracks and burn-outs. Beware of programs with a limit on setting parameters; you are certain to want to change the specification at some time to suit your own needs.
Gate swapping. This autorouter feature concerns those ics that contain several identical gates. To ease the burden on the autorouter, it helps if the program can automatically swap the gates round to aid route-finding. This is a useful feature if large boards are involved. A similar situation occurs with pins, the feature is then called pin-swapping.
Gridless autorouteing. Most budget-priced autorouters use a grid system to fix the routes between pads. If the pads do not lie on the grid, the router may mis-route or not route them at all. This is a generalisation and gridded autorouters can route off-grid to some extent. A gridless autorouter on the other hand can route anywhere it likes, if a little more slowly, and this is useful for components whose pins do not fall naturally to any particular grid. There are more of these components around than you might think. You could instruct a gridded autorouter to use a very fine grid to make the chances of a missed

Typical manually drawn pcb on PIA showing library of connectors at top rhs.
versions. All have approximately the same engine, but differ in the size of board they can handle and in output devices available.
The standard version handles up to 1000 pads and 1400 lines while the extended version achieves 2000 pads and 3000 lines. The 32 -bit version handles 8000 pads and 12000 lines. Only the 32 -bit version has HPGL plotter, Gerber file and numerically-controlled-

Double-sided PIA autorouter result on test
circuit board.
drill-file output. Both other versions use the Windows printers for artwork output.
Minimum hardware requirements for the standard and extended versions are a 386 preferably with co-processor - and 4Mbyte of ram. Needless to say, a mouse plus and Windows $3: 1$ or higher are needed. For the 32bit version, you need at least 8 Mbyte of RAM and at least the WIN32S extension to

Fig. C. Example of memory routing.
from the pad-to-pad, track-to-pad, track-to-track connections made on the schematic.
Global Nets. As nets are given unique names by the program, nets with the same name are assumed to be connected even if not shown as such on the schematic. Such nets could be, for example, on a different sheet of the drawing, but still electrically connected as far as the program is concerned.
Netlist. A list of nets which can be automatically produced from a schematic or typed in by hand. The netlist describes the circuit, and is a necessary step between the schematic and automatic production of a rat's nest, or connection to a simulator. In some programs the netlist contains both the nets and components. Others produce a separate component list. Most makers have their own netlist format so there is not much opportunity for transfer of netlists between different programs. But there are exceptions. As the netlist is usually in text, it can be used to verify by eye that the connections you thought you had made in the schematic are in fact present in the netlist. This often holds a few surprises. Viewing a netlist and checking each net by eye on a large board is - as you may have guessed - a very tedious process. Some programs have methods of

PIA close-up of the shot to the left.

Windows 3.1. Performance is enhanced if you have more ram.

Despite these requirements PIA is a relatively simple program. Because of this, and because of its intuitive interface, PIA is very easy to operate - in fact probably the easiest of all to learn.
All PIA versions are programs for board routing only - there is no schematic drawing
reducing this burden, as you will see.
Rat's nest. While most engineers will be familiar with rat's nests, those produced by the computer from the netlist may in fact be just an unrecognisable pile of what appears to be junk on the screen. Most programs need the operator to sort these out into a 'proper' rat's nest by hand, placing the components into your preferred position before the pcb routing can take place. The degree of difficulty experienced in doing this varies widely between programs.
Schematic capture. The act of turning the symbols of a schematic into a form usable by the computer for either routing, or simulation, or transfer to another system, the form being usually a netlist. Not all programs with schematic drawing combined with pcb artwork have schematic capture.
Rubber banding. A technique used in a lot of CAD drawing programs - not just electronic ones - for redrawing a line. The line appears to be stretched like a rubber band at the point where the mouse cursor is located, and stays attached for as far as you move the cursor. Corners are often added by keyboard typing. A very easy method for beginners and experts alike to tie Gordian knots
Push-and-shove. An autorouter strategy in which tracks already routed, but causing obstruction to further routing, are realigned to make way - a very useful feature.
Rip-up-and-retry. Similar to push-and-shove, rip-up-and-retry allows tracks already routed to be automatically removed, completely, and rerouted. This feature and push-and-shove are only found on the more developed autorouters and are highly desirable. Together, they do a lot towards getting a near 100% routed design.
or capture. There are facilities for importing and exporting basic ASCII netlists on the 32-bit version.
The drawing area is good, at 9.5 by 5.5 in on a 14 in screen, and is presented in the standard Windows format. Panning is carried out with scroll bars - a very good method - and there are five fixed levels of zoom.
In all versions of PIA, there are two options. You can either route the board manually as in any other manual routeing program, or you can use the autorouter. With the latter, it is necessary first to generate a rat's nest.
Some reviewers have commented that if you are going to draw rat lines, you may as well draw tracks and have done with it. But, in PIA all you have to do to produce a rat line is click on two pads, and the ratline is drawn for you.
Because of PIA's snap-to grid system, you do not have to be accurate at the track-producing stage. In fact, you can be quite sloppy and it will still draw correct rat lines. This makes the process rapid. Drawing lines in space is inhibited so you can hardly go wrong.
With this system, if you have a design on paper that already has the pin connection information on it, you can transfer it to the screen ready to autoroute in a much shorter time than you could with a schematic drawing and capture program.
This attractive track routeing concept means that the package will appeal particularly to experimental designers. Such designers do not require a neatly drawn schematic. What they do need is to produce a working prototype pcb without hassle. In particular, the operator does not need to remember how to use the program.
There is a constraint to using this method. As any pcb draughtsman will tell you, there is a well-defined limit to how many rat lines you can put in before making a mistake. With a schematic, it is relatively easy to spot a mistake, such as an unconnected pin, even on large schematics. But with a rat's nest that has been built up to certain stage of complexity, a mistake can be readily made and not noticed.
Although this point will vary with individual designers, I think it is fair to say that this limits PIA to small or medium sized boards at least in the rat's nest mode. The manufacturer of PIA makes no bones about this, advancing the package as a 'pcb-developer's individual assistant', rather than as an allsinging, all-dancing pcb design tool.
In keeping with the theme of simplicity, there are no autosave, autopan, autoneck, etc., features, and there is no map to locate lost drawings. There is no parts bin. Selecting parts is done direct from a basic library of pad/component outlines to the screen.
The library is presented in text in a small area on the screen and is scrolled through to reach the part required. Alternatively, you can get common parts from the button bar. Most designers would want to add their own outlines to the basic library, and this is easy to do.
Like many others, PIA's autorouter is meant for doing only double-sided boards. Although it can be made to do a single-sided board, the result will contain many uncompleted tracks.

The handbook specifically discourages singlesided use of the autorouter. The power of this simple autorouter is not great; it has only the standard features you would find at this price level. It does not have rip-up-and-retry or push-and-shove, for example, and only a small amount of pre-routing configuration is possible.
Some manual completion of boards has been anticipated by the unusual and welcome addition of a button on the tool-bar to provide jumpers. What a good idea. The autorouter is gridded with a choice of just three grid and track size combinations, so is quite basic. Although it would route off-grid, the autorouter did not like it, and always gave warning messages - even when it was able to give 100% routing.

The manual drawing part of the program is easy and pleasant to use and, bearing in mind the limits of the autorouter, is probably the main use to which PIA would be put by most users.

PIA in summary

Although the rat's-nest/autorouter method is a good way of producing a working prototype of a double-sided board quickly, I would like to see PIA developed further. It should be equipped with a much more powerful autorouter. Nevertheless, as it stands, PIA is an attractive product with an identifiable niche in a particular sector of the market.

AW Software, tel. Germany +4989 6915352. PIA std DM99: extended DM171 32bit DM286, all inc. 15% tax.

Review 3 - Easytrax

Easytrax is a dos based pcb drawing program of medium size and complexity. It has no schematic capture or provision for importing a netlist. It will run on any IBM pc from XT upwards. The main program ran well using just conventional memory. When it came to plotting however, I needed to convert some extended memory into expanded memory in order to run the whole of some boards without receiving the 'out of memory' message.
The main attraction of Easytrax is that it is offered completely free to anyone who wants to use it. As such, it is an economical introduction to the world of pcb CAD. From using it you can find out which aspects are important to you and which are not. It even includes a method of automatic routing, but this is an unsophisticated semi-automatic type not a fully-fledged autorouter
There is no written manual with Easytrax. It has to be extracted from the disk and is some two dozen pages long. The manual does not cover every aspect of the program - only the basic operation. You are left to discover the finer points for yourself. This may take some effort, but is well worthwhile.
As this is a free piece of software, do not expect any technical support. There is no onscreen help but the prompt system is good. Most of the control throughout is by a good, logical menu system, backed by the usual key-

Fig. 2. Manually drawn exercise showing quality of graphics and typical menu in Easytrax.
board short-cuts. These short-cuts are mostly logical, but some alas are of the incomprehensible dos sort. For example, the asterisk key changes layers. Why not use 'L' for this?
The screen area is good at 9.5 in by 6.5 in when none of the menus is showing. Graphics are good, as Fig. $\mathbf{2}$ shows. There is an adequate library of component outlines which is easy to access. As you would expect in a relatively simple dos program, the library is in text form only. Many of the text descriptions of the components may appear to be somewhat cryptic until you get used to them. RADO.4, for example, is a generalised outline for a component,

which could be a capacitor, resistor, etc., with radial leads on a 0.4 in pitch.
Although a very straightforward program, Easytrax has some finer points. Examples are autopan, which can be turned on or off as you wish, adjustable autosave, and a 'jump' option which takes you to any component on the board that you specify. This could be useful on large circuits to get to a specific place on the board without panning.
It is easy to lose your work off-screen if you are not careful with the autopan. There is no map showing where you are. Beginners may find this very frustrating until they master this control.
The zoom/unzoom function has eight levels. It can be accessed via the menu system, which makes it a slow process. On the other hand, it can be accessed using page-up and page-down keys on the keyboard, which is very quick and convenient.
As you would expect with a dos program, screen redraws are fast. There is also a 'zoom-all' function which brings all the circuit to fit on the screen. This function can be used to retrieve lost circuits.
Drawing in the tracks manuotly was straightforward. Surprisingly, Easytrax is perfectly capable of making not just single-sided and double-sided, but multilayer boards too.
An alternative to manual routing is to use the automatic router. With this router, the operator selects two component pads with the mouse, which causes a track to be inserted - complete with vias. This two-layer router inserts vias far too freely. limiting its usefulness. It is essen-
tially non-configurable. This type of semi-automatic routing is a slow method compared with a full autorouter but quicker than drawing tracks by hand and not such hard work. The results may not be what is desired or intended. As a result, be prepared for odd-looking tracks and lots of vias.
Considering this is a free program, there is a good choice of output devices for the pcb artwork. As Fig. 3 shows it can produce highquality artwork. The illustration was just an exercise drawn quickly on the manual system. It shows the quality of pad and track outlines and plotted on Easytrax's HPGL plotter driver. The final quality and appearance of a real board depends very much on the amount of time and effort you are prepared to put into the drafting.
Note that if you try out this program, and can't find the printer/plotter drivers after installation, re-install it, putting all the various parts of the program under the 'Easytrax' directory, and not in the default directories,

Easytrax in summary

For a dos program, Easytrax is not too difficult to learn. If you master it, you will find it is pleasant to use, comparatively bug-free, and practical.
Its limitations should become immediately apparent on using it to make a real pcb. The merits of the program are that it is possible to design practical basic pcbs and that it is free of charge. It is claimed in the literature that files from Easytrax can be transferred to Protel's higher programs, such as Autotrax and their Windows products.

PCB CAD review subjects

This review, continued next month, covers the following ten products.
PCB Designer: Niche Software Ltd, tel. UK 01432 355414. $£ 49$ inclusive.
PIA: AW Software, tel. Germany +49 89 6915352. PIA std 99DM: extended 171DM 32bit 286DM inc tax.
Easytrax: Protel International pty, tel.
Australia 4084377771
UK PDSL, tel. 01892 663298. £6 copying charge.
Electronics Workshop: Robinson Marshall. CircuitMaker: MicroCode Engineering.
Quickroute 3.5 Pro+: Quickroute Systems Ltd.
Propak: Labcenter Electronics.
Proteus: Labcenter Electronics.
Ranger2: Seetrax CAE Ltd.
EasyPC Pro XM: Number 1 Systems.

Note that although starting with a couple of smaller packages, this review is not in any order of complexity or competence.

Protel International pty, tel. Australia 408 437 7771, UK - PDSL, tel. 01892663298. £6 copying charge.
*KeyCad is a product of Softkey International Ltd.

"Your low cost route to embedded 8051"

Programming support for the following devices: Generic 8751/8752 microcontrollers from Intel \& Philips Atmel 8951/8952 FLASH replacements for the 8751/8752
Atmel 1051/2051 20-pin FLASH 8051 microcontroller
derivatives derivatives
Senat EEPROMS families: $24 \mathrm{Cox}, 93 \mathrm{Cia}, 59 \mathrm{Cx}, 25 \mathrm{Cx}$
(optional extra)
Coptongle

MICRO-PRO 51

"Hardware/software upgradeable programmer for the 8051 family"

- Accepts up to 40 pin DIL directly via Aries ZIF socket
- Surface mount and PLCC package adaptors available as optional extras
- Atmel 8951/8952 \& 1051/2051 ICE cables available as optional extras
- Field programmable hardware to allow future upgradeability
- Fast PC parallel port based design
(Restricted to 2 K total program code, SMALL model oniy)

Embedded C51 Starter Systems for the 8051 family

Atmel 8051 FLASH Microcontroller Range

	8951	8952	1051	2051
FLASH code ROM	4 K	8 K	1 K	2 K
RAM	128	256	64	128
I/O	32	32	15	15
Timer/Counter (16 bit)	2	3	1	2
Serial Port	YES	YES	N0	YES
Interrupt Sources	5	8	3	5
Pins (DIL/PLCC)	$40 / 44$	$40 / 44$	20	20
Special features		Timer 2	Comparator	Comparator

895X-ST (ONLY £215) Comes complete with samples of Atmel 8951 and 895240 pin microcontrollers X051-ST (ONLY £199)

Comes complete with samples of Atmel 1051 and 205120 pin microcontrollers
Equinox Technologies, 229 Greenmount Lane Bolton BL1 5JB. Lancashire. ENGLAND Tet: (01204) 492010 Fax: (01204) 494883 int. dialling code (UK +44 1204) E-mail: sales@equintec.demon.co.uk Web Page: www.demon.co.uklequintec All prices exclusive of VAT and carriage.

Video inserter

Ian Polczynski's module superimposes text, together with time and date information, on any standard composite signal - whether PAL, SECAM or NTSC.

This article describes an on-screen display unit, osd, that allows date, time and text characters to be displayed on top of a background colour video signal. Devices similar to this circuit are common in security and surveillance systems. But low cost and simple construction make this unit suitable for home video processing and archive titling.
Basically this circuit is an eight-bit standalone microcontroller with real time clock, display and input/output facilities. It can perform virtually any task, from controlling your reticulation to titling your video tapes.
The function of this circuit is to input live video, add on-screen information, and output

Features of the μ PD6 145 video insertion chip

- Numbers of character displayed:

12 lines by 24 columns

- Numbers of character types: 112(rom), 16(ram)
- Character size:
$2 \mathrm{H}, 4 \mathrm{H}, 6 \mathrm{H}$, and 8 H per dot
- Character matrix:
6×9 dots, no inter-character space
- Interface with microprocessor: 8 -bit serial input format
- Power supply:

Single +5 V power rail
the result as a composite video signal. Whether the unit is powered up or not, the input video signal is permanently output. A minimum battery back up time of not less then 90 days is achieved.

How the video inserter operates

Figure 1 shows block diagram of the onscreen display unit. In simple terms, a composite video signal is fed to the sync separation circuit and separated into two sync signals, HSYNC and VSYNC. These two signals clock the character generator IC. The generator receives commands from the cpu via serial link and outputs the necessary information to a buffer, which adds character signal to the composite video signal.

About the on-screen display

The unit is based on the NEC μ PD6145 and its display character format is 6×9 dots. As there is no space between characters, the 6145 cmos IC, Fig. 2 enables display of a combination of two or more characters, kanji characters and graphs.
The device consists of a 288 -character video ram array, for 12 lines by 24 characters, a 112character font rom, a 16 -character user defined font ram, the on-screen display logic, and a video clock oscillator.
The chip logic accepts horizontal sync., HSYNC, and vertical sync., VSYNC, and provides digital video outputs for character information.

Fig. 1. Video switching is arranged so that the module can be left in circuit and by-passed transparently when not needed.

Fig. 2. Signal names for the μ PD6 6145 video message inserter.

Fig. 3. Control input for the 6145 video insertion chip is clocked in serially while chip-select is low.

Timing for the character dots is provided by the video clock oscillator. In most applications, this oscillator is simply an $L C$ tank circuit connected to the osc in/out pins. The frequency controls the character width.

Video ram stores the characters to be displayed on the screen along with certain attribute data pertaining to those characters. One nice feature of this IC is that once a character has been written to the on-screen display chip, no further cpu intervention is required to 'refresh' the screen.

Protocol of the display chip

Figure 3 shows the 6145 control-input format. After the CS line is set to ' L ' the cpu starts to send clock impulses and data bits from msb.
The shift registers for serial interfacing with external units consist of eight bits, but the 6145 commands comprise nine bits. Because
of this, instructions are divided into two banks. One of these banks is selected by one bit of the format selection command, Fig. 4.
Each control command is executed when a strobe pulse is input after eight-bit data has been input. To write display character data continuously without changing the character attributes only character command is to be sent. To display the sequence ' 012 ' for example, the following control commands should be transmitted: $00_{16}, 01_{16}, 02_{16}$. The write address is incremented automatically at the fall of the STB pulse when display character data is input.

Separating sync

The 6145 only accepts extracted horizontal and vertical sync signals, HSYNC and VSYNC. To provide the device with this timing information from a composite video signal, a dedicated sync separator circuit is employed, based on the Gennum GS4881 sync separator, Fig. 5. This IC is a drop-in replacement for the industry standard LM1881.
Composite video is ac coupled via an external capacitor to pin 2 . The device clamps the sync tip of the input video to 1.5 V and then slices at 77 mV above the clamp voltage. Resultant signal, at pin 1, is the input signal with the active video portion removed.
For HSYNC timing, the BACK PORCH output, at pin 5 , is used. Figure 6 shows the difference between these two signals.
In PAL composite video, horizontal sync pulses are followed by the back porch interval. The 4881 generates a negative-going pulse on pin 5 during this time. It is delayed typically 500 ns from the rising edge of sync and has a typical width of $2.5 \mu \mathrm{~s}$ - just enough for the 6145 display IC.
The vertical sync interval is detected by inte-
grating the composite sync pulses and is clocked in and out with a fixed width of $197.7 \mu \mathrm{~s}$.
No chrominance filtering is done within the device. If the input signal contains large chrominance components or has significant amounts of high-frequency noise, external filtering may be necessary. This filter can be a simple single-pole low-pass filter, having a comer frequency of approximately 500 kHz , and providing an ample bandwidth for passing sync pulses with almost 18 dB attenuation at 3.58 MHz (NTSC colour subcarrier).

To control the source resistance seen by the sync separator, i.e. minimise the amount of attenuation, a low output impedance buffer is recommended. An NPN emitter follower works well.

Mixing video

To simplify the circuit and to make it compatible with NTSC, PAL and SECAM, a limitations need to be imposed on the project targets - colour availability. Unfortunately, the three standards use different colour encoding methods. It is impossible to produce a colour video signal that is compatible for the three standards, unless you go for vivid white only.
To envisage vivid white means, imagine a screen showing a colour video pattern from a video generator for all three colour standards and monochrome, Fig. 7. Displayed on screen, the video of Fig. 7 shows vivid-white dot in the middle of one of the horizontal lines, regardless which standard it is overlayed onto. The black line, 10% above white level, represents a 'white dot' overlayed on top of 'live' video signal.
Figure 8 shows the video mixer in outline, illustrating how a composite video signal passes through the on-screen display unit. A 75Ω

Bank 0 commands

Display character data
Colour/blink data for each character
Character display line address
Character display column address
Background specifications
Write sync, smoothing on/off, display on/off Blink/oscillation control

Bank 1 commands
Video ram write data
Video ram word address
Vertical display positlon address Hoizontal display position address Character size specification

Fig. 4. Command descriptions for codes controlling the on-screen display chip.

Fig. 5. Pin compatible with the industrystandard LM1881, the GS4881 extracts horizontal and vertical sync signals from composite video.

Fig. 6. For horizontal sync, the 4881's backporch signal is used. At $2.5 \mu s$, this pulse is just wide enough for the 6145 display chip.

Video signals and standards

NTSC: National Television Standard Committee, or NTSC, is the USA agency that developed standard monochrome and composite-colour video signals for the USA. NTSC (some say this means never the same colour) standard has been adopted by countries tike Japan, Canada, Mexico and many others.
PAL: An acronym for Phase-Alternate-Line, PAL is a video standard for colour tv developed by Telefunken Company in Germany and from principals point of view is similar to NTSC. It includes a line-by-line alternation in phase for one of the two colour-signal components. PAL is used by most of Western Europe, except France.
SECAM: This standard, Sequential Couleur Avec Memoire, was developed in France. Luminance signals have the same format as those of NTSC and PAL, but colour-difference signals modulate two separate carriers that are transmitted on alternate line and to restore missing colour information SECAM decoders include a one-line (1H) delay element.
Colour Burst: is a reference subcarrier window for colour identification. It is transmitted after horizontal sync impulse and before video section of the composite video signal.
Composite Video: Composite videq is an analogue signal
suitable for transmission on a single channel and is obtained by combining the chrominance and luminance signals with sync and blanking pulses.
RGB: This term refers to the tree electrical signals corresponding th the red, green and blue components of an image.
YUV: After correction and shaping, the RGB signals are encoded to produce chrominance (C for Colour) and luminance (Y for brightness) signals. Then, combining the chrominance and luminance with sync. and blanking signals produces a composite video signal. Video signals may pass through many stages of editing and recording. To maintain fidelity the video signal is best handled in a three-signal component format: the electrical analogous of luminance (Y) and the colour differences B-Y (U) and R-Y (V). YUV requires less bandwidth than RGB: equal amounts of picture detail reside R, G and B, but the YUV system conveys fine picture detail anly in Y. Bandwidths are approximately 4 MHz for Y, 500 kHz for U and 1500 kHz for V, resulting in a lower overall bandwidth. A VCR needs three tracks to handle RGB standard, but for YUV, the VCR requires only two tracks, one for Y and one for U and V together.
composite video signal feeds the input connector and is output to the output pin via a low-value resistor.
From the input, the signal is buffered to the sync-separation circuit. An emitter-follower type circuit switches the on-screen display circuit to the output. This transistor is switched by the on-screen display IC. While on, the transistor saturates the live video signal to white, but while off, it has no effect on the output video.
In addition to mixing a live video signal with white overlayed information, the above circuit maintains the 75Ω characteristic impedance for both input and output. The unit can be permanently connected to the video path of any video system - regardless of being used or not. The unit will not have a negative

On-screen display components

Resistors (ail $1 / 4 \mathrm{~W}$ metal film)		
$R_{1,5,14}$		1k
$R_{2,3,10,11}$		10k
$R_{12,15,16}$		10k
R_{6}		75R
R_{7}		220R
R_{8}		2k2
R_{9}		100k
$R_{13,17}$		100R
R_{18}		680k
Resistor blocks:		
$M R_{1,4}$		$8 \times 10 \mathrm{k}, 9 \mathrm{pin}$
$M R_{2,5}$		$4 \times 10 \mathrm{k}, 5 \mathrm{pin}$
MR_{3}		$5 \times 10 \mathrm{k}, 6$ pin
$V R_{1}$	Variable	2 k
Capacitors		
$C_{1,12}$	Ceramic	$1 \mu \mathrm{~F}$
C_{2}	Ceramic	56nF
C_{3}	Ceramic	10 nF
$C_{4,6,7,9,10}$	Ceramic	100 nF
$C_{11,13,14,18}$	Ceramic	100 nF
C_{5}	Electrolytic	$1000 \mu \mathrm{~F} / 16 \mathrm{Vdc}$
C_{8}	Tantalum	$22 \mu \mathrm{~F} / 25 \mathrm{Vdc}$
C_{15-17}	Ceramic	22pF
C_{18}	Variable	$5-30 \mathrm{pF}$
Semiconductors		
D_{1}		UF4002
D_{2}		Red led
D_{3}		1N4148
Q_{1-3}		2N2369
$1 C_{1}$	OSD	PD6145
$1 C_{2}$	Oscillator	HA72101P
$1 C_{3}$	Sync sep.	GS4881
$1 C_{4}$	RTC	6818
$1 C_{5}$	8 bit cpu	$80 C 39$
$1 C_{6}$	E-prom	M27C64
$1 C_{7}$	Octal latch	74LS373
$1 C_{8}$	Voltage reg.	L7805
Miscellaneous		
Quartz crystals		
XTAL ${ }_{1} \quad 32768 \mathrm{kHz}$		
XTAL 212 MHz		
$L_{1} \quad 22 \mathrm{H}$ fixed inductor		
Keypad push buttons		

influence on the quality of the transmitted video signal.

Circuit details

Circuitry for the on-screen display module is shown in Fig. 9. Diode D_{1} provides rectification as well as reverse-polarity protection. Any ac or dc input between about 8 and 12 V should suffice. Unregulated voltage is sensed via a transistor which pulls down the chip select input of $I C_{4}$.
Analogue circuits needs to have a near constant current drain with time. Since the designer has less control over the variation in digital ground currents you must be aware of the logic power requirements. Current surges can be decreased through extensive bypassing Even though the digital logic may not need it, providing a bypass ceramic capacitor for every power pin minimises interference from the digital circuit on the analogue signal.

CPU and the program memory

Logic is built around the 80C39 microprocessor, $I C_{5}$. This controller contains a 128 byte ram, 24 i/o lines, 16 bit auto-reloaded timer, a fixed-priority interrupted structure and an onchip oscillator.
Software resides in an external 27 C64 eprom. For addressing this device, latch $I C_{7}$ is necessary to demultiplex the lower address bits from the data bits. The 80 C 39 is mapped in the external data memory area. To do this, external-enable pin EA is connected to 5 V .
All i/o pins connect to pull-up resistor blocks. Resistor R_{15} pulls up e-prom address line 12, thus with LINK1 open the upper half of the program memory is selected. When closed, this link causes program memory to start from location zero.
LINK2 must be open to enable the cpu to fetch instructions from external program memory starting from address 0000 . We have produced a pcb designed to operate with both internal rom cpus, i.e. $83 \mathrm{xx}, 87 \mathrm{xx}$ types, and rom-less versions in the 80 xx range. With LINK2 closed, the circuit operate correctly only with internal-rom cpus.
Reading from the e-prom is carried out in two phases. First, the cpu sends out via PORT0 the lower address bits A_{0-7}. At the same time, the ALE line goes low and the the lower part of current address is latched in $I C_{7}$.
In the second phase of the cycle, the cpu sends out the upper address A_{8-11} via PORT2 pins P_{20-23} and the PSEN signal goes low. This activates e-prom data lines D_{0-7} and the cpu reads a byte of data from the e-prom.
The same occurs when the cpu talks to the cmos ram and real time clock, $I C_{4}$. This device is accessible at any time because its chip select input pin is pulled down by the transistor and the RESET and PWR SENSE inputs are pulled up via resistor R_{11}.
There is no conflict on the address/data bus even though the two memories connect to the same port. The $80 x x$ family has separate address spaces for program and data memory. In other words, when the cpu addresses an e-prom, it uses PSEN as the chip-select output,

Fig. 7. Colour video patterns for the three $t v$ colour standards and monochrome are dissimilar but it is possible to superimpose a vivid-white signal that provides the same display results with all four.

Fig. 8. In this video mixer arrangement, the top emitter follower is switched by the on-screen display unit between acting as a buffer and saturating the video to white.
whereas while addressing ram it uses RD and WR outputs to read or write.

RTC and memory with back-up

The 146818 real-time clock is a peripheral c-mos device combining three features - a complete time-of-day clock with alarm, a calendar, a programmable periodic interrupt and square-wave generator, and 50 bytes of lowpower static ram. It includes a multiplexed bus interface circuit, so it can be directly connected to the 8039 cpu .
The on-chip oscillator is designed for a parallel resonant crystal at 4.194304 MHz , or 1.0485765 MHz , or 32.768 kHz . However, if the internal oscillator is used, current con-

Technical support

Readers interested in a designer's kit incorporating the 6145 on-screen display IC, osd and keypad pcbs and a pre-programmed e-prom can obtain them from Polvision at 77 Glanton Way, Dianella, Western Australia 6062 for AU\$99.
sumption of the chip is too high and battery back up time would only be about a week. The target was set up to minimum 90 days. To solve the problem an additional low-power cmos chip $I C_{2}$ has been employed, namely the HA7210IP. This is a very efficient oscillator IC and brings consumption down to battery
less than $30 \mu \mathrm{~A}$. As a result, 100 mAh NiCd battery can easily provide more than 90 days' operation.
The battery is charged from the 5 V rail via resistors R_{17} and R_{13} and diode D_{3}. This diode stops the battery being discharged by other components when the unit is in a standby mode.

Implementing the design

In our design, all major components of the onscreen display circuit are mounted on a single board.
A description of switch functions and software appears in a later article.

Web files

Computer Science Technical library, searchable at,
http://www.cs.indiana.edu/cstr/search
There, you can locate computer or EE-related technical reports, though most are highly academic. CERA Research maintains a comprehensive list of searchable non-commercial sites at,
http://www.cera2.com/micro.htm

Search the world wide web

As any design engineer who surfs the net will tell you, finding the Web sites of even major vendors like Hitachi Semiconductor can be difficult. Who would think of,
http://www.halsp.hitachi.com
Fortunately, major search engines now make finding them easier than ever.
One of the most popular is Alta Vista, underwritten by Digital Electronics Corporation at,

http://altavista.digital.com

On Alta Vista, use the symbols ' + ' or ' - ' to tighten your searches for exact matches. Enter '+embedded +microcontroller', for example, to identify Web sites having both embedded and microcontroller in their text. Lycos is a great alternative, at,
http://www.lycos.com
though not as fast as Alta Vista.
Even Yahoo - formerly only a subject-tree of resources - now provides a limited search capability at,
http://www.yahoo.com
There, you can have the best of both worlds almost. First, select a category-specific area such as,

http://www.yahoo.com/Computers/ Hardware/Microprocessors/

to browse for microprocessor-related information. Then, search the subarea by entering terms in the blank field at the top, such as 68 K . Alternatively, go up a level and search
all of Yahoo.
Across the Net, at AT\&T, don't miss the innovative new service called Phoaks - People helping one another know stuff - at,
http://weblab.research.att.com/phoaks/
Phoaks sifts through postings to USENET discussion groups, and tabulates the most popular Web sites for a particular group such as sci.electronics.components, or comp.realtime. It's a great way to identify which sites your electronics engineering peers find hot.

Search usenet

USENET discussion groups, such as sci.electronics.design, can be a wonderful yet frustrating way to obtain electronics design information. The problem is the high volume of 'noise' on groups such as comp.dsp, comp.arch.embedded, or sci.electronics.cad. The solution? Use a USENET search engine, such as Dejanews at,

http://www.dejanews.com

Dejanews will sift through postings' based on key words, allow you to read postings, and you can even respond to postings of interest.
Other free search services for USENET are Alta Vista (simply select 'USENET') Infoseek at,
http://www.infoseek.com
or Excite at,
http://www.excite.com
In most cases, you can restrict your search to a specific group such as comp.dsp or sci.electronics design.

About the author

Jason McDonald is an Internet and Web consultant, working in Fremont, California. He has a Ph.D. from the University of California, Berkeley, and has written for numerous trade magazines. He can be reached by email jasonm@violet.berkeley.edu or at Tel. 510-71 3-9493.

MIXED-MODE SIMULATON. THE POWER OF VERSION 4.

Analog, Digital \& Mixed Circuits

Electronics Workbench ${ }^{\text {® }}$ Version 4 is a fully integrated schematic capture, simulator and graphical waveform generator. It is simple to mix analog and digital parts in any combination.

Design and Verify Circuits... Fast!

Electronics Workbench's simple, direct interface helps you build circuits in a fraction of the time. Try what if scenarios and fine tune your designs painlessly.

The electronics lab in a computer

 ElectronicsWorkbench
Wedew

T Erem

More Power

Simulate bigger and more complex circuits. Faster. On average, Electronics Workbench Version 4 is more than 5 times faster than Version 3.

More Parts

Multiple parts bins contain over twice the components of Version 3.

More Models

Over 350 real world analog and digital models are included free with Electronics Workbench. And, if you need more, an additional 2,000 models are available.

Incredibly Powerful. Incredibly Affordable.

If you need mixed-mode power at a price you can afford, take a look at this simulator and graphical waveform generator that mixes analog and digital with ease.

True mixed-mode simulation: Simultaneous AM transmission, digitization and pulsecode modulation of a signal.

With over 20,000 users world-wide, Electronics Workbench has already been tried, tested and accepted as an invaluable tool to design and verify analog and digital circuits. With Version 4 true mixed-mode simulation is now a reality with incredible simplicity.

Electronics Workbench ${ }^{\text {TM }}$

The electronics lab in a computer ${ }^{\text {TM }}$

Order Now! Just £199* 44-(0)1203-233-216

RG Robinson Marshall (Europe) Plc

Nadella Building, Progress Close, Leofric Business Park, Coventry, Warwickshire CV3 2TF Fax: 44 (0)1203 233-210
E-mail: rme@cityscape.co.uk
Shipping charges UK $\mathbf{5 . 9 9}$. All prices are plus VAT. All trade marks are the property of their respective owners. Electronics.Workbench is a trademark of Interactive Image Technologies Lid., Toronto, Canada.
- 30 Day money-back guarantee

MICROMASTER LV PROGRAMMER

The Only True $3 V$ and $5 V$ Universal Programmers

ce Technology's universal programming solutions are designed with the future in mind. In addition to their comprehensive, ever widening device support, they are the only programmers ready to correctly programme and verify 3 volt devices NOW. Operating from battery or mains power, they are flexible enough for any programming needs.
The Speedmaster LV and Micromaster LV have been rigorously tested and approved by some of the most well known names in semiconductor manufacturing today, something that very few programmers can claim, especially at this price level!
Not only that, we give free software upgrades so you can dial up our bulletin board any time for the very latest in device support.
Speedmaster LV and Micromaster LV - they're everything you'll need for programming, chip testing and ROM emulation, now and in the future.

Speedmaster LV $\mathbf{S 9 5}$

Programmes 3 and 5 V devices including memory, programmable logic and $8748 / 5$ I series micros.
Complete with parallel port cable, software, re-charger and documentation.

Micromaster LV

4625

As above plus support for over 130 different Microcontrollers, without adaptors, including PICs, $89 \mathrm{C} 51,68 \mathrm{HC} 705 / 7 \mathrm{II}, \mathrm{ST} 6, \mathrm{Z8}$ etc.

8 bit Emulator card $£ 125$

Expansion card for Speedmaster LV/ Micromaster LV containing 8 bit wide ROM/ RAM emulator. Emulates 3 V and 5 V devices. Includes cable and software. Configuration: $128 \mathrm{~K} \times 8$ expandable to 512 K by 8 .

16 bit Emulator card $\mathcal{E} 195$

As above but containing 16 bit ROM/RAM emulator. Configuration: 128 K by $16,256 \mathrm{~K}$ by 8,2 by 128 K 8 , expandable to 512 K by $16 / 1024 \mathrm{~K}$ by 8 .

Tel: +44 (0) 1226767404 Fax: $+44(0) 1226370434$
BBS: +44 (0) $1226761 / 8 \mid(14400,8 \mathrm{NI})$

FEATURES

- Widest ever device support including EPROMs, EEPROMs, Flash, Serial PROMs, BPROMs, PALs, MACH, MAX, MAPL, PEELs, EPLDs, Microcontrollers etc.
- Correct programming and verification of 3 volt devices
- Approved by major manufacturers.
- High speed: programmes and verifies National 27C512 in under II seconds.
- Full range of adaptors available for up to 84 pins.
- Connects directly to parallel port no PC cards needed.
- Built in chiptester for $\mathbf{7 4 0 0}, 4000$, DRAM, SRAM.
- Lightweight and mains or battery operation.
- FREE software device support upgrades via bulletin board.
- Next day delivery.

For a copy of our catalogue giving fill details of programmers, emulators, erasers, adaptors and logic analysers call, fax or dial the BBS numbers below.

NOW, dHE
 BATME IS OVER

U4TEOス

ULTIboard's interactive strenght has always been the major selection criterion of professional Printed Circuit Board designers. Now that every ULTIboard Designer system will be supplied with a SPECCTRA SP4 Autorouter, ULTIboard designers now get the best of both worlds.
All ULTIboard Designer Users with valid update subscription got a MAINTENANCE UPGRADE with the SPECCTRA SP4 (4 signal layers + power/ground layers) Shape based Autorouter. This shows that ULTImate Technology is the PCB-Design Tool vendor that really cares for their customers!

> | THE ULTIMATE | ULTIboard Entry Designer* £ 1295 (excl. VAT) will now |
| :--- | :--- |
| SPECIAL OFFER | be supplied with SPECCTRA Shape Based Autorouter |
| | *free Upgrade with EMC-EXPERT mid 1996 (list price at release £ 1875) |

A new variable capacitor?

Martin Grove proposes a variable capacitor that could form the basis of a variety of transducers - including a truly digitally driven loudspeaker.

Reading an overview article on digital audio, made it evident to me that digital transduction at both ends of the audio chain is still a problem. This provoked some thought, especially as far as sound reproduction was concerned. While pulsewidth modulation, pwm, appears well suited to electromagnetic loudspeakers, power output circuitry is still required and does not appear to be purely digital. In order to deal with parallel digital data, electrostatic speakers seemed to offer the best possibility of a solution, provided that the capacitance of the speaker could be altered by digital means. This implied that the surface of the plates be divided into compartments that could activated independently according to the magnitude of the byte, the final capacitance depending on the sum of the active compartments. Since the capacitance of a capacitor is expressed by

$$
C=\frac{\varepsilon A}{d}
$$

Physical dimensions of the capacitor would be fixed, so the only remaining variable would be the dielectric medium. If some medium could be found which would instantaneously change its dielectric properties in response to an electric current, a solution would become feasible.
At this point, inspiration struck. Two long strips of aluminium foil were attached diametrically opposite one another to a fluorescent lighting tube, held tightly with rubber bands. Leads were connected from each of the plates of the capacitor thus formed, to a capacitance measuring multimeter. The resting capacitance was measured before the tube was switched on, at which point I noticed an instantaneous increase of capacitance - by a factor of more than ten. In order to exclude possible ac interference, I repeated the procedure with a dc supply loaded by an incandescent lamp. With great delight, I noticed an even greater increase.

A better prototype

Following many abortive attempts at trying to manufacture a flat glass envelope with multiple gas discharge elements, I abandoned further experiments

Fig. 1. In the prototype digital capacitor miniature gas discharge indicator tubes were switched to alter the capacitance between interleaved strips of copper foil. Capacitor elements were paralleled via connecting strips to alternate leaves.

COMPONENTS

until a job offer necessitated a translocation to England. With the greater availability of electronic resources here, I resumed my investigations. This work culminated in a prototype digital capacitor, illustrated in Fig. 1.
Figures 2 and 3 show the physical structure of the capacitor. In its resting state the capac-
itor recorded a reading of approximately 90 pF on a digital multimeter.

I used the capacitor as a timing element in a 555 astable multivibrator circuit and took a series of measurements. As you will see from Graph 1, the change in apparent capacitance is clear. In addition, I repeated the experiment,

Graph 1. Measurements taken after the variable capacitor was substituted for a timing capacitor in a 555 astable multivibrator.

Fig. 2. Side view of the digital capacitor showing how the indicator tubes connect on one side to the Veroboard track and on the other, through the board, to current limiting resistors.
There is one power supply rail per row of tubes.

Fig. 3. Plan view of the digital
capacitor's structure clearly shows how the copper strip sets form capacitor plates, between which are the neon indicators.
Capacitance increases stepwise as each row of neons strikes.
measuring the reactance with a square wave. Results are shown in Graph 2.

Energy required to produce this effect is almost certainly provided by the dielectric phenomenon, as can readily be shown by simply connecting the oscilloscope probes across the uncharged and isolated capacitor. By switching the tubes on and off rapidly with a square wave, a replica waveform of about 35 V appears at the terminals. This effect is amplified by charging the capacitor. There is no dc component.
Although the material was very basic and the test equipment anything but professional, it appears that the plasma envelope does indeed enhance the dielectric properties. 1 could find no mention of this effect in standard physics texts. In my prototype, the gas envelope occupied only a small percentage of the volume between the plates, of less than 10%. By miniaturising the device to obtain the closest possible packing density, an enhancement by a factor of ten should be possible.

A practicable digital capacitor

Assuming a resting dielectric constant similar to the prototype and a diameter of 1 mm per tube, a capacitor containing 65536 tubes would measure 256 by 256 mm and have a resting capacitance of around 25 nF . Whether a practical digital loudspeaker could be realised from this remains to be seen and will require further work.
Considering the intuitively appropriate nature of this dielectric enhancing phenomenon, it would be unlikely that it has remained unreported - especially taking into account that fact that this experiment could have been conducted a hundred years ago. Your comments would be very welcome.
I would like to express my thanks to Dr. M. Divine of Cranfield University, for his kind assistance.

Graph 2. Measuring varying reactance from Graph 1 with a square wave.

SYNTHESISED SIGNAL SOURCE

an innovative design from an established 'Off-Air' Company

- Custom designed chip set
- Sinewave output 0dBm into 50Ω
- Can be run independently or genlocked to external source
- dc to 16 MHz in 0.1 Hz steps, with option 0.0001 Hz steps
- Freestanding rack mounting, or OEM options available
- Increased resolution and increased stability options available Models available October, contact us for prices
'OFF-AIR' FREQUENCY STANDARD

- Provides $10 \mathrm{MHz} 5 \mathrm{MHz} \& 1 \mathrm{MHz}$
* Use it for calibrating equipment that relles on quariz crystals

TCXOs, VXCOs, oven crystals
traceable to NPL

- For ADDED VALUE also phase locks to ALLOUIS (cesium
controlled and traceable to OF - French eq to NPL)
Options available ind Brtish manufactured outputs and 13 MHz output for GSM. Pnces on application

TEST EQUIPMENT (IRGIE vo. ITs

We are well known for our quality, new and used Test Equipment. Our list is extensive, ranging through most disciplines. Call for details and a complete list

HALCYON ELECTRONICS VsA

423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8.jR SHOP HOURS 9-5.30 MON-SAT. TEL 0181-542 6383. FAX 0181-542 0340

BROADCAST MONITOR RECEIVER 2 $150 \mathrm{kHz}-30 \mathrm{MHz}$

We have taken the synthesised all mode FRG8800 communications receiver and made over 30 modifications to provide a receiver for rebroadcast purposes or checking transmitter performance as well as being suited to communications use and news gathering from international short wave stations.
The modifications include four additional circuit boards providing *Rechargeable memory and clock back-up *Balanced Audio line output *Reduced AM distortion "Buffered IF output for monitoring transmitted modulation envelope on an oscilloscope *Mains safety improvements.
The receiver is available in free standing or rack mounting form and all the original microprocessor features are retained. The new AM system achieves exceptionally low distortion: THD, $200 \mathrm{~Hz}-6 \mathrm{kHz}$ at 90% modulation $-44 \mathrm{~dB}, 0.6 \%$ (originally $-20 \mathrm{~dB}, 10 \%$).
*Advanced Active Aerial $4 \mathrm{kHz-30MHz}$ *PPM10 in-vision PPM and chart recorder "Twin Twin PPM Rack and Box Units "Stabilizer frequency shifters for howl reduction *10 Outlet Distribution Amplifier 4 *Stereo Variable Emphasis Limiter 3 *Stereo Disc Amplifiers *PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN $-50 /+6 \mathrm{~dB}$ drives and movements *Broadcast Stereo Coders.

SURREY ELECTRONICS LTD

The Forge, Lucks Green, Cranleigh Surrey GU6 7BG
Telephone: 01483275997 Fax: 276477

	Gould $0501604-2004 \mathrm{~Hz}$ Orillosope	HP RPt6ia-Ampither	HP HP97438-Relic	Millivec MvP63a - 8F Millivin	Redilon wk2162 - Marine dratiol math rexeiver
	Gould tr33 - Iime count	-1. HP 8989 - Mrowowe omphther			Rhode 2 Schwan SUF2 - Noise genercior
	Goutd OS250A - Osillssope				Rhode it Shwan Signol generotor lox Hz - $130 \mathrm{WH}_{3}$
Advonce Yw77E-A.C Yoimeer	Gouid 0 S4000 - Osxillosxope		HP MP9sili - Madiliten ano\|rei	Hommo Dill3 - Muthit lundron meter	Rodand DPY. 7200 - Plotre1
Anocon 0 mpen arclizer Ava $215 / / / 2$ - $\mathrm{A} / \mathrm{JOC}$ (Breakdown leokoge I lon son on	H Tinstay 5761 - Resistance bradze Harts RF2305-Recerver exite:	HP HPSODGA - Sigative andyre: HP HPSISOA - Ther mal printer	Hitachi YSSOB - 50 MHz Oxxillaxope Iwatse OMS. 6430 - Digitial nembon soo	Nome DA155 - Pracison Wan merer Philips OWS132 - Funflion penerotor 0.1Hz-2MHz	Rolond DC. DKY-885 - Piotiter Sayrose 261-600Mki Frequemy towne
Baliantine bliz8 - Program mable Sope colibrctor	Wiroat VC.6041- Digiol storpese oxilloscops	HP HPS24L - Ebecrone counter		Philips Pu93-50whz Scopemeter	Schiverberger 419 - Funtion generctior
URC NL -900. NH - Celiller iever	HP HPIC2S4A - Senid to porolle convericr	HP HP52461 - Elecromic conter		Prilips PMobl - Universcl Counter 250 mHz	Schumbergen A270-D.griot mutimeter
Bioonton Bzio -Modulator mete:	HP MPIIII3A - Amenualorimath drver		Kautleer 2000 - Muhimeer		
Bcontion 98 B - RF Willivolimeier	HP HP111359-4mplifies swich	HP PP5254 - Fiequenc cuunter - 18GHz		Philipr PMS162-5were geretitiox	
Bosalon 728 - Capotilince meri	HP MP118598-Amplifier swich	HP HPS302 - SOMHz wemeral counmer	Keithey $179-$ T RMS Digitiol mullimele	Pril ips PM1423- Dpyhol mulimener	Schlumberger 2172-Ummersol countr
	HP MP12YRA - 15MH: Grallscope	HP HPS304 - Tires clunter	Keithiey 19\%\%M - TRMS Multmeter	Prilips PuSill - Puise generitor 1ht-50MH2	Siamens 02155 -Leerl meler
Crotech 3131 - 15 SWHz D Dual Osallowioge	HP MP1415- Divplat serion	HP HPS328A - Unirersal couter		Prilips PM3535 - Osailoxope 36uHz	Siemers Mraxic - Worl metri
Dolo Tech 304 - Digited mutheer	HP HP141A - Oxillocope	HP HPS333A - Umunersal counler	Kikusu, PITIO-Electiona lood 1000\% 15-120\%	Philips PM6302 - RCL Bridge	Siemens $02155-200 \mathrm{~Hz}$-620KHz Leel nee
Dation 1061 - Auvidid digiol mulimem	HP HPIGOOA - Lage siole onolyze	HP HPS5324- Mkroweer frequent counter	Kikusw TOSE850 - Wa dut Tater		Somy
Dation 1061A-Autasal tivitol multimeler		HP MP5370 - Unirersal ind introl Conter	Kikuse PLIIO2W- Paute suppy OC ing	Philips PM 2791 - Alumotu muthmm	Sound Tochnologi 17008-Ditritition meo
Doimon Ioss - Autosal diginal multimeter	HP HPIIZM - Z3S SHL Dosillaso	MP PPSS3014 - ASCCII lo parallel converer	Kroh-Milite 3 OOCA- - function g	Philips PMMEA1 - Pomer meler	
Dation 1030- RMS Vothmeer	WP mp7 40 A - 100 MHz Osectloscose			Pridips PM7832 - SWR Meter	
Dotron 1030 - RMS Yolimeter	HP MP17ila - Osalilcose	HP MP993074 - VFF swith	Leeder LOC-7ow- Oxalloscope colibrator	Phriips PMES08- PAL Colour TV poneri gere	Tektromik Tetrin - Oxillhs (tope
Detron 1055 - DC Yolimeter	HP PP181 - Mo ritome CNW 18042 + 1823 A	HP HP 59313 - ND comenter	Leoder LCC. 740 - LCR bridge	Philips Pelsill - Pomer spopy O-30\%FIA	Toktronik TEK465-0ssilloscope
Dronet 3105 - Predisios oowt 4 to monil onolyzel	HP HP181A - Onciloscose		Levol $\mathrm{Tm} 38-\mathrm{A}$ (mirio wolimete		Toktronit TE157\% - fure lroer
Duckitin lowiped aptixal turic meter	HP HP2034 - Function gevectior	HP HPb002A - DC pewer supply	Lyons PG. 28 - Puly stereitor	PSI A102 - Worrtiom yenerctior	Tehtremik TEK664-Ospilloscose
	HP Pb3iOM - IFPGE Tronsmines		Lyons PG-73 - Putre genectior	P51 A100-Woreturm generator	Pektromik 1T1919-Symol penerator
	HP HP32006- whF pererolor	HP EPbII3C - Diptoi mhege source	Lyons PG-7N - Pulse gemertor	P31 3151- - mumbion gemercrer	Tektronik TEk100-S Sucurwve geneicior
	HP HP3325A - Synterired/lundion penerator	HP HP62618-DC pouer spply	Loom PG:-22 - Pulse generitor	PSIA A102- Werelam generator	
fornoli 15\%70 Mk:11-Pomer supdy	HP HP33308- Antimanc s smitsiner	HP HP9518-Tes oxilllort	Marconi TF69604-R. Power meer		Tehtronik TEAKS3 - Oxillosupe
		HP HPG35 - Smeepry ingol prector	Marcond 178938-4FPower meter		TekTomit TEk46S - Osxillss cope
Famall LT30:2-Powes supely	HP +P1334 - Distortion onalyzer	MP Pp664-Phaselomplitude trocking desesot		Rocal 9908 - Modudation neter	Tel mapupmen 034-Oxtlisxove
	HP HP3004-RMS notmeer	MP MPMPSP908 - Meter raitreter		Recod P916-UHF Frosenent cevm	Toleguy mann 067A-OSxilosope
	HP HP3004 - Brodisard smpling volimeter		Morcoen Tr233- Digite line montor	Rocel 1998-Frequeat connte	Ielequipmen D833-Oxilosoone
Formell 2085 - AF Powe meter	HP HP3 5 SA - Dipipral votrmetr	HP HPpooss - Pulie gemerreor	Morconi Tfl330A - Heve ona Mer	Rocolol 9303 - Truv RMS Rf Leel meter	
Famell DSG1 - 5 mphesird digao generitox	HP PP3456A - Dipinal roltreter	HP HP8COBA - Palse genemator	Morconi P6b6el - Poner meter	Rocal 19339 - UHFFresaens meter	Texscon TG1000- Irading geneatict
Famoli [FM2 - Sime Savere oxtillor	HP MP3 P6SE - Orgal wimmer	WP HPP015A-Puls gemerator	Morcenil Pf660- Power nevis	Rocal 9991 - WHF Frevung meter	
		MP MPP161A - Proprommede puite gameolor	Morconi Mazzosh - PCH Resenerator lest sel	Rocal 9301A - RF Mililvolmmeter itue RMS	Thandes Th2150 - 20MHz Logic analrae
Famell $\mathrm{H} 60-50$ - Auto ronging power wpply Fomell Aploc-90 - Aula iangl h_{9} power suoply	HP MP3490A - Mull Immer HP HP35 677 - 5 -Parameter $s+100 \mathrm{KH}_{2} 200 \mathrm{WH}$	HF RPSOOM - Modultur HP HPBAIOA - Network anolriter	Morconl Tf2091C - Noise generator Marsoni TF21700- Dipytol symetronzer	Rocal 99064-200wHz Universol counter Recol 1792 - HR Rece we	
Formell APlocon - Auto crngivy powe supaly	HP MP35704 - Serwort	WP MP811 A - Hormonit trenwery connen	Mcreoni Tfil3 - Cagiral symitionzer	Roxd I m - Hf Rexivirer	Ws 6 P517-200Hz-4 5 M Hz Level penerior
	HP MP3571a - Trodekn spertum	HP MP8A12 - Phose mognituce display	Morconi r1169-Pulse madiblion ma	Rocol 5004 - Digrol mulimeer	Wa6 Spwl2 - Leeel mever
Fomell 1 Pl100. P0 - Allo ronjing power supay	HP HP3580 - Spexire wohmeter	HP HPS12\% - Phose mognilice displ	Morcom TF2000-AF Osalletar	Rocal 5003 - Digital muli ineter	WL SM1627-Signol meater
frodicack Ewsot - ilimromi Wor meler	If MP358ic - Selerime Yoltmetel	HP MPQ13 - Phose gain ndideror	Mericoni Tris87- Lereling ompinita	Rocal 1500-Deior pulse geneator	WLJ F 2337- Tope ionveroc
Farrogroph RT52 - Reorder tes sist	HP HP3582A - Speatrum anolyer	HP HP8S14-Potar dindor	Morconm T6244-FFrequency counter	Rocal 110-6P18 Mrieftace	Wowtek 1728 - Progestemmbe signol iourit
Fuke SVCA - Piogiommotic AC calibrator	HP IP35914-Steratere voltme	HP HP86149-Poder drapley		Rocal MAItOS - Baigroph	Woreleh 977A - Sieqnol generator 7-126Hz
Ruta 7 bil - Unimesol counterin		HP PP84184 - Auvilion dispor holder	Merconi IF2431- man H_{2} Digindel hequerg neter	Recol $9300-$ Timediounter	Wareter 185- 5 Mhz unilogi weep ox werator
	HP HP3762A - Datip generctor	HP HP943A - Trading gemerctortiountr		Rocol 480 C - Digitol wolmetel	Wove ioh 147-HP Smeep generior
Fhuke 8570 - Diphldid mulimeer	HP MP37634 - Efror deertor		Meriom TF5S508 - Progiommebie power metes		
Fuke 5502 A - apilad multimeter		HP HPQ448 - Avomalik prestiecor	Macicmi TFS5S08/ - Propgrammbe power meter	Recol $452 \mathrm{z}-100 \mathrm{HH}$ Csillospe	Woyme Ken B900-A.tomotic brdge
Fuke 25 - Dijitol muliment				Rocol 80000 - Diphel mutimetr	Worne Keri 1572 - Componers bridge
Futo 1953- Counter inme	HP AP37B14 - Patam generctior	MP PP8477 - 01.12300 MHz amplifer		Rocal 9932 - Insin men I Iheriote	
Fluke 8000 - Dipital mutm meter	HP HP3781B - Patreir generato:	HP MPB97h- - allbetor		Rocal 9523 - Muf Counter/timas	Weir 1335460 - Pamere suply
Fune BSOA - Diftrol mulimezr	IP HP 3732A - Error beteror	HP HPP814A - Sipnol generore	Moronfiffict - Unimerso bridge	Rocod 9105 - FF Has Wurir meter	Wilitron Sol-Leel meter
Auke 80504 - Digild multimetr	HP HP 37888 - Error detretor		Morcen remprea - Digno smentronver	Recal 93050 - RMS Volimemr	Racol herpuency Meters:
Fuke Bloh- Digitel rulit meer	HP HP3960-instumertion mader	HP HPP6408 - Signol genertor	Matconi TF231-Chanel ocess swikh	Rocal Pose - Selectie onolipee MF	99904m. $9996,9992,9995, .9901,9904,9916,9912,9911,9915 \mathrm{~m}$.
G.R.C. 1372 - I Ined amplilier 8 null deterior	AP PF394A - Insturnentior recorder		Morcani Irre33-Mulinper tester	Rocal posp- Frecumny period meler	9914, 913, 9910,9915, 1998, 9921, 9918.
G.R.C 1362-220-920wth UhF Oxill wo		HP MPS@OB - Smep sailacor	Morconi Fr28071 - PCM Mu inder lester	Rocol 9288H - Sigrol genereotor	Tektronik Plug Ins:
	HP MP4316-Power neter	HP HP87798 - Symcroonter	Murcosi IF2829- Digiol anolyed		
	HP HP 4372 - Power meer	HP MPplilh - Tronsmussion bies uppmy	Marcorl Tr1215-Re Power anpiliter	Rodiord IDMS2-2- Low distortion meosuring se:	
Gowid Os300-209H; Oxillosxpe	HP LPR1334 - Oistotion meler	HP HP97ida - Transmismon tes unit	Morconl Iraz\% - PCM Ontol erolyer	Radlord IOCA - Low distertion ossillator	
Gould 0S $6000=0$ osillosepe Gould 138-5xand generition	W HP 4 3d d - Colorimelik power meser MP MP 43 A - Powet melef	HP MP87414 - Red lection test unit 0.1-20GH2 HP WP8742A - Reflection tost unil 20.12.4GHz	Morconl ITF2005- AF Oxthlotor Meguro MKG12 - Jiter meter	Redilon GKZUJN - Ditre unit Roditon SOI - Drve unil	

[^0]
0 Field Electric Ltd.
 Tel: 01438-353781 Fax: 01438359397
 Mobile: 0836-640328
 Unit 2, Marymead Workshops,
 Willows Link, Stevenage, Herts, SG2 8 AB

Sony New 1.44Mb 3.5" D/Drives
Sony 9"Super Fine Pitch Trinltron RGB VDU
AT Keyboards for IBM Compatibles
IDE Hard Disk Drives 40 Mb upwards from
$12^{\prime \prime}$ Colour SVGA 800×600 NEC
£ $14.50 \mathrm{c} / \mathrm{p}$ £2.50

12 Colour SVGA 800×600 NEC £ 35 c/p 12.50 £ 7 c/p 3.50 £24.95
£ $45.95 \mathrm{c} / \mathrm{p} 14$
Marconi Inst = 2830 Multiplex Tester £300
Marconi Inst = Data Comms Tester £385
Marconi Inst = Digital Line Monitor £350
Marconi Inst = Digital Analyser £375
Farnell PSU 0-70V 0-5AN0-30V 0-10A
Siemens Data Line Analyser K1190 £375
Avo AC/DC Breakdown/lonisation Tester RM 215 L 1 £200
Tektronix DAS 9100 Digital Analysis System
Tektronix 7CT 1N Curve Tracer £295
Tektronix 7A15A Amp
Tektronix 7511 Diff = Comp =
Tektronix 7A13 £150

Tektronix 7603 with DF2 +7 DOI Logic Analyser £140

Wandeli \& Golterman PMP20 Level Meter £350

IBM 486 SLC2-50 486 Computer c/w K/Board, Mouse, 5Mb Ram,

$$
1-44,70 \mathrm{Mb} \text { H/Disk }
$$

12 VAC 200 Watt Transformer
27 VAC 130A Transformer New
7 VAC 130A Transformer New

The Balance Box

Microphone or line level amplifier for

 balanced or unbalanced signal linesProfessional portable units operating from an internal PP3 battery or external DC supply

* Precision true floating transformers balanced imput and output at microphone or line level * Simple interfacing and conversion between balanced and unbalanced signal lines * Low noise and distortion * High common mode rejection * Switchable gain selection * Extensive RFI protection

The Phantom Power Box - The Headphone Amplifier

 Box - The OneStop DIN rail mounting radio frequency interference filter and voltage transient protector for voltage and current loop process signal linesConford Electronics Conford Liphook Hants GU30 7QW Information line: 01428751469 Fax: 751223

EASY-PC Professional XM Schematic and PCB CAD

From Super Schematics

To Perfect PCB's

- Runs on:- PC/ 386/ 486 with VGA display
- Links to PULSAR (logic), ANALYSER III (analogue) \& LAYAN (electromagnetic) simulators.
- Design:- Single sided, Double sided and Multi-layer boards.
- Provides full Surface Mount support.
- Standard output includes Dot Matrix / Laser/Ink-jet Printer, Pen Plotter, Photoplotter and N.C. Drill.
- Optional, powerful, 32 bit, Multi-pass, Shape based, Shove Aside, Rip-up and Re-try Autorouter.

Number One Systems

UKEEC: Ref: WW, Harding Way, St.Ives, Cambridgeshire, ENGLAND, PE17 4WR. Email: sales@numberone.com Telephone UK: 01480461778 (7 lines) Fax: 01480494042 International +44 1480461778

[^1]Ref: WW, 126 Smith Creek Drive, Los Gatos, CA 95030 Telephone/Fax: (408) 395-0249

Design lab bytes

Abstract

Tina is a pc-based circuit design lab with virtual instrumentation including scope and spectrum analyser. Until now it has bubbled under as a DOS package, but Clive Ousbey believes that the new Windows version poses a serious threat to the competition.

Recent years have seen a greater use of simulators as an aid to electronic design. This has been due largely to easier to use graphically driven systems. While being powerful in experienced hands, older style netlist entry types of simulator where not user friendly. On the other hand, the early graphics-based programs that were easier to use were either expensive 'professional' systems or lacked much power or flexibility.
TINA for Windows, version 4, from DesignSoft, is the latest simulator package attempting to close this gap. An acronym for Toolkit for Interactive Network Analysis, TINA is a Hungarian product that has existed in a DOS form for several years. Until now, it has had quite a low profile in the UK. In order to address these problems, the makers have appointed a new distributor to market the significantly enhanced new Windows version.
TINA's graphical interface is similar in style to its main competitor Electronics Workbench, but offers a wider variety of output presentation, greater flexibility, optional instrumentation hardware and more extensive analysis options. The latter gives it a functionality more in line with something like PSpice.

Circuit capture facilities

The schematic editor is normally used for working on a circuit for analysis.

The alternative is to import a PSpice type netlist: exporting is also a possibility. TINA has an editor which is easy to use and operates as you would expect a Windows program to work.
Component symbols are selected from tabbed groups on the tool bar. In some cases, a generic symbol is not appropriate. Clicking the symbol icon instead opens a list of related parts to choose from. The symbol can be rotated or mirrored and its properties modified, either while placing or at any time thereafter. Various parameters relating to the component can be edited - value or tolerance for example - via the properties window.
In addition to the usual components, there are various others to aid building and simulating a circuit. These include voltage sources, jumpers allowing separate parts of the circuit to be connected by a signal name and the ground symbol that must always be present.
Input and output can be slightly confusing due to the variety of ways it can be achieved, depending on the type of analysis required. For measuring basic signal input and output, there are voltage or current generators, various meters and voltage test pins available. A selection of signal types can be applied to the input - including the option of a user-defined waveform.
Virtual function and digital signal generators are available to provide stimulus. For more complex analysis, a

Tina's vifal statistics

Editors

Schematic and netlist editors
Text and equation editors with interpreter

Presentation

Bode plots and Nyquist diagrams
Transient response plots and digital waveforms
Linear or \log scales

Analysis

Fourier
DC, with automatic circuit optimisation
$A C$, with complex V,I, Z and power analysis
Transient analysis for analogue and mixed mode
Symbolic analysis gives closed form expressions

Simulation

Analogue, digital and mixed-mode

Stimulation

Standard and user-defined circuit excitation

Virtual instruments

Signal analyser
Storage oscilloscope
Function generator
Logic analyser
Digital multimeter
Digital signal generator

Hardware options

PC measurement expansion card Experimenter box with plug-ins

Main editing window with example RLC circuit.

Setting up non-ideal step excitation.

Output graph showing result of transient analysis with Monte Carlo tolerance sweeping (5 runs only), the step input and the cursors can also be seen.
special input, and or output, need to be added.

To enhance presentations, teaching materials or other literature, text including mathematical expressions may be added to the circuit diagram. Pressing F9 automatically inserts the component value as a label on the diagram. Alternatively, the component label can be entered manually and customised.

Symbols are connected with the wiring tool and this is one of TINA's weaker features. While better than some packages, when first wiring up a circuit in the usual way, care is needed as it is reasonably easy to fail to connect things up.
DesignSoft is currently working on improvements in this area which I am told will be ready by the time the production version becomes available. Even so, using the mouse in conjunction with 'hot keys' makes wiring much easier. Also, if a circuit element is not connected, it is highlighted before analysis, and pressing DEL gets rid of any extra wires.

Wiring is made up of vertical or horizontal segments. These can start or end on any grid point - not just at pins. Segment lengths can be changed but if a mistake is made it is probably easier to delete the original and add a new segment of wire. This also means that if a component is moved the wiring stays put, unless all the wiring segments are selected as well. Moved components then have to be reconnected and the original wires deleted.

The above problem is only relevant when one component is moved. You can move whole circuits or circuit segments and the wires stay connected. DesignSoft says it is currently working on an upgrade involving rubber banding, which will solve this inelegance.

With the exception of the virtual instruments, almost all analysis is controlled from the menu. The usual Windows type dialogue/control boxes make it reasonably easy.

Analyses include mixed-mode

There are three basic types of analysis - namely digital, analogue and mixed mode. For a purely digital circuit you can choose whether or not to look at delays, but all high/low transitions are considered ideal - i.e. almost instantaneous. In analogue mode, a full simulation takes place and in mixed mode, propagation delays of the digital parts is also taken into account.
A digital-only circuit can optionally be run in mixed mode. In mixed-mode analysis, again you can choose to include delays, but in this case, rise times and slopes are calculated. In analogue modes, options include dc, ac, transient and noise. Having run a transient analysis, a Fourier series or spectrum can be obtained via the process menu.

Particular component parameters can be swept to determine their effect on a circuit. The component can also be optimised to a target or maximum/minimum value. Component tolerances can also be varied using various distributions or worst case. This is useful for seeing how sensitive a circuit will be to
real component variations.
The analysis can be run at any desired temperature or swept over a range of temperatures. There is also the option of running a PSpice analysis by first generating a netlist.

Output facilities

Standard analysis output is a graph, or set of graphs, in a new window. There is also the option of using a virtual multimeter, oscilloscope, signal and logic analyser.
The graphs windows allows the placing of a moveable cursor that can track any curve to obtain the x and y values. To aid presentation, etc lines and circles can be drawn on the graph as well as text and labelling. The graphs can be rescaled and the annotation of axes can be changed before printing.

Libraries

A library catalogue compiler - running in DOS only - is available, allowing users to add their own parts into the library. This was not included in the review release.
The method as described in the manual uses a text file that contains the various component modelling details as well as symbol drawing directives. This is compiled into the binary catalogue that TINA uses.

Additional features include matching hardware

A mathematical interpreter is provided to allow the entry and evaluation of expressions and equations. Other uses include plotting results and defining arbitrary signals for circuit stimulation.
As already mentioned there are also features included that can assist in the teaching of electronics. There are modes for training and examination that provide for students' exercises preassigned by a lecturer. Fault simulation is also a useful feature for the teaching environment.

Matching hardware, for use with TINA, is available but was not reviewed. A plug-in instrumentation $P C$ card known as TINAlab - provides a multimeter, oscilloscope and signal generator under TINA's control. User interfacing for these features is provided by the virtual instruments. This allows a real circuit to be built and directly compared with the simulated version.

Further available hardware includes an experimenter box with a breadboarding area that connects to TINAlab. This also has a slot for plug-in modules such as a fault insertion card or a digital measurement card.

This feature of matching hardware for real world interfacing is something quite rare in simulators and provides new scope to their use.

Four-stage shift register showing logic states of nodes and step-by-step analysis control control.

Virtual logic analyser showing resulting states of shift register circuit.

4 stage shift register.

Virtual oscilloscope showing response of RLC circuit.

Capabilities, requirements and manuals
TINA's capacity is stated as being 1000 components and 2000 nodes, dependent on memory. But the actual relationship between capacity and memory size is not given. The minimum specification for the package is a 386 SX running, Windows 3.1 .
Generally, the manuals are good, but some areas are not explained very well. For example, the different methods of input and output are not made clear. On the other hand, good attention is paid to the various components and to the simulator itself. Appendices covering the library compiler, interpreter, additional hardware and the educational aspects are also good.
I found some inconsistency in the getting started section. The screen shots did not always show what had been described in the text. For example, a meter symbol that has been
placed on a circuit as instructed in the text is different from that shown in the screen shot.

In summary

Overall this is an excellent package, versatile, value for money and easy to use. It poses a serious threat to the competition. TINA scores particularly well with the ability to take into account tolerances, do parameter sweeping and being able to define new symbols as well as simulation models.
The features to aid training and presentations are very good and the additional instrumentation hardware could be very useful.
The supplier has indicated various forthcoming features which - if they don't fall into the everlasting 'coming real soon' category of upgrades - will usefully enhance TINA.
Top of the list must be an interface to a peb layout tool. This is a natural pro-
gression as what often happens is that a simulated circuit has to be re-entered into the pcb system before layout can commence. Improvement to the schematic editor giving 'rubber banding' of the connections is also promised.

Macros or the ability to make sub-circuit blocks from a circuit to give a form of hierarchical design could make the handling of larger circuits easier.

Although not mentioned, the ability to have component parameters visible or not would be very useful instead of having to enter them separately as a text label or automatically via the F9 function key.

Beyond these features. what would make a very interesting application would be the ability to use the simulator itself as a sub-circuit. That is by using the hardware to take input from and provide output to the real world TINA would act as a virtual breadboard.

Free circuit design software TINA for Windows

This month's cover disk* is a working, interactive version of TINA for Windows. Newly launched, this comprehensive package is an electronics toolkit integrating all the functions needed for the design, development and test of electronic circuits. TINA makes it easier and faster to simulate circuits with realistic characteristics.
TINA comprises a software simulation and analysis package, together with a complete range of 'virtual' test and measurement instruments for testing design theories as well as breadboards, prototypes or any other electronic product.
The demonstration version of TINA presented free with this issue of Electronics World allows circuits of any size to be constructed but analysis only works on a limited number of nodes. Save and print facilities are also disabled.

PSpice compatibility

Unlike many circuit design systems, TINA can save your designs as an industry standard PSpice format netlist - which means that design concepts are based on the specifications of actual components. This makes simulation more realistic and the identification of faults easier. It also simplifies 'what if' questions, and allows different components to be tested quickly, easily and without the need to build breadboards. This obviously saves considerable time, as well as the cost of components.
Comprising all the necessary hardware and software, Tina is a complete system which allows digital, analogue or mixed-mode circuits to be simulated. Tina is also a powerful analytical tool and can perform $A C, D C$ or transient analysis as well as noise, tolerance and Fourier analysis.

Comprehensive library

A comprehensive library of components contains power supplies, resistors, capacitors, inductors, amplifiers, switches, etc. Using familiar Windows-style commends, these are simply selected, dragged and dropped into the desired circuit diagram. Component values can then be changed to create and test the feasibility of the ideal circuit,
The library features digital components, including a large selection of $T \mathrm{~L}$ and CMOS standard devices.

Low price

Tina, is very cost effective. A single copy of the software costs only $£ 299$ and a 20 -user site licence is only $£ 1,800$, excluding hardware. Special discounts are available for educational establishments.
For further information contact: Tandem Technology Limited, Breadbare Barns, Clay Lane, Chichester, West Sussex, POI 8 8DJ, telephone: 01243576121 fax: 01243576119 , e-mail 101626.3234@compuserv.com
*Available to UK readers only

Virtual instruments - supplied with the Tina circuit design tool is a complete range of test and measurement 'virtual instruments' - including a function generator, multimeter, power supply and oscilloscope. These are used to analyse test circuit designs as well as providing real time test and measurement of actual circuits, prototypes and breadboards. The benefit of these 'virtual' instruments is that they operate via the PC. This makes it easy to incorporate measurement values into calculations and analyses.

Until 4 Oct ei, this voucher is worth $£ 100$ off TINA's normal price of $£ 299$ excluding VAT and delivery. Simply send this voucher together with £237.93 - fully inclusive - to Tandem Technology Limited, Breadbare Barns, Clay Lane, Chichester, West Sussex PO18 8DJ. Telephone: 01243576121 fax: 01243576119 , e-mail lo1g26.3234@compuserv.com.

Loading your free software

Full instructions on loading the demonstration version of Tina are given in the README.TXT file on the disk. This file is accessed by inserting the disk in drive A and double-clicking on the file under Windows' File Manager. Once the software is installed, this read-me file appears as a Windows icon.

SEETRAX CAE RANGER PCB DESIGM WITH COOPER \& CHYAN AUTOROUTER

RANGER3 - DOS £2500
- Windows\MT £2900

Hierarchical or flat schematic linked to artwork. Unlimited design size, 1 micron resolution Any shaped pad, definable outline library Pin, gate \& outline swapping - auto back annotation Split power planes, switchable on - line DRC

COOPER \& CHYAN SPECCTRA
autorouter (SP2)
Inputs: OrCAD, Cadstar,
PCAD, AutoCAD DXF
Outputs: Postscript, Windows bit map
R2 \& R3 Outputs: 8/9 \& 24 pin printers, HP Desk \& Laser Jet, Cannon Bubble Jet,

HP-GL, Gerber,
NC Drill, AutoCAD DXF

TRADE IN YOUR EXISTING PACKAGE TODAY

Seetrax CAE, Hinton Daubnay House, Broadway Lane, Lovedean, Hants, PO8 OSG
Call 01705591037 or Fax 01705599036 + VAT \& P.P All rademarks acknowedged
CIRCIENO. ILA ON REPL YCARD

8 CAVANS WAY, BINLEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF Tel: 01203650702 Fax: 01203650773 Mobile: 0860400683 (Premises sttuated close to Eastern-by-pass in Coventry with easy access to M1, M6, M40, M42, M45 and M69)	TELNET Hewlett Packard 62618 - Power supply 20V-50A DISCOUNT FOR QUANTITIES Hewiett Packard 7402 - Recorder with 17401 A 22 plug-ins Hewleft Packard 8005 B - Pulse generator Hewlett Packard 801 A - Pulse gen $0.1 \mathrm{~Hz}-20 \mathrm{MHz}$ Hewlett Packard 8152A - Ophcal average power meter Hewlett Packard 8158 B - Optical attenuator with opl's $002+$		
uscellaneous			Phill
			230
	Hem		
Databa 0	Hemerf facarara $86200-$ Sme	cismo	
		2500	
(eat			
	Hewert Pacharc 89030-ALuO analyser (20HZ-100\%H2)		
IISSE52			
Farnell TSV70 MkI I- Pom			
Fluke $52000-\mathrm{AC.C.c}$			
S205A Preceison Dowe ampliter.	M		(tiolt
Fill		${ }^{2000}$	
Hemetr Packara 334A	Reasi Dana 1992-190		(foraipmil Other scopes avaliable too
	fa	50	SPectrum analysers
	Racail Dana 992923 3 Hhzr teuu	${ }_{\text {cis }}$	
Herner cisoo	Schatner SGG 200E-Me	$\underset{\substack{\text { cir } \\ \text { c120 }}}{\text { cis }}$	
men Packara 3388A	schlumberger 2ra--1250MHz frea Ca		
(1) Cr750		${ }_{\text {cla }}$	
	SYstro Dooner 19800- - Mcicomve Sweeer (12-16G		50
			0
Hewert Packara 3746A- seecrive leve measumg set.	Teetronnix 1240 Log	¢750	
3776 - PCM Terminall lest sel [P.0	nl 4		
Hemetr Packard 3779 NC - Primary Mux analyser	Texter	Ca995	
	9811	500	
Hewletf Packard 9988A- transmusson imparment measuning sel . 200		¢p.o.	
Heelerf Packera 493A - Pmoteol	ne Kerr Not-	350	
enf Packerat 531 A - (rew) 100 M			
or Packarat 5332A- Mcrowneve leac coumer (18GHz)			
	OScilloscope		MACE SAE FOR LIST OFEOUIPMENT
			UIPMENT IS USED - WITH 30 DAYS
4 PaCcharc 6002A-			JARANTEE. PLEASE CHECK FOR AVAILA
	-92032		
en/10a	Hemwerf packera 118	cza0	\& VAT TO BE ADDED TO ALL GOODS

HART AUDIO KITS - YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

Har Audio Kits and lactory assembled units use the unique combina hos of circuit designs by the renowned John Linsley Hood, the very give you unbeatable performance and unbelievable value for money. We have always led the field for easy nome construction to profes. sional standards, even in the sixtles we were using easily assembled printed circuits when Heathkil in America were still using lagboards! Many years or experience and Annovaiion, going back to the early ground in the needs of the home constuctor This simoly means that bulding a Har kit is a real pleasure, resuting in a piece of equipment that not only saves you money but you will be prout to own
Why not buy the reprints and construction manual tor the kit you are interested in to see how easy it is to build your own equipment the MART way. The FULL cost can be credited against your subsequent kit purchase.
K1100 AUDIO DESIGN 80 WATT POWER AMPLIFIER.

This fantastic John Linsley Hood designed amplifier is the flagshlp of Thus khe. is your way to get uk performance att pargate hifi system. pnces. Unique design teatures such as fully FET stabised power supplies give itis amplitier World Class performance with stanting clanty and transparency of sound. allied to the lamous HART quality of components and ease of construction. ts, with ALPS precision Blue Velvet ow-noise volume and balance controls. Construction is very simple and enjoyable with all the difficult work done for you, even the wiring Standard comporents or instant use!. All versions are avalable with Standard components or specially selected Super Audiophile comGold Plated speaker terminals
111008 Complete STANDARD Amplifier Kit,. 395.21
K1100sc Complet SLAVE
A1100SC Factory Assembled, K1100M Complete MONOBLO
Amblitier Kin.

A1100M Factory Assembled
RLHIf Reprints of latest Amplifier articles

"CHIARA" SINGLE ENDED CLASS "A" HEADPHONE AMPLIFIER.

This unit provides a high quality headphone output or "stand aione" use or to sudplement those many power amplitiers that do not have a headphone faclity. Easily installed with special link-through feature the unit draws its power from our new Andante Ulitra High Oualty linear toroidal supply. Housed in ine near, black inished, Hart minibox it leatures the wide trequency response. low-distonion and 'musicality' that one associates with designs from the renowned Jonn Linsley ets orevent supply nolarity reversal and on-hoard diagnostics provide visual indication of supply line integrity. Volume and balance controls are Alps "Blue Velvet" components, Very easily built, even by beginners, since all components fit direcily on the single printed circuit board. The kit has very detailed instructions, and even comes with a complementary roll of Hart audiograde silver solder. It can also be supplied factory assembled and tested. Selling for less than the total cost of all the components, if they were bought separately, this unit epresents incredible value for money and makes an attractive and harmonious addition to any hili sysiem. K2100s A Series Audi
components.
. $£ 109.50$
A21005A

ع112.46

K 3565 "Ancrante" Audiophile version. factory Assembled. ...E149.46
A3565 Power Supply. Factory Assembied "Chiara
CM2100 Construction Manual Assembled.
Factory Assembled and Tested ع149.46

E85.42 | Factory Assembled and Tested. | 184.92 |
| :--- | ---: |

"Andante" SERIES 20VA AUDIOPHILE POWER SUPPLIES
 Specially deslgned for exacting audio use requinng absolute mint

 mum noise, low hum field and total freedom from mechanical noise thises.Utlising linear technology throughout for smoothness and musicality makes it the perfect parner for any module requinng fulty stablised $\pm 15 \mathrm{~V}$ supplies.
Two versions are available. K 3550 has $2 \pm 15 \mathrm{v}$ supplies and a single $15 v$ for retays etc. and can be used with our K1400 preamp and our K1450 RIAA Dickup preamp, as well as other usetul modules soon to be introduced. The K3565 is identicai in appearance but only has the $\pm 15 v$ lighter current supply for use with the amplitier or "Chiara" headphone amplifie. K3565 Power Supply for K1450 \& K2100... $£ 93.75$

Now you can throw out those noisy lil-matched carbon pots and replace with the famous Hart exclusive ALPS 'Blue Velvet' range comporens onis used selecively in very lify ind or Wond cias incredible giving better tonal balance between channels and rock sold image stability. Motonsed versions have 5v DC motor. MANUAL POTENTIOMETERS
2-Gang 100 K Lin.
2-Gang 10K, 50 K or 100 K Log
. 15.67
.$£ 16.40$
2-Gang 1ok Special Balance, zero crosstalk and zero
MOTORISED POTENTIOMETERS
2-Gang 20 K Log Volume Control
2-Gang 20K Log Volume Control $£ 26,2$
2. Gang 10K RD Special Balance, zero crosstalk and less than 10%
loss in centre postrion.

JOHN LINSLEY HOOD SINGLE ENDED CLASS 'A' POWER AMPLIFIER

This amplifier represents an extremely novel concept in that it has been developed from a design in an earther part of the evolutionary cycle, to meet the needs of modem users who want the warmin and purity of sound given by valve amplifiers from the vintage years, without the problems of cost. deterioration and with irying to use valves loday
11 employs the newly re-discovered single-ended circuit contiguration to give tolal freedom from crossover antitacts and to give a sound that
is indistinguishabie from the famous Williamson' design, the undisis indistinguishabie from the famous Williamson design, ine undisliode drivers.
The new circuit. described in the September 1996 issue of Electonics and Wireless World, the same magazine that published the Williamson desilgn back in 1947, it itself a development of an earlier 10 watt design by the Author. The new version retains the basic sumplicity
and purity of the original but with modem components and an increased power rating of 15W RMS per channel.
Hant have developed a completely new and highly sophisticated kith incorporating all the important options, within a very high qually 30 high 19 " rack mountable case.
Please ask for your free copy of our list which gives full details

Our List of these and many other Kits \& Components is FREE in UK. Ask for your copy now. Overseas customers are very welcome, but PLEAS
Ordening is easy. Simply write, telepnone of fax your order anytime. Let us know what you require, with your name address. cheque or credt card number and expiry date. Your daytime phone number is useful in case we need to get back 1o you. Futher information on all and we can send anymere in the World. Post on UK Orders E25 is $£ 1.50$, over $£ 25$ - $£ 450$. Express Courner $£ 10$. OVERSEAS postage-please enquire.

VALVE \& EARLY CLASSIC BOOKS

HE VTL BOOK David Manley BKVT 1

 £17.95 OUDSPEAKERS; THE WHY AND HOW OF GOOD REPRODUCTION. G.Briggs. 1949 0-9624-1913-3.."THE WILLIAMSON AMPLIFIER." 0-9624-1918-4 AUDIO FREQUENCY AMPLIFIER DESIGN. AUDIO ANTHOLOGIES, anticles from Audio Engineenng Six voumes covering the days when audio wasyoung and valves were king!. KAA3/1 10 6. Al $£ 13.95$ each. A SIMPLE CLASS A AMPLIFIER J.L.Linsley Hood M.I.E.E. 1969. RLH12.
postage on all books, unless starred, is only 01.50 per book, maxi-

SPECIAL OFFER. Al books are insley Hood monograph entitled "Digltal versus Analogue. Black Disks or Silver?"

SPECIAL OFFER

PRECISION Triple Purpose

 TEST CASSETTE TC1D.
Are you sure your hape recorder is set up to give its best? Our lates:

 iniple purpose test cassette checks thethree most important tape Arals. an aHord. Test Cassette TC1D. Our arice only a

HC80 Replacement Stereo Cassette Head.

excellent performance of modern cassette recorders depends totally on the quality of the R/P head.Even the slightest amount of wear can impair the frequency response and distontion levels. Our
HC80 is atop quality head from one of the foremost manufacturers in Japan, easly qutted to most standard stereo recorders (except Sony) and will transform the pertormance over a worn head. Only the fact hat we buy these in vast quantities enables us to offer them at the amazing price of only $£ 11.70$ each or 2 for $£ 17.6$ Wealso

SOLDERING

The size of modern components makes the right soldering equipment essential for good results. Everything we offer we actually use in our Own workshopst See our Lists for the full range. 845-820 XS240 as the bit is designed to totally surround the element giving the bes eat transter. This excellent surround the element giving the best small and handy enough for modemn also means that although it is is better than larger irons modern componenis its heating capacity is better than larger irons of convenional consiruction. Excellen $345-080$ ST4 Lightweight Soldering Iron Stand This nas provisinn \quad I1 the classic damp sponge for blt wping............................95

HART SUPER AUDIOGRADE SILVER SOLDER.

Har Super Audiograde Silver Solder has been specialy tormulated to the serious audiophile. Not onty does it give beauliful easy-to-make joints but it is designed to meit at normal soldering temperatures avoiding the possibulty of thermal damage to components of the need or special hugh temperiur ing. A vol low residue lux makes pe ect joints easy but eliminates the need for board cleaning atte assembly.

ALL PRICES INCLUDE UK/EC VAT

Prescale to IG Hz

Nick Wheeler describes low-cost prescaler designed to extend the useful range of a frequency counter to just over 1GHz.

Table 1. On the SA701 prescaler, logic levels on two pins determine the division ratio.

Divisor	SW	MC
128	Low	High
129	Low	Low
64	High	High
65	High	Low

Until recently, digital frequency meters with gigahertz capability were confined to costly laboratory models, the more affordable types generally extending up to, typically, 200 MHz . Some eight years ago, and possibly even earlier, it was possible to obtain gigahertz prescalers based on emitter-coupledlogic to extend the range of these inexpensive instruments - many of which must still be in use.
While ecl-based gigahertz prescalers have been around for years they have either been expensive or only obtainable in production quantities. One of the earliest was the Philips SAB456, used in a tv tuner for digital frequency control, but this was discontinued in eight-pin DIL form some years ago.
More recently, the developing portable phone market has caused several manufacturers, including Philips, to produce useful lowcost parts. I used the quadruple-modulus SA701, which is intended for $64 / 65$ and
$128 / 129$ division. This device is is obtainable in small quantities from RS and Macro. Note that its part number for the DIL version has an 'N' suffix.

Applying the GHz prescaler

With the exception of the Plessey SP8680, which is a 650 MHz part, ecl prescalers have ecl output levels and limited output drive capability into capacitive loads. Figure 1 shows how these problems are overcome.

Emitter follower $T r_{1}$ imposes negligible load on the prescaler and the diode clamp ensures that there is a big enough positive excursion at the base of Tr_{2} to bottom it. Collector swing of Tr_{2} is enough to drive the high-speed c-mos divider chain which follows. Pins 3 (SW) and 6 (MC) determine the division ratio, as in the Table 1.
For this application, the division ratio needed is 64, so both SW and MC are high. To avoid having to use a calculator to determine

Fig. 1. Since the prescaler has an ecl-level output, buffering is needed
to feed the c-mos circuitry.

Fig. 1a. Output at TP, 808 MHz input. Absence of noise or jitter characterises correct pre-scaler operation.

the frequency being measured, the overall division ratio must be a multiple of ten. There is a way round this but it usually involves having a special crystal made for your frequency counter. Suppose the counter has provision for an external frequency standard. This will certainly be a multiple of 1 MHz . However, if an external source which is an appropriate multiple of 976.5625 kHz is applied, then a binary divider chain of ten stages will give a readout of kilohertz for gigahertz - which is manageable.
Fortunately, division by $2^{6}(64)$, followed by 5^{6} (15625) equates to division by 10^{6}. This is done by dividing twice by 125 .

Dividing by 125
Figure 2 shows the divider, taken from ref. 1.

Fig. 3. To check for correct operation of the prescaler, care must be taken with loading and termination.

The timing diagram for this rather unusual ratio is complicated. It is fortunate that this ratio is not one of those which suffer from incurable glitches. Note that the quirky timing of this circuit calls for 116 to be preloaded. Follow the circuit diagram and you will arrive at the desired result.
— The circuit works without problems from 20 MHz down to 1 MHz , representing an input signal frequency range of 1.28 GHz down to 64 MHz . Division in two cascaded blocks of 125 is essential as there is a possible glitch problem if three or more HC16/s are cascaded. Texas Instruments' manual explains this.
Unlike binary division, which yields successive outputs of close to unity mark-space ratio, each of the two cascaded divide-by- 125 stages yields a signal of $1: 124$ mark-space

Fig. 3a. Waveform at TP viewed in properly terminated system. Absence of noise and jitter characterises correct prescaler operation. Test frequency 808 MHz .

Fig. 2. Using this configuration to divide by 125 avoids glitch problems. Narrow pulses output by the divider chain could cause erratic readings so a pulse-stretching 555 is added.
ratio. Thus an input signal of 1 GHz produces an output of 1 kHz , but with a pulse width of $8 \mu \mathrm{~s}$. Some inexpensive frequency counters respond erratically to waveforms of this sort, so the c-mos 555 monostable is included to stretch the pulses to around 0.5 ms .

Implementation problems

 It appears to be a characteristic of ecl prescalers that if no input, or too small an input, is connected, oscillation occurs around the upper frequency limit of the device. Such oscillation can be detected at the emitter of $T r_{1}$ which, fed to a suitable rf connector, forms the output. The oscillatory mode has random time-jitter and is quite different in appearance from the waveform observable when division is occurring properly, Fig. 3.This test point has another important function. Because the signal frequency is divided by 10^{6} long gate times are required to make accurate frequency measurements. At 1 GHz , and with 100 seconds of gate time, the display is only to five decimal places or 100 kHz . Often this will be unimportant. Where greater accuracy or a quicker response is needed, the divide-by- 64 point gives results at once and to the full accuracy of the frequency meter. But you will need a calculator to work out the real frequency being read.
Best results are obtained at the upper frequency end if the prescaler is mounted on PTFE based pcb, but much the same effect can be achieved by preceding the prescaler with a monolithic microwave IC such as the MAR 6.
Measurements at gigahertz frequencies can only be conducted remotely, and in this case remotely means at distances of more than a few cm , via properly matched transmission lines. You can seen from Fig. 1 that this is a 50Ω system.
For remote measurements, where the imposition of a 50Ω load is unacceptable, an approach on the lines of ref. 2 is appropriate. This type of circuitry still has gain well beyond 1 GHz , though it has fallen off a lot compared with the flat frequency performance up to 130 MHz .

References

1. Lancaster, D., Sam's TTL Cookbook, 1988.
2. Wheeler, $N ., 130 \mathrm{MHz}$ probe, $E W+W W$ Aug 1995.

Why settle for second best?

Your applications are critical. Your mathematics have to be right. So your first choice has to be Maple.

Waterloo Maple
advancing Mathematics

Maple V's high-end symbolic and numerical mathematical tools offer supreme accuracy and flexibility. Faster, more efficient and more reliable than its rivals- and that's not us speaking but reviewer Mike James in Computer Shopper, January 1996.

Now with the new Maple V Release 4 - The Power Edition, you can produce publication- and presentationquality documentation with ease. Its versatile technical document processing environment allows fully-formatted text and graphics to be combined seamlessly with Maple equations and formulae

Maple V gives you full symbolic maths power without having to program. Enter your problem and get real equations on screen. And Maple V's extensive libraries comfortably handle just about every symbolic or numeric problem you throw at it. No other mathematics software offers as much

Maple V's enormous range of mathematical algorithms, programmable functions and built-in routines has to be seen to be believed.

Check our Web site, http://www.adeptscience.co.uk/. To order or find out more, fax us the coupon or call:

01462480055

Maple V - The Power Edition is available on PC (Windows 3.1x, NT and Win 95) and Macintosh plattorms; Linux and other UNIX variants will be released soon. Call us for details and prices, including educational pricing and our advantageous site and CHEST licence terms.

Piease fill out and fax back or post this coupon to Adept Scientific for your FREE Maple V information pack!

Name
Telephone No.
Position
Company
Department
Address

Town
County

Post Code
SCW96/05

Dictionary of Communications Technology

Terms, definitions and abbreviations
Gilbert Held, 4-Degree Consulting, Macon, Georgia, USA In response to the changing face of the
telecommunications industry and the rapid expansion in the use of microprocessors, fibre optics and satellites, Gil Held has updated his earlier telecommunications dictionary to bring readers in line with the very latest developments and terms in communications technology.

Features Include:

- Over 9000 references and $250+$ illustrations
- Comprehensive coverage of data and computer communications
- New entries on PC LANs, the Internet, client/server operations and communications testing - Trade name information

First Edition Review:

"For a consultant or telecommunications operative, this book is a must. It is comprehensive and timely .. an excellent reference for the IS professional."
Data Processing Digest
ISBN 047195542 6, 512pp, hordback, UK £68.50, Europe $£ 73$, ROW $£ 85$
ISBN 0471951269 , 512 pp, paperback, UK £ 38.50 , Europe $£ 43$, ROW $£ 55$

Testing, Troubleshooting and Tuning Local Area

Networks

Techniques and tools to isolate problems and boost performance
Gilbert Held, 4-Degree Consulting, Macon, Georgia, USA.
Recognising the problems

encountered by network users and administrators on a daily basis, this book is designed to assist readers by focusing on testing, troubleshooting and tuning of Ethernet and TokenRing networks. It is devoted exclusively to: how things go wrong how to recognise, monitor and test for problems; network analysis and network management products that assist users in examining the flow of data in a complex network.
ISBN 047195880 8, 27 5pp, hardback, UK〔37.50, Europe $£ 40$, ROW $\mathbf{C 5 0}$

Wireless Information Networks

Koveh Pahlavan, Worcester Polytechnic Instilute and Allen H Levesque, GTE Government Syslems Corporation.
Wireless Information Networks organises all major elements of wireless technology - cordless and cellular telephony, Personal Communications Systems (PCS), mobile data networks and Wireless Local Area Networks (WLANs), presenting them from a logical, systems engineering perspective. Technical material is thoroughly integrated with special applications and focuses on four main areas: Wireless

standards and descriptions of systems and products; Measurement and modelling of radio and optical wave propagations; Wireless transmission techniques and Wireless multiple access techniques.
Confents: Overview of
Wireless Networks. Frequency Administration and Standards Activities. Characterisation of Radio Propagation. Channel Measurement and Modelling for Narrow-band Signaling. Measurement of Wide-band Channel Characteristics. Computer Simulation of the Radio Channel. Modem Technology. Signal Processing for Wireless Applications. Spread Spectrum for WIN Systems. Wireless Optical Networks. Networks and Access Methods. Standards and Products.
ISBN $0471106070,304 \mathrm{pp}$, hardback, UK £63.50, Europe £68, ROW £81

Applied Cryptography

2nd Edition
Protocols, Algorithms and Source Code in C Bruce Schneier, Security Consultant and President of Counterpane Systems, USA This revision of the programmer's and system designer's guide to the practical applications of modern cryptography

provides the most comprehensive, up-to-date survey of modern cryptographic techniques, along with practical advice on how to implement them.

New to this edition:

- Detailed treatment of the US government's Clipper Chip encryption program
- New encryption algorithms (eg. 'GOST') recently obtained from the former Soviet Union
- More detailed information on incorporating algorithms and programming fragments
into working software
- The latest developments in the fields of message authentication /'digital signatures') and digital cash. ISBN 0471 I2845 7, 81 6pp, hard back, UK E59, Europe £64, ROW £78
ISBN $0471117099,816 p p$, poperbock, UK £44, Europe $£ 49$, ROW £63

Data and Image Compression

4th edition tools and techniques Gilbert Held, 4-Degree Consulting, Macon, Georgia, USA Data and image compression are key issues in computer communications with the increasing demand for data transmission capacity.

Guiding the reader through the main techniques, this book explains how practical data and image compression techniques are now vital for efficient, low-cost transmission and data storage
requirements. Building on the success of the previous editions of Data Compression, the scope of the fourth edition has been considerably expanded. Now covering image and fax compression, the text has been restructured to take account of the many new advances in this important field. It is also accompanied by an updated disk containing compression routines.
ISBN 047195247 8, 450pp+disk, hardback, UK £58.50, Europe $£ 63$, ROW $£ 75$

Handbook for Digital Signal Processing

S.K. Mitra, University of California and J.F. Kaiser, Bell Communications Research, New Jersey, USA
This is the definitive source of detailed information on all important topics in modern

digital signal processing. The only current handbook of its kind, it meets the needs of practising engineers and designers of hardware, systems and software. Written by world authorities, the Handbook for Digital Signal Processing is supplemented with hundreds of informative tables and illustrations. For professional engineers, designers and researchers in electronics and
telecommunications, this work will be an indispensable reference - now and for years to come.

Contents: Introduction;

 Mathematical Foundations of Signal Processing; Linear TimeInvariant Discrete-Time Systems, Finite-impulse Response Filter Design; Digital Filter Implementation Considerations; Robust Digital Filfer Structures; Fast DFT and Convolution Algorithms; finite Arithmetic Concepts; Signal Conditioning and Interface Circuits; Hardware and Architecture; Soffware Considerations; Special Filter Designs; Multirate Signal Processing; Adaptive filtering Spectral Analysis; Index. ISBN 0471619957 , 1302pp, hardback, UK £ 110.50 , Europe E 118 , ROW £ 138
Solving Interference Problems In Electronics

R. Morrison, Eureka California, USA Interference in electronic equipment is a constant source of difficulty for the design and systems engineer. Until now, there has not been a coherent theory that engineers can refer to in their design work and the solution of interference problems has therefore often considered to be an 'art'. Written by an acknowledged expert in the field, this new title provides methods and techniques for testing and evaluating
designs, and covers interference questions in computer manufacturing and syslems design.
ISBN 047112796 S, 206pp, hordback, UK £47.50, Europe $£ 48.50$, ROW $£ 54$

Diode Lasers and Photonic Integrated Circuits

L. A. Coldren and S. W. Corzine, boih of the University of California, Santa Barbara, USA. Diode lasers are found in numerous applications in the optoelectronics industry,

telecommunications and data communications, ranging from readout sources in compact disc players to transmitters for optical fibre communications systems. This new title provides a comprehensive treatment of diode laser technology, its principles and theory, treating students as well as experienced engineers to an in-depth exploration of this fast growing field.
ISBN 047111875 3, 620 pp, hardback, UK £63.50, Europe £67, ROW £78

All prices are fully inclusive of packing and delivery

Return to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following titles:

Qry	Title or ISBN	Price

** All prices on these pages include delivery and package **
Total \qquad
Name
Address

Postcode
Telephone
Method of payment (please circle)
Access/Mastercard/Visa/Cheque/PO
Cheques should be made payable to
Reed Business Publishing

Credit card no \qquad

Card expiry date

Signed

Please allow up to $\mathbf{2 8}$ days for delivery

proteus New for Witcones \$31295 \& AT

Schematic Capture

- Easy to Use Graphical Interface under both DOS and Windows.
- Netlist, Parts List \& ERC reports.
- Hierarchical Design.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and PCB design.

Simulation

- Non-Linear \& Linear Analogue Simulation.
- Event driven D gital Simulation with modelling language.
- Partitioned simulation of large designs with multiple analogue \& digital sections.
- Graphs displayed directly on the schematic.

PCB Destign

- 32 bit high resolution database.
- Multi-Layer and SMT support.
- Full DRC and Connectivity Checking.
- RIP-UP \& RETRY Autorouter.
- Shape based gridless power planes.

Output to printérs, plottèrs, Postscript, Gerber, DXF and clipboard.

- Gerber and DXF Import capability.

Write, phone or fax for your free demo disk, or ask about our full evaluation kit. Tel: 01756753440. Fax: 01756752857. 53-55 Main St, Grassington. BD23 5AA.

Light
 update

Abstract

Derek Robinson* has been looking at how Texas' light sensors are evolving. Line imagers have been added to the product range and there's emphasis on easier interfacing with increased performance.

*Derek is with TI in Freising, Germany

Fig. 1. Integrated photodiode plus op-amp light-to-voltage sensor.

With the predominance of digital systems in measurement and control applications, comes the increased importance of analogue-to-digital conversion, in order to interface realworld analogue signals to the system.
Light is such a real-world signal that is often measured either directly or used as an indicator of some other quantity. Most light-sensing elements convert light to an analogue signal in the form of a current or voltage, which must be further amplified and converted to a digital signal in order to be useful in such a system.
Important considerations in the conversion process are dynamic range, resolution, linearity and noise. In former times, a discrete light sensor was followed by some form of analogue signal conditioning circuitry, before being applied to an ana-logue-to-digital converter, which effectively interfaced it to a digital system. Now, a wide range of intelligent opto sensors are available, combining sensor and signal conditioning in a single device. Typical of these are light-to-voltage converters, light-to-frequency converters and integrated line imagers.

Light-to-voltage converters

Good examples of light-to-voltage converters are the TSL25x range of single-supply visible-light sensors, Fig. 1. These combine a photodiode and an op-amp connected as a transresistance amplifier, complete with frequency compensation for stability. The photodiode is used without reverse bias, and operates into a virtual earth. This results in a negligible voltage across the diode, ninimising dark current.

Figure 2a) shows the sensitivity of the three members of the family to illumination on the optical axis, and b) shows the relative sensitivity as a function of angular displacement from it. A feature of the TSL25x family is a very low temperature coefficient of output voltage V_{0} - typically $1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. This is because the internal feedback resistor, namely $16 \mathrm{M} \Omega, 8 \mathrm{M} \Omega$ or $2 \mathrm{M} \Omega$ for the $-250,-251$ or -252 types, is polycrystaline silicon. This material has a temperature coefficient which compensates for the temperature coefficient of the photo-diode.
The TSL26x range of sensors designed for infrared applications share the same package and circuit arrangement. Figure 3a) shows the on-axis sensitivity of the three members of the family - the angular displacement response is as Fig. 2b). Figure 3b) compares the spectral response of the TSL250 and -260 families.
A selection of useful application circuits, which are equally applicable to the TSL25x family ${ }^{1}$, is included in the data sheet for the TSL26x range of devices.

Light-to-frequency converter

The light-to-frequency converter is a natural solution to the problem of light intensity conversion and measurement, providing many benefits over other techniques. Light intensity can vary over many orders of magnitude, and this complicates the problem of maintaining resolution and sig-nal-to-noise ratio over a wide input range.
Converting the light intensity to a frequency overcomes limitations imposed on dynamic range by supply voltage, noise, and a-to-d resolution. Since the conversion
is performed on chip, effects of external interference such as noise and leakage currents are minimised. The resulting noise-immune frequency output is easily transmitted even from remote locations to other parts of the system.
Since the data is in serial form, interface requirements can be minimised to a single

Fig. 2a). Output voltage as a function of incident illumination for the TSL25x series devices, top, with curves for maximum o/p against supply, bottom left, and spectral responsivity, right.
microcontroller port, counter input or interrupt line. This saves the cost of an analogue-to-digital converter. Isolation is easily accomplished with optical couplers or transformers.
The conversion process is completed by counting the frequency to the desired resolution, or period timing may be used for faster data acquisition. Integration of the signal can be performed in order to eliminate low frequency (such as 50 or 60 Hz) interference, or to measure long-term exposure.
The TSL220 is a high-sensitivity, high-resolution single-supply light-to-frequency converter. Its dynamic range is 118 dB , and it has a convenient c-mos-compatible output, all housed in a clear plastic eight-pin DIL package.

Figure 4a) shows a block diagram of the device ${ }^{2}$. Output pulse width is determined by a single external capacitor, and the frequency of the output pulse train determined by the capacitor and the incident light intensity, as in Fig. 4b).
Figure 4 c) shows the output frequency as a function of the ambient temperature, normalised to that at $25^{\circ} \mathrm{C}$. This indicates a need for compensation which can be easily looked

after in the subsequent digital-signal processing, with the aid of a temperature sensor. Spectral response of the device is very similar to that of the TSL25X range shown in Fig. 3b), extending a little further into the infra-red but not quite so far into the ultra-violet.

Sensors featuring frequency output

The TSL235 and 245 are visible-light and infra-red sensors, packaged in the same threepin encapsulations as the TSL25x and $26 x$ ranges. However, they produce a frequency output in place of a voltage output. Figure 5a) shows output frequency versus incident illumination for the TSL235, under the conditions shown.
Figure 5b) shows how the tempco of output frequency varies with the wavelength of the incident radiation. Note the very low temperature coefficient at wavelengths shorter than 700 nm . The TSL245 is basically the same device as the 235 , but packaged in an encapsulation material which is transparent in the infra-red but opaque to visible light.
The TSL230 programmable light-to-frequency converter also consists of a monolithic silicon photodiode and a current-to-fre-

Fig. 2b). Angular response of the TSL25x devices.

Fig. 3a). Output voltage as a function of incident illumination for the TSL26x series devices, left, together with spectral response, right.

Fig. 3b). Comparing the spectral response of TSL 25x and TSL26x series devices.
quency converter circuit. A simplified internal block diagram of the device is shown in Fig. 6a). Figure 6b) shows how the device simplifies interfacing with an associated microcon-
troller. Light sensing is accomplished by a 10-by- 10 photodiode matrix. The photodiodes, or unit elements, produce photocurrent proportional to incident light.

Fig. 4a). Internal workings of the TSL220. (First Figure in article, Ref. 2)

Fig. 4b). TSL220 output frequency versus illumination for various values of capacitor, top left, with load and normalised capacitance curves.

Fig. 5a). Output frequency versus incident illumination, top, and spectral response, bottom, for the TSL235 light-to-frequency converter.

Fig. 5b). TSL235 temperature coefficient of output frequency as a function of wavelength, top, and dark frequency performance, bottom.

Sensitivity control inputs S_{0} and S_{1} control a multiplexer which connects either 1,10 , or 100 unit elements thereby adjusting the sensitivity proportionally, implementing a kind of 'electronic iris'. The unit elements are identical and closely matched for accurate scaling between ranges which are illustrated in Fig. 6 c). The exceedingly low dark current of the photodiode results in the dark frequency output being generally below 1 Hz , Fig. 6 d).

The current-to-frequency converter utilises a unique switched capacitor charge-metering circuit to convert the photo-current to a frequency output. Output is a train of pulses which provides the input to the output scaling circuitry, and is directly output from the device in divide-by-one mode. Scaling of the output can be set via control lines S_{2} and S_{3} to divide the converter frequency by 2,10 , or 100 , resulting in a 50:50 mark/space ratio square wave.

Fig. 6a). Functional block diagram of the TSL230 programmable light-to-frequency converter.

Fig. 6b). Illustrating the system simplification possible with the TSL230 Programmable Light-to-Frequency-Converter.

The TSL230 is designed for direct interfacing to a logic-level input. It includes circuitry in its output stage to limit pulse rise and fall times, thus lowering electromagnetic radiation Where lines longer than a 1 m must be driven, a buffer or line driver is recommended. An active low output-enable line, $\overline{\mathrm{OE}}$, is provided which, when high, places the output in a highimpedance state. This can be used when several TSL230 or other devices are sharing a common output line.
Like other light-to-frequency converters, the TSL230 is easily interfaced to digital control systems. But it has the added advantage of sensitivity and output frequency range adjustable over a four wire bus, S_{0-3}. Details of interfacing to a particular controller were given in a recent article in this magazine ${ }^{3}$, but the device interfaces simply with any controller, such as the Texas Instruments TMS370C010, the Microchip Technology PIC16C54HS, or Motorola's MC68HC1IA8!.

Integrated line imagers

Reference 1 includes data on a number of line imagers, fabricated in LinCMOS technology. Each consists of a linear array of light sensing pixels on a $125 \mu \mathrm{~m}$ pitch, together with gates and control circuitry which sequentially address and read out the pixels contents.
Voltage read out from each pixel is proportional to the accumulated charge, which is in turn proportional to the product of the incident light intensity and the period of time elapsed since the last read-out and reset.
Both TSL213 and 214 are 64 -element sensors, while the TSL215 has 128 elements and the TSL218 has 512. An article featuring the TSL214 has appeared in these pages, Ref. 4, and can be found reproduced in Ref. 5. Compared with charge-coupled-device imagers, or ccds, the addressed-array line

Fig. 6c). Illustrating the various sensitivity ranges available to the user with the TSL230, left, together with spectral responsivity, right.

Fig. 6d). Showing the very low dark frequency output of the TSL230, as a function of temperature.
imagers offer only a 1 MHz max data rate as against the ccd's 10 MHz . But to set against this are a number of other advantages, resulting in a simpler and cheaper system solution,
Fig. 7a). In particular, the wider pixel spacing
of $125 \mu \mathrm{~m}$ - against $12.7 \mu \mathrm{~m}$ for the ced sensor - allows the use of inexpensive plastic lenses, while in some applications a lens can be dispensed with entirely.

Figure 7b) shows a block diagram of the
internal workings of the TSL218 512 pixel linear array. Note that a readout sequence is initiated by a single pulse, SI, one clock pulse wide. Also, the clock frequency must be at least high enough to shift out all 512 pixel outputs before the next SI pulse, although it can be higher. Figure 7c) shows this in a timing diagram.
During the analogue output period, all 512 pixel output voltages are presented sequentially on the AO line, with but a small glitch between each output sample's level, due to the on-chip NOCG, or non-overlapping clock generator. As it exits the last stage of the shift register, the SI pulse is output from the device as an SO pulse. This can be used as the SI pulse to another device, permitting the implementing of arrays longer than 512 pixels, all devices being fed with the same clock, with the SI pulse being applied only to the first device.

Fig. 7 C). Following an SI pulse, the contents of all 512 pixels are read out serially. An SO pulse follows, which may be used as the SI pulse for a second device.

References

1. Texas Instruments Intelligent Opto Sensor Data Book, P/N SOEDE02B.
2. F. Ogden, 'An Easier Route to Light Measurement', Electronics World + Wireless World, June 1993, pp 490, 491.
3. C Kuhnel, 'Bits of Light',

Electronics World, January 1996, pp 68, 69.
4. lan Hickman, 'Sensing the

Position', Electronics World +
Wireless World, November 1992, pp 955-957.
5. Ian Hickman, Analogue Circuits Cookbook, Newnes (ButterworthHeinemann), 1995, ISBN 07506 20021.

SMART CARD EVALUATION SYSTEM

Low Cost Introduction to Microprocessor Smart Cards

SMART CARD EVALUATION PACKAGE

Comprising of Presentation case containing:-
Smart Card Reader / Writer (Programming Interface)
244 page Hard Back reference book, covering all aspects of Smart Card design and programming Smart Card Interogation System, to identify the commands accepted by a target Smart Card. Evaluation application, for use with Smart cards provided in the package. 'C' Library \& Command descriptions. For the user to design their own Smart card applications using the cards provided. Programmers Development Suite. Text Editor Assembler, Simulator for programming the Cards provided. Development Boards for use with the programming interface. Allowing the user to simulate a Smart Card Selection of real Smart cards with full programming details.

This package is all that is required to understand and develop, your first Smart Card application. The comprehensive documentation and specially written applications, give the user a valiuable insight into Card architecture and Programming techniques. Comprehensive ' C ' listings are included as is a complete 'RISC- like' processor development system. The package includes development PCB's to allow the user to program and Simulate a Smart Card, also included are REAL SMART CARDS along with access commands and complete UNRESTRICTED programming information. The unique SMART CARD INTERROGATON SYSTEM allows the user to Communicate with a Target card and extract the command set used by that card! For more detailed product information please send a LARGE SAE with your request.

THE SMARTEST SOLUTION

Crownhill can offer a broad range of processor based smart cards. Crownhill are not aligned to any single microprocessor or die supplier. This allows us to work with you the customer, in the selection of the optimal processor for your application.
Crownhill can supply over 150 different types of IC from more than 12 silicon suppliers, all can be incorporated into smart card format. Some cards are available from stock, most are manufactured to the customers specification.

JOHN MORRISON

DEVELOPMENT SOFTWARE \& OEM PROGRAMMING MODULES

PIC PROGRAMMER

PIC16C54, 16C55, 16C56, 16C57, 16C58A, 16C61 16C64, 16C65, 16C71, 16C74, 16C84, 16C620, 16C621, 16C622 \& Memory Chips 24LC01, 24LC02, 24LC16, 24LC 32, 24LC65

Supplied with powerful editing software allowing the user to Read, Write \& Copy PIC devices including data memory and fuse areas. Supplied with an integrated Editor Assembler software suite. Sample files and notes. (PIC 16C84 copy protection removal is possible with the enhanced version)

£69.95

PIC IN CIRCUIT EMULATOR

A low cost ICE to emulate all 18 or 28 pin PIC devices. All ports are Bi-Directional with OSC2 output and RTCC input. An onboard AD converter allows emulation of the PIC16C71. Supplied with PIC DEV software suite, user manual, connecting leads, headers and sample programs and projects.
Note the ICE is not 'real time' the speed of emulation is determined by the host PC. However a local clock output is avallable to enable real time measurements to be taken.

$£ 99.95$

SMARTIE EEPROM PROGRAMMER

EEPROM programmer covering: $24 x x 01,02,04,08,16,32,65,164,174,29 x x, 59 x x, 85 x x, 93 x x$, NMC, PCF. Smart little unit, just plugs into a free parallel port on the IBMPC and auto detects Microwave or 12C types. Simple to use and fast operation make this little programmer indispensable.

£49.95

Although this unit can be used to decode Car Radio's and Cassete players, we offer no advice or support for that use......please do not ask!

MEGA PROM II

A versatile EPROM programmer capable of handling EPROMS, EEPROMS, Flash Memeory from 2 Kb to 8Mb NOW Including Microchip 24LC Series seria memory chips
The programmer operates with a host PC via the centronics port using a standard printer cable. The unit features AC / DC input Voltage handling and production quality ZIF socket

$£ 89.95$

EPROM Emulator

A versatile EPROM pEmulator for ROM from 1 Kb to 32 Kb
The Emulator operates with a host PC via the centronics port using parallel cable. The unit features very fast Download to tarket board EPROM socket and complete integration with ouir development sofware suites. Will alos operate without our development software suite with no loss of functionality
$£ 59.95$

We stock the full range of JOHN MORRISON development software for PIC devices, Microprocessors and Microcontrollers. Each software suite has a FULLY INTEGRATED TEXT EDITOR, ASSEMBLER, SIMULATOR and DISASSEMBLER.
Code can be downloaded directly to our Emulators. All software is supplied with sample code and operating instructions. Devices catered for include: MCS-8051/52/552, MCS-8048/49, PIC-16C54/55/56/57 and compatible, PIC 16C71/84 and compatible. HD-63/6809, 6502. $£ 19.95$

```
CROWNHILL ASSOCIATES LIMITED PO BOX 845
Waterbeach Cambridge
CB4 9.JS
```

TEL 07010700017 01223235895

FAX 01223441645
BES 07010700018

CHEQUE
POSTAL ORDER
SWITCH
DELTA
International Money order
VISA
ACCESS
Subject to 5\% Surcharge

Class-A

power

> After two and a half decades, John Linsley-Hood's Class-A power amp is still rated among the best. Here, John explains how to bring the design up to date, adding enhancements such as dc-coupled output.

TThe current debate, among some of the more reactionary of the hi-fi devotees, about the relative merits of thermionic valve operated audio amplifiers makes intriguing reading, if only because, in a sense, this is "where I came in'. I will explain.
I have had an interest in the reproduction of music, principally from gramophone records, for a very long time. I made my first, two-valve, battery-operated, audio amplifier as a twelve year old school boy, some time before the outbreak of the 1939-1945 war.
This gave way - in the interests of economy, - to a series of mains powered audio amplifiers, which were usually combined with a radio receiver. Electricity from the mains was free, to me at least, whereas high-tension batteries
had to be bought from my pocket-money.
My early work culminated, in 1951, with the assembly of a luxurious kit for the highly esteemed high-fidelity Williamson 15 W amplifier design. Although, by this time, I had my first proper job - in the electronics labs of the Sellafield nuclear research establishment in Cumberland - and cash was a bit more plentiful, I still wouldn't have built that particular, rather expensive version of the hardware if I hadn't heard through the lab grapevine that one of the research chemists had bought himself a Williamson kit, but, on receiving the parcel, lacked the courage to assemble its contents. Rumour had it that he was open to offers, and I was happy when he accepted mine.
This was an excellent amplifier, and

Valves versus transistors

Not all of the considerations of valves versus transistors relate solely to performance. It is worth bearing in mind that products involving obsolete technology will be disproportionately expensive, difficult to obtain and possibly of inferior quality.
Valves can also vary in operating characteristics from sample to sample especially where two valves of the same type are obtained from different sources. Characteristics that can vary are mutual conductance, gain, operating grid bias, anode current impedance, and even usable anode voltage.
By comparison, the performance characteristics of, say, a range of 2N3055 epitaxial base output transistor are almost identical, whether made in the Philippines or in Toulouse.
Again, all valves deteriorate in use, exhibiting a gradual loss of cathode emission over a typical 3000 hour service life. If a valve is persistently over-driven, the heating of the anode may cause the metal to out-gas. This impairs the vacuum essential to proper operation, and shortens the valve's life.
A further consideration is that valves are high voltage devices, which can be dangerous. And the need for high working voltages can lead to more rapid failure of other components in the circuit - especially capacitors.

One stop solutions for all your radio telemetry module needs.

When the success of your products depends on radio telemetry modules, you need a business partner you can trust. A skilled and experienced manufacturer that can offer modules of the highest quality, operating over a wide range of frequencies.

In other words, a partner like Wood \& Douglas. Founded on technical excellence, Wood \& Douglas is a British company that specialises in the design, development and production of radio-based products. With over 30 staff dedicated to meeting your requirements, the company is able to provide true one-stop purchasing - whatever your RTM needs.

All radio modules are highly functional, capable of meeting a wide range of requirements. Designed to offer efficient, easy-to-use radio telemetry components for system designers, they can open up a whole new world of product possibilities.

From portable bar-code readers to earthquake monitors, Wood \& Douglas can help you make the most of the opportunities in radio telemetry.

To find out more about the possibilities, contact..

Lattice House, Baughurst, Tadley, Hampshire RG26 5LP, England Telephone: 01189811444 Fax: 01189811567 email: info@woodanddouglas.co.uk web site: http://www.woodanddouglas.co.uk

WE ONLY USE THE BEST TEST AND MEASUREMENT INSTRUMENTS ON OUR OWN PRODUCTS...

OSCILLOSCOPES

Over 34 models including: Digital, Analogue and Portables. Bandwidths from 5 MHz to 150 MHz . Sophisticated triggering, single and dual timebases, Multiple channels and large memory Dso's. Prices start from $£ 235(20 \mathrm{MHz} 2$ Channel $£ 399)$

POWER SUPPLIES

Four separate ranges comprising of 40 models from low cost analogue displays to the latest high performance digital units. Providing up to 250 volts and 120 amps with Master-slave, RS 232 and GPIB are available on many models, as are optional rack mount facilities.

GENERAL PURPOSE

 Frequency Counters, Function Generators plus a complete range of accessories to complement the complete range of instruments.

..NOW YOU CAN DO THE SAME

If you like the idea of working with the best, contact us, we can provide brochures with a complete specification for all our measurement products.

> Kenwood UK Ltd, Kenwood House, Dwlght Road, Matiord WD1 8E:, England

$$
\begin{aligned}
& \text { TEL: +44 (0)1923 } 218794 \\
& \text { FAX: +44 (0)1923212905 }
\end{aligned}
$$

was better, in my judgment, by a greater or lesser extent, than any of its predecessors of my own design, or, indeed, any of the other valve amplifiers, belonging to my friends, with which I had had a chance to compare it. It gave me great pleasure until early 1968 , when I replaced it with a solid-state equivalent.
What I replaced it by, and the circumstances of this replacement, were described in an article in Wireless World in April 1969, entitled 'A simple class A amplifier'. This was a long time ago. In the light of the current debate, it seems possible that both my listening trials at the time, and an up-dated version of my original class A design, may be of interest to you. By up-dated, I mean using more modern components and delivering a bit more power output,

The Williamson amplifier

In the inter-war years, with the improvement in audio quality of both gramophone records and radio broadcasts, considerable attention was paid to improving the quality of ac mainspowered audio amplifiers. A number of interesting designs were offered. These were mainly based on the use of push-pull output stage layouts. Relative to straight single ended circuits, push-pull stages would give greater output power for a given distortion level.
At that time, there were audiophiles who decried the use of push-pull output stage layouts. They claimed that the best audio quality was only obtainable from the much less efficient single ended arrangements, i.e. those in which the output valve had a simple resistor, choke or output transformer load. Interestingly, this is a claim which was examined and dismissed by Williamson at the time, but which has recently been resurrected.

Using negative feedback

Almost all valve operated audio power amplifiers require an output transformer to match the relatively high output impedance of the valve output stage to the low impedance load presented by the loudspeaker.
In general, the transformer is the most difficult and expensive part of the system to design and construct. This is because of the following conflicting demands:

- For a low leakage reactance - combining both leakage inductance and interwinding capacitance - from the primary to the secondary windings, to avoid loss or impairment of high frequency signal components.
- For a low level of leakage inductance from one half of the primary to the other, to reduce the discontinuities due to pushpull operation, and the odd-order harmonic distortion resulting from these.
- For a high primary inductance, to give a good low-frequency response.

Fig. 1. Original 10W Class-A design is still valid, but the power devices are now obsolete.

- For a low winding resistance, to avoid power losses.
- For a good quality grade of core laminations to ensure a low level of coreinduced distortion, due to magnetic hysteresis and similar effects.

Intrinsic signal distortion of a valve amplifier stage could range from 0.5 to 10%, depending on its circuit form and operating characteristics. It had been appreciated for some time that such intrinsic distortion could be reduced significantly by applying local negative feedback. Various amplifier designs incorporating local negative feedback had been proposed. However, this still left the output transformer - however well made - as a major source of transfer and frequency response non-linearities.
At this point, D. T. N. Williamson, who was working at the time as a development engineer for the valve section of the GEC Research Laboratories, described a high-quality audio amplifier design, using the recently developed GEC 'kinkless tetrode' output valve, namely the $K T 66$. In this design, a single overall negative feedback loop embraced both the whole of the amplifier and the loudspeaker output transformer.
With the exception of the output valves, which were triode connected KT66s, Williamson's design employed triode amplifier valves, exclusively because these had a lower intrinsic distortion figure. He also made use of extensive local negative feedback, provided by un-bypassed cathode-bias resistors. This had the additional benefit of eliminating the electrolytic bypass capacitors - a philosophy which is in accord with much of contemporary thinking.
Williamson also used non-polar rather than
electrolytic high-tension reservoir and smoothing capacitors, in the interests of more consistent ac behaviour. Electrolytic capacitors were much worse at that time.
If overall negative feedback was to be applied without causing either high or low-frequency instability, careful design was essential - both in the amplifier stages and in the output transformer. These problems had frustrated earlier attempts to do this - but Williamson demonstrated that it could be done.
The performance given by his design, if his detailed specifications were carried out to the letter, was superb. The performance criteria of better than 0.1% thd, at 15 W output, from 20 Hz to 20 kHz , and a gain bandwidth from 10 kHz to $100 \mathrm{kHz} \pm 1 \mathrm{~dB}$, are at least as good as those offered by many of today's better commercial designs.
The series of articles written by Williamson, in Wireless World over the period 1947-1949 described the power amplifier and its ancillary units. This series had an enormous impact on audio design thinking, and if I may quote the WW editor of the time, in his introduction to a reprint of all of these articles.
"Introduced in 1947 as merely one of a series of amplifier designs, the 'Williamson' has for several years been widely accepted as the standard of design and performance wherever amplifiers and sound reproduction are discussed. Descriptions of it have been published in all the principal countries of the world, and so there are reasonable grounds for assuming that its widespread reputation is based solely on its qualities".

All in all, the Williamson was a hard act to follow.

TRANSISTORS		INTEGRATED CIRCUITS	
IN 4001	100 for $¢ 22$ 100 for $f 2$	HCF4000BEY 35p each	SPECIAL INTEREST
IN 4007	100 for $£ 2$	$\begin{array}{ll}\text { HCF4002BEY } & 37 \mathrm{peach} \\ \text { HCF4006BEY } & \text { 68p each }\end{array}$	Rittal Steel Cabinet Enclosures $800 \times 1000 \times 300 \mathrm{~mm}$.......................... $£ 100$ each
IN 3024B	20 for $£ 1$	HCF4007BEY 17p each	Panel Mounted IEC Plug Filter with Switch $£ 2$ each
IN ${ }^{\text {IN }}$ 4577 ${ }^{\text {a }}$	20 for $£ 1$	HCF4008BEY 34 peach	Mitsubishi 12vdc Fans Type MMF-06B12DS................................ $£ 4$ each
IN 4742A	20 for $£ 1$	$\begin{array}{ll}\text { HCF4009UBEY } \\ \text { HCF4010BEY } & \text { 22peach } \\ \text { 20p each }\end{array}$	Papst Fans 220vac Type 8550N.. 66 each
IN 5230B	20 for $£ 1$	HCF4012BEY 33p each	Belling Lee IEC Plug Filter Type L2133CL $£$ each
IN 5246B	20 for $£ 1$	HCF4015BM1 41p each	Mains Filters Chassis Mounting, 5 Amp 115/250vac
IN 5253B	20 for $£ 1$	HCF4016BEY 21p each	Papst Fans 8 - 16 vdc Type 8112 K
IN 5337B	20 for $£ 1$	HCF4018BM1 HCF4023BM1	Bulgin Panel Mounting Fuse Holder 20mm with Tool Releasable Cap ...£1 for 4
IN 5340B	20 for $£ 1$	HCF4027BEY Sop each	Festoon Bulbs 28v Amber
IN 5343B	20 for $£ 1$	HCF4035BEY 40p each	Din Leads 5 pin Plug 180^{\prime} to 5 Pin Socket 240^{\prime}
IN 5363B	20 for $£ 1$	$\begin{array}{ll}\text { HCF4040BM1 } \\ \text { HCF4041UBEY } & \text { 74p each } \\ \text { 34p each }\end{array}$	Metal Cases Two Piece Construction $220 \times 125 \times 95 m m$
IN 5379B	20 for $£ 1$	HCF4054BSY 52peach	ams Sockets Dual Readout Type 382759-1 1.50 each
IN 5385B	20 for $£ 1$	HCF4068BEY 32p each	Crabtree Ceiling Switches, 6 Amp Retractive, Red Cord $£ 3$ each
IN 53868	20 for fl	HCF4071BEY 34p each	Diodes Type BY206.. $£ 1$ for 20
IN 5648A	20 for $£ 1$	HCF4075Bm1 32peach	System Sensor Automatic Smoke Detector Model 2424E........................ 53 each
IN 5656A	20 for $£ 1$	HCF4082BEY ${ }_{\text {HCF4097BEY }}$ (${ }^{\text {34p each }}$	
IN 6055A	20 for $£ 1$	HCF4099BEY 61p each	Relays 11 Pin Latching DPCO, 24 vde with Bases............................. 10 each
IN 6059A	20 for $£ 1$	$\begin{array}{ll}\text { HCF4510BEY } \\ \text { HCF4516BEY } & \text { 86p each } \\ \end{array}$	Hochiki Thermal Detectors Model DFF-60ELPC 55 each
IN 6061 A	20 for 51	HCF4517BEY 11.74 each	Robinson Nugent IC Sockets Type PLCC 68TP SMT
IN 6064A	${ }_{20}^{20}$ for for $£ 1$	HCF4518BEY 39peach	Capacitors Radial Electrolytic 3M3, 63v
IN 6070A	20 for $£ 1$	HCF54724BEY 58 年each	Capacitors Radial Electrolytic $2200 \mathrm{M}, 16 \mathrm{v}$
IN 6072 A	20 for $¢ 1$	HCF40105BEY 45p each	Capacitors Radial Electrolytic 220M, 63v 11 fo
2 N 2369 A	10p each	HCF40174BM1 ${ }^{\text {a }}$	Capacitors Radial Electrolytic $470 \mathrm{M}, 50 \mathrm{v}$................................. f f
2 N 2484	10p each	M74HCU10BIR 30p each	Capacitors Radial Electrolytic 470M, 35v
${ }^{2 N} 282894$	10p each	M74HC21BIR 29 peach	Capacitors Radial Electrolytic 1000M, 16v
2N 2906	10p each	$\begin{array}{ll}\text { M74HCUT27BIR } & \text { 16p each } \\ \text { M } 74 \mathrm{HC30B1R} & \text { 24p each }\end{array}$	Capacitors Radial Electrolytic 330M, 63v................................. $£ 1$
2N 3419	16 p each	M74HC51BIR 39 2p each	Bulgin IEC Mains Inlet Fused Chassis Plug Type PF001 1/10/28
2N 3700	10p each	M74HC109BIR 39p each	Ceramic Trim Capacitors 20 pF (red) ..
2N 3824	16 p each	M74HCU112BIR M74HC137BIR $\begin{array}{r}\text { 90p each } \\ \text { ¢1.75 each }\end{array}$	Ceramic Trim Capacitors 50pF (orange) 11 for 8
2 N 4117 A	20 peach	M74HC151BIR Sip each	GD 4001,...................., , 88 for 100 GD 4013........................ 88 for 100
2 N 5039	20p each	$\begin{array}{ll}\text { M74HC1578IR } & \text { 51p each } \\ \text { M74HC158BIR } & \text { 49p each }\end{array}$	Crystals Oscillator Modules $20 \mathrm{Mhz}, 28.322$ \& 32 MHz $£ 1.50$ each
2N 5179	16 p each	M74HC160BIR ${ }^{\text {M }}$	Capacitors Dip Poly 0 M01 400V 10 mm 11 for 20
2N 5192	20 peach	M74HC161BIR 57p each	Capacitors Dip Poly 1M 100V 15mm $£ 1$ for 20
2 N 5322	20 p each	$\begin{array}{ll}\text { M74HC174BIR } & \text { 53p each } \\ \text { M } 74 \mathrm{HC175BIR} & \text { 23p each }\end{array}$	Capacitors Dip Poly 0M33 100V 15mm................................... \& f for 20
2N 5323	20 p each	M74HC190BIR 61p each	Capacitors Axial Electrolytic 470MFD 16v ¢ 1 for
2N 5488	20 peach	M74HC191BIR 61p each	Capacitors Axial Electrolytic 47MFD 10v
2N 6386	20 p each	$\begin{array}{lr}\text { M74HC195BIR } & \text { ¢1.09 each } \\ \text { M74HC241BIR } & 58 \mathrm{peach}\end{array}$	Capacitors Box Poly 0M047400V 15 mm
BC 108	5 peach	M74HC242BIR 58p each	Transistors Type BC212L .. 11 for 100
BC 109	5 e each	M74HC243BIR 58p each	Light Emitting Diodes SLT- 35 Series Triangular Lamps $3 \times 4.5 \mathrm{~m}$
${ }_{\text {BC }} \mathrm{BC} 179 \mathrm{~B}$	5 each	$\begin{array}{ll}\text { M74HCU251BIR } & \text { 54p each } \\ \text { M74HC280BIR }\end{array}$	Harwin Low Profile 10 Way IC Sockets on Sil Carriers................... 20p each
BC 477	10p each	M74HC299BIR f1.41 each	Densitron Liquid Crystal Displays, 5 Digit, Type LSH5060RPf1
BC 546	5 each	M74HC352BIR 55peach	Super Twist Graphics Blue Mode LCDs 320×240 Pixel Size
${ }_{\text {BCY }}{ }^{\text {BCO }}$	10p each	$\begin{array}{ll}\text { M74HC367BIR } & \text { 22p each } \\ \mathrm{M} 74 \mathrm{HC} 368 \mathrm{BIR} & \text { 40p each }\end{array}$	$132 \times 103 \mathrm{~mm}$ Overal
BCY 791X	10 peach	M74HC390BIR 39p each	Valves QQV06-40A (Ex Equip)
BD 175	20 peach	M74HC534BIR 70p each	Victron Invertors Type VBB 48/1000, 48 vdc Input,
BD 237 BD 238	20p each	M74HC563BIN 70p each	230 vac Output @ 1.0 KVA £260
BD 239	20p each	M74HC6931BIN	Stepper Motor Drive Boards 70V/5A Step and Microstep Type GS-D500 £4
BD 240 C	20 peach	M74HC696BIR ¢1.89 each	Farnell Portable Synthesized Signal Generator $10-520 \mathrm{MHz}$
BD 436	20 peach	M74HC697BIR \quad 1. 1.89 each	
BD 707 BD 909	20 peach	M74HC6988IR 11.20 each	Processors TS68000 CFN12 ¢ 3 each TS68230 CP8.............. $£ 3$ each
BDW 84A	20p each	$\begin{array}{ll}\text { M74HC4020BIR } & \text { 40p each } \\ \text { M }\end{array}$	M38SH74AHBI $£ 2$ each LM148J.................... 11.80 each
BDW 91	20 peach	M74HC4040BIR 32 peach	L7820C-V 85p each L4922...........................11.35 each
BDW 93C	20p each	$\begin{array}{ll}\text { M74HC4075BIR } & \text { 30p each } \\ \text { T74LS13BI } & \text { 30p each }\end{array}$	HCC4013FOM2RB 43p each L78L09CD 29p each
BDX 54	20p each	T74LS14BI ${ }^{\text {T }}$ (19p each	Panaflo Fans $40 \times 40 \times 20 \mathrm{~mm}$, 12vdc Model FBK-04F12L66.45 each
${ }_{\text {BDX }}{ }_{\text {BF }} 87 \mathrm{C}$	20p each	T74LS2081 16p each	
${ }^{\text {BF }}$ BF 258	10p each	$\begin{array}{ll}\text { T74LS27BI } \\ \text { T74LS33BI } & \text { 49peach } \\ \text { 67p each }\end{array}$	
BFR 36	20p each	T74LS37BI 40 peach	UPD 80C 39HC-0,8 Bit Cmos CPU£2.40 eac
BFR 852	5 p each	774LS42BI 87 peach	Resistor Packs Mixed 0.25W .. 1 for
BFW 43	20p each	$\begin{array}{ll}\text { T74LS518I } \\ \text { T74LS74BI } & \text { 32p each } \\ 42 \mathrm{peach}\end{array}$	Mixed Component Box Loads of Goodies, Weighing 2 Kilos (lucky dip)....... $£ 6$
BFW 44	20 peach	T74LS75BI 41 peach	Eproms 27C4, 27C128, 27C256, 27C512, 27C1001.......................£2.00 eac
BFX 38	20 peach	T74LS86BI 28peach	SEI Quartz Oscillators 13.5 MHz Type QC1311/10-1A................... $¢ 25$ eac
BFX 86	20p each	T74LS93BI T74LS109BI	TV Tubes 20" Hitachi 501 XTB22 Grade 2 660 for
BFY 64	20 peach	T74LS125BI 37p each	High Def Wide Screen 28" Tubes Type W67 EWS001X42 £60 each
BSX 19	10p each	T74LS132BI 42p each	Regulators Type LM7812CT \& LM7912CT 30p each
BTA06-400B	${ }^{10 p e a c h}$	$\begin{array}{ll}\text { T74LS133BI } & \text { 41p each } \\ \text { T74LS136BI } & 92 \mathrm{peach}\end{array}$	ERDEHT Tripler Type BG2087-641-1021.. 2 each
BTA08-4008	3 for f1	T74LS139BI 21p each	MQSIEHT Tripler Type MII $1209 \mathrm{C02}$.. $£ 2$ each
BTA12-400B	3 for $¢ 1$	T74LS148BI 95p each	Key Switches, 2 Pole c/o .. 22 each
BTB16-600B	3 for $£ 1$	$\begin{array}{ll}\text { T74LS151BI } & \text { 39peach } \\ \text { T74LS153BI } & \text { 51peach }\end{array}$	Briton Over Head Door Closers Type 2004s/se £20 each
BU208	3 for $\mathrm{f1}$	T74LS155BI 28p each	Yuasa Lead Acid Type Reachargeable Batteries 12v, 2.1AH in Plastic Box
${ }_{\text {BU2 }}{ }_{\text {BU26A }}$	${ }_{3}^{3 \text { for } £ 1} \begin{aligned} & \text { for } £ 1 \\ & 3 \text { er }\end{aligned}$	T74LS156BI 93p each	
BU911	3 for $¢ 1$	T74LS15881	M38SH74
BU326A		T74LS164BI 28p each	48.J .. 2 each
BU931	3 for $£ 1$	774LS166BI	
${ }_{\text {BUR21 }}$ BUR50	3 for $£ 1$	T74LS175BI 23peach	
BUR52	3 for $£ 1$		B.RAMRED ETETPNTCE
BUT11	3 for $£ 1$	T74LS193BI 55peach	
Buv50	3 for $\begin{aligned} & \text { for } \\ & 4\end{aligned}$	T74LS196BI 73peach	
BYT11-800	5p each	$\begin{array}{ll}\text { T74LS240BI } & \text { 54peach } \\ \text { T74LS241BI } & \text { 54peach }\end{array}$	5 STATION ROAD, LITTLEPORT, ELY, CAMBS CB6 1QE
MJ11028		T74LS251BI 54ρ each	
MJ11029 f	£1.80 each	T74LS260BI 82p each	TEL: 01353860185 FAX:01353863245
P 600D SD 1285	20 for $£ 1$ $£ 2.60$ each	T74LS266BI T74LS2793I	
SD 1487	£4.80 each	T74LS293BI \quad ¢1.63 each	ORDER
SD 1729	£6. 20 each	T74LS352BI T74LS353BI	
T0509 MH	20p each	$\begin{array}{ll}\text { T74LS353BI } & \text { 70p each } \\ \text { 774LS366BI } & \text { 60p each }\end{array}$	TERMS: CASH WITH ORDER. DELIVERY CHARGES ARE FREE WHEN YOUR
T1006 MJ	20 peach	T74LS367BI 22 peach	ORDER TOTALS £30 OR MORE. IF LESS PLEASE ADD $£ 3.35$ + V.A.T.
T1206 NH	20 each	T74LS3688I 40 peach	VISA AND ACCESS WELCOME
P6KE 75 CP	20 for $£ 1$	T74LS393BI 57p each	V.A.T. @ 17.5\% MUST BE ADDED TO THE TOTAL OF ALL ORDERS

Alternative hardware

The world had not stood still since 1951. My equipment had remained monophonic, while the rest of the audio world was changing over to stereo.
My main interest was in music, not in circuitry, so I thought it would be prudent to ask my ears what they thought of the alternatives, before I started to replace my hardware.
To this end, I built or borrowed six well thought-of audio amplifiers, my own Williamson, a Quad 2, two dissimilar but recently published class AB transistor amplifiers, a commercial 30 W solid-state unit, and a simple Class-A unit of my own design.
I included the Class-A design out of curiosity. If it turned out to be any good, it would be cheap and easy to build. It was not expected to offer any special merit in performance.
In the event, as I reported at the time, ($W W$ April 1969, p. 152), the six amplifiers divided quite clearly into two separate tonal groups. The three class AB transistor amplifiers formed one group, while the two valve amplifiers and the simple class A amplifier formed the other.
To be fair, the differences between any of these were not very great - but they were audible. Once they were noticed, they tended to become more apparent on protracted periods of listening. Certainly, for me - and I was doing these tests for my own benefit - in these comparative trials, the two best were the Williamson and the class A. They were virtually indistinguishable. Of these two, the Williamson was vastly more massive and costly to construct.
The only remaining question was, if I replaced the 15 W Williamson with the 10 W Class-A design, would the output be adequate? Connecting an oscilloscope across the loudspeaker terminals showed that I seldom needed more than 2-3W from the power amplifier - even under noisy conditions.
I suppose that the final proof of my satisfaction with the class A transistor amplifier was that, a year or so later, I gave my old Williamson to a friend.

The class A design

My original design is shown in Fig. 1. This is still a valid design, except that the MJ480/481 output transistors are now obsolete. However, they can be replaced by the more robust $2 N 3055$. In this case, the epitaxial-base version of this device should be chosen rather than the hometaxial, since the f_{T} of the output transistors should be 4 MHz or higher.
As I commented, at the time, the design gave a somewhat lower distortion if the h_{FE} of $T r_{1}$ was greater than that of $T r_{2}$. This caused the output circuit to act as an amplifier with an active collector load rather than an output emitter follower with an active emitter load.
A simple modification which takes advantage of this effect is the use of a Darlington
transistor such as an MJ3001 for $T r_{1}$. At 1 kHz , this reduces the distortion level at just below the onset of clipping from about 0.1% down to nearer 0.01%. As before, residual distortion is almost exclusively second harmonic. Also, as before, it fades away into the general noise background of the measurement system as output power is reduced.
While this transistor substitution seems to be a good thing, it was not a modification whose effect I was able to check, in listening trials, against the Williamson. As a result, for the sake of historical fidelity, I would still recommend the use of epitaxial-base 3055 s as $T r_{1}$ and T_{2}.
I have checked all the other changes which I have proposed with the exception of the power increase.

Improving performance

With regard to the original 10 W design, as published, I feel the following improvements will be beneficial:

- Provide a more elegant means of controlling output transistor operating current by including a variable resistor in the base of $T r_{2}$.
- Arrange the circuit so that it would operate between symmetrical power supply lines, allowing the amplifier to be directly coupled to the loudspeaker.
- Increase output power from 10 to 15 watts per channel.
- Up-grade the smoothed but not regulated power supply arrangement.

Fig. 2. Improved method of adjusting quiescent current, suggested as a postscript to the original design.

In my postscript to this design, which $W W$ published in December 1970, 1 suggested both altemative transistor types and an improved method of adjustment and control of the output transistor current flow, Fig. 2.
Although, in theory, this layout should give a superior performance, when I changed my prototype amplifier to this arrangement, I found little change in measured thd and I couldn't hear any difference in sound quality.
Although directly coupling the amplifier to the loudspeaker will not have much effect on thd, it is still beneficial since it eliminates the output coupling capacitor. The most obvious way of doing this is to rearrange the input layout, around $T r_{4}$, so that it becomes the input half of a 'long-tailed' pair.
I am reluctant to do this because this would alter the overall gain/phase characteristics of the amplifier. It would also require additional high-frequency stabilisation circuitry, with all

Fig. 3. One channel of the enhanced 15W Class-A design incorporating - among other things direct loudspeaker coupling.

HP New Colour Spectrum Analysers
HP141T $+85528 \mathrm{IF}+85538 \mathrm{RF}-1 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}-\mathrm{c} 700$
HP $141 \mathrm{~T}+8528 \mathrm{IF}+8553 \mathrm{RF}-1 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}-\mathrm{C} 700$.
HP141T $+8552 \mathrm{IF}+8554 \mathrm{RF}-100 \mathrm{KHz}-1250 \mathrm{M} \mathrm{C/s}-6900$
$\mathrm{HP} 141 \mathrm{~T}+8552 \mathrm{~B} \mathrm{IF}+8556 \mathrm{~A}$ RF $-20 \mathrm{~Hz}-300 \mathrm{KHz}-\mathrm{E} 700$.
Special Offer just in from MOD Qty 40 HP 8555 FAF Units $10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHzS}$
HP $141 \mathrm{~T}+8552 \mathrm{~B} \mathrm{IF}+8555 \mathrm{~A} 10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHzS}-£ 1200$.
HP ANZ Units Available separately - New Colours - Tested
HP 141 Mainframe - £ 350 .
HP8552B IF-E300.
HP85538 RF 1 KHz to $110 \mathrm{Mc} / \mathrm{s}-£ 200$
HP8555A RF $10 \mathrm{Mc} / \mathrm{s}$ to $18 \mathrm{GHzS}-\mathrm{E} 800$.
HP8556A RF 20 Hz to $300 \mathrm{KHzS}-$ E250.
HP8443A Tracking Generator Counter $100 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}-£ 300$.
HP84458 Tracking Preselector DC to 18GHz - £350.
HP 3580A $5 \mathrm{~Hz}-50 \mathrm{KHz}$ ANZ - £750-£1000.
HP 3582 A .02 Hz to $25.6 \mathrm{KHz}-\mathrm{f} 2 \mathrm{~K}$.
HP8568A $100 \mathrm{~Hz}-1500 \mathrm{Mc} / \mathrm{s}$ ANZ-£6k
HP8569B $10 \mathrm{Mc} / \mathrm{s}-22 \mathrm{GHz}$ ANZ $-£ 6 \mathrm{k}$.
HP Mixers are available for the above ANZ's to 40 GHz
TEK $492-50 \mathrm{KHz}-18 \mathrm{GHz}$ Opt $1+2-$ E $4 \mathrm{k}-\mathrm{C} 4.2 \mathrm{k}$
TEK $492-50 \mathrm{KHz}-18 \mathrm{GHz}$ Opt $1+2+3-\mathrm{f} 4.5 \mathrm{~K}$.
TEK $492 \mathrm{P}-50 \mathrm{KHz}-21 \mathrm{GHz}$ Opt $1+2+3-55 \mathrm{~K}$.
TEK 494AP $1 \mathrm{KC} / \mathrm{S}$ - 21 G Hz - E7k.
TEK $496 \mathrm{P} 1 \mathrm{KHz}-1.8 \mathrm{GHz}-\mathrm{E} 4 \mathrm{k}$.
TEK $5 \mathrm{~L} 4 \mathrm{~N} 0-100 \mathrm{KHz}-\mathrm{E}^{4000}$.
TEK $7 \mathrm{LL5}+\mathrm{L1}-20 \mathrm{~Hz}-5 \mathrm{Mc} / \mathrm{s}-\mathbf{~} 70$
TEK 7 L 5 + L3-Opt 25 Tracking Gen - $£ 900$
EK $7 \mathrm{LL} 12-100 \mathrm{KHz-7} 800 \mathrm{Me} / \mathrm{s}-\mathrm{f} 1000$
TEK 7L18-1.5-60GHzs - $£ 1500$
TEK $49110 \mathrm{Mc} / \mathrm{s}-12.4 \mathrm{GHzs}-40 \mathrm{GHzs}-£ 750$. $12.4 \mathrm{Ghzs}-40 \mathrm{Ghzs}$ with Mixers.
Systronix Mixers are available for above ANZ to 60GHzs
Transit Case - $£ 3 \mathrm{k}$.
HP8673D Signal Generator $05-26.5 \mathrm{GHz}$ - $£ 20 \mathrm{k}$.
HP8673D Signal Generator.05-26.5GHz-£20k.
Systron Donner 1618 B Microwave AM FM Synthesizer $50 \mathrm{Mc} / \mathrm{s} 2-18 \mathrm{GHzs}$.
Systron Donner 1618 B Mr
ADRET 3310 A FX Synthesizer $300 \mathrm{~Hz}-60 \mathrm{Mc} / \mathrm{s}$ - $£ 600$.
HP8640A Signal Generators - $1024 \mathrm{Mc} / \mathrm{s}$ - AM FM - $£ 800$
HP3717A 70Mc/s Modulator - Demodulator - $\mathbf{5} 500$.
HP8651A RF Oscillator $22 \mathrm{KC} / \mathrm{S}$ - $22 \mathrm{Mc} / \mathrm{s}$.
HP5316B Universal Counter A+B.
HP6002A Power Unit 0-5V 0-10A 200W.
HP461A-465A-467A Amplifiers.
HP81519A Oplical Receiver DC $-400 \mathrm{Mc} / \mathrm{s}$.
HP Plotters 7470A-7475A
HP3770A Amplitude Delay Distortion ANZ
HP37708 Telephone Line Analyser.
HP8182A Data Analyser.
HP59401A Bus Systern Analyser.
HP6260B Power Unit 0-10V 0-100 Amps.
4P3782A Error Detector
HP3781A Pattern Generator
HP3730A +3737A Down Convertor Oscillator $3.5-6.5 \mathrm{GHz}$
HP Microwave Amps 491-492-493-494-495-1GHz-12.4GHz - £250
HP 105 B Quartz Oscillator - $£ 400$.
HP5087A Distribution Amplifie
HP6034A System Power Suppiy 0-60V 0-10A-200W - £500.
HP6131C Digital Voltage Source+-100V $1 / 2$ Amp.
HP3779A Primary Multiplex Analyser.
HP3779C Primary Multiplex Analyser.
HP8150A Optical Signal Source.
HP1630G Logic Analyser.
HP5316A Universal Counter A+B.
HP5335A Universal Counter A+B+C
HP59501B Isolated Power Supply Programmer
HP59370A Universal Time Interval Counter
Marconi TF $2370-30 \mathrm{~Hz}_{z}-110 \mathrm{Mc} / \mathrm{s} 750 \mathrm{HM}$ Output (2 BNC Sockets + Resistor for 500 HM MOD with
Marconi MOD Sheet supplied - $£ 650$
Marconi TF2370 $30 \mathrm{~Hz}-110 \mathrm{Mc} / \mathrm{s} 50$ ohm Output - $£ 750$
Marconi TF2370 as above but late type- $\mathbf{8 8 5 0}$.
Marconi TF2370 as above but late type Brown Case - $£ 1000$
Marconi TF2374Zero Lass Probe - $£ 200$.
Marconi TF2440 Microwave Counter - $20 \mathrm{GHz}-£ 1500$.
Marconi TF2442 Microwave Counter $-26.5 \mathrm{GHz}-£ 2 \mathrm{k}$
Marconi TF2305 Modulation Meter - $£ 2.3 \mathrm{k}$.
Racal/Dana 2101 Microwave Counter $-10 \mathrm{~Hz}-20 \mathrm{GHz}$ - $£ 2 \mathrm{k}$.
Racal/Dana 1250-1261 Universal Switch Controller + 200Mc/s PICards
Racal/Dana 9303 True RMS Levelmeter+Head - £450. IFFE - £500.
TEKA6902A also A6902B isolator - $£ 300-£ 400$
TEK 1240 Logic Analyser - $£ 400$.
EKK FG5010 Programmable Function Generator $20 \mathrm{Mc} / \mathrm{s}$ - $£ 600$
TEK CT- 5 High Current Transformer Probe - $£ 250$
TEK J16 Digital Photometer + J6523-2 Luminance Probe - $£ 300$
TEK $J 16$ Digital Photometer + J6503 Luminance Probe - $£ 250$.
ROTEK 320 Calibrator +350 High Current Adaptor AC-DC - $£ 500$
FLUKE 5102 A AC-DC Calibrator - E 4 k
FLUKE 1120A IEEE - 488 Translator - $£ 250$.
Tinstey Standard Cell Battery $5644 \mathrm{~B}-\mathbf{£ 5 0 0}$.
Tinsley Transportable Voltage Reference - $£ 500$.
FLUKE Y5020 Current Shunt- E150.
HP7 45A +746A AC Calibrator - 6600
HP8080A MF + 8091A 1GHz Rate Generator + 8092A Delay Generator + Two 8093A 1GHz Amps + 15400A - E800.
HP54200A Digitizing Oscilloscope
HP11729B Carrier Noise Test Set . 01 -18GHz - LEF - $£ 2000$.
MP3314 Funcion MM FM signal
tested to 500 as new with manual HP Frequency comb generator type 8406 - £400.
HP Vector Voltmeter type 8405A - E400 new colour
HP Sweep Oscillators type 8690 A \& B + plug-ins from $10 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $18-40 \mathrm{GHz}$. P.O.R HP Network Analyzer type 8407A $+8412 \mathrm{~A}+8501 \mathrm{~A}-100 \mathrm{~K} / \mathrm{s}-110 \mathrm{Me} / \mathrm{s}-£ 500-£ 1000$ HP Amplifier type $8947 \mathrm{~A}-1$ - $400 \mathrm{Mc} / \mathrm{s} £ 200-$ HP8 447A Du al - £300.
HP $8410-A-B-$ C Network Analyzer $110 \mathrm{Mc} / \mathrm{s}$ to 12 GHz or 18 GHz - plus most ether units and
displays used in this set-up - 8411a - 8412-8413-8414-8418-8740-8741-8742-8743-
8746-8650. From $£ 1000$.
Racal/Dana 9301A-9302 RF Millivoltmeter - 1.5-2GH2- £250-£400
Racal/Dana Modulation Meter type $9009-8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}-\mathrm{E} 250$.
Marconi RCL Bridge type TF2700-£150.
Marconi/Saunders Signal Sources type - 6058B - 6070A - 6055A - 6059A - 6057A - 6056 MarconiTF1245 Circuit Magnific
Marconi microwave 6600A sweep osc, mainframe with $6650 \mathrm{PI}-18.26 .5 \mathrm{GHz}$ or $6651 \mathrm{PI}-26.5$ $40 \mathrm{GHz}-£ 1000$ or PI only $£ 600$. MF only $£ 250$
Marconi distortion moter type TF2331- $£ 150$. TF2331A - $£ 200$

Tektronix Plug-Ins 7A13-7A14-7A18-7A24-7A26-7A11-7M11-7S11-7D10-7S12-S -S2 - S6 - S52 - PG506 - SC504 - SG502 - SG503 - SG504 - DC503 -DC508 - DD501 Gould J3B test oscillator + manual - $\mathrm{f150}$.
Tektronix Mainframes - 7603-7623A - 7613-7704A - 7844-7904 - TM501 - TM503 - TM506 -7904A-7834-7623-7633.
Marconi 6155 A Signal Source - 1 to 2GHz - LED readout - $£ 400$
Barr \& Stroud Variable filter EF3 $0.1 \mathrm{~Hz}-100 \mathrm{kc} / \mathrm{s}+$ high pass + low pass - $£ 150$
Marconi TF2163S attenuator - 1 GHz . $£ 200$.
Farnell power unit H60/50 - £400 tested. H60/25 - $\mathbf{E 2 5 0}$
Racal/Dana 9300 RMS voltmeter - $£ 250$.
HP 8750 A storage normalizer - £ 400 with lead + S. A or N.A Interface
Tektronix-7S14-7T11-7S11-7S12-S1-S2-S39-S 47 -S51-S52-S53-7M11.
Marconi mod meters type TF2304- £250.
HP 5065 A rubidrum vapour FX standard - $\mathbf{£ 1 . 5 k}$.
Systron Donner counter type $6054 \mathrm{~B}-20 \mathrm{Mc}$ - -24 GHz - LED readout - $£$ ih
Racal/Dana 9083 signal source - two tone $-£ 250$.
Racal/Dana 9083 signal source - two tone - $£ 250$,
Systron Donner - signal generat or 1702 - synthesized to 1 GHz - AM/FM - $\mathbf{5 6 0 0}$

Racal/Dana counters -9904-9905-9906-9915-9916-9917-9921-50Mc/s - $3 \mathrm{GHz}-\mathrm{£} 100$ $£ 450$ - all fitted with $F X$ standards.
HP4815A RF vector impedance meter c/w probe - $£ 500$ - $\mathbf{6 6 0 0}$.
Marconi TF2092 noise receiver. A, B or C plus filters - $£ 100-\mathbf{-} 350$.
Marconi TF2091 noise generator. A, B or C plus filters - $£ 100-£ 350$
Marconi 2017 S/G $10 \mathrm{Khz}-1024 \mathrm{MHz}$.
Philips panoramic receiver type PM $7900-1$ to $20 \mathrm{GHz}-£ 400$
Marconi 6700 A sweep oscillator +18 GHz Pl's available.
HP8505A network ANZ +8503 A S parameter test set +8501 A normalizer - £4k.
HP8505 network ANZ $8505+8501$ A +8503 A
Racal/Dana VLF frequency standard equipment. Tracer receiver type $900 \mathrm{~A}+$ difference meter type 527E + rubidium standard type 9475- $£ 2750$.
HP signal generators type $626-628$ - frequency $10 \mathrm{GHz}-21 \mathrm{GHz}$.
HP 432A - 435 A or $\mathrm{B}-436 \mathrm{~A}$ - power meters + powerheads $-\mathrm{Mc} / \mathrm{s}-40 \mathrm{GHz}$ - $\mathrm{E} 200-\mathrm{f} 1000$
Bradley oscilloscope calibrator type $192-£ 600$.
HP $8614 A$ signal generator $800 \mathrm{Me} / \mathrm{s}-2.4 \mathrm{GHz}$, new colour $£ 400$
HP8616A signal gen $1.8 \mathrm{GHz}-4.5 \mathrm{GHz}$, new colour £ 400 .
HP 33254 syn function gen $20 \mathrm{Mc} / \mathrm{s}$ - f 1500 .
HP 3336A or B syn level generator - $£ 500-£ 600$.
HP 35868 or C selective level meter - $£ 750-\mathrm{f} 1000$.
HP 3575A gain phase meter $1 \mathrm{~Hz}-13 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 400$.
HP 86830 S/G mlcrowave $2.3-13 \mathrm{GHz}$ - opt $001-003$ - f 4.5 k
HP $8660 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ syn S / G. $\mathrm{AM}+\mathrm{FM}+10 \mathrm{~K} / \mathrm{s}$ to $110 \mathrm{Mc} / \mathrm{s} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}$ to $1300 \mathrm{Mc} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$ to $2600 \mathrm{Mc} / \mathrm{s}$ - $\mathrm{f} 500 \mathrm{f} \mathbf{£ 2 0 0 0}$
HP $8640 \mathrm{~B} / \mathrm{G}$ AM.FM $512 \mathrm{Mc} / \mathrm{s}$ or $1024 \mathrm{Mc} / \mathrm{s}$. Opt 001 or 002 or $003-£ 800-£ 1250$
HP 86222 BX Sweep PI - $01-2.4 \mathrm{GHz}+$ ATT- 11750.
HP 8629A Sweep PI-2-18GHz- £ 1000 .
HP 86290 B Sweep $\mathrm{PI}-2-18 \mathrm{GHz}-£ 1250$
HP 86 Series PI's in stock - splitband from $10 \mathrm{Mc} / \mathrm{s}-18.6 \mathrm{GHz}$ - $£ 250-\mathrm{f} 1 \mathrm{k}$.
HP 8620 C Mainframe - $\mathbf{£ 2 5 0}$. IEEE - $\mathbf{~} 500$
HP 8601A Swep aenerator 1 - $110 \mathrm{Mc} / \mathrm{s}-\mathrm{MHz}-50 \mathrm{Mc} / \mathrm{s}-$ opt 002 - $£ 1 \mathrm{k}$
HP 3488A HP - IB switch control unit - $£ 500+$ control modules various - $£ 175$ each.
HP $8160 \mathrm{~A} 50 \mathrm{Mc} / \mathrm{s}$ programmable pulse generator - $£ 1000$.
HP 853A MF ANZ - $11.5 k$.
HP 8349A Microwave Amp $2-20 \mathrm{GHz}$ Solid state - $£ 1500$
HP 3585A Analyser $20 \mathrm{~Hz}-40 \mathrm{Mc} / \mathrm{s}-£ 4 \mathrm{k}$.
HP 8569B Analyser. $01-22 \mathrm{GHz}-£ 5 \mathrm{k}$.
HP 1980B Oscilloscope measurement system - £600.
HP 3455A Digital voltmeter - $£ 500$.
HP 3437A System voltmater - $£ 300$.
HP 3581C Selective voltmeter - E250.
HP 5370A Univers al time interval counter - £ 450
HP $5335 A$ Universal countet $-200 \mathrm{Mc} / \mathrm{s}-£ 500$.
HP 6034 A System power supply $-0-60 \mathrm{~V}-0-10 \mathrm{amps}-5500$.
HP 5034A System power supply -0-60V-0-10 amps - $£ 500$.
HP 1645A Data error analyser - $£ 150$
HP 4437A Attenuator - £150.
HP 3717A 70Mc/s modulator- £400.
HP 3710A-3715A-3716A - $3702 \mathrm{~B}-3703 \mathrm{~B}-3705 \mathrm{~A}-3711 \mathrm{~A}-3791 \mathrm{~B}-3712 \mathrm{~A}-3793 \mathrm{~B}$
HP 3730A + B RF down converter - P.O.R.
HP 3552A Transmission test set - $£ 400$.
HP 3763 A Error detector - $£ 500$.
HP 3764A Digital transmisslon analyser - £600.
HP 3770 A Amp delay distortion analyser - $£ 400$.
HP 3780A Pattern generator detector - $£ 400$.
HP 3781A Pattern generator $-£ 400$.
HP 3781B Pattern generator - \mathbf{E} (bell) -
HP 3782A Error detector - £400.
HP 3782 B Error detector (bell) - $£ 300$.
HP 3785A Jitter generator + receiver - $£ 750-\mathrm{f} 1 \mathrm{k}$.
HP 8016A Word generator - $£ 250$.
HP 8170 Logic pattern generator - $\mathbf{£ 5 0 0}$
HP 59401A Bus system analyser - $£ 350$.
HP 59500 A Multiprogrammer HP-IB - $£ 300$
Philips PM5390 RF syn-0.1-1GHz - AM + FM - £1000
S.A. Spectral Dynamics SD345 spectrascope 111 - LF ANZ - 11500

Tektronix R7912 Transient waveform digitizer - programmable - £400
Tektronlx TR503 + TM503 tracking generator $0.1-1.8 \mathrm{GHz}-£ 1 \mathrm{k}-$ or TR502
Tektronlx 576 Curve tracer + adaptors - £900.

Tektronix AM503 Current probe + TM501 m/frame - $\mathbf{f 1 0 0 0}$
Tektronix SC501 - SC502 - SC503 - SC504 oscilloscopes - 775 - 5350
Tektronix 465-465B-475-2213A -2215-2225-2235-2245-2246-E250-£1000
Nicolet 3091 LF oscilloscope - $£ 400$
Racal 1991-1992-1988-1300 Mc/s counters - £500-£900
Fluke $80 \mathrm{~K}-40$ High voltage probe in case - $\mathrm{BN}-£ 100$.
Racal Recórders - Store 4-4D-7-14 channels in stock - $£ 250-£ 500$.
Racal Store Horse Recorder \& control - $£ 400-\mathrm{f} 750$ Tested.
Fluke 510 A AC ref standard - $400 \mathrm{~Hz}-£ 200$.
Fluke 355A DC voltage standard - f300
Wiltron 610D Sweep Generator + 6124C PI-4-8GHz - 1400
Wiltron 610D Sweep Generator $+61084 \mathrm{D} \mathrm{PI}-1 \mathrm{Mc} / \mathrm{s}-1500 \mathrm{Mc} / \mathrm{s}-£ 500$
Time Electronics 9814 Voltage calibrator - E 750.
Time Electronics 9811 Programmable resistance - $\mathbf{f 6 0 0}$
Time Electronics 2004 D.C. voltage st andard - $£ 1000$
HP 8699 B Sweep PI YIG oscillator $.01-4 \mathrm{GHz}$ - $£ 300$. 8690 B MF - $£ 250$. Bôth $£ 500$.
Summy Loads \& Power ap to 25 kilow 21500.
equipt - relays - attenuators - switches - waveguides - Yigz - microwave parts new and ex B\&K Items in stock - ask for list.
W\&G Items in stock - ask for list.
Power Supplies Heavy duty + bench in stock - Farnell - HP - Weir - Thurlby - Racal etc. Ask for list.

ITEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS. SAE FOR ENOULRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY ITEMS, AVAILABIUTY OR PRICE CHANGE VAT AND CARRIAGE EXTRA ITEMS MARXED TESTED HAVE 30 DAY WARRANTY. WANTED: TEST EOUIPMENT-VALVES-PLUGS AND SOCXETS-SYNCROS-TRANSMITTING AND RECEIVING EOUIPMENT ETC.
Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradlord BD112 2ER. Tel. No: (O1214) 6880007 . Fax: 651160
its incipient problems of transient intermodulation or slew-rate limiting.

Fortunately, the need to remove the dc offset at the output can be achieved without altering the good phase margins of the design, by simply injecting an appropriate amount of current into the base circuit of Tr_{4}.

Output power and dissipation

In essence, all that is required to increase the power output from the amplifier is to increase the rail voltages and standing current through the output devices. Restrictions are that power consumption must remain within the confines of what the mains transformer and rectifier can deliver. Also, the heat-sinks must be able to dissipate the extra heat and the output transistors must be adequately rated.

For a 15 W (sinusoidal) output into an 8Ω load, an $11 \mathrm{~V}_{\mathrm{RMS}}$ drive voltage is required. This, in turn, means a $31 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ voltage developed across the load, and an output current into the load of $2 \mathrm{~A}_{\mathrm{p}}$. Since the circuit is a sin-gle-ended configuration, in which the collector current will not increase on demand, this means that the output transistor operating current must be at least 2 A to allow this.

With the circuit shown, using the improved current control layout - which is rather less efficient than the boot-strapped load for Tr_{3} which I originally proposed - the rail voltage needed is $\pm 22 \mathrm{~V}$.

This will lead to a dissipation, in each output transistor, of 44 W . Prudence suggests that a heatsink having a rating of no more than $0.6^{\circ} \mathrm{C} / \mathrm{W}$, should be used for each output pair.

Most 2 N 3055 s have a V_{ce} of 60 V , a maximum collector current of 15 A , and a maximum dissipation, on a suitable heatsink, of 115 W . However, RCA's 3055, and its complementary MJ2955, are rated at 150 W .

Working conditions for the output transistors lie entirely within the devices safe operating area, so no specific overload protection circuitry is needed. Even so, the inclusion of a 3A fuse in the loudspeaker output line would seems prudent.

DC offset cancellation

Figure 3 shows the full circuit for one channel of the 15 W Class-A audio amplifier. I have inserted a 15 V three-terminal regulator ic into the positive rail to prevent any unwanted signal or hum intrusion into the emitter of Tr_{4}.
It is easy to set the dc offset to within $\pm 50 \mathrm{mV}$. The offset does not change greatly with time, although this assumes that $T r_{5}$ is not allowed to warm up too much. This is because the base-emitter potential of this transistor controls the operating current, which in turn, affects output dc offset.

Small-signal bandwidth.

In the original circuit the small-signal bandwidth was $10 \mathrm{~Hz}-250 \mathrm{kHz}, \pm 3 \mathrm{~dB}$, which was needlessly wide. Because of this, I have added
an input high-frequency roll-off network, R_{3} / C_{2}, to the input circuit to limit the top end response to some 50 kHz . This assumes an input source impedance of $10 \mathrm{k} \Omega$ or less.

As it stands, the low-frequency -3 dB point is about 7 Hz . It can be lowered even further, if necessary, by making C_{1} larger - say to $1 \mu \mathrm{~F}$.

Supplying power

As was shown in the 1970 postscript, it is possible to operate this amplifier from a simple rectifier/reservoir capacitor layout. Fig. 4 is an example. The only penalty is a small 100 Hz background hum, probably about 3 mV in amplitude. However, I feel that, if you are

Fig. 4. Simple but adequate dual-rail supply using a single bridge.

Fig. 5. Regulated power supply for the Class-A amplifier uses boosters around the threeterminal regulators. These take advantage of the regulators' current-limiting feature.
seeking the best, a proper regulated power supply is preferable, Fig. 5.

The circuit shown for the current booster pass transistors, $T r_{1} / T r_{2}$, is one suggested by National Semiconductor. It takes advantage of the internal current limiting circuitry of the 7815/7915 devices to limit the short-circuit current of these ICs to 1.2 A . By choosing the correct ratios of $R_{5}: R_{7}$ and $R_{8}: R_{10}$, the shortcircuit current drawn from $T r_{1}$ and $T r_{2}$ will also be limited.
For a satisfactory ripple free dc supply of $\pm 22 \mathrm{~V}$, the on-load voltage supplied to the regulator circuit should be $\pm 27 \mathrm{~V}$.

Performance

I prefer measurements made with appropriate instruments to judgments based on listening tests.

Measured distortion is less than 0.1% near the onset of clipping. It fades away into the background noise level of the measuring system as output power level is reduced.

For me, the fact that the distortion given by this circuit is almost pure second harmonic is more persuasive of its performance than any
'golden eared' judgment of tonal purity.
If you then add the observation that the circuit remains stable on a square-wave drive into typical reactive loads, I am not surprised that its performance was capable of equalling the Williamson on listening tests. No significant overshoot is observed on the squarewave, and stability is achieved without the need for internal high-frequency compensation arrangements.
So, as a final thought, if any of you want to find out how a top quality valve amplifier like the Williamson sounds, you can find out at a tenth of the cost of building one by making up this Class-A design. It has the additional advantage of incorporating readily available and modern components.

Technical support

Hart is supplying full component sets for this design. Ring 01691652894 (24h) or find Hart in the advertisers' index at the end of this issue.

The Universal Programmer that stands-alone

with everything you need. Don't buy your next programmer until you see the 'Eclipse'

- Windows and DOS user interface
- Unparalleled in speed \& sophistication rdear for R\&D and volume production
- 96 to 256 pin drivers
- Programms PlDs, EPLDs, FPGAs, PROMS, EPROMS, E/EPROMS, LASH \& Micros
- Universal DIP, PLCC, PGA and QFP modules - no more socket adaptors - Stand-aione or remole operation Europe's largest programmer manufacturer

STA PROGRAMMERS call today on $+44(0) 1707332148$ or fax $+44(0) 1707371503$ for further information All rada marks are acknowiedged and respecter

c CHELMER VALVE COMPANY

If you need Valves/Tubes or RF Power Transistors e.t.c. .. then try us!

We have vast stocks, widespread sources and 33 years specialist experience in meeting our customers requirements.

Tuned to the needs of the Professional User

Chelmer Valve Company, 130 New London Road, Chelmsford, Essex CM2 ORG, England
な44-01245-355296/265865 Fax: 44-01245-490064

HAR
Reliability
"Backer passes this test with flying colours" \qquad
Performance
"Backer's top transfer rate of 9 Mb per minute runs rings around the 1.8 Mb per minute that most tape streamers can manage"
"Frightfully good stuff"
PC Format
Practical
"As conventional tape streamers and other back-up devices are generally financially impractical for most home users, Backer is an innovative fail-safe solution for your hard drive's content"

PC Advisor
Innovation
"A little gem of a product that allows you to use a video recorder as a hard disk back-up"

Windows Plus
Cost
"It represents unbeatable value
for money" Windows Plus
Capacity
"For an E180 tape at $£ 2$ you're talking about a cost of less than 1 penny per 8 Mb of stored data! A single E180 tape can back-up over 1.5 Gbytes of data" Windows Plus, Home Office

* PC Format Customer Survey.

Distributor enquiries welcome.

Backer is a high performance back-up system designed specifically for the home user. For less than the price of most video games, you can store 1.5 Gbytes of data on a single standard video tape, the equivalent of $3 \mathrm{CD}-\mathrm{ROMs}$. Backer ${ }^{8}$ utilises your existing video recorder to transfer data from your hard disk at up to 9Mbytes per minute, faster than many of the significantly more expensive tape drives. Backer ${ }^{8}$ runs on a 486 and upwards with a minimum of 4 Mb memory and utilises a standard 75 ohm video grade cable - scart to phono.

- Free up extra disk space by archiving less frequently used files.
- Transfer data between PC's, copy hundreds of Megabytes quickly and easily.
- Protect important files by keeping back-up copies.
- Uses low cost standard video tapes.
- Comprises an 8 bit ISA expansion card and easy-to-use software.
- State of the art sophisticated error correction ensures reliable operation.

Order now by completing the form below and sending together with a cheque or postal order made payable to Danmere Limited. Alternatively telephone, send a fax or e-mail quoting the information requested in the form below.

Danmere Limited,
Whitehall, 75 School Lane, Hartford, Northwich, Cheshire CW8 1PF.
Tel: 01606 74330, Fax: 01606 75020, e-mail: sales@danmere.com
The PC hard disk back-up system

Get out of a pickle get into SpiceAge!

Hands up all who have been there? A great idea turns into sleepless nights: getting one thing right breaks something else...

Some circuits require the refining of many interdependent variables. SpiceAge provides a virtually limitless inventory of components, signal functions and instruments with facilities for sweeping values, with am and fm through arbitrary functions. It can guide you to a solution that could take much longer to find using
 hardware.

SpiceAge up your design without burning a hole in your pocket. Prices from just $£ 85+$ VAT to $£ 695+$ VAT. Friendly technical help comes free (dreadful puns optional). For a demonstration kit and details of our other and third party support programs (includes schematics, PCB layout, filter synthesis and model synthesis), please contact:
Charles Clarke at Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP.
Tel: 01819060155 Fax: 01819060969 Email 100550.2455@compuserve.com

Other brand 125 Hz
Wavy trace shows poor damping after a transient

SUPRA Ply 125 Hz

Superior damping - similar results at all audio frequencies

Supra Ply has got a big brother, Ply 3.4 £8.00/m for superior bass sonics
We are cable specialists since 1976 with distribution established in 24 countries

The test winner!

Stereophile USA December 1995 Studio Sound UK December 1995 Reproduced Sound Conference Nov 1995 "Speaker cable differences: CASE PROVEN" by Ben Duncan Research.

Low inductance concept, low, benign oxidation Much faster, tighter damping gives you higher definition and more control. Result: less blur, less listening fatigue. Transient error in a spaced wire or a zip-wire is as much as $1 / 28$ th of the immediately preceding signal; our cable design reduces this at least ten times.

The low, benign oxidation is discussed in Ben Duncan's article in Electronics World,
February 1996: Modelling cable
Please send for our catalog to see our complete range of cables and connectors, for pro and HiFi!

Jenving Technology AB

Backamo 12800 • S-459 91 Ljungskile •Sweden Fax: +46 52223131 Tel: +46 52223460

Designing reliable rectifiers

Ray Fautley explains how to design a reliable power supply using optimum components.

Fig. 1. The full-wave bridge rectifier is not the easiest way of producing dc from ac mains, but electrical stresses are lower than for other rectifier types.

Fig. 2. At switch on, the capacitor present a short to the bridge and can cause diode failure. In this protection circuit, the relay contacts remain open until the capacitor is charged.

Fig. 3. Zener diodes can be used to operate the protection relay when output voltage reaches about 75% of maximum.

Reliable linear power supplies of many different types are common. But their apparent simplicity can easily lead designers to think that a few components connected to a mains transformer will produce the desired result. It can be disconcerting when at switch-on there is a bang and no output.
Main pitfalls to be avoided are breakdown of rectifier diodes due to excessive pulse current or reverse voltage, and too high voltage or ripple current causing violent demise of the reservoir capacitor
This article and its successors cover how to design the commonest rectifier circuits, namely half-wave, full-wave centre tap, full-wave bridge and voltage doubler circuits. Design procedures presented are intended to help you design reliable linear supplies with a minimum of effort
The source of the tabulated figures is a set of curves produced by O. H. Schade for valve type rectifiers. Although originally published over fifty years ago, these figures are still valid and useful ${ }^{1}$
Because the full-wave bridge is probably the commonest rectifier circuit these days, it is the subject of the first design procedure. It is not by any means the simplest way of providing dc from ac mains, but the electrical stresses on the diodes are less than for other types.

Full-wave bridges

In the full-wave bridge circuit, Fig. 1, alternating voltage is applied to the bridge diodes D_{1-4}, where it is rectified and the output smoothed by the reservoir capacitor C. The fundamental frequency of the ripple voltage superimposed on the dc output is twice that of the supply frequency. So for a 50 Hz mains supply the ripple frequency is 100 Hz . Resistor R_{S} represents the resistance of the souice of the supply, and R_{L} the effective resistance of the dc load.

Designing a full wave bridge
To design a full-waver bridge rectifier, follow these steps.

1) Specify required dc output voltage at full load $E_{\text {dc(load) }}$ (volts).
2) Specify required maximum load current $I_{\text {dc(load) }}$ (amps).
3) Specify maximum ripple voltage acceptable $V_{\text {r(ms) }}$ (volts).
4) Specify the ac mains supply voltage $V_{\text {prif(rms) }}$ (volts).
5) Specify the frequency of the ac mains supply f (hertz).
6) Determine the value of the equivalent load resistance $R_{\mathrm{L}}=E_{\mathrm{dd}} / /_{\mathrm{dc}(\text { load })}$ where E_{dc} is the design value of the dc output voltage. It is the voltage drop across the load $E_{\text {def(load) }}$ added to the voltage drop across the rectifiers: $E_{\text {dc }}$ equals $E_{\text {de(load) }}+2 V_{\text {rec }}$ and $V_{\text {rec }}$ is 0.9 V , which is the drop across each rectifier diode. So R_{L} equals $\left[E_{\text {de(load })}+1.8\right] / / /_{\text {dc(load) }} \Omega$.
7) Determine average current through each diode, I_{0}. As the bridge has two current branches, half the total average current will flow through each branch and thus also through each diode. Current I_{0} equals $I_{\mathrm{dc}(\text { load })} / 2$.
8) Determine a value for the source resistance of the supply to the bridge rectifier, R_{s}.
8a) For low resistance loads, ie, low voltage high current supplies, for example 12 V at 10 A , diode resistance $R_{\text {rec }}$ will probably be the largest component of R_{s} and so must not be forgotten. Resistance $R_{\text {rec }}=V_{\text {red }} / I_{0}$, where $V_{\mathrm{rec}}=0.9 \mathrm{~V}$. As a result, R_{s} equals $R_{\text {sec }}+R_{\mathrm{pri}} / N^{2}+2 R_{\text {rec }}$, where N is $V_{\text {pri(rms) }} / V_{\text {sec }(\text { rms })}$

The term for rectifier diode resistance is $2 \times R_{\text {rec }}$ because in the bridge circuit there are two diodes in series across the transformer secondary winding. The term $R_{\text {pri }} / N^{2}$ represents the value of the resistance

ANALOGUE DESIGN

of the transformer primary winding reflected - or appearing at - the secondary winding. Resistance of the transformer secondary winding itself is $R_{\text {sec }}$. So $R_{\text {sec }}$ is transformer secondary winding resistance, $R_{\text {pri }}$ is transformer primary winding resistance and N is transformer turns ratio, ie, $N=V_{\text {pri }} / V_{\text {sec }}$ or primary-turns/secondaryturns.
If the transformer winding resistances are not known - and this is very likely as the transformer requirements haven't been defined yet - it is fairly safe to assume that $R_{\text {sec }}+R_{\text {pri }} / R^{2}$ is about 5% of load resistance R_{L}. Then R_{s} is $\left(R_{\mathrm{L}} \times 5\right) / 100+(2 \times 0.9) / I_{\mathrm{o}}$.
8 b) For high resistance loads, i.e. high voltage, low current supplies (eg, $500 \mathrm{~V}, 100 \mathrm{~mA}$) the resistance of the transformer windings will completely swamp the much smaller value of the rectifier resistance. So $R_{\mathrm{s}}=R_{\mathrm{sec}}+R_{\mathrm{pri}} / N^{2}$
As before, if the transformer winding resistances are not known, assume that $R_{\text {sec }}+R_{\text {pri }} / N^{2}$ is about 2% to 5% of R_{L}. Say $R_{\mathrm{s}}=R_{\mathrm{L}} \times 5 / 100\left(5 \%\right.$ of $\left.R_{\mathrm{L}}\right)$
9) Calculate the ratio of R_{s} to R_{L} as a percentage: $R_{\mathrm{s}} / R_{\mathrm{L}} \times 100 \%$.
10) Determine the percentage ripple voltage from the specified maximum ripple voltage and the dc output voltage, $V_{\mathrm{r}} \%$, from $V_{\text {r(ms) }} / E_{\text {dc(load) })} \times 100 \%$
11) From Table 1, determine the value of X required to provide the percentage ripple voltage, $V_{\mathrm{r}} \%$, and $R_{\mathrm{s}} / R_{\mathrm{L}} \%$, as above.
If figures for $V_{\mathrm{r}} \%$ and $R_{5} / R_{\mathrm{L}} \%$ are not exactly the same as those found in the table headings, then the required value for X must be interpolated. A couple of examples may help.
11a) If $V_{\mathrm{r}} \%=2.5$ and $R_{\mathrm{s}} / R_{\mathrm{L}} \%=2.0$, look for values on each side of those in the example. For $V_{\mathrm{r}} \%=2$ and $R_{\mathrm{s}} / R_{\mathrm{L}} \%=1.0$, then $X=36, V_{\mathrm{r}} \%=3$ and $R_{\mathrm{S}} / R_{\mathrm{L}} \%=3.0$, then $X=23$. Although not absolutely theoretically correct, finding the arithmetical mean value between 22 and 36 will give a good enough approximation of the value for X. The arithmetical mean between a and b is given by $(a+b) / 2$. So the arithmetical mean between 22 and 36 is: $(22+36) / 2$, which is $58 / 2$, or 29.
11b) If $V_{\mathrm{r}} \%=15$ and $R_{s} / R_{\mathrm{L}} \%=20$, again look for values on each side.
For $V_{\mathrm{T}} \%=10$ and $R_{\mathrm{S}} / R_{\mathrm{L}} \%=10$, then $X=5.9, V_{\mathrm{r}} \%=20$ and $R_{\mathrm{s}} / R_{\mathrm{L}} \%=30$, then $X=2.2$. The arithmetical mean between 2.2 and 5.9 is 4.05 , again a good enough working approximation. This method is, of course, applicable to finding in-between values when using the other three tables.
12) Calculate the value of the reservoir capacitor C, required to provide the ripple voltage $V_{\mathrm{r}(\mathrm{ms})}$ from $C=X /\left(2 \pi \mathrm{f} \times R_{\mathrm{L}}\right) \times 10^{6} \mu \mathrm{~F}$.
Some of you may wonder why the term used for frequency in the equation for C mentioned earlier is f and not $2 f$ (the ripple frequency in a bridge rectifier being twice the supply frequency). It is simply because the figures in Table 1 were calculated to allow for the difference.

Table 1. An aid to finding the value of X

$\boldsymbol{V}_{\mathbf{r}} \%$	$\boldsymbol{R}_{\mathbf{5}} / \boldsymbol{R}_{\mathrm{L}} \%$						
	$\mathbf{0 . 1}$	$\mathbf{0 . 3}$	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	5.0	10	$\mathbf{3 0}$
0.1	771	740	709	679	650	583	463
0.2	381	368	354	340	326	294	233
0.3	257	247	237	228	219	199	158
0.4	195	188	177	170	163	147	120
0.5	154	148	141	135	129	116	95
0.6	128	123	117	112	108	98	81
0.7	110	106	102	98	94	85	69
0.8	97	93	88	85	81	74	61
0.9	86	82	78	75	72	65	54
1.0	78	75	71	68	65	59	49
2	38	37	36	35	33	30	25
3	26	25	24	23	22	20	16
4	19	19	18	17	17	15	12
5	15	15	14	14	13	12	10
6	13	12	12	11.5	11.1	10	8
7	10.6	10.3	9.9	9.6	9.3	8.5	7.0
8	9.1	8.8	8.5	8.2	8.0	7.4	6.0
9	8.0	7.7	7.5	7.3	7.0	6.5	5.3
10	7.1	7.0	6.8	6.6	6.4	5.9	4.9
20	2.9	2.8	2.7	2.6	2.6	2.4	2.2
30	1.6	1.6	1.5	1.5	1.4	1.4	1.2
40	0.9	0.9	0.9	0.9	0.9	0.8	0.7

Toble 2. Finding the value of $Y_{,}$using X

X	$\boldsymbol{R}_{\mathrm{S}} / \mathrm{R}_{\mathrm{L}} \%$									
	0.05	0.1	0.5	1.0	2	4	6	8	10	12.5
0.1	0.64	0.64	0.64	0.63	0.62	0.61	0.60	0.57	0.57	0.56
0.2	0.64	0.64	0.64	0.63	0.62	0.62	0.60	0.58	0.57	0.57
0.3	0.64	0.64	0.64	0.63	0.63	0.62	0.61	0.59	0.58	0.57
0.4	0.64	0.64	0.64	0.63	0.63	0.62	0.61	0.60	0.58	0.58
0.5	0.65	0.64	0.64	0.63	0.63	0.62	0.61	0.60	0.59	0.58
0.6	0.65	0.65	0.64	0.64	0.64	0.63	0.62	0.60	0.59	0.58
0.7	0.66	0.65	0.65	0.65	0.64	0.63	0.62	0.61	0.60	0.59
0.8	0.66	0.66	0.66	0.65	0.65	0.64	0.63	0.62	0.60	0.59
0.9	0.67	0.66	0.66	0.66	0.65	0.64	0.63	0.62	0.61	0.60
1.0	0.68	0.68	0.67	0.67	0.66	0.65	0.64	0.63	0.62	0.61
1.5	0.72	0.71	0.70	0.70	0.69	0.68	0.67	0.65	0.64	0.62
2.0	0.76	0.76	0.76	0.76	0.75	0.73	0.71	0.70	0.67	0.64
2.5	0.77	0.77	0.77	0.77	0.76	0.74	0.72	0.71	0.68	0.66
3.0	0.79	0.78	0.78	0.78	0.77	0.75	0.73	0.72	0.69	0.68
4.0	0.82	0.82	0.80	0.79	0.79	0.78	0.75	0.73	0.71	0.69
5.0	0.85	0.85	0.84	0.84	0.82	0.80	0.77	0.75	0.73	0.70
6.0	0.86	0.86	0.85	0.85	0.84	0.80	0.77	0.75	0.73	0.70
7.0	0.88	0.87	0.86	0.86	0.85	0.82	0.78	0.75	0.74	0.71
8.0	0.89	0.88	0.87	0.87	0.86	0.82	0.78	0.76	0.74	0.71
9.0	0.90	0.90	0.88	0.88	0.87	0.83	0.79	0.76	0.74	0.72
10	0.92	0.91	0.90	0.89	0.88	0.84	0.80	0.77	0.75	0.72
15	0.95	0.93	0.91	0.90	0.89	0.85	0.80	0.77	0.75	0.72
20	0.96	0.95	0.94	0.92	0.90	0.86	0.80	0.78	0.75	0.73
25	0.96	0.96	0.95	0.93	0.90	0.86	0.81	0.78	0.75	0.73
30	0.97	0.96	0.95	0.93	0.91	0.86	0.82	0.78	0.76	0.73
40	0.98	0.97	0.96	0.93	0.91	0.86	0.82	0.78	0.76	0.73
50	0.98	0.98	0.96	0.94	0.91	0.86	0.82	0.79	0.76	0.73
60	0.98	0.98	0.96	0.94	0.91	0.86	0.82	0.79	0.76	0.73
70	0.99	0.99	0.96	0.94	0.91	0.86	0.82	0.79	0.76	0.73
80	0.99	0.99	0.96	0.94	0.91	0.86	0.82	0.79	0.76	0.73
90	0.99	0.99	0.97	0.94	0.91	0.86	0.82	0.79	0.76	0.73
100	0.99	0.99	0.97	0.94	0.91	0.86	0.82	0.79	0.76	0.73
200	1.0	0.99	0.97	0.94	0.91	0.86	0.82	0.79	0.76	0.73
300	1.0	0.99	0.97	0.95	0.91	0.86	0.82	0.79	0.76	0.73
1000	1.0	0.99	0.97	0.95	0.91	0.86	0.82	0.79	0.76	0.73

TABLE 2 (continued)												
To Find the Value of Y												
$\mathrm{X} \quad R_{5} / R_{\mathrm{L}} \%$												
	15	20	25	30	35	40	50	60	70	80	90	100
0.1	0.56	0.54	0.51	0.49	0.47	0.46	0.44	0.40	0.38	0.35	0.33	0.32
0.2	0.56	0.54	0.51	0.49	0.47	0.46	0.44	0.40	0.38	0.35	0.33	0.32
0.3	0.56	0.54	0.51	0.49	0.47	0.46	0.44	0.40	0.38	0.36	0.33	0.32
0.4	0.56	0.54	0.51	0.49	0.48	0.46	0.44	0.40	0.38	0.36	0.33	0.32
0.5	0.57	0.54	0.51	0.50	0.48	0.46	0.44	0.41	0.38	0.36	0.34	0.32
0.6	0.57	0.54	0.51	0.50	0.48	0.46	0.44	0.41	0.38	0.36	0.34	0.32
0.7	0.57	0.55	0.52	0.50	0.48	0.46	0.44	0.41	0.38	0.37	0.34	0.32
0.8	0.58	0.55	0.52	0.50	0.48	0.47	0.44	0.41	0.39	0.38	0.34	0.33
0.9	0.58	0.55	0.53	0.51	0.49	0.47	0.45	0.41	0.39	0.38	0.34	0.33
1.0	0.59	0.56	0.53	0.51	0.49	0.47	0.45	0.42	0.40	0.38	0.35	0.33
1.5	0.60	0.57	0.55	0.52	0.50	0.48	0.45	0.42	0.40	0.38	0.35	0.33
2.0	0.63	0.59	0.56	0.53	0.51	0.49	0.46	0.43	0.41	0.38	0.35	0.33
2.5	0.64	0.60	0.57	0.54	0.52	0.50	0.47	0.43	0.41	0.38	0.36	0.34
3.0	0.65	0.61	0.58	0.55	0.52	0.50	0.47	0.43	0.41	0.38	0.36	0.34
4	0.66	0.62	0.59	0.55	0.53	0.51	0.47	0.44	0.41	0.38	0.36	0.34
5	0.67	0.63	0.60	0.56	0.54	0.52	0.48	0.44	0.42	0.39	0.37	0.35
6	0.68	0.63	0.60	0.56	0.54	0.52	0.48	0.44	0.42	0.39	0.37	0.35
7	0.68	0.64	0.60	0.57	0.54	0.52	0.48	0.44	0.42	0.39	0.37	0.35
8	0.68	0.64	0.60	0.57	0.54	0.52	0.48	0.44	0.42	0.39	0.37	0.35
9	0.69	0.64	0.60	0.57	0.54	0.52	0.48	0.44	0.42	0.39	0.37	0.35
10	0.69	0.65	0.61	0.58	0.55	0.52	0.48	0.44	0.43	0.39	0.37	0.35
15	0.69	0.65	0.61	0.58	0.55	0.52	0.48	0.44	0.43	0.39	0.37	0.35
20	0.70	0.65	0.61	0.58	0.55	0.53	0.49	0.44	0.43	0.39	0.37	0.35
25	0.70	0.65	0.61	0.58	0.55	0.53	0.49	0.45	0.43	0.39	0.37	0.35
30	0.70	0.65	0.61	0.58	0.55	0.53	0.49	0.45	0.43	0.39	0.37	0.35
40	0.70	0.65	0.61	0.58	0.55	0.53	0.49	0.45	0.43	0.39	0.37	0.35
50	0.70	0.65	0.61	0.58	0.55	0.53	0.49	0.45	0.43	0.40	0.38	0.35
60	0.70	0.65	0.61	0.58	0.55	0.53	0.49	0.45	0.43	0.40	0.38	0.35
70	0.70	0.65	0.61	0.58	0.55	0.53	0.49	0.45	0.43	0.40	0.38	0.35
80	0.70	0.65	0.61	0.58	0.55	0.53	0.49	0.45	0.43	0.40	0.38	0.35
90	0.70	0.65	0.61	0.58	0.55	0.53	0.49	0.45	0.43	0.40	0.38	0.35
100												
to	0.70	0.66	0.61	0.58	0.55	0.53	0.49	0.45	0.43	0.40	0.38	0.36
1000												

13) Find the nearest standard or available value for the reservoir capacitor C, close to or preferably just above, the value calculated earlier. If the value different from the one found earlier, call it C_{1} and determine a new value for X, called X_{1}, using $X_{1}=2 \pi f R_{\mathrm{L}} C_{1}$ with C_{1} in $\mu \mathrm{F}$, and $X_{1}=\left(2 \pi f R_{\mathrm{L}} C_{1}\right) / 10^{6}$.
14) From the figures in Table 2 determine the value of Y for X in (11) (or X_{1} in (13) and $R_{\mathrm{s}} / R_{\mathrm{L}} \%$ in (9).
15) Determine the transformer secondary voltage $V_{\sec (\mathrm{rms})}$ required, from the value for Y in (14),

$$
V_{\mathrm{sec}(\mathrm{mss})}=E_{\mathrm{dd}}(\sqrt{ } 2 \times \mathrm{Y})=\left(0.707 \times E_{\mathrm{dc}}\right) / \mathrm{Y}
$$

where $E_{\mathrm{dc}}=E_{\mathrm{dc}(\text { load })}+2 V_{\text {rec }}$.
16) Determine peak voltage or PIV, or peak inverse voltage, that each of the rectifier diodes must withstand. PIV is $V_{\text {sec(peak), }}$ which equals $\sqrt{ } 2 \times V_{\text {sec }(\mathrm{rms})}$, or $1.414 V_{\sec (\mathrm{rms})}$.
17) Find the value of Z from the figures in Table 3 for $2 X$ or $2 X_{1}$, where X was found in (11), and for $R_{\mathrm{S}} / 2 R_{\mathrm{L}} \%$, where $\mathrm{Z}=I_{(\mathrm{rms}} / I_{\mathrm{o}}$.
18) From the values for Z found in (17) and I_{0} in (7), determine the current through each rectifier diode: $I_{(\mathrm{rms})}=I_{0} \times Z$.
19) Determine recurrent peak current $I_{\text {(peak) }}$ through each rectifier diode. From the figures in Table 4 for $2 X$ (or $2 X_{1}$) and $R_{\mathrm{s}} / 2 R_{\mathrm{L}} \%$ find
W, which is $I_{\text {(peak) }} / I_{0}$. Then find $I_{\text {(peak) }}=I_{0} \times W$ 20) Determine initial switch-on current $I_{\text {on }}$. As C (or C_{1}) will be initially discharged, the load on the rectifier diodes will be nearly a shortcircuit at the instant of switch-on, limited only by the source resistance R_{s}. As a result, I_{on} is $V_{\text {sec (peak) }} / R_{\text {s }}$

This very high current flows for only a very short time, but the rectifier diodes must be capable of withstanding it. If suitable devices with such high pulse current ratings are not available, the source resistance R_{s} must be increased by adding an external resistor $R_{\text {ext }}$ between the bridge rectifier and the reservoir capacitor C (or C_{1}). The value of $R_{\text {ex1 }}$ to limit the switch-on current to an acceptable lower value $I_{\text {on }(\mathrm{L})}$, is determined later in (28).
21) Decide on a suitable rectifier diode type to be used. The device must have all its ratings equal to, or greater than the following:
Peak-inverse voltage or $V_{\text {sec(peak), }}$ sometimes called $V_{\text {RRM }}$, as in (16):
Initial switch-on current or $I_{\text {on }}$, sometimes called $I_{\text {FSM }}$, as in (20): Average current or I_{0}, sometimes known as $I_{F(A V)}$, as in (7).
22) Determine rms ripple current, $I_{\mathrm{c}(\mathrm{rms})}$, flowing through the reservoir capacitor C (or

23) Decide on the specification for the reservoir capacitor to be used. The capacitor
must have ratings equal to, or greater than, the following. Capacitance C (or C_{1}) see (12) or (13), dc working voltage $V_{\text {sec(peak), }}$, see (16), and ripple current $I_{\mathrm{c}(\mathrm{rms})}$ see (22).
24) Total transformer secondary current $I_{t(\mathrm{rms})}$ comprises two currents, one in each branch of the bridge, which must be summed using: $\sqrt{ }\left(\left[I_{(\mathrm{rms})^{2}}{ }^{2}\right]+\left[I_{(\mathrm{rms})}{ }^{2}\right]\right)$, which is $\sqrt{ } 2 \times I_{(\mathrm{rms})}$.
25) Transformer VA or volt-amp rating T_{VA} determines the size of the transformer: $V_{\text {sec }(\mathrm{rms})} \times I_{\mathrm{t}(\mathrm{mms})}$
26) Transformer requirements are volt-Amp rating T_{VA}, see (25), primary winding voltage $V_{\text {pri(rms), }}$, see (4), secondary winding $V_{\sec (\mathrm{mm})}$, see (15), and secondary current $I_{1(\mathrm{rms})}$, see (24).
27) When a suitable transformer has been chosen, measure the resistance of both windings. If measured source resistance $R_{\mathrm{s}(\mathrm{m})}$ or $R_{\mathrm{sec}}+R_{\mathrm{pri}} / N^{2}+2 R_{\mathrm{rec}}$, is less than R_{s} calculated in (8), then an external resistor calculated using $R_{\mathrm{ext}}=R_{\mathrm{s}}-R_{\mathrm{s}(\mathrm{m})}$ must be added, see (28), to limit $I_{\text {on }}$ to the value found in (20). For low resistance loads, as in (8a), it is unlikely that any external resistance will be necessary as the diode resistance $R_{\text {rec }}$ will tend to limit the switch-on current rather than the resistance of the transformer windings.
28) If an external resistor $R_{\text {ext }}$ was found necessary in (20) or (27) to be fitted between the rectifiers and the reservoir capacitor C (or C_{1}) to limit the switch-on current to $I_{\text {on }}(\mathrm{L})$, see (20), its value will be $\left[V_{\sec (p e a k)} / l_{\text {on(L) }}\right]-R_{\mathrm{S}}$
29) Power P_{r}, dissipated in $R_{\text {ext }}$ (if used) is given by $\left[I_{t(\mathrm{rms})}{ }^{2}\right] R_{\text {ext }}$.
A suitable resistor should have a power rating of about twice the value of P_{r} for reliable operation.
30) If external resistor $R_{\text {ext }}$ is used, and is of high enough resistance to degrade the supply's regulation, it could be shorted out by a switch immediately after switch-on. Either a hand operated toggle switch or, preferably an automatically operated circuit could be used.

Power switch with automatic sensing Automatic operation could be by a circuit sensing the rise of current through a relay coil. This relay has an operating voltage just below $E_{\mathrm{dc}(\text { load })}$ connected and is directly across the dc output. Its contacts are normally open, and connected across $R_{\text {ext }}$.

At the instant of switch-on, with high current charging the reservoir capacitor, the relay contacts are open, so $R_{\text {ext }}$ limits the current. As the capacitor charged, the voltage across it rises until it becomes high enough to operate the relay. The relay contacts then close, shorting out $R_{\text {ext }}$, thus reducing the series resistance of the supply and improving its regulation, Fig. 2.
For higher voltage supplies the relay could have a combination of resistance and zener diodes in series. This would enable operation when say, the output voltage reached about 75% of its full value, $E_{\mathrm{dc}(\mathrm{load})}$, see Fig. 3.

Implementing the equations

Suppose you want a supply to operate a linear amplifier. Requirements are for an output volt-

ANALOGUE DESIGN

age of 13.5 V at 10 A . Assume that an acceptable ripple voltage is 0.6 Vrms and that the supply will operate from the standard mains supply of $240 \mathrm{~V}, 50 \mathrm{~Hz}$. Design stages are numbered as previously.

1) $E_{\text {dc }(\text { load })}$ is 13.5 V .
2) $I_{\text {dc(load) }}$ is 10 A .
3) $V_{\mathrm{r}(\mathrm{rms})}$ is 0.6 Vrms .
4) $V_{\text {pri(rms) }}$ is 240 Vrms .
5) f is 50 Hz .
6) $R_{\mathrm{L}}=E_{\mathrm{dd}} / I_{\mathrm{dc}}$, where E_{dc} is $E_{\mathrm{dc}(\text { load })}+2 V_{\text {rec }}$. So $R_{\mathrm{L}} \quad$ is $\quad\left[E_{\mathrm{dc}(\text { load })}+1.8\right] / /_{\mathrm{dc}(\text { load })}$, or $(13.5+1.8) / 10$, giving 1.53Ω.
7) $I_{0}=I_{\mathrm{dc}(\text { load })} / 2=10 / 2=5 \mathrm{~A}$.
8) Using (8a), $R_{\mathrm{s}}=\left(R_{\mathrm{L}} \times 5\right) / 100+2 R_{\text {rec }}$, where $R_{\text {rec }}$ is $V_{\text {red }} I_{0}=0.9 / 5$, or 0.18Ω and R_{s} is $(1.53 \times 5) / 100+2(0.18)$ or 0.437Ω
9) $R_{\mathrm{S}} / R_{\mathrm{L}} \times 100 \%=(0.437 / 1.53) \times 100 \%$, giving $0.286 \times 100 \%$, or 28.6%.
10) $V_{\mathrm{r}} \%$ is $V_{\mathrm{r}(\mathrm{rms})} / E_{\mathrm{dc}(\text { load })} \times 100 \%$, which equals $0.6 / 13.5 \times 100 \%$, or 4.44%
11) From Table 1, the value of X for $V_{\mathrm{T}} \%=4.44 \%$ and $R_{\mathrm{S}} / R_{\mathrm{L}} \%=28.6 \%$, is found to be 11.0
12) $C=X / 2 \pi f R_{\mathrm{L}}$ is $\left(X \times 10^{6}\right) / 2 \pi \times 50 \times 1.53 \mu \mathrm{~F}$ or $22,885 \mu \mathrm{~F}$.
13) $22,000 \mu \mathrm{~F}$ is a standard value for an electrolytic capacitor and would be a suitable choice.
14) The value of Y for $X=11.0$, and $R_{\mathrm{s}} / R_{\mathrm{L}} \%=28.6 \%$ from Table 2 is 0.59 .
15) $V_{\text {sec(rns) }}$ is $E_{\mathrm{dd}} \mathcal{V} 2 \times Y$, which is $15.3 / 1.414 \times 0.59$ or $18.34 V_{\text {mns }}$.
16) $\sqrt{ } 2 \times 18.34$ is $25.9 V_{\text {(peak) }}$ or PIV.
17) Value of Z, for $2 X=22.0$ and $R_{\mathrm{s}} / R_{\mathrm{L}} \%=14.3 \%$, from Table 3 is found to be 2.0. Here, X is $11.0 \mathrm{in}(11)$ and $R_{\mathrm{s}} / R_{\mathrm{L}} \%$
equals 28.6% in (9)
18) $I_{(\mathrm{mss})}=I_{0} \times Z$, which is 2×5, or 10 A , where $Z=2.0$ in (17) and $I_{0}=5.0 \mathrm{~A}$ in (7).
19) Value of W for $2 X=22.0$ and $R_{\mathrm{S}} / 2 R_{\mathrm{L}} \%=14.3 \%$ from Table 4 is found to be 5.0 and thus $I_{\text {(peak) }}$ is $I_{0} \times W$, which is 25A. Here, $X=11.0$ in (11) and $R_{\mathrm{s}} / R_{\mathrm{L}} \%=28.6 \%$ in (9).
20) $I_{\text {on }}=V_{\text {sec(peak })} / R_{\mathrm{s}}=25.9 / 0.437=59.3 \mathrm{~A}$.
21) Diode ratings required are PIV (or $V_{\text {RRM }}$) of $25.9 \mathrm{~V}, I_{\text {on }}$ (or $I_{\text {FSM }}$) of 59.3 A and I_{0} (or $I_{\mathrm{F}(\mathrm{AV})}$) of 5.0A. Diode type BYX98-300 is suitable, having a PIV ($V_{\text {RRM }}$) of 300 V , an $I_{\mathrm{on}}\left(I_{\mathrm{FSM}}\right)$ of 75 A and an $I_{\mathrm{o}}\left(I_{\mathrm{F}(\mathrm{AV})}\right)$ of 10 A .
22) $I_{\mathrm{c}(\mathrm{ms})}=\sqrt{ }\left(2\left[I_{(\mathrm{mms})}{ }^{2}\right]-\left[\left[_{\mathrm{dc}(\text { load })}{ }^{2}\right]\right)\right.$, which gives $\sqrt{2}\left(\left[10^{2}\right]-\left[10^{2}\right]\right)$, or 10 A .
23) Reservoir capacitor ratings are a capacitance of $22,885 \mu \mathrm{~F} \quad(22,000 \mu \mathrm{~F}$ standard value) a $V_{\text {sec (peak) }}$ equal to $\mathrm{V}_{\mathrm{DC}(\mathrm{wkg})}$ of 25.9 V and a ripple current of $I_{\mathrm{c}(\mathrm{mms})}$ of 10 A .
24) Current $I_{((\mathrm{mss})}$ is $1.414 \times I_{\mathrm{rms}}$ of 14.14 A .
25) Transformer T_{VA} is $\left.V_{\mathrm{sec}(\mathrm{mss}}\right) I_{(\mathrm{rms})}$, which is 18.34×14.14, or 259.3 VA .
26) Mains transformer ratings required are the T_{VA} of 259.3 VA , primary winding voltage $V_{\text {pri(ms) }}$ of $240 V_{\text {rms, }}$, secondary-winding voltage $V_{\mathrm{sec}(\mathrm{ms})}$ of $18.34 V_{\mathrm{rms}}$ and the $I_{\mathrm{t}(\mathrm{ms})}$ secondary current of $14.14 A_{\text {mss }}$.

Compared with guessing components, you may find this design process rather laborious - but it does provide you with an elegant and reliable power solution.

Further reading

Schade, O. H., 'Analysis of Rectifier Operation', Proc. IRE, Vol. 31, No. 7, July 1943.

C	Capacitance of reservoir capacitor
C_{1}	Alternative for C
$E_{\text {dc }}$	Design value for dc output voltage
$E_{\text {dc(load) }}$	DC output voltage across full Load
f	Frequency of ac mains supply
$t_{\text {ctrms) }}$	Ripple current through reservoir capacitor
$J_{\text {dectload) }}$	Maximum current in load
tran	Same as Io
$l_{\text {FSM }}$	Same as Ion
10	Average current through each diode
Ion	Current at initial switch-on
Ion(L)	Reduced initial switch-on current
'(peak)	Recurrent peak current through each diode
'(rms)	Current through each diode (rms)
It(rms)	Mains transformer secondary current
N	Mains transformer ratio ($V_{\text {pri }} / V_{\text {sec }}$)
PIV	Diode peak inverse voltage
P_{r}	Power dissipated in $R_{\text {ext }}$
$R_{\text {ext }}$	External resistance added to source resistance
$R_{\text {L }}$	Equivalent load resistance
$R_{\text {pri }}$	Resistance of mains transformer primary winding
$R_{\text {rec }}$	Effective resistance of each diode
$R_{\text {s }}$	Source resistance
$R_{\text {sf(m) }}$	Measured source resistance
$R_{S} / R_{L} \%$	Ratio of source resistance to equivalent load as \%
$R_{\text {sec }}$	Resistance of mains transformer secondary winding
$T_{\text {Va }}$	Mains transformer volt-amp rating
$V_{\text {pritmst }}$	Supply voltage applied to mains transformer primar
$V_{r} \%$	Ratio of ripple voltage to dc output voltage as \%
$V_{\text {r(trms }}$	Maximum ripple voltage acceptable
$V_{\text {rec }}$	Voltage drop across each rectifier diode
$V_{\text {RRM }}$	Same as PIV
$V_{\text {secipeak) }}$	Mains transformer secondary voltage (peak)
$V_{\text {sectims) }}$	Mains transformer secondary voltage (rms)

Table 3. Finding the value for Z.

$\mathbf{2 X}$	$\boldsymbol{R}_{\mathbf{S}} \mathbf{2} \boldsymbol{R}_{\mathrm{L}} \%$										
	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 1}$	$\mathbf{0 . 2}$	$\mathbf{0 . 5}$	$\mathbf{1 . 0}$	$\mathbf{2}$	5	$\mathbf{1 0}$	30	$\mathbf{1 0 0}$
1	1.80	1.80	1.79	1.79	1.79	1.78	1.77	1.77	1.73	1.70	1.66
2	2.03	2.02	2.01	2.00	1.99	1.98	1.97	1.96	1.89	1.77	1.67
$\mathbf{3}$	2.19	2.17	2.16	2.14	2.13	2.11	2.10	2.03	1.95	1.79	1.67
4	2.32	2.30	2.28	2.26	2.24	2.22	2.17	2.08	1.98	1.80	1.68
5	2.43	2.40	2.36	2.32	2.27	2.23	2.19	2.10	2.01	1.82	1.68
$\mathbf{6}$	2.50	2.48	2.46	2.44	2.42	2.40	2.28	2.13	2.04	1.83	1.68
7	2.58	2.53	2.51	2.49	2.47	2.45	2.31	2.16	2.05	1.84	1.68
8	2.66	2.63	2.61	2.60	2.58	2.50	2.35	2.17	2.06	1.84	1.68
9	2.73	2.70	2.68	2.66	2.64	2.57	2.38	2.18	2.07	1.85	1.68
10	2.80	2.78	2.75	2.73	2.70	2.62	2.40	2.19	2.08	1.86	1.68
20	3.30	3.20	3.17	3.15	2.83	2.82	2.53	2.26	2.12	1.88	1.68
30	3.64	3.50	3.40	3.29	3.05	2.89	2.59	2.30	2.15	1.90	1.68
40	3.91	3.72	3.55	3.40	3.13	2.92	2.62	2.32	2.16	1.90	1.68
50	4.08	3.87	3.68	3.48	3.22	2.93	2.64	2.33	2.17	1.91	1.68
60	4.23	3.97	3.78	3.55	3.25	2.94	2.66	2.35	2.18	1.91	1.68
70	4.35	4.03	3.87	3.60	3.27	2.95	2.67	2.36	2.18	1.91	1.68
80	4.45	4.10	3.94	3.65	3.30	2.96	2.68	2.36	2.18	1.91	1.68
90	4.52	4.18	3.98	3.67	3.31	2.97	2.68	2.37	2.19	1.91	1.68
100	4.62	4.23	4.02	3.69	3.32	2.98	2.69	2.37	2.19	1.91	1.68
200	5.03	4.60	4.27	3.86	3.37	3.00	2.69	2.38	2.19	1.91	1.68
300	5.20	4.79	4.33	3.88	3.38	3.00	2.69	2.38	2.19	1.91	1.68
400	5.35	4.86	4.37	3.88	3.38	3.00	2.70	2.38	2.19	1.91	1.68
500	5.45	4.90	4.38	3.89	3.38	3.00	2.70	2.39	2.19	1.91	1.68
600	5.51	4.93	4.38	3.89	3.39	3.00	2.70	2.39	2.19	1.91	1.68
700	5.60	4.96	4.39	3.90	3.39	3.01	2.70	2.39	2.19	1.91	1.68
800	5.67	4.98	4.39	3.90	3.39	3.01	2.70	2.39	2.19	1.91	1.68
900	5.70	4.99	4.39	3.90	3.39	3.01	2.70	2.39	2.19	1.91	1.68
1000	5.75	5.00	4.39	3.90	3.39	3.01	2.70	2.39	2.19	1.91	1.68

2 x	$R_{\text {S }} / 2 R_{L} \%$										
	0.02	0.05	0.1	0.2	0.5	1.0	2	5	10	30	100
1	3.70	3.70	3.70	3.64	3.62	3.60	3.60	3.59	3.58	3.57	3.46
2	4.60	4.57	4.55	4.53	4.52	4.50	4.28	4.20	4.08	3.72	3.51
3	5.50	5.40	5.33	5.30	5.20	5.10	5.00	4.67	4.33	4.00	3.55
4	6.20	6.17	6.13	6.10	6.00	5.98	5.45	5.20	4.95	4.05	3.57
5	7.30	6.95	6.90	6.85	6.80	6.75	6.51	5.60	5.00	4.10	3.62
6	8.00	7.90	7.70	7.60	7.50	7.30	6.90	5.84	5.09	4.19	3.63
7	8.70	8.55	8.50	8.30	8.10	7.82	7.30	6.00	5.10	4.22	3.64
8	9.60	9.50	9.35	9.00	8.50	8.20	7.69	6.15	5.14	4.23	3.64
9	10.3	9.80	9.60	9.50	9.10	8.55	7.72	6.23	5.21	4.25	3.65
10	10.9	10.7	10.5	10.1	9.50	8.64	7.74	6.30	5.28	4.26	3.66
20	16.0	15.0	14.4	13.0	11.1	9.44	7.83	6.47	5.29	4.27	3.66
30	19.7	18.0	16.3	14.3	11.7	9.60	7.92	6.50	5.31	4.27	3.66
40	21.9	20.0	17.3	14.7	12.1	9.64	8.01	6.51	5.33	4.28	3.66
50	23.7	20.8	18.2	15.2	12.2	9.70	8.10	6.51	5.34	4.28	3.66
60	24.9	21.1	18.5	15.4	12.3	9.77	8.12	6.51	5.34	4.29	3.66
70	25.9	21.4	18.9	15.6	12.4	9.84	8.14	6.51	5.34	4.29	3.66
80	26.7	21.8	19.4	15.7	12.4	9.90	8.16	6.51	5.34	4.30	3.66
90	27.5	22.2	19.5	15.8	12.5	9.93	8.18	6.51	5.34	4.30	3.66
100	28.5	22.5	19.7	15.9	12.5	9.96	8.19	6.52	5.35	4.31	3.66
200	30.5	23.0	20.0	16.3	12.6	10.0	8.19	6.52	5.36	4.31	3.67
300	31.6	23.3	20.5	16.9	12.7	10.0	8.20	6.53	5.38	4.32	3.67
400	32.8	23.5	20.9	17.0	12.7	10.0	8.20	6.54	5.40	4.32	3.67
500	33.3	23.8	21.0	17.1	12.8	10.0	8.20	6.55	5.42	4.33	3.68
600	33.8	24.0	21.1	17.2	12.8	10.1	8.20	6.56	5.44	4.33	3.68
700	34.2	24.5	21.2	17.3	12.9	10.1	8.20	6.57	5.46	4.33	3.69
800	34.4	24.9	21.4	17.4	12.9	10.1	8.20	6.58	5.48	4.33	3.69
900	34.5	25.8	21.5	17.5	13.0	10.1	8.20	6.59	5.52	4.33	3.70
1000	34.7	27.0	21.6	17.6	13.0	10.1	8.20	6.60	5.56	4.33	3.70

Take a look inside the ELECTROMAIL catalogue and you're in for a surprise. If you're looking for Electronic Components, Electrical Equipment or Mechanical Tools, with over 60,000 product lines, there's a whole galaxy of choice.

Electromail is one of Europe's largest stockists dedicated to the Home Based Professional and Electronics Enthusiast.

The fully comprehensive catalogue provides detailed descriptions, full technical information and (in most cases) colour pictures of each product to make selection easy.

Our orderline staff are light years ahead in Iriendly and efficient service and above all, they're committed to helping you find exactly what you need.

You'll find our despatch just as advanced, with a nominal p 8 p charge and range of delivery options to suit, even a Sonic Screwdriver* won't take an age to materialise.

Simply telephone or fax your order anytime between 8.00 am and 8.00 pm Monday to Friday Earthtime.

So - whatever your current project, anywhere in the universe, save yourself time, call Electromail.

* Not available on this planet

WITH OVER 60,000 PRODUCTS INSIDE

You're Bound To SAVE TIME

Telephone 01536204555 or Fax 01536405555.

The Service For Home Based Professionals and Electronics Enthusiasts

Cyril Bateman discusses new search tools and looks at Spice models and hardware and software support via the World Wide Web.

Hands-on internet

As the Web grows, so newer, more user friendly search tools become available. Last month I highlighted the 'Infoseek' search engine accessible from Netscape. This is now complemented by A2Z and Accufind ${ }^{1}$, making a total of twenty-three search tools accessible from this page.
A development from Lycos, A2Z offers authoritative descriptions of the best Web pages, while Accufind claims its JavaScript search engine makes new power available to the user.
The Java explosion continues apace. By the time this issue is published, the first Java developers' conference - JavaOne - will have taken place in San Francisco 29-31 May, Fig. 1.
On April 25, Dun \& Bradstreet Software ${ }^{2}$, in conjunction with Sun Microsystems, announced the release in May of the first enterprise applet allowing local and remote users to complete purchase requisitions electronically.
The IBM Hursley UK port of Java to AIX ${ }^{3}$, release 1.01, having passed Sun Microsystem's test suite, now has Java-compatibility approval. And IBM Raleigh has released its demo version of WebExplorer-with-Java ${ }^{4}$, available by download.

Security issues

Some of the concerns expressed regarding security aspects of Java have now been remedied. Netscape

Fig. 1. Web announcement of the first ever Java Developers' Conference. The rush to embrace the Java concept continues to gain pace world wide.

Navigator version 2.01 addresses three potentially vulnerable areas. These are host connection, files or document locations and mail or news postings, Fig. 2.
The desktop operating system clash between IBM and Microsoft continues with both companies offering critiques of the others system, accessible via their Web pages. While the imminent demise of OS/2 Warp had been voiced by some writers, on 23 April, IBM announced that the next OS/2 upgrade - code-named Merlin ${ }^{5}$ and due this year - will include speech recognition software, Fig. 3.
Also, the first low-cost Internet access boxes have arrived ${ }^{6}$. The British company Acom ${ }^{7}$ is involved, in the production of these, together with Apple, Fig. 4.

Software and hardware support

During a recent visit to a client with my pc, a dos and Windows whizz noticed the 'IBM-InformationSuperhighway' folder on my desktop and asked why he might need Internet access. Apart from the topics already covered in this series, perhaps the most relevant for his need is to gain software and hardware support. Support was brought forcibly to my attention recently

Fig 3. OS/2 - neither dead nor buried, but resurrected maybe under a different name? Some of the published missives from IBM and Microsoft camps reveal weakness in both their systems. Hopefully these processor and memory guzzling operating systems will pass into history.
by two different incidents. Having owned and used a registered copy of Visual Basic 3 for well over a year, I received only promotional literature from Microsoft. During this time I had not used one facet of the program - the company's much vaunted 'Set-up Wizard' - which requires a file not included in the 'packing list.
On investigation I found this failing was known prior to my purchase and had been published on the Internet. But at that time I had no modem. Microsoft considers that publication on the Internet ${ }^{8}$ or their BBS 9 covers their obligations. To compound this error, their 'fix-pack' also failed to work when following the included instructions. The outcome was four days lost work and many harsh words.
I recently found time to install OS/2 Warp Connect 'Blue Box', replacing, the original Warp 'Red Box' which had served me well for more than a year. Unfortunately the specific version of the $\mathbf{S} 3$ video graphics accelerator I use was not supported by the 'shrink wrap', although the required driver was available from the IBM Web page ${ }^{10}$, or their BBS ${ }^{11}$.
This problem of device drivers is common to all current pc operating systems - including Windows 95 - when using non-current hardware. For those of you still afflicted by the 'Prank' virus by the way, help to identify and remove it is available from Microsoft ${ }^{8}$, Fig. 5.

Benefits of modem access

Traditional telephone support is time consuming and expensive after the initial free period. A modem and Intemet or Compuserve access makes these problems addressable economically. But more importantly modem access can forewarn you of problems, easily justifying the cost of a modem for all sizes of business.
Hewlett Packard manufactures both semiconductors and simulation systems, offering Spice macro models as well as S parameters. A search on Spice models from their home page revealed more than forty reference documents for download, Fig 6.
Earlier this year, my verbal request for macro models to the

Fig. 4. This Acorn/Apple alliance for education has since been designated Xemplar. In my view, combining these two desk tops must be good for education.

Fig. 6. As with all Hewlett Packard products, everything works, is user friendly and accessible. Well worth visiting just to view this well organised site.

Fig. 5. Part of the Microsoft users' support system. This site's FAQ is essential reading to understand the terminology used and site
structure. Not the most intuitive or user friendly, but support is there, given familiarisation. A useful area is the so-called
knowledge base, unfortunately indexed by document number.

EW reader offer - multi-instrument - discount and free dmm

Maxcom's MX9300 is a four-function multi-instrument featuring,

- 1 Hz to $1 \mathrm{GHz}, 8$-digit frequency counter
- 0.02 Hz to 2 MHz swept function generator
- $31 / 2$-digit DMM with 10A range
- 0 to 30V, 3A-variable psu
- 15V, 1A fixed output
- 5V, 2A fixed output

Normally, this instrument costs $£ 399$ excluding VAT and delivery but Vann Draper is making it available to EW readers at the special price of $£ 399$ - fully inclusive - and this price includes a free hand-held digital multimeter.
Incorporating full overload protection, the MX9300 allows a significant reduction in lab bench space needed while being more convenient than separate instruments. The free $3^{1} / 2$-digit dmm accompanying this offer features 10A de measuring capability and transistor 0 to $1000 \mathrm{~h}_{\mathrm{FE}}$ test.

Frequency counter features - wide range, 10 s to 10 ms gating, 25 mV sensitivity at 1 GHz , autoranging, $1 \mathrm{~Hz}+1 \mathrm{dgt}$ accuracy.
Function generator features - 0.1 to 20 Vpp \circ / p, linear $/ \log 20 \mathrm{~ms}-2 \mathrm{~s}$ internal or external sweep, sine, square, triangle, skewed sine, pulse, til.
DMM features - auto/manual ranging, DCV ACV Ω DCA ACA, $10 \mathrm{M} \Omega$ input,
$\pm(0.5 \%+2$ digit) basic accuracy.
PSU features - variable voltage and current, floating outputs, 2 mV max. ripple on all outputs, 0.01% load regulation on 30 V output.

Please send a cheque for $£ 399$ payable to Vann Draper Electronics, or your full credit-card details including expiry date and card type to Vann Draper Electronics at Unit 5, Premier Works, Canal Street, South Wigston, Leicester, LE 18 2PL. Alternatively fax credit card details with your order on 01162773945 or relephone on 01162771400.
Address orders and all correspondence relating to this offer to Vann Draper Electronics.

LOW COST PC's

SPECIAL BUY

AT 286' 40 Mb HD + 3Mb Ram

.

LIMITED QUANTTTY only of these 12 Mhz HI GRADE 286 systems

 Order as HIGRADE 286 ONLY E129.00

onal Fitted extras: VGA graphics card 000 Ethernet (thick, thin or twisted) network card	5

LOW COST 486DX-33 SYSTEM

FLOPPY DISK DRIVES $31 / 2^{\prime \prime}$ - $8^{\prime \prime}$
 $51 / 4$ " or $31 / 2{ }^{\prime \prime}$ from only $£ 18.95$!

The TELEBOX is an atractive fully cased mains powered unit, con taining ail electronics ready to plug Into a host of video monitors

 made by makers such as MICROVITEC, ATARI, SANYO, SONY,COMMODORE, PHILIPS, TATUNG, AMSTTAD etc. The composite videe output will also plug directly into most video recorde rs, allowing
reception of TV chanels nol nomally receivable on most televi. sion receivers. (TELEBOX MB). Push bution controls on the firont
panel allow Tecection of 8 fuly tuneabele ooft air UHF colout televevision channels. TELEBOX MB covers virtuall yal teievision frequencies
WFF and UHF including the HYPEBAND as used by most cobole
 out sound. an integral 4 walt audlo amplifier and low level MI $F I$
audio ouput are provided as standard.
 ${ }_{8,599.50}^{\text {E36 }}$ TELEBOX MB Muliband VHF/UHFIC Cabie/Hyerband tuner 669.95 -For cable / hypertand fecection Telebo o MB should be connected

DC POWER SUPPLIES

Virtually every type of power

supply you can imagine. Over
Call for lnfollist.

SPECIAL INTEREST ITEMS

Superbly made UK manulacture. PIL all solid state colour monitors. IBM $53 F 5501$ Token Ring ICS 20 port lobe modules
 Marconi 6310 Programma

\section*{| عP50A |
| :---: |
| ع5500 |}

HP3781A Pattem generator \& HP3782A Error Detector
HP APOLLO RX700 system units
HP6621A Dual Programmable GPIB PSU 0-7 V 160 watts
HP3081A Industrila workstation clw Barcode swipe reader
HP6264 Rack mount variable 0-20V @ 20A metered PSU
HP54121A DC 1022 GHz four channei test set
HP750A A1 8 pen HPGL high speed drum plotter
EG+G Brookdeal 95035 C Precision lock in amp
EG+G Brookdeal 95035 C Precision lock in amp
Vlew Eng. Mod 1200 computerised inspection syste
Ling Dynamics 2kW programmable vibration test system Keithley 590 CV capacitor/voliage analyser
Racal ICR40 dual 40 channel voice recorder system
Fiskers 45 KVA 3 ph On Line UPS - New batts Dec. 1995
ICI R5030UV34 Cleanline ultrasonic cleaning system
Mann Tally MT645 High speed line printer
Intel SBC 486/133SE Multibus 486 system. 8Mb Ram
Nikon HFX-11 (Ephiphot) exposure control unit
Motorola VME Bus Boards \& Components List.
Trio $0-18$ vdc linear, metered 30 amp be
Fujitsu M3041R 600 LPM band printer
Perkin Elmer 2998 Infrared spectrophotometer
VG Electronlcs 1035 TELETEXT Decoding Margin Meter
Andrews LARGE 3.1 m Satellite Dish + mount (For Voyager
Sekonic SD $150 H 18$ channel digital Hybrid chart
TAYLOR HOBSON Tallysurf amplifier / recorder
System Video 1152 PAL wavelorm monito
est cabinets

As New - Used on film set for 1 week only!!
$15^{\prime \prime} 0.28$ SVGA 1024×768 res. colour monitors.
Swivel \& tilt etc. Full 90 day guarantee. $£ 145.00$ (E)

 side, front and back doors. Front and back doo
hinged for easy access and all are lockable w
five secure 5 lever barrel locks. The tront door
\qquad
\qquad
\qquad

Sold at LESS than a third of makers price !!
A superb buy at only $\{195.00$ (G)
Over 1000 racks - 19" 22" \& 24" wide
3 to 44 U high. Available from stock !! Call with your requirements.
TOUCH SCREEN SYSTEM

The ultimate in 'Touch Screen Technology' made by the experts.

 MicroTouch-but sold at a prlce below cost I! System consists ofa flat translucent glass laminated panel measuring $29.5 \times 23.5 \mathrm{~cm}$ a flat translucent glass laminated panel measuring $29.5 \times 23.5 \mathrm{~cm}$
connected to an electronic controller PCB. The controller produces
a standard serial RS232 or TRL output whlch continuously gives
simple serial data containing positional $X \& Y$ co-ordinates as to simple serial data containing positional $X \& Y$ co-ordinates as to
where a finger is touching the panel - as the finger moves, the data instantly changes. The $X \& Y$ information is given at an Incredible
matrix resolution of 1024×1024 positions over the entire screen nection to a PC for a myriad of applications including: control pan-
els, pointing devices, POS systems, controllers for the disabled or
computer un-trained 'Windows', instead of a mouse !! (a driver is indeed available !) The and Data supplied at an incredible price of only: $£ 145.00$ (B)
Full MICAOTOUCH sotwwre support pack

LOW COST RAM \& CPU'S

and PC-AT compatible caro with 2 Mbytes of memory on boaro.
Card is fuily selectable for Expanded or Extended (286 processor
and above) memory. Full data and driver disks supplied. RFE. and above) memory. Full data and driver disks supplied. R
Fully tested and guaranteed. Windows compatible.
Half length 8 bit memory upgrade cards for PC AT XT memory either 256 k or 512 k in 64 k steps. May also be used to fill Order as: XT RAM UG. 256 K . £34.95 or $512 \mathrm{k} £ 39.95$ (A1) SIMM SPECIALS

FANS \& BLOWERS

EPSON DO4 12
PAPST TYPE 612
MITSUBISHI MMF-D6D12DL
ع8.95 $10 /$ / 875
MITSUBISHI MMF-08C12DM $80 \times 80 \times 25 \mathrm{~mm} 12 v$ DC $£ 5.2510 / £ 49$
MITSUBISHI MMF-09812DH $92 \times 92 \times 25 \mathrm{~mm} 12 v$ DC $£ 5.9510 / \mathrm{s} 3$

EX-EQUIP AC fans. ALL TESTED $120 \times 120 \times 38 \mathrm{~mm}$ specify 110
or 240 v $£ 6.95$. $80 \times 80 \times 38 \mathrm{~mm}-$ specity 110 or $240 \mathrm{v} £ 5.95$
IMHOF 8261900 rack mnt $3 U \times 19^{n}$ Blower $110 / 240 \mathrm{NEW} £ 79$.
E - PACKED with bargains!

Letters to "Electronics World" Quadrant House, The Quadrant,
Sutton, Surrey, SM2 5AS

Check it out

Your sceptical correspondent Dr Fisher ($E W$, May) will, in the near future, need to double-check his own work rather than maintain his present attitude towards those who regard anomalistic phenomena as challenges to an inquisitive intellect.
He will, for instance, be very surprised to learn that many scientists of international repute are engaged in the study of 'dowsing, ball lightning, free energy and/or anti-gravity". The majority of these experimentalists are highly skilled mathematicians and cross-check each others' work using a variety of methodologies.
Many phenomena previously considered to be 'paranormal' are now yielding up their secrets, a process which is likely to be accelerated by the redefinition of the phase space of both thermodynamics and information theory. Dr Fisher can work this out for himself by a simple experiment using a gaming die. In this, the die is placed on a sheet of paper orthogonally gridded to match the length of each of its edges. It is then orientated with its 'six' spot in one of the central cells of the grid with its 'two' spot facing him and its 'five' spot facing north. With most dice, the 'four' spot then faces west and the 'three' spot faces east.
The die is then rolled slowly and step-wise over its edges so that the number of spots on the faces of the die which come into contact with successive cells can be recorded in those cells as a form of sequential memory. These number sequences are, in fact, representitions of
displaced rotations about the x, y and z axes and correspond to a spinning object in three-dimensional space which is represented in the observer's stationary frame of reference under a condition of projective geometry.
Unfortunately, even this simple procedure demonstrates several surprising errors of omission in Alan Turing's famous 1936 paper entitled 'On computable numbers, with an application to the
Entscheidungsproblem' on which much of contemporary computing is based. Perhaps Dr Fisher could work out what these errors were?
Brian Clement
Powys

Proof is in the cable?

1 refer to the letter ${ }^{\circ} 10 \mathrm{mV}$ diode proof?' by Allen Wright, May 1996. A little thought will show that the effect described has nothing to do with putative 10 mV diode effects in the speaker cable.

Let's take some approximate figures. In the March 1996 issue, Doug Self refers to a test for the existence of these diodes carried out at $50 \mathrm{~W} / 8 \Omega$ (ie 20 Vrms output) and measures a drop of 140 mV across his speaker cable.
Allen Wright refers to a listening level of 'milliwatts'. If we assume 50 mW , this implies an output voltage reduced by a factor of $\sqrt{ } 1000$ or approximately 660 mV . The resistance of Allen Wright's RG59 braid won't be much different from Doug Self's cable so we have a voltage drop across the cable of about 5 mV . If the

Bach in time

In his article on free phasing oscillators for electronic organs, Ian Hickman suggests that one oscillator can be shared between two adjacent semitones. He may not know that this is a very old idea, actually dating back to 1730 , when 'fretted' clavicords were constructed that shared one string between two or more semitones. A clavichord works by simultaneously stopping the free length of the string and exciting its vibration by striking it with a wooden tangent. The tangent is directly attached to the key, and thus two adjacent keys can stop different notes on the same string.
The system became obsolete when J. S. Bach began writing keyboard music that occasionally requires the simultaneous sounding of two adjacent semitones. In fact one does not need to look further than the first prelude of book 1 of the "Wohltemperiertes Klavier" (the set of 48 preludes and fugues written in every major and minor key) to find two examples, of a B sounded with a C, and later on, an E with an F.
If Bach found such economies restrictive, surely we should not consider reintroducing them?
Cosmo Little
Cornwall
speaker cables are newly made, with freshly soldered or crimped terminations and no broken strands, then even if the strands were insulated from each other along the length of the cable, the voltage difference between them at any point due to random variations in thickness would only be fractions of a microvolt. Clearly, even if Ben Duncan's diodes do exist, they can have nothing to do with the effect described.
What is going on, then? The resistance of 0.25 mm diameter wire will be much higher than the braid, and may be helping to swamp the reactive components of the loudspeaker impedance, thus flattening the frequency response. This could easily be tested by wiring a non-inductive resistor of a few ohms in series with the braid, and seeing if the same improvement results.
Additionally, the (unspecified) amplifier will be operating almost entirely in its crossover region, and if it is not in fact free of crossover nasties, may be less able to control a reactive load. At these power levels it would be no problem to knock up a single-ended Class A amplifier to check this one out.

Chris Bulman

Bedford

In the real world

Ben Duncan's piece 'Modelling cable' (EW Feb 1996) was a fine demonstration of the capabilities of his circuit simulator. Unfortunately his modelling does not give an accurate view of the real world. Ben has not included the proximity effect in his modelling, although 1 doubt it would be any more significant than the skin effect - that is, not very.
Also, his assumption that loudspeaker drivers are substantially inductive at high frequencies was not borne out by measurements. I took of five loudspeakers' impedances, using an HP 4193A vector impedance meter. At 400 kHz - the instrument's lowest working frequency - phase angles measured ranged between 38° and 56°. At 1 MHz the range was -62 (capacitive) to 57°. These figures indicate that their Q probably never exceeds two. The speaker that ranged from $38^{\circ}(400 \mathrm{kHz})$ to -62° $(1 \mathrm{MHz})$ was a 10 in woofer, and it was self resonant at 600 kHz where its impedance was 780Ω. On the basis of this one must doubt the accuracy of Ben's models.

1 first saw the idea that copper cables contained oxide diodes over five years ago in the Australian electronics press. At the time I thought the idea sounded plausible so I decided to test it. Checking the dc resistance of a piece of wire revealed it to be as linear as I could measure, so a more sophisticated
method was required. I reasoned that if significant amounts of current were flowing in these oxide diodes then they would reveal their nonlinear behaviour by distorting the voltage drop along the cable.
As I was not well equipped to perform a harmonic distortion test with sufficient resolution I decided to try measuring the intermodulation distortion. This way distortion components generated by the wire would not be integer multiples of the test frequencies and the harmonic distortion components from signal sources could be easily identified and ignored, leaving any intermod components sticking out like the proverbial dog's ...errrr, well easy to identify. My partner in this venture was Dr Mark Ballico, who was at the time working towards his PhD in the Dept of Plasma Physics.
A more complete description of the experiment and the results was printed in Electronics Australia (Oct. 1990), but briefly the wire used was RS 357-340 'tinned copper stranded $10 / 0.1 \mathrm{~mm}$ conductor ...(rated at)... $0.5 \mathrm{~A}^{, 1}$. For test signals I used 1.5 A 50 Hz from the mains, isolated by a transformer and set with a Variac, and a 5 kHz (approx) signal from a low distortion oscillator.

The higher frequency signal was selected not to be a harmonic of the 50 Hz mains but close to 5 kHz Around the high frequency signal the noise floor was at least 65 dB down for over a kilohertz, and all frequency spikes that the spectrum analyser displayed were simple harmonics of the test signals mostly harmonics of the mains. There was no evidence of any intermodulation distortion at all. I could only deduce from this that there were no such diodes, or that they were shunted by sufficiently low impedance, eg. plain metallic copper, that they had no effect.
These results need to be scaled to compare them to the circumstances that exist in an audio system. The cross-sectional area of the wire was less than $0.08 \mathrm{~mm}^{2}$ - very small and woefully underrated for connecting speakers - the current of 1.5 A would generate 18 W in the nominal 8Ω load. Normal speaker cables would have at least ten times the cross sectional area, and at the same current density 1.8 kW would be delivered to the load, without, it would seem, significant distortion.
Further if less than 10% of the output voltage was dropped across the cable then you would expect that the cable would not produce any distortion products at the speaker greater than 84 dB down from the original signal. 1 have not heard of a hi-fi speaker that produces less than 0.01% IMD, or THD or Doppler distortion, at 1.8 kW . Most devices produce more distortion with more power.

With regard to the notion that copper cables consist of copper oxide diodes that cause audible distortion, I suspect that Ben Duncan has more closely modelled a fertile imagination than the physical universe that we live in. There are more plausible explanations for why some people believe that one type of cable sounds better than another that require no reference to electronics at all. The poor and variable frequency response of human hearing and its effects on perceived sound would be one of the strongest.

References

1. RS Catalogue, 1995
2. R.A. Greiner, 'Amplifier-
loudspeaker interfacing', J. Audio
Eng. Soc., Vol. 28, No. 5, 1980 May.
3. Fred E. Davis, 'Effects of cable, loudspeaker and amplifier interactions', J. Audio Eng. Soc., Vol. 39, No. 6, 1991 June.
4. Ben Duncan, 'Modelling cable', EW Feb 1996.

Phil Denniss

Sydney, Australia

Did you do your homework?

I was surprised to read the article entitled 'Crossover networks made simple'. I think simple is the operative word and I would suggest that Mr Teleki should do a bit more homework before writing any further articles on loudspeaker networks.
a) Correctly designed networks are specifically designed for predetermined units in a specific cabinet. Every unit has its unique parameters. I have yet to measure differing unit types that have a sufficiently close acoustic and impedance curves to be able to use, optimally, the same crossover network. No unit I know has a flat response and impedance in a practical enclosure.
b) The network has to take into account the acoustic response and acoustic phase of the units involved, mounted in the design cabinet. Hence the electrical network has to take this into account. The thing that matters is the acoustical output of the combined electrical and acoustical signals. The network order is therefore not necessarily the same as the required acoustic order.
c) Because of the above, the acoustic responses of the units in the specified cabinet need to be known along with their impedance curves and preferably their phase response.
d) Networks are available with components ranging from cheap reversible electrolytic capacitors $\pm 20 \%$ to $\pm 2.5 \%$ Polypropylene, and ferrite inductors with thin copper wire to very large air-cored cores with very thick wire. We have produced air-cored inductors
weighing over 1 kg each. The price should take into account some design time, assembly time and component costs. Oh yes, plus hopefully some profit and 17.5% VAT.
e) Both ferrite and air-cored inductors can and should be orientated so that there is virtually no mutual coupling (magnetic interaction) between them. Toroids are not normally used due to their overload characteristics and high cost and size for sufficient power handling.
f) From the above it is obvious that a theoretical network using the nominal impedance of the unit will give nothing like an optimum response, in fact in many cases the response can be more irregular than with no network at all
g) With regard to cascading high and low pass sections as suggested, this does not even work in theory, due to interaction between the sections. This interaction diminishes with the separation of the two crossover frequencies, but is still significant for normal three-way systems ${ }^{1,2}$.
$f_{4}=f_{3}\left(f_{2} / f_{1}-1\right)$
$f_{3}=\sqrt{ } f_{1} f_{2} /\left(f_{2} / f_{1}-1\right)$
where f_{1} and f_{2} are the crossover frequencies and f_{3} and f_{4} are the calculated design frequencies.
Rather than having to buy $\mathbf{C}(++$?) compilers it is simpler to construct a spreadsheet where the frequencies and impedances are in referenced boxes and the various order filter components are in the body of the sheet. Other items such as resonance tuned circuits and Zobel networks can be included.
Finally; 6 decimal places on results?
References

1. Norman Crowhurst, High Fidelity Sound Engineering. 2. M.D. Hull, Building $\mathrm{Hi}-\mathrm{Fi}$ Speaker Systems.
Malcolm Jones
Norfolk

Hand-crafted Cs

I liked Vladkov's capacitance meter. For it to be of maximum use, one requires small, accurate, reference capacitors. The snag is that in the picofarad region, lead capacitance is significant. Chip capacitors are free of this but even the best ones, such as those provided by ATC, are not tightly toleranced in the pF region.

Microwave cables such as the RG 402 are made to very tight tolerances and this particular item is specified as having a capacitance of $98 \mathrm{pF} /$ metre.

Thus it is possible to construct capacitors of a few pF with considerable precision. The lead length can be made very small.
At measurement frequencies up to a few MHz the fact that one's

Historical units

When I saw the reference to 'm.s.c.' in Mr. Owen Davie's letter in the July/August 1996 issue, I recalled my early notes on the origins of logarithmic units of attenuation:
The 'standard cable' referred to, was originally an ordinary 19 AWGconductor telephone cable, which had constants: $88 \Omega, 1 \mathrm{mH}, 57 \mathrm{nF}$ and $1 \mu \mathrm{~S}$ per loop-mile ${ }^{1}$. The capacitance was a little different for some manufaclurers. This gave; $f_{\mathrm{c}}=30 \mathrm{kHz}$ and $a=0.94 \mathrm{~dB}$ (0.106 neper) at 800 Hz .
The most used measure was the ' 800 cycle-mile' 2 . Current or power ratios were expressed as the number of miles of standard cable which gave the same ratio at 800 Hz
Because the power attenuation of a mile of standard cable, at 886 Hz , was $10^{0.1}$ and involved common logarithms; this attenuation was adopted as a standard for all frequencies and was called the 'transmission unit'
In 1923, the American Telephone and Telegraph Company announced this new 'transmission unit' to replace the mile of standard cable. In the following year, the International Advisory Committee on Long Distance Telephony recommended the 'bel' or the 'neper' should be used.

- The adoption of the decibel, as the name for the 'transmission unit', was eventually announced by the Bell System in January, 1929^{3}.

References - 'Electric Circuits and Wave Filters' STARR, Arthur Tisso, 1948 [Pitman] p. 180.
2. 'Communication Engineering' EVERITT, William Littell, 1937, (Mc Graw-Hill) p.101,102.
3. 'Decibel'-the name for the Transmission Unit. Martin, W.H., Bell System Technical Journal, January, 1929
T.I. Wynn South Wales
capacitor is a transmission line is irrelevant, though purists may like to form the length of line into a loop and feed it at both ends in parallel.

This is an old trick, of course, but only works with this type of co-ax in short lengths. Try cutting off 2 cm of braided outer co-ax accurately.
Nick Wheeler
Surrey

Wait for me

In his response to Chris Bulman's letter in the June issue, Seggy
Segaran mentioned BT's plans to enhance the Call Waiting system to allow Caller ID units to display the number of the waiting caller. This service is described in the ETSI specification ETS300-659-2 and could well be introduced in the UK this year.
Allan Edwards
Essex

Clear as a bell?

Bengt Olsson, in his July 1996 letter, says that in speaking of output stages and their devices, one must be clear. Unfortunately, he is not.
The first part of his letter claims that a bipolar transistor is highly non-linear, just because it has high gain. This is of course quite untrue when baldly stated thus. I said myself in 'FETs vs Bipolars: The Linearity Competition' (EW May 1995) that on the same graph, transistor collector current vanishes near vertically off the scale,
exponentially increasing, before the fet has even begun to conduct. The
raw transconductance $\left(g_{m}\right)$ of a bjt is far higher than for any power fet, so to make the two devices even vaguely comparable one must insert: 0.1Ω into the bipolar emitter as local feedback, reducing its gm to about $9 \mathrm{~A} / \mathrm{V}$, equal to that of the fet at an I_{d} of 10 A

Adding this emitter-resistor to a bipolar device with high gm has the happy side effect of making it very linear indeed compared with the fet The bipolar g_{m} is now constant over a wide range, ie the gain is linear. The fet, with no spare gain to allow the application of any local feedback, still has gm that varies linearly with I_{d}, so that the actual $I_{\mathrm{d}} / V_{\mathrm{gs}}$ output characteristic is squarelaw rather than linear.
I must admit that I thought this was demonstrated beyond all doubt in my article; 1 hope this makes it clearer

The second part of the letter seems to deal with the internal negative feedback of the complementary feedback pair output stage; how this is relevant to the linearity of single devices is not obvious to me. The gain quoted (58 dB , not 60) is wholly mysterious as it is not at all clear whether this is supposed to be voltage or current gain; either way it seems to be wrong.

1 find that the reference to the linearity of borrowed plumes does little to clarify matters. I wish to reassure concerned readers that no bird products were used in the amplifier experiments I have reported.
Douglas Self
England

MOONSHINE BIBLE 270 page book covering the production of alchohol from polatoes, rice, grains etc Drawings of simple NEW HIGH POWER MINI BUG With a range of 800 metres more and up to 100 hours use from a PP3 this will be populan Bug measures less than 1^{\prime} square! $£ 28$ Ref LOT102.
SINCLAIR C5 MOTORS We have a new ones available without
gearboxes al $£ 50$ ref LOT 25
BUILD YOU OWN WINDFARM FROM SCRAP New publication gives step by step guide to building wind generators. Amed with this publication and a good local scrap yard could make you self sufficient in electricity! $£ 12$ ref LOT81
PC KEYBOARDS PS2 connector, top quality sultable for all 286 / 386/486 etc $£ 10$ ref PCKB. 10 for $£ 65$.
TRACKING TRANSMITTER range $1.5-5$ miles, 5,000 hours on AA batteries, also transmits info on car direction and motoniWorks with any FM radio. 1.5° square. £65 ref LOT101
ELECTRIC DOOR LOCKS Complete lock with both Y a
and 12 v operated deadock (keys included) £ 10 ref LOT99 GALLIUM ARS ENIDE FISHEYE PHOTO DIODES Complete with suggested circuits for long range communicationslswitching £12 complete.
SURVEILLANCE TELESCOPE Superb Russian 200 m telescope adjustable from $15 x$ to $60 x$! complete with metal tripod (imposible to use without this on the higher settings) 66 mm lense, leather carrying case $£ 149$ rel BAR6
WIRELESS VIDEO BUG KIT Transmits video and audıo signals from a minature CCTV camera (included) to any standard televisiont All the components including a PP3 battery will fit Into a cigarette packet with the iens requlring a hole about 3 mm diameter. Supplied with telescopic aeral but a plece of wire about 4^{\prime} long will soll give a range of up to 100 metres. A single PP3 will probably give less than 1 hours use $£ 99$ REF EP79. (probably not licensable!) CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}, 30$ grams, 12 v 100 mA auto electronic shutter, 3.6 mm F2 Iens, CCIR, 512×492 pixels, video output is 1v p-p (75 ohm). Works directly into a sca
video input on a tv or video. IR sensitive, £79.95 ref EF137. IR LAMP KIT Sultable for the above camera enables the camera to be used in total darkness! $£ 5.99$ ref EF 138.
REMOTE CONTROLTANDATA TD1400 MODEMI VIEWDATA Complete system comprising $1200 / 75$ modem, auto dialler, infra red remote keyboard, (could be adapted for PC use?) pSu, UHF and RGB output, phone lead, RS232 output, composite

9 WATT CHIEFTAN TANK LASERS

 Double beam units designed to fit In the gun barrel of a tank, each unit has two semi conductor lasers and motor drive units for alignement. 7 mile range. full circuit diagrams, new price $£ 50.000$? us? $£ 349$. Each unit nas two gallium Arsenide injection lasers, 1×9 watt. $1 \times$ 3 watt. 900 nm w avelength. $\mathbf{2 8 v d c}$, 600 hz pulse frequency. The units targets, five or more units £299 ea. £349 for one. Ref LOT4.TWO WAY MIRROR KIT Ind udes speaal adhesive film to make two way mirror(s) up to $60^{\circ} \times 20^{\prime}$. (glass not included) includes full instructions. £ 12 ref TW1.
NEWLOWPRICEDCOMPUTERMORKSHOP/HIFIRCB UNITS Complete protection from faulty equipment for everybody! Inline unit fits in standard IEClead (extends itby 750 mm), fttedinless than 10 seconds, resettest button, 10 A rating. $£ 6.99$ each ref LOT5. Or a pack of 10 at $£ 49.90$ refl LOT 6 . If you want a box of 100 you can have one for $£ 2501$

RADIO CONTROLLED CARS FROM £6 EACH!!!! All retums from famous manufacturer, 3 types available, single channel (left, right,forwards, backwards) $£ 6$ refLOT1. Two channel with more features $£ 12$ ref LOT2.

THOUSANDS AVAILABLE RING/FAX FOR DETAILSI MAGNETIC CARD READERS (Swipes) $£ 9.95$ Cased with flyleads, designed to read standard credh cardst they have 3 wires coming out of the head so they may write as
control elctronics PCB. Just $£ 9.95$ rel BAR31
WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collated 140 business manuals that give you information on setting up different businesses, you peruse these at your leisure using the text editor on your PC. Also included is the
certificate enabling you to reproduce (and sell) the manuals as much certifcate en abling you to re
as you like! £14 ref EP74
PANORAMIC CAMERA OFFER Takes double width photographs using standard 35 mm film. Use in honz ontal or vertical mode. Complete with strap $£ 7.99$ ret BAR1
COIN OPERATED TIMER KTT Complete with coinslot mechanism, adjustable time delay, relay output, put a consid on anything you likel TV.s, videos, fridges, dnnks cupboards, HIFI.
takes 50 p's and $£ 1$ coins. DC operated, price just $£ 7.99$ ref BAR27. ZENTTH $900 \times$ MAGNIFICATION MICROSCOPE ZOom, metal construction, built in light, shnmp farm, group viewing screen, lots of accessories $£ 29$ ref ANAYLT.
AA NICAD PACK Pack of 4 tagged AA nicads $£ 2.99$ ref BAR34 PLASMA SCREENS $222 \times 310 \mathrm{~mm}$, no data hence $£ 4.99$ ref BAR67
NIGHTSIGHTS Model TZSA with infra red illuminator, views up to 75 metres in full darkness in infrared mode, 150 m range, 45 mm lens,
13 deg angle of View, focussing range 1.5 m to infinity. 2 AA bateries 13 deg angle of View, focussing range 1.5 m to infinity. 2 AA batteries required. 950 g weight. E199 ref BAR61. 1 years warranty LIQUID CRYSTAL DISPLAYS Bargain prices, 16 character 2 line, $99 \times 24 \mathrm{~mm}$ £2.99 ref SM1623A 20 character 2 line, $83 \times 19 \mathrm{~mm}$ £ 3.99 ref SM2020A 16 character 4 line, $62 \times 25 \mathrm{~mm} £ 5.99$ ref SMC1640 A TAL-1 110MM NEWTONLAN REFLECTORTELESCOPE Russian. Superb astronomical 'scope. everything you need for some

WOIVERHAMITON BRANCH NOW OFIN AT WORCESTIRR ST

detalls £249 ref TAL
CENTRAL POINT PC TOOLS Award winning software, 1,300 vlrus checker, memory optimiser, disc optimiser, file compression, ow level formatting, backup scheduler, disk defragmenter, undelete, 4 calculators. Dbase, disceditor, over 40 viewers, remote computing, passw ord protection, encryp
etc $£ 25$ ref lot $973.5^{\prime \prime}$ disks.
GOT AN EXP ENSIVE BIKE? You need one of our bottle alams, they look like a standard water bottle, but open the top, insert a key to activate a motion sensor alam built inside. Fits all standard botte carriers, supplied with two keys. SALE PRICE E7.99 REF SA32. GOT AN EXPENSIVE ANYTHING?Youneed one of ourcased vibration alams, keyswitch operated, fully cased just fit it to anything from videos to caravans, provides a years protection from 1 PP3 battery, UK made. SAL.E PRICE $£ 4.99$ REF SA33
DAMAGED ANSWER PHONES These are probably beyond repair so just $£ 4.99$ each. BT response 200 machines. REF SA30. COMPUTER DISCCLEAROUT We are leftwith a lot of sottw are packs that need clearing so we are selling at disc value only! 50 discs for £4, thats just $8 p$ eachl!(our choice of discs) £4 ref EP66 IBM PS2 MODEL 1602 CASE AND POWER SUPPLY Complete with fan etc and 200 watt power supply. $\mathbf{£ 9 . 9 5 \text { ref EP67 }}$ DELL PC POWER SUPPLIES 145 watt, $+5,-5,+12,-12$, t50× $150 \times 85 \mathrm{~mm}$ complete with
SALE PRICE $\mathbf{6 9 . 9 9}$ ref EP55
1.44 DISC DRIVES Standard PC 3.5° drives but retums so they will need attention SALE PRICE E4.99 ref EP68
1.2 DISC DRIVES Standard 5.25° drives but retums so they will need attention SALE PRICE NOW ONLY $£ 3.50$ ref EP69
PP3 NICADS Unused but some storage marks. £4.99 rel EP52 DELL PC POWER SUPPLIES (Customer retums) Standard PC psu's complete with fly leads, case and fan. $+12 \mathrm{v},-12 \mathrm{v},+5 \mathrm{v},-5 \mathrm{v}$ SALE PRICE $£ 1.99$ E ACH worth it for the bits alonel ref DL1. TRADE PACK OF 20 E29.95 Rel DL2.
GAS HOBS ANDOVENS Brand new gas appliances. perfect for small flats etc. Basic 3 burner hob SALE PRICE $£ 24.99$ ref EP72. Basic small builh in oven SAL.E PRICE $£ 79$ ref EP73
RED EYE SECURTTY PROTECTOR 1,000 watt outdoor PIR switch SALE PRICE E6.99 ref EP57
ENERGY BANK KTT $1006^{\prime \prime} \times 6^{\prime \prime} 6 \mathrm{v} 100 \mathrm{~mA}$ paneis, 100 diodes, connection details etc. $£ 69.95$ ref EF 112 .
PASTEL ACCOUNTS SOFTWARE, does everything for all sizes of businesses, ind udes wordprocessor, repori wnter, windowing, networkable up to 10 stations, multiple cash books etc. 200 page
comprehensive manual. 90 days free technical support (01342comprenensive manual. 90 days free technical support (01342 -
326009 try before you buy!) Current retail price is $\mathbf{£ 1 2 9 ,}$ SALE 326009 try before you buyl) Current
PRICE $£ 9.95$ rel SA12. SAVE £12011
COMPLETE PC 200 WATT UPS SYSTEM Top of the range UPS system providing protectoon for your computer system and valuable software against mains power fuctuations and cuts. New and boxed. UK made Provides up to 5 mins punning time in the event omplete power failure to allow you to run your system down correcty. LAST FEW TO CLEAR AT £49 SAVE $£ 30$ ref LOT61 BIG BROTHERPSUCased PSU, 6v 2A output, 2 m o/plead. 1.5 m

Check out our WEB SITE

http://www.pavilion.co.uk/bull-electrical RACALMODEM BONANZA 1 Racal MPS $12331200 / 75$ modem, lelephone lead, mans lead, manual and iza mo sonware, the cheapest way onto the nell all this for just $£ 13$ ref DEC13.
4.6 mw LASER POINTER. BRAND NEW MODEL NOW IN STOCKI, supplied in fully built form (looks like a nice pen) complete with handy pocket clip (which also acts as the on/off switch.) About 50 metres range! Runs on 2 AAA batteries. Produces thin red beam ideal for levels, gun sights, experiments etc. Just $£ 39.96$ ref DEC49 TRADE PRICE E 28 MIN 10 PIECES

BULL TENS UNT Fully bult and tested TENS (Transcutaneous Electical Nerve Stimuiation) Unit, complete with electrodes and full instructions. TENS is used for the relief of paln etc in up 1070% of sulferers. Drug tree pain relief, safe and easy to use can be used in conjunction with analgesies etc. E49 Ref TEN/1
PC PAL VGA TO TV CONVERTER Convens a colour TVinto a basic VGA screen. Complete with builtin psu, lead and sware.. Ideal for laptops or a cheap upgrade.Supplied in ktt form for home assembly SALE PRICE E25 REF SA34
EMERGENCY LIGHTING UNTT Complete unit with 2 doubie

- some of our products may be unlicensable in the us

BULL ELECTRICAL
25 PORTL AND ROAD, HOVE, SUSSIX

1. C 0127332307

T-mail bull@ pavilionice.uk
ulb floodlights, built In charger and auto switch. Fully cased. 6v 8AF lead acid req'd. (secondhand) $£ 4$ ref MAG4P11
YUASHA SEALED LEAD ACID BATTERIES Two sIzes currently avallable this month. 12v 15AH at£ 18 ref LOT8 and 6 V 10AH (sultable for emergency lights above) at just $£ 6$ ref LOT7
ELECTRIC CAR WINDOW DE-ICERS Come
ELECTRIC CAR WINDOW DE-ICERS Complete with cable,
plug etc SALE PRICE JUST 44.99 REF SA28 plug etc SALE PRICE JUST E4.99 REF SA28
AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ soiar panel with diode and 3 metre lead fitted with a cigar plug. 12v 2watt. $£ 8.99$ REF SA25.
MICRODRNE STRIPPERS Small cased tape drives ideal for stripping, lots of useful goodies including a smatt case, and lots o components. SALE PRICE JUST £4.99 FOR FIVE REF SAZ6
SOLAR POWER LAB SPECLAL Youget TWO $6^{\circ} \times 6^{\circ}$ ©V 130 mA solar cells, 4 LED's, wire, buzzer, switch plus 1 relay or motor. Supert SA27
RGB/CGA/EGATTL COLOUR MONITORS 12" in good condition. Back a nodised metal case. SAL E PRICE E49 REF SA 168 PLUG IN ACORN PSU 19v AC 14w, £2.99 REF MAG3P 10 13.8V 1.9A PSU cased with leads. Just $£ 9.99$ REF MAG10P3 UNNERSAL SPEED CONTROLLER KIT Designed by us for the C5 motor but ok for any 12 v motor up to 30A. Complete with PCB etc. A heat sink may be required. $£ 17.00$ REF: MAG 17
PHONE CABLE AND COMPUTER COMMUNICATIONS PACK kit contains 100 m of 6 core cable, 100 cable clips, 2 line drivers with RS232 interfaces and all connectors etc. Ideal low cos method of communicating between PCs over along distance utilizing the serial ports. Complete kit £8.99. Rel comp1.
VIEWDATA SYSTEMS made by Phillips, complete with intemal 1200/75 modem, keyboard, psu etc RGB and composite oututs ment diven, autodialler etc. SALE PRICE $£ 12.99$ REF SA 18
AIR RIFLES. 22 As used by the Chinese amy for training puposes, so there is a lot about! $£ 39.95$ Ref EF78. 500 pellets $£ 4.50$ ref EF80 PLUG IN POWER SUPPLY SALE FROM $£ 1.60$ Plugs in to 13A socket with outputlead. three types available, $9 \mathrm{vdc} 150 \mathrm{~mA} £ 1.50$ VIDEO SENDER UNTT. Transmits both audio and video signals from either a video camera, videorecorder, TVor Computer etc toany standard TV set in a 100 ' range! (tune TV to a spare channel) 12 VDC op. Price is $£ 25$ REF: MAG 15 12v psu is $£ 5$ extra REF: MAG5P2 *MINATURE RADIO TRA NSCENERS A parr of walkie talkies witha range up to 2 km in open country. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. Induding cases and earp'ces. 2xPP3 req"d. £30.00 pr.REF; MAG30 -FM TRANSMTTER KIT housed in a standard working 13A adapter!! the bug runs directly off the mains solasts foreverl why pay £700? or price is $£ 15$ REF: EF62 (kit) Transmits to any FM radio. -FM BUG BUILT ANDTESTED superior design to kit. Supplied to detective agencies. $9 v$ battery req'd. £14 REF: MAG14
TALKING COINBOX STRIPPER COMPLETE WITH COINSLOTMECHANISMS onginally made to retail at£79 each, these units are designed to convert an ordinary phone into a payphone. The units have the locks missing and sometmes broken hinges. How ever they can be adapted for their onginal use or used for something else?? SALE PRICE JUST © 2.50 REF SA23
GAT AIR PISTOL PACK Complete with pistol, darts and pellets $£ 12.95$ Ref EF82B extra pellets (500) £4.50 ref EF80.
6"X12" AMORPHOUS SOLAR PANEL $12 \mathrm{~V} 155 \times 310 \mathrm{~mm}$ 130 mA . SALE PRICE E4.99 REF SA24.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ref MAG5P 13 ideal for experimenters! 30 m for $£ 12.99$ ref MAG13P1

MXXED GOODIES BOX OF
 MIXED COMPONENTS WEIGHING 2 KIL̇OS YOURS FOR JUST $£ 6.99$

4×28 TELESCOPIC SIGHTS Suitable for ail air rifles, ground lenses, good light gathering propertles $£ 19.95$ ref R/7
GYROSCOP ES Rememberthese? well we have found a company that still manutactures these popular scientific toys, perfect gin or for educational use etc. $£ 6$ ref EP70
HYPOTHERMLA SPACE BLANKET $215 \times 150 \mathrm{~cm}$ aluminised foil blanket, reflects more than 90% of body heat. Also suitable for the construction of two way mirrors! £3,99 each ref O/L041
LENSTATIC RANGER COMPASS Oil filled capsule, strong metai case, large tuminous points. Sight Une with magnitying viewer. 50 mm dia, $86 \mathrm{gm} . £ 10.99$ ref OKK 604 .
RECHARGE ORDIMARY BATTERIES UP TO 10 TMESI With the Battery Wiz ard! Uses the latest pulse wave charge system to charge all popular brands of ordinary batteries AAA. AA. C. D, four at a timel Led system shows when batteries are charged, automatically rejects uns uitable cells, c
Price is $£ 21.95$ ref EP31.
TALKING WATCH Yes, it actually tells you the tome at the press of a button. Also features a voice alarm that wakes you up and tells you
what the ime is! Lithium cell induded $£ 799$ ref EP26 at the time is! Lithium cell induded. £7.99 ref EP26.
PHOTOGRAPHIC RADAR TRAPS CAN COST YOU YOUR LICENCEI The new multiband 2000 radar detector can prevent even the most responsible of drivers from losing theirlicence!
Adjustable audible alarm with 8 flashing leds gives inslant w aming of Adjustable audible alarm with 8 flashing leds gives inslant warning of radar zones. Detects X, K, and K bands, 3 mile range, 'over the hill'
'aroundbends' and 'reartrap facilites. micro size just $4.25^{\circ} \times 2.5^{\circ} \times .75^{\circ}$. Can pay for itself in just one day! £79.95 ref EP3.
3" DISCS As used on older Amstrad machines, Spectrum pius3's etc $£ 3$ each rel BAR400
STEREO MICROSOPES BACK IN STOCK Russan, 200x complete with tenses, lights, filters etc etc very comprehensive

FOR CASH

BUYERS DIRECT LINE 0802660377
FREECATALOGUE
100 Page catalogue now
aVAILABLE, 50P STAMP OR FREE
on reguest with order.

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World" when seeking further information

ACTIVE

A-to-D and D-to-A converters

11-bit sampling converter. Analog's AD7861 four-channel simultaneous sampling a-to-d converter has a fourchannel multiplexer for auxiliary inputs, a voltage reference and double-buffered output registers for reading in any sequence. Applications range from motor control and threephase power systems to cellular telephones and data acquisition. Sample/hold acquisition time is $1.6 \mu \mathrm{~s}$ and conversion time $3.2 \mu \mathrm{~s}$. Internal logic operates with a microcontroller to form a low-cost general-purpose data acquisition device. Analog Devices Ltd. Tel., 01932 266000; fax, 01932247401.

And a 14-bit one. From Datel comes the ADS-919 14-bit, 2 MHz sampling converter, which is guaranteed to have no missing codes to the 14-bit level over the military temperature range. Signai-to-noise ratio is 77 dB and thd -74 dB . It is pin-compatible with earlier Datel 1 MHz and 2 MHz types. Power is $\pm 12 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$ and +5 V , dissipation 1.8 W . Datel (UK) Ltd. Tel., 01256 880444; fax, 01256 880706.

Audio a-to-d converter. From AKM, the AK5391 24-bit, 128 times oversampling, stereo, analogue-todigital converter, which employs a new dual-bit technique for low distortion and wide range. It samples at a maximum rate of 54 kHz and exhibits a sinad of 100 dB , with a dynamic range of 115 dB and $\mathrm{s}: \mathrm{n}$ ratio of 115 dB . Stop-band attenuation is 110 dB . The device resets itself after power-up if it loses sync. DIP International Lid. Tel., 01223 462244; fax, 01223467316.

Linear integrated circuits

Dual cfa. A dual $250 \mathrm{~mA}, 60 \mathrm{MHz}$ current feedback amplifier by Linear Technology, the LT1207 features a slew rate of $900 \mathrm{~V} / \mu \mathrm{s}, 0.02 \%$ differential gain and 0.17° typical differential phase. It has a pin for an optional compensation network for use with large capacitive loads. Micro Call Ltd. Tel., 01844 261939; fax, 01844261678.

3-port isolated amplifiers. BurrBrown offers the ISO250 family of four, three-port isolated amplifiers in

28-pin dips: the ISO253 buffer; ISO254 programmable-gain amplliier; instrumentation amplifier ISO255; and the ISO256 operational amplifier, all meant for industrial process control. Each model uses a new modulationdemodulation duty cycle technique for increased accuracy and possesses a 1500 V continuous isolation rating (2500V for a minute). Burr-Brown International. Tel., 01923 233837; fax, 01923233979.

Microprocessors and controllers

Low-cost PICs. New PICs from Microchip are the PIC16C710 and 711, which are 8-bit, one-timeprogrammable microcontrollers for 8-bit a-to-d conversion in low-cost systems. The 711 has 1024 word (1 K by 14) of eprom and 68 byte of ram for data memory; 710 has 512 word of eprom and 36 byte of data memory. Both include 35 single-word instructions, 200 ns single-cycle instruction time, $3-6 \mathrm{~V}$ operating voltage, four analogue inputs and incircuit serial programming. An internal four-channel a-to-d converter and the brown-out detector help to reduce component count. The devices are supported by the PICmaster development system. Arizona Microchip Technology Lid. Tel., 01628851077 ; fax, 01628850259.

Mixed-signal ICs

SCSI terminators. Both the
UCC5610/5611 3.3V active terminators by Unitrode provide 18 lines of termination for the Small Computer Systems Interface (SCSI) parallel bus. During disconnect, channel capacitance is 1.8 pF , minimising the effects on signal of dlsconnected channels, and supply current is $0.5 \mu \mathrm{~A}$. The devices operate on a supply of 2.75 V to 7 V and both can be programmed for 110Ω or $2.5 \mathrm{k} \Omega$ termination. The 5610 is for standard logic, while the 5611 uses reverse logic disconnect. Unitrode (UK) Lid. Tel., 0181-318 1431; fax, 0181-318 2549.

Optical devices

1550 nm laser diode. Mltsublshi has the FU-68PDF-1 distributed-feedback laser diode module, which has a polarisation-maintaining fibre pigtail from the butterfly package. The package also contains a thermal electric cooler and an optlcal isolator. Maximum Impedance is 25Ω and spectral line width 20 MHz typicai. Optical output from the fibre end is 4 mW at a forward current of 150 mA . Mitsubishi Electric UK Ltd. Tel., 01707 276100; fax, 01707278692.

Oscillators

Vexo. Fordahl's new range of 14 -pin, dual-In-line, voltage-controlled crystal oscillators allow a minimum of $\pm 100 \mathrm{ppm}$ frequency pulling and $\pm 10 \mathrm{ppm}$ stability over the $0-70^{\circ} \mathrm{C}$ range of temperatures. Output waveforms at 470 MHz are ecl logic level and a clipped sine wave. Fordahl GB. Tel., 01703848961 ; fax, 01703846532.

Ovened crystal oscillator. Oscillator 4834 by Oak is available in versions covering $4-10 \mathrm{MHz}$. Temperature stability is $\pm 3 \times 10^{-9}$ over $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and ageing $\pm 3 \times 10^{-8}$ per year. At 100 Hz , phase noise is $-140 \mathrm{dBc} / \mathrm{Hz}$. Ginsbury (UK) Lid. Tel., 01634 290903; fax, 01634290904.

Power semiconductors

HexfeUSchottky combination. Inevitably known as a Fetky, IR's IRF7421D1/7422D2 are power mosfet/Schottky diode combinations in an SO-8 small-outline package, the impetus for the design being the recent reduction in mosfet die size and on-resistance obtained using the company's new process. The 7422D2 contains a $-20 \mathrm{~V}, 90 \mathrm{~m} \Omega$ p-channel Hextet and a 30V, 3A Schottky, the other a $30 \mathrm{~V}, 35 \mathrm{~m} \Omega \mathrm{n}$-channel Hextet and a 30V, 1A Schottky. Fetkys used in dc-to-dc converters should, says IR, reduce battery drain and will reduce power dissipation and heat in the converters in desk-top systems. In both, board space and component counts will be smaller. International Rectifier. Tel., 01883 713215; fax, 01883714234.

Class D Industrial amplifiers.
Apex's SA Series of hybrid amplifiers are 97% efficient and provide up to 20A continuously from 100 V , or 2 kW into a load. They find applicatlon in vibration cancellation, magnetic-coll controls, brush motor control and active magnetic bearings. An analogue input is converted into a variable duty cycle switched signal to the output stage, thereby reducing power dissipation in the device and allowing the use of smaller packages. SAO1, the 20A one, is in a 10 -pin package and switches at 42 kHz , whlle SA50 and SA51 in TO-3 give 5A for 16 80 V . SA50 switches at 45 kHz and the SA51 takes an external pwm signal under processor control up to 500 kHz . METL. Tel., 01844 278781; fax, 01844278746.

PASSIVE

Passive components

Mains-rated film capacitors. Arcotronics's R. 41 Class Y2 capacitor is designed for use across the 250 V mains line or mains to ground and meets the standards to qualify for the EN 132400 mark. It is self-healing and failure leads to open circuit rather than a short. Values are E6 from $0.001 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$. Test over 21 days at $40^{\circ} \mathrm{C}$ and in 90% humidity gave no breakdown or flashover at 1500Vac for 1 minute. Easby Electronics Lid. Tel., 01748 850555; fax, 01748 850556.

Please quote "Electronics World" when seeking further information

Non-polar electrolytics. Nitai Series D non-polar electrolytic capacitors are made in nine voltage ratings from 6.3 V to 100 V and in values from $0.47 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$ for the 6.3 V range and $0.47 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$ in the 100 V types. Tolerances are $\pm 20 \%$, but $\pm 10 \%$ units are available. Leakage current is less than $3 \mu \mathrm{~A}$. The body is pve sleeved and fitted with tinned copper leads at one end. Europa Components \& Equipment plc. Tel 0181-953 2379; fax, 0181-207 6646.

Rectifiers. ITT has the IN4000G range of glass-passivated plastic rectifiers, which feature a 1 V maximum forward voltage and $5 \mu \mathrm{~A}$ leakage current at $25^{\circ} \mathrm{C}$. Peak reverse voltage is 50 V to 1000 V . depending on which of the range is in use and max. repetitive peak forward current over 15 Hz is 10A. Package is
DO-41. ITT Semiconductors. Tel, 01932 336116; fax, 0193233148.

3 GHz baluns. Balun transformers from Toko now cover the range of frequencies used in GPS and wireless lans up to 3 GHz . They are available in double-balanced mixer, distributor and directional coupler configurations in a range of turns ratios, being bifilar wound for good balance. These devices are pcb or surface mounted. Clrkit Distribution Ltd. Tel., 01992 444111 ; fax, 01992464457.

> CE-approved switches. EAO's Series 61 push-bulton switches and indicators carry the CE mark for the European emc standard. The switches mount in a $16 m m$ panel cut-out and are modular in form, having separate lens, actuator and contact block, so that the series provides many variations and options. Contacts are selfcleaning gold or silver, the gold type switching from 10 mA at 5 V to 250 Vac at 6 A . EAO-Highland Electronics Ltd. Tel., 01444 $236000 ;$ fax, 01444236641 .

Connectors and cabling Formula 1 connectors. Micro AS Series II miniature connectors from Deutsch are lower-cost developments of a type used in racing cars, in which the environment is, to say the least, hostile. Contacts are gold-plated and shells of aluminium alloy finished in conductive black zinc. Anti-vibration locking and seals that are proof against oils, water and many solvents are standard. Rear seals take wlres from 0.6-1.37mm diameter. Deutsch Ltd. Tel., 01342410033 ; fax, 01342 410005.

Emc-shielded connector.

Framatome's UTGS connector has a twin-ferrule system to ensure 360° electrical continuity for grounding from the cable shield to the plug body. Plugs and receptacles are made of nickel-plated, glass-filled thermoplastic, the plug connectors having a metal PG tube and cable clamp. RM/RC machined contacts, SM/SC formed two-piece types and RMDX/RCDX coaxial contacts can be accommodated. The units are available in 4 to 48 -way versions. Framatome Connectors UK Ltd. Tel., 01582 475757; fax, 01582476203.

Pcb edge connector. Thermodata's new edge connector has springloaded clamp terminals for rapid wiring. Edgeclamp connectors come in 20,56 and 72 ways on a 0.156 in pitch and accept wires up to 0.19 mm at 5 A per way. Thermodat clalm that wiring time is reduced by over 60\% compared with soldering and still more than 50% compared with screw retainers. Alterations are, of course, much simpler. Thermodata Components. Tel., 01462811757 fax, 01462811536.

Long-lasting coax. connectors. $50 / 75 \Omega$ ri coaxial connectors for test jigs, capable of withstanding many thousands of mating cycles, have been added to the ODU MAC range of modular attachable contacts, which are aluminium frames taking plastic insulation. Bodies are inserted taking
a variety of contacts. ODU UK Ltd. Tel., 01653 600489; fax, 01653 600493.

Displays

Low-profile graphics display. This new compact supertwist lcd module by Hitachi resolves 256 by 64 dots and has a single edge-lit cfl backlight, providing very good contrast, over $100 \mathrm{~cd} / \mathrm{m}^{2}$ and a wide viewing angle. LMG7380QHFC has 8Kbyte of display ram and a T6963C graphics controller with character generation to show text and graphics simultaneously. Use of a fastresponse crystal fluid makes it possible to show animation without ghosting or lag. Hitachi Europe Ltd. Tel., 01628 585163; fax, 01628 585160

Filters

Active filters modules. These filters from Vicor complement its range of power supplies. The VI-AM input attenuator attenuates conducted emi and a passive/active circuit suppresses transient overvoltages. Common-mode and differential-mode chokes, in addition to the power supply decoupling, reduce noise to meet international standards. VI-RAN is a passive/active filter to reduce output noise and ripple to give ripple as low as 3 mV pk-pk from low frequencies to tens of MHz . Vicor UK. Tel., 01276 678222; fax, 01276 681269.

Hardware

Heatsinks for power converters
Aavid produces a range of heatsinks for dc-to-dc converters, these devices being, apparently, particularly prone to heat stroke. The heatsinks are in extruded aluminium with a flat surface for least resistance; they come either unfinished or with anodlsed or chromate finish, All have six mounting slots, threaded or unthreaded to order. In sizes 4.6 by 2.4 in and 2.4 by 2.28 in , the units have various fin heights and orientations. A range of Interface pads is also offered to further improve performance. Aavid Thermal Technologies Ltd. Tel. 01279 626161; fax, 01279626208.

Industrial computer enclosures. Arcom offers two enclosures for STEbus industrial computer use, called ACE. They are described as 'boot-shaped', with the power supply in the heel, terminations and cable entry in the toe and up to six
Eurocards about where the shin might go. These cases take up about half the volume of a 19 in rack, many of which house mainly fresh air. The cases are die-cast and provide good noise protection and em compatibility, so that a computer built in this way can be CE self-certified. ACE-28 is for target systems, diskless pcs or
remote i/o nodes, while ACE-42 is wider with 42E space and will take pcs with disk drives. Arcom Control Systems Ltd. Tel., 01223 411200; fax 01223410457

Emc shlelding strip. A lowcompression emc shielding strip from TBA ECP takes account of small irregularities of mating surfaces, allowing equipment that does not fully compress the common type of strip to meet emi shielding standards, without increasing insertion forces. The strip is pressure sensitive and can be supplied cut to length. Finishes supplied include gold, silver, cadmium, tin/ead and nickel. TBA Industrial Products Ltd. Tel., 01706 47718; fax, 0170646170.

Card brackets. Vero has a range of nine, nickel-plated steel brackets for use on PCl format expansion cards. They come blank, with 9 -way and 25 way D cut-outs, the 9 -way type having the cut-out at the top or the bottom and with or without pcb fittings. Vero Electronics Ltd. Tel., 01489780078 fax, 01489780978

Rfileme shielding. Hughes Wynne offers Practi-Shield, a range of materials and components for ri and emc protection. On offer are aluminium and copper barrier shielding laminates with an insulating film on both surfaces; elastomeric gaskets from silicone rubber loaded with carbon, nickel and silver-plated glass, or from E-PTFE Gore-Shield; and Murnetal components for magnetic shielding. The company offers a computer-controlled laser profiling service. Hughes Wynne Lid Tel., 01932569700 ; fax, 01932 569652.

Test and measurement

Isolation amplifier. On offer from Nicolet is the BE1100 modula isolation amplifier which gives 1500 Vrms isolation with filtered oulputs on up to nine channels in a stand-alone instrument. Four types of amplifier module are avallable with inputs of 62 mV to 1000 V and can be mixed in any combination. Inputs are differential and floating, and outputs filtered and short-circuit protected Nicolet Technologies Ltd. Tel., 01908 679903; fax, 01908677331

Digital video measurement. New facilities provided by Tektronix for its 2715 cable spectrum analyser turn the instrument into an rf test set for digital channels. The addltions provide measurements of: digital average power across the channel bandwidth; desired:undesired signal power ratio (signal-to-noise and distortion power); channel triple beat and second-order distortion, the level of distortion to average power; and adjacent-channel leakage. There are facilities for unattended operation and
collection of data. Tektronix UK LId Tel., 01628403300 ; fax, 01628 403301

Dummy head measurement. HEAD by Head Acoustics is a sound measuring system using an anatomically and auditorily accurate model head (bald, actually) to provide reproducible recordings of sound signatures in noise diagnosis and analysis, product development and architectural acoustics, among other areas. There is a range of measuring and support equipment for the head, including storage, filtering and reproduction using the HEADphone playback system. Acsoft Ltd. Tel., 01296662852 ; fax, 01296661400.

Real-time/storage oscilloscope. Hitachi Denshi's VC-6645 real-time and storage oscilloscope is characterised by a four-channel 100 Ms sample/s rate, 100 MHz bandwidth, 4 K word instrument with delaying sweep and a 100 MHz frequency meter. An RS-232C interfaœe, which is standard, conveys data to a pc using HMES software. Four waveforms may be captured and memorised in a 72 h -10day memory. Hitachi Denshi (UK) Ltd. Tel., 0181-202 4311; fax, 0181-202 2451.

Interfaces

Signal conditioners. ADAM-3000 isolated signal-conditioning modules use optical techniques to provide 1000 V dc isolation of input, output and power lines to protect against ground loops and interference. There are models for analogue input and output signal conditioning and for direct sensor conditioning in thermocouples, 4-20mA loops and voltage-output sensors, a 1 kHz or 5 Hz active lowpass filter giving extra noise rejection. Integrated Measurement Systems Ltd. Tel., 01703 771143; fax, 01703 704301.

Literature

Hitachi microcontrollers. Hitachi's H8 Power in design is an overview of the $H 8$ microcontroller family of $8 / 16$ bit devices. It includes a summary of applications ideas and there is a section on support tools from Hitachi and other companies. Hitachi Europe Ltd. Tel., 01628585163 ; fax, 01628 585160.

Production equipment

Desoldering iron. The Weller/Ungar 4024IL-A desoldering instrument is variable in temperature from $260^{\circ} \mathrm{C}$ to $540^{\circ} \mathrm{C}$ and is electronically controlled for printed-board repairs and rework; it has a self-contained pump for desoldering and has a desoldering iron. Control is by zero-switching circuitry, the supply is isolated and the instrument is fully grounded. Cooper
Tools. Tel., 0191-416 6062; fax, 01914179421

Power supplies

Fast chargers. Fast NiCd battery chargers, one for ac and the other for dc input, are announced by Relec. Both are of the switched-mode type and achieve up to 75% efficiency. The $924310-18 \mathrm{~V}$ dc model delivers a constant fast charge of 700 mA to up to 16 cells, while the 8715 ac -powered unit delivers 520 mA to 10 cells. The chargers contain circuitry to protect against overcharging; approaching full charge, the fast charge gives way to a trickle charge of 18 mA , or 14 mA in the ac type. Relec Electronics Ltd. Tel. 01962 863141; fax, 01962855987.

5 V regulator. Zetex's ZSAT500 5V positive regulator is particularly meant for satellite receiver low-noise blocks, offering ripple rejection of 65 dB up to 22 kHz and 40 dB to 200 kHz . Quiescent current is $350 \mu \mathrm{~A}$ and maximum load current 200mA. Zetex plc. Tel., 0161-627 5105; fax, 0161 6275467.

Small psu. Said to be the world's smallest 40 W ac/dc supply, the NLP40 by Computer Products measures 108 -by- 63.5 by 28.45 mm also meeting the relevant standards for conducted nolse and emc and producing 36% more power per unit volume than any other known supply. Input is $86-264 \mathrm{~V}$ ac and five singleoutput models give $5,12,15,24$ or 48 V dc ; two duals provide $5 / 12 \mathrm{Vdc}$ or $\pm 12 \mathrm{~V} \mathrm{dc}$; and two triples give $5 / 12 \mathrm{~V}$ dc and $5 / \pm 15 \mathrm{~V} \mathrm{dc}$, all regulated to within $\pm 2 \%$. Computer Products, Power Conversion Lid. Tel., 01494 883113; fax, 01494883419

Surface-mount dc-to-dc converters. Small, self-contained dc-to-dc converters by TOKO may be paralleled together for higher currents. Both step-up and step-down models are available: 12 V -to- 5 V at 600 mA and 5 V -to- 12 V at 115 mA , with dualrail types avallable. Efficlency is 87% and the units are fitted with a on-off control. Package is $14.5 \mathrm{~mm}^{2}$. Cirkit Distribution Ltd. Tel., 01992 444111; fax, 01992464457.

High-voltage supply. Advance Hivolt announces the first of a series of highvoltage power supplies giving up to 40 kV at 2.5 mA , controllable in current or voltage mode by remote potentiometer or 10 V analogue voltage. There is a $0-10 \mathrm{~V}$ output for monitoring. Ripple is 20 V maximum 200 ppm variation for $\pm 10 \%$ input change and 500 ppm output variation for a 0-100\% load change. Other modules for outputs of $5-25 \mathrm{kV}$ are to be announced. Advance Hivolt. Tel, 01243841888 ; fax, 01243820555.

Radio communications products

Surface-mounted antenna. Meant for use in DECT portable telephones, Murata's ANCLC series of antennas

uses a dielectric material and operates over a 60 MHz bandwidth centred on 1890 MHz . Input impedance is 50Ω and vswr in bandwidth a maximum of 2 Murata Electronics (UK) Lid. Tel. 01252811666 ; fax, 01252811777

73 kHz amateur receiver. Cambridge Kits points out that it already has a kit sultable for the new 73 kHz band - the 60 kHz MSF receiver, which is easily modified. It has a built-in directional antenna, a 100 Hz bandwidth if, 50 dB agc and outputs for an S-meter and headphones or a speaker amplifier. Modification is only a matter of retuning and adding a variable capacitor. Using its internal antenna, the receiver will get HBG in Switzerland, MSF at Rugby and DCF77 in Germany. Cambridge Kits. Tel., 01223860150.

GPS for telecomms. Motorola has a new GPS receiver for the telecommunications market, in which accurate timing is becoming of greater importance; for example, in simulcast operation. VP Oncore provides one pulse/s to a 43 ns accuracy and also T-RAMM, which prevents faulty satellite data being used in the timing calculation. On Core can be embedded, being the size of a credit card, and an enhanced version is fitted with more memory, a battery, a low-noise amplifier and phase-carrier software. It also has an RS232/ttI interface. Motorola Automotive and Industrial Electronics Group. Tel., 01462 831111; fax, 01462835602

Protection devices

Programmable voltage clamp. From Unitrode, the UC3908 clamp, which is designed to protect the load from power supply overvoltage, sustained or transient. It takes the form of a shunt regulator which, in the presence of overvoltage, keeps the output to a programmed maximum level. In the event of this circuit saturating, excess

Handheld 'scope/multimeter. New from Tektronix, the THS700 Series of handheld instruments combining the functions of a digital multimeter and a digital oscilloscope with digital, real-time sampling. Maximum sampling rate is $500 \mathrm{Msample} / \mathrm{s}$ in the THS720, presenting real-time displays on a $5 \mathrm{~ns} /$ division, 100 MHz timebase, dual digitisers giving full sampling on both channels simultaneously. The instrument's white, backlit lcd gives a brightness of 10 footlamberts, much brighter than is often found. Thurlby Thandar instruments Ltd. Tel., 01480 412451 ; fax, 01480450409
shunted current or activation of thermal shutdown, the device emits an scr gate signal to crowbar the output. When no untoward state exists, the circuit takes less than $100 \mu \mathrm{~A}$; when it springs into action, it will shunt up to 17A to maintain the output at the maximum programmed limit and sets the flag signal. Unitrode (UK) Ltd. Tel., 0181-318 1431; fax, 0181-318 2549.

Current/thermal fuses. Microtherm offers the CT range of fuses, which combine both overcurrent and high temperature protection in one surfacemounted package, handling up to 15A ac with special versions available. Microtherm Lid. Tel., 01483450100 ; fax, 01483451816.

Fast suppressors. Surface-mounted transient voltage suppressors by Liteon dissipate 400W and exhibit a response time of 1 ps. There are 35 types in the range of unidirectional and bidirectional devices, all in SMA style, handling forward currents up to 40A and having leakage current of less than $1 \mu \mathrm{~A}$ at more than 10 V . Standard breakdown voltage tolerance is 5%, but 10% types are available. Flint Distribution. Tel. 01530510333 ; fax, 01530510275.

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World" when seeklng further information

Switches and relays

Quad pwm relay driver. UC3702 from Unitrode drives up to four relays from a common bus and does not need secondary regulation of the relay bus voltage. It will drive $9 \mathrm{~V}, 12 \mathrm{~V}$ and 24 V relays from a possibly poorly regulated, ripply, higher bus voltage such as 34 V in a power-efficient pwm manner, the coil being used as the inductive element In a switched-mode supply. Unitrode (UK) Ltd. Tel., 0181 318 1431; fax, 0181-318 2549

TO-5 relays. Magnetic-latching relays in Teledyne's 422 Series are intended for applications in which reliability is vital and have been specified for satellite work. Single-pulse activation also means that no holding power is needed. Frequency handling extends well into the uhf region. Teledyne Electronic Technologies. Tel., 0181571 9596; fax, 0181-5719637.

Television components

Comprehenslve tv signal processing. Toshiba announces the TB1226N, which performs video, chroma and synchronous processing for Pal, Secam and NTSC, cutting the number of external components by around half. The chip contains the I-H delay circuit and needs only one crystal for the colour carrier base frequency. Toshiba Electronics UK Ltd. Tel., 01276 694600; fax, 01276 694800.

Digital video encoder. VP531 and VP551 represent GEC Plessey's entry

1.3 GHz counter. Thurlby

Thandar has introduced the PFM1300, a handheld counter capable of measuring signals in the $5 \mathrm{~Hz}-1300 \mathrm{MHz}$ range. Sensitivity is 15 mV and a towpass filter can be selected. Period measurement is provided up to 25 MHz and, for very fow frequencies, reciprocal counting to give readings on inputs down to 0.001 Hz . Cost is 299 . Thuriby Thandar Instruments Lid. Tei., 01480412451 ; fax, 01480 450409.
to the digital set-top box arena. The two cmos decoder chips are used with the company's bipolar if funer and a-to-d converters to give a low-cost core for digital decoders converting the decompressed Y, Cr and Cb MPEG outputs to NTSC or Pal. A unique feature is the provision of genlock, which allows the device to lock to the colour burst phase of an analogue signal and thereby enable digital overlay on an analogue signal in combined systems at lower than usual cost. GEC Plessey Semiconductors Lid. Tel., 01793518510 ; fax, 01793 518582.

Transducers and
 sensors

Gas microvalve. EG\&G IC Sensors offers the Model 4425 silicon microvalve gas controller, a normally dosed valve giving proportional control of gas flow in the $0-150 \mathrm{cc} / \mathrm{min}$ range. A diaphragm forms a bimetallic actuator and has implanted resistors; by varying the power in the resistors, the bi-metallic diaphragm distorts and moves away from its seat in a controlled manner to allow gas to flow. The device is in a pcb-mounted package and contains filtering to prevent particles in the gas affecting operation. Eurosensor. Tel., 0171-405 6060; fax, 0171-405 2040.

Signal-conditioned accelerometer. Made by EG\&G IC Sensors, the Model 3255 is believed to be the smallest signal-conditioned dcresponse accelerometer available, mounting flat on a 7.5 by 13.5 mm area for hand or reflow soldering. It consists of a silicon sensor and a dedicated asic in the same case, which is hermetically sealed by a gold-plated Kovar lid. The unit was designed for $\pm 50 \mathrm{~g}$ airbag actlvation, providing an output of $\pm 40 \mathrm{mV} / \mathrm{g}$ about a 2.5 Vdc reference and there is a digital warning of malfunction, and a self-test facility. Eurosensor. Tel., 0171-405 6060; fax, 0171-405 2040.

Trlaxial accelerometers. Isotron 2258AM2 series piezoelectric accelerometers by Endevco contain the relevant electronics and are designed to measure vibration in

three orthogonal axes in small structures, having output sensitivities of $10 \mathrm{mV} / \mathrm{g}$ or $100 \mathrm{mV} / \mathrm{g}$ with a bandwidth of $1 \mathrm{~Hz}-20 \mathrm{kHz}$. Cost of operation is greatly reduced by the use of replaceable transducer elements in case of damage to one of the axes. Only one, four-conductor cable is needed. Endevco UK Ltd. Tel., 01763 261311; fax, 01763 261120.

COMPUTER

Data acquisition

PCMCIA data acquisition. Intelligent Instrumentation's i/o card system is a portable acquisition system to connect to a PCMCIA Type II slot. It consists of a card and a termination pad which provides all analogue and digital i/o on screw terminals. The card has eight differential analogue inputs with 12 -bit resolution, 30 kHz throughput and external triggering. Unipolar at 010 V and bipolar on $\pm 5 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$ are provided with selectable gain and input ranges. There are four digital input and output channels at ttl levels, a cold-junction compensation circult for seven thermocouples and an adjustable voltage reference for sensors needing excitation. Intelligent Instrumentation. Tel., 01923 249596; fax, 01923226720

Development and evaluation

PIC emulator. ICEPIC from Microchip is a low-cost development tool for the 8-bit PIC16C5X and PIC16CXX microcontrollers. The emulator operates under Windows 3.110 give source-level debugging in assembly or C. Modular in design, the emulator has a motherboard with common logic and a device-specific daughter board. ICEPIC runs with MPASM and the company's MP-C compiler. Arizona Microchip Technology Ltd. Tel., 01628 851077; tax, 01628850259.

Data logging

Handheld logger. Mitec's AT40 handheld data logger has intelligent inputs to identify the type of sensor automatically and program the instrument accordingly. It has four or eight channels, a 512 Kbyte memory and accepts signals of ac/dc voltage or current, resistance, temperature transducers, pulses and
time/frequency; a non-contact magnetlc probe can be supplied for electrical measurements. An internal processor analyses the data to allow the immediate plotting on a portable inkjet printer and display on the instrument's lod. Interiace to a pc can be direct or by way of a modem. Martron Instruments Ltd. Tel., 01494 459200; fax, 01494535002

Programming hardware
Debugger for 68HCO5/8. Cosmic Software offers the ZAP debugger for

Multimedia

CD-roms for notebooks. Using a PCMCIA slot in a notebook pC you can now operate a CD-rom drive by means of a single cable. DIP Systems produces dual, quad and six-speed verslons of the drive, all being compatible with MSCDEX, Windows and Windows 95 and the six-speed type giving a $900 \mathrm{~Kb} / \mathrm{s}$ transfer rate. The PCMCIA card is a Type 1 to fit any pc card slot and software provided makes for easy instaltation. The drives will also handle audio CDs and have line output and headphone jacks. DIP Systems. Tel., 01483 202070; fax, 01483202023.

Motorola 68 HCO 5 and 69 HCO 8 microcontrollers. The debugger works with the Motorola modular evaluation system and with in-circuit emulators from Motorola and Pentica. Cosmic expects that designers will choose the ZAP in preference to the Motorola MMEVS debugger in view of its Integration with Cosmic's C compiler. Four standard ZAP configurations form a simulator, monitor, background debugger and in-circuit emulator, so that the same debugger can be used at each stage of the design. Cosmic Software. Tel., 01734880241 ; fax, 01734880360.

Software

Lookout for Windows. National's Lookout industrial automation software is now available $\ln 32$-bit Windows 95 and NT versions., giving users a 32 -bit, object-oriented, eventdriven system for building applications from a simple human interface to supervisory control and data acquisition (Scada) systems, working at a rate almost twice as fast as in a 16 -bit version. National Instruments UK. Tel., 01635 572400; fax, 01635 523154.

Data visuallsatlon. HiQ by National Instruments is an interactive package to allow the visualisation of maths and data. It runs as a native, 32 -bit application in Windows 95 or NT, uses ole and Active X and the OpenGL 3-d graphics library to provide ActiveMaths and visualisation to ActiveX and Microsoft Office applications such as Word and Excel. National Instruments UK. Tel., 01635 572400 ; fax, 01635523154.

OC TO DC CONVERTERS

DRM58 input 10-40vac output 5V $8 \mathrm{~A} £ 15$ DRM128 input $17-40 \mathrm{Vdc}$ output $12 \mathrm{~V} 8 \mathrm{~A} £ 50$ DRM158 input $20-40 \mathrm{Vdc}$ output $15 \mathrm{~V} 8 \mathrm{~A} £ 50$ DRM248 input $29-40 \mathrm{Vdc}$ output $24 \mathrm{~V} 8 \mathrm{~A} £ 40$ DRS 123 input $17-40 \mathrm{Vdc}$ output $12 \mathrm{~V} 3 \mathrm{~A} £ 20$ DRS 153 input 20-40vac output $15 \mathrm{v} 3 \mathrm{~A} £ 20$ DRS243 input $29-40 \mathrm{vdc}$ output $24 \mathrm{v} 3 \mathrm{~A} £ 15$ SOLID STATE RELAYS
CMP-DC-200P 3-32vdc operation, 0-200vdc 1A £2.50 SMT 20000 万3 3-24voc operation, 28 -280vac 3A £4.50 SMT20000/4 3-24vdc operation, 28 -280vac 4A $£ 5.00$
ZRA6025F 28 -280va/ac operation, 28 -280vac 25 A $£ 7.00$
200 WATT INVERTERS Nicely cased units 12 V input 240 V output 150 watt continuous, 200 max. £ 49 ref LOT62.
6.8MW HELIUM NEON LASERS New units, 865 ref LOT 33

COINSLOT TOKENS You may have a use for these? mixed bag f 100 tokens $£ 10$ ref LOTzo
PORTABLE X RAY MACHINE PLANS Easy to construct plans on a simple and cheap way to bulld a home X-ray machine! Effective device, X-ray sealed assemblies. can be used for experimental purposes Not a toy or for minorsi $£ 6 / \mathrm{set}$. Ref $\operatorname{F/XP1}$. TELEKINETIC ENHAN CER PLANS Mystify and amaze your friends by creating motion with no known apparent means or cause. Uses no electncal or mechanical connections, no spedial gimmicks yetproducespostive motionand effed. Excellentforscienceprojects. magic shows, party demonstrations or serious research

£4/set Ref FTKE1

ELECTRONIC HYPNOSIS PLANS \& DATA This data shows several ways to put subjects under your control. Induded is a full volume reference text and several construction plans that when assembied can produce highly eflective stimuli. This matenial mus be used cautously. It is for use as entertainment at parbes etc only by those experlenced in its use. $£ 15 /$ set. Ref $F / E H 2$.
GRAVITY GENERATOR PLANS ThIs unlque plan demonstrates a simple electrical phenomena that produces an antigravity effect. You can actually build a small mock spaces hip out of

E10/set Ref F/GRA

WORLDS SMALLEST TESLA COILILIGHTENING DISPLAY GLOBE PLANS Produces up to 750,000 volts of discharge, experiment with extraordinary HV eflects, "Plasma in a jar', St Elmo's fire, Corona, excellent science project or conversation piece. £5/sel Rel F/BTC1/LG5.
COPPER VAPOUR LASER PLANS Produces 100 mw of visible green light. High coherency and spectrat quality similar to Argon laser but easier and less costly to build yet far more efficient. This part culardesign was developed at the Atomic Energy Commi sion of NEGEV in Israel. $£ 10 /$ set Ref F/CVL 1
VOICE SCRAMBLER PLANS Minature solid state system turns speech sound into indecipherable noise that cannot be understood without a second matching unit. Use on telephone to prevent third party listening and bugging $£ 6 /$ set Ref FNSS
PULSED TV JOKER P LANS Litte hand held device utillses pulse techniques that will completely disrupt TV picture and sound works on FM tool DISCRETION ADVISED. £8/set Ref F/TJ5.
BÖDYHEAT TELESCOPE PLANS Highly directional long range device uses recent technology to detect the presence of living bodies. warm and hot spots, he at leaks etc. Imtended for secunty, law
enforcement, research and development, etc. Excellent secunty enforcement, research and development, etc. Excellent secunty
dence or very interesting science project $£ 8 /$ set Ref F/BHT 1. BURNING, CUTTING CO2 LASER PLANS Projects Invisible beam of heat capable of burning and melting materials ove a considerable distance. This laser is one of the most efficient, converting 10% inputpower into useful output. Not only is this device a workhorse in welding, cutting and heat processing materials butit is also a likely candidate as an effective directed energy beam
weapon against missiles, aircrat, ground-to-ground, etc. Partide weapon against missiles, aircran, ground-to-ground, etc. Paride
beams may very well utilize a laser of this type to blast a channel in the atmosphere for a high energy stream of neutrons or other particles. The device is easily applicable to burning and etching wood, cutung, plastics, textiles etc $£ 12 /$ set Ret FתC7.
MYST ERY ANTI GRAVIY DEVICE PLANS Uses simple concept. Objects float in air and move to the touch. Defies gravity amazing gith, conversation plece. magic trick or science project. $£ 6$ amazing git, conv
ULTRASONIC BLASTER PLANS Laboratory source of sonic shock waves. Blow holes In metal. produce 'cold' steam, atomize
liquides. Many cleaning uses for PC boards, jewllery, coins small liquides. Many cleaning uses for PC boards, jewllery, coins. small ULTRAHIGH GAIN AMPISTETHOSCOPICMIKEISOUND AND VIBRATION DETECTOR PLANS Ultrasensitive device enables one to hear a whole new world of sounds. Listen through
walls, windows, floors etc. Many applications shown, from law walls, windows, floors etc. Many applications shown, from law
enforcement, nature listening, medical heartbeat, to mechanical devioes. £6/set Ref F/HGA7
ANTI DOG FORCE FIELD PLANS Highly effective circuit produces time varlable pulses of accoustical energy that dogs
cannot tolerate $£ 6 / \mathrm{set}$ Ref F/DOG2 LASER BOUN CE LISTENER SYSTEM PLANS Allows you to hear sounds from a premises without gaining access. $£ 12$ /set Ref FILIST1
LASER LIGHT SHOW PLANS Doit yourself plans show inree methods. $£ 6$ Ref FILLS
PHASOR BLAST WAVE PISTOL SERIES PLANS Handheid, has large transducer and battery capacity with extemal controis. £6/set Ref FIPSP4
INFINTTY TRANSMITTER PLANS Telephone line grabber/ room monitor. The utimate in hom e/office secunty and safety! simple to use! Call your home or office phone, push a secret tone on your teephone to access ether. A) On premises sound and voices or B)
Existing conversation with break-in capability for emergency Existing conversation with Dre
messages. $£ 7$ Ref $F / T E L E G R A B$.
BUG DETECTOR PLANS Is that someone getting the goods on you? Easy to construct device locates any hidden source of radio energy! Snitts out and finds bugs and other sources of bothersome

WOI TERHA MIPTON BRENCH
 NOW OREN AT WORCESTER ST WTAMPTON TEL 0190222039

Inte

ELECTROMAGNETIC GUN PLANS Projects a metal objecta ELECIIderable distance requires adult supervision $£ 5$ ref $F /$ /EML ELECTRIC MAN PLANS, SHOCK PEOPLE WITH THE TOUCH OF YOUR HANDI £5/set Ref F/EMA
PARABOLIC DISH MICROPHONE PLANS Listen to distant sounds and voices, open windows, sound sources in 'hard to get' or hostile premises. Uses satelite technology to gather distant sounds and focus them to our ultra sensitive electronics. Plans also show an optional wireless link system. E8/set ref F/PM5
2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARIABLE 100,000 VDC OUTPUT GENERATOR PLANS Operates on $9-12 \mathrm{vdc}$, many possible experiments. £10 Rel FAHVM7/ TCL4.
INFINTY TRANSMITTERS The ultimate 'bug' fits to any phone or line, undetectable. listen to the conversations In the room from anywhere in the world! 24 hours a day 7 days a weekt just call the number and press a bution on the mini controller (supplied) and you can hear everything! Monitor conversatoons for as long as you choose $£ 249$ each, complete with leads and mini controilen Ref
LOT9. Undetectable with normal RF delectors, fitted in seconds. no LOT9. Undetectable with normal
batteries required, lasts forever!
batteries required, lasts forever!
SWITCHED MODE PSU'S 244 watt, $+532 A,+126$ A. $-50.2 A$, 20.2A. There is also an optional 3.3 v 25 A rail avalable. 120/240v P. Cased, $175 \times 90 \times 145 \mathrm{~mm}$. IEC inlet Sultable for PC use (6 d/drive connectors 1 m/board). £10 ref PSU1.
VIDEO PROCESSOR UNTST/6v 10AH BATTS/12V 8A TX Not too sure what the function of these units is but they certainly make good strippers! Measures $390 \times 320 \times 120 \mathrm{~mm}$, on the front are controls for scan speed, scan delay, scan mode, loads of connections on the rear. In side $2 \times 6 \mathrm{v} 10 \mathrm{AH}$ sealed lead acid batts, pcb's and a 8 A? 12 v torrodial transformer (mains in). Condibon not known, may have one or two broken knobs due to poor storage. £17.50 ref VP2 RETRON NIGHT SIGHT Recognition of a standing man at 300 m in $1 / 4$ moonlight, hermatically sealed, runs on 2 AA battenes, 80 mm 9.5 lens, 20 mw infrared laser induded. $£ 325$ ref RETRON

MINI FM TRANSMITTER KIT Very high gain preamp. supplied complete with FET electret microphone, Designed to cover $88-108$ Mhz but easily changed to cover $63-130 \mathrm{Mhz}$. Works with a common 9V (PP3) battery. 0.2W RF. £7 Rel 1001
3-30V POWER SUPPLY KIT Variable, stabilized power supply for lab use. Shorl circuit prolected, suitable for profesional or amateur use 24V 3A transformer is needed to complete the kit. £14 Ref 1007.
1 WATT FM TRANSMITTER KIT Supplied with piezo electric mic. 8-30vdc. At $25-30 \mathrm{v}$ you will get nearly 2 wattsi $£ 12$ ref 1009. FM/AM SCAN NERKIT Well not quite, you have to turn the knob your self but you will hear things on this radio that you would on an ordinary radio (even TV). Covers $50-160 \mathrm{mhz}$ on
FM. Built in 5 watt amplifier, Inc speaker. $£ 15$ ref 1013 .
3 CHANNEL SOUND TO LIGHT KTT Wireless system, mains operated. separate sensitivity adjustment for each channel, 1,200 w power handling, microphone included. £14 Ref 1014
4 WATT FM TRANSMITER KT Small but powerful FM transmitter, 3 RF stages, microphone and audio preamp included. E20 Ret 1028.
STROBE LIGHT KIT Adjustable from $1-60 \mathrm{hz}$ (a lot faster than conventional strobes). Mains operated. £16 Ref 1037.
COM BINATION LOCK KIT 9key, programmable, complete with keypad, will switch 2A mains. 9 v dc operation. $£ 10$ ref 1114 . PHONE BUG DETECTOR KIT This device will
somebody is eavesdropping on your line. $£ 6$ ref 1130.
ROBOT VOICE KTI Interesting circuit that distorts your vore adjustable, answer the phone with a difierent volce! 12vdc£9 ref113 TELEPHONE BUG KTT Small bug powered by the 'phone line, starts transmitting as soon as the phone Is picked upl £8 Ret 1135. speed and direction controlssupplied with 12 LEDS (you can fittnacs instead to make kit mains, not supplied) 9 - 2 Vvac £17 ref 1026. 12V FLOURESCENT LAMP DRNER KTT Lightup 4 foottubes voX SWITCH KrTSound activated switchideal formaking bugging tape recorders etc, adjustable sensitivty. $£ 8$ ref 1073.

Check out our WEB SITE
http://www.pavilion.co.uk/bull-elootrical
PREAMP MDXER KTT 3 input mono mixer, sep bass and treble controls pli
ref 1052.

- Some of our froducts may be unlacensable in the us

BULL ELECTRICAI

HAX O1女73. 2317%
E-mail bull@pavilionicouk

SOUND EFF ECTS GENERATOR KTT Produces sounds ranging from bird chips to sirens. Complete with speaker, add sound effects from bird chips to sirens. Complete
16 WATT FM TRANSMITER (BUILT) 4 stage high power preamp required $12-18 \mathrm{vac}$, can use ground plane, yagl or open HUMIDTY METER KIT Bulds into a precision LCD numidity meter, 9 ic design, pcb, Icd display and all components included. $£ 29$ PC TMER KIT Four channel ouput controlled by your PC, will switch high current mains with relays (supplied). Software supplied so you can program the channels to do what you want whenever you
want. Minimum system configeration is 286 , VGA 4.1.640k, senial want. Minimum system configeration is 286 , VGA $4,1,640 \mathrm{k}$, se nal port, hard drive with min 100 k free. $£ 24.99$
FM CORDLESS MICROPHON E This unitis an FMbroadcasting station In minature, 3 transistor transmitter with electret condenser mic+fet amp design result in maximum sensitovity and broadfrequency response. $90-105 \mathrm{mhz}, 50-1500 \mathrm{hz}, 500$ foot range in open country! PP3 battery required $£ 15.00$ ref 15P42A
MAGNETIC MARBLES They have been around for a number of years butstill give rise to curiosity and amazement. A pack of 12 Is just £3.99 ref GI/R20
NICKEL PLATING KIT Proffesional electroplating kit that will transform rusting parts into showpieces in 3 hours! will plate onto steed, Iron, bronze, gunmetal, copper, weided, silver soldered orbrazed joints. Kitincludes enough to plate 1,000 sqinches. You will also need a 12 v supply, a container and $2 \mathbf{1 2 v}$ light bulbs. $£ 39.99$ ref NIK 39 Minature adjustable timers, 4 pole c/o output 3A 240v HY1230S, 12vDC adjustable from $0-30$ secs. $£ 4.99$ HY1260M, 12vDC adjustable from 0-60 mins $£ 4.99$ HY2405S, 240V adjustable from $0-5$ secs. $£ 4.99$ HY24060m, 240 V adjustable from $0-60$ mins. $£ 6.99$ BUGGING TAPE RECORDER Small voice activated recorder. uses mica o cassettecomplete with headphones. $£ 28.99$ refMAR29P1. POWER SUPPLY fully cased with mains and op leads 17 vDC 900 mA output, Bargain price $£ 5.99$ rel MAG6P9
9v DC POWER SUPP LY Standard plugin type 150 ma 9 NDC with lead and DC power plug. price for two is $£ 2.99$ rel AUG3P4. COMPOSTTE VIDEO KIT, Converts composite video Into sepa-
rate H sync, V sync, and video. 12 V DC. $£ 8.00$ REF: rate H sync, V sync, and video. 12v DC. $£ 8.00$ REF: MAG8P2 FUTURE PC POWER SUPPLIES These are $295 \times 135 \times 60 \mathrm{~mm}$, 4 drive connectors 1 mother board connector. 150watt, 12v fan, iec Inlet and on/off switch. £ 12 Ref EF6.
VENUS FLY TRAP KIT Grow your own camivorous plant with this simple kit £3 ref EF34
6"X12" AMORPHOUS SOLAR PANEL 1 FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ref MAG5P 13 ideal for experimenters! 30 m for $£ 12.99$ ref MAG13P1 ROCK LIGHTS Unusual things these two pleces of rock that glow when rubbed together! belived to cause rainlE3 a pair Ref EF29.
3^{\prime} by 1 ' AMORPHOUS SOLAR PANELS $14.5 \mathrm{v}, 700 \mathrm{~mA} 10$ watts, aluminium frame, screw terminals, $£ 44.95$ ref MAG45 ELECTRONIC ACCUPUNCT URE KIT Bullds Intoan electronic version instead of needles! good to expenment with. £7 ref 7P30 SHOCKING COIL KIT Build this litte battery operated device into all sorts of things, also gets worms out of the groundl $£ 7$ ref 7P36. FLYING PARROTS Easily assembled kit that builds a parrot that actually flaps its wings and fies! 50 m range $£ 6$ ref EF2.
HIGH POWER CATAPULTS Hinged amm brace for stability, tempered steel yoke, super strength latex power bands. Departure speed of ammunition is in excess of 200 miles per hourl Range ofover 200 metres! $£ 7.99$ rel R/g.
BALLON MANUFACTURING KIT British made, small blob Dlows into a large, longla sting balloon, hours offuni£3.99 ref GVE99R 9-0-9V 4A TRANSFORMERS, chassis mount. $£ 7$ ref LOT19A. 2.6 KILOWATT INVERTERS, Packed with batteries etc but as they weigh about 100kg CALLERS ONLYI £120. MEGA LED DISPLAYS Build your self a clock or something with thesemega 7 seg displays 55 mm high, 38 mm wide 5 on a pcb for just £4.99 ref LOT16 or a bumper pack of 50 displays for just $£ 29$ re LOT17.
LOT

CLEARANCE SECTION, MINImum ORDER £15, NO TECHNICAL DETAILS AVAILABLE, NO RETURNS, TRADE WELCOME.

2000 RESISTORS ON A REEL (SAME VALUE) 99P REF BAR340 AT LEAST 200 CAPACTORS (SAME VALUE 99P REF BAR342 INFRA RED REMOTE CONTROLS JUST 99P REF BAR333 CIRCUTBREAKERS, OUR CHOICE TOCLEAR 99P REFBAR 335 MICROWAVE CONTROL PANELS TO CLEAR E2 REF BAR 329 2 TUBES OF CHIPS (2 TYPES OUR CHOICE) 9OP REF BAR305 LOTTERY PREDICTOR MACHINEI! JUST E1.50 REF BAR313 HELLAL/ROVERELECTRICH/AMP LEVELLERE2 REFBAR31 SINCLAIR C5 $16^{\prime \prime}$ TYRES TO CLEAR AT JUST 75P REF BAR318 LARGE MAINS MOTORS (NEW) TO CLEAR AT 75P REF BAR310 MODEMS ETC FOR STRIPPING E2.50 EACH REF BAR324
110V LARGE MOTORS (NEW) TO CLEAR AT 50P REF BAR332 MODULATOR UNITS UNKNOWN SPEC JUST 50P REF BAR323 GX4000 GAMES COSOLES JUST E4 REF BAR 320
SHART CASED MEMORY STORAGE DEVICE, LOADS OF BITS INSIDE, PCB, MOTOR, CASE ETC. BUMPER PACK OF COMPLETE UNITS TO CLEAR AT E2 5O(FOR 5) REF BAR 330. 2 CORE HAINS CABLE 2 H LENGTHS PACK OF 4 E 1 REF BAR 337 PC USERBASIC MANUALS, LOADS OF INFO. E1 REF BAR304 PCB STRIPPERS TO CLEAR AT 2 FOR 99P REF BAR341

WE BUY SURPLUS STOCK FOR CASH

BUYERS DIRECT LINE 0802660377
FREE CATALOGUE
100 page catalogue now aVAILABLE, 45P STAMPS.

Precision preamplifier '96

"Could this be the quietest audio preamplifier design in existence?" asks Douglas Self. Part II concentrates on circuit design, revealing a new concept in hi-fi tone control.

Morgan Jones raised the excellent point of crosstalk in the input-select switching in a recent article*. If the source impedance is significant then this may be a serious problem.
While I agree that Morgan's rotary switch with every other contact grounded may be slightly superior to conventional rotary switches, measuring a popular Lorlin switch type showed the improvement to be only 5 dB .1 am also unhappy with all those redundant 'mute' positions between input selections, so I instead chose interlocked push-switches rather than a rotary. A four-pole-changeover format can then be used to reduce crosstalk.
The problem with conventional input select systems like Fig. 1a is that the various input tracks necessarily come into close proximity, with significant crosstalk through capacitance $C_{\text {stray }}$ to the common side of the switch, ie from A to B. Using two changeovers per input side - ie four for stereo - allows the intermediate connection B-C to be grounded by the NC contact of the first switch section. This keeps the 'hot' input A much further away from the common input line D , as shown in Fig. 1b.
Crosstalk data in Table 1 was gathered at 10 kHz , with $10 \mathrm{k} \Omega$ source impedances. The emphasis here is on minimising inter-source crosstalk, as interchannel (L-R) crosstalk is benign by comparison. Interchannel isolation is limited by the placement of left and right on the same switch, with the contact rows parallel, and limits $L-R$ isolation to -66 dB at 10 kHz with $10 \mathrm{k} \Omega$ source impedance.
With lower source impedances, both intersource and interchannel crosstalk is proportionally reduced. In this case, a more probable $1 \mathrm{k} \Omega$ source gives 115 dB of intersource rejec-

[^2]tion at 10 kHz for the four-pole-changeover method.

Line input criteria

Nowadays the input impedance of a preamp must be high to allow for interfacing to anachronistic valve equipment, whose output may be taken from a valve anode. Even light loading compromises distortion and available output swing. A minimum input impedance is

Table 1. Crosstalk exhibited by four switch arrangements using a 10 kHz test signal.

Simple rotary:	71 dB
Morgan-Jones rotary:	76 dB
2 c/o switch	74 dB
4 c/o switch	95 dB

Fig. 1a). Input-select switching for audio preamplifiers - the conventional method, with poor rejection of unselected sources due to $C_{\text {stray }}$.

Fig. 1b). Improved input selection using four-pole switching to reduce capacitance between the different sources. The $C D$ input attenuator can be grounded when not selected, so 2-pole switching is sufficient for high isolation of Source 3.
$100 \mathrm{k} \Omega$, which many preamp designs fall well short of.
The CD input stands out from other line sources in that its nominal level is usually 1 V rather than 150 mV . This is perfectly reasonable, since digital sources have rigidly defined maximum output levels, and these might as well be high to reduce noise troubles. There is no danger of the analogue output section clipping. However, this means a direct line input cannot be used without the trouble of resetting volume and recording-level controls whenever the CD source is selected.
This problem is addressed here by adding a 16 dB passive attenuator, as shown for Source 3 in Fig. 1b. The assumption is that a CD output has a low impedance, and that a $10 \mathrm{k} \Omega$ input impedance will not embarrass it. As a result, resistance values can be kept low to minimise the noise degradation.

Output impedance of this attenuator is $1.4 \mathrm{k} \Omega$, which generates -120.9 dBu of Johnson noise as opposed to -135.2 dBu from a direct 50Ω source. This is still much less than the preamp internal noise and so the noise floor is not degraded. It is now possible to improve inter-source crosstalk simply by grounding the CD attenuator output when it is not in use, so only a two-pole switch is required for good isolation of this source.

The tape-monitor switch allows the replay signal from the tape deck to be compared with the source signal. With three-head machines, this provides a real-time quality check. But with the much more common two-head appliances, where the input signal is looped straight back to the amplifier in RECORD mode, it only provides confirmation that the signal has actually got there and back.

Line input buffering

This stage has to provide a high input impedance and variable gain for the balance control. My last preamp ${ }^{1}$ had the balance control incorporated in the tone stage, but this does not appear to be practical with the more complex tone system here.

The vernier balance control alters the relative stage gain by $+4.5,-1.1 \mathrm{~dB}-$ a difference of 6 dB - which is sufficient to swing the image wholly from one side to the other. Since the minimum gain of this non-inverting stage is unity, the nominal gain with balance control central is 1.1 dB . Maximum gain of the active gain stage, or AGS, is reduced to allow for this. The active nature of this balance control means that the signal never receives unwanted attenuation that must be undone later with noisy amplification. The gain law is modified by R_{34} to give as little gain as possible in the centre. Maximum gain is set by R_{35}, Fig. 11. A high input impedance is obtained simply by using a high-value biasing resistor R_{33}, accepting that the bias current through this will give some negative output offset; at -180 mV this is not large enough to reduce

directly - a good way would be to use the flat moving-coil cartridge stage as a preamp for the testgear ${ }^{2}$. Calculated noise output is -116 dBu with balance central.

Controlling tone

I plan to ignore convention once again. I think tone controls are absolutely necessary, and it is a startling situation when, as frequently happens, anxious inquirers to hi-fi advice columns are advised to change their loudspeakers to correct excess or lack of bass or treble. This is an extremely expensive way of avoiding tone controls.

This design is not a conventional Baxandall tone control. The break frequencies are variable over a ten to one range, because this makes the facility infinitely more useful for

Fig. 2. The basic tone control circuit. The response only deviates from unity gain at frequencies passed by the hf or If side-chain paths.
headroom. Input impedance is therefore $470 \mathrm{k} \Omega$, high enough to prevent loading problems with any conceivable source equipment.

In discussing noise there are fundamental limits that lend perspective to the process. If the external source impedance is 50Ω, which is about as low as is plausible, the inherent thermal noise from it is -135.2 dBu in 22 kHz bandwidth. This is well below the measuring equipment, (AP System 1) which has an input noise floor I measured at $-116.8 \mathrm{dBu}, 50 \Omega$ source again.

The noise output of the buffer/balance stage is of the same order and cannot be measured
correcting speaker deficiencies. This enhancement flies in the face of Subjectivist thinking. but I can live with that. Variable boost/cut and frequency enables any error at top or bottom end to be corrected to at least a first approximation. It makes a major difference, as anyone who has used a mixing console with comprehensive EQ will tell you.

Middle controls are quite useless on a preamplifier. They are no good for acoustic correction: after all, even a third-octave graphic equaliser isn't that much use. Variable frequency mid controls are standard on mixing consoles because their function is voicing - ie giving a sound a particular character - rather than correcting response anomalies.
Certain features of the tone control may make it more acceptable to those with doubts about its sonic correctness. The tone control

range is restricted to $\pm 10 \mathrm{~dB}$, rather than the $\pm 15 \mathrm{~dB}$ which is standard in mixing consoles. The response is built entirely from simple $6 \mathrm{db} /$ octave circuitry, with inherently gentle slopes. The stage is naturally minimum-phase, and so the amplitude curves uniquely define the phase response. This will be shown later, where the maximum phase-shift does not exceed 40° at full boost.
This is a return-to-flat tone control. Its curves do not plateau or shelve at their boosted or cut level, but smoothly return to unity gain outside the audio band. Boosting 10 kHz

Fig. 5. Treble frequency control law for constant increments of rotation. The curves approximate to linear spacing on the log frequency axis. PSpice simulation.

Fig. 6. Bass frequency control law with nearlinear spacing on the log frequency axis.

Fig. 7. Tone-control maximum boost/cut curves. (measured)
is one thing, but boosting 200 kHz is quite another, and can lead to some interesting stability problems. The fixed return-to-flat timeconstants mean that the boost/cut range is necessarily less at the frequency extremes, where the effect of return-to-flat begins to overlap the variable boost/cut frequencies.
The basic principle is shown in Fig. 2. The stage gives a unity-gain inversion, except when the selective response of the side-chain paths allow signal through. In the treble and bass frequency ranges, where the side-chain does pass signal, boost/cut potentiometers $V R_{2,4}$ can give either gain or attenuation. When a wiper is central, there is a null at the middle of the boost/cut potentiometer, no signal through that side-chain, and gain is unity.
If the potentiometer is set so the side-chain is fed from the input then there is a partial cancellation of the forward signal; if the sidechain is fed from the output then there is a partial negative-feedback cancellation. To put it another way, positive feedback is introduced to counteract part of the negative feedback through R_{37}.
This apparently ramshackle process actually gives boost/cut curves of perfect symmetry. In fact this symmetry is pure cosmetics, because you can't use both sides of the curve at once, so it hardly matters if they are exact mirror-images.

Bass and treble

The tone control stage acts in separate bands for bass and treble, so there are two parallel selective paths in the side-chain. These are simple $R C$ time-constants, the bass path being a variable-frequency first-order low-pass filter, and the associated bass control only acting on the frequencies this lets through.
Similarly, the treble path is a variable highpass filter. The filtered signals are summed and returned to the main path via the noninverting input, and some attenuation must be introduced to limit cut and boost.
Assuming a unity-gain side-chain, this loss is 9 dB if cut and boost are to be limited to $\pm 10 \mathrm{~dB}$. This is implemented by R_{43}, R_{48} and R_{38}, Figs 2,3 and 4 . The side-chain is unitygain, and so has no problems with clipping before the main path does. As a result, it is highly desirable to put the loss after the sidechain, where it attenuates side-chain noise.
The loss attenuator is made up of the lowest value resistors that can be driven without distortion. This minimises both the Johnson noise therein and noise generated by op-amp $I C_{7 \mathrm{~b}}$.

The tone cancel switch disconnects the entire sidechain, ie five out of six op-amps, from any contribution to the main path, and usefully reduces the stage output noise by about 4 dB , depending on the hf frequency setting. It leaves only $I C_{7 \mathrm{~b}}$ in circuit, which is required anyway to undo the gain-control phase-inversion.
Unlike configurations where the entire stage is by-passed, the signal does not briefly disappear as the switch moves between two contacts. This minimises transients due to suddenly chopping the waveform and makes valid
tone in/out comparisons much easier.
Having all potentiometers identical is very convenient. I have used linear $10 \mathrm{k} \Omega$ controls, so the tolerances inherent in a two-slope approximation to a logarithmic law can be eliminated. This only presents problems in the tone stage frequency controls, as linear potentiometers require thoughtful circuit design to give the logarithmic action that fits our perceptual processes.

Basics of the treble path are shown in Fig. 3. Components C_{32}, R_{41} are the high-pass timeconstant, driven at low-impedance by unitygain buffer $I C_{6 \mathrm{~b}}$. This is needed to prevent the frequency from altering with the boost/cut setting. The effective value of R_{41} is altered over a $10: 1$ range by varying the amount of bootstrapping it receives from $/ C_{7 a}$, the potential divider effect and the rise in source resistance of $V R_{5}$ in the centre combining to give a reasonable approximation to a logarithmic frequency/rotation law, Fig. 5.
Resistor R_{42} is the frequency end-stop resistor. It limits the maximum effective value of R_{41}. Capacitor C_{29} is the treble return-to-flat capacitor. At frequencies above the audio band it shunts all the sidechain signal to ground, preventing the treble control from having any further effect.

The treble side-chain does degrade the noise performance of the tone control stage by $2-3 \mathrm{~dB}$ when connected. This is because it must be able to make a contribution at the hf end of the audio band. As you would expect, the noise contribution is greatest when the hf frequency is set to minimum, and so a wider bandwidth from the side-chain contributes to the main path.

The simplified bass path is shown in Fig. 4. Op-amp $I C_{6 a}$ buffers $V R_{2}$ to prevent boost/frequency interaction. The low-pass time-constant capacitor is C_{37}, and the resistance is a combination of $V R_{3}$ and $R_{45,46}$.
Capacitors $C_{38,39}$ with R_{47} make up the return-to-flat time-constant for the bass path, which blocks very low frequencies, limiting the lower extent of bass control action. The bass frequency law is made approximately logarithmic by $I C_{8 b}$; for minimum frequency $V R_{3}$ is set fully counter-clockwise, so the input of buffer $I C_{8 \mathrm{~b}}$ is the same as the C_{37} end of R_{46}, which is thus bootstrapped and has no effect.

Turnover

When $V R_{3}$ is fully clockwise, $R_{45,46}$ are effectively in parallel with $V R_{3}$ and the turnover frequency is at a maximum. Resistor R_{45} provides some extra law-bending, Fig. 6. Sadly, an extra op-amp is required. However, despite its three op-amps, the bass side-chain contributes very little extra noise to the tone stage. This is because most of its output is inherently rolled off by the low-pass action of C_{37} at high frequencies, almost eliminating its noise contribution.

Once the active elements have been chosen - here 5532 s - and the architecture made sensible in terms of avoiding attenuation-thenamplification, keeping noise-gain to a mini-

Finally an upgradeable PCB CAD system to sult any budget ...

BoardCapture - Schematic Capfure

- Direct netist link to BoardMaker2
- Forward annotation with part values
- Full undo/redo lacility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control
- Back annotation from BoardMaker2

BoardMoker

BoardMaker1 - Entry level

- PCB and schematic drâtiong
- Easy and intuitive to use
- Surfaco mount support
- 90, 45 and curved track comers
- Ground plane fill
- Coppor highlight and clearance checting

BoardMaker2 - Advanced level

- All the features of BoardMakeri plus
- Full nellist support - OrCad, Schema, Tango, CadStar
- Full Design Rule Checking - mechanical \& olectrical
- Top down modtication from the schematic
- Component renumber with back annolation
- Report generalor - Database ASCII, BOM
- Thermal power plane support with full DRC

BoardRouter - Gridless autorouter

- Simultaneous multi-layer routing
- SMD and analogue support
- Full interrupt, resume, pan and zoom while routing

Output drivers - Included as standard

- Printers - 9 \& 24 pin Dot matrix, HPLaseriet and PostScript
- Penplotters - HP, Graphtec, Roland \& Houston
- Photopiotters - All Gerber 3X00 and 4X00
- Excellion NC Drill / Annotated drill drawings (BM2)

Contact Tsien for further information on
Tel 01354695959
Fax 01354695957

tsien

Tsien (UK) Lid Aytisby House Werny Rond Chatteris Cambridge PETE 6 U
EPI) (ARI)

Interactive SPICE

Stop Waiting for your simulation results! Experience the power and Immediate Satisfaction of IsSPICE4!

ICAP/4, The Virtual Circuit Design Lab, is a completely Integrated system with schematic entry, the IsSpICE4 native analog and mixed mode simulator, extensive SPICE model llbraries and powerful graphics post-processing.

- Analyse and Simulate all types of designs with IsSpice4, the First and Only Interactive Native Mixed Mode SPICE 3 Simulator
System, Board, and IC level
- Analog, Digital, Sampled-Data, Mixed Mode, Behavioural elements
- Power, ASIC, RF, Mechanical, Physical, Thermal applications AC, DC, Transient, Distortion, Temperature, Monte Carlo, Noise, Sensitivity, Optimisation, and Fourier analyses
Works with all popular schematic entry systems!
Graphically Driven and Easy To Use
- Support \& Service - FREE, EXPERT, UK BASED AFTER SALE SUPPORT, Web \& CompuServe Forums
- Affordable, Prices from $£ 450$ to $£ 2,300$

Technology Sources Ltd
Falmouth Avenue, NEWMARKET
CB8 OLZ, UNITED KINGDOM
Tel. 01638-561460
Fax 01638-561721
E-mail: aaj74@dial.pipex.com

Ask us for a FREE Working SPICE Simulation Kit!

Specialist in Parts - Broad in Ocitlook

The 1996 Cirkit Catalogue includes components from these and many other leading manufacturers:

AlliedSignal

ADVANCED
 CooperTools

 muRata NEC Capacitors N®OHmi Richco RETOKO

(IRCIF
(). IIN-(OX REPI) (:ARI)

M \& B RADIO (LEEDS)

THE NORTH'S LEADING USED TESTEQUIPMENT DEALER

ALL PRICES PLUS VAT AND CARRIAGE ALL EQUIPMENT SUPPLIED WITH 30 DAYS WARRANTY
86 Bishopgate Street, Leeds LSI 4BB
Tel: (OI I 3) 2435649 Fax: (0 I | 3) 242688 I

mum, and so on, there remains one further means of improving noise performance. This is to reduce the impedance of the circuitry.
The resistances are lowered in value, with capacitances scaled up to suit, by a factor that is limited only by op-amp drive capability. This is another good reason to use the 553412 .
Two examples of this process as applied to the tone stage are given here. In each case the noise improvement is for the stage in isolation, set flat with high frequency set at minimum:
Firstly, in this sort of stage $R_{36.37}$ are conventionally $22 \mathrm{k} \Omega$. This was reduced to $4.7 \mathrm{k} \Omega$, and noise output dropped by 1.3 dB . Secondly, the summation/loss network began with $R_{43,48}$ as $4.7 \mathrm{k} \Omega$, and R_{38} as $5.6 \mathrm{k} \Omega$. Reducing this by a factor of ten to 470Ω and 560Ω respectively reduced output noise by 0.6 dB .
With balance control central and tone cancel pressed, noise output of the tone stage, plus the line/balance buffer before it is -107.2 dBu . This is 22 kHz bandwidth. With tone controls active but set flat, noise output at minimum high frequency is -104.7 dBu , and at maximum is -106.7 dBu .
The final tone stage may look rather a mess of pottage, and be afflicted with more buffers than Clapham Junction. This is unavoidable if control interaction is to be wholly eliminated. Sadly, the practical tone circuit is somewhat more complex than Figs 2, 3 and 4, reflecting one of the disadvantages of low-noise opamps. This is that bipolar input stages mean that the bias currents are non-negligible. They must not be allowed to flow through potentiometers if crackling noises are to be avoided when they are moved.
These bias currents also tend to be reflected in significant output offset voltages, as the source resistances for the two op-amp inputs are not normally the same. All gain-variable circuit stages therefore have their gain reduced to unity at dc. This subject is detailed later.
Figure 7 shows the measured extremes of cut and boost at the frequency extremes. Figure 8 gives the phase-shift at hf while Fig. 9 shows phase-shift at low frequencies. In both cases it is very modest.

Active gain stage

The active gain stage, or AGS, used here as in ${ }^{1}$, is due to Baxandall ${ }^{3}$. Maximum gain is set to +23 dB by the ratio of $R_{52.53}$, to amplify a 150 mV line input to 2 V with a small safety margin.
An active volume-control stage gives the usual advantages of lower noise at gain settings below maximum, and for the Baxandall configuration, excellent channel balance that depends solely on the mechanical alignment of the dual linear potentiometer. All mismatches of its electrical characteristics are cancelled out, and there are no quasi-log dual slopes to induce anxiety.
Note that all the potentiometers are $10 \mathrm{k} \Omega$ linear types and identical, apart from the question of centre-detents, which are desirable only on the balance, treble and bass boost/cut controls.
Compared with ${ }^{1}$, noise has been reduced by an impedance reduction on the gain-definition
network $R_{52,53}$. The limit on this is the ability of buffer $I C_{59}$ to drive R_{52}, which has a virtual earth at its other end. Figure 10 shows the volume control law for different maximum gain settings; only the very top end of the curve alters significantly.
For the rear section of the preamp - ie that shown in Fig. 11a - the noise performance depends on control settings. The table below gives results for hf frequency at minimum, the worst case, Table 2.
The figures for maximum gain may look unimpressive, but remember this is with +23 dB of gain; at normal volume settings the noise output is below -100 dBu . I think this is reasonably quiet.

Output muting and relay control

The preamp includes relay muting on the main outputs. This is to prevent thuds and bangs from upstream parts of the audio system from reaching the power amplifiers and speakers at power-up and power down. Most op-amp circuitry, being dual-rail (ie outputs at 0 V) does not inherently generate enormous thumps, but it cannot be guaranteed to be completely silent. It may produce a very audible turn-on thud, and often objectionable turn-off noise. I recall one design that emitted an unnerving screech of fading protest as the rails subsided...
Electronic muting is desirable, but introduces unacceptable compromises in performance. Relay muting, given careful relay ${ }^{\text {s }}$ selection and control, is virtually foolproof.。 The relay must be normally-open so the output! is passively muted when no power is applied.s. The control system must:

- Delay relay pull-in at power-up, to mute turn-on transients. A delay of at least 1 second before the relay closes.
- Drop out the relays as fast as possible at power-down, to stop the dying moans of the preamp, etc, from being audible.

My preferred technique is a 2 ms or thereabouts power-gone timer, held in reset by the ac on the mains transformer secondary, except for a brief period around the ac zero-crossing, too short to allow the timer to trigger. When the ac disappears, this near-continuous reset is removed, the timer fires, and relay power is removed within 2 ms . This is over long before the reservoir capacitors in the system can discharge, so turn-off transients are authoritatively suppressed.
However, if the mains switch contacts generate an rf burst that is in turn reproduced as a click by the preamplifier, then even this method may not be fast enough to completely mute it.
Fig. 11b shows the practical relay-control circuit. At turn-on, R_{211} slowly charges C_{224} until T_{205} and D_{207} are forward biased, ie when C_{224} voltage exceeds that set up by $R_{214,215 \text {. This is the turn-on delay. Transistor }}$ $T r_{206}$ is then turned on via R_{213}, energising the relays, and $L D_{201}$ is brightly lit through D_{208} and R_{216}. This led is dimly lit via R_{217} as soon as power is applied, but only brightens when

Table 2. Characteristics of the tone-control stage.

	Tone cancel	Tone flat
AGS zero gain	-114.5 dBu	-114.5 dBu
AGS unity gain	-107.4 dBu	-105.3 dBu
AGS fully up	-90.2 dBu	-86.4 dBu

Fig. 8. Tone control phase curve for maximum treble boost. Maximum phase-shift is 29° at about 4 kHz . PSpice simulation.

Fig. 9. Tone control phase curve for maximum
bass boost. Maximum phase-shift is 31° at 40 Hz .

Fig. 10. Plot of the Active Gain Stage volume control law. Varying the maximum gain has little effect except at the top end; the middle curve is the one used in the preamp.

AUDIO DESIGN

the initial mute period is over.
As long as mains power is applied, $T r_{203}$ is kept turned on through $D_{205.206}$ by the ac ahead of the bridge rectifier, except during the zero-crossing period every 10 ms , when the voltage is too low for Tr_{203} base to conduct. When $T r_{203}$ switches off, C_{223} starts to charge through R_{208}, but is quickly discharged through R_{207} when the very brief zero-crossing period ends. If it does not end - in other words mains power has been switched off C_{223} keeps charging until $T r_{204}$ turns on, discharging C_{224} rapidly via R_{210}, and removing power from the relays almost instantly.

DC blocking and additional details

The preamp circuitry has been described as each stage was dealt with, so this section is confined to dc blocking problems and other odd subjects.
The complete circuit of the line section of the preamp is Fig. 11a. Bias current is kept out of balance potentiometer $V R_{1}$ by C_{27}, and dc gain held to unity by C_{28}. Capacitors C_{31} and C_{35} keep bias currents out of $V R_{2,4}$, necessitating bias resistors R_{40}, R_{44}.

The treble frequency law is corrected by bootstrapping through C_{33}, which keeps the bias current of $I C_{7 \text { a }}$ out of $V R_{5}$. Similarly, C_{34} prevents any offset on $I C_{7 \mathrm{a}}$ output reaching $V R_{5}$. In the bass path C_{36} keeps $I C_{8 \mathrm{~b}}$ bias out of $V R_{3}$, while return-to-flat components $C_{38,39}$ and R_{47} provide inherent dc-blocking.
Final offsets at the side-chain output are blocked by C_{40}, while $I C_{7 \mathrm{~b}}$ bias is blocked by C_{30}. This is essential to prevent the tone-cancel switch clicking due to dc potentials. Bear in mind that this switch may still appear to click if it switches in or out a large amount of response-modification of a non-zero signal. This is because the abrupt gain-change generates a step in the waveform that is heard as a click. This is unavoidable with hard audio switching.
Capacitor C_{41} keeps $I C_{7 \mathrm{~b}}$ output offset from volume control $V R_{6}$, while C_{42} blocks $I C_{5 \text { a }}$ bias current from the pot wiper. Capacitor C_{44} gives final dc blocking to protect the following power amplifier.
Many components in this design are the same value; for example, wherever a sizable non-electrolytic is required, 470 nF could usually be made to work. This philosophy has to be abandoned in areas where critical parameters are set, such as the RIAA network and tone control stage.

Supplying power

This is a conventional power supply using IC regulators. I strongly recommend that you use a toroidal mains transformer to minimise the ac magnetic field.
Supply rails have been increased from $\pm 15 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ to maximise headroom. Nonetheless, 15 V regulators are specified as they are easy to obtain. Their output increased to 18 V by means of $R_{201,203}, \operatorname{Tr}_{201}$ and $R_{202,204}, \operatorname{Tr}_{202}$.

It is common to use a potential divider to 'stand-off' the regulator by a fixed proportion of the output voltage. In the improved version

here, positive divider $R_{201,203}$ is buffered by emitter-follower Q_{201}. Thus $R_{201,203}$ can be higher in value - saving power - while $T r_{201}$ absorbs the ill-defined quiescent current from the regulator COM pin.

Choosing the right op-amps

Exotic and expensive op-amps will probably give a disappointing noise performance. The bipolar input of the 5534/32 is well matched to the medium-low impedances used in this preamplifier. For example, an $O P-27$ might be expected to be quieter in the moving-magnet cartridge stage; but when measured, or calculated, it is 2 dB noisier.

The performance

Figure 12 shows the thd of the flat movingcoil cartridge stage alone, at maximum gain. The rise at extreme If is due to the integrator time-constant. Figures $13 \& 14$ give the thd of the moving-magnet cartridge disc input and the entire rear section respectively. Levels involved are ten times those found in real use. Distortion is not a problem here.
Crosstalk performance attained depends very much on physical layout. Capacitive crosstalk can be minimised by spacing components well apart, or by simple screening.

Resistive crosstalk depends on the thickness of the various ground paths.
It would be desirable to specify a grounding topology for optimal results, but this is not so easy. I found that the more tightly the various grounds are tied together with heavy conductors, the better the crosstalk performance. There seemed little scope for subtlety.
As with noise performance, the results depend somewhat on control settings, but under most conditions the prototype gave about -100 dB flat across $20 \mathrm{~Hz}-20 \mathrm{kHz}$, with noise contributing to the reading. This was not hard to achieve.

The preamplifier in perspective

In determining what (if anything) has been achieved by this design, we must see if it is capable of any further improvement.

- The moving-magnet stage input noise performance is limited by the electrical characteristics of the cartridge and its loading needs. - Making the RIAA any more accurate will be expensive.
- Increasing disc input headroom would require the use of higher supply rails, demanding discrete amplifier stages.

Fig. 11b. Circuit of power-supply and

Fig. 12. THD of the moving coil stage alone, at $2.2 \mathrm{~V}_{\text {rms }}$ output. Measurement bandwidth 30 kHz .

Fig. 13. THD of disc input stage in moving magnet mode, at $8 \mathrm{~V}_{\text {rms }}$ output. Bandwidth $22-22 \mathrm{kHz}$ upper trace and $400-22 \mathrm{kHz}$ lower trace, which gives a more valid result as magnetic hum is excluded. Distortion is very low, but rises at hf due to increasing loading.

Having gone to some effort to make the preamplifier as noise-free and transparent as possible, we should ask how it compares with other parts of the system. The standard Blameless Class B power amplifier ${ }^{4}$ output noise is -93.5 dBu , and the Trimodal ${ }^{5}$ with the low-impedance feedback network reduces this to -95.4 dBu . In both cases the source impedance is 50Ω.

Both amplifiers have a closed-loop gain of +27.2 dB , and so the equivalent input noise (EIN) is -120.7 dBu and -122.6 dBu respectively. This can be compared with the source-resistance Johnson noise of 50Ω, which is -135.2 dBu . The best power-amp noise figure is therefore 12.6 dB , which is some way short of perfection.

In contrast, the noise output from the preamplifier is never less than -114.5 dBu with the volume control at zero. Even in this rather useless condition, the preamplifier increases the total noise output, as it produces 8 dB more than the Trimodal power amplifier input noise. At mid-volume (in-line mode) the preamplifier noise is -105.3 dBu , which is 17 dB worse than the power-amp; clearly as far as preamp design is concerned, history has not yet ended.
Even so, serious thought has been given to whether this may be the quietest preamp yet built. Comments and opinions on this are invited.

References

1. D. Self, 'A Precision Preamplifier', Wireless World, Oct 1983, p31 2. D. Self, 'Ultra-Low-Noise Amplifiers and Granularity Distortion', Journ AES, Nov 1987 pp907-915
2. P. Baxandall, 'Audio Gain Controls', Wireless World, Nov 1980, pp 79-81.
3. D. Self, 'Distortion in Power Amplifiers: Part 2', Electronics World, Sept 1993, p736.
4. D. Self, 'Trimodal Audio Power', Electronics World, June 1995, p462.

C. Bateman Engineering

EMC/RFI Filter Simulator uses 'Real-Time' Components.
Dedicated EMC Filter Simulation Software for 'Windows'(®) offers simplest possible 'Net-List' generation and correction for Capacitor-Inductor 'Frequency Dependant' parameters.

All Filter Schematics are Pre-drawn, including Capacitor or Inductor parasitic elements, together with 'Startup' 'Default values. Simply 'overtype' the 'Defaults' with required values and click on 'Simulate' Button for instant, realistic, results.

Automatically displays on screen: - 'Return - Loss', 'Group Delay', and 'Insertion - Loss',- no user configuration needed.

This new and unique Simulator uses 'Real-Time' modelling of components by calculating the 'Frequency Dependant' change of value and loss factor for Capacitors and Inductors.

Unique features of the 'EMC Filter' software:-

- Automatic 'Net-List' Generation - No Learning curve.
- Filter Schematics pre-drawn - with Parasitics and 'Defaults'
- Overtype 'Defaults' with values desired for simulation.
- Choice of 'Capacitor' and 'Inductor' materials defines losses
- Select 'Worst Case' or desired 'Source-Load' impedance.
- Automatic 'Return - Loss' plot - Filter/source interaction.
- Automatic 'Group - Delay' plot - Filter/signal interaction.
- Automatic 'Insertion-Loss' plot - Filter/EMC attenuation.

Price:- $£ 100$ inc. for the full package with manuals (Software and Filter), as used for Electronics World May '96 pp 384-388 An 'Evaluation' disk is available for $£ 7$ inc.- refund on purchase Or visit - http://ourworld.compuserve.com/homepages/cyrilh

[^3]
High-quality circuit boards for Douglas Self's precision preamplifier '96

A high quality doublesided circuit board is available for Doug Self's precision preamplifier, exclusively via Electronics World. The board takes the full stereo preamplifier, including all power supply components except the transformer. Its layout is optimised to provide exceptionally low crosstalk.
Co-designed by Gareth Connor, the board is glass-fibre with plat-ed-through holes and roller-tinned. It features solder masking and full component identification. Component lists and assembly notes containing extra iifurmation about the preamplifier - are supplied with each order

Each board is $£ 59$ inclusive of package, VAT and recorded postage. Please include a cheque or postal order with your request, payable to Reed Business Publishing. Alternatively, send your credit card details - i.e. card type, number and expiry date Include the delivery address in the order, which in the case of credit card holders must be the address of the card holder. Add a daytime telephone and/or fax number if you have one.

Send your order to Electronics World Editorial, PCBs, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Alternatively fax us on 01816528956 or e-mail a
jackie.lowe@rbp.co.uk. Credit card details can be left on the answering machine on 01816523614 . Please allow 28 days for delivery.

Features of Douglas Self's precision preamplifier

- Very low noise and distortion.
- Moving-coil - sensitivity switchable 0.1 or 0.5 mV , $\pm 0.05 \mathrm{~dB}$ RIAA accuracy.
- Moving-magnet input with $\pm 0.05 \mathrm{~dB}$ RIAA accuracy, 5 V rms sensitivity.
- Three 150 mV line inputs.
- One dedicated compact-disc input.
- Tape-monitor switch.
- Active-balance control.
- Tone control - switch defeatable - with $\pm 10 \mathrm{~dB}$ range.
- Tone control treble and bass frequencies variable over 10:1 range.
- Active volume control for optimal noise/headroom and enhanced interchannel matching
- Intelligent relay muting on outputs.
- CD input sensitivityIV rms

and that's just

FEATURES

- $96 / 32$ bit 68307 CPU for fast operation
- Up to 1 Mbyte of EPROM space onboard
- Up to 512 Kbyte SRAM space onboard
- 32 Kbyte SRAM fitted as standard
- RS232 serial with RS485 option
- MODBUS \& other protocols supported
- Up to 22 digital $/ \mathrm{O}$ channels
- 2 timer/counter/match registers
- I'C port or Mbus \& Watch dog facilities
- Large Proto-typing area for user circuits
- Up to 5 chip selects available
- Program in C. C++, Modula-2 \& Assembler
- Real Time multitasking Operating System
- oss or MINOS with free run time license option
- Manufacturing available even in low

A full ran
A full range of other Conuollers available
P.C. 'C' STARTER PACK AT ONLY £295 + VAT The Micro Module will reduce development time for quick turnaround products/projects and with the P.C. 'C' Starter pack allow you to start coding your application immediately, all drivers and libraries are supplied as standard along with MINOS the real time operating system all ready to run from power on.
The ' C ' Starter pack includes: A Micro Module with 128 Kbyte SRAM, PSU, Cables, Manuals, C compiler, Debug monitor ROM, Terminal program, Downloader, a single copy of MINOS. Extensive example software, and free nlimited technical support all for $\mathbf{£ 2 9 5 + V A T}$

Cambridge Micropracesso Systems Limited

TRANSFORMERS FOR BALANCED LINES IN HIGH PERFORMANCE AUDIO SYSTEMS

3 3
 $S_{\text {TRANSROMERS }}$ OWTER
 E A Sowter Ltd
 PO Box 36 IPSWICH IP1 2EL ENGLAND Tel: +44(1)1473 252794 Fax: +44(1)1473 236188 E-Mail: sowter@tcp.co.uk

Design and Manufacture of all types of Audio Transformer using Nickel and Grain Oriented cores

Free catalogue Free technical support service Popular types from stock

CIRCIE NO. 1+9 ON REPIYCARD

PCB Designer

For Windows 3.1, '95 or NT
 Emplication development. Supplied complete with Editor. Compiler. Assembler. Linker. the Dehuger with a single keypress - or back in the editur att just the right place. Gencrate ROMable Code direct. no struggling with EXE conversions or messing around with reset eode. Just $\mathbf{£ 5 9 5}$

For further information

Call now - 01379644285 - Fax 650482
Pleasc ask for our calaloguc
Devantech Lid - 2B/2C Gilray Road - Diss - Norfolk - IP22 3EU

Also available from
South Africa: JANCA Enterprises, PO Box 32131, 9317
Fichardtpark at R299,00. Phone/FAX: (051) 223744
France: Telindel, Quartier Les Pradets, Chemin des Veys, 83390 Cuers. Phone: 94286667

CLASSIFIED

> WE WANT TO BUY!!
> IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT. R. HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8JG. 5 Mins, from Tally Ho Corner. TELEPHONE 0181-445-2713/0749 FAX 0181-445-5702

$t+$ WANTED $t+$

Test equipment, Electronic Scrap, Valves, Transmitters/Receivers, Factory \& Warehouse Clearance. Confidentiality Assured.
TELFORD ELECTRONICS Phone: 01952605451 Fax: 01952677978

TOP PRICES PAID

For all your valves, tubes, semi conductors and IC's.
Langrex Supplies Limited 1 Mayo Road, Croydon Surrey CRO 2ap
TEL: 0181-6841166
FAX: 0181-684 3056

WANTED

TOP PRICES PAID
For all your Test Equipment, Receivers, Transmitters etc Factory Clearance, Prompt Service and Payment.

HTB ELEKTRONIK

Alter Apeler Weg 5
27619 Schiffdorf, Germany Tel: 004947067044 Fax: 004947067049

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash M \& B RADIO 86 Bishopgate Street Leeds LS1 4BB Tel: 01132435649 Fax: 01132426881

ELECTRONICS

 VALVES \& SEMICONDUCTORSPhone for a most courteous quotation

We are one of the largest stockists of valves etc, in the U.K.

COLOMOR ELECTRONICS LTD

 170 Goldhawk Road, London W12 8HJ England.Tel: 01817430899
Fax: 01817493934

VALVES, and CRTs AVAILABLE

ONE MILLION VALVES stocked for Audio, Receiving, Transmitting \& RF Heating. Rare brands such as Mullard \& GEC available. Also MAGNETRONS, KLYSTRONS, CRTs and SOCKETS. Large stocks of Russian 8 Sovtek items.
Please ask for our free catalogues of valves or CRTs.

VALVES, etc. WANTED

Most types considered but especially KT88 (£48), PX4/PX25 (£50), KT66 (£35), KT77 (£15), EL34 (£10), EL37 (£9), ECC83 (£3) Valves must be UK manufacture to achieve prices mentioned. Also various valve-era equipment e.g. Garrard 301 , (up to) $£ 80$. Ask for a free copy of our wanted List.

BILLINGTON EXPORT LTD., Billingshurst, Sussex RH14 9EZ.
Tel: 01403784961 Fax: 01403783519
VISITORS STRICTLY BY APPOINTMENT.
MINIMUM ORDER $£ 50$ plus VAT

! TEST EQUIPMENT WANTED !

SMALL OR LARGE QTY, WORKING OR NON WORKING WE PAY THE BEST PRICES FOR YOUR EXCESS INVENTORY FAX YOUR INVENTORY LIST TODAY FOR AN INSTANT QUOTE PROMPT PAYMENT AND FAST SERVICE ARE OUR CORPORATE POLICY LOTHAR BAIER ELECTRONIC TEST EQUIPMENT, MICROWAVE TECHNOLOGY BLUMENSTRASSE 8 D. 95213 MUENCHBERG/GERMANY PHONE: +49925192163 FAX: +4992517846

ARIICLES FOR SALE

MEMORY SIMMS 250× 27.50 zach Min OHy $4=\mathrm{E} 10512 \mathrm{~K} \mathrm{ES} .00$ each Min OH $2-\mathrm{E} 10$ 14BE 14.00 erth	
DRAM MY530756LS.10 TWS4256.10L, MBP1256-10 MOMO256-10, M41266A-10 51.00 each Hin Ony 10	
FLOPPIES	EPROMS
	${ }^{1488-52.00} \quad 51.2 \times-51.25$
123525.520	256\%-5100 $1283-50.75$
77035 3512	${ }^{644}$-50.50
	ols filmats, Cris PC Powe S
$100-5093$	lord Dives - E75.00
17 Colow	,omitor - from 1175
	Wenitas - 110.00
	S. -SEE ANO TESTE
	harge £
Tel: 01923213350 Fax: 01923211650	

EW + WW PC TELETEXT Aug 1994
 PCB, EPROM \& DISC with

Terminal Software and Partslist,
£12 to clear! LM1414 £2.50 SN74121 50p P\&P Inc Citifax Ltd 9 Goose Cote Hill Bolton BL7 9UQ Tel/Fax + 441204417210

MARCONI 2022A signal generator for sale $£ 2,000$. Phone: 0956575672 . Fax 01813165627
Tel: 01923213350 Fax: 01923211650
All items exclude vat @ 17.5% CREDIT CARDS WELCOME

Consider

Your costs to continue to stock
UNW ANTED SURPLUS . . . EXCESS
OBSOLETE STOCKS OF:-
ELECTRONIC-ELECTRICAL COMPONENTS \& ACCESSORIES
RELEASE
for
PAYMENT IN ADVANCE
OF COLLECTION
contact
K.B. Components,

21 Playle Chase, Gt. Totham, Maldon, Essex, CM9 8UT
Tel:-01621893204 Fax:- 01621893180 Mobile:- 0802392745
REGISTER TO RECEIVE MONTHLY PUBLISHED STOCK LISTS AT NO CHARGE OF ALL EXISTING NEW, UNUSED, STOCKS OF ALL COMPONENTS AND ACCESSORIES.

CLASSIFIED

ARTICLES FOR SALE

INDEX TO ADVERTISERS

	PAGE		PAGE		PAGE
Adept	671	Equinox	649	Olson	IBC
Anchor	637	Field	622	Quickroute	634
Bamber	684	Halcyon	661	Robinson Marshall	656
Bateman	716	Hart	668	Seetrax	667
Bull	$702+707$	Hitex	682	Sowter	717
Chelmer	688	ICE	657	Stag	688
Cirkit	634	Jenving	690	Stewart	712
CML	640	John's	686	Surrey	661
CMS	717	JPG	712	Technology Sources	711
Conford	662	Kanda	639	Telford	661
Crownhill	680	Kenwood	688	Telnet	667
Danmere	689	Labcenter	674	Those	690
Dataman	OBC	M\& B	712	Tie Pie	639
Devantech	717	Milford	IFC	Tsien	711
Display	699	Niche	717	Ultimate	658
Electromail	695	Number One	662	Wood \& Douglas	682

- 36 Eastcote Lane - South Harrow - Middx HA2 8DB • England • TEL $(+44)$ 0181-422 $3593=F A X(+44)$ 0181-423 4009

HP3560A 5 Hz -50kHz audio trequency spectrum
analyser
HP8568B high-specification 1.5 GHz spectrum
anayser
MARCON $2386100 \mathrm{~Hz}-26.5 \mathrm{GHz}$ (in 1 Hz steps!) AVCOM - portable, battery operated, to 1000 MHz TEKTRONIX 49221 GHz ~ortable spectum torage and 122 G 2 phab enecru analyer, win options 2 (dig TEK7623ATLB .
MARCONIINSTRUMENTS

DISTRIBUZIONE E ASSISTENZA, ITALY: TLC RADIO, ROMA (06) 87190254

1640 B serial data generator 3561A dynamics signal analyser (opt 01 3764A digital transmission analyse 3335A synthes izerilevel generato 3400 A voltmeter, analogue $10 \mathrm{~Hz}-10 \mathrm{MHz}$ 3235A switch/test unit
3324A synthesized function generator 3325 A synthesizerfunction generator, 21 MHz 3580A audio frequency spectrum analyser 3581 C selective voltmeter
37790 primary multiplex analyser 4140B pAmeter, DC voltage source 4339A high resistance meter c / w lead set 16117 B 4275A multi-frequency lcr meter
435 B microwave power meter, analogue 5386 A 3 GHz frequency counter 54100 A 1GHz digitizing oscilloscope 8007 B pulse generator 100 MHz 8018A senal data generator 8082 A pulse generator 250 MHz 8111A pulse generator 20 MHz 816A slotted line $1.8-18 \mathrm{GHz}$ with 809 C \& 4478 probe 3444 A tracking generator with option 059 8656 B synthesized signal generator to 990 MHz 87510 A gan-phase analyser $100 \mathrm{KHz}-300 \mathrm{MHz}$ 8901A modulation analyser with option 02/010 J2215A FDOI portable multimode test set J2219A 486-based, colour option main-frame J2219AJ2171A 486-based colour screen option network advisor

SEND FOR LATEST STOCK LIST. WE FAX LISTS AND SHIP WORLDWIDE. ALL FULLY LAB-TESTED AND NO-QUIBELE GUARANTEED

ELECTRONIC UPDATE

Contact Malcolm Wells on 0181-652 3620

A regular advertising feature enabling
readers to obtain more information
on companies' products or services.

NEW Feedback T\&M Catalogue

The latest edition of the Feedback Test \& Measurement cata logue is now available. Over 60 pages packed with more than 800 products divided into over 20 sections. The catalogue is indexed for both product and manufacturer and is fully illustrated. Whether you are looking for an individual product, a com plete workstation, or a solution to a particular Test \& Measurement need the NEW Feedback catalogue will sove your prob lems, send for a copy NOW!

FREE DEMO DISK

The LabWindows/CVI Demo Disk is a free evaluation copy of LabWindows/CVI You can follow instructions to build Windows applications using GPIB, VX1 Serial, and plug-in DAQ instrumentation. The guide illustrates code-generation techniques, GUl development tools, event-driven programming techniques, instrument drivers, debugglng and editing tools
NATIONAL INSTRUMENTS For your Free Demo Disk call, 01635523545

CIRCLE NO. 156 ON REPLY CARD

NEW JENSEN TOOLS CATALOGUE
Colourful new Catalogue, hot off the press from Jensen Tools, presents unique new tool kits for service/support o
communications equipment. Also latest test equipment from many major manufacturers. Includes hard-to-find tools, PC/LAN diagnostics, bench acccessories, static control, technical manuals and more
Ring 0800833246 or Fax 01604785573 for a free copy Jensen Tools, 10-12 Ravens Way Northampton NN3 9UD CIRCLE NO. 158 ON REPL Y CARD

For all your Power Distribution Olson offer a varied choice

$$
4
$$

The World's Most Powerful, Portable Programmers

 other programmer and you'll see why it's the world's undisputed number one.

54 is capable of programming 8 and 16 -bit EPROMs, EEPROMs, PEROMs, 5 and 12V FLASH, Boot-Block FLASH, PICs, 8751 Microcontrollers and more. 54 also emulates ROM and RAM as standard!

S4 is the only truly hand held programmer that ships complete with all emulation leads, organiser-style manual, AC charger, spare library ROM, both DOS and Windows terminal software, and arrives fully charged and ready to go! Who else offers you all this plus a three year guarantee?

Customer support is second to none. The very latest programming library is always available free on the Internet, and on our dedicated bulletin boards. Customers NEVER pay for upgrades or technical support. anywhere! to keep paying just to keep

S4 GAL module

Programs a wide range of 20 and 24 pin logic devices from the major GAL vendors. Supports JEDEC files from all popular logic compilers.

The Dataman Challenge

 Try the Dataman 54 or Datäman-48 without obligation for 30 days. If you do not agree that these are the most effective, most useful, mosi versatile additions you can make to your programming toolbox, we will refund your money in full.
Dataman-48

Our new Dataman-48 programmer adds PinSmart® technology to provide true no-adaptor programming right up to 48 -pin DIL devices. Dataman- 48 connects straight to your PC's parallel port and works great with laptops. Coming complete with an integral world standard PSU, you can take this one-stop programming solution

As with 54 , you get free software upgrades and technical support for life, so now you don't need programming.

The current device library contains over 1800 of the most popular logic and memory devices including GALS, PALS, CEPALS, RALs, 8 and 16bit EPROMs, EEPROMs, PEROMs, FLASH, BOOTBLOCK, BIPOLAR, MACH, FPGAs, PICs and many other Microcontrollers. We even include a 44 pin universal PLCC adaptor.

If you need to program different packaging styles, we stock adaptors for SOP, TSOP, QFP and SDIP. The Dataman-48 is also capable of emulation when used with memory emulation pods.

Order your Dataman programming solution today via our credit card hotline and receive it tomorrow. For more detailed information on these and other market leading programming products, call now and request your free copy of our new colour brochure. CIRCIE NO. 104 ON REPLY CARD

[^0]: AN ExTENSIVE RANGE OF TEST EQUIPMENTIS AVAILABLE. PLEASE SEND FOR OUR NEW CATALOGUE - Postoge ond packing must be odded. Plesse phone for frice VAT @ $171 / 4 \%$ to be odded to oll orders. Pieose send lorge SAE for details.
 Telford Electronics, Old Officers Mess, Hoo Farm, Humbers Lane, Horton, Telford TF6 6DJ Tel: 01952605451 Fax: 01952677978

[^1]: USA:

[^2]: * Valve preamplifiers, Morgan Jones, March and April issues.

[^3]: C. Bateman. Design Consultant. Tel. 01493-750114 'Nimrod', New Road, ACLE, Norfolk. NR13 3BD. crrilb@ibm.net

 7625l,2535@Compuserve

