Oscilloscope probes: fast and active designs

The ultimate mic preamp

Designing EMI filters

inside smart batteries

Making use of the Net

Thermal dynamics in audio power

History: Circuit reflections
ULTIboard’s interactive strength has always been the major selection criterion of professional Printed Circuit Board designers. Now that every ULTIboard Designer system will be supplied with a SPECCTRA SP4 Autorouter, ULTIboard designers now get the best of both worlds. All ULTIboard Designer Users with valid update subscription got a MAINTENANCE UPGRADE with the SPECCTRA SP4 (4 signal layers + power/ground layers) Shape based Autorouter. This shows that ULTImate Technology is the PCB-Design Tool vendor that really cares for their customers!

THE ULTIMATE SPECIAL OFFER
ULTIboard Entry Designer* £ 1295 (excl. VAT) will now be supplied with SPECCTRA Shape Based Autorouter *free Upgrade with EMC-EXPERT mid 1996 (list price at release £ 1875)
366 PROBES GO ACTIVE
Once, fast, precise active oscilloscope probes were expensive but with the high-performance op-amps emerging, it is possible to design and build a probe easily and at very low cost, as Ian Hickman explains.

374 SMART BATTERIES
Geoff Lewis explains how using intelligent control is solving many of the traditional battery recharging problems.

378 SPEAKER FEEDBACK
Ian Hegglun discusses tailoring feedback to get the best out of moving-coil loudspeakers.

384 UNDERSTANDING EMI FILTERS
Cyril Bateman exposes the peculiarities of electromagnetic interference filters and shows how to use them properly.

389 LOAD PROTECTION
Frantisek Michele illustrates the benefits of protecting sensitive loads from power anomalies by combining series inductors with parallel voltage clamps and absorbers.

392 DESIGNING AN SSB OUTPHASER
In Part 2 of David Gibson’s analysis, he investigates the effects of component tolerances on outphaser performance.

397 LEARN 8048
Jim Whitehouse examines a hard and software training kit designed to help teach how 8048 family controllers work.

410 THERMAL DYNAMICS OF POWER AMPLIFIERS
Douglas Self looks at how thermal properties affect performance in two common audio power configurations.

416 HANDS-ON INTERNET
Cyril Bateman shows how to get the most from the World Wide Web.

420 HIGH-PERFORMANCE MIC PREAMPLIFIER
Having followed microphone preamplifier designs for the past 15 years, Simon Bateson thinks he’s come up with the best.

432 CIRCUIT REFLECTIONS
Gems and oddities from early reference works — including the Admiralty Handbook — explored by Ian Hickman.

355 COMMENT
What a tangled web we weave...

356 NEWS
Bit-tax for Internet, New phone aerial, Electronic paper, Insect robots, Cable shielding debate, Thin film carbon transistors, Pressure sensors for car tyres.

361 RESEARCH NOTES
Transparent leds, Galaxy baby photos, Stair climbing wheelchair.

402 CIRCUIT IDEAS
Earth scissors, Reduce power supply ripple, Audio spectrum analyser, Simplest I²C interface?, Microprocessor supervisor

423 NEW PRODUCTS
Pick of the month — classified for convenience.

428 LETTERS
Valve preamps, MSF slow code, Power lines and cancer, Magnetism mystery.

FREE to EW readers: ultra-fast buffer
Maxim is offering a free high-performance buffer IC to the first 1000 EW readers sending in the reply card, page 372.

Over 20% reader discount
This feedback temperature-controlled soldering station is being offered to EW readers at a special discount price of just £55 — fully inclusive — page 373.

JUNE ISSUE ON SALE MAY 31
**System Components from ISO9001 Source**

Half Size Single Board Computers
386SX-40 to 486 Pentium Overdrive with ISA and PC/104 Bus
2 Serial Ports, IDE & FDD & Printer Port
with a variety of on-board functionalities:
- Flash/ROM Disc, Cache, SVGA CRT/Flat Panel Controller
- 2 Serial Ports, IDE & FDD & Printer Port
- with a variety of on-board functionalities:
  - Flash/ROM Disc, Cache, SVGA CRT/Flat Panel Controller
- PC/104 Modules:
  - 386 & 486 CPUs, Solid State Disc, Isolated RS232/485
  - VGA CRT/Flat Panel Display & SVGA Controllers
- PCMCIA types I, II & III
- System Enclosures with Passive Backplanes
- Colour & Mono Flat Panel LCD Displays

**System Integration and Support**

CIRCLE NO. 106 ON REPLY CARD

---

**Integrated PCB & Schematic Design System for Windows™**

Quickroute 3.5 is a powerful, affordable and easy to use integrated schematic & PCB design system for Windows. With its multiple button bars, 'tool hints' and 'parts bin', Quickroute helps you to design quickly and efficiently.

There are four different versions of Quickroute giving you a choice of features & price. Quickroute is available with multi-sheet schematic capture, auto-routing, 'engineering change' (modification of a PCB from a schematic), copper fill, and a range of file import/export options. See the table for a selection of features.

Prices are Designer (£149), PRO (£249) and PRO+ (£399). The Personal edition is available for just £68, but has the manual provided on disk as on-line help. Post & Packing is £5 (UK), £8 (EC), £12 (World). VAT must be added to the total price.

"...of all the products included here, this is my personal favourite... Really, thats all I have to say about Quickroute - it certainly gets my vote!" - Review of Q3 3.0 & other products, Computer Shopper Nov '96

Tel/Fax 0161 449 7101
Quickroute Systems Ltd., 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, U.K.
email info@quickroute.demon.co.uk

Prices and specifications subject to change without notice. All trade marks are acknowledged & respected.

---

**Embedded C Assembly Simulation**

8051

C compiler, first released in 1981, now features:
- Easy to use interrupt support with register bank switching
- IEEE floating point arithmetic
- IEEE 695 source level debug output
- Integrated relocatable assembler

Simulator running under Microsoft Windows provides extensive support for the 8051 code development.

86000

Our first C compiler/assembler package
- now supports floating point arithmetic
- has been widely adopted by many OEMs to support their 86000 and 68307 hardware

CPU32

68020 C compiler/assembler, originally developed to accompany Motorola's 68020 and 68EG020 evaluation models
- Now supports the GPL.J32 68881 co-processor support
- IEEE 695 source level debug output

Further information from:
CROSSWARE PRODUCTS
St John's Innovation Centre, Cowley Road, Cambridge, CB4 4WS, UK
Tel: +44 (0) 1223 421263, Fax: +44 (0) 1223 421207, Internet: sales@crossware.com

CIRCLE NO. 107 ON REPLY CARD

---

**Integrated PCB & Schematic Design System for Windows™**

Quickroute 3.5 is a powerful, affordable and easy to use integrated schematic & PCB design system for Windows, with its multiple button bars, 'tool hints' and 'parts bin'. Quickroute helps you to design quickly and efficiently.

There are four different versions of Quickroute giving you a choice of features & price. Quickroute is available with multi-sheet schematic capture, auto-routing, 'engineering change' (modification of a PCB from a schematic), copper fill, and a range of file import/export options. See the table for a selection of features.

Prices are Designer (£149), PRO (£249) and PRO+ (£399). The Personal edition is available for just £68, but has the manual provided on disk as on-line help. Post & Packing is £5 (UK), £8 (EC), £12 (World). VAT must be added to the total price.

"...of all the products included here, this is my personal favourite... Really, thats all I have to say about Quickroute - it certainly gets my vote!" - Review of Q3 3.0 & other products, Computer Shopper Nov '96

Tel/Fax 0161 449 7101
Quickroute Systems Ltd., 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, U.K.
email info@quickroute.demon.co.uk

Prices and specifications subject to change without notice. All trade marks are acknowledged & respected.

---
What a tangled web we weave...

Last year was the year of the Internet – the year browser specialist Netscape was valued at a couple of billion dollars; when the number of Internet users supposedly topped forty million; when companies overdosed on having 'Web Sites' and when the idea of the 'Internet Computer' was born. 1995 was also the fiftieth anniversary of the publication of George Orwell's novel 1984'. Remember Winston Smith's 'telescreen'? He couldn't turn it off. He couldn't cover it up. It could see everything Smith was doing even while 'Big Brother' exhorted him to embrace some nonsensical new enthusiasm. There was no escape from the screen's surveillance or its propaganda. It was a nightmare.

Now, fifty years later, the cable and tv companies are gearing us up for 'interactive TV'. We should be so lucky.

Some technology products tend to be personally liberating. Some add to the powers of 'them' – those who would dominate us: governments, companies, cults and the like.

Can a technology box be 'good' or 'bad'? Which is good or bad out of mainframes, minis, televisions, pcs, telephones, faxes, set-top boxes, Internet Computers, personal communicators and PDAs?

Some boxes favour the big battalions. Mainframes and minis are affordable only by organisations. Therefore they are commonly used to replace, monitor, keep records on, or otherwise control, people.

Other boxes, such as pacs and tvs, are personal items, controlled by people for their own pleasure or empowerment.

Is it fanciful to suggest that the pc is a democratising influence spreading power among the many, while the mainframe is an autocratising influence adding to the powers of the few?

In this respect there's something Big Brotherly about the concept of Internet Computing. The idea was proposed last year by Larry Ellison, chairman of the database company Oracle.

Ellison suggested that the future of personal computing is not via the pc but via dumb terminals connected by a telephone line to a mainframe or server which provides the terminal with its processing power, programmes and storage.

It's a concept diametrically opposed to that of the personal computer, with its key attribute of local control – having its own processing power, containing its own programmes and storing its own data. And a pc still works fine whether or not its connected up to anything, or anyone, else.

Of course the access services insist that the Internet is a globally-flung network of distributed computers connected by randomly routed telephone links. But that does not stop it from being controllable. They tap our telephone lines with abandon.

Indeed governments around the world are already making noises about controlling the Internet. Usually they say they are concerned about controlling pornography, though surely only the most dedicated pervert is prepared to sit around waiting for dirty pictures to be downloaded at 28.8 kilobits a second. It's more likely that the pornography issue is being used as an acceptable way to start controlling the Internet. And when that happens how secure can your data be when stored on a remote database?

How much can be found out about you by knowing which programmes you download? Or with whom you exchange e-mail?

Is Internet Computing a better way forward for personal computing than the PC? Or is it an open invitation into our lives addressed to Big Brother?...
EC recommends ‘bit-tax’ on Internet data

A "bit-tax" on information sent over the Internet has been recommended in a report for the European Commission.

The motivation for the report is that insufficient revenue from taxation methods such as VAT is predicted in future as data sent by conventional means diminishes.

Chairman of the EC’s study group, Luc Soete, said: “A larger share of our production and economic activity is focused on information and communication. We must make sure we have a national tax base which includes these activities.”

Soete thinks a bit-tax would eliminate the problem of offshore tax havens - companies based outside the EU do not have to pay VAT.

New mobile phone antenna may reduce brain radiation

Researchers from the University of Stuttgart have designed a mobile phone aerial that could reduce the amount of transmitter energy that is radiated into the user’s head.

A paper by H Ruoss and F Landstorfer in Electronic Letters describes a double-T slot antenna, resonant at 1.8GHz. This has been modelled and is predicted to dissipate only 5.7 percent of output power into the head. With monopole antennas the head absorbs around 30 percent.

In the model, the head is represented by a lossy dielectric sphere and the holding hand by a rectangular solid.

New architecture looks set to slash MPEG encoding costs

LSI Logic has developed an encoding architecture which aims to reduce cost for real time video encoding by a factor of five.

Called Video Instruction Set Computing, or VISC, the architecture is designed to address a range of applications including real time encoding for cable transmission and direct broadcast by satellite and multimedia.

Jean-Luc Driotcourt, marketing director for the consumer segment, Europe said: “Today real time encoding for MPEG-2 costs $100,000. With the VISC devices, this is reduced to $20,000.”

VISC can execute MPEG-1, MPEG-2 for video encoding, DigiCipherII for broadcast quality video and H.261 video conferencing, in pcs, for example, it would not be commercially viable.

“We were able to integrate all the key functions of encoding into only three complex microchips by using LSI Logic’s CoreWare methodology,” said Brian Halla, executive VP of the company’s products group. “This involves combining high-level, pre-tested building blocks together to form highly integrated devices. Each chip in the VISC chipset carries out its own dedicated function to efficiently process video data.”

Each of the three devices in the chipset incorporates a Mips Risc core running at 40Mips. The VxWorks real time operating system is used, with the software written in C or C++.

Manufactured in a 0.5im process, the chips contain two million transistors. LSI is predicting a single chip implementation of the VISC architecture by 1998 using 0.3um technology.

Richard Ball,
HART AUDIO KITS — YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

This fantastic John Linsley Hood designed amplifier is the legacy of our range, and is the ideal product for your ultimate hi-fi system. This kit is your way to get UK performance at bargain basement prices. Unique design features such as July FET stabilised power supplies give this amplifier World Class performance with startling clarity and transparency of sound, allied to the famous HART quality of components and ease of construction. Useful options are a stereo (2x) power meter and a versatile passive front end giving switched inputs, with ALPS precision Blue Velvet volume control and tone controls. Construction is very simple and enjoyable with all the difficult work done for you, even the wiring is pre-assembled ready for instant use. An assembly guide with Standard components or specially selected Super Automotive components at £25.95 extra per channel, plus £10 if you want to include Goldplated speaker terminations.

K1100 AUDIO DESIGN 80 WATT POWER AMPLIFIER.

“Chira” Single Ended Class “A” Headphone Amplifier.

This unit provides a high quality headphone output for “headphone” use or to supplement those music amplifiers that do not have a headphone facility. Easiest installed with special link-through feature the unit draws its power from our new “Andante” model. (High Quality to 100 watt power supply). Mounted in the back, before finished, high minus, 6L6GC amplifier tubes. The wide frequency range, low distortion and reliability that tone qualities with designs from the renowned John Linsley Hood. The patented interstage interwinding leads to an superb sound balance and the board layout gives the best possible performance. The board layout gives the best possible performance. The unit can also be supplemented factory assembled and tested. Selling for less than half the cost of the amplifier, this unit represents incredible value for money and makes an excellent addition to any hi-fi system.

K1000 Complete Kit £109.50
K1000B Complete Kit £101.85

“Clari” Complete Audio Power Amplifier.

K2100 Complete Kit £249.40
K2100B Complete Kit £241.75
K3900 Complete Kit £299.00

ALPS “Blue Velvet” Precision Audio Controls.

New you can throw out those noisy, matched carbon pots and replace with the famous Hart exclusive ALPS “Blue Velvet” range components one for each gold and platinum tone control. The improvement in track accuracy and matching really is incredible giving better tone balance between channels and track level stability. Motivated versions have of DC drive.

MANUAL POTENTIOMETERS
- 2-Gang 10K Linear £3.50
- 2-Gang 10K, 50K or 100K Log £3.50
- 2-Gang 10K Special Balance, zero crosstalk and zero cross talk £3.75

MOTORISED POTENTIOMETERS
- 2-Gang 20K Voltaic Control £4.25
- 2-Gang 10K PD Special Balance, zero crosstalk and less than 10ppm loss in central position £4.50

TECHNICAL BOOKSHELF

NEW! Another Classic by John Linsley Hood: “AUDIO ELECTRONICS” Following the enormous ongoing success of his Art of Linear Electronics the latest offering is the all new edition of Audio Electronics. This new edition is written by himself, maintaining all the techniques and equipment is a world of electronics that determines the quality of sound. Anyone involved in designing, adapting or using digital audio equipment in the electronic age heads to this book. This book is a great source book and will transform the performance over a worn head. Only the fact that it is

“THE ART OF LINEAR ELECTRONICS.”

The definitive linear electronics and audio book by John Linsley Hood. This book will give you an unparalleled insight into the workings of all types of audio circuits. Learn how to read circuit diagrams and understand amplifiers and how they are designed to give the best possible performance. This book is a great source book and will transform the performance over a worn head. It is an all comprehensive line of Hart audio grade silver solder. It can also be supplied factory assembled and tested. Selling for less than half the cost of the amplifier, this unit represents incredible value for money and makes an excellent addition to any hi-fi system.

K2100 Complete Kit £109.50
K2100B Complete Kit £101.85

“Clari” Complete Audio Power Amplifier.

K2100 Complete Kit £249.40
K2100B Complete Kit £241.75
K3900 Complete Kit £299.00

“Andante” SERIES 20W AUDIOPHILE POWER SUPPLIES

Speciality designed for exactly audio use requiring absolute minimum noise, low hum field and total freedom from mechanical vibrations.

“THE LOUDSPEAKER DESIGN COOKBOOK” Vance Dickason

HC80 Replacement Stereo Cassette Head. The excellent performance of modern cassette recorders depends heavily on the quality of the R/P head. Even the smallest amount of wear can impair the frequency response and distortion levels. We have a unique range of quality heads. Ideal for fitting new heads. A professional quality, digitally mastered test tape at a price anyone can afford. Test Cassette TC10. Our price only £9.99.

“The Electronics of the Base Unit” is designed to totally surround the element giving the best head transfer. The excellent design also means that although small and hardly enough for modern components its fitting capacity is better than larger ones of conventional construction.

“SOLDERING”

Hart Super Audio Graded Silver Solder. Hart Super Audio Grade Silver Solder has been specially formulated for the serious audiophile. Not only does it give beautiful easy-to-make solder joints but is designed to be used as normal-soldering technique avoiding the possibility of thermal damage to components or the need for special high temperature iron. A very neat result makes perfect joints but easy to remove the need for board cleaning after assembly.

845-3 3V1402 Solder for reel-to-reel £13.95
845-080 50g Stabilising Iron Stand. This has provision for the classic clamp sponge for bit wiping.

For more information contact the following.

HART AUDIO KITS

43 Hartington Road, Reading, Berks RG1 1NH. Tel: (01624) 652894

QUALITY AUDIO KITS

24 hr. SALES LINE (01624) 652894
ALL PRICES INCLUDE UK/EVAT
All-plastic LCDs are a step nearer

Workers from the UK and Brunei have developed a thin film carbon transistor technology which could make possible the deposition of semiconductors directly onto plastic substrates. The incompatibility between silicon processing and plastic is the biggest obstacle to making all-plastic LCDs. Current silicon semiconductors require processing at around 250°C, minimum. This is too high for plastics which would otherwise make good low cost substrates.

All, but one, of the stages required to produce the new transistor are performed at less than 100°C. Dr Bill Milne, a University of Cambridge based member of the team, said: "Depositing the silicon nitride gate insulator is the only high temperature part of the process, and we are working on that.

The semiconductor used is tetrahedrally bonded amorphous carbon (ta-C). This is a form of carbon that has a high proportion of diamond-like (sp3) bonding and whose conductivity is readily affected by external electric fields. Other groups have suggested that this material type is unsuitable for thin-film transistors. The reasoning is that a more conductive graphite (sp2) bonded layer forms on the surface, excluding the controlling gate field from the channel.

To make it a semiconductor, the carbon is p-doped with boron – the easiest way to dope carbon based devices. Milne said: "It is the first of its kind and it isn’t a great transistor at the moment. We have a lot of different ways to improve it though, including our nitrogen based n-type doping process.

Steve Bush, EW

'Digital paper' for MIT's electronic book

Researchers at the Massachusetts Institute of Technology (MIT) are developing digital paper for use in an electronic book.

Project leader, Dr Joseph Jacobson says the book will have the feel and weight of a few hundred pages-sized hardback, with each page being reconfigurable. Data could be downloaded from a database on the Internet and pages displayed by pressing buttons on the spine.

"We are probably looking at about two years until we have a prototype, but an important point is that every process we are developing is scalable," said Jacobson.

The enabling technology is digital ink particles only 50μm in diameter that are black on one side and white on the other. Similar to toner in laser printers, the particles adhere to a paper-like synthetic surface. When subject to an electronic charge, the particles flip showing either white or black. So far, the researchers have managed to flip particles but have yet to form words.

Twisted pairs – to screen or not?

Cable system suppliers disagree over the relative EMC performance of screened and unscreened twisted pair cabling. The situation is not helped by the lack of independent standards guidelines.

Last month’s meeting of the ISO’s cabling standards committee failed to resolve the situation, which calls into question the EMC suitability of unscreened twisted pair cabling for 100Mbit/s high speed LANs.

“This issue must be sorted out at a standards level, but I am concerned about a tendency to knock unscreened twisted pair at the standards level,” said Arthur Green, marketing manager for Nortel Cable Networks.

Nortel presented to the ISO, the results of tests which it believes demonstrates that category 5 unscreened twisted pair-based LANs can meet the EMC Directive emissions rules – even at 155Mbit/s ATM data rates.

The suitability of unscreened twisted pair for data rates above 100Mbit/s, which put high frequency signals on the cable, has been questioned by European cable system supplier Alcatel Cable Systems. "I am not saying unshielded cat. 5 is a bad product, I sell it, but it has its limits and in terms of EMC which limit is 30MHz," said Gunther Gubbelmans, Alcatel’s business development manager. Alcatel maintains that data rates which put frequencies higher than 30MHz on the unscreened twisted pair could fail the Directive.

The lack of an ISO ruling means that the inevitable conflict between opposing commercial interests makes it difficult for users to obtain an independent assessment of the cabling situation.

Pressure sensors for car tyres

A remote pressure sensing system has been developed by Surrey-based ERA Technology in conjunction with Otter Controls in Derbyshire.

ERA believes the battery powered sensor microsystem has possibilities in remote monitoring applications such as tyre pressures. Both companies are looking for discussions with end-users on potential applications.

The system consists of a capacitive pressure sensor, interface electronics and a radio transmitter, all mounted onto a single substrate. It is available as a component or as a stand-alone system:

The capacitive sensor, designed by ERA, is claimed to offer advantages over silicon piezo-resistive technology. These include low power, temperature operation above 125°C, lower intrinsic temperature coefficient, higher stability and over pressure capability.

Checking tyre pressures and/or temperatures would be accomplished by installing a sensor in each tyre and a receiver in the dashboard. This would hopefully reduce the risk of blow-outs and improve fuel economy.
LOW 486DX-33 SYSTEM

Limited quantities of this 2nd user, supersed small desktop unit. Fully featured with standard serial connectors 30 & 72 pin. Supplied with keyboard, 4 MB of RAM, VGA monitor output, 1.4G cache and 350 MB IDE do. Drive with single 1.4 MB floppy drive.

Many other options available - call for details. £399.00

FLOPPY DISK DRIVES 3¼" - 8":

5¼ or 3½ from only £18.95!

Massive purchases of standard 5¼ 3½ and 3¼ drives enables us to offer this unbelievable price. All units are 100% reconditioned by our staff. They are 100% guaranteed, to pass our test and are fully tested, aligned and shipped to you. A 90 day limited warranty applies.

All are IBM compatible 3¼ (90% supported on your PC).

£4.50 3¼ Hitachi 3415 360K FDD
£5.50 3¼ Hitachi 3415 1.2M FDD
£7.50 3¼ Toshiba 3441E 1.2M FDD
£8.50 3¼ Quantum 4330U 360K FDD
£9.50 3¼ Teac FD-5050 1.2M (for IBM PCs) FDD
£10.50 3¼ Minolta 280 1.2M FDD
£11.50 3¼ Minolta MF355C-D 1.4 Meg. Non Laptop
£12.50 3¼ MITSUBISHI MF355C-D 1.4 Meg. Non Laptop
£13.50 3¼ Sony 4450E 3M FDD

3½ Mitsubishi MF355C-D 1.4 Meg. Non Laptop
£11.50

5½" BRAND NEW Mitsubishi MF615B 360K
£7.50

8" Shugart 8080 FDD £87 refurbished & tested
£10.50

8" Shugart 8068 FDD £150 refurbished & tested
£25.00

8" Brand new Mitsubishi M2896-63-02U 8" DS slimline NEW
£49.50

5½" BRAND NEW Mitsubishi MF501B 360K
£6.50

Dual 8½" cabled drives with integral power supply £2.49

THE AMAZING TELEBOX

Converts your colour monitor into a Quality Colour TV!

TV SOUND & VIDEO TUNER

THE TELEBOX is an attractive fully featured mains powered unit, containing all electronics ready to plug into a bay of video monitors and controls. Supplied with a warranty. May be supplied in popular designs including; Commodore, Philips, Tatung, Akaistrad etc. The complete video output will also plug directly into your TV after the audio outputs have been connected. It is the only viewable开出 on most television receivers (TELEBOX MB). Push button controls on the front panel allow the user to select all features.


 Ends of Line

- SPECIAL OFFERS -

Surplus stocks now available - see large SAE - PACKED with bargains!

Issue 13 of Display News now available - send large SAE
**Marconi distortion meter type TF2331 - TF2331A**

Marconi microwave 6600A sweep osc., mainframe with 6650 PI - 18-26.5GHz or 6651 PI - 26.5-

Marconi TF1245 Circuit Magnification meter + 1246 & 1247 Oscillators - 0100-0300.

Racal/Dana 9301A-9302 RF M illivoltmeter - 1.5-2GHz - 0250-0400.

HP Amplifier type 8447A - 1-400Mc/s £200 - HP8447A Dual -0300.

HP Sweep Oscillators type 8690 A & B + plug -ins from 10Mds to 18GHz also 18-40GHz. P.O.R..

HP Vector Voltmeter type 8405A-£400 new colour.

HP Frequency comb generator type 8406 -0400.

Marconi TF2008 - AM -FM signal generator - also sweeper - 10KcJs - 510Mc/s - from £250 -

HP3311A Function Generator - 0300.

HP11729B Carrier Noise Test Set .01-18G Hz - LE F - E2000.

HP8080A MF + 8091A 1GHz Rate Generator + 8092A Delay Generator + Two 8093A 1GHz Amps

HP745A + 746A AC Calibrator - £600.

FLUKE 5102B AC -DC Calibrator - £4k.

TEK2465A 350Mc/s Oscilloscope - £2.5k + probes -£150 each.

TEK FG5010 Programmable Function Generator 20Mds- 0600.

Racal/Dana 9303 True RMS Levelmeter+Head- 0450. IFFE - £500.

Racal/Dana 1250-1261 Universal Switch Controller + 200Mds PI Cards.

Marconi TF2370 -30Hz-110Mc/s 750HM Output (2 BNC Sockets +抵抗器 for 500HM MOD with

HP5370A Universal Time Interval Counter. - £450.

HP5370A Lock-in Amplifier. - £250.

HP5370A Dual Channel Lock-in Amplifier. - £450.

HP5370A Dual Channel Lock-in Amplifier. - £450.
Transparent motives for hdtv

Development of organic light-emitting devices that have transparent contacts is being heralded as a leap forward in the design of display devices - with implications for everything from high definition televisions to head-up display units.

Developed by researchers at Princeton University and the University of Southern California, the new class of devices is said to be 70% transparent when turned off.

While turned on, they emit light from both top and bottom surfaces with 75% quantum efficiency. Because the devices themselves are transparent, red, blue and green ones could be stacked on top of each other, giving a simple way to fabricate a very high quality screen.

The devices are grown on a conducting substrate precoated with a transparent indium tin oxide (ITO) thin film. Then a thicker layer of TPD - a 'hole' conducting compound - is deposited, followed by a thick layer of the electron conducting and highly-electroluminescent organic compound tris (8-hydroxyquinoline) aluminum (Alq3).

The action that creates colour takes place in the electron conducting layer (Alq3 in this case emits green light). An electron injected from the contact onto the molecules in the layer is attracted by the positive hole and gives off a photon with the frequency of either green, red or blue light. What determines the various colours is the molecular structure of the light emitting material - the greater the separation of electron and hole in energy, the more energetic the photon released and the bluer the light.

On top of the Alq3 layer goes the top contact - the most innovative component of the device built by the Princeton and USC scientists because it is transparent. This electron-injecting contact is made by depositing, through a shadow mask, a thin layer of magnesium-silver alloy (MgAg), onto which is sputter-deposited a thick ITO layer.

Stephen Forrest, director of Princeton’s Advanced Technology Center for Photonics and optoelectronic materials (Poem) explains the attraction of toleds: “What we can now do with these organic devices is to place the three primary colour emitters in a single, very small stacked structure. By having intervening transparent contacts, we can energise to different extents the red, green and blue devices all in a single stack. The light penetrates through all transparent contacts and other organic layers and out comes a mixture of colours.”

The making of a single pixel with three colours could have profound implications for manufacturing because only one type of pixel need be made, instead of three - thereby reducing three separate fabrication steps to one.

Could wireless video link cut the need for cable?

The head-long rush towards bringing video, voice, data and interactive services into every house is still being held back by one fundamental limitation - the absence of an installed high-capacity broad-band home link.

But two researchers at the University of California at Berkeley have announced successful testing of a system that at a stroke removes some of the drawbacks of domestic broad-band networks. J Park and KY Lau have developed a millimetre-wave fibre-wireless transmission broad-band system that could be quickly installed while promising a cost-effective method of delivering services.

Up to now we have tended to think in terms of using fibre links to a distribution node, then perhaps coaxial cable and amplifiers to carry signals into the home.

Park and Lau’s system (“Millimetre-wave 39GHz fibre-wireless transmission of broad band multi-channel compressed digital video”, J Park and KY Lau, Electronics Letters, Vol 32, No 5, pp. 474-476) uses a wireless system for this last stage, retaining the optical fibre links for distribution of signals to remote antennas.

As in the conventional approach, the wireless system begins with a central office or head-end set up for each 300,000 users. From here, five to 15 fibre links connect to distribution hubs, each servicing 20,000 users. Each distribution hub uses 10-40 fibre links to distribute signals over the last 15km to fibre nodes. A fibre node would be needed for every 500 to 2000 customers.

It is from this last link that Park and Lau’s system begins to make a difference. Installing a wireless connection to each consumer would be much quicker and less expensive for the service provider to install - especially in urban areas and regions over difficult terrain. A wireless system also accommodates a degree of mobility.

Crowding at lower frequencies, mean that only the millimetre-wave frequency range really offers the band width required for free space transmission of broad band spectra between 1 and 2GHz.

So far in tests, a broad-band
RESEARCH NOTES

Bringing the information superhighway into the home without fibre links?

millimetre-wave optical transmitter has been used to transmit multi-channel digitally-compressed (MPEG-2) video over a 39GHz millimetre-wave fibre-wireless link. The complete set-up used to test the system simulated both the fibre link and the wireless connection. To demonstrate fibre distribution of the mm-wave signals, 6km of single-mode fibre was used between the optical transmitter and the base station. The base station itself consisted of a high-speed photodiode, a 39GHz band pass filter, a high-power mm-wave amplifier and an antenna. A 500MHz-wide broad-band spectrum of channels, centred at 39GHz, was amplified to 5dBm and transmitted through an antenna.

Results showed a wireless link loss of 55dB, which at this frequency corresponds to a free space propagation path of over 1km when high gain (35dBi) transmit and receive antennas are used.

At the receiver end, the 39GHz signal was down-converted back to the original intermediate frequencies of 300-800MHz.

The result, according to the researchers, was that 70 digital video channels were observed using the optical transmitter, and that the video was good, with no decoding errors in any of the video channels.

More information from the Department of EECS, University of California at Berkeley, Berkeley, CA 94720, USA.

Wheelchair users take a step up

Stairs. Most of us take them for granted, stepping up or down, without thinking. For wheelchair users, life is not so simple. Steps can become major barriers, and shopping, using public transport or simply crossing the road can turn into an obstacle course – unless your wheelchair is able to walk up and down steps too.

This is the aim of a ‘wheelchair with legs’ currently being designed by a US team from the University of Pennsylvania and the AI du Pont Institute.

So far, a prototype chair with wheels and legs has successfully negotiated uneven terrain and circumvented obstacles. One of the legs can also be used as a manipulator to perform simple tasks such as reaching for objects or pushing open doors.

Starting point for the project is that the wheelchair must exploit the capabilities of the human operator and must be safe. The eventual design (‘Design of a Wheelchair with legs for people with motor disabilities’, P Wellman et al, IEEE Transactions on Rehabilitation Engineering, Vol 3, No 4, pp. 343-353) was for a hybrid wheeled/legged chair with four wheels (two powered) and two legs. This was felt to give the best compromise between capability, cost and consumer acceptance.

A manoeuvre similar to walking is accomplished using the legs to drag the vehicle forward or backward, and the wheelchair (and operator) can climb a 300mm high step while still being able to pass through a 760mm doorway.

The two motors used to move the arms are driven by 20kHz pwm switching amplifiers that are configured to clamp to the motor current – determined by the control signals received from the IBM 486 control computer. System feedback is accomplished through incremental optical encoders which give the position of the legs and also strain gauges that indicate the forces at the feet.

Up to now the wheelchair has successfully completed a range of tests, with a 75kg rider, and the researchers are hoping to develop a modular system that can be bolted onto a conventional wheelchair.

Despite any technology advances, one problem still remains: that of acceptability. Wheelchair users are already angry that people too often see the chair, not the individual. Unfortunately, that situation is unlikely to be improved by bolting on even more hardware and electronics.

More information from Parris Wellman, Department of Mechanical Engineering, Pennsylvania University, Pennsylvania, Philadelphia, PA 19014, USA.
Whatever your specific interest; radio-controlled models, radio-communications or general electronics, the one component you can't afford to be without is Electromail.

Electromail gives you instant access to Europe's largest stock of electrical, electronic and mechanical components.

- 60,000 product lines available ex-stock.
- All top brands, tested and approved by our engineers.
- Order by Phone, Fax -24 hours a day, 365 days a year.
- Order lines manned 8.00am. to 8.00pm.
- Next day delivery available on request.
- Repair and Calibration service available.
- Nominal P&P charge of only £2.95+VAT on all standard delivery orders.

To find out more about Electromail, See the Internet http://www.rs-components.com/rs/

Everything you need at the end of the phone!

**SPECIAL OFFER**

**WIN** WINDOW STICKERS AND TRANSFERS

Claim one of our unique, limited edition "Bright Sparks Do It With Electromail" window stickers and transfers. We're giving away 6,000 of them. Simply place an order of any value, including orders for a catalogue, and quote reference EWW3. Please allow 28 days for delivery of your sticker and transfer.

**HURRY OFFER ENDS WHEN STOCKS RUN OUT**

**WIN** A FANTASTIC PSION 3A POCKET COMPUTER

Your chance to win this powerful 256k memory PSION 3A pocket computer. To enter the prize draw simply recommend a friend you think would be interested in the Electromail service. No purchase is necessary. Send your friend's name, address and telephone number, plus your own together with your Customer Reference Number (If you have one) and tell us in 20 words, why you would use Electromail. Applications can be sent by post or fax quoting reference EWW3. Full rules and conditions are available on request.

Postal applications to: Amanda Johnston, D.P.N.55, Electromail, P.O. Box 33, Corby, Northants, NN17 9EL

Fax Applications: F.A.O. Amanda Johnston on Fax No 01536 405555

All entries must be received at Electromail's office by 5.00pm on Friday 31st May to qualify. All qualifying entries will be included in the prize draw and the winner will be advised by post by 16th June. This competition is not open to employees (or their families) of Electromail or associated companies, or public servants and members of government bodies or agencies involved in this promotion. No cash alternative is available and no correspondence will be entered into. The judges decision is final.

Electromail, P.O. Box 33, Corby, Northants NN17 9EL.

CIRCLE NO. 112 ON REPLY CARD
Now you see it now you don't: glancing into the past

A group of astronomers has identified the most distant population of normal galaxies yet found. Using a new technique designed to isolate large numbers of extremely distant, young galaxies, the scientists have discovered what are very likely the progenitors of the bright galaxies — spirals and ellipticals — seen today. They observed the galaxies at a time very soon after they first formed, roughly 10 billion years ago. These objects show that galaxies were already forming in large numbers at an epoch when the universe was only 10 to 20% of its current age.

In the past, astronomers have had difficulty finding young galaxies. They are very faint and no-one was sure exactly what to look for. The new method involves taking images of the sky using three custom-made colour filters, allowing light of only red, green, or uv wavelengths to be seen. Young galaxies have a strong blue or uv tint, but when they are very distant, the uv wavelengths are strongly absorbed by hydrogen atoms both in the galaxy itself and in any gas that might be present between the galaxy and us. If a galaxy is within a particular range of high red-shifts (corresponding to large distances from us), its uv light will be completely absorbed by the intervening hydrogen. By screening digital images of the sky through these filters, and watching for objects present in both red and green but vanishing in uv, the astronomers have located many objects that are likely to be distant galaxies.

The picture shows a small portion of three images of the same piece of sky, taken with the 200-inch Hale Telescope at the Palomar Observatory in California. For more information contact Chuck Steidel, assistant professor of astronomy at Caltech, California.

Agents of progress — or doom?

What connects World Cup soccer with a simulated war in Europe? If you thought the answer was ‘football fan’ you’d be wrong. The real solution is that they are both scenarios used for testing out a new generation of computer ‘agents’ designed to interpret and use human strategies to achieve their targets.

Some of the latest work is being carried out at the University of Southern California’s School of Engineering’s Information Sciences Institute (ISI), where agents have been created that can match wits with top human jet-fighter pilots in simulated dog-fights conducted in virtual computer environments.

The aim of the project, called Soar and funded by the US government’s Advanced Research Projects Agency, is to develop what project leader Paul S. Rosenbloom calls “a basic architecture for intelligent systems.”

The project has already explored military modes of decision-making (for example in a 1994 Simulated Theater of War — Europe war game) and is now being extended into entertainment.

Next year, a team of silicon soccer players will compete in a virtual tournament, RoboCup ’97, to be held in Japan.

In the war game, the pilot agents were able to post some victories, particularly in multi-plane environments, where human pilots could be more easily distracted.

This is notable because modern high-performance aircraft combat — conducted at long distance by missiles and sensors — is more than a simple test of reflexes, a task at which the computer might be expected to excel. Rather, it is a chess-like game of cat-and-mouse, in which success depends on thinking through conflicting and ambiguous clues and deciding — in time — what an adversary is doing, and how best to counter it.

The agents are quite different to arcade game creations which have a very limited repertoire of heavily scripted behaviour, and little or no adaptability. They can behave in a more autonomous, more complicated way. In conflict, agents watch the behaviour of their adversary, attempting to understand it the way a human would — as actions aimed at accomplishing a goal. Similarly, they themselves act in order to accomplish a mission with specific goals.
The Only True 3V and 5V Universal Programmers

Ice Technology's universal programming solutions are designed with the future in mind. In addition to their comprehensive, ever widening device support, they are the only programmers ready to correctly programme and verify 3 volt devices NOW. Operating from battery or mains power, they are flexible enough for any programming needs.

The Speedmaster LV and Micromaster LV have been rigorously tested and approved by some of the most well known names in semiconductor manufacturing today, something that very few programmers can claim, especially at this price level!

Not only that, we give free software upgrades so you can dial up our bulletin board any time for the very latest in device support.

Speedmaster LV and Micromaster LV - they're everything you'll need for programming, chip testing and ROM emulation, now and in the future.

**Speedmaster LV** £495
Programmes 3 and 5V devices including memory, programmable logic and 8748/51 series micros. Complete with parallel port cable, software, recharge and documentation.

**Micromaster LV** £625
As above plus support for over 130 different Microcontrollers, without adaptors, including PICs, 99C51, 68HC705/711, ST6, 220 etc.

**8 bit Emulator card** £125

**16 bit Emulator card** £195
As above but containing 16 bit ROM/RAM emulator. Configuration: 128K by 16, 256K by 8, 2 by 128K B, expandable to 512K by 16/1024K by 8.

ICE Technology Ltd. Penistone Court, Station Buildings, Penistone, South Yorkshire, UK S30 6HG
Tel: +44 (0)1226 767404 Fax: +44 (0)1226 370434
BBS: +44 (0)1226 761181 (14400, BNI)

For a copy of our catalogue giving full details of programmers, emulators, erasers, adaptors and logic analysers call, fax or dial the BBS numbers below.

**FEATURES**

- Widest ever device support including EPROMs, EEPROMs, Flash, Serial PROMs, BPROMs, PALs, MACH, MAX, MAPL, PEELs, EPLDs, Microcontrollers etc.
- Correct programming and verification of 3 volt devices.
- Approved by major manufacturers.
- High speed: programmes and verifies National 27C512 in under 11 seconds.
- Full range of adaptors available for up to 84 pins.
- Connects directly to parallel port - no PC cards needed.
- Built in chiptester for 7400, 4000, DRAM, SRAM.
- Lightweight and mains or battery operation.
- FREE software device support upgrades via bulletin board.
- Next day delivery.

ICE Technology Ltd. Penistone Court, Station Buildings, Penistone, South Yorkshire, UK S30 6HG
Tel: +44 (0)1226 767404 Fax: +44 (0)1226 370434
BBS: +44 (0)1226 761181 (14400, BNI)
Traditionally, active oscilloscope probes have been very expensive. But today's high-speed op-amps make it possible to extend the measurement range of an oscilloscope significantly — and at very low cost. Ian Hickman explains.

PROBES GO active

Theoretically, an oscilloscope shows what is actually going on in a circuit. But this assumes that connecting the oscilloscope to a circuit node does not change the waveform at that node.

To minimise loading effects, oscilloscopes are designed with a high input impedance. The standard value is 1MΩ, in parallel with some capacitance, which is usually about 20-30pF.

As far as the power engineer working at mains frequency is concerned, this high value is insignificant. Generally, the same goes for the audio engineer. One exception is when examining the early stages of an amplifier, where quite high impedance nodes may be encountered. But the oscilloscope's high input impedance exists at its input socket, to which the circuit of interest must be connected. So some sort of lead is needed.

Between circuit and oscilloscope

Connecting a circuit to an oscilloscope with leads of near zero length is difficult and tedious — and often impossible. Sizeable low frequency signals from a low impedance source present no difficulty; any old bit of bell flex will do. In most other cases a screened lead will be needed, to avoid pick-up of hum or other extraneous signals.

A screened lead of about a metre or a metre and a half proves to be convenient, and such a lead would add somewhere between 60 and 150pF of capacitance to that at the scope's input socket. But the reactance of just 100pF at even a modest frequency such as 1MHz is as low as 16000 - a far cry from 1MΩ and not generally negligible by any stretch of the imagination.

The usual solution to this problem is the 10:1 passive divider probe. This provides at its tip a resistance of 10MΩ in parallel with a capacitance of around 10pF. This is not ideal, but a big improvement over a screened lead, at least as far as input impedance is concerned. But the price paid for this improvement is a heavy one. Sensitivity of the oscilloscope is effectively reduced by a factor of ten.

Passive divider probes

Figure 1a) shows the circuit of the traditional 10:1 divider oscilloscope probe, where C0 represents the oscilloscope's input capacitance, its input resistance being the standard value of 1MΩ.

Capacitance of the screened lead Cc plus the input capacitance of the oscilloscope form one section of a capacitive potential divider. Trimmer CT forms the other, and it can be set so that the attenuation of this capacitive divider is 10:1 in volts, which is the same attenuation as provided by the 9MΩ of RA and the 1MΩ input resistance of the oscilloscope. When this condition is fulfilled, the attenuation...
is independent of frequency, Fig. 2a).

Defining the cable plus oscilloscope input capacitance as \( C_E \), where \( C_C \) is \( C_C + C_O \), Fig. 1b), then \( C_T \) should have a reactance of nine times that of \( C_E \), i.e. \( C_T = 9C_E \). If \( C_T \) is too small, high frequency components such as the edges of a squarewave will be attenuated by more than 10:1. This results in the waveform of Fig. 2b). Conversely, if \( C_T \) is too large, the result is as in Fig. 2c).

Input capacitance of an oscilloscope is invariably arranged to be constant for all settings of the Y input attenuator. This means that \( C_T \) can be adjusted by applying a squarewave to the oscilloscope via the probe using any convenient Y sensitivity, and the setting will then hold for any other sensitivity.

Circuit Fig. 1a) provides the lowest capacitive circuit loading for a 10:1 divider probe. This circuit has the disadvantage that 90 per cent of the input voltage – which could be very large – appears across variable capacitor \( C_T \).

To take care of this, some probes use the circuit of Fig. 1c). Capacitance \( C_T \) is now a fixed capacitor and a variable shunt capacitor \( C_A \) is fitted, which can be set to a higher or lower capacitance to compensate for instruments with a lower or higher input capacitance respectively. Now, only 10 per cent of the input voltage appears across the trimmer. As a bonus, the trimmer is also conveniently located at the oscilloscope end of the probe lead, permitting a smaller, neater design of probe head.

Even if a 10:1 passive divider probe – often called, perhaps confusingly, a x10 probe – is incorrectly set up, the rounding or pip on the edges of a very low frequency squarewave, e.g. 50Hz, will not be too obvious. This is because with the slow time base speed necessary to display several cycles of the waveform, it will appear to settle instantly to the positive and negative levels.

Conversely, with a high-frequency squarewave, say 10MHz, the probe's division ratio will be determined solely by the ratio \( C_P/C_T \). Many a technician – and chartered engineer – has spent time wondering why the amplitude of a clock waveform was out of specification, only to find out eventually that the probe has not been set up for use with that particular oscilloscope.

Waveforms as in Fig. 2 will be seen with a squarewave of around 1kHz.

Probing at high frequencies

At very high frequencies, where the length of the probe lead is an appreciable fraction of a wavelength, reflections would occur, since the cable is not terminated in its characteristic impedance. For this reason, oscilloscope probes often incorporate a resistor of a few tens of ohms in series with the inner conductor of the cable at one or both ends. Alternatively they may use a special cable with an inner made of resistance wire. Such measures are necessary in probes for use with oscilloscopes having a bandwidth of 100MHz or more.

While a 10:1 passive divider probe greatly reduces the loading on a circuit under test compared with a similar length of screened cable, its effect at high frequencies is by no means negligible. Figure 3 shows the typical variation of input impedance versus frequency of such a probe, when connected to an oscilloscope.

Another potential problem area to watch out for when using a 10:1 divider probe is the effect of ground-lead inductance. This is typically 150nH for a 15cm lead terminated in a miniature 'alligator' clip, and can form a resonant circuit with the input capacitance of the probe. On fast edges, this results in ringing in the region of 150MHz. For high frequency applications it is essential to discard the ground lead and to earth the grounded nose of the probe to circuit earth by the shortest possible route.

Probing actively

Figure 3 shows that over a broad frequency range of, say, 30kHz to 30MHz, the input impedance of a 10:1 passive divider probe is almost purely capacitive. This is illustrated by the almost 90° phase angle. But it is evident that at frequencies well beyond 100MHz, the input impedance of the probe tends to 90Ω resistive – the characteristic impedance of the special low capacitance cable used. At frequencies where \( C_T \) is virtually a short
circuit, the input of the probe cable is connected directly to the circuit under test, causing heavy circuit loading. The only way round this is to fit a buffer amplifier actually in the probe head. In this way, the low output impedance of the buffer drives the cable, isolating it entirely from the circuit under test.

Such active probes have been available for many years for top-of-the-line oscilloscopes from the major manufacturers. In many cases, their oscilloscopes are fitted with appropriate probe power outlets.

Figure 4 is the circuit diagram of such an active probe - the Tektronix P6202A providing a 500MHz bandwidth and an input capacitance of 2pF. It has stackable clip-on caps to provide ac coupling or an attenuation factor of ten to increase the dynamic range.

The circuit illustrates well how, until comparatively recently, when faced with the need to wring the highest performance from a circuit, designers were forced to make extensive use of discrete components.

Note that such an active probe provides two important advantages over the passive 10:1 divider probe. Firstly, the input impedance remains high over the whole working frequency range, since the circuit under test is buffered from the low impedance of the output signal cable. Secondly, the factor of ten attenuation of the passive probe is eliminated.

While high performance active probes are readily available, at least for the more expensive models of oscilloscope, their price is high. The result is that most engineers are forced to make do, reluctantly, with passive probes. These cause heavy loading on the circuit under test at high frequencies, and cause a loss of a factor of ten in sensitivity.

Affordable passive divider probes for oscilloscopes with a bandwidth of 60 to 100MHz are readily available, but active probes of a similar modest bandwidth are not. But with the continuing improvements in op-amps of all sorts, it is now possible to design simple active probes without resorting to the complexity of a design using discrete components such as Ref. 1 or Fig. 4.

Designing an active probe

To provide a 10MOmega input resistance - the same as that of a passive 10:1 divider probe - an active probe built around an op-amp must use a mos input device.

For optimum performance at high frequencies, it is desirable that the op-amp should drive the coaxial cable connecting the probe to the oscilloscope as a matched source. In the jargon of the day, the cable is described as being 'back-terminated'. This, together with a matched termination at the oscilloscope end of the probe lead, divides the voltage swing at the output of the op-amp by two.

So for a unity gain probe, the op-amp must provide a gain of two. For this purpose, an op-amp which is partially decompensated, for use at a gain of two or above, is convenient.

An active probe using such a mos-input op-amp, the SGS-Thomson TSH31, is shown in Fig. 5a). This op-amp has a 280MHz gain-bandwidth product, achieved by opting for only a modest open loop gain; large-signal voltage gain, Avo, is typically ±800 or 58dB for Vce of ±2.5V and Rf at 100Q. At a gain of 2, it should therefore provide a bandwidth approaching 140MHz.

Take care with the layout to minimise any stray capacitance from the non-inverting input to ground. This would result in high-frequency peaking of the frequency response. If need be, a soupcon of capacitance can be added in parallel with the 1kQ feedback resistor from pin 6, to control the settling time.

A zero offset adjustment is shown, but in most cases this will be superfluous. Even with a device having the specified maximum input bias current ifb of 300pA, the offset due to the 10MOmega ground return resistor at pin 3 is only 3mV. The typical device ifb is a meagre 2pA.

With the omission of the offset adjust circuitry, the circuit can be constructed in a very compact fashion on a few square centimetres of copper-clad laminate or 0.1in matrix strip board. The output signal is routed via miniature 50Q coaxial cable.

Supply leads can be taped along side the coaxial cable to a point near the oscilloscope end of the probe. Here they branch off, allowing a generous length for connection to a separate ±5V supply, assuming such is not available from the oscilloscope itself.

Note the use of a commercially available 50Q 'through termination' between the oscilloscope end of the probe signal lead and the Y
Where an active probe scores is when looking at very small signals, which are too small to measure with a 10:1 passive divider probe. Another application where an active probe scores is when looking at high frequency signals emanating from a high impedance source. Clearly, the heavy damping imposed by a passive divider probe at 100MHz and above precludes its use to monitor the signal across a tuned circuit. On the other hand, the active probe provides much reduced damping, in addition to enabling much smaller signals to be seen.

An active probe to the circuit of Fig. 5a) was made up and tested. As miniature 1/16W, 1kΩ resistors were not to hand, 1.2kΩ resistors were used instead. This, together with the use of a DIL packaged amplifier in a turned pin socket, rather than the small outline version, meant that some capacitance between pins 2 and 6 was needed.

A 0.5-5pF trimmer was used: it was adjusted so that the probe’s response to a 5MHz squarewave with fast edges, see Fig. 9a), was the same as a Tektronix P6106 passive probe, both being used with a Tektronix 475A oscilloscope of 250MHz bandwidth. Advantages of an active probe are illustrated in Fig. 5b), where all traces are effectively at 100mV/division, allowing for the unity gain of the active probe, and the 20dB loss of the passive probe. All four traces show the 100MHz cw output of an inexpensive signal generator, the Leader LSG-16.

Measurements were made across a 75Ω termination, the top trace being via the active probe and the next one via the P6106 passive probe. Both show an output of about 280mV peak to peak, agreeing well with the generator’s rated output of 100mV rms.

The third trace shows the same signal, but with a 470Ω resistor connected in series with the tip of the active probe, while the bottom trace is the same again but with the 470Ω resistor connected in series with the tip of the passive probe.

The effect of the 470Ω resistor has been to reduce the response of the passive probe by 12dB, while that of the active probe is depressed by only 4.5dB. Thus the active probe not only provides 20dB more sensitivity than the passive probe, but exhibits a substantially higher input impedance to boot.

Providing gain
An active probe can be designed not merely to provide unity gain, avoiding the factor of ten attenuation incurred with a passive divider probe, but actually to provide any desired gain in excess of unity. Figure 6a) shows a circuit providing a gain of times ten, which as before requires a gain of twice that from the op-amp.

Again, in the interests of providing the con-
of the positive-going edge of the test waveform. Taking an average of 22.5ns and reducing this to 22ns to allow for the risetimes of the oscilloscope and test waveform, gives an estimated bandwidth for the active probe of 16MHz. This is equated using the formula risetime tr = 0.35/BW, where tr is in microseconds and bandwidth BW is in megahertz. This probe would be useful with any oscilloscope having a 20MHz bandwidth, the instrument’s 17.5ns risetime being increased to 28ns by the probe.

A much faster probe with a gain of ten can be produced using that remarkable wideband voltage feedback op-amp, the Comlinear CLC425. The 425 is a decompensated device, for use at gains of not less than ten. It is an ultra low noise wideband op-amp with a open-loop gain of 96dB and a gain-bandwidth product of 1.7GHz. At the required gain of x20 therefore, it should possible to design an active probe with a bandwidth approaching 85MHz.

Figure 7a) was made up and tested using a 5MHz squarewave with fast edges, produced with the aid of 74AC series chips, as shown in Fig. 9a). The result is shown in Fig. 7b). Here the smaller waveform is the attenuated test waveform viewed via a 10:1 passive divider probe at 50mV/division.

The test waveform was intended to be 50mV, but the accumulated pad errors resulted in it actually being 55mV. The larger trace is the 550mV output from the x10 active probe, recorded at 100mV/div, with the oscilloscope’s variable Y gain control adjusted to give exactly five divisions deflection, for risetime measurements.

The two traces were recorded separately, only one probe at a time being connected to the test waveform, Fig. 7b) being a double exposure.

With the timebase speed increased to 10ns/div, the rise and fall times were measured as 4.5 and 4.9ns respectively. This implies a bandwidth, estimated by the usual formula, of around 80MHz - even before making corrections for the risetimes of the oscilloscope and test waveform.

But there is a price to be paid for this performance. The CLC425 is a bipolar device with a typical input bias current of 12µA. This means that the usual 10MΩ input resistance is quite out of the question.

In the circuit of Fig. 7a), however, a 100kΩ input resistance has been arranged with the aid of an offset-cancelling control. In the sort of high speed circuitry for which this probe would be appropriate, an input resistance of 100kΩ will often be acceptable. The need to adjust the offset from time to time is a minor drawback to pay for the high performance provided by such a simple circuit.

As described in connection with the unity gain active probe of Fig. 5, the two x10 versions of Figs 6a) and 7a) can be provided with clip-on capacitor caps for dc blocking. Clearly, with an active probe having a gain of x10, the maximum permissible input signal, if overloading is to be avoided, is even lower than for a x1 active probe. But it is not worthwhile making a 20dB attenuator cap for a x10 probe input.
active probe; with the probes described being so cheap and simple to produce, it is better simply to use a x1 probe instead.

An interesting possibility for the circuit of Fig. 6a) is to fit a miniature single-pole changeover switch arranged to select either the 47Ω resistor shown, or a 91Ω resistor in its place. This provides an active probe switchable between gains of x1 and x10.

In the x1 position, the bandwidth should rival or exceed that of Fig. 5a). This scheme is not applicable to the circuit of Fig. 7a) however. While the OPA655 is unity-gain stable, the CLC425 is only stable at a gain of x10 or greater.

For a really wideband active probe...

The three probes described so far use op-amps with closed loop feedback to define a gain of two, giving a gain of unity net at the oscilloscope input. But another possibility is to use a unity gain buffer, where no external gain setting resistors are required. This provides the ultimate in circuit simplicity for an active probe.

Devices such as National Semiconductor's LH0033 or LH0063 fet-input buffers could be considered. Having some samples of the Maxim MAX4005 buffer to hand, I made an active probe using this device, which claims a 950MHz-3dB bandwidth and is designed to drive a 75Ω load.

The usual 10MΩ probe input resistance is easily achieved, as the MAX4005 is a fet-input device. Figure 8a) was made up on a slip of copper-clad laminate 1.5cm wide by 4.0cm long. I mounted the chip near one end of the board, most of the length being taken up with arrangements to provide a firm anchorage for the 75Ω coaxial cable. The chip was mounted upside down on four 10nF chip decoupling capacitors connected to the supply pins and used as mounting posts.

Note that to minimise reflections on a cable, the MAX4004 contains an internal thin-film output resistor to back terminate the cable. This means in practice that the net gain from probe input to oscilloscope input is in fact x0.5. In turn, this means that the 5 and 10mV input ranges on the oscilloscope become 10 and 20mV respectively. While slightly less convenient since the 20mV range becomes 40mV per division, this is acceptable for most jobs.

For this probe, of course, a 75Ω coaxial lead was chosen, terminated at the oscilloscope input with a commercial 75Ω through termination.

Since the expected bandwidth of this active probe was far in excess of the 250MHz bandwidth of my TEK 475A oscilloscope, some other means of measuring it was required. My HP8558B spectrum analyser was pressed into service. Unfortunately, this instrument does not have a chopping feature, so a combination of 10:1 passive and 4 X 10dB probe was used. The result is shown in Fig. 8b). Together with the 10dB pad at the sweep output, this accounts for the 21dB separation of the traces in Fig. 8b).
not provide a tracking generator output, but a buffered version of the swept first local oscillator output covering 2.05 - 3.55GHz is made available at the front panel.

In an add-on unit as described in Ref. 2, this is mixed with a fixed frequency 2.05GHz oscillator to provide a swept output tracking the analyzer input frequency. Mixer output is amplified and low pass filtered, providing a swept output level to within ±1dB or so, at least up to 1GHz, at a level of around +6dBm. This is shown as the top trace in Fig. 8b).

The active probe was then connected to the output of the sweep unit, via a 10dB pad to avoid overloading, and a 50Ω through termination to allow for the high input impedance of the MAX4005. Significant care needed to be taken with grounding arrangements at the probe input, Fig. 9b.

Output of the probe — including the 75Ω through termination shown in Fig. 8a) — was connected to the input of the spectrum analyzer. As a result, the 75Ω coaxial cable was in fact terminated in 30Ω. This mismatch explains the amplitude variations in the probe output, Fig. 8b), lower trace, corresponding to the electrical length of the 75Ω coaxial lead.

These apart, the level follows that of the sweeper output, upper trace, up to just under 1GHz, where the expected roll-off starts to occur. The level is about 20dB below that of the sweeper output which is explained by the 10dB pad, and the additional loss above the expected 6dB, due to the mismatch at the analyzer input, Fig. 9c).

You may have been asking, “What is the use of a 950MHz bandwidth active probe when the 75Ω termination at the oscilloscope is in parallel with a input capacitance of around 20pF?” After all, the effective source resistance seen at the instrument’s input is 37.5Ω. The oscilloscope bridges both the source and load resistors, which are thus effectively in parallel, while the reactance of 20pF at 950MHz is 8.41Ω.

But remember that the figure of 20pF is a lumped figure, measured at a comparatively low frequency. In fact, this capacitance is typically distributed over a length of several inches. The input attenuator in the 475A, for example, is implemented using thick film pads. These are connected in circuit or bypassed as required by a series of cams on the volts-per-division switch.

Because of this construction, the 20pF is distributed over: some kind of transmission line, the characteristics of which are not published. It is therefore likely that the effective capacitance at 950MHz is less than 20pF. The only way to be really sure what bandwidth the probe of Fig. 8a) provides with any given oscilloscope is to measure it. But given the 370ps rise time of the MAX4005, this exceedingly simple active probe designed around it is likely to out-perform the vast majority of oscilloscopes with which it may be used.

References

Acknowledgments

Free MAX4005 high-performance buffer

Maxim is offering one free MAX4005 J/Et-input buffer to the first 1000 readers posting off the reader reply card between pages 408 and 409.

Housed in small-outline packaging, this eight-pin surface-mount chip features a bandwidth of 950MHz combined with an input capacitance of just 2pF. The device operates from a ±5V supply.

The MAX4005 has a gain of 0.5 when driving 75Ω transmission lines. A 75Ω thin-film output resistor — on chip — minimizes line reflections. Applications include video buffering, instrumentation isolation, remote signal sensing and fan-out multiplying in 75Ω distribution systems. Linearity with 50Ω impedance can also be driven at a slightly reduced voltage gain.

To peak the response to compensate for losses when driving long transmission lines, a 10-50pF chip capacitor can be connected between the PEAK pin and ground. Peaking occurs in the 200-500MHz range. Flat response is obtained when this pin is left open.

Features of the MAX4005
950MHz bandwidth
350ps rise & fall
0.1% diff. gain error
0.03° phase error
1000V/μs slew rate
10pA bias current
75Ω output impedance

Because of this construction, the 20pF is distributed over: some kind of transmission line, the characteristics of which are not published. It is therefore likely that the effective capacitance at 950MHz is less than 20pF. The only way to be really sure what bandwidth the probe of Fig. 8a) provides with any given oscilloscope is to measure it. But given the 370ps rise time of the MAX4005, this exceedingly simple active probe designed around it is likely to out-perform the vast majority of oscilloscopes with which it may be used.
Temperature controlled soldering station - over 20% EW reader discount

SL-20 is a temperature-controllable soldering station with bar-graph temperature display and a control range of 150 to 420°C.

As a limited offer, Vann Draper is offering this CE approved unit to Electronics World readers at the special price of £55 – fully inclusive of VAT and delivery – representing a discount of over 20%. Normally, the SL-20 sells at £59, excluding VAT and delivery.

Featuring an iron-coated 1.6mm interchangeable tip, the SL-20 has a 48W element providing rapid warm up and fast thermal response. Temperature feedback is via a sensor within the iron's body.

The SL-20's electronic control/display system allows temperature accuracy to be obtained to within ±10°F of the selected setting.

Mains requirements for the SL-20 are 220/240V and 50/60Hz. Operating at 24V, the iron itself has a groundable tip for safe soldering of esd-sensitive components. Each SL-20 is supplied with 1.6mm tip, mains lead, operating instructions and a 12 month guarantee.

Key specifications

Control range 150-420°C
(300-790°F)

Accuracy ±10°F of setting

Heating power 48W

Iron voltage 24V

Display 12 point LED bar

Size 170 by 120 by 90mm

Weight 2kg

Enclosure Light grey ABS

Mains supply 220/240V, 50/60Hz

Guarantee 12 months

Use this coupon to order your SL-20

Please send me:

.... SL-20 soldering station(s) at £55 fully inclusive
.... extra 1.6mm bit(s) at £1.53 fully inclusive
.... 0.8mm bit(s) at £1.53 fully inclusive
.... 3.2mm bit(s) at £1.53 fully inclusive

Name

Company (if any)

Address

Phone number/fax

Total amount £.........

Make cheques payable to Vann Draper Electronics Ltd Or, please debit my Master, Visa or Access card.

Card type (Access/Visa)

Card No

Expiry date Signature

Please mail this coupon to Vann Draper Electronics, together with payment. Alternatively fax credit card details with order on 0116 2773945 or telephone on 0116 2771400. Address all correspondence relating to this order to Vann Draper Electronics at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE18 2PL.

*Overseas readers can also obtain this discount but details vary according to country. Please ring, write or fax to Vann Draper Electronics.
Portable equipment powered by rechargeable batteries can create many awkward problems for the operators of devices such as cell phones, camcorders and laptop computers. If NiCd batteries are recharged too soon, their future capacity might be jeopardised. There is a need to know fairly accurately the current state of charge, and if there is sufficient capacity to carry out the next operation before recharging.

Battery capacity is specified by the product of discharge time and a constant discharge current, expressed in ampere hours (Ah). The discharge period is limited by the end-point or end of discharge voltage (EODV). The rated capacity C is commonly quoted for a 5, 10 or 20 hours discharge period and CS is commonly used for small rechargeables such as A or AA cells. Capacity C5 is therefore the rated capacity for a constant current discharge to the EODV in 5 hours. Similarly IS would be 20% of the rated capacity value in Ah. The power dissipated during this period may also be specified as IS. The battery recharge rate typically varies from 150% to 300% of the ampere-hour capacity.

Rechargeable batteries should not be discharged beyond the end-point voltage too often as this form of abuse can reduce the useful lifetime. If care is taken to control the charge and discharge cycles, then it is possible for a cell to easily withstand between 500 and 1000 recharge cycles. Abuse can easily reduce this value by a factor as high as 100. Efficient management of battery power can now be achieved by a system known as Smart Battery. This describes a pack of rechargeable batteries equipped with a microchip circuit that collects, calculates, and predicts battery information to the host system, under software control.

The Smart Battery concept was originally developed through cooperation between Intel Corp. and Duracell Inc during 1993-94. Since that time, other battery and semiconductor manufacturers such as Philips, Seagull, Esar and Maxim, together with original equipment manufacturers and software houses, have combined efforts to create systems that provide the user with:

- An assessment of the current state of charge.
- Accurate prediction of remaining operational time.
- Controlled discharge-recharge cycles.
- Controlled charging and operation within safe limits.
- Operation with any battery technology/chemistry.

This close and accurate control of the battery environment produces longer life and runtimes, typically by as much as 20%. Such an intelligent system which is constructed around asics and surface mounted components, can occupy a space of about 350mm². A figure that is commensurate with the size of the batteries that it is intended to manage.

Currently the operation of Smart Battery systems are restricted to relatively light current applications and are rather more costly than conventional technology. However, it is envisaged that the concept will soon be adapted for use with portable television cameras that require larger batteries, and this should lead to a significant increase in usage, leading in turn to competitive costs.

Battery packs that are intended for use in Smart Battery systems are equipped with a ROM that carries embedded code that identifies the battery maker, the date of manufacture, the battery serial and model number, the battery chemistry - NiCd, NiMH etc - the theoretical capacity and the current number of recharge cycles. This information is added to that stored within the Smart Battery system during use to provide a complete on-board battery history.

As shown in the diagram on the right, the host unit, which can be anything from a mobile telephone to a laptop computer, the battery and the charger, are all linked together via the two wire System Management Bus or

This is just one example of the many potential uses for a Smart battery, illustrating information that can be provided and the manner in which it might be displayed.
SMBus. This bus structure is very similar to that of the IC bus in that either element of the system can act as master or slave depending upon the system needs.

However, the SMBus employs a clock circuit that is specified to run at a frequency between 10kHz and 100kHz and uses fixed voltage level signals. A logic low level is specified to lie between -0.5V and +0.6V, with a high between 1.4V and 5.5V. Since most c-mos devices pull down below 0.4V and open collector/drain devices pull up to the supply level of 3V or 5V, well above 1.4V, the system is c-mos and ttl compatible.

The battery charger periodically polls the battery to obtain its charging characteristics and then adjusts its output to match the requests. The charger also receives notice of critical events such as alarms for overcharging, over-voltage and over temperature.

In a similar way, the host device requests information from the battery in order to advise the user of the current status. This includes remaining capacity, future run time, required recharge time and the predicted final discharge point. Parameters that may be displayed for the user are shown in the handset diagram.

In the interests of power efficiency, sensors measure the voltage dropped across very low value resistors - typically 0.01 to 0.055Ω - which are wired in series with the negative lead of the battery. This allows for the monitoring of both charge and discharge currents to an accuracy of 0.2%.

By using rolling average values, the system integrates the charge and discharge currents to allow it to compensate for the changes that occur with different battery loads. The Smart Battery system uses an internal temperature and voltage stabilised clock circuit to avoid the need to use either external crystals or thermistors. Battery temperature can be sensed in 0.1°C steps from -40 to +85°C to an accuracy better than 3°C.

The system continually monitors the battery terminal voltage in order to evaluate the eodv. Because battery self discharge which is time and temperature dependent can be a significant feature of these rechargeables, the circuit monitors this process during power down, to maintain an accurate record of the state of charge.

The system may also allow the ac power source to supply the host unit during periods in which the battery is fully charged and still connected to the mains, thus prolonging the battery’s lifetime.

Further information about Smart Battery systems can be obtained from either Intel Corporation, Intel Architecture Labs Technical Support, Sacramento, California or Duracell Batteries Ltd, at Crawley. The writer is particularly indebted to Mike Dixon, OEM Business Manager, Duracell (UK), for his help in the preparation of this article.

KENWOOD
TEST & MEASURING INSTRUMENTS
A SUPERB RANGE OF OVER 100 QUALITY INSTRUMENTS.
Available from B.K. ELECTRONICS

* Digital Multimeters * Function Generators
* Frequency Counters * Bus Analyser
* Resistance Attenuator * Oscilloscopes * Fully Programmable Digital Storage Oscilloscopes
* Regulated D.C. Power Supplies

A free, 50 page colour brochure, including price list, is available on request. Please make your request on company headed notepaper, by post or by fax, to:

B.K. ELECTRONICS
Unit 1 Comet Way, SOUTHEND-ON-SEA, Essex, SS2 6TR.
Tel: 01702-527572 Fax: 01702-420243

The Universal Programmer that stands-alone

with everything you need. Don't buy your next programmer until you see the 'Eclipse'

- Windows and DOS user interface
- Unparalleled in speed & sophistication ideal for R&D and volume production
- 96 to 256 pin drivers
- Programmers PLDs, EPROMs, FPGAs, PROMs, EEPROMs, EPROMs, Flash & Micros
- Universal dip, PLCC, PGA and QFP modules - no more socket adaptors
- Stand-alone or remote operation
- Europe's largest programmer manufacturer

call today on +44 (0)1707 332148 or fax +44 (0)1707 371503 for further information

All trade marks are acknowledged and respected

May 1996 ELECTRONICS WORLD 375
If you have followed our series on the use of the C programming language, then you will recognise its value to the practising engineer. The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, fourier and many other applications, with not a soldering iron in sight.

To complement the published series, Howard Hutchings has written additional chapters on D-to-A and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An appendix provides a ‘getting started’ introduction to the running of the many programs scattered throughout the book. This is a practical guide to real-time programming. The programs having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.

Credit card orders accepted by phone. Call 0181 652 3614.
MIXED-MODE SIMULATION. THE POWER OF VERSION 4.

New Version 4

Analog, Digital & Mixed Circuits
Electronics Workbench* Version 4 is a fully integrated schematic capture, simulator and graphical waveform generator. It is simple to mix analog and digital parts in any combination.

Design and Verify Circuits... Fast!
Electronics Workbench's simple, direct interface helps you build circuits in a fraction of the time. Try what-if scenarios and fine tune your designs painlessly.

Incredibly Powerful. Incredibly Affordable.
If you need mixed-mode power at a price you can afford, take a look at this simulator and graphical waveform generator that mixes analog and digital with ease.

More Power
Simulate bigger and more complex circuits. Faster. On average, Electronics Workbench Version 4 is more than 5 times faster than Version 3.

More Parts
Multiple parts bins contain over twice the components of Version 3.

More Models
Over 350 real world analog and digital models are included free with Electronics Workbench. And, if you need more, an additional 2,000 models are available.

True mixed-mode simulation: Simultaneous AM transmission, digitization and pulse-code modulation of a signal.

With over 20,000 users world-wide, Electronics Workbench has already been tried, tested and accepted as an invaluable tool to design and verify analog and digital circuits. With Version 4 true mixed-mode simulation is now a reality with incredible simplicity.

Electronics Workbench™
The electronics lab in a computer™
Order Now! Just £199*
44-(0)1203-233-216
RR Robinson Marshall (Europe) Plc

Nadella Building, Progress Close, Leofric Business Park, Coventry, Warwickshire CV3 2TF
Fax: 44 (0)1203 233-210
E-mail: rme@cityscape.co.uk
Shipping charges UK £5.99. All prices are plus VAT.
All trade marks are the property of their respective owners. Electronics Workbench is a trademark of Interactive Image Technologies Ltd., Toronto, Canada.
* 30 Day money-back guarantee.


CIRCLE NO. 116 ON REPLY CARD
Motional feedback would seem to be the obvious solution to the main shortcomings of the voice coil loudspeaker – namely distortion and resonance. Philips brought out a in small cabinets motional feedback system using an acceleration transducer in the early 1970s. This system gave clean low-end bass. Another system appeared in Wireless World, also using a Philips speaker with a factory fitted acceleration transducer, allowing distortion to be reduced by a factor of 5 at 25Hz.

With such impressive results, why hasn't motional feedback become more popular? A few reasons are given in reference 3. My version of the problems are:

- Speakers at normal levels do not produce very much distortion. It is only when they are driven hard – particularly at low frequencies – that distortion rises rapidly. Since low bass distortion is not very noticeable by ear, why reduce it?
- Motional feedback is not easy to retrofit to existing speakers.
- Transducers usually require complicated equalisation. For example, in reference 2, twelve break frequencies were used to compensate the transducer.
- Nyquist stability places a limit on the amount of feedback that is available at high frequencies.
frequencies. Feedback is limited by the frequency where an additional 180° phase lag occurs. In reference 2 this was at 5kHz. This allows 12dB of servo-loop feedback with a 10dB margin for safety up to 300Hz.

- Conventional speakers can usually be run on almost any amplifier and speakers can be interchanged with almost any speaker.

- Several other techniques can give as good a bass in small enclosures with standard speakers.

Two of these alternative techniques, negative resistance damping – called Active Servo Technology or AST by Yamaha – and equalisation produce a good low frequency response in a small enclosure. Both techniques can deal with the problem of speaker resonance. Their main advantage over motional feedback is they use standard speakers.

Some observations and circuits tested show feedback around speakers can overcome some of the problems with equalisation.

**Equalising loudspeaker response**

Equalisation, as applied to speakers, is a technique that boosts the signal to the power amplifier to compensate for frequency roll-off by the speaker and enclosure. Macaulay’s recent articles are good examples of how low-end compensation and a small enclosure of less than 20 litres can achieve a 20Hz roll-off.

An understanding of speaker basics is helpful when applying equalisation. Placing a speaker in a small enclosure raises the free-air resonant frequency and the Q. Figure 17 shows the effect of reducing enclosure volume on Q and the -3dB frequency. Compliance ratio α is simply the ratio of the speaker’s V₅₀ to enclosure volume Vₑ. Speaker compliance, V₅₀, is expressed as an equivalent volume of air and compliance is the inverse of the spring constant k.

For example, an enclosure with a compliance ratio of 3, means the enclosure has a spring constant 3 times that of the speaker. Figure 1 shows an α of 3 raises speaker Q by a factor of 2. In speaker design, the target Q is usually 0.5 for best transient response. Most speakers start with a Q (Qₑ in data sheets) of around 0.3 with lower cost speakers having Qₑ in the range 0.5 to 1.0. For small enclosures, loudspeaker Q increases to at least 0.6 depending on the driver used. Low cost speakers can end up with a Q of 2, which sounds unacceptably "boomy".

Although an equaliser is usually used to boost low-end roll-off, an equaliser can also be used to add damping to a speaker system, as described in the panel. This allows smaller cabinets and/or lower cost drivers. However, compensation usually requires measurement of fₚ and Q so the correct amount of compensation can be applied. Although most equalisers fₚ and Q are not easily changed, a circuit in reference 8 does allow independent setting of fₚ and Q.

There is a practical limit to how high Q can go with equalisation, and hence how small the enclosure can be made. This is because of the sensitivity to errors that creep in at manufacturer's specifications.
improves but electrical damping is lost. High frequency response effectively drives the speaker with a current source as in Fig. 5b. Figure 3 clearly shows it is a form of motional feedback since the feedback signal \( V_a \) contains only velocity information when the bridge circuit is balanced. In practice 100% balance cannot be achieved because \( R_{vc} \) and \( L_{vc} \) vary, limiting the amount of servo feedback loop gain.

For balance: \( \frac{L_1}{R_{vc}} = \frac{R_1 - R_{vc}}{R_{vc}} \) and \( \frac{L_2}{R_{vc}} = \frac{R_2}{R_{vc}} \) with \( R_{3} = R_{5} \) and \( R_{2} \) is doubled to keep the circuit stable. The feedback signal \( V_a \) is compared to the amplifier's input voltage. Since the speaker's voice coil rises by 30%, the net damping resistance rises from 20% to 60% of the voice coil resistance.

Voice coil inductance limits this form of velocity feedback to under 1kHz. Because speaker resonance is suppressed and the rate of compensation is predictable, velocity feedback greatly simplifies equalisation and reduces sensitivity to speaker and enclosure variations. Of course, this assumes velocity control itself is stable.

Temperature change in the voice coil places a practical limit on the amount of servo loop feedback. In references 10 and 11, around 50% of the voice coil resistance is used. Although this does not provide very much servo loop gain it does allow a smaller cabinet.

For example this 50% resistance factor halves the net resistance for damping the speaker. This halves the Q which allows the enclosure volume to be reduced by a factor of 3. Most small enclosures typically have a roll-off around 100Hz and need an equalisation slope of +12dB per octave. With this boost the equaliser gain reaches around 20dB at 30Hz. My observations show this level of boost does not generally increase the peak level of the music since most music, apart from organ works does not contain high levels of these very low frequencies.

Temperature compensation

Yamaha uses temperature compensation in their systems to stabilise the damping resistance. As the amount of negative resistance approaches 100% of \( R_{vc} \) the sensitivity of damping to temperature increases rapidly.

Fortunately, when \( R_{vc} \) increases the system still remains stable. As an example, with 80% negative resistance, set at room temperature, and assume the speaker's voice coil rises by 100°C. Voice coil resistance rises by 40% and the net damping resistance rises from 20% to 60% of \( R_{vc} \). Therefore the enclosure Q increases by a factor of three.

Assuming the original Q was 0.5, then when hot it will rise to 1.5, making it sound booming. So, to operate, and reduce levels of damping, some form of thermal compensation is needed.

A simple yet effective form of compensation was developed by winding resistor \( R_3 \) with copper wire. It is self heated by the speaker current flowing through it. Complete compensation would be achieved if the wire heats to the same temperature and at the same rate as the voice coil. I wound about 300mm of 36swg (0.2mm) enamelled copper wire on a 0.5W high-value resistor and soldered to the 'cold' (-) speaker terminal. This provided cooling from speaker enamelled copper wire. It is self heated by the speaker current flowing through it. Complete compensation would be achieved if the wire heats to the same temperature and at the same rate as the voice coil.

I wound about 300mm of 36swg (0.2mm) enamelled copper wire on a 0.5W high-value resistor and soldered to the 'cold' (-) speaker terminal. This provided cooling from speaker enamelled copper wire. It is self heated by the speaker current flowing through it. Complete compensation would be achieved if the wire heats to the same temperature and at the same rate as the voice coil.

Effectiveness of this type of servo loop depends on how close the negative resistance can be made to the voice coil resistance.

Temperature change in the voice coil places a practical limit on the amount of servo loop feedback. In references 10 and 11, around 50% of the voice coil resistance is used. Although this does not provide very much servo loop gain it does allow a smaller cabinet.

For example this 50% resistance factor halves the net resistance for damping the speaker. This halves the Q which allows the enclosure volume to be reduced by a factor of 3. Most small enclosures typically have a roll-off around 100Hz and need an equalisation slope of +12dB per octave. With this boost the equaliser gain reaches around 20dB at 30Hz. My observations show this level of boost does not generally increase the peak level of the music since most music, apart from organ works does not contain high levels of these very low frequencies.
to your speaker and destroying it in seconds unless protection is provided.

Always provide some protection when adjusting the negative resistance by varying either $R_1$ or $R_5$. A polyswitch can be mounted at the output of the power amp just prior to the feedback take-off point by $R_1$. I used two 12V 12W car lamps. Inserted at this point, its additional resistance will not upset the balance. With protection in place you can find the limit for stability, then reduce the setting for a safer margin or to the level of damping required for your enclosure.

A better method of temperature compensation has been devised by winding $R_5$ adjacent to the voice coil. A non-inductive resistor can be formed by looping the wire back on itself. Since the centre of the voice coil gets hotter than its ends, compensation will be close but still slightly under-compensated.

Only three wires need to be run to the outside world, the two existing current carrying wires plus a third low current feedback wire which can be twisted around the 'cold' speaker flexible then soldered to a third speaker lug.

Manufacturers could do this at little extra cost. Yamaha provides compensation modules to suit various speakers.

Negative current feedback

Although this technique does not give motion- al feedback or reduce damping, it does improve the high-frequency response of the speaker.

Also, as suggested by J.R. Allison, it gives inherent short-circuit protection and changes in voice coil resistance with temperature and changes in voice coil inductance with low frequency excursion, have no effect on speaker response. This is because speaker current is controlled rather than speaker terminal voltage.

The technique is very easy to implement, Fig. 5. It requires only one resistor for current sensing. The feedback loop forces the current through the speaker to follow the input voltage. The equivalent circuit of the speaker shows $R_{vc}$ and $L_{vc}$ effectively overcome by the current feedback loop.

At resonance, the impedance of the parallel $LC$ components rises and hence the emf rises at resonance. At this point cone movement is limited only by mechanical losses mainly in the speaker suspension plus cabinet acoustic losses and cone radiation. Effectively, there is no electrical damping with this technique. Before mounting, $Q$ will be in the range of 2 to 6. It can be reduced using an equaliser but enclosure size will be severely limited by sensitivity to variations and therefore seems unsuited to small enclosures.

Figure 6 shows a circuit used on a small radio-cassette to improve the speaker's high frequency response. Current feedback provides 6dB/octave boost. Another 6dB/octave is added using the 470nF capacitor. Together these give a similar effect to adding a tweeter.

More bass was noticeable. Overall these modifications gave a remarkable improvement. There was a problem with hum due to the way the tracks were run to the power supply and speaker. This was reduced by adding more capacitance to the supply reservoir capacitor. This highlights the need for more care with current feedback system earthing.

Figure 7 allows good electrical damping at low frequencies and current feedback at high frequencies.
frequencies for improved high frequency bandwidth. Unfortunately, inherent current limiting is lost, so the power amplifier needs the usual output protection. Earthing problems are reduced since $C_1$ disables current feedback at low frequencies.

Current feedback pushes the midrange output level higher starting from where voice coil inductance normally causes current to fall. This means a flat response speaker will show lift at mid frequencies. However, speakers that normally showed slow roll-off in the midrange can be compensated to near flat with current negative feedback.

Wide-range dual-cone speakers and those with a metallised dust cap work well with current feedback — some to 15kHz — so the tweeter can be omitted. Since the dispersion angle narrows at high frequencies a high frequency diffuser mat be needed.

### Voltage versus current

A voltage driven speaker can also be boosted to extend the high frequency response. However, with current feedback, unlike a voltage driven circuit, voice coil inductance variations due to large excursions from low frequencies do not amplitude modulate the high frequencies. Doppler distortion, where large excursions frequency modulate higher frequencies, can in theory be removed by modulating the clock of an audio delay line with $V_a$ in Fig. 4.

Figure 8 is the circuit of an equaliser similar to B.J. Sokol’s but modified for lower noise by boosting the gains of the band- and low-pass filters.

### Calculations for high-pass filtering and equalisation functions.

**Given a second order speaker function and equaliser functions:**

$$\text{Speaker} = \text{HP} = \frac{s^2 + \omega_0 Q_1}{Q_1 s + \omega_0}$$

$$\text{Equaliser} = \text{EQ} = \frac{s^2 + \omega_0 Q_1}{Q_1 s + \omega_0}$$

Let $\omega_{02} = \omega_0$ and $Q_2 = Q_1$ to allow cancellation

$$\text{HP} \times \text{EQ} = \frac{s^2 + \omega_0 Q_1}{s^2 + \omega_0 Q_1 + \omega_{01}^2}$$

Hence, $\text{HP} \times \text{EQ} = \frac{s^2}{s^2 + \omega_0 Q_1 + \omega_{01}^2}$

The equaliser function can be synthesised using a LP, BP and flat functions where

$$\text{LP} = \frac{s^2 + \omega_0 Q_1}{Q_1 s + \omega_0}$$

$$\text{BP} = \frac{s^2 + \omega_0 Q_1}{Q_1 s + \omega_0^2}$$

$$\text{Flat} = \frac{s^2 + \omega_0 Q_1}{Q_1 s + \omega_0}$$

So, $\text{EQ} = \text{Flat} + k_1 \text{BP} + k_2 \text{LP}$

$$\text{EQ} = \frac{s^2 + \omega_0 Q_1}{s^2 + \omega_0 Q_1 + \omega_{01}^2}$$

Equating to EQ above gives

$$k_1 = \frac{\omega_{02}}{Q_2}$$

$$k_2 = \frac{(1 + k_2)\omega_0^2}{\omega_{01}^2} - 1$$

Hence $k_1$ sets damping of the speaker and $k_2$ is set to suit the speaker’s resonant frequency. LP and BP should have equal $\omega_0$’s and $Q$’s and $\omega_{02}$ needs to be lower than $f - 3\text{dB}$ of the equalised system.

### Figures for $Q$ of 0.2 to 5 can be compensated

and the frequency range for $f_a$ is about 30 to 150Hz. Resistor $R_1$ and $C_3$ have been added to give a few degrees more phase shift at $f_a$ to give a better null with $RV_2$. Set up is described in reference 8.

I have found set-up can be done by ear. First set $RV_1$ to minimum, then adjust $RV_2$ for the best notch, the greatest loss of low frequencies. Next, increase $RV_1$ until ‘booming’ becomes noticeable, then reduce the setting slightly for the desired effect.

### References

7. Fane (UK), Loudspeaker enclosure design and construction, p 4.


Wentworth, J.P. ‘Loudspeaker damping by the use of inverse feedback’ Audio Eng. 35.12 (Dec 1951) p 21.


Fane (UK), Loudspeaker enclosure design and construction, p 4.


Wentworth, J.P. ‘Loudspeaker damping by the use of inverse feedback’ Audio Eng. 35.12 (Dec 1951) p 21.


Reference books to buy

For Audio Engineers

Subjects include
- Recording, microphones and loudspeakers
- Digital audio techniques
- Basic audio principles
- Acoustics and psychoacoustics
- Audio and television studios and their facilities
- Radio and telephony

Invaluable reference work for anyone involved with audio - from broadcast consultant to serious enthusiast. Audio Engineer's Reference Book is written by an international team of experts and edited by Michael Talbot-Smith - previously a trainer of audio engineers at BBC Wood Norton and now a freelance audio consultant and technical writer.

• Comprehensive - over 600 pages
• Written by leading authorities from the audio world
• Easy to read, compiled for maximum accessibility
• Concise and authoritative
• Covers topics from noise measurement to studio installation

Please supply me _______ copies of the Audio Engineer's Reference Book,
(ISBN 0 7506 0386 0)
Fully-inclusive price - UK £77.50, Europe £83, Worldwide £93. Please add vat at local rate where applicable.

For TV & Video Engineers

Subjects include
- Fundamentals of colour TV
- TV studios
- High definition TV
- Satellite broadcasting
- Distribution of broadband signals
- TV receiver servicing
- Video and audio recording and playback
- Teletext

The TV & Video Engineer's Reference Book will be of immense value to anyone involved with modern tv & video techniques - in particular broadcast engineers. The new format makes it an excellent reference for students. Edited by KG Jackson and GB Townsend from contributions written by acknowledged international experts.

• Over sixty chapters on the latest techniques in video and television
• Up to date reference on EMC requirements, DBS and HDTV
• Easy-to-use reference, eminently suitable for students
• Topics range from materials and construction to medical and defence applications of television.

Remittance enclosed £________
Cheques should be made payable to Reed Business Publishing Group Ltd

Please return to: Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 SAS

Please debit my credit card as follows:
Access/Master Barclay/Visa Amex Diners

Credit Card No. _____________________________
Exp date _____________________________
NAME (Please print) _____________________________
ADDRESS _______________________________________
POST CODE _____________________________
DATE ___________________ TEL __________________

SIGNATURE

VAT RATES
6% Belgium, 25% Denmark, 5.5% France, 7% Germany, 4% Greece, 4% Italy, 3% Luxembourg, 6% Netherlands, 5% Portugal, 3% Spain.

FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)

VAT NO.__________________________

If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change. Please delete as appropriate. I do/do not wish to receive further details about books, journals and information services.

Credit card orders accepted by 'phone. Call 0181 652 3614
Understanding emi filters

Cyril Bateman expels the myths surrounding emi filters and highlights the inadequacies of emi filter CAD alternatives.

With the arrival of the CE mark emc regulations, most equipment previously exempt from compliance is now included. Due to the all-embracing nature of the EC proposals, electronic circuit designers need to be emc aware. A good starting point is to obtain a copy of the DTI's Business in Europe booklet.

For many products, use of improved screening or changing layout will render the system compliant. But whenever connection is made between a circuit and the 'outside world', the use of low-pass electromagnetic interference filters becomes an essential part of the design process.

Unfortunately emi filters, and the measurement methods used to derive their performance claims, are not generally well understood. This resulted in the comment by one respected engineer, that 'fitting filters is more an act of faith, than one of certain benefit'.

What then is an emi filter?

A conventional emi filter is a collection of capacitors and/or inductors, designed to pass the required signal or power, but to attenuate higher frequency unwanted energy. It cannot dissipate energy, hence can only attain its insertion loss performance by reflecting this unwanted energy back to its source.

This reflected energy is expressed as 'return loss,' being the ratio of reflected voltage to incident voltage. It is expressed in decibels.

Performance claims for emc filters are conventionally based on source and load impedances of 50Ω each, and the specified load current. Change of source or load impedance changes the filter's insertion loss, Fig. 1.

Load current considerations

Load current is important in filter design. Most interference filters include at least one inductor, and except when twin-line 'bucking mode inductors' are used, the value of this inductor can be load current dependent, thus changing the insertion loss of the filter.

While it is good practice to underrun an emi filter to improve reliability, the resulting insertion loss changes should be taken into account. For size and cost reasons, many filters are designed such that at the specified dc current the inductance is half that of the no current inductance.

Consequently performance will differ from the catalogue claims, depending on the actual source, load impedances and current loading applied.

With certain combinations of filter construction and end use conditions, the -3dB cut-off frequency and cut-off rate can change such that the filter becomes unduly 'peaked', giving insertion gain. A wrong filter choice can increase the transmitted emi level, Fig. 1.

Measurement versus simulation

The best way to gain understanding of any device is to measure it. Assuming access to a suitable spectrum analyser and network analyser, this is feasible. For frequencies higher than 10MHz and/or insertion losses greater than 50dB are an exception however. Design of the test jig and set-up requires specialist knowledge, to house the filter and maintain an acceptable 50Ω system. Measurement of filters in differing source/load impedances is also possible, but difficult. It requires the use of wide-band impedance converting transformers which are not easily obtained.

With all these practical and cost difficulties, why not just simulate the filter's behaviour?

To be meaningful, any simulation must be based on real life parts. And the models used must be supportable against actual measured results. With the wide frequency and dynamic ranges required, the capacitors and inductors used to
build practical filters simply do not behave in an ideal manner. Both component value and losses are very much frequency dependent. These variables cannot be supported by established simulation software, resulting in overly optimistic insertion loss predictions above 100kHz and overly pessimistic insertion loss predictions above the capacitor series/inductor parallel resonance frequencies, Figs 2,3,4,5.

**S parameters**

The S parameter measurement technique was developed to measure high frequency transistors, giving distributed rather than lumped results. It also facilitates subsequent circuit analysis and avoids the need to provide open and short circuit conditions during the actual measurement.

S parameters are measured using a vector network analyser. The test jig is inserted within a 50Ω transmission line, previously characterised at this insertion point by calibrating using known open, short, and matching loads.

Fundamental to this concept, the number of measured parameters for each frequency is the square of the number of device ports. For example, a capacitor to earth or series inductor has two ports, hence four pairs of magnitude and phase parameters per frequency.

Example 1. 1µF capacitor at 1MHz.
Example 2. 100µH inductor at 1MHz.

\[
\begin{array}{cccc}
S_{11} & S_{21} & S_{12} & S_{22} \\
1. & 0.996-179.6 & 0.0007-57.0 & 0.996-179.6 \\
2. & 0.988 9.0 & 0.157-80.9 & 0.157-80.9 & 0.988 9.0 \\
\end{array}
\]

S parameters provide the only way to simulate a filter using actual measured frequency dependent variables. However the vector network analyser is expensive, not easily managed, and properly characterised component test jigs are essential.

Interested readers should obtain copies of Hewlett Packard application notes 95-1 and 154, and also ref. 2.

---

**Fig. 2.** Response of LC filter – inclusive of capacitor/inductor losses in 50/50Ω source/load. Insertion loss plot, in red, shows realistic attenuation attained at all frequencies. Group delay plot, in blue, results from calculating 50 points in each decade of frequency. The return loss plot, green, clearly shows that insertion loss is attained only by reflection.

**Fig. 3.** Response of LC filter – exclusive of capacitor/inductor losses in 50/50Ω source/load. Insertion loss plot, in blue, shows overly optimistic attenuation above 1MHz. Analyser III can calculate relative insertion loss (gain) or \( S_{12} \), by menu selection. Since the plot styles are preconfigured, the phase response is automatically drawn.

**Fig. 4.** Response of LC filter – excluding capacitor/inductor losses in 50/50Ω source/load. This plot has been calculated using the resistive reflection bridge as described. Insertion loss plot, in red, shows overly optimistic attenuation with frequency above 1MHz. Since PSpice calculates only node voltages, insertion loss must be instructed as ‘DB(V(5))’. Similarly, to plot return loss, the instruction ‘DB(V(2)*(V(3)-V(2)))’ must be issued. Group delay, blue, is calculated from the insertion loss node, instructed as \( V_g(5) \).

**Fig. 5.** Response of LC filter – excluding capacitor/inductor losses in 50/50Ω source/load. This plot is calculated using the transformer coupled reflection bridge as described. Notice the low frequency limit on return loss due to the transformer’s primary impedance. The insertion loss plot, in red, shows overly optimistic attenuation with frequency above 1MHz. Since PSpice calculates only node voltages, insertion loss must be instructed as ‘DB(V(6))’. Similarly to plot return loss, green, the instruction ‘DB(V(4)))’ must be issued. Group delay, blue, is calculated from the insertion loss node, instructed as \( V_g(6) \).
For consistency, all simulations in this article model a filter having the same component values, a typical 1.0µF surface mount X7R ceramic chip (0.5nH self inductance), and a 100µH inductor wound for minimal self capacitance of 0.5pF on a medium µferrite toroid, Fig. 6.

Specially designed discoidal ceramic capacitors and feedthrough capacitors have smaller self inductances.

High dielectric constant ceramic capacitors have resonant modes which result from physical size and dielectric constant, above 10MHz. In practice these must be measured using 'S' parameters, or ignored for simulation.

Spice derived simulators are designed to model in the time domain and cannot accept frequency dependent variables.

**Fig. 6. Illustrating the user friendly ‘Net-List’ generating screen in my emi filter calculation program. The only instructions needed are on screen. Just overtype the defaults with required values. Simple prior menu selection provides other similar screens prepared for each filter style. Simulation is started by 'clicking' on either 'Worst Case' or 'Source/Load' buttons as required.**

Most available frequency domain simulators make no provision, or require the use of measured S parameters[3,4], see box 'S parameters'.

Simulation using measured S parameters, making true allowance for all component variables, as used for microwave design, is undoubtedly the ideal method. Unfortunately such parameters are not published for the components normally used to make a filter.

Measurement of filter component parts S parameters requires much skill and time to characterise and de-embed the test jigs needed for the various components. Due to the extreme mismatching of these parts to the test system source, a vector network analyser with 12-term error correction also called 'full 2-port correction' is essential. From personal experience, the resulting costs are difficult to justify – even for the component maker.

To solve these problems, I have written a new emi filter analysis program for Windows. It is able to accept a database of equation models for the frequency dependent variables, tanδ and K for capacitors and Q and μ for inductors.

Using this new method of frequency domain simulation gives predictions close to measured values, automatically provides the required insertion loss, return loss and group delay results, yet requires no prior knowledge from the user or use of S parameters. It avoids using convergence techniques, hence unlike Spice based simulators, it cannot misconverge. It has a user friendly net-list generation screen, providing an easy to use, realistic and cost effective simulation.

Loss models for X7R ceramic capacitors and medium µferrite toroids were used, Figs 1, 2, 6.

**EMI filter fundamentals**

Traditionally, emi filters are characterised for insertion loss by frequency in 50Ω systems, by circuit style – for example C, L/C, Pi, etc – total capacitance value and total inductance value at the specified load current. These are the end-of-line test parameters used in manufacture.

Insertion loss (S21) being the major consideration, emi filters traditionally are not designed to conform to recognised characteristics, such as Butterworth or Bessel. It is common practice to use equal value capacitors for Pi filters and equal value inductors for T styles.

To predict in-circuit performance, the user requires return loss and insertion loss at the actual source/load impedances and load current used. Both vary with end use conditions and the filter’s style. Published data in this detail is not generally available, but it can be simulated, Fig. 2.

Applications using multiple-frequency or non-sinusoidal signals, also need 'group delay' to minimise phase distortion.

Envelope degradation of digital signals transmitted through the filter is estimated by combining Fourier analysis of the source waveform with the filter simulation results, followed by reverse FFT.

Unlike resistive attenuators, which provide insertion loss by dissipating energy, emi filters are designed to provide a zero loss 'low-pass' characteristic while passing the required current. Resistive elements are minimised thus energy cannot be dissipated.

Insertion loss in low-pass emi filters results from mismatched impedances, with the filter reflecting the emi back to its source. With a poorly chosen filter, this reflected energy combined with the incident energy, can be much greater than with no filter. Insertion loss depends on the filter component values and the source/load impedances and can result in gain rather than loss at certain frequencies, hence the quote mentioned earlier, Fig. 1.

This reflected energy can be measured or simulated either as return-loss or reflection co-efficient. The return-loss concept is the more useful, being the attenuated level of the reflection compared to the energy incident on the filter. The
sign of this reflected energy relative to incident energy, depends on the input impedance of the filter and the circuit source impedance6.

With short cable lengths and pass-band frequencies, the reflected wave generally adds in phase with the incident wave at the filter and continues voltage additive back to the source. Unlike some recently repeated claims2, this aspect of transmission lines does not disappear with short cable lengths. It can be measured or simulated, Fig. 2,4,5.

To measure or simulate 'return loss' the forward and return signals must be separated. Ideally using a network analyser with an S-parameter test set to measure both signals. If phase can be ignored, you can use a variation of the Wheatstone bridge, preferably with a spectrum analyser or less accurately, using an oscilloscope, see box 'Bridges'.

My Hewlett Packard 8721A directional bridge, specified for use from 100kHz to 100MHz, was used as a basis for the transformer bridge simulation model. By winding larger bifilar transformers, successful audio frequency versions have been produced.

With the reflection port terminated by its characteristic impedance, this bridge is calibrated by applying in turn at the load port, open/short circuits and the load impedance to be used. Respective voltages at the load and reflection ports are noted. Return loss is measured at the reflected port in decibels relative to the calibration open/short voltages. Insertion loss is measured, at the load impedance, with the filter inserted immediately between the bridge and this load, in decibels relative to the calibration load voltage noted without the filter, see box 'Bridges'.

Insertion loss measurement - method
For a detailed discussion on filter measurement methods, read 'Measuring insertion loss of lowpass rfi filters'2. It discusses the MIL-STD method and the use of S parameters. The original test specification for emi filters was MIL-STD-220, based on concepts developed by Beattie9. It forms the basis for all subsequent filter specifications.

Fundamental to this method is the use of two 10dB attenuators8. These define the source/load impedances and reference plane, close to the filter being measured. The system is calibrated for 0dB loss by connecting these attenuators together and measuring the load voltage at the required frequencies, called the 'filter out' condition.

The filter to be measured is inserted between these attenuators and the measurements are repeated, called 'filter in' condition. Insertion loss of the filter is defined as 'the ratio of voltage measured immediately beyond the point of insertion with and without the filter inserted', expressed in decibels, ie 20log(filter in/filter out).

Any connecting cables between these attenuators, to be less than 0.05 of a wavelength - less than 10cm for 100MHz - and common to both filter-in and filter-out conditions.

Due to the high vswr of typical emi filters - many thousands to one in the stop band - this measured result obviously includes the cable and jig mismatch losses with that of the filter. This is because the 'filter out' condition provides 50Ω matching. True measurement requires test jigs to be electrically short and 50Ω impedance. It is not possible to dembed the filter from this jig/filter measured value.

Insertion loss simulation
Insertion loss on its own can be calculated by any circuit simulator using source and load resistors with the required filter circuit, hence replicating the MIL-STD method, and plotting relative gain (~6.02), Fig. 3. Accuracy depends on the simulator's models.

Depending on the chosen circuit simulator, simultaneous return loss and insertion loss can be simulated using one variation of the Wheatstone reflection bridge. Four differing simulators were used for this article.

Dos
Hewlett Packard 'RF & Microwave AppCAD' - S21, S11 etc but not return loss6, box 'S Parameters'.

Windows
PSpice 6.1 eval downloaded from Internet. Either model bridge10. Figs 4,5,7,8.

Analysys 10 from No. One Systems. Gain, S21 and phase, not return loss5, Fig. 3.

Technical support
The emi filter calculation software used to produce plots shown in Figs 1, 2 & 6 of this article is available from the author at £100 fully inclusive. This price includes VAT, postage, and technical support. A demonstration disk is also available at £7 fully inclusive, the price of which will be refunded on purchase of the full package. Note that this software runs under Windows version 3.x. Please send a cheque or postal order payable to Cyril Bateman Engineering, to Cyril Bateman at Nimrod, New Road, Acle, Norfolk NR13 3BD.

Measuring filter components
Capacitance measurement to ground can be influenced by the presence of inductance in series with the through terminals. Regardless of filter style, to measure total capacitance, link the through terminals together and measure from them to the common ground. Remove this link.

Series inductance measurements can be influenced by capacitance to the ground terminal especially with pi filters.

Regardless of filter style, to measure series inductance, connect the filter common ground terminals to the LCR meter guard terminal and measure inductance between the through terminals. If your meter has no guard terminal, this measurement is not possible.

If your LCR meter has no current bias facility, then an adaptor, comprising series capacitors to block the bias from the LCR meter together with isolating inductors to supply the required bias, is needed. This technique has been built and used by the writer for up to 20A dc bias and 250MHz frequency measurements.
Simulators such as PSpice, with ability to subtract node voltages, can use either bridge model, see PSpice netlists, Figs 7, 8.

Simulators having single ended outputs only should be able to use the bifilar-wound transformer version, to generate an unbalanced output node.

In simulations the resistive model bridge, if not real life, has unlimited frequency range. The transformer version can only be used at frequencies where the impedance of the primary is large compared to the source impedance, Fig. 5. With either model bridge it is essential the correct source voltage and output instructions are used, to ensure a calibrated bridge, Fig. 7, 8.

Filter component values

For standard catalogue filters, the required component values should be obtained from the maker. However, assuming the component parts or a sample filter is to hand, these values can be measured, by following correct measurement techniques.

Obtaining the actual inductance value at the required load current is more difficult, due to the need to bias the inductor being measured, see box 'Measurement of filter components'.

In summary

This article describes the behaviour of EMC filters and demonstrates workable means to measure or simulate this behaviour, and thus gain a working knowledge of EMC filters. By making measurements or simulations as described, many of the peculiarities of EMC filters will be understood, resulting in better application of these essential components.

References
1. Electromagnetic Compatibility—Guidance UK Regs. DTI's Business in Europe Hotline 0117 944 4888
3. Analyser III Professional, Number One Systems 01493-750114
4. RF & Microwaves AppCAD, Hewlett Packard P. No. HAPP-0001
5. EMC Filter Analysis program - Standard version, C.Bateman Engineering 01493-750114
6. Vector Measurement of High Frequency Networks, Hewlett Packard P. No. 5954-8355
8. Method Of Insertion-Loss Measurement, MIL-STD-220A
Frantisek Michele explains the benefits of protecting sensitive loads from power anomalies using a combination of series and parallel devices.

The operating speed and sophistication of electrical and electronic devices have increased enormously during the past decade. Unfortunately, the vulnerability of these devices to ac power line anomalies has increased at an even faster rate.

This article discusses the nature of these power line anomalies, their effect on electronic devices, the kinds of protection available, and choosing effective protection.

What causes the damage?
The most common cause of large, high voltage spikes or surges is lightning. Although a close lightning strike can cause such immediately obvious damage as blown fuses, scorched insulation, and smoking equipment, many less obvious kinds of damage can result.

Damage from any kind of ac power line anomaly falls into one of three categories: destructive, disruptive, or degrading. The first and most obvious — destructive — could result from a high voltage spike generated by lightning, or by a utility fault.

The second level of damage is disruptive and may be far from obvious. A disruptive spike might result from utility switching or from turning heavy electrical loads on/off in the vicinity of the affected devices.

Disruptive spikes are difficult to assess. They are evidenced by unexplained errors in operation of the disrupted device, inconsistent results, excessive downtime, and unusually frequent maintenance requirements.

Even more subtle is the long-term degrading, caused by the accumulation of many small spikes over time. Excessive downtime and significantly shorter product life can result from the degrading spikes. Although subtle and sometimes hard to detect, degrading spikes are no less costly in the long run than a single destructive spike.

### Causes of anomalies in power mains environments

<table>
<thead>
<tr>
<th>Potential anomaly</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undervoltage</td>
<td>Public utility, Load switching</td>
</tr>
<tr>
<td>Energy surges</td>
<td>Lightning</td>
</tr>
<tr>
<td>Single phasing</td>
<td>Shop/field equipment</td>
</tr>
<tr>
<td>RFI, EMI</td>
<td>Office equip</td>
</tr>
<tr>
<td>Noise Induced transients</td>
<td>Atmospheric</td>
</tr>
<tr>
<td></td>
<td>Automobiles</td>
</tr>
</tbody>
</table>

Fig. 1. Single-stage surge control circuit consists of a high energy device installed in parallel to the line. This device clamps the voltage at a predetermined level.
Various power line anomalies and their causes are listed in the Table shown on the previous page.

**Spike protection**
The traditional single-stage surge control circuit, Fig. 1, consist of a high energy device installed in parallel to the line to divert or bleed off the energy of the spike to ground. This device usually comprises metal oxide varistors, or MOVs, avalanche diodes, or gas tubes. These components are designed to clamp the voltage at a predetermined level.

Although inexpensive and easy to install, these devices have several disadvantages. First, their clamping level is a function of the spike rise time. The higher and faster spike, the higher their clamping voltage. A large spike can exceed the safe voltage level and cause degradation, disruption, or destruction.

Single-stage parallel surge suppressors have further limiting characteristics. If this component has a large surge capacity, it is relatively slow to react. Conversely, if it has a fast reaction time, it has a low capacity or short life.

Parallel protectors can be improved by adding stages of different types of protective component. But multi-stage parallel designs are still ineffective against major spikes.

**Series-parallel alternatives**
The most important characteristic of a series-parallel circuit, Fig. 2, is that it has an inductor directly in the path of an incoming spike. This element offers very little insertion loss to the wanted ac signal, but reacts in proportion to the spike, holding up the energy surge until it can be dissipated harmlessly by two parallel stages of high energy devices and fast-acting transient energy protectors.

The inductor allows the series-parallel circuit to attenuate noise effectively and requires no resetting and little or no maintenance.

**Selecting proper surge protection**
There are four important factors to consider in selecting the proper surge suppressor for a given application – energy capacity, speed, clamp ratio and life.

Energy capacity of the suppressor should be sufficient to withstand any surge that does not burn out the wiring. Speed in the 10ns reaction time range is generally sufficient for all high voltage spikes – with the exception of electromagnetic pulses. Yet some manufacturers claim reaction times in the picosecond range. Unfortunately, the rating of a component as measured in the laboratory is not usually representative of how fast a whole protective circuit will react when installed in a real world application.

With 1 to 10ns components, series inductors can delay high speed surges until the parallel protective components can react, making raw speed less critical.

Clamp ratio is the voltage at which a protector clamps fast, high-current surges in real life, divided by the slow rise, laboratory-tested clamp voltage at which protectors are usually rated. This ratio should stay near one for full protection. Yet most parallel protectors will have clamp ratios up to five or more when faced with severe, lightning-induced strikes, allowing potentially destructive surges to pass.

Series-parallel circuits provide greater protection because the in-line inductor slows down the slew rate of surges before they enter the load.

Life refers to the number of surges that a surge suppressor can withstand before it needs to be replaced. Some protectors such as MOVs are inexpensive to replace but need to be replaced frequently. While it is difficult to estimate exactly, a series-parallel surge suppressor can have a design life of at least ten years, even under the most adverse conditions. If less destructive but more frequently experienced transients and emi/rfi noise are a concern, in addition to high voltage spikes, further protection is necessary. Transients and emi/rfi noise, while rarely destructive, are definitely disruptive and degrading – and can be costly in the long term.

Inexplicable errors, inconsistent results, and increased maintenance and downtime are clues that these smaller, but frequent, power line anomalies may be disrupting your operations and degrading your equipment.

Since traditional parallel circuit surge suppressors provide little protection in this respect, additional protection must be provided. This usually takes the form of isolation and filtering transformers.

**Protection levels**
A series-parallel circuit will often protect equipment from lightning strike effects and other high voltage spikes that make up approximately 40% of all power line anomalies. These high voltage spikes are usually destructive.

Transients and noise, which are usually disruptive and degrading, make up another 45 to 50% of all power line anomalies. It is relatively easy to add filtering to series-parallel devices to eliminate transients and emi/rfi noise, providing protection against 85 to 90% of all power line anomalies. The remaining 10 to 15% of anomalies comprise voltage sags.

**For lower voltage systems**
As with ac power line surge suppressors, data and control line surge suppressors fall into two groups, namely parallel and series-parallel protectors.

Parallel gas breakdown devices such as spark gaps and gas discharge tubes may be used for clamping. They are rugged – but slow – and are generally limited to applications involving supply voltages above 90V. In the case of a fast rise surge or impulse, over 1200V may be exceeded prior to clamping. Spark gaps and gas discharge tubes can handle such very high transient current levels for short periods.

Avalanche diodes are fast and will hold an accurate clamp voltage. However, because of their limited physical volume, a high energy transient of 1 or 2 joules can heat and destroy the diode junction, leaving the protected circuits vulnerable.

Selenium diodes, thermistors, and MOVs are also used in parallel circuits to protect the control and data lines. But, none of these devices can cover the complete spectrum of transients. Either they respond quickly but have limited power handling capability, or they can handle very large energies but do not clamp at an acceptable level. This limits their uses to low energy applications or to situations in which high voltage spikes can be tolerated.

Figure 3 compares parallel and series-parallel suppressors in data-link applications.
Don’t miss out!

Place a regular order with your newsagent for your own copy of Electronics World. And be entered into our Free Prize Draw! One reader a month will win...

In April A FREE 11-piece tool kit and a FREE copy of “Oscilloscopes” by Ian Hickman, worth £16.99

In May A FREE 11-piece tool kit and a FREE copy of “Modern CMOS Circuits Manual” by R M Marston, worth £14.99

In June A FREE 11-piece tool kit and a FREE copy of “Analogue Circuits Cookbook” by Ian Hickman, worth £19.95

To enter the draw simply fill in the form opposite, ask your newsagent to sign it when you place your regular order for Electronics World and send the forms to: Marketing Department, Electronics World, Reed Business Publishing, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.
In Part 2 of this rare analysis of ssb outphasing, David Gibson investigates the effects of component tolerances on performance. David also looks at multi-section filters and digital filter implementation.

As it stands, Fig. 9 of last month's article makes no provision for adjusting the parameters. In addition to component tolerance problems there will be drifts due to temperature, ageing and so on. You need to know if these errors are significant and, if so, how they can be trimmed.

What is apparent from the Basic programs I used to derive the graphs, is that component tolerances are critical. Even slight deviations from the required values give rise to noticeable increases in phase and amplitude error. Having said that, most outphaser designs do not make any provision for trimming the component values.

To analyse the errors I will assume that the gain-setting resistors, Fig. 3d of last month's article, are exactly right, with $R_1=R_2$. You can either use tight-tolerance parts or trim the gain, if need be. Trimming to unity gain gives you a degree of orthogonality, which helps analysis as well as performance.

Having done this you will notice that the tolerances of the $RC$ pairs can be applied to either component. That is, using $\pm 1\%$ resistors and $\pm 1.5\%$ capacitors is the same as using exact resistors and $\pm 2\%$ capacitors. The analysis is easier because you now need only consider the $C$ tolerance when running the simulation program. Although each component can drift independently, it is likely that temperature will affect all parts similarly. Equally, it is unlikely that you will obtain four capacitors which combine to produce the worst possible effect, as demonstrated in Fig. 1.

The diagram shows 24 possible responses due to combinations of capacitor error. It is based on a capacitor tolerance of $\pm 2.5\%$, or $\pm 1\%$ resistors and $\pm 1.5\%$ capacitors. It shows that the original $\pm 1.5\%$ error has now become over $\pm 4.5\%$. Equation 8 (last month), demonstrates that with no amplitude errors this increases the power in the unwanted

| Table 1. Performance data for examples given in text. |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Example | 1 | 2 | 2a | 3 | 4 | 5 | 6 |
| Pairs | 2 | 2 | 2 | 2 | 3 | 4 | 4 |
| Span | 4.36 | 4.08 | 3.62 | 3.447 | 3.67 | 4.50 |
| Spread | 14.0 | 12.0 | 9.00 | 33.0 | 6.89 | 12.0 |
| $\pm 3^\circ$ (Hz) | 216 | 254 | 257 | 350 | 194 | 22 |
| $\pm 1$ (Hz) | 4620 | 3940 | 3890 | 2850 | 5160 | 46200 |
| $\pm 0.5^\circ$ (Hz) | 240 | 288 | 292 | 417 | 246 | 39 |
| Phase | 4170 | 3470 | 3470 | 2400 | 4240 | 6460 |
| ripple | $+2.66^\circ$ | $+1.54^\circ$ | $+1.4^\circ$ | $+0.29^\circ$ | $\pm 0.13^\circ$ | $+0.49^\circ$ | $\pm 0.49^\circ$ |
| $\pm 3^\circ$ | $-2.52^\circ$ | $-1.55^\circ$ | $+1.5^\circ$ | $-0.22^\circ$ | $-0.47^\circ$ |

Although each component can drift independently, it is likely that temperature will affect all parts similarly. Equally, it is unlikely that you will obtain four capacitors which combine to produce the worst possible effect, as demonstrated in Fig. 1.

The diagram shows 24 possible responses due to combinations of capacitor error. It is based on a capacitor tolerance of $\pm 2.5\%$, or $\pm 1\%$ resistors and $\pm 1.5\%$ capacitors. It shows that the original $\pm 1.5\%$ error has now become over $\pm 4.5\%$. Equation 8 (last month), demonstrates that with no amplitude errors this increases the power in the unwanted
A four-stage filter, for example, has four pairs of filters. There are too many variables to juggle. However, it is still possible to arrive at a filter with a reasonable flat top.

A more probable use for a four-stage filter would be in a frequency shifter for preventing howl-around caused by microphone feedback. This can be prevented by using a small shift of around 5Hz over the 0-20kHz spectrum. The ear is very sensitive to the ‘warble’ caused by inadequate suppression of the unwanted sideband resulting from a frequency-shift.

Example 5. Centre frequency of the four pairs of filters, Fig. 3, is 500Hz. This means that the four pairs are at 32.45, 223.6, 1118.0 and 7703Hz. The f3/f4 and f5/f6 pairs have a spread of 5.00. Overall spread between the f1/f2 and f7/f8 pairs is 237.4.

The filter has low ripple, Fig. 4. Phase ripple is under ±0.5° while the error is within ±0.5° from 41Hz to 6100Hz, and ±1° from 38Hz to 6460Hz. With a change in centre frequency to 1250Hz the ‘bandwidth’ becomes 95Hz to 16.2kHz, which is suitable for many audio applications.

In terms of ‘bandwidth’ and flatness, this represents very good performance. These features will, of course, be degraded by increased component tolerances. The values could probably be tweaked to reduce the ripple, or to aid the use of E24 components, but this is a lengthy exercise.

Wide-band filters
Example 6. Assuming the following for Fig. 3.

\[ f_1/f_2 \text{ span } 4.50 \text{ spread (to } f_3/f_4) 12 \]
\[ f_3/f_4 \text{ span } 3.06 \text{ spread (to } f_5/f_6) 9.0 \]
\[ f_5/f_6 \text{ span } 3.06 \text{ spread (to } f_7/f_8) 9.0 \]
\[ f_7/f_8 \text{ span } 4.50 \text{ spread (to } f_9/f_{10}) 12 \]

produces a filter which maintains a flat pass-band to ±3° over a bandwidth of 22Hz to 46200Hz. This is the equivalent of over 2000:1, or 3.3 decades, or 11 octaves. I have not attempted any fine adjustments to minimise phase ripple. Even so, this represents an unprecedented response. It far exceeds the performance of the old polyphase filters.

A ripple of 3° is −32dB power attenuation. This could be improved on, but the example serves to demonstrate some of the possibilities of filter design.

Using integrated filters
The fact that component tolerance is crucial indicates the use a filter IC. There are two types of integrated circuit filter, one involving switched-capacitors, the other continuous time techniques. Unfortunately, switched capacitor filters have too restricted a range of clock frequencies, and there is the question of clock noise too.

Continuous-time filters are state-variable designs using conventional op-amps. They incorporate closely matched on-chip resistors and capacitors. However, many such designs appear no better than would be achievable using ±1% tolerance components.

Component costs
Using discrete components allows you to tighten up the tolerances. A ±1% 50ppm/°C resistor costs around £0.03 while a ±1% -100ppm/°C capacitor is around £0.35.

It might be possible to trim the gain. If not,
you could consider using ±0.1% 10ppm/°C resistors here, and for the RC filters. These cost around £0.80 each. But, since they are available in E96 values, you will probably only need one per filter section; since the gain-setting resistors are all the same value you could save money too.

**Digital filters**

I cannot discuss outphasers without mentioning the possibilities opened up by digital filters. A 3kHz audio outphaser is well within the scope of even a modest digital filter algorithm. You can also use dsp techniques to implement a very good wideband response, as in Fig. 4 – provided you can cope with the sampling rate required.

You could easily implement the all-pass filters digitally since they are based on ‘simple’ first-order sections. However, there is another approach which generates the phase-shift directly.

In a finite impulse response (FIR) filter, Fig. 5, each of the ‘t’ blocks is a delay of one sample. The design process involves our specifying both the amplitude and the phase response. Normally, you would not bother to specify the phase response, and the finite-impulse response filter would give a linear phase shift.

In summary,

$$G(\omega) = 1; \quad 0 < \omega < \frac{1}{2} \omega_s,$$

$$\theta(\omega) = \begin{cases} -90^\circ: \omega > 0 \\ 0: \omega = 0 \\ +90^\circ: \omega < 0 \end{cases}$$

This could be described as a brick-wall band-pass filter from 0 to $\omega_s/2$. It has a quadrature phase response instead of the more usual linear phase response.

Calculating the filter coefficients involves a Fourier transform, and is well-covered in digital-signal-processing textbooks. For a filter with $M$ taps, i.e. coefficients 0 to $M$, and $M$ is even, the coefficients can be derived to be,

$$A_n = \begin{cases} 0 \quad : n = \frac{1}{2} M, \text{ else} \\ 1 - \cos\left(n - \frac{1}{2} M\right) \pi \quad : 0 \leq n \leq M \\ \frac{1}{M} n \quad : 0 \leq n \leq M \end{cases}$$

so for a 32 tap filter the coefficients are,

$$0, -2, 0, -2, 0, -2, 0, \ldots, 0, -2, 0, \ldots, 0, -2, 0, -2, 0, 0.$$  

Note that there are only eight distinct coefficients and that the even coefficients $A(0)$ to $A(32)$ are zero. There is a common factor of $\omega_s/\pi$, leaving the coefficients as simple ratios.

This could help to speed up the operations when the filter is implemented in a microprocessor or digital-signal processor.

Within the constraints of sampling theory and ‘windowing’ the filter has a ‘perfect’ 90° phase shift and a flat amplitude response. Windowing is the effect caused by the finite length of the filter. In practice, the phase shift is 90°, but there is some amplitude ripple. The only remaining point to note is that in addition to the 90° phase delay there is a sampling delay of $1/2M$ which must be matched by the in-phase channel.

Amplitude response of a 32-tap filter is shown in Fig. 6, with the coefficients listed in Table 2. Ripple is around 0.5dB, which is ±6%. This can be improved dramatically by implementing a Hamming window as shown in Fig. 7. I will not explain windowing here, suffice to note that the coefficients are modified by the windowing function,

$$A_n = A \left(0.54 + 0.46 \cos \frac{n - \frac{1}{2} M}{2} \pi \right)$$

This has the effect of flattening the amplitude response without affecting the phase response.

The graphs were generated by running a simple Basic program. Firstly, the program generates the coefficients and then executes an inverse transform to produce the values of amplitude and phase which would occur.

The programs were based on those given in Lockhart & Cheetham in 1989, see last month’s article for a list of references. Finite impulse response filters and windowing are covered in any number of digital-signal-processing books, though quadrature-phase filters are not widely discussed.

**Using the filters in a receiver**

Schematics discussed so far have implicitly given the configuration for a transmitter. The same module is used in a receiver, but the quadrature signals from the demodulator drive the inputs to the two filter chains. These are summed, or differenced, at the output to recover one of the sidebands. Just as in the modulator of Fig. 2 last month, you can reverse the order of the components and do the outphasing at rf if desired.

**Variations on a theme**

I compared the outphaser and Weaver methods, and found them similar. Other choices facing the designer are whether to do the phasing at rf or af, and whether to use low or high-pass filter sections.

Swapping the position of the $R$ and $C$ in last month’s Fig. 3d, does not alter the operation of the circuit. I have deliberately avoided giving any definite recommendations here, since the design route you take depends on your precise application.

Using first-order sections and the parameters of span and spread eases the analysis and allows us to adapt the outphaser concept for other uses.

![Fig. 7. Effect of Hamming window. The same 32 tap filter with modified coefficients shows virtually no amplitude ripple in the pass band. Scale for the dotted line is 100 that of the solid line, and shows that the ripple is 0.035dB (0.4%) from 420Hz to 3.6kHz.](image-url)
Finally an upgradeable PCB CAD system to suit any budget ...

BoardCapture - Schematic Capture
- Direct netlist link to BoardMaker2
- Forward annotation with part values
- Full undo/redo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control
- Back annotation from BoardMaker2

£395

BoardMaker - Entry level
- PCB and schematic drafting
- Easy and intuitive to use
- Surface mount support
- 90, 45 and curved track corners
- Ground plane fill
- Copper highlight and clearance checking

£95

BoardMaker - Advanced level
- All the features of BoardMaker1 plus
- Full netlist support - OrCad, Schemal, Tango, CadStar
- Full Design Rule Checking - mechanical & electrical
- Top down modification from the schematic
- Component renumber with back annotation
- Report generator - Database ASCII, BOM, DRC
- Thermal power plane support with full DRC

£395

BoardRouter - Gridless autorouter
- Simultaneous multi-layer routing
- SMD and analogue support
- Full Interrupt, resume, pan and zoom while routing
- Output drivers - Included as standard
- Printers - 9 & 24 pin Dot matrix, HP/Laserjet and PostScript
- Penplotters - HP, Graphtec, Roland & Houston
- Photoplotters - All Gerber 3000 and 5000
- Excellon NC Drill / Annotated drill drawings (BM2)

£200

Contact Tsien for further information on Tel 01354 695959
Fax 01354 695957

CIRCLE NO. 118 ON REPLY CARD

New Mini Camera & Special Offers

Electronics, 276-278 Chatsworth Road, Chesterfield S40 2BH
Access/Visa/Orders (01246) 211202 Fax: 550959
 callers welcome 9.30am to 5.30pm Monday to Saturday

CIRCLE NO. 119 ON REPLY CARD

80C188EB Embedded CPU Card

From
£23.60

- 80C188EB Processor Clocked at 24MHz
- 128K Flash EPROM (32K - 512K options)
- 128K 5 volt Flash EPROM (512K option)
- Real Time Clock (On board Battery)
- Watchdog Timer/Reset with Brusnost detection
- 2 Serial Ports - 1 RS232, 1 RS232/422/485
- 8 Channel 12 bit ADC (optional)
- Direct Connection to Alphanumeric LCD Display
- 48 Digital I/O lines
- Set-up and Driver routines with Full C Source Code

FAST START - Use our Full ANSI compatible Embedded C Compiler for super fast application development. Supplied complete with Editor, Compiler, Assembler, Linker. Embedded Debug and comprehensive Manual. You can compile and download by the Debugger with a single keypress - or lock in the editor at just the right price. Generation ROM/Executable Code direct, no struggling with EXE conversions or moving around with reset code. Just £95.

For further information Call now - 01379 644285 - Fax 650482

Devantech Ltd - 2B/2C Gilray Road - Diss - Norfolk - IP22 3EU

CIRCLE NO. 110 ON REPLY CARD

Electronic World + Wireless World
May 1996

CIRCLE NO. 120 ON REPLY CARD
Learn 8048

Jim Whitehouse examines a hard and software training kit designed to help teach how 8048 family controllers work.

Kanda's Microcontroller Training system is a complete package aimed at introducing students and newcomers to the hardware and software intricacies of the 8032/8052 family of microcontrollers. It is specifically aimed at the Btec syllabus, but it should be of use to anyone wanting a basic knowledge of microcontrollers.

The kit is housed in an attractive lockable case, inside which is all the equipment required for the course - apart from the host computer. It consists of four teaching manuals, one reference manual, ten hardware units, software on disk and the necessary interconnecting cables.

A 'Connecting the system' leaflet helps the student to check that they have all the necessary parts and the correct connections. For the lecturer there is a short introduction explaining what the training system is about.

First reactions

My initial reaction to the kit was that considerable thought had been given to the packaging of the hardware. The units were robust and clearly labelled.

On the other hand, the manuals were not well made and some of the pages were already falling out. In addition, reading the manuals did not enthuse me to become an avid reader due to the meandering style of writing.

However, Kanda explained that the text was written in accordance with the requirements of Btec NIII syllabus and had already been in use for two years. The manuals covered most of the topics that you would expect to find. It would have been useful to know what was coming next by way of an index. I found having to wait until page 35 to discover what was going to happen a little unhelpful.

Within the manuals

Each manual splits into six teaching blocks with sections for ease of teaching. The training system assumes little knowledge of electronics. Although not intended to teach electronics, the package does briefly explain what is happening where necessary.

Simple digital techniques, binary and hexadecimal mathematics and Boolean algebra are covered first in the manuals. Later binary coded decimal concepts and conversions are discussed.

Useful exercises are included to ensure that the student has understood the points made in each section. If the manual was followed in its entirety then the student would cover all the functions - as opposed to every code - involved in the instruction set. This is a sound basis for further learning.

Unlike the teaching manuals the reference manual is well written and contains invaluable information. The teaching manuals contain excellent technical coverage on factual issues, but where they express opinions, they tend to fail to appreciate that there are other views than those of the software engineer.
Schematic Capture
- Easy to Use Graphical Interface under both DOS and Windows.
- Netlist, Parts List & ERC reports.
- Hierarchical Design.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and PCB design.

Simulation
- Non-Linear & Linear Analogue Simulation.
- Event driven Digital Simulation with modelling language.
- Partitioned simulation of large designs with multiple analogue & digital sections.
- Graphs displayed directly on the schematic.

PCB Design
- 32 bit high resolution database.
- Multi-Layer and SMT support.
- Full DRC and Connectivity Checking.
- RIP-UP & RETRY Autorouter.
- Shape based gridless power planes.
- Output to printers, plotters, Postscript, Gerber, DXF and clipboard.
- Gerber and DXF Import capability.

Write, phone or fax for your free demo disk, or ask about our full evaluation kit.
Tel: 01756 753440. Fax: 01756 752857.
53-55 Main St, Grassington. BD23 5AA.

Proteus runs as a 32 bit application under both DOS and Windows (3.1, 95 and NT).
Prices start from £470 ex VAT; full system costs £1645 for DOS, £1875 for Windows. Call for upgrade pricing and/or information about our budget and educational products. All manufacturers' trademarks acknowledged.
Loading up
The software loaded easily and performed well. Programs can be written in source code mnemonics, assembled and simulated. In addition, there is provision for downloading the object code to the microcontroller.

Based on pull down menus, the package allows the option of selecting via a mouse. It has facilities to read, write and modify programs in the source code and store them.

Source code can be assembled, and debugged if necessary, into the required machine code. It can then be simulated, using single step, step back, step over or run combinations, after which the program can be loaded into its targeted device. The targeted device could be an emulator, or one of a wide range of eprom types.

There is a central interface unit communicating with an RS232 serial port. Because the software takes control of the host computer serial link, no problems were experienced due to incompatible bit rates, etc. Cabling the host computer to the central interface and the 9V supply was easy thanks to the circuit diagram provided.

In practice
Training starts with the ubiquitous traffic light system and is user friendly. Next, modules show how to input digital signals in the form of switches and digital outputs, illuminating leds, creating sound with different notes and multiplexing the outputs onto a seven segment display. Inputting numbers from a keyboard and handling analogue inputs and outputs are also covered.

One section deals with how special function registers and interrupts are handled. A prototype board included allows for the student's own circuitry. One additional module emulates an eprom. This allows the user to modify programs more easily and more quickly. A further module programmes the eprom with the finalised code.

Teaching blocks deal with the important procedure of writing programs. Equally importantly they help assessing what is required with the aid of such tools as the flow diagram.

In summary
As a practising engineer, I found the package easy to use and understand. I believe that any electronics engineer would be able to use this package as an introduction to microcontrollers.

The whole package was far better than other manufacturer's low cost systems. I believe that it would enable a reasonably intelligent student to understand the workings of the microcontroller sufficiently well to enable that person to build a small unit and go on to learn more about computer systems.

Since this is intended as an educational package, it must be marked accordingly, so I give it 9 out of 10. Presentation of the manuals caused the lost point.

Availability
Kanda's Microcontroller Training system is priced at £595, exclusive. The training kit plus development kit is £795 and includes eprom emulator and programmer. The prototyping board is separate at £80. Quantity discounts available. Call Kanda on 01974 282670, fax 01974 282356, or write to Pendre Hafod, Pontrhygroes, Ystrad Meurig, Dyfed SY25 6DX.

The instruction set is included for easy reference although full explanations are given in the reference manual that forms part of the comprehensive course work.

The assembler is integrated with the editor and highlights errors as they occur, rather than producing a separate error listing as this simplifies the assembly process.

The simulator is available with one key press and provides a clear picture of the processor values as you step through the code enabling you to find the inevitable bugs. The values in each register can be altered very easily to simulate different conditions or inputs.
## KESTREL ELECTRONIC COMPONENTS LTD

☆ All items guaranteed to manufacturers' spec.
☆ Many other items available.

‘Exclusive of V.A.T. and post and package’

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>27C64-15</td>
<td>2.60 15 1.57</td>
<td>62812LP-85</td>
</tr>
<tr>
<td>27C128-15</td>
<td>2.60 15 2.20</td>
<td>62256P10</td>
</tr>
<tr>
<td>27C256-15</td>
<td>2.20 15 1.65</td>
<td>6264LP-10</td>
</tr>
<tr>
<td>27C512-15</td>
<td>2.20 15 1.85</td>
<td>MM58724CN</td>
</tr>
<tr>
<td>27C1015</td>
<td>3.95 2.75</td>
<td>ULN2003A</td>
</tr>
<tr>
<td>27C230-15</td>
<td>6.00 3.80</td>
<td>7805</td>
</tr>
<tr>
<td>27C404-15</td>
<td>8.60 4.85</td>
<td>MAX282</td>
</tr>
<tr>
<td>80C31-12</td>
<td>2.10 12 1.95</td>
<td>74HC000</td>
</tr>
<tr>
<td>80C562-5-16</td>
<td>10.50 7.50</td>
<td>74HC007</td>
</tr>
<tr>
<td>28A0 CPU</td>
<td>1.80 1.00</td>
<td>74HC244</td>
</tr>
<tr>
<td>LM317T</td>
<td>0.50 0.40</td>
<td>74HC245</td>
</tr>
<tr>
<td>75176BP</td>
<td>1.35 0.75</td>
<td>74HC373</td>
</tr>
<tr>
<td>68W PLCC skt</td>
<td>0.90 0.701</td>
<td>74HC374</td>
</tr>
</tbody>
</table>

Phone for full price list

All memory prices are fluctuating daily, please phone to confirm prices.

178 Brighton Road, Purley, Surrey, England CR8 4HA
Tel: 0181-668 7522. Fax: 0181-668 4190

---

## Field Electric Ltd

Tel: 01438-353781 Fax: 01438 359397
Mobile: 0836-640328
Unit 2, Marymead Workshops, Willows Link, Stevenage, Herts, SG2 8AB.

- Programmable from only £89.00
- Simulators
- Real-time Emulators with Bond-out Chipsets for:
  - PIC 16C54/61/82/622/64/65/67/73/74/84
- Large Range of Adapters and Proto-Boards
- Parallax PASS, MPASM or Byte Craft C Code

**MILFORD INSTRUMENTS**
UK-Ireland Distributors for Parallax Development Tools and the BASIC Stamp
Tel: 01977 683665 Fax: 01977 681465

---

## STEWART OF READING

110 WYKEHAM ROAD, READING, BERKS RG6 1PL
Telephone: (01734) 268041. Fax: (01734) 351696

Calls Welcome 9am-5.30pm Monday to Friday (other times by arrangement)

---

## PIC our TOOLS

For Value and Performance

- Programmists from only £89.00
- Simulators
- Real-time Emulators with Bond-out Chipsets for:
  - PIC 16C54/61/82/622/64/65/67/73/74/84
- Large Range of Adapters and Proto-Boards
- Parallax PASS, MPASM or Byte Craft C Code

**MILFORD INSTRUMENTS**
UK-Ireland Distributors for Parallax Development Tools and the BASIC Stamp
Tel: 01977 683665 Fax: 01977 681465

---

## PLOTTERS - COMPUTERS - COMMUNICATIONS - PSU - VDU'S - VIDEO - FANS - TEST - CABLE - NETWORK - PRINTERS

DISK DRIVES ALWAYS IN STOCK.
OVERSEAS ENG. WELCOME.
TELEPHONE ORDERS ACCEPTED.
CP DETAILS PLEASE RING.
ALL PRICES PLUS 17.5% VAT.
LUKE LIGHTNING? Tes's kit generator

MARCH 1995
FREE Circuit Ideas pocket book Part 1
Distortion from power-amp supplies
Winning power switching circuits
Enhance RS232
Transmission lines explained
Tesla's kit generator

APRIL 1995
20Hz active subwoofer
Getting more from RS232
PC engineering: signal analysis
24cm antenna
DSP demystified
Analogue signal processing
Linsley-Hood's attenuator for audio
Evidence for the slew-rate debate
Self-tuning 50Hz filter for instrumentation

AUGUST 1995
20Hz active subwoofer
Getting more from RS232
PC engineering: signal analysis
24cm antenna
DSP demystified
Analogue signal processing
GPS designer's kit

SEPTEMBER 1995
New audio power solution
Analogue design for a single-rail
MicroCap 5 reviewed
Nulling coil interaction
New balanced amplifier design
Analysing fm noise

OCTOBER 1995
FREE Circuit Ideas pocket book Part 2
ISDN - inside the world network
Linsley-Hood's attenuator for audio
Evidence for the slew-rate debate
Self-tuning 50Hz filter for instrumentation
Enhance RS232
Transmission lines explained
Researching via the Internet
New concept in I/O control

NOVEMBER 1995
FREE Zetex 5V regulator
Optoelectronics investigated
Isolate RS232
14.4kbaud fax/data modem
Power and Class-C
Linsley-Hood noise reducer
Applying the ZR78L05 regulator

BACK ISSUES

Back issues of Electronics World are £2.50 in the UK and £3.00 elsewhere*. Price includes postage. Please complete the coupon and send with correct payment to: Electronics World, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.

Note that all issues are subject to availability and please allow 28 days for delivery.

With every two back issues ordered - Engineer's Pocket Book Worth £4.95
Do you have an original circuit idea for publication? We are giving £100 cash for the month’s top design. Additional authors will receive £25 cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

WIN A TTI PROGRAMMABLE BENCH MULTIMETER

“High accuracy, resolution and bandwidth – performance beyond the capability of handhelds”

This high-performance bench multimeter could be yours in exchange for a good idea. Featuring a dual display, the 4.5-digit 1705 multimeter resolves down to 10μV, 10mΩ and 0.1μA and has a basic dc accuracy of 0.04%. Frequency measured is 10Hz to 120kHz with an accuracy of 0.01% and resolution to 0.01Hz. Capacitor and true rms measurements are also featured.

Recognising the importance of a good idea, Thurlby Thandar Instruments will be giving away one of these excellent instruments once every six months. This incentive is in addition to our monthly £100 ‘best circuit idea’ award and £25 awards for each circuit published.

‘Scissors’ overcome earth loop problems

This is a transformerless circuit for overcoming earth loop problems in the interconnection of equipment. Amplifier A1 is connected as the usual differential amplifier except that, as the ground side impedance is low, the ground side resistors can be small to reduce noise.

Amplifier A2 is also configured differentially, but here the differential input cancels any series mode signal appearing between the supply earth of the circuit and the input earth of the of the destination equipment. Thus you can have many ‘earth scissors’ running from a common power supply without making more earth loops. This second section is sometimes featured in well designed audio equipment whose outputs are described as ‘ground-compensated’ and is highly recommended for general use.

Low-level sources may require pre-amplification, or a high-impedance load. Inclusion of A3 accommodates these sources, providing buffering and gain referred to the source ground, before feeding A1.

Simon Bateson
Hutton Rudby
Yorkshire

Many of these ‘earth scissors’ can be run from a common power supply without causing earth-loop problems.
ANCHOR SURPLUS Ltd
The Cattle Market Depot
Nottingham NG2 3GY. UK
Telephone: +44 (0115) 986 4902/
+44 (0115) 986 4041 24hr answerphone
Fax: +44 (0115) 986 4667

MICRO VIDEO CAMERAS
Brand NEW Micro sized Video Cameras that fit into a Matchbox.
Ideal for Video Surveillance, Security Surveillance, Amateur TV, PC
Digitising, See-U-See-Me on the InterNet etc etc.
Standard 1v p-p Video Output. 0.1 LUX Sensitivity. IR Capable for Night
time viewing with IR illumination.
10 Models IN-STOCK. DIY or Built. Cased or Un-cased.
Please Phone or FAX for more info.
12 Month Guarantee . . . Prices from ONLY £75 TO £125 INCL VAT

HP 141T Spectrum Analysers
PRICE CRASH . . . We are now able to offer the 141T system incl 8552B IF
and 8555A RF (10Mhz-18Ghz) for the Un-beatable price of only £750
Also available . . . 140T (Non-Storage version of 141T) with 8552B IF and
8555A RF as above for only £650
Plug-In's and Main frames available as separates . . . Phone !!
Please note . . . We have a LARGE Stock of these items, but expect them to
clear very quickly indeed, so please don't delay.

A small sample of this months Offers
HP8683A Signal Generators 2.3 - 6.5 Ghz AM/FM £1995
HP8640B Sig gens 450 Khz - 550 Mhz AM/FM £650
WAVETEK 275 12 Mhz Prog' Sweep / Function gens £495
EIP 451 Microwave Counter 925 Mhz - 18 Ghz £995
Eaton 2075 Noise Gain Analyser + 7618E Noise Gen' Complete with books etc, etc. Mint condition.
FEW ONLY at £1950
Marconi 6460/1 RF Power meters c/w 6440N Head (10mw), 20db atten (1w) an waveguide transition £150
Racal Dana 9100 RF Power Meters . . . 1Mhz – 1 Ghz, 3w, 50 ohm £85
Racal Dana 9915 600 Mhz 8 digit Frequency Counters with TXO. ONLY £95
SAYROSA 252 Automated Mod meters (2 Ghz) AM/FM £195
Racal 9909 Mod meters (1.5 Ghz) AM/FM £165

OPEN SEVEN DAYS A WEEK
Mon-Fri 9am-6pm  Sat 8am-4pm  Sun 10am-4pm
NO APPOINTMENTS NEEDED. CALLERS ALWAYS WELCOME
All Prices are Ex VAT & Carriage
All items are Fully Tested with Verified Calibration
and carry our Unique 30 Day Un-Conditional Warranty

May 1996  ELECTRONICS WORLD+WIRELESS WORLD  403
Reduce power supply ripple

As a means of obtaining a 10:1 reduction in ripple, this could hardly be less complicated. It consists merely of bypassing the sensing network from the power supply output to the error amplifier or, to put it another way, of providing better coupling for the feedback. Most of the sensing network is bypassed by the 330nF capacitor and R₃ helps to maintain stability. Testing with 1kHz load switching showed a much faster regulator response with no sign of instability. Diode D₁ prevents the error amplifier input being taken negative in the event of a short-circuit.

The circuit was used in an otherwise completely standard regulator and gave quite dramatic results.

Gregory Freeman
Nairne
South Australia

**£100 WINNER**

Spectrum analyser for audio

Operating in real time, this circuit allows the frequency response of a speaker to be viewed on an oscilloscope using X-Y mode. The X-axis indicates log frequency and the Y-axis dB, where a sound level meter provides decibel output.

The sweep vco is based on a 4046. A single sweep covers the audio range 20Hz to 20kHz with logarithmic voltage-to-frequency relationship. Darlington T₁₄ buffer the ramp across the timing capacitor C₄. The waveform from pin 7 is inverted using T₄ and summed with the waveform from pin 6 giving a triangle wave plus a squarewave component which is removed by trimming VR₃. Capacitors C₅,7 provides compensation for T₁₄ to remove switching spikes.

Sweep range is set with VR₂. The screen refresh rate is set by VR₃ at about 8Hz to avoid flicker. An oscilloscope X input sensitivity of 50mV/div gives two divisions per decade, up to 20kHz. A sound meter output gives fastest response.

Calibrate the vertical scale using the sound level meter and VR₄ to find dB/div. Long cone excursions caused by frequencies below 30Hz can be avoided by increasing VR₃ or by reducing sweep time via R₁₇.

For manual sweep, short T₆(c-e) and vary VR₃. This allows levels to be recorded manually if a scope is not available. The vco can also be used as a sine, triangle, square signal generator to cover 10Hz-100kHz in one range with 1% sine thd, or for sound effects. For minimum thd the supply voltage needs to be about 5.8V and resistor R₄ may also need trimming for a lower second harmonic component.

Ian Hegglun
Goodna
Australia
Micro-Electronics Training & Development

See us at C&I on Stand No. A16 @ NEC 21-23 May 96

From Only £95

Overseas Distributors Wanted!
Please Call or Fax for Full Details

Kanda Systems, Innovation Centre, Pendre Hafod, Ponthrydygoras, Ystrad Meurig, SY25 6DX
Tel: (+44) (0) 1974 282670 Fax: (+44) (0) 1974 282356 email: Info@Kanda.demon.co.uk

AN EXTENSIVE RANGE OF TEST EQUIPMENT IS AVAILABLE. PLEASE SEND FOR OUR NEW CATALOGUE

Postage and packing must be added. Please phone for price. VAT @ 17½% to be added to all orders. Please send large SAE for details.

Telford Electronics, Old Officers Mess, Hoo Farm, Humbers Lane, Horton, Telford TF6 6DJ
Tel: 01952 605451 Fax: 01952 677978

CIRCLE NO. 126 ON REPLY CARD

Available with REAL ICE

- Fully Integrated Package of Hardware, Software and Training
- Includes Everything Except the PC
- Supplied in Custom Case
- Real In Circuit Emulation
- Training Hardware Covers: A2D, D2A, Digital I/O, Displays, Keypad, Sound and Light and Much More
- Development Hardware Includes EPROM Emulator, EPROM Programmer and Proto-Typing Board
- Software Includes: Full Function Multi-Window Editor, Assembler, Simulator, Tools, Programmers, Plus Other Features in One Program
- Comprehensive Training Material, Covers B Tec Level 3 and GNVQ Advanced
- Training Covers Real Applications, with Case Studies
Ultra simple I2C interface for eeprom

Only one capacitor is needed to access the 24C02 I2C programmable eeprom via a pc. The AUTOFDX line is bidirectional. It has an open collector output and needs no external pull up. I used the strobe, pin 1, for power supply, which is enough for this cmos IC.

Verdieri Giordano
Montanara
Italy

C listing demonstrating how the I2C eeprom is accessed via the pc's parallel port.

```c
#define SDA 0x2
// Autofdx pin 14
#define VCC 0x1
// Strobe pin 1
#define CLK 0x1
// DO pin 2
#define prn 0x378
inpsda(void);
delay(void);
delayl(void);
starte(void);
stop(void);
write8(unsigned char );
read8(void);
main()
{
    unsigned char addr,dat1,car;
    printf("E.Eead W.Write
Q=Quit:

car = getch();
switch(car)
{
    case 'r':
        printf("Read address (hex): ");
        scanf("%x",&addr);
        if (rdeer(addr,&dat1)) printf("Value=");
        else printf("Value="");
    case 'w':
        printf("Write address (hex): ");
        scanf("%x",&addr);
        if (wreer(addr,dat1)) printf("Value:");
        else printf("Value:");
    case 27:
        case 'Q':
            exit(1);
            default:
            break;
}
}

rdeer(unsigned char addr,unsigned char *dat1)
{
    *dat1 = 0;
    if (tst_sda_1()) return(1);
    starte();
    write8(0x60);
    if (clack()) return(1);
    write8(addr);
    if (clack()) return(1);
    starte();
    write8(0x70);
    if (clack()) return(1);
    *dat1 = read8();
    stop(void);
    return(0);
}
wreer(unsigned char ,unsigned char *dat1);
write8(unsigned char );
read8(void);
main()
{
    unsigned char addr,dat1,car;
    printf("\nRead Write Q=Quit:

car = getch();
switch(car)
{
    case 'r':
        printf("\nRead address (hex): ");
        scanf("%x",&addr);
        if (rdeer(addr,&dat1)) printf("Value=");
        else printf("Value="");
    case 'w':
        printf("\nWrite address (hex): ");
        scanf("%x",&addr);
        if (wreer(addr,dat1)) printf("Value:");
        else printf("Value:");
    case 27:
        case 'Q':
            exit(1);
            default:
            break;
}
}
```

Programming and reading the 24C02 eeprom via a pc's parallel port needs only one capacitor since the LPT bidirectional lines used have an open-collector structure with integral pull-up.

```c
only one capacitor is needed to access the 24C02 I2C programmable eeprom via a pc. The AUTOFDX line is bidirectional. It has an open collector output and needs no external pull up. I used the strobe, pin 1, for power supply, which is enough for this cmos IC.

Verdieri Giordano
Montanara
Italy

C listing demonstrating how the I2C eeprom is accessed via the pc's parallel port.

```c
#define SDA 0x2 // Autofdx pin 14
#define VCC 0x1 // Strobe pin 1
#define CLK 0x1 // DO pin 2
#define prn 0x378
inpsda(void);
delay(void);
delayl(void);
starte(void);
stop(void);
write8(unsigned char );
read8(void);
main()
{
    unsigned char addr,dat1,car;
    printf("E.Eead W.Write
Q=Quit:

car = getch();
switch(car)
{
    case 'r':
        printf("Read address (hex): ");
        scanf("%x",&addr);
        if (rdeer(addr,&dat1)) printf("Value=");
        else printf("Value="");
    case 'w':
        printf("Write address (hex): ");
        scanf("%x",&addr);
        if (wreer(addr,dat1)) printf("Value:");
        else printf("Value:");
    case 27:
        case 'Q':
            exit(1);
            default:
            break;
}
}
```
SYNTHESISED SIGNAL SOURCE
an innovative design from an established ‘Off-Air’ Company
- Custom designed chip set
- Sinewave output 0dBm into 50Ω
- Can be run independently or genlocked to external source
- dc to 16MHz in 0.1Hz steps, with option 0.001Hz steps
- Freestanding rack mounting, or OEM options available
- Increased resolution and increased stability options available
- Models available October, contact us for prices

‘OFF-AIR’ FREQUENCY STANDARD

- Provides 10MHz, 5MHz & 1MHz
- Use of all calibrating equipment that relies on quartz crystals.
- TOCROL, VCSEL, laser diodes.
- Phase lock & BFO/INTCH (Frequency control and
- UTILITY only for ADDED VALUE also phase lock to ALLOCUS (can use
- TOCROL, VCSEL, laser diodes and
- British-designed and British manufactured
- Custom designed chip set, reduced phase noise, wide band outputs and 13MHz output for GSM. Prices on application.

Output frequencies:
- 10MHz, 5MHz, 1MHz
- Short term stability – better
- THAN 10−12 (1 sec)
- Propagation to DROITINICH (rubidium controlled and
- Provides 10MHz, 5MHz & 1MHz

30Hz – 110MHz Frequency range
1Hz Resolution/phase lock tuning
Digital storage with dual display
Built-in tracking generator
9 digit frequency counter

£850 + carriage/vat

Includes 30 day unconditional warranty

M&B Radio, 86 Bishopgate Street, Leeds LS1 4BB
Tel: (+44) 0113 2435649
Fax: (+44) 0113 2426881
Dual function microprocessor supervisor

In addition to monitoring the 3.3V and 5V supplies to a microprocessor, this MAX706 supervisor circuit also keeps a check on software execution. The software check relies on the expectation of transitions on a selected i/o line at least once every 1.6s. If these do not occur, IC₁ sends a reset pulse to the microprocessor.

One of three reset thresholds for the 3.3V monitor, from 2.63V to 3.08V, depending on the part number suffix, trigger resets directly via the internal op-amp, while the 5V monitor triggers externally via the /PFO output and the /MR (manual reset) input, the level depending on R₁, R₂ and the PFI input switching threshold of, typically, 1.25V. Resets caused by either input are maintained for as long as the supplies remain low and for 200ms after a supply is restored to normality.

Diodes D₁, D₂ are wire-ored to allow the software watchdog output /WDO to share control of the /MR input, but if the 3.3V supply is derived from 5V, an early warning of 5V failures can be obtained by removing the diodes, connecting /WDO to /MR and taking /PFO directly to an interrupt pin on the microprocessor.

Dana Davis and Craig Falkenham
Maxim Integrated Products Ltd
Theale
Berkshire

Serially accessed memory is expandable

A 3-to-8-line decoder allows this serially-accessible static ram circuit to be expanded to accommodate up to eight 62256 memory ICs. Writing to the memory is carried out as follows.

Select data bank
Set data bit at DATA IN
Apply a clock pulse at CLK
Set next data bit at DATA IN
Repeat the previous two steps until address and data is clocked in
Apply O/P ENABLE high
Apply a pulse for WRITE
To read from the memory,

Select data bank
Set WRITE output high
Set data bit at DATA IN
Apply a clock pulse at CLK
Set next data bit at DATA IN
Repeat previous two steps until address is clocked in
Apply O/P ENABLE
Apply a READ pulse
Apply O/P ENABLE low
Check T0/T1
Apply a CLK pulse
Repeat previous two steps until byte is assembled

Jayant Kathe
Bombay
India
TiePieSCOPE HS508
- interface PC parallel printer port
- sampling speed 50 Msamples/sec
- resolution 8 bits
- input range 50 mV/div - 20V/div
- record length 32 KByte/channel
- price £597.00, incl. software, user manual and 2 probes (1:1/1:10 switchable)

Software for the PC-based instruments
contains an Oscilloscope, a Spectrum analyzer, a Voltmeter, and a Transient recorder. All instruments are controlled in the same intuitive way and provide for saving and recalling waveforms and settings, cursor measurements, hardcopy on matrix/laser printer and online help. Minimum requirements: a 80286 -based PC with 2MByte and running MS-DOS 3.3 or higher.

Fax for a free demo disk and catalog of all our products
Easy installation: just plug in and measure

TiePie engineering (UK)
28, Stephenson Road, Industrial Estate, St. Ives, Camb, PE17 4WJ, United Kingdom
Tel: +44 1480 460028 Fax: +44 1480 460340

Prices exclude V.A.T.

Programming Solutions

Universal Programmer
- Uses standard pc printer port
- works with notebook and handbook pc's
- Pin driver expansion can drive up to 256 pins.
- Supports over 2000 IC's – 3 and 5 volt devices.
- EPROMs, EPROMs, Flash EPROMs, Serial EPROMs, PLDs, GALs, EPLDs, MACHs & WSI PSDs
- Micros – Intel, Microchip, Motorola, Zilog

Eprom Programmer
- EPROMs, EPROMs, Flash and 8748/51 micros.
- Fast programming algorithms. Simple colour menu operation.

Multi-Device Programmer
- EPROMs, EPROMs, Flash EPROMs, Serial EPROMs, PLDs, GALs, EPLDs, MACHs & WSI PSDs
- Micros – Intel, Microchip, Motorola, Zilog
- Fast programming algorithms.
- Connects direct to pc printer port.
- Simple full colour software.
- No expensive adapters.

SMART COMMUNICATIONS
2 Field End • Arkley • Barnet • Herts • EN5 3EZ • England
Telephone +44 (0)181 441 3890 Fax +44 (0)181 441 1843

Circle No. 11 on enquiry card

Circle No. 114 on enquiry card

Details of programming software and hardware supplied

- Price includes VAT & Delivery
Thermal dynamics in audio power

The most intractable problem in Class B power amplification is crossover distortion in the output stage. High order harmonics generated by crossover gain fluctuations are poorly linearised by negative feedback. This is because the amount of feedback applied at high frequencies must be restricted for Nyquist stability.

Some earlier work of mine suggests that the amount of crossover distortion produced is largely fixed for a given configuration and devices. As a result, the best you can do is ensure that the output stage runs under optimal quiescent conditions. Schemes for controlling quiescent current via direct servo control have been mooted. But all suffer from the difficulty that the quantity we wish to control is not directly available for measurement. This is because the quantity is swamped by Class B output currents, unless there is a complete absence of signal.

In contrast, the quiescent current of a Class A amplifier is easily measured, allowing very precise feedback control. Ironically, its value is not critical to distortion performance².

**Quiescent current considerations**

So just how accurately must quiescent current be held? This is not easy to answer, not least because it is the wrong question. Reference 1 established that the crucial parameter is not quiescent current, hereafter \( I_q \), as such, but rather the quiescent voltage drop \( V_q \) across the two emitter resistors \( R_e \). This takes a little swallowing. After all, people have been worrying about quiescent current for 30 years or more, but it is actually good news, as the value of \( R_e \) does not complicate the picture.

Voltage across the output stage inputs, \( V_{bias} \), is no less critical. Once \( R_e \) is chosen, \( V_q \) and \( I_q \) vary proportionally. The two main types of output stage, the emitter-follower, ef, and the complementary feedback pair, cfp, are shown in Fig. 1. Their \( V_q \) tolerances are quite different.

From measurements, I take the permissible error band for \( V_q \) in the ef stage as ±10mV, and for the cfp as ±10mV. These figures are not definitive; I only suggest that they are reasonable. In terms of total \( V_{bias} \), the ef needs 2.93V ±100mV, and the cfp 1.30V ±10mV. Voltage \( V_{bias} \) must be higher in the follower as four base-emitter voltages are subtracted from it to get \( V_q \). In the cfp on the other hand, only two driver base-emitter voltages are subtracted.

The cfp stage appears to be more demanding of \( V_{bias} \) compensation than follower, needing 1% rather than 3.5% accuracy, but things are not so simple. Stability of \( V_q \) in the follower stage depends primarily on the hot output devices, as emitter follower driver dissipation varies only slightly with power output.

Voltage \( V_q \) in the cfp depends almost entirely on driver junction temperature. This is because the effect of output device temperature is reduced by the local negative feedback. However, cfp driver dissipation varies strongly with power output³ so the superiority of this configuration cannot be taken for granted.

Driver heatsinks are much smaller than those for output devices, so the cfp \( V_q \) time constants promise to be some ten times shorter.

**Thermal compensation**

In Class B, the usual method for reducing quiescent variations is ‘thermal feedback’. The \( V_{bias} \) is generated by a thermal sensor with a...
negative temperature coefficient, usually a $V_{be}$ multiplier transistor mounted on the main heatsink.

This system has proved workable over the last 30 odd years, and usually prevents any possibility of thermal runaway. However, it suffers from thermal losses and delays between output devices and temperature sensor. These make maintenance of optimal bias rather questionable, and in practice quiescent conditions are a function of recent signal and thermal history.

Thus the crossover linearity of most power amplifiers is intimately bound up with their thermal dynamics. It is surprising this area has not been examined more closely. Reference 4 is one of the few serious papers on the subject — though the conclusions it reaches are unworkable.

As is almost routine in audio design, things are not as they appear. So called ‘thermal feedback’ is not feedback at all. This implies the thermal sensor is in some way controlling the output stage temperature. It is not. It is really a form of approximate feedforward compensation, as shown in Fig. 2.

The quiescent current $I_q$ of a Class B design causes a very small dissipation compared with the signal. As a result, there is no meaningful feedback path returning from $I_q$ to the left of the diagram. This might be less true of Class AB, where quiescent dissipation may be significant.

Instead, this system aspires to make the sensor junction temperature mimic the driver or output junction temperature. It can never do this promptly or exactly though because of the thermal resistances and thermal capacities that lie between driver and sensor temperatures in Fig. 2. It does not place either junction temperature or quiescent current under direct feedback control, but merely aims to cancel out the errors. From now on, I will simply call this ‘thermal compensation’.

Assessing the bias errors

Temperature error must be converted to millivolt error in $V_{be}$ for comparison with the tolerance bands suggested above. In the cfp stage this is straightforward.

Both driver $V_{be}$ and the halved $V_{bias}$ voltage decrease by $2mV/°C$. As a result, temperature error converts to voltage error by multiplying by 0.002. Only half of each output stage will be modelled, exploiting symmetry, so most of this article deals in half $V_q$ errors, etc.

To minimise confusion, this use of ‘half amplifiers’ is adhered to throughout. The only exception is at the final stage, when the calculated $V_q$ error is doubled before comparison with the tolerance bands quoted above.

Error conversion in the emitter follower is more subtle. The follower $V_{bias}$ generator must establish four times $V_{be}$ plus $V_q$. Consequently, the $V_{be}$ of the temperature sensing transistor is multiplied by about 4.5 times, and so decreases at $9mV/°C$.

The cfp $V_{bias}$ generator only multiplies 2.1 times, decreasing at $4mV/°C$. The corresponding values for a half amplifier are 4.5 and $2mV/°C$.

However, the emitter-follower drivers are at near constant temperature. After two driver $V_q$ values have been subtracted from $V_{bias}$, the remaining voltage decreases faster with temperature than does output device $V_{be}$. This runs counter to the tendency to under compensation caused by thermal attenuation between output junctions and thermal sensor. In effect the compensator has ‘thermal gain’, and this has the potential to reduce long term $V_q$ errors.

I suspect this is the real reason why the emitter follower stage, despite looking unpromising, can in practice give acceptable quiescent stability.

Simulating thermal performance

Designing an output stage requires some appreciation of how effective the thermal compensation will be, in terms of how much delay and attenuation the ‘thermal signal’ suffers between the critical junctions and the $V_{bias}$ generator.

It is necessary to predict the thermal behaviour of a heatsink assembly over time, allowing for things like metals of dissimilar thermal conductivity, and the very slow propagation of heat through a mass compared with near instant changes in electrical dissipation.

Practical measurements are very time consuming, requiring special equipment such as multipoint thermocouple recorders. A theoretical approach would be very useful.

For very simple models, such as heat flow down a uniform rod, it is possible to derive analytical solutions to the partial differential equations that describe the situation. The answer is an equation directly relating temperature to position-along-the-rod and time. However, even slight complications, such as a non-uniform rod, involve rapidly increasing mathematical complexities, and anyone who is not already deterred should consult reference 5, this will deter them.

To avoid direct confrontation with higher mathematics, finite element and relaxation methods were developed. The snag is that finite element analysis is a rather specialised taste, and so commercial element analysis soft-
A simple model of the follower stage

This approach treats temperature as voltage, and thermal energy as electric charge, making thermal resistance analogous to electrical resistance, and thermal capacity to electrical capacitance.

Thermal capacity is a measure of how much heat is required to raise the temperature of a mass by 1°C. And if anyone can work out what the thermal equivalent of an inductor is, I would be interested to know. With the right choice of units, the simulator output will be in volts, with a one to one correspondence with degrees Celsius, and amps, similarly representing watts of heat flow, Table 1. It is then simple to produce graphs of temperature against time.

Since heat flow is represented by current, the inputs to the simulated system are current sources. A voltage source would force large chunks of metal to change temperature instantly, which is clearly wrong. The ambient is modelled by a voltage source, since it can absorb any amount of heat without changing temperature.

Consider first the popular emitter follower output stage, in which output device junction temperatures dominate $V_A$ dynamics. The drivers have near constant dissipation regardless of output power and will initially be ignored.

A simple thermal analogue model of Fig. 3 is shown in Fig. 4. The situation is radically simplified by treating each mass in the system as being at a uniform temperature, ie isothermal, and therefore represented by one capacitance. Boundaries between parts of the system are modelled, but the thermal capacity of each mass is concentrated at a notional point. In assuming this capacity elements can be ignored. The ambient is shown in Fig. 4. The situation is radically simplified by treating each mass in the system as being at a uniform temperature, ie isothermal, and therefore represented by one capacitance. Boundaries between parts of the system are modelled, but the thermal capacity of each mass is concentrated at a notional point.

Similarly, elements such as the thermal washer are assumed to have zero heat capacity, because they are very thin and have negligible mass compared with other elements in the system. Thus the parts of the thermal system can be conveniently divided into two categories - pure thermal resistances and pure thermal capacities. Often this gives adequate results, if not, more subdivision will be needed. Heat losses from parts other than the heatsink are neglected.

In a real output stage

Real output stages have at least two power transistors. The simplifying assumption is made that power dissipation will be symmetrical over anything but the extreme short term, and so one device can be studied by slicing the output stage, heatsink, etc, in half.

It is convenient to read off the results directly in °C, rather than temperature rise above ambient. As a result, Fig. 4 represents ambient temperature with a voltage source $V_{amb}$ that offsets the baseline (node 10) 25°C from sim-
ulator ground, which is inherently at 0°C (0V).

Values of the notional components in Fig. 4 have to be filled in with a mixture of calculation and manufacturer's data. Thermal resistance $R_1$ from junction to case comes straight from the data book. So does the resistance $R_2$ of the TO3 thermal washer, also $R_4$, the convection coefficient of the heatsink itself, otherwise known as its thermal resistance to ambient. This is always assumed to be linear otherwise known as its thermal resistance to ambient. This is always assumed to be linear.

Entering the data book, the only data is the bulk thermal resistance $R_3$ is 1°C/W, so this is doubled to two as the stage is cut in two to exploit symmetry.

Resistor $R_3$ is the thermal resistance of the graphite foil. This is cut to size from a sheet with temperature, which it very nearly is. Here $R_3$ is 1°C/W, so this is doubled to two as the stage is cut in two to exploit symmetry.

So thermal resistance is,

$$\frac{1}{R_3} = 0.021\text{°C}/\text{W}$$

Thermal resistance is the reciprocal of heat flow per degree, so $R_3$ is 0.021°C/W, which just goes to show how efficient thermal washers can be if they do not have to be electrical insulators as well.

In general all the thermal capacities will have to be calculated, sometimes from rather inadequate data, thus thermal capacity is density×volume×specific heat.

A power transistor has its own internal

structure, and its own internal thermal model, Fig. 5. This represents the silicon die itself, the solder that fixes it to the copper header, and part of the steel flange the header is welded to. I am indebted to Motorola for the parameters, from an MJ15023 TO3 device7. The time constants are all extremely short compared with heatsinks, and it is unnecessary to simulate in such detail here.

The thermal model of the TO3 junction is therefore reduced to lumped component $C_1$, estimated at 0.1°F/C, with a heat input of 1W and no losses its temperature would increase linearly by 5°F/s. Capacity $C_2$ for the transistor package was calculated from the volume of the TO3 flange, representing most of the mass, using the specific heat of mild steel.

The thermal coupler is known to be aluminium alloy, not pure aluminium, which is too soft to be useful, and the calculated capacity of 70°F/C should be reliable. A similar calculation gives 250°F/C for the larger mass of the aluminium heatsink.

Our simplifying assumptions are rather sweeping here, because we are dealing with a substantial chunk of finned metal which will never be truly isothermal.

Derived parameters for both output TO3 and TO-225AA drivers are summarised in Table 2. The drivers are assumed to be mounted onto small individual heatsinks with an isolating thermal washer. The data is for the popular Redpoint SW38-1 vertical heatsink.

Thermal transient effects

Figure 6 shows the result of a step function in heat generation in the output transistor. Twenty watts dissipation is initiated, corresponding approximately to a sudden demand for full sinewave power from a quiescent 100W amplifier. The junction temperature $V(1)$ takes off near vertically, due to its small mass and the substantial thermal resistance between it and the TO3 flange.

Flange temperature $V(2)$ shows a similar
but smaller step as $R_2$ is also significant. In contrast, the thermal coupler, which is so efficiently bonded to the heatsink by graphite foil, that there might almost be one piece of metal, begins a slow exponential rise that will take a very long time to reach asymptote. After the effects of $C_1$ and $C_2$ have died away the junction temp is offset by a constant amount from the temp of $C_3$ and $C_4$, so $V(1)$ also shows a slow rise. Note the X axis must be in kiloseconds, because of the extremely large thermal capacity of the heatsink.

This shows that a temperature sensor mounted on the main heatsink can never give accurate bias compensation for junction temperature, even if it is assumed to be isothermal with the heatsink. In practice there will be some 'sensor cooling' which will make the sensor temperature read slightly under the heatsink temperature $V(4)$.

Initially the temperature error $V(1)-V(4)$ increases rapidly as the TO3 junction heats, reaching $13^\circ$ in about 200ms. The error then increases much more slowly, taking 6s to reach the effective final value of $22^\circ$.

If you ignore the 'thermal-gain' effect mentioned above, the long term $V_\text{max}$ error is $+44mV$ at $V_\text{bias}$ is too high. When this is doubled to allow for both halves of the output stage we get $+88mV$, which uses up nearly all of the $\pm100mV$ error band, without any other inaccuracies.

Hereafter all $V_\text{bias}/V_\text{q}$ error figures quoted have been doubled and so apply to a complete output stage. Including the thermal gain actually makes little difference over a 10s timescale, the lower $V_\text{q}$ error trace in Fig. 6 slowly decays as the main heatsink warms up, but the effect is too slow to be useful. Amplifier $V_\text{g}$ and $I_\text{q}$ will therefore rise under power, as the hot output device $V_\text{base}$ voltages fall, but the cooler bias generator on the main heatsink reduces its voltage by an insufficient amount to compensate.

Figure 7 shows long term response of the system. At least 2500s pass before the heatsink is within a degree of final temperature.

As to where to mount the sensor...

In the past I have recommended that emitter follower output stages should have the thermal sensor mounted on the top of the TO3 can – despite the mechanical difficulties. This is not easy to simulate as no data is available for the thermal resistance between junction and can. There must be an additional thermal path from junction to can, as the top definitive gets hotter than the flange measured at the very base of the can. In view of the relatively low temperatures, this path is probably due to internal convection rather than radiation.

A similar situation arises with TO3P – a large plastic package, twice the size of TO220, for the top plastic surface can get at least $20^\circ$ hotter than the heatsink just under the device.

Using real thermocouple data, I have estimated the simulation results for Fig. 8; lower plot shows $V_\text{bias}$ errors for normal thermal pad under sensor, and $80^\circ$C/W semi-insulator. The latter has near zero long term error.
mated the parameters of the thermal paths to the TO3 top. This gives Fig. 8, where the values of elements R20, R2, and C5 should be treated with considerable caution, though the temperature results in Fig. 9 match reality fairly well. The can top (V20) gets hotter faster than any other accessible point. Resistor R20 simulates the heating path from the junction to the TO3 can and R23 the can-to-flange cooling path, C6 being cast thermal capacity. Figure 8 includes approximate representation of the cooling of the sensor transistor, which now matters. Resistor R22 is the thermal pad between the TO3 top and the sensor, C6 the sensor thermal capacity, and R23 is the convective cooling of the sensor, its value being taken as twice the data sheet free air thermal resistance as only one face is exposed. Putting the sensor on top of the TO3 would be expected to reduce the steady state bias error dramatically. In fact, it overdoes it. After factoring in the thermal gain of a Vbe multiplier in an emitter follower stage, the bottom most trace of Fig. 9 shows that the bias is overcompensated.

Following the initial positive transient error, VAMB falls too low giving an error of ~30mV, slowly decreasing as the main heatsink warms up. If thermal gain had been ignored, the simulated error would have apparently fallen from +44, Fig. 6, to +27mV, apparently a useful improvement, but actually illusory.

Since the new sensor position overcompensates for thermal errors, there should be an intermediate arrangement giving near zero long term error. I found this condition occurs if R22 is increased to 80°C/W, requiring some sort of semi-insulating material rather than a thermal pad, and gives the upper error trace in the lower half of Fig. 9. This peaks at ~30mV after 2s, and then decays to nothing over the next twenty. This is much superior to the persistent error in Fig. 6, so I suggest this new technique may be useful.

Modelling the cfp output
Turning to the complementary feedback pair output stage it is the driver junctions that count, output device temperature has little effect and is neglected.

Thermal parameters for a TO-225AA driver, for example MJE340/350 on an SW38-I vertical heatsink, are shown in Table 2. The drivers are on individual heatsinks so their thermal resistance is used directly, without doubling.

In the simulation circuit Fig. 10, V(3) is the heatsink temperature. The sensor transistor, also MJJ1360, is mounted on this sink with thermal washer R4, and has thermal capacity C6. Resistor R3 is convective cooling of the sensor. In this case the resulting differences in Fig. 11 between sink V(3) and sensor V(4) are very small.

You might expect the feedback pair delay errors to be much shorter than in the emitter follower. However, simulation with a heat step input suitably scaled down to 0.5W Fig. 11, shows changes in temperature error V(1)-V(4) that appear rather paradoxical. The error reaches 5° in 1.8s, levelling out at 6.5° after about 6s. This is markedly slower than the emitter follower case, and gives a total bias error of +43mV. After doubling to +26mV, this is well outside the feedback pair error band of ±10mV.

The initial transients are slowed down by the much smaller step heat input, which takes longer to warm things up. The 'final' temperature however, is reached in 500 rather than 3000s, and the timescale is now in hundreds rather than thousands of seconds. The heat input is smaller, but the driver heatsink capacity is also smaller, and the overall time constant is less.

It is notable that both timescales are much longer than musical dynamics.

In summary
For these simulations at least, the results are unexpected. I thought that the complementary feedback pair would show smaller bias errors than the emitter follower, but it is the follower that stays within its much wider tolerance bands, with either heatsink or TO3 top mounted sensors. The thermal gain effect in the emitter follower stage seems to be the root cause of this.

It is clear that thermal attenuation and delay between transistor and sensor still cause significant errors in both stages. Ways to further reduce these shortcomings will be presented in the next article.

References
6. Murphy, D. 'Axisymmetric Model of a Moving-Coil Loudspeaker.' Journ. AES, Sept 1993, p679
Cyril Bateman discusses the benefits and pitfalls of active browsers for the World Wide Web.

The World Wide Web¹ as it exists today, forms the most popular entry point into Internet resources. As a concept, from its restricted beginnings as a scientific information linking tool at CERN in Switzerland in 1980, it has developed in its latest incarnation using Java into the HotJava and Netscape² browsers. These potentially offer the most useful and desirable Web access tools, but if not properly controlled, Java could provide the opportunity to be developed into a potentially dangerous hackers' tool.

In essence, to access the Web resources requires use of 'browser' software² on your personal computer. Versions are now available for all operating systems and platforms. The normal browser is benign and largely dumb software, used to passively interpret the HTML commands buried within the transmission. Just as with printer commands buried within a word processor document, these commands remain invisible to the user, unless the document is viewed by a different editor, when they become revealed for all to see, Fig. 1.

Java began development four years ago as a new language, from Sun Microsystems³. It was intended to be used for controlling embedded systems or smart appliances. While still in its Beta stages, it provides a method for seamlessly integrating small programs called 'applets' into your system, Fig. 2.

On its own Java, previously known as Oak, was useful enough. However, with the release of the NCSA Mosaic 1.0 Web browser in mid 1993, its potential use within a Web browser became apparent, culminating in Sun's browser HotJava and Netscape's Navigator². Versions are available for Windows'95, Windows NT,

---

¹The World Wide Web
²Browser
³Sun Microsystems

---

Fig. 1. Viewing the 'hidden' HTML script from http://java.sun.com home page. Lines 1 to 8 illustrate hidden html coding revealed when viewed using editor. Lines 11 onward illustrate hidden Java applet coding now revealed when viewed using editor.

Fig. 2. Sun Microsystems HotJava page from http://java.sun.com. This explains the intentions and current status of the HotJava software.
Sparc and Solaris, Fig. 3.

Java and HotJava suddenly became the hottest Internet topics. An Archie search on Java reveals hundreds of active topics, including not a few recipes. Obviously, the word Java on the Internet is not exclusive to Sun’s software.

Why all this intense interest in Java and HotJava? Well, they provide the facility to transmit ‘executable content’ within a Web page or computer program. And how is this significant to electronic designers? Well maybe at present it has just as much significance to all computer users, but consider the implications.

Older non-Java Web browsers were simple program interpreters of the HTML instructions received. Java aware browsers have the ability to transparently accept and action an applet. This is a short computer program which could, for example, perform an animated logo, then discard it when its task is complete. On the other hand, without the necessary controls on the logo originator, this applet could perform any other computer task, good or bad, offering the potential to change the face of software purchase as known today. Or it could perhaps be used to introduce a virus – or even reformat one’s hard disk, Fig. 1.

To protect the user, all Java aware Web browsers automatically check the authenticity of each applet downloaded. They do this by first making sure it has been compiled using an official Java compiler. Then a sophisticated checksum routine is invoked to ascertain that the originator is a registered Java programmer. Thus at present, Java is simply yet another way to safely liven up your Web pages.

Non-Java aware browser software ‘hatches out’ any Java animated applets. But just as with the printer instructions analogy, examination of a Java HTML script in an editor reveals the applet program, Figs 1, 3. The potential for good outside a Web page is the potential future availability of low cost software applets. For example, such applets may be designed for the new self-assessment tax return calculations, downloaded and paid for on the Web. The applet is then discarded when its task is finished.

I advise those of you interested to visit Sun’s Java page3 where much information is available from the Java and HotJava FAQ, and the browser software can be downloaded and tried for real.

Fig. 3. The home page of the Netscape Navigator 2 browser http://home.netscape.com. Outlines the current status and platform availability of Navigator 2. Provides facility to download their latest browser software. Notice ‘hatched out’ applet sections above main graphic.

Fig. 4. Technical assistance offer from Analog Devices page http://www.analog.com. Provides download of their software libraries, also Spice macromodels. There’s technical design assistance in abundance.

Fig. 5. Harris Semiconductors’ home page at http://www.semi.harris.com. Many pages of design assistance are on offer under their ‘Design Made Simple’ topic. Provides design support software as well as their excellent macromodel library.
Following last month’s PSpice topic, in the past year, many North American semiconductor houses have been developing their own Web pages. National1, Analog6, Burr-Brown1 and Harris5, all have now established pages. In its own unique way, each has something special to view, in addition to offering downloadable application software and Spive macromodel libraries.

Try downloading Netscape from the Burr-Brown page. It might be less busy than Netscape's own site, Fig. 4,5,6.

A visit to LSI Logic Corporation's site6 revealed a December 1995 press release which promises a dramatic impact on Internet access by offering a single chip Internet architecture able to make a sub-$500 tv based access system. This chip uses 0.25pm process, with up to 100 million instructions a second at a quantity price around $50, Fig. 7.

Fig. 7. LSI Logic Corporation's home page at http://www.lsilogic.com. Click on 'What's New' to find their press releases at /mediakit/unit3.htmL

Fig. 8. University of East Anglia at Norwich at http://www.ultralab.anglia.ac.uk also offers downloads of this department's issued reports. Much reading here.

You might be forgiven for believing that the only useful Internet information is US based. Not so. The UEA at Norwich10 has been working with BT, Apple and the BBC on interface issues for BT's interactive television trials, Fig. 8.

Questions or comments on this article can be sent directly to me at the following email addresses: cyrilb@ibm.net or 76251.2535@compuserve

References
1. Surfing with intent EW&WW June '95 p488/492
5. National Semiconductors.
8. Harris Semiconductors.
10. University of East Anglia http://www.ultralab.anglia.ac.uk

"Your low cost route to embedded 8051"

"Hardware/software upgradeable programmer for the 8051 family"
• Accepts up to 40 pin DIL directly via Aries ZIF socket
• Surface mount and PLCC package adaptors available as optional extras
• Atmel 8951/8952 & 1051/2051 ICE cables available as optional extras
• Field programmable hardware to allow future upgradability
• Fast PC parallel port based design

"Everything you require to develop an embedded 8051-based project in C"
• MICRO-PRO 51 device programmer
• KEIL C51 PK LITE
• Sample Atmel FLASH microcontrollers
• Full suite of C51 demonstration software

"The complete Ansi-C development environment for the 8051"
• Optimising Ansi-C compiler
• dscope 51-8051 software simulator & source level debugger
• uVision-Integrated Windows based C51 project management system
• Support for most 8051 derivatives eg. Atmel, Intel, Siemens etc.
• Numerous microcontroller language extensions for the fastest, tightest code

Embedded C51 Starter Systems for the 8051 family

"Everything you require to develop an embedded 8051-based project in C"
• MICRO-PRO 51 device programmer
• KEIL C51 PK LITE
• Sample Atmel FLASH microcontrollers
• Full suite of C51 demonstration software

Atmel 8051 FLASH Microcontroller Range

<table>
<thead>
<tr>
<th>8051</th>
<th>8052</th>
<th>1051</th>
<th>2051</th>
</tr>
</thead>
</table>
| FLASH code ROM
| 4K | 4K | 1K | 2K |
| RAM
| 128 | 256 | 64 | 128 |
| Timer/Counter (16 bit)
| 2 | 3 | 1 | 2 |
| Serial Port
| YES | YES | NO | YES |
| Interrupt Sources
| 5 | 8 | 3 | 5 |
| PINS (DIL/PLCC)
| 40/44 | 40/44 | 20 | 20 |
| Special features
| Timer 2 | Comparator | Comparator |

895X-ST (ONLY £215)
Comes complete with samples of Atmel 8951 and 8952 40 pin microcontrollers

X051-ST (ONLY £199)
Comes complete with samples of Atmel 1051 and 2051 20 pin microcontrollers

Equinox Technologies, 229 Greenmount Lane Bolton BL1 5QI. Lancashire. ENGLAND
Tel: (01204) 492010 Fax: (01204) 494883 int. dialling code (UK +44 1204)
E-mail: sales@equintec.demon.co.uk Web Page: www.demon.co.uk/equintec
All prices exclusive of VAT and carriage.

CIRCLE NO. 115 ON REPLY CARD
We are making progress with the new version 5 of SpiceAge.

* Rapid digital filter modelling with links to SuperFILTER digital and analogue filter synthesiser (optional extra)
* Non-linear magnetic modelling including ferromagnetic hysteresis
* Extended scope of Modelmaker (optional extra), the utility that synthesises opamps, transformers, attenuators, bipolar, JFET and MOSFET transistor library models
* Other benefits from this mature product which enjoys diligent maintenance and professional support include: a new manual; new (rationalised) pin convention; faster calculating; larger circuits; tougher convergence; helpful customer base (for mutual problem solving and model sharing); widening third party support with links to schematic capture and synthesis programs (native schematic capture also available as an optional extra).
High-performance mic preamplifier

Simon Bateson believes that he's produced the ultimate mic preamp.

Although many articles have appeared in various journals on the subject of microphone preamplifiers, there have been relatively few attempts at viewing the problems of real-life use and abuse, where the highest standards of performance are required along with a complete immunity to the all too common phantom-power accident, Fig. 1.

Far from being a completely solved and extinct topic, the microphone preamplifier has become an increasingly exotic, specialised and expensive item in the recording studios. Valve designs possessing 'warmth' and 'character' compete with up-to-date rack units with inbuilt matrices for MS stereo, filters, limiters and level meters. I have seen such a unit reviewed very recently. It is a straightforward design using the low cost SSM2017 chip - yet costs well over £400.

My design evolved around the SSM2016 differential amplifier IC. This device has a much higher specification than the 2017. It is specifically and solely designed for low-impedance low noise applications such as microphones and virtual earth busses in mixing consoles. It has some remarkable properties, Table 1. Its output figures endow it with tremendous dynamic range when employed as a bus mix stage. Emphasis in this design, however, is on minimal input noise and distortion, so it is run at a moderate ±18V to stay cool.

Microphone amplifier topology

An ordinary differential op-amp circuit is shown in Fig. 2. It has several problems which limit its ability to reject common-mode signals: in particular, rejection depends on perfectly balanced resistors and on the differential source having zero impedance. Two resistors need changing to alter gain, and the input resistors add to the circuit noise. All in all, very unsatisfactory. The instrumentation amplifier, Fig. 3, has several advantages over the ordinary differential amplifier:

- There is a high and equal input impedance at both inputs, making common mode rejection independent of source impedance.
- Gain is adjustable from unity upwards by a single resistor.
- Very high gain and cmrr are available without careful resistor matching

The gain/cmrr benefit occurs because all the differential gain is obtained before the differencing stage. Suppose a common mode signal is applied to both inputs, by op-amp action the inverting inputs are also both at the same voltage. Hence there is no voltage across R1 and no current flows through it. It can be ignored making the common-mode gain of the first amplifiers just 1. This eases the rejection of common-mode signals by the differencing stage which therefore needs less carefully matched resistors.

In a conventional microphone preamp, the

![Fig. 1. The phantom-power accident.](image1)

![Fig. 2. Single op-amp differential amplifier has inherent problems that limit its ability to provide high cmrr.](image2)

![Fig. 3. For microphone preamps, instrumentation amplifiers have several advantages over the common differential amplifier.](image3)

![Fig. 4. In a conventional microphone preamp, the input amplifiers are just single-transistor transconductance stages.](image4)

Table 1. Microphone preamplifier specifications.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum supply voltage</td>
<td>±36V</td>
</tr>
<tr>
<td>Maximum output current</td>
<td>±40mA</td>
</tr>
<tr>
<td>THD at 10V/m/s out 1kHz</td>
<td>0.009%</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>10kHz</td>
</tr>
<tr>
<td>0.015%</td>
<td></td>
</tr>
<tr>
<td>CMRR</td>
<td>100dB</td>
</tr>
<tr>
<td>Input noise (150Ω source)</td>
<td>0.11µV in a 20kHz bandwidth (0.8nV per Hz)</td>
</tr>
</tbody>
</table>

Note: all figures typical at 1000 gain.
input amplifiers are not op-amps. They are just single-transistor transconductance stages, which are fairly linear over small differential excursions, followed by a differential current to voltage converter, Fig. 4.

Gain considerations
The gain setting resistor is connected between the emitters and so is effectively in series with the signal path. It has a low value just when we need the lowest circuit path resistance, namely, at high gains.

It is very important to realise that, as this resistor changes, it affects both the open-loop and the closed-loop gain equally, so we can overcome the usual op-amp limitation of the fixed gain-bandwidth product. In the 2016, we can have total stability at low gains and still have a 500kHz bandwidth at a gain of 1000.

To be sensible, we can increase the feedback capacitor to reduce the bandwidth a little, ensuring gain and phase flatness without encouraging radio reception or exposing subsequent circuitry to excessive out-of-band signals.

In the 2016, very large geometry input transistors, fabricated in a 'super-matching' process, act as the input amplifiers. They have very low base spreading resistance and when fed from the low optimum source resistance of 150Ω, have a noise figure of just 1dB.

Extra circuit details in the 2016 prevent the transistors suffering from gain modulation, and hence distortion, at high input levels. Note that, in the circuit of Fig. 4, a high value electrolytic capacitor is required to keep the dc differential gain down. It is better to omit the electrolytic, particularly since it is not polarised properly. It is possible do this with the 2016 because the input transistors are super-matched and closely linked thermally.

In most mic preamps, the gain is varied contiuously with a potentiometer and series stopper resistor. This is unsatisfactory for many reasons. The contact resistance of a typical pot is variable and noisy, and since the gain is inversely proportional to resistance, the resulting calibration is hopelessly non-linear and non-repeatable. There is no need for continuous control anyway, since a fader always appears later in the signal path.

I have used switched resistors to give accurate gains from 20 to 60dB in 10dB steps and this has been perfectly adequate and trouble-free. The overall design of the gain stage, Fig. 5, requires little extra comment other than to say that I have not used the manufacturer’s optional output dc offset trim. The output is ac coupled anyway, (see below) and so you only need to trim the input devices with $R_P$, to prevent dc thumps occurring when the gain is switched.

Input/phantom power facilities
There are two main types of microphone which will be used with this amplifier. The first is the dynamic moving coil or ribbon microphone. This type has a low impedance of 150 to 600Ω and low sensitivity, hence low voltage output. To give you an idea of the signal levels involved, a popular typical microphone, the Shure SM58LC, has a quoted sensitivity of -77.5dB. Here, 0dB is referred to 1µbar, and 1µbar (1 atmosphere) is about $10^7$N/m$^2$ so the reference level is 0.1Nm$^{-2}$.

The commonly accepted threshold of hearing, 0BA, is $10^{-15}$N/m$^2$ so 1µbar is 5000 times higher sound-pressure level than this, namely, 74dB A. This is the equivalent of loud conversation or the sound of a vacuum cleaner from a few metres.

At this sound level the microphone delivers a voltage 77.5dB below 1V. That is, the princely sum of 0.13mV.

Clearly, the amplifier must have a very low voltage noise figure and we must minimise circuit impedances to minimise current noise contributions.

In addition, since the signal may have travelled through many metres of hopefully good quality microphone cable, a high level of common mode interference may be present. This interference will start at 50Hz (or 60Hz) and can contain many high level harmonics, especially if phase-controlled lighting is in use. Clearly the best way to connect this signal is directly to the amplifier input stage, without intervening impedances or anything which could lower the amplifier’s common-mode rejection ratio.

The second common microphone type is the condenser, either real or electret. These mics contain on-board buffers and are phantom powered. They are far more sensitive than dynamic types and their noise figures are usually limited by their internal electronics, rather than by the mic amp they feed. The phantom power feed is defined by a DIN standard and is commonly implemented with 6.8kΩ resitors from a 48V supply. Isolation between the line and the preamp at dc is ensured either by transformer or capacitors.

Capacitive coupling
High quality audio transformers are very expensive so the majority of solid-state microphones use capacitors. These must have a very high value, at least 47µF, to offer sufficiently low impedances in the audio band. At least these capacitors are well and truly polarised so you don’t need to worry too much about them being electrolytic. However, there are two other problems.

Firstly, these input capacitors are incapable of being matched, even the best quality modern electrolytics have a ±20% tolerance. The capacitors interact with the amplifier input bias resistors. These usually have a low value, around 4.7kΩ, to form a high-pass filter.

For low frequency signals, the capacitor mismatch causes an attenuation mismatch and a phase shift, which renders the 100dB common-mode rejection ratio of the amplifier stage rather helpless. Often, high quality preamps will have a common-mode rejection ratio trim control so you can make an adjustment at 50Hz but what about 150Hz?

Technical support
A set of five circuit boards - input switch and preamp x2, dual led meter, dual filter, three rail psu - is currently being prepared. Please send on a sae for details to Electronics World, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

May 1996 ELECTRONICS WORLD 421
Input protection

Secondly, these capacitors are charged up to quite a high voltage. If an unwise user plugs in an unbalanced or faulty microphone lead or a lead from other devices, the input terminals can be suddenly shorted. The capacitors, one or both, must then discharge. It is through the nearest available path, either the input transistors of the preamp, causing damage, or through some protection route.

The most common protection components are a pair of zener diodes connected between each input line and ground. However I am dubious about this practice. Zener diodes have a very non-linear junction capacitance when biased by direct connection to the supply rails would provide insufficient protection for the rather expensive microphones is a bad thing. It permits the diodes to always be used to protect the signal path.

The effectiveness of this protection can be judged by the way in which we can draw many, many sparks from the input terminals without the slightest distress to the preamp. I considered removing the diodes from the circuit for dynamic mics but concluded that the signal levels were too low to cause any problems and that the diodes would always be useful if the mic input was fed from a speaker cable, which can happen.

These two sections of circuitry fit neatly onto a single pcb and I have to emphasise that the exact layout, especially in terms of earth-impregnated Teflon.

Extra facilities

The preamp boards need a certain amount of support circuitry. A power supply, obviously, and I have found a simple level indicator and high-pass filter most useful. Bandwidth and low-frequency phase-shifts in audio systems have been discussed in these pages before. But it has to be admitted that an extended if response in vocal and most instrument microphones is a bad thing. It permits boominess, causes a general lack of clarity and wastes amplifier and loudspeaker power.

If we can clearly define the low extension of the system at the input we can save a lot of discussion further on. This design, Fig. 7, breaks no new ground in the use of an equal-value Butterworth response Sallen-Key filter. This is a good circuit in high-pass form, and is switchable between 20Hz 'full bandwidth' and 80Hz roll off.

As far as level indication is concerned, I believe that this design will find most applications in direct DAT recording or in studios. Here, there will be plenty of facilities for level monitoring. The function of metering here must therefore be as an aid to choosing the right gain setting, in 10dB steps, so a three led circuit is amply.

Although not entirely new, the design, Fig. 8, is worthy of comment because it is specifically designed not to cause disruption to the power supplies or earth, which a lot of careless designs will do. Supply current runs between the rails, not to ground, having first been reduced in voltage and decoupled. A constant current source feeds the led chain and supply current is diverted into the amplifiers in order to extinguish them. As a result, the total current drawn is barely affected by the number of leds lit.

Level indicators using standard comparators such as the 311 can induce clicks into other circuitry even if the supply is decoupled. This is due to the high comparator switching speed. The 324 or 3403 quad op-amps, with their leisurely slew rate, low supply current, low input offset and low price are perfect for this.

A further board holds the transformer and regulators for a three rail power supply, Fig. 9, and this is dimensioned to supply ample current for a stereo application. The expense of an special transformer is saved by using a simple voltage doubler, along with a TL783 high-voltage regulator, for the 48V rail.

If more than about four preamps are to be constructed it may prove more economical to use a separate transformer and regulator board for the 48V supply.

Implementation and setting up

Board layout for the microphone preamp is important to its success.

The output capacitor on the preamp board should be replaced with a wire link if the high-pass filter circuit is going to be used. There are just two presets to adjust.

Input offset adjustment should be trimmed to eliminate the clicks which occur on changing gain. Then, a signal of a few volts at around 150Hz can be applied in common mode to the input offset and low price are perfect for this.

A further board holds the transformer and regulators for a three rail power supply, Fig. 9, and this is dimensioned to supply ample current for a stereo application. The expense of an special transformer is saved by using a simple voltage doubler, along with a TL783 high-voltage regulator, for the 48V rail.

If more than about four preamps are to be constructed it may prove more economical to use a separate transformer and regulator board for the 48V supply.
A-to-D and D-to-A converters
20-bit A-to-D. From Asahai Kasei, the AKS20-30, is a 32-channel ADC, oversampling, two-channel analogue-to-digital converter, which has a 100dB dynamic range and sinad of 94dB; maximum sampling rate is 54kHz. Power needed is 115mW at 5V. The companion AKS391 is a similar design, but is a 24-bit type providing 115dB of dynamic range. DIP International Ltd. Tel., 01223 402244, fax, 01223 407316.

Discrete active devices
Power mosfets. Four fifth-generation Hexfets in SOT-223 from IR exhibit up to 80% less on resistance than earlier versions. Providing 115dB of dynamic range.

Digital signal processors
DSP development. From Analog Devices, the EZ-KIT Lite development system for the ADSP-2100 family of processors, which allows evaluation, development, debugging and prototyping of digital signal processing applications. Kits include a development board with 16-bit stereo audio I/O, assembler, linker and simulation software, wp host software, dsp algorithm source code and accessories, together with demonstration programs. A 16-bit ADSP-2181 board in the kit has 32Kword of ram, dma ports and power management and, running the MPEG audio decode demonstration, it plays around 7s of audio without overheating.

Memory chips
2.7V, 8Mb memory. Fujitsu has the first of a new family of single-supply, 2.7V flash memories, the M28F32. It is readable, programmable and erasable at 2.7V. Write performance is 1.2V supply, taking 280mW at 100samples, and has an on-chip s/h amplifier and selectable 1/2.5V reference, the s/h amplifier being configurable for single-ended or differential working. Sinad ratio is 68dB, dynamic range 75dB and differential non-linearity 0.25 of the least significant bit. Analog Devices Ltd. Tel., 01932 266000; fax, 01932 247401.

Mixed-signal ICs
Stepper driver. Allegro's A3961SB stepper motor driver is a dual full-bridge type providing current control of bipolar steppers, delivering continuous output of 2750mA at 5 to 45V. Internal, fixed off-time control circuitry and an Internal 2.5V reference need only an external resistive divider and current-sensing resistors, the off-time duration being set by external timing resistors. Full protection is provided. Allegro MicroSystems Inc., Tel., 01932 253555; fax, 01932 246622.

Oscillators
Dil saw clocks. C-MAC announces the CMD 5000 Series of dual-in-line, surface acoustic-wave, eclip Shepard oscillator chips, designed for use as processor clocks in workstations or as pixel clocks in graphics cards. Frequency coverage is 250-800MHz, directly generated, use of the saw technique reducing jitter to a low level. Stability in response to all hazards is ±200ppm. C-MAC Quartz Crystals Ltd. Tel., 01279 626926; fax, 01279 454825.

Optical devices
Laser diode amplifiers. Elantec's EL6251 laser diode amplifier incorporates a sensor amplifier responding to input from a laser-power monitor diode, voltage-controlled driver and 5V power-supply monitor, providing pulsed write/erase current and dc or pulsed read current to a common-cathode laser diode. Read and write currents are 160mA each with transient times of 2.4ns. The read output may be inductively isolated from both the write output and laser diode. METL. Tel., 01844 278781; fax, 01844 278746.

Light pipes. Dialight offers an addition to its Optopipe range of light pipes that are available in a variety of sizes, being surface-mounted, offer a wide-viewing angle and, since one unit gives four indicators, reduce cost. Optopipes are in plastic, are mounted on the printed board after reflow and carry the light, usually at right angles to the board, to the panel. Dialight. Tel., 01638 663177; fax, 01638 569454.

Mixed-signal ICs
Stepper driver. Allegro's A3961SB stepper motor driver is a dual full-bridge type providing current control of bipolar steppers, delivering continuous output of 2750mA at 5 to 45V. Internal, fixed off-time control circuitry and an Internal 2.5V reference need only an external resistive divider and current-sensing resistors, the off-time duration being set by external timing resistors. Full protection is provided. Allegro MicroSystems Inc., Tel., 01932 253555; fax, 01932 246622.

Oscillators
Dil saw clocks. C-MAC announces the CMD 5000 Series of dual-in-line, surface acoustic-wave, eclip Shepard oscillator chips, designed for use as processor clocks in workstations or as pixel clocks in graphics cards. Frequency coverage is 250-800MHz, directly generated, use of the saw technique reducing jitter to a low level. Stability in response to all hazards is ±200ppm. C-MAC Quartz Crystals Ltd. Tel., 01279 626926; fax, 01279 454825.
wire and cap have locking housings to prevent them coming apart when used as panel-mounting connectors or in loose cables. They have a large number of keying combinations and pins and sockets can be mixed in the same housing. Maximum current is 16A, rated voltage 385V, dielectric voltage 5kV or 10kV and insulation resistance 1GΩ. Gothic Crellon Ltd. Tel., 01734 788876; fax, 01734 772495.

Wire-to-board connectors. Molex has 2mm connectors for wire-to-board connection, the MFF family. Connectors are available as single and dual row straight and right-angle headers and single-sided row crimp and idt receptacles. The tin-plated brass pins of the through-hole version have 2mm connectors for wire-to-board signal, high power, coax and optical fibre, shielded cable, wire-to-board filtered and unfiltered. Robinson Nugent (Europe) Ltd. Tel., 01256 842626; fax, 01256 842676.

Filtered power distribution. Vero has added to its range of mains power distribution panels new filtered and rcb types for 19in racks and Inrack racks, the filtered units having two-stage RC filters. The panels use UK, French or CEE 22 style sockets, either switched or unswitched, with five outlets in 2Y models for 19in horizontal mounting or with six, nine or 13-way vertical types. Vero Electronics Ltd. Tel., 01703 205030; fax, 01703 256126.

Shielded cable. Suprasheild cables from Alpha Wire reduce or eliminate radiators over a wide range of frequencies, particularly relevant in view of the latest European standards. They are made with a triple-laminated tape in aluminium-polyester-aluminium, bonded in one layer and in contact with a stranded, tinned-copper drain wire, equal in size to the conductors. A new catalogue describes these products and 30,000 others. Alpha Wire Ltd, Tel., 01932 772422; fax, 01932 772433.

Molex connectors. Electrospeed is now a distributor for Molex connectors in a range containing, for example, Mini and Maxi KK crimp and IDT types, data communications connectors and the Snapper PC/CLIA cardframe kit with input and output connectors. These and others are described in Electrospeed’s 1996 catalogue. Electrospeed. Tel., 01703 644555; fax, 01703 610622.

Cloudcom connectors. The Rack -mounted pc chassis. IMS has now includes a line filter that clips on the back of the power inlet, thereby saving board space and assembly time. Filters are available in 1, 2, 4 and 6A versions, using the board’s own ground and provide attenuation comparable to separate filters. CrossTalk is eliminated. Radiation Components Ltd. Tel., 01784 439393; fax, 01784 477333.

Snap-on mains filter. Schurter’s Multifit range of mains input modules now includes a line filter that clips on the back of the power inlet, thereby saving board space and assembly time. Filters are available in 1, 2, 4 and 6A versions, using the board’s own ground and provide attenuation comparable to separate filters. CrossTalk is eliminated. Radiation Components Ltd. Tel., 01784 439393; fax, 01784 477333.

Hardware
Floating toolkit. Should your interests lie in that direction, Jensen can supply you with the JTK-57W P field engineers’ toolkit, which is said to float, its cyclocas resin case being air tight and, of course, watertight. It contains more than 100 tools, half of which are Jensen’s own products. Jensen points out that a catalogue of thousands of tools, kits and test gear is available. Jensen Tools. Tel., 0800 833246 (free); fax, 01604 785573.

Cable ties. Thomas and Betts has acquired the US company Catamount of Massachusetts, which also has operations in the UK and Scandinavia. This further reinforces the T&B claim to be a leading supplier of these components. Thomas & Betts. Tel., 01562 677049; fax, 01562 608816.

Emc shielding. Finger strips of beryllium copper alloy 25 for emc shielding are now added to James Walker’s range of conductive seals and adhesives. The strips have a spring action and are designed for

Four-In-one test set. At a cost of about £450, the SJ Electronics Ltd. MkII Universal T&M System offers four commonly used pieces of test gear: a 1.3GHz counter/timer; a 3.5-digit, autobarring 1mm with an RS 232 interface and software, giving R and C measurements as well as ac/dc voltage and current at 400mV/40mA; a swept-frequency, 2kHz frequency generator giving ill levels, sine, square and triangular waveforms; and a triple-output power supply providing variable 0-30V at 2A, 15V at 1A and 5V at 2A, all floating. These are full-function instruments intended to form a basic workstation and are finding ready acceptance in universities and manufacturers’ test stations. SJ Electronics Ltd. Tel., 01376 562040; fax, 01376 562152.
internal single-board computer for eight channels, expandable to 68 by way of five twelve-channel units. It is usable with any pc running the CBBIS Windows-based G-DAS software for automatic data acquisition and report generation. CBBIS Ltd. Tel., 0151-343 1543; fax, 0151-343 1847.

Portable waveform analyser. A portable version of Nicolec's ZS500 waveform analysers has appeared, the ZS50-P, which works alone or in remote-controlled data acquisition. It uses a P120 processor, a colour tft display and Windows 98-based software, is about the size of a desktop computer and weighs 33Ib. There are up to 24 channels with diff. amplifiers, anti-aliasing filters, digitisers with 12-bit resolution at 10MHz and 64MB memory. Multimeter/component tester. As well as the normal functions of handheld digital multimeter, the Wavelet DM161XL measures frequency to 150kHz and capacitance to 20pF, tests diodes, transistors, cmos and ttl logic circuits and continues. There is provision to freeze the display, which has 0.7in numerals, for later reference. Wavelet Ltd. Tel., 01603 404824; fax, 01603 485870.

Interfaces

RS-232 interfaces. Harris's range of ttl/cmos/RS-232 Interface ICs now includes eight standard types needing only low-cost 0.1µF external charge-pump capacitors. The PIN200/1/2/4/6/7/8/11 parts operate from a single 5V supply or dual +5V or +5V to 13.2V supplies, offering a variety of arrangements of receivers and drivers. Harris Semiconductor UK Ltd. Tel., 01276 686886; fax, 01276 662323.

Literature

Rf/microwave semiconductors. M.A-COM has a new catalogue featuring discrete, monolithic and multi-function technology, including chip Os, pin diodes, variable-capacitance diodes, Schottky and harn diodes, transistors and power modules. There are also amplifiers, power splitters/combiners, mixers and semiconductor materials. BPI BEXSA Electronics Ltd. Tel., 01622 884267; fax, 01622 882469.

Capacitors. 225 pages of NEC's capacitor data book give product information and applications data on the company's small solid tantalums and 'SuperCapacitors', which come in values up to 3.3F at 5.5V to provide reserve power of better reliability than batteries. As an example, a 3.3F capacitor will hold up a 256bit ram for 70 hours. NEC Electronics (UK) Ltd. Tel., 01908 691133; fax, 01908 670290.

Displacement sensors. Non-contacting sensors using the eddy current method of operation are described in a brochure from Monitrion. Units described work in the 0-2.5mm up to 0-8.5mm range and come in threaded or flange mountings. Monitrion Ltd. Tel., 01494 816569; fax, 01494 812256.

Materials

Cleaning solvent. Elctrolube has Electronic Cleaning Solvent Plus (ECSP), which is a fast-drying solvent for cleaning contacts, tape heads and pickups and other devices of a similar nature. It replaces CFC solvents such as cyanoacrylate, lubricant, solvent and other low-viscosity fluids in discrete amounts. Firman offers the PPD-120 peristaltic pump dispenser (the squeezy kind), which takes the said glob straight from its own container, the amount being controlled by a built-in timer. If you take too much, the device sucks it back and the risk of operator contamination is greatly reduced - you won't get the stuff all over your trousers. Intertronics Ltd. Tel., 01865 842842; fax, 01865 842172.

Power supplies

Plug-top adapters. XP's T5A and TRA plug-top mains adapters, the T5A linear regulator series producing regulated voltage of 5, 6, 9, 12, 15 and 24V at up to 8.5W at 24V, plugging directly into a mains outlet. T5A units are switched regulators and produce up to 15W at 77% efficiency, regulation being 1% and stabilisation 0.1%. Both types can be fitted with UK or European plugs and a 2.1mm battery-eliminator jack is standard. XP Ltd. Tel., 01734 845515; fax, 01734 843243.

Sil step-down regulators. International Power Devices produces the SJP series of step-down buck regulators in single-in-line packs. These non-isolated dc-to-dc converters provide a stable voltage in the 1.2-3.5V range at 6A from existing board inputs. They are optimised for 5V input and use a synchronous rectifier buck regulator for high efficiency. Overload protection is provided. Amplicon Liveline Ltd. Tel., 0860 525 335 (free); fax, 01273 570215.

Converters for notebooks. Linear's new single-channel electroconverters exhibit constant frequency and high efficiency over a 100:1 load range; their characteristics are applicable to use in notebook computers. Output is more than 5A at over 90% efficiency, an auxiliary low-dropout regulator driving a 12V at 200mA with an external p-n-p transistor. Control functions are included and supplies with up to four outputs may be configured with only a few inductors. Linear Technology (UK) Ltd. Tel., 01276 677676; fax, 01276 64851.

Supply monitors. Zetex offers a range of supply voltage monitors for low-power, lower voltage supplies, now including five new devices for 3V and 3.3V working. The ZM03 series

Please quote "Electronics World" when seeking further information.
NEW PRODUCTS CLASSIFIED

Please quote "Electronics World" when seeking further information on products and developments presented in this issue.

**Resonator sensor**

4-resonator sensor has sensitivity of 1.4 pV for 6 dB, single-in-line module measuring 38 by 17 mm and is based on a saw filter. It is a board-mounted, 418 MHz or the new European Neohm SHR is available for either alarms and controls, the am superhet receiver for use in radio communications products.

**Radio communications products**

Low-power receiver. A low-power, am superhet receiver for use in radio-based alarms and controls, the Neohm SHR is available for either 418 MHz or the new European Neohm SHR is available for either alarms and controls, the am superhet receiver for use in radio communications products.

**Protection devices**

Thermal fuses. Designed for rapid installation and removal, Orient temperature protection and thermal fuses are mounted by flange and connected by 0.5 mm square terminals. The units contain an integral current fuse and, since the thermal fuse carries no current, temperature derating is unnecessary. Temperature range is 78–190°C. Microtherm Ltd. Tel., 01483 450100; fax, 01483 451816.

**Car alarm filter.** Since the addition of the new pan-European frequency of 433.92 MHz by car alarm makers, baffled drivers have found themselves either locked out or with immobilised ignition. This comes about because the new frequency is in the amateur range. To overcome the problem which, one would have thought, was fairly predictable, Siemens has produced the 63830 front-end saw filter, which is a TO39 device needing only a resistor and capacitor, both surface-mounted, for matching. It has a 200 kHz bandwidth and 2.3 dB insertion loss. No tuning is needed. Quantec Ltd. Tel., 01993 776488; fax, 01993 702415.

**Switches and relays**

Photorelay. The AQZ PhotomOS relay by Matsushita switches 4A at 60 Vdc or 0.5 A at 400 Vdc in one normally-closed channel. It has a 'negligible' output offset voltage compared to the normal solid-state device's 0.7 V, a 1 μW thermal emf, 1.5 mV c/o isolation and total silence in operation. Matsushita Automation Controls Ltd. Tel., 01993 231555; fax, 01993 231599.

Automotive relays. Fujitsu's twin relays, mounted in one enclosure, switch up to 30A at 12Vdc and are meant for use with all the motorised functions in a car, the twin design being used for up/down and forward/backward movement to save space and assembly time. The relays are in hermetically sealed enclosures and cope with the −40°C to 85°C range of temperatures. Imetco Ltd. Tel., 01734 810799; fax, 01734 810844.

**Production control data logger**

TaskLink for Windows, a process-control software package for device programmers in production and automated handling systems, to be initially available on the company's ProMaster 2500, 3000, 7000 and 7500 handling systems. It allows the automation and sensor of a manufacturing session, including blank device selection, quantity of parts programmed, data file number, part number, device serialisation and labelling information. It tracks and reports on yield and operational statistics. Data k/0 Ltd. Tel., 01734 440011; fax, 01734 448707.

**Transducers and sensors**

Absolute encoders. T/K's range shaft encoders of the absolute type comprises precision, single and multi-turn models and pc-programmed multi-turn types with options of synchronous serial, asynchronous serial or Interbus-S interfaces, all with up to 32-bit resolution. Output is either fixed on one type code or can be programmable to give Gray, binary-coded decimal, natural binary, Gray tree and binary tree code. All can be supplied with environmental protection to IP67. Compact Instruments Ltd. Tel., 01264 505445; fax, 01204 522255.

Optical sensors. Omron's Photomos/sensor range of optical switches now contains convergent-beam reflective types for improved accuracy, the use of Fresnel lenses further enhancing performance. In the EE-SY101 devices, the axes of emitter and detector are inclined towards each other, so increasing the level of light and also accurately defining the range of an object, even a transparent reflective one, with no effect from the background. The sensors measure 18 mm long, 9 mm in height and are 6 mm wide. Omron Electronics Ltd. Tel., 0181-450 4546; fax, 0181-450 8087.
Pressure sensors. Novasensor NPC410, 1210 and 1220 series ceramic substrate pressure sensors by Lucas are lower-priced, 'drop-in' replacements for competing products. According to Lucas, they produce a better performance. The three types are uncompensated, the 1210; compensated with gain-set resistor, the 1270; and compensated with current-set resistor. All three types handle the 5 to 1000mbar full-scale range in gauge and differential pressure and 15 to 1000mbar full scale in absolute pressure. Lucas Control Systems Products. Tel., 01535 661144; fax, 01535 661174.

IR photo-interrupter. Isocom's H22 photo-interrupter is a direct equivalent of the standard opaque photo-interrupter. It is a single-channel switch consisting of a gallium arsenide infrared diode, an n-p-n switch consisting of a gallium equivalent of the standard opaque photo-interrupter. Isocom's H22 01535 661174.

Lucas Control Systems's USP380/emu for the Zilog Z800 processor offers a point/click interface. A source-level C debugger enables source-code line stepping, display of local variables and support for all types of variable including nested types and arrays. Uploading and downloading of 64K takes 14s over a serial port at 115kbaud. There is 1Mbyte of overlay program ram for positioning anywhere in the 4Kbyte address space and a 32K trace buffer provides 80-bit width, incorporating filter controls and a real-time, 100ns stamp. An application can be debugged without stopping the processor. Noral Micrologics Ltd. Tel., 01254 66092; fax, 01254 660947.

Programming hardware
Gang/set programmer for 3.3V and 5V. Speedmaster GLV-427 from ICE Technology provides high-speed programming for eproms, eproms and to 8Mbit flash memory at 3.3V and 5V, in a gang of eight or in sets.

PicoScope "Virtual instrument" software.

ADC-100 Virtual Instrument
Dual Channel 12 bit resolution
- Digital Storage Scope
- Spectrum Analyser
- Frequency Meter
- Chart Recorder
- Data Logger
- Voltmeter

The ADC-100 offers both a high sampling rate (100kHz) and a high resolution. It is ideal as a general purpose test instrument either in the lab or in the field. ADC-100 with PicoScope £199 with PicoScope & PicoLog £219

ADC-10
Gives your computer a single channel of analog input. Prices from £49.
LETTERS

Letters to “Electronics World”
Quadrant House, The Quadrant,
Sutton, Surrey, SM2 5AS

Excuse me
It was a genuine thrill to see my book, The Tube Preamp Cookbook, listed as supplementary literature in Morgan Jones’ article ‘Designing valve preamps in the March 1996 issue of EW’ – its first such mention. I like what Mr. Jones writes but I find it unusual that in discussing RIAA equalisation in preamps he ignores a key point I made in my book.

Morgan states (p194) “...high frequency attenuation must continue indefinitely,” and while I agree that this is the accepted norm, I consider it to be non optimum. The inflated ego of preamp designers notwithstanding, the RIAA replay curve should not be considered an absolute in itself. Rather it should mirror the actual equalisation curve of the recording process.

If the playback is to decrease indefinitely with frequency, the record high frequency would need to have been increased indefinitely. This is of course impossible. No record was ever cut this way.

I suggest to my book that adding a further step in the curve at 3.18ps, to flatten the falling playback response gets much closer to the way long-playing records were – and still are – actually made. This figure was chosen after consulting a number of record cutting equipment manufacturers to see what they actually did, and some 20 years of client and personal experience.

To add this 3.18ps step, Morgan’s schematics need only the addition of one resistor, but what an unexpected sonic improvement this makes in an otherwise optimum system.

Allen Wright
Munich
Germany

10mV diode proof?
I would like to issue a challenge to Douglas Self.

In his ‘Creative Fiction’ letter in the same issue, Douglas scoffs at Ben Duncan’s proposition of ‘10mV diodes’ in multistrand copper cable and gives measurements to prove his point.

I applaud doing tests rather than relying on simulations but let’s take this a step further. I would like to offer a different test – one that opened my eyes to the sonic properties of cables in audio, and which has led to my second book –

which is certain to upset many people – The SuperCables Cookbook.

Douglas:
1. Please connect one of your blameless power amplifiers to your best speakers with some good quality copper braid naturally using separate lengths per terminal. Such braid is the shield of readily available RG59 for example.
2. Play some music at normal levels to reassure yourself that this inexpensive cable option sounds noticeably better than lamp cord.
3. Now reduce the volume to a very low level, ie milliwatts, as if you were listening at 3am in a sleeping house, and take a minute or two to become accustomed to this new level.
4. Now, without changing the volume level, replace the braids with 0.25mm diameter single strand wire-wrap wire and listen again. No fancy twisting or braiding – just hook it up, one thin solid core strand per terminal.
5. Your challenge is to come up with a better concept than Mr. Duncan’s ‘diodes’ to explain the resultant increase in clarity and reduction of distortion coming from this unusual wire substitution. And please do this listening test before offering measurement proofs that no change occurred or is possible.

Now while I’m not advocating using 0.25mm wire for speaker connections – under most conditions anyway – something is certainly going on here and to me, Ben’s ‘10mV diodes’ are as good a description as any of the sonic effects I clearly hear.

Of course you’ll need an amplifier with absolutely no crossovers or artifacts to hear these cable effects and if ‘crystal’ amps do not allow this, perhaps Morgan could help out with one of his rather nice class A valve amps.

AW

What day is it?
In Table 1 of the ‘Building blocks of time’ EW+WW March 1996 the day-code used by the MSF slow code is presented as ‘1-7, bcd’. In fact the code used is 0 for Sunday to 6 for Saturday to avoids the possibility of imitating the framing code carried by bits 32 to 39. This framing code comprises six consecutive long pulses (ones) between two short pulses (zeros). The framing sequence given in the article has the wrong polarity.

During a 61-second minute containing a leap second the extra second is ‘inserted’ before second 17 so all the information for the next minute will appear to be one second late.

The article makes brief mention of the ‘fast code’, this is more difficult to receive and decode and it may soon be withdrawn to give a full 500ms minute marker. So the fast code should not be used in new designs. The slow code travels well, I have MSF domestic clocks operating reliably in a house in Finland, 1888km (only 378 wavelengths) from Rugby, with the help of hand advanced trees.

As well as the time and date information provided by on/off keying, the 60kHz MSF carrier itself provides a very accurate frequency reference, (+2 parts in 10^5), traceable to the national standard at the NPL.

John Chambers
Head of Time and Frequency Services
National Physical Laboratory

Ancient valve myth
I was fascinated to find an ancient valve myth propagated in the hybrid jungle of Morgan Jones’ valve preamplifier.

In ‘Practicalities and Performance’ he talks about the dangers of strapping valve cathodes if HT is applied before they are hot. Not so. This problem was confined to power valves, but thermionic and recent bright emitter filaments and gas filled thyatrons and rectifiers. Cathode degradation due to instant HT was never a problem with the smaller valves used in domestic equipment.

The lie is given to the myth by nearly 40 years of silicon diode rectifier usage. These put HT on to the valve anodes long before the cathodes were even warm. Incidentally, there should be surge limiting resistors between the rectifier bridges and reservoir capacitors in Figs 6 and 7, or does the winding resistance serve in a design where everything else has been carefully arranged?

In the late fifties, plug-in diode rectifier modules on valve bases were offered by valve makers as replacements for valve rectifiers in domestic and industrial equipment, and don’t think this was a crafty ploy to sell replacement valves! By the seventies, wired in diodes had supplanted the thermionic rectifier, without apparent ill effects on valve life.

I can see little point complicating things by keeping valve heaters on stand-by with all that active stabilisation built into the amplifier – it’s certainly not needed to protect the cathodes.

Anthony Hopwood
Worcestershire
**Panic attack**

Soft-core pornographers are rightly limited as to what they can put on their covers, in order not to corrupt tender minds via the newsgame's shelves. What a pity then that EW is free to display frightening disinformation on its covers. I refer to the latest dose of dubious research from Anthony Hopwood. Somebody with political power, but no scientific insight, might well see your cover, take Hopwood seriously, and start a panic.

I shall never take Mr Hopwood seriously. This is not because of any vested interest, or a natural disdain for amateurs, but because I always recall Mr Hopwood's New Scientist article (20/27th December 1979). In this, he claimed to be able to 'dows' whether power was flowing through an elevated wire. He also noted that the results were affected by sunlight (well I never - the gleam of a startling idea!).

When a group of skeptics descended upon him, and made him carry the tests out properly, the strong effect which he had claimed completely disappeared (New Scientist, 22nd October 1981).

Could you please apply a minimum of skepticism yourself before publishing any more of Hopwood's 'evidence'. In fact, I would advise you to double-check the work of anyone who is known to believe in dowsing, ball lightning, 'free energy', and/or anti-gravity.

**Dr. David J. Fisher**

**Cardiff**

**Mile high mine?**

Anthony Hopwood, in his article on 'Power lines particles and cancer', mentions the city of Denver twice. Neither he nor anyone else, as far as I can recollect, has referred to the fact that Colorado is the centre of USA's uranium mining, and other metals are extracted there. Denver originated as a mining area and probably is perched on rocks with a high radon content.

Using figures given in the current edition of Whittaker's Almanac, leukemia, as a percentage of the total neoplasms, is 2.5% in England and Wales, 1.83% in Scotland and 2.3% for N. Ireland. As percentages of the total populations in the three regions the figures are 0.007%, 0.005% and 0.005%.

Apart from the almost equality of the results, are the low population percentages sufficient evidence on which to form clear opinions?

S.F. Brown

**Shropshire**

**And Anthony replies...**

Dr. Fisher's intertempere letter is a classic of the 'don't frighten the horses' genre.

He is obviously far more interested in something I did nearly 20 years ago than looking at the science behind my observations on power line effects which have already been replicated by others.

On the derided electric field experiments, I would remind him that the tests he mentioned were carried out indoors, whereas, I specified outdoor conditions to match the original series of observations taken over many months. Decades later no-one has had the scientific curiosity to try and replicate a simple experiment to show humans have a weak electric field sensitivity, and thus provide a physics based explanation of water dowsing.

These experiments could be done by a school sixth form and need no megabuck apparatus.

Come on Dr. Doctor, try some experimental science for a change instead of making false accusations of my involvement in topics that I have never investigated or even written about. You must be confusing me with someone else!

Now to power lines. My work is based on text book physics - no more - no less. Even now, there is no evidence of a link between electric power systems and disease. Far, far more than is available to prove CJD comes from BSE infected beef.

The implication of ionising radiation intensification as the link between electrodynamic fields and cell damage is simple and needs no physics rewrite. What is needed is properly funded research, not medieval blinkerdom.

**Anthony Hopwood**

**Worcestershire**

---

**HELP wanted**

Have you any queries?

If you have any electronics-related questions that you have been unable to find an answer to, why not see if other readers can answer them? Simply write to me, the editor, at the address on page 267, fax 0181 652 8956, or e-mail martin.eccles@rbp.co.uk.

**Last month, Terence Heatley asked...**

Could one of your readers explain to me a phenomenon connected with the distribution of lines of magnetic flux around a single length of wire carrying a dc current of 1A? With this wire passing through a card at right angles to the wire; if soft iron filings are sprinkled around the wire magnetic lines may be observed which form concentric circles around the wire with spaces between them.

My question is this: has some form of standing wave been set up in the spacing between 'crests'?

**Two similar explanations submitted by readers are...**

The question of lines of magnetism struck me a few years ago, and I think that the explanation is thus.

If you take a handful of bar magnets, like poles repel and unlike poles attract. You can join the magnets into a chain or line. I think that you will find that the lines or chains will repel each other apart.

For the problem of lines around the wire, for soft iron filings, they form bar magnets by the flux flowing through them, with same pole at the clockwise end.

**Douglas Rice**

Ipswich

---

**Trence Heatley (April 1996) proposes a vibrating lycopodium powder analogy to explain the rings seen in iron filings scattered on a card through which a current carrying wire passes perpendicularly, believing that standing waves are involved. If the current is steady, no waves are involved and the rings seen in the iron filings are not due to electrons travelling in bunches along the wire making noise, propagating as rings.**

When an iron particle falls through the field, it becomes magnetised parallel to the field, and like a little bar magnet, influences the way in which magnetised particles nearby fall onto the card. The energy of the system is reduced by the particles forming chains as they settle, the lycopodium powder analogy is thus false. This emphasises the value of the course 'Engineering Science' which I teach to young electronic engineers here at the University of Herfordshire. When they find out more about natural phenomena, this helps to balance studying all the complicated man-made devices like silicon chips with finding out how nature itself works.

**Guy S M Moore**

Division of Physical Sciences

University of Hertfordshire.

Hatfield

Ivan Eamus replied with a similar explanation but his reply was too late for publication.
SURVEILLANCE TELESCOPE Super Russian zoom telescope adjustable from 15x to 30x, complete with digital camera (impossible to use without IRS on the higher settings) 66mm lens, leather carrying case and instructions. £9.95 ref BAR54.

RAIDON DETECTION SYSTEM Designed to be well mounted and connected into PC ideal for remote monitoring, whole building coverage etc. Complete with detector, cable and software. £19.95 ref BAR55.

WIRELESS VIDEO BUGKIT Transmits video and audio signals from 150m, with infra-red illuminator. A perfect tool for tracing tunnel systems. £14.99 ref BAR56.

CCTV CAMERA MODULES 46X30X19mm, 30 grams 12v, auto electronic shutter, 3.8mm F2 lens, C31, 512x492 pixels. Works directly into standard video input on a or video recorder, IR sensitive. £79.95 ref 13ETB.

REMOTE CONTROL DATA TDS1400 MODEM/ VIEWDATA SYSTEM Transmits video, telephone etc, via satellite link, 4 minute download standard 35mm film using standard 35mm film. £149.99 ref EP66.

PLASMA SCREENS 222x310mm, no data hence £4.99 ref SA21. Want to make some money? Stuck for an idea? covert a standard telephone lead, mains lead, telephone line etc, sale price from £4.99 ref EP7.

RADIATION DETECTOR SYSTEM Designed to be wall mounted and connected to your PC. Will need attention SALE PRICE £49 SAVE £30 ref LOT61.

ENERGY BANK KIT 1006'x6' 6v 10CrnA panels, 100 diodes, solar controller, 6v battery £49.99 ref EP57.

DOUBLE BEAM UNITS Double beam units designed to fit in the gun barrel of a tank, each unit contains an electronic detector to detect reflected signals from targets, five or more units £299 ed. £349 for one, ref LOT41.

GOT AN EXPENSIVE ANYTHING? You need one of our THOUSANDS AVAILABLE RING/FAX FOR DETAILS! £6 ref LOT1. Two 3 watt laser pointers £33 each ref BAR400.

RED EYE SECURITY PROCTOR 1,000 watt outdoor PIR. Complete with detector, cable and software. £149.99 ref EP26.

TALKING WATCH Yes, it actually tells you the time at the press of a button! With the Battery Wizard! Uses the latest pulse wave charge system and go's back the other way! £1 99 ref GI/J01.

WOLVERHAMPTON BRANCH NOW OPEN AT WORCESTER ST WHAMPTON TEL 01902 23839

24v AC 96WATT Casse power supply. New. £9.99 ref SA40 with MICROPIPE STRIPPERS Small casse face diodes ideal for stripping of useful goods from casse etc. Complete with casing of casse components. SALE PRICE JUST £4.99 for FIVE REF SA25.

SOLAR POWER LAPSPECIAL You get TWO 6'x6' 6v 130mA solar EOLF30 panels, 4 LEDs, wide, buzzerswitch plus 1 relay or motor. Superior value SALE PRICE JUST £6.99 ref SA57.

REGISTRATION DOCUMENTS PACKAGE In good condition, back anodised metalcase. SALE PRICE £49 ref SA6 WEB PLUG IN ACORN PSU 19 AC 14w £2.99 ref MAG3P10 REF HOME SECURITY PACKAGE Microphone, Marshall speaker, lamp, trolleyblue, menu drawer, sub audio etc. £12.99 ref 13ETB.

UNIVERSAL SPEED CONTROLLER KIT Designed by us for the C5 motor but on any 12v motor up to 30A. Complete with PCB etc. £29.99 ref EP68.

PAPER PHONE AND COMPUTER COMMUNICATION PACKS For modems, printers, computer, telephones and etc. £25.99 ref BAR400.

STereo MICROSCOPES BACK IN STOCK. £200 complete with lenses, lights, filters etc very comprehensive microscope that would normally be around £700 mark, our price for this may be reduced. £17.99 ref BAR400.

4X28 TELESCOPIC SIGHTS Suitable for all the airguns, ground lenses, good light gathering properties. £19.95 ref R7.

RADIO CONTROLLED CARS from £6(EACH)!!! All returns from famous manufacturer, these cars can either be controlled via a forward, back or sideways movement, 7 mile range. Full circuit diagrams, new price £20 + £349.

WAVEFORMS Photographs using standard 35mm film. £25.99 ref EP15.

METAL CASES Comes in a range of sizes and colours with a choice of lid design, £15.99 ref 13ETB.

PASTEL ACCOUNTS SOFTWARE, does everything for all your business accounts, also contains an electronic receiver to detect reflected signals from targets, five or more units £299 ed. £349 for one, ref LOT41.

VOIP SYSTEMS 222x310mm, no data hence £4.99 ref SA21. Want to make some money? Stuck for an idea? covert a standard telephone lead, mains lead, telephone line etc, sale price from £4.99 ref EP7.

NIGHTVISIONS Model TZS4 with infra red illuminator, views up to 13 deg angle of view, focussing range 1.5m to infinity. 2 AA battens £19.95 ref 13ETB. TRADE PACK of 20 £28.95 ref LOT2.

NIGHTVISIONS Model TZS4 with infra red illuminator, views up to 13 deg angle of view, focussing range 1.5m to infinity. 2 AA battens £19.95 ref 13ETB. TRADE PACK of 20 £28.95 ref LOT2.
WOLVERHAMPTON BRANCH
NOW OPEN AT WORCESTER STREET
WOLVERHAMPTON TEL. 01902 22309

INFINITY TRANSMITTERS
The ultimate bug fix to any telephone line. Works in any condition anywhere in the world. Even in walls and phones. Some bugs are not able to use this for man-made conditions. For use from anywhere in the world 24 hours a day. 7 days a week. Just call the number and press on the button the main transmitter (supplied) and you can hear everything that is said. As a receiver you can choose £249 each, complete with leads and mini control. Ref: F/TPS. Undergoing tests by 3rd party, 120v transmitter, fitted in seconds, no batteries required, list forever!

SWITCHED MODE PSUS
244 watt - +52A, +52.5 A, +20A, +24V. Complete with transformer. £249 or £129 for 2 whole, P. Case, 175x145x5mm. IEC Inlet Suitable for PUC use (isoloated connections 1 mini). £10 Ref: P/TPS.

VIDEO PROCESSOR UNITS
75V/75A 10AH BATTERIES 12A MAX 5A 240V 2 POWER SUPPLY
New. Incredibly versatile. Can be used in nearly any condition anywhere in the world. Complete with wiring harness and 2 power supplies designed to replace any radio or tv. £1.50 Ref: F/TPS.

RETRONIGHT BRIGHT recognition of a standing man at 30m 1.4m in moonlight, hermetically sealed, runs on 4 AA batteries. Designed to cover 88-108 Hertz, 2 microamps as strictly limited. Works with a common 9v DC battery. 2W RF. £17 Ref: F/TPS.

3-5V POWER SUPPLY KIT
 variable, stabilized power supply kit. £12 Ref: F/TPS.

STROBE LIGHT KIT
Adjustable from 1-60 Hz (a lot faster than previous models). £16 Ref: F/TPS.

PHONE BUG KIT
Small bug powered by the 'phone line, can be fitted to almost any phone. £8 Ref: F/TPS.

ROBOT VOICE KIT
Interesting circuit that does your voice adjust, then add them to the phone with a different voice. £13 Ref: F/TPS.

3 CHANNEL LIGHT CHASER KIT
2000 Watts per channel, 12v DC, power and controls for scan speed, scan delay, scan mode, loads of connections and mini controls plus individual level controls. £25 Ref: FR/TPS.

VOX SWITCH KIT
Sound activated switch ideal for bug recording and simple tasks. £8 Ref: F/TPS.

4 WATT TRANSMITTER KIT
Small but powerful FM transmitter, 3Fr stages, microphone and audio preamplifier included. £20 Ref: F/TPS.


BABY MONITOR KIT
Builds into a precision LCD humidity monitor. £11 Ref: F/TPS.

STROBE LIGHT KIT
300,000 volts 2500watt lamp, remote control and power supply. £39.99 Ref: F/TPS.

200 WATT INVERTERS
Nicely cased units 12v input 240v output. Up to 600 watts output. £30 Ref: F/TPS.

2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND 2000 WATT INVERTERS Nicely cased units 12v input 240v output. £60 Ref: F/TPS.

2000 RESISTORS ON A REEL (SAME VALUE) 99P REF BAR340

TELEPHONE BUNG TAP KIT
Use on telephone to access either. A) On premises sound and voices or B) room monitor. The ultimate in home/office security and safety! simple to use. £6 Ref: F/TPS.

TELEPHONE BUG KIT
Small bug powered by the 'phone line, 9vDC transformer also required. £8 Ref: F/TPS.

MICROWAVE CONTROL PANELS
To clear. £2 Ref: F/TPS.

HUMIDITY METER KIT
Builds into a precision LCD humidity meter. £5 Ref: F/TPS.
HISTORY

Circuit reflections

Gems and oddities from early reference works - including the Admiralty Handbook - presented by Ian Hickman.

With the advance of electrotechnology, Degree syllabuses have become so specialised that new graduates enter industry with a good grounding in their own sphere, but an almost complete lack of knowledge of other areas of electronics. Many a new engineer has wasted time trying to perfect a circuit that an old hand could have told him - at a glance - could not possibly work. A great deal of material basic to the practice of electronics is becoming more difficult to find. Often, the best sources of material are second-hand bookshops, where invaluable copies of ‘Terman’, ‘Langford Smith’ and other classic texts on electronics can be picked up for a few pounds.

Admiralty Handbook surprises

Old technical books often surprise you by revealing that many aspects of science were well known much earlier than one realised. The

Titles to look out for

Of particular interest are the various handbooks issued by the Air Ministry, the Admiralty and various branches of the Army. For many aspects of telephony, the Handbook of Line Communication, Vol.1, prepared for The Royal Signals and published by Her Majesty’s Stationery Office in 1947, is of considerable interest. Very common in second-hand bookshops is the Admiralty Handbook of Wireless Telegraphy, published in two volumes by His Majesty’s Stationery Office in 1938. Despite its title, Volume 2 also covers radio telephony. Appendix D of Volume 1 is titled ‘W/T Text Books, Works of Reference and Journals’, and the first entry under Journal is ‘Wireless World.’ (Iliffe & Sons. Weekly. 4d.).

The two volume 1938 edition superseded the earlier 1931 edition, of the same title, which I have not seen. However, I found a single volume edition of the ‘Admiralty Handbook of Wireless Telegraphy 1925’ in a subterranean second-hand bookshop in a small town in Yorkshire, although my copy is from the 1928 reprinting. This was prepared by Captain W.G.H. Miles, R.M., and cost just 5 shillings - getting on for £20 in today's money - from HMSO. The title page states that it supersedes 'The Admiralty Handbook of Wireless Telegraphy, 1920,' a copy of which I would dearly love. Like the latter editions, the 1925 edition also covers radio telephony, but not having seen the 1920 edition, I can’t say whether that did.

1925 Admiralty Handbook is no exception. Figure 1 reproduces Table VI from page 6 of the Handbook. From this it appears that millimetric waves with frequencies up to 200GHz had already been produced at that date, though not exploited till long after. Figure 3 on page 15 of the Handbook reveals that among atomic forces, the strong short-range force was already part of the corpus of knowledge in 1925.

Other items from old technical books, while not surprising, are nonetheless of interest, and occasionally of practical use. For example, the question of units is well handled by the Admiralty handbook, which gives the relationships between practical units in electrical science and the absolute (c.g.s.) units, as well as others. Thus on page 75, one learns that 1 farad equals 9 times 10⁴⁴ absolute units of capacitance, or cms.

I had come across capacitors with their values marked in centimetres decades ago, while repairing pre-war valve radios, and been told that taking the value as meaning picofarads would not be too far adrift. In fact, as can be seen, 1cm equals 1.11pF, this being the capacitance of an isolated metallic sphere of 1cm diameter or radius, I forget which, situated at infinity.

At that time, the Navy, used Jars as its measure of capacitance, this presumably being the nominal capacitance of a Leyden jar. The Handbook defines 1 Jar as equal to 10³ cms, making 1 Jar equal 1.11nF. Fascinating stuff, if of limited use nowadays, except to collectors and restorers of vintage radios.

Of more use is the very handy chart facing page 65, which is reproduced here as Fig. 2. This provides the factor F for use in the formula for self inductance of an air-cored coil, L = r²N²FaF, where, r = the mean radius of the coil in inches l = the winding length in inches d = the depth of the winding in inches, or the thickness of wire used in a single layer coil N = the number of turns in the coil F = the ‘form factor’ of the coil, and is found from the curve in Figure 40 of the Handbook.
Figure 1. Frequency chart of the electromagnetic spectrum showing the use made of the various bands, in the Royal Navy and elsewhere.
HISTORY

Fig. 2. Chart providing the factor F for use in calculating coil inductance.

after the ratio \( r/(l + d) \) has been determined. Inductance \( L \) is in 'mics', mics being the then colloquial abbreviation for microhenries, the equivalent of modern day 'puffs' for \( \mu H \).

From the Navy's point of view, working in mics and jars gave a convenient formula for the resonant frequency, \( \omega \) -- where \( \omega = 2\pi f \) -- of a tuned circuit:

\[
\omega = \frac{3 \times 10^7}{\sqrt{LC}}
\]

Circuits galore

The Handbook describes and analyses many circuits, including parallel resonant tuned circuits, with the aid of vector diagrams.

Although rather on the small side, these greatly help the reader to visualise and understand circuit action.

Turning to active circuits, the Handbook contains many. Those associated with radio telephony do not look too unfamiliar to the mature engineer -- or even to the younger engineer keen enough to have found out a little about valves, which are currently making a comeback in audio amplifiers. But one which looks strange to modern eyes is shown in Fig. 3. This depicts a Poulsen Arc Transmitter.

Current is supplied by a motor-generator set and the arc burns in a powerful transverse magnetic field produced by pole-pieces, fitted with coils energised by the arc current itself. This causes the arc to bow, increasing its length, the more so the more the current. In conjunction with a ballast resistor, this stabilises the mean or dc value of the arc current, for like any discharge phenomenon the arc exhibits a negative resistance.

But at ac, the negative resistance buffered from the damping of the ballast resistor by the effect of the polepiece chokes, is capable of supplying the losses in a resonant tuned circuit, maintaining continuous-wave oscillation which is keyed and applied to an aerial circuit.

Compared to a simple spark transmitter, the Poulsen Arc transmitter can radiate much more power from a ship's antenna, which is necessarily restricted in size. This is because, with a spark transmitter producing heavily damped oscillatory wavetrahs, the maximum voltage that the antenna can support without arcing over is only present for a small proportion of the time.

By comparison, the Poulsen Arc transmitter can radiate continuously the maximum power that the antenna can handle.

Crystal-diode receiver

Turning to more familiar-looking circuitry, Fig. 4 shows a crystal-diode receiver,

Fig. 4. This simple crystal diode receiver had means for applying a small forward bias to the detector, to increase rectification efficiency for weak signals.

Although rather on the small side, these greatly help the reader to visualise and understand circuit action.

Turning to active circuits, the Handbook contains many. Those associated with radio telephony do not look too unfamiliar to the mature engineer -- or even to the younger engineer keen enough to have found out a little about valves, which are currently making a comeback in audio amplifiers. But one which looks strange to modern eyes is shown in Fig. 3. This depicts a Poulsen Arc Transmitter.

Current is supplied by a motor-generator set and the arc burns in a powerful transverse magnetic field produced by pole-pieces, fitted with coils energised by the arc current itself. This causes the arc to bow, increasing its length, the more so the more the current. In conjunction with a ballast resistor, this stabilises the mean or dc value of the arc current, for like any discharge phenomenon the arc exhibits a negative resistance.

But at ac, the negative resistance buffered from the damping of the ballast resistor by the effect of the polepiece chokes, is capable of supplying the losses in a resonant tuned circuit, maintaining continuous-wave oscillation which is keyed and applied to an aerial circuit.

Compared to a simple spark transmitter, the Poulsen Arc transmitter can radiate much more power from a ship's antenna, which is necessarily restricted in size. This is because, with a spark transmitter producing heavily damped oscillatory wavetrahs, the maximum voltage that the antenna can support without arcing over is only present for a small proportion of the time.

By comparison, the Poulsen Arc transmitter can radiate continuously the maximum power that the antenna can handle.

Crystal-diode receiver

Turning to more familiar-looking circuitry, Fig. 4 shows a crystal-diode receiver,
Anode blocking condenser

Alternating voltage

Oscillatory voltage in aerial

Fig. 6. Valve action was thoroughly understood, as illustrated by the test circuit A and typical characteristic B.

Fig. 7. In this simple transmitter, the frequency was determined by the resonant circuit formed by the aerial coil and the aerial’s capacitance to ground.

Fig. 8. Simple circuit providing ICW (interrupted continuous wave), so that Morse signals could be received on sets without a heterodyne oscillator (BFO).

Fig. 9. Telephony transmitter using grid modulation of the oscillator, which also doubled as the ‘final’.

Fig. 10. Circuit of a one valve receiver employing ‘regenerative amplification’, which later came to be known as reaction.

Anode volts +40

Saturation current

Fig. 5. In 1925 valves were still at an early stage of development, but their operation was well understood. Fig. 6. The earlier ‘bright emitters’, using a pure tungsten filament and consuming considerable filament current from a 6V accumulator, were being replaced, at least in receiver applications, by the new ‘dull emitters’. These used a filament of thoriated tungsten and could consume as little as 60mA at 1.8V, though 60mA at 3V was a more common rating.

Both dull and bright-emitter valves were designed for headphone reception. The variable inductor, variable capacitor and L1 act as an antenna tuning unit, or ATU. Capacitor C1 determines how tightly this is coupled to the main tuned circuit, L2/C2.

Of interest is the arrangement for applying forward bias to the diode to site the incoming rf at the ’bendiest’ point of the characteristic; less than 100mV for a Bornite-Zincite detector, 300mV for tellurium-zincite or 700mV for carborundum-steel.

With the arrangement shown, if the particular detector you are using works best as a backward diode, so be it. Simply adjust the potentiometer for best results.

At that time, some ships did not yet have heterodyne receivers. Their simple diode or valve receivers were fine for receiving Morse continuous-wave from a spark transmitter, or radio telephony. But continuous-wave from a valve transmitter, being simply a keyed unmodulated carrier, produced nothing but clicks in such a receiver, making the reading of Morse difficult or impossible.
Sparks, dots and dashes

By contrast, the dots and dashes from a spark transmitter consisted of a series of damped oscillations at the spark repetition frequency, resulting in an audible 'tone' in the headphones. Figure 8 shows a simple transmitter modification to cope with this situation, without the keying arrangements.

The two diodes of the full wave rectifier, and the reservoir capacitor have all been disconnected. The valve anode circuit supplied direct from one half of the full wave secondary winding of the supply transformer.

Now, the output is modulated at the supply frequency. An improved arrangement retained the full wave rectifier circuit, omitting just the reservoir capacitor. As a result, the modulating or 'tone' frequency was twice the supply frequency.

A power supply complete with reservoir capacitor was used in the case of radio telephony transmissions, such as those produced by Fig. 9. This is a three valve transmitter where the oscillator V3 - which doubles as the 'final' - is grid modulated by the two stage audio amplifier V1, V2, then called a 'note magnifier'. The carbon microphone is energised from the filament supply via R1.

Figure 10 shows a one valve receiver using what later became universally known as 'reaction', except in the USA, where it was called 'tickling'.

The antenna could be resonated with the variable inductor, and its coupling to the tuned circuit LC was adjustable. In addition, reaction was controlled by varying the spacing between L3 and L - known as 'swinging choke reaction'.

Complete receivers

Figure 11 shows a complete receiver - less antenna input arrangements. It uses four triodes, three as rf amplifiers and one as a 'leaky grid detector'.

This is surely an ambitious scheme. Indeed the book goes on to state under section 490, 'Prevention of Oscillations', that "One of the greatest difficulties... is to prevent the establishment of unwanted heterodyne oscillations." It lists a number of steps which can be taken, noting that most of them result in a reduction of amplification. These include using positive grid bias, leading to grid current and consequent damping of the tuned circuits, and the use of 'negative reaction' or neutralising. This later term is not mentioned.

The difficulty of obtaining a large measure of amplification at rf in the days before the appearance of tetrode screened grid valves and pentodes, led to the development of the 'superheterodyne' circuit, now universally used in receivers of all sorts. Figure 12 shows the Armstrong short-wave circuit, designed, in this instance, to receive signals at 5MHz. Valve V1 is a self-oscillating additive mixer, whose output is coupled to the three stage intermediate-frequency amplifier, V2 to V4.

Amplified IF signal is applied to a leaky grid detector. This additionally oscillated at a frequency removed by 1kHz from the 30kHz IF, to give a 1kHz tone for receiving Morse transmissions.

The three tuned 30kHz IF transformers gave great selectivity, while at the very low IF there was no problem of self oscillation of the three triode IF stages. Of course, with only a single tuned circuit at the wanted 5MHz signal frequency, and an IF as low as 30kHz, there would be little rejection of any unwanted signal at 5.06MHz. Nowadays, this is known as the image response, but then as the 'second channel'.

But in those halcyon days, signals in the hf band were very few and far between. For receiving really weak signals, a two valve af amplifier or 'note magnifier' would precede the headphones.

Fig. 12. The Armstrong Short-wave Receiver, an early version of the superhet, for reception of cw signals.
Electronic Designs Right First Time?

Active and Passive Filter Design - FILTECH -

From only £145!

For Full Information Please Write, Phone or Fax.
email: sales@numberone.com
Tel: +44 (0) 1480 461778, Fax: +44 (0) 1480 494042

AFFORDABLE ELECTRONICS CAD

EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III, LAYAN and PULSAR
Prices From: £375.00 £195.00

ANALYSER III: Linear Analogue Circuit Simulator
Prices From: £195.00 £98.00

LAYAN: Electro-magnetic layout Simulator. Include board parasitics in your Analogue simulations.
Prices From: £950.00 £495.00

PULSAR: Digital Circuit Simulator
Prices From: £195.00 £98.00

Z-MATCH: Windows based Smith-Chart program for RF Engineers.
Prices From: £275.00 £145.00

FILTECH: Active and Passive Filter Design
Prices From: £275.00 £145.00

We operate a no penalty upgrade policy. Technical support is FREE FOR LIFE. Special prices for Education

USS prices include Post and Packing Sterling Prices exclude P&P and VAT.

LARGEX SUPPLIES LTD

DISTRIBUTORS OF ELECTRONIC VALVES

TUBES, SEMICONDUCTORS AND I.C.S.

1 MAYO ROAD  CROYDON  SURREY CR0 20P

PHONE 0181 684 1166 FAX 0181 684 3056

24 HOUR EXPRESS MAIL ORDER SERVICE ON STOCK ITEMS

Ref: WW, Harding Way, St. Ives, Cambridgeshire, PE17 4WR. UK.

LANGEX SUPPLIES LTD

DISTRIBUTORS OF ELECTRONIC VALVES

TUBES, SEMICONDUCTORS AND I.C.S.

1 MAYO ROAD  CROYDON  SURREY CR0 20P

PHONE 0181 684 1166 FAX 0181 684 3056

24 HOUR EXPRESS MAIL ORDER SERVICE ON STOCK ITEMS

Ref: WW, Harding Way, St. Ives, Cambridgeshire, PE17 4WR. UK.

LANGEX SUPPLIES LTD

DISTRIBUTORS OF ELECTRONIC VALVES

TUBES, SEMICONDUCTORS AND I.C.S.

1 MAYO ROAD  CROYDON  SURREY CR0 20P

PHONE 0181 684 1166 FAX 0181 684 3056

24 HOUR EXPRESS MAIL ORDER SERVICE ON STOCK ITEMS

Ref: WW, Harding Way, St. Ives, Cambridgeshire, PE17 4WR. UK.

LANGEX SUPPLIES LTD

DISTRIBUTORS OF ELECTRONIC VALVES

TUBES, SEMICONDUCTORS AND I.C.S.

1 MAYO ROAD  CROYDON  SURREY CR0 20P

PHONE 0181 684 1166 FAX 0181 684 3056

24 HOUR EXPRESS MAIL ORDER SERVICE ON STOCK ITEMS

Ref: WW, Harding Way, St. Ives, Cambridgeshire, PE17 4WR. UK.

LANGEX SUPPLIES LTD

DISTRIBUTORS OF ELECTRONIC VALVES

TUBES, SEMICONDUCTORS AND I.C.S.

1 MAYO ROAD  CROYDON  SURREY CR0 20P

PHONE 0181 684 1166 FAX 0181 684 3056

24 HOUR EXPRESS MAIL ORDER SERVICE ON STOCK ITEMS

Ref: WW, Harding Way, St. Ives, Cambridgeshire, PE17 4WR. UK.
WE WANT TO BUY!!

IN VIEW OF THE EXTREMELY
RAPID CHANGE TAKING PLACE
IN THE ELECTRONICS
INDUSTRY, LARGE QUANTITIES
OF COMPONENTS BECOME
REDUNDANT. WE ARE CASH
PURCHASERS OF SUCH
MATERIALS AND WOULD
APPRECIATE A TELEPHONE
CALL OR A LIST IF AVAILABLE.
WE PAY TOP PRICES AND
COLLECT.

R. HENSON LTD.
21 Lodge Lane, N.Finchley,
London N12 8JG.
5 Mins, from Tally Ho Corner.
TELEPHONE
0181-445-2713/0749
FAX 0181-445-5702

VALVES, and CRTs AVAILABLE

ONE MILLION VALVES stocked for Audio, Receiving, Transmitting & RF Heating. Rare brands such as Mullard & GEC available. Also MAGNETRONS, KLYSTROMS, CRTs and SOCKETS. Large stocks of Russian & Sovtek items.

Please ask for our free catalogues of valves or CRTs.

VALVES, etc. WANTED

Most types considered but especially KT88 (£48), PX4/PX25 (£50), KT66 (£35), KT77 (£15), EL34 (£10), EL37 (£9), ECC83 (£3). Valves must be UK manufacture to achieve prices mentioned. Also various valve-era equipment e.g. Garrard 301, (up to) £80. Ask for a free copy of our wanted List.

BILLINGTON EXPORT LTD., Billingshurst, Sussex RH14 9EZ.
Tel: 01403 784961 Fax: 01403 783519
VISITORS STRICTLY BY APPOINTMENT.
MINIMUM ORDER £50 plus VAT

TEST EQUIPMENT WANTED!

SMALL OR LARGE QTY, WORKING OR NON WORKING
WE PAY THE BEST PRICES FOR YOUR EXCESS INVENTORY!
FAX YOUR INVENTORY LIST TODAY FOR AN INSTANT QUOTE
PROMPT PAYMENT AND FAST SERVICE ARE OUR CORPORATE POLICY

LOTHAR BAER ELECTRONIC TEST EQUIPMENT, MICROWAVE TECHNOLOGY
BLUMENSTRASSE 1
D-95213 MUNCHENBERG/GERMANY
PHONE: +49 925192163 FAX: +49 9251 7846

ARTICLES FOR SALE

THIS MONTH'S SALE INCLUDES:-
Batteries, Boxes, Cable, Capacitors, Computer Products, Connectors, Fans, Fasteners, Filters, Fuses, Optoelectronics, Panel Meters, Power Supplies, Relays, Resistors, Potentiometers, Semiconductors, Transducers, Transformers, Timers and Miscellaneous Stores etc.

ALL PRICES EXCLUDE V.A.T.
NO MINIMUM ORDER.
RING TODAY FOR THIS MONTH'S CATALOGUE

WANTED

SURPLUS ELECTRONIC
COMPONENTS AND
EQUIPMENT

We pay cash and will collect.

B. BAMBER ELECTRONICS
5 Station Road, Littleport, Cambs CB6 1QE
Phone: Ely (01353) 860185
Fax: Ely (01353) 863245

ARTICLES WANTED

TOP PRICES PAID
For all your valves, tubes, semi conductors and IC's.
Langrex Supplies Limited
1 Mayo Road, Croydon
Surrey CR6 2QP
TEL: 0181-684 1166
FAX: 0181-684 3056

WANTED
TOP PRICES PAID
For all your Test Equipment, Receivers, Transmitters etc. Factory Clearance, Prompt Service and Payment.
HTB ELEKTRONIK
Aller Apeler Weg 5
27619 Schiffdorf, Germany
Tel: 0049 4706 7044
Fax: 0049 4706 7049

TOP PRICES PAID
For all your Test equipment, Electronic Scrap, Valves, Transmitters/Receivers, Factory & Warehouse Clearance. Confidentiality Assured.
Telford Electronics
Phone: 01952 605451
Fax: 01952 677978

WANTED
Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash.
M & B Radio
86 Bishopsgate Street
Leeds LS1 48B
Tel: 0113 2435649
Fax: 0113 2426881

ELECTRONICS
VALVES & SEMICONDUCTORS
Phone for a most courteous quotation
We are one of the largest stockists of valves etc., in the U.K.

Colomor Electronics Ltd
170 Goldhawk Road
London W12 8HJ
England.
Tel: 0181 743 0899
Fax: 0181 749 2934
**ARTICLES FOR SALE**

**SUPPLIER OF QUALITY USED TEST INSTRUMENTS**

CONTACT

Cooke International
ELECTRONIC TEST & MEASURING INSTRUMENTS
Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB
Tel: (+44)01243 548111/2 Fax: (+44)01243 542457

SMALL selection of aircraft starter motors, DC generators and rotary converters. Possibly suit electric vehicles, etc. £5 to £30 depending on condition and type. Tel: Bristol 0117 9790983.

ZED was a superb editor for Gemini CPM systems. Who wrote it? Please phone Rodney Harris 01-734 876641.

WANTED: Tektronix 7603/13/23 mainframe with plug-ins (non)working, manuals. Send your offer to M.S. Nielsen, Højker 35 6 TV 2605 Brøndby, Denmark, or call/fax +45 36 47 41 56.

WANTED: AVO model 8 Mk1 or Mk2 with broken movement. 01326 312901.

**DISCOUNT SALE**

**ARTICLES FOR SALE**

**OPERATING & SERVICE MANUALS**

CONTACT

Cooke International
ELECTRONIC TEST & MEASURING INSTRUMENTS
Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB
Tel: (+44)01243 548111/2 Fax: (+44)01243 542457

WANTED: W.S.18 W.S.62 suitcase sets (50E) crypto equipment, German WW2 gear for museum purposes only. Lasse R. Ottestad, PO Box 73, Lian N-1113 Oslo, Norway.

ELECTRONIC COMPONENTS. Large quantity new passive, active, cabinets, power supplies, etc, etc, etc, £225 ono. Would suit enthusiast. Wilmshurst 01625 527282.


INDEX TO ADVERTISERS

- Anchor Surplus
- BK Electronics
- Bull Electrical
- Croweware Products
- Crowhill Associates
- Dataman
- Electromail
- Equinox Technologies
- Field
- Halcyon Electronics
- Hart

PAGE PAGE PAGE
--- --- ---
403 365 354
430 360 377
354 396 437
388 400 375
359 395 400
363 398 405
348 437 419
418 407 419
400 400 400
407 427 396

PAGE
312901

354
377
375
375
437
419
419
419
396
427

R3 ELECTRONICS WORLD back issues May 87 through Jan 95. London NW. Lot for 100. Buyer collects. 0181 509 2423.

PAIR OF LOWTHER PM6 units, boxed, suitable for horn design in December issue, £150. Tel. 01295 810859.

COURSES

AUDIO AMPLIFIER DESIGN. Full or part-time PhD research at Kings College, London. Contact Dr. Sandman: 0711 8732522.

INDEX TO ADVERTISERS

- Anchor Surplus
- BK Electronics
- Bull Electrical
- Croweware Products
- Crowhill Associates
- Dataman
- Electromail
- Equinox Technologies
- Field
- Halcyon Electronics
- Hart

PAGE PAGE PAGE
--- --- ---
403 365 354
430 360 377
354 396 437
388 400 375
359 395 400
363 398 405
348 437 419
418 407 419
400 400 400
407 427 396

PAGE
312901

354
377
375
375
437
419
419
419
396
427

R3 ELECTRONICS WORLD back issues May 87 through Jan 95. London NW. Lot for 100. Buyer collects. 0181 509 2423.

PAIR OF LOWTHER PM6 units, boxed, suitable for horn design in December issue, £150. Tel. 01295 810859.

COURSES

AUDIO AMPLIFIER DESIGN. Full or part-time PhD research at Kings College, London. Contact Dr. Sandman: 0711 8732522.

INDEX TO ADVERTISERS

- Anchor Surplus
- BK Electronics
- Bull Electrical
- Croweware Products
- Crowhill Associates
- Dataman
- Electromail
- Equinox Technologies
- Field
- Halcyon Electronics
- Hart

PAGE PAGE PAGE
--- --- ---
403 365 354
430 360 377
354 396 437
388 400 375
359 395 400
363 398 405
348 437 419
418 407 419
400 400 400
407 427 396

PAGE
312901

354
377
375
375
437
419
419
419
396
427

R3 ELECTRONICS WORLD back issues May 87 through Jan 95. London NW. Lot for 100. Buyer collects. 0181 509 2423.

PAIR OF LOWTHER PM6 units, boxed, suitable for horn design in December issue, £150. Tel. 01295 810859.

COURSES

AUDIO AMPLIFIER DESIGN. Full or part-time PhD research at Kings College, London. Contact Dr. Sandman: 0711 8732522.
Eight year EW index
Hard copy or disk

Includes over 600 circuit idea references

Whether as a PC data base or as hard copy, SoftCopy can supply a complete index of Electronics World articles going back over the past eight years.

The computerised index of Electronics World magazine covers the eight years from 1987 to 1995 — volumes 94 to 101 inclusive — and is available now. It contains almost 2000 references to articles, circuit ideas and applications — including a synopsis for each.

The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512k ram and a hard disk.

Even though the disk-based index has been expanded significantly from five years to eight, its price is still only £20 inclusive. Please specify whether you need 51/4in, 3.5in DD or 3.5in HD format. Existing users can obtain an upgrade for £15 by quoting their serial number with their order.

Hard copy Electronics World index

Indexes on paper for volumes 100 and 101 are available at £2 each, excluding postage.

Ordering details

The EW index data base price of £20 includes UK postage and VAT. Add an extra £1 for overseas EC orders or £5 for non-EC Overseas orders.

Postal charges on hard copy indexes and on photocopies are 50p UK, £1 for the rest of the EC or £2 worldwide. For enquiries about photocopies, etc., please send an sae to SoftCopy Ltd at the address below.

Send your order to SoftCopy Ltd., 1 Viversie Close, Cheltenham GL53 0NU, tel 01242 241455, or e-mail at 100556.112@compuserve.com. Please make cheques payable to SoftCopy Ltd — not EW or Reed Business Publishing. Please allow up to 28 days for delivery.
**TEST EQUIPMENT**

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANRITSU MF76A 18GHz microwave frequency counter</td>
<td>£1500</td>
</tr>
<tr>
<td>BRUEL &amp; KJAER 1023 sine generator</td>
<td>£1250</td>
</tr>
<tr>
<td>BRUEL &amp; KJAER 1027 sine random generator</td>
<td>£1250</td>
</tr>
<tr>
<td>BRUEL &amp; KJAER 2023 single channel audio spectrum analyser</td>
<td>£2000</td>
</tr>
<tr>
<td>BRUEL &amp; KJAER 2619 preamplifier</td>
<td>£750</td>
</tr>
<tr>
<td>BRUEL &amp; KJAER 2811 vibration meter (field set with 1621 liner)</td>
<td>£1620</td>
</tr>
<tr>
<td>CHF 1004 1000 interference measuring receiver 10kHz-150kHz</td>
<td>£1500</td>
</tr>
<tr>
<td>DATRON 1065 digital multimeter at ranges + IEEE</td>
<td>£600</td>
</tr>
<tr>
<td>FARNELL 2081/100 100W RF power meter DC-500MHz (10GHz)</td>
<td>£2200</td>
</tr>
<tr>
<td>JJ INSTRUMENTS CR600-2 channel pen recorder</td>
<td>£250</td>
</tr>
<tr>
<td>KIKUSUI 8520 frequency response analyser with sweep generator 4600</td>
<td>£800</td>
</tr>
<tr>
<td>PHILIPS PM5517 17MHz-10GHz function generator</td>
<td>£275</td>
</tr>
<tr>
<td>PHILIPS PM3387 11-12GHz single channel pen recorder</td>
<td>£850</td>
</tr>
<tr>
<td>RACAL 9086 automatic modulation meter</td>
<td>£350</td>
</tr>
<tr>
<td>RACAL-DANA 9300 milli-voltmeter</td>
<td>£400</td>
</tr>
<tr>
<td>RACAL-DANA 9301 true RMS RF milli-voltmeter</td>
<td>£350</td>
</tr>
<tr>
<td>SYSTRON DONNER 1300 synthesized signal generator 100kHz-1GHz GPBI</td>
<td>£1350</td>
</tr>
<tr>
<td>TEKTRONIX A6501 / 50605 distortion analyser (complete with TM303)</td>
<td>£1250</td>
</tr>
<tr>
<td>TEKTRONIX P6303 scope probe NEW 250MHz</td>
<td>£500</td>
</tr>
<tr>
<td>TEKTRONIX P2465 option CTS oscilloscope</td>
<td>£500</td>
</tr>
<tr>
<td>TESTO 2619 preamp tester</td>
<td>£750</td>
</tr>
<tr>
<td>WANDOL &amp; GOLTERMANN WM300 level tracer</td>
<td>£550</td>
</tr>
<tr>
<td>WANDOL &amp; GOLTERMANN 4J-4S jitter meter for 1.2-10GHz</td>
<td>£500</td>
</tr>
<tr>
<td>WAVEtek 23 synthesized function generator 0.1Hz-20GHz</td>
<td>£500</td>
</tr>
<tr>
<td>WAVEtek 1067 opt 522 5-100MHz sweep generator £500</td>
<td>£500</td>
</tr>
<tr>
<td>WAYNE KERR 2020 20mA bias unit (for 3245 inductance analyser)</td>
<td>£1250</td>
</tr>
<tr>
<td>WAYNE KERR 2022 20mA bias unit (for 3245 inductance analyser)</td>
<td>£1250</td>
</tr>
<tr>
<td>TEKTRONIX TEK827 11-12GHz single channel pen recorder</td>
<td>£850</td>
</tr>
<tr>
<td>DATRON 1065 digital multimeter at ranges + IEEE</td>
<td>£600</td>
</tr>
<tr>
<td>FARNELL 2081/100 100W RF power meter DC-500MHz (10GHz)</td>
<td>£2200</td>
</tr>
<tr>
<td>JJ INSTRUMENTS CR600-2 channel pen recorder</td>
<td>£250</td>
</tr>
<tr>
<td>KIKUSUI 8520 frequency response analyser with sweep generator 4600</td>
<td>£800</td>
</tr>
<tr>
<td>PHILIPS PM5517 17MHz-10GHz function generator</td>
<td>£275</td>
</tr>
<tr>
<td>PHILIPS PM3387 11-12GHz single channel pen recorder</td>
<td>£850</td>
</tr>
<tr>
<td>RACAL 9086 automatic modulation meter</td>
<td>£350</td>
</tr>
<tr>
<td>RACAL-DANA 9300 milli-voltmeter</td>
<td>£400</td>
</tr>
<tr>
<td>RACAL-DANA 9301 true RMS RF milli-voltmeter</td>
<td>£350</td>
</tr>
<tr>
<td>SYSTRON DONNER 1300 synthesized signal generator 100kHz-1GHz GPBI</td>
<td>£1350</td>
</tr>
<tr>
<td>TEKTRONIX A6501 / 50605 distortion analyser (complete with TM303)</td>
<td>£1250</td>
</tr>
<tr>
<td>TEKTRONIX P6303 scope probe NEW 250MHz</td>
<td>£500</td>
</tr>
<tr>
<td>TEKTRONIX P2465 option CTS oscilloscope</td>
<td>£500</td>
</tr>
<tr>
<td>TESTO 2619 preamp tester</td>
<td>£750</td>
</tr>
<tr>
<td>WANDOL &amp; GOLTERMANN WM300 level tracer</td>
<td>£550</td>
</tr>
<tr>
<td>WANDOL &amp; GOLTERMANN 4J-4S jitter meter for 1.2-10GHz</td>
<td>£500</td>
</tr>
<tr>
<td>WAVEtek 23 synthesized function generator 0.1Hz-20GHz</td>
<td>£500</td>
</tr>
<tr>
<td>WAVEtek 1067 opt 522 5-100MHz sweep generator £500</td>
<td>£500</td>
</tr>
<tr>
<td>WAYNE KERR 2020 20mA bias unit (for 3245 inductance analyser)</td>
<td>£1250</td>
</tr>
<tr>
<td>WAYNE KERR 2022 20mA bias unit (for 3245 inductance analyser)</td>
<td>£1250</td>
</tr>
<tr>
<td>TEKTRONIX TEK827 11-12GHz single channel pen recorder</td>
<td>£850</td>
</tr>
</tbody>
</table>
THE WORLD'S MOST POWERFUL, PORTABLE PROGRAMMERS

Compare the Dataman S4 with any other programmer and you'll see why it's the world's undisputed number one. S4 is capable of programming 8 and 16-bit EPROMs, EEPROMs, PEROMs, 5 and 12V FLASH, BOOT-BLOCK FLASH, PICs, 8751 Microcontrollers and more. S4 also emulates ROM and RAM as standard! S4 is the only truly hand held programmer that ships complete with all emulation leads, organiser-style manual, AC charger, spare library ROM, both DOS and Windows terminal software, and arrives fully charged and ready to go! Who else offers you all this plus a three year guarantee?

Customer support is second to none. The very latest programming library is always available free on the Internet, and on our dedicated bulletin boards. Customers NEVER pay for upgrades or technical support.

Dataman-48
Our new Dataman-48 programmer adds Pinsmart® technology to provide true no-adaptor programming straight to your PC's parallel port and works great with laptops. Coming complete with an integral world standard PSU, you can take this one-stop programming solution anywhere!

As with S4, you get free software upgrades and technical support for life, so now you don't need to keep paying just to keep programming.

The current device library contains over 1500 of the most popular logic and memory devices including GALs, PALs, CEPALs, RALS, 8 and 16-bit EPROMs, EEPROMs, PEROMs, FLASH, BOOT-BLOCK, BIPOLAR, MACH, FPGAs, PICs and many other Micro-Controllers. We even include a 44-pin universal PLCC adaptor.

If you need to program different packaging styles, we stock adaptors for SOP, TSOP, QFP, SDIP as well as memory emulation pods.

Order your Dataman programming solution today via our credit card hotline and receive it tomorrow. For more detailed information on these and other market leading programming products, call now and request your free copy of our new colour brochure.

The Dataman Challenge
Try the Dataman S4 or Dataman-48 without obligation for 30 days. If you do not agree that these are the most effective, most useful, most versatile additions you can make to your programming toolbox, we will refund your money in full.