Cancer from pylons?
Radon — and more...

Design an SSB outphaser

BT’s caller ID via a PC

A new electronic device

22bit a-to-d for PC

Chopping a bridge brings benefits

Low-mass accelerometer

PC analogue interface — 25% discount
NOW, THE BATTLE IS OVER

ULTIboard's interactive strength has always been the major selection criterion of professional Printed Circuit Board designers. Now that every ULTIboard Designer system will be supplied with a SPECTRA SP4 Autorouter, ULTIboard designers now get the best of both worlds. All ULTIboard Designer Users with valid update subscription got a MAINTENANCE UPGRADE with the SPECTRA SP4 (4 signal layers + power/ground layers) Shape based Autorouter. This shows that ULTIMate Technology is the PCB-Design Tool vendor that really cares for their customers!

THE ULTIMATE SPECIAL OFFER

ULTIboard Entry Designer* £1295 (excl. VAT) will now be supplied with SPECTRA Shape Based Autorouter *free Upgrade with EMC-EXPERT mid 1996 (list price at release £1875)
Contents

Cover - Hashim Akib

276 POWER LINES, PARTICLES AND CANCER
Recent reports have suggested that radon, focussed by power lines, could be linked to an increase of cancer in people living under power lines. Anthony Hopwood explains that there's more to it than that.

280 22BIT ANALOGUE-IN FOR PCS
Resolving analogue input to 22bits on a pc is not simply a matter of selecting the right a-to-d converter, as Simon Bateson and Andrew Woodward explain.

286 FAST CHARGER FOR NICD AND NIMH
Benefitting from a new high-side switching device this economical circuit allows fast charging of both NiCd and NiMH cells.

290 DESIGNING RIAA VALVE PREAMPS
Morgan Jones' discussion of valve preamplifiers culminates in a no-compromise balanced RIAA preamplifier combining the benefits of valves and transistors.

313 TWO CHIP SMART ACCELEROMETER
Silicon micro-machining has been used to produce a small, low-mass accelerometer with relatively low cost and repeatable, temperature-stable output.

300 TRANSMISSION LINE PRINCIPLES
Bill Russell shows how rectangular pulses and a delay line simplify the explanation of how transmission lines work.

304 HANDS-ON INTERNET
Cyril Bateman discusses how Archie and Gopher help you search the Net for files.

306 DESIGNING AN SSB OUTPHASER
Outphasers for SSB transmitters demand accurate component values, but analyses for such circuits are rare, by David Gibson.

296 ISSCC - THE HIGHLIGHTS
Roy Rubenstein reports on the world's top electronics innovation event.

317 TELEPHONE CALLER ID
Seggy Segaran looks at techniques used to relay the caller's telephone number to the destination 'phone.

341 CHOPPING BRIDGE
Basing a measuring bridge on a discrete chopper offers low-cost and high-stability.

Regulars

267 COMMENT
In the interest of the customer.

268 NEWS
Panel minds language, Data protection for Internet, 1800MHz access, Pentium Pro flaw, MathWorks Wavelet Toolbox, PC security, 3D on PC

273 RESEARCH NOTES
Microactuator, Road rage, Quantum computing, Array design, Robot fingers, Universal remote control.

322 CIRCUIT IDEAS
Light measurement, Current-conveyor crystal oscillator, Servo driver, Motor driver, 24V counter from 12V, Filters with no dc errors, Linear phase detector.

330 LETTERS
V versus I feedback, Amplifier linearity, Component costs, Valve sound, Phase splitter, Windows, Question of the month, Foster Seeley detector, Sallen & Key.

335 NEW PRODUCTS
Pick of the month - classified for convenience.

Obtain your free evaluation pack of one-time temperature indicator strips: page 312.

World's first 42in flat display: see page 268.

25% EW reader offer
Readers can obtain 25% discount on a high-precision a-to-d converter and its PC software: see page 284.

Researchers at MIT have incorporated road rage into a computer model allowing them to predict traffic flow more accurately - page 275.

15% DISCOUNT
Receive caller ID telephone numbers on your pc, log them and even manipulate them in Access - EW reader offer, page 319.

MAY ISSUE
ON SALE APRIL 25
The Universal Programmer that stands-alone with everything you need. Don't buy your next programmer until you see the 'Eclipse'!

- Windows and DOS user interface
- Unparalleled in speed & sophistication ideal for R&D and volume production
- 96 to 256 pin drivers
- Programms PLDs, EPLDs, FPGA5, PROMS, EPROMS, E/EPROMs, FLASH & Micros
- Universal DIP, PLCC, PGA and QFP modules - no more socket adaptors
- Stand-alone or remote operation
- Europe's largest programmer manufacturer

Call today on +44 (0)1707 332148 or fax +44 (0)1707 371503 for further information

All trade marks are acknowledged and respected.

CIRCLE NO. 106 ON REPLY CARD

Integrated PCB & Schematic Design System for Windows™

Quickroute 3.5 is a powerful, affordable and easy to use integrated schematic & PCB design system for Windows. With its multiple button bars, 'foil hints' and 'parts bin', Quickroute helps you to design quickly and efficiently.

There are four different versions of Quickroute giving you a choice of features & price. Quickroute is available with multi-sheet schematic capture, auto-routing, 'engineering change' (modification of a PCB from a schematic), copper fill, and a range of file import/export options. See the table for a selection of features.

Prices are Designer (£149), PRO (£249) and PRO+ (£399). The Personal edition is available for just £68, but has the manual provided on disk as on-line help. Post & Packing is £5 (UK), £8 (EC), £12 (World). VAT must be added to the total price.

"..of all the products included here, this is my personal favourite... Really, thats all I have to say about Quickroute - it certainly gets my vote!"

Review of OR 3,0 & other products
Computer Shopper Nov 95

Tel/Fax 0161 449 7101
Quickroute Systems Ltd., 14 Ley Lane, Marple Bridge, Stockport, SK6 6DD, U.K.

email info@quicksys.demon.co.uk

Prices and specifications subject to change without notice. All trade marks are acknowledged & respected.

CIRCLE NO. 108 ON REPLY CARD

April 1996 ELECTRONICS WORLD+WIRELESS WORLD
In the interest of the customer

I used to follow that what was good for the customer was good for profits. The customer must always come first. It is therefore surprising that the consumer software industry has such a bad record in this respect.

Of course, in any technology-driven industry, such as computer software, customers have to be led somewhat. They have to be persuaded to give up their favourite DOS programme, for example, and move to something 'bigger and better', and in the long run it often really is a good move, in terms of speed and flexibility.

But that's not the real problem. What we have to contend with, quite frankly, is poor quality, over-selling and indifferent after-sales service. The customer comes a poor second.

There's also little regard for the customer's equipment. Sloppy development results in applications requiring larger than necessary amounts of computer resources. Do programmes really need to be that big? Do we really have to have loads of ram? The software is delivered on a huge pile of disks, or increasingly on CD-rom. But the time is surely not far away when the setup instructions will read 'Place CD-rom #1 into drive and press enter'.

Maybe part of the problem is the impressive software development tools available today such as Visual Basic, Delphi and Visual C++. They enable surprisingly fast development of new products, but this tends to bring about a false sense of confidence. Prototypes can be up and running in hours and lots of features can be bolted on. But the more features and facilities that a programme has the more meticulous the testing has to be. Development tools can have bugs as well!

Inadequate test methodology often results in uncertain interaction between applications. There is surely an analytical way of predicting how applications inter-react.

There have been cases recently where clearly product had been released before it was ready. Every industry is subject to commercial pressures, none more so than software. But shipment of immature product can cause misery. For example, a recently marketed operating system did not contain all the device drivers it needed for Soundblaster and some CD-rom drives. The 'Plug and Play' feature became a nightmare. One punter, I heard of, tried to load the software from CD-rom. Half way through it stopped because it didn't recognise the CD-ROM drive. It left him in a total state of limbo that took days to sort out. I somehow don't think that he was alone.

Some products are hyped to a dangerously high level, raising customer expectations, only to have them dashed later. Of course, the software world is highly competitive and fast moving. Millions of dollars can be made overnight with the right break. Recent examples are Netscape and the UK company who wrote some software that would bar child access to dubious parts of the Internet.

I've heard it said that the marketing costs for any software package start at around half a million pounds. It's hard to do it for less, which makes it high risk. But looking at it from the user point of view, we need to know whether the programme really will run on a 386 with 4 Meg of ram, for example, and what applications will it not work with? We should not have to rely on the software press to tell us these things.

Now a gripe about customer support. How often have you heard from a support line "We know about the bug, there are no real workarounds, but it will be corrected in the next version".

And how long do you have to wait for an answer? Furthermore, companies who used to have free call facilities on 0800 are now migrating to the more lucrative 0989 lines at the customer's expense.

Coupled with this, companies only usually give 'Limited Warranties' with their software packages. These warranties cover the cost of the floppy disks and maybe the original cost of the software but little else. There is little or no liability if it doesn't work to your satisfaction. It would be interesting if this situation could be tested in court to see if customer's 'statutory rights' were being upheld - it would probably uncover a can of worms! Maybe the answer is some sort of code of practice whereby customers could obtain bug-fixes free of charge by mail or download for at least a year after purchase.

Any improvements in quality and customer service will inevitably cost money and companies will try pass it on to their customers in some way. But I think that it is a price worth paying. Software represents a large investment for individuals and companies alike, and we are becoming more and more dependent on it.

Quite soon software will be available that will take decisions for us, called 'software agents'. What if they don't work properly? I think that there is still a 'start-up' and 'get rich quick' mentality in the software business. After all it's one of those few industries that even today can be started in the garage or spare bedroom. The focus is firmly on developing product as quickly as possible and getting it out of the door before anyone else does the same. Support does not really feature much.

However, the software industry has come a long way, and the lead needs to be taken by the large companies to improve customer service and set an example. Maybe survival will depend on it one day. Quality and customer service issues are not as glamorous as the technology, but they need attention - now.

Peter Marlrow
Mosfets enhance video compression

Mosfets used directly as calculators could simplify video compression systems following work at the Defence Research Agency, DRA, in Malvern.

DRA has used a twin floating gate mosfet circuit as a vector quantiser to calculate the Euclidean distance between two points. The floating gate device, fabricated using standard foundry processes, exploits a characteristic that is comparable to the Euclidean distance metric.

Gillian Marshall, a member of the research team said: "With standard analogue systems feeding a digital signal processor (DSP), there is a large bottleneck at the analogue to digital converter. The new vector quantiser does all the calculations in analogue, only converting the final compressed data to digital for transmission."

The benefits claimed for the approach include a computation rate 20 times that of typical digital signal processors and a power consumption that is less than one-tenth.

Applications that could benefit from the approach include video conferencing where large amounts of analogue information is transmitted down telephone lines, and cost sensitive systems where a fast A/D converter is too costly.

The scheme exploits the fact that current through the fet is proportional to the square of the difference between the gate voltage and the threshold voltage. In turn, the Euclidean distance squared equals the square of the difference between an input point and a reference point. Hence, if the input point, represented as a voltage, is applied to the gate and the reference is the threshold, the distance measure is proportional to the device’s current.

Various parts of the VQ have been constructed by the research team, and have worked well. However a full scale system will have to wait for further funding.

Chaos keeps communications secure

Chaos theory promises the ultimate in secure communications, enabling systems to emit signals indistinguishable from background noise.

Researchers at the University of Birmingham’s school of electronic and electrical engineering have developed a communications system that chaotically encodes a digital data stream. At the same time, it hides the signal within a noise-like structure. This is desirable especially for military applications where the ‘enemy’ would not even know communications are taking place.

Dr Jim Edwards, leading the research said: “Encoded signals may look like noise, but are in fact deterministic if both the structure of the encoder and the initial conditions are known. Being short of one or both of these makes prediction difficult.”

He further pointed out that traditional ‘secure’ systems are not in fact because enough information is available for signal reconstruction.

The chaos system offers enhanced security since the initial conditions must be known exactly. Any slight difference and the system quickly diverges. This is comparable with the chaos theory example that says weather cannot be predicted without knowing all the starting conditions which may include a butterfly’s wings beating in Australia.

The claimed bit error rate (BER) of the current system is 1 in 10,000 at a signal-to-noise ratio of 10dB. The University is working on a system where an acceptable BER is obtained for negative signal-to-noise; in other words, the noise has more power than the signal. This would give truly undetectable communications.

Synchronising the transmitter and receiver, critical with chaotic systems, is not a problem according to Edwards: “Because the system is digital, it tends to self-synchronise.”

Richard Ball
Electronics Weekly

Plasma displays for wall mount tvs. The first plasma displays suitable for use in tvs will be mass-produced by Fujitsu from October at an initial $5000 price tag. The displays are the world’s only 42in plasma panels available commercially. Although the company has had 21in displays available commercially for two years, they are considerably more expensive than crts and are not used by tv makers.

At 42in, however, the screens are bigger than crts and, naturally much thinner. Fujitsu’s panel is only 75mm thick, allowing a tv to be hung on the wall. The company is currently supplying panel samples to tv manufacturers, including Thomson, Nokia, Philips and Bang and Oluffsen in Europe.

Unlike thin-film transistor alternatives, plasma displays have a wide viewing angle and are therefore useful for public information displays as well as tvs.
3D graphics add-on for pcs

VideoLogic will be selling this summer a £300 add-on card that brings 3D picture realism to pcs. At the heart of the boards will be a 3D graphics processor which the UK company has developed in partnership with NEC.

The two companies have adopted an approach to 3D rendering which reduces the high speed synchronous dynamic ram buffer memory requirement, and removes a fundamental memory bandwidth bottleneck.

"The consequence of no longer requiring z-buffer memory can result in a $30 to $60 saving in s-d-ram cost," said Trevor Wing, VideoLogic’s group marketing director.

In the PowerVR 3D rendering architecture, VideoLogic has removed the need for storing picture depth information in a z-buffer. Instead, it implements in real-time the necessary hidden surface calculations. According to Wing this is possible because the design uses an array of 32 processor elements which can operate on each pixel independently.

The NEC chips will hit the market at the same time as another UK-developed 3D graphics processor, the Permedia from 3DLabs.

NEC has integrated the complete hidden surface and polygon texturing functions into two devices which require just 2Mbyte of synchronous d-ram buffer memory. NEC will start sampling the first chips this quarter and a single chip version for the pc market will be available by the summer.

In contrast, 3DLabs' Permedia chip incorporates a 16-bit z-buffer, and also has an overall s-d-ram requirement of 2Mbyte. It is targeted at $300 pc add-on card designs.

The first pcs to incorporate the NEC chip set will be launched next year, according to Wing, who added: "Two of the big three pc suppliers are already evaluating the 3D chips."

VideoLogic has existing video partnerships with IBM and Compaq Computer.

Richard Wilson
Electronics Weekly

Slow but less volatile growth for semiconductors

The semiconductor market will grow more slowly, but with reduced volatility. So says Sergio Vicari, European application specific product manager of Texas Instruments. For Vicari the main source of growth will be computer sales: "The increasing electronic content of products, as well as emerging markets will also contribute."

He predicts that computer sales will rise from just under 100 million units in 1996 to some 200 million by 2000. The increasing semiconductor content is extrapolated from the trends over the past two decades. His figures show growth of 4.8 per cent per year in the eighties rising to 6.3 percent per year in the nineties.

What of the total semiconductor market? Vicari said: "It depends on the industry growth. Fifteen per cent per year will mean the market is $275bn by 2000, 20 percent will take it to $350bn."

Digital signal processing chips is one of TI's core businesses and these come under Vicari's wing. "The driving force for dsp sales comes from wireless communication products and hard disc drives, but high efficiency motor controllers are likely to become a large sector."

Electric motors currently consume 50 percent of the world's electricity. dsp based controllers will double their efficiency, Green pressures and lifetime costing are making them popular in new installations.

"The DSP market grew 68 percent to $1.6bn in 1995 and I predict this will increase to $9.4bn by 2000. During this time the unit cost of a DSP will drop from $12.2 to $8.8." However, he admits the difficulty in predicting the DSP market: "The 1994 prediction for 2000 was between $6bn and $7bn."

Experts to pick design language

The protracted process of defining an analogue circuit modelling extensions to the VHDL digital system design language reaches a crucial point this week. A panel of experts will be presented with two competing proposals for a language specification. The IEEE 1076.1 language design committee is to ask independent experts and users to choose between the Jade language, championed by Mentor Graphics’ subsidiary Anacad, and the Opal alternative, supported by Analog, Cadence and Compass Design.

The experts will make a choice by the end of March with a full Language Reference Manual, LRM, to follow by July. An IEEE ballot on the LRM could then be completed in the following six months.

Andy Patterson, Analog’s European technical director, said most arguments appeared to be supporting Opal and he was hopeful a firm choice would be made on schedule. "The committee is being spurred by the analogue Verilog efforts with Verilog-A having been published this month," he said.
Non-slewing power amplifier

Giovanni's article "Non-slewing power amplifier" in the March issue contained a couple of minor inaccuracies. In Fig. 1, there should be no 200Ω resistor in the right-hand CSA circuit. In Fig. 4, the unmarked resistor is 3.3kΩ.

Apologies.

Pentium Pro flaw

In the same way that the famous Pentium flaw was first brought to public attention by an academic - Professor Nicely - another professor from San Francisco State University has pointed out a flaw associated with the Pentium's successor - Pentium Pro.

Intel conceded last week that it had not responded properly to the professor but claims that the "few complaints" it has received result from incorrect use.

The reported problems arise when the Orion chip-set is used with the Pentium Pro microprocessor in server applications.

According to Intel they only arise when certain add-on cards - which are not recommended for use by Intel - are used in the application.

It was claimed that Pentium Pro servers made using the Orion chip-sets were resulting in systems that operated at half the speed of previous generation Pentiums.

Intel concedes that the add-on cards can cause problems with the Pentium Pro/Orion combination resulting in sluggish performance but says there is nothing wrong with Orion and that it is not being re-engineered to speed up performance.

However, the company intends, later this year, to launch a new chip-set for use in Pentium Pro-based servers.

Campaign for anti-theft chips

In response to the fastest growing area of crime in the UK, the magazine Computer Weekly has begun an anti-chip theft campaign bringing together the police, chip makers, insurance firms and computer manufacturers and buyers.

The idea of the scheme is threefold: to show computer owners how to secure their equipment, to lobby chip and module makers to mark their products, and promote anti-theft techniques.

The valuable parts of a computer are the simms and, to a lesser extent, the cpu. The police have already produced advice to computer owners to assist them in securing their property.

The real breakthrough will come with simms that are tagged or become unusable away from their host.

Metropolitan police commissioner Sir Paul Condon said: "I truly believe that if consumer goods can be designed and manufactured so that they are useless to anyone other than the owner, then we could bring about a complete reversal of the figures."

Marking, tagging or putting intelligence onto the simm pcb would seem to be a waste of time as mobile phone thieves already 're-chip' their swag. This involves removing the identification from the phone and replacing it with one holding another identity. There is therefore no reason to believe that simm thieves could not transfer chips to new pcbs.

The need is for memory chip makers to incorporate some form of security device into the chips, but this seems unlikely until the voice of the user becomes impossible to ignore.

Steve Bush, Electronics Weekly

1800MHz access for cellular carriers

Cellular operators Vodafone and Cellnet have succeeded in gaining access to radio frequencies in the 1800MHz band - a move seen as crucial in their battle with newer operators Orange and Mercury One-2-One.

"This is important to us and we intend to use any spectrum for new products and areas (of coverage)," said a spokesman for Vodafone.

As well as reserving two 10MHz blocks in the 1800MHz band for possible allocation to Orange and Mercury at the end of 1997, the government intends to make two further 11.5MHz blocks available to Vodafone and Mercury. This will be first access to the relatively under-populated 1800MHz band for Vodafone and Cellnet which depend on the increasingly congested spectrum below 900MHz for their analogue and digital GSM services.

"The government wants to set out a strategy for a fair allocation of spectrum on the basis of need between all four mobile phone operators," said science and technology minister Ian Taylor.

Vodafone and Cellnet intend to move all users from their older and cheaper analogue networks to digital services by the year 2005. This will lead to greater congestion in the digital 900MHz bands, as four out of five UK mobile phone users are connected to analogue networks.

As well as seeking proposals for new use of the 1800MHz band the government will also make additional frequencies in the 900MHz band available to the two operators.

Managing the move from analogue to digital is the biggest challenge for Vodafone and Cellnet who, like all operators, are facing falling profitability, according to market researcher CIT.

RW, Electronics Weekly

Interactive traffic information

Japan is to launch the world’s first on-line interactive traffic information service that uses telephone lines in April this year. Dubbed Advanced Traffic Information Service (ATIS), the system will supply information to pcs and in-car units via land lines and cellular links.

Power pc off the desktop at IBM

In a review of the future of PowerPC, IBM is reported to have decided to de-prioritise the microprocessor as a cpu for desktop personal computers.

Instead, IBM is said to be concentrating on Intel’s x86 for desktop pcs and is focusing its PowerPC effort on workstation and server applications and as an embedded microcontroller.

EMC testing backlog

EMC test houses are heavily oversubscribed - many up to six months in advance, now that the EMC directive is in force.

ERA Technology’s civil test facility in Leatherhead is currently booked until August and SGS in Durham is full until July and both are working three shifts per day. Test slots are booked on a first come/first serve basis.

Any company committed to using test houses to CE mark their products, and expend their time slot with incomplete tests or a failed product, may find themselves out in the cold.

Windows for hand-holds

Several major computer and telecommunications companies are planning to introduce hand-held computer devices based on a secret operating system under development at Microsoft.

The operating system, code-named Pegasus, is Microsoft’s third attempt to develop a small operating system based on Windows for use in handheld computers and smart telecommunications devices.

Microsoft is expected to unveil Pegasus by the middle of this year.
HART AUDIO KITS – YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

Hart Audio Kits and factory assembled units use the unique combination of circuit designs by the renowned John Linsley Hood, the very latest in both amplifier and component technology, to give you unbeatable performance and unbelievable value for money. We have always been leaders in fast, easy home construction to professional standards, even in the swipes we were using easily assembled printed circuit cards when Heathkit in America were still using tagboards! Many years of experience and innovation, going back to the early Droplet and Bonny classics gives us incomparable design background in the needs of the home constructor. This simply means that building a Hart is a real pleasure, resulting in a sense of achievement that not only saves you money but you will be proud to own.

“Andante” SERIES 20VA AUDIOPIECE POWER SUPPLIES

Specially designed to use in conjunction with our already affordable absolutely minimum noise, low hum field and total freedom from mechanism noise this unit is a logical development from our highly successful 1500 series. Utilising linear technology, throughought for smoothness and smoothness makes it the perfect partner for any module requiring pure stable power.

Two versions are available, K3650 has 2 x 2VA supplies and is a single 1 x 5VA or 2 x 5VA etc., and can be used with our K1400 preamp and our K3650 RIAA equalisation preamp, or with any other model soon to be introduced. The K3650 is identical in appearance but only has the 1 x 5VA current output. This unit provides the K1400 RIAA preamp or "Chairs" headphone amplifier.

K3650 Power Supply: Full Supply with all outputs...

ALPS “Blue Velvet” PRECISION AUDIO CONTROLS.

CHIRCHA SINGLE ENDED CLASS “A” HEADPHONE AMPLIFIER.

This unit provides a high quality headphone output for 'stand alone' use or to supplement those many power amplifiers that do not have a headphone facility. Easily installed with a small line through the panel the unit draws its power from our new Andante Ultra-High Quality twin toroidal supply housed in the neat, sleek, finned aluminium case. It features the wide frequency response, low-distortion and musicality that one associates with both of the renowned, John Linsley Hood, pre-terminated interconnecting leads and PCB mounted sockets, ensuring total component isolation. Very easily built, even by beginners, since all components fit directly into the precision peitted circuit board. The kit has various pre-terminated connections, and even comes with a complementary pair of Hart audiograde silver earphone. It can also be supplied factory assembled and tested. Soldering is for the less than total circuit designers, if they were tough enough. Years of experience and time represents incredible value for money and makes an attractive and inexpensive addition to any hi-fi system.

K1100 Complete Kit:...

THE ART OF LINEAR ELECTRONICS.

The definitive linear electronics and audio book by John Linsley Hood. This 300+ page book will give you an unparalleled insight into the workings of all types of audio circuits. Learn how to read circuit diagrams and understand amplifiers and how they are designed to give the best sound. The virtues of passive and active components are explained with extensive sections covering power supplies and the sources of noise and hum. As one would expect from the writer the history and evolution of audio amplifier circuitry are an entire chapter, as does test and measurement equipment. Cautiously illustrated the book in an incredible value for the amount of information it contains on the much neglected field of test and its opponent digital electronics; included must be obtained and become the standard reference for all who work or are interested in this field. Latest research results with explained with modern technology. 1954 Pages. 207 x 160. £3.00 [0-7568-084-4]. £18.95

DIGITAL AUDIO AND COMPACT DISC TECHNOLOGY

[0-7568-06-4]...

SOLDERING

The size of modern components makes the right soldering equipment essential for good results. Everything we offer are actually used in our own workshops! See our Lists for the full range. £4.05-110. £3.00 and £5.00. £4.05 we also stock a range of other heads, including his to-eel-cramp heads.

SOLDERING

Hart Super Audiograde Silver Solder has been specifically formulated for the serious audiophile. Not only does it give beautiful easy to make Taps its Hart's design to resist the normal soldering temperatures avoiding the possibility of thermal damage to components or the need for special incompatible soldering techniques. Hart's Supergrade perfection plus wide tolerances makes perfect parts easy but eliminates the need for bond cleaning after assembly.

SOLDERING

845-007 3mm 22SWG in Hart Mini Tube...

HART SUPER AUDIOGRADE SILVER SOLDER.

Hart Super Audiograde Silver Solder has been specially formulated for the serious audiophile. Not only does it give beautiful easy to make Taps its Hart's design to resist the normal soldering temperatures avoiding the possibility of thermal damage to components or the need for special incompatible soldering techniques. Hart's Supergrade perfection plus wide tolerances makes perfect parts easy but eliminates the need for bond cleaning after assembly.

845-007 3mm 22SWG in Hart Mini Tube...

SOLDERING

845-005 10g. £14.95

845-110 20g. £19.95

845-110 100g. £21.95

845-110 250g. £29.95

845-110 500g. £39.95

845-110 1kg. £79.95

845-110 5kg. £390.00

845-007 3mm 22SWG in Hart Mini Tube...

SOLDERING

Soldering is for the less than total circuit designers, if they were tough enough. Years of experience and time represents incredible value for money and makes an attractive and inexpensive addition to any hi-fi system.

FLUKE Y5020 Current Shunt -1150.

ROTEK 320 Calibrator + 350 High Current Adaptor AC -DC -1500.

TEK CT -5 High Current Transformer Probe - £250.

TEK2465A 350Mc/s Oscilloscope - 12.5k + probes -1150 each.

TEK 1240 Logic Analyser - 1400.

Marconi TF2442 Microwave Counter - 26.5GHz - 12k..

Marconi TF2374 Zero Loss Probe - 1200.

Marconi TF2370 as above but late type Brown Case -£1000.

HP5370A Universal Time Interval Counter.

HP595016 Isolated Power Supply Programmer.

HP8150A Optical Signal Source.

HP1056 Quartz Oscillator -1400.

HP3781A Pattern Generator.

HP62606 Power Unit 0-10V 0-100 Amps.

HP3770A Amplitude Delay Distortion ANZ.

HP Plotters 7470A -7475A.

HP81519A Optical Receiver DC-400Mc/s.

HP461A-465A-467A Amplifiers.

HP 71_18 - 1.5-60GHzs -11500.

HP 492P -50KHz- 21 GHz Opt 1+2+3 -15k.

HP 492 -50KHz- 18GHz Opt 1+2 - 14k -14.2k.

HP Mixers are available for the above ANZ's to 40GHz

HP8445B Tracking Preselector DC to 18GHz - £350.

HP8443A Tracking Generator Counter 100KHz-110Mc/s - £300.

HP141T +85528 IF + 8555A 10Mc/s-18GHzS -11200.

Special Offer just in from MOD Qty 40 HP8555A RF Units 10Mc/s - 18GHzS.

R&S SWP Sweep Generator Synthesizer AM FM 4-2500Mc/s- 13.5k.

Transit Case -13k.

Tektronix Mixers are available for above ANZ to 60GHzs

TEK 71_18 - 1.5-60GHzs -11500.

TEK 492P -50KHz- 21 GHz Opt 1+2+3 -15k.

TEK 492 -50KHz- 18GHz Opt 1+2 - 14k -14.2k.

HP Mixers are available for the above ANZ's to 40GHz

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

TOTAL PURCHASES £1000 or PI only £600. MF only 1250.

8746-8650. From £1000.

displays used in this set-up -8411a -8412-8413-8414-8418-8740-6741 -8742-8743-

+ 15400A - £800.

R&S SWP Sweep Generator Synthesizer AM FM 4-2500Mc/s- 13.5k.

Transit Case -13k.

Tektronix Mixers are available for above ANZ to 60GHzs

TEK 71_18 - 1.5-60GHzs -11500.

TEK 492P -50KHz- 21 GHz Opt 1+2+3 -15k.

TEK 492 -50KHz- 18GHz Opt 1+2 - 14k -14.2k.

HP Mixers are available for the above ANZ's to 40GHz

HP8445B Tracking Preselector DC to 18GHz - £350.

HP8443A Tracking Generator Counter 100KHz-110Mc/s - £300.

HP141T +85528 IF + 8555A 10Mc/s-18GHzS -11200.

Special Offer just in from MOD Qty 40 HP8555A RF Units 10Mc/s - 18GHzS.

R&S SWP Sweep Generator Synthesizer AM FM 4-2500Mc/s- 13.5k.

Transit Case -13k.

Tektronix Mixers are available for above ANZ to 60GHzs

TEK 71_18 - 1.5-60GHzs -11500.

TEK 492P -50KHz- 21 GHz Opt 1+2+3 -15k.

TEK 492 -50KHz- 18GHz Opt 1+2 - 14k -14.2k.

HP Mixers are available for the above ANZ's to 40GHz

HP8445B Tracking Preselector DC to 18GHz - £350.

HP8443A Tracking Generator Counter 100KHz-110Mc/s - £300.

HP141T +85528 IF + 8555A 10Mc/s-18GHzS -11200.

Special Offer just in from MOD Qty 40 HP8555A RF Units 10Mc/s - 18GHzS.

R&S SWP Sweep Generator Synthesizer AM FM 4-2500Mc/s- 13.5k.

Transit Case -13k.

Tektronix Mixers are available for above ANZ to 60GHzs

TEK 71_18 - 1.5-60GHzs -11500.

TEK 492P -50KHz- 21 GHz Opt 1+2+3 -15k.

TEK 492 -50KHz- 18GHz Opt 1+2 - 14k -14.2k.

HP Mixers are available for the above ANZ's to 40GHz

HP8445B Tracking Preselector DC to 18GHz - £350.

HP8443A Tracking Generator Counter 100KHz-110Mc/s - £300.
Signalling a rethink of array receiver design

Innovative signal processing techniques developed by researchers at the University of Southern California are set to turbo-charge the performance of conventional array signal-receivers. The work carried out by Jerry Mendel and former USC doctoral student Mithat Dogan could well affect everything from how the military locates far-away submarines, to how we track objects in space, to how we design more efficient home antennas receiving signals from direct satellite broadcasts.

The invention works by combining 'higher-order statistics' with correlations of readings from adjacent detectors in an array. By returning to the fundamentals of physics and signal processing, the researchers have shown that, using the known geometry of an actual array, it is possible to compute correlations not only between pairs of physically present detectors, but also between a physically present detector and a non-existent, virtual detector. Or even between pairs of virtual detectors. This gives a small array of detectors a much larger scope.

Arrays can cover an area or volume far larger than any possible dish, and though the signal picked up by each detector is faint, engineers can construct the network so that the faint traces received by each individual site reinforce one another, creating an instrument that can perform like a single massive dish.

Mendel and Dogan's software, called a virtual cross-correlation computer, works only if the distance to the signal-producing target is large in relation to the size of the array of detectors. The detectors in the array must be tuned to a relatively narrow bandwidth too – listening to only a limited range of sound pitches, light colours or radio frequencies.

Finally, the signal being received must be of a specific kind – namely, non-Gaussian. The Mendel-Dogan invention functions to suppress Gaussian signals and preserve non-Gaussian ones.

If these three conditions are met – and they frequently are in real-world sonar, radar and other array detectors – major improvements in performance are possible, according to Mendel. More targets can be located than before, closely spaced targets can be resolved, and interfering noise can be suppressed.

As well as improving the performance of existing array detectors, the virtual cross-correlation computer concept can be used to design new, more efficient antenna arrays. For example, a 20-by-20 planar array, which would normally require 400 elements, can be implemented with a 10-by-10 array using only 100 elements.

"But the technique also has an aesthetic appeal," says Mendel. "It uses the hidden, internal structure of a signal that is unknown, to, in effect, decode itself. It uses the characteristics of the array used to detect this signal to bootstrap the array's efficiency. Even if it ultimately proves to have no uses at all, I find the technique highly satisfying to contemplate."

Making photons interact is first step to quantum computer

Physicists at Caltech, Pasadena, have taken a step closer to quantum computing with testing of an optical gate whose output depends on the polarisation state of two photon inputs. Photons normally do not interact. But the team led by professor of physics H Jeff Kimble at Caltech, has found that they can be made to strongly influence each other when brought together with an atom inside an optical cavity.

To be useful in computing, any legitimate logic gate must display an essential feature called conditional dynamics, where the output must depend upon both inputs. In an optical quantum logic gate, the output state of each photon must depend on the input state of both photons.

Kimble's group has showed strong conditional dynamics for an atom in an optical cavity formed by two highly reflective mirrors, one of which allows partial transmission of light. The scientists sent pairs of photons through the cavity, and investigated the states of the photons when they re-emerged, showing that the output state of each photon depended on the polarisation of both input photons.
In effect, the cavity functioned as a rudimentary logic gate at the single photon level. Changing the photons' polarisation is analogous to flipping the bits in conventional computers. This is the first demonstration of conditional dynamics at the single-quantum level, and while many complex problems remain to be solved before even primitive networks of quantum logic gates could be built, the result is being seen as a significant first step in quantum computing. Even if it doesn't lead to a practical route to quantum computing, the researchers say optical quantum logic gate will definitely have a role in specialised applications in optical communication.

Not a remote possibility

How we laugh as we remember those days when we used to have to pull ourselves up from our chairs and drag the 3m or across the room to press the channel changer on the tv with a finger. Now we just reach for the remote control and... hang on, I know it's here somewhere. Unfortunately, as increasing numbers of household devices and even light switches become remote controllable, keeping track of them all is becoming more and more difficult. Universal remote controllers are a great idea — if you have small fingers and a photographic memory for densely packed keyboards. But a researcher in the Department of Electronics Engineering, The Chinese University of Hong Kong, has proposed a solution that could be easy to implement and simple to use.

In the system proposed by C S Choy, a temporary link is established between the remote control and the target appliance. So any further key presses are only recognised by that one device. Typically, audio-visual system offer many functions sometimes calling for tens of keys on a remote control. Choy proposes dividing these into types, according to the nature of control, such as on/off, +/- volume, and numeric. The resulting smart universal remove control could use an optimum number of programmable keys to keep its bulk and complexity down. Through a learning process, each key could send out different commands according to the appliance being controlled.

So far Choy has built a remote controller, based on a Motorola 68701 with 2K eprom, 192 bytes built in ram and three i/o ports, which he has used to control light switches. But the concept could form the basis for a universal controller that is much simpler than anything currently around.

C S Choy is in the Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong.

Soft touch brings robot breakthrough

Much work has gone into designing robot grippers that are sensitive to force so that, for example, the robot can pick up an egg and hold it firmly without breaking it. Now two US researchers have found an answer that was easily to hand all the time — robot fingertips.

The fingertips are actually an electro rheological fluid of particles of polymers suspended in a dielectric fluid. In the presence of a strong electric field, their behaviour changes from that of a viscous, approximately Newtonian fluid to that of a plastic, with a finite shear strength as well as a viscous coefficient. Prasad Akella and Mark Cutkosky had observed that the ability of human hands to make contact smoothly is partly due to fingertips that deform and dissipate energy. Taking this as their starting point, the two workers have now produced their latest prototype fingertip that seems to reproduce that effect in a robot ("Contact transition control with semiactive soft fingertips", IEEE Transactions on Robotics and Automation, Vol 11, No 6, pp. 859-867).

The soft fingertip consists of a non-conducting rubber skin containing the fluid, with the electric potential applied across a series of plates oriented perpendicular to the skin surface. As the skin is pressed, er fluid is forced to flow between the plates with a resistance that varies with the applied voltage. A second membrane at the back side of the plates provides a restoring force that returns the system to a standard equilibrium configuration when unloaded. Building a fingertip whose stiffness and damping properties can be directionally controlled still remains a challenge. Even so, the researchers report that the current generation of fingertips can provide compliance and damping that are very similar to human fingertips.

More information from P N Akella who is now at the Manufacturing Center, General Motors Corporation, 30300 Mound Road, Warren MI 48090, USA or email at akella@gmr.com. The research was carried out in the Department of Mechanical Engineering and the Center for Design Research, Stanford University, Stanford CA 94305, USA.
Magnetism motivates microactuator research

Researchers into microelectromechanical systems (MEMS) at the Berkeley Sensor & Actuator Center (BSAC) have developed a powerful microactuator that uses magnetism as the actuating force and can be batch-manufactured in relatively simple processes.

MEMS specialists Jack Judy, Richard Muller and Hans Zappe at BSAC report that their microactuator has so far demonstrated forces and displacements far larger than those generated by most electrostatic microactuators. In addition the microactuator can be fabricated using conventional electroplating, lithography, materials and equipment.

Novel features of the technology are that actuation can be controlled by a remote magnet – a hand-held permanent magnet was used in some of the experiments – and that structures can be actuated in three dimensions; movement is not restricted to the plane of the wafer.

The microactuator itself is essentially a polysilicon cantilever beam, or flexure, onto which a magnet is formed at the free end. That magnet interacts with an external magnetic field, bending the flexure.

Fabrication is straightforward in that the magnetic layer of NiFe layer is simply electroplated onto the silicon at the end of a process which is already in use to produce chips of polysilicon resonant structures.

Using an external magnet to provide the actuating force means surface-to-surface interactions such as those found in linear and rotary variable-capacitance, and variable reluctance structures, are not required – so fabrication is easier.

The external magnet can also be used to activate many devices simultaneously – though that also means that control of independent microactuators will require miniaturised sources of magnetic fields, perhaps even on-chip sources.

So far the tip of an 800µm-long cantilever has been deflected over a distance of 1.2mm and rotated through an angle greater than 180° under an imposed torque of 0.185Nm (‘Magnetic microactuation of polysilicon structures’, Journal of Microelectromechanical Systems, Vol 4, No 4, pp. 162-169)

The team is hopeful that similarly fabricated magnetically-actuated microstructures might be applied to micromanipulators, microgrippers, magnetometers or microphotonic systems.

Jack W. Judy can be contacted at 497 Cory Hall 2041 Francisco, Apt. #5 Berkeley, CA 94720-1770, USA or j.judy@ieee.org

Planners get ready for road rage

Road rage seems to be the most extreme example of an ever-increasing aggression on the highways. So how are road planners reconciling their computer models of happy ‘model’ drivers giving way at junctions with a cheery wave, to the reality of the bumper to bumper stand-offs which increasingly are the norm.

At MIT in the US, they might have an answer. Because MIT engineers have developed a state-of-the-art traffic simulator that actually mimics the behaviour different drivers, aggressive, careless, timid or fast and how they affect traffic flow.

The traffic simulator, which runs on a workstation, is called Mitsim for short (microscopic traffic simulator) and treats traffic as a set of individual vehicles, or particles, allowing each vehicle to move according to its own characteristics. The more common macroscopic simulator treats traffic like a fluid, assigning one set of characteristics to the entire stream of cars. Mitsim is more lifelike because it allows for differences in vehicles’ movements as dictated by drivers’ personalities.

As each vehicle enters the simulated road system, it grabs a packet of vehicle characteristics that determines how it will act in certain circumstances. Not only does each vehicle have a size, type, occupancy level and destination, it also has driver characteristics. These include desired speed, propensity to yield to other vehicles, lane-changing behaviour and route decisions. There’s even a driver impatience factor that makes each driver’s choices more realistic.
Professor Denis Henshaw recently proposed that radon gas could be concentrated by high electromagnetic fields from overhead electricity supply lines. Radon causes lung cancer by ingestion of short-range alpha particles, whereas the cancer usually linked to pylons is leukemia, implying particles penetrating much deeper into the body. And if radon is highly significant, shouldn’t there be a higher incidence of Leukemia in the West Country, where radon is more prevalent? There isn’t. To test for radon, Prof. Henshaw tracked alpha particles. But could other factors have affected his results? Anthony Hopwood presents his case.

"The first suggestion that power lines might cause disease was made in 1976..."
lular effects observed in the presence of alternating magnetic fields, and have involved free radicals, melatonin or chemical changes in the living cell. Other theories have suggested that the electrodynamic fields have damaged cell function by precipitating pollutants from the atmosphere. Some have suggested that electric and magnetic fields per se are damaging, and that a new disease mechanism is implicated.

There is no argument that electric power lines and distribution systems create strong electromagnetic and electrostatic fields in their vicinity. Overhead power lines are a highly visible source of this radiated energy. Some 'supergrid' lines carry up to 800A per phase at 440kV and spread an electrodynamic footprint over 100 meters either side of the centre line.

There is also no argument that charged secondary atomic particles are influenced by ambient electric and magnetic fields. It was the alteration in the numbers of charged particles detected on my continuous cosmic ray monitor by the passage of electrically charged clouds that first gave me the idea of investigating whether the more intense electrodynamic fields round overhead power lines affected natural background radiation nearby.

"For the first time, I could see the rate change as the sun rose..."

Textbooks suggest that typical rate variation in the UK due to solar emanations is about 3 per cent - a figure confirmed when I first set up the Geiger tube on a 7 metre pole with an east-west axis in June 1989. By October 1989, the rate variation stayed maddeningly around 3 per cent while the sun culminated at solar maximum.

Turning the tube to a geomagnetic NS axis made a magical difference. For the first time I could see the rate change as the sun rose, and track active areas across the solar disc by the 14 day rate change they produced.

Interaction between charged particles and the geomagnetic field was also apparent during magnetic storms. During the great auroral display of 8/9 November 1991, an individual auroral ray from the geomagnetic zenith passed over my detector and increased the count by about 20 per cent for the few minutes it was focussed on my sensor. This may have been the first time that an auroral beam of particles has been detected on the ground.

All this - plus the continuous recording of atmospheric electric field alongside particle rate - led me to try and find whether power lines could alter the solar particle rate in their vicinity.

The results were surprising. In simple terms, a horizontal geiger tube with an L/D ratio of about 13 and a low energy cut off at about 60keV showed a background rate increase of up to three times either side of the line, compared with the rate outside the electrodynamic footprint.

"Why had no one noticed this (power line) effect before?"

The instrument has only been under test since the beginning of January, and with a quiet sun, there have been no major magnetic storms so the 10 per cent count differential is unsophisticated sensors.

Since then, I have been working to improve my detector, as have the Swedes. Although it is early days, we now have two different types of sensor to plot any radiation anomalies near power lines.

My own instrument uses two closely matched independent Geiger tubes driving separate counters, as well as a coincident pulse monitor. Earlier work had suggested that the change in particle rate near a power line was most marked at the low energy end of the spectrum - below 100keV. At sunspot minimum, the mix of particles entering the atmosphere still varies with solar activity. The most sensitive ground level indicator of solar particle flux is the geomagnetic field. This is easily measured. Conditions are logged from 'quiet' to 'storm' on a K index published monthly for every three-hour period. Another index of incoming solar plasma is the ionosphere. Its condition can be monitored by recording changes in high-frequency radio propagation from day to day. These two indices, plus the rates from fixed particle counters produce a clear signal when extra particles are entering the atmosphere to suggest when field measurements are best made.

The twin Geiger tube detector now uses a two matched tubes with an L/D ratio of about 12:1. One tube has a plastic protective case, and the other has one of copper to give a differential screening effect of about 4:1 at the low energy end of the spectrum. Under 'quiet' conditions, the two tubes count within 2 per cent over several hours away from a power line. The rate variation between tubes stays within 5 per cent close to the 11kV line crossing my garden under geomagnetically quiet conditions. When there is a geomagnetic disturbance, the balance changes, with a differential rate of at least 10 per cent in favour of the lightly screened tube.

The instrument has only been under test since the beginning of January, and with a quiet sun, there have been no major magnetic storms so the 10 per cent count differential is

Fig. 1. Large changes in solar activity over an eleven year cycle have been linked to a delayed eleven year cycle for breast cancer.

April 1996 ELECTRONICS WORLD

277
a reasonable result which can only improve as the new solar cycle gets into gear.

I mentioned earlier some of the other research in this field. Recently a paper was published by Professor Denis Henshaw suggesting that domestic wiring was able to concentrate alpha particle emitters like radon gas in its vicinity. The particles were detected using a sensitised plastic which is pitted by alpha particles, the standard method for detecting radon emanations.

Prof Henshaw proposed that the source of his particles was radon gas, which is certainly present in most homes. Given that the tracks were etched by alpha particles close to electric leads, it is equally possible that they did not come exclusively from radon. I suspect that his observations complete the penetrating particle fission chain which starts in the upper atmosphere and which I measured outdoors above 50keV - the low energy cut off for my Geiger tube charged particle detectors.

If this proves to be the case, there is a complete chain of potential ionising radiation cell damage from the sun to the wall socket.

So what other evidence is there that the sun can produce sufficient radiation to harm susceptible individuals? The atmosphere is a very effective screen which protects life on earth from the damaging emissions of the sun.

Solar background radiation exposure is already monitored for airline crews. Concorde, which flies higher than other commercial jets, has a solar particle monitor onboard and routinely reduces height if a solar flare occurs or particle rates exceed set limits.

I mentioned that charged solar particles are concentrated at high geomagnetic latitudes, and can be seen as aurorae when the magnetosphere intercepts solar plasma ejected during flares and coronal mass ejections. The geomagnetic intensification effect implies that so-called radiation cancers should be more common in industrial nations at high geomagnetic latitudes.

Cancer statistics from the IARC seem to confirm this, Fig 2.

Further evidence implicating the sun comes from a Russian paper by T.P. Ryabyh and N.B. Bodrova in 1993 outlining a delayed solar cycle for breast cancer in women. Much earlier was the first paper linking power lines and cancer published in Denver USA in 1976. Its significance is that the 'Mile High City' is between 5-6000 feet, where solar background radiation is at least four times that at sea level.

I am also sure it is no accident that the best statistics to date for a link between power lines and cancer come from Scandinavia which is highly electrified and at a high geomagnetic latitude. What is now needed is properly funded research into the symbiotic reaction between electric power and background radiation using the best radiation metrology. In my opinion, the intensification of natural background radiation by the electric and magnetic fields associated with electrical installations provides the missing link between human cell damage and eventual disease in some people living and working under the aegis of the pylon.

The evidence is mounting, and won't go away.

Fig. 2. IARC cancer statistics indicate that industrial nations at high geomagnetic latitudes suffer a higher incidence of cancer. This graph reports lymphatic and haematopoietic cancers in males.

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of cancers per million male population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweden</td>
<td>400</td>
</tr>
<tr>
<td>Denmark</td>
<td>300</td>
</tr>
<tr>
<td>Norway</td>
<td>200</td>
</tr>
<tr>
<td>Finland</td>
<td>100</td>
</tr>
<tr>
<td>German Democratic Republic</td>
<td>75</td>
</tr>
<tr>
<td>Poland</td>
<td>50</td>
</tr>
<tr>
<td>Poland</td>
<td>30</td>
</tr>
<tr>
<td>Hungary</td>
<td>20</td>
</tr>
<tr>
<td>Poland</td>
<td>10</td>
</tr>
<tr>
<td>Yugoslavia</td>
<td>75</td>
</tr>
<tr>
<td>Poland</td>
<td>50</td>
</tr>
<tr>
<td>Czechoslovakia</td>
<td>30</td>
</tr>
<tr>
<td>Romania</td>
<td>20</td>
</tr>
<tr>
<td>Byelorussia</td>
<td>10</td>
</tr>
<tr>
<td>Ukraine</td>
<td>75</td>
</tr>
<tr>
<td>Poland</td>
<td>50</td>
</tr>
<tr>
<td>Hungary</td>
<td>30</td>
</tr>
<tr>
<td>USSR</td>
<td>10</td>
</tr>
</tbody>
</table>

More information

Photocopies of earlier articles on non-ionising radiation published in Electronics World are available from SoftCopy for £7.50 fully inclusive. Totalling 25 pages, these A4 copies comprise five articles from the Killing Fields series covering: introduction, biophysics, epidemiology, microwaves, politics and causes. Also included is Anthony Hopwood's 1992 article - 'Radiation focused by power lines.' Send postal order or cheque payable to SoftCopy to 1 Vineries Close, Cheltenham, Gloucester GL53 0NU.
Why Trace 32 is Simply the Best In-Circuit Emulator Available

- Wider 8/16/32 microprocessor support than any other in-circuit emulator
- Integrated high level language debugger supports most 3rd party compilers for C, C++, ADA, MODULA2, PASCAL and Assembly languages
- High speed link to PCs or Workstations via Ethernet/LAN or fibre optic interface giving effective code transfer rates of up to 400kbyte/sec
- Multitasking debugger support for PSOS, QSE,VRTX32, OS9 also user configurable for special kernels
- ‘Free 3 year warranty’ no hidden charges
- A complete windowed interface development system: in-circuit emulator, 200MHz timing analyser, pattern generator, comms analyser, port analyser, stimulus generator
- BDM and ROM monitor debuggers available using the same interface
- Up to 4 MFrame real-time trace buffer; unlimited hardware breakpoints; up to 16MB dual ported emulation memory; full real time performance analysis and statistical functions with code coverage feature.
- On-line - 1,000 page fully integrated manual.

Processors Supported
- 68000 / I / II / 10
- 68302 / 306 / 307
- 68330...336
- 68340, 68349, 68360
- 68020 / 030
- 68040 / 060
- Power PC
- 68HC16
- 68HC11-A...P
- 80186-EA...EC, XL
- 80386 / 486SX / DX / EX / CX
- 80196...
- 8051...
- HC / 500, 300, 300H
- 90C100...301
- 80C166 / 165 / 167 / GOLD
- Z80, 2180...
- MELPS 7700
- And many more...

The Trace 32 — 100 Years in the Making — No Compromises

At Noral we are experienced at providing the right emulation solution and the Trace 32 from Lauterbach is the best there is: the result of over 100 man years development with its 4M Frame program trace, host system and network support, single intuitive user interface and upgrade flexibility — it’s the ultimate solution.

If your requirements don’t push the envelope to the limit however, we can help too, with a complete range of solutions to suit any budget — we really are the emulator specialists.

Call now on 01254 682092 for a microprocessor development solution that’s cost effective, upgradable, offers the widest coverage and the best technical support.
Simon Bateson and Andrew Woodward run through the design stages needed for achieving very high resolution analogue-to-digital conversion via a PC's LPT port - and at a relatively low cost.

A large number of analogue-to-digital converter designs have been published in electronics journals, either as free-standing units or incorporated into other test and measurement equipment. These have mostly been of 8-bit resolution, based on devices such as the ZN425, which can achieve sampling rates suitable for audio.

For even moderate measurement quality, 12-bit converters are needed, such as the AD1674 which can achieve 10µs conversion at around £35. Higher resolution and higher speeds are generally very expensive; the 'audio optimised' 16 and 18-bit converters have good linearity but less good dc characteristics.

Manufacturers provide cards to fit inside PCs for analogue input and output, but it is very difficult, hence expensive, to obtain optimal performance in the electrically noisy environment of a computer.

There are many applications where high resolution is required but speed is un-critical. Here, the 'voltmeter' a-to-d converters are appropriate and ICs like the 7106 and 7135 have provided excellent performance for many years.

Recently, the development of low speed, high resolution converters has moved forward and some devices offer extremely high sensitivity, resolution and self-calibration facilities. Analog Devices' AD7710AN is a sigma-delta analogue to digital converter with an on-chip programmable gain amplifier. Given a suitable environment, this device can achieve 22-bit resolution - the equivalent of 0.25ppm.

In addition, the 7710 can provide total rejection of superimposed periodic interference and better than 16-bit non-linearity at over 15 samples per second. This sampling rate is adequate for many process and experimental uses, making the converter relevant for mechanical, thermal and chemical sensors, panel meter applications and research.

Noise rejection
It is well known that integrating converters such as the voltage-to-frequency, delta-sigma and dual-slope types have the ability to reject periodic noise. They do this because the output is proportional to the average, integrated, input voltage over the measurement period.

If the measurement period is a multiple of the local supply waveform period, the converter rejects this frequency and its harmonics. For this reason, the dual-slope integrating converters used in ordinary digital panel meters all run at a similar speed, giving about three readings per second and rejecting both 50Hz and 60Hz interference.

The clock frequency must be an exact multiple of the line frequency or cancellation will be incomplete and errors will appear as before. A point that is often overlooked in the implementation of integrating converters is that they rely totally on the short-term stability of the clock oscillator.

Crystal and LC oscillators fulfill all practical requirements, but CMOS inverter and other RC oscillators must be carefully designed for low short-term drift and phase noise.

Noise pickup in the form of 50/60Hz interference is very common in high-impedance sensors. Among these are ion-selective electrodes, clinical electrodes and piezo transducers as well as in low-level industrial sensors such as strain gauges and katharometers.

Noise is induced capacitively in high-impedance transducers and magnetically in low-impedance circuits. Applying comput-
erised data-collection systems in industrial plant or laboratory environment implies the interconnection of numerous mains-powered devices. Errors in input layout and grounding procedures can cause further problems and the resulting earth loop interference can be difficult to eliminate.

The successive approximation converter - the most common type found in PC cards - is not inherently differential or able to reject cyclic noise. Although pickup can be reduced by standard techniques such as balanced transmission and filtering, once the signal contains cyclic noise, the only really effective converter is one with inherent ac rejection.

This article details the design of a practical reference voltages.

Measurement principles

This design, Fig. 1, uses an external REF-03 reference for the maximum stability and minimal noise. The converter is a ‘sigma-delta’ or ‘1-bit’ converter. It comprises a differential amplifier, an integrator and a comparator, Fig. 2.

The system is a negative-feedback loop which tries to keep the net integrator charge at zero. It does this by balancing charge injected by the input voltage with charge removed by alternately applied positive and negative reference voltages.

When the analogue input voltage is zero, the only charge source is via the switched reference voltages. Assuming ideal components, the resulting duty cycle of the modulator switch will be 50%. Changes in input voltage cause linearly proportional variations in duty cycle. In the AD7710AN, an on-chip digital filter derives a rolling average of the modulator duty cycle.

An on-chip microcontroller allows software control of sampling frequency. The more clock periods available for the filter to calculate an average from, the closer to the true input result will be. Consequently the converter gives its lowest noise and best resolution at low conversion speeds.

It is important to realise that, due to this averaging effect, a sudden change in input will not be reflected in an instantaneous output change. At a sampling speed of 12 readings per second, the effective bandwidth is about 3Hz. However, the inherent noise of normal signal sources means that faster measurements would be meaningless at the voltage levels measurable with this converter - the individual readings would differ significantly due to noise and would need averaging anyway.

An additional facility of the converter is a programmable gain amplifier, PGA, providing seven software programmable gains from 1 to 128. It is not really an amplifier, but uses multi-sampling to achieve the same effect. Consequently it is extremely accurate.

Converter resolution and noise

Resolution of the converter is calculated by averaging a number of readings. For signals with a mean value of

![Fig. 1. Hardware-wise, the 22 bit analogue to digital converter circuit looks quite simple. The real trick to obtaining 22bit accuracy is in the layout and component choice.](image)

![Fig. 2. Sigma-delta a-to-d converter principles. Theoretically, the ‘1bit’ output can produce any desired resolution.](image)
Converter configuration and programming

For a full explanation of the facilities of the AD7710 family refer to the Analog Devices data sheets. The chip incorporates a microcontroller which programs the digital filter and operates various mode switches in the converter. It is programmed with a 24 bit control word which must be sent completely, msb first, and which I have split into three bytes:

<table>
<thead>
<tr>
<th>Byte</th>
<th>MS8</th>
<th>MS7</th>
<th>MS6</th>
<th>MS5</th>
<th>MS4</th>
<th>MS3</th>
<th>MS2</th>
<th>MS1</th>
<th>MS0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MD2</td>
<td>MD1</td>
<td>MD0</td>
<td>G2</td>
<td>G1</td>
<td>G0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>WL</td>
<td>RO</td>
<td>BO</td>
<td>FU</td>
<td>FS11</td>
<td>FS10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FS7</td>
<td>FS6</td>
<td>FS5</td>
<td>FS4</td>
<td>FS3</td>
<td>FS2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MD2, 1 and 0 set the calibration mode. Normally, on power-up and after calibration these read 000 and the device is in normal operating mode. The other modes of interest to us are as follows:

Bit pattern 001 instigates self calibration. The input selected by CH is shorted to analogue ground internally, a conversion run and the result stored as a zero offset coefficient. The input is then connected to \(V_{ref} \) internally, converted and stored as a full scale coefficient. Calibration is then complete and the microcontroller uses these values when translating converter values for transmission. Due to thermal effects and contact potentials, there is a residual offset of a few microvolts between internal and external 'shorted inputs'. This is not important when the converter is used with a pc application program since extra coefficients can be saved by the program to remove the offset error. However, if perfect raw data is needed or if external signal conditioning is performed with a drift-prone equipment, the 'system calibration' options are preferable. These are initiated by sending control words with the following mode bits:

- Bit pattern 010 causes a system offset calibration. This would be sent after the external system input had been zeroed, for instance by grounding with a reed relay. The conversion result is stored as a zero offset coefficient and the converter returns to normal operation.
- Bit pattern 011 causes a system full scale calibration. This would be sent after the external system input had been set to full scale, for instance by connecting to a reference voltage with a reed relay. The conversion result is stored as a full scale coefficient and the calibration is complete. Clearly any sort of signal source or conditioning can be included in this loop. In a transmission photometer, for example, zero could be a closed shutter and full scale, direct lamp illumination. By repeating system calibration every minute or so, long term drift of any component is eliminated. External system switching is facilitated in this board design by the output Darlington transistor which can operate relays as needed.

G2, 1 and 0 set the PGA gain in a binary sequence, from 1 to 128 – the default at power-on.

CH is the channel select, 0 = channel 1 which is the default at power-on. It should be appreciated that although the converter has two physical inputs it is not practical to use both continuously at full speed, nor is it sensible to use an analogue input multiplexer. The converter core needs to settle after a step change in input, unlike a successive approximation type, and this takes four measurement periods. If many inputs must be measured it is best to use several converters concurrently and read their outputs in turn.

WL controls the output data word length and defaults to 16 bits (the most significant, of course) at power on. When set to 1, all 24 bits are transmitted through the last few bits are normally noise.

RO switches a 20\(\mu \)A current source on pin 17 and is not used in this design.

BO switches a 100\(\mu \)A current source to A1+ input which would typically be used to detect whether a low resistance sensor such as a thermocouple had burnt out and become open circuit.

B/U sets bipolar or unipolar mode, defaulting to 0 (bipolar). It does not alter the converter analogue section at all, just the output coding which is binary in unipolar and offset binary in bipolar. With a +2.5V reference, the unipolar differential input range is 0 to ±2.5V, in bipolar it is –2.5 to +2.5V.

The digital filter has a \((\sin x/x)^3 \) response, Fig. 3, and rejects noise frequencies lying within the notches. For the greatest possible rejection, it is possible to retune the filter periodically, under microprocessor control, to track the mains frequency. However, for most requirements, the fixed notch frequencies suggested below are more than adequate.

When correctly tuned, the converter will...
completely reject mains frequency interference to greater than 150dB. However it cannot accept noise peaks far outside its common mode range without suffering modulator overload and consequent non-linear intermodulation. If high amplitude spikes do appear on the signal, some simple analogue filtering will also be needed.

Interfacing to a PC

Data communication with the AD7710 is via a serial input/output pin, but several extra lines are needed to control data flow. For this reason, and since speed is not important, we found it most convenient to use a pc printer port with manually programmed serial communication. Analog Devices recommends that all digital lines to and from the converter are buffered. This was found to be essential, both to reduce noise-inducing transient currents from the converter and to prevent latchup if the data lines go high before the converter is powered.

High voltage 4050/4049 buffers are required. If ordinary c-mos gates or buffers are used, current passes through the input protection diodes to the supply rail which then powers up the digital side of the 7710 and sends it into scr latch-up. You will notice that spare gates in the 74HC125 are used to drive a front panel led - not functional, just something to flash. Latch-up-inducing input current here is simply limited by a large resistor.

Naturally, the pc is not the only possible host; the prototype was used with an 8052-based single-board microcontroller. The programming instructions shown in the Basic listing should make application to other systems quite easy. Table 1 is a list of pin functions as used by the pc and by the converter in this design.

Converter input impedance

The converter’s programmable gain amplifier is a useful inclusion. However, it is important to understand that the input current taken increases at high gains as multiple sample are taken by the integrating capacitor. Hence the input impedance decreases and this can induce loading errors.

In many applications, the loading error will be constant and can be calibrated out of existence. However, when the source impedance varies with output as is the case with some deflection bridge circuits, the variation in loading error will induce non-linearity.

Integrated circuits are incapable of being produced to high levels of absolute accuracy, so the exact input impedance cannot be quoted. It is about 720kΩ at unity gain, 360kΩ at a gain of two and reaches a minimum of 90kΩ at gains of eight and above.

Where high input impedance is important, for instance, pH electrodes, ionisation detectors and electrometers we recommend the use of an external buffer amplifier such as the ADS49 ‘electrometer buffer amplifier’. This exhibits an extreme input impedance of 10^12Ω and which can be incorporated into the self-calibration loop as discussed below in order to eliminate drift.

Table 1: Connections between the Centronics port and 7710 converter.

<table>
<thead>
<tr>
<th>D25 connector</th>
<th>Centronics function</th>
<th>PC 8255 register line</th>
<th>Converter function</th>
<th>PC port inverters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/Strobe</td>
<td>C0</td>
<td>/Red LED</td>
<td>*</td>
</tr>
<tr>
<td>2</td>
<td>DB0</td>
<td>D0</td>
<td>SCLK</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>DB1</td>
<td>D1</td>
<td>TxDATA</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>DB2</td>
<td>D2</td>
<td>/RFS</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DB3</td>
<td>D3</td>
<td>/IFS</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DB4</td>
<td>D4</td>
<td>Ext1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>DB5</td>
<td>D5</td>
<td>Ext2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>DB6</td>
<td>D6</td>
<td>Ext3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>DB7</td>
<td>D7</td>
<td>Ext4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>/ACK in</td>
<td>S6</td>
<td>Extln</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>BUSY in</td>
<td>S7</td>
<td>grounded</td>
<td>*</td>
</tr>
<tr>
<td>12</td>
<td>Paper End in</td>
<td>S5</td>
<td>RxDATA</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>On Line in</td>
<td>S4</td>
<td>/ORDY</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>/LF/CR</td>
<td>C1</td>
<td>not used</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>ERROR in</td>
<td>S3</td>
<td>link to 16</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>/INITIALISE</td>
<td>C2</td>
<td>link to 15</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>/SELECT</td>
<td>C3</td>
<td>not used</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>GROUND</td>
<td>GROUND</td>
<td>not used</td>
<td>*</td>
</tr>
</tbody>
</table>

Notes: For LPT1, the 8255 port addresses are 688 (data) 689 (status) 890 (control). For LPT2, the addresses are 632 (data) 633 (status) and 634 (control). The link between C2 and S3 can be toggled and checked to verify hardware connection of the converter.

Analogue input connections

The IC has two inputs, either of which will operate over a wide range of voltages. For instance, the output of a strain-gauge bridge connected between 0 and 5V can be measured on input 1. The 2.5V common-mode voltage is ignored and the pga gain can be set to 128 for microvolt resolution.

The common-mode range extends from +5 to –5V. The pcb design makes the fully differential input 1 available directly and without protection on a 15-way D ‘multi-function’ connector. Input 2 is fed via an attenuator from the D connector and also from separate input terminals or a front panel BNC connector.

Because of its grounded attenuator, input 2 is not differential. The attenuator division ratio is not exact due to the relatively low converter input impedance. This is overcome, of course, by the self-calibration facility. The full circuit diagram of the converter is shown in Fig 2 which also clarifies the multiple power supply regulation.

Implementing self-calibration

Self-calibration is a facility which can be added to any microprocessor-controlled equipment, but which is generally reserved for high-accuracy systems. The commands for self-calibration are explained in the panel discussing the set-up and control word for the 7710. These commands result in a linear converter response.

Naturally, self-calibration does not imply traceable calibration or comparison with anything except the system’s own reference. Thus, for instance, although the voltage reference used in this system has a very small guaranteed drift with temperature and time, it has a relatively wide initial voltage tolerance.

A typical ratiometric panel meter IC would inherently deliver a zero reading at zero input and a full scale reading when the input is equal to the reference value—equal to minus one count, to be pedantic. This reference is typically 1V or 100mV, derived through a preset potentiometer from a bandgap voltage reference IC, the preset being adjusted to calibrate the meter.

A normal preset would not be sufficiently stable for this design. You can make a more stable system by connecting the REF-03 directly to the 7710 to make an ‘approximately 0-2.5V’ converter.

Data fed from the converter to the supervising pc are simply 24 bit numbers. The process of ‘absolute calibration’ is to apply zero volts and an accurate near-full-scale
PC ENGINEERING

Non-linear calibrations, incorporating corrections for the well-known non-linearities of thermocouples, for instance, can be dealt with in a couple of ways. If the polynomial coefficients are known they can be included in the user's program. Alternatively, the system can be calibrated at several fixed points and the polynomial coefficients calculated by least squares curve fitting.

Digital input/output facilities

As there are several spare lines available on the Centronics port and some space on the PCB it was thought well worthwhile to add a few buffered digital inputs and outputs. There is little to say about these except that the MPSA14 can carry 300mA and hold off 30V which makes it capable of switching relays. Don't forget to add a recirculation diode across the coil.

A single protected digital input is included to allow external triggering. Its cost is negligible and it has been found very useful for automation experiments.

The 12V regulated supply is also available to power external signal conditioning. It should not be misused as a robust bench power supply since if the AD7710 analogue voltage from a high-quality calibrator. Next, put the programme into the PC and insert appropriate conversion factors in the PC program to display correct absolute values.

For unipolar, set to bipolar

Then setbit dataport, 1 ELSE clearbit dataport, 1
setbit dataport, 0: REM SCLK line clearbit dataport, 0

NEXT i

setbit dataport, 3: REM return _TPS high
END SUB

SUB clearbit (port, bit)
valbit = 2 ^ bit
outword = outword AND NOT valbit
OUT port, outword
END SUB

SUB setbit (port, bit)
valbit = 2 ^ bit
OUT port, outword
END SUB

This basic Basic routine allows communication between the 22bit a-to-d converter and a PC via the Centronics port and some space on the PCB.
supply dips below the digital side for an instant it changes from a data converter into a thyristor and gets very hot.

Lines to the connector include current-limiting 22Ω resistors to provide some protection. Only a few tens of milliamperes are available and decoupling capacitors will be needed on the external circuitry.

Test program written in Basic
A listing is given for a minimal test program. This routine operates the converter by somewhat agricultural data transmission methods but it serves to illustrate the important points.

Initially, the parallel port is set up for normal action and no communication. The program waits for the converter to indicate readiness by taking /DRDY low. A 24 bit set-up word is sent to the converter by taking the transmit frame synchronisation signal /RFS low and toggling serial clock line SCLK for each bit. After all 24 bits have gone /IFS is returned high.

Converter values are read in a similar fashion, by taking the receive frame synchronisation signal /RFS low and clocking data into the computer by toggling the SCLK line.

A possible cause of confusion when working with the parallel printer port is that the PC hardware inverts some of the lines. Because of this, a bit set in the output register may not come out of the socket high. Port lines chosen for this design are mostly non-inverting. Table 1 provides information on the port lines.

Summary
Ultra-high resolution, high accuracy analogue measurement used to be the preserve of very expensive and exotic equipment, supplied by companies like Fluke, Hewlett Packard and Solartron. While the extremes of quality measurement must stay with such companies, this hardware/software approach should provide performance in excess of most conceivable professional and amateur requirements - at a relatively low cost.

Note: pins marked O- are on rear panel PC port connector
pins marked O are on front 'Multifunction Connector'

'Ext In' is very high impedance and needs external pull-up or pull-down resistor

Regulator and digital i/o for the 22bit a-to-d converter. Note that the regulators are fed from a separate dc power supply.

Exlusive 25% discount for EW readers
Based on this article, the MPM ADC 22bit built and tested a-to-d converter normally sells at £340 but is available to EW readers at a special 25% discount price of £255 - fully inclusive.*

This self-contained, high performance unit has two analogue inputs and connects directly to the PC’s LPT port. It is supplied with:

- Win 3.x/95 virtual-instrument software for logging, graphing, metering etc.
- independent psu
- calibration to a high accuracy of 0.01%.
- anodised aluminium enclosure

In addition, the following items are available separately:

- Circuit board, double sided, with full solder mask and component identification, disk together with Basic routine and component/supplier lists - £28.
- Anodised, machined and printed front and back panels to suit specified standard enclosure - £22.
- Windows 3.1x or Windows 95 application program with full virtual instrument facilities, data logging, experiment automation and data compatibility with all common applications, accompanied by a .dll file to incorporate ADC control into user programs - £34.

Send cheque or postal order made payable to MicroPower Measurements to 4 Elwick Terrace, Hutton Rudby, North Yorkshire TS15 DDH. Phone 01642 342266 or phone/fax 01642 701786. Please send all enquiries relating to this offer to the above address.

* Overseas readers should write to MicroPower Measurements for offer details.

April 1996 ELECTRONICS WORLD 285
Benefiting from a new high-side switching device – namely a Treeswitch – this economical battery charger allows fast charging of NiCd and NiMH and reduces ‘memory effect’ in NiCd cells.

Generally, nickel-cadmium cells, or NiCd cells, are trickle charged at 0.1C for about 14h., Fig. 1. With better understanding of battery chemistry the trend is shifting towards rapid charging at higher rates – 1C and greater for example – especially in the professional market.

The new generation of ‘smart charger’ employs an ASIC, often in combination with a microcontroller to optimise battery management. The methods used to detect end of charge are dv/dt inflexion, temperature and time.

We found that the monitoring of temperature to detect end of charge is as effective as the dv/dt method, which can be a problem for NiMH as the inflexion point is not well

Fig. 1. Charging characteristics of NiCd cells indicate that battery voltage starts to fall significantly just before full charge.

Fig. 2. With NiMH cells, charging characteristics show that the voltage fall at full charge is much less significant than with NiCd alternatives to temperature change is a more useful indicator of cell charge status.

Fig. 3. Battery charging circuit featuring 1 hour fast charging not only of NiCd cells, but also NiMH.
defined, Fig. 2. However, as the 38°C end of charge temperature for nickel-metal-hydride cells, NiMH, is greater than the 35°C, of NiCd cells, using the temperature-only method results in a slight undercharge for NiMH batteries.

Benefits of charge/discharge cycles

Figure 3 shows a circuit capable of charging four 'AA' size cells in series within 1hr - less if the cells are not fully discharged. When rapid charging, the circuit supplies a 3s charge, then 10ms discharge current pulse. This repeated discharging during charging reduces or removes the memory effect of in NiCd cells.

At switch on, the charger defaults to trickle charging at 70mA, so it can be used as a simple conventional charger. When SW1 is momentarily closed a 1.2h timer is enabled and the charger goes into rapid charge mode, charging at a 1C rate of about 1A.

Temperature of the battery rises as it nears full charge. When it reaches 35°C, the unit reverts to trickle charge and stays indefinitely in this maintenance mode - until SW1 is closed again.

The prototype unit was set so that the timer was greater than that required to charge NiMH from zero depth of discharge. This ensured the cells would be charged to maximum, whatever the initial state of the cells.

The unit has been in use for some time and has successfully recharged both NiCd and NiMH cells - some of which would not hold charge using conventional trickle chargers. In fact, we observed that only cells showing signs of physical leakage damage could not be recharged - others, even very old ones can be charged with varying degrees of success.

A unique feature of this circuit is the incorporation of a new device called a Treeswitch. Designated the ZHD100, this discrete semiconductor comprises a bipolar power device with a mosfet input (see panel). This topology enables the discharge circuit to be implemented easily.

For safety reasons, the unit will not allow rapid charging if there are any short circuit cells in the stack; it defaults to trickle charging.

A 12V, 1A power supply is suitable for driving the circuit shown. To charge larger capacity cells - C and D sizes for example - a psu with the same current capacity of the cell to be charged is recommended for 1h fast charging.
All you need to know about power supplies

Simplified design of switching power supplies
Author John D. Lenk, 224 pages hardback
Switching power supply basics
Heat sinks for switching power supplies
Inductors/transformers for switching power supplies
Testing and troubleshooting
Simplified design approaches

Simplified design of micropower and battery circuits
Author John D. Lenk, 254 pages paperback
Introduction to micropower/battery design
Battery basics
Battery chargers
Single-cell circuits
Multicell circuits

Simplified design of linear power supplies
Author John D. Lenk, 246 pages hardback
Linear power supply basics
Heat sinks for linear power supplies
Discrete feedback regulator basics
IC linear regulator basics
Linear supply testing and connections
Linear supply design examples

Part of the EDN series for design engineers, these three books cover every aspect of power supply circuit design from battery charging to inductor choice. They are available individually or as a set of three with a discount of 10% on the normal retail price.

John Lenk is an established writer of international best sellers in the electronics field and author of more than eighty books on electronics. Together, John’s books have sold over 2 million copies in 9 languages.

Please send me
_ copies of Simplified design of switching power supplies at £22.50 ea.
_ copies of Simplified design of linear power supplies at £22.50 ea.
_ copies of Simplified design of micropower and battery circuits at £22.50 ea.
_ sets of all three books at the 10% discount price of £60.75 ea.

Postage* £
Total £

*UK postage is £2.50 for one book and £4.50 for two books or the set of three.
Europe postage is £5 for one book and £9.50 for two books or the set of three.
Rest of world, courier is £7.50 for one book and £13.50 for two books or the set of three.

Name
Address
Post Code

Method of payment (please circle):
Access/Mastercard Visa Cheque PO
Cheques made payable to Reed Business Publishing
Credit card No
Expiry Date
Signed

Send this coupon, or a clear photocopy of it to Electronics World editorial, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS together with credit card type, number and expiry date, or postal order or cheque made payable to Reed Business Publishing. Alternatively you can fax your details on 0181 652 8956 or send an e-mail to jackie.lowe@rbp.co.uk with ordering details.
Whatever your specific interest; radio-controlled models, radio-communications or general electronics, the one component you can’t afford to be without is Electromail.

Electromail gives you instant access to Europe’s largest stock of electrical, electronic and mechanical components.

- 60,000 product lines available ex-stock.
- All top brands, tested and approved by our engineers.
- Order by Phone, Fax - 24 hours a day, 365 days a year.
- Order lines manned 8.00am to 8.00pm.
- Next day delivery available on request.
- Repair and Calibration service available.
- Nominal P&P charge of only £2.95+VAT on all standard delivery orders.

To find out more about Electromail, see the Internet http://www.rs-components.com/rs/

Everything you need at the end of the phone!

SPECIAL OFFER

WIN WINDOW STICKERS AND TRANSFERS

Claim one of our unique, limited edition “Bright Sparks Do It With Electromail” window stickers and transfers. We’re giving away 6,000 of them. Simply place an order of any value, including orders for a catalogue, and quote reference EWVVI. Please allow 28 days for delivery of your sticker and transfer.

WIN A FANTASTIC PSION 3A POCKET COMPUTER

Your chance to win this powerful 256k memory PSION 3A pocket computer. To enter the prize draw simply recommend a friend you think would be interested in the Electromail service. No purchase is necessary. Send your friend’s name, address and telephone number, plus your own together with your Customer Reference Number (if you have one) and tell us in not more than 20 words, why you would use Electromail. Applications can be sent by post or fax quoting reference EWW2. Full rules and conditions are available on request.

Postal applications to: Amanda Johnston, D.P.N.55, Electromail, P.O. Box 33, Corby, Northants, NN17 9EL.

Fax Applications: E.A.O. Amanda Johnston on Fax No 01536 405555

All entries must be received at Electromail’s office by 5.00pm on Friday 31st May to qualify. All qualifying entries will be included in the prize draw and the winner will be advised by post by 16th June. This competition is not open to employees (or their families) of Electromail or associated companies, or public servants and members of government bodies or agencies involved in this promotion. No cash alternative is available and no correspondence will be entered into. The judge’s decision is final.

Electromail, P.O. Box 33, Corby, Northants NN17 9EL.

HURRY OFFER ENDS WHEN STOCKS RUN OUT
Delving further into valve preamplifier design, Morgan Jones shows how to produce a no-compromise balanced design combining the benefits of valves and transistors.

A n RIAA preamplifier, to last month's philosophy, needs three individual stages. A cascode or a µ-follower are both possibilities for the input stage, but initially, it is advisable to use a common cathode triode for simplicity. The second stage can be the same, but the third will need to be a cathode follower for reasons that will become apparent later. You can now draw a circuit diagram for the complete RIAA stage, Fig. 1.

The 75µs hf loss is formed by the combination of R_4, R_5, and C_3, whereas the 318µs, 318µs pairing is formed by R_8, R_9, and C_5. The calculation of these components is simple, but you must remember to account for hidden components. Examples of these are the output impedance of the valve, and Miller input capacitance of the next stage in parallel with strays.

Calculation of 75µs component values
The entire pre-amplifier is based on the E88CC dual triode, and for the dc conditions chosen for our common cathode triode input stage, r_a equals 6kΩ. This is in parallel with the 100kΩ anode load resistor, so Z'' is 5.66kΩ.

To calculate the capacitor needed for the 75µs time constant, you need to find the total Thévenin resistance that the capacitor sees in parallel, as shown in Fig. 2.

For the moment, you can ignore C_1. It will be accounted for later. Capacitor C_3 sees the grid-leak resistor R_5 in parallel with the series combination of the output impedance of the preceding valve and R_4. As is usual, you will make the grid-leak as large as is allowed, so R_5 equals 340kΩ.

You are now free to choose the value of R_4. Impedance Z_{out} needs to be a small proportion of R_4, otherwise variations in r_a will upset the accuracy of the equalisation. Too large a value of R_4 will form an unnecessarily lossy potential divider in combination with R_5. At high frequencies, capacitor C_3 is a short circuit, and so the additional ac load on the input valve will be R_4. A good value for R_4 is 200kΩ, and it has the bonus of being available both in 0.1% E96 series, and 1% E24 series. Very few E24 values are common to the E96 series. In combination with R_5, this gives an acceptable loss of 1.6dB, while not being an unduly onerous load for the input stage.

The capacitor now sees 200kΩ and 5.66kΩ in parallel with 1MΩ, giving a total resistance of 170.58kΩ. Dividing this value into 75µs gives the required capacitance value of 440pF, but you must subtract the stray capacitance of the next stage.

Gain of the second stage is 29, and C_{ag} is 1.4pF, so the Miller capacitance will be 30 times 1.4pF which is 42pF. In addition to this, the cathode, the heaters, and the screen are at earth potential, and will be in parallel with this capacitance. $C_{g+k+h+s}$ is 3.3pF, and you ought to allow a few pF for external strays. A total input capacitance of 50pF would be reasonable.

Total capacitance required is 440pF minus 50pF, or...
Earlier, the effect of coupling capacitor C_1 was ignored, but this must have some effect on the Thévenin impedance seen by the 390pF capacitor. You could use such a large value that its reactance was negligible compared to the 200kΩ series resistor, but a more elegant method is to move its position slightly, Fig. 3.

The capacitor now only has to be negligible compared to 1MΩ. The 75μs delay corresponds to a -3dB point of approximately 2kHz, so it is at this frequency that the values of other components are critical. At 2kHz, a 100nF capacitor has a reactance of approximately 800Ω, which is less than 0.1% of 1MΩ. If you had not moved the capacitor, you would have needed a value of 470nF simply to avoid compromising RIAA accuracy.

Interaction problems

The second stage is direct coupled to the cathode follower, so you do not need to worry about interaction between a coupling capacitor and the 3180μs, 318μs pairing. This is fortunate, since 3180μs corresponds to 50Hz, which is close to our 1Hz cut-off. These time constants are sufficiently close that they would interact significantly.

The other reason for using a cathode follower is its low input capacitance. Any stray capacitance across the 3180μs, 318μs pairing will cause an additional high frequency roll-off. In the 75μs network, you were able to incorporate the value of stray capacitance into your calculations, but in this instance this is not possible, and it is therefore essential that stray capacitance is so small that it can be ignored. The full equation for the input capacitance of a cathode follower is,

$$C_{input} = C_{ag} + (1 - A)C_{g}$$

For a cathode follower, A_v approximates to $\mu/(\mu+1)$; for an E88CC, μ is approximately 32, resulting in a gain, A_v, of 0.97. Capacitance C_{ag} is 1.4pF, and C_{g} is 3.3pF. The C_{g} term is negligible at 0.1pF, and so the input capacitance is virtually independent of gain at 8pF – including an allowance for strays.

The equations that govern the 3180μs, 318μs pairing are delightfully simple, CR is 318×10^{-6}, and the upper resistor is 9R. Loss at 1kHz for this network is 19.05dB, Fig. 4.

You should now check whether the 8pF stray shunt capacitance is sufficiently small not to cause a problem. To do this, you need to employ a slightly circular argument.

First assume that it will not cause any interaction. If this is true, then the frequency at which the cut-off occurs will be so high that C in the network is a short circuit. If it is a short circuit, you can replace it with a short circuit, and calculate the new Thévenin output impedance of the network.

Since the ratio of the resistors is 9:1, the potential divider must have a loss of 10:1, and the output impedance is therefore one tenth of the upper resistor. If you assume that the upper resistor will again be 200kΩ while neglecting Z_{out} of the previous stage, the Thévenin resistance that the 8pF stray capacitance sees at high frequencies is 20kΩ, this gives an hf cut-off of 1MHz.

As a rough rule of thumb, once the ratio of two interactive time constants is $>100:1$, the response error caused by interaction is inversely proportional to that ratio. A ratio of 100:1 causes an error of approximately 0.1dB.
In this example, the ratio of 1MHz to the nearest time constant of 318µs (500.5Hz) is 2000:1. You can now safely ignore interaction and go on to accurately calculate the values for the 318µs, 318µs pairing.

If the network were driven from a source of negligible resistance such as an op-amp, ideal values for the resistors would be 180kΩ and 20kΩ, since these are both members of the E24 series. The capacitor could then be 16nF with only 0.6% error. Unfortunately, the source has appreciable output resistance, so you will again choose 200kΩ as the upper resistor and accept whatever values this generates for the lower two components.

Since the second stage is identical to the first, output resistance is 5.66kΩ, making a total upper resistance of 205.6kΩ. The lower resistor will therefore be 22.85kΩ, and the capacitor 13.92nF.

A resistance of 22.85kΩ can be made from a 22.2kΩ, 0.1% resistor in parallel with a 1.5MΩ, 1%. A capacitance of 13.92nF can be inconveniently made from a pair of 6.8nF in parallel with 330pF. You can now draw a full diagram of the preamplifier stage with component values, Fig. 5.

Equalisation networks for RIAA invariably generate awkward component values, requiring much manoeuvring to nudge them accurately onto the E24 series.

Power supply rejection ratio

Although individual stages have been designed and interconnected to form an audio system, each stage requires power. Supplies are always derived from a common source.

No practical source has zero output resistance, although ac mains is a good approximation. The issue of a common power supply with non-zero output resistance is crucial. It implies that as a given audio stage draws a varying supply current in sympathy with the audio signal, a voltage will be developed across the source resistance of the supply.

Although attenuated by individual stage rejection ratio, this voltage is now an input to all other stages. If power supply rejection ratio, pssr, is low while the signal gain between stages is high as in an RIAA stage, the loop gain via the power supply may be greater than unity. This results in oscillation.

Traditional power supplies used a shunt capacitor to define their source impedance, resulting in increased source impedance at low frequencies since,

$$Z_{source} = \frac{1}{2\pi fC}$$

Therefore instability would be more likely at low frequencies, although the non-zero effective series resistance of the normally electrolytic supply capacitors could provoke high-frequency instability if not bypassed.

Modern designs use regulators giving excellent Z_{source} down to dc. However, because the error amplifier must have a response falling with frequency in order to maintain its own stability, Z_{source} is inductive and rises with frequency, and hf instability is a possibility.

Summarising, any practical common supply will always have non-zero output resistance. System stability is only maintainable if individual stages have sufficient pssr to that common supply. It is useful to define two new terms:

- **Intrinsic pssr**: the pssr due to the topology of an individual stage.
- **Common supply pssr**: intrinsic pssr plus any added pssr — by whatever means — to the common supply point.

Any common cathode stage possesses intrinsic pssr by virtue of the potential divider formed by r_a and r_L, but an E88CC operated such that r_a is 6kΩ, and R_L is 100kΩ only results in an intrinsic pssr, referred to the output of 24dB. Using the same valve as a j-follower could improve this to 50dB, a differential pair might improve the 24dB figure to 64dB depending on valve matching. Used as a cascode, the valve’s 24dB figure would be degraded to zero.

Any given stage may have its common supply rejection ratio increased by an arbitrary amount using individual filtering or regulation. Apart from expense, it does not matter whether the common supply rejection is made up mostly from intrinsic pssr, or added pssr via filters or regulators.

Extreme methods might even include individual mains transformers and supplies for each stage. This increases common supply rejection ratio to the ac mains, the common supply point. Use of a dedicated spur from the electricity supply company cable head would be a means of reducing Z_{source}.

A more elegant and considerably cheaper method of improving common supply rejection ratio is to add the high intrinsic pssr of an op-amp to stage intrinsic pssr by supplying each stage via a voltage follower op-amp. This was illustrated in the previous diagram. In order to obtain a low Z_{source}, a regulator is used at the common supply point, Fig. 6.

Practicalities and performance

For optimum performance, valve pre-amplifiers should have a ‘standby’ mode, whereby the heaters are supplied with approximately 63% of operating heater voltage. This ensures a minimum of gas molecules within the vacuum. These molecules become ionised when ht is applied, accelerating them to the cathode, resulting in stripping of the cathode emissive surface. As a result, they should be kept to a minimum. At switch-on, ht is applied, and the heaters are restored to full voltage, Fig. 7.

A dual colour led was fitted as a power indicator with its green led lit by the permanently applied heater supply, and the red led in series with the lower leg of the ht sink resistor for the op-amps. Switching the pre-amplifier on therefore results in an orange glow similar to the colour of a valve heater, but a pure red glow would indicate heater supply failure.

The preamplifier was designed to be as simple as possible while retaining quality. It works well. Paired with a Garrard 301 on a solid plinth, using an Ortofon Quintet moving coil cartridge in a unipivot arm designed and built by me, the complete LP system was comparable to a £2,000 cd-based system.

The balanced preamplifier

Although logic dictated optimum system topology for the RIAA stage, individual stage design is flexible. Audio stage complexity can usefully be traded against power supply com-
plexity for a given common supply psrr requirement. In this respect the differential pair is most useful and has the added bonus of reducing the number of coupling and decoupling capacitors required. This naturally leads to...

Balanced working and cables

Balanced working is commonly used in broadcast and recording studios to protect audio signals from external electromagnetic interference. It is particularly useful for low-level signals such as microphones.

A balanced source is simply one where each terminal of the source has balanced impedances to ground. Frequently, the only path to earth from the terminals is via stray capacitances, and the source is then floating. Connecting cables for balanced systems therefore have two signal wires or legs, and an overall screen to maintain this balance. The input stage of the following amplifier also has its stray impedances carefully balanced to ground and will either be a differential pair or a transformer.

When you immerse the connecting cable in an electromagnetic field, an identical noise current is induced into both wires. The series resistance of the cable is the same on each leg, and the shunt capacitances and resistances to ground are also equal, so the noise current develops a voltage of identical amplitude and phase on both legs at the amplifier input. This common mode signal is then rejected by the differential pair or transformer, whereas the wanted audio signal is differential mode and is amplified.

Typically, a moving coil cartridge produces approximately 200µV at 1kHz and 5cm/s, but before RIAA equalisation, the level at 50Hz is approximately 15dB lower at 36µV. Achieving the goal of inaudible hum on a signal at this level is not trivial. The cartridge is a balanced device, so why unbalance it?

You should immediately rewire the output cable of the pick-up arm to maintain this balance by discarding any coaxial cable. The connecting cable from arm base to preamplifier should be replaced by a twisted pair, with overall screen, for each channel.

A cable construction I use has twisted pair covered with a braid electrostatic screen. Both cables are then threaded down one overall braid screen. Braiding also holds the cables together and further aids screening, while a nylon braid is fitted over the top to prevent handling noise.

The braid should not have voids, so most antenna cables are unsuitable. Broadcast quality video cable or multicore umbilical cable, are both ideal sources of non-voided braid. Once the plastic outer sheath has been removed, the braid will easily concertina off the inner conductors.

A professional quality metal bodied 5-pin DIN or XLR plug is ideal for connecting this cable to the preamplifier, although the cable entry will usually need to be enlarged. Ideally, the screen should be connected to mains earth at the pick-up arm end, but this is not quite so critical in a balanced system.

Incidentally, within the arm tube, most pick-up arms twist all four thin, non-screened wires from the cartridge together, because this makes the wire easier to handle. Crosstalk between channels would be improved by twisting channels individually as they pass down the arm tube, but retaining the four wire twist required for low friction as the wires pass through the bearings to the output cable.

This form of rewiring is especially beneficial for moving coil cartridges and will help hum rejection even if the preamplifier is unbalanced.

Basic preamplifier compromises

If you really want to achieve a significant improvement on the basic preamplifier, you will need to look closely at the fundamental design and reconsider some of the compromises that were initially made.

- **Intrinsic psrr was not maximised.**

- **Individual anode currents were set quite low in order to minimise total current consumption, so that the preamplifier could be powered from an associated power amplifier. This meant that g_m for each stage was low, and noise was not minimised.**

- **Metal film resistors were used in the anode load resulting in excess noise, although most of this was shunted by r_p. To eliminate excess...**
and if it is not applied with care, the stage will turn into an oscillator. For the range 1 to 3.5V, PTFE trimmer capacitors are readily available. If one of these trimmers is set with its vanes two thirds meshed, a capacitance of approximately 2.4pF results. This is sufficient to reduce input capacitance to an acceptable value.

Ideally, a square wave should be applied between ground and one input of the volume control. The other input should be grounded and the second capacitor adjusted until the output waveshapes are matched as viewed on an oscilloscope. Layout is crucial here.

An alternative to neutralisation would be to revert to using an ECC82, which has an intrinsically lower Cag and a slightly lower gain, thus reducing C_in. Whichever course is taken, the volume control must be as close as possible to the valve in order to minimise external stray capacitances. Unscreened wires must be used.

Constant current sinking

Although a 'ring of two' circuit could have been used as a sink for the first stage, each transistor would then have been operated at a very low voltage. But operating transistors at a low voltage is undesirable. It makes the circuit more susceptible to rf overload, due to the depletion region within the transistor being narrowed. This increases output capacitance. These factors demand the use of a subsidiary negative supply. A superior cascode constant current sink using rf transistors can then be used, making a virtue out of a necessity.

Noise on the subsidiary supply must be minimised, so a choke input supply was chosen. Potentially, the reactance of the choke and the 10,000pF smoothing capacitor form a resonant circuit. This resonance is critically damped by adding the 3.6k series resistor to the choke and transformer resistances.

The minimum current requirement of the choke is neatly solved by the use of a TL431 shunt regulator for each stage. This ensures that a constant current is drawn — even when the ha is switched off.

Further reading

Wright, Allen. 'The tube pre-amp cookbook' 1994

There are less drastic ways to cut your costs.

Buying from this catalogue is one.

If you need to purchase quality products from a catalogue, with guaranteed next day delivery, but don't want to spend a fortune, you can always take drastic measures. However, there is a simpler way. CPC.

You get a choice of 39,000 quality products from over 300 leading manufacturers.

At CPC we only stock quality products from quality manufacturers. All the biggest equipment names are represented in our catalogue, including TDK, 3M, Duracell, MK, Weller, Sony, CK etc.

Over 27,000 companies get a better deal with us.

And the list is growing by the day. From our inception in 1967, we have enjoyed year on year growth, seeing our client base of 2,000 in 1986 boosted by a further 25,000 companies who have switched to CPC - and stayed!

The catalogue couldn't be easier to use.

Whether you are a service engineer, OEM, school or manufacturer, whatever your component needs, you'll find them all listed in our easy to use index and cross reference section.

Audio products, batteries, computer products, hardware, motor control, semiconductors, surface mount, tools and original manufacturers spares are just some of the sections included.

Ordering couldn't be simpler.

Our sales office is open Monday to Saturday taking orders by phone, fax and post.

Diamond Service means same day despatch is guaranteed.

Representing the ultimate in customer service, CPC's Diamond Service ensures all orders received before 5.30pm are despatched the same day - guaranteed.

How to open an account today.

Just pick up the phone, give us the details and the job's done. And once you’re on our database we'll send you bulletins on all the latest products and great offers from CPC, four times a month.

Free catalogue, free carriage.

Once you've opened an account, we will send you a complimentary 1,700 page catalogue and with all orders over £30 carriage is absolutely free!

So, if all you want to cut is costs, call us today.

CPC. Faraday Drive, Fulwood, Preston, Lancashire.

Open YOUR account today, tel 01772 654455 or fax 01772 654466
ISSCC REPORT

ISSCC the highlights

Roy Rubenstein reports on the world's top electronics innovation event – the International Solid State Circuits Conference.

If there is one event in the world’s electronics calendar worth attending it is the International Solid State Circuits Conference – ISSCC – held in San Francisco. It is hard to imagine where else one could gain such a comprehensive overview of the latest analogue and digital circuit techniques and devices.

‘Systems on a chip’ was this year’s conference theme. The opening session reviewed circuit design in the areas of multimedia, electronic imaging and TVs.

The keynote speech, given by NEC’s vice president for semiconductors, Dr Hajime Sasaki, addressed multimedia. That much -touted phrase, multimedia, embraces all the emerging applications that manipulate text, graphics and video once encapsulated as ones and zeros.

Personal computers form the present, most common embodiment of multimedia. Sasaki’s belief is that multimedia will come to predominate in home and work environments.

His presentation outlined the technology road map of the likely device that will be processing multimedia in the year 2010. His ‘multimedia complex’ device integrates and extends, common components found in present day PCs, namely the microprocessor, memory, three dimensional graphics accelerator and moving-image (such as video) processing circuitry.

While such a device may appear an obvious development, what is perhaps less so is the technical challenges its accomplishment presents.

0.07µm geometries by the year 2010

First, Sasaki projected present trends for device parameters such as integration densities, processing performance and power consumption, to gauge the likely system-device in the year 2010.

By then CMOS feature size will be 0.07µm, allowing hundreds of millions of transistors to be integrated on a single integrated circuit. The most advanced process technologies used today have 0.35µm feature sizes, achieving transistor densities up to ten million.

The intricacies involved in designing a 500 million transistor device is expected to be hundreds of times more complicated than that of present day microprocessors.

Looking next at processing performance, Sasaki observed that microprocessors have achieved an astonishing thousandfold improvement since 1980.

During that time, microprocessors have evolved instructions which when executed perform more than a single operation. Hence the emergence of microprocessor measures such as the millions of operations per second, or Mops, in addition to the traditional instructions per second metric, or Mips.

MIPS – slower growth

Sasaki believes that the astonishing Mips progress achieved to date will not continue since the instruction level parallelism that can be extracted from typical software code is rapidly being approached. He expects that in the next 15

All-time top ten circuits

One of the traditions of the ISSCC is the evening session where a panel tackle such weighty issues as ‘Is Electronic Imaging at a Watershed?’ and ‘What is the Best Memory Type for Graphics?’.

This year, by far the best attended session – and certainly the most entertaining – was one that set out to name the ten most significant analogue circuits and circuit techniques. The criteria used included the need to have influenced other circuits and still be relevant today.

The panelists, which included Minoru Nagata, director of Hitachi’s Central Research Laboratory and Bob Pease, the analogue guru at National Semiconductor, each selected three. The audience also contributed suggestions and the overall list were then voted on.

The resulting analogue top ten is:

1. Bandgap reference/regulator
2. Differential pair
3. Translinear circuits
4. Current mirror/source
5. Switch capacitor circuits
6. Pole splitting compensation
7. Cascade
8. Negative feedback amplifier
9. The power cord!
10. Integrator
years, an improvement of only a factor of 20 can be expected.

However, he sees no reason why the number of operations executed cannot progress at the staggering pace seen to date. Such progress will be achieved as multimedia function blocks are coupled to the main processing unit.

Extrapolating the processing trends, the multimedia complex can be expected to achieve 100 billion instructions/s and 1000 billion operations/s. To better gauge such a figure, Texas Instruments' most powerful multimedia processor, the TMS320C80, can attain a peak performance of 4 billion operations/s.

In turn, to sustain such processing rates the memory will need to supply the processing unit with tens of thousands of megabytes per second. Such transfer rates will not be possible between adjacent ICs, observed Sasaki, rather the memory will have to be integrated on-chip.

Yet a further challenge to be met is having the complex consume only 1W, necessary if it is to be used in portable battery-powered equipment.

Even if progress in low power techniques is maintained until 2010, a further order of magnitude reduction has to be found if the stringent 1W target is to be met.

Interestingly, the solutions Sasaki outlined to attain such a multimedia complex, including integrating ample on-chip memory and evolving present low power circuit techniques, were already in evidence in present papers at this year's ISSCC. Meeting the target specification will not be easy. As Sasaki puts it: "Developing the multimedia complex is a challenging target. We have so many things to do."

Variable voltage threshold techniques

CMOS has always been seen as a low power process technology. The success of VLSI, with the integration of millions of transistors on a device, has made CMOS hotter under its ceramic collar than it would like to be.

The most common approach to tackle device power consumption is by reducing its operating voltage. A recent example is the 433MHz Alpha processor from Digital which operates its processor core at 2V even though the device and its I/O is supplied with 3.3V. And it still consumes 23W.

With a reduced supply voltage comes a corresponding reduction in the voltage threshold, \(V_{th} \). For CMOS, \(V_{th} \) is the voltage at which the device changes state.

Reducing \(V_{th} \) of a transistor increases its speed. However, the downside is the exponential increase in leakage current, and hence standby power consumption.

At ISSCC, a number of papers highlighted approaches that vary \(V_{th} \). All use a reduced \(V_{th} \) when high performance is required and a high \(V_{th} \) in standby mode, when reducing leakage current is a primary concern.

One ISSCC example is a processor developed by Nippon Telegraph and Telephone (NTT) for mobile phones. The device is normally in one of two modes: strenuously active when digital encoding and decoding speech or, more commonly, in a sedate state awaiting a call.

The processor features a DSP core and an embedded processor. The DSP core is supplied with 1.1V and is implemented in a low threshold voltage CMOS (\(V_{th} = 0.25V \)), whereas the embedded processor is implemented using a higher threshold one.

In the wait mode the DSP is inactive; a high voltage MOS-FET isolates it from the supply rail, drastically reducing its leakage current. Here the embedded processor takes over.

Implemented using a higher threshold logic, the embedded processor has a corresponding lower standby current. Moreover, having less to do, it operates at a lower frequency, further saving power.

According to NTT, simply reducing the voltage from 3.3V to 1V reduces the device's energy consumption by one third. Energy consumed being the appropriate measure for the handset. However, employing a multi-threshold logic scheme, energy consumption is reduced to one tenth overall.

Cellular neural network

The world may have gone digital but for applications where high accuracy is not a requirement, an analogue approach can win hands down in terms of speed and power consumption. Moreover if implemented in standard CMOS technology, any requirement to integrate digital circuitry becomes straightforward.

The Katholieke University of Leuven, Belgium has adopted such an approach for telecommunications and analogue signal processing. Taking a cue from biological systems, it has produced a simple multi-cell analogue array suited to image manipulation and sensor data processing for applications such as robot arm control.

The device consist of a 20-by-20 array of simple analogue cells that implements a cellular neural network. Each cell has an input, internal and output node, and is linked to its four nearest neighbours. A set of templates determine the weightings of the signals exchanged between cells. These, coupled with the input data, determine the state of the neural network once processing completes.

The University has developed a library of templates that can be used to program the device to perform a range of applications.

The cells operate in parallel and continuously in time. Moreover, being analogue, the cell circuits work at the full technology bandwidth (\(f_{o} \)).

Processing time is measured in time constants - multiples of the travel time. The device can fill and connected component detection.
of 4.8µs. The typical execution time of a non-propagating template is 9.6µs; for the worst case information propagating template it is 145µs.

The device's i/o circuitry can be clocked at 500KHz, enabling the device to process up to 25 image frames/s.

While stressing that a direct comparison with a digital signal processor is not straightforward, the University nonetheless believes the array processor requires up to twenty times less energy (power-delay product) for a given computation.

Single electron memory cells

The highlight of last year's ISSCC was the emergence of 1Gigabit dynamic rams from Hitachi and NEC. This year Hitachi gave a glimpse of a development which promises storage densities one thousand times greater using single electron memory, or SEM.

Single electron memory has received considerable attention in recent years. First demonstrated at very low temperatures, room temperature has now been attained. The benefit of SEM is its ability to control a small number of electrons, promising reduced power consumption per transistor coupled with significantly greater integration levels due to each transistor's reduced size.

The SEM device uses a 3nm ultra thin-film transistor which exploits the Coulomb blockade effect (Electronics World, March 1996, p185). The effect works by confining a pool of electrons within a small region such that the stored charge energy is greater than the thermal energy of an external electron. Information is stored by trapping one or more electrons in the pocket and manifests itself in a constricted current.

Hitachi's accomplishment is to be the first to integrate a number of SEM cells to produce an 8-by-8bit array. Moreover, by producing a working device, Hitachi has identified the obstacles to be overcome if volume manufacturing is to occur.

Hitachi's SEM has a 10µs write/erase time. This is faster than flash memory since the number of electrons to be stored or erased is a paltry five compared to 100,000 for flash.

The device's shortfalls include a retention time of between an hour and a day, unacceptably short for nonvolatile store.

120MHz a-to-d converter in c-mos

Converting a complex envelope signal from rf to baseband, forming in-phase I and quadrature Q components, is a common requirement for radar and communications applications. The traditional approach uses cosine and sine heterodynes to separate the I and Q components before being digitised by matched a-to-d converters, Figure 1. At ISSCC Ericsson and Linköping University detailed a 120Msample/s a-to-d converter that digitises the baseband components to an accuracy of 10-bits.

The device uses a dual filter approach to separate the components, Figure 2. According to Linköping University, implementing the filters using closely matched coefficient values allows its execution within the sampling circuitry of the converter. The consequence is a saving in circuit complexity and power in that the a-to-d conversion is performed at a more leisurely 2MHz rather than at 120MHz.

![Single electron memory, proposed by Hitachi, promises terabit storage on one chip. It incorporates a 3nm ultra-thin-film transistor exploiting the Coulomb blockade effect.](image)

Fig. 1. Classical method for in-phase and quadrature detection. Sine and cosine heterodynes access the complex envelope signal before each arm is low-pass filtered and digitised.

Fig. 2. New a-to-d converter samples at four times the intermediate frequency, undertakes analogue filtering and decimation before digitising the signals at baseband.
Schematic Capture

- Easy to Use Graphical Interface under both DOS and Windows.
- Netlist, Parts List & ERC reports.
- Hierarchical Design.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and PCB design.

Simulation

- Non-Linear & Linear Analogue Simulation.
- Event driven Digital Simulation with modelling language.
- Partitioned simulation of large designs with multiple analogue & digital sections.
- Graphs displayed directly on the schematic.

PCB Design

- 32 bit high resolution database.
- Multi-Layer and SMT support.
- Full DRC and Connectivity Checking.
- RIP-UP & RETRY Autorouter.
- Shape based gridless power planes.
- Output to printers, plotters, Postscript, Gerber, DXF and clipboard.
- Gerber and DXF Import capability.

Write, phone or fax for your free demo disk, or ask about our full evaluation kit.
Tel: 01756 753440. Fax: 01756 752857.
53-55 Main St, Grassington. BD23 5AA.
Relaying transmission line principles

Bill Russel demonstrates how rectangular pulses and an artificial delay line simplify the explanation of how transmission lines work.

My previous article outlined a range of simple demonstrative measurements that can be made on an 8µs, 8kΩ artificial line fed from a sine-wave source. This article examines the effect of applying rectangular pulses to a similar line, using basic test equipment. I constructed a simple battery-powered pulse generator based on a 74HC14 hex schmitt trigger. Since the current drain is only a few milliamps, several hours use can be obtained after each charge.

Layout shown in the upper circuit on page 214 allows for three values of source resistance. The values used give a pulse width of about 2.5µs at a repetition frequency of about 10kHz.

With the source resistance set at 8kΩ, the pulse delivered to a matched line is 3V. Measurements are made with channel 1 on the input and channel 2 on the output, or one of the line taps. Measurement possibilities of this set-up well exceed the range required for a normal laboratory session. As a result, the examples shown here are limited to recording waveforms at the output or at tap 5. Principles that can be established are as follows.

8kΩ source with 8kΩ terminal resistance. Referring to Fig. 1, a rectangular pulse of 3V amplitude travels progressively down the line at a speed of 0.84µs per section with little attenuation but some distortion due to the lumped nature of the line. It is accompanied by a current pulse of amplitude 3V/8kΩ, which is 0.375mA.

Some evidence of small reflection reaching the input after 16.8µs, due to the reactive nature of Zo.

8kΩ source with line open circuit. In Fig. 2, complete reflection of the incident 3V pulse takes place at the open-circuit, producing a 6V pulse. The reflected 3V pulse reaches the input 8.4µs later.

Inspection of outputs at taps 1 to 9 shows incident pulses arriving later and reflected pulses arriving earlier until they merge into the 6V pulse at the termination. Note that the display shows only the voltage-time waveform at a particular point in the line, the horizontal axis being time delay in microseconds and not distance along the line. More on this later.

8kΩ source with line shorted. In Fig. 3, the incident 3V pulse is completely reflected at the short circuit with reversed polarity. This produces the required zero at the output, and appears at the input 8.4µs later.
Outputs at the tapping points resolve both incident and reversed reflected pulses. The results above show almost complete reflection of an incident voltage pulse at an open or short circuit. They also establish the sign or polarity of reflected pulses.

The following measurements of the magnitude of pulses reflected from loads of 2Z₀ and 2Z₀/2 can be used to introduce the concept of reflection coefficient, and to deduce its value for any given mismatch ratio.

8kΩ source, 16kΩ load. Figure 4 shows the 2:1 mismatch at the load end causes the 3V incident pulse to be reflected as a pulse of 1V with the same polarity, producing a 4V pulse at the load.

Output at tap 5 shows incident 3V and 1V reflected pulses. These results indicate that a third of the incident voltage pulse is reflected without change of polarity at a mismatch ratio of 2:1. This can be shown to agree with the simple formula,

\[\text{Reflection coefficient} = \frac{m-1}{m+1} \]

So far, no attention has been paid to the current pulses implied by the incident voltage pulse on an 8kΩ line. This is because the measurement set up does not allow for their detection. Nevertheless a fair amount of information can be inferred from the known facts.

The current pulse which must accompany the incident voltage pulse of 3V is 3V/8kΩ, which is 3/8mA. At the termination of 16kΩ, the voltage pulse rises to a combination of 3V incident plus 1V reflected without change in polarity giving a 4V resultant pulse. Hence at the termination the resultant current must be 4V/16kΩ, which is 1/4mA.

It would seem reasonable to deduce that, at the termination, a third of the incident current pulse is reflected and inverted to produce a resultant terminal current pulse of 3/8mA-1/8mA, producing the required 1/4mA.

8kΩ source, 4kΩ load. Figure 5 demonstrates how measurements of input and outputs of a line with a 1:2 mismatch ratio m show a voltage reflection coefficient of 1/3 with reversed polarity. By inference it can be deduced that the current reflection coefficient is also 1/3 but with no change in polarity.

The results obtained can be used to establish some basic rules for a simple treatment of reflections at any resistive termination. As for the current waveforms, the inclusion of a 100Ω current sensing resistor in the return line of both input and termination allows a lot more information to be obtained. However, it is doubtful whether many students would be capable of appreciating the implication of much of this additional data – particularly in the cases where line is mismatched at both input and output ends.

Figures 6, 7 show the voltage waveforms obtained for two of these conditions, and are included with brief comments as examples of situations which would normally be avoided.

4kΩ source mismatch, no load. The 4kΩ source shown in Fig. 6 now delivers a travelling incident pulse of 4V to the line. During the transient phase, this pulse is completely reflected at

Fig. 6. Mismatch at the source results in the incident pulse delivered to the input being about 4V rather than the 3V with a matched source. At the termination the incident pulse is completely reflected producing the pulse of almost 8V at the open-circuit after 8.4us, and arriving at the input after 16.8us. Simplified arithmetic of the mismatched input suggests that a third of the reflected pulse will be absorbed – increasing the input amplitude to about 5.3V and two-thirds, or 2.6V, will be inverted and reflected back to the output, arriving after a further 8.4us. Output waveform shows the increased amplitude at the mismatched input, the large pulse at the open circuit, the 2.6V pulse reflected from the input, plus the first of a series of reflections from output and input.
the open-circuit producing an 8V pulse, and the reflected 4V pulse arrives at the mismatched input after 16.8µs.

Waveforms of Fig. 6 are steady state conditions and show no sign of a reflected pulse at the input. Instead, the input shows a final value of input voltage of about 5.3V, plus an inverted pulse of about 2.6V at the output after reflection from the input.

This suggests that when the transient 4V pulse reaches the input mismatch, a third is absorbed increasing the input pulse to 5.3V, and two thirds, or 2.6V, is inverted and reflected back to the output.

Line mismatched at source. In this case, there is a direct connection to the pulse generator via a 50Ω resistor and the load is open circuit, Fig. 7.

Under worst-case conditions, pulses reaching the open-circuit are completely reflected as is. Reflected pulses reaching the input suffer almost complete reflection and inversion. Little, or none, of the pulse energy is absorbed by the generator, or load. The result is that a series of multiple reflections and inversions take place at the generator, accompanied by reflections without inversion at the load. Figure 7 shows part of this series.

Extending the idea
Explanatory comments on the above measurements assume a lossless line, and draw on the simple arithmetic of the dc equivalent circuit of the generator, line and load. However, the interest generated encourages many to tackle more rigorous analyses. For those of you requiring merely a simple introduction to the principles involved, a selection of the more basic measurements should suffice. I have given some thought to the possibility of producing a display in which the horizontal axis represents the voltage at each successive line tap and hence distance along the line.

This problem could be solved by a computer simulation program. But the positive reaction of students who undertook these measurements on an actual line suggested that a hardware solution would be well received.

The main requirement for such a display is that the amplitude of the voltage at the successive taps should be sampled periodically. These voltages should be displayed as a vertical deflection on the oscilloscope. For rectangular dc pulses, the sampled output can be passed direct to the oscilloscope.

In order to cope with dc pulses of both polarities, the sampling device must be operated in the analogue mode.

A prototype circuit along the lines of Fig. 8, uses a 4067 analogue multiplex/demultiplexer, driven by a 4029 counter. A 2Hz clock is provided by a 40106 hex schmitt trigger. This device also provides a clock buffer and inverter for the terminal-count output to preset the counter to state 4.

The counter and hence the demultiplexer cycles continuously from states 4 to 14, giving 11 sampled lines. These lines are connected to the artificial line input and the 10 taps.

Channel I of the oscilloscope connects to the line input for triggering purposes only. The common output of the 4067 is simply connected to channel 2. The display is really a montage of the voltage time waveforms at a particular tap, updated at half-second intervals to the adjacent tap. It produces the illusion of incident pulses moving from left to right, and reflected pulses moving from right to left.

Where pulses meet, reinforcement or cancellation takes place depending on course on relative amplitude and polarity. The system is operated from a dual 7.2V supply as shown. As a result, it imposes a limit of less than 7.2V peak on the sampled input. This problem could be solved by a computer simulation program. But the positive reaction of students who undertook these measurements on an actual line suggested that a hardware solution would be well received.

The main requirement for such a display is that the amplitude of the voltage at the successive taps should be sampled periodically. These voltages should be displayed as a vertical deflection on the oscilloscope. For rectangular dc pulses, the sampled output can be passed direct to the oscilloscope.

In order to cope with dc pulses of both polarities, the sampling device must be operated in the analogue mode.

A prototype circuit along the lines of Fig. 8, uses a 4067 analogue multiplex/demultiplexer, driven by a 4029 counter. A 2Hz clock is provided by a 40106 hex schmitt trigger. This device also provides a clock buffer and inverter for the terminal-count output to preset the counter to state 4.

The counter and hence the demultiplexer cycles continuously from states 4 to 14, giving 11 sampled lines. These lines are connected to the artificial line input and the 10 taps.

Channel I of the oscilloscope connects to the line input for triggering purposes only. The common output of the 4067 is simply connected to channel 2. The display is really a montage of the voltage time waveforms at a particular tap, updated at half-second intervals to the adjacent tap. It produces the illusion of incident pulses moving from left to right, and reflected pulses moving from right to left.

Where pulses meet, reinforcement or cancellation takes place depending on course on relative amplitude and polarity. The system is operated from a dual 7.2V supply as shown. As a result, it imposes a limit of less than 7.2V peak on the sampled input. This problem could be solved by a computer simulation program. But the positive reaction of students who undertook these measurements on an actual line suggested that a hardware solution would be well received.

The main requirement for such a display is that the amplitude of the voltage at the successive taps should be sampled periodically. These voltages should be displayed as a vertical deflection on the oscilloscope. For rectangular dc pulses, the sampled output can be passed direct to the oscilloscope.

In order to cope with dc pulses of both polarities, the sampling device must be operated in the analogue mode.

A prototype circuit along the lines of Fig. 8, uses a 4067 analogue multiplex/demultiplexer, driven by a 4029 counter. A 2Hz clock is provided by a 40106 hex schmitt trigger. This device also provides a clock buffer and inverter for the terminal-count output to preset the counter to state 4.

The counter and hence the demultiplexer cycles continuously from states 4 to 14, giving 11 sampled lines. These lines are connected to the artificial line input and the 10 taps.

Channel I of the oscilloscope connects to the line input for triggering purposes only. The common output of the 4067 is simply connected to channel 2. The display is really a montage of the voltage time waveforms at a particular tap, updated at half-second intervals to the adjacent tap. It produces the illusion of incident pulses moving from left to right, and reflected pulses moving from right to left.

Where pulses meet, reinforcement or cancellation takes place depending on course on relative amplitude and polarity. The system is operated from a dual 7.2V supply as shown. As a result, it imposes a limit of less than 7.2V peak on the sampled input. This problem could be solved by a computer simulation program. But the positive reaction of students who undertook these measurements on an actual line suggested that a hardware solution would be well received.

The main requirement for such a display is that the amplitude of the voltage at the successive taps should be sampled periodically. These voltages should be displayed as a vertical deflection on the oscilloscope. For rectangular dc pulses, the sampled output can be passed direct to the oscilloscope.

In order to cope with dc pulses of both polarities, the sampling device must be operated in the analogue mode.

A prototype circuit along the lines of Fig. 8, uses a 4067 analogue multiplex/demultiplexer, driven by a 4029 counter. A 2Hz clock is provided by a 40106 hex schmitt trigger. This device also provides a clock buffer and inverter for the terminal-count output to preset the counter to state 4.

The counter and hence the demultiplexer cycles continuously from states 4 to 14, giving 11 sampled lines. These lines are connected to the artificial line input and the 10 taps.

Channel I of the oscilloscope connects to the line input for triggering purposes only. The common output of the 4067 is simply connected to channel 2. The display is really a montage of the voltage time waveforms at a particular tap, updated at half-second intervals to the adjacent tap. It produces the illusion of incident pulses moving from left to right, and reflected pulses moving from right to left.

Where pulses meet, reinforcement or cancellation takes place depending on course on relative amplitude and polarity. The system is operated from a dual 7.2V supply as shown. As a result, it imposes a limit of less than 7.2V peak on the sampled input. This problem could be solved by a computer simulation program. But the positive reaction of students who undertook these measurements on an actual line suggested that a hardware solution would be well received.

The main requirement for such a display is that the amplitude of the voltage at the successive taps should be sampled periodically. These voltages should be displayed as a vertical deflection on the oscilloscope. For rectangular dc pulses, the sampled output can be passed direct to the oscilloscope.

In order to cope with dc pulses of both polarities, the sampling device must be operated in the analogue mode.

A prototype circuit along the lines of Fig. 8, uses a 4067 analogue multiplex/demultiplexer, driven by a 4029 counter. A 2Hz clock is provided by a 40106 hex schmitt trigger. This device also provides a clock buffer and inverter for the terminal-count output to preset the counter to state 4.

The counter and hence the demultiplexer cycles continuously from states 4 to 14, giving 11 sampled lines. These lines are connected to the artificial line input and the 10 taps.

Channel I of the oscilloscope connects to the line input for triggering purposes only. The common output of the 4067 is simply connected to channel 2. The display is really a montage of the voltage time waveforms at a particular tap, updated at half-second intervals to the adjacent tap. It produces the illusion of incident pulses moving from left to right, and reflected pulses moving from right to left.

Where pulses meet, reinforcement or cancellation takes place depending on course on relative amplitude and polarity. The system is operated from a dual 7.2V supply as shown. As a result, it imposes a limit of less than 7.2V peak on the sampled input. This problem could be solved by a computer simulation program. But the positive reaction of students who undertook these measurements on an actual line suggested that a hardware solution would be well received.

Further reading
Millman & Taub, Pulse and Digital Circuits, Chap. 10.

Oops...
In last month's article please note the following corrections: the caption for Fig. 4. refers to the plots of Fig. 6, the caption for Fig. 5 refers to Fig. 4 and the caption for Fig. 6 refers to Fig. 4. In Fig. 11, input current is 0.5mA, not 1mA. Sorry.
MIXED-MODE SIMULATION. THE POWER OF VERSION 4.

Analog, Digital & Mixed Circuits
Electronics Workbench® Version 4 is a fully integrated schematic capture, simulator and graphical waveform generator. It is simple to mix analog and digital parts in any combination.

Design and Verify Circuits... Fast!
Electronics Workbench's simple, direct interface helps you build circuits in a fraction of the time. Try 'what if' scenarios and fine tune your designs painlessly.

Incredibly Powerful. Incredibly Affordable.
If you need mixed-mode power at a price you can afford, take a look at this simulator and graphical waveform generator that mixes analog and digital with ease.

More Power
Simulate bigger and more complex circuits faster. On average, Electronics Workbench Version 4 is more than 5 times faster than Version 3.

More Parts
Multiple parts bins contain over twice the components of Version 3.

More Models
Over 350 real world analog and digital models are included free with Electronics Workbench. And, if you need more, an additional 2,000 models are available.

True mixed-mode simulation: Simultaneous AM transmission, digitization and pulse-code modulation of a signal.

Order Now! Just £199*
44-(0)1203-233-216

Nadella Building, Progress Close, Leofric Business Park, Coventry, Warwickshire CV3 2TF
Fax: 44 (0)1203 233-210
E-mail: rme@cityscape.co.uk
Shipping charges UK £5.99. All prices are plus VAT.
All trade marks are the property of their respective owners. Electronics Workbench is a trademark of Interactive Image Technologies Ltd., Toronto, Canada.

* 30 Day money-back guarantee.
Cyril Bateman discusses how Archie and Gopher help you search for files on the Internet.

In order to use the File Transfer Protocol described in the last issue, two descriptions are essential - the location of the required file and the file name.

Internet is huge, and to locate specific files it is necessary to understand and use the established methods and protocols. The desired file can contain anything capable of storage in a computer. Obviously, program software is the most common. But the possibilities are almost endless, from the script of a Shakespeare play or the Dead Sea Scrolls to views from the Hubble telescope or a piece of music.

If the file name is known, maybe only vaguely, its location is easy to find; however, the file name is usually unknown.

The one essential document `Anonymous FTP : Frequently Asked Questions (FAQ) List` is available for downloading from a number of sites.

When you are equipped with FTP and a search tool, every facility becomes possible. As with most computer actions the most difficult part is starting out, which these articles seek to address.

For ‘surfers’ of the Internet, two different search engines are readily available – Archie & Gopher. These are designed for use as ‘local clients’ on your personal computer. They are available as starter kits or you can download them from Internet. By having access to Internet with FTP and carrying out the procedures described here, then all other packages can easily become accessible.

Searching with Archie...
The oldest search tool – Archie – is effectively a card index for FTP files. It was developed at McGill University, Montreal for searching all available Unix based computer archive sources of directories and file names. The name Archie is derived from archive.

Fig. 1. Using Archie to search for the location of ‘PSpice’ software file.

Search for ‘PSpice’ using the Archie server located at ‘archie.uqam.ca’ in Canada. Note the ‘aid memoir’ display of used search strings.

Fig. 2. Using Archie to search for the location of ‘PSpice’ software file.

Result of Archie search for ‘PSpice’ using the search string ‘PSpice’. Interrogation of the highlighted file revealed two locations for the required software. These locations were used for the FTP example in the previous article.
Archie servers search all the 1000 plus Unix-based computers comprising the Archie database archive of FTP files. These servers are periodically automatically updated. In theory, all the servers hold the same information, but due to the updating sequences, this is not absolutely true.

Archie searches are restricted to a directory name or file name. This name can be incomplete, since Archie looks automatically for near matches, and certain ‘wildcards’ are allowed. Having located the desired file, either Archie or FTP can be used for the download, Figs 1 and 2.

All anonymous FTP sites, Unix and non-Unix based, are identified in the Anonymous FTP Sitelist, however since this is an extremely large listing, be prepared for a lengthy download session.

...and later with the Gopher

The newer search tool – Gopher – was developed at the University of Minnesota in 1991. While Archie is a single line, single word search at the chosen server, Gopher is menu based, allowing more flexibility and by default searches the contents of all Gopher servers, which is known as ‘GopherSpace’. Two variations are included in the search engine, Veronica developed at the University of Nevada and Jughead. Both support Boolean controls and multi word search strings, Figs 3 and 4.

To avoid excessive numbers of matches, Veronica and Jughead are best used with multi word search strings. While the desired Boolean controls can be specified, the default for two or more words assumes the implicit “and”.

A Veronica search of the 5000 plus Gopher servers, offers two predefined styles, Fig. 3.

- Find Gopher directories by title word(s) via xxx. This search will find only Gopher directories whose titles contain your specified search words. This is used to find major holdings of relevant information. Having selected a directory it can be ‘opened’ to show contents.
- Search GopherSpace by title word(s), via xxx. This search will find all types of resource whose titles contain your specified search words.

Jughead searches, like Archie, are restricted to individual locations and are distinguished from Veronica searches by the description ‘Search GopherSpace AT xxx’ as distinct from ‘via xxx’.

Use of the multiword search with implicit ‘and’, together with the ‘*’ wildcard permitted at the end of a partial word, can provide a tightly focused query and return only the more relevant matches.

Equipped with FTP, Archie, and Gopher, any publicly available Internet FTP resource can be located and accessed for file transfer, since it is these protocols which form the basis of the various WWW search engines.

References
1. Surfing with intent, EW&W, June ‘95, pp. 488/492
3. How to compose Veronica Queries. See panel, ‘Frequently asked questions’.

Frequently asked questions

Frequently asked questions articles, called ‘FAQs’ are readily available for all Internet activities, and should be the first point of reference for any help needed.

For this reason they are widely available, and can be obtained by ‘E mail’ requests, as well as from the relevant NewsGroups or by anonymous FTP.

Anonymous FTP FAQ
News groups
- news.newusers.questions.
- news.announce.newusers.
- alt.sources.wanted.
- comp.archives.
- comp.archives.admin.
- comp.sources.wanted.
- alt.answers.
- comp.answers.
- news.answers.
- FTP
 - garbo.uwasa.fi pc/doc-net/ftp-list.zip
 - oak.oakland.edu /SimTel/msdos/info/ftp-list.zip

Veronica FAQ
Gopher FAQ
News groups
- comp.answers.
- news.answers.
- FTP
 - rtmi.mit.edu /pub/usenet/news.answers/gopher-faq

Veronica: - how-to-query-veronica
Gopher: /Veronica.scs.unr.edu how-to-query-veronica

Fig. 3. Using Gopher to search for the location of ‘Archie Client’ software file. This illustrates just a few of the menu options available for a Gopher search. Note the two main search options discussed and the ready prepared popular Gopher servers. Many other servers throughout the world are also available from other menu selections. Note also the menus provided to supply the two required documents, ‘veronica FAQ’ also ‘How to Compose veronica Queries’. Simply click on the highlighted selection to ‘pop-up’ the search box.

Fig. 4. Using Gopher to search for the location of ‘Archie Client’ software file. Result of search using the multi word search string ‘Archie PC Client’. Further searches using different search strings or different servers will be needed.
Outphasers for SSB transmitters demand accurate component values, but analyses of such circuits are rare. David Gibson not only presents such an analysis, but also explains how he has extended the outphaser's scope.

A n algebraic analysis of an outphaser, also called a phaser or Hilbert transformer, is difficult and is not often discussed – even in otherwise comprehensive filter textbooks. The component values are largely folklore, passed on from application to application.

You may say that 'if it ain't broke, don't fix it', but an analysis is useful for several reasons – not least because it allows you to check whether circuit values have been transcribed correctly. I have seen examples where this was clearly not the case.

In this article I present networks using op-amps and simple first-order networks. These are easier to adjust than conventional passive second-order networks, as well as being easier to study. This makes it possible to design more accurate networks, or ones with a wider bandwidth for applications in music, audio effects. It also allows frequency shifting, which may required for applications such as spectrum analysis and sonar processing. In addition to presenting analogue networks, I show an example using digital signal processing techniques.

I will not give a detailed mathematical analysis due to its complexity. Most of my work was done with simple Basic programs which plotted phase and amplitude responses. Using this method I was able to tweak the component values to produce some very accurate filters. This method also made it easy to investigate the effects of component tolerances and drifts.

SSB modulation background

The heart of a single-sideband modulator or demodulator is a circuit with the ability to shift a range of frequencies from the audio band to rf, or if. The simplest way to do this is to amplitude-modulate the signal onto a carrier using a balanced modulator.

The unwanted sideband and any residual carrier are removed in a crystal filter. This method has an advantage, namely it is conceptually simple, but also has disadvantages.

It can be difficult set up the filters to adequately attenuate the unwanted sideband, and it is inflexible.

A second method is to use an 'outphaser' which is the subject of this article. There is also a third method. Before discussing the outphaser, I will say a little bit about this because, depending on the application, there is sometimes little to choose between these two methods.

The 'third' method

This third method for removing unwanted sideband and residuals was first described by Weaver in 1956, and modified by Turner, writing in Wireless World in 1973. In this method, Fig. 1, an audio signal is first modulated onto quadrature carriers at a fixed 'intermediate' frequency. The upper sidebands of the two channels are filtered out, leaving the lower sidebands which are in phase quadrature, Eqn 1.

Fig. 1. 'Third method', due to Weaver and Turner. Lower sidebands in phase-quadrature at if are modulated onto an rf carrier, and summed. The unwanted sidebands cancel leaving an ssb signal. The same circuit is used for demodulation, where the salient point is the extremely low if of 1.8kHz which eases the filtering requirements as explained in the text.
RF Design

Fig. 3. First-order all-pass filters.
- a) Historical filter using transistor.
- b) Version for use at rf.
- c) Functional diagram.
- d) Implementation with op-amp.

Fig. 4. Difference of one pair of first-order Filters.
- a) In an attempt to increase the usable frequency range, we utilise the difference between two filters.
- b) The phase response of the two filters in a), and the difference of the two. The range of frequencies for which the phase difference is 90° can be improved further by cascading pairs of all-pass filters.

The next step is to take the intermediate frequency signals and to modulate them onto quadrature carriers at rf - or more precisely, at the difference between the rf and the intermediate frequencies. Eqn 2.

Each of the channels provides an upper and lower sideband at the final rf. The crucial aspect of this is the phase of the signals. From eqn 2 you can see that, if the signals are added, the upper sidebands will cancel, leaving only the lower sideband. Likewise, if you subtract the signals you get only the upper sideband.

The advantage of this method is that, by using a fixed intermediate frequency, you ease the problems of filtering the unwanted sidebands. If you choose a very low intermediate frequency, then a simple audio low-pass filter will suffice.

However, the salient point of the Weaver method arises when demodulation is considered. The implementation in Fig. 1 can be used for demodulation simply by swapping the order of the two modulators. Alternatively it would be possible to demodulate directly to baseband, but this would require a highly selective filter to remove the unwanted sideband. The Weaver method uses an intermediate frequency within the audio band, at 1.8kHz. By choosing the lowest possible intermediate frequency, so that the wanted signal 'wraps round' at zero frequency, the filtering requirements are reduced.

The modification suggested by Turner in 1973 involved digital modulation techniques. The carriers can be square waves, and the modulators, certainly at low frequencies, can be transmission gates. At vhf it is possible to rely on the harmonic content of the square waves to generate the rf signal. Additional harmonics present throughout the circuit do not cause a problem because they either cancel out, or are filtered.

Sometimes, the audio demodulation is done with a stepped square wave. One implementation is known as a 'normal' 1.8kHz tone. The ac coupling means that there is a notch in the audio response. However, this can be made narrow enough to be unnoticeable.

The modification suggested by Turner in 1973 involved digital modulation techniques. The carriers can be square waves, and the modulators, certainly at low frequencies, can be transmission gates. At vhf it is possible to rely on the harmonic content of the square waves to generate the rf signal. Additional harmonics present throughout the circuit do not cause a problem because they either cancel out, or are filtered.

The Weaver/Turner technique was discussed by Hamilton in this magazine in 1993 and was used in a design by Dorey in 1994.

Phasing in SSB designs

As with the Weaver method, the basic idea behind the phasing method is to generate two double-sideband channels where one of the sidebands is in antiphase and can be cancelled out, Fig. 2. An rf carrier is modulated directly to produce the sidebands described below.

\[\sin \omega_c t \times \cos \omega_m t = \frac{1}{2} \cos(\omega_c - \omega_m) t - \frac{1}{2} \cos(\omega_c + \omega_m) t \]

and similarly

\[\sin \omega_c t \times \cos \omega_m t = -\frac{1}{2} \sin(\omega_c - \omega_m) t + \frac{1}{2} \sin(\omega_c + \omega_m) t \]

Equations 1 & 2 describe the 'third' method of ssb generation.
cations other than 3kHz audio. As I will show, 308 ELECTRONICS WORLD April 1996
over the years. It is interesting to look at dif-
must be a compromise.
constructt. Thus, any network we construct
at all frequencies, is physically impossible to
quency. For 90° phase shift and constant gain,
phase shift, but has a varying gain with fre-
Designing the phase-shift network
frequency. A small shift of 5-10Hz can be
used to prevent 'howl-around', while a larger
frequencies - say 20kHz audio - for music
then modulated onto a quadrature carrier to
produce a further pair of sidebands.
\[
\cos\omega_1 t \times \cos\omega_2 t = \frac{1}{2} \cos(\omega_2 - \omega_0) t + \frac{1}{2} \cos(\omega_2 + \omega_0) t
\]
Now, by adding or subtracting the signals it is possible to cancel one or other of the rf side-
bands, Fig. 2a. It is also possible to swap the order of the components and use the phase-
shift network at rf, Fig. 2b.
There is not a lot to choose between the Weaver and phasing methods. The Weaver method is slightly more complex in terms of circuitry and frequency control. However, the phasing method needs some accurate compo-
ents in the rather simple phase-shift network. The phasing method can be used in appli-
cations other than 3kHz audio. As I will show, a simple network can be used at rf, and the
technique can be used to shift a wider band of frequencies - say 20kHz audio - for music applications. A small shift of 5-10Hz can be used to prevent 'howl-around', while a larger shift can be used for special effects.

Designing the phase-shift network
An integrator or differentiator achieves a 90° phase shift, but has a varying gain with fre-
cquency. For 90° phase shift and constant gain, a more complex network is required. It can be proved that a 'perfect' outphaser, which works at all frequencies, is physically impossible to construct. Thus, any network we construct must be a compromise.
Many outphaser designs have appeared over the years. It is interesting to look at dif-

equency of 1kHz, the variation in phase shift over the audio band of 300Hz to 3kHz would be an enormous -33° to -143°. We need to resort to higher-order sections, or to chains of filters, as I will now describe.

Multi-section filters
Instead of building a single filter with a phase shift of 90° it is easier to build a pair of filters where the difference in phase shift is around 90°. Figure 4a shows an example. You could use two first-order filters, as in Fig. 3d, with centre frequencies of 400Hz and 2500Hz. Figure 4b shows how the phase shift of each filter varies with frequency.
There is a band, centred at around 1kHz, where the difference in phase shift is close to 90°. With this arrangement an accuracy of 43° can be achieved from 630Hz to 1600Hz, or 2.5:1. This is still not large enough for speech, where perhaps 20:1 is required, so the princi-
ple needs to be extended, as demonstrated in Fig. 4, to higher-order filters.
A common configuration is to use passive second-order filters. It is very rare to see any analysis of such a circuit, though Walters, in 1986, went some way towards explaining the design process.
Occasionally, active second-order all-pass filters are seen. A classic one was presented by Holt & Grey in 1967, and another version given by Gibson in 1992, but these are diffi-
cult to set up, and to analyse.
A historical reason for the use of passive second-order filters is that they were easier to construct than passive first-order filters. Fig. 3b gives an example. Nowadays, op-amps are cheap, and make life much easier because active first-order filters are simple and con-
ceptually easier to analyse.

Required accuracy
Before discussing these enhanced filters, you need to obtain some idea of the accuracy required. Phase shift needs to be 90° and the amplitude difference between the outputs of the

different designs and to trace their origins by the obscure component values they use - a sort of
electronic equivalent of genetic markers. Some designs which have appeared in this
magazine are due to Hickman (1991) who reviewed some outphaser and Weaver circuits,
Hosking (1994) who described the so-called 'polyphase' network; and, most recently,
Green & Hosking (1996) who presented a polyphase receiver design.

The polyphase network is an old solution to the problem. It is something of a sledgeham-
mer approach, which I will not discuss further here. Instead, I will show how an outphaser circuit can be built from simple op-amp filters to achieve varying degrees of sophistication.

First-order network
A simple first-order RC low-pass filter has a phase shift of 45° at its -3dB frequency, \(\omega_0\). Two networks would result in 90°, but the gain varies with frequency. However, by driv-
ing the 'bottom' of a first-order network with an inverted signal, Fig. 3, you can get a 90° shift at \(\omega_0\) and constant gain. This response is called a first-order all-pass filter. An all-pass filter has a flat amplitude response, but the phase shift varies with frequency.

Figure 3 shows several ways of generating the response. Op-amps are cheap enough, so the method of Fig. 3d is the one I prefer. Resistors \(R_1\) and \(R_2\) set the overall gain, whilst \(R\) and \(C\) set the centre frequency to \(\omega_0 = 1/CR\). I don't want to include too much maths in this article, but it is useful to note that the transfer function, in complex frequency, is,

\[
\begin{align*}
V_o &= \frac{1 - j\omega}{R_1} \frac{1}{\omega_0} = \frac{1}{\omega_0} \\
V_i &= \frac{1}{R_2} \frac{j\omega}{\omega_0}
\end{align*}
\]

If \(R_1=R_2\) then this expression shows a unity gain, and phase shift \(\phi\) defined from,

\[
\tan -\phi = \frac{-\omega}{\omega_0}
\]

If the phaser were used at rf, Fig. 2b, in a direct-conversion radio, then its performance might well be satisfactory. The equation above shows that, in the 30m band, at 6MHz, it is possible to maintain a 90° shift to ±3 over a bandwidth of 600kHz. However, a simple all-
pass filter is not adequate for use at baseband. With a centre frequency of 1kHz, the variation in phase shift over the audio band of 300Hz to 3kHz would be an enormous -33° to -143°. We need to resort to higher-order sections, or to chains of filters, as I will now describe.

Multi-section filters
Instead of building a single filter with a phase shift of 90° it is easier to build a pair of filters where the difference in phase shift is around 90°. Figure 4a shows an example. You could use two first-order filters, as in Fig. 3d, with centre frequencies of 400Hz and 2500Hz. Figure 4b shows how the phase shift of each filter varies with frequency.
There is a band, centred at around 1kHz, where the difference in phase shift is close to 90°. With this arrangement an accuracy of 43° can be achieved from 630Hz to 1600Hz, or 2.5:1. This is still not large enough for speech, where perhaps 20:1 is required, so the princi-
ple needs to be extended, as demonstrated in Fig. 4, to higher-order filters.
A common configuration is to use passive second-order filters. It is very rare to see any analysis of such a circuit, though Walters, in 1986, went some way towards explaining the design process.
Occasionally, active second-order all-pass filters are seen. A classic one was presented by Holt & Grey in 1967, and another version given by Gibson in 1992, but these are diffi-
cult to set up, and to analyse.
A historical reason for the use of passive second-order filters is that they were easier to construct than passive first-order filters. Fig. 3b gives an example. Nowadays, op-amps are cheap, and make life much easier because active first-order filters are simple and con-
ceptually easier to analyse.

Required accuracy
Before discussing these enhanced filters, you need to obtain some idea of the accuracy required. Phase shift needs to be 90° and the amplitude difference between the outputs of the

Fig. 6. Two pairs of first order filters. Difference between the two outputs approximates to a 90° phase shift. The filter is described by the span (ratio \(f_2/f_1\), \(f_2/f_1\)) and the spread \(f(f_2, f_2/f_1)\).

Fig. 5. Difference of two pairs of first-order sections, example 1. Phase ripple is three over a 'bandwidth' of around 200Hz to 5kHz.

Fig. 7. Difference of two pairs of first-order sections, examples 1-3.
two filter paths should be zero at all frequencies. Unless this is the case you will not achieve perfect attenuation in the unwanted sideband.

Obtaining an expression for the 'leak-through' of the unwanted sideband is straightforward but intricate. You begin by defining the phase error between the two channels to be \(\phi \) degrees. Assuming that one channel has a gain which is a fraction \(\alpha \) too high, and the other is \(\alpha \) too low.

Clearly it is always possible to represent the gains in this symmetrical way because the absolute gain is less important. Provided that \(\alpha \) is 'small', i.e. less than 10%, you can write the ratio of the amplitudes as \(1+2\alpha \). Voltage attenuation in the unwanted sideband, \(V_1 \), can then be written (Gibson, 1992), relative to the voltage of the wanted sideband \(V_2 \) as,

\[
V_1 = \frac{\sin^2 \frac{1}{2} \phi + \alpha \sin^2 \frac{1}{2} \phi}{\cos^2 \frac{1}{2} \phi + \alpha^2 \sin^2 \frac{1}{2} \phi}
\]

Now if \(\phi \) is small too, say less that 10°, it is possible to approximate to,

\[
V_1 \approx \frac{\pi}{360} \phi^2 + \alpha^2
\]

For example, if you can maintain the phase error to 6°, and amplitude \(\alpha \) to 7%, then both errors contribute equally to the 'leak-through'. The unwanted sideband will be at a voltage level of 1/101.1 of the wanted sideband, or -20dB. An angle of 0.8° and an error of 0.7% would give -40dB.

Note that you will need tight tolerance components in order to achieve this level of performance. Usually, the attenuation is obtained from a combination of rf filtering and outphaser performance. This results in a good overall response with neither item being critical.

A difference of two pairs
Figure 4 showed how you could use the difference of one pair of first-order filters. Extending this to two pairs of filters is straight-forward. Each of the pairs gives rise to a 'hump' in the phase response similar to that shown in Figure 4b. If you place the two humps at the correct separation in frequency, their effects add to give a response with an almost flat top, Fig. 5.

Figure 6 shows how the outphaser is configured. There are four first-order all-pass fil-

Notes on the maths

Equation 6, giving the phase shift for a single first-order all-pass filter, can be used as the basis for phase plots. If you are manipulating the equations on paper then equation 9 is a useful short-cut. Its derivation is as follows.

The two filters in the pair, Fig 4, have centre frequencies \(\omega_1 \) and \(\omega_2 \). The phase difference, \(\phi \), comes from

\[
\frac{1}{2} \phi = \frac{1}{2} (\phi_1 - \phi_2)
\]

\[
= \arctan \left(\frac{-\omega_1}{\omega_2} \right) - \arctan \left(\frac{-\omega_2}{\omega_1} \right)
\]

(A1)

Making the substitutions for span and \(\Omega \) discussed in the main text; taking the tangent of both sides of (A1); and recalling the identity:

\[
\tan(a \pm b) = \frac{\tan a \pm \tan b}{1 \mp \tan a \tan b}
\]

(A2)

produces equation 9 in the main text. This operation can be applied repeatedly as we chain the filter pairs, but the notation gets rather difficult to follow.

A full analysis should aim to give span and spread in terms of a specified phase ripple and 'bandwidth' rather than simply giving phase as a function of frequency. We can differentiate the expression to find the frequencies of the peaks of the phase response — the turning points of the curve. By specifying the phase shift at these points to be \(1/40\phi \) above 90°, and the central trough to be at \(1/40\phi \) below 90° it is possible to simplify the procedure — although it is still rather difficult. You could differentiate (9) directly, but it is easier to start with (6) and write,

\[
\tan \frac{1}{2} \phi = \Omega \frac{d\phi}{d\Omega} = \frac{2}{1 + \Omega^2}
\]

(A3)

It is now possible to combine expressions for \(d\phi/d\Omega \) for each filter and set to zero to find the turning point. This is tedious and tends to indicate that a computer analysis would save time.

Footnotes
†That is, a device which implements a Hilbert transform. This is one of a number of integral transforms. The Fourier and Laplace transforms belong in this category.

†Take a square wave and look at the phase and amplitude of all its harmonics. If the fundamental has unity amplitude then the amplitude of the resultant square wave is

\[
\frac{1}{2} \frac{1}{3} \frac{1}{5} \frac{1}{7} \frac{1}{9} \frac{1}{11} \ldots = \frac{1}{4}
\]

Now shift each harmonic by 90° and try to reconstruct the waveform. You end up with a series of the form,

\[
\frac{1}{3} \frac{1}{5} \frac{1}{7} \frac{1}{9} \frac{1}{11} \ldots \rightarrow \infty
\]

The sum increases logarithmically and does not converge, so the resultant amplitude of the waveform is infinite. Thus it is shown that a perfect outphaser cannot cope with this specific waveform. It can be inferred that it cannot cope with a generalised waveform, and so a practical 'perfect' outphaser cannot be constructed.

††Note that finding a flat-top response in the phase domain using multiple all-pass filters is similar to the more conventional problem of finding a flat-top in the amplitude domain when using multiple tuned circuits.
ters with centre frequencies f_1, f_2, f_3 and f_4. These are arranged in two paths, and the wanted signal is the difference between the two. If only the f_2/f_3 pair were used, the phase difference would be the left hand 'hump' in Fig. 5. Using only the f_3/f_4 pair would give rise to the right-hand curve. Overall phase difference is found by adding the responses to give the third curve on the graph†.

One pair of 2nd-order filters
As I have said, traditional outphaser designs tend to use a single pair of passive second-order filters instead of two pairs of active first-order filters. A first-order network has several advantages over the more complex second-order network.

- It has unity gain, with $r_1=r_2$ so there is no need to set an accurate non-unity gain.
- It only has a single C so this can be chosen for cost and availability. You don't need to choose two accurately matched capacitors in E24 values.
- With C fixed, the only component which affects the centre frequency is R.
- The gain can easily be trimmed to unity by altering r_1 or r_2.
- If - and only if - the gain is trimmed to unity, the phase-shift only depends on R and C. This 'orthogonality' makes simulation and analysis easier, as well as the setting-up.

Using two pairs of first-order filters
To describe the dual first-order filter of Figs 5 and 6, I use two terms. The span is the ratio of the centre frequencies of the two filters which comprise a 'hump' in the phase response, i.e. f_2/f_3 and f_4/f_5. The spread is the ratio of the centres of the humps themselves.

For a single pair of filters, Fig. 4, you can write the phase shift in a similar way to (6), as

$$\tan \frac{1}{2}(\phi - \phi_0) = \sqrt{\frac{f}{f_0}} - \sqrt{\frac{f}{f_0}}$$

where Ω is ω_2/ω_1 is the 'normalised' frequency and $\Delta = \omega_2 - \omega_1$ is the span of the pair of filters, with $\omega_0 = \sqrt{\omega_2\omega_1}$. When you try to extend the analysis to cope with two pairs of filters it becomes difficult to represent them concisely - especially when you want to use the equations to find out what values of span and spread to use.

Fortunately, iterative computer techniques are now possible, and are just as valid. I used a set of small Basic programs to investigate the filters by 'trial and error'.

Filter examples
Example 1. The filter in Fig. 5 is centred around 1kHz and the spread is 14. Thus the two humps are at $f_2=267Hz$ and $f_3=3742Hz$, so that their ratio is 14:1, and the geometric mean, $\sqrt{f_2f_3} = 1000Hz$. In other words, they are at the centre frequency multiplied and divided by the spread. Individual spans are both 4.36 so, similarly,

$$f_2=128.0Hz\quad f_3=1792Hz\quad f_4=581.1Hz\quad f_5=7813Hz$$

where $\sqrt{f_2f_3}=267Hz$, $f_2/f_3=4.36$, etc.

Phase shift at the centre frequency of 1kHz is 87.48°, i.e. 2.52° below 90°. The peaks are at 92.66°. Response dips to 87° at 216Hz and 4620Hz. This could be loosely called the bandwidth because of the similarity to the useful response of a bandpass filter in the amplitude domain.

Examples 2 and 3. The difference between the peaks of the phase response curve, and the trough at the centre frequency could be termed the 'phase ripple'. It can be reduced by reducing the spread of the filter pairs. As this is done, the phase response becomes flatter, but it is no longer centred at 90°. It has to be corrected by adjusting the span. Figur 7 shows the effect of reducing the spread to 12 (Example 2) and to 9 (Example 3), while reducing the span appropriately.

Notice that in Example 3, ripple is extremely low - almost within 1/4 degree. Bandwidth however is limited.

Example 2a. Of the above two examples, let us suppose that Example 2 looks like a suitable filter to build. The procedure is as follows. Firstly, note that all the examples used a centre frequency of 1000Hz. The individual sections of Example 2 have centre frequencies of,

$$f_2=142.9Hz\quad f_3=1715Hz\quad f_4=583.1Hz\quad f_5=6997Hz$$

If you want to alter the overall centre from 1kHz you can scale these frequencies. However, you do not need to do that for this example. Using E24 resistors you can get close to these frequencies:

$$f_2=1.04k+110k\pm 1nF=143.4Hz\quad f_3=270k\pm 3.0k\pm 1nF=1715Hz\quad f_4=91k\pm 1.8k\pm 1nF=583.1Hz\quad f_5=22k\pm 750k\pm 1nF=6997Hz$$

If you want to alter the overall centre from 1kHz you can scale these frequencies. However, you do not need to do that for this example. Using E24 resistors you can get close to these frequencies:

$$f_2=1.04k+110k\pm 1nF=143.4Hz\quad f_3=270k\pm 3.0k\pm 1nF=1715Hz\quad f_4=91k\pm 1.8k\pm 1nF=583.1Hz\quad f_5=22k\pm 750k\pm 1nF=6997Hz$$

Figure 8 shows the central portion of the phase response on an enlarged scale. The slight asymmetry of the curve is due to the errors caused by the resistor approximations. The response is only very slightly different from that predicted by Example 2.

Figure 9 shows a circuit diagram of the complete outphaser. The filters R_1/C_1 to R_4/C_4 use the values from the list above. The resistors should be 1% metal film with a low temperature coefficient. The capacitors should be polystyrene 1% parts.

Unmarked resistors are all equal in value, say 100kΩ. They should be 1% metal film or, possibly 2% thick film resistor packs, for which the temperature tracking will probably be good. The op-amps should have a low input current, for example BiFET types, or you will need to consider the effect of bias currents.

Filter inputs must be driven from a low impedance source so as not to affect the gain or phase response.

Next time...
In the concluding part of this article I will look at the effect of component tolerances, which can be significant. I will go on to look at outphasers built from three and four filter sections. These can have an extremely flat top, or a very wide bandwidth. I will conclude by looking at a digital filter implementation of an outphaser.

Further reading
Holt & Grey (1967), in Proc. IEE, Dec 67, p187
Eight year EW index
Hard copy or disk

Includes over 600 circuit idea references
Whether as a PC database or as hard copy, SoftCopy can supply a complete index of Electronics World articles going back over the past eight years.

The computerised index of Electronics World magazine covers the eight years from 1987 to 1995 – volumes 94 to 101 inclusive – and is available now. It contains almost 2000 references to articles, circuit ideas and applications – including a synopsis for each.

The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512k ram and a hard disk.

Even though the disk-based index has been expanded significantly from five years to eight, its price is still only £20 inclusive. Please specify whether you need 5 1/4in, 3.5in DD or 3.5in HD format. Existing users can obtain an upgrade for £15 by quoting their serial number.

Photo copies of Electronics World articles
Photo copies from back issues of Electronics World are available at a flat rate of £2 per article or 50p per circuit idea, both excluding postage.

Ordering details
The EW index data base price of £20 includes UK postage and VAT. Add an extra £1 for overseas EC orders or £5 for non-EC overseas orders.

Postal charges on hard copy indexes and on photocopies are 50p UK, £1 for the rest of the EC or £2 worldwide.

For enquiries about photocopies, etc, please send an sae to SoftCopy Ltd at the address below.

Send your order to SoftCopy Ltd., 1 Vineries Close, Cheltenham GL53 0NU, tel 01242 241455, or e-mail at 100556.112@compuserve.com. Please make cheques payable to SoftCopy Ltd – not EW or Reed Business Publishing. Please allow up to 28 days for delivery.
ATP Instrumentation is offering an evaluation pack comprising five irreversible temperature indication strips - completely free to Electronics World readers.

Called Thermostrips, these light, thin indicators consist of one or more heat-sensitive squares or dots. The centre of the indicator dot turns black once the temperature rating shown next to the dot is reached. The change to black is irreversible, so the strips become a permanent record of the upper temperature threshold of a component or piece of equipment.

To aid in maintaining of a piece of equipment, for example, Thermostrips applied for the usage period can be removed during servicing and attached to the service report as evidence of correct functioning. They can also be used to help detect whether goods returned under warranty have been subjected to overheating.

Performance of the strips is not affected by contact with solvents, gases, steam, etc. Because of their size and the way they operate, Thermostrips can be the only practicable way of measuring peak temperature in situations where equipment cannot be watched round the clock, or on moving parts, etc.

Accuracy of the strips is ±1°C for ratings to 100°C and ±2% for ratings above.

To obtain your evaluation pack comprising:
- One single-segment strip with a 40°C threshold
- One triple-segment strip for 40, 43 and 46°C
- One five-segment strip covering 60 to 82°C
- One eight-segment strip covering 77 to 116°C
- One four-segment mini-strip for 66, 71, 77 and 82°C

...simply fill in the reply coupon between pages 320 and 321, apply a stamp, and send the card to ATP Instrumentation.

To obtain details of the range of temperature strips that ATP Instrumentation supplies, write to Tournament Way, Ivanhoe Industrial Estate, Ashby-de-la-Zouch, Leicestershire LE65 2UU, or telephone 01530 416876, fax 01530 560373.
Two-chip smart accelerometer

Benefits of this accelerometer – designed using silicon micromachining – are small size, relatively low cost and repeatable, temperature-stable output. Diedrik de Bruin and Ed Koen of EG&G IC Sensors explain.

The signal-conditioned accelerometer described here offers many advantages. Manufactured using silicon micromachining, the sensor element has proven reliability. Being wholly monolithic, the signal conditioning circuitry needs no external components and thick or thin film technology.

Both sensor and signal conditioning chips are hermetically packaged together in a ceramic leadless chip carrier. Output parameters are trimmed electrically after packaging. The chip carrier can be mounted in several orientations to allow measurement of acceleration either perpendicular to or in plane with the mounting surface.

Accelerometer overview
Currently the majority of signal conditioned accelerometers are packaged using hybrid technology. Thick or thin-film resistors are used to set parameters such as offset and sensitivity to the desired values. This approach results in relatively bulky designs with non-uniform mounting configurations. The user is often required to carry out additional mechanical work, such as designing a mounting bracket.

The accelerometer design discussed here is intended to not only lower the cost of the accelerometer, but also the reduce implementation costs. This is accomplished by mating a silicon micromachined sensor die to a signal-conditioning IC in a ceramic leadless chip carrier.

The two-chip approach allows the sensor and signal conditioning chips to be optimised and avoids the yield losses associated with complicated single-chip designs. The accelerometer is compatible with automated pc board assembly while offering multiple mounting options.

Sensor element
The accelerometer structure, Fig. 1, measures 3.4 mm square. A seismic mass and four flexures are formed using bulk micromachining processes. Bulk micromachining technology was chosen over surface micromachining because the entire thickness of the silicon wafer can be used for the seismic mass, resulting in a higher sensor output.

Each of the four beams contains two implanted resistors, interconnected to form a Wheatstone bridge. When the device undergoes an acceleration, the mass moves up or down, causing four of the resistors to increase and the other four to decrease in value. This results in an output voltage change proportional to the applied acceleration.

Eight resistors are interconnected such that the effects of any motion other than that caused by an acceleration in the primary direction are cancelled out. Piezoresistive transduction provides a relatively high output level with low impedance and good linearity. As a result, it is not necessary to include signal conditioning electronics on the same chip as the sensor to obtain good performance.

Silicon top and bottom caps attach to the section containing the seismic mass and the beams. These serve several purposes. Precision gaps are etched into the caps to provide air damping to suppress the resonance peak of the structure. Because the part is critically damped, the response is flat up to several kilohertz – independent of temperature.

Small elevated stops on the top and bottom caps limit the motion of the mass to a fraction of the deflection at which fracture occurs. The mechanical structure does not wear and mechanical latch-up cannot occur. The top and bottom cap form an enclosed cavity around the seismic mass, protecting it against contamination which may obstruct its motion. Because the three sections are bonded together at the wafer level in the clean room the cavity is free of particles and is protected from particulate contamination during the final chip dicing and assembly operations.

Lastly, the top cap is used to enable testing of the accelerometer in the absence of acceleration. The over-force stops on the top cap have been enlarged and a metal electrode has been deposited on them. This electrode is connected to a bond pad.

When a voltage is applied between the elec-
trode and the silicon of the seismic mass, an electrostatic force moves the mass toward the top cap. This results in a change in output voltage proportional to the sensitivity and to the square of the applied voltage. It is thus possible to generate an 'acceleration' using an external voltage and to check the functioning of the mechanical structure as well as the electronics.

The accelerometer has been qualified for, and used in, air bag crash detection systems and proven to be very reliable.

Signal conditioning circuitry
Signal conditioning circuitry is made in 1.5um cmos technology. Signals are processed by differential amplifiers throughout most of the circuit in order to minimise common mode effects and noise.

Switched capacitor circuitry is used to save space and because high accuracy gain stages can be made easily. The -3dB bandwidth of the signal conditioning electronics is about 3kHz. The accelerometer is intended for 5V operation with an output voltage in the 0.5-4.5V range.

Processing the signal
The accelerometer has a differential output with source impedance of around 4kΩ and full scale output voltage of about ±50mV. The offset voltage, i.e. output at zero applied acceleration, may vary a few millivolts over the temperature range of -40 to 85°C. Also, the full scale output decreases over temperature by about -1900ppm/°C.

The signal conditioning circuitry converts the differential signal into a single-ended signal in the 0.5-4.5V range while compensating for temperature-related signal variations. As a result, the accelerometers are interchangeable with a total error of less than 5%.

The signal path is shown in block diagram, Fig. 2. Output signal of the accelerometer is processed by the following stages:

- The first stage provides a high impedance load for the sensor and amplifies the signal to maximise the dynamic range during subsequent processing. Offset of the sensor is eliminated by adding a voltage generated by a d-to-a converter. This converter is controlled by a digital word representing the programmed offset value.

- The temperature coefficient of offset (tco) of the sensor is compensated by adding a voltage which is controlled by digital words representing the temperature and the programmed tco value. Both the offset and tco voltages are derived from the supply to ensure that the signal remains ratiometric with supply voltage.

- Signal gain can be varied by changing a capacitive ratio using a digital word. The gain can be varied in a 5:1 range to allow for different full scale specifications.

- The sensor's temperature-coefficient of sensitivity, tcs, is compensated in the next stage.

Sensitivity decrease over temperature is compensated in the next stage. The sensor's temperature coefficient of sensitivity, tcs, is compensated in the next stage.

Error detection functions
Because the accelerometer is intended to be used in safety-critical applications, such as airbag deployment, several features are incorporated to detect a failure of the accelerometer or circuitry.

It is important to prevent floating signals because the resulting output voltage might look like a crash signal and activate the airbag. Such signals could be caused by a discontinuity between the sensor and the circuit or by a malfunction of the sensor itself. Small current sources have been added between each of the signal inputs and the positive supply.

In case one or both of the inputs are open, output voltage is forced to the positive supply. In addition, two window comparators monitor the voltage at both inputs. If the voltage at one or both inputs exceeds the allowed range, an 'alarm' output pin is made high. This output can be monitored by a microprocessor to alert the user to a malfunction of the sensor.

In addition, the sensor has a built-in self-test function which allows the seismic mass to be moved by means of an externally applied voltage. This allows the entire device to be tested, including the mechanical structure of the sensor and the signal conditioning electronics.

By applying a voltage to the bond pad that is connected to the self-test electrode, the output will exhibit a voltage change which is proportional to the full scale output, in contrast to
other self-test schemes where the output change is fixed. This makes it possible to verify not only complete malfunction of the device but also a parametric error, giving a better indication of a partial or a developing failure.

Accessing the device
Addressing capabilities have been incorporated in the signal conditioning electronics in the form of row-select and column-select digital inputs.

Both input lines must be high for the accelerometer to be selected. If one or both of the select lines are in the low state, the signal and alarm outputs are in a high impedance "tri-state" mode. This allows the outputs of multiple accelerometers to be connected together, Fig. 3, eliminating the need for analog multiplexers and reduces wiring.

The reduced number of wires is an advantage if four or more devices are needed in a system. The following table shows the number of lines – including supply and ground – required in a measurement system with sensors used in non-multiplexed and multiplexed mode. The digital control lines could be driven by custom designed logic, a card that plugs into a computer, or the i/o port of a microprocessor.

The digital inputs and outputs used during testing and trimming are disabled if the device is not selected, and can therefore be bussed together. This greatly simplifies the test hardware if the accelerometers are characterised and trimmed in an array configuration.

In the case of single-sensor operation, or if multiplexing is not desired, the row and column-select inputs can be left open. Internal pull-up current sources ensure that the accelerometer is selected when these inputs are not connected.

Electrical trimming
Optimal trim values for offset, tco, gain and tcs are different for each sensor. Often a network of thick or thin film resistors is used to set these coefficients. In that case, the desired resistor values are set by laser trimming after characterisation of the untrimmed sensor. This requires a separate trim operation using expensive equipment.

Any additional packaging steps done after trimming, sealing the substrate in a housing, for example, could change the characteristics of the sensor resulting in sensitivity or offset errors. Furthermore, trimmable resistors and the conductive traces connecting them to the electronics take up space and limit the available packaging options.

To avoid these disadvantages the trimming is done internal to the signal conditioning IC. The trim coefficients for offset, tco, gain and tcs are stored in binary registers which are connected to d-to-a converters that manipulate the signal.

In contrast to some designs that require an additional eeprom containing the coefficients, the storage registers are on the same chip as the signal conditioning electronics. The storage registers are made in fuse technology to assure data retention in safety-critical applications.

Before trimming data is permanently programmed into the fused registers, the accelerometer can be operated using data stored in volatile ram registers. This allows for the characterisation of the sensor and electronics during manufacturing in order to extract the required coefficients for offset, tco, gain and tcs.

Fuse trimming is handled by circuitry inside the signal conditioning IC and requires no external equipment. The digital i/o used for characterisation and trim consists of a serial input and a serial output line and a clock input for synchronising the data entry, which uses a 16-bit protocol.

All digital i/o lines are available after final packaging. This allows the accelerometer to be trimmed as the last manufacturing step. Because the data transfer is serial rather than parallel, the pin count is not the limiting factor for the package size.

Packaging details

The package is a leadless chip carrier measuring 0.530in by 0.30in and is 0.150in thick. It is manufactured by screening tungsten interconnect traces onto ceramic layers which are then stacked together and fired.

The accelerometer die and signal conditioning IC are mounted into the package cavity and connections are made from the die to the package with gold-wire bonds. A gold plated Kovar lid is then soldered to the package using a Au/Sn preform. This provides a hermetic seal which will withstand the rigorous environmental requirements of the automotive and military industries.

Reliability is increased with respect to many other designs because of the reduced number of components. No external components such as capacitors are needed for operation. Stiffness and low mass of the package helps to keep its resonant frequency high. Inputs and outputs needed for operation of the accelerometer and for characterisation and trim are brought out to contact pads on the side and on the top of the package.

Mounting surface 2 is on the opposite side from the metal lid. Because electrical contact can be made on two surfaces and because of the aspect ratio of the package, it is possible to mount the package either flush with or perpendicular to the board.

In many cases accelerometers need to be mounted at a 90° angle with respect to the circuit board. This normally requires additional brackets and is not compatible with automated manufacturing. The ceramic package allows the accelerometer to be mounted on the pcb using automatic placement equipment, reducing manufacturing cost and saving space.

Another possible application is to make a tri-axial accelerometer by mounting two accelerometers perpendicular to the board and one in parallel, Fig. 5. Dimensions of this fully signal conditioned tri-axial accelerometer is only 0.73in by 0.53in by 0.30in.

The accelerometer is available in several g ranges to cover many applications such as ride control, airbag deployment – both frontal and side impact – fusing and arming, vibration monitoring and general instrumentation.

In addition, it is possible to adapt the device to specific customer needs.

This article is based on a paper presented at Sensors Expo, Cleveland Ohio; contact http://www.sensorsmag.com

References
The term Caller ID is used to describe the transmission of the caller's telephone number when the telephone rings. This service was introduced by BT at the end of 1994, along with two receiver units.

The CD50 is a stand-alone battery powered unit with display, that can store details of 50 calls. The Relate 1000 with combined telephone, is much more sophisticated. Not only can it display the number, but it uses a local directory to look up the name of the caller. It also allows the easy redialling of any of the received numbers.

Currently, the service from BT only delivers the caller's number, the time and date. The enhancement of the service to deliver name has not yet taken place. There is no time scale from BT for this to be available. If the call is from a pay-phone or from abroad, then the text 'payphone' or 'international' is sent. Calls from a significant number of telephones are still delivered as 'number unavailable', presumably because these are connected to older exchanges.

Privacy is an important consideration. Calls from 'ex-directory' lines are delivered as 'number withheld' and so are all calls prefixed with 141. This ensures anonymity for those that require it.

Voluntary organisations can identify malicious callers. They can also identify calls from vulnerable people in trouble, such as emergency calls from disabled or elderly callers. For the tradesman, it allows potential enquiries to be followed up from callers reluctant to use the answering machine.

However, the real benefit to businesses come, when the Caller ID information can be presented to the com port of a pc. This allows the logging of large numbers of calls, instant look up of customer details using the telephone number as a key, and verification of customer identity when releasing sensitive information, such as bank account details.

On another front, the number information can be checked against a stored list of numbers before allowing access to a database, thus providing an effective 'anti-hacking' device.

Companies employing a mobile team, such as cleaning or security staff, can request them to call in from their various sites at the start and the end of their duties. This verifies attendance and time spent at each site. The beauty

Useful addresses

Solwise, Princes Court, Princes Avenue, Hull HU5 3QA. Tel: 01482 473899, Fax: 01482 472245. Full catalogue on, http://www.demon.co.uk/solwise/

Mitel Semiconductors, Mitel Business Park Newport, Gwent NP6 4YR. Tel: 01291 430000, fax: 01291 436389.

Consumer Microcircuits, 1 Wheaton Road, Witham, Essex CM8 3TD. Tel: 01376 513833, fax: 01376 518247

Useful standards

BT:SIN242: Calling Line Identification Service: TE requirements.

Available from: Regulatory Services Unit, Room 134, 2 City Forum, 250-258 City Road London EC1V 2TL. Tel: 0800 318601, CTA:TW/P&E/312: Terminal requirements for Caller Display Services, available from: Alan Jones, TeleWest Communications Group, Unit 1, Genesis Business Park, Albert Drive, Woking, Surrey GU21 5RW. Tel: 01483 750900
The Caller ID service was first introduced in the US, based on a series of standards from Bellcore. The information is coded using frequency-shift keying signals, fsk, using the Bell 202 standard. This used a 1200Hz signal for a mark, and a 2200Hz signal for a space.

On call arrival, a single ring burst is sent by the exchange, followed by a burst of fsk signal. The data is preceded by a Channel Seizure signal – comprising alternating marks and spaces – and a mark signal. This allows the fsk receiver to synchronise to the data, and to provide immunity against noise spikes. The sequence of events on call arrival is shown in Fig. 1.

The initial ring burst is used by receiving units as a 'wake up' signal. Since these units are battery powered, low power consumption is paramount. The design of the various Caller ID receiver ICs allows the receiver to be placed in a standby mode, with just the ring detector powered. In this mode, current consumption is down to tens of microamps.

On a ring signal being detected, the rest of the IC is powered, and the fsk data is decoded. Since this is done in one or two seconds, and the IC then goes back to low power mode, battery life of a year can be achieved.

BT's Caller ID service

This started off with the Bellcore system as its model but diverged along the way. One new requirement for the BT service was that it should be possible to pass information to the receiving unit, without alerting the phone user. The information was for metering and message waiting status. This precluded the use of the ring signal as being the initial alert signal.

Reversal of line polarity was decided upon as the initial alerting signal. So the 'no ring' call would be presented as line reversal, data, followed by another line reversal. A normal call on the other hand, would be presented as line reversal, data and then ringing.

However, the ringing signal served the purpose of 'wetting' the cable joints, prior to fsk signalling. As there is negligible current flow during a line reversal, the 'wetting pulse' was to be supplied by the receiving unit, before the transmission of the fsk signal.

To ensure that this 'wetting pulse' was applied correctly and in synchrony with other units on multiple installations, another signal was introduced. This was the Tone Alert Signal, or TAS, and was a dual tone of 2130Hz and 2750Hz. After receipt of this, the 'wetting pulse' was to be applied. To ensure good impedance matching during fsk data transmission, the BT standard also calls for an ac impedance during this state.

In addition to the above changes, the BT specification uses V23 frequencies for the fsk signals, which involves 1300Hz for the mark and 2100Hz for the space. The sequence of events for this is shown on Fig. 2. The BT specification also allows for a number of new features to be implemented, and has built in some flexibility for future expansion.

The Caller ID service implemented by cable TV companies is closely modelled on the Bellcore service, in that a single burst of ringing is used to initiate the data. However, V23 frequencies are used for the fsk data and there is also some allowance in the application layer for future expansion.

Design of a pc device

To exploit a niche in the market for Caller ID devices, a project was initiated to produce a unit that would meet two key objectives. First it would allow Caller ID data to be decoded from the telephone line, and presented to the com port of a PC. Secondly, it would supply a Windows utility that would:

- Display call details on the screen as the telephone rings
- Allow name look-up from a pre-programmed directory
- Log all calls in a database format for processing later.

The unit had to be compatible with BT and CTA Caller ID standard and would have to be priced at under £50 to reach the home pc user. With these objectives in mind, the design of the product commenced. After a period of study, the following key design decisions emerged.

First was the choice of Caller ID receiver IC: newly available were two ICs that were capable of meeting both the BT and CTA standards. One was the MT8843 from Mitel Semiconductors and the other was the FX602 from Consumer Microcircuits Ltd. They both had ringing and line reversal detection capability and also circuits for the detection of tone alert signal.

The MT8843 was chosen as samples of these were available earlier. Having decided to make the unit compatible with both standards, the actual wetting pulse and ac impedance cir-

Fig. 1. Timing details for Bellcore's standard for caller ID: data-link layer, on-hook data transmission. Among the first used, this standard was first available in the US.

Fig. 2. BT SIN 242: data-link layer, on-hook data transmission, as used for caller telephone number identification throughout most of the UK.
circuits were made optional to save cost. The sensitivity of the receiving circuits were increased to compensate for this.

Powering of the device from a COM port was a key design target, as this would result in lower unit cost. This was made possible by careful design and power management.

To implement the critical timing of the BT standard, to carry out the power management, verification of received data and the serial communication, a Microchip PIC device was used. In addition, a single crystal of 3.579MHz was used as a clock for the PIC and MT8843 devices to keep costs down.

Visual Basic was chosen for the design of the software as this allowed software to be developed quickly and still allowed very professional screens to be displayed to the user.

A block diagram of the electronics is given in Fig 3. A sample of the Window with call details is shown in Fig 4. Following the above decisions and subsequent detailed design, the project was successfully completed and the device, CID-PC1 is now available from SOLWISE at a cost of £45-00.

Summary

Caller ID presents many benefits to domestic and business users. The potential of Caller ID to business users is obvious once the information can be presented to a PC. Above are details of the design of such a unit.

About the author

T. Segaran is the founder of Tele-products Ltd. The company specialises in the design and manufacture of telecommunications test equipment and the design and approvals of Telecom products. The company has a Caller ID simulator amongst its range of test instruments. This is capable of simulating most Caller ID standards from around the world.

Before founding Tele-Products T. Segaran worked for Standard Telephones and Cables and at Tunstall Telecom as a Section Leader. He has been instrumental in a number of successful product launches including the early Viscount telephone, the Piper Lifeline, the Minstrel, React, Duet and Converse range of telephones.

Caller ID on a PC – exclusive EW reader offer

Seggy Segaran’s Caller ID design, allowing callers’ numbers to be read, logged and manipulated on a PC, is being made available to EW readers at a special 15% discount price until 17 May. This self-powered unit is supplied complete with Windows driver software incorporating three key features:

- On receipt of a call, the software produces a Windows pop-up menu with the caller’s identification, which can then be cut and pasted.
- Calls are logged in the software’s own data base for later manipulation.
- The software’s own data base is Microsoft Access compatible.

Normally, the Tele-Products CID-PC1 sells for £45, excluding VAT and carriage. For the duration of the offer, EW readers can obtain the unit for £48.87 – fully inclusive of software, VAT and first-class recorded postage. Simply fill in the coupon below and post it to Dept 74, Tele-Products Ltd, Unit A8, Parkside Commercial Centre, Terry Avenue, York, YO2 1JP. Tel 01904 659583, fax 01904 611465.

Please send me CID-PC1 Caller ID units for the PC, for which I enclose a postal order or cheque payable to Tele-Products Ltd for the amount £

Name
Address
Post Code
Daytime tel
Don’t miss out!
Place a regular order with your newsagent for your own copy of Electronics World. And be entered into our Free Prize Draw! One reader a month will win...
In April A FREE 11-piece tool kit and a FREE copy of “Oscilloscopes” by Ian Hickman, worth £16.99
In May A FREE 11-piece tool kit and a FREE copy of “Modern CMOS Circuits Manual” by R M Marston, worth £14.99
In June A FREE 11-piece tool kit and a FREE copy of “Analogue Circuits Cookbook” by Ian Hickman, worth £19.95
To enter the draw simply fill in the form opposite, ask your newsagent to sign it when you place your regular order for Electronics World and send the forms to: Marketing Department, Electronics World, Reed Business Publishing, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.
MARCONI 2370
Spectrum analyser

30Hz – 110MHz Frequency range
1Hz Resolution/phase lock tuning
Digital storage with dual display
Built-in tracking generator
9 digit frequency counter

£850 + carriage/vat

Includes 30 day unconditional warranty

M&B Radio, 86 Bishopgate Street, Leeds LS1 4BB
Tel: (+44) 0113 2435649
Fax: (+44) 0113 2426881

CIRCLE NO. 123 ON REPLY CARD
WIN A TTI PROGRAMMABLE BENCH MULTIMETER

"High accuracy, resolution and bandwidth - performance beyond the capability of handhelds"

This high-performance bench multimeter could be yours in exchange for a good idea. Featuring a dual display, the 4.5-digit 1705 multimeter resolves down to 10µV, 10mΩ and 0.1µA and has a basic dc accuracy of 0.04%. Frequency measured is 10Hz to 120kHz with an accuracy of 0.01% and resolution to 0.01Hz. Capacitor and true rms measurements are also featured.

Recognising the importance of a good idea, Thurlby Thandar Instruments will be giving away one of these excellent instruments once every six months. This incentive is in addition to our monthly £100 ‘best circuit idea’ award and £25 awards for each circuit published.

Do you have an original circuit idea for publication? We are giving £100 cash for the month’s top design. Additional authors will receive £25 cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

£100 WINNER

Night/day light measurement in one range

Since the NORP-12 cadmium sulphide photo-conductive cell obeys a precise log-law (log(Rp) = 4.630 - 0.6761 log(L), where Rp is the cell resistance at Llux), a low-bias-current op-amp with a log-diode in the feedback loop will give an accurate light reading from moonlight to sunlight in one range. Furthermore, the technique is inherently proof against overload and is inexpensive. Op-amp A1 drives a 100µA meter, on which zero is equivalent to 0.11ux and full scale to 10^4 lux. Since log2 is 0.301 and log5 is 0.699, the meter scale may be calibrated in a 1-2-5 sequence in these proportions. If a laboratory standard lamp is available, calibrate the meter at 1 lux and 1000lux by the trimmers VR1 and VR2; if not, first replace Rp with 42.7kΩ and then 400Ω, these being the resistance values from the NORP-12 data sheet which does not, of course, allow for tolerances. Diode D2 provides a temperature-compensated back-off for the dark-level current at D1 anode, R4 and R5 trimming the conformance of D1 to the log-law. Other types of silicon diode such as the OA202 would improve performance at low current and the 1N4002 at the high end, but the 1N4148, well shielded from light, is a good compromise.

The NORP-12 has a spectral response similar to that of the human eye, peaking at 550nm; for a response at infrared, a silicon diode, using similar circuit, would be better.

C J D Catto
Cambridge
Finally an upgradeable PCB CAD system to suit any budget...

BoardCapture

- Direct netlist link to Boardmaker2
- Forward annotation with part values
- Full undo/redo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Contextual, aesthetic editing
- Extensive component-based power control
- Back annotation from Boardmaker2

Boardmaker

- Entry level
- PCB and schematic drafting
- Easy and intuitive to use
- Surface mount support
- 90, 45 and curved track corners
- Ground plane fill
- Copper highlight and clearance checking
- Top down modification from the schematic
- Full Design Rule Checking - mechanical & electrical
- 3rd Unit: Phoenix Control Module 5500-200 + 55004-828
- Intelligent windows
- Automatic computing
- Dynamic connectivity information
- Intelligent wires (automatic junctions)
- Back annotation from Boardmaker2

BoardRouter

- Gridless autorouter
- Easy to use
- Multiple window editing
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Contextual, aesthetic editing
- Extensive component-based power control
- Back annotation from Boardmaker2

AN EXTENSIVE RANGE OF TEST EQUIPMENT IS AVAILABLE. PLEASE SEND FOR OUR NEW CATALOGUE

AN EXTENSIVE RANGE OF TEST EQUIPMENT IS AVAILABLE. PLEASE SEND FOR OUR NEW CATALOGUE

AN EXTENSIVE RANGE OF TEST EQUIPMENT IS AVAILABLE. PLEASE SEND FOR OUR NEW CATALOGUE

AN EXTENSIVE RANGE OF TEST EQUIPMENT IS AVAILABLE. PLEASE SEND FOR OUR NEW CATALOGUE

AN EXTENSIVE RANGE OF TEST EQUIPMENT IS AVAILABLE. PLEASE SEND FOR OUR NEW CATALOGUE
Edge-triggered, set/reset bistable device

If the widths of set or reset pulses applied to a standard S/R bistable device (a) are unknown, the state of affairs shown in (c) at Q1 and Q2 can occur, where the reset pulse arrives during the set pulse; reset has no effect on Q1, but produces an unlooked-for pulse on Q2. In addition, the next set pulse will be ignored, since Q1 is already high.

Since the circuit in (b) responds only to negative edges at the set and reset inputs, the output is as shown at (c) in Q2.

Giorgio Delfitto
University of Padova, Italy

Simple servo driver

This simple circuit drives model servo motors in response to the turning of a potentiometer.

Half the 74HC221 dual monostable is used as a free-running oscillator, producing narrow trigger pulses for the second half of the monostable, whose output is a train of standard servo pulses about 18ms apart, variable in length by the potentiometer from 0.8ms to 1.24ms. The potentiometer therefore controls the servo.

R G Sutherland
Woking
Surrey

Crystal oscillator using a current-conveyor

A PA630 second-generation audio current conveyor, used to provide negative resistance, fulfills all the requirements of a crystal oscillator circuit: high bandwidth, optimum drive level, low damping to retain high crystal Q and good input/output isolation. Crystals in the 31.25kHz-5MHz range have been used in the circuit shown.

Transistors $T_{1,7}$ form the current conveyor, bias current for all transistors (I_{bias}) being set by R_2, according to

$$I_{\text{bias}} = \frac{V_{EE} - 2V_{BE}}{R_2}$$

Resistor R_2 driving the current mirror $T_{6,7}$. Positive feedback from the high-impedance output Z and the high-Z input Y causes the input resistance at the low-Z input to become $R_{in} = -R_1$, so that, if the Q of the crystal R_3 is equal to $R_1 - R_5$, the circuit oscillates. Resistor R_5 is not essential, but does set the best crystal current.

Output comes from the AUX pin, which gives good isolation and offers a point for level adjustment. Resistor R_4 allows adjustment of V_{6}, the potential into the buffer stage according to,

$$V_6 = (V_{6} + V_{BE})R_3/(R_3 + R_4).$$

Oscillation increasing until the collector/base junction of T_{7} becomes forward-biased, reducing the magnitude of the negative resistance at point X.

For a 1MHz crystal with a R_3 of 85k, $V_{6} = 15V$; R_5 = 100kΩ; $R_3 = 8.9$ kΩ; $R_4 = 7.5k$; and $R_7 = 10Ω$. Oscillation amplitude is 75mV.

Dan Stiurca
Romania
Data Acquisition for your PC

Pico's Virtual Instrumentation enable you to use your computer as a variety of useful test and measurement Instruments or as an advanced data logger. Hardware and software are supplied together as a package - no more worries about incompatibility or complex set-up procedures. Unlike traditional 'plug in' data acquisition cards, they simply plug into the PC's parallel or serial port, making them ideal for use with portable PC's.

Call for your Guide on 'Virtual Instrumentation'.

NEW

SLA-16/SLA-32 Logic Analysers
Pocket sized 16 Channel Logic Analyser
- Connects to PC serial port
- Up to 50MHz Sampling
- Internal & external clock modes
- 8K Trace Buffer

SLA-16 £219
SLA-32 £349

with software, power supply and cables

ADC-100 Virtual Instrument
- Digital Storage Scope
- Spectrum Analyser
- Frequency Meter
- Chart Recorder
- Data Logger
- Voltmeter

The ADC-100 offers both a high sampling rate (100kHz) and a high resolution. It is ideal as a general purpose test instrument either in the lab or in the field.

ADC 100 with PicoScope £199
with PicoScope & PicoLog £219

ADC-10
Gives your computer a single channel of analog input. Prices from £49.

The PC based ECAL hardware emulator is fully integrated with the assembler. Connection is made to the target through the eprom socket so a single pod can support all processors. Facilities include windows for the inspection or change of registers or memory. You can even watch your program executing at source level!

Download time is about two seconds!

Pods can be daisy-chained for 16/32 bit systems.

Applications include software development, hardware debug, test and, finally, teaching about micro-controllers in education.

ECAL emulator £475

Quantity discounts of up to 50% make ECAL software ideal for education.
24V electromechanical counter from 12V

Having a number of 24V counter mechanisms and a 12V controller, it was necessary to produce a suitable interface. This circuit performs that function with no great power dissipation and with less interference radiation than other methods.

With the driver off, the input is at 12V, Tr1 is cut off and there is no current to the counter coil. Capacitor C1 charges through R3 to around 11V via D3 and no further current flows in the circuit.

As the driver comes on, Tr1 base current flows in R2 and the top end of the counter coil goes to almost 12V. Diode D1 conducts and clamps the top end of C1 to about 1V, its bottom end and that of the coil going to about -10V, so that the coil sees enough voltage to energise it. As the charge on C1 decays, the counter still sees about 11V, which should be enough to hold the mechanism in, with reduced steady-state dissipation.

The time constant is chosen to suit a 250ms drive every 3s, but may be varied for any use. A snubber diode is not necessary, since the driver collector never exceeds the supply voltage.

Gerald D Pye
Ipswich
Suffolk

One op-amp dc motor driver

Used widely in the field of robotics, this current source produces a 2.5A output from a 6.25V input, using only one power op-amp and one power resistor.

Feedback from both ends of the 3W current-sensing resistor Rsc got to the op-amp inputs, which is forced to maintain the current through Rsc, calculated to be,

\[I_{out} = (V_{in}/Rsc)(R2/R1) \]

Motor driver for robots. This is more economical than most, needing less in the way of heat sinking and only one power resistor. Circuit shown produces 2.5A for a 6.25V input.

Choosing \(R2 = R4 = 10k\Omega \) and \(R1 = R3 = 100k\Omega \), \(Rsc \) is 0.25Ω to give an output of 2.5A for a 6.25V input.

\[Rsc = 0.65/I_{out}(A)-0.01 \]

Resistors \(R1,4 \) should be 1%, 0.25W types and the op-amp should be on a heat sink; the OPA511 has an insulated case and needs no isolation.

V Vidyadhar, K Rajasree and V Sivanand
Cochin University of Science and Technology, India

Active, low-pass filters with no dc errors

In the arrangement illustrated, the op-amp in this low-pass, maximally flat Butterworth filter is blocked from the signal path by capacitors, this makes its offset and input current irrelevant. Two-pole, three, four and five-pole versions have been built and offer the further advantage that they use fewer components than more conventional circuits. The op-amps can be operated from a single supply, if required.

No free lunches, though: theoretically, they must work into an open circuit, a requirement that can be met either by including a follower to the output or doubling the value of the input resistor and inserting an equal value to ground. This halves the dc gain and needs a purely resistive, and fairly critical, load.

To take the three-pole version shown, let \(p = \omega \), work backwards from a 1V output to find the input \(e \).

\[v1 = -p \quad i1 = p \]

\[v2 = v1 - (p + i1) = -2p - p^2 \]

\[i2 = p(1 - v2) = p + 2p^2 + p^3 \]

\[e = 1 + p + i2 = 1 + 2p + 2p^2 + p^3 \]

So the transmission \(T \) is,

\[T = \frac{1}{1 + 2p + 2p^2 + p^3} \]

and magnitude \(|T| \) is,

\[|T| = \frac{1}{\sqrt{(1 - 2\omega)^2 + (2\omega - \omega^2)^2}} \]

If \(R \) and \(C \) values are unknown, make one component unity and the two resistors equal. This still leaves four unknowns, so other component values are possible. It turns out that if all three capacitances are unity, so are the resistances.

McKenny W Egerton
Owings Mills, Maryland, USA
For a limited period, Vann Draper is offering over 25% discount on the 305 LDD — a bench power supply featuring digital display of both voltage and current. Normally, the 305 retails at £159 excluding VAT and delivery but it is available to EW readers filling in the coupon on the right at the 25% discount price of £139 — fully inclusive of VAT and delivery.

Infinitely variable between 0 and 30V — with coarse and fine controls — and adjustable between 0 and 5A, the 305 LDD has a ripple figure of typically 10mV. Its load regulation is also excellent, at typically ±0.2%.

Accuracy of the supply’s dual 3.5-digit liquid crystal displays is 0.1 decimal digit. The output can handle a continuous short-circuit, overloading at 5.5A ±0.5A. When the overload circuit is activated, it causes both audible and visual alarms, resettable via a push-button on the front panel.

Dimensions of the 305 LDD are 310 by 260 by 120mm and its weight is 5.5kg. Housed in a light-grey steel enclosure, the unit is built to comply with UL, CSA and TUV safety standards.

Features of the 305 LDD
0-30V fine and coarse adjustments
0-5A adjustable
10mV ripple
Digital displays for V and I
Continuous short circuit protection ±0.2% load regulation

Use this coupon to order your 305 LDD
Please send me 305 LDD(s) at the fully inclusive special offer of £139

Name
Company (if any)
Address
Phone number/fax
Total amount £............
Make cheques payable to Vann Draper Electronics Ltd
Or, please debit my Master, Visa or Access card.
Card type (Access/Visa)
Card No
Expiry date

Please mail this coupon to Vann Draper Electronics, together with payment. Alternatively fax credit card details with order on 0116 2773945 or telephone on 0116 2771400.
Address orders and all correspondence relating to this order to Vann Draper Electronics at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE18 2PL.

*Overseas readers can also obtain this discount but details vary according to country. Please ring, write or fax to Vann Draper Electronics.
Virtual-capacitance timer and filter

An op-amp and five other components bootstrap a capacitor to make a 200µF component from 0.1µF.

Left is shown a low-pass filter having a time constant of 10s, determined by \(R \times C \times x \times R_i / R_2 \). Since bootstrapping also increases the effects of op-amp bias current and input offset voltage, \(R_4 \) reduces dc following error to around 10mV, its value being greater or less than that of \(C_{100n} \)

In the right-hand diagram, using a fet op-amp allows an increase in the amount of bootstrapping to about \(10^3 \), giving the effect here of a 2200µF capacitor. Used with a 555 timer, and depending on how well the CA3140 offset voltage can be coped with, a time of 400-600s can be obtained to within ±1% repeatability.

W. Gray
Farnborough, Hants

Linear phase detector from two op-amps

Two op-amps and two fets form an analogue linear phase detector. An input reference square wave switches on and off the two switching fets, which configure the first op-amp into an inverting amplifier when the fets are on and a non-inverter when they are off, both with unity gain.

If the input signal, shown as a sinusoid, is in phase with the reference, the output of the op-amp is, effectively, a full-wave-rectified version of the input to give the maximum positive circuit output when filtered by the output op-amp. When the input is 90° out of phase, the op-amp output produces an average which is equal to zero and when in antiphase, a maximum negative version of the in-phase output.

Ensure accurate matching of resistors at the op-amp input and also that the on resistance of the fets is low.
BACK ISSUES

Back issues of *Electronics World* are £2.50 in the UK and £3.00 elsewhere*. Price includes postage. Please complete the coupon and send with correct payment to: *Electronics World*, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

<table>
<thead>
<tr>
<th>Issue (Month/Year)</th>
<th>Quantity</th>
<th>Price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that all issues are subject to availability and please allow 28 days for delivery.

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Post Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method of payment (please circle):
- Access/Mastercard
- Visa Cheque PO
- Cheques made payable to Reed Business Publishing

Credit card No

Expiry Date

Signed

Back issues are £3.00 elsewhere.
I versus V feedback

Surely current feedback, cfb, is much closer to the correct drive of a loudspeaker voice coil than voltage feedback, vfb, is?

Driving force on the coil is very simply expressed by,

\[F = \beta \cdot I \cdot \text{size} \]

with wire length \(l \), \(\alpha \) a constant, and \(\beta \) flux density, so \(F \) is proportional to \(I \).

A similar relationship between voltage and force cannot be written easily, due to the many ill defined terms that compose voice coil impedance.

Apart from the main resonance region, voice coil back emf is negligible, so voltage feedback is also unrelated to voice-coil velocity.

In reply to Mr Allison's query in the December issue, I can say I have tested cfb on two different designs, the December issue, I can say I have also unrelated to voice-coil velocity.

Clearly the cause of treble roll off in vfb is the voice coil rise in impedance above 2 or 3kHz, mainly due to the inactive coil turns in front of and behind the magnetic gap.

This impedance rise limits the drive in vfb, however in cfb it only limits the maximum available power before clipping.

While little difference in medium response between vfb and cfb was audible, the other evident feature of cfb was that bass was more tight, due to a totally undamped main resonance. This is certainly the principal drawback of this mode, as to my knowledge no simple acoustic means allows for efficient damping of the main loudspeaker resonance.

My solution at the time, to try and get the best of both worlds, was to depart from pure cfb, by insuring constant-gain gradual change from vfb at low frequencies to cfb at high medium and treble, Fig. 3.

It would be most interesting to repeat these experiments with modern amplifiers and full testing capabilities.

Jean Claude Baumeister

Chartraine

France

Hazy linearity notions?

I would like to comment on Mr Kiyoleawa's hazy notions in the January '96 issue Letters column.

I was glad to see Mr Kiyoleawa confirm that a linear increase of power fet \(g_m \) with drain current is a poor basis for making a linear stage. What is really required is linear operation of both \(L \) with \(V_{gs} \). It may be possible to partly cancel fet square-law distortion by push-pull operation. But this can only work in Class-A, where both upper and lower output devices are conducting at the same time.

Economic necessity and energy conservation mean that most amplifiers are Class-B, and to date there is no practicable compromise between these two modes. If fets can only give acceptable linearity in Class-A, then this is not much of a recommendation for them.

I am unable to understand the contention that an fet output stage can have a 'lower' open-loop output impedance, presumably compared with a bipolar version. Field-effect transistor \(g_m \) is always much lower than for bipolars, and so this would appear to quite impossible.

A 1Ω output resistance is much too high. It may only have a small effect on loudspeaker damping, but will certainly cause unwanted frequency response variations because of the varying impedance curve of the speaker.

Having done a great deal of practical emc testing recently, I can assure Mr Kiyoleawa that radio-frequency entry via speaker cables is a non-problem - at 3V/m and between 30 and 1000MHz, anyway. The presence of an output inductor may be the critical factor here; at any rate it is no reason to abandon global negative feedback.

I'm afraid that Mr Kiyoleawa has not quite appreciated the action of the voltage-amplifier stage transistor. The impedance at its collector is strongly frequency dependent, halving with each octave as local negative feedback through \(R_{an} \) increases, and crippling its linearity with a dead load of 3kΩ will not alter this fact. I think it will be difficult to find a driver/output pair with a combined \(R_{an} \) of 10,000 at practical current levels; but if the object is, as it appears to be, the avoidance of global negative feedback, then this line of thought is a dead-end anyway.

I have made solid-state amplifiers where the output stage worked open-loop, and the practical result is severe distortion of an unpleasantly jagged kind. I cannot believe that anyone - Subjectivist or otherwise - would find this preferable to the very low thd levels obtainable from a blameless amplifier with global negative feedback.

According to the Toshiba application notes, igbt's consist of an fet controlling a bipolar power transistor, I have no information on the linearity of these devices, but the combination does not sound promising.

The most discouraging aspect is the presence of a parasitic bipolar-transistor transistor that turns the device hard on above a critical current threshold. This inbuilt self destruct mechanism makes overload protection an extremely critical matter; it seems unlikely that igbt's will prove popular for audio amplification.

Douglas Self

London

Reference

1. Langdon, S, 'Audio amplifier design-s using IGBT's, MOSFETs, and BJTs', Toshiba Application Note X3304, V.1 Mar 1991.

Does component choice make a difference?

I enjoy EW's audio articles, but the statement by Reg Williamson in his Dec '95 audio preamp article is a little strange to me. I must say that 'audio grade' components are sometimes far too expensive and results are doubtful. I am a technician myself and also sceptical about 'audio grade' components.
We are making progress with the new version 5 of SpiceAge

- Rapid digital filter modelling with links to SuperFILTER digital and analogue filter synthesizer (optional extra)
- Non-linear magnetic modelling including ferromagnetic hysteresis
- Extended scope of Modelmaker (optional extra), the utility that synthesizes opamps, transistors, attenuators, bipolar, JFET and MOSFET transistor library models
- Other benefits from this mature software which enjoys diligent maintenance and professional support include: a new manual; new (rationalsed) pin convention; faster calculating; larger circuits; tougher convergence; helpful customer base (for mutual problem solving and model sharing); widening third party support with links to schematic capture and synthesis programs (native schematic capture also available as an optional extra).

Contact Those Engineers Ltd at 31 Birbeck Road, LONDON NW7 4BP.

Tel: 0181 906 0165 Fax: 0181 906 0969 Email: 100550.2455@compuserve.com

Electronics World + Wireless World April 1996
In any case, the principal feature of valve amplifiers is that they include an output transformer. If one takes a good solid-state amplifier and includes a 1:1 output transformer within the feedback loop one will achieve much the same effect.

Of course, valve and solid-state amplifiers driven near to or past saturation will sound different, but if operated in the linear region there is a region in which one operates. Val power capability overkill is an essential feature of hi-fi usage.

Nick Wheeler

Sutton, Surrey

Valve misuderstanding

As a designer of valve amplifiers since 1950 I have read with some disbelief the article by Morgan Jones in *Electronics World* January 1996 and the subsequent correspondence in the February and March issues. Both Morgan Jones and Frank Ogden seem to not understand the operation of the concertina phase splitter.

This circuit does not have the alleged difference in frequency response at the anode and cathode terminals. If the anode and cathode outputs are analysed separately then, of course the anode output resistance is high and the cathode output resistance relatively low as shown by Morgan Jones in his March 1996 letter. However when both outputs are loaded simultaneously with equal capacitances the output voltages remain equal throughout the audio frequency range. This can be understood intuitively since the anode current is the same as the cathode current so when the two impedances are equal (i.e. equal resistances and equal capacitances) then the output voltages must be equal at all frequencies. It is obvious that the tendency for the anode voltage to decrease more rapidly as the frequency is raised is fully compensated by the by-passing effect of the cathode loading capacitance. The circuit behaves as if the output resistance at both ports is much the same as the source resistance of a cathode follower using the same valve and cathode load resistance. It can be shown that the effective output resistance used to determine the frequency response at both outputs is,

\[R_{\text{e}} = R_C + R_A (s + 2) \]

Needless to say the 'build-out' resistor spoils this inherent wide-band balance of the concertina phase splitter.

There is another error in the Morgan Jones article in the January 1996 issue where he attempts to balance the signal currents of the input stage and the concertina. The concertina signal current is approximately grid voltage divided by cathode resistance thus the anode load of the input stage should be roughly equal to the concertina cathode resistance and not cathode resistance plus anode resistance as stated.

M.H. McFadden

Belfast

Reference

Shame about the error

As present I am particularly interested in the subject of valve audio amplifiers. While not having sufficient detailed information on valve characteristics at hand to check all the calculations in the article’s valve power amplifier article, I was disappointed to find a clear error in the calculation of the values for the feedback resistor and the input stage cathode resistor. While the circuit diagram indicates a 4Ω output load, the calculation is based on 8Ω.

Speakers with 3Ω or 15Ω coils were common before the advent of the 8Ω speaker. This made a dual secondary winding on the output transformer popular, giving an output impedance of 4 or 16Ω. My calculations show that with a 4Ω load a cathode resistor of 964Ω is required, and a feedback resistor of 1728Ω; with 16Ω loads they should be 753Ω and 3456Ω respectively.

The method of calculating the feedback capacitor was not explained, but this should be less critical than the resistor values, and it should be adequate to adjust this proportionately. The required values could be obtained in the case of each resistor by using two parallel resistors of standard values as in the article, values as follows.

Stephen Cole

Winscombe, Avon

I can’t hear you

For once I find myself in agreement with Ben Duncan, on the issue of the suit of some ears for high frequency. It seems absurd that professional pc users should be saddled with a software package that appears to be a re-invention of an operating system designed in the early seventies for children. Windows is ok for the novice user, but without much doubt anybody with a modicum of experience with a standard keyboard would find it more efficient than a mouse. Windows is, in my opinion, poorly documented, slow, cumbersome and not very logical, and a running joke among my computer literate friends. Unfortunately it is difficult to get by without it, and maintain compatibility.

To load and run Windows at an acceptable speed requires no less than a 486 – most PCs in our department are 386s – at least 8Mb of ram and a 40Mb hardisk. This hardware is only now becoming acceptably cheap, but Microsoft would like us to move up to Windows 95 with even greater demands on the hardware. To quote one John McCormick, “Why would anyone in their right mind use Windows for anything? You can always buy a slower computer if yours is too fast!” (from “It’s not a Bug, It’s a Feature!” by David Lubar).

Unfortunately that is the end of good news for Ben. In his article “Simulated attack on slew rates” (EW+WW, April ’95) Ben boldly p. 307 that “...the headroom is demonstrably safer for drive units and ears alike – no matter how counter-intuitive this seems” in the course of his justification of very high slew rates and the reproduction of “...music transients above 165V...” Ben opened the piece by outlining the high frequency nature of the sound “during an Iron Maiden gig” engineered by a colleague. New Scientist reports (p.5, 27 Jan ’96 No. 2014, Australian edition) that “rock concerts are more likely to damage your hearing than listening to a personal stereo or going clubbing”, according to French hearing specialist Christian Meyer-Bisch. This conclusion is the result of a study of 1364 people, and
it is the high frequency content of rock that is identified as the major cause. "Rock is much tougher on the ear at high frequencies than classical music. When played at the same volume on a CD player, the music of heavy metal bands, such as Iron Maiden, is far louder at high frequencies than a piece of Vivaldi" (I think that should be "a piece by Vivaldi", I doubt that there would be many pieces of Vivaldi left). The situation is much worse at rock concerts because of the much higher power.

Ben is quite wrong. It is sensible to keep listening levels moderate, particularly for extended periods and especially for high frequencies. There is no good reason to believe that high sound levels are less damaging to the ears. In fact the reverse is more likely to be true. Higher sound levels are more likely to increase that risk of permanent hearing loss. Ben would be well advised to keep some of his 'counter-intuitive' ideas to himself lest he - and his colleague with Iron Maiden - become the target of litigation from deaf concert goers.

Phil Dennis
University of Sydney
Australia

Cable rejection

If I manage to get a common-mode rejection of 30000dB does this mean the end of the universe, and we all get sucked into an audio black hole? (We all know that black noise is the equal absence of noise/Hz). On a more realistic note, I find a cable tolerance of a couple of percent to be optimistic, have you measured a cable that has been on the road for six months or so, trodden on, run over, stretched over balconies and generally abused. Have you measured, in real life, such a cable? There is no mention of other cables such as star-quad, or multicore.

Many fixed installations use the Krone IDT method, or similar, involving overall screened cable with say 48 different signal pairs - all with various levels of signal and impedance imbalance. I've used this system a few times. Implemented with care, provides a competent way of installing audio systems.

Just simulating a single cable seems very simplistic. These days you have to consider the whole system, although a basic understanding of common-mode rejection ratio is essential.

Although I have not been involved directly with professional audio for a couple of years I found that:

- In practice you cannot beat the 5534 differential amplifier for a line receiver with a couple of 22pF trim capacitors for trimming common-mode rejection ratio. The single op-amp differential stage is fine for local use.
- The SSM2142 is a poor device with not very good output common mode rejection, and its relatively noisy. Porter produced a far superior balanced output stage, published in EW ca 1989. This had a common rejection ratio of at least 60dB across the audio bandwidth - even built on veroboard.
- Please can Ben Duncan stop pushing Microcap and SSM devices - and stop living in SimCity? Martin Griffith

Summing up

Foster Seeley

I was interested in the article on the Foster Seeley detector in your Dec issue.

I feel the author makes heavy weather of its operation. A qualitative description of the operation of the circuit is as follows:

- The primary voltage & the voltage injected into the secondary circuit are in phase - as with all transformer circuits.
- At resonance, current in the secondary circuit is in phase with the injected voltage; this is more easily seen if the secondary circuit is drawn as a series circuit.
- Output voltage across the tuning capacitor lags this current by 90°.
- Thus, the accessible primary and secondary voltages differ by 90° at resonance, as normally drawn in analyses of the circuit.
- Off resonance, the phase of the current to the injected voltage varies, so varying the phase of the output and primary voltages.

- As a side issue, an rf transformer cannot usefully be double-tuned - primary and secondary - if it is tightly coupled. The two capacitors are just in parallel.

Regarding the ratio detector, I prefer to regard it as a sampling circuit. The voltage across the secondary switches the diodes on at its peak; and at that instant, they pass the instantaneous value of the primary voltage to the output (where it is stored by the capacitors, when the diodes cease to conduct). At resonance, this primary voltage is zero at the peak of the secondary, because the two are in quadrature: off resonance, it varies to give the output.

I hope these points may help some who find the operation of the circuit difficult to picture from the bare analysis.

J.W.E. Jones
South Australia

Sallen & Key disadvantages

Following recent correspondence on the Sallen and Key filter configuration, I would like to remind readers of further weakness in the practical implementation of the low-pass configuration. The signal passes through a resistor and then has a path, through the supposed 'feedback' capacitor, to the filter output. If the op-amp output impedance is extremely low - which we assume - then this signal path is effectively shunted to ground.

In reality, however, the output impedance of an op-amp rises with frequency as the open-loop gain falls. It can reach many tens or even hundreds of ohms. Then, high-frequency components of an input signal can leak through to the output.

This failing can be plotted on even the student version of PSPice, where the filter attenuation plot reverses at high frequencies, passing noise and distortion components of the drive signal. It does not occur with the low-pass Rauch filter.

Simon Bateson,
Hutton Rudby
North Yorkshire

HELP Wanted

Any queries?

If you have any electronics-related questions that you have not been able to find an answer to, why not see if other readers can answer them? Simply write to me, the editor, at the address on page 267, fax 0181 652 9856, or e-mail martin.eccles@rbp.co.uk.

Can you answer this?

Could one of your readers explain to me a phenomenon connected with the distribution of lines of magnetic flux, of strength,

\[H = \frac{NI}{2\pi} \]

around a single length of wire carrying a dc current of 1A. With this wire passing through a card at right angles to the wire, if soft iron filings are sprinkled around the wire magnetic lines may be observed which form concentric circles around the wire with spaces between them.

My question is this: has some form of standing wave been set up in the space between 'crests'? Being a wavelength the speed of which may be expressed as:

\[\sigma = \frac{f_{max}}{4\pi} \]

where, were it not for friction would represent the speed of a magnetic field of strength \(H \) with frequency \(f \), where \(f_{max} \) is the frequency of electrons moving around a closed circuit the direction of propagation, as with Huygens wave theory being at right angles to the tangent, of each circular path, i.e. radially. A wire being taken as the simplest and most easily analysed configuration.

Dust tube analogy. If lycopodium powder is placed uniformly within a tube and a pure note of frequency \(f \) sent down the tube, disturbances would be set up which if in antiphase with the reflected wave would cause the powder to respond by 'clumping' in heaps at the points of little disturbance, i.e. at rarefactions. This analogy is used to consider the concentric lines of force around a single turn of wire. I would appreciate any information you may be able to supply me with.

Terence George Heasley
London
Micro-Pro 51

"Hardware/software upgradable programmer for the 8051 family"

- Accepts up to 40 pin DIL directly via Aries ZIF socket
- Surface mount and PLCC package adaptors available as optional extras
- Atmel 89S51/89S52 & 1051/2051 ICE cables available as optional extras
- Field programmable hardware to allow future upgradability
- Fast PC parallel port based design

Keil C51 PK Lite

"The complete Anti-C development environment for the 8051"

- Optimising Anti-C compiler
- 8501-8051 software simulator & source level debugger
- Vision-Integrated Windows based C51 project management system
- Support for most 8051 derivatives eg. Atmel, Intel, Siemens etc.
- Numerous microcontroller language extensions for the fastest, tightest code

Embedded C51 Starter Systems for the 8051 family

Everything you require to develop an embedded 8051-based project in C

- Micro-Pro 51 device programmer
- Keil C51 PK Lite
- Sample Atmel FLASH microcontrollers
- Full suite of C51 demonstration software

New Mini Camera & Special Offers

New mini waist-worn TV camera (£34.95) includes 250ohm microphone (500mV in 470K input), IR and UV filters, remote control with a range of 10 metres, truview 6 pin plug, 80mA current, 350K pixels, 440 lines, 12V in and 1A out, 10 to 16 volts at 120mA with composite video output, in a 8.10cm x 2cm x 2cm compact. Includes 700mV IR illuminator & 200mA batteries.

LEN COOKE ENTERPRISES

UNIT 5, SOUTHAL ENTERPRISE CENTRE, BRIDGE ROAD, SOUTHALL, MIDDLESEX UB2 4AE, ENGLAND

TEL: 0181 813 9946 FAX: 0181 574 2339

HP 3400A rms Voltmeter

£150

Tek 5211 PALNTSC Vector Scope

£375

Tek 7A26A/7A18 x2/7B53A

£650

Tek 7A26/7V53A plug-in

£125

Hameg 206-2 Digital Storage

£450

HP 1740A 100MHz Scope

£375

Tek 465B 100MHz Scope

£385

Tek 475 200MHz Scope

£450

Tek 2215 60MHz Scope

£450

Fluke 520A AC Calibrator

£850

Fluke 520A Power Amplifier

£POA

Tek 7L16 Spectrum Analyser

£2,850

HP 3580A Spectrum Analyser

£1,200

HP 3810C Selective Voltmeter

£1,250

Racal 5502 Wideband Level Meter

£850

HP 8082A Pulse Generator

£535

HP 8011A Pulse Generator

£450

Top Quality Digital Multimeters

£25 to £125

Frequency Counters 520Mhz

£35, £75, £100

Gould J38 Oscillator

£150

Wavetek 182A 4MHz Function Generator

£00

We buy all types of Electronic Instruments, in any condition. Factory visits no problem.

We are geared for Mail Orders, Import/Export Transactions.

Phone or Fax your Inquiry Today.

EQUINOX TECHNOLOGIES

29 Greenmount Lane, Bolton BL1 5JB, Lancashire, ENGLAND

TEL: (01204) 590210 FAX: 550959

Software support and 4 digital inputs kit £93.57 + VAT = £109.95 or £27.00

JPG Electronics, 276-278 Chatsworth Road, Chesterfield S40 2BH

Access/Visa Orders (01246) 211202 Fax: 550959

callers welcome 9.30am to 5.30pm Monday to Saturday

Circle No. 132 on reply card

Circle No. 134 on reply card

ELECTRONICS WORLD+WIRELESS WORLD

April 1996
ACTIVE

A-to-D and D-to-A converters
Delta-sigma d-to-as.

Linear integrated circuits
Video amplifier, EL4093 from

Memory chips
32bit flash proms. EDI high-speed, high-density flash SIMM and PLCC

Transformers
Clairtron transformers in both chassis and pcb

Memory chips
32bit flash proms. EDI high-speed, high-density flash SIMM and PLCC

Passive
Capacitors

Power electrolytics. A useful life of

Connectors and cabling
Stackable board connector. To

NEW PRODUCTS

Please quote “Electronics World” when seeking further information

April 1996 ELECTRONICS WORLD
NEW PRODUCTS CLASSIFIED

Please quote "Electronics World" when seeking further information.

Cable-to-cable connector. Framatome introduces the Trim Trio 2U5C Okimate, which connects two free cables of widely varying diameters, strain relief being incorporated. Moulded hoods are provided and there is provision for polarising the sockets with extra pins. Framatome Connectors UK Ltd. Tel., 01582 475777; fax, 01582 476203.

Displays
CRT shielding. Magnetic shielding material for colour monitors is produced by Ad-Vance Magnetics to address the requirement for alternating and static field shielding in heavy industry and laboratories where higher than usual fields are experienced, of the order of 10-50 G. It is available in 0.64mm sheet and is usually used in two or three layers to reduce a static field of 45 G, for example, to 0.16 G near the centre of the enclosure. Ginebury (UK) Ltd. Tel., 01634 290903; fax, 01634 290904.

Filters
Emc filters. Three new ranges of equipment filters by MPE are to address the requirement for higher than usual fields in heavy industry and laboratories for alternating and static field shielding in colour monitors. Magnetic shielding filters are produced by Ad -Vance Magnetics to address the requirement for alternating and static field shielding in heavy industry and laboratories where higher than usual fields are experienced, of the order of 10-50 G. It is available in 0.64mm sheet and is usually used in two or three layers to reduce a static field of 45 G, for example, to 0.16 G near the centre of the enclosure. Ginebury (UK) Ltd. Tel., 01634 290903; fax, 01634 290904.

Hardware
Power backplanes. 13-slot C and D sized, 12-layer VXbus backplanes from Vero can handle powers of more than 3kW. The 9U size has dual 0V ground busbars and four laminated power busbars for low-impedance power distribution or seven voltage rails. The 6U size has two of each. Both conform to the latest VXbus specification. All sizes have decoupling capacitors in the termination area and additional positions for decouplers at each slot position. Vero Electronics Ltd. Tel., 01489 780078; fax, 01489 780978.

Self-assembly emc test chamber. For emc testing, Seaward's Easy-Screen is a lightweight emc test compartment in kit form for assembly. Attention is better than 50dB. Construction is of polyethylene/copper/nickel shielding fabric with steel and veneer door and particle board and steel sheet floor. A 16A mains filter and distribution system with an isolator is provided, as is powered ventilation, coaxial inputs and a 60mm waveguide. The chamber is easily dismantled for storage. Seaward Electronics Ltd. Tel., 0191-586 3511; fax, 0191-586 0227.

Outgoing interference at power inputs and cover 1-15A. General-purpose dc types are 100Vdc rated, while the ac filters and mains-input types for switched-mode supplies are rated for 250Vac at 50/60Hz. All use feedthrough capacitors and can be bulkheaded mounted to help meet the EMC Directive at high frequencies. A catalogue is available. MPE Ltd. Tel., 01371 875071; fax, 01371 875037.

Test and measurement
Clamps. Northern Design says it has the biggest selection of clamp-on current probes in the civilised world, from the Micro 2000 finger-operated miniature device for 1mA-20A measurements, to the P Series for measurements to 3000A. The range of jaw sizes covers conductors from 15mm cables to 120 by 50mm bus bars. Output can be ac or dc voltage or current to accuracies of 0.25% in the miniature versions or Class 1 for the bigger types. Northern Design (Electronics) Ltd. Tel., 01274 729533; fax, 01274 721074.

Network analyser. Rohde & Schwarz's R-A0263 spectrum analyser is intended for use in digital mobile communications. It is small and light, 150MHz. From Mituto, the OX2000 150MHz, four-channel, programmable digital storage oscilloscope, which can capture data at up to 200ps/div in single-shot mode and to 50Gsamples/sec for repetitive waveforms. Input sensitivity is 2mV-10DIV and sweep speed 2ns-50s/div. A PCMCIA slot allows long-term storage and a colour VGA output port is available, as well as interfaces for printing or connection to a PC. Mituto Instruments plc. Tel., 01384 402731; fax, 01384 402732.

Audio monitor. Audiox's ARM audio monitor is now in a new version with 24 stereo inputs instead of twelve, it is meant for on-air broadcast use. There are separate buffered and control outputs for an internal mono cue speaker, an external stereo loudspeaker and stereo headphones connected to the panel's jack. There is an external communications input to inject feeds to the cue speaker. Audiox Broadcast Ltd. Tel., 01799 542220; fax, 01799 541248.

Spectrum analyser. Advantest's R3263 spectrum analyser is intended for use in digital mobile communications. It is small and light, 150MHz. From Mituto, the OX2000 150MHz, four-channel, programmable digital storage oscilloscope, which can capture data at up to 200ps/div in single-shot mode and to 50Gsamples/sec for repetitive waveforms. Input sensitivity is 2mV-10DIV and sweep speed 2ns-50s/div. A PCMCIA slot allows long-term storage and a colour VGA output port is available, as well as interfaces for printing or connection to a PC. Mituto Instruments plc. Tel., 01384 402731; fax, 01384 402732.

Clamps. Northern Design says it has the biggest selection of clamp-on current probes in the civilised world, from the Micro 2000 finger-operated miniature device for 1mA-20A measurements, to the P Series for measurements to 3000A. The range of jaw sizes covers conductors from 15mm cables to 120 by 50mm bus bars. Output can be ac or dc voltage or current to accuracies of 0.25% in the miniature versions or Class 1 for the bigger types. Northern Design (Electronics) Ltd. Tel., 01274 729533; fax, 01274 721074.

Network analyser. Rohde & Schwarz's R-A0263 spectrum analyser is intended for use in digital mobile communications. It is small and light, 150MHz. From Mituto, the OX2000 150MHz, four-channel, programmable digital storage oscilloscope, which can capture data at up to 200ps/div in single-shot mode and to 50Gsamples/sec for repetitive waveforms. Input sensitivity is 2mV-10DIV and sweep speed 2ns-50s/div. A PCMCIA slot allows long-term storage and a colour VGA output port is available, as well as interfaces for printing or connection to a PC. Mituto Instruments plc. Tel., 01384 402731; fax, 01384 402732.

Audio monitor. Audiox's ARM audio monitor is now in a new version with 24 stereo inputs instead of twelve, it is meant for on-air broadcast use. There are separate buffered and control outputs for an internal mono cue speaker, an external stereo loudspeaker and stereo headphones connected to the panel's jack. There is an external communications input to inject feeds to the cue speaker. Audiox Broadcast Ltd. Tel., 01799 542220; fax, 01799 541248.

Spectrum analyser. Advantest's R3263 spectrum analyser is intended for use in digital mobile communications. It is small and light,
but provides comprehensive facilities in the 5kHz-3GHz range, with selectable bandwidth from 300Hz to 5MHz. The screen is a 6.5in colour ft type displaying a 1000B range of levels at a horizontal resolution of 1000 points. There is gated and delayed sweep and a timing function to 20µs for burst measurement and one keystone starts fully automatic test sequences. Two PCMCIA slots allow storage, set-ups and test programs. Rohde & Schwarz UK Ltd. Tel., 01252 811377; fax, 01252 811447.

Literature
Display panels. Thin-film transistor, active-matrix LCD panels by NEC are the subject of a new brochure, which shows types from a 6.5in unit for instruments to the new 1280 by 1024-pixel, 13in panel for monitors. The brochure contains a section to explain the operation of ft active-matrix displays. NEC Electronics (UK) Ltd. Tel., 01908 691133; fax, 01908 670290.

Valves. A note from Billington Export offers its 1996 catalogue, which contains cross-referencing data, and points out that the company has the SV871 power triode from Svetlana and the improved Chinese 300B with graphite anode. There is also a separate CRT catalogue and both are free. Billington Export Ltd. Tel., 01403 784891; fax, 01403 785919.

Alarms. Roxburgh's complete range of audible alarms and indicators is described in the 1996 catalogue, now available. Components included are magnetic buzzers and transducers, piezoceramic transducers, pcb and panel alarms, among which is the Sonitron range. There is also a catalogue on the range of Raff electrowhenchmechanical components - switches, lamps and keyswitches. Roxburgh Electronics Ltd. Tel., 01724 281770, fax, 01724 281650.

Floppy catalogues. Minicat Ltd has a compression technique that will put 200 colour images and 1000 pages of text on a 3.5in floppy disk - about 450 times as much as usual. The company also offers an interactive slideshow facility with fade transitions for conferences, running under Windows. Minicat Ltd. Tel./fax, 01923 823633.

Hitachi on CD-ROM. A new CD-ROM data book from Hitachi covers the H8 series of microcontrollers and its SuperH family of 32-bit risc devices, the disc being effectively equivalent to 19,000 pages of data. Macintosh and Windows users can read the disk. Hitachi Europe Ltd. Tel., 01628 585163; fax, 01628 585160.

Materials
Liquid resist. Elecannon announces Photak, which is a liquid photoimageable etch and plate resist for high-resolution pcb's; it can be applied to give 1µm resolution. Using standard 5kW equipment, exposure time is 15-20 seconds and with 7kW, 10 seconds. The material increases developer and stripper bath life by 100%. Application is by screen printing, curtain coating, electrostatic spray or roller and the formula is suitable for use with acid and alkaline etchants, as well as with acid gold-plating solution. Electra Polymers and Chemicals Ltd. Tel., 01732 811118; fax, 01732 811119.

Printers and controllers
Thermal printer. Able Systems has the Ap1000, a panel thermal printer in a clear plastic case so that the amount of paper left is visible. It comes in 24 or 42 column form and gives a speed of 9 characters/s, bidirectionally. A full IBM character set is provided. Able Systems Ltd. Tel., 01606 48621; fax, 01606 44903.

Board inspection. Alpha Hi-Check 5002 is an accurate, non-contact method of inspection and measurement for printed boards, the workpiece being shown on a high-resolution monitor and printed-out on a copy. The instrument gives readings down to ±2µm and visual inspection of pads at a magnification of 14 to 270, a 45° attachment allowing all-round vision. Focus is automatic and the measurement readout is shown on screen. Data may be transferred to a pc running Excel. Alpha Metals. Tel., 0181-665 6666; fax, 0181-665 4734.

Power supplies
Switcher controller. Linear's LTC430 switching regulator controller converts 5V to 3.3V, 2.5V or other processor core voltages at up to 15A and is for use in equipment based on Pentium and P6 processors. Efficiency is near 95% at high currents and good transient response reduces the size of filter capacitors required. The voltage feedback technique used eliminates the current sensing resistor commonly used. A soft start feature is incorporated. Micro Call Ltd. Tel., 01844 261939; fax, 01844 261678.

SOT-23 voltage reference. MAX6120 from Maxim is said to be the first micropower, 1.2V three-terminal reference in this package. It is meant for 3V equipment where battery saving is essential and is a low-power alternative to two-terminal shunt devices, since its supply current of 70µA maximum is independent of input voltage. Maxim Integrated Products UK Ltd. Tel., 01734 303388; fax, 01734 305511.

10W, open-frame supplies. Toko's SW10 series of 10W ac/dc open-frame supplies stand only 10mm off the board and take up 65 by 40mm of board space. Input is universal - 85-245V ac - and the units give a single output of 5V, 12V, 15V or 24Vdc, led status indication and a fine output adjustment being standard. Closed-frame types are available. Melcher Ltd. Tel., 01425 474762; fax, 01425 474768. Rapid-response FORS. If uninterrupted power supplies require to be interrupted, Fisks Power Systems will instantly leap to attention and send in the cavalry. FORS

Navigation systems
PCMCIA GPS. Using only 569000 bits of data, the LP PCMCIA Global Positioning System receiver is a five-channel unit tracking up to nine satellites to give position, direction and speed, mainly for land vehicles and marine use. It is complete with an integrated antenna, removable to allow the use of an optional remote antenna. Software includes CityTracker for urban navigation. If a differential receiver is available, the unit accepts the position resolution to 10m from 100m. Telecom Design Communications Ltd. Tel., 01256 332860; fax, 01256 332810.

2.5W SOT-23 rectifiers. Microsemi's Powerline family of small semiconductor devices now includes a 2.5W, fast 1A schottky rectifier, due in part to the design of the surface-mounted package. Its metal base wraps round each side of the device to increase the heat flow to the board. Its success is demonstrated by its ability to cope with an 8.3ms surge of 70A. Solid State Supplies Ltd. Tel., 01892 836836; fax, 01892 837837.

Switches and relays
Photovoltaic relay. IR has increased its family of photovoltaic relays for Type II PCMCIA fax/modem cards with the PV0402P, which is only 2mm high and consists of a double-pole, normally open, solid-state device incorporating both relay and ring.
Pot. switches. Ecco switches by Omeg come in rotary and push-push varieties and are meant to mount directly onto the company's 10mm ECO potentiometers. The rotary switches are produced in ratings of 1A and 4A at 250V, in single and two pole types and with or without pull or push buttons or stops. Push-push models are 10A, 400V and are also available as modules for other manufacturers. Power rating of both types is 0.25W in linear ranges of ±1kV to ±2kV and ±1.2W for non-linear types from ±4.7kV to ±47kV. Omeg Ltd. Tel., 01342 410420; fax, 01342 316253.

Attenuation relays. Teledyne's RF300 relays are small (7mm high), are emi-shielded and handle high frequencies and are therefore suitable for use in uhf antennae. RF signal linearity is ±0.1% from 2 to 3GHz. Teledyne Electronic Technologies. Tel., 0181-571 9596; fax, 0181-571 9637.

Keyboard switches. Providing a snap action and a satisfying feel, NSF Keylite keyboard switches come in various colours and designs and possess momentary or latching action. They accept one or two leds and are fitted with legs to solder to the motherboard and goldsilver plated contacts. Designs in the range include half key, stepped, paddle, sloping and illuminated types. Lucas Control Systems Products. Tel., 01535 661144; fax, 01535 661174.

Transducers and sensors

Syledot sensors. Omron has added to its range of optoelectronic switches a number increased with spot widths of 8mm. EEE-X1070/070/04070 are configured as photo transistor, photo-(light off) and photo-(light on) respectively, all with resolution of 0.5mm. The photo-sensor view has an enhanced Schmitt characteristic giving high output for direct drive of other circuits; frequency response allows 3000 operations per second. Omron Electronics Ltd. Tel., 0181-450 4646; fax, 0181-450 8087.

Displacement transducers. Monitor's new linear differential displacement transducers are for use in applications where they must withstand pressures up to 6000lb/in², or 400bar. M79P units can be used inside hydraulic and pneumatic systems to act as feedback devices for actuator control. They are in stainless steel and come in measuring ranges of ±25mm to ±50mm, giving computer to go in a pc's 8-bit card slot, hosting any parallel sockets/fan. A demonstration board has a speaker and a socket for DAs. Telecom Design Communications Ltd. Tel., 01256 332800; fax, 01256 332810.

Data logging

Portable Data loggers. A new, portable data logger, the SA32 from Martron, has on-board data-processing functions, takes 33-60 voltage, current, resistance and temperature measurements per second, gives an output proportional to the magnetic field, the Zetex ZMY20M now tolerates disturbances in parallel fields up to 30kA/m. It takes the form of thin-film magnetoresistive permalloy in a Wheatstone bridge arrangement to give an output proportional to the field. An internal magnet in the E-line or SO2232s package counters unwanted external disturbances to allow measurement down to 0.1mA. Bridge resistance is 1.7kΩ and output is 12.2mV at 0 to 11Hz. Zetex plc. Tel., 0161-627 5105; fax, 0161-627 5467.

Rotary sensor. Control Transducers's WPM absolute rotary position sensor is completely self-contained and uses the Wheatstone conduction for long life with excellent linearity (±0.05%) and resolution. It is contained in a 22- pin anodised aluminium housing for servo mounting. Control Transducers. Tel., 01234 217704; fax, 01234 217903.

Data communications

V.34 modem. Rockwell's RV29864-TP/SP modem chip is a complete V.34 design offering 115.2kbit data and Group 3 fax, voice and speakerphone facilities; it needs no external controller. Adpcm coding and decoding allows digital storage using 2-bit or 4-bit compression and 720kbits of decompression, while the voice mode supports business audio and Rockwell's integrated communications systems programmer for digital phone answering, voice annotation and audio file play and record. Telecom Design Communications Ltd. Tel., 01256 332800; fax, 01256 332810.

Little transceiver. STD-300 from Circuit Design is a 50 by 28mm narrow-band radio data transceiver intended to add telemetry to portable data terminals such as data loggers and card readers. Its high selectivity programmable pll-synthesised system is contained and uses the MystR position sensor is completely self-contained and uses the Wheatstone conduction for long life with excellent linearity (±0.05%) and resolution. It is contained in a 22- pin anodised aluminium housing for servo mounting. Control Transducers. Tel., 01234 217704; fax, 01234 217903.

Data communications

V.34 modem. Rockwell's RV29864-TP/SP modem chip is a complete V.34 design offering 115.2kbit data and Group 3 fax, voice and speakerphone facilities; it needs no external controller. Adpcm coding and decoding allows digital storage using 2-bit or 4-bit compression and 720kbits of decompression, while the voice mode supports business audio and Rockwell's integrated communications systems programmer for digital phone answering, voice annotation and audio file play and record. Telecom Design Communications Ltd. Tel., 01256 332800; fax, 01256 332810.

Little transceiver. STD-300 from Circuit Design is a 50 by 28mm narrow-band radio data transceiver intended to add telemetry to portable data terminals such as data loggers and card readers. Its high selectivity programmable pll-synthesised system is contained and uses the MystR position sensor is completely self-contained and uses the Wheatstone conduction for long life with excellent linearity (±0.05%) and resolution. It is contained in a 22- pin anodised aluminium housing for servo mounting. Control Transducers. Tel., 01234 217704; fax, 01234 217903.

Data communications

V.34 modem. Rockwell's RV29864-TP/SP modem chip is a complete V.34 design offering 115.2kbit data and Group 3 fax, voice and speakerphone facilities; it needs no external controller. Adpcm coding and decoding allows digital storage using 2-bit or 4-bit compression and 720kbits of decompression, while the voice mode supports business audio and Rockwell's integrated communications systems programmer for digital phone answering, voice annotation and audio file play and record. Telecom Design Communications Ltd. Tel., 01256 332800; fax, 01256 332810.

Little transceiver. STD-300 from Circuit Design is a 50 by 28mm narrow-band radio data transceiver intended to add telemetry to portable data terminals such as data loggers and card readers. Its high selectivity programmable pll-synthesised system is contained and uses the MystR position sensor is completely self-contained and uses the Wheatstone conduction for long life with excellent linearity (±0.05%) and resolution. It is contained in a 22- pin anodised aluminium housing for servo mounting. Control Transducers. Tel., 01234 217704; fax, 01234 217903.
PIC our TOOLS
for Value and Performance

- Programmers from only £89.00
- Simulators
- Real-time Emulators with Bond-out Chipsets for:
 - PIC 16C5X/61/620/621/622/64/65/71/73/74/84
- Large Range of Adapters and Proto-Boards
- Parallax PASM, MPASM or Byte Craft C Code

MILFORD INSTRUMENTS
UK-Ireland Distributors for Parallax Development Tools and the BASIC Stamp
Tel: 01977 683665 Fax: 01977 681465

CHELMER VALVE COMPANY
If you need Valves/Tubes or RF Power Transistors e.t.c. ...then try us!
We have vast stocks, widespread sources and 33 years specialist experience in meeting our customers requirements.

Tuned to the needs of the Professional User
Chelmer Valve Company, 130 New London Road, Chelmsford, Essex CM2 0RG, England
Tel: 044-01245-355296/265865 Fax: 044-01245-490064

KESTREL ELECTRONIC COMPONENTS LTD

- All items guaranteed to manufacturers’ spec.
- Many other items available.

‘Exclusive of V.A.T. and post and package’

<table>
<thead>
<tr>
<th>1+</th>
<th>100+</th>
<th>1+</th>
<th>100+</th>
</tr>
</thead>
<tbody>
<tr>
<td>27C64-15</td>
<td>2.60</td>
<td>1.57</td>
<td>628128LP-85</td>
</tr>
<tr>
<td>27C128-15</td>
<td>2.40</td>
<td>2.20</td>
<td>62256LP10</td>
</tr>
<tr>
<td>27C256-15</td>
<td>2.20</td>
<td>1.65</td>
<td>62H4LP-10</td>
</tr>
<tr>
<td>27C512-15</td>
<td>2.20</td>
<td>1.85</td>
<td>MM58274CN</td>
</tr>
<tr>
<td>27C1010-15</td>
<td>3.95</td>
<td>2.75</td>
<td>ULN2003A</td>
</tr>
<tr>
<td>27C2020-15</td>
<td>6.00</td>
<td>3.80</td>
<td>7805</td>
</tr>
<tr>
<td>27C4040-15</td>
<td>8.60</td>
<td>6.45</td>
<td>MAX232</td>
</tr>
<tr>
<td>80C31-12</td>
<td>2.10</td>
<td>1.95</td>
<td>7406</td>
</tr>
<tr>
<td>80C552-5-16</td>
<td>10.50</td>
<td>7.50</td>
<td>7407</td>
</tr>
<tr>
<td>Z80A CPU</td>
<td>1.60</td>
<td>1.00</td>
<td>74HC244</td>
</tr>
<tr>
<td>LM317T</td>
<td>0.50</td>
<td>0.40</td>
<td>74HC245</td>
</tr>
<tr>
<td>75176BP</td>
<td>1.35</td>
<td>0.75</td>
<td>74HC373</td>
</tr>
<tr>
<td>68W PLCC skt</td>
<td>0.90</td>
<td>0.701</td>
<td>74HC374</td>
</tr>
</tbody>
</table>

Phone for full price list
All memory prices are fluctuating daily, please phone to confirm prices

178 Brighton Road, Purley, Surrey, England CR8 4HA
Tel: 0181-668 7522 Fax: 0181-668 4190

AGENTS WANTED WORLDWIDE
FOR AN EXPANDING COMPANY WHO MANUFACTURES FAN SPEED CONTROLS. WE MANUFACTURE 3A, 5A, 10A ELECTRONIC SPEED CONTROLS. Also 1A, 2A, 2.5A, 4A, 5A, 7A, 10A STEPPED 1 & 3 PHASE CONTROLS. WE ALSO MANUFACTURE THERMOSTATS, HUMIDISTATS & ENVIRONMENTAL CONTROLLERS.

FOR FURTHER INFORMATION CONTACT
AIRTEX CONTROLS
8 DUNBOYNE IND PK
DUNBOYNE
CO MEATH
REPUBLIC OF IRELAND
PHONE: +353 1 8251085 FAX: +353 1 8252008
You can simply plug the new TiePieSCOPE - HS508 into the parallel port of your portable or desktop PC. With the advanced software, you can use this two channel, 8 bits, 50 MHz measuring instrument as a fast digital storage oscilloscope, including a lot more features than a single oscilloscope! Moreover, the TiePieSCOPE - HS508 contains a multiple display voltmeter (up to 5 MHz true RMS), a spectrum analyzer with an harmonic distortion meter and a transient recorder for recording a variety of signals.

The TiePieSCOPE - HS508 is supplied complete with user manual, software, and two probes.

Call now for a free demo diskette and our catalog!!

TiePie engineering (UK)
28 Stephenson Rd, Industrial Est., ST. IVES, CAMBS PE17 4WJ
Tel.: (01480) 460028 - Fax: (01480) 460340

TiePie engineering, The Netherlands
P.O. Box 115, 8900 AC LEEUWARDEN
Battensreed 2, 9023 AR JORWERD
Tel.: (31) 515 415 416 - Fax: (31) 515 418 819
Chopping on a bridge

Darren Heywood’s chopping approach to measuring bridge design results in an unusual combination of low cost and high stability.

I was challenged by a friend to design an high-sensitivity amplifier circuit for a transducer. My choice was to connect the transducer in a Wheatstone bridge configuration. Output span from the transducer was just 0 to 5mV. This meant that the signal would have to be amplified by at least 1000 in order to bring the signal to workable levels, i.e. 0-5V.

I started the design by simply setting the resistor ratios Rf/Ri on a 741 op-amp to yield the required gain, Fig. 1. But the configuration was unstable and would not null. Furthermore, I noticed that by simply blowing a little air over the circuit, the output would suddenly drift towards either supply rail and saturate. Consulting the data sheets revealed that the drift gradient for a 741 was in the region of approximately 20µV/°C. A simple calculation exposes the problem. Assume a change of say 5°C referred to the op-amp input. This means a \(\Delta V_{\text{offset}} \) of 100µV \((5 \times 20)\) or 0.1mV. Multiply this figure by 1000 and you get 0.1V at the output due solely to temperature change.

Another contributory factor to drift in the circuit is the type of resistors used. Carbon types for instance have a drift of approximately 300ppm while metal film types exhibit approximately 50ppm. Moreover, when soldering the resistors onto a circuit board, a thermocouple is created due to Seebeck effect and noise levels inherent in the circuit change with temperature.

The obvious solution to the temperature drift problem would seem to be to obtain an op-amp with a very low drift figure. The OP27 has a drift rate of just 1 to 2µV/°C, depending on the part-number suffix.

Inserting the new op-amp into Fig. 1 reduced the drift problem, but the output still varied to unacceptable levels. I began to realise that a totally different circuit concept was required – namely a chopper amplifier*.

Designing a circuit exhibiting near-zero drift is one challenge, but is it possible to incorporate chopper technology into a 4-to-20mA system? Signal transmission relying on current change is superior to an equivalent based on voltage because current operation minimises line loss. Current loops are widely used in both instrumentation and digital transmission systems, Fig. 2.

Implementing the chopping bridge

You should first decide on an overall feedback system. I chose voltage-to-current feedback, Fig. 3. Assuming \(V_i \) drops slightly due to the resistance-temperature transducer increasing, the op-amp responds by increasing its output.

*At £1.33 in 100 offs, the MAX427 op-amp has a drift of 0.8µV/°C. In similar quantities, the ICL7650 chopper amplifier is £2.30 while the MAX420 chopper is £3 – Ed.
In turn, voltage across R_f starts to increase and V_{os} decreases until V_{is} equals V_{os} and equilibrium is reached.

For the op-amp, it is desirable to have high gain and lowest possible drift. This ensures temperature stability and improves resolution. Selecting a high gain 'off-the-shelf' op-amp achieves good resolution, but not temperature stability.

This dilemma forces the use of chopper amplifiers, which normally means added complexity, extra components and increased costs.

Supplying the bridge

To provide a reference, a temperature compensated voltage source is needed with low output impedance and low current consumption. The LM723 voltage stabiliser, IC$_1$ of Fig. 4, is very cheap, widely available, and contains a 7.2V temperature compensated voltage reference capable of sourcing up to 20mA. In addition, it has a high gain op-amp, a pass transistor capable of sinking 150mA, a current limit transistor and a zener diode – all for approximately 40p.

A 24V supply is needed while the 723 voltage reference is about 7.2V. If the 7.2V reference is used as the op-amp pseudo ground, then IC$_2$ can swing approximately ±7V. This leaves approximately 10V for external line and measurement resistance. Hence approximately 15V divided into 20mA equals 750Ω and 1200Ω minus 750Ω leaves 450Ω for external resistances.

The feedback system around IC$_2$ is a hybrid type. You may think that the gain is set with this feedback system,

$$A_{(CL)} = \frac{R_8}{R_1} \times \left(1 + \frac{R_5}{R_6} \right)$$

But at the gain demanded from IC$_2$ the above equation fails. This problem occurs because,

$$A_{(CL)} = \frac{A_{(OL)}}{1 + B A_{(OL)}}$$

ie $A_{(CL)}$ is approximately $A_{(OL)}$.

If you check out the gain/frequency response curves as given by the manufacturers, they reveal that in open loop mode, the LM308 outputs 110dB gain at approximately 10Hz and rolls off at the first order rate of

Fig. 4. Full circuit of the chopping bridge amplifier with 4-20mA current-loop output.
18dB/decade thereafter. Why control gain with just resistors? You can control it with frequency as well. The above then demonstrates that the chopping frequency is most important.

Oscillator design choice

This application needs an oscillator with a low current consumption and that remains at a stable frequency even if the 24V supply is varied from 24V down to say 15V. It must also swing from the supply to ground to ensure IC2's common mode input range is maximised. It must also have a 180° complement output.

The simplest choice is to use another 308 since it consumes only 300µA. Notice that IC3 is powered by VREF. This clamps IC3 to maintain fixed stable frequency. Output of IC3 is then fed into TR2 and TR3, the latter being driven by TR1. Both drains are connected to the positive supply rail.

At 24V, the two zener diodes limit the common mode range to about 16V to reduce stress on the mosfet gates. Note that bipolar transistors connected in astable mode with 390kΩ load resistors as TR3 and TR2, take too long to switch off.

One improvement that may possibly be made here is to connect TR3 and TR2 in bistable mode, using IC3 as the driver. In this way, TR3 and TR2 outputs would have ideal overlapping switching times.

Modulation and demodulation

First, the modulation system used is synchronous. This simplifies the circuitry and maintains excellent restoration of the amplified signal.

Assume TR1 and TR4 are both off, TR5 is on, and there is slightly less potential at the inverting input than the non-inverting input if IC2. This means that IC2 will have a slightly greater charge stored than IC1.

Now, TR1 and TR4 are both on, TR5 is off, C1 and C2 are both rapidly shunted together and because C1 has slightly less charge than C2. A small difference charge is forced into IC2 inverting terminal. This causes IC2's output to swing negative and equalises at some point via the feedback resistors. At the same time TR4 shunts C1 to ground which negatively charges C2 from VREF point of view.

At this point, TR1 and TR4 are both off, TR5 is on and C1 now has a negative difference.

Component Values

- All resistors 1% unless otherwise stated
- All resistors 0.25 Watt unless otherwise stated
- IC1 type KA723 - Samsung - Iss = 1.8 mA

Diagrams

[Diagram of circuitry]
charge and as such, current is pulled from IC2
inverting terminal. This causes IC2's output to
swing positive until equilibrium is again
reached via feedback.

Both positive and negative output pulses are
equal in magnitude but opposite in polarity.
During the positive pulse, \(I_{R} \) is about 5Ω
and thus the positive pulses from IC2 are sampled
and stored in C5.

Due to the previous negative cycle, C5 was
charged from ground and thus positive only
amplified pulses which are referenced to
ground are passed onto or into \(R_{D} \) or \(C_{C} \).
By charging \(C_{T} \) from ground, level shift from
VREF to ground is accomplished. Remember
that IC2 output swings around its pseudo
ground VREF.

Notice that \(C_{1} \), \(C_{2} \) and \(C_{3} \) isolate IC2's qui-
excent point so IC2 is allowed to drift. Also,
increasing the dc signal on the inverting ter-

In my bridge configuration, an increase in
rtd resistance causes \(V_{o} \) to fall. Due to feed-
back, the amplifier increases current output
across \(R_{2} \) and \(R_{2} \) until the selected feedback
resistances \(R_{2} \) equalize the change. Thus
\(V_{o} \) is always approximately equal \(V_{o} \) and is
true for any feedback system.

The higher the open-loop gain the less the
error between \(V_{o} \) and \(V_{o} \). Again assume that
the rtd is 100Ω, \(V_{o} \) equals \(V_{o} \) and the system
draws 4mA. Now, the rtd begins to increase in
value so voltage \(V_{o} \) starts to fall. Voltage \(V_{o} \)
follows \(V_{o} \) because the system is closed loop,
Fig. 5.

If the rtd carries on increasing then at some
distance the system will reach 20mA. In theory,
any zero/span ratio can be achieved. Here are
the equations governing the system calibration
under static conditions are,

\[
\Delta V_{o} = \frac{1.632 R_{e}}{R_{e} + R_{e}} \quad \Delta V_{o} = \frac{V_{REF}}{V_{REF} - \Delta V_{o}} \quad \Delta V_{o} = 1.632(V_{REF} - V_{o}) \quad \Delta V_{o} = 0.408 R_{e}.
\]

Note that system span is controlled by \(R_{2} \),
plus \(R_{2} \), \(R_{2} \) and \(R_{2} \) are span alignment resis-
tors and \(R_{2} \) is zero in this configuration. For
any given calibration, \(\Delta V_{o} \) must equal \(\Delta V_{o} \)
and \(V_{o} \) must equal \(V_{o} \). Also, \(\Delta V_{o} \) must
not exceed approximately 9mV. This is due to
the maximum current that can be drawn by
the bridge.

For any given zero/span range, \(\Delta V_{o} \) should
always be as large as possible — why attenuate
then amplify? Reducing resistor \(R_{2} \) narrows
the span, however the equations supplied have
to be amended slightly. I have provided two
calibration scenarios. Bridge Fig. 6a) is
0°C=4mA to 55°C=20mA, while the bridge
illustrated in Fig. 6b) is 0°C=4mA to
11°C=20mA.

Dynamic loop performance
Unfortunately, I did not have the equipment
needed to maximise speed via damping.
However, you must remember that we are try-
ing to amplify thermocouples and rtds which
have an inherently slow response speed of
approximately 10 to 15 seconds. So if the sys-
tem is slightly overdamped, performance is
not downgraded.

The system loop's dynamics and bandwidth
are set via \(R_{2} \) and \(C_{2} \). I chose these values to
coincide with a –3dB of 7Hz. This is ten times
less than the switching frequency. This is well
within the criteria of the sampling theorem.

At very narrow spans IC2 has to produce
higher gains and as such becomes too slow to
respond to the induced error caused by
K723 pin 5. Thus no overshoot occurs at nar-
row span demands. Switching frequency was
selected upon the above criteria.

The loop is guaranteed to be conditionally
stable. The only unstable condition that can
occur is if the input signal approaches 70Hz
and is in phase with the switching (chopping)
frequency. This is highly unlikely to happen.

Capacitor \(C_{4} \) was inserted between the
inputs of IC2 to limit overshoot, slowing IC2
down slightly during wide span conditions.

Diode D1 protects against reverse polarity
supply connection.

Summary
Components for the bridge amplifier are well
under £5 yet open-loop gain is in excess of
48,000 and temperature stability is excellent.
Noise is also low since the circuit is narrow-
band.

I have shown here what can be achieved
with an alternative bridge topology and that
high performance need not mean expensive
components.
Reference books to buy

For Audio Engineers

Audio Engineer's Reference Book

Subjects include
- Recording, microphones and loudspeakers
- Digital audio techniques
- Basic audio principles
- Acoustics and psychoacoustics
- Audio and television studios and their facilities
- Radio and telephony

- Comprehensive - over 600 pages
- Written by leading authorities from the audio world
- Easy to read, compiled for maximum accessibility
- Concise and authoritative
- Covers topics from noise measurement to studio installation

Invaluable reference work for anyone involved with audio - from broadcast consultant to serious enthusiast. Audio Engineer’s Reference Book is written by an international team of experts and edited by Michael Talbot-Smith - previously a trainer of audio engineers at BBC Wood Norton and now a freelance audio consultant and technical writer.

Please supply me copies of the Audio Engineer’s Reference Book,
(ISBN 0 7506 0386 0)
Fully-inclusive price - UK £77.50, Europe £83, Worldwide £93. Please add vat at local rate where applicable.

Please supply me copies of the TV & Video Engineer’s Reference Book,
(ISBN 0 7506 1953 8)
Fully-inclusive price - UK £42.50, Europe £48.00, Worldwide £58.00. Please add vat at local rate where applicable.

Remittance enclosed £

Cheques should be made payable to Reed Business Publishing Group Ltd
Please return to: Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS
Please debit my credit card as follows:
Access/Master Barclay/Visa Amex Diners

Credit Card No.
Exp date
NAME (Please print)
ADDRESS
POST CODE
DATE
SIGNATURE

VAT RATES
6% Belgium, 25% Denmark, 5.5% France, 7% Germany, 4% Greece, 4% Italy, 3% Luxembourg, 6% Netherlands, 5% Portugal, 3% Spain.
FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)

VAT NO.

If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change. Please delete as appropriate. I do/do not wish to receive further details about books, journals and information services.

Credit card orders accepted by 'phone. Call 0181 652 3614
If you have followed our series on the use of the C programming language, then you will recognise its value to the practising engineer.

The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, fourier and many other applications, with not a soldering iron in sight.

To complement the published series, Howard Hutchings has written additional chapters on D-to-A and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation.

An appendix provides a 'getting started' introduction to the running of the many programs scattered throughout the book. This is a practical guide to real-time programming. The programs having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.

A disk containing all the example listings used in this book is available. Please specify size required.

Credit card orders accepted by phone. Call 0181 652 3614.
SYNTHESISED SIGNAL SOURCE
an innovative design from an established 'Off-Air' Company
- Custom designed chip set
- Sinewave output 0dBm into 50Ω
- Can be run independently or genlocked to external source
dc to 16MHz in 0.1 Hz steps, with option 0.0001 Hz steps
- Freestanding rack mounting, or OEM options available
- Increased resolution and increased stability options available

Models available October, contact us for prices

‘OFF-AIR’ FREQUENCY STANDARD

- Phase locked 10MHz, 5MHz & 1MHz
- Use for calibrated equipment that relies on quartz crystals, TCXOs, VXCOs, oven crystals
- Phase locks to DROITWICH (rubidium controlled and traceable to NPL)
- Phase locks to ALLOUIS (cesium controlled and traceable to NPL)
- Use it for calibrating equipment that relies on quartz crystals,
- Provides 10MHz, 5MHz & 1MHz outputs and 13MHz output for GSM. Prices on application.

We are well known for our quality, new and used Test Equipment. Our list is extensive, ranging through most disciplines. Call for details and a complete list

HALCYON ELECTRONICS

SHOP HOURS 9-5.30 MON-SAT. TEL 0181-542 6383. FAX 0181-542 0340

423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR

4-19

- Advertised and British manufactured
- Options available include enhanced receiver, sine wave
- Increased resolution and increased stability options available
- dc to 16MHz in 0.1Hz steps, with option 0.0001 Hz steps
- Can be run independently or genlocked to external source
- Sinewave output OdBm into 50Ω2
- Custom designed chip set
- A neat unit has facilities for programming or copying in Intel, Hex Microchip or BIN formats, with user variable programming speeds for all devices.

SIGNAL SOURCE
SYNTHESISED ELECTRONICS WORLD+WIRELESS WORLD April 1996

ELECTRONICS WORLD+WIRELESS WORLD April 1996

Please add £1.75 for P&P to UK mainland.

CROWNHILL ASSOCIATES LIMITED, PO BOX 845
WATERBEACH, CAMBRIDGE, CB5 9JS

BBS: 07010 700018
TEL: 07010 700017
FAX: 01223 441645

CIRCLE NO. 139

CIRCLE NO. 140

CIRCLE NO. 141

CIRCLE NO. 142 ON REPLY CARD

CIRCLE NO. 143

CIRCLE NO. 144

CIRCLE NO. 145

ADVANCED ACTIVE AERIAL

The aerial consists of an outdoor head unit with a control and power unit and offers exceptional intermodulation performance. SOIP +90dBm, TOIP +55dBm. For the first time this permits full use of an active system around the IF and mf broadcast bands where products found are only those radiated from transmitter sites.

- General purpose professional reception 4kHz-30MHz.
- -10dB gain, field strength in volts/metre to 50 Ohms.
- Preselector and attenuators allow full dynamic range to be realised on practical receivers and spectrum analysers.
- Noise - 150dBm in 1Hz. Clipping 16 volts/metre. Also 50 volts/metre version.

- Broadcast Monitor Receiver 150kHz-30MHz
- Stabilizer and Frequency Shifters for Howl Reduction
- Stereo Variable Emphasis Limiter 3
- 10-Outlet Distribution Amplifier 4
- PPM10 In-vision PPM and chart recorder
- Twin Twin PPM Rack and Box Units
- PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN -50/+6dB drives and meter movements
- Broadcast Stereo Coders
- Stereo Disc Amplifiers
- Peak Deviation Meter.

SURREY ELECTRONICS LTD
The Forge, Lucks Green, Cranleigh, GU6 7BG.
Telephone: 01483 275997. Fax: 276477.

JOHN MORRISON
SOFTWARE and OEM HARDWARE MODULES

PIC ICE II
In Circuit Emulator for PIC16C54-55-56-57 and 84 Replaces 18 or 28 pin PIC's. All ports Bi-directional DSC2 output, RTCC input, on board A/D converter for PIC18C71. Supplied with PICDEV software suite, user manual, connecting leads and headers asrn, user sample files and hardware circuit projects.

£159.95

MEGAPROM EPROM PROGRAMMER
EPROMS, E2 PROMS and FLASH memories from 2Kb to 8Mb INC. MICROCHIP 24LC01-85 Memory Operates via host IBM PC and centronics port, uses standard printer cable, on board production quality ZIP socket.

£99.95

NEW Enhanced PIC PROGRAMMER
PIC 16C54, 16C55, 16C56, 16C57, 16C58A, 16C61, 16C64, 16C65, 16C71, 16C74, 16C84, 16C620, 16C621, 16C622 and Memory Chips 24LC01, 24LC02, 24LC16, 24LC32, 24LC64 Centronics port interface, powerful editing software allows the user to Read, Write and Copy PIC devices including data memory in PIC16C54. Supplied with Editor Assembler software suite. Sample files and notes.

£99.95

EPROM EMULATOR
For ROM from 1kb to 32kb Operates via host IBM PC and centronics port, uses standard printer cable. Very fast download to target board EPROM socket, operates with or without our development software suite.

£69.95

NEW EPROM PROGRAMMER
Programs all EPROMS. Driver software runs on an host IBM PC. MSDOS 3.1 or higher connects to the parallel port, also detects 12C bars or the Microchip 3.4. This small neat unit has facilities for programming or copying in Intel, Hex Microchip or Bin formats, with user variable programming speeds for all devices.

£49.95

DEVELOPMENT SOFTWARE
Develop software on your IBM PC for other Microprocessors, Controllers, PIC Chips etc. Each software suite has a fully integrated Text editor, Assembler, Disassembler and Simulator included. Code can be downloaded directly to our emulators. All software supplied with operator instructions and sample code. SMARTCARD DEVELOPMENT PACKAGES MADE TO ORDER

MCS8051/8052 - MCS8048/49 - PIC16C54/55/56/57 PIC16C71/84 - HD63/6809 - R6502 £19.95 ea

All prices subject to VAT at the prevailing rate (17.5%)
Surveillance Telescope: Superb Russian zoom telescopes adjustable from 16x to 50x complete with metal tripod, lens, tripod case and 3�2 lens. £39 pp3 battery, UK made. SALE PRICE £4.99 REF SA33.

Damaged electronics: Minimum 30% off electronics bay beyond repair so just £4.99 each. BT response 200 machines, REF SA39.

Computer Disc Clearout: We are left with a lot of software and computer parts, including 35 disc drives valued at £12 for sale. For £6, trade at 80p (price of choice of discs). SALE PRICE £1.

ISM PS2 MODEL 1620 CABLE AND POWER SUPPLY Kit contains 2 x power supplies, 1 x relay, 1 x dip switch, 1 x 2.54mm pitch socket.

Dell PC Power Supplies: 145 watt, 12V, 15A, 140mm long, 80mm wide, 25mm thick.

New High Power RF Transmitters Amplifiers: Assembled PCB transmitters, 4 types available, £4.99 each. Ref RF2.

Surveillance Video Camera Modules: 3.7 mm diameter, 3.5mm f2 lens, CMOS, 512x256 pixels, video output p pairs (70 ohm). Works directly into a video camera or video input on a video recorder.

Remote Control and Data TD1400 MODEM/ VIEW DATA Complete system comprising 1200/75 modem, built-in light, shrimp farm, group viewing screen, £30.00 each. Ref Rf7.

Card Readers: 16 character 4 line, 62x25mm £5.99 ref SMC1640A.

Panic camera offers take double width images, using a combination of electronic circuits and magnetic fields, works with both contact PCBs, just £3.99 each. REF BAR31.

Radio Controlled Cars from £6.00 EACH!! All returns from famous manufacturer, 3 types available, single channel (left, right, forwards, backwards) £6.00 REF LC11.

Two Way Mirror Kit: Includes special adhesive tape to make two way mirrors, 2x2" (glass not included) includes full instructions. £12.99 ref TV1.

New High Power RF Transmitters Amplifiers: Assembled PCB transmitters, 4 types available, £12.99 each. Ref Rf7.

Pastel Accounts Software, does everything for all sizes of businesses, networkable up to 10 stations, multiple cash books, etc. £69.95. Ref EF 112.

New High Power RF Transmitters Amplifiers: Complete with mains adaptor. BS approved.

Wolverybranch Now Open at Worcester St

Histology 101 kit: 100+/240/75 modem, auto switch, fully networkable up to 10 stations, multiple cash books etc. 200 page manual. £69.95 ref EF 112.

PANORAMIC CAMERA OFFER Takes double width images, using a combination of electronic circuits and magnetic fields, works with both contact PCBs, just £3.99 each. REF BAR31.

RAIL TENS UNIT Fully built and tested TENS (Transcutaneous Electrical Nerve Stimulation) Unit. Ideal for use in detective and forensic work. £49.99 each. Ref MAG5.

1 minute radio transmitter a pair of walkie talkies with range up to 2km in open country. Units measure 220x220x100mm, including earphones, 2xPP3 batteries. £30.00 per pair. Ref MAG30.

"FM Transmitter Kit" housed in a standard 13a adapting the bug runs directly off the mains so lasts forever why pay £27.00 for one? £15.00 Ref EFF 39.

"FM Bug" built and tested superior design at kit. Supplied with instructions. In battery box, £18.94. Ref MAG41.

Talking Coin Talks any text into a coin. £8.99 each. Includes complete instructions. Ref MAG24.

Russian Monoculars Amazing 20 times magnification, good light gathering properties £19.95 ref Rf7.

3"121 AMORPHOUS SOLAR PANEL 12v 15x30cm £130.00. SALE PRICE £4.99 REF SA26.

USB Cable Debugger PH25 Kit 10 metres for £6.99 for MAG301 is ideal for experimenting with 3 or more computers. £12.99 Ref EP30.

Your Licence! The new multiband 2000 radar detector can detect and reject all speed detectors that are legal in the UK and Europe. £299.00, full details in catalogue. Ref MAG14.

Rattlebacks interesting things these. Small piece of solid perspex like material that it you try to spin it on the desk it only spins for a fraction of a second then stops and goes back the other way! £1.99 Ref GI/J01.
WOLVERHAMPTON BRANCH
NOW OPEN AT WORCESTER STREET
WHITELAMON 01902 22039

INFINITY TRANSMITTERS The ultimate bug to any home, car or office system, no one, unless you are monitoring (supplied) and you can hear everything! Monitor conversations for as long as you choose £25 each, complete with leads and mic(s) controlled off remotely £75. Underwater transmitter water and shock proof. 200m, 300m, 500m, 700m, 1000m, 1500m, 2000m, 3000m range in open country. £150 ref LOT19.

VIDEO PROCESSOR UNIT5V/10A BATT/12V 8A TK too short what the bugman does with the video output, you can make good or cheap shipments! Measures 30x30x10mm, on the front are controls for scan span, scan delay, mode of connections on the rear, inside 2x3v 100mm secondary, a 9v and a 12v 10mm tridac loads on transistors (inside). Condition unknown, may have more or less than 8A output, £40 ref LOT50.

REVT NIGHT SIGNAL Recognition of a standing man at 30m in 10cm, secretive, mounted on rails, runs on 2A batteries, £25.50, 1.5m, 3W infra red signal included. £30 ref REVT.

MINI FM TRANSMITTER Kit Very high gain preamp, supplied complete with FET elitron microphone. Designed to carry 20-90 dB bass and top shelf £73. Ref. £71 ref. 101.

3-20V POWER SUPPLY Kit variable, stabilized power supply for low voltage circuitry, suitable for professional or amateur use. £125 ref. 102.

PULSED TV-JOKER PLANS Great device, hand device pulse technique that will completely disrupt TV picture and sound work, £57 ref. F/UV18.

BODYHEAT TELESCOPE Plans Highly directional long range device uses recent technology to detect the presence of living bodies. £5 ref F/UV21.

BURNG, CUT2 O LASER PLANS Projects an invisible beam of heat capable of burning and melting materials over a considerable distance, requires adult supervision £5 ref F/UE2.

LIQUID LEVEL DETECTOR PLANS Useful for tanks, baths, rail detector etc. Will switch 2A mains £24 ref. £71 Ref. 101.

SHOCKING COIL KIT Build this little battery operated device into any existing circuit, and cause it to do things which it ought not to do, £20 ref. £71 Ref. 102.

3 CHANNEL SOUND TO LIGHT KIT Wireless system, mains operated, separate, separate sensitivity adjustable for each channel, £120 ref. £71 Ref. 103.

4 WATT FM TRANSMITTER Kit Small but powerful FM transmitter, 2 RF stages, microphone and audio pre-amp included. £20 ref. £71 Ref. 103.

STROBE LIGHT Kit Adjustable from 1-60Hz (a lot faster than any other commercially available kit), £20 ref. £71 Ref. 104.

ROBOT VOICE KIT Interesting circuit that dictates your voice instructive! £25 ref. £71 Ref. 105.

TRANSMITTER KIT Supplyd with piezo electric 8.5v dc. At 25-50 you will get nearly 2 Watts £12 ref. £71 Ref. 106.

FACIAL SCANNER KIT Well not quite, you have to turn the knob and move the head on your own! £20 ref. £71 Ref. 107.

MECHANICAL BURGlar Alarm System Compact with keyset, will switch 2A mains. £25 ref. £71 Ref. 108.

POWER HANDHELD TAPE RECORDER £50 ref. £71 Ref. 109.

SHOCKING COIL KIT Build this little battery operated device into any existing circuit, and cause it to do things which it ought not to do, £20 ref. £71 Ref. 110.

ELECTROACUTTUNEKIT Builds an electro-acoustc system for experiment with. £7 ref. £71 Ref. 111.

HY1230S, 12VDC adjustable from 0-30secs. £4.99

HY1260M, 12vDC adjustable from 0-60 mins. £4.99

STROBE LIGHT KIT Adjustable from 1-60h (a lot faster than any other commercially available kit), £20 ref. £71 Ref. 104.

HIGH POWER CAUGHT Small gadget for safety, tempered steel blade, and insulated for use in law enforcement, £20 ref. £71 Ref. 105.

MULTI LOCK KIT 9 key, programmable, complete with lock and case £60 ref. £71 Ref. 106.

STROBE LIGHT KIT Adjustable from 1-60 Hz (a lot faster than any other commercially available kit), £20 ref. £71 Ref. 104.

COMBINATION LOCK KIT 9 key, programmable, complete with lock and case £60 ref. £71 Ref. 106.

3 CHANNEL SOUND TO LIGHT KIT Wireless system, mains operated, separate, separate sensitivity adjustable for each channel, £120 ref. £71 Ref. 103.

TELEPHONE BUG KIT Small bug powered by the phone line, undetectable, listen to the conversations in the room from anywhere in the world! 24 hours a day 7 days a week! just call any phone or line. £40 ref. £71 Ref. 107.

3 CHANNEL SOUND TO LIGHT KIT Wireless system, mains operated, separate, separate sensitivity adjustable for each channel, £120 ref. £71 Ref. 103.

qualities similar to lasers. £125 ref. £71 Ref. 103.

COPPER VAPOUR LASER PLANS Produces 100mw of visible green light. High coherence, and high quality. £30 ref. £71 Ref. 104.

CO2 LASER PLANS Projects an invisible beam of heat capable of burning and melting materials over a considerable distance, requires adult supervision £5 ref F/UE2.

NUCLEAR LASER PLANS Projects an invisible beam of heat capable of burning and melting materials over a considerable distance, requires adult supervision £5 ref F/UE2.

NUCLEAR LASER PLANS Projects an invisible beam of heat capable of burning and melting materials over a considerable distance, requires adult supervision £5 ref F/UE2.
WE WANT TO BUY!!
IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE.

WE PAY TOP PRICES AND COLLECT.
R. HENSON LTD.
21 Lodge Lane, N Finchley, London N12 8JG.
5 Mins, from Tally Ho Corner.
TELEPHONE 0181-445-2713/0749
FAX 0181-445-5702

TOP PRICES PAID
For all your valves, tubes, semi conductors and IC's.
Langrex Supplies Limited
1 Mayo Road, Croydon
Surrey CR0 20P
TEL: 0181-684 1166
FAX: 0181-684 3056

WANTED
Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash.
M & B RADIO
86 Bishopsgate Street
Leeds LS1 4BB
Tel: 0113 2435649
Fax: 0113 2426881

ELECTRONICS VALVES & SEMICONDUCTORS
Phone for a most courteous quotation
We are one of the largest stockists of valves etc. in the U.K.

WANTED
TOP PRICES PAID
For all your Test Equipment, Receivers, Transmitters etc.
Factory Clearance, Prompt Service and Payment.
HTB ELEKTRONIK
Alte Apeler Weg 5
27619 Schiffdorf, Germany
Tel: 0049 4706 7044
Fax: 0049 4706 7049

WANTED
Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity.

TOP PRICES PAID
For all your valves, tubes, semi conductors and IC's.

ARTICLES FOR SALE

THIS MONTH'S SALE INCLUDES:-
Spectrum Analysers, Oscilloscopes, Signal Generators, Voltmeters, Power Units, Frequency Counters, Receivers, Transmitters, Ex PMR Equip, Photographic & Video Equipment, Components, & Misc Items etc.
ALL EQUIPMENT IS SOLD AS SEEN.
ALL PRICES EXCLUDE V.A.T.
NO MINIMUM ORDER.
RING TODAY FOR THIS MONTH'S CATALOGUE

WANTED
SURPLUS ELECTRONIC COMPONENTS AND EQUIPMENT
We also welcome the opportunity to quote for complete factory clearance.

B. BAMBER ELECTRONICS
5 Station Road, Littleport, Cambs.
Phone: Ely (01353) 860185
Fax: Ely (01353) 863245
SUPPLIER OF QUALITY USED TEST INSTRUMENTS

CONTACT

Cooke International
ELECTRONIC TEST & MEASURING INSTRUMENTS
Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB
Tel: (+44)01243 545111/2 Fax: (+44)01243 542457

CIRCLE NO. 146 ON REPLY CARD

Field Electric Ltd
Unit 2, Willows Link, Stevenage, SG2 6AB
Tel: 01438 353791 Fax: 01438 359397
0836 640328 AUDIO, COMPUTER, COMMUNICATIONS, TEST & PROFESSIONAL VIDEO HARDWARE PURCHASED, SOLD STOCK LIST AVAILABLE. PLEASE RING QTY - DISCOUNT & OVERSEAS ENQUIRIES WELCOME.

ZED was a superb editor for Gemini CP/M systems. Who wrote it? Please phone Rodney Harris 01-734 876641. 83 ELECTRONICS WORLD back issues May 87 through Jan 95. London NW. Lot for 100. Buyer collects. 0181 909 2423.

WANTED: Tektronix 7603/13/23 main-frame with plug-ins (non)working, manuals. Send your offer to M.S. Nielsen, Højker 35 6 TV 2805 Brandby, Denmark, or call/fax +45 36 41 58.

CONTACT

Cooke International
ELECTRONIC TEST & MEASURING INSTRUMENTS
Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB
Tel: (+44)01243 545111/2 Fax: (+44)01243 542457

CIRCLE NO. 147 ON REPLY CARD

INDEX TO ADVERTISERS

<table>
<thead>
<tr>
<th>PAGE</th>
<th>PAGE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airtex Controls</td>
<td>339</td>
<td>John Radio</td>
</tr>
<tr>
<td>B & K Electronics</td>
<td>312</td>
<td>JGP</td>
</tr>
<tr>
<td>Bull Electrical</td>
<td>348, 349</td>
<td>Keytronics</td>
</tr>
<tr>
<td>Chelmers</td>
<td>339</td>
<td>Labcentre</td>
</tr>
<tr>
<td>Crownhill Associates</td>
<td>347</td>
<td>LCE</td>
</tr>
<tr>
<td>CPC</td>
<td>295</td>
<td>LCE</td>
</tr>
<tr>
<td>Crossware Products</td>
<td>312</td>
<td>M & B Radio (Leeds)</td>
</tr>
<tr>
<td>Dataman</td>
<td>8BC</td>
<td>Milford Instruments</td>
</tr>
<tr>
<td>Electromall</td>
<td>289</td>
<td>Noral</td>
</tr>
<tr>
<td>Equinox Technologies</td>
<td>334</td>
<td>Oesma</td>
</tr>
<tr>
<td>Halcrow Electronics</td>
<td>147</td>
<td>Pico Techniques</td>
</tr>
<tr>
<td>Hart</td>
<td>271</td>
<td>Quickroute Systems</td>
</tr>
<tr>
<td>Iosis</td>
<td>266</td>
<td>Radio Tech</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rafe Electronics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Robinson Marshall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sagramm & Company</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surrey Electronics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technology Sources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Teleford</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Telnet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Those Engineers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tie Pie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Triton</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ultimate Technology</td>
</tr>
</tbody>
</table>

PAIR OF LOWTHER PM6 units, boxed, suitable for horn design in December issue. £150. Tel. 01295 810859.

LARGE selection of aircraft starter motors, DC generators and rotary converters. Possibly suit electric vehicles, etc, £5 to £50 depending on condition and type. Tel. Bristol 0117 979883.

INDEX TO ADVERTISERS
Roke Manor Research is a Siemens company at the forefront of electronics R&D applied to communications, sensors and software. We offer our services to Siemens, Government and third party customers.

Roke Manor Research plays a crucial role in supplying solutions to the current personal communications revolution. As the Siemens centre of excellence for radio system design, Roke Manor Research is looking for team-players to take up the challenge of developing digital cellular terminals, digital cordless terminals, wireless local loop systems, digital audio broadcast equipment and military systems. To meet this challenge you will be a graduate with 2-5 years experience in:

- RF design - up to 2.5 GHz, familiarity with CAD tools and awareness of design for production.
- Digital Design - VHDL, digital ASIC and FPGA design with an awareness of analogue design techniques.
- DSP - Algorithm design and implementation for radio communications systems.

The success and reputation of Roke Manor Research depends entirely on the innovation, motivation and flexibility of its employees. Your desire to succeed in this world class electronic engineering environment will be amply rewarded with a first class salary and relocation assistance.

Situated in 24 secluded acres of rural Hampshire, Roke Manor Research offers a refreshingly different and dynamic working environment close to the New Forest and South Coast.

To apply please send your CV to Ian Collins, Recruitment Officer, Roke Manor Research, Romsey, Hants SO51 0ZJ or contact The Resourcing Team on Tel: 01794 833454, email: ian_collins@roke.co.uk.

ELECTRONIC UPDATE

Contact Malcolm Wells on 0181-652 3620

New Flight Electronics International Catalogue Set
You now have access to the world's latest:
- Electronics Training Equipment
- Microprocessor Training Equipment
- Test and Measurement Equipment
- PC Cards
via "Flight's" latest catalogue set.

We are specialists in the provision of innovative top quality electronics trainers, breadboards, test and measurement, PC cards and microprocessor evaluation equipment.

Our extensive range covers every need, call today for your free catalogue set.

NEW CATALOGUE

The new 1996 National Instruments Instrumentation Reference and Catalogue is available now. Discover how to develop integrated systems for test and measurement and industrial automation. Includes details of over 500 software and hardware products for PCs and workstations. Includes valuable tutorials on data acquisition and instrument control.

NATIONAL INSTRUMENTS
Tel: 01635 523545

NEW FEEDBACK T&M CATALOGUE

The latest edition of the Feedback Test & Measurement catalogue is now available. Over 60 pages packed with more than 800 products divided into over 20 sections. The catalogue is indexed for both product and manufacturer and is fully illustrated. Whether you are looking for an individual product, a complete workstation, or a solution to a particular Test & Measurement need the NEW Feedback catalogue will solve your problems, send for a copy NOW!

NEW CATALOGUE

The new 1995 Master Product Catalogue Now Out!

Test and instrument control solutions.

Tel: 0151 220 2500 Fax: 0151 252 0446
SPECTRUM ANALYSERS

- HP3557A 350MHz (fitted in 162C multiframe) £1500
- HP3568A 5MHz-50kHz audio frequency spectrum analyser (750 to £1250)
- HP3582A audio frequency ft analyser dual-channel £2000
- HP8566A high specification 1.5GHz spectrum analyser £7500
- MARCONI 2386 100Hz-25.5GHz (in 1Hz steps!) £15000
- AVM COM-portable in stock, 1GHz. No other details at this time.
- TEKTRONIX 492 21GHz portable spectrum analyser, with options 12&3, and complete with waveguide mixer set (6)

MARCONI INSTRUMENTS

- £900
- 10M Hz-20GHz
-
- MODEL
- £4000
- 2828A/2829 digital simulator/analyser
-
- 2305 modulation analyser 50Hz-3.5GHz £2000
- 2828A/2829 digital simtabor/analysaer £500
- 2655B radio communications test sets - LATEST B
-
- 20918A synthesized AM/FM signal generator 80MHz-920MHz £12500
- 2091A synthesized AM/FM signal gen 80Hz-1040MHz £250
- 2705 modulation analyser 50Hz-3.5GHz £250
- 6460/6421 power meter & sensor 10 MHz-12.4GHz £750
- 2514 waveguide detector for use with 6500-scalar analyser 2-4GHz £350
- 6969 microwave power meter with 6910 power sensor 10MHz-20GHz £900
- 6420A/cm generator test set £750
- TF2910A non-linear distortion (video) test set £1250
- TF2910 TV intervel timer £250

TEST EQUIPMENT

- **ANRITSU** MF76A 18GHz microwave frequency counter £1500
- BRUEL & KJAER 1023 sine generator £1250
- BRUEL & KJAER 1027 sine random generator £1750
- BRUEL & KJAER 2033 single channel audio spectrum analyser £750
- BRUEL & KJAER 2619 preamplifier £250
- BRUEL & KJAER 2513 vibration meter field set with 1621 Main £1500
- BRUEL & KJAER 2317 portable level recorder £1500
- BRUEL & KJAER 2627 measuring amplifier £600
- BRUEL & KJAER 2629 measuring amplifier £750
- BRUEL & KJAER 2308 analogue X-Y pen recorder £1750
- CHASE LFR 1000 interference measuring receiver 9kHz-100kHz £1000
- DATRON 1061 & 1061A - various, digital multimeter & 1000 - call
- DATRON 1065 digital multimeter all ranges plus IEEE £500
- FARNELL 208/1100 100W RF power meter DC-500MHz (1GHz) £350
- LJ INSTRUMENTS CR600 2-channel pen recorder £250
- KKUSIO 8320 frequency response analyser with swee generator 4600 £500
- PHILIPS PM5167 1MHz-10MHz function generator £275
- PHILIPS PM8762 X-Y & Y-X dual-channel pen recorder £850
- RACAL 9008 automatic modulation meter £350
- RACAL-DANA 930A RF millimeter £1250
- RACAL-DANA 9301A true RMS RF millimeter £350
- RION TRON DONNER 1300 synthesized signal generator 100MHz-1GHz £1350
- RION TRONIX A505/S/SG1050 distortion analyser (complete with TM403) £1250
- RION TRONIX X6030 escope probe 210MHz £500
- RION TRON IX 246B option CTS oscilloscope £2000
- RION TRONIX 21001 FFT PROBE £200
- WANDL & GOLTTERMA NW30 level tracer £350
- WANDL & GOLTTERMA NW-45 meter for SONET & SDH £500
- WAVE TEK 23 synthesized function generator 0.01Hz-100MHz £1250
- WAVE TEK 1087 opt 527 1-500MHz sweep generator £500
- WAYNE KERR 3320 20A bias unit (for 3242 induction analyser) £1250
- WAYNE KERR 3245 inductance analyser £350
- TEKTRONIX 1503 tdr metallic cable tester with opts £350
- TEKTRONIX 1503 tdr metallic cable tester with opts £1000

HEWLETT PACKARD

- 16409 serial data generator £500
- 3561A dynamics signal analyser (opt 01) £550
- 3764A digital transmission analyser £2000
- 3400A voltmeter, analogue 0-1.5V £1250
- 3235A switch/test unit £1000
- 3324A synthesized function generator £2000
- 3456A digital multimeter £750
- 3580A audio frequency spectrum analyser £750 to £1250
- 351C selective voltmeter £1250
- 3585A dual-channel spectrum analyser 0-32Hz-25.5kHz £2000

MARCONI INSTRUMENTS

- 3779D primary multiplexer analyser £3000
- 4148B/pAmeter, DC-voltage source £4000
- 4339A high resistance meter/c w lead set 1611B £2000
- 4275A multi-frequency lc generator £3500
- 435B microwave power meter, analogue £400
- 5364B frequency counter w option 010 high stab- & Channel G £1500
- 5366A 3GHz frequency counter £1500
- 5410A 1GHz digitizing oscilloscope £2250
- 6012A power supply 0-60V 0-5A £800
- 6323A system power supply 2-00V 0-3A £1000
- 6253A dual power supply 0-20V 0-1A-x2 £250
- 6443B power supply 0-12V-0-2.5A £400
- 6852A bipolar power supply/amplifier -20V to +20V, 0-1A £350
- 8007B pulse generator 100MHz £950
- 8018A serial data generator £1000
- 8028A pulse generator 250MHz £2000
- 8029A pulse generator 200MHz £250
- 816A slotted line 1.8-18GHz with 8049 & 4476 probe £1500
- 8444A tracking generator with option 059 £1250
- 8568A spectrum analyser: 1GHz-1.5GHz £750
- 8568B synthesized signal generator to 990MHz £3000
- 8679M 2-18GHz synthesized signal generator £750
- 8751A gain-phase analyser 10kHz-3000MHz £1250
- 8901A modulation analyser with option 02010 £350
- 8928A audio analyser £2000
- 2211A FDDI multimode test set £1500
- 2219A 486-based, colour option main-frame £1500
- 2219A45FDDI 86-based colour screen option network receiver £2500
- J2219A45FDDI 486-based, colour screen option network receiver £2500

RALFE ELECTRONICS

- 3580A SDH/HD portabi test sets - Condition as new, price £5000 (were listing at ca £20K!) - also 37772A optical interfaces available for STM-1, £1500 list over 6K)

Special Offer This Month Only

All orders for advertised equipment received thru APRIL will be issued with calibration certification by INDEPENDENT LABORATORY at NO EXTRA CHARGE

Just quote reference WWApril96

ISO9002 Accredited Stockist

- Measurement & Test Equipment

EISO9002 Accredited Stockist

- Measurement & Test Equipment

Contact Information

- Telephone: (+44) 0181-422 3593
- Fax: (+44) 0181-423 4009

** direccion e assistenza, italy: TLC Radio**

ralfe electronics

- Exclusively Professional T&M®

Send for Latest Stock List. We Fax Lists and Ship Worldwide. All Fully Lab-Tested and No-Quality Guarantee

ISO9002 Accredited Stockist - Measurement & Test Equipment
THE WORLD’S MOST POWERFUL, PORTABLE PROGRAMMERS

Compare the Dataman S4 with any other programmer and you’ll see why it’s the world’s undisputed number one. S4 is capable of programming 8 and 16-bit EPROMs, EEPROMs, PEROMs, 5 and 12V FLASH, BOOT-BLOCK FLASH, PIC16C71 Microcontrollers and more. S4 also emulates ROM and RAM as standard. S4 is the only truly hand held programmer that ships complete with all emulation leads, organiser-style manual, AC charger, spare library ROM, both DOS and Windows terminal software, and arrives fully charged and ready to go! Who else offers you all this plus a three year guarantee?

Customer support is second to none. The very latest programming library is always available free on the Internet, and on our dedicated bulletin boards. Customers NEVER pay for upgrades or technical support.

Dataman-48

Our new Dataman-48 programmer adds Pinsmart® technology to provide true no-adaptor programming right up to 48-pin DIL devices. Dataman-48 connects straight to your PC’s parallel port and works great with laptops. Coming complete with an integral world standard PSU, you can take this one-stop programming solution anywhere!

As with S4, you get free software upgrades and technical support for life, so now you don’t need to keep paying just to keep programming.

The current device library contains over 1500 of the most popular logic and memory devices including GALs, PALs, CEPALs, RALS, 8 and 16-bit EPROMs, EEPROMs, PEROMs, FLASH, BOOT-BLOCK, BIOPOLAR, MACH, FPGAs, PICs and many other Micro-Controllers. We even include a 44-pin universal PLCC adaptor.

If you need to program different packaging styles, we stock adaptors for SOP, TSOP, QFP, SDIP as well as memory emulation pods.

Order your Dataman programming solution today via our credit card hotline and receive it tomorrow. For more detailed information on these and other market leading programming products, call now and request your free copy of our new colour brochure.

The Dataman Challenge

Try the Dataman S4 or Dataman-48 without obligation for 30 days. If you do not agree that these are the most effective, most useful, most versatile additions you can make to your programming toolbox, we will refund your money in full.

Dataman Programmers Ltd,
Station Road, Maiden Newton,
Dorset DT2 0NE. UK
Telephone +44/0 1300 320719
Fax +44/0 1300 321012
BBS +44/0 1300 321095 (24hr)
Modem V.34/V.42/V.32bis
Home page: http://www.dataman.com
FTP: ftp.dataman.com
Email: sales@dataman.com

Credit Card Hotline 01300 320719
Orders received by 4pm will normally be despatched same day. Order today, get it tomorrow!