ELECTRONICS COMPUTING COMMUNICATIONS BROADCASTING AUDIO AND VIDEO

Semi-custom ics Serial interfacing Interface intermodulation Error detection and correction Taking the lid off wave theory

The 'Scope. 60 MHz .
 Bandwidth

2200 SERIES

The new price/performance standard.
Two new 60 MHz , dual trace oscilloscopes offer unprecedented value in both initial and life cycle costs. Already listed as a "product of the year", these instruments provide ideal general purpose scope characteristics at a price/performance previously unachievable.

Improved manufacturing techniques have made this possible without sacrificing quality, or reliability, after all it carries the TEKTRONIX brand.

Lightweight (13.5Ibs) 60 MHz bandwidth
Dual trace
Full feature triggering
Alternate delayed Sweep (2215)

FREE

A 36 page book on the XYZ's of using a 'scope and our Portable's Broadsheet. UK \& Eire only
Name
Position
Company
Address
Telephone
To: Publicity Dept.

[^0]Tektronix
Regional Telephone Numbers: Maidenhead
0628 73211, Manchester 0614280799 ,
Livingston 32766, Dublin 850685/850796

Demonstration model

photographed at Computer
Graphics 82 by Les Davis from Dicoll Electronics AD767
terminal was generated using
CDC Synthavision software.

NEXT MONTH

Bob Coates looks at microprocessor registers from a programming point of view in a tutorial article introducing assembly-language programming.
Home alarm design by Paul Bruin makes the intruders task more difficult by separating the arm/disarm function and sensors. Three separate alarms are activated sequentially in a further effort to baffle and a flashing lamp outside the building helps to trace the break-in
A recent development in communications, the spreadspectrum technique is said to revolutionise the technology. It offers anti-jamming capability, low detectability by an unauthorized receiver, accurate ranging and a high degree of multipath rejection. Norman Mahmood describes the design of such a system.
An autoranging 10 MHz digital
frequency meter is designed around the 74C926 counting and display module by F. P. Caracausi.

Current issue price 80p, back issues (if available) £1, at Retail and Trade Counter, Units 1 \& 2, Bankside Industrial Centre, Hopton Street, London SE1. Available on microfilm; please contact Availab
editor.
By
By post, current issue $£ 1.23$, back issues (if available) $£ 1.80$, order and payments to EEP General Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS Tel: 01-661 8668.
Editorial \& Advertising offices: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.
Telephones: Editorial 01-661 3614. Advertising 01-661 3130. See leader page. Telox: 892084 BISPRS G.
Subscription rates: 1 year £14 UK and £17 outside UK.
Student rates: 1 year £9.35 UK and Student rates:
Distribution: Quadrant House, The Distribution: Quadrant House, The
Quadrant, Sutton, Surrey SM2 5AS. Quadrant, Sutton, Surray
Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone: 044459188. Please notify a change of address.
USA: $\$ 44$ surface mail, $\$ 98.30$ airmail. US subscriptions from IPC B.P., Subscriptions Office, 205 E.42nd Street, NY scriptio
10017.
USA mailing agents: Expediters of the Printed Word Lid, 527 Madison Avenue, Suite 1217, New York, NY 10022. 2nd class postage paid at New York. © IPC Business Press Ltd. 1983 ISSN 00436062.

BROADCASTING ELECTRONICS

Deus ex machina

INTERFACE INTERMODULATION

by R. R. Cordell

NEWS

Cellular radio Maritime radio
Computer language

38

TWO-METRE TRANSCEIVER - 4
By T. D. Forrester

communcations

TAT 8 Satellite shattle "Amateur" satellite?

DATA ERROR DETECTION AND CORRECTION

by J. R. Watkinson

49 MICROCOMPUTER INTERFACE FOR 12BIT DATA ACQUISITION

by M. R. Driels

ADVANCED ARCHITECTURE ARRAYS
 by R. Lipp

56

LETTERS TO THE EDITOR

Hams and CB Distress signals Phase locked cavities

PIONEERS OF UHF TELEVISION

by A. Emmerson
RS232 TO CURRENT LOOP SERIAL INTERFACING
by L. Macari

ROGER BLEEP FOR CB TRANSCEIVERS

by P. J. Chalmers

WAVES OF IMPROBABILITY

by W. A. Scott Murray

CIRCUIT IDEAS

Harmomic locking Motor control Constant-current charger
74 ANALOGUE RECORDING USING DIGITAL TECHNIQUES
by T. Loumhlin

STEPPER MOTOR DRIVE CIRCUIT

by A. D. Bailey
79 MODULAR PREAMPLIFIER
by J. L. Linstery Hood

NEW PRODUCTS

Dicro adde-bins Imaging for micros Clock decoder
120

Amcron industrial

POWER RESPONSE DC $-45 \mathrm{KHz} \pm 1 \mathrm{~dB}$. OUTPUT POWER IN EXCESS OF 1.5KW INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.)

* D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2KVA.
* HARMONIC DISTORTION LESS THAN 0.05\% DC-20KHz AT 1kW INTO 6 OHMS
* PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION OSCILLATORS.
+ UNIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION gENERATORS AND MANY OTHERS.
* OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD.
- FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD.
* TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4kW
* INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS.

3-YEAR PARTS AND LABOUR WARRANTY.

GN80 cOLOUR MATRIX PRINTER

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.

Dot Addressable +15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options. Apple II interface gives dot for dot colour dump. New viewdata interface prints out two pages side by side in full colour. See Prestel 200650.

The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.

Electronic Brokers are Europe＇s leading Second User Equipment Company．We carry large stocks of the very latest test equipment which is refurbished in our own service laboratories and calibrated to meet the manufacturer＇s sales specifications． When you buy used equipment from Electronic Brokers，it can be yours in just days．No waiting for manufacturers lengthy production schedules．All equipment is fully guaranteed．

ANALYSERS

Hewlett Packard
141T／8552E／8555A 10MHz－18GHz $332 A$ Distortion Meter 5 Hz －600K E9750．00 $3582 A$ Spectrum Analyser $0.02 \mathrm{~Hz}-25.5 \mathrm{KHz}$ ． 5420 Digital Signal Analyser c／w Digital E495．00 Filter 544708．ADD Converter 54410A 8407 A 84124 Network Analyser Marconi
TF2331 Distortion Meter $20 \mathrm{~Hz}-20 \mathrm{KHz}$ Solartron
1172 TFA

1172 TFA Tektranis

 E7000．0492 ［opt 01．2．3］Spectrum Analyser
$50 \mathrm{KHz}-220 \mathrm{GHz}$ ．．．．．．．．．．．．．24000．00 492 P （opt 01．2，3］Programmable Version of 492 ．．．．．．．．．．．．．．．．．．．20000．00 712 Spectrum Anaser 100 E5650．00 （ $\mathbf{K H 2 5 0 . 0 0}$

 K9850．00 14）． series］．．．．．．．．．．．．．．．．．．．．．．．．．．2250．00 5 L 4 N Spectrum Analyser $20 \mathrm{~Hz}-100 \mathrm{KHz}$ 7001／F2 Logic Analyser in 7704 E2350．00 700 2 01 Logic Analyser ．．． $\mathbf{~} 4950.00$

bridges

TF1313A 0．1\％LCR Bridge

 TF27001\％LCRBridge． M4520 Set of Inductor Wayne Kerr5775.00
ayne Ker 0.1%

875.00

DVM＇s AND DMM＇s

1041 Multifunction DVM with options
01 －True FMS AC 02－4 Wire ohms．
801－8CD output． 1059 日ench DMM $1 / 2$ digit DC and True RMS AV volts and current＋resistance Solartron．
6700.00

7055 Microprocessor DMM．Scale Length 20．000．AC／DC voits，resistance． $1 \mu \mathrm{~V}$
resolution．．．．．．．．．．．．．．．．．．．．． 8495.00

FREQUENCY

COUNTERS

Howlort Packard
53404 日 Digit $10 \mathrm{~Hz}-18 G \mathrm{~Hz} \ldots \mathrm{E} 3750.00$ Marconi

OSCILLOSCOPES

Now lett Packard
1809A 100 MHz 4 Channel Plug In $8 . .000 .00$ i izia Timebase Plug in ．．．．．ع1000．00
WIRELESS WORLD FEBRUARY 1983

Philips
PM3232 Dual Bearn 10MHz ．．．．ع485．00 PM 3234 True Oual Beam Stor age
Dscilloscope 10 MHz New CRT．E1750．00 PM 324450MHz 4 Channel Delay T＇Base Toktronix．
213 Miniscope／DMM Battery 1 MHz ． 2975.00 305 Portable battery scope／DMM．DT T922－01 15 MHz DT Scope Diff．ingut 5515.00 200C Trolley for 400 Senes ．．．．．$\$ 120.00$ 7313100 MHz Storage Mainframe 2. 7603 10OMHz Mainframe．．．．． 1450.00 544050 MHz Mainframe ．．．．．．．\＆ 1000.00 544150 MHz Variable Persistance Storage
Mainframe ．．．．．．．．．．．．．．． 1600.00 7104 1GHz Scope Mänframe $£ 11,500.00$ 77044 Scope DC－200MHz Mainframe
7613 Storage Scope Manframe
$\mathrm{DC}-100 \mathrm{MHz}$ ．．．．．．．．．．．．．．．．．．．．E800．00 7834 Storage Scope Mantrame OC－400MHz ．．．．．．．．．．．．．．．．．．．．．． 7000.00 $0 \mathrm{C}-40 \mathrm{OMHz}$ ． 7904 opt $02,03500 \mathrm{MHz} . . .55350 .00$ 51 Sampling Head．As New ．．．．．．．$£ 450.00$
P6015 HV Probe． Telequipment
DM6 Storage Oscilloscope Fitted with
$2 \times V 4$ Plug－ins to give 4 Trace 15 MHz

RECORDERS

Hewlett Packard
70404 X－Y Recorder 1 V／Inch ．．．．．．．．．．pOA 7045A X－Y Plotter T＂Base Metric E1150．00 Watenabe．

SIGNAL SOURCES

4204 A Decade LFOscillator． $10 \mathrm{~Hz}-1 \mathrm{MHz}$ ． 1 mV －10V into 600 s ．．．．．．．．．．．．．．695．00 $61681.8-4.2 \mathrm{GHz}$ int or ext PCM／FM
$0.1 \mu \mathrm{~V}-0.224 \mathrm{~V}1000 .00$ 651 B Test Oscllator． $1 \mathrm{OHz}-10 \mathrm{MHz}$ ． 33204 Frequency Synthesizer． 0.01 Hz ． 13 MHz ． 8615A Signal Generator $1.8-4.5 \mathrm{GHz} .80$ Marconi．
TF2002日 AM／FM 10K Hz－BBMHz 200.00
 TF21708 Synchronizer for TF20028 TiF2171 Synchroniser for TF2015 $\mathbf{E 7 5 0 . 0 0}$ TF2008 AM／RM $10 \mathrm{KHz}-510 \mathrm{MHz}$ built in sweeper．Dutput 0．2yV－200mVE3500．00 TF2016＋TF－2173 Synchroniser AM／FM $10 \mathrm{KHz}-102 \mathrm{MHz}$ ．．．．．．．．．．．．．．．．．．．2000．00 TF2169 Pulse Modulator for use with TF2950 Mobile Radio Test Set［65－84， TF2950 Mobile Radio Test Sec
日4－108，138－180，420－470 MI z
ह1550．00
Philips．
PM6456 Stereo Generator．．．．．． 250.00
Racal
9089 AM．FM．Phase and Pulse Synthesized 5－520MHz

Radiometer

MGI tereo Generator
 E375．00
 TEKTRONIX PLUGINS

$5 A 48$ Dual Trace Amp DC－50MHz 5 F 4 อ Delay Tmebase．．．．．．．．．．．．．E600．00 $7 A 13$ Diff．Comparator Amp．DC－105MHz 7 A1GA Single Trace Amp．DC－225MHz $7 A 18$ Dual Trace Amp．DC－75MHz $\mathbf{2 5 2 0}$ 7 Aว2 Dif．AmP DC－1 MHz 10 ．．． 525.00 7853A Dual Timebase For use in 7600.00 7892a Dual Timebase For use in 7900.00 series 7014 Digital Counter． 525 MHz ．$£ 850.00$ M11 Dual 50s Delay Line．．．．．．．．．．$£ 575.00$ 7S14 Dual Trace Delayed Sweep Sampler
DC－1GHz． S1 Sampling Head［unused］．．．．．．．．．£450．00

TEKTRONIX TM500

SERIES

DM502A True RMS $31 / 2$ digit DMM ．．．．．．．．．．．E200．00 OSO3A 125MHz Counter ．．．．．． $\mathbf{E} 450.00$ DC505A 225MHz Counter ．．．．．E600．00 D0501 Digital Delay ．．．．．．．．．．．．．．．．．．．．．095 FG501 Function Generator 0.001 Hz FG503 Function Generator $1 \mathrm{~Hz}-3 \mathrm{MHz}$ FG504 Function Generator 0.001 Hz 5.00 40 MHz ．．．．．．．．．．．．．．．．．．．．．．$£ 1250.00$ PG508 Pulse Generator $5 \mathrm{~Hz}-50 \mathrm{MHz}$ ． 8800.00 SC502 15MHz Dual Trace Scope 1000.00 SC504 日0MHz Dual Trace Scope 1250.00 SG503 Sinewave Generator 250 KHz －

250 MHz SG504 Sinewave Generator 245 MHz ． 160 | TG501 Timemark Generator ．．．．．．．．．． 16550.00 |
| :--- |
| 950.00 | TM515 Mainframe［ 5 wide］．．． 350.00

TEKTRONIX TV TEST

ECUIPMENT

141A PAL Test Signal Generaton
E1750．00
14日 PAL Insertion Test Generator $\mathbf{8 4 0 0 0 . 0 0}$ 1481 C PAL Waveform Monitor $£ 2500.00$ Waveform Monitor．．．．．．．．．．．．．．． $\mathbf{2 9 5 0 . 0 0}$ Waveform Monitor Mint E55HR－1 NVOLOU Picture Monitor 50.00
 656HRPALSECAM Monitor．¿3800．00 1411R TV Generator．Various Systems．poA

MISCELLANEOUS

Brudi C Kjaer
 2209 Sound Level Meter ．．．．．．．． 975.00

 ForrographRTS1 Test Set ．．．．．．．．．．．．．．．．．．．．． 295.00
Fluke 883 AC／CC Differeritial ．．．．．．．．．．E615．00 3010A Logictester．Self Contained 610.00 Portable．Full Spec．on Request ．E8500．00 Howlott Packard．
B403A Modulator Fitted With 87328 PIN MODULATDR ．．．．．．．．．．． 1500.00 8482H Power Sensor $100 \mathrm{KHz-4.2GHz}$ ．AS NEW日745A S Parameter Test Set．Fitted with
11604 A Universal Arms $012 G H z$ 11604 A Universal Arms 0．1－2GHz 59308 A HP－iB Timing Generator．$£ 300.00$ Marconni．${ }^{\text {TF2 }} 162$ M． F ．Attenuator． $\mathrm{O}-111 \mathrm{~dB}$ Schaffiner Tektronix
106 Square Wave Generator 1 nS risetime $10 \mathrm{~Hz}-1 \mathrm{MHz}$ without accessories ．£175．00 284 Pulse Generator 70pS risetime
832 Data Comms．Tester ．E950．00
833 Data Comms．ester ．．．．．．． 8925.00 2901 Time－Mark Generator ．．．．．． 1955.00

Please note：Prices shown do not include VAT or carrlage．
 Electronic Brokers Limited 61／65 Kings Cross Road LONDON WC1X 9LN Telephone：01－278 3461 Telex： 298694 Elebro \mathbf{G}

Latest Second User Test Equipment Catalogue now out．Send for your FREE copy ww－ 200 FOR FURTHER DETAILS

ambit's new autumn/winter catalogue NOW!

* TOKO COILS, INDUCTORS, LC FILTERS
* PCM FILTERS, VHF/UHF HELICAL FILTERS
* UNELCO CAPACITORS
* PCI INTELLIGENT LCD MODULES
* TOKO SWITCHES : F SERIES/R7000 SERIES
* ALPS POTENTIOMETERS AND KEYSWITCHES
* TOYO-TSUSHO COAX RELAYS FOR TX/RX
* CRYSTAL FILTERS, CERAMIC FILTERS
* WELLER SOLDERING IRONS
* COOPER TOOLS
* TEST EQUIPMENT
* BOOKS, MANUFACTURERS' HANDBOOKS
* HARDWARE, CASES, PANELWARE, ETC
* MODULES, R\&EW KITS
* RF POWER DEVICES

ORDERS SUBMITTED USING STOCK COIDES IESP ITCHI:I WITHIN X WORKING HOURS FOR EX-STOCK ITI: IIS

* PHONE ORDER SERVICE - (NO MACHINES!)

$$
\begin{gathered}
8 \text { AM }-7 \text { PM MON }- \text { SAT } \\
0277230909
\end{gathered}
$$

* COMPUTER ORDER SERVICE - 'REWTEL' 6 PM - 9 AM 300 BAUD/RS232 (IT MAY BE 24 HRS BY THE TIME YOU READ THIS) 0277230959

EASY money, building a Kef design with a
Wilmslow Audio
CS Total kit.
No electronic or woodworking knowledge necessary and the end result is a proven top-

quality design
that you'll be proud of.
Each kit contains all cabinet components, accurately machined for easy assembly, speaker drive units, crossovers, wadding, grille fabric, terminals, nuts, bolts, etc.
The cabinets can be painted or stained or finished with iron-on veneer or self adhesive woodgrain vynil.
Easy foolproof assembly instructions supplied. Set of constructor leaflets sent free on receipt of large S.A.E.
Prices:CS1 (As 101) £110 pr. inc. VAT, plus carr./ins. £ 5.50 CS 1 A (simplified LS3/5A) $£ 103$ pr. inc. VAT, plus carr./ins. $£ 5.50$ CS3 (as 103.2) £129 pr. inc. VAT. plus carr./ins. £10.00 CS5 (as Carlton II) £192 pr. inc. VAT, plus carr./ins. $£ 15.00$ CS7 (as Cantata) $£ 250$ pr. inc. VAT, plus carr./ins. $£ 18.00$

35/39 Church Street, Wilmslow, Cheshire SK9 1AS Catalogue - £1.50 post free
Lightning service on telephoned credit card orders!

WW - 020 FOR FURTHER DETAILS

PRINTED CIRCUITS FOR WIRELESS WORLD PROJECTS

[^1]
codipchase TEKTRONIX

HUGE SAVINGS FROM NEW PRICES

ONLY SLIGHTLY USED - COMES WITH FULL WARRANTY
GRAPHICS TERMINALS • COLOUR GRAPHICS
DESKTOP COMPUTERS • PLOTTERS • MONITORS
4006-1 HIGH RESOLUTION GRAPHICS DISPLAY TERMINAL
Alphanumeric Mode: 35×74 characters
[63 ASCII character set]
Graphics Matrix: $1024 \mathrm{X} \times 1024 \mathrm{Y}$
Baud Rate: 75 thru 4800 Interface: Standard RS232. $£ 1525$

4010-1 HIGH RESOLUTION GRAPHICS

 DISPLAY TERMINALAlphanumeric Mode: 35×74 characters
[63 ASCll character set]
Graphics Matrix: $1024 \mathrm{X} \times 1024 \mathrm{Y}$
Baud Rate: 110 thru 9600 Interface: Standard RS232
Thumbwheel crosshair cursor Intergral Stand
C2750
4014-1 and 4015-1 HIGH RESOLUTION BIG (19")
SCREEN GRAPHICS DISPLAY TERMINALS
Alphanumeric Mode: up to 133×64 characters [94 ASCII character set or 1 B8 ASCII + APL on model 4015]
Graphics Mode: 4096X $\times 4096$ Y [includes enhanced graphics option] interface Standard RS232
Thumbwheel crosshair cursor Integral Stand 4014-1 £6950 4015-1 £7250 4016-1 25" Screenmodel £8950 4027 COLOUR GRAPHICS TERMINAL Providing B displayable colours from a palette of 64 colours, and 120 user defined patterns Interface: Standard RS232 Baud rates: up to 9600 $\mathbf{5 5 2 5 0}$

4051 DESKTOP COMPUTER

PROVIDING

High resolution Graphics and Alphanumerics, 32KB Memory, Integral Cartridge Tape Drive £2250

4952 OPT. 2 JOYSTICK
[for 4050 series) sensitive cursor-control with. 1% accuracy and XY zero feature £275

 DIGITAL WS78 SERIES WORD PROCESSOR8pacification
VT78 word processing video terminal.
RXO1 diskette storage subsystem
PDP-8 control processor.
Diabto 1345 letter quality orinter producing 540 words per minute with wheeled storage cabinet.
B-rirectional tractor feed fitted as standard.
Faturos

- Inexpensive stand-alone text editing
automatically
- Letter quality printer with choice of print wheels
- Simultane ous editing and printing
- Powertul list processing package
- Flexible communications capability $£ 2,950$

SYSTEMS

PDP $11 / 23$ SY8TEMS

$11 / 23$ CPU, 128 KB MOS, Dual RLO2 and Control DLV11 J and DUV1 1 Interfaces.
Cabinet. VT100 Console NEW £11,500 PDP 11/24 SYBTEM
$11 / 24$ CPU, 256 KBBMOS , Dual RLO2 and Control, Cabinet, VT100 Console NEW

E16,000
PDP 11V03 SYSTEMS
$11 / 03 \mathrm{CPU}$, E4KB MOS, Console Interface, Dual RXD1 Floppy Disk Drive. Low cabinet on castors

DISK DRIVES
RX1180 RXO1 + Unibus CtI
RXV11BDRXO1 + LSI CtI RXBE RXO1 + POPB CtI. RX21180 RXO2 + Unibus Ct
RX28 RXO2 + POPGCt RX28 RXO2 + POPGCt
RK06 14M8 Add-on RK06 $14 \mathrm{MB} \mathrm{Add-on}$
RKE11 RKO6 + Ctu RKG
RKO7 29 MB Add-on RK711 RKO7 + CtI.
$\mathrm{C995}$
.6995 \& 1500 23250
E 3500 $\Sigma 5250$

PRINTERS/TERMINALS

LA36DECwriter 1220 mA
c2s5 A36DECwriter || RS232 LA34DECwriterIV $\Sigma 325$ LA34 DECwriter IV
LA 180 -PD Parallel DECprinter(NEW)
LA1BO-ED ${ }^{2} S 232$ ع495

LA180-E

NT50 ${ }^{\text {NEWECscope } 20.7 a ~}$
安 70
VT50 DECscope RS232
£ 198
V50 EECscope RS232
VT55 Graphics DECscope (NEW)
INTERFACES
DL11 WAsynchronousI/F.
DU11DA Synchronousl/F. K.995 KLEAsynchronous (8 E
KLEJAAsychronous
BE BA) \&1450 M7258Printerl/F[PDP11] ع1450 M8207Printer//F[LSI11]. ع1500 M8342Printerl//F|日E, 8A) $\mathbf{5 3 5 0 0}$ PDPGA-205 Processor 101/2"

4662 INTELLIGENT DIGITAL

 PLOTTERMicroprocessor Controlled high speed platting up to 10 " $\times 15^{\prime \prime}$ with built-in joystick control. IEEE general purpose interface
£1800

4663 INTELLIGENT DIGITAL

PLOTTER

Microprocessor Controlled high speed plotting up to $17^{\prime \prime} \times 22^{\prime \prime}$ with built-in joystick control.
Standard RS232 interface.
Baud rates $110-9600$
$£ 4000$

high resolution display

 MONITORS
606 DISPLAY MONITOR

$5^{\prime \prime}$ CRT, 5 mil Spot size, XY amplifier DC to 3 MHz , 2-axis amplifier DC to 10 MHz

$£ 650$

GOGA DISPLAY MONITOR

as above $£ 875$

G06B DISPLAY MONITOR

5" CRT, 3 ml Spot size, XY amplifier DC to 3 MHz 2-axis amplifier $D C$ to 5 MHz

$£ 950$

607A VARIABLE
PERSISTENCE DISPLAY

MONITOR

$5^{\prime \prime}$ CRT, Storage view time 3 mins plus, $£ 875$

611 STORAGE DISPLAY MONITOR

$11^{\prime \prime}$ CRT, Storage view time 15 mins plus, XY amplifier. Programmable Erase, write-thru, non-store and view functions
$£ 1450$

HAZELTINE 1420

Special purchase of Hazeltine VDUs

- manufacturer's surplus -- ALL BRAND NEW BOXED
* All 128 ASCll Codes
* 94 Displayable Characters including Lower Case
* High resolution using 5×8 Dot

Matrix

* Typewriter-Style Keyboard Layout
* 15-Key Numeric Pad including [+].
[-] and Enter
* User-defined Video Presentation-

Hi/Lo Intensity, Blink, or Nor-Display

* Cursor Addressing and Sensing
* ElA Interface
* Eight Transmission Rates up to 9600 Baud
* Twelve Operator Function Keys
* Non-Glare Screen
* Self Test

ONLY ع350

Also available from time to time HAZELTINE 1410 $\Sigma 295$ HAZELTINE 1510 6550 HAZELTINE 1520
$\check{6} 25$

Naw Winter '82/83 Catalogue now out. Send for your FREE copy now. ADO 15\% VAT TO ALL PRICES Carriage and Packing extra

> Electronic Brokers Ltd., 61/65 Kings Cross Road London WC1X 9LN. Tel:01-2783461. Telex 298694

VERTICAL RANGE FROM 3-10 SOCKETS ALL EX-STOCK! SPECIALS TO ORDER

5-7 LONG STREET LONDON E2 8HJ TEL: 01-739 2343 TELEX 296797

WW - 013 FOR FURTHER DETAILS

TELESCOPIC MASTS

Pneumatically operated telescopic masts. 25 Standard models, ranging from 5 metres to 30 metres.

THE STREET HEYBRIDGE - MALDON ESSEX CM9 7NB ENGLAND Tel. MALDON (0621) 56480

Telex No. 995855

MIDWICH COMPUTER COMPANY LIMITED FAST EX-STDCK DEIIVERY OF MICHOCOMPUTEA COMPONENTS AT UNBEATABLE PRICES | SPECIAL OFFERS | |
| :--- | ---: |
| 280ACPU | 3.45 |
| $2732-45$ | 2.93 |
| $2532-45$ | 2.59 |
| $4164-20 \mid$ TII | 3.53 |
| UPD700? | 4.35 |
| DPB304 | 4.50 |
| MIDWICH MOW APPO | | \qquad MEMORIES

BBC MICRO OEALER
MEMORY UPGRADE FOR SPECTRUM - Increases Me

* Surtable for Later Blue Keyboand

Ex-stock
BBC Micrecomptar Upar edes Memory Uograde (BRC)
 - F Disc intariace inc. OOS (BBCa -Sonal //0 \& RGB kit (BBC5) - Expansion bus \& tabe kit (BBCB) Printer cablif inc Amphen ol plug
(not as sembled) (BBC2)
 * 5 pin DIN plug for serisint (BBC11)
${ }^{-6}$ oin DIN plug for RGB int (BRC109)
 - Connector for bus \& cable (88 BC 66) - Single disc drive (100K) (BBC31) "Oual disc dives (bec32) - Games Paddiles (per psir) (BBCA5)

- Prices on thess items rue likely plassa comtact sales office before ordeling.
As some Acorn plemses chets availa bility before (3) EPROM PROGRAMMER FOR * Programs $2516,2716,2532,2732$ - Industry Standard EPROMS
* No external power supply requir No external power supply required
Pluse straght into
 - JOYSTICKS ANO CONTHOUER - Conitrols 1 or 2 Jocyslicks
- Fire Button Facity (1 or 2$)$ | +E |
| :--- |
| +E |
| +E |
| D |
* Phugs straght mio Expansion Siot
* Edge Connector providect for RAM Pack
Discs elc

Joysuck Controller (kity
Joystick Controller (lassem)
Joystick Con
Joysicks
(AAf kites supp
(AA) kites supplied with full assembly instuctio
Device
ZOO FAMII
280 CAM
Z80
Z80ACPU
Z80CTC
Z80ACTC
Z80ACTC
Z80ADART
Z0ADMA
$Z 80 A D M A$
$Z 80 P 10$
$280 A P 10$
$780 \mathrm{ASIO-0}$
780 ASIO
Z80ASIO-
Z80ASIO.1
Z8AASIO-2
MK3886-
MK3886-4
$Z 880 \mathrm{BCP}$
280 BCT
880 BP
280 BC
880 BPI
880 BS 1
880 BS
280 BS
280 BS
28085
$2808510-2$
6800 FAMILY

24 Hour Tetephone order semce for credit card mat Al pnces exclude VAT and carriage (0.45)
Official orders from educational and govermment estabushments, and
Official orders from edicational and government estabishments, and Al orders despatched on day of receipt Out of stock items will follow on automatically at our discretion or a refund will be piven if requested
NO SUACHARGE FORICREOI CARD OROERS

MIDWICH COMPUTER CO LTD

DEPT WW, RICKINGHALL HOUSE, RICKINGHALL, SUFFOLK IP22 IHM TELEPHONE (0379) DISS 898751

TAC

The best route for

 data communicationsNew, low-cost Terminal Access Controller (TAC) can solve both immediate and future data communications needs. Versatile, software-controlled data switchboard caters for multiple service requirements and growing user needs without disrupting or replacing existing services and equipment.

TAC SERIES 3 for micro-networking TAC SERIES 4 for the higher volume user

Whether you need 16 or 256 communications channels Xtec can provide full data communications capability, with intelligent switching, protocol conversion, multiplexing and coupling as required

For funther information contact:
Xtec Limited. High Street. Hartley Wintney Basingstoke, Hampshire RG278PB Tel: Hartley Wintney 4222/4233/4344 Telex: 849286 CAVAC

Cotswold Electronics Ltd.

UUnit T1, Kingsville Road, Kingsditch Trading Estate, Chettenham GL51 9NX Tel: 0242-41313

Telex: 897106

Sales Office in U.S.A.
 AVEL LINDBERG INC

Peacock Alley 116, 1 Padanaram Road, Danbury, CT 06810 U.S.A. 203-797-8698. Telex: 710-456-9984

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for $10-14$ days delivery. Other Ranges and special scales can be made to order

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD, W.C.1. Phone: 01/837/7937

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

BSR DE LUXE AUTOCHANGER £18

 Plays $12^{\prime \prime}, 10^{\prime \prime}$ or $7^{\prime \prime}$ records, quality unit backed by BSR reliability. Stereo Ceramic $131 / 2 \times 1114 \mathrm{ln} 200 / 250 \mathrm{~V}$. Size $131 / 2 \times 11$ An. 3 speras. Below motor board $11 / 2$Below motor board
Cut out Mounting Board
E1|extra
:HEAVY METAL PLINTHS Silver grey finish, black trim. Size 16x133/ain. Post C Sivargrey nish, DECCA TEAK VENEERED PUNTH. Post $£ 1.50$ Suparior finish with space and panel for
small omplifier. Board is cur for B S. R.
small amplifier. Board is cut for B.S.R. $183 / 4 \mathrm{in} \times 141 / 4 \mathrm{in} \times 4 \mathrm{in}$. Black/chrome facia trim. Also with
boards cut out for G arrard fz . boards cut out for Garrard $£ 3$. Inted plastic cover $\mathbf{6 5}$ TNTED PLASTIC COVERS $177 / 6 \times 131 / 8 \times 31 / 2 i n$
$171 / 4 \times 93 / 8 \times 31 / 2 \mathrm{in}$. $161 / 2 \times 15 \times 41 / 2 \mathrm{in}$. $17 \times 12^{7 / 8} \times 31 / 2 \mathrm{in}$. 225 \% 13 /4 $\times 3$ in $211 / 2 \times 141 / 4 \times 21 / 2 \mathrm{i}$

BSE SINGLE

PLAYER DECKS

BSR P170 RIM DRIVE

 QUALITY DECK

Black with silver trim, stereo ceramic cartridge日SR P204 SINGLE PLAYERS SPECLAL OFFERS Two speed $33 / 45 \mathrm{r} . \mathrm{p} . \mathrm{m}$. hi-fi decks with stereo cartridges, cueing device and snake arm
Ceramic - 240 V AC $\mathbf{~} 15$ or 9 V DC 18 Magnotic - 240 V AC 820 or 12 V DC $£ 24$ THE "INSTANT" BULK TAPE ERASER Suitable for cassettes and all sizes of tape with switch and lead (120 volt to order). Will also demagnetise small tools a computer tapes. Head Demegnetiser only $£ 5$.

BATTERY ELIMINATOR MAINS to $\$$ VOLT O.C. Stabilised output, 9 volt $400 \mathrm{~m} . a$. U.K. made in plastic case with screw terminals. Safety overload cut out. Size
$5 \times 31 / 4 \times 21 / 2 \mathrm{in}$. Transformer Rectitier Unit. Sultable Radios, Cassettes, models, £4.50. Post 50p.
DE LUXE SWITCHED MODEL STABIUSED. £7.5б. PP \&1 3-6-71/2-9 volt 400 ma DC max. Universal output plug and lead. Pilot light, mains switch, polarity switch

DRILL SPEED CONTROLLERTIGHT OIMMER KIT. EASY build kit. Controls up to 480 watts AC mains, 83 . PP 65p DE LUXE MODEL READY-BUIL

ENII $131 / 2 \times 8$ in. LOUDSPEAKERS

 Model 450, 10 watts R.M.S. withmoving coll tweeter and two-way $\begin{array}{ll}\text { crossover; } 3 \text { ohm or } 8 \text { ohm. } & \\ \text { "Final Clearance". Sale Price } & \text { SO } \\ \text { SUTTABLE BOOKSHELF CABINET } & \text { Post } £ 1.50\end{array}$

REUVS. 6 V DC 95p. 12 V DC E1.25. 18V £1.25. 24 V E1.30 ALUMINIUM CHASSIS. $6 \times 4-£ 1.75 ; \quad 8 \times 6-£ 2.20$; $10 \times 7-22.75$; $12 \times 8-\mathrm{E3.20}$; 14×9 - ह3.80; $16 \times 6-2.50$ ALUMINIUM PANELS. $6 \times 4-55 p ; 8 \times 6-90 p ; 14 \times 3-90 p$ 10×7-£1.15; 12×8 - 1.30 ; $12 \times 5-90 p$; $16 \times 6-£ 1.30$; $14 \times 9-£ 1.75 ; 12 \times 12-£ 1.80 ; 16 \times 10-92.10$.
ALUMINIUM BOXES. $4 \times 4 \times 112$
ALUMINIUM BOXES. $4 \times 4 \times 11 / 2$ £ 1.20 . $4 \times 21 / 2 \times 2 \quad £ 1.20$. $3 \times 2 \times 1$ £1.20. $6 \times 4 \times 2$ £1.90. $7 \times 5 \times 3 \quad £ 2.90$. $8 \times 6 \times 3 \mathrm{E}$. $10 \times 7 \times 21 / 2 £ 3.60,12 \times 5 \times 3 £ 3.60 .12 \times 8 \times 3 £ 4.30$. BRIDGERECTIFIER 200V PIV 2 a £1. 4 a £1.50. $6 \mathrm{a} \not \mathrm{m}_{2} .50$ MINIATURE TOGGLES SP 40 p . DPDT 60 p .
RESISTORS, 10Ω to $10 \mathrm{M} .1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}, 1 \mathrm{~W}, 2 \mathrm{p}: 2 \mathrm{~W} 10 \mathrm{p}$ WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt 20 PICK-UP CARTRIDGES SONOTONE 9TA $£ 2.50$.
BSR Stereo Ceramic SC7 Medium Output $£ 2$. SC12 $£ 3$. PHILIPS PLUG-IN HEAD. Stereo Ceramic. AU1020 (G306 GP310-GP233-AG3306, £2. A.D.C., OLM $30 / 3$ Magnetic £5.
GOLDRING G850 650 , G800 £8, STYLUS most popula GOLDRING G850 £6.50, G800 $\mathbf{£ 8 . 5 0}$. STYLUS most popul Acos, Sonatone, BSR, Garrard Philips Diamond f1.
LOCKTITE SEALING KIT DECCA 118 . Complete fir VALVE OUTPUT Transformers (smali) 90p. Medium £1.50. SUB-MIN MICROSWITCH, 50p, Single pole changeover. ANTEX SOLDERING IRON 'C' 15 W £4.60. 25W 'X25' £4.70 JACK PLUGS Mono Plastic 25p; Metal 30p. JACK SOCKETS Mono 25p. Stereo 30p. FREE SOCKETS - Cable end 30 p. Metal $45 p$. 2.5 mm and 3.5 mm JACK SOCKEYS 25 p. Plugs 25 p DIN TYPE CONNECTORS
Sockets 3-pin, 5-pin 15p. Free Sockets 3-pin, 5-pin 25p. Plugs 3-pin 20p; 5-pin 25p; Speaker plugs 25p; Sockets 15p PHONO PLUGS and SOCKETS ea. 20p.
Free Socket for cable end 20p. Screened Phono Plugs 25p. 300 ohm to 75 ohm AERIAL MATCHING 300 ohm to 75 ohm AERIAL MATCHING TRANSFORMER £ 1 U.H.F. COAXIAL CABLE SUPER LOW LOSS, 25 p Yd. NEON INDICATORS 250 V , round 30 p . Rectangular 45 p .

POTETENTIOMETERS Carbon Track

$5 \mathrm{k} \Omega$ to $2 \mathrm{M} \Omega$. LOG or LIN. L/S 50p. DP 90p. Stereo L/S
 MINI-MULTI TESTÉR NEW
De luxe pocket size precision moving coil instrument. Impedance I1 instant ranges measure
AC volts $10,50,500,1000$.
' 6.50
OC amps $0.250 \mu \mathrm{~A}, 0-250 \mathrm{~m}$
26.50

0 stance 0 to 600 K ohms.
50,000 o.p.v. £ $18.50,7 \times 5 \times 2 \mathrm{in}$. Post EI
NEW PANEL METERS $£ 4.50$
50~а, 100 да, 500~а
$1 \mathrm{ma}, 5 \mathrm{ma}, 50 \mathrm{ma}, 100 \mathrm{ma}$, $500 \mathrm{ma}, 1$ amp, 2 amp
25 volt, VU Meter
$21 / 4 \times 2 \times 11 / 4$ Stereo VU meter
$31 / 4 \times 15 / 8 \times 1$ in. $£ 3$

ṘCS SOUND́ ṪÖLIGHT CONTROL BOX | Complete ready to use with cabinet size $9 \times 3 \times 5 \mathrm{in} .27$ |
| :--- |
| 3 channel, 1000 watt each. For home or disco | input 200 mV to 100 watt. AC 200/250V. Post $£$ OR KIT OF PARTS $£ 19.50$, LESS CABINET $£ 15$

Disco bulbs 100 watt blue green yellow, Disco bulbs 100 watt, blue, gre日n, yellow, red, amber, Rope lights, 4 channel, 11 ft with controller $£ 33$. PP "FUZZ" lights, red, blues, green, amber, 240 V AC. E23. 200 Watt Rear Reflecting White Light Bulbs. Ideal for £1.50. Suitable panel mounting holders 85 p .

RCS "MINOR" 10 watt AMPLIFIER KIT $£ 14$

 This kit is suitable for record players, guitars, tape playback, electronic instruments or small PA systems.Two versions available: Mono, $£ 14$; Stereo, $\mathbf{£ 2 0}$. Specification 10W per channel; size, $91 / 2 \times 3 \times 2$ in. SAE details. Full instructions supplied. 240 V AC mains. Post f 1 RCS STEREO PRE-AMP KTT. All parts to build thi pre-amp. Inputs for high, medium or low imp $\quad £ 2.95$ Can be ganged to make multi-way stereo mixers. Post 65 p MAINS TRANSFORMERS

220 V 45 ma 8V 2 Amp

AUTO 115 V to 240 V 150 W E9. 250 W ع 10.400 W E 11.500 W £ 1200 e GENERAL PURPOSE LOW VOLTAGE | Tapped |
| :--- |
| 2 amp. |
| 2 |
| 2 mmp. | 5 $\left\lvert\, \begin{aligned} & 6-0.6 \\ & 9 \mathrm{~V} .2 \\ & 9 \mathrm{~V} .3\end{aligned}\right.$

$10-0-10 \mathrm{~V} .2 \mathrm{amps}$ $10-30-40 \mathrm{~V} .2 \mathrm{amps}$

 12 V .100 ma12 V .750 ma

12 V 3 amps $12-0-12 \mathrm{~V} .2 \mathrm{a}$

CHARGER TRANS
\int_{6}^{6-12} volt 3 a

OPUS COMPACT

SPEAKERS £22 pair Post £2 TEAK VENEERED CAB
$11 \times 81 / 2 \times 7$ in, 15 watts $11 \times 81 / 2 \times 7 \mathrm{in}$, 15 watts
50 to 14.000 cps .4 ohm or 8 ohm
OPUS TWO $15 \times 101 / 2 \times 73 / 4$ in 25 watt
2-way system £39 pair. Post £3
LOW VOLTAGE ELECTROL.YTICS Wire ends $1 \mathrm{mf}, 2 \mathrm{mf}, 4 \mathrm{mf}, \mathrm{B} \mathrm{mf}, 10 \mathrm{mf}, 16 \mathrm{mf}, 25 \mathrm{mf}, 30 \mathrm{mf}, 50 \mathrm{mf}, 100$ $\mathrm{mf}, 250 \mathrm{mf}$. All 15 volts. $22 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{vi} ; 25 \mathrm{mf} / 6 \mathrm{v} / 90 \mathrm{mf} ; 47$ $100 \mathrm{mf} / 10 \mathrm{v} ; 150 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 200 \mathrm{mf} / 10 \mathrm{v} / 16 \mathrm{v} ; 220$ $\mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 330 \mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} ; 500 \mathrm{mf} / 6 \mathrm{v} ; 680$ $\mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v}: 1000 \mathrm{mf/2} 5 \mathrm{v} / 4 \mathrm{v} / 10 \mathrm{v} ; 1500 \mathrm{mf} / 6 \mathrm{v}$ $10 \mathrm{v} / 16 \mathrm{v} ; 2200 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 3300 \mathrm{mf} / 6 \mathrm{v} ; 4700 \mathrm{mf} / 4 \mathrm{v}$.
$500 \mathrm{mF} ~ 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} .1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$. $500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} .1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$ $1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$. $2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 30 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} \mathrm{60p} ; 1500 \mathrm{mF} 100 \mathrm{~V} \mathrm{f1} .20$. $2200 \mathrm{mF} 63 \mathrm{~V} 90 \mathrm{p} .2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p}$; HIGH VOLTAGE ELECTROLVIICS
$2 / 500 \mathrm{~V} \quad 45 \mathrm{p} \quad 32+32+16 / 350 \mathrm{~V} 90 \mathrm{p} \quad 8+8 / 500 \mathrm{~V}$ $\begin{array}{lllll}2 / 500 \mathrm{~V} & 45 \mathrm{p} & 32+32+16 / 350 \mathrm{~V} & 90 \mathrm{p} & 8+8 / 500 \mathrm{~V} \\ 8 / 450 \mathrm{~V} & 45 \mathrm{p} & 100+100 / 275 \mathrm{~V} & 65 \mathrm{p} & 8+16 / 450 \mathrm{~V} \\ 16 / 350 \mathrm{~V} & 45 \mathrm{p} & 150+200 / 275 \mathrm{~V} & 70 \mathrm{p} & 16+16 / 350 \mathrm{~V}\end{array}$ $16 / 350 \mathrm{~V} \quad 45 \mathrm{p} \quad 150+200 / 275 \mathrm{~V} \quad 70 \mathrm{p} \quad 16+16 / 350 \mathrm{~V}$ $\begin{array}{lllll}32 / 500 \mathrm{~V} & 95 \mathrm{p} & 220 / 450 \mathrm{~V} & 95 \mathrm{p} & 32+32 / 350 \mathrm{~V} \\ 32 / 350 \mathrm{~V} & 50 \mathrm{p} & 32+32+32 / 325 \mathrm{~V} & 75 \mathrm{p} & 32+32 / 50 \mathrm{~V}\end{array}$ $\begin{array}{lllll}32 / 350 \mathrm{~V} & 50 \mathrm{p} & 32+32+32 / 325 \mathrm{~V} & 75 \mathrm{p} & 32+32 / 500 \mathrm{~V} \\ 50 / 450 \mathrm{~V} & 95 \mathrm{p} & 50+50+50 / 350 \mathrm{~V} & 95 \mathrm{p} & 50+50 / 30 \mathrm{~V} \\ 50 \mathrm{p}\end{array}$ $50 / 450 \mathrm{~V} 95 \mathrm{p} \quad 50+50+50 / 350 \mathrm{~V} 95 \mathrm{p}$ CAPACITOAS WIRE END HITgh Vottag
$.001, .002, .003, .005, .01, .02, .03, .05 \mathrm{mfd} 400 \mathrm{~V} 5 \mathrm{p}$
TMF 200 V 5 p .400 V 10 p .600 V 15 p .1000 V 25 p. .22 MF 350 V 12 p .600 V 20 p .1000 V 30 p .1750 V 50 p TRIMMERS 30pF, 50 pF , 10 p .100 pF , 150 pF 20 p . 500 pF 30 p . TRIMMERS 30pF, 50 pF , 10 p . 100 pF , 150 pF 20 p .500.
MICROSWITCH SINGLE POLE CHANGEOVER 40 p. TWIN GANG, 120pF £1. $500+200 \mathrm{pF} \mathrm{E} 1$.
GEARED TWIN GANGS 25pF 95 p .
GEARED $365+365+25+25 \mathrm{pF}$ £ 1
TRANSISTOR TWIN GANG. Japanese Replacement £1 SOLID DIELECTRIC 100 pf $£ 1.50,500 \mathrm{pf} \mathrm{f} 1.50$

HËATING ELEMENTS, WAFER THIN (Semi Flexible) Size $11 \times 9 \times 1 / \mathrm{Bin}$. Operating voltage $240 \mathrm{~V}, 250 \mathrm{~W}$ approx Suitable for Heating Pads, Food Warmers, Convecto Heaters, Propagation, etc. Must b
ONLY 60 p EACH (FOUR FOR £2) ALL POST PAID.

NEW baker Star sound

 high power full range quality loudspeakers British madeexceptional reproduction. Ideal for Hi-Fi, music P.A. or discotheques. These loudspeakers are recommended where high power handling is required with quality
ceramic maqnet ensures, clear response.

BAKER AMPLIFIERS BRITISH MADE

NEW PAISO MICROPHONE PA AMPUAER EIZG channel 8 inputs, dual impedance, 50 K - 600 ohm 4 channel
mixing volume, treble, bass. Presence controls. Master volume mixing, volume, treble, bass. Presence controls, Master volume BAKER 150 Watt AMPLIFIER 4 Inputs 889 For Discotheque, Vocal, Public Address. Three speaker outlets for 4.8 or 16 ohms. Four high gain inputs, 20 mv ind 50 K ohtm. Individual volume controls "Four channel mixing. 150 watts a
ohms R.M.S. Music Power. Slave output 500 M.V. 25 K .ohm. Response $25 \mathrm{~Hz}-20 \mathrm{kHz} \pm 3 \mathrm{~dB}$. Integral HI -Fi preamp separate Bass \& Treble. Slze - $16^{\prime \prime} \times 8^{\prime \prime} \times 5 / /^{\prime \prime}$: Wh -141 lb ; Master volume control. British made. 12 months quarantee. 240 v . A.C.
mains or 120 V to order. All transistor and solid state. Post \boldsymbol{Z}. MONO SLAVE VERSION $£ 75.100$ Voh Line Model E1O . Post 12 New Steree Slave Model $150+150$ watt f 125 . Post f

Ideal or PA systems, Discos and Groups. Twō inputs, RCS offers M̈OBHE PA AMPLIFERS, Oumut 40-15 20 watt RMS 12 V DC, AC $240 \mathrm{v}, 3$ inputs. 50 K
 Mie 1 . MMS 2 . Phoc, EFP PP co-witt RMS, Mobile 24 volt DC \& 240 -volt AC mains. inputs 50K 3 mics +1 music. Outputs $4-8-16 \mathrm{ohm}+100$ volts line $\$ 55$ PP $£$ Battery only Portable PA Amplifier 10w max. Includes mike and speaker, OK for meetings, crowd control, stalls, fetes
'parties, otc. Batteries included (6 of U 2) 277.50 post $£ 2$.
R.C.S. 100 watt Robui
VAIVE AMPLIFIER

Channel mixing. Master
treble, bass and volume
controis. 5 Speaker outiets
suits $4,8,16$ ohm. Disco
aroup. f1z Carr \& ins $£ 15$

FAMOUS LOUDSPEAKERS

"SPECIAL PRICES

MAKE	MODEL	Sut	Watts	OHMS	PRICE	post
SEAS	TWEETER	4 in	50	0	18.50	E1
GOODMANS	TWEETER	31/2in	25	8	84	¢1
AUDAX	TWEETER	4 in	30	1	E5. 50	ع1
SEAS	MID-RANGE	-	50	8	57.50	E1
SEAS	MID-RANGE	5 Sm	00	8	512	¢1
SEAS	MID-RANGE	412/n	100	8	12.50	¢1
GOODMANS	HIFAX 7	$71 / 2 \times 41 / 4$	100	4/1/16	27	$\underline{1}$
GOODMANS	WOOFER	8 in	25	48	f6. 50	$f 1$
GOODMANS	HB	8 in	60	8 \%	172.50	11
WHAAFDALE	WOOFER	8 in	30	8	88.50	2
AUDAX	WOOFER	10in	50	8	116	62
GOODMANS	HPG	12 in	120	215	129.50	\square
GOODMANS	GA12	12 in	90	/15	27.50	¢
GOODMANS	HPD	12 in	120	215	129.50	62
GOODMANS	HPD	18 in	230	8	¢00	64

SPEAKER CDVERING MATERIALS. Samplos Large S.A.E.
B.A.F. LOUDSPEAKER CABINET WADDING 18 in wide 35p h.

MOTOROLA PIEZO ELECTRIC HORN TWEETER, 33/in. square E5,

 loo watts. No crossover required. 4-8-16 0.3 -way $950 \mathrm{cps} / 3000 \mathrm{cps} .40$ watt rating. f4. 3 way 60 watt ff. 100 W fel 3-way $950 \mathrm{cps} / 300 \mathrm{cps} .40$
LOUDSPEAKER BARGAINS

8 ohm, $25 \mathrm{hin}, 3 \mathrm{in}, 62 ; 5 \times 3 \mathrm{in}, 6 \times 4 \mathrm{in}, 7 \times 4 \mathrm{in}, 5 \mathrm{in}, 2250 ; 61 / 2 \mathrm{in}, 8 \times 5 \mathrm{in}, 63$ Gin, $54.50 ; 10 \mathrm{in}, \mathrm{C5} ; 12 \mathrm{in}, \mathrm{Et}$.
Tohm, 2 /iin, $3 \mathrm{hin}, 5 \times 3 \mathrm{in}, 6 \times 4 \mathrm{~m}, \mathbf{2 2}, 50.6$ /2in 10 W es. 8 in E 25 ohm, $3 \mathrm{in}, \underline{\mathrm{E}} ; 5 \times 3 \mathrm{in}, 6 \times 4 \mathrm{in}, 7 \times 4 \mathrm{in}, \underline{2}, 50.120 \mathrm{ohm}, 31 / 4 \mathrm{in} \mathrm{dia}$. E1. CAR CASSETTE MECHANISM. 12 V Motor Sterbo Head ex
R.C.S. LOW VOLTAGE STABILSED POWER PACK KITS

E3.95. Post 65p
All parts and instructions with Zener diode printed circuit,
up to 100 mA or less. Please state voltage required

 16V: 68,100 Sp: 125 12p: 330 18p: 470 20p: 680 34p: 1000 21p: 1500 31p; 2200 36p; 47007%.

POTENTIOMETERS: Rotary, Carbon.
Track 0.25 W Log $\&$ Lin values.

MYLAR FILL CAPACITORS

TRANSISTORS

${ }^{8224} \quad 170$ 280 CTC 250

RESI8TO

$100+$ price ap
rype not mixed
REsustons Network S.1.L.
7 Commoned: 18 pins) $100 \mathrm{M}, 680 \mathrm{n}, 1 \mathrm{~K} 2 \mathrm{k} 2,4 \mathrm{k7}$

DIODES

AA12 AAY3 BA10 BAX

THE UNIQUE:-

'ATLAS' ROBOTIC SYSTEM

THE SUPERB 'ATLAS' ROBOT REPRESENTS JUST ONE ITEM FROM OUR EVER-EXPANDING RANGE OF MICROPROCESSOR TEACHING SYSTEMS.
SEND FOR DETAILS TODAY, FROM THE FASTEST GROWING SUPPLIER OF MODERN EDUCATIONAL MICROELECTRONICS

L.J. ELECTRONICS LTD.

FRANCIS WAY, BOWTHORPE IND. ESTATE, NORWICH, NR5 9JA TEL: 0603-748001/2 TELEX: 975504
WW - 030 FOR FURTHER DETAILS

6 ft . dia. dishes, feed horns and electronics for use in 4 GHz satellite reception. GaAs Fet transistors, SMA connectors, P.T.F.E., etc. available. Please send s.a.e. for full details and data sheets.

Flarrison Bros. Electronic Distributors
22. Milton Road, Westcliff-on-Sea, Essex SS0 7JX Tel. Southend (0702) 332338

WW - 048 FOR FURTHER DETAILS

RETAIL • MAIL ORDER • EXPORT • INDUSTRIAL © EDUCATIONAL

TRIO 20 MHZ DUAL TRACE 'SCOPES
140mm Tube: OC to 20 MHZ : 5 mV Sensitlvily: CH2 Invert:
CS1820 Delayed sweep: 0.2μ sec to 0.5 sec 8 weep.

Modes CHI. CH2. OUAL and AOO.
List Price Our Price
inc. VAT $\sum s$
(UK C/PE4)
CS 1566A NOR, AUTO, VI
$0.5 \mu \mathrm{sec}$ to 0.5 sec sweep
Modes CHI. CH2. ALT. CHOP and IO List Price OurPrice £368.00 $£ 299>5$ SNE 8^{89} Z YEAR GUARANTEE (UX C/P E4) Inc.VAI

Hand Held Modeis $31 / 2$ Diglt LCD
(UK C/P 65 p)
12925 range 0.8% basic IOA AC/DC rolary swithes (Keithley) $£ 79.35$ 130 as model li29 but 0.5% \%tasic |also ses abovel $£ 102.35$ ench Modeis $31 / 2$ dight LCO unless slated (UK C/P 90p)

DIGTTAL MULTMETERS alm mode
2010A LED 31 range. IDA AC/OC basic 0.1% [Sabtronics) C81.50
TM353 LCO 27 range 2A AC/OC baslc 0.15% |Sinclalr) E86.25 2015A LCD 31 range IDA AC/OC basic a.1\% Sablronles IDA AC/DC basic 0.1\% (Sinclair) £113.85 2001 LCD 28 range plus 5 rang basic 0.1% (Pantec] eC! TM451 $41 / 2$ digit LCO every faclilty and lunction 0.02% basle [Thandar), 1503A 43/4 diglt LCD 30 ranges OOA AC/OC mHZ counter 4 KHZ osc. . an 0.05% basic [Thurlbyl $\quad \$ 171.00$ 1503 Ha as doove but 25á and 0.03% basic
$£ 189.75$

ANALOGUE MULTIMETERS - GENERAL RANGE

 Low cost relibible melers Alli supplied with attr/ /eadss (UK C/P 55p)BANANA 15 range pocket 20K/Volt plus cont. buzzer [illus] $£ 20.6$ ST5 11 range pocket $4 \mathrm{~K} /$ Volt $\mathbf{E 6 . 5 0}$ HH56R 22 range pocket $20 K$ /Volt (N360TR 19 range pliss He tes KRT5001 16 range 10 amp OC ange double 50K/Volt $£ 16.50$ T303Th 21 range plus He Test 20K/Valf 216.95

TMK500 23 range plus 12A DC plus cont. buzzer 30K/vott 168 m 36 range large scale 1DA 360 TR 23 range large scale 10 a AC/ DC Hie test 50 men ohm IKV AC/OC IOOK/Volt Choose from UK's largest range

GENERATORS R.C * Pulse * Pf function * Audio

(UK C/P \&1]
an models zooradovac
Aupio 4 band Sine/SO output
TE220Max distiorition 1\% 20Hz
200KKZ
LAGI20A5 band IOHZ.I MHz Sine/SD D. $05-0.8 \%$ dlst. AG125 As LAG120A but 0.02\% dist. (LEADER)
AG203 IOHZ-1 MHZ 5 band 0.1% Sine/SO [TRIO]

100 KHZ TO 30 MHZ
6 Band Trio RF Generator
Int/Ext MOO. Variable $0 / P$ to 100 mV Am Int 400HZ MOO.
sememat $£ 59.95$

 G202A matching $20 H 2$ to 200 KHZ Audio Generalor £ 78.00 inc. VAT (UK C/P 52)

ANALOGUE

 MULTIMETERS

PRDFESSIDNAL RANGE (UX C/P £1.20) All leaturing AC/DC Volts/Curremi and Ohms ranges with 8atts/leads MAJOR 20K 29 range 20K/V. 21/2A DC 121/2A AC (PANTECI 233.50 MA JOR 50K 29 range 50K/ $21 / 2$ OC 121/2A AC (PANTEC) \& 40.25 P/N3001 34 range 40K/V. 5 A
AC/DC 50 Meg. IPANTECI $\quad 59.80$
 Also 500 KHZ - 500 MHZ signal injector and 3 range cap. meter
PAN3003 42 range 1 Mag/V. 5A AC/OC $£ 66.70$ Protection Mirror Scales1

PORTABLE TV COLOUR GENERATOR
MC101
8 patterns/dou/lines atc Builh in
niczads. Pal B UMF only. Complei
with charger. case and land

VARIABLE
 POWER

SUPPLIES

Mains input Volts/
Amps meter (UK C/P 21) Amps meter IUK C/P £. 1 PP241 D/12 12/24 Voll. $0 / 1 \mathrm{amp}$
PP2430/12. $12 / 24$ Volt. PP2430/12. $12 / 24$ 0/3 amp.
PS1307 \qquad c59.95

DIRECT READ
 TEMPERATURE TM301-50 ${ }^{\circ}$ C $10+750^{\circ}$ LCD readout. Complete with battery and thermocouple $£ 68.43$

DIRECT READ HV PROBE

 (UK C/P 65P) $0 / 40$ KV:20K/VoltPULSE
TG105 5HZ - 5MHZ Various outputs (THANDAR) 5001 Ulifr-variable 0.5HZ 5 MHZ [GSC]

Also in stock
LDM170 20HZ-20KHZ distortio meter $£ 281.75$ LFG1300 0.002HZ.2MHZ sWet LSE231 100 MHZ FM signal 2377.20 E211.60 LCR740 RES/CAP/HD Bridg E171.35 LVT72 FET. mullimeter and Iranslstor LTC907 Signal injector/tracer and trantistor checker £173.65

LOW COST DIGITAL MULTIDETERS $31 / 2$ DIGIT LCD HAND HELD DMM's ISW = slide switch; PB = push button: RS = rotary) [models " with carry case] UK C/P 65p all models

*KD25C 13 Range 0.2A OC 2 megohm [SW] *KO30C 26 Range IA AC/OC 20 megohm [RS] -KD55C 28 Range IOA AC/OC 20 megohm (RS) -601 26 Aange 2A AC/ OC 20 megohm [PB]

188 m i6 Aange 10A OC (NO AC) 2 megohm plus He [TRANSISTOR lester (RS) 43.50 plus Hfe Tester $\{$ IRS -DM2350 21 range miniature auto ranging [SW]
$£ 55.00$

OSCILLOSCOPES (Ux C/P Single trace \& 3 ea.

HM307 Single trace IOMHZ 5mV:0.5 micro sec. Plus built in component tester $6 \times 7 \mathrm{~cm}$ dlsplay 1 MAMEGI $£ 158.70$ Optional Case $\quad £ 18.40$ icro sec. Plus bullt in component te ster 95 mm tube. Trig. to 20 MHZ (CROTECH) HA203/3 Dual 20MMZ. Trin. $£ 172.50$ 30MHZ $5 \mathrm{mV}: 0.5$ micro secs F . to $30 \mathrm{MHZ} 5 \mathrm{mV}: 0.5$ micro secs. $8 \times 10 \mathrm{~cm}$ Ilsplay [MAMEG]
£253.00
HM203/4. As above but $2 \mathrm{my}+$ Algebraic add (HAMEG) £276.00 CS1562A Dual 10 MHZ 10 mV . $1 \mu \mathrm{sec}$. 140 mm tube (TRID) $£ 276.00$ 3131 Dual trace 15 WHZ trig. to 35 MHZ 5 mV : D. 5 micro sec. 130 mm tube plus 3034 昭terymains dual trace 15 MHz trig. to 20 MHZ built in Nicads. 5 mV D.5 micro secs (CRDTECH) $\quad \mathbf{~ 4 1 4 . 0 0}$ Ellminator charger optlonal £36.00 HM204 New model with component ester Dual 20MHZ delayed sweep: trig to 40 MHZ . 5 mV D. 1 mic ro sec $8 \times 1 \mathrm{Dcm}$ display (MAMEG) £419.75 (Optional case £21.85) SC110A New model 10MHZ ballery portable. 10 mV 0.1 psec $2^{\prime \prime}$ trace. All tacillies (THANDAR) £171.00
 Carry case AC Adaptor ع6.84 Nicads 5.69 CS1577A Dual 35MHZ. 2mV $0.1 \mu s e c$. Single sweep lacility 140 mm tube (TR10) List price $£ 540.00$ CS183011 Dual Jomuz 2me 475.00 0.2 usec (IUted delay (tinel Oelay sweep 140 mm tube (T)
HM705 Dur Price $£ 570.00$ HM705 Dual 70MHZ delayed swee Single sweep: Delay IIne: Trig to 70MHZ:2mV:D. 1 micro sec. 8x lucm dlsplay IHAMEG E667.00 Ist C 70 70mHZ 4cm 8 trace Lisic965.00 Our Price £918.85 Trio Dual I 00 mhz Thandar Channel logic analyser GSC 8 Channel scope adaptor.
Salgan all models 5 mV sens. 0.5 micro sec $6.4 \times 8 \mathrm{~cm}$ display.
0 T410 Dual IOMMZ
£205.85
DT415 Dual 15 MHz $£ 217.35$ DT420 Oual 20MHz £228.85

FREQUENCY COUNTERS

(UK C/P £1)
PFM200A Pocket 8 digit LEO COOMHZ 10 mV ITHANOARI Max 50 50MHZ 6 digit LED Pocket [GSC] Max 550 क diglt LED Pocket IGSC 8110A B digh LEO 2 range. 100 MHZ . Bench (SABTRDNICS) E77.00 $8610 A$ B digit LED 3 range 600 MHz .
Bench I SABTRONICS Bench (SABTRDNICS)
Max $1005 \mathrm{HZ} \cdot 100 \mathrm{MHZ}$ \& digit Max 1005 HZ .100 MHZ 8 digit
bench LEO (GSC) bench LEO (GSCI
861089 digit LED 3 range 600 MHZ
8113

Bench (SABTROMCS) £113.85

SCOPE ADD ON UNITS
LTC905 Semiconductor curve tracer

	(UKC/P 85p)
	HZ65 Component tes
	(HAMEG) t27

Amateur radio and CB test equipment. TV pattern generators Pal and Sec am in stock. - Ask for detafls.

LOGIC PROBES/
MONITOR
Sabtronics LP1 IDMHZ probs
GSCLP2 1.5 MHZ probe
LEADER LDPO76 50 MHz (with case) - GSCLM1 monilor (8 to 16 pinics
ascopl Oigital pulsor.
Single/ 100 pDs $£ 58.50$

Please write in.

SPECIFICALLY DESIGNED FOR THE

280BASED SYSTEM 4, $6 \cdot$ OR 8 MHz

This MACHINE CYCLE LOGIC STATE ANALYSER gives a logic state map of 37

 active pins of the CPU to a depth of 2048 (or 4096*) machine cycles leading up to a preset conditional break. Passive, timed by the target system clock, the analyser samples the address, data and control buses simultaneously with the CPU and stores them with an elapsed M cycle and clock count. Specific machine cycles may be excluded to increase the apparent memory depth. Up to FFF delay on start/ end acquisition condition true.*Available with 2 K or 4 K memory depth and 4,6 or 8 MHz speeds. FULL SPECIFICATION AND DETAILS

SEYKER

LIMITED
First Floor, 18A Bridge Street, Godalming, GU7 1 HY. Telephone 0486820924

WW - 058 FOR FURTHER DETAILS

Gold-plated con Saaled base Ideal for pr less inan ha manufacturer's prici - $\underset{\text { TSp }}{\text { OHLY }}$ Will ift into 14-pin .100 55p ea.	mplifier, 8v. D.C., E3.50 PHOTO CONOUCT CELI. E125. High-po Cds cell, 600 MW , Resistance 800 ohm to Max, volts 240. Size 1 $1 / 2 \mathrm{in}$ with pre-amp on chas wirl pre-amp. on chas		 TRANSMITTEA. Compleete Unir funcas FOSTER DYMAMIC MICHOPHONES. 200 Ohm impedance. Moving coil. Complete on chassis. civj Complete on chassis. E 1.7 r pair
0-10. F.S.D. 1000 micr Size $1 / 2 \times 1 / 2 \times 1 / 2$ Onf 11.65			
\qquad	steneo cassetie tape HEADS Quality recorders with mounting plate. Record/Replay f:z MARRIOTT TAPE MEADS Quarter track. Txpe (leach) XESUI Erase (each). 5100		
WMTIOM P. 80804 Chips 8216. \qquad \square 08 IWH1W DIODES Full spec. but no polarity MINIATURE M̈P.C. POTENHOMETERS. Mode M2. High-quality, 5\% tolerance, 2 -watt, with lin spindles. All values, ohms 47 k onty 60 p each per 10; 50p each per 100, ep ach.	VARTA M/AH 225 ORYFIT B-wOH (hT 6-wott, 4.5 amp. XTAL FILTEA 10.7 m 12.50B separati $100 \mathrm{KC} / \mathrm{s}+1$ mes. 3		
QUANTITY DISCOUNTS on ALL items (unless stated), 15% per 10, 20\% per 50, 25\% per 100. All items BRAND NEW (unless otherwise stated). DELIVERY from stock - Add post $35 p$ per order.			
$\sqrt{7} \sqrt{-12}-2$		XPORT enquirie	Transanics .Mono 1400

WW - 044 FOR FURTHER DETAILS

Just whistle for the best ref. in the low powergame.
 instrumentation, codec systems or digital

What makes the new Ferranti ZNREF Series such a sharp-eyed reference source in the lower power field?

A minimum operating current of 150 uA . Voltages from 2.5 V toloV. Excellent temperature stability Low dynamic impedance. Trimmable output. A choice of initial voltage tolerances. And the ability to control the game over a wide range of currents and temperatures.

Whatever league you're in-data acquisition systems, portable
voltmeters, put the whistle in the hands of one of our ZNREF Series and win the game.

Send for data or contact,
Ferranti Electronics Limited, Fields New Road, Chadderton, Oldham OL9 8NP, England.
Tel: 061-624 0515, 061-624 6661 Telex: 668038

FERRANTI Semiconductors

The lightweight mast with 101 applications

The smoothly operated QTM Mast comes fitted with handpump or can be vehicle mounted with 'Power Pack' for extension and retraction. Available in a range of heights up to 15 metres, the QTM mast can provide the ideal answer for:

- Mobile Radio Telephone
- Police Mobile HQ (UHF)
- Field Telecommunications
- Floodlighting
- Anemometer and Wind
- Environmental - gas sampling collector
- High level photography
- Meteorology
- And a host of other uses Measurement

CLARK MASTS

Find out more about the QTM series by writing or phoning:-

U.K.

CLARK MASTS LTD...W.W.)
Evergreen House, Ringwood Road, Binstead. Isle of Wight,
England PO33 3PA
Tel: Isle of Wight (0983) 63691 EUROPE
GENK TECHNICAL PRODUĆTS N.V.IW.W.) Woudstraat 21, 3600 Genk, Belgium.
Telefoon 011 -380831
Telex 39354 Genant B
hit performance his competitive hi:

House of instruments.
Clitton Chambers, 62 High Street.
Saffion Walden. Essex CB10 1EE
Telephone: (0799) 24922 Telex: 818750
hi: eomperitive hi:

House of Instruments Ltd. WW - 045 FOR FURTHER DETAILS

Paradox.

Quad products incorporate the same traditional values of engineering and craftsmanship which have made early Quad products collectors items.

Quad products incorporate innovative ideas which put them ahead of their time and set standards for the industry. Paradoxical? Not if you think about it.

The Quad ESL 63 Electrostatic Loudspeaker - successor to the legendary Quad Electrostatic, uses concentric annular electrodes fed via a sequential delay line to produce a sound pressure pattern which approximates to that of an ideal point source.

Quad is designed and manufactured by a company which for 45 years has been unremittingly devoted to the cause of excellence in music reproduction, a company in which respect for tradition and a quest for improvement go hand in hand to produce products which represent an investment in musical enjoyment.

Quad FM4 Tuner - superb ergonomics and a level of performance limited only by the quality of the incoming signal.
Quad 405 Power Amplifier - with current dumping, an ingenious circuit developed by Quad using feed-forward techniques, the merit of which is now widely recognised.

Quad 34 Preamplifier provides everything that the serious music listener needs to obtain maximum enjoyment from disc, radio, tape and compact disc.

Music systems for thinking people.

for the closest approach to the original sound

For further details and the name and address of your nearest Quad dealer write or telephone The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs., PE18 7DB Telephone: (0480) 52561

EP4000
 EPROM EMLILATOR PROCRAMMER

The microprocessor controlled EP4000 will emulate and program all the popular EPROMs including the 2704, 2708, 2716(3), 2508, 2758, 2516, 2716, 2532 and 2732 devices. Personality cards and hardware changes are not required as the machine configures itself for the different devices. Other devices such as bipolar PROMs and 2764 and 2564 EPROMs are programmed with external modules.

The editing and emulation facilities, video output and serial/parallel input/output provided as standard make the EP4000 very flexible to allow its ușe in three main modes:

- As a stand alone unit for editing and duplicating EPROMs.

Items pictured are: EP4000 Emulator Programmer - $£ 545+£ 12$ delivery; BSC buffered simulator cable - $£ 39$; MESA 4 multi EPROM simulator cable £98; 2732A Programming adaptor £39; 2764 Programming adaptor - $£ 64$; - 2564 Programming adaptor - £64;

- As a slave programmer used in conjunction with a software development system or microcomputer.
- As a real time EPROM emulator for program debugging and development (standard access time of the emulator is 300 ns).

Data can be loaded into the $4 \mathrm{k} \times 8$ static RAM from a pre-programmed EPROM, the keypad, the serial or parallel ports and an audio cassette. Keypad editing allows for data entry, shift, move, delete, store, match and scroll, and a $1 \mathrm{k} \times 8$ RAM allows temporary block storage. A video output for memory map display, as well as the built-in 8 digit hex display allows full use of the editing facilities to be made.

BP4 (TEXAS) Bipolar PROM Programming module - £190
Also available (not shown): - VM10 Video monitor - £99; UV141 EPROM Eraser with timer - £78; GP100A 80 column Printer - £225; - Pl100 interface for EP4000 to GP100A - £65.

VAT should be added to all prices

P8000 - THE PRODUCTION PROGRAMMER THAT HANDLES ALL NMOS EPROMS

Write or phone for more details

EXPORT ENQUIRIES WELCOME
Tel: Plymouth (0752) 332961
Telex: 42513

Unit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN

TOTAL CONCEPT SPEAKERS

HIGH QUALITY KITS FOR THE HOME CONSTRUCTOR
We are told that some ready-made speakers - at twice the price - sound as good as the dB range

- but we doubt it!

Four models suppied
with prefinished solid Arrican
Walnut panels and grille foam, plus two
Walnut panels and grille foam, plus two
economy models with simulated woodgrain finish and grille fabric.
No veneering - no varnishing - no soldering - no electronic or woodworking skill required. All cabinet components are accurately machined from smooth MDF for easy assembly.
Kits contain all drive units, assembled crossover networks with leads, wadding, foam/grille fabric, screws, bolts, nuts etc. Optional purposedesigned stands (as illustrated).
Models suitable for 10-200 watts per channel.
Prices range from $£ \mathbf{3 5} .95$ - $£ \mathbf{2} 12$ per pair.
Details of the dB range (and many others) are contained in our new catalogue - $\mathbf{E 1 . 5 0 \text { post free Icheque, P.O., or phone with }}$
 your credit card number).

8 0625 '529599

35/39 Church Street, Wilmslow, Cheshire SK9 1AS

Keepthase ContactsCLEAN

BY USING A

DIACROM SPATULA

Manufactured in France British Patents applied for

No other cleaner has all these advantages:-

1. Only 100% pure. natural diamond grains are unilised.
2. Blades are treated with hard chrome to reinforce the setting of the diamond grains, to obviate loosening or breakaway during use. This process also prevents elogging of the diamonded surface by residues resulting from use.
3. All diamonded blades are rectified to ensure an absolutely smooth surface by oliminating diamond grains which may rise above the surface. This eliminates all excessive scratching during use.
4. All diamond grains are rigidly calibrated to ensure a perfectly unitorm grain size of either 200. 300 or 400.
5. The chrome gives a very weak co-efficient of friction and the rigidlty of the nylon handle is calculated to permit proper utilisation and yet pliant enough to avoid undue pressures on highly delicate pelays.

- Grain size 200, thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For quick cleaning of industrial felays and switching equipment. atc
-Grain size 300 . thickness $55 / 100 \mathrm{~mm}$.
Grain size 400 , thickness $25 / 100 \mathrm{~mm}$ contacts. Two close contacts facing each other can be individually cleaned, because only on face of the spatula is abrasive.

Sole Distributors for the United Kingdom

SPECIAL PRODUCTS (DISTRIBUTORS) LTD

81 Piccadilly, London W1V OHL. Phone: 01-629 9556
As supplied to the M.O.D., U.K.A.EA., C.E.G.B. British Alsil and other Pubtic Authoritien: also major industr ial and electronic users thr oughour the United Kingdom.

ididsom=1

First there was the 130. A handheld D.M.M. which still sets the standards our competitors strive to match.
Next came the 131. The introduction of the 135 saw $41 / 2$ digits on a handheld D.M.M. for the very first time.

And that same commitment to innovation has resulted in the latest additions to the range. The Keithley 128 D.M.M. with audio-tone and 870 Digital Thermometer with centigrade and fahrenheit readout.

The result is an unrivalled selection of handheld measuring devices. Each specification carefully matched to a given need. With performance that looks pretty good on paper. And even better in the field!

Cartontay Cantonsillantonory
 CROTECH Oscilloscopes

These are brand-new instruments
3030 15MHz 1 Trace
5 mV built-in
component tester $\mathbf{f 1 5 0}$ 303315 MHz 1 Trace
5 mV battery 5 mV battery operation $£ 280$ 303415 MHz 2 Trace 5 mV battery operation
313115 MHz
2 5 mV built-in component tester $\mathbf{C 2 4 0}$ 333730 MHz 2 Trace 5 mV with signal delay Ba Prices exclude delivery and VAT.

PHONE MEOPHAM GREEN, MEOPHAM, KENT DABOOY

ASELECTION FROM OUR
STOCK OF BRANDED VALVES

CALLERS WELCOME

- ENTRANCE ON A227

50 YDS SOUTH OF MEOPHAM GREEN CAR PARKING AVAILABLE
OPEN MONDAY TO FRIDAY 9a.m. 5 .30p.m. ACCESS AND BARCLAYCARO OROERS WELCOME

- MANY OTHERITEMS AVALLABLE \ddagger

NEW DIECASTBOXES extend Eddystone's comprehensive range

Eddystone Radio now introduce new boxes to supplement their extensive range - types 27134P, 26908P and 29830 P .

Features include:

* Reduced radius corners.
* Options of shallow or deep flanged lids.
* Optional base plate for use as a shallow enclosure.

ALL AT KEEN PRICES.

Details on application.

Eddystone Radio Limited
 Member of Marconi Communication Systems Limited

\qquad

Alvechurch Road, Birmingham B31 3PP, England
Telephone:021-475 2231 Telex: 337081
A GEC-Marconi Elecironics Company

WW - 046 FOR FURTHER DETAILS

WW - 016 FOR FURTHER DETAILS

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.

10 BEACH ROAD
WESTON-S-MARE, AVON BS23 2AU
TEL. 0934416033
WW - 026 FOR FURTHER DETAILS

Hperrade toan

ORIC-1

6 colours

 professional reyboand fill graphics realsound Superb styling thoice of 16 K , or 48 K RAM - nomic key board with 57 foung keys 2 40 characters high resolution reletex//viewdata compatable graphics - 6 octaves of real sound plus Hi-Fi output - Centronics printer interface and cassette port Comprehensive usermanual
FOR HoHE EDUCFION, BUSNIESS \& ENTHUSIASTS.

OPHONL MSTEM OFFERS CO NITHPHONE LNK FOR: ELECTRONIC MALL © TEL ESOFTWARE O PRESNA

COMING SOON, TH COMPLEIE YOUIR SXSTIM: ORIC MICRO-DRIVE DISCS \& SPEED PRINTER

ORIC is no toy! Its professional keyboard, Basic lanerage and extensive specification, will
 do all you expectedefyan hame computer, plea whole lot more. For home, educational, business and games use.

If you're buying for the first time beware! Only ORIC computers offer full colour capability for under $£ 100$ and the most powerful and comprehensive micros in their price brackets.

So whether you're just starting out, or upgrading existing equipment, make the professional decision and choose ORIC. Send for our comprehensive brochure NOW, or better still, order your ORIC today. Delivery is around 28 days with a money back guarantee

ORC-1

 if you're not delighted.Clip the coupon below, or call our telesales number ASCOT (0990) 27641.

The Real Computer System

ORIC PRODUCTS INTERNATIONAL LTD Sowort Park Mansion. Cowort Park. London Road.

ORIC-I 16K RAM			

GJT $B 6$ -

(1) Modular Amplifiers the third generation

Due to continous improvements in components and design ILP now launch the largest and most advanced generation of modules ever.

WE'RE INSTRUMENTAL IN MAKING A LOT OF POWER

In keeping with ILP's tradition of entirely self-contained modules featuring, integral heatsinks, no external components and only 5 connections required, the range has been optimized for efficiency flexibility, reliability, easy usage, outstanding performance, value for money.
With over 10 years experience in audio amplifier technology ILP are recognised as world leaders.

Module Number	Ouipur Power Wats cms	$\begin{array}{\|c\|} \hline \text { Lond } \\ \text { Impedanci } \\ \Omega \end{array}$		$\begin{aligned} & \text { DIST } \\ & \text { T.H.D. } \\ & \text { TYP at } \\ & \text { IKHz } \end{aligned}$	$\begin{aligned} & \text { RTION } \\ & \text { 1.M.D. } \\ & \text { 60Hzz } \\ & 7 K H z 4: 1 \end{aligned}$	Supply Voltoge Typ	$\begin{aligned} & \text { Size } \\ & \mathrm{mm} \end{aligned}$		VT
	15	4.8		0.015\%	<0.006\%	± 18	$\begin{aligned} & 76 \times 68 \times 40 \\ & 76 \times 68 \times 40 \end{aligned}$		24
HY(i)	30	$\begin{aligned} & 4.8 \\ & 4.8 \end{aligned}$		0.015\%	<0.006\%	± 25			240
	$30+30$			0.015\%	<0.006\%	± 25	120×78	$\times 40$	420
HYI24	60	4		0.01\%	<0.006\%	± 26	120×78	× 40	410
HY 128	60	8		0.01\%	<0.006\%	± 35	120×78	$\times 40$	410
HY244	120	4		0.01\%	<0.006\%	± 35	120×78	$\times 50$	52
HY248	120	8		0.01\%	<0.006\%	± 50	120×78	$\times 50$	520
HY 364	180	4		0.01\%	<0.006\%	± 45	120×78	+100	1030
HY 36 H	180	8		0.01\%	<0.006\%	± 60	120×78	$\times 100$	
Protection. Full load line. Slew Rate: $15 \mathrm{w} / \mathrm{Hs}$. Risetime: 5 ys . S / N ratio: 100 dib . Frequency response $\{-3 a 8 \mid 15 \mathrm{~Hz}-50 \mathrm{KHz}$. Input sensitivity: 500 mV ems. Input Impedance: $100 \mathrm{~K} \Omega$. Damping fac for: $100 \mathrm{~Hz}>400$.									
PRE.AMP SYSTEMS									
Modtule Number	Module		Functions				Current Aequired		
HY6	Muno pre amp		Mc/Mag. Cartyidge/Tuner/Tuse/ Aux + Vol/Bass/Treble				10 mA		\% 6
HY66	Siereco preamp		Mic/Mag. Cartridge/Tuner/Tape/ Aux + Vol/Bass/Treble/Balance				20 mA	E14	. 3
HY73 HY78	Cuviar Dre amp		Two Gutar IBass Leadl and Mc +				20 mA 20 mA	£15	. 36

Most ore amp modules ean be driven by the PSU drwing the man power amp.
A separate PSU 30 is available purely for pre amp modules if equired for
E5.47 (inc. VATI. Pre amp and mixing modulen in 18 different veritations.
hease send for del.
For ease of construcsion we recommend the B6 for modules HY6-MY 13 E 1.05
(lnc. VAT) and the B66 for modules HY66-HY78 £1.29 (inc. VATI).

MOSFET MOOULES

Module Number		Load impedance Ω	Stortio		Supply Voltage Typ	$\begin{aligned} & \text { Size } \\ & \mathrm{mm} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { WT } \\ \hline \text { wis } \end{array}$	Price inc. VAT
			T.H.D. TYpat 1 KHz	$\begin{gathered} \text { I.M.O. } \\ 60 \mathrm{~Hz} f \\ 7 \mathrm{KHz} 4: 1 \end{gathered}$				
MOS 1.28	60	$4-8$	<0.005\%	<0.006\%	* 15	\%	420	
MOS 248	120	4.8	<0.005\%	<0.006\%	± 55	$120 \times 78 \times 8$	850	[34.
MOS 364	180	4	<0.005\%	<0.006\%	155	$120 \times 78 \times 100$	1025	

Protection: Able to cope with complex loads without the need for very special
Slew rate: $\quad 20 \mathrm{p} / \mathrm{ps}$. Rise time: 3 lus . S / N ratio: 100 db
Frequency response $(-3 \mathrm{de}): 15 \mathrm{~Hz}-100 \mathrm{KHz}$. Imput sensitiviv: $500 \mathrm{~m} / \mathrm{rms}$
input impedance: $100 \mathrm{~K} \Omega$ Damping factor: $100 \mathrm{~Hz}>400$
'NEW to ILP' In Car Entertainments
C15
Mono Power Boaster Amplifier to increase the ou put of your existing car racio
Very easy to use.
Robust construction.
Mounts anywhere in ear
Aulomatic switch on.
Output pormer maxim
Fint maximum 22 w peak into 4Ω
requency response 15 Hz to 30 KHz . T.H.D. 0.1% at 10 m 1 KMz
Input Sensitivivy and impedmence Lselecimpedance 3Ω
(rable) 700 mV ms into $15 \mathrm{~K} \Omega 3 \mathrm{~V}$ rms into 8Ω

C1515
Stereo version of C15.
$£ 17.19$ (inc. VAT)
Size 95 x 40×80. Weight 410 gms. POWER SUPPLY UNITS (Incorporating our own toroidal transformers)

Mocal Number	For Use With	Price inc. VAT	Modet Number	For Use With	Price inc VAT	$\begin{aligned} & \text { Model } \\ & \text { Number } \end{aligned}$	For Use With	Price inc. VAT
PSU 21x	1 or 2 HY30	$¢ 11.93$	PSU 52x	$2 \times$ HY124	E17.07	PSU 72X	2 WMY248	£22.54
PSU 41 x	1 or 2 HY60, $1 \times$ HY6060, $1 \times$ HY 124	[13.83	PSU 53x	$2 \times \mathrm{MOS} 128$	¢17,86	PSU 73x	1 ¢ HY364	¢22.54
PSU 42x	$1 \times \mathrm{HY} 128$	$\underline{15.90}$	PSU $54 x$	$1 \times \mathrm{HY} 248$	[17.86	PSU 74 x	1) \% HY368	¢24.20
PSU 43x	$1 \times$ MOS 128	¢16.70	PSU 55x	$1 \times \mathrm{MOS248}$	£ 19.52	PSU 75x	$2 \times \mathrm{MOS} 248 \times 1 \times \mathrm{MOS} 368$	¢24.20
PSU 51x	2xHY128.1 1 HYY244	£17.07	PSU 7tx	$2 \times$ HY244	£21.75			

[^2]
WITH ALOT OF MELP rnom ELECTRONICS LTD

PROFFSSIONAL IIIFI THAT EVERY ENTHUSLIAST

CAN HANDIL... Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, ($<0.01 \%$), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection thi UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

PowerSlaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

HIFI Separates					Price inc. VAT
UC1	Preamp				£29.95
UPIX	$30+30 \mathrm{~W} / 4-8 \Omega$	Bipolar	Stereo	HiFi	¢54.95
UP2X	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiFi	¢54.95
UP3 X	$60 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	Hifi	¢54.95
UP4X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiFi	$¢ 74.95$
UP5X	$120 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	HiFi	¢74.95
UP6X	$60 \mathrm{~W} / 4-8 \Omega$	MOS	Mono	HiFi	[64.95
UP7X	120W/4-8	MOS	Mono	HiFi	¢84.95
Power Slaves					
US1X	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	$¢ 59.95$
US 2 X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	¢79.95
US3X	60W/4-8 Ω	MOS	Power	Slave	¢69.96
US4 X	$120 \mathrm{~W} / 4-8 \Omega$	MOS	Power	Siave	c89.95

Please note X in part number denotes mains voltage. Please insert ' O ' in place of X for $110 \mathrm{~V}, ~ ' ~ T$ ' in place of X for 220 V (Europe), and ' 2 ' in place of X for 240 V (U.K.) All units except UC1 incorporate our own toro idal transformers.

TO ORDER USING OUR FREEPOST FACILITY
Fill in the coupon as shown, or write details on a separate sheet of paper, quoting the name and date of this journal. By sending your order to our address as shown at the bottom of the page opposite, with FREEPOST clearly shown on the envelope, you need not stamp it. We pay postage for you. Cheques and money orders must be crossed and made payable to I.L.P. Electronics Ltd. if sending cash, it must be by registered post. To pay C.O.D. please add $\boldsymbol{£} 1$ to TOTAL value of order.

PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARD IF REQUIRED

Pond Cottage The Green, Harefield MiddlesexUB9sNP England
Tel: Harefield (0895 82) 2771
Telex: 938527 EPICEN G

The SM81 has been quite a shock to me, not only from when I first tried it out, liked it, and decided to buy a pair, but also a year later when I discovered from the brochure that the mic. was an electret.

Shure Brothers have always had a good name for robustness and reliability, and electrets are usually thought of as a low cost alternative to regular capacitor mics. with some sacrifice in sound quality.

With the SM81 Shure have produced an unique combination together with a transparency of sound and freedom from coloration, distortion and noise comparable with other manufacturers' traditional condenser models costing a lot more. The switchable bass roll-offs and attenuator are helpful extras as well, and missing from my other favourite choice of cardioid costing around double the price.

Recording classical music is a tough test for microphones and my SM8ls earn their keep successfully as very useful additions to my kit of mics., both for distant and close pickup if required.

Tony Faulkner
Audio Engineer

VAT No 225514681

Tony Faulkner is a leading freelance independent recording engineer

 based in London who records around 50 classical music albums each year.
wireless world

Editor:

PHILIP DARRINGTON
01-661 3128

Deputy Editor:
GEOFFREY SHORTER, B.Sc.
01-661 8639

Technical Editor:

MARTIN ECCLES
01-661 8638

News Editor:
 DAVID SCOBIE
 01-661 8632

Drawing Office Manager:
 ROGER GOODMAN

 01-661 8690Technical Illustrator:
BETTY PALMER
Advertisement Manager:
BOB NIBBS, A.C.I.I.
01-661 3130

BARBARA MILLER
01-661 8640

Northern Sales:

HARRY AIKEN
061-872 8861

Midland Sales:
BASIL McGOWAN
021-356 4838

Classified Manager:
BRIAN DURRANT
01-661 3106

IAN FAUX
01-661 3033

Production:
BRIAN BANNISTER
(Make-up and copy) 01-661 8648

Publishing Director DAVID MONTGOMERY 01-661 3241

Deus ex machina

A commonplace conceit amongst writers of science-based fiction and in some of the less thoughtful daily press is the attribution of human characteristics to computers, in their projected, future form. It is a fancy only a whisker away from fact and one with which it is easy to "make your flesh creep", although it is unlikely that the Fat Boy had this particular method in mind. Often, the evocation of anthropoid machines is done so effectively that many are encouraged in their anticipation of an Orwellian future, starting precisely on time on January 1 , 1984.

Such fears and their stimuli are insupportable. Although it is probable that computers will begin to emulate humans in some respects - for example, expert systems will be holistic to some extent in that they will be able to produce better results than would be apparent from the input data - no computer will ever be moved by the Bruch G Minor or print out a poem in anything more than buzz words obtained from a look-up table.

The scrapping of a computer is not a fit occasion for grief, except inasmuch as the cost of a new one might bring tears to the eyes. When someone who is close to one dies, it becomes very clear that humanity is both short-lived and unique; one is shocked and temporarily deranged, and mystical questions of an afterlife are raised. Not so with any possible extension of computers.

To prophesy that computers will ever experience love, hate, affection, anger or even simple pleasure is not only sacrilegious but utterly ludicrous. A person is holistic to a far greater extent than any machine can ever be: a collection of simple, functional cells takes on a personality and a mind which recognizes its own corporal mortality, but which creates its own spiritual immortality in hope. Electronic hardware is for ever limited to the sum of its parts - only a human can design the process whereby it exceeds that sum.
One of the gifts of humankind which distinguishes it from the bestial is man's willingness to perform actions for the sole benefit of others - particularly when these actions are likely to work against his own interests. He will often do this simply because he thinks the other person will be delighted with the outcome, and he will derive pleasure from observing the delight. No machinery here, And is it possible to imagine a computer seeing the funny side of a nonsense poem?

It is obscene to credit any man-made device with these God-given human strengths and frailties: it is patently impossible for it to possess them, and to even try to endow a machine with these characteristics may be suspect. Machines are fitted to endure work that humans find undesirable or impossible and computers, like any tool, extend the capabilities of humans. That is their only part to play: theirs is not to compete, but to assist,

Interface intermodulation in amplifiers

Analysis, computer simulation, and measurements on real power amplifiers suggest that amplifiers with high open-loop output impedance are not more susceptible to interface intermodulation.

Interface intermodulation occurs when a reaction signal from a loudspeaker enters the output of an amplifier, propagates around the feedback loop, and intermodulates with the input signal in the forward path of the amplifier. It has been stated that amplifiers which have high open-loop output impedance, and which necessarily rely on greater negative feedback for a low output impedance, are more susceptible to interface intermodulation. However, analysis, computer simulation and measurements on real power amplifiers (not models with artificial distortion mechanisms) here show that such amplifiers are in fact no more susceptible and may perform better in other areas.
A loudspeaker presents a complex load to the amplifier, often with several significant resonances. Its impedance can rise to over ten times and fall to less than 80% of its rated value. However, simple network theory tells us that if the amplifier has a high damping factor, frequency response errors created by this complex loading will be minimal. Damping factor is a popular term for characterizing the "stiffness" of an amplifier's output - its ability to resist output voltage changes due to load currents. It is usually specified as the ratio of eight ohms to the amplifier's (closed-loop) output impedance.
The electromechanical system of the loudspeaker, particularly the woofer, also represents an energy storage and generation capability, as any movement of the cone generates e.m.f. from the voice coil and magnet. This movement could be due either to cone momentum developed by earlier excitation or to sound in the acoustical environment of the loudspeaker. The capability thus exists for the loudspeaker to inject a signal back into the output of the amplifier.
It has been suggested that if this signal makes its way back to the amplifier input via the feedback network (i.e. as an error signal) and subsequently travels through the non-linearities in the forward path of the amplifier along with the input signal, intermodulation may result. The natural output impedance of an amplifier without negative feedback is called its impedance.

When negative feedback is applied openloop output impedance becomes much smaller corresponding to an increased damping factor. In essence, the concern is that a high damping factor produced synthetically by a high feedback factor does not provide intrinsic damping at the amplifier output. It has further been implied that a low open-loop output impedance provides a true physical impedance which can damp most of the injected signal right at the output, with less resort to circulating correction signals.

by Robert Cordell

This distortion mechanism has been termed interface intermodulation, and it has been suggested that this may account for some audible differences among amplifiers not accounted for by conventional measurements. It has been more formally defined as follows:
"Interface intermodulation is a form of distortion in a feedback two-port network, caused by non-linear interaction between the input signal of the two-port and a signal externally injected to the output port propagating into the input via the feedback network." (ref. 1)
Although by this definition intermodulation will be zero in an amplifier with no overall negative feedback, any amplifier which has a non-linear output impedance will produce intermodulation at the interface even if it has no overall negative feedback. The measurement method proposed also does not distinguish interface distortion produced by feedback from that produced directly by a non-linear output impedance.
Although the intuition expressed in Ref. 1 regarding the influence of open-loop output impedance seems plausible at first glance, it must be more carefully examined, as it has implications for selection of amplifier topology and characteristics. In fact, many contemporary power amplifiers have fairly high open-loop output impedance. As in the case of transient intermodulation distortion, it represents an
indictment of the use of large values of negative feedback. Such indictment has been shown to be unjustified with transient intermodulation ${ }^{2,3,4}$; we show here that it is also not justified with interface intermodulation ${ }^{5}$.

Analysis

Although the nature of the loudspeaker reaction signal can be argued, for analysis

This article examines the mechanism and looks at internal amplifier error signals and intermodulation induced by signals externally injected at the output of amplifiers with high and low values of open-loop output impedance. The use of detailed computer simulations and experimental measurements of real amplifier circuits reduces the need of simplifying assumptions which could lead to erroneous conclusions.

Based on this investigation, it appears that high feedback factor and high open-loop output impedance do not increase the likelihood of interface intermodulation. Rather, what is important is the ratio of these quantities, or simply closed-loop output impedance. Put in a slightly different way, high magnitude and/or linerity of open-loop transconductance is desirable in minimizing interface intermodulation. Because this condition is easily achieved in practice, this intermodulation is not a significant problem in modern amplifiers where adequate current drive capability exists.
Why do amplifiers with similar conventional characteristics have different-sounding low ends? Interface intermodulation is one possibility, but more likely causes are power supply interactions, coupling capacitor effects, clipping and safe-area limiter behaviour, and frequency response effects due to differences in damping factor.

In a philosophical sense, the concern that high feedback factor and high open-loop output impedance cause intermodulation seems to arise out of the same kind of misunderstanding of the operation and application of negative feedback which prompred many. to conclude erroneously that large feedback factor and narrow open-loop bandwidth caused transient intermodulation. While it is not a universal panacea, negative feedback does perform as advertised when correctly analysed.
and measurement it can be treated as an independent current injected at the output of the amplifier. This should not be construed to support the notion that the speaker load in practice is anything much more than a complex passive RLC load, however. The reaction signal can be treated as a current because we are assuming an amplifier with moderate to high damping factor, so that any voltage change induced at the output by the reaction signal is small. Studying the nature of interface intermodulation thus involves evaluating the consequences of both the higher output currents that the amplifier must supply and the correction signal which keeps the output from changing as a result of the reaction current.
Regardless of whether there exists a low "physical" open-loop output impedance, it should be clear that the amount of the reaction signal travelling back to the input as a voltage via the feedback path is by definition determined by the closed-loop output impedance. The closed-loop output impedance determines how much reaction signal voltage is developed at the output in response to the reaction signal current. This voltage, divided by feedback path attenuation, is the reaction signal fed back and circulated, and it doesn't matter whether the closed-loop output impedance is mostly "physical" or mostly synthesized by negative feedback. The level of the reaction signal fed back will thus be the same for all amplifiers with the same closed-loop gain and damping factor.
Even in amplifiers with low feedback and low open-loop output impedance (say 10 dB and 0.3Ω) the reaction signal is still far more significant than the "physical" open-loop output impedance in establishing the closed-loop output impedance and thus deeping the output node from moving around. For this reason the concept of so-called intrinsic damping at the output by a physical open-loop ouput impedance is of little value. The cost of achieving a very low closed-loop output impedance is about the same (low) for both high and low open-loop ouput impedance topologies.
Sources of distortion in amplifiers can usually be divided into two categories: those which depend primarily on output voltage and those which depend primarily on output current. Ordinary clipping is an example of the first while non-linearity in the current gain β of the output transistors is an example of the second. Because the

Fig. 1. Thévenin amplifier model where the open-loop amplifier is represented as a voltage source equal to the no-load output voltage in series with an impedance equal to the open-loop output impedance, $Z_{o l}$. Voltage V_{4} does not physically exist.
loudspeaker reaction signal represents only increased current taxation, interface intermodulation will primarily result from the last-mentioned current-dependent mechanism. Transconductance is the term which describes gain from an input voltage to an output current, specified in amps/ volt or mhos. Linearity of this quantity as opposed to voltage gain is particularly relevant to interface intermodulation; it will generally be less than the conventional SMPTE intermodulation, which exercises both voltage and current distortion mechanisms.

The simplified feedback amplifier can be modelled by means of either a Thévenin representation of Fig. 1, or a Norton representation of Fig. 2. Each representation is valid, but the insight provided van be slightly different. In Fig. 1, the open-loop amplifier is represented as a block of voltage gain A in series with the open-loop output impedance, Z_{ol}. Negative feedback is provided by the attenuation network labelled B. The no-load feedback factor is $A \cdot B$, and the closed-loop output impedance Z_{cl} can be found by applying a voltage to the output and calculating the resultant current flow:

$$
\mathrm{Z}_{\mathrm{cl}}=\mathrm{Z}_{\mathrm{ol}} \| \frac{\mathrm{Z}_{\mathrm{ol}}}{\mathrm{AB}}=\frac{\mathrm{Z}_{\mathrm{ol}}}{1+\mathrm{AB}} \approx \frac{\mathrm{Z}_{\mathrm{ol}}}{\mathrm{AB}} .
$$

The closed-loop output impedance is less then the open-loop output impedance by the factor $1+\mathrm{AB}$, as expected. For most normal situations, where Z_{cl} is significatly less than $Z_{o l}$ (i.e. A B $\gg 1$), the second term is dominant and the approximation shown is justified. In reality $\mathrm{Z}_{\mathrm{ol}}, \mathrm{Z}_{\mathrm{cl}}, \mathrm{A}$, and sometimes even B will be functions of frequency. For a given damping factor and closed-loop gain, open-loop voltage gain will be proportionately larger in amplifiers with high open-loop output impedance. Higher open-loop gain tends to naturally accompany high $-\mathrm{Z}_{\text {ol }}$ topologies and does not imply more active devices.

Models such as this are usually adequate representations of the terminal properties of what is being modelled, but internal conditions often have no relationship to reality unless a more complex model is assumed. It is very important when using this model to recognise that voltage V_{4} may not exist as a physical voltage in the real amplifier and thus has limited significance. It's easily seen that an amplifier with high open-loop ouput impedance will produce a very large value of V_{4} in the model when supplying high output currents, yet in a real amplifier no such voltage swings substantially in excess of the output voltage exist. Failure to recognise this probably contributed to earlier erroneous conclusions where much attention was paid to the activity of V_{4}, with the suggestion that large values could lead to increased intermodulation in a real amplifier. ${ }^{1}$

In the Norton model of Fig. 2, the openloop amplifier is represented as a voltagecontrolled current source with transconductance g_{m} in parallel with Z_{ol}. Notice that in this equally-valid model there is no unrealistically large internal node voltage swing, as with V_{4}. However, an unrealistic

Fig. 2. Norton amplifier model where the open-loop amplifier is represented as a current source equal to the short-circuit output current in parallel with an impedance equal to the open-loop output impedance.
internal current flow can occur in the current source when an amplifier with low open-loop output impedance produces a substantial output voltage swing. As before, caution is required in interpreting conditions inside the model.
Here the feedback factor is $g_{m} Z_{o l} B$ and the closed-loop output impedance is

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{cl}}=\mathrm{Z}_{\mathrm{ol}} \| 1 / \mathrm{g}_{\mathrm{m}} B \approx 1 / \mathrm{gm}_{\mathrm{m}} B \tag{2}
\end{equation*}
$$

As before, when Z_{cl} is significatly less than Z_{ol}, the second term is dominant, and we see that feedback factor and $Z_{o l}$ do not ${ }^{9}$ appear in this term. As Z_{ol} is increased, the feedback factor is also increased, leaving the closed-loop output impedance unchanged if the insignificant first term is ignored.
Insight provided by the model of Fig. 2 seems more relevant to power amplifier design because power amplifiers with high open-loop output impedances tend to have commensurately higher no-load feedback factors if they are constructed with the same number of active devices; this effect is handled explicitly by this model. The Norton model also applies well to amplifiers employing common-emitter output stages. The total net transconductance characteristic, g_{m}, also seems most relevent to interface intermodulation because here we are concerned with error correction signals which operate by controlling output current to meet the demands of the reaction current to keep output voltage from changing.
A slightly more detailed Norton-like low-frequency model of a power amplifier is shown in Fig. 3 where internal conditions are more realistic. In this model, the open-loop amplifier consists of three active stages: an input voltage amplifier A_{1}, an intermediate transconductance stage g_{ml}, and an output current amplifier stage $h_{\text {fe }}$. These correspond loosely to the input differential amplifier, the common-emitter driver, and the common-collector double or triple-Darlington output stage of a typical power amplifier. Typical values are shown for a medium-quality amplifier yielding a Z_{ol} of 50 ohms and a damping factor of 100 . We have

$$
\begin{gather*}
\mathrm{Z}_{\mathrm{ol}} \approx\left(\mathrm{Z}_{1} / \mathrm{h}_{\mathrm{fc}}\right)+\mathrm{R}_{\mathrm{e}} \tag{3}\\
\mathrm{Z}_{\mathrm{cl}} \approx 1 / \mathrm{A}_{1} \mathrm{~g}_{\mathrm{m} 1} \mathrm{~h}_{\mathrm{fe}} \mathrm{~B}=1 / \mathrm{gmm}_{\mathrm{m}} \mathrm{~B} \tag{4}
\end{gather*}
$$

Notice that Z_{1}, which often is a very high impedance at low frequencies in designs using current source or active loading on the pre-driver, usually dominates in

Fig. 3. More detailed Nortonlike amplifier model which more accurately models real power amplifiers. Impedance Z, usually dominates in determining no-load feedback factor and open-loop output impedance.
determining Z_{ol}. Amplifier models constructed and measured in a previous study ${ }^{1}$ had output stages driven by a low-impedance source and thus did not allow for the significant contribution of this term. It can be seen from this model that extremely high damping factors are easily achieved by using, for example, a triple-Darlington output stage with an $h_{f c}$ of the order of 100,000 .
We thus see that in either high or low Z_{ol} designs of equal gain and damping factor the level of the fed-back reaction signal is the same; in both cases it is inversely proportional to the amplifier's net transconductance.
But what of the distortion this reaction signal may cause in the forward path? It could be argued that the higher voltage gain of high $\mathrm{Z}_{\text {ol }}$ designs is less linear, given an equal number of active devices. While the higher feedback will compensate for this in terms of ordinary intermodulation and harmonic distortion, what about interface intermodulation? To answer this question we must recognise that the magnitude and linearity of net transconductance (not voltage gain) are the relevant parameters here because we are talking about distortion generated in correcting for a current injected at the output.

The effect of negative feedback on distortion is most easily understood by working backward from the output. We assume a perfect output and evaluate the
input-referred distortion required to generate it, just as we do in calculating inputreferred noise. Because the feedback signal under these conditions is perfect, the absolute level of the input-referred distortion is the same for either open or closed-loop conditions. Distortion percentage is reduced by feedback simply as a result of the larger pure component of the input signal required under closed-loop conditions. This technique is accurate when closedloop distortion is small $(<10 \%)$. It is important to choose the appropriate gain in referring a distortion product back to the input and to recognise that it may be frequency dependent. Of course, the linearity of that gain determines how much distortion is to be referred back to the input. In the case of interface intermodulation the gain in question is net transconductance.

Notice that a g_{m} of 250 with 10% nonlinearity will result in the same input-referred distortion voltage as a g_{m} of 125 with 5% non-linearity. Both would produce a 2 mV distortion voltage when a 5 A current is being delivered; this is 0.2% relative to a $1 V$ input signal level. For this reason the product of magnitude and linearity of net transconductance is the determining factor, regardless of amplifier topology, open-loop output impedance or feedback factor.

Different amplifiers optimally constructed with the same number of active devices will tend to have a net transcon-

Fig. 4. Simple contemporary power amplifier used for computer simulations and laboratory measurements. Choice of R_{11} and R_{12} provides a high-feedback, high- Z_{01} design or a low-feedback, low-Z-ol design with the same cost, gain and damping factor.
ductance with the same magnitude-linearity product. In the model of Fig. 3, notice that the value of Z_{1} has virtually no effect on the magnitude or linearity of net transconductance. The fact that we can go from a high Z_{ol}, high feedback design to a low $\mathrm{Z}_{\text {ol }}$, low feedback design by merely changing Z_{1} without affecting the transconductance characteristic, and thus intermodulation, illustrates that open-loop output impedance and feedback factor have no bearing on interface intermodulation if the damping factor is held constant. Notice that no assumptions have been made about any perceived "market-place reality" in regard to ordinary closed-loop intermodulation performance or about open-loop voltage gain linearity.

Contemporary amplifier analysis

To lend perspective to the previous section and to confirm some of the conclusions, a simple contemporary power amplifier was constructed and subjected to analysis by computer simulation and laboratory measurement, Fig. 4. Though simpler than many current amplifier designs, it is representative of contemporary topology. The circuit incorporates the classic topolgy of the differential input stage, the commonemitter driver stage with current-source load, and the complementary Darlington output stage. Emitter degeneration provided by R_{3} and R_{4} allows a respectable slew rate of about $25 \mathrm{~V} / \mathrm{\mu s}$ for good transient intermodulation performance. Capacitor C_{3} provides Miller-effect feedback compensation for a stable closed-loop bandwidth of about 1 MHz . Transistors 3 to 5 form a Darlington/cascode stage which provides good linearity and high output impedance. Notice that this amplifier is well represented by the model of Fig. 3.

To test the findings of the previous section, we examine two versions of this amplifier design identical in every respect except that one is characterized by high open-loop outpur impedance and high feedback factor (case A), while the other is characterized by low open-loop output impedance and low feedback factor (case B). The differing characteristics of the two amplifiers are determined by collecter load resistors R_{11} and R_{12}; the value of these resistors is the only circuit difference. This technique guarantees that only the characteristics under discussion are influential in the comparison. A very high value $10 \mathrm{M} \Omega$ achieves the high-feedback, high- $\mathrm{Z}_{\text {ol }}$ case A, while a low value ($10 \mathrm{k} \Omega$) achieves the low-feedback, low-Z ${ }_{\mathrm{ol}}$ case B.
Computer simulations were first run to confirm the small-signal performance of both designs. The results are tabulated below, and show no surprises. As expected, closed-loop output impedance is about the same in both cases, corresponding to a damping factor of about 100 .

	Feedback	$\begin{aligned} & \text { Outp } \\ & \text { o.l. } \end{aligned}$	$\begin{aligned} \text { out } Z \\ \text { c.l. } \end{aligned}$	Bandwidth o.l. c.l.
Case A	61 dB	71Ω	$7 \mathrm{~m} \Omega$	$800 \mathrm{~Hz} \mathrm{1MHz}$
Case B	28 dB	1.8Ω	$8 \mathrm{~m} \Omega$	30 kHz 1 MHz

Fig. 5. Simplified loudspeaker model used for the computer simulations. Although a speaker can act as an active signal source (a microphone), this effect is so small that the speaker can be accurately modelled as a passive RLC load.
formance of the two amplifier designs by looking at internal and external signals as functions of time under various conditions. The plots generated by the transient analysis program are like what would be seen on an oscilloscope display if the experiments were done with a real amplifier.

Both 56 V pk-pk sinewaves at 50 Hz and squarewaves at 2 kHz were injected into the outputs of the amplifiers through an eight-ohm resistor with no signal input to the amplifier in two different experiments. This permitted observations of the circulating error signals at various points inside the amplifiers. In both experiments the waveshapes and magnitudes were virtually identical for both cases at all nodes observed. (In fact, case B levels were about 10% higher due to the.slight. additional error current which must be supplied to R_{11} and R_{12} when they are $10 \mathrm{k} \Omega$.)

Now look at the situation where the amplifier delivers a large voltage step into a simple RLC model of a loudspeaker, like the one shown in Fig. 5. The parameters in the model have been chosen to represent a typical loudspeaker with a d.c. resistance of 6.4Ω, a fundamental system resonance of 50 Hz , and Q of about 0.5 .

Fig. 6 shows the signals of interest for cases A and B: amplifier output voltage, load current, output stage drive voltage,

(a)
(b)
(c)
(e)

Fig. 6. Amplifier signals when driving a step function into the RLC load of Fig. 5: a) amplifier output voltage; b) load current; c) drive voltage to output stage; d) pre-driver collector current; e) input stage collector current. Note different scales for (d) and (e) for cases A (left) and B (right).

Tr_{5} collector current, and Tr_{1} collector current. The load current rises suddenly to that which would flow into the $6.4 \Omega \mathrm{~d} . \mathrm{c}$. resistance alone, dips deeply to about onefourth this value, and gradually rises back to the earlier resistive value. The deepest point in the valley prepresents the point of maximum cone velocity and thus maximum back-e.m.f. acting to lessen current flow. Although the dip looks like a large "oscillation", keep in mind that, at least for this experiment, it represents decreased amplifier taxation. The internal amplifier signal excursions for case A are generally smaller than for case B. This is primarily due to the fact that R_{11} and R_{12} consume a substantial amount of drive current in case B.

Another experiment, using a different type of pulse input, shows that under certain conditions the RLC load is not as innocent as it appears above. The unusual driving waveform shown in the top trace of Fig. 7 was deliberately chosen to maximize the expected peak load current by reversing the drive signal polarity when the back-e.m.f. will act to increase current flow. While an amplifier delivering this waveform to an 8Ω resistive load would see a peak load current of 3.5A, the RLC load develops a peak current of 10A! While the probability and extent of this kind of occurence in the real world with music may be argued, the exercise does provide food for thought. As before, this situation is handled similarly by the case \mathbf{A} and case B amplifiers, so feedback factor and openloop output impedance are not at issue here.
As further verification of these findings, the power amplifier of Fig. 4 was constructed and tested for case A and case B conditions. A similar design of the same complexity using a common-emitter output stage with a Z_{ol} of 1500Ω was also

Fig. 7. Special pulse signal into RLC load illustrates unusually large currents which can flow under certain conditions: a) amplifier output voltage; b) load current. While not really an intermodulation issue, this does illustrate the need for high current capability in the power amplifier.
tested as case C. All three cases exhibited the same cost, closed-loop gain and damping factor. The amplifiers clipped at a level of 50 W into an 8Ω load. They were first tested for SMPTE intermodulation $(60 \mathrm{~Hz}$ and $6 \mathrm{kHz}, 4: 1)$ at a level of 45 W . Test results are tabulated below. The higher case B intermodulation is directly attributable to increased exponential baseemitter distortion in the pre-driver, where substantially larger signal current swings are involved in satisfying the current requirements of the low-value case B collector load resistors.

Output Intermodulation (\%)
$Z(\Omega)$ SMPTE Interface
Case A
Case B

7.1	0.1	0.052
1.8	0.3	0.063
1500	0.08	0.063

Interface intermodulation was next measured in a manner equivalent to the procedure outlined in reference 1. Equal-level 1000 and 60 Hz signals were applied to opposite ends of an 8Ω load resistor by the amplifier under test and a second power amplifier. A spectrum analyzer was placed across the output of the amplifier under test and the r.m.s. sum of the distortion products was referred to the 1 kHz level. The operating level of each amplifier was 25 W . The similar levels of interface intermodulation in all three cases confirm that open-loop output impedance and feedback factor have virtually nothing to do with it in amplifiers properly constructed at the same cost.

References

1. Otala, M., J. Lammasniemi, Intermodulation at the amplifier-loudspeaker interface, Wireless World, November and December, 1980.
2. Jung, W. G., M. L. Stephens, C. C. Todd An Overview of sid and tim, Audio, vol. 63, June, July and August, 1979.
3. Garde, P., Transient distortion in feedback amplifiers, 7. Audio Eng. Soc., vol.26, May 1978, pp. 314-321.
4. Cordell, R. R., Another view of tim, Audio, vol.64, February 1980, pp.38-49, March 1980, pp. 39-42.
5. Cordell, R. R., open-loop output impedance and interface intermodulation distortion in audio power amplifiers, 64th AES Convention, New York, 1979, preprint 1537.

NN

No delay for cellular radio

A national cellular radio-telephone service provided by Racal-Millicom operating in competition with Sectel, the British Telecom/Securicor consortium, is given the go-ahead. Secretary of State for Industry Patrick Jenkin has confirmed his provisional decision to licence a second national cellular radio system and authorised the DoI to commence negotiations with Racal with a view to the early grant of a licence.

In answer to a parliamentary question, Under-Secretary of State for Industry John Butcher said "The availability of cheap hand-held equipment will have particular benefits for small firms and self-employed persons . . . the arrangements I am announcing will ensure that instant access to mobile communications will soon be within the reach of anybody who needs it. 'The Department's advisory panel on telecommunications liberalisation unanimously endorses SRI's recommendation that Racal's bid meets all the conditions laid down in guidelines and provides not only the greatest industrial benefits but also the best prospects for early national coverage by cellular radio".

The announcement came in early December ten days after SRI International, appointed by DoI to assess applications for the licence, presented their findings. Their evaluation took into account potential in-
dustrial benefits including employment, provision of a national service and ability to provide a true duopoly with BT, as well as the applicant's national credibility, integrity and even-handedness.

Racal-Millicom's aim is to provide coverage for 64% of the land mass and 90% of the population within five years. They in tend to spend $£ 45 \mathrm{~m}$ initially, to provide 75 cells and 10 remote-switch groups by 1985, rising to a total of $£ 200 \mathrm{~m}$ in 1989 when 941 cells and 244 remote switches serving more than 250000 subscribers are predicted. The company, comprising 80\% Racal, 15\% Millicom Inc., and 5\% Hambros ATT Ltd, was one of three bidders invited to revise their proposals after SRI told the government on 28 October that they could
not recommend any of the proposals in their present form. The other two applicants, presumably the smaller of the five companies (Metagate and Rushbridge), were not invited as they were already considered non-runners.
Choosing Racal-Millicom as holder of the second licence (Sectel will hold the first) does not imply which cellular radio technique will eventually be decided upon. "A decision on technology could not be made until the licensee was chosen" said Butcher, "each system was considered adequate so judgement was only made for the best bidder on other considerations." Negotiations between the two licence holders and other 'interested parties' will determine which system is chosen - unless agreement cannot be reached in which case the Secretary of State could intervene. The decision could be made within the next eight weeks.

"Two systems could run concurrently"

Speculation about which system may be chosen is rife, but talks between the two parties are not yet underway. A spokesman for BT said "We see no reason why two different systems cannot run concurrently provided that their frequencies and channel spacings coincide . . . the switching method used does not matter', which makes speculation even more difficult.
Racal's proposal included a technical section describing their improved version
of the American-developed AMPS cellular communications method. AMPS was also preferred by Cellular Radio but National Radiophone Services opted for MATS-E developed in a joint venture by Philips, Pye Telecoms and the French CIT Alcatel. We reported last month that BT were thought to be looking into Nordic, a Scandinavian system developed in Sweden and operational since 1981; a recent report that BT has turned its attention to MATS-E is

This prototype cellular-radio telephone, from RacalMillicom, could cost around $£ 700$ to buy or $£ 25$ per month to rent. BT say that it will not replace the wired telephone for reasons including limitations in the bands likely to be available and the number of call codes that can be used.
claimed by them to be an exaggeration. The MATS-E system is being looked into by BT, but only as part of their overall assessment; they will not yet state their preference. MATS-E has not had field trials but a claim that it is the most spectrally efficient system, offering the largest subscriber capacity, was not contended by representatives of the other systems at a recent seminar on MATS-E cellular radio.

The European Conference of Postal and Telecommunications Administrations (CEPT) have proposed a European 900 MHz cellular system for the next decade based on 25 kHz channel spacing. Standard AMPS uses 30 kHz channel spacing and Nordic currently operates on 450 MHz so neither complies directly with this proposal - MATS-E is claimed to come the closest to these recommendations and to be the only system capable of handling a projected demand of 23000 automatic mobile telephones in London by 1990. "AMPS and NMT (Nordic) systems would be channel-bound in 1987 and 1988
respectively" say Pye Telecom.
Both the DoI and Racal-Millicom place emphasis on the number of jobs likely to be created by cellular radio, with Racal estimating 6,000 jobs from their side by 1989 and the Dol claiming that up to 10,000 jobs could be created, presumably by including those likely to come from BT. The general view is that these figures may be overestimates. There is a possibility that by 1989, cellular radio may affect the workforce currently involved with mobile radio. Even so, who can complain at the prospects of anywhere near 6000 jobs for a mere $£ 200 \mathrm{~m}$ investment?
A recent report claims that the Home Office has agreed to allocate frequencies outside normal mobile radio bands for Philips' tests with MATS-E' and suggests that there is a commitment to have a trial MATS-E system running by mid 1984 by a company other than Philips. Allocation of a 30 MHz spectrum for cellular radio in the $854-960 \mathrm{MHz}$ band was confirmed by the Home Secretary last November.

Cells bright under the rising sun

Mobile telephones in Japan totalled 13000 in March of 1982 compared with 7000 in the same month of the previous year and current installation rates lead to a forecast of 22000 subscribers by March 1983, according to a recent report on Japanese mobile telephone developments. Japan's 800 MHz high-capacity cellular mobile telephone system, HCATS, was first
installed at Tokyo in December 1979, and has been under development since 1967. Nippon Telephone and Telegraph have also completed feasibility trials with a lower-capacity cellular system to serve medium and small cities. The report, by Eurogestion KK, is available in the UK through IPI, 134 Holland Park Avenue, London W11 4UE.

Maritime radio reviewed

In attempts to cut losses running at $£ 4 \mathrm{~m}$ a year and exploit latest technology, proposals for reorganization of Britain's maritime communications service have been put to staff and unions concerned by British Telecom International. These proposals involve the closure of two maritime radio stations, the conversion of a further nine to operate under remote control, and staff reductions. Only two stations will be manned to receive calls and monitor the remote stations, Stonehaven Radio near Aberdeen and the long-range receiving centre at Burnham-on-Sea in Somerset. Two of four current long-range transmitting radio stations at Leafield in Oxford and Ongar in Essex will close under the plans.
According to BTI , these changes and further staff cuts in other sections including the Brearly development laboratory, "will not mean a reduction in service given to customers or affect the ability to handle distress calls." Some two-thirds of BTl's short and medium-range stations already operate under remote control, as do most of Europe's maritime radio stations say BTI. Factors leading to the review of maritime services include the depression in the UK shipping industry and a steep decline in the use of terrestrial radio services brought about by developments in communications technology - satellite services and telex. Around 200 of 1,000 people now employed in the maritime services are expected to lose their jobs.

3Mbyte micro-floppy within two years

A $3 \mathrm{Mbyt} /$ side $31 / 2 \mathrm{in}$ floppy disc drive using perpendicular magnetic recording is scheduled for mass production within two years says Toshiba. This experimental product, they claim, "marks the world's first simultaneous development of a disc and drive for reading and writing information using p.m.r. Both Japanese and foreign manufacturers have been researching methods of adapting the p.m.r. concept for practical applications, but Toshiba is the first company to achieve this goal". These claims will no doubt cause concern at Vertimag's Minnesota base (see September 1982s news pages) as this company already claims to have demonstrated such a 5Mbyte floppy disc system which will sell for around $\$ 750$, with production commencing in mid-1983.

Proposed in 1975 by Professor Iwasaki of Tohoku University, perpendicular magnetic recording increases storage density by using magnetic particles stood on end,
as opposed to conventional methods where the particles are laid end-to-end and magnetised along the surface of a disc or tape. A major hurdle in manufacture has been the production of a surface capable of being magnitised in such a way. Toshiba have succeeded in sputtering a $0.5 \mu \mathrm{~m}$ layer of chromium-cobalt alloy on both sides of a polyester-base film and developing a $0.4 \mu \mathrm{~m}$-gap ring-shaped head and new positioning mechanisms for the drive to make full use of the recording density available.
According to Vertimag, early hardware will offer three to five times the storage capacity of existing floppy-disc memories but Toshiba claim a 27 -fold improvement for their device. Sony's current $31 / 2 \mathrm{in}$ floppy-disc drive can hold 437 K byte but could be said to be unconventional.

- Interference between adjacent bits on digital magnetic recordings can be greatly reduced by using transversal filters but

Representation of Toshiba's ring-shaped ferrite head and perpendicular recording. Linear recording density is around $2 \mathrm{Kbit} / \mathrm{mm}$ on tracks spaced $176 \mu \mathrm{~m}$ apart.
such filters are usually considered impractical in this application because of their price. A theoretical demonstration at the Southampton University conference on video and data recording showed that a.s.w. transversal filters can be used to reduce bit interference, providing either greater packing density or an improved signal-to-noise ratio.

Torch approved

The first microcomputer to be fully approved by BT for connection to the public switched network is announced. Cambridge manufacturers of the computer, Torch, say that their micro has had similar approvals in the US and Canada and is currently being evaluated by European telecommunication authorities.
Two such computers operating as viewdata terminals have recently been on trial aboard a Cunard liner in an attempt to improve the handling of weather-forecast, stores and booking information and offer a more efficient mail and Prestel service for passengers. In a proposed system, information would be loaded into one micro from Cunard's mainframe and transmitted through a satellite to micros on board ships for storage or printing. The computer's mailing facility is said to transmit messages twenty times faster than standard Telex links.

Incorporating a $1200 \mathrm{bit} / \mathrm{s}$ CCITT-standard modem with auto-dial/answer, the colour computer can run in teletext mode for viewdata or give an 80 -column display for Telecom Gold electronic mail. Communication with other computers is through Econet, RS232 or the modem and interfaces for local or remote networking may be attached.

Solid modelling

In the mid-seventies a demonstration geo-metric-modelling system was jointly developed by Leeds and Rochester Universities in the hope that 'software vendors' would take up the work and make it commercially viable. To date, over seventy of these demonstration systems are used as research and teaching aids, but the software producers did not take the bait as expected. Because of this both universities, convinced of the value of their research, set up projects to develop indust-rially-viable geometric modelling systems.

In a paper presented at the Computer Graphics conference last October, Leeds University reported the progress of their industry-sponsored modelling project and predicted its future. Receiving financial support and experienced personnel from industries likely to use the research has resulted in software tuned to typical applications - rather than a package capable of being modified and providing a compromise.

The starting point was a detailed survey of parts likely to be modelled which also helped to provide design algorithms and input methods. Initial (1981) software provided Fortran-compatible parameterization, coordinate system, design editing

This positioning table for filming small entomological and botanical specimens was designed by engineers at BBC Bristol for the Natural History Unit. Housed in an area designated the Macro Studio (in a basement) linked to the BBC distribution network, the positioner has already been used for several nature programmes. Servo motors rotate the platform and move it along three axes according to commands from a separate control panel. To ensure that insects and plants don't shrivel up too quickly, 'cold' lighting and fibre-optic spot-lamps are used.
features, representation conversion, and designer interaction, which enabled the modeller to be used for designing, analysing and drawing components, including the production of illustrations with perspective, hidden-line sections and exploded views. But the team is now working on modules to handle dimensions and tolerances. It is also looking into methods of generating finite-element meshes automatically. Molecular and dynamic modelling are projected, the lastmentioned to allow the designer to see the effects of an engine's changing crank angle for example.

The modeller's ability to define solid shapes and reliably compute whether bodies intersect is expected to bring it into the robotics field. Robots for handling both components and assembly operations will be modelled - not necessarily in the form shown on January's front cover. In
numerically-controlled machining the system will present stock, component and tool-path models and aid the production of tapes, making this type of machine viable for producing smaller batches than is currently the case.

According to the paper, the use of geometric modellers in design rather than in planning or manufacture, is primarily to capture information at source. The future will see geometric modelling systems embedded in highly integrated design and manufacturing systems. To allow this incorporation and integration, the majority of models will be built by computer programs and not users.

Solid modelling - a tool for industry by G. T. Armstrong, A. de Pennington and J. S. Swift was presented at the Computer Graphics 82 Conference, proceedings of which are available from Online Conferences Ltd, Argyle House, Northwood Hills, Middlesex HA6 ITS.

January limit for new mobile frequencies

Trunked common-base station operators likely to make the best use of channels in a new u.h.f. land-mobile sub-band within 35 miles of London are invited to apply to the Home Office by 31 January. Three groups of channels are available and each operator selected will initially be offered three channels with potential room for expansion. More scope will be available for trunked common-base stations when the 405 -line tv service closes and frequencies become
available for land mobile use.
In a trunked mobile radio scheme, a group of users share a common pool of radio channels and a common base-station transmitter and receiver. Prospective applicants for one of the three initial frequency groups should apply to, Home Office (R2 Division), Room 708, Waterloo Bridge House, Waterloo Road, London SE1 (telephone 01-275 3284) by 31 January.

Payphone for the table

A tabletop payphone measuring 230 mm square by 178 mm high and weighing 3.2 kg is available following successful trials. BT say that this, the country's smallest payphone, will be useful for "small businesses who want to provide their customers with a phone but not give away free calls." Among businesses expected to be attracted to the idea are garages, shops, surgeries (?), hairdressers, pubs and clubs. Designated Payphone 100, the unit may be switched to operate at normal call rates as a private phone using a key; when coin operated, higher call-box rates apply but the renter retains the extra cash paid. Only one line is required for the two modes of operation. Calls to the operator, except 999 calls, are inhibited when the telephone is set for coin operation to keep rental costs to a minimum say BT. Rental charge for the telephone - excluding line rental and an initial $£ 32$ installation cost - is $£ 26.50$ per quarter. Two, five, ten and 50 p coins are accepted and unused coins are returned.

The 100 is designed for use with a socket system formerly only available to domestic

subscribers and recently made available to businesses. These sockets allow telephones to be moved from room to room and form part of an insulation-displacement wiring system introduced by BT to cut down installation times. Plug-in adaptors for answering machines, memory diallers and other attachments are under development.
AGI of Croydon manufacture the microprocessor controlled payphone. By mid-1980 all Britain's 77,000 public telephones will be replaced by electronic types and 300,000 rented payphones will be replaced by the end of the decade.

Strings for cordless telephones

Cordless telephones meeting Home Office specifications do not require a wireless telegraphy licence from 1 January but few of the telephones currently on sale or in use meet these requirements, say the Home Office. Offenders will suffer up to three months imprisonment and/or a $£ 400$ fine; the fine rises to $£ 1000$ this year under the Criminal Justice Act of 1982.

Arrangements for the introduction of a limited range of cordless telephones made jointly by the Home Office, the DoI and BT were announced in late August 1982 as part of the Government's programme for the liberalization of telecommunications (see News, November). To introduce a service quickly (with current technology) eight frequencies between 1632 and 1792 kHz for base transmission have been paired with frequencies between 47.45 and 47.55 MHz for handset transmission. "These short-life frequencies will be replaced by longer-term frequencies probably in the 900 MHz region - before the old ones are withdrawn" say the Home Office. Coincidentally, the 900 MHz region is likely to be used for cellular radio.

A language for the new generation

With future multi processor systems and fifth-generation computers in mind Inmos together with the programming research group head at Oxford University have developed a programming language "based on the concepts of concurrency and communications." Anticipating the 1984 intro-

Demonstrating an easily understood and compiled programming language for future multi-processor systems, this partial program shows how the speaking tea maker depicted may be controlled. A network of the tea maker is represented in the program; elements of the system assigned processes and interaction connections between elements are represented by channels. Individual processes already formed are combined in this controller process by declaring local variables. WHILE and ALT statements determine the alternative used by the controller.

duction of its Transputer - a building block for multi-processor systems such as fifth-generation computers - Inmos say "efficient design and implementation of these systems is not possible with current VAR alarm, time. brewing : $=0$. FALSE WHILE TRUE ALT
buttons ? request
IF
trequest = tea.pleasei AND NOT brewing PAR brewer! make.tea brewing = TRUE
request = time.please speaker ' say.time. NOW
made?
SEO
speaker ' say.message. tea.made brewer ' pourtiea brewing: $=$ FALSE
WAIT AFTER alarm.lime
SEO
alarm.time = alarm.time + one.day alarm.time $=$ alarm.time + one.day
speaker ! say message. good.morning
IF

NOT brewing
PAR
brewer' ! make.tea
languages whose designers never intended them for such applications. Occam was created to meet these rieeds". The director of the research group, Professor Tony Hoare, is noted for his concern over the unnecessary elaboration of computer languages.
Existing programming languages, developed for single-processor computers, only allow sequential access to components in the system. When used to program a system directly, Occam represents these components and their associated interconnections. Each activity in the system is represented by a process made up from three 'primitive processes' termed assignment, input and output, grouped together by constructional functions called parallel, sequential and alternative. Input and output functions allow concurrent processes to communicate with each other through assigned channels, two chiannels being required for a two-way conversation between processors. As a channel is a point-to-point connection, messages need not carry addresses.
Evaluation versions of the language generating p-code and tailored for micros such as the Apple, IBM Personal Computer, LSI-11 and Sirius-1 have been produced. In single processor systems, main uses of the language seem to be in real-time applications.

Two-metre transceiver

> This synthesized voltage-controlled oscillator together with 9 MHz s.s.b. transceiver and f.m. exciter form part of a 146 MHz -band multi-mode transceiver with microprocessor control. A synthesizer logic circuit completes last month's description of module five.

Module 6 consists of a fet voltagecontrolled oscillator with an emitter follower, Tr_{601}, and a class A amplifier, Tr_{602}, to lift the level to 0 dBm (1 mW). Housed in the same enclosure as the synthesizer logic of module 5 , this circuit board also incorporates three power switches.

Transistors 603 and 604 form a singlepole change-over switch, the output of the former feeding the s.s.b. receiver and the latter providing a supply regulated at 6 V by IC 600 for the s.s.b. transmit exciter. The output from Tr_{603} is regulated on the s.s.b. receiver board as this section re-

by T. D. Forrester, G8GIW

quires a low-impedance supply. Transistor 605 feeds the f.m. transmit exciter; a 9 V zener diode on the exciter board regulates this supply.

These power switches are supplied through the mode switch so that $\mathrm{Tr}_{603,604}$ operate when s.s.b. is selected and Tr_{605} operates when f.m. is selected. They are
mounted directly on the p.c.b. and do not require heat sinks.
Initial adjustment of the v.c.o. is carried out by setting the control voltage to approximately 7 V through a potentiometer and adjusting L_{601} to give 136 MHz . When the microprocessor and control logic sections to be described are connected, adjusting L_{601} should cause variations in the control voltage. If the microprocessor section is not available, careful runing of the v.c.o. should allow resolution of signals in the band. The full sweep of 135 to 137 MHz should be obtained with a voltage swing of 1.5 to 13 V .

Voltage-controlled oscillator block diagram. A sweep from 135 to 137 MHz is obtained with a control voltage swing of 1.5 to 13 V .

Components cominued		twoen turns, slug tuned
		604 turns primary, 2
705-708	1 M 914	turns secondary,
603	88105	30 s.w.g. on $\mathrm{T} 6 \mathrm{Cl}^{2}$
703,74	8.2 V zener. 400 mW	700 toroid 4 furns primary, 2
709	1N4001	turns secondary,
lintegrated ciretits on heore tor		
600, 706	78L0\%	Crystais 700, 701 and 702 are all 9MHz
601	78.08	for l.s.b., u.s.b. and f.m. respectively; the crystal filter is type XF98 by KVG
700,703	SL1640	
701	\$1. 1610	available from GE Electronics Lid, 182
702	SL 1621	Cempden Hill Road, London W8, for
704,705	SL1612	£42.86. Interface Quartz Devices of 29
Inductors $600,602,603$ 601		Market Street, Crewkerne, Somerset TA18 7JU, have what they claim is an equivalent of the XF9B, the IOXF-90H2.4 at $£ 24$ including the u.s.b./l.s.b. crystals and sockets. Resistore are $1 / a \mathrm{~N}, 5 \%$ types.
	4.7\% sub-min fixed	
	$41 / 2$ turns with 22	
	s.w.g., 1/4in i.d., 1 wire thickness	

As with the other modules, all signals and supply lines must be filtered using lnF lead-through capacitors attached to the metal enclosure to remove r.f. feedback problems. Small-diameter coaxial cables and connectors should be used for
all lines carrying r.f. signals. Thorough filtering and decoupling can save a lot of time and money. Any shortcomings in the synthesizer logic and v.c.o. sections will degrade both transmitter and receiver performance so these areas require attention.

9MHz s.s.b. transceiver/f.m. exciter - module 7

The heart of the s.s.b. transmitter/receiver and f.m. receiver breaks down into the following sections
-s.s.b. carrier oscillator, Tr_{701}
-s.s.b. generator, Tr_{700} and $\mathrm{IC}_{700,701}$
-s.s.b. receiver, $\mathrm{IC}_{702 \text {-705 }}$
-f.m. carrier oscillator, Tr_{702}
-f.m. microphone preamplifier and limiter, $\mathrm{T}_{703,704}$ and $\mathrm{D}_{705,706}$.
Thus broken down, the circuit should be easily understood. The s.s.b. transmitter/ receiver circuits are based on the proven Plessey SL1600 series and require little explanation, except perhaps for the receiver. It is important that the receivera.g.c. generator, IC_{702}, has a low-impedance power supply; this is provided by
a 6 V regulator, IC_{706}, mounted on the p.c.b. This 6 V line is well decoupled with $\mathrm{C}_{731}, \mathrm{C}_{736}$ and C_{743}.
When power is applied to the s.s.b. receiver current also flows through R_{710} and D_{701} so coupling the receiver front-end to the s.s.b. filter through $\mathrm{C}_{715}, \mathrm{D}_{701}$ and L_{700}. In the s.s.b. receiver approximately 68 db of i.f. gain is provided by IC_{705} and IC $_{704}$. The signal is demodulated in IC_{703} and the resulting a.f. signal fed to IC_{702} to produce an a.g.c. voltage for IC_{704} and IC_{705} and drive the S -meter on s.s.b. Transistor 701 is the s.s.b. carrier-oscillator transistor which is used both for transmitting and receiving. Frequencies of the crystals for l.s.b. and u.s.b. are trimmed by C_{718} and C_{719} respectively to the fre-

quencies shown on the crystals; variable trimmers could be fitted, but I prefer to set the frequency once and for all on a frequency meter and use fixed capacitors, so removing the temptation to twiddle.

Power feed for Tr_{701} is controlled by the mode switch, the u.s.b., l.s.b. positions of which are connected to a diode OR gate, D_{707} and D_{708}, to feed power both to Tr_{701} and the s.s.b.-power change-over switch in module 6. A miniature relay selects the crystal for either l.s.b. or u.s.b., as a diode switch at this point can be troublesome. The s.s.b. exciter is simple, using Tr_{700} as an emitter-follower microphone preamplifier to provide IC_{700} with a low source impedance. Voltage gain is not necessary in Tr_{700} as IC_{700} requires a maximum of 100 mV p-p which is less than most microphones provide. Level adjustment is made using R_{704}.
Carrier signal through C_{705} feeds IC_{700} which produces d.s.b. at pin 5; carrier balance in this i.c. is typically -40 dB , but if this figure is not reached then the potentiometer modification shown can be used.

This low level d.s.b. signal is then amplified by IC_{701} before being converted to s.s.b. by the crystal filter. The KVG XF9B filter used in the prototype is expensive but it gives good results and is well worth the extra cost. The s.s.b. signal from the crystal filter is matched to approximately 50Ω by L_{700} before passing through D_{700}, biased on by current through R_{708}, and on to the transmit converter (module 2). Resistor 705 adjusts the gain of IC_{701} and should be set to prevent 'flat topping' in the transmitconverter final stages.

The f.m. microphone preamplifier and limiter is formed by $\mathrm{T}_{704}, \mathrm{D}_{706}, \mathrm{D}_{705}$ and $\mathrm{Tr}_{\text {703. }}$. Microphone gain is set using R_{735} while R_{725} sets the deviation; normally a 5 V p-p audio signal is required on the collector of Tr_{703} for 4 kHz deviation.

Two unusual features of the f.m. exciter are that it uses 9 MHz and that the varia-ble-capacitance diode is a 1 N 4001 power rectifier. As there is no frequency multiplication, 4 kHz deviation is required from the 9 MHz crystal; this is not as difficult as it might seem. Using the 9 MHz f.m.-i.f. strip, it it possible to monitor the 9 MHz signal and adjust deviation for best quality.
When assembling the components for this module, care is required as in one or two places space is limited. It is a good idea to break convention and fit the i.cs first.

To be continued
Photocopies of track diagrams and component-position sketches for the first four modules can be obtained by sending an s.a.e. to Wireless World Transceiver, Room L303, Quadrant House, The Quadrant, Sutton, Surrey SM 2 5AS.

The annual lecture of the Royal Signals Institution, given last November by Professor Sir Ronald Mason, Chief Scientific Advisor to the Ministry of Defence, certainly maintained the high level of interest that has come to be associated with this event. He argued fluently and persuasively that the skilful use of new technology to improve battlefield radio. communications could multiply the effectiveness of a combat force. With good $\mathrm{C}^{3} \mathrm{I}$ (command, control, combat communications and intelligence) David could stand up to Goliath. God, it seems, may no longer be on the side of the big battalions but smiles benignly on frequency-hopping, spread-spectrum, packet networks, target sensors and target decoys, tactical satellite communications (down to the vehicle and manpack level) and "stealth" technology for rendering aircraft and other targets virtually invisible to radar.

Sir Ronald established a precedent by bringing in industry to demonstrate the virtues of some recent products: the Racal Jaguar V digital speech and data radio sets with frequency-hopping; STL's "Navstar" satellite navigation system planned to give world-wide all-weather coverage, providing accurate three-dimensional position and velocity information; a hand-held jammer and its antidote in the form of the new automatic "ICE" antenna nuller from Plessey; and Marconi's interesting Bragg-cell spectrum analyser that can provide continuous, instantaneous panoramic display of microwave signals, including the fastest frequency hoppers and presumably opening the way to more effective interception of (and direction finding on) hopping signals.
But there were two important topics which Sir Ronald appeared to avoid until they were raised from the floor. One was the question of survivability of communications systems in respect of the electromagnetic pulses arising from the explosion of nuclear devices in the upper atmosphere and the similar problem of whether satellite communications systems can be considered reliable against a sophisticated: enemy in the light of anti-satellite weapons development and/or determined jamming.

The other difficult question concerned the wide price differentials between military, civil "professional" and civil "consumer" electronics. It was pointed out that some video games now use technology as complex as that found in advanced military systems, yet are sold at a tiny fraction of the cost. Sir Ronald suggested that troops in the Falklands would not have been happy with cheap plastic handsets though it could be argued that in practice they did not benefit much from the fullspecification signals equipment that went down, unused, in the Atlantic Conveyor. He considered that a greater share of the
total defence budget could usefully be spent on $\mathrm{C}^{3} \mathrm{I}$ equipment; a viewpoint with which few in the audience seemed likely to disagree, although there exists a powerful "hard-kill" lobby which believes more in electronics weapon systems than improved communications.

Cost plus

On the general question of the cost of .professional communications equipment I recently received a letter from a radio amateur pointing out that high-grade generalcoverage h.f. communications receivers from British and European firms tend to cost from about $£ 5,000$ to over $£ 10,000$ plus v.a.t. Yet some Japanese and American models of comparable complexity and with many of the same basic design concepts are readily available at around £1,000.

Of course, examining the specifications in detail one finds significant differences, particularly in respect of long and shortterm frequency stability, in environmental characteristics, especially reference to lowtemperature operation, oscillator noise characteristics where frequency synthesizers are used, and reliability targets. Nevertheless, one suspects that for many run-of-the-mill applications the British and European models are being built to a specification overkill in order to meet the demands of the services and government agencies and their specification manias.

Yet both in World War II and again much later in Vietnam, some of the most successful and reliable h.f. radio equipments proved to be those originally designed for the amateur radio market.

At Communications '78, two GCHQ engineers noted: "Technical performance of h.f. receiving terminals over the past few years has been improved in many ways: dynamic range of mixers and amplifiers; selectivity of filters; and frequency setting and stability of oscillators. Resultant operational improvement, measured in terms of bit error or circuit outage rate, is found to be disappointingly small. This apparent enigma is due to the fact that improvements yield a return only when reception conditions are limited to a marginal state. This state is normally a transient condition lasting only a few milliseconds and having an amplitude range of only a few decibels. The operational conditions where a circuit is yielding high error rates are during deep fades and high levels of inter-element and co-channel interference; where these conditions are severe the required data can be lost regardless of the performance of the receiving terminal."

I do not doubt that the European firms are providing excellent designs and relatively good value for money but one wonders whether by concentrating so much on
the top end of the professional market they are not rendering themselves extremely vulnerable to overseas competition from lower-grade equipments.

Atlantis and TAT8

Despite all the progress in talking across the oceans via geostationary satellites, there has been no loss of interest in the still-developing use of wideband submerged cables. During 1983, tenders are due to be presented for TAT8, the eighth telephone cable across the North Atlantic. This cable is of particular interest in being the first long-distance ocean cable planned to use fibre-optic technology. It should be capable of carrying up to 36,000 simultaneous telephone conversations. In some recent tests by Bell Laboratories, 108 km of submerged optical-fibre cable, using lasers having a wavelength of 1.3 micrometres, it was shown that, with repeaters spaced at 54 km along the cable, digital bit rates of up to 274 million pulses per second could be carried. Other international companies are working on undersea fibre-optic cables. For example, the French Cables de Lyon and CIT-Alcatel in conjunction with the French National Centre for Telecommunications Studios. An optical-fibre cable is due in service between France and Corsica in 1985 and optical cables have already been laid in the south of France. British Telecom claims the first submerged optical cable in Scotland.

On October 21, 1982, the eleven-nation "Atlantis" co-axial cable between Brazil and Portugal was officially opened, to become the second wideband cable across the South Atlantic. The 1847 nautical miles section between Dakaar and Recife consists of a 14 MHz system supplied by STC, providing 1840 (3 kHz) channels, compared with the earlier Bracan cable which carries only 160 speech channels. The north section of Atlantis, between Burgau, Portugal and Dakar was supplied by the French Submarcom (subsidiary of CGE) and is a 25 MHz system providing 2580 $(4 \mathrm{kHz})$ or $3440(3 \mathrm{kHz})$ voice channels. The system is designed to have a working life of 25 years.

Still at an early planning stage is a new Europe to Southeast Asia cable via the Middle East. This was agreed by eight countries early in 1982 and bids are due this year.

Over the past couple of decades the reliability of ocean cables has been significantly improved by the increasing use of sea-ploughs in coastal waters. These dig a two foot deep trench on the sea-bottom for the cables and then covers them over toprovide protection against the activities of trawlers and other fishing vessels.

USA and WARC

President Ronald Reagan, in a iormal letter of transmittal dated November 24, 1981, sought ratification of the radio regulations agreed at WARC 1979. He stated: "I believe the United States should be a party to the Regulations from the outset (1 January, 1982) and it is my hope that the Senate will take early action and give its advice and consent to ratification". Up to December 1982 the Senate has still not given its consent, so it would appear that, for a full year, the country having more radio transmitters than any other has not formally been bound by the international radio regulations which have the status of an international treaty!

Satellite shuttle

An important "first" for satellite communications was the successful launching during November of two geo-stationary communications satellites from the space shuttle: SBS3 for Satellite Business Sytems carrying ten transponders and Anik-C for Telesat Canada with 16 transponders intended for Canadian domestic telecommunications and distribution of television programmes to cable networks. SBS3 will provide 56bit/s data services but later $1.5 \mathrm{Mb} / \mathrm{s}$. Both were built by Hughes Aircraft and NASA received $\$ 16$-million to cover the two launches, considerably less than the cost of two conventional rocket launches.

AEG-Telefunken are to supply 20 GHz , 20 watt output travelling-wave-tube amplifiers to MIT for communications satellites. Toshiba has revealed the prototype of its domestic 12 GHz DBS receiver. It uses gallium arsenide monolithic amplifiers at s.h.f. and u.h.f., surface-acoustic-wave filter, low-cost copper-coated iron helix as waveguide and 1 -metre dish aerial, and is claimed to be suitable for digital audio.

Telecommunications
 teeth

Radio amateurs are hoping that Part V of the new Telecommunications Bill, which amends the Wireless Telegraphy Acts 1949 and 1967, if it becomes law in its proposed form, may prove effective against the con-
tinued abuse of the London 144 MHz repeaters and the increasing intrusion into the 28 MHz amateur band of illegal c.b. operation.

Part V will make it much easier for the authorities to bring prosecutions for breaches of the Wireless Telegraphy Acts, including both "piracy" and deliberate interference. It sharply increases the penalties for such offences, makes it easier to seize illegal equipment and also gives powers of arrest.

Where apparatus is of a category subject to a restriction order it would no longer be necessary to prove that it was being used, but extends the offence to cover manufacture (whether or not for sale, and including home construction from components), selling, offering for sale, renting, advertising, "having in one's custody or control" as well as importing. It also appears that the Home Office will have the right to specify equipment according to the use made of it - an important clause for radio amateurs and other licensed users since otherwise it would be difficult to distinguish between equipment intended for legal purposes, such as amateur radio, local broadcasting and that intended for pirate operation.
At first glance the Bill seems to have been carefully drafted to catch offenders without seriously restricting the licensed operators, but of course in practice much will depend on how Part V is administered, how many legal loopholes will emerge and how seriously breaches will be treated by the courts. But as it stands the Bill will certainly give the authorities some very sharp teeth.

Licence changes

Since 1 January 1983 the Home Office has 'agreed several changes to the UK licences, including dropping the need for applicants to furnish proof of British nationality or age, although the lower age limit for licences will continue to be 14 years. The special series of reciprocal G5-plus-three callsigns issued to overseas amateurs wishing to operate in the UK (type C and D licences) is being discontinued; they will in future be issued with G4-plus-three (A) or G6-plus-three (B) callsigns and will follow this by their own "home" calls.
The Home Office has undertaken to speed up the issue of new licences. By iearly December it was claimed that the back-log which existed throughout 1982 had been eliminated, although there are still delays in converting Class B licences into Class A.
The 3000 or so British amateurs who make up the Raynet emergency service are in future to be allowed to participate in up to one exercise per month on behalf of any of the recognized user groups, and it is
likely that user services will soon be extended.

"Amateur" satellite?

Some engineers and academics still react unfavourably toward being associated closely with "amateur" radio, even when the activities concerned are of fully "professional" standard. For example while everyone concerned has warmly welcomed the reactivation of the Uosat-Oscar 9 satellite, it has not passed unnoticed that the University of Surrey does not seem particularly anxious that its $£ 118,500$ spacecraft should be regarded as an Oscar (orbiting satellite carrying amateur radio). In the recent special issue of The Radio E Electronic Engineer (August/September 1982) devoted to UOSAT, Professor J. D. E. Beynon, head of the electronics and Electrical department writes of Uosat: "It has been variously dubbed by some of the popular technical press as an "amateur" or "educational" satellite . . . neither adjective correctly describes the spacecraft. The misnomers have arisen because the satellite has been so designed that the data it generates can be easily received by simple and inexpensive groundstation equipment such as might be readily available to individual amateurs or educational establishments as well as to professional engineers and scientists". A curious description of a satellite that indusputable is operating as part of the amateur satellite service and part of the Amsat-Oscar programme!

In brief

Permission for British amateurs to operate between 2300 MHz and 2310 MHz has been withdrawn . . The number of "out of tv hours" permits to operate between 50 to 52 MHz for propagation study is being restricted to 40 , although about 300 Britishamateurs have shown interest . . . Two new 10 GHz beacons have become operational: GB3GBY is on 10.4 GHz near Grimsby with 10 mW to a slotted waveguide aerial beaming south. GB3CEM at Sutton Coldfield is on 10.369 GHz with 3 mW and an omnidirectional aerial ... Amateur licences in the G3R and G6S series were being issued in December . . . A new 70.13 MHz beacon with the call E14RF is operating near Dublin with a power of five watts . . . The RSGB 1983 VHF Convention is on Saturday, March 26 at Sandown Park . . . Of the record 8169 candidates who completed the May 1982 Radio Amateurs Examination, 5469 (67%) qualified. Failure rate was 25% on Parts l \& 2, with 13 to 14% reaching distinction level in each part . . . Four of the Russian RS series of satellites carrying 145 to 29 MHz transponders are currently operational.

Pat Hawker, G3VA

Data error detection and correction

Abstract

Whatever the equipment under design, the choice of error detection - and perhaps correction - technique is largely defined by the characteristics of the channel. Written as part of the disc drive series, this article explains in a non-mathematical way how adding redundant data gives error protection.

Protection against data errors in disc drives is achieved by adding redundant information to the data proper. The theory of error detection and correction is well documented for the mathematical fraternity mathematics has been taken out of the following explanations.

Whatever the piece of equipment under design, the choice of error detection and perhaps correction technique is largely defined by a study of the error characteristics of the channel'. Errors in disc storage most commonly occur in bursts: several bits close together may be corrupted leaving the remainder intact. With serieal recording, a pinhole or scratch in the oxide coating of the disc or an interference pulse could cause this kind of error. With the proper use of media integrity techniques and for reasons which will become clear later, error correction is not needed very often. This suggests the simplest adequate implementation will be the most costeffective, with speed of correction being of secondary importance.

Cyclic codes

Disk drives rely heavily on cyclic error detection and correction codes because they offer good burst error performance and can be realised with simple and inexpensive circuitry. Cyclic codes are so called because they have a structure which causes them to repeat after a fixed period.
The principle of cyclic error detection is simply that of division. The code word ${ }^{\star}$ formed when a check word* is added to data is designed to be an integral multiple of some dividing factor. On reading, the information is divided by that factor to give a remainder of zero unless there has been an error. The code word is formed by dividing the data by the chosen factor and adding the inverted remainder.
A trivial decimal example is shown in Fig. 6(a), where the check can be fooled if two symbols are in error by an equal and opposite amount. This can be overcome by choosing two digits, one calculated from even digits and the other calculated from odd digits. The number of digits in error cannot exceed the number of check digits if they are to be detected, Fig. 6(b). A little thought can suggest error conditions which would fool example 6(b) also. To
detect a given number of error digits there must be a division process for each expected error. A binary polynomial* achieves this, using a shift register with feedback.

Before explaining the workings we need to understand the properties of such a circuit with no input. Fig. 8 shows the effect of shifting a non-zero pattern in the circuit of Fig. 7; the pattern repeats every seven shifts. As the register has only three stages, there cannot be more than 2^{3} states but as
by J. R. Watkinson, M.Sc.
one of these states is zero, unusable because it remains zero after a shift, the maximum number of states is seven. In general, the code length n is $2^{\mathrm{m}}-1$ where m is the number of stages. The most important characteristics of these circuits are that a bit pattern entered appears again in exactly n shifts, and that the states are highly non-sequential. The sequence of bit patterns the register goes through is known as a Galois field.

Returning to Fig. 7 the circuit generates a remainder by dividing the data stream by a polynomial. The remainder becomes the check word, and the data plus the check word becomes a code word. The length of this code word cannot exceed the period n of the m stage shift register given by $2^{\mathrm{m}}-1$, otherwise there is an overflow and the whole of the data will not be protected. The number of data bits k is n minus the number of check bits, $\mathrm{p}-\mathrm{m}$, thus described as an (n, k) code *. In the three-stage shift register the corresponding code is given by $\left(2^{3}-1,2^{3}-1-3\right)=(7,4)$.

With a logical true signal at the control input to the and-gate, the feedback mechanism is enabled, and if four data bits are serially presented to the input and individually clocked the three check bits will be in the three stages of the register. If the feedback and-gate is now disabled with a false control input, the circuit acts as a normal shift register and the three check

[^3]bits can be shifted out. In the decimal example the inverse of the reminder was taken, but in the unsigned binary case there is no concept of a negative number, and the remainder is unmodified. A further characteristic of the simple xor circuitry is that there is no borrow or carry. The decimal example given is not therefore an exact parallel.

A stage-by-stage example of the operation of the circuit and the resultant code is shown in Fig. 7(top). During an error-free read, the action of the circuit during the first four bits is identical, and the register contains the same check word as written. When the fifth bit, i.e. the first check bit, is clocked in it is ex-ored with right-most register bit, which would have been the first check bit during encoding. The resulting output from the right-hand ex-orgate is false for a good compare, and the shift enters a zero in the left-most stage of the register, presenting the second check

Fig. 6(a). Code word formed by adding a check digit so that the sum of the code word is an integral multiple of some number, in this case 9. Two errors, however, go undetected.

(b)

Fig. 6(b). Simultaneous division of odd and even digits allows two adjacent errors and many, but not all, other pairs of errors to be detected. The penalty is more check bits.

Engineer's console of microprocessorbased disc-drive showing keypad and display becomes accessible only with the cover raised.
bit to the right-most stage for comparison with the sixth received bit. In this way the received check word is compared with the check word calculated from the data, and if the received word is a code word, the register must go to zero. Fig. 7 shows a stage-by-stage error-free read.
A more general case which displays the bit dependencies of the register-stages as the encoding proceeds is bottom in Fig. 7 which also shows the check matrix which the register actually implements. Crosses in the matrix rows correspond to the data word bit positions which go to make up each check bit.
The matrix structure reveals how the correction mechansim works. One error in any of the first four bit positions changes the three-row parity checks in a unique manner. For example, if bit 2 is wrong, the centre and top rows have a parity error, but the lower row has not. The pattern of failed parity checks is usually called the syndrome* of the error, and if the errorcorrecting circuitry has a stored copy of the matrix it can locate the error by processing the syndrome. The correcting pattern needed to identify the failed bit from the syndrome is illustrated by Fig. 7(bottom).
Readers familiar with the parallel error correction processes used in computer memories may recognise the form of the check matrix - none other than a Hamming code in serial clothing. The parallel encode in memory circuits is carefully designed so that the syndrome is the bit address of the error, which gives a high speed correction. Typically only one bit can be corrected but that covers the observed failure mechanism. As we are not interested in absolute speed, this technique is not used in disc drives and the
observed error mechansim is different.
The key to serial error correction is the Galois field determined by the design of the shift register. If a shift of the register is taken to be analagous to incrementing a r.o.m. address, the state of the register for each shift is analagous to the r.o.m. output: this is the error position look-up mechanism.

The simple example described can only correct one bit; if it is expanded to correct more bits, the number of check bits can exceed the number of data bits. This great redundancy is necessary because the matrix checking caters for errors anywhere in the data. The number of check bits can be reduced if it is known that the errors occur in bursts.

Burst error correction

A data block has been deliberately made small for the purpose of illustration in Fig. $9(a)$. The matrix for generating parity on the data is shown beneath. In each hori-

Fig. 8. Behaviour of the circuit in Fig. 7 with no input. Data repeats every seven shifts and the states are nonsequential numbers. These repeating states form a Galois field.
zontal row of the matrix, the presence of an X means that the data bit in that column is counted in a parity check. The five rows result in five parity bits which are added to the data. The simple circuit needed to generate this check word is also shown. The same data word corrupted by three errors is shown at Fig. 9(b). The

Fig. 7. Three-stage shift register circuit divides serial input by a binary polynomial. Example of encoding sequence for data shown uses the circuit. Columns correspond exactly to the latches. First data bit to enter the circuit is the left-hand one. The read checking process for encoding example shows that for every match between actual and calculated check bits, a zero is entered into the left stage of the register, eventually resulting in an all zeros syndrome. This can be repeated with any bit in error and will result in a non-zero syndrome in each case. Steps by which the shift register simultaneously builds up the three check bits. Unlike conventional accumulators, code bits build up by moving from one latch to the next. For example, left-most latch starts in the top raw being a function of bit zero only, but when bit one is included in the second row, the sum of bits zero and one has shifted into the centre latch. As next data bit is shifted in, contents of the centre latch move to right-most latch, unchanged. As data bit three is shifted in, it forms the lower input to the right-most gate, and the right-most latch forms the upper input. Thus feedback to left-most latch is the sum of bits 0,1 \& 3 . This bit is the last one to be shifted out so it becomes bit 6 of the code word.

Fig. 9. This matrix developes a burst detecting code with circuit shown. On reading, the same encoding process is used, and the two check words are ex-or gated. Two examples of error bursts shown (a), (b) give the same syndrome, which ambiguity is resolved by the the technique of Fig. 10.
matrix check now results in a different check code. An exclusive-or between the original and the new check words gives an 'error syndrome pattern. Fig. 9(c) is a different error burst that gives the same syndrome, an ambiguity that must be resolved.

One method of doing this follows. The definition of a burst of length b bits is that the first and last bits must be wrong, and intervening $b-2$ bits may or may not be wrong. As the presence of a one in a syndrome shows an error, a burst syndrome of length b cannot contain more than $b-2$ zeros. If the number of check bits used to correct a burst of length b is increased to $2 b-1$, then a burst of length b can be unambiguously defined by shifting the syndrome and looking for $b-1$ successive zeros. These must lie outside the burst because the burst cannot contain more than $\mathrm{b}-2$ zeros. Fig. 10 gives an example of the process and shows that the number of shifts required to align the $\mathrm{b}-1$ zeros at the left-hand side of the register is equal to the number of bits from the last previous ($2 b-1$)th bit boundary. The b right-hand bits will be the burst pattern. Obviously if the burst exceeds b in length, the error will be uncorrectable. Using this approach only, we can define the burst but cannot say where in the block it is. To locate the burst we need to use a code of the kind described earlier.

A burst-correction cyclic code can be formed by multiplying together the expression for the burst definition and an error location polynomial. The check word now consists of $m+2 b-1$ bits, and the code length n becomes $\left(2^{m}-1\right) \times(2 b-$ 1) bits. This is the principle of the Fire codes, first documented in 1959 by P. Fire. Fig. 11 shows the synthesis of a Fire encoder from the two parts of the polynomial, with the mathematical expressions included for interest.

During writing, k serial data bits are shifted in to the circuit, and $n-k$ check bits are shifted out to give a code word of length n . On reading, the code word is shifted into the same circuit and should result in an all-zeros syndrome if there has been no error, as in Fig. 7(c). If there is a non-zero syndrome, there has been an error.

As all data blocks are recorded as code words, the effect on the encoding circuit is to bring it to zero on reading. It is as if the data were never there. Any non-zero syndrome must represent the exclusive or function of what the data should have been and what it actually was. This function has however been shifted since the error burst an unknown number of times. The syndrome is one state of a Galois field and the error burst another. Any state of a Galois field can be eventually reached by shifting, so if the syndrome is shifted sooner or later the error burst will show up. But how will it be recognised?

The only logical ones in the correct state will be those due to the error burst, and they will be confined to a maximum of b contiguous stages of the register. All other stages must go to zero when the burst shows up. Owing to the highly non-sequential nature of Galois fields, there is no possibility of the right number of contiguous zeros being present in any other state. The number of shifts required to arrive at this state is counted, as it is equal to the position of the burst in the block, Fig. 12.

More recent codes are the B C H (Bose-Chaudhuri-Hocquenghem) codes, which offer the same performance as the Fire codes but require fewer check bits, and the Reed-Solomon codes, which permit correction of multiple bursts.

Whatever the choice of code, the number of check bits is chosen to satisfy the required error detection and correction requirements of the system in terms of the burst size which can be corrected and the probability of undetected error. In practice this results in code words many times longer than the data blocks used. The actual data written and the check word thus represent the end of a long code word which begins with many zeros. As the effect of shifting zeros into a cleared encoder is to leave it unchanged, it is not necessary to cater for the unused part of the code word during writing. By a similar argument, the read process takes place as if the whole code word had been present. If however, a non-zero syndrome results from a read, then it is necessary to subtract the number of leading zeros from the number of shifts required to perform the correction, as the states of the Galois field are a function of the polynomial only, and are unaffected by our truncation of the data.

In practice, the simplest way to realise such a subtraction is to use two shift counters, one of which counts up to the number of leading zeros and enables the second which counts relative to the beginning of the actual data. This makes it easy to cater for more than one disc format with the same error correction circuitry, as only the leading zero-count needs to be changed if the number of bits in a block is changed. This pre-count avoids the need for subtraction circuits, but has the disadvantage that the shifting of leading zeros requires a substantial proportion of a disc revolution to perform a correction, but this is of little consequence.

In the block diagram of such a system, Fig. 13, the output consists of two parameters, firstly the error burst pattern, which will be a 1 for every bit in error, and secondly the location of the start of the burst expressed as the number of bits from the beginning of the block. Owing to the serial nature of the correction process, this information becomes available some time after the data to be corrected was read, which implies the use of a buffer to hold the data prior to correction. An intelligent

Fig. 10. Burst of length b bits can only contain $b-2$ zeros, so $b-1$ zeros cannot be in a burst. By shifting the syndrome until b-1 zeros are detected, the burst is defined unambiguously. The number of shifts needed gives the position of the burst relative to the previous $n(2 b-1)$ th bit boundary. In this example $b=5$, hence $2 b-1=9$ and the boundaries referred to will be at bits $9,18,27$ etc. A burst of up to 9 bits can be detected but not corrected. Only the nature of the burst is defined by this process, its position has to be determined independently.

length of 279 bits, 14 are check bits, making this a $(279,265)$ code.
disc controller may contain such a buffer, but in other systems the main memory can be used. In this case the operating system has to complete the error correction process using the two parameters which the drive makes available in its control registers. The software has to use the disc address and the error position register to establish the position of the burst relative to the whole data transfer, and then add this to the memory starting address for the transfer to arrive at the physical memory address of the bits in error. The burst may lie across a memory word boundary, or it may be partly or wholly in the check word. The software must be able to deal with all of these eventualities.

There are two interesting variations on this mechanism. Owing to the nature of Galois fields, it is possible to construct a circuit which generates a given field in the reverse order. A syndrome placed in such a circuit would resolve the burst without the necessity for leading zeros, in a correspondingly shorter time. Taking this a stage further, some systems pass the syndrome to the executive to be resolved by software in the reverse direction. This has the advantage that the burst size b which is
deemed correctable can be made smaller under system control. This permits a block with a small burst to be used for storage, but causes the system to be flagged when the burst size increases beyond the arbitrary limit. The data can still be recovered by restoring the software limit to the maximum allowed by the polynomial.

Error handling algorithms

The number of error corrections performed is less than the number of read errors detected. This may seem paradoxi-

Fig. 12. Owing to the characteristics of Galois fields, syndrome Y is simply the error burst which has been shifted a number of times equal to the number of bits from the burst to the end of the code word. As the field repeats every n shifts, it is only necessary to shift the syndrome and count the number of shifts necessary to give a zero detect condition. This number is equal to the position of the burst in the data. If no zero condition is found, then the burst is longer than b and cannot be corrected. It is however, important to detect uncorrectable errors. The example can detect all bursts up to the length of the check word $n-k$; beyond this a statistical element is introduced.
cal until the mechanisms which cause errors are examined. As stated, the system goes to great lengths to avoid writing data on suspect areas of the disc. Revectoring, defect skipping and bad block files all make the probability of a read error due to the medium less than the probability of errors due to noise.
If a read results in a non-zero syndrome, it is pure conjecture to suggest whether the error was due to any one mechanism. According to earlier definitions, an error due to the medium is a hard error, whereas errors due to electrical noise or dust particles momentarily disturbing the flying height are soft errors, and the only way to tell them apart is to repeat the conditions and see if the error is still present. The logical way to handle a read error is thus to undertake a number of re-reads. If one of these gives an error-free read, then the original error was a soft error and was due to noise or dust or degradation of the hardware. If re-reads do not give an errorfree transfer, then the error is hard and must be due to the medium. In this case the error correction logic is enabled and a correction performed. Whether the error is correctable or not, the address of the disk

Check word

Fig. 13. Error correction hardware where disc block is smaller than the code word length. When a non-zero syndrome is detected after a read, the leading zeros in the code word which precede the data are counted by the pre-counter. When the pre-count satisfies the decoder, error position counter is enabled, which gives error position relative to the start of data when zero condition is detected. This disables the shifting and raises the ready bit.
block concerned can be stored, and when it is no longer in use, it can be added to the bad block file to ensure that it is never used again. Obviously if error correction were to be employed in the first instance of an error, the system would be denied the opportunity to properly analyse the failure and make a permanent recovery.

The use of servo surface disc drives complicates the error recovery algorithm, as these offer the ability to offset the posi-
tioner to recover data from foreign discs whose tracks are not registering properly with the heads.
Offset would normally be employed after re-tries with error correction enabled have failed, on the grounds that the use of a mis-registered pack is highly unlikely. Most of the time, disc drives read data they themselves have written.
It is important that an error in reading, not just in stored data, should be detected

Glossary of error correction terms

Channel

Mechanism which conveys data and redundancy from encoding to decoding. This includes writing and reading heads and medium. Only errors which take place in the chennel are of interest.

Chock word

Redundant information which is appended to the data proper to make the whole a code word.

Code length

Number of different states which the Galois field associated with the encoding polynomial can have determines the maximum length of the code. Usually given the symbol n.

Code word

Code word gives a zero remainder when divided bv polynomial.

Galois field

Set of all states of feedback shift register circuit. The precise mathematical definition of a Gelois field is inappro-
pricte at this level of presentation.

Maximum length sequence

Galois field which is as large as is permitted by the number of stages in the register m. Equal to $2^{m}-1$.
(n, k) code
Code of length n bits which conveys k deta bits. Number of check bits is thus $n-k$.
Potymomet
Mathematical expression which when applied to a number causes that number to be ralsed to various powers, all of which are then summed. In error correction, the division by a polynomial is used beceuse it permits simultaneous calculation.

Syndrome

When n bits which are not a code word are shifted into the associated polynomial division circuit the result, called a syndrome, will be non-zero. The syndrome is the error shifted an unknown number of times.
as a data transfer is always preceded by comparison of the header contents with the desired dise address. As correction is not necessary, it is adequate to end each header with a cyclic redundancy check character. During the comparison, the header and c.r.c.c. are shifted into the check circuit, and only if a zero-syndrome results will the header compare be validated.
In the case where a header suffers from a hard c.r.c. error, it may still be possible to recover the associated data. Some drives support a read-without-header-check function. The procedure is as follows. The system issues a search command with a sector address specifying the sector before the one with the bad header. When this header is found, the drive interrupts, and if the system immediately issues a read-without-header-check function, the desired data will be read without an abort caused by the bad header. The system discontinues the use of such a block when it is no longer needed.

Instalments in the disc drive series
 Disc drives March 1982
 Read/write head assemblies April
 Head positioning techniques May
 Mechanical aspects July
 Servo systems August
 Winchester drives September
 Floppy-disc drives October
 Controllers-1 November
 Controllers- 2 December
 Data integrity January
 Data error detection February

Advance information booklet is available for the high-speed versions of Motorola MC68000 16-bit microprocessors. Five processors have operational clocks from 4 MHz up to 12.5 MHz . They have 32 -bit internal registers, 16 Mbyte direct addressing range, 56 instruction codes, memory-mapped input and output and 14 address modes. The MC68008 uses the same internal architecture but operates an 8 -bit data bus enabling a simplified system to be designed with superior performance to any 8 -bit processor and lMbyte linear address space. The MC68010 virtual memory processor allows error detection and correction and so would not necessarily abort a bus cycle on receipt of an error signal. Redwood, the MC68020 processor, is a true 32 -bit processor which has been designed to accommodate M68000 coprocessors through a special interface. Numerous processors may be coupled together, each of which may be tailored to a specific data type, task, instruction set, etc. The internal instruction cache on the 68020 retains recently used instructions so that if re-used there is no need to access the external bus. Motorola Lid, 88 Tanners Drive, Blakelands, Milton Keynes MK14 5BP.

WW400

Microcomputer interfacing for 12bit data acquisition

Interface circuitry designed for compatibility with computers using the 6502 microprocessor and expansion/bus connector provides eight analogue inputs, four analogue outputs and 20 digital i/o lines.

The subject of interfacing microcomputers to the real world has received considerable attention ip recent years and with some justification. Although there have been several excellent articles dealing with computer interfaces designed around an eight bit word length, there are times particularly in scientific work where more accuracy is required in the measurement and establishment of analogue signals. This article is intended to provide such a design using eight channels of analogue to digital and four channels digital to analogue conversion working to an accuracy of twelve bits, or 1 part in 4095. The complete circuit is a data acquisition system in the true sense of the word since it allows the acquisition of analogue data, the ability of the computer to analyse the data and subsequent modification of the status of external hardware so as to achieve some desired objective.

The interface has been designed to be compatible to microcomputers using the 6502 microprocessor and having some form of expansion/bus connector. Such microcomputers include Apple, CBM, Acorn, UK101, Superboard and the BBC micro. Each of these machines will provide the necessary signals required by the data acquisition system namely the complete address bus, data bus, and half of the control bus signals (02, RESET, IRQ, $\overline{\text { NM1 }}$. Of course the hardware implementation of the expansion is different for each machine and the mechanical linkage of the interface and computer is best left to the user.
In choosing suitable components, particularly for a-to-d conversion, a trade-off between performance and price is always necessary; the ICL 7109 being a relatively slow device but at around $£ 12$ it is inexpensive. Digital-to-analogue conversion is dealt with using National Semiconductor 1230 series which are three, pin-compatable converters costing from $£ 5$ to $£ 9$ per channel depending on the conversion linearity required (0.05% to 0.012%). Considerable use is made of the 6500 series versatile interface adapter - the 6522. In the circuit board design a totally uncom-

by M. R. Driels

mitted 6522 is included so that the user may control digital devices (relays, motors, indicators), monitor the state of digital devices (switches, proximity sensors) or
interface custom built circuitry to the same board. As this v.i.a. plays an important part in the overall design, it is appropriate to discuss it in more detail.

Versatile interface adaptor 6522
A 40 -pin integrated circuit specifically manufactured as an interface for the 6502

Fig. 2. Address bus decoding: the highest twelve bits are connected to the 3-8 decoders shown while the lowest four go directly to the 6522s.

Fig. 1. 6522 versatile interface adaptor showing computer bus connections on the left and the buffered outputs on the right.

microprocessor is at the heart of the design of the i/o board. The pin configuration is shown in Fig. 1 where the lines on the left of the diagram represent information from the host computer while those on the right are the output lines. Essentially the device provides two eight-bit ports each having two control lines, together with a range of
sophisticated i/o facilities including parallel-serial data conversion, pulse counting, 16 -bit timers and many others. But it is the operation of the two ports and their associated control lines that this article is chiefly concerned with.

Because the device is used in a memorymapped configuration, the host computer
recognises the 6522 simply as 16 consecutive memory locations, or registers. It is what is written to, or read from, these locations that determines the mode of operation of the 6522. In explaining the design and operation of the i / o board it is. necessary only to refer to six of these registers, although a more complete account of

the full programming facilities available may be found in reference 1 . The two eight-bit ports appear as two of the registers - port A and port $\mathrm{B}(\mathrm{PA} \& \mathrm{~PB})$ while two more - the data direction registers (DDRA \& DDRB) determine whether the ports are input or output. Each bit of the DDR corresponds to a bit in the corre-
sponding port so that if 00000000 is written to DDRA then each line of PA is defined as an input, allowing data to pass into the computer. Writing 11111111 to DDRB defines PB as an output port allowing data to be transferred from the computer. The two remaining registers are the peripheral control register PCR and the
interrupt flag register IFR which govern the use of the four control lines CA1, CA2, CB1 \& CB2.

Circuit description

Figure 2 shows the first stage of the circuit indicates how the 6522s are used on the board are mapped into the computers

Fig. 3. Twelve-bit a-d converter using an eight-bit overlayed output bus is preceded by an eight-channel multiplexer.

Fig. 4. Digital to analogue converter produces an output current proportional to the digital input code. An operational amplifier converts this current to a voltage.
memory, Fig. 2. The address lines are decoded by 74LS138 devices followed by selector switches allowing the 6522s to appear anywhere in the memory map from location 0 to 65536 . This facility is important as a fixed range of memory locations may not be suitable for all computers and reference to the relevant technical manual will indicate suitably free areas. Each decoder is enabled by the previous one except for the first which is permanently enabled. The last decoder supplies a total of eight chip-select (CS) signals although only three are used in this design; one for a-d conversion, one for d -a conversion and the last one handles the digital i / o.

Analogue-digital conversion

The circuit for the eight channel a-d input is shown in Fig. 3, and consists of a single twelve-bit convertor preceeded by ian eight-channel cmos multiplexer. A 6522 v.i.a. is configured so that port A is an input port allowing converted data to be read into the microcomputer while port B is defined as an output and governs which input channel is connected to the converter. The a-d converter is operated in a hand-shaking mode using the 6522 s control lines CA1, CA2 and CB2. The RUN/HOLD can be used to initiate conversion by making CB2 go high, with subsequent inspection of the data. Signal RUN/HOLD is then made low while data transfer is made.

The problem of transferring twelve-bit data on to an eight-bit data bus is solved by the converter by outputting two consecutive bytes. This transfer is governed by the two control lines LBEN (low byte enable) and HBEN (high byte enable). With both LBEN low and HBEN high, the Ieast significant eight bits of data are placed on the bus, while LBEN high and HBEN low, the highest four bits together with polarity and over-range data appear. Figure 3 shows that a single control line CA2 can be used to toggle both of these enables. Using the oscillator shown in he circuit diagram the device will operate at about $71 / 2$ conversions per second, although the manufacturers claim a maximum of 30, presumably with a different crystal. If all eight channels are used the system described will update each channel about once every second. If only one input channel is used, however, then port B will select that channel and remain unchanged thereafter, resulting in an improved operating mode of eight samples per second for that single channel.

The $20 \mathrm{k} \Omega$ precision potentiometer sets the differential reference voltage between pins 36 and 39 of the converter. Full scale output is achieved when the analogue input is equal to twice this reference voltage. The circuit uses the on-board reference (pin 29) and if the differential reference is set to 2.048 volts, a calibration of 1 bit $\equiv 1$ millivolt will result. For more information on the detailed operation of the converter, consult reference 2.

Advanced architecture arrays

Abstract

Design criteria for semicustom digital arrays are becoming closer to the architectural aspects of a microprocessor than circuit concepts of a memory chip. By analysing needs, techniques and trends, Robert Lipp forecasts a route to the array of 1992.

Arrays are subsystem components: design is becoming dominated by logic and system rather than circuit mequirements. The overall design criteria are becoming closer to the architectural aspects of a microprocessor chip than the circuit concepts of a memory chip.

The architecture is application dependent and reflects the various ways the arrays can be designed. These design differences can have a major impact on an array's applicability and/or ease of use in a particular application. Just as significantly, they can have a major impact in design and production (producibility) by the manufacturer.

The concept of gate arrays is at least 15 years old. In terms of relative development, they are at the equivalent level of the early four-bit microprocessors. A number of factors have come about in the last few years to thrust development forward, and future developments promise to be as exciting as microprocessor evolution was (and still is).

To understand future trends, a historical perspective is necessary. The earliest arrays in the late sixties and early seventies provided oaly two benefits: small size and increased performance. They were an expensive alternative to the powerful transistor - transistor, emitter coupled and cmos logic families.

For quite some time, the t.t.l. and cmos standard product lines pushed their respective technologies in the m.s.i. level. There was very little room for major integration improvements by l.s.i. until the technology progressed much further. Only a few small and medium-scale components were replaced by the earlier arrays: it just did not make economic sense to use gate arrays. In the late seventies, this situation reversed fairly rapidly. Levels of integration soared making it possible to replace scores of standard i.cs with a single array.

In the meantime the cost of development of both systems and i.cs continued to escalate with no end in sight. It became acceptable to "waste" silicon area - formerly called the most expensive real estate in the world - as the production

This article by Bob Lipp, president of California Devices Inc., is based on a paper given at the Second International Conference on Semi-custom i.cs held last November in London.

by Robert Lipp

cost of a function on silicon continued to approximately halve every year. Meanwhile labour and capital equipment costs keep threatening to make i.c. development one of the most expensive processes in the world. This shift in sacrificing silicon for reduced development cost and time is what spurred the recent development of gate arrays. We see no end in sight to this trend. Of course the other advantages of gate arrays were always available and also played a significant role in array development. These included power savings, some proprietory protection, reduced size, higher reliability and so forth.

Historical development of gate arrays

Establishment of concept. During this period the products had few gates and little capability. Customers were happy to have anything at all for their specialized needs. Metal-gate cmos, t.t.1. and i.i.1. circuits dominated the field.
Silicon conservation and performance improvement. Minimizing production costs dominated through compact, limited flexibility, hand packed arrays. Arrays were up to hundreds of gates and begining to be accepted on economic grounds. The drive for performance also increased to serve a greater part of the market. Silicon-gate cmos, advanced e.c.l. and other bipolar technologies become widespread. Performance improvement also meant larger arrays and specialized circuitry. We are at the later part of this era and in the early part of the next.

Historical development of gate arrays

Design automation and mass production era, emergence of specialized arrays. Automation is occuring through advanced software and hardware tools, and multilevel interconnect arrays optimized for automation. The price paid for the automation is the waste of silicon, but the benefits are quick turnround and a saving of labour.
Mass production implies the need for production control and enhanced testability and also production maintenance of hundreds or even thousands of individual customized part types. Future array products will have specialized on-chip devices to aid in production transfer and maintenance.
The other aspect of mass production implies mass production of design. This implies very strong automation of design. The term computer automated engineering (c.a.e.) has arisen to identify this aspect. Almost no progress has been made on c.a.e. as opposed to c.a.d. CAE assists |the engineer to design his system and to .readily transfer it to production. Help in the true engineering aspects other than standard logic and circuit simulators has not been well addressed. I expect system design methodology to evolve which takes into account array advantages as well as limitations, such as microprocessor design methodology evolved. This probably will involve clocked and bus-oriented design, modular design and self or auto-test features.
Specialized linear/digital arrays such as our LD types are but a glimpse of many specialized products of the future designed for specific applications or market segments. Methods of handling rom, ram and other specialized structures will surely be invented.
Testing is an aspect which has not been addressed at all in design. Testing will become the major in the next few years and will increasingly be addressed by features in the arrays. This will include features such as built in l.s.s.d. features both in array design and system design.
The table lists the forces driving arrafy design. There are other forces affecting the market place but this lists only itemized design impact. Some forces, such as performance, are obvious design features. Others, such as vendor image, play a major role on various designs but with a much less obvious predictability. Each vendor
wants to be the first out with a new array, with the best array and with the most support. Obviously the vendor cannot do everything and his tradeoffs of such factors will affect new product introduction.

The table below lists some of the major factors influencing the development of gate arrays and ranks them on a five point scale.

Array design driving forces

Perceived need

Feature	Present	Future
Development time	A	D
Automation	A	A
New product stream speed to market Layout efficiency-gates	B	C
per unit area perform-		
ance	B	B
I/O capability	B	A
Flexibility	B	B
Vendor support/		
resources	B	B
Producibility	B	C
Pinouts/packaging	C	B
Economics-overall	C	C
Vendorimage	C	B
Testability	D	A
Reliability aspects	D	B
Special application/fea-	D	B
ture	Bus-oriented design	E
Scale		

Very
important
design

Not important
design perceived un-
consideration important or not much room for progress

Let's now postulate the arrays available in 1992.

The state of the art is $1 \mu \mathrm{~m}$ silicon gate cmos arrays with sub nanosecond speeds. Typical operation speeds are now over 100 MHz . GaAs arrays are available up to 500 MHz at about four times the cost of silicon. Median array size is 5000 gates. The state of the art for specialized markets, such as data processing, telecommunications and defence ranges from 20000 to 50000 gates. Full 16 bit microprocessor, such as 68000 or 8086 , will be available on some arrays as a marriage of arrays and processors begins. 64 K of ram/rom will be available also.

Let's now look further at this 50000 gate array. Die size is to include as much periphery as possible for pinouts. Some vendors may be using flip-chip techniques.

Metalization system will be three-layer. First layer metal is strictly cellular metal. Between what used to be rows of interconnect is a full population of transistors. Each gate has associated with it a test bit, a memory cell. It may also include a rom code describing that gate. The design methodology allows everything to be fully automatically testable using l.s.s.d. or to coin another term, lrad (linear random access design). It may be easier to have a system which accesses in random each cell and tests it. The test pattern is generated by a rom structure on the top of the chip. On initiation of a test instruction, the chip will test itself functionally at operational speed and generate code verifying its accuracy. Other special circuitry will be used
to fully test the i / o parametrics and operating speed. The structures can be used as ram when not in the self test mode. The three-layer interconnect systems will be used because it will be easy to add all the test features.

A major transition will have occured several years earlier. Chips will be pinlimited rather than be interconnectionlimited as is now virtually always the case. This will make logic virtually free. The test features and any other operational features will be virtually free. Embedded $\mathrm{ram} / \mathrm{rom}$ and linear elements can be embedded without any cost penalty even if they are not used.

Analogue functions will be ever more pervasive. This is because the arrays will be used in application where a selfcontained system or subsystem on a chip has to interface to the real world, which is after all mostly analogue. The combination of digital functions for signal processing and analogue functions for sensor and control interfacing will thus enhance the scope for application of arrays.

Digital processing is best done with processor architecture. This leads to such questions as what architecture is most suitable for arrays. What word length, what addressing, how much and what type of memory, what input/output circuits? Not the least problem is that of how to program those processors and how and where to store those programs. One rather attractive option is bit-slice approach, where the user can choose the architecture. The flexibility will be enhanced by the use of non-volatile and electrically programmable memories on-chip. As each application may need a different processor architecture and different size and types of memories, even the bit-slice array will not be able to cater for every possible requirement. The variety will be achieved by the development of specialized arrays.

How is design of this array accomplished? Turnround from final logic design to prototypes can be done in one week with direct write electron-beam machines. But front-end logic design will be longer as systems get more complex and design engineering tools still remain inadequate. New methodologies of system/logic design will be developing to take advantage of the array/processor marriage.

The route to this end will not be straight. The various forces described will have a major influence on the progress mode towards these architecturally advanced arrays.
vow

Differential direct conversion

In the article in last September's issue by Paul Gili WA1WQH of Brookline, New Hampshire, Fig. 2 on page 47 went unchecked and unfortunately contained errors which would prevent the circuit from working. It should show the 7.5 kohm resistor from pin 6 of $\mathrm{IC}_{2(a)}$ going to the cathode of the 6.2 V zener diode, instead of to ground as published. Similarly, the l0kohm resistor on pin 2 of $\mathrm{IC}_{3(\mathrm{~b})}$ should go to the same place instead of ground.

ICE Analogue Handheld Multimeters

Microtest 80
Sensitivity
$D C 20 \mathrm{~K} \Omega / \mathrm{V}$
Supertester 680R
80 ranges
(Additional function
product)
DC DC volts o 2000 V . $D C$ curs 5 dB
10 A . AC current 10 A . AC current 70 dB . fiom- 24 tocuracy DC 1% fsd Accuracy

$$
\$ 32.00
$$

Supertester 680G-48 ran
(Additional functions to previous
product) 2500 V . A , ablts from
Ohms $0.1 \Omega-10$.

- 10 trequency £24.50

$$
\begin{aligned}
& \text { Full Supporting } \\
& \text { accessories available. }
\end{aligned}
$$

Our distribution division now supplies

 Electronic Test and Measuring Instruments from Philips, Fluke, Hameg and ICE. Electronic Brokers Ltd, a company with many years excellent service to the industry, offer full technical support and demonstration facilities on the premises. All orders are despatched promptly from stock. Contact us for further information.(24 hour telephone answering service). WIRELESS WORLD FEBRUARY 1983

Handheld and /Portable DMM's Handheld DMM ies:nd True RM
Iz) uity (audible \& visual) ency ive Referenc ranging Megohms
ductan de Test Diagnostics 75.00

Full Product range:-
 audio continuity
$3 / \mathrm{d}$ digit hand $D M M$. with
\&1 135.00

 8010A-01 $\begin{aligned} & \text { range (manainsp Ni-Cd battery } \\ & \text { Rention } \\ & \text { option }\end{aligned}$
 8012A-01 Rechargeable N / Cortable
 $\begin{array}{lll}8062 \mathrm{~A} & \mathrm{DMM} \\ 4^{1 / 2} \text { digithandeld }\end{array}$ Full Supporting accessories available

Philips Electronic Test \& Mrent

FACTORIES OF THE FUTURE

Your December editorial on Information Technology raised the question of the speed of the response of academia to the challenge of providing appropriate courses.
You may be interested to know that Bradford University has started a new degree programme in Information Systems Engineering with the first intake of students in October 1982. The course is a blend of electronics, computer skills and telecommunications, and has been developed by a joint University/industry panel with representatives from British Telecomm, Plessey Telecommunications, GEC Telecommunications and GEC Computers.

We are fortunate in having in the School of Electrical and Electronic Engineering Professors of Microelectronics, and Communications Engineering, plus a Microprocessor Applications Centre, and we have received excellent cooperation from the School of Computer Science. The first group of 10 students are all sponsored by leading companies. We have achieved this new development without any extra funding from the government or industry, but we will only be able to develop the programme to its full potential if extra resources are forthcoming in the next couple of years.

D. P. Howson

Chairman of the Undergraduate School of
Electrical \& Electronic Engineering
University of Bradford

IDEAS FORUM

Like Mr Robinson (letters, WW January 1983), I am occasionally niggled by the lack of a source of what seems to me to be a very useful circuit, which would fit into a standard 16pin di.i.l. package. It is an 8 bit comparator, with one of the comparands being set up on switches on the top of the i.c., and could be used to perform address decoding for add-on boards to bus oriented microprocessor systems (for example, the IEEE specification for the S100 bus requires

that up to 24 address lines be decoded), and even in its simplest form it would save two 14pin packages and nine resistors (see diagram).
I do not know whether it is possible to manufacture an i.c. with switches in the top, so I wrote to Texas Instruments to find out, also sending them a copy of the circuit, but, although the letter was sent over a year ago, I haven't yet received any reply.
The circuit as shown only requires 11 pins, but a 16 -pin package would be necessary to accommodate the eight switches. The five extra pins could be used to make the circuit more flexible by providing
complementary outputs (1 pin)
complementary enabling inputs (2 pins)
transparent latches on the inputs with com-
plementary latch enables (2 pins).
I think that there is a misprint in the final sentence of the third paragraph of A. H. Winterflood's letter (same issue); surely it should read: ". . . the blicks aren't quite black and the whites aren't quite whate"?
Simon Sellick
Pershore

PHASE LOCKED CAVITIES

The letter by Hewlett (WWW Jan. 1983) expresses concern and confusion about diffuse ideas of Jennison, Wellard, myself and others and suggests a unifying theme based on Professor Jennison's phase locked cavity research. I fully agree with this sentiment. The effects of resonance and standing waves upon energy deployment processes need to be better understood. In apparatus where beams are reflected back upon themselves the electromagnetic reference frame seems to adapt to the motion of the apparatus. This bootstrap effect may be assuring the null anisotropy of the speed of electromagnetic waves, found in our experiments, so favouring relativity in the ether controversy. One-way flow of radiation encountered by our motion through the cosmic 3 K background does reveal anisotrophy at $400 \mathrm{~km} / \mathrm{s}$ and favours the ether.
Theory alone cannot solve these problems but new optical techniques avoiding the resonance effects do seem possible from the current work of Silvertooth in USA and Marinov in Austria. Hewlett's comments strike a very responsive chord with me on the theoretical side. Apart from Jennison's explanation of inertia by phase locked cavity concepts, my research shows that the anomalous magnetic moments (the so-called g -factor) of both the electron and the muon can be explained without recourse to quantum electrodynamics. The resonant cavity radius is set by the Compton wavelength, with an inner spherical boundary set by a balance of Larmor radiation and wave energy absorbed across the Thomson cross-section. This model gives the formula for $1 / 2 \mathrm{~g}$ as

$$
1+\frac{1}{\mathrm{hc} / \mathrm{e}^{2}-1 \pm 4 / \sqrt{ } 3}
$$

and which, for the electron (plus sign) is 1.00115965 and for the muon (minus sign) is 1.00116589, because hc/e ${ }^{2}$ is a fundamental constant known to be $2 \pi(137.036)$ to a precision of one part in a million. These theoretical values are in exact accord with the measured values to
within one part in a hundred million. Hence there is good reason to support Hewlett's proposition that a study of phase-locked cavities may help to unify our ideas.
H. Aspden

Chilworth
Hants

INTERFACING THE NANOCOMP

I read Bob Coates' article on interfacing the Nanocomp with some interest, as what he says about connecting a 6522 VIA contradicts my own experience. Me says, rightly, that connecting together devices of different families can cause problems. It seems that different manufacturers' versions of what is supposed to be the same chip can also give rise to difficulties.
I tried connecting an SY6522, manufactured by Synertek, to the Nanocomp at base address 5000 hex. It failed to work; no read or write operations were possible. Careful comparison of the Synertek data book with the 6821 data sheets revealed one tiny, but crucial, difference. Whereas on the 6821 it does not appear to be necessary to make CS true before the E-signal goes high, the SY6522 quite ambiguously requires a settling time of 180 ns from the addresses - including chip select - going true to E going high. I therefore removed E from the gating to the address decoder and simply tied the G input high. The problem then disappeared, though now the ram chips might possibly undergo spurious writes durimg the address and control settling time. However, on my Nanocomp this did not appear to happen, though I feel that perhaps I ought to have fed the G input of the 74LS138 from the Q and E signals ored together, using a 74LS32.
Interestingly enough, the Rockwell data sheets are not at all clear as to whether the CS inputs count as address inputs, and it may well be that Rockwell and other chips behave like 6821 s in this respect; this would account for Bob Coates' lack of problems.
Gerald Bettridge
Eton College
Windsor

DEATH OF ELECTRIC CURRENT

December 1982, when Dogg questions Catt I think the editor should smell a Ratt, and check the telephone directory.

For the new (Theory C) model for the charged capacitor, go to the penultimate diagram, page 80, Wireless World Dec. 1980. Now assume that a small section in the middle of the top plate is lossy, e.g. there is a 50 ohm resistor. Now replace that 50 ohm resistor by a piece of 50 ohm coax going straight upward, out of the paper, from the centre of the top conductor. Conventional theory for reflection at discontinuities in a transmission line (and we now have three paths leaving this point; to the right, to the left, and upward) leads us to conclude that no energy will travel up the new branch. That is, a "steady" charged capacitor ignores deviations from perfect conduction in a plate of the
capacitor. This means that one plate could have been made of ebonite and the other could be a cat's fur. Now move the two 'plates' away from each other. The standing wave of energy current remains, reciprocating to and fro in the space between the now distant plates.
Theory C has nothing to say about the effect of rubbing the ebonite rod with the cat's fur. Rome was not built in a day.
Ivor Catt
Hooray for Ouida Dogg's letter in your December issue! A person after my own heart who wants a simple explanation which can be visualised.
Having myself done a fair amount or rubbing various insulators with cat fur (synthetic) and silk (also synthetic), I was led to believe that some substances have a greater "attinity" (sic) for electrons than others. In the course of the friction electrons were grabbed either by the doth or the insulator - usually a rod. The one which lost electrons became more positive, and the other more negative. Because the rod was an insulator it was stuck with a charge until the electrons slowly re-distributed themselves, partly through the air and into or out of the rest of the world. The doth, being grasped by a moist hand, usually did this quickly; but it could be held in insulating tongs.
This simple theory was easily visualised and easily supported by experiments with a gold-leaf electroscope (also synthetic).
Along came semiconductors, and we had to think of positive holes moving around. Soon afterwards Nuffield Science came into schools; and electroscopes, magnetometers, quadrant electrometers and other "boring" gadgets became old hat.
With due respect to those who can keep up with devel opments and even explain them fairly lucidly (thank you Mr Catt), let us praise such famous names as Scroggie (Foundations of Wireless), Camm (innumerable publications for beginners), Cocking (Wireless Servicing Manual), Sylvanus P. Thompson FRS (Calculus Made Easy, 1910 ff), and Cathode Ray of Wireless World in the 1950s. These were people who knew the score and could help us along.
John P. Marchant
Putnoe
Bedford

ANYTHING IS POSSIBLE

What a marvellous time we are having in Wireless World! In the October issue Ifind letters on the "Death of Electric Current", and "Modern 'Physics". In the articles we have Dr Aspden writing about The Ether and Dr Scott Murray giving us the Heretics Guide to Modern Physics. Together with all the letters about Relativity I cannot wait for each issue to come out such is the fascination of all this discussion, which I am sure would never be allowed in the Hallowed pages of magazines (sorry, Journals) such as "Nature".
Apart from a permanent uneasy feeling about what I was being asked to believe by the Relativists, I had never seriously considered that others would share my worries until the growth of discussion in your pages over the last few years. However, reading, and trying to digest this wealth of information and speculation has led me to speculate in turn.

For a start, I wonder whether we are about to fall into the same logical trap as did the mice when they did not use the answer that they obtained at great expense. They jumped to the immediate conclusion that 42 was not meaningful to them - fair enough - but, they then failed to take the correct step of actually analysing the new fact before asking a new question. The result was then as could readily have been predicted insofar as the further information obtained appeared either to have been worthless by being self-evident ($6 \times 7=42$) or totally confusing. Their correct course would first to have been to find out what 42 actually meant.

To illustrate in terms away from the world of fiction; if I say that $\mathrm{A}=\mathrm{A}+1$ is a correct statement, then I may well make sense to someone, but nonsense to somebody else. The confusion arises merely due to the interpretation of the symbol $=$. To somebody dealing with numbers, the statement $A=A+1$ is false, whereas to somebody dealing with logic, the statement could be true. Note that the points of view are not mutually exclusive in both directions. Only one of the two hypothetical people would place a single, dogmatic, notion of correctness on the statement that $\mathrm{A}=\mathrm{A}+1$.

Reading the last paragraph again, I see that I have unconsciously already started to make a further point, and that is to show that more knowledge does not necessarily make for more certainty but most of the time for less certainty. More certainty does not come from more and more facts per se, but very often only by better and better definitions. Mathematics is a very beautiful discipline, witness $E=h$ (which) appears in two different articles in the October issue), but even such a simple statement depends totally upon extremely precise definitions of every symbol in that statement. Far too often as history and scientific literature show, fundamental disagreements arise merely by a simple misunderstanding. In fact, not only history, but many of the letters in Wireless World!
In my view, there can be only two possible. questions to put to find "the meaning of the Universe and everything". The questions as I will put them in this letter are probably not very well worded and probably lack precision of definition, but they will do for a start. The questions should between them produce only one answer, but that answer will give certainty in one case and vagueness in the other, which at least is no novelty. In both cases, the answer is only a signpost to further exploration, but I believe that it is a signpost that has been ignored up to now.

Question 1. Are all discoverable facts open to only one unique, interpretation? Ignore the problem that a new fact often seems to present on its initial discovery, that is, that of seeming to be of different meaning from different viewpoints. Concentrate only on the eventual, complete, understanding of each and every fact.

Question 2. Are all discoverable facts dependant for their interpretation on the position of the observer in relation to them? I think that the position of the Relativists is that the answer to this question is Yes, but that for every observer, the answer to question 1 is Yes.

It seems to me that both questions are valid ones to put but that question 2 cannot be put to the majority of people without it invoking violent reaction, and hence will never be seriously considered. One corollary of question 2 is of course that anything is possible and all science,
theology and other fictions will never allow such a conclusion to be drawn, in spite of the much quoted "there are more things in heaven and earth...".
A C Batchelor
London N3

FAILURE OF DISTRESS SIGNALS AT SEA

During the past few years there have been several letters in Wireless World on the subject of emergency lifeboat wireless equipment - and on the low efficiency of $500 \mathrm{kHz}(600 \mathrm{~m})$ shipborne installations. In both cases the main problem has been correctly given as an aerial problem. Several correspondents have lately underlined salt-water spray and soot deposits on insulators as very active agents in low aerial efficiency.
The two active loss-agents in aerial wires and insulators are the inductive and the capacitive heating by the high-frequency energy fiedds (see later).
Radiation ability (radiation resistance) and matching loss belong to the system technology of present day practice and will not be commented upon here.
Most aerial engineers will probably agree with me that an aerial of height 0.1 wavelength can easily be matched to the feed-line and transmitter with an efficiency of 50% or more, of the maximum output from the transmitter. In fact a 0.1 wavelength vertical aerial, kite-born from a lifeboat and driven with 1 watt of transmitter power, should give a range of 500 km at 500 kHz $(600 \mathrm{~m})$. But how to keep 60 m of aerial wire supported in storm by a kite or balloon is beyond my ability to answer. Another limiting factor is the almost unsolvable problem of automatically compensating the wildly varying reactive components of the aerial as the height and inclination of the wire changes in heavy sea and wind.
Consider typical aerials in fishing vessels: whip-aerial between 12 and 18 feet (for the 2 MHz band), efficiency between 0.04 and 0.07 (1) in $d r y$ conditions. Now scale up the aerial heights to 600 metre $(500 \mathrm{kHz})$ and we find impossible heights between 65 and 90 feet to give the same "performance".
This knowledge, together with the many letters on this subject in WWW, enables one to state a basic fact: there is a minimum (equivalent) height below which no communication from small boats or vessels is possible as a result of economics and/or physics. This height is less than 0.1 wavelength, but not much. The cost of matching short aerials for multi-frequency operation with low-power equipment (say 100 watt or less) is a prohibiting factor - even in relation to Solas* - or so it seems.
Look a little closer at the physics of small radiating structures and keep in mind that only the use of 500 kHz for emergency transmissions can guarantee the successful result of wireless direction finding equipment, from land-based stations as well as from ship and airborne equipment. At 2 MHz direction finding is much

[^4]less efficient due to skywaves and local reflections. Also the "wavelength factor" is important as the size of the vessel compares with wavelength.

When the aerial is small, the losses due to inductive and capacitive heating will be the limiting factors of efficiency (since the extremely low radiation resistance can not be matched). We often use words like "skineffect", "skin depth" and "proximity effect" in order to explain the limits of physics. In reality, the high frequency field - as guided by metallic conductors and electrical insulators - loses energy directly by absorption into the conducting materials present in the field (inductive heating) and also into non-conductive materials in the energy field (capacitive heating).
To indicate the scale of energy conversion rates of heating the metals, I shall quote the following figures (source: Telefunken, Berlin): Inductive heating

- by convection currents
up to $0.5 \mathrm{~W} / \mathrm{cm}^{2}$
- in an electric furnace
- in a flame
- by r.f. generator
up to $25 \mathrm{~W} / \mathrm{cm}^{2}$ up to $1000 \mathrm{~W} / \mathrm{cm}^{2}$ It seems obvious that induction loss (heating) is dependent upon the surface area of the metal in the field. The capacitive heating loss - or dielectric loss - takes place in capacitive cells - for instance on the surface of an aerial insulator - and the loss tangent will increase in salty and moisty conditions. The presence of moisture will create heating nuclei in which molecular activity is increased, leading to collision processes, etc.
Some conclusions might be drawn from the above facts:

1. Short aerials should be given a minimum surface.
2. Insulators should be avoided at low heights above sea! (How?) But reduced surface areas may help.
3. Easily cleaned (and dried!) aerials - for instance the "top-loaded unipole" types popular with Northern European owners - would be safer (but otherwise not more efficient). Strainwire aerials should be made from single-core conductor of least possible diameter \dagger. The use of copper is not mandatory!
4. Working emergency aerials suitable for lifeboats and rafts are yet not commercially available. This should surprise nobody. Such aerials will not be available unless steps are taken to introduce the fundamentals of physics into our everyday engineering lives! I do not know of a single case of the rescue of shipwrecked seamen in a lifeboat or raft due to the use of a lifeboat transmitter on the international emergency frequency of 500 kHz . (There may be cases of rescue by use of 2.18 MHz - if so, only at short ranges and in busy waters).
5. V.h.f./u.h.f. cannot replace 500 kHz in direction finding ability and range for a long time to come. Also, losses in all radiating structures increase with frequency.

One principal question presents itself at this point: is there any possibility of entirely new concepts for high efficiency small aerials? Science fiction has got theml There is hope: we have one type of aerial structure which can overcome "normal" limitations - and time is more than ripe for unified action in this field.
Hans P. Faye-Thilesen
Teledynamikk, Brattlia
Hurdal
Norway

AMATEURS AND CB

I have just read the comment by the Home Office Press Officer (November page 66) Mr Wood. I wonder if anyone at the Home Office has any conception of the number of 'pirates' operating illegally. It is interesting to know that 14 people were prosecuted in 1981, since it was widely known at the time that there were around $1,000,000$ stations in operation. It got to such a pitch that a watch was kept by amateurs on the 10 metre band, because some of these sets had what is known as super high band (they could go as high as $\mathbf{2 8 , 3 0 0}$). These stations were jammed.
A friend of mine was prosecuted in the late seventies for illegal operation of 160 metres. He was heavily fined, and his equipment was confiscated. But then, the magistrates didn't really understand what it was all about; nowadays they have CB themselves and the fines are very light, so it is not worth doing all the work, taking three bearings and hanging about for nights, when they are only going to be fined 125 anyway. The Post Office haven't the time these days; they are running round sorting cases of TVI and BCI. I know of no amateur who has had a station check recently.
The problem has not gone away, even now there is illegal a.m. and sideband on $27 / 28$ MHz , and more sinister is the illegal use of the 6.6 MHz which in my opinion deserves special attention. I suspect that Mr Clayton was basically correct and that the best comment the Home Office can make is 'no comment'.
Peter C. Gregory
Ashton-under-Lyne
Greater Manchester

Having bought my first issue of Wireless World (November) I see some comment in the letter page concerning CB by S. Frost of Edinburgh.
Perhaps by comments as a CB activist for the last 36 years are of value. CB was originally requested in Parliament in 1946 to put to good public use the vast quantities of War transceivers.
CB is a highly political subject. Politicians with their universal paranoia for power are fearful of effective public communication - particularly any mode that could become international. That is why we have an emasculated f.m. "service" on totally unique frequencies. The lack of any user responsibilities for legal CBers is a mere reflection of the Home Office determination that CB is no more than a childish toy to, regretably, he tolerated as far as possible.

The genuine CB enthusiasts are now being forced into the ham bands - class B licence issues have exploded over the past seven years, almost doubling each year. Yet these are not true hams - just Joe Public seeking freedom to communicate. The 2 metre-band is all but an alternative CB band! More to the point, a.m. and s.s.b. are the norm - so much for superior f.m.

Much emphasis is made of the excessive piracy of r.f. spectrum by illegal CBers with 80 and even 120 channel transceivers. Rubbish. We need a min of 200 channel frequencies. 2 MHz of band width is less than a quarter that of a single tv channel. The rest of the communication users would do well to emulate the frugal use of spectrum when CB can on s.s.b. have 400 clear channels in 2 HMz .

What is desperately needed is a responsible
reappraisal of public radio communication a.m./s.s.b. CBers are not the 100% irresponsible sham hams bent on law breaking, taking delight in causing wall-to-wall TVI. All that's wrong is being illegal. Give us legal status to come out of hiding and openly cooperate to cure interference problems. We actually want such responsibility, unlike many legal FMers who take the view that being legl it's up to Buzby to fix the neighbour's tv etc when FM walks all over it!
M. E. J. Wright

High Wycombe
Bucks
In my letter in the November issue I raised the social and political implications of the CB situation; and the question then arises as to whether such material should appear in a technical magazine. I would suggest that it should, because it so happens that the problem of illegal CB has a political cause. Is a technical magazine supposed to ignore the causes of a technical problem if the causes are non-technical?

It is necessary to be political to get to the root of the problem, because, as John Knox said in 1570: "If ye strike not at the root the branches that appear to be broken will bud again." It is sad but true that the root of many problems, including the CB problem, lies in trying to run a 20th-century state with a medieval morality wrapped up in a 19 th-century constitution.

Furthermore electronics does not exist in a vacuum but is part of an interdependent whole, and must only be considered in the context of its total environment. This is because all apparently unrelated topics are in fact related. Let us consider the views of some scientists and engineers on this point;

A N. Whitehead, 1934: "Any local
agitation shakes the whole universe. The distant effects are minute but they are there. There is no possibility of a detached, selfcontained existance."
F. D. Peat, 1972: "All systems are subject to interaction of varying strength arising from all other systems." ${ }^{2}$
T. B. Tang, 1980: "All local properties are related to the global condition of the universe, and a part, however small, must not be regarded in isolation from the whole." ${ }^{3}$

The inventors of Circards, 1978: "By exposing ourselves to the greatest variety of influences we increase the chance of seeing relationships between apparently unrelated topics. ${ }^{4}$
By setting out the social implications of technical matters we expose ourselves to a greater variety of influences than normal; and this enables us to see relationships between apparently unrelated topics. This in turn enables us to learn the true causes of things; which increases our ability to solve existing problems and prevent new ones.

It also enables us to take a step forward towards the social control of technology, which is necessary to prevent technology from doing more harm than good. Einstein's principal biographer has written as follows;
"Instead of singing the praises of scientific progress Einstein asked why it had brought such little happiness. In war it had enabled men to mutilate one another more efficiently and in peace it had enslaved man to the machine."5

Technology must be strictly controlled (and even CB must be strictly controlled from a technical point of view); but when deciding how to control something the decision must be based on reason, not on prejudice or ignorance; and reason requires the widest possible discussion of all the issues involved, including the social, political, and economic, as well as the technical; and WW is a vital forum for the purpose.
There are not many magazines in the world with sufficient calibre to appreciate the importance of wide discussion. WW is one. Electronics Australia is another. Magazines like this are leaders in their fields and have survived whilst other magazines have come and gone; and one of the reasons they have survived is the same reason that Shakespeare has survived; because they deal with the whole of life, (from a technical point of view,) and not just a tiny part of it; and by dealing with the whole of life they cater for the thinking technician' as well as the android technician.
Discussion of the social aspect of technical matters is not out of place in a journal of WW's standing but is part of its proper function. It is precisely because of such broadminded freethinking that WW's standing is as high as it is. Technicians do not live by technology alone. S. Frost

Edinburgh

1. From Nature and Life, quoted in "The Challenge of Chance" by Arthur Koester, page 235.
2. Ibid. p. 239.
3. WWW May 1980, p. 81.
4. WW April 1978, p.81, col. 2.
5. "Einstein," R. W. Clark, p. 409.

RED SHIFT

With regard to the conclusion that all galaxies are receding from us at a speed proportional to their distance from us owing to the Doppler effect explanation of the red shift, could it be possible that the red shift is not a manifestation of the Doppler effect but an energy loss effect due to the interaction of light in one direction with light and electromagnetic waves and particules in other directions? Since every so often light photons from one source must effectively collide with others from other sources a loss of energy or lowering in frequency in the direction of the observer might occur. Presumably there are a lot of possibilities for interactions of different radiations but maybe a photon in the presence of another photon causes an influence such that energy is emirted in another form or direction - thus lowering the frequency slightly in each case.
If better reasons exist for Doppler-effect explanation then perhaps someone might explain. Nicholas K. Kirk
Dartord

BBC ENGINEERING

Just to keep the record straight, I should like to point out a few small errors that I have noticed in Mr Leggatt's article last November. My authority is Edward Pawley's monumental "BBC Engineering 1922-1972". With reference to page 48, column 3, the Alexandra Palace studios were set up in 1936, not 1938. The EMI system alone was used from February 1937, not January. And in the photograph actually shows
a telerecording channel, for photographing a television image onto cine film. The word "telecine" in this country designates equipment for the transmission of films.
E. J. Stocks

Chelmsford
Essex
I wish you had been more careful, in the article on the 60th anniversary of the creation of the BBC , in discussing the future of the v.h.f. broadcasting band. We ought to be wary of that organization's plan to swallow up the band, leaving room only for the existing commercial broadcasters and a "fifth national network". If the BBC has its way, the 88 to 108 MHz spectrum will be divided into sub-bands for Radios $1,2,3,4$, BBC local radio, commercial radio and the fifth national (educational?) network. Meanwhile, there would presumably be simultaneous a.m. broadcasts of these services on medium wave and long wave, except for the fifth network.
These plans obviously reflect the BBC antagonistic artitudes toward the potential (and the clandestine) community broadcasters. Furthermore, the "third-force" broadcasters outside the BBC-IBA duopoly would include operators willing to provide specialist music services, rather as the London pirates do now.

There is no room for the BBC to expand its v.h.f. network. Their philosophy in attempting to provide a service which is super hi-fi and at the same time suitable for listeners with very unselective portables is now being questioned. In addition, the BBC has been criticised for broadcasting the same programme on different services, which in turn are simulcasted in f.m. and a.m. In any case, it looks as if spending cuts will result in the combination of one of the national networks (hopefully Radio 2) with local and regional radio.
I conclude therefore, that the present empty 102.1 to 104.6 MHz sub-band, the gaps between the national network transmissions, and the frequency space to be released by the removal of emergency services from the band, should be allocated to the non-profit-making, truly independent, "third-force" broadcasters. It is they who will provide an alternative to Muzak, pop, prattle and middle-class obsession.
A. W., Gateshead

The author neplies

You are right in what you say, the Substitution of 1938 for- 1936 for the Alexandra Palace studios is a typographical error: the decision to abandon the Baird system was taken in January 1937, but not implemented until February 7; and the caption to the photograph should indeed be 'telerecording' rather than 'relecine'.
I must confess that I was very late in completing the draft of the article and submitting it to Wireless World, so that there was really no time to review a proof and perhaps spot these errors,

I must say I am taken with the liveliness of the description of existing radio as Muzak, pop, prattle and middle-class obsession: but I suppose if one wanted one could categorize any radio programming in this way, even from 'third-force' broadcasters.

On average, 22 million people listen to BBC radio each day and it is our duty and our desire to offer these millions the best reception possible. They pay for the services via the television licence, and they are entitled to the improved coverage which would be achieved by the Band

II plan proposed by the BBC and correctly described. It is clearly necessary to maintain duplication on medium and long waves at least until satisfactory country-wide coverage is available on v.h.f.

The BBC is certainly antagonistic to current private broadcasting on account of its illegality. We would be competitive rather than antagonistic toward any legally established system.
The Home Office is the national authority on the allocation and use of radio frequencies. It would be for them to decide whether a fifth v.h.f. network should be created and for what it should be used; and it is for them to decide to what extent community radio services should be authorized and allocated frequency space.

UNDERGROUND RADIO

I was gratified to see in your December correspondence columns the overseas interest evoked by my articles on leaky feeder communication.
Mr Clifford draws attention to his pioneering work in conductor-guided communication at low frequencies. His very interesting letter probably gives the first generally available description in this country of the equipment he designed, though I did know of an earlier reference than the one I cited; I should perhaps have listed it, and make amends below.

My theme was principally leaky-feeder communication, and my mention of low-frequency techniques for mine rescue incidental, but in that application the capability of guidance through a fall of roof by such robust conductors as rails and power cables is clearly of over-riding importance and is not being neglected in Europe.

It is reassuring to note from the letter of Mr Hughes that leaky feeders operate in the same way in the southern hemisphere, my first confirmation of that fact. His mention of a sheathed ribbon feeder is interesting. I briefly experimented with a p.v.c.-sheathed ribbon, but found the resulting losses greater than those of the proximity effects and surface moisture it was intended to avoid. I feel Mr Hughes will come to accepting the extra expense of a coaxial feeder for all 'serious' applications, especially in wet conditions.
The ranges he quotes are in exact accord with European experience using 300 ohm ribbon, and the frequencies of 27 and 40 MHz he has chosen are probably the ideal. In coal mines, however, we would not be able to use the powers in excess of 0.5 W he mentions - the present aim, in fact, is to limit mobile power to 50 mW . His move towards the use of repeaters rather than multiple base stations is to be encouraged - though a.m. could then prove an unhappy choice in coalmining applications, where the need for intrinsic safety and its limitation on line-fed power usually imply that repeaters are highly non-linear devices in the interests of utmost efficiency. If his examination of different modes of modulation extends beyond f.m. and a.m. the outcome will be extremely interesting.

D. J. R. Martin

Leatherhead
Reference: D. J. Vermeulen and P. J. Blignaut, Underground radio communication and its application for use in emergencies, Transactions of the South African Institute of Electrical Engineers, April 1961, vol.62, pp.94-104.

THE DREAM OF OBJECTIVITY

If Peter G. M. Dawe had a superior programme. for his organic computer and was not bogged down in the specialistic subjective of mass apparency, then perhaps he would be able to see more than one side of everything out of isolation.
The said programme is to widen the mind, using the curiosity to take in multitudinous bits of information in a multidisciplinary manner so to form the foundation for a pyramid. The first course of stones is built by taking in what might have been the same information in a later point of time and comparing it with the original information stored in the memory: so the discovery is made of systems, i.e. those commonplace devices in which mass is ordered by energy providing information of change. The second course of stones is built by study of those systems so to discover the laws of the scientists and the mathematicians, mathematics being no more than the universal analogy by which numbers are put to the dimensions of systems. The third course of stones is built by discovering from the study of the scientific laws the abstract laws which the said scientific laws obey - for instance, the abstract concept of pressure, resistance and flow is universal to absolutely all disciplines. The final top stone then represents the Ultimate Creator.
Perhaps Eddington had not got it quite right, but the way the Royal Society patted him on the head and told him to go home demonstrates precisely what a multidisciplinary diverger expects to see from a herd of specialistic animals who are only fit to be farmed.
The concept of pressure, resistance, and flow is rather interesting, in that it embodies change of velocity: the limiting asymptotes for velocity are creation and catastrophe, which I see as demonstrable along any radial geodesic of the universe according to the concept of massenergy interchange.
If Mr Dawe, or anybody else, wishes to disprove the said concept, then he must first invent a massless sensor for energy, and indeed, a massless carrier for it. This, I suspect may turn out to be a little difficult.
James A. MacHarg
Wooler
Northumberland

SCIENCE AND POETIC IMAGINATION

I must disagree with Mr Bacon (Letters, September), on several counts.
Firstly there is very little difference between science and poetic imagination. Indeed, without poetic imagination there would be very little science. Science involves two main phases; the search for facts, and the interpretation of them. The first is largely done by rote, but the last requires imagination, because without imagination one cannot formulate the laws and principles which are necessary to make sense of the facts. The noted inventor Prof. Eric Laithwaite has put it this way;
"You can be over-educated in science so that you never invent anything. I know a large number of people who can do the theory of electro-magnetism better than I ever could,
and I've forgotten all the theory anyway; and none of these gentlemen ever invented a thing. It's very easy for me to regard them as 'superior' to me in my profession, but the number of patents I've got bears testimony to the fact that it isn't only scientific training that matters. There must be something else. It's too easy to take a complicated piece of machinery and analyse it down to the last detail, and be satisfied that you can say exactly how it works; but it doesn't tell you how to make it better."*
He says that "there must be something else;" and that something else is poetic imagination.
Indeed, the history of human progress enables us to formulate a law; other things being equal, academic qualificiations are inversely proportional to inventive skill. WW itself provides a lot of evidence for that. The articles fall into two main categories; those which take a complicated piece of machinery and analyse it down to the last detail, and those which tell you how to make it better. On the whole the authors of the first type of article tend to have strings of letters after their names which sometimes threaten to fall right off the edge of the page; whereas the authors of the second type of article tend to have few or no formal qualifications. It is the last mentioned type of person which makes the world go round. If a part of the world gets stuck in the mud the most that the highly qualified person can do about it is to produce lots of pretty graphs which tell you what type of mud it is. It takes the eccentric, unqualified genius to tell you how to get out of it.

Admittedly there are some exceptions to this rule, but it seems to have enough truth in it to be useful as a general guide; especially to employers.
(It is the failure of Britain's employers to recognise this law which is one of the causes of Britain's decline. Large employers tend to employ engineers with formal qualifications, in the mistaken belief that a person with formal qualification is better than one without. Consequently British companies are filling up with graduates who can take a complicated piece of machinery and analyse it down to the last detail but who have no idea of how to make it better. This in turn is preventing the companies from producing new products with which to compete with imports. The same applies to the civil services, which is almost exclusively run by Oxbridge graduates. Their academic qualifications are high and their imagination is non-existent. Or to quote someone else, their intelligence is sharp and their imagination blunt. And as it is the civil service which largely runs Britain, Britain goes down and down, as it has been doing ever since the civil service took over about 60 years ago.)

An example of poetic imagination appeared in the very same issue as Mr Bacon's letter. On page 59 and 60 we were told that the Japanese had increased the density of data storage on magnetic tape, by making the particules stand on end. This concept is brilliant in its simplicity and was almost certainly thought of by someone who is just as much a poet as an engineer. This kind of concept usually arises from a flash of inspiration rather than the steady application of set rules; and flashes of inspiration are one of the characteristics of a poetic mind.

Mr Bacon also says, "Cannon had been around for hundreds of years before Newton, demonstrating all three of his laws with classical
elegance. The ballistics experts had it all in front of them but missed it. Newton didn't. Newton was a genius." That is true, but how is it that Newton saw what the others didn't? Because he had poetic imagination, just like Lucretius.
Another example of the two types of people that we are talking about is Darwin and Huxley. If you had given both of them an intelligence test Huxley would have run rings around Darwin, and yet it was Darwin who came up with the theory. When Huxley heard about it he explained "Why didn't I think of that?" The reason he didn't think of it is that he was too intelligent. He had a brilliant, sharp, incisive mind; and no imagination.
Back to Lucretius. Mr Bacon is right when he says that the views of Lucretius were unsupported by experiment. So, in 1905, was Relativity. The fact that Lucretius got a great deal wrong is understandable, because he had no means with which to test his theories; but that only increases the awe in which be should be held for getting so much right. He is one of the greatest thinkers of all time. Only a genius could get so much right without experiment.
Mr Bacon is also right when he says that sloppy thinking is still sloppy even when $2 \mathbb{K}$ years old, but that doesn't apply to Lucretius. The mistakes of Lucretius were not due to sloppiness but to the lack of any method of testing his theories. Aristotle also got a great deal right and a great deal wrong. Theorising without experimenting, he taught that a large stone will fall faster than a small one. That is something which could have been tested, but he failed to do the test; and to that extent he was a sloppy thinker. S. Frost Edinburgh
*From a tape of Radio 4, 11am, 26/7/78.

PICKUP ARM GEOMETRY

During the past decades, several important contributions toward the optimization of tone arm geometry have been published.
The work of Baerwald ${ }^{1}$ is the most rigorous analytical treatment to date, and shows that distortions due to lateral tracking error, which result from the use of a pivoted tone arm, can be minimized by using optimum geometry. Equations to calculate the required offset angle and overhang are given in that article. All one need do is to select values for the effective arm length, and the desired inner and outer groove radii. Given these three parameters, the offset angle and overhang may then be calculated. When these figures are employed in the settingup of a turntable, tracking distortion is minimized across the selected playing surface of a record. What has been done is to minimize the tracking error per unit length of radius, and not just the tracking error and inversely proportional to the radius.
Works by Bauer, Seagrave and Stevenson later followed ${ }^{2}$ where optimum offset angle and overhang equations were also derived. So far as I am aware, no attempt has been made to compare the equations derived by these four people, with the aim of determining the differences between them and assessing the "best" design equations. I did such a comparison, and felt that
the results were quite interesting.
FACT: The design equations for optimum offset angle and overhang given by Seagrave and Stevenson are mathematically identical to those given by Baerwald! (The equations differ only in notation and arrangement). Only simple mathematics is needed to show that the equations given by the three authors are the same. Also, they produce, respectively, identical numerical values for the optimum offset angle and overhang, as would be expected. If in doubt, select a set of values for the three input parameters, substitute them into the equations given by the respective authors, and calculate the results. Further, the equations given by Stevenson to calculate the radius of the two zero-error points are identical to those given by Baerwald.

The equivalence between the works of the various authors can be readily shown. I have enclosed a copy of the mathematics which prove the equivalence, and provide a comparison and summary of the results.
One further point. Due to the range of inner recorded groove radii encountered on records, it makes the selection of that imput parameter (as an input to the design equations) quite difficult. Also, one can readily alter the position of the calculated inner zero error radius by making a change in the selected inner recorded groove radius. Stevenson also provided an alternate set of design equations which use the inner zero error radius as an input parameter, in lieu of the inner groove radius. Of course, the offset angle and overhang are the same as before, because his two sets of design equations are mathematically consistent.
Some recent conjecture argues that Stevenson's equations are not only more accurate than Baerwald's, but that the last's work is in error because of a faulty concept toward the reduction of tracking distortion. The difference really lies in the criteria used for selecting the inner recorded groove radius (and hense the location of the inner zero error point), and not in the mathematics of the optimum equations. The works of Baerwald, Seagrave and Stevenson are mathematically consistent.

Any mechanical alignment device, to be of use, must also be based upon the optimum design equations already mentioned. However, the designer of such a device is required to establish values for the inner and outer groove radii, so that distortion will be minimized between these two points. Therefore the validity of such a device is dependent upon the validity of the selected inner and outer groove radii used in its design.

The use of the equations derived by Bauer results in a small increase in distortion compared to Baerwald's, as Bauer used two simplifying approximations in his analysis. Bauer's expression for optimum offset angle is identical to that given by Baerwald, except Bauer's gives the angle in radians instead of its sine. Baerwald provided both exact and approximate expressions for the optimum overhang. The approximate expression is identical to the one provided by Bauer.

References 3 are most comprehensive on the subject of optmium tone arm geometry; references 4 are my earliest known uses of offset and overhang principles. However, References 4 \& 5 are based upon the reduction of tracking error across the playing surface, and not tracking error per unit radius. But attention was certainly being focused in the right direction.

In conclusion, the equations derived by Baerwald in 1941 for the optimum offset and overhang have certainly not been superseded or outdated. The fact that Seagrave and Stevenson produced equations identical to Baerwald's certainly confirms the preciseness and validity of Baerwald's work; it is still the most definitive analysis to date on the subject. The real problem today is the selection of an acceptable inner recorded groove radius to use in the optimum design equations, and not which design equations to use. For that, the choice is Baerwald, Seagrave or Stevenson!
Now that we have a sound basis for distortion minimization, it is prudent to assess suitable criteria for its use. For example, where should the selected inner and outer recorded groove radii lie with respect to the three-equal-point distortion curve, or how should the two groove radii values be modified before being used in the design equations?
Do we have to use other criteria, or can we continue to use the equations directly, as originally intended? I believe there is much more to be done.
I will forward a copy of my complete analysis to any interested reader.
Graeme F. Dennes
2474 Hallmark Drive

Belmont

California 94002

References

1. Baerwald, H. G. Analytic treatment of tracking error and notes on optimal pickup design, Journal of Society of Motion Picture Engineers, Dec. 1941, p. 591.
2. Bauer, B. B. Tracking angle in phonograph pickups, Electronics Mar. 1945, p. 110
Seagrave, J. D. Minimizing pickup tracking error, Audiocraft Magazine Dec. 1956, p. 19; Jan. 1957, p. 25; Aug. 1957, p. 22.
Stevenson, J. K. Pickup arm design, Wireless World May 1966, p. 214, Jun. 1966, p. 314
3. The Audio Critic (vol. 1, nos) $1,4,5,6$).

Kessler, J. D. and Pisha, B. V. Tonearm geometry and serup demystified, Audio (Jan. 1980), p. 76.
4. Wilson, P. Needle track alignment, The Gramaphone Sep. 1924, p. 129.
Two notes on gramophone adjustment, The Gramophone Mar. 1925, p. 381
5. Chamberlain, E. A. Correct pickup alignment, Wireless World Mar. 1930, p. 339 Additional sources
Lofgren, E. G. Non-linear distortion in the reproduction of phongraph records caused by angular deviation of the pickup arm. Akust. Zeis. vol. III 1938, p. 350.
Randhawa, T. S. Pickup arm design techniques, Wireless World Mar. 1978, p. 73, Apr. 1978, p. 63.
Gilson, R. J. The cartridge alignment problem, Wireless World Oct. 1981, p. 59.

CLOCK-TRIGGERED TRIANGULAR PULSES

In your November 1982 issue (page 57), there is a version of my circuit "Clock-triggered triangular pulse generator" (June 1982 issue, page 60) by C. C. Odukwe. I am afraid I can not follow

Mr Odukwe suggesting the addition of two logic level shifters in the original circuit.
It is obvious that the circuit uses positive logic $\mathrm{H}=+5 \mathrm{~V}, \mathrm{~L}=0 \mathrm{~V}$) to control the analogue switches (according to data sheet) and the D flip-flops of it. Indeed I see no reason at all to change the logic in order to control the switches, as there is no different logic in any part of the original circuit. In fact, the only reasonable modification would be to limit the $\pm 10 \mathrm{~V}$ output levels of the two comparators to the standard $+5 \mathrm{~V}, 0 \mathrm{~V}$ logic levels. However, practice shows that this change is not necessary for the circuit to work properly and reliably. Furthermore, he suggested logic level shifters create more prob-

lems that those it is assumed they "solve". That is the analogue switches supplied by $\pm 5 \mathrm{~V}$ cannot be enabled by the 0 V (suggested high state) and the circuit does not work at all.

The supply voltages of the analogue swtitches are determined by te need for transmitting two direct voltages, -5 V and +5 V through the switches and are chosen to be $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{ss}}=-5 \mathrm{~V}$. Therefore, Mr Odukwe's note of a commonly known characteristic of Cmos analogue switches has been obviously taken into consideration.

Finally, my circuit is not a "clock-triggered trangular generator" which means the generation of a continuous trangular waveform and the "clock-triggered" could mean anything or nothing. The original circuit is a clock-triggered triangular pulse generator, which means that at every rising or falling edge of the clock input pulse only one triangular pulse is generated. The enclosed figure shows the actual waveforms at various points of the original circuit.
George Tombras
University of
Thessaloniki.

Pioneers of uhf television

Abstract

Origins of uhf television go back over 40 years when it was exploited for a most remarkable use as part of the German war effort. Andrew Emmerson gives the archival details and dates the first use of cctv.

To many people u.h.f. television broadcasting is still a relatively recent phenomenon. Although exploited soon after World War 2 in the USA to a limited extent, for practical purposes the u.h.f. bands were not used for tv broadcasting in Europe until the 1960s. Experiments with tv in the u.h.f. region had gone on previously, notably by amateurs on 70 centimetres, starting with W2LNP in the USA (1950), G5ZT in Britain (1952) and growing numbers thereafter. Also the BBC's first point-to-point link, provided from London to Birmingham by the Post Office in 1949, operated in the upper reaches of u.h.f. But the origins of u.h.f. television go back further, to the period 1940-43, when it was exploited for a most remarkable purpose as part of a little-known programme of the German war effort.

The story of Allied, and particularly British, development of radar techniques has been told many times, even if not in great detail, and coupled with understandable reticence on the part of the Germans since the war, this has meant that the German achievements have received rather less attention. Nonetheless, during the years from 1940 to 1943 the Germans were the first to exploit the u.h.f. region for television, while at the same time exploiting the use of closed-circuit television. In both cases it was in connection with missiles: in the first, u.h.f. television was being used to guide radio-controlled flying bombs, and in the second c.c.tv was employed for remote observation at the V2 rocket establishment at Peenemünde. Both are remarkable in that they pre-date later work by several years and, rather like Britain's pioneer Colossus computers, have received little attention until recently. Both developments came to light during the mid-seventies, though their existence had not previously been an official secret in the same way Colossus had been. The television-controlled missiles came to light in Brian Johnson's book The Secret War which accompanied a BBC-tv series of the same name. And the use of closed-circuit tv at Peenemünde was recalled by Prof. Walter Bruch at the Berlin radio exhibition in 1973. Of these two early non-broadcast tv applications the guidance system is the more spectacular.

The missile which used television for guidance was the Hs293D class of flying

by Andrew Emmerson

bomb and the principle was simple. The missile was launched and controlled by radio from a transmitter in a parent aircraft. A tv camera and transmitter built into the missile relayed a picture back to the bomb controller aboard the aircraft. The controller could 'fly' the missile from the relative safety of the aeroplane: when 20 km from the target the plane would turn for home while the bomb aimer would continue to 'fly' his missile, monitoring progress on the tv screen. Surviving reports indicate that the technique worked well in theory but in reality there was a fatal flaw. Just before impact, radio reflections off the target tended to break up the picture, leaving the bomb aimer very much in the dark. As a result, of the 60 to 80 flights eventually made at the Peenemünde research station on the Baltic coast only 2% were direct hits. Like so many other ingenious conceptions of the war, the Hs293D flying bomb with its tv guidance failed to see operational service. Nonetheless, the tv camera and transmitter were successful and deserve closer attention in view of their sophistication.
For capturing the images a complete miniature camera chain was developed by the Fernseh company in collaboration with the German Post Office. The standard broadcast scanning rates of 441 lines, 50 interlaced fields were followed, and the pickup tube was a Super Iconoscope fitted
behind an electrically heated glass window in the nose of the missile. Codenamed Tonne A, the entire airborne video chain (including pulse and sweep generators) was contained on a single chassis, approximately $17 \times 17 \times 40 \mathrm{~cm}$. Apart from the picture tube, 29 miniature valves of just two types were used (RV12P2000 and RL12T1). As the illustration shows, this was a significant achievement in miniaturization.

The output from the camera fed into another minor miracle of engineering, a compact 10 watt tv transmitter. This employed self-excited TU50 triodes in combined diode load/grid bias modulation, the valves specially designed for the purpose by the Fernseh company. Transmissions were double sideband with around 2 MHz bandwidth. Contrary to previous broadcast practice negative modulation was used to improve reception under weak field strength conditions and so that interference would not mask the picture with bright spots. The wavelength in use seems to have varied from one unit to another according to manufacturer - both 70 and 73 cm were used. A small five-element yagi antenna completed the package, weighing a mere 130 kg . On board the controlling aircraft a compact tv receiver comprised r.f. amplifier, receiver and $8 \times 9 \mathrm{~cm}$ display tube together with another yagi antenna.

In operation the range of this transmitter was up to 150 km aircraft to aircraft with 10 watts. Flight time of the missile lasted about six minutes, and power for the transmitter and camera was derived from a battery-driven 500 Hz inverter with im-

Artist's impression of the Hs2930 missile showing 70 cm aerial at rear for transmitting iv pictures back to the controlling aircraft.
 for remote guidance of the Hs293D missile shown below.
portant voltages and currents stabilized. The camera - 400 were built - had remote iris control and a $\mathbf{2} .835 \mathrm{~mm}$ lens. Codenamed Seedorf, the receiver used a 13 cm diameter tube, 28 cm long, giving a visible screen $8 \times 9 \mathrm{~cm}$. Interchangeable modular r.f. sweep generator 'and video amplifier stage subchassis were used for ease of maintenance. Receiver sensitivity was 25 microvolts.

A film showing results from a test flight was shown to Hitler in 1943, and experiments using similar apparatus were made involving the remote control of tanks. The radio apparatus in this case used a 20 watt transmitter operating on a frequency of 86 MHz (3.5 metres). Usable range was about 7 km in moderately hilly countryside and up to 300 km to an airborne receiver at 4000 m height.

Today Prof. Walter Bruch is best known as the leader of the team who devised the PAL system of colour television used in many parts of the world. The terms Bruch blanking (and Hanover Blinds) are familiar to most tv technicians even if Bruch's further identity and his work at the Telefunken works at Hanover are unknown. But back in 1942 Bruch was leading a different team, making a unique contribution to television history. The research establishment of Peenemünde was also the site where V1 and V2 rockets were developed. Many of the early launches were distinctly unsuccessful and thought was given to a method of observation which involved the onlookers in less personal risk.

Thus it was that already in 1941 consideration was given to installing a c.c.tv

$T V$ pictures taken from flying bomb and received in nearby aircraft were to guide missile to its target.
system and Bruch was summoned to Peenemünde. The task was straightforward: to link Test Site VII, where the launches were made, with the control room, a distance of some $21 / 2 \mathrm{~km}$. Two cameras would be used, one with a wide-angle lens to take close-up shots of the launching ramp and the other, equipped with a telephoto lens, would take in the whole panorama as seen from the nearby Test Site I. A direct radio-frequency link that would have been ideal was rejected on security grounds, so it was decided that the signals would be transmitted by cable. An r.f. carrier of 8.4 MHz was used, with vestigial sideband transmission, which had not previously been used for broadcast tv in Europe (it was part of the American RMA specification of June 1939). Despite problems encountered in procuring suitable feeders and in laying the cables, high quality picture transmission was eventually achieved.

The compact cameras and monitors incorporated some features later to be used in many subsequent c.c.tv installations. The cameras used iconoscope pickup tubes and avionic valves and the third to be built after one was lost when the first V2 rocket blew up at launch was fitted with motorized optics and a substantial glass filter to protect the lens. For lining up the camera a diascope was used, a miniature slide viewer which projected a test card onto the pickup tube, thus removing the need for any external picture source. Picrure monitors were fitted with proper rectangular tubes measuring 16 inches diagonally. But unlike so many of the rocket experiments the c.c.tv equipment performed very well, though the main development work of the Peenemuinde establishment tended to overshadow this and the missile researchers paid scant attention to television; for them it was merely a means to an end.

$$
\star *
$$

These two developments do not exhaust the experimental use of television made by the Germans. In mid-1940 Fernseh technical experts developed and demonstrated a complete 1029 line high-resolution tv system. Employing a slide scanner as pickup device the apparatus gave exceptional results, exceeding 16 mm film in image resolution. The pictures were transmitted experimentally with a 10 watt transmitter on 1.5 metres and also down a cable at baseband, where 15 MHz bandwidth was achieved. Despite the superb results produced, the authorities remained unconvinced of the system's strategic value. Another device developed was a highspeed facsimile machine with long-persistence display on memory tubes; alternatively sensitized paper could be used to take prints.
Sources: My gratitude to Fritz Trenkle who made available the documentation from which this article was compiled, all derived from public records. Also consulted: Brian Johnson, "The Secret War" BBC, 1978; Rudert von Frithjof, 50 Jahre Fernseh, Bosch Techn. Berichte 6, 1979 5/6; Prof. Dr Walter Bruch, Peenemünde 1942, Funkschau 1974, 5.

WNO

RS 232 to current loop serial interfacing

Circuits developed for an SDK85 single-board development kit permit downwloading of programs from a CP/M system; they can be used in any situation where a simple system is required to interface with an RS232 serial device

The RS232 serial interface is used almost universally in small computer systems to communicate with printers, displays and other systems. Another method of serial communication, which is found in many industrial systems, uses a switched 20 mA circuit to generate the serial data. The 20 mA loop, as it is known, is more suitable for long distance use than RS232; at 1200 bit/s RS232 signals can be used up to a distance of 400 metres, whereas 20 mA signals can be used up to 2000 metres at the same data rate.

The main advantage of current loop transmission is that a 5 volt supply only is required to generate satisfactory signals whereas the RS232 interface requires the use of ± 12 volt supplies, which in most cases are not used anywhere else in the system. Certain applications require isolation between the transmitter and the receiver and this can be easily arranged with current loop communication as an optocoupler can be used as the current detector.

The main disadvantage of current loop interfacing is that there is no standardisation of circuitry and the control signals available with RS232 circuits are not usually provided.

The usefulness of both forms of serial interface usually means that both are provided with devices such as display units and printers. In many cases, however, the current loop option requires some minor modification to the circuit board, or to a pin header and alomost always involves opening the case of the device to gain access to switches, thus making its use inconvenient, particularly in a situation where the RS232 interface is used more than any other.
The circuits described here were developed for use with the SDK85 single board development kit to permit the downloading of programs from a CP / M system. The SDK85 has current loop serial communication as shown in Fig. 1.

[^5]
by L. Macari

The circuits are slightly modified from those originally proyided with the SDK85 to give isolation in the input stage and to remove the requirement for a -12 volt supply in the current loop output. The conversion circuits can be used in any situation where a simple system is required to interface with an RS232 serial device. The software for the download facility is described elsewhere in these notes.

Figure 2 shows the range of voltages required for the two logic levels in RS232 transmission, from which it can be seen that any voltage between -3 and -25 volts is detected by the receive circuits as a logic 1 and any voltage between 3 and 25 is detected as a logic 0 . The normal voltages

Fig. 1. SDK85 current loop interface, slightly modified to give isolation and remove the need for a -12 V supply.

Roger bleep for CB

A low-cost alternative to commercial plug-in units, which are designed to eliminate the burst of noise before the muting circuit comes into operation.

Commercial 'Roger bleep' modules which attach to a Citizens' Band transceiver via the microphone/switching socket, cost around $£ 10$. This design can be attached to a CB rig with as much ease as conventional types and can be built for a fraction of the cost.

Mr Chalmers is a 17 year old student in the upper 6th form of East Grinstead's Imberhorne School, taking maths, chemistry, and physics at advanced GCE level. At present he is looking for a sponsorship and hopes to go to university to study communication engineering in October. Most of his free time is spent on electronics design. construction and problem solving. He is in the process of designing a selectivecalling system for communication equipment (amateur/c.b.), of low cost and low component count, with 10^{10} codes available.

The 'Roger bleep' - a short tone transmitted after the p.t.t (push-to-talk) switch on the microphone has been released - is not just a novelty. Some CB systems have incorporated into their design a tone detector situated at the receiver's audio output in such a way that if a tone is detected the mute circuit will be activated to remove a burst of background noise that is heard between 'overs' due to

by P. J. Chalmers

the timing of the mute circuit. The noise that is heard is common to f.m. receivers, and a way to effectively remove this is to activate the mute circuit prematurely so that the time it takes to come into effective operation is the same or less than the time for which the transmitter is extended, hence during the period that the tone is transmitted, as in Fig. 1.

Fig. 3. Current rise in transistor when p.t.t.: switch is opened.

Fig. 1. Action of the tone burst, which switches the muting circuit prematurely to eliminate the noise burst.

Fig. 2. Typical timing circuit, using a transistor. Full circuit has 741 in this position.

(a)
(b)
(c)

Circuit operation

When the p.t.t. switch is released a timing circuit is used to extend the transmission time by about an extra 300 ms or so, in which time a tone is transmitted. Its action can be clearly seen if reference is made to Fig. 2, which shows a typical circuit with timing elements R and C .

With the switch closed, the capacitor is discharged and the base of Tr_{1} is biased into non-conduction; thus the output of Tr_{1} is high. With the p.t.t. opened, the capacitor charges exponentially (Fig. 3) until Tr_{1} is biased into conduction, with a low state at its collector. During the charging of the capacitor, the logic state at the collector of Tr_{1} is still high. Ideally, using this circuit, a Schmitt trigger should be used to give a sharp voltage fall. The 741 operational amplifier i.c. can be connected as a Schmitt trigger, as in Fig. 4.

The microphone is disengaged when the p.t.t. switch is in the receive mode and a tone generator takes its place. The transistor which switches the generator on and

Fig. 5. Wiring arrangement of three typical socket types and p.t.t. wiring - all in 'receive' mode. Wiring of individual rigs may differ from those shown.
off has to be controlled precisely and this task is carried out using a specific logic code. In Fig. 4, the code is taken to the input of a Nand gate $\mathrm{IC}_{\mathrm{l}_{\mathrm{a}}}$ and through an inverter to the base of the transistor Tr_{1}. The same code is used in a similar way to switch a relay on and off and a second Nand gate $\mathrm{IC}_{1 b}$ performs this task. (The relay is used to connect the internal or external speaker to ground via the microphone/switching socket.)

The switch represents the p.t.t. switch and, when open, it is in receive mode. When closed, the timer output is high giving a code of high-low to the Nand gate IC_{l}. Its output becomes low, since it switches before the 741, and hence Tr_{1} renders the tone generator inactive. The second Nand gate $\mathrm{IC}_{1 \mathrm{~b}}$ has the same code as $\mathrm{IC}_{1 a}$, which switches the relay on disconnecting the internal or external

speaker. $\mathrm{IC}_{\text {lc }}$ inverts the timer output, producing a low state which activates the transmitter. The microphone is now enabled and everything should function as if the circuit had not been installed.

When the switch is opened, the circuit becomes effective because the timer input is still low due to the capacitor and variable resistor timing action; hence the output is high and the transmitter active. IC $\mathrm{l}_{\text {la, }}$, however, has both inputs connected high and a low output enables the tone generator. $\mathrm{IC}_{1 \mathrm{~b}}$ is as before; hence the relay is on and the speaker is disconnected.

When C_{1} is charged to the point at which the timer output goes low, the inverter disengages the transmitter and the output $\left(\mathrm{IC}_{12}\right)$ goes high. With the p.t.t. switch still open, both inputs to $\mathrm{IC}_{1 \mathrm{~b}}$ are high and the resultant low output switches the relay over to its natural state, connecting the speaker to ground. The circuit is now in receive mode and remains that way until the p.t.t. switch is depressed and the whole cycle begins once more.
continued from page 64
Fig. 3. Cuirent loop to RS232 circuit uses opto-coupler to detect loop current (a). Negative voltage generator (b) uses 7660 i.c. RS232 to current loop circuit needs voltage limiting diodes.

(a)

(c)
the 7660 , driven from the 5 volt supply.
The current loop to RS232 circuit uses an opto-coupler to detect the presence or absence of the 20 mA in the loop. As 20 mA is the 1 state for current loop this has to be converted to -5 volts for RS232. 20 mA flowing in the diode of the opto-coupler causes the phototransistor to conduct,
pulling the collector low. This makes the outputs of the two inverters drive toward the high state. Thus the transistor connected to the positive supply is turned off and that connected to the negative supply is turned on, as the inverter output is sufficient to cause current flow through the zener diode. This makes the output -5 .
volts. When there is no current flowing in the opto-isolator, the inverter outputs will both be low, changing the state of the two transistors and making the output +5 V .
In the RS232 to current-loop circuit it is important to remember that the circuit must be capable of being driven from any standard RS232 signal. As the voltage levels are well outside the range of input voltages for logic devices, it is necessary to provide some input protection to restrict the voltages to the safe working range. Thus the input terminal is connected to the inverter gate via a resistor, which can. be about $10 \mathrm{k} \Omega$ in value. Diodes ensure that the gate input cannot fall outside the 0 to 5 volt range (except for the diode drops). The diodes should be germanium diodes for minimum forward drop, but silicon diodes have been used with this circuit without any problem.

A negative voltage of about -12 V applied to the input terminal will in this case cause the output of the gate to drive high, causing the output transistor to turn on and drive a current of approximately 20 mA in an opto-coupler connected to the output terminals. There is no need for a base resistor in the inverter gatge. A positive voltage of about +12 volts causes the gate output to drive low, turning the output terminals. There is no need for a base resistor in this circuit, but a $1 \mathrm{k} \Omega$ resistor can be included to reduce the load on the inverter gate. A positive voltage of about +12 volts causes the gate output to drive low, turning the output transistor off.

AVO DIGIMINOR 2000
An ideal tool for maintenance applications. An economically priced instrument with a special buzzer socket for simple continuity testing without reference to the display.

AVOMETER 2001
Features a socket specifically for current testing Comprehensive ranges, with unit and mode displayed on LCD. Ensures a valid current measuring mode is selectedany discrepancy is signalled by an alarm.

The AVO 2000 Series is the hand held dmm range you'd design for yourself, incorporating a combination of design features unmatched by any manufacturer in the UK.

There are direct entry prod facilities which, combined with the weight and size of the instruments, allow for true one-handed operation. The $31 / 2$ digit LCD is located at the base of the instrument to make the most of the available light. And positive slide switches are incorporated to give simple, dustproof, range selection.

The lead set is fully shrouded at both plug and socket end for improved safety and there is a special hook for PCB testing in the standard set. Heavy duty test leads are also available. The 2000 Series incorporates a three position stand, non slip safety pads and can be supplied in either a 'Test and Carry' case or a Walk and Work' harness.

It takes Britain's leading dmm manufacturer to appreciate the needs of the dmm user . . . worldwide. AVO 2000 Series is the result. Contact us or your usual distributor for further detailed information.

AVO VEHICLE TEST 2002
Designed with co-operation from a world leader in vehicle manufacture and service. Accessory kit allows temperature and charging current testing. Heavy duty test leads and comprehensive handbook available.

Waves of improbability

The lid is taken off the wave theory of matter as it was developed by the Copenhagen School. Physics and metaphysics must be distinguished and kept separate. Schrödinger's wave mechanics has nothing to do with mystical "matter waves": that was the second great philosphical error of 1930's physics.

In 1925 M. Le duc Louis de Broglie, a postgraduate student who had been exploring a speculative extension of Special Relativity theory, presented his ideas to the Sorbonne in the form of a doctorate thesis. It is much to the credit of his tutors and examiners that his thesis was accepted and its gist subsequently published, for to say it was unconventional is to put the case mildly. His reasoning was somewhat as follows.

> "It seems that the basic idea of the quantum theory is the impossibility of imagining an isolated quantity on energy without associating with it a certain frequency".
(This idea actually came from a combination of Planck's $\mathrm{E}=\mathrm{h} \boldsymbol{\mathrm { h }}$ with Einstein's E $=\mathrm{mc}^{2}$.) On this basis a frequency v should be attributable to the energy contained in the mass m of a material particle such as an electron. The presence of a frequency suggested also the presence of waves of some kind; perhaps the apparent wave/particle duality of light radiation might have its counterpart in a similar particle/wave duality of material particles?

De Broglie cited several examples in which the trajectory of a material particle in a potential field resembled the path of a refracted light ray in optics. (The similar broad equivalance of the paths of photons, as particles, was already well known.) His most intriguing result concerned the "quantization" of the hydrogen atom (quantization type two, see article 5), in which he showed that the condition for an integral number of wave crests of his postulated "matter-waves" to exist around the orbit of an atomic electron was exactly the same condition, in mathematical terms, as that previously deduced by Bohr in his explanation of atomic spectra. It was very different in physical terms, however, and whereas Bohr's quantization had been felt to be somewhat ad hoc and empirical; the matter-wave hypothesis seemed to offer the possibility of a fundamental rationale.

The matter-wave concept caught on immediately, in a very big way. Within two years Erwin Schrödinger in Germany had formalized de Broglie's ideas - as 70 years earlier Maxwell had formalized Faraday's - into the beginnings of a mathematical technique which was to become known eventually as the wave mechanics. And Davisson and Germer in the USA were able to explain some puzzling experimental results on the assumption that their test

by W. A. Scott Murray B.Sc., Ph. D.

electrons were wave systems that were being diffracted as they passed through the llattice of a crystal of nickel, for all the 'world as though they were hard x -rays or light waves in an optical diffraction grating.

This was just what the physics of the 1920s was waiting for. Matter-waves might be responsible for quantizing the atom! The arrival of a new set of waves in fundamental physics gave the old electromagnetic theory a boost and perhaps even a new chance of survival - these matterwaves might possess a physical ether! There was a complete new mathematics to be worked out from scratch: what fun that was for the mathematicians! The enthusiasm was tremendous, the progress rapid (if it really was progress). By 1930, only five years after de Broglie's first paper, Sir James Jeans was able to write in a popular book for a semi-lay readership:
> "The tendency of modern physics is to resolve the whole universe into waves, and nothing but waves. These waves are of two kinds: bottled-up waves, which we call matter, and unbottled waves, which we call radiation or light. If annihilation of matter occurs, the process is merely that of unbot-
tling imprisoned wave energy and setting it free to travel through space. These concepts reduce the whole universe to a world of light, potential or existent, so that the whole story of its creation can be told with perfect accuracy and completeness in the six words, 'God said, Let there be Light'."
Now although this line of thought is consistent with modern "big-bang" cosmology, its neglect of the other side of the coin of duality - the observed corpuscular nature of both matter and light - reveals the bias of a mathematician: continuous functions are easier to handle mathematically than discontinuous functions. One can understand and sympathise with this initial enthusiasm, but surely somebody should have asked what these waves consisted of, and whether they were real?

In those early days several of the more discerning and conscientious of physicists, including Einstein, did ask such questions, and the answers were not at all favourable to de Broglie and the wave theory of matter. It very soon became clear that matterwaves could not be physical waves. The simplest demonstration of this lies in the fact that when an electron is at rest (relative to an observer) the velocity of its mat-ter-waves as formulated in the theory is infinite. (Arguments about group velocity and phase velocity can be raised to confuse this issue but they don't alter its outcome.) Waves of infinite velocity simply cannot be physical waves. Moreover, as soon as the observer starts to move, the wave velocity suddenly becomes finite! There is something very wrong here.
The proponents of the wave theory, a group that I now identify as the Copenhagen School (Bohr, Heisenberg, Dirac et $a l$, dodged this issue in a way that was to become characteristic of them. They declared that the wave velocity and also the frequency of the matter-waves are unobservable; and a true physicist, they maintained, should not ask questions about anything that he cannot observe, even if that thing should be a physical thing. (If you
think I am exaggerating please bear with me; I shall offer some examples later.) This philosophical wriggle was the origin of the brand-new Doctrine of the Improper Question, which was to prove so convenient to the wave theory and its successor quantum theory. It provided these theories with an almost universal let-out whenever they ran into logical difficulties, as they very regularly did.

Observable or unobservable, there can be no question of these matter-waves being physical waves. I believe it is generally agreed that they can be no more than mathematical abstractions. Electromagnetic waves transported physical energy and their theory was derived ultimately from the physical force which is observed to be exerted between two electric charges, but there is no such background of physical realism here. Neither de Broglie waves nor Schrödinger waves - for they are slightly different - can be associated with physical energy or physical force, and two points of absolute and fundamental significance must follow directly from that fact: matterwaves as formulated in the wave theory of matter cannot influence physical events, nor can they constitute the substance of which fundamental material particles are composed.

Probably about three-quarters of todays physicists will agree with that statement, while the other quarter will disagree violently. To this last group I say this: if you believe that a non-physical wave system can constitute a physical particle, then you believe that the atoms in your body and the electrons in your television set are ghosts. If you believe that a non-physical wave system can influence the motion of a brick, then you believe in miracles - for a miracle is a physical occurrence for which we can offer no physical explanation. A physicist's profession is the study of physical things. If you believe in ghosts and miracles you have missed your vocation: you should have been a theologian rather then a physicist.

Now in the face of that tough argument I don't believe the disagreement can long tbe maintained. To put the case more Igently, the existence of non-physical ghosts and miracles in the physical world must violate the conservation laws, which almost every physicist accepts to be true and fundamental. In the non-physical world, of course, metaphysical fabrications, visualizations, "Castles in Spain", fare thoroughly legitimate; information theory is a scientific theory that can be tested by experiment, but it is a theory in metaphysics, not physics.

We must be very careful indeed to differentiate between the physical world and the metaphysical world. In the last as we have already seen, activities like "prediction" and its associated "probability" have roles to play, but in the physical world of inanimate Nature they have none. I would guess that nine tenths of the confusion which exists in physics today can be attributed to past and present failures to maintain this very important distinction. To anticipate a little, how often does one hear a remark like: "the photocell current will
increase because the probability of photons arriving has increased"? That just can't be true! An electric current is a physical thing that cannot be influenced by a "probability", which is metaphysical. It is equally wrong, and for the same reason, to say that television signals reach the H -aerial on my roof "because of Maxwell's equations". Maxwell's equations and the probability theory may be useful in describing physical events but they do not control them. From now on let us try to get this distinction right, for there are penalties if we fail.

To return now to our main, historical argument, I was saying that the "waves" of the wave theory of matter were certainly not physical waves, and it followed that they could not influence physical events. Maybe some other kind of matter-waves might, but not the waves which were formulated by de Broglie and Schrödinger. Moreover, there exists no valid indication, experimentally or theoretically, that an electron is not a physical entity possessing all the behavioural characteristics which by convention define a particle. These things being so it is intellectually dishonest to attribute to these waves the ability to guide electrons; and if matter waves cannot guide electrons then they cannot provide the physical mechanism which according to the wave theory is responsible for "quantizing" the atom, and other similar phenomena in microphysics.
But is there not experimental evidence that matter-waves guide particles? With one possible exception the answer to that is no.* The famous Davisson and Germer "electron diffraction" and all similar experiments can be explained by means of ordinary mechanics without invoking matterwaves, and two of their observed effects, never mentioned in the textbooks, are in fact incompatable with a wave explanation. The atom was quantized satisfactorily and accurately on the Rutherford/Bohr/Sommerfeld model, admittedly in an ad hoc manner, without recourse to waves: contrast the Schrödinger "standing-wave" model of the atom which, as the first triumph of the new wave-mechanics, actually predicts a finite probability of finding an electron in a position where, by the law

[^6]of the conservation of energy, an electron cannot be. This is by no means the only violation by the new theory of otherwiseestablished physical laws. One must ask how this atomic model, and the theory apparently underlying it, could possibly have survived such definite failures.
The answer to that question is really very surprising indeed. Schrödinger's great work did not survive in the form of de Broglie's wave theory of matter, but in the form of the mathematical technique of the statistical quantum mechanics, which is something altogether different. Although its conventional name, "wave mechanics", and some aspects of its internal mathematics reveal its original source - a most fortunate triggering of Schrödinger's thinking by de Broglie's matter-waves speculation - the modern statistical quantum mechanics has nothing to do with waves and never, but never, refers to them in its working. It is an empirical set of rules for handling a particular class of problems in statistics and probability theory: a calculus, and not really a physical theory at all in the ordinary sense. Its two key equations, the Schrödinger equations, have been derived in 1966 by Edward Nelson on purely statistical reasoning without any reference to matter-waves. And finally, Schrödinger himself would have nothing to do with the latter excesses of the Copenhagen School. Even de Broglie drew the line at that!

The waveless, statistical interpretation of the quantum mathematics which is still in use today was invented by Max Born in about 1930, and it seems to have arisen as a result of a conversation between Born and Einstein. As I have mentioned earlier in connection with duality in light, Einstein proposed that light waves should be regarded as travelling regions of high photon density. Born applied this suggestion to the complex intensity of a Schrödinger wave, whose amplitude (a mathematical working-parameter) was referred to by Schrödinger by the greek symbol ψ (psi). Born associated this intensity with regions of high electron density, and his scheme was found to work spectacularly well. Whenever a suitable formulation of ψ could be devised - empirically - a high value of $\psi . \psi^{\star}$ in the quantum mechanics was found to correspond to a high density of electrons in real life. It became convenient to say that it corresponded to a high probability of encountering electrons; this

Continued on page 78

Harmonic locking circuit
The function of a commutative filter which provides bandpass operations is well known. Here, the pre and post-filters are inserted into the signal path and the narrow passband of the commutative filter is then set by the clock frequency ω_{0} only. If the pre-selection filter is omitted the N path filter gives harmonic passbands by frequencies of $0, \omega_{0}, 2 \omega_{0}, \ldots n \omega_{0}$, i.e. the circuit acts as a comb filter. The output of the comb filter which is built up using a multiplexer Fairchild 3705 gives a reference frequency f_{r} to the modulation input of the programmable timer 2240 (Texas Instruments), the output frequency of which is $\mathrm{f}_{\mathrm{r}} \mathrm{m} /(\mathrm{N}+1)$, where $1 \leqslant \mathrm{~N} \leqslant 255$ and $1 \leqslant m \leqslant 10$ (m is the number of a competent harmonic component). Choosing m and N in the stated range, any one of the 2,550 frequencies may be obtained at the output of the circuit. One needs only to calculate the RC term according to the m desired and to connect the counter outputs to give the desired value of N .
Kamil Kraus
Rokycany
Czechoslovakia

Accurate motor speed control

Both Malvar ${ }^{1}$ and Barr ${ }^{2}$ have described circuits in which the effect of a permanentmagnet motor's armature resistance (responsible for the speed dropping with increased mechanical load) is counteracted by deriving positive feedback, proportional to the armature current, from the voltage dropped across a resistance R_{1} in series with the motor. The motor is hence driven from a supply with a negative output resistance.
Barr's circuit uses a complementary pair of output transistors, one to provide braking by connecting R_{1} across the motor. An obvious development of this arrangement using two supplies: Fig. 1 provides an enhanced braking effect as, for as long as the motor continues to rotate, the opposing supply voltage is tending to provide a reverse armature current. The symmetry of the circuit means that this is true for both directions of rotation, corresponding to both polarities of $\mathrm{V}_{\text {ref. }}$.
The negative output resistance $-\mathrm{R}_{\text {out }}$ of the circuit has to be equal to, or just less than, the armature resistance R_{a}, which Barr achieves by making $R_{1}=R_{a}$, requiring. $R^{\prime}=2 R$.
Now as the load on the motor increases so do the armature current and the resultant voltage drop across the armature resistance, requiring a larger terminal voltage for the same speed. If the motor is to maintain constant speed in the face of torque fluctuations, the circuit must be capable of applying the necessary voltage. The limiting case is when the motor is stalled
and behaves as a pure resistance R_{a} when the applied voltage rises to $V_{\text {ree }} /\left(1-\mathrm{R}_{\text {out }} / R_{a}\right)$ which, if $R_{\text {out }}$ is very close to R_{a}, may be so large that the amplifier saturates. If $\mathbf{R}_{1}=\mathbf{R}_{\mathrm{a}}$ the motor voltage is limited to one-half this saturation voltage. Making R_{1} smaller (say equal to $R_{a} / 10$) will allow almost the full saturation voltage to be applied to the motor and improve the performance at high torque, as well as further improving the braking performance. The ratio $\mathbf{R}^{\prime} / \mathbf{R}$ now required may be calculated from the

Constant-current charger

Designed to give a constant-current charge of about 0.5 A for U 2 -size batteries this circuit can be adjusted for any current less than about 1 A by changing \mathbf{R}_{1}. The input voltage can be anything from about 2 V more than the total battery voltage up to 35 V (the limit of the 317 regulator), typically six cells (about 8 V) can be charged from a 12 V car battery.

The first stage of the design was a simple linear version, Fig. 1, which works very
expression for the output resistance

$$
\mathbf{R}_{\text {out }}=\mathbf{R}_{\mathbf{1}}\left(\mathbf{R}^{\prime} / \mathbf{R}-1\right)
$$

A third improvement to the circuit, if it is to be operated with $R_{\text {out }}$ very close to R_{a}, is to add the capacitor in the negative feedback loop, to reduce the gain at high frequencies and give a worth-while improvement in stability.

A similar circuit has been used in an optical instrument to control a motor-driven micrometer which is required to position an object to a precision of better than $1 \mu \mathrm{~m}$. Speed variations were negligible, whereas with the motor powered from a constant voltage the speed varied by about 50% of its nominal value.
D. K. Hamilton

Department of Engineering Science
University of Oxford

1. Malvar, H.S. Accurate motor speed control, Wireless World, August 1980, p. 47.
2. Barr, K.G. Accurate motor speed control with braking, Wireless World, June 1982, p. 61.
well at low currents or low voltage drop. By the simple-addition of one transformer and a diode the circuit is transformed into a switching regulator $\left(C_{1} \& C_{2}\right.$ were needed for stability and to cut interference), and the power dissipation is greatly reduced.

The principle of the circuit is that the voltage regulator tries to maintain the 1.25 V between its output and reference terminals, so by putting a resistor R_{1} which passes all the load current across them the load current is maintained constant instead. The value of R_{1} is 1.25

divided by the current required. When the transformer is added the feedback winding adds a small change of voltage to the reference terminal which turns the regulator full on until the current builds up to the new reference. When the current stops rising, the offset is reduced so the current
is reduced, and so on until the regulator turns off. The current then continues to pass, but through D_{1} until it drops to the new reference voltage.
Mike Davies
Fifield
Berks

Sound triggered flash

If instead of connecting the flash cord to a camera you connect it to the circuit shown you get a sound triggered flash. The circuit feeds directly from the relatively high voltage present at the flash cord terminals. The high-value resistor usually wired in series with the high voltage supply in the flash is a constraint on the amount of current that can be drawn. The above circuit will draw around $10 \mu \mathrm{~A}$, half of it being the s.c.r. leakage current.
Sensitivity is good enough for most applications: snapping fingers between 10 and 60 cm from the mic will trigger the flash. Sensitivity is influenced by the type of flash used and by the type of microphone, which must be a piezo type with a high output. I found that the cheapest types are the most suitable be-

Battery back-up for cycle lamps

This circuit is designed to provide a high efficiency battery back-up for dynamopowered cycle lamps, giving long battery life and maximum brightness. The original system, like the majority of cycle lighting circuits, used an alternating current dynamo. As it is more convenient to use d.c. in conjunction with the battery, the circuit of Fig. 1 rectifies the output from the dynamo. This slightly unconventional circuit gives a smaller voltage drop across the rectifier. When \mathbf{A} is positive with respect to $\mathrm{B}, \mathrm{Tr}_{1}$ and Tr_{4} are turned on and Tr_{2} and Tr_{3} are turned off. Current flows from A via Tr_{1} to the lamps and then via Tr_{2} to B. When B is positive with respect to A, current flows from B via Tr_{3} to the lamps and then via Tr_{2} to A . As the saturation voltage of a transistor is only about 0.2 V , compared to the 0.6 V forward voltage of a diode, this circuit gives a significant advantage over a conventional bridge rectifier, i.e. 0.4 V drop rather than 1.2 V .

A simple method of providing battery back up would seem to be the use of a smoothing capacitor and a single diode, as Figure 2, but the large currents and low frequencies make the necessary capacitance prohibitively large. To overcome this problem, the circuit of Fig. 3 was developed.

Capacitor C_{1} charges via D_{1} to nearly the peak voltage of the rectified dynamo output and discharges via \mathbf{R}_{5} and \mathbf{R}_{6} between peaks with a time constant of a few seconds.

Resistors R_{5} and R_{6} form a potential divider, the output of which goes to the non-inverting input of a 741 amp connected as a comparator. The potential divider ensures that the input voltage does not rise above the supply rail voltage and damage the op-amp. Diode D_{3} is not normally conducting, but gives protection from momentary high peaks.

Output from the voltage comparator switches Tr_{5} on when the capacitor voltage

Fig. 1

Fig. 2
decays to a point determined by the potential divider of $\mathbf{R}_{7}, \mathrm{R}_{8}$ and $\mathbf{R}_{9} ; \mathbf{R}_{8}$ is adjusted to switch to the battery at a suitable speed. Diode D_{2} provides protection to the circuit when the dynamo is working.

The prototype uses four HP11 type cells but alkaline cells are recommended as the battery is subjected to long periods of little or no current drain, followed by brief periods of comparatively high current.

The prototype circuit is built in two sections corresponding to Figs 1 \& 3. The smaller circuit of Fig. 1 was placed in a small potting box, encapsulated with epoxy resin and fixed to a small aluminium plate, bolted to the dynamo bracket. The rectifier is wired permanently into circuit.

As the dynamo itself was originally "earthed" through its own casing, it needed isolating by replacing the steel mounting bolts with nylon ones and placing a plastic sheet between dynamo and cycle frame.

The circuit of Fig. 3 and its battery were constructed in a separate case carried in a rear pannier, with connection to the cycle circuitry through a two-pin plug and socket. With the unit unplugged or switched off, the cycle lamps will still operate in their original manner.
R. C. Vincent

Sherfield-on-Loddon
Basingstoke
$390 \mathrm{k} \Omega$, oscilloscope traces would appear as in the diagram. The gate will open only if IC_{2} is shorter than 10 ms , and then only for the difference between the two. The shortest pulse at an led which can be seen with a lens in subdued light is about 0.2 ms. Components C_{5} and Tr_{3} form a primitive monostable to stretch the out-of-balance pulses from Tr_{2} to about $2 \mathrm{~ms} ; \mathrm{LED}_{2}$ then stays clearly on as C_{4} is increased until balance is reached. The end point is sharp.

By operating S_{4} the input to $I C_{2}$ is held low until the press switch S_{5} is operated. A single pulse is then passed via C_{6} to IC_{2} which delivers a pulse, defined by S_{2} and S_{3}, at its Q output instead of a pulse train. The device was developed during an investigation into the irritating habit of apparatus used in judging fencing bouts electrically registering hits on the metallic floor when the point slides across it.
R. Parfitt

Croyden

Trigger pulse generator

Two 4047 s can be used to generate pulses of 0.1 to 10 ms either singly or at 1 to 100 ms intervals. IC_{1} is an astable multivibrator whose \bar{Q} output, via Tr_{1}, lights LED_{1} on alternate half cycles (cycle time 4.4RC). Wafer switch S_{1} selects one of 12 resistances between 10 k and $10 \mathrm{M} \Omega$. Capacitors C_{1} and C_{2} with S_{1} at its maximum of $10 \mathrm{M} \Omega$ set the cycle time to about 1s. By timing the flashes at LED_{1} with a stopwatch and adjusting C_{2} they can be set to $1 / \mathrm{s}$ with accuracy better than the 1% resistors of S_{1}. The intermediate resistances at S_{1} are chosen to suit the purpose of the generator but must include a position for 20 ms i.e. $20 \mathrm{k} \Omega$ for pulse calibration. IC_{2} is a monostable connected for positive-edge triggering. Pulse length is 2.48RC and is selected by C_{3}, trimmed by C_{4}, and decade wafer switches S_{2} and S_{3}. Diodes D_{1} and D_{2} with Tr_{2} form a twoinput and-gate. With IC_{1} calibrated and set to a repetition time of 20 ms , and IC_{2} set for a 10 ms pulse by $\mathrm{S}_{2}=0$ and $\mathrm{S}_{3}=10 \times$

Static b.c.d.-to-binary converter

The circuit described by Falko Kuhnke in October Circuit Ideas is unduly complicated. Conversion can be effected using just a pair of 4008 i.cs, rewriting

$$
10 \mathrm{X}_{10}+\mathrm{X}_{1} \text { as } 8 \mathrm{X}_{10}+2 \mathrm{X}_{10}+\mathrm{X}_{1}
$$

Multiplication by eight and two in binary requires only shifting and this can be hard wired.
N. G. de Mattos-Shipley London EC4

Fig. 1
The circuit described by F. Kuhnke can be simplified if we take into account that the b.c.d. numbers $10,20,40$ and 80 may be split up into powers of 2 , as $2+8,4+16$, $8+32,16+64$. If these values are added, together with the $1,2,4$ and 8 inputs in a parallel adder, the output is a binaryweighted word with 64 as the highest value. The idea may be expanded to higher b.c.d. values, 100 to 800,1000 to 8000 , etc. as shown in my publication: The coversion of b.c.d. words into binary numbers", Microelectronics Journal, vol. 11, no. 2, pages 29 to 34 .

For comparison, the conversion of the numbers 1 to 99 is shown in Fig. 1. Only two i.cs with four full adders (7483) each are needed.

C. van Holten

Technische Hogeschool, Delft

Binary output	b. c.d	
$2^{9} 2^{8} 2^{7} 2^{6} 2^{5} 2^{6} 2^{3} 2^{2} 2^{1} 2^{0}$	Value	Input
0000000001	1	11
0000000010	2	12
0000000100	4	13
0000001000	8	14
0000001010	10	21
0000010100	20	22
0000101000	40	23
0001010000	80	24
0001100100	100	31
0011001000	200	32
0110010000	400	33
1100100000	800	34

Fig. 2
The clue to the simplicity of Fig. 2. circuit is to be found in the table and the philosophy may be extended to derive a three decade converter.

The table shows the binary representation of the b.c.d. outputs from units, tens and hundreds counters. To obtain a binary representation of any decimal value in the range 000 to 999 it is only necessary to add the binary columns together of the appropriate rows, e.g. the binary representation of 647 may be obtained by adding the binary columns of rows $\mathrm{Q}_{11}, \mathrm{Q}_{12}, \mathrm{Q}_{13}(=7)$ to $\mathrm{Q}_{23}(=40)$ to Q_{32} and Q_{33} $(=600)$. The maximum number of bits that need to be added together for a two-decade converter is three (see binary column 2^{3}). For a three-decade converter the maximum number is thus four (again, see binary column 2^{3}). Fig. 3 illustrates a three-decade converter using five four-bit full adder i.cs.

A. J. Ewins

North Harrow

Analogue recording using digital technique

This circuit records low frequency analogue signals onto an ordinary audio cassette recorder using a digital technique. Low frequency recorders are used in data logging, process control engineering and medical applications such as electrocardiogram and blood pressure monitoring and diagnosis.

Domestic cassette recorders have an amplitude response in the audio range, usually around 50 Hz to 10 kHz for a reasonablequality unit. To record low frequency signals from zero frequency upward, some form of modulation is required to shift the base-band frequency to a point within the range of the tape deck. Analogue methods of modulation include direct frequency modulation, pulse duration modulation and mark/space ratio modulation. Each of these methods may be implemented by fairly simple modulation circuits, and demodulation can be done basically by squaring and low-pass filtering the modulated. carrier wave to retrieve the low frequency information.
Such methods suffer from an inherent disadvantage - the wow and flutter which is present in all tape mechanisms appears as a direct modulation of either carrier wave frequency, the pulse duration or mark/space ratio. The replayed signal has a noise component which has a frequency range which covers that of the signal spectrum and whose amplitude is dependent on the degree of wow and flutter present.

This noise can be reduced by using a high quality cassette mechanism and using a true mark/space ratio decoder, but it can never be completely eliminated.
However if the analogue signal can be converted to a digital form and the digital signal recorded on tape then noise due to wow and flutter is eliminated leaving only the noise due to quantizing error and to bit error in the recording process.

by Thomas Loughlin

The circuit shown uses an eight-bit anal-ogue-to-digital conversion and can record on an audio cassette recorder at 1200,2400 and 4800 baud. The eight-bit data is recorded using one start bit and two stop bits giving a sampling rate of around 430 Hz and consequently a theoretical maximum recorded signal of 215 Hz . The. high record rate is achieved by using a
technique of phase encoding in which zeros and ones in the serial data stream are represented by positive or negative edges, as shown in the encoder waveforms.

The input signal is converted to digital form by an 8703 (IC_{2}). The input to the ad converter must be unipolar and in the range 0 to 3.9 V (determined by $390 \mathrm{k} \Omega$ resistor), so scaling and level shifting is provided by $\mathrm{IC}_{1 \mathrm{a}}$ and $\mathrm{IC}_{\mathrm{lb}}$. Timing in the record circuit is accomplished by connecting the transmitter register empty (TRE) flag output of the uart IC_{3} to initiate the conversion input of the a-d converter, and then connecting the busy output of the converter to the transmitter buffer register load (TBRL) input of the uart. The uart then loads the eight-bit data and transmits it serially in continuous fashion. Phase encoding is carried out by $\mathrm{IC}_{4}, \mathrm{IC}_{5 \mathrm{a}}$ and $\mathrm{IC}_{6 d}$ and a 50 mV output signal is available to feed the recorder.

The replayed signal is fed to phase equalizing circuit $\mathrm{IC}_{12 \mathrm{~b}}$ which compensates for phase shifts incurred in the recording process and helps to restore the original waveform. Amplifying and clip-

ping are provided by $\mathrm{IC}_{12 \mathrm{a}}$ and $\mathrm{IC}_{13 \mathrm{c}}$, decoding by $\mathrm{IC}_{66}, \mathrm{IC}_{7}$ and $\mathrm{IC}_{13 \mathrm{~b}}$. The phaseencoded signal is first passed through slicer $\mathrm{IC}_{6 b}$ to provide a short pulse at each transition of the signal. Counter $\mathbb{I C}_{7}$ is clocked by the $16 f$ uart clock and output counts 12 to 15 are decoded by gate $\mathbf{I C}_{13 b}$ to give a logic low, except if the counter is reset by a pulse from IC_{66}. When the resulting waveform is divided by two the true data stream is recovered. The decoding process is illustrated by waveforms. The data received (DR) flag of the uart is used to reset itself via data received reset (DRR) and the output data is fed directly to d-a convertor IC_{16} and low-pass filtered at output amplifier IC9.
If the input data stream is inverted the uart will generate frame error (FE) pulses. These are used to invert the phase of the data by setting or resetting flip-flop $\mathrm{IC}_{5 b}$ accordingly, via IC_{15} and IC_{8}. Upon tape replay start-up or after a stop-bit error, the first few bytes of data are erroneous but the uart rapidly synchronizes, indicated by illumination of the led.

The circuit is simple and reliable and a very low bit error rate can be achieved with errors appearing as short gliches on the analogue output. If the record section is used separately it draws only 7 mA making it suitable for use in battery powered equipment.

Eight-bits from the a-d converter are recorded using one start and two stop bits with a sampling rate of 430 Hz . Phase encoding technique records bits as upward or downward transitions (a). In decoding the clipped signal, counts 12 to 15 are decoded by gate IC $C_{13 b}$ to give a low signal, except when converter is reset by pulse from $I_{6 b}$ -

Stepper motor drive circuit

Simple and reliable cost-effective alternative for stepper motor drive circuitry offers significant increase in efficiency.

Properly used, the d.c. stepper motor offers a means of accurate positioning, very often without the need for feedback. Unfortunately, the driving circuitry can be inefficient or costly, tending to make the stepper an unattractive proposition. This proposal suggests an alternative costeffective drive circuit that is simple, reliable and offers a significant increase in efficiency.
A stepper motor normally consists of a permanent magnet rotor within a system of electromagnets forming the stator. The stator windings, usually four, are energized in an electronically generated sequence to create a rotating magnetic field which the rotor follows. The main difficulty is the means of switching the currents in the windings, and the performance of the motor is very much affected by the drive system used.
The simplest system is the resistancelimited (\mathbf{r} / l) drive, the essentials of which are illustrated in Fig. 1. The electrical time constant of the circuit is reduced by adding resistance in series with the motor winding and the supply voltage increased to restore the static current in the coil. This is a simple and readily constructed circuit commonly used to drive smaller motors. This drive is inefficient because the supply voltage is far larger than the voltage required across the motor coil to establish the rated current. The balance appears across the resistor, and causes power to be dissipated in the form of heat. With even quite small motors this results in large dissipators or fan cooling.
Methods for improving circuit efficiency include:
Bi-level voltage drive - in which a low voltage, low resistance circuit maintains the current in a coil, and a high voltage, high resistance circuit is activated when currents are switched on or off.

- Chopper drive - in which the resistor is wholly or partly replaced by another transistor which is switched at a high frequency with a variable mark-space.

Each of these requires additional circuitry and is therefore costly to design and implement; furthermore both use a high voltage supply and some kind of switching to limit the current.

[^7]The proposed circuit does not use either a high voltage supply or a switching system. A transistor operates as a linear device in a constant-current configuration, and so one could name this the linear constant-current (l.c.c.) drive. To reduce the losses the supply voltage is kept low. The resistance of the circuit is also reduced - not merely to the value required to limit the current, but to an absolute minimum - and the transistor takes over the current limiting function, Fig. 2.

The graphs of Fig. 3 indicate the action. Curve A is for a typical resistance-limited drive. For curve B both the voltage and

by Adrian D. Bailey

resistance have been halved. Notice that although the end current will be the same the curves clearly indicate the reduction of speed of the circuit. For curve C, the voltage is still halved, but resistance is minimal. The curve is in two sections. At first the current rises expotentially, after which the constant-current configuration takes effect and the curve runs parallel to the time axis. Note that at very low speeds, and at stand-still, the motor current is unchanged; as a result the torque is unchanged. At modest speeds the 1.c.c. drive (curve C) establishes slightly more current than the resistance drive (curve A). Whether or not this yields more torque depends upon the precise mechanical characteristics and also on secondary electrical parameters which cause the time/current curve to differ from this simple theoretical one. At high speeds the 1.c.c. drive is poorer than the resistance drive and causes a reduced torque above a certain critical speed.

So far, only the problems arising when the drive transistor turns on have been considered. The conditions at switch-off are just as crucial. In the resistance circuit, the voltage at the collector rises when the transistor turns off as a result of the magnetic field collapsing. Eventually, the diode becomes forward biased and current flows in the coil, resistor diode circuit. The time constant is similar to that of the charging circuit.
The l.c.c. drive presents a slightly
different problem at discharge. There is no resistor to include such a discharge loop, and to ensure adequate discharge in the time available the e.m.f. in the discharge circuit must be allowed to rise. One way of achieving this is with a zener diode as shown in Fig. 2. Calculating the minimum required zener diode voltage rating is a little tricky. If one assumes an exponential decay of current, then one must answer the question: How little current approximates to zero? Energy considerations necessitate estimation of how the dissipation is shared between the resistance of the motor coil and the zener diode. Formulae given later are derived from energy considerations, in a manner guaranteed to build a safety margin into the design. The zener voltage calculation assumes all the dissipation to be in the diode. In practice, the zener voltage should be as high as possible without exceeding the transistor voltage ratings, and at least twice the supply voltage.

Fig. 1. Common drive circuit is inefficient because supply voltage is greater than that required across motor coil.

Fig. 2. To avoid use of high voltage or chopper drives to increase efficiency, this transistor operates in constant-current mode with circuit resistance reduced to a minimum. Zener diode allows discharge circuit e.m.f. to rise.

A further difference between the two drives concerns the circuitry preceding the transistors in Figs 1 \& 2. In resistancelimited circuits the base should be current driven i.e. simply switched.
But in l.c.c. circuits, the base must be voltage driven.

Design procedure

1. Study the performance curves for the chosen motor and select the spued Wbove which a reduction of torque can be tolerated. If a machine is already operating with a resistance-driven stepper motor urive, simply thke the thaw inaluan speed of operacion. Eicther way, call this speed $\$$ steps per secoof. 2. Calculate tine current which the resistance divive establishcs in one step period at this speed.

$$
I=I_{m}\left[1-\exp \left(-\frac{E}{L S I_{m}}\right)\right]
$$

Where I_{20} is the rated current of one sinding of the snotor (A), L the fuductance of ante wiuding (H), and E $-\mathbb{R} /$ drive supply voltage (V).

Design l.c.c. output stage and astablish the value of the emitter icsistor, R. This should be as small as avosible coasistent with the reliable wutracion of tbe l.c.c. stage; usually u. 6 V drop at I_{m} will be about right.
4. Calculate the supply voltage, V, thit the l.c.c. circuit requires to establish the swine curtent as found in step 2 above, at the same speed, S.

$$
V=1\left(R+R_{m}\right) /\left(1-\exp -\frac{R+R_{m}}{S L}\right)+V_{\text {sat }}
$$

Where $R_{w y}$ is the resistance of one of the yootor coils (ohms), $\mathrm{V}_{\text {sat }}$ the saturation Toltage of the transistor.
5. Calculate the zener diode voltage and power rating.

$$
\begin{aligned}
& V_{z}=\left(I_{m} R_{m} / \exp -\frac{R_{m}}{L S}\right)+V \\
& P_{z}=L I^{2} \mathrm{~m} / 2 \mathrm{~K}
\end{aligned}
$$

where $k=4$ for the full-step sequence, 8 for the half-step sequence.

Practical circuit

Fig. 5 is the circuit diagram of an l.c.c. drive system used in experiments to verify the theory. A reversible binary counter IC_{1} has separate up/down clock inputs, and its output decoded by IC_{2} a binary to 1 -of- 8 decoder, and the normal half-step sequence is constructed by four nand gates in IC 3 \& 4 . When the open collector output of the nand gates is off (logic high) current flows through $\mathbf{R}_{\mathbf{1}}$ to $\mathbf{T}_{\mathbf{r}_{2}}$ output stage base. This turns on, and when the voltage across R_{2} reaches around $0.6 \mathrm{~V} \mathrm{Tr}_{1}$ turns on, removing some of the bias current from the base circuit. This results in Tr_{2} running at
constant current, the value being determined by R_{2} and the $\mathrm{V}_{\text {be }}$ of Tr_{1}. When the output of the nand gate is on (logic low), the output stage is held off.

Components

Transistor Tr_{2} should be a Darlington type because a single transistor may not be fully turned off by the nand gate. For the same reason, \mathbf{R}_{1} should not be much reduced in search of larger bias currents, as the output voltage of the nand gate will then rise. As the l.c.c. circuit causes the transistor Tr_{2} to dissipate most of the losses, it should be thoroughly heatsunk. The value and power rating of $\mathbf{R}_{\mathbf{2}}$ is simply calculated by the fact that 0.6 V is established across it in the limiting condition. Transistor Tr_{1} can be any small silicon type such as BC182.
The remaining integrated circuit IC_{5} is used for simple handshaking, and is optional. Whenever a current is switched, this monostable gives a pulse. The motors should be stopped again until the monostable settles. Components R_{4} and C_{1} determine the duration of the pulse and should be selected to suit the application.

Adrian Bailey was educated at Neath Boys' Grammar School, and at Loughborough University of Technology and gained a third-class honours degree in electronic and electrical engineering in 1973. After two vears with Decca Radio and Television designing consumer hi-fi equipment, he returned to the University to work at Loughborough Consultants Limited, a company involved with the custom design and manufacture of many types of electronic equipment for industry, particularly measurement and control. In the summer of 1981 he was made redundant, but later found a job as technical tutor at the Centre for Industrial Studies in the Department of Engineering Production, Loughborough University, teaching the more practical aspects of computer-aided control, including machine-code programming and interface design.

Fig. 3. Action is illustrated by curves at A for typical resistance-limited drive, with B for halving of both resistance and voltage, clearly showing speed reduction. First part of C for l.c.c. drive is exponential, after which constant-current mode takes over.

Fig. 4. Broken line is for conventional resistance drive, while solid lines refer to I.c.c. circuit with varying supply voltage.

The circuit is driven as follows:
Initially, $\overline{U P}$ and $\overline{D O W N}$ signals are both high, and ON is low. In this state, all the output stages are off and the motors exhibit negligible torque.

ON is taken high. $\overline{\text { BUSY }}$ will go low for a while. When it rises, move onto the next stage.
Take either $\overline{U P}$ or $\overline{D O W N}$ signals low briefly, leaving the unused input high. On the rising edge of this pulse BUSY goes low, and the motor starts its turn. When the BUSY signal returns to logic high this stage must be repeated.

Alternatively, take ON low, to enter the power-saving condition.
On each pulse to UP or DOWN the motor will turn one half-step either clockwise or anticlockwise depending on which of the inputs is driven.

If you prefer, a similar circuit could be devised using a 74 LS 191 for IC_{1}. This has a single clock input and a direction control rather than two clock inputs. Minor alterations to the optional handshaking circuit will be necessary.

Experiments

A simple experiment was devised to evaluate the l.c.c. drive in competition with the resistance drive. The motor was Sigma type, number 20-2220-D200-F5.1. This has a coil resistance of 5.1Ω, an inductance of 8 mH , and rated current of 0.9 A . The mechanical load consisted of

Fig. 5 is the linear constant-current drive used to experimentally verify the theory, see Fig. 4 result.

weights on a string, the free end of which wrapped around the motor spindle. The speed at which the motor could deliver this torque was determined simply by reducing the drive frequency until the motor turned smoothly and winched up the weights. Although crude, the method was effective, giving good repeatability.

First, a conventional half-step resistance. drive was evaluated with a supply of 21 V and a phase current of 785 mA . The broken line in Fig. 4 shows the resulting torque-
speed curve. Then the l.c.c. circuit was substituted and the phase current set to 820 mA . The remaining curves on Fig. 4 show the effect of varying the supply voltage. Design procedure suggested that a supply of 8.5 V would give equivalence at 1000 half-steps per second. The experiment confirms this and shows a generous safery margin, arising partly from the use of 56 V zeners rather than the calculated 18 V , and partly from the slightly larger phase current.

The resistance drive required a 33VA supply of which 27.6 W were losses; the 1.c.c. drive with an 8 V supply consumed 13VA of which 6.3 W were losses, and in this case the mechanical output was slightly improved.
Further work. It should be a fairly straightorward exercise to apply similar ideas to a bipolar drive, although special attention to the discharge arrangements may be necessary.

MN

Continued from page 69
is legitimate in principle because although probability is a non-physical or metaphysical quantity, so also is the quantummechanical ψ. But to attribute physical properties to Schrödinger's ψ is to indulge in mysticism. There is no physical mechanism in the quantum mechanics, and nobody has the slightest idea why it gives acceptable answers.

As in the case of electromagnetic theory therefore, only more so, the statistical quantum mechanics must be regarded as an analogy, in some way reflecting or paraphrasing the behaviour of the true "operators" - physical factors - which give rise to real microphysical effects. The mathematical technique by which it chooses to perform its calculations is an esoteric matter of very limited external interest: the mechanism of the switching of transistors inside a computer during a calculation in ballistics does not reflect the law of gravitation. On the other hand the computer program does, and algorithms incorporated in the program may often be interpreted to provide us with useful hints - but not always!

Both the philosophical nature and the limitations of the quantum mechanics are apparent in the following tale, which is apt in depth. When we speak of a "suicide wave" hitting London we mean that there is an increased probability per Londoner of suicide this week. By associating this probability with the greek symbol ψ we could quantify ψ; by noting what hap-
pened last month in New York we could even say the ψ had "propagated" from Wall Street to the City. We would then have described the phenomenon, and by repeated ad-hoc adjustments of the "theory" in the light of empirical experience we would in due course become able to predict it provided, of course, that it was determinate. But no economist or sociologist would be content to rest upon such an intermediate achievement but would seek its underlying cause. Certainly a non-physical quantity (information) did cross the Atlantic, but being non-physical it pulled no triggers itself and in any case it is not ψ. This probability $-\psi$ is not the cause of the suisides nor even a description of their cause: it is merely a description of the observed affect. Further, ψ does not tell us who is to take his own life this week, which might be thought relevant to a full understanding of the process.

In a precisely analogous way the quantum mechanics tells us, statistically, empirically and also very accurately, where electrons are likely to be found in the future, on the basis of what we know now, statistically, of where they are and how they are moving; but we must always remember that its "probability function" doesn't tell the electrons where they are to go. That must be contolled by physical forces in compliance with the conservation laws.

Thus the wave theory of matter, which asserted that its non-physical "waves"
could exert physical control over particle motion, had been well and truly disproved by the year 1930; but then the most unexpected and amazing thing happened. Instead of being rejected as wrong, as it should have been, the matter-waves concept was retained and kept alive as a kind of philosophical toy or pet. It was such a pretty idea! I do not know exactly why it was retained or by whom, although I have my suspicions. However, no precautions were taken to keep the disproved wave theory separate and to distinguish it from the workable and justifiable quantum mechanics, so that confusion between the two was allowed to develop unhindered. A typical example of this confusion today is the common belief that matter-waves exist, and that they are waves of probability. They don't, and they aren't.
That confusion may even have been encouraged in some quarters. It fostered lines of thought which were not much trammelled by the tiresome discipline of physics, and it was therefore in line with the general temper of the immediately post-war decades. But in the afterlight, from the point of view of the philosphy of science, the wave theory of matter was to prove a dangerous toy for physics to have kept and played with. In my next article I review some examples of the theoretical and conceptual havoc it has left behind it: damage which has remained unrepaired up to the present day.

Modular preamplifier

This final part completes the description of the noise-breaker module and shows the signal-level meter. The first three were published in October and November 1982 and January 1983 issues.

While some additional discrimination in favour of the spurious pulses mentioned in the last article can be obtained by reducing the time constants in the pulse detection channel ($\overline{\mathrm{C}}_{65-66}, 220 \mathrm{nF}, \overline{\mathrm{R}}_{109-110} \mathrm{2k}^{\mathrm{k}}, \mathrm{C}_{67-68}$ $\operatorname{lnF}, R_{112-114} 47 \mathrm{k}$), the difficulty still perists that many of these quite audible clicks and pops are, in reality, of very low amplitude in relative signal terms, and I do not think that they can successfully be excised without other, wanted, signals also being impaired.

My conclusion, therefore, remains that while it is possible to design a circuit which will make scratched discs less disconcerting to listen to, it is not possible to design an electronic substitute for care in record cleaning. However, for what it is worth, a dusty record sounds much better when played by a cartridge tracking at some 2 g weight, than it does when played by one with a 1 g stylus weight.

In the preamble to this series, it was said that all the modules not required to amplify, were, with one exception, unity-gain non-inverting stages. This exception is the noise blanker. My reason for this exclusion is that there has been some debate, in hi-fi circles, about whether the phase of the audio signal delivered to the loudspeakers is audibly important - that is to say, whether the sound is different if the 1.s. cone is sucking when it should be blowing, and vice-versa. Without joining this debate, it occurred to me that a lowdistortion phase-reversal circuit might be useful. The $\mathrm{n}-\mathrm{b}$ module fits this bill very well if it is operated at zero 'threshold' setting, when it is simply a low-distortion, unity-gain phase inverter.

To get the widest noise bandwidth, this stage is inserted immediately following the input-signal mixer stage, although, if it is to be used exclusively on gramophone records it could well be interposed between the RIAA module and the PU input to the mixer.

Signal level metering circuit

The circuit for this is exceedingly simple, and is shown in Fig. 23, in which the two halves of the dual op-amp will cope with the two channels, and four small-signal diodes make an adequate bridge rectifier for each meter. The meters used were a pair of inexpensive 'cassette recorder' types, having an approximate sensitivity of $100 \mu \mathrm{~A}$, and were mounted centrally on the preamp front panel. Such a signal level indicating meter is very helpful in setting

By J. L. Linsley Hood

up the input channel sensitivities so that 1 volt r.m.s. at 1 kHz corresponds to the peak indicated level delivered to the volume control potentiometer 'live' end, to which the metering circuit is connected.

The circuit is also useful when using the microphone input, to ensure placing of the microphones so that this sort of peak level is not greatly exceeded, while maintaining an adequate average value. The operation of the preamp. with a signal line at 0 V d.c. avoids the normal nuisance of the meters swinging to full scale on switch-on, as C_{72} charges.

Fig. 26. Printed-board layout for the power supply circuit, shown in Fig. 2 of the October article.

Fig. 27. Mixer stage board circuit shown in Fig. 3 of the October article.

Fig. 29. Treble filter layout. Circuit diagram is Fig. 13 in November article.

Fig. 28. Board for the tone control, the circuit of which is shown in Fig. 12 of the November article.

Fig. 30. Layout of rumble filter module, shown in Fig. 14 of the November article.

Fig. 34. Board layout for the noise-breaker circuit shown in January, Fig. 22.

Constructional points

Although the i.c. voltage regulators used in the power supply module (Fig. 2) have a very low output impedance, it is obviously desirable that there shall be no inter-module coupling via the V_{cc} lines. In the prototype, this was accomplished by mounting three stand-off insulators in some fairly central position within the preamp. chassis, between which I hung an additional pair of $100 \mu \mathrm{~F} / 16 \mathrm{~V}$ electrolytics in the man-
ner shown in my sketch (Fig. 24). These three points were then connected directly to the power supply p.c.b., and used as distribution points from which connexions were taken to the $0,-15$ and +15 volt points on the several preamp. modules. An additional $O V$ line was taken to the chassis earthing point at the microphone input phono sockets.

Inevitably, the question of earth layout presents some problems, especially if individual phono sockets are employed, since

Fig. 31. Board layout for the headphone amplifier - Fig. 15 in November's article.

Fig. 32. Microphone amplifier board - Fig. 17 in the January article.

Fig. 33. Layout for the image-width module, Fig. 21 (January).
these generally earth direct to chassis. In the case of the prototype, where both DIN and phono sockets were provided, wired in parallel, the PU input sockets were insulated from the chassis, and connected only by the outer braid of the screened cable to the OV points on the m.c. pickup head amp. p.c. board, and from there to the 0 V point on the RIAA board. The larger signal level 'Radio' and 'Aux' inputs were merely earthed via the chassis, in the expectation that the hum signal picked up through this route would be negligible in relation to the 300 mV or so of input signal, and this has proved to be the case.

An additional switch, shown in Fig. 1, was placed alongside the output sockets feeding the power amp. This allows a L-R reversal of channels, to avoid the inconvenience of unplugging the l.s. leads if it is found (for example, on borrowing a

Flg. 35. Layout of board for Fig. 23 in the January article - the signal-level meter.
friends p.u. cartridge) that the L-R channel location is incorrect. I have also used a spare series of mechanically interlocked push-button switches below the input sockets, to allow the 'Aux 2' DIN socket to be used as a switched output from any of the other inputs, or the RIAA p.c.b. output, to permit the preamp. to be used on two tasks simultaneously so that, perhaps, one programme input can be routed to l.s.
while another is routed to tape. The wiring of this is shown in Fig. 25.
Although the design and construction of this preamplifier took quite a time, because it was possible to build and test the individual modules, separately, prior to their installation in the preamp. box, the final assembly was straightforward and trouble free. However, I"would urge that the unit be tested, where possible, after
each module has been wired in, so that if any unexpected effects are found, their location will be certain. I would, myself, be very unhappy about putting together anything as complex as this and then only testing it to see if it all worked after it was complete.

As a final check on the prototype, to assure myself that there was little signal degradation, the overall t.h.d. at 1 kHz and 1 volt r.m.s. output, with all the modules in circuit, and with inputs to RIAA input, or mic. input, or to any of the auxiliary inputs, was measured as less than 0.10%. The only sensible comment on the sound quality of the system is that it is determined by the input programme material, which, of course, is how it should be.

Microcomputer interfacing from poges 52

Digital-analogue conversion

Unlike the a-d converter, the d-a device does not require any hand-shaking; the conversion time of $1 \mu \mathrm{~s}$ is well within the time of execution of any operating software. Fig. 4 shows how a single channel of output is connected to the governing 6522 . In principle, it is very similar to the input stage where port A transmits the data although it is now defined as an output, while port B provided the necessary chipselect signals for all four output channels. Again the problem of transferring twelvebit data over an eight-bit bus is handled by the control lines WR1; WR2, BYTE1/ $\overline{B Y T E 2}, \overline{\mathrm{CS}}$ and XFER. It is pos$\overline{C S}$ and XFER. It is possible to operate the converter in several modes, so a detailed description of these control lines is not given here - reference 3 does this more than adequately. For the circuit shown in Fig. 4, however, the \bar{C} $\overline{\mathrm{S}}$ line references which of the four channels is to be loaded with the data on the bus, while the two-byte transfer is managed using the WR and BYTEI/ BYTE2 lines. The digital data is stored in two internal latches and is only transferred to the converter section of the chip when XFER and $\overline{\mathrm{CS}}$ are low. This enables all channels to be loaded with data in succession followed by simultaneous conversion and latching.

The converter produces a current proportional to the digital input code and this is converted to an output voltage by using an LF356N operational amplifier. The circuit shown in Fig. 4 has a $20 \mathrm{k} \Omega$ potentiometer for zero adjustment and a 50Ω trimmer for setting the full scale adjustment. As the d-a converter can be considered as a digitally controlled attenuator followed by an inverting amplifier, the relationship between the output voltage $\mathrm{V}_{\text {out, }}$, reference voltage and digital code D

$$
\begin{aligned}
& \text { is: } \\
& \mathrm{V}_{\text {OUT }}=\frac{-\mathrm{D} \times \mathrm{V}_{\text {REF }}}{4096} .
\end{aligned}
$$

In practice the reference voltage is derived from a 4.7 V precision zener followed by a precision potentiometer.

Morris Driels graduated in 1969 from Surrey University with a B.Sc in Mechanical Engineering and from City University London with a Ph.D in 1973. Apart from a year spent working in the aerospace industry he has been a lecturer. in the Mechanical Engineering Department at Edinburgh University. Recent involvement with microelectronics and computers reflects the current need for graduate engineers to have some experience in microcomputer interfacing, data acquisition and control.

Two short demonstration programs have been written to illustrate the more elementary capabilities of the data acquisition system and copies are available (see tail-piece). The system was connected to a CBM 4032 microcomputer and the v.i.as configured to occupy the memory range $\$ 8800-\$ 882 \mathrm{~F}$. The first of these programs deals with data input, is purely machine code and resides in the second cassette buffer \$033A - \$03FF. In operation, the a-d converter inspects each of the eight channels, converts the data and displays the resulting twelve bit code (0 4095) on the screen. After displaying all eight channels a blank line is printed. Because it's difficult to interrupt a machine code program without losing the data, 16 lines of output are are displayed before the program halts. By applying a variable voltage in the range 0 to $2 \times V_{\text {REF }}$ to the
different input channels, the corresponding twelve-bit code should appear at the appropriate place on the display. Both Basic and machine code are used for the da converter program which is designed to operate on channel zero only. By typing in the chosen twelve-bit code $(0-4095)$ when requested, the output pin for channel zero acquires the corresponding analogue voltage.

Availability: A printed circuit board and assembled systems are available from the author at Kings Buildings, Mayfield Road, Edinburgh. Copies of the demonstration programs are obtainable from Wireless World, at room L302, Quadrant House, The Quadrant, Sutton, Surrey, but please mark your envelope "data acquisition".

References

1. Syntertex data sheet, SY6522 and SY6522A Microprocessor Products, 1980.
2. Intersil data sheet, ICL7109 12-bit binary a/d converter for microprocessor interfaces, 1979.
3. National Semiconductor, Linear Data Book, 1982.

An assessment of microwave limiter design techniques is a 127 -page study carried out by C. Gupa and K. Soh of Microwave Associates on behalf of the European 'Space Agency. It covers limiters operating over a broad frequency spectrum at various power levels, compares them to establish the most suitable types for specific conditions. Microwave Associates Ltd publish the report at Woodside Estate, Dunstable, Beds LU5 4SX. WW 403
Processing digital signals. TRW manufacture a range of components such as multipliers, accumulators, a-to-d and d-toa converters and other functions. They are detailed in a catalogue which is available from MCP Electronics Ltd, 38 Rosemount Road, Alperton, Middlesex HA0 4PE.

WW 406

SCOPE FOR IMPROVEMENT

An updated version of the Hameg 203-3 oscilloscope has a bigger screen ($8 \times 10 \mathrm{~cm}$) with an internal graticule; both vertical amplifiers now have variable controls with an input sensitivity of $2 \mathrm{mV} / \mathrm{cm}$. In addition to line and tv triggering, h.f. and d.c. triggering are now possible. The scope has been provided with a component tester for quick checks on semiconductor device and other components. This general-purpose service scope costs £240. Another 20 MHz oscilloscope has a high-resolution timebase up to $20 \mathrm{~ns} / \mathrm{cm}$ with sweep delay and magnification. The trigger system may be automatic on peak values up to 50 MHz with a variable holdoff time. A Z-modulation input operates at positive t.t.1. level. This multi-function HM204 oscilloscope is priced at $£ 362$. Hameg Ltd, 74 Collingdon Street, Luton, Beds LU1 IRX.
WW301

ELECTROLYTICS AS SMALL AS BEADS

Elna RC2 capacitors are manufactured using a multiple etching technique to achieve a maximum height of 8 mm with a lead spacing of 5 mm which makes them suitable as replacements for the more expensive tantalum bead capacitors. Values are from $100 \mu \mathrm{~F}$ to 100 mF with voltage ratings from 6.3 to 63 V . Standard tolerance is 120\%. Charcroft Electronics Ltd, Sturmer, Haverhill, Suffolk CB9 7XR.
WW302

BBC MICRO INTO STORAGE SCOPE

An analogue signal display and analysis system turns a BBC/Acorn model B microcomputer into a storage oscilloscope with two channels for input of frequencies up to "the high audio range". The display can be programmed in time or frequency along the x -axis. A number of screens may be retained in memory and recalled for comparison. Any display can be reproduced on a printer for a permanent record, traces can be superposed by the printer which has been chosen to match the resolution of the computer. Input channels may be triggered automatically and repetitively or externally. Display or total sampling time can be varied from 0.002 to 25 s with a minimum sampling time over one display of $20 \mu s$. Variable trigger delay may be

WW303

programmed.
Full channel identification, time and grid-scale identification with peak-to-peak information are provided. Individual sample values may be listed and transferred to the printer. The signal analyser alone costs $£ 263$ but is available in a package which includes the BBC model B, a NEC PC8023B-C dot matrix printer, and a black and white monitor v.d.u. all for $£ 1206$, the same package but with a colour v.d.u. is $£ 1407$ from Geophysical Systems Lid, 2 North Way, Andover, Hants SP10 5AZ.
WW303

DIGITAL IMAGE CONVERTER

Two c.c.t.v. systems which can interface with microcomputers have been produced by Digithurst. MicroSight 1 uses a Micro Eye camera interface to send images back to the computer as 8-bit signals. MicroSight 2 uses a charge transfer device camera with a $128 \times$ 128 matrix and the image may be coded as 8 -bit digital video or as threshold video. Microsight - software consists of a command processor and disc i/o routines, a camera control system and three display routines, which can show facsimile or boundary images. The host computer should have a parallel port and high resolution graphics (BBC, Pet and Apple are quoted as examples). Accuracy of the facsimile image depends on the number of steps available in the grey scale. Both systems may be used for image analysis, boundary tracking, area and "second moment" calculations as part of object recognition. MicroSight 2 has the additional advantage of being a high-speed system and costs $£ 1,990$. MicroSight 1 at $£ 499$ is aimed at education and research. Digithurst Ltd, Leaden Hill, Orwell, Royston, Herts SG8 5QH. WW304

PRINTER IN A RACK

The Syntest SP2000 is an 80column printer which fits into a standard 480 mm rack. The unit is 180 mm high and print-out is on 210 mm wide single or multi-copy paper. The printer is controlled by its own microprocessor and is eprom-programmed which allows for a degree of flexibility. It can use an RS 232 C or 20 mA current loop interface and has a 1K buffer. Print speed is 100 char. $/ \mathrm{s}$ and there is a selectable data rate input up to $9600 \mathrm{~b} / \mathrm{s}$. The seven-needle matrix gives a character size that may be

multiplied in width or height to give large characters. It costs $£ 775$ from Russet Instruments Ltd, Unit 1, Nimrod Way, Reading, Berks RG2 OEB.
WW305

SOCKET FOR TO3 POWER

A power-transistor socket, W3438, allows the transistors to be connected or removed without solder. The transistor is held down by two screws which can also be used to clamp a heatsink. The socket is moulded from polyethersulphone and has

phosphor-bronze contacts plated with tin to give a current rating of 15A. It incorporates solder or spade terminals. Winslow International, 71 Tunnel Road, Tunbridge Wells, Kent TN1 2BX.
WW306

DIAC AND TRIAC COMBINED

Intended for high energy pulse applications, such as strobes, flashers, ignitors, high pressure sodium vapour lighting, pulse generators and fluorescent lighting starters, the Motorola Sidac is a combination of a diac and a triac. It is a bilateral switch which conducts when the voltage across it exceeds a given threshold. Devices in the series are the MKIV-115/MKIV125 and the MKIV-135 having voltage thresholds of 115 to 125 and 135 for a current of 1 A r.m.s. On-

The FP-788 is a single-chip microcomputer programmed to decode the time standard signals from Rugby or similar transmitters, and to display the data in letters and numbers on a dot-matrix display. The integrated circuit provides all the active components required for a complete decoder; signal processing, decoding and display driving interfacing directly to the Epson EA-Y16025AZ liquid crystal display which gives two rows of 16 columns of characters. Days of the week and months are displayed as letters and the display also shows a seconds count not provided by Rugby. The initial issue of the decoder is available; an improved version will include the ability to display other information or to feed the clock information out to, say, a printer. The decoder costs $£ 29.70$, the display £37.50 and a p.c.b. and the external components are available to build as a kit. Friday

Partnership, 22 Wentworth Close, Rudheath, Northwich, Cheshire CW9 7EE.
WW308

FAULT-FINDING COMPARATIVE TESTER

Suitable for servicing and diagnostic testing of audio, broadcast and other communications equipment, the RV11C voltmeter has a built-in comparator where expected values .may be entered so that faults become easy to detect. The meter may be used to monitor and measure voltages, alternating and direct from $300 \mu \mathrm{~V}$ to 1 kV (and up to 30 kV direct voltage with a high voltage probe), resistance down to 0.3Ω, frequency to 1 MHz and temperatures from -100° to $+800^{\circ} \mathrm{C}$. Monitored values and acceptable deviations may be
preset. Detected faults trigger an audible alarm which makes the meter useful in factory diagnostics and helps to solve fault-finding problems in difficult environments. The meter, manufactured by Bang \& Olufsen, costs $£ 232$ and high voltage, temperature and frequency probes are optional extras. It is available in the UK through David Bissett Ltd, 52 Luton Lane, Redbourne, Herts AL3 7PY. WW309

SWITCHMODE REGULATOR

Replacing costly hybrids, the L296 power switching regulator can supply 4A at a voltage between 5.1 and 40 V , selected by external components. Useful for microprocessor applications, the regulator incorporates such features as a 'soft' start, programmable current limiting, remote inhibit and a delayed reset signal. Few external

components are needed and as the unit operates efficiently at frequencies up to 200 kHz , size and cost of external components is reduced. An internal zener voltage reference eliminates the need for trimmers. Simple crowbar overvoltage protection may be provided by adding an external thyristor. There are internal protections against reverse polarity input voltages, thermal overload and output short circuits. Multiple units may be synchronized easily. Each unit is mounted in a Multiwatt-15 plastic package. SGSATES (UK) Ltd, Walton Street, Aylesbury, Bucks.
WW310

D.C. CONVERTERS

Designed for applications where precise load regulation is not required or where cost is important, the Gemini range of d.c. to d.c. converters can provide

$5,12,15, \pm 12$ or $\pm 15 \mathrm{~V}$ from either a 5 or 12 V supply. The lowcost range is an addition to the Gemini 900 range and has the same physical size as the rest of the range i.e. $50 \times 50 \times 10 \mathrm{~mm}$. All the power supply units in the range have π input filters to reduce reflected ripple current; the outputs are short circuit protected. Efficiency of the units is claimed to be between 70 and 85%. Gresham Lion Ltd, Gresham House, Twickenham Road, Feltham, Middlesex TW13 6HA.
WW311

MICROCOMPUTER FOR MEASUREMENT AND CONTROL

A computer-aided measurement and control system for process control and factory automation is Macsym 150, a microcomputer based around the Intel 8086 and 8087 16-bit co-processors. With disc drive it operates using the MP/M-86, a multitasking version of CP/M-86 which has a wide library of commercial software for all the usual business applications; word processing, accounts etc. What makes it different is the incorporation of six input/output slots for a variety of interfacing cards. And this is combined with a version of Basic which allows direct input and output to the slots without complicated programming. A command like $\mathbf{X}=\operatorname{AIN}(4,5)$ means 'read the analogue input at slot 4 , channel 5 and store it in memory'. An output action may be taken from an input value such as $\mathrm{AOT}(4,0)=\mathbf{K}^{\boldsymbol{*}} \mathbf{X}$ or 'multiply the input value by a constant and
output its analogue value to slot 4, channel 0 '. Digital and frequency input and output can be dealt with similarly. Up to 16 digital channels are available or 16 differential or 32 single-ended analogue input channels and 8 analogue output channels or any combination of these, depending on the signal processing cards used.
The Macsym 150 may be augmented by the Macsym 200 a 'front end' with capacity for another 16 slots giving a capability of over 500 channels. High resolution colour display is available with the screen capable of being divided into half or quartered to give different simultaneous displays, including mimic displays for process control. Macsym 150 cosis $£ 6,000$ with an extra $£ 2,500$ for Macsym 200. Analog Devices Ltd, Central Avenue, East Molesey, Surrey KT8 OSN. WW312

COMMUNICATIONS RECORDER

Lee James Electronics, the manufacturers of NEAL recorders, have announced a range of cassette recorders for use with industrial communications. The units are available in mono, stereo, three- or four-channel configurations for alternate or simultaneous recording, playback or copying. When used as logging recorders in mono at $15 / 32 \mathrm{in} / \mathrm{s}$, up to 32 hours of continuous recording is possible. Units may be coupled together to give more channels or longer duration. Lee James Electronics Ltd, Unit 21, Royal Industrial Estate, Blackett Street, Jarrow, Tyne and Wear NE32 3HR.

WW313

CP/M ON THE BEEB

The Torch $\mathbf{Z 8 0}$ disc pack includes two 400 K disc drives each capable of handling up to 255 files; a Z80 processor card, which incorporates 16 K of rom containing the Torch CPN operating system, and 64 K of ram - increasing the system's total ram capacity to 96 K . The drives may be used with Acorn's disc filing system as well as with the Torch system.

The card is easily installed inside the computer. The 6502 processor handles all peripherals and can read the discs in track-sized pieces, which makes the system faster and more efficient than a singleprocessor CP/M computer. The CPN operating system runs CP/M programs, but because the operating system and 20 K of screen ram reside in the 6502 memory map, nearly 63 K of ram is available to the user. CPN also has access to the sound, sythesized speech and high resolution graphics and character displays of the BBC micro. The complete package of twin disc drives, Z 80 processor card, CPN card, operating software and manuals costs $£ 780$ (+ vat). Torch Computers Ltd, Abberley House, Great Shelford, Cambridge CB2 5LQ.
WW314

Professional readers are invited to request further do tails on items featured here by entering the appropriate WW referene number(s) on the maive reply-paid card.

GPIB MONITOR

A low-cost hand held monitor will be of interest to anyone testing or troubleshooting on the IEEE-488 instrumenatation bus. Model 4884 has 16 leds which display the status of the bus signals. These signals may be monitored at the normal bus speed or transactions may be stepped through one at a time. The unit is powered from an internal battery and has a GPIB compatible connector. A simple adaptor may be used to connect to the IEC 625.1 instrumentation bus. WASEC, PO Box 161, Wallington, Surrey SM6 8BA.
WW315

WORLD'S SMALLEST COMPUTER SYSTEM?

Breast Pocket Computer - A5 Book Size System More powerful than pocket computers costing up to twice as much
Sharp PC-1251 Computer Plus FREE $£ 10$ software voucher
CE-125 Printer/Micro Cassette Plus FREE $£ 10$ software voucher

Custom made for Sales Executives. İdeal for Engineers and Hobbyists, or as a starter computer that grows into a powerful, reliable system.
PC-1251. Massive memory: 4.2 K RAM (3.7K user) and 24K ROM for extended BASIC, including DIM, STRING and INKEY \$. Up to 18 programs stored in memory at once, each with its own execute key, plus reserve mode for frequently used commands. One-touch mode selector for Reserve/Program/Run. Full range of math and science functions. QWERTY keyboard. 24 digit dot matrix display. Auto power-off, with memory protection.
CE-125. Half the size of this page and less than 1 inch thick। 24 character thermal printing of data, computation results, programs, etc. Integral micro cassette recorder for error-free saving/loading, plus built-in interface for standard cassette recorder. Will run existing PC-1211 software but many times faster! Powered by rechargeable NiCad batteries, or mains adaptor (supplied).

MiCROL AND SHARP SOFTWARE AVAILABLE SOON SEND FOR DETAILS

 Including VAT and FREE £20 software voucher Dimensions
PC-1251. $135 \times 70 \times 9.5 \mathrm{~mm}(515 / 16 \times 23 / 4 \times 3 / 8$ inch $)$.
Weight: 115 g (40z).
CE-125. $205 \times 149 \times 23 \mathrm{~mm}(81 / 16 \times 57 / 8 \times 29 / 32$ inch).
Weight: 550 g (1.21b).

SHARP PC-1500 COLOUR COMPUTER

The world's most powerful pocket computer? PRICES, including VAT and FREE software vouchers PC-1500 Pocket Computer plus $£ 20$ software voucher....... $£ 169.95$ CE-150 Colour Printer/Cass interface plus $£ 20$ voucher...... $£ 149.95$ CE-155 8K RAM Expansion Module plus $£ 10$ voucher......... $£ 79.95$ CE-1598K RAM/ROM with battery back up $+£ 10$ voucher $£ 89.95$ CE-152 Custom Cassette Recorder plus $£ 5$ voucher $£ 39.95$ CE-153 140 key Software Board plus $£ 10$ voucher................... $\mathbf{E} 79.95$ CE-158 RS-232C Interface plus $£ 20$ voucher...................... $£ 149.95$

SOFTWARE AND ACCESSORY LIST ON REQUEST

PRICES include VAT, P\&P. Offers are subject to availability. Send cheques, PO, or phone your credit card no to:

Dept Ww, 39 Burleigh Street
Cambridge CB1 10'
Telephone: 0223312453

RELAY-A-QU]P 15 Rack Mounting Cabinets With feet for free standing use			
ㄹ19-50 Front Panel: $482 \times 150 \mathrm{~mm}$ Rear Case: $425 \times 250 \times 140 \mathrm{~mm}$			
Black Anodized Front Panel +£2			
- Top, bottom and rear cover removable for access \& Plates have heavy duty grey paint finish \#Front panel is heaw gauge - 3 mm aluminium thtrong screwed construction throughout - screws included Heosy gouge chass is mounting plate is pre-drilied and has four mounting positions to choose from			
			人POPT
			TRADE QTYs. P.O.A.
ADD VAT STD RATE \& ORDERS UNDER £5 P\&P ABOVE ITEMS £2 P\&P			
9" RACK MOUNTING MINI RACK Strong steel rear case $206 \times 132 \times$ 57 mm . Matt black. Top, rear and bottom panels removable. Front panel is of plain brushed or black anodized aluminium $228 \times 64 \mathrm{~mm}$. IDEAL FOR MANY PROJECTS. £9.95 + VAT. Anodized £11.95 + VAT.	METAL CASES		
	》> SHOP OPENING SOON <<<		
	Ask for our FRE E CATALOGUE		
	$10-8 \mathrm{pm}$ Mon-Sat	Moat MALDO	AY-A-QUIP dge, Stock Chase , Essex CM9 7AA

INSTANT PRINTED CIRCUITS!!

ScheTronics Limited

For repair and calibration of test equipment.
We also have selected pieces of second user LF/HF equipment for sale, including:
Siemens 100 MHz Reflection Coefficient R273 £850
Siemens Pegamat Systems/Part Systems/Spares P.O.A.
Anritsu Attenuator MN54A 75 Ohms $\mathbf{8 4 2 5}$
J.J. Lloyd Wheatstone 4 Dial BR2
f 150
Hewlett Packard Digital Voltmeter 3480A £250
Marconi Sensitive Voltmeter TF2600
$\mathbf{£ 1 5 0}$

> Unit 10, Dunstall Estate Crabtree Manorway Belvedere, Kent DA17 6AW
> Telephone: 01-311 9657

WW - 052 FOR FURTHER DETAILS

556						- 24 hour normal despatch time - ESTABLSLID 1 a - AP SPECLIFCATION NS DISTRIBUTORS		
BOXES								
								SoLERMNG IRONS
VEROBOX CASES								

umbit

THE MOST COMPREHENSIVE RANGE OF COMPONENTS, KITS AND MODULES IN THE WORLD \& THERE'S ONLY ROOM FORA FRACTION HERE, GET THE CATALOGUE AND FIND THE REST.

BAND 2 TUNE RHEADS (Varicop Tuning)
2 MOSFET of tuges MOSFET mixe
JFEK IF preamp, with Internaily :mpli
 output. A GC innuur
$145 \times 70 \times 24 \mathrm{~mm}$
 7255 The letest complete $F M$ tunerheag from RF Input to
stereo output. MOSFET RF stereo outrut. MOSFET
ntages, HA11225 1 F and £30.00 plus VAT

911225A The $911225 A$ is the 7230 -dited and shrunk into a screened metal case, $97 \times 56 \times 24 \mathrm{~mm}$. The synthesised tuner tystems.

Stock No $\begin{array}{lll} & & 1.24 \\ \text { Sreck NO } & & 25+ \\ 40.91225 & \text { Built } & 20.82 \\ & 16.25\end{array}$ 944378 'Hyperti' sories decoder module with the TOKO K84437 pilot cancel LL IC DIrdy filter and the KB4438 muting stereo | Stock No. | | | |
| :--- | :--- | :--- | :--- |
| 40.04378 | Buill | $1-24$ | $25+$ | DFCM500 Wide range digital frequency/ copacitance met er. Frequency ranges;

$-1 \mathrm{MHz}, 1.50 \mathrm{MHz}$ and 80.500 MHz , B digit ED display, mains or Ni-Cad battery operstion $\begin{array}{llrr}\text { Stock No. } & \text { Kit } & 9.24 & \mathbf{2 5 +} \\ 40.01500 & \text { Kit } & 95.95 & 86,50\end{array}$ autobridge
ranging power mower. Complate KSit: All PCBs, bourd mounted components, meters, case (undrilled), trantformer etc.
Stock No: $40-40400 \mathrm{E52.86}+£ 1.50 \mathrm{P} \mathrm{\&} \mathrm{P}$

FET DIP OSCILLATOR
An essential piace of test equipment for the R construetor, GDO or WM function covering 1.6 215 MHz in five ranges. Audio and meatar ponents, all hardwate, punch, pasinted and screan primeod case, wire ote. for coils and printed scale. $\begin{array}{llll}\text { Stock No: } \\ \text { 40.16215 } & \text { Kit } & \begin{array}{l}17.24 \\ \end{array} \quad 16.20\end{array}$
10.MHz SSB GENERATOR

PCB, All components, olohe pole crystal Stock No. c29.65

R\&EW PROJECT AND DATABRIEF PCBs

High qualley glass fibre printed circuit boards

AND TKERE'S PLBNTY MORE IN THE CATALOGUE TOp inc RETAIL SHOP OPERING EOURS Monday to Thursdey 8.30-6.30 Swithed Canars new Dua (Access + Barclaycard orders accepted)

ALL PRICES SHOWN EXCLUDE VAT. P\&P 50p per order
 \section*{AMBIT INTERNATIONAL
 \section*{AMBIT INTERNATIONAL
 201 Marth Fervire Rond, Brentwand, Esse:
 TELEPHONE (STO 0217) 230909 TELEX 995194 AMBITG POSTCOOE CM14 $4 S G$}

WW - 049 FOR FURTHER DETAILS

Happy Memories

Part type 4116 200n		1 off	25-99	100 up
		. 83	. 72	. 66
4116250 ns		. 75	. 65	. 60
4816 100ns for B.B.C. comp.		2.45	2.10	1.95
4164 200ns		4.45	3.85	3.55
2114 200ns Low Power.....................		1.15	1.00	. 90
$2114450 n s$ Low Power......................		. 95	. 85	. 80
4118250 ns		3.25	2.85	2.65
6116150 ns CMOS		3.70	3.20	2.95
2708 450ns..		2.60	2.25	2.10
2716 450ns 5-volt.		2.60	2.25	2.10
2716 450ns three-rail.		5.75	5.00	4.65
2732 450ns Intel. type.......................		3.75	3.25	3.00
2532 450ns Texas type		3.75	3.25	3.00
Z80A-CPU $£ 4.35$6522 PIA $£ 3.98$88LS120 $£ 2.35$	Z80A-P10	. $£ 3.25$	280A-C	... $£ 3.25$
	7002 A-D	£4.95	3691.	£2.95
	7805 reg. 50	7812 ге	
Low-profile IC sockets:	Pins 8	1416	182022	$\begin{array}{ll}24 & 28 \quad 40\end{array}$
	Pence 9	1011	141518	$19 \quad 2533$

Soft-sectored floppy discs per 10 in plastic library case:

5-inch SSSD	£17.00	5-inch SSDD	£19.25	5-inch DSDD	£21.00
8-inch SSSD	£19.25	8-inch SSDD	£26.35	-inch DSDD	£25.50

74LS Series TTL: Large stocks at low prices with D.I.Y. discounts starting at a mix of just 25 pieces - write or phone for list

Please add $30 p$ post and packing to orders under $£ 15$ and V.A.T. to total : Access and Visa welcome : 24-hour service on (054-12) 618 Govermment and educational orders walcome - f15 minimum Trade accounts operated - phone or write for details

HAPPY MEMORIES (WW)
Gladestry, Kington
Herefordshire, HR5 3NY Telephone: (054-422) 618 or 628

Hood, engineered to the very hlahest standard, represent the very best that is available on tha kit market today. The delicacy and transparency of the tone quality enable these emplifiers to outperform on a side-by-side comparison, the bulk of amplifien
in the commercial market-piace and even exceed the high standard set by his earlier 75 -watt design.
Three versions are offered, a 30 -wath with Darlington output transistors, and a $35-$ and 45 -watt, both with Mosfot outpu devices. All are of identical outside appearance which is de
signed to match and stack with our Linsley-Hood cassette re corder 2 .
As with all, Mare kits the constructor's interests have boen looked atter in a unique way by reducing the conventional (and boring) Any of these kits represents a most cost-effective route to the very highest sound quality with the extra bonus of the en joyment of building a sophisticated piece of equipment. 30.wath Darlington amplifier, fully integrated with tore controls
and magnetic pick-up facility. Total cost of all parts is fa 1.12 Special offer price for complote kits is $\mathrm{E72}$.
35 -watt Mosfor molifier. Total cost of pats
${ }^{35}$-watt Mosfot a mplifier. Total cost of parts 598 . 41. Special offer for complete kits E87.40.
45-wat Mostet amplifier. Total col
offer price for complete kits $E 3.80$.
RAf.
'P.W. WINTON' TUNER AND AMPLIFIER

Snazy matching shimline tuner and amplifier in beautiful wooden cabinats. These Ted Rule designs are for the anthusiast readout with clock and timer features. FM has 6 section front end and switchable bandwith for exceptional fringe area performance. Amblifier has Toroidal transformer, Mosiot output
stages, 50 watts per channel and got a cracking review in PracticalWireless.
Tunsi Complets Kh... \qquad LINSLEY-HOOD CASSETTE RECORDERS

We have done two kitis so this design, one using the original car

 Head gives nind icrodible froquency range (with good tape you

 \section*{THIS MONTH'S
 \section*{THIS MONTH'S SPECIAL OFFER SPECIAL OFFER

 WINTON TUNER

 WINTON TUNER and AMPLIFIER and AMPLIFIER KITS KITS up to up to £40 OFF. £40 OFF.

 AMPLIFIER

 AMPLIFIER was $£ 109$ was $£ 109$ NOW ONLY £98 NOW ONLY £98 TUNER TUNER was $£ 163$ was $£ 163$ NOW ONLY £123} NOW ONLY £123}

FEED YOUR MICRO BYTES WITH OUR

 SOLENOID CONTROLLED CASSETTE

Front loading deck with full solenoid control of all functions including optional read in fast wind modes. 12 volt operation.
Fitted 3-digit memory counter and Hall IC Motion Sensor, StanFitted 3-digit memory counter and Hall IC Motion Sensor. Stan-
dard erase and stereo R/P Heads. Cheapest orice ever for all dard erase and stereo R/P Heads. Cheapest price ever for all
these features. Only $£ 38.90$ plus VAT. Full technical specification included.

LINSLEY-HOOD 100 WATT POWER

 AMPLIFIEROur complate kit for this brillient new design ia the same size as our Linsley-Hood Cassette Recorder 2. Kit includes all parts for
two power amplifiers with large hearsink ares, huge power two power amplifiers with large heatsint ares, huge power E144.46 but our special introductory prlce for all parts bought E114.46 but our special
together is only Elos. 50 .

Hitachi Oscilloscopes

performance, reliability, exceptional value and immediate delivery!

Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, in a newly-extended range that represents the best value for money available anywhere.
V-152F 15 MHz Dual Trace V-202F 20 MHz Dual Tracé V-203F 20 MHz Sweep Delay V-302F 30 MHz Dual Trace V-352F 35 MHz Dual Trace V-353F 35 MHz Sweep Delay 50 MHz Dual Imebase, Mini-Portable Prices start from under $£ 250$ (ex. V.A.T.) including 2 high-quality probes and a 2 -year warranty. We hold the range in stock for immediate delivery.
For colour brochure giving detailed specifications and prices ring (0480) 63570. Reltech Instruments, 46 High Street, Solihull, W. Midlands, B91 3TB

01-452 1500 Tbehnomatic Liti B-BC Micro Computer
 Please phone for availability
 WORD PROCESSOR 'VIEW' 16K ROM £52

 BBC Model A £299 BBC Model B £399 (incl. VAT)
 Carr £8/unit
 Model A to Model B upgrade kit $£ 50$ Fitting charge $£ 15$ Individual upgrades also available
 TELETEXT ADAPTOR £195 PRESTEL ADAPTOR £90 2nd PROCESSOR 6502/280 £170

 $01-4506597$FLOPPY DISC INTERFACE
incl. 1.00 .5 £70 \& £20 installation

Phone or send for our BBC leaflet

BBC FLOPPY DISC DRIVES

Single Drive $514^{\prime \prime} 100 \mathrm{~K} £ 235+\mathrm{f} 6$ carr. Double Drive $51 / 4^{\prime \prime} 800 \mathrm{~K} £ 799+£ 8$ carr

BBC COMPATIBLE DRIVES

These are drives with TEAC FD50 mechanism and are complete with power supply SINGLE: 100K £190; 200K £260; 400K £340 DUAL: 200K £360; 400 K £490; 800 K £610

CASSETTE RECORDER

Ferguson 3TO7
$£ 26.50+£ 1.50$ carr
Cassette Leads $£ 3.50$
Computer Grade Cassettes $£ 0.50$ each $£ 4.50$ for $10+£ 1$ carr

BMC BM1401 14' Colour Monitor RGB Input £265 \& £8 carr
KAGA RGBI $12^{\prime \prime}$ Colour Monitor
RGB input $£ 235$ \& $£ 8$ carr
KAGA $12^{\prime \prime}$ High Res Green Monitor £170 \& £6 carr

MONITORS

MICROVITEC 1431 M/S $14^{\prime \prime}$ Colour Monitor $£ 269$ \& $£ 8$ carp Hi Res Green Monitor $£ 99$ \& $£ 6$ carr RGB Lead for BMC/KAGA £10 Composite Video Lead $£ 3.50$

ACORN ATOM

Basic Built £135. Expanded £175 (Carr $£ 3$ per unit)
Atom Disc Pack $£ 299+£ 6$ Carr $3 A 5 v$ Regulated PSU $£ 26+£ 2$ Carr Phone or send for our BBC Atom list

NEC PC 8023 BE - C
$100 \mathrm{CPS}, 80$ cols Logic Seeking, Bidirectional. Forward and Reverse Line Feed, Proportional Spacing, Auto Underline Hi-Res and Block Graphics, Greek Char. Set. Only $£ 320+£ 8$ carr.

PRINTERS

SEIKOSHA GP 100A 80 cols 30 CPS Full ASCH \& Graphics $10^{\prime \prime}$ wide paper Now only $£ 175+£ 6$ carr Ask for details on GP 250 A

EPSOM MX 80 and

Parallel Printer lead for BBC/Atom to most printers $£ 13.50$ Variety of interfaces, ribbons in stock. 2,000 fan fold sheets $91 / 2^{\prime \prime} \times 11^{\prime \prime} £ 13.50 \times £ 3$ p\&p

100F/T3
MX8080CPS 80 cols MX 100100 CPS -136 cols Logic Seeking, Bidirectional, Bit Image Printing, 9 $\times 9$ Matrix Auto Underline MX80 F/T3 £325
 (E8 Carr/Printer)

RUGBY ATOMIC CLOCK

This 280 micro controlled clock/calendar receives coded time data from NPL Rugby. The clock never needs to be reset. The facilities include a choice of melody or alternatively these can be used for electrical switching. A separate timer allows recording of up to 240 lap times without interrupting the count. Expansion facilities provided.

See July/August ETI for details:
Complete Rit $£ 120+£ 2$ p\&p

MICROTIMER

6502 Based Programmable clock timer with t 224 switchlng times/week cycle * 24-hour 7 -day timer

* 4 independent switch outputs directly
interfacing to thyristor/triacs
- 6 digit 7 seg. display to indicate real time, ON/OFF and Reset times
- Output to drive day of week switch and status LEDs.
Full details on request. Price for kit $£ 57$

CONNECTOR SYSTEMS

JUMPER LEADS

$24^{\prime \prime}$ Ribbon Cable with Headers

 $\begin{array}{lllll}1 \text { and } & 145 p & 185 p & 240 p & 380 p \\ 2 \text { ends } & 210 p & 230 p & 345 p & 540 p\end{array}$ 24" Ribbon Cable with Sockets 20 pin 26 pin 34 pin 40 pin $\begin{array}{lllll}1 \text { end } & & 160 p & 210 p & 270 p \\ 2000 & 300 \\ 2 \text { ends } & 290 p & 385 p & 490 p & 540 p\end{array}$ Ribbon Cable with D. Conn.
25-way Male 500 p . Female 550 p.

RS 232 CONNS

 $4^{\prime \prime}$ Sing (25 way D) 4^{\prime}. Single end Male $E 5.50$ $24^{\prime \prime}$ Single end Female $\mathbf{E 6 . 0 0}$ 24"' Female-Female £11.00 24"' Male-Male $£ 10.00$ 24"' Male-Female $\mathbf{\Sigma 1 1 . 5 0}$ Solder 110 p REMALE 210 p 350p $\begin{array}{lllll}\text { Solder } & 110 \mathrm{p} & 160 \mathrm{l} & 210 \mathrm{p} & 350 \mathrm{p} \\ \text { Angled } & 175 \mathrm{p} & 2400 & 310 \mathrm{p} & 5000 \\ \text { Hoods } & 95 \mathrm{p} & 95 \mathrm{p} & \mathbf{9 5 p} & 125 \mathrm{p}\end{array}$ DIL HEADERS

	Solder	IDC
	Type	Type
14pin	40 p	100 p
16pin	50p	110p
24pin	100p	150p
40 pin	200p	$225 p$

AMPHENOL AMPHENOL
CONNECTORS
36 way Solder Type Plug 36 way Solder Socke) 36 way Solder Socket
(centronix type) 36 way IDC Plug 24 way Solder Plug
(IEEE type)
24 way Solder Socket 24 way IDC Plug

EURO		
CONNECTORS (Indirect Edge Conn.)		
DIN STO	Plug.	
4161721 way	170p	170p
4161731 way	180p	180p
416122×32 way	250p	320 p
Angled 2×32 way	325p	375p
416123×32 way	275p	3800 p
Angled 3×32 way	-	400p
2×32 way IDC a +c	-	528 p
(for 2×32 way	cify	or

550p
550p
500p
500 p 500p
$485 p$

EDGE

CONNECTORS

	$0.1 "$	$0.156^{\prime \prime}$
2×18 way	-	$140 p$
2×22 way	$200 p$	$170 p$
2×23 way	$210 p$	-
2×25 way	$225 p$	$220 p$
1×43 way	260 p	-
2×43 way	$395 p$	-
2×50 way	-	-
1×77 way	$700 p$	-
S100 Conn.	-	$600 p$

MICRODOCTOR

This is not a logic analyser or an oscilloscope. It tests a microsystem and gives a printed reprint on RAM, ROM and $1 / 0$ - it will print memory map, search for code, check dataline shorts and operates peripherals. Microdoctor complete with psu, printer probe cable and two configuration board.

NEW COMPREHENSIVE CATALOGUE AVAILABLE PLEASE SEND FOR PRICE LIST

SOFTY II INTELLIGENT PROGRAMMER
The complete microprocessor development system for Engineers and Hobbyists. You can develop programs, debug, verify and commit to ERROS op use in host computer by using softy as a romulator. Powerinserted and memory contents can beocks of bytes changed, Accepts most +5 v Eproms
Softy II complete with PSU, TV Lead and Romulator lead £169

SPECIAL OFFER

2114 L	$80 p$
$2716(+5 v)$	$250 p$
2532	$350 p$
$4116-2$	$80 p$
$4164-2$	$450 p$
6116 p	$350 p$

UV ERASERS

UV1B up to 6 Eproms $£ 47.50$ UV1T with Timer f60 UV140 up to 14 Eproms
UV141 with Timer $£ 78$ (Carr £2/eraser) Alf erasers are fitted with terlocks.

TRAINER KITS

6502 Junior Computer......... $\mathbf{f 8 5}$ 6802 Nancomp 1 6809 Nancomp It 1802 Micro Trainer. 802 Micro Trainer \quad EBO 280 Menta.................................115 (fulty built and documented) Full details on reques

BOOKS

CMOS Cook Bo

 CRT Cook Book....... Programming the 780 $£ 5.95$ Z80 Microng the Z80 $£ 11.50$ Z80 Microcomp Handbook $£ 6.95$ Programming the 6502 £10.25 6502 Applications 6502 Software Design 6502 Games Design $£ 9.05$ Large selection of databooks, interfac ing books, books on BBC, stc in stock. Ask for our list.WW-12

QUALITY, PERFORMANCE, VALUE ...the extra is DURABIIITI

HM103... £158

Single trace $2 \mathrm{mV} / \mathrm{cm}$ 10 MHz , Component Tester.

HM203-4... £240
Dual trace $2 \mathrm{mV} / \mathrm{cm}$ 20 MHz , Alg Add, Invert $X-Y$, Component Tester.

HM204... £365
Dual trace $2 \mathrm{mV} / \mathrm{cm}$ 20 MHz , Alg Add, Invert Delay T/B, Var hold-off Peak Auto Trig to 50 MHz , $X-Y$, Single Shot, Z Mod, Component Tester.

HM705... £580
Dual trace $2 \mathrm{mV} / \mathrm{cm}$ 70 MHz , Alg Add, Invert, Signal Delay, Delay T/B, Single Shot, Var hold-off, 14KV P.D.A. C.R.T.

For free data sheets of the full range contact:

France
HAMEG S.A.R.L.
5-9 Avenue de la Republique
94800 Villejuif,
Tel:678.09.98/' Telex:270705
Spain
HAMEG IBERICA S.A. Villaroel 172-174, Barcelona-36
Tel:230.15.97
Prices U.K. list ex. VAT

United States

HAMEG, INC.
88-90 Harbor Rd
Port Washington, N. Y. 11050
Phone: 516.883.3837/516.883.6428

England
HAMEG LTD.
Luton, LU1 1RX
Tel:(0582) 413174/Telex: 825484

West Germany

HAMEG Gmbh
6 Frankfurt am Main 71 .
Kelsterbacher Str 15-19
Tel: 0611/676017 Telex:0413866

WW - 061 FOR FURTHER DETALLS

WW-036 FOR FURTHER DETALS

P.\&R. COMPUTER SHOP

IBEM GOLFBALL PRINTERS from E70 EACH + V.A.T.
*BRAND-NEW LA36 DEC WRITERS-SALE £200 EACH
*BRAND-NEW LA180 DEC WRITER-SALE $£ 300$ EACH
CENTRONIC 779 PRINTERS-E325 + V.A.T.
CENTRONIC 781 PRINTER- $£ 350+$ V.A.T.
POWER UNITS; 5-VOLT 6-AMP-£20 EACH
FANS, PCBS, KÉYBOARDS AND LOTS MORE
COME AND LOOK AROUND
SALCOTT MILL, GOLDHANGER ROAD:
HEYBRIDGE, MALDON, ESSEX PHONE MALDON (0621) 57440

WW - 028 FOR FURTYER DETAILS
LASTCHANCE AT THIS PRICE

100R	1k	10k	100t
110R	1 k 1	11k	110k
120R	1k2	12k	120k
130R	1 k 3	13k	130k
150R	1 k 5	15k	150k
160R	1k6	16k	160k
180 H	148	18k	180k
200R	2k	20k	200k
220R	2102	22k	220k
240R	214	24k	240 k
270R	2k7	27k	270k
300 R	3k	30k	-
330 R	3\%3	33k	330k
360月	3k6	36k	-
390月	349	394	
430 ${ }^{\text {a }}$	4×3	43k	-
470H	4 47	47k	470*
5108	5*1	51k	-
560 R	546	56ik	560k
G20R	6 k 2	62k	,
680R	6*8	68 k	680k
750R	7x5	75k	-
8204	8k2	82k	820k
910 R	9*1	91k	1 M

ONLY 3p EACH
High Quallty High Stability, Huge Strength.
Minimum order E20 Minimum 5 pcs per value 89 Values (E24) VAT, $p \& p$ inclusive.

Marconi Type R1020 Hinged Antenna Column.

Easy to raise Easy to lower

* Immensely strong, corrosion resistant MATHWEB* g.r.p. column in a rugged steel tabernacle
* Lightweight, easy to install, and can be safely lowered by one man
* Can support à number of VHF/UHF antennas
* Column supplied in range of colours including ICAO orange/white, and requires no painting or maintenance
* Available in heights from 11 to

OTHER MARCONI SUPPORT STRUCTURES

Include the MATHWEB* Lattice Antenna Mast Type R1010, and the Triangular Section Tubular Steel Self Supporting Tower Type R1060.

For more information talk to Chris Pettitt, Marketing Manager, Antenna Systems Division.

* MATHWEB is a registered trademark of the BP Group

Marconi

Communication Systems

[^8]
$T 0$ YOU T'S JUSTA POWER VALVE

But to us it is probably the key component within a Radio Communication, Radar, Broadcast, Electronic Warfare, or Industrial Heating System.

By utilising our advanced testing and strict quality control facilities we can supply MOD and NATO approved items to DEF Standard 05-29 and 05-31

As a major MOD Contractor holding £0.5 million of stock we can supply almost any power valve

For the difficult to locate devices, we have an 'Out of Production' sourcing service linked to an in-house NATO. CV and Commercial Part Number microfiche system.
Contact us with your power problems

DISC DRIVE DISCOUNIS
51/4" S/S D/D only £99.95 FD200 formatted 175K Byte 8" S/S D/D Only $£ 149$ FD514 formatted 600K Byte 8" D/S D/D Only $£ 199$ FD650 formatted 1.2 Megabyte. Manufactured by Pertec Corporation. Factory fresh - 90-day warranty. Shugart compatible.

TEAC DISC DRIVES

TEAC 55E Mini S/S 80-track formatted single density 200 K , double density 400 K Only $£ 179$ TEAC 55F Mini D/S 80-track formatted single density 400 K , double density 800 K Only $£ 229$
\star Ideal for use with BBC Micro
\star Full warranty

* Low power consumption
* Slimline - latest technology

To order: Add carriage at the following rates: Monitor £10, other goods $£ 7$ and 15% VAT to total, and send your order to:

+ 22 TNGF RPB BOLOUR MONTIOR ONLY E99.95

We have available a limited quantity of VMC 22 Colour Monitors with free isolating transformers. The Monitor has a $22^{\prime \prime}$ Mullard $110^{\circ} \mathrm{C}$ CRT and for shipping purposes the CRT and scan coil assembly are separate from the chassis. The lugs of the CRT allow it to be mounted in a standard $22^{\prime \prime}$ colour TV cabinet or a unit of your own design. The unit is assembled by plugging the wires from the chassis to the tube and soldering the power connector, input connector and isolating transformers.
A comprehensive instruction sheet and circuit diagrams are included.

NEN N COMPUIER FURNIURE For home use - houses your micro/monitor/cassette player/drives; etc. Send for details. Computer furniture - for the office. 10 Models available. ENOUIRIES INVITED

LOOK
 A DAISY WHEEL PRINTER ONI Y engs

TEC Starwriter FP - 1500-25. 25 CPS, Friction Feed Serial Interface. OPUS SUPPLIES, 10 BECKENHAM GROVE, SHORTLANDS, KENT Tel: 01-464 5040 or 01-464 1598

WW - 066 FOR FURTHER DETAILS

TEST EQUIPMENT

Telequipment D83 50MHz Dual Trace .
... £550
Telequipment D61A 10MHz Dual Trace.. $\mathbf{£ 1 5 5}$
Telequipment S54A 10 MHz Single Trace.
Tek. 549 50MHz Storage Mainframe
Tek. 56410 MHz Storage, complete.
Tek. CA Plug-in
Tek. M Plug-in 4 -Channel 20 MHz
Tek, 45350 MHz (superb condition).
Tek. 611 Storage Monitor
Tek. 611 Storage Monitor
Tek. 7B53A Timebase Unit....
Tek. 565, complete
\qquad
Tek, 1A1, 1A2, 1 A6 Plug-ins.. \qquad
Tok. 7603 Mainframe 100 MHz . \qquad
 Racal Dana 9415 9-digit 100 MHz Counter \qquad
(IEEE interfaced)-immaculate Quantity available with Manuals
G.R. 20 cm Adjustable Airlines..
\qquad
$6 \mathrm{ft} . \times 4 \mathrm{ft}$. Light Table
Philips Gas Chromatography System
Computerised Digitiser System.
Tally Printer.
Teletypes.....
R. \& S. SMAF Generator AM/FM

Scopex 4D10 10MHz Scopes ..
Radiometer SG1 Stereo Generator
Telequipment D6725MHz Scopes .
Brookdeal Ortholoc Vector Voltmeter and Lock-in Amplifier with plug-ins

Carriage additional : All prices exc. V.A.T.

TIMEBASE

94 ALFRISTON GARDENS
 SHOLING, SOUTHAMPTON, SO2 BFU

TEL: 431323 (0703)

Acceas, Barclaycard : Telephone your order

				Minimum Order E 1		VALVES VAT IS INCLUDED			
A1065	1.40	EM80 0.85	U25	1.15	6A05W	50	12AV6	5	$61468 \quad 5.20$
A2293	8.80	EM87 $\quad 1.30$	426	1.15	6AS6	1.15	$12 \times 1{ }^{1}$	0.85	$6360 \quad 2.85$
A2900	13.75	EY51 0．95	U27	1.15	6AT6	0.90	128A6	0.90	$6550 \quad 7.20$
AR8	0.75	EY81 0．65	U191	0.65	GAU6	0.60	12BE6	1.25	$6870 \quad 14.00$
ARP3	0.70	EY86／87 0.60	U281	0.70	6AV6	0.85	128 H 7	1.95	$6973 \quad 4.40$
ATP4	0.60	EY88 0.85	U301	0.65	BAX4GT	1.30	128Y7A	2.30	$7360 \quad 10.80$
812 H	3.90	EZ80 0.70	U600	11.50	6AX5GT	1.30	12 CB	0.65	8552 820
CY31	1.40	E281 0．70	U801	0.90	6Ba6	0.55	12E1	18.95	$38 \mathrm{P} 1 \quad 11.00$
DAF96	0.70	GM4 $\quad 5.90$	UBC41	1.20	6BE6	0.60	12J5GT	0.55	5FP7 18.00
DET22	28.50	GY501 $\quad 1.30$	UABCBo	0.75	6BG6G	1.60	12K7GT	0.70	4EP $1 \quad 32.00$
DF96	0.70	GZ32 1.05	UAF42	120	6BJ6	1.30	12 KBGF	0.80	88． 14.00
DH76	0.75	G233 420	U8F80	0.70	6807a	0.05	120767	0.80	$88 \mathrm{~L} \quad 14.00$
OL92	0.60	GZ34 2.75	U8F89	0.70	68R7	4.80	$12 \mathrm{SC7}$	0.65	CV1526 18.00
DY86／87	0.65	G237 3．95	UCC84	0.85	68w6	6.20	${ }^{12 S H 7}$	0.65	DG7－32 34．80
DY802	0.70	KT66 6.30	UCC85	0.70	6BW7	1.80	12517	0.70	DG7－36 36.00
E55L	14.90	9．20＊	UCF60	1.30	6C4	0.50	12507	1.45	DPM9－11 36．40
E88CC	1.00	KT88 $\quad 8.95$	UCH42	1.65	6C6	0.55	12Sa7ar	0.85	D13－33GM
E88CC／01	3.10	13.20°	UCH81	0.75	6 CH 6	8.20	12 Y 4	0.70	41.80
E92CC	2.80	MH4 2.50	UCLE2	0.96	6 CLE	2.75	13D3	0.70	－ spec 人
E180CC	4.20	ML6 $\quad 2.50$	UF41	1.35	6CW4	8.50	1305	0.90	
E180F	7.70	M $\times 10 / 0121.50$	UFBO	0.95	${ }_{8 C \times 8}$	3.80	1306	0.80	PLumbicon
E182CC	8.25	N78 $\quad 9.90$	UF85	0.95	${ }_{6} \mathrm{CY}^{5}$	1.18	1457	1.18	P800 3LF
EA76	2.25	OA2 0.70	UL84	0.95	606	0.70	19A05	0． 8	P800 IR
EABC80	0.80	OB2 0.80	UM88	0.90	6 6F	1.60	1963	11.50	P80018
E891	0.60	PABC80 0.60	UM84	0.70	6F6G	1.10	$19 \mathrm{G6}$	8.50	Xa1020R
E8C33	1.15	PC85 0.75	UY82	0.70	6F7	280	19H5	39.55	X010208
EBC90	0.90	PC86 0.05	UY85	0.85	6F8G	0.85	20D1	0.80	
E8F80	0.60	PC88 0.90	VR105／30	0 125	6F12	1.50	20F2	0.85	SPECIAL V
E8F83	0.60	PC97 1.25	VR150／30	01.35	6F14	1.15	20E1	1.30	$4 C \times 1000 \mathrm{~A}$
E8F89	0.00	PC900 0.90	$\times 66$	0.95	6F15	1.30	20P1	0.85	$4 \mathrm{CX} \times 000 \mathrm{~A}$
EC52	0.65	PCC84 0.50	$\times 61 \mathrm{M}$	1.70	$6 F 17$	3.20	20 P 3	0.75	BM 251
EC91	4.40	PCC89 0.85	XR1－6400		6F23	0.75	20 P 4	1.25	BW 153
EC92	0.85	PCC189 0．\％		125.00	6F24	1.75	20P5	135	DM 2518
ECC81	0.65	PCFBO 0.80	2759	19.00	6 F 33	10.50	25L6GT	00^{5}	YL 1420
ECC82	0.60	PCFB2 $\quad 0.70$	2749	0.75	6FHB	12.50	2524 G	0.75	YL1430
ECC83	0.05	PCFB4 0.75	2800 U	3.45	6GA8	1.95	30 C 15	0.50	YL 1440
ECC84	0.60	PCF86 $\quad 1.50$	2801U	3.75	6GH8A	1.96	$30 \mathrm{C}{ }^{7} 7$	0.50	GXU6
ECC85	0.80	PCF87 0.50	2803 U	16.00	6H6	1.60	30 Cl 18	2.45	CV1597
ECC88	0.80	PCF200 1．45	2900T	2.45	6JU6	5.85	30F5	1.15	CV2116
ECC189	0．5\％	PCF201 1.65	143	0.85	6.14	135	30 FL 2	1.40	BR 189
ECC804	0.50	PCF800 0.50	144	0.50	$6 \mathrm{~J} / \mathrm{W}$	2.00	30 FL 12	1.25	8R 179
ECF80	0.6	PCF801 1.75	1R5	0.60	6 J	2.30	30FL14	2.15	CV6131
ECF82	0.85	PCFFBO2 0.70	154	0.46	＇GJ5G	390	30L15	1.10	GMU 2
ECF801	1.05	PCF8G6 1.20	1S5	0.46	6.16	0.65	30117	1.10	TY4－500
ECH34	225	PCF898 1.45	17a	0.45	6．JW	0.90	30P12	8.15	BK 485／5552A
ECH35	1.70	PCH200 1.35	144	0.80	6JE6C	3.70	30PL13	1.25	MIL 5948／1754
	2.10 ＊	PCLB1 0．75	1×28	1.40	6IS6C	370	30PL14	2.45	
ECH42	1.20	PCL82 0.95	2 D 21	1．10＇	6K7	0.80	35L6G7	1.40	1
ECH81	0.70	PCL84 0.90		1.56	8KD6	4.50	35W4	0.80	SN5402N 0．28
ECH84	0.60	PCL86 $\quad 0.75$	2K25	16.95	6L6M	2.80	35Z4GT	0.00	SN5410F 0.32
ECL80	0.70	PCL805／850．95		$24.50{ }^{\circ}$	6L6G	2.50	50C5	1.15	SN5470F 0．48
ECL82	0.75	PD500／5104．30	2×2	1.15	6L6GC	2.85	50CD6G	135	SN54196． 1.2 C
ECL83	1.40	PFL200 1.10	3 A 4	0.70	6L6GT	125	7581	125	SN7407N 0．29
ECL85	0.80	2．800	3 AT 2	2.40	${ }_{6} 67 \mathrm{G}$	0.6	75C1	1.70	SN7408N 0.18
ECLB6	0.90	PL36 $\quad 1.10$	3828	12.00.	6 L18	0.70	76	0.95	SN7445P 0．86
EF37A	2.15	PL81 0．86		$19.50{ }^{\circ}$	6La6	2.95	78	0.95	SN74453P 1.10
EF39	1.25	PL82 0.70	306	0.50	6LD20	0.70	80	1.70	SN7453N 0．18
EF80	0.6	PL83 0.80	3022	23.00	6KG6A	2.70	85A2	1.40	SN74L73N $0.3{ }^{\text {a }}$
EF83	1.75	PL84 0．96	3 E 29	19.00	607G	130		2.580	SN7474N 0.30
EF85	0.60	PL504 1.00	354	0.60	6SA7	1.00	607	1.25	SN7485N 0.95
EF86	0.75	PL508 2.40	4832	18.25	6SG7	1.18		1．90＊	SN74L85N 1.10
EF89	1.05	PL509 $\quad 4.40$	5B／254M	18.90	6SJ7	1.05	813	19.32	SN7491AN 0.32
EF91	1.50	586	58／255M	14.50	6SK7	0.95		$63.50{ }^{\circ}$	SN74123N 0.42
EF92	2.90	PL519 4．90	58／258M	12.80	6SL7GT	0.6	8298	14.00	DM74123N 0．33
EF95	0.85	$6.10 *$	5C22	29.90	6SN7GT	0.60	8324	8.80	SN15836N 0.20
EF96	0.60	PV33 0.70	5R4GY	1.80	6SA7	1.10	866A	3.80	CX4 0.95
EF183	0.80	PY80 0.70	5U4G	0.15	6507	0.95	866E	8.25	SN76013N 1.80
EF184	0.80	PY81／800 0.85	5 V 4 G	0.75	6V6G	1.50	931A	13.00	SN76003N 1.60
EF812	0.75	PY82 0.66	5Y3GT	0.85	6V6GT	0.95	954	0.60	SN76033N 1．35
EFL200	1.55	PY83 0.80	523	1.50	6×4	$0 . \%$	955	9.20	MC6800P E．${ }^{0}$
EH90	0.6	PY88 0.60	524G	0.75	6X4WA	2.10	956	0.60	MC68B00P
－El32	1.10	PY500A 2，10	524GT	1.05	6X5GT	0.68	${ }^{957}$	1.05	8.40
EL34	1.00	PY809 6.46	6／3012	0.90	6 68G	$0 \% 0$	1825	1.80	MC145118A
	$2.90{ }^{\circ}$	PY801 0.80	6 6AB 7	0.70	624	0.70	1629	1．80	2.20
EL81	2.45	QQV03／10 3．20－	6AC7	1.15	787	1.75	2051	2.90	日1702AL $\quad 3.30$
EL82	0.70	$7.50{ }^{\circ}$	6AG5	0.80	88NB	2.95	5763	4.80	MM6300－1J
EL84	0.00	Qovo3－20A	GAM6	1.15	$9 \mathrm{SO}^{\text {a }}$	0.70	5842	7.50	3． 3.80
EL86	0.95	21．30	6AK5	0.65	906	20	5881	3．00	MCM6810AP
EL90	1.00	Qavo3－25A	6AK8	0.60	$10{ }^{102}$	0.4	5933	8.90	3.40
EL91	4.20	36.90	6 Al 5	0.60	10 F 18	0.70	6057	2.20	$6340-13 \mathrm{~J} 3.60$
EL95	0.80	Qovo6／40A	GALEW	0.85	$10 \mathrm{P}^{13}$	1.50	${ }^{6060}$	1．88	M1C945－50 0.28
EL504	1.70	18.10	GAM5	4.20	11E2	19.50	${ }^{6064}$	2.30	M1C936－5D 0.2
EL803	5.90	QV03．12 4.20	6AM6	1.60	12A6	0.70	6065	3.20	
EL509	3.55	SP61 1．20	6ANBA	2.50	12 at6	0.70	6067	2.30	
EL821	8.20	12123.00	6404	1.40	$12 \mathrm{AT7}$	0.65	6080	5.30	㑑
EL222	9.58	172218.50	6405	1.00	12AU7	0.60	6146	4．5	AVAlLABLE

VALVES AND TRANSISTORS
Tolephone enquiries for valves，transisiors，ett： ＂D10＇CABLE FELD TELEPHONES Geiger Muller Tubes GM4，MX $12 / 01$ and other
Bera－Gama Probe wish B12H（L314）．

TEST SET FT2 FOR TESTING Transceivers AMO MA，AA？and CPRC26：CONTROL UNTS＂A＂＂R＂ HARNESS＂A＂＂B＂CONTROL UNTTS＂A＂＂R frames，carrier sets，otc．
DRUM CABLE continuous connection YC 00433.

IELD TELEPHONES TYPE＂J＂． ropical，in metal cases． O－line MAGNETO SWITCH－ BOARD．Can work with every type of magneto telephones． PRICES MAY YARY POSTAGE：$£ 1-£ 345 p ; £ 3-£ 5550$ ； £5－£10 60p；£10－£15 80p；£15－ f20 100p．

Signal Generators MARCONI TF I 44 H／4S：TF144H／6S $10 \mathrm{kHz}-72 \mathrm{MHz}$ ．Recolvery AR－B8D and Sparen rices on application

COLOMOR （ELECTRONICS LTD．） 170 Goldhawk Rd．，London W． 12	Tel．01－743 0899 or 01－7493934 Open Monday to Friday 9 a．m．－5．30 p．m．

WW－054 FOR FURTHER DETAILS

RC OSCILLATORS from $£ 88$

LEVELL ELECTRONICS have a range of OSCILLATORS Covering frequencies from 0.02 Hz to 2 MHz .

There is a DECADE OSCILLATOR with digital frequency tuning and a FUNCTION GENERATOR providing sine, square, triangle, pulse, sawtooth, ramp and asymmetrical sine waves.

Various RC OSCILLATORS are available as detailed below.

TG200 SERIES

FREQUENCY
ACCURACY
SINE OUTPUT DISTORTION

SQUARE OUTPUT
SYNC OUTPUT SYNC INPUT METER SCALES

1 Hz to 1 MHz in 12 ranges. 0 to 1% fine control on TG200DMP. $\pm 1.5 \% \pm 0.01 \mathrm{~Hz}$ up to 100 kHz . $\pm 2 \%$ up to 1 MHz .
$7 V$ r.m.s. down to $<200 u \mathrm{~V}$ with $\mathrm{Rs}=600 \Omega$.
$<0.05 \%$ from 50 Hz to 15 kHz .
$<0.1 \%$ from 10 Hz to 50 kHz .
$<0.2 \%$ from 5 Hz to 150 kHz .
$<1 \%$ at 1 Hz and 1 MHz .
TG200D, DM \& DMP only, 7 V peak down to $<200 \mu \mathrm{~V}$. Rise time <150ns.
$>1 \mathrm{~V}$ r.m.s. sine in phase with output.
$\pm 1 \%$ freq. lock range per volt r.m.s.
TG200, DM \& DMP only, 0/2V, 0/7V \& $-14 /+6 \mathrm{dBm}$

TG152 SERIES
FREQUENCY
ACCURACY
SINE OUTPUT
DISTORTION
SQUARE OUTPUT
SYNC. OUTPUT
METER SCALES

3 Hz to 300 kHz in 5 decade ranges
$\pm 2 \% \pm 0.1 \mathrm{~Hz}$ to 100 kHz , increasing to $\pm 3 \%$ at 300 kHz . 2.5 V r.m.s. down to $<200 \mu \mathrm{~V}$.
$<0.2 \%$ from 50 Hz to 50 kHz . $<1 \%$ from 10 Hz to 200 kHz .
2.5 V peak down to $<200 \mu \mathrm{~V}$.
2.5V r.m.s. sine
$0 / 2.5 \mathrm{~V} \&-10 /+10 \mathrm{~dB}$ on TG 152 DM .

LEVELL ELECTRONICS LTD.

Moxon Street, Barnet, Herts. Tel. 01-449 5028/440 8686

WW - 015 FOR FURTHER DETAILS

WORLD TAPE SOCIETY 474 Millstone Road Brewster, MA, U.S.A. 02631
 "The Friendly Tape Club"

\star Friendly Correspondence With Interesting People All Over The World via Audio Or Video Cassette

* Members Swap Their Tape Collections With Each Other
\star Free Comedy Cassette Program By Celebrities Explains How You Can Become A Ham Tape Operator
\star Club Directory Puts You In Contact With All Members

WTS offers many ways to fulfil your wishes. You too are invited to join our worldwide friendship circle. Please write for more information and application.

pantechnic

THE POWERFET SPECIALISTS

POWERFET AMPLIFIER MODULES

MODEL	POWER RANGE (Continuous RMS)	TYPICAL LOADS	PaICES (one off)
PFA 100	50W-150W	4, 8 ,	[17.35
PFA 200	100W-300W	4, 8 ,	423.87
PFA 500	250 W -600W	$2 \Omega, 4 \Omega, 8 \Omega$	142.00
PFA HV	200W-300W	$4 \Omega, 8 \Omega, 16 \Omega$	93.30
Key features: RELIABLE - Powerfet freadom from thermal runaway and			
	- Powerfet freadom from thermal runaway and secondary breakdown		
- L	- TID zero, IM/THD < 0.01\% full power (mid-band THD		
- F			
-	- Slew rate $>30 \mathrm{~V} / \mu \mathrm{S}(45 \mathrm{~V} / \mu \mathrm{S}$ typical)		
B	LE - Without extra circuitry		
	- Unconditionally		
- L	- 10 watts to 20 watts per £, depending on model and		

As they stand these modules suit most P.A. and industrial applications and satisfy all foreseeable audiophile requirements. (The HV is aimed at digital audio.) Where aspects of performance fail to meet specific requirements le.g. in speed or power) low-cost customising is often a possibility. Alternatively entirely new boards can be produced.

ALSO-

PAN 20-Ulitra-low-noise/distortion, mono preamp board, 66.76
PAX 2/24-2-way active crossover board (24dB/octave) plus regulators, $£ 9.70$ THE HEAT EXCHANGER-New, super-efficient heatsink; handles 300 W or 1.2 kW when blown; 7 in . $\times 4 \mathrm{in} . \times 21 / 4 \mathrm{in}$, $\mathbf{E 7 . 5 0}$
This is just a fraction of the new products avallable from Pantechnic -check us out!
Prices exclude V.A.T.
Carriage 75p

Price and Dalivary	Technical Enquiries
PNJIECHVIG (Dot MMZ)	contact
17a WOOLTON STREE	Phil Rimmar
LIVERPOOL L25 5NH	on
Tol: $051-428$ gas	01-800 ces

Designed and Built in Britain

COPEX Oumfity Manufacturers of the Famous VOYAGER The Worlds FIRST Tubeless Oscilloscopes

14 D 15
 15 Mhz DUAL TRACE 5 mV SENSITIVITY Most Versatile Soope

E+VAT
250

14 D10V 10 Mhz DUAL TRACE 2 mV

 SENSITIVITY with a Line Selector for TV Video 260 6 Mhz SINGLE TRACE 10 mV SENSITIVITY Very Easy to Use 148Prices Include. Probes - Mains Plug Packing - Carriage (Uk Mainland) SCOPEX Instruments Ltd. PIXMORE HOUSE, PIXMORE AVE.
Letchworth,Herts, SG6 1HZ
PHONE

Oscilloscopes

PIXMORE HOUSE,
PIXMORE AVE.
etchworth,Herts, SG6 1HZ

WW - 014 FOR FURTHER DETALLS

Continuity and resistance 0-1 meg ohms In two ranges. Complete with rest prods
and instruction book showing how to measure capacity and inductance as well. Unbelievable value at only $£ 6.75+60$ p post and insurance.

FREE Amos range kit 10 enable you to read DC current from 0 10 amps, directily on the 0.10
scale. It's tree if you purchase cale. It's tree if you purchase Mini-Tester and would like one, Mini- m ester and
send $£ .50$.

VENNER TIME SWITCH Mains operated with 20 amp switch, one gutomatically correcting for the lengithen ing or shortening dav. An expenslve time
switch but you can have it for only $P 2.95$. Whitch but You can have it for only E2.95.
These are without case fut we can supoly alastic base $\mathbf{£ 1 . 7 5}$ or metal case $\mathbb{£ 2 . 9 5}$. Also svailable is adaptor kit to convert this into a normal 24 hr . time switch but with the added advantage of up to 12 onjotss per 24 his. This makes an Price of adaptor kit is $\mathbf{£ 2 . 3 0}$.

THERMOSTAT ASSORTMENT
10 different thermostats. 7 bi-metal types and 3 liguid types. There are the current stats which will open the switch to protec, in front of the element of a Dow heater, the heat would trip the stat if the blower fuses; appliance stats, one for high temperatures, others adjustable over a range of temperatures which could include $0-100^{\circ} \mathrm{C}$. There is also a thermostatic pod which lce stat which, fitited to out waterproof heater element, up in the loft could protect your pipes from freezing. Separately, these thermastats could cost around $£ 15.00-$ however, you can have the parcel for $£ 2.50$.

50 THINGS YOU CAN MAKE or do and still have hundreds of par ts for future iobs. LEARN the practical way with our 10 kllo parcel of us Tul parts. Minimum 1,000 items incluces panel maters,
timers, thermal trips, felays, swiches, motors, drills, tap and dies, tools, thermostats, colls, condensers, resistors, etc. etc. Parcel with date on 50 projects.
YOURS FOR ONLY $£ 11.50$ plus $£ 3.00$ post.

3 CHANNEL SOUND TO LIGHT KIT

a820

Complete kit of parts for a three channel sound to light unit controlling over 2000 watts of lighting. Use this at home if you wish but it is plenty rugged enough for disco work. The unit is housed in an altractive two tone metar case and has controls for each channel, and a master onfoff. The audio input and output
are by $\%$ " sockets and three panel mounting fuse holders provide thyristor protectlon. A four.pin plug and socket facilitate ease of connecting lamps. Special price is $£ 14.95$ in kit form or $£ 25.00$ assembled and tested.
MULTI-CHANNEL or ROBOT CONTROLLER This is two kits. The 8 channel transmitter kit and the 8 but no circult boards, the component layout being left to you The gata shiths how io div. Teverse and steer two or more motors. With spare channels to perform other functions. Price
$\mathbf{E}^{9.50}$ for both kits
'BIG EAR'
As in Dectember Hobby Electronics. Designad originally for listening 10 wilditie this could also be used to listen through walls or from long distances. Complete kit including the cas

TANGENTIAL BLOW HEATER
2.5 Kw quiet,
efficient $\operatorname{lngtant}$
heating from
$230 / 240$ volt
mains. Kir consls :s
of blower as
 illustrated, 2.5 Km CAR STARTER AND CHARGER KIT R KIT In an emergency you can start car oft mains or bring your
battery up to full charge in a couple of hours. The kit com prises: 250 walt mains transformer, 40 amp bridge rectifier, start/charge switch and full instructions. You can assemble this in the evening, box it up or leave it on the shelf in the garage,

J. BULL (Electrical) Ltd.

(Dept. WW), 3436 AMERICA LANE, Ertabliphed HAYWARDS HEATH, SUSSEX RH16 3OU. 30 YEARS MAIL ORDEA TERMS: Cash, P.O. or cheque with order. Orders under f 10 add 60 p service charge. Monthly account orders accep red trom schools and public companles. Access \& B/card orders accepred day or night. Hay wards Heath 10444) 454563 . Bulk orders: write for quote. Delivery by return. Shop open $9.00-5.30$, mon to Fri, not Saturday.

COMPUTER PRINTER, ONLY £4.95

YOUR LAST CHANCE
Japanese made Epson 310 - has a self starting brushless drive motor ONLY $£ 4.95$ plus $£ 1.25$ Post.

8 POWERFUL BATTERY MOTORS (all different) For models, maccanos, drills,
remote control planes, remote control planes, boats,
etc. $£ 2.95$.

12v MOTOR BY SMITHS Made for use in cars, these are serles wound and tey become mare $31 /{ }^{\prime \prime}$ long by 3 " dia. These have a good length of $y^{\prime \prime}$ spindte price $E 3.45$.
Ditto, but double ended $£ 4.25$. Ditto, but permanent magnet, E3.75.
EXTRA POWERFUL $12 v$ MOTOR
Made to work battery lawnmower, this probably develops up to Made to work battery lawnmower, this probably develops
$1 / \mathrm{h}$. p., so it could be used to power a go-kart or to drive a compressor, etc. etc. $£ 6.90+£ 1.50$ posi. This is easily reversible with our reversing switch. Price £1.15 GO KART MOTOR
24 Volt operated easily v
Price $£ 9.50+£ 1.50$ pust.

How do you analyze aglitch on a meter?

The Model 3000 gives you a DC-coupled CRT that displays modulation and carrier shift. Helping you to isolate the problems that meter-only monitors can't.
But a high-quality CRT isn't the only big difference about the Model 3000 , because Wavetek SSI gives you the features of monitors costing much more with functions not available anywhere else.
There's a four-digit counter that displays frequency error with 10 Hz resolution even if voice is on the channel.
'Sig Strength', a Wavetek SSI exclusive, lets you monitor and display both modulation and relative field strength simultaneously.
You also get electronic FM calibration markers, a built-in wattmeter and generator outputs with $\pm 1 \mathrm{~dB}$ accuracy at $0.3 \mu \mathrm{~V}$.
All this in a service monitor that weighs only 251 lb .
Ask for a Model 3000 brochure or a demonstration and discover the big difference.

WAVETEK

WAVETEK ELECTRONICS LTD
Tag Lane, Hare Hatch, Reading, Berks RG10 9LT
Tel: Wargrave (073522) 2124. Telex: 849301

WW - 083 FOR FURTHER DETAILS

Sowter Transformers

With 40 years' experience in the design and manufacture of several hundred thousand transformers we can supply:

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE

YOU NAME IT! WE MAKE IT! OUR RANGE INCLUDES

Microphone transformers (all types), Microphone Spllter/Combiner trensfor mers. Input and Output transformers, Direct Injection transformers for Guitars, Multi-Secondary output transformers, Bridging transformers, Line transformers, Line transformers to G.P.O. Isolating Test Speciflcation, Tapped impedance matching transformers, Gramophone Pickup transformers, Audio Mixing Desk transformers (all types), Miniature transformers, Microminiature transformers for PCB mounting, Experimental transformers, Ultra low frequency transformers, watts, Inductive Loop Transformers, Smoothing Chokes, Filter, Inductors, Ampliwatts, Inductive Loop Transformers, Smoothing Chokes, Filter, Inductors, Ampli transformers to speakers, Speaker matching transformers (all powers), Column transformers to speakers, Speaker matching transfor
We can design for RECORDING QUALITY, STUDIO OUALITY, HI-FI QUALITY OR PA. QUALITY. OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL OUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensiblo.
OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS have overseas clients in the COMMONWEALTH, E.E.C., USA, MIDDLE EAST, efc. Send for our questionnaire which, when completed, enables us to post quota tions by return.

E. A. Sowter Ltd.

E. A. 3OWTER LTD. (Establishod 1941) : Reg. No. England 303990 The Boat Yard, Cullingham Road, ipawich IP1 2EG, Suffolk Phone: 047352794 and 0473219390

Telex 987703G Sowter
tiam No.
5 ADVANCE RF SIGNAL GENERATOA tyDe SG628 150 KHZ -2OMHZ CW/MOd ..NERATOR TVDE SG628 - ADVANCE WIDE RANGE IF OSCILATOR type 3 SGG7A IIZ-MMHZ. $15 \mathrm{HZ}-50 \mathrm{KHZ} \operatorname{Sim} 0$ Square ADVANCE UF DSCILLATOR TYO HIE ISHZ-50KKZ Sine/Squar AD....................... 100 MHZ CW/Mod PYE SCALAMP ELECTROSTATIC VOLTMETER O 1 ERNST TUANEA $6^{\prime \prime}$ ELECTROSTATIC VOLIMETE
 22. ERNST TURNER $6^{\prime \prime}$ ELECTROSTATIC VOLTMETEF
 Model 320 - 0 KV. 1 M ERNST TURNEA $0^{\prime \prime}$ ELGCTROSTATIC VOLTMETEA 5 Model 320 -ZON. ADVANCE OIGITAL MULTIMETEA Hpo DMM2 IOL 9 TMK MULTIMEIER Model 700. 20Nohm per Vor
 8 AVO MULTIMETEA Model 72 Compact.......... 12

ROBAND TAANSISTORISED SUPPLY TYPE T10. O $300-30 \mathrm{~V}$ 1A OC. Meterad RACAL DIGITAL FAECUENCY MITEA IMP S........2. E1P 3 TEKTRONIX TIME MAAK GENERATDA Hype IBOA ESA AVO TRANSISTOR TESTE type TH169 with loeds As now (PaP f2) 300 . 1pf-2000mto. Auto ranging. 0.5% accurscy (PaP E4).. WAYNE KERA UNIVERSAL BRIDGE type B221..-IT 7 TAYOR VALVE TESTER Model 4502 tye B221......ET ROBANO TRANSISTORISED SUPPLY YPP TIOE O100 1A OC. Materad....
RANK F ITTER METEA
5 RANK FLUTTER METE Type 170 . HEATHIST CAPACITOR CHECXER MOdel IT- 28
 ENGSTER ELECTRIC ELECTRONIC INSULATION CAMBRIDGE PORTABLE POT nO 1-301058 (PGP E4) AHOOE \& SCHWARZ MICROVOLTMETER UVM BNIzOI1 0.1 millivol-10 Votss
A $~ S ~ U N B A L A N C E D ~ S T A N O A R D ~ A T T E N U A T O R ~$
 37 AUTO TRANSFORMER 1000 VA. BRANO NEW...... EIS WORKING ORDER
contect DWA YNE STEWART
Please check availability before ordering
Carrlage all units $£ 7$. VAT to be added to total of Goods \& Carriage. SAE for Ilats
STEWART OF READING 110 Wrkeham road, beading, beriks rgb ipl Te1: 073468041
Callers weicome 9 am- -5.30 pm Monday to Saturday inclusive
WW - 071 FOR FURTHER DETAILS

WW - 082 FOR FURTHER DETAILS

HAELILHE

 Quick, neat and easy!It's so easy and tidy with the Easibind binder to file your copies away. Each binder is designed to hold 12 issues and is attractively bound and blocked with the WIRELESS WORLD logo.
Price U.K. £4.30 including postage, packing and V.A.T.
Overseas orders add 25 p per binder
Nat. Gíro No. 5157552.
Please allow $3 / 4$ weeks for fulfilment of order.
Payment by.ACCESS/BARCLAYCARD/ VISA. Send coupon below detailing credit card no. and signature.
Why not place your order now? Send the completed coupon below with remittance payable to:

Easibind Ltd., 4 Uxbridge St.,

CHILTERN ELECTRONICS INCREDIBLE SCOOP PURCHASE OF SUPERB HIGH RESOLUTION

9" VIDEO MONITORS

Look at these features:

* 18 Mhz Bandwidth
* Over 85 Chars/line resolution
* P31 Green Screen
+ Composite Video i/p
* Mains 230v
* Antireflective Faceplate
\star. Attractively styled case
Why pay $£ 120$ or more?
BRAND NEW IN MAKER'S CARTONS AT THE AMAZING BARGAIN PRICE OF $£ 78$ vat extra, carriage $£ 5$

Quantity discounts/dealer enquiries welcome

THE IDEAL MATCH FOR YOUR MICRO

High Street, Chalfont St Giles, Bucks HP8 4OH

Telephone 02407 71234. Telex 262284

16 BRAND ST HITCHIN
HERTS
SG5 1JE

Tel: (0462) 33031
Shop open Mon. Sat. 9 a.m. 5.30 p.m
Cosod all dar Wodnesdar
P.eP. add 45 p to all orders under £10. Telephone your Access orders, using our $24-\mathrm{hr}$.

VAT - All prices excluatye of VAT - Please pdd 15% to total cost including P. \& P. No VAT on export orders or books.

MANUFACTURERS \& DISTRIBUTORS

BLOWERS MANUFACTURED BY SMITMS INDUSTRIES. Average output 150 C.F.M Complete, with G.E.C. 4 pole $220 / 240$ V.A.C. Cont. rated motor, Approx. Overall size
 VAT).

REED RELAY. Complete with coll. Operating voltage 12 V.D.C. at $20 \mathrm{~m} / \mathrm{a}$. Reed N/O Once energised the Reed will not open until the supply voltage drops below 5 volts Approx. £20 for $100+$ VAT, $£ 180$ for $1,000+$ VAT, $£ 800$ for 5,000
$10,000+$ VAT. Sample 10 sent for $£ 2,50+50$ p p.p. ($£ 3.45$ inc. VAT)

> MATSUSHTTA. High quality 6 volt D.C Cassette drive MOTOAS. Size 30 mm dia. \times 20 mm high. Drive shaft 7 mm long $\times 2 \mathrm{~mm}$ dia. approx. No load current $40 \mathrm{~m} / \mathrm{a}$. $£ 13.50$ for $50+$ VAT, $£ 24$ for $100+$ VAT, 108 for $500+$ VAT, $£ 190$ for $1,000+$ VAT, $£ 875$ for $5,000+$ VAT, $£ 1,600$ for $10,000+$ VAT. Sample 10 sent for $£ 3+£ 1$ p.p. ($£ 4.60$ inc. VAT).

MINIATTURE SPEAKERS. Ideal for intercoms atc. Size $67 \mathrm{~mm} \times 67 \mathrm{~mm} .350 \mathrm{hm}, 0.3 \mathrm{wath}$ putput. $£ 5$ for 10 + VAT, $£ 23$ for $50+$ VAT, $£ 42$ for $100+$ VAT, $£ 190$ for $500+$ VAT £ 350 for $1,000+$ VAT. Sample sent for $60 p+40 p$ p.p ($£ 1.15$ inc. VAT).

AUTONNIC PUSH BI'ITON TUNER. $4 \times \operatorname{med}$ wave $1 \times$ long wave plus manual control. Overall leng 114 cm , depth 5 cm , height 33 mm . Excellent unit for the manu facture of a competp ive car radio. $£ 15$ for $10+$ VAT, $£ 68$ for $50+$ VAT, £ 125 for $100+$
VAT, $£ 565$ for $500+$ VAT, $£ 1,020$ for $1,000+$ VAT, £2,300 for $2,500+$ VAT, Sample sen for $£ 2+£ 1$ p.p. ($£ 345$ inc. VAT)
150 WATT HINCHLEY TRANSFORMERS. $220 / 240 \mathrm{~V}$ A.C. Input. $\overline{30}-0-30 \mathrm{~V}$ output +14 V tap. Width 96 mm .< $80 \mathrm{~mm} \times 90 \mathrm{~mm}$ deep Inc. Winding. Weight approx. 2.7 kgs . $£ 75$ for $1,000+$ VAT. Sample s'ent for $£ 9+£ 2$ p.p. ($\mathbf{£ 1 2 , 6 5}$ inc. VAT).

6V.A. MINIATURE TRANSFÓRMER. Input 240V.A.C. Output 12-0-12V. Printed circult mounting with internal thermal overload protection. £25 for $10+$ VAT, $£ 115$ for 50 + $\mathrm{E} 3+75 \mathrm{p}$ p.P. (£4.31 Inc. VAT)
TANTALUM CAPACITORS. $6.8 \mu \mathrm{~F}$ at $16 \mathrm{~V} \pm 20 \%$. £45 for $1,000+$ VAT. (Many othe types in stock. All enquiries welcome).

SKELETON PRESETS. Horizontal or vertical mounting. Most types res. range in stock All one price $£ 35$ for $1,000+$ VAT.

Terms C.W.O. Please add 5\% to all orders for carriage plus 15% VAT. Export enquiries welcome. We find it impossible to advertise all we stock. Please telephone or write fo further details. Personal callers always walcome.
Electronic Equipent Co.
SPRINGFELD HOUSE TYSSEN ST, LONDON E TEL 01-2495217 TELEX 8953906 EECO.G

WW - 037 FOR FURTHER DETALS
in view of the extremely rapid change taking PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTI-
TIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD appreciate a telephone call or a list if availabile WE PAY TOP PRICES AND COLLECT.

BROADFIELDS \& MAYCO DISPOSALS

21 Lodge Lane, N. Finchley, London, N. 12.5 mins. from Tally Ho corner
Telephone 445 2713/0749
WW - 023 FOR FURTHER DETAILS

GHECHOTHA8
 A range of telescopic towers in static and mobile models from 7.5 to 36 metres with tilt-over facility enabling all maintenance to be at ground level.

Designed in accordance with CP3 Chapter V: part 2: 1972 for a minimum wind speed of 85 mph in conditions of maximum exposure and specified by professionals world-wide where hostile environments demand the ultimate in design. quality and reliability.

Suitable for mounting equipment in the fields of:
Communications
Security surveillance - CCTV
Meteorology
Environmental monitoring
Geographical survey
Defence range-finding
Marine \& aero navigation
Floodlighting
Airport approach lighting
Further details available on request.

Strumech Engineering Limited,
Portland House, Coppice Side,
Brownhills, Walsall, West Midlands
WS8 7EX, England.
Telephone: Brownhills (05433) 4321
Telex: 335243 SEL G.

TORODALS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P. PRICE
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS toge ther with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

TPP	$\begin{gathered} \text { SEMIES } \\ \text { mo. } \end{gathered}$		nus	Palce
		$\begin{gathered} 6+6 \\ 9+9 \\ 12+12 \\ 1+15 \\ 1+15 \\ 18+18 \\ 22+22 \\ 2+25 \\ 30+30 \end{gathered}$		£5.12 - varion se rovicto
				$£ 5.70$ -watros rotac is os
				£6. 08 - vortion rotal 89
$\begin{aligned} & 120 \mathrm{va} \\ & 90 \times 4 \mathrm{Am} \\ & 1.2 \mathrm{Kg} \\ & \text { Rogulation } \end{aligned}$			10.00 6.06 5.66 5.00 4.00 2.33 2.72 2.40 2.00 21.71 1.79 1.09 0.54 0.50	£6.90 -rpartion
				£7.91 -Warty. 14 rotul 51102

$\star 294$ TYPES TOCHOOSE FROM!
\star ORDERS DESPATCEED WITHIN 7 DEYS OF RECEIPT FOR SINCLE OR SMALL QUANTITY ORDERS

* 5 year no puibble guarantee

TYPE	$\begin{array}{\|c\|} \hline \text { SERIES } \\ \text { Mo } \\ \hline \end{array}$	$\begin{gathered} \text { Secomoary } \\ \text { Whis } \end{gathered}$	$\begin{gathered} \text { RMS } \\ \text { Currom } \end{gathered}$	Prace
$\begin{gathered} 225 \mathrm{VA} \\ 110 \times 45 \mathrm{~mm} \\ 2.2 \mathrm{~kg} \\ \text { Regulation } \\ 7 \% \end{gathered}$		$12+12$ $15+15$ 1818 $22+22$ $25+25$ $30+30$ $35+35$ 4040 $45+45$ 5050 10 220 240	$\begin{aligned} & 9.30 \\ & 7.50 \\ & 6.25 \\ & 5.11 \\ & 4.50 \\ & 3.75 \\ & 3.21 \\ & 2.81 \\ & 2.50 \\ & 2.25 \\ & 2.04 \\ & 1.02 \\ & 0.93 \end{aligned}$	$\begin{gathered} £ 9.20 \\ \text { +o/R } \varepsilon 2.00 \\ \text { +VAY } \varepsilon 1.68 \\ \text { TOTAL } \varepsilon 12.88 \end{gathered}$
300 VA $110 \times 5 \mathrm{mmm}$ 2.8 Kg Regulation 6%		$15+15$ $18+18$ $22+22$ 2525 $30+30$ $3+30$ $35+35$ $40+10$ $45+45$ $50+50$ 110 220 240	0.93 10.00 833 8.82 600 5.00 5.08 4.28 3.73 3.33 3.00 2.72 1.36 1.25	£10.17 +p/p£2.00 +VAT £1.83 TOTAL £ 14.00
$\begin{gathered} 500 \mathrm{VA} \\ 140 \times 6 \mathrm{~mm} \\ 8 \mathrm{Km} \\ \text { Regulation } \\ 4 \% \% \end{gathered}$		$\begin{gathered} 25+25 \\ 30+30 \\ 35+35 \\ 40+40 \\ 45+45 \\ 5050 \\ 55+55 \\ 110 \\ 220 \\ 240 \end{gathered}$	$\begin{array}{\|c} \hline 10.00 \\ 8.33 \\ 7.14 \\ 8.25 \\ 55.55 \\ 5.00 \\ 4.54 \\ 1.54 \\ 2.27 \\ 2.08 \\ \hline \end{array}$	$£ 13.53$ +p/pE2.35 +VATE2.38 TOTAL £18. 26
		$\begin{gathered} 30+30 \\ 35+35 \\ 0+40 \\ 45+45 \\ 50+50 \\ 55+55 \\ 110 \\ 220 \\ 240 \\ \hline \end{gathered}$	$\left[\begin{array}{c} 10.41 \\ 8.92 \\ 7.81 \\ 6.94 \\ 8.25 \\ 5.25 \\ 5.60 \\ 568 \\ 288 \\ 2.60 \\ \hline \end{array}\right.$	$\begin{aligned} & \text { YR13 } \\ & \text { +p/pE2.B0 } \\ & \text { + VAr } .79 \\ & \text { TOTAL } \varepsilon 21.42 \end{aligned}$

IMPORTANT: Regulation - All voitages quoted are FULL LDAD. Please add regulation figure to secondary voltago to oblain off load voltage.
The benefits of ILP teroidal transformers
ILP toroidal transformers are only half the weight and height of their laminated equivalents, and are available with $110 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V primaries coded as follows For 110 V primary insent " 0 " in place of " X " in type number.
For 220 V primary (Europe) insert "1" in place of " X " in type number.
For $\mathbf{2 4 0 V}$ primary (UK) insert " 2 " in place of " X " in type number.
How to order Freepost:
Use this coupon, or a separate sheet of paper, to order these products, or any products from other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Lid. Access and Barclaycard welcome. All UK orders sent within 7 days of receipt of order for Access and Barclaycard welcome.
single and small quantity orders.
Also available at Electrovalue, Maplln and Technomatic.

Please send
Total purchase price
I enclose Cheque
Postal Orders \square
int. Money Order
Debit my Access/Barclaycard No. \qquad
Name
Address \qquad

Signature

GONPULH: MARM:OUST

LIM 'ALTADINS CAVE OF COMPUTER AND FIFGTRONIC EQULPMENT

1:CATD DIEK DRTVES

DISIMAC

The UKS FIRST free of charge, 24 hr . public access data base. Get information on 1000^{\prime} of stock items and order via your computer and credit card. On line now, 300 baud. CCITT tones, full duplex, fully interactive. DON'T MISS THOSE BARGAINS $01-6831133$ 7 days jer wreak 24 hre per day

COMPUTER 'GAB'

All in one quality computer cabine with integral switched mode PSU. Originally made for the famous
DEC PD 88 computer system costing 1000's of pounds and designed to run 24 hours per day. The PSY is fully creoned and will deliver a massive 5 mDC at 17 amps +15 vDC at 1 amp and -15 v DC at 5 amps . The unit is full enclosed with removable top lid, twin fan cooling, mains iltering, trip switch, "power on' and 'rur' LED's, aluminiur ront panel and rear cable en and professional finish for only $£ 49.95+\varepsilon 9.50$ cart. - Dim. 19 wide $16^{\prime \prime}$ deep $10.5^{\prime \prime}$ high. Usablearea $16^{\prime \prime}$ w. $10.5^{\prime \prime} \mathrm{h} .11 .5^{\prime \prime} \mathrm{C}$ Unis

\section*{coounvg FANS}
 range of protessional fans
 vac working DIM $92 \times 25 \mathrm{~mm}$ BRAND NEW complete with
 BUHLER 69.11 .22 micro miniature $8-16$ v DC reversible fan. Measures only $62 \times 62 \times 22 \mathrm{~mm}$ Uses a brushiess DC servo motor almost silent running ideal portable equipment, life in excess of 10,000 hours BRAND NEW manutactures price $£ 32.00$ our price $\$ 12.95$ MUFFIN/CENTAUR cooling $120 \times 38 \mathrm{~mm}$ tested ex equlpment 240 v . $120 \times$ 115vE4.95 + 8 Red ex $115 \mathrm{Em.9S}$ + psp 1.90 KOOLTRONICS Powerful snall type blower gives massive air movement with centrifugal gives massive air movement with centritugal 2.5^{n} with tlange fixing. BRAND NEW 1 aC working ONLY $E 9.95+\Sigma 1.90$ psp

0

8" MLOPPY DISK DRIVES
 disk drives utilise the linest technology to

 give you 100\% bus compatability with most drives availabie today, the only difference double sided drive accept hard or soft sectoring. IBM or ANSI standard giving a massive $0.8 \mathrm{MB}(7100)$ \& $1.6 \mathrm{MB}(7200$) of storage. Absotutely SHUGART, BASFSIEMENS etc compatable. Supplied BAAND NEW with user manual and 90 day warranty
7100 single sided.
$.5225 .00+9.50+v a t$
7200 double sided
28.00 + 9.50 carr + va of drive.
SHUGART $\mathrm{s} / \mathrm{h} 800-28^{n}$ Drive's 110 v 50 Hz motor $\mathrm{E} / 60+\varepsilon 9.50$ car
Removed from working equlpment but untested. SA120 Alignment disk's \& .9

SUPER SCOOP

CMNTRONIC8 739-2

The "Do everything Printer" at a price that will NEVER be repeated. Standard Centronics interface, fullgraphics, 4 typ onts with high deflnition: proportional spacing for word processor applications, 80-132 Columns single sheet roll or sporocket opaper hand ding plus
much more Avaliable only from ISPLAYELECTRONCS ñiculous price of only $\& 299.00$ Options: carriage \& insurance $\mathbf{E 1 0 . 0 0}$ Interface Cable $E 10.00$ RS232 Converter $\$ 45.00$

I/O TERMMATS

DOME193 +CAR +

Fully fledged industry standard ASRB3 data terminal. Many features including ASCl detect circuitry. RS232 serial interface 110 baud, 8 bit paper tape punch and reader for oft line data preparation and ridiculously cheap and reliable data storage. Supplied in good condition and in working order Options: Floor stand $\mathbb{E} \mathbf{1 2 . 5 0}+\mathrm{VA}$ KSR33 with 20 m loop interface $E 125.00+$

BECHARGEABLE BATTERIES

CYCLON type D001 sealed lead acid maintenance free $2 v 2.5 \mathrm{ah}$. will dellver at only $\mathbf{E 2 . 9 5}$
SAFT VR2C size 'C' 1.2 v 2 ah nicke
cadmium $\mathbf{1 . 5 0}$ each 10 for E 11.50

MAINS FILTERS

Professional type mains fitters as used by "Main Frame" manufacturers. Ideal for curing fit one now and cure your problems. Suppression Devices SASA
upto 5 ampload ESS.9
Corcom Inc F1886 up to 20 amp load $£ 9.30$

D,C. POWTR SUPPLY SPFCLALS

Experimentors PSU Ex-GPO unit all silicon electronics. Outputs give $+5 \mathrm{v} @ 2$ amps. $+12 \mathrm{v} @ 800 \mathrm{ma}-12 \mathrm{v} @ 800 \mathrm{ma} .+24 \mathrm{v} @ 350 \mathrm{ma} .5 \mathrm{v} @ 50 \mathrm{ma}$. floating. Dim $160 \times 120 \mathrm{x}$ 350 mm . All outputs fully regulated and short circuit proof, Removed from working E/4.50 + 2.50 pp . POWER ONE CP143 super compact unit giving continuous output of 5 v @ 5 amps . $\operatorname{dim} .215 \times 67 \times 80 \mathrm{~mm}$. BRAND NEW and guaranteed Only $£ 21.00+£ 1.50 \mathrm{pp}$.
CUSTOMPOWERCO555v@ 3 amp. Very compact unit dim. approx $60 \times 90 \times 190 \mathrm{~mm}$. CUSTOM POWERCO555v@ 3 amp. Very compact unit dim. approx $60 \times 90 \times 190 \mathrm{~mm}$.
Semi open chassis, full crowbar overvoltage protection. Tested Ex Equipment. Eff.95 +pp 1.25 , MINI SYSTEM PSU Ex equipment unit ideal for the small micra. Outputs give 5 v @
$3 \mathrm{amps}+12 \mathrm{v} @ 1$ amp and $-12 \mathrm{v} @ 300$ ma. Crowbar overvoltage protection and current limit. Fully tested. Dim $70 \times 165 \times 320 \mathrm{~mm}$. Complete with Circuit only $\mathbf{1} / \mathbf{2} .95$ current limit.
$+\Sigma 2.00 \mathrm{pp}$.
PERIPHERAL SYSTEM SUPPLY. Fully cased unit supplied in a Brand new or little used condtion. Outputs give 5 V @ 11 amps, ${ }^{+} 15-17 \mathrm{~V} @ 8$ amps $-15 \cdot 17 \mathrm{~V} @ 8 \mathrm{amps}$ diested with circuit E55.00 +8850 car regulated. Fan cooled. Supplied tested, with circuit $£ 55.00+£ 8.50$ carr.
MAIN FRAME SUPPLY. A real beety unit designed for MINI or MAINFRAME use outputs give 5 volts @ 50 amps $+12 v @ 5$ amps. $-12 v @ 10 \mathrm{amps}$. All output are fully and tested. Ex-Equip. 110 v AC input. Only $£ 49.95+$ carr. $£ 1050$

66\% DISCOUNT
 ELECTRONIC COMPONENTS \& EQUIPMENT

Due to our massive bulk purchasing programme which enables us to bring you the best possible bargains, we have thousands of I.C.'s, Transistors, Relays, Cap's, P.C.B.'s, Sub-assemblies, Switches, etc. etc. surlplus to our requlrements. Because we dont have sufficient stocks of any one item to include in our ads, we are packing all these
items into the "BARGAIN PARCEL OF A LIFETIME" Thousands of components at giveaway prices! Guaranteed to be worth at least 3 times what you play plus we always giveaway prices! Guaranteed to be worth at least 3 times what you play

2.5 kls E 4.25 + pp $£ 1.25$

10kls£10.25 + pp £2.25

9" Monitors

 DT10 Monlto a complete MOTOROLAvideo monitor housed in an attractive meta $10^{\prime \prime}$ deep $16^{\prime \prime}$ wide and 1 high. The monitor has a 75 video input with a bandwidth of 18 mhz A seperate internal PSU delivers 5 v dc for external use and 12 vDCfor video monitor. Th case has sufficient room inside for mounting other units such as 5 " disk drives etc. Interna pots give full control over all monitor function Supplied in a tested, as condition. 240v AC operation E55.00 Carriage and Insurance $£ 10.50$
MOTOROLA 9 " open chassis montor. Standard 240 vAC with composite 75 ohm video input, bandwidth in excess of 18 mhz
Monitors are ex equipment and although unguaranteed they are all tested prior to despatch and have no visible burns on the screens Dim approx $9^{\prime \prime} \times 9^{\prime \prime} \times 9^{\prime \prime}$. Supplied complete with mains and input lead ldeal ZX81 etc or giving the tele back to the family! Black and White phosphor $£ 35.00+£ 9.00 \mathrm{Car}$.

SEMCONTUGIOR

'GRAB BAGS'

Mixed Semis amazing value contents include transistors, digital, linear, I.C.'s triacs, diodes, bridge recs, etc. etc. All with manufacturer's markings fully with manufacturers markings, fully TTL 74 Serles A gigantic purchase of an "across the board" range of 74 TTL mixed "mosty TTL" grab bags at a price which two or three chios in the bag would normally cost to buy. Fully guaranteed all I.C's full spec. $100+\varepsilon 6.90$
$200+\varepsilon 12.30300+E 19.50$

$$
200+\varepsilon 12.30300+\varepsilon 10.50
$$

300 BAUD

DATA MODTMS

munications revolution with standard EX GPO 2 a/b data MODEMS. Modem operates on standard CCITT tones With full auto answer facilities. Will switch to ANSWER orORIGINATE StandardRS232 i/ connections. Ideal networks. DISTEL etc Complete with data. Untested but good condition E55.00 carr. £8.50.

1200 BAUD

DATA PUNP MODEMS

Compact unit for use with private or "Dial up lines Designed to work in pairs at any baud
rate upto 1200 fullduplex(4 wire circuit) or ha duplex (2 wire circuit). Features include remote test facilities. RS232 $\mathrm{i} / \mathrm{olines}$ etc Supplied with data in working order, but less case cover $\mathbf{8 5} .00+\varepsilon 4.50$ carr.

OLTVETHII TEFOOO

 REDUCED TO CLEARR Complete input outputterminal withintegral 8 hole paper tape punch and reader. Unit as a cheap printer for a MICRO etc. 120 columns Serial data i/o. Supplied comple with data, untested, unguaranteod $\mathbf{E 6 5 . 0 0}$ $+\Sigma 11.50$ carr.
DEFLM'
 ELETROAHES

All prices quoted are for U.K. Mainland, paid cash with orderin PoundsStrring PLUS VAT. Minimum ordervalue $\mathbf{E} 200$, MinimumCredit Cardorders 10.00 . Minimum BONAFIDE account orders from Governmeni depls, Schools, Universities and established companie E20.00 Where post and packing not indicated please ADD 60p + VAT. Warehouse open Mon-Fri 9.30-5.30. Sat 10.15-5.30.

64-66 Melfort Road, Thornton Heath, Near Croydon, Surrey 01-689 7702-01-689 6800 Telex 27924

ELECTRUC SHOCK ACT AT ONCE - DELAY IS FATAL BE READY TO SAVE A LIFE. SOMEONE MIGHT SAVE YOURS

	ELECTRICAL REVIEW Shock First Aids
ELECTRIC SHOCK act at onc: - delay is fatal make sure it is sofe to approach	To General Sales Dept., Room 108
	Quadrant House, Sutton, Surrey SM2 5AS.
	Please send me:
store arrificial respiration- speed is essential pocket cards at 70p each
	. . paper charts at $£ 1.00$ each
FEL ¢	. card charts at $£ 2.00$ each
if AFTER FOUR INFLATIONS casualty does not respond to artificial respirntiom \qquad \qquad \qquad	. . . plastic charts at $£ 3.00$ each
$\pm 5 \pm 50$	
$5 \pm \sim 2$	I enclose cheque/money order for $£$. payable to
external heart compression	IPC Business Press Ltd.
	Post free in UK; overseas rates apply Tel. 01-661 8668; Telex 892084 BISPRS G
	Name
WALL CHART:	Address
$356 \times 508 \mathrm{~mm}$.	
POCKET CARD: $92 \times 126 \mathrm{~mm}$.	

 handbook. E155

- 0scilloscopes

TEKTRONIX 465. 100 MHz at $5 \mathrm{mV} /$ div. Dualbeam, sweep-delay portable scope in first class order. $£ 1,250$
TEKTRONIX 454.150 MHz . $£ 750$ TEKTRONIX 585. Twin time-base with two $2 A 63 \mathrm{Y}$-amplifiers (DC-300kHz. $1 \mathrm{mV} / \mathrm{div}$).
TRIO CS1577A. 35 MHz Dual-beam £375. Brând new (LP) £475
DYNAMCO D7200. DC-15MHz dual-beam sweep-delay, mains or battery operated, portable. £250
TEKTRONX 500 Series in stock with 'CA' Dual-beam plug-In units, e.g 5438 £125, 545A. £150
COSSOR CDU150. 35 MHz dual-beam \& sweep delay, 550 ADVANCE VM77D Millivottmeters. $15 \mathrm{~Hz}-4.5 \mathrm{MHz}$. 1 mV Full scale -300 V AC E55
WOELKE ME104C. Wow \& Flutter Meter $£ 95$
AVO Type 1 LCR Component Bridge.
WAYNE KERR AF Signal Generator Type S121 £/5
AIRMEC Wave Analysers Models 853 and 248A.
CENTRONICS P1 Printer, ons only. AND Type 663 Printer.
ROHDE \& SCHWARZ SDR Signal Generator. $300 \mathrm{MHz}-1 \mathrm{GHz}$.
HEWLEIT PACKARD 608C Signal Generator. $10-480 \mathrm{MHz} \mathrm{AM}$
MARCONI Component Bridge Model TF2700, (LC\&R).
OKIDATA CORP Series 3300 Hard-Disc Drives.
TALLY Model 220 Line Printers.

BEL $\frac{1}{2}$ HOWEL

WICRARCUE VIEWERS
Type SR5. Screen size $9 \times 5^{\prime \prime}$. Recent small quantity now avall. £55

SWEEPERS t

 TELONIC Sweep generator system type 2003. Fitted with Marker, attenuator, Detector plug-$800-1500 \mathrm{MHz}$. £325\star DISC CARTRIDGES
BASF 12-Segment Single Hard Disc Cartridges. Brand new surplus stock.

MUIRHEAD

* FAcsimile UnITs *

MUFAX 'COURIER' facsimile reMUFAX 'COURIER' facsimile receiver type $\mathrm{K} 441-\mathrm{CH}$ and transmit
ters K 400 AMCH in stock in excellent condition.

PLEASE NOTE. All the pre-owned equlpment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in first-class operational condition and most items carry a three months ${ }^{\circ}$ guarantee. For our mall order customers we have a money-back Scheme ADD 15% VAT TO ALL PRICES.

\star DC POWER SUPPLIES \star

1. APT.10459/8. Stabilised Regulated supplies. Now stock arrival hence LOWER PRICES. Available in preset output voltages between 6 and 30 V DC (state requirements) $\pm 4 \mathrm{~V}$ approx. Three sizes available, $5 A, 71 / 2 A$ \& 10 A . Prices 200 , 25 \& 230 respectively (plus postage £2, £2.50 and £4).
2. Multard Dual supplies. Pos/Neg 12V @ 1A \& 0.44 . Dimensions $9 \times 4 \times 5^{\prime \prime}$. $£ 10$ ea. $(+£ 1$ plep). 3. Farnell Current limited. 13-17V DC @ 2A. £15. 27 32VDC@1A. £ 15 (+ £1 p\&p)
3. Lembda LXS Series supplied 110 V AC Input. 5V @ 14A. $£ 20(+€ 2,50$ p\&p). Various other voltages avallable from stock in small quantity.
4. Coutant 5/6V @ 5 A. Small size ($7 \times 5 \times 3^{\prime \prime}$. $£$ 1+ f1).
Variable 0-30V@1A. Volt-metered. $£ 30$
5. Farnell 5 V Switching. 60A. E85.

* RF SIENLL GENERATORS + ADVANCE TYPE E2. $100 \mathrm{kHz}-100 \mathrm{MHz}$. Internal AM \& Audio O / P. $1 u V-100 \mathrm{mV}$ output. Price each 150 inc. VAT.
Modulation, E60 inc. VAT.
All of these units are in full working condition and carry our usual 90 -Day Warranty, in both cases please add £2 each for carriage.

MARCONI TF2600. Twelve ranges $1 \mathrm{mV}-300 \mathrm{~V}$

 FSD. Wide-band to 10 MHz .MARCONI TF2E03. Frequency range 50 kHz 1.5 GHz . High Sensitivity from 300 uV . MARCONI TF2B04. Electronic Multi-meter AC/DC 300 mV Full scale to $300 \mathrm{~V}(1 \mathrm{kV} D C)$. Re sistance ranged. AC Frequency range 20 Hz 11500 MHz .

A BRUEL I MJOER t
Model 2006 Heterodyne Voltmeter. AM/FM/ Voltage reasurements to 240 MHz .

EHT POWER SUPPLIES

HUNTING HIVOLT. $0-15 \mathrm{KV}$ @ 2 mA . Volt and Current metered, $£ 125$. BRANDENBURG ALPHA-SERIES. Regulated 0-30KV. Volt-metered output. £125.

RADIDCODE CLDCKS

are powerful and comprehensive instruments which receive, decode and analyse time-coded standard frequency transmissions to provide accurate, secure and completely automatic time/calendar or synchronisation systems.

Applications

- Automatic master clock and slave controller.
- Synchronisation of separate equipment and events.
- Programmable energy management system.
- Computer clock/calendar with battery backup.
- Data logging and time recording.
- Process and equipment control.
- Broadcasting, Astronomy, Navigation.
- Satellite tracking

If you have a time or synchronisation problem, write or phone for further details of our portable and new microcomputer-controlled Radiocode Clocks.

Circuit Services, 6 Elmbridge Drive Ruislip, Middlesex. Ruislip 76962

ELECTRONIC POWER UNITS

FOR XENON ARC AND MERCURY ARC LAMPS
UNITS AVAILABLE FOR LAMPS RANGING FROM 75 TO 6500 Watts.
Lamp housings and lens systems manufactured as standard off the shelf models or to specific destgn.
K. T. Manners Design Ltd.
P.O. Box 936, London, W4 4NW Telephone: 01-994 7155. Telex: 28604 WW - 077 FOR FURTHER DETAILS

PICOTUTOR \& ANALOGUE ASSEMBLY LANGUAGE TRAINER.

The ideal way to learn machine language and become acquainted with the new SPRgle chip" control oriented microprocessors. 1.8 K of EPRM, $201 / \mathrm{O}$ lines, 112 bytes of RAM and a timer all in issues of WW.

ANALOGUE INTERFACE $£ 9.39$
PCB and all
components

PCB only £1.73
16-way Jumper Lead $£ 2.35$

PCB only $£ 4.35$
Prog. $68705 £ 21.98$ Data $£ 1.95$

COMPLETE KIT £39.87

PCB, Programmed 68705 and all parts
MAL ORRER GLIY
ALL PRICES
INCLUDE VAT
ADD 45p
POSTAGE

Appointments

Advertisements accepted up to 12 noon Tuesday, February 1st, for March issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 15.50$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $£ 3$ per line, minimum $£ 20$ (prepayable).
BOX NUMBERS: $£ 3$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS).
PHONE: IAN FAUX, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to IPC Business Press Ltd.

IMPORTANT NOTICE

As of January 1st, 1983 The Electronics Recruitment Company is based from new premises in Lewes. The address and phone number will be:

Temple House 25/26 High Street, Lewes
 East Sussex, BN7 2LU Tel: Lewes (07916) 71271

This move has been made in order to provide a fuller range of services to the electronics industry. Our now premises have facilities for large scale interview/training or lecturing activities where a client will have a self contained and private suite within our own offices.
To discuss our services telephone any of the contacts below;
Communications Division: Mike O'Reilly Paul Hecquet
General Electronics Division: Les Tidy Sales and Marketing Division:
Francesca Robinson, Karen Bullock, lan Veltman Recruitment Advertising Service: Paul Hacquet.

Appointments

Radio Frequency Regulation Communication Engineers
 up to $£ 12,845$

The Radio Regulatory Department of the Home Office is responsible for regulating use of the radio frequency spectrum within the UK; operating within the framework of national legislation and conforming with the Radio Regulations of the International Telecommunications Union.
There are currently two opportunities to participate in this work:
Radio-communication systems
. to provide expertise in aspects of the use of satellites for radio communications and telemetry (including meteorology and earth exploration) and to study the implications of new space technology. This will involve preparing engineering summaries on the state of the art, evaluating the performance of systems for coordination purposes, undertaking theoretical studies and surveys and participating in the work of national and international technical committees.
Candidates should have a wide-ranging interest and understanding of radiocommunication systems, with particular reference to satellite systems.
Radiowave propagation
. . to lead the radiowave propagation group which provides expertise in all aspects of propagation for the work of the Directorate of Radio Technology. The engineer appointed will
prepare engineering summaries on the state of the art, initiate proposals for, and supervise practical and theoretical propagation studies as well as participating in the work of national and international technical committees.

Candidates should have a wide-ranging interest and understanding of radiowave propagation and radio system design. Experience of propagation research would be advantageous.

For both posts candidates must have a degree in electrical/electronics engineering or applied physics or have passed the Council of Engineering Institutions Part 2 examination in appropriate subjects or have an equivalent qualification. They should also be Chartered Engineers with several years'' professional experience since achieving Chartered status.
Starting salary (including $£ 1,220$ Inner London Weighting) in the range of $£ 10,890-£ 12,845$ according to qualifications and experience.
RELOCATION ASSISTANCE MAY BE AVAILABLE.
For further details and an application form (to be returned by 10 February, 1983) write to Civil Service Commission, Alencon Link, Basingstoke, Hants RG21 1JB or telephone Basingstoke (0256) 68551 (answering service operates outside office hours).

BARKING, HAVERING ANO BRENTWOOD HEALTH AUTHORITY omford Essex RM7 OBE

Medical Physics Department

EECTOMNE EMNEE
Medical Physics Technician Grade II
Required to fill this post created primarily for the maintenance of a 6 MV Linear Accelerator currently being installed. Other duties will include the electronic maintenance of a Ximatron 5 Simulator and 2 gamma cameras together with some electronics development work.
Applicants should be qualified to HNC/HTEC standard or possess a degres in Electronics.
Salary scale $£ 6,668$ plus $£ 557$ London Weighting.
Further details from Ms Susan Cross, Romford 46090 , ext. 3172.
Application forms and job deacrip-
tons from Personnel Sectlon, Oldchurch Hospital, Romford RM7 OBE.
(1950)

LOGEX ELECTRONICS RECRUITMENT

specialists in Field \& Customer Engineering appoin ments, all locations and disciplines.

Logex House, Burleigh, Stroud Gloucestershire GL.5 2PW 0453883264 8 01-290 0267 (24 hours)

BASICARE MICRO

Opportunity for an enthuslastic junior electronics technician to join a small team to provide support services in prototype wiring and assembly. Knowledge of digital electronics is essential
Age and qualification immaterial
Contact Basicare 12 Rickett Street London SW6
Tel: 7356408.

PRONECT/DEVISLOPMIJNT SNCIN x^{2} R

As a result of internal promotion there is an opportunity for an Engineer tojoin our Project and Development. Engineering Group.
Responsibilities include dealing with all aspects of a project, from the initial assessment of company requirements in relation to products on the market, to installation and commissioning of new systems, often involving the modification and development of off-theshelf and custom-made equipment to meet the specialised needs of television broadcasting. Applicants should be qualified to degree level or equivalent in electronic or broadcast engineering. Project or development engineering experience is essential,
ideally with knowledge of digital applications or modern colour television recording equipment.
Starting salary will be in a range up to $£ 11,700$ per annum. depending on qualifications and experience.
Please write for an application form quoting
Ref. PE/WW to:
Personnel Officer (Recruitment) Yorkshire Television Limited The Television Centre LEEDS LS3 1JS

ELECTRONICS ENGINEERS

 £6,000-£16,000Use our free, confidential service to advance your career in: DESIGN - SYSTEMS - FIELD SERVICE - SALES - TEST Working on Analogue, Digital, Microprocessor, Computer Communications or Medical equipment. Improve you salary and prospects - contact:

Cochn $\int_{\text {Engineering \& }}$ Technical Recruitment
 Engincering \& Technical Recruitment

11 Westbourne Grove, London W2. Tel: 01-229 9239

BCL

THE BOEHRINGER CORPORATION (LONDON) LIMITED

$B C L$, one of the leading suppliers of Reagents and Instrumentation to Hospitals and Universities. We require

FIELD SERVICE ENGINEERS

To service our equipment in the United Kingdom. You must have a good electro-mechanical, analogue/digital background, be decisive and able to work on your own initiative. You must also be prepared to operate a full emergency service for our customers. Good salary, car, expenses, pension scheme.
For more information and application form contact:
CHRIS WILLIAMS, SERVICE MANAGER BCL LTD., BELL LANE, LEWES EAST SUSSEX BN7 1LG. Tel: 0791671611
(1939)

CAPTAL
APPOINTMENTS LTD
THE UK's No. 1 ELECTRONICS AGENCY
Design, Development and Test to $£ 14,000$ Ask for Brian Cornwell

SALES to $£ 15,000$ plus car Ask for Maurice Wayne
FIELD SERVICE to $£ 12,000$ plus car Ask for Paul Wallis
We have vacancies in ALL AREAS of the U.K.

Telephone: 01-6375551 (3 lines)

Technician-Operator

Required for U.S. Government component in Reading area.
Main duty is operation of recording equipment. Shift work, mainly afternoon/evening will be required.
Some knowledge of electronics and ability to operate electronic equipment essential. Salary $£ 6,700$ per annum, 1 year renewable contract. Send resumé and home telephone number to.

Personnel Officer, American Embassy
Grosvenor Square, London W1A 1AE.
For review and arrangement of interview.

ENGINEERS

 TO PROVIDE ENGINEERING SUPPORT TO

 TO PROVIDE ENGINEERING SUPPORT TO PRODUCTION

 PRODUCTION}

£9000 to £12000, OXFORD BASED

Research Machines is a leading UK manufacturer of microcomputers for scientific, engineering, and educational applications.
We are looking for two experienced Engineers to report to the Production Engineering Manager.
Each Engineer will be given a Product Line with responsibility for all aspects of Product and process improvement. This will include responsibility for Product quality improvement and involve close liaison with Purchasing and Development Engineering Departments.
We are looking for Engineers educated to HNC or degree level with a good basic

understanding of electronics.

They will have a minimum of 2 years' industrial experience probably working in a Production Engineering, Industrial Engineering or Production Department of a medium or high volume electronic manufacturing company.
Salary will depend on experience and we offer an attractive benefits package including 25 days' holiday; free BUPA, life and disability insurance; penslon scheme and help with relocation expenses.
If you are interested in these vacancies, please contact Denise Howells by 'phone or letter for an application form, quoting reference WW1.

$$
\begin{aligned}
& \text { RESEARCH MACHINES } \\
& \text { MICROCOMPUTER SYSTEMS }
\end{aligned}
$$

Electronic Engineers What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines . right through from design to marketing - at salary levels from around $£ 5000-£ 15000$.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES,
12 Mount Ephraim,
Tunbridge Wells,
Kent. TN4 8AS.
Tel: 089239388

Please send me a TJB Appointments Registration form: Name

Address

ELECTRONICS TECHNICIAN

(Medical Physics Technician III)
is required for the routine maintenance and repair of electromedical equipment in the Victoria Health Authority based in the Dept. of Clinical Measurement at St. Stephen's Hospital, Fulham Road S.W.10. Opportunities also exist for the development of equipment. Applicants should have experience of electronics and be prepared to work with clinical and non-clinical staff.
Salary is on the scale $£ 5,536$ £7,155 + £932 L.W. (increase pendingl depending on experience and/or qualifications.

If you are interested, please apply for an application form without delay to: The Secretary, Dept. of Clinical Measurement, Westminster Mospital, 65 Romney Street, London S.W.1, or phone 01828 9811, ext. 2640.
[1954)

BORED ?

Then change your job!

1) Broadcest and Studio

Equipment?

Service Engineers to £11,000 - London.
2) PDP11/ $A X$?

Service Engineers. Circa $10,000+$ car Berks.
3) Sephisticated Power Suppllas? Service and some telephone selling - enormous praspects with an establishod company
Curca 88,000 - Hants. Curca 88,000 - Hants.
4) Germany?

Service of communications equipmem (radio and computer controll - $£ 12,000$ accompanied + porks.
5) Telacommunications Systams? Service and installation to $£ 13,000$ - London 6) OCR and Word Processors? Service Engineers. Circa 59.000 + car - London.
7) E500 per week?

Very high rates paid for contract design, test and software engineers - Most areas

Hundreds of other Electronic and Computer Vacancies to $£ 25,000$ Phone or write: Roger Howard, C.Eng.M.I.E.E., M.I.E.R.E. CLIEDE BONSULTATS 87 St. Leonard's Road, Windsor, Berks. Windsor (07535) 56022 (5 lines)

CLIVEDEN

CANADA RADAR ENGINEERS
 RADAR ENGINEERS BOTH

SENIOR and INTERMEDIATE
Required for vacanclas in Canada
Must have XBAND experience MARINE and/or AVIONICS
Preference given to parsons with knowledge of DIGITAL PROCESSING and CFAR CIRCUITRY

Written detalls should be malled to:
ㄴ. W. \& H. E. GRIFFITHS ITO
RONDELAY COTTAGE
158 COBHAM ROAD
Tel:0990 24580
Tolex: 849492
(1969)

OMAN TELEVISION

MAINTENANCE TV ENGINEERS

THE SULTANATE OF OMAN, which operates a progressive nation wide Television service, is seeking versatile, experienced Television Engineers. We are looking for well-qualified Engineers to play a part in Oman's exciting expansion and development plans.

Think about joining a friendly, expert team working both inside and outside modern studios to maintain equipment in perfect operational condition. The job includes handling the latest TV Cameras, both Format C and B one-inch VTRs and most up-to-date ENG Equipment.

Oman, a beautiful country on the South-East Arabian Peninsula, is an attractive place to live, with a superb coastline, fine beaches and a magnificent landscape. It offers a wide range of social and leisure activities.

TOP SALARIES

Oman Television still offers the best contract conditions in the region, with excellent salaries in the range 800 to 1400 Omani Rials per month. The Rial is linked to the US Dollar. Exchange rates are subject to fluctuation, but taking one Rial as equivalent to PDs. Stg. 1.67, 1400 Rials a month works out at PDs. Stg 28,056 a year or Pds.st 539 a week free of personal income tax. We also offer 48 days annual leave, free family accommodation, free air tickets for you and your family at the beginning and end of the contract as well as a return ticket every year. If you stay with us for two years or more, you receive a gratuity.

Currently we have vacancies for ENG, VTR, OB, Studio, TC Sound maintenance Engineers and Lighting technicians.

If you are interested in this challenging and rewarding work, write with your details to:

> Chief Engineer, Oman TV, Post Box 600, Muscat, Sultanate of Oman.

Appointments

Marconi Space \& Defence Systems, Portsmouth, has been closely associated with the design of every British satellite produced. We now need additional qualified and experienced Engineers at all levels of seniority in our new project teams to design and manufacture a wide range of communications equipment. Opportunities are available in the following related engineering disciplines.

COMMUNICATION SYSTEMS

To be responsible for specification, study, design and analysis of both the space and ground segments of satellite communication systems used by trunk TV, military and meteorologlcal systems operations

MICROWAVE SYSTEMS AND EQUIPMENT

Designing satellite microwave systems and equipment covering the frequency range 200 MHz to 50 GHz and including microwave components such as filters, mixers, low noise amplifiers, power amplifiers, multiplexers and antenna.

SPACECRAFT SYSTEMS

Covering the study, specification, design and analysis of overall spacecraft, payloads and sub systems including mission requirements and orbital operations associated with expendable and non-expendable launch systems.

ELECTRONIC CIRCUIT DESIGN

To design both analogue and digital systems and circuits using discrete LSI and VLSI components in a wide range of signal processing, control, data handling and power conditioning equipments.

Marconi

MECHANICAL DESIGN

The design and analysis of spacecraft, antenna and ground support equipment structures, inclualing stress, dynamic and fracture mechanics analysis, propulsion and control systems.

THERMAL DESIGN

To perform the thermal design and analysis of spacecraft and equipments including thermal control systems and components.

RADAR AND SIGNAL PROCESSING

To design and analyse satellite-borne radar and signal processing systems and equipment, for use in radar. infra-red and visibie light remote sensing systems.
Extensive experience in these areas Is essential and salaries and benefits will reflect the importance we attach to the positions. For application forms or further details telephone, reversing the charges, or write in the strictest confidence to Jack Burnie, Marconi Space \& Defence systems Limited, Browns Lane, The Airport, Portsmouth Hants, P03 5PO. Telephone Portsmouth 674019 REF: BL 5.
(All posts are open to both male and female applicants)

Electronic Engineers 'The Skys The Limit'

VIDEO is one of the World's fastest growing industries, and GEC McMichael Limited is in the forefront of advanced video technology. We need dynamic electronics engineers and physicists at all levels to join prestige high technology project teams.

As an analogue or digital video design engineer, you will be involved in such projects as video conferencing, broadcasting, laser video transmission, precision displays, cable television, and many other projects.

Our project teams are based at our new research and development Laboratories in Stoke Poges, Bucks., set in 34 acres of ground, with extensive sports and social facilities.

If you are experienced in high speed digital processing or analogue video, write or phone for an application form today.

GEC-MCMICHAEL LIMITED
Sefton Park, Bells Mill, Stoke Poges. Slough SL2 4DY. Teiephone Fuimer (02816) 2777 Telex $\$ 49212$.

Sony Broadcast Limited is a world leader in the marketing, distribution and engineering support of professional broadcast equipment, throughout Europe, the Middle East and Africa. We are now entering the next phase of our planned programme of rapid expansion, and applications are invited for the following challenging opportunities.

Field Service EngIneer

 To be engaged in the service and repair of our extensive range of sophisticated equipment, including video cameras, ${ }^{\text {, }}$ VTR'sNCR's and editing control systems. A high level of self motivation and initiative is required in order to successfully undertake customer visits throughout our marketing territory.Sales Engineer (UK)
An engineer with experience in operational TV or its allied manufacturing industry is required to join our UK Sales team.
Applicants should be aged $25-35$, highly motivated and able to work on their own initiative. Previous sales experience would be advantageous.

Saies EngIneer -

the Middie East

Reporting to the Cairo Branch Manager, the successful applicant will be responsible for selling our wide range of sophisticated equipment. Comprehensive product training will be provided at our UK technical training centre and long term career prospects, both overseas and in the UK, are excellent.

Audlo Sales Engineer

A young and dynamic sales professional is required to join our audio department, which is engaged in the sale of digital audio equipment, analogue tape machines, mixing consoles and RF communication products.

Applicants should have a proven track record in professional audio sales, and be prepared to undertake overseas travel when necessary.

Technical Support Engineer Western Europe Sales To join a small team responsible for sales in our Western Europe region. Previous involvement in sales would be an advantage, although the essential requirement is for experience of broadcast TV equipment. Knowledge of a second European language would be useful, as travel within the sales area will be necessary.

QA Support Englneer

To join a small team responsible for the evaluation of product performance. Key activities will include commissioning, assistance in product customisation and the establishment and maintenance of ATE. Full product training will be given, and there will be an opportunity for overseas travel.

Proposals Engineer

To prepare detailed and concise customer proposals, complete with pricing information. Extensive customer and inter-Company liaison will be necessary. An ideal opportunity for engineers experienced in the Broadcast Television industry, who now wish to utilize their knowledge in a dynamic commercial environment.

Laboratory Engineer -

 Measurement and Maintenance To be responsible for a wide range of equipment in our Technical Training Department. Applicants should have extensive experience in practical maintenance and measurement techniques, and a knowledge of micro processors, logic analysers and signature analysis techniques is desirable.
Research and Development Engineer

To join our international Research and Development team, responsible for projects from conception to realisation. Our activities include digital video/audio processing, digital recording, picture storage, and manipulation, and theoretical studies. Candidates must be highly innovative, possess a good electronics qualification and have an interest in the broadcast industry. Experience in a Research and Development environment would be advantageous.

Lecturer

To conduct theoretical and practical courses on our range of professional equipment. Applicants should have experience in the broadcast industry, and possess the ability to present ideas clearly. Training on our product range and on lecturing skills will be given where appropriate.

We offer an excellent
remuneration package with attractive salaries and first class conditions of employment. If you are interestedplease contact the Personnel Department, Sony Broadcast Limited, City Wall House, Basing View, Basingstoke, Hampshire RG21 2LA. Telephone: Basingstoke (0256) 55011

Sony Broadcast Ltd.
City Wall House Basing View, Basingstoke Hampshire RG21 2LA United Kingdom

Appointments

Testing....
 With the simple phrase below, Alexander Graham Bell ushered in the age of the telephone. Since then, telephone equipment manufacturers have sought ever greater reliability, often through
 Testing...

 rigorous test procedures.Mitel Telecom Limited is a major new force in this industry. And our reliability levels have to be that extra bit better; that means test procedures using highly sophisticated automatic test equipment.

The Test Technicians we employ, therefore, have one of the most responsible tasks in one of the most important industries in the world. We now wish to augment this team with people who either have previous test experience at component level (backed with relevant qualifications) or can show a real skill
in electronics at a fairly advanced level. Testing will always be a vital part of our reputation; join us, and you will be building a career in this growing industry. We will offer good salaries and a full range of benefits, depending on age and experience.

Please write, outlining your experience, to David Morgan, Human Resources Manager, Human Resources Department, Mitel Telecom Ltd. Portskewett, Newport, Gwent, NP6 4YR.

"Are you there, George?"

Broadcast Transmission Systems

Applications are invited for the above position in the Department of Electrical and Communication Engineering. Secondmentor short-term appointments would be consldered.
The IBA has a vacancy for an engineer qualified to HNC level in electrical engineering and having a good working knowledge of television and radio broadcasting systems. The work will involve measuring the performance of a national network of vision and sound circuits interconnecting between the ITV or ILR Programme Companies and the IBA Transmitting Stations. It will call for detailed liaison with staff of the different organisations involved, also with internal staff on day-to-day and long-term operational and performance matters. Although based at the IBA's Engineering Headquarters at Crawley in Hampshire, frequent travelling is required - a current driving licence is essential.
Salary will be in the above range. Generous relocation expenses will be paid where appropriate.

INDEPENDENI
BRO:ADC:ISTING
IUTHORITY

An E:turfloppurtumits Emplemer

Applicants should write or telephone for an application form quoting reference WW/770cc to Glynis Powell, Personnel Officer, IBA, Crawley Court, Winchester, Hampshire, SO21 2QA. Telephone Winchester 822270.
qualifications will be praferred and industrial experience of switching or satellite applications is required.
Sulery: Sentor Lecturer K18,860; Associate Professor $\mathrm{e}_{\mathrm{K}} \mathbf{2 0 , 8 6 0}$ ($\mathrm{Ki}=$ Stg. 0.8019 approx.).

Initial contract period is for three years. Other benefits include a gratulty of 24% taxed at 2%, appointment and epatriation fares, leave fares for the taff member and family after 18 months af service, settling-in and out year, education fares and assistance toward school fees, free housing salary continuation and medical benefit schemes are available.
Detailed applications (two copies) with curriculum vitac, togother with the names and addresses of three raforees, should be recaived by: The Registrar, Papua New Guinea University of Technology, P.O. Box 793, Lae, Papua New Guinea, by 28 February 1983.
Applicants resident In the United Kingdom should also send one copy to the Association of Commonwealth Univarsitias (Appts), 36 Gordon Square, London WC1H OPF, from whom further information may be obtained.

Electronics Design Engineers Take your career a step in the right direction
 Having introduced an extended new product range, many

 of which are microprocessor based, Marconi Instruments has once again conflrmed itself as Europe's leading manufacturer of test equipment and measurement systems. Our products are selling throughout the world to all leading users in the Telecommunications and Aerospace industries and we are naturally developing further innovative designs. That is why we are now looking for more Design Engineers with experience in any of the following areas:RF, Microwave, Analogue, Digital, Software, ATE, Microprocessor Applications.
Whatever your level of experience we would like to hear from you. We offer excellent salaries plus a wide range of large company benefits including relocation expenses where appropriate.
marcon

GCHO We are the Government Communications Headquarters, based at Cheltenham. Our interest is R \& D in all types of modern radio communications HF to satellite - and their security.

THE JOB All aspects of technician support to an unparalleled range of communications equipment, much of it at the forefront of current technology.

LOCATION Sites at Cheltenham in the very attractive Cotswolds and elsewhere in the UK; opportunities for service abroad.
PAY Competitive rates, reviewed regularly. Relevant experience may count towards increased starting pay. Promotion prospects.

TRAINING We encourage you to acquire new skills and experience.

QUALIFICATIONS You should have a TEC Certificate in Telecommunications, or acceptable equivalent, plus 2 years' practical experience.
TRAINEE RADIO TECHNICIANS Persons suitably qualified and under 22 but with no practical experience may apply for our training scheme.
HOW TO APPLY For full details on this and information on our special scheme for those lacking practical experience, write now to

Recruitment Office
GCHO, Oakley, Priors Road, Cheltenham Glos. GL52 5AJ
or ring
024221491
ext 2269

DIRECTORATE OF TELECOMMUNICATIONS EDINBURGH

TELECOMMUNICATIONS ENGINEER

UP TO £9241

..... to join that Branch of the Directorate which has responsibility for the telephone and other administrative communication systems within the Scottish Office and which provides a consultancy service on all aspects of communications to the fire and health authorities.

The work will involve assisting in the detailed planning of administrative telecommunication systems; liaison with other Departmental groups, British Telecom, the Emergency Services and equipment suppliers, drafting of technical specifications, the preparation of detailed information for feasibility studies; arranging field trials and practical tests of new equipment; and technical administrative work concerned with radio frequency allocation, radio clearance and transmitter licencing.

Candidates must have a degree in electrical or electronic engineering or a pass in the Council of Engineering Institutions Part 2 examination in appropriate subjects or an equivalent qualification. They must have at least 2 years professional training or the equivalent experience in communications engineering in one of the following fields:- telephony and line communications including voice, data, teleprinter and facsimile systems, large and small PABX equipments and British Telecom's full range of facilities or radio communications including VHF and UHF mobile radio schemes, radio links, radio paging systems and mobile radio control systems.

Starting salary $£ 6868-£ 9241$ according to qualifications and experience. Promotion prospects.

For further detalis and an application form (to be returned by 9 February 1983) write to Scottish Office, Personnel Division, Room 110, 16 Waterloo Place, Edinburgh EH1 3DN or telephone 0315568400 Ext 4317 or 5028. Please quote ref: T(C)85.

Classified

Senior Electronics Design Engineers Advanced communications in the heart of Gloucestershire.

Racal-SES Limited, a member of the rapidly expanding and successful Racal Electronics Group, is seeking to recruit a number of Senior Engineers to further enhance its reputation in developing advanced technology products in the communications field. Two examples of the successful product range are 'Satcom', a rugged mobile satellite communications system, and 'Classic', a radio-linked system of observation and intruder classification sensors using subsonic and infra-red techniques.

Applicants should be educated to degree level and have had at least 4 years
experience in an appropriate field. Successful candidates will be versatile and be prepared to tackle, with appropriate support, projects which may span both digital and analogue circuit design, together with the development of firmware and real-time software including both control systems and signal processing algorithms. The tasks will also involve meeting customers to ascertain requirements, preparing proposals and specifications and accepting responsibility for completing small projects within realistic cost and timescale targets.

Racal-SES Limited is located in Tewkesbury amidst the expanding electronics community of Gloucestershire and the superb countryside of the Severn Valley and Cotswold Hills. Racal employee benefits include a competitive salary, contributory pension, free life assurance scheme, and comprehensive BUPA cover.

If you are interested in a challenging job and career progression based on personal ability, please reply with details of age, experience and qualifications to: Brian Ashcroft, Personnel Officer, Racal-SES Limited, Newtown, Tewkesbury, Gloucestershire. Tel: (0684) 294161.

Racal-SES Ltd. Specialised Equipment \& Systems. World leaders in clectronics

ENTREPRENEUR

(1) Do you have a product or market idea in electronic engineering which requires R. \& D. effort, manufacturing capacity and/or market backing?
(2) We are an established small company, located on the South Coast, which can provide these facilities for a joint venture from a sound base.
(3) Please write, in confidence, to Box 1941.

ARTICLES FOR SALE

PRINTER STANDS

HANOSOMELY CRAFTED IN GMm TINTED PERSPEX

* PSS for Microline 80/8283, Epson MX80, Shetk osha GP1mo, etc
PSL for Mi. $\mathbf{1 6 . 9 5}+\mathbf{8 3 . 5 0}$ p.p. + V.A.T.
(PL Tor Microline 84, Epson MX82/100.
POT Tray for $\mathrm{f} 19.95+£ 3.50$ p.p. + V.A.T. POT Tray for Fanfold paper up to 12 in.
long per fold $\mathrm{E16.95}+\mathrm{E} .50$ p.p. + V.A.T. CAMBRIOGE
MICROELECTHONICS LTD
One milton Road, Cambridge
CB4 14 Y
10223 314814 (1785)

PCBS \& PANEL LABELS to your requirements. Design - Prototypes - Production. G. N. Slee Custom Products, 78 Derry Grove, Thurnscor, Rotherham, Yorks SG3 OTP. Telephone (0709) 89525. (1892)

BRIDGES, waveform/transistor analysers. CaliBRIDGES, waveform/transistor analysers
brators, Standards. Millivoltmeters. Dynamometers. KW meters. Oscilloscopes. Recorders. Signal generators - sweep, low distortion, true RMS, audio, FM, deviation. Tel. 040 376236. (1627)

ENCAPSULATING EQUIPMENT FOR coils, transformers, components, degassing silicone rubber, resin, epory. Lost wax casting for brass, bronze, silver, etc. Impregnating coils transformers, components. Vacuum equipment, low cost, used and new. Also for CRT regunning metallising. Research \& Development. Barratts, Mayo Road, Croydon CR0 2QP. 01-684 9917. (9678)

POWER V MOS-FET

 TECHNOLOGYWe specialise in all aspects of this important subject. A comprehensive service is offered to individual or OEM users, including: - Hitachi Supertex and RCA V MOS-FET from stock.

- V MOS-FET power modules from stock. - Competitive prices 1120 watt modules - Printed circuits - Printed circuits and kits. Data books and application notes. Catalogue/sample data sent free (50 p stamp appreciated towards post and packing): Phone 0251422303 and ask Richard Walsh about your application requirement or write:

AUDIO TECHNOLOGY
Frsopost, Church Crookham

LINSLEY-HOOD new 80-100 watt amplifier, components and PC board available now. Other 325 Fore Street, Edmenton, Lorature. Teleradio, 3253719 Ftreet, Edmonton, London N9 (1822)

EKCO MARINER WIRELESS. Excellen working order. Model No. U834. Offers. Phone working orde
(1944)

[^9]

Perforated Metals Screens, Plastics, Wire Meshes, Sifting Media, Cable Tray, Gratings, direct from Manufacturer's Stock. We can cut to size.

We specialise in one-offs or large quantities.

GRAEPEL PERFORATORS

LTD
Unit 1-B, CHARLES STREET Dopt WS WALSALL, STAFFS WS2 912 Tel. 0922 611644/611414. Telex 335291

LINSLEY HOOD DESIGNS

75-100w AMPLIFIERS AUDIO SIG. GENERATORS DISTORTION ANALYSERS SAE for leaflets

TELERADIO ELECTRONICS

325 Fore St., Edmonton N9 OPE
TEL: 8073719

Trainee Broadcast Engineers

We are responsible for broadcasting the programmes of Independent Television, Channel Four and Independent Local Radio. The continued growth of our broadcasting services means we have a number of vacancies for Trainee Broadcast Engineers who, on completion of their training, will work in a challenging and secure environment. Applicants should be qualified or about to qualify for a CNAA Degree in Electrical or Electronic Engineering. Consideration will also be given to those holding or about to obtain an HND/HNC level in Electrical or Electronic Engineering, or the City and Guilds Full Technological Certificate in Telecommunications, and also holders of the Higher TEC and Higher ScoTEC in similar disciplines.
Your salary while training will be $£ 6,263$ per annum. On the satisfactory completion of training, your salary will be $£ 7,930$ and will rise by annual increments to $£ 9,850$ per annum; further progression to $£ 12,209$ per annum is possible. Employment benefits include a free life assurance and personal accident scheme, a contributory pension scheme, generous relocation expenses and subsidised mortgage facilities.

IBA
(NDI:PENDEN1
BROSDC:STIN(;
AUTHORITY

For a fully illustrated booklet and application form, please write to Mike Wright, Personnel Officer - Engineering Regions, IBA, Crawley Court, Winchester, Hants, SO21 2QA. Or telephone the Personnel Office between 9 a.m. and 4 p.m. on Winchester 822574 or 822273 on any weekday. Application forms must be returned by Friday, 21st January, 1983.

DEPARTMENT OF MECHANICAL ENGINEERING AND ENGINEERING PRODUCTION

M ENG COURSE IN
SYSTEMS ENGNEERINE (including Automation and Robotics)

Applicatlons are invited for places on the above full-time, one-year courses commencing 28 September 1983. Further details and application forms (returnable as soon as possible) may be obtained from the Academic Registrar, UWIST, PO Box 68, Cardiff CF1 3XA.
(1965)

UNIVERSITY OF YORK
 Department of Electronice

 Applications are invited for the post of
SENIOR TEEHNIGIAN (Grade 5)

in the central workshop of the new De partment of Electronics. The workshop staff are responsible for the mainten the development and construction of lectronic equipment for teaching and research purposes.

Applicants are expected to have an appropriate qualification and considerable experience of electronic engineering, proferably including compuiers. The | sala. |
| :--- |

Applications glving full details of age education and experience, together with the names and addresses of two referees, should be sent to Mr D. Aymer, Assistant Bursar, University of York York YO1 500 by Friday, 4th February 1983.
(1951)

Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate f3 PER LINE. Average six words per line. Minimum $\mathbf{£ 2 0}$ (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus £3
- Cheques, etc., payable to "IPC Business

Press Ltd." and cross "\& Co."

NAME. ADDRESS

SITUATIONS VACANT

Radio Frequency Spectrum Engineering Up to $£ 10,460$

The Radio Regulatory Department of the Home Office is responsible for regulating use of the radio frequency spectrum within the UK; operating within the framework of national legislation and conforming with the Radio Regulations of the International Telecommunications Union.

Current opportunities in the Directorate of Radio Technology involve the study of radio propagation, the planning and regulation of frequency bands allocated to broadcasting, fixed, mobile, and space services; the application of computer techniques to frequency assignment, the operation of an international frequency-monitoring service, specifications and type-approval of equipment for mobile and fixed services; and the development of equipment for detection, measurement and suppression of radio interference, and technical advice on licensing.
Candidates must have a degree in electrical/electronics engineering or applied physics or have passed the Council of Engineering Institutions Part 2 examination in appropriate subjects or have an equivalent qualification. They must have at least 2 years professional training or the equivalent experience and will be required to demonstrate a breadth and depth of knowledge and some relevant experience covering radio and advanced technology communications systems, computers or similar electronic systems.

Starting salary (including $£ 1220$ Inner London Weighting) in the range $£ 8085-£ 10,460$ according to qualifications and experience.

RELOCATION ASSISTANCE MAY BE AVAILABLE.

For further details and an application form (to be returned by 10 February 1983) write to Civil Service Commission, Alencon Link, Basingstoke, Hants RG21 1JB or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote ref: T(E)85.

Home Office

R \& D OPPORTUNITIES. Senior level vacan cles for Communications Hardware and Software Engineers, based in West Sussex. Competikive salaries offered. Please ring David Bird at Redif,
fusion Radio Systems on 01-874 7281. UNIVERSITY OF LEEDS. Grade 5 Technician (Electronics). The work involves the design, mod ification and servicing of biomedical electronic equipment used for patient care, research and teaching by the Department within the University and at the two ceaching hospitals. The post is a
senior one and the appoince will work directly with the senior academic staff. Previous training and experience in electronics essential. Applicants abould be qualified to at least ONC or equivalent level and have had a number of years' relevant experience. Applications in writing giving full details of age, qualifications and experience and the names of two referees to Professor D. G. McDowall, The University, Department of Anaesthesia, 24 Hyde Terrace, Leeds LS2 9LN.

ARTICLES WANTED

WANTED

Test equipment, receivers valves, transmitters, compo nents, cable and electronic scrap, and quantity. Prompt service and cash. Member of A.R.R.A.

M \& B RADIO
86 Bishopsgate Street Leeds LS1 4BB 053235649

ARTICLES FOR SALE

FOR SALE

Ex-government C12 Transmitter Receiver Quantity available Export only
A. H. Thacker \& Sons Ltd. High Street, Cheslyn Hay Near Walsall, Staffs.
Tel: Cheslyn Hay 413300

RIBBON CABLE, PLUGS AND CONNECTORS

The very best quality. Proven manufacturer. Plugs and connectors sold singly or In quantities. Cable sold by the metre or by the roll Ring or write: 5-10 Eastman 5-10 Eastman Road Tel: 7400058

ARTICLES FOR SALE

TO MANUFACTURERS, WHOLESALERS

 BULK BUYERS, ETC.LARGE OUANTITIES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAI
'SEMTCONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc. CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, etc.
ELECCTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc.
ALLAT KNOCKÖ̈T PRICES - Come and pay us a visit ALAD̄DIN'S CĀVE
TELEPHONE: 445 0749/445 2713
BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, North Finchley, London, N. 12
(1613)

CLOSING
 WABEHOUSE FOR SALE

Teletypes ASR33, as new cond., E95; ASR33, boxed, new, £110; KSR33, new, boxed, E50.
Papertape. Punches, facit type 4070, $£ 80$. Data Products Lineprinters Type 2230 (300 l.p.m.), £485
Electronic Cosh Registers, £50,
Swada Electro-Mech. Cash Registers E20.
KL 7503 RJE Terminals, incl. printer processor cassette, card-reader +16 K plete; the lot $\mathbf{1 1 , 0 0 0}$
Mael 4000 Office Computing incl. v.d.u. processor (8k), dual 8 -inch floppies and Centronic 702 printer, 8800 .
Fans (4in. sq.), axial, $115 \mathrm{v} . / 220 \mathrm{v}$., various types from $\frac{12}{} 50$.
Power Supplies from $£ 10$.
Offers for the following equipment:
Perkin Elmer "Laser Gage" model 2900 Laser measuring system, resolution point 8 micron, maximum range 18
metres, complete with accessories. Trolley mounted. Suitable for precision mil ling machines, etc.
Philips Instrumentation Recorder, model "Analog 7", 7 channels DC to 100 Khz . Direct or FM.
Satellite Receiving and decoding exuipmant.
Branson Ultrasonic cleaner, 3.5 Kwz Trolley mounted.
Many hundreds of other electronle items, punds, bearive belts, spare parts for ICL. hems ters, etc., etc.

Phone Cambridge 022368990 or 0929862617
(1946)

THE SCIENTIFIC

WIRE COMPANY
P.O. Box 30, London, E. 4 ENAMELLED COPPER WIRE

INVERTERS
HIgh-nually DC-AC; also"no break" (2ms) static switch, 18 im . rack, Auto Charyer.

Interpert Mains-Store Lud. P08 51, London, W11 3 BZ
Tel: 01-727 7042 or 0225310918

RACAL COMMUNICATIONS

RECEIVERS

$500 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s} 1 \mathrm{Mhz}$ wide. RA17L - E 175. RA117E - $£ 225$. A few sets available as new at £75 extrs. All receivers are air tested and cahmanual, dust cover, in fair used condition. Naw manual, dust cover, in fair used condition. NBW each. RASED - ISB - SSB - E75. RAZ1 SSB - ISB and fine tune for RAil7 - E50. TMANSMITTER DRIVE UNIT RA79. $1.5 \mathrm{me} / \mathrm{s}$ $30 \mathrm{mc} / \mathrm{s}-\mathrm{SSB}$ - ISB - DSB - FSM - CW £150. AERIAL TUNING UNIT and protection unit MA1978 - E25 to E50. DECADE FREOUENCY GENERATOR MAZSOB Solid state synthesiser for MAAT9 or RA117 - RA217 - RA1217 - £150 to $£ 200$. MAZSO - $1.6 \mathrm{mc} / \mathrm{s}$ to $31.6 \mathrm{mc} / \mathrm{s}-£ 150$ (New).
dard $-5 \mathrm{mc} / \mathrm{s} \mathrm{mc} / \mathrm{s}$ - 100 khz - $£ 100$ to $£ 250$. RACAL MA152 - Standing wave ratio indicator. $F \times 2 \mathrm{mc} / \mathrm{s}-25 \mathrm{mc} / \mathrm{s}$ Power up to 1000 watts - 50 ohms - Auto trip switch - Transistor mains $100-250 \mathrm{AC}$, new and boxed - $£ 40$. RACAL COUNTER 836 (9036) $32 \mathrm{mc} / \mathrm{s}$ TIL circuit design - tested with manual - $£ 50$ to $\mathrm{E75}$. OSCILLOSCOPES COSSOR CDU150 - $35 \mathrm{mc} / \mathrm{s}$ Twin Beam - Solid State - f 175 with manual. TEXTRONIC OSCILLOSCOPE 647 and 647A Solid State $-50 \mathrm{mc} / \mathrm{s}$ and $100 \mathrm{mc} / \mathrm{s}$ bandwidth - $£ 250$ ard $\mathfrak{E 3 5 0}$. Tested, circuit and instructions: RACAL COUMTER $801 \mathrm{M}-125 \mathrm{Mc}$-S E50.
IMAGE INTENSIFIEAS - Muliard - G.E.C. or E.E. Type XX 1060 very high gain setf-focusing imaga Intensifier assambly for night vision systems. Minimum luminance gain 35,000 . Supplied as received from Government supplies in original box (used) whata sheets $(P \& P+V A T=\boxed{5} .25)$
All items are bought direct from H.M. Government. being surplus equipment. Price is ex-
works. SAE for all enquiries. Phone for appointment for demonstration of any item. John's Aadio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel. \&(0274) 684007. V.A.T. and Carriage extra.

Manufacturer's Clearance Scoop

V24 CCITT Modems (with echo suppress)
Universal Counters, DC to 700 MHz , laboratory accuracy
Portable Telex machines with memory
Components, atc., etc., etc.

(0202) 736106

For further information
(1504)

INVERTERS TRANSFORMERS ADAPTORS

Prompt attention enquiries and orders.
TITAN TRANSFORMERS
Duncombe St., Grimsby
South Humberside DN32 7EG,

Classified

SITUATIONS VACANT

Engineers \& Scientists £9,126

Communications R \& D... ...the leading edge

SERVICES

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE
Artwork, Circult Design, PCB Assembly, Test \& Repair Service, Q.A. Consultancy, Prototypes, Final Assembly.
Quality workmanship by professionals at economic prices
Please telephone 01-767 1233 for advice or further details
1 FRANCISCAN ROAD
TOOTING, LONDON SW17

BOARDRAVEN LTD.

PRINTED CIRCUIT BOARDS
Manufactured to your specifications. Single/double sided. Vory speedy deliveries on prototypes and quantity. Mastor layouts if required Contact:
J. K. Herr
J. K. Herrison, Cameby Induetrisl Estete, Brdd-
Ungton. North Mumberaide YO1s 3 KY. Tole Mngton, North Mur
phone: 10282178788.

TURN YOUR SURPLUS Capacitors, Iransistors, etc, into cash. Contact COLES-HAR 0945-4188. Immediate settlement. We also welcome the opportunity to quote for complete fac tory clearance. (9509

SCIENTIFIC SOFTWARE FOR ELECTRICALJELECTRONIC ENGINEERS/TECHN CAL SCHOOLS. For 16 K 2X81. Given any waveform, calculate the average RMS, Fourier coefficients, plot the waverorm, plot the fre quency spectrum. Listing 23.50. From D. Ibra him, 42 Kidd Place, London SE7

ARTICLES WANTED

SURPLUS

Top prices paid for surplus, redundant and obsolete test equipment, factories cleared.
Also quantities of components.
immediate settlement. We will call anywhere in the United Kingodorn. TIMEBASE 94 Alfriston Gardens
Sholling. Southompton $\$ 028$ Fu
Toiephone: $(0703) 431333$
(1852)

WANTED: Redundant test equipment - re ceiving and transmitting equipment - valves plugs and sackets - syncros, etc. Phone: John's Birkenshaw, Bradford BDII 2ER.

PC3

Layout design QUALITY ARTWORK

FAST OELIVERY • REASONABLE RATES PHONE FREOS ARTWORK SERVICE 01-607-3169

DESIGN AND DEVELOPMENT, ANAL OIPCUIT AND SY STEM DESICN desien, mechanical design and prototyp . Anall design, mechanical design and prototype/smalll 103 Liscombe, Bracknell, Berks. Tel: Bracknell (0344) 52023.

FOR THE BEST PCB SERVICE
 AVAILABLE

- Circutt Destgn a Devetopmem
igital and Analogut
Work of the highe
Work of the highest standerd by experienced
draughamen. No minimum charge
- Board Manutacture

Protorype to somi-production, excelient rates 24-hour prototype service from filmwork.
© Wiring of Aasembhy
PCB asembly, wiring and cable forming by
\# Tent
Fult tert facilities available. One or all zervices availPlasase no order too small. Plasase tolephone Chelms.
ford (0245) 357935, or write to HCR Electronics. The in dustrial Unit.
Chelmstord.

SMALL BATCF PCBs produced from your art work. Also DIALS, PANELS, LABELS. Camera work undertaken. FAST TURNAROUND. London ECIN 8RU. Tei. 01-405 $4123 / 0960$
DESIGN SERVICES. Electronic design development and production service available for digital and analogue instruments. RF Transmitters and receivers, telemetery and control
systems. 20 years' experience. R.C.S. Electronics, systems. 20 years experience. R.C.S. Electronics, Falkner $\$ 3661$. (8341

TW ELECTRONICS LTD

THE PCB ASSEMBLERS

More and more companies are invest gating the advantages of using a profes sional subcontractor. Such an undertak ing requires certaln assurances.
TW are able to satisty all of them quaility, competitive pricing, firm delivey and close co-operation with the cus tomer.
Assembled boards at 100% inspected before flow soldering and rainspected after automatic cropping and cleaning. Every batch of completed boards is is sued with a signed certificate of confo mity and quality - our final assurance. For further details, contact us at our new works:

Blenhelm Industrial Park Bury 8t. Edmunds
8uffotk IP33 3UT
Telephone: 02843931 (1466)

BATCH PRODUCTION wiring and assembly to sample or drawings. McDeane Electricals Lad 19b. Station Parade, Ealing Common, Londo WS. Tel: 01-992 8976,
(169
ELECTRONIC DESIGN SERVICE Immedī ate capacity avalabie for circuit design and development work, PC artwork, etc. Small bateh and prototype production welcome. - E.P.D.S Lid., IA Eva Road, Gillingham, Kent. Tel: Med. way (0634) 577854

BATCH PRODUCTION PC assembly to sample or drawings, any quancity. Stagecraft (Electron ics) Lid, Unit 7, Carew Street Industrial Estate Camberwell SE5'9DF. Tel:01-737 1422. (1942)

BOX NOs.
Box number replies should be addressed to:
Box No.
c'o Wireloss World
Quadrant House
The Quadranit
Sutton
Surrey SM2 5 SAS

COMPUTER APPRECIATION

6 High Street, Bletchingley, Redhill, Surrey RH1 4PA - Tel: Godstone (0883) 84322

 PDP11VO3 COMPUTER SYSTEM comprising LSI 11 processor with GAKB memory, DLV11J quad serialinterfece, REV11 bootstrap, diagnostic and terminator card. BA11-MF box RXO1 dual floppy disc drive. Contained in DEC 28 inch hioh cabinet on castor m back upl, twin dual density floppy disc drives. VDU. Model 4501 c.p.s. bi-directional nine wire marrix printer with additional facilities for reading ber-coded ledger cards. The system Is 2 Years old and full sotware and
maintenance suppon is availaboe from NCR. Spare Temory and processor cards are included.
 Infegral thermal printer. Dual $8^{\prime \prime}$ flioppy discs. Based on TMS9900 16 bit microprocessor and having 646 OATA ASSOCIATES MOdel 100 VOU. AS 232 interfece and displaying 24 lines of 80 characters. Baud rates to MEMOREX MOdel 227 Z VDU. EBCDIC Coded VDU, 24 lines $\times 80$. These modern (1979) VDUs are particularl' suitable for rebuilding around a single board computar or as a low cost terminal. Comprising: Detached keyboard with single chio encoder, either of a standard type MOTOROLA or BALL BROS. 12 , monitor
microprocessor (8008) controlled electronics with firmware in 2708 EPROM, and power supplies (5 V at 15 A
 LOGABAXLX 180 keyboard printer with serial interface. 180 c.p.s. heavy duty dot matrix printer. Late model OGABAX Moddel 18 180 printer with parallel interface and without keyboard. Early model.
 TALLY Model 2000 high-speed (2001 I.p.m.) matrix printer with Data Products interface. With loptionall) stand HONEWWELI MOdel L1000 keyboard printer. With seriial interface operating at 110. 300 and 1200 Beud BRAND NEW. This printer is sold together with another secondhand unit suitable for spares.....II.....Fr9 SPERRY-REMINGTON Word Processor. Comprising a dual cassette tape drive logether with an IBM Goifbal
IV tyewriter. Offers very useful stand alone word processing facilities for less than the cost of

CTP CASSETYPER. Word Processor similar to above but more compact and with better facilities. Sol
topether with complete ond working SPARE electronics module contaning SPARE tape drives............ $\mathbf{E 3 5 0}$
TELETYPE Model ASR 33.20 mA current loop interface. One only, BRAND NEW................................ 19 topether with complete end working SPARE electronics module cont
TELETPE Model ASR 33.20 mA curent loop interface. One only, BRAND NEW............................. 190
HEWIETT PACKARD Model HPA1C pocket calculator complete with card reader, printer, menory module.
 mounting cabinet complete with power supply and rack slides... $\mathbf{E 5 0}$ CDC Model 9427HR HAWK Disc Drive. With one fixed platter and one top loading cartridge (not supplied having a combined capacity of 10 megabytes. The fixed platter features soft sectoring. These widely used CDC Model 9414 FALCON Disc Drive. Intended as a companion to the HAWK. but withowt removable cartridge Series 30 removable disc drive, 2.5 megabyte with industry standard interiace. These drives are hoted for their rability and eas ave low cost from XYLOGICS and several others. Fully refurbished POWER SUPPLY for above.
WANGCO Model T1222 Disc Drive. One fixed and one removable platter. Industry standard interface Lowest cost hard disc drive on the market and offering 5 megabytes of fast access storage for the price of a OKI Model 3303 WINCHESTER Disc Drive. $14^{" 1}$ drive with standard SMD interface. 40 megabyte. A XYLOGiCS interface for Q-Bus PDP 11 is zvailable at low cost. and they have successfully installed these drives for Us in the pasL BRAND NEW AND BOXED Tepe Drive. Fully refurbished unit with a current new price of over $£ 2000$. NRZ 800 WANGCOTape Drive as obove but PE 1600 b. p. i. er. 4-track read-ather-write head and capacity up to 10 megabytes
FACIT Model 4020 Paper Tape Reader. 300 c.p. 5 . TTL parallel interface. Companion to Model 4070.
FACIT Model 4070 Paper Tape Punch. High speed (75 c c.p.s.) paper tape punch with paraliel ITL int. FACIT Model 4070. As above but BRAND NEW and in original packing...
ADLER Correspondence quality I/O typew riter with electronic keyboard
Plesse note: A VT and carriage extra, all items t Visitors welcome, but by appointment please We are keen to bid competitively for all good secondhand of surplus equipment

INDEX TO ADVERTISERS

 Appointments Vacant Advertisements appear on pages 107-119| PAGE | PAGE | PAGE |
| :---: | :---: | :---: |
| Acoustical Mfg. Co. Ltd. 17 | Hart Electronic Kits Ltd. 89 | Radford Laboratory Instruments Ltd. 24 |
| Aero Electronics (AEL) 24 | Hemmings Electronics and Microcomputers 102 | Radio Component Specialists 9 |
| Ambit International 4, 88 | Henry's Radio .. . 6, 14 | Ralfe, P. F. Electronics.................................. 10.10 |
| Analogue Associates... 2 | Hilomast Ltd. .. 7 | Relay-A-Quip Lid. 86 |
| Antex Electronics Cover iii | House of Instruments Ltd. 16 | RST Valves .. 99 |
| Audio Electronics.. 13 | | |
| Audio Ltd. .. 20. | | |
| Avel Lindberg (Cotswold Electronics) 8 | ILP Électronics Ltd. 26, 27, 103 Interface Quartz Devices Lid. \qquad | Sagin, M. R. .. 100 |
| Barrie Electronics Ltd. 105 | Integrex Ltd ... 2 | Sche Tronics Lid. \qquad 86 Scopex Instruments Lid |
| Black Star Ltd. ... 24 | | Scopex Instruments Lid.. 12 |
| Broadfield \& Mayco Disposals 102 Bull, J. (Electrical) Lid. 97 | | Sescom Inc. ... 14 |
| Bull, J. (Electrical) Lid. 97 | | Shure Electronics Lid. .. 28 |
| | Keithley lnstruments Ltd. 21 | South Midlands Communications Lid. 88 |
| Carston Electronics... 22. | Kelsey Acoustics Ltd. 102 | Sowter, E. A. Lid. ... 98 |
| Chiltern Electronics 100 | | Special Products (Distributors) Ltd. 20 |
| Circuit Services... 10. . 10. | | Strumech Engineering Ltd. 103 |
| Clark Masts Ltd... 16 | | 'Stuart of Reading .. 98 |
| Clef Products (Electronics) Ltd............................ 12 | Langrex Supplies Ltd...................................... 99 | Surrey Electronics Ltd. 6 |
| Colomor Electronics ... 95 | Levell Electronics Ltd. 96 | |
| Computer Appreciation 120 | L. J. Electronics Ltd.. . . 12 | |
| Consumers Association (Which? Magazine) Loose insert | 1. J. Electronics Lid. .. 12 | Technomatic Ltd. 90,91 Tektronix UK Ltd. Cover ii |
| | | Teloman Products Lid. 6 |
| | | Tempus (MiCROL Mail Order)............................... 86 |
| Display Electronics... 10. | Magenta Electronics 106 | Thanet Electronics 92 |
| Easibind Ltd. .. 100 | Manners', R. T. Design Ltd. 106 | Thorn EMI Instruments Lidd. (AVOO) 67 |
| Eddystone Radio Lid. .. 24 | Maplin Electronic Supplies..............t. Cover iv | Thurlby Electronics (Reltech Instruments)............. 89 |
| Electrical Review Shock Cards........................... 105 | Marco Trading ... 95 | Time Base Ltd... 94 |
| Electronic Brokers Ltd.......................... 3, 5, 54, 55 | Midwrich Computer Co. Ltd...................................... 7 | |
| Electronic Equipment Co. 102 | Midmich Compuer Co. Lta................................. 7 | Valradio Ltd . .. 94 |
| Electrovalve Ltd .. 87. | | Varadio Lrd... 94 |
| EMAP (Electronic \& Computing Monthly)............ 85 | | |
| Ferranti Electronics Ltd. 15 | | Watford Electronics................................... 10. 10, 11 |
| | | Wavetek Electronics ... 98 |
| | Opus Supplies \qquad 94 | White House Electronics...................................... 86 |
| | Oric Products International Ltd........................... 25 | Wilmslow Audio .. 4 . 20 |
| Global Specialities Corp. (UK) Ltd. 101 | Orion Scientific Products Lid............................... 92 | World Tape Society ... 4 . 96 |
| GP Industrial Electronics Ltd......................... 18, 19. | | Word Tape Society ... 96 |
| Hameg Lid. | | Xtec Ltd. |
| Happy Memories ... 88 | Pantechnic ... 96 | |
| Harris Electronics (London) 8. | PM Components 22.23 | |
| Harrison Bros.. 12 | P. \& R. Computer Shop 92. | Zaerix Electronics 93, 95. |
| | - - | |
| OVERSEAS ADVERTISEMENT | Japan: Mr. Inatsuki. Trade Media - IBPA (Japan, B. 212. | Mr Jacir Mentel The Farley C |
| AGENTS: | Azabu Heights, 1-5-10 Roppongi, Minato-ku, Tokyo 106. | ing, Cleveland, Ohio 4415 - Telephone: (216) 6211919. |
| France Belgilum: Norbert Hellin, 50 Rue de Chemin Veat, F-9100, Boulogne, Paris. | Telephone: (03) 585,0581. | Mr Ray Rickles, Ray Rickles \& Co., P.O. Box 2028, Miami Beach. Florida 33140 - Telephone (305) 5327301 |
| Veat, F-9100, Boulogne, P | United States of America: Ray Barnes, JPC Business | Beach, Florida 33140 - Telephone (305) 5327301.
 Mr Tim Parks, Ray Rickles \& Co., 3116 Maple Drive N.E. |
| Hungary: Mrs Edit, Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosilget. | Press, 205 East 42nd Street, New York. NY 10017 - Telephone: (212) 867-2080. Telex: 238327. | Atlanta, Georgia 30305. Telephone: (404) 2377432. |
| Agency, Budapest XIV, Varosifget.
 Telephone: 225008 - Telex: Budapest 22-4525 | | Mike Loughlin, IPC Business Press, 15055, Memorial Ste 119, Houston, Texas 77079 - Telephone (713) 7838673. |
| INTFOIRE | Walker Dive, Chicago, llinois 60601 - Telephone: (312) | |
| | 63074. | Canada: Mr Colin H. MacCulloch, International Advertis- |
| Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero, Via Mantegna 6, 20154 Milan.
 Telephone: 347051 - Telex: 37342 Kompass. | Mr Victor A. Jauch, Eimatex international, P.O. Box 34607, Los Angeles, Calif. 90034, USA - Telephone (213) 821 1~ 8581 - Telex: 18-1059. | ing Consultants Ltd., 915 Carlton Tower, 2 Carlton Street, Toronto 2 - Telephone (416) 3642269.
 - Also subscription agents. |
| Printed in Great Britain by QB Ltd., Sheepen Place, Colchester, and Published by the Proprietors IPC ELECTRICAL-ELECTRONIC PRESS LTD., Quadrant House, The Quadranī, Sutton, Surrey. SM2 SAS, telephone 01-661 3500 . Wireless World can be obrained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gotch Lid. INDIA: A. H. Wheeler \& Co, CANADA: The Wm. Dawson Subscription Service Led, Gordon \& Gotch Ltd. SOUTH AFRICA: Central News Agency Ltd: William Dawson \& Sons (S.A.) Ltd. UNITED STATES: Eastern News | | |
| | | |
| | | |
| The Wm. Dawson Subscription Service Lid, Gordon \& Gotch Ltd. SOUTH AFRICA: Central News Agency Ltd: William Dawson \& Sons (S.A.) Ltd. UNITED STATES: Eastern News Distribution Inc., 14th floor, 111 Eighth Avenue, New York, N. Y. 10011. | | |

And including it in the NEW Antex all-in-one pack!
 The new ST4 stand with the big sponge on it's own

WÉRE MAKING A STANID FOR BETTER SOLDERING! or in the SK5 and SK6 kits with the new CS and XS low-leakage soldering irons. These new models have tougher, cooler handles, detachable hooks, the well known Antex doubleshaft insulation, the big range of push-on bits and fitted with or without moulded-on

Contains Model CS230 iron and the ST4 stand. R.R.P. £6.25
SK6 Soldering Kit
Contains Model XS230 and the ST4 stand. R.R.P. $£ 6.35$

SK5-BP and SK6-BP Soldering kits fitted with safety plugs.
safety plugs.
SK5-BP kit R.R.P. $£ 7.10$ SKG-BP kit R.R.P. $£ 7.20$

Model XS-BP - 25 Watts
Fitted with safety plug.
240 volts
Model XS - 25 Watts
R.R.P. £4. 70
50. 24. and 12
R.R.P. $£ 4.80$

Model CS - 17 Watts
Available for 240 and 115 volts
R.R.P. $£ 4.60$

50,24 and 12 volts \rightarrow temelten
R.R.P. £4.80

Model CCN - 15 Watts
Codel chic
R.R.P. $£ 5.00$

Model C - 15 Watts
Stainless steel shaft only.
240 and 115 volts
R.R.P. $£ 4.60$

50 and 24 volts
R.R.P. $£ 4.80$

TCSU1 Soldering Station
for safe 24 volt temperature-controlied miniature soldering iron, variable tip
temperature $65-430^{\circ} \mathrm{C}$, antistatic
earth connection,
with XSTC or CSTC iron. R.R.P. $£ 40.50$

TRADEPRICES

 from

 from
 กin \mathbb{P} LunLook at these examples from our huge range.

Code	Description	Cat. Page	Retail Price Incl. VAT	Min. Trade Qnty.	Price Each for Min. Tr. Quantity excl. VAT
XB54」	Aerial Rotator	25	£39.95	5	£29.00
YGOOA	Ni-Cad AA 500mAh	26	£1. 25	50	75p
FB15R	Electrolytic 2.2uF 63 V	90	10p	500	$4.5 p$
FB22Y	Electrolytic 10uF 25 V	90	9p	1000	$3.5 p$
FB49D	Electrolytic 100uF 25 V	90	14p	500	$6.5 p$
FB73Q	Electrolytic 470uF 25 V	90	30p	250	12p
FB83E	Electrolytic 1000uF 25 V	90	40p	250	17p
FB96E	Electrolytic 4700uF 25 V	90	£1.25	50	58p
YG41U	27 MHz Rubber Duck	99	£4.75	25	£2.95
XG13P	1.5 m CB Aerial	99	£13.95	5	£8.45
LB72P	2-Station Intercom	102	£8.75	10	£4.95
HF85G	$1 / 4 \mathrm{in}$. Jack Plug plastic barrel	142	19p	500	9 p
HF88V	1/4in. Jack Plug stereo plastic barrel	142	28p	250	15p
HF87U	$1 / \mathrm{in}$. Jack Plug metal barrel	142	39p	250	18p
HF89W	1/4in. Jack Plug stereo metal barrel	142	45p	250	22p
RW67X	13A nylon Mains Plug British	157	79p	100	45p
WL27E	LED 0.2 in . Red	182	12p	500	6 p
WL28F	LED 0.2 in . Green	182	19p	500	10p
WL29G	LED 0.2 in . Orange	182	33p	250	19p
WL30H	LED 0.2in. Yellow	182	17p	500	9p
RK07H	Panel Meter 100uA	197	£2.95	25	£1.95
RK09K	Panel Meter 1 mA	197	£2.95	25	£1.95
RK19V	Panel Meter VU	197	£2.95	25	£1.95
YQ47B	Dual VU Meter	197	£3.90	25	£2.30
YR84F	Professional Plugblock	201	£6.95	10	£4.95
RX96E	20 mm Fuse Holder	250	45p	250	24p
M10R-M1M	Metal Film 0.4W 1\% Resistor	262	2p	1000	1 p
FW00A.FW09K	Rotary Potentiometers linear	265	$45 p$	250	32p
FW21X-FW29G	Rotary Potentiometers log	265	45p	250	32p
QL80B	1 N4148	270	4 p	1000	2p
QL22Y	741C 8-pin DIL	270	23p	500	12p
QH66W	NE555	270	21p	500	12p
QQ06G	4164 64K dynamic RAM	271	£5.99	100	£3.84
BL18U	DIL Socket 14-pin	336	11p	500	7.5 p
BL17T	DIL Socket 8 -pin	336	9 p	1000	4.5 p
WF14Q	Stereo Headphone with slide volume controls	342	£7.99	10	£4.95
FH00A	Sub-min Toggle Switch SPDT	347	70p	100	45 p
FH04E	Sub-min Toggle Switch DPDT	347	99p	100	59p
FF73Q-FF76H	Rotary Switch break before make	348	74 p	100	46 p
FH42V-FH45Y	Rotary Switch make before break	348	70p	100	42p
YW93B	1000 ohm per volt Multimeter	362	£4.85	25	£2.95
YW68Y	20,000 ohm per volt Multimeter with Transistor Tester	363	£16.25	5	£10.45
BR75S	Box-joint Insulated 41/2in. Cutters	370	£6.93	10	£4.45
BR78K	Box-joint Insulated 41/2in. Pliers	371	£5.72	10	£3.95

Most items in our catalogue are available at competitive trade prices; the bigger the quantity the better the price. If you find the example prices attractive, then contact us now with your requirements for a quotation. Phone Southend (0702) 552911 or write to us at P.O. Box 3, Rayleigh, Essex, SS6 8LR. Please ask for trade sales desk.

Copies of our catalogue are available in all branches of W.H. Smith. price $£ 1.25$. In case of difficulty, send $£ 1.50$ to our mail-order address. Overseas price $£ 1.90$.

Maplin Electronic Supplies Ltd.

All mail to P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel. (0702) 552911 Shops at 159 King St., Hammersmith, W6. Tel. 01-748 0926. Lynton Square, Perry Barr, Birmingham. Tel: 021.3567292 284 London Road, Westcliff-on-Sea, Essex. Tel. (0702) 554000. Shops closed all day Monday.
ww 2183

[^0]: Tektronix UK Limited
 PO Box 69, Harpenden, Herts. AL5 4UP
 Tel: Harpenden 63141 Telex: 25559

[^1]: Audio compressor/limiter-Dec. 1975-1 s.s. (stereo) Cassette recorder-May 1976-1 s.s.
 Audio compander-July 1976-1 s.s.
 Audio preamplifier-November 1976-2 s.s.
 Additional circuits-October 1977-1 s.s.
 Stereo coder-April 1977-1 d.s. 2 s.s.
 Low distornon disc amplifier (stereo) -September 1977-1 s.s
 Low distortion audio oscillator-September 1977-1 s.s.
 Low distortion audto oscilator-September $1977-1$ s.s.
 Synthesized f.m. transceiver-November $1977-2 \mathrm{~d} . \mathrm{s} .1$ s.s. Synthesized f.m. transceiver-Nov
 Morsemaker-June 1978-1 d.s.
 Morsemaker-June 1978-1 d.s.
 Metal detector-July 1978-1 d.s.
 Metal detector-July 1978-1 d.s.
 Oscilloscope waveform store-October 1978-4 d.s.
 Regulator for car alternator-August 1978-1 s.s.
 Wideband noise reducer - November 1978-1 d.s.
 Versatile noise generator-January 1979-1 s.s.
 200 MHz frequency meter-January 1979-1 d.s. High performance preamplifier-February 1979-1 s.s. Distortion meter and oscillator-July 1979-2 s.s. Moving coil preamplifier-August 1979-1 s.s. Multi-mode transceiver-Ociober 1979-10 ds Amplification system-Oct. 1979-3 preamp i poweramp Digital capacitance meter-April 1980-2 s.s. Colour graphics system-April 1980-1 d.s. Audio spectrum analyser-May 1980-3 s.s. Multi-section equalizer-June 1980-2 s.s.
 Floating-bridge power amp-o-Oct. $1980-1 \mathrm{s.s}$. (12 V or 40 V) Nanocomp 6802 or 6809 - Jan., July, 1981 - 1 d.s. 1 s.s. Cassette interface - July, 1981 - 1 s.s. Eprom programmer - Jan., 1982-1 d.s...
 Logic probe - Feb., 1981 - 2 d.s.
 Modular frequency Counters - March, 1981 - $8 \mathrm{~s} . \mathrm{s}$.
 Opto electronic contact breaker (Delco) - April, 1981 - $2 \mathrm{~s} . \mathrm{s}$
 CB synthesiser - Sept. - 1 d.s....
 EB synthesiser - Sept. - 1 d.s.
 $-1 \mathrm{s.s} \quad 84.00$
 Boards and glassfibre roller-tinned and drilled. Prices include VAT and UK postage. Airmail add 30%, Europe add 10%. Insurance 10%. Remittance with order to:
 M. R. SAGIN, NANCARRAS MILL, THE LEVEL CONSTANTINE, FALMOUTH, CORNWALL

[^2]:

[^3]: *Defined in the glossary.

[^4]: *Solas is the writer's acronym for Salt Water And Soot. - Ed.
 \dagger Some materials seem unsuitable for short aerials, especially bronze wire. Thin steel, possibly copperclad, should be used; galvanized single steel is also worth testing, but it should be smooth so that it doesn't accumulate soot.

[^5]: Louis Macari is in the Microelectronics Educational Development Centre at Paisley College of Technology.

[^6]: *The exception I have in mind is the double-slit diffraction experiment with electrons, first performed in 1961 by Professor Jönsson of Tübingen. Like its counterpart in optics (the October article discusses the basis of the duality doctrine in light) it remains a miracle; modern physics does not even try to explain it.

[^7]: Adrian Bailey is technical tutor at the Centre for Industrial Studies within the department of engineering production, Loughborough University of Technology.

[^8]: Antenna Systems Division
 Marconi Communication Systems Limited,
 Lane Works, Waterhouse Lane, Chelmsford CM1 2QX, England Tel: 0245353221 Telex: 99108

[^9]: LAMPS AND CABLE. Large amount of lamps and cable for sale - all types and sizes, domestic and industrial. Telephone MIRAGE LIGHTING on HITCHIN (0462) 733388 between 10 am -7pmin

