

The problem: logging telephone and radio messages without spending a fortune on equipment or hiring an expensive technician to operate it.

The solution: the new Racal Recorders Autostore. SIMPLICITY
With its automatic cassette-loading and fully automatic changeover from one deck to another, Autostore can-quite literally-be operated by whoever happens to be around.

And it provides over 24 hours of unattended continuous recording on eight channels. VERSATILITY
Able to log radio and telephone messages simultaneously, Autostore can form part of a new system - or fit just as easily into an existing one.

And its uses vary from ambulance, fire, police and security applications to the recording of financial transactions, conferences, oil installation communications and taxi services.

Racal Recorders

Racal Recorders Limited, Hardley Industrial Estate, Hythe, Southampton, Hampshire SO46ZH, England. Tel: (0703) 843265 Telex: 47600
RACAL

RELIABILITY

Available in 4 or 8 channel versions, and with integral micro-processor controlled automatic Timesearch capability to enable rapid message retrieval, Autostore is engineered to the very highest standards by the company which pioneered air traffic control recording techniques. FULL DETAILS
For full details of Autostore send off the coupon today.
lam interested in recording my communications accurately and reliably. Please:

\square arrange for ademonstration at my own premises

Name
 Position

Company \qquad
Address
Tel
Racal Recorders Limited, Hardley Industrial Estate, Hythe, Southampton, Hampshire SO4 6ZH, England.

Front cover is a montage of an eloctronic watch circuit superimposed on an Aztec calendar wheel. Picture by Paul Brierley.

NEX MOMM

Epromemulatorl programmer - enables program evaluation without constant alteration of eprom. When testing is finishod, emulator transfers its contents to eprom.
Selective call for c.b. radio - allows keypad-generated data frame to modulate c.b. carrier and call designated receiver.
Simple low-frequency oscilloscope - suitable for audio work. Vertical bandwidth is 1 MHz at $50 \mathrm{mV} / \mathrm{cm}$ - triggered or free-running sweep. Costs around E 40 .

Current issue price 70 p , back issues (if available) E1, at Retail and Trade Counter, Units 1 \& 2, Bankside Industrial Centre, Hopton Street, London SE1. Available on microfilm; please contact editor.
editor. By post, current issue $£ 1.6 p$, back issues (if avaitable) $£ 1.50$, order and payments to EEP General Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey SM25AS.
Editorfal \& Advertising offices: Quad rant House, The Quadrant, Sutton, Sur rey SM2 5AS
Telephones: Editorial $01-661$ 3500. Advertisina 01-661 3130 .
Telegrams/Telex: 892084 BISPRS G
Subscriptlon rates: 1 year £12 UK and
S15 outside UK.
Student rates: 1 year $\mathbf{~} 8$ UK and $\mathbb{£ 1 0} 0$
outside UK outside UK
Distribution: Quadrant House, The Quad rant, Sutton, Surrey SM2 5AS. Telephone 01-661 3500
Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 044459188 Please notify a change of address
USA: \$39 surface mail, \$98.30 airmail US subscriptions from IPC B.P. Subscriptions Office, 205 E.42nd Street, NY 10017.

USA mailing agents: Expediters of the Printed Word Lid, 527 Madison Avenue, Suite 1217, New York, NY 10022. 2nd class postage paid at New York.
(C) IPC Business Press Ltd, 1982 ISSN 00436062

ELECTRONICS BROADCASTING AUDIO

AUGUST 1982 Vol 88 No 1559

27

BY ANY OTHER NAME

80-100w MOSFET AUDIO AMPLIFIER
by J. L. Lnsiey Hoed

DISC DRIVES

by J. R. Wathinson

ELECTROMAGNETIC ANALOGY

CIRCUIT MODELLING BY MICROCOWPUTER

43 DIGITAL DIVIDERS WITH SYMMETRICAL OUTPUT
(o) Comidlus yan Kolten

DIGITAL FILTER DESIGN

by B. II, C. Chbotirnim and P. lia, fluphes

MICROCOMPUTER LINE PRINTER

LETTERS

METEOSAT HICH-RESOLUTION IMAGES

Dy M. L. Giristies0n

NEWS OF THE MONTH

CIRCUIT IDEAS

COMMUNICATIONS

METWORK ANALYSIS WITH A ZX81
by L. E. Weaver
COST-EFFECTIVE ELECTRONIC IGNITION

DESIENING WITH MICROPROCESSORS
 by Io. Zissos ano dand Pleus

by Fi. S. Chma and F.E. Vermeulen

Amcron industrial

- POWER RESPONSE DC $-45 \mathrm{KHz} \pm 1 \mathrm{~dB}$

OUTPUT POWER IN EXCESS OF 1.5KW INTO 2.75 Ohm LOAD (CONTINUOUSR.M.S.)

* D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2KVA
* HARMONIC DISTORTION LESS THAN 0.05\% DC-20KHz AT 1 kW INTO 6 OHMS
* PLUG-N MODULES CONSTANT VOLTAGE/CURRENT, PRECISION OSCILLATORS.
* UNIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS.
\star OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD.
* FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD.
* TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4 kW
* INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS.
+ 3-YEAR PARTS AND LABOUR WARRANTY.
\star UNITS AVAILABLE FROM 100VA-12KVA.

P.O. BOX 3 NORFOLK NR17 2PF Tel: 0953-452477

Analogue Associates

INSTANT PRINTED CIRCUITS!!

Make your own - to professional standards - within minutes using either "Fotolak" Light-sensitive Aerosol Lacquer or Pre-coated board. No Darkroom or Ulira-violet source needed!
Fotolak aerosol \qquad . $£ 2.50$ (30p) Developer. \qquad . $£ 0.30$ (15p) Ferric Chloride....................£0.60 (45p) Acetate Sheet. \qquad £0. 15 (15p)

Copper-clad Fibre-glass Boards:
Single-sided
\square . 2 ft. sq. (45p) $£ 2.25 \mathrm{ft} . \mathrm{sq}$. (60 p)
Pre-coated Fibre-glass Board:
$8^{\prime \prime} \times 41 / 2^{\prime \prime} \ldots . . £ 1.75(25 p) \quad 16^{\prime \prime} \times 9^{\prime \prime} \ldots £ 7(60 p) \quad 24^{\prime \prime} \times 18^{\prime \prime} \ldots £ 18$ ($£ 1.70$) $8^{\prime \prime} \times 9^{\prime \prime} \ldots . . . £ 3.50(45 p) \quad 24^{\prime \prime} \times 12^{\prime \prime} \ldots £ 13(£ 1.20)$ Eurocard $£ 1.25(25 p)$

Double-sided Board (all sizes) add 20\%
Postage Individual items in brackets. Maximum charge $£ 2$ per order. WHITE HOUSE ELECTRONICS
P.O. Box 19, Praa Sands, Penzance TR20 9TF Telephone: Germoe (073-676) 2329

TV TUBE REBUILDING

Faircrest Engineering Ltd. manufacture a comprehensive range of equipment for processing all types of picture tubes, colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team.

Full training courses are individually tailored to customers requirements.

For full details of our service contact Neil Jupp

FAIRCREST ENGINEERING LTD.

4 Union Road, Croydon, CRO 2XX 01-684 1422/01-684 0246

WW - 059 FOR FURTHER DETALLS

HILOMAST LIMITED

THE STREET HEYBRIDGE - MALDON ESSEX CM9 7NB ENGLAND Tel. MALDON (0621) 56480 TELEX NO. 995855

Toroidal Transformers

THE COTSWOLD "BUDGET RANGE" OFFERS BUILT-IN QUALITY COUPLED TO A RELIABLE DELIVERY SERVICE MOST TYPES FROM STOCK

IEC 65 VDE 0550 BS 415 TO ORDER

PHONE TELEX, WRITE FOR DATA SHEET AND PRICE LIST

Budget Range Stockist
BARRIE ELECTRONICS LTD.
3 The Minories, London EC3N 1BJ. 01-488 3316

Cotswold Electronics Ltd.

Unit T1, Kingsville Road, Kingsditch Trading Estate, Cheltenham GL51 9NX Tel: 0242-41313

Telex: 897106

WW - 040 FOR FURTHER DETAILS

BADIAYION DBTBCTIOLS
 BE PREPARED
 Ideal for the experimenter
 - THIS OOSIMETER WILL AUTOMATICAILY OETECT GAMMA ANO X-RAYS
 UUIT IS SIZE OF FDUNTAIN PEN \& CLIPS ONTO TOP POCKET
 - PRECISION INSTRUMENT
 - MANUFACTURERS CURRENT PRICE OF A SIMILAR MODEL OVER $£ 25$ EACH - 0-5 R
 ign manutacture
 Tested and fully guaranteed, Ex-stock delivery. As supplied to Fire Services/Civil Defence HENRTE Official Orders welcome CALLERS: 404 EDGWARE ROAD, LONDON W2 1 ED Mail Orders/Export Enquiries to: 11-12 Paddington Green, London W2

WW - 044 FOR FURTHER DETAILS

The toroidal transformer is now accepted as the standard in industry，overtaking the obsolete laminated type．Industry has been quick to recognise the advantages toroidals quick io recognise the ladvantiages size，weight， offer in size，weight， 10.
thanks to I．L．P．，PRICE．
Our large standard range is complemented by our SPECIAL
DESIGN section which can offer a prototype service within
7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty．

					甬
 	 	 	 	ごいいたいだす。	\％
N		 	 	 	筑會
	げロ			$488 \% 8 \times 54$	気发
					部

IMPORTANT：Regulation－All volitages quoted afe FULL LOAD．Please add regulation ligure to secondary vollage to obtain of load voltage．
The benefits of ILP toroidal transformers
ILP toroidal transtormers are only hall the weight and height of their laminated equivalents，and are available with $110 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V primaries coded as follows： For 110 V primary insert＂ 0 ＂in place of＂X＂in type number．
For 220 V primary（Europe）insert＂ 1 ＂in place of＂X＂in type number
For 240 V primary（UK）insert＂ 2 ＂in place of＂X＂in type number．
How to order Freepost：
Use this coupon，or a separate sheet of paper，to order these products，or any products from other ILP Electronics advertisements．No stamp is needed if you address to Freepost．Cheques and postal orders must be crossed and payable to ILP Electronics Lid． Access and Barclaycard welcome．All UK orders sent within 7 days of recelpt of order for single and small quantity orders．
Also available at Electrovalue，Maplin and Technomatic

Please send
Total purchase price
I enclose Cheque \square
Postal Orders \square
Int．Money Order
Debit my Access／Barclaycard No
Name
Address

Signature

Post to：ILP Electronics Ltd．，Freepost 5，Graham Bell House，Roper Close
Canterbury CT2 7EP，Kent，England．
Telephone Sales（0227）54778：Technical（0227）64723：Telex 965780.

New Fluke

 41／2 Digit Hand－held
D．M．M．s

Now in Stock

Basic dc accuracy $0.04 \%: 10 \mu \mathrm{~V}$ ． 10 nA and $10 \mathrm{~m} \Omega$ sensitivity． Display annunciators for low battery （BT）and special functions：frequency （kHz）．dB．continuity $[\rightarrow-, \| \mid$ and relative reference（REL）．
Autoranging $\mathrm{M} \Omega$ measurements from 2 $\mathrm{M} \Omega$ to $300 \mathrm{M} \Omega$
Conductance functions for resistance measurements to $10.000 \mathrm{M} \Omega$ ． Separate constant－current source diode test function for checking
semiconductor junctions．
Full range capability for voltage，current． resistance $(200 \mu \mathrm{~A}, 200 \mathrm{mV}$ and 200Ω ranges）．
Wideband True RMS AC measurements to 100 kHz
Overload protection to 750 VAC or 1000 VDC on voltage inputs and 500 V on resistance．Protection on current inputs provided by a 2A／250V fuse in line with a heavy－duty 3 A 600 V fuse． Sophisticated self－diagnostucs provided for all range and function selections plus LCD display，battery and CMOS
circuitry．
Fluke＇s 8062 A makes many of the same measurements as the 8060A，at a lower price．
Continuity and relative reference
functions identical to 8060 A
True RMS measurements to 30 kHz
Basic oc accuracy 0.05% ： $10 \mu \mathrm{~V}$ ． 10 nA and $10 \mathrm{~m} \Omega$ sensitivity．
Fluke 8060A
Fluke 8062A
£275．00
£210．00
£85．00
．$£ 95.00$
£125．00 Fluke 80218 ．With 2 year warranty Fluke 8020B．With 2 year warranty Fluke 80248．With 2 year warranty

Fluke 8050A
Fluke 8012 A
Fluke 80 IOA

ACCESSORIES

A81－230 Battery eliminator
C90 Carry case for hand held
801－600 Amp clamp
80J－10 Current shunt 10 A
$80 \mathrm{~K}-40 \mathrm{H} . \mathrm{V}$ ．probe 40 kV
$80 \mathrm{~K}-6 \mathrm{H} . \mathrm{V}$ ．probe 6 kV
80T－150 Temperature probe
80T－H Touch hold probe
83RF R．F．probe 100 MHz
85 RF R．F．probe 500 MHz ．
Y 8102 Thermocouple probe
Y8103 Bead thermocouple
104 K type thermocouple termination 8133 Deluxe test leads．

The above prices do not include carrlage or VAT（ 15% ）．
Simply Phone or 5 Telex your order for Immediate dlspatch．
Electronic Brokers Ltd 61／65 Kings Cross Road London WC1X 9LN
Telephone：01－278 3461
Telex： 298694 Elebro G
wW－201 FOR FURTHER DETAILS
$E 14.00$
E10．00
E68．00
E22．00
E40．00
E72．00
£36．00
E40．00
ع69．00
41.00
18.00

58．00
E14．00

MainsModel $£ 255.00$ Mains Battery $£ 285.00$ MainsModel $£ 229.00$ MainsBattery $£ 257.00$ Mains Model $£ 175.00$ Mains Battery $£ 203.00$

Superior Quality Precision Made NEW POWER RUEOSTATS

New ceramic construction,
sembly, continuously
25 WAlt $10 / 2550100 / 150 / 250 / 500 / 1 \mathrm{~K} \Omega 1.5 \mathrm{k} \Omega$ E3. $10+300$ P\& AE 3.91 inc VAT)
50 WATT 250Ω £5.50 $\mathbf{5} 50 \mathrm{p}$ P\&P. (E8. 90 inc . VAT)
100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 300 / 500 / 1 \mathrm{k} / / 1.5 \mathrm{k} \Omega / 2.5 \mathrm{k} \Omega /$ bleck SIrver Skirted Knob calibrated In Nos, 1-9, 1 1/2ín dia. brass

SOLID STATE E.H.T. UNIT
Input 230 V A.C. Fully isolated. Aprox. 15 KV . Built-in 10 sec. Timer. Easily modified for 20 sec. 30 sec. to continuous operation. Size
$155 \times 85 \times 50 \mathrm{~mm}$. Price $55+75 \mathrm{p}$ P\&P. (Total inc. VAT $\mathrm{E6} 61$).
N.E.C. Geared Motor. $152 \mathrm{rpm}, 200 \mathrm{lb}$. in. 230 V
AC 50 Hz . Ratio capacitors. Fractlon of maker-s preves. Price:
E37.50 + E\& plp. (total incl. VAT EA7.73).

240V A.C. SOLENOID VALVE
Designed for Air/Gas at 0-7. Water 0-5 psi. Inlev/outlet 3/8". Forged brass body. Manuf. Dewraswitch Asco.

METERS (New) - 90 mm DIAMETER
AC Amp. Type $62 \mathrm{T2} 2: 0,1 \mathrm{~A}, 0-5 \mathrm{~A}, 0-10 \mathrm{~A}$
DCAmp. Type 65C50-5A, 0-10A, 0-50A, 0-100A. OC Voh. 15V.
 Exceot
ULTRA VIOLET BLACK LIGHT
FLUORESCENT TUBES
4t 40 watt 22.70 inc. VAT $£ 10.00$ (callers only).
$2 \pi 20$ watte $\mathrm{E6} .20$. Post $£ 7.25$ (E8.57 inc. VAT \& P) (For use in standard bi pin fittings).
9 in 6 watt $£ 2.50+P \& P 450$ ($£ 3.39$ inc. VAT). 9 in 6 watt $\mathcal{Z 2 . 5 0}+\mathrm{P} \mathrm{\& P45p}$ (E3. 39 inc. VAT).
$\operatorname{Sin} 4$ watt E2.50 + P\& P 45p (E3.39 inc. VAT). Complete ballast unit for either $6 \mathrm{~V}, 9 \mathrm{~V}$ or 12 V tube 230 V AC £5.50 Post 55 p ($\mathrm{E6}, 96$ inc. VAT \& P). Also available for $12 \mathrm{VDC} \mathbf{E 5 . 5 0}$
Post 55 p ($£ 5.96$ inc. VAT \& P).

BLACK LIGHT BULBS
Self-ballasted Mercury U.V. 175 W Bulbs. Available for either B.C or E.S. fitting Price inct. p\&p \& VAT $\& 11.50$.
Black Light U.V. Tubes from 6 in to Black Light U.V. Tubes from 6 in to 4 t from stock, Foolscap s.a.e for details.
inc. VAT \& P) ANO BALLAST complete £38.00 Post $£ 3.50$ (£47.7

VARIABLE VOLTAGE TRANSFORMERS INPUT 230/240V a.c. 50/60 OUTPUT $0-260 \mathrm{~V}$ 200 W 1 smp inc. a.c. voltmoter E 15.00 $0.5 \mathrm{KVA}\left(2^{1} / 2 \mathrm{amp} \mathrm{MAX}\right)$ $1 \mathrm{KVA}(5$ amp MAX)
$2 \mathrm{KVA}(10$ amp MAX) $2 \mathrm{KVA}(10 \mathrm{amp} \mathrm{MAX})$
$3 \mathrm{KVAA}(15 \mathrm{amp}$ MAX) $5 \mathrm{KVA}(25$ amp MAX$)$
$10 \mathrm{KVA}(50 \mathrm{amp} \mathrm{MAX})$ $\varepsilon 25.00$
$\varepsilon 41.00$
$ع 49.00$
$ع 79.00$ E 174.00
$\mathbf{F} 270.00$
 3-PHASE VARIABLE VOLTAGE TRANSFORMERS
Dual input $200-240 \mathrm{~V}$ or $380-415 \mathrm{~V}$. Ster connected
 0 KVA 16 amp per phase max LT TRANSFORMERS 3.013 V at $1 \mathrm{amp} £ 2.80$ P\& P 75 p (f 4.08 inc VAT 0.15 V at $24 \mathrm{amp}, 0-30 \mathrm{~V}$ at $12 \mathrm{amp} £ 20.40 \mathrm{P} \mathrm{\& P} £ 2.3$ (E28.11 inc VAT $0.6 \mathrm{~V} / 12 \mathrm{~V}$ at 20 amp £ 16.20 P\& P £2.00 (inc VAT £20.93). 0.12 V at 20 amp or 0.24 V at $10 \mathrm{amp} £ 14.90$ P\&P $£ 2.00$ ($\mathbf{E 1 9 . 4 3} \mathrm{inc}$ $0.6 \mathrm{~V} / 12 \mathrm{~V}$ at $10 \mathrm{amp} £ 9.10 \mathrm{P} \& \mathrm{P} £ 2.00$ (inc VAT $£ 12.76$). $0.6 \mathrm{~V} / 12 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V} / 20 \mathrm{~V}$ at $20 \mathrm{amp} £ 20.90$ PSP $£ 2.00$ ($£ 26.68$ inc VAT $0.10 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V}$ at 10 amp E11.55 P\&P E2.00 inc P\&P ($£ 15.58 \mathrm{inc}$
TINDUSTBIAL STROBE. Suitable for both industrial and educational purposes. Kit. when assembled produces a variable speed 1 to approx. 70 flash per second. Light output approx. 0.5 joules. Price, less case, $£ 27+£ 2$ P\&P (total incl. VAT £33.36). Suitable case $£ 11+£ 2$ P\&P (total incl. VAT £14.95).
FROM STOCK AT PRICES THAT DEFY COMPETITION!

AC GEARED MOTDRS

OC MOTORS
MICROSWITCHES RELAYS REED SWITCHES SOLENOIDS
PROGRAMME TIMERS
C.F. BLOWERS aC CAPACITORS STROBE KITS FLASHTUBES CONTACTORS SYNCHRONOUS MOTORS Phone in your enquiries

EPROM ERASURE KIT

Why waste monay? Bulld your own EPROM ERASURE for a frac on the price of a made-up unit Complete kit of parts less case leads. Neon indicator, safety microswitch, Ballast unit, pair of bi-pin
LESS CASE. Price: $£ 13.60+75 \mathrm{p}$ P\&P. (Total incl. VAT $£ 16.50$) Warning: Tube used in this circuit is highly dangerous to the eyes Unit MUST be fitted in suitable case.
REVERSIBLE MOTOR. 42 APM 110 V A.C. 10016 in. Will operate o 230 V A.C. Speed remains at 42 rpm but torque reduces by 50% rice $£ 16.50+$ E2.50 P\&P (Total incl. VAT E21.28). rpm or 15 rpm s/pole non-reversible Mozor. Either type $\mathbf{£ 5 . 5 0}$
ach +50 p P\&P. (Total incl. VAT $\mathbf{Z 2 . 8 8)}$. N.M.S. BRAND NEW CASSETTE TVPE MOTOAS. Three types. $64.7 / 2 D$ 12 V . Price, any three, for $£ 2+50 \mathrm{p}$. P\&P (incl. VAT $£ 2.88$) N.M.S. 8.3 mpm GEARED MOTOR. Torque 35 lb . in. reversible 115 V A nc. stan capacitor. Price: $11050+E 2.00$ P\&P thotal incl. VAT 514.38). Suitable Transformer 230 V AC operation. Price $£ 8.50+$ ROTARY CARBON VANE VACUUM \& COMPRESSOR
Direct coupled to $1 / 3$ h.p. $110 / 115 \mathrm{~V}$ AC Motor 4.2 amp. 1380 rpm . Max, pressure cont. 90 p.s.i. Int. 15 p.s.i. Max. airflow $3 \mathrm{c} \mathrm{c} . \mathrm{m} . \mathrm{m}$.
 (E13 op. £10 P\&P £2 (8130 incl. VAT) WATEER PUMP
Mig. by S.P.A. Astaisi of Italy. $220 / 240 \mathrm{~V}$ AC $50 \mathrm{hz}, 2800$ A.P.M. pprox. 40 gals per min at latbs head (Non-selt-priming) Pric approx. 40 gals per min. at 101 bs head. (Non-self-priming). Price
flemo. P\&P E2. 50 (21.5 inc VAT). N.M.S. HY-LYGHT STROBE KIT Mk IV
Approx. 4 joules. Adjustabie speed. Price E27 + E2 P\&PP. (Total inc
 214.96). Foolecep s.e.e for further details inc. 8ypen Hi-Lyght INSULATION TESTERS NEW
 $\{E 58.65$ inc. VAT \& P\} 1000 VOLTS 1000 \& $£ 55.00$
P\&P $£ 2.00$ ($£ 65.55$ inc. VAT \& P). SAE for leatlet TIME SWITCH VENNER TYPE ERD Time switch $200-250 \mathrm{~V}$ a.c. 30 amp contact 2 on $/ 2$ off
every 24 hrs. at any manually pre-set time 36 . every 24 hrs. at any manually pre-set time 36 hour highast Electricity Board Specification. Price $£ 11.50$ -
P\&P $£ 1.50$. ($£ 14.95$ inc. VAT). R\&T.
 SANGAMO WESTON TIME SWITCH Type S251 $200 / 250$ AC 2 on/2 off every 24 hours. 20 amps contacts
with override switch. Diameter 4×3. orice $£ 9.50$ P\&P $£ 1$ ($£ 12.08$
inc. VAT). Also avallable with solar dis. A\&T. inc. VAT). Also avalible with solar dia. A\&T.
Also available Sangemo Weston 60 amp and Also avairabio Sangemo Weston 60 amp and AEG 80 amp. Phone Type $\$ 2881$ on, or 1 timed c/o every 24 hours,
Price $£ 11+$ £1 P\&P. ($£ 13.80$ incl. VAT). N.M.S. Price E11 + E1 P\&P. (£ 13.80 incl. VAT). N.M.S.
 N.M.S. - New Menufacturers. Surplus.
Rat- Roconditioned and Tested.

Ample parking space
Showroom open
Monday-Friday

WW - 005 FOR FURTHER DETAILS

51230
 PARABOLIC DISHES

6 ft dia. for use in satellite reception and microwave transmissions. Please send S.A.E. for full details and data sheet.

Harrison Bros.

Electronic Distributors
22 Milton Road, Westcliff-on-Sea, Essex SS0 7JX Tel. Southend (0702) 332338

The Essex Tiny Basic Computer is an ideal choice for data acquisition and process control systems. Its crystal controlled timer and interrupts provide accurate timing and fast response to critical events, while the watchoog timer ensures reliable operation. Programs can be entered and tested from an RS232 terminal, and then be copied into EPROM. Alter natively, Instant ROM modules may be used both during development and for program storage. IINSTANT ROM is the trademark of Greenwich Instruments
PRICE EXCLUDING VAT: $£ 185$ - CARRIAGE WITHIN THE UK $£ 2$ - PLEASE SEND FOR FULL INFORMATION

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for $10-14$ days delivery. Other Ranges and special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD. W.C. 1 Phone: 01/837/7937
Telex: 892301 HARTRO G
WW - 011 FOR FURTHER DETAILS

ELECTRONIC VALVES WANTED

All Types Receiving, Transmitting, Industrial PL504 - PL802 - PCL805 - CV131 - CV136 CV138 - CV329 - CV345 - CV450 - 805 - 807 -021-373 4942

$813-2 \mathrm{~K} 25$, etc.
Phone/write to:
PYPE HAYES RADIO LTD.
606 Kingsbury Road
Birmingham, B24 9PJ

21-373

Introducing two new hand-held digitial mullimeters 28 Ranges, each with full overload protection

10 amp AC/DC

SPECIFICATION 6010 \& 7030

BATTERY: Single 9 v dry cell. BATTERY LIFE: 200 hours. DIMENSIONS: $170 \times 89 \times 38 \mathrm{~mm}$. WEIGHT: 400 g inc. battery. MODE SELECT: Push button. AC DC CURRENT: $200 \mu \mathrm{~A}$ to 10 A . AC VOLTAGE: 200 mV to 750 V . DC VOLTAGE: 200 mV to 1000 V . RESISTANCE: 200Ω to $20 \mathrm{M} \Omega$. INPUT IMPEDANCE: $10 \mathrm{M} \Omega$. DISPLAY: $31 / 2$ Digit 13 mm LCD. O/LOAD PROTECTION: All ranges.

OTHER FEATURES:

Auto polarity, auto zero, battery-low indicator, ABS plastic case with tilt stand, battery and test leads included, optional carrying case.
Please add 15% to your order for VAT. Postage and packing is free of charge.
Trade prices available on application.

ARMON ELECTRONICS LTD.

Cottrell House, 53-63 Wembley Hill Road Wembley, Middlesex HA9 8BH, England Tel. 01-902 4321 (3 lines). Tlx: No. 923985

Happy Memories

Soft-sectored floppy discs per 10 in plastic library case 5 -inch SSSD £17.00 5-inch SSDD £19.25 5-inch DSDD £21.00 8-inch SSSD £19.25 8-inch SSDD £23.65 8-inch DSDD £25.50

74LS series TTL: Large stocks at low prices with D.I.Y. discounts starting at a mix of just 25 pieces. Write or phone for list.

Please add 30 p post and packing to orders under $£ 15$ and V.A.T. to total. Access and Barclaycard welcome. 24hour service on (054-422) 618. Government and Educational orders welcome; $£ 15$ minimum. Trade accounts operated-phone or write for details.
HAPPY MEMORIES (WW)
Gladestry, Kington
Herefordshire HR5 3NY
Tel: (054-422) 618 or 628

FIRST IN THE WORLD

The ICM-12, synthesized, marine hand-portable radio

FEATURES:
12 channels -6 and 16 fitted as standard.

- No waiting for crystals, can be diode pro grammed between $156-164 \mathrm{MHz}$.
Automatic semi-duplex for private and link calls.
Slide-on nicad pack recharges from mains or 12 V .
Lots of options, speaker mics, alternative battery packs, 12 V leads, and desk charg. ers.
- Complete with nicad battery pack, mains charger, belt clip, earphone, rubber antenna.
Home Office type approved. RTD HP 105 - PRICE E199.13 + VAT. Free carriage.

Also IC-M25D 25W, synthesized 25 channel VHF marine transceiver $£ 207.83$ + VAT.
Trade enquiries very welcome - Ask for Phil Hadler

can also supply the ICOM IC100E Highband PMR. Base and Mobile transceiv ers. Fully approved very compact, built-in CTCSS and at very competitive prices. Dealer outlets re. quired, ask for Dave Stockley.
Thanet Electronics CDICOM
143 Reculver Road, Herne Bay, Kent
Tel: 02273 63859. Telex 965179
WW - 038 FOR FURTHER DETALLS

WW - 012 FOR FURTHER DETAILS
HAZELTINE 1510 [MLP £880]

Only 5550
HAZELTINE 1520 [MLP £1050]

Only 5625
HAZELTINE 1552 [MLP £800]

Only£395
HAZELTINE 1410
[MLP £475]
Only 8295
Carriage and Packing extra
Electronic Brokers Ltt., $61 / 65$ Kings Cross Road, LondonWC1X 9LN. Tel:01-2783461. Telex 298694 Electronic Brokers 1
hit performance hi: competilive his it competitive

hi: reliability his service hit performance hit compelitive hit performance hit competilive

FREE Battery, Manual and Test Leads

Models MA 10, 1H, 2D, 2H, 3D, 3E and 5D

BBC

- Digital and Analog - Hand Held and Bench
- Huge LCDs - Many Safety Features
Black, Rugged and Reliable
1 Year Guarantee
$31 / 2$ and $41 / 2$ Digits
Variable Viewing Angle Hand free operation
20 Amp capability
- DCV, ACV, DCA, ACA. Ohms, Capacitance, Temp and Level in dBs
Meet DIN 40050, 43780, 57410 or 57411 Requirements
Prices from approx $\mathbf{2} \mathbf{2 6}$ inc FREE Batteries, Manual and Test Leads

HC

Mand Held Models HM 101 and 102, HC 601 and 703

- $31 / 2$ digit LCD and

Analogue

- Colour coded fron panel and edge switches
High impact ABS with Tilt stand
- Safety features meets UL 1244
Basic accuracy 0.6 and 0.2%
- Full Range of DCV, ACV, DCmA, ACmA and Ohms
Switched HI and LO ohms

- Analogue from approx $\mathbf{£ 5}$ - Digital from approx $£ 37$

House of Instruments
Clifton Chambers, 62 High Street Saffron Walden, Essex CB10 1EE Tel: (0799) 24922 Telex: 818750

hi: comperitive hi:

 Ohms

- Basic accuracy 0.8, 0.25, 0.1 and 0.05% Prices from ese include FREE batteries, hand book
KEITHLEY Hand Held Models 128, 130
Bench Models 169 and 176 State of the Art -
Full One year warranty - DCV, ACV, DCA, ACA, Ohms - Switched 'AUDIO' bleep with variable threshold
Basic accuracy $0.5,0.25$ and 0.05%
Rotary Controls =
Non skid feet and Tilt stand
- 10 Amp capability High MTBF
Many optional accessories

- Prices from approx $\mathbf{£ 8 9}$ inc FREE Batteries and Test Leads

INTEGRATED CIRCUITS

TDA2540	2.15
TDA2541	2.15

TDA2581
TDA2590

PHONE
 P. M. COMPONENTS LTD TELEX SELECTRON HOUSE, WROTHAM ROAD 965966

A SELECTION FROM OUR STOCK OF BRANDED VALVES

WW - 033 FOR FURTHER DETALLS

mentumetrics

A great variety of tools ano sets to help you turn most any Metric fastener or adjusting screw you're likely to en counter... hex socket set screws and cap screws, hex nuts

All tools precision made for exact fit. Bright nickel chrome nutdriver shafts and protective black oxide finished hex socket screwdriver blades. Plastic (UL) handles shaped for perfect grip and balance.

FIXED HAMDLE MUTDRIVERS

NUTDRIVER SHANKS
HEX SOCKET SCREWDRIVER
aLADES for use interchangeably
in Series 99 plain and ratchet type handies.

COMPACT SETS

Replacement Blades and Shanks sparately available for 99 Series Sets
Full catalogue available on request

TECHNOMATIC TECHNOMATIC TECHNOMAT
\star SPECIAL OFFER \star

	$1-24$	$25-99$
$2114 \mathrm{~L}-200 n \mathrm{~S}$	$100 p$	$90 p$
$2114 \mathrm{~L}-450 \mathrm{nS}$	$90 p$	$85 p$
$2716(+5 v)$	$250 p$	$225 p$
2532	$400 p$	$375 p$
2732	$400 p$	$375 p$
$6116 \mathrm{P}-3$	500 p	475 p

CONNECTOR SYSTEMS

1.0. CONNECTORS ISpeedthack Type)				D CONNECTORS 9 way 15 way 25 way 37 way MALE					DIP PLUGS			FLAT CABLE (Grey)						
						IDC	10 way 18 way	${ }_{80}^{60}$										
Ways	Pug	tacte	Com.						Solder		130 p	160p	250 p		Type	Type	18 way	${ }_{90 p}$
10.	${ }_{140}^{90}$	${ }^{90 \mathrm{p}}$	${ }^{200 \mathrm{p}}$	Angled					14 prn	${ }^{40 p}$	${ }^{90 \mathrm{p}}$	20 way	105p					
20	145p	$125 \square$	240 p			EMALE			16 pin	${ }^{50}$	100p	26 war	140p					
${ }^{26}$	${ }^{175 p}$	1500	3000	Solder		150,			${ }^{29} 0$ in		${ }^{175}$	${ }^{31}$ way	220p					
3	${ }^{200 p}$	${ }^{160} \mathrm{D}$	3800	Angled			3100		40 pin		225p	40 way	265p					
40	2200	1900	5500				90\%	125p				50 way	3008					
50	${ }^{235 p}$	200p	600p	Ioc ypa	20 25 way	Met	50. P ¢5					54 way	370p					

EQGE

CONNECTORS
2×18 0.1" 0.156°
2×22 wyy -140 p
2×2 way 200 p 170p
2×23 way 210 p
2×25 way
2250
$\begin{array}{lll}2 \times 25 & \text { way } & 2250 \\ 1 \times 4 & 220 \mathrm{p}\end{array}$
1×43 way 260 p
2×4 way 3950
2×13 way $395 p$
1×77 way 700
$\$ 10056.00$

EURO
CONNECTORS

21 way $180 \mathrm{p} \quad 180 \mathrm{p}$

ACORN ATOM

Buit $8 K+2 K £ 1355 K+$ Coloured Card £175 12K + $12 K £ 180$ (p \& p £ $3 / \mathrm{urit}$)
Atom PSU £7 ($\mathrm{p} \& \mathrm{p} 70 \mathrm{p}$) 3A 5V Regulated PSU £24 (p \& p £1.50)
F.P. ROM $£ 20$ 1K RAM $(2 \times 2114 \mathrm{~L}) € 2$ Tool Box Room $£ 25$ NEW COLOUR ENCODER CARD $£ 39.00$
Ask for our ATOM list for details on Sound Board and Atom Vision

PRINTERS

SEIKOSHA GP100A dot matrix printer, full graphics double width characters, up to $10^{\prime \prime}$ wide paper, self testing parallel interface f 189 + Carriage f6
EPSON MX80 Friction and Tractor, 9×9 matrix 80 CPS
bi-directional with logic seeking, variety of charac
MX80 F/T $1 £ 350+£ 6$ carr. MX 80 F/T 2 with High Res Graphics $£ 360+£ 6$
BMC 12" Green Screen Monitor $\mathbf{£ 1 0 0}+\mathbf{£ 6}$ carr

BBC COMPUTER UPGRADE
 MEMORY

IC61-68 16K RAM 100nS AP3 £25.60
PRINTER \& USER PORTS
IC69, 70, PL9, 10 £8.50 SK 10 with $36^{\prime \prime}$ Cable $£ 2.20$
$36^{\prime \prime}$ Printer Connector Lead Complete $£ 13.50$
SK9 with $36^{\prime \prime}$ Cable $£ 3.30$
ANALOGUE PORT
IC73. SK6 £6.80 PL6 £1.60 PL6 + Hood with $36^{\prime \prime}$ Cable $£ 5.00$ F.D. PORT

IC77-87 + PL8 £44 SK8 with $36^{\prime \prime}$ Cable $£ 3.50$
BUS PORT
IC71-72 + PL11 $\mathbf{〔} 3.30$ SK11 with $36^{\prime \prime}$ Cable $£ 3.50$ TUBE PORT
PL12 $£ 3.00$ SK 12 with $36^{\prime \prime}$ Cable $£ 3.90$

SOFTY II EPROM PROGRAMMER

The complete microprocessor development system for both Engineers and Hobbyists. You can develop programs, debug, verify and commit them to EPROMs. Will accept most +5 V EPROMs. Can also be used as a ROMULATOR. Full review in September ' 81 P.E. Built unit complete with PSU and TV lead £169

MENTA

New 280 Development System. Plugs into TV and cassette recorder. 40 key direct ASSEMBLER/EDITOR, 24 bits of $1 / 0$. ideal for study, micro control and robotics. PSU \& TV lead incl.
£115

TECHNOMATIC TECHNOMATIC TECHNOMAT

OATA SHEET3

Catyoned
 Used test equipment, calibrated to Manufacturer's original specitication.

Prices frome

ACOUSTIC \& VIBRATION

BRUEL \& KJAER
1621 Tunable Band Pass Filter * 2113 Audio Frequency Spectromete 2203 Sound Level Meter
2215 Sound Level Meter inc. Oct. Fitter
2218 Sound Level Meter inc. Leq. 2305B Level Recorder inc. 50 dB pot.
2625 Vibration pick-up amplifier
2808 Power Supply/ Mains Adapter
2972 Tape Signal Gate
4230 Sound Level Calibrator
4423 Noise Dosemeter
4424 Noise Dosemeter
CASTLE ACOUSTICS CS181 Sound Level Meter \& Calibrator C.E.L.

144 Environmental Noise Analyser

DAWE

419C Audio White Noise Generator
1461 CV Vibration Analyser
1463 B \% Octave filter
1465 Octave Band Filter
KISTLER
504A Charge Amplifier
WAYNE KERR
B731B Vibration Meter inc. probe
BRIDGES \& V and I STANDARDS
HEWLETT PACKARD
4261A Digital Automatic LCR Bridge 4342 OLC Meter $22 \mathrm{KHz}-70 \mathrm{MHz}$
MUIRHEAD
D30A DC Bridge 0.15\%

WAYNE KERR

B224 RCL Bridge 0.1\%
8521 LCR Bridge
B801/CU681/0801/SR268 VHF
Admittance Bridge with source and
detector transistor adapter \& D.C. Control
Unit for transistor measurements

COMMS \& CABLE TEST

 EQUIPMENTDYMAR
BC282 Battery charger for 883 Radio Telephone
883 Radio Telephone - VHF band - hand held
MARCONI
TF2091 White Noise Generator (exc. filters) TF2092 White Noise Receiver (exc. filters) TF2809 Data Line Analyser
NORTHEAST ELECTRONICS TT537B Psophometer/ VU Meter
SEIMENS
U2033 Psophmeter
S.T.C.

74106 Bridge Unit
74184B Selective Level Measuring Set
74216A Noise Generator
74261A Psophometer
74262 B White Noise Generator $\&$ Receiver
74307C Level Measuring Set
74834 C Distortion Measuring Set
96016 Setective Null Detector
GTA-2 Quantization Distortion Tester
GTA4B Pattern Generator

COMPUTER EQUIPMENT

(90 day guarantee)
550 CENTRONICS
1400702 matrix printer
450 HEWLETT PACKARD
1475

1350
 350

90 200

200
120
120
350
375

TEKTRONIX

4610-1 Hard copy printer for 4010 series computer display terminals
COUNTERS \& TIMERS FLUKE
1912520 MHz 7 digit Counter 1912A01 As 1912A but inc. re charging batteries
1920A 520 MHz 9 digit Counter iric. Brst. mode
1920A14 1250 MHz otherwise as 1920A
HEWLETT PACKARD
$5300 \mathrm{~A} / 5305 \mathrm{~B} 1300 \mathrm{MHz} 6$ Digit Counter 5345500 MHz 11 Digit Counter Timer MARCONI
TF 2432560 MHz 8 Digit Counter

SPECIAL OFFER WAVETEK 157D Programmable Waveform Synthesizer
 $100 \mu \mathrm{~Hz}-1 \mathrm{MHz}$-sine, square and triangle

 waveforms. Output voltage 1 mV to 10 V P.P. into 50Ω. Clear digital readout of front panel frequency and voltage setting. Frequency sweep facility, B.C.D. Programmable.

HEWLETT PACKARD 427A Analogue AC/DC Volt/Ohm-Meter
Compact, battery operated unit. DC- $100 \mathrm{mV}-1 \mathrm{KV}$ AC- $10 \mathrm{mV}-300 \mathrm{~V}$ $10 \mathrm{~Hz}-1 \mathrm{MHz} . \Omega-10-10 \mathrm{M} \Omega$

PHILIPS

PM6614/02 520 MHz 9 Dig:t Counter TCXO PM6624/02520 MHz 9 Digit Counter/Timer тсхо
PM6661 80 MHz 8 Digit Counter
RACAL-DANA (E.I.P.)
37118 GHz 11 Digit Counter with Source Locking facility
811050 MHz 8 Digh Counter Timer 90251 GHz 8 Digit Counter
990350 MHz 7 Digit Counter Timer 9905200 MHz 8 digit Counter Timer
SYSTRON DONNER
60533 GHz 9 digit Counter BCD O/P 5103B Strip Printer for 6053/6054
TEKTRONIX
DC501 7 Digit 100 MHz Counter - TM500

COMARK

71P Inflammable Gas Detector/Alarm

DATALAB

4950 DL905 Digital Transient Recorder/Display
320 Storage
450 FLANN
310 16/11 Rotary Vane Attenuator WG16
-
360
HEWLETT PACKARD
342A Noise Figure Meter
790 X382A Rotary Vane Attenuator WG 16
375 536A 17

MEGGER

BM6 500V 0-200 m Ω tester. Batt oo
$180 \mathrm{MJ4} 1 \mathrm{kVO}-200 \mathrm{~m} \Omega$ tester. Hand Drive

Prices
Prices
frome
Prices
frome

DIGITAL TESTING EQUIPMENT

HEWLETT PACKARD
1600A Logic Analyser 16 ch 20 MHz 1600 S Logic Analyser 32 ch 20 MHz 1602A Logic Analyser 16 ch 10 MHz 1615A Logic Analyser 24 ch 20 MHz

1150
2250
2250
900
4850 EKTRONIX

1150
1300

MAIN

DATALAB
ins Interface for DL. 905 DRANETZ
606 3ch Volts Av/S pike/Time/Printer 2950位

GAY
LDM AC/DC/Spike/Time inc. Printer

MISCELLANEO
425 TCS General Purpose Gas Leak Detector -
2000 intrinsically safe
BRADLEY
192 Oscilloscope Calibrator

MULTIMETRICS
AF120 Dual $\mathrm{H} /$ Pass L/Pass active fitere $20 \mathrm{~Hz}-2 \mathrm{MHz}$
PHILIPS
PM 5501 Colour TV Pattern Generator PM 5519 Colour TV Pattern Generator PM 6456 Stereo FM Generator
RADIOMETER
SMG1 Stereo FM Generator
ROHDE \& SCHWARZ
BN252 Transistor Y Parameter Test Set SCHLUMBERGER
4010A VHF/UHF Radio Telephone Test S

S.T.C.

74800.J Attenuator 0-9 dB 50Ω in 1 dB
steps
74616A Attenuator $0-100 \mathrm{~dB} 600 \Omega$ in 0.1
T
TEKTRONIX
184 Time Mark Generator
521PAL Vectorscope
528 TV Waveform Monitor
575 Semiconductor Curve Tracer 1485C TV Waveform Monitor PAL/NTSC TELONIC
6001 RF Detector with Log Amplifier -
Analogue display \& recorder O/P. 0.4-13
$\mathrm{MHz}-80 \mathrm{~dB}$ range
YELLOW SPRINGS
YS157 Water Pollution Measurement System

NETWORK ANALYSERS/
 PHASEMETERS

DRANETZ

ogue P hasemeter $5 \mathrm{~Hz}-500 \mathrm{~K}$ HEWLETT PACKARD 8405A Vector Voltmeter 1-1000 MHz 8407A/8412A/8601A $100 \mathrm{KHz}-110 \mathrm{MHz}$ complete Network Analyser system comprising Analyser, Phase/Magnitude display and Sweep Generator, 50Ω or 758 system available. 80 dB dynamic range 8745A S Parameter Test Set 0.1-2 GHz 11570A Accessory Kit for 8405A 11600A Transistor Tesi fixtures 11600A Trans
T01B/TO-72
TO1B/TO-72
11602A Transistor Test Fixtures
11602A Trans
11604A Universal extension arm for 8745

OTCILLOSCOPES \&

ACCESSORIES

BIOMATION
350 Compact XYZ Display
GOULD ADVANCE OS 1000 B 20 MHz 5 mV 2 Trace HEWLETT PACKARD 1740 A 100 MHz 5 mV 2 Trace 2TB 182 C 100 MHz Mainframe 182 T 100 MHz Mainframe with digital normaliser interface
1804 A 50 MHz 20 mV 4 Trace Plug-in 1825A Dual Timebase Plug-in 1825A Dual Timebase Plug-in
1805A 100 MHz 5 mV 2 Trace Plug-i PHILIPS
PM3207 15 MHz 5 mV 2 Trace TV trig PM3211 15 MHz 2 mV 2 Trace TV trig PM 321225 MHz 2 mV 2 Trace TV trig PM3233 10 MHz 2 mV 2 Ch fixed delay D
Beam
PM3244 50 MHz 5 mV 4 Trace 2T base PM3260 120 MHz 5 mV 2 Trace 2T base PM3262 100 MHz 5 mV 2 Trace 2T base Tr View
TEKTRONIX
465100 MHz 5 mV 2 Trace 2 TB 465 B 100 MHz 5 mV 2 Trace 2TB 475200 MHz 2 mV 2 Trace 2 T base 475 A 250 MHz 2 mV 2 Trace 2 T base 485350 MHz 5 mV 2 Trace 2 T base 485350 MHz 5 mV 2 Trace 2 T base
$5 B 422 \mathrm{~T} /$ base plug-in 50 MHz Trig for 50 series Mainframe
661/4S3/5T1A 1 GH 2 Sampling scope
7 A 1875 MHz 5 mV 2 Trace Plug-in $7 \mathrm{~A} 221 \mathrm{MHz} 10 \mu \mathrm{~V}$ Differential Plug-in 7 A26 200 MHz 5 mV 2 Trace Plug-in 7B53A 2 Timebase Plug-in 100 MHz Trig 7403 N 75 MHz 3 slot M/Frame 7603100 MHz CRT r/out 3 slot M/Frame TELEQUIPMENT
D63/V1/V1 15 MHz 2 Trace 1 mV D63/V5/V5 15 MHz 5 mV 2 Trace \& fixed delay
$160 \quad \mathrm{~S} 615 \mathrm{MHz} 5 \mathrm{mV} 1$ Trace

The lightweight mast with 101 applications

The smoothly operated QTM Mast comes fitted with handpump or can be vehicle mounted with 'Power Pack' for extension and retraction. Available in a range of heights up to 15 metres, the QTM mast can provide the ideal answer for:

- Mobile Radio Telephone Environmental - gas
- Police Mobile HQ (UHF) sampling collector
- Field Telecommunications
- High level photography
- Floodlighting
- Anemometer and Wind And a host of other uses Measurement

CLARK MASTS

Find out more about the QTM series by writing or phoning:-
U.K.

CLARK MASTS LTD..(W.W.)
Evergreen House, Ringwood Road,
Binstead, Isle of Wight,
England PO33 3PA
Tel: Isle of Wight (0983) 63691 EUROPE
GENK TECHNICAL PRODUCTS N.V.(W.W.) Woudstraat 21, 3600 Genk, Belgium

Telex: 86686

Telefoon 011-380831
Telex 39354 Genant 8

POWER AMPS

PRE-AMP MODULES

> SEND COUPON
> (NO STAMP NECESSARY) FOR YOUR FREE I.L.P. CATALOCUE AND OPEN UP TOA NEW WORLD OF QUALITY\&VALUE

It's something you have always wanted....something to build your equipment into that's smart, modern, strong, adaptable to requirement and not expensive. The 'UniCase' is yet another triumph of I.L.P. design policy. It presents totally professional appearance and finish, ensuring easier and better assembly to make it equal to the most expensive cased equipment. The all-metal 'UniCase' is enhanced by precision aluminium extruded panels engineered for speedy and perfect aligned assembly within a mere five minutes. Designed in the first case to accommodate I.L.P. power amps with P.S.U's, the range will shortly be extended to house any other modular projects.

WHAT WE DO FOR CONSTRUCTORS

Our product range is now so vast we cannot possibly hope to show it all in our advertisments without overcrowding or abridging information to the point of uselessness. So we have devised a solution which we invite you to take advantage of without delay. ALL YOU NEED DO IS FILL IN AND FORWARD THE COUPON BELOW TO RECEIVE OUR NEWEST COMPREHENSIVE I.L.P. CATALOGUE POST FREE BY RETURN. It gives full details of all current I.L.P. products for the constructor together with prices, full technical and assembly details. wiring and circuit diagrams etc. and it's yours, FREE. You don't even have to stamp the envelope if you address it the way we tell you.

() ELECTRONICE LTD.

FREEPOST 5

GRAHAM BELL HOUSE, ROPER CLOSE, CANTERBURY CT2 7EP
Telephone Sales (0227) 54778 Technical Only (0227) 64723 Telex 965780

FREEPOST

Mark your envelope clearly FREEPOST 5 and post it WITHOUT a stamp to
I.L.P. at address above. We pay postage when your letter reaches us

Did you know

I.L.P. are the world's largest designers and manufacturers of hi-fi audio modules?
I.L.P. pioneered encapsulated power amps and pre-amps for entanced thermal stability, mechanical protection and durability?
There are TWENTV power amplifiers from 15 to 240 watts RMS including the very
latest super-quality Mostets to choose from?
TWENTY pre-amp modules allow you to incorporate exciling professional applications to your equipment never before available to constructors and experimenters?
I.L.P. are suppliers to the B.B.C., I.B.A., N.A.S.A., British Aerospace, Marconi, Racal, Ferranti, G.E.C., Rolls Royce etc?

Goods are despatched within 7 days of your order reaching us and covered by our 5 year no-quibble guarantee?

TO: I.L.P. ELECTRONICS LTD.

 please send me i.l.p. catalogue, POST PAID BY RETURNI HAVE/HAVE NOT PREVIOUSLY BUILT WITHILL.P. MODULES

SALE BY AUCTION

TO BE SOLD BY

ANGLIA INDUSTRIAL AUCTIONS

SPECIALIST AUCTIONEERS TO THE RADIO AND ELECTRONICS INDUSTRY

LOTS INCLUDE:
Resistors, capacitors, pots, connectors, switches, diecast boxes, plastic project boxes, vero board, transformers, relays, bulbs and neons, tools, transistors, valves, panel meters, digital watches, calculators, car radio speakers, intercom units, multimeters, cable, test equipment, radio telephones and spares, amateur radio transceivers, Weller spares.

Over 900 lots - Catalogues available
TO BE HELD ON WEDNESDAY, AUGUST 18, 1982
ON THE PREMISES OF
B. BAMBER ELECTRONICS

5 STATION ROAD LITTLEPORT
CAMBS. CB6 10E TEL: ELY (0353) 860185

WW - 068 FOR FURTHER DETAILS

THE MOST
 ECONOMICALLY - PRICED PROFESSIONAL EPROM PROGRAMMERS AROUND

SUITABLE FOR EPROMS 2708, 2516, 2716, 2532, 2732, 2732A plus option for 2564, 2764

DATAPROM

STARTING AT $£ 395$ + VAT
Albetros (Products) Limited Frances Road Basingstoke Hampshire RG21 3DA Telephone (0256) 57551

WW - 032 FOR FURTHER DETAILS

ELECTRON GUNS TV TUBE COMPONENTS
 If you are Rebuilding or Manufacturing TV Tubes - We are the leading suppliers of Electron Guns and TV Tube Components to the TV Tube Industry. We specialise in all aspects of Electron Mount Technology.
 Our product range includes more than 250 gun types for Colour, in Line, Mono and Display Tubes along with Mount Parts, Bases, Getters, Sealoffs, and all other associated items for TV Tube Production. A Full Technical Back-up and Advisory Service is available to all customers Worldwide.
 Please request our current catalogues and Data Information.

 ALCESTER WARWICKSHIRE B49 5DP ENGLANDTelephone: (0789) 764852764100. Telex: 312354 Grifem G

GALL IN AND SEE FOR YOURSEIF

DIGITAL MULTIMETERS All models complete with leads and batteries

Aand Held Models 3 ！\ddagger digit LCD （UK C／P 65p）
60126 range push button ？ AC／OC Basic 0.5° 。 2033A Similar to above by Sabtronics
703 As 601 bul 0.2° obasic $188 \mathrm{~m} / 6011 \mathrm{~A} 15$ range．Hie tester push bution IDADC 189 m 30 range plus hie tester Rotary switch 1OA AC／OC 2035428 range 0.1° o basic 2 A AC／OC push buttion｜Sabtronlcs｜ 2037A As 2035A plus 2 －lemp． 12925 range 0.8° o basic 10 A AC／DC rotary switches｜Keithley AC／OC rotary switches｜Keitileyl $\mathbf{8 7 9 . 3 5}$ 1503HA As above but 25 A and 130 As modell 29 but 0.5° o basic $£ 102.350 .03^{\circ}$ o basic
ACCESSORIES
AC Adaptors（2010A \＆2015A only）$£ 5.69$ Cases TM351／353 £6．84 $2001 £ 7.50 \quad 1503 £ 20.45$ Touch and hold probe THP20 $£ 14.95$

GENERATORS
Satios sum
Insulation
AND CLAM
electronic
Insulation
國会

	5020 a 1 Mz ．	
AGzo3 10 Hz－1M42－band	TG1a0 i Hz － 100 KHz cso．bs ｜THANDAR）	
RF［All wilh in／Ext mod．waribule	TG102 0.2 Hz .2 MHz	
${ }^{\text {output｜}}$	（THANOARI E166．75	
LSGI7 As aboue made by	Dolputs｜THANOAR1 E97．75	
LEAOER－new model E77．30		
SG402 $100 \mathrm{KHz} \cdot 30 \mathrm{MHz} 6 \mathrm{Dand}$ ［TR10｜ E68．00		
function（Alus sine／s0／		
Triangle ／TTLetc．）		

AMATEUR RADIO AND CB TESTING Hanlibs sem sat
 OM6 15 to 250 MH2 6 range olp meler｜ilius）$£ 47.95$ RC1000 0／10／100／1000 watts．SWR elc． 150 Mhz max．lillusi
 CB20 SWR／Power twin meier lo 30 MHz ． KKW lillus｜$£ 8.95$ HM20 $20 \mathrm{~K} / \mathrm{V}$ oll multirange multimeter Plus $\mathrm{SW} /$／Power meter 150 MHZ （2）．

HAVEA BANANA！

Low cost rellable meters（Ail supp batts／leads）（UK C／P 55p）

 BANANA 15 range pocket 20k／Volt plus cont．buzzep（illus）ru360TR 19 range plus Hie test $20 \mathrm{k} / \mathrm{Volt}$ KRT5001 16 range 10 amp OC range double $50 \mathrm{~K} / \mathrm{Voll}$ ST303TR 21 range plus He Tes 20k／volt
TMK500 23 range plus I2A oc plus cont．buzzer $30 \mathrm{~K} /$ Volt 168 m 36 range large scale 10 A AC／OC $50 \mathrm{~K} /$ Volt
360 TR 23 range large scate 10 A AC／DC HIe test 50 meg ohm． 1 KV AC／OC $100 \mathrm{~K} /$ Volt
Choose from UK＇s largest range Bench Models ${ }^{3}$ ，digit LCD unless stated［UK C／P 90p］ 2010a LED31 range．IOA 3 TM353 LCD 27 range 2 A AC／OC C54．00 2015A LCO 31 range 10 A AC／OC c86． 25 basic 0．10 ©（Sabtronics） $\mathbf{E 8 9 . 5 0}$ £43．50 TM351 LCD 29 range 10A AC／ £69．95 2001 LCO 28 range plus 5 range £71．00 capacitance meter 10A AC／OC 3.85 £71．00 Basic 0.1%｜Pantec｜$£ 108.00$ 15034 43／a digit iCO 30 ranges
£77．00 10A AC／OC 4 MMZ counter． 4 KHZ osc． 0.85° o basic｜Thurloy £171．00 £189．75 £6．84

```4
``` \(-\)
© 14.95

\section*{} CS1560All Oual 15 MHz 10 mV ．
 trig to 20 MHz built in Micads． 5 mV .0 .5

OSCILLOSCOPES

\section*{rrio cs 15664}

\section*{All models baltery operated］ （UK C／P E11 200 MHZ 10 mV ITHANOAR｜} 81104 \＆digit LEO 2 range． 100 MHZ．Bench｜SABTRONICS｜ 8610A B digin LE03 range 600 861089 digil LEO 3 rance 694.00 \begin{tabular}{l}
WhZ Bench｜SABTRONICSI \\
\\
\hline
\end{tabular}
\({ }_{\text {ES1 }}^{113.85}\)
800089 digll LEO3 range
MM2 Bench ISABFROMICS TFO 40 B digh LCO E £ 78.00 MH2 with TP600）THANDAR） TF200 B dioil LCO2 1226.50 TF 2008 digil LCO 2 a ange 200
MHZ 1600 MHZ wifh \(T P 600\) ） ITHAMOAR1 EIT TP600 600 MHZ prescaler ITHANDARI E43．13 OPTIOMS IF series carry case AC adapters 8 series AC Adaplers

\section*{DIRECT READ HV PROBE}

TOP QUALITY ANALOGUE MULTIMETERS ［UK C／P E1．20］

herluring ac－ OC Volis／Current and 0 Mm

\section*{VARIABLE POWER SUPPLIES}
 ［UK C／P EI PP241 O／12．12／24 Vol \(0 / 1\) amp \(12.12 / 24 \mathrm{vol}\) £35．00 PP243 0／12．12／24 volt．
\(\begin{aligned} & \text { 0／3 amp }\end{aligned} \quad £ 59.95\)

\section*{＇SCOPE ADD ON UNITS}

\section*{DIRECT READ TEMPERATURE}

LOGIC PROBES／MONITOR
 GSC LP2 15 MHZ prote \begin{tabular}{l}
£28．50 \\
\hline 19.95 \\
\hline
\end{tabular} LEADER LDPO76 50 MHZ casel Gasel G8C ImI moniter 18 to 16 pin
E33．00

 WE ARE OREN 6 AAY＇A NEEK－CALL N ANDSEE FQR YOURSELF＇́

VISA Order by Post with CHEQUES ACCESS／VISA or Telephone your order

Allow up to 10 days for delivery（unless advise

WW - 029 FOR FURTHER DETAILS

\section*{EV88 - A low-cost evaluation system for the 8088 microprocessor}

EV88 is a single board microcomputer that is ideal for evaluating the 80888 -bit/16-bit microprocessor. EV88 can also be used as a powerful controller, and, with a suitable cross-assembler running on a standard microcomputer, and an EPROM programmer, for low-cost development of 8088based systems.

EV88 is supplied fully assembled and tested, with comprehensive documentation, and a copy of The 8086 Book, by Rector and Alexy. All you need is a 5 V 1 A power supply and a terminal or a suitable microcomputer
* 8088 microprocessor in minimum mode (software compatible with the 8086 16-bit microprocessor)
* Comprehensive monitor in 2K EPROM.
* 2K CMOS RAM.
\(\star\) Cassette interface.
t 24 lines of I/O.
* Eight levels of interrupt
* RS-232 compatible serial interface (300 baud to 9600 baud).
* Three-channel counter/timer
* Buffered data, address and control lines.
* Double Eurocard.
* On-board expansion to 16K EPROM/RAM (sockets provided).
- Breadboarding area
* All bus signals available on 64-way DIN 41612 connector Single 5V supply.
* Price £300 plus VAT. Includes delivery.

8088/8086 design service available (software and hardware).
LFH Associates Ltd.
40A High Street
Stony Stratford
Milton Keynes
(0908) 566660

\section*{PRINTED CIRCUITS} for wireless world projects

Audio compressor/limiter-Dec. 1975-1 s.s. (stereo) Cassette recorder-May 1976-1 s.s.
Audio preamplifier-November 1976-2 5.5 Additional circuits-October 1977-1 s.s.
Stereo coder-April 1977 - 1 d.s. \(2 \mathrm{s.s}\).
Low distortion disc amplifier (stereo)-September \(1977-1 \mathrm{~s}\).
Low distortion audio oscillator-September 1977-1 s.s.
Synthesized f.m. transceiver-November 1977-2 d.s. 1 s.s. Morsemaker-June 1978-1 d.s.
Metal detector-July 1978-1 d.s.
Oscilloscope waveform store-October 1978-4 d.s.
Regulator for car alternator-August 1978-1 s.s. Wideband noise reducer-November 1978-1 d.s. Versatile noise generator-January 1979-1 s.s 200 MHz frequency meter-January 1979-1 d.s.
High performance preamplifier-February 1979-1 s.s Distortion meter and oscillator-July 1979-2 s.s. Moving coil preamplifier-August 1979-1 s.s.
Multi-mode transceiver-October 1979-10 d.s.
Amplification system-Oct. 1979-3 preamp 1 poweramp Digital capacitance meter-April 1980-2 s.s Colour graphics system-April 1980-1 d.s.
Audio spectrum analyser-May 1980-3 s.s
Multi-section equalizer-June \(1980-2\) s.s.
Floating-bridge power amp-Oct. 1980 - 1 s.s. (12 V or 40 V) Nanocomp 6802 or 6809 - Jan., July, 1981 - 1 d.s. 1 s.s. Cassette interface - July, 1981-1 s.s. \(\qquad\)

\section*{£4.25}

\section*{SAFGAN DT-400 Series
BRITISHMAKE
DUAL TRACE SCOPES \\ SAFGAN DT-400 Series
BRITISHMAKE
DUAL TRACE SCOPES \\ SAFGAN DT-400 Series
BRITISHMAKE
DUAL TRACE SCOPES}

\section*{}

\begin{tabular}{|c|c|c|}
\hline DT-410, 10 MHz & DT-415 15MHz & DT-420 20N \\
\hline \multicolumn{3}{|l|}{\multirow[t]{6}{*}{}} \\
\hline & & \\
\hline
\end{tabular}
PROBE (XI-REF-X10) £11.50
SAFGAN ELECTRONICS LTD.
OMEGA ROAD, WOKING, SURREY TEL. WOKING (04862) 69560 Carriage: England \& Wales \(£ 7.50\) + V.A.T.; Scotland \(£ 10.50\) + V.A.T. amactaviniod London Stockls: Audio Elactronics Te, Tel: \(01-7243564\)
Stockist: Darom Supolies, Warrinoton, Chas. Tel. War
 Cardiff Stockist: Steve's Ele ctronics Supply Co.. Cardiff - Tel: 10222141905
Chesterfield Stock ist: Kays Electronics, Chesterfield - Tel: 00246131696 Newcastie Stockist: Aitken Bros. \& Co., Newc astle * Tel: 063226729 Birmingham Stockist: PA.T.A. Electronic Servicess - Tel: 021-327 2339
Deroy Stockist: ATS, Detby- Tel: (0332) 41235

\section*{Boards and glassfibre roller-tinned and drilled. Prices include VAT and UK postage. Airmail add \(30 \%\), Europe add \(10 \%\). In- \\ surance \(10 \%\). Remittance with order to: \\ M. R. SAGIN, NANCARRAS MILL, THE LEVEL. CONSTANTINE, FALMOUTH, CORNWALL \\ Logic probe - Feb., 1981 - 2 d.s. \\
 CB synthesiser - Sept. - 1 d.s.}

WW O37 FOR FURTHER

\section*{ACTIVE COMPONENTS \\ MAIL ORDER SPECIALISTS}

\section*{VISA}

24 HOUR TELEPHONE SERVICE FOR CREDIT CARD USERS
* All prices exclude VAT and Carriage (0.75 + VAT) on orders under \(£ 10\) * All orders despatched on day of receipt with full refund on O/S items if requested

\author{
ACTIVE COMPONENTS (MAIL ORDER) \\ DEPT WW, HEWITT HOUSE, NORTHGATE STREET, \\ BURY ST. EDMUNDS, SUFFOLK IP33 1 HO TELEPHONE: (0284)701321 TELEX:817670
}

\section*{Marconi Type R1020 Hinged antenna column． Easy to raise \\ ＊Immensely strong，corrosion resistant MATHWEB＊gr．p．column in a rugged steel tabernacle \\ ＊Lightweight，easy to install，and can be safely lowered by one man \\ ＊Can support a number of VHF／UHF antennas \\ ＊Column supplied in range of colours including ICAO orange／white，and requires no painting or maintenance ＊Available in heights from 11 to 19.5 metres}

\section*{OTHER MARCONI SUPPORT STRUCTURES}

Include the MATHWEB＊Lattice Antenna Mast Type R1010，and the Triangular Section Tubular Steel Self Supporting Tower Type R1060．

For details of these and other Marconi Antennas products please contact Chris Pettitt，Marketing Manager，Antenna Systems Division．
＊MATHWEB is a registered trademark of the BP Group

\section*{Marconi Antennas}

Marconi Communications Systems Limited
Lane Works，Waterhouse Lane，Chelmsford CM1 2QX，England
Tel： 024567111 Telex： 99108
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\[
\sqrt{4} \cdot \sqrt{5}
\]} & \multicolumn{2}{|r|}{Minimum Order £1} & \multicolumn{5}{|c|}{VALVES VAT IS INCLUDED} \\
\hline A1065 & 1.40 & EL821 8.20 & SC1／600 4.50 & 6A & 2.50 & 12au7 & 0.0 & 614 & 4.95 \\
\hline A2293 & 8.80 & EL822 9.95 & SP61 1．80 & 6AO4 & 3.40 & 12Av6 & 0.95 & 61468 & 5.20 \\
\hline A2900 & 13.75 & EM80 0．85 & TT21 \(\quad 23.00\) & \(6 \mathrm{AO5}\) & 1.00 & \(12 \mathrm{AX7}\) & 0.65 & 6360 & 2.85 \\
\hline AR8 & 0.75 & EM87 1.30 & T222 18.50 & 6A05W & 1.80 & 12846 & 0.50 & 6550 & 6.80 \\
\hline ARP3 & 0.70 & EY51 0.95 & U25 \(\quad 1.15\) & 6AS6 & 1.15 & 128E6 & 1.25 & 6870 & 14.00 \\
\hline ATP4 & 0.60 & EY81 0．65 & U26 \(\quad 1.15\) & 6AT6 & 0.90 & 128 H 7 & 1.95 & 8552 & 8.20 \\
\hline \({ }^{\text {B12H }}\) & 3.90 & EY86／87 0.60 & U27 \(\quad 1.15\) & 6aU6 & 0.60 & 12Bク7A & 2.30 & 7199 & 2.85 \\
\hline CY31 & 1.40 & EY88 0.65 & U191 0.85 & 6AV6 & 085 & 12 C 8 & 0.65 & 38P9 & 11.00 \\
\hline DAF96 & 0.70 & EZ80 0.70 & U281 0.70 & 6AX4GT & 1.30 & 12 E & 18.95 & 5FP7 & 18.00 \\
\hline DET22 & 26.95 & EZ81 0.70 & U301 0．65 & 6AX5GT & 1.30 & 1255 GT & 0.55 & 4EP9 & 32.00 \\
\hline DF96 & 0.70 & GM4 \(\quad 5.90\) & U600 \(\quad 11.50\) & 6Bab & 0.55 & 12＊7GT & 0.70 & 88． & 14.00 \\
\hline DH76 & 0.75 & GY501 \(\quad 1.30\) & U801 0.90 & 6BE6 & 0.60 & 12 K GGT & 0.80 & 88 L & 14.00 \\
\hline DL92 & 0.60 & G232 1.05 & UBC41 1.20 & 68G6G & 1.60 & 1207 GT & 0.60 & CV1526 & 16.00 \\
\hline DY86／87 & 0.65 & G233 4.20 & UABC80 0.75 & 68J6 & 1.30 & \(12 \mathrm{SC7}\) & 0.65 & DG7－32 & 34．80 \\
\hline DY802 & 0.70 & GZ34 2.75 & UAF42 1.20 & 6807A & 0.85 & \(12 \mathrm{SH7}\) & 0.65 & DG7－36 & 36.00 \\
\hline E55L & 14.90 & G237 3.95 & UBF80 0.70 & 6日R7 & 4.80 & \(12 \mathrm{SJ7}\) & 0.70 & DPM9－11 & 38.40 \\
\hline E88CC & 1.60 & \(\begin{array}{ll}\text { KT66 } & 6.30\end{array}\) & UBF89 0.70 & 68W6 & 6.20 & \(12 \mathrm{SO7}\) & 1.45 & D13－33GM & \\
\hline E88CC／0 & 3.10 & \(320{ }^{\circ}\) & UBL21 1.75 & 68w7 & 0.90 & 12Sa7GT & 0.85 & & 41.80 \\
\hline E92CC & 2.80 & & UCC84 0.85 & \(6 \mathrm{C4}\) & 0.50 & 12 Y 4 & 0.70 & －speca & \\
\hline E180CC & 4.20 & \(380^{\circ}\) & UCC85 0.70 & 6C6 & 0.55 & 13 D 3 & 0.70 & & \\
\hline E180F & 7.70 & MH4 \(\quad 2.50\) & UCF80 1.30 & \({ }_{6} \mathrm{CH} 6\) & 8.20 & 13D5 & 0.90 & & \\
\hline E182C & 6.25 & ML6 2.50 & UCH42 1.65 & 6CL6 & 2.75 & \(13 \mathrm{D6}\) & 0.80 & & \\
\hline EA76 & 2.25 & M×10／01 21.50 & UCH81 0.75 & \(6 \mathrm{CX8}\) & 3.60 & 1457 & 1.15 & P800 31 F & \\
\hline EABC8 & 0.80 & N78 \(\quad 9.90\) & UCL82 0.95 & 6 Cr 5 & 1.15 & 19A05 & 0.85 & & \\
\hline E891 & 0.50 & \(\mathrm{OA}^{2} \quad 0.70\) & UF41 1.35 & 6 Cb & 0.70 & 19G3 & 11.50 & P80018 & \\
\hline EBC33 & 1.15 & O82 0.80 & UF80 0.95 & 6F6 & 1.60 & 19G6 & 8.50 & & \\
\hline EBC90 & 0.90 & PABC80 0.80 & UF85 0.95 & 6F6C & 1.10 & 1945 & 39.55 & xa1020日 & \\
\hline EBF80 & 0.60 & PC85 0.75 & UL84 0．95 & 6F7 & 2.80 & 2001 & 0.80 & xatoror & \\
\hline E8F83 & 0.60 & PC86 0.85 & UM80 0.90 & 6F8G & 0.85 & 20F2 & 0.85 & & \\
\hline EBF89 & 0.80 & PC88 0.90 & UM84 0.70 & 6F12 & 1.50 & 20E1 & 1.30 & & \\
\hline EC52 & 0.65 & PC97 1.25 & UY82 0.70 & 6F14 & 1.15 & 20P1 & 0.65 & SCX 1000 A & \\
\hline EC99 & 4.40 & PC900 0.90 & UY85 0．85 & 6F15 & 1.30 & \(20 \mathrm{P3}\) & 0.75 & 4CX 4000 A & \\
\hline EC92 & 0.85 & PCC84 0.50 & VR105／30 1.25 & 6F17 & 3.20 & \(20{ }^{2} 4\) & 1.25 & BM 25L & \\
\hline ECCB1 & 0.65 & PCC89 0.85 & VR150／30 1.35 & 6F23 & 0.75 & 20 P 5 & 1.35 & BW 153 & \\
\hline ECC82 & 0.60 & PCC189 0.85 & \(\times 66\) & 6F24 & 1.75 & 25L6GT & 0.95 & DM 2518 & \\
\hline ECCB3 & 065 & PCF80 0.80 & X61M \(\quad 1.70\) & 6F33 & 10.50 & 2524 G & 0.75 & YM 14208 & \\
\hline ECC84 & 0.60 & PCF82 0.70 & XR1 6400A & 6FHa & 4.20 & 30 C 15 & 0.50 & YL1430 & \\
\hline ECC85 & 0.60 & PCF84 0.75 & 82.90 & 6GA8 & 1.95 & 30 C 17 & 0.50 & YL 1440 & \\
\hline ECC86 & 1.70 & PCF86 1.50 & \(7759 \quad 19.00\) & 6GH8A & 0.95 & 30 C 18 & 2.45 & YL 4 ¢0 & \\
\hline ECC88 & 0.80 & PCF87 0.50 & \(2749 \quad 0.75\) & \({ }_{6}^{6} \mathrm{H6}\) & 1.60 & 30F5 & 1.15 & \({ }_{\text {CV1597 }}\) & \\
\hline ECC189 & 0.95 & PCF200 1.45 & z800U 3.45 & 6 J 4 & 1.35 & 30FL2 & 1.40 & CV1116 & \\
\hline ECC804 & 0.90 & PCF201 1.65 & 28014 & 6J4WA & 2.00 & 30FL12 & 1.25 & CR 189 & \\
\hline ECFBO & 0.85 & PCF800 0.50 & 2803416.00 & 615 & 2.30 & 30FL14 & 2.15 & 昌 189 & \\
\hline ECFP8 & 0.65 & PCF801 1.75 & 2900 T 2.45 & 6．5G & 0.90 & 30 L 15 & 1.10 & CV6131 & \\
\hline ECFB01 & 1.05 & PCF802 0.70 & 1 1．3 0.85 & 61. & 0.65 & 30117 & 1.10 & GMU2 & \\
\hline ECH34 & 2.25 & PCF806 1.20 & \(\begin{array}{ll}114 & 0.50\end{array}\) & 616W & 0.90 & \(30 \mathrm{P12}\) & 1.15 & TY4－500 & \\
\hline ECH35 & 1.70 & PCF808 1.45 & 185 & 6JE6C & 2.95 & \(30 \mathrm{PL13}\) & 1.25 & BK485／55 & \\
\hline & \(2.10{ }^{\circ}\) & PCH200 1.35 & 1S4 0.46 & \({ }_{6 K 7}^{605}\) & 2.95 & \({ }^{30 P L 14}\) & 2.45 & MIL 5948／ & 1754 \\
\hline ECH42 & 1.20 & PCL81 0.75 & 155 & \(6 \mathrm{K7}\) & 0.80 & 35L6GT & 1.40 & MIL 594 & \\
\hline ECH81 & 0.70 & PCL82 0.95 & \(1 \mathrm{~T} 4 \quad 0.45\) & 6KD6 & 3.35 & 35W4 & 0.80 & & \\
\hline ECH84 & 0.80 & PCL84 0.90 & \(1 \mathrm{IU4}_{4} 0.80\) & 6L5M & 2.80 & 3524GT & 0.80 & & \\
\hline ECL80 & 0.70 & PCL86 0.75 & 1X28 \(\quad 1.40\) & 6L6G & 2.50 & 50C5 & 1.15 & 1 C & \\
\hline ECL82 & 0.75 & PCL805／85 0.95 & 2D21 1.10 & 6L6GC & 2.10 & 50CD6G & 1.35 & SN5402N & \\
\hline ECL83 & 1.40 & PD500／5104．30 & \(1.85{ }^{\circ}\) & 6L6GT & 1.25 & 7581 & 1.25 & SN5410F & \\
\hline ECL85 & 0.80 & PFL200 1.10 & 2K25 16．95 & 617 G & 0.85 & 75C1 & 1.70 & SN5470F & \\
\hline ECL86 & 0.90 & \(2.80{ }^{\circ}\) & \(24.50{ }^{\circ}\) & 61.18 & 0.70 & 76 & 0.95 & SN54196J & 120 \\
\hline EF37A & 2.15 & PL36 \(\quad 1.10\) & 2X2 \(\quad 1.15\) & 6LO6 & 2.95 & 78 & 0.95 & SN7407N & 0.29 \\
\hline EF39 & 1.25 & PL81 0.85 & 3A4 0.70 & 6LD20 & 0.70 & 80 & 1.70 & SN7408N & \\
\hline EF80 & 0.65 & PL82 0.70 & 3AT2 2.40 & 6KG6A & 2.70 & 85A2 & 1.40 & SN7445P & 0.85 \\
\hline EF83 & 1.75 & PL83 0.80 & 3D6 0.50 & 607G & 1.30 & & \(255 *\) & SN74453P & \\
\hline EF85 & 0.60 & PL84 0．95 & \(3 \mathrm{D} 22 \quad 23.00\) & 6SA7 & 1.00 & 807 & 1.25 & SN7453N & 0.18 \\
\hline EF86 & 0.75 & PL504 1.00 & 3E29 19．00 & 6SG7 & 1.15 & & \(1.90{ }^{\circ}\) & SN74L73N & 0.38 \\
\hline EF89 & 1.05 & PL508 1.95 & \(354 \quad 0.60\) & 6S． 7 & 1.05 & 813 & 19.32 & SN7474N & 0.30 \\
\hline EF91 & 1.50 & PL509 \(\quad 3.20\) & 483218.25 & 6SK7 & 0.95 & & 8850 & SN7485N & \\
\hline EF92 & 2.90 & 5．65＊ & 58／254M 16．90 & 6SL7GT & 0.85 & 8298 & 14.00 & SN74L85N & 1.10 \\
\hline EF95 & 0.65 & PL519 3.95 & 58／255M 14.50 & 6SN7GT & 0.80 & 832A & 8.90 & SN7491AN & N0．32 \\
\hline EF96 & 0.80 & \(6.10{ }^{\circ}\) & 58／258M 12.50 & 6SR7 & 1.10 & 866A & 3.80 & SN74123N & 0．42 \\
\hline EF183 & 0.80 & PL802 3.20 & \(5 \mathrm{C} 22 \quad 29.90\) & 6507 & 0.95 & 866E & 6.25 & DM74123N & N0．38 \\
\hline EF184 & 0.80 & PY33 0.70 & 5R4GY 180 & 6V6G & 150 & 931A & 13.80 & SN15836N & 0.26 \\
\hline EF812 & 0.75 & PY80 0.70 & 5U4G 0.75 & 6V6GT & 0.95 & 954 & 0.60 & & 0.95 \\
\hline EFL200 & 1.85 & PY81／800 0.85 & 5 V 4 G － 0.75 & \(6 \times 4\) & 0.95 & 955 & 1.20 & SN76013N & 1.80 \\
\hline EH90 & 0.85 & PY82 0.65 & 5Y3GT 0．95 & 6X4WA & 2.10 & 956 & 0.60 & SN76003N & 1.80 \\
\hline EL32 & 1.10 & PY83 0.80 & 523 1．50 & 6X5GT & 0.65 & 957 & 1.05 & SN76033N & 1.35 \\
\hline EL34 & 1.80 & PY88 0.60 & \(5 Z 4 \mathrm{G} \quad 0.75\) & 6Y6G & 0.90 & 1625 & 1.80 & MC6800P & 5.80 \\
\hline & \(2.90{ }^{\circ}\) & PY50042．10 & \(524 \mathrm{GT} \quad 1.05\) & \(6 \mathrm{Z4}\) & 0.70 & 1629 & 1.85 & C6880 & \\
\hline EL81 & 2.45 & PY809 6.45 & 6／30L2 0.90 & 787 & 1.75 & 2051 & 2.90 & － 145 & \\
\hline EL82 & 0.70 & PY801 0.80 & 6AB7 0.70 & 88N8 & 2.95 & 5763 & 4.20 & MC14511B & \\
\hline EL84 & 0.80 & Qov03／10 7.50 & 6AC7 \(\quad 1.15\) & 902 & 0.70 & 5842 & 750 & & \\
\hline EL86 & 0.95 & QQV03－20A & 6AG5 0.00 & \(9 \mathrm{D6}\) & 2.90 & 5889 & 3.40 & B1702AL & \\
\hline EL90 & 1.00 & 21.50 & 6AH6 \(\quad 1.15\) & 10 C 2 & 0.85 & 5933 & 8.90 & M6300－ & \\
\hline EL91 & 4.20 & Qov03－25A & 6AK5 0.05 & 10F18 & 0.70 & 6057 & 2.20 & & \\
\hline EL95 & 0.80 & 36.50 & 6AK8 0.60 & \(10 \mathrm{P}_{13}\) & 1.50 & 6060 & 1.95 & MCM6810A & AP \\
\hline EL504 & 1.70 & QQV06／40A & 6AL5 0.60 & 11 E2 & 19.50 & 6064 & 2.30 & & \\
\hline EL803 & 5.90 & 16.10 & 6AL5W 0．85 & 12A6 & 0.70 & 6065 & 3.20 & 6340．1J & \\
\hline EL509 & 3.95 & avo3－12 4.20 & 6AM5 \(\quad 4.20\) & 12AT6 & 0.70 & 6067 & 2.30 & MIC945－50 & 0.28 \\
\hline EL802 & ， 70 & SC1／400 \(\quad 4.50\) & 6AM6 \(\quad 1.50\) & 12ATI & 0.65 & 6080 & 5.30 & C936－50 & 22 \\
\hline \multicolumn{10}{|l|}{\multirow[t]{9}{*}{\begin{tabular}{l}
VALVES AND TRANSISTORS \\
Telephone enquiries for valves，transistors，etc： reteil 7493934 ，trade and export 7430899. \\
＇D10＂＇CABLE FIELD TELEPHONES \\
Geiger Muller Tubes GM4，MX12／01 and others． \\
TEST SET FT2 FOR TESTING Transceivers A40， A41，A42 and CPRC26． \\
HARNESS＂\(A\)＂\(\&\)＂\(B\)＂CONTROL UNITS＂\(A\)＂＂\(R\)＂ ＂J1＂＂J2．＂Microphones No 5．6， 7 connectors． framos．carrier sets，otc． \\
DRUM CABLE continuous connection YC 00433. \\
FIELD TELEPHONES TYPE＂\(J\)＂． \\
Tropical，in metal cases． \\
10－line MAGNETO SWITCH－ \\
BOARD．Can work with every ，type of magneto telephones． \\
PRICES MAY VARY \\
POSTAGE：\(£ 1-£ 345 p\) ；\(£ 3-£ 555 p\) ； \\
£5－£10 60p；£10－£15 80p；£15－ £20 100p．
\end{tabular}}} \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline \multicolumn{10}{|c|}{Signal Generators MARCONITF \(144 \mathrm{H} / 4 \mathrm{~S}\) ； 7 F \(144 \mathrm{H} / 6 S 10 \mathrm{kHz}-72 \mathrm{MHz}\) Prices on application} \\
\hline \multicolumn{10}{|c|}{\begin{tabular}{l}
COLOMOR \\
ELECTRONICS LTD．） \\
oldhawk Rd．，London W． 12 \\
Tel．01－743 0899 or 01－749 3934 Open Monday to Friday 9 a．m．\(-5.30 \mathrm{p} . \mathrm{m}\) ．
\end{tabular}} \\
\hline
\end{tabular}

\section*{ScheTronics Limited}

For repair and calibration of test equipment．
We also have the following second user LF／HF equip－ ment for sale．
Siemens including Pegamat－W \＆G－H．P．－Hatfield Anritsu－Marconi－Fluke－STC－etc ．．．

\author{
Unit 10，Dunstall Estate \\ Crabtree Manorway \\ Belvedere，Kent DA17 6AW \\ Telephone：01－311 9657
}

\section*{STOP WASTING TIME TESTING BOARDS}

MD will pin-point microtroubles in seconds.
Portable and simple to use by non-technical staff in the REPAIR SHOP or on the PRODUCTION LINE MD tests ROM, RAM \& \(1 / O\) and prints diagnostic reports. MICRODOCTOR can be plugged into an unknown system to perform a general diagnostic and print a MEMORY-MAP The ENGINEER may enter sequences
of CHECKSUMS and RAMTESTS,
READS and WRITES to specific MEMORY and I/O locations, SHORTING tests on DATA and ADDRESS LINES.
PRINT-OUTS of memory in ASCII or HEX
These sequences are retained in CONTINUOUS MEMORY, available atways at the push of a key.
* FREE Z80 DISASSEMBLER with each MD
(other disassemblers soon to retrofit at low cost).
Get a DISASSEMBLER LISTING of ROM in any microsystem! MICRODOCTOR - \(£ 295.00\)

\section*{INTELLIGENT EPROM PROGRAMMER}

Good tools need not be expensive. SOFTY 2 is the latest version of the engineer's favourite EPROM HANDLER for anybody who uses \(251.6,2716,2532\) and 2732 EPROMS SOFTY will program any of these EPROMS or copy any type into another. SOFTY puts out a TV picture of memory contents, with many code-manipulating and editing facilities. There is also a fast cassette data storage system. SOFTY is also a ROMULATOR (a lead is supplied which may be inserted into a board under development to emulate the ROM using SOFTY's internal RAM. This procedure can also be used on the single-chipper piggy-back type MPU.) SOFTY is complete in itself as a PRODUCT DEVELOPMENT SYSTEM. Code may be entered in HEXADECIMAL via the keyboard also SERIAL and PARALLEL inputs and outputs allow downloading of object code from your computer or printing EPROM contents on your printer.
SOFTY 2 - £169.00

\section*{Z80 DEVELOPMENT SYSTEM}

MENTA puts out a TV PICTURE of memory in hexadecimal.
The 40 key keyboard will accept inputs,
both in hexadecimal and \(Z 80\) mnemonics;
there is a quick cassette data storage system,
a powerful editor which permits program debugging
by showing contents of registers and stack.
Also there are 24 bits of \(1 / 0\)
for external control. A Z80 disassembler
is also available which outputs to any RS232 device such as a printer or terminal.
MENTA was designed as a low-budget device
for teaching microprocessing in schools: professionai
course-material is available to teachers
together with add-on boards for a variety
of control functions and robotic applications.
MENTA - \(£ 115.00\)
SERIAL DISASSEMBLER - £19.50
manulactured by Dataman Dosigns, sold by dealers in Uk. USA, France ertc TRADE ENOUIRIES INVITED - TELEX 418442 DATAMAN
NEC PC 8000 PERSONAL COMPUTER.

The brand-leader in Japan; gaining ground rapidly in America; this beautifully made, reliable system has all the features you could want at
8001 Keyboard Unit
(24K BASIC, 32K RAM, colour graphics, function keys etc.) 8011 Expansion Unit
(32K RAM, RS232, IEEE-488, CLOCK, 34 pin I/O etc.)
£599
£489
8023 Dot Matrix Printer
(100 CPS, up to 136 columns, proportional spacing, greek and math) \(£ 399\) 8031 Dual Disk Drive \(\quad\) E669 8043 Colour Monltor 579

\section*{THANDAR TA2080 - £1950}

\section*{20MHZ LOGIC ANALYSER}

A value-for-money instrument with both TIMING and STATE capture and display and excelient triggering from 23 bits.
We are designing RS232 and IEEE interfaces, 280 and 8048 disassemblers for our own use, which will be available when tried and approved by Thandar. PLEASE PHONE FOR PRICES

LOMBARD HOUSE, CORNWALL ROAD, DORCHESTER, DT1 1RX

LiNSLEY HOOD CASSETTE RECORDER 2

Our new Improved performance model of the Linsley Hood Cassette Recorder incorporates our FFL 910 vertical front mechanism and circuit modifications to increase dynamic range. Board
layouts have been altered and improved but retain the outstandingly successful mother-andlaughter arrangement used on our Linsley-Hood Cassette Recorder 1 .
This latest version has the following extra features: Ultra low wow-and-flutter of \(.09 \%\) - easily
mpets DIN Hi-fi spec. Deck controls latch in rewind modes and do not have to be held. Full Automeets DIN Hi-Fi spec. Deck controls latch in rewind modes and do not have to be held. Full Auto-
stop on all modes. Tape coumter with memory rewind. Oil damped cassette door. Latching record sutton for level setting. Dual concentric input level, controls. Phone output. Microphone input facility if required. Record interlock prevents rerecording on valued cassettes. Frequency generating feedback servo drive motor with built-in speed control for thermal stability. All these desirable
and useful features added to the excellent design of the Linsley-Hood circuits and the quality of the components used makes this new kit comparable with built-up unlts of much higher cost than the components used makes this new kit comparable w
the modest، E94 \(90+\) V.A.T. we ask for the complete kit.

\section*{LINSLEY-HOOD CASSETTE RECORDER 1}
 ills all you need to know about the circuitry and Mart expertise and experience guarentees the
engineering design of the kit. Advanced features include: High -quality separate Vu meters with enginnering design of the kit. Advanced features include: High-quality separate VU meters with
excellent batlistics. Contrals, switchas and sockets mounted on PCB to eliminate difficult wiring. Proper moulded escutchaon for cassatte aperture improves appearance and removes the need for the cassette trensport to be set back behind a narrow finger trapping slot. Easy to use, robust Lenco mechanism. Switched bias and equalisation for different tape formulations. All wiring is gives a spacious, easily-buitt and tested layout. Ail these features added to the high-quallty metalwork make this a most satisfving kit to buitd. Also included at no extra cost ls our latest HS 16 Sendus Alloy super head, available separately at \(£ 8.20\) but included free with the complere kit at E75 plus VAT. Reprints of the 3 original articles describing this design 45 p . No VAT
Reprint of the subsequent postscript article 30p NO VAT

\section*{PRACTICAL WIRELESS WINTON' TUNER}

Brillient new Ted Rule deslgned Tuner with everything! Gives you fantastic stereo \(\mathrm{f} / \mathrm{m}\) reception with pilot cancelling decoder i.c., fluorescent display, digital frequency readout along with clock and timer functions. In addition to
are in our lists; send for your copy.

Order up to \(£ 10-50\) p
Order up to \(£ 10-50\)
Orders \(£ 10\) to \(£ 49\)
Over \(£ 50-£ 1.50\)
Pap Export Orders-Postage or shipping at cost plus
Please send \(9 \times 4\) S.A.E. or telephone for lists giving fuller details and price breakdowns.

Instant easy ordering, telephone your requirements and credit card number to us on Oswestry (0691) 2894

These latest designs from the drawing board of John Linsley-Mood. engineered to the very and transparency of the tone quallty enable these amplifiers to outperform, on a side-by-side comparison, the bulk of amplifiers in the commercial market-place and even exceed the high standard set by his eartier 75 -ware design.
Three versions are offered, a 30 -watt with Derlington output transistors, and a 35 - and 45 -watt, boin with Mosfet output devices. All are of identical outside appearance which is designed to As whan all Hart kits the constructors interesis have been looked after in a unique way by reducing the conventional (and boring) wiring almost to the point of extinction
Any of these kits represents a most cost-effective route to the very highest sound quality with the 30 -watt Darlington amplifier, fully integrated with tone controls and magnetic pick-up facility. Total cost of al parts is \(£ 81.12\). Special offer price for complete kits \(£ 72\). 35-watt Mosfet amplifier. Total cost of parts E98.41. Special offer for complete kits, \(\mathbf{f 8 7} \mathbf{4 0}\) IReprints of orinal Ariclos from MI-Fi News 50, Post fee No VAT Aeprints of MOSFET article 25p. No V.A.T. Post free.

FEED YOUR MICRO BYTES WITH OUR SOLENOID CONTROLLED CASSETTE DECK

Front loading deck with full solenoid control of all functions including optional read in tast wind modes. 12 volt operation. Fitted 3-digit memory counter and H3II IC Motion Sensor. Standard technical specification included

\section*{HART TRIPLE-PURPOSE TEST CASSETTE TC}

One inexpensive test casserte enables you to set up VU level, head azimuth and tape speed
Invaluable when fitting new heads. Only \(\mathbf{2} .70\) plus V.A.T. and 50 p postage.

\section*{CASSETTE HEADS}

HS 16 SENDUST ALLOY SUPER HEAD. Stereo R/P. Longer life than Permalloy. Higher output than Ferrhe. Fantastic frequency response. Complete with data... 88.20 HM90 Stereo R/P head for METAL tepe. Complete with data.. 57.20 H561 Special Erase Head for METAL tape
H524 Standard Ferrite Erase Head.....
4. Track R/P Head. Standard Mounting

\section*{ERASERS \({ }_{\text {皆周 }}\) DEVELOPMENT: LAB}

IN USE IN DESIGN
LABS \& EDUCATIONAL
ESTABLISHMENTS
AROUND THE WORLD

UV1T
Powerful, compact unit to erase up to six EPROMs quickly and safely. \(10-60-\mathrm{min}\) ute electronic timer
\(£ 59.13+\) V. A.T

\section*{UV1B}

As above but without timer \(\varepsilon 46.95\) + V.A.T

Carriage paid (U.K.) Send cheque or official order for prompt delivery.

Aso available in London from: Technomatic Ltd Henrys Radio Ambit International
in view of the extremely rapid change taking PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

\section*{BROADFIELDS \& MAYCO DISPOSALS}

21 Lodge Lane, N. Finchley, London, N. 12.5 mins. from Tally Ho corner

WW - 043 FOR FURTHER DETAILS

\section*{Bigger and Better for 1982}
the colourful Wilmslow Audio brochure - the definitive loudspeaker catalogue!

Everything for the speaker constructor - kits, drive units, components for HiFi and PA.
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.

> * Lowest prices - Largest stocks *
* Choose your DIY HiFi Speakers in the comfort of our * two listening lounges
(Customer operated demonstration facilities)
* Ample parking *

Send \(£ 1.50\) for catalogue
(cheque, M. O. or stamps -orphone with your credit card number)
* Access - Visa - American Express accepted *
also Hifi Markets Budget Card.

당
0625529599

35/39 Church Street, Wilmslow, Cheshire SK9 1AS
Lightning service on telephoned uredit card orders!

WW - 007 FOR FURTHER DETAILS

\section*{RADIOCODE CLOCKS}
are powerful and comprehensive instruments which receive, decode and analyse time-coded standard frequency transmissions to provide accurate, secure and completely automatic time/calendar or synchronisation systems.

\section*{Applications}

Automatic master clock and slave controller.
Synchronisation of separate equipment and events. Programmable energy management system. Computer clock/calendar with battery backup. Data logging and time recording. Process and equipment control. Broadcasting, Astronomy, Navigation. Satellite tracking.

If you have a time or synchronisation problem, write or phone for further details of our portable and new microcomputer-controlled Radiocode Clocks.

Circuit Services, 6 Elmbridge Drive
Ruislip, Middlesex. Ruislip 76962

The Keithley 179A

\section*{AMmsuiter ACHIN:}

Specification . . Versatility . . . Accuracy Price. In almost every major area the new 179A-a 41/2 digit bench/portable DMM from Keithley Instruments sets some pretty impressive standards:
- 20 amp capability O Full function: 27 ranges including true RMS AC Measurement - Year's guarantee on spec 0.04\% DC accuracy IEEE option Large display and \(10 \mu \mathrm{~V}\) dc resolution.
For those requiring 10 times more sensitivity and an analogue output there's the 177, a unit with similar specification to the 179A. Both models are part of a vast range of test equipment from one of the world's leading manufacturers
For more information fill in the coupon at the bottom of the page.

5Alternatively, phone our Instant Information
Service on
0734864784 now

\section*{KEITHLEY}

Keithley Instruments Litd
1 Boulton Road Reading Berkstile RG2 ONL Telephone (0734) 861287
Telex 847047

I'd like to know more . . .
Name \(\qquad\)
Position
Company
Address

\section*{Telephone}

\title{
The over and outperformer
}

\section*{wireless world}

\author{
Editor: \\ PHILIP DARRINGTON
}

Deputy Editor:
GEOFF SHORTER, B.Sc. 01-661 8639

Technical Editor:
MARTIN ECCLES
01-661 8638
News Editor:
DAVID SCOBIE
01-661 8632
Drawing Office Manager:
ROGER GOODMAN
Technical Illustrator:
BETTY PALMER
Advertisement Manager:
BOB NIBBS, A.C.I.I.
01-661 3130
DAVID DISLEY
01-661 8641
BARBARA MILLER
01-661 8640
Northern Sales:
HARRY AIKEN
061-872 8861
Midland Sales:
BASIL McGOWAN
021-356 4838
Group Classified Manager:
BRIAN DURRANT
01-661 3106
IAN FAUX
01-661 3033
Production:
BRIAN BANNISTER
(Make-up and copy)
01-661 8648

\section*{. By any other name . . .}

In a recent Letter to the Editor, a reader described his feelings at seeing a copy of Wireless World for the first time after a long interval. On seeing the content, he felt impelled to write and suggest that the journal might benefit from a change of title, to take account of the fact that the World is now rather more computershaped than it was when wireless was the current miracle.

The letter constitutes cast-iron evidence to support the assertion, made by WW staff for seventy years, that one simply cannot produce a journal like this - the whole thing is logically impossible. Philosophy and printed boards, audio amplifiers and microcomputers, exposure meters and clocks do not, it must be admitted, appear to share much common ground. Neither, indeed, do the types of reader to whom our articles are addressed: the enthusiast making an amplifier on the corner of the kitchen table experiences but modified rapture at the prospect of an article on Rademacher-W Walsh functions, though he may read it and be interested.
The professional engineer does not require instruction in the design of an a-to-d converter, but he might want to build the digital voltmeter to which the article is an introduction. And one of the continuing arguments on basic physics possibly leaves both of them glassy-eyed, but nonetheless entertained.

The fact is, of course, that Wireless World is a hybrid in so many senses that it almost defies description. Both professionals and amateurs read it; the articles it contains are theoretical, or practical, or both; its topics cover the field from logic design to a discussion of the best material with which to stuff loudspeaker enclosures and from
descriptions of optical-fibre communications systems to a design for an electronic cat-door.

In all this, the one common factor is electronics, in its wider sense. It leads us into any subject in which it is used optics, chemistry, motoring, aviation - in addition to the more familiar area of telecommunications. Computers happen to be an important manifestation of electronic engineering and are therefore completely within our field of interest.
"Wireless" as a word disappeared in the forties or thereabouts, at around the time when "electronics" was born. But even then, Wireless World had been in existence for thirty-five years and its title was far too well known for Iliffe to risk causing an outcry by changing it.

Forty years on, computers, microprocessors and a mass of other digital circuitry have edged out the more traditional forms of electronic design even sound reproducing is becoming digital in form. As this happens, it is clear that the content of the journal must change to meet new requirements, which is why a newcomer glancing at our contents page immediately after a look at the Wireless World logo might justifiably feel puzzled. If, however, a change of name after thirtyfive years was felt to be too much of a shock for readers to bear, how much more of a jolt would it be after seventy-one?

The name is unimportant, except inasmuch as it sometimes misleads the casual bookstall browser and, perhaps, the not very well informed advertising agent. What is important is that the content - should treat all aspects of electronics, which it will continue to do, no matter in what unexpected directions the subject leads us.

\title{
80-100W MOSFET AUDIO AMPLIFIER
}

\section*{The final section of this three-part article describes the complete amplifier circuit in detail, with the addition of a loudspeaker protection circuit.}

In the earlier parts of this article I discussed some of the design requirements of power mosfet audio amplifiers and described the evolution of a high-gain, symmetrical, class ' \(A\) ' driver stage suitable for use with a power mosfet output. Inevitably, the final design of the gain stage, as shown in the completed power amplifier circuit of Fig. 14, shows some minor differences in comparison with the basic voltage-amplifier circuit, which underlines the point that any final design represents only the small tip of a large submerged iceberg of design effort. Unless one is lucky, or one's target performance is relatively modest, or one has considerable experience with closely similar designs, there is always a large amount of work necessary to convert a reasonably satisfactory basic design into a final version having, as nearly as possible, a blameless performance under all conceivable test conditions.

\section*{Design considerations}

The choice of output power rating for any power amplifier is, inevitably, somewhat arbitrary and depends on the voltage ratings of the available components, and on the cost of the power transformer, smoothing capacitors and heat sinks which one is

\author{
by J. L. Linsley Hood
}
prepared to afford. However, in practical terms, the major considerations which limit the possible output power are the voltage ratings of the output devices, and of the available electrolytic reservoir capacitors.

The output power mosfets I decided to use are the complementary n-channel and p-channel devices from Hitachi, since they are readily available, are reasonably inexpensive, appear to be adequately rugged, and have useful power ratings. These par- ticular mosfets are available in peak working voltages up to 160 V . However, there are other similar devices, either available now or promised in the near future, from Fairchild, Motorola, Ferranti, Supertex, International Rectifier and Intersil, so it seems likely that a design based on complementary power mosfets will not restrict the user to a single source of components.

Some earlier experiments with mosfetoutput audio amplifiers had shown that the

Fig. 14. Complete circuit diagram of the 100W amplifier.
r.m.s power output could be related to the available supply voltage in the manner shown in Fig. 15, over the range \(25-100\) watts. Since it had been decided, for various reasons, to use a symmetrical positive and negative supply, 63 V electrolytic capacitors on each half would allow a safe working voltage, overall, of 120 volts, equivalent to a \(\pm 60 \mathrm{~V}\) supply. In practice, the limited regulation of a simple rectifier/capacitor power supply is likely to reduce this, on load, to some \(\pm 55 \mathrm{~V}\), giving an overall power output of 80 watts.

This output power requires a voltage swing of 25.3 V r.m.s. across an eight ohm load, and if it is desired to drive this from an input voltage of ' 0 VU ' - which in audio-engineering terms implies 0.775 V r.m.s. at a 600 ohm source impedence the gain will require to be 32.6 , which gives a suitable feedback resistor combination of 33 k and 1041 ohms - though, in the event, for other considerations, it was decided to make this 1012 , made up from a 1 k and an 12 ohm series chain.

In the interests of d.c. symmetry, the input-circuit resistance should be also of the order of 33 k . The values suggested are adequately close to this.

The performance of any feedback ampli-

fier under transient (step-function or square wave) input conditions is helped if the input rise time can be limited. This can be done most easily by an input RC integrating network, \(\mathrm{R}_{2} \mathrm{C}_{2}\), which gives a -3 dB point at about 30 kHz , allowing an adequate bandwidth for audio use.

A 470 ohm trimmer potentiometer in the emitter circuit of the input long-tailed pair allows accurate d.c. balance to be obtained with transistors having normal commercial spreads in \(\mathrm{V}_{\text {be }}\) values and current gain. This is bypassed by a \(100 \mu \mathrm{~F}\) tantalum bead capacitor to avoid loss of openloop a.c. gain. The output d.c. potential may be adjusted by means of this potentiometer to \(0 \mathrm{~V}, \pm 20 \mathrm{mV}\).

Circuit performance depends strongly on the characteristics of the 'tail' of the 'long-tailed pair'. For correct operation of any such circuit, the dynamic impedance of the tail should be very large in comparison with the impedance as seen at the emitters of \(\mathrm{Tr}_{1}\) and \(\mathrm{Tr}_{2}\). Also, ideally, to minimize common-mode problems, the current from this source should be largely independent of the dynamic emitter potentials. Finally, the tail circuit should provide an adequate isolation from unwanted signal components on the supply line. A junction fet satisfies all these requirements very fully, and also allows, as explained above, control of the operating current in the second-stage class A amplifier. To allow a wider range of negative supply-line voltages, the negative-line supply to this. fet is derived from a Zener-diode-stabilized -12 volt source. The use of a separate power supply for the driver stages is of considerable assistance in avoiding the performance degradation which can occur due to the intrusion of distorted signal potentials from the high-current output stage.

The second stage, class ' A ', voltage amplifier is similar to that shown earlier in Fig. 13, except that conventional, twotransistor, constant-current sources are used as the loads for each half, and that a small amount of a.c. positive feedback is derived from the output of \(\mathrm{Tr}_{5}\), through \(\mathbf{R}_{8}\) and \(\mathbf{R}_{7}\), in addition to the current stabilizing d.c. negative feedback path through \(\mathrm{R}_{9}\) to \(\mathrm{Tr}_{3}\). The positive feedback restores the open loop a.c. gain to the 500,000 figure, over the frequency range 100 Hz 3 kHz , obtainable from the less d.c. stable configuration of Fig. 12.

The output power mosfets require a quiescent current value of 100 mA for optimum performance - although it is difficult, because of the efficient operation of the n.f.b. loop, to see any significant change in the distortion residues, as this is adjusted, at any frequency below 10 kHz - and this quiescent current is largely independent of the output device temperature. The 'amplified diode' circuit of \(\mathrm{Tr}_{10}\) is not, therefore, used to sense the output transistor temperature, but used simply to generate a reasonably constant voltage drop.

Although the output devices present a very high l.f. input impedance, the effect of the 1200 pF total gate-source capacitance cannot be ignored, and the current

through \(\mathrm{Tr}_{6}-\mathrm{Tr}_{7}\) must be enough to avoid any slew-rate limiting within the rise-time levels allowed by the input CR network, \(\left(\mathrm{R}_{2} \mathrm{C}_{2}\right)\). A current of 7 mA is adequate for this, and permits worst-case dissipations of 900 mW for \(\mathrm{Tr}_{4,7}\) and 450 mW for \(\mathrm{Tr}_{5,6}\), which are within their limits.
Since the Hitachi output devices are not protected by internal Zener diodes, it is unnecessary to exclude the possibility of reverse gate biassing, provided that this is within the \(\pm 14 \mathrm{~V}\) gate-source breakdown voltage limits. This gate breakdown protection can therefore be provided by a pair of back-to-back 8 V zeners, while the gatesource capacitance and the 680 ohm gate * 'stopper' resistor will exclude the possibility of very rapid extraneous noise pulses which could escape Zener limiting due to lead inductance or turn-on time delays. Ideally, \(\mathbf{R}_{17,19}\) and the Zeners should be mounted close to the power mosfet pins.

\section*{Feedback loop, and loop stability}

Although the use of a two-stage voltage amplifier will not automatically gurarantee, under all load conditions, that the internal phase shift will not approach \(180^{\circ}\) until the open-loop gain is negligible, the necessary conditions for an adequate phase margin, at unity gain, are very much easier to contrive in circuits in which only two successive gain stages are employed provided that the additional phase shift of any other element in the feedback path is small enough to be neglected.
Unfortunately, in the case of the conventional junction-transistor Darlington or compound (\(\mathrm{p}-\mathrm{n}-\mathrm{p} / \mathrm{n}-\mathrm{p}-\mathrm{n}\).) emitter follower this additional phase shift is significant, even at a few hundred kilohertz where the loop gain is still high, so this loop gain must be artificially reduced at higher frequencies to preserve closed-loop stability. Two basic methods exist for this, of which the first, and simpler, is simply to connect an external capacitor across the whole of the gain stage so that this acts as an inte-

Prototype amplifier. Louidspeaker protection circuit is at rear right.

Fig. 15. Amplifier output power as function. of supply voltage.

Fig. 16. Power bandwidth of amplifier.
gration network with a gain decreasing linearly by \(20 \mathrm{~dB} /\) decade from some l.f. break point. This has the advantage of allowing a wide phase margin of stability, and predictable performance characteristics. The second method is to tailor the h.f. performance so that it is maintained at as high a level as possible up to the point at which the loop phase shift approaches \(180^{\circ}\), and then to reduce the gain rapidly, and in a manner chosen not to exceed the \(180^{\circ}\) stability threshold, until it is less than unity.

This method is commonly employed in

Fig. 17. Harmonic distortion as a function of output power \((1 \mathrm{kHz}, 8 \Omega\) load).

Fig. 18. Harmonic distortion as a function of output frequency (\(80 \mathrm{~W}, 8 \Omega\) load).

Fig. 19. Harmonic distortion residues at \(80 \mathrm{~W} / 8 \Omega\) for \(200 \mathrm{~Hz}, 10.004 \%\) mainly second harmonic), \(1 \mathrm{kHz}(0.0025 \%)\) and 20 kHz (0.025\%).
commercial transistor amplifier designs, often by the simple artifice of a capacitor between collector and base of the second stage amplifier transistor, because it allows better h.f. t.h.d. figures - and consequently better reviews in the ' \(\mathrm{Hi}-\mathrm{Fi}\) ' journals. It does, however, carry with it the penalty that the phase margin of the amplifier is less good, with a consequently inferior transient response - manifest in respect of a less good 'settling time \({ }^{16}\) and a less predictable performance with differing loudspeaker load characteristics. In addition, the intermal slew-rate limiting. imposed by the second-stage collector-base capacitance (which is the mechanism by which the h.f. gain is reduced) leads to the predictable problem that signals accompanying large transient inputs will be blotted out during the period in which the amplifier is slew-rate limited. This is the phenomenon called 'Transient Intermodulation Distortion' by Otala \({ }^{7}\). This problem does not exist with the first method of h.f. compensation. A very good analysis of this problem was given by Jung \({ }^{8}\) (with a small addendum by myself \({ }^{9}\).

The biggest advantage, in this respect, conferred by power mosfet output devices, is that the inherent phase-shift of the output emitter-follower impedance conversion stage is sufficiently small that it may be neglected up the megahertz region. This means that, with care, feedback audio amplifiers having high orders of negative feedback (open-loop gain) can be designed without the need for any external control of h.f. gain, and which will exhibit the desirable characteristics given by systems in which the gain decreases with frequency at \(20 \mathrm{~dB} /\) decade, and the loop phase shift does not significantly exceed \(90^{\circ}\).

\section*{Influence of negative feedback}

The use of negative feedback is, unfortunately, not as well understood, even among electronics engineers, as one might sometimes wish, and this misunderstanding has spilled over into the more emotive, and less logical, realm of the ' \(\mathrm{Hi}-\mathrm{Fi}\) ' fraternity, where the ill effects attendant upon the improper use of this technique have encouraged the attempt to design amplifiers believed by their authors to employ no negative feedback whatever - a case of discarding the baby along with the bath water, if there ever was one.

The necessary conditions which must be satisfied if the potential benefits are to be gained have been examined both by Baxandall \({ }^{10,11,12 \text {, in his series on audio ampli- }}\) fier design in this journal, and also, from a different angle, by Wireless World's own Cathode Ray \({ }^{13}\). The message from all these contributions, if I may presume to precis, is that the amplifier in question must be made as linear as possible before negative feedback is applied; that the gain - at the frequency under consideration - must be enough, or the customary simplification of the mathematics will be inappropriate; and that a small amount of n.f.b., by injecting into the input an additional distorted signal, will worsen the harmonic distortion which would have been present without it.

Translated into design requirements,

Fig. 20. Response of amplifier to \(10 \mathrm{Vp-p}\) 100 kHz square wave on resistive and reactive loads, with and without output inductor.
this implies that a high stage gain, coupled with good linearity and the lowest practicable phase shift, is the necessary design objective - most easily attained if not more than two gain stages are employed. The inclusion of a positive feedback path within the overall n.f.b. loop as a means of increasing the loop gain brings with it some supplementary requirements. These are that the phase shift within the positive feedback loop must be very small over the range of interest, since the p.f.b. will worsen it, and that the linearity of this part of the circuit must be much better than that of the remaining circuit outside the p.f.b. loop, or the benefits will be negated. Looked at in this light, the use of a bootstrapped driver load in an audio amplifier is not well advised, since the loop containing the 'bootstrap' will include the output devices whose linearity it is desired to ima prove.
In the particular case of the feedback loop built around \(\mathrm{Tr}_{2}, \mathrm{Tr}_{5}, \mathrm{R}_{8}\) and \(\mathrm{R}_{7}\), the linearity of this is very good because it is only driving a high-value resistive load, and the dominant phase shifts are those due to \(\mathrm{C}_{6}\) at the l.f. end, and the circuit \({ }^{\circ}\) stray capacitances in \(\mathrm{Tr}_{5}\) collector circuit at the h.f. end of the pass band. This gives a phase-linear bandwidth which is greater than that of the overall n.f.b. gain loop, and therefore satisfies the conditions for
improving the overall amplifier performance.

Because of the capacitive nature of the load presented to \(\mathrm{Tr}_{6}\) by the gate-source capacitance of the power mosfets, the h.f. loop gain of the amplifier falls below unity. at about 30 MHz , which is sufficient to give an adequate margin of stability, while still allowing some 60 dB of negative feedback at 30 kHz , the chosen upper operating frequency limit. No additional h.f. roll-off components are required.

\section*{Stability with capacitative loads}

A minor problem associated with power mosfets, discussed by Hitachi in their design note \({ }^{14}\) is that the very high-frequency -3 dB point of the mosfet used as a source follower (typically \(30-40 \mathrm{MHz}\) for the Hitachi devices) allows the inductance of the internal gate-contact lead - some 70 nH to produce a negative resistance condition, with consequent parasitic oscillation, under conditions of small capacitative load \((0.01 \mu \mathrm{~F}-0.22 \mu \mathrm{~F})\). Oscillation, under these conditions, but due to other causes, is not uncommon in audio amplifiers, and can be the cause of amplifier failure when used with the so-called low-impedance loudspeaker cables, even when the amplifier is completely stable under the \(80 \mathrm{hm} / 2 \mu \mathrm{~F}\) load combination frequently chosen by reviewers. Needless to say, this possibility of parasitic oscillation should be avoided and this is most easily done in this type of design by the inclusion of a small inductor of some \(5 \mu \mathrm{H}\) inductance, (20 turns of 24 s.w.g. enamelled wire, wound round the case of a 10 ohm , I watt carbon-rod resistor) in the output lead to the loudspeaker load.

This output inductance has two practical effects, apart from the avoidance of parasitic oscillation. The first of these is to reduce the total harmonic distortion of the circuit, as measured at the output at high audio frequencies, simply because it acts as an output low-pass filter. The second effect, due to the same cause is a 'ripple' on the square-wave/reactive-load test waveform, which is an inevitable effect of any steep-cut, low-pass filter. Without this output inductor, the \(80 h m / 2 \mu \mathrm{~F}\) test waveform is smoothly rounded and free of any overshoots.

\section*{Output stage protection}

Because of the freedom of power mosfets from secondary breakdown, and because they have an inherent positive temperature coefficient of resistance, output stage protection can be much simpler than is the case with normal junction transistors, and a simple fuse in the output circuit is quite adequate. This has a practical advantage over many of the electronic protection methods normally employed, in that it avoids hard clipping under dynamic conditions when the amplifier is required to drive fast h.f. transients into loudspeakers having a low h.f. impedance.

Fig. 22. Power supply used in prototype.

Fig. 23. Typical transfer characteristic of c.m.o.s. gate.

\footnotetext{
\({ }^{*} \mathrm{~L}_{1}\) is wound on \(\mathrm{R}_{24}\)
}

\section*{Overall performance and sound quality}

The power bandwidth, the t.h.d. as a function of output power, and the t.h.d. as a function of signal frequency are shown in Figs. 16-18, and the distortion waveforms and 10 kHz reactive load waveform, with and without the output inductor, are shown in the oscilloscope photographs of Figs. 19 and 20.

Inevitably, the question must be asked whether, in the event, the sound quality given by a well designed power mosfet amplifier is better than, or indeed noticeably different from, that given by an equally well designed power amplifier using junction transistors. The designer is not a good person from whom to seek an answer to this question, if only because his awareness of the inevitable design compromises in the circuit, and of the imperfections which remain as a result of the impossibility of achieving all design objectives simultaneously, colour his expectations in respect of its perceived performance. However, having said this, I believe that power mosfet output devices, in appropriately designed circuitry, can offer an improved performance in the 'upper-middle and top end of the audible spectrum, which is apparent as an improved clarity and transparency in tonal quality, particularly at low output levels, in comparison with equivalent junction transistor designs.

Fig. 24. Input d.c. level monitor using c.m.o.s. Nor.

Fig. 21. Printed-board for power amplifier.

\section*{Power supply}

A suitable power supply circuit is shown in Fig. 22. As mentioned above, the output power of the amplifier depends almost entirely on the supply line voltages, and the original design was based on a conventional ' \(E\) ' and ' I ' cored transformer with a nominal \(50-0-50\) secondary winding, which gave a quiescent output d.c. voltage, after rectification, of \(\pm 62 \mathrm{~V}\). This was subsequently replaced by a \(250 \mathrm{VA} 50-\) \(0-50 \mathrm{~V}\) toroidal cored unit, in the interests of a lower residual 50 Hz field, and this gave a d.c. output of \(\pm 65\) volts, and increased the power output, at 1 kHz across an 80 hm , water-cooled, resistive load, from 83 watts/channel to some 105 watts/channel. It was thought prudent to uprate the reservoir capacitors to 80 V types, but no other changes are necessary.

\section*{Loudspeaker protection circuit}

Although the use of direct coupling between loudspeaker and amplifier output, together with the use of split positive and. negative h.t. rails, undoubtedly helps in the economical design of high-powered audio amplifiers by limiting the necessary voltage rating of the reservoir capacitors, it does carry with it the implicit hazard that, in the event of a component failure within the power amplifier, the whole output of one or other of the supply lines may be switched into the output circuit, with expensive consequences.
The most elegant way of avoiding this hazard is to employ a small supplementary circuit to monitor the average d.c. potential of the amplifier output terminals, and to disconnect the loudspeakers in the event that an averaged d.c. offset of more than a volt or so is detected. Experiments over a periold of time have shown that the loudspeaker can be connected through a pair of gold-plated relay contacts without audible or measurable signal degradation. Silverplated contacts are excellent when new and clean, but tend to become partially rectifying if sulphided by exposure to urban atmospheres, and should therefore be avoided if possible.
An inevitable problem in the use of an 'average d.c. potential' monitoring circuit is the necessity for some compromise be-

Fig. 25. Complete twochannel loudspeaker protection circuit with switch-on delay.

Fig. 26: Layout of printed board for circuit of Fig. 25.
tween speed of response, in disconnexion following a fault condition, and the need not to diagnose a large but legitimate v.l.f. signal - especially if assymmetrical - as such a fault. My own choice is an integrating time-constant of about 2 seconds. This ignores all the normal l.f. signal components, at least at the largest signal levels I have so far used, but allows a switch-off in better than 80 milliseconds in the event of a large direct voltage being applied to the input. This should be adequate to avoid thermal damage to the loudspeaker.

In order to accommodate a fairly long integrating time-constant with the use of non-polarized capacitors, a high-input-impedance offset-detection logic circuit is essential. C.m.o.s. logic elements of the 74 C or \(\mathrm{CD} 4^{\star * *}\) series are well suited to this task, especially since the switching potentials are well defined in relation to the supply voltage line employed. Typical gate transfer characteristics are shown in Fig. 23. Because of this, if the gates are biassed by an input resistor chain, as shown in Fig. 24, so that one sits below and one sits above this threshold level, a pair of Nor gates will effectively act as an input-threshold d.c. monitor circuit, in which the output will only be high so long as input A is high and input B is low. With the resistor values quoted, this condition will be met while input \(C\) is within \(\pm 2 \mathrm{~V}\) d.c., for a 10 V supply line. The circuit also will provide a switch-on delay of a few seconds while \(C_{1}\) charges up through \(\mathbf{R}_{3}\) to a potential above the \(1 / 2 \mathrm{~V}_{\mathrm{cc}}\) level.

The complete, two-channel, loudspeaker protection circuit based on this arrangement needs only one Quad 2-input Nor gate, and a pair of switching transistors. The final circuit is shown in Fig. 25. It is 'fail-safe' in the sense that the relay contacts are normally open, and can only operate if the h.t. supply is present and both transistors are energized. The relay used is an RS Components p.c.b.-mounting, 24 V unit, with \(5 \mathrm{~A}, 250 \mathrm{~V}\) a.c.-rated gold-plated contacts, of d.p.d.t. operation. H.t. supply for this is best obtained from the output stage +65 volt line.

\section*{References}
6. Linsley Hood. J. L., Wireless World. Letters. Jan. 1975 pl8.
7. Otala, M., Trans. I.E.E.E. AU-18, pp 234 239.
8. Jung, W. G., Hi-Fi News and Record Review. Nov. 1977, pp 115-123.
9. Linsley Hood, J. L., Hi-Fi News and Record Review. Jan. 1978, pp 81-83.
10. Baxandall, P. J., Wireless World. Ju.ly 1978, pp 76-79.
11. Baxandall, P. J., Wireless World. Dec. 1978, pp 53-56.
12. Baxandall, P. J., Wireless World. Feb. 1979, pp 69-73.
13. 'Cathode Ray', Wireless World. Oct. 1978, pp 47-50.
14. Hitachi Ltd., Design Note DE 1A. Feb. 1979. (Central Res. Lab.)

Editor's note: We understand that a kit of componenes for the amplifier is to be made available by Hert Electronic Kits, Led, Oswestry, Shropshire.
A preamplifier design to match the mosfet power amplifier will be described later in the year.

\section*{When a read/write head's position is determined by information on the disc surface, datastorage capacity can be greatly increased. As shown here, there are different methods of applying this technique which, in the case of a drive with ten discs in one pack, can increase the storage capacity four times despite a loss of \(5 \%\) in data storage area.}

Possibly the most significant event in the history of disc storage was the introduction of the servo-surface drive. Through the virtual elimination of thermal effects on head positioning, servo-surface drives, in which the head's position relative to the disc is determined by information on the disc surface, allow great increases in data storage density.
Changes of temperature in relatively simple disc-drive positioners, such as those discussed in the June issue of Wireless World, do not only affect accuracy through expansion and contraction in mechanical components such as head cantilevers. Thermal drift in the cylinder transducer and associated circuits also causes problems. How temperature changes limit the number of tracks on a given disc is illustrated in Fig. 1.

Because the position-error signal in a servo-surface disc drive is derived from a head reading the disc, these problems are drastically reduced. In a multi-platter drive, one surface of the pack holds servo information, which is read by the servo head. All of the read/write heads move with the servo head. In a ten-platter pack, this means that \(5 \%\) of the usable data storage area is lost, but this is unimportant since the track density in a drive with a servo surface can be typically four times greater than in a drive without one.
Using one side of a single-platter cartridge for servo information would be unacceptable as it represents \(50 \%\) of the usable data storage area so, in this case, servo information is interleaved with sectors on the read/write surfaces. Disc drives using this technique are usually referred to as 'embedded servo' drives.
Figure 2 shows the essential features of these two main categories of servo-surface drive, which will be described in turn.

\section*{Servo surface}

As stated, one surface of the disc pack contains information to control the positioner. This surface is written when the disc is manufactured and, should it become corrupted, must be rewritten on special machine known as a servo writer.
The key to the operation of the servo surface is the way in which it is recorded by the servo writer. Recorded transitions are in adjacent pairs known as dibits, separated by a space, and Fig. 3 shows that there are two distinct types of servo track. On an A-type track, the first transition of the pair will cause a positive pulse on reading, whereas on a B-type track, the first

Digital Equipment Co.

\author{
by J. R. Watkinson \\ B.Sc., M.Sc.,
}
pulse will be negative. In addition, the Atrack dibits are shifted by one half cycle with respect to the B-track dibits. The width of the magnetic circuit in the servo head is equal to the width of a servo track.

During track following, the correct position for the servo head is with half of each type of track beneath it. The read/write heads will then be correctly centred on their respective data tracks. This relationship is illustrated in Fig. 4.

The amplitude of dibits from A tracks with respect to the amplitude of dibits from B tracks depends on the relative areas of the servo head which are exposed to the

Flg. 1. At (a), misalignment \(x\) has little effect on the output signal, but at (b), the same misalignment in a system using four times greater track density causes unacceptable errors in the read signal. Distance \(x\) is not to scale.

Fig. 2. In a multi-platter disc pack, one surface is dedicated to servo information, left, but as the number of platters in a pack falls, the percentage of data storage area lost to servo information rises. For this reason, some discs have servo information embedded in the data on the same side, as in the case of the single platter, right.

Flg. 3. The servo surface, left, has two types of track, \(A\) and \(B\), which are \(180^{\circ}\) out of phase with each other and have opposite polarities. Waveform (a) results when the servo head is directly above track \(A\), and waveform (b) appears when the head is above track \(B\). When the head is correctly positioned, waveform (c) results.

Fg. 4. When the servo head is straddling two servo tracks, the data heads are correctly aligned with their respective tracks.
respective tracks. As the servo head has only one magnetic circuit, it will generate a composite signal whose components will change with respect to one another as the position of the servo head changes. Figure 5 shows several composite waveforms obtained at different positions of the servo head. The composite waveform is processed by using the first positive and negative pulses to generate a clock. From this clock are derived clamping signals which permit only the second positive and second negative pulses to pass through. This resultant waveform has a d.c. component which, when filtered, gives a voltage proportional to the distance from the track centre. The position error reaches a maximum when the servo head is entirely above one type of servo track and further movement will cause it to fall. The next time the position error falls to zero will be at the centre line of the adjacent cylinder.

Cylinders with even addresses (1.s.b. \(=0\)) will be those where the servo head is detented between an A track and a B track. Cylinders with odd addresses will be those where the head is between a B track and an A track. It can be seen from Fig. 5 that the sense of the position error becomes reversed on every other cylinder. Accordingly, an inverter has to be switched into
the track-following feedback loop in order to detent on odd cylinders. This inversion is controlled by the 1.s.b. of the cylinder difference at the beginning of a seek, such that when the heads arrive at the target cylinder, the sense of the feedback will be correct.
Seeking across the servo surface results in the position error signal rising and falling in a sawtooth. This waveform can be used to count down the cylinder difference which controls the seek. As with any cyclic transducer there is a problem in finding an absolute position. This difficulty is overcome by making all servo tracks outside cylinder zero type A, and all servo tracks inside the innermost cylinder type B. These areas of identical servo tracks are called guard bands, and Fig. 6 shows the relationship between the position error and the guard bands. During a head load, the servo head generates a constant-maximum positive position error in the outer guard band. This drives the carriage forward until the position error first falls to zero. This, by definition, is cylinder zero. Some drives, however, load heads by driving the carriage at low speed across the disc until the inner guard band is detected, and then find cylinder zero by performing a fulllength reverse seek.

Another, less common form of servo surface is shown in Fig. 7. In this type, there is a common sync. bit in both tracks,

Fig. 5. Waveforms resulting from several positions of the servo head in relation to the disc. Amplitudes of waveforms (a) and (b), components of the actual waveform (c), are proportional to the area of the servo head over the track concerned. A positionerror signal, (d), is obtained by comparing the second positive and negative peaks in the composite waveform, (c).

Servo head from a multi-platter disc drive. The rectangular plug is for mechanical support only.
and subsequent servo bits at differen times afterwards. The position error is de rived by opening sample and hold gates at different delay times after the sync. bit. As three distinct transitions can be seen in one cycle, the resultant waveform is known as a tribit signal.

We have seen that a position error and a cylinder count can be derived from the servo surface, eliminating the conventional cylinder transducer. The carriage velocity could also be derived from the slope of the position error, but unfortunately such a signal is only available while the servo head is above the disc, and velocity feedback is needed when the heads are retracted. Some form of velocity transducer is still therefore necessary.

As there are exactly the same number of dibits on every track, it is possible to describe the rotational position of the disc simply by counting them. All that is required is a unique pattern of missing dibits once per revolution to act as an index point, and the sector transducer can also! be eliminated.

Unlike the read/write circuits, the servo circuits are active during a seek as well as

when track following, and so must be constructed in such a way that they do not suffer interference from pulse-width modulated e.m.a. drivers. The main problem comes when the index is due, where the presence of a noise pulse during a "missing" dibit could inhibit recognition of the index. There are two solutions to this problem. In the first, a preamplifier i.c. is incorporated in the servo-head cantilever, so that the servo signal leaves at high level and low impedance, making it noise immune. In the second approach, the sector counter predicts when an index pattern is due, by counting slightly less than the number of dibits in one revolution, and inhibits switching in the e.m.a. driver until index has been detected.

An advantage of deriving the sector count from the servo surface is that the number of sectors on the disc can be varied. Any number of sectors can be accommodated for by feeding the dibit-rate signal through a programmable divider, so the same drive may be used for storing, say, 22 sectors of 16 -bit data for a minicomputer or 20 sectors of 18 -bit words when connected to a main-frame (2 disc words are the same as 1 memory word).

In a non-servo disc drive, the write clock is usually derived from a crystal oscillator. As the disc speed can vary with supply voltage fluctuations, a tolerance gap has to be left at the end of each disc block to cater for the highest anticipated speed, to prevent overrun into the next block on a write. In a servo-surface disc drive, the write clock is obtained by multiplying the dibit-rate signal with a phase-locked loop, The write clock thus obtained is locked to the disc speed, and the recording density will be independent of supply fluctuations.

Most servo surface disc drives offer an offset facility, where a register written into by the system controls a d-to-a converter, which injects a small voltage into the trackfollowing loop. The action of the servo is such that the heads move away from the theoretical track centre line until the position error is equal and opposite to the offset voltage. The position of the heads about the track centre line is thus program controlled, Fig. 8. Offset is only employed for the purpose of reading, if a write is attempted, the drive will return to the track centre line.
Head alignment. The servo-surface technique is also used for head alignment. On the data surfaces of the alignment disc, dibit patterns are written at the reference cylinder. A special test box is required for head alignment, and this usually contains an exact copy of the circuit board used by the drive to obtain a position error signal from a dibit signal. The module in the test box is fed not by the servo head, but by the data head to be adjusted. The position-error output drives a centre-zero meter which gives a direct reading of the head misalignment in micro inches. The selected head is adjusted radially in the carriage until the meter reading is within the specification. Precautions are taken to ensure that the alignment disc is not written over. Program-controlled head-alignment measurement. In some test boxes, the posi-

Flg. 6. The servo surface's working area is defined by the inner and outer guard bands, at which the position error signal is maximum.

Fig. 7. The 'tribit'-type servo surface in which the position-error signal is derived from pulses from two types of track following a common negative synchronization pulse. (a) and (b) are obtained when the servo heed is directly above one or other of the tracks, (c) is the correct waveform, and (d) and (e) show typical off-track waveforms.
tion-error signal from the selected data head is compared with zero volts, to create a binary signal depending on the head position relative to the track centre line. This signal is fed back into the disc-control logic and becomes a bit in a register accessible to the system, known as "sign change'. Under program control, the positioner is set to maximum offset, and then brought back until the sign-change bit changes state. The amount of offset needed to cancel the alignment error is equal to the error itself, Fig. 9. After sequentially testing all of the heads, the program can print out a table of the alignments. By comparison with the specification, an engineer can decide which, if any, heads need adjustment. The head alignment can also be checked at further -reference tracks on both the innermost and outermost cylinders, as a check on carriage alignment accuracy.

\section*{Embedded-servo drives}

In drives with few platters, the use of an ,entire surface for servo information gives a
high percentage loss of data recording area. In the embedded-servo drive, servo information is interleaved with data on the same surface, causing a smaller loss of data storage area.

The embedded-servo drive heads will be reading data at some times and alignment information at others as the disc rotates. A |sector transducer is required to generate a pulse which is true when the head is reading servo information and false when reading or writing data. Figure 10 shows the principle. On all disc drives, the width of the read/write head is less than the track spacing to prevent crosstalk. As the servo head is also the read/write head here, it is slightly narrower that the spacing of the servo information. This has the harmless effect of rounding off the peaks of the triangular position-error waveform. During the pulse from the sector transducer, the head sees alignment information, and the servo circuit develops a position-error signal in much the same way as any servo drive. Within the servo area there are two ,sets of alignment patterns, the second be-
ing positioned to a position errof of zero when the first is at a maximum. The two bursts of information are known as S1 and S2. Sample-and-hold circuitry is used to carry over the position error when the head is traversing read/write data.

The discontinuous nature of servo information means that cylinder crossing cannot be counted directly during a seek, as the positioner is fast enough to cross several tracks between servo bursts. With reference to Fig. 11, the cylinder crossings
are established as follows. During the S1 period, the position error is compared with zero volts to generate one data bit, whose state depends on whether the head was inside or outside the Sl null point. A similar process takes place during the S2 period, and the position of the head relative to the servo pattern is described as being in one of four places by the two bits. These bits are stored, and at the next servo bursts, two further bits are generated, describing the new position of the head.

Figure 12 shows that there are a number of cases which can satisfy the same initial and final conditions. The only difference between the cases is the carriage velocity, so the output of the carriage-velocity transducer is digitized and used to resolve the ambiguity.

At every sector pulse, the two bits from the previous bursts, the two bits from the current bursts and the digitized velocity are fed into a rom which is pre-programmed to return the theoretically cor-

Fig. 11. There are two basic types of servo track, S1 and S2, recorded in two different positions and staggered. During S1, a position error signal is generated from the relative areas of the two types of track (SI and \(\overline{\text { 1 }}\)) under the head as in the conventional servo-surface drive. This position-error value is stored in a sample and hold circuit. For track counting, the position error value is compared with OV to obtain a data bit. During S2, another position error signal and data bit are generated. The four possible combinations of the two bits are shown here in relation to the two position errors.

Fg. 8. Representation of servo-surface disc drive's feedback loop. The offset register drives a d-to-a converter which can modify the feedback loop, allowing the heads to be offset from the track centre line under control of the operating system.

Fig. 9. Head alignment. An alignment disc with 'dibits' on its data surfaces is used in conjunction with a duplicate of the position-error circuit driving a head-alignment meter. Using offset, the program can move the servo head off track until the read/write head is in the correct position. The amount of offset necessary to achieve this is equal to the alignment error.

Fig. 10. In an embedded-servo drive, the same head is used for both servo information and data. During a sector pulse, the read signal is treated as servo information.
rect number of cylinders which must have been crossed for all combinations of inputs. This number is then subtracted from the cylinder difference counter which controls the seek. The calculation will only be valid for one disc rotational speed, so the disc motor requires a speed control. This is achieved by counting controller-clock pulses during the time between sector pulses, and developing a loop error by comparison with the desired number of pulses.

As the cylinder crossing count is deductive, there will be the odd occasion when the count is in error and the positioner comes to the wrong cylinder. In a conventional disc drive, this would be a mispositioning error which would warrant an en-

\section*{continued on page 46}

\title{
 \\ 1 Theories and Miracles \\ - 2 Electromagnetic Analogy \\ 3 Impact of the Photon \\ 4 A more realistic Duality? \\ 5 Quantization and Quantization \\ 6 Waves of Improbability \\ 7 Limitation of Indeterminacy \\ 8 Haziness and its applications \\ 9 The State of Physics Today \\ THE ELECTROMAGNETIC ANALOGY
}

\section*{In his second article Dr Murray takes a dispassionate look at Victorian electromagnetic theory and finds that, contrary to popular belief and textbook wisdom, it had begun to go decidedly green around the edges before it was thirty years old - a fact that many otherwise worthy men have preferred to ignore.}

The earliest organized investigation of the physical properties of light was undertaken in the seventeenth century by Sir Isaac Newton. Despite the evidence of some of his own experiments, Newton himself remained convinced throughout his life that light consisted of showers of particles, or "corpuscles". His authority among scientists was such that much philosphical argument arose before Thomas Young's famous experiment - on the mutual interference of light rays after passing through a double slit - was accepted as conclusive evidence for the wave nature of light, largely through the mathematical ingenuity of Fresnel. Incidentally, the most convincing demonstration that I know of in favour of "light waves" is due directly to Fresnel, and lies in the fact that the shadow of a one-penny piece has a bright spot at its centre.

That light behaves as a wave system is one of the most thoroughly researched and supported conclusions in all science. By assuming waves of a definite wavelength one can calculate numerically how light will behave in optical apparatus of any complexity one chooses and, lo and behold, that is precisely the way light does behave in practice. The accuracy of the prediction seems to be unlimited, and to depend only on the accuracy with which we can measure the result. I want to place special emphasis on the precision with which the wave theory describes the behaviour of light as observed in Nature, because it is primarily that precision which makes the wave theory of light so convincing. As long as we stick to light which is bright enough to be seen, and of ordinary. visible wavelengths, the theory works perfectly every time.

The next major step in the wave theory

\author{
by W. A. Scott Murray B.Sc., Ph.D.
}
was taken in 1862 by James Clerk Maxwell, on the basis of his formulation of Michael Faraday's ideas of electricity and magnetism. Faraday had come to interpret his observations in terms of electric and magnetic fields of force, which Maxwell found could be expressed by exact analogy with the mathematical formulations of hydrodynamics - that is, the behaviour of incompressible fluids. Faraday's field concept conveniently bypassed the fundamental problem of action-at-a-distance (namely, how can one electric charge repel another when there is no connecting rod between them?). It suggested that the electric field permeated everything and everywhere, like a fluid throughout all space, so that such actions really took place locally, within the field, rather than "at a distance".

By this means action-at-a-distance came to be regarded as a non-problem, the first of many difficulties so handled in physical science. Note that the non-problem technique does not solve the philosophical problem to which it is addressed, but evades it. It is clearly legitimate as a technique, to permit us to maintain our momentum and get on with the next phase of the job, provided we put up a marker flag to remind ourselves that we have left behind us a fundamental problem unsolved. It is philosophically dangerous to omit this precaution. For example, there are those who have specialized in field theory so strongly that they believe in an electric field, as if it were a physical entity having an independent physical existence in its. own right - like an electron perhaps, or a
filing cabinet. Such folk do not envisage an electric field merely as a convenient mathematical trick for integrating a set of inverse-square-law forces.

I am discussing this concept of a "force field" at some length because it is the first instance we have encountered where an attractive product of romantic imagination has come to be treated, with no basis of experimental evidence whatsoever, as though it corresponded to an established or even a self-evident truth. It is in this romantic, unscientific way that doctrines arise in physics. (When a doctrine is subjected to criticism that it cannot withstand it usually turns into a dogma; it is then to be believed by faith rather than by evidence). In the present case the truth is that we know nothing of how or why one electric charge should be influenced by the distant presence of another, but only that it is so influenced and by precisely how much. It is another miracle.

These ideas may seem far removed from waves and light, but the connection between them was Maxwell's very great invention: he showed that a particular combination of his changing electric and magnetic fields, which can be written down mathematically in the form of a "wave equation", would propagate through space at the velocity of light. Thence it needed but one further, obvious step to the postulate

\section*{"Light consists of electromagnetic waves".}

That step was taken. Combining as it did the three topics of electricity, magnetism, and light under the single concept of wave motion, it was extraordinarily satisfying aesthetically and it seemed to remain true when tested to any depth. It came to be
believed by all scientists at the turn of the century and it is still believed by nearly all scientists today. Heinrich Hertz went on to cap it by generating radio waves electrically and showing that they belonged to the same family of phenomena.

Thus at the end of the "classical" period in physics all appeared superficially tidy. It was generally accepted that the entire spectrum of light from long-wave radio through and beyond the ultraviolet was a manifestation of electromagnetic waves of defined, invariant velocity \(c\), whose "colours" were determined by their frequencies and corresponding wavelengths in accord with the general axiom of wave motion, frequency \(\times\) wavelength \(=c\). Those must have been happy days of selfsatisfied Victorian complacency before the storms broke

A couple of minor points arose. First, the physical energy transported by the light waves, which propagated at the speed of light, was taken to be the energy contained in the electromagnetic field as described by a simple formula of the theory. Once launched into space, this energy had an independent existence even though its source, a star for instance, should later explode as a supernova. So here one had an electric field and a magnetic field, neither of which (according to the theory itself) could exist without continuous connection to a source and a sink of fluence, while their combination, the electromagnetic field, did have an independent existence. These static and dynamic fields were therefore quite different in their intrinsic natures, yet there was nothing in Maxwell's equations to suggest that one type of field was more physically "real" (that is, had any more independent, objective and existence) than the other.

Second, and on a slightly larger scale of discrepancy, Maxwell's formulation of electric and magnetic fields was mathematically equivalent to the behaviour of incompressible fluids, as has been mentioned already; yet the waves in his electromagnetic field were transverse waves, of a type which in the mechanical case require a solid substance to transmit them and will not propagate in a fluid medium. Thus the medium involved, which became known as the ether, was required to exhibit physical properties which differed from moment to moment, according to whether the field it was supporting was static or in motion. This gave rise to much trouble.
In view of the intellectual triumph of Maxwell's work it would indeed have been churlish to have raised such apparently insignificant points as these at the time. Yet in retrospect one can see that they were real discrepancies whose incidence. formed part of a pattern of discrepancy in electromagnetic theory. (Remember, please, that we are not attacking the theory, but examining a miracle: a physical occurrence for which we can offer no physical explanation). For physical waves as normally understood are mechanical waves; they are waves in something - in air, or water, or at the air-water interface, or in solid rock, or what-have-you. Their
velocity is determined in relation to the medium in which they travel. Hence a careful measurement of the velocity of light in the laboratory, coupled with the assumption of the constancy of light velocity in its ether medium should, it was believed, reveal the velocity of the laboratory through the ether.

That experiment was duly performed, most famously by Michelson and Morley in a basement in the University of Chicago in 1887. The date is most interesting, being 25 years after the first publication of Maxwell's postulate of the electromagnetic nature of light, and 18 years before the publication by Einstein of the special relativity theory with which it is usually connected. That connection is something of a myth. Einstein did not refer to the Michel-son-Morley experiment at all but assumed the velocity of light to be universally constant as a fact of nature (it was not tested in Michelson-Morley!). His other startingpoint, the principle of relativity in the form of the denial of absolute motion, was in no sense new but had appeared in Newton's Principia just 200 years before.

Thus for contemporary thinkers the really shocking implication of Michelson and Morley's result was not that it might lead towards a new relativity theory some two decades later, but that it asserted, unmistakably and immediately, that there was no ether for the electromagnetic light waves to undulate in. It was of secondary importance that the medium in which electromagnetic waves travelled did not reveal any frame of reference of zero motion, or absolute rest. It was an equally red herring to say that it was merely the postulated electromagnetic waves that had no ether, because the experiment as performed was a straightforward experiment in light, having no reference to electricity or magnetism. The really crucial experimental result was that light waves, whatever their form, could not be waves in a physical medium. And if they were not waves in a physical medium, how could they be said to be waves at all? The answer to that question is not straightforward.
There was an immediate and almost instinctive reaction against the MichelsonMorley result. Some physicists (like Sir Oliver Lodge) simply refused to accept it, while others up to the present day have repeated the experiment with progressively more refined apparatus in the hope of proving it wrong. All such attempts so far have failed. Most of those experimenters believed themselves to be taking issue with Einstein and special relativity; only a discerning few have understood that they were really trying to save the electromagnetic theory, and with it the whole of the concept of fields of force of nineteenthcentury physics. The Michelson-Morley experiment denies the existence of an ether, and there is no doubt about its finding: space is empty. There is nothing there.

In view of the admittedly overwhelming evidence that light consisted of waves (and very probably electromagnetic waves), physics at the turn of the centry refused to face the consequences of the Michelson-

Morley result. Two lines of experimental evidence that seemed to be equally valid seemed also to be in absolute mutual conflict. The philosophical crisis was acute, and it has never been resolved. One approach has been to ignore the problem in the hope that in due course and in the light of later knowledge it will go away - this is the "don't care" or "too busy" reaction, which really means "too difficult" - but unfortunately this is a problem that doesn't go away. Another approach is to ask why a physical ether should be necessary for the waves to propagate in: why do they demand a physical medium? The answer would seem to be that according to the theory these "waves" carry physical energy in readily measurable amounts, so that they must be physical waves; and physical waves cannot be waves in nothing, unless we are to believe in miracles

Then there are the semantic approaches, which seek to show that the problem is one of wording only and has no philosophical depth. "Very well", it has been said, "we have been denied a luminiferous ether; let us call the medium in which the waves travel 'space', or 'an inertial frame of reference' ". The trouble with such proposals is that space, insofar as we can measure its properties, is empty, a vacuum, having no physical content. (Do not let us get bogged down with arguments about the "permittivity" or "im-

\section*{Summary \\ History of the scientific concepts of} light: Newton (corpuscles), Young and Fresnel (waves), Faraday (fields of force), Maxwell (electromagnetic theory). The philosophical problem of "action-at-a-distance" was not solved but bypassed, setting a precedent; this raised the question of the nature of a field theory and led to the emergence of related doctrine and dogma. Some minor discrepancies were inherent in electromagnetic theory as propounded: depending on scenario its fields possessed differing degrees of physical reality, and differing properties were required of the medium, or ether, in which the electromagnetic phenomena occurred. A major problem arose in consequence; when the issue was put to the test, the famous Michelson-Morley experiment unequivocally denied the existence of a physical ether for electromagnetic waves to undulate in. Attempts were made to evade this philosophical crisis by ignoring it, by semantic arguments, and by attributing physical properties to non-pliysical, mathematical equations. The last of these ideas, which began to take root in the 1890s, re-introduced mysticism into natural philosophy after a banishment of only 350 years. An alternative approach (which was not acceptable in the elimate of those times) might be to regard electromagnetic theory as an analogy of Nature which although often extremely useful may not always be a perfect analogy.
pedance" of empty space, which are artifacts of electromagnetic theory). We cannot manufacture a physical medium having physical properties out of nothing merely by coining phrases or by re-defining space.

Yet another approach - and this one had far-reaching philosophical consequences - arose from the remark that the mathematics of wave propagation predicted results in accord with observation even though the physical requirements for wave propagation were not satisfied. The temptation became very strong to say that these light waves were not physical waves at all, but mathematical waves. Here at a stroke one seemed to have a potential solution satisfying both aspects of the experimental evidence: (a) light consists of waves (c.f. Young and Fresnel, and perhaps also Maxwell and Hertz), while at the same time (b) the waves are not physical waves in a physical ether (c.f. Michelson and Morley), but of a purely mathematical nature.
This was the first move in the takeover, by default, of theoretical physics by the Mathematicians' Union. It wasn't a complete takeover until the 1930s when the mathematics of the new quantum mechanics became so obscure and esoteric that the ordinary physicist gave up trying to follow the wilder ramifactions of the theory. The nature of the physicists' default was their failure to insist sufficiently strongly on the physical reality of the physical world. In the case of light, energy is
transmitted at a definite speed through a vacuum, and this energy is a physical entity which gives rise to measurable physical effects at its destination. Mathematical waves, being abstract and non-physical, cannot give rise to physical effects. If we accept mathematical waves as the basis for light, we are accepting miracles; for by our definition a miracle is a physical occurrence for which we can offer no physical explanation.

Mathematical explanations of physical events will not do. For those who believe that mathematics can take the place of physics, or who have merely failed to think about the suggestion deeply enough, I offer the following little mnemonic: Nobody ever became sunburnt as a result of exposure to a differential equation!

Thus in addition to being the first move in the general mathematical takeover, this was the beginning of the return of mysticism into Natural Philosophy after a banishment which had lasted no longer than 350 years. The evidence we shall put together will show that the process has continued steadily, until today the whole fundamentals area has become so permeated by mysticism that one can scarcely distinguish where the physics ends and the metaphysics begins. There is a way of making the distinction, but it calls for a certain old-fashioned ruthlessness in complying with physical discipline and rejecting unsupported mathematical speculation, however superficially attractive the latter
may appear. The process will become easier and more sure as our long-neglected critical faculty is gradually re-developed and applied to these problems.

What other alternatives do we have for dealing with the quandary in which the Michelson-Morley result has placed us? There is one approach which always carried a budding promise, although in the face of the mystical takeover it has received little more than lip-service. It is that light does not in fact consist of electromagnetic waves but behaves like a system of electromagnetic waves. The distinction here between "is" and "behaves like" is not merely tautological or semantic, but fundamental. It tells us to treat the great electromagnetic theory as an analogy or mathematical model of nature, which probably reflects some features of physical reality but not necessarily all features, and which may prove to be a more accurate model of nature in some circumstances than in others. Therefore we do not say that electromagnetic theory is wrong; indeed, we make use of it successfully every day of our lives. We simply say that the area of its applicability may be limited.

Armed with that kind of philosophical background, which is much more restrained and cautious than that of our predecessors at the turn of the century, we are far better placed than they were to withstand the next shock to physical thinking, which was about to be delivered (in 1899) by Max Planck.

\section*{Next month}

2Kbyte eprom emulator/
programmer
A design for an emulator for 2516/2716 eproms, in which a ram, loaded with software by keypad, carries out the function of a rom and allows a program to be run and tested without the need for eprom reprogramming. Ram contents are easily modified, and the emulator plugs into the system eprom socket. When the program is satisfactory, the emulator transfers to eprom the tested ram contents.

\section*{Sélective call for c.b. radio}

To call any one of 64 K similarly equipped c.b. receivers, enter a number on a keypad to generate a 16 data-bit frame to modulate the carrier. Only the selectively called receiver will respond. The device is easily modified for highsecurity applications, such as remote access and data interrogation.

\section*{Simple, low-}

\section*{frequency}
oscilloscope
A very simple design, using a surplus radar tube. It uses easily obtained components, is straightforward and costs only around £40.

Vertical bandwidth is up to 1 MHz at \(50 \mathrm{mV} / \mathrm{cm}\) and the timebase is either astable or triggered.

\section*{Op-amp}

\section*{development}

As a preliminary to a full description of his new, modular preamplifier, John Linsley Hood traces the development of the operational amplifier, from the eariy 741 types to the mosfet-input CA 3140 and the bipolar/fet TL071/2/4/ series, designed for use in audio work.

\section*{On sale August 18.}

\title{
CIRCUIT MODELLING BY MICRO-COMPUTER
}

> The small-signal a.c. properties of a circuit may be modelled on a computer. Here the implementation of a program uses techniques to reduce the computing time by \(77 \%\), or more, and to plot graphs of the frequency and phase responses.

A previous article on this subject \({ }^{1}\) led me to implement circuit modelling on my home computer. I prefer to reserve the word 'analysis' for analytical, normally algebraic, methods such as complex variable theory. As home computers cannot do algebra, I have called the process 'circuit modelling'.

For the design of a 16 -node active filter, I used a program to plot frequency responses on a printer, giving simultaneously phase and gain curves. The reduction of the infinite admittance determinant to a two-by-two was done for 50 frequencies in order to obtain enough points for a good curve. At first this took nearly two hours to run on my 4 MHz Z80A microcomputer. The table shows a breakdown of the number of operations in Basic.
\begin{tabular}{lcc}
\begin{tabular}{lc}
Operation \\
Type
\end{tabular} & \begin{tabular}{c}
Number of \\
Operations \\
Originally
\end{tabular} & \begin{tabular}{c}
No. after \\
Optimising \\
Code
\end{tabular} \\
FOR \(X=\ldots\) & 700 & 700 \\
FORP \(=\ldots\) & 6650 & 6650 \\
FORQ \(=\ldots\) & 74550 & 21150 \\
ADDSTRACTS & 223650 & 43400 \\
SUBTRACTS & 298200 & 29800 \\
DIVIDES & 149100 & 14900 \\
MULTIPLIES & 745500 & 61000 \\
ARRAYREFS. & 1341900 & 86800 \\
IF.THEN & 0840 & 28500 \\
TOTAL & 2840250 & 292900
\end{tabular}

Clearly any operation contained in the FOR . . . NEXT Q loop is carried out a far greater number of times than in any other position. The first step in reducing the running time is to move as many operations as possible outside this loop. The second step is to reduce the number of array references, as these take the longest time. Thirdly to eliminate any unnecessary computations: the determinant being evaluated is normally sparse because few nodes are interconnected. This causes many zero entries to appear and the computer dutifully subtacts zero for each unused node. This can be avoided by including a test for zero. For a typical 16 node circuit, these changes have reduced the number of computations ten-fold. The Basic interpreter code used is shown under. It uses the notation of A. S. Beasley's article \({ }^{1}\) and cuts the time for a 50 frequency graph to 27 minutes, a saving of \(77 \%\). Note that the use of the exponentiation operator (**) has been avoided. I have used \(\mathrm{A}=\mathrm{Y} 1^{*} \mathrm{Y} 1+\mathrm{Y} 2^{*} \mathrm{Y} 2\) in place of \(\mathrm{A}=\mathrm{Y} 1^{* *} 2+\mathrm{Y} 2^{* *} 2\). Exponentiation is slower than multiplication and less accurate.

Further opimisation will be machine dependent, and the use of a Basic compiler

\author{
By R. I. Harcourt
}

FOR \(x=N\) TO 3 STEP -1 \(Y 1=Y R(X, X)\)
\(Y 1=Y R(x, x)\)
\(Y Z=Y I(X, x)\)
\(Y_{A}=Y 1 * Y 1+Y 2 * Y_{2}\)
\(A=Y 1 * Y 1+Y 2 * 2\)
IF \(A=0\) THEN 1600
FOR \(P=\varnothing\) TO \(X-1\)
\(Y B=Y R(P, x)\)
\(Y_{4}=Y_{1}(P, X)\)
IF (\(Y 3=0\) AND \(Y 4=0\)) THEN 1300
FOR \(\Leftrightarrow=\varnothing\) TO \(X-1\)
\(Y=Y R(X, Q)\)
\(Y_{6}=Y 1\left(X_{5}(2)\right.\)
\(=\varnothing\)
\(B=Y 3 * Y 5-Y 4 * Y 6^{\prime}\)
\(C=Y 5 * Y 4+Y 6 * Y 3\)
YR(P, \(Q\)) \(=Y R(P,(Q)-(Q * Y 1+C * Y(2) / A\) \(Y I(P, Q)=Y I(P, Q)-\left(C * Y 1-R * V_{2}\right) / A\)
1200 NEXT P
1300 NEXT P
1400 NEXT X
RETURN
1600 PRINT "NODE "iX:" UNUSED" GOTO 1400
such as that produced by Microsoft is the simplest method. I did not use Fortran because it is rather hard to plot graphs using the Fortran Format statements. It is also much harder to write a proper command decoder using Fortran rather than Basic. However, rather than spending money on a Basic compiler, I decided to re-code the FOR . . . NEXT Q loop, using assembler, and call the machine code subroutine from the Basic. I will not describe the assembler code in detail as it depends on the computer in use; but I will describe the macro-codes I used. Provided a Macroassembler is available, the macro-code will be the same for any computer.

\section*{Macro-codes}

A macro is a block of code which is invoked whenever the macro call is used. The macro-assembler sees the name of the macro called, and automatically inserts in its place the block of code defined. This would be useful even if it just saved typing, but the technique really comes into its own when the macro can have arguments.
If I define a macro for multiplecation, called, say, MPY, then I shall need to specify a multiplier, a multiplicand and a place for the answer. The macro MPY is used as follows:
MPY X, \(\mathrm{Y}, \mathrm{Z}\) is equivalent to \(\mathrm{Z}=\mathrm{X}^{\star} \mathrm{Y}\)
It is defined by saying:
MPY MACRO A,B,C
*
* (code is entered here)

\section*{ENDM}

The code for the multiplication is not shown but whenever MPY is used that
code replaces the macro-call. The real arguments \(\mathbf{X}, \mathrm{Y}\) and Z are substituted in place of the dummy arguments \(\mathrm{A}, \mathrm{B}\) and C. It is now possible to use expressions like:
MPY X,Y,Z
MPY Z,W,Z
which is the equivalent of \(Z=W^{\star} X \star Y\), and MPY X,X,X
this is the same as (LET) \(X=X * * 2\)
The macro-codes for use in the FOR
NEXT Q loop are shown in the appendix.

\section*{Graph plotting}

Here is a Basic program for plotting gain and phase shift simultaneously on a lineprinter or v.d.u. Examples are shown. It should be noted that both frequency and gain are plotted using logarithmic scales. Gain and phase axes are drawn so as to completely fill a page, with automatic scaling of axes. A gain point is plotted as a letter G, a phase point as a P, but if both coincide the letter B is used at that point. The code is as follows:

All the print statements can be seen to be LPRINT statements and a 132 column printer was used. If v.d.u. output is required, then PRINT statements should be substituted and the graph should be scaled according to the width available.

FREQUENCY RESPONSE CURVE - FIFTH ORDER LOW-PASS FILTER

PHASE DEGREES : \(-88.7+79.9-71.1-62.3-53.6-44.8-36.0-27.2-18.4-9.7-8.9 \quad 7.916 .7 \quad 25.534 .2 \quad 43.0 \quad 51.8 \quad 60.6 \quad 69.4 \quad 78.1 \quad 86.9\)

FREQUENCY RESPONSE CURVE - LCR NETWORK
GAIN dB (G):
2893.0 Hz
2901.5 Hz
2910.1 Hz
2910.1 Hz
2918.6 Hz
2927.2 Hz
2935.8 Hz
2944.5 Hz
2953.1 Hz
2961.8 Hz
2970.5 Hz
2979.3 Hz
2988. 0
2996.8 Hz
3005.6 Hz
3014.5
\(\begin{array}{ll}3023.4 & \mathrm{~Hz} \\ 3032.3 & \mathrm{~Hz}\end{array}\)
\(\begin{array}{ll}3032.3 & \mathrm{~Hz} \\ 3041.2 & \mathrm{~Hz}\end{array}\)
3050.1 Hz
3068.1
3077.1
3086.2
3086.2
3095.3
\(\begin{array}{ll}3095.3 & \mathrm{~Hz} \\ 3104.4 & \mathrm{~Hz}\end{array}\)
\(\begin{array}{ll}3104.4 & \mathrm{~Hz} \\ 3113.5 & \mathrm{~Hz}\end{array}\)
\(\begin{array}{ll}3113.5 & \mathrm{~Hz} \\ 3122.7 & \mathrm{~Hz}\end{array}\)
\(\begin{array}{ll}3122.7 & \mathrm{~Hz} \\ 3131.9 & \mathrm{~Hz}\end{array}\)
\(\begin{array}{ll}3131.9 & \mathrm{~Hz} \\ 3141.1 & \mathrm{~Hz}\end{array}\)
\(\begin{array}{ll}3141.1 & \mathrm{~Hz} \\ 3150.3 & \mathrm{~Hz}\end{array}\)
\(\begin{array}{ll}3150.3 & \mathrm{~Hz} \\ 3159.6 & \mathrm{~Hz}\end{array}\)
\(\begin{array}{ll}3159.6 & \mathrm{~Hz} \\ 3168.9 & \mathrm{~Hz}\end{array}\)
\(\begin{array}{ll}3168.9 & \mathrm{~Hz} \\ 3178.2 & \mathrm{~Hz}\end{array}\)
3178.2 Hz
3187.6
3187.6 Hz
3196.9 Hz
3206.3 Hz
3215.8
3225.2
3234.7
3244.3
3253.8
3263.4 Hz
3273. 0 Hz
3282.6 Hz
3292.3 Hz
3302.0 Hz
3311.7 Hz
3321.4 Hz
3331.2 Hz
3341.6 Hz
\(-25.0-23.8-22.5-21.3-20.0-18.8-17.5-16.3-15.0-13.8-12.5-11.3-10.0-8.8-7.5-6.3-5.0-3.8-2.5-1.3-0.8\)

- \(\mathbf{G}\)

B

G G

P \(P\)

G

6

Graphs produced by the program. The frequency axis is vertical, so the curves may make more sense if viewed from the side.

While working on loudspeaker crossovers, I wanted to model a crossover feeding two drive units, one of which was connected out of phase. For speakers in phase it was easy to find the sum by specifying a summing network, but for an out-of-phase speaker, I found it necessary to invent a non-existent circuit element. I have called this an 'inverter' which is a two terminal device with the property of 'losing' any current flowing into it while taking in an equal current at its other end which is also lost. This violates Kirchhoff's law and the charge conservation laws, but the method works on the computer. The 'inverter' has admittance determinant:
\[
\begin{aligned}
& +1 E 5 \quad+1 E 5 \\
& +1 E 5 \ldots+1 E 5
\end{aligned}
\]
and the value used (always a positive value added to the YR array) was +1 E 5 , so that the net effect was of a small resistor connecting an out-of-phase speaker to the output node.
Having cut the time for our typical 16node circuit frequency plot to 16 minutes from two hours, I then tried the effect of a BASIC compiler and used the Microsoft compiler. This produces true machine code and the time for 50 reductions from 16 nodes to a 2 -by- 2 was now 2 minutes 48 seconds. With the addition of the macro assembler codes to the two inner loops (\(P\) and \(Q\)), this was cut to 2 minutes 6 seconds, a saving over the original running time of \(98 \%\).
So it can be seen that with a little effort, much time can be saved. The purchase of a

Basic compiler compatible with the interpreter can turn the home computer into a useful designer's tool.

\section*{Appendix}

\section*{Macro-codes for fast reduction}

The macro-code used was as follows: Each operation is shown with its equivalent in Basic:
\begin{tabular}{lll}
MSB & \(Y 3, Y 5, Y 4, Y 6, E\) & \(; B=Y 3 * Y 5+Y 4 * Y 6\) \\
MAD & \(Y 5, Y 4, Y 6, Y 3, C\) & \(; C=Y 4 * Y 5+Y 6 * Y 3\) \\
MAD & \(D, Y 1, C, Y 2, D\) & \(; D=E * Y 1+C * Y 2\) \\
MSE & \(C, Y 1, E, Y 2, E\) & \(; E=C * Y 1+B * Y 2\) \\
DIV & \(D, A, D\) & \(; D=D / A\) \\
DIV & \(E, A, E\) & \(; E=E / A\) \\
SUB & \(Y R P Q, D, Y R P Q\) & \(\because Y R(P, Q)=Y R(P, Q)-D\) \\
SUB & \(Y I P G, E, Y I P(3)\) & \(; Y I(P, 6)=Y I(P, Q)-E\) \\
RET & & \\
END & &
\end{tabular}

The macro definitions, which should precede their use, are:
\begin{tabular}{lll}
MAD & MACRO & \(M: M 2, M 3, M 4, A N S\) \\
& MPY & \(M 1, M 2, T 1\) \\
& MPY & \(M 3, M 4, T 2\) \\
& ADD & \(T 1, T 2, A N S\) \\
& ENDM & \\
\(M S E\) & \(M A C R O\) & \(M: M 2, M 3, M 4: A N S\) \\
& \(M P Y\) & \(M 1, M 2, T 1\) \\
& MPY & \(M 3, M 4, T 2\) \\
& SUS & \(T: T 2, A N S\)
\end{tabular}

All other macro definitions (ADD, SUB,MPY,DIV) are machine dependant, and are not shown here.
Note: A version of the circuit modelling program, called ACM, suitable for TRS80 micro-computers, will be available from Molimerx Ltd, 1 Buckhurst Road, Town Hall Square, Bexhill-on-Sea, E. Sussex.

\section*{References}

This article is an extension of "Circuit analysis by small computer," by A. S. Beasley, Wireless World, Feb. and April 1980. Photocopies of this are available from WW, Editorial, at a price of 90 p inclusive. An interesting discussion of the theory may be found in "Twoport representation of multi-mode networks by matrix partitioning," by R. T. Kennedy, J.I.E.R.E. Feb. 1969.

\section*{Orchestral sounds, halls and timbre a correction}

Denis Vaughan has kindly pointed out to us one or two misprints which crept into his article in the May 1982 issue: Just under the heading 'First reflections' on p.32, the phrase should read: "Their timing is exactly controlled by the width (1 foot \(\approx 1 \mathrm{~ms}\))." In the middle of page 33 , reference is made to Guildford and this should read Gilford. In the third column of the same page, there are two references to reflection times which should read: "this means that the effectively larger reflections start about 81 ms after the original sound'. and; "Kingsway has quite a lot of powerful reflections to offer within the first 105 ms . Because the larger reflections continue to return up to 147 ms , the substantial and lengthy support of the musicians is assured". The figures printed (18 and 14 ms) could be misleading, especially to those interested in modelling electronically the initial reflection pattern of the hall.

\title{
DIGITAL DIVIDERS WITH SYMMETRICAL OUTPUTS
}

\section*{The author uses Johnson counters with controlled feedback to give symmetrical even and odd-numbered divisions of a clock pulse.}

Time and again, in literature on digital circuitry, ideas are published on the problem how to obtain a \(50 \%\) duty cycle when a regular pulse train is divided by an odd number. Some clever (and less clever) methods are proposed, e.g. the use of ex-clusive-or gates in the clock pulse lines, a separate flip-flop with a delay of half a pulse period, the output of which is combined with the normal flip-flops, etc.

In my opinion, the use of EXOR-gates in clock lines should be avoided, since spikes on the output-signals of the flipflops may occur; a better way is to combine the outputs signals of the flip-flops. The ideas, found in Refs. 3 and 4 are broadened in this paper, and a generalized scheme is proposed which may be easily expanded. Moreover, the control input is pure binary and there is no attempt to change the (odd or even) sequence length. Standard i.cs are used.

\section*{The Theory}

When a Johnson or Möbius ring counter is fed back, a sequence length of \(n\) or \(2 n\) is derived, depending on whether a straight or twisted loop is used. The maximum sequence-length is 2 n for n bits, and sequences of \(2(\mathrm{n}-1)\) etc, are derived when outputs, other than the last, are chosen. When two adjacent outputs are fed back via an AND-gate and negated, (Fig. 1.) any length between 2 n and 2 may be obtained.

If an auxiliary flip-flop is connected to the chain and is switched on the opposite pulse edge, the output is shifted over \(1 / 2 \mathrm{~T}\), where \(\mathbf{T}\) is the clock pulse period. It is necessary for the incomong pulse train to have a duty cycle of \(50 \%\); if not, a divider is needed which will halve the frequency. In Fig. 2. the outputs of 2 flip-flops, \(\mathrm{FF}_{1}\), the last in the chain, and \(\mathrm{FF}_{2}\), the extra flip-flop, are combined in an OR-gate to

Table 1. Feedback signals and sequence length.
\begin{tabular}{ccc}
\multicolumn{2}{c}{ Feedback } & \\
\cline { 1 - 1 } A & & Sequence/length \\
AB & & 2 \\
B & & 3 \\
BC & & 4 \\
C & & 6 \\
CD & 7 \\
D & 8 \\
DE & 9 \\
E & 10 \\
EF & 11 \\
F & 12 \\
FG & 13 \\
G & 14 \\
GH & 15 \\
H & 16
\end{tabular}

\section*{By Cornelius van Holten}
obtain an odd sequence length (9) with a symmetrical output. In this case, \(\overline{\mathrm{D}}\) and E are fed back (see Table 1).

When an even sequence length is chosen, a symmetrical output is derived from the last flip-flop in the chain, only one (negated) output is fed back and no OR process is needed. In the Table 2, a list is given of all possible combinations; I through VIII are the controls signals which switch the (negated) I for \(\overline{\mathrm{A}}, \mathrm{II}\) for \(\overline{\mathrm{B}}\), . VIII for \(\overline{\mathrm{H}}\).

Table 2. Control inputs and corresponding sequence lengths.

\section*{Complete circuit}

In Fig. 3, the complete diagram is given, consisting of 8 flip-flops (a shift register), a pulse circuit, an output, feedback gates controlled by the inputs I to VIII, and a decision making circuit with 4 full adders for odd and even lengths.

The latter operates as an EXOR-gate with 8 inputs: \(Y=I \oplus I I I \oplus I V . . . \oplus \oplus\) VIII and therefore \(Y=\) ' 1 ' for odd and ' 0 ' for even lengths; the unused input of the full adder at the bottom is permanently held at a logical ' 1 ' level.

In the output circuit, the function \(\mathrm{H}+\) \(Y Z\) is realized. For \(Y=O\), the output
becomes \(H\) (for even length sequences) and for \(\mathbf{Y}=1\), the output is \(\mathbf{H}+\mathbf{Z}\) (for an odd length) as shown in the time charts in Fig. 4 a and 4 b respectively.

The flip-flops A to H are D flip-flops, operating in the leading clock pulse edge and Z (auxiliary flip-flop) reacting on the trailing edge of it. The \(P\) flip-flop is needed when the input pulses are not symmetrical, and a buffer gate is used for amplification. The correction and enabling circuit is described in the Appendix. In normal circumstances, this circuit is inoperative and the shift register is loaded with all zeros by the enabling input, and cycles via \(10000000,11000000,11100000, \ldots\) through 11111111,01111111 , etc. back to the all zero condition. This is the "normal" sequence, 1 out of the 16 possible cycles. Of course, other values of n than 8 are possible, this number has been chosen for comparison with the circuit described by Girolami and Bamberger \({ }^{2}\).

\section*{Modification}

In Fig. 3(a), there are 8 control inputs which are used separately (for even lengths) or in groups of adjacent pairs (for odd lengths). If one wishes to control the sequence length via a binary weighted control input, a decoder is needed as described in Table 3.

In Fig. 3(b), a read only memory is programmed as a decoder, and the input 1 may be used to control the output circuit: even or odd; the output function is \(\mathrm{H}+\)

Fig 1. Basic principle of a variable length counter.

Flg 2. The addition of two asymmetrical flipflop outputs leads to a symmetricaloutput.

Table 3. Binary weighted control inputs and corresponding signals and sequence lengths.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Input & \multicolumn{8}{|c|}{Decoded input} & Sequence \\
\hline 8429 & 1 & II & III & IV & V & VI & VII & VIII & length \\
\hline 0001 & & & & & & & & & \\
\hline 0010 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\
\hline 0011 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\
\hline 0100 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 4 \\
\hline 0101 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 5 \\
\hline 0110 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 6 \\
\hline 0111 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 7 \\
\hline 1000 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 8 \\
\hline 1001 & 0 & 0 & 0 & 1 & 1 & 0. & 0 & 0 & 9 \\
\hline 1010 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 10 \\
\hline 1011 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 11 \\
\hline 1100 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 12 \\
\hline 1101 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 13 \\
\hline 1110 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 14 \\
\hline 1111 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 15 \\
\hline 0000 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 16 \\
\hline
\end{tabular}
other sequences have to be detected and corrected; since 00000000 is a valid combination, resetting of all flip-flops is an easy way to correct.
If one wishes to correct any invalid combination immediately, a rather complex circuit is needed; it turns out, however, that with certain combinations, the register may be reset; within 16 clock pulses any error will be removed.
In the normal sequence, no ' 0 ' is present between ' 1 's; | so : 101 ; looks a good 'bit pattern to detect. However, not all sequences contain this combination; 1001 also occurs.
To check these sequences we write down any non-normal sequence, economizing space by writing the notation in a row, as follows:
e.g. \(11101 \overline{101000 \overline{10010}}\)

YZ , realized by NAND gates via the formula \(\overline{\mathrm{H}} . \overline{\mathrm{YZ}}\)

\section*{Conclusion}

A method is proposed by which in a straightorward manner any sequence length may be chosen via a binary weighted input. The circuits are normal s.s.i. or m.s.i. i.cs; for an 8 bit integrated shift register, the clock input is buffered as is the clear input. The buffers may be left out. The output is symmetrical and no spikes occur, since the Johnson principle is in fact a Gray code of sorts, changing only 1 output per clock pulse.
The number of flip-flops is \(1 / 2 n\), when \(n\) is the sequence length, whereas for a normal counter \(\log _{2} n\) flip-flops are needed. There is little disadvantage, however, with low prices. In both cases the sequence is nonbinary.

\section*{Appendix}

With \(\mathrm{n}=8\), there are 256 possible zero-one bit patterns, of which only \(16(8 \times\) 1 and \(8 \times 0\) in groups of 8) are valid. All

Cornelius van Holten holds an . honours degree in electrical engineering from the Technical College at Rotterdam and a degree from the Delft University of Technology. He is in charge of a digital engineering laboratory for undergraduates in the Applied Physics Department of the Delft University, and lectures in measurement methodology.

He has written a self instruction course in digital circuitry and some 20 papers in periodicals.

;Flg 4a. Time chart for an even-numbered division (e.g. 14).

!Fig 4b. Time chart for an odd-numbered division (e.g. 13).

The ends are in fact connected, so by checking 101 and 1001 "over the edge" if needed, the result is:

\section*{101 : (3x) and 1001 : (1 x)}

This means that \(\bar{F} \bar{C} H\) and \(E \stackrel{F}{F} \bar{G} H\) have to be used; simplification gives:
\((E \bar{F}+\mathbf{F}) \overline{G H}=(E+F) \bar{G} H\) or rewritten in NAND-form:

\section*{E.F.GH}

Since reset is a ' O ' signal, we invert this to: E.F.GH; a buffer and an external enable (normally ' 1 ') signal results in the circuit as show in Figs. 3 and 4.

For a sequence of 2 , however, this correction has to be corrected itself by an
I. \(\overline{I I}\) signal (I is \(1, \mathrm{II}=0\)) since this short sequence the detection patter occurs.

Detection and correction follows: there is no reason, to choose EFGH; any group of 4 consecutive outputs is valid. The reset is asynchronous, i.e. not controlled by the
clock pulse, but within one period \(T\) the counter is ready and starts again, whatever the sequence length may be.

\section*{References}
1. L. E. Getgen. Divide symmetrical clock puises by odd numbers, get a symmetrical output. Electronic Design, S, March 1, 1980, p. 110 .
2. G. Girolami, P. Bamberger, Symmetricaloutput dividers, Wireless World, February 1982, p. 53, 54.
3. R. M. M. Oberman. Electronic Counters. Macmillan, London, 1973, p. 151 ff.
4. M. Morley. Two IC's restore symmetrical output to a ring counter. Electronic Design, February 18, 1982, p. 206.

\section*{continued from page 36}
try in the system error log, as it indicates a malfunction. In the embedded-servo surface drive, however, the condition is handled differently. Figure 13 shows a flowchart for the control of the drive, which has no absolute cylinder-address register, and in which all seeks are relative. The system only knows where the heads are by reading a header. In order to reach a particular cylinder, the program has to read the first header it sees on the current cylinder, and calculate the cylinder difference required to get to the desired cylinder. This cylinder difference, which may be positive or negative, is sent to the drive, which performs a deductive seek. When this is complete, the program again reads a header. Most of the time the header will contain the desired cylinder address, prov-ing that the seek was successful, but in the odd case where the cylinder count deduction was in error, the program simply
loops and calculates a new difference value until the correct cylinder is reached.

Since each surface has its own em-bedded-servo information, the heads may be aligned using a normal data disc pack. As a new head is selected, it becomes the source of the position error, and as the heads are only aligned to one another within a certain tolerance, the positioner will adjust itself to eliminate any position error when head switching takes place. This process takes time, and further time is necessary to read a header to confirm that the desired cylinder is under the new head. The time taken by this process is the same as that needed to perform a one cylinder seek, such as might be necessary when all tracks of a cylinder have been written. but there is still data to transfer. With a conventional disc drive format, both of these processes would cause the loss of an entire revolution of the disc, waiting for sector zero to come under the heads again. Having abandoned the concept of absolute

Fig. 12. Here, a seek is being carried out and value 11 from a servo sector has been stored for comparison with two bits from the next servo sector. As can be seen, there are many positions on the subsequent sector where the positioner appears to be on the correct cylinder. To avoid this ambiguity, digitized information from the carriage velocity transducer together with the two stored bits and two bits currently being read address a prom which returns the cylinder crossing count.

Fig. 13. Flow chart for an embedded-servo positioner system. An absolute cylinderaddress register is not used, so all seeks. are relative. Seek errors simply cause an extra execution of the loop.
cylinder addressing, which made it necessary to read headers to discover the head position, it is also possible to abandon the fixed index concept, as the sector number is contained in every header read. There is no index point on the disc, and all of the sector pulses are identical. The format of adjacent tracks is displaced to allow enough time for a seek or head change, and for a header to be read to confirm the position, before sector zero of the new track comes around. In the case of a long data transfer of many blocks, a significant transfer-time reduction achieved, since rotational latency is eliminated.
It is possible to build two versions of the drive. In the first, only the position error developed during S1 is used for track following. In the second, the position error from S1 is used for track following on even cylinders, and that from S2 used on odd cylinders. The second version obviously has twice as many cylinders as the first, but in other respects is basically the same.
Winchester technology and floppy discs and their drives are discussed in the next part of this series.

\title{
DIGITAL FILTER DESIGN
}

Fast numerical operations using limited precision fixed-point arithmetic are now being provided by new types of microprocessors and l.s.s.i. circuits. This third article in a series of four outlines some of the problems of using fixed-point arithmetic and gives a brief survey of the new devices, concentrating on the Intel 2920.

Three types of operation are required for digital filters: multiplication of samples by constant coefficients, addition, and temporary storage for delaying samples. The digital filter shown in Fig. 1, a bi-quadratic section, represents the sequence of mathematical operations that must be carried out for each input sample \(\mathbf{x}_{\mathrm{n}}\) referred to as X to produce an output sample \(\mathrm{y}_{\mathrm{n}}\) referred to as \(Y\). The sequence of operations may be summarized as
1. Calculate \(W\) by adding \(W^{\prime}\) multiplied by \(-b_{1}\) and \(W^{\prime \prime}\) multiplied by \(-b_{2}\) to \(\mathbf{X}\). (W' and \(W^{\prime \prime}\) are values of \(W\) stored during previous executions of this algorithm - see steps \(3 \& 4\)).
2. Calculate the output \(Y\) by adding \(W^{\prime}\) times \(a_{1}\) and \(W^{\prime \prime}\) times \(a_{2}\) to \(W\).
3. Set \(W^{\prime \prime}\), to the number currently stored in \(W^{\prime}\) for next time.
4. Set \(W^{\prime}\) equal to the number currently stored in W.
Recursive digital filters are generally implemented as cascades of biquadratic sections i.e. the required transfer function \(H(z)\) is expressed as the product of secondorder transfer functions \(\mathrm{H}_{!}(\mathrm{z}), \mathrm{H}_{2}(\mathrm{z})\)
each being realised by a distinct digital filter section of the type illustrated. A practical digital filter, therefore, would be a device or devices capable of performing the calculation sequence listed above for all biquadratic sections, for each input signal sample \(\mathrm{x}_{\mathrm{n}}\). These calculations must be carried out accurately and within the timespan available between samples in realtime applications. Before looking at realtime digital filters, however, consider briefly their implementation on generalpurpose digital computers.

\section*{Real-time processing}

Although digital filters have been studied for many years, their use has until recently been mainly confined to research applications and computer simulations. This is likely to change rapidly with the development of special-purpose microprocessors and v.l.s.i. devices for signal processing. Such devices essentially execute the type of program discussed in the panel, but if the programmed filter is to be used for continuous signals sampled in the Ny quist rate, all numerical calculations must be completed for each input sample before the next one becomes available; otherwise an increasing backlog of samples would be built up. This imposes a speed requirement which is not present when processing blocks of stored data on a general purpose computer. Such processing would normally use the highly accurate floatingpoint arithmetic operations provided by high level languages but at great cost in processing time, typically \(100 \mu\) s per

\author{
by B. M. G. Cheetham and P. M. Hughes
}
multiply or add. The necessary increase in processing speed required for real-time filtering is currently possible only at the expense of accuracy through the use of fixedpoint arithmetic. It is thus necessary to represent all samples, coefficients and results of additions and multiplications by binary numbers of limited wordlength with the equivalent of the decimal point, i.e. the binary point, assumed fixed at some position within the word.

For example, the 16 -bit number 0.110000000001101 with fixed binary point represents the decimal number 0.75040 correct to about five significant figures, whereas 0.0075040 must be written as 0.000000011110110 which gives
only about three significant figures of precision. In contrast to floating-point numbers, the accuracy to which a fixedpoint number represents a given number depends on its magnitude. Care must be exercised in positioning the binary point lest the addition of two numbers be allowed to overflow, producing a result too large for the chosen format. Negative numbers may be represented in two's complement form with a value obtained by subtracting \(1 . \mathrm{XXX}\). . . from the fractional part of the binary number. In this representation, the fixed-point numbers outside the range \(\pm 1\) are not allowed and all numbers likely to appear within a digital filter would have to be scaled accordingly.
The use of fixed-point number representations clearly introduces complications in the design of digital filters and introduces

\section*{Programming on general purpose computers}

Digital filiers ore eften prosoutshicd io high-level tanguiges woch an Fortare or Basic amd run on general-gudpose camppusers of mi rocomprters to proces block of signal samples stored as data arrays. This approwch may be uned to
 wanked effects inut be filtered out or where particthis features munt be extracled; you ants have used the "wrpezoidal rule" for mocticat iotecretion \(y_{n}=y_{a+1}+\left(x_{n}+x_{n-1}\right) / 2\), widhout realis, ing the the formula represente a type of digital filter.
Programming e digital filler on a deak-top consputer is \& very aseful way of resting its besife before b inding it. In this application the programmed filter is a shaulation of the system to be butt, whict may be resrec by facting in special test stignads geacratal or exptured as blocks of data lo the coluyidter. Programming digital fiters in highlevet tangulges is senightrorward and I good way of 1 . mis about their spabilities.

As an campleta Butic program fist a font th-order sligital filfer is fiven in the fist thoing. Tyl fitter owhis if lm bivandratic sectionir with traiuler funs. chems

\section*{\(\frac{1-z^{-1}+z^{-z}}{1-1.0524 z^{-1}+0.62383-2}\) \\ \[
\text { and } \frac{1+2 x^{-1}+z^{-1}}{1-8.1665 z^{-1}+0.5364 t^{-2}}
\]}

This filmer has a lottermoth xype bound. purs repolase (preband 0.1254 , to i. \(2 \pi\), wheir \(f_{1}\) is the exumples ins(utenry) a deiprad in the previous artcic. Hach biquatrute sevtion io ints chmental bv caling a vilimutint (gra
 by, stored in the Jth efetsonts of arrays \(A 1, A 2, B 1, B 2\); \(f\) is 1 for the fini Hipandrazie: section and 2 for the mocond The subreutinc timply follow steps 1 madectimet lrom Fig. in with the fth elenten of arrays को and w: holding W" and W" as regulend liot rabvequent calls to the suboritine. Ar-
 fins चlif to the stibroutine. Vardables \({ }^{\prime}\) and \(Y\) are the input to and coutpit from the pogitammed biquadrutic section. For this exmplo, an srray \(X\) lowtol Wht 21 sonithe of the fincocce time यathules of is cised an an iaput signal. Wutput amples ure stored ith it lecsind amay Y and are itho primod our. Graph thime the output obtained from this prupran. This method may be gencrest. red to digital filters of any order with piovet mond couput wetz meays of mwoh forge dimentina.

Fig. 1. Recursive digital fitters are generally implemented as cascades of biquadratic sections, above. Diagram shows sequence of mathematical operations that must be carried out for each input sample \(\left\{x_{n}\right\}\) to give output sample \(\left\{y_{n}\right\}\).
innaccuracy which will- tend to degrade performance as compared with the theoretical ideal. Some of the most important effects are next considered.
Quantization noise. The conversion of an analogue signal into digital form introduces a degree of distortion as a result of representing the sampled voltages as fixedpoint binary numbers. This distortion effectively adds on error signal known as quantization noise to the original signal, as illustrated in Fig. 2. The level of this unwanted noise signal is determined by the wordlength available and the dynamic range allowed for the analogue signal i.e. its expected maximum and minimum voltages. It may be shown that an n-bit analogue-to-digital conversion (with \(n>4\)) results in a quantization noise signal of r.m.s. value \(\Delta / 2 \sqrt{3}, \Delta=\left(\mathrm{V}_{\text {max }}-\mathrm{V}_{\text {min }}\right) / 2^{\mathrm{n}}\), is known as the quantization step. In theory, the noise is spread evenly over the frequency spectrum 0 to \(f_{s} / 2\). For a zeromean input of r.m.s. value \(\sigma\), the signal to quantization noise ratio is
\[
\begin{gathered}
20 \log _{10}(2 \sqrt{3} \sigma / \Delta) \\
=20 \log _{10}\left(2 \sqrt{3} \sigma .2^{n} / 2 \mathrm{~V}_{\max }\right) \\
\approx 6 \mathrm{n}+10.8+20 \log _{10}\left(\sigma / \mathrm{V}_{\max }\right) \mathrm{dB} .
\end{gathered}
\]

For this formula to be valid, input signal must not exceed the prescribed dynamic range. Ensuring that \(\sigma \leqslant \mathrm{V}_{\max } / 4\) achieves this to reasonable accuracy for noise-like signals, giving a maximum \(\mathrm{s}-\mathrm{n}\) ratio of
\[
6 n+10.8+20 \log _{10}(0.25)=6 n-1.2 \mathrm{~dB}
\]

This formula may be used as a rule-ofthumb for a wide range of different types of input signal although higher ratios may be obtained by reducing \(\sigma / N_{\max }\) for specific signals such as sinusoids. Clearly the maximum value depends on the number of bits in the digital representation, and increasing this number improves the figure by 6 dB per bit.
Data wordlength. With fixed point number systems both the range and precision of the numbers which can be represented is limited: For convenience it is usual to think of all the signals within a digital filter as being in the range -1 to 1 . Such signals require only one bit in front of the binary point, this being used as the sign bit to differentiate between positive
and negative numbers. The precision of the number representation is determined .by the number of bits available for storing data. A sixteen-bit data word, for example, with one bit used for the sign, gives a quantization step size of \(2^{-13}\). All data must therefore be rounded to the nearest integer multiple of \(2^{-15}\). In practice it is difficult to determine exactly how many bits are needed to satisfy particular performance requirements. The present generation of special-purpose signal processing devices employ basic wordlengths of between 16 and 25 bits.
Coefficient quantization. When a digital filter is implemented in real time its coefficient values as well as its samples must be quantized and stored to limited precision. The effect is to degrade the frequency response as illustrated in Figure 3. A wordlength of about 12 bits is typically used for coefficients. The second program listed calculates the amplitude-frequency response of a digital filter with original unquantized coefficients and with quantized values as they would be represented in the filter. The maximum difference over the relative frequency range 0 to 0.5 is printed out as a measure of the degree of degradation suffered.
Dynamic range limitations. Signal overflow, which occurs when the result of an addition or multiplication within a filter is out of range, will cause incorrect operation. The errors generated can cause selfsustaining oscillation of large amplitude which are highly undesirable. The simplest way of avoiding overflow is to multiply the input to each biquadratic section by a suitable scaling factor \(S\). The aim is to reduce the input signal level sufficiently to ensure that the largest internal number likely to be generated is within range. For a sinusoidal input, S may be set equal to \(1 / G_{\max }\) where \(G_{\max }\) is the maximum gain between the unscaled input and any point in the second-order section. This ensures that no internal signal exceeds the input in amplitude. In practice, it is sufficient to examine only the overall gain of the section \(G(\omega)\), and the gain \(G_{1}(\omega)\) between the input and the internal signal \(\mathbf{W}\). It can be shown that
\[
\mathrm{G}_{\max } \leqslant 2 \max \left\{\mathrm{G}(\omega), \mathrm{G}_{1}(\omega)\right\}=2 \mathrm{M}
\]
with \(\mathrm{G}(\omega)=\left|\mathrm{H}_{\mathrm{i}}\left(\mathrm{e}^{\omega}\right)\right|=\)
\[
\begin{aligned}
& \text { and } G_{1}(\omega)=\left|\frac{1+a_{1} e^{-j \omega}+a_{2} e^{-2 j \omega}}{1+b_{1} e^{-j \omega}+b_{2} e^{-2 j \omega}}\right| \\
& 1+b_{1} e^{-j \omega}+b_{2} e^{-2 j \omega}
\end{aligned}
\]

M may be calculated by evaluating \(G(\omega)\) and \(G_{1}(\omega)\) over the range \(0 \leqslant \omega \leqslant \pi\) and searching for the maximum modulus.

A Basic program for doing this is provided, see third listing. Choosing \(S=1 / 2 \mathrm{M}\) ' will eliminate the possibility of overflow for sinusoidal signals, and in practice will normally prove satisfactory for other types of signal. In many cases this result may be unduly pessimistic and larger scaling factors \(S\) may be used depending on the particular filter being implemented and the
type of arithmetic used. If \(\mathrm{G}_{\text {max }}\) is significantly greater than the maximum value of \(G(\omega)\) (overall gain) it may be necessary to scale up the output of a section to bring the overall passband gain to unity. Scaling factors are often approximated to the nearest power of two so that the required multiplication may be carried out by simply shifting the signal representation an appropriate number of bits to the left or right.
Example. Consider the scaling required for the first section of the bandpass filter whose impulse response is shown in the panel opposite. The coefficients \(a_{1}, a_{2}, b_{1}\), \(b_{2}\) for this section are \(-2,1,-1.0524\), 0.6232 respectively. By means of the program the maximum values of \(G(\omega)\) and \(\mathrm{G}_{1}(\omega)\) are found to be 2.57 and 3.56 and hence \(\mathrm{G}_{\max } \leqslant 2 \mathrm{M}=7.12\). A suitable scaling factor is therefore \(1 / 7.12 \approx 0.1404\). This would often be approximated to \(2^{-3}\), the nearest power of two, requiring the input to be shifted three bit positions to the right. As \(G_{1}(\omega)\) is greater than \(G(\omega)\) in this example, it would be necessary to scale up the output signal if a maximum gain of unity were required for the whole section.

\section*{Microprocessor implementation}

In addition to its filtering task, a microprocessor may be required to control a-d and d-a converters, or alternatively interface with other digital devices as a means of signal input and output. When controlling converters it is necessary to provide some means of accurately maintaining a fixed sampling frequency.

The choice of microprocessor type depends mainly on the required sampling rate. The present generation of general purpose eight-bit microprocessors can provide digital filters with sampling frequencies of at most a few hundred hertz; the more powerful 16 -bit microprocessors \({ }^{1}\) enables this to be increased to about 5 kHz .

Fig. 2. Conversion of an analogue signal linto digital form produces an error signal (quantization noise) which, in effect, is jadded to the original.

For the real－time filtering of audio band－ width signals at sampling rates of about 8 kHz and above，it has until recently been necessary to employ bit－slice microproces－ sors \({ }^{2}\) or custom－designed hardware cir－ cuits which incur a high component count and circuit board complexity．The intro－ duction in August 1980 of a microproces－ sor specifically designed for digital signal processing，the Intel 2920，significantly changed this position and marked the start of a new trend in digital signal processing． This is now being continued and em－ phasized by the introduction of a digital signal processor by NEC \({ }^{3}\) and the fad \({ }^{4}\) ，an 1．s．i．digital filter designed by British Telecom．Details of other microprocessors intended for digital signal processing have been published \({ }^{5}\) by Texas Instruments and Bell Laboratories．

The Intel 2920 incorporates both a－d and d－a converters on－chip and when pro－ grammed as a typical eighth－order digital filter has a sampling rate of approximately 30 kHz ．As such，the device can be used simply as a one－chip replacement for au－ dio－bandwidth analogue filters．More re－ cent devices differ from the Intel 2920 in that they do not incorporate the convert－ ers，but provide the means for interfacing with external converters．These provide more powerful arithmetic facilities than the 2920，including fast high precision multiplication．Large program and data memories are provided by the NEC，Texas and Bell devices which should allow them to implement not only fixed filters，but also adaptive digital filters which automat－ ically modify their frequency response as the characteristics of the input signal change．

The Plessey／British Telecom fad（filter and detect）is not strictly a microprocessor， but sacrifices flexibility for simplicity of operation．It contains on one chip all the circuitry necessary to implement the bi－ quadratic filter section shown in Fig． 1. Used as a single second－order section，the device can operate at a sampling rate of 64000 samples per second，with each input and output sample being up to 16 bits in length．The fully programmable filter coefficients are supplied in serial form by external memory．As an alternative to act－

Fig．3．Amplitude response of an eighth－ order Butterworth bandpass filter shows effect of coefficient quantization．

Fig．4．Intel 2920 is basically a high－speed microp：ocessor connected to a nine－bit d－to－a converter，with eight multiplexed output channels under software control．
ing as a single second－order section，by using on－chip memory，the fad can be used in a multiplexed fashion to implement a cascade of eight second－order sections， providing a sixteenth－order filter with a sampling rate of 8000 samples per second． Cascades of between two and seven second－order sections can be implemented by modifying external connections．
To illustrate the full capabilities of microprocessor－implemented digital filters and to demonstrate how the techniques described may be applied to their design， consider in more detail the use of the Intel

2920．This device is now generally avail－ able，at gradually decreasing cost，and may． be programmed by Intel users with a knowledge of digital filters without re－ course to expensive design packages．

\section*{Intel 2920}

Shown schematically in Fig．4，the Intel 2920 consists basically of a high－speed microprocessor connected to a 9 －bit d－to－a converter．The output is connected to a one－to－eight line multiplexer which is un－ der software control．Eight signal output channels are therefore available．The out－

\section*{Program to implement fourth－order} digital filter on general－purpose computer used in example on page 47
```

10 I 4TH URDER CIIITHL FILTER
2Q U[M x(20),Y(20)
30 FCR J=1 TG 2G Q x(J)=0
4日 NEXT J e X(0)=1
50 FOR }1=1,\mp@code{TO 2

```

```

70 A!(1,=-2 AR A (1)=1
80 B1< (1,=-1.5524 © B2< 1)=.6232
90 R1(2)=2 \& R2(2)=1
10日 B1(2)=-.1665 e B2(2)=.5348
120 ! START FEEDINT IN X(20)
130 FOR I=0 TU 20
!40 K=X(I)
160 GOSUE geg e X=Y E NEXT J
1?日 Y(I) =Y*RG e PRINT Y(I)
180 NEXT I
190 STOP
\$0Q ! BIGUAORATIC SECTION J
805 W=x-81(J)*W1(J)-B2(J)*W2(J)
81% Y=W+F1(J)*W1(J)+A2(J)*IN2(J)
815 W2(J)=W1(J)
30 W1 (J)=W
835, RETURN
5 OISP "F1,H2,B1,B2 ",
10 INPUT A1,AZ,B1,B2巴 A=1
15 GOSUB 35
20 DISP "MAX GAIN G(W) ="
25 OISP "MAY GAING(W)=",G
3% END
35 G=-1 e G I=-1
40 FOR F=0 TO .5 STE
45 W=2*P!*F W2=2*W
50 R2=COS(W2) EII=-1*SIN(W)
55 12=-1*SIN(W2) R1=NOS(W)
69 NQ=H+R1*RI+R2*A2 R N=A1*II
65 N1=N+R2*I2 e D=1+B1*RI+B2*R2
65 N1=N+A2*I2 C D=1+B1*RI+B2*R2
70 DB=D E [1=B1*I1+B2*I2
75 ! NUN={NO+J N1)
80 [OEN=(00+J D1)-CUT TO EUL
85 N=NO*NQ+NI*NI E N=SQR(N)

```

Q DIMF（140），Q（10日）
 PRINT "NO. OF SECTNS"
 IMPUI II
 PRINT "IDEAL COEFFS:
 Ga GOSUE 176
 GOP I = TO 190
 © \(P(I)=Q(I) Q\) NEXT 1
 O \(P(I)=Q(I)\) N NEXT 1
ORINT QUANTISED COEFFS:
 GOSUB "QuA
 PRINT "FRERUENCY IDERL
 TUAL (DB)" FOR M \(=9\)
110 FOR I=0 TO 100 e \(F=1 / 200\)
120 PRINT USING "D. \(\mathrm{DDD}, 7 \mathrm{D}, 2 \mathrm{D}, 6 \mathrm{D}\)
 PRINT USING "D.DDD,7D.2D,6D
 2D" \(F, P(I), Q(I)\)
\(130 M 1=A E S(P I I)-Q(I)\rangle\)
\(14 日\) IF \(M 1\rangle M\) THEN \(M=M 1\)
140 IF M1>M THEN M=M1
159 NEXT I Q PRINT "MAX DIFF="; M
159 NEXT

170 FOR \(J=1\) TO \(N\) N \(K=J+J\)
180 PRINT J;": A1, R2, B1, \(B 2="\)
190 INPUT C1(K-1), C2(K-1), C1《K),
 C24K) C NEXT J,

210 W=FI*I 1 OU E Q (I) \(=0\)
22日 FOR J=1 TO 2*N
\(230 x=(1+C 1(J) * \cos (W)+C 2(J) * \cos (\)
 \(x=(1+C 1\langle J) * \cos (W)+C 2(J) * \cos (\)
\(2 * W,)^{2}+(C 1(J) * S \operatorname{IN}(W)+C 2(J) *\)
 SIN(されW))へ2
240 IF \(X, 1, E-20\) THEN \(X=1, E-20\)
\(250 \mathrm{Q}(1)=\mathrm{Q}\) (I) \(-(-1)\) NJ*1日*LGT (X)
260 NEXT J Q NEXT I Q RETURN
 \(90 \mathrm{D}=\mathrm{DO} * 00+\mathrm{D} 1 * \mathrm{D}\) \& \(\mathrm{D}=\) SQR〈D
 \(95 \mathrm{HO}=\mathrm{N} \subset \mathrm{D}\) © \(\mathrm{H} 1=1\), D
100 IF Hӥ>G THEN \(G=H 0\)
100 IF HUDG THEN \(G=H Q\)
195 IF H1>G1 THEN \(G 1=H 1\)
110 NEXT F
115 RETURN

Program left compares responses of recursive filter with ideal and with limited wordlength coefficients．That above calculates maximum values of \(G(\omega)\) and \(G_{f}(\omega)\) for a biquadratic section．
put is also connected to one input of a signal comparator, the other input being derived from a sample and hold network driven by one of four multiplexed analogue input channels. This arrangement allows up to four analogue inputs to be sampled and converted to digital form using the converter and the comparator under software control.

The microprocessor section of the device contains an eprom with space for 192 processor instructions, 40 words of ram and a specialist arithmetic unit. The basic wordlength of the arithmetic unit and the ram is 25 bits. All arithmetic operations provided, which include add and subtract but not multiply or divide, are performed in two's complement form. A special feature of the device which allows coefficient multiplications to be performed efficiently without a multiplication instruction is the binary shifter (sometimes known as a bar-

\section*{References}
1. Digital filter implementation on 16 -bit microcomputers by H. T. Nagle \& V. P.
Nelson, IEEE Micro, February 1981, pp. 2341.
2. Microprogrammable digital filter implementation using bipolar microprocessors, by M. E. Woodward Microelectronics (GB) vol.
10, September-October 1979, pp. 23-31.
3. NEC \(\mu\) PD7720 data sheet, NEC

Microcomputers, Inc., 1981.
4. Digital filtering using a custom designed device, by R. H. Macmillan \& P. Millar, IEE Colloquium on Implementation of Digital Signal Processing Algorithms using Microprocessors, London November 1981.
5. Microcomputer with 32 -bit arithmetic does
rel shifter). Before being loaded into the arithmetic unit, one of the operands in an add or subtract operation passes through the binary shifter, which can be programmed to shift the number up to two places to the right or up to thirteen places to the left in one operation. Hence, a 'shift and add' process which can be used for programmed multiplication is combined into one instruction. Other features which simplify the programming of the device include a fixed instruction execution time (600 or 800 ns depending on device) and the absence of conditional jumps which are replaced by conditional operations. The latter ensures that there is only one path through the program and hence that the program execution time is constant. An 'end of program' instruction is included, which causes program execution to transfer to the first instruction in memory, providing continuous repetition of the
high-precision number crunching, by \(\mathbf{K}\). McDonough et al, Electronics, 24 February 1982, pp. 105-10.
Bell System Technical Yournal, September 1981, vol. 60, part 2 (various papers).
6. 2920 Design Handbook, Intel Corporation 1980.

\section*{References in June article}
1. Oppenheim A. V. and Schafer, R. W. Digital Signal Processing, Prentice Hall, 1975.
Terrell, T. J. Introduction to Digital Filters, Macmillan 1980.
Peled, A. and Liu, B. Digital Signal Processing Theory, Design and Implementation, Wiley, 1976.
program. As the input signal is normally sampled on each pass through the program, the sampling interval is equal to the product of the number of instructions and the instruction execution time. For example, a program containing 40 instructions run on a 600 ns device produces a sampling interval of \(24 \mu\) i.e. a sampling rate of approximately 41666 samples per second giving a signal bandwidth of almost 21 kHz . This represents the theoretical upper limit and it is prudent in a practical system to allow some measure of oversampling and limit the signal bandwidth to say one third of the sampling frequency.

A rechnique based on the canonical signal digit code used for coefficient multiplications on the 2920 vogether with details of digital filters implemented using this device will be given in a subsequent article.
2. Rader C. M. and Gold, B. Digital filter design techniques in the frequency domain, Proc. IEEE, vol. 55 1967, pp. 149-71.
3. Ackroyd, M. H. Digital Filters, Butterworth, 1973.
4. Constantinides, A. G. Spectral
transformations for digital filters, Proc. IEE, vol. 117, 1970, pp. 1585-90.

\section*{Appendix to June article}

To calculate \(V x\) where \(x=a+j b\).
Convert \(x\) to Euler form \(x=r e^{j \theta}\), where \(r=\sqrt{a^{2}+b^{2}}, \theta=\arctan b / a\).
Take square root \(\sqrt{\mathrm{x}}=\sqrt{\mathrm{r}} \mathrm{e}^{\mathrm{i} \theta / 2}\). Convert \(\sqrt{\mathbf{x}}\) to Cartesian form
\(\sqrt{\mathbf{x}}=\sqrt{\mathbf{r}}(\cos \theta / 2+j \sin \theta / 2)\).

August 5-6
Computational physics on the distributed array processor. Institure of Physics
Conference at the University of Glasgow.
Details from the Institute of Physics, 47
Belgrave Square, London SW1X 8QX.
August 14-17
Harrogate International Festival of Sound and Video at the Harrogate Exhbition Centre and at various hotels close by.

\section*{August 21-27}

15th International Congress on high speed photography and photonics. San Diego, California, USA. Organised by the Internationa! Society for Optical Engineering, Washington 98227, USA.
August 26-September 5
Firato 82. Biennial exhibition and trade show for consumer electronics. At the RAI Exhibition Centre, Amsterdam.
September 2-6
SIM HI FI IVES: International exposition of music and high fidelity has been extended this year to include a video and consumer electronics section. Milan Fair Centre, Italy.

\section*{September 6-7}

Seventh annual microprocessor workshop at the University of Liverpool Computer

\section*{Laboratory.}

September 6-10
Annual Meeting of the British Association for the Advancement of Science. To be held at the University of Liverpool. BAAS, 23 Savile Row, London WIX IAB.

September 6-9
Enrolment for course for the Radio Amateurs
examination. Brixton College for Further
Education, Brixton Hill, London SW2.
September 6-10
Microcoll 82: Seventh Colloquium on microwave communication. Budapest.
Sponsored by the International Union of Radio Sciences and the Hungarian Academy of Sciences. Details from Microcoll, 1252 .Budapest, 114, PO Box 15, Hungary.
September 7-10
6th International conference on computer
communication. London. Details from ICCC
82, PO Box 23, Northwood Hills, Middlesex
HA6 1TT.

\section*{September 7-8}

Semiconductor 82: Exhibition at the Bingley Hall, Birmingham.
September 7-9
Compec Scotland: Exhibition of computers, systems, peripherals and software. Sponsored by Computer Weekly. City Hall, Glasgow.
September 9-10
Microprocessors and their applications.
Symposium at Bristol Polytechnic, Ashley
Down Road, Bristol BS7 9BU.
September 9-12
The 5th Personal Computer World Show.
Barbican Centre, London.
September 8-10
Eurographics '82: International congress for computer graphics. UMIST. Conference details
from Andrew Yates, University of Manchester

Institute of Science and Technology, PO Box 88 Manchester M60 IRD.
September 13-16
12th European solid state device research conference, Munich. Details from Dr Zerbst, Siemens AG, Otto Hahn Ring 6, D-8000 Munchen 83, FRG.
September 13-17
12th European microwave conference,
Finlandia Hall, Helsinki, Details from
Microwave Exhibitions, 43 Dudley Road, Tunbridge Wells, Kent TN1 ILE.
September 14-16
ElectroWest; West of England electronics exhibition, Bristol. Exhibitions for Industry Ltd, 157 Station Road East, Oxted, Surrey RH8 0 QF .

\section*{September 18}

Computer Fair; Prestatyn High School PTA, Prestatyn, Clwyd.

\section*{September 18-21}

International broadcasting convention:
IBC82, Metropole Hotel, Brighton. Details from the IEE, Savoy Place, London WC2R 0BL.

\section*{September 19-24}

Human aspects of computer systems: A short course at the Department of Human Sciences, University of Technology, Loughborough.
September 19-24
Industrial digital and microprocessor-based control systems. IEE vacation school at Baliol College, Oxford.

Hangover, a rather loose term to describe the stored energy resonance in a loudspeaker, the principal cause of colouration that immediately tells you you're listening to a loudspeaker.

Take it away and there's a new world the loudspeakers have nothing more to say instead there's just the orchestra and the magic of the music.

Perhaps even something to celebrate about.

For further details and the name and address of your nearest Quad ESL-63 retailer write or telephone The Acoustical Manufacturing Co. Ltd, Huntingdon, Cambs, PE18 7DB. Telephone: (0480) 52561.
important part of your life, then a pair of ESL-63 loudspeakers could be the best investment you've ever made.

\section*{EP4000}

The microprocessor controlled EP4000 will emulate and program all the popular EPROMs including the 2704, 2708, 2716(3), 2508, 2758, 2516, 2716, 2532 and 2732 devices: Personality cards and hardware changes are not required as the machine configures itself for the different devices. Other devices such as bipolar PROMs and 2764 and 2564 EPROMs are programmed with external modules.
The editing and emulation facilities, video output and serial/parallel input/output provided as standard make the EP4000 very flexible to allow its use in three main modes:
- As a stand alone unit for editing and duplicating EPROMs.

Items pictured are: EP4000 Emulator Programmer \(-£ 545+£ 12\) delivery; BSC buffered simulator cable - \(£ 39\); MESA 4 multi EPROM simulator cable £98; 2732A Programming adaptor £39; 2764 Programming adaptor - £64; 2564 Programming adaptor - £64;
- As a slave programmer used in conjunction with a software development system or microcomputer.
- As a real time EPROM emulator for program debugging and development (standard access time of the emulator is 300 ns).

Data can be loaded into the \(4 \mathrm{k} \times 8\) static RAM from a pre-programmed EPROM, the keypad, the serial or parallel ports and an audio cassette. Keypad editing allows for data entry, shift, move, delete, store, match and scroll, and a \(1 \mathrm{k} \times 8\) RAM allows temporary block storage. A video output for memory map display, as well as the built-in 8 digit hex display allows full use of the editing facilities to be made.

BP4 (TEXAS) Bipolar PROM Programming module - £190
Also available (not shown): VM10 Video monitor - £99; UV141 EPROM Eraser with timer - £78; GP100A 80 column Printer - £225; Pl100 interface for EP4000 to GP100A - £65.

VAT should be added to all prices

Unit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN

\title{
MICROCOMPUTER LINE PRINTER
}

\title{
This is the second of two articles describing an interface for driving a 40-column dotmatrix printer mechanism from \(Z 80\) signals. With the mechanism, addressing and interrupt sections covered, the author explains the controller i.c., power circuits, running the printer and modifications required to drive a 12 V mechanism.
}

Turning now to Fig. 3, the rest of the controller circuit can be considered. \(\mathrm{IC}_{2}\) is a bidirectional buffer designed to isolate the controller-board internal data bus from any noise on the system data bus, and vice versa. It is enabled only when the controller board is addressed, and the direction in which it passes data is determined by the WR line buffered by \(\mathrm{IC}_{1 \mathrm{l}}\) and \(\mathrm{IC}_{3 \mathrm{a}}\). To reduce noise problems, \(\mathrm{IC}_{1 \mathrm{l}}\) is a \(S c h m i t t\) trigger, and similar buffers are used on the other control bus lines.
The control bus is connected to the printer controller chip, \(\mathrm{IC}_{14}\), and through three-state buffers, \(\mathrm{IC}_{13}\), to the status outputs of the controller i.c. It is also connected to \(\mathrm{IC}_{9}\), the interrupt reply byte circuit. Note that \(\mathrm{D}^{2}\) from \(\mathrm{IC}_{9}\), pin 18, should go to D 0 on \(\mathrm{IC}_{2}\), pin 2, and so on up to D 7 , pin 9 on \(\mathrm{IC}_{9}\) to pin 9 on \(\mathrm{IC}_{2}\).
A 6.0 MHz clock for the controller i.c. is provided by an \(\mathrm{HC1} 8 / \mathrm{U}\) or \(\mathrm{HC} 25 / \mathrm{U}\) crystal, \(\mathrm{XL}_{1} . \mathrm{IC}_{14}\) contains the character generator for the printer, and the output

\author{
by P. L. Woods
}
for the currently selected character appears on PS1 to PS7 (pins 27 to 33 respectively). High-voltage open-collector line drivers, \(\mathrm{IC}_{16}\) and \(\mathrm{IC}_{17}\), are used to send the signal to the solenoid drivers.

Two additional signals have to be sent to the printer; one is a paper advance signal, \(\overline{\mathrm{FS}}\) (at pin 21 of \(\mathrm{IC}_{14}\)), the other is to turn the drive motor on and off, MT (pin 34).

Three status signals are needed back from the printer for correct operation. The first of these comes from a timing coil which allows the controller to correctly space the dots for each character. If no

Fig. 3. Controller i.c. and buffers. Mr Woods informs us that the controller, \(I_{14}\), is not the DPC-2 as given here and in last month's parts list, but is the DPC-4.
timing pulses are found within 0.2 s after the motor is turned on, the circuit assumes that the motor has stalled, so an error status is set (Error at pin 22), and the motor stopped to prevent it from burning out.
The second signal is from a reed relay which indicates when the printer carriage has reached the 'home' position, and that the motor may be stopped as it has finished printing a line.
The third status line is from a normallyclosed pushbutton, connected to ground, which serves two functions. If the switch is depressed (open) when the Reset line goes high then the controller enters a test mode and prints lines of characters until the switch is closed. Otherwise, pressing the switch when the printer is idle advances the paper through the mechanism.

\section*{Solenoid and motor drivers}

Figure 4 shows a solenoid drive circuit. Seven of these circuits are required for the

Fig. 4. Eight of these solenoid driver circuits are required, one for each of the seven needle drives and one for the line-feed solenoid. Tr 101 is a power Darlington transistor.

Fig. 7. Edge connector diagrams for the printer mechanism.
head solenoids and one for the line-feed solenoid.

As the circuit consists of only one Darlington transistor, it needs no discussion. One point worth mentioning though is that, should the circuit's input become open, as happens when the cable between the interface and printer board is disconnected, the solenoid is turned on. The effects of this will be explained later. No heat sink should be needed because, although the peak current is high (3.2A), the duty cycle is low. Diodes \(\mathrm{D}_{101}\) and \(\mathrm{D}_{102}\) are used to protect the transistor.

The driver for the motor is shown in Fig. 5, and is a little more complex because dynamic braking (through \(\mathrm{TR}_{204}\)) is used to stop the motor at the end of each line. A Darlington transistor, \(\mathrm{Tr}_{203}\), is used to power the motor and will need a small heat sink. As with the solenoids, the motor will be turned on when the circuit's input is open.

\section*{Printer power supply}

The circuit diagram for the two power supplies needed is shown in Fig. 6. Careful separation of the interface logic from the needle drivers has the advantage that each part of the circuit requires only one power rail. That for the interface logic (Figs 2 and 3) is 5 V at about 300 mA , supplied by a 7805 voltage regulator, \(\mathrm{IC}_{301}\).
The 24 V supply requires a little more explanation. A voltage doubler circuit is used because I only had a \(12 \mathrm{~V}, 2 \mathrm{~A}\) transformer; a 24V, 1A transformer used with a
 should be mounted on a heat sink.

(via cable to controller board)

bridge rectifier would perform equally well.

If the action of \(\mathrm{Tr}_{301}\) is ignored, then the circuit is an op-amp, \(\mathrm{IC}_{302}\), connected as a voltage regulator, with \(\mathrm{Tr}_{302}\) as the series pass element. The purpose of \(\mathrm{Tr}_{301}\) is to shut down the 24 V rail should the control cable from the interface board to the solenoid drivers become disconnected. As mentioned above, in this event all the solenoid drivers, together with the motor driver, turn on. The resulting prolonged 30 A current demand is sufficient to destroy the rectifier diodes, as happened during testing of the prototype.

So the link to enable the 24 V rail is not on the supply board, but on the interface board, and two of the wires in the connecting cable are used to connect the link between the base of \(\mathrm{Tr}_{301}\) and ground. Using a multipole connector ensures that if the flying lead is not plugged into the interface board, then the link will not be made, so turning off the 24 V supply. Both \(\mathrm{IC}_{301}\) and \(\mathrm{Tr}_{302}\) will require heat sinks.

\section*{Construction}

The circuit was constructed in two parts: the first is the interface board which was built to fit into a slot in one of the compu-

Fig. 6. Power supplies. The 24 V supply is switched by a logic signal to prevent overloads when the solenoid and motor driving circuit inputs are open. The author had a 12 V transformer in his 'junk box', hence the voltage doubler. Heat sinks are required for \(I_{301}\) and Tr \(_{302}\).
ter's cards. The solenoid and motor drivers were built on a second board which, together with the 24 V supply, was mounted in the base of the box containing the printer mechanism.

The interface board should be carefully laid out, i.e., with a good ground mesh, and with the ground pin of each i.c. connected to that of the i.cs around it. A decoupling capacitor is needed for each i.c., \(10 \mu \mathrm{~F}\) tantalum-bead capacitors alternating with 10 nF ceramic disc capacitors being suitable.
The layout of the driver board is a little more difficult as it carries both t.t.l. signals and the heavy currents associated with the solenoids. Because of the solenoid surge currents mentioned earlier, a substantial cable is needed to connect the emitter of each driver transistor to the ground side of the 24 V power supply. To avoid noise caused by the solenoids getting back into the interface, the digital ground return should be separate from the 24 V supply return, although it need not be as heavy. Once again, everything should be

Table 1：Program to display printer char－ acter set．This program was written to demonstrate the operation of the printer， and act as a confidence test for it．It is loaded at location 4000 （hex．）in memory， and should be entered，after the stack pointer has been set up，using a CALL in－ struction．This listing was produced on the printer described in this article，as was its result，shiown in Table 2.
\begin{tabular}{|c|c|c|}
\hline 1 & & ；LISTING ONE． \\
\hline 2 & & \\
\hline 3 & & ；OISPLAY PRINTER \\
\hline 4 & & ；CHHRACTER SET． \\
\hline 5 & & \\
\hline 6 & & ；COPYRIGHT． \\
\hline 7 & & ；PL W0005． 1982. \\
\hline 8 & & ； \\
\hline 9 & & MHIN：EQU 40GOM \\
\hline 10 & & OR＇G MAIN \\
\hline 11 & & LORD MHIN \\
\hline 12 & & ；PRINTER PORT RODR \\
\hline 13 & & ；PRINTER PORT ACOR． \\
\hline 14 & & PRT：EQU 11 H \\
\hline 15 & & ； \\
\hline 16 & & RESET PRINTER \\
\hline 17 & \(4 \overline{1000} \operatorname{COSE40}\) & CALL RESET \\
\hline 18 & & ；URLUE OF FIRST \\
\hline 19 & & ；CHARACTER TO PRINT． \\
\hline 21 & \(48033{ }^{20} 20\) & LD A， 32 \\
\hline 21 & & ； \\
\hline 22. & & ；PRINT 14 LINES，EAC \\
\hline 23 & & ；8EGINING WITH THE \\
\hline 24 & & ；VGLUE UF THE CHAR \\
\hline 25 & & ；IN HEX．EACH LINE \\
\hline 26 & & ；CONSISTS OF FOUR \\
\hline 27 & & ；GROUPS EACH OF FOUR \\
\hline 28 & & ；CHARACTER5． \\
\hline 29 & 4005 060E & LD B，14 \\
\hline 30 & 4007 C03140 & LIME：CALL PRTHEX \\
\hline 31 & 406 CDE 540 & CRLL SPACE \\
\hline 32 & & ：SET UP FOR GFROUPS． \\
\hline 33 & \(48180{ }^{\text {c5 }}\) & PUSH ECC \\
\hline 34 & 400E 0614 & LD E， 4 \\
\hline 35 & 40110 COE540 & GROUP：CALL SPHEE \\
\hline 36 & & ；SET UP FOR EACH \\
\hline
\end{tabular}

Table 2：The printer＇s character set．This listing shows the result of running the program in Table 1．The first four lines （values 20 to 5 F inclusive）are an upper case ASCII character set，while the last six lines（from A0 to FF）are a Kata Kana（Japa－ nese）character set．The middle four lines are not specified for the controller chip used and so represent＇noise＇．

well decoupled for best performance， using \(20 \mu \mathrm{~F}, 36 \mathrm{~V}\) electrolytic capacitors connected between the 24 V side of each solenoid and ground．
Connexions to the matrix printer itself are through a pair of non－reversible connectors，the mating halves of which are suppled with the printer．One of the connectors is 14 way and supplies the sole－ noids，while the other is 10 way and carries the motor，paper feed and timing signals （Fig．7）．
\begin{tabular}{|c|c|c|}
\hline 37 & & \\
\hline 38 & 4013 & C5 \\
\hline 39 & 4014 & B604 \\
\hline 40 & 416 & CDE540 \\
\hline 41 & & \\
\hline 42 & 4 B 19 & C04C4 \\
\hline 43 & & \\
\hline 44 & 401C & 3C \\
\hline 45 & & \\
\hline 46 & 410 & 10F7 \\
\hline 47 & & \\
\hline 48 & 4 L 1 F & C1 \\
\hline 49 & 4020 & 10EE \\
\hline 50 & & \\
\hline 51 & 4022 & CD294日 \\
\hline 52 & & \\
\hline 53 & 4025 & C1 \\
\hline 54 & 4426 & 101DF \\
\hline 55 & & \\
\hline 56 & & \\
\hline 57 & 4128 & C9 \\
\hline 58 & & \\
\hline 59 & & \\
\hline 60 & 4829 & F5 \\
\hline 61 & 4र゙2月 & 3EOA \\
\hline 62 & 402 C & CO4C4日 \\
\hline 63 & 402F & F1 \\
\hline 64 & 4030 & C9 \\
\hline 65 & & \\
\hline 66 & & \\
\hline 67 & & \\
\hline 68 & 4831 & F5 \\
\hline 69 & & \\
\hline 70 & 4032 & 9F \\
\hline 71 & 4033 & BF \\
\hline 72 & 4034 & －F \\
\hline 73 & 4035 & UF \\
\hline 74 & 4036 & COSE4 4 \\
\hline 75 & & \\
\hline 76 & 4939 & F1 \\
\hline 77 & 403． & CO3E4 4 \\
\hline 78 & 4030 & C9 \\
\hline 79 & & \\
\hline 80 & & \\
\hline 81 & & \\
\hline 82 & 403E & F5 \\
\hline 83 & & \\
\hline 84 & 403F & E60F \\
\hline 85 & 4 C 41 & B7 \\
\hline 86 & & \\
\hline 87 & 4642 & 27 \\
\hline
\end{tabular}

ACD A，QFGH HCL H， 148 H CALL FUTPRT POP AF RET

PRINT THE LINTENTS OF THE＇ A ＇REG． PUTPRT：PLISH AF LOIN LINTIL PRINTER ；REROY．
PRLP：IN \(\hat{H}_{2}\)（PRT）
；CHECK ERROR STATUS． BIT 4， H JR Z，PRTERR
BLISY BIT．
EIT 2，H JF NZ，PRLP
SEHO CHARACTER． FOP RF OUT（PRT），A RET

MERE IF THERE IS ；A PRINTER ERRUR． PRTERR：MALT JR PRTEFR：
；RESET PRINTER
；CUNTROLLER．
RESET：PUSH AF
405E F5
LO A．11H
Ôlit（PRT），A
POF AF
RET
PRINT A SPACE
SPACE：PLISH AF

\begin{abstract}
Conversions for 12 V printer mechanism
After this artiele had beon comploted， a vertion of the printer mechianisen for use with a 12 V supply，the DP－824F． 12，and asociated controller，the DPC－1A，were introduced；filis section describes modifications required to accommodato these．
Pin cernnexions on the 12 V mechan－ Iam are exuetly the same as those on the 2sV model．Tho DPC－4 lice can bo usid to control either version of mechanian by altering the signals on Gertain pins．
On the 12 V mechanism，the sele－ nuids require a 730 p s pulse，th op－ posed to \(400 \mu\) for those of tho 24 V veralon．This pulte length is deter－ mined by the controller and depends on the logic state af pin 35，the＇prin－ ter thpe＇formirat（PT）．When this pin
\end{abstract}
la thed to the \(+5 V\) voll，wa thown in Fig． 3．the pulne leng th to copus．For the 12 V mechanism， \(\mathrm{X}_{21}\) must bo chaneot to \(1 \mathrm{k} \Omega\) and wired to ground instoad of +5 V ．
Current requlremonts for the 12 V mechenlem＇s solenolds and motor are mechanism soidnolds nod motor rer Wher beceuse of the hower supply bo retiod to 2.210 ln in all elght solo－
nold－hiver clrcults，and Rove of Fig． 5 neduonell to 3.3 k a．
Finally，the voltege doubler used in the 24 V supply，Fig． 6 ，can be repliced by a bridga－type rectilior and single 28 omoothing capesticor（sey， 10 000uF，
 montioved we Alocion－foe frove but

The two boards（interface board and driver board）were interconnected by multi－core cable and sub－miniature 25 －way ＇\(D\)＇connectors．The precise allocation of the pins to the various signals does not matter too much provided that there are ample ground－return lines．Cable length should not matter too much either，as the signals are all relatively low in frequency， but anything over 1 m in length could cause noise problems．The screen of the connect－ ing cable should be earthed to improve reliability．

\section*{Demonstration program}

Table 1 is a program，writien in \(\bar{Z} 80\) as－ sembly language，which is designed to test the printer by causing it to display its com－ plete character set．The results of this program are shown in Table 2．The program is loaded into memory at 4000 （hex．），a convenient location in my system， and is entered from a system monitor which first sets up the stack pointer（SP register），and then pushes a return address onto the stack（e．g．by the use of a CALL 4000 instruction）．The test program exe－

cutes a RET instruction when finished.
This article is not the place to introduce assembly language programming, and so instead of a detailed description of the program, notes are given to assist those wishing to use all, or part, of the program for their own purposes.

The port address of the printer is declared in an EQU pseudo instruction at line 14. This address must correspond with the address used by the hardware.

There are three interface driver routines of interest, namely RESET, PUTPRT and NEWLIN. Starting at line 118 is a subroutine called RESET. The purpose of this is to 'set' the printer controller should a previous program error have left it in an unacceptable state. The same effect may be achieved by using the RESET bus signal. As good practice, a CALL to RESET should be made at the start of each program which accesses the printer. No
registers are modified by this subroutine.
The second subroutine of note, PUTPRT at line 96 , may be regarded as causing the character sent to it from the ' \(A\) ' register to be printed. PUTPRT waits until the printer is ready, then transfers a character from the ' \(A\) ' register to a print buffer in the printer controller i.c. If the printer error bit is set, the subroutine will halt at address 405B. Normally this point would contain a code to alert the operator to a printer problem. If there is no error the subroutine returns, leaving all registers unmodified.

The third and final subroutine to inspect is NEWLIN, at line 60. The purpose of this is to cause printing of the line in the controller print buffer, which it does by sending an 0 A character (line feed) to the printer. Once again, this routine does not change any registers. It should be noted that this subroutine must be called at least once every 40 characters to avoid the print buffer becoming full, in which case, overflow characters will be lost.

\section*{Conclusion}

In this article it has been shown that it is possible to build a low-cost printer for a home-computer system. Although this design was originally intended as a means of printing programs from a Z80-based system, it may easily be adapted to make it compatible with any popular microprocessor and for use in any application where a permanent printed record is required, such as data logging. That the controller only allows upper-case graphics characters to be printed is not a problem for the majority of applications.

\section*{Computing}

\section*{From Hardware to Software}
by Graham Lee
454 pages, paperback/hardback
MacMillan, \(£ 8.95 / £ 16.00\)
This is an introductory text, albeit an extremely thorough one, and covers both equipment and programming at a level suitable for \(\mathbf{A}\) level or first-year university courses. The author has used a computer model - the Simple Digital Computer - throughout, with which to illustrate his points more generally than would have been possible with a commercial design.

\section*{Advanced 6502 Interfacing}
by J. M. Holland
190 pages, paperback
Prentice-Hall, £9.05
This book is practical in its approach to the subject of persuading 6502 microprocessors to perform useful functions in timing, control, data acquisition and high-current load driving. It is written for those who are already familiar with microprocessors.

\section*{Introduction to 6800/6802 Microprocessor} Systems
by R. J. Simpson and T. J. Terrell
238 pages, paperback
Newnes £6.95
For readers who may not be versed in the language of logic and binary arithmetic, the authors have included a useful first chapter on basics before embarking on a description of the \(6800 / 6802\) devices and their use. This is followed by chapters on programming and on input/output signals, the practical approach being the province of the final two chapters on the MEK6802DS evaluation system, with some investigations to carry out with its help.

\section*{Microcomputer Data Communications}

\section*{Systems}
by F. J. Derfler, Jr.
129 pages, paperback
Prentice-Hall, \(£ 9.70\)
Microcomputers can serve as terminals in a data communication network to provide information at home, as an alternative to what the author calls the 'time tyranny' of radio, television and newspapers. The book describes such systems, including sections on modems and terminals, and going on to show how Apples, TRS-80s and others can be employed in this way. There is also a piece on using the CP/M disc operating system with S-100 bus computers and others.

\section*{Video}

\section*{Video-Tape Recording}
by J. F. Robinson, revised by S. Howe
362 pages, hárdback
Butterworth, \(£ 12.00\)
The third edition of a well known text, this covers the whole field of professional and domestic video tape recorders from the engineering point of view. New information is presented on the helical B and C formats, and the domestic type of machine, with additional coverage of timebase correction. Those familiar with television engineering are led easily into the subject by the way of a first chapter on tape recording in general terms.

\section*{Video Techniques \\ by G. White}

299 pages, hardback
Butterworth, £10.95
Although the blurb says that this is for the engineer or technician in television or ancillary industries, it hardly seems detailed enough for that purpose. It is a descriptive book, which is well suited to readers in other fields who want to obtain a working knowledge of television, both broadcast and recorded, studio equipment, transmission, reception (including teletext and viewdata) and digital techniques.

\section*{BRITISH HI-FI}

I'm informed by John Crabbe of Hi-Fi News/Record Review that the Acoustical manufacturing company's claim that the QUAD FM4 brings 'Home the world's best broadcasting system at the touch of a button' is ethically justified, as Acoustical, in contributing to the support of the Philharmonica, helps to pay the piper.
Most other British high fidelity manufacturers do not, and subsist upon music making of all kinds parasitically, and thus have no prestige or reputation internationally amongst serious consumers of reproduced music.
By and large, British high-fidelity products are not materially competitive or competitive in terms of dazzling or convenient features. But they are perhaps more competitive qualitatively. Unhappily, however, recognition of their qualities is pretty well reserved to engineers, technicians, and 'hi-fi fans'. Most serious consumers of reproduced music, here and abroad, don't know about them, and have precious little opportunity to learn.
Thus, while the programming and technical quality of the world's best broadcasting system is revered - and envied - internationally, British high-fidelity products are known about and coveted only by the membership of tiny audiophilic cults, here and abroad.
I have at hand No 1 of the 1982 Edinburgh Festival newsletter. It's publication was apparently entirely supported by the advertisements of hoteliers, restaurant-keepers, one or two insurance companies, and a bank or two. Many people who will attend Festival events, or wish to, and many who - due to privation or remoteness - are dependent upon broadcast reception and recordings for musical enjoyment during most of the year, will remain in ignorance of the products of Linn, Syrinx, Strathclyde Transcription Devices, the makers of the Systemdek, and even Tannoy - not to mention KEF, B\&W, Sugden, Castle, Celef, Mitchell, Acoustical, Naim, Riga, C\&J Walker, MB Creek, Boothroyd, Stuart-Meridian, and even Wharfedale, south of the border.
It would be too charitable to say that the British high-fidelity industry has its head in the sand. A harsher but more appropriate judgement would suggest that it is contemplating its own navel from the inside, is unwholesomely involved and beguiled subjectively by its own entrails.
John F. Withey
Pollockshields
Glasgow

\section*{SCIENTIFIC COMPUTER}

Please could you note in your records that I am the new Editor of The Sci. Comp. 80 monthly newsletter for users of the scientific computer designed by John Adams, M.Sc., details of which were published in your magazine.

Any of your readers who built the SC80, who are not members of the group, would find it well worth joining. Back issues, still available, contain a plethora of hardware, software and firmware. Mr Adams contributes articles monthly, and has developed no less than five versions of the BURP high level language, an excellent 64 K d.o.s. (CP/M compatible), a standard Basic interpreter and some excellent hardware improvements. These include a 32 K
dynamic memory expansion, 64 K mapping circuits, interrupt vector circuits, ASCII character generator modification and a floppy disc controller p.c.b. Details of all these are in the newsletter. One year's subscription is \(£ 6.50\) for U.K. members, \(£ 8\) for the continent, and \(£ 8.50\) for elsewhere. Cheques sent to the address below.

I would like to take this opportunity to thank Mr Philip Probetts for the past two years of excellent newsletters under his editorship. I hope I can do as well.
John Hodson
189 Trent Valley Road
Oakhill
Stoke-on-Trent, ST 4 SLE

\section*{AMATEURS AND CB}
C. G. Howard's comments in the June issue of WW under 'Amateurs and c.b.' highlighted the indifference of the Home Office towards illegal c.b. amateur operations. But what about the specific identifiable violations where the Home Office attitude is downright irresponsible?
I am referring to the illegal pirate radio stations that flagrantly operate in the v.h.f./f.m. broadcast band. There are a number of them, but two examples serve to illustrate the general case - 'Thameside Radio' and 'Liberation Radio'.

I asked British Telecom why these stations were not closed down and imagine my surprise, as a legal broadcasting operator, when I was told that the Home Office would not give the necessary authorization for British Telecom to do so. Must a campaign be mounted privately to ensure that the law of the land is upheld when a government department refuses to do so? Continual violation of the law in this way is a form of anarchy, in principal every bit as bad as other, more subversive, movements.
The Home Office, in supporting the violation of statutory laws by its non-action is encouraging further escalation. This is yet another of a growing number of examples of where government legislation controls the actions of responsible citizens but not those who chose to flout the law of the land.
H. Clayton

Northwood
Middlesex

\section*{CARTRIDGE ALIGNMENT}

Referring to P. E. Cryer's letter in the June 82 issue, I found some difficulty in understanding the layout instructions in his second paragraph together with the associated diagram on the next page. However, it is of course quite true, as he says, that it makes no difference to the geometry whether you think of the stylus traversing over the record, or the record traversing under the stylus; all that matters is the relative moment of the two.
Two or three points seems to warrant comment: firstly, there is nothing particularly new or useful in finding out that the proportion of tracking angle errors depends on the choice of setting radii - of course it does. It is necessary, in the interests of minimizing tracking error distortion, for the angular error to vary inversely with radius, and as Cryer's figures indicate, this is exactly what does happen. The relationship of tracking angle errors at both outer and inner radii to the error at the radius for minimum
angle (my \(\mathrm{R}_{\min }\)) depends on the amount of dip in the curve of angle across the record, as is obvious from my Fig. 1.

Secondly, I cannot understand Cryer's statement that my own factors "would place B on the other side of the datum line". If the datum line is defined as a line through the two points where the stylus cuts the circles having radii p and q as in his diagram, then obviously the intersections at both inner and outer record grooves (his B and A) must necessarily lie on one side of the said datum line, and none of my 'factors' can alter this condition.

Thirdly, Cryer's roundabout method of calculating \(p\) and \(q\) as described in his last paragraph, cannot work. The expression \(\mathrm{pq} / \mathrm{p}=(\mathrm{p}+\mathrm{q})-\mathrm{p}\), is meaningless, a mere identity which reduces to \(q=q\). Obviously it cannot be used to separate \(q\) from \(p\) when (\(q+p\)) is known. The whole point of my final paragraph in the Oct ' 81 issue, was to show that one did not need to go through the whole procedure based on formula 4(b) every time, in the light of the linear \(\mathrm{y}=\mathrm{a}+\mathrm{bz}\) relationship ascertained at middle of paragraph. The final outcome, which cannot be simplified or improved, was to evaluate \(p\) and \(q\) (\(m y r_{0}\) and \(R_{0}\)), from the empirical expression \(\mathrm{R}_{0}=79+\mathrm{hC} / 84\) and \(\mathrm{r}_{0}=12+\mathrm{hC} / 71\) or ideally \(\mathrm{L}^{2}-\mathrm{C}^{2} / \mathrm{R}_{0}\). For the recommended overhang value of \(h=2600 / \mathrm{C}\) this reduced further to \(\mathrm{R}_{0}=110\) and \(\mathrm{r}_{0}=49\) (ideally 48.81 , but the 0.19 discrepancy is insignificant in practice).

If one uses a protractor, or my setting gauge, as in the November 1981 article, there is no need to evaluate the offset angle O (my B), but if desired it can be very easily obtained, within about \(0.1^{\circ}\) accuracy, from my empirical expression 4380/C.
R. J. Gilson

Winchester
Hampshire

\section*{HERETIC'S GUIDE TO MODERN PHYSICS}

I was delighted to see you are still providing a forum for open and constructive criticism of modern theory.

That Dr Murray should need to assure his colleagues that he has "no wish to cause you offence" is a sad comment on the state of physics. Doubdess his article is the result of a long and critical investigation of modern theory, and he would welcome any constructive criticism of his article. Equally doubtless, a few of his colleagues know his investigation is a deliberate attempt to revive the flat earth theory and Maxwell's wave theory of light - an insult to Newton's corpuscular theory of light.

I predict Dr Murray will soon learn to appreciate the truth of the supreme investigator, Michael Faraday's bitter response to the hostility to his theories of the self-satisfied mathematicians of his day - "A man who makes assertions, or draws conclusions, regarding any given case, ought to be competent to investigate it."

Many Nobel prizes were awarded for contributions to the basic premise of relativity - that nothing in the universe can travel faster than the speed of light. Cerenkov received the 1958 prize for his experimental proof that "when charged atomic particles pass through water or other media at a speed in excess of that of light itself, a bluish light is emitted."

Aspden, Dingle, Essen, MacCausland and other critics of relativity are dismissed as cranks and crackpots by the Establishment. Is there any member of the Establishment competent to investigate the strange case of why the crank Cerenkov received a Nobel prize?
M. G. Wellard

Kenley
Surrey

\section*{WALSH FUNCTIONS}

I write with respect to the recent articles on Walsh Functions by Mr T. Roddam (WW Dec. 1981, pp 31 et seq. and WW Jan. 1982, pp 47 et seq.) to raise the following points.

The Rademacher functions, shown in Fig. 4 of this series correspond to W al \((1, \theta)\), Wal \((3, \theta)\), Wal \((7, \theta)\), Wal \((15, \theta) \ldots\) The associated intermediate Walsh functions may be derived by "exclusive Or" processing all combinations of the Walsh functions. Thus, for example referring to Fig. 3, the Wal \((2, \theta)\) function is derived from \(\mathrm{Wal}(3, \theta) \oplus \mathrm{Wa}(1, \theta)\) and should be inverted in the Figure. Several other derived Walsh functions have been inverted in Fig. 3. A correctly-signed set is enclosed for reference.
There is also an error in Fig. 5.
\(\mathrm{Wal}(5, \theta)=\mathrm{Wal}(2, \theta) \oplus \mathrm{Wal}(7, \theta)\)
which does not hold for this diagram. I enclose a modified diagram which will satisfy this requirement. Incidentally, the paper by Barratt, Gordon and Brammer also contains these errors.
I mention these slips since many people seem to be becoming interested in these functions that valuable introductory articles, such as Mr Roddam's are worth these small corrections in the interests of accuracy.

\section*{R. T. Irish}

Swindon,
Wilts.
Mr Irish enclosed an amended set of functions, which we have regretfully been obliged to omit for reasons of space. They can be obtained from this office - Ed.

\section*{FUNCTION OF FUNCTIONS}

With reference to Mr Sutherland's letter (June), I think that the view of sidebands as mathematical fiction is not entirely unfounded. I believe that a periodic complex waveform and it's Fourier series expansion are not one and the same thing in the sense of somehow being freely interchangeable without the active involvement of suitable physical devices to perform the complex series and conversion and vice versa. On this view a modulated radio transmission propagates in its complex form and there is no need to postulate any sidefrequencies at the transmitter end. The sidefrequencies are generated at the receiving end by tuned circuits. These have the capability to store energy and thus perform integration, thereby generating the continuous waves known as Fourier series components or sidefrequencies. The physical process by which a sidefrequency is generated can be understood by considering the following experiment:

Suppose that a high "Q" tuned circuit is adjusted for resonance at 110 kHz and placed near a 100 kHz oscillator. Clearly, the tuned circuit will not begin to oscillate since any such oscillations would move in and out of phase with the oscillator, thus receiving just as much help as hindrance. However, should the amplitude of the oscillator be decreased whenever out of phase with the tuned circuit and increased when in phase, then the tuned circuit would receive more help than hindrance and would build up oscillations. It would oscillate at 110 kHz whilst receiving it's energy in burst of 100 kHz . Assuming a very high " \(Q\) ", the inertia of the tuned circuit would be large enough to smooth out any amplitude variations and it would appear to receive a continuous wave input (i.e. one of the sidefrequencies). In fact it would be generating the continuous wave.

For the above process to take place the amplitude of the oscillator would have to be altered (i.e. modulated) at 10 kHz which is, of course, the appropriate modulating frequency for the
wal \((0, \theta)\)

\section*{REMOTE CONTROL FOR HI-FI}

I read Mr. Kirby's article on a remote control hi-fi system (WW, March 1982) with some interest, as I was at that time busy designing a similar system. I too used the Mullard voltagecontrolled potentiometers for control of the audio signal path, but found a much simpler and cheaper remote control system.
The major drawback of Mr Kirby's system seem to be the fact that the Plessey receiver (ML 922) only has three analogue control outputs; hence the need to use a 'stepped' volume control. The Motorola remote control system (MC 14497 - transmitter and MC 6203 receiver) has four analogue channels and a host of other useful features. For example, toggle action volume mute and a single button operation which sets three of the analogue channels to \(50 \%\) and the fourth to \(30 \%\).

This system is the same as that used on Grundig remote control television and so the modifications for hi-fi applications are quite simple. I wondered whether Mr Kirby was aware of this possibility and if not, and he was interested, I could send him some details.
D. F. Lovely,

Bioengineering Unit,
University of Strathclyde.

\section*{The author replies:}

It seems from Dr Lovely's comments that we are heading in opposite directions. I regard the use of the two analogue outputs on the Plessey ML 922 as a necessary evil! I would much rather have used all digital tone level setting controls. The reason I did not was my inability to design a stereo bass and treble control circuit using less than four of the Analog Devices AD7110 chips. These cost around \(£ 8\) each and the extra expense compared to the use of the Mullard analogue tone control i.c. seemed unwarranted.

I chose the Plessey remote control chip set (after looking at several alternatives) because of the analogue and digital outputs available on the ML922, and their use of an infrared photodiode to logic level integrated preamp, which saves much trouble with discrete high gain amplifiers.

Also a whole family of receiver chips are available, including one with a 5 bit latched output for a microcomputer interface, all operated by the same transmitter.
There is a toggle output on the ML922; this is used to switch the loudspeaker headphones relay, a quite effective mute control. In practice the \(3 / 8\) full scale normalised level of the analogue outputs is not a disadvantage; I rarely alter the tone by more than \(1 / 8\) of the scale.
My choice of the AD7110 was for the relative simplicity of driving it from a single chip microcomputer (the Zilog Z80), which can be programmed in Basic, as well as machine code. Then the interface between the controlling computer, and the controlled preamp/tuner/record deck can be some simple buffers. All the decoding from the received codes to the sequences necessary to drive, say, a synthesising tuner could be handled in software. This would make it easily adaptable to the various units commercially available. The prom decoding and sequencing logic used in the published design are an interim solution.

\section*{D.C. INPUT OR R.F. OUTPUT?}

In "Amateur radio" for June, 1982, Pat Hawker laments the replacement of "d.c. input power" regulations by new limitations on "dBW carrier power" in the revised Amateur Licence Schedule. While I tend to agree that the dBW is not particularly welcome, the change to an "r.f. output" criterion is long overdue.
"D.c. input" was firmly rooted in the days of valve transmitters and constant-carrier modes, when both h.t. voltage and anode current were metered, and the meter needles would stay still to be read! For most radio amateurs - like it or not - those days are gone. Either our transmitters tend to be solid-state and have only r.f.output metering, or they are primarily designed for s.s.b. In both cases it makes more sense to measure r.f. output, and this can be done with acceptable accuracy for the Amateur Service. At low powers, the accuracy requirement is minimal (at least for regulatory purposes), and at higher powers either commercial power meters can be used, or extremely simple homemade equipment, such as an existing s.w.r., meter can be calibrated accurately by transfer.
Although a d.c.-input limit does encourage high-efficiency amplifiers, is that what we really need? In today's crowded bands, the most important characteristic of a signal is its quality, and an r.f.-output limit allows amateurs to operate their transmitters in a more linear, though less efficient, manner.
The demise of d.c.-input limits is a welcome advance, but other relics of the past remain in the new Schedule: for example, the 6 dB difference between the power limits for c.w. (A1A/B) and for s.s.b. (J3E). Can anyone explain how a c.w. signal with a well-shaped keying waveform differs significantly in interference potential from an s.s.b. (J3E) signal of the same peak envelope power, and why the power limits for the two modes should not be the same? The 6 dB penalty against c.w. is a legacy of the transition to s.s.b. from plate-and-screen modulation, and has no current relevance. In any further revisions of the Schedule it deserves a decent burial, alongside d.c. input limits.
Ian F. White, G3SEK

\section*{Abingdon}

Oxfordshire

\section*{THE NEW ELECTRONICS}

It is at least eight years since \(\mathbf{I}\) shared the responsibility for selecting graduates for employment in an electronics development laboratory, and I read with interest and dismay Mr Jaques' article in the January issue.
I was interested in that some of Mr Jaques' questions were similar to the ones I put to interviewees, and dismayed because the responses he obtained mirrored so closely those that I obtained all too often. True, my own efforts were rewarded by the occasional interviewee who did understand some of the principles with which he had been presented and could perhaps even describe his final-year project clearly and accurately! Indeed a few such went on to become much respected colleagues.
However, it is not Mr Jacques' article which prompts the writing of this letter, but rather the contradictions and inconsistencies in the letters about this article which appeared in the March and April issues. In a letter of reasonable length I can only draw attention to a few of these.
There is much to agree with in Mr Graham's letter - I too would reach for my text books to deal with Tensor analysis etc., etc., etc., and must agree entirely with his reference to "learning by rote" - but what is the relevance to Mr Jaques' article?
Mr Jaques' questions are all of an elementary nature - for example, surely a qualified electronics engineer might reasonably be expected to derive the expression for the gain of the amplifier configuration in thirty seconds flat, even if didn't remember " \(-\mathbf{R}_{2} / \mathbf{R}_{1}\) ". Does it really require a text book on op-amps to deal with this? (Why does it have to be an op-amp anyway?)
Perhaps Mr Graham would tell us - I really would love to know - which text book does he reach for when he wishes to remind himself about Ohm's Law?
Surely the point is that an elementary understanding of circuit theory and device fundamentals is all that is required to answer most of Mr Jaques' questions? That is, are they not nearly all designed to avoid testing the mere ability to recall tabulated data from the candidate's memory?
Even if a graduate cannot recall a precise expression governing the current/voltage relationship for a semiconductor device, is it not reasonable to expect him to understand that it is a function of temperature, for example?
On the subject of final year projects, my experience was that students got involved in much too complex systems without any hope of fully understanding them in the limited time available! Whilst I am sure that Exeter students have written many good final year reports, does Mr Graham really believe that the result of a few weeks project work is to produce an "expert specialist"?
Turning to Mr Wehner's letter, I will ignore the first part as being totally irrelevant, and in any case, highly suspect. However, he goes on to make my point for me very well. He takes Mr Jacques to task for not drawing his (Mr Wehner's), "standard" amplifier circuit. One might quibble with the precision of Mr Jaques' "the gain between X and Z " but there is no ambiguity. Mr Wehner wants to define the gain referred to some point not even present in the circuit - why? Even if "input impedance" is not given its normal meaning, the circuit shown does have an infinite "source" impedance - so
why the complication?
Whilst I do not see any ambiguity in \(\mathrm{Mr}^{*}\) Jacques' Figure 2, surely a graduate might be reasonably expected to spot and question any such ambiguity?

It is my own belief that extraordinary progress in electronics has led to the very thing that Mr Graham objects to: learning and examination by rote. Inadequate emphasis is given to understanding and applying fundamentals. This may not matter for certain systems "designers". However, one would hope that some of the electronics engineers we are educating might actually be capable of designing the "guts" of those fascinated multilegged black boxes we all love so dearly. New processes, new devices, new circuits, all require an understanding of, and an ability to use, the fundamentals of which Mr Graham is so scornful - or have we already left it to the Americans and the Japanese?

Whilst writing this letter, I asked my son (who graduated with first class honours in Electronics Engineering and Physics about five years ago), to read and comment on your contributor's article and letters as I thought it appropriate to obtain a perhaps more modern view than my own. (Although I do not actually qualify for Mr Graham's unnecessary reference to "Grandpa".) My son's reaction was not inconsistent with my own, but I feel inclined to give him the "last word". He recalled a comment he made to his examiners - "I could have done better if I had spent more time simply memorizing information rather than trying to understand it all . . . the examination questions all too often merely required the regurgitation of chunks of lecture notes . . . a computer programmed to do the same in response to a few key words, could have. got a degree."
C. W. Ward,

Yelverton,
Devon

\section*{THE DEATH OF ELECTRIC CURRENT}

After Dermond O'Reilly's second blistering at tack, May 1982, perhaps Ivor Catt should slink away with his tail between his legs.
When discussing a TEM wave, it is common practice to use the formula O'Reilly objects to, \(\mathrm{E} / \mathrm{H}=\sqrt{\mu / \epsilon}\). See for instance Bell, Wireless World, August 1979, page 44, and also A. F Kip, "Electricity and Magnetism", page 332, equation 12.34. Kip uses the popular conven tion, where vectors are written in bold type and the amplitudes of vectors are written in faint type. In Wireless World, July 1979, page 73, the diagram immediately above my equation (a) that O'Reilly objects to makes it clear that amplitudes are being discussed.

Para. 3. Where is it said by anyone but O'Reilly that a wave is called transverse EM because displacement current flows across it? On the contrary, a wave is described as TEM because \(E\) (not \(\mathrm{dD} / \mathrm{dt}\)) and \(M\) are transverse. \(\mathrm{dD} / \mathrm{dt}\) has nothing to do with it, and will not even exist in the case of a steady TEM signal. O'Reilly makes this very point earlier in the ,same paragraph, that the bulk of a steady TEM wave contains no displacement current.

Following your publication in the December 1980 issue of my article 'Death of electric current', you published a letter by R. T. Lamb and my reply to his letter, both in the March 1981 issue. The following quotations from my reply show that I found Lamb's letter muddled;
"I think Mr Lamb has reversed physicists and engineers."
"Lamb seems to call Theory N 'the current model' and Theory H 'e-m theory'."
Lamb himself wrote, among other things;
"This is a broad generalization and, like all such, has exceptions, so please don't rush to quote them at me!"
You then published R. T. Lamb's reply to my reply in September 1981. Here the plot really thickens. For instance, I have no idea what "principal assertion" he refers to in his first sentence:
"I was pleased to note that Ivor Catt, in his reply to my letter (March issue), gave yet another example of the truth of its principal assertion."
Presumably he is promoting a particular philosophical position in the matter of theory, fact, hypothesis, truth and so on. If he is, then he should give us references to the originator of his philosophical view, or if it originates with himself, he should state it clearly.

Which model of Kepler's is he discussing in his second paragraph, September 1981, when he says:
"Kepler's problem was that the central construct of his model . . ."?
There should have been more information, or reference to the literature where the particular, activity of Kepler is discussed. Lamb may be talking about the ellipse, or the Harmony of the Spheres, or something else. Again, we see Lamb's ability to pitchfork confusion into a discussion.
In the December 1981 issue, you published my reply to Lamb's September letter. Then in April 1982 you published his reply. Again, Lamb confuses the issue. Even though in my latest reply, December 1981, I wrote, "If Lamb thinks (unlike me) that a mere model is in dispute, why the tenacity?", Lamb comes back with the reply, April 1982; "... [Ivor Catt] seems to acknowledge that we are discussing models of reality and not reality itself."
A dialogue, or debate, between two parties is of little value if the debaters ignore what the other man is saying.

Lamb's apparent assertion in paragraph three that it can be experimentally established that RC discharge current does not continue for ever I find astonishing. Also, in the last sentence of that paragraph, what does he mean by "an e.m. wave model"? Is that phrase yet another misnomer for a theory of mine? I don't know. I always name my theories clearly.

In his second paragraph, April 1982, it is unacceptable, because muddling, if he does not clearly specify which "other correspondents" have shown that the " "insurmountable difficulties' introduced by \(\rho\) and J exist only in Mr Catt's mind." No one has retrieved classical electromagnetism from the death-blow dealt to it by the question in my letter of August 1981. It is of crucial importance to establish whether classical electromagnetism collapsed in August 1981, so I am sending a personal request to each of the following experts to submit an answer to Wireless World; Professors Mott, Dirac, Salaam, Brown, Lindsay, Bleaney, Gosling and Mr G. G. Scarrott.

The internal contradiction in classical electromagnetism is contained within this set of axioms;
1) Á transverse electromagnetic wave (TEM) travels without change at the speed of light in a vacuum, guided by two perfect conductors.
2) Lines of electric flux terminate on electric
charge. (This is one of Maxwell's equations.)
3) Electric charge cannot be created or destroyed.
4) Electric charge travels slowly in a conductor significantly slower than the velocity of light in a vacuum.
Now consider a TEM voltage step travelling to the right between two perfect conductors.

Behind the step, the D lines from the upper (more positive) conductor terminate in electrons, n per cm length of conductor, in (on) the lower conductor. These electrons are in addition to the electrons, \(m\) per cm , which neutralise the holes in the molecules of the lower conductor.

Ahead of the voltage step, \(m\) electrons per cm length of lower conductor are present, neutralising the holes. During the next \(1 / 30\) nanosecond, the voltage step moves forward by 1 cm (approx.), so that \(n\) new electrons appear in this section of the lower conductor, to terminate the newly appearing tubes of D flux between the two conductors. Where do they come from? Not from the upper conductor, because by definition, displacement current is not the flow of electrons. Not from somewhere to the left, behind the voltage step, because such electrons would have to travel at the speed of light in a vacuum.
Ergo, classical electromagnetism, which for this purpose includes both Theory N and' Theory H , is dead.
Ivor Catt
C.A.M. Consultants

St. Albans

\section*{AMATEURS AND BAND 1}

My attention has just been brought to the fact that the BBC is intending to use band I frequencies, channels B1 and B2, for schools broadcasting. As a radio amateur with a keen interest in the 50 MHz band I find this very unsettling. It leads me to believe that there really is something wrong with the way frequencies are allocated in the UK, since if the whole 88 to 108 MHz band were available for broadcast, the BBC could have far more suitable channels tunable on existing receivers with existing antennae.

I had very much hoped that radio amateurs in the UK would eventually get an allocation at 50 MHz . We would not require a band MHz wide; 50 to 50.5 MHz would be quite adequate. If, however, the BBC intends to use these frequencies, I would ask that they leave a "listening hole" from 50.0 to 50.2 at least, and 50.5 MHz if possible, since these frequencies are of scientific value.

I and many others have spent a lot of time, money and effort in the study of this most interesting part of the spectrum, and propagation there is not confined to the sunspot maximum: only the other week I was able to hear the PYZAA beacon in Brazil for the first time.

Therefore it would be very sad indeed if all of
our efforts were to come to nothing and we were unable to even listen on 50 MHz in future.

BBC please take note.
Mr G. M. Pheasant
Great Wyrley
Walsall

\section*{BLUMLEIN AND STEREO}

I have followed with interest the correspondence in your columns relating to the invention of stereophonic disc recording.

It now seems that the earliest existing stereophonic discs are by Arthur Keller at Bell labs in America made using dual groove techniques in December 1932.
The earliest known orthogonal monogroove stereophonic discs were cut at EMI for A. D. Blumlein in 1933 and early 1934. This work was covered by his classic patent 394.325 which was applied for in December 1931.

On recording this document I was drawn to the conclusion that Blumlein probably had carried out research on stereophonic disc recording before its application was made. As a result I have made some effort to find whether work was done by Blumlein before the merger of the Columbia Gramophone Co and the Gramophone Co to form EMI in 1931. Unfortunately I found that his co-workers at Columbia are no longer with us and EMI were unable to confirm or deny the possibility of such earlier work. There are however to my knowledge seven references to such work and among these there are which I feel are important.

One by James Moir was based on a discussion between Moir and Blumlein during World War II and the other by Clark, Dutton, Vanderlyn who were co-workers of Blumlein. H. A. M. Clark worked with Blumlein at Columbia from 1929 and was therefore in a position to write with authority.
I have found it most frustrating that the work of probably Britain's finest electronic electronic engineer is not proclaimed to the world at large and that his long promised biography has not yet appeared.
It does no credit to EMI that they have done so little to publicise the work of Blumlein whose efforts so enriched our knowledge in such fields as sound recording, television, radar, measurements, and electronic circuitry that we still make use of his ideas forty years after his tragic death.

\section*{References}
1. H. A. M. Clark, G. F. Dutton, P. B. Vanderlyn. 'The Stereosonic Recording and Reproducing System'. IEE Proc. Vol 104 pt . B 1957. Reprinted July/August 1957 IRE Transactions.
2. James Moir 'Hifi News \& \(R\) ' Tape recorders \& Stereo Pt 2 the Audio Fair 1957 p483.
3. Donald Aldous 'Hifi News \(\mathcal{G}\) RR' Supplement 1977 '100 years Recorded Sound' Chronology p85.
4. H. Burrell-Hadden 'Practical Stereophony' 1946 p20.
5. H. W. Hellyer 'Stereo Sound' 1974 pl0.
6. Gordon J. King 'The Practical Hifi Handbook, 1959 p20.
7. Percy Wilson. 'The Gramophone Handbook' 1957 p 211.

\section*{R. Maude}

Dalton
Huddersfield

\title{
METEOSAT HIGHRESOLUTION IMAGES
}

\section*{Enhancements for receiving high-resolution pictures from Meteosat II on a home-built station. The original weather-satellite receiver, designed for Tiros-N high-resolution images, was described towards the end of last year.}

This article describes additional equipment required to receive Meteosat primary data on the basic Tiros high-resolution receiving system outlined in a recent article. \({ }^{1}\) Meteosat-2, which is in geosynchronous orbit at zero degrees longitude, transmits digital data in shared time with the analogue Wefax service.

The Wefax service transmits data by means of an amplitude modulated 2400 Hz f.m. subcarrier, and the reception of this has been described before. \({ }^{2}\) It is, however, important to understand how the Meteosat system as a whole operates, and how each service fits in. The spacecraft has a mirror radiometer similar to that used in the Tiros series, but because of its stationary position, the mechanics of the scan system are different. The spacecraft spins about its vertical axis at a rate of \(100 \mathrm{rev} / \mathrm{min}\). The radiometer looks out of the side of it and thus the spin provides the line scan. The frame scan is obtained by tilting the mirror from south to north over a period of about 25 minutes. There are five sensors; two are infra-red, two are visible-light sensitive, and one is sensitive in the water-vapour band. Their spectral bands are
\(\begin{array}{lr}\text { visible (vis.) } & 0.4 \text { to } 1.1 \mu \mathrm{~m} \\ \text { infra-red (i. r) } & 10.5 \text { to } 12.5 \mu \mathrm{~m}\end{array}\) infra-red (i.r.) \(\quad 10.5\) to \(12.5 \mu \mathrm{~m}\) water vapour (w.v.) \(\quad 5.7\) to \(7.1 \mu \mathrm{~m}\)

Since the amount of data that may be transmitted in 25 minutes is limited, only one of each type of sensor, or one infrared and two visible-light sensors may be used at once. The basic image format is
infra-red \(\quad 2500\) lines \(\times 2500\) pixels water vapour 2500 lines \(\times 2500\) pixels visible \(\quad 2500\) lines \(\times 2500\) pixels or 5000 lines \(\times 5000\) pixels
This data, called the raw image, is sent in digital form to the Meteosat ground computer system at the European Space Operations Centre (ESOC) at Darmstadt in West Germany. Here it is stored and certain processing carried out, such as the registration of the two visible channels. The images are then sectored and retransmitted using Meteosat's S-band transponders as analogue Wefax data for secondary data-user stations (s.d.u.s), and as full-resolution digital data to p.d.u.s.

There are two types of digital images sent from ESOC - 'A formats' which cover the full earth disc, and 'B formats' which cover the eastern Atlantic and Europe. Both A and B formats are sent at regular times throughout the day according to the current Meteosat dissemination

\author{
by M. L. Christieson
}
schedule \({ }^{3}\) and contain, at various times, data from all the sensors. The transmissions are coded on the schedule by A or B followed by the sensor data that they contain; for example AI contains full-disc infra-red data and BIV contains the sectorized data from the infra-red and both visible sensors. BIVW contains infra-red and only one visible channel because the water-vapour image is also transmitted.

Transmission duration varies, depending on the amount of data being sent, from a few minutes to 29 minutes. The shortest format at present is BIW and the longest AV. In general terms BIV and AI are sent every half hour during daylight, with water vapour replacing visible during darkness. AV is sent four times a day. This schedule is however subject to changes. These transmissions can occupy up to six consecutive four-minute slots in the schedule and normally take place on only one of the transponder channels. The general characteristics of the p.d.u.s. transmissions are shown in Table 1.

\section*{Antenna and receiver design}

The basic receiver described for a.v.h.r.r. is used with some modifications. \({ }^{1}\) The frequency is very close to that of the h.r.p.t. from NOAA-6, and in the prototype station the down-converter and demodulator are common to both systems. Suitable crystals are used to retune the downconverter to either of the Meteosat frequencies. Both frequencies are available because an s.d.u,s. demodulator is used to receive Wefax formats in addition to the p.d.u.s. data. It is useful to have the We-
fax facility in order to receive ESOC administration notices.

A completely separate antenna and preamplifer are used and system selection is by means of a coaxial relay at the input to the down-converter. The preamplifier design is similar to that used on the h.r.p.t. system, except that the combiner section is not required since a single dish antenna is used. Due to the removal of combiner loss, the noise figure can be reduced to around 1 dB . This corresponds to a noise temperature of 75 K . The antenna noise temperature is the same as before, 70 K , so the value of the system noise temperature, \(\mathrm{T}_{\text {sys }}\), is approximately \(70+75=145 \mathrm{~K}\). The recommended \(G / T\) for a p.d.u.s. is \(11.5 \mathrm{~dB} / \mathrm{K}\), so the antenna gain, G , should be \(21.6+11.5=33 \mathrm{~dB}\).
The gain of a parabolic dish is given by approximately
\[
G=\frac{4 \pi A E}{\lambda^{2}}
\]
where \(\mathrm{A}=\) aperture area, \(\mathrm{E}=\) efficiency (usually about 0.5) and \(\lambda=\), wavelength.
Rearranging this, to obtain a gain of \(G\) (expressed as a real number), the required diameter is

or for this frequency, approximately \(0.0766 \sqrt{\mathbf{G}}\) metres. For a gain of 33 dB this gives a diameter of 3.4 metres.

This size of dish is recommended for commercial use, but a significantly smaller one may be used without a large increase in error rate. The prototype uses a 2.1 metre dish, which gives a gain of about 29 dB , (\(\mathrm{G} / \mathrm{T}=29-21.6=7.4 \mathrm{~dB} / \mathrm{K}\)).
The exact design of the prime feed for

the dish will depend on the focus-to-diameter ratio which determines the beam width that will fully illuminate the dish, but without spill-over. Figures 1 and 2 show a design which was optimized for a \(\mathrm{f} / \mathrm{d}\) ratio of 0.33 . A smaller ratio presents an almost impossible design problem. A square section wave guide was used rather than a circular one because a slightly wider beam width can be obtained before the wave guide becomes too small to support wave transmission. If a dish with a larger \(\mathrm{f} / \mathrm{d}\) ratio were used a suitable circular section, sometimes known as a 'beer can feed' could be used. Construction of the preamplifier is identical to that used on the Tiros h.r.p.t. station except that the small receiving element is connected immediately before the first chip capacitor. The length of the element is adjusted, by means of the brass screw in the top, for optimum noise performance by pointing the waveguide, without the dish, in the general direction of Meteosat and adjusting it
using the s.d.u.s. transmissions. A usable but rather noisy facsimile picture could be obtained on the prototype.
The dish mounting may be rigid because the beam-width is not narrow enough for the satellite to move off beam during its daily movement of about two degrees. A reasonably unobstructed view of the sky must be available and the direction may be estimated from a nomograph or calculated. \({ }^{4}\) Once the signal has been acquired, final adjustment of direction, focus and polarization may be achieved.
Conversion to 10.7 MHz is by the same converter system used for h.r.p.t. which was in turn based on one for Meteosat s,d.u.s. Careful adjustment of the interdigital filter is needed if it is required to pass h.r.p.t., as well as the Meteosat transmissions, without significant differences in performance on the four frequencies.

If the maximum benefit is to be gained from the lower bandwidth of the Meteosat transmission, the i.f. bandwidth should be

Table 2. P.d.u.s. frame format. The first three words of each 364 -word frame are always the same.

reduced to about 1 MHz . The simplest way to do this is to remove the \(2.2 \mathrm{k} \Omega\) damping resistor across the tuned circuit in the mixer mosfet drain. The remainder of the wideband i.f. amplifier may be used without modification.

\section*{Phase demodulator}

The method of modulation and the modulation index are identical to those used on the h.r.p.t. transmission and so the phaselocked loop demodulator may be used without change. The base bandwidth of the p.d.u.s. signal is considerably lower than the h.r.p.t., for which the post-detection filter was designed, and therefore a further filter must be added before the signal is applied to the p.d.u.s. decoder. This filter is placed after the existing filter output, in parallel with the existing connection to the h.r.p.t. decoder, and has a 3 dB cut-off point of 280 kHz , Fig. 3 .

\section*{Data decoding}

At this point in the system it is convenient to separate the p.d.u.s. chain from the h.r.p.t. system because the differences between the two become progressively more extensive. As before, the next step is to convert the s.p.l. data to n.r.z. and clock, in a manner that avoids most of the noise. The principle of s.p.l. decoding was covered before and the same definitions apply here. The h.r.p.t. system uses a digital integrator as a bit conditioner, and although this method could have been used again, because of the lower data rate a more conventional analogue implementation was used. Far simpler methods could be used to decode s.p.1., but it is well worth making the extra effort at this point because the decoder and front-end performance determines the overall error rate.
A complete circuit diagram of the decoder is shown in Fig. 4, and it operates as follows. Raw s.p.l. data is divided into two chains, one of which is clipped, and both positive and negative transitions used to regenerate the clock by pulsing a tuned

Table 3. The 24 -word frame label broken down.
\begin{tabular}{|c|c|}
\hline Word number & Meaming \\
\hline 18.2 & Number of trames per subframes \\
\hline 38.6 & Number of subframes in transmission \\
\hline 386 & Current sutfrome number \\
\hline 789 & tmage line number (headers are zeral \\
\hline \(9-12\) & Image number from mission start \\
\hline 13 & Formot indicator. \(A=00 \quad B=F F\) (hex) \\
\hline 14 & Vis. 1 indicator \(00=\) Data not present \\
\hline 15 & Vis 2 indicator \(\mathrm{OF}=\) 2nd holf tine present \\
\hline 16 & IR indicator \(00=\) Data not present \\
\hline 17 & WVindicator \(\int \mathrm{FF}=\) Data present \\
\hline 18 & Grut. 00 = No gried present \\
\hline 19 & Reserved 100 on current operations) \\
\hline 10 & Scan direction (normally \(00=S-\mathrm{N} / \mathrm{E}-\mathrm{W}\)) \\
\hline 21-26 & Spare (all zeras) \\
\hline
\end{tabular}
circuit at twice the data rate. Two c.m.o.s. phase-locked loop i.cs provide logic level clocks both in phase, and at \(90^{\circ}\) to the s.p.l. 'bits'. Two D-type flip flops generate clocks at data rate both in phase and at \(90^{\circ}\) to the incoming data. The two clock dividers can be initialized externally by the clock-error signal which goes high if a phase error is detected by the frame synchronizer. The clock signals are gated to produce the enable and reset pulses that operate the integrators and sampling circuits. At the end of each data bit the integrated values of both associated s.p.l. bits are held at the inputs of a comparator, the output of which is clocked into a further D-type flip flop. This forms the n.r.z. output. Both \(180^{\circ}\) and \(90^{\circ}\) clocks are used by the sync. detector. The waveforms marked on the circuit diagram are timed over a single data bit.

\section*{P.d.u.s.-frame format}

Like the h.r.p.t. from Tiros the data stream is divided into blocks of words called frames. Each frame consists of 364, eight-bit words and the first three words of each frame are always the same; they form the synchronizing sequence. The transmission is structured as a number of sets of the frames, each set containing four frames in a B format and eight in an A format. These

\section*{Background}

The launch of Meteosut-2 on 19 June, 1981, began a new era of European space exploitation. It was the major par of the first active payload for Ariane, the European Space Agency's launch vehicle. After launch, the satellite was placed in a transfer orbit and then lifted inte a near geosynchronous orbit by the apogee boost motor. On 20 June it was \(86^{\circ} \mathrm{W}\) and drifting slowly eastwards at a rate of \(2.8^{\circ}\) per day. During the drift-phase, test transmissions were carried out and by the time it arrived on station on the morning of 21 July, most of the telecommunications system had been checked out. The first image scan in visible light was performed at 1030 GMT on 28 July, and in infrared on 30 July. The scheduled Wefax analogue service commenced on 17 August and the primary-data user station (p.d.u.s.) service on 15 September.

One of eight registered primary data users, Mike Christieson, at his station. From left to right are colour-display electronics, computer-terminal and v.d.u. with colour monitor above it showing p.d.u.s. full-disc image, and the PDP9 mini-computer with four tape drives. The white panel below the tape drives is the satellite interface.

Fig. 2. Details of the two-stage preamplifier shown in Fig. 1. This is a slightly modified version of the one designed for receiving h.r.p.t. using the signal from NOAA-6, as described in the November 1981 issue of Wireless World.

pot cores
Fig. 3. Post-detection rilter for p.d.u.s with 3 dB cut-off point of 280 kHz .
 the decoder. The overall error rate is determined by this circuit and the front end so no compromises have been made here.

A depression in the eastern Atlantic scanned by one of the satellite's two visible-light sensors
sets are rather confusingly referred to as subframes. There are three types of subframes
- heading, which contain identification and interpretation information
- data, which contain the image, and the grid-coastline bit map
- conclusion, which are similar to heading subframes but may contain updated information.
Table 2 shows the construction of a data subframe for both A and B formats. Each subframe has a 'label', consisting of 24
words, and its contents are shown in Table 3. The data from one line of infra-red or water vapour is sent in one subframe, but one line of visible data requires two consecutive subframes. When formats containing more than one image are sent the lines are interleaved in the following priority
-infra-red line one
- visible line one
- visible line two or water-vapour line one
-infra-red line two
- visible line three, etc.

Note that when both visible channels are scheduled and only one channel is available, lines are duplicated.
All digital transmissions are preceded by a series of frames containing random data (with the label zero) to synchronise the receiver. The heading is then repeated 42 times in an A format and 84 times in a B format. Data then follows and the sequence is ended by one or two conclusion sub-frames. There is insufficient space here to describe fully the contents of the identification and the reader is referred to the ESA publications for this essential information. \({ }^{5,6,7,8}\).

\section*{References}

1 High-resolution weather satellite pictures, M. L. Christieson, Wireless World, Nov., Dec. 1981, Jan. 1982
2 Meteosat earth station, M. L. Christieson, Wireless World, June, July 1979
3 Meteosat dissemination schedule, (published regularly) ESA.
\(4^{\circ}\) Meteosat dissemination news letter, No \(81 / 2\), July 1981, ESA
5 Meteosat high-resolution image dissemination, ESA
6 Definition of h.r. format interpretation data, M. Jones, 7906 11, ESA

7 Meteosat calibration reports, (published occasionally) ESA
8 Special response data for Meteosat-2, Meteosat systems guide annex BI, ESA
To be continued

\section*{Communications crisis}

A pressure group, consisting members of companies and associations connected with the communications industry, has been set up to try and persuade the Government to speed up their liberalization of telecommunications. Many of the companies have invested money in anticipation of the liberalization and are now suffering financial hardship. The group calls itself the Communications Crisis Committee and its members include; Professor Lou Schnurr of the Chelmer Institute of Higher Education; The Mobile Radio Trade Association (MRTA); The Independent Telephone Supplies Association (ITSA); The Federation of Communications Services (FCS); The Mobile Radio Users' Association and the National Committee for the Legalization of Citizen's Band Radio (NATCOLCIBAR).

They have put their opinions together into a document called the Report of the Communications Crisis Committee which consists of contributions from each of the corporate members of the Committee.

Professor Schnurr sets the scene by decrying the self-perpetuating monopoly of the present system. Even where free enterprise agreements exist, they are bound by licensing and technical approvement procedures. A particular area for discontent is the allocations of the radio-frequency bands, especially the constraints on commercial development of the spec-
trum "controlled by an organization insensitive to market demand and without the philosophy of optimizing available spectral bandwidth for the purpose of services development. So long as such practices are contained within the moated walls of establishment privilege and internal decision making, the marriage of telephony and wireless cannot exist". This, he implies, impedes the whole of the diffusion of information technology throughout commerce.

Contributions from the other committee members also press for the liberalization of the use of British Telecom's network; to give access to mobile radio users, so that advanced data services for communication to mobile traffic. MRUA suggests that mobile services should have access to frequencies below \(1,000 \mathrm{MHz}\), frequencies above that being reserved for radio location and navigation. They also press for private network communications which would also have access to the public switched networks.

In a specific case study, Godfrey Wilson of Digital Paging Lid bitterly complained about the inability to gain from BT the exchange facilities required for direct dialin capability, available on his companies paging service. The unrealistic pricing of BT's radiopaging service; the "extortionate delays in obtaining services, and servicing from BT; excessive delays from the

Home Office in obtaining frequencies." Wilson feels it is unacceptable to be forced to compete with the body that issues the licences.

In conclusion, the committee puts forward several points for "direct, immediate action": Government departments should be asked to take steps to break the cycle of "time wasting tactics by BT and the Home Office Radio Regulatory Department; licensing powers should be transferred from BT to the Department of Industry; BT management to give fair and equitable access to BT competitors of the same facilities enjoyed by BT's own services and at the same price; require BT to set up selfaccounting in all areas where there may be competition, ensuring public accountability. Pending the division of such areas, BT should suspend further commercial development; The Cabinet Office should take action to allocate some 60 MHz of the radio frequency spectrum below 960 MHz for private sector mobile radio services in conformity with the allocations of the 1979 WARC. There should be support and funding available to a private sector coordinating group. This would assist the administration and allocation of radio communications services, enabling mediumterm commercial development of information technology and telecommunications services.

Arthur C. Clarke, on the right, is receiving the Marconi Fellowship Award for 1982 from HRH Prince Claus of the Netherlands. Arthur Clarke was awarded the prize particularly for his pioneering ideas in the field of satellite communication. He originated proposals for the use of 'Extra-terrestrial relays', first published in an article in Wireless World in October 1945. Since then he has worked in similar proportions in both science fact and science fiction.

\section*{Old brain, new hat?}

First announced as long as two years ago, the "hand-held" Newbrain personal computer emerged recently under the new parentage of Grundy Business Systems. Following Newbury Laboratories dropping of the project in 1980 - itself then only three years old - Bob Smith and colleagues left to seek new backing, ending up with a Grundy:BTG share arrangement of \(70: 30 \%\). At the same time, the specification of the machine was improved so that Grundy now claim it is designed for "business, scientific and educational use as well as home computing". Now with its resident random-access memory increased to 32 K (plug-in modules of \(64,128,256\) or 512 can take it to 2 M) and 28 K of readonly memory, it is designed to operate with a range of interchangeable and expanpandable program modules, or firmware. The hand-held claim is based on the builtin 16 -character 14 -segment vacuum fluorescent display together with optional one-hour battery module of the AD version, designed chiefly to occupy minimum desk space. But an MDB model with on-

board nickel-cadmium cells will allow display in its editing mode for four hours and preserve memory for 20 hours and should be available in six months time. The cheapest version, model A at \(£ 199+\) vat, comes without this display but with tv and monitor ports instead, as well as dual cassette port, RS232/V24 printer and bidirectional ports. The screen display can provide, unusually, 40 or 80 characters per line and a resolution of 250 dots vertically by up to 640 dots, and may be mixed with a separately scrollable character-mode
display. The 512 character fount includes viewdata mosaics, upper and lower case Greek letters, arc, and line drawing graphics, as well as the 96 ISO printing characters.

Firmware consists of interchangeable modules, communicating via hardware-independent interfaces, and may be expanded without interference with the hardware. The enhanced-ANSI Basic allows for user proofing of programs, direct interrupt handling, device-independent i/o, chaining and external calls. The
screen editor claims novelties for a microcomputer: backwards scrolling, multi-screen ability and direct cursor addressing. The operating system provides for peripheral device drivers to the processors - the cassette device involves a second processor which uses a learning algorithm to accommodate tape speed fluctuations. Additional rom slots are available in a buffer expansion module that accepts Z80 assembler, Comal structured Basic, statistics and text processing packages. The buffer module also has memory paging circuitry, parallel i/o ports, analogue ports, two multi-speed V24 ports, as well as rom space, which will be included onboard in the \(M\) models available later. Proprietary software packages may be used from cassette or via disc under control of the CP/M module, available September. A communications module, also available September, contains 32 V24 ports to give flexibility in sharing peripheral devices and connecting computers together. Unfortunately, a videotext module takes only low priority, and is planned for "some time next year".

Meeting Grundy's price targets meant adopting n.m.o.s. circuits instead of the more expensive c.m.o.s. types. Switch-off circuitry was incorporated to keep the circuits cool and power consumption within reasonable limits. "Other machines' do have problems in this respect," says Grundy's Mike Wakefield, who is pleased to be able to claim a 0 to \(45^{\circ} \mathrm{C}\) temperature range.

\section*{Welsh Dragon}

The Dragon 32 computer is the first product of a new company, Dragon Data Ltd, a subsidiary of the toy manufacturers, Mettoy. Aimed at the first user, Dragon Data have concentrated their publicity in marketing a 'family home computer' where the children might use it for learning and games playing while the parents can compute family budgets, or index a collection.

The Dragon 32 is based on a Motorola 6809 E which has an internal architecture so designed that it needs far fewer instructions to operate it than many other microprocessors and is very fast. It has a 16 K rom with extended Microsoft colour Basic, which gives high-resolution graphics of up to \(256 \times 192\) pixels: there is a modulated output to a domestic tv and there is also a monitor output. The basic computer includes a Centronics-type interface, so a 'professional' printer may be plugged in directly. The keyboard is similar to that used on DEC equipment and offers typewriter-style keys, guaranteed for 20 million key depressions. There is a 32 K ram with the ability to expand to 64 K . In addition there is a games cartridge slot with sockets for two joystick controls for the playing of games;

cartridges for the more popular amusement arcade games, space invaders, a 'Pac-man'-type game and others, are available. Programmes may be stored on cassette tape. Dragon Data say that they have paid particular attention to the cassette interface so that the computer will work with a wide range of cassette recorders.
Some software on cassette is already available, particularly the Dragon Special Selection tapes which are games programs which explain how they work and so give some insight into their programming.
Especially useful for educational programs is the ability to switch sound from a cassette player through to the tv sound. Program and a sound commentary can be included on the same cassette. A language lesson could show the words on the screen while they are spoken through the speaker. The Dragon can also generate sound with five octaves of musical notes with selectable duration and volume. This too comes out through the tv speaker.
Future expansions and developments include a disc operating system, an RS232 port, a second microprocessor and an operating system together with Prestel and
teletext facilities. Other operating languages can be added, including Pascal, ' \(C\) ' and Basic compilers.

Program cassettes and cartridges are planned for a wide range of applications. The Dragon is all British, designed by Dragon Data with the co-operation of the PATs Centre, and Motorola, whose chips, manufactured in Scotland are used in the computer.

Comparisons are always difficult but the nearest competitor to the Dragon is the Sinclair ZX Spectrum. The Dragon 32 has more memory and a particular advantage in having a 'professional' keyboard. The Centronics interface is also a big advantage. The Sinclair has more colours available at high resolution and the big (so far theoretical) advantage of the Microdrive; the miniature, low cost disc memory. However, there is a big difference in 'feel' with the ZX Spectrum feeling like a toy computer and the Dragon and its keyboard with the touch of a 'real' computer.

The Dragon 32 is in production at the Mettoy factory in Swansea, it will be on sale in the High Street early in August for just under \(£ 200\).

\section*{Banking on video}

Barclays Bank has found that the best way to keep their staff informed is through video programmes, shown on tv sets at the place of work. They have invested in a £1M recording studio and insist that their programmes should be of the highest quality both in content and presentation. So they have hired tv producers and popular tv performers to make the programmes look as much like the programmes the staff might watch at home, as possible. Such subjects as 'How to spot fraudulent use of Barclaycard' or the implications to the staff on the opening of the banks to the public on Saturday mornings, have been produced and are examples of the training and information functions. In order to generate enough copies of the video films for distribution, Barclays have a computercontrolled copying suite with quality monitoring also controlled by computer.
The next phase of the video network is to extend it to 2,300 outlets. Barclays have awarded a £3.5M contract to Soundcraft Network Video to install 700 additional Type 5 Sony U-Matic video cassette recorders and 1,900 Trinitron monitors, and to maintain the whole system.
Mike Pogson, the managing director of Soundcraft, told us that his company had made considerable investment in providing servicing back-up for such a system. He described the lack of fully-trained broadcast engineers who were necessary to diagnose as well as rectify any faults in the field. He saw the role of his company as removing all the technical problems from
the client's shoulders so that they can 'get on with producing and distributing the programmes'.

The Soundcraft deal is claimed to be the biggest contract by a corporate organization in Europe.

\section*{New technology and the graduate}

The Department of Education and Science has approved the co-operation between the Science and Engineering Research Council and the Open University for a series of programmes of 'technological topping-up' courses. It is intended to provide a re-education for those graduates who have been working in industry for periods of 5 to 15 years. The SERC became aware of a need for such courses and have commissioned the OU to produce them.

The courses will use the OU's techniques for home study with rutorial support and study centre facilities for practical work. Two areas in particular have been identified for priority treatment, which are computer applications (including real-time monitoring and control systems), and manufacturing.

The computer applications course is expected to consist of a 'foundation' module on software engineering, computer systems architecture, and operating systems. This would be followed by a number of 'core' modules on monitoring systems, systems modelling, control systems and project management. There would also be optional modules on robotics, man/machine interactions, and com-puter-aided design. The full course will be
the equivalent of one year's full time study. Certificates would be awarded for each module of the course and a diploma for the successful completion of the whole course. Students may then be able to undertake a further project in a related area which would lead to an M.Sc.-level qualification.

\section*{Telecom showcase}

British Telecom's new exhibition centre is not a museum, stressed Peter Benton, the Deputy Chairman of BT, although it does trace the history of telecommunications from the early days of telegraphy. The centre's full title is Telecom Technology Showcase and in addition to the historical aspect which is well covered with many working examples of, for example, a Strowger telephone exchange of 1940s vintage, there is an exhibition of BT's latest equipment and techniques. Currently these include many digital techniques, displays about optical fibres and satellite telecommunications with examples of some of the latest equipment. It is planned to change the displays regularly to keep them up-to-date.

The Showcase is situated in Queen Victoria Street, London, in part of BT's Baynard House and is next door to the Mermaid Theatre. Lord Miles, formerly Sir Bernard Miles, officially opened the showcase and pointed out the role that the Mermaid's Molecule Club had played in educating young people in science and technology. He hoped that the Showcase would also contribute towards the edification of the young. He also looked forward to the micro revolution which he felt would release us from the 'work ethic' and allow us to get on with living, without the encumbrance of work.

\section*{Projects Editor}

Wireless World needs a Projects Editor, who will be responsible for running the laboratory.
The work consists of design and development of equipment subsequently to be described in Wireless World, commissioning articles on construction and testing pieces of commercial equipment.
The successful applicant will be experienced in both analogue and digital techniques and will be able to express himself clearly in writing.
If the post appeals to you, please write to the Editor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS or telephone 01-661 3128.

\section*{Extended addressing for the \(\mathbf{Z 8 0}\)}

Current 40 -pin memory-mapping i.cs are expensive and difficult to obtain. As this circuit shows, it is possible to extend the addressing capability of a Z80 to more than 16 bits using readily available 74 S189, \(64-\) bit t.t.l. rams.

The microprocessor's four most significant address lines are not used for memory access, but instead address one of 16 stores of eight or 12 bits which are used as most significant address lines; in essence the same function as carried out by dedicated memory-mapping i.cs.

Each store is loaded using an OUT(C), r instruction which, with the Z 80 , results in the contents of the B register being placed on the upper half of the address bus. To load a particular store, the program has to put the eight address bits into the A (or D, \(\mathrm{E}, \mathrm{H}\) or L) register, the store addressing the top four bits of \(B\), then load \(C\) with the i/o address of the mapping circuit and issue an OUT(C),A (or D, E, H or L) instruction. If 12 address bits are to be generated, the top four bits must also be placed in the bottom four positions of B.

Sixteen different stores are used so that various parts of the program can be allocated one or several locations, allowing each store to work on its own ram. For example, interrupt routines may be run without upsetting background pointers.

Initially, bistable \(\mathrm{IC}_{4}\) disables the stores, whose outputs are held high by resistors until a switch-on signal is generated using a spare i/o line. This gives a fixed value on
start up while the initializing program loads the 16 stores.
Brian Dillon
Dublin

\section*{Low-current voltage regulator}

Standby consumption and output rating of this low-power regulator are \(50 \mu \mathrm{~A}\) and greater than 10 mA respectively. Current limiting is included, brought about by gate-to-source voltage starvation in the 4007, and the output is short-circuit proof. Components used are cheap and readily available.
With the components shown, the output voltage is 12.78 V , given by
\[
\mathrm{V}_{\text {out }} \approx \mathrm{V}_{\mathrm{BR}(\mathrm{Tr} 1)}+\mathrm{V}_{\mathrm{R}}
\]
where \(V_{R}=V_{S}-V_{T}\) and \(V_{T} \approx 1.5 \mathrm{~V}\). And
\[
V_{R A}=V_{F(D I)}+V_{B R(T r l)}-V_{T}
\]
such that \(V_{\text {out }}=V_{R A}+V_{R B}\). In this case, assuming a typical BC109 breakdown voltage of 8.2 V for \(\mathrm{Tr}_{1}\), a forward voltage for \(D_{1}\) of 0.4 V and a threshold voltage of \(1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{RI}}=7.1\) and \(\mathrm{V}_{\mathrm{RB}}=5.68\). Therefore \(V_{\text {out }}=V_{R A}+V_{R B}\).

With a maximum input voltage of 20 V , with \(V_{R}\) at around \(4 V\), the c.m.o.s. device will be operating at around 16 V which is inside its rating.
D. Roffey

Bromley

\section*{Programmable frequency divider}

The 74163 4-bit binary counter may be used to divide the clock frequency by N , where \(2 \leqslant N \leqslant 16\), by applying binary (\(16-\mathrm{N}\)) to the data inputs and connecting the load input to the inverted carry output. N. H. Sabah

American University of Beirut

\section*{Pulse-generation using t.t.l,}

Variable-pulse control using t.t.1. i.cs is not unusual, but most circuits use nonretriggerable monostables since they are less prone to false triggering from noisy supply lines and stray signals. However, when a \(100 \%\) duty cycle is reached, output jitter occurs and above \(100 \%\), the pulse repetition frequency is reduced.

This circuit uses separate retriggerable monostables and is not prone to false triggering. Jittering near the \(100 \%\) duty cycle does not occur and at and above \(100 \%\), an l.e.d. lights and the output becomes static. Further stages may be added.

\section*{A. R. Millichope \\ Birmingham}

\section*{Howard Hughes}

I watched the recent two-part EMI film on Howard Hughes (BBC 2) with interest though it seemed a great pity that so much emphasis was placed on his extraordinary idiosyncrasies, so little on the remarkable contributions made to technology by the companies controlled by his secret telephone calls in the middle of the night. Hughes was undoubtedly the fruitiest of fruit-cakes - though if he had been born in Chipping Sodbury, rather than Houston, Texas, he might have passed as the last of the great eccentrics. Fruit-cake or eccentric he has the distinction of being one of the few men ever to take on and defeat the European telecommunications "establishment" led by the British Post Office.

Wireless World has always been proud of the fact that the potential of the geostationary orbit as a unique parking place for microwave and broadcast relay stations was first pointed out in its columns in 1945 by Arthur Clarke. But the means of implementing this in 1963 by a transfer orbit and position-keeping jets were entirely the work of the Hughes Aircraft team led by Harold Rosen, Tom Hudspeth and Don Williams. An equally difficult job was to convince the Post Office. BPO were ranged solidly behind the concept of a series of station-keeping satellites some 12,000 miles above the Earth, involving all the problems of tracking and hand-over. The Post Office engineers attacked the geostationary orbit on the grounds of excessive time delay and pointed out the impracticability of conversation between two nervous speakers reduced to a hopeless tangle by the delays. Indeed the first transAtlantic call I made over Early Bird (Intelsat 1) in 1965 did seem to bear out their gloomy prognostications - it was only later, when they had virtually admitted defeat, that it emerged that the real villain of the piece was the inadequate design of echo-suppressor then in use. It is often forgotten that it was not until well after the launching of Early Bird in 1965 (following the experimental ATS series) that Intelsat/Comsat became firmly committed to the synchronous orbit. In the struggle, which lasted some 3-4 years, Hughes Aircraft was not adverse to using the lavish hospitality that had earlier brought Howard Hughes before a Congressional Committee. I have to declare an interest as I was a bemused member of a party of European journalists taken to Culver City, Los Angeles and the fabulous Hughes Research Laboratories out at Malibu Beach - a trip that remains indelibly in the memory as one of the most lavishly endowed press parties of all time! I can plead only that it was not the trip that subverted me to support the geostationary orbit but a previous more modest meeting with Harold Rosen, at the conclusion of
one of his many efforts to convince European PTT organizations that their future was to be found 22,300 miles above Earth.
No mention was made in the EMI film of communications satellites or lasers though the dying recluse was shown playing with a model of the CIA-backed Global Explorer, the remarkable deep-sea recovery ship which came very near to success and which one day may itself be recognized as contributing to the technology of reaping a richer harvest from the sea bed. In his later days Hughes was close to madness - but as an old-style entrepreneur he did more to advance communications and aviation technology than whole battalions of eminently sane bureaucrats!

\section*{Easily nicked}

The emphasis on lightweight, microminiature complex equipment in communications and broadcasting is not without its problems. High-cost equipment that can be easily carried, can easily be carried away by other than the rightful owners. It is not without reason that e.n.g. (electronic news gathering) television equipment has earned the sobriquet "easily nicked gear". During the past few. years several crews have returned minus many thousands of pounds worth of equipment. Nor is it only portable electronic gear that vanishes. In April a BBC crew in South London lost \(£ 25,000\) worth of film equipment from the back of an estate car while taking a lunch break in Stockwell. Another anonymous company has been advertising (under a box number) for information on a loss of a complete Sony e.n.g. unit including BVP330P camera, BVU110P recorder, battery charger, radio microphone, etc. This was not the first e.n.g. unit to disappear in the UK.

Communications equipment - professional, amateur and c.b. - has become very vulnerable to car thieves. But the thieves need to be careful in their choice of vehicle. I heard of a case recently where what looked like a standard broadcast car radio was taken from a Special Branch police vehicle. It was in fact a disguised control unit for a boot-mounted two-way radio!

\section*{Stable at s.h.f.}

Although semiconductor devices, including Gunn diodes and Impatt diodes, make possible relatively simple self-excited oscillators at s.h.f., it remains essential for many applications to provide some form of stabilization. A good deal of effort, for example, has been put into developing cavity resonators, including low-cost types that can be used in association with the front-ends of 12 GHz satellite receivers where the circuit elements may take the form of punched out metal sheet.

Recently much interest is being shown
in small dielectric resonators which can be used in connection with cavity resonators to improve greatly the temperature characteristics or, for example, to stabilize monolithic GaAs fet oscillators.

In conjunction with a conventional cavity it is claimed that commercially available dielectric resonators using a disc of doped barium titanate in the cavity can reduce the temperature drift of a 10 GHz cavitystabilized oscillator from 3 MHz per \({ }^{\circ} \mathrm{C}\) to only 3 kHz per \({ }^{\circ} \mathrm{C}\). A new Mullard range of dielectric-stabilized oscillators within the 4 to 16 GHz frequency range includes the facility to tune over 1 per cent of the lowest frequency limit without degrading stabilization, or 8 per cent when rather lower stability and higher noise is acceptable.
A French team at Laboratoires d'Electronique et de Physique Appliquée (LEP) has reported (Electronics Letters, April 15, 1982 Vol 18 No 8, pp 345-347) the development of a monolithic X-band GaAs fet oscillator stabilized by means of a barium titanate dielectric resonator which delivers more than 30 mW output power at 10.8 GHz with a frequency drift better than \(1 \mathrm{p} . \mathrm{p} . \mathrm{m} / \mathrm{K}\) from \(-20^{\circ} \mathrm{C}\) to \(80^{\circ} \mathrm{C}\), and a maximum chip efficiency of about 20 per cent. The oscillator chip measures 1.2 by \(1.4 \mathrm{~mm}^{2^{-}}\)with a chip thickness of \(300 \mu \mathrm{~m}\). It can be used as a voltage-controlled oscillator.

\section*{Long waves, high power}

The BBC is currently carrying out a \(£ 2\) million refit to the Droitwich 200 kHz (1500 m) long-wave station at Droitwich, taking the opportunity to increase transmitter output power from 400 kW to 500 kW . The transmitters now in use are two of the four 200 kW units originally supplied by Marconi for the special wartime 800 kW station near Hull. The use of the Marconi "Pulsam" high-efficiency technique will make the higher power units more economical to run.
500 kW is a long way from the first longwave \((1600 \mathrm{~m}) \mathrm{BBC}\) station at Daventry. This was completed in 1924 and had a power of 25 kW following tests on a Marconi 15 kW long-wave transmitter in the Chelmsford factory. At that time the intention was to supplement the local regional transmitters (1.5 kW plus 0.12 kW relays) by a single transmitter providing "a reasonable field strength over most of the British Isles" - as indeed it appears to have done at a time when most listeners used outdoor aerials, electrical interference was reasonably low and there were none of those infuriating signals emanating from the line time-bases and switched-mode power supplies of colour television sets. Indeed in the 1930s it was firmly recognised in the UK that high-power stations of the order of 500 kW "may be a doubtful blessing".

American broadcasters, who have never used the long-wave broadcast band, have been limited even on medium-wave "clear channels' to a maximum of 50 kW and yet have traditionally achieved extensive and excellent night-time coverage using directional aerials to minimize mutual interference.

However this coverage is now under severe threat from Cuba who have stated an intention to install two 500 kW transmitters with omnidirectional aerials, plus over 180 other transmitters of various powers - and have withdrawn from a key Region 2 planning conference. It could be argued that the Americans have brought this problem on themselves by their intention to transmit programmes to Cuba on medium-waves - yet another example of how it is often external broadcasting for government agencies that has been the prime cause of the transmitter power race and excessive interference.

\section*{Satellite scene}

Several of the balloon flights being organized this year by the South African Radio League as a preliminary to an amateur satellite project have been completed successfully, including two flights to \(100,000 \mathrm{ft}\) with simple recovery beacons and a 10 -hour flight to this height carrying a linear transponder as well as telemetry and recovery beacons. During the flight about 20 amateur operators had s.s.b. and morse contacts through the beacon over distances of several hundred kilometres. A later flight will be aimed at keeping a transporter at \(100,000 \mathrm{ft}\) over an extended period with power derived from solar panels. The whole project is enjoying the full co-operation of a number of universities and electronics firms.

During April, a false command initiated by the main computer on board the University of Surrey's UOSAT satellite inadvertently switched on both the 145 MHz and the 432 MHz beacons at the same time; resulting in desensitizing both command receivers so that the satillite was no longer under ground control. The normal fail-safe software in the computer had previously been temporarily over-written, with the result that the malfunction persisted for an extended period.

Ron Broadbent, G3AAJ, secretary of Amsat-UK, has complained of the many demands directed to the society, stemming not from radio amateurs but from school and university staffs seeking detailed information on what they regard as a "British Schools Satellite".

\section*{Vintage valves}

A few months ago the turning over by Mullard Ltd of their Blackburn factory from the manufacture of domestic valves to other products led to nostalgic backward glances to the heyday of the "red" EF50 of wartime radar, the EF39 used in many communications receivers, and other once familiar small-signal valves.
Across the Atlantic the process of closing down production lines of "vacuum tubes" has been going on for several years, without many tears being shed. But surely a note in QST will touch the hearts of every old-time amateur and professional communications man: RCA have discontinued manufacture of a further batch of glass-envelope transmitting valves including such famous types as the \(807,811 \mathrm{~A}\), \(813,829 \mathrm{~B}\) - valves that found their way into innumerable transmitters since they were first introduced well over 40 years ago - and still do yeoman service in many transmitters even today, although presumably the demand for replacements has dipped. Transmitters needed to be large to accommodate them and the ceramic types with (often noisy) forced-air cooling were displacing them, years before the semiconductor era began to deliver the knock-out blow. The 813 needs a hefty 5 amps at 10 volts just to keep the filament energized; but was - and remains - a magnificent workhorse for Class \(C\) service. Show me a transistor that will provide a comfortable 300 watts r.f. output at 20 MHz with a similar freedom from parasitic oscillation and ease of design - but until then many will regret the gradual passing of the thermionic era.
Perhaps not quite passing - Mullard, for example, tell me they have no plans to discontinue their range of transmitting valves, including near equivalents of a number of the axed RCA types. Indeed I hear rumours of European manufactured valves being sent across to the States and then returning to find sockets in European transmitters.

\section*{Here and there}

The regulations introduced by the FCC on January 1, 1981, limiting the amount of r.f.i. generated by new computing devices marked for the home to limits calculated not to interfere with broadcast reception are having an effect on manufacturers. Although initially many manufacturers applied for waivers, the regulations must be complied with by October 1983, and recently the FCC laboratory has been rejecting less than 15 per cent of devices compared with 25-30 per cent in early 1981. FCC are now investigating the amount of interference produced by other digital devices including digital clocks using synthesized speech.
A number of candidates who took the

Radio Amateur's Examination in May appear to have been less than happy with the multichoice paper and support the view, expressed on a number of previous occasions in this column, that the City \& Guilds Institute should carefully consider updating the aims and scope of the examination - and contributing to the reduction of the administrative time it takes in the UK to sit the exam and acquire a licence.

With the help of a small grant from the Science Research Council, the R.S.G.B. Propagation Studies Committee is to assist in the collection over the next four to five years of data on Sporadic E propagation on frequencies above 100 MHz . North/south propagation paths on 50 MHz were open on many occasions during March and April 1982. An unusually large number of South African stations were received in the U.K. on April 12.

\section*{In brief}

The boom in walkabout audio tape cassette players has encouraged the marketing in Japan of miniature 50 MHz "walkietalkie" units, such as the Standard "Talkman" with headphones and miniature boom microphones. In future someone "talking to themselves" in the street may or may not be a first sign of madness

David Adams, VE3BHF (G4NWA) of Sutton West, Ontario has been walking the length of Britain, from the Scilly Isles to the Orkneys with a backpack that includes a 144 MHz hand-held transceiver ... Callsign of the 70.05 MHz beacon transmitter on Harpur Hill, near Buxton, Derbyshire has changed from GB3SU to GB3BUX as part of the plan to use twoletter GB callsigns for repeaters and threeletter ones for beacons. Similarly, for example, the beacon high on the IBA's concrete aerial support tower at Emley Moor, West Yorkshire has changed from GB3EM to GB3MLE . . . Tropospheric 10 GHz contacts across the English Channel to amateurs in France and Holland continue to be reported over distances up to about 250 km . . . A "very slow rise" in membership is reported by the R.S.G.B. who state that of members resigning "the vast majority gave the present economic climate and unemployment as the main reason". . . Forthcoming mobile rallies include: July 25, Anglian Mobile Rally, Stanway School, Colchester; Scarborough A.R.S. at Spa Ocean Room. August 1, R.S.G.B. National Mobile Rally at Woburn. August 8, 25th annual Derby Mobile Rally, Luwer Bemrose School, off Derby Ring Road. August 15, Preston A.R.S. at Walton-le-Dale County High School, Brindle Road, Bamber Bridge, Preston. August 22, Bromsgrove A.R.C. picnic at Avoncroft Art Centre, Bromsgrove.

PAT HAWKER, G3VA

\title{
NETWORK ANALYSIS WITH A ZX81
}

\section*{Extensive insertion loss and group delay computations of ladder filters are faster with an inexpensive microcomputer than with a programmable calculator}

The specification of the ZX81 reveals that it is also potentially a 'super-calculator' capable of handling much more extensive programs at a far higher computing speed than, for example, the Texas TI59. The \(91 / 2\)-digit accuracy is admittedly less but nevertheless perfectly adequate for a wide range of practical problems. The program described was written not only to fulfil a professional requirement, but also to test the capabilities of the ZX81 fitted with the 16 K ram.

The menu it provides is as follows.
- Compute and display the insertion loss and group delay of a passive ladder network with up to 10 branches, excluding the terminations. For a frequency base in MHz the group delay is computed over an increment of 1 kHz .
- Each branch can consist of a single inductor or capacitor, or a series or parallel tuned circuit. More complex structures can be handled by means of a simple device.
- A chosen value of dissipation can be assigned to the components.
- Component values entered can be listed and corrections made before computation starts.
- At the end of a calculation, individual frequencies and element values can be modified without re-starting the program from the beginning. This is invaluable for estimating the effect of component tolerances or for 'zooming in' on any particular area of the network response.
- Up to five group-delay equalizer sections can be added and the total resultant delay displayed. The display is in the form of the zero-frequency delay, followed by the differences from that value at the other points.
- Because the group delay values of the network are held in an auxiliary array, re-computation of the group-delay response after changes to the equalizer parameters is fast.
- Added loss due to dissipation in the equalizer can be displayed.

To give an idea of the running time, the ZX81 in the fast mode displays the insertion loss and group delay of a seventhorder elliptic-function filter at 15 points in around 75 seconds. Each successive attempt at group-delay equalization takes around 12 seconds, not including the time taken to enter values.

Because many users will not need the

\author{
by L. E. Weaver
}
group-delay equalization routine, the procedure for use is conveniently divided into two portions.

\section*{Computation of network response}

First some general remarks. As \(I\) am principally concerned with video filters, the units chosen are \(\Omega, \mu \mathrm{F}, \mu \mathrm{H}, \mathrm{MHz}\) and \(\mu \mathrm{s}\). These can be replaced by any other selfconsistent set, but obviously minor changes to the print statements will be needed.
It is assumed that the network is unbalanced and contains no bridged-T sections. The group-delay equalizers are dealt with quite differently. The branches are numbered from the input to the output, and the component values are entered in the same order so that for example, the fourth branch will contain \(L(4)\) and \(C(4)\), or perhaps \(L(4)\) or \(C(4)\) alone. As shunt and series branches alternate in a ladder network it is only necessary to specify the nature of one of these. This is chosen to be the branch facing the input termination.
The dissipation is expressed by \(\mathbf{D}\), which is the reciprocal of the Q factor, and must be specified at some frequency. This will often be the cut-off frequency or possibly one of the points of nominally infinite rejection. Because of the simplification in the expressions for the impedances, the standard device is employed of assuming that both the inductors and capacitors have the same dissipation, and that in a resonant circuit \(D\) is the sum of these. However, experience shows that provided \(D\) is less than about \(0.02(\mathrm{Q}>50)\) the individual dissipations do not need to be equal. It follows that if the capacitors can be considered as dissipationless, \(\mathbf{D}\) can be taken as one half of the value which would otherwise apply. This may not sound very satisfactory but in practice it works surprisingly well.
With such a long program and only 16 K of storage the display prompts necessarily have to be kept very short, so it seems desirable to set out the procedure in detail. Each input will, of course, be followed by NEW LINE.
\begin{tabular}{ll}
Prompts & Inputs \\
FO? & Starting frequency \\
FM? & Maximum frequency \\
DF? & Frequency step \\
D? & Dissipation constant \\
FD? & Dissipation frequency (if
\end{tabular}
\(\mathrm{D}=0\) then a nominal positive value must be entered)
Input termination Output termination
RO?
NO. OF
BRANCHES? Total excluding terminations
\(\mathrm{L}+\mathrm{C}\) ? \(\mathrm{N}=1 \quad\) YES for a resonant circuit, NO for a single resistor or capacitor
SER OR PAR? When previous input was YES, input SER for a series and PAR for a parallel resonant circuit
L? \(N=1\) Enter L(1)
C? Enter C(1). If only one L or C the other must be entered as zero

L. E. Weaver, B.Sc, M.I.E.E. is the author of three well-known works on television measurements, and of a number of monographs and papers both on that subject and on aspects of network design. Now a television engineering consultant, he was previously head of the measurements laboratory in the BBC designs department. While in that position he also used the experience previously gained in network design at STCs transmission laboratory to produce high-quality video filters, some of which have been commercially manufactured on a considerable scale.

This process will continue until the last branch has been entered. Then

\section*{SHUNT IN? YES for a shunt input, NO for a series} GOTO CHECK. This will then list the entered values. Modify by, for example, LET L (4) = 5.25. Do not enter RUN or CONT. When satisfied enter GOTO LOSS, which starts computation. After completion values can be modified and the network re-calculated by again using GOTO LOSS.

\section*{Group delay equalization}

The insertion loss of a filter is usually required over a frequency range wide enough to cover both the pass and stop bands, but with delay equalization the situation is totally different. As a rough guide the important area in that instance lies between zero frequency and the 6 dB point for a lowpass network, and between the 6 dB points for a bandpass. It follows that a new set of frequencies must be selected up to the allowable total of 15 , achieved by entries such as LET FM \(=6\) and LET FD \(=0.5\). The initial computation is then repeated by means of GOTO LOSS, which takes very little time as the component values do not have to be reentered. The read-out must be completed, indicated by a 9 code.

The program allows for one first-order equalizer section followed by up to four second-order. Alternatively, up to five second-order sections may be used. Each is defined by a resonant frequency and a shape factor K , which must be made zero for the first-order section. The first-order section, if present, must be entered before the others.
The procedure is then as follows.
\begin{tabular}{ll}
Prompts & Inputs \\
9/1590 & CONT \\
V? & Total number of sections \\
FR? M=1 & \begin{tabular}{l}
Resonant frequency of \\
first section
\end{tabular} \\
K? & \begin{tabular}{l}
K-parameter of first sec- \\
tion
\end{tabular} \\
FR? M=2 & \begin{tabular}{l}
Resonant frequency of \\
second section
\end{tabular} \\
K? & K for second section
\end{tabular}

As soon as the parameters for \(\mathrm{M}=\mathrm{V}\) have been entered the computation starts.

The initial attempt is not likely to be successful, so it will then be necessary to modify the equalizer parameters by inputs of the form LET F(2) \(=2.2\) and LET K(3) \(=1.2\). This must be followed by GOTO EQU, which repeats the calculation with the new values.

At the end of the equalization process, GOTO DISS will provide a read-out of the equalizer dissipation corresponding to the value of \(D\). This does not need to be the same as the D used for the insertion loss but may be re-entered before calling up the DISS routine.

Loss section
UNITS: \(\Omega, \mu H, \mu F, M H z\)
\(\mathbf{R}_{\mathrm{I}}=\mathrm{R}_{\mathrm{O}}=75\)
\begin{tabular}{lccccccc}
N & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
L & 0 & 1.58 & 0 & 3.09 & 0 & 1.67 & 0 \\
C & \(315.5 \mathrm{E}-6\) & \(53.8 \mathrm{E}-6\) & \(655 \mathrm{E}-6\) & \(150 \mathrm{E}-6\) & \(564 \mathrm{E}-6\) & \(379 \mathrm{E}-6\) & \(126 \mathrm{E}-6\)
\end{tabular}
Group delay equalizer
\begin{tabular}{lccc}
M & 1 & 2 & 3 \\
FR & 2.0 & 3.0 & 4.5 \\
K & 0 & 1.3 & 0.7
\end{tabular}

Fig. 1. Component values of a 5 MHz elliptic function lowpass filter in the form recommended for program entry. Suggested initial parameter values are included for a three-section group delay equalizer.

Fig. 2. Use of a dummy shunt branch where a series arm contains more than two components. Values shown are for a 10 MHz bandpass filter with midband frequency 12 MHz and rejection points at 6 and 24 MHz . Original configuration at (a), dummy shunt branch inserted at (b).

Fig. 3. Use of a dummy series branch where a shunt arm contains more than two components. Values shown correspond to a 3 MHz bandpass filter with midband frequency 2 MHz and a single rejection point at 0.8 MHz . Original configuration at (a), dummy series branch suitable for bandpass structures only (b) and universally applicable dummy series branch (c).

In the absence of enough ram to run an optimization program, a graphical method has been found effective. This consists in plotting the combined group delay responses for successive parameter changes from some initial set of values, taking care not to try to deal with too many simultaneous changes. Some of these will inevitably be in the wrong direction, but one
quickly gets a feel for the way in which moves have to be made. Remember that the aim must be to minimize the absolute error, that is the positive and negative deviations must tend to equality, subject to the condition with video filters that the error may be allowed to increase with frequency. The display provides the deviations directly, which saves a great deal of

Fig. 4. Pair of canonical twoterminal reactance arms.
tedious plotting especially in the earlier stages of the process, since it is simple to note the maxima and minima at each stage without drawing the complete curve.

A brief guide to the shape of the delay equalizer responses may be found useful. The first-order network provides a group delay which falls steadily starting from the zero-frequency value. On the other hand, there is a very useful analogy between the response of a second-order section and the amplitude response of a parallel tuned circuit. The parameter K performs much the same function as the \(Q\) in the lastmentioned case, and the delay maximum roughly corresponds with FR.

The seventh-order elliptic function lowpass filter given in Fig. 1 may be found useful for a trial run. The loss is abour 4 dB at 5 MHz . The delay equalizer parameters do not represent an optimum, but merely a suggestion for an initial trial. The component values are listed in the order of insertion into the program, with the capacitors provided in exponential notation, thus avoiding strings of zeros.

Before leaving the subject of insertion loss calculation, one still has to deal with the problem of network branches containing more than two reactances such as may be encountered in bandpass filters. In fact it can be very easily solved by the use of dummy branches as the following examples will make clear.
Fig. 2(a) shows a bandpass filter with a bandwidth of 10 MHz , a mid-band frequency of 12 MHz , and rejection frequencies at 8 and 24 MHz . The series arm has the form of two parallel runed circuits in series, i.e. a total of four reactances, usually the maximum number likely to be met with. The device in this instance is to add between points \(A\) and \(B\) a shunt inductor of such a magnitude that it cannot possibly have any practical effect on the loss and delay responses, Fig. 2(b). The original three-branch network is now converted to a five-branch ladder which can easily be handled by the program.
A shunt branch yields to similar treatment, as is illustrated by the bandpass filter of Fig. 3(a). This has a bandwidth of

3 MHz with a mid-band frequency of 2 MHz and a rejection frequency at 0.8 MHz . Because it has a bandpass characteristic it is possible to employ the analogue of Fig. 2(b), that is the series insertion of a very large capacitor, Fig. 3(b). The resulting five-branch ladder can now be treated normally. In this instance, there is an alternative which applies equally to lowpass structures, that is the insertion of a parallel tuned circuit with a zero-valued inductor and a capacitor of any nominal size, Fig. 3(c).

It is worth stressing that the dummy branch technique can always be applied, subject to the limitation of a total of ten branches imposed by the present program. The justification for this is the theorem that a two-terminal reactance arm can always be transformed into one of the two configurations of Fig. 4 (ref. 1), for which reason they are sometimes called canonical networks. Of course, not all of the inductors and capacitors have to be present, so the two examples given above are obviously included. It will sometimes involve the transformation of one configuration into another, but this is comparatively simple provided a reference table of equivalent circuits is available \({ }^{2}\).

\section*{References}
1. R. M. Foster, Reactance theorem. Bell System Technical Journal, vol. 3, April 1924, pp. 259-67.
2. A. Zverev and H. Blinchikoff, Network transformations for wave filter design. Electronics, June 26 1959, pp. 52-4.

To be continued.

\title{
Communications crisis-a reply
}

On our news pages this month is a criticism of the Government's liberalisation programme for the telecommunications industry. John Butcher, the Parliamentary Under Secretary of State for Industry has made the following reply, listing the progress made to date.

A licence was granted in February to Cable and Wireless PLC on behalf of the Mercury Communications Limited to run a telecommunications system in the UK the first independent system of its kind outside North America. By the middle of next year the first subscribers should be connected to Mercury, surely an astonishing achievement in the time.

On the liberalisation of attachments progress has been remarkable. Already some 50 attachments, including about 25 telephones, 20 modems and five telex teleprinters can be supplied competitively which under the old regime would either have been completely unavailable or supplied only through BT.
November 1981 - Interim approved scheme for extension telephones from BT's special range. The latter have been added to since then and all of BT's special range telephones can now be supplied in competition with BT. The first approvals under this interim scheme have now
been made and more will follow shortly.
May 27 - An extension of this scheme to include callmakers, repertory diallers and apparatus incorporating integral modems. The Department is now considering applications for further evaluation. Now that BSI's new laboratory can undertake some of the test work, it shoule be possible to deal with more telephones more quickly.
March 31 - Orders made requiring apparatus to be marked to tell customers whether or not it is approved for connection to BT's networks. This is vital information for users if they are to choose apparatus that will not cause damage and produce inferior service.

Six draft standards have been written and made available for public comment in record time and further drafts will follow shortly. So far all standards are meeting their target dates.
May - The British Approvals Board for Telecommunications (BABT) was incorporated and will begin to accept applications for approval when the first standards are published.
The Department and BT have agreed on arrangements allowing BT's present suppliers of telex teleprinters to supply the models they now sell to BT direct to customers. This makes five
models available competitively if the manufacturers wish to take advantage of this arrangement.
"The Government has a duty" he continued "to make sure that apparatus connected to BT"'s network does not endanger consumers who use this equipment or BT's engineers and does not impair the quality of service that the network is able to provide.to all. Much of the preparations that have been made over the past 12 to 18 months have been aimed at avoiding such dangers.
"In many cases little of this progress is visible to the outside observer but all of it is necessary if liberalisation is to be fair and to work. Critics do not do justice to the immense amount that has already been achieved."
"Since April private operators have been able to apply to the Department of Industry for a licence to provide services over the network. The provision of these value added network services (VANS) will help to satisfy the demand more quickly than at present and encourage the growth of a wider range of services, providing jobs and helping business in Britain to become more competitive.

\title{
COST-EFFECTIV ELECTRONICIG
}

The popularity of Rod Cooper's ignition circuit design, published in the March issue, led to many requests for a component location diagram. In response, here is a component layout - regrettably held out of the last issue - designed to complement the board pattern originally given. A resistor and decoupling capacitors were omitted from the published circuit, so a corrected version is reproduced herewith, which now corresponds with the board design.

Printed boards to an alternative layout, with components horizontally arranged, is available from M. R. Sagin (see advertisement), who may also be able to supply wound transformers and discharge capacitors. Ferrite and bobbins are also available from Mullard stockists.

The graphs showing the relation between combustion efficiency and spark were originally published in an article entitled Ignition Design Trends by K. Garrett, in Automotive Engineering, April-May 1977. Oscilloscope traces were produced from equipment kindly loaned by Hewlett Packard.

\title{
DESIGNING WITH MICROPROCESSORS
}

\section*{Step-by-step procedures for implementing microprocessor systems with commerciallyavailable i/o chips - illustrated by a design problem - conclude this series of articles.}

The most effective design strategy is to choose those i/o chips whose terminal characteristics can be programmed to match those of the peripheral in question. But such an objective however would be unrealistic because in practice the microprocessor system will have its own programmable i/o chips already interfaced to the microprocessor chip, as illustrated in Fig. 1. In situations like this a good starting point is to derive a simplified programming model of the i/o chip, omitting those features that are not likely to be used. Initially, a programming model should contain the ports, typically two per chip, the control and status registers. Programming models of the Intel 8155, p.i.a. and v.i.a. are shown in Fig. 2, 3 \& 4.

The next items to be specified are
1 - how the interface initiates an m.p.u. read operation for moving data into a microprocessor (from peripheral 1 in Fig. 1)
2 - how the p.i.o. chip signals that the requested read operation has taken place to the interface.
For example in the case of the p.i.a., when programmed with control word 26 to move an item of information from a peripheral into the microprocessor, all the interface has to do is to pull terminal CA1 in Fig. 3 high. When the microprocessor reads the item the signal on terminal CA2 is pulled low.
The third and fourth items to be specified involve the reverse process, namely moving data from the m.p.u. into a peripheral, in which case the designer needs to know

\author{
by D. Zissos and Jane Pleus
}

3 - how the interface initiates an m.p.u. write operation for moving data from the microprocessor to a peripheral m.p.u. (peripheral 2 in Fig. 1)

4 - how the p.i.o. chip signals that the requested write operation has taken place.
In the case of the Intel 8155 chip, when programmed with control word 99 data is
requested from the m.p.u. by pulling the STROB terminal in Fig. 2 low when the m.p.u. responds when the requested item of information has been loaded into the 8155, the signal on terminal BBF changes to 1.
5 - the final item to be specified is the status flip-flop for each of the ports, as this is the signal looked at by the programmer in the test-and-skip mode.
For example in the case of the 8155, SFFA

Mnemonic and hex listings of the PRINT problems using programmable \(\mathbf{i} / 0\) chips and test-and-skip.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{8085 \& 8155} & \multicolumn{3}{|c|}{6800 \& PIA} & \multicolumn{3}{|c|}{6502 \& VIA} & \multirow[t]{3}{*}{Comments} \\
\hline & \multicolumn{3}{|c|}{Machine code} & \multicolumn{3}{|c|}{Machine code} & \multicolumn{3}{|c|}{Machine code} & \\
\hline & Mnemonics & & \[
\begin{aligned}
& \text { ■ } \\
& \text { థ్ర }
\end{aligned}
\] & Mnemonics & & \[
\begin{aligned}
& \text { 틍 } \\
& \text { 응 }
\end{aligned}
\] & Mnemonics & & & \\
\hline & LXI SP, 20C8 & 202031 C8 20 & & & & & & & & Initialize \\
\hline & CALL IOPRT & 23 CD 0020 & & JSR IOPRT & 0200 BD 0100 & & JSR IOPRT & 03002000 & 02 & - \\
\hline & LXTH, 2080 & 26218020 & & LDX \#0300 & 03 CE 0300 & & LDX \#00 & 03 A2 00 & & - \\
\hline & MVIB, \(n\) & 2906 n & & LDAB \#n & 06 C 6 n & & LDY \#n & 05 A0 \(n\) & & - \\
\hline X 0 : & DCR B & 2B 05 & X0: & DECB & 085 A & X0: & DEY & 0788 & & Decrement character count \\
\hline & JM X2 & 2C FA 3D 20 & & BMI X2 & 09 2B 13 & & BMI X2 & 083011 & & If no more characters, go to X2 \\
\hline X 1 : & IN 20 & 2F DB 20 & X 1 : & LDAA F003 & OB B6 F0 03 & X1: & LDA A00D & OA AD OD & AO & Read status register port \\
\hline & ANI 10 & 31 E6 10 & & ANDA \#80 & OE 8480 & & AND \#10 & OD 2910 & & Erase all but status flip-flops \\
\hline & JZ XI & 33 CA 2F 20 & & BEQ \({ }^{1} 1\) & 1027 F9 & & BEO \({ }^{1} 1\) & OF F0 F9 & & If data not printed, go to X 1 \\
\hline & MOVA, M & 367 FE & & LDAA 00, X & 12 A6 00 & & LDA 0400, \(X\) & 11 BD 00 & 04 & Otherwise, get next character \\
\hline & OUT 22 & 37 D3 22 & & STAA F002 & \(14 \mathrm{B7}\) FO 02 & & STA A000 & 14 8D 00 & AO & Print \\
\hline & & & & LDAA F002 & 17 B6 F0 02 & & & & & Dummy clear to clear SFF of PIA \\
\hline & INXH & 3923 & & INX & 1 A 08 & & INX & 17 E8 & & Point to next character \\
\hline & JMP X 0 & 3A C3 2B 20 & & JMP XO & 1B 7E 0208 & & JMP X 0 & 184 C 07 & 03 & Goto Xo \\
\hline X2: & RST 1 & 3D CF & X2: & SWI & 1E 3F & X2: & BRK & 1 B 00 & & Return to monitor \\
\hline
\end{tabular}

Fig. 4. Block diagram of the PRINT problem.
and SFFB are bits 1 and 4 of the status register - see Fig. 2. Status flip-flop signals are normally made available on terminals for use as interrupt flags if desired. Such flags can be disabled by program; bit 2 in Fig. 2, when 0 disables interrupt flag IRQ(A).
Programming models of the 8155 , the p.i.a. and v.i.a. are shown in Figs 2 \& 3.

\section*{Design problem}

Objective: to consolidate the design steps described in the previous article.
Using programmable i/o chips, design a test-and-skip system that would allow the programmer to print a block of characters stored in consecutive memory locations. Implement the design using an action/ status character printer and (a) the 8155 interfaced to the 8085 and (b) the p.i.a. interfaced to the Motorola 6800.

Fig. 5. Flow-chart of our solution to the PRINT problem.

\section*{Solution}

Handshake signals Fig. 1
\(\mathbf{h l}-1\) indicates that the port is full (has new data) and 0 that the port is empty (data has been read).
h 2 - 0-to-1 change requests an m.p.u. read cycle.
h3 - 0 -to- 1 change requests new data from the m.p.u.

A test-and-skip system that transfers blocks of data of specified length, byte-bybyte, from memory to a peripheral device through an i/o port using a microprocessor-based system with at least one programmable \(i / \mathrm{o}\) port is shown in the

Fig. 6. Programming flowchart of the PRINT problem using programmable i/o chips and test-and-skip

Fig. 7. 8155 implementation of the PRINT problem.
block diagram of Fig. 4, derived directly from Fig. 5 of the previous article. Its step-by-step operation is shown in the flow chart of Fig. 5. The hardware design consists of implementing the interface equations derived for each of the p.i.o. chips. The software design is the selfexplanatory programming flow chart of Fig. 6. Ignore at this stage the statements to the sides of the boxes.

\section*{8155 implementation}

By direct reference to the data sheet of the Intel 8155 and to the definitions of handshake signals h1 and h2, we obtain
\[
\mathrm{hl}=\mathrm{BBF}
\]
and
\[
\mathrm{h} 3=\mathrm{STROB}
\]

The implementation of these equations constitutes the hardware component of our solution, Fig. 7.

Next refer to the 8085 instruction set to derive the mnemonic statements that implement the flowchart in Fig. 6. For ease of reference we list them to the left of each box. Finally, we tabulate these statements with the corresponding machine codes and comments on page 77.

\section*{8155 data}

Programming model, Figure 2. The control word OA disables the interrupt terminals and to program the \(8155 \mathrm{i} / \mathrm{o}\) chip to function in the following way.

Section A - inpur port
An m.p.u. read is requested by a 1 to 0 change in STROB
When m.p.u. responds (reads) ABF* changes to 0

ABF pulled high by 1 to 0 change on STROB
ABF pulled fow by an m.p.u. reed of port A
Status flip-flop (bit 1 of the status register)
\[
\text { set by a } 1100 \text { change on STROU }
\]
reset by an m.p. u. read of port \(A\)
Soction B - output port
Now data requested from m.p.u. by a 1 to 0 change on STROB
When m.p.u. responds (writes) BBF changes to 1

BEF" pulled high by an m.p.u. weite operations
8BF pulled low by a 1 to 0 change on STROB
Status flip-flop fibit 4 of the status register)
sei by an m.p.u. write operation
reset by a 1 to 0 change on STROE
*ABF = 1 indicates now data in input Bort
BBF \(=1\) indicates new dete in output
port port

\section*{PIA implementation}

Referring to the p.i.a. data sheet and the definitions of handshake signals, we obtain
\[
\mathrm{h} 1=\mathrm{CB} 2
\]
and
\[
\mathrm{h} 2=\mathrm{CB} 1 .
\]

Implementing these equations gives the pia implementation of our solution, Fig. 8.

\title{
ELECTRIC FIELDS IN A SOLENOIDAL COIL
}

\title{
- often forgotten, more often misunderstood
}

\section*{The time-varying magnetic field in a coil gives rise to electric fields that in turn determine the terminal or circuit properties of the coil}

Since the time of Michael Faraday's experiments, researchers have sought to understand the electromagnetic behaviour of the solenoidal coil, but a complete field solution has proved a difficult and elusive goal. While it is well known that the magnetic field within a long, multi-coil is predominantly axial and azimuthally symmetric, the associated electric fields are less clearly defined. However, a few fundamental points can be made regarding these electric fields without having to resort to a complete boundary-value solution.

When excited by an alternating current, the time variations of the axial magnetic field within the coil must, in accordance with Faraday's law of induction, produce an electromotive force around any closed loop linking the magnetic field. The result is an induced electric field in the circumferential direction, and it is just this field that gives rise to the eddy current that circulates whenever the coil is wound around a core of lossy material. However, the existence of this circumferential electric field at the surface of the coil causes a redistribution of charge along the helical conductor forming the coil, such that the negative charge is concentrated towards the opposite end of the coil. This separation of charge creates a secondary electric field that in the interior region of a long solenoid is predominantly axial. The redistribution of charge is precisely such that the sum of the magnetically induced circumferential electric field and the secondary axial electrical field arising from the charge separation is just equal to zero along the surface of the coil winding.

The relative magnitudes of these circumferential and axial components of the electrical field are easily estimated for a long solenoid of length I and radius a, comprised of N turns. If the magnetic flux linking a cross section of the coil of area \(\pi \mathrm{a}^{2}\) is defined as \(\Phi\), the electromotive force around a closed loop of radius a must in phasor form be given by
\[
\text { e.m.f. }=j \omega \Phi
\]
where \(\omega\) is the angular frequency. An average value for the circumferential electric field at radius a can now be obtained by dividing this e.m.f. by the circumference of the coil. In other words,
\[
E_{\phi a}=\frac{j \omega \Phi}{2 \pi a}
\]
where \(E_{\phi a}\) is the average induced circum-

\author{
*by F. S. Chute and F. E. Vermeulen
}
ferential electric field at the surface of the coil. Alternatively, since the terminal voltage, V , of the coil is just N times this e.m.f.
\[
E_{\phi \mathrm{a}}=\frac{V}{2 \pi a N}
\]

Neglecting end effects, an average value for the axial electric field, at radius a, can be obtained by dividing the terminal voltage by the length of the coil. Thus,
\[
\mathrm{E}_{\mathrm{za}}=\frac{\mathrm{V}}{1}
\]
where \(E_{z a}\) is the average value of the axial electric field at radius a.
Taking the ratio of \(\mathbf{E}_{z a}\) and \(\mathbf{E}_{\phi \mathrm{a}}\) yields
\(\frac{\mathrm{E}_{2 \mathrm{a}}}{\mathrm{E}_{\phi \mathrm{a}}}=\frac{2 \pi \mathrm{aN}}{1}=\frac{2 \pi \mathrm{a}}{\mathrm{d}}=\cot \psi\)
where d is the separation between turns and \(\psi\) is commonly referred to as the pitch angle of the winding.
For coil configurations commonly used this pitch angle is only a few degrees and the secondary axial electric field is typically more than an order of magnitude greater than the circumferential electric field! Moreover, the axial field \(\mathrm{E}_{\mathrm{z}}\) is nearly independent of distance from the axis of the coil, whereas the circumferential electric field \(\mathrm{E}_{\phi}\) decreases to zero at the coil centre. At interior points then, the dominating influence of the axial electric field will be even more pronounced than near the surface of the coil winding
All too often this surprising result is not fully appreciated although it was pointed out as early as 1928 by Townsend \({ }^{1}\) in conjunction with an investigation of gaseous discharges, and again in 1969 by Contaxes \({ }^{2}\). It is of interest to note that both of these authors comment, more than 40 years apart, that the existence of such a large axial electric field is remarkably unknown.
It is only by virtue of the fact that the secondary electric field of the coil (whose source is the charge distributed along the winding) is much larger than the circumfe-

\footnotetext{
*Department of Electrical Engineering
University of Alberta
}
rential electric field (produced directly by the time-varying magnetic field), that a unique value of potential difference between the terminals of the coil can be defined. For a loosely wound coil with a large pitch angle \(\psi\), the magnitudes of the two fields are more nearly equal and no unique value will exist for the terminal voltage. In this case the measured value of potential difference will depend upon the placement of the leads of the voltmeter that is used to measure the voltage across the coil.

In some earlier work \({ }^{3,4}\), the authors have described a technique for visually displaying electrostatic fields and electromotive force by utilizing the heat-sensitive colour changes of cholesteric liquid crystals. In this technique, Mylar sheets coated with encapsulated liquid crystals are bonded to a sheet of Teledeltos resistive paper. Currents induced in the resistive paper in the presence of an electric field will cause heating, and produce a temperature variation that is characteristic of the distribution and intensity of the electric field vectors lying in the plane of the resistive paper. The apparent colour of the liquid crystal sheets used by the authors \({ }^{3}\) is black below about \(25^{\circ} \mathrm{C}\). Between \(25^{\circ} \mathrm{C}\) and \(30^{\circ} \mathrm{C}\), the colour of the sheet changes with temperature from red, through yellow and green, to blue at about \(30^{\circ} \mathrm{C}\). Above \(30^{\circ} \mathrm{C}\), the apparent colour is again black. Regions of a uniform coloration represent regions of constant temperature or field intensity. While the limited thermal sensitivity of the liquid crystals and their nonlinear temperature response make serious quantitative measurement impractical, the liquid-crystal display does serve to provide the viewer with an immediate appreciation of the overall electric field distribution.

To display the axial and radial electric fields of a coil carrying a time-varying current, a sheet of resistive Teledeltos paper was bonded to a 3.2 mm thick, \(60 \times 60 \mathrm{~cm}\) sheet of Perspex with spray adhesive. Four \(30 \times 30 \mathrm{~cm}\) sheets of liquid crystal were then similarly bonded to the resistive paper. This three-layer sandwich combination was then carefully drilled with 40 holes of 2.5 mm diameter to serve as a support plate for a 20 turn coil of No 14 A.W.G. copper wire. A continuous length of wire was then threaded through the holes in the support plate to create a coil of length 40 cm , diameter 10 cm , and turn spacing 2 cm , having a pitch angle so that \(\cot \psi=15.7\). The coil, which has an induc-

tance of about \(12 \mu \mathrm{H}\), was series-connected to high-voltage capacitors to resonate at 3 MHz . The coil circuit was fed at 3 MHz from an Electronic Navigation Industries A-300 RF Power Amplifier driven by a Hewlett-Packard 651A Test Oscillator. Figure 1 is a photograph of the apparatus showing the distribution of the dominant secondary electric field surrounding the coil.
When the coil is energized, the liquid crystal sheets change colour almost instantly, in response to the current induced by the radial and axial electric fields around the coil, to produce the display.

The interior region is a uniform shade of blue except near the coil extremities, clearly indicating the uniform nature of the field within the coil. Indeed, the temperature differs by less than \(2-3^{\circ} \mathrm{C}\) over the entire central region of the photograph, which ranges through various shades of blue to shades of green in the original display. Near the ends of the coil, where all the field solutions quoted in this paper are modified by end effects, and hence, are only approximate, the axial electric-field intensity has decreased just enough so that not enough heating is produced to cause a perceivable liquid crystal response.

\section*{References}

1 J. S. Townsend and R. H. Donaldson, "Electrodeless discharges," Phil. Mag. 7. Sci., vol. 5, pp. 178-191, 1928.
2. N. Contaxes and A. J. Hatch, "High frequency fields in solenoidal coils," \(f\). Appl. Phys., vol. 40, No. 9, pp. 3548-3550, 1969.
3. F. S. Chute and F. E. Vermeulen, "A visual demonstration of two-dimensional electrostatic fields," Amer. J. Phys., vol. 24, pp. 1075-1077, Dec. 1974.
4. F. E. Vermeulen and F. S. Chute, "Visual demonstration of electromotive force and induced current," Amer. 7. Phys., vol. 45, pp. 309-310, Mar. 1977.

\section*{continued from page 78}

The Motorola 6800 statements that implement the flow chart are obtained by referring to the 6800 instruction set (see Sept. 1980 issue). As in the case of the 8085, we list them in mnemonic form to the right of each box, and then tabulate them with their machine code, page 77.

Note that a write operation does not reset the status flip-flop, so in the case of the p.i.a. we need to execute a dummy read to clear SFF.
Invitation. Additional problems and solutions in this area are available from Professor D. Zissos, Department of Computer Science, University of Calgary, Calgary, Canada T2N 1N4.

Fig. 8. PIA implementation of the PRINT problem.
PIA data
Programming model, in Fig. 3. Control
word 26 for both sections disables the
interrupt terminals and programs the
PIA chip to function in the following.
way.
Section A - input port
An m.p.u. read is requested by a 0 to 1
change on CA1
When m.p.u. responds (reads) CA2
changes to 0
CA pulled high by a 0 to 1 change
on CA1
CA2 pulled low by an m.p.u. read of
port A
Status flip-flop (bit 7 of control/status
register)
set by a 0 to 1 change in CA1
reset by an m.p.u. read of port A
Section B - output port
New data requested from m.p.u. by a 0
to 1 change of CB1
When m.p.u. responds (writes) CB2
changes to 1
CB2 pulled high by a 0 to 1 change
on CB1
CB2 pulled low by an m.p.u. write
into port B
Status lip-flop (bit 7 of control/status
register)
set by a to 1 change in CB1
reset by an m.p. 4. read of Dort B

Section B - output port
New data requested from m.p.u. by a 0 o 1 change of CBi
When m.p.u. responds (writes) CB2 changes to 1
on CB1
CB2 pulled low by an m.p.u. write into port B
set by a 0 to 1 change in CB1
reset by an m.p.u. read of port \(B\)

\section*{LOW-COST PRINTER FOR HOME COMPUTERS}

Graphics and lower-case letters are possible on the Amber 2400 printer costing \(£ 69.95\) excluding v.a.t. The unit prints 24 characters per line on a 58 mm -wide plain-paper roll some 90 feet long. Data rates are selectable between 75 and 9600 bits/s. Four horizontally-aligned print solenoids oscillate from side to side, each covering \(1 / 4\) of the paper width, under control of the unit's microcomputer, which also handles software routines and allows data input options. The 2400 is primarily intended for use with home computers. Amber Controls Lid, Central Way, Walworth Industrial Estate, Andover.
WW301

\section*{FREQUENCY MEASURING D.M.M.}

The main difference between this and Fluke's previous hand-held digital multimeters is the inclusion of a frequency measurement function - one of a number of additional facilities made possible by the inclusion of a Sharp 4-bit microprocessor and a cmos mea-surement-processing circuit designed and manufactured 'in house'. Frequencies from 12 Hz to 200 kHz are measured on the 8060 A in four automatically-selected

ranges, with 0.01 Hz resolution on the lowest range \((200 \mathrm{~Hz})\), and indicated on a \(41 / 2\)-digit l.c.d. Alternating voltages may be displayed directly in V r.m.s., in dBm (referred to 600 ohms), or in volts or decibels relative to a previously stored reference. This offset facility may be used with other measurement functions. Direct and al ternating voltage, a.c. and d.c. functions are in five ranges, resistance in seven, and decibels in four. Basic d.c. accuracy is \(0.04 \%\) and sensitivities are \(10 \mu \mathrm{~V}, 10 \mathrm{nA}\) and \(10 \mathrm{~m} \Omega\). A 200 nS range may be used to measure resistances up to \(10 \mathrm{G} \Omega\). Further functions include diode test, audible/visual continuity test and self test. Normally, input impedance on the direct-voltage ranges is \(10 \mathrm{M} \Omega\), but on the 200 mV and 2 V ranges, an input impedence of greater than \(1 G \Omega\) may be selected. Fluke (GB) Ltd, Colonial Way, Watford, Herts WD2 4TT. WW302

\section*{ANALOGUE/ \\ SWITCHING INTERFACE}

This IEEE-bus-controlled interface, manufactured by CIL Microsystems, provides eight anal ogue inputs, four analogue outputs and four relay-activated changeover switches, for general-purpose control and monitoring applications in research and industry. A concise set of ASCII commands are handled by a 6502 microprocessor, which can also run specific operating programs loaded from the main computer into an optional 4 K of ram. Two versions of the PCI 6000 are available, one with eight-bit resolution and one with 12 -bit resolution. Facilities include differential inputs and programmable gain, and
the relay-contact ratings are 240 V and 1A. CIL Microsystems Ltd, Decoy Road, Worthing, Sussex BN 14 8ND.
WW303

\section*{64K EPROM PROGRAMMING ADAPTER}

Any eprom programmer suitable for Texas 2532-type devices may be used to program 64 K eproms by adding an adapter made by Elan

Digital Systems. The E6 adapter has a z.i.f. socket for 2564 or 2764 devices and a ribbon cable terminated by a plug which fits into the existing programmer. Each half of the 64 K , selected by a switch, is programmed separately by the existing programmer in the usual manner. All automatic test or editing functions of the existing programmer are retained and an additional feature allows Intel 2732 or 2732A i.cs to bee read through the adapter. Elan Digital Systems Ltd, 16-20 Kelvin Way, Crawley, West Sussex RH10 2TS
WW304

\section*{CMOS R.F. SWITCH}

The IH5341 is a dual-channel r.f and video switch with t.t.1.. and c.m.o.s.-compatible control inputs, manufactured by Intersil. Each channel has three switch elements, connected in a series/shunt formation, giving an \(\mathbf{R}_{\mathrm{DS}(o n)}\) of less than

\(75 \Omega\), flat response from 0 to 100 MHz and 70 dB isolation at 10 MHz in the off state. Isolation between the two channels is greater than 60 dB at 10 MHz . Supply current is less than \(1 \mu \mathrm{~A}\) and switching speeds are 150 ns , on and 80 ns , off, giving break-before-make operation. A TO-100 package is used. Intersil Datel Ltd, 9th Floor, Snamprogetti House, Basingstoke, Hants.
WW305

\section*{EPROM ERASER}

Both models in Northern's eprom eraser range cost under \(£ 60\) excluding vat and can be used to erase up to six devices at once. The latest of these, the UVIT, is basically the same as the earlier UV1B, but with a 10 to 60 -minute time switch fitted. Lamp life is quoted as being in excess of 3000 h and all models, i.e., those mentioned for 220 to 240 V operation and two others for 110 or 240 V mains, comply with appropriate British Standards. Northern Electronics Ltd, 51 Arundel Street, Mossley, Lancs OL5 OLS.
WW306

\section*{CODED ROTARY SWITCHES}

Miniature rotary switches with ten or 16 positions, giving b.c.d. or hexadecimal outputs, have been added to the Elma range of ceramic wafer switches marketed by Radiatron. Measuring 10 by 10 by 11 mm , these switches can be obtained for mounting either horizontally or vertically on a p.c.b. and with either a screwdriver slot or spindle. Gold-plated contacts are used, giving a contact resistance of less than \(50 \mathrm{~m} \Omega\) and the contact rating is 50 V at 0.2 A between -40 and \(85^{\circ} \mathrm{C}\). Radiatron say that these switches have a life expectancy of more than \(10^{4}\) rotations. Radiatron Components Ltd, 76 Crown Road, Twickenham, Middx.
WW307

\section*{\(32 \times 8\) BIPOLAR PROM}

A 'washed emitter' process has been used to produce two 256 -bit Schottky bipolar proms with typical access times of 9ns. One, the 63 S 080 has open-collector outputs and the other, the 63 S081 has three-state outputs. Applications of these \(32 \times 8\)-bit proms include address decoders, priority encoders and random-logic elements in highspeed systems. Monolithic Memories Ltd, Lynwood House, 1 Camp Road, Farnborough, Hants GUl4 6EN.
WW308

\section*{DISPOSABLE TEMPERATURE INDICATORS}

Adhesive dots and strips for recording maximum temperatures are available from Cobonic Ltd. Within a second of reaching the temperature marked on it in both \({ }^{\circ} \mathrm{C}\) and \({ }^{\circ} \mathrm{F}\), one of five different areas on the labels, or one area on

the dots, changes irreversibly from white to black. There are 40 different temperature levels in the range, from 40 to \(260^{\circ} \mathrm{C}\), and each sensitive area changes colour at within \(1 \%\) of the specified temperature. These products are useful for monitoring and recording maximum temperatures in hazardous and inaccessible areas. Cobonic Ltd, Lantern Yard, Ludlow Road, Guildford, Surrey GU2 5NW.
WW309

\section*{BROADBAND R.F PREAMPLIFIER}

An r.f. preamplifier providing 9 dB gain and suitable for use with lowpower transceivers in the range 5 to 200 MHz can be obtained from Datong. Send/receive switching is automatic, using r.f. sensing and an internal bypass relay, and the unit is claimed to handle large signals well (intercept point +20 dBm) Applications of the model RFA include private mobile v.h.f. transceivers, marine and aeronautical band reception, scanning receivers and antenna-loss compensation. Datong Electronics Lid, Spence Mills, Mill Lane, Bramley, Leeds LS13 3HE.
WW310

\section*{NON-INVASIVE X-RAY METER}

An electronic system for non-invasive measurement of radiation intensity and exposure time in diagnostic X-ray equipment has been developed in Sweden by three researchers at the Chalmers Institute of Technology. The equipment,

produced by HB Innova Electronic and called Digi-X, consists of a measurement unit, with parameter, threshold and mode controls, and a detector which is attached to the patient. Peak kilovolt readings are indicated digitally and actual exposure time is calculated from previously stored threshold values selected by the operator. The system may also be used to check beam quality and, with an option, be used to calculate current and mAs values. HB Innova Electronic, Box 25062, S40031 Gothenburg, Sweden.
ww311

\section*{METALLIZED-FILM CAPACITORS}

Extensions in Rifa's range of metallized polypropylene capacitors have been made to include the PHE425 series. These components, with values ranging from 1.5 to 135 nF , are relatively small since they incorporate a \(4 \mu \mathrm{~m}\)-thick metallized film. Capacitance tolerances are \(1 \%, 2 \%\), or \(5 \%\) and insulation resistance is claimed to be better than \(200 \mathrm{G} \Omega\) at \(20^{\circ} \mathrm{C}, 10 \mathrm{~V}\). Working voltages, dependent on value, may be 200,100 or 63 V , direct. Rifa AB , Market Chambers, Shelton Square, Coventry
WW312

\section*{T.T.L.-OUTPUT PATTERN GENERATOR}

A hand-held pattern generator providing t.t.1.-compatible red, green and blue signals for servicing monitors and video displays is manufactured by Sadelta. Eight patterns are produced, colour bars, red, green, blue and white rasters, grey scale, cross-hatch and vertical lines, and the unit may be used for

up to four hours from one battery charge. The RGB11 is intended for servicing of commercial and hobby v.d.us, including video games, and c.c.t.v. monitors. House of Instruments, Clifton Chambers, 62 High Street, Saffron Walden, Essex CB10 IEE.
WW313
Professional readers are invited to request further details on items featured here by entering the appropriate WW reference number(s) on the mauve reply-paid card.

\section*{The Profersional Choice}

\section*{Amcron}

Since the introduction of the DC300 in 1967, AMCRON amplifiers have been used worldwide - wherever there has been a need for a rugged and reliable amplifier. Their reputation amongst professional users, throughout industry, has made the name of AMCRON synonymous with power amplification. For power you can depend on - choose AMCRON, the professional choice.

For further details contact the UK Industrial distributor:
\[
\begin{aligned}
& \text { C.A.S. EL =CTRONICS } \\
& \text { 16, ST. ALFEGE PASSAGE, LONDON SE10 } \\
& \text { TELEPHONE: } 01 \text {-853 } 5295 \\
& \text { TELEX: 923393 LASF.R G }
\end{aligned}
\]

\section*{HEMMINGS}

16 BRAND ST HITCHIN HERTS SG5 1JE

Tel: (0462) 33031 Shop opon Mon.-Sat. 9 a.m. -5.30 p.m
Closed all day Wodnosday

Professional quality electronic components, brand new and fully guaranteed. Mail order by return of post. Cash/Cheque/POs or Banker's Draft with order, payable to Hemmings Electron ics Ltd.
Official orders from schools, colloges and universities welcome. Trade and export enquiry come.
P.\&P. add 60 p to all orders under £10. Telephone your Access orders, using our \(24-\mathrm{hr}\). Ansaphone service. Please send SAE for full price list
VAT - All prices exclusive of VAT - Please add \(\mathbf{1 5 \%}\) to total cost including P.\&P No VAT on export orders or books.

\section*{DAROM SUPPLIES Dept. AW-Tel: (0925) 64764 \\ 4 Sandy Lane, Stockton Heath, \\ Warrington, Cheshire WA4 2AY SAFGAN British Made Scopes A range of high-performance, \\ OSCILIOSCOPES mifUTURE sems \\ BY LEADER} economically priced scopes featuring:

All Models feature:
\(\star\) Dual Trace
* 6 -inch rectangular CRT

Max. sensitivity \(500 \mu \mathrm{~V}\)
TV-V, TV-H sync. ALT trigger Hold OFF variable X Y Facility Preset Sync. ZModulation
LBO 524 features Delayed
-WW - 030 FOR FURTHER DETAILS
OVER E50

SOUND INVESTMENT

QUALITY REEL TO REEL \& CASSETTE TAPE HEADS
FITTING A NEW TAPE HEAD CAN TRANSFORM THE PERFORMANCE OF YOUR TAPE RECORDER. OUR FULL CATALOGUE (PRICE 5Op) ALSO INCLUDES TAPE TRANSPORTS, DISC DRIVES, PRE-AMPLIFIERS AND ACCESSORIES
POPULAR UNIVERSAL CASSETTE HEADS TO EIAJ STANDARDS C21RPS18 MONO R/P B24-07 STEREO R/P FOR DOLLY C21ES18 MONOMS. MSTE........... £9.05 . 22.13
\(\begin{array}{ll}\text { CA2RPHO4 } \\ & \text { STEREO R/P GLASS FERRRITE } \\ & \text { THE ULTIMATE LONG LIFE }\end{array}\) THE ULTIMATE LONG LIFE,
HIGH PERFORMANCE HEAD \(£ 13.34\) HIGH PERFORMANCE HEAD \(£ 13.34\)

\section*{WRONG TIME?}

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, can expand to Years, Months, Weekdays and Milliseconds, also parallel BCD output for computer or alarm and audio to record and show time on playback, receives Rugby 60 KHz atomic time signals, built-in antenna, 1000 Km range, GET the RIGHT TIME, E69.60.
60KHZ RUGBY RECEIVER, as in MSF Clock, serial data output for computer etc., decoding details and ZX81 listing for local, GMT and SIDEREAL time, £22.20.
Each fun-to-build kit (ready made to order) includes all parts, printed circuit, case, postage etc., instructions, money back assurance so GET yours NOW.

CAMBRIDGE KITS
45 (WH) Old School Lane, Milton, Cambridge. Tel: 860150

All five of the currently available Memopaks are housed in elegant black anodised aluminium cases, and are styled to fit wobble-free onto the back of the \(\mathbf{Z X 8}\) I, allowing more add-ons (from Memotech or Sinclair) to be connected

\section*{MEM:OPAK 64K MEMORY EXTENSION}
The 64 K Memopak extends the memory of the \(\mathbf{Z X 8 1}\) by 56 K , and with the \(\mathrm{ZX81}\) gives 64 K , which is neither switched nor paged and is directly addressable. The unit is user transparent and accepts commands such as 10 DIM A(9000).
Breakdown of memory areas...0-8K-Sinclair ROM. \(8-16 \mathrm{~K}\)-This area can be used to hold machine code for communication between programmes or peripherals. \(16-64 \mathrm{~K} \cdot \mathrm{~A}\) straight 48 K for normal Basic use.

\section*{MEMOPAK 32 K and 16 K MEMORY EXTENSIONS}
These two packs extend and complete the Memotech RAM range (for the time being!) A notable feat ure of the 32 K pack is that it will run in tandem with the Sinclalr 16 K memory extenslon to give 48K RAM total.

\section*{MEMOPAK HIGH RES GRAPHICS PACK}
> \&zo plus VAT
> \(\left.{ }^{5}\right]_{4}^{70}\)
> plas VAT
HRG Main Features - - Fully programmable HI-Res (\(192 \times 248\) pixels) • Video page is both memory and bit mapped and can be located anywhere in RAM. - Number of Video pages is limited only by RAM size each takes about 6.5K RAM) - Instant inverse video on/off gives flashing characters • Video pages can be superimposed • Video page access is similar to Basic plot/unplot commands • Contains 2 K EPROM monitor with full range of graphics subroutines controlled by machine code or USR function

\section*{MEMOPAK CENTRONICS TYPE PARALLEL PRINTER INTERFACE}
Main Features - - Interfaces \(Z \times 81\) and parallel printers of the Centronics type Enables use of a range of dot matrix and daisy wheel printers with ZX8I - Compatlble with ZX8I Baslc, prints from LLIST, LPRINT and COPY - Contains firmware to convert ZX8I characters to ASCII code - Gives lower-case characters from ZX8I inverse character set

Coming Soon...

A complete range of \(\mathrm{ZX81}\) plug-in peripherals Digitising Tablet RS232 Interface

We regret we are as yet unable to accept orders or enquiries concerning the above products, but we'll let you know as soon as they become available

Please make
cheques payable to MEMOTECH Ltd.
Please Debit my Access/Barclaycard account number - Please delere whichever does not epply

We want to be sure you are satisfied with your Memopak - so we offer a 14 -day money back Guarantee on all our products. Memotech Limited, 3 Collins Street, Oxford OX4 1XL, England Tel: Oxford (0865) 722102 Telex: 837220 Orchid G
U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

BSR DE LUXE AUTOCHANGER £20 Alays 12" \({ }^{\prime \prime}\) Manual. A high quality unit backed by BSR Cartridge. AC \(200 / 250 \mathrm{~V}\), Size \(131 / 2 \times 111 / 4 \mathrm{in}\). 3 speed s Ablow motor board \(21 / 2 \mathrm{in}\). Post \(£ 2\) Cut Board \(£ 1\) extra

HEAVY METAL PLINTHS Post E2 Cut out for most BSR or Garrard decks.
Silver grey finish, black trim. Size \(16 \times 133\) ainf4 DECCA TEAK VENEERED PLINTH. Post £1.50 Superior finish with space and panel for
\(183 / 4 \mathrm{in} \times 141 / \mathrm{in} \times 4 \mathrm{in}\). Black/chrome facia trim. Also with boards cut out for Garrard £3. Tinted plastic cover \(£ 6\) TINTED PLASTIC COVERS
\begin{tabular}{|c|c|c|c|}
\hline 7 & & & Post \(£ 2\) \\
\hline 177/8×131/8×31/4in. & £6 & \(181 / 4 \times 12^{1 / 2} \times 3 \mathrm{in}\). & 66 \\
\hline \(171 / 4 \times 93 / 8 \times 31 / 2 \mathrm{in}\). & E3 & \(143 / 8 \times 12^{1 / 2} \times 2^{7 / 8 i n}\). & E5 \\
\hline \(133 / 4 \times 12 \times 21 / 4 \mathrm{in}\). & E5 & 165 右 \(\times 13 \times 4 \mathrm{in}\). & E8 \\
\hline \(151 / 4 \times 131 / 2 \times 4 i\) & £6 & \(141 / 2 \times 131 / 8 \times 23 / 4 \mathrm{in}\). & E5 \\
\hline \(17 \times 12^{7 / 8} \times 3^{1 / 2 i n}\) & ¢6 & \(171 / 4 \times 13^{3 / 4} \times 4^{1 / 8 i n}\). & E6 \\
\hline
\end{tabular} \(\begin{array}{lll}51 / 4 \times 13^{1 / 2} \times 4 \mathrm{in} . & \mathrm{f} & 141 / 2 \times 131 / 8 \times 2^{3 / 4} \\ 7 \times 12^{7} / 4 \times 3^{1 / 2 i n} & \mathrm{f} & 171 / 2 \times 133\end{array}\)

Callers Only (nat suitable for post)

\section*{BSR SINGLE \\ PLAYER DECKS \\ BSR P232 BELT
QUALITY DECK \\ Manual or automatic pla \\ Cueing device. Bargain price \\ £24 \\ Cueing device. Bargain price \\ ost E2}

BSR P204 SINGLE PLAYERS SPECLAL OFFERS
Two speed \(33 / 45\) r.p.m. hi-fi decks with stereo
cartridges, cueing device and snake arm.
Ceramic - \(240 \mathrm{VAC} £ 15\) or 9 V DC \(£ 19\)
Magnelic -240 V AC \(£ 20\) or 12 V DC \(£ 24\)
Post \(£ 2\) ea
GARRARD 6 - 200 SINGLE PLAYER DECK \(£ 22\) Post \(£ 2\) Brushed Aluminium Arm with stereo ceramic cartridge Stop/Start, Large Metal Turntable. Cueing Device.
Ready cut mounting board \(\mathbf{£ 1} 1\) extra.
GARRARD SP25 MK 4. Less cartridge. Balanced arm.
Few only.

\section*{3-speed single player}
£30 Post \(£ 2\)

\section*{BATTERY ELIMINATOR MAINS to 9 VOLT D.C.}

Stabilised output, 9 volt \(400 \mathrm{~m} . a\). U.K. made in plastic case with screw terminals. Safety overload cut out. Size
\(5 \times 31 / 4 \times 21 / 2 i n\). Transformer Rectifier Unit. Suitable Radios, Cassettes, models, \(£ 4,50\). Post 65 p .
DE LUXE SWITCHED MODEL STABILISED. E7.50. Post f1. \(3-6-71 / 2-9\) volt 400 ma DC max. Universal output plug and lead. Pilot light, mains switch, polarity switch.
ORIL SPEEO CONTROLERLIGHT OIMMER KTT

EMI 131⁄2x8in.LOUDSPEAKERS
Model 450, 10 watts R.M.S. with 89.50
moving coil tweeter and two-way moving coil tweeter anm
crossover; 3 ohm or 8 ohm.
"Final Clearance"
SUITABLE BOOKSHELF CABINET
£6.50. Size \(18 \times 11 \times 6\) in. Post \(£ 1.50\).
RELAYS. \(6 V\) DC 95 P . 12 VDC E1.25. 18 V E1.25. BLANK ALUMINIUM CHASSIS. \(6 \times 4-£ 1.45 ; 8 \times 6-£ 1.80\) 10×7-£2.30; \(12 \times 8\) - £2.60; 14×9-£3; \(16 \times 6-£ 2.90\) \(16 \times 10-\) E3.20. All \(21 / 2 \mathrm{in}\). deep. 18 swg.
ANGLEALI. \(6 \times 3 / 4 \times 3 / 4 \mathrm{in} .18 \mathrm{swg}\). 30p.
ALUMINIUM PANELS, \({ }^{18 s W g}\). \(6 \times 4-45 \mathrm{p}\); \(8 \times 6-75 \mathrm{p}\); \(14 \times 3-75 \mathrm{p}\); \(10 \times 7-95 \mathrm{p} ; 12 \times 8-\mathrm{E1.10}\); \(12 \times 5-75 \mathrm{p}\) \(16 \times 6\) - \(£ 1\). \(10 ; 14 \times 9-£ 1.45 ; 12 \times 12-£ 1.50 ; 16 \times 10-£ 1.75\). PLASTIC AND ALIBOXES IN STOCK. MANY SIZES ALUMINIUM BOXES. \(4 \times 4 \times 1 / 2 £ 1.4 \times 2^{1 / 1 / 2 \times 2 £ 1.3 \times 2 \times 1} 61\). \(6 \times 4 \times 2 \times 1.60 .7 \times 5 \times 3 \quad £ 2.40 .8 \times 6 \times 3\) £2.
\(12 \times 5 \times 3 £ 2.75 .12 \times 8 \times 3 £ 3.60\). All with lids.
BRIDGE RECTFIER 200 V PIV \(2 \mathrm{a} £ 1.4 \mathrm{a}\) £1.50. \(8 \mathrm{a} £ 2.50\) TOGGLE SWITCHES SP 30p. DPST 400. DPDT 50p. MINIATURE TOGGLES SP 40p. DPDT 60 p
RESISTORS. \(10 \Omega\) to 10 M . \(1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}, 1 \mathrm{~W}, 2 \mathrm{p}\) : 2 W 10 p .
HIGH STABILITY. \(1 / 2 \mathrm{w} 2 \% 10\) ohms to 1 meg. 10 p .
Ditto \(5 \%\). Preferred values, 10 ohms to 10 meg , 3p.
WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt 20p. PICK-UP CARTRIDGES SONOTONE 9TA 2.50 BSR Stereo Ceramic SC7 Medium Output E2. SC12 E3. PHILIPS PLUG-IN HEAD. Stereo Ceramic. AU1020 (G306 GP310-GP233-AG3306, £2. A.D.C., OLM \(30 / 3\) Magnetic \(£ 5\). ANTEX SOLDERING IRON 240 V 15 W 3 mm bit \(£ 5.25\) ANACK PLUGS Mono Plastit 25 p ; Metal 30 p .
JACK PLUGS Stereo Plastic 30 ; Metal 35p. JACK SOCKETS Mono Open 20p; Closed 25 p. JACK SOCKETS Stereo Open 25p; Closed 30p. FREE SOCKETS - Cable end 30p. Metal 45p. 2.5 mm and 3.5 mm JACK SOCKETS 20p. Plugs 20p. DIN TYPE CONNECTORS
Sockets 3 -pin, 5 -pin 10p. Free Sockets 3-pin, 5 -pin 25p. Plugs 3-pin 20p; 5 -pin 25p; Speaker plugs 20p; Sockets 15p PHONO PLUGS and SOCKETS ea. 15p.
Free Socket for cable end 20 p . Screened Phono Plugs 25 p . 300 ohm TWiN RIBBON FEEDER 10 p Yd .
U.H.F. COAXIAL CABLE SUPER LOW LOSS, 25p yd COAX PLUGS 30p. COAX SOCKETS 20p.
NEON INDICATORS 250 V , round 30 p . Rectangular 45p.
SOUO DIEL ECTRIC 100 pt . 500 pf \(£ 1.50\).

\section*{POTENTIOMETERS Carbon Track} \(5 \mathrm{k} \Omega\) to \(2 \mathrm{M} \Omega\). LOG or LIN. L/S 50p. DP 90p. Stereo L/S

MINI-MULTI TESTER NEW
De luxe pocket size precision moving
coil instrument. Impedance + Capacit
- 4000 o.p.v. Battery included.

11 instant ranges measu
AC volts \(10,50,500,1000\)
DC amps \(0.250 \mu \mathrm{a}, 0-250 \mathrm{~mA}\)
Continuity and resistance
0 to 600 K ohms
De Luxe Range Doubler Model,
£6.50 Post \(65 \mathrm{p} \mid 50,000\) o.p.v. 118.50 . \(7 \times 5 \times 2\) in. Post 51

\section*{NEW PANEL METERS \(£ 4.50\)}

50~а, 100 на, 500 на
\(1 \mathrm{ma}, 5 \mathrm{ma}, 50 \mathrm{ma}, 100 \mathrm{ma}\),
500 ma , \(1 \mathrm{amp}, 2 \mathrm{amp}\) 25 volt, VU Meter
\(21 / 4 \times 2 \times 11 / 4\) in.

\section*{RCS SOUND TO LIGHT CONTROL KIT}

Kit of parts to build a 3 channel sound to light \(£ 15\)
unit. 1,000 watts per channel. Suitable for home \(£ 15\)
or disco. Easy to build. Full instructions supplied. Post \(95 p\)
Cabinet \(\mathbf{£ 4 . 5 0}\) extra. Operates from 200 MV to 100 W .
200 Watt Rear Reflecting White Light Bulbs. Ideal for Post 65p. Suitable panel mounting holders 85 p.

RCS "MINOR" 10 watt AMPLIFIER KIT £14 This kit is suitable for record players, guitars, tape playback, electronic instruments or small PA systems. fication 10 W per channel; size \(91 / 2 \times 3 \times 2\) in. SAE details. Full instructions supplied. 240V AC mains. Post \(£ 1\). RCS STEREO PRE-AMP KIT. All parts to build this pre-amp. Inputs for high, medium or low imp \(£ 2.95\) Can be ganged to make multi-way stereo mixers Post 65p MAINS TRANSFORMERS
 \begin{tabular}{l}
\(2200045 \mathrm{~mA}, 6.3 \mathrm{~V} 2 \mathrm{~A}\) \\
250 V 60 mA \\
\hline VV 2 A
\end{tabular}

25NGOMA.6V
AUTO 115 V 10 240V 150 W E9. 250 W £ 10.400 W £11. \(500 \mathrm{~W} £ 12.00\) E2 GENERAL PURPOSE LOW VOLTAGE
\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular}

chahgen tran

\section*{OPUS COMPACT}

SPEAKERS £22 pair post \(\mathrm{E}_{2}\)

\section*{TEak Veneered cab}

50 to \(14,000 \mathrm{cps} .4 \mathrm{ohm}\) or 8 ohm
OPUS TWO \(15 \times 10^{1 / 2} \times 73 / 4 / 25\) watt
2-way system \(£ 39\) pair. Post \(£ 3\).
LOW VOLTAGE ELECTROLYTICS Wire ends 10 p \(1 \mathrm{mf}, 2 \mathrm{mf}, 4 \mathrm{mf}, 8 \mathrm{mf}, 10 \mathrm{mf}, 16 \mathrm{mf}, 25 \mathrm{mf}, 30 \mathrm{mf}, 50 \mathrm{mf}, 100\) \(\mathrm{mf} / 10 \mathrm{v} ; 50 \mathrm{mf} / 6 \mathrm{v} ; 68 \mathrm{mf/} 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v}\) \(25 v: 100 \mathrm{mf} 10 \mathrm{v} ; 150 \mathrm{~m} / \mathrm{m}^{2} \mathrm{lvv} ; 200 \mathrm{~m} / 10 \mathrm{v} / 16 \mathrm{v}\); 220 \(\mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 1000 \mathrm{mf} / 2.5 \mathrm{v} / 4 \mathrm{v} / 10 \mathrm{v} ; 1500 \mathrm{~m}\)
\(6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v}: 2200 \mathrm{~m} / 6 \mathrm{v} / 10 \mathrm{v} ; 3300 \mathrm{mf} / 6 \mathrm{v} ; 4700 \mathrm{mf} / 4 \mathrm{v}\).
500 mF 12 V 15 p ; \(25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} .1200 \mathrm{mF} 76 \mathrm{~V} 86 \mathrm{p}\).
\(1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}\).
\(2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 1200 \mathrm{mF} 75 \mathrm{~V} 80 \mathrm{p}\). \(2200 \mathrm{mF} 63 \mathrm{~V} 90 \mathrm{p} .2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{Op} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p}\) 450 mF 64V \(£ 2.4700 \mathrm{mF} 63 \mathrm{~V}\) £1.20
HIGH VOLTAGE ELECTROLYTICS
\(2 / 500 \mathrm{~V} 45 \mathrm{p} 8+8 / 450 \mathrm{~V} \quad 75 \mathrm{p} 32+32+16 / 350 \mathrm{~V} 90 \mathrm{p}\) \(\begin{array}{llll}2 / 500 \mathrm{~V} & 45 \mathrm{p} \\ 8+8 / 850 \mathrm{~V} & 75 \mathrm{p} & 32+32+16 / 350 \mathrm{~V} 90 \mathrm{p} \\ 8 / 450 \mathrm{~V} & 45 \mathrm{p} \\ 8+8 / 500 \mathrm{~V} & \mathrm{E1} 100+100 / 75 \mathrm{~V} & 65 \mathrm{p} \\ 16 / 350 \mathrm{~V} & 4508+16 / 450 \mathrm{~V} & 75 \mathrm{p} 150+200 / 275 \mathrm{~V} & 70 \mathrm{p}\end{array}\) \(\begin{array}{llll}16 / 350 \mathrm{~V} & 45 \mathrm{p} \\ 32+16 / 450 \mathrm{~V} & 75 \mathrm{p} 150+200 / 275 \mathrm{~V} & 70 \mathrm{p}\end{array}\)
 \(50 / 450 \mathrm{~V} \quad 95050+50 / 300 \mathrm{~V} \quad 50 \mathrm{p} 50+50+50 / 350 \mathrm{~V} 95 \mathrm{p}\) CAPACITORS WIRE ENO High Voltage
\(.001, .002, .003, .005, .01, .02, .03, .05 \mathrm{mfd} 400 \mathrm{~V} 5 \mathrm{p}\)
1MF 200 V 5 p. 400 V 10 p .600 V 15 p .1000 V 25 p .
.22 MF 350 V 12 p .600 V 20 p .1000 V 30 p .1750 V 50 p.
.47 MF 1500 V 10 p .400 V 20 p .630 V 30 p .1000 V 60 p VALVE OUTPUT Transformers (small) 90p.
TRIMMERS 30 pF , 50 pF , 10 p .100 pF , 150 pF , 500 pF 30 p MICROSWTTCH SINGLE POLE CHANGEOVER 40p SUB-MIN MICROSWITCH, 50p, Single pole changeove GEARED TWIN GANGS 25pF 95p
GEARED W \(365+355+25+25\) FF
TRANSISTOR TWIN GANG. Japanese Replacement \(£ 1\) SOLID DIELECTRIC \(100 \mathrm{pf} £ 1.50,500\) pf \(£ 1.50\).

\section*{HEATING ELEMENTS, WAFER THIN}

Size \(11 \times 9 \times 1 / 8 \mathrm{in}\). Operating voltage 240 V , 250W approx. Suitable for Heating Pads, Food Warmers, Convector
Heaters, Propagation, etc. Must be clamped between two sheets opetal, ecramic
ONLY 60 P EACH (FOUR FOR £2) ALL POST PAID.

NEW baker Star sound
high power full range quality loudspeakers produced to give exceptional
reproduction. Ideal for Hi-Fi, music P.A. or discotheques. These loudspeakers are recommended where
high power handling is required with quality results. The high flux ceramic magnet ensures clear response.

BAKER 150 WATT MIXER/POWER
AMPLIFIER \(£ 89\) Post \([2\)
For Discotheque, Vocal, Public Address. Three speaker outtets for 4,8 or 16 ohms. Four high galn inputs, \(20 \mathrm{mv}, 50 \mathrm{~K}\) ohm. Individual volume conirols "Four channel" mixing. 150 watts Response \(25 \mathrm{~Hz}-20 \mathrm{kHz} \pm 3 \mathrm{~dB}\). Integral Hi -Fi preamp separate Bass \& Treble. Size \(-16^{\prime \prime} \times 8^{\prime \prime} \times 5^{1 / 2^{\prime \prime}}\). Wt \(-14 / \mathrm{b}\) : Master volume control. British made. 12 months' guarantee. 240 V A.C. mains or 20 V to order. All transistor and solid state.
MOND SLAVE VERSION \(£ 75.100\) Valt Line Model \(£ 104\).
New Stereo Slave Model \(150+150\) watt f 125 . Post f
BAKER'S NEW PA150 MICROPHONE PA AMPUFIER E129. PP © \(£\).
4 channel 8 inputs, dual impedance, \(50 \mathrm{~K}-600\) ohm 4 channel mixing, volume, treble, bass. Presence controls, Master volu

Mixer, Volurne, Controls, Master Bass, Treble Gain. RCS offers MOBILE PA AMPIFIEAS. Outputs 4-8-16 ohms 20 -wath RMS 12vDC, AC \(240 \mathrm{~V}, 3\) inputs. 50 K £ 46 PP £2 Mic 1: Mic 2: Phono: aux outputs 4 or \(B\) or 16 and 100 v line 60 -watt RMS, Mobile 24 volt DC \& 240 -volt AC mains. inputs 50 K . 3 mics +1 music. Outputs \(4-8-16 \mathrm{ohm}+100\) volts line ES5 PP \(\mathbf{Z}\). Bamery only Shoulder PA Amplifier 10w max. Includes mike and speaker, OK for meetings, crowd control, stalls, fetes, traders

\section*{FAMOUS LOUDSPEAKERS}
"SPECIAL PRICES
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline MAKE & MODEL & SIZE & Watts & OHMS & PRICE & POST \\
\hline SEAS & TWEETER & 4 in & 50 & 8 & 69.50 & £1 \\
\hline GDODMANS & TWEETER & 31/2in & 25 & 8 & £4.00 & ¢1 \\
\hline AUDAX & TWEETER & 4 in & 30 & 8 & £6.50 & \(¢_{1}\) \\
\hline SEAS & MID-RANGE & - 4 in & 50 & 8 & 57.50 & \(E 1\) \\
\hline SEAS & MID-RANGE & 5in & 80 & 8 & ¢12.00 & \(f 1\) \\
\hline SEAS & mid-Range & 41/2in & 100 & 8 & \(\underline{12.50}\) & ¢1 \\
\hline G000MANS & HIFAX & \(71 / 2 \times 41 / 4\) & 100 & 4/816 & 128 & 2 \\
\hline GOODMANS & WOOFER & 8 in & 25 & 48 & ¢6.50 & 11 \\
\hline GOODMANS & HB & 8 in & 60 & 8 & \$12.50 & 1 \\
\hline RIGDNDA & GENERAL & 10in & 15 & 8 & E5 & E \\
\hline AUDAX & WOOFER & 10 in & 50 & 8 & ¢16.00 & \(\underline{2}\) \\
\hline GO00MANS & HPG & 12 in & 120 & 8.15 & \(\underline{29.50}\) & f2 \\
\hline GOODMANS & GR12 & 12in & 90 & 815 & E27.50 & 12 \\
\hline GODODANS & HPD & 12 in & 120 & 815 & E29.50 & C2 \\
\hline
\end{tabular}

SPEAKER COVERING MATERIALS. Samples Large S.A.E.
.A.F. LOUDSPEAKER CABINET WADDING 18 in wide 35 p ft.
 CROSSOVERS. TWO-WAY \(3000 \mathrm{c} / \mathrm{s} 30\) watt 8 or 15 ohm 3 . 3 -way \(950 \mathrm{cps} / 3000 \mathrm{cps}\). 40 watt ra
LOUOSPEAKER BARGAINS
\(3 \mathrm{ohm}, 5 \mathrm{in}, 7 \times 4 \mathrm{in}, £ \geq .50 ; 61 / 2 \mathrm{in}, 8 \times 5 \mathrm{in}, £ 3 ; 8 \mathrm{in}, £ 3.50 .10 \mathrm{in}, \mathrm{E5}\). \(B \mathrm{ohm}, 2 \% \mathrm{in}, \mathcal{Z i n}, \mathfrak{\in Z} ; 5 \mathrm{in}, \mathfrak{£ 2} 2.50 ; 61 / 2 \mathrm{in}, \mathfrak{£ 3} ; 8 \mathrm{in}, \mathfrak{£ 4 . 5 0} ; 12 \mathrm{in}, \mathfrak{£}\). 15 ohm, \(31 / \mathrm{kin}, 5 \times 3\) in, \(6 \times 4\) in, 950
\(25 \mathrm{ohm}, 3 \mathrm{in}, \mathbf{E 2} ; 5 \times 3 \mathrm{in}, 7 \times 4 \mathrm{in}, \mathbf{£ 2} .50 .120 \mathrm{ohm}, 31 / \mathrm{in}\) dia. \(£ 1\).
CASSETTE MONO REPLAY. Complete working \(£ 12.50\)
CAR CASSETTE MECHANISM. 12 V Sterso Head \(\mathrm{E5}\) THE "MNSTATT" BULK TAPE ERASER
Suitable for cassettes and all sizes of tape reels and lead (120 volt to order).
Will aiso demagnetise small
Head Demagnetizer only E5.
R.C.S. LOWVOLTAGE STABILISED

POWER PACKKITS
E3.95. Post 65p All parts and instructions with Zener diode printed circuit, mains transformer 240 V a.c. Output 6 or \(7 / 2\) or 9 or

WW－ 062 FOR FURTHER DETAILS

Separate 12 V windings Pri 220－240 Ref． 112 v Amps \(\frac{12 \mathrm{v} \text { \＆P\＆P }}{24 \mathrm{v}}\) \begin{tabular}{lllll}
Ref．\(\ 12 \mathrm{v}\) Amps & 24 v & \multicolumn{1}{c}{} & P\＆P \\
242 & 300 mA & 150 mA & 2.41 & \(\frac{.90}{}\) \\
213 & 1 & 0.5 & 3.19 & 1.20
\end{tabular}

30 VOLT RANGE
Sec．Vorts available 3， \(4,5,6,8,5,10,12\)
\(15,18,20,24,30 \mathrm{~V}\) or \(12 \mathrm{~V}-0.12 \mathrm{~V}\) or \(15 \mathrm{~V}-0.15 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Amps} \\
\hline Raf． & 30 v 15 v & E & Plep \\
\hline 112 & 0.51 & 3.19 & 1.20 \\
\hline 79 & 12 & 4.32 & 1.40 \\
\hline 3 & 24 & 6.99 & 1.60 \\
\hline 20 & 3 A 6 & 8.10 & 1.85 \\
\hline 21 & 4 M 8 & 9.67 & 1.90 \\
\hline 51 & 5 p 10 & 11.95 & 2.00 \\
\hline 117 & 6 － 12 & 13.52 & 2.02 \\
\hline 88 & 8 －16 & 18.10 & 2.26 \\
\hline 89 & 1020 & 20.88 & 2.24 \\
\hline 90 & 12 24 & 23.20 & OA \\
\hline 91 & 1530 & 26.60 & 3.00 \\
\hline 92 & \(20 \quad 40\) & 35.64 & 4.83 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l}
60 VOLT RANGE \\
Prio－120V×2 \\
\(2 \times 30 \mathrm{~V}\) tapped secs volts available \(6,8,10,12,16,18,20,24,30,36,40\) ， \(48,60 \mathrm{~V}\) ，or \(24 \mathrm{~V}-0-24 \mathrm{~V}\) or \(30 \mathrm{~V}-0-30 \mathrm{~V}\) Amps
\end{tabular}}} & \multicolumn{5}{|l|}{SCREENED MINIATURES Pri 240 V} \\
\hline & & & & & & & & \\
\hline & & & & 238 & 200 & & 3.11 & \\
\hline & & & & 212 & 1A，1A & 0－6，0－6 & 3.4 & 1.20 \\
\hline & & & & 13 & 100 & 9－0．9 & 2.59 & 0 \\
\hline Ref． 60 & \％30v & E & P\＆P & 235 & 330，330 & 0－9，0－9 & 2.41 & 0 \\
\hline 1240.5 & － 1 & 4.70 & 1.50 & \multicolumn{2}{|l|}{207 500，500} & 0－8－9，0－8－9 & 3.36 & 1.20 \\
\hline 126 & 2 & 7.15 & 1.50 & \multicolumn{2}{|l|}{208 1A，1A} & 0－8－9，0－8－9 & 4.27 & 1.40 \\
\hline 1272 & A & 9.20 & 1.90 & \multicolumn{2}{|l|}{236 200，200} & 0－15，0－15 & 2.41 & ． 90 \\
\hline 1253 & M 6 & 13.31 & 2.02 & \multicolumn{2}{|l|}{239 50MA} & 12－0－12 & 3.11 & － \\
\hline 1234 & 8 & 15.15 & 2.26 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{ll}
214 & 300,300 \\
221 & 700 \\
(\mathrm{DC})
\end{array}
\]}} & 0－20，0－20 & 3.39 & 1.20 \\
\hline 405 & 10 & 19.16 & 2.24 & & & 20－12－0－12－20 & 4.13 & 1.20 \\
\hline 1206 & 12 & 21.86 & 2.64 & \[
\begin{aligned}
& 221 \\
& 206
\end{aligned}
\] & \multirow[t]{3}{*}{\begin{tabular}{l}
1A，1A \\
500，500 \\
1A，1A
\end{tabular}} & 0－15－20，0－15－20 & 5.60 & 1.60 \\
\hline 1218 & 16 & 30.72 & OA & \multirow[t]{2}{*}{} & & 0－15－27，0－15－27 & 4.83 & 1.50 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 12210 \\
& 18912
\end{aligned}
\]} & 20 & 35.76 & OA & & & 0－15－27，0－15－27 & 7.30 & 1.60 \\
\hline & \multicolumn{2}{|r|}{\(24 \quad 41.22\)} & OA & \multicolumn{5}{|l|}{AUTO TRANSFORMERS} \\
\hline \multicolumn{4}{|l|}{400／440V ISOLATORS： 400／440 to 200／240V} & \multicolumn{5}{|l|}{Voltages available 105，115，190，200，210， 220, 230，240．For step up or step down．} \\
\hline VA & Ref． & E & Pfop & \multirow[t]{2}{*}{Ref．} & VA（Watts & TAPS & f & \\
\hline 60 & 243 & 8.11 & 1.50 & & \(150-10\) & －210－240V & 2.39 & 1.20 \\
\hline 250 & 246 & 16.07 & OA & & 80 0－10 & －210－240V & 4.84 & 1.40 \\
\hline 350 & 247 & 19.88 & OA & & 150 0－10 & －200－220－240V & 6.48 & \(1.60{ }^{\circ}\) \\
\hline 500 & 248 & 24.77 & OA & & \(5000-10\) & －200－220－240V & 13.30 & 2.24 \\
\hline 1000 & 250 & 50.53 & OA & 84 & 1000 0－10 & －200－220－240V & 22.70 & 2.80 \\
\hline 2000 & 252 & 74.79 & OA & \multirow[t]{2}{*}{93} & 1500 0－10 & －200－220－240V & 28.17 & OA \\
\hline 3000 & 253 & 104.86 & OA & & 2000 0－10 & －200－220－240V & 42.14 & OA \\
\hline 6000 & 254 & 207.92 & OA & 95 & \multirow[t]{2}{*}{3000
4000
\(0-1\)} & －200－220－240V & 71.64 & OA \\
\hline \multicolumn{4}{|l|}{\multirow[b]{3}{*}{\begin{tabular}{l}
CASED AUTOS \\
240 V cable input USA 115 V outlets
\end{tabular}}} & \multirow[t]{2}{*}{80} & & 200－220－2 & 93.01 & \\
\hline & & & & & 000 & 00－220－ & 108.30 & \\
\hline & & & & \multicolumn{5}{|l|}{} \\
\hline \multicolumn{4}{|l|}{VA Price Pat Ref} & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{CONSTANT VOLTAGE ：Ventilated trans－
TRANSFORMERS
For＇clean＇mains to}} \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{r}
20 \\
20 \\
\hline
\end{array}
\]} & 17.21 & 1.25 & Sow & & & & & \\
\hline & c9． 35 & 1.50 & 64 W & \multicolumn{2}{|l|}{For＇clean＇mains to computers，peripherals．} & rals．．sl & s；s & \\
\hline 150 & ¢12．10 & 1.84 & 4 W & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 250VA } £ 137.36 \mathrm{l}+\mathrm{p} \text { 号 } \\
& 500 \mathrm{VA} 159.43
\end{aligned}
\]}} & p & grey & \\
\hline 250 & E14．73 & 1.60 & 69 W & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & I，ha & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 1000 \\
& 2000
\end{aligned}
\]} & \({ }_{\text {E } 23.14}\) & 2.24
2.80 & 67W & & & & & \\
\hline & \[
\begin{aligned}
& E 33.74 \\
& 660.47
\end{aligned}
\] & OA & 95W & \multicolumn{5}{|l|}{T月ी日月} \\
\hline \multicolumn{4}{|c|}{7．5－0－7．5V（15VCT）} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\[
\text { ATA } L: \operatorname{E} \text { Ex-stock }
\]}} & & \\
\hline Ref． & Amp & Price & P\＆P & & & & & \\
\hline 171 & 500 mA & 2.53 & ． 90 & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\(30 \mathrm{VA} 60 \mathrm{VA} 100 \mathrm{VA} 160 \mathrm{VA} 230 \mathrm{VA} 330 \mathrm{VA} 530 \mathrm{VA}{ }^{\text {l }}\)}} \\
\hline 172 & 1 A & 3.59 & 1.20 & & & & & \\
\hline 173 & 24 & 4.35 & 1.20 & \multicolumn{5}{|c|}{Send stamp for list} \\
\hline 174 & 3A & 4.54 & 1.20 & \multicolumn{5}{|c|}{\multirow[t]{2}{*}{PLEASE ADD 15\％VAT AFTER P\＆P Overseas post extre}} \\
\hline 17 & 4 A & 6.93 & 1.40 & & & & & \\
\hline
\end{tabular}

\section*{OTHER PRODUCTS}

\section*{COULD OSCILLOSCOPES SET A HICHER STANDAR}

 HEWLETT PACKARD AUDIO SIGNAL GENERATOR THP OOSAG TEKTRONIX AMPLIFIER Iype 112 SES ABSOAP PION WAT MEEER YYPE TE2600 2-1000 MHZ: 100 Watis 50 ot fin

 TEKTTONX P LUG -N Hpe TEETRONX PUGG-N IPPe M4 Trace DC-COMHZ
TEKTAONIXPLUG-IN rpe 0 Operational Amplifier -
TEKTRONXX PLUG-N vpe RTransistor Rise Time.
TEKTRONIX PLUG./N type W Differential Comparator.
TEKTRDNIX PLUG. IN ype \(\mathbf{Z}\) Differential Compar
HEWLETI PACKARO LCR BRIDGE YYP 4261 A ...
HEWETT PACKARO AMPLIFIER tyPe 462A
HEWLET PACKARD DC CURENT SOUCE TVE 61818 O-1 DOV: O-250MA
FAST RESPONSE RECDRDER TYPD H3020-3 (3 channell) Brand new.
HEWLETT PACKARD AUDIO OSCILLATOR Yyo 2001.
HEWLET PACKARD PULSE GENEAATOR Model 212 .
HEWETT PACKARD DC MICRO VOLT AMMETEA TYDQ 425 A
HEWETT PACKARD DSCILLDSCDPE 182A with 1B6BA and 1825A. 75MHZ DUa

\[
\begin{aligned}
& \text { AVO TANSIITOR ANALYSER Ype CT446... } \\
& \text { AVO } \\
& \text { MARCONI UNIVERSAL BRIDGE サpP TFB68A }
\end{aligned}
\]

MARCONI (SANDEAS) MICRO WAVE POWER MEEER TyPe 6598
MARCONI UHF SIGNAL GENERATOR YYP TF1050...................
MARCONI FM SIGNAL GENERATOR type TF1O77/1 19.7-102
MARCONI SUPPRESSED ZERO VOLTMETER TYpe TF1377,
MARCONI VARIABLE ATTENTUATDR type TF1073A2S ICT421
ERNST TURNER 2OKV ELECTROSTATIC VOLTMETER 6 inch....

MARCONI AC MLLIVOLTMETER tyo IF2600 10 Hz - 6
8 K DEVIATION BRIDGE type 1503
\& K DEVIATION BRIDGE TyP 150
8 \& K MICROPHONE AMPLIFER YYPe 2802
B \& K MICROPHONE AMPLIFER YYP 2605
8 \& K MICROPHONE AMPLIFER THPe 2605
\& K BEAT FRERUENCY OSCILLATOR

 SOLARTRON/SCHLUMBERGEA SYNTH. SSB GENERATOR YPE SSB30 with MDOLATOR MA3O 10 HZ -32MHZ aRADLEY MULTMETER type CTAIIC
MOSELEY WAVEFORM TRAN SLATOR TYPE 101,
HDUSTON INSTRUMENTS LOG VOLTMERER-CONVERTOR MOdel HLVC150 HOUSTON INSTRUMENTS LOG VOLTMETER-CONVERTOR Model HLVC150......280
PDLARAD FELO STRENGTH METER type FIM-82 with RF TUning Unit FIM-K2 7360 POLAOMHZ
HEWET PACKAAD DIGITAL VOLTMETEA type 34608 ATH CONVEATER Yype \(3461 \mathrm{~A}+1-0.000 \mathrm{M}\)

증
53 SANDERS OSCILLATORTYPE CLCZ-4
 GENERAL RADIO MICAOWAVE OSCILATOR YYe 1360 B \(1.7-1.1 \mathrm{GHZ}\) -
 Two Channel Input type 5485A..22 GENERAL AADIO DECADE CAPACITOR 1413 with ANAIOG LIMIT COMPARATO 1782 and IMPEDANCE COMPARATOR 1654 - INTENSITV METER IyPE N-M 524 STODDART RADIO INTERFERENCE \& FIELD INTENSITY MET BRANOENEURGH HIGH VOLTAGE GENERATOR YPO MASO. BRANENBURGH HIGH VOLTAGE P.U. Model 705. Metered 0-15KV. \(+1-\cdots \cdots\) BELIX POWER UNTI TYPE CMT3001, +1100 (2 units). As Above but SPEEO 45.5-50 -75.
RACAL H.F. SELECTIVE ANALYSER TYPB 9056 .
RACAL UHF FREOUENCY METER
RACAL UOOMHZ DECADE DIVIOER TYPQ 9010
RACAL BOMMHZ DECADE DIVIOER type 9010 ..
RACAL AUTO FFEOUENY CONVERTOR TYPE 803 500MHZ
RHODE \& SCHWARZ NOISE GENERATOR SKTU BNA151/250 3-1000MHZ
A\& S UHF TEST RECEIVER \(8 N 1523280-940 \mathrm{MHZ}\)
A \& F FAEUENCY METER VHF-UHF \(30-30 \mathrm{MHZ}\) tyP WID BN4 2

A\& S WIDE BAND SIG GEN Typa SBF BN 4085110 HZ -10MHZ
A\& S SIGNAL GENERATOR NYO SMAR BN4123 \(30 \mathrm{HZ}-30 \mathrm{MHZ}\) H\& S CAPACTTANCE MEEEA BN5201
ISOLATING TRANSFORMEA 24 NN Input 240 V Outu 1300 Wetts.
AUTO TRANSFORMER 1.4 KVA Pri Volis 90,240 Soc Vorts 115 .-

 PHILIPS VIDEO COLOUR TEST GENERATOR type PM5522 No case. \(100 \mathrm{MHZ}+1-1 \%\) RF 0 OP 3 mV pk-pl.
100MHZ \(+1-1 \%\) RAF O/P 3 mV pk-p
PHILIPS COMPARATOR 27BKZ
PHLLIPS AUTOMATC ELECTRONIC VOLT OHM METEE YPO PM 2405
B \& K AUTOMATIC VIBATION EXCIER COMTREL

ADVANCE PULSE GENERATOR type PG5002D.
GAUMONT KALEE FUTTE METER TyPe 1740 ...
ADVANCE SIGNAL GENERATOR L.F. type
ADVANE EATCH CDUNTR Type 4841-
ADVANCE AUDIO SIGNAL GENEAATDR type JI
ADVANCE SIGNAL GENERATOR YPO E2 IOOKHZ-100MHZ
S\% PYE SCALAMP 4OKV RMS MaX ELECFROSTATIC VOLTMETEA
97 PYE SALAMP 2KVV RMS Max LECTROSTATIC VOLTMETER
99 RANK ABENA E.H.T. MEIER O-3OKV

PLEASE CHECK AVAILBILTY BEFORE ORDERING
COMPONENT LIST AVAILABLE SA.E OR PHONE
MARCONI AM/FM SIGNAL GENERATOR type TF1066B/6S 10-470 MHZ in 5 bands £250 each Carriage \(£ 6\).
WAYNE KERR COMPONENT BRIDGE type B521 (CT 375) Resistance \(1 \mathrm{mOhm}-1000\) MegOhm Capacitance 1 pF - 5000 Kuf Inductance \(1 \mu \mathrm{H}-500 \mathrm{kH}\). With copy of manua
AVO VALVE TESTER type CT160 (22 valve bases) with copy of manual \(£ 20\) each. Carriage ᄃ6.
AVO TRANSISTOR ANALYSER Type CTAAE with copy of manual \(£ 20\) each. Carriage \(£ 6\).
AVO SIGNAL GENERATOR No. 2 AM/FM AM 0.45 -225MHZ; FM \(20-100 \mathrm{MH}\)
MARCONI COUNTERFREQUENCY METER TF1417/2 with Convertor type TF 2400/TM7265 \(-500 \mathrm{MHZ} £ 35\) each. Carriage E 6 .
TELETYPE PRINTERS KSR33 - ASCII KeV33 - as above with 8 -bit Punch and Reader \(£ 75\). Carriago \(£ 6\) each unit

MULTIMETER
Russian Type 4324 AC/DC volts; \(A C / D C\) current; ohms, etc. Brand new, boxed. f 12.50 ach. P\&P

\section*{ISOLATING}

TRANSFORMER
240 V input 240 V
£15 each. Carr. E 6
SINE \& SQUARE WAVE AUDIO ype TE-22, 20 HZ . 200KHZ. Portable as ONLY \(£ 35\) each. P\&P

IKEGAMI MONTTOR
20" Black \& White Solid state. Video in int. ext. Sync.

PLEASE NOTE:
WE WILL BE CLOSED TO CALLERS MONDAY, AUGUST 9th UNTIL SATURDAY, AUGUST 21st INCLUSIVE

INDUSTRIAL MUSCLE AT A REALISTIC PRICE

* POWER BANDWIDTH DC to \(100 \mathrm{KHZ}+1 \mathrm{db}\)
* OUTPUT POWER IN EXCESS OF 500 WATTS PER CHANNEL INTO 2 OHMS OR IN EXCESS OF 1KW SINGLE CHANNEL IN BRIDGE MODE INTO 6 OHMS
* HARMONIC DISTORTION LESS THAN 0.01\% DC TO 100KHZ AT 1 KW INTO 6 OHMS
* INTERFACE BOARDS CAN BE CUSTOM DESIGNED AND BUILT TO CATER FOR A WIDE RANGE OF SPECIALISED USES
* OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD
UNCONDITIONALLY STABLE INTO ANY LOAD
BASIC PRICE INCLUDING BRIDGE MODE
SWITCHING AND HANDLES £455

\section*{S \& R AMPLIFICATION \\ 6 Tanners Hill, London S.E. 8 \\ Telephone: 01-692 2009}

WW - 064 FOR FURTHER DETAILS

WW-075 FOR FURTHER DETAILS

\section*{VIDEO TECHNIOUES \\ AN INTRO. TO THYRISTORS AND THEIR APPLICATIONS \\ by M. Ramamoorty}

DIGITALICS-HOW THEY WORK AND HOW TO USE THEM by A. W. Barber
SERVICING RADIO, HI-FI AND TV EQUIPMENT
by G. J. King
H/B OF PRACTICALELECTRONIC CIRCUITS
by J. D. Lenk
ELECTRONIC TEST EQUIPMENT OPERATION AND APPLICATION ELECTRONICC
by WONIC COMPONENTS AND SYSTEMS
by W. H. Dennis
TINERATIONAL TAANSISTOR SELECTOR
ELECTRONIC CIRCUITS AND APPLICATIONS
by B. Grob
INTRODUCTION TO RADIO FREQUENCY DESIGN
by W. H. Hayward

\section*{- THE MODERN BOOK CO.}

Specialist in scientific and technical book
15/21 PRAED ST. LONDON W2 1NP PHONE: 01.4029176 - Closed SATURDAY 1 p.m Please allow 14 days for reply or dellvery WW-031 FOR FURTHER DETAILS

\section*{HF ANTENNAS}

Ł MOOE; Full half wave operation
- BANDS: Up to 4 spot frequencies
\(\star\) POWER; Receive to 800W (PEP)
\(\star\) SWR; Better than 1.5:1 on channel.

THE SMC TRAPPED DIPOLE ANTENNA
has been developed to satisfy the needs of commerical and militery users. It is capable of operation between 2 and 30 MHz on as many as four spot frequencies - each capable of accommodating many channels. Excellent matching and efficiency with a single coaxial leed is offiered by the use of SMC H10 traps and the incorporation of a ferrite balun in a antenna may be deployed using one or two support masts, installation (Incorporating SMC light duty portable masts) can be easily effiected by two people in half an hour.

FT180 "PIONEER" HF SSB TRANSCEIVER \(1.8-18 \mathrm{MHz}, 6\) channels 100 watts RF output教 as a base or mobile transceiver comple menting our trap dipole and HW4 mobile aerials. Prices start at \(£ 500\), making this unit not only very attractive but highly competitive.

\section*{SOUTH MIDLANDS COMMUNICATIONS LTD.}

OSBORNE ROAD, TOTTON SOUTHAMPTON SOA 4DN

Telex: 477351 SMCOMM G Tel: Totton (0703) 867333

WW - 063 FOR FURTHER DETAILS

\section*{STORE ROSIUE SAL Senate you money..... \\ MOTORS - MAINS \& BATTERY}

\section*{FANS - BLOWERS}

Snail type blower with inset mains motor. Smiths Exiracior fan. 5 "Woods, ex compuier Congential blower. \(10 \times 3^{\prime \prime}\) air outle

\section*{LIGHTING \& POWER CABLES}

Copper Clad. PVC sheathed. Made by Volex to BSS. 1.5 mm single \(\quad\) per 100 metres 1.5 mm flat twin per 100 metres 1.5 mm flat 3 core \& E per 100 metres 6 mm flat 3 core per 100 metres 16 mm flat twin \& E per 100 metres
 \(\begin{array}{lll}15 & \text { core } & \text { per } 200 \text { metres as used by GPO } \\ & £ 60.00\end{array}\) 10 core per 200 metres \(\$ 40.00\)

\section*{THERMOSTATS \& HEAT SWITCHES}

Thermostat: 3 level contact type
10 amp appliance type thermostst. Spindie adjus Contact type with changeover, 10 amp switches.
\(0=100^{\circ} \mathrm{C}\)
Wall mounting, metal case, c/o contacts low valtage

\section*{TIMERS \& CLOCKSWITCHES}

\section*{WIRES \& CABLES}

3 core and screened power flex cable:
3 cores each 50.025 (equiv. 2.5 mm) per metre 3 cores each 30.025 lequiv. 1.5 mm) per metre 3 cores each 24.02 (equiv. 1 mm) per metre Armoured Cable \(1,5 \mathrm{~mm}, 3\) core
Extension lead. 3 cores. 5 mm pvc covered \(/ 100 \mathrm{M}\) Ext. lead. iwin . 5 mm rubber covered \(/ 1000\) metres 2 core 100 metre FIGURE 8 FLEX Heavy Duiv .75 mm .600 metre Figure 8 Flex Der 100 metres

Siren/Hooter - Delta 6 or \(12 v\) DC or \(24 v\) AC Open type buzzer, ex GPO, 10-20v Underdome bell, \(4 v-9 v\)

Black plastic boxes. \(27 / 8 \times 41 / 8 \times 3\) deep
Ditto \(\quad 35 / 8 \times 23 / 4 \times 13 / 4\) deep
Ditto \(\quad 37 / 8 \times 33 / 8 \times 1\) deep
.50
Plated metal box, \(71 / 2 \times 41 / 2 \times 11 / 2\) deep
.40
.30
Dark grey half boxes. May be joined to make three
different depth boxes, \(45 / 8 \times 25 / 8 \times 3 / 4\) deep
White plastic box ideal for touch switch, transmetter, etc
Through top is square hole, \(31 / 2 \times 31 / 2 \times 31 / 2\). Through top is square hole \(1 / 3^{\prime \prime} \times 3 / 2 \times 3 / 2\) PORTABLE RADIO CASE - \(5^{\prime \prime}\) speaker, size
approx \(6 \%^{\prime \prime} \times 3 \not \%^{\prime \prime} \times 2^{\prime \prime}\) deep
£1.00

\section*{COUNTERS}

6 digit counter. Mains operated. Not resettable Ditto. But even numbers only
6 digit counter 48 vDC 115 v AC Resertable

MAINS TRANSFORMERS

3-6 volt bat tery motor, very small
3-12 volt battery motor, very low curren 80 revminut 110 rev minute 200 rev minute
Mains motor, double ended fan motor
Ditto single ended fan motor
Fan blide for the above
Mains motor, double ended, very power ful \(1 \frac{1}{2}\) "staci Mains instrument motors with gear box

1 rev 24 hours 16 rev minute 4 rev minute 4 rev minute
2 rev minute
 1 rev minute

Motor, clockwork. set up to 1 hour
Motor, clockwork, set up to 1 hour with ring Mains motor \(1 / \mathrm{h} . \mathrm{p} .1425\) revs, ex computer 12 volt motors. Smiths. sIngle ended \(1 / 4\) " spindie 12 volt motors, Smiths. double ended \(1 /{ }^{4}\) " spindle 12 volt motors, P Magnet type, single ended \(11 / 2 \mathrm{~h} . \mathrm{p}\). motor 3450 rpm 100 volt. 50 Hz . New

\section*{RELAYS \& RELAY BASES}

Standard open relays \(3 \times 8 \mathrm{amp}\) c/o contacts 6 vole de coll
\(50 \quad 230\) voit ac coil
\(1 \times 8\) amp changeover, 230 volt \(A C\) coil Enclosed plug in round base relays -3 changeover 50 volt coil fex fruit machine\}
110 volt coil 2 changeove
12 volt coil 3 changeover
8 pin bases. Basses for 2 changeover relay 11 pin basses. Basses for 3 changeover relay Miniature Relays: 12 volt 2 changeover 12 volt 4 changeove 24 volt

\section*{POWER SUPPLY UNITS}

Mains to 24 volt Mullard. Stereo
Mains to 12 volt 800 mA
Mains to 50 volt 25 cps for telephone ringing

\section*{INTERFERENCE SUPPRESSORS}

Suppressor .1 mfd 250 v 50 Hz side tag metal cased Condensors \(.1 \mathrm{mfd}+2 \times .0005 \mathrm{mfd}\) side tag metal \(.2 \mathrm{mfd}+2 \times .0005 \mathrm{mfd}\) metal cased Choke/conden sor combination, stops mains interf or to equipment. up to 15 amps, stud or clip moun

Approximately 100 tons of stock has to be cleared right away from our big store，hence these very low price offers．Prices quoted are for bulk orders，minimum order \(£ 100\) ，minimum any item \(£ 25\) ． VAT and carriage are extra，although large orders not too far away will be delivered free．Contact us on this point．

Should you want a small quantity of any of the items as samples， for instance，then send listed price \(\times 2\) ，which will cover the VAT and postage on letter post items．For heavy items，add the amount you think，bearing in mind that the smallest parcel now costs \(£ 1.35\) and a 10 kilo parcel \(£ 3.25\) ．

We have managed to list most of the items in the store we have to empty．All goods are offered subject to being unsold and the conditions of sale are as stated，but should you want more inform－ ation，please contact Mr．Bull or Mr．Stepney at Haywards Heath between 12 and 4 pm．On Haywards Heath（0444） 454563.

\section*{J．BULL（Electrical）Ltd．}
（DEPT．WW）， 34 － 36 AMERICA LANE， HAYWARDS HEATH，SUSEX RH16 3OU

Established
30 YEARS

\section*{VITCHES－ROCKER，TOGGLE，ETC}

\section*{ker switches：white push inco hole \(1 \times 7 / 16\) ．All rate}
mp，AC 250 volt．on／of！
changeover centre of on／off with nean push to make spring return push to break spring return er two circuit one on one off with mounting plate mp rocker switch．Car Fastener（DoT）
al Grip Switch：with lock－on as in electric drills flocking Switch：blow heater， 3 rockers， 10 amp 0 switches．V3 iypes， 10 amp c／o contacts is button operated： 15 amp c／o contact

10 amp off／on
15 amp off／on
Lever operated add
Lever with roller operation add． 15
sture types：Burgess V4T6 c／o
mounted with roller operator 40 wati \(5 p\) ． flat multi stackable 60 watt mic magnets ．．．．Mullard． magnet

\section*{RRITE RODS FOR AERIALS，ETC．}

LESCOPIC AERIAL
\(\qquad\)
－plated：Collapsed \(81 / 2^{\prime \prime}\) extended 4
Collapsed \(4 \% 2^{\prime \prime}\) extended 2

\section*{LBS \＆LAMPS}
h bulbs， 3.5 V MES Box of 25 light bulbs \(6.2 \mathrm{v} .3 \mathrm{~A} \quad 11 \mathrm{~mm}\) Box of 50 6.2 v .3 A
12 v .5 A
14 mm Box of 10
18 mm Box of 10

3ulbs： 18 watt S8C． SBC Lamp holders

\section*{PE RECORDER PARTS}

fk erase
Ek erase
pe spool＂／4＂tape

\section*{ANSISTORS}
o transistors．Mullards seconds \(75 \%\) working， 100 for \(£ 5\) Nave rectifier， 440 v 2 amp silicon diodes
Ianium transistors
ce Barrier transistors

It，Mini－amp with 1172
It，Mini－amp with v．c．
\({ }^{\text {It }}\) p．Mullard Ref． 9001 moduie

MISCELLANEOUS ITEMS ダデニ

Neon Mains indicators．Standard
Bench isolation mains in \(230 / 240 \mathrm{v}\) output． 250 W Mains input．Porcelain removable fuse
Light operated switch 12 volt．Encapsulated
Insulating board．srbp etc．Approx 10 tons．Sheet size \(4^{\prime} \times 4^{\prime}\) or larger．Various thicknesses，price per lb． Aro，Jun ICl Fluon lubria
Aerosol can ICI Fluon lubricant
Varicap P．B．TV tuner
Bat tery Holder takes 6 U2 batteries，snap connector
Car Battery clips，as for charger，+ and -
\begin{tabular}{r}
.15 \\
.25 \\
\(£ 4.50\) \\
.20 \\
\(£ 1.25\) \\
\hline .50 \\
\(£ 2.00\) \\
.35 \\
.50 \\
.25 \\
\hline 10
\end{tabular}

with lock and coin metrer，100 gives 1 hour，boxed with lock and coin tray Ultra ref SF20／5

\section*{TOOLS：}

8 ba button dies
Screw driver，miniature for grub screw Small size，general purpose
Solenoid mains operated AIR VALVE 200／230 volt model
100 volt model
ULTRA SONIC Transmitters and receivers VALVE HOLDERS：89A with skirt ceramic INSERT speaker／mike，balanced armature， 600 ohm Rewireable fuse and carrier MEM 20 amp 250 vol
Magnetic Clutch．Zerox 1215494 PN \(866-10\)

\section*{SWITCHES}

Miniature Make before break Wafer Switch： 1 pole 12 way／ 2 pole 6 way 3 pole 4 way \(/ 4\) pole 3 way 6 pole 2 way \(/ 4\) pole 2 way 2 pole 2 way／ 1 pole 2 way 2 pole 12 way \(/ 4\) pole 6 way 6 pole 4 way \(/ 8\) pole 3 way 12 pole 2 way
6 pole 5 way \(/ 6\) pole 6 way 9 pole 4 way／12 pole 2 way 18 pole 2 way

Low pressure switch，sensitive could be mouth operated：
Single 10 amp changeover
\(£ 1.15\)
\(£ 1.50\)
Ditto，with spindle for adjustment

PANEL METERS \＆INSTRUMENTS
Volt meter 0 － 200 volis \(2 \%^{\prime \prime}\) round
\(\varepsilon 1.50\)
milli amp meter， 500 ma \(2 \%{ }^{\prime \prime}\) round
- amp meter，not wire scaled \(0 \quad 9\) amp
1.20

Ammeter， \(21 /{ }^{\prime \prime}\)＇round，centre zero． 500 ma
£1．00

Charger panel meters， \(1 \%{ }^{\prime \prime}\) dia．scalèd 3 amp
Panel meter， \(15 / 8^{\prime \prime}\) square，scaled Vu
Panel meter，Amstrad， 40 mm sq ．centre zero，scio .60
Edgeways Panel， \(3^{\prime \prime} 0.25 \mathrm{ma}\) ，ex GPO．

100K Multi qurn pots
Wire wound pot，with integral knob，available in values -15 ohms， 33 ohms， 50 ohms， 100 ohms
Miniature PRE－SETS，

\section*{Machine Intelligence}

In more ways than one, human intelligence and judgement are being built into software. Predictions from time series data, games strategies, pattern recognition... we look at these three examples of "intelligent" programs in our August issue, out now.

We review the Televideo 802 (a hard disc computer for businessmen), and the Sharp PC 1500 (a pocket micro for engineers and scientists).

And we examine stock control on an Apple and a portable version of the ever-popular Invaders game.

FOR ALL THIS AND MUCH MORE BUY PRACTICAL COMPUTING, BRITAIN'S LEADING PERSONAL COMPUTER MAGAZINE.

AUGUST ISSUE OUT NOW
80p AT YOUR NEWSAGENT"S - BUT HURRY

\section*{Hifachi Oscilloscopes}

\title{
and immediate delivery! \\ performance, reliability, exceptional value
}

Hitachi Oscilloscopes provide the quality and performance that you'd expect from
such a famous name, in a range that represents the best value for money available anywhere.

V-152 15 MHz Dual Trace
V-202 20 MHz Dual Trace (illustrated)
V-302 30 MHz Dual Trace
V-352 35 MHz Dual Trace
newly released
V-650 60 MHz Dual Trace, Dual Timebase V-1050 \(\quad 100 \mathrm{MHz}\) Quad Trace, Dual Timebase

V-209 20MHz Dual Trace, Portable
V-509 50MHz Dual Timebase, Portable

Prices start from around \(£ 235\) and we hold the range in stock for immediate delivery. For colour brochures giving detailed specifications and prices, ring 048063570. Reltech Instruments, 46 High Street, Solihull, W. Midlands B91 3TB

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.

\section*{10 BEACH ROAD}

WESTON-S-MARE, AVON BS23 2AU
TEL. 0934416033

\section*{P.\&R. COMPUTER SHOP \\ IBM GOLFBALL PRINTER 3982, £70}

EPSON MX-80 80.GPs 3982 IBM I/O PRINTERS DOT MATRIX PRINTER WITH SPECIAL INTERFACES. VDUs, ASCII KEYBOARDS, ASR, KSR, TELETYPES, PAPERTAPE READERS, PAPERTAPE PUNCHES, SCOPES, TYPEWRITERS, FANS \(4^{\prime \prime} 5^{\prime \prime} 6^{\prime \prime}\). POWER SUPPLIES, STORE CORES, TEST EQUIPMENT AND MISCELLANEOUS COMPUTER EQUIPMENT. OPEN: MONDAY TO FRIDAY 9 a.m. -5 p.m., SATURDAY TILL 1 p.m.

COME AND LOOK AROUND
SALCOTT MILL, GOLDHANGER ROAD HEYBRIDGE, ESSEX
PHONE MALDON (0621) 57440

SAMSONS
9-10 Chapel Street, Marylebone London NW1 5DN
21-23 Bell Street, London, NW1
01-262 5125 \& 01-723 7851

MUFFIN FANS
SPECIAL OFFERI!

 inc. VAT + postage.
Radiospares price Radiospares price
\(£ 14.50111\)

SPECLAL OFFER:
HIGH POWER AMPLIFER TRANSFORMERS HIGH POWER AMPLIFER TRANSFORMERS
Pri tapped \(120-240 \mathrm{~V}\) sec tapped \(34-29-0-29\) Pri topped \(120-240 \mathrm{~V}\) sec rapped \(34-29-0-29\)
34 V 6 amps and 46 V 1 A . Open frame type. Tag
connection. Size 5441 俍 346 amps and 46 V 1A. Open frame type. Tag
connection. Size \(5 \times 4^{1 / 2 x 4 i n s . ~} 59\) inc. postage

PIEASE ADD 15\% TO ALL ORDERS INC. CARR

HIGH GRADE TRICKLE CHARGERS Input 240 v AC. Output 12 v DC 2 Amps . With mains lead, red and black batrery leads with
attached clips. Completely fused attached elips. Completeiy fused. Housed in
wall mounting, steel case size \(6 \times 4^{3} / 4 \times 4\) in wall mounting, steel case size \(6 \times 43 / 4 \times 4 \mathrm{in}\)
E4.50. P\&\& \(£ 1.50\) plus VAT. Total, 66.90 .
\(\qquad\) 8 MFD 1000 V DC WAPE CAPACTORS
DC WKG. \&1. P\&P 50 . 6 MFP 350 MFD 350 V
WE WKG
 E75. P\&P 25p. 6 MFD 300V AC WKG. E1.50.
P\&P 50p. A MFD 350 V WC WKG 50 p. P\& 25p.
2 MFD 350 v DC WKG 400. P\&P 20p. 1 MFD
1000 V DC WKG. 50 p . P\&P 20p.

SPECIAL OFFER HEAWY DUTV
 Tvep. Termina bl block priminy Sec heown
 Screen winding between prit and sec
Brand
now fraction of list price
E32 carr. ©5, VAT \(\mathbf{5 5 . 5 5}\).

\section*{MARKETING Ltd.}

\section*{SERIES 600}

The D\&R SERIES 600 range of professional mixing consoles has found its way into hundreds of (hospital) broadcast studios, discotheques, clubs, entertainment and outdoor Public Address systems and recording studios.
Avallable in \(6,12,18\) or 24 channel
configuration with, as standard, separate
balanced mic. and line Inputs, insertion points, gain, three band tone controls, two auxiliar lines, pan-pot and linear fader, plus pre-fade-listening and overload LED per channel. The output section includes four master faders, echo return and phones controls and two large V.U. meters.
Optional XLR-3 connectors, 48 volt phantom powering, stereo channels with R.I.A.A. correction, talkback, fader controlled start switches, balanced outputs and 24 volt D.C. mains powering are available.
D.S.N. MARKETING LTD, Westmorland Road, London NW9 9RJ

Telephone:01-204 7246. Telex: 8954243.
Trade, Wholesale, O.E.M. \& Export enquiries welcome.

D\&R Electronica was founded over 10 years ago with the aim of developing and manufacturing high quality mixing consoles for the studio and entertainment Industry with a special emphasis on value for money design engineering. The resulf is a range of five basic models with a large number of channel contigurations and options. All models are highly flexible in use and give the best quallity possible at todays state of technology.
SERIES 200 - A small mixer speclally designed for four track recording. SERIES 600 - A range of mixers for live amplification, broadcast studios and two track recording.
SERIES 400 - 'In-Line' mixing consoles for budget 4,8 or 16 track recording. SERIES 1000 - A range of comprehensive 'In-Line' consoles for professional recordling studios.
SERIES 8000 - Top of the range 'In-Line' consoles with integral patch bay for top recording studios. A large number of ancililiary signal processing units complement the \(D \& R\) programme.
Please complete this coupon for futher detalis:-
\(\square\) D\&R Series \(200 \square D \& R\) Series 600 DR\&R Series 400 DD\&R Series 1000 -D\&R Series 8000 DD\&R Ancllillary Equipment
\(\square\) BULLET loudspeaker companents -VITAVOX loudspeaker equipment CHELIOS mirror balls
NAME
ADDRESS

\section*{DAROM SUPPLIES Dept. AW - Tel: (0925) 64764}

4 Sandy Lane, Stockton Heath Warrington, Cheshire, WA4 2AY

\section*{sabtronics}

FREQUENCY METERS

\section*{8 digit:}
* Convenient single input for entire range
* Big easy to read LED display
* Excellent sensitivity
t 10 MHz crystal controlled timebase
* Battery or mains operated
* 3 switch selectable gate times
* Leading zero suppression
8110A........ 20Hz-100MHzf67 8610A......... 20Hz-600MHz \(£ 82\)

HANDHELD
MULTIMETERS
High quality, precision \(31 / 2\) digit LCD DMMs with excellent price performance value 2033. \(\qquad\) .\(£ 36.75\) AC/DC \(100 \mu \mathrm{~V}-1000 \mathrm{~V}\) AC/DC \(10 \mu \mathrm{~A}-2 \mathrm{~A}\)
Ohms \(1 \Omega-20 \mathrm{M} \Omega\)
2035 662
AC/DC \(1001 \mathrm{~V}-1000 \mathrm{~V}\)
AC/DC \(0.1 \mu \mathrm{~A}-2 \mathrm{~A}\)
Ohms \(0.1 \Omega-20 \mathrm{M} \Omega\)

\section*{VHF FM MOBILE RADIO}

\author{
MODEL \\ CT210
}

\section*{! And it's British !}

\title{
MODEL
} CT210
\(\star\) MADE IN U.K. * COMPETITIVE PRICE \(\star\) MULTI-CHANNEL CAPABILITY

\section*{Export and Dealer Enquiries Welcome}

\author{
COM-TEK (MIDS) LTD. 506 Alum Rock Road - Birmingham B8 3HX \\ Telephone: 021-3266343
}

WW-061 FOR FURTHER DETAILS

\section*{reprints}

If you are interested in a particular article/ special Feature or advertisement published in this issue of

\section*{WIRELESS WORLD}
why not take advantage of our reprint service Reprints can be secured at reasonable cost to your own specifications providing an attractive and valuable addition to your promotional material. (Minimum order 250.)
For further details contact
Michael Rogers, IPC Electrical-Electronic Press Ltd. Phone 01-661 3036 or simply complete and return the form below.

To Michael Rogers, Reprints Departmen Quadrant House, The Quadrant Sutton, Surrey SM2 5AS
I am interested in
copies of the article/ advertisement headed

\section*{WIRELESS WORLD}
on page(s)
in the issue dated
Please send me full details of your reprint service by return of post.
Name
Company
Address

\section*{LANGREX SUPPLIES LTD}

Climax House, Fallsbrook Rd., Streatham, London SW16 6ED
RST Tel: 01-677 2424 Telex: 946708
SEMICONDUCTORS

\section*{RC OSCILLATORS from \(£ 80\)}

LEVELL ELECTRONICS have a range of OSCILLATORS Covering frequencies from 0.02 Hz to 2 MHz .

There is a DECADE OSCILLATOR with digital frequency tuning and a FUNCTION GENERATOR providing sine, square, triangle, pulse, sawtooth, ramp and asymmetrical sine waves.

Various RC OSCILLATORS are available as detailed below.

TG200 SERIES
FRECUENCY
ACCURACY
SINE OUTPUT
DISTORTION

SQUARE OUTPUT
SYNC OUTPUT SYNC INPUT METER SCALES

1 Hz to 1 MHz in 12 ranges. 0 to \(1 \%\) fine control on TG200DMP. \(\pm 1.5 \% \pm 0.01 \mathrm{~Hz}\) up to 100 kHz . \(\pm 2 \%\) up to 1 MHz .
7 V r.m.s. down to \(<200 \mu \mathrm{~V}\) with \(\mathrm{Rs}=600 \Omega\).
\(<0.05 \%\) from 50 Hz to 15 kHz .
\(<0.1 \%\) from 10 Hz to 50 kHz .
\(<0.2 \%\) from 5 Hz to 150 kHz .
\(<1 \%\) at 1 Hz and 1 MHz .
TG200D, DM \& DMP only, 7 V peak down to \(<200 \mu \mathrm{~V}\). Rise time \(<150 \mathrm{~ns}\).
\(>1 \mathrm{~V}\) r.m.s. sine in phase with output.
\(\pm 1 \%\) freq. lock range per volt r.m.s.
TG200M, DM \& DMP only, O/2V, 0/7V \& \(-14 /+6 \mathrm{dBm}\).

TG152 SERIES
FREQUENCY
ACCURACY
SINE OUTPUT
DISTORTION SQUARE OUTPUT SYNC. OUTPUT METER SCALES

3 Hz to 300 kHz in 5 decade ranges.
\(\pm 2 \% \pm 0.1 \mathrm{~Hz}\) to 100 kHz , increasing to \(\pm 3 \%\) at 300 kHz . 2.5 V r.m.s. down to \(<200 \mu \mathrm{~V}\).
\(<0.2 \%\) from 50 Hz to 50 kHz . \(<1 \%\) from 10 Hz to 200 kHz .
2.5 V peak down to \(<200 \mu \mathrm{~V}\).
2.5V r.m.s. sine
\(0 / 2.5 \mathrm{~V} \&-10 /+10 \mathrm{~dB}\) on TG152DM.

LEVELL ELECTRONICS LTD.
Moxon Street, Barnet, Herts. Tel. 01-449 5028/440 8686

\section*{Chiltern Electronics}

\section*{B.C.M. BOX 8085, LONDON WCIN 3XX. TEL. 0494714483}

\section*{PROFESSIONAL ASCII KEYBOARDS}

Beautiful 75-key ASCII encoded keyboards in attractive case, manufacrured by Incoterm Corporation for use on airline check-in systems. Reedswitch keys and all-TTL encoding. Single \(5 v\) rail. LED Status indicators - one of the finest keyboards ever made.............................. New \(£ 46\) Normal list price £475! Slightly used \(£ 34.50\)

\section*{MICROPROCESSOR SYSTEMS}

A complete Microprocessor subsystem on single PC card, caomplete with 2650A CPU, four 2758 EPROMS and 12 RAM chips, all in DIL sockets. Loads of other components including TTL chips, xtal, ribbon connectors. Unfortunately we have no circuit or data, so we are offering the complete units with ribbon cables and plugs for only \(£ 23\) each

\section*{SELF-SCAN DISPLAY UNITS}

These state-of-the-art displays can replace a VDU, and measure only 12 x \(4 \times 2\) inches. Display all ASCII set 40 characters by 6 lines. As used on latest mainframe terminals. But again no data or circuit so only.... \(£ 23\) ea.

\section*{MEMORYCARDS}

A full size circuit board ex new equipment containing 64 4K Dynamic RAM chips in sockets, and complete with all decoding circuitry. Organised as \(32 \mathrm{~K} \times 8\) bits. A complete memory system for your micro, but again we have no data, so it will be necessary to spend an hour circuit tracing... Only £11.50 ea.

\section*{POWER SUPPLY UNITS}

Ideal for your micro system, and at a quarter of usual price, these units give a fully regulated and filtered DC Sv supply, complete with over voltage protection and standard mains input.

5v 3-amp £11.50 5 v 6 -amp £23

\section*{AMPHENOL 36-WAY CENTRONICS PLUGS}

Genuine Amphenol plugs with gold-plated contacts that are standard for all parallel printers and usually cost around \(£ 6\) each. New ex-equipment. With cable top and clamp.

Our price \(£ 11.50\) for 6 , or \(£ 115\) for 100
ALL ABOVE PRICES INCLUDE VAT AND POSTAGE. SAMEDAY DESPATCH
We also stock full range of DEC Systems from PDP11/04 to VAX 11/780, and full range of spare cards - please telephone for details or catalogue.

\section*{pantechnic}

\section*{THE POWERFET SPECIALISTS}

\section*{POWERFET AMPLIFIER MODULES}

The people at Pantechnic have been designing with powerfets since they first became commercially available. Their experience of powertet amplifiers, coupled with their insight into the sources of non-linearity often neglected by others, has resulted in a new range of powerfet amplifiers that are fast, tough, linear and cheap.

\section*{\(\begin{array}{ll}\text { MODEL } & \text { POWER RANGE } \\ \text { (Continuous RMS) }\end{array}\) \\ PFA 100550 W -150W}

PFA 200 100W-300W
PFA 500 250W-600W
PFA HV

TYPICA
\(4 \Omega, 8 \Omega\)
\(4 \Omega, 8 \Omega\)
\(2 \Omega, 4 \Omega, 8 \Omega\)
\(4 \Omega, 8 \Omega, 16 \Omega\)

NOTES
Physically small \(30 \mathrm{~mm} \times 79 \mathrm{~mm} \times 108 \mathrm{~mm}\) High Watts per \(£\) ratio 25A continuous output current
\(5 d B\) dynamic headroom Drives 70V line direct
Koy features:
- RELIABLE - Powerfet freedom from thermal runaway and secondary
- linear
- FAST -Slew rate \(>30 \mathrm{~V} / \mu \mathrm{S}\), (\(45 \mathrm{~V} / \mu \mathrm{S}\) typical) breakdown

QUIET - Signal to noise ratio 120 dB
BRIDGEABLE - \((100,200,500\) without extra circuitry \()\)
STABLE
- STABLE - Unconditionally
tity tity
As they stand these modules suit most P.A. and industrial applications and satisfy all foreseeable audiophile requirements. (The HV is aimed at digital audio.) Where aspects of performance fail to meet specific requirements (e.g. in speed or power) low cost customising is often a possibility. Atternatively entiraly new boards can be produced.
Pantechnic make more than just PFAs. Loudspeaker protection boards and the quietest, lowest distortion preamp boards currently available are just two of an ever-expanding range.
Pantechnic sell high quality power supply and other components at excellent prices.

CHECK US OUT
\begin{tabular}{cc}
Price and Dolivery & Technical Enquirias \\
PANTECHNIC (Dapt WW7) & contact \\
17a WOOLTON STREET & Phil Rimmer \\
LIVERP00L L25 5NH & on \\
Tel. 051-428 8485 & \(01-800\) 6667
\end{tabular}

WW - 053 FOR FURTHER DETAILS

\title{
2 ways to recovery
}

ACT AT ONCE - DELAY IS FATAL

GET IT - READ IT - PRACTISE 1.4
BE READY TO SAVE A LIFE. SOMEONE MIGHT SAVE YOURS.

Display the ELECTRICAL REVIEW shock first aid chart (\(356 \times 508 \mathrm{~mm}\)) supplied in thousands to destinations world-wide. Recent deliveriés include consignments to companies in Papua New Guinea, Dubai, United Arab Emirates, The Philippines, apart from UK commercial and industrial, educational, Central Government, Local Authorities' orders.

Carry the ELECTRICAL REVIEW pocket-size shock card (\(92 \times 126 \mathrm{~mm}\)) designed to help safety and training officers, medical and welfare personnel; all who might find themselves called to save a life. Always pocket your card; there's a useful two-year calendar on the back.

\section*{ACT AT ONCE-DELAY IS FATAL!}

To IPC Electrical-Electronic Press Ltd., General Sales Department,
Room 205,
Quadrant House,
Sutton, SM2 5AS,
Surrey,
England.
Company registered in England No 677128. Registered Office Quadrant House, The Quadrant, Sulton, Surrey SM2 5AS

Please send......copy/copies as indicated Pocket Card @ 70p each inc VAT PaperChart @70p each post free Card Chart @ £1.40 each post free Plastic Chart @ \(£ 2.10\) each post free
Discounts: \(100+\) copies \(10 \%\) \(500+\) copies \(15 \%\)
(Overseas surface and air mail rates súpplied on application.)

\section*{BRITAN'S BETTER bargain stilin WORLD-WIDE DEMAND} WIRELESS WORLD CIRCARDS at 1976 prices \(\mathbf{1 0 \%}\) discount for 10 sets! Most sets are still available even though the companion volumes CIRCUIT DESIGNS 1,2 and 3 are out of print. (CIRCARDS SETS 1 to 30).

Fill gaps in your circuit files with these sets of \(127 \times 204 \mathrm{~mm}\) cards in plastic wallets. These unique circuit cards normally contain descriptions and performance data of 10 tested circuits, together with ideas for modifying them to suit special needs.

\footnotetext{
1 Basic Active filters 2 Switching Circuits, comparators and Schmitts (But these gaps cannot be filled)
6 Constant current circuits 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10 Micro power circuits 11 Basic logic gates 12 Wideband amplifiers 13 Alarm circuits 14 Digital Counters 15 Pulse modulators 16 Current differencing amplifiers - signal processing 17 Current differencing amplifiers - signal generation 18 Current differencing
amplifiers - measurement and detection 19 Monostable circults. 20 Transistor pairs 21 Voltage-to-frequency converters 22 Amplitude modulation and detection 23 Reference circuits 24 Voltage regulators 25 RC oscillators - 126 RC oscillators - 227 Linear cmos-1 28 Linear cmos - 229 Analogue multipliers 30 Rms/log/power laws 31 Digital multipliers 32 Transistor arrays 33 Differential and bridge amplifiers 34 Analogue gate applications - \(1 \quad 35\) Analogue gate applications -2 .

To IPC Electrical - Electronics Press Ltd. General Sales Department,
Room 205,
Quadrant House,
Sutton,
Surrey SM2 5AS

Company registration in England
Quadrant House, The Quadrant,
Sutton, Surrey SM2 5AS
Reg. No 677128

Please send me the following sets of Circards: £18 for 10 post free.
Remittance enclosed payable to IPC BUSINESS PRESS LTD.

Name (Please print)
Address (Please print)
}

\section*{COMPUMजR maR M: OUSH \\ ITH 'ALLADINS CAVE OF COMPUTER AND JLFCTRONIC BQUPMMNT}

\section*{FARD DIEK DRTVES \\ DISIMT}

Dlablo/DRE Series 302.5 mb . fully refurbished DEC RKO media and software compatable. Front load \(\mathbf{5 5 5 0}\) Top load 2295
PSU for 2 drives \(\& 125\).
Dlablo-Dre 44A-4000A or \(4000 \mathrm{~B} 10 \mathrm{mb} 5+5\) removablé pack new and refubished from \(£ 995\).
CDC 80 mb removable pack DEC RMO3 media and sottwa compatible brand new from \(£ 2,950\).
Honeywell \(5+510 \mathrm{mb}\) drives \(£ \$ 50\) good \(\mathrm{s} / \mathrm{h}\) condition. For more information on controllers, expansions
go sub systems contacl sales office.

The UK's FIRST free of charge, 24 hr . public access data base. Get information on 1000's of stock items and order via your computer and credit card. On line now, 300 baud. CCITT tones, full duplex, fully interactive. DON'T MISS THOSE BARGAINS CALL NOW, IT'S FRE?
01-683 1133 woak cans hax

\section*{COMPUTER 'CAB'}

All in one quality computer cabinet with integral switched mode PSU. Mains filtering and twinfan cooling. Originally made for the famous DEC PDP8 computer system costing 1000's of pounds and designed to run 24 hoursper day. The PSU is fully screened and will deliver a massive +5 vDC at 17 amps
+15 vDC at 1 amp and -15 vDC at 5 amps . The unit is ful enclosed with removable top lid, twin fan coollng, mains filtering, trip switch, 'power on' and 'run' LED's, aluminium front panel and rear cable entrys. Give your system that professional finish for only \(£ 49.95+\Sigma 9.50\) carr. - Dim. \(19^{\prime \prime}\) wide \(16^{\prime \prime}\) deep \(10.5^{\prime \prime}\) high. Usable area \(16^{n}\) w. 10.5" h. \(11.5^{\prime \prime}\) Units are in good but usedcondition 240 or 110 vworking

\section*{COOHNG PANS}

\section*{Keep your "Hot Parts" cool
rance of professional tans}

\section*{range of professional tans} vac working DIM \(92 \times 25 \mathrm{~mm}\) BRAND NEW complete with finger guard. Makers price \(£ 16\) our price \&9.95
BUHLER 69.11 .22 micro miniature 8 -16 v DC
reversible fan. Measures only \(62 \times 62 \times 22 \mathrm{~mm}\) reversible fan. Measures only \(62 \times 62 \times 22 \mathrm{~mm}\).
Uses a brushless DC servo motor almost silent running ideal portable equipment, life in excess hours. BRAND NEW manufactures price \(£ 32.00\) our price \(£ 12.95\)
MUFFIN/CENTAUR cooling fans DIM \(120 \times\) \(120 \times 38 \mathrm{~mm}\) tested ex equipment \(240 \mathrm{v} \mathbf{\Sigma 6 . 2 5}\)
\(115 \mathrm{v} \mathbf{\Sigma 9} 95+\mathrm{p} \mathrm{\&} \mathrm{f} 1.90\) KOOLTRONICS POWe gives massive air movertul snail type blower rotor DIM as a cube \(8^{\prime \prime} \times 8^{\prime \prime} \times 6^{\prime \prime}\) air aperture \(2.5^{\prime \prime} x\)
renth \(2.5^{\prime \prime}\) with flange fixing. BRAND NEW 110 v 50 Hz
ac working ONL \(Y 50^{\prime \prime}\) ac working ONL \(Y \Sigma 9.95+\Sigma 1.90\) psp

\section*{"E 8" MLOPPY DISK DRIVIS} give you \(100 \%\) bus compatability with most drives available today, the only difforegy to being our PRICE and the superb manufacturing quality. The 7100 single sided 87200 din double sided drive accept hard or soft sectoring IBM or ANS! standard giving a massive \(0.8 \mathrm{MB}(7100) \& 1.6 \mathrm{MB}(7200)\) of storage. Absolutely SHUGART, BASF
SIEMENS etc compatable. Supplied BRAND NEW with user manual and 90 day SIEMENS etc compatable. Supplied BRAND NEW with user manual and 90 da warranty.
\(.6225 .00+9.50+\) vat
7200 double sided
of difference on purchase
full tech
of drive.
SHUGART \(\mathrm{s} / \mathrm{h} 800-28^{\prime \prime}\) Drive's 110 v 50 Hz motor \(£ 160+\Sigma 9.50\) carr
Removed from working equipment but untested. SA120 Alignment dlisk's£9.95

\section*{SUPER SCOOP}

\section*{CHNHRONIC8 739-2}

The "Do everything Printer" at a price that will NEVER be epeated Standard Centronics interface, full graphics, 4 type onts with high definition \& proportional pacing for word processor applications, 80-132 columns, single sheet, roll or sprocket paper handling plus
nuch mora Available onlyfromDISPLAY ELECTRONICS ata ridiculous price of only \(£ \mathbf{2 9 9 . 0 0}\) Options: carriage \& insurance \&10.00 Interface Cable E10.00 RS232 Converter \(£ 45.00\)

\section*{NHWFTYPF ASRB31 \(\Rightarrow 1\) I/O ThRMmitais} fully fledged industry standard ASRं3 3 data terminal. Many features including ASCII keyboard and printer for data I/O auto data detect circuitry. RS232 serial interface. 110 baud, 8 bit paper tape punch and reader fo
off line data preparation and ridiculously off line data preparation and ridiculously good condition and in working order Options: Floor stand \(£ 12.50\) +VAT KSR33 with 20 ma loop interface \(\mathbf{1 2 5 . 0 0}+\)

\section*{SOFTY 2}

The amazing SOFTY 2. The compiete "toolki" for the open heart software surgeon. Copies, Displays, Emulates ROM, RAM and EPROMS of the 2516,2532 variety. Many otherfeatures include keyboard, UHF modulator. Cassette interface etc. Functions exceed capabilities of units casting 7 times the price? Only E 169.00 pp \(£ 1.95\) Data sheet on request

\section*{RCA FULIY CASHD}

ASCI CODAD KKYEOARDS

Straight from the USA made by the world famous RCA Ca the VP6oo Series of cased freestanding keyboards meet all requirement
of the most exacting user, right down to the of the most exacting user, right down to the
price! Utilising the latest in switch technology Guaranteed in excess of 5 million operations. The keyboard has a host of other features including full ASCII 128 character set, user definable keys, upper/lower case, rollover protection, single 5 V rall, keyboard impervious toliquids and dust, TLL orCMOS outputs, even an on-board tone generator for keypress feedback a guarantee.
VP6O1 7 bit fully coded output with delayed strobe, elc.
VP8 11 Same as VP60 1 with numeric pad VP506 Serial, RS232, 20MA and TTL outputwith6 selectable Baud Rates S64 20 VP616 Same as VP606, with numeric pad Plug and cable for VP601, VP611 \(\varepsilon 2.25\) Plug for VP606, VP616 2.10 Post, Packing and Insurance

\section*{MAINS FILTERS}

Professional type mains filters as used by
"Main Frame" manufacturers. Ideal for cur those unnerving hang ups and data glltches fit one now and cure your problems.
Suppression Devices SA5A Suppression Devices SA5A
upto 5 ampload Es. 9
Crcom inc F1886 up to 20 ampload \(\$ 9.50\)
orcom Inc F1900 upto 30 ampload \(\mathbf{E / 1 . 2 5}\)

\section*{RECHARGBABLE BATTERIES}

CYCLON type D001 sealed lead acid maintenance free \(2 v 2.5 \mathrm{ah}\). will deliver over 300 amps on shor circuit!! Brand new at only \(£ 2.95\)
SAFT VR2C siz
cadmium \(£ 1.50\) each 10 for \(\$ 11.50\)

\section*{D.C. POWER SUPPLY SPECLALS}

Experimentors PSUEx-GPO unit all silicon electronics. Outputs glve \(+5 \mathrm{v} @ 2 \mathrm{amps}\). 350 mm . All outputs fully regulated and short circuit proof. Removed from workin equipment, but untested. Complete with clrcuit. Transformer guaranteed. Only Ef4.50 + 22.50 pp .
POWER ONE CP143 super compact unit giving continuous output of 5 v @ 5 amps. dim. \(215 \times 67 \times 80 \mathrm{~mm}\). BRAND NEW and guarante ed Only \(£ 21.00+£ 1.50 \mathrm{pp}\).
CUSTOM POWERCO55 \(5 \mathrm{v} @ 3 \mathrm{amp}\) Very compact unit dim approx \(60 \times 90 \times 190 \mathrm{~mm}\). Seml open chassis, full crowbar overvoltage protection. Tested Ex Equipment. E11.95 + pp £1.25
MINISYSTEM PSU Ex equipment unit ideal for the small micro. Outputs give 5 v @
3 amps. \(+12 v\) @ 1 amp and \(-12 v @ 300\) a \(3 \mathrm{amps} .+12 \mathrm{v}\) @ 1 amp and \(-12 \mathrm{v} @ 300 \mathrm{ma}\). Crowbar overvoltage protection and current limi
\(+£ 2.00 \mathrm{pp}\)
PERIPHERAL SYSTEM SUPPLY, Fully cased unit supplied in a Brand new or little used condition. Outputs aive jv@ 11amps, + 15-17v@8 amps. -" 15-17v@8amps and "+" \(24 \mathrm{v} @ 4\) amps. All outputs are crowbar protected and the 5 volt output is fully requilated. Fan cooled Supplied tested, with circuit \(£ 55.00+£ 8.50\) carr.
matputs outputs give 5 volts@ 50 amps \(+12 v @ 5\) amps. \(-12 v @ 10\) amps. All output are fully
regulated with crowbar overvoltage protection on the \(5 v\) output. Supplied with circuit and tested. Ex-Equip. 110 v AC input. Only \(£ 99.95\) + carr. £10.50.

\section*{66\% DISCOUNT}

ELECTRONIC COMPONENTS \& EQUIPMENT
Due to our massive bulk purchasing programme which enables us to bring you the
best possible bargains, we have thousands of I.C's. Translistors, Relays, Cap's, P. B.'s best possible bargains, we have thousands of I.C's. Translstors, Relays, Cap's., P.C.B.'s, Sub-assemblies, Switches, etc. etc. surlplus to our requirements. Because we don't have sufficient stocks of any one item to include in our ads, we are packing all these
items into the "BARGAIN PARCEL OF A LIFETIME" Thousands of combonents at
 giveaway prices! Guaranteed to be worth at least 3 times what you play plus we always include something from our ads for unbeatable valuell Sold by weight
\(2.5 \mathrm{kls} \mathrm{E} \mathbf{2 5}\) + pp \(£ 1.25\)
10kls \(£ 10.25\) + pp £2.25
\(5 \mathrm{k} / \mathrm{s} 5.90+\mathrm{pp} 81.80\)
\(20 \mathrm{kls} £ 17.50+\mathrm{pp} £ 4.75\)

\section*{9" Monitors}

\section*{OT1O Monltor} a complete MOTOROLA \(9^{n}\) video monitor an attractive me case DIM approx high. The 10 wide and 1 high. The monitor has a 75 ohm composite seperate internal PSU delivers 5 v do 10 external use and 12 vDC for video monitor externaluse and has sufficient room inside for mounting other units such as \(5^{\prime \prime}\) disk drives etc. Interna oots give fullcontrol over allmonitor functions Suppled In a tested, as new or little used condition. 240v AC operation \(\mathbf{E 5} .00\) Carriag and Insurance £ 10.50
MOTOROLA 9 " open chassis monito Standard 240 V AC with composite 75 ohm video input, bandwidth in excess of 18 mh Monitors are ex equipment and although unguaranteed they are all tested prior to despatch, and have no visible burns on the screens. Dim approx \(9^{\prime \prime} \times 9^{n} \times 9^{\prime \prime}\). Supplied complete withains and input lead Ideal Black and White phosphor \(35.00+59.00\) (ham

\section*{SMMICONDUCTOR}
'GRAB BAGS'

\section*{Mixed Semis amazing vave contents} include transistors, digital, linear, I.C.'s devices guaranteed brand new full spec with manufacturer's markings, fully guaranteed. \(50+E 2.95100+E 5.15\) TTL 74 Series A gigantic purchase of an "across the board" range of \(74 \Pi L\)
series I.C.'s enables us to offer \(100+\) series I.C.'s enables us to otfer \(100+\)
mixed "mostly TL" grab bags at a price which two or three chips in the bag guaranteed all I.C.'s full spec. \(100+86.90\) guaranteed all I.C.'s full spec \(100+56.90\)
\(200+\Sigma / 2.30300+519.50\)

\section*{300 BAUD}

\section*{DATA MODHMS} Jandard EXGPO Modem operates on standard CCITT tones with full auto answer facilitles. Will switch to with full auto answer facilities. Will switch to
ANSWER or ORIGINATE.StandardRS232 connections. Ideal networks. DISTEL etc connections. Ideal networks. DISTEL etc condition \(\mathbb{5} 5.00\) carr. \(£ 8.50\).

\section*{1200 BAUD DATA PUMP MODEMS}

\section*{Compact unit for use with private or "Dial up} lines" Designed to work in pairs at any baud rate upto 1200 fulldu plex (4 wire circuit) orhah duplex (2 wire circuit). Features include remote test facilities. RS232 i/o lines etc Supplied with data in working order, but less case cover \(£ 65.00+£ 4.50\) carr.

\section*{OLIVISHII}

THESOO
REDUCED TO CLEART
Complete Input outputterminal with Fintegrals hole paper tape punch and reader, Unit as a cheap printer for a MICRO ASCII columns, Serial data Vo. Supplied complete with data, untested, unguaranteed \(\mathbf{8 6 5 . 0 0}\)

All prices quoted are for U.K. Mainland, paid cash with orderin Pounds Stirling PLUSVAT. Minimum ordervalue \(\boldsymbol{£ 2} \mathbf{2 . 0 0}\), Minimum Credir Card order £10.00. Minimum BO NA FIDE account orders from Government depts, Schools, Universities and established companies £20.00 Where post and packing not Indicated please ADD \(60 p+\) VAT Warehouse open Mon-Fri 9.30 - 5.30 . Sat 10.15-5.30. We reserve the right to change prices and specifications without notice. Trade, Bulk and Export enquiries welcome.

\title{
Appointments
}

Advertisements accepted up to 12 noon Wednesday, July 28th, for September issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: \(£ 13.50\) per single col. centimetre (min .3 cm). LINE advertisements (run on): \(£ 2.50\) per line, minimum 5 lines. (Prepayable.) BOX NUMBERS: \(£ 1.50\) extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.) PHONE: IAN FAUX, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to IPC Business Press Ltd.

\title{
AMPEX \\ SYSTEM MAINTENANCE ENGINEER
}
to join a resident team at a site of EXCEPTIONAL INTEREST situated in the St. James's Park area of London. The team is responsible for round-the-clock maintenance of a large INFORMATION STORAGE AND RETRIEVAL SYSTEM WHICH COMBINES both VIDEO AND COMPUTER TECHNOLOGY.
Ampex requires an Engineer with:
- Sound knowledge of Electronics/HNC or equivalent
- At least three years' experience of maintaining ANALOGUE and/or DIGITAL electronic equipment
- Preferably, specific experience with:

VIDEO equipment, such as cameras, VTRs, etc, and/or
DIGITAL equipment such as disk/tape drives, mini computers.
Good salary plus generous shift allowance.
Company car plus travel allowance.
Pension and Life Assurance. and Permanent Health Schemes.
Please write or phone for an application form from Maureen Brake, Reading (0734) 875200, Ampex Great Britain Limited, Acre Road, Reading, Berkshire.

\title{
Electronic Engineer
}
in Radiation Physics Department required

\footnotetext{
to assist in the servicing of a modern 20 MeV Linear Accelerator and a 6 MeV Linear Accelerator which is about to be installed and in the manufacture of dosimetry equipment and devices required for development and research.
Experience in Radar of Radiation Physics would be advantageous but not essential as appropriate training will be provided
Support given to obtain relevant higher qualifications
Applicants should possess ONC/HNC (Electronics) or other appropriate qualifications and at least three years' relevant experlence.
Salary on Medical Physics Technician Grade III scale: \(£ 6,468\) to \(£ 8,087\) per annum inclusive.
For application form and job description please write to the Personnel Department or telephone 01-600 9000 Ext. 2271. Ref. no. TG/10. Closing date, 4 August, 1982.
}

The National Broadcasting School, an independent organisation under the auspices of the IBA, provides training for Independent Radio. As well as running full-time engineering courses, the Engineering Department also teaches the nontechnical courses and maintains 6 broadcast-capable studios and ancillary areas.

\section*{PART-TIME LECTURERS IN ENGINEERING}

Two part-time lecturers are required to contribute to 3 -month Engineering Course starting 21 September. They must have considerable experience in radio broadcasting and the ability to pass on that experience. Salary negotiable.

\section*{BROADCAST ENGINEER}

A Broadcast Engineer with several years' experience in maintaining modern sound broadcasting equipment and a recognised technical qualification is required. In addition to the maintenance of the school's studios, the job includes teaching Broadcast Engineers. A desire to teach is therefore essential and previous experience in this and local radio would be an advantage. Salary negotiable.
Applications, which will be treated in confidence, should be made to the Chief Engineer, NBS, 14 Greek Street, London W1.

\section*{CCTV SERVICE ENGINEER}
required to carry out repair and maintenance on all types of surveillance equipment. Salary commensurate with age and experience.
Please write, with full C.V., to: BOX No. 1711

\section*{2-WAY RADIO SERVICE TECHNICIAN}

Experienced in servicing V.H.F. and U.H.F. Land Mobile Equipment, required for expanding COMMUNICATIONS COMPANY in STAINES. SALARY: Commensurate with experience.
CONTACT: Chris Turner,
FRANK CODY ELECTRONICS LTD STAR HOUSE, GRESHAM ROAD, STAINES, MIDDLMSEX
Or telephone Staines 62682 for an appointment.

\section*{Appointments}

\section*{LECTURERS AND TECHNICAL AUTHORS}
£25,000?
DESIGN ENGINEER
RF rest equipment including VSWR test sets, frequency standards and RF measers, frequency standards and RF mead successful company. \& Negotiable West Country.

\section*{2. TEST ENGINEERS}

To test and service VHF and UHF trans mitters and receivers - several clients. To \(£ 8,000\) - Hants/Berks.

\section*{3. RF DESIGN ENGINEERS}

To join a small team designing microprocesspr-based signal sources. To £11,000 - Herts.

\section*{4. PROJECT LEADER}

To head team engaged on microwave development, UHF/VHF techniques, microstrips and mixers. To \(£ 14,000\) Herts.
5. ELECTRONIC ENGINEERS

Development of digital-based intruder detection equipment. To \(£ 8,000\) - Surrey.

\section*{6. DESIGN ENGINEER}

To design all stages of microwave and satellite communication systems from base band to 6 GHz . To \(£ 10,000\) - Essex
CLIVEDEN CONSULTANTS
87 St. Leonard's Road
Windsor (07535) 57818,58022
24 -hour service and four Authors, which provides overall systems descriptions for major installations throughout the Corporation and publishes technical standards and procedures. The unit is supported in-house by a drawing office and printing facilities, together with computer based phototypesetting, word processing and graphics.
The technologies covered by Technical Publications Unit are Radio, Television, Transmission and, increasingly within these fields, computers. Authors have substantial personal responsibility to assemble and present their material accurately and in a form acceptable to users.
The successful applicant will hold a degree in electronics or a reasonable equivalent such as a Higher National Certificate, have good experience of technical documentation and a good grasp of a significant area of broadcasting technology or of a closely related field of electronics. Increasing versatility across the whole field will be expected as experience grows. Appropriate training, including areas of broadcasting technology, will be provided if necessary.
Salary on appointment, for both positions will be between \(£ 9,435\) and \(£ 10,293\) rising to £12,254.
Excellent welfare and club facilities. Pensionable posts. Relocation expenses considered For an application form and further information about the Technical Author vacancy please contact Head of Training Section (Engineering), Mr J H Brooks; those interested in the Lecturer vacancy, please contact Head of Training Section (Operations), Mr D G Enoch. BBC Engineering Training Centre, Wood Norton, Evesham, Worcs WR11 4TE. Telephone Evesham 45123.
Closing date for return of application forms is 14 days after publication.

UNIVERSITY OF EAST ANGLIA

\section*{ELECTRONICS TECHNICIAN}

Required to be responsible for the Electronics Workshop in the School of Mathematics and Physics. The workshop offers technical support to research and reaching in physics and electronics responsibilities will include:
(i) the organisation and general supervision of the workshop:
(ii) the design and construction of digital and analogue circuits;
(iii) the repair and modification of electronic equipment including mictocomputer systems.
Applicants must hold a suitable qualification in electronics, be able to work with minimum supervielectronics, be able to work with minimum supervielectronic engineering techniques.
Salary on the Grade 7 scale E7.605-f8.542 per annum.
Application forms and further particulars can be obtained from the Senior Administrative Assistant. School of Mathematics and Physics, University of East Anglia, Norwich NR4 TJ, to whom applications should be returned by 5 July, 1982.

\title{
ALWAYS AHEAD WITH THE BEST! £5,000-£15,000 \\ \(\star\) Experienced in:
}

Mini/Microprocessor Hardware and Software Digital and Analogue circuitry; RF and Microwave techniques?

\author{
* Where does your interest lie: Image processing; Automation; Datacomms; Radar Nav aids; Mobile Radio; Medical; Telemetry; Simulation; Satcom; Lans?
}
* There are opportunities in:

Design; Test; Service; Sales; Systems; Production; Quality and Research.
\(\star\) Make your first call count - Contact MIKE GERNAT on 076384 676/7 (usually until 8 p.m.)

\section*{APPOINTMENTS} IN ELECTRONICS to \(£ 15,000\) MICROPROCESSORS COMPUTERS - MEDICAL DATA COMMS - RADIO

Design, test, field and support engineers - for immediate action on salary and career advancement, please contact

\section*{Technomark}
11. Westbourne Grove London W2.01-2299239 (9257)

DEPARTMENT OF PHISIOLOGY ASSISTANT EXPERIMENTAL OFFICER

\section*{(ELECtronic wstrumemanow)} CORRECTED ADVERTISEMENT Applications are invited for the above post - design experience essential, degree in electronics an advantage. Salary range: OR Gr. IB £5,286£8,925 p.a. - duties to com mence as soon as possible. Applications (two copies), together with the names and addresses of two referees, should be forwarded to the Vice-Principal (Administration) Vice-Principal (Administration)
and Registrar, University Coland Registrar, University Col-
lege, P.O. Box 78, Cardiff CF1 lege, P.O. Box 78 , Cardiff CF1
\(1 \times \mathrm{L}\), from whom further particulars may be obtained. Closing date 11 th August. Ref. 2428.

\section*{DIGITAL EXPERIENCE? FIELD SUPPORT R\&D AND SALES VACANCIES IN COMPUTERS NC, COMMS., MEDICAL VIDEO, ETC. \\ For free registration ring 0453883264 01-290 0267}

ELECTRONICS RECRUITMENT SERVICE LOGEX HOUSE, BURLEIGH, STROUD TEL. 0453 883264, 01-290 0267

\section*{Electronic Engineers salaries up to £13k}

VIDEO is one of the World's fastest growing industries, and McMichael Ltd. is in the forefront of advanced video technology. We need young dynamic electronic engineers at all levels to join prestige high technology project teams.

As an analogue or digital video engineer, you would be involved in such projects as, video conferencing, broadcast effects, laser video transmission, precision displays, and other projects.

Our project teams are based at our new research and development Laboratories in Stoke Poges, Bucks., set in 37 acres of ground, with extensive sports and social facilities.

If you are experienced in high speed digital processing or analogue video, write or phone for an application form today.

McMICHAEL LIMITED
Sefton Park, Bells Hill, Stoke Poges, Slough SL2 4DY
Telephone Fulmer (02816) 2777 Telex 849212

\section*{TELECOMMUNICATION ENGINEERS}

\section*{SAUDI ARABIA}
C. 222,500 P.A. TAX FREE

SWITCHING SYSTEM ENGINEER
Exp. SPC switching system, analyse and evaluate tenders relating to electronic switching
MOBILE TELEPHONE SYSTEM ENGINEER
Study requirement for new automatic mobile telephone system.
MARITIME TELECOMMUNICATIONS ENGINEER
Oraw up tender specifications, coastal MF, HF, VHF stations.
COAXIAL CABLE SYSTEMS ENGINEER
Oraw up tender specifications.
FREQUENCY MONITORING SPECIALIST
Study requirements for frequency spectrum management
OUTY
Analyse and evaluate tenders and inspect contractors' work.
MICROWAVE SYSTEM ENGINEER
Study system required.
Positions are offered on bachelor status. Candidates must be qualified to BSc. Age :35+. Leave is approx. 2 months per annum plus 3 economy excursion flights to UK Telephone Montin (UK) Ltd on \(0532-567141\) for application form only or mail detailed
Irésumé to Montin (UK) Ltd, Protection House, 83 Bradford Road, Pudsey, West Irésume to Montin
Y'Yorkshire LS28 6AT.

APPOINTMENTS LTD.
CAPITAL HOUSE 29-30 WINDMILL STREET
LONDON W1P 1 HG
TEL: 01-6375551

\section*{the UK's No. I ELEGTRONICS AGENCY}

Design, Development and Test to \(\mathbf{£ 1 4 , 0 0 0}\) Ask for Brian Cornwell

SALES to \(£ 15 ; 000\) plus car Ask for Maurice Wayne

FIELD SERVICE to \(\mathbf{E 1 2 , 0 0 0}\) plus car Ask for Paul Wallis
We have vacancles in ALL AREAS of the U.K.
Ask for a Free Jobs List
Telephone: 01-6375551 (3 lines)

\section*{THE UNIVERSITY OF PAPUA NEW GUINEA SENIOR TECHNICAL OFFICER (ELECTRONICS)}

Applications are invited from suitably qualified persons for the above position in the University of Papua New Guinea.

\section*{DUTIES:}

The successful applicant will be expected to ioin a technical group involved in carrying out electrical/electronic maintenance to scientific departments and faculties within the University. A proven record of experience is required covering maintenance and servicing in a wide range of teaching and research instrumentation commonly used in Bio-Medical/Dental Sciences. The Department of Physics houses modern and well-equipped electronics and technical workshops to facilitate the work envisaged.
The successful applicant will be required to supervise and to provide on-the-job training to national Papua New Guinean technical staff.

\section*{QUALIFICATION:}

Applicants should hold a Higher National Certificate in Electronics/Electrical Engineering or equivalent qualification. Possession of a current and valid driving licence will be desirable.
SALARY: K15625 per annum plus \(24 \%\) gratuity.
Further details may be obtained from the Chief Technical Officer in Physics Department on telephone 245243 or the University of Papua New Guinea, P.O. Box 320, UNIVERSITY, Papua New Guinea.
Applications together with names and addresses of three professional referees should reach the Secretary, University of Papua New Guinea, P.O. Box 320, University Post Office, Papua New Guinea, not later than 9th July, 1982.

\section*{SECRETARY}

UNIVERSITY OF PAPUA NEW GUINEA

\section*{Commissioning/Engineering Support Broadcast Television Equipment}

Tremendous growth and success has resulted in an excellent career opportunity in the QA Department of Sony Broadcast, a world leader in professional broadcast television equipment. The Company has an expanding range of high technology products which include video cameras, VTRs and editing control systems.

An experienced engineer, who should ideally have a background in broadcast television equipment supported by a relevant qualification, is now required to join a small team responsible for the evaluation of product performance. Key activities will also include commissioning, assistance in product customisation and the establishment and maintenance of ATE, including software. Full product training will be given where necessary.

This position carries an attractive salary, first class conditions of employment and considerable prospects for personal development.

If you are interested, please write, giving brief details of career and present salary to Mike Jones, Senior Personnel Officer, Sony Broadcast Limited, City Wall House, Basing View, Basingstoke, Hants RG21 2LA. Tel: 55011.

\section*{TRAINEE RADIO OFFICERS}

First-class, secure career opportunities.
A number of vacancies will be available in 1982/83 for suitable qualified candidates to be appointed as Trainee Radio Officers.

\(\square\)
If your trade or training involves Radio Operating, you qualify to be considered for a Radio Officer post with the Composite Signals Organisation.
- Candidates must have had at least 2 years' radio operating experience or hold a PMG, MPT or MRGC certificate, or expect to obtain this shortly.

On successful completion of between 36 and 42 weeks specialist training, promotion will occur to the Radio Officer grade.

Registered disabled people may be considered.
SALARY \& PROSPECTS
TRAINEE RADIO OFFICER: \(£ 4,357\) at 19 to \(£ 5,203\) at 25 and over. On promotion to Radio Officer: \(£ 5,968\) at 19 to \(£ 7,814\) at 25 and over. Then by four annual increments to \(£ 10,662\) inclusive of shift working and Saturday and Sunday elements.

For full details please contact our Recruitment Officer on Cheltenham (0242) 21491 Ext. 2269 or write to her at:
Recruitment Officer, Government Communications Headquarters, Oakley, Priors Road, Cheltenham, Gloucestershire
GL52 5AJ

\section*{(1531)}
(GCiio)

\section*{ELECTRONIC SERVICE ENGINEER}

Due to the rapid growth of our In-Car Entertainment Division we seek an additional engineer to service our range of products.
Experience of both analog and digital systems is essential as complex microprocessor based units are handled.
The ideal candidate will have been employed for a minimum of 3 years servicing car audio or domestic \(\mathrm{Hi}-\mathrm{Fi}\) equipment, together with 2 years' microprocessor-based hardware experience. Due to the nature of our products, persons without this experience are unlikely to be suitable.
Some administrative capability would be considered an advantage.

Applications in writing with full c.v. to: The Technical Manager

Chantry Road Industrial Estate Kempston, Bedford MK42 7SD

\title{
Engineers\& Scientists \&9,126
}

\section*{Communications R\&D... ...the leading edge}

\section*{VIDEO ENGINEER}

Rediffusion Consumer Manufacturing Ltd is seeking an experienced video engineer to join a progressive team engaged on a wide variety of stimulating projects associated with video cassette recorders, video cameras, video disc players and colour TV recelvers and monitors.
Assessment reporting is an Important part of this team's function and the ability to express oneself, both verbally and in writing, is essential.

Our Laboratories are sltuated in Chessington, within easy commuting distance of the Surrey countryside. An attractive salary and the usual big company benefits are offered to suitably qualified and experienced engineers. if you believe you can make an effective contribution to our future video projects please write to or phone:-

\section*{Mr Harry Brearley,}

Rediffusion Consumer Manufacturing Ltd.,
Fullers Way South,
Chessington, Surrey KT9 1HJ. Phone: 01-3975413
(1715)

Serving an area of four million people in and around Manchester, seeks a

\section*{Broadcast Engineer}
for malntenance, operations, development and installation of studio equipment A fascinating lob working with a friendly and enthusiastic team.
Write with C.V. to:
Chiof Engineer
Piccadilly Radio
P.O. Box 261

Manehester M60 IQu

At HM Government Communications Centre, we're applying the very latest ideas on electronics and other technologies to the problems of sophisticated communications systems, designed to enable and protect the flow of essential information

The work is of the highest technical challenge, offering full and worthwhile careers to men and women of high ability, on projects covering the following areas of interest: -

RADIO - from HF to microwave, including advanced modulation systems, propagation studies, applications of Microcircuitry.

\section*{ACOUSTICS \\ SIGNAL ANALYSIS}

MAGNETICS SYSTEMS ENGINEERING
Applicants, under 30 years of age, should have a good honours degree or equivalent qualification in a relevant subject, but candidates about to graduate may also apply.

Appointments are as Higher Scientific Officer \((£ 6,840-£ 9,126)\) or Scientific Officer (\(£ 5,422-£ 7,399\)) according to qualifications and experience. Promotion prospects.

For an application form, please write to the Recruitment Officer, (Dept. W/W8), HM Government Communications Centre, Hanslope Park,

Teleco Oilfield Services Ltd has pioneered a reliable shock-resistant Measurement-While-Drilling (M.W.D.) tool which saves drilling time and money, promotes safety and improves well-path accuracy in offshore drilling activities. Our dynamic growth has created a career opportunity for an

\section*{ASSISTANT ENGINEERING MANAGER (Electrical/Electronics) \\ This position is located in our facility in Aberdeen, and offers a stimulat-} Ing environment with an excellent beneflt package and an opportunlty to grow with the company in this rapldly expanding Industry
The successful candidate, reporting to the Engineering Manager, will prlmarily be required to provide engineering support for the Electronic Maintenance department, to introduce new tools to the field and to exercise budgetary control over electrical and electronic activities.
Appllcants should possoss B.Sc/H.N.D. quallflcations In Electrical/Electronic Engineering and a minimum of six years experience in a maintenance or production environment. A knowledge of analogue and digital electronics as employed in a hostlie environment would be an advantage.
A salary of c \(£ 13,500\) and a company car reflects the seniority of this position. Applicants should send a C.V. as soon as possibie to:

The Personnel \& Administration Manager
TELECO OILFIELD SERVICES LTD., Hareness Circle Altens Industrial Estate, Aberdeen
Agency enquiries are not requested

\section*{TELECD \\ ,}

\section*{MICROCOMPUTER ENGINEER}

Required by newly formed company working on innovative computer-based speech processing systems in central London. Applicants must have experience with digital hardware and will be expected to develop real-time applications for Intel 16 bit S.B.C.s and contribute to their software support. This is an ideal opportunity to work with a small team and use the most advanced signal processing technology and computer support taking the product from design through to installation. It will be necessary to liaise with customers and implement a particular interface requirement.
Salary will depend on experience and be in the range of \(£ 8,000-£ 10,000\). Please reply in writing, giving details of qualifications and career to date, to:

AUDIO MAGIC LTD.
105 Green Croft Gardens
London NW6 3PE

\section*{FIELD SERVICE ENGINEER}

LKB Instruments Limited, the U.K. subsidiary of a major international medical/scientific instrument company require a Field Service Engineer for their Customer Service Department.

Applicants should have a sound knowledge of digital and analogue electronics, with preferably some field experience in the scientific instruments world.

The work entails the repair and maintenance of instruments situated mainly in Hospitals and University Laboratories. Preference will be given to applicants living in the Gloucester to South Birmingham area.

Conditions of employment are excellent and in addition to a good basic salary and company car, the company have a profit sharing scheme, BUPA participation and 4 weeks annual holiday.

> Contact Mrs S. Francis for application forms:LKB Instruments Limited, 232 Addington Road, Selsdon,
> South Croydon,
> Surrey, CR2 8YD.
> Tel: 01-651 5313

\section*{MANY FIRMS ARE THROUGH THE RECESSION AND RECRUITING AGAIN}

\section*{PROJECT MANAGER}

VLF and LF equipment for helicopter systems control. Integration of program and cost data. Liaison with clients, etc. Experience in radio communications environment essential. Berks. To £12,500.

\section*{SOFTWARE ENGINEER}

For new high technology computer peripheral equipment with a resident basic interpreter. Many advanced design concepts. Experience Z80/8080 SW essential. Berks. To 10,000 .

\section*{YOUNG ENGINEERS}

For designs associated with processing low-noise signals, displays and control circuitry for a new thermal imaging system. Essex. E6,000-E8,000.

RF ENGINEERS
To design non-broadcast TX up to 5 MHZ 20 KW for very advanced medical
diagnostic instrumentation. Greater London. To E11,000.

\section*{ASSISTANT COMMUNICATIONS MANAGER}

For large international L Comms. network, including FDM, TOM, Facsimile and voice staff supervision and hardware development client liaison - European travel. London. To f12,000.
Whatever your experience send your CV or ring:

\section*{Charles Airey Associates}

\title{
Tempo House, 15 Falcon Road, Battorsea London SW11 2PJ \\ Tel. 01-223 7662 or 2286294
}

A Professional Audio Company situated in central London require a

\section*{TECHNICAL ENGINEER}
interested in working with a wide range of studio equipment from video to 24 -track digital recorders. Previous experience is not necessary but a good practical knowledge of electronics including digital techniques is essential. Please write giving information about yourself and for further details.

BOX NO. 1727
(1727)

\section*{UNIVERSITY OF OXFORD DEPARTMENT OF ENGINEERING SCIENCE}

\section*{GRADUATE ENGINEER}

\section*{IN CHARGE OF THE ELECTRONIC SERVICES DIVISION}

A graduate engineer is required to direct the Electronic Services Division, which provides the supporting services for the Department's research and undergraduate teaching. The person filling the post should have a proven knowledge and experience of advanced electronic technology, the ability to anticipate future developments in this field, to supervise the design of both analogue and digital electronics, including the hardware and software associated with the development of microprocessor-based instruments, and to advise research staff on how best to use this technology to advance their research.
The position also involves the management and administration of the electronic services staff, comprising at present three research assistants (Electronic Design Engineers) and five technicians, who are responsible for:
(i) design and construction of electronic circuitry;
(ii) servicing and modification of existing equipment;
(iii) operation of the departmental electronic stores.

The person appointed will also be required to supervise any laboratory stewards working in this field, the safety checking of electrical equipment and the control of the electronic section of the inventory. \(\mathrm{He} /\) she will be expected to contribute to the teaching and future development of the microprocessor laboratory.
The position is on the University Research Support Staff Grade II Scale with a salary range from \(£ 9,750-£ 12,860\) with superannuation on the USS Scheme.
Application should be made to the Administrator, Department of Engineering Science, Parks Road, Oxford OX1 3PJ, enclosing a detailed curriculum vitae and the names and addresses of three persons to whom reference may be made.

\section*{UNIVERSITY OF YORK}

\section*{Department of Electronics} 1 post of Technician Grade 6 2 posts of Technician Grade 3

\section*{Applications}

The Chief Technician (Grade 6) will be required to set up and run the Research Laboratories and will be responsible for the development, provision and maintenance of equipment and services needed by staff and students working in communications, control engineering and microelectronics. A degree, HNC or equivalent qualification is required, together with extensive experience of electronic engineering, including computers.
Salary for Grade 6 on Scale \(£ 6,532-£ 7,802\) p.a. (under review).
One Grade 3 Technician will be required to assist the Chief Technician in the research laboratories and the other Grade 3 Technician will assist the Senior Technician running the teaching laboratories. For appointments at this grade a degree or a minimum of 2 " \(A\) " levels plus some experience is required, but applicants with " \(A\) " levels plas some experience is required, wit at a lower grade and given without
training.
training. Salary for Grade 3 on scale \(£ 4672-£ 5473\) p.a. (under review).
Applications in writing, giving full details of age, education and experience, together with the names and addresses of two referees, should be sent to Mrs. E. D. Heavans, Senior Administrative As: sistant, University of York, York YO1 5DD, by Friday, 13th August, 1982.
(1725)

R \& D OPPORTUNITIES. Senior level vacan cies for Communications Hardware and Software Engineers, based in West Sussex. Competitive
salaries offered. Please ring David Bird at Redif. fusion Radio Systems on 01-874 7281 . (1162 SOUNDTRACS audio mixers require a test engineer for final product test. At least three years' experience of testing audio products in a producexperience of lesting aucio products in a praduc-
tion environment. The position entails final test, some sub-assembly approval, writing test specifications in conjunction with the design team and some post development work. Much of our subassembly is on semi-auto ligs. Up to \(£ 8,000\) p.a. depending on experience, 26 days' holiday, BUPA and other normal benefits. Todd Wells, 01.3993392 or write Soundout Laboratories Ltd.;
(1710) 91 Ewell Road, Surbiton, Surrey.

\section*{PART-TIME LECTURERS}

Regd. by private college to teach ELECTRONICS and/or PHYSICS up to A-level standard for between 7 and 15 hours per week (daytime only).
Contact City Tutorial College, 67/83 Seven Sisters Rd., London, N.7. Tel: 01-263 5937/8.
(1718)

\title{
Lecture Theatre Manager
}

The Institution wishes to recruit a Theatre Manager to replace the present manager who will retire shortly. The Institution of Electrical Engineers arranges approximately 200 meetings, seminars, colloquia and conferences a year in its lecture theatres at Savoy Place, London.

These lecture theatres are equipped with modern lighting and audio visual aids. The latter includes large screen projection facilities for video tapes and projection facilities for films, slides and transparencies; sound reinforcement and recording facilities; radio microphones and audio loop transmission for the hard of hearing. The facilities are subject to periodic updating and improvement.

The Lecture Theatre Manager is responsible for managing all the lecture theatres in the broadest sense by satisfying both the needs of the audience and the speakers. Will be expected to

\section*{*梅 THEINSTITUTION \\ OF ELECTRICAL}

ENGINEERS
assist and advise the speakers through the correct choice and use of audio and visual aid equipment and to ensure that the audience obtain the maximum information from the lecture. Will be expected to maintain the equipment in first-class order and to make recommendations for changes and improvements, and will operate the equipment during lectures.

The Lecture Theatre Manager, in addition to being professionally and technically competent, should have a personality which inspires confidence in the lecturers.

We offer a competitive starting salary and other conditions of employment include: 35 hour flexible working week, generous leave entitlement, subsidised staff restaurant, and pension and life assurance scheme.

Candidates (male or female) should apply in confidence, detailing career and salary progression to the Director of Administration, Institution of Electrical Engineers, Savoy Place, London, WC2R OBL

\section*{ELECTRONIC TEST ENGINEERING}

Having introduced an extended new product range many of which are micro-processor based, Marconi Instruments has once again contirmed itself as Europe's leading manufacturer of measurement systems and automatic tes equipment. Our products are selling throughout the world to all leading users in the electronics and aerospace industries and we are naturally developing further innovated designs.
A key role in our organisation is that of test engineering, where a group of professional engineers are responsible for the development of sophisticated methods and soffware for the manufacture of our products. We are now looking for experienced Engineers and are particularly interested if you have experience in the following disciplines:

\section*{IEEE Bus Control Systems - ATE Programming Test Techniques}

Whatever your level of experience we would like to hear from you. We can offer an excellent salary plus a wide range of company benefits, including relocation expenses where appropriate.
For further details contact Mr. J. Prodger, Recruitment Manager, Marconi Instruments Limited, Longacres, St. Albans, Herts. Telephone: St. Albans (0727) 59292 ext. 369.

\section*{RACAL COMMUNICATIONS RECEIVERS}
\(500 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s} 1 \mathrm{Mhz}\) wide. RA17L - £175. RA117E - f225. A fow sets available as new at E 75 extra. All receivers are air tested and calibrated in our workshop, supplied with full manual, dust cover, in faif used condition. New black motal louvied cases for above sets E25 each. RASAD - ISB - SS8 - E75. WNI SSB - ISB and fine tune for 1 - 150 . THANS/s - SSB - ISB - OSE - ESM - CN f150 AERULI TUMIMG UMIT and protection unit MA1978 - f25 to f50 OECADE FREOUENCY GENERATOR MAZEOB Solid state synthesiser for MA79 or RA117 - RM217 - RA1217 - £150 to f 200 . MNZ50 - \(1.6 \mathrm{mc} / \mathrm{s}\) to \(31.6 \mathrm{me} / \mathrm{s}-£ 150\) (New). MAZ59G - pracision frequency standard - \(5 \mathrm{mc} / \mathrm{s} 1 \mathrm{mc} / \mathrm{s} 100 \mathrm{khz}\) - \(£ 100\) to f 250 . RACAL MA152 - Standing wave ratio indic stor. FX2mc/s - \(25 \mathrm{mc} / \mathrm{s}\) Power up to 1000 watts - 50 ohms - Auto trip switch - Transistor mains \(100-250 \mathrm{AC}\), new and boxed - £40. RACAL COUNTER \(836(9036) 32 \mathrm{mc} / \mathrm{s}\) TIL circuit design - tested with manual - E 50 to \(£ 75\). Twin Bam - Solid State - f 175 with manual TEXTROMIC DSCIIOSCOPE 647 Ind 6474 Solid State - \(50 \mathrm{mc} / \mathrm{s}\) and \(100 \mathrm{mc} / \mathrm{s}\) bandwidth - 7250 and \(£ 350\). Tested, circuit and instructiens. AERLAL MASTS - we have three masts approx, 130 t high, complete with all fitings. Base - insulators, otc., Mast steel tube \(8^{\prime \prime}\) all parts galvanised, supplied brand new, alf items boxed - 1000 - of each complate mast C 400.
All items are bought direct from H.M. Government, being surplus equipment. Price is exworks. SAE for all enquiries. Phone for appointment for demenstration of any item. John's Radio. Whitehall Works, of Whithall hoad (0274) 684007 . V.A.T. and Carriage extra.

\section*{MARTIN ASSOCIATES (ELECTRONICS) LTD. \\ - PARTHIA', BECKHAMPTON No, MARLBOROUGH, WILTS ADVANCE OS 2000 Oscilloscope Dual Beam
 DAWE 11918 600/300W Ultrasonic Cleaner C 200
DYMAR 711 VHF Millivoltmeter............ \(\mathrm{E50}\) DYMAR 711 VHF Millivoltmeter
ELECTRONIC VISUAL EV 8000 8 \& K 2409 Electronic Voltmeter \(2 H z-200 \mathrm{HKz}\) \(8 \& \times 2305\) level Pecorder T-P 1335A X-Y Display Storage H-P 1332 A X-Y Display...... BRYANS 26000/A3 X-YRecord HAFSTHOM Heal/Frig Oven \(-70^{\circ}\) to \(+200^{\circ} \mathrm{C}\) MARCONI TF. 1370 R-C Oscillator ELEQUIPMENT D. 43 Dual Beam Oscilloscope TELEQUIPMENT D 75 Dual Beam Oscillosicin DC-50MHz NEW CRT MARCONI TF. 8688 Universal Bridge \(1 \%\). MARCONI TF. 2600 Sensitive Voltm \\ KEITHLEPM. 6456 Stereo Generator.............. GALLENKAMP ASOV 150 No. 2 OVEN....
TAYLOR SG. \(62 A\) AM/FM Signal Generat TAYLOR SG. 62 AM AM/FM Signal Generator..... NARDA 3
1000 MHz ... \\ The above prices do not incl. carriage and VAT \\ URGENTLY REQUIRED: OSCILLOSCOPES \\ (1384)}

ENCAPSULATING EQUIPMENT FOR coils, ransformers, components, degassing silicone rubber, resin, epozy, Lost wax casting for brass, mers, siver, ec. Mpregnawing cols, tansforused and new. Also for CRT regunning metallising. Research \& Development. Barrerts, Mayo Road, Croydon CRO2QP. \(01-6849917\).
(9678)

OSCILLOSCOPES. 50 MHz , D. beam, D. imebase, N.P. Tek, etc. From £150. Marconi £230. RH Schwartz capacitance bridge \(£ 100\). Advance 5 -volt \(40-\mathrm{amp}\) switched P.S.U. \(£ 80\). Oscilloscope probes, Tel/HP, etc. Wayne Kerr "Midge" -53 to 150 C meter/probe 580 . Please include VAT and postage. "Q" Services, 29 Law ford Crescent, Yateley, Camberley, Surrey, 0252 871048.

SCOOP PURCHASE new unused Cossor transistor testers, Model 1325, £37.50, including VAT, and postage/limited quantity/orders dealt with in strict rotation. Anchor Electronica, The

SAVE \(33 \%\) on PCB 2H holders, in boxes of 15 Limited offer 30 . Hurry and phone 0353778756 \(9 \mathrm{a} . \mathrm{m} . \operatorname{to} 9 \mathrm{p} . \mathrm{m}\). Save time. We represent over 30 leading manufacturers. Free index of hand tools and production aids. Batvale Mkt. Lid., 50 High Street, Sutton, Ely, Cambs. Tel: (0353) 778756.
(1667)

\title{
Video Engineers Sony are looking for a high flier do you fit the bill?
}

Everyone knows our reputation for high quality domestic TV, audio and VCR equipment, but that's only part of the Sony success story.
We also lead the field in industrial video and other commercial and industrial applications. Video cameras, professional and digital audio, dictating machines, language laboratories - these are just some of the areas in which Sony is out in front.
Products like these are amongst the most sophisticated on the market and the Engineers who provide the back-up service need to have the highest level of technical competence if they are to maintain the standard of service which our customers have come to expect - second to none!
We're expanding fast to meet the growth of our business and as part of that expansion, we now wish to recruit an additional Engineer for our National Service Centre at Feltham, Middlesex.
Although we provide initial and on-going product training, you must have several years good fault diagnosis experience on the kind of products we have described. In particular, experience of industrial video (U-matic format) is essential, as is qualification to at least City \& Guilds 222 (with Colour Endorsement), 224 or equivalent.
If you are the high flier we're looking for, we'll offer you a very competitive salary and a range of benefits which is everything you would expect from a company which places great importance in looking after its staff.
For an application form, you should contact Rosemary Browne, Personnel Department, Sony (UK) Limited, Pyrene House, Sunbury-on-Thames, Middlesex. Telephone: Sunbury-on-Thames 81211.

\section*{SONY}

\section*{PHONE YOUR CLASSIFIEDS TO IAN FAUX ON 01.6613033}

\section*{\(80 \times 24\) VDU}

All the electrontcs for a 24 lines by 80 characters visual dlaplay unlt on one assemblad and tested printed clicult board measuring 8.75 Inch \(\times 6.50\) Inch. You provide: power supply \(+6 v\) at 1.2 25mA ASC11 coded keyboard, video monitor.
The VDU- 1 will talk to the R.S. 232 serlel gort on your computer, at up to 19,200 addressing.
VDU-1 Assembled and tested PCB \(£ 135\) PSU-1 VDU-1 power supply £32 All prices subject to \(£ 2.50\) reglitered doIlvery, plus VAT.

\author{
SIRIUS CYBERNETICS \\ Comyn Lodge, 68 Holly Walk Leamington Spa, Warwickshire
}
al. (0926) 316110

\section*{THE OPEN UNIVERSITY FACULTIES OF \\ TECHNOLOGY AND SCIENCE ELECTRONICS COMMON FACILITY \\ Assistant Electronics Design Engineer}

Applicants are invited for an Assistant Electronics Design Engineer, to work on a wide variety of electronics work in the Interfaculty Electronics Facility.
The design will involve both analogue and digital circuitry, including a growing involvement in microprocessors and the associated software.
The work will appeal to someone with a keen interest in electronics, who is eager to learn new techniques and who already has some experience in design.
Qualifications required are minimum design experience of one year with at least TEC III or ONC and preferably working to a higher qualification. The salary will be on the T5 scale \(£ 5695\) - \(£ 6650\).
Further particulars and an application form are available from: Mrs. B. McBrearty (498/1), Faculty of Technology, The Open University, Walton Hall, Milton Keynes MK7 6AA, or telephone Milton Keynes (0908) 653941: there is a 24-hour answering service on Milton Keynes (0908) 653868.

This is a re-advertisement and previous candidates do not need to apply.
Closing date for applications: 30th July.

ARTICLES FOR SALE

\section*{TO MANUFACTURERS, WHOLESALERS BULK BUYERS, ETC.} LARGE QUANTITIES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAL
'SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc. CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERA MICS, PLATE CERAMICS, etc.
ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc.
ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE
TELEPHONE: 445 0749/445 2713
BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, North Finchley, London, N. 12
15 minutes from
TELETEXT (Ceefax/Oracle) or Viewdata (Prestel) add-on adaptors for your existing television or microcomputer. Discount prices. Mail order.
Trade enquiries welcome. Avon Office Services Trace enquiries welcome. Avon Otuce Services 502008 any time.
(1724)

BRIDGES, waveform/transistor analysers. Calibrators, Standards. Millivoltmeters. Dynamometers. KW meters. Oscilloscopes. Recorders. Signal generators - sweep, low distortion, true
RMS, audio, FM, deviation. Tel. 040376236 RMS, audio, FM, deviation. Tel. 040376236.

PRINTED CIRCUITS. Make your own simply; cheaply and quickly. Golden Fotolak Light Sensitive Laquer - now greatly improved and very much faster. Aerosol cans with full instructions, \$2.25. Developer 35p. Ferric Chloride 55p. Clear Acetate sheet for master 14p. Copper-clad Fibreglass Board approx. 1 mm thick \(£ 1.75 \mathrm{sq}\). ft. Post Packing 60 p . White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

\section*{POWER V WOS-FET TECHNOLOGY}

We specialise in all aspects of this important subject. A comprehensive service is offered to individual or OEM users, including: * Hitachl Supertex and RCA V MOS-FET from stock.
\(\star\) V MOS-FET power modules from stock. * Competitive prices (120 watt modules £15.45, 1 off).
- Printed circuits and kits.
\& Data books and application notes. \# Design, evaluation and advice service. Catalogue/sample data sent free (50 p stamp appreciated towards post and packing). Phone 0251422303 and ask Richard Walsh about your a pplication requirement or write:

AUDIO TECHNOLOGY
Aldershot, Hants. GU13 OBR

\section*{RF DESIGNER}

\section*{WITH INVENTIVE FLAIR AND A TASTE FOR RURAL LIFE}

Our clients are a small cheerful and highly motivated company who are sole manufacturers of a socially essential paramedical product.
They are in the throes of moving to a Georgian manor house with eight acres of land, in rural England (with low housing costs).
The need is for an engineer, probably between 25 and 45 , with a genuinely radical and inventive approach to design and a sound knowledge gained in the radio frequency (ideally, low power) field.
The successful candidate will work in a small specialist team. The potential and prospects attached to the position are second to none.
Apart from a competitive, negotiable salary, the company offer excellent relocation expenses to this attractive low cost housing area.
To discuss this position or any other specialist Communications vacancies we may have, telephone Paul Hecquet on 04446 47301/2/3/4 or write with a brief C.V.

The Electronics Recruitment Company

18 Station Road, Burgess Hill, West Sussex RH 15 9DE

\section*{Electronic Engineers What you want, where you want!}

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around \(£ 4000\) to \(£ 12000\) p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES,
12 Mount Ephraim, Tunbridge Wells, Kent. TN4 8AS.

Tel: 089239388

Please send me a TJB Appointments Registration form

\section*{Name}

Address

\section*{Classified}

\section*{ARTICLES FOR SALE}

\section*{EXIDY SURPLUS SAHE}

We have thousands of these parts for \(1 / 2\) PRICE \& UNDER NO REASONABLE OFFER REFUSED

ALL ITEMS BRAND NEW
\begin{tabular}{lll}
\hline & 74LS04 & 74LSI57 \\
74LS05 & 74LS373 OP AMP \\
74LS32 & 74LS373 & 6502 ACIA \\
74LSIO & 74LS365 & 4027 RAM \\
\hline
\end{tabular}

78051 AMP 5V REG
LSI Breakout TV Game Chip
PCB for Breakout TV Game
\begin{tabular}{l|l|}
4700 MFD 10V & 1 K Resisitors \(1 / 4 \mathrm{~W}\) \\
\hline
\end{tabular} Sockets: 40 PIN, 24 PIN, 20 PIN, 16 PIN, 14 PIN Joystick Plastic Holders (Over 1,000 sets) Transformers for Commodore Pet : 8:0:8 5AMP 16V 1 AMP, 22 V 1 AMP, 240 V Primary Telephone Answering Machines - All faulty

TEL: 01-440 7033

Perforated Metals - Screens, Plastics, Wire Meshes, Sifting Media, Cable Tray, Gratings, direct from Manufacturer's Stock. We can cut to size.
We specialise in one-offs or large quanti-
ties.
GRAEPEL PERFORATORS

\section*{LTD.}

Unit 1-B, Charles Street, Dept. WS, Walsa11, Staffs WS2 9LZ. Tel. 0922
611644/611414. Telex 335291

Terscan System Analizer \(9900=10-300 \mathrm{MHz}\) f100; Telequipment Oscilloscope D43 double beam 1100 ; Telequipment Oscilloscope calibrator E50; Hewlett Packard 430c power meter and head玉75. Signal Generators: Marconi TF 1060/2 UHF \(450-1200 \mathrm{MHz}\) E150; Marconi \(801 \mathrm{D} 10-460 \mathrm{MHz}\) £125; Marconi 801 \(£ 40\); Hewlett Packard 612A \(450-1230 \mathrm{MHz} £ 300\). Wanted: Frequency Counter, at least 1.5 GHz. - Ashford, Middx. 53661 daytime.
(1726)

NEW BOXED VAL VES: \(212 \mathrm{E} / \mathrm{\varepsilon} 150,304 \mathrm{H} / £ 40\), 12A/£3, 2GAE 3 , \(35 \mathrm{TG} / \Sigma 5\), \(46 / E 2\), \(5 R 4 \mathrm{GY} / £ 1\), 6ALS/50p, 808/\&4, 8012/£3, 101D/£3, 1616/£2, C6A/ES, CV177/E15, DET10/E5, DET25/£10, EF50/E1, E91H/乏1, E92CC/S0p, EL81/£1, GT1E/โ5, LS7B/£3, LS8/£3, PT1S/£2, PEN25/£1, TT25/E3, TT11/\&1. SAE catalogue or phone 0803 28489, Radel Electronics, 86 Union

ROTRON EQUIPMENT cooling fin \(120 \mathrm{~mm} \times\) 120 mm , new, boxed, \(115 \mathrm{vac}, 7\) watts, 55 ofm . £7.50 inc. VAT, postage. ETRI equipment cooling fan, 160 mm , new condition, \(200 \mathrm{cfm}, 250\) vac, \(£ 18.50\), inc. VAT, postage. Sealed lead acid batteries, \(6 \mathrm{v}, 1.1 \mathrm{AH}\), new, boxed, \(£ 3.95\), inc. VAT, posiage. Field Electric Ltd., 3 Shenley Road, Boreharnwood, Herts., \(01-953\) 6009. (1714)

STYLI ALL TYPES supplied, send SAE for price list. Watts Radio, 8 The Apple Market, Kingston, Surrey.
(1709)

WORKBENCHES, secondhand. Ex-ITT TV factory. Open- or cubicle-style, need space. Details: \(0424863464.9 \mathrm{a} . \mathrm{m}\). to 9p. m. (Sussex).

\footnotetext{
BRIDGES, waveform/transistor analysers. Calibrators, Standards, Millivolemeters. Dynamometers. KW meters, Oscilloscopes. Recorders. SigRMS, audin, FM, deviation. Tel. 040 37627h (1627
}

VHF AM/FMVIDEO Sig. Gen. \(4-300 \mathrm{mHz}\). ROHDE and SCHWARZ SMAF \(£ 200\). A. F. Sig. lent condition. Tel Swindon (0793) 826416. tent condition. Tel. Swindon (0793)826416.

CLEARANCE. 40 -metre reels of 38 -way screened cable, \(£ 39\) each. Computer spec. capaci-
tors, \(20,000 \mathrm{MSD}\) at 55 volts, \(\$ 2.50\). Phone Mike at Mirage Lighting on Hitchin (0462) 73388 between \(10 \mathrm{a}, \mathrm{m}\), and \(7 \mathrm{p} . \mathrm{m}\).

\section*{INVERTERS}

\section*{Pathology Laboratory Maintenance Engineer c. \(£ 17,500\) p.a. tax-free SaudiArabia}

In Jeddah, on Saudi Arabia's west coast, a 500 -bed hospital is being commissioned. It has been built and equipped to the highest international standards, incorporating some of the most advanced medical facilities and high technology support systems available.

IHG International Hospitals Group, the British-based health care organisation managing the project, has given the task of finding all the specialists to IAL.

We now have an opportunity for an Engineer to maintain and repair a wide range of automated laboratory equipment made by Technicon, Beck man, Coulter, LKB, Corning and Dupont together with the full range of standard laboratory equipment.

Applicants should have an HNC or equivalent in Electrical or
Electronic Engineering and five years
experience specialising in automated equipment in a pathology laboratory or with an appropriate manufacturer's service organisation.

Preference will be given to suitably qualified Saudi Arabian nationals and Arabic speaking personnel.

The tax-free salary will be paid in Saudi Riyals*. Benefits include free accommodation, 49 days annual holiday, free return flights to the UK and free medical care. Facilities include shops, gymnasium, theatre, swimming pool, tennis courts and restaurants.
*Salary SR108,000 p.a. - the conversion to sterling has been effected at the rate SR6.05 \(=£ 1\).

For further details please send your cv to John Innes, IAL, Aeradio House, Hayes Road, Southall, Middlesex, UB2 5NJ. Tel. 01-574 4960. Please quote Ref. M357.

MEDICAL SERVICES

\footnotetext{
Applicants should have had previous broadcast operational experience.
}

Please write enclosing a c.v. to Ellis Griffiths, Channel Four Television Company Ltd.. 60 Charlotte Street, London W1P 2 AX or telephone 01.6314444 for an application form.

\section*{Channel four is an equal} opportunity employer: applicatlons are welcome from candidates regardless of marital stałus, race, nationality, ethnle or naflonal origins and from reglstered disabled persons.

CHANNEL FOUR TELEVISION

High quality DC-ACs Also "no break" [2ms] static switch, 19" rack. Auto Charger.

COMPUTER POWER SYSTEMS Interport Mains-Store Ltd. POB 51, London W11 3B2 Tél: 01-727 7042 or 0225310916

19101
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
WORLD'S BIGEEST \\
ImFORMATIOM SERVICE \\
By return post - servica/workshop manuals Over 2,000 Sony - over 300 different CTV plus huge stocks VCRTVI Audiofforeign and UK. \\
Any single service sheet \(\mathrm{f} 1+\) sae Repair date named TV \(£ 6.50\) (with circ. 58.50). SAE brings free- 50 p mag. axine/price lists/bargain offers/quotations - unique TV publications. \\
nSWW, 76 Church Stuevt. Larkhall 10580 Lanorkshime MLS THE.
\end{tabular}} \\
\hline \\
\hline \\
\hline
\end{tabular}

TEKTRONIX 585A Oscilloscope with 82 dual trace unit. Recently calibrated. £270 o.n.0, 018632880.

TOWER for sale, 80 ft. latice, winchable. SAE PO Box 34, Wheathampstead, St Albans AL4 8 HG .

\section*{NOTICE}

THE TRADE MARK No. 1065411 CONSISTING OF the word UNIMAT and registered in respect of "Telephone Apparatus and Instruments Sold Complete" was assigned on the 10 February, 1982, by Standard Telephones and Cables Limited, of 190 Strand, London, WC2, to International Telephone and Telegraph Corporation, of 320 Park Avenue, New York, 10022, State of New York, United States of America, WITH: OUT THE GOODWILL OF THE BUSINESS IN WHICH IT WAS THEN IN USE.
(1712)

\section*{ARTICLES WANTED}

\section*{WANTED}

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap, and quantity. Prompt service and cash. Member of A.R.R.A.

\section*{M \& B RADIO}

86 Bishopsgate Street Leeds LS1 4BB 053235649

\section*{WANTED}

Scrap and re-usable mainframe computer and industrial electronic equipment.
E.M.A. Telecommunications Engineers, Orford, Woodbridge, Suffolk. Tel. 039-45 328.

WANTED: Redundant test equipment - reWANTED: Redundant test equipment - re-
ceiving and transmiting equipment - valves plugs and sockets - syncros, etc. Phone: John's Radio, 0274684007 , 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. (1723) WANTED FOR CASH: 7F7, 7N7, 53,6L6 metal, \(304 \mathrm{TL}, 4 \mathrm{CX} 1000 \mathrm{~A}\), all transmitting,
special purpose vaives of Eimac/Varian. DCO, special purpose vaives of Eimac/Varian. DCO,
INC, 10 Schuyler Avenue, North Arlington, New Jersey 07032, USA. (1625

\section*{Classified}

\section*{CAPACITY AVAILABLE}

\section*{TW ELECTRONICS LTD.}

\section*{THE PCB ASSEMBLERS}

More and more companies are investigating the advantages of using a profes sional subcontractor. Such an undertaking requires certain assurances.
TW are able to satisfy all of them quality, competitive pricing, firm delivery, and close co-operation with the customer.
Assembled boards are \(100 \%\) inspected before flow soldering and reinspected after automatic cropping and cleaning. Every batch of completed boards is ssued with a signed certificate of conformity and quality - our final assurance.
For further detalis, contact us at our new works

Blenheim Industrial Park
Bury St. Edmunds Bury St. Edmunds
Suffolk IP33 3UT
Tel: 02843931

BATCH PRODUCTION wiring and assembly to sample or drawings. McDeane Electricals Lid, 19b Sration Parade, Ealing Common, London fiv5. Tel: 01-992 8976 (169

ELECTRONIC DESIGN SERVICE. Immediate capacity available for circuir design and development work, PC artwork, etc. Smail batch and prororype production welcome. - E.P.D.S. way (0634) 577854 (9667 way (0634) 577854.

BATCH PRODUCTION, printed circuit or wiring assembly, to sample or drawing. Quotations free. Contact B. Rose, Remploy Lid, P. P. \& A, Mile Cross Lane, Norwich, Norfolk NR 6 6SV 0603414949.

\section*{SITUATIONS WANTED}

ELECTRONICS TECHNICIAN with ten years' experience in television broadcast equipment maintenance and another ten years' experience in telecommunications testing and repair, seeks position. Replies Box No. 1708. (1708)

FOR THE BEST PCB SERVICE AVAILABLE
- Circuit Design a

Digital and Analogue
* Arwork Layout

Work of the highest standard by experienced draughtsmen. No minimum charge
* Board Manufacture

Prototype 10 semi-production, excellent
24hour prototvpe service from filmwork
t Wiring \& Assembly
\# Wiring \& Assembly
PCB assembly, wiring and cable forming
Qualified staff.
太test
Full test faclities available
One or all services avair Please teleophone Chelms. ford (0245) 357935, or write Now
New Street, Chelmstord

30.000 SERVICE SHEETS IN STOCK COLOURMANUALS ALSO AVAILABLE CV Monos
TV 2 , Transisfor AVALSABLE
TV Tuners f2, Tape Recorders, Record
Players and Stereograms f2. Stamped Players and Stereograms \(\mathrm{E2}\). Stamped
addressed envelopes with all quotations. Also colours available. Car Radios E3 + stamped addressed envelope. All valve radios \(£ 2\). Stamped addressed envelope please. Quote advert. no. with
order. C. CARANNA
71 Beautort Park, London NW11 6BX \(01-4584882\) (Mall Order) (1325)

\section*{BOARDRAVEN LTD}

PRINTED CIRCUIT BOARDS
Manufactured to your specifications. Single/dou ble sided. Very speedy deliveries on prototypes
and quantly. Master layouts if required Contact:
J. K. Harrison, Carnaby Industrial Estate, Brid lington, No
(0262) 78788
(1168)

DESIGN SERVICES. Electronic design de velopment and production service available for digital and analogue instruments. RF Transmit ters and receivers, telemetery and control
systems. 20 years' experience. R.C.S. Electronics, systems. 20 years experience. R.C.S. Ehone Mr Falkner 53661 .

\section*{Micro Processor Design}
our team of experts offer the complete service from Dostion to Manufacture
- Artwork - Prototype Development - Testing - Board Manufacture Assembly Packaging Por more information contact vicro Control. I Cherrywood Drtve, Agpley Notra. NG8 3NN. Tolephone 0602208281 (2A bour service). (1597)

\section*{CIRCOLEC}

\section*{THE COMPLETE ELECTRONIC SERVICE}

Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, Q.A. Consultancy, Prototypes, Final Assembly
Quality workmanship by professionals at economic prices
Please relephone 01-767 1233 for advice or further details.
1 FRANCISCAN ROAD
TOOTING, LONDON SW17

DESIGN AND DEVELOPMENT. ANAL OGUE, DIGITAL, RF AND MICROWAVE CIRCUIT AND SYSTEM DESIGN. Also PCB design, mechanical design and prototype/smal! batch production. - Adenmore Limited, Unit 103 Liscombe, Bracknell, Berks. Tel: Bracknel 52023.

SMALL BATCH PCBs produced from your arto work. Also DIALS, PANELS, LABELS. Camera work undertaken. FAST TURNAROUND. era work undertaken. FAStions, 9 Hatton Place, London ECIN 8RU. Tel. 01-405 4123/0960.
SHEET METAL WORK, fine or general front panels chassis, covers, boxes, prototypes, 1 off or panels chassis, covers, boxes, prorotypes, of or Gear Led., 179A Victoria Road, New Barnet, Herts.

1812
DESIGN AND DEVELOPMENT Digital/Analogue/Microprocessor. We can offer a high quality, professional service, covering all aspects from original design to small batch productuon. Prototypes especialy welcome. For compecitive pricing
and quick delivery phone 049162 775. Richard Flower, 3 Reading Road, Lower Basildon, Berks.
PCB
PCB/equipment assembly/wiring from prototype/draw ings. Fast turnround. Tel. 01-390 0424.

PROTOTYPE PLASTIC CASINGS, vacuum ormed to your requirements. Four-D Lta., 25 Bumett Park, Harlow, Essex. Phone 027929246.

\section*{CLASSIFIED ADVERTISEMENTS Use this Form for your Sales and Wants}

\section*{PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW}

To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS
- Rate E2.50 PER LINE. Average six words per line. Minimum \(\mathbf{f 1 2 . 5 0}\) (prepayable)
- Name and address to be included in charge if used in advertisement.
Box No. Allow two words plus \(£ 1\)
- Cheques, etc., payable to "IPC Business Press Ltd." and cross "\& Co.
\begin{tabular}{|l|l|l|l|l|l|}
\hline & & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline & & & \\
\hline
\end{tabular}

\title{
COMPUTER APPRECIATION
}

\author{
86 High Street, Bletchingley, Redhill, Surrey RH1 4PA. Tel: Godstone (0883) 843221
}

APPLE II, Europlus microcomputer with 48K memory, integer card, twin disc drives and 12 " monitor softevare includes VISI CALC, APPLE PILOT and DOS 3.3. Purchased earlier this year and as new. APPLE II, Europlus microcomputer with 48 K memory, colour card and modulator and disc controller card NCR Model 81.30 commercial mlerocomputer system. With 64 K memory, twin floppy disc drives, VOU and 180 cps matrix printer. System is under 2 years old and cost over \(£ 15,000\). Full support available from NCR
 IABLO Series 302.5 megabvte disc drives, cassette drive and numerous multiplexor and option cards. Processor test set with integral cassette drive is included. The whole system is contained in 2 rack cabinets and was manufactured 1971/78.
OTC MICROFLLE MICROCOMPUTER. Cor. With front panel and 12 KW memory \(£ 150\) programmable front panel display. Machines are available with one PERSCI dual drive (Currently \(\$ 1,700\) each). software includes operating system, powerful BASIC, assembler and letter writer............... 2500 MEMOREX Model 277 B VOU. Thase VDUs are equipped with a network interface operating via a single Coaxial connector. Microprocessor controlled with firmware in 2708 EPROM. Details available shorty.... EgS functions keypads fotal 29 extra keys). Manufactured 1979/80 and either new or nearly new............... \(\mathbf{E 1 8 . 5 0}\) IBM Model toss Golfball Printer. Compact 15 cps high-rellability mechanical printer in fully refurbished condition. Exactly equivalent to 735 less keyboard. Can be driven from PIA (or similar) with addrition of PSU

OLABLO Serlos 30 removable OISC DFIVE. 2.5 megabyte with Industry standard interface. These drives are hardwere, software and media compatible with RKO5, and PDP 11 interfaces are available from XYLOCICS POWEA SUPMY. For above DOCUMATION Modol M600L compact card reeder. CR11 compatible... DIABLO series 30 front loadin controller for POP II UNIBUS. Sold complete with twin RKO5 - compatible PERTEC. Minlarure 9-track 800 c .p.i. tape drive............................ Laser ASSOCIATES Nd GLASS LASER. 1.06 micron wavelength. 1-2 J per pulse. A single pulse from this TIONAL a hole through a steel rule. Complete with cooling system and output monitor. FULLY OPERA FACT Modol 4001.1000 cps capacitatlve paper tape reader
 price £1,921.

\section*{Ploese noto:}
1. VAT and carriage extrs all items

Visitors weicome but by appointment pla ase
We are keen to bid competitively for all good used equipment

\title{
INDEX TO ADVERTISERS AUGUST
}

\section*{Appointments Vacant Advertisements appear on pages 100-111}

\section*{OVERSEAS ADVERTISEMENT}

AGENTS
France \& Belgium: Norbert Hellin, 50 Rue de Chemin Veat, F-9100, Boulogne, Paris.
Hungary: Mrs Edit, Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget.
Telephone: 225008 - Telex: Budapest 22-4525
INTFOIRE
Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero, Va Mantegna 6,20154 Milan
Telephone: 347051 - Telex: 37342 Kompass.

Mr Jack Mentel, The Farley Co., Suite 650, Ranna Build: ing, Cleveland, Ohio 4415 - Telephone: (216) 6211919. Mr Ray Rickles, Ray Rickles \& Co., P.O. \(80 \times 2028\), Miam Beach, Florida 33140 - Telephone (305) 5327301
Mr Tim Parks, Ray Rickles \& Co., 3116 Maple Drive N.E., Atlanta, Georgia 30305. Telephone: (404) 2377432. Mike Loughlin, IPC Business Press, 15055, Memorial Ste
119, Houston, Texas 77079 - Telephone (713) 7838673

Canada: Mr Colin H. MacCulloch, International Advertis. ing Consultants Lid., 915 Carlton Tower, 2 Carlton Street, Toronto 2 - Telephone (416) 3642269.
* Also subscription agents

\section*{WÉRE MAKINGA STANI FOR BETTTER SOLDERING!} And including it in the NEWAntex all-in-one pack!

The new ST4 stand with the big sponge on it's own or in the SK5 and SK6 kits with the new CS and XS low-leakage soldering irons. These new models have tougher, cooler handles, detachable hooks, the well known Antex doubleshaft insulation, the big range of push-on bits and fitted with or without moulded-on safety plugs.

SK5 Soldering Kit
Contains Model CS230 iron and the ST4 stand. R.R.P. £6.25
SK6 Soldering Kit
Contains Model XS230 and the ST4 stand. R.R.P. \(£ 6.35\)
SK5-BP and SK6-BP Soldering kits fitted with safety plugs.
SK5-BP kit R.R.P. \(£ 7.10\) SKE-BP kit R.R.P. \(£ 7.20\)

Model XS-BP - 25 Watts
Fitted with safety plug

Model XS - 25 Watts
Available for 240 and 115 volts
R.R.P. \(£ 4.70\)

50,24 and 12 volts
R.R.P. \(£ 4.80\)

Model CS - 17 Watts
Available for 240 and 115 volts
R.R.P. \(£ 4.60\)

50,24 and 12 volts
R.R.P. \(£ 4.80\)

Model CCN - 15 Watts
Ceramic shaft only 240 volts
R.R.P. \(£ 5.00\)

Model C-15 Watts
Stainless steel shaft only.
240 and 115 volts
R.R.P. \(£ 4.60\)

50 and 24 volts
R.R.P. \(£ 4.80\)

TCSU1 Soldering.Station
for safe 24 volt temperature-controlled
mıniature soldering iron, variable tip
temperature \(65-430^{\circ} \mathrm{C}\), antistatic
earth connection.
with XSTC or CSTC iron. R.R.P. \(£ 40.50\)

Now, at last, real portable computer power. The new Sharp PC 1500 pocket computer. A pocket-sized genius that will travel with you to conferences, seminars and business breakfasts.

The PC1500 has the capacity and BASIC language usage that is very nearly that of the desk-size Personal Computer. When fitted with the optional 4 -colour graphic printer, it is one of the most powerful pocket computers on earth.

Chores can be handled swiftly and accurately any time of day, wherever you happen to be. Estimates, records and charts of sales, billings and other important data can be re-programmed, calculated and summoned
at the touch of a button. It can even play blackjack, analyse your biorhythms or give you a beeped reminder of a scheduled meeting.

Large memory capacity, up to 11.5 K bytes. 4-colour print-out. Six user-programmable keys. The incredible new PC1500. A revolution in pocket computers.

From Sharp. Where great ideas come to life.

\section*{SPECIFICATIONS}

PC1500 Pocket Computer
\begin{tabular}{ll}
CPU & C-MOS 8-bit CPU \\
Capacity & ROM: 16 K bytes \\
& RAM: 3.5 K bytes to 11.5 K bytes
\end{tabular}

CE 150 Colour Graphic Printer/Cassette Interface (Optional)

Printing Digits
Printing System Printing colours Printing directions
Cassette Interface

Standard 18 digits (\(36,18,12,9,7\) 6.5.4 digits selectable) X-Y axis plotter system Red, blue, green, black Right, left, up. down Up to two cassette tape recorders can be connected

Theworld of

where great ideas come to life.
Sharp Electronics (UK) Lid, Computer Division, Sharp House, Thorp Road, Newton Heath, Manchester M1098E. Telephone: 061-205 2333```

