. . . catch this bus with Farnell

and arrive economically at an efficient ATE workstation.
Comprehensive testing under low cost desk computer control.
Manual systems too.

Front cover shows a quartz crystal made by Hewlett-Packard for a new oscillator. A plano-convex finish is used to achieve high stability.

IN OUR NEXT ISSUE

Darkroom exposure and enlarger timer measures required exposure for a black-and-white print, giving a digital readout in seconds and tenths. It then times this exposure.

Christmas alectronics quiz, set by polytechnic lecturer Bryan Hart and colleague. Prizes are offered.
Programmable power supply provides 0 to 40 V at 2A, controlled via the IEEE General Purpose interface Bus.

More details page 47.

Current issue price 60 p, back issue (if available) £1.00, at Retail and Trade Counter, Paris Garden, London SE1. Available on microfilm: please contact editor.
By post, current issue 96p, back issues (if available) $£ 1.50$, order and payments to Room CP34, Dorset House, London SE1 gLU.
Editorlal \& Advertising offices: Dorset Mouse, Stamford Street, London SE1 9LU.
Telephones: Editorial 01-261 8620. Ad. vertising 01-261 8339.
Telegrams/Telex: Wiworld Bisnespres 25137 BISPRS G. Cables Ethaworld, London SE1.
London SE1.
Subscription rates: 1 year E10.00 UK and $\$ 33.80$ outside UK.
Student rates: 1 year $\mathbf{5} 5.00$ UK and $\$ 16.90$ outside UK
Distribution: 40 Bowling Green Lane, London ECIR ONE. Telephone 01-837 3636.

Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 044459188. Please notify a change of address. USA mailing agents: Expediters of the Printed Word Lid, 527 Madison Avenue, Suite 1217, New York, NY 10022. 2nd-class postage paid at New York.
(C) IPC Business Press Ltd, 1980 ISSN 00436062

[^0]
wireless world

ELECTRONICS /TELEVISION/RADIO / AUUDIO

NOVEMBER 1380 Vol 86 No 1538

37 Microchips and megadeaths

38 Simple pickup arm design
 by David Read

42 Farnborough 1980

45 Intermodulation at the amplifier-loudspeaker interface - 1 by Matti Otala and Jorma Lammasniemi

48 Designing inductors carrying d.c.
by D. H. Thomas
51 News of the month

Video disc tie-up BBC tv electronic clock

 System X now in service55 Spark gaps
by J. Dearden
57 Letters to the Editor
P.r.b.s. generators Displacement current Digital electronics and 'defence'
61 Satellite broadcasting in the eighties - 2
by G. J. Phillips

67 Coherent audio filters for c.w. reception

by F. Charman

72 An acoustically small loudspeaker - 2

by R. I. Harcourt

79 Audio gain controls - 2
by Peter Baxandall

Digital delay | 84 Circuit ideas |
| :---: |
| Power f.e.t. voltage regulator |
| Reactance circuit |

86 World of amateur radio

87 Colour tv receiver design - 4
by R. Wilkinson

LOUDSPEAKERS

The complete fully reviewed D 100 range of Videotone Speakers which dominate within their class. Now at lowest ever prices.

ELECTRONICS

This new range of Electronics from Videotone redefines the words quality and value for money to a new high.

30 watt amp MC input SA4130	$£ 75.00$
Stereo Tuner ST4120	$£ 68.00$
Cassette full features SC3200	$£ 98.00$
50 Watt amplifier WA7700	$£ 77.00$
20 Watt amplifier LA2020	$£ 58.00$

CORAL CARTRIDGES

Fast becoming one of the top names MOVING COIL
UK's No. 1 Cartridge

MC 81	$£ 48.87$
$777 E X$	$£ 35$
$777 E$	$£ 25$

HEADSHELLS

S100	£6
S101	£7

$666 \mathrm{E} \quad £ 32.48$

HEAD AMP H300 £51.75 T100 £24.75

TURNTABLES

Sansul SR222 Mk2 $\quad £ 69.00$
JVC LA 11 £64.00
JVC SLQ 3 £140.00.

SEND FOR OUR
 LATEST FREE BROCHURE

AND DETAIL LIST OF LOCAL
SALES OUTLETS IN THE U.K.

VIDEOTONE
 98 CROFTON PARK ROAD,

 CROFTON PARK, LONDON SE4 Tel: 01-690 8511/2
Two
 NEW THANDARLCD MULTIMETERS

TM351 \& TM353 LCD

 3½ DIGIT MULTIMETERSTwo new taboratory quality portable multimeters using LCDs and low power LSI circuitry to give exceptionally long battery life.
Both have a full measurement capability of $A C$ and DC volts, $A C$ and $D C$ current, resistance and diode check, 1750 V ACI , current from 100 nA to $10 \mathrm{~A}(102 \mathrm{~A}$ to 1000 V and resistance from $100 \mathrm{~m} \Omega$ to $20 \mathrm{M} \Omega$ (from in TM353 TM353). Basic accuracy on the TM351 is 0.1% and on the TM353 0.25\%

As with all Thandar products the TM351 and TM353 offer exceptional specification for money.
TM351 only $\mathbf{£ 9}+\mathbf{~} 14.85$ VAT
TM353 only $£ 84+\mathbf{£} 12.60$ VAT
Both are supplied complete with long life alkaline batteries,
and test leads.

200 hrs
BATTERV IFE

TF200 LCD FREQUENCY METER Combines protessional specification, portability and value for money
Wide frequency range - 10 Hz to 200 MHz (with TP600 to 600 MHz) - High sensitivity - 10 mV rms - Battery or mains operation -Versatile - Lo f, Hif, Time Av. period and sotalise functions Only $£ 145+£ 21.75$ VAT (including batteries)
TP600 600MHz Prescaler $£ 37.50+£ 5.63$ VAT.

OTHER PORTABLE TEST INSTRUMENTS IN THE THANDAR RANGE

SC110 Single-Trace Portable Oscilloscope
10 MHz band width $10 \mathrm{mV} /$ div sensitivity $£ 139.00+£ 20.85$ VAT
DM450 41/2 Digit Multimeter
34 ranges; 0.05% basic accuracy $£ 99.00+£ 14.85$ VAT
DM350 31/2 Digit Multimeter
34 ranges; 0.1% basic accuracy $£ 72.50+£ 10.88$ VAT
DM235 31/2 Digit Multimeter
21 ranges; 0.5% basic accuracy $£ 52.50+£ 7.88$ VAT
PFM200 Pocket Frequency Meter
$20 \mathrm{~Hz}-200 \mathrm{MHz} ; 10 \mathrm{mV}$ sensitivity $£ 49.80+£ 7.47$ VAT
PDM35 Pocket Digital Multimeter
16 ranges; 1% basic accuracy $£ 34.50+£ 5.18$ VAT

For full technical details together with price list and stockist list please contact:

London Road, St. Ives, Huntingdon, Cambs. PE174HJ, Tel:St. Ives (0480) 64646.

Telex: 32250
Sinclair Electronics Lid. reseeve the right to atter prices and specinteations on Thandar oquipment without prior notice.

$585 \mathrm{~A} / 82$. DC -60 MHz dual trace10 mV sensitivity525
$547 / 1$
DTB 525
$547 /$ 625
$7403 \mathrm{~N} \mathrm{DC}-60 \mathrm{MHz} 3$ Plug in 450
$7704 \mathrm{ADC}-200 \mathrm{MHz}$. CRT Readout.
Mainframe for 4 Plug-in 1200
TELEQUIPMENT
D63/V1/V3 DC- 35 MHz . Dependinon sensitivity. $50 \mu \mathrm{~V}$ or 1 mVSensitivity675
D34 Dual Trace DC- 15 MHz 2 mV 52D75 Dual Trace DC- 50 MHz DualTimebase
600Timebase
$083 \mathrm{DC}-50 \mathrm{MHz}$. Dual trace. Large $61 /{ }^{\prime \prime}$ CRT. Dual Time Base 650
Oscilloscope Plug-insHEWLETTT PACKARD
1804 A DC- 50 MHz Four channel20 mV -10V/div.
1825 A Dual Timebase 50 ns -1s/div.575
525
1805A Dual Trace DC-100 MHz 5 mV 1M』/50』
TEKTRONIX
Type R. Transistor R.T. tester. Pulserate 120 pulses $/ \mathrm{sec}$. R.T. Less than
$5 \mathrm{~m} \mathrm{\mu s}$100
Type G. Differential amplifier. 100:1 CMA DC -20 MHz .50 mV sensitivityPlug-ins for 500 seriesIA1 dual trace Plug-in DC. 50 MHz1A2 dual trace Plug-in DC. 50 MMz1 AA four trace Plug-in DC. 50 MH1 A5 Differential Plug:in

Z Differential Plug in
81 Adaptor Plug-in 1A Series to 500
Series
$7 A 12$ Dual Trace DC- 105 MHz $5 \mathrm{mV} / \mathrm{div}$.
7 A18 Dual Trace DC-75 MHz $5 \mathrm{mV} / \mathrm{div}$
7 A22 High gain diff. amp
$0.1 \mathrm{~Hz}-1 \mathrm{MHz} 10 \mathrm{HV}$
7 A26 Dual Trace DC-150 MMz
$5 \mathrm{mV} .5 \mathrm{~V} / \mathrm{di}$
7853 A
7B53A Dual Timebase $5 \mathrm{~ns}-5 \mathrm{~s} / \mathrm{div}$
Oscilloscopes (storage)
TEKTRONIX
$549 / 1 \mathrm{~A}$. DC. 30 MHz .5 mV
sensitivity. Dual trace. Storage
scope, Writing speed: $5 \mathrm{~cm} / \mu \mathrm{s}$ with enhancement. Includes trolley
$564 / 3 A 74 / 3 B 4$. DC. 2 MHz , four
channel. 20 mV sensitivity. Writing speed up to $500 \mathrm{~cm} / \mathrm{ms}$
564B/3A6/2B67. DC-10 MMz. Dual trace 10 mV sensitivity, split screen storage oscilloscope
466 Storage $1350 \mathrm{~cm} /$ /us Variable
7313 Solit screen $4.9 \mathrm{~cm} / \mathrm{\mu s}$. DC.
25 MHz (M/F for 3 Plug-ins)
TELEQUIPMENT
DM64 Storage 250 Divs/ms
DC- 10 MHz Dual trace.

hase Mete

DRANETZ
$301 \mathrm{~A} 5 \mathrm{~Hz}-500 \mathrm{kHz}$. Z in $100 \mathrm{k} \Omega$
Accuracy $\pm 1^{\circ}$ to $\pm 2^{\circ}$. Analogue
O/P
Power Meters
DYMAR
$2081 / 100$ True RMS. DC- 500 MHz .
$30 \mathrm{~mW}-100 \mathrm{~W}$
HEWLETT PACKARD
432A $10, \mathrm{~W}$ - $10 \mathrm{~mW} .10 \mathrm{MHz}-10 \mathrm{GHz}$

478A Thermistor Mount for 432A
$435 \mathrm{~A} 0.3 \mu \mathrm{~W}$ to $100 \mathrm{~mW} 5 \mathrm{MHz}^{-}$
18 GHz
8481 A Power Sensor for 435A 475

MARCONI SANDERS
$646010 \mathrm{MHz} \cdot 40 \mathrm{GHz}$ (Depending on Head)
$642010 \mathrm{MHz} \cdot 12.4 \mathrm{GHz} 10 \mathrm{mw}$
$642210 \mathrm{MHz}-12.4 \mathrm{GHz} 1 \mathrm{mw}$
$642826.5-40 \mathrm{GHz} 10 \mathrm{mw}$
TF 2512 DC. $500 \mathrm{MHz} 0.5-30 \mathrm{~W} 50 \Omega$

Power Supplies
ADVANCE
IVI 12 V DC to 240 V 50 Hz . 150 W
BRANDENBURG
475R 10-2100V 5mA DC Stab.

TEKTRONIX 465 DC. 100 MHz Oual Trace TEKTRONIX 475 A DC. 250 MHz Dual Trace 5 mV - $5 \mathrm{~V} /$ Div $0.05 \mathrm{ws}-0.5 \mathrm{~s} /$ Div Delayed T/B XY DC $4 \mathrm{MHz} \quad \mathrm{Cl250}$

These instruments sold with
ONE YEAR FULL GUARANTEE

FARNELL
L308 0-30V IA DC Stab.
FLUKE
$415 \mathrm{~B} 0 \pm 3100 \mathrm{~V} 30 \mathrm{~mA} 0.005 \%$ reg
Protected

Bigger stock investment greater equipment range means wider choice

ITT	Prices from E	BRYANS SOUTHERN $29000 \mathrm{X} \cdot \mathrm{Y}$ Recorder A 40.25 mV -
Power Lab. up to 30V Dual Supply	90	$10 \mathrm{~V} / \mathrm{cm}$
MARCONI		BS314 4 channel 1 mV -10V
TF2154/10.30V 1A. $0 \pm 15 \mathrm{~V} 2 \mathrm{~A}$		16 speeds
$0 \pm 7.5 \mathrm{~V} 4 \mathrm{~A}$	60	$16 \text { speeds }$
SMITHS		$29300 \mathrm{X}-\mathrm{Y}$ Single pen 440.25 mV -
4701 5-7V o/p Power Pack	32	$10 \mathrm{~V} / \mathrm{cm} 0.1 \mathrm{~s}-50 \mathrm{~s} / \mathrm{cm}$
SORENSEN		HEWLETT PACKARD
OCR 300-2.50-300V 2.5A DC Stab.	375	680 M .5 inch. Stripchant Single Pen
Pulse Generators		7046 A Two pen A $30.25 \mathrm{mV}-5 \mathrm{~V} / \mathrm{cm}$
DB ELECTRONICS		KUDELSKI
150. I.C. pulse generator	50	Nagra 4.2 LSP Professional Audio
EH RESEARCH		Recorder (Batt optd)
122. 1 KHz-200 MHz $5 \mathrm{~V} / 50 \Omega$		NAGRA
AT 12ns	220	Mains Unit for 4.2 LSP
$139(\mathrm{~L}) .10 \mathrm{~Hz}-50 \mathrm{MHz} 10 \mathrm{~V} / 50 \Omega$		PHILIPS
RT 5 ns	175	PM 8251 Single pen 10 in chart
1221. Timing Unit 6 Channel		10 mV -50V FS
$0-10 \mathrm{MHz} 5 \mathrm{~V} / 502$ RT 8 ns	50	RACAL
G710. $5 \mathrm{~V} / 50 \mathrm{R} 30 \mathrm{~Hz}$-50 M Mz RT 5ns	100	Store 4. Uses D/4 inch magnetic
$132 \mathrm{AL} .50 \mathrm{~V} / 50 \Omega 5 \mathrm{~Hz}-3 \mathrm{MHz}$		tape. Will record 4 F.M. channels.
RT 12 ns	175	Operates at 7 different speeds.
HEWLETT PACKARD 214A 100V/50R. Double pulse 0/P. W $50 \mathrm{~ns}-10 \mathrm{~ms}$. $10 \mathrm{~Hz}-1 \mathrm{MHz}$. 15 ns AT	360	S E LABORATORIES 6150/6151 12 channel UV $1250 \mathrm{~mm} / \mathrm{s}-25 \mathrm{~mm} / \mathrm{min} 6 \mathrm{in}$ chart
MARCONI TF $20250.2 \mathrm{~Hz}-25 \mathrm{MHz} \pm 10 \mathrm{~V} / 50 \mathrm{~V}$		9946 Channel Pre-Amp $\pm 1 \% \pm 1 \mathrm{~V}$ $0 / 0$
RT 7ns	350	600825 Channel $\mu \mathrm{V} 8$ in $4 \mathrm{~m} / \mathrm{sec}$ to
PM5776 3V/50л. 1 Hz-100 Mz.		$25 \mathrm{~mm} / \mathrm{min}$
Rise/fall Times less than 1ns.	275	SMITHS INDUSTRIES
Recorders and Signal		AE541.20 Single Pen. 0.5 mV V 100 V
Conditioning Equipment		FSD. $3.60 \mathrm{~cm} / \mathrm{min}$ and hour
AMPEX		YOKOGAWA
PR2200 Instrumentation Recorder		3046. 10 inch Chart Single Pen. 0.5
up to 16 channels. FM/DR. Pecord		$\mathrm{mV}-100 \mathrm{VI} / \mathrm{P} 2.60 \mathrm{~cm} / \mathrm{min}$ and $/ \mathrm{hr}$
replay all speeds. ${ }^{\prime \prime}$ tape FM/DR		3047. 2 Pen Version of 3046
I.R.I.G. DC $40 \mathrm{kHz} \mathrm{FM}$.100 Hz .		Signal Sources and
300 kHz DR	6500	Generators
BRUNO WOELKE		
ME1028. Wow and flutter meter	$\sqrt{5}$	BOONTON FMIAM
ME102C. Wow and flutter meter	90	1028 4.3-520 MHz int/Ext FM/AM $0.1 \mu \mathrm{~V} .1 \mathrm{~V} 50 \Omega$
BRUEL \& KJAER 23058 Bench ivpe. Mains operated. Log recording of AC: $\mathbf{2 ~ H z} \cdot 200 \mathrm{kHz}$ and DC. 50 or 100 mm paper width.	150	DYMAR $1525100 \mathrm{kHz}-184 \mathrm{MHz} \operatorname{Int} /$ Ext AM/FM Batt/Mains GOULD ADVANCE
ZR0001 Linear Pat DC: $10-35 \mathrm{mV}$	59	SG70 $5 \mathrm{~Hz} \cdot 125 \mathrm{kHz} 6000$ 4w
2R0002 Linear Pat DC: $10-110 \mathrm{~V}$	79	
ZRO004 25 dB Potentiometer	52	HEWLET PACKARD
ZR0005 50 dB Potentlometer	59	$120405 \mathrm{~Hz}-1.2 \mathrm{MHz} .600 \Omega .80 \mathrm{~dB}$ att.
2R0006 75 dB Potentiometer	69	O/P 5V RMS

608E. 10.480 MHz AM
620 B 7.11 GHz 505 FM/PM 1 mw
$620 \mathrm{~B} 7.11 \mathrm{GHz} 5052 \mathrm{FM} / \mathrm{PM} 1 \mathrm{~mW}$
$8614 \mathrm{~A} 800 \mathrm{MHz}-2.4 \mathrm{GHz}+10 \mathrm{dBm}$ $8614 \mathrm{~A} 800 \mathrm{MHz}-2.4 \mathrm{GHz}+10 \mathrm{dBm}$
to $-127 \mathrm{dBm} 50 \Omega \mathrm{AM} / \mathrm{FM}$ to -127 dBm
8616 A
$1.8-4.5 \mathrm{GHz}$ Ext AM/FM/PM 10 mw
10 mw
MARCONI
TF144 H/4S HF Generato
$10 \mathrm{kHz}-72 \mathrm{MHz}$ AM
TF79. FM Deviation Meter
4. 1024 MHz

TFEOD1. $10-470 \mathrm{MHz}$ AM. FM
TF995A /2. 1.5-220 MHz AM. FM
TF2171 Digital Synchroniser for
TF2015
TF2002/AS $10 \mathrm{kHz}-72 \mathrm{MHz}$ FM/AM 0.1-1V of

TF2012 UHF, FM $400-520 \mathrm{MHz}$.
$0.03 \mu \mathrm{~V}$. Counter o/p
RACAL
$90815-520 \mathrm{MHz}$ LED Display $0 / P$ 130 dBm AM/FM
ROHDE \& SCHWARZ
SWOB 11 0.5. 1200 MHz . 508
SGHAFFNER
NSGIo1 Mains Interference
Sımulatior. Superimposes Pulses on
mains for testing immunity of
equipment to interference. Pulse
amplitride. $\pm 800 \mathrm{~V}$. Rise Time $0.25 \mu \mathrm{~s}$ Width $50 \mathrm{ff} 200 \mu \mathrm{~s}$
NSG330 Ignition Interference Atlachment
NSG2008 Mains Interference
Simulator (Mainframe)
STC
74216 Noise Generator 20 Hz .4 kHz Flat/CCITT Wig
TEXSCAN
9900.10 .300 MHz . Sweep generator
with CRT display
TV Markers set of $5: 31.5,32.5,35$,
$39.5 \& 41.5 \mathrm{MHz}$
Spectrum Analysers
HEWLETT PACKARD
$8443 A$ Tracking Gene/ counter
$100 \mathrm{kHz}-110 \mathrm{MHz}$
8445A Automatic pre-selector
8555A RF Plug-in 10 MHz - 18 GHz
1 kHz Res
85588 For 180 Mainframe 100
$\mathrm{kHz}_{\mathrm{-}} 1.5 \mathrm{GHz} 1 \mathrm{kHz}$-res
NELSON ROSS
011. DC. 20 kHz .80 dB dynamic
lange. Dispersion: $100 \mathrm{~Hz}_{2} 6 \mathrm{kHz}$
022. DC. 100 kHz . Dynamic range

60 dB fits into various 500 series
CRO's
TEKTRONIX
3L5. Plug-in unit fits into various
5008 series CRO's. 50 Hz .1 MHz
Greater than 60 dB dynamic range

ALL PRICES LISTED ARE EXCLUSIVE OF VAT (Standard Rate).

Sweep Generators

HEWLETT PACKARD8690B Mainframe. Int/Ext AM. Ext
FM
600
86938 / 100 3.7.8.3 GHz.5mW. PIN
levers NO Con. GH
600
$86998 / 1000.1 .4 \mathrm{GHz}_{2} 6 \mathrm{~mW}$. 120 mW
$102 \mathrm{GH}_{2}$). P(N levelled. ' N '
connectors
1200
9900 Sweep Generator $10-30 \mathrm{MHz}$
CRT Display
VS60 Sweep Generator $5-100 \mathrm{MHz}$
Rate 60 Hz
LN40A Log Amplifier
525
T.V. Test Equipment PHILIPS
PM5508B Pattern Generator 625
lines PAL. UK Systems
Voltmeters-Analogue
AVO
8 MkIV AC/DC V.AC/DC Amps.|kz
BOONTON
$92 \mathrm{AD} / 01 / 0910 \mathrm{kHz}-1.2 \mathrm{GHz} 1999$ FSD $10 \mu \vee$ Res
$92 \mathrm{C} 10 \mathrm{kHz}-1.2 \mathrm{GHz} 500_{\mu} \mathrm{V}-3 \mathrm{~V} .1 \%$ of FS
HEWLETT PACKARD
400 E Millivoitmeter
$10 \mathrm{~Hz}-10 \mathrm{MHz}$ B/W ImV FSS
427 A . AC/DC/ 12 multimeter
3406A. $10 \mathrm{kHz} \cdot 1.2 \mathrm{GHz}$
8405A Vector Voltmeter
8405A Vector Voir
1.1000 MHz B/W
Auto Phase Lock
Auto Phase Lock 850
True RMS 350
KEITHLEY
610C Electrometer DC 1 mV -100V,
Amps $10^{-1 / 4}$ Recorder o/p
360
TM3B $5 \mu \mathrm{~V} .500 \mathrm{VAC} 1 \mathrm{~Hz} .3 \mathrm{MHz}$
50 to 100 dB
LINSTEAD
M2B DC/AC 10) $\mathrm{H}, \mathrm{b} 00 \mathrm{kH}$,
MARCONI
IF 2603 AC viltomater (1) 1 !s cirt, 300
PHILIPS
PM24548 lonV MoV $10 \mathrm{H}, 12 \mathrm{MH}$
PACAI
RACAL
9301 RMS Millivoltmeter
$10 \mathrm{kHz} \cdot 1.5 \mathrm{GHz}$ with carry case $\quad 47$
Voltmeters-Digital
ADVANCE
DMM 7A/01 1999 FSO
AC/DC/sl/Current
FLUKE
8000A 1999 FSD
AC/DC/OHMS/Current
HEWLETT PACKARD
34740A / 34702 A 9999
FSD.AC/DC/OHMS
SOLARTRON
LM1420.2. 2300 FSD DC only 0.05\%
LM1420.2BA. 2300 FSD AXC
True RMS/DC
A200.19999 FSD DC only
A203. 19999 FSD AC/DC/ $/ \Omega$
Sensitivity: $11 \mu \vee D C, 10 \mu \vee A C$
100 ml resistance)
A205. 19999 FSD AC/DC/ Ω
A243. 119999 FSD AC/DC/R.
Sensitivity: $11 \mu \vee D C, 10 \mu \vee A C$
$10 \mathrm{~m} \Omega$ resistancel
7050.99999 Auto AC/DC/92

Voltmeters Vector/Phase
DRANETZ
30589999 FSD Mainframe for PA
3001 module
HEWLETT PACKARD
3490 A 100000 FSD $1 \mu V-1000 \mathrm{~V}$ DC
0.01\%
$10 \mu \mathrm{~V}$ - 1000 V AC \& Ω

PLEASE NOTE:

LISTED HERE IS ONLY A
SELECTION OF OUR WIDE
STOCK OF EQUIPMENT -
FOR SPECIALIST NEEDS OR
FOR DETAILS OF OUR FULL
STANDARD RANGE OF
EQUIPMENTS -
RING US TODAY!

Redundant

Test Equipment
Why not turn your under-utilized test equipment into cash? Ring us and we'll make you an offer.

Model
 M600

* POWER RESPONSE DC $-20 \mathrm{KHz} \pm 1 \mathrm{~dB}$
* OUTPUT POWER IN EXCESS OF 1.5 kW INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.).
* D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2KVa.
\star HARMONIC DISTORTION LESS THAN 0.05% DC-20KHz AT 1 kW INTO 6 OHMS
\star PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION OSCILLATORS ћ UNIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS
* OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD
\star FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD.
* TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4 kW .
* INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS
* 3-YEAR PARTS AND LABOUR WARRANTY.

For full details on all Amcron Products write or phone Chris Flack
Kirkham Electronics
MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL
DIVISION OF K.R.S. LIMITED
TELEPHONE (037 976) 639/594

(v) VOICE MICROSYSTEM

SPEECH PROCESSING FOR VOICE COMMUNICATION SYSTEMS

Precision control of speech amplitude, signal to noise ratio and waveform characteristics using a feedforward control process developed at University College, Swansea with NRDC backing (British Patent Application No. $12050 / 77 \%$ High speed digital processing techniques are employed using a Zilog Z8OA microprocessor to sample and process the speech waveform.

The processor is a single self-contained unit which may be placed at any audio point within a voice communication system between the microphone at the sending end and the loudspeaker at the receiving end

> Mobile radio
> H.F. point-to-point radio Inter-comm systems

APPLICATIONS

> Inductive loop paging systems Loudhailers
> Public address

PERFORMANCE

* CONSTANT OUTPUT AMPLITUDE Peak output is constant within $\pm 0.5 \mathrm{~dB}$ over an input variation of $24 d B$
* SIGNAL TO NOISE RATIO IMPROVEMENT The maximum SNR improvement of 15 dB effectively removes ambience at the talking location.
Speech degraded to zero dB SNR is improved to an SNR of 5 dB
* INHERENTLÝ LOUDER SPEECH Processed speech is approximately 8 dB louder than natural speech of the same peak amplitude. The SNR at the output of a noisy channel will be approx imately 8 dB higher in addition to the benefits resulting directly from the use of speech level control

Available in a 2 U high standard $19^{\prime \prime}$ rack. mounting for 240 V or $110 \mathrm{~V}, 50 \mathrm{~Hz}$ or 60 Hz operation.

Price: $£ 424$, case $£ 26$, excluding carriage and V.A.T. Manual available separately.

Installation, maintenance and contract R \& D facilities available.

Export enquiries welcomed

* HIGHER ACCOUSTIC OUTPUT Loudspeaker or earphone output is approximately 8 dB higher with no increase in peak output or distortion from peak limiting
* ŃORMAL SPEECH QUALITY Processed speech has the quality of normal telephony speech
* HIGHER INTELLIGIBILITY All speech sounds are raised to the same loudness level and thus processed speech retains high intelligibility when listening under conditions of ambient accoustic noise
* INSTANTANEOUS RESPONSE The response is synchronised to the zero crossings of the input waveform and no instrumental effects are noticeable

VOICE MICROSYSTEM LTD
UNIT F: CARDIFF WORKSHOPS EAST MOORS
CARDIFF CF1 5EH
UNITED KINGDOM.

Tel: CARDIFF (0222: 33409

Advertisement produced co-operatively by: Akai, Ferguso

Last year, nearly three out of every four home video recorders bought or rented in Britain used the VHS format. You, as a VHS dealer, have been instrumental in helping VHS build its dominant market position. And now we would like to say thank you.

Thank you for recognizing the concrete qualities of leadership in the system: the superb picture and sound reproduction, the reliability and the high level of compatibility.

Thank you too for backing the judgement of such respected VHS manufacturers and video companies as Akai, Ferguson, Hitachi, JVC, Panasonic and Sharp.

And finally, thank you for continuing to stock VHS. Last year you were responsible for giving VHS 70\% of the market. This year you look set to do even better.

TheWorld's No. 1

Hitachi, JVC, Panasonic, Sharp.

PAL

A range of Scopes in stock from 5 mHZ Single Trace to 50 mHZ Dualtrace.
Mains and Battery/Mains portables. Many on demonstration.

CHOOSE FRON

IN STOCK RANGE

DUAL TRACE (UK e/p etc £3.50) CS1562A $10 \mathrm{mHZ}, 10 \mathrm{mV}, 5^{\prime \prime}$ display CS1575 $5 \mathrm{mHZ} 1 \mathrm{mV} 5^{\prime \prime}$ display Hm312-8 $20 \mathrm{mHZ}, 5 \mathrm{mV}, 8 \times 10 \mathrm{~cm}$ display CS1566A $20 \mathrm{mHZ}, 5 \mathrm{mV}, 5^{\prime \prime}$ display CS1352 $15 \mathrm{mHZ}, 2 \mathrm{mV}, 7.5 \mathrm{~cm}$ display, bat tery/mains portable (Nicads pack f29.90) Hm4 $12-420 \mathrm{mHZ}, 5 \mathrm{mV}, 8 \times 10 \mathrm{~cm}$ display p plus Sweep Delay CS1577A $30 \mathrm{mHZ}, 2 \mathrm{mV}, 5^{\prime \prime}$ display CS $183030 \mathrm{mHZ}, 2 \mathrm{mV}, 5^{\prime \prime}$ display plus sweep delay Hm $512-850 \mathrm{mHZ}, 5 \mathrm{mV}, 10 \times 8 \mathrm{~cm}$ display, Delay Sweep $\mathrm{LB0514} 10 \mathrm{mHZ}, 1 \mathrm{mV}(5 \mathrm{mV}) 5^{\prime \prime}$ display (plus ? FREE probes)
£244.95
$£ 274.95$
$£ 270.00$
£287.50
£ 323.15
£348.15
£399.50 £455.40 £507.15 £667.00 £294.00

GENERATORS

(UK c/p £1.75)

LEADER - TRIO - NEWTRONICS - LEVELL

RF

SG402 $100 \mathrm{KHZ}-30 \mathrm{mHZ}$ with AM modulation
LSG16 $100 \mathrm{KHZ}(300 \mathrm{mHZ}$ on Harmonics) $\mathbf{£ 5 6 . 5 0}$ SG 231 100m HZ $\pm 1 \mathrm{mHZ}$ (adjustable) FM stereo generator and pilot and mod.

PULSE

$20011 \mathrm{HZ}-100 \mathrm{KHZ}$ TG105 5HZ-5mHZ $40010.5 \mathrm{HZ}-5 \mathrm{mHZ}$ 200P $0.002 \mathrm{H} 2-5.5 \mathrm{mHZ}$ display 1100 mH 2 pounter built in freq. A range of Signal Generators to cover Audio, RFand Pulsing. Mains operated (TG series Battery).

DIGITAL MULTIMETERS $=$

BENCH PORTABLES uk cip fioo

DM235 31/2 Digit LED 21

 ranges, 0.5% AC/DC $2 \mathrm{~A} \quad[56.50$ DM350 $31 / 2$ Digit LED 34 ranges AC/DC 10A TM353 31/2 Digit LCD AC/OC 2 amp TM351 31⁄2 Digit LCD AC/DC 10 Mmp M100 $31 / 2$ Digit LCD AC/OC $2 \quad 886.50$ DM450 $41 / 2$ Digit LED 34 ranges AC/DC $10 \mathrm{amp} \quad$ E107.95 DM series options. Carry case £8.50. N1-cads £7.95. Mains adaptor $£ 4.00$).
\qquad
$\sqrt{1-\cdots 3}$ $\square 1$ Biou in initic.

HAND HELD (UKk post etc. aspl
TM352 31/2 Digit LCD plus 10 ADC and Hfe checker PDM $3531 / 2$ Digit 16 range LED (no AC current) ME502 $31 / 2$ Digit LED plus 10A DC and Hfe chacker LM2001 31/2 Digit LCD 2 amp AC/DC 0:1\% $620031 / 2$ Digit LCD 0.2 A AC/DC. Auto range 6220 As 6200 plus 10 A ACIOC $£ 39.95$ 6100 As 6200 IOA AC/DC $£ 49.95$ test/range hold plus Cont.

FREQUENCY COUNTERS

Portable and Bench LCD and LED Counters up to 600 mHZ . Prices inčlude batteries and leads.

HAND HELD fuk poss etc aspl
PFM200 20 HZ to 200 mHZ 8 Digit LED MAX50 100 HZ to 50 mHZ 6 Digit LED
¢54.50 MAX550 30KHZ to 550 mHZ 6 Oigit LED $\quad \mathbf{£ 1 0 6 . 0 0}$

BENCH PORTABLES ruk e/p E1.00 MAx100 8 Digit LED 5 HZ to 100 mHZ TF200 8 Digit LCD 10 HZ to 200 mHZ 7010 A 9 Digit LED 10 HZ to $600 \mathrm{mHZ} \begin{array}{lll}\text { C } 184.00\end{array}$ 589.00

CSC SINCLAIR OPTOELECTRONICS NEWTRONICS

CLAMP METERS/ INSULATION TESTERS

$K 230330$ ÅMPS 500 VAC E 21.95 3101300 AMPS 600 VAC 1 K $\begin{array}{ll}\text { OHM } \\ \text { K2803 } \\ 300 & \text { AMPS } 600 ~ V A C ~\end{array}$ (K2803 300 AMPS 600 VAC 2 K
OHM
E53.95 OHM
K2903 900 AMPS 750 VAC 2 K K2903 900 AMPS 750 VAC 2 K K 3103 Transistorised insula tion)continuity tester, 100 MEG $600 \mathrm{VAC}, 0 / 2^{1 / 2 \mathrm{~K}} \mathrm{~K} 5.00$ M500 Insulation tester 100 MEG 500 VOLT, $0 / 200$ OHMS continuity Also digital and DC types in stock $\mathbf{£ 8 7 . 5 0}$

SWR/FS AND POWER METERS

Range in stock covering, up to i 50 mHZ and up to 1 K watt power. PL259 sockets. Also 250 UHZ Grid Dipmeter
SWR9 SWR/S $3-150 \mathrm{mHZ}$ ع9.50 SWR50 SWR/Power meter, $31 / 2$ 150 mHZ O-1000 watts E 13.95 10 SWR/Power $11 / 2-144 \mathrm{mHZ}$ 171 As 110 Twin meter plus F/S
17 As 110 Twin meter plus $\mathbf{E 1 4} 5$
Plus large range of BNC/PL259 etc leads/plus/adaptors/ connectors always in stock 176 SWR/Power/FS 144 mHZ . 5-50 watt. Plus 25 40 mHZ ac match $£ 16.60$ KDM6 Grid Dip $\begin{aligned} 11 / 2-250 \mathrm{mHZ} \\ £ 38.50\end{aligned}$

[^1]OPEN SIX DAYS A WEEK
301 EDGWARE ROAD, LONDON, W2 1BN, ENGLAND. TELEPHONE $01-7243564$

" NEVER KNEW COLOUR VIDEO COULD COST SO LITTLE"

Don't be put off by what you may have heard - or imagined - about the cost of colour video.

Talk to Bell \& Howell or one of our Video Centres and get the current facts.

The fact,for example, that a portable JVC colour camera costs little more than an ordinary black-and-white camera.

And the further fact that by adding a JVC VHS you have a complete colour recording system for as little as $£ 1,300$ plus VAT. For playback, a standard TV receiver is

At these prices every user can benefit from colour. Training will be easier to understand; publicity more compelling; management communications more interesting; rôle-playing more effective. After all, we live in a coloured world.

PUSH-BUTTON FEATURES

Don't think for one minute that the low price has been achieved at the expense of useful features. Among other things the camera has an iris control which automatically adjusts lens aperture to match lighting conditions; a 6:1 power or manual zoom, giving close-ups as close as 50 mm ; TL indicators which automatically show exposure level, auto-white balance, operating mode and power level.

BETTER STILL

Or, if you feel inclined to make even fuller use of the camera's capabilities, couple it to a JVC $3 / 4$-inch U-format recorder.

The picture will be improved. You'll have another
sound track to use for foreign-language commentaries or question-and-answer training routines.

On $3 / 4$-inch, moreover, you'll be in the right format to edit and duplicate - or add in library material. And still

the cost of the system needn't exceed $£ 2,700$ plus VAT. Alternatively, at very attractive rates, it can be leased.

SEE FIRST, THEN DECIDE

You can, of course, spend more. At any Bell \& Howell Video Centre you'll see more expensive cameras, video recorders and electronic editing equipment that wouldn't be out of place in a national network.

But do you need them?
Let the Video Centre, or Bell \& Howell, help you decide.
Whatever your decision, two things are certain.
One, colour video now costs a lot less than it used to (as well as being highly dependable and very easy to use).

Two, every unit in the system you choose qualifies for the Supershield warranty, unique to Bell \& Howell.

Under Supershield, all adjustments, repairs and replacements (except for tubes and tapes) are free for two years after purchase. And if a job can't be done on the spot we also provide free transport anywhere in mainland Great Britain to and from a fully equipped Supershield video workshop.

Convert to (or start with) colour. With JVC video equipment. And the Bell \& Howell Supershield guarantee.

Let Bell \& Howell show you the answer:

[^2]BelleHowell

320 pages worth of the latest \& best in signal processing components.

[^3]Telephone: 109327) 87418 Telex: 8814536

WW - 034 FOR FURTHER DETAILS

You could do with titelper

 on your test bench.Helper low cost instruments are specially designed for 'fiddle-free', instant bench testing or mobile servicing of two-way radio equipment.

They'll make life easier for the busy technician whilst giving extremely reliable, lasting service. The Autopeak Modulation Monitor.

For reading peak modulation and modulation density on any FM receiver whose 2 nd I.F. is 400,450 or 455 KHz . Other frequencies may be accommodated on special order.

The Sinadder 3...
Ideal for bench or mobile service van use, with 3 functions in one. Automatic SINAD meter with audio monitoring plus a 1000 Hz tone generator. Sensitive AC voltmeter, $1 \mathrm{M} \Omega$ input impedance, with audio monitor for tracking down distortion and locating defective stages.

These are just two of
our Helper range.
Write now for a product guide and free copy of the mobile radio desk reference.

MELPER

45
LYONS INSTRUMENTS
Lyons Instrumenits Limited, Hoddesdon, Herts, EN11 9DX, England Telephone 67161 Telex 22724

A Claude Lyons Company

Keithley D.M.M. Test Equipment:

Quality. With machines like the 169 shown above. $31 / 2$ digits; $.25 \%$ accuracy. A nononsense five function D.M.M. at a no-nonsense price.

Choice. The Keithley range spans Pocket, $31 / 2,41 / 2,51 / 2$ digit D.M.M.'s; many with I.E.E.E. options. So we can be sure of having exactly the right product for your own requirements. Built to a standard that very few people can equal.

Cost. And at a price even fewer can match.
From $£ 79$ + V.A.T., Keithley D.M.M. test equipment is backed by the resources of a specialist company with a formidable reputation. To find out more, just fill in the coupon, and get your free literature today.

KEITHLEY

Keithley Instruments Ltd
1 Boulton Road Reading Berkshire RG2 ONL Telephone (0734) 861287

[^4]

Use CRT displays in your systems or equipment? Then it's well worth getting to know the KGM resources. We can take both design and production problems onto our own experienced shoulders. Far better than struggling with complex video concepts yourself !
For a quick scan of KGM capability, look through our new colour folder - featuring some of the units we have produced for major customers. Some are based on our standard monitor range - but even these come with a choice of thick film modules or discrete components, for maximum 'tailor-made' flexibility. And today our technology extends to complete keyboard and micro-processor units. If you're ready to talk monitors now, ring our Sales Applications Engineer. Or start with one of those folders.
KGM Electronics Limited
Clock Tower Road, Isleworth, Middlesex TW7 6DU. Tel: 01-568 0151. Telex: 934120

$-1: A$ ELECTRONICS

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight-realistic prices.

Fylde Electronic Laboratories Limited.

49/51 Fylde Road Preston
PR1 2X0
Telephone 077257560

CAMBRIDGE LEARNING SELF-INSTRUCTION COURSES

It's faster and more thorough than classroom learning: you pace yourself and answer questions on each new aspect as you go. This gives rare satisfaction - you know that you are really learning and without mindless drudgery. With a good self-instruction course you become your own best teacher.

Understand Digital Electronics
 In the years ahead digital electronics will play an increasing part in

 your life. Calculators and digital watches mushroomed in the 1970's -soon we will have digital car instrumentation, cash cards, TV messages from friends and electronic mail.After completing these books you will have broadened your career prospects and increased your knowledge of the fast-changing world

around you.

DIGITAL COMPUTER L ELECTRONICS $£ 7.00$
 This course is designed as an

 introduction to digital electronics and is written at a pace that suits the raw beginner. No mathematical knowledge is assumed other than the use of simple arithmetic and decimals and no electronic knowledge is expected at all. The course moves painstakingly through all the basic concepts of digital electronics in a simple and concise fashion: questions and answers on every page make sure that the points are understood. Everyone can learn from it

- students, engineers, hobbyists, Book i wives, scientists. Its four A4 volumes consist of:
Book 1 Binary, octal and decimal number systems: conversion between number systems; Book 2 AND, OR gates; inverters: conversion tables.
Book 2 AND, OR gates; inverters; NOR and NAND gates; truth tables; introduction to Boolean algebra.
Book 3 Positive ECL; De Morgans Laws; designing logic circuits using NOR gates; dual-input

gates.

cook 4 Introduction to pulse driven circuits; R-S and J-K flip flops; binary counters; shilt registers: half-adders.
DESIGN OF DIGITAL SYSTEMS $£ 12.50$
This course takes the reader to real proficiency. Written in a similar question and answer. style to Digital Computer Logic and Electronics, this course moves at a much faster pace and goes into the subject in greater depth. Ideally suited for scientists or engineers wanting to know more about digital electronics, its six A4 volumes lead step by step through number systems and Boolean algebra to memories, counters and arithmetic circuits and finally to an understanding of calculator and computer design.
Book 1 Octal. hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication

and division

Book 2 OR and AND functions; logic gates; NOT, exclusive-OR. NAND. NOR and exclusiveNOR functions; multiple input gates; truth tables: De Morgans Laws; canonical forms; logic conventions; karnaugh mapping; three state and wired logic.
Book 3 Haif adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems: control unit; program ROM; address decoding: instruction sets; instruction decoding: control programme structure.
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupis; interrupt time sharing.

Flow Charts and Algorithms

are the essential logical procedures used in all computer programming and mastering them is the key to success here as well as being a priceless tool in all administrative areas -presenting safety regulations, government legislation, office procedures etc.

THE ALGORITHM WRITER’S GUIDE $£ 4.00$

explains how to define questions, put them in the best order and draw the flow chart, with numerous examples.

GUARANTEE No risk to you.

If.you are not completely satisfied, your money will be refunded upon return of the books in good condition.
CAMBRIDGE LEARNING LIMITED, UNIT 36
RIVERMILL SITE, FREEPOST, ST. IVES, HUNTINGDON,
CAMBS., PE17 4BR. ENGLAND.
TELEPHONE: ST. IVES (O480) 67446
All prices include worldwide postage (airmail is extra - please ask for prepayment invoice).
Please allow 28 days for delivery in U.K

Microcomputers are coming - ride the wave! Learn to program.

Millions of jobs are threatened but millions more will be created. Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program, debugging, clear documentation. Harder problems are provided with a series of hints so you
 never sit glassy-eyed with your mind a blank. You soon learn to tackle really tough tasks such as programs for graphs, cost estimates, compound interest and computer games.

COMPUTER PROGRAMMING IN BASIC

 $£ 9.00$Book 1 Computers and what they do well; READ. DATA, PRINT, powers, brackets, variable names; LET: errors: coding simple programs.
Book 2 High and low level languages; flowcharting; functions; REM and documentation: INPUT, IF... THEN, GO TO; limitations of computers, problem definition.
Book 3 Compilers and interpreters; loops, FOR....NEXT. RESTORE; debugging; arrays: bubble sorting; TAB.
Book 4 Advanced BASIC; subfoutines; string variables: files; complex programming: examples; glossary.

THE BASIC HANDBOOK £11.50

This best-selling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'dialects' in use today mean programmers often need to translate instructions so that they can be RUN on their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time. A must for all users of BASIC throughout the world.

A.N.S. COBOL $£ 4.40$

The indispensable guide to the world's No. 1 business language. After 25 hours with this course, one beginner took a consulting job. documenting oil company programs and did invaluable work from the first day. Need we say more?

[^5]
Hybrid Circuit Module Kits for CRT displays

— FIELD DEFLECTIONAMPLIFIER

- VIDEO AMPLIFIER

Brimar kits save you -

* Design Time
* Component Purchasing Costs
* Component Stock Control
* Staff Training Time
* Production Costs
* Test Time
* Rejects

Write for information on the benefits
Brimar hybrid circuit modules can bring you.

Thorn Brimar Limited

Mollison Avenue, Brimsdown, Enfield,
Middlesex EN3 7NS
Telephone:01-804 1201

WW - 009 FOR FURTHER DETAILS

SPECIAL PURCHASE

OF TOP QUALITY LCD MULTIMETERS

CHOOSE FROM FOUR MODELS

* $31 / 2$ digit autoranging (volts/OHms)
* 200 hours battery life (2 pencells)
t 10 amp AC/DC (6220 \& 6110) * 1000 v DC
600 v AC
* $200 \mathrm{~mA} \mathrm{AC/DC}(6200$ \& 6100)
* Range hold facility (6100 \& 6110)
\star Unit and range $\operatorname{sign}(6110$ \& 6220)
* Continuity buzzer (6100 \& 6110)

RESOLUTION

100 UVDC. 1 mVAC
$10 \mu A$ AC/DC, 0.1 oHM
10 mA on 10A. AC/DC

OTHER FEATURES

 (ALL MODELS)Low power OHms Range Zero Adjust key
Battery Warning
In circuit resistance test
Size $155 \times 85 \times 28 \mathrm{~mm} .250 \mathrm{~g}$

6200	$£ 39.95$	6100	$\mathbf{£ 6 4 . 9 5}$
6220	$\mathbf{8 4 9 . 9 5}$	6110	$\mathbf{£ 7 4 . 9 5}$

\star All prices include batteries/leads and UK VAT (UK c/p 65p) Order By Post or Telephone with Barclay or Access.

OR CALL IN AND SEE FOR YOÜR̈SELF̄

If everything were perfect...

... a control unit would consist of an on/off switch, a volume control and a programme selector switch.

Unfortunately this is not the case as any prospective high fidelity buyer, be he neophyte or hardened campaigner, quickly discovers.

He is faced with a choice.
He can attempt to sift the vast quantities of conflicting information gathered from high fidelity magazines, retailers and "my friend who is an electronics engineer and knows quite a bit about high fidelity,"

- or he can buy a Quad 44.

In the latter case he can be confident that whatever the programme sources, he will be able to
match them correctly and apply tonal correction when necessary to obtain optimum results.

Moreover he can be confident that he need not change his preamplifier to meet future developments.

To learn all about the Quad 44 he only has to write or telephone for a leaflet.

The Acoustical Manufacturing Co. Ltd., Huntingdon, PE18 7DB. Tel: (0480) 52561.

QUAD

for the closest approach to the original sound
QUAD is a registered trade mark.

DANAVOX (GT. BRITAIN) LTD.
1 CHEYNE WALK
NORTHAMPTON NN 15 PT TEL. NORTHAMPTON (O604) 36351

- Freserrcharan"on components and accessories for dictating machines, tele-communications, hearing aids and electroacoustic equipment etc."

WW - 045 FOR FURTHER DETAILS

Ienclose Cheque/P.O. for £............. or debit my lenclose
ACCESS/
BARCLAYCARD No. $\square 1]$ IIIIII I I I
To cover the cost of Soldering Irons at $£ 3.30$ each
Name
Address \qquad
\qquad
TO: WIRELESS WORLD SOLDERING IRON OFFER 86-88 UNION STREET, PLYMOUTH, PL1 3HG. OFFER AVAILABLE IN THE U.K. ONLY (Excluding the Irish Republic)

16-18 WATTS 220-240 VOLTS SUPPLIED WITH 3 mm TIP. OTHER TIPS ARE AVAILABLE AND EASILY REPLACED

INC. V.A.T.P.P. INORMALPRICE K5. 23 IDEALLY SUITED FOR ALL MODERNELECTRONIC AND GENERAL PURPOSE APPLICATIONS MADE IN BRITAIN

OF VAT					
TRANSISTORS		ORS			
(1)					
AD149 55p	BF200 $\quad . . .29 \mathrm{P}$	$7^{7905105 p ~}$			
	BFX88 … 22 p	7924.......... 105 p	74LS03 120	403599p	
BC1087D 7 PFY50					
BC108A	BFY51 13p	LM320T5 105p			
BC136 15p		LM320T15 105p			
	BU208 ...150p	LM340T12	74LS55		
				4069 170	
BC149 \ldots....7p 7 l					
			T4LS85		
BC167A ... 10p	2N1613 ... 12p		74LS114 .. 490		
BC179 12p	2N2217 ... 200	ρ	74LS123 .. $65 p$		
BC183L.....9p			74LS151 .. 89p	4161	
BC184L......9p		30 P	74LS155 .. 910	$4162 \ldots . .105 p$	
BC327 13p	2N2926Y .. 10p	25p	74LS174	4445	
		$7420 \ldots 14 \mathrm{p}$	74LS194.115p	4512	
			74LS195.115p	451	
BC548 …...9p	2N3705		74LS196.95p	4515	
		7451....... 15p	74LS378.159p	4555........92p	
				4556.......69p	
			10S	4581......269p	
DIODES			$4000 \ldots 14 \mathrm{p}$		
		$7480 \ldots40 \mathrm{p}$			
	8 A 600 V ... 72 D 104400 V .72 D	7494....... 63 p	4010	16 pin ….. ${ }^{13 \mathrm{p}}$	
		$7495 \ldots63 \mathrm{p}$ 74100 (...110p 1	4011 $401219 p$ $16 p$		
IS44		74122 74123		MEMORIES	
	4 A 400 V ...66p	74145 72 p	4018	2 LL02	
OPTO	4 A 600 V . 75 p	74154 …. 80p		2114	
	6 A 400 V ... 75 p	74157		$4027 \quad 275 p$	
				$416 \quad 500 \mathrm{D}$	
125 Green 12p 8A600V ... 95p					
Green sptays$\quad 10 \mathrm{p}$ 15A 400V.120p					
		44p 48p	27		
	Prices cor		54 p 600	27	
747 750 ...$\quad 160 \mathrm{p}$$\|$at time of going to press				CPU'S	
					Mk 3880 950 p Mk 388% 625 p Mk 3882 625 p
Nascom, PET, Sharp. \star Llarge range of Microcomputer books$\quad$$35 p$ P \& P. VAT additional					

INTERFACE COMPONENTS LIMITED.
OAKFIELD COANER, SYCAMORE ROAD AMERSHAM,BUCKS HPG 6SU TELEPHONE:02403 22307. TELEX:837788
Write .telephone or call. Access or Barclaycard accepted

ajting
 Whe new name in Ininear I/Cs

Analog Systems, the fest growing linear I/C company of Arizona whose products are available from Pascall, offer a wide range of high performance linear integrated circuits.

Audio Amplifiers and pre-amplifiers

MA 700 Hi Voltoge Op AmpMA 332 Audio Operationa Amplifier 0.0002% THD, $4 \mathrm{nV} / \mathrm{VHz}$ input noise voltage, swings to $\pm 40 \mathrm{~V}$. for 2 MHz GBW product, audio S/N ratio 140 dBMA 60391-80391 equivalent
to LM 391N-60/80
MQ 328 Vollage Variable Gain Block. 100 dB dynamic range, $2 \mathrm{MHz} \mathrm{B} / \mathrm{W}$ and $800 \mu \mathrm{~S}$

- mnalog EMETEMS

Send for

full product listings of Analog Systems exciting
product range

Pascall Electronics Limited Hawke House, Green Street, Sunburv-on-Thames, Middlesex TW16 6RA Telephone: 109327187418 Telex: 8814536 Def Stan 05-31/BS9000/CECC approved

WW - 033 FOR FURTHER DETAILS

SONICAR

ULTRASONIC CLEANERS

SC50

- CLEANS ELECTRONIC COMPONENTS FAST.
- P.C.B's, WIREWOUND POTS, SWITCHES RELAYS ETC.
- RUGGED 55 KHz GENERATORS AND LEAD ZIRCONATE TRANSDUCER.
- SOLVENT CLEANING FLUIDS AVAILABLE.
- UNIT ILLUSTRATED IS 2 LTR. CAPACITY (APPROX.) AND COSTS £87.
- FULL RANGE OF SIzES AVAILABLE INCLUDING INDUSTRIAL UNITS.
DETAILS FROM:
Orme Scientific Limited
P.O. Box 3

Siakehill Industrial Estate Middleton,
Manchester M24 2RH
Tel: 061-643 9134/5/6 Telex: 669846

TELEVISION SOUND IS GOOD!

Yes it's true - but you'll need to listen through a Minim Television Sound Tuner to be convinced. Music, wildlife, even the news suddenly comes to life when you can hear all the detail that you expect from High Fidelity equipment. Connect the Minim Television Sound Tuner to the amplifier or music centre or listen directly on headphones so as not to disturb others.

Further information will only cost you $12 p$ - stamp out poor televison sound!

Name
Address

Minim Audio Limited, Lent Rise Road, Burnham Slough SL1 7NY. Tel: Burnham 63724

MINIM AUDIO

MAIL ORDER PROTECTION

 SCHEME (Limited Liability)If you order from mail order advertisers in this magazine, except for classified advertisements, and pay by post in advance of delivery. Wireless World will consider you for compensation if the advertiser should become insolvent or bankrupt, provided

You have not received the goods or had your money returned; and
2. You write to the publisher of Wireless World explainirg the position not earlier than 28 days from the day you sent your order and not later than 2 months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your cliam and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the advertiser: has been declared bankrupt or insolvent up to a limit of $£ 3,550$ per annum for any one advertiser so affected and up to $£ 10,000$ per annum in respect of all insolvent advertisers. Claims may be paid for higher amounts, or when the above procedure has not been complied with, at the discretion of Wireless World; but we do not guarantee to do so in view of the need to set some limit to this commitment and to learn quickly of readers' difficulties.
This guarantee covers only advanced payments sent in direct response to an advertisement in this magazine (not, for example, payments made in response to catalogues, etc., received as a result of answering such advertisements). Personal advertisements are excluded.

80 COLUMN HIGH PERFORMANCE

 IMPACT PRINTER - suitable for most Micros. JUST LOOK AT THESE STANDARD FEATURES:*RS-232, 20mA, IEEE 488 and Centronics $1 / 0$ *15 Baud rates to 9,600 * 100 Chrs. per second Bidirectional * 6 print densities $60,72,80,96$, 120 or 132 Chr/line *Self test switch * 96 Chrs. ASC II Standard * Auxilliary User Defined Ch. set "Tractor and fast paper feed/graphics " $2 k$ Buffer "Accepts 81/2" max. paper pressure feed and 91/2" max. paper tractor feed.

Compukit Uk 101
with up to 32 k RAM expansion $-2=1$
$\sum \sqrt{3}$
$=1$ free games disc disc

* Plugs straight into 8 k Compukit requires no hardware mods. (5v.5A required for 610) 610 Expansion (8 k) ONLY £159 + VAT Disc Drive with DOS ONLY £285 + VAT

VERBATIM 5\%/" DISCS $£ 1.85$ each $($ min. 10$)$ + VAT STATIC RAM $21141-12 £ 3$ each + VAT $13+£ 2.50$ each + VAT

COMBINES ECONOMY OF CASSETTE WITH SPEED \& RELIABILITY OF DISC

16k loads in approx. 24 secs. - Wafers to 75 ft (48k approx.)

Stringy Floppy with 10 Wafers (Tapes)
BUS EX. 2 for 1. Machine Lang. Monitor milero
for a Mighty good deal !!!

mighty

Ohio Superboard II \& Challenger IP
with FREE RAM

*Ready Built " 8 k Microsoft in ROM, 6 digit floating point basic plus full features. 4k RAM - expandable to $32 k$

SUPERBOARD II (24×24 format) $£ 159$ + VAT SUPERBOARD II (48×32 format) $£ 199+$ VAT POWER SUPPLY 5v.3A. . . . £27 + VAT CASE $£ 29+$ VAT CHALLENGER $1 P(24 \times 24$ format $) £ 219+\mathrm{VAT}$ CHALLENGER 1 P (48×32 format) $£ 259+$ YAT (Superboard is used in Challenger)

Please add V.A.T. at 15%. Carriage extra, will advise at time of order. Official orders welcome. 61 NEW MARKET SQUARE, BASINGSTOKE, HAMPSHIRE, RG21 1HWD Telephone: Basingstoke (0256) 56468 and 56417
Buy in confidence. If on receipt of your order the goods do not meet with your satisfaction, return within 7 days for full refund. Cledit facilities arranged.

Newport Range -
Sound reinforcement and public address amplifiers; $30,60,120$ or 200 watts -
with a range of 10 models for free standing and rack mounting use engineered for reliability

Audix Limited, Station Road, Wenden, Saffron Walden, Essex CB11 4LG
Tel: Saffron Walden (0799) 40888; Tel ${ }^{2}$ x: 817444

SEND FOR OUR FULL CATALOGUE 50p

METER PROBLEMS ?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be inade to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$

SINE WAVE INVERTERS

 - FROM CARACAL

200 to 1000 VA
DC Input:
12, 24 or 48 V
AC Output: $220 / 240 \mathrm{~V}$ or $110 / 120 \mathrm{~V}$ $50 / 60 \mathrm{~Hz}$

Caracal sine wave invertiefs are designed to replace older tuned-type inverters in fixed, mokis ar marine we They are also used for standby AC power for Juters communications and many other applications.
Our technical specification and competitive pricing offer without doubt the best value or the market.
 under all load/battery conditions.

- High efficiency throughout the load range, not just at full load - resulting in lower battery size and cost.
- Very low distortion sine wave - onlv 3\% T.H.D.
- Low idling/no-load input current.

Automatic "standby" operation available.

- Comparatively low weight.

TYPE 747 UNIVERSAL COUNTER TIMER
DC to 150 MHz 8 DIGITS, 3 CHANNELS
MEASURES -
Frequency Ch A and Ch C
PERIOD Ch A
TIME $\pm \mathrm{Ch} A$ to $\pm \mathrm{Ch} \mathrm{B}$
PULSE WIDTH Ch $A+$ or -
COUNT
Ch A (may be gated
and reset by B \& C)
AVERAGES 1 to 1000 events
TYPE 745 COUNTER TIMER
OC to $32 \mathrm{MHz}_{2}$ MEASURES -
frequency
PERIOD
TIME
COUNT
6 GATE TIMES / TIME UNITS
$10 \mu \mathrm{~S}$ to 1 S
TYPE 746 AUTORANGING FREQUENCY METER $£ 84.88$ 1 Hz to 99.9 KHz

TYPE 615 OFF-AIR STANDARD £97.13 $10 \mathrm{MHz}, 1 \mathrm{MHz}$ and 100 KHz

OMB ELECTRONICS RIVERSIDE, EYNSFORD, KENT DA4 DAE Tel. Farningham (0322) 863567
Prices, which are CWO and ex-VAT, are correct at the time of going to press and are subject to change without notice.
FROM OMB ELECTRONICS
WW - 031 FOR FURTHER DETAILS COMPUTERS AUDIO RADIO MUSIC LOGIC TESTGEAR CB GAMES KITS

COMPONENTS DEMONSTRATIONS SPECIAL OFFERS MAGAZINES BOOKS Royal Horticultural Halls Elverton Street Westminster London SW1 November 26-30 1980 It's all at Breadboard '80
This is the exhibition for the electronics enthusiast. From November 26-30 there is only one place in the universe for the electronics enthusiast to be - Breadboard '80, at the Royal Horticultural Hall in London. The majority of leading companies will be exhibiting, including all the top monthly magazines in the field. There will be demonstrations on most stands and many feature special offers that are EXCLUSIVE to Breadboard!
All aspects of this fascinating field are catered for, from CB to home computing, so whether you want to buy a soldering iron or a synthesiser - or just keep up to date with your hobby - don't miss Breadboard ' 80 .

AVOID QUEUES - GET ADVANCE TICKETS Send to: Advance Tickets, Modmags Ltd, 145 Charing Cross Rd, London WC2H OEE
| Please send: .tickets@ $\mathbf{£ 1 . 5 0}$

HPMEE

 OSCILLOSCOPES
TOP PERFORMANCE, QUALITY AND VALUE

HM 307
£149 Single Trace DC-10MHz Plus Built-in Component Tester

WM $412 \ldots \ldots . . \ldots(550$
Dual trace DC.2OMHE
$5 \mathrm{mV} / \mathrm{cm}, \mathrm{K}$ Y 40 Hith Thgger
Mius Swienp Belly

HM 812
£1.458
Dual Trace as per HM 512 plus Storage, Automatic Storage and Variable Persistence

Prices U.K List Ex. VAT

For
FULL DETAILS and DISTRIBUTOR LIST contact:

HAMEG LTD.
74-78 Collingdon St. Luton, Beds LU1 1RX Tel: (0582) 413174

A choice of three power drills that fit snugly in the hand, so light they enable you to carry out the most intricate tasks drilling, shaping, cutting, polishing etc in the minimum of time. There are two types of drill stand, S1 for P1 drill, S2 for all drills, plus all the necessary accessories in a remarkable range that fills every need. Fully illustrated literature is available and will be
gladly sent upon receipt of $9^{\prime \prime} \times 4^{\prime \prime}$ stamped addressed envelope.
See them on STAND No. 87
MODEL ENGINEER EXHIBITIOH
Wembley Jan. 1 to 10, 1981

Sole UK Distributors PRECISION PETITE LTD 119a HIGH ST. TEDDINGTON, MDX. Tel: 01.9770878

the indispensable

THRULINE WATTMETER
$0.45-2300 \mathrm{MHz} / 0.1-10,000$ watts
The Standard of the Industry What more need we say...

Exclusive UK representative

aspen electronics limited

2 KILDARE CLOSE, EASTCOTE, MIDDX. HA4 9UR
TELEPHONE: 01-868 1188 - TELEX 8812727
WW - 050 FOR FURTHER DETAILS

AND THERE'S MORE WHERE THIS CAME FROM

It's a long time since one of our adverts was presented in 'list' form - but simply because we do not try to squeeze this lot in every time doesn't mean that it's not available. Our new style price list (now some 40 pages long) includes all this and more, including quantity prices and a brief description. The kits, modules and specialized RF components - such as TOKO coils, filters etc, are covered in the general price list - so send now for a free copy (with an SAE please). Part 4 of the catalogue is due out now (incorporating a revised version of pt.1).

LINEARICS-NUMERIC LISTINGS

TEAL20S	1.00	KB4413	1.95
1200	1.95	KB4417	1.80
U2378	1.28	TDA4420	2.25
U2478	1.28	KB4 4208	1.09
U2578	1.28	KB4423	2.30
U2678	1.28	KB4424	1.65
LM301H	0.67	KB4431	1.95
LM30LN	0.30	KB4 432	1.95
LM308H	0.96	KB4433	1.52
LM308N	0.65	KB4436	2.53
LM339N	0.66	KB4 437	1.75
LM348N	1.86	KB4438	2.22
LF35IN	0.38	KB4441	1.35
LF353N	0.76	KB4445	1.29
LM374N	3.75	KB4446	2.75
LM380N-14	1.00	кB4448	1.65
LM380N-8	1.00	NE5044N	2.26
LM381N	1.81	NE5532N	1.85
2N419CE	1.95	SD6000	3.75
NE54AN	1.80	SL6270	2.03
NE555N	0.30	SL6310	2.03
NE556N	0.50	SL6600	3.75
NE560N	3.50	SL6640	2.75
NE562N	4.05	SL6690	3.20
NE56 4 N	4.29	SL6700	2.35
NE565N	1.00	ICL, 8038 CC	4.50
NE566N	1.60	MSL9362	1.75
NE570N	3.85	MSL9363	1.75
SL624	3.28	HA11211	1.95
TPA651	1.81	HAL1223	2.15
LA709HC	0.64	HA11225	1.45
UA709PC	0.36	HAL 2002	1.45
UA710HC	0.65	HAL 2017	0.80
LA710PC	0.59	HA12402	1.95
UA7410H	0.66	HAL2411	1.20
U47410N	0.27	HAL 2412	1.55
UA7470N	0.70	LF13741	0.33
UA748CN	0.36	SN76660N	0.80
4 A753	2.44		
WA758	2.35	FREQUENCY DISPPLAY	
tBabloas	1.09	\& SYNTHESISERICS	
TEA820M	0.75		

\square

\square

TOAL072	1.95
2.69	
TLA1074A	5.04

TLA1083	1.95			
TDA1090	3.05		HAl137	1.05
:---	:---			
HAl196	1.20		HAL197	2.00
:---	:---			
TDA1220	1.00			

$$
1
$$

$$
1
$$

-

SLG
SL
SL

\section*{| S |
| :--- |
| S |
| S |}

$$
\begin{aligned}
& \mathrm{TDZ} \\
& \mathrm{TD} \\
& \mathrm{UL} \\
& \text { UL }
\end{aligned}
$$UN2242AULN22838CA3080E

CA3089ECA3089E
M3915N
KB4400
KB4
\qquad
\qquadKB4406
KB4412 7430 N$\begin{array}{ll}\text { MSM5526 } & 7.85 \\ \text { MSM5527 }\end{array}$

\[
1

\] | LM1303 | 1.40 |
| :--- | :--- |
| LM1307 | 1.59 |

\section*{| SL |
| :--- |
| SL |
| SL |
| SL |}CA309

CA312
CA313
CA313$\begin{array}{ll}\text { CA3130E } & 1.40 \\ \text { CA3130T } & 0.80 \\ & 0.80\end{array}$CA31

CA31	SAALO56	3.75
SAA 1058	3.35	$

TMPlease send an

TIL N and LSN

TIL N and LSN		7443 N	. 15	74.5112	0.38	74.5169	2.00
				74.5113	0.38	741700	2.30
7400 N	0.13	7445N	0.94	74 LS114	0.38	7415170	2.00
74LS00	0.20	7446 N	0.94	74118 N	0.83	7415174	1.20
74012	0.13	74.547	0.89	74120 N	1.15	74175 N	0.87
74LS01	0.20	7448 N	0.56	741212	0.42	74.15175	1.10
7402 N	0.14	74 LS48	0.99	74122 N	0.46	74176 N	0.75
74.502	0.20	74 LS49	0.99	74123 N	0.73	74177N	0.78
740×2	0.14	7451 N	0.17	74.5124	1.75	74181 N	1.65
74LS03	0.20	74 LS5 1	0.24	74125 N	0.38	74.5181	3.50
7404 N	0.14	7453N	0.17	74LS125	0.44	7415183	2.10
74LS04	0.24	7454 N	0.17	74126 N	0.57	74184 N	1.35
7405 N	0.18	74.554	0.24	741S126	0.44	74185 N	1.34
74.505	0.26	74.555	0.24	74128 N	0.74	74 LSS190	0.92
7406 N	0.28	7460 N	0.17	74132 N	0.73	74192 N	1.05
7407 N	0.38	$74 \mathrm{LS6} 3$	1.24	7415132	0.78	7415192	1.80
7408 N	0.17	7470 N	0.28	7415136	0.40	74193 N	1.05
742508	0.24	7472 N	0.28	7415138	0.60	74LS193	1.80
7409 N	0.17	7473N	0.32	74141 N	0.56	74194 N	1.05
74LS09	0.24	741573	0.38	74142 N	2.65	74196 N	0.99
7410 N	0.15	$7474{ }^{\text {N }}$	0.27	74143 N	3.12	74LS196	1.10
74LS10	0.24	74.574	0.28	74144 N	3.12	7415197	1.10
741 N	0.20	7475 N	0.38	7415145	0.97	74198 N	1.50
74.511	0.24	7476 N	0.37	74147 N	1.75	74199 N	1.60
7412 N	0.17	741576	0.38	74148 N	1.09	7415247	0.93
7413 N	0.30	741578	0.38	74.5148	1.19	7415257	1.08
7414 N	0.51	7480 N	0.48	74150 N	0.99	74 LS260	1.53
74.515	0.24	7481 N	0.86	74151 N	0.55	74 LS279	0.52
7416 N	0.30	7482 N	0.69	7415151	0.84	7425283	1.20
7417 N	0.30	7485 N	1.04	74153 N	0.64	7415293	0.95
7420 N	0.16	74.585	0.99	74.5153	0.54	7415365	0.49
74.S20	0.24	74LS86	0.40	74154 N	0.96	74LS366	0.49
742 LN	0.29	7489 N	2.05	74155 N	0.54	74LS367	0.43
74.521	0.24	7490 N	0.33	74.5155	1.10	74LS368	0.49
7423N	0.27	74.590	0.90	74156 N	0.80	7445374	1.80
7425 N	0.27	7491 N	0.76	74157 N	0.67	7415377	1.95
7427 N	0.27	74 LS91	1.10	7445157	0.55	74.5379	1.30
74.527	0.44	7492N	0.38	74515	.	745393	1.40

743
743
741
74$\begin{array}{lr}\text { SAALO59 } & 3.35 \\ \text { 11C90DC } & 14.00\end{array}$$\begin{array}{ll}\text { HC900C } & 14.00 \\ \text { LNL232 } & 19.00\end{array}$
$\begin{array}{lr}\text { MSL2318 } & 3.84 \\ \text { MSM5523 } & 11.30\end{array}$$\begin{array}{lr}\text { MSMS524 } & 11.30 \\ \text { MSMS525 } & 7.85\end{array}$$\begin{array}{ll}\text { MSMS525 } & 7.85 \\ \text { MSM5526 } & 7.85\end{array}$$\begin{array}{ll}\text { MSMS5527 } & 9.75 \\ \text { MSM55271 } & 9.75\end{array}$$\begin{array}{ll}\text { MSM55271 } & 9.75 \\ \text { ICM7106CP } & 9.55\end{array}$
ICM7106CP 9.ICM72
ICM72
SP862
SP862
SP86
95 H90
HDIHD1
HD4
HD1 2
CMOS 4000 SERIES

4043	0.85	VOLTAGEREGULATOR
4044	0.80	

S 40
S 40

- - ー ー0.17
40010.17
4000 40
4008
4009
4010SAE with alenquiries.

Access/Barclayed ($\min £ 5$ please)

VUNICA
 PIN DIODES

 \begin{tabular}{ll|lll}
BA182 \& 0.19 \& 2SD666A \& 0.30

BA244 \& 0.17 \& 2SB646A \& 0.30

BA379 \& 0.35 \& 2ST668A \& 0.40
\end{tabular}

\qquad SIGA OK1 OIODES SIGNAL DIODES
8) RECTIFIERS

IN40010.06
1140020.07

1N5402 0.15
$\begin{array}{ll}\text { OAS1 } & 0.07 \\ \text { AR12 } & 0.07\end{array}$
AA12
BRIDGES:
$\begin{array}{ll}18 / 50 \mathrm{O} & 0.35 \\ 6 \mathrm{~A} / 200 \mathrm{~N} & 0.75\end{array}$

TOKO COILS AND SEE THE EXTENS IN OUR NEW PRIC

FILTE
TERS IN OUR NEW PRICE LISTS AND

LF/HFFIXED INDUCTORS -FULL E12 RANGE

7BA series 1 UH-1mH 0.16 | $8 R 8$ ser ies |
| :--- |
| $100 u h-33 \mathrm{mH}$ |

$3 \mathrm{mmH}-12 \mathrm{OnH}$
3 3nH-120mH
10RPH series
$120 \mathrm{mH}-1.5 \mathrm{H}$
PIEZO SOUNDER
PR2720
0.19
0.33
0.55

PB2720

SCHOTIKY DIODE BAL

MIXERS (SBLL MUIO8) $\begin{array}{lll}\text { SBL } 1-500 \mathrm{MHz} & 4.25 \\ \text { SBCl }-8 & .1-200 \mathrm{MHz} & 4.55\end{array}$ $\begin{array}{lll}\text { SBL } 1-1-x & 10-10000 \mathrm{~Hz} & 4.55 \\ \text { SBL } & 5.75\end{array}$ SBL. $1-X ~ 10-1000 M$

SRAI $.5-500 \mathrm{MHz}$ \begin{tabular}{ll}
SRAL-1

SRA1H \& $.1-500 \mathrm{NHz}$

\hline

SRAIH

SRA3

\hline
\end{tabular} SRA3

AUDANSISTORS | BC23 |
| :--- |
| $B C 238$ |
| $B C 239$ |
| $B C 30$ |
| $B C 30$ |
| $B C 309$ |
| $B C 4$ |
| $B C 4$ |
| $B C 4$ |
| $B C 41$ |
| $B C 54$ |
| $B C 5$ |
| $B C 55$ |
| $B C 56$ |
| $B C 6$ |
| $B C 6$ |
| $2 S C$ |
| $2 S A$ |
| $2 S O$ |
| $2 S B 6$ |
| $2 S D 6$ |
| $2 S B 6$ |
| $2 S D 7$ |
| $2 S B 7$ |
| $2 S C 2$ |
| $2 S A 1$ |
| $2 S C 2$ |
| $2 S A$ |
| $A U O$ |
| $D E$ |
| $2 S B 753$ |

$\begin{array}{ll}2 S K 134 & 3.10 \\ 2 S K 135 & 3.75 \\ \text { 2ST } 50 & 3.75\end{array}$

$\begin{array}{ll}\text { 2SJ } 50 & 3.75 \\ \text { BDS } 35 & 0.52\end{array}$ $\begin{array}{ll}\text { BD536 } & 0.52 \\ \text { BD377 } & 0.33 \\ \text { BD378 } & 0.33\end{array}$ $\begin{array}{ll}\text { BD378 } & 0.33 \\ \text { BD165 } & 0.30\end{array}$ - SMALL SIGNAL RFDEVICES $\begin{array}{ll}\text { BF194 } & 0.18 \\ \text { BF195 } & 0.18\end{array}$ | BF195 | 0.18 |
| :--- | :--- |
| BF224 | 0.22 | $\begin{array}{ll}\text { BF241 } & 0.18 \\ \text { BF274 } & 0.18\end{array}$ | BF 440 | 0.21 |
| :--- | :--- |
| BF 441 | 0.21 | $\begin{array}{ll}\text { BF362 } & 0.49 \\ \text { BF395 } & 0.18\end{array}$ BF479 0.66 $\begin{array}{ll}\text { BF679S } & 0.55 \\ \text { BFR91 } & 1.33\end{array}$ BFW92 0.60 $\begin{array}{ll}\text { BFT95 } & 0.99 \\ \text { BFY90 } & 0.90\end{array}$ 402380.85

RF POWER DEVICES
VNGGAF 0.95 ZN3866 0.85
SMAL1 SIGNAL RFFFET/MOSFET $\begin{array}{ll}\text { BF256 } & 0.38 \\ \text { 2SK55 } & 0.28\end{array}$

2SK \begin{tabular}{ll|l}
\& \&

2SK5 \& 0.28 \& $3300 / 25$.

2Sk168 \& 0.35 \& $1000 / 100$

$25 K 168$ \& 0.35 \& $10000 / 70$.
\end{tabular}

LCD Module CM161. Miniature clock, $12 / 24 \mathrm{hr} .$,
dav, date,
adrent backlight.
All for.

AXIAL (HORIZ. MOUNT) $1 / 25,4.7 / 16,6.4 / 25$
$10 / 16, \ldots . \ldots \ldots \ldots .1$ $10 / 26, \ldots \ldots, \ldots 0.0$
$4.7 / 63,22 / 10,22 / 16$ $33 / 16, \ldots0 .09$
$47 / 25,100 / 26.0 .10$ 100/25... $1000 / 16, \ldots . . .0 .25$
$2200 / 16,1000 / 25, .0 .36$
$1000 / 35,4700 / 16, .0 .45$ 1000/50. .
RESISTORS
0.25w, 58 El2 CARHON
Johnt-10M.

CAPACITORS
All 5 mm or less spacing
CEVAMIC: Sow

8P2,10P,154, 18P, 0.04
22P,27P,334,47P
265, 68P, 82P, 100 P
150P.220P. 270 P
330P,390P,470P...0.055 1NO. 2N2, 3N3, 4N7, 0.06
10 N
$(0.01 \mathrm{~F}) \ldots .0 .05$
22N, 4 TN. 0.06
$100 \mathrm{~N}, 220 \mathrm{~N}0 .09$
MENOLITHIC CERAMIC 10N,100N........... 0.16 FEEDTHF
INO SOLDER IN. . . . 0.09
POLYESTER (SIEMENS)
10 mm LEAD SPACINC
$10 \mathrm{~N}, 22 \mathrm{~N}, 33 \mathrm{~N}00 .17$
$47 \mathrm{~N}, 68 \mathrm{~N}, 100 \mathrm{~N} . . .0 .0 .19$

POLYESTER (GENERAL)
10 mm LEAD SPACING
$10 \mathrm{~N}, 15 \mathrm{~N}, 22 \mathrm{~N}, 33 \mathrm{~N} . .0 .06$
$47 \mathrm{~N}, 68 \mathrm{~N}, 10 \mathrm{NN}$.
220N.
$20 \mathrm{~N}, 330 \mathrm{~N}, 470 \mathrm{~N} . . .0 .18$
MyIAR
5 mm Lead Spacing
INO, $10 \mathrm{~N}, 22 \mathrm{~N}, 33 \mathrm{~N} . .0 .08$
$100 \mathrm{~N}0 .09$
20 mm LEAD SPACING
$220 \mathrm{~N}, 470 \mathrm{~N}$
POLYSTYRENE
10P,15P,18P, 22P,
27P,47P,56P,68P,. 0.08 100P,180p, 220P,
$270 \mathrm{P}, 330 \mathrm{P}, 390 \mathrm{P}, .0 .09$
$470 \mathrm{P}, 68 \mathrm{OF}, 820 \mathrm{P}, .0 .10$
1N0.1N2.1N5. 1N8. . 0.11 2N2, 2N7, 3N3, $3 N 9 \ldots .0 .12$
$4 N 7,5 N 6,6 N 8,10 N \ldots 0.13$ TANTALLM BEAD CAPS 16v: 0.22.0.33. 16v: $2.2,4,7,10,0.0 .19$ 6v3: $22,47 \ldots . .0 .30$
lov: $22,100 . \ldots .0 .0 .35$

ALUMIN ELECTROLYTICS RADIAL IVER
(UF/voltage)
1/63,2.2/50,4.7/35
33/6.3............0.08
22/16,33/10.
10/63,22/50, 33/...0.09
47/16,100/16....0. 10 $47 / 63,100 / 25,220 / 16$
$470 / 6.3 \ldots . \ldots . e^{2} .12$ 100/63,470/16. 1000/10. 000/16.470/63...0.18 00/16,470/63... Iohm-10M......... 0.02 1. IOhm-1M......... 0.05
HORI 2 CAREON PRESETS 10 mm TYPE
$1000 \mathrm{hms}-2 \mathrm{M}$
1000hms -2 M5 \ldots..... 0.12
HORIZ CERMET HRESETS

TVtubeguns •Valves •Tubes • Germanium and Silicon Semi-conductors

WW-060 FOR FURTHER DETAILS

When will the of run out?

Practical Comphting tells you how to find out . . .

The November issue, available from leading newsagents, contains a program based on the computer model which gave rise to the Club of Rome's famous "Limits to Growth" report in the early 70s. So if you want to model the world economy on a microcomputer and find out when the oil will run out, buy Practical Computing.
Also in this issue:
Reviews of the 5120, IBM's bid for the microcomputer market, and the Acorn Atom, a $£ 150$ micro with high resolution colour graphics facilities.
And on the software side, a review of muSimp - a package that does algebra trigonometry and calculus, and a description of a program for controlling model trains.
All this, plus a Software Buyers Guide and our regular advice columns for users of Pet, Apple and Tandy micros for only 60p. From your newsagents or post this coupon now.

Out October 22nd.

VERO SYSTEMS (ELECTRONIC) LIMITED 362 Spring Rd, Sholing, Southampton, Hants. SO9 5QJ Telephone: (0703) 440611 Telex: 477164 WW - 072 FOR FURTHER DETAILS

Keepthese Contacts CLEAN

BY USING A
DIACROM
SPATULA

Manufactured in France British Patents applled for

No other cleaner has all these advantages:-

1. Only 100% pure, natural diamond grains are utilised.
2. Blades are treated with hard chrome to reinforce the setting of the diamond grains, to obviate loosening or breakaway during use. This process also prevents clogging of the diamonded surface by residues resulting from use.
3. All diamonded blades are rectified to ensure an absolutely smooth surface by eliminating diamond grains which may rise above the surface. This eliminates all excessive scratching during use.
4. All diamond grains are rigidly calibrated to ensure a perfectly uniform grain size of either 200. 300 or 400.
5. The chrome gives a very weak co-efficient of friction and the rigidity of the nylon handle is calculated to permit proper utilisation and yet pliant enough to avoid undue pressures on highty delicate relays.

- Grain sıze 200.. thickness $55 / 100 \mathrm{~mm}$.. both laces diamonded. For quick cleaning of industrial relays and switching equipment, etc.
- Grain size 300 . thickness $55 / 700 \mathrm{~mm}$.. both faces diamonded. For smaller equipments. fike retephone relays. computer relays. etc.
- Grain size 400 . thickness $25 / 100 \mathrm{~mm}$.. one face diamonded. For sensitive relays and tiny contacts. Two close contacts facing each other can be individually cleaned, because only one face of the spatula is abrasive

Sole Distributors for the United Kingdom SPECIAL PRODUCTS (DISTRIBUTORS) LTD 81 Piccadilly, London W1V OHL. Phone: 01-629 9556 As supplied to the M.O.D., U.K.A.E.A.C.E.G.B. British Rail and other Public Authoritiea: also major industrial and electronic users throughout the United Kingdom. WW - 067 FOR FURTHER DETAILS

IIIND YOUR

 OWI BUSTIESS WE DO! 'THAT'S WHY WE'RE GOOD AT IT' SUPRESSOR DESIGN THAT ISSo you do what you're good at And let us do what we're good at SUPPRESSOR DESIGN CIRCUIT PROTECTION
From our Standard range or design to
your specification PHONE
RICK KEENS RYE (079 73) 3725 ROXBURGH SUPPRESSORS LTD. EAGLE ROAD, RYE E. SUSSEX

WW-061 FOR FURTHER DETAILS

PRIME COMPONENTS LOW PRICES

SPECIAL OFFER! 4K CMOS RAM (1K $\times 4$) 450 NS ONLY £6.95! (8 for £45)

The TC 5514P from Toshiba, CMOS equivalent of the 2114 !

- IOWW BIIT (TYP © 5.00 VOPERATING)
- Oata Remention Volitage ${ }^{2}$
- 18 PIN Nasastic Pack
- Throe SLate Ourpur
- Input/ Cutpur Tit Compat

NEW STEREO! S-100 SOUND COMPUTER BOARD!
Allows you, under toral compuer control. io generate an infinite number of apecial sound eftects tor games or any other program
Sounds can be called in BASIC. ASSEMBIY LANGUAGE, etc.
KIT FEATURES
- Four paraliel 1/O ports on Board
- Uses on Board audio Amps or your STEREO
- All sockets, parts and haroware are included
* PC Board is soldermasked, silk screened with gold co
- Uses Programmed I/O for maximum system fle xtbility

COMPLETE KI
ONLY 559.96 includes 60 page data Manual
ONLY E 25.00 includes 60 page data Manual
AY-3-B9 10 enip special price with purchase of BARE BOARD (2 chips)
SCL is now avalablef Our Sound Command Language makes writing Sound Effecis programe a SNAPI SCL also includes rourines io

SE 01 Sound Effects Kit NEW BOOKS

Please order books by reference no and title, and add 50p post \& packing or each book ordered
1168 Active Filler Cookbook $\quad 10.95$ 1440 Aviation Electronics 3 ro Ed $\mathbf{E 6 . 7 5}$ 1558 Audio IC Op Amp Applications 2nd 1524 The Cheap Video Cookbook $\begin{aligned} & \mathbf{E 4 . 9 5} \\ & \mathbf{4} .50\end{aligned}$ 1398 CMOS Cook book Fillers with Ex.
21539 Design of Active 1539 Design of Active Filters with EN. 27537 Design of Op Amp Circuits with Experiments
The Design of Phased-Locked Loop
Circuits with Experiments $£ 6.75$ $1686 \begin{aligned} & \text { Circuits with Experiments } \\ & \text { Design of VMOS Circuirs with } \\ & \text { Experiments NEWI } \\ & 5.95\end{aligned}$ 21618 Electronic Telephone Projects $£ 4.95$
21127 How to Read Schematic Diagrams 3rd Ed 1613 How to Use intograted Circuits 21527 IC Connerrer Cookbook E10.50
21695 IC OpAnCookbook 2nd Ed. 21695 IC OpAmCookbook 2nd Ed. \&11.25

Appliances

21452

Learn Electronics. 1694 LC Circuits 1542 Clircuits \quad| \&4.46 |
| :---: |
| 8.25 | Ogic and Memory Experime

Using TIL Integrated Circuis
Book 21543 Logic and Memory Experimen Using TTL Integrated Circuits
Book 2
$\mathbf{7 7 . 5 0}$ 21568 Linear IC Pinciples. Experiments 21612 and Projects 2nd Ed. $\mathbf{1 7 . 5 0}$ 21635 mens $\mathbf{E 6 . 7 5}$ 2163599 Practical Electronics Projects
2 nd Ed .
$\mathbf{E 3 . 7 5}$ 21599 Practical Low-Cost IC Projects $\mathbf{2 n d}$ 21557 Practical RF Communications Data
\qquad 1482 Regulated Power Supplies 2nd Ed. 21419 Security Electronics 2nd Ed 21621 Solar Heating
21103 Troubleshooting
Oscilloscone 3rd Ed 1339 Video Secuntry Systems

One Shot.
and Envelope Controls. A Quad Op Amp IC is used to implement an Adjustable
Pulse Generator. Level Comparator and Pulse Generator, Level Comparator and
Multiplex Oscillator for even more versatility. The $3^{1 / /^{\prime \prime} \times 3^{\prime \prime} \text { PC Board features a }}$ prototype area 10 allow for user added prototype area
circuitry. Easily programmed to duplicate
Exptosion, Phaser Guns Steam Trains, Explosion, Phaser Guns, Steam Trains, sounds. The unit has a multiple of appli-
cations. The low price includes all pans cations. The low price includes all pars, assembly manual, programming charts.
and detailed 76477 chip specifications and detailed 76477 chip specifications. It
runs on a 9 V battery (not included) runs on a 9 V battery (not included). On
board 100 MW amp will drive a small board 100 MW amp will drive a small speaker directly, or the unit can be con-
nected to your stereo with incredible results! (Speaker nat included.)

COMPLETE KIT ONLY $£ 14.99$

 C1060 NEW: Zasp Clan

तEW TUNES SYNTHESISER	31/2-DIGIT LIQUID CRYSTAL DISPLAY with 'Low bat' Indicator
	- High Contrast Ratio 0
	- Wide Vowing Angle \%1.8i8. $0^{\text {d }}$
loial of 25 tuna	- ULTRA Low Power Consumptio
reateges	LED BAR GRAPH AND
- Marimal orternal comporasit	ANALOG METER DRIVER
	ANALOG METER DRIVER

 - Sequertios lisel mose

WEW
Fnom Sphe THE NEW ULN-2232A INTEGTATED MOTION DETECTOR
The mOSt SOPHISTICATED MOTION DETECTOR available!

120 Hz Rerectron

Two Sound Patterns
Long Range Operation

 MUSIC FOR YOUR EARS

 while wo oimer will pley dilterent chimes The sull hat is watt audio Amp and whil run on etther 12 vac or 12 voc. Consirucliat

NEW FROM EXAR

The XR2266 Decoder/Sense \& Drive Chip ONLY £5.45! for toy cars that DRIVE LIKE REAL!
This versatile 18 -pin dual sn-line IC combines both the decoder and the sense and drive functions to cut remote control car circuitry by at least a factor of twol Steering,
hights, indicators, speed control - all from the new XR2266 at only $£ 5.451$ Ordering intormaton Unless otherwise stated. tor orders under 550 add 50 p

Dept. WWW3, 4 Meeting Sireet Appledore, Nr. Bideford, North Devon EX39 1RY. Tel: Bideford (02372) 79507. Telex: 8953084.

The 102. shown above, must be the most cost-effective pre-amp available. catering for auxiliary, 2 or 3 head tape and providing a perfect match for any cartridge. moving coil or magnetic, by using our unique low cost matching card to define the sensitivity and cartridge loading. Prudent choice of components and elegant circuitry give outstanding
objective and subjective performance (see Popular Hi-Fi August). The module used in the objective and subjective periormance (see Popular Hi-Fi August). The module used in the
102 is avallable separately, as are suitable mains supplies and moving coil head 102 is avallable separately, as are suitable mains supplies and moving coil head
$\mathrm{amp} /$ modules. There are two matching stereo power amp kits which are supplied with buitt and tested circuit boards. requiring only straightforward assembly and point to point wirng The new ready built " D " versions leature separate d.c. supplies for each channel and other refinements which elevate therr performance into the super-ft class but which are not incorporated in the kits. Our power amp modules and supplies below enable an amp of high specification to be constructed.
\star Coming soon: Active Crossovers *
102 Pre-amp: Module only £63.50; built $£ 92$ 45W / channel: kit, P2, £100.50; built, 202D £151 110W/channel: kit, P4, £126; built, 204D £185

POWER AMP MODULES AND SUPPLIES

 OE 1708, 1704, £31.96 QE 1004, $£ 20.69$ M854, £26M1504. 1508. £35.79

M2603, £50.28 M2308, £53.96
he pice they are availde ies 10 sulvinualy ony apphicalion win an honest specilication unbealable a ating (150 Wrms) and choice of models allows reliable continuous operation at up 10 joch r.m s $1 \mathrm{M} 2603 / \mathrm{MS} 5 / 3$ ohms without premature cut off or the need for external circuitry Marching toroidal power supplies with sungle and double de. seelions are avalable. Exemplory spectication meludes thd less than $.01 \%$ at 1 kHz
30 Hz iuS slew rate, noise below 1 IOdB; inegrally protected against overload and high dic. 30 V iuS slew rate, noise below 1 IOdB; integrally protected against overload and high d.c. output oftse
stableto any load.
\star EXCELLENT TRADE PRICES \star
We also build rack mounting power amplifiers, sub-assemblies and special modules to individual specifications. Please telephone with your enquir

NEW DELUXE SPEAKER KITS

SYSTEM I
£69

SYSTEM 2 £89

PRICES PER PAIR INC. BAFFLES
Have you wondered why the existing sources of speaker kits offer a bewildering choice of systems, particularly combinations of 200 mm bass unit and iweeter? Don't they know which ones are best? If so, why bother with the restl Well we have sorted out these super kits so you can order in confidence. knowing you get our fult endorsement of their performance and value. The kits incorporate prolessionally finished from baffles with the drive units already mounted so all the fiddly work is done for you. All that is left to do is to make a simple box. Crossover networks, foam and terminals are included. Systems 1 and 2 use a 200 mm bass and 25 mm dome tweeter from Son Audax, Systern 2 being a reflex design that we enthusiastically recommend. System 3 is a competitive 3.way I.B. using Seas bass and mid does System 4 undoubredly the best kit on the market using a Volt 250 mm bass drivar with a 250 mm ABR on the rear baffle (also supplied), a modified Peerless mid and Son Audax tweeter. We will also be retailing selected drive units at competitive prices, e.g. Son

All our prices include V.A.T. and delivery. Export no problem - please send for a specific quote by return. All equipment can be wired for 110 V mains. Please send a large S.A.E. or dollar bill for our full information and review reprints
SWEDEN : BLN LJUD Hi-Fi, Södra Kaserngatan 14 B, S291, 33 Kristianstad
U.S.A.: OX DISCO. Box 123. Claymont, Delaware 19703

8 ALBION ST., LEICESTER Tel: 546198

We use advanced winding technology to make our toroidal transformers. They have only half the weight and height of their laminated equivalents and are appreciably more efficient. Our toroidals cost virtually the same as their now ouddated laminated equivalents and hum is down to a negligible tenth of what i and one stel washer. Available so far a range of 37 sizes with more tocome.

TYPE	VA	SECONDARY AMS VOLTS	SECONDARY RMS CURRENT	DIÂ. : HT in mm	WEIGHT	PRICE
2×010	50	6 +6	4.16	80×35	0.9	
2×011		$9+9$	2.71			EACH
2×012		$12+12$	2.08			
2×013		$15+15$	1.66			15.40
2 2014		18+18	1.38			+ 11.10 Pq
2×015		$22+22$	1.13			+98p VAT
2×016		$25+25$	1.00			
3×010	80	$6+6$	6.64	90×30	1.0	
3×011		$9+9$	4.44			
3×012		12+12	3.33			
3×013		$15+15$	2.66			EACH
3×014		$18+18$	2.22			
3×015		22+22;	1.81			15.76
3×016		$25+25$	1.60			+ 11.20 P \& P
3×028	,	110	0.72			+e1.04 Vat
3×029		220	0.36			
3×030		240	0.33			
4×010	120	$6+6$	10.00	90.40	1.2	
4×011		$9+9$	6.66			
4×012		12+12	5.00			
4×013		$15+15$	4.00			EACH
4×014		$18+18$	3.33			
4×015		$22+22$	2.72			10.72
4×016		$25+25$	2.40			+11.30 P\& P
4X028		110	1.09			+ E1.20 Vat
4×029		220	0.54			
4 $\times 1030$		240	0.50			
5×016	160	$25+25$	3.20	110×40	1.8	EACH
5×017		$30+30$	2.66			
5×028		110	1.45			18.80
5×029		220	0.72			+ 11.40 P \& P
5×030		240	0.66			+ ¢1.54 Vat
6×016	300	$25+25$	6.00	110×50	2.6	
6×017		$30+30$	5.00			EACH
5×018		$35+35$	4.28			
6×026		$40+40$	3.75			± 12.27
6×025		$45+45$	3.33			+ 11.50 P\&P
6×028		110	2.72			+ E2.07 Vat
6×029		220	1.36			
6×030		240	1.25			

CHOICE OF 3 PRIMARY INPUTS

I.L.P. Toroidal Transformers are available in choice of $110 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}$, coded as follows: (Secondaries can be connected in series or parallel)
For 110 V Primary insert 0 in place of ' X ". in type number
For 220 V Primary inser 1 in place of " X ". in type number
For 240 V Primary insert 2 in place of " X " in type number
Example - 120VA $240 \mathrm{~V} 15+15 \mathrm{~V} .4 \mathrm{~A}=42013$.
*TYPES TO SPECIFICATION CAN BE SUPPLIED TO ORDER IN
OUANTITY, AGENCIES IN CERTAIN COUNTRIES AVAILABLE
ENOUIRIES INVITED
FREEPOST facility.
We pay postage on U.K. enquiries and orders. Simply address envelope to FREEPOST TS to address below. NO STAMP REQUIRED
TO ORDER Enclose cheque/Postal Order/Money Order payable to I.L.P Electronics Lid or quote your ACCESS or BARCLAYCARD account No. To pay C.O.D. add $£ 1$ extra to TOTAL value of order

A division of I.L.P. ELECTRONICS LTD
FREEPOST TS GRAHAM BELL HOUSEROPER CLOSE CANTERBURY CT2 7EP Phone (0227) 54718 Telex 965780

THE LEADING EXHIBITION OF COMPUTERS, PERIPHERALS AND SYSTEMS

CAN YOU AFFORD TO MISS
 BRITAIN'S BIGGEST COMPUTER EXHIBITION?

TRADE ONLY - NO SCHOOL PARTIES - NO ADMITTANCE UNDER 16 ENTRANCE $£ 2$
Sponsored by "Computer Weekly," "Data Processing," "Practical Computing" and
"Systems International" and with the support of "Electronics Weekly" all members of IPC Business Press, the worlds largest publisher of specialist and business journals.

TUNE IN to the new-look

PW'HELFORD'

A new series giving full instructions on how to construct this Amateur Bands Transceiver.

'SLIM JIM' FOR 28 MHz

By popular request, Fred Judd, designer of the 'Slim Jim', has produced a version for the 10 -metre amateur band.

INSIST ON

 VERSATOWER BY PROFESSIONALS-FOR PROFESSIONALS

The VERSATOWER range of telescopic and tilt-over towers cover a range of 25 ft to $120 \mathrm{ft}(7.5 \mathrm{M}$ to 36M)

Designed for Wind Speeds from 85 mph to 117 mph conforming with CP3 Chapter V, part 11

Functional design, rugged construction and total versatility make it first choice for telecommunications

Trailer mounted or static, the VERSATOWER solves those difficult problems of antenna support, access and ground level maintenance

A programme of continuous product development has led to a range of over 50 models, all available at highly competitive prices. This coupled with our quality assurance scheme ensures that we maintain the leader position we enjoy today

VERSATOWER

THE PROFESSIONALS' CHOICE

STRUMECH

BRANDED \& INDIVIDUALLY BOXED - AVAILABLE FROM:

PM COMPONENTS LTD.

VALVE \& COMPONENT SPECIALISTS CONINGSBY HOUSE WROTHAM ROAD, MEOPHAM KENT

${ }^{123}$	9.20	${ }^{\text {eccres }}$	0.75	Ene	9.50	${ }_{0}{ }^{2}$	1.75	${ }^{\text {Pros }}$	Vn105/30 1.55	9sal	0
12179	9.20	${ }^{\text {Eces }} 1$	0.75	Elazz	9.50	03	1.05	Prsoun 1.55	YR150/30 1.55	${ }^{15182}$	1.75
${ }^{12233}$	0.30	ECC199	0.95	E以 80	B.05	003	1.55	H600 0.69	$\times 61.250032 .00$	15083	. 50
\%rsa	2220	Eccsout	0.53	(cma	0.75	am	1.05	Pricol 0.69	M11000 $\quad 29.90$	15506	33.65
817	2.75	eccaor	1.50	E132	10.90	Oms	1.75	08333003250	${ }^{2758} \quad 10.35$		7.00
039	21.85	Etra	0.75	E191	1.9	(692	0.98	00V2-6.6.50	28034 20.70	${ }^{297}$	1.25
077	0.69	Eatas	0.69	E192	95	Pç9	0.96	gonm3-10 285	$211040 \quad 9.20$	813	13.00
91170	1.32	ECH81	0.67	E551	0.92	meca	0.55	gavis-zas	2 25154 13.25	833	55.00
Dmiso	2.40	сси123	0.90	हу\%	10.35	ectes	0.62	- 14.00	2211.85	8561	2.25
	0.63	${ }^{\text {Eable }}$	1.10	[rem	0.55	${ }^{\text {racmas }}$	0.92	povoc-	202113	5570	4.30
${ }_{\substack{0}}^{01585}$	${ }^{0.69}$	${ }_{\text {Ecaso }}$	0.76	[780	0.55	${ }_{\text {PCCzs }}$	0.92	00736	3/1075 1.65	5087	3.90
cissic	${ }^{21} 85$	${ }_{\text {Eas2 }}$	0.67	$\underline{781}$	0.64	${ }^{\text {Fcclige }}$	0.92	00736		${ }_{5}^{5122}$	1.50 1.73
${ }^{\text {cosem }}$	${ }_{\text {j }}^{1.75}$	${ }_{\text {cous }}$	0.1.5	${ }_{61 / 3714}^{181}$	2.300	${ }_{\text {Praba }}$	${ }^{0.818}$		2/170 50000	5127	3.45
50	7.20	${ }_{\text {ccate }}$	0.85	6110	13.25	Pcrsb	1.26	08172981.75	4xx 250 E 25.00		3.45
เ1ı	450	Cals	0.15	${ }^{\text {and }} 16$	7.45	carcoo	1.72		58/25al	s73 sel	${ }_{7}^{3.65}$
	6.50 2.60		${ }_{2} \mathbf{3} 2.45$	¢T14	${ }_{12}^{12.55}$	${ }_{\text {crack }}$	${ }^{1.12}$	-ros-25 1.45		5879	${ }_{4} .50$
faxce	3.45	Efoo	0.55	Exul	10.25	Pasmer	0.76	0131253500	5R4W6r 2.15	5833	1.75
${ }_{18}$	1.45	Eles	0.35	sxuso	13.0	Pcrsmo	1.75	O4t 250000000		59x	3.45
${ }_{50}$	6.90	Ers	0.15	67501	1.45	Pasm	0.69	Ur.40	Ş46		15
${ }^{180}$	3.45	Ef89	0.75	6732	0.87	R¢trin	1.70	OT5.500 32.50	QS59 1.4		45
	3.00	¢91	1.40	${ }^{623}$	2.13	рскzo	1.00	461-125 4.00	Q266\% $\quad 2.25$		15
tatis	S 15	493	075	683	${ }_{213}$	${ }^{\text {Paza }}$	078			cald	138
c9st	5.15.	Ex	0.90	${ }_{\text {kTE1 }}$	200	pcass	0.0	S5S361 34.50	${ }_{\text {bSllig }}$ 105	${ }^{2063}$	3.65
${ }_{\text {E }} 130$	14.55	8113	0.64	KTG		PCLE 18	0.66	STV200/40 9.20	6VGGT 1.20	8067	3.45
Elsacx	4.50	${ }^{18188}$	0.64		4.60	PCLI85	0.36	STV280/80	${ }^{12847} 11.05$	8000	48
	8.35	Enso	0.75	KTbS Max		Pasio	228	M. ${ }^{254.45}$	${ }^{1221} 178$	${ }_{6}^{614}$	4.75
E1820	S 3.15				1.50	Par	1.30		${ }^{125176} 11.85$		4.50
Elifer	3.40	EM	287			${ }^{\text {a }}$, 10	Heston 172	${ }^{23066}$	${ }^{689} 9$	\% 50
	0.15	¢13	1.4	KTES US	[\|	P42	0.65	U19 13.	${ }^{3019}$	687	13.25
Exsol	1.50	1237	1.60	К188 (1)		P194	0.75	U25 0.78	$30514 \quad 1.70$	1025	1,75
G91)	0.60	E44	1.25		13.0	hism	130	U26	309	7032	8.90
eccal	0.63	Ele	0.69	1400	4.50	a 5 Sod		UCh81	B591 6.20	mı	8.90
	0.63	EL\%	1.10	(1)142	315	1509	2.65	0.80	85512 1.45		8.65
${ }_{\text {ecces }}$	0.69	E1980	0.98	178	10.25	519	3.00	0.39	30C1 1.58		3.15
4	0.69	tles	0.94	012	0.90	302	325	0.80	9006812.50		8.90
\%	0.69	11360	10.35	082	0.95	P81	0.62	ns631	9226	184	8.50

MANY OTHER TYPES AVAILABLE, INCLUDING SPECIAL QUALITY \& VINTAGE. PLEASE PHONE OR SEND LIST OF YOUR REQUIREMENTS

Post \& Package 50 p on all orders
PRICES INCLUDE VAT
Prices subject to change withour norice.

EXPORT\& TRADE enquiries welcome.
Phone our sales desk 0474813225

WW - 032 FOR FURTHER DETAILS

Pin dlode tuner

FORGESTONE 500 TELETEXT

High quality colour television receiver NEW INFRA-RED FULL FEATURE REMOTE CONTROL TELETEXT

* Glass epoxy printed circuilt panels
- Full technical construction manual
- Hi-Bri tube
- Eleven integrated circuits
* Ready built and aligned If module

The ultimate in large screen $22^{\prime \prime}$ \& $26^{\prime \prime}$ television receiver kits Deluxe full spec. Teletext, 7 . channel +VCR. Also video and audio in/out. 6 models in the 500 range.
Buy as you build. All Forgestone Kits are for the constructor of today, sections of the Kit are available separately. Please send stamp for further details of these quality products

Telephone or Mail Orders accepted on Access/Barclaycard.
forgestone colour developments limited Ketteringham, Wymondham, Norfolk, NR18 9RY Telephone: Norwich (0603) 810453 WW - 044 FOR FURTHER DETAILS

PRINTED CIRCUITS

FOR WIRELESS WORLD PROJECTS

U.h.f. television tuner-Oct. 1975-1 d.s.

Stripline r.f. power amp-Sept. 1975-1 ds.
Audio compressor /limiter-Dec 1975 -
Audio compressornimiter-Dec. 975 - s.s. (stereo)
F.m. tuner (advanced)-April 1976-1 s.s.

Cassette recorder-May 1976-1 s.s.
Audio compander-July 1976-1 s.s.
Audio compander-July 1976-1 s.s.
Time code clock-August-1976-2 s.s. 3 d.s.
Date, alarm, b.s.t. switch-June $1977-2$ d.s. 1 s.s
Audio preamplifier-November 1976-2 s.s.
Additional circuits-October 1977-1 s.s.
Stereo coder-April 1977-1 d.s. 2 s.s.
Morse keyboard and memory-January 1977-2 d.s.
(logic board $101 / 4 \mathrm{in} . \times 5 \mathrm{in}$.) (keyboard and matrix $13 \mathrm{in} . \times 10 \mathrm{in}$.)
Low distortion disc amplifier (stereo)-September 1977-1 s.s.
Low distortion audio oscillator-September 1977-1 s.s.
Synthesized f.m. qransceiver-November 1977-2 d.s. 1 s.s.
Morsemaker-June 1978-1 d.s.
Oscilloscope wa veform store-October 1978 -
Oscilloscope waveform store-October 1978-4 d.s.
Regulator for car alternator-August $1978-1 \mathrm{~s} . \mathrm{s}$.
Regulator for car alternator-August 1978-1 $\mathrm{s.s}$.
Wideband noise reducer-November 1978-1 d.s
Versatile noise generator-January 1979-1 s.s.
200 MHz frequency meter-January 1979-1 d.s
High performance preamplifier-February 1979-1 s.s.
Distortion meter and oscillator-July 1979-2 s.s
Moving coil preamplifier-August 1979-1 s.s.
Amplification system-October 1979-3 preamp 1 poweramp
Digital capacitance meter-April 1980 (\quad (4.20 each) £16.00
Colour graphics system - April 1980-1 ds.
Colour graphics system-April $1980-1$ d.s.
Audio spectrum analyser-May $1980-3 \mathrm{~s}$.
Audio spectrum analyser-May 1980-3 s.s.
Programmable audio attenuator-May $1980-1 \mathrm{~s} . \mathrm{s}$
Multi-section equalizer-June $1980-2$ s.s.
Floating-bridge power amp-Oct. $1980-1$ s.s. (12 V or 40 V)

Boards are glassfibre, roller-tinned and drilled. Prices include V.A.T. and U.K. postage

Airmail add 20\%, Europe add 10\%, Insurance 10\%
Remittance with order to
M. R. SAGIN, 23 KEYES ROAD, LONDON, N.W. 2

WW - 078 FOR FURTHER DETAILS

: 14 T TAA FAST PCB BTMYTOTOH
 PROTOTYPES

SAMME DAY DESCPATEH

rotorype epoxy glase printed circuit boards up to $250 \mathrm{~mm} \times 200 \mathrm{~mm}$ trom your resdy artwork.
Up to $125 \mathrm{~mm} \approx 100 \mathrm{~mm}-\mathbf{\kappa 1 8}$ + VAT per side etched only driling $\mathbf{6 5}$ +VAT Up to $250 \mathrm{~mm} \times 200 \mathrm{~mm}-\mathbf{C 2 4}+$ VAT per side etched only drilling $\mathbf{C 1 0}+$ VAT Serxd yout order with artwork cheque and instructions-orders ieceived by 10 a m money refunded subject to acceptance of artwork

 WW - 024 FOR FURTHER DETAILS* CH1, CH2; $5 \mathrm{mv} /$ div $-20 \mathrm{v} / \mathrm{div}$ in 12 cal 1.2 .5 steps
- BANDWIDTH: 10 MHz (DT-410), 12 MHz (DT-412) 15 MHz (DT-415)
- TIME BASE: $0.5 \mu \mathrm{~s} / \mathrm{div}-200 \mathrm{~ms} / \mathrm{div}$ in 18 cal steps $\times 5$ Expansion to $100 \mathrm{~ns} / \mathrm{div}$ X5 Multiplier to $15 / \mathrm{div}$
* XY FACILITY: Matched Inputs $X=\mathrm{CHI}, Y=\mathrm{CH} 2$

NORMA Level Control, \pm Slope, Bright Line AUTO 100 mv

- Z Modulation
* Graticule blue ruled $8 \times 10 \operatorname{div}\left(6.4 \times 8 \mathrm{~cm}^{2}\right)$
* SIZE: H215mm W165mm D280mm Weight 4.5 kg . PROBE (XI -REF - X 10) $£ 11.50+$ V.A. T

Here's why you should buy an I.C.E. instead of just any multimeter

WIRELESS WORLD NOVEMBER 1980 * Best Value for money

* Used by professional engineers, D.I.Y. enthusiasts, hobbvists, service engineers. * World-wide proven reliability. * Low servicing costs. * 20K/volt sensitivity and high accuracy. * Large mirror scale meter. * Fully protected against overload. * Large range of inexpensive accessories. * 12 month warranty, backed by a full after sales service at E.B.Sole U.K.Distributors Prices from $\mathbf{£ 1 6 . 6 0 - \mathbf { £ 3 2 . 0 0 } + \text { VAT }}$ Send for full colour leaflet and prices on whole range including accessories.

ELECTRONIC BROKERS LTD.
61-65 King's Cross Road, London WC1X 9LN Tel: 01-278 3461. Telex: 298694

Irom £2.80 per 100 Wirewound Power Resistors (Ceramic). 5w-17w 0h5-39K from $£ 9.35100$.
Cable Sleeves and Markers from £1.31 1000 .
Cf. Resistors. 1/ww-2w from
£4.00 1000 .
Crimp Terminals. Elma Knobs and Dials. Audible Warning Devices from £1.14 each. Catalogue available [state interests)
Ci. Resistors

1/4w 5\%
£3.00 1000 (per value) + carr. and V.A.T. Following values only.
6E8 33E 100E 120E 360 E $470 \mathrm{E} 560 \mathrm{E} 2 \mathrm{K4} 2 \mathrm{~K} 7$ 4K7 5 K 67 K 58 K 2100 K 120 K 150k 220K 300 K 390 K 820 K

PBRA LTD.

Golden Green, Tonbridge Kent, TN11 OLH Hopfield (073274) 345 Member Crystalate Group

West Hyde Developments Lid., Unit 9 Park St. Ind. Est., Aylesbury Bucks. HP20 1ET. Phone: Aylesbury (0296) 20441. Telex: 83570.

fact: five New Shure Cartridges feature unique, state-of-the-art technology

the M97 Era IV Series pickup cartridges

Model	Stylus Configuration	Tip Tracking Force	Applications
$\left\{\begin{array}{l}\text { M97HE }\end{array}\right.$	Nude Hyperelliptical	$3 / 4$ to $11 / 2$ grams	Highest fidelity where light tracking forces are essential.
M97ED	Nude Biradial (Elliptical)	$3 / 4$ to $11 / 2$ grams	
M97GD	Nude Spherical	$3 / 4 \text { to } 11 / 2$ grams	
M97E」	Biradial (Elliptical)	$11 / 2103$ grams	Where slightly heavier tracking forces are required.
M97B	Spherical	$11 / 2$ to 3 grams	
78 rpm Stylus for all M97's	Biradial (Elliptical)	$11 / 2$ to 3 grams	For 78 rpm records.

Shure writes a new chapter in the history of affordable hi-fi by making the latest cartridge technological breakthroughs avail able in a complete line of high-performance, moderately priced cartridges; the M97 Era IV Series Pickup Cartridges, available with five different interchangeable stylus configurations to fit every system and every budget.

The M97 Series incorporates such vanguard features as the Dynamic Stabitizer-which simultaneously overcomes record-warp caused problems, provides electrostatic neutralization of the record surface, and effectively removes dust and lint from the record-and a unique telescoped stylus assembly which results in lower effective stylus mass and dramatically improved trackability.

Each of these features... and more... has been incorporated in the five cartridges in the M97 Series-there is even an M97 cartridge that offers the low distortion Hyperelliptical stylus! What's more, every M97 cartridge features a unique lateral deflection assembly, called the SIDE-GUARD, which responds to side thrusts on the stylus by withdrawing the entire stylus shank and tip safely into the stylus housing before it can bend!

The performance of the cartridges is highly faithful to the recorded music. Hear it you must!
\uparrow These two M97 Series Cartridges were selected for review by Hi-Fi Choice and given "Best Buy" ratings.

Shure Electronics Limited, Eccleston Road, Maidstone ME15 6AU, Telephone: (0622) 59881

wireless world

Microchips and megadeaths

Editor:

TOM IVALL, M.I.E.R.E.

Deputy Editor:

PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor:

GEOFF SHORTER, B.Sc.
Phone 01-2618443

Projects Editor:

MIKE SAGIN
Phone: 01-261 8429

Communications Editor:

TED PARRATT, B. A
Phone 01-2618620
New Editor:
New Editor:
Phone 01-261 8043
Drawing Office Manager:
ROGER GOODMAN

Technical Illustrator:
BETTY PALMER
Production \& Design:
ALAN KERR

Advertisement Controller:

G. BENTON ROWELL

Aduertisement Manager:

BOB NIBBS, A.C.I.I.
Phone 01-261 8622
DAVID DISLEY
Phone 01-261 8037

Classified Manager:

BRIAN DURRANT
Phone 01-261 8508 or 01-261 8423
ANTHONY HADLEY
(Classified Advertisements)
Phone 01-261 8508
JOHN GIBBON (Make-up and copy) Phone 01-261 8353

Publishing Director:
GORDON HENDERSON
"Then I was shocked by the feeling that the skin of my face had come off. Then, the hands and arms, too. Starting from the elbow to the fingertips, all the skin of my right hand came off and hung down grotesquely. The skin of my left hand, all five fingers, all came off. . . . Hundreds of people were squirming in the stream. I couldn't tell if they were men or women. They all looked alike. Their faces were swollen and grey, their hair standing up. Holding their hands high, groaning, people were rushing to the river. . . . Under the bridge were floating, like dead dogs or cats, many corpses, barely covered by tattered clothes. In the shallow water near the bank, a woman was lying face upward, her breasts were torn away and blood spurting. . . . By my side many junior high school students were squirming in agony. They were crying insanely 'Mother! Mother!' They were so severely burned and bloodstained that one could scarcely dare to look at them. I could do nothing for them but watch them die one by one, seeking their mothers in vain." (Eyewitness account, Hiroshima, 6 August 1945.)

Engineers played their part in the making of these events. Thirty-five years later their role has become central, for the technology of delivering death has been greatly improved. We no longer have to rely on manned aircraft to drop atomic bombs but send them as the warheads of self-guided missiles. This is where electronic engineering makes its particular contribution to slaughter, in the design of the guidance system. Consider, for example, the Trident and the Tomahawk, the two nuclear missiles which the UK Government, without benefit of open Parliamentary debate, has swung on a reluctant nation. Both of these have guidance systems which rely on advanced digital microelectronics to update an inertial navigator. In the Trident, a
submarine-launched ballistic missile intended as Britain's independent nuclear weapon, the electronic system receives reference information from the optical pattern of the stars. The Tomahawk, part of a NATO arsenal that will be owned and operated by US military forces, is a cruise missile; here the electronic system receives reference information on the geographic contours of the desired route from a magnetic-core memory and information on the actual contours over which it is travelling from a radar altimeter. And such is technical progress that as we get more and more devices on a single silicon chip so we are able to kill more and more people with a single missile.

Through work on such weapons electronics engineers in the East and the West have put themselves in the service of politicians, generals and industrialists who have become monomaniacs; who seem to see no way out of the self-perpetuating system of threat and counter-threat into which they have locked themselves and, like drug-addicts, desperately go on with it. The only thing likely to drag them out of their dementia is a threat from another direction - a concerted threat of rebellion from the trapped populations. It becomes increasingly clear, as our distinguished American contemporary Science has said, "that deterrence cannot ultimately be stable, and that the civilian populations of the world are no longer defended by the armed forces for which their taxes pay, but are merely hostages to them."

None of us can be proud to serve a technology which is being used in the name of "defence" as a means to attain immense human suffering. Because we know what this technology can do we should be among the leaders of dissent.

Simple pick-up arm design

Separating vertical and horizontal pivots allows use of longer arm

By David Read, B.Sc. Hons (Elec. Eng.)

Costing between $\mathbf{£ 5}$ and $\mathbf{£ 1 0}$ to make, this arm gives improved tracking performance compared with conventional arms. Increased effective arm length is achieved by positioning the horizontal pivot at the extremity of the arm.

Separation of the pivots also

 makes for easier construction.Few people can afford either the money or the room for a hi-fi system which is tailormade by experts with nothing but the excellence of performance in mind. The limits of cost and space, therefore, largely determine the type of equipment to be found in an installation. But even within these limits, it is no more than economic sense to arrange that the assembly contains units each with much the same standard of performance; it is also good engineering practice.

Home construction, properly carried out, obviously offers the best chance of achieving the highest standard of performance for a given outlay. Electronic equipment is well suited to this approach, especially using today's highly-developed solidstate technology. But the mechanical parts of a system are rarely given the do-it-yourself treatment. The average resources - in engineering know-how and availability of precision tools - are generally thought to be inadequate for this sort of work. I believe otherwise: given a suitable design,
any limitations in skill and machinery can be overcome without much difficulty.

One of the items of hi-fi equipment which particularly lends itself to amateur construction is the pick-up arm. Provided that the design is right, only a normal complement of tools handled with average care is needed to produce a mechanism which will match the performance of a topquality, high-compliance cartridge costing up to ten times as much in outlay.
The pick-up arm to be described is designed with the above thoughts in mind; it would cost between $£ 5$ and $£ 10$ to make. It mainly differs from commercial arms of conventional design in.that the vertical and horizontal pivots are not positioned at the same point along the arm. As the photographs show, the pivot which allows movement in the vertical plane is mounted forward of the one giving horizontal movement. In this way, the horizontal pivot can be placed at the maximum distance from the turntable centre for a given plinth size because it is not then necessary to allow for traverse of the counterbalance weight behind what is normally the common pivot point. Thus there is room for a

Simple construction of pick-up arm separates vertical and horizontal pivots to allow increased tracking radius. Vertical pivot is situated halfway along arm.

longer arm, giving improved tracking, and the staggering of the pivots means that, being separate, they are of simpler form and therefore easier to make.

The description deals first with the fundamentals of pick-up arm operation, showing what the requirements are and the ways in which these requirements may be met. The degree of development which could be applied to the basic concept depends on the personal taste, enthusiasm, ingenuity and ability of the builder and, to some extent, on the depth of pocket. As an example of what can be done a mk 2 model, built by the author and in regular use, is discussed to show some of the improvements affecting, the appearance and ease of operation rather than performance which may be achieved.

Pick-up arm design is a matter of satisfying a number of conflicting needs and avoiding a few pitfalls. There has been much discussion, in these pages and elsewhere, on the subject of arm operation. It would not serve any useful purpose to go over the ground again in detail, although it is worthwhile listing the main requirements of a fixed-pivot arm of the type to be described, as opposed to the expensive, parallel-tracking mechanisms which so delight the servo-control enthusiasts.
The fixed pivot arm has to be designed for compromise. Ideally, it should carry the cartridge in such a way that this behaves as though it were effectively floating in space. For this to happen, the arm would need to be of zero mass and move without friction. There would also need to be a gradual change in the relative positions of arm and cartridge to match the geometry of the modulated groove being tracked. It is because these are not practical possibilities that compromises must be made to compensate as far as possible for the discrepancies between ideal and real operation.
The main requirements are that

- in the horizontal plane, it occupies the correct position relative to the disc centre - the end carrying the cartridge moves as freely as possible at a constant distance above the disc surface
- it holds the cartridge so that the stylus is maintained in contact with the groove walls and with the optimum force on both walls
- it maintains the cartridge in its correct position relative to the groove with the minimum variation - random or periodic. The requirement of small random change means, mainly, that the arm should be
tolerant of external vibration. Small periodic change requires that the arm should not be prone to mechanical resonance at any frequency in the audio band, and of moderate amplitude outside the band.
Turning from the general to the particular the illustrations show that the arm is effectively constructed in three sections
- the vertical pivot assembly, formed of
a U-frame and a shaft which supports the horizontal-pivot carrier bar, allowing this to traverse in the horizontal plane
- the horizontal pivot assembly, incorporating the carrier bar and the horizon-tal-pivot block
- the arm itself, with adjustable counterbalance weight and cartridge-mounting platform.
The principle component of the vertical pivot is a silver-steel shaft of about 3 mm diameter (not a critical dimension), tapered at both ends. When the shaft is fitted, each tapered end rests in a dimple seating to form a low-friction pivot of the type often used to suspend the revolving rings of a gimbal assembly (hence such pivots are often loosely called gimbals).

The top of the shaft mates with a simple seating formed in a brass boss and screwed into a tapped bush in the centre of the upper angle plate of the U -frame. The dimple seating holding the lower end of the shaft is drilled in a solid brass block or platform held in position on the U-frame base plate by screws passing through elongated holes. When the vertical pivot shaft is in position, the boss is screwed down into the bush until the shaft tips are located in the centres of the dimple seatings. The shaft is thus held so that there is no sideways movement at either end, but it is free to rotate about its axis.
The function of the block platform is to enable the lower dimple seating to be moved, when the securing screws are released, a small distance either side of a point vertically below the upper seating. Movement is possible to the extent of the elongated screw holes along a horizontal line parallel with the back plate of the Uframe. By this means, the shaft may be
tilted through a small angle so as to provide antị-skating bias.

The diagram shows that the block has a V-groove cut into one edge immediately opposite a raised-head screw let into the Uframe base. The purpose of the groove and screw is to enable easy adjustment of the amount of bias, in a way similar to that employed in car distributors for setting the contact-breaker gap. The vertical offset is achieved with the two back screws rocking the dimpled base plates on the hardwood motorboard.
The drawing shows a method of securing the horizontal carrier bar to the pivot shaft. A hole drilled about 8 mm from one end of the bar through which the vertical pivot shaft is passed provides an interference fit. One or two tapped holes (metric size M2.5 or 6BA) lead horizontally from the rear end-face of the carrier bar into the shaft hole. Slotted grub screws are fitted into the threaded holes so that when tightened the bar is securely fixed to the shaft. In this way the vertical position of the carrier above the bottom plate of the U-frame (and hence above the turntable) may be adjusted to set the angle between the stylus cantilever and disc at the recommended (standard) value of 15 degrees, the cartridge then being parallel to the disc surface.

At the other end of the carrier bar, the horizontal-pivot block is fixed in position by means of screws, not visible in the photograph, leading through the bar into tapped holes in the block. The tubularsection arm passes through an elongated hole in this block, being held there by a pivot arrangement described below.

The block is shown in enlarged detail in the drawing. Two tapped holes lead into the pick-up arm aperture from opposite sides of the block to form a line along a diameter of the arm when positioned centrally in the aperture. Slot-headed screws,

Second version of arm has vertical pivot situated at $2 / 3$ along arm with the aim of reducing longitudinal arm vibration.

with tapered ends to form pivot points, are threaded into these holes, one from each vertical side face of the pivot block.

A brass collar, of about 5 mm thickness by 15 mm o.d., is fitted to the pick-up arm tube at the point where it passes through the pivot-block aperture, being fixed in position roughly two-thirds of the length of the arm from the end carrying the cartridge by a grub screw threaded through it and bearing onto the tube: This collar has two dimple seatings located centrally on the ourside face at opposite ends of a diameter, and clear of the securing-screw hole. When the arm, with its fitted collar, is positioned correctly in the aperture the two pivot screws are tightened so that their tapered ends locate in the dimple seatings. This assembly thus forms a second gimbal mounting and allows the arm to move freely in the vertical plane.

The pick-up arm is simply a maleable aluminium-alloy tube, not hard duraluminium, with one end pinched into a flat spade shape for about 25 mm with two slotted holes cut into it for securing the cartridge. The slots provide for limited adjustment of the angle between arm and cartridge. At the other end of the arm (in the prototype design), a lead slug is fitted into the tube and held there by a common paperclip. This slug forms the major part of the weight required to counterbalance the combined mass of that part of the arm which is on the opposite side of the horizontal pivot and the cartridge itself. A brass collar passed over the pick-up tube at this end as a sliding fit and held in position by a grub screw is set to give the recommended playing weight.

An alternative counterbalancing arrangement is illustrated in detail 3 which offers some advantages in ease of operation and adjustment, but at the expense of a slight increase in difficulty of construction.

In this modification, the counterbalance weight is a single rectangular block of brass measuring about 30 by 18 by 20 mm . As the drawing shows, a hole of 15 mm diameter runs between two of the block faces and connects at right angles to a second, smaller hole leading from the centre of the upper face. The lower part of the connecting hole is tapped to take a screw to secure the balance weight in position on the arm. The upper part is counterbored to take the screw head and allow for screwdriver access.

On the end of the pick-up arm adjacent to the vertical pivot, one or two layers of a special self-adhesive flexible foam plastic are wrapped round the tube, over a length of about 20 mm . Two thin shells of semicircular section - made of, say, $1 / 2 \mathrm{~mm}$ material - are fitted round this plastic sleeve to provide mechanical decoupling. The main hole drilled through the counterbalance weight is of suitable diameter to slide over the shell/sleeve assembly so that, with the weight positioned on it, the plastics material is slightly compressed. The weight can then be moved along the sleeve to an appropriate position to give the recommended playing pressure for the chosen cartridge. Having achieved this, the counterweight securing screw is.
tightened，care being taken that the weight has its longer axis exactly parallel to the vertical pivot shaft so that it does not touch either this or the carrier bar．
The principal advantage of this alterna－ tive counterbalancing arrangement is that the plastic sleeve mechanically separates the arm and the weight and so adds resis－ tance to the mass and compliance of the arm／cartridge assembly and reduces the Q of the natural resonance of the combina－ tion．A reduction of about 5 dB in the amount of vibration at the resonance fre－ quency is aimed at．Measurements are be－ ing taken for a mk 3 arm after experiments with different materials，including Sorbo－ thane（Permali，Plasticell division），Inseal （Dickinson Robinson group），and Eccor－ sorb（Emmerson \＆Cumming）．The em－ phasis is on plasticity，not elasticity，as elastic material could aid resonances．
The arms are of very light construction， an advantage from the point of view of stability of the gimbal bearing and reduced chances of damage in transit．But it does mean the arms are only suitable for high compliance pick－up cartridges，typically $20 \times 10^{-6} \mathrm{~cm} /$ dyne or better． Best results are obtained if the pick－up arm is suitably positioned in relation to the turntable（see items 1 and 2，below），has the cartridge properly fitted（item 3）and is correctly adjusted in respect of two other settings affecting the arm itself（items 4 and 5）．These five parameters of operation and the necessary adjustments for opti－ mum performance are as follows．
1．The rake angle，otherwise called the vertical tracking angle，is the angle be－ tween the cantilever carrying the stylus tip and the surface of the disc being replayed， standardized at 15 degrees for most car－ tridges．It is the angle set between the cantilever arm and the top face of the car－ tridge body．This face is held flush with the flattened end of the pick－up arm and if this flattened end has surfaces parallel to the axis of the arm，the vertical tracking angle will be correct when the arm is set parallel to the surface of the turntable． Thus，the only adjustment necessary in the arm mounting is to arrange for the appro－ priate height of the carrier bar on the verti－ cal pivot shaft．

2．Overhang is the amount by which the effective length of the pick－up arm－the length from the vertical pivot to the stylus tip－exceeds the distance from the verti－ cal pivot to the spindle of the turntable． Overhang is measured as the horizontal distance between the centre of the turn－ table and the stylus when the stylus， spindle and vertical pivot are all in the same straight line．With record and turnta－ ble placed at the front left corner of the plinth and the arm base at the far back right，you can then arrive at＇arm length and overhang using the table．

3．Offset angle is the angle between the axis of the pick－up arm and the longitudi－ nal axis of the cartridge which can be con－ sidered as a datum at 90° to the line of correct normal lateral displacement of the stylus．For a reproducing stylus to trace the recorded groove without distortion， the longitudinal axis of the cartridge must be maintained at a tangent to the recorded groove．As the pick－up arm sweeps round a fixed pivot，i．e．does not act as a parallel－ tracking mechanism，this ideal condition cannot be met．However，as a combined effect of optimum setting of both offset angle and overhang，tangential tracking can be made to occur at two points along the curve swept by the stylus，i．e．at two values of groove radius．The extent of the tracking error can thus be reduced to an acceptable value on either side of these two points．The optimum value of offset angle （obtained by calculation but summarized in the Table）is set by means of a simple protractor which is usually drawn on a piece of strong card and has the following general form

As the figures in the Table show，the mag－ nitude of the tracking error becomes less as the effective length of the pick－arm in－ creases．The vertical pivot in this design is located at a distance from the turntable which is the maximum for a given plinth size，so the effective length of the arm is virtually equal to its overall length．

4．Playing weight is the force exerted by the stylus tip on the dise surface．In this arm，the amount of force is mainly controlled by the weight of the counter－ balance slug in the basic form or by the position of the rectangular block in the modified arrangement．Fine adjustment to suit the cartridge installed is obtained by moving the sliding collar to an appropriate position which can easily be determined by measuring the weight at the stylus using one of the small calibrated balance mecha－ nisms readily available for this purpose． The same means of setting adjustment can be used for the modified counterbalance system．

5．Anti－skating bias．As the stylus traces the modulated groove it experiences a side thrust－a component of frictional force acting along a tangent to the curve swept by the stylus round the vertical pivot－ which causes it to bear more heavily on one side of the groove than on the other．This can result in a difference in performance between the two channels of a stereo recording；in particular，it can cause the onset of distortion at a lower modulation level in one channel than in the other．
This unwanted side thrust can be coun－ teracted by an opposing rotational bias acting at the vertical pivot of the arm．Such a bias is easily provided here by inclining the pivot shaft at a small angle，so slight as to be unnoticeable．This is done by releas－ ing screws in the adjustment block and sliding the block an appropriate distance （to the left as viewed in the illustration，i．e． toward the turntable）．A screwdriver blade，suitably angled between the slot in the side of the block and the nearby screw head makes precise adjustment easier．
continued on page 62

Table taken from Pickup－arm design techniques，by T．S．Randhawa Wireless World，March 1978.

Pivot to stylus length （inches）	Optimum overhang （inches）	Optimum offset angle （degrees）	\％2nd harmonic distortion due to tracking error	Zero tracking error points in inches from record centre First Second	Maximum tracking error （degrees）
7.5	0.76	27.62	0.91	2.34 4．61	2.93
8.0	0.69	25.56	0.85	2.31 年 4.60	2.77
8.5	0.65	24.00	0.79	2.33 年 4.58	2.58
9.0	0.62	22.70	0.74	2.32 4．62	2.33
9.5	0.58	21.33	0.70	2.30 － 4.60	2.23
10.0	0.55	20.19	0.66	2.34 － 4.56	2.15
10.5	0.52	19.24	0.61	2.33 （ 4.59	2.00
11.0	0.50	18.38	0.58	2.33 （ 4.61	1.87
11.5	0.48	17.59	0.56	2.33 （ 4.62	1.76
12.0	0.45	16.67	0.54	2.31 － 4.58	1.75
12.5	0.43	16.01	0.51	2.31 年 4.58	1.66
13.0	0.41	15.40	0.50	2.31 4．60	1.58

Column 4 is for a recorded velocity of $10 \mathrm{~cm} / \mathrm{s}$ r．m．s．The last column is for an arm having the optimum offset angle and optimum overhang．

FARNBOROUCH 1980

International radar and avionics development since 1978

Electronic systems in light aircraft and some of the smaller business types are still recognizably concerned with communications and navigation, with perhaps a weather radar and landing aid in the more opulent. The electronics are aids: without them, the aircraft will fly perfectly well, but may tend to fly into "stuffed clouds" and to use more fuel than they should.

Airliners of the more statuesque variety and even some of the smaller ones rely to a far greater extent on electronic assistance for automatic flight control (a.f.c.), fuel management, automatic landing and navigation. Aerodynamically exotic aeroplanes, like the Harrier and the Super Mirage 4000 , for example, simply will not stay in the air at low speeds without electronics, being control-configured or, to put it another way, unstable.

Most weapon-carrying military aeroplanes are weighed down with highly complicated locating, aiming, firing and avoiding electronics in an obviously vain attempt to demonstrate to a potential foe that he stands little chance of success in any bellicose adventure. Since, for each bloc, this is only intermittently true, the exercise is ultimately futile, and is of benefit only in the impetus to engineering development it provides. In the absence of civil aviation, Farnborough would be a depressing experience.

Automatic control

Smiths Industries have been involved in engine controls and indicators for many years. Recently, they received a $£ 6$ million order from Boeing for autothrottles for the 727. and 737, to be fitted on both new and existing aircraft. The STS 10 ensures, by
means of a digital performance-data computer, that the engines are run at the most fuel-efficient speeds to give the required flight pattern. General Electric (US) have their thrust-management system for the new Boeing 757 and 767 airliners, Marconi provide supervisory electronics for the RB211, Delco equipment (not shown) is being installed in Pan Am's 747s (saving 1.5%, or 7.5 million gallons of fuel a year) and a number of companies make completely automatic control systems for both flying controls and thrust management.
The term 'fly-by-wire' has gained currency in recent years, being taken to mean full-authority analogue or digital control of all functions in an aircraft. One loop maintains stability, another responding to pilot's demands for control movements, and enhancing control characteristics. Marconi, for example, make a complete fly-bywire system for the Tornado and Jaguar, where all attitude and engine controls, flaps and slats are under the supervision of computers.
Marconi are also in the lead with fibreoptic data highways for avionic computers. Multiple, redundant data channels are used, which require the transfer of data between channels for voting to avoid differences between channels and to determine fault conditions. Crosslane data feeds are vulnerable to interference, and fibreoptic links are used to give complete isolation and freedom from electromagnetic transients.
This limited use of optical data highways has been referred to as 'fly-by-light', but one feels that the expression ought really to be reserved for fully optical transmission, as is now being developed by

Heading picture: AEW Nimrod, showing nose and tail radomes which contain lookdown radar.
Wing-tip pods contain equipment for monitoring of radio and radar emissions.

Marconi, and as is used by Bell in a JetRanger helicopter. In the Bell system, movement of the pilot's controls causes a transparent encoder disc to move between a light source and photodiodes, producing 18 Gray-coded bits of information as a position code. The data is latched into a parallel-to-serial data store, from which it is read out serially into fibre-optic cables to a receiver at the servo to be controlled. Two monostable flip-flops are clocked and produce wide pulses for a 1 and narrow ones for a 0 , the result being converted back to analogue form for servo operation.

Displays

Both civil airliner pilots and close-support fighter pilots experience moments of concentrated activity when their attention cannot, with safety, be divided between the instrument panel and the view ahead. It is therefore standard practice now to provide the quicker aircraft with either head-up display (HUD) or head-down display (HDD). They ought, perhaps, to be called 'head-in-one-place displays' (HIOPD), since the intention of these devices is to provide the pilot with all the information he needs to fly the aeroplane, including the main instrument readings and the view ahead, in one place - either at the screen or on the panel. The technique is not new
(WW first reported it nineteen years ago), but it is continuously refined and varied.

In the HUD category, Marconi have their new diffractive unit, which affords a much wider field of view than was previously possible. The principle of a HUD is that a c.r.t. screen in the instrument panel which displays the more vital instrument readings is reflected from a half-silvered mirror in the pilot's forward view, so that he can see both the view forward and the instrument readings without moving his head and without refocusing his eyes, since the reflected image is collimated. The angle over which the c.r.t. display is visible is fairly narrow.

In the new HUD, convex glass components are combined to form several reflective surfaces, made from special coatings which reflect light only at the wavelength of the c.r.t. phosphor. The shape of the reflective paths and the single-wavelength characteristic combine to provide a wideangle, bright display, since all light but that from the c.r.t. display is transmitted, this being reflected. For night use, the c.r.t. will display a television forward view, obtained by means of an infra-red camera, and the instrument information. The i.r. camera is part of the American LANTIRN programme, which is to provide Low-Altitude Navigation, Targeting Infrared for Night in the A 10 and F- 16.

A similar night-vision display, also from Marconi, is intended for the Sea King helicopter. This uses an Intensified Isocon television camera mounted on a stabilized platform under the nose, which can also carry a number of thermal imaging modules developed by Marconi, Rank Taylor Hobson and EMI in the UK's Thermal Imaging Common Modules programme. The extraordinary feature of the equipment is that the camera follows the direction in which the pilot is looking, its display being projected into the pilot's view by a HUD-type system in his helmet visor. Effectively, therefore, he sees the view he would normally see, in whatever

direction he looks, but in the dark as well.
Civil aircraft now use c.r.t. displays to an increasing extent in place of the familiar rows of 'clocks'. Colour tubes increase the amount of information possible in one display: the Penetron, a tube which emits a colour depending on the depth of penetration of the phosphor by the electron beam, is used by C.S.F. and Marconi, and several companies make special shadowmask tubes for this application. It is not possible to obtain a blue colour in the Penetron, and C.S.F. are now developing high-resolution shadowmask tubes with in-line guns and slotted masks. The difficulty here is

Marconi infrared camera for night vision mounted under the nose of a Sea King helicopter. Camera aligns itself with pilot's line of sight, and display is mounted on his helmet.

Radar displays show the effect of Plessey's AMTI clutter suppression. On the left is an unprocessed picture, with aircraft returns lost in clutter. The processed display shows a complete absence of static returns, only aircraft echoes remaining. The system is being evaluated at Farnborough on a Plessey ACR 430 airfield control radar.

that stroke-formed letters and symbols are not easy for a conventional deflection yoke to generate when an in-line gun is used. C.S.F. say they can now do this.

Radar

Secondary-surveillance radar (s.s.r.) was originally very much an afterthought, used during the war to distinguish friends (who had transponders on board) from foes (who hadn't). It is now the chief tool used in air traffic control and is still being developed by, for example, Cossor. The UK's ADSEL (Address-selective) programme has been under way since 1971, in co-operation with the US DABS (Discrete Approach Beacon System). Both work on a common principle of first 'acquiring' all s.s.r.-equipped aircraft and subsequently addressing the required aircraft directly at a lower interrogation rate. This does improve the interference problem, where aircraft respond to the wrong interrogation or to the right interrogation but to the wrong ground station ('garbling' and 'fruit'), but it requires a much narrower beam, so that position information can be obtained from each reply. The narrow beam is achieved by combining the signal from two halves of the aerial in and out of phase to give a sum and difference pattern. The difference has a sharp phase change null in the boresight direction which, when taken in conjunction with the peaky sum pattern, gives effectively a very narrow beam, reducing uncertainty. It is possible to measure the position of an aircraft to within 5 minutes of arc in this way

The problem of clutter continues to occupy radar designers. There have been many techniques put forward over the years to reject permanent, non-informative returns, based on the fact that the landscape is stationary, while targets are not. One problem has been that, if an aircraft is flying tangentially to the radar pattern, there is no movement in the range dimension and the echo is suppressed, along with the clutter. Plessey's Area Moving Target Indicator (AMTI) uses storage and data-processing methods in the video stages to avoid the problem. The search pattern is divided into a great number of small areas, bounded by pulselength and bearing, the average level of video in each cell over a number of scans being digitized and stored. Any incoming signal which, on comparison, is found to exceed the stored level is assumed to be worthy of display and is passed, anything below this level being rejected. The storage level is continually up-dated to take account of variations in precipitation, etc.

One of the more depressing sights at Farnborough was the appearance over the Black Sheds of the Airborne Early Warning (AEW) Nimród, a grotesque derivative of that most beautiful of all aeroplanes, the Comet. This aircraft, a modification of the marine reconnaissance Nimrod, is intended for look-down surveillance of the approaches to the UK so that low-flying intruders will not be able to slink in unnoticed. A Marconi-Elliott Sband, pulse-Doppler, primary radar feeds synchronized scanners in radomes fore and
aft, the returns being presented on six synthetic displays, which are controlled by microprocessors to provide all-the information on a particular return. A secondary radar (i.f.f.) is also carried, the whole package being under the management of a main computer, which analyses the radar data and compiles messages to base. The communications system to support all this is suitably complex, using high-speed digital data links at h.f. and u.h.f.

Navigation

Honeywell are to fit ring-laser strapdown gyros for inertial navigation to the AV-8B, McDonnell's developed version of the Harrier. The systems are already specified for the Boeing $757 / 767$ airliners and have also been selected for the Airbus A310. The absence of moving parts means a huge increase in reliability -Honeywell claim m.t.b.fs of over 60,000 hours.

The principle is the Doppler effect, in which a laser sends two beams round a path in which they are reflected to intersect at a detector. When stationary, both wavelengths are the same at the detector, but when the ring turns about an axis normal to the ring, the beam in one direction will appear to increase in wavelength, the other apparently decreasing. The difference is measured digitally and fed, in conjunction with the results of measurements in two other axes to the navigation computer, which continuously integrates the measurements to determine position.

New look in multimeters

American companies have, in recent years, almost completely dominated the low-cost, laboratory-quality multimeter market. Their close liaison with integrated-circuit manufacturers has enabled them not only to learn of new chip developments early enough to gain a lead over European makers, but also, in many cases, to influence the design of the chips to suit their own ideas. One result has been the evolution of the complete converter-pluslogic modules now in use. While this is, no doubt, of great benefit to users, in that it confers greater reliability than the use of many components to perform the same function, and also makes for a lower price, it means that a European manufacturer who bases his instrument on these chips is adding scarcely any value and cannot charge an economic price.

Thurlby Electronics, a British firm which began trading in 1979, has decided to attack this market by offering much better performance than is obtainable from single-chip designs and to reap the benefit of EEC membership by selling at a lower price than American makers are able to, since they must allow for import duty and higher support costs.
The Thurlby 1503 uses a single i.c. for

logic and display functions, but a greatly improved analogue-to-digital converter. It is more genuinely a 'multi' meter, since not only does it measure alternating and direct voltage and current, resistance and diode characteristics, but frequency up to 4 MHz . Measurements are resolved to 15 bits on d.c. measurements and resistance, to form what is termed a ' $43 / 4$-digit' display - a full-house reading would be 3200.0 mV , for example. Scale length on alternating voltage is 14 bits and on current 13. Error varies between 0.055% and 0.3%, with a maximum error of 2.5% at 10 A .

A crystal is used to determine integration time, which confers a high degree of immunity to mains-frequency interference, and which is also used as time-base generator in the frequencymeasurement mode.
Thurlby claim that their a-to-d converter outperforms, with respect to accuracy, drift and noise, anything currently available in i.c. form. They also point out that the use of low-power circuitry not only makes for less heat and, consequently, lower drift than is usual, but enables internal batteries to power the instrument for 200 hours. The instrument costs $£ 139$ and is made by Thurlby Electronics Ltd, Coach Mews, St. Ives, Huntingdon, Cambs.

Correction
 Graphical communication with microcomputers

To those readers who find Fig. 26 of this article (September issue, p.76) difficult to take in, we have to apologize and admit that it is not an $x y$ tablet. The xy tablet picture had to be left out for space reasons and the captions were mixed. The device shown is a Quest Automation Micropad, which recognizes hand printing, transmitting the characters to a computer

Intermodulation at the amplifier-loudspeaker interface

Part 1: Analysis of one source of audible difference between amplifiers

by Matti Otala* and Jorma Lammasniemi, Technical Research Centre of Finland

Intermodulation occurs between an amplfied signal and a delayed version returned from a loudspeaker through a feedback loop, when open-loop output impedance is high compared to speaker impedance. Part one of this article analyses this and a second part describes a measurement method with results of tests on different types of amplifier circuit and suggestions for avoiding the effect.

The sound quality at the low-frequency end of the audio reproduction chain has often been discussed in such subjective terms as firm, soft, dry and mellow. As far as loudspeakers are concerned, the change in sound impression may be explained as a result of different technical characteristics of the drivers, filters and cabinets. Amplifiers present a more serious problem because the level of harmonic distortion at these frequencies is usually low, the frequency response is relatively flat, and output damping is almost always adequate.

An intriguing question sometimes encountered in practice is why the sound may perceivably change at the low end of the frequency spectrum when the same listening environment and the same loudspeaker system is used and only the power amplifier is changed. It is our experience that certain power amplifier circuit topologies sound different to others, although no directly explainable difference is noted in the electrical performance of the circuits when tested with resistive load. The following analysis shows that, under certain conditions, the loudspeaker reaction to the drive signal can propagate in the feedback loop of a power amplifier and intermodulate with the drive signal itself. This may partly answer the question.
The dynamic loudspeaker provides a complex load to the amplifier. As much has been written about its behaviour (see, for instance, references 1), it is sufficient here only to present a short list of some of the most important factors affecting the interface between the loudspeaker and the amplifier.

The total compliance of the cone suspension and the loudspeaker cabinet, and the cone mass, form a damped mechanical resonance, typically in the frequency range of 30 to 80 Hz for the woofer and at correspondingly higher frequencies for the

[^6]squawker and tweeter. Other mechanical resonances are created by the different moving parts of the cone, excited by the voice coil, but not necessarily rigidly coupled to it. All these mechanical resonances behave like parallel tuned circuits in series with the voice coil resistance and inductance. The crossover filters also ex-

Fig. 1. Magnitude and phase of the terminal impedance of an Acoustic Research AR3a loudspeaker system, measured with the controls in midposition. Resonant frequencies are $32 \mathrm{~Hz}, 330 \mathrm{~Hz}$ and 2.5 kHz .

Fig. 2. Magnitude and phase of the terminal impedance of a Yamaha NS-1000 Monitor loudspeaker system, measured with the controls in midposition. Resonant frequencies are $38 \mathrm{~Hz}, 410 \mathrm{~Hz}$, and 5.5 kHz .
hibit complex reactive behaviour, especially around the crossover frequencies. Figs 1 \& 2 show the impedance of two popular loudspeaker systems manifesting both cone and crossover filter resonances.

Energy is stored in all these reactances, especially in the resonances. Because a reactance cannot dissipate energy, and the internal dissipation in the loudspeaker is low at these resonances, most of the stored energy returns to the amplifier and is dissipated in it. In addition, the loudspeaker terminal impedance is non-linear, and cone break-up, delayed responses and acoustical reflections create generator effects in the loudspeaker. Fig. 3 shows a greatly simplified equivalent circuit of a loudspeaker, taking into account only few of the effects discussed.

Now analyse a feedback amplifier having two different loads, as shown in Fig. 4. A pure resistance R is used when measuring the characteristics of the amplifier. A loudspeaker, represented by the grossly simplified equivalent circuit of Fig. 3, is the true load. It is assumed to have a linear resistance R and negligible voice coil inductance L_{v} to facilitate the analysis. The circuit is far from perfect, but this analysis is to illustrate the basic mechanism of distortion only, not to calculate it to a high degree of accuracy. Similarly, the amplifier is assumed to have an infinite input impedance, and no frequency compensation. All these approximations do not affect the result of the analysis. Note that a new parameter, the open-loop output impedance Z, has been incorporated in the circuit in contrast to prior analyses.

The input signal V_{1} is taken to be a step function $V(t)$, so that its Laplace transform

Fig. 3. Simplified loudspeaker equivalent circuit. LC and CC are cone dynamic mass and suspension compliance, respectively, $L V$ the voice coil inductance, R the voice coll resistance, including the radiation resistance, and ig the generator effect current source.

is $L\left[V_{1}\right]=v_{1} / s$. The analysis is based on linear theory.

For the resistive load R, the transforms of voltages V_{4} and V_{5} are
and

$$
V_{4}(s)=\frac{A(1+Z / R)}{s(1+Z / R+\beta A)} v_{1}
$$

$$
V_{5}(s)=\frac{A}{s(1+Z / R+\beta A)} V_{1}
$$

The inverse transforms are both pertect step functions and the only difference to standard feedback equations is the term Z / R. An adequate damping factor necessitates that the closed-loop output impedance of the amplifier be much smaller than the loudspeaker impedance, i.e.

$$
R \gg Z /(1+\beta A)
$$

which yields a further simplification. Taking the inverse Laplace transform, the voltages are found in time domain

$$
\begin{equation*}
V_{4}(t)=\frac{A(1+Z / R)}{(1+\beta A)} v_{1} U(t) \tag{3}
\end{equation*}
$$

and

$$
V_{5}(t)=\frac{A}{(I+\beta A)} v_{1} U(t) .
$$

If now the loudspeaker is substituted for the load, the situation changes markedly. Assuming the damping to be adequate, as by equation 2, equations 1 take the form

$$
\begin{aligned}
& \left.V_{4}(s)=\frac{A}{1+\beta A} \right\rvert\,-\beta Z I(s)+ \\
& \left.\quad \frac{v_{1}}{s}\left(1+\frac{Z}{R}\right) \frac{s^{2} L C+s L /(R+Z)+1}{s^{2} L C+s L / R+1} \right\rvert\,
\end{aligned}
$$

and

$$
V_{5}(s)=\frac{A}{s(1+\beta A)} v_{1} .
$$

No change has occurred in the transformed output voltage V_{5} of the amplifier. This is to be expected, as the feedback effectively controls the output voltage. However, the internal drive voltage of equation 4 now contains complex terms consisting of the parameters in the loudspeaker equivalent circuit. To study the
behaviour of this voltage in time domain, the inverse Laplace transform of equation 4 yields
$V_{4}(t)=\frac{A}{1+\beta A}\left[-\beta Z I(t)+v_{1}\left(1+\frac{Z}{R}\{1-\right.\right.$
$\left.\left.\frac{Z}{(R+Z)} \frac{1}{Q} \exp \left(-\frac{\omega_{l} t}{2 Q}\right) \sin \omega t\right\}\right]$ 5
where $\omega_{1}=\left(1 / L C-1 / 4 R^{2} C^{2}\right)^{1 / 2}$, the resonant frequency of the loudspeaker cone, terminals short-circuited, and $Q=\omega_{1} R C$, the approximate quality factor at resonance.

Fig. 5. Typical waveforms from equation 7 as functions of normalized time, with the resonant quality factor Q as parameter. The loudspeaker-generated oscillation is very large, especially for low values of Q. Corresponding waveform for resistive load is shown with a dashed line.

Fig. 6. Values of the first minimum and the first maximum of equation 7 as a function of quality factor Q.

Fig. 4. Equivalent circuit of the amplifier-loudspeaker combination used in the analysis. Amplifier has resistive feedback network β, gain of A and open-loop output impedance 2. No frequencydependent effects are incorporated in the amplifier circuit. The loudspeaker is assumed to have negligible voice coil inductance and is considered to be perfectly linear.

The first term corresponds to the effect of any current generated in the voice coil of the loudspeaker by the vibration of the cone. Assuming that the feedback is large, $1+B A \gg 1$, say greater than 30 dB , the first term becomes

$$
V_{4}(t)=-Z I(t)
$$

showing that the amplifier internal drive voltage necessary to serve as a sink for the loudspeaker generator current is directly proportional to the open-loop output impedance Z. Dividing this equation by the nominal signal level of equation 3 the ratio of the loudspeaker-generated signal to the driver signal can be found

$$
\frac{V_{4}(t)_{\text {generator }}}{V_{4}(t)_{\text {signal }}}=\frac{Z}{R+Z} \frac{I(t)_{\text {generator }}}{I(t)_{\text {signal }}}
$$

Similarly, the last term of equation 5 can be divided by the signal level, equation 3 which yields the ratio of the resonant oscillation in V_{4} to the signal in V_{4}

$$
\begin{gather*}
\frac{V_{4}(t)_{\text {oscillation }}}{V_{4}(t)_{\text {signal }}}= \\
1-\frac{Z}{R+Z} \frac{1}{Q} \exp \left(-\frac{\omega_{1} t}{2 Q}\right) \sin \omega t . \tag{7}
\end{gather*}
$$

This represents a damped oscillation at the cone resonance frequency. There are negative minima and positive maxima at

$$
T=\frac{1}{\omega_{1}}(\arctan 2 Q+n \pi)
$$

where n is an integer, with values

$$
\begin{aligned}
V_{4}(T)= & 1-\frac{Z}{R+Z} \frac{2}{\left(1+4 Q^{2}\right)^{1 / 2}} \\
& \exp \left(-\frac{\arctan 2 Q+n \pi}{2 Q}\right)
\end{aligned}
$$

Assuming $Z \gg R$, some typical waveforms of equation 7 are plotted in Fig. 5, and the values of the first minima and maxima are plotted in Fig. 6 as functions of Q. The amplitude of oscillation increases with decreasing Q. The reason for this apparently strange behaviour is that, when the Q of the resonant circuit is lowered, the circuit absorbs more energy from a broadband signal spectrum.

Fig. 7. Measured responses $V_{4}(t)$ and calculated responses for the AR3a and NS1000M loudspeaker systems. Only the two first resonances around 35 Hz and 400 Hz were taken into account in the calculated values. The good match of the responses show that the theoretical model used is satisfactory.

To check the validity of the approximations made, the calculated measured responses $V_{4}(t)$ are shown in Fig. 7 for the two loudspeaker systems of Figs $1 \& 2$. The calculated results are very close to the measured ones, which is surprising considering the complexity of the real three-way loudspeaker systems. This proves that the simple equivalent circuit of Fig. 3 is satisfactory for this analysis.

To be continued

References 1

Berman, J. M. and Fincham, L. R., Application of digital techniques to the measurement of loudsperakers. J. of the Audio Eng. Soc., vol.25, 1977, pp. 370-84.
Fryer, P., Loudspeaker distortions, can we hear them? Hi-Fi News, July 1977, pp. 51-7.
Heyser, R., Loudspeaker reviews in various issues of Audio. For review of the Yamaha NS1000, see Audio, January 1979, pp.82-90. Johnson, J. H., Power amplifiers and the loudspeaker load. Audio, August 1977, pp.32-40. King, G., Interface 1, amplifier to loudspeaker. Hi-Fi News, December 1976, pp.87-91
Pramanik, S. K., Specifying the loudspeakeramplifier interface. 53rd AES Convention, Zu rich, 1976

A well-established author, Graham Beech, has a new publication to add to his list, called Successful Software For Small Computers, which is based on Basic language and emphasizes the technique of "structured programming". It is said that when used correctly, this technique enables programs to be made that work first time.
Each of the five sections in the book, Structured programming, Mathematics, Data structures, Data processing and Simulation, is illustrated by complete programs, both as designs and as complete Basic listings which are claimed to be fully tested on a TRS 80 computer. The style of writing used is easily understandable and the information offered will probably be found useful by all kinds of small computer users, especially those who have a knowledge of Basic and want to know how to design programs. In floppy-back form, the book costs $£ 5.50$ and is published by Sigma Technical Press, 5 Alton Rd, Wilmslow, SK9 5DY.
Applied Electronic Communication, by Robert Kellejian, is an extensive text or refer-
ence book with three main subdivisions, Circuits, Systems and Transmission, which cover virtually all aspects of the subject, from the roots of the theory to the practical applications and formulae involved. After an introductory section in each chapter, learning objectives are given. This rather interesting approach enables the reader to visualize, at a glance, the contents of the chapter, the order in which different subjects will appear, and the level of understanding which can be achieved by reading the text which is to come.
Each chapter is concluded with a set of problems aimed at verifying the understanding gained and providing direct experience with procedures typical of engineering practice. Anyone wishing to use this work as a text book should, however, note that American standards are used. The price of the book in hardback form is $£ 16.05$. It is actually published in the USA and information on how to get it is available from Science Research Associates Lid, Newton Rd, Henley on Thames, Oxford RG9 IEW.

IN OUR NEXT ISSUE

Darkroom exposure meter and enlarger timer

A constructional project for photographers, this unit will measure the required exposure for a black-and-white print, giving a digital readout in seconds and tenths. It will then time this exposure. It may also be used as a ten-minute process timer to count minutes and seconds. Cost: about $£ 30$.

Christmas quiz

Keep your brain alert and resist the torpor that comes from too much food and drink! Our electronics quiz, set by polytechnic lecturer Bryan Hart and colleague, will be a welcome break from compulsory enjoyment and will keep you mentally in trim to face 1981. Prizes too!

Programmable power supply

A professional design whìch provides 0 to 40 V at 2A, controlled via the IEEE General Purpose Interface Bus. The instrument operates as a listener/talker (using an I.s.i. chip) and can be modified to provide other voltages and currents. Additional features include manual operation and an overload detection circuit which signals the controller.

Designing inductors carrying d.c.

Simple procedure for comparing cores and choosing the optimum

by D. H. Thomas M.I.E.E.

The initial selection of a suitable size of iron or ferrite core for an inductor or transformer with windings carrying direct current is difficult. The author describes a simple procedure which not only enables different cores to be compared for a given application but also enables a basic design to be completed using the optimum core.

The design of transformers and inductors which carry a current with only an a.c. component is relatively straightforward and is based on the well known equation:-

$$
\begin{equation*}
E=4.44 B N a f \tag{1}
\end{equation*}
$$

However, transformers and inductors whose windings carry a current with a direct component require a different design procedure. This is because the d.c. component can cause the core to saturate, giving a very low incremental inductance. A possible solution is to introduce a gap of non-magnetic material into the core. This gap reduces the effective permeability of the core. Thus with an optimum gap the core can be run somewhere below saturation flux density. Calculating the optimum gap can be a tedious process and also introduces another variable into the choice of the optimum core. The optimum gap chiefly depends on the required inductance, the d.c. and a.c. components of current, the maximum flux density allowable in the core and the core area.

A long while ago C.R. Hanna ${ }^{1}$ devised an elegant system to enable the optimum gap to be easily found. Graphs are available for a number of ferrite and iron cores based on Hanna's technique. A representative graph for a medium size ferrite core is given in Fig. 1. The vertical axis is graduated in units of $L I^{2}$ and the horizontal axis in units of NI. Both L and I (the total of the d.c. and the peak a.c. components of current) are known and thus a point on the curve can be found. The curve is graduated directly in gap thickness, giving the optimum gap directly and, referring to the horizontal scale, we find a corresponding value of $N I$ and hence the number of turns N. This is an excellent basis for a design as, once the number of turns is known, the necessary gauge of wire and hence the winding resistance can be determined. Hanna curves, however, are only available for some cores.

A more general approach is really required to enable the most suitable core

Fig. 1. Representative graphfor a mediumsizedferrite core as used in Hanna's technique for finding the optimum gap.
to be rapidly selected. Frequently the final design will be done by transformer specialists but in the early stages of equipment design engineers find it desirable to rapidly compare a range of cores to see if the design is feasible within the available space. A simple design procedure is derived below and outlined at the end of the article.

Inductance can be defined as flux linkages per amp.

$$
\begin{equation*}
L=N \frac{\mathrm{~d} \Phi}{\mathrm{~d} I} \tag{2}
\end{equation*}
$$

If no saturation occurs Φ is proportional to I and if remanent flux is small,
$L=N \frac{\Phi}{I}$
hence
$N=\frac{L I}{\phi}$

$$
\begin{equation*}
=\frac{L I}{B a} \tag{4}
\end{equation*}
$$

where a is the cross-sectional area of the core. (All dimensions are in metres.)

Equation 4 could have been written as
$N=\frac{L I}{B a}$
where \hat{I} is the sum of the d.c. and peak a.c. components and \hat{B} is the flux density corresponding to the peak current.

Now \hat{B} is available from the manufacturer's data for the core material, a is available from the core data (or can be easily measured) and L and \hat{I} are the required parameters. Hence the number of turns, N, is known directly. For ferrite cores a parameter, inductance for 1 turn $\left(A_{L}\right)$ is defined. Now, for the inductor being considered,
$A_{L}=\frac{L}{N^{2}}$
If this value is greater than the value of A_{L} given in the core data, we need more turns calculated from the core maker's value of A_{L}

$$
\begin{equation*}
N=\frac{1}{A_{L}} \sqrt{L} \tag{7}
\end{equation*}
$$

In this case no core saturation will occur. A more likely case is that the value of A_{L} calculated in equation 6 will be less than the value given in the core data in which case a gap will be required in the core. In this case the number of turns will be that calculated in equation 5. This equation is very useful as it allows different cores to be directly compared in terms of N.

If the value of A_{L} calculated in equation 6 is significanty lower than the value given in the data sheet, then most of the available m.m.f. will be dropped across the two air gaps, each of thickness g. The approximate gap can be calculated as follows:

$$
\begin{align*}
B & =\mu_{0} H \\
& =\mu_{0} \frac{I N}{2 g} \\
g & =\mu_{0} \frac{\hat{N}}{2 \hat{B}} \approx \frac{10^{-6} \hat{I} N}{\hat{B}} \tag{8}
\end{align*}
$$

Generally manufacturers provide two types of ferrite core, namely transformer and inductor cores. Transformer cores are ground to fit each other as perfectly as possible, giving high values of A_{L}, but the actual value of A_{L} varies from batch to batch as the permeability of the core material varies. Inductor cores are ground
so that the middle limb is shorter than the outside limbs, giving an integral air gap. This gap is ground so that the inductance factor, A_{L}, is constant for a given type of core even if the properties of the core material vary. Thus for certain cores it may be possible to choose a member of the family with the required value of A_{L}. In this case no additional gap is required and if necessary N can be changed slightly to suit the actual value of A_{L} quoted in the data sheet. If this is not practical, a transformer core may be gapped with a suitable thickness of cardboard or mica of thickness g. (It should be noted that the same thickness of spacer should be fitted to the centre and outer limbs of the core to ensure equal spacing and to prevent the cores breaking when clamped.)
The actual choice of peak flux density will depend on the maximum ambient temperature. Some ferrite core materials, unlike steel, have saturation flux densities which depend on core temperature to a considerable degree. For the core material whose characteristics are given in Fig. 2 a suitable peak flux density at $100^{\circ} \mathrm{C}$ would be 150 mT . However if the maximum core temperature was $70^{\circ} \mathrm{C}$ a suitable peak flux density would be 220 mT . In any case the saturation flux density varies widely with core material whether ferrite or steel.

Fig. 2. Curves of flux density against field strength forFerroxcube $A 13$ ferrite core material, at temperatures of $20^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$.

The resistance of the winding is probably the most important parameter and, knowing N, can be calculated from the following equation:

$$
\begin{array}{r}
R=\frac{\text { diameter of winding }}{\text { area of winding }} \tag{9}\\
N^{2} \times 10^{-7} \Omega
\end{array}
$$

This extremely useful equation is based on the resistance of copper and typical percentage filling of the winding area with copper, allowing space for the former and insulation and applies for an inductor. For a transformer the resistance will be double.
Substituting the value of N given by equation 5 in equation 9 gives another extremely useful result.

Basic Design Procedure

1. Calculate the required inductance, value of the peak magnetising current, the maximum allowable winding resistance and the maximum ambient temperature.
2. Select a core and list the following parameters:

Core flux area	a
Core winding area	A
Core winding diameter	D

Core winding diameter $\quad D$
Peak flux density at the maximum core temperature \hat{B} (assume core temperature rises $10^{\circ} \mathrm{C}$ above ambient temp.)
3. Calculate the number of turns N from equation 5 :

$$
N=\frac{L \hat{I}}{\hat{B} a}
$$

4. Calculate the inductance factor from equation 6:

$$
A_{L}=\frac{L}{N^{2}}
$$

and see if a gap is required. If a gap is not required re-calculate N from equation 7:

$$
N=\frac{1}{A_{\perp}} \sqrt{ } L
$$

5. Calculate the winding resistance from equation 9:

$$
R=\frac{D}{A} \times N^{2} \times 10^{-7} \Omega
$$

for an inductor and twice that value for a transformer.
6. See if the resistance estimated in step 5 is similar to the requirement given in step 1. If similar proceed to step 7 ; if not repeat the above procedure using a larger or smaller size of core.
7. From the value of N calculated in steps 3 and 4 and using wire tables, choose an optimum gauge of wire which comfortably fits in the bobbin, allowing sufficient space for other windings and insulation if required. Also calculate the gap if required as given in equation 8 :

$$
g=\frac{i N}{2 \hat{B}} \times 10^{-6}
$$

or use an inherently gapped inductor core.
$R=\frac{\text { diameter of winding }}{\text { area of winding }} \times$
$\frac{L^{2} \hat{\bar{T}}^{2}}{B^{2} \text { core area }} \times 10^{-7}$
Again the resistance of a transformer would be twice as great. Provided that there is a substantial d.c. component (which makes a gap necessary), equation 10 allows an immediate estimation of winding resistance for a given core and has been found to work well for ferrite and iron cored inductors.

Inductor flux falls to zero during each cycle

Single-ended forward converters work in this manner and are a special case of the cases described above. Forward converters require the magnetising current to be as small as possible to reduce the energy that is fed back to the supply during each cycle. To achieve the small magnetising current, no gaps are introduced into the core in the general case.
If $V=$ voltage across primary of transformer, $t=$ on time of transistor switch,
$V=N \frac{d \phi}{d t}$
and as the flux starts from zero
$V=\frac{N \Phi}{t}$
hence
$N=\frac{V t}{B a}$
and winding resistance is
$R=2 \times \frac{\text { diameter of winding }}{\text { area of winding }} \times$
or
$R=2 \times \frac{\text { diametèr of winding }}{\text { area of winding }} \times$
$\frac{V^{2} t^{2}}{\hat{B}^{2} a^{2}}$
where a is the area of the core.
In equations 12 and 13, the factor of 2 for a transformer is included as forward converters always use a transformer.

The magnetising current should be calculated from either the core permeability or from the value of A_{L} given for the core.
$L=N^{2} A_{L}$

$$
=\frac{V^{2} t^{2} \mathbf{A}_{L}}{\hat{B}^{2} \times a^{2}}
$$

and the peak magnetising current is
$\hat{I}=\frac{\hat{B}^{2} a^{2}}{V t A_{2}}$
Useful formulae for transformers not carrying d.c. and smoothing chokes are given by T. Roddam in ref. 2.

Evaluation of core characteristics

If the peak flux that a core can accept is unknown, a simple test can be carried out to measure it. A high frequency core can be measured using a test rig similar to that shown in Fig. 3. (A low frequency core could be tested using a similar rig running at a much lower frequency.) The transistor acts as a switch connecting the supply voltage from an adjustable output lab power supply to the winding and $\mathrm{D}, \mathrm{R}_{1}$ and C act as a load. R_{3} and R_{4} set the frequency and duty ratio of the transistor "on" time and together with the supply voltage and R_{1} set the current in the core. The core current can be monitored across R_{2}. Provided the voltage across R_{2} is triangular, there is no core saturation but if the waveform of the voltage is curved, core saturation is occurring. The peak current can then be varied as explained above and

Fig. 3. Testrig to determine the peak flux that a high frequency core can accept.
a condition found where no saturation occurs. The core can then be placed in an oven set to the highest anticipated ambient temperature and the corresponding value of peak current for no core saturation found. The inductance of the winding can then be calculated from the supply voltage and rate of rise of current. Thus the number of turns N, peak current \hat{I} and inductance L are known and the core area can be substituted into equation 5 to determine the peak flux density \hat{B}.

This technique gives a rapid procedure for an initial design. Such an initial design could be tried before the design is optimised by a specialist designer who will modify the design somewhat to allow for ease of winding, insulation, leakage inductance and core loss.

It should be noted that if it is known
from the start that a gap will be required, a direct comparison of cores may be made in terms of resistance using equation 10 .

$$
R=\frac{D}{A} \times \frac{L^{2} \hat{I}^{2}}{\hat{B}^{2} a^{2}} \times 10^{-7} \Omega
$$

I would like to thank the Directors of Cossor Electronics Ltd for permission to publish this article and Mullard Ltd for permission to reproduce Figs. 1 and 2.

References

1. Design of reactances and transformers which carry direct current, C. R. Hanna, A.I.E.E. Trans., Vol. 46, pages 155-158, February 1927. Also: The design of iron cored chokes, M. G. Scroggie, Wireless World, Vol. 30, pages 558 561, 1 June 1932.
2. Some thoughts on transformers, T. Roddam, Wireless World, December 1973.

Literature received

Tape Recorder Spares Lid have sent us a copy of their Audio Packs catalogue, which contains details and prices of a vast range of audio leads, plugs, adaptors and spares. It can be had from TRS at 206-210. Ilderton Road, London, SE15 1NS on payment of $£ 1.25$.

Applications for the NOVO range of logic circuits which are all provided with a non-volatile memory on the chip are set out by Plessey in a new booklet. Data sheets are provided. Obtainable from the Publicity Office, Plessey Semiconductors, Kembrey Street, Crowdy's Hill Estate, Swindon, SN2 613A. WW401
Soldering equipment and small tools, including. the Oryx soldering-iron range, the Iso-Tip quick-change iron and several integrated-circuit handling tools, are described in an information pack from Greenwood Electronics, Portman Road, Reading, Berks, RG3 INE. WW402
Students, teachers and lecturers meeting new topics in physics for the first time may like to know that Unilab produce a series of booklets in their "Notes for Use" series. They have sent us three, entitled Student oscillo. scope, Microwaves and Analogue computing an introduction. They are published at $£ 1.50$
each for the first two, $£ 2.00$ for the one on computing, and are obtainable from Unilab Lid, Clarendon Road, Blackburn, BB1 9TA.
Equipment enclsoures from Sorel are the subject of a large catalogue, recently received. In addition to enclosures of many sizes and types, there is also information on metalworking tools, small cabinet-fittings, and wiring aids. The catalogue can be obtained from Sorel Electric Ltd, Cosgrove Way, Luton, Beds.

WW403
We have received from Quarndon a full catalogue and price list of an enormous range of semi-conductor discrete and integrated devices and microcomputers, copies of which can be obtained, free of charge, from Quarndon Electronics Ltd, Slack Lane, Derby. WW404
A leaflet on waveform processing, using a transient recorder, tape storage and computer controller is available from Data Laboratories Lid, 28 Water Way, Mitcham, Surrey, CR4 4HR. WW405
Home Radio's new catalogue is published, containing a vast array of all the components the average home constructor needs, complete with price list. Semiconductors are in a supplement,
which we didn't receive. Catalogue costs $£ 1.30$ from Home Radio (Components) Ltd., 269A Haydons Road, London SW19.
Hewlett-Packard have a leaflet, AN 191-6, on the measurement of length, dielectric constant and delay matching of transmission lines, using a time-interval counter and time-interval probe. It can be obtained from from H-P at 308-314 Kings Road, Reading, Berks. WW406
We have received from Raindirk a brochure on the Status 250W Audio Power Amplifier and control unit. They are intended for professional or public address work and are housed in 19 inch rack-mounting enclosures. Information from Raindirk Ltd., Downham Market, Norfolk.

WW407
A programmable sequence controller from Tempatron is fully described in an informative brochure, which can be obtained from Tempatron Lid., at 6 Portman Road, Battle Farm Estate, Reading, RG3 1 JQ .

WW408
A complete list of books for the amateur electronics enthusiast is published by Bernard Babani (Publishing) Ltd., The Grampians, Shepherd's Bush Road, London W6 7NF.

Matsushita disc for world-wide video market?

Thorn-EMI are setting up a joint venture with General Electric (USA) to support the introduc tion of the VHD video disc sytem in the USA. Three new companies consist of an equipment manufacturing company owned iointly by Matsushita Electric Industrial Co, its subsidiary Victor Company of Japan, and General Electric, a programme management company and a disc manufacturing company, both jointly owned by Thorn-EMI, Matsushita and GE. Plan is to introduce the video disc system by the end of 1981 with 200 programme titles, mainly films but with some original material, followed by introductions in France and Germany at "perhaps six-month intervals". (General Electric is in third place in the US television market with a share of 7.5%, after RCA and Zenith both of whom are already committed to a video disc system.)
The news followed the April announcement of Thorn-EMI and the Victor Company agreeing to "co-operate on a world-wide basis in all aspects of the promotion of the vhd system", suggesting that a software link was needed before GE would commit themselves to VHD Disc mastering and pressing plants are planned for Europe, Japain and the USA, though locations are not finalized. Neither apparentiy is the ownership, because a European plant could either be a Thorn-EMI company or a jointly owned company, according to a spokesman. Thorn-EMI say they plan to manufacture equipment here on a progressive basis, but no timescale is given. (They said this about VHS equipment but have not yet manufactured it.) Thorn clearly look on their VHS collaboration with JVC as very successful, and have undoubtedly been a major factor in helping video recording to reach 2% market penetration in a year less than it took in the USA
Prices of equipment will be close to the $\$ 500$ of the RCA video disc player planned for launch early in 1981. $\$ 530$ to 550 is suggested for the USA and $£ 250$ to 280 in the UK, with a separate random access unit at $\$ 150$. Magnavox - who recently stepped up their initially modest marketing - and now Pioneer have optical players prices at $\$ 700$ to 775 .
The add-on random access unit recently demonstrated offered still play, normal play, fast visual search, quick play of two, three, four or five times normal speed, slow motion of half, quarter, eighth, and sixteenth time for selected addresses and times, sequential play of differing functions, and interrupted mode changes and programme skip. Some of these functions are integrated with a player in one prototype but in the interests of low player cost the specialized functions will be offered separately. But with an NTSC player speed of $900 \mathrm{rev} / \mathrm{min}$ and two picture frames per revolution, showing (two) still pictures normally leads to unacceptable picture quality, unless special steps are taken. One possibility is to encode two identical frames next to each other, but done throughout a record this would cut playing time in half. Another is to make use of a memory to delay a frame's worth
of picture - as done at the demonstration but the size and cost of this solution is still prohibitive for consumer use.
The demonstration showed better picture quality than that from video recorders, but a muffled sound quality indicated restricted h.f. response. As the preliminary brochure claimed a: audio bandwidth of 20 kHz , this left one wondering about the validity of the remaining meagre information. Thorn/JVC would not directly compare it with a broadcast picture but

Three NTSC versions of the JVC capacitance electro-guidance video disc player. Latest prototype player, right, is claimed to be simpler and cheaper than Philips-type optical player and to have versatility associated with servo-assisted pickup, though freeze-frame is still a problem.
claimed instead that it was "competitive" with a Philips-system picture, and making it clear that Philips themselves claim compatibility with a broadcast picture
Another add-on unit will be a p.c.m. demodulator - which will follow VHD by $6-8$ months Thorn say - for use with sound-only records and dubbed AHD (audio high density). A 16 -bit linear code and 47.25 kHz sampling rate now supersedes the earlier proposal of 14 bits and 44 kHz sampling. Another change since VHD was first announced two years ago is a reduction in disc size from 30 to 26 cm , aimed at easing manufacturing problems, together with acceptance of the need for a disc case for dust, scratch and fingerprint protection.

Both JVC and Thorn-EMI are still secretive about technical aspects of VHD, in sharp contrast to their rivals RCA and Philips, and only scant details have been issued. The gist of this is that in recording a VHD disc, a rotating glass master coated with photosensitive material is irradiated by a laser beam modulated simultaneously with both tracking and programme signals to produce a spiral of pits. This is used to prepare a metallic master by "the conventional audio process". The conductive p.v.c. pressings made from this are said to require no further processing: obviously the basis for JVC's claim of "highly competitive" disc manufacturing cost. But with around 50,000 turns to a spiral and a pitch of $1.35 \mu \mathrm{~m}-40$ times smaller than an audio disc - one wonders what the rejection rate will be?

Playback relies on a capacitance effect between the conductive disc and an electrode coating on the stylus, much as in the RCA disc system. In the RCA player the stylus is mechanically guided and rests in one spiral turn, whereas in the JVC disc it rests over ten spiral turns (JVC claim 2000 hours stylus life) and is electrically guided. The stylus assembly is servo-controlled by marker pulses on either side of signal information, both laterally to ensure proper tracking and longitudinally to give time base correction. The modulation scheme uses the usual f.m. video carrier, with pedestal at 6.7 MHz and a deviation of 1.4 MHz (according to the brochure) or 1.8 MHz (according to the press data), described as "single carrier composite" - not the "colour-under" approach they stress - but more than that JVC won't say. Which presumably means that it hasn't yet been finalized.

- RCA responded to the Thorn/JVC/GE announcement by claiming theirs was "a unified operation ranging from research and development of manufacture, marketing and programming - not an alliance among individual companies which are diverse both in geography and marketing concepts". Scheduled for US introduction in the first quarter of 1981 with a programme catalogue of 300 titles, the RCA capacitance electronic disc system, CED, is also expected to be made by CBS and Zenith. RCA say they expect to sell 200,000 players alone next year.

Micro-based marine d.f. set for a fast "fix"

High-speed processing, leading to a rapid "fix" and safety at sea, are the two points which receive greatest emphasis in the technical literature accompanying the Syma Offshore Navigation System (the ONS 4000). This equipment has been developed and manufactured by Sysmaster Ltd, of Farnborough, Hants (an offshoot of System Designers of Camberley) in collaboration with the National Research Development Corporation.

The equipment, which is basically a microprocessor-controlled d.f. radio receiver, combines digital, analogue and radio techniques to achieve automatic operation. The unit synchronizes with the six-minute radio beacon cycle, automatically fixing and memorizing up to six compass bearings derived from the builtin electronic compass - this is a gimballed fluxgate unit which senses the earth's horizontal magnetic field.

Bearings remain in memory until the navigator is ready to "lay them off" onto a standard chart, with frequency, time and bearing indicated digitally on a l.c.d. panel. A small loudspeaker provides positive morse code identification of each beacon. A motor-driven ferrite rod aerial acts as the scanning sensor, housed in a weather-proof casting with a stainless steel sense aerial mounted on top.
Programming of the unit is carried out by the navigator to preset frequency and programme times of a chosen set of coastal m.f. beacons. A fix can be taken without any intervention by the navigator. Station tuning in the radio unit is by frequency synthesis and beacon bearings are derived from a statistically averaged series of measurements, giving accuracy without the need for high signal strength from each beacon, which may be difficult to achieve in bad weather or poor propagation conditions. This technique,

The control unit of the Sysmaster ONS 4000 navigation set.
the makers say, enables the navigator to get "the best possible fix at the worst possible time."

The complete unit costs $£ 1,675$ excluding v.a.t. and further information can be obtained from Sysmaster Ltd, 30 Invincible Rd, Farnborough, Hants, who can also supply a list of approved Syma agents in the UK.

NEW BBC TRANSMITTERS

Three BBC transmitters began operation on 29 August covering the remote villages of Armathwaite and Lazonby in Cumbria, Newton Abbot in Devon and Ashford in the Water, Derbyshire. All transmissions from these relay stations are vertically polarised. Further information can be obtained from the Engineering Information Dept., Broadcasting House, London WIA IAA.

System X now in service

Britain's first all-electronic telephone exchange has been operating in London for over three months. It is the first example of a piece of hardware in British Telecom's System X family to go into full service, and is what is known as a junction tandem unit, switching telephone calls between some 40 local exchanges in the capital. Other types of System X units are local exchanges and trunk exchanges. Installed in Baynard House, a new British Telecom building in Queen Victoria Street, the tandem exchange has

The display terminal and keyboard of the Box Office Computer System (BOCS), shortly to be launched by a development company with a science-fiction ring to its title - SpaceTime Systems Lid. The system plans and displays, for example, the sold, unsold and reserved status of up to 2,000 seats at a time and Space-Time Systems foresees its eventual adaptation to other box office systems including ticket sales for football matches, etc.

switched over 2.5 million calls from July 1 to the time of going to press. Housed in 50 racks, each 7 ft high by 3 ft wide, it can handle 150,000 calls per hour. An electro-mechanical cross-bar exchange would require about 400 such racks to do the same job. The failure rate so far has been 1 or 2 failures in 4000 calls, but British Telecom expect this to be reduced. Main contractor for the exchange was Plessey Telecommunications.

System X differs from earlier electronic exchanges installed in the UK which use reed relays for the final switching of lines and are therefore not fully electronic. It uses digital semiconductor devices throughout, ranging from discrete transistors, through integrated circuits up to l.s.i. devices. In the Baynard House tandem exchange low power Schottky t.t.I. devices are used widely and there are also m.o.s. devices. Because of the modular design of all System X sub-assemblies, it will be possible to introduce newer devices such as c.m.o.s. logic and magnetic-bubble memories at later stages as the technology develops. All the operations in the Baynard House exchange are controlled by a stored program. Calls are set up, faults are identified and the whole system is managed by computer-like processes. The equipment also uses what is called common channel signalling, a technique in which the signals controlling calls and managing the network are passed between System X exchanges as data transmission.

The transmission and switching functions in the exchange are brought together into a common digital mode of operation. For example, incoming calls from the 40 or so conventional London exchanges first of all have the analogue speech waveform separated from the signalling pulses. Then the speech waveform is converted into 30 -channel p.c.m. form and the signalling pulses are transformed into suitable digital information for insertion into a particular timeslot of the p.c.m. system. The combined timedivision multiplexed information is then passed at a rate of $2.048 \mathrm{Mbit} / \mathrm{s}$ into the main part of the exchange. A converse process takes place, of course, with calls going out from the System X tandem to the conventional local exchanges.

The first all-electronic local exchange in the System X scheme will be installed next year at Woodbridge, Suffolk.

News in brief

Agreement has been reached between Philips of Canada and the Bendix Corporation of Baltimore, Maryland, USA, giving Philips exclusive rights to the Canadian manufacture and sales of Bendix's microwave landing systems, known as MLS.

British Telecom's optical fibre network construction has had another leg completed with the installation of the first $140 \mathrm{Mbit} / \mathrm{s}$ section from London to Reading. The eight-fibre cable, which carries data equivalent to 1,920 telephone channels, has been carried out by Telephone Cables Lid, a subsidiary company of GEC.

The second US/Southeast Asia Telecommunications Conference and Exhibition is scheduled for December 3 and 4 at the Mandarin Hotel in Singapore. Detailed information may be obtained from John Sodolski, Electronic Industries Association, 2001 Eye Street, NW Washington DC 20006, USA.
Electronica 80 is being held at the Munich Fair Grounds from 6 to 12 November 1980 and constitutes the ninth international trade fair for components and assemblies in electronics under this title.

Hitachi is to set up a television components manufacturing company in Selangor, Malaysia. This new arm of the company, to be known as Hitachi Consumer Products (Malaysia), will rest upon the joint investment of Selangor and Hitachi and will make the standard range of tv components such as deflection yokes, line output transformers and tuner units. Operation is scheduled to begin in June 1981.

Greenpar Engineering Lid, Harlow-based manufacturers of coaxial connectors and r.f. components, have changed the name of the company to Greenpar Connectors, Ltd.

The gold used as plating for contact surfaces in British Telecom's electronic telephone exchanges is to be reduced from its present thickness of 5 microns to only $21 / 2$ microns. British Telecom, the telecommunications part of the Post Office, hopes by this action to save about $£ 2$ million after the changes, which began in October.

In spite of $£ 450,000$ lost on a turnover of $£ 1$ million in its second year of trading, Compeda, the company set up by the National Research Development Corporation to market British computer-aided design expertise, has succeeded in selling a $£ 250,000$ system chip design system to General Electric of the US.Compeda's managing director said that the projected turnover for 1981/82 was about $£ 3$ million and the company should be making a profit by next summer.

IPAT ' 81 , the International Conference on Ion and Plasma Assisted Techniques, is to be held in Amsterdam from 30 June to 2 July 1981. The conference will include information of the latest developments in ion plating, ion implantation, ion beam processes, molecular beam epitaxy, plasma deposition, plasma enhanced c.v.d., sputtering, reactive techniques, plasma etching, plasma processing and testing of coatings and coating equipment. Papers are welcomed on the themes outlined and authors should submit abstracts of 200-300 words immediately, the deadline being 11 November 1980. Address entries to the Secretariat, IPAT '81 International Conference, 26 Albany St, Edinburgh EH1 3 QH .

Times change

BBC2's clock, seen in some links between television programmes, is now generated electronically instead of optically. There is no mechanical clock and no camera or slide scanner. The new display is of a clock face, with hour, minute and second 'hands', and a pattern to indicate the channel, different techniques being used to generate the two.

The channel number display uses a process known as run-length encoding, in which data is stored in a programmable, read-only memory in a form which greatly reduces the amount of memory needed. Each change of colour and width of symbol requires only one byte of data, instead of one byte for every element of the display (the memory-mapped technique). In this way, fixed patterns, such as the Open University logo, which also uses the new technique, are produced with a smaller memory than would otherwise be needed, al-
though movement can be obtained by using a microprocessor to change the data in a randomaccess memory in real time. The data is then taken directly from the r.a.m.

Two types of storage are needed for the clock. The hour markings and clock face are kept in p.r.o.m., being read out in synchronism with the television line waveform. Only one quadrant need be stored, since the other three are obtained by symmetry.

Data for the 'hands', however, is in r.a.m. An erasable p.r.o.m. controls a microprocessor, which determines the time and calculates the angle of the hands. Break-up of almost-horizontal edges is reduced by varying the output waveform to take account of the television line structure.

The BBC expect to generate the BBCl clock in a similar way next year.

BBC engineers with the new television clock. Richard Russell, whom readers will remember for his work on the Wireless World teletext decoder, and who designed the clock system, is on the left. The run-length data for the logo was produced by John Mitchell, second from left, and the Open University symbol data was the work of Ewen McLaine and Robin Vinson.

Inmarsat to lease satellites

With a world-wide satellite communications system as its objective, the International Maritime Satellite Organisation (Inmarsat) is to consider supply contracts from satellite organisations, with plans to expand coverage by putting three additional geostationary satellites into orbit, one for each of the world's oceans. Two spare craft, supplementing these three at $65^{\circ} \mathrm{E}$, $175^{\circ} \mathrm{E}$ and $335^{\circ} \mathrm{E}$ respectively, will also be put into orbit.
Although the programme is still under discussion, the choice is likely to include the European Space Agency's Marecs, Intelsat V and Marisat. Marecs has a capacity of 46 voice channels* and is a dedicated satellite, i.e. as it is used exclusively for maritime channels there is no danger of interference with other signal traffic, although such satellites are comparatively expensive.

Part of the leasing programme, which will begin in 1982, will include offers of short-term use of one of its existing satellites with a 7 voice-
channel capacity. While existing Marisats were launched in 1976 with a S-year design life, they are now expected to last for another two years.
Oluf Lundberg, of Inmarsat in London, says that at present maritime satellites are relatively under-used, even though use per ship is quite high. On the other hand, he estimates that there will be around 2,500 ship users by 1986 . He also contrasted the normally slow rates of information processing through conventional maritime radio communication with the speed of compu-ter-controlled services on land, notably in the case of oil companies, who need fast communication from sea rigs to shore bases. He says that this problem can be solved by the communications power of satellite telephone, telex and facsimile operation and companies will not be slow to recognise the advantages of the system.
*Capacity of one voice channel is equivalent to 22 telex channels.

Monitor device regulates heart-beat

One of the latest medical spin-offs from the NASA space programme is an implantable heart-assist device, developed by Michael Mirowski, MD, of Sinai Hospital Baltimore, to aid sufferers with a condition known as ventricular fibrillation.

The device is about 7 cm square, is encased in titanium and weighs 255 g (9 oz). It is programmed to continuously monitor the heart, and to recognize life-threatening arrhythmias. If these occur it provides an electric shock through electrodes directly in contact with the heart so as to restore its normal rhythm. The first shock pulse occurs 15 seconds after the fibrillation begins, giving the heart a chance to correct itself. If the first shock has no effect, three more are delivered until a normal rhythm is established, with the last two shocks being increased in intensity. The unit is powered by lithium
batteries with a life span of three years or 100 shocks.

NASA and the Applied Physics Laboratory have developed a monitoring and recording device for the unit which can be worn by the patient and which stores electrocardiographic data, the number of fibrillating episodes, pulse applications and the long-term performance of the implanted device.
The New England Journal of Medicine reported on the implant device in a pilot study by a team of scientists from Sinai Hospital of Baltimore, the John Hopkins Medical Institutions and the John Hopkins Applied Physics laboratory, although the automatic defibrillator (its commercial name is AID) is being manufactured by Medrad/Intec Systems of Pittsburgh, Pennsylvania in its evaluative stage. The units are not yet available commercially.

Radio Nottingham now stereo
 BBC Radio Nottingham became in September

 the first BBC local radio station to start a regular service of stereophonic broadcasting. New studios using stereo sound desk equipment have been built in some old offices at the station. Considerable reconstruction was done while the station was actually on the air. Quite apart from the installation of the new equipment, the offices needed acoustic treatment to convert them into studios.Listeners will find the stereo service on Radio Nottingham's v.h.f. frequency of 95.4 MHz , broadcast from the Colwick Park transmitter. The BBC say that most listeners with stereo tuners or music centres should have no problem in receiving the service, and that listeners with mono sets listening on v.h.f. or medium-wave will not notice any change. Aerials set up for the national radio services in stereo may need some adjustment to make the best of the Radio Nottingham stereo service.

Digital television demonstration

Now that much more studio equipment in television broadcasting is going digital, broadcasters throughout the world are trying to establish a common standard for digital information transfer by which this equipment can be interfaced and made compatible. In Europe the EBU is working towards an interface standard for the 625 -line system and in the USA the SMPTE is doing likewise for the 525 -line system. Both of these organisations are also working together to try to achieve a truly international standard. One problem is what to encode digitally, the composite video signal or its separate luminance and chrominance components.

To help interested engineers understand what is going on the IEE has organised a demonstration and colloquium on "Digital television" on 31st October, in the IEE building, Savoy Place, London WC2R OBL, starting at 10.30am. You have to register beforehand by getting a registration form from the IEE (tel: 01-240 1871).

"Radar-invisible" aircraft? Back to the drawing board!

Fighter planes known as "stealthy aircraft," built and tested by Lockheed Aircraft Corporation for the US Defence Department and claimed to be "virtually invisible" to radar, appear to be less than successful at the basic business of remaining in the air - all three prototype machines have crashed because of their peculiar shape.

The Guardian (22 August 1980) reported that many observers have been excited at the prospect of penetrating Russian air space unnoticed and other accounts suggest that the technique being employed in the aircraft is a combination of "rounding off corners" (sharp features produce maximum radar reflections) and that of coating the aircraft with "radar-absorbent" material, which in reality disperses the returning radar signal.

This is not the first time such material has been tried. During the Second World War German U-boats were coated with a compound called Sumpf, which was fairly effective until it was washed away by sea water.

Prestel grows, but slowly

"Prestel is now a reality in most of the major cities and regions of the UK," according to Richard Hooper, the director of this British Telecom viewdata service. To understand this claim you have to interpret what he means by "a reality". Although the Prestel service will be available to approximately 10 million UK telephone users by the end of 1980 , the number of people who are actually connected as subscribers is pitifully small. At the time of going to press it was 5260 . At the present rate of growth (about 500 per month) this could become 8,000 or so by the end of the year. Of the total of 5 ,260 , only 588 were private households, indicating that the principal growth of the service has been among business and professional users. This must be seen as a disappointing start, particularly after the publicity campaign put on earlier this year and the fact that British Telecom forecast 27,000 users by the end of 1980. Prestel has now been operating for about a year (see December 1979 issue, p.55).

Clearly Mr Hooper's reality means the availability of the service to UK citizens who have telephones. This is certainly good. At the beginning of 1980 Prestel was available only in London, Edinburgh, Glasgow, Birmingham and Nottingham. By the early autumn Leeds, Brighton, Reading and Sevenoaks had been added. In the coming few months the service will be extended to other important towns including Cardiff, Belfast, Norwich, Bournemouth, Chelmsford and Luton.

It seems likely that the slow growth of the Prestel market, relative to the British Telecom forecast, is due to the present high cost of being a subscriber (details of installation and running charges were given in our December 1979 report).

This cost will go even higher with the new telephone tariffs recently announced by British Telecom. A related problem here is that the price a user is prepared to pay will depend on the amount of information he can get out of the service, but already the information providers are becoming restive because of the small number of users whom they can reach to sell their information to. There is clearly a chicken-and-egg problem in the growth of the market.

However, Mr Hooper may well be committed to the idea of getting the charges down, for last year, before he became director of the service,
he wrote "Prestel set prices must come down first to ensure a large residential market someone somewhere has got to make a heavy capital commitment to volume production for the costs to come down."

M.Sc. courses in chip design

The Science Research Council has announced that it will be funding three new courses in i.c. design, to be undertaken at Edinburgh University, Manchester University and Brunel and Southampton University. They will consist of one-year courses run in close collaboration with the microelectronics industry and will include substantial practical work, giving students the opportunity to oversee the production of an i.c. from design to fabrication.

Funds are also being provided by the council for necessary equipment and access to compu-ter-aided design and electron beam lithography facilities at its Rutherford and Appleton laboratories and to the SRC-supported silicon processing factories at Edinburgh and Southampton Universities.

An intake of about 16 students per year at each centre is expected, with as many as possible being supported by industry.

UKADGE work - but when?

Command, control and communications for radar defence of Britain are to be up-dated by a group of companies 'who have one-third shares in UKSL, which is UK Air Defence Ground Environment Systems Limited. The companies, who announced at Farnborough their victory in a two-way M.o.D. competition to secure the contract are Plessey, GEC-Marconi and the US company Hughes Aircraft, with the French Thomson-CSF taking a sub-contracting role. ICL, Westinghouse, Signaol of Holland and SINTRA of France comprised the losing group.

UKSL are confident that the work, which is said to be worth $£ 100$ million, will escape the moratorium on defence spending recently announced by the Secretary of State for Defence, which is to run for three months or longer. This has not yet been confirmed.

Spark gaps

Transient protection in high voltage, medium current applications

by J. Dearden, B.Sc., C.Chem., F.R.I.C., Welwyn Electric Ltd.

Because many electronic circuits are subjected to voltage transients which can destroy delicate components, some form of protection should be provided. A simple and effective method of protection is to use a spark-gap device which reacts more quickly to a high-voltage transient than an electro-mechanical or solid state component. This article outlines the problems and parameters which must be considered when using a spark gap.

Spark gaps vary in style and construction. For low voltage and current applications, the simplest type consists of two wire electrodes moulded into an open plastic frame as shown in Fig. 1. However, more elaborate design is required if high voltage and current are combined with a high spark repetition rate. This type is usually constructed with a ceramic case filled with an inert gas, and high temperature alloy electrodes as shown in Fig. 2.
In a two-electrode spark-gap the insulation is very good at low voltages, and no leakage current exists. As the voltage increases, the few electrons present in the gap; due to cosmic radiation and other ionising effects, are accelerated until they are able to ionise atoms of gas in the vicinity of the electrodes. This causes an avalanche effect as the additional electrons produce further ionisation, and as the current increases the voltage falls as shown in Fig.3. A further increase in current causes heating of the cathode by ion bombardment, and this creates emission sites and a transitory glow discharge. The increased current eventually produces an arc discharge, or spark, with a peak current determined by the external circuit. After the spark has discharged, ionisation of the gas decays until the gap has returned to its original condition.

In some tv receivers the focusing circuit for the c.r.t. can, under certain fault conditions, expose the focusing electrode to the full 25 kV from the e.h.t. supply. Therefore, to protect the c.r.t. from possible damage, the spark-gap must fire and divert the 25 kV source before the pulse height reaches a dangerous level, but must also remain in a stable unfired state at the maximum focusing voltage. These two limits are used to determine the breakdown requirements for the spark-gap, and popular breakdown bands are 7 to $9 \mathrm{kV}, 8$ to 10 kV and 10 to 12 kV .

The breakdown across a gap is determined by a complex and interacting set of parameters such as electrode shape, gap size, gas pressure, composition of the gas and the type of external circuit. To obtain a precise breakdown voltage, the ideal shape for the electrodes is two large spheres, which produces a high degree of field uniformity where the spheres are closest. Therefore, when the voltage is increased, the change from the Townsend or "dark" discharge to the avalanche breakdown occurs quickly across the whole width of the field. If, for example, electrodes with sharp edges are used, a non-uniform field is produced and as the voltage increases, the transition from a "dark" discharge to a total breakdown can be pre-empted by a corona or brush discharge. Although this is a self-sustained discharge, it does not represent a failure of the entire gap and the rest of the gap will continue to carry a "dark" current. A further increase in voltage causes the corona to spread across the whole field and complete breakdown then occurs. For this reason, when wire electrodes are used, care must be taken to form the wire into a smooth curve to avoid pre-breakdown corona. It is also important to use a wire which is free from surface damage, and to ensure that the free end of the electrode is either embedded in the insulating case material or bent away from the gap as shown in Fig. 4.

Unfortunately, simple rules cannot be applied when calculating the gap size required for a given breakdown voltage across wire electrodes. The electrode shape is not ideal, the breakdown will vary with wire diameter, and the field will be modified by the case dielectric. However, it is easy to achieve the required breakdown voltage by trial, and then repeat it by maintaining the electrode geometry and gap size.

For a given electrode geometry, the spark breakdown voltage also varies with pressure. The normal range of pressure variation in the UK is from 728 to 773 mmHg (970 to 1030 millibars) which, with a 5 mm gap, is equivalent to a change in breakdown voltage of 700 V as illustrated in Fig. 5. Therefore, if the spark gap is not totally sealed, and subjected to normal atmospheric pressure variations, it will stay within about 500 V of the specified value. In the case of a sealed unit, significant pressure variations will be caused by changes in the ambient temperature. In a tv receiver a $40^{\circ} \mathrm{C}$

Fig. 1. Open construction spark-gap.

Fig. 2. Ceramic spark-gap.

Current
Fig. 3. Voltage - current characteristic of a two-electrode spark-gap.

Electrode formed into

Fig. 4. Electrode arrangement.

Fig. 5. Effect of pressure variation on spark breakdown voltage.
change is not uncommon and represents a pressure change of 110 mmHg , which is equivalent to a 2.3 kV change in breakdown voltage. From this example it is clear that a sealed unit is not suitable for applications with large temperature changes.

If the spark gap is not sealed, composition variations of the atmosphere can cause large changes in the breakdown voltage as illustrated in Fig. 6. For this reason it is important that the air in an unsealed unit does not become contaminated, and the use of a thermoplastic for the case is recommended because it does not emit vapour when subjected to modest heat. Thermosetting resins, however, usually contain reactive hardeners which can cause atmospheric contamination, particularly in small enclosures. If a low quality plastic casing is used, water vapour can be absorbed to create surface leakage currents which can modify the mode of breakdown. This type of leakage can be eliminated by treating the surface of the plastic with a hydrophobic material such as a silicone resin, which prevents the formation of a continuous moisture film.

Contrary to popular belief, contamination of the spark-gap atmosphere with moisture has little effect on the breakdown voltage. Changing the relative humidity from 0 to 100% causes the breakdown voltage to rise by only $3.5 \%^{1}$ and is independent of electrode shape and gap.

A knowledge of the external circuit is necessary before a realistic test procedure can be defined. Three important facts, essential to optimise the component design and carry out the tests, are the amount of energy to be discharged across the gap, the rate at which this energy is dissipated, dictated by the maximum discharge current, and the expected discharge repetition rate. The test circuit shown in Fig. 7 simulates the conditions in a tv receiver where a 25 kV e.h.t. supply charges a 5000 pF capacitor through the $40 \mathrm{M} \Omega$ resistor. The capacitor can be discharged across the spark gap by an igniter which is set to fire at any pre-determined rate. Resistor RL limits the discharge current to around 1000 A .

When the energy from the capacitor is discharged across the electrodes, it causes intense surface heating which coats the internal walls of an enclosed device with metal and causes leakage currents. The extent of this effect depends on the volatility of the electrodes and the peak level of energy being dissipated. Because the energy of the discharge is proportional to the square of the voltage, the problem is most significant in high voltage devices. With a 1000 A limit on the discharge

Fig. 6. Breakdown voltage between two 2.5 mm dia. spheres in various atmospheres'.

Fig. 7. Spark-gap test circuit.

Fig. 8. Internal construction of a sealed spark-gap.
current, brass electrodes will give intolerable leakage effects after a few tens of discharges. At the other extreme, costly tungsten or platinum electrodes can withstand almost unlimited discharges with no current limitation and without any change in the insulation resistance. A good compromise is a copper-nickel alloy, which is sufficiently hard and of low density to retain the electrode shape once it has been bent, the terminal sections are rigid and allow easy location into a printed circuit board, it can withstand several thousand discharges at 12 kV with a 1000 A limit, and it is easily tinned by dip soldering.

Fig. 8 shows an internal view of a sparkgap. The walls of the cavity are corrugated to increase tracking distance between electrodes, and so reduce surface leakage.

Reference

1. Cobine, J. D., Gaseous Conductors, Theory Eo Engineering Applications, p.164, 167 and 182.

Aerial design book

Articles on aerial design, aerial theory and wave propagation, published originally in Practical Wireless, have been collected together in a book, entitled Out of Thin Air. The aerials described are mainly for amateur use, although there is a m.w./l.w. loop. Additional articles include a survey of propagation modes, a piece on the influence of the sun on propagation, and a discussion of v.s.w.r. at v.h.f., together with a v.s.w.r. meter design. The book is well presented, with large diagrams where necessary, and a useful feature is a directory of aerial suppliers. It costs $£ 1.25$ from bookshops or $£ 1.50$ by post from Post Sales Dept., IPC Magazines Lid., Lavington House, Lavington Street, London, SE1 OPF.

PICKABACK SPARKS

I have recently uncovered an electrical effect which may be new to your readers. I myself have not seen anything of it before in my almost 50 years in a physics laboratory.
I had been thinking of possible means for enhancing the ignition spark in cars when it occurred to me that it might be possible to play a weak high voltage spark across the leads of a charged low voltage, high capacitance, capacitor, hopefully to provide a discharge path. I did not have an ignition coil by me, but I did have a Tesla coil. A 'Tesla' is used in high vacuum. work and gives a high frequency oscillatory discharge with sparks up to an inch in length.

I charged up a $1 \mu \mathrm{~F}$ capacitor to 1 kV , earthed one lead and approached the other lead with the Tesla. Momentarily there was one long vigorous discharge and it was apparent that I had emptied my half joule into a long spark. The ordinary car ignition spark is roughly a hundredth of that. I tried the same thing later using a car ignition coil but could not get the effect. It seems that a single stroke is not sufficient - it is the second or subsequent sparks which provide the low impedance path.
I suppose that this effect is highly significant when considering the mechanics of lightning. I think, too, that I can just start to imagine a whorl of energy in the form of a plasma consisting of interchanging r.f. and ionic currents which might go some way towards explaining the phenomenon of fireballs. Has anyone detected r.f. interference from such balls?
A short while ago I was working a Van der Graaf generator on a bench in my room: the earthing got a little bit out of hand and so did the sparks. The main $40-\mathrm{amp}$ fuse blew. I found the fault; a practically unused mains socket some eight feet away had burnt out and the presence of craters on the pins indicated that a gigantic arc had occurred.
Perhaps the effect is better known than I had thought?
John T. Lloyd
Department of Natural Philosophy
University of Glasgow

DIGITAL ELECTRONICS AND 'DEFENCE'

Some crucial factors have been missed out of the discussions in your journal on military electronics and on the status of engineers.

The only thing that separates a good electronics engineer from a cowboy is that the former has the ability to develop products which work.
Digital electronics represents overwhelmingly the major part of the electronics engineer's trade. Even though this has been the case for many years now, colleges and faculties still refuse to teach even the rudiments of the subject. Digital electronics is different from its antecedents in that one little flaw causes catastrophic failure. The result is that even well-motivated, well-intentioned electronics engineers today produce products which do not work, with the exception of trivial ones. Today a trained electronics engineer is indistinguishable from a cowboy, except that he will be more methodical
about the way he goes about developing nonworking products.
At a seminar held in Hull University to discuss college electronics syllabuses recently, I gave a paper in which I challenged any company with a multi-million pound project in development with significant digital electronic content to take me on board, and if within three months I did not find fatal flaws in their product which meant it would never be viable, I would pay a heavy financial penalty. There were no takers, although the challenge was published widely.

In view of the non-existence of training or education in digital electronics, only a foolhardy company will today embark on a large digital electronics project unless the final product does not need to work. The recent retrenchment of the Inland Revenue from a large system to lots of little systems represents a recognition of my thesis. When a large civilian project is abandoned, the company responsible hushes it up shamfacedly because it assumes that other (military) projects are successful. This is where military electronics comes in to save the 'profession' and give continued employment to people like me. When a major weapons system fails to work, the record is falsified 'for reasons of security'. The Ministry of Defence (themselves terribly ignorant of digital electronics for the same reasons), will pay anyway.
I see the military budget in electronics as a useful device to allow the colleges and faculties to continue to refuse to teach the rudiments of digital electronic design, by which I do not mean the programming of microprocessors or other trivial surrogate activities. The lecturers and prufessors do not teach the fundamentals of digital electronics because they do not know them. However, they will not let experienced, knowledgeable people into their faculties to teach the stuff. I have been trying to get such a job for more than ten years, but real experience and knowledge of digital electronic design appears to be a bar to employment in academia. (This was already true years before the recent Tory recession.) So long as this situation continues, we shall continue to have a useless industry funded by government largesse, the so-called defence budget. Of course, since they will never work, the military products will never in fact contribute to our defence. Today we have no defences; to work in the 'defence' industry is a polite way of being on the dole.
The government is happy to fund the 'defence' industry because it masks our true unemployment level. The trades unions like it for the same reason. Industry, the third supporting pillar of this massive fraud being perpetrated on the taxpayer, also supports it because it is a norisk, guaranteed profit industry. Britain will disintegrate before we can overcome such a powerful triumvirate.
What distinguishes our 'defence' industry from that of other countries, for instance the USA and the USSR, is that it seems invulnerable to economic forces. During recession the expenditure, or more accurately the massive waste, increases. It is a very inefficient way of creating jobs to mask unemployment, but it is the only ideologically acceptable way. Wee are very like a dictatorship in that we can cut any other expenditure because of lack of government funds, but not 'defence'.

Some eight years ago an investigator of the 'defence' scandal said that "this country was being cheated of the talents of many of its finest scientists." This is much more true today.

In the electronics industry the norm is for a technically ignorant and careless customer to accept useless equipment from a technically ignorant manufacturer. The so-called 'trials' are rigged. Corruption is not generally involved; only stupidity and misplaced loyalty to their opposite numbers in the manufacturing company on the part of the treacherous representatives of the long-suffering taxpayer.
If we are to stop this gigantic financial drain on the country, which by the way incites our enemies to arm themselves as one result of our pretended state of military strength, we must have technical auditing on a par with financial auditing. At present no sanctions similar to those in case of fraud in the transfer of money are applied against those who connive in fraud over the transfer of military hardware.

It has been pointed out to me that such an auditing authority is very likely to be subverted; it may merely give credibility to the discreditable racket of charging the taxpayer hundreds of millions of pounds for useless weaponry. However, the present situation is so scandalous that a change could not be for the worse.
My proposal is that professional bodies - the I.E.E., etc. - audit trials involving equipment where their speciality is relevant. As with cash movements, fraud should come within the province of the criminal law. An obvious sanction is that someone who has taken part, either as representative of the supplier or as 'representative' of the long-suffering taxpayer, in a fraudulent 'trials' or 'acceptance test', should be banned from practising that technical skill for a period of ten years. Ignoring the ban would be treated as contempt of court.
Ivor Catt
St Albans Herts

DISPLACEMENT CURRENT

Following Professor Bell's article "No radio without displacement current" (August 1979 issue), I wrote a letter which appeared under the title "Displacement current" (November letters). A reply by Professor Bell to my letter was published in the same issue. I felt that this reply revealed misunderstandings of a fundamental nature regarding the points I was trying to make and I could not see how any useful purpose would be served by my responding to it. Since, however, Professor Bell has restated his arguments in the August 1980 letters it seems that I must reply.

My original letter contains the following two paragraphs:
"I understand that Aristotelians believed that a force was necessary to keep bodies in motion and that, in the absence of this force, the motion would cease. This theory led them into certain difficulties. For instance a spear once thrown, appeared to continue to move without a force being present. The philosophers rose to this challenge magnificently with a theory that air, displaced from ahead of the spear, rushed to the rear and generated the requisite force - the theory was saved. Unfortunately they missed the simple point first
noted by Newton, that it is in the nature of a moving body to continue to move.
"In the same way I fear that Maxwell invented a complex explanation for a very simple phenomenon, i.e. that electromagnetic radiation, or energy current, moves at the speed of light - and that's all, because that is what energy current does. No mechanism invoking E producing H and H, in return, producing E is required."

I would have thought my intention was quite clear - it was to show, by analogy, how a faulty set of primitives can lead to problems in a theory which necessitate the introduction of ad hoc causality relations. In a similar way I believe that the causality relations alleged to reside in Maxwell's equations (i.e. changing magnetic field producing electric field and changing electric field producing magnetic field) are spurious. A moving body continues to move because that is what moving bodies do; an electromagnetic disturbance or energy current, of whatever distribution, continues to move because this is what energy currents do. In other words the statement "energy current travels at the velocity of light" is a primitive assumption in my theoretical framework which requires no further explanation. In my framework the moving energy current is the simple situation and 'static' electric and magnetic fields are composite.

Before I leave this point I must make two other observations. Firstly Professor Bell not only seems to misunderstand my argument but to compound this by not even having an adequate grasp of his original article, for he states in both the November 1979 and August 1980 replies that "I mentioned early speculation about the planets because Newton's theory of gravitation" My problem is that I can find no such mention of the planets in Professor Bell's article. True, he mentions Jupiter in the context of the propagation of radio waves from the vicinity of this planet, but nothing else.

Secondly, the relevance of Hobbes's The Leviathan seems a little dubious. I will admit that my statement that the principle of inertia was first noted by Newton is open to question - I would suggest that it was probably first noted by Galileo and enunciated by Newton - although it seems a little beside the point. Incidentally, I cannot locate the passage in The Leviathan which Professor Bell is referring to and wonder whether he in fact means some other work by Hobbes, possibly De Corpore. I would in any case be obliged if he could let me have a full reference. Since The Leviathan is a work of political philosophy it would be a strange place to make the kind of comments quoted by Bell - but who can tell with philosophers!
Several other points are raised by Professor Bell's letter. Before Maxwell's theory can be "faulted on experimental evidence" we require a definitive statement of that theory. Where is this to be found? Certainly not in Maxwell's Treatise since this involves views regarding the aether which would not be acceptable to modern physicists. Perhaps if someone could supply a definitive statement of Maxwell's theory I might be able to suggest some experimental tests.

Professor Bell states that he does not know what the energy current concept is or how it relates to the Poynting vector, yet this is set out in the article by Catt (see "The Heaviside signal," W.W. July 1979). It surprises me that, having stated his lack of understanding of the concept, and apparently not having seen the above-mentioned article, he still tries to apply it to loop antennas, etc.

It is extremely unfortunate that the displacement current debate has been cluttered by so many side issues. I feel great sympathy for the impartial reader of this correspondence who is
attempting to decide which side of the debate has the greater insight into the subject. I am more or less resigned to the fact that it is impossible to debate the central issues of electromagnetic theory because of the high 'noise level' which is generated by those who defend the established view. Where do we go from here? As Professor Bell says, "Everyone tends to believe what he wants to believe" or, to quote from T. S. Kuhn, ("The structure of scientific revolutions," University of Chicago):
"Max Planck, surveying his own career in his Scienufic Autobiography, sadly remarked that 'a new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die, and a new generation grows up that is familiar with it'.
"These facts and others like them are too commonly known to need further emphasis. But they do need reevaluation. In the past they have most often been taken to indicate that scientists, being only human, cannot always admit their errors, even when confronted with strict proof. I would argue, rather, that in these matters neither proof nor error is at issue. The transfer of allegiance from paradigm to paradigm is a conversion experience that cannot be forced. Lifelong resistance, particularly from those whose productive careers have committed them to an older tradition of normal science, is not a violation of scientific standards but an index to the nature of scientific research itself. The source of resistance is the assurance that the older paradigm will ultimately solve all its problems, that nature can be shoved into the box the paradigm provides. Inevitably, at times of revolution, that assurance seems stubborn and pig-headed as indeed it sometimes becomes."

Do we really have to wait for a new generation to grow up before we can countenance changes in the accepted theoretical structure? This is the real problem, not electromagnetism, relativity or mechanics, but how to create a form in which proper discussion of fundamentals can take place.
D.S. Walton

CAM Consultants

Perhaps Professor Bell (August letters) really should have completed his application of the two "disciplines" of science to both the Maxwell and the Catt, Davidson, Walton theories. CDW's theory certainly has fewer hypotheses than Maxwell's (they only need to define what they mean by energy current). From their theory one can deduce Maxwell's equations (yes, and the famous $\mathrm{d} D / \mathrm{d} t$ term, which is a mathematical quantity, not a "physical current") as well as Faraday's and Maxwell's laws of electromagnetic induction.

I don't believe Catt, Davidson and Walton have ever attempted to suggest that Maxwell's equations are incorrect, merely that they are at best mathematical devices exceedingly useful for setting university examination questions. They may or may not be correct on this point, but that, of course, isn't what everyone's supposed to be discussing (see the editorial in the May issue).
L. J. Higgins

Swindon
Wilts.

SATELLITE TV

As someone with a keen interest in the possibilities offered by satellite tv, I was pleased to find an article on the subject in your September issue. This, I hoped, would add to the information provided by Chriet Titulaer in his book entitled "Televisiesatellieten", which I dis-
covered during a recent visit to Holland (but which is not mentioned in your bibliography). This contains an extract from the famous article by Arthur C. Clarke which appeared in your journal in 1945.

Unfortunately, S. J. Birkill's article proved to be disappointing. My interest lies in the early availability of a terminal to which a conventional television receiver can be connected with a minimum of intermediate equipment and which will afford a choice of foreign broadcasts, preferably from Western Europe. Having experienced the benefits of a cable relay system affording 10 channels from five countries, it is impossible to be satisfied with the insular, parochial, bland diet of news and opinions which is served up in the UK. The Americans, it would seem, already have the choice (admittedly at a price) of 36 channels, and home terminals are already on the market in Japan. Why, then, are these not available here? Your article shows clearly that there is no need to wait three or four years until European tv satellites are in operation: there are already plenty of surprises for the enthusiastic DX-er.
D. S. Jordan

Canterbury

Kent.
There is no direct satellite broadcasting in Western Europe yet. -Ed.

FEEDBACK FOR P.R.B.S. GENERATORS

Mr Wood's method of determining feedback connections which give maximum length sequences (September Letters) is interesting in that it avoids most of the algebra with which the problem is usually tackled, but unfortunately, although it is certain that the circuits it eliminates won't give maximum length sequences, it doesn't follow that those which are left will. For example, it is well known in the trade that if $a+b$ is a multiple of 8 there are no values of a and b which will give a maximum length sequence. Such sequences can be obtained however by using the more complicated circuit shown below, with appropriate values of a, b, c and d.

The problem of finding the appropriate connections is the subject of an extensive literature. A convenient starting point is "Shift Register Sequences" by S. W. Golomb (HoldenDay, 1967). Most of us find in this book a convenient finishing point, too. It contains a table of values of Mr Wood's a and b for values of $a+b$ up to 36 .

For those who do not have access to a microprocessor system, or who have but still haven't learnt to use it, much can be done with a programmable calculator. You need to know that the output of a two-input exclusive-OR gate, usually designated $a+b$ is also given by $(a-b)^{2}$ where subtraction and multiplication are conventional. Shift, if not specifically available, may be obtained by repeated use of the memory exchange facility. The number of memories, rather than the number of program steps, will usually limit the number of stages which can be
simulated. Readers can check Mr Wood's table, up to the limit of their memories and patience. They can also investigate the circuit given here, for eight stages. The values of a, b, c and d which give maximum length sequences, taken from Golomb, are:

a	b	c	d
1	1	5	1
1	2	2	3
1	4	1	2
2	1	1	4
2	1	2	3
2	1	3	2
d	c	b	a

K. S. Hall

Department of Electrical Er Electronic Engineering The City University
London ECI

The letter from K. Wood on pseudo-randombinary sequence generators in the September issue made me wonder what problem he had cracked by simulating a shift register with feedback on Z80. My own problem a couple of years back arose from the need to construct a pink noise generator for electroacoustic work. Having bought a c.m.o.s. 4006 shift register I then had to discover suitable feedback connections in order to get a maximal-length pulse train. The .4006 has 18 stages so the pulse train should be $2^{18}-1=262143$ bits in length. Only 6 of the 18 'stages come out to pins, and the four independent sections of the register may be interconnected in six different ways.

I had no mind to read through all the literature on the subject, but I must comment that I found that tables of irreducible polynomials were of absolutely no help to me whatsoever, apart from a little practice in decoding octal. Is this also K. Wood's experience, I wonder? It would have been possible to rig some simple hardware that would have taken the 4006 through all possible combinations of interest, and the task was offered as a student project. However, by the end of the session no student had shown interest in such a mundane exercise. So I turned to the ICL 1900 series computer and wrote a BASIC program that turned this giant into an 18 -stage shift register. This may well rank as the world's least efficient computer program (if booby prizes are being offered I am interested), for it takes a computer an unconscionable time to perform over a quarter of a million shifts from a high level program. The situation was only slightly improved by reprogramming in ALGOL.

Clearly the time had come to rewrite the slowest part of the program, the shifting loop, into machine code. The snag here was that although the PLAN code was well documented, actually learning to use it efficiently requires some weeks of study under expert tuition. Luckily my colleague Tim Fuller took pity on me and wrote and tested a suitable PLAN segment (a matter of 16 instructions) for incorporation into my ALGOL program. I was then at the point which Mr Wood seems to have reached more effortlessly with his Z80 routine, and I proceeded to output sequence lengths for all feasible arrangements of connections, with the register starting from all stages set to 'true'. For the benefit of posterity I hope the editor will allow me to record here the only six arrangements which gave maximal-length sequences. Numbering the stage output connections from 1 to 18 , there was only a single set of 6 feedback connections, namely $4,8,9,13,17$ and 18.

With four feedback connections there were
five alternative sets:

4	5	10	18
4	5	13	18
4	13	17	18
5	13	14	18
8	13	14	18

Naturally enough, the output from stage 18 is used in every case. It is more convenient to use one of these five sets, as the four feedback connections can be combined using only three quarters of a 4030 quad gate i.c., leaving the fourth gate available for use as a clocking oscillator. If any readers have constructed the p.r.b.s. generator shown on page 43 of Electronics Today International for March 1974, they should find that it does not give a maximal length sequence, but one which is 262140 bits in length. It is not impossible that this might stick (on start-up) in the four-bit sequence 0011001100110011 , etc. as far as I can deduce. Can any reader confirm (or refute) this asseveration?
Desmond Thackeray
Department of Music
University of Surrey
Guildford

GENERATING THREE PHASES

Your correspondent, E. V. Hurran (August, Letters) recommends one of the Van der Pol oscillators for producing a good sinusoidal output, particularly at very low frequencies. While agreeing that the virtues of some older circuits should not be overlooked, it is our experience that for many practical applications an oscillator with a properly engineered method of amplitude control is needed. Without such control there must be either constant attention to manual control of loop gain, or reliance on some degree of saturation in the amplifier or amplifiers. Van der Pol assumed a 3rd-order non-linear characteristic.

As we have shown (Electronic Engineering, April and May 1957, pp. 164 to 169 and 210 to 213; and Wireless World, March 1970, pp. 134139) a satisfactory sine-wave oscillator for very low frequencies is obtained by using a two-integrator loop as a selective circuit and adding a feedback path containing a limiter. This produces a two-phase oscillator; but from two phases, three or any number may be obtained by vector addition and subtraction. The distortion introduced by the limiter is readily calculable and can be made small. When variable tuning is required it can usually be obtained more conveniently than with a three-phase oscillator.
F.E. J. Girling

Malvern
E. F. Good

Darlington.

TECHNICIANS OF SCIENCE

In reference to your editorial "Producers before Products" in the June/July issue, I must say it is rare in these times to read such an article in a technical magazine. Well done! But although you take a wide and simple view, the fact is that many of us can't go along with it, or even understand its importance - perhaps because of the very insanity of the society in which we live.

Engineers and technicians must become more aware of what they're actually doing, and not just remain content to satisfy the demands
created by people who see everything in terms of money and power. There are alternative ways, and to find them we need open minds. True science and engineering involve more than technical knowledge. Those people who stay at the level of technical knowledge are the technicians of science, no matter what academic qualifications they may have - there are no institutions to give higher degrees than those they have anyway. If only we could obtain a clear view of the whole system, from the small details up to philosophical questions about our existence, there would be a better chance that each of us, in his own job, would be doing the right thing at the right time to abolish aggression, harmful ambition and competition and the other injuries to humanity of which you write.

As a relatively young computer engineer, working to develop electronic systems for agriculture, I try to use techniques which make the processes more accurate - but not automatic unless this is necessary because they consume too much energy or cannot be done manually. I'm not working in mass production now, but since I've studied and worked in Britain and have also seen the same problems here in Israel, it's quite clear to me that we are all engulfed in the industrial system you describe.
There are not many articles published about electronic techniques in agriculture. If any Wireless World readers are involved in agriculture I will be glad to let them know about my current work.
Yehiel Livnat
Kibbuzz Neer-Oz
Doar-Na Hanegev
Israel.

VARIABLE PHASE ALL-PASS FILTER

Further to the article on page 77 of the May issue by T. G. Izatt and E. Bell describing a variable phase all-pass filter, the circuit performance described is readily obtained using a simple operational amplifier circuit (below) which, due to the higher open loop gain, will give a more precisely defined transfer function (subject to sufficient bandwidth obtainable from the operational amplifier).

The transfer function

$$
\begin{aligned}
& \frac{V_{\text {out }}}{V_{\text {in }}}=T_{(s)}=\frac{1-s C R_{2}}{1+s C R_{2}} \\
& \text { or } T_{(\omega)}=e^{-j 2 s} \\
& \text { where } \phi=\tan ^{-1}\left(\omega C R_{2}\right)
\end{aligned}
$$

Two or more such circuits may be cascaded to provide a wider range of phase variation.

F. J. Lidgey

Department of Engineering
Oxford Polytechnic
and
E. A. Worpe

Department of Physics
University of Surrey

COMPUTER CHAOS

I write to express discontent with the general confusion of the world of computing and programming. Different mainframe manufacturers think fit to evolve similar systems, or systems for similar ends, that work in entirely different ways. When they use the same interface there is sure to be some minute difference making them incompatible.

Under the unpleasant political systems, of course, computer structure and software would be rigidly restrained. As it is, the working individual is expected to carry the burden of different systems and system variants which were originally created in the hope of producing profits which he does not see, and indeed they may well fail to materialise.

Anyone in the top ranks of computer engineers can only hope to become really affluent by starting a microcomputer firm which, even if it does not collapse in a few years, will only add to the Tower-of-Babel chaos surrounding us.

Coming now to the home computer, I am still shuddering from an advertisement for a printer containing many complex special 1. s.i. circuits "untested, ungauranteed - what more could you want?" Making a note not to fit a printer, and stealing the family tv set to cut costs, one still needs a microcomputer with high reliability, a correspondingly low cost maintenance service, with easily expandable memory and interfacing. BASIC alone is not going to launch anyone on a computing career and there is a case for having PL/M resident in memory, which raises the question of whether amateurs should not be allowed the use of standard programmes legitimately acquired at small cost. This seems an obvious case for state intervention, involving a package deal for amateurs across the country. Your correspondent Russell Gad (June/July issue has had to write his own dissembler/ editor for his (bought) microcomputer and this underlines the need for several programs to be provided to run the system properly. Even writing machine code is done efficiently by using high level language(s) and an assembler.

The amateur computer will simulate the operations of more complex computers, running at uncommercial speeds in complex work, and the best amateurs will need access to large, copyrighted programs. Since the computer industry can only profit from their activities it is up to them to make programs freely available. It is not for me to stggest that in default of this programs will be passed around illegally; there should be no incentive for this if proprietary programs are licensed to amateurs at fees reflecting the amount of use they will get.
Bernard Jones
London WI

RADIO AND FREE SPEECH

In relation to the eternal prevarication over citizens' band, we should be quite clear that ours is a representational democracy where free speech does not need to be limited by law, because it can be limited without it. When electrical communication systems were invented, governments became terrified that at last anyone who could make a transmitter could be heard without editorial filtering. The government therefore siezed the air waves much as it had siezed that other means of mass communication, the theatre in Elizabethan times. The method was the same: licensing. Pressure from radio enthusiasts caused the government to permit amateur transmission. The mere achievement of
communication over vast distances with watts of power was scientific research. In the long term, however, human communication is about what is communicated and most forms of communication were taboo under the terms of licensing. Certainly the two areas where mutual understanding are most in need, religion and politics, are taboo.

One of the most fascinating aspects of professional radio is listening to foreign correspondents assessing the situation in a country. How vastly more interesting to hear a national of that country give his own assessment. Most of it would be government organised but if the right frequencies were kept open, illicit transmitters could be cheap and easy to construct, difficult to pinpoint. Once it became impossible to clamp down on these most governments would let them exist. Our country has been as repressive in this field as the Soviet Union and for no valid reason except the desire to keep free speech as a hollow sham.

Even more vital than communication of political, scientific and philosophical views is the ending of the isolation of the car driver. Here the need is for short-range radio communication and the need is to make it compulsory. Civilised behaviour is a phenomenon dependent on communication, which is why the car driver is the most uncivilised human being and behaves in a totally egocentric manner.
It seems to me that the laws on radio waves should be concerned with more than protecting commercial and military communication from interference and should not be used to prevent people from communicating. With the ending of the monopoly powers of the Post Office on connecting things to telephone lines it is high time that the silly ban on competing with the Post Office in family communication was ended. Ordinary families just do not spend hundreds of pounds 'phoning each other long distance. Even the Queen has been held to be bound by this silly rule.
Fred Allen
Cambridge

AUDIO KITS

I thoroughly agree with the opinions of your correspondent of many months ago on the variable quality of the current flood of kit-form hi-fi - variable meaning bad to worse - that is with the exception of a certain company who sell kits with pre-assembled p.c.bs. Generally, kit-form hi-fil is best avoided.

Some months ago I paid $£ 100$ plus v.a.t. for a high powered (one quarter of the claimed output would be quite sufficient in my humble home - even with highly inefficient speakers) integrated stereo amplifier. I estimated no more than forty hours' work. The job absorbed no less than eighty hours, and another fifteen hours sorting out problems. The latter included a special modification that only a highly qualified engineer could have worked out. Oh yes, the supplier described the kit as "easy to build" and "entirely suited to the novice."

In this day and age one-hundred hours equates to $£ 200$ after tax, so one could say that this appalling piece of equipment cost some $£ 300+$. True, sixty per cent of kit buyers are not very fussy people, but I am sure that at least forty per cent do consider returning the kits for a refund; however, they rarely do because they believe that a very high standard of assembly work will compensate for the flimsy mechanical design. This seldom works out, and in the end all one can show for the monotonous labours of kit construction is a typical trash item - and more often than not a non-working one to boot.

Building a relatively simple device can prove to be highly enjoyable, but a stereo amplifier
So before you rush out to buy that hi-fi kit with undaunted enthusiasm, think about it very seriously, and never, never buy a kit without first listening to a built-up example and also having a chat with someone who has built one up - even if the latter involves an advertisement in the electronics press.
Be warned - sixty per cent of kit buyers probably end up with a non-working item, and around ninety-five are probably dissatisfied.
I firmly believe that all kit suppliers should be involved, that is, the time taken by a reasonably experienced enthusiast without previous knowledge of the kit in question.

Should all audio kits carry a Government health warning?
M. 7. Evans

Worcester

WHEN BOMBING PROLONGED A WAR

The recent commemoration of the 35 th anniversary of the second world war's ending coupled with the second printing of Max Hasting's outstanding book, Bomber Command, makes it appropriate to record the following failure in vital communication between branches of the central intelligence command.

Hasting's book describes how the bombing of Coventry on the night of November 14, 1940 is supposed to have been avenged by inviting Royal Air Force personnel to choose their own targets, and how a certain Bob Dodd volunteered to bomb Eindhoven in Holland although the main option appears to have been Hamburg. It is to be hoped Dodd's navigational skills on this occasion were no better than when (as the book relates) he bombed Epinay in Vichy France in the belief he was bombing Mannheim!

Early in 1941 I was summoned to the London headquarters of the organisation subsequently known as Special Operations Executive, and interrogated by Lt Col E. Schroeter. I joined a few months later and learned the import of this hyper-secret body charged with co-ordinating European Resistance and supplying its peculiar needs.

Following evacuation of Dunkirk by the British, the factories of Eindhoven had gradually developed a major technique in helping to sabotage the Nazi war machine. The communications equipment plants had devised methods of producing programmed short-life thermionic radio valves and other components on which the German High Command relied. There was also a clandestine plant devoted to the invention and production of simple gadgets guaranteed to immobilise German tyre and track vehicles, such as personnel carriers and tanks. If Dodd's preference for bombing Eindhoven rather than Hamburg had the effect of smashing the former town's communications equipment production, the Germans undoubtedly transferred their orders to manufactories far less likely to be under surveillance of saboteurs one half as efficient as those of Eindhoven. In fact, by 1945, the Dutch Resistance engineers had so much perfected guaranteed fail-early electronic components that I and others were being offered contracts to go to Holland, to re-establish techniques of standard equipment production. I opted for somewhat similar duties in Denmark.
"Col. Soejoe"
(Name and address supplied)

Intentional logic diagrams

Improving the intelligibility of logic circuits

by Tony Cassera

In a logic circuit, the designer's intention may be to use a gate in a way other than that described by its name. A Norgate can be used to Nand inputs and the author contends that the intention of the circuit designer should be indicated on the diagram.

As the cost of servicing electronic equipment rises, manufacturers are paying more attention to improving the serviceability of their products. There are many ways in which the repair of faulty electronic equipment can be facilitated. Readily accessible circuit boards, good component layout and numbering, and built-in test points are typical areas where great improvements have been made and which make life easier for the hard-pressed service engineer.

Improvements have also been made in the presentation of technical manuals, but there is still much in adequate documentation being produced. One area where there is room for improvement is in the presentation of logic diagrams for digital circuits. There are many drawings that one can only follow with a great deal of effort, involving the following sort of mental monologue; "when that's high and that's low then that will be high and that low; no, that will be high. Or low? Let's start again. When that's low ...". But in the service workshop or at the customer's site, speed of repair is allimportant and logic diagrams should do everything possible to show the user exactly what the designer's intention was at every gate in the circuit. Such drawings may be called intentional logic drawings.

Look at the example taken from an engineering manual in Fig. 1. Can you say quickly what conditions are needed to allow a pulse to appear at the output? As it is drawn, it appears that the two X inputs are Anded and the ENABLE signal is being Ored and POS.XCOUNT. If you look at the manufacturer's catalogue for the devices you will see that the symbols for the 7400 and the 7402 are given there in the same form. Where has the drawing gone wrong?

The sense of such logic can be made clearer by recognizing that when we use inverted logic in which the low level is the true or asserted state, the logic
symbols do a swap and And gates become Or gates and vice-versa. The equivalent symbols for the common logical gates with conventional and inverted logic representation are given in Fig. 2. If you don't see this at first write out the truth table for a familiar device, say a two-input Nand gate:

A	B	$0 / \mathbf{p}$
0	0	1
0	1	1
1	0	1
1	1	0

Now invert the logic by writing a 1 where there was a 0 and a 0 where there was a 1 to give:

A	B	o / p
1	1	0
1	0	0
0	1	0
0	0	1

which is the truth table of a Nor gate in conventional logic. The convention used is that when we are looking for an assertion of a "low is true" signal we put a bubble on that input line. The mnemonic for the low signal should

Fig. 1. Conventional logic diagram, in which gates are used for different purposes than their symbols indicate.

Fig. 2. Conventional symbols and their equivalents when low-level logic is used.
either carry a bar over its name or, easier to print, be followed by L. When possible, signals that end on a bubble should begin on a bubble. Fig. 1 is redrawn using this intentional symbolism in Fig. 3, where the designer's intention becomes clear. When either X1 or X 2 is low and the ENABLE signal is low then the pulse train POS.COUNT PULSE should appear at the output. When logic diagrams are drawn out in this way they are more intelligible than when the gates are represented only by the conventional "manufacturer's" symbols. Let us look at another example. The conventional representation of a flip-flop made from two Nand gates has been redrawn using intentional symbolism in Fig. 4. The second drawing makes it clear that the device is normally in the reset state waiting for a low input on pin A to set it.

Of course, there are ambiguities in the intentional symbolism. When we want to use a signal both in its high and in its low state how should we represent it? Mnemonics should be chosen to

Fig. 3. Circuit of Fig. 1 drawn in intentional' symbols.

Fig. 4. Flip-flop circuit drawn in the con ventional way (top) and in intentional symbols.

Fig. 5. Printer circuit, showing that ambiguities can appear.
represent some positive action. Thus in a computer printer the signal that sets it printing is best called PRINT rather than NOT STANDBY. But what if we want to light signal lamps to show when the printer is printing and when the printer is in standby? The circuit that might be used is shown in Fig. 5 which breaks the rule that signals that begin on a bubble end on a bubble. Such a situation is unavoidable: all one can do is to make the logic diagram represent some certain state, for example the printer printing, and draw the desired levels for that state. The naming of signals gives more trouble when we have two equally valid functions represented by the high and low on a signal line. For example, in an automatic weighing machine we might have a switch to select pounds or kilograms. A high on the line would make it weigh in pounds, a low in kilos. Should we call the line POUNDS H or KILOS L? It is really a matter of choice but having made the choice the designer might state in his table of signals that POUNDS L = KILOS L.

There is another small ambiguity in the representation of set and reset inputs to devices, for example flip-flops. Such devices are typically set and reset by low signals and the inputs are marked with bubbles as a reminder of this fact. Yet the presence of a reset condition is often a rare event, perhaps only at the power-on time. It must be remembered that the bubble is telling the reader that to achieve reset or set there must be a low going signal, not that he normally expects to find a low there.

A possible criticism of this notation is that the same physical device, say a 7400 quad Nand gate may appear in two different shapes on the same drawing and thus add to confusion. But it is inescapable that in many logic circuits devices described as Nand gates are being used to Or low signals and Nor gates are being used to And low signals. In summary any digital diagram that seeks to show more than the connexions between circuit elements may well involve some inconsistencies. However more sense is better than less sense and adoption of the above guidelines does make logic diagrams more understandable and allows the troubleshooter to check logic levels with his oscilloscope quickly.

Simple pick-up arm design

continued from page 41

The amount of bias to be applied is best determined using a test record which provides a stereo signal having equal high modulation on each channel. If this signal is reproduced through amplifiers capable of carrying large amplitudes without distortion and the resulting waveforms displayed on a dual-trace oscillocope, the two outputs may be simultaneously inspected. The correct amount of bias is then established by varying the inclination of the vertical pivot until the two output waveforms are equally free of distortion. In practice, there will be a range of adjustment over which there is no discernible change in waveform shape. It is therefore necessary to find two positions of the block at which the onset of distortion can be seen, first in one channel and then in the other. Having located these points, the best setting is one midway between them.
The two photographed versions were tested for arm resonances using the B \& K test record QR2010, band 15. The 1.f. arm resonance for the first arm, Fig. (a), is certainly in a suitable position as there is minimum energy from the record near 7 Hz and it is clear of the lower recorded modulation limit of 20 Hz . The resonance at 7 Hz is from the compliance of the stylus cantilever with pickup and arm mass; some new pickup designs have improved damping as part of the cantilever suspension. The peak of 10 dB was 2 to 3 dB better than two commercial arms measured, and I have recently measured an arm with a 20 dB peak at 10 Hz .
As this 7 Hz 10 dB resonance can affect other parameters such as rumble wow/flutter and playing weight, as well as adding intermodulation to tones in the audio
band, the resonance can also make the problem of groove jumping from vibrations greater, especially walking and traffic. Modifications were considered but as other arm resonances can occur in the audio band a 20 Hz to 20 kHz sweep was made, Fig. (b). Similar tests were made on the second arm, Figs (c) and (d).
Close inspection of the first arm showed oscillation about the horizontal pivot, with the two ends as antinodes. I had hoped that moving the horizontal pivot to a $2 / 3: 1 / 3$ position instead of half way would reduce the oscillation and result in nodes at both the pickup and pivot. The second arm, built on this basis, did not show an improvement as far as the main arm resonance is concerned; however the small resonance at 33 Hz disappeared.

Although it is hoped to halve the 7 Hz resonance on the mk 3 arm , some increase in output toward the 20 Hz end can be justified as the IEC recording/playback characteristic specifies a 3 dB reduction in amplitude at 20 Hz . A slight up-turn from arm resonance could therefore help to keep overall response flat to 20 Hz .
ŁAs shown by Record warps and system playback performance, by Happ \& Karlov, AES Convention 1973.

(a)

* Model C Miniature - 15 Watts Price $£ 4.20$ * Model CX - 17 Watts Price $£ 4.40$ * Model X25-25 Watts Price $£ 4.40$
*S.T. 3 Stand to fit all irons Price $£ 1.60$ * Model'S.K. 1 Kit contains a 15 Watt miniature iron with 2 spare bits, a coil of solder, a heat sink and a booklet "How to Solder" Price f 6.25 * Model S.K. 3 Kit contains Model CX 230 iron - 17 Watts with the S.T. 3 Stand Price $£ 6.00$ * Model S.K. 4 Kit contains Model X25/240 iron - 25 Watts with the S.T. 3 Stand Price $£ 6.00$.

Model TCSUI. Temperature controlled soldering stations, now made from the toughest of tough plastics, have anti-static earthing connections to protect your MOS devices. They come with either the miniature CTC or the XTC low voltage (24V) iron. Included also is a range of 3 sizes of bits, 2 m anti-static cable, jack. crocodile clip, separate sponge tray. Zero voltage switching to prevent spikes or arcing: no magnetic fields. Temperatures can be set between 65° and $420^{\circ} \mathrm{C}$. Current leakage is negligible. Price E 38.00

ANTEX (Electronics) Lid.
Mayflower House, Plymouth. Devon. Telephone: Plymouth (0752) $67377 / 8$. Telex: 45296 Giro: 2581000

Name
Address
Telephone:
> :

Stocked by many wholesalers and retailers or dir
WW-OE4 FOR FURTHER DETAIS

Satellite broadcasting in the eighties

2 - European satellite projects

by G. J. Phillips, M.A., Ph.D., B.Sc: BBC Research Department

There arel a number of satellite broadcasting projects under discussion in Europe. An outline of present proposals is given here but details may, of course, be modified in the course of development.

European Space Agency L-SAT. This project is for a large satellite, to be launched by Ariane- 3 in the first quarter of 1984, to carry transponders for a number of different applications including two for pre-operational use in satellite broadcasting. ${ }^{3}$ Other transponders will permit trials on business-system communications (up-link in 14 to 14.5 GHz band, downlink in 12.5 to 12.75 GHz band) as well as propagation and wide-band data-link studies in the 30 GHz (up-link) and 20 GHz (down-link) bands. The precise details for the two 12 GHz braodcasting beams are still to be settled but one beam is likely to be elliptical (approximately 1 by 2.4 degrees), carrying channel 24 with left-hand polarisation to correspond with one of the Italian assignments, and the other a circular beam (1.6 degrees wide) which may carry channel 20 or 28 , probably with the opposite polarisation. The intention for the first three years at least is to take advantage of the fact that either beam can be independently steered to cover any European country, so that satellite broad-
casting demonstrations and pre-operational experience can be obtained on a time-sharing basis. Most of the experiments are likely to take place with the satellite at the 19° West orbit position. Consideration is being given, however, to operation for extended periods at 31° West and 5° East as may be required to provide pre-operational test transmissions to match plans in the UK, Spain and Scandinavia for operating their own satellite broadcasting satellites in the second half of the decade. The use of the satellite towards the end of its seven-year life is uncertain but Italy has made a strong bid to use it as a starting satellite for its service on two

Artist's impression of L-SAT from British Aerospace, the principal contractor. The $B B C$ has proposed to the Home Office that after two years' operation in the $19^{\circ} \mathrm{W}$ orbit position the satellite should be moved to the UK's orbit position of $31^{\circ} \mathrm{W}$ and made available to the BBC for a subscription tv direct broadcasting experiment. If, however, L-SAT has to remain at $19^{\circ} \mathrm{W}$ it might be possible to change the second transponder to a frequency and polarization suitable for the UK, or to fund an additional broadcast transponder for UK use. Two L-SATS would be built, one to be held as a spare.
channels until replaced by a purpose-built operational satellite.

The UK has made the largest single contribution so far to the L-SAT project in terms of money and corresponding contracts. At least seven other countries are giving support, notably Italy and the Netherlands. British Aerospace has been selected as principal contractor. The decision in implementing L-SAT will be taken at the end of 1980 following completion of the definition/design stages now in progress.

French and German satellites. France and Germany withdrew their support for L-SAT in 1979 and agreed that they would co-operate in building two satellites, one for each country, each capable of transmitting on three channels. The satellites themselves would be built by Messersch-mitt-Bolkow-Bohm in Germany in cooperation with Aerospatiale in France; they are intended to be launched by the Ariane launcher, which is largely a French development, though carried out within the framework of the ESA. Present plans are working towards a launch of the German satellite in December 1983 and the French one in June 1984. The German satellite will operate on channels 6,10 and 14 , and the intention is that two channels

will carry television and the third a multiplex of sound programmes using digital modulation. The details for France are not yet settled.

NORDSAT project. As indicated earlier, the four Nordic countries are in the privileged position of having secured eight channels in the 1977 plan within a beam whose coverage embraces Norway, Sweden, Denmark and Finland. NORDSAT is the joint body set up both to exploit this beam and to include transmissions for Iceland, Faroes and Greenland, the project being based on the use of a satellite at 5° East. The intention is to relay the various. national television programmes throughout the whole group of countries. For the four major countries eight programmes could be relayed and for the Icelandic beam the assignments permit five.
The participants wish to include sound programmes but are reluctant to forgo one television channel by dedicating one channel for a sound multiplex (as proposed in Germany). They wish to develop suitable means for adding several sound channels to the television channel to cater for a stereo pair for television extra language channels connected with the television programme, and additional channels for sound programmes not associated with the television programme. While this is considered feasible, considerable experimentation and international discussion will be needed before the most practical and economic solution can be achieved, preferably with a common standard with other European countries at least for the method of sending the main sound component of the television programme. Experiments with OTS have already shown that a digital sub-carrier for 2,4 or 6 audio channels may be one way of contributing to the needs and, as already mentioned, there is interest in Europe generally in improving and extending television sound transmission methods. Another avenue to be explored is a digital signal in the video waveform within the line-blanking period (a development of the principle used in the sound-in-syncs system on video links in the UK and for Eurovision) but the system would be dependent upon a practical decoder for domestic receivers.

Other countries. The only other European country that has been reported as actively investigating satellite broadcasting is Luxembourg. This would clearly have a sizeable audience for commercial French, Dutch and German programmes in the area of good individual (domestic) reception extending some 200 to 300 km around Luxembourg. Transmissions from French and German satellites from the same assigned orbit position of 19° West would ensure the installation of suitable receivers. Table 1 (last month) shows that those equipped for the French satellite would already have the correct polarisation and half-band for Luxembourg's channels. The limited size of the Luxembourg beam makes direct broadcasting to any part of the UK impractical in terms of individual reception; even in the extreme south-east
of England a 2 to 3 m diameter aerial would be required for reception, so a commercial audience is unlikely, unless re-distribution of programmes by cable becomes legally and economically acceptable.

Finally, in addition to the US/Canadian CTS experiments mentioned earlier, a demonstration of satellite broadcasting outside Europe has also been successfully accomplished in Japan with a 100 W transponder in the 12 GHz band. ${ }^{4}$

Current investigations

One serious concern has been possible interference. For example the image frequency or i.f. may correspond to radar or air radionavigation systems of significant power, and second thoughts may be needed on the preferred i.f. and whether to have the local oscillator frequency above or below the signal frequency. A more difficult problem may be harmonic radiation from microwave ovens since, by the end of the decade, both these and satellite receivers are likely to be in close proximity in residential areas. The fifth harmonic of ovens nominally on 2.45 GHz may be the main concern and could affect reception in the upper half of the 11.7 to 12.5 GHz band. Of course, all the interference mechanisms mentioned have been studied theoretically but, as in many interference problems, practical experience will be necessary to see whether the assumptions are valid. First examination suggests careful design of the receiving system will be needed to avoid problems with the known levels of signals from potential interfering sources.
Satellite television signals are required to have added to their video waveform an "energy dispersal" signal such as a $25-\mathrm{Hz}$ triangular (symmetrical) sawtooth, corresponding to 600 kHz peak-to-peak deviation. The dispersal waveform helps in controlling interference to terrestial systems carrying multichannel telephony and operating in the same band. Its removal from television signals will require additional clamp circuits to avoid picture flicker. The current satellite broadcasting standard for 625 -line signals calls for CCIR pre-emphasis, a.c. coupling and the polarity convention used in terrestrial microwave links and satellite point-topoint vision links, but the f.m. deviation is about 14 MHz - a value higher than terrestial link practice but below present satellite link video-deviation standards Some aspects of these standards (e.g. the video pre-emphasis curve) may be revised to meet any difficulty in applying them to receivers in the home, although present opinion is that they are already close to the optimum.
For sound transmission it has been proposed for the French and German satellites that, besides an analogue sub-carrier at 5.5 MHz for the main sound signal, a second analogue subcarrier at 5.746 MHz should be used, either for a second language or to provide a stereo difference signal. To ensure adequate sound quality there are proposals that each subcarrier should deviate the main carrier as much as
5.6 MHz peak-to-peak and that the f.m. sound deviation should be increased above the present $\pm 50 \mathrm{kHz}$ value to $\pm 65 \mathrm{kHz}$ or even ultimately to $\pm 100 \mathrm{kHz}$. Some engineers are concerned about the requirements for i.f. group delay accuracy, video linearity and the careful filtering of the video band that are called for in the domestic receiver to prevent any noticeable degradation (by patterning etc.) of the picture by the presence of the two analogue subcarriers at the proposed level. As a result there is a case for considering a digital sound system of some kind - a single digital subcarrier carrying two audio channels for example - to provide the sound for television from the start of satellite broadcasting. Those preferring this solution feel that, with a lower level of subcarrier, problems of sound or picture quality are more easily resolved and that large-scale-integration (1.s.i.) circuits should ensure that digital demodulation will be cheap and will avoid analogue-circuit alignment problems.

Some journalists and enthusiasts have pictured satellites as a means for anyone to "drop in" and receive television programmes from other countries at will, so that when the 1977 plan did not appear to provide for this, scorn or indignation was expressed at the apparent narrow-mindedness of the planners. ${ }^{5}$ What must be understood, however, is that there is nowhere near enough frequency spectrum to plan for interference-free direct reception of the 50 or 100 programmes implied. Furthermore there would be political, legal, copyright and advertising problems in widespread international coverage. Within the scope of the 1977 plan there is nothing to stop shared programmes or joint productions and pressure from the public should ensure that the broadcasting authorities provide them with what they want. The plan is perhaps open to criticism because it is a compromise which allows a considerable degree of inevitable overspill between adjoining countries. Perhaps in the next band at 40.5 to 42.5 GHz (apart from thinking of higher definition, digital video and maybe stereoscopy) we should use large apertures and make sure that beams are tailored to fit each country or part of a country more precisely. This in turn would reduce interference to others, lead to more efficient use of the spectrum, and give more channels for each country.

Acknowledgement. The author wishes to thank the Director of Engineering of the BBC for permission to publish this article.

References

3. Herdan, B. L. European multipurpose telecommunication satellite: development plans. paper submitted to AIAA 8th Communication Satellite Systems Conference, Orlando, April, 1980.
4. Ishida et al. Present situation of Japanese satellite broadcasting for experimental purposes. IEEE Trans. BC25 No. 4, p. 105, December 1979.
5. See for example editorial in Nature Vol. 267, 5 May 1977.

Coherent audio filters for c.w.reception

Novel filter helps separate Morse signals from interference

by F. Charman G6CJ

Abstract

The problem of extracting information from a noisy environment has been with us ever since wireless communication began, and over the years many noise-reducing systems have been invented. Today the radio astronomer separates "informative noise' from a background which may exceed it by 30 dB or more. The author discusses the problem as it affects the radio amateur using Morse-code signalling, and introduces a novel type of filter which uses coherent addition to help separate steady-state signals from interference, and noise man-made or 'natural. It uses the tapped delay line principle to provide a non-ringing filter which, as well as lifting the signal from its environment, also has. a narrow passband with desirably steep sides.

If all the radio amateurs in the world using the h.f. band could be heard together, one operator's share would be about 3 Hz . Fortunately, the possibility is remote but, nevertheless, the packing density is a severe and ever growing problem, particularly since the most interesting signals are often down in the noise or buried in the 'fourth layer' of interference.

It has often been said that c.w., as it is misnamed, is a dying art. Most professional communication is now carried out by machine systems which are faster and more reliable, though they seldom approach the Shannon ideal as closely as the Morse code: the cost of reliability seems to be very expensive in bandwidth. The argument for keeping Morse alive, given long ago, still holds ${ }^{1}$. The possession of a large body of radio. operators is an important national asset, as it was to us during the last world war. In times of emergency, when sophisticated means may fail, the human operator can still carry on some sort of communication with the absolute minimum of gear. One therefore feels justified in continuing to search for ways of improving C.w. communication

C.w. communication

In hand operating, selectivity takes place in two stages: in the receiver and in the operator's head. After the atmosphere and the external noise have
done their worst the receiver does its best, and then the operator does a great deal more. He attunes his brain to the signal and its particular rhythm, and uses his knowledge of the redundancy. of the language and maybe his knowledge of the operator at the other end of the circuit. This 'subjective selectivity' can be greatly helped by converting the receiver audio output to a stereo image, particularly in searching, when one needs to be alert to the signal environment ${ }^{2}$. The operator is quite as important as the machine and there is plenty of scope yet for improving the coupling between man and machine. However, the following work is largely on the side of the machine.

Filters and noise

Noise in the present context includes white and transient noise, as well as unwanted signals. The author was encouraged to undertake the present investigation after moving to a location abounding in 11 kV power distribution lines, which often produce enough somewhat 'coloured' noise to bury any but the most resolute signals.

The first attempt was a highly selective filter of conventional type, but this was quite useless. The noise particles grew into great blobs in the passband,

Fig. 1. Illustrating coherence. The vector S represents the signal whilst the noise is a number of random vectors in the centre. The area of the circles represents the power in the signal and the noise. Addition of N signal vectors in phase increases the signal power N^{2} times. The noise can only be added as power, so N samples gives only N times noise power. a signal /noise power gain of N.
whilst the weak signals, already modulated by noise in the receiver, actually lost power because they now had a wider spectrum. It became clear that in such a situation it was best to use the widest passband that interfering signals would allow. The transients kicked the narrow-band filter transients into damped oscillations which lasted for at least Q cycles. To prevent this, it would be essential to use heavily damped, non-ringing circuits, but this would normally require a great number of non-interacting sections to produce a narrow-band result.

Some method was sought of securing coherent build up of the wanted signal and it seemed that a delay line several cycles long could provide samples at every half-cycle of the wanted audio frequency, which could be added in phase to enhance the signal at the expense of the incoherent noise, as in Fig. 1. Since the phase must vary with frequency, coherence would degenerate as the frequency moved away from the half-cycle value, and a narrow band might more easily be obtained. This turned out to be the case.

Transversal filters

The tapped delay line, or transversal filter, of Fig. 2 is normally used in the time domain, for generating or recognizing coded pulse trains or shapes, in, for example, secure communication systems or high-resolution radar. The delay line may comprise lumped networks or may be cable or waveguide. In this case it is going to work in the time domain for noise and in the frequency domain for c.w. signals.

For audio applications, network sections are necessary. Several sections are needed to obtain good coherent advantage and they must have low Q in order to prevent ringing. It turns out that all-pass sections make a very good filter and with quite low Q rapidly produce a narrow passband. Second-order sections are required to produce a phase shift of 180° at the mid frequency.

Perhaps one should explain what is meant by the Q of an all-pass filter. In a bandpass filter, of course, Q conventionally determines the rate of fall of amplitude away from centre frequency. An all-pass filter has uniform transmission at all frequencies, but the rate at which the phase changes about the mid
frequency is under control; in a lumped, LC allpass, this is determined by the L/C ratios in relation to the termin. ating impedance, the loaded Q of the network. In dealing with filters it is more convenient to use the damping factor, m, which is the inverse of Q.

Design

In a T-filter of N stages, the adder sums $N+1$ samples in progressive phase. It is quite easy to reduce the sum to a com-1

Fig. 2 Transversal filter. The tapped outputs along the delay line are added in alternate phases. At the section mid-frequency where $\phi=180^{3}$ all samples are fully coherent. Away from this phase position coherence declines, and a bandpass filter results.
(a)

(b)

Fig. 3 Design charts for the filters. (a) the basic response in terms of phase per section. (b) conversion of response to frequency scale in terms of damping factor m
pact formula (see Appendix). For design, since one is working in phase rather than frequency, the first step is to produce a generalized chart of output amplitude versus phase for various values of N, as shown in Fig. 3 (a). The second step is a chart, seen in Fig. 3(b); to convert these responses to frequency scale in terms of the damping factor. Thus m can be chosen to control bandwidth.
The responses are characterized by steep sides to the passband, followed by sidelobes, as in a conventional m. derived filter or a linear aerial array These sidelobes are too large for a noisy signal environment, and various means are discussed later for reducing them.

Theory of performance

When a resonant wave enters the filter, each tap in turn delivers one half cycle of oscillation and the output builds up in $N-1$ steps to $N+1$ times the input amplitude; it decays likewise when the signal stops, as in Fig. 4. Of course, this makes the signal sound a little 'woofy' as would a conventional filter, but the rise is linear and quick. Up to eight stages have been used without the effect becoming too unpleasant. At the resonant audio frequency used this slope represents a small fraction of a typical morse dot.

A pulse may in 'general be treated as a step function or a combination of two or more. Analytically, the output of an ideal allpass to an ideal step is rather alarming - a sharp spike where the components of its frequency spectrum come into phase, followed by a broad pulse representing the intermediate spectrum. But this is not a real situation. The filter sections never pass zero or infinite frequency. The pulses are topped and tailed naturally in propagation through space and through the receiver. What the filter receives is a single, rounded pulse, maybe with some overswing. This propagates down the chain with very little change if the damping is high and the result is no coherence, but a kind of oscillation lasting $N+1$ half cycles. Thus, a c.w. signal is extended in amplitude whilst a transient is extended in time and one can expect the improvement due to coherence of the signal. Similarly, band-limited white noise delivers samples belonging to different epochs, and again there is no coherence.

Filter sections

The use of active networks brings several advantages apart from the avoidance of physical inductors. Modern integrated-circuit amplifiers can provide filter sections with high input and very low output impedances. Thus, there are no interactions between sections; they are unilateral, and reflections cannot run up and down the chain, as they can in passive filters, to produce long-delay echoes on transients. The damping required for frequency response is automatically incorporated in each section of an active filter.

Fig. 4 Response of the T-filter to (a) resonant a.c. signal and (b) band-limited step function. The signal is extended in amplitude and the transient in time.

Fig. 5 Two active, all-pass circuits which can be made to give any value of damping factor. The Holt and Gray circuit (a) looks more complex but is easier to implement, since circuit (b) requires special R-values and an extra amplifier to recover unity. gain.

Two active circuits are known which provide complete freedom of choice of damping coefficient ${ }^{3}$, and their basic forms are shown in Fig. 5. In the Holt and Gray circuit, A is the main arm, controlling the mid-frequency. Arm B has twice the admittance value of arm A and provides a cancellation in the algebra of the response function, whilst arm C with admittances $m A$ determines the damping factor. Resistors R_{1} and R_{2} fix the gain at unity, as is essential for our T-filter.

The most critical components are the gain control pair. Because of the
positive feedback arm B, the circuit can become unstable if R_{2} exceeds R_{1} by more than a few percent, and oscillation may occur at about 10 kHz , where amplifier limitations brings the phase round to 360° too soon. Arm B is next in order of importance and will upset the gain and phase response if too far out of adjustment. Nevertheless, using 2% resistors and $21 / 2 \%$ capacitors, many

Fig. 6 All-pass section with $f_{o}=725 \mathrm{~Hz}$ and m0.94. All resistors except the 680k are of 2% tolerance and all capacitors except the bypass and the 330pF are $21 / 2 \%$ polystyrene. The actual vale of R_{1} and R_{2} is not important but they should be a well matched pair.

Fig. 7 Complete four-stage T-filter with input sidelobe filter, using allpass sections as in Fig. 6. Apart from the delay line sections and the adder, no close tolerance components are needed. Note the bias arrangements for the delay line and the input filter. The adder takes its bias from the delay line.
sections have been made without difficulty,
The circuit of Fig. 5(b) looks simpler, but requires difficult resistor values, needing parallel pairs or a stable variable resistor, and therefore much trouble in setting up. Also its gain is $1 /\left(1+m^{2}\right)$ which must be brought up to unity with a second amplifier.
The centre frequency of the Holt and Gray filter chosen has been set at 725 Hz . This is a comfortable listening frequency and is also in the most selective region of the hearing mechanism. In addition, the $C R$ product in the networks can be based on $22 \mathrm{k} \Omega \times 10 \mathrm{nF}$, and since the E-series component values are approximately logarithmic, other pairs can be found for various m-values. Figure 6 shows the detailed circuit.

Sidelobe reduction

As noted above, the sidelobe level, about -12 dB , is too high. Some 'leak' of the outside world is useful, but it must not let in too much of the noise spectrum, or overload signals; 30 dB is a desirable target. Various schemes have been considered, such as the use of an over-riding bandpass filter or mixed m-values along the chain. Another is to go back to the aerial designer, and use a tapered distribution by weighting the taps to the adder. The first two only give about -20 dB , the taper about -24 dB . A taper much used is the familiar 'cosine-on-pedestal and together with a quite low-Q input bandpass filter can be made to give -30 dB sidelobes. A Tchebysheff taper could no doubt be made but would require very close tolerances to give the -30 dB , but the input filter has another advantage in that it removes much of the transient energy and thereby improves performance. So the head
filter has been used as part of the complete design. (Note that the T-filter passes on in some way all the energy which enters whilst the more conventional filter rejects energy outside its passband).

Four-stage linear-array model Figure 7 gives details of a four-stage T-filter, using the all-pass sections shown in Fig. 6. A feature is that the operational amplifiers are biassed up to $1 / 2 V_{\mathrm{s}}$, so that a single, earthed power supply can be used. Type 741 amplifiers are used throughout; other types such as the 709 need an external compensating capacitor.

The input bandpass filter is a well known type in which the bandwidth is constant ($B=1 / \pi C R_{3}$) whilst it can be tuned by varying the input shunt resistor R_{2}. The resonant frequency is given by $1 /\left(2 \pi C \sqrt{R_{12} R_{3}}\right)$ where R_{12}, is the parallel value of R_{1} and R_{2}. The gain at resonance is $R_{3} / 2 R_{1}$. It should be tuned to peak at 725 Hz or to balance the two sidelobes of the complete filter. The bias for this stage clamps the non-inverting input to $1 / 2 \mathrm{~V}_{5}$
The delay line uses sections as detailed in Fig. 6, the main properties of which have already been given. One adder tap is taken from each input and one from the final output. Bias is applied at the first input, and the amplifiers are good enough to hold this closely all down the chain, though the models made used two stages per board, based on the 747 chip (two 741 in one unit) and each board was provided with one bias and blocking capacitor. The latter should be $1 \mu \mathrm{~F}$; this already shifts the phase a few degrees and if any less is used the peak frequency of the filter wilt move.

To test the allpass sections it is

necessary to check that the output terminals (pin 6) are at about $1 / 2 V_{5}$, and that the phase shift per section is 180° at 725 Hz . The latter test can be made by connecting both input and output taps of one section to the inverting input of the adder; the output of the adder should zero at the 180° frequency. If these tests are satisfied then all is probably well, though it is advisable to use an oscilloscope to test for self oscillation.

The adder is conventional, and takes its bias from the filter chain. The gain is unity for each input but, since there are five, the a.c. output will be five times that of the input to the main filter, so this is the overload point of the system. With a supply of 18 volts to the amplifiers, the system will handle sufficient level for headphone use. If the adder is to be tested separately it must be provided with bias.

The output of the adder will drive a high-impedance headset direct, but for more general use, an output stage has been added, based on the LM380, which will drive any headphones, or a small speaker of almost any impedance. Its input is tapped down to give an overall gain of about 2 or 3 . Input blocking is necessary and the 1000 pF shunt is protection against strong r.f. fields.

The LM380 is internally protected against output short circuits, but if less than 12 volts supply is used it may lock out and play possum. It is a lively megahertz bandwidth amplifier, and both the $0.47 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ decouplings are essential: if it does oscillate it may draw enough current to do damage. The main earth and heatsink on pins $3,4,5$ and $10,11,12$ should connect at least two square inches of circuit board copper, and for speaker use extra heatsink should be added.

Performance

The overall frequency response (Fig. 8) is characterised by nulls at about 500 and $1000 \cdot \mathrm{~Hz}$, i.e. about $21 / 2$ bandwidths apart. (if these are not correct, check the adder and the overall flat frequency response of the delay line). With closetolerance components these notches may be 40 dB or more below peak level, and one can, in fact, tune out a c.w. signal and listen to its spectrum puffing on either side of the notch. Also the transient rejection is sufficient to reduce the apparent strength of signals with a bad spectrum. However, strong, hash-type noise tends to whistle near the peak frequency, and reducing this effect led to further development.

Cosine-on-pedestal model

The natural frequency of a second-order filter, at which the transports of the transients abound, is $w_{0} \sqrt{1-m^{2 / 4}}$. With $m=1$ as in the model above, this quite close to w_{0} and the obvious step is to move toward critical damping with m approaching 2 and thus push the noise energy towards zero frequency. How-

Fig. 8 Frequency response of the linear filter of Fig. 7.

Fig. 9 Basic delay line sections and adder for an eight-stage cosine-on-edestal model. The 2nd order section is replaced by two first order sections for an equivalent $m=2$ and the adder redesigned for weighted addition and division.

ever, more sections are then needed to retain the 200 Hz bandwidth. which increases cost but gives extra coherent gain. A good arrangement would be six stages with m about 1.7 , but the cosine-on-pedestal with its low sidelobes was attractive and this model was made.

For the taper distribution the shape and ratio of curve to pedestal is not critical, and $1+2 \cos x$ is a good shape. But, as with the aerial, the cost of sidelobe reduction is an increased bandwidth and correspondingly reduced gain. Eight stages with $m=2$ gives a 200 Hz bandwidth and a gain of about 6 .

The essential differences from the previous design are shown in Fig. 9. One advantage of using $m=2$ is that a second-order filter section can be made using two first-order networks in a much simpler circuit. This doubles the number of amplifiers but the cost is about the same, since an 8 -pin 741 now
costs no more than two polystyrene capacitors.

The taper distribution is arranged by varying the resistors feeding the adder. Since fractional addition cannot easily be carried out on the positive amplifier input, two adders are needed, one for each phase, with a third to bring them together. The first pair are also arranged to divide as well as add, to reduce signal level, by using low value feedback resistors. (The gain is the sum of the eight ordinates of the taper curve).

The frequency response is shown in Fig. 10. In use this filter is noticeably better than the four-stage model, particularly in noise performance. The ability to perceive the signal environment when necessary may be arranged by fitting a switch to cut out the input bandpass filter. In all these filters it is advisable to protect against strong r.f.
fields by screening and filtering both input and output.

Further outlook

It may be considered better to try to apply this filter system earlier in the receiver than the audio stage, before the receiver becomes overloaded by extraneous signals or before the detector has added its contribution of trouble. To do it at i.f. would require a large number of high-Q sections, probably quartz, to produce the narrow bandwidth.* It should be possible however, at an i.f. of say 50 kHz , to use analogue shift registers to give the required delays. However, the devices are expensive, and one would need one with taps at, say, 64section intervals.
Against this it may be noted that most good receivers have a "CW" filter of about 600 Hz bandwidth in their i.f. amplifier which can deal with much of the overload problem. Also, with recent developments in high linearity detectors and modulators, there is now a better argument in favour of audio filtering ${ }^{4}$.
*In regard to transient performance, the demodulator converts the i.f Q to the equivalent audio value.

Addendum

Measurements of transient performance confirmed the pulse response of Fig. 4, though with some irregularity due to the small overswings 'aliasing' into the next epoch. However, the 3 kHz band-limited white-noise behaviour disappointing; it seemed that the residual noise energy in the sidelobes doubled the effective noise bandwidth of the narrow passband.

This led to the idea of using low-Q resonant filters instead of allpass sections. Since this paper was prepared, such filters have been made, using sections like the bandpass filter shown in Fig. 7, with a Q of unity. (No tap was taken from the input line since this would produce a wideband signal level of $1 / N$).

The expected noise improvement was obtained, and the shape factor was good; the nulls have of course been lost,

but the sides pull down much faster than those of a single-stage filter of the same 3 dB bandwidth.
The circuits are much simpler and four stages can easily be built round one LM324 amplifier chip. Also there is no need for close-tolerance components or critical stage-gain control, though the overall gain should not be much greater than unity, or the transients will grow. On a cost basis, there is probably no great advantage, since the phase rate is only half of that of an a.p.f. section, and more stages are required for the same selectivity. The optimum arrangement for a 200 Hz bandwidth is probably $N=6, Q=1.25$, or better, $N=8, Q=1.0$.

Appendix
 For the linear filter:
 sum of output taps $=\sum_{r=0}^{N}(-1)^{r} e^{-\mathrm{jr}}$.

This is a geometrical series with a progression ratio ($-e^{-i \phi}$) and, using the g.p. sum formula, with Euler's equivalence $e^{j x}=\cos x-j \sin x$, and algebraic and trigonometric manipulation, it can be reduced to

$\sin : N$ odd $\cos : N$ even

When $\phi=180^{\circ}$, this is indeterminate, but by taking limits the sum is found to be $(N+1)$.

Zeros occur when $\phi=\frac{k \pi}{N+1}$
$k=1,3,5 \ldots \ldots . N$ even
$=0.2 .4 \ldots \ldots . N$ odd.
The 3 dB bandwidth $\phi \approx \frac{1.4 m \text { (empirical) }}{N+1}$

For the cosine-on-pedestal:
$(1+K \cos x)$ with $x=0$ to π over series.
$\operatorname{SUM}=\sum_{r=0}^{N(-1)}{ }^{\prime} e^{-\mathrm{Jro}}(1+K \cos r \pi / N)$
Reduction proceeds as before, but is tedious, giving
$\operatorname{SUM}=+\frac{K}{2} \frac{\cos -(\bar{s}+1) \phi / 2-\pi / 2 N]}{\cos (\phi / 2-\pi / 2 N)}$
$-\frac{K}{2} \frac{\cos _{\sin }[(N+1) \phi / 2+\pi / 2 N]}{\cos (\phi / 2+\pi / 2 N)}$

Analytically, the method given for a.p.f. sections leads to hyperbolic functions, but for a hand computer one can use $\Sigma=z\left(z^{n}-1\right) /(z-1)$ where $1 / z=1$ $+j Q(x-1 / x)$ and $x=\omega / \omega_{0}$, using the rectangular/polar conversion for the complex z operations.

References

1 Editorial; QST August 1964.
2 Charman. F. and Harris. R. "Subjective selectivity and stereocode" Radio Communication, Sept 1975.
3 Holt and Gray. Proc. I.E.E., Dec. 1967 p. 1871 .

4 Tong. D. A. BSc PhD. "Audio filters as an aid to reception" Radio Communication, Feb. 1978.

Party electronics

Over a quarter of a million pounds was donated to the Conservative Party and its supporting organizations in the year 1979/80 by companies prominent in electronics, according to a Labour Party information sheet. Among the largest donations in all the companies listed were those of GEC ($£ 50,000$), Lucas ($£ 20,000$), Plessey ($£ 48,000$), Rank ($£ 53,000$) and Thorn ($£ 20,000$).
Smaller contributions included $£ 13,700$ from BICC and a variety of sums below this from Chloride, Chubb, Comet, Decca, EMI, Morgan Crucible, Smiths Industries and Telefusion.

The Labour Party document comments that the total donations made directly to the Tory Party were 104% up on those for the previous year, and that the "obvious reason" for this massive increase was that the General Election of May 1979 inspired a larger number of companies than before to dig deep into their resources in order to support the Conservative cause.

Wireless World index and binding

As announced, last month, the index for Volume 85 (1979) of Wireless World is now available, price 75 p including postage, from our General Sales Department.

Our publishers also offer a service of binding volumes of Wireless World, each complete with the appropriate index. If you wish to use this service send your copies to Press Binders Ltd, 4-4a Iliffe Yard, Crampton Street, Walworth, London SE17 with your name and address enclosed. Confirm your order to the General Sales Department, IPC ElectricalElectronic Press Ltd, Room 205, Quadrant House, Sutton, Surrey SM2 5 AS , and with your letter send a remittance of $£ 6.90$ for each volume (this price includes the index). Please allow up to ten weeks for delivery.
In both cases cheques should be made payable to IPC Business Press Lid.

An acoustically small loudspeaker

2 - Construction of speaker enclosures and active crossovers

by R.I. Harcourt B.Sc., M.I.E.E.

The bass enclosure uses a Dalesford D301105 in unit and is 3 litres in volume, giving a 3 dB point of 100 Hz and a Q of 0.7 (measured values). The KEF B110, which is a rather similar drive unit, could also be used, but has not been tried. The enclosure is constructed of 18 mm timber (in order of preference hardwood, plywood and chipboard) to ensure a low level of unwanted sound. The author used chipboard and, using the method outlined in part 1, was unable to measure any panel resonances or other sound transmission through the walls owing to their low levels (at least 30 dB down). Dimensions are shown in Fig. 6. The bracing member is used to eliminate one of the two resonances arising from the square dimension, but was also found to remove a chassis resonance of the drive unit which coupled to the box at 320 Hz , by bracing the magnet. The member is deliberately made slightly larger than the available space so that when the front panel is fitted the drive unit and rear panel are stressed. The enclosure is filled with $40 z$ long-fibre wool.

Sub-woofer

The sub-woofer required for adequate bass extension (below 100 Hz) has a fourthorder, band-pass characteristic arising from the second-order, high-pass function of the closed-box enclosure system and a second-order boost filter. The 3 dB frequency of the sub-woofer enclosure is made the same as that of the 5 in bass unit, which is 100 Hz . For analysis, the network functions for the band-pass sub-woofer and for the bass enclosure system were combined to produce a bi-quartic function to determine the Q and gain required from the components for a satisfactory 3 dB point and low ripple. Normal analytical techniques were found inadequate for the case of the bi-quartic function, and the magnitude function was taken and explicitly solved using a home computer. These functions are shown in the Appendix.

The ideal Q for the enclosures was found to be 0.5 , but this low figure was not practicable for the small enclosures used. The figure of 0.7 was taken for the Q and the method of Small ${ }^{7}$ was used for the enclosure design. The higher Q implies some ripple in the response, but the computer prediction is that this ripple amounts to only 1.6 dB , which is hardly audible, particularly since it is at 113 Hz , where room eigentones are likely to give rise to much larger ripples. The frequency res-
ponse predictions are shown in Fig. 7.
The design procedure for the subwoofer enclosure was similar to that for the bass unit, but using the Son-Audax WFR 15S. The theoretical Q for the enclosure system was 0.7 : however, when the enclosure had been built the Q was measured as 1 , and stuffing the enclosure with longfibre wool did not significantly reduce it. The effect of the higher Q is to introduce about 3 dB of ripple into the response. To lower the Q, the old technique of feedback Q correction was used. If the output resistance of the amplifier is made negative by the introduction of positive feedback, then part of the voice-coil resistance is effectively cancelled, giving a lower Q. A theoretical treatment is found in the Appendix. Figure 8 shows the circuit of this arrangement for the case of the Crimson Elektrik תE608 amplifier module. The 47 k nega-tive-feedback resistor R_{7} is part of the CE608 module, and the module must be modified in the following manner. Remove R_{6} (1.5 k) and $\mathrm{C}_{4}(100 \mu \mathrm{~F}, 10 \mathrm{~V})$ from the CE608 board. Replace R_{6} by a 1 k 2 resistor. Take a screened lead from R_{6} to the $100 \mu \mathrm{~F}, 10 \mathrm{~V}$ capacitor on the filter board. The 1 N4148 back-to-back diodes are an insurance against mains transients, which can otherwise destroy the amplifier when it is used in this manner.

The summing amplifier, which combines the two channels, and the secondorder filter circuits are also shown in Fig. 8. The filter is a conventional Sallen and Key type with an f_{0} of 28 Hz and a Q of 1 . The summing amplifier provides the gain necessity for the bass boost of the belowresonance enclosure. Two 27 k resistors combine the left and right bass channels within the metalwork housing the active crossovers and amplifiers. A screened lead takes this signal to the summing amplifier, which can be remotely sited. (In the author's installation, the two metalwork kits containing the crossovers and amplifiers are shelf mounted with the loudspeakers remote.) The screened lead takes the combined bass signal to the sub-woofer enclosure, where the filter p.c.b., CE608 amplifier and power supply are sited, enclosed in a Crimson Elektrik metalwork kit.

The WFR15S unit used for the subwoofer has a high efficiency, which to some extent offsets the amount of bassboost necessary for the below-resonance design. However, the limiting factor for all loudspeakers at the bass end, whether subresonant or not, is the cone excursion capa-
city, and not the power handling capacity as it sometimes supposed. Since the maximum s.p.1. available from a closed-box enclosure is determined by the area of the cone and the cone excursion, it is possible to increase the s.p.l. by increasing the number of drive units. The WFR15S has a cone-excursion-limited maximum s.p.l. of 86 dB at 35 Hz , the worst case considered here, since this limit increases at $12 \mathrm{~dB} / \mathrm{oc}$ tave. This may be compared with 88 dB s.p.l. available from two KEF B139 units in a closed box, and with approximately 95 dB s.p.l. from the full symphony orchestra. The author has considered using two WFR15S units in two closed-box enclosures placed adjacently, which would produce about 6 dB more, i.e. 92 dB s.p.l. at 35 Hz , but space considerations led to the use of a single unit placed in a corner of the room, which gives a 9 dB gain when compared with the free-space radiation figure, at no extra cost.

Clay enclosure

The mid-high frequency enclosure is made of modelling clay (Das) which has the property of setting rock hard without the use of firing. Plastic-wrapped 980 g packs are available, and four packs were used for a pair of enclosures. However, the sides were found to be rather thin and six packs would be preferable. The clay is rolled flat with a rolling pin to the required dimensions and moulded round a cylinder of fine-mesh chicken wire. The cylinder is 20 cm high and 40 cm circumference. Cut a 60 mm square hole in the chicken wire for the Jordan 50 mm unit, and an appropriate round hole for the tweeter used. (The author has used both the Son-Audax tweeter (available as a smaller-faceplate version, the HD $9 \times 8 \mathrm{D} 25$) and the ScanSpeak 2008 pictured in Fig. 4.) The clay can be worked by those with no previous experience in the art, provided that it is remembered that a little moisture is required for smoothing down and for jointing. Avoid too much water.
Use two packs of Das for the cylinder and one for the base and dome. There will be some left over for patching holes and for surrounding the drive units with a fillet to provide a smooth profile. The wet clay will join to dry clay successfully when a little moisture is used, so it is not essential to obtain a perfect finish first time. The base and dome are made by rolling out one pack of Das to about 50 cm square and cutting out two circles. One circle is made into the dome by placing the cylinder vertically in a

All dimensions in mm

Fig. 6. Construction of the bass and sub-woofer enclosures.
mixing bowl and moulding the circle into the bowl, joining the edges with the end of, the cylinder. The moulding is then placed upon the other circle and joined to this, forming the base. It may be found desirable to support the dome from the inside of the enclosure while it is drying to prevent sag. The clay takes about two days to set in an airing cupboard, and when set the drive units are fixed using silicone rubber (bath sealant). Holes are drilled for the wires to exit the back of the enclosure. About 4oz long-fibre wool is used as filling material, before the units are fixed. The adhesive takes 1-2 hours to set, and the spare clay (which should be kept in a plastic bag to prevent drying) can be used to form a smooth fillet around the edges of the units to reduce diffraction. For finishing, Declon acoustically transparent foam is formed into a cylinder and has a circle fixed to the top.

The cylinder of foam is overlapped by 0.5 in and stapled together, and the circle for the top is stapled to the top edge of the cylinder. When this arrangement is turned inside out the join is concealed, and the sleeve can be fitted over the clay enclosure. The clay can be sprayed black to match the drive units, and the foam can be sprayed any desired colour, using aerosol paint.

The author has experimented with the positioning of the satellite units, and has found that stereo imaging is best when the units are placed on stands so that the tweeter is the height of the seated listeners' ears, and the units are $0.5-1 \mathrm{~m}$ away from the walls. This requires stands about 470 mm high.

Electronics

The Crimson Elektrik modules for the bass, mid-range and treble units are mounted in two Crimson Elektrik metalwork kits, with interconnecting sock-

Fig. 8. Summing amplifier and filters for sub-woofer drive.

Fig. 7. Computer-predicted curve (bottom) for combined bass and sub-woofer responses.
etry, as shown in Fig. 9. The kits are stacked on top of each other. One contains a normal two-channel amplifier with power supply, and the stabilized supply for the active crossover modules. The second kit contains four power amplifier modules and the active crossovers. If it is desire to omit the dome tweeters, as recommended by Jordan, then two amplifiers can be omitted also. Full instructions are supplied by Crimson Elektrik for the construction, but the filter p.c.b. for the

WIRELESS WORLD NOVEMBER 1980 sub-woofer is not supplied by them. Those wishing to make their own cross overs are referred to reference 2 where Linkwitz gives the circuit and design formulae. The crossover frequencies are 500 Hz and 4 kHz .

The sub-woofer electronics are housed in a suitable chassis together with a power supply. The author used a Crimson Elektrik metalwork kit and power supply, arranged as shown in Fig. 10. Because there is a positive feedback loop connected

Fig. 9. Suggested layout of amplifiers and filters.

Fig. 10. Layout of sub-woofer amplifier and filter.
between two p.c.bs with screened cable, it is possible that mains harmonics may give rise to hum. To reduce this, use the thinnest screened cable obtainable, and route the cables well away from the mains transformer. The author has found that the screened cables are best positioned by experiment to give the lowest hum.

Listening tests

In each case, the audience was composed of electronics engineers. The first comparison was with the Hi-Fi For Pleasure Compact Monitor, a three-way system made from a kit, with much larger enclosures than those of the A.S.L. There was a large difference between the systems and the audience of three were unanimous in preferring the active system. The most noticeable difference was a gain in transientattack on such instruments as guitar, piano and drums, when using the A.S.L.

The second comparison was with Spendor BCls . In this case, the audience of two
could just detect a difference, but were unable to tell which was in use. There was slightly more colouration of 'warmth' in the lower mid-range (about 500 Hz) of the A.S.L. On some material, the greater bass extension of the active system could be heard. Direct comparison of stereo imaging was not found valuable, since the co-. sited speakers interfered with each other's sound field.

Other considerations than sonic ones then become important. The larger size of a passive speaker may be a consideration, though price is not since, considering the cost of amplifiers and speakers, the two systems are comparable.

It should be mentioned that high-quality equipment (amplifier, deck, arm and cartridge) was used in the tests, in which analogue, digital and direct-cut records were played. The author is unable to measure or explain the slight 500 Hz colouration, and intends to try the effect of lowering the crossover frequency.

Addresses
Crimson Elektrik: 1(a) Stamford Street, Leicester LE1 6NL
Sonaudax Loudspeakers Ltd: Main distributor is Falcon Acoustics, Tabor House, Norwich Road, Mulbarton, Norwich, Norfolk NR14 8JT
Dalesford: A.C. Farnell Ltd, Kenyon Street, Sheffield S1 4BD.
E.J. Jordan Ltd: Stonyway, Bovingdon Green, Marlow-on-Thames, Bucks SL7 2JH
K.E.F. Electronics Ltd: Tovil, Maidstone, Kent ME15 6QP
Scanspeak: Crimson Elektrik
Das is available from larger branches of W.H. Smith

Long-fibre wool can be obtained from Wilmslow Audio, Swan Works, Bank Square, Wilmslow, Cheshire, who also stock Dalesford, K.E.F. and Jordan drive units
Badger Sound Services, 46 Wood Street, Lytham St. Annes, Lancs FY8 1QG, stock most components, including Crimson Elektrik and wool, and are looking into the possibility of producing the sub-woofer electronics as a kit.

References

7. Small, R.H. "Closed Box Loudspeaker Systems" part 1 and part 2, 7 . Audio Eng. Soc 20 No. 10 and 21 No. 1, 1972 \& 1973.

Appendix: sub-woofer characteristics

A closed box enclosure has network function

$$
\begin{aligned}
\operatorname{GH} 2\left(s_{\mathrm{n}}\right) & =\frac{s_{\mathrm{n}}^{2}}{s_{\mathrm{n}}^{2}+s_{\mathrm{n}} / Q_{\mathrm{o}}+1} \\
\text { where } s_{\mathrm{n}} & =\mathrm{s} / \omega_{\mathrm{o}} \\
s & =\sigma+\mathrm{j} \omega
\end{aligned}
$$

The second-order, low-pass with gain A is

$$
\begin{aligned}
& \operatorname{GL2}\left(s_{n}\right)=\frac{A}{s_{n}^{2} / h^{2}+s_{n} / h Q_{1}+1} \\
& \text { where } h=\omega_{\mathrm{f}} / \omega_{0}
\end{aligned}
$$

The two functions above in cascade give the fourth-order, bandpass

$$
\operatorname{GB} 4\left(s_{\mathrm{n}}\right)=\frac{A s_{\mathrm{n}}{ }^{2}}{\left(s_{\mathrm{n}}{ }^{2}+s_{\mathrm{n}} / Q_{0}+1\right)\left(s_{\mathrm{n}}{ }^{2} / h^{2}+s_{\mathrm{n}} / h Q_{1}+1\right)}
$$

Summing this with the response of the bass enclosure (1 channel only)

$$
\operatorname{GH} 4\left(s_{\mathrm{n}}\right)=\frac{A s_{\mathrm{n}}{ }^{2}+s_{\mathrm{n}}{ }^{2}\left(s_{\mathrm{n}}{ }^{2} / h^{2}+s_{\mathrm{n}} / h Q_{1}+1\right)}{\left(s_{\mathrm{n}}{ }^{2}+s_{\mathrm{n}} / \mathrm{Q}_{\mathrm{o}}+1\right)\left(s_{\mathrm{n}}^{2} / h^{2}+s_{\mathrm{n}} / h Q_{1}+1\right)}
$$

The magnitude function, which is too long to reproduce here, is then taken and programmed into a home computer. The result of evaluating this function is that, for a filter Q_{1} of 1 , an enclosure Q of 0.7 and an enclosure f_{0} of 100 Hz , the gain required is $A=-8$, the 3 dB -down requency of the system is 33 Hz and ripple is 1.6 dB at 113 Hz . Note that the gain is negative, as is usual with second-order crossovers, when the drive unit is connected out of phase to achieve this. In the case of this design, the negative gain is achieved by the summing amplifier, and the driver is connected in phase.
For the D30/110 an enclosure volume of 3 litres was found to give the necessary Q and f_{0}. For the WFR15S an enclosure volume of 33 litres gave an f_{0} of 100 Hz , but the Q was too high. To reduce the Q the following expressions are considered from Small ${ }^{7}$
$Q_{\text {Is }}=Q_{e s} Q_{m s} /\left(Q_{e s}+Q_{m s}\right)$
$Q_{\mathrm{es}}=\omega_{\mathrm{s}} \mathrm{C}_{\mathrm{mcc}}\left(R_{\mathrm{e}}+R_{\mathrm{g}}\right)$
R_{g} is the output resistance of the amplifier and, by making it negative, $Q_{\text {ts }}$ can be reduced to the desired value. The required Q^{\prime} ts is given by:

$$
Q_{\mathrm{d}} Q^{\prime}{ }_{1 \mathrm{~s}}=f_{\mathrm{c}} / f_{\mathrm{s}}
$$

$f_{\mathrm{s}}=31 \mathrm{~Hz}, f_{\mathrm{c}}=100 \mathrm{~Hz}, Q_{\mathrm{c}}=0.7$. Therefore,

$$
Q_{\mathrm{ts}}^{\prime}=0.22
$$

since $Q_{\mathrm{ms}}=4.19, Q^{\prime}{ }_{\text {es }}=0.23$ from eqn. 1 .

We know that with $R_{\mathrm{g}}=0, Q_{\mathrm{es}}=0.46$ and that $R_{c}=7.3$, so from eqn. 2, $\omega_{s} C_{\text {mec }}=0.063$
and the required R_{g} is -3.7Ω.
The amplifier is given a negative resistance by the circuit shown.

By inspection:

$$
\begin{equation*}
R_{g}=\frac{-R_{1} R_{3} R_{5}}{R_{2} R_{4}} \tag{1}
\end{equation*}
$$

For the CE608, $R_{1}=47 \mathrm{k}$. Choose $R_{5}=$ $0.1 \Omega, R_{3}=R_{4}=27 \mathrm{k}$. Then $R_{2}=1.2 \mathrm{k}$.

List of symbols

c velocity of sound $345 \mathrm{~m} / \mathrm{s}$
$C_{\text {mec }}$ electrical capacitance representing moving mass
f frequency
f_{c} resonant frequency of closed box system f_{s} free air resonant frequency of drive unit $\mathrm{G}(\mathrm{s})$ response function of s

The Author

The author was born in London, and lived as a child in Nairobi, Kenya. He attended Ipswich school, and from there went on to Southampton University, where he obtained an Honours Degree in Electronic Engineering in 1967. Appointed as an Executive Engineer in the Post Office HQ , he spent some time carrying out organisation and methods studies, before moving on to the Experimental Packet Switching System (EPSS) for which he helped to produce a mini-computer-based tester. Currently he is with the Mechanization and Building department of Postal Headquarters, where he is developing a traffic recording system for parcel sorting.

Qes Q of driver at f_{s} considering electrical resistances R_{e} and R_{g} only $Q_{\mathrm{ms}} Q$ of driver at f_{s} considering driver non-electrical resistances only Q_{c} total Q of system at f_{c}
$Q_{\text {ts }}$ total Q of driver at f_{s} considering all driver resistances and R_{g}
R_{e} d.c. resistance of driver
R_{g} output resistance of amplifier
s complex frequency variable ($\mathrm{j} \omega=\boldsymbol{\sigma}$)
ω_{s} radian resonant frequency of driver in free air

Personal privacy of engineers

Mr F. W. Sharp of the Institution of Electronic and Radio Engineers writes to us as follows:
The suggestion was made in a BBC Radio 4 programme "Reel Evidence" broadcast on the evening of August 26th, that the membership lists of the chartered engineering institutions were freely available and could be used to compile unauthorized information about the work of individuals. As far as the IERE is concerned, this is not so: the Institution's membership list is maintained on a strictly confidential basis. By decision of the IERE Council a "list of members" is now no longer published.
F. W. Sharp

Take a leaf out of our book

Or better still send for the complete works.

Our main illustration shows just one page from Feedback's new Test Instruments Catalogue: a comprehensive guide to the ten test instruments in the renowned ' 600 Series,' comprising function generators, variable phase generators and measuring instruments, together with another six instruments which also provide the kind of performance and reliability that is synonymous with the Feedback name.

All Feedback test instruments put an emphasis on high performance and value for money, are rugged and reliable, and carry an unconditional two-year guarantee. Complete the coupon and this important new book is free for the asking.

Conquer the chip.

 will revolutionise every human activity over the next ten years.Knowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages.

Learn the technology of the future today in your own home.

MMSEREG EON GS LEARN THE PRACTICAL WAY

- Building an oscilloscope. Recognition of components.
- Understanding circuit diagrams. - Handling all types Solid State 'Chips'
- Carry out over 40 experiments on basic circuits and on digital electronics.
- Testing and servicing of Radio, T.V, Hi-Fi and all types of modern computer ised equipment.

MASTER COMPUTERS

LEARN HOW TO REALLY UNDERSTAND COMPUTERS, HOW THEY WORK - THEIR 'LANGUAGE' AND HOW TO DO PROGRAMS.

- Complete Home Study library. - Special educational Mini. Computer supplied ready for use. Self Test program exercise
- Services of skilled tutor available.

MASTER THE REST

- Radio Amateurs Licence. Logic/Digital techniques.
- Examination courses (City \& Guilds etc.) in electronics.
- Semi-conductor technology.
- Kits for Signal Generators - Digital Meters etc.

The facts of the case

Audio gain controls

2 - Obtaining equal gains in the two channels of a stereo pair

by Peter Baxandall, B.Sc. (Eng.), F.I.E.E., F.I.E.R.E., M.A.E.S.

Continuing his survey of gain control problems and solutions, Peter Baxandall discusses tracking volume controls in stereo amplifiers, concluding with a proposal for an unusual design of control.

Stereo gain control tracking

Connected with the problem of obtaining a satisfactory scale-shape for the volumecontrol law in stereo control units, is that of achieving an accurately equal gain in the two channels at all knob settings. Preferably, the channel gains, if adjusted to be equal at one volume control setting, by means of the balance control or otherwise, should remain within $\pm 1 \mathrm{~dB}$ of equality at all other settings of operational significance. This is quite likely not to be the case if cheap types of carbon-track, ganged log. pots. are used.

Fig. 20. Approximation to log. law obtained by changing resistivity of halves of carbon-track pot.

Figure 20 shows the measured gainvariation law on one channel of a very high quality, commercial control unit, having a simple, passive volume-control circuit, using the above type of pot. The very rough approximation to a logarithmic (linear-in-dB) law is obtained by making the two parts of the pot. element of different surface resistivities, the resistivity changing suddenly from one value to another at half-rotation of the knob. At the point of change, there is a severalfold change in slope, which is a quite undesirable feature. Though some quite cheap commercial pots. give a better approximation to a logarithmic law than that of Fig.

20 , there is clearly much to be said for employing a type of gain control circuit which inherently gives a smooth and nearly logarithmic law without needing pots. with a non-linear resistance law. It ought to be easier to make ganged linear pots. "with accurate matching between sections than to make ones with non-linear laws and equally good matching, though unfortunately, limited experience in measuring the departure from linearity of cheap so-called linear carbon-slider pots. has shown that undesirably large errors often occur.

One solution to the problem of obtaining a good scale shape and accurate tracking is, of course, to employ ganged, stud-type volume controls. These should give not more than 2 dB per stud, at the most, and should have a click mechanism to make sure they are never left in an unsatisfactory half-way state between one stud and the next. Then, provided their internal resistors are accurate and stable, very accurate tracking will be obtained.
Careful measurements have been made of the resistance versus knob-position relationship for eight specimens of R.S. Components $10 \mathrm{k} \Omega$ linear "slide tandem" pots, and Fig. 21 shows the results for three of these. It will be seen that:
(a) none of the specimens has a truly linear law;
(b) the departure from linearity, though
of somewhat different nature for the three specimens, is nevertheless of fairly accurately the same shape for the two halves of each specimen, and this is the case also for the other five specimens;
(c) there are considerable differences between the absolute total resistance values of the specimens, and, in the case of specimen number 3 particularly, between the two resistance elements in one specimen.
For normal audio control-unit applications, minor departures from the nominal volume-control law are unimportant, provided they are equal for the two channels. Differences in the absolute resistance values for the two elements in a slereo pot. may or may not cause gain mistracking, dependent on the nature of the associated circuit.

Consider first the circuit of Fig. 22(a), which gives a range of gain well suited to most control-unit applications. (The circuits of Figs. 12 and 14 are better suited to microphone-amplifier applications, where the higher maximum gain given is advantageous.) It is necessary in practice to insert a resistor \mathbf{R}_{1} in series with the input end of the pot. to limit the maximum value of k obtainable to, say, 0.9 or 0.95 , otherwise - see Fig. 8(a) - the characteristic becomes too steep at the high-gain end. Note that k is defined as

Fig. 21. Samples of characteristics of dual linear pots.
shown in Fig. 9, and is not the same as k^{\prime} in Fig. 22. The reason for introducing k^{\prime} is that it enables a more straightforward comparison to be made between the behaviour of the (a) and (b) circuits in Fig. $22-k^{\prime}$ is a measure purely of the knob position, whereas, as shown in Fig. 9, k involves also the value of the fixed series resistor.

Fig. 22. In circuit (a) the total resistance of R compared with R , varies the control curve, whereas the circuit at (b) is independent of track resistance.

The gain of the Fig. 22(a) circuit is given. by:-

$$
\begin{align*}
\frac{V_{\text {out }}}{V_{\text {in }}} & =-\frac{k^{\prime} R}{\left(1-k^{\prime}\right) R+R_{1}} \\
& =-\frac{k^{\prime}}{1-k^{\prime}+R_{1} / R} \tag{5}
\end{align*}
$$

The gain of the Fig. 22(b) circuit is given by:-
$\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{k^{\prime}}{1-k^{\prime}-1 / A}$
It will be seen that equations (5) and (6) are of exactly the same form, A being a negative number to represent the fact that the amplifier is a phase inverting one. Thus if A is made equal to R / R_{I}, the two circuits will have identical graphs relating overall gain to knob position.

Circuit (b) has an advantage over (a), however, in that the control characteristic is quite independent of variations in the absolute resistance R of the pot. element, whereas in (a) an increase in R requires a proportionate increase in R_{1} to return to the same control characteristic. Thus, using a pair of circuits of the (b) type in a
stereo system, differences in the element resistances in the two halves of the ganged pot., which, as already mentioned, are found to occur in practice, will not affect the accuracy of tracking between the channels, whereas in (a) an increasing discrepancy will occur as the gain setting is increased. It has been assumed that the amplifier input impedance in circuit (b) is very high, so that there is no significant loading on the pot. slider.

To carry out the Fig. 22(b) scheme in practice, an economical recipe is required for a phase-inverting amplifier of high input impedance and feedback-stabilized gain. The simple arrangement shown in Fig. 23(a) is not very good, for to avoid significant loading of the slider, the resistors R_{a} and R_{b} must be made very high in value, which then seriously degrades the noise performance. This problem may be satisfactorily solved by inserting a unitygain follower between the slider and $\mathrm{R}_{\mathrm{a}}, \mathrm{R}_{\mathrm{a}}$ and R_{b} now being made of very much lower values. This arrangement is shown in Fig. 23(b).

Amplifier A in Fig. 23(b) has to handle only quite small voltage excursions, even though $V_{\text {in }}$ and/or $V_{\text {out }}$ may sometimes reach levels of several volts. There is no need to use an op. amp. for A, better economy, with little degradation in performance, resulting if a simple emitterfollower is used. A satisfactory practical design is given in Fig. 24. Over a range of gain adjustment of approximately 30 dB , the departure from the ideal straight-line graph is no more than $\pm 1 \mathrm{~dB}$. The unitygain op. amp. follower at the left has been included so that the complete circuit presents a high input impedance to the source of $V_{\text {in }}$ at all gain settings - this source may be the tape and radio inputs to a control unit, for example. Without this follower, the input impedance at maximum gain setting falls to $1.09 \mathrm{k} \Omega$.

Because the gain of the Fig. 24 circuit is independent of the total resistance of the pot. element, being dependent only on the slider tapping ratio, the tracking error between stereo channels can probably be held within $\pm 1 \mathrm{~dB}$ limits in production, over a 30 dB range of gain, using low-cost carbon pots.
$\overline{\text { Alternative technique. An alternative }}$ technique, which, like the previous one, avoids the necessity to put fixed resistance in series with the pot. to limit the

(a)

(b)

Fig. 23. Two circuits embodying the Fig. 22(b) idea. Circuit (b) uses voltage follower to avoid need for high-value resistors R_{a} and R_{b}.

Fig. 24. Practical version of Fig. 23(b) is shown at (a), with its control characteristic at (b) (lower curve).

(b)

Fig. 25. Feedback amplifier limits maximum gain without use of fixed resistor in series with pot. Characteristic is upper curve in Fig. 24(b).
maximum gain, is shown in Fig. 25 in its simplest form.
Here a fraction β of $V_{\text {out }}$ is fed back as overall negative feedback in series with $V_{\text {in }}$. The forward gain, A, of this feedback system is $-k^{\prime} /\left(1-k^{\prime}\right)$, so that applying the usual feedback formula gives:
$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{A}{1-A \beta}=\frac{-k^{\prime} /\left(1-k^{\prime}\right)}{1-\left[-k^{\prime} /\left(1-k^{\prime}\right)\right] \beta}$
from which
$\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{k^{\prime}}{1-k^{\prime}+k^{\prime} \beta}$
Comparing equation (7) with (5) and (6), it will be seen to be not quite of the same form, for the third term in the denominator of (7) involves k^{\prime}, whereas this is not the case in (5) and (6). Suppose we choose β in the Fig. 25 circuit so that equation (7) gives the same maximum gain, i.e. gain at $k^{\prime}=1$, as that given by the Fig. 24(a) circuit in accordance with equation (6). This requires $\beta=0.1222$, and equation (7) then yields the brokenline curve shown in Fig. 24(b). Looking at these two curves, it is very tempting to conclude that the circuits of Figs. 24 and 25 inherently give slightly different shapes of characteristic, but more careful thought shows that this is actually not the case.
Referring to equation (7), this may be written:

$$
\begin{align*}
\frac{V_{\text {out }}}{V_{\text {in }}} & =-\frac{k^{\prime}}{1-(1-\beta) k^{\prime}} \\
& =-\frac{1}{1-\beta} \times \frac{(1-\beta) k^{\prime}}{1-(1-\beta) k^{\prime}} \\
& =-\frac{1}{1-\beta} \times \frac{k^{\prime}}{\frac{1}{1-\beta}-k^{\prime}} \tag{8}
\end{align*}
$$

Equation (6) may be written:
$\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{k^{\prime}}{1-1 / A-k^{\prime}}$
Comparing (8) and (9), it will be seen that if A and β are so chosen that ($1-1 / A$) $=1 /(1-\beta)$, then the only difference between the equations is that the right-hand side of (8) is multiplied by the constant factor $1 /(1-\beta)$. This
means that the curves for the two circuits are exactly the same in size and shape, but that represented by equation (8) is displaced upwards relative to the equation (9) curve by $20 \log 1 /(1-\beta)$ decibels.

Thus, the real difference in behaviour between the circuits of Figs. 24 and 25 is that when designed to give identical shapes of control characteristic, the Fig. 25 circuit, at all knob settings, gives a slightly higher gain than does that of Fig. 24.

Passive control using linear pots.

A single linear pot. used as shown in Fig. 1 or Fig. 2 gives a control law which is quite intolerable for normal audio purposes. It is well known that by shunting a load resistor from the slider to earth, a characteristic approximating more closely to the ideal uniform decibel spacing may be obtained, though unfortunately only over a range of some 20 dB or thereabouts. Fig. 26, based on calculations I did while a student in 1942, shows what happens as the loading is varied.

Fig. 26. Family of curves obtained from shunted linear pot. slider.

Very much better results than the above can be obtained with passive circuits using linear pots. if one or more fixed tapping points are provided, and the simplest such scheme is that shown in Fig. 27(a). If the resistors R_{a} and R_{b} are made of very much lower value than the pot. resistance, the attenuation with the slider at the tapping position is determined almost entirely by the values of R_{a} and R_{b}, and is virtually unaffected by any non-linearity in the law of the pot. element itself. There is, however, a sudden change in slope as the slider passes the tapping point, and a typical characteristic is shown in Fig. 27(b).
By adding a loading resistor between the slider and earth, a much better characteristic can be obtained, and it is possible to choose the value of this resistor so that there is no discontinuity in slope as the tapping point is passed. Fig. 28 shows a practical design employing a centretapped linear pot. with the slider output suitably loaded, together with the characteristic obtained. Over a control range of about 35 dB , the departure from the ideal straight line is not much more
than $\pm 1 \mathrm{~dB}$. By having two tapping points on the pot. element - and low-cost slider pots. can be obtained with this feature the nearly-linear control range can be extended to about 50 dB if required, satisfying the most exacting needs.

For instrumentation purposes, the above technique can be extended much

Fig. 27. Tapped linear pot. (a) gives approx. log. characteristic, shown at (b). With R_{a} and R_{b} low, gain at mid position is almost independent of track linearity or resistance.

Fig. 28. Practical version of Fig: 27.

Fig. 29. Multiple-tap linear pot. with transformer-fed taps for precise voltages.
further, providing attenuators of extremely high precision and stability. An interesting example from a different field occurs in the Wayne Kerr B5009 Logarithmic LCR Bridge, in which readings are taken from an approximately 25 cm long "slide-rule", which has a logarithmic scale covering a $16: 1$ ratio. The circuit associated with this device is shown in Fig. 29. The use of a tapped transformer winding to energize the tappings on the resistance element ensures extreme precision in the ratios of the voltages at these points, since they are determined almost purely by the turn numbers on the transformer. As the slider is moved down from the top, the attenuation at each tapping position increases by successive factors of 2 , or 6.02 dB . In the absence of the loading resistor on the slider, $V_{\text {out }}$ varies linearly with slider position between tapping points, whereas, for a perfectly logarithmic scale, it is the log of $V_{\text {out }}$ that is required to vary linearly. The error amounts to approximately 0.5 dB midway between tappings. By adding the right value of loading resistor as shown, this error is reduced to less than $\pm 0.05 \mathrm{~dB}$.

By using a transformer, the attenuation characteristic is made almost perfectly
independent of production variations or non-uniformity in the resistance element, provided only that the physical positions of the tappings are accurately maintained. With the Fig. 28(a) type of arrangement, variations in pot. resistance do have some effect, but it may be kept small by making the resistance of the resistor-chain connected to the tapping(s) much less than the resistance of the pot. itself.
For high-grade audio control-unit applications, where the use of slider-type controls is considered appropriate, there would seem to be a strong case for using the Fig. 28 arrangement but with two tappings. By using $\pm 2 \%$ resistors to feed the tappings, excellent stereo tracking should be obtained with a most desirable shape of control characteristic.

BBC log. attenuator

An interesting and very neat solution to the problem of providing a wide-range gain control having uniformly-spaced decibel scaling was devised in 1946 by C. G. Mayo and R. H. Tanner of the BBC Research Department. It was used in a portable microphone amplifier made by the BBC for acoustic measurements ${ }^{5}$, but was unfortunately not taken up commercially.
The principle is given in Fig. 30, and Fig. 31 shows the actual construction. These illustrations are taken from reference 5 . A is a block of resistive material, of which the underside is covered by a conductive electrode B . The input is applied between B and another electrode C, the output being taken between B and a slider D. The various series and shunt paths through the resistive material may be regarded as approximately equivalent to the ladder network shown, the output of each successive section of the ladder being a constant fraction of that of the previous section, giving a scaling with uniformlyspaced decibel divisions. The useful range of the model illustrated was about 70 dB .

Fig. 30. BBC gain control principle at (a) is 'distributed' equivalent to attenuator network at (b).

Fig. 31. Attenuator whose principle is shown in Fig. 30. Note screen round output. Photograph by courtesy of Electronic Engineering

It is pointed out that the output impedance of this type of attenuator does not become low when the attenuation is large, so that it is very important to avoid appreciable stray-capacitance coupling between input and output. The output connexion is therefore brought out coaxially, with a screening plate as shown in the photograph.
It has occurred to me that there is no essential need to employ a thick block of resistive material, and that an attenuator based on the same broad principle could be made using carbon-coated s.r.b.p. sheet material of the type commonly used in ordinary carbon pots. To test this idea, a quick experiment was done with the set-up shown in Fig. 32, and yielded the rather impressive result shown in Fig. 33. The very first graph obtained was somewhat inferior, apparently because of unsatisfactory contact between the steel vice jaw and the carbon coating. This was overcome by interposing a strip of polished copper foil between the carbon coating and the vice jaw.

Though an attenuator having a very extended range of operation as in Fig. 33 may fulfil some requirements, it is not ideal for use in control units etc., for the range of control needed in practice covers far less than 100 dB , except that an "off" position coming soon after the position giving 40 or 50 dB attenuation is really desirable. The Fig. 32 type of construction could readily be modified to provide such a characteristic, by shaping the conductive electrode, or metallic coating, somewhat as shown in Fig. 34. Halving the width of the carbon track, for example, would double the slope of the graph.

It is relevant to consider the suitability of attenuators based on the above principle for stereo purposes, i.e. whether sufficiently accurate tracking would be readily obtainable. Since the slope of the attenuation characteristic depends, to a first order at least, on nothing but the width of the resistive track, it would be important, for stereo use, to adopt a form of construction in which production variations in this width are minimized. The Fig. 34 construction does not appear to be ideal, for it relies on cutting the edge of the carbon material accurately in relation to the position of the metallized coating. The arrangement shown in Fig. 35 would seem much preferable, since accuracy of cutting is no longer involved and the metallized coating could be deposited by some form of printing technique with a very high degree of consistericy.
The lower impedances usually used in transistor equipment, compared with earlier valve equipment, ease the problem of keeping the input-to-output stray capacitance sufficiently small, but it is still important to adopt a constructional arrangement which aims to minimize such capacitance. Working at $1 \mathrm{k} \Omega$ impedance, with a control giving up to 100 dB attenuation, the stray capacitance must be kept to less than 0.1 pF . The connexion "rail" on which the slider moves must therefore be positioned away from the carbon surface and screened from this and the input connexion by an earthed screening plate.

Another advantage of the Fig. 35 arrangement is that, because of its symmetry, unwanted slight lateral movements of the slider during its traversal would be expected to have less effect on the attenuation than with the Fig. 34 form of construction - though it has been found that even with the latter, movements of about 1 mm at right-angles to the direction of traversal produce only a small fraction of 1 dB change in output provided the slider contacts the carbon track within 2 or 3 mm of its edge.

Other methods of log. control and stereo tracking

- Perfect tracking of stereo channel gains at all settings, without the need for precision gain-control circuits, may be obtained by first producing, from the incoming L and R signals $(L+R)$ and ($L-R$) signals. If the $(L+R)$ signal is fed to one half of a ganged gain-control circuit, multiplying it by a factor α, and the ($L-R$) signal is fed to the other half of the gain-control circuit, which multiplies it by a factor β, then the sum of the gain-control circuit outputs is given by:
sum $=(\alpha+\beta) L+(\alpha-\beta) R$
and the difference of their outputs is given by:-
difference $=(\alpha+\beta) R+(\alpha-\beta) L$
Thus, though the balance as such is perfect, it is obtained at the price of introducing some cross-talk when α is not

Scale of mm marked lightly in pencil on carbon surtace

Fig. 32. Experiment using sheet instead of block in Fig. 30.

Fig. 33. Measured result obtained with Fig. 32 arrangement.

Fig. 34. Suggested form of control using Fig. 32 principle. Characteristic steeper at low-gain settings.

Fig. 35. Symmetrical version of Fig. 34 for improved consistency of performance.
quite equal to β. The effects of stereo cross-talk are discussed in detail in reference 6.

Perfect tracking without the introduction of crosstalk can be produced if a single gain-control circuit is used to control both channels. This can be done, for example, by first making the L and R audio signals modulate two different r.f. carrier frequencies, the two amplitudemodulated carriers being fed to the same gain-control circuit and being subsequent ly demodulated in phase-sensitive detector circuits. Though this technique could give virtually perfect results, it would not seem to be very attractive economically.

- Various simple gain-control circuits give a nearly linear relationship between attenuation in decibels and control position over a range of several dB. If a sufficient number of such circuits are put in cascade, and the controls are ganged, an approximately linear relationship may be obtained over any required range. While this technique is not usually very attractive when carried out literally with mechanically-ganged pots., it would appear to be worth bearing in mind as a possible technique for providing electronic gain control with a logarithmic characteristic. The idea is quite old.
- At the present time the most satisfactory technique for wide-range electronic gain control is that which exploits the fact that silicon planar transistors follow with high accuracy the relationship:-
$I_{\mathrm{c}}=I_{0} e^{q V_{b e} / k T}$
where I_{c} is the collector current and $V_{\text {be }}$ is the base-to-mitter voltage. (The other quantities are constants.)

Circuits can be designed in which the gain in decibels is linearly related to the control voltage over a range of about 100 dB , and by using the "log-antilog" or predistortion technique, a performance sufficiently good, with respect to distortion and signal-to-noise ratio, to justify the use of such circuits in very high-quality audio systems, can be obtained. A very sound and clear treatment is given in reference 7.

This type of circuit is at the heart of compander systems of the dbx type. It could be used to provide gaín control in audio control units, a single pot. varying the control voltage to a pair of such circuits in the two audio channels. The distortion and noise performance, though good, is not quite up to the highest standards sometimes demanded, maybe unnecessarily, in expensive control units, but some further refinement of i.c. versions of these gain-control circuits, including the reduction of residual evenharmonic distortion by the use of more fully balanced arrangements, may take place.

- In a fully digital audio system, gain control with perfect stereo tracking and any desired control law may be carried out on a purely numerical basis.

References

5. Shorter, D. E. L. and Beadle, D. G., "Equipment for Acoustic Measurements", Electronic Engineering, Vol. 33 No. 283, pp. 326-331 (September 1951).
6. Harwood, H. D. and Shorter, D. E. L., "Stereophony: the effect of cross-talk between left and right channels", BBC Eng. Mono. No. 52 (March 1964).
7. Curtis, D. R., "A Monolithic VoltageControlled Amplifier Employing Log-Antilog Techniques", 7.A.E.S., Vol. 24, No. 2, pp93102 (March 1976).
8. McK enzie, A. A., "Philips and the MIC/ DIN problem", Hi-Fi News, Vol. 24, No. 9, p. 65 (September 1979).

Reactance circuit

Reactance circuits are not very popular because it is difficult to design a phaseshift network which will work into a low and varying base impedance. This circuit overcomes the problem and gives a greater and more linear frequency swing than common variable capacitance diodes. The 90° phase shift is produced by a resistor in series with the inductor, which produces a voltage in phase with the inductor current and consequently almost in quadrature to the e.m.f. across the resonant circuit. The collector current of Tr_{2} is in phase with the inductor current and therefore produces the effect of an inductance in parallel with the resonant circuit, which raises the operating frequency. The resistance is chosen to give about 100 mV pk-to-pk because there is little advantage in a larger signal at the base of the reactance transistor.

The oscillator is designed to give an amplitude of around 100 mV pk-to-pk at the base of Tr_{1}, which is controlled by effective mutual conductance variation. The amplitude changes by only 10% from 480 to 530 kHz . If the oscillator level is controlled by collector "bottoming", a much larger frequency swing is possible with little amplitude variation, at the expense of some waveform distortion. The susceptance introduced in parallel by this circuit is $B_{\mathrm{e}}=g_{\mathrm{m}} R B_{\mathrm{L}}$ where B_{L} is the susceptance of the inductor and g_{m}^{\prime} is the effective mutual conductance, which is about half the mutual conductance with an average collector current if the amplitude is 100 mV pk-to-pk.
R. G. T. Bennett

Christchurch, New Zealand

Solid-state relay

In radio control applications this solidstate relay can replace a conventional electromagnetic type to save space, weight and provide a faster switching response. The circuit comprises one make and one break contact, but a changeover configuration can be obtained by connecting contact points 1 and 3 together. The relay operates when a voltage is applied to inputs a and b, and D_{1} prevents damage to Tr_{1} and Tr_{2} if the wrong polarity is connected.
When no operating voltage is present, Tr_{1} is turned off and acts as an open contact. Tr_{2} is also turned off, but Tr_{3} is turned on via R_{3} and acts as a closed contact. Current rating of Tr_{1} and Tr_{3} is 750 mA at 20 V .
B. Lowery

Lincoln

Touch control

One c.m.o.s. counter can be used to provide touch-controlled voltages for the TCA730 or similar circuits. The state of the counter is converted to an analogue voltage by a resistance ladder, and smoothed by a capacitor. When the terminal count in either direction is reached, the clock input is inhibited. Two l.e.ds, driven by a differential amplifier, show the position of the counter and the control voltage. Output voltage swing is $2-10 \mathrm{~V}$ with a supply of 15 V .
Two cascaded counters provide a suitable resolution for volume control applications. At switch on, the counter is preset to a position set by the parallel load inputs. N . Istvan
Budapest
Hungary

Digital delay

This circuit was designed to give a relatively long delay in a single-bit stream adaptive delta modulation system. The conventional method uses shift registers, but these are quite expensive and become less economical as the bit requirement ipcreases. A more attractive method is to use the popular and inexpensive 21L02 1024bit r.a.m. which only requires one +5 V supply. The memory is sequentially addressed so that data is initially read from, and new data subsequently written into each successive cell. Data read out in this manner is identical to the input but
delayed by 1024 address change periods. To cascade several memories, the write cycles must be progressively shorter for each device, and this ultimately limits the system.
However, this problem can be eliminated by connecting the memories serially and addressing alternate devices by a 10 bit incremental address signal. A second 10 -bit address, which is incremented in quadrature to the first, is applied to the remaining memories. Symmetrical read/ write signals can now be used to transfer data from one memory to the next in the appropriate manner due to the overlapping
address signals.
Numerous memories can be used as long as loading constraints are observed. Delayed data is extracted from the system by clocking the $D_{\text {out }}$ of the last 21 LO 2 through the remaining half of the 4013 flip-flop with either r./W. A if the number of memories is even, or $r . / \bar{w}$.B) if it is odd. It is unnecessary for the address wiring for each memory to be coherent because a unique address is only required for each cell.
P. Gladdish

Holbrook
Derbyshire

Power f.e.t. voltage regulator

Power f.e.ts can be used as the control element in a relatively simple linear regulator. The V.m.o.s. f.e.t. has a high value of g_{m}, a high impedance, and can pass a reasonably high drain current. Another advantage, shown in this example, is

parallel operation where the positive temperature coefficient of V_{ds} tends to produce equal current sharing. Operation is similar to a conventional regulator except that the f.e.ts require virtually no gate current. An error amplifier provides gate drive to both f.e.ts, which then conduct. Output voltage can be adjusted by the variable resistor. The voltage at the gate is about 11 V for a load current of 100 mA , and increases to approximately 16 V with a current of 1.8 A . A foldback current limit protects the regulator against overload by triggering a thyristor at about 2A to switch both f.e.ts off. The circuit has an output resistance of $60 \mathrm{~m} \Omega$ and provides +9 V with loads up to 1.8 A . Performance depends on the gain of the error amplifier, and further improvements can be obtained by replacing the transistor with a high-gain op-amp. Larger currents can be provided by increasing the number of parallel f.e.ts, which must be mounted on heatsinks.
G. Loveday

Tonbridge
Kent

DX records broken

What is thought to have been the longest distance two-way 144 MHz tropospheric contact ever to have been made in IARU Region 1 (Europe and Africa) took place on August 6. R. V. Thorn, G3CHN in south Devon made contact with EA8XS in the Canary Islands, off the African coast, a distance of over 2600 km . At the time anticylonic weather conditions extended from south-west England southwards to the Canary Islands and westwards almost to Florida, possibly a near miss for the first translantic 144 MHz contact by means of ducting, though again suggesting that some day this may be achieved. Sea ducting between California and the Hawaiian Islands has, on very rare occasions, provided American amateurs with 144 and 432 MHz tropo contacts over distances exceeding 4000 km .

Many British amateurs made their first 144 MHz contacts with Andorra during an intensive spell of operation by C31RN.

On the 10 GHz microwave amateurs, Italian enthusiasts have bettered their previous world record distance of 633 km when, during July, IOSNY $/ 7$ made contacts with IW3EHQ/3 and I3SOY/3, raising the record to 757 km .

More museum stations

Some 300 members of the 1000 -strong Royal Naval Amateur Radio Society (RNARS), formed in the UK in 1960, live overseas, including 114 in Australia where a national branch was formed in October 1979. As a result of the successful restoration by RNARS of the bridge wireless office of HMS Belfast (GB2RN) in the Pool of London, the Maritime Trust of Australia has accepted an offer by RNARS Australia to restore the W / T office of HMAS Castlemaine and to permit the installation of a modern amateur radio station with the callsign VK3RAN. Most of the original W / T equipment has been located and is now being restored. VK3RAN has regular schedules with RNARS stations in the UK including GB2RN. A similar project is also being undertaken for HMAS Diamantinia which is to form a naval museum at Brisbane.

Special calls held by RNARS in the UK include GB3RN at HMS Mercury (shore station) where the callsign G3BZU is also used (except on open days at Portsmouth Naval Dockyard); also GB2FAA at the Yeovil Naval Air Station ("Fleet Air Arm").

The London Science Museum has recently put on a display two off-line rotortype cryptographic machines of World War II vintage: a three-rotor German Enigma (Geheim Chiffriermachine) based on the work of Arthur Scherbius, and the British Type X Mark III machine
developed in the 1930s by Air Commodore Oswyn with the help of the RAF Workshops. This typewriter-like machine could be used in the field to provide a ciphered tape at up to 20 w.p.m. while "powered" by turning a handle with the other hand:

Amateur tv news

John Wood, G3YQC is to edit CQ-TV, the journal of the British Amateur Television Club. A recent listing of amateur tv stations in South East England includes 24 stations in south London and along both sides of the Thames estuary. Atv transmissions across the English Channel to France, Holland and Belgium are reported, although activity in Manchester and the north-west has dropped in recent years. In the current issue of $C Q-T V$ Grant Dixon, G8CGK describes his work with computer-based (Triton) slow scan television. Digital processing can include the insertion of a reduced-size image into a quarter of the transmitted picture: for example it is possible to store a photograph of the operator in the computer memory and then, whenever required, to insert this into the top right-hand quarter of the transmission. An article by Tom O'Hara, W6ORG, reproduced from the American atv journal $A 5$ describes an arrangement to interface a home computer (TRS-80) with a television camera to enable two nonsynchronous pictures to be readily mixed.

On the bands

Swansea Amateur Radio Society has won the RSGB's 1980 National Field Day trophy with the Bristol Trophy (single station entry) going to the Teesside Contest Group. Band leaders were: 1.8 MHz Farnborough; 3.5 MHz Harlow; 7 MHz Mansfield; 14 MHz Southgate; 21 MHz Guernsey; and 28 MHz East Nottingham. The Gravesend Trophy was won by Guildford; the Scottish NFD trophy by Glenrothes; and the Frank Hoosen Memorial trophy by Southgate.

Amateur licences in the USA at mid1980 had risen to 385,625 with the FCC issuing 12,583 new licences in the first half of 1980 , compared with 6119 during the full year of 1979. Pass rate in the FCC examinations has risen markedly although this has been ascribed by Ham Radio more to memorization of the "question-andanswer" guides that have recently become available rather than better understanding of the theory by candidates: examination syllabus has recently been changed.

The New Zealand amateur Fred Johnson, ZL2AMJ, in commenting upon the long-standing controversy on the international requirement for morse code
proficiency to obtain a licence for amateur bands below 50 MHz , has identified and listed 75 factors that have been put forward in support of or against a compulsory code requirement. The overwhelming majority appear to be favourable to the c.w. mode which it is noted "shows no sign of a diminishing use from observation on the bands". ZL.2AMJ notes that the critics of the code requirements "are overwhelmingly drawn from those who have not experienced the use of the code on the h.f.bands and hence cannot be expected to understand the position that the code has in the amateur radio world" although "the reason for them not seeing any necessity for it can be appreciated". Among his many factors he notes that this is a skill which is not difficult to learn as is sometimes claimed and that it takes about 40 hours of effort to go from zero to about 12 words per minute proficiency. Criticism of the code requirement can be traced back through amateur radio publications "to when phone operation first commenced and there is no evidence to show that the level of criticism is any more today than in earlier days". Examination of the QSL cards passing through the New Zealand bureau "reveals a surprisingly high use of c.w." and the number of articles in c.w.-related topics appears to be increasing.

The potential health hazard posed by the use of polychlorinated biphenyls (p.c.b.) as transformer-oil in 'dummy loads' etc. has recently attracted increased attention in amateur circles. However Tom Ruynon, VESUK points out that the main hazard arises when the non biodegradable substance gets into the food chain rather than from skin contact. Similarly it is recognised that the fumes from melting polyurethane-coated wire, used for experimental prototype wiring, contain the toxic substance di-isocyanate which can result in severe asthmatic attacks, particularly to people who have become sensitised.

In brief

Despite the recent fire, it is expected that the 1981 RSGB National Amateur Radio Exhibition will be held in the temporary building which is being erected at Alexandra Palace, although dates have not yet been announced Among 1000 search volunteers for two-year-old Elizabeth Peck in West Sussex were 34 members of Raynet, the radio amateurs' national emergency network. All ended happily when the little girl was discovered alive and well 41 hours after wandering off from her family Approximately 2500 of those who sat the UK Radio Amateurs' Examination last May passed.

PATHAWKER, G3VA

Colour tv receiver design

4 - The switched-mode power supply

by R. Wilkinson, B.Sc.(Hons), M.I.E.E., Decca Radio \& Television Ltd

A switched-mode power supply operating at television line frequency was chosen for the 70 series because of its inherently low power loss; its ease of obtaining any voltages required; and the possibility of making the chassis isolated from the mains. The alternative approach of a thyristor supply (used successfully for several years in the 80 and 100 series chassis) does not readily lend itself to these requirements. Whilst it can be made to work efficiently, bulky iron-cored chokes are required and these are expensive, heavy and could produce mains frequency fields which could affect the c.r.t.

The 70 series s.m.p.s.u. is a flyback type of convertor (Fig. 16). Tr_{1} switches the transformer primary across the rectified mains and energy builds up in it in the form of a magnetic field. When Tr_{1} switches off, its collector voltage rises and so (by transformer action) does the secondary. D_{1} conducts and feeds all the energy stored in the transformer into the load. Hence the load is only supplied when the transistor is off.

Stabilisation of the output voltage, against mains and load variations, is achieved by taking a sample of voltage from a winding on the transformer and comparing it with a fixed reference voltage. The resulting error voltage is used to correct the drive waveform fed to the output device.

Fig. 17 shows a block diagram of the s.m.p.s.u. circuit. The control unit contains an oscillator to ensure that the output stage remains switching whether it is synchronised or not. There is an input of line drive from the sync processor. This, you may remember, has been synchronised to the line sync pulses on the received video waveform. The other input is a line flyback pulse and is used in a phase discriminator as a phase reference for the oscillator drive pulses which will eventually be used to provide base drive for the line output transistor. This phase reference is adjustable and can be used as a line shift control.

Both these inputs cross the isolation barrier and, consequently, must use doubleinsulated components: the line drive input uses a small toroidal transformer and the line flyback phase reference is from a small isolated winding on one limb of the line output transformer.

During normal operation the control circuits are supplied from the s.m.p.s.u. t.f. and so, when the set is first switched on,

Fig. 16. Principle of the switched-mode power supply.

Fig. 17. Block diagram of the switched mode power supply circuit,
some power must be supplied to the oscillator to start switching the output stage. The start-up circuit supplies this power and then switches off once the voltage from the t.f. has built up sufficiently to drive the control circuits. Fig. 18 shows a simplified version of the complete s.m.p.s.u. circuit and the start-up circuit operation can be seen from this. At switchon Tr_{1} is turned hard on by base current
through R_{1}. Current flows through R_{2} and Tr_{1} to supply the control i.c. TDA2581 and the driver stage Tr_{3} and Tr_{4}.

As the oscillator commences switching the driver stage, and hence the output stage, the voltage at C_{1} steadily builds up until D_{1} turns on. Then Tr_{2} turns on, pulling down the base of Tr_{1} which switches off. From then on the power to the control i.c. and the driver stage is

It is essential that the tone is reproduced
Please print this note on all proofs

supplied through D_{3}. Thus R_{2} does not need to be on all the time and another source of power wastage is removed.
The heart of the control circuitry is the pulse width modulator. This determines the mark/space ratio of the output waveform and hence the output voltage.
The error amplifier controls the pulse width modulator according to the difference between the adjustable sample of the fed back transformer voltage V and the stable reference voltage across D_{1}. A trip circuit senses the current in the output device and cuts off the output pulses if the current rises above a pre-determined value. It then waits for a short while and then releases the pulses again. If the excessive load or fault still remains then the trip

Fig. 18. Simplified version of complete power supply circuit.
cuts off the output again. After this cycle has repeated about ten times the output pulses are cut off "permanently" and the supply can only be restarted by switching off the mains, waiting a few seconds and switching on again (assuming the fault or overload has cleared or been corrected).
The i.c. contains other protection circuits, which operate the trip if the fed back sample voltage goes high or if the control i.c. supply goes low or if the reference voltage at D_{1} goes open-circuit.

The driver stage has two transistors in a push-pull configuration. It will be noticed that the output device is a Darlington tran-
sistor. This device is used in preference to an ordinary transistor because it removes the need for a driver transformer.

Reliability

As has been shown, the factors influencing the design of a television receiver are many and varied and often conflict with each other. The solving of the problems thus presented has produced, at least in the 70 series, a receiver which gives an excellent and reliable performance. One of the aims of the design team was to improve on the already good reliability figures achieved by the 80 and 100 series. The low failure rates that were monitored during the 24 hour soak test in the factory indicated that this was achieved with a good margin.

Sixty years ago

Until shortly before 1920 communication between submarines and shore or other vessels was only possible while transmitting or receiving above the waves, due, of course, to the attenuation of electromagnetic waves by water. An article called "The Submarine's Wireless" in the November 27th, 1920 edition described newly found techniques which enabled practical communication while the vessel was under water. The techniques in question involved the development of extremely sensitive receiving and amplifying apparatus, and more efficient aerial systems, to make possible the bridging of distances of up to three miles while the vessel was submerged under nine feet of water. An aerial current of six amps was required for this
feat, but there is no mention of the frequencies used, although long-waves are suggested as they were found to be able to penetrate the water better than short-waves.
In the same issue, a small feature also appeared on a wireless telephone pack-set which was used by RAF officers as far back as the autumn of 1918. Two photos ṣhow the set "mounted" on an officer who stands, supported by his bicycle, with a wooden frame aerial projecting from the top of his head. As wireless sets, especially of this type, were not all that common at that time he probably gave some of the locals quite a start.
The need for ships to pass out of unlit harbours during wartime was the necessity that
gave birth to the invention of the "radio cable"," which was discussed in the "Notes and News" section also in this issue. This guidance cable, through which an alternating current was passed, was laid in the harbour waterways. Ships using the cable were fitted with two detection coils, probably one on either side of the deck, which intercepted the electromagnetic waves coming from the cable. By noting the relative strength of the waves reaching each coil, it was possible for the ship's navigator to determine his position in relation to the cable. The US Navy laid one such cable which was sixteen miles in length, in the main waterway approaching the port of New York.

Microcomputer instructor

A flexible prototyping system, designed to cut the cost of microprocessor evaluation and development, has been introduced by Philips Test and Measuring Instruments. The PM 4300 microcomputer instructor, which is marketed by Pye Unicam, uses interchangeable modules to adapt the system to different 8 or 16 -bit processors. Types which can at present be accommodated are the M68000, 8086, Z8002, Z80, 8048, M6801, 8088 and the M6809, and additions to the range are expected in the near future. PM 4300 is claimed to be more powerful than a manufacturer's evaluation board, and allows writing/debugging of programs, checking operation of peripherals, exercising input/output ports and implementing interrupt routines. A hexadecimal keyboard, an 18 -function keyboard, switch/l.e.d. i/o displays and a 16 -digit alphanumeric display are features of the desktop microcomputer instructor. Use of the function keys enables automatic i/o reading and writing, single stepping, setting hardware breakpoints, timing and memory manipulation to be carried out, and the user has complete control over system operations, including communication with i/o devices and generation of interrupts manually or using the real-time system clock. The RS-232 serial interface allows direct linking to existing development systems and the PM 4300 is compatible with the Philips PM 4421 PDMS microcomputer development system. Pye Unicam Ltd, York St, Cambridge CB1 2PX.
WW 301

Switches and pots

Miniature switches for programming via b.c.d. or b.c.hex., at low cost, are introduced by Ambit International in a new range designated the SRQ series. Uses of the switches include 'on-card' programming of frequency synthesizers, cash registers, timing devices, coin operated machines and computer games. Both horizontal and vertical mounting variations are available at a price of 99 p per unit or 64 p per unit in 100 off quantities.
Also introduced by the same firm are potentiometers, the K16A20 series, which are basically standard 16 mm types with 300° of rotation, but featuring an integral epicyclic drive. This feature enables improved resolution control as it gives

WW 301

WW 302

WW 304
a 5:1 turns reduction ratio of spindle rotation, for applications such as varicap tuning elements and instrument controls. E12 series values ranging from 100Ω to $1 \mathrm{M} \Omega$. are available, but Ambit are stocking a restricted range at present, at a 100 off price of 82 p. Ambit International, 200 North Service Rd, Brentwood, Essex CM14 4SG.
WW 302

P.c.b. drill

Unlike most mini-drills, the USA manufactured Dremel Moto-Tool, introduced by Microflame Ltd, is suitable for operation at mains voltage, can supply considerable torque, and has a maximum freerunning speed of 27000 r.p.m. Four collet sizes, of $1 / 8 \mathrm{in}, 3 / 32 \mathrm{in}$, $1 / 16 \mathrm{in}^{2}$ and $1 / 32 \mathrm{in}^{-}$diameter, and a range of over 100 accessories for drilling, grinding, deburring, engraving etc., make the drill suitable for a wide range of applications other than just the drilling of p.c.bs. The basic drill with one collet costs $£ 33.60$, or it can be bought complete with a set of accessories at a price of $£ 40.35$. A drill-stand and a compatible vice are also available at prices of $£ 18.80$ and $£ 11.39$ respectively. Microflame (UK) Ltd, Vinces Rd, Diss, Norfolk IP22 3HQ
WW 303

"Pocket" computer

Battery powered, fully portable, 1.9 K bytes r.a.m. and a total of 11 K bytes r.o.m., are all features of the Tandy TRS 80 Pocket Computer, due to be released in October, for which eight different software packages will be available to cover varying requirements from civil engineering to computer games. By using a cassette interface, which is not included in the price of $£ 119$, programs can be loaded into the computer, one after the other, without the previous program being erased. TRS 80 makes use of a digital-display and a 57 key alphanumeric keyboard, and measures only $175 \times 70 \times 15 \mathrm{~mm}$. Prices of the software will range from $£ 8.95$ to $£ 13.95$, and the cassette interface will cost $£ 17.95$. Tandy Corporation, Bilston Rd, Wednesbury, West Midlands WS10 7JN.
WW 304

Cable identifier

Electricians faced with the problem of finding the beginnings and ends of conductors of identical appearance in a cable group should find this product of interest. The Cable

Identifier System, developed by Mason and Morton Ltd, consists basically of two units, a sender and a receiver, to which the cable group to be identified is connected. When switched on, the cables connected to points one and two on the sender are identified at the receiver and indicated by red and green l.e.ds respectively. Once identified, these two cables are simply connected to special points on the receiver to enable the two units to communicate with each other, after which the other cable points can be identified directly one by one. Open or short circuited cables are also shown up by the system. The basic model can accommodate up to 20 cables, and extensions are available to enable a maximum of forty cables to be identified. The Mason and Morton Group, M\&M House, Frogmore Rd, Hemel Hempstead, Herts HP3 9RW.
WW 305

Waveform synthesizer

One of four new instruments recently introduced by Wavetech Electronics Lid, is a programmable waveform synthesizer, for use either as a bench-top unit, or in conjunction with a.t.e. Model 178, as it is called, can be used as a function, signal or sweep generator. Among the types of waveform in its range are sine, offset sine, square, triangle and ramp, at programmable output voltages of up to 20 V p.p. into 50 ohms, with frequencies of up to 50 MHz . The design techniques incorporated enable synthesized triggering, gating, frequency sweep, burst counts, and combinations of these modes to make it a flexible instrument which can be used for a wide range of applications, and its dual-microprocessors enable input data to be accepted in any order or form for optimal resolution and performance. Additional features include stored settings, a.m. and ф.m., variphase operation, frequency markers, and advantages such as 'learn mode', made possible through the use of a general purpose interface bus. D.c. offset, d.c. output and fixed t.t.1./t.t.l. output are also standard features. Wavetech Electronics Ltd, 115 Crockhamwell Rd, Woodley, Reading, Berks RG5 3JP
WW 306

Double-balanced mixer

Considering the 1 to 4.2 GHz bandwidth of this double-balanced mixer, the Summit model 1307, distributed by March Microwave Ltd, the performance is unusually high. Conversion loss and noise figures are both less than 6 dB , and lo to r.f. isolation is greater than 40 dB . During assembly, hot carrier diodes are selected for the quad

WW 305

WW 306

WW 307

WW 308
using a computerized technique to enable good matching and optimum noise performance. The unit, housed in stainless-steel and designed to work under rugged conditions, will probably find its use in such fields as commercial satellite communications. March Microwave Ltd, 112 South Street, Braintree, Essex.
WW 307

Midget capacitors

Suitability for assembly into thin and thick-film circuits, is one of the features of a new range of solidelectrolyte tantalum chip capacitors, type 194D Midget, which is available through Hy-Comp Ltd and manufactured by Sprague Electric. Capacitance values range
from $0.1 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$, with working voltages of $u p$ to 50 V d.c. for values under $4.7 \mu \mathrm{~F}$. Working voltages for values above 4.7 uF fall gradually to a maximum of 4 V d.c. for $100 \mu \mathrm{~F}$. The unpackaged devices, which have epoxy encapsulated bodies, are available in eight different sizes, ranging from 1.27 x 2.54 mm to $3.8 \times 7.2 \mathrm{~mm}$, and are compatible with modern hybrid assembly techniques, including softsoldering, epoxy bonding and thermal compression bonding. Standard operating temperature range is from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and capaci tance tolerances of either 20% or 10% are obtainable (also 5% to special order). Hy-Comp Lid, 7 Shield Rd, Ashford Industrial Estate, Ashford, Middx. TW15 1AV. WW 308

Software for micros

A series of products called Component Software, introduced by Texas Instruments Lid, support the TMS 9900 family of 16 -bit microprocessors and TM990 microcomputer modules. They complement TI's Microprocessor Pascal products to enable a reduction in the number of software statements and allow designers to add modular software capability to their applications. Component Software products rely on a standard software interface, analogous to the hardware interface in v.l.s.i. components or microcomputer modules, to communicate with lan-guage-support and custom software routines. Initial products in the series are the TMSW330R Realtime Executive and the TMSW340F File Manager, at $£ 950$ and $£ 923$ respectively, both available either for use on TI's floppy-disc based microprocessor development system or the hard-disc based AMPL system. The Realtime Executive has 6 K bytes of software routines that perform the necessary executive functions for a real-time, multi-masking application program. These functions include system initialization, concurrent process synchronization, interprocess communication, interrupt linkage, memory management and priority scheduling. The File Manager provides device-independent file management capability from assembly language and/or microprocessor Pascal application programs, and can interface at several different levels to the Realtime Executive, depending on the input/output generality and software 'overhead' the designer wishes to include in his application. Texas Instruments Lid, Manton Lane, Bedford MK4 7PA.
WW 309

E.e.p.r.o.m.

With a memory capacity of 16 K bit, this e.e.p.r.o.m., the HN 48016 by Hitachi Ltd, is claimed to be the first of its kind in the world. Dialogue Marketing Ltd say that it is now available through them for sample deliveries, with large-order capacity expected by the end of the year. Memory organization of the device is 2048 -word $\times 8$-bit, the same as for the 2716 e.p.r.o.m. family, but its access time is only 350 ns , and also the number of program/erase cycles possible is greater, at a maximum of 1000 times. Compatibility with existing e.p.r.o.ms, suitability for use with 2 MHz microcomputers, and an ability to retain data for longer than .10 years at $85^{\circ} \mathrm{C}$, are among the other features of this product. Dialogue Marketing (Electronics) Ltd, Unit 11G, Rose Industrial Estate, Bourne End, Bucks FL8 5AS WW 310

8K ON BOARD MEMORY!
$5 K$ RAM, 3 K ROM or $4 K$ RAM, $4 K$ ROM (link selectable). Kit supplied with 3 K RAM, 3 K ROM. System expandable for up to 32 K memory

2 KEYBOARDS!

56 Key alphanumeric keyboard for entering high level language plus 16 key Hex pad for easy entry of machine code.

GRAPHICS!

64 character graphics option - 'includes transistor symbols! Only $£ 18.20$ extral

MEMORY MAPPED
High resolution VDU circuitry using dis crete TTL for extra flexibility. Has its own 2 K memory to give 32 lines for 64 cha racters.
KANSAS CITY
Low error rate tape interface

PSI COMP 80 280 Based powertul scientific computer. Design as published in WIRELESS WORLD

2 MICROPROCESSORS
280 the powerful CPU with 158 instruction including all 78 of the 8080, controls the MM57109 number cruncher. Functions include,,+- , squares, roots, logs exponentials, log functions, inverses, etc. Range $10-99$ to $9 \times 19-99$ ro 8 ligures plus 2 exponent digits.
EFFICIENT OPERATION
Why waste valuable memory on sub routines for numeric processing? The number cruncher handles

RESIDENT BASIC

With extended mathematical capability Only 2K memory used but more powerful than most 8K Basics!

IK MONITOR Resident in EPROM
SINGLE BOARD DESIGN Even keyboards and power supply circuitry on the superb quality double-sided plated through-hole PCB

COMPLETE KIT
NOW ONLY
£225+var!

The kit for this outstandingly practical design by John Adams published in a series of articles in Wireless World really is complete!

Included in the PSI COMP 80 scientific computer kit is a professionally finished cabinet, fibre-glass double sided, plated-through-hole printed circuit board, 2 keyboards PCB mounted for ease of construction, IC sockets, high reliability metal oxide resistors, power supply using custom designed toroidal transformer, 2 K Basic and 1 K monitor in EPROMS and. of course, wire, nuts, bolts, etc.

KIT ALSO AVAILABLE AS SEPARATE

 PACKSFor those customers who wish to spread their purchase or build a personalised system the kit is available as separate packs e.g. PCB $16^{\prime \prime} \times 12.5^{\prime \prime}$) $£ 43.20$. Pair of keyboards $£ 34.80$. Firmware in EPROMS $£ 30.00$. Toroidal transformer and power supply components £17.60. Cabinet (very rugged, made from steel, really beautifully finished) $£ 26.50$. P.S. Will greatly enhance any other single board computer including OHIO SUPERBOARD for which it can be readily modified. Other packs listed in our FREE

PSI COMP 80 Memory Expansion System

Expansion up to 32 K all inside the computer's own cabinet!
By carefully thought-out engineering a mother board with buffers and its wn power supply (powered by the computer's transformer) enables up to 8K RAM or 8 K ROM boards to be fitted neatly inside the computer cabinet. Connections to the mother board from the main board expansion
-
Mothar Board:
Fibre glass double sided plated through hole PCB $8.7^{\prime \prime} \times 3.0^{\prime \prime}$ set of all components including all brackets, fixing parts and ribbon cable with socke1

K Static
RAM board

8K
ROM board

Fibre glass double sided plated through hole PCB $5.6^{\prime \prime} \times 4.8^{\text {s }}$ Set of components including IC sockets, plug and socket but excluding RAMs $£ 11.20$ 21 14L RAM (16 required) E4.50 Complete set of board, components, 16 RAMS

Fibre glass double sided plated through hole PCB
 Set of components including IC sockets. plug and 2708 ROM (8 required) Complete set of board, components, B ROMs

NEW!

ETI VOCODER
COMPLETE KIT onty $£ 195+$ vat

Published in Electronics Today International

Panel size $19.0^{\prime \prime} \times 5.25^{\prime \prime}$. Depth $12.2^{\prime \prime}$

14 CHANNELS NOISE GENERATOR! SLEW RATE CONTROL!

2 OSCILLATORS voiced/unvoiced detector! LED PPM METERS!

Kit includes FREE foot control and test oscillator!
Like all our kits, the ETI VOCODER really is complete - fully finished metalwork, professiona quality components (all resistors 2% metal oxide), nuts, bolts, etc. - even a $13 A$ plug!

MANY MORE KITS

ON PAGES 93,95

POWERTRAN

Value Added Tax not included in prices
PRICE STABILITY: Order with confidencel Irrespective of any price changes we will honour all prices in this advertisement until December 31st. 1980, if this month's advertisement is mentioned with your order. Errors and VAT rate change excluded
EXPORT ORDERS: No VAT. Postage charged at actual cost plus $£ 1$ handling and documentation.
U.K. ORDERS: Subject to 15% surcharge for VAT. NO charge is made for carriage. Or current rate if changed
SECURICOR DELIVERY: For this optional service (U.K. mainland only) add £2.50 (VAT inclusive) per kit

COUNTER: If you prefer to collect your computer from the factory. Call at Sales Counter. Open 9 a.m. 12 noon. 1.4 .30 p.m. Monday Thursday.

Now you can have your own 250° meter movement to fit in your own case.

Features include: Sensitivities from $200 \mu \mathrm{amps}$ Top or bottom zero adjuster Spring loaded pivots Various pointer styles and lengths available Supplied in specially designed polystyrene trays Customised to suit your specification
Can be fitted by us in your case if required. For full technical information telephone, write or telex now

Bach-Simpson (UK) Limited,
Trenant Estate, Wadebridge. Cornwall PL27 6HD Tel: (020881) 2031 Telex: 45451

Happy Mennories

4116 200ns £3.75 4116 150ns £5.50 $2114200 \mathrm{~ns} \quad £ 3.45 \quad 2114450 n \mathrm{~ns} \quad £ 2.95$ 2708 450ns
£4.95 27165 volt
£10.95
MEMOREX mini discs soft sectored - with FREE library case £19.95 per ten

WE'VE MOVED!!

All prices include VAT
30 p postage on orders below $£ 10$
Access \& Barclaycard
All orders to:
Dept. WWW
HAPPY MEMORIES
Gladestry
Kington
Herefordshire HR5 3NY
Tel. (054422) 618

TRANSCENDENT DPX

DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER
Another superb design by synthesizer expert Tim Orr - published in Electronics Todey International
The Transcendem DPX is a really versatile new 5 octave keyboard instrument. There are two audio outputs which can be used simultaneously. On the first there is a beautiful harpsichord or reed sound - fully polyphonic, i.e. you can play chords with as many notes as you like. On the second output there is a wide rance of different voices. still fully polyphonic. It can be a straightonward piano or a honky tonk piano or even a mixture of the twol Alternatively you can play strings over the whole range of the keyboard or brass over the whole range of the keyboard or should you prefer - strings on the top of the keyboard and brass at the lower end the keyboard is electronically split after the first two octaves) or vice versa or eyen a combination of strings and brass sounds simultaneously. And on all voices you can switch in circuitry to make the keyboard touch sensitive! The harder you press down a key the louder it sounds - just like an acoustic piano. The digitally controlled multiplexed system makes practical touch sensitivity with the complex dynamics law necessary for a high degree of realism. There is a master volume and tone controf, a separate controlfor the brass sounds and also a vibrato circuit with variable depth control together with a variable delay control so that the vibrato comes in only atter waiting a short time after the note is struck for even more realistic strong sounds.

Cabinet size $36.3^{\prime \prime} \times 15.0^{\prime \prime} \times 5.0^{\prime \prime}$ (rear) $3.3^{\prime \prime}$ (front)

COMPLETE KIT ONLY £299 +vat

To add interest to the sounds and make them more natural there is a chorus/ensemble unit which is a complex phasing system using CCD (charge coupled device) analogue delay lines. The overall effect of this is similar to that of several acoustic instruments playing the same piece of music. The ensemble circuitry can be switched in with either strong or mild effects. As the system is based on digital circuitry digital data can be easily taken to and from a computer (for storing and playing back accompaniments with or without pitch or key change, computer composing, etc., etc.)
Although the DPX is an advanced design using a very large amount of circuitry, much of it very sophisticated, the kit is mechanically extremely simple with excellent access to all the circuit boards which interconnect with multiway connectors, just four of which are removed to separate the keyboard circuitry and the panel circuitry from the main circuitry in the cabinet The kit includes fully finished metalwork, solid teak cabinet, professional qualify components (all resistors 2% metal oxide), nuts, bolts, etc., even a 13 A plug !

POWEPTRAN

MANY MORE KITS ON PAGE 95. MORE KITS AND ORDERING INFORMATION ON PAGE 93.

TRANSCENDENT 2000
 SINGLE BOARD SYNTHESIZER

LIVE PERFORMANCE SYNTHESIZER DESIGNED BY CONSULTANT TIM ORR (FORMERLY SYNTHESIZER DESIGNER FOR EMS LIMITED) AND FEATURED AS A CONSTRUCTIONAL ARTICLE IN ELECTRONICS TODAY INTERNATIONAL.

The TRANSCENDENT 2000 is a 3 octave instrument transposable 2 octaves up or down giving an effective 7 octave range. There is portamento, pitch bending. a vCO with shape and pitch modulation, a VCF with both low and high pass outputs and a separate dynamic sweep control, a noice generator and an ADSR envelope shaper. There is also a slow oscillator, a new pitch detector, ADSR repeat, sample and hold, and special circuitry with precision components to ensure tuning stability amongst its many features.
The kit includes fully finished metalwork, fully assembled solid teak cabinet, filter sweep pedal, professional quality components (all resistors either 2% metal oxide or $1 / 2 \%$ metal film) and it really is complete - right down to the last nut and bolt and last piece of wire! There is even a 13A plug in the kit - you need buy absolutely no more parts before plugging in and making great musicl Virtually all the components are on the one professional quality fibreglass PCB printed with component locations. All the controls mount directly on the main board, all connections to the board are made with connector plugs and almost anyone capable of neat soldering! When finished you will possess a synthesizer comparable in pefformance and quality with ready-built units selling for many times the price.

COMPLETE KIT ONLY $£ 168.50$ +VAT!

Comprehensive handbook supplied with all complete kits! This fully
describes construction and tells you how to set up your synthesizer with nothing more elaborate than a multi-meter and a pair of ears!

THE ULTIMATE WATCHES

Send $12 p$ for details of these amazing CASIO watches NOW!

AA81
 LCD ANALOGUE DIGITAL

Alanm Chronograph with countdown Analogue. Independent hours and minutes with synchronous digital seconds. Dual time ability.
Digital. Hours, minutes, seconds, day and date.
Stopwatch. $1 / 100$ second to 12 hours. Net lap and 1 st and 2 nd place. Start/stop and 10 minute signals
Alarn. For 30 seconds with carousel display Countdown Alarm. Normal and net times to 1 display.
Gisplay
Tone Signal. Halt-hourly and hourly chimes, Resist control. Lithium battery. Light. Water (£34.95)

ONLY £29.95
for around 40 functions
12 MELODY ALARM -CHRONOGRAPHS

Date memoriae Hours, minutes, seconds, am-pm, 12 or 24 hour. Day, date and month auto calendar Alarm. 7 melodies, one for each day of the week.
Hourly time signal. With "Big Ben" type tune.
Date memory. Choose either "Wedding March" or Trinklied " to be played Birthday and Christmas Memory. Coumdown alarm. From 1 second to 1 hour After zero, coumt continues positively Stopwatch. $1 / 10$ second to I hour. Net, lap etc. Picturesque moving display of notes played Light. Lithium. Glass. Water Resist, cases
 9.00 mm thick

CASIO

$£ 19.95$

£32.50

$£ 24.95$

L.E.D.s. 125 and .2

RED YELLOW or GREEN

$1+.08$.11	$1+$.02
$100+.069$.10	$100+$.016
$1000+.058$.09	$1000+$.013

$1000+.058$
100.1 arg

CARBON FILM RESISTORS E12 SERIES

1N4148 Diodes

Prices per 100. Larger and able.

. 25 W			
	off one	type	.70p
	off one	type	.64p
1000	off one	$5 \text { type }$.58p
	off one	type	.90p
	off one	type	.80p
1000	off one	type	.72p
	1+	100+	$500+$
8 pin	.075p	.068p	.06p
14pin	. 09	. 082	. 073
16 pin	. 10	. 096	. 085
18 pin	. 125	. 113	. 10
20 pin	. 14	. 126	. 113
22 pin	. 15	. 135	. 12
24 pin	. 15	. 135	. 12
28 pin	. 16	. 145	. 125
40 pin	. 24	. 215	. 19

Please add $£ 1.50$ handling charge and 15% V.A.T. We also stock transistors, diodes, TTL, CMOS, capacitors, instrument cases, switches, connectors etc. Free trade catalogue available. All enquiries welcome.

Fiarrison Bros.

Electronic Distributors

22 Milton Road, Westcliff-on-Sea Esser SSO 7JX England
Tel. Southend-on-Sea (0702) 32338
WW - 023 FOR FURTHER DETAILS

DEVELOPING A MICROSYSTEM?

SOFTY-What else do you need?

For literature and the name of your local retailer contact Dataman,
P.O. Box 5, Dorchester, Dorset. DT2 7UB or
Telephone 03002700

MPA 200100 WATT (rms into 8Ω) MIXER/AMPLIFIER

Featured as a constructional article in ETI, the MPA 200 is an exceptionally low priced - but professionally finished - general purnose high power amplitier. If features an adaptable inpu mixer which accepts a wide range of sources such as a microphone, guitar, etc. There are wide range tone controls and a masier volume control. Mechanically the MPA 200 is simplicity itself with minimal wiring needed making construction very straightforward
The kit includes fully finished metalwork, fibreglass PCBs, controls, wire, etc. - complete down to the last nut and bolt.

COMPLETE KIT ONLY

CHROMATHEQUE 5000

This versatile system featured as a constructional article in ELECTRONICS TOOAY INTERNATIONAL has 5 frequency channels with individual level controls on each channel. Control of the lights is comprehensive to say the least. You can run the unit as a straightforward sound-to-light or have it strobe all the lights at a speed dependent upon music level or front panel control or use the internal digital circuitry which produces some superb random and sequencing effects. Each channel handles up 10500 W and as the kit is a single board design wiring is minimal and construction very straightorward
Kit includes fully finished metalwork, fibreglass PCB controls, wire, etc. - Complete right down to the last nut and bolt!

COMPLETE KIT ONLY $£ 49.50$ + VAT!

Роненrian
SYNTHESIZER KITS ON PAGE 93. MORE KITS AND ORDERING INFORMATION ON PAGE 91.

DE LUXE EASY TO BUILD LINSLEY HOOD 75W STEREO ARMPLIFIER $\mathbf{E 8 5 . 0 0 ~ + ~ V A T ~}$
This easy to build version of our world-wide acclaimed 75 W amplifier kit based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and construction delighttully straightionward. The design was published in Hi-Fi News and Record Review and features include rumble is and tape monitoring while distortion is less than 0.0% filer, versatile tone

$T 20+2020 W$ STEREO AMPLIFIER £33.10 + VAT
This kit based upon a design published in Practical Wireless. uses a single printed circuit board and offers at very low cost, ease of construction and all the normal facilties found on quality amplifiers. A 30 watt version of this kit ($\mathrm{T} 30+30$) is also avatlable for $\mathbf{£ 3 8 . 4 0 + V A T \text { . MATCHING TUNERS - See our FREE CATALOGUE! }}$ Above 2 kits are supplied with fully finished metalwork, ready assembled high quality teak veneer cabinet, cable, nuts, bolts, etc. and full instructions - in fact everythingl

BLASK

MUSIC EFFECTS DEVICE - AS FEATURED IN ELECTRONICS TODAY INTERNATIONAL!
The BLACK HOLE designed by Tim Orr, is a powerful new musical ettects device for processing both natural and electronic instruments, offering genuine VIBRATO (pitch modulation) and a CHORUS mude which gives a spacey feel to the sound achieved by delaying the inpur signal and mixing it back win the original Notenes
(HOLES), introduced in the trequency response, move up and down as the time delay is modulated by the chorus (HOLES), introduced in the trequency response, move up and down as the lime delay is moduated by the chorus
sweep generator. An optional double chorus mode allows exciting antiphase eflects to be added. The device is sweep generator An optional double chorus mode allows exctiting antiphase efrects to be added The device is
Hoor standing with foot switch controls. LED effect selection indicators. has variable sensitivity, has high Hoor standing with foot switch controls, LED effect selection indicators. has variabie sensitivity. has high
signal/ noise ratio obtained by an audio compander and is mains powered - no batteries to changel Like all our kits everything is provided including a highly superior, rugged steel, beautifully finished enclosure.
COMPLETE KIT ONLY £49.80

+ VAT (single delay line system)
De Luxe version (dual delay line system) also available for $£ 59.80$ + VAT
Cabinet size $10.0^{\prime \prime \prime} \times 8.5^{\prime \prime} \times 2.5^{\prime \prime}$ (rear) $1.8^{\prime \prime}$ (front)

$S 0$ ETM $\begin{aligned} & \text { Software Development System } \\ & \text { and Eprom Programmer }\end{aligned}$

SOFTY is intended for the development of programs which will eventually become software residing in ROM and forming part of a microsystem. During the development stage of a microsystem. SOFTY will be connected in place of the firmware ROM via a ribbon cable, terminated in a 24 pin OIL plug
Data may be entered into the SOFTV RAM vis the serial port, parallel port, direct memory access, or the keypad, and manipulated using the assemblerkey-functions. When the program has been entered, the internal microprocessor can be turned off. and the external microsystem and its resident microprocessor and way modification can be program in SOFTY SAM and/or programming sockentents of the RAM being clearly visible as a 'page' on TV or monitor. 4 pages are available, 2 of the Data RAM an 2 of the programming socket

In the end, when the program is complete and working. the DIL plug is removed and replaced by an EPROM device programmed by SOFTY. SOFTV is able 10 program the $2704 / 2708 / 2716$ family which have 3 voltage rails
To help in the process of program development SOFTY has various assembler key-functions, which include - block shift without overwriting, block asore, cursor control, match byte and displacement calculations (for
cassette interface is also provided for storing working programs and useful subroutines

SOFTY Kit-of-parts: (including zero Insertion force socket for EPROM programmer) Price $£ 115$ (inc. VAT p\&p). SOFTY builh and rested - £138 (inc. VAT p\&p). Buil SOFTY power supply - $\mathbf{\Sigma 2}$ (inc. VAT $p \& p$). Write or telephone for full details

NEW - SOFTY CONVERSION CARD - EX-STOCK Enables SOFTY to program the single rail EPROMS 2508, 2758, 2516, (INTEL 2716), 2532
Selection of device type and 1 K block are by 4 -way pcb slide switches. Programming socket is zero insertion force. Supplied ready built and tested with Dip jumper for connection to SOFTY. £46 (inc. VAT p\&p).

NEW - SOFTY PRINTER CARD - EX-STOCK

- 40 column electrosensitive printer 5×7 dot matrix software selection of characters per line (1 to 16 bytes) push-burion printing of EPROM / RAM / Intercursor contents Connects to SOFTY card edge Well documented Supplied ready buily and tested including power supply, edge connector and paper roil Spare paper rolls (28-30 metres/roll) - 4 rolls for $\mathbf{£ 8}$ (inc. VAT $p \& p$).

MODEL 14 EPROM ERASERS

MODEL UV141 EPROM ERASER

- Fast erase times (typically 20 minutes for 2708 EPROM)
- 14 EPROM capacity
- Built-in 5 to 50 minute timer to cater for all EPROMs
- Safety interlocked to prevent eye and skin damage
- Convenient slide-tray loading of devices

MAINS and ERASE indicators

- Rugged constuction

MODELUV140 EPROM ERASER

Similar to Model UV141 but withour time
Similar to Model UV141 but without time
Low price at only $£ 70.73$ (inc. VAT, P\&p)
WRITE OR TELEPHONE FOR FULL OETAILS OR SEND CHEQUES / OFFICIAL COMPANY porers to

GP Industrial Electronics Limited

(Retail Sales), Skardon Place, North Hill, Plymouth PL4 8HA. Telephone: Plymouth (0752) 28627

TRADE AND EXPORT ENQUIRIES WELCOME

WW- 064 FOR FURTHER DETAILS

Audax HD 12.9025	¢8.25
Audax MD11 P25EBC	¢7.50
Audex HD20B25H4	¢14.95
Audax HD13034H	E12.95
Audax HD 24 S45C	¢21.95
Baker Superb	¢25.00
Castle Super 8 RS/DD	¢14.95
Chartwell CEA205 pairs on	pairs only $£ 61.25$
Coles 4001	E7.65
Coles 3000	¢7.65
Celestion HF1300 II	¢10.95
Celestion HF2000	¢10.95
Dalesford ABR 10'	E10.25
Dalesford D30/110	E11.25
Dalesford D50/153	E12.25
Dalesford D50/200	¢12.25
Dalesford D70/250	C25.50
Dalestord D100/310	¢35.75
Dalestord D10 iweeter	¢8.45
Decca London Horn	$¢ 61.95$
Decca CO/1000/8	¢10.25
Elac 6NC204 61/2"	¢7.50
Elac 8NC298 ${ }^{\prime \prime}$	¢7.95
EMI type 350, $13^{\prime \prime} \times 8^{\prime \prime}$, 4 ohm	, 4 ohm E9.45
EMI 14A/770, $14^{\prime \prime} \times 9^{\prime \prime}, 8 \mathrm{ohm}$	'., 8 ohm ¢19.50
Isophon KK8/8	E8.15
Isophon KK10/8	¢8.45
Jordan Watts Module	¢24.95
Jordan Watts MF kit	¢10.50
Jordan 50 mm unit	¢24.50
Jordan CB crossover E2	E24.50 pair
Jordan Mono crossover E2	E24.50 pair
Kef T27	¢9.45
Kef B1 10	¢12.25
Kef B200	E13.50
Kef B139	E27.75
Kef DN13	66.75
Kef DN12	¢9.40
Ket DN22 pal	palr 842.00
Lowther PM6	¢59.00
Lowther PM6 Mk I	¢62.00
Lowther PM 7	E94.50
Peerless KO10DT	E10.95
Peerless DT 10HFC	£10.50
Peerless KO4OMRF	¢13.60
Radford BD25 Mk IIf	¢36.95
Radford M09	£14.85
Radford MD6	¢25.50
Radford FN8/FN831	¢22.50
Richard Allan CG8T	€13.50
Richard Allan CG12T Super	er E29.50
Richard Allan HP8B	¢20.75
Richard Allan LP8B	£14.50
Richard Allan HP128	¢33.50
Aichard Allan DT20	$£ 9.95$
Richard Allan DT30	¢10.75
SEAS H107	¢8.95
Shackman Electrostatic with polar. network \& crossover £130.00 pair Tannoy DC296 10" $\mathbf{£ 1 0 7 . 3 5}$ Tannoy DC316 12", $£ 148.50$ Tannoy DC386 15 15	

> Celestion G12/50TC Celestion G12 80CE
Celestion G 12 /80TC Celestion G12
Celestion G12
OTC Celestion G12/125CE Celestion G15/100CE
Celestion G15/100TC Celestion G 18/200 Celestion HF 1300 Celestion HF2000 Celestion Powercell 12/150 Celestion Powercell 15/250 Celestion PAH 1000 Fane Classic 45 12" Fane Classic $5512^{\prime \prime}$ Fane Classic $8012{ }^{\prime \prime}$
Fane Classic 85
$15^{\prime \prime}$
> Fane Classic $8515^{\prime \prime}$
Fane Classic $1505^{\prime \prime}$
> Fane Classic $15015^{\prime \prime}$
Fane Classic $1258^{\prime \prime}$ Fane Classic $1751^{\prime \prime}$ Fane Guitar 80L 12" Fane Guitar 808/2 12° Fane Disco $10012^{\prime \prime}$ Fane Pa85 12' Fane Bass 10015 Fane Crescendo 12E Fane Crescendo 15 E Fane Crescendo 1BE Fane Colossus $15 E$ Fane Coloss
Fane J44 Fane J44
Fane J104 Fane J 104
Fane J 73 Fane HPX1/HPX2 Fane MPX3A Fane HPX3B Goodmans BPA Goodmans PP1 2 Goodmans DI12 Goodmans GR12
Goodmans 18P Goodmans 18P
Goodmans Hifax 5OHX McKenzie C1 280GP McKenzie C1280TC McKenzie GP15 McKenzie GP15 McKenzie C15 bas Motorola Piezo horn $31 / 2^{\prime \prime} \mathrm{C}$ Motorola Piezo $2^{\prime \prime} \times 6^{\prime \prime}$ Richard Allan HD8T Richard Allan HD 107 Richard Allan HD 127 Richard Allan HD15 Richard Allan HD15P
Richard Allan Atlas 15^{\prime} Richard Allan Atlas $18^{\prime \prime}$
€ 19.50
€24.50 E23.75
E 42.00 $E 42.00$
$£ 37.95$ $£ 37.95$
£38.50 € 38.50
$£ 64.75$ £64.75
E12.50 ع12.50 E 12.50
E 6.00

¢88.00
 £21.75

£ 21.75 $£ 13.95$

£15.50
€19.75
£26.00
637.95
€43.95
$\boxed{47.95}$
$€ 47.95$
$£ 26.25$
C26.
€27.
$\epsilon 28.7$
628.75
$£ 26.25$
$\begin{array}{r}639.00 \\ \\ \hline 557.50\end{array}$
657.50
657.50
674.50

e94.75

$\begin{array}{r} \\ 699.95 \\ \hline 107\end{array}$
E107.00
66.90.
€6.90.
$£ 15.95$

$€ 15.95$ $£ 10.90$

E10.90
E3.45
$£ 3.45$
65.60
E5.05

0_{0}°
Ni

€25.50
ع24.85
C48.45
C21.85
ع21.85
$\mathbf{E 2 4 . 4 5}$
E24.45
$\mathbf{E 2 4 . 4 5}$
224.45
£24.45
ع35.10
E35.10
$£ 35.10$
$£ 59.60$
59.60
68.50
$\varepsilon 12.25$
£ 12.25
$£ 20.25$
¢ 21.75
£21.75
£29.75
£52.75
$£ 52.75$
$£ 77.00$

$€ 77.00$
96.00

KITS FOR MAGAZINE OESIGNS, etc.
KITS INCLUDE DRIVE UNITS. CROSSOVERS, BAFILONG FIBRE WOOL, etC
FOR A PAIR OF SPEAKERS Carriage $\mathbf{E 3 . 7 5}$ unless otherwise stated
Practical Hi Fi \& Audio PRO9-TL (Rogers)
As above but including felt panels
£146.00
Hi Fi Answers Monitor $£ 1$ 2.75 $+£ 5$ carriage Hi Fi News State of the Art (Atkinsen) E185.00
Hi Fi News Miniline (Atkinson)
Hi Fi For Pleasure $\mathbf{E 4 9 . 0 0}+£ 3$ carriage loms) $\quad £ 116.00+£ 5$ carriage Popular Hi Fi Mini Monitor (Colloms)
Popular Hi Fi Round Sound (Stephens) Popular Hi Fi Jordan
£96.00 $+£^{3}$ carriage Practical Hi Fi and Audio BSC3 (Rogers) Practical Hi Fi and Audio Moniror (Giles) E180.00 Giles) 120.00 Hi Fi News Tabor (Jones) with J4 bass units Hi Fi Nows Tab (Jones) w66.00 b
£ 70.00 Wireless World Transmission Line KEF Wireless World Transmission $£ 125.00$ FORD (Bailey) E179.00 Everyday Electronics EE 70 (Stephens) Everyday Electronics EE20 (Stephens) £29.50 E £ car

SMART BADGES FREE WITH ABOVE KITS TO GIVE THAT PROFESSIONAL TOUCH TO YOUR DIY SPEAKERS!
REPRINTS/CONSTRUCTION DETAILS OF ABOVE DESIGNS 10 p EACH

CARAIAGE \& INSURANCE	
SPEAKERS 4" to $61 / 2^{\prime \prime}$	80p each
$8^{\prime \prime}$ to $10^{\prime \prime}$	E1 emech
$12^{\prime \prime} .13^{\prime \prime} \times 8^{\prime \prime}$.	
$14^{\prime \prime} \times 9^{\prime \prime}$	C1.95 euch
$15^{\prime \prime}$	C2.95 omeh
$18^{\prime \prime}$	E4.50 esch
SPEAKER KITS	¢1.95 ench
	E3.95 pair
MAG. DESIGNKITS E3.75 pair unless otherwise stated	
ALL PRICES CORRECT AT 1.2 .80	

Prices per pair Carriage £3.95 pair

Dalesford System 1	$€ 54.00$
Dalestord System 2	$£ 57.00$
Dalesford System 3	$£ 104.00$
Dalesford System 4	$£ 110.00$
Dalesford System 5	$£ 142.00$
Dalesford System 6	$£ 95.00$
Goodmans DIN 204 ohm (special olfer)	
	$£ 27.60$

$£ 133.00+£ 5$ carriage ¢213.50 + ¢5 carriage LS3 Micro Monitor kir
owther PM6 $£ 71.00+£ 3.75$ carriage
Lowther PM 6 Mk I kit Lowther PM 7 kit Peerless 1070 Peerless 1120 Peerless 2050 Peerless 2060 Radford Studio 90 kit Radford Studio 270 kit Radford Monitor 180 kit Radiord Studio 360 kit Richard Allan Tango Twin kit Richard Allan Maramba kit Richard Allan Charisma kit Richard Allan Super Triple kit Richard Allan Super Saraband II Richard Allan RA8 kit Richard Allan RAB2 kit Richard Allan RA82L kit SEAS 223
SEAS 403
SEAS 603
Wharledale Denton XP2 kil Whartedale Shelion XP2 ki Wharfedale Linton XP2 kit Wharfedale Glendale XP2 kit

WILMSLOW AUDIO BAI sub bass amplifier/crossover kit
$£ 37.95+£ 1$ carriage

EVERYTHING IN STOCK FOR CONSTRUCTOR

BAF. LONG FIBRE WOOL FOAM, CROSSOVERS, FELT PANELS. COMPONENTS, ETC FABRICS.
(Send 22p in stamps for grille tabric samples)

ALL PRICES INCLUDE VAT @ 15\%

Send 50p for 1980 56-page catalogue 'Choosing a Speaker'

Tel: 0625529599 FOR MAIL ORDER \& EXPORT OF DRIVE UNITS, KITS, ETC.

Tel: 0625526213 (SWIFT OF WILMSLOW) FOR HI-FI \& COM PLETE SPEAKER SYSTEMS.

Lightning service on telephoned credit card orders! Wilmslow, Cheshire.

The New FM/AM 1000s with Spectrum Analyser-we call it the SUPER-S
A portable communications service monitor from IFR, light enough to carry anywhere and good enaugh for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope, tone generator, deviation meter, modulation meter, signal generator, wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!
For further information contact Mike Taylor

Get Connected

Multiway connectors from 4 to 35 way with pre-tinned brass or gold hyfen contacts giving 5 and 13 amp rating per contact. The range of accessories includes cable clamps and dust covers.
For full details of "by return" service contact:-

Stansted Road, Boyatt Wood, Eastleigh, Hampshire. SO5 4ZY

WW - 091 FOR FURTHER DETAILS

IOXO-100 SERIES LOW PROFILE CRYSTAL CLOCK OSCILLATORS

The frequency range 600 Hz to 30 MHz is covered by both CMOS ($600 \mathrm{~Hz}-8 \mathrm{MHz}$) and TTL ($150 \mathrm{KHz}-30 \mathrm{MHz}$) types having an overall tolerance of $\pm 0.01 \%$ from 0 to $+70^{\circ} \mathrm{C}$. For more stringent requirements, $\pm 0.01 \%$ from -55 to $+125^{\circ} \mathrm{C}$ is available.
Many frequencies can be supplied from stock.

INTERFACE QUARTZ DEVICES LTD 29 Market Street, Crewkerne, Somerset TA18 7JU Crewkerne (0460) 74433 Telex 46283 inface g wW - 075 FOR FURTHER DETAILS

\oplus TRIO

 TEST

 TEST
 INSTRUMENTS

THE RANGE HAS INCREASED THE PRICES ARE DOWN

THE CS 183030 MHz + Sweep Delay

The CS1830 is a completely new 30 MHz dual trace oscilloscope employing a square format, internal graticle. PDA tube for accurate bright display. A new feature is the inclusion of calibrated sweep delay with a range of $1 \mu \mathrm{~S}-100 \mathrm{mS}$ and trace bright up to show the delay position. As you can see from close study of the photograph, the CS 1830 has all the facilities you could require in a high performance instrument but for more detail, simply ask us for a comprehensive leaflet

Brief specification

Rectangular PDA tübe $120 \times 96 \mathrm{~mm}$. P31 phosphor.
Bandwidth DC -30 MHz
Sensitivity $\quad 5 \mathrm{mV} / \mathrm{cm}(30 \mathrm{MHz})$
$2 \mathrm{mV} / \mathrm{cm}(20 \mathrm{MHz})$
Input R.C. $1 \mathrm{M} / 23 \mathrm{pF}$
Risetime 11.7 nS
CS $\mathbf{1 8 3 0}$ only $\mathbf{£ 4 5 5 + \text { VAT includes } 2 \text { probes }}$
THE C51572 30 MHz for the VTR Lab.
If you are in Video, you need the CS 1572
The CS 1572 is a dual trace 30 MHz oscilloscope designed for the video tape recorder engineer. Video delayed sweep facilities are provided to allow magnification and analysis of any point in a single video frame together with separation of video odd and even fields. A truly unique tool for anyone concerned with video measurements as well as a top specification dual trace wide band oscilloscope for general lab use. The complete range of video facilities is too great to explain in a small advertisement so why not call us and ask for the full story on the CS 1572.
Brief Specification
As for CS 1830 except that the sweep delay feature is replaced by comprehensive video sweep delay facilities which allow complete analysis of video wave forms and VTR alignment.
CS1572 only $\mathbf{£ 4 2 5}+$ VAT, includes 2 probes

THE CS 157730 MHz at $2 \mathrm{mV}+$ Signal Delay The most popular scope in the range.
The CS 1577 is, without doubt, our most popular oscilloscope and hundreds of satisfied users in all sections of the electronics industry will confirm this. The CS 1577 combines a wide bandwidth $D C-30 \mathrm{MHz}$ performance with extremely wide trigger bandwidth (DC-40 MHz) and 2 mV sensitivity over the full bandwidth.
Fixed signal delay is provided by a helix delay line which allows viewing of the leading adges of fast pulses for accurate rise time measurement, and the 130 mm PDA tube gives a bright, stable trace even at the highest sweep speeds $(20 \mathrm{nS} / \mathrm{cm}$ using $\times 5$ expansion). Good triggering, even at low levels has always been an outstanding feature of Trio oscilloscopes and the CS 1577 demonstrates this to perfection. Triggering, as in the other $30 \mathrm{MH}_{2}$ instruments can be from CH 1 or CH 2 or can be alternated with the beam switching so that input signals of differing frequency will provide stable displays. Truly an oscilloscope masterpiece. CS 1577
CS 1577 only $£ 410$ + VAT, includes 2 probes.
THE CS1575, unique dual trace 4 function Audio Scope
The CS1575 is a unique tool for the audio engineer. It features the normal facility of dual trace display with sensitivity to $1 \mathrm{mV} / \mathrm{cm}$ but not only can it display the input signal on iwo channels, it can simultaneously display the phase angle between them. and measure the phase angle referenced to a zero phase calibration display. In addition to these unique features, you also have independent triggering from each channel to give stable displays even with widely differing input frequencies.

Absolutely indispensable to the professional audio engineer, the CS1575 is now in use all over the world. See it in action or send for complete details.
CS 1575 only $£ 235$ + VAT
AND TWO NEW ADDITIONS TO THE RANGE
DL705 MULTIMETER

DC to 1000 V
AC to 1000 V
Ω to $20 \mathrm{M} \Omega$
1 to 2 A
Semi Auto Ranging

FC756 500 MHz COUNTER
$10 \mathrm{~Hz}-500 \mathrm{MHz}$
50 mV
Superb instrument

For further details and ex stock delivery contact

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& \& \& \[
\begin{aligned}
\& \text { N1 } \\
\& \text { Sho }
\end{aligned}
\] \& \& \& \& \& \[
\mathbf{w}
\] \& \& \& \& \[
\begin{aligned}
\& \text { RO NO. } \\
\& \text { EL: 0920 } \\
\& \text { ELEX: } 81
\end{aligned}
\] \& \[
\begin{aligned}
\& 87006 \\
\& 82 \\
\& 61
\end{aligned}
\] \\
\hline \multicolumn{5}{|l|}{CERAMIC PAK} \& \multicolumn{6}{|c|}{TRANSISTORS} \& \& \& \multicolumn{2}{|c|}{1 C PAKS} \\
\hline \multirow[t]{9}{*}{\begin{tabular}{l}
 \(16161-24-3\) of exch value - 100 pf 120 pf 150 pf 180 pf 220pt 270 pf 330 pf 390 ? \\
18162-24-3 of aach value - 470 pf \\
 26163-24-3 of each valut -4700pt O47uf
\end{tabular}} \& AC107 \& \& 201182 \& 1 \& \({ }^{8 C 151}\) \& C03 \& \& S \& \& \({ }^{50} 56\) \& 2 N \& 28 \& \& \\
\hline \& \({ }_{\text {ACL13 }}{ }_{\text {ACl1 }}\) \& (0023 \& \({ }_{\text {A10 }}^{411 / 1 / 192}\) \& 60.91
60.01 \& \({ }_{8}^{8 \mathrm{BC152}} \mathrm{BC163}\) \& 6023

0028 \& ${ }_{8 \mathrm{BCH}}^{8}$ \& co.e \& ${ }_{\text {Bf167 }}^{8173}$ \& (6028 \& 2 N 1308
2 l 1307 \& 6029
c0.29 \& functional and part
are classed os \& c' ${ }^{\text {units. These }}$ from the

\hline \& ${ }_{\text {Act17 }}$ \& ${ }_{0} 0.35$ \& ${ }^{\text {AFI } 24}$ \& ${ }^{2} 0.35$ \& ${ }_{8} \mathrm{BC154}$ \& ${ }_{6022}$ \& ${ }^{\text {scat }}$ \& ${ }_{6023}$ \& \& ${ }_{\text {coiche }}$ \& ${ }^{2113008}$ \& ${ }_{8036} 0$ \& kers ver rerigid \& ns, but are

\hline \& ${ }^{\text {ach }}$ A1711 \& ${ }^{[0.33}$ \& ${ }_{\text {a }}$ \& 60.36

60.36 \& ${ }^{8 \mathrm{BC1} 15}$ \& c0.12 \& \& 0023
6023 \& ${ }^{85177}$ \& c0, 30
60.32 \& 211309

211711 \& | c0, |
| :--- |
| 6023 |
| 025 | \& for lear \& s and ex-

\hline \& ${ }_{\text {actal }}^{\text {acti22 }}$ \& ${ }^{\text {c0, }} 10$ \& ${ }_{\text {N12 }}$ \& ${ }_{60.37}$ \& ${ }_{8 C 159}$ \& ${ }_{60.12}$ \& ${ }_{8} \mathbf{C S 4 6}$ \& ${ }_{50} 0.12$ \& ${ }_{8 F 179}$ \& ${ }_{60} 36$ \& 2 m 22 \& ${ }_{6023}$ \& 224-100 Ga \& 74000104

\hline \& ${ }_{\text {Act } 26}$ \& C021 \& AF138 \& 80.40 \& ${ }_{\text {ectiso }}$ \& ${ }^{\text {coin }}$ \& ${ }^{\text {ach }} 7$ \& 50.12 \& 8023n \& \& ${ }^{212221}$ \& 6023 \& 0600 atc \& 38

\hline \& ${ }^{\text {acher }}$ \& c021 \& ${ }_{\text {AF178 }}^{\text {N178 }}$ \& ${ }_{60.89}$ \& ${ }_{\substack{8 C 161 \\ 8 C 167}}$ \& ${ }_{\text {c0. }}^{14}$ \& \& ${ }_{60.12} \times 1.12$ \& ${ }_{8 F 180}^{24019}$ \& \& ${ }_{2}^{2 \times 12222}$ \& 1023
c0.16 \& $16226-30$
90154 ecc \& +441.38

\hline \& ${ }_{\text {actile }}{ }_{\text {acti }}$ \& ${ }^{20.18}$ \& ${ }^{\text {affig }}$ \& ${ }_{60} 8.19$ \& ${ }^{\text {BCCIEA }}$ \& c0.14 \& ${ }^{\text {BCbsb }}$ \& c0.18 \& ${ }_{8 F} 121$ \& c0.35 \& ${ }^{212711}$ \& 20. \& $18227-30$ \& rpes 739

\hline \& ${ }^{\text {AC12012 }}$ \& ${ }^{80} 80$ \& ${ }_{\text {N10 }}$ \& ${ }_{60.58} 80.78$ \& \& ${ }_{60.12} 80.10$ \& \& 60.15 \& ${ }_{\text {8F }}^{8182}$ \& \& ${ }_{\text {2,2711 }}^{21271}$ \& c025 \& \& [$\begin{gathered}67.73 \\ 76013\end{gathered}$

\hline \multirow[t]{2}{*}{ELECTROLYTIC} \& ${ }_{\text {ACl32 }}{ }_{\text {ACl }}$ \& ${ }_{8023}$ \& AF238 \& ${ }_{60.4}$ \& ${ }^{\text {cili }}$ \& ${ }_{60} 0.10$ \& ${ }^{\text {¢ }}$ ¢ 6 b \& ${ }_{60} 014$ \& ${ }_{\text {BFIS }}$ \& ${ }_{6023}$ \& ${ }^{2121009}$ \& c021 \& 76003 erc \& E1.15

\hline \& ${ }_{\text {AC }} \mathbf{C l} 137$ \& 6023 \& ${ }^{\text {A1 } 102}$ \& ${ }^{6} 138$ \& ${ }_{8} \mathbf{C 7 1 7}$ \& ${ }_{60} 10$ \& ${ }^{\text {8C659 }}$ \& c0.16 \& ${ }_{\text {BFF }}^{165}$ \& ${ }^{2} 023$ \& ${ }^{21292005}$ \& 6021 \& $18229-5$ l.C's ${ }^{\text {c }}$ \& cent

\hline PAKS \& ${ }_{\text {ACl }}^{141}$ \& 1024 \& ${ }_{\text {Ald }}$ \& ${ }^{6} 16$ \& $\xrightarrow{8 \mathrm{BC} 172} \mathrm{BC173}$ \& ¢0.10 \& \& c0.09 \& \& f0.30 \& 2N2908 \& [0.16 \& \&

\hline \multirow[t]{5}{*}{} \& \& \& AU110 \& ${ }^{\text {c1, }} 1$ \& ${ }^{\text {ach14 }}$ \& 60.17 \& ${ }^{\text {BC212 }}$ \& ${ }^{\text {coies }}$ \& ${ }^{818188}$ \& ${ }^{\text {cos }} 8$ \& ${ }^{212923}$ \& 60.17 \& \&

\hline \& \& c0.36 \& ${ }_{\text {AUL13 }}{ }_{\text {BC107 }}$ \& 61.01
6009 \& 8 BC 175
$\mathrm{BC1717}$ \& ${ }_{\text {coicl }}^{50.40}$ \& ${ }^{80176}$ \& c0. 58
¢0, \& ${ }_{\text {8F194 }}^{\text {8F195 }}$ \& ${ }_{\text {c0. }}$ \& ${ }_{2 \text { 2n2929 }}$ \& ${ }_{60.17} 60.17$ \& MAMMU \&

\hline \& ${ }_{\text {actib3 }}$ \& ${ }_{6025}$ \& 8c107a \& c0,09 \& ${ }^{\text {BC17 }}$ \& f0, 1 \& 80121 \& 50.75 \& 85198 \& 60.12 \& ${ }_{2 N 29236}$ \& 10.10 \& \&

\hline \& ${ }^{\text {ACCl }}$ \& ${ }^{6} 0.36$ \& ${ }^{\text {actiof }}$ \& ${ }^{2} 0.10$ \& ${ }^{\text {BCL17 }}$ \& ${ }^{6} 0.18$ \& ${ }^{80123}$ \& ${ }^{\text {co. }} 175$ \& \& f0.14 \& ${ }^{2 N 29285}$ \& ${ }^{60.09}$ \& 16223 - Approx 20 \& 䢕

\hline \& ${ }_{\text {A }}$ \& ${ }_{8023}$ \& ${ }^{\text {actios }}$ \& ${ }_{60}$ \& ${ }_{8 C 181}$ \& ${ }_{60.10}$ \& $8{ }_{8131}$ \& c0.0 \& ${ }_{8 F 199}$ \& ${ }_{60.18}$ \& ${ }_{2 \mathrm{~N} 2921 \mathrm{~F}}$ \& ${ }_{60.08}$ \& out integrated \&

\hline CARBON RESISTOR \& ${ }_{\text {AC15 }}$ \& 6023 \& $\mathrm{sc}_{\text {cioma }}$ \& ${ }^{\text {c0, }} 0$ \& ${ }^{\text {BC }} 112$ \& c0.25 \& ${ }_{80132}$ \& t0.40 \& миј 340 \& 11.50 \& 2m2321E \& 10.09 \& but some \& Mou to iden-

\hline \multirow[b]{2}{*}{PAKS} \& \& 8029

8023 \& ${ }_{\text {actiola }}^{\text {BCliasc }}$ \& ¢0.10 \& ${ }_{\text {actis2 }}$ \& f0.10 \& 80131/181/818 \& c0.02 \& ${ }_{\text {mje }}^{\text {mit } 235656}$ \& ${ }_{\text {f1, }}^{\text {c0. }}$ \& ${ }_{2}^{24306354}$ \& | 1020 |
| :--- |
| 80.48 | \& \& 51.4

\hline \& \& ${ }_{6023}$ \& 8C109 \& ${ }^{2} 098$ \& \& 60.10 \& 80133 \& 60.48 \& T1P24 \& c0.48 \& 213055 \& \& UN \&

\hline \& \& 8023 \& ${ }_{\text {BCL }} \mathrm{BCO}$ \& coild \& ${ }_{\text {BCl }}$ \& ${ }_{\text {coin }}$ \& ${ }^{80136}$ \& ${ }^{\text {com }}$ \& ${ }_{\text {TIPP298 }}^{\text {T1P298 }}$ \& ${ }_{\text {coin }}$ \& 2 2314 \& ${ }^{5024}$ \& \&

\hline $16213-60$ mixed iw 100 ohms -820
ohms
co.69 \& \& ${ }_{5023}$ \& ${ }_{8 C 113}$ \& c0.18 \& ${ }_{\text {BCL } 115}$ \& c025 \& 80137 \& C0.40 \& TIP30A \& E0.48 \& 213464 \& ${ }_{60} 0.33$ \& SEMI C \& T0R

\hline 16214-60 mixed iw 1 K ohms $-82 \mathrm{8K}$ \& N \& 882 \& ${ }^{8 C 14}$ \& co.ti \& ${ }^{\mathrm{BC} 187}$ \& ${ }^{6} 025$ \& ${ }^{80} 13138$ \& 60.41 \& ${ }_{\text {T1P }}^{\text {T1P308 }}$ \& ${ }^{\text {coin }}$ \& ${ }_{2}^{213405}$ \& ${ }^{60} 08$ \& \&

\hline \multirow[t]{2}{*}{16215-60 mixed tw 10 K onms -83k} \& ${ }_{\text {Actize }}$ \& ${ }_{60} 80$ \& ${ }^{\text {8C125 }}$ \& ¢0.20 \& \& c0.13 \& ${ }^{80138} 8$ \& ${ }_{60.41} 60.4$ \& ${ }_{\text {T1P31A }}^{\text {TP30C }}$ \& ${ }_{\text {f0. }}$ \& ${ }_{2}^{2 N 37702}$ \& ${ }_{\text {f00 }}^{00.08}$ \& Rectrifers Dio \& Cs

\hline \& Acior \& ${ }_{6021}$ \& ${ }_{81} 132$ \& c0. 21 \& ac209 \& c0.14 \& 80138/1 \& \& T1P318 \& ¢0.4 \& 2133704 \& c0.08 \& and Zeners. ALL \& OED

\hline ${ }^{18218}$ - 60 mixed tw 100 K ohms- \& AC17 \& ¢029 \& ${ }^{\text {BCI } 13}$ \& ¢0.21 \& ${ }^{\text {BC2 } 212}$ \& 20.10 \& \& 80.92 \& T1P31C \& 20.51 \& ${ }^{213705}$ \& ${ }^{20.08}$ \& \& aneur

\hline \multirow[t]{2}{*}{${ }^{820}$} \& ${ }_{\text {actio }}$ \& 80.23
c0.32 \& \& ${ }_{60.17}^{60.21}$ \& ${ }_{\text {BC2121 }}^{\text {BC213 }}$ \& 50.10
60.10 \& \& 1026
8025
8025 \& \& ${ }_{\text {c00.48 }}$ \& ${ }_{2}^{21337087}$ \& 1009
6009 \& \& E2.59

\hline \& acial \& c0. 23 \& ${ }_{8 C 1} 137$ \& f021 \& ac25 \& c0,17 \& 8f163 \& c029 \& TIP32C \& f0.51 \& 2 23708 \& f0.08 \& \&

\hline \& actid \& C0. 32 \& ${ }^{8 \mathrm{BC}} 138$ \& 60.37 \& ${ }^{\text {BC251/ }}$ \& ${ }^{6} 0.15$ \& \& ${ }^{6026}$ \& TPP11 \& ${ }_{60.51} 60.5$ \& ${ }^{2133709}$ \& c0.08 \& UNTES \& M

\hline \& ${ }_{\text {Actiof }}$ \& ¢0.31 \& ${ }^{\text {8Cl41 }}$ \& ${ }_{60}$ \& ${ }_{\text {8C302 }}$ \& ${ }_{60.33}$ \& ${ }^{88 F} 150$ \& ${ }_{5032}$ \& T1Paic \& ${ }_{60.65}$ \& ${ }_{2}$ \& c008 \& \&

\hline \multirow[t]{2}{*}{} \& actis \& ¢0.21 \& 8c142 \& f0.25 \& - ${ }^{\text {c }} 303$ \& ${ }^{2} 0.32$ \& ${ }^{85157}$ \& $\mathrm{c}_{60.32}$ \& tip42a \& ¢0.51 \& 2 213712 \& \& \&

\hline \& ${ }^{\text {actisa }}$ \& c0.32 \& ${ }^{8 C 143}$ \& \& ${ }^{\text {8C304 }}$ \& c0.4 \& ${ }_{\text {8F1 }}^{888}$ \& ${ }^{2} 0.32$ \& ${ }^{2 N 706}$ \& c0.12 \& ${ }^{313773}$ \& ${ }^{26.53}$ \& 18130 100 Germg gol \&

\hline \multirow[t]{2}{*}{} \& \& ${ }_{\text {cosis }}$ \& \& f0. 63
808 \& \& ${ }_{60.17} 80.17$ \& \& c0,32
c0.36 \& 2n708 \& ¢0.18 \& ${ }_{2}^{2 m 3629}$ \& 6021
6040 \& ${ }^{181631} 150 \mathrm{Germp}$ \& F20. 81

\hline \& ${ }^{\text {a }} 143$ \& 60.4 \& ${ }^{8 C 148}$ \& ${ }^{2} 008$ \& ${ }_{8}^{\text {8C3 }} 33$ \& ${ }_{60.17}$ \& ${ }_{\text {aF1 } 182}$ \& ${ }^{60} 35$ \& ${ }_{211302}$ \& 60.17 \& ${ }_{2}{ }^{2131321}$ \& 60.89 \& ${ }_{\text {diade }}^{\text {diad }} 16132100$ Silicon \&

\hline \& ${ }^{\text {A0, }}$ \& ${ }_{60.40}$ \& \& come \& BC338
BC4 \& ${ }_{\substack{\text { c0.17 } \\ \text { c0, }}}$ \& \& \& \& C0.21 \& $2 n 3823$
233103 \& \& 16133150 Sitron tast 5 \& ode 25 ma INa

\hline \multirow[b]{2}{*}{COMPONENT} \& \multicolumn{12}{|c|}{\multirow[b]{2}{*}{74 SERIES TL IC'S}} \& 134 50 Slicon re \& 50 mA R 0.69

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& 1613520 Silicen rec \& $$
\begin{aligned}
& 203 \mathrm{ma} \\
& 80
\end{aligned}
$$

\hline PAKS \& \& \& \& \& \& \& \& \& \& \& \& \& 1613730 NPN 1 Iassis \&

\hline \multirow[t]{5}{*}{ 16166 - 50 Precision resistors. Mixed} \& 740 \& \& 7422 \& 60.18 \& 144 \& 20.M \& 7489 \& 98 \& ${ }^{74123}$ \& c0.48 \& 34175 \& \& 6i3a 25 N.N To3a \&

\hline \& 7402 \& ${ }^{0.13}$ \& ${ }^{4.23}$ \& $\left(\begin{array}{l}6022 \\ \\ 602\end{array}\right.$ \& 1460 \& ${ }_{80.13}$ \& 7491 \& ¢0.74 \& 74141 \& ${ }_{60.13}$ \& 14177 \& ${ }^{80.07}$ \& 1613830 PNP "1\% \& 7

\hline \& 7403 \& ${ }_{60.13}$ \& ${ }^{428}$ \& ${ }^{2020}$ \& ${ }^{2465}$ \& ${ }_{60.13}$ \& 7412 \& c0.40 \& 7145 \& ${ }_{60.63}$ \& 14180 \& ${ }_{61.73} 81$ \& 16 \& co. 69

\hline \& 1404 \& c0.13 \& ${ }^{7621}$ \& ${ }^{0} 28$ \& ${ }^{7454}$ \& 20.13 \& ${ }^{7143}$ \& 60.36 \& 7450 \& 10.78 \& 14181 \& f087 \& 1614130 NPN \& co.

\hline \& 1406 \& 20.13 \& 1428 \& 10.30 \& 7460 \& 60.13 \& 7494 \& co.as \& 74151 \& 20.65 \& 14162 \& 20.31 \& \& ficon

\hline \multirow[t]{2}{*}{} \& 1408 \& 002 \& 7830 \& C0.16 \& 1470 \& ${ }^{\text {c0 } 29}$ \& ${ }^{7496}$ \& f0.68 \& ${ }^{74153}$ \& ${ }_{5} 0$ \& 7414 \& f0.81 \& 1614225 NPN BFY 505 \&

\hline \& 7407 \& 60.25 \& 7432 \& [025 \& ${ }^{7472}$ \& ${ }^{8023}$ \& ${ }^{7488}$ \& f0.50 \& ${ }^{7}$ \& ${ }_{\text {cose }}$ \& 74190 \& ${ }^{60.78}$ \& 1614330 NPN Disstic \& sicon

\hline \multirow[t]{2}{*}{$16968-5$ pieces assorted ferrite
fods
foi 69} \& 7408 \& ${ }^{60.15}$ \& 7437 \& coze \& 1474 \& coter 20 \& 7 100 \& 20.98 \& 74156 \& ${ }_{60.68}$ \& ${ }_{14112}$ \& ${ }_{\text {c0. }}^{\text {c0. }}$ \& 1814430 PNP plaslic 21
1614530 Germ OCTI \& sticon co.

\hline \& 710 \& 60.13 \& 7734 \& 6024 \& 7776 \& ${ }^{60} .33$ \& 74104 \& f0.45 \& 74157 \& ${ }^{\text {cab }}$ \& 74193 \& c0.87 \& 1614615 Plastic powe \& 3055 NPN Toz

\hline (16169-2 Tuning gangs MW Lim \& 7411 \& c0.20 \& 7740 \& 60.14 \& 7476 \& c029 \& 74105 \& c0.4. \& 74180 \& f0 ${ }^{6}$ \& 18174 \& 80.71 \& \& c1

\hline \multirow[t]{2}{*}{} \& 74 \& c.17 \& 74.1 \& ${ }_{c} 0.58$ \& ${ }^{1460}$ \& ${ }_{60} 80.51$ \& 74107 \& ${ }^{2} 029$ \& ${ }_{7}^{71161}$ \& ${ }_{60.71}$ \& ${ }_{7}^{741968}$ \& \& 1814710 T03 metal 2 N \&

\hline \& \& ${ }_{\text {c0. }}$ \& $7{ }_{7}$ \& f0.81 \& 7462 \& c0.71 \& 7111 \& ${ }_{60.67}$ \& 74163 \& E0.71 \& 7497 \& f_{121} \& \&

\hline \& \& 00.28 \& \% \& c0,31 \& 743 \& 10.07 \& 74110 \& 03 \& 7414 \& \& \& \& \&

\hline \multirow[t]{2}{*}{} \& 74 \& E021 \& 745 \& ${ }^{\text {co }}$ ci 76 \& ${ }^{744}$ \& ${ }_{\text {c10 }} \mathrm{f} 0101$ \& ${ }^{74119}$ \& cilize \& ${ }_{74188}^{74166}$ \& colit \& 74 \& 2.13 \& TANT \&

\hline \& 7421 \& 1023 \& 747 \& ${ }_{60} 0.65$ \& 748 \& f0.25 \& 74122 \& ${ }_{80.4}$ \& 7417 \& 86.76 \& \& \& \&

\hline $3.5 \mathrm{~mm} 2 \times$ standard switch types $£ 0.69$ 16175-30 Paper condensers - mixed \& \multicolumn{12}{|c|}{\multirow[t]{2}{*}{CMOS IC'S}} \& \multicolumn{2}{|l|}{CAPACITORS}

\hline \multirow[t]{2}{*}{} \& \& \& \& \& \& \& \& \& \& \& \& \& 0.1 mF \&

\hline \& \multirow[t]{2}{*}{} \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{| 16177 - 1 Pack assonted hardware - |
| :--- |
| Nuts, bollis, gromets etc |
| £0.69 |} \& \& r0, 18

6023 \& 204012 \& ${ }_{10} 10.42$ \& \& co.em \& ${ }^{\text {coal }} \mathrm{C}$ \& ${ }_{60} 8.55$ \& ${ }^{\text {co40 }}$ \& 11.51
1150 \& codoro
cotori \& ${ }_{60.20} 80$ \& \& ${ }_{60.1}$

\hline \& cot \& 60.12 \& COH015 \& c0.94 \& c04023 \& 6022 \& C04035 \& 11.38 \& c0404 7 \& 81.00 \& c04072 \& 20.20 \& 3142
3157
318 \& ${ }_{80.2}$

\hline \& CO400 \& 11.06 \& COH016 \& f0.49 \& ${ }^{\text {cosen }}$ \& ${ }_{\text {cole }} \mathbf{8 0} 5$ \& ${ }_{\text {cosel }}$ \& 11.09
6101 \& \& ${ }_{60} \mathbf{0} 55$ \& ${ }_{\text {cone }}^{\text {cosi }}$ \& ${ }_{\text {c0, }} 0.20$ \& ${ }_{31,43}^{310 M F D}$ \& . 2

\hline \multirow[t]{2}{*}{(16179-20 Assorred tag strips and} \& ${ }^{\text {cota }}$ \& (020 \& ${ }^{\text {cosed }}$ Cotis \& ${ }_{\text {cos }}$ \& | couder |
| :---: |
| c 04026 | \& ${ }_{61.32}$ \& ${ }_{\text {coser }}$ \& 11.01

80.87 \& couth
cososa \& 10.65

1127 \& cotos
cot 510 \& 20.25 \& \& ${ }_{80} 0.25$

\hline \& \& 60.62 \& CD4019 \& 10.48 \& cp4027 \& 80.58 \& C04042 \& c0. 13 \& ${ }^{\text {c }}$ - 4055 \& 1.15 \& ${ }^{\text {copsin }}$ \& ¢1,45 \& 3156 33MFD \&

\hline \& ${ }^{\text {cosed }}$ Cold \& r0.55 \& cosento
cos 14 \& \& \& ${ }_{50} 90$ \& cosen \& \& cose \& \& co \& \& \multicolumn{2}{|c|}{\multirow[t]{2}{*}{SOCKETS}}

\hline \multirow[t]{8}{*}{| 18181 - 3 Rotary wave change |
| :--- |
| ${ }_{16183-1}$ oparazing Pak copper laminate approx 16183 - 100 sak inches 18184-15 Assorted Fuses 100 mA 5 ${ }^{\text {amps }} 16185$ - 50 metres PVC sleeving assonted size and colours |} \& CDAOH \& 6023 \& COA1014 \& \& c04029 \& C098 \& \& com \& co4080 \& 8020 \& co \& \& \&

\hline \& \multicolumn{12}{|c|}{\multirow[t]{2}{*}{LINEAR IC'S}} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}}

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& ${ }_{\text {cala }}$ \& ${ }_{\text {c1, }}^{112}$ \& ${ }^{\text {Ca33070 }}$ \& ${ }_{6}^{\text {ca }}$ L214 \& $\mathrm{mc}^{\text {Weci310 }}$ \& ${ }_{\text {ctiog }}$ \& UN0703 \& ${ }_{80.29} 8$ \& VAl4, \& ${ }_{50} 80$ \& \& ${ }_{610.73} 0.9$ \& 161214 Pin ${ }^{\text {dil }}$
161316 Pin DIL \& [0.13

\hline \& CA3014 \& ${ }^{61.56}$ \& ${ }_{\text {Ca3123 }}$ \& ${ }_{\text {c }} \mathbf{8} 1019$ \& $\mathrm{mc}^{\text {med }} 1312$ \& \& U12709 \& \%0.29 \& ${ }^{748 P}$ \& ${ }^{50.40}$ \& \& \& 172018 Pin DiL \& f0.20

\hline \& ${ }^{\text {cha }}$ \& ${ }_{8} 1.196$ \& ${ }_{\text {ca3l4 }}$ \& ${ }_{\text {c0, }}$ \& mc1362 \& ${ }_{\text {c1. }}$ \& UA710c \& ${ }_{50}$ \& SN76023M \& 61.97
61.97 \& SM76850 \& ${ }_{80.86}$ \& 172120 Pin Dil \& ${ }_{60} 8.22$

\hline \& cal3023 \& c0, 12 \& CA3086E \& ${ }_{60} 0.35$ \& mc144 \& 63.39 \& 12710 \& 60.35 \& TM5508 \& ${ }_{60} 80$ \& т8120 \& ${ }^{20.80}$ \& \&

\hline \& ${ }_{\text {CH3033 }}$ \& ${ }^{81.1615}$ \& L 4301 \& ${ }_{\text {c0, }} 13$ \& ${ }_{\text {mctilis }}$ \& ${ }^{\text {c1, }} 104$ \& Ua7114 \& ${ }_{60.37}$ \& TME21A \& \& tiachis \& ${ }^{12.53}$ \& | 161424 |
| :--- |
| 161528 | \& | c0. |
| :--- |
| co. 30 |

\hline \multirow[t]{3}{*}{METAL FOLL} \& ${ }_{\text {che }}^{\text {CA3038 }}$ \& ${ }^{6115}$ \& ${ }^{\text {Lnm }}$ [004 \& [1, \& \& 63.06
61.09 \& ${ }_{\text {d }} 12711$ \& c0.37
0.52 \& \& \& \& ${ }_{61.15}^{81.15}$ \& 172340 Pin OL \& E0.36

\hline \& ${ }_{6} \mathbf{C} 3043$ \& ${ }_{12.13}$ \& [m308 \& ${ }_{61.73}$ \& MEE55 \& ${ }_{6023}$ \& ${ }_{12723}$ \& C. 52 \& taploo \& ¢1500 \& \& \& \&

\hline \& $\mathrm{casans}^{\text {chen }}$ \& f0.31 \& L4330 \& ${ }_{50} 18$ \& ME558 \& c0. 39 \& valitc \& , 22 \& trastos \& \$2.42 \& \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{G.P. SILICON DIODES}}

\hline CAPACITOR PAK \& ${ }_{\text {chen }}$ \& c1, \& \& ${ }_{\substack{10.107 \\ 60.67}}$ \& MES565 \& cil ${ }_{\text {c1.73 }}$ \& ${ }_{141} 721$ \& f028
c0, 23 \& ${ }_{\text {trasajos }}^{\text {tios }}$ \& ${ }_{\text {c0, }}^{\text {c0. }} 1.15$ \& \& \& \&

\hline \multirow[t]{3}{*}{16204 - Containing 50 metal foil capacitor like Muliar Mixed values ranging from 01 ut- 2.2 zuf . Mixed values ranging irom oliul-2.2ufi

Complete with identification sheel | Complete |
| :--- |
| 1.38 |} \& CA \& $[1.73$

61.73 \& (143914 \& ${ }_{52}^{5215}$ \& ME56 \& ¢1,
c0.53 \& ${ }_{\text {L127 }}^{\text {U17 }}$ \& 80.69

60.69 \& \& | c0. |
| :--- |
| c2: |
| 10 | \& \& \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{300 mW 40PIV (min) sum-min. FULLY TESTED. Ideal for Organ builders. 30 for 68p, 100 for $£ 1.85,500$ tor $£ 5.75,1000$ for $£ 10.35$.}}

\hline \& \& ${ }_{8} 1.30$ \& MC1304 \& ¢2.11 \& 72702 \& ${ }_{60,53}$ \& \& 60.69 \& \& ${ }_{62} 230$ \& \& \& \&

\hline \& \multicolumn{12}{|c|}{DIDDES} \& \&

\hline \multirow[b]{3}{*}{SLIDER PAKS} \& \& \& \& \& \& \& \& \& \& \& \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{| G.P. SWITCAING |
| :--- |
| TRANSISTORS |}}

\hline \& ${ }_{\text {M119 }} 112$ \& ${ }_{60.09} 80$ \& \& ${ }_{60} 90.48$ \& ${ }_{\text {8Y127 }}^{8127}$ \& c0.16 \& ${ }^{87213}$ \& ${ }_{80} 80.48$ \& Oati \& ${ }_{60.12}$ \& \& 8 \& \&

\hline \& ${ }_{4}^{\mu 120}$ \& ${ }_{\text {c0.09 }}$ \& ${ }_{84}{ }^{8813}$ \& ${ }_{60.08}$ \& ${ }^{8 Y 120}$ \& ${ }_{60.20}$ \& $8 \mathrm{Br17}$ \& c0, 11 \& ${ }_{\text {OASO }}$ \& \& ima16 \& \& \&

\hline \multirow[t]{6}{*}{} \& ${ }_{\text {Mr30 }}^{4 \times 13}$ \& c0.10 \& ${ }_{\text {Bry }}^{\text {Brı }}$ \& ${ }^{60.09}$ \& ${ }_{\text {8Y } 133}$ \& c024 \& ${ }^{8711}$ \& c0, 1 \& ${ }^{00981}$ \& ${ }^{20.12}$ \& 18916 \& 07 \& \multicolumn{2}{|l|}{\multirow[t]{6}{*}{TO18 sim to 2N7068 B5Y27 28 95A ALL umbirg devices. No oppo and to 2 N 2906 BCY 70.20 for 68 p . 50 fo £1.15, 100 for $\mathbf{£ 2 . 0 7}, 500$ for $£ 9.20$ 1000 for $\mathbf{E 1 6 . 1 0}$. When ordering please state NPN or PNP.}}

\hline \& ${ }_{\text {HA100 }}$ \& ${ }_{60.12}$ \& 8Y101 \& ${ }_{6025}$ \& ${ }_{\text {dYıIt }}$ \& ${ }_{60} 80.59$ \& ${ }^{\text {dis }}$ \& ${ }_{60.85}$ \& \& ${ }^{20.12}$ \& ${ }_{\text {ise }}^{13}$ \& ${ }_{60.07} 80.07$ \& \&

\hline \& 81102 \& C0.37 \& 8v106 \& ${ }^{0} 025$ \& ${ }^{\text {gr20 }}$ \& ${ }^{2} 0.35$ \& 0410 \& ${ }^{2} 0.40$ \& 0a200 \& c0.08 \& 15920 \& 80.07 \& \&

\hline \& ${ }^{31148}$ \& c0.17 \& ${ }^{8114}$ \& ${ }^{50} 25$ \& ${ }^{\text {81210 }}$ \& ${ }^{\text {c0, } 52}$ \& 0047 \& c0.09 \& 0a202 \& ${ }^{20.09}$ \& \& \& \&

\hline \& ${ }_{4}^{4154}$ \& c0.14 \& ${ }^{\text {8r124 }}$ \& 8025 \& ${ }^{81211}$ \& ${ }^{\text {co. } 52}$ \& anato \& ¢0.09 \& a010 \& 80.07 \& \& \& \&

\hline \& 81166 \& 60.10 \& -v128 \& 60.17 \& 87212 \& c0.48 \& 0 0.78 \& 60.12 \& 5098 \& c0.01 \& \& \& \&

\hline \multicolumn{15}{|r|}{| All prices include VAT: Add 50p post per order - Just quote your Access or Barclaycard number |
| :--- |
| Terms: Cash with order, cheques, POs. payable to Bi-Pak at above address |}

\hline
\end{tabular}

One of the most advanced signal generators available anywhere in the world, the new 9084 brings you all the latest technology from RacalDana's international award-winning design team.

With a frequency range from 10 kHz to 104 MHz (with doubler to 208 MHz), it spans the entire HF radio band, including the specialized LF and low-band VHF areas particularly useful for aviation and marine applications.

Its outstanding features include: - exceptional spectral purity • GPIB programmable - high-resolution spin-wheel tuning • automatic display of operator error \bullet optional hand-held store for up to 96 frequency settings.

The 9084 is available now, so find out the whole story by returning the coupon today.

RACAL-DANA

High performance measurement and test instrumentation BACAL
U.S.A. : Racal-Dana Instruments Inc., 18912 Von Karman Avenue, Irvine, California 92715. Tel: (714) 833-1234 Telex: 67.8341
England: Racal-Dana Instruments Limited, Duke Street, Windsor, Berkshire SL4 1SB. Tel: Windsor (07535) 69811 Telex: 847013
France: Racal-Dana Instruments S.A., 91 route des Gardes, 92190 Meudon-Bellevue, Paris. Tel: (1) 534-7575 Telex: 200207
Germany: Racal-Dana Instruments Limited Deutschland, Hermannstrasse 29, D. 6078 Neu Isenburg. Tel: (06102) 2861-2 Telex: 412896

To: Racal-Dana Instruments Limited, Duke Street, Windsor, Berkshire SL4 1SB, England.
\square Please send me your colour brochure on the 9084 .
\square Please arrange a demonstration of the 9084 .
\square Please send me a copy of the Racal-Dana Concise Catalogue.
Name
Position
Company.
Address

Brand new by famous manufacturer. MW/LW/FM Tuner and Stereo Decoder Board.
Features include capacitor tuned mosfet front end, integrated circuit I.F. strip, and phase locked loop stereo decoder chip. Stabilised power supply and rectifier on board only requires 19 V AC at 175 MA to power. Size $121 / 2 \times 31 / 2 \times 13 / 4$.
Supplied complete with circuit diagram and ferrite rod aerial. FM section fully aligned and tested before despatch. Fantastic value at ONLY £9.99 plus VAT. P.P. £1

SUPER BARGAIN OFFERS LENCO FFR CASSETTE DECK

For those who missed our recent bargain CT4s we now are delighted to be able to offer Brand New Lenco FFR Decks complete with motor speed and auto-stop control board fitted and tested. These will 16 voits. This deck can be used tor both record and playback applications and is fitted with an erase head. A mono record/play head is fitted and we can supply an extra stereo head, if ordered with the deck at the very special price of $£ 2$ plus VAT. We also supply, with each deck and completely FREE, one of our specially moulded escutcheons. This deck would normally cost aboul $£ 25$ but we are able 10 offer them, while they last, at only
¢ 9.99 plus VAT. ¢ 9.99 plus VAT.

SUPER BARGAIN OFFERS

VFL 910. Vertical from loading Super Hi-fi deck, as used in our dew Linsley-Hood Cassette Recorder $2 . £ 31.99$ + VAT. Set of knobs $£ 1.46$ + VAT.

We regret that due to the latest increase in postal costs we must now charge for

合carriage. Please add as follows:
Order up to $£ 10-50$ p
Orders $£ 10$ to $£ 49-£$
P\&P
Over £50-£1.50
Export Orders - Postage or shipping at cost plus £2 Documentation and Handling Please send 9×4 SAE for lists giving fuller details and price breakdowns Instant easy ordering, telephone your requirements

and credit card number to us on
Oswestry (0691) 2894

Tentelometer

Tape Tension Meters for all audio and video tape recorders and players

Stocked and distributed for Europe by

The Experts

CROW OF READING LIMITED
PO Box 36, Reading, RGI 2NB. Telephone: (0734) 595025
wW - 055 FOR FURTHER DETAILS

RADIO SHACK LTD for DRAKE

Ham Bands with $1.5-30 \mathrm{MHz}$ receive with built-in 150 MHz frequency counter plus option of 0-1.5 MHz receive and / or any transceiving application $1.8-30 \mathrm{MHz}$

RADIO SHACK LTD

For Communications equipment including Trio products and Trio testgear

We are situated just around the corner from West Hampstead Underground Station (Bakerloo line). A tew minutes walk away is West Hampstead Midland Region station and West End Lane on the Broad Street Line. We are on the following Bus routes: 28,59 . 159. Hours of opening are 9.5 Monday to Friday. Closed for Lunch

DRAKE *SALES *SERVICE

RADIO SHACK LTD

188 BROADHURST GARDENS, LONDON NW6 3AY

Cables: Radio Shack, London, Nw6. Telex: 23718

S-2020TA STEREO TUNER / AMPLIFIER KIT
 NEW HIGH PERFORMANCE TUNER
 A high-quality push-button FM Varicap Stereo Tuner with pilot cancel decoder combined with a 24 W r.m.s. per channel Stereo Amplifier, using Bifet op. amps.

Brief Spec. Amplifier Low field Toroidal transformer, Mag. input. Tape In/ Out facility (for noise reduction unit, eic.) THD less than $0-1 \%$ at 20 W imto 8 ohms. High Slew Rate. Low noise op. amps IF, INTERSTATION MUTE, and phase-tocked IC pilot cancel, stereo decoder, LED tuning and stereo indicators. Tuning range $88-108 \mathrm{MHz} 30 \mathrm{l}$. 181 FET module requiring no RF alignment, Ceramic

NELSON-JONES Mk. 2 STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer ready built front end, triple gang varicap tuning, linear phase l.F. and 3 state MPX decoder.

PRICE: $£ 74.95$ + VAT

NRDC-AMBISONIC

The first ever kit specially produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years' research by the Ambisonic team. W. W. July. Aug. ' 77.
The first ever kit specially produced by Integrex for this British NRDC backed surround sound system which is the result of years research by the A
The decoder is linear throughout and does not rely on listener tatiguing logic enhancement techniques. Both 2 or 2 input signals and 4 or 6 output siynals are provided in this most versatile uni Complete with mains power supply, wooden cabinet, panel, knobs, etc.

Complete kit, including licence fee £57.70 + VAT or ready buitt and tested $£ \mathbf{7 6 . 9 5}+$ VAT

S5050A STEREO AMP

Very high
performance kit
50 watts rms-channet. 0.015% THD. S/N 90 dB , Mags/n 80 dB . Output devic
rating 360 wer channel
Tone cancel switch. 2 tape monitor switches. Metal case - comprehensive
heatsinks.
$£ 69.95$ + VAT

(Also available our $20 \mathrm{w} / \mathrm{ch}$ BIFET S2020 Amp)

INTRUDER 1 Mk. 2 RADAR ALARM
 With Home Office Type approval

The original "Wireless World" published Intruder 1 has been re-designed by Integrex to incorporate several new teatures, along with improved performance. The kit is even easier to build. The internal audible alarm turns off after approximately 40 seconds and the unit re-arms. 240 V ac mains or 12 V battery operated. Disguised as a hard-backed book. Detection range up to 45 feet. Internal mains rated voltage free contacts for external bells etc
Complete kit $£ 52.50$ plus VAT. or ready built and tested . $£ 68.50$ plus VAT

Wireless World Dolby noise reducer
 Trademark of Dolby Laboratories Inc.
 Typical performance

Complete Kit PRICE: $£ 49.95$ + VAT (3 heod model available)
Also available ready buitt and tested
Calibration tapes are avaitable for open-reel use and for cassettie (specity which)
Single channel plug-in Dolby (TM) PROCESSOR BOARDS ($92 \times 87 \mathrm{~mm}$) with gold plated contacts and all components
loise reduction better than 9dB weighted
Clipping level 16.5 dB above Dolby level (measured at 1% third ,
Harmonic distorion 0.1% at Dotby level typically 0.05% over most of band. rising 10 a maximum of 0.12%
Signal-to-noise ratio: 75 dB \{20 Hz to 20 kHz . signal at Dolby level) at Monitor output

Dynamic fange $>90 \mathrm{~dB}$
30 mV sensinivity

All kits are carriage free
Interrek limited

Please send SAE for complete lists and specifications Portwood Industrial Estate, Church Gresley, Burton-on-Trent, Staffs DE119PT Burton-on-Trent (0283) 215432 Telex 377106

Alphanumeric Membrane KEYBDARD

FEATURES

* Guaranteed 10^{7} Operations Touch or Tactile feel action *Sealed Wipe Clean Matt Polyester Surlace 4 Colour *Fully Encoded ASCII 8 bit: Parity Externally Selectable *Two Key Rollover, N Key Lockout, Shift Lock Indicator * Bleeper Option. Integral Power supply (Needs 24 VCt AC) *Miniature $175 \times 100 \mathrm{~mm}$; Full Size $280 \times 140 \mathrm{~mm}$; 4 mm Thick *IDC Output Ribbon Cable Supplied
*Full Data Supplied
PRICES (cwo please) Phone for quantity prices

K8090 Mini	$£ 29.50$	excl VAT	
K8190	Full Size	$£ 39.50$	excl VAT

Other Standard Products $=4 \times 4$ (hexadecimal), $4 \times 3(0-9, \mathrm{Clr} *)$ Touch sensitive \& VANDAL. PROOF matrix or common arrays We Specialise in Custom Keyboard Design and Manufacture on 6-8 week normal Service 10 day priority

Manufactured in the UK by LAMINA KEYBQARDS LTD
$42-45$ New Broad Street LONDON ECEN 1aY

Keyboard Components

2376 Encoder
£6,00
4×4 Encoder £3,00
Precision GOLD Skts 3p/pin
'Phone o1 5280898
WW - 090 FOR FURTHER DETAILS

MEMORIES

$2114-300 \mathrm{~ns}$
4116-200ns 2708-450ns $2516+5 v$ $2716+5 v$ 2532-450ns

1k $\times 4$ SRAM
£2.25 16kx 1 DRAM
£2. 61 $1 \mathrm{k} \times 8$ EPROM £4.39 2k x 8 EPROM
$£ 9.00$ $2 k \times 8$ EPROM £9.00 $4 k \times 8$ EPROM $£ 23.40$

S-100 CPU Board, with disk controller, Z-80 CPU. CTC, S 10 and P10 all on board. Disk controller will take up to $4 x$ $8^{\prime \prime}$ disk drives, Single or Double Density. Also has an EPROM PROGRAMMER on board. All this for only $£ 495.50+$ VAT.

STRUTT LTD.

3c Barley Market Street Tavistock, Devon, PL19 0JF
Tel.: $08225439 / 5548$. Telex: 45263

FT3 NEON FLASH TUBE
High intensily mutit turn high voltage, neon glow discharge flash tube. Design for ignition timing etc. $£ 1.50$. P \& P 25 p WHY PAY MORE?
MULTI RANGE METERS TYPE MF15A. AC/DC volts 10, $50.250,500$,
$1000 \mathrm{Ma} 0.5 \quad 0.10 \quad 0.100$. Sensitivity 1000 Ma
$2000 \mathrm{~V} \quad 24$
0.10
ranges dimensions $2000 \mathrm{~V} \quad 24$ ranges dimensions
$133 \times 93 \times 46 \mathrm{~mm}$. Price $£ 7.00$ plus 50 p $133 \times 93 \times 46 \mathrm{~mm}$. Price $€ 7$
P\&P (E .63 inc . VAT \& P.).

SOLID STATE E.H.T. UNIT

Approx. 15 KV . Builthin 10 sec . Timer. Easily modified. for $20 \mathrm{sec}, 30 \mathrm{sec}$., 10 continuous operation. Designed for boiler ignition. Dozens of uses in the field of physics : and electronics, e.g. supplying neon or argon tubes, etc.
E.H.T. starter for lasers. xenons, C.S.I. lamps, Van de - Graat Generator, loss of vacuum detector, Ouidini coils

Size: Lgth 155 mm . Wdth 85 mm . Ht 50 mm . Wi 530 : E6.73). N.M.S.
230 VOLT AC FAN ASSEMBLY
Powerful continuously rated AC motor complete with 5 blade $61 / 2$ or 4 blade $3^{\prime \prime}$ P\&P 65 P ($£ 4.77$ inc. VAT \& P.) N.M.S. A.E.G. CONTACTOR

Type LS6/L11. Coil 240 V 50 Hz . Contacts - 3 make 600 V 20 amp 1 break 600 V 20 amp . Price $\mathbf{£ 5 . 5 0}+50 \mathrm{p}$ P\&P ($£ 6.90 \mathrm{inc}$ VAT \& P) N.M.S.
ARROW-HART MAINS CONTACTOR
Cat. No. 130 A 30
Coil 250 V or 500 V AC. Contacts. 3 make 50 amp up to
660 V AC 20 hp at 440 V 3 phase 50 Hz . Prlce $£ 7.75+$ P\& P 660 V AC 20 hp at 440 V 3 phase 50 Hz . Prlc
$£ 1.00$ (Total inc. VAT \& P £10.06). N.M.S.

SMITH BLOWER

Type FFB. 1706 . Small quiet smooth running. 240 V AC operation. Output aperture $45 \times 40 \mathrm{~cm}$. Overall size $135 \times 165 \mathrm{~mm}$. Flange mounting. Price: $\mathbb{C 4 . 2 5}$ P\&P 75 p . (55.75 incl. VAT \& P). N.M.S. Other types available SAE for
24 V DC BLOWER UNIT
USA made 24 V OC 0.8 amp blower to operates well dn 12 V 0.4 amp OC producing 30 cu ft min at normal air pressure.
Maximum housing dia 110 mm , depth inc mator 75 mm Maximum housing dia
nozzle length 19 mm , dia 22 mm , depth inc motor 75 mm . Ideal for cooling mobile equipment, car, caravan, etc. 64.50 P\&P 75 ($\mathbf{E} 6.04$ inc.
VAT \& P) N.M.S.
CENTRIFUGAL BLOWER UNIT Airflow Deve-
looment Lid. powered by G.E.C. $230 / 250 \mathrm{~V}$. 2.850 lopment Lid. powered by G.E.C. 230/250V. 2.850 rpm motor producing approx. 120 cfm . Aperture: $65 \times 90 \mathrm{~mm}$. Overall size $222 \times 225 \times 195 \mathrm{~mm}$ incl. starter capac. Price: $£ 16.00+$ P\&P $£ 2.00$ total inc. VAT $£ 20.70$). N.M.S.

MINIATURE UNISELECTOR 12 V 11 way 4 bank (3 non-bridging.
1 homing) $\mathbf{E 3 . 5 0}$ P\&P 35 ($\mathbf{E 4 . 4 3}$

MICRO SWITCHES ex. new equip
Sub. Min. Honeywell Lever m / s type 3115 m
These V3 types.
Button Type (Pye) 10 for. $\mathbf{5 3 . 0 0}$ ($\mathbf{E 3 . 4 5}$ incl.
VAT)
¢4.00 (E4.60 incl. VAT).
Roller Type (8onnella). 10 for $£ 3.50$ ($£ 4.03$

HEAVY DUTY SOLENOID

 Mfg by Magnetic Oevices. 240 V ACintermittent operation. approx. 201b. pull at 1.25 in Ex equip. Tested. Price $£ 5.50+$ 75 p P\&P (E7. 19 inc. VAT \& P) R\&T

3-PHASE VARIABLE VOLTAGE

TRANSFORMERS

LTTRANSFORMERS

 (26.05 inc VAT $\&$ P)
$0.6 \mathrm{~V} / 12 \mathrm{~V}$ at $20 \mathrm{amp} \mathrm{E} 16.20 \mathrm{P} \& \mathrm{P}$ £1.00 (inc. VAT E19.78) a. 12 V at 20 amp or $0-24 \mathrm{~V}$ at $10 \mathrm{amp} £ 12.00 \mathrm{P} \& \mathrm{P} £ 1.50$ (115.53 inc VAT \& P).
$0-6 \mathrm{~V} / 12 \mathrm{~V}$ at $10 \mathrm{amp} £ 9.10 \mathrm{P} \& \mathrm{P} \mathrm{E} 1.50$. (inc. VAT $£ 12.19$) $0-6 \mathrm{~V} / 12 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V} / 20 \mathrm{~V}$ at 20 amp غ $20.90 \mathrm{P} \& \mathrm{P} \mathrm{E} 2.00$ (E26.34 inc. VAT \& P)
 f15.35)

Frowna ariostats New ceramic construction, vitreous en- amel embedded winding, heavy duty 25 WATT 10, 25, 100, 150, 250, 500, 1k. 1.5k ohm E2.80 Post 20 p (E3.45 inc VAT \& P). 50 WATT 250 ohm $/ 2.90$ Post $25 p(E 3.62$ inc $1 / 5 / 10 / 25 / 50 / 100 / 250 / 300 / 500 / 1 \mathrm{~K} / 1.5 \mathrm{k} /$ $2.5 \mathrm{k} / 5 \mathrm{kohm} \mathrm{E6.90}$ Post 35 p ($\mathbf{E 8} .34 \mathrm{inc}$. VAT \& P).

STROBE! STROEE! STROBE!

SUPER HY-LITE STROBE KIT MK. IV

Latest type Xenon white light tube. Solid state timing and triggering circuit $230 / 240 \mathrm{~V}$ AC operation. Speed adjustable 1.20 f.p.s. Designed for lerge rooms, halls etc. Light output greater than many (so caled inc. VAT \&
strobes. Price: $£ 22.00$ post $£ 1.50$ ($£ 27.03$ inc. P). Specially designed case and reflector for Hy-Ligh

E9.00 Post £1 00 ($£ 12.08$ inc. VAT 8 P).
ULTRA VIOLET BLACK LIGHT
FLUORESCENT TUBES

- 4 ft 40 watt E8. 70 (callers only $£ 10.00$ inc. VAT). 2 ft - 20 watts $£ 6.20$. Post $75 p$ ($£ 7.99$ inc VAT \& P). (For use - in standard bi-pin fittungs.)

9 in 6 watt $£ 2.25$ Post 35 p ($£ 2.99$ inc VAT \& P).
6 in 4 watt $£ 2.25$ Post 35 p ($£ 2.99$ inc VAT \& P).
Complete ballast unit for either $6^{\prime \prime} 9^{\prime \prime}$ or " $12^{\prime \prime}$ tube 230 V AC op $£ 4.50$ plus P $\& P 75$ p ($\mathbf{E} 5.69$ inc. VAT $\& P$). Also available for 12 V DC op $\mathbb{E} 4.50$ plus P\&P 35p ($\mathbf{5} 5.58$ inc VAT \& P).
400W UV lamp and ballast complete $£ 38.00$ Post $£ 3$
(£a7.73 inc VAT \& P). 400 watt UV lamp only $£ 14.00$
(EA7.73 inc VAT \& P) 400 watt UV lamp only £14.00.
Post $£ 1.50$ ($£ 17.83$ inc. VAT \& P).
WIDE RANGE OF DISCO LIGGTING EQUIPMENT S.A.E. (Foolscap) for details.

XENON FLASH GUN TUBES
Range of Xenon tubes avalable
from stock. S.A.E. for full details.

REED SWITCHES

Size $28 \mathrm{~mm} \times 4 \mathrm{~mm}$ dia. Price: 10 for E1:00 + P\&P 20p (total incl. VAT £ 1.38). 100 for $\mathbf{E 8 . 0 0 + P \& P 3 0 p ~ (t o t a l ~ i n c ~}$
RELAYS Wide range of $A C$ and $D C$ relays write in your enquiries

230/240V AC Relays: 50 (E1.96 inc. VAT \& P) T E.C open type $3 \mathrm{c} / 010 \mathrm{amp}$ E 1.10 ($£ 1.50 \mathrm{inc}$. VAT \& P). 3 c/o sealed 11 pin base $£ 1.25$ P \& P 25 p ($£ 1.73$ incl. VAT) K MK 1 Reley. $230 \mathrm{VAC} 1 \mathrm{c} /$.o . Open type 10 amp contact. mf. by "Keyswitch" $80 \mathrm{p}+20 \mathrm{p}$ P \& P ($£ 1.15 \mathrm{inc}$. VAT). 5 for $£ 3.75$ post paid ($£ 4.32$ inc. VAT). OC Relays: Open type $9 / 12 \mathrm{~V} 3 \mathrm{c} / 07 \mathrm{amp}$ £ 1.00 ($£ 1.38$ inc VAT \& P). 11 -pin $£ 1.35$ ($£ 1.78$ inc. VAT \& P) 24 V Sealed (amps = contact rating) $P \& P$ on any relay 20 p . amps = contat rating) 012 V DC 2 make 20 p . for E 1.75 plus 25 p P\&P (inc VAT $£ 2.30$).
Diamond H heavy duty AC relay $230 / 240 \mathrm{~V}$ AC, two $\mathrm{C} / 0$
contacts 25 amps res at 250 V AC $£ 2.50$ P $\& \mathrm{P}$ 500 ($£ 3.45$ contacts 25 amps res at 250 V AC £2.50 P\&P 50 p ($£ 3.45$ inc. VAT + P\& P) Special base 50p.
MELLERMAN DEUTSCH. Hermetically sealed sub.-min. Relay. $12-24 \mathrm{~V}$. O.C. $2 \mathrm{c} / \mathrm{o} 850 \mathrm{ohm}$ coil. 0.2 pitch. P. mounting. L. $20 \mathrm{~mm} . W .10 \mathrm{~mm}$. H. 12 mm . Fraction mounting. E1.50 P\&P 50 p ($£ 2.30$ ine. VAT \& P)

METERS (New) - 90 mm DIAMETER
AC Amp. Type $62 \mathrm{~T} 2: 0.1 \mathrm{~A}, 0.5 \mathrm{~A}, 0.20 \mathrm{~A} . ~ A C$ Volt, 0-15V. $0-2 \mathrm{~A}, 0.10 \mathrm{~A}, 0-20 \mathrm{~A}$. 0-50A. DC Volt. 0-15V. $10-30 \mathrm{~V}$. All types £3.50 ea plus P\&P 50 p ($£ 4.60$ inc VAT) 0.50 A DC, 0.100 ADC . Price $\mathbf{£ 5 . 0 0}$ plus 50 p P \& P ($\mathbf{E} 6.33$

GEARED MOTORS

$71 / 2$ rom KLAXON molors approx. 25 tb inch. 28 71 ppm WYNSCALE morors appiox. 201 b inct

\qquad

24V D.C. Reversible Motor

 VAT. N.M.S.
60 pm . 1001 b
 100 rom 110 V AC 1151 i in. 50 Hz . 2.8 amp.
Single phase split capacitor. Immense power.
Tolally enclosed. Lengin 250 mm . Dia. 135 mm .
Spinde dia. 15.5 mm , length 145 mm . Tested.
Prinde

$8.00+75 \mathrm{p}$ P\&P ($£ 10.05 \mathrm{mc}$. VAT). 200 rpm 351 bs in 115 V 50 Hz . Price $£ 16.00+£ 1.50 \mathrm{P} \& \mathrm{P}$ Suitable Transtormer for $230-240 \mathrm{~V}$ AC. Price c 8.00 £1.00 P\&P ($£ 10.35$ inc. VAT). N.M.S. rpm $230 / 240 \mathrm{~V}$ AC synchronous geared motor ${ }^{-} \mathrm{Mf}$ MAYDON 2 rpm 230/240V AC Synchronous geared
Motor. Mf. CROUZET. Either type $\mathrm{E} 2.90+30 \mathrm{p}$ P\&P Motor. Mi. CROUZET.
(E 3.68 inc. VAT). N.M.S
$24 V$ DC GEARED MOTOR
$24 V$ DC 200 rpm 10 lbs/ins continuously rated geared Motor mig by either Parvalux or Carter. Easily removable from heavy ali chassis containing $9 \times 24 \mathrm{~V} D \mathrm{DC}$ Solenoids, Ex-equipment London Transport Ticket Printer price $£ 11.00+£ 2.00$ p. \& p. (total incl. VAT $£ 14.95$)

ROTARY CARBON VANE VACUUM \&

COMPRESSOR

Motor manut by A.EI. Pump by W. A.C. Motor $4.2 \mathrm{amp}, 1380 \mathrm{rpm}$

 Pressure cont $£ 30.00+p$ p. 8 , int. int 15 p.s.i. Max. airflow 3 c.t.m. at "O" H.G.
REDUCTION DRIVE GEARBOX

$$
\begin{aligned}
& \text { Ratio } 72.1 \text { input spindle } 1 / 4 \times 1 / 2 \mathrm{in} \text {. Output spindle } 3 / 6 \times 3 \mathrm{in} \\
& \text { long. Overall size approx } 120 \times 98 \times 68 \mathrm{~mm} \text {. All metal }
\end{aligned}
$$

$$
\begin{aligned}
& \text { long. Overall size approx } 120 \times 98 \times 68 \mathrm{~mm} \text {. All metal } \\
& \text { construction. Ex-equip tested. Price } £ 2.00+50 \mathrm{p} \text { P\&P }
\end{aligned}
$$ construction. Ex-equ

($£ 2.88$ inc VAT \& P).

AC Wkg TUBULAR CAPACITORS

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |

SPECIALOISCOUNT FOR BULK OROERS
'VENNER TYPE' ERD TIME WITCH
200/250V AC 30 amp 2 on $/ 2$ off every 24 hrs a ny manually pre-set lime. 36 -hour spring
eserve and day omitting device. Built to highest Electricity Board Specification. Price £9.00. P\&P 75 p ($£ 11.21$ inc. VAT). R\&T SANGAMO WESTON TIME SWITCH Type S251 200/250 AC 2 on 2 off every 24 hours. 20 amps P\&P 50p ($£ 10.35$ inc. VAT \& P). Also available with solar

PROGRAMME TIMERS

12 Cam Programmer Timers. 240v. A.C. op. Each Cam individually adjustable. Price $£ 7.50$ plus 75 p p\&p. (£9.49 inc. V.A.T.). R\&T
Ditto, 6 adjustable 6 fixed cams. Price $£ 6.00$ plus $75 p p \& p$ ($£ 7.76$ inc. V.A.T.) R\&T

MINIATURE PROGRAMMER

Crouzet ! rpm 115 V AC Motor operating 2 roller micro-
swirches (4 amp). Can be used on 240 V AC with either 0.25 switches (4 amp). Can be used on 240 VAC with either 0.25
mid 250 V Condenser or 5.6 K wirewound resistor 7 watis mid 250 V Condenser or 5.6 K wirewound resistor 7 watis
(supplied). Price $£ 2.50+50 \mathrm{p}$ P\&P ($£ 3.45$ inc VAT $\& \mathrm{P}$). (supplied).
N.M.S.

800 WATT DIMMER SWITCH

Easily fitted. Will control up to 800 W . of all lights
except fluorescent at mains voltage. Price
$£ 3.90+50 p$ \& P ($£ 5.06$ incl. VAT).

All Mail Orders - Callers Ample parking space
Showroom open Monday. Friday

 Registered in England 1179820 continuous

Please add 15% VAT to all prices. Minimum Mail Order $£ 5+$ postage + VAT. Phone or write for postage rates Retail price list 20 p or free with $£ 5$ worth of goods.

DISC CERAMICS

Over 2 million now in stock, mostly ITT type. Large quantity of high voltage discs, e.g $210 \mathrm{p} 8 \mathrm{kv}, 220 \mathrm{p} 1 \mathrm{kv}$. $1 \mathrm{n} 1 \mathrm{kv}, 1 \mathrm{n} 53 \mathrm{kv}, 2 \mathrm{n} 2$ 2 kv , 4 n 71.5 kv , 10n 2 kv .
Please send for our Disc Ceramic Stock List

CINCH BARRIER STRIP

$6 w, 8 w, 9 w, 10 w, 12 w, 18 w$ in quantity.

SCOOP PURCHASE OF

PET 100 SERIES CONNECTORS
Straight plug, rightangled plug, chassis socket. Enables us to offer these items in quantity at a fraction of manufacturer's price.

KEYSWITCHES (HEAVY DUTY)
2p 12A 600v AC
£1.50
8p 10A 380v AC
£3.00
10p 12A 600 v AC
£3.00

ELECTROLYTICS

Very large quantity of ITT EN 1212 and EN1235 series now in stock. Please send for our Electrolytic List

ROTARY POTS by Egen

Large quantities of the following values: $2 k 2$ lin. $22 \mathrm{klog}+\mathrm{sw}, 100 \mathrm{k}$ lin + push sw .

Full range älso held TEXAS 4030 JLD Ram. Ex-New Equipment 30p ea 12v 130mA Transformer 65p ea

LICON SWITCHES

(llluminated)

01-800 Series, Rectangular snap in 2PCO latching 2PCO Momentary
5PCO Momentary
Indicator only
Lenses available in white and red
Bulbs to suit $6 \mathrm{v}, 12 \mathrm{v}, 28 \mathrm{v}, 48 \mathrm{v}$ available

80p	600 mF 300 v		...
60p	60p		
40p	$20,000 \mathrm{mF} 45 \mathrm{v}$	$\ldots .$.	40p

RESISTORS

Over 2 million metal oxides in stock, $1 / 4,1 / 2,1$ and 2 w
Full range of Carbon $1 / 1 / 1 / 3 w$ held. Good selection of wire wounds $2-200$ w Please phone with your requirements

PRESETS

Full range of PT10. PT 15 held. Particularly large quanitities of the following (Piher) $22 \mathrm{k}(\mathrm{V}), 47 \mathrm{k}(\mathrm{V}), 100 \mathrm{R}(\mathrm{H})$. All PTIs.

CONVERGENCE POTS
Most popular TV values stocked in depth

SLIDER POTS by Egen

220k R. Log. D.G
470k Lin
1 M Lin
2M2R. Log
Above values ònly
6', 19', 1MFOFF Racks $£ 30$ ea. Hence only a few left

LARGE PANEL METERS

$140-0-140 \mathrm{~mA}(107 \times 145 \mathrm{~mm})$
$1 \mathrm{~mA}(115 \times 195 \mathrm{~mm})$ values to mention here. Please phone for details.

The above is a fraction of our stock holding. We also stock a full range of semiconductors, connectors, aluminium boxes, wire and cables, switches. Vero products, etc. For further details phone, send for our retail price list, or visit our shop.

Marshall's

The new Marshall's 80/81 catalogue is now available. A veritable treasure house of components, test gear, tools, etc.

Lots of old friends, but also many new products including Leader test gear, Crimson Hi Fi Modules, Rechargeable NI Cad batteries and chargers (very competitive). More components including SN 74ALS series, new tools etc.
We are franchised distributors for Arrow Hart switches; Mullard; National; Siemens; Sinclair (Thandor); Texas; Thomson; CSF etc.
Send for our latest catalogue. Free to industrial customers: 75 p post paid to private individuals.
A. Marshall (London) Ltd., Kingsgate House,
Kingsgate Place,
London NW6. 4TA.

Industrial Sales: 01-328 1009
Mail Order: 01-624 858224 hr service
Retail branches: London: Glasgow: Bristol

WW - 036 FOR FURTHER DETAILS

The finest amplification kits from Crimson Eletrick

 * $\star \star \star \star$ LATEST DEVELOPMENTS $\star \star \star \star$

 * $\star \star \star \star$ LATEST DEVELOPMENTS $\star \star \star \star$
 $\star \star \star \star$ SOUND ADVICE $\star \star \star \star \star$

CRIMSON ELEKTRIK Power amplifiers are the most sophisticated on the marked today. Yet now with the latest Issue 5 innovations THEY ARE EVEN BETTER! We have included sonic improvements and developed a unique electronic protection circuit which obviates the need for output fuses. In fact, such fuses can seriously degrade the performance of an amplifier. They can blow under heavy drive conditions - even with non-faulty loads (due to thermal fatigue), they can be a time-consuming nuisance and even dangerous to replace, but more importantly they are responsible for envelope
distortion i.e., dynamic compression of the signal, even fuses in the feedback loop suffer from the first two disadvantages, and the latter to a lesser extent.

$\star \star \star$ BEST VALUE $\star \star \star \star$

CRIMSON have an enviable reputation for supplying the best value amplifier kiss. You can prove this to yourself by checking out the competition in the following crucial areas: \# professional grade phono sockets for ALL signal connections Silver/Gold plated switch contacts \# Adequate heatsinking for full-rated output Available from stock Manufactured by a specialist company with a reputation for friendly and helpful service before and AFTER sale \#Forms the basis for high quality active loudspeaker systems. Considering the advantages of CRIMSON Kits, why choose anything else?

Crimson Amplifiers are versatile and dependable. The new CP 3000 will give up to 1300 watts into 4 ohms at 0.03% THD and is the obvious choice for P.A. and Discos requiring the best performance. For Hi-fi we produce the ever-popular pres- and power amp hardware kits which enable our advanced modules to be houses in attractive metalwork and include everything down to the last nut and bolt.
Our Preamplifier can be fitted with the moving coil module allowing it to be, used with the latest M.C. cartridge (which can now be bought for as little as £30).
"Write for details, specifications and full price list or send 50p, cheque /P.O. for our comprehensive application/user's manual.

Spare precludes us from publishing all our products and prices, below are just a few examples:

* Power Amp Modules (single channel) CE 608 (60 WRMS/8 ohms)
CE 1708-(170 WRMS/8 ohms)
£38.50
CP 3000-(300 WRMS $/ 4$ ohms)
$\begin{array}{r}\mathrm{c} 58.00 \\ \hline\end{array}$

- Stereo Moving Coil Pro. PIe Amplifier Module MC1

C28.50
$\mathbf{\varepsilon 3 2 . 6 0}$

Dort forget. Crimson modules are available throughout the country from all :branches of Marshalls and Mail Order from Badger Sound Services and. of course. Crimson Elektrik
Prices include V.A.T. and post to anywhere in the U.K

- Crimson Flektrik

General Information:

Pocket dosimeters provide an accurate, reliable and immediate method of measuring the integrated ionising radiation. The dose may be read at any time and in any place providing a source of lithe is and in any place, providing a source of light is

Principle:

The dosimeter is an ionisation chamber type using a quartz fibre electroscope as the indicating element. A microscope is used to project the image of the
moving quartz fibre element on to a graticule scale. The quartz fibre is mounted on a wire electrode, which in turn is supported by a high quality insulator. When the instrument is charged, positive charges distribute themselves over the wire electrode and quartz fibre causing the fibre to bend away from the electrode. The fibre will take up a position depending on the amount of charge on the system

When the surrounding air in the ionisation chamber is ionised negative ions will be attracted to charge. The resulting fibre movement will be related directly to the quantity of radiation producing the ionisation. The fibre movement can thus be calibrated directly in roentgen units and the rate of movement of the fibre will be proportional to the roentgens received per unit time.

Construction:

The microscope, electroscope and Ionisation chamber are housed in an outer skin which may be of brass or aluminium. At one end of the tubular case is fixed a charging assembly, and at the other an eyepiece window. These two assemblies are soldered into the outer case to ensure a hermetic seal
Each dosimeter is provided with protective end cap translucent window so that the cap need not be removed for reading. humidity, water immersion and temperature tests

- BE PREPARED, EVERY HOME SHOULD HAVE ONE

YOU CAN'T SEE IT - FEEL IT, BUT YOU CAN MEASURE IT

READS ALPHA - BETA - GAMMA RADIATION

Features:

- THESE UNITS WILL READ automatically the amount of RADIATION IN THE AIR
- this instrument is only a little larger than a fountain PEN
- JUST HOLD TO THE LIGHT
- CLIPS ON TO YOUR TOP POCKET
- WEIGHS LESS THAN $30 Z$.
- contains three lenses
- fully charged. tested and GUARANTEED REFURBISHED BY US
- british design and manufactube, rugged construction
- manufacturer's list price of SIMILAR MODEL IS OVER £25
- a sound investment
- bUY NOW WHILST STOCKS AVAILable. delivery by return post
ACTUAL SIZE: $115 \times 14 \mathrm{~mm}$
PROTECTIVE CAP MARKER SLEEVE

Supplied complete with Data and Information on radiation and detectors.

All units are checked and tested jus prior to despatch by first-class mail in proper protective packing.

Manufacturer's current list price similar model is over E.25

The New Scopex 14D-10

A dual trace 10 MHz sensitivity oscilloscope incorporating all the latest high technology developments to bring you all these outstanding features as standard.
$10 \mathrm{~cm} \times 8 \mathrm{~cm}$ display.
2 mV sensitivity on both channels.

- Add and invert facility.
- Probe compensation.
- Push button X-Y.
- Trace locate.

10MHZ -3 dB) over full display.

- Complete with probes.

At a price of $£ 230.00+$ VAT.
Ensures British leadership in the low cost high performance oscilloscope market.

Pixmore Avenue, Letchworth Herts SG6 1JJ. Tel: (04626) 72771

I wish to pay by Barclaycard/Trust Card. Please charge to my account. My Barclaycard/Trust Card No. is

Is your name last on the Electrical Times circuit?

更

Wiring sales up 25 per cent

Electricity sales exceed plan

Isn't it time you had your own copy of Electrical Times

Every week Electrical Times gives you NEWS on: people, prices, contracts, financial deals, international events \& new products.

Regular features are included on: contracting \& installation, repair \& maintenance, distribution plant \& operation, and motor applications and control.

Electrical Times also carries top quality job opportunities for people at all levels in the electrical industry in its appointments pages.

An annual subscription costs £12.00 - not much to pay to ENSURE that you're the first to be plugged in to the power of the Electrical Times circuit.

Please send me ELECTRICAL TIMES every week for a year. I enclose cheque/P.O. for $£ 12.00$ (inc. postage) payable to IPC Business Press Ltd.

Name
To: Subscription Dept., IPC Business Press
(SD) Ltd. , Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH, England.

NEW THE NOA NTOU
 Available in Kit Form or Assembled. All components available separately. Houses two $51 / 4^{\prime \prime}$ drives for a compact business system
 Professional case will house

 the complete systemTwo keyboard options Hinged lid for easy access Stylish finish ideal for office or home

NASCOM PRODUCT LIST + VAT

 I/O board kit less I/O chipsUART + BAUD rate generator + crystal for $1 / 0$ board
Econographies kit for additlonal 128 char acters (N1 only)
2708/2716 Programmer suitable for N1 Under NAS-SYS
 for N1 and N2
Nas DA disassembler 3 EPROM for Nas.sys
MK 36271 8K BASIC MK36271 8K BASER VS $\ln 2$ EPROM
Nas-sys monitor in 2 EPROM 4 Games Tape
Nasbug T4 $2 \times$ EPROM
Tiny Basic $2 \times$ EPROM
Super Tiny Basic $3 \times$ EPROM
Super Tiny Basic upgrade $1 \times$ EPROM TEAP Softwan
ZEAP 2 tape and documentation for
Nas-sys
BK BASIC tape and documentation for N1
THE HENELEC DISK SVSTEM FOR NASCOM and any other 280 Microcomputer
with an uncammitted P10

DISKS

The Renelec controller card plugs direct into a 280 p10 and controls up to 3 double-sided mini-floppy drives giving a maximum 480 K system. - General Purpose FDC control software for simple DOS or for CPM.

- Simple DOS software for NASCOM $1 / 2$ under NAS-SYS - OR ROM CB1OS for CPM on NASCOM $1 / 2$ incorporating the major NAS-SYS features. Maximurn Nepm system
- New MD prom supplied for N2/CPM

TWO SYSTEMS
FIIM-DOS "Floppy Tape Recordef" with 1 drive PSU
firmware, etc. Double Sided
$£ 380+$ VAT - CPM System with 1 drive double sided PSU firmware.

COMPUTER KEYBOARDS

APPLE COMPUTER KEYBOARD. 52 key 7 bit ASCII coded positive strobe $+5 \mathrm{~V},-12 \mathrm{~V}$. Size $13 \times 43 /{ }^{\prime \prime}$ " with supports. Sturdy construction. Sloping key rops. Beautifully made. Every unit individually packed in anti-static foam. Made in USA for Apple Inc. Brand new
$£ 35$ incl VAT. Post $£ 2.50$.
71 KEY ASCII KEYBOARD INCLUDING NUMERIC KEYPAD. £49.00 plus $£ 7.35$ VAT TOTAL £56.35. Uses gold crosspoint keys. Includes keypad and ribbon CARTER 57 key ASCII keybiard. Conventional key CARTE 128 ASCII characters including control key board. 128 ASCII characters including control keys. $-12 \mathrm{VDC} .12^{\prime \prime} \times 5.5^{\prime \prime} \times 1.5^{\prime \prime}$. Black keys with white ledgends.
39.34 + VAT

FERRANTI-"SIZE $14 \times 6 \times 3$ " SLOPING FRONT" 55 Key ASCII Coded in steel case. Complete with Plug and Cable with circuit to convert to T.F.L levels.
In good condition at only $£ 19.95+$ VAT. P/P $£ 2.50$

On
Demonstration NOW

KITS
from
£195
delivery Ex-Stock

COMPUTER SYSTEMS

"MICRON"

the latest line in superb products on demonstration from your London stockist

EX-STOCK

- 6502 based microcomputer
- VDU alpha numeric display
- Powerful monitor TANBUG
- 8K RAM
- 32 parallel I/O lines
- 2 serial I/O lines
- RS $232 \mathrm{C} / 20 \mathrm{~mA}$ loop, with 16 programmable Baud rates
- Four 16 Bit counter timers
- CUTS cassette recorder interface
- Data bus buffering
- Memory mapping control
- 71 Key ASCII Keyboard, Including numeric keypad and with auto repeat
- Including metal cabinets for both keyboard and modules
- Including power supply 10K Microsoft BASIC

CENTRONICS QUICK PRINTER

EXCLUSIVE TO HENRY'S
50% OFF MAKER'S PRICE $£ 195$
for: Software selectable 20, 40 and 80 TANDY, column using 120 mm aluminium PET, ised paper. 1 roll supplied NASCOMC Centronics parallel data interface for 240 volt Nascom. Tandy, etc
240 volt mains input. ASCII character set Paper feed, and on/off select switches 'BELL' sional Weiaht 10 lbs New, boxed and fully
aranteed
POST PAID Price $\mathbf{£ 1 9 5 . 0 0 + V A T}$
See COMPUTING TODAY Recommendations
MARCH/MAY ISSUES

MEMORIES Discounts $\mathbf{1 0 \%}$ for $\mathbf{4}, \mathbf{1 5 \%}$ for $8, \mathbf{2 0 \%}$ for $\mathbf{1 6}$

| MK3880 | NZ80) | 7.50 | 2708 |
| :--- | :--- | :--- | :--- | $\begin{array}{llll}\text { MK 38880-N4IZ80A } & 7.95 & 2716 & \mathbf{5 5 . 0 0}\end{array}$ $\begin{array}{llll}\text { MK } 411616 \mathrm{~K} \times 1 \text { dy RAM } & 4.95 & \text { 5V Single Rail } & \mathbf{1 5 . 0 0} \\ \text { MK } 4027 \text { 4K } \times 1 \text { dy RAM } & 2.25 & \text { IM6402 UART } & 4.50\end{array}$

 $\begin{array}{lllll}21021 \mathrm{~K} \times 1 \text { static RAM } & 1.00 & 2114 & 1 \mathrm{~K} \times 4 \text { Static RAM } & 3.25 \\ 4118 \mathrm{~K} \times 8 \text { static RAM } & 12.75 & 8080 \mathrm{~A} & & 5.25\end{array}$

 LONDON STOCKISTSMicrotan 65 Kit, Incl. VAT £79.35
Microtan 65 Assembled, $£ 90.85$

Tanex (min. con) Kit, Incl. VAT £49.45 Tanex Assembled Incl. VAT $£ 60.95$ Lower case pack, Incl. VAT £10.90 Chunky Graphics Pack, Incl. VAT $£ 7.50$ 20 Way Keypad Incl. VAT $£ 11.50$ Mini-mother board Incl. VAT $£ 9.95$ Complete Tangerine range available

SEND FOR COMPLETE COMPUTER BROCHURE FREEPOST TO ADDRESS BELOW
London Tangerine TUSCAN and
NASCOM DISTRIBUTOR
Export Orders deduct VAT, but add 5% carriage ADD VAT
TO YO YO
HENRY'S Official Export \& Educational Orders welcome OROER
EXCEPT

Computer Kit Division Our Telex 262284 Mono Ref. 1400 Transonics

	¢	-	¢				E		E.
A1065	140	KT66	8.30	X66	0.25	605	2.30	$35746{ }^{\circ}$	0.80
A2293	8.80		9.20	$\times 61 \mathrm{M}$	1.70	6J5GT	0.90	$40 \mathrm{KD6}$	3.15
A2900	9.20	KT88	8.85	XR1-6400		6 J 6	0.85	S0C5	1.15
AR8	0.75		$13.80{ }^{\circ}$		32.90	6J6W	0.90	$50 C 066$	1.35
ARP3	0.70	MH4	2.50	2759	9.00	6.57	1.20	7581	1.25
ATP4	0.60	ML6	2.50	2749	0.75	6JE6C	2.95	75C1	1.70
B12H	3.90	N78	9.90	28000	3.45	6 K 7	0.80	76	0.95
CY31	1.40	OA2	0.70	28014	3.75	6L6M	2.80	78	0.95
DaF96	0.70	082	0.80	z803U	8.95	8166	2.50	80	1.70
OET22 21	21.95	PABC8O	0.80	29007	2.45	${ }_{6 L 6 G C}$	2.10	$85{ }^{2} 2$	1.40
OF96	0.70	PC85	0.75	143	0.85	$6 \mathrm{L6GT}$	1.25		2.55
DK96	1.20	PC86	0.95	114	0.50	6176	0.65	$723 \mathrm{~A} / 8$	11.80
DH76	0.75	PC88	0.95	1 RS	0.80	6418	0.70	805	20.70
DL92	0.80	PC97	1.50	154	0.45	$6 \mathrm{LO6}$	2.95	807	. 1.25
OY86/87	0.85	PC900	1.15	155	0.45	61020	0.70	813	13.30
OY802	0.85	PCC84	0.50	174	0.45	6KG6A	2.70	8298	14.00
E55L 1	14.00	PCC89	0.85	1 U 4	0.80	6076	1.30	832 A	8.s0
E8BCC	1.80	PCC189	1.05	1×28	1.40	6597	1.00	8664	3.80
E88CC/01		PCF80	0.80	2021	0.80	6567	1.15	866E.	6.25
	3.10	PCF82	0.70	2 K 25	11.90	65.7	1.05	931 A	13.80
E92CC	1.20	PCF84	0.75	2×2	1.15	6 6K7	0.95	954	0.60
E180CC	2.80	PCF86	1.50	3 A 4	0.70	6SL7GT	0.85	955	0.70
E180F	6.30	PCF87	0.50	3 AT2	2.40	6SN7GT	0.80	956	0.80
E1820C	4.95	PCF200	1.60	306	0.50	6SA7	1.10	957	1.05
EA76	2.25	PCF201	1.85	3022	23.00	6507	0.95	1625	1.80
eabcro	0.60	PCF800	0.50	$3 E 29$	10.00	$6 \vee 66$	1.80	1629	1.85
EB91	0.80	PCF801	1.75	354	0.60	6V6GT	0.95	2051	2.90
EBC33	1.15	PCF802	0.85	$58 / 254 \mathrm{M}$		${ }_{6 \times 4}$	0.75	6763	4.20
EBC90	-.90	PCF805	2.45		14.00	$6 \times 4 \mathrm{WA}$	2.10	5842	7.50
E8F80	0.80	PCF806	1.20	$58 / 255 \mathrm{M}$		6x5GT	0.65	5851	3.40
EBF83	0.80	PCF808	2.05		11.50	6 66G	0.80	5881	3.40
E8F89	0.80	PCH200	1.35	$5 \mathrm{~B} / 25 \mathrm{Bm}$	8.80	624	0.70	5933	8.80
EC52	0.85	PCL81	0.75	5 SHGY	1.30	787	1.15	6057	2.20
EC9 1	3.40	PCL82	0.95	5 CuG	0.75	7 Y 4	1.00	6060	1.85
EC92	0.85	PCL84	0.90	5V46	0.75	902	0.70	6064	2.30
ECC8 1	0.85	PCL86	1.05	5Y3GT	0.80	$9 \mathrm{D6}$	2.00	6065	3.20
ECC82	0.50	PCL805/8	85	523	1.50	10 C 2	0.85	6067	2.30
ECC33	0.65		1.25	5246	0.75	10 F 18	0.70	6080	5.30
ECC84	0.60	P0500/5	510	524GT	1.05	10 P 13	1.50	8146	4.95
ECC85	0.80		4.30	6/3012	0.80	11 E2	19.50	61468	5.20
ECC86	1.40	PFL200	1.10	6487	0.70	12 A 6	0.70	6360	2.85
ECC88	0.80		2.80	$6 \mathrm{AC7}$	1.15	$12 \mathrm{AT6}$	0.70	6550	6.60
ECC189	0.95	PL36	1.25	6 GAG5	0.60	$12 \mathrm{AT7}$	0.65	68.70	14.00
ECC804	0.90	PL81	0.85	6AH6	1.15	$12 \mathrm{Au7}$	0.60	8552	8.20
ECF80	0.85	PL82	0.70	6AK5	0.65	$12 \mathrm{AV6}$	0.95	6973	3.30
ECF 82	0.65	PL83	0.60	6AK8	0.60	$12 \mathrm{AX7}$	0.85	7199	2.85
ECF 801	1.05	P184	0.95	6 AL5	0.60	$12 \mathrm{BA6}$	0.90	CRT	
ECH34	2.25	PL504	1.4 .5	6AL5W	0.85	12 BE 6	1.25	1 CP !	18.50
ECH35	1.70	P1508	1.85	6AM5	4.20	$12 \mathrm{BH7}$	1.10	38P1	11.00
ECH42	1.20	PL509	2.80	6AM6	1.50	$12 \mathrm{C8}$	0.65	5FP7	18.00
ECH81	0.70	PL519	3.20	6ANBA	2.50	12 E	18.05	$4 E P 1$	32.00
ECH84	0.80	PLBO2	3.20	$6 \mathrm{AO4}$	3.40	12 J 5 GT	0.55	88.	14.00
ECLB0	0.70	PY33	0.70	6 A05	1.00	12 K 7 GT	0.70	881	14.00
ECL82	0.75	PY80	0.70	6405 W	1.80	12 KBGT	0.80	CV1528	16.00
ECL83	1.40	PY81/800	00.80	6AS6	1.15	1207 GT	0.60	OG7.5	22.40
ECL85	0.80	PY82	0.65	${ }^{64 T 6}$	0.90	$12 \mathrm{SC7}$	0.65	OG7.32	34.80
ECL86	0.90	PY83	0.80	${ }^{64} \mathbf{A} 6$	0.60	$12 \mathrm{SH7}$	0.68	OG7.36	36.00
EF37A	1.50	PY8B	0.85	6av6	0.85	12517	0.70	DPM9.11	38.40
EF39	1.25	PY500	$1.70{ }^{\prime}$	6 AX4GT	1.30	12507	1.45	D13.33G	
EF80	0.65	PY809	8.45	6 6ax 5 GT	1.30	$12 \mathrm{Sa76T}$	0.85	-	41.80
EF83	1.75	PY801	0.80	6 Ba 6	0.55	12 V 4	0.6		
EF85	0.60	aavo3/1		6 BE 6	0.60	1303	3.60	spec. 0	
Ef86	0.75		2.85	68666	1.60	13 D 5	0.90		
EF89	1.05	Quvoz-20	20A	$6 \mathrm{BL6}$	1.30	1306	0.30		
EF91	1.50		14.40	6807A	0.85	1457	1.15		
EF92	2.00	Quvo3-2	25A	6887	4.40	19 ACS	0.85 ;		
EF95	0.65		21.20	68w6	6.20	1963	11.50		
EF96	0.80	Cov06/4	40 A	68W7	0.90	1966	a. 50		
EF183	0.80		18.10	$8 \mathrm{C4} 4$	0.50	$19 \mathrm{H5}$	39.85		
EF 184	0.80	OVO3 12	4.20	${ }_{6} 66$	0.55	2001	0.80		
EF804	4.95	SC1/400	4.50	${ }^{6} \mathrm{CH} 6$	8.20	20 F 2	0.85		隹
EF812	0.75	SC1/600	- 4.50	${ }^{6} \mathrm{CL} 6$	1.70	2081	1.30		LvEs
EFL200	1.85	SP61	1.80	6 Cr 5	1.15	20 P 1	0.85	$4 C \times 1000$	
EH90	0.85	$\pi 21$	16.60	606.	0.70	$20 \mathrm{P3}$	0.75	40×5000	
EL32	1.10	U25	1.15	6 EAB	3.20	20 P 4	1.25	am 2515	
El34	1.80	U26	1.15	6 66	1.60	20 P 5	1.35	3\% 153	
	2.00*	U27	1.15	6F6GB	1.10	2516 GT	0.95	0 m 2518	
EL37	4.40	U191	0.85	$6{ }_{6} 7$	2.80	2524 G	0.75	n. 1420	
EL38	4.60	U281	0.70	$6 F 86$	0.85	30 C 15	0.50	n 1430	
E181	0.95	4301	0.65	${ }_{6 F 12}$	1.50	30 C 17	0.50	¢ 140	
EL82	0.70	U600	11.50	6514	1.15	$30 \mathrm{C1} 18$	2.45	6xu ${ }^{\text {c }}$	
EL84	0.80	4801	0.90	6 F 15	1.30	3055	1.15	${ }_{20} 01507$	
EL86	0.85	UBC41	1.20	$6 F 17$	1.15	30 FL 2	1.40	cy 2116	
EL90	1.00	UABCBO	0.75	6523	0.75	30 FL12	1.25	48×1500 88189	
EL91	4.20	UAF42	1.20	6 F 24	1.75	$30 \mathrm{FL14}$	2.15	${ }^{8 R} 189$	
EL95	0.80	UBF8O	0.70	6533	10.50	30 L 15	1.10		
El 504	1.70	UBF89	0.70	$6 \mathrm{FH8}$	3.60	30117	1.10,	\%6is	
EL509	2.70	UBL1	1.25 1.75	6GAB GGHBA	0.90 0.95	30 P 12	1.15 1.25	${ }_{T} 4500$	
EL802	1.70 8.20	UCC84	0.85	${ }_{6}^{6 G H 8}$	1.60	30 PL 14	2.45	8446	55524
EL822	8.85	ucc85	0.70	6.14	1.35	351667	1.40	min	/ 1781
EM31	1.80	UCFBO	1.30	6.J4WA	2.00	35W4	0.80		
EM80	0.85	UCH42	1.85						
EM81	0.85	UCH81	0.75			GEIGER MULLER TUBES. GM4 5.50 MX120/01 32.20 FIELD TELEPHONES TVPE "J". Tropical, in metal cases. 10-LINE MAGNETO SWITCH- BOARD. Can work with every type of magneto telephones. TELEPHONES EE8. American manufacture, in leather or canvas			
EM84	0.85 1.15	UCL81	0.05 1.25	RESISTO					
EY51	0.05	UF80	0.95	Ww					
EY81	0.65	UF85	0.95	1.5 watt	0.10				
EY86/87	70.60.	U141	1.50	3 watt	0.21				
EY88	0.65	UL84		4.5 watt	0.28				
EZ880	0.70 0.70	UM80	0.90 0.70	6 watt	0.41				
$6 Y 501$	8.30	UY82	0.70	9 watt	0.49				
GZ32	1.05	UY85	0.85.	20 wat	1.15				
G233	4.20	VR105/3	301.25	120 watt	1.80				
		VR150/3	${ }^{30} 1.35$ -						
VALVES AND TRANSISTORS									
Telephone enquiries for velves, Iransistors. atc.: relail . 7493934, Tade and export 7430899. INTEGRATED CIRCUITS						housing,			

PRICES MAYYARYY
hesistors ex
NON INDUCT
50ahm 10W O.BE: NON 6.3 kohm 6 W i. 15
TELUROMETER MRA3 DISTANCE MEASURERS 40\% partige VAT 15%.
HHGH VACUUM VARIABLE CAPACITORS
amic envelopes - UC 1000 A $20 / 150=$ V
 TEST SET FT 2 for resting Trensceivers A40, A41, A4
and CPRC26. and CPRC26. WIRELESS TGAINING SET No 1 MK 2 VA 8316 to vain 32 operators simutaneously on key 1000 W . Technical details and prices available and phone. Complete instailation consists of 3 kits on request. For export only,
SpARES FOR AR8
packed
MARNESS "A" R "B" CONTROL UNITS "A"O "R" POSTAGE: £ 1 - $£ 3$ 30p; $£ 3-£ 540 \mathrm{P}$: "J1" "J2," Microphones No 5. 6. 7 connectors, $£ 5-£ 1045$ p; £10-£ 1560 p; over $£ 15$
trames. carners sets etc.
DRUM CABLE continuous connection yc 00433 . free.

COLOMOR
(ELECTRONICS LTD.) 170 Goldhawk Rd., London W. 12

Tel. 01-743 0899
Open Monday to Friday
9 a.m.-5.30 p.m.

GMT ELECTRONICS PROJECTS
KIT BUILT UP
frEE-STANDING COMPLETE TELETEXT UNIT - FULL SPEC £199-90 £275-00 TELETEXT DECODER BOARD + REMOTE HAND CONTROL $£ 135-90 \quad$ £100-00 TELETEXT COMPATIBLE TUNER AND P.S.U. \& 46-90 \& 57-00 TELETEXT COMPATIBLE PAL ENCODER + MODULATOR \& 22-90 £ 35-00 F. E.T. OUTPUT IOOW MONO POWER AMPLIFIER MODULE \& 27-50 \& 35-00 X-BANO DOPPLER RADAR ALARM MODULE - MARK II \& $35-90$ \& 44-00 ONE AMP P.S.U. MODULE (SPECIFY 5 OR 12 VOLTS) \& 7-50 \& 10-00 SIMULATED INERTIA MODEL TRAIN CONTROLLER \& 22-50 \& 35-00 SIMULATED INERTIA SLOT RACER CONTROLLER \& $27-50$ \& $40-00$ MODEL TRAIN STEAM SOUND SIMULATOR MODULE
\& N/A \& $5-00$

From Newtronics

THE NEW EXPLORER / 85 SYSTEM

EXPLORER / 85
 PROFESSIONAL COMPUTER KIT

An inexpensive 8085, S100 Based Computer System designed for maximum flexibility Now available with $\mathbf{8 ' \prime}^{\prime \prime}$ Floppies

The EXPLORER/85 offers you real design flexibility - you can build the exact system you require. EXPLORER/85 can be your Beginners System, OEM Controller or IBM formatted 8" Disc System. You don't buy more than you need. Prices start from $£ 85$

Here's the line up:
Intel 8085 microprocessor. 8355 as a really powerful 2 K Monitor system. 8155 RAM $1 / 0$ all on one single Mother board with room for RAM/ROM/PROM/EPROM and two $\$-100$ pads (expands to six). plus plenty of prototype space

The 8085 is 100% compatible with the 8080 but 50% faster The 8355 ROM 2 K monitor system includes cassette interface with tape control. Two 8 -bit programmable $1 / 0$ ports, automatic baud rate selection, labelling of cassette files, etc. 8155 RAM I/O features $1 / 4 \mathrm{~K}$ scratch pad'. Two programmable 8 -bit and One programmable 6 -bit $1 / 0$ ports plus progammable 14 -bit binary counter-timer. Plus many other features which cannot be included due to lack of space.

You can purchase the EXPLORER/85 Mother board (level A) at this point for as little as $£ 85$ or we'll supply it with address decoding and data drives plus wait state generator and separate regulators (level B), 4 K Workspace (level D). 8 K Microsoft Basic in ROM for $£ 233$ in kit form or $£ 293$ assembled and tested.

If you don 't possess a VDU you can add our Keyboard Terminal (less monitor) which features a full ASC1 1 keyboard with upper and lower case with cursor control, Video Display board which is microprocessor controlled giving 64 or 32 (on TV) Characters by 16 lines adding up to a full computer system having 4 K workspace at a special price of $£ 299$ (less P.S.U. and monitor/TV).

Compare these prices carefully and you'll find you are actually getting more for your money.
4 K space not enough? Then it's 'JAWS' for you (see below) and you can go up to 64 K in 16 K steps. We'll let you have a 16 K EXPLORER/ 85 for only $£ 338$.
Like a Floppy Disc system? We now have an $8^{\prime \prime}$ Drive system with $C P / M$. We will quote you for a complete system either in kit form or assembled ready to

8' FLOPPY DISC SYSTEM

$8^{\prime \prime}$ Control Data Corp Professional Drive $\$$ SI Controller $\#$ Write protect . Single or Double density \star Ca
800 K Bytes (DD) unformatted Access time 25 ns . Price $£ 350$. DISC CONTROLLER I/O BOARD
Controls up to 4 Drives $\$ 1771 \mathrm{ALSI}$ (SO) floppy disc controller \star On board data separator (IBM compatible) * 2716 PROM socket included for use in cuatom applications * On board crystal controlled \# On board I/O baud rate Two serial I/O ports Autoboot to disc system when system reset $\$$ Generators to 9600 baud Double-sided PC board (glass epoxy). Price £150.
DISC DRIVE CABINET WITH POWER SUPPIY
De luxe steel cabinet to house single drive with power supply unit to ensure maximum reliability and stability. Price $£ 79$.
DRIVECABLE SET-UP FOR TWO DRIVES
Price £19.00
SAVE £30 by purchasing complete single drive system. One $8^{\prime \prime}$ drive, F.D.C. board, cabinet/PS.U. and cables. Regular price $£ 598$. Special price $£ 568$.
CP/M 1.4 £ 75 . CP/M 2.0 £ 98 . Extended Microsofi Basic £199. Let us quote you for other Software.

SPECIFICATION

${ }^{*}$ RCA 18028 -bit microprocessor with 256 byte RAM expandable to 64 K bytes.
'RCA 186 1 video IC to display program on TV screen via The RF Modulator Single Board with Professional hex keyboard - fully decoded to eliminate the waste of memory for keyboard decoding circuits. Load, run and memory protect switches. 16 Registers. Interrupt, OMA 5 -stot plug in expansion bus (less connectors).

STARTS AT
 $£ 59.95$

ELF II
EOARD WITH VIDEO OUTPUT
FEATURING THE RCA COSMAC 1802 cpu
STOP reading about computers and get your "hands on" an ELF II and Tom Pitman's short course. ELF II demonstrates all the 91 commands which an RCA 1902 can execute. and the shor course speedily instructs you how to use them.
ELF II's VIDEO OUTPUT makes it unique among computers selling at such a modest price. The expanded ELF II is perfect for engineers, business, industry. scientific and educational purposes.

ELFII EXPANSION KITS

Once you've mastered your ELF II you can then expand it to a full 64 K microcomputer with our range of ELF II expansion kits. - Hardware - Firmware - Software - Manuals. NOW AVAILABLE BASIC LEVEL III with R.P.N. Maths package. Both cassette and EPROM versions.

64K 'JAWS' S 100 DYNAMIC RAM BOARD
Newtronics solves the problems of Oynamic RAM with a state-of-the-Art chip from Intel that does it all. Intel s 820264 K dynamic RAM controller bliminates high logic parts ... delay trick circuits.

We offer you - Hidden refresh . . . iast periormance . . . lower power consumption.
 latched data outputs ... 200 ns 4116 RAM's ... on board crystal ...8K bank selectable . . . fully socketed . . . solder mask on both side of the board Designed for 8080,8085 and 280 bus signals works in
Horizon. Sol, as well as all other well-designed S 100 computers.

16 K expansion kits £45
$E 169$ £214
$E 259$ £ 304

Tlautroniss
TVM-10 MONITOR
$£ 99.50$
IDEAL FOR APPLE NASCOM
U.K. 101, ETC.

- Designed for monitoring computers, closed circuit TV and Video Tape Recorders
10" black and white video monitor
- 10 MHz band width
- High-quality metallic cabinet

Dimensions: $9^{\prime \prime} \times 9^{\prime \prime} \times 91 / 2^{\prime \prime}$

SEND SAE FOR COMPREHENSIVE BROCHURE

Please add VAT to all prices. P\&P extra. Please make cheques and postal orders payable to NEWTRONICS or phone your order quoting BARCLAYCARD, ACCESS number.
We are open for demonstrations and Sales. Monday-Saturday, 9.30 a.m.-6.30 p.m Near Highgate Underground on main A 1 into London.

CALL:

ROHDE \& SCHWARZ

TV Demodulator. AMF. 55.90 MHz
Selective UHF $V /$ Meter. Bands 4 \& 5 . USVF Selectiomat Voftmeter USWV. $£ 450$. UHF Sig. Gen type SDR 0.3-1 GHz. $\mathbf{C 7 5 0}$ UHF Signal Generator SCH. Eivis. POLYSKOPS SWOB I and II. POLYSKOPS SWOB I and II. Modulator / Demodulator BN $17950 \% / 2$.
Video Test Signal Generator UHF Sig. Gen. type SCR. 1.1 .9 GHz .

MARCONI

TM6936R UHF Converter for above. TF1101 RC oscillators $£ 65$. TF 109920 MHz sweep genera10 TF10418 Valve Volimeter E 65 TF 1152A/1. Power meter. 25 W .500 MHz . 75 TF1370A RC Oscillator $£ 135$ TF890A/1 RF Test Set. $£ 395$

U.H.F. SIGNAL GENERATORS

TF1066B/2 $400-555 \mathrm{MHz}$. Deviation to TF $1066 \mathrm{~B} / 2400-555 \mathrm{MHz}$. Deviation 300 KHz
TF $1060 / 2450-1250 \mathrm{MHz}$
TF 1058 1.6-4000 MHz

BECKMAN TURNS COUNTER DIALS

Miniature type (22 mm diam.). Counting up to 15 turn "Helipots." Brand new with mounting instructions. Only $£ 2.50$ each.

KAY ELEMETRICS SONA-GRAPH Sona-Graph model 7029A. 5.16000Hz Spectrum Analyser with type 6076 C Plug-in unit. For the spectrogrphic Analysis of transient sounds such as speec, voice, doppler shifts, explosions etc. Supplied in excellent condition with handbooks.
AUVANCE CONSTANT VOLTAGE TRANSFORMERS
Input 190-260V AC. Output constant
220 Volts. $250 \mathrm{~W} . £ 25$. ($£ 2$ carriage)
LABORATORY OVENS. - Gallenkamp, 3 cu . tt . $£ 145$. Also Morgan Grundy $1 \mathrm{cu} . \mathrm{ft} . £ 55$. 20-WAY JACK SOCKET STRIPS. 3 pole type with two normally closed contacts. $\mathbf{\ell 2 . 5 0}$ each ($+25 p \mathrm{pp}$). Type 316 three pole plugs for above $-20 p$ ea. (pp free).

P. F. RALFE ELECTRONICS
 10 CHAPEL STREET, LONDON, NW1

RACAL RA17 Receivers $£ 400$
AIRMEC 314 A Voltmeter. 300 mV (FSD)- 300 V
LEV.ELL TG66A. 1 Decade oscillator
DERRITRON 1 KW Power Amplifier with control equipment for vibration testing etc.
HEWLETT-PACKARD 7123A pen recorder HEWLETT-PACKARD tuned amp \& null detector TF2600 Voltmeter 1 mV - 300 V fsd. RADIOMETER Distortion Meter BKF6. £125. EDDYSTONE VHF RECEIVERS AM/FM $70-90 \mathrm{MHz}$. £45

VACUUM/COMPRESSOR PUMPS

Bell \& Goslett type and Doeer. U.S.A. Models available in excellent condition at prices well below normal.

SOLARTRON LM 1420.2. DVM. 6 ranges to 1 KV MUIRHEAD type K-134.A Wave Analyser. Portable. WAYNE KERR B521 Universal Bridge.
HEWLETT PACKARD 608 C Signal generator. $10-480 \mathrm{MHz}$ WEINSHEL Power supply Modulator type MO3. BRUEL \& KJOER type 1504 Deviation Bridge BRUEL \& KJOER Vibration equipment 1018 BRUEL \& KJOER Frequency analyser 2105

OSCILLOSCOPE SALE

SOLARTRON CD 1400. D/Beam 15 MHz . $£ 150$
SOLARTRON CD 1740 . D/Beam 50 MHz £ 450 ADVANCE OS 250 . D/Beam 10 MHz . £ 185 . ADVANCE-S 250 . D/ Beam 10 MHz . 185. HEWLETT-PACKARD 1707 A .75 MHz . $£ 650$ PHILIPS PM 3226 D/B, 15 MHz . $£ 325$ TELEQUIPMENT D53. D/Beam. £175 TEKTRONIX 581A, $545 A$ \& $B, 544,661,515 A$ SOLARTRON CD 1220. £135. (+ VAT)
NOTICE. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in first-class Calibration and certificates can be arranged at cost. Overseas enquiries Caibration and certinicates can be arranged at cos
welcome. PLEASE ADD 15\% KAT TO ALL PRICES.

DC POWER SUPPLIES

*APT 10459/8.12-14V. @ 5 Amps. E25. (£2 p.p.) ค.P. $10459 / 8$. 24V. @ 5 Amps. £25. (£2 p.p.) *We can supply the above power supply at any fixed voltage between 5 V and 36 V at 5A. £25. - Muliard Dual supplies. Brand new with hand book. Pos \& Neg 12 V . at 1 A and 0.4 A respectively. Dimensions $9 \times 4 \times 5$ ins. $£ 10.00+(£ 1$ p.p.)
\#FARNELL Current limited. Dimensions $7 \times 5 \times 4$ ins. Following types available. 5 Volts @ 3A. £15.13-17 Volts@2A. £15. 27-32 Volts @ 1A £15. Plus £1.50 each postage.
All the above power supply units are 230 V . AC input and are stabilised and requlated and fused. All are fully tested before despatch and guaranteed in first-class order throughout. As with all our equipment there is a money-back guarantee if not completely satisfied.

OTHERS IN STOCK. PLEASE RING
MODULATION METERS
AIRMEC $2103-300 \mathrm{MHz}$. AM/FM
RADIOMETER AFM / $13.5-320 \mathrm{MHz}$. AM /FM. RACAL $4093-600 \mathrm{MHz}$. AM /FM.

ROTRON INSTRUMENT COOLING FANS

> Supplied in excellent condition, fully
> tested:
> $115 \mathrm{~V} .4 .5 \times 4.5 \times 1.5^{\prime \prime} £ 4.50 .230 \mathrm{~V}$.
> $\mathbf{5 5 . 1 1 5 \mathrm { V } . 3 \times 3 \times 1 . 5 ^ { \prime \prime } £ 4 + \text { postage }}$
ea. 35 p.
CT212 RF Signal Generators. B5 KHz-32 MHz E 55.

BELL \& HOWELL MICROFICHE VIEWERS
Type SR5. Screen size $9 \times 5^{\prime \prime}$. New

DIGITAL MULTI-METERS

DE FOREST ELECTRONICS TYPE MM 200 DC.V.0-1 KV. AC.V.0-700. DC.I.O-1A. AC.I.O 1A. Each in 4 ranges. Resistance 0.19 .99 Mohms. 5 ranges. LED Display-1999. BRAND NEW. SPECIAL REDUCED PRICE OF
£39, INCLUDING VAT \& P P P

WW - 017 FOR FURTHER DETAILS

METALFILM RESISTORS

 1% Tolerance, $1 / 4$ WattONLY 3P EACH
Minimum order $£ 5$ nimum 5 pcs per value
89 Values (E24)

Social Offer: 5 PCS of EACH (445 RESIS TORS) ONLY £12.50. High Quality High Stability, High Strength VAT inclusive. Add £1.00 p\&ip all areas.

ORION SCIENTIFIC PRODUCTS LTD. 10 Wardour St., London W1

TV TUBE REBUILDING

Faircrest Engineering Lid., manufacture a comprehensive range of equipment for processing all types of picture tubes, colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team

Full training courses are individually failored to customers requirements.

For.full details of our service contact Neil Jupp
FAIRCREST ENGINEERING LTD.
Willis Road Croydon. CRRO2XXX 01-684 1422, 01-689 8741

HOW'S THIS FOR FAMILY PLANNING?

WE'VE GOT AN ADDITION

 TO OUR FAMILY. WE WANT YOU TO MEET THE TX-80B DOT MATRIX PRINTER.It's a complete 80 -column dot matrix printer for use with personal computers. It prints a full 96 ASCII and graphic characters at 125 characters per second. Its 100 million character dot head mechanism achieves long operating life by employing a unique rubyjewelled support.
All for $£ 345$ one off (plus VAT) and ex-stock.

THERE'S A BIG FAMILY OF INTERFACES TOO.

Meet the Family
 Phone K. Evans ROXBURGH PRINTERS LTD.
 22 Winchelsea Road Rye, Sussex
 Rye (079 73) 3777

One of the Roxburgh Group of Companies

WILL TAKE PLACE 29th-31st OCTOBER 1980 WEST CENTRE HOTEL, LILLIE ROAD, LONDON 10 am to 6 pm
 (Closing 5 pm on the last day)

The response to the second exhibition for professional and business people has been overwhelming, justifying the decision to take the whole hall at the West Centre Hotel.

An additional feature to this year's show will be a Workshop/Forum, where sponsoring company's will hold an open discussion on the latest related topics. Entry to this will be free.

This year's event is designed as it's title suggests, to interest not only those professionally involved with viewdata \& teletext, but also those businessmen whose companies are able to use viewdata or are already doing so.

The event has over 40 exhibitors including: Sony, GEC, Information Services, The Post Office, Langton Information Services, CAP CPP,

Granada TV Rental, Fintel, Eastel, Cherry Electrical, Centronics, Link House Communication, Ansafone, STC, ITT, Bishopsgate Terminals, Oracle (London Weekend TV), and Barco Video Terminals (C.W. Cameron Ltd), showing a wide variety of exhibits such as:

Editing equipment basic and advanced, monitors and user terminals, private viewdata systems and equipment, peripherals including printers, magnetic media recorders, light pens, graphic design aids and keyboards, accessories such as camera attachments, anti-glare sprays, screen hoods and masks, telephone timers, microcomputers for telesoftware and other "umbrella" activities and facilities, software services for advanced editing, publications, semiconductor devices and many more.

ENTRANCE TO THE EXHIBITIION IS FREE BY REGISTRATION

Advance tickets are available on demand from the organisers at:
Viewdata Tickets
IPC Exhibitions Ltd
40 Bowling Green Lane
London EC1R ONE

BURGESS WR22 SERIES. MICROSWITCHES. 15 amp 250 v A.C. £10 for 10. $£ 40$ for 50 . £64 for 100. $£ 250$ for 500 .
TUBULAR CAPACITORS A.C. WKG. 2 mfd .440 v . R.M.S. $£ 7.50$ for 10. £30 for 50 . $£ 52$ for 100 . $£ 234$ for 500 .

OSMOR REED RELAY. Coil 650 Ohm operating voltage. 9 v to 15 v Reed N/O size. L. $31 \mathrm{~mm} \times W .9 .5 \mathrm{~mm} \times \mathrm{H} .10 \mathrm{~mm}$. Current consumption approximately 20 ma at 12 volts D.C. P.C. mounting $£ 7.50$ for $1 £, £ 33$ for 50 , $£ 59$ for 100 , $£ 250$ for 500 .
CASSETTE MOTOR. 12v. 100 rpm approx. All metal construction dia. 40 mm . L. 35 mm . Length of shaft $10 \mathrm{~mm} \times$ dia 3 mm approximately. Very powerful. $£ 9$ for 10 . $£ 40$ for $50 . £ 72$ for 100 . $£ 300$ for 500 .
GEARED MOTORS. 250 v .1 r.p.h. 2 W . Consumption overall size. $70 \mathrm{mmL} \times 35 \mathrm{mmW} \times 35 \mathrm{mmH}$ approximately. Fantastic value at $£ 7.50$ for 10 . $£ 30$ for 50 . $£ 55$ for 100 . $£ 250$ for 500
PHILLIPS SYNCHRONOUS MOTOR. $110 / 220$ v. 250 r.p.m. at 50 HZ $300 \mathrm{r} . \mathrm{p} . \mathrm{m}$. at 60 HZ . Size 50 mm dia. $\times 28 \mathrm{mmD}$. Length of shaft 8 mm dia. 3 mm approximately. $£ 20$ for 10 . $£ 85$ for 50 . £145 for 100 . £620 for 500.

CROUZET 2 RPM GEARBOX. All metal construction. £15 for 10. £60 for $50 . £ 102$ for 100 . $£ 450$ for 500
HEAVY DUTY SHADED POLE MOTORS. 230v. $11 / 2^{\prime \prime}$ stack. 3,000 R.P.M. Intermittently rated shaft length, $24 \mathrm{~mm} \times 5 \mathrm{~mm}$ approx. $£ 32.50$ for $10, £ 145$ for $50, £ 260$ for $100, £ 1,150$ for $500, £ 2,000$ for 1,000 NEON INDICATOR. Manufactured by Arco Electric. 110 v . Yellow Fixing hole $24 \mathrm{~mm} \times 6 \mathrm{~mm}$ approximately. Heat resistant leads to 105 C .245 mm in length. Excellent quality. $£ 2.50$ for $10, £ 11$ for $50, £ 20$ for $100, £ 90$ for $500, £ 160$ for 1,000 .
MAINS TRANSFORMERS. Input 0-110-240v. Output 9v 500ma. P.C. Mounting, we do have some printed circuit boards as an extra if required. $£ 17.50$ for 10 . £75 for 50 . $£ 135$ for 100 . £600 for 500. P.C. Boards 0.35p each
MAINS TRANSFORMER BY WESTOOL. 0.240 v Input. Output 9 v 3amps. Excellent value $£ 25$ fo: 10 . $£ 112$ for 50 . $£ 200$ for 100 . $£ 900$ for 500.

MAINS TRANSFORMERS WITH SCREEN. 240 v Input. 20v Output 0.3 amp . $£ 20$ for 10 . $£ 90$ for $50 . £ 160$ for 100 . $£ 700$ for 500 .

SIEMANS RELAYS. 2 pole C/O 220 v coil. H.D. contacts rated at approximately 10 amps completely enclosed in plastic case. $£ 10$ for 10. $£ 45$ for 50 . $£ 80$ for 100

JO JO EXTENSION REELS. Complete with 6 mtrs. cable. 13 -amp plug top on one end with twin 13 -amp socket on reel. Rated 6 -amps. £60 for 10 . $£ 270$ for 50 .
Terms C.W.O. Add 10% to all orders for carriage $+15 \%$ V.A.T. Export enquiries welcome

ELECTRONIC EOUIPMENT CO. LTD.
SPRINGFIELO HOUSE TYSSEN STREET
LONOON ER 2ND PHONE: 01-2495217 TELEX: 8953906 EECO.

We cannot advertise all we sell, for real bargains visit our warehouse and irade counter during the hours of $9 \mathrm{a} . \mathrm{m}$. $105 \mathrm{p} . \mathrm{m}$. ., Monday to
Friday, you will find us be hind Oala won Lane Police Station. All enquiries treated with prompt attentreated with prompt atten-

TRANSFORMERS

Rel.	12 OR 24V OR $12-0.12 \mathrm{~V}$			
	12 V	24 V	Price	P8p
131	0.5	0.25	2.42	0.52
213	1.0	0.5	2.90	0.90
71	2	1	3.86	0.90
18	4	2	4.46	1.10
85	0.5	2.5	6.16	1.10
70	6		6.99	1.10
108	8	4	8.16	1.31
72	10	5	8.93	1.31
116	12	6	9.89	1.52
17	16	8	11.79	1.52
115	20	10	15.38	2.39
187	30	15	19.72	2.39
. 226	60	30	40.41	0.4

MAINS ISOLATORS (SCREENED) Pri O.120 $0.100-120 \mathrm{~V} 1120.220 .240 \mathrm{~V}$ (SCREENED) 60.55.055 60 rwice, to grve 55, 60 110. 111
$120.125 .175 .180220 .225 .230 .235,240$

CASED AUTO TRANSFORMERS CASED AUTO TRANSFORM
240V cable in 115 V USA flat pin outl

VA	Price	P\&P	Ref.
20	6.55	1.03	56 W
75	8.50	1.31	64 W
150	11.00	1.31	4 W
250	13.88	1.67	69w
500	20.13	1.89	67 w
1 K	30.57	2.65	84W
2k	54.97	O.A.	95W

$25 / 50$ VOLT RANGE See Volrages avalable 5. 7. 8, 10. 13. 15. 17,
20.33 .40 or $20 \mathrm{~V}-0.20 \mathrm{~V}$ or $25 \mathrm{~V}-0.25 \mathrm{~V}$

$$
\begin{aligned}
& \text { AUTO TRANSFORMERS } \\
& \text { Vohages avalable } 105115,190 \\
& 220.230240
\end{aligned}
$$ ${ }^{220} \mathrm{Ref}^{230}{ }^{240} \mathrm{VA}$ $\begin{array}{cccc}\text { Rei } & \text { VA. Watrs) } & \text { \& } & \text { P8 } \\ 113 & 15 & 2.73 & 08 \\ 64 & 75 & 4.41 & 110 \\ 4 & 150 & 5.89 & 1.10 \\ 67 & 500 & 12.09 & 19 \\ 84 & 1000 & 20.64 & 2.39 \\ 93 & 1500 & 25.61 & 0 A \\ 95 & 2000 & 38.31 & O A \\ 73 & 3000 & 65.13 & 0 A \\ 805 & 4000 & 84.55 & 0 A \\ 575 & 5000 & 98.45 & 0 A \\ & & & \end{array}$ Other items available. Send , 20p for 'Catalogue Please add

The AIRAMCO Mikro IOOO
 -The Scottish Solution.

The Mikro 1000 is a Scottish built micro-computer which combines State of Art technology with simplicity and durability to give a powerful small business system at a very competitive price.
Driven by a 2.5 MHz or $4 \mathrm{MHz} \mathbf{Z 8 0}$ processing unit constructed around Industry Standard S100 Bus, the Mikro 1000 is designed to provide the ease of expansion necessary in a modern growing business or industry - memory is expandable from 32 K to 256 K , with up to 4 Megabytes of on-line disk storage.
The integral VDU has an 80 cols. x 24 lines screen, and incorporates a green phosphor CRT, while the 117 key keyboard can be used remotely from the main body of the machine, and may be programmed for user functions such as word processing commands.
As well as supporting all CP/M based languages, the Mikro 1000 has a full range of business software, including Sales, Purchase and Nominal Ledger, Inventory Control, and Payroll, as well as Word Processing (which is available at even lower cost as a separate system on the Mikro 1000 WP).

For further information on either Mikro 1000 system, please contact

airam6

AIRAMCO LIMITED

POTENTIOMETERS Carbon Track

$5 k \cap$ to $2 M Q$. LOG or LIN. L/S 50 p. DP $90 p$. Stereo L/S $£ 1.10$.
DP $£ 1.30$. Edge Pot $5 K$. SP $45 p$. Sliders Mono $65 p$. Stereo 85 p .
EMI $131 / 2 \times 8 \mathrm{in}$. LOUDSPEAKERS
Wint tweeter and
cossover. 10 wart.
3
With tweeter and
3 ohm. 15 watts.
$£ 9.95$
$£_{\text {Posi } 99_{p}} 105$
SUITABLE BOOKSHELF CABINET £9.50.

THE "INSTANT" BULK TAPE ERASER
Suitable tor casseltes, and all sizes of ta
Suitable for casseltes, and all sizes of tape
reets. AC mains $200 / 250 \mathrm{~V}$. Hand held size
with switch and with switch and lead.
Head Demagnetizer only \&5 Posi 50 p
Hoad Darragnatiser only es
Post 50p
RELAYS. 12 VOC 95 p .6 VOC 85 P.
BLANK ALUMINIUM CHASSIS
BLANK ALUMINIUM CHASSIS. $6 \times 4-95 p ; 8 \times 6-$
$£ 1.40 ; 10 \times 7-£ 1.55 ; 12 \times 8-£ 170 ; 14 \times 9-5190 ; 16 \times$ $£ 1.40 ; 10 \times 7-£ 1.55 ; 12 \times 8$-£1.70; $14 \times 9-£ 1.90 ; 16 \times$
6 -£1.85; $16 \times 10-£ 2.20$. ANGLEALI. $6 \times 3 / 4 \times 3 / 4 \mathrm{in}-25 \mathrm{p}$ 6-EIMIN; $16 \times 10-£ 2.20$. ANGLE ALI. $6 \times 3 / 4 \times 3 /$
ALUMINM PANELS. $6 \times 4-24$ p; $8 \times 6-38 \mathrm{p}$; $14 \times 3-40 p ; 10 \times 7-54 p ; 12 \times 8-70 p ; 12 \times 5-44 p ;$
$16 \times 6-70 p ; 14 \times 9-94 p ; 12 \times 12-61 ; 16 \times 10-f 1$ $16 \times 6-7$ PM $14 \times 9-94 p ; 12 \times 12-£ 1 ; 16 \times 10-£ 1.16$
PLASTIC ANDALI BOXES IN STOCK. MANY SIZES ALUMINIUM BOXES. $4 \times 4 \times 1 / 2 £ 1.4 \times 2 \times 2 £ 1.3 \times 2$ $80 p .6 \times 4 \times 2 £ 1.30 .7 \times 5 \times 21 / 2 £ 1.45 .8 \times 6 \times 3 £ 2.20 .10 \times$
$7 \times 3 £ 2.50 .12 \times 5 \times 3 £ 2.30 .12 \times 8 \times 33$. $7 \times 3 £ 2.50 .12 \times 5 \times 3 £ 2.30 .12 \times 8 \times 33$.
BRIOGERECTIFIER $200 V$ PIV $4 \mathrm{amp} £ 1.50 .8 \mathrm{amp} £ 2.50$ TOGGLE SWITCHES SP 30 p . DPST 40 p . DPDT 50 p . PICK-UP CARTRIDGES ACOS, GP91 $£ 2.00$. GP $94 £ 2.50$
SONOTONE $9 T A H C$ Diamond $£ 3.75 . V 100$. SONOTONE 9TAHC Diamond £3.75. V100 Magnetic £6.50 RESISTORS. 10 O to $10 \mathrm{M}, 1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}, 1 \mathrm{~W}, 1 \mathrm{p} ; 2 \mathrm{~W} 10 \mathrm{p}$.
HIGH STA BILITY. $1 / 2 \mathrm{~W} 2 \% 10$ ohms to 1 meg 8 p HIGH STABILITV. $1 / 2 \mathrm{~W} 2 \% 10$ ohms to 1 meg .8 p
Ditto 5% Preferred values, 10 ohms to $10 \mathrm{meg}, 3 \mathrm{p}$.

MINI-MULTI TESTER
Deluxe pocket size precision moving
coil instrument, jewelled bearings 2000 o.p.v. 8 attery included
11 instant ranges measure:
DC volts $10,50,250,1000$
DC volts $10,50,250,1000$.
AC volts $10,50,250,1000$
DC amps 0.100 mA .
Continuity and resi
Complete with Test Prods and
$£ 6.50$

J.V.C. BELT DRIVE STEREO DECK

Detachable head, adjusiable counter balance weight, hydraulic damped cueing platform. automatic pick-up arm return, 2 speeds,
33 and 45 rmm , suppression circuit to start stop switch. 240 V AC 33 and 45 rpm . suppression circuit to start stop switch. 240 VAC motor, dynamic pendulous bias compensator. Teak
base. 19 in. $\times 141 / \mathrm{in} £ 9$. Plastic cover $£ 6$, post $£ 2$.
Recommended stereo magnetic cartridge $£ 6.50$ extra.
RCS SOUND TO LIGHT KIT Mk. 2 Kit of parts to build a 3 channel sound to light unit
1.000 watts per channel. Suitable for home or disco £18 Easy to build. Full instructions supplied. Cabinet Post 50p $£ 4.50$ extra. Will operate from 200 MV to 100 watt signal.
200 Watt Rear Reflecting White Light Bulbs. Ideat for Disco Lights, Edison Screw. 6 for $£ 4$, or 12 for $£ 7.50$. Post 50 p.
"MINOR" 10 watt AMPLIFIER KIT £12.50 This kit is suitable for record players, guitars, tape playback,
electronic instruments or small PA systems. Two versions available: Mono, $£ 12.50$; Stereo, $£ 20$. Post 45p. Specification 10 W per channel; input 100 mV ; size $91 / 2 \times 3 \times 2 \mathrm{in}$. approx. SAE
details. Full instructions supplied. AC mains powered. details. Full instructions supplied. A
Input can be modified to suit guitar.

RCS STEREO PRE-AMP KIT. All parts to build ${ }^{\text {f }}$ this pre-amp: Inputs for high, medium or low imp per channel, with volum
control and PC Board
Can be ganged to-make multi-way stereo mixers \quad Post 35 p
MAINS TRANSFORMERS ALLPOST 99p.

GENERAL PURPOSE LOW VOLTAGE.

LOW VOLTAGE ELECTROLYTICS
 $1 \mathrm{mfd}, 2 \mathrm{mfd}, 4 \mathrm{mfd}$. B mfd. 10 mfd . $16 \mathrm{mfd}, 25 \mathrm{mfd}, 30 \mathrm{mfd}, 50$

 $\mathrm{mfd} .100 \mathrm{mfd}, 250 \mathrm{mfd}$. All $15 \mathrm{vgts} .22 \mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v}, 25$ $\mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v} ; 47 \mathrm{mfd} / 10 \mathrm{v} ; 50 \mathrm{mfd} / 6 \mathrm{v} ; 68 \mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v} / \mathrm{m}$ $16 \mathrm{v}: 220 \mathrm{mfd} / 4 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 330 \mathrm{mfd} / 4 \mathrm{v} / 10 \mathrm{v} ; 500 \mathrm{mfd} / 6 \mathrm{v} ;$ $680 \mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v}: 1000 \mathrm{mfd} / 2.5 \mathrm{v} / 4 \mathrm{v} / 10 \mathrm{v}: 1500$$\mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} / 2200 \mathrm{mid} / 6 \mathrm{v} / 10 \mathrm{v}: 3330 \mathrm{mfd} / 6 \mathrm{v}$: $4700 \mathrm{mfd} / 4 \mathrm{v}$ ALi 220 m
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$.
$1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.
$2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V}$ 60p; 1200 mF 76 V 80 p .
$2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p}: 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p} ; 2000 \mathrm{mF} 100 \mathrm{~V}$ £ 1 . 4500 mF 64 V £2. 4700 mF 63 V £1.20. $2700 \mathrm{mF} / 76 \mathrm{~V}$ £1. 5000 mF 35 V 85 p .
HIGH VOLTAGE ELECTROLYTICS

$8 / 350 \mathrm{~V} \quad 35 \mathrm{p} \quad 8+8 / 500 \mathrm{~V} \quad 95 \mathrm{p} \quad 50+50 / 300 \mathrm{~V} \quad 50 \mathrm{p}$ | $16 / 350 \mathrm{~V}$ | 45 p | $8+16 / 450 \mathrm{~V}$ | $\mathbf{7 5 p}$ | $50+50 / 300 \mathrm{~V}$ | $50+32 / 450 \mathrm{~V}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 10 p | | | | | | $\begin{array}{llll}32 / 500 \mathrm{~V} & 75 \mathrm{p} & 16+16 / 450 \mathrm{~V} & 75 \mathrm{p} \\ \mathbf{7} & 100+100 / 275 \mathrm{~V} & 65 \mathrm{p}\end{array}$ $\begin{array}{lllll}50 / 500 \mathrm{~V} & £ 1.20 & 32+32 / 350 \mathrm{~V} & 50 \mathrm{p} & 150+200 / 275 \mathrm{~V} \\ \mathbf{7 0 p} \\ 8 / 800 \mathrm{~V} & £ 1.20 & 50+50 / 500 & \mathrm{E} 1.80 & 220 / 450 \mathrm{~V}\end{array}$ $\begin{array}{lrllll}8 / 800 \mathrm{~V} & £ 1.20 & 50+50 / 500 & \text { £1.80 } & 220 / 450 \mathrm{~V} & 95 p \\ 16 / 500 \mathrm{~V} & 65 \mathrm{p} & & & 80+40 / 500 \mathrm{~V} & \text { £2 }\end{array}$

SHORT WAVE 100 pf air spaced gangable tuner, $95 p$. TRIMMERS 10 pF . $30 \mathrm{pF}, 50 \mathrm{pF}$. 5 p . $100 \mathrm{pF}, 150 \mathrm{pF}$, 15 p . CERAMIC, 1 pF to $0.01 \mathrm{mF}, 5 \mathrm{p}$. Polystyrene 2 to 5000 pF . 5 p
 MICRO SWITCH SINGLE POLE CHANGEOVER 20p. SU8-MIN MICRO SWITCH, 25p. Single pole change ove TWIN GANG, $385 \mathrm{pF} £ 1 ; 500 \mathrm{pF} £ 1 ; 365+365+25$ TWIN GANG, $385 \mathrm{pF} £ 1 ; 500 \mathrm{pF}$ £1; $365+365+25$
25 pF . Slow motion drive $£ 1.120 \mathrm{pF} 50 \mathrm{p}$. 3 Gang 365 pF . 2 . TRANSISTOR TWIN GANG. Japanese Replacement 50p. NEON PANEL INDICATORS 250 V 30 p .
ILLUMINATED ROCKER SWITCH. single pole. Red 65 p.
WIRE-WOUND RESISTORS 5 watt 10 watt 15 walt 15 p WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt 15 p CASSETTE MOTOR. 6 voli £1.00
CASSETTE MECHANISM. Stereo heads with motor $£ 5.00$
'BAKER LOUDSPEAKERS

"SPECIAL PRICES"				Post £1.50 ea.	
model		OHMS		TYPE	
	INCHES		WATTS		PRICE
MAJOR	12	4-8-16	30	HI-FI	$E 12$
DELUXE MK II	12	$8-16$	15	HI-FI	¢14
SUPERB	12	$8-16$	30	HI-FI	c20
AUDITORIUM	12	8-16	45	H1-FI	¢20
AUDITORIUM	15	$8-16$	60	HI-FI	£29
GROUP 35	12	4-8-16	40	PA	¢12
GROUP 45	12	4-8-16	45	PA	¢15
GROUP 50	12	4-8-16	60	PA	¢20
GRDUP 75	12	4-8-16	75	PA	£22
Group 100	12	$8-16$	100	PA	£26
GROUP 100	15	$8-16$	100	PA	829
DISCO 100	12	$8-16$	100	OISCO	¢26
DISCO 100	15	8-16	100	DISCD	¢29

BAKER

50 WATT

 AMPLIFIER£69 Post $\mathbf{E 2 . 0 0}$

ideal for Halls/PA systems, Discos and Groups. Two inputs Mixer, Volume Controls, Master Bass. Treble and Gain Controls.
BAKER 150 WATT MIXER /POWER AMPLIFIER
Protessional 4 inpurs with
volume controls. Will mix
mics, decks, musical $£ 89$
Slave version available £75
FAMOUS LOUDSPEAKERS "SPECIAL PRICES'

M AKE	MODEL	SIZE	WATTS	DHMS	Phice
SEAS	TWEETER	4 in	50	8	17.50
goommans	TWEETER	31/2/n	25	8	¢ 4.00
AUDAX	TWEETER	3/4in	60	8	$\underline{10.50}$
SEAS	MID-RAMGE	4 in	50	8	$\underline{57.50}$
SEAS	MID-RAMGE	5 in	80	8	¢10.50
SEAS	Mio-RANGE	41/2in	100	8	$\Sigma 12.50$
GODDMANS	FULL-RAMGE	$51 / 2 \mathrm{ln}$	15	8	$\varepsilon 6.50$
GOODMAMS	FULL-RANGE	8 in	20	8	¢5.50
SEAS	WOOFER	8 in	30	8	¢14.00
RIGONDA	GENERAL	10 in	20	8	c. ${ }^{\text {c }} 50$
goodmans	AUDiom	12PG	60	$8 / 15$	c20.00
GODDMANS	AUDIDM	12 PD	60	8/15	¢20.00
goodmans	AUDIOM	12P	50	8/15	¢20.00

BATTERY ELIMINATOR MAINS to 9 VOLT D.C.
Stabilised output, 9 volt $400 \mathrm{~m} . a$. UK made in plastic
case with screw terminals. Safety overload cut out. Size case with screw terminals. Safety overload cut out. Size
$5 \times 31 / 4 \times 21 / 2$ in. Transformer Rectifier Unit. Double insulated. Suitable Radios, Cassettes, models, $£ 4.50$

\begin{tabular}{|c|}
\hline TEAK VENEEREO HI-FI SPEAKER CABINETS For 13×8 in. or 8in. speaker $\quad £ 9.50$ Post 99 p For $61 / \mathrm{zin}$. speaker and tweeter \quad E8.50 Post 99 p Many other cabinets in stock. Phone your requirements. SPEAKER COVERING MATERIALS. Samples Large S.A.E. LOUDSPEAKER CABINET WADDING 18 in wide 25 p ft.

\hline GOOOMANS TWIN AXIOM 8 inch dual cone loudspeaker.

\hline 5 watt hi-fi uni1 £10.50. Ditto $15 \mathrm{ohm} \mathbf{£ 8}$.

\hline ar $3000 \mathrm{c} / \mathrm{s} 3$ or 8

\hline 90. 3 -way 950 cos/ 3000 cps . $£ 2.20$.

\hline UDSPEAKERS PM 3 ohm 7x4in. £1.50; $61 / 2 \mathrm{in}$., £3.00:

\hline \multirow[t]{2}{*}{}

\hline

\hline \multirow[b]{2}{*}{in.,}

\hline

\hline FAMOUS MAKE TWWIN CONE LOUDSPEAK

\hline diameter 4 W £3.50. 10in. diameter 5 W

\hline \multirow[t]{2}{*}{in. diameter $6 \mathrm{~W} £ 4.50 .3 / 8$ or 15 ohms, please slate.}

\hline

\hline Handles up to 100 watts. No crossover rea

\hline \multirow[t]{2}{*}{BLACK PLASTIC CONSTRUCTION BOX with brushed aluminium facia. Sturdy iob. Size $61 / 4 \times 43 / 4 \times 2 \mathrm{in}$.}

\hline

\hline GOODMANS RUBBER

\hline SURROUND BASS WOOFER

\hline Standard 12 in diameter fixing

\hline \multirow[t]{2}{*}{cut sides $12^{\prime \prime} \times 10^{\prime \prime}$. 14.000 Gauss magnet. 20 watts RMS 40 hm imp.}

\hline

\hline

\hline resonance
ency

$=1$

\hline BARGAIN, 88.50. Posi $£ 2$

\hline
\end{tabular}

ALUMINIUM HEAT SINKS. FINNEDTYPE
Sizes $5^{\prime \prime} \times 4^{\prime \prime} \times 1^{\prime \prime} 95$ p. $61 /{ }^{\prime \prime} \times 2^{\prime \prime} \times 21 /{ }^{\prime \prime} 45$.
JACK P PUGS Mono Plastic 25 ;
JACK PLUGS Mono Plastic 25p; Maral 30p.
JACK PLUGS Stereo Plastic 30p; Metal 35p.
JACK SOCKETS. Mono Open 20p; Closed 25p.
JACK SOCKETS. Mono Open 20p; Closed 25p.
JACK SOCKETS Stereo Open 25p; Closed 30p
FREE SOCKETS - Cable end 30p.
2.5 mm and 3.5 mm JACK SOCKETS 15 p .
2.5 mm and 3.5 mm JACK PLUGS 15 p

DINTYPE CONNECTORS
DIN TYPE CONNECTORS
Sockets 3 -pin, 5 -pin 10p. Free Sockets 3 -pin, 5 -pin 25 p.
PHONO PLUGS and SOCKETS ea. 10p.
Free Socket for cable end ea. $15 p$.
TV CONVERGENCE POTS 15p eac
Values $=5,7,10,20,50,100,200,250,470,2000$ ohms

ORILL SPEED CONTROLLER/LIGHT DIMMER KIT. EASY to build kit. Controls up to 480 watts AC mains $£ 3$ Electrie Sunser "On" feature. Front plate fits stand plus Photo

Codespeed Iscernonios

P.O. Box 23. 34 Scaflold Rosd, Copnor, Portsmouth, Hante., PO3 58 BJ Now, full apec. dovices
 LED ALARM MODULE with bright 0.7 " LEO display and switched alarm output. Just add mains transformer and time serting switches for perational clock. At the special price of f4.99 white stocks last With dara sheet. Cat. No. 205.

 SOUND EFFECTS MODULE. Brand new. designed tor Spaceman. toy. Gives 5 audiol visual
programs. Requires 8 ohm speaker (not supplied). 85p. Cat No. 108. LEO DISPLAYS. Red,

 Common cathode, non-multiplexed super 4 digit LED clock display. Lots of other uses too. Only E3.95 each. CaI. No. 204 . DIGITALALAHM CLOCK CHIP MM 5316 alarm clock chip. With data
E2.35. Cat No. 203. MINI 8 DIGIT LED DISPLAY 8 digit, 7 segment calculator style display.
 An extremely versatile I.C. to satisfy most of your timer recuirements. With data / applicaticns bookiet. Only 25p. Cat. No. 407 . 20 KEY KEYBOARDS Caiculator keyboards. ex callent key action.
20 keys per board. 2 keyboards for 29 p. Cat. No. 101 DIGITAL MULTM ETER CH!P. Buids into 20 keys per board. 2 keyboards for $98 p$. Cat. No. 101 DIGIT AL MULTIM ETER CHIP. Builds into
high accuracy dvm op panel meter. Requires additional circuitry. With data and circuit. MM 5330 only
 flatpack' style packege. Requires tairly fine soldering. With deta. 甲op each or 2 for $\mathbf{E 1 . 5 0}$. Cat. No.
209. MOMENTARY SWITCHES. Mintature pushbutton switches (spring loaded) with one 209. MOMENTARY SWITCHES. Mintature pushbutton switches (spring loaded) with one
normally open contact Super value at $15 p$ each, Cat. No. TO3. SLIDER SWITCHES. Aminiature norde switch with 2 pole change-over contacts. All brand new. 1tp nach. Cat. No. 702.2102
side
 10 megohms E12 series, 2 ohms to 1 megohm $E 24$ series. $1 / 2 \mathrm{w}, 5 \%$. $21 / 2$ p each or 8 p for 5 of same
value. CAPACITORS 25 v olecrotyric: $1.0,2.2,4.7,10 \mathrm{uf}$. 6 p each. $22,47 \mathrm{uF}, 8 \mathrm{p}$ each. 100 ur .

 CERAMIC PLATE 1.8 pt to 47 pf . Sp each. 56pt to 4700 pt , Ep each. TRANSISTORS BC207,

 With data and calculator circuir. sop. Cat No. 408. BRIOHT ORANGE DISPLAY 9 digit.
segment gas discharge display. 0.25 "high digits. With data, Only 75 peach. Cat. No. 310 .
FLOURESCENT CALCULATORS. Manufacturers rejects.
function with full memory, With reaiting calculator into. Most reparable but no guarantess. 10
 99 p . Cat. No. 311.

POST AND PACKING PLEASE ADD 40p (OVERSEAS ORDERS ADD E1)
LOTS MORE GOODIES IN OUR CATALOGUE, SEND MEDIUM SIZED SAE FOR YOUR
SATISFACTION QUARANTEED $\frac{\text { FREECOPY }}{\text { ONALLITEMS DR FULL CASH REFUNOED }}$

VAT PLEASE ADO 15% TO THE TOTAL COST OF YOUR ORDER (INCLUDIMG POST AND PACKING).

$+6$

1 Rank Radio International
A DIVISION OF THE RANK ORGANISATION
The Service Engineers Guide to Teletext
Rank Radio International, first in the field with Teletext receivers, have prepared this hardback book especially for the engineer and the enthusiast.

Based on practical experience, the book is written in simple, easy to understand language and gives an introduction to the theory and design of the Teletext system as well as simple explanations of "gates" and digital theory.

SPECIAL OFFER £1.75+P\&P

WHILE STOCKS LAST

There are nine chapters as follows:

1. Introduction to Teletext
2. Teletext Transmission System
3. Decoders
4. Tifax Module interfaces

The Teletext Receiver
6. Teletext Receiver Instaliation
7. Adding Text to typical mono/colour receivers
8. Remote Control Systems
9. Introduction to Digital Units

The hardback* concludes with a very useful glossary of the Jargon used in this sphere of technology.

offer applies to United Kingdom only

ORDER FORM
Please send
 copies of THE SERVIC

NAME

 ADDRESS
I
Cheque/PO enclosed value
${ }_{P}$
Please send orders to: Rank Radio International, Watton Road, Ware, Herts.
*This offer applies to United Kingdom onlv

8050 A $41 / 2$ Digit LCD DMM with true RMS on $A C$ volts and current DC volts $200 \mathrm{mV}-1 \mathrm{KV}$,
 $10 \mu \mathrm{~V}$ resolution AC volts. $200 \mathrm{mV}-750 \mathrm{~V}$, $10 \mu \mathrm{~V}$ resolution. DC/AC current $200 \mu \mathrm{~A}-2 \mathrm{~A}, 0.01 \mu \mathrm{~A}$ resolution resistance $200 \Omega-20 \mathrm{M} \Omega, 0.01 \Omega$ resolution. Also reads dB direct referenced to 16 stored impedances Conductance ranges 2 mS and 200 nS E199 mains model £239 mains battery 8012 A $31 / 2$ Digit LCD DMM with true RMS on $A C$ volts and current. 2. DC volts $200 \mathrm{mV}-1 \mathrm{KV}, 100 \mu \mathrm{~V}$ resolution. AC volts $200 \mathrm{mV}-750 \mathrm{~V}$, $100 \mu \mathrm{~V}$ resolution. DC/AC current $200 \mu \mathrm{~A}-2 \mathrm{~A}, 0.1 \mu \mathrm{~A}$ resolution Resistance $200 \Omega-20 \mathrm{M} \Omega, 0.1 \Omega$ resolution Low resistance 2Ω and 20Ω $1 \mathrm{~m} \Omega$ resolution Conductance ranges $2 \mathrm{mS}-20 \mu \mathrm{~S}-200 \mathrm{nS}$
f199.00 mains model £219.00 mains battery
 8010A $31 / 2$ Digit LCD DMM Same spec as 8012 A plus a 10 Amp AC/DC cuprent range. but no low resistance range.
£159.00 mains model £179.00 mains battery 8024A 3 ½ Digit hand held LCD DMM with peak hold Level Detector and continuity tester DC volts $200 \mathrm{mV}-1 \mathrm{KV}$, $100 \mu \mathrm{~V}$ resolution. AC volts $200 \mathrm{mV}-750 \mathrm{~V}, 100 \mu \mathrm{~V}$ resolution. DC/AC current $2 \mathrm{~mA}-2 \mathrm{~A}$, $1 \mu \mathrm{~A}$ resolution. Resistance $200 \Omega-20 \mathrm{M} \Omega, 0: 1 \Omega$ resolution. Conductance 200 nS . Peakhold of AC or DC volts and current. Level detector operates around +0.8 V reference. Audio tone on level and continuity. $\mathbf{£ 1 3 5 . 0 0}$ carrying case $£ 7.00$ extra.

8020 A $31 / 2$ Digit hand held LCD DMM. spec as per 8024 A with extra conductance range of 2 mS but
 Compleald, level or continuity ranges 8022A $31 / 2$ Digit hand held LCD DMM. Spec 7s Der 8020A but no conductance ranges and slight reduction on accura:y. Was $£ 89.00$ now reduced to $£ 75.00$ carrying case $£ 7.00$ extra.

Also available a range of accessories including current shunts, EHT probe, rf probe. Temperature probe and touch and hold probe. Full details on request The warranty period on all items shown is 1 year other than the 8020A which is 2 years.

Electronic Brokers

61-65 King's Cross Road \square London, WC1X 9LN
Tel: 01-278 3461 - Telex 298694 Prices do nol include carriage or VAT.
WW - 096 FOR FURTHER DETAILS

$1235+$ CAR Fully fledged indusiry standard ASR33 data ter.
minal. Many features including: ASCII keyboard and printer for datal/ 10 auto data detect circuiry. RS232 serial interface, 110 baud, 8 bit paper tape punch and reader for off line data preparation and ridiculously cheap and reliable data storage. Sup.
plied in good condition and in working order. plied in good condition and in working orde
Options: floor stand $\mathrm{f} 12.50+$ VAT Sound proof enclosure $\mathbf{5 2 5 . 0 0}+\mathrm{VAT}$
THE CHIPS ARE DOWN MOSTEK, INTEL, NEC, MOTOROLA I.C. PRICES SLASHED!

A massive purchase of brand new "state of the art" data processing equioment enables us to offer the following chips at never, and we mean never to be repeated prices. $\begin{array}{lc}8085 \mathrm{~A} & \text { Central Processor } \\ 8155 \mathrm{C} & 256 \times 8 \text { Static Ram }\end{array}$ $\begin{array}{lc}8155 \mathrm{C} & 256 \times 8 \text { Static Ram } \\ 8253 \mathrm{C} & \text { Programmable Interval Timer }\end{array}$ 8255A 8259 A Programmable Peripheral Interface $\begin{array}{ll}8259 \mathrm{~A} & \text { Programmable Interrupt Control } \\ 8755 \mathrm{~A} & 2 \mathrm{~K} \times 8 \text { Eprom } 161 / 0 \text { Lines }\end{array}$ $\begin{array}{ll}8755 A \\ \text { MC6850P } & 2 \mathrm{Kx8} \text { Eprom } 161 \\ \text { ACAI }\end{array}$
 2652 MPCC Comms. Controller
 $1702 \quad$ Static 650 ns Rams 256×8 Eprom
 1021 256x4 Static Ram 450 ns

And Remember All Chip Prices /ndude V AT
All above I.Cs are brand new or removed from new unused socketed P.C.B.'s Eproms supplied washed.

All full spec. and guaranteed
BRAND NEW
GREEN SCREEN 15 " VIDEO MONITORS
Brand new and boxed all solid state 8RITISH made 15 high definition video monitors, supert construction by MELFORD electronics the YDU type 0U1.15 features a green screen with a composite video
input and a quoted bandwidth of 20 mhz , the D .C. supply even has a input and a quoted andwidit of 2 mhe, the D.C. supply even has a with circuit diagrams and at an original cost of over f350. Display make these a snip at only $£ 149+\mathrm{E14}$ CARR \& INS + VAT chassis dimensions $14^{-} \times 16 \times 113^{3}$

SEMICONDUCTOR GRAB BAGS

Arnazing value mixed semiconductors. include transistors, digital, linear I.C.'s. triacs, diodes, bridge rocs. olc. etc. All devices guaranteed brand new, full 50 + BAGE2.95 100 + BAGS E5. 15

MUFFIN Fan's
 Keep Your equipment Cool and Reliabie wim our tested ex equipmen wo voltages 110 V.AC. $[5.05+$ Pp 65 F O $240 \times \mathrm{AC} .86 .15+$ Pp SOp DIMENSIONS 4 $^{2} \times 4^{2} \times 12$
 ELECTRONIC COMPONENTS \& EQUIPMENT

 Due to our massive bulk purchasing programme which enables us to bring you the best possible bargains. we have thousands of I.C.'s. Transistors Relays, Cap s., P.C.B. s, Sub-assemblies, Switches etc. etc. surplus to our requirements. Because don't have sufficient stocks of any one item to include in our ads., we are packing all these items Thousands of components at giveaway prices! Thousands of components at giveaway prices! Guaranteed to be worth at least 3 fimes what you pay plus we always include something from our ads. for unbeatable value!! Sold by weight
 $2.5 \mathrm{kks} £ 4.75+\mathrm{pp} £ 1.25 \quad 5 \mathrm{k} / \mathrm{s} £ 6.75+\mathrm{pp} £ 1.80$ 10kls $£ 11.75+p p$ £ $£ .25 \quad$ 20kls $£ 19.99+p p £ 4.75$

ICL TERMIPRINTER 300 BAUD TERMINALS

f 325 + CAR

Made under licence from the world famous GE Co. The ICL Termiprinter is a small attractive unit with so many features it is impossible to list them in the
space available! Brief spec. as follows; RS232 serial intertace, switchable baud rates 110,150 , 300, (30 cos), upper and lower case correspondning type face, standard paper. almost silent rum ning, form feed, electronic tab settings, suited for
word processor applications plus many more features. Supplied in good condition and in work ing order. Limited quantity

MAKE YOUR COMPUTER TALK!!
VIA OUR EX.GPO MODEM UNITS
Well, not exactly talk, but communicate over a standard dial-up G.P.O. line with any othet modem. The modem unit $2 A$ is housed in an attractive fibre glass case measuring only $15^{\prime \prime} \mathrm{w} x$ $13^{\prime \prime} \mathrm{d} \times 5^{\prime \prime} \mathrm{h}$, inside are the electronics and mains power supply which enable serial duplex data communication between terminalicomputer etc at any speed up 10 and in excess of 250 baud (300 at a push). Made to the most stringent, exacting specification for the G.P.O. These units teature Modular plug in P.C.B.'s, internal test points, Standard tone frequencies, Configureable to terminal or computer end, Auto unattended answer, RS232N24 interface on standard 25 way ' 0 ' socket, etc. etc., supplied complete with diags., at a fraction of
their original cost at only
$\mathbf{5} 55.00$
CARR

NOTE. Units believed working, but untested, unguaran Reed. Permis
G.P.O. lines

EX STOCK

SOFTY

SOFTWARE DEVELOPMENT SYSTEM, INVALUABLE TOOL FOR DESIGNERS, HOBBYISTSETC
Enables "open heart surgery" on 2708, 2716, etc, Blows, Copies, Reads EPROMS or emulates EPROM/ROM IN SITU whilst displaying con tents off ROM/RAM on a domestic TV receiver. A hosi of other features. Write or phone for more details.
$\mathbf{f 1 1 5}+$ VAT \& CARR
You'll never regret buying a SOFTY!

LED DIGITAL ALARM CLOCK MODULE

* 12 HOUR * $50 / 60 \mathrm{HZ}$ *LARGEDISPLAY * 100's OF USES The same module, NATIONAL MA1012 used in most alarm clock/radios on the market today, the only difference is our price! GIANT $\frac{1^{\frac{1}{2}}}{2}$ LED characters give extremely clear viewing and readability
 All electronics are self-contained on a

P.C.B. measuring only $3^{\circ} \times 1 t^{*}$. By

addition of a few switches and $5 / 16$ volts A.C. You have a multifunction alarm clock at a mere fraction of cost. Dozens of functions include snooze timer, am-pm, alarm set, power fail indicators, flashing seconds cursor, modulated alarm output, dimmer control, etc, etc. Supplied brand new with full data at only
suitable transformer for mains operation $£ 1.75$

DISPLAY I.C. AND
 transistor bar

NEVER CHEAPER
well known manufacturess and fully guaranteed. No fall outs Comprehensiv data on I.C. 's 15 p per type
2 N 4351 N crannel MOS FE
2 Na 352 P channel MOS FET 60 peach 1.00 per pail
HIGH VOLTAGE NPN POWER SWITCHING transistors BVcbo 600 v
 ideal inveriors etc. TO3 th 2.5 mhz 4 for f5.40.
BF258 NPN 250v @ 200 ma 45 peach 3 for 1.08
f.R. BSBOI 2.5 amp 100 v bridge rec. P.C. mount long leads 35 p each 4 for C1. 08.
iN4998
IN4998 4 amp 100v P.C. mount diodes LM $309 \mathrm{~K}+5 \mathrm{v} 1.2 \mathrm{amp}$ regulator E 1 : 10 each 6 for $\mathbf{5 5} .35$
AGFAC10 computergradecasseres comphete withlibrary cases 68 peach, 10 for 55.5 iN4004SD 41 amp 400 v diodes /o each 18 for f 1.00 I.R. 12 amp BRIDGE RECS. 400 voll
power oarlington scoopl MJ1000 NPN 60 90w 8 amps To3 95p each

 2 Mm 15008 amps 10270 atp each 10 tof 4.00 thiacs C.E. 12 amp 500v TO220ab 95p each 10 lor f8.75 A.E.1. 10 amp 400 v ready mountied on $2 \mathrm{j}: 125$
 80.1 .1 .10 peach 12 tor f 1.00 14011 140 each 8 for $f 100$ 160.11 Gord Plaled mill grade 22p each 6 lor fla $2601135 p$ each 31010 40

2N3055 IRC. A. 655 each

T. 0.555 each 50 tor 5500 . wall up ro 1000 MHz 2m 304 WN20 F E I Iransistor 37p each 3 to fl 00
 ach 8 tor 6600
A30288 OC 120 MHz onlierential cascode ame
CA3011 20 MH2 2 mde
each 2 foo $\& 1$ 100
25 MHz $£ 150$ each 4 toe $f 425$
NE555 21 peach. 10 for f2.50
GE424 reto voltage switch. triat SCR relay diver
LM384 5 Wart aucio I.C.s f 1.50 each 10 tor f 1100
FPOO3725 a NPN 50 V 500 ma liansistors in i4

GALORE
BARGAINS GALORE
NOW open Monday to Saturday 9.30-5.30

Dept. W.W 6466 Melfort Rd., Thornton Heath,
Croydon, Surrey. Tel: 01.6897702 or $01-6896800$
MAIL ORDER INFORMATION Unless otherwise stated all prices inclusive of V. A. T. Cash with order. Minimu order value $£ 2.00$. Prices and Postage quoted for UK only. Where post and packing not indicated please add 50 p per order. Bona fida account orders minimum $£ 10.00$. Export and trade enquiries welcome. Orders despatched

BRAND NEW

8" FLOPPY DISK DRIVES SHUGART SA800 $£ 225.00$ + carr + VAT SHUGART SA801 $£ 245.00$ + carr + VAT

$5 v$ D.C. POWER SUPPLIES

 following the recent "SELL OUT" demand for our $5 v$ 3 amp P.S.U. we have managed to secure a large quanlity of ex-computer systems P.S.U.'s with the following spec.; 240 or 110 v A.C. input. Outputs of 5 v @ $3-4$ $7.2 v$ outputs are fully regulated and variable current limiting on the $5 v$ supply Unit is selt contained on a P.C.B. measuring only $12^{-} \times 5^{\prime \prime} \times 3^{\prime}$ The 7.2 v output is ideal for feeding "on board" regulators or a further 3 amo LM323K regulator to give an effective 5 v @ 7 amp supply.Supplied complete with circuit at only $£ 10.95+\mathbf{£ 1} .75$ pp. Believed working but untested, unguaranteed.

KEYBOARDS

* LOW PRICE CHASSIS *

Apecial bull purchase enabies us to olfee the above heyboard at a lowest ever price. 49 coded heys encoded into a duect MIL compatible bil output Feazues such as delayed strobe 5 volt OC single ra MPU constructort Supplied complete with connection diaguat for the connector, at a secondhand $000+\mathrm{p}$. 1.60 no time to tes
$£ 20^{.00+P . p . f 1.60}$
SUPER CASEO VEASION Same as above spec. but housed in atractive wo tone moulded, free slanding case. Unit also includes an all Π TL paralle o serial convertor (no details) etc.
$£ 27^{.50+\text { +P. P. } \mathrm{E}, .85}$
TOROIDAL TRANSFORMERS
 Al volloges messuste of if lod.

Plugs, Sockets \& Connectors Cannon ' D ' Range Way
19
15
25
37
50

Socket
£1.26
$£ 2.01$
$£ 2.58$
$£ 4.14$
55.46
25 way ex-equip. plug or socket $£ 1.25$
0.1^{-}DS Edge connectors, gold plated
$0.1 \mathrm{DS}^{0}$
$0.15^{\circ} \mathrm{DS}$
0.1560 S
36 way W゙めN

FAST ERECTING TELESCOPIC

For World-wide Telecommunications in the 1980s

Clark Masts are specialists in the design and manufacture of telescopic and sectional mast systems. With over ' 25 years' experience in supplying masts to meet exacting military and civil specifications we have the expertise you can depend on.
Extended heights $4 \mathrm{~m}-30$ metres capable of lifting headload $1-\mathrm{Kg}-200-\mathrm{Kgs}$, sectional or telescopic air operated for field or vehicle mounting. Write or phone us for details today.

CLARK MASTS LTD., BINSTEAD, ISLE OF WIGHT PO33 3PA, ENGLAND
Telephone Ryde (0983) 63691 Telex 86686

$(4) 417$

World-beating Oscilloscope Offers
Electronic Brokers
61-65 King's Cross Road
London, WC1X 9LN
Tel: 01-278 3461 - Telex 298694
Prices do not include carrage or VAT
wW - 097 FOR FURTHER DETAILS

LEAR SIEGLER model 310 Ballistic printer. Save £400. OUR PRICE ONLY $£ 890$ TERMINET 30 PRINTER WITH TWIN CASSETTE. 30 cps . Standard 232, 6590 NIPMER VDU with separate Keyboard (No case) Printer por
CIPHER VDU with separate Keyboard (No case). Printer, port; reverse video/flashing etc F325. 4001 READER with 2 spoolers 4015. £475 the set. Please make an offer we can FACIT PUNCH with 5107 CONTROLLER $£ 250$. CALCOMP 564 BARREL PRINTER. MUST GO. 6590. TELETYPE PUNCH in Silent, Case $£ 45$ each.
ARCTURUS A18D, 16 bit mini. With Oata. Another gift $£ 425$.
HEWLETT PACKARD 2114A COMPUTER. No Interface. No data. HENCE £475. TELETYPES ASR 33 with 20 ma Loop $£ 350$ each, 232 available at extra cost. KSR as above 6225 ench.

EX-MINISTRY SOLID

 STATE
400 HZ INVERTOR

28 voc input. 115 V output. Size $7 \times 2 / 2$
$15^{\prime \prime}$ approx. Connection details supplied Ei8 each. P\&P \&2

STEPPING MOTORS

200 Steps. 20 oz/ in. torque
£ 12 each. P\&P $\mathbb{\text { in }} 1.50$

X-Y PLOTTERS and

 FLAT BED RECORDERSbargains. Callers welcome.

STEPPING MOTORS

200 Steps. 20 oz/in. torque. 120 vols
aperating 3 -wire.
E4 each. P\&P $£ 1.50$
BC1 72

BC172 5p
BZ8884V7 10p
BZY8813V 10p
2N3006 5p
1 N4305 5p
MONSANTO OISPLAY type MANIOIA
REGULATORS-all ar $45 p$ each.
MC7805; 7812: MC1496170p TIS50 10p each. MC40 1625 p each. 74100 N 75 p each. Miniature 4.7 K PRESET. 10 for 25 p . 100 for $£ 2$.
16 pin OIL Socket 10 p. 14 pin SIL Socket $8 p$
LEO type TIL 209 Red with holder $10 p$ each.
SLOTTEO OPT SWITCH supplied with data -
ROCKER SWITCHES 2 pole c $10-15 p$ each.
Spring Action TERMINALS - normally over 30 p ea. OUR PRICE $15 p$ each.
TOROIOAL TRANSFORMER $0-115 \mathrm{~V}-230 \mathrm{~V}$ Input; $13.5 \mathrm{~V}-0-13.5 \mathrm{~V}$ rated 8 VA output $£ 1.70$ each. P\&P 75 p.
Sub-min TRANSFORMER $0-120-240 \mathrm{~V}$ Input. $12 \mathrm{~V} \cdot 0.12 \mathrm{~V}$ rated 4 VA . Output 75 p each. P\&P L.E.0.s Standard White 12p; Standard Yellow 15 p; Small White 8 p .

DIODES

All new full spec. devices IN 3063 BAX 13 : 100 off ह1.50-1.000 off $£ 10$

BLUE THERMAL PAPER £2 per rall P\& P \& 1.75

TEXTRONIX PROGRAMMABLE CALCULATOR TYPE 31 £ 1,200 or ofter

709 DIL 14-PIN OPERATIONAL AMPLIFIERS
at $8 p$ each
00 off 25% disco

MINIATURE

KEYBOARD

Push contacts, marked 0.9 and A-F and 3

optional function keys. $£ 1.75$ each. P \& P
MUST CLEAR
LARGE QUANTITY OF PHOTO MULTIPLIERS
all with information. British approx. 2
window $£ 2$ each. American approx window 82 each. Special American vers 2 by RCA $\mathrm{E} \in$ dia 32 mm . $£ 4$ each. P\&P all photomultipliers $£ 1.50$ each.

STEPPING MOTORS

North American Philips. 5 volt 3.3 Amp

BRANDENBURG

HIGH VOLTAGE GENERATORS
${ }^{10 \mathrm{KV} \text { and } 30 \mathrm{~K}}$
Other

TRANSISTOR INVERTOR

115 VAC 1.7 Amp Inpul. Switching is at 20 Khz . Ouput windings from Pol Corea. Can be rewound to suit own purpose or unit can
be broken for hos
be broken for host ot componen
supplied. $E 1.25$ each. $P \& P_{\text {E2 }}$.
CConvert TMS UMIT TOA
SUPER BATtERY Charger

 Cantime is.

HEWLETT PACKARD

ICROWAVE SWITCH type 33124 A SPS
up to 12.4 GHZ . Brand new.
e140 each. Reduction for quantity.
Also

ATTENUATOR

Type 8493A. 3db up to 12.4 GHZ
\&25 each

STEPPING MOTORS

$6 / 12$ position with additional where the rotor is coils. Oevice can be used as a tacho. Dhagram supplied. Will actually work on 5 voits. 12/24 recommended. £ 1.50
$£ 1.50$.

INFRA RED IMAGE CONVERTER type 9606 (CV 144)

rer. Requires sin
KV to 6 KV supply inditudally boxed. With data
£12.50 each P\&P 75p
infra Red lamps also adverised

KEYBOARD PAD

Size $3 \times 21 / 2 \times 2^{\prime \prime}$ high with 12 Alma Reed Switches. Blue keys marked in green 0-9 and a star with one blank.
£4 axch, P\&P $£ 1$, or 5 for $£ 15$ P\&P $£ 2$

GARRARD DIRECT DRIVE

TURNTABLE MOTORS

Made in Japan. With internal electronic speed control. 24 volt. Connections sup. plied.
€ 3.50 each. P\&P $£ 1.50$

TANTALUM GEAD CAPACITORS. 4.7uf 25 V . 10 off £1; 100 off $£ 7.50$. 330uf $6.3 \mathrm{~V} 15 p$ TEXAS Low Profile 40 pin IC Sockets 45 p oa
'SMALL TRANSFORMER. 24OV Input. Output 2 windings 12 V and 24 V 1 amp . £2 each SO SIMPLE SO SAFE.
Fit a pushbumon CIRCUIT BREAKER Small, compact, 3 ratings $0.8: 1.8$ and 10Amp. State which one when ordering. 75p aach
AMP METER $21 /^{\prime \prime}$ dia. Scaled 0-60. Basic 75MV FSO. Complete with external 60 Amp Shunt. $\mathbf{2} .50$ ea. P\&P £1.50.

DIAMOND H CONTROLS ROTARY SWITCH. Single pole 10 -way. Printed Circuit Mount. New 10p ea. 100 for $\mathbf{C 7 . 5 0}$ PULSE TRANSFORMER. Sub min. SIze $1 / 2 \times 5 / 16 \times 1 / \mathrm{m}^{\prime \prime}$. Secondary centre tapped. New 20pos. MOTOR by Inland Motor Corp. DC Migh Torque. Aeversible. Usable torque at 5 V . Max voliage $24 \mathrm{~V} \in 2.50$ en. P\& $\mathrm{P} £ 2$. REMO TV TYPE MULTIPLIER. Two high voliage outpuls and focus, 11 each.	At $25 p$ BY127 49p; ME AR 50p a TV AM		6, AF13 p; 802 33 \& BD 8 to 20 V 20p	2x341. 49p; B0241 40p; MA3 Comp Pair 25 W - 80 - 5V out 100MA TO5	43AT por Con.
DON'T TAKE CHANCES. Use the proper EHT CABLE. 10p p	Integrated Circuity				
		5	74H74	12p 75325	
PMOTOGRAPHIC LAMPS. Pear 230 V 500 watt. Scraw cap	7451	5 p	74M5	$7 p$ SN15862	
Peer Bon of $12 \mathrm{E5.50}$. P\&P E1.50	7402	12p	74538	10 p MC4028	
YSTERY IC PACE. Some	7476	20p	74502	12p 7417	
$\text { vices. } 25 \text { IC: for E1. P\&P } 50 \text {. }$	749	$35 p$	74154	7007441	
ACUUM PUMPS - TRAPS,	74122	12p	$74 \mathrm{CO2}$	16p ${ }^{\text {p }}$ - ${ }^{\text {c86 }}$	
decoupling capacit					
$0.05 \mathrm{midd} 10 \mathrm{~V}: 0.01 \mathrm{mfd} ; 0.047 \mathrm{mid} 250 \mathrm{~V}$; 33 K . 330 pt . All values	motorola bual in line 6 pin Opto Coupler 30p each. Gold plate tester version 50 p each.				
100 for 61.50.					
E.M.T. Cepacitor 5000f 8 KVV 20p each.	EPROMS 2708 ¢5.50 eect.				
foway multi colour ribson cable. N					
GEC UHF 4-bution tuner E1.50	ELECTHOSTATIC VOLTMETER. 7.5 KV ¢8. \#. P\& P ¢ $£ 1.50$.				
TAUR 115 V FANS $41 / 2 \times 4$					
EX.USED equipment. lested. 80 peech. CONTACTORS. Heavy Duty 24 V DC 5	Other ranges available - please enquire.				
GEC UHF/VHF 6 -bution funer $£ 2$.	TRIMMEAS. Sub min, 0.25 to 1.25 pf . 1 to 4.5 pt . 7 to 45 pt . All				
DIGITAL 24 -HOUR CLOCK with built-in slarm as used in Bran	HOMEYWELL humidity controhers 50p each.				
Digital clocks. Silent running, Large illuminated numerals. mains. Size $61 / 2 \times 2^{1 / 4} \times 2^{1 / 4 \prime \prime}$. ONLY $\mathbf{C} 3.75$ ench.	plastic relay case. Standard 7 -pin base. Series delay 50 p esch. miniature pc mount slioe switch. Single pole 3.way				
931 PHOTO MULTIPLIER EZ each. PAP E1.	10p ooch				
brated $50-200$ degree C E2. 50 eech.	O1GIT 7 SEGMENT per digit plus afigure one to the left plus acenire minus sign to the left of the figurg one with decimal places				
	between digits. Good brilliance at 1.5 V . 15 connections $\mathrm{E2} 2.50$				
BRAND REX blue wire wraps. 30 metres for E1. P\&P 25p. SLIDER CONTAOL SOOK Log. Single track. Complete					
knob. Lengit $31 /{ }^{\prime \prime \prime}{ }^{\prime \prime} \cdot 250$ eech.	enquire.				
	TELEPMONES 706 style Dack; grey or blue $\mathbf{E 5 . 5 0}$ en: 746 style black or grey $\mathbf{8 7 . 5 0}$. Oider style black $\mathbf{£ 2 . 5 0}$ weh. Discoloured				
TO 240 V input 115 V . 1 Ampoutput $\mathrm{E1.25}$ asact. P\&P E1. 25	black or grey $\mathbf{C 7 . 5 0}$. Oider style black $\mathbf{£ 2 . 5 0}$ mech. Discoloured grey 706 E4 an P\&P E1. 50 por telephone.				
$.50 \text { ee. P\&P } £ 1 \text {. }$	DC SERVO MOTOR 110 V 2.5 Amp continuous. Double shatt.Brand new. 4 wire. 4 brush f 25 ea. Plus carriage.				
240 V inper Poc, ${ }^{\text {c }} 2 \mathrm{~V} 0.92 \mathrm{~A}$. Size $21 / 2 \times 2 \times 2^{\prime \prime}$. Good					
£ 1.50 en. P\&P $£ 1$. 240 V ingut 12 V 100 MA . Size					
240 V inpurt. Soc. $12-0-12 \mathrm{~V} 50 \mathrm{MA}$. Size 53×4					
	CAPACTTORS or 5 p eech. 0.14 f 400 V . Small rec. block PC				
	Mount		$300 p 1$: 2	f250V: 0.01 mid 160 V	
115 V mpert. Sec $10.0-10 \mathrm{~V} 1 \mathrm{~A}$. Size $21 / 2 \times 2 \times 2^{\prime \prime} .2$ for £ 1.50.	INSERT can be used as Microphone/Earpiece flike used as insert in :elephone bui superior quality) Ex-Min. Brand new wrapped 75 p				
SEMICONDUCTORS 1 N4005-5p; 1N4002-3p.	each. or 10 for E 6.				
147.8C1488,	LARQE EX.MINISTRY SPEAKERS. OUTSIDE 16 ohm500 ohm. Tested. $£ 25$ each or 5 for E100.				
154, BA243.					

A.C. VOLTMETERS

 BOONTONTrue R.M.S. Voltmeter 93A FLUKE
AC/DC Differential Voltmeter 883AB HEWLETT PACKARD Log Voitmeter/Amplifier 7563A MARCONI INSTRUMENTS
A.C. Voltmeter 400 EL

Valve Volimeter TF 2600
Valve Voltmeter TF 2604 R.F. Millivoltmeter TF 2603 PHILIPS
A.C. Millivoltmeter PM2454B

ANALYSERS
BIOMATION
Logic Analyser 1650D
GENERAL RADIO
Vibration Analyser 1911A
HEWLETT PACKARD
Spectrum Analyser 141 T
c/w 8552A \& 8554L
Logic Analyser 1600A
Network Analyser System (84 +84 C/W 8600 H 8601 Sweep Marker Generator
$100 \mathrm{KHz}-110 \mathrm{MHz}$ range.
$£ 3500$
Swept Amplitude Analyser 182T+8755A $15 \mathrm{MHz}-18 \mathrm{GHz}$.

BRIDGES

BOONTON
VHF ' O ' Meter. 280AP ($210-610 \mathrm{MHz}$) Inductance Bridge 63H GENERAL RADIO
Immitance Bridge 1607 A $£ 2500$,LCR Bridge (0.05%) 1608A MARCONI INSTRUMENTS
Universal Bridge TF 1313
Universal Bridge TF 1313 £325
'Q' meter TF 1245 c/w TF 1246 and TF 1247
£950
RHODE AND SCHWARZ
Inductance Meter LRT
£475
Capacitance Meter KRT
WAYNE KERR
A.C. Testamatic A60

Universal Bridge B221 (0.1\%)
D.V.M.s AND D.M.M.s DATRON
51/2 digit D.V.M. 1051 FLUKE
3 $1 / 2$ digit D.M.M. 8020A £99
$51 / 2$ digit D.M.M. 8800A £599
51/2 digit D.M.M. 8800A-01
$51 / 2$ digit D.V.M. 8300A
PHILIPS
Autoranging D.M.M. PM 2514
4 digit D.M.M. PM 2524
Autoranging D.M.M. PM 2527
SCHLUMBERGER
$51 / 2$ digit D.M.M. A 243
Microprocessor D.M.M. 7065
As above with processor option Microprocessor D.M.M. 7055
As above with processor option

FREQUENCY COUNTERS

ADVANCE

500 MHz Counter TC 15 \& TC 15 P1 £495 FLUKE
250 MHz Multifunction Counter 1911 A-01
£325
500 MHz Multifunction Counter $1912 \mathrm{~A} \quad \mathbf{E 3 9 5}$
125 MHz Multifunction Counter 1925A £350

USED
 BRAND NEW

TEKTRONIX 465B
PORTABLE OSCILLOSCOPE.
100 MHz Dual Trace Delayed and Mixed Sweep Trigger View supplied with all Standard Accessories +
1 YEAR WARRANTY OUR AMAZING

HEWLETT PACKARD 3490A DMM
$51 / 2$ digit. $A C I D C$ volts. $1 \mu v$ resolution on $D C$. Autoranging. Variable display time. Resistance down to $1 \mathrm{~m} \Omega$
UNBELIEVABLY LOW PRICE E375
Memulacturer 's price
over 71500
30 day warranty

MARCONI INSTS. TF1370A R.C. OSCILLATOR
$10 \mathrm{HZ} \cdot 10 \mathrm{MHz}+5 q$. wave 10100 KHz 1 mV to 3.16 V at $75,100,130$, or 600 n via attenuator. High O/P 31.6 V to 1 MHz .

Iコニ 61-65 King's Cross Road, London WC1X 9LN. Tel: 01-278 3461. Telex: 298694

Unless otherwise stated all equipment offered in the Electronic Brokers advertisement is refurbished and in the case of Test Equipment also calibrated. Test equipment is guaranteed for $\mathbf{1 2}$ months; computer peripherals for 3 months.

PHILIPS
520 MHz Univ. Counter/Timer PM6614 £395 80 MHz . Freq. Counter PM6664 £250

OSCILLOSCOPES

COSSOR

410075 MHz Pórtable Dual Trace, Delayed Sweep. 30-day warranty.

Only £450 HEWLETT PACKARD $\begin{array}{ll}75 \mathrm{MHz} \text { Dual Trace 1707A } & £ 600 \\ \text { High Sensitivity Single Trace 130C } & £ 250\end{array}$
1707 B 75 MHz Portable Dual Trace, Delayed Sweep, 30-day warranty Only £650 MARCONI INSTRUMENTS
X-Y Display TF $2213 / 1 \mathrm{c} / \mathrm{w}$ Memory Unit TK 2214
£790

PHILIPS

E625
25 MHz Dual Trace PM 3212
PM 3260 E 120 MHz Portable Dual Trace, Delayed Sweep.

1 Only £975

S.E. LABS

6 Channel Monitor SM-1 21
£ 395
TEKTRONIX
465100 MHz . Spec. similar to 465 B but no alternate sweep.
£1195
35 MHz Dual Trace T932 £550
W. Diff. Plug in £295 1A6 Plug In $£ 199$
TELEQUIPMENT.
D75 50M Hz Portable Dual Trace, Delayed Sweep.

2 Only £715

RECORDERS

BRYANS SOUTHERN

4000012 channelUV Recorder plus 2 Off 40501 galvo amps. 6" chart width. Grid and timing lines. Superb condition. PHILIPS
Single Channel Recorder PM 8110 $£ 950$
£195
Store 4 FM Tape Recorder, 4 tracks DC-20KHz, 7 speeds.
£1950
S.E. LABS

300612 channel UV Recorder. 6" chart width. Grid and timing lines £550 601250 channel UV Recorder $12^{\prime \prime}$ chart width. Servo paper drive up to $5 \mathrm{Mtr} / \mathrm{Sec}$. Two event markers, Trace identification.

1 Only. £1100
WATANABE
6 Channel Chart Recorder MC 641
$\mathbf{£ 2 2 5 0}$
YOKOGAWA
Chart Recorder 3047
£450

SIGNAL SOURCES

HEWLETT PACKARD

Variable Phase, Sine and Signal Generator 203A
Oscillator $10 \mathrm{~Hz}-10 \mathrm{MHz} 651 \mathrm{~B}$
£415
V.H.F. Oscillator 3200B
£400
Decade Oscillator 4204A
E750
U.H.F. Signal Generator 612A
£850
V.H.F. Signal Generator 608F $£ 450$
Phase Lock Synchroniser 8709A
£475
RF Sweeper/Marker Generator 8600A +
8601 A . $100 \mathrm{KHz}-110 \mathrm{MHz} .5$ marker frequencies
$£ 1500$
MARCONI INSTRUMENTS
A. F. Oscillator TF 2000
£325
A.F. Oscillator TF 2100 E150

A.M. Signal Generator. TF801D/8S L.F. Oscillator TF 2102 /1M1 U.H.F. Signal Generator TF 1060/3 Two Tone Source TF 2005R H.F. Generator TF 144H/4 H.F. Generator TF 144H/4 $\quad \mathbf{E 7 5 0}$ TF2002B AM/FM Signal Generator. 10 KHz 82 MHz .

1 Only £1200
TF2361 c/w TM9692 Video Sweep Generator $25 \mathrm{KHz}-30 \mathrm{MHz}$. Sweep rate 0.01 ta 100 Hz . TV Field locks on 405-505-625 lines.
£750

PHILIPS

Function Generator PM 5108 E250 Function Generator PM 5127 £395 Function Generator PM 5167
$£ 500$

TELONIC

R.F. Sweeper $2003 \mathrm{c} / \mathrm{w} 3302,3331$
$3341,3351,3360,3370(1-300 \mathrm{MHz}) £ 1150$

MISCELLANEOUS

ADVANCE

Off Air Frequency Standard OFS 2B
$£ 150$
AVO
Valve Tester VCM 163
$£ 475$
BRADLEY
AC Calibrator $125 B$
$£ 475$
DC Calibrator $126 B$
156 Oscilloscope Calibrator
BRUEL KJAER
Sound Level meter 2203 \& Microphone 4145
DATALABS
Power Line Disturbance Monitor DL019 £175 FLUKE
DC Differential Voltmeter 895A
332A DC Voltage Calibrator 0.003\% Calibra tion Accuracy 0.1PPm resolution. $£ 1750$ GENERAL RADIO
Sound Level Meter 1933
Cassette Recorder 1935
Recording Sound and Vibration Analyser 1911A

HEWLETT PACKARD

DC Microvolt-ammeter 425A
AC/DC Differential Voltmeter 741 B
Vector Impedance Meter 4815A
£250
£1950
S Parameter Test Set. 8745A
insulation Resistance Meter 4329A
MARCOPI
M.F. Attenuator TF 2162
f135 Transmission Test Set TF 2332 £185
Transmission Test Set TF 2333 £ 425 P.C.M. Regenerator Test Set OA 2805A £2700 P.C.M. Multiplex Tester TF 2807A £1500

RHODE AND SCHWARZ
Stereocoder MSC
$£ 850$
S.E. 1

Super 50 Selectest
$£ 77$
Carrier-Freq L.M.S. D2021/W2021/G2021 $10 \mathrm{KHz}-25 \mathrm{MHz}$
£1700
$£ 550$
$£ 195$

Carrier Frequency Level Test Set $\mathrm{W} 2007+\mathrm{D} 2007,6 \mathrm{KHz}-18.6 \mathrm{MHz}$. $£ 1750$ TEKTRONIX
Pulse Generator $2101 \quad £ 420$
TM515 Main Frame c/w FG504 0.001 Hz 40 MHz function generator. 2 Off PS503A Triple Power Supplies. £1250 TM515 Main Frame c/w SC502 15 MHz Oscilloscope. FG $5031.0 \mathrm{~Hz}-3 \mathrm{MHz}$ Function Generator. DM502 3½ digit DMM. DC503 00 MHz Counter. TEXSCAN
Sweep Generator VS 40 £650
WANDEL \& GOLTERMAN
Andimat (2 MHz system)
$£ 9500$
WAVETEK
Sweep Generator 135 £275
Programmable Phase Meter $755 \quad £ 550$
POWER SUPPLIES
PMA47 0-15V @ 3A (Presetable).
PMA50.0-15V @ 5A (Presetable). £37
PMA53.0-15V@10A (Presetable). £65
MG 5-605V @ 60A (Switching). £160 MG 5-20 5V @ 20A (Switching). £120 MG5-105V @ 10A (Switching). E95 MG24-1224V@12A (Switching). £130 MG24-5 24V @ 5A. (Switching). £95

Only 9 months old SP3 - 200A Infrared Spectrophotometer.

Pye Unicam. Ratio Recording Type. Still under warranty. Current List Price $£ 5150$.

ONLY £3950
Also available 15 ton hydraulic Press with Safety

ONLY SMALL SELECTION

 OF OUR VAST STOCKS SHOWN HERE
12-MONTH WARRANTY

All Second User Test Equipment is fully guaranteed for 12 months unless otherwise stated

Iーナ 61-65 King's Cross Road, London WCiX 9LN. Tel: 01-278 3461. Telex: 298694

A copy of our trading conditions is available on request W'ẃw -003 FOR FURTHER DETAILS

PDP11/04 Processor
10 "." chassis 16 KW MOS, DLI IW KY11B-BRANO NEW $£ 4.500 .00$ (can be enhanced to 28 KW) L8JA Asynchronous $1 / 0$ (8E) £275.00 KL8E Asynchronous $1 / 0$ (8E) $£ 250.00$ KP8E Power Fail (8E) £95.00 LA 11 -PD 180 cps matrix printer $£ 1250.00$ M7850 Parity Controllers ... £185.00 MF11L 8KW Core including 9 -slot system unit
£975.00 MM11LP 8KW Parity Core $\quad £ 750.00$ MM11YP 32KW Core Memory £1750.00 MSV11C 16KW MOS Memory (LSI11) £495.00 MS11JP 16KW MOS Memory $£ 895.00$ PDP11/34 Processor, $101 / 2^{\prime \prime}$ Chassis, 128KW Mos, DL11W, KY 11 B£6950.00 PDP11/40 Processor with 32 KW parity core, KT11D Memory Management,
DL 11 Interface 6 ft . cabinet $£ 4950.00$ PR1 1 High Speed reader and control
$£ 925.00$ REV1 1 Bootstrap (LSI11)
£75.00 RK05F Add-on disk drive ... £2250.00 VT55-FB Graphics Terminal with integral hard copy £1350.00 POPPE Series modules - Targe stocks of option modules, add-on core, CPU boards etc, all at reduced prices.

CENTRONICS 101A

Heavy duty Matrix Printer with 64 ASCII upper case character set. 165 cps operation, 132 print positions with adjustable tractor feed, 7×9 dot matrix. parallel inpu:. E 750.00 .

NEW ASCII KEYBOARDS NEW LOW PRICES

KB 771 Superb 71 -station ASCII Keyboard incorporating separate numeric/cursor control pad and installed in custom-built steel enclosure with textured blue enamel finish. Ideal for the VDU builder. Case dimensions $1714^{\prime \prime} \times 71 / 2^{\prime \prime} \times 3 \mathrm{~s} / \mathrm{g}^{\prime \prime}$. Total weight 4kg. PRICE
£89.50
(mail order total £. 08.10).

MISCELLANEOUS

BALL MIRATEL" $9^{\prime \prime}$ Monitor with case including space for keyboard. Integral power supplies included. Requires separate horizontal and vertical video input 95.00
CLARE KEYBOARD SWITCHES. Special purchase of top quality Clare SF-type reed switches. BRAND NEW SURPLUS £25p each DATA GENERAL model 1210 CPU with 4 K core $£ 795.00$
DIGITRONICS P135 paper tape punches 35 cps . Solenoid device with 27VDC coil . 95.00 EMI MONITOR 15" dia. tube, integral power supplies. Accepts composite or separate video input. BRAND NEW SURPLUS .. $£ 100.00$ FACIT 4070 Paper Tape Punch ... £675.00 GE TERMINET 1200 RO Printer, 80 columns, tractor feed, upper/lower case ASCII, 20 mA Interface
$£ 495.00$

KB756 56-station ASCII Keyboard mounted on P.C.B. $£ 45.00$ £53.48 KB756MF As above, fitted with metal mounting frame for extra rigidity $£ 49.50$ £58.65 | KB710 10 -key numeric pad, supplied with |
| :--- |
| connecting cable |
| $£ 8.00$ |
| 8.78 | KB701 Plastic enclosure for KB 756 or KB756MF £12.50 £15.24 KB702 Steel enclosure for KB756 or KB756MF

£18.00 £23.00 KB2376 Spare ROM Encoder£12.50 £15.24 KB15P Edge connector for KB756 or KB756MF
£3.25 £4.31 DC-512 DC convertor to allow operation at 5 V only (plugs in to P.C.B.) $£ 7.50$ £9.20 DB25S Mating connector for KB771
$£ 5.46$
PERK 56 -station ASCII Keyboard for PET Complete with PET interface, built-in power supply and steel enclosure $£ 145.00 \quad £ 172.50$ Discounts available for quantities

Hazeltine H－1000

The low，low priced teletypewriter－compatible video display terminal，offering your choice of transmission speeds up to 9600 baud as well as parity generation and checking
Specification
SCREEN SIZE－ $12^{\prime \prime}$ diagonal．
SCREEN CAPACITY－ 960 characters； 80 per line $\times 12$ lines．
CHARACTERS -5×7 Dot Matrix；625－line raster．
CHARACTER SET－ 64 ASCII alpha－ numerics and symbols．
KEYBOARD－TTY format．
INDICATORS－Power On．Parity Error
PARITY－Parity error indicated by Parity Light and question mark（？）displayed in cha－ racter．position
TRANSMISSION－Asynchronous．Switch－ selectable for any two standard rates up to 9600 baud
OPERATING MODES－Full／Half Duplex
MEMORY－High Speed MOS refresh．
STANDARD INTERFACE－CCITT V－24 （EIA RS－232 B／C）．
REFRESH RATE－ 50 fields per second．
When ordering please specify your choice of switch－selectable baud rates．

Standard：－Either A）110／300 baud or B） $300 / 1200$ baud Optional：A combination of any 2 of the fol－ lowing transmission speeds can be provided at a surcharge of $£ 25.00$ ．
$75,110,150,200,300,600,900,1200$ ． 1800，2400，4800，9600，（N．B．：900／1800 not compatible with $110 / 200$ respectively）．

Hazeltine H－2000

The world＇s largest－selling teletypewriter－compatible video display terminal．The Hazeltine 2000 sets the standard in features，performance，reliability and value in an ever－expanding list of applications in Universities，Hospitals，Business，Finance and Government．
Features include $\$$ Switch－selectable transmission rates to 9600 baud $\#$ Three switch－selectable operating modes－full duplex，half－duplex or batch \star Direct cursor addressability \star Dual－intensity video ＊Tabulation＊Powerful editing capability＊Remote keyboard \star Selective or automatic roll－up \＃Teletype compatible \＃Parity select \＃Large screen capacity＊ Clear 5×7 matrix character image \star Full remote command set \star Format capability \star Standard peripheral interfaces．
Specification
SCREEN－ $12^{\prime \prime}$ diagonal． 1998 characters： 74 per line $\times 27$ lines．
CHARACTERS -5×7 Dot Matrix； 625 lines raster CHARACTER SET－ 64 alphanumerics and symbols． 32 ASCII control codes．
KEYBOARD－Detachable，solid state．TTY design． 10－key numeric cluster plus editing and cursor control keys．
TRANSMISSION－Asychronous
Switch－selectable，for combinations of 5 standard rates， 110 to 9600 baud．
OPERATING MODES－Switch－selectable，full duplex，half－duplex or batch．
MEMORY TYPE－ 2048×8 RAM．
EDITING FEATURES－Full Cursor Controls plus Insert／Delete Character，Insert／Delete Line，Clear Screen，Clear Foreground Data Only，Tab．
STANDARD INTERFACE－CC ITT V－ 24 （EIA RS－232 B／C）．
REMOTE COMMANDS－Insert／delete Line． Clear Screen，Clear Foreground Data Only．Home Cursor，Address Cursor，Set Background intensity． Set Foreground Intensity，Carriage Return，
Backspace，Ring Bell，Transmit，Print AUXILIARY OUTPUT－Standard printer

Hazeltine MODULAR ONE

The Hazeltine Modular One terminal offers the full range of terminal performances－from simple teletypewriter compatibility to enhanced editing and polling capabilities．
The Modular one is supplied in two different versions．The BASIC MODEL provides the following features：$\star 1,920$ character display $(80 \times 24) \star 12$－inch bonded \star Incremental and absolute cursor positioning．\star Dual video intensity $\star 11$－key numeric pad \star Movable keyboard \star Choice of 8 transmission rates up to 9600 baud \star Communication interfaces：EIA RS－232 and current loop \star Choice of block or blinking underscore cursor \star Choice of white－on－black or black－on－white display representation．

Optional：

Lower Case
Printer Port（parallel）
Printer Port（serial）
EIA Data Cable
Remote Edit
Current Loop Interface
Synchronous Interface
External Baud \＆Parity
Switch
Also available：EDIT MODEL
$£ 35.00$
$£ 70.00$
$£ 70.00$
$£ 15.00$
P．O．A．
P．O．A．
P．O．A
P．O．A．
£695
P．O．A．

シーニ 61－65 King＇s Cross Road，London WC1X 9LN．Tel：01－278 3461．Telex： 298694

A MATTER OF LIFE OR DEATH

When an accident occurs involving severe electric shock, people on the spot may be suffering from a kind of shock themselves. The realisation that one has literally only seconds to save a life can itself be momentarily paralysing.

That's why Electrical Review has completely re-styled its Electrical Shock Chart. The new chart, prepared in consultation with St. John's Ambulance Brigade, highlights the main, points
in red, and explains and illustrates the actions to be taken so clearly that they can be grasped instantaneously even in a crisis. It also includes vital instruction on what to do if the casualty does not respond to artificial respiratton - with a section on external heart compression.

Action this second could save a life. Post this coupon NOW.

VIVID RED AND BLACK. PLASTIC,CARD OR PAPER.

SIZE 19 in $\times 131 / 2 \mathrm{in}(474 \mathrm{~mm} \times 346 \mathrm{~mm})$

ELECTRIC SHOCK act at once - dilay is fatal

make sure it is sefe to approach

Whe cesuetty bs not cioar of the source of eff the current. removing the plug. or

if the cosualty is breuthing

- cosuculty in
 Casualty is NOT breathing

 oll modical aid whilo you民.
4. Remove mouth and wotch chest foll, 5. lepeat and conilinu inflations of breathing.
When cesualty atorte breathing place him breathing place him
immediotoly in th. recoverypesition.
paper, books) and try so push or pull the cesualty clear of the contoct using similor imsulating motorlel (such os a broomstick) os a lover. Do nop pouch hlm with bera hands.

Tele carel Too Choct ogein for the carafid pulse. If the small a thump will pulse is present confinue inflotions. be incffoctlve but When the casuatty breathes on his own too large a thump place him immedietoly in the recover could Injure the pesition. H the pulse is silll obsent ator casualty. Assess external heent compression. the cesualiy - a thin person will require less fore

Check the pulse again. If it is presen continue with inflotions untll cosualty brwathes on his own, then ploce him wnedletely In the recovery position. the pulse is absent repeot the 15 cations and two inflotions unill there manse from the casuelty.

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME

Full range available to replace 1.5 volt dry cells and 9 volt PP type batteries. SAE for lists and prices. £1.45 for booklet, "Nickel Cadium Power,' plus catalogue

Write or call at

SANDWELL PLANT LTD.
2 Union Drive, Boldmere
Sutton Coldfield, West Midlands 021-354 9764
See full range at TLC, $\overline{3} 2$ Craven street. Charing Cross, London WC2.

WW - 052 FOR FURTHER DETAILS

10 n 5 p . Ceramic capacitors 50 V E6 22 p p
2.5p Zeners 400 mWW E24 $2 v 71033 v 7 \mathrm{p}$.
 + kit £12.98. Sumt cycle chip + kit $£ 17.95$. Colour generator kit Ce. 95 .
TRANS

 IC AUOIO AMPS With pCb. JC 126 W E2.50. JC20 1OW E3.54.
BATTERY ELIMINATORS. 3-way type $6 / 7 \mathrm{~h} / \mathrm{h} / \mathrm{V}$
 Output $41 / 2 / 6 / 71 / 2 / 9 v 800 \mathrm{ma}$ E3.04.
BATTERY ELIMINATOR KITS. BATTERY ELIMINATOR KITS. 100 ma radio types with press studs $41 / \mathrm{vv} £ 1.64,6 \mathrm{v} £ 1.64 ; 9 \mathrm{v}$
$£ 1.64,4 \mathrm{k}+4 \mathrm{kv} £ 2.30,6+6 \mathrm{v} £ 1.92,9+9 \mathrm{v}$

 TOEC ANO CSC BREADBOARDS. S-dOC $£ 3.79$. T. dec $£ 4.59$, exp 48 £2.64, exp 300 £6.61, exp 350 BI-PAK AUDIO MODULES. S450 E27.90. AL60 E5.62, pa 100 £19.24, spm80 £5.26. bmi 80
£5.06, stereo 30 £23.94, AL30A £4.53. SWANLEY ELECTRONICS Dept. WW, 32 Goldual Rd, Swanloy, Kent.
Post 35 p extra. Prices inclưe VAT Unless stated.
Otticial and overseas orders welcome. Lists 27 p post tree. Mal order only.

TS. 147 RADAR TEST SET Combination SIg. generator and frequ
power meter. Provides C.W. \& F.M. signals. II5V a.c. £225. Carr. £7.
HEWLETT PACKARD SIgnal Generator HP608B. Freq. $10-400 \mathrm{MHz}$ C AUTO TRANSFORMER: $230 / 115 \mathrm{v} 50 \mathrm{c} / \mathrm{s} 1000$ watts. Mounted in strong steel case $5^{\prime \prime}$
$\times 6^{1 / 2^{\prime \prime}} \times 7^{\prime \prime}$. Bitumen impregnated. $£ 17,25$ + carriage.
TRANSISTORISED 3 cm RADAR AMPLIFIER SWITCH: with 24 v waveguide switch $9 \times 4 \mathrm{~cm}$ ins. with crystal CV. 2355 and spark gap VX. $1046 . \varepsilon 17.25+\varepsilon 1$ post. INSULATION TEST SET 0 to 10 KV , negative earth, with Ionisation Amplifier 100/230 Volts AC. عA8.87 + carr.
BC-221 FRECUENCY METER: $125-20,000 \mathrm{kc} / \mathrm{s}$ complete with original calibration charts $£ 24.15+$ cart.
ROTARY INVERTER TYPE PE-218E: Input $24-28 \mathrm{v}$. DC $80 \mathrm{amps}, 4,800 \mathrm{rpm}$. Outpu IV. AC $13 \mathrm{amp} 400 \mathrm{c} / \mathrm{s}$. IPh. P.F. 9. £ $23+\mathrm{carr}$.
RESONATOR PERFORMANCE CTC 4248.5 to

RESCNATOR PERFORMANCE CTC 4248.5 to $9.0 \mathrm{kmc} / \mathrm{s} 3 \mathrm{~cm}$ £80.50 + post E 2.
INVERTER 24v. DC input 400 cycles 1 pH 6600 r.p.m. 200 v . peak. $£ 8.05$ + 2 post
INVERTER 24V. DC input 400 cycles 1 PH 6600
NOISE SOURCE UNIT with CV. 1881 noise source mount. Produces thermal poise $15.5 \mathrm{~dB} 200 / 250 \mathrm{v}$. AC E80.50.
HS33 HEADSET. Low imp. $\mathbf{~} 5.35+75$ p post.
MUIRHEAD DECADE OSCILLATOR TYPE 890D: $192+$ carr. £5.
SIEMENS POWER METER REL3U/84/Alb: $0-12 \mathrm{kmHz} 1 \mathrm{mw} 500 \mathrm{mw} 6$ ranges. 0.17 dB 50 ohms. $£ 92+$ car
CV. 1396 CATHODE RAY TUBE: (09D, 09G), $4^{\prime \prime}$ screen. green electrostatic base B12B HT1200 volts, heater 4 voits $£ 11.50$.
RADAR RECED K . crystals. Transistorised amplifier and geared motor, etc. £143.75.
VACUUM \& PRESSURE DEAL TEST EQUIPMENT: complete with $2 \times 4^{\prime \prime}$ gauges indicating 0.20 lbs p.s.i. 0 - 30 lbs vacuum. With stand, hand pump, etc. $£ 34.50+$ carr.

BARGAIN MAPS
ONC-E1 - U.K. in full and part N.W. Europe. Scale 1:1,000,000.
JNC-9N - N. Europe, U.K., Scandinavia. Scale 1:2,000,00 JN-2IN - Europe (Mediterranean). Scale 1:2,000,000 SIZE $58^{\prime \prime} \times 42^{\prime \prime}$. colour. Many others. Please send S A.E. for list Price each $75 p$ (inc. P\&P)
$10 \times$ Maps (either same type OR assorted). $\subset 10+€ 1.60$ P\&

All prices include YAT at 15%
Car riage quotes glven are for 50 -mile radius of Herts.

W. MILLS

The Maltings, Station Road
The WBRIDGE WORTH, Herts Tel; Bishop's Stortford (0279) 725872

MANS INTERCOM

WW - 057 FOR FURTHER DETAILS

ETCH RESIST TRANSFER KIT SIZE 1:1 sheets 6 in $\times 41 / 2$ in $\mathbf{£ 3 . 0 0}$ with all symbols for direct application to P.C. board. Individual sheets 30 peach. (1) Mixed Symbols (2) Lines D. 05 (3) Pads (4) Fish Plates and Connectors (5) 4 Lead and 3 Lead and Pads (6) DILS (7) BENOS 90° and 130° (8) 8-10-12 T.0.5. Cans (9) Edge Connectors 0.15 (10)Edge Connectors 0.1 (11)Lines 0.02 (12) Bends 0.02 (13) Quad in Line.

FRONT AND REAR PANELTRANSFER SIGNS

Alt standard symbols and wording. Over 250 symbols, signs and words. Also available in

 reverse for perspex, etc. Choice of colours, red, blue, black or white. Size of sheet $12 \mathrm{in} \times 9$ in Price E1. 20All orders dispatched promptiy. All, post paid
Shop and Trade enquiries welcome. Special Transfers made to order

E. R. nicholls

P.C.B. TRANSFERS

OEPT. WW, 46 LOWFIELO ROAD. STOCKPORT, CHES. 061-4802179

The best jobs in electronics and communications appear in Electronics Weekly. Trouble is your place on the office circulation list. If you receive the office copy 2nd, 3rd or 4th hand, chances are any good jobs have already gone. The solution's simple. For only 15 p a week you can receive not only the best of the latest jobs, but also everything that happens in the electronics industry: new technology, new projects, major policy changes, the battle for markets. The whole electronics business scene is covered week by week - and interviews with leading industrialists provide insights into the way top companies are developing their business. To see Electronics Weekly ahead of everyone, place a regular order with your newsagent or complete and post the coupon ... and the news about your industry will always be new!

To: Marketing Department, Room 626A,
I Dorset House, London SE1 9LU
Please send me Electronics Weekly for a year. I enclose cheque/p.o. for (UK £8.00 (inclusive of p\&p). Overseas $\$ 20.80$ payable to IPC Business Press Ltd.

Name...
\qquad
\qquad
\qquad
\qquad
Electronics Weekly

WW - 085 FOR FURTHER DETAILS

Professional ASCII Kevboards

THE ‘APPLE' COMPUTER KEYBOARD

- 52 key 7-bit ASCII Coded
- Positive Strobe, $+5 v-12 v$
- Full ASCII Characters
- Parallel output with Strobe
- Power Light on Control
- National MM5740 Chip, TTL Output
- Superbly made, size $12 \times 5.5 \times 1.5$ in
- Black keys with white legends
- Escape, shift, return and reset keys

Complete with Circuit and Data
Ideal for use with TANGERINE, TRITON. THSCAN, APPLE and most computers.

Ex-stock from Henry's.

This is definitely the BEST BUY. Supplied BRAND NEW in manufacturer's original packing (ANTI-STATIC).
Just post remittance, total $£ 35.95$ (incl. VAT \& Post).

Computer Kit Division
404 Edgware Road, London W2 1ED. England I.E.D. $01-4026822$

ANY MAKE-UP OR COPY QUERIES CONTACT JOHN GIBBON OR BRIAN CHAPMAN 01-261 8353

Appointments

Advertisemenis accepted up to 12 noon Monday, November 3rd, for December issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 12.00$ per single col. centimetre (min .3 cm) LINE advertisements (run on): $£ 2.00$ per line, minimum three lines. BOX NUMBERS: $£ 1$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamforḍ Street, London SE1 9LU). PHONE: Eddie Farrell, 01-261 8508.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

ELECTRONIC OPPORTUNITIES
 £4,500-£15,000

Microprocessors - Minicomputers -
Digital - Analogue - RF - Audio
Where does your skill and interest lie?

Design? Test? Production? Sales? Service? Systems? or perhaps Sofłware?
 * Our clients are drawn from all sectors of industry:
 There are opportunities at all levels from Technician to Manager
 * Most UK locations and some Overseas
 * Make your first call count - Contact MIKE GERNAT on 076-384-676/7
 ELECTRONIC COMPUTER AND MANAGEMENT APPOINTMENTS LTD 148-150 High St. Barkway Royston Herts SG8 8EG

GLOOM
 RECESSION UNEMPLOYMENT
 how does it affect the averatge electronic ENGINEER?

Our placements show that your salaries are 30% higher than they were this time tast year However. employers do pick and choose - it is definitely a buyer's market.

CURRENT VACANCIES INCLUDE

SENIOR DESIGN ENGINEER to head up a small team in design consultancy. Good degree, lots of microprocessor hardware/software experience. Knowledge of telecommunications an advantage. To $£ 11,000+$ car. NW Home Counties.
MICROWAVE ENGINEERS - always at a premium. Salaries up to £12.000 Greater London. South Coast, Berkshire.
DESIGN ENGINEERS. Good knowledge of computer architecture either DEC, IBM or Zilog who wish to work on data communications, pattern recognition and image processing. Surrey. To $£ 13,000$.
DESIGN DEVELOPMENT ENGINEERS for video camera and video processing equipment. Wide range of applications including Sonar. Dorset to £8,000.
YOUNG DESIGN DEVELOPMENT ENGINEERS for a wide range of medical equipment. Software knowledge desirable. Cambridgeshire. Good salaries. DESIGN ENGINEER for new generation of hand held Data Entry Computer Terminals. Research on novel components including L.S.I. Berks to $£ 8,500$. CMOS, LSI, THICK FILM, THIN FILM BI-POLAMIC DESIGNERS, APPLICATIONS ENGINEERS. Now is the time to move. Vacancies in Scotland. West Country and South Coast - to $£ 15,000$.
TEST ENGINEERS for wide range of data acquisition equipment including digital videoproducts, i.e. frame stores, synchronous standard converters and real time picture manipulators. Berkshire. Good salary.
COMMISSIONING/TEST ENGINEERS - data transmission equipment. Duties include testing, configuration of installation and fault finding on customer specials. Berkshire. Salary $£ 7,200$.
COMPUTER ENGINEERS - vacancies throughout U.K. in field service permanent site, technical support and systems test - some excellent salaries.

For further details, please telephone

WE'RE MOVING

NOTICE TO CLASSIFIED ADVERTISERS RE: CHANGE OF ADDRESS

With effect from November 7, 1980, Wireless World will be moving to Sutton, Surrey. From this date, classified advertisers should send their material to the following address:

CLASSIFIED DEPARTMENT WIRELESS WORLD Quadrant House, The Quadrant Sutton, Surrey SM2 5AS

TELEPHONE: 01-661 3500 TELEX: 892084 BISPRS G

Increased home and export orders for our broadcast TV products mean that we are looking widely to recruit staff to fill new vacancies and others created by promotion of engineers who have been with us some time.

SYSTEMS ENGINEERS - TELEVISION

Experienced engineers are needed to work on design and project management of Outside Broadcast vehicles and television studios. This is an opportunity for engineers to become involved in projects from their initial design concept, through manufacturing to delivery and installation.
Our custom built systems require a high degree of customer contact at engineering level, from the initial design stage to the necessary training of operational staff on completion of the contract, both within the UK and overseas

You should have a knowledge of TV studio engineering gained from experience in this type of work or from experience in the operational side of television

DESIGN AND DEVELOPMENT ENGINEERS - VIDEO

An experienced engineer who will be involved in the design of studio products, including a new range of colour cameras, using the very latest analogue and digital techniques. You will have the opportunity to see your designs made in volume production, fulfilling the high technology requirements of the ' 80 s .
We are looking for engineers who are qualified to degree or HND level and who have at least four years' experience in the design of electronic equipment, with some knowledge of video engineering and microprocessor techniques.

DESIGN AND DEVELOPMENT ENGINEER - AUDIO

A senior audio design engineer responsible for the design of custom made studio talkback systems to specifications agreed with customers, for use in television mobiles and studios.
You need to be professionally qualified, and have a background to enable you rapidly to take over the full responsibilities of this product area.

TEST ENGINEERS

We require engineers at intermediate level to assist in the manufacture of our new range of products for the Broadcast studio television market.
You need to have an up-to-date knowledge of digital and linear circuit techniques gained from experience working on broadcast television, or similar sophisticated products, and be capable of faultfinding down to component level.

We are a young, successful Company, well known in international television circles, operating from our moderń purpose-built factory in Andover. Salaries offered are very competitive, and supplemented by generous holidays, free life and health insurance, pension scheme, subsidised meals and relocation expenses

PLEASE WRITE GIVING FULL DETAILS OR PHONE JEAN SMITH AT THE ADDRESS BELOW FOR AN APPLICATION FORM

Link Electronics Limited, North Way, Andover,
Hants, SP10 5AJ.

R \& D Engineers

required to work on digital circuits for micro-processor based industrial and commercial systems.

The candidate should have a working knowledge of TTL and CMOS logic and have experience of programming at assembler language level for micro-processor systems.

Engineers should hold a degree / HNC or equivalent qualifications. Salary will be commensurate with qualifications, age and experience.

If you are seeking an enjoyable position involving both hardware and software development, write giving your career to date or telephone

Dr. G. O. Towler
(New Product Development Manager) British Relay Electronics Ltd.
32 Biggin Way Upper Norwood
(172)

London, SE 19
Tel. 01-764 0931

ENGINEERING OPPORTUNITIES
Telemotive uk Lid is a Company In association with a major U.S.A. manufacturer with world leadership in the radio control of industrial machines, systems and processes, in collision prevention, and in other industrial electronics activitles.
Our principal products are founded on the Near Field Induction Effect and on Other inductive techniques in the 300 kHz band. No other U.K. Company has a comparable product line and our business therefore offers engineering experience of unusual interest. Training in our techniques is provided.

COMMISSIONING ENGINEER

We currently require an engineer with the abllity to work independently, commissioning, servicing and testing systems on customer's sltes. In addition, the engineer would at times work on systems requiring service at base (Hersham).
The position Involves travelling within the U.K. and will take the engineer into a wide variety of industries. A company car is provided.

ELECTRONICS TECHNICIAN
We also require a technician whose duties would include assembly, wiring and test of complete equipment as well as testing small batches of PCBs. He or she would work with a small team of engineers but must be able to work unsupervised.
Previous experience of wiring is essential, preferably to military standards. Previous production testing experience would be an advantage.

Telemotive is a good employer. We look only for above average personnel, and this is reflected in the conditions of employment offered.
Please apply in writing, giving detalls of previous experlence and training, to:-

SENIOR ELECTRONICS TECHNICIAN

for THE REGIONAL AUDIOLOGY CALIBRATION AND REPAIR SERVICE This post was created to help improve audiology thearing testing) services in the area covered by the North West Thames Regional Health Authority. The technician will be providing a Regional Service but wil be based in a laboratory in the Department of Medical Physics, Charing Cross Hospital and working under the supervision of the Audioogical Sciemtist.
The work includes routine calibration and repair of equipment in audiology centres in the Region. Additionally the technician will assist in the equipment advisory service and in some development work in the Audiometry Department at Charing Cross Hospital. Excellem workshop facilities are available.
Applicants should have an interest in audioengineering and good organising abilities. The travelling necessary to provide this his/her private car for which allowances will be made in accordance with O.H.S.S equlations. The post is Medical Physics rechnician III grade with a salary scale of £5003-£6350 inc.
Further details and an application form vailable from: District Personnel DepartPalace Road, London W6. Tel: 01-748 2040×2992.

UNIVERSITY OF NOTTINGHAM
Department of Psychology
A vacancy exists in the Psychology Depar

COMPUTER TECHNICIAN

Male or female). Duties include the design/development of sophisticated on line equipment for laboratory control plus computer laboratory complex. The laboratory is based on a PDP $11-34$ master computer with DEC GT40 and ISI 11 slave machines. Expansion of the system, in cluding microprocessor based develop. ments, is in progress.
Oesign experience with CMOS/TTL. devices is essential and previous computer ex perience desirable.
Suitable qualifications include HNC (or
quivalent) in a relevant subject or ONC with appropriate computer experience.
Salary is in the range of $£ 5,478-£ 6,543$ per annum.
Application forms can be obtained from the Head of Technical Services, Department tingham, Univeraity Park, Nottingham NG7 2RD. Telephone: Nottingham 56101 Extn. 3174.

TOP JOBS IN ELECTRONICS

Posts in Computers, Medical, Comms, etc. ONC to Ph.D. Free service.

Phone or write: BUREAUTECH, AGY, 46 SELVAGE LANE, LONDON, NW7. 01-906 0251

MANACEMENT \& EXECUTIVE SELECTION

SERVICE ENGINEERS Take a look at Kodak

This is your opportunity to take a look at Kodak and find out about installing, maintaining and repairing an exciting range of equipment used in the photographic industry, including microfilmers, processors and printers, on cus tomers' premises throughout the U.K.
We are expecting a high standard from you. You will need a sound know. ledge of practical electronics coupled with mechanical skills, preferably having had previous servicing experience. In return we can offer the rewards and promotion prospects expected when you join a large international company and potential earnings in the range $£ 7,000$ £8,000 p.a. (under review) including some overtime,
 A1t, Kodak Limited, P.O Box 66, Station Road, Hemel Hempstead, Herts HP1 1JU, giving details of education, experience and personal information.

> JUNIOR \& EXPERIENCED COMPUTER ENGINEERS
> Join a successful, progressive company and reap the benefits. Engineers with 1-6 years computer maintenance experience are required, in many UK regions. Salaries £7K - £12K + car. Interested?
> Call Howard Wynne or Peter Gorton today!

RADIO MAINTENANCE ENGINEER

REQUIRED (AGE 25 TO 40)
Capable of maintaining communication networks in various overseas projects. Networks consist of HF-SSB, VHF-FM and VHF-SSB communications systems including repeaters. As from January 1, 1981 we offer initially one-year contract in large agricultural project in the Sudan
Application with curriculum vitae in English should be addressed to
CIBA-GEIGY LIMITED
Agro-Projects AG 8.13/Attn H. Wenk
4024, Basel, SWITZERLAND
For further particulars ring: 010/4161/377192

National Broadcasting School

BROADCAST ENGINEER

with experience in Local Radio.
The job will involve teaching radio operations and maintenance, and will include maintenance of the School's studios and facilities. Some travel will be required.
The successful applicant will be responsible to the Chief Engineeer and will have had significant experience in broadcasting, preferably with a background in maintenance. Some experience of teaching and of digital technology would also be advantageous.

Excellent staff benefits including 5 weeks' holiday a year. Salary negotiable.
Please apply with CV and other relevant details to: Chief Engineer, National Broadcasting School, 14 Greek Street, London W.I.

Cox Miciln ill TV BROADCAST ENGINEERS -PLYMOUTH

Abstract

Westward TV seeks several additional experienced Electronic Broadcast Engineers for their Studios at Plymouth. One vacancy involves the operation and maintenance of Telecine and VTR equipment, including quadruplex 1 "helical scan and high band Umatic equipment, together with Rank Cintel telecines.

Additionally, two vacancies are anticipated in the Electronic -Maintenance Department, one of which will be a more senior appointment and involve maintenance duties within the Master Transmission Control area. We offer attractive locality and conditions of service including five weeks' annual holiday (from next year), free life insurance and salaries of up to $£ 9,950$ (Senior Engineer), including supplements.

Telephone the Personnel Manager for further details on 075269311 or write to Westward Television Limited, Derry's Cross, Plymouth PL1 2SP.

(725)

PHILIP DRAKE ELECTRONICS LTD.

Manufacture Audio equipment for the Broad cast Industry and have vacancies for the following
staff: staff:

PROJECT ENGINEER

To work in the Project Department. The job includes Project discussion with customers, the detail design of systems, test supervision, and the compilation of system handbooks.

TEST ENGINEER (as PROJECT ENGINEER)

To test primarily the custom-built products, mainly Communications systems, along with supervision of other staft and Test deparment load management and planning. Some experience in the design and test of audio and digital circuits is essential.

DESIGN ENGINEER

To work under supervision of the present Design Engineer, 10 undertake detail circuit design and product development. Experience in the design of audio and digital circuits is essential and an understanding of product design for manufacture is desirable.

DRAUGHTSPERSON/TRACER (as PROJECT ENGINEER)
 To work primarily in the Project Department, to prepare handbook drawings and design

 system metalwork, and also to prepare circuit diagrams and standard products. Experience in control panel layouts and Broadcast audio requirements is desirable.The company ofters a $371 / 2$-hour week with 17 days holiday minimum, Experience in the Broadcast Industry and/or suitable qualifications are desirable tor all positions. Salary negotiable dependent on experience. Apply by telephone or writing to

Alan Brill, Philip Drake Electronics Led. 23 Redan Place, London W2 4SA. Tel. 01-221 1476

SENIOR AUDIO TEST ENGINEER

Opportunity to join a London based company producing high quality sound mixing consoles for live media, professional recording and broadcast applications.

The individual most suitable for this responsible and interesting situation would be aged 28+ with HND (or similar) qualification and several years post-qualification experience in fault diagnosis with audio products designed to a high-reliability specification.

Ability to formulate test procedures, to appraise quality standards and coordinate an enthusiastic team of test. engineers and technicians is essential.
In return we offer excellent remuneration, good conditions and an opportunity to gain managerial experience in this field.

Telephone Jim Cousins on 01-3887060 or 01-387 7679 for an application form and further information, or write to him giving resumé of career to date.
TIIIE
Audio Systems Ltd.
54-56 Stanhope St., London NWi 3EX

Radio Communications Electronics Engineers and Software Designers

Mid-Sussex-S.W. London

Salaries up to $\mathbf{8 8 , 0 0 0}$
To join our expanding R\&D Laboratories covering a wide range of R.F. spectrum, from L.F. to V.H.F. Equipments include transmitters and receivers for marine- and land-based use, radio navaids and radio monitoring remote computer-controlled systems
Electronics Engineers should have experience in transmitter or receiver design, analogue or digital circuit design, microprocessor applications. Software Designers should be experienced Programmers with an interest in control, signal processing or navigational software.

Attractive salaries are complemented by excellent prospects and generous benefits.

Contact: David Bird, Redifon Telecommunications Limited, Broomhill Road, Wandsworth, London, S.W.18. Phone: 01-874 7281 (reverse charges)

UNIVERISTY OF SURREY

ELECTRONICS TECHNICIAN ENGINEERS

The Electronics Services Unit in the Department of Electronic \& Electrical Engineering seek a Grade 6 Technician to assist with the
design, development, production and maintenance of a wide range of electronic equipment. Current projects include comtrol and measurement modules for the UOSAT satellite to be launched in 1981, underground communication systems, instrumentation for ion implantation research and various applied microprocessor systems. Applicants should have broad based practiqal experience and HNC equivalent qualification
The University offers good working conditions and environment, and facilities for a wide range of sports and social activities.
Salary in on a scale $£ 5478$ to $£ 6543$. For further details or torre to Dennis Pollard (Guildford 71281 Ext 392) The University has four other vacancies for experienced Electronic Technician Engineers
at salaries between $£ 4776$ and $£ 6543$ in the at salaries between $£ 4776$ and $£ 6543$ in the Electrical Engineering. Psychology, and the Computing Unit. Contact Karina Bruley (Guildford 71281 Ext 776) or write to The Staff Officer, Univareity of Surrey. Guildford GU2 $5 \times \mathrm{XH}$. HAMPSTEAD
MEDICAL PHYSICS TECHNICIAN IV
electronics

Salary on scale: $£ 4280-£ 5504$ per annum. (Increase in London Weighting Pending)
We offer a Technician the chance of working on the design and construction of specialised electronic equipment which will be used in
both research and clinical applications. This is an excellent opportunity for a man or woman who holds a City and Guilds Final Technological Certificate (or equivalent) in appropriate subjects and ideally has some experience in the use of analogue and digital circuit techniques
You will be working with four other technicians and apart from your design work, you will carry out maintenance on a wide range of commercial apparatus within our purpose built and wellequipped workshop.
Please phone Mr. A. Charles, Senior Elec. 1ronics Engineer, on (01) 7940500 Exi.
3198 , to arrange an informal visit. 3198 , to arrange an informal visit.
Application form and Job Description available from the Personnel Department, Royal Free Hospital, Pond Street. London NW3 2QG. Te. (01) 9440500 Exi, 4286 . Please quote ref. 0761 . Closing date 30 th October.
1980 .

Camden an
Authority (T)
(727)

DIGITAL EXPERIENCE?
FIELD, SUPPORT AND PRODUCTION. VACAN. CIES IN COMPUTERS, NC, COMMS, MEDICAL,
VIDEO, ETC.
Fore free registration ring
01-464 7714 ext. 502 24 HOURS

ELEGTRONICS RECRUITMENT SERVICE HIGH ROAD. LOUGHTON. ESSEX 01-502 1589/01-464 7714. EXT. 502

Going Places?

Even if you are going places in your present job, you may like to consider a change...if you are not, you certainly will wish to consider a change to a new and interesting field in Telecommunications, Broadcast Transmitter Engineering.
We have immediate vacancies for suitably qualified men and women to train in the operation and maintenance of broadcast transmitters and to serve in various parts of the country. Even if you have no previous experience in RF transmission work it may be worth your while to apply since full training will be given. Transmitter work is challenging and involves knowing about colour television techniques, stereo radio transmission, digital communication, logic and microprocessors, wave propagation, aerials and transmission lines as well as heavy power equipment. In the future opportunities may arise for work overseas or on mobile maintenance teams.

The minimum qualification required for an Engineer appointment is an appropriate $\mathrm{HNC} / \mathrm{HND}, \mathrm{a}$ C \& G, FT.C. (Telecommunications) or a T.E.C. Higher Certificate or Diploma in Electronics or Telecommunications.
Applicants must have normal colour vision and hearing. Starting salary is in the range $£ 5425$ to $£ 5945$ depending upon experience plus extra payment for shift working.
For further information and an application form, write to:-The Engineering Recruitment Officer, BBC,

CHIEF ELECTRONICS

 TECHNICIANThe Department of Physical Metallurgy and Science of Materials to take charge of Departmental Electronics Workshop. Responsibilities to include maintenance and repair of electronics equipment. supervision of trainee technicians, design and construction of electronic and electrical electronic mainienance of electron microscopes would be an advantage but not essential. It would also be necessary for the technician to be on call after hours for maintenance duties in connection with the electron microscope. A special inconvenience allowance would be paid for these duties. Salary scale £6378-E7164 per annum. Ref. $109 / \mathrm{d} / 258$
Application form available from:
Assistamt Secratary
Personnel Office
University of Birmingham
P.O. Box 363

Bimingham B15 2 TT

APPOINTMENTS LTD
THE UK's No. 1 ELECTRONICS AGENCY
Design, Dev. and Test to $£ 9,000$
Ask for Brian Cornwell
SALES to $£ 12,000$ plus car Ask for Ken Sykes

FIELD SERVICE to $£ 8,000$ plus car
Ask for Maurice Wayne
We have vacancies in ALL AREAS of the UK

Professional Careers in Electronics

All the others are measured by us...

Al Marconi Instruments we ensure that the very best of innovative design is used on our range of communications test instruments and A.T.E. We have a number of interesting opportunities in our Design. Production and Service Departments and we can offer attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation. If you are interested to hear more, please fill in the following details:-

Return this coupon to John Prodger, Marconi Instruments Limited, FREEPOST. St. Albans, Herts, AL4 0BR. Tel: St Albans 59292

COMMUNICATIONS
 £12,000 p.a.

Tracking Systems experience for Consulting Engineers
£10,000 p.a.
'Hands-on' Telephone Systems Engineer
EUROPE
Local and trunk switching systems designers
$£ 9,000$ p.a.
Analog/Digital Multiplexed Modulation Systems development.
U.K. and Offshore

Supervise installation of data retworks.
U.S.A.

Graduate / HND Design Engineers
We have a constant requirement for telephone telecommunications, data communications, radar, radio and microwave engineers at all levels.

ELEKTOR
 UP-TO-DATE ELECTRONICS FOR LAB AND LEISURE requires

A TECHNICAL EDITOR

To be responsible for the edition of our English language (monthly) magazine and books at our Head Office in Beek (L), the Netherlands.
The successful applicant should have English as his / her native tongue, and preferably a degree (or equivalent) in Electronics and considerable experience as an editor.
A good working knowledge of either Dutch or German is essential.
Please send detailed curriculum vitae to
MRS. VAN DER HORST, ELEKTUUR B.V.
POSTBUS 75, 6190 AB BEEK (L), THE NETHERLANDS

Appointments

ELECTROSONIC

PRODUCT DESIGN ENGINEER

Electrosonic Lid., a world leader in the fields of audio visual, lighting and control systems, require a Product Design Engineer with professional qualifications, in one or more of the following disciplines:
Audio recording - reproduction, analogue, or digital control circuit design.
The applicant should have a minimum of two years' proven experience for this senior post. The ability to undertake all aspects of a design and development from product conception through to production. including initial design, prototype development and A.T.E. programming is essential.
The right applicant will enjoy an excellent salary and working conditions at our recently-opened design offices in Swanley Please write or telephone for an application form to
Peter Smith—Design Manager-Unit Products Electronics Ltd.
Warwick House
Azalea Drive, Swanley, Kent
Telephone Swanley 60321

USE YOUR IMAGINATION

If you are the Design Engineer who joins us then you must do just that We have many projects on hand at present covering the whole spectrum of electronics and ideally you will have had a good theoretical and practical background so that you know what makes circuits tick. But knowledge of new digital and analogue techniques and when to use them will be equally important. We do not necessarily want standard solutions to standard problems.
If you can work by yourself and would like the challenge of working for a small growing company, write to us with brief career details

Mr. R. K. Furness, MINIM AUDIO LIMITED, Lent Rise Road, Bumham, Slough SL1 7NY.
Minim Audio
Make a note of our name!

Logic and Television ENGINEERS

We are urgently seeking a Logic Engineer with practical experience of fault finding on Micro-Processors and TV Monitors - also a TV Engineer with experience and/or interest in Logics.
Age should be over 25; an excellent salary negotiable with expanding company in leisure field.
Apply in strict confidence to

J. C. M. Pryde, Managing Director

LONDON COIN MACHINES LTD.
22-24 BROMELLS ROAD
LONDON SW4 OBQ

Appointments

Electronic Engineers What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 8000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL
Please send me a TJB Appointments Registration form PERSONNEL SERVICES, 12 Mount Ephraim, Tunbridge Wells, Kent. TN4 8 AS.

Tel: 089239388

Name
Address

ELECTRONICS TECHNICIAN GRADE 3 or 4

For servicing and repairing scientific equipment. Applicants should have at least ONC or equivalent qualification in electrical/electronic engineering. Experience desirable but not essential. Salary Grade 3 (£3918-£4590) or Grade 4 (E4431-£5097) according to qualifications and experience.

Application forms from the Registrar, The University, P.O. Box 147, Liverpool, L69 3BX. Quote ref. RV/580/WW.

信

GREAT ORMOND STREET LONDON WC1N 3JH
BIOMEDICALENGINEERING DEPARTMENT

TECHNICIAN

To maintain the performance and safety of a wide range of medical, laboratory and electronic equipment; also to assist with light constructional and wiring work. Some travelling involved.
Minimum qualifications required - ONC or equivalent in an electronics subject. Three years practical engineering experience essential.
This post is graded as Medical Physics Technician Grade III, with a salary scale of $£ 5,003$ rising by seven annual incremen

Application form and further details from Application form and further details from 200, extension 228 .

ONE IN A MILLION?

Among the million or so leaving school or university this year there is a chance that one - perhaps two - is destined to make a significant development in audio.
That person's first decision might well be to join QUAD in Huntingdon At school. he or she will have realised that amplifier design is not just a matter of having a listen or a fiddle with standard circuits and their variations. Later will have come an adolescent stage of great discoveries. "Increase the rise time to eliminate TIM". "Regulate the power supply for better imaging
Following on from such childish things will have come an ability to distinguish between the characteristic impedance of the medium and the third row of the dress circle and between peak flux density and the rather gooey substance fed by spoon to small children. He or she will nevertheless, be sufficiently down to earth to know that one newton is about the weight of the average apple
1 in 10^{6} ?
Well, drop us a line anyway
Mr. P. J. Walker

THE ACOUSTICAL MANUFACTURING COMPANY LIMITED

30 St. Peters Road, Huntingdon, Cambs. PE187DB

ELECTRONICS TECHNICIAN (Ref: P79) Clinical Physics and Bioengineering. The technician will nicians engaged in the design, development and construction of a wide range of electronic equlpwent for use in clinical research. ment for use in clinical research. minimum qualificalions in ententronics with equivalent in exectralary scale:〔4409-£5633 p.a. For application form please phone the Personnel Ottice, Guy's Hospital on 01-407 7600 Ext 3471

ELECTRONICS TECHNICIAN

(Medical Physics Technician III. £4,605. £5.952 plus $£ 527$ London Weighting) required for maintenance and repair o electromedical equipment in Westminster District based at Westminster Hospital Opportunities exist for development o Measurement Westminster Hospital

Write for application form to: The Secretary, Department of Clinical Measure ment, Westminster Hospizal, 65 Rom ney Sireet, London, S.W.1, or Telephone 8289811 , Ext. 2640

UNIVERSITY OF ABERDEEN
 TECHNICIAN (GRADE 3)

required for the Depariment of BioMedical Physics and Bio-Engineering for 3-year appointment working as a member of a team developing ápparatus for reached the stage of producing images of sections of the body. Applicants should hold an ONC (or equivalent qualification) and have had about 4 years' experience in electronics. Previous experience in imaging is not necessary, as the successful applicant will acquire skill in this and allied fields.
For suitably-qualified candidate. salary will be on scale $£ 3,919-£ 4,590$.

Persons interested in being considered for the post and in obtaining further information on the work are invited to contact D. J. M. S. Hutchison, Department of Bio-Medical Physics; 681818 , Extension 3220)
(741)

CARDIFF broadcasting

requires

An experienced Broadcast Engineer IILR 2 grade) to assist the Chief and Deputy Chie Engineers in the running of this exciting now radio station.
Write with details and phone No. 10 The Chief Engineer Cardiff Broadcasting
P.0. Box 221

Carditf GF1 5Xd

All permanent positions in Greater London.

Tel. 01-493 4856
for details
F \& PAPPOINTMENTS

Electronic Development Engineers (Low Capacity Radio Relay)

Have you R.F design ($400 \mathrm{MHz}-2 \mathrm{GHz}$) experience on systems handling baseband traffic up to 132 FDM channels or $2,048 \mathrm{Mbit}$?

If so, then you could soon be part of our development team committed to the expanding world radio link business.

Pye Telecomm are a major supplier of radio systems to the Public Utilities and offshore activities around the U.K. As a member of the Philips Group 'we have the world-wide penetration to provide Design Engineers with real career prospects and the opportunity to benefit from our wealth of experience.

We enjoy talking to engineers interested in our field, and will be pleased to show you the professional, social and sports facilities available at our new complex in Cambridge. The successful applicants, male or female, will be offered good salaries, with generous relocation expenses where applicable. Living in Cambridge has its own benefits, not only is it an attractive city, but it offers excellent sporting, recreational and cultural amenities and a large selection of reasonably priced housing.

To find out more about how you could fit into our team please contact Liz Gray, Personnel Officer, Pye Telecommunications Limited, St. Andrews Road, Cambridge. Tel: Cambridge 61222.

Pye Telecom

RESEARCH \& DEVELOPMENT

ELECTRONIC ENGINEERS AND TECHNICIAN ENGINEER

Applications are invited from suitably experienced electronic engineers and technician engineer to participate in a programme of research and development projects at our new Laboratories at Shrubbery Road, Edmonton. These projects cover a wide range of applications for conventional domestic devices and also systems incorporating microprocessor contrals.

Whilst theoretical qualification to HNC standard would be an advantage, applicants with practical experience in the construction and design of electronic products should apply.
Please apply to:
Company Personnel Manager M.K. ELECTRIC LTD.

Shrubbery Road
Edmonton N9 OPB
Tel. 01-803 3355, Ext. 15

Leeds

School of Mechanical \& Production Engineering

LECTURER I IN ANALOGUE/ DIGITAL
 INSTRUMENTATION

To teach on the New Technician Education Council Courses for Mechanical and Production Engineers and to design and develop new laboratory equipment for use over a wide range of courses.
Interested persons wishing to discuss the post informally should contact Dr. R. E. Schofield on Leeds (0532) 462743

Salary £4,683-£8,055

A Union membership agreement in operation.
Details from:
The Services Officer, Leeds Polytechnic, Calverley Street, Leeds LS1 3HE. Tel. 0532462355.
Closing date: 7th November. 1980. Please enclose s.a.e.

Technicians in
 Communications

GCHO We are the Government Communications Headquarters, based at Cheltenham. Our interest is R \& D in all types of modern radio communications - HF to satellite - and their security.

THE JOB All aspects of technician support to an unparalleled range of communications equipment, much of it at the forefront of current technology.
LOCATION Sites at Cheltenham in the very attractive Cotswolds and elsewhere in the UK; ofportunities for service abroad.
PAY Competitive rates, reviewed regularly. Relevant experience may count towards increased starting pay. Promotion prospects.
TRAINING We encourage you to acquire new skills and experience.
QUALIFICATIONS You should have a TEC Certificate in Telecommunications, or acceptable equivalent, plus practical experience. HOW TO APPLY For full details on this and information on our special scheme for those lacking practical experience, write now to Robby Robinson, Recruitment Office, GCHQ, Oakley, Priors Road, Cheltenham, Glos. GL52 5AJ, or ring 0242-21491 ext 2269.

Inner London Education Authority LEARNING MATERIALS SERVICE Television Centre, Thackery Road London SW8

HEAD OF SOUND (ST4)

The television centre produces a range of educational programmes distributed in the form of 16 mm film, videocassettes and sound cassettes. The sound section of five members works with professional equipment (Neve, Studer, Sandor, ITC, etc.) to provide an audio component of high standard
The head of sound will lead the section and also to mix and process many of the programmes. He /she will be responsible for training new staff, and with the Chief Engineer and others will also undertake responsibility for the equipment and for its purchase and maintenance
Applicants should have suitable theoretical qualifications with significant relevant experience at senior level. A good working knowledge of all sound operations associated with television and film is essential.
Salary is with in the scale $£ 8756.64$ to $£ 9593.64$
Further information and application forms available from the Education Officer (EO/Estab. IC), Room 365, I.L.E.A. The County Hall, London SE1 7 P,B. Telephone 01-633 7456.

APPLICATIONS ENGINEER

MICRO-SYSTEMS AND DATA ACQUISITION COMPONENTS

```
c £8,500 + BONUS
```

A unique opportunity for a young engineer to move to the challenging world of commercial electronics, while maintaining that valuable "hands-on" aspect of design.

The assignment is to assist the sales team in solving "before and after' technical problems, liaising with the U.S. parent company, and customers in the U.K. and Scandinavia

Candidates must have at least HNC (BSc. preferred) with design experience in analogue and digital circuits. Help with familiarisation of product will be available. The position would be well suited to someone in their mid-twenties

The company is a leader in the field of data acquisition components and analog I/O boards. A new range of microprocessor based systems for such markets as ATE and process control, bring the need for a capable designer wanting to be associated with a successful company

Benefits include: 4 weeks' holiday; Free Medical Scheme and Life Assurance; Pension Scheme. Phone or write to:

BURR-BROWN INTERNATIONAL LTD. WATFORD (O923) 33837

CASSIOBURY HOUSE, 11-19 STATION ROAD WATFORD, HERTS. WD1 1 EA

TRENT POLYTECHNIC LECTURER GRADE II/ SENIOR LECTURER IN ELECTRICAL/ELECTRONIC ENGINEERING
 [£6012-£10539 (Bar) - £11295]

Candidates will be concerned with the teaching of:
a) Electrical/Electronic Engineering in Mechanical and Production Engineering diploma and degree courses
b) Digital electronics
c) General Electrical and Electronic Engineering.

Relevant industrial experience with an appreciation and/or experience of computer engineering to some branch of electrical/ electronic engineering: preferred.

Further details and form of application from: The Assistant
Director (Administration), Trent Polytechnic, Burton Street,
Nottingham NG 1 4BU. Forms to be returned as soon as possible

LOUGHBOROUGH UNIVERSITY OF TECHNOLOGY. TECHNICIAN. APplications are invited for a new post in the Depariment of Computer Studies. Applicants should be qualified to Higher National or equivalent level and have some experience in the field of microprocessors, electronics. or digital systems. Salary on grade 5 scale £4.776-f5.577 per annum. Application forms are available from the Head of Computer Studies, University of Technology, Loughborough, Leics LE11 3TU

MARINE ELECTRONICS ENGINEER able to deal with all aspects of installation and repair within this wide range of equipment. Must live in London. Previous experience. Telesonic Marine Lid, $60 / 62$ Bruns. wick Centre, London WC1. 01-837 4106.
broadcast Engineers, $£ 16,000$ neg. Permanent positions overseas. Tax free salaries, first class accommodation and conditions. Apply: SPS EXECUTIVES (Ref 1726), Recruitment Consultants, Delme Court, West Street, Fareham, phone (0392) 235611/236857' (597

TESTERS, TEST TECHNICIANS. TEST ENGINEERS. Earn what you're really worth in London you're really worth in London
working for a Wordd iLeader in working for a World Leader in Radio \& Telecommunications. Phone Len Porter on $01-874{ }^{7281}$ or write.
REDIFON TELECOMMUNTCATIONS REDIFON Troomhili Road Wandsworth London. SW18 Road, Wandsworth.
(985

HF/VHF Radio

Substantial benefits

A highly successful company on the South Coast is seeking high calibre, commercially oriented, Graduate Electronic Engineers to form the nucleus of a nelw team involved in development work on an exciting new generation of tactical radio communications equipment.

The standards are high but then so are the rewards. In particular we are looking for the following men or women.

CHIEF ENGINEER

A position that combines technical expertise with considerable managerial skills, in leading and directing a team of Design Engineers working with the most sophisticated techniques in radio communications applying advanced integrated circuit technology. Candidates must be honours graduates with a number of years post graduate development experience.

TECHNOLOGY SPECIALIST

Reporting to the Chief Engineer you should be an Electronics graduate with a minimum of six years experience of circuit design with a wide ranging knowledge of modern semi-conductor and thick film IC's, preferably covering both RF and digital applications.

SYSTEMS CO-ORDINATOR

Co-ordinating and preparing technical proposals, specifications and tender bids for new development programmes, this position calls for considerable communication skills and commercial acumen. Applicants should be Electronics graduates with at least 10 years relevant experience.

Salaries of up to $£ 10,500$ and beyond are offered plus an excellent benefits package including BUPA membership and generous relocation assistance. Opportunities for further advancement are very good indeed.

Telephone Rod Evans.

Harrison Cowley Executive Selection

35 Queen Square, Bristol BS1 4LU. Tel. 0272213151 (24 hr.answering service).

The Institut for Radio Astronomy in the Millimeter Wavelengths (IRAM) is interested in employing

RADIO FREOUENCY ENGINEERS
 (VC12/JC)
 and
 TECHNICIANS

to work at Grenoble (France) on intermediate frequency systems (up to 2 GHz) for fitter and correlator spectrometers

Candidates with relevant experience should send a résumé by 30 September, 1980, to:

INSTITUT DE RADIO ASTRONOMIE MILLIMETRIQUE, (1.R.A.M.), Administration, B.P. 391, 38017 GRENOBLE CEDEX, Frnace.

LEEDS CITY COUNCIL

Department of Education

Leeds Polytechnic - School of Humanities \& Contemporary Studies

SENIOR TECHNICIAN
 (Ref. 150/2)

T3/4£4581- $\mathbf{5 7 8 4}$ (plus technician qualification allowance).
Responsible for the care and operation of two psychology laboratories. Dusies will include the design, construction, repair and maintenance of electronic and laboratory equipment.
Ideally applicants might hold a City \& Guilds Technician Certificate in Electronics or equivalent qualification, although relevant practical experience is equally important, and design and general engineering abilities are desirable

Application forms, quoting reference number, from the Administrative Services Officer, Leeds Polytechnic, Calverley Street, Leeds LS 13 HE.

Classified

148

Inner London Education Authority
Learning Materials Service
Television Centre, Thackery Road, London, SW8

television camera OPERATORS ST1/2

The Television Centre produces a range of educational programmes distributed in the form of video cassettes, sound cassettes and 16 mm film. It has a colour studio equipped to professional standards (Link 110 cameras, Cox mixer, Neve sound mixer, Ampex VPR2s etc.), a mobile unit and a battery portable camera

Vacancies exist for television camera operators who work principally in the studio but may be expected to assist in a monochrome training studio, in tocation video recording, and in the mobile unit. When not required to work with cameras, the operators would be expected to be attached to other technical sections so a general interest in the technical side of television is highly desirable.

Applicants should have had some form of formal training together with practical experience, though consideration will be given to those who lack the latter

Salary is within the scale $£ 5,072$ to $£ 7,631$. Progression up the scale to $£ 6,818$ is by annual increments subject to satisfactory performance. Progression beyond that point is dependent on a positive assessment.

Further information and application forms available from the Education Officer (EO/Estab. 1C), Room 365, I.L.E.A., The County Hall, London SE1 7PB. Telephone 01-633 7456.
(729)

Queen mary college
 University of London
 ELECTRICAL \& ELECTRONIC
 DIGITAL SYSTEMS ENGINEER

required as soon as possible to take charge of the Digital Systems Laboratory. The principal responsibility of the successtu candidate will be to help and advise matters concerning desigr, and develop ment of digital systems, particularly in the field of microelectronics. The Digital Systems Engineer will be expected to lead and supervise the microprocesso laboratory. Experience in the design and maintenance of digital electronic equip ment essential. Salary on scale (under
review) $£ 5.505 . £ 9.595$ p.a $+£ 967$ review) $£ 5.505-£ 9.595$ p.a. $+£ 967$ Londor, giving age, qualifications, by perience and names of two referees to The Secretary, Queen Mary College, Mite End Road, London ET 4NS
(744)

Shoredit BRUNEL UNIVERSITY EDUCham, Surrey

\section*{Gmaos

Gmaos
 ELECTRONICS SERVICE

 TECHNICIANrequired to service and assist in the operation of all forms of Audio Visual and Video equipment.
The successful candidate will have a minimurn of ONC or TEC in Electrical and Electronic Engineering and experience in servicing electronic equipment. He/she will be able to work easily with students and staff and be prepared to give advice where needed.
Four weeks' annual leave plus additional days during vacation periods. Day-release for further studies may be available to suitable candidates
Salary within the scale £4756-E5422 inclusive of London Weighting (under

review).

Write for application form to the Estabsity, Uxbridge, Middiesex, UB8 3PH or telephone Uxbridge 37188 extenor teley.
mion 49.

UNIVERSITY OF LIVERPOOL DEPARTMENT OF BIOCHEMISTRY

ELECTRONICS TECHNICIAN GRADE 5 or 6

To service a wide range of electronic instruments and to design and build apparatus for research and teaching. Electronic experience and ONC. HNC or equivalent qualifications are essential. Salary Grade 5 (£4776-£5577) or Grade 6 (£5478-£6543) according to qualifications and experience
Application forms from the Registrar, The University, P.O. Box 147. Liverpool L69 3BX. Quote ref. RV/581/WW
(739)

CHELSEA COLLEGE University of London
 ELECTRONICS TECHNICIAN

required for prototype developmen and experimental work in Electronic Research Laboratories. The main areas of research are Digital Com munication Systems, Mircowave Techniques, Semiconductor Devices and Signal Processing. Our vacancy is at Grade 5 , salary $£ 5,556$ to $£ 6,357$ p.a. inclusive (under review), and at this grade. Relevant experience is essential. Well-qualified candidates with less experience may be considered for appointment at a lower grade with day-release for approved study. Further details and application form from M. E. Cane (5ER), De partment of Electronics, Chelses College, London, SW6 5PR.

ARTICLES FOR SALE

Whth 38 yoars' oxpprience in the deaign and manufacturing of several

 AUDID FREQUENCY TRANSFORMERS OF EVERY TYPE YOU NAME IT! WE MAKE IT!OUR RANGE INCLUDES
Microphone transformers (all types). Microphone Splitter/Combiner, ransformers. Input and Output transformers. Direct Injection transformers for Guitars, Multi-Secondary output transformers. Bridging transformers, Line transformers, Line transformers to G.P.O. Isolating Test Specification Tapped impedance matching transformers, Gramophone Pickup transformers, Audio Mixing Desk transformers fall tvpes\}. Miniature transformers, Hicrominiature transformers for PCB mounting. Experimental transformers. Ulra low frequis trancrs for PCB mounting. Experimental transformers, Uitra low frequency Iransformers. Ultra linear and other fransformers for Valve Amplifiers up to 500 watts. Inductive Loop Transformers. Smoothing Chokes. Filter inductors. Amplifier to 100 volt line transformers (from a few watts up to 1000 watts), 100 volt line transformers to speakers. Speaker matching transformers (all powers). Column Loudspeaker transformers up to 300 watts or more.

We can design for RECORDING QUALITY, STUDIO QUALITY, HI-Fi OUALITY, OR P.A. QUALITY. OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch mes are short and sensible

OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS, BAND GROUPS. AND PUBLIC ADDRESS FIRMS. Export is a speciality and we have overseas clients in the COMMONWEALTH E.E.C., USA, MIDDLE EAST etc

Send for our questionnaire which, when completed, enables us to pos quotation by return.

SOWTER TRANSFORMERS

E. A. SOWTER LTD. (Establishod 1941), Reg. No. England 303990 The Boat Yard, Cullingham Road, Ipawich IP 1 2EG Suffolk. P.O. Box 36 Ipswich IP1 2 EL, England Phone: 0.473 $52794 \& 0473219390$

PEST EQUIPMENT. Well-established trading company seeks new cus tomers, particularly from overseas. We are bulk suppliers of used elec. tronic test equipment to the trade, e: signal sources, analysers, bridges, scopes, sweepers, counters, re, Parts, D. Whare or part parcels available. Carriage and shipping can be arranged. State your requirements. Terms negotiable. Also interested in purchasing parcels of anything electronic, radio, etc, speedy quota-
tions, and immediate cash settletions, and immediate cash setteSERVICES, Ramalla House, Ancton Lane, Middleton-on-Sea, Bognor Regls, Sussex PO22 6 NJ . Tel 024-369 2849 (654

PCB CONSUMABLES. SRBF PANELS SS only 3 in x 3in (packs of 8)

 $105 \mathrm{p}, 12 \times 7$ (1) 105 p, Dalo Pen
105 p , Cleaning Block 90 p , PRE$105 p$ Cleaning Block 90 p PRE-
SENTISED BOARD FR4 Positive Resist Light protected 4 in $x 61 n$ (packs of 4) SS £3.96 DS $£ 4.32$
 Metal Labels $10 \mathrm{in} x 12 \mathrm{in}$ (10) $\begin{array}{ll}\text { Metal } \\ \text { £31,63, Plastic Labels } 10 \times 12 \mathrm{in} \\ \mathrm{x} & 12 \\ \text { (10) }\end{array}$ £31,63, Plastic Labels 10×12 (10) £14.37, Reversal Fim I21n X CSC BREADBOARDS EXP $650 £ 5.00$, EXP 300 £7.76. All price INCLUDE VAT and postage Cheques to LINTON LABORA. TORIES LTD., SCRIBEMASTER HOUSE, WEST WICKHAM, CAMBS CBI 6RY. Tel: 022-029 589. ACCESS and BARCLAYCARD welcomed Official orders accepted on list plus VAT and actual P\&P basis. Senc SAE for full list and details of postage rebate scheme

COMP-80 computer $£ 200$; UK101 £180. Both assembled. Teletype KSR33 £250, Eastwood, 01-874 1856 or Byfleet 79498 (evening).

ELECTRONIC TESTING \& FAULT DIAGNOSIS

by G. C. Loveday Price: $\mathbf{£ 5 . 5 0}$ DIGITAL TECMNIQUES \& SYSTEMS by D. C. Green Price: $£ 5.50$ ELECTRONICS FAULT DIAGNOSIS by I. R. Sinclair

Price: $£ 3.50$ ELECTRONIC DESIGNER'S H/B by K. Hemingway

Price: 113.50 HANDBOOK OF ELEC TRONICS CALCULATIONS FOR ENGINEERS \& TECH NICIANS by M. Kaufman

Price: $£ 14.70$ H/B OF MICROCIRCUIT DESIGN \& APPLICATION by D. F. Stout. Price: $£ 19.20$ UNDERSTANDING MICROPROCESSORS by Texas Inst

Price: $£ 4.00$ INTRODUCTION TO MICROCOMPUTER PRO. GRAMMING by P. C. Sanderson. Price: £4.50 THE COMPLETE MICRO COMPUTER SYSTEMSH/B by E. L. Safford. Price: $£ 8.25$ TOWERS' INTERNATIO. NAL TRANSISTOR SELEC TOR by T. D. Towers, 1980.

Price: £10.50
ALL PRICES INCLUDE POSTAGE'

THE MODERN BOOK CO.

Specialist in Scientific
\& Technical Books
19-21 PRAED STREET LONDON W2 1 NP Phone 402.9176
Closed Sat. 1 p.m

THE SCIENTIFIC WIRE COMPANY

emamelled Copper wire				
SWG		. 8 az.	402.	202.
8 10 29	2.76	1.50	. 80	. 60
30 to 34	3.20	1.80	. 90	. 70
35 to 40	3.40	2.00	1.10	. 80
41 to 43	4.75	2.60	2.00	1.42
47	8.37	5.32	3.19	2.50
48 to 49	15.96	9.58	6.38	3.69

SILVER PLATED COPPER WIRE $\begin{array}{llll}6.50 & 3.75 & 2.20 & 1.40\end{array}$
$141030 \quad$ TMMED COPPER WIRE
Prices factude P8P. VAT and Wire 0 ati
SAE for list. Dealer enquiriss walc ome.
Reg onice: 22 Coningsby Gardens.
(9063)

TIME EXACT?

MSF CLOCK is ALWAYS CORRECT -switch-on, 8 digits show Date, Hours and Minutes for easy QUICK-GLANCE time, auto GMT/BST and leap year, also paraliel BCD output and audio to record and show time on playback, receives Rugby 60 Kz a km plane signals, buils-in antenna, OKHZ
KHz RUGBY RECEIVER, as in MSF L.F.? 10-150 KHz Receiver $£ 13.70$ Each fun-to-build kit includes all parts, printed circuit, case, postage etc.
back assurañce so GET one NOW. Cambridge Kits, 45 (WL) Old School Lane, Mifon, Cambridge

SPECIAL

 PURCHASE TEMP GAUGES $0^{\circ}-120^{\circ}$ COMLY Remote Sensor on $38^{\prime \prime}$ (inc. P\&P. 55 mm hole. Adjusimen screw on back.

ESM
 LEM SERVICES 238 Rugby Road Leamington Spa Warwicks $0926-3062$

${ }^{2000}$

BUILDING RAMS?

Why waste time hand-wiring RAMS? This
5.3×2.5 inch professional plated thru PCB 5.3×2.5 inch professional plated thru PCB mounts on your prototyping board, looking like an BK byte TL compatible static RAM. 13 address lines, 8 data $1 / 0$, write enable, 2 gand 1 positive card selects. Assembled with sockets, pins and caps, just
plus in 162114 s and 174 LS 138 E21. Bare board E15. no VAT. post paid.
P. G. Hinch, 56 H Norris Hill Drive

Neaton Norris, Stockport. Cheshire

FT101 VALVES

As used by Yaesu in production. Manufac-
ture now ceased. stock up while you can 6JS6C Tosh. £18 pr. 6JS6C NEC £ 10 pr. 12BY7A Tosh. £6 each. 12 BY7A NEC £3 each. Inc. VAT. post 50 p order. Leaflet Also 61468 GE as fitted FT901/FT101ZD £ 15.50 pr. post paid.

HOLDINGS LTD.
BLACKBURN BB2 2AF
Tel: (0254) 59595

INPUT/OUTPUT MODULES

Interface directly with MPU/P10 rsatile. Low cos

G.T. ELECTRONICS
 2 Rufford Ridge, Yeadon, Leed
 W. Yorks. Tel. (0532) 506545

TO MANUFACTURERS, WHOLESALERS \& RIILK BUYERS ONLY
 Large quantities of Radio, r.V. and Electronic Compinents.

RESISTORS CARBON C/F1/8, 1/4, 1/2,1/3. 1 Watt from 1 ohm to 10 meg
RESISTORS WIREWOUND. $11 / 2,2,3,5,10,14,25$ Watt,
CAPACITORS. Silver mica, Polystyrene, Polyester, Disc Ceramics, Metalamite, C280, etc
Convergence Pots, Slider Pots, Electrolytic condensors, Can Types, Axial, Radial, etc.
Transformers, chokes, hopts, tuners, speakers, cables, screened wires connecting wires, screws, nuts, transistors, ICs. Diodes, etc., etc. All at Knockout prices. Come and pay us a visit. Telephone 4452713 4450749

BROADFIELDS \& MAYCODISPరSALS
21 Lodge Lane, M. Finchley, London, N. 12.5 mins. Irom Tally Ho Corner \qquad

SURPLUS - BRAND NEW PRESSURE TRANSDUCERS

ange: Includes Transducer and Demodulator Amplifier instrumentation quality
 Centigrade. Dims: $1.25^{\prime \prime}$ dia $\times 5^{\prime \prime}$ (Transd); $3.75^{\prime \prime} \times 4.5^{\prime \prime} \times 2.25^{\prime \prime}$ (Demod).

FOR QUICK SALE: E95 PER SET @ 65 OFF: £ 100 PER SET @ 10 OFF
CAPE ENGINEERING CO. LTD.
ape Road, Warwick CV34 50 L

CLEARANCE PARCELS: Transistors, resistors, boards, hardware, 101bs
 171, BC 204, BC 230 ; $2 \mathrm{~N}, 5061$, CV7497 Transistors, $10-70 \mathrm{p}$, 100 -
 S.a.e. lists: W.V.E. (3), $15 \underset{\text { (4igh }}{\text { Street, Lydney, Glos. }}$

ENCAPSULATING, colls, transformers, components, degassing, sillcone rubber, resin, epoxy, Lost wax casting for brass, bronze, silver, etc. Impregnating colls, trans-
formers,
components. Vacuum equipment low cost, used and new. Also for CRT regunning met allising. Research \& Development.

BUILD YOUR OWM LASERS. FUll plans and instructions on how to construct three fully working lasers: Pulsed dye, Argon and Hellum - neon, at a fraction of the cost of a commercially produced device. All parts avallable. Send $£ 4.95$ plus 25 p P\&P to A. V. Services, 10 Agecroft Road West,
Prestwich, Manchester $\begin{aligned} & \text { M25 } \\ & \text { 8RL. }\end{aligned}$. Prestwich, Manchester M25 8RL.
Also Laser Scanning Systems. Send Also Laser Scanning Systems. Send
for literature.

VERO IGIN CARD FRAMES, as new. height 50. Suit Nascom/Newbear. $\begin{array}{lll}\text { Case and } \\ \text { Tel. } 04895 & \text { extras } & 5355 \\ \text { detalls. }\end{array}$

TELETYPES. ASR33 printer with RS232 serial interface, ASC11 keyboard etc. 3 brand new and boxed $\begin{array}{ll}\text { manuals } \\ \text { Cotter, } & 01-689 \\ \text { each. } & 0441 .\end{array}$

TONNA (FGFT) amateur antennas for $2 \mathrm{~m}, 70 \mathrm{~cm}$ and 23 cm bands. Send 30 p for full catalogue. RAN. DAM ELECTRONIGS (WW), 12 Conduit Road, Abingdon, Oxon,
1D3,
$\cdot(759$ 1D3.

SMGI FM STEREO TRANSMISSION test generator, RF output, FOC standard, radiometer Copenhagen, excellent condition, handbook, ${ }^{8} 376$.
Tol 01650 388.
AMAZING ELECTRONIC PLANS: Lasers - burning, cutting, rifle, Fight shows. Ultrasonic Force Fields - weaponry satellite, T.V. giant tesla, split the atom; lots
more. Catalogue 75 p , Centre, St John Street, Bridgnorth.

RACAL
MA-259-G
secondary certificate. $£ 595$. New wilth test 0602-397446 evenings
TEKTRONIX 465 oscllloscope 5985. Fluke DMM 8000 A E115. Fluke 8020 £75. HP5314 universal counter (unused \boldsymbol{y}, 100 MM2/100 AS $£ 135$. Ann Arbour R1632 video controller £95. - Box WW 754.

TEKTRONIX OSCILLOSCOPES in tiptop condition, re-calibrated with handbooks, 535A 1135 , 545B £180, CA s60, 1A2 2120. All prices in(0202) 291481 .

FOR SALE. SOLARTRON CDI4OODB. SCOPE. DC to 15 megs, good cond. manual. f115 ono. - Tel. Woodseaves (Staffs) 388.
PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolak Light Sensitive Lacquer - now greatly improved and very much faster. Aerosol cans
vith full instructions,
w2.25. Developer 35 p . Ferric Chloride 55 p. Clear Acetate sheet for master 14p. Copper-clad Fibre-glass Roard approx. 1 mm thick $£ 1.75 \mathrm{sq}$. ft Post/Packing 60. - White House Electronics, Castle Drive,
Sands, Penzance, Cornwall.
PYE SSB170 12V 4 channel $2-9$ megs ${ }^{20 W}$ output, ex works, unused QTY 8. Radio alert chargers, AC250 mains at $8 \mathrm{~m} / \mathrm{a}$. $£ 5.50$. Pocketfones PFI, TX and RX with circuits $£ 21-£ 25$. Car adaptor receiver plugs in battery is charged and output taken to 3 watt am-
plifier into 3 ohm speaker (not plifier into
supplied)
$£ 8.50$. Chm speaker (not
Chargers for 12 of suppilied) 88.50 . Chargers for 12 of each battery $£ 17$. Other Pye RT
equipment in stock, phone or write equipment in stock, phone or wrom-
for detalls. Atalanta ships comfor details. Atalanta ships Marcomi munications
special offer
feceiver 65
each, as from ship, complete but untested £115, tested and adapted for AC mains, carriage at cost approx f15. Avo Mk II £32. AVO meter No 1, scaled 0-1004 and $0-30$ €15. Heterodyne frequency meter BC 221 \&23.50. Pneumatic mast by 221 i23.50 Pneumatic mast in unopened maker's pack £345. Delivery by arrangement. We have a constantly changing stock and we are worth a visit. No lists. G.W.M. Radio Ltd., $40 / 42$ Portland Road
Worthing, Sussex. Tel 0903
34897 Worthing, Sussex. Tel $0903 \quad 34897$.

TELETEXT, TY SPARES \& TEST EQUIPMENT. TELETEXT, Latest MK2 external unit kit incl. Mullard demote control 258 and inira-red remote control $\mathrm{f} 258, \mathrm{p} / \mathrm{p}$ f 2.50 (furexternal unit kit incl. Texas XM11 decoder special offer price $£ 168$ p / p £2.50. Both kits incl. UHF modulator, and plug into TV set aerial socket. SPECIAL OFFER TEXAS XM11 Decoder, new and tested, limited quantity at price, £65, p/p $£ 1.40$. Stab. power supply (5v) for Teletext decoders, $£ 5.80$, p/p ${ }^{\text {fi. Thorn design XM11 inter- }}$ SAW FILTER IF AMP PLUS TUNER (complete $\&$ tested for sound \& BAR \& CROSS HATCH GENERATOR KIT (MK4) PAL, UHF aerial input type, ${ }^{8}$ vertical colour bars trols $\mathfrak{\text { f35}}$. Batt holders $£ 1.50$ grey con mains power supply kit $£ 4.80$ stab luxe case $£ 5.20$ or alum. case $£ 2.90$ p/p f1.40. Bullt \& tested in De-luxe case (battery) £58, p/p £1.50. put type also gives peak white black levels, batt. op. $£ 11, \mathrm{p} / \mathrm{p} 45 \mathrm{p}$. p/p 35p. De-luxe case $£ 5.20$ HHF IGNAL STRENGTH METER KIT case 55.20 , p/p case $£ 1.40$. ${ }^{\text {CRT }}$. De-luxe case 55.20 D/p 11,40 . CRT TEST \& mono £22.80, p/ip f1.70. THORN 9000 Touch Tune Remote control ecelver unit plus transmitter 000 Fascia incl p f1.40. THORN ndicatorcia incl. channel select.
 TRANSTD. Tested $£ 6.80$ ND BUSH SURPLUS IF PANELS. AB16 1.80, TV312 (single I.C.) f5, 2718 BC6100 £5, A823 (Exp) £2.80, p/p 5p. BUSH 2718/BC6100 Line Time Base Panel 2904, incl. LOPT, EHT tick. Focus, etc., 181 in or 22 in , $£ 15$ p/p 1.60 BUSH 161 series TB panel A634 £3.80, p/p £1.20. DECCA 3.80, p/p 11.40 . GEC Power supply
 anel 64 p/p 90 p . GEC 2040 CDA 6 S/S conv, p/p 1.20 . PKNLIPS 68 Decoder panels for spares $£ 1.20$ \% 1 p 120 G9 Stral pares p/p 11.20 . G9 THORN 3500 Line TB pal 55 1. 30000 ex tine panels IF Vid DECODER 55 p/p f1 20 8000/8500
 ine TB (incl LOPT) 7.50, p/p $£ 1.60$. COLOUR SCAN CoILS (Mullard or Plessey) 66 £1.80. Yoke $£ 2.50$, p/p $£ 1$. Blue La 5p, p/p 35p. Mono scan Coils (Thorn Philips, Pye) £2.80, p/p f1. AR11 £7 80 ELC1043/05 £5.50. G.I. 3.50. Salv. (asstd) $11.50, \mathrm{p} / \mathrm{p} 45 \mathrm{p}$ aricap UHF/VHF ELC2000S $£ 8.50$ Bush (dual) f7.50, p/p 70p. TOUCH TUNE CONTROL units, Bush (OS) $£ 4.50, \mathrm{p} / \mathrm{p} 80 \mathrm{p}$. VARICAP CON TROL UNITS 3 pos. $£ 1.20,{ }^{4}$ pos. os. spectal f1.80 6 pos. 11.80 , 6 ranstd. Tuners (rotary) 45p. UHF rive $£ 2.50,4$ pos. $\mathrm{P} / \mathrm{B} £ 2.50,6$ /B $£ 4.20$, pos. P (22.50 , 6 pos vailable, p/ptails. (Specral types avaitable, detalls on request) DL50 Delay Line 82.50 , p/p 50 p Mains Droppers, and other spares or popular makes of colour mono receivers. PLEASE ADD 15° VAT TO ALL PRICES. - MANOR SUPPLIES 172 WEST END MANE WEST HAMPSTEAD, LONDON N.W.6. SHOP PREMISES. Tel, 01 794 8751. Easily accessible W Hampstead Jubilee Tube \& Brit all N. London (Richmond-Broad st.) and St. Pancras-Bedford. Buses 28, 159, 2, 13. Callers welcome Thousands of addytional items no normally advertised available at shop premises. Open daily all week ncl. Saturday (Thursday half day). MAIL ORDER: 64 GOLDERS MANOR DRIVE, LONDON NW11 9HT PLEASE ADD 15% VAT to al prices.
LAB CLEARANCE: Signal Gener ators; Bridges; Waveform, transistor analysers; calibrators; standards; millivoltmeters; dyna mometers; KW meters; oscilloscopes; recorders; Thermal, sweep. deviation. Tel. 040-3762se. (8250

Classified

CIRCOLEC

THE COMPLETE ELECTRONIC MANUFACTURING SERVICE
Let us realise all or any part of your project from prototypes to production, from artwork design and component sourcing, through assembly and test to final quality assurance, packing and delivery We also provide a test, repair and modification service to suit your individual requirement
For competitive prices and fast turnaround contact
CIRCOLEC, 1 Franciscan Road, Tooting, S.W. 17
Telephone: 01-767 1233

SAVE TIME!

PRINTED CIRCUIT BOARD NTERNATONAL EAST TURNAROUN:

- PTH boards in 3 days.
- Conventional boords in 24 hours. - Artwork service.
- Protorype assembly
- Volume assembly in our plants in he

AEC Mkroetecthology Tunnern Drve. Blatelindts.
 TEL: 0908611086

ABC

MICROTECHNOLOGY

PCB DESIEN and
 MRNLFRLTLRE

Design of artworks from single sided to multilayer - Precision photography Manulacture - 48 hour turnround on prototypes Component assembly C] ENGINEERING LTD

PROTOTYPE PCB's

[Fibreglass]
from your 1:1 positive artwork. 5 HOUR RETURN POST SERVICE FOR MAIL ORDER $50 p / \mathrm{sq}$ inch $+1 \mathrm{p} /$ hole drilling, minimum order £5 + VA
CLACTON ELECTRONICS
(0255) 27505
$54 / 56$ Meredith Fosd, Clecton, Essex

EURO CIRIGUITS
Printed Circuit Boards - Master layouts - Photography - Legend
printing - Roller tinning - Gold printing - Roller tinning - Gold plating - Flexible films - Conventional fibre glass - No order too large or toa

small - Fast turnround on prototypes.
All or part service available Now?
1060°

EURO CIRCUITS TD.
Highficld House
West Kingsdown
Mr. Sevenoaks, Kent.
WK2344
ALTRONIC SYSTEMS LTD. Alarm systems designed and manufaclured to your requirements. Free Tel Ansafone $07073{ }^{\text {estimate }}$ obli

PRINTED CIRCUIT MANUFACTURE. Very fast, reliable service. Lowest prices. Prototypes welcome. Inhouse photography. Phone 06474-573 for instant quote or write to AKTRO NICS Ltd., 42/44 Ford Street, More tonhampstead, Devon.
(9857

SMALL BATCH PCB's produced from your artwork. Also olals PANELS, LABELS. Camera work undertaken. FAST TURNAROUND. - Details: Winston Promotions, ${ }^{\text {B }}$ Hatton Place, London EC1N 8RV Tel. 01-405 4127/0980. (9794

DESIGN SERVICE. Electronic Design Development and Production Service available in Digital and Analogue Instruments, RF Transmitters and Receivers for control of any function at any range. Telemetery, Video Transmitters and Monitors, Motortsed Pan and Thit teads etc. Suppliers to the industry or 18 years. Phone or write Mr. ay Road . . ey Road, Ashiord, Middlesex

ELECTRONIC DESIGN SERVICES. MICROPROCESSOR HARDWARE and MICROPROCESSOR HARDWARE and now been added to our established now been added to our established facilities previously available to you for ANALOGUE and COMMUNICATIONS designs. - For fastest results please phone Mr. Anderson, results please phone Mr. Anderson, Back, Seale (nr. Farnham), Surrey 02518-2639
P.C.B. PROTOTYPE and small batch production. Design layout, assem bly and testing. Fast, relible ser vice. Wye Valley Electronics, 15 (0594) ${ }^{\text {Lt }}$ Lyaney, Glos. Tel. Dea

PRINTED CIRCUIT BOARDS. Single double sided from circult diagrams Any intermediate stages at manu. Any intermediate stages at manu round on prototypes. Phone Maldon (0621) 741560 or write to Mayland Electronics, 4 The Drive, Maylandsea, Chelmsford, Essex CM3 6AB.

EPETITION SHEET METALwORK on Wiedemann turret press. Long short runs. Highly competitive. Quick dellveries commission for introductions. - EES Ltd. Clifford Rd., Monks Rd., Exeter 36489. ${ }_{(8060}$

ARTICLES FOR SALE

THINKING OF RENTING

A TELEPHONE
ANSWERING MACHINE? THEN STOP!

Did you know that for the equivalent of just one year's rental you could actually buy one outright?

For details write to
Javal Supplies Lid. (Dept. 2C). 120 Alexandra Road, Burton-onTrent, Staffs DE16 OJB or telephone (0283) 47427 any time.

g月9 TRAI FAST PCB PROTOTYPES

SAMEB DAY IEESPATCH

Prototype epoxy glass printed circuit boards up to $\mathbf{2 5 0 m m} \times 200 \mathrm{~mm}$ from your camera ready artwork.
Up to $125 \mathrm{~mm} \times 100 \mathrm{~mm}-\mathbf{8 1 8}+\mathrm{VAT}$ per side etched only. drilling $\mathbf{E 5}+\mathrm{VAT}$ Op to $250 \mathrm{~mm} \times 200 \mathrm{~mm}-\mathbf{\varepsilon 2 4}$ +VAT per side etched only, drilling $\mathbf{E 1 0}+$ VAT Send your ordar with artwonk, cheque and instructions-orders received by 10 a.m
guaranced despaiched first ciass same day etched only (next day erched and drilled) or your money relunded, subject to acceptance of artwork.

1 A AUSTERFIELD-CLARK RESEARCH. Tel. 048448016 42 Blackhouse Road, Huddersfield HD2 1AR
 (625) WW - 093 FOR FURTHER DETAILS

TUBE REBUMLDING PLANTS PROCESS, all TV tubes can be seen in peration. They can be installed internationally at the best price: 554 Statford Road, Birmingham $B 11$ AAL.

DESIGN AND DEVELOPMENT. ANALOGUE, DIGITAL, RF AND MICROWAVE CIRCUIT AND YSTEM DESIGN. Also PCB design, mechanical design and prototype/ small batch production. - Aden more Limited, Unit 103 Liscombe, Bracknell, Berks. Tel: Bracknell 52023.
(656

SHEET METAL WORK fine or general front panels chassis, covers, boxes, prototypes. 1 off or batch work fast turnround 01-449 2695. M. Gear Ltd,
Road, New Barnet, Herts.

FOR ELECTRONIC LNSTRUMENT SERVICE AND CALIBRATION CALL ORION TECHNICAL SERVICE LTD. ON ST ALBAN'S 51639 FOR DE-
TALLS

PCB DESIGNS at competitive hourly rates. Quotes from circuit diagrams etc. Solder resist and tracing at ower rates. Other design work Ltd., Halstead 7408 (Essex). (731
P. C. B. ASSEMBLY. To drawing or sample, large or small quan ities. Electronic design service, P.C. artwork, etc., prototype production. All welcome. Endean ommunications Services, Bailey Mill,
0629
4929.

ARTICLES WANTED

WANTED

Test equipment, receivers, valves, transmit. ters, components. cable and electronic ters, componenks. cable and electronic
scrap, any quantity. Prompt service and cash. Member of A.R.F.A.

M\&BRADIO
86 Bishopsgate Stree Loeds LS1 4BB 0532-35649

WANTED. Marconi Autospecs Mark 2, any condition, preferably in working order. - Phone Aberdeen 723337.

WANTED: Recording equipment of all ages and varieties. (California U.S.A.). Tel. (415) 232-7933. (9814

STORAGE SPACE is expensive, why store redundant and obsolete equipment? For fast and effcient learance of all test gear, powe supplies, $P C$ boards, components, quantities. Call 01-771 9413. (8209

ARTICLES WANTED

WANTED!

all types of scrap and REDUNDANT ELECTRONIC \& COMPUTER MATERIALS
with precious metal content
TRANSISTORS \& PRINTED CIRCUIT BOARDS TO COMPLETE COMPUTERS
THE COMMERCIAL SMELTING \& REFINING Co. Ltd. 171 FARRINGDON ROAD LONDON EC1R 3AL Tel: 01-837 1475 Cables: COMSMELT, EC1 Works: RECKMEY. NT. LEICESTER
(205)

WANTED

ANGLIAN INDUSTRIAL

 AUCTIONSWe sell by auction, all radio and electronic components and equipment. Why not let us sell your surplus and end of production materials. All entries must be received at least 21 days prior to sale.
For entry forms or catalogue of next auction contact
B. BAMBER ELECTRONICS

5 STATION ROAD
LITTLEPORT
CAMBS.,CB6 $10 E$
TEL: (0353) 860185
(263)

DEAD OR ALIVE

SPOT CASH

paid for all forms of electronics equip-
ment and components.
F.R.G. General Supplies

550 Kingston Road, London Tel: 01-404 5011
Telex: 24224 Quote Ref 3165

PCB ASSEMBLY

CAPACITY AVAILABLE

Low or high volume, single or double sided, we specialise in flow line assembly.
Using the Zevatron flow soldering system and on line cutting, we. are able to deliver high quality assemblies on time, and competitively priced.
Find out how we can help you with your production. Phone or write. We will be pleased to call on you and discuss your requirements.

TW ELECTRONICS LTD.

120 NEWMARKET ROAD
BURY ST. EDMUNDS, SUFFOLK TEL: 02843931
Sub-contract assemblers and wirers to the Electronics Industry

SMALL BATCH productions wiring assembly to sample or drawings. Specialist in printed circuits as. sembly. Rock Electronics, 42 Bis. hopsffeid, Harlow, Essex 027933018.
(9094
ELECTRONIC DESIGN SERVICE. Immediate capacity available for circuit design and development and prototype production welcome. and prototype production welcome. MAIDSTONE, Ként. 0622-677916,

BUSINESS FOR SALE

SMALL EAST LONDON BUSINESS,

 specialising in Public Address Sound Installations direct to nondomestic users. Certain amount of manufacturing. Old established, well regarded. Small excellent staff. Box Number 755 .
CIRCOLEC

- (or Electronic/Electro-Mochanicel Assembly. We offor The following vorsalite and quality service for small to large batches.
PCB and Final Assembly, Repairs and Servicing, Inspection and functional Tese. Prototypes and Associated Services, and modffications.
For compelitive prices and last turnaround. coniset Cireolac. Tel: 01.761 1233: 1 Franciscan Road, Tooting.

COMPARE our charges, quality and turnround for printed board artworks, assembly, test and prototype manutacture. Please phone Sharon Halfhide on Chelmsford 357935 or write to H.C.R. Artwork Deslgns, 1 Bankside, off New Street, Chelmsford, Essex. (557

PRINTED CIRCUIT BOARDS. Quick deliverles, competitive prices. Quo. tation on request, roller tinning, drilling, etc. Specialty small batches. Larger quantities availRoad, Carnaby Industrial Estate, Bridington, North Humberside, YO15 3QY. For the attention of Mr J. Harrison. Tel: (0262) 78788. (443,

PCB ARTWORK DESIGN SERVICE With component notation masters and assembly drawings. PADS Electrical Ltd, 01-850 6516, 45 Southwood Road, New Eltham SEg. (7905

TAWAN OFFER PCBs design, manufacture, assembly and elec. tronic components. Specialist in tronic components. specialist in
micropprocessor boards, quick deliveries, lowest prices, reliable services, easy purchasing, small to large batches. - Hu Mou Enterprises Co. Ltd., Room 3, 6th Floor, 306 Kuang Fu S. R'd., Taipel, Taiwan. Cable address: HUMOU Taipel, Taiwan.

I.H.S. SYSTEMS

Due to expansion of our manufacturing facilities we are able to under. take assembly and testing of circuit boards or complete units in addition to contract development.
We can produce, test and calibrate to a high standard digital analogue and RF equipment in batches of tens to thousands
Telephone to arrange for one of our engineers to call and discuss your requirements, or send full details for a prompt quotation.

TEL. 01-253 4562
or reply to Box No. WW 8237
(8237)

BATCH PRODUCTION wiring and assembly to sample or drawings. McDeane Electricals 19b Station Parade, Ealing Common, London, W5. Te!. 01-992 8976.
(169
EQUIPMENT WANTED

TO ALL MANUFACTURERS AND WHOLESALERS
 IN THE ELEGTBONIG RADIO AND TV FIELD
 BROADFIELDS \&
 MAYCO DISPOSALS.

will pay you top prices for any targe stocks of surplus or redundant components which you may wish to clear. We will call anywhere in the United Kingdorn.

21 LODGE LANE
NORTH FINCHLEY, LONDON N12 8JG,
Tislephone Nos. $01-4450749 / 44527134$
Telephone Nos. 01-445 0749/445
After office hours 9587624

Nene College
Northampton

MICROPROCESSOR technology

A range of one-day and three-day courses covering both hardware and software aspects.
Full details on application: Microprocessor Course Tutor School of Technology NENE COLLEGE
St. George's Avenue NORTHAMPTON NN2 6JB (62)

FOR CLASSIFIED ADVERTISING RING EDDIE FARRELL ON 01-261 8508

CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classified Advertisement Dept., Dorset House, Stomford Street, London, SEI 9LU

- Rate $£ 2$ PER LINE. Average six words per line. Minimum THREE lines. \qquad
- Name and address to be included in charge ADDRESS if used in advertisement
\qquad
Box No. Allow two words plus $£ 1$
- Cheques etc. , payable to "Wireless.World" and cross " \& Co.

PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION
NUMBER OF INSERTIONS.

Here's why you should buy an I.C.E. instead of just any multimeter

* Best Value for money.
* Used by professional engineers, D.I.Y. enthusiasts, hobbyists, service engineers. * World-wide proven reliability.
* Low servicing costs.
* 20K/volt sensitivity and high accuracy.
* Large mirror scale meter.
* Fully protected against overload.
* Large range of inexpensive accessories. * 12 month warranty, backed by a full after sales service at E.B.Sole U:K.Distributors Prices from $£ 16.60-\mathbf{£ 3 2 . 0 0}+$ VAT Send for full colour leaflet and prices on whole range including accessories.

ELECTRONIC BROKERS LTD.

61-65 King's Cross Road, London WC1X 9LN Tel: 01-278 3461. Telax: 298694

INDEX TO ADVERTISERS NOVEMBER
Appointments Vacant Advertisements appear on pages 136-151

PAGE PAGE PAGE

Acoustical Mfg	
A.E.L. Crystals	10
Ambit International 25
Antex	64
Airamco	21
Aspen Electronics Ltd	24
Audio Electronics	10, 16
Audix BB	22
Austerfield Clark	33
Bach-Simpson	92
Barrie Electronics Ltd	121
Bell \& Howell	11
Beyer Dynamics	
BIB Hi-Fi	Cover iv
Bi-Pak	102
Breadboard 80	23
Brewster, S \& R	19
British National Radio	78
Bull, J.	... 127
Cambridge Learning	
Caracal Eng	
Carston Electronics Led	4,5
Catronics	119
Chiltmead Ltd	
Circuit Services	33
ClarkMasts Ltd	125
Codespeed Elec	
Colomor	116
Compec UK (VC)	31
Continental Specialities	63
Crimson Elektrik	
Crow of Reading	106
C.T. Electronics.	110
Danavox (GB) Ltd.	18
Display Electronics	124
Doram Elec. 108
Edicron 26
Electrical Times	114
Electronic Brokers Ltd	9, 130, 131
Electronic Equipment	121
Electro-Tech Comps Ltd	118

OVERSEAS ADVERTISEMENT

AGENTS:
France \& Belgium: Norbert Hellin, 50 Rue de Chemin Veat.
F.9100, Boulogne, Paris.

Hungary: Mrs Edit, Bajusz. Hungexpo Advertising Agency. Budapest XIV, Varosliget.
Telephone: 225008 - Telex: Budapest 22.4525
INTFOIRE
Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero. Via Mantegna 6, 20154 Milan
Telephone: 347051 - Telex: 37342 Kompass

Faircrest Eng	
Farnell Instruments Lid	
Feedback Data	
Field Tech	
Forgestone	
Fylde Electron Labs	
G.P. Industrial Elec. Ltd. GMT Electronics Guide to Broadcasting Stations	
Hameg	
Happy Memories	
Harris Electronics (London) Ltd	
Harrison Brothers . 94	
Hart Electronics ... 115,135Henry's Radio 135	
Hi-Fi Y/Book . 106	
I.L.P. Electronics Ltd 100,101	
ILP Transformers Ltd . 30	
Integrex Ltd . 107	
Interface Comps	
Interface Quartz Devices 98	
Keithley Insts. 13, 19	
KGM Electronics	
Kirkham Amplifier	
Lamina 108	
Langrex	
Lascar Electronics	
Lothian Electric Machines	
Lowe Electronics Ltd	
Lyons Instruments	
Maplin Electronic Supplies Cover iii	
Marshall, A. \& Sons (London) Ltd. 110	
Martin Associates	
Microcircuits Ltd.	
Mighty Micro	
Mills, W.	
Minim Audio	
Monolith Electronics Co.	
Multicore Solders Ltd. Cover iv	
Mura Electronics . 135	
Newtronics 117	
Nicholls, E. R.	
OMB Elect!onics	
Orion	
Orme Scientific Equipment Ltd.	

Japan: Mr. Inatsuki. Trade Media - IBPA (Japan). B. 212 Azabu Heighs, 1-5.10 Roppongi. Minato-ku, Tokyo 106 Telephone: (03) 5850581.

United States of America: Ray Barnes, IPC Business Press 205 East 42nd Street. New York. NY 10017 - Telephone (212) 6895961 - Telex: 421710.

Mr Jack Farley Jnr., The Farley Co.., Suite 1584. 35 East Wacker Drive, Chicago, Illinois 60601 - Telephone: (312) 63074.

Mr Victor A. Jauch. Elmatex International, P.O. Box 34607 Los Angeles, Calif. 90034. USA - Telephone (213) 821 8581 - Telex: 18-1059.

Pascal Electronics

P.B.R.A. Ltd.
P.M. Components

Powertran Electronics . $91,93,95$
Practical Wireless 32
Precisin Petite Ltd.
32
24
Quantum Electronics 30
Racal Dana 103
Radio Components Specialists 122
Radio Shack 106
Radio Shack
Rank Radio
R.C.S. Electronics . 123

Roxburgh 110
RST Valves
21. 119

Safgan Electronics
Sandwell Plant Ltd … 33
Sandwell Plant Ltd. 133
Scopex Instruments Ltd. 113
Service Trading . 109
Shure Electronics
36
Shure Electronics
Sinclair Radionics
Softy Ltd.
Southern Electronics
Special Products Ltd.
Strumech Eng'g
Strutt Electrical \& MSH Lid.
....... 133
Swanley Electronics Ltd. 133
Technomatic . 104
Television 92
Tempus
Thorn Brimar
Valradio Ltd.
Verospeed
Vero Systems Lid. 98
VHS Committee . 8,9
Videotone
Viewdata Exhn.
8
$-\quad 2$
Voice Microsystems Ltd. 7
West Hyde Developments Ltd. 34, 38
West London Direct Supplies 133
Wilmslow Audio
97
Zaerix

Stereo Cassette Tape Deck

Utilising the superb JVC deck made for Tandberg and a ready-made pre-aligned, tested and guaranteed module, this cassette deck has a superb sound and a high quality specification. We've got everything you need (except cabinet) including full instruction leaflet for only $£ 39.95$. Order as XY36P (Cassette Recorder Kit)

Space Invaders

Fight the space invaders, be a polaris captain or a spaceship commander. Full colour action on your own TV set and over 450 games to play.
Basic console with Combat cartridge (ACOOA) $£ 99.50+£ 2.50$ carriage All cartridges available including:

Space Invaders (AC26D)	£29.95	Adventure (AC22Y)	£23.95
Indy 500(AC24B)	$£ 34.50$	Skydiver (AC 13P)	£16.95
Chess (8levels) (AC28F)	¢34.50	Breakout (ACO5F)	£16.95
Golf (9holes) (AC18U)	£16.95	Slot Racers (AC19V)	£16.95
Air Sea Battle (AC01B)	¢16.95	Programming (AC27E)	$£ 34.50$
Space War (AC02C)	¢16.95	Olympics (ACO4E)	£16.95
Brain Games (AC16S)	£16.95	Street Racer (AC140)	£16.95
Outlaw (AC03D)	£16.95	Keyboards perpair (AC	£11.95

All prices include VAT and carriage except where shown.

Picture the ultimate in precision soldering.

When a solder medium for the microprocessor-based circuitry of the new Nikon EM camera was needed, a Multicore Oxide-Free Solder Cream was chosen.

Multicore, the world's leading authority on solder and soldering, has developed its own unique method of producing solder powders so that they are practically oxidefree. This means that the resultant solder cream will melt and flow as cleanly and as

A typical ordinary cream revealing poor particle shape and dross.

Multicore Oxide Free Solder Cream displaying clean uniform globules.
quickly as rosin-cored solder wire. Merely a faint residue of flux is left and any risk of solder globules being formed is minimised or even eliminated altogether.

Where the Multicore Oxide-Free Solder Cream differs is in the physical characteristics of its particles. Ordinary creams contain atomised solder powder, with each particle covered with a layer of oxide. This has to be removed by the flux after heating but non-corrosive, rosin-based fluxes cannot do this effectively given the nature of the solder technique used. The particles in Multicore Oxide-Free Solder Cream, as the electron-microscope enlargement shown illustrates, are much cleaner and more uniform. The result: cleaner, quicker soldering.

Available in a wide range of alloys and flux combinations, with particle size, flux content and viscosity equally variable, there can be a Multicore Oxide-Free Solder Cream tailor-made to suit your requirements.

If, like Nikon, you need a solder medium that can be applied with a high degree of accuracy, either by syringe or silk screening, will give you a thoroughly reliable joint, and will fully comply with health and safety regulations*, you need to talk to Multicore about Oxide-Free Solder Creams.

To find out more, use the reader reply service, cut the coupon or contact us direct.

Multicore Rosin -based Solder Creams are safe to use provided certaIn precautions are observed Details of these are
 available en request.Multicore Solders Ltd is a Registered
Supplier of Solder Creams on the U.K Defence Contractors Supplier of Solder Creams on the UK Defence Contract
List and are type approved bu the Ministry of Defence to List and are type approved by the Ministry of Defence to
DID. 599 A. Multicore Rosin -based Solder Creams are approved on the Qualified Products List QQ 5 - 571 E of the uS Defense Supply Agency

The biggest name in solder worldwide

I would like more information on Multicore Oxide-Free Solder Creams \square
 I would like you to contact me to arrange for

 a technical representative to call \square
Name

Position
Company
Address

Telephone
Telex
WW/1/SC

[^0]: Change of address
 With the December issue, editorial and advertisement offices will be at the following new address

 Quadrant House,
 The Quadrant, Sutton, Surrey, SM2 5AS
 Tel 01-661 3500 Telex 892084 Answer code BISPRS G

[^1]: Stockists of electronic equipment, speakers/kits, PA equipment plus huge range of accessories UK carriage/packing as indicated Export - prices on request All prices correct at $\mathbf{1 . 1 0 . 8 0}$ E \& OE All prices include VAT

[^2]: To Pieter Glas, Bell \& Howell A.V Ltd., Freepost, Wembley, Middlesex HAO 1BR.
 Please send me more information about video equipment and a list of your Video Centres. Name
 Organisation
 Address

[^3]: Write to Pascall for this new M80 calalogue which covers the complete Merrimac range of signal processing components and integrated networks from DC to 4 GHz . It also provides reliability data in the form of MTBF calculations for each product area.

 Merrimac is one of the Wortd's most technically advanced companies specialising in low frequency lumped element components and integrated networks; microwave stripline components, subsystems, high power ferrite isolators and circulators.

 So write to Pascall today for your copy of the M80 on your company's notepaper (or phone if you prefer) indicating your area of interest - weMerrimac guarantee you'll find it one of the best.

 Now there is one
 in signal processing

[^4]:

[^5]: ORDER FORM
 Piease send me the following books:
 Digital Computer Logic \& Electronics @ $£ 7.00$
 Design of Digital Systems @ $£ 12.50$
 Algorithm Writer's Guide @ $£ 4.00$
 Computer Programming in BASIC @ $£ 9.00$
 BASIC Handbook @ $£ 11.50$
 ANS COBOL @ $£ 4.40$
 Your Booklist (Free)
 I enclose a cheque/PO payable to Cambridge Learning Lid. for $£$.
 ("delete where applicable)
 Please charge my:
 *Access/American Express/Barclaycard/Diners Club/Eurocard/Visa/ Mastercharge/Trustcard

    ```
    Credit Card No.
    ```


 ## Signature

 Telephone orders from credit card holders accepted on 048067446 (Ansafone).
 Overseas customers (incl. Eire) should send a bank draft in sterling drawn on a London bank. or quote credit card number.
 Name.
 Address

 Cambridge Learning Limited, Unit 36. Rivermill Site
 FREEPOST, St. Ives, Huntingdon, Cambs PE1 7 . 4BR, England.
 (Registered in England, No. 1328762)

[^6]: * Submitted by Professor Otala whilst on leave of absence with Harman Kardon Inc.

