wireless

 worla

 worla

 OCTOBER 1980 60p

 OCTOBER 1980 60p}

Fioppy disc store

Tuner frequency meter

Acoustically-small'speaker

. . . catch this bus with Farnell

and arrive economically at an efficient ATE workstation.
Comprehensive testing under low cost desk computer control.
Manual systems too.

Front cover shows a single Rochelle salt piezo-electric crys. tal, as seen in polarized light. Photn hu Paul Brierley

IN OUR NEXT ISSUE

Unique pickup arm Constructional design in which horizontal and vertical pivots are dis. placed to increase arm radius and so reduce tracking distortion.

Amplifier-loudspeaker interface distortion examines intermodulation between the signal and a delayed, frequency transformed version generated by the loudspeaker and propagated in the feedback loop.

Designing inductors

 carrying d.c. Simple procedure allows different cores to be compared and the optimum one chosen for a particular design.Current issue price 50 p, back issue (if available) $£ 1.00$, at Retai and Trade Counter, Paris Garden, London SE1. Available on microfilm please contact editor
By post. current issue 86p. back issues (if available) $£ 1.00$, order and payments to Room CP34. Dor and payments to Rouse, London SE1 9 LU.
Editorial \& Advertising offices
Editorial \& Advertising offices
Dorset House, Stamford Street
Dorset House, Stamford Street London SE1 9LU
Telephones: Editorial 01.261 8620. Advertising 01.2618339 Telegrams/Telex: Wiworld Bisnespres 25137 BISPRS G. Cables Ethaworld, London SE1.
Subscription rates: 1 year $£ 9.00$ UK and $\$ 31$ outside UK.
Student rates: 1 year. $£ 4.00$ UK and $\$ 15.50$ outside UK
Distribution: 40 Bowling Green Lane. London EC 1 R ONE Telephone 01-837 3636.
Subscripitons: Oakfield House Subscripitons: Oakfield House Perrymount Road. Haywards
Heath Sussex RH 16 3DH Heath, Sussex
Telephone 0444
59188 . Please Telephone 044459188
notify a change of address.
notity a change of address. the Printed Word Lid, 527 Madison Avenue, Suite 1217. New York, NY 10022. 2nd-class postage paid at New York.
c IPC Business Press Ltd 1980 ISSN 00436062

wireless world

ELECTRONICS /TELEVISION /RADIO /AUDIO

OCTOBER 1980 Vol 86 No 1537

35 Personal hygiene or public health?

36 Radio tuner frequency counter

by J. L. Linsley Hood

42 Tone filters for electronic organs
 by C. E. Pykett

46 Floppy disc system for the scientific computer

by J. H. Adams

49 Letters to the editor V.h.f. programme labelling tests Maxwell's equations revisited
52 Novatexts -Pulse control of analogue functions by F. Williams
54 The 'Twins' paradox of relativity
by Herbert Dingle

57 Audio gain controls
by Peter Baxandall

65 An acoustically small loudspeaker
by B. I. Harcourt

68 News of the month
Postal monopoly Satellite television
C.b. on 928 MHz
71. Designing with microprocessors
by D. Zissos and L. Valan

74 World of amateur radio

77 Satellite broadcasting in the eighties

by G. J. Phillips

82 The floating bridge

by R. M. Brady

The world overYou get the best service from Haltron

For high quality electronic valves, semiconductors and integrated circuits - and the speediest service specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron product quality and reliability are clearly confirmed. The product range is very, very wide. And Haltron export expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited,
Electron House,
Cray Avenue, St. Mary Cray.
Orpington, Kent BR5 30J.
Telephone: Orpington 27099
Telex: 896141

Seeusat
$\rightarrow \sim \square$ October 28, 29,30,1980

ELECTRONIC

120 BASIC RANGES

$A C V, 1 \& d B$
DC V, 1 \& NULL
RESISTANCE
LEAKAGE at 3 V
VOLT DROP of 10 mA
$50 \mu \mathrm{~V} / 500 \mathrm{~V}$ fsd, $50 \mathrm{pA} / 500 \mathrm{~mA}$ fsd, $-90 \mathrm{~dB} /+50 \mathrm{~dB}$ mid scale. Acc. $\pm 1.5 \%$ fsd above $500 \mu \mathrm{~V}$ \& 500 pA . Response $3 \mathrm{~Hz} / 200 \mathrm{kHz}$ above $500 \mu \mathrm{~V}$ and 500 nA . Input $R=100 \mathrm{M} \Omega$ on volts.
$150 \mu \mathrm{~V} / 500 \mathrm{~V}$ fsd, $150 \mathrm{pA} / 500 \mathrm{~mA}$ fsd, polarity reversible. Acc. $\pm 1.5 \%$ fsd above $500 \mu \mathrm{~V}$ \& 500 pA . Input $R=100 \mathrm{M} \Omega$ on volts. 5 Null ranges have centre zero lin/log scale covering ± 4 decades. $0.2 \Omega / 10 \mathrm{G} \Omega$ in 7 ranges, polarity reversible. Low test voltage for solid state circuits Uses 3 V source with current ranges to test capacitors, diodes and resistance up to $100 \mathrm{G} \Omega$. Uses 10 mA source with voltage ranges to test diodes, LED's and resistance down to $10 \mathrm{~m} \Omega$.

30 OPTIONAL RANGES

RF VOLTS
$0.5 \mathrm{~V} / 500 \mathrm{~V}$ fsd, $10 \mathrm{kHz} / 1 \mathrm{GHz}$, using RF Probe. Price $£ 30+$ VAT
$1.5 \mathrm{kV} / 50 \mathrm{kV}$ fsd, AC/DC, using HV Probe. Price £23 + VAT.
$1.5 \mathrm{~A} / 50 \mathrm{~A}$ fsd, $\mathrm{AC} / \mathrm{DC}$, using Current Shunt. Price $£ 20$ + VAT .
$-150^{\circ} \mathrm{C} /+500^{\circ} \mathrm{C}$ fsd in 7 ranges using Temperoture Probe. Price $£ 49+$ VAT.

HIGH VOLTS
HIGH CURRENT
TEMPERATURE

The instrument operates from a 9 volt battery, life 1000 hrs ., or, AC mains when optional Power Supply Unit is fitted.
Size is $240 \mathrm{~mm} \times 150 \mathrm{~mm} \times 80 \mathrm{~mm}$. Weight is 1.75 kg . Meter scale length is 140 mm . Leather case is available at £20 + VAT

- ORDER BY POST OR TELEPHONE WITH BARCLAYCARD/ACCESS

- ELECTRONIC TEST

 portables. Many on demonstration.

SINGLE TRACE (UK α^{\prime} p etc $£ 2.50$)

Hm 307-3 component	
CO1303D $5 \mathrm{mHZ}, 10$	£109.25
SC110	
£7.95, Mains unit $£ 4.00$)	£1
LB0512A $10 \mathrm{mHZ}, 10 \mathrm{mV}$,	
FREE probe)	
CS1559A $10 \mathrm{mHZ}, 10 \mathrm{mV}, 5^{\prime \prime}$ disp	£198

OPTIONAL PROBES (All models)
X1 £6.50, X10 £8.50, X100 £12.95, X 1 - $\mathrm{X} 10 £ 10.95$

(UK c/p etc £3.50)	
CS1562A $10 \mathrm{mHZ}, 10 \mathrm{mV}, 5^{\prime \prime}$ display	£244.95
Hm312-8 $20 \mathrm{mHZ}, 5 \mathrm{mV}, 8 \times 10 \mathrm{~cm}$ display	£287.50
CS1566A $20 \mathrm{mHZ}, 5 \mathrm{mV}, 5^{\prime \prime}$ display	£323.15
CS1352 $15 \mathrm{mHZ}, 2 \mathrm{mV}, 7.5 \mathrm{~cm}$ display, b tery/mains portable (Nicads pack $£ 29.90$)	
/mains portable (Nicads $412-420 \mathrm{mHZ}, 5 \mathrm{mV}, 8 \times$	
Sweep Delay	£399.50
CS1577A $30 \mathrm{mHZ}, 2 \mathrm{mV}, 5^{\prime \prime}$ display	£455.40
S1572 $30 \mathrm{mHZ}, 5 \mathrm{mV}, 5^{\prime \prime}$ display plus Vide	
elay	£472.65
S1830 $30 \mathrm{mHZ}, 2 \mathrm{mV}, 5^{\prime \prime}$ display plus swee	
elay	£507.15
Hm512-8 $50 \mathrm{mHZ}, 5 \mathrm{mV}, 10 \times$	
lay Sweep	£667.00
\$1572 $30 \mathrm{mHZ}, 5 \mathrm{mV}, 5^{\prime \prime}$ display plu	
delay	£472.65
LR0514 $10 \mathrm{mHz}, 1 \mathrm{mV}(5 \mathrm{mV}) 5^{\prime \prime}$ disp	
E probe	± 294.00

RF

SG402 100 KHZ - 30 mHZ £64.40 LSG16 100 KHZ (300 mHZ on Harmonics)

PULSE
$\mathbf{2 0 0 1 1 \mathrm { HZ } - 1 0 0 \mathrm { KHZ } \quad £ 8 6 . 0 0}$ $1005 \mathrm{HZ}-5 \mathrm{mHz}$ $200 \mathrm{P} 0.002 \mathrm{H} 2-5.5 \mathrm{mHZ}$ $200 \mathrm{P} 0.002 \mathrm{H} 2-5.5 \mathrm{mHZ} \mathrm{m} 253.00$ 200SPC as 200P plus built in freq. display $/ 100 \mathrm{mH} 2$ counter $£ 437.00$
A range of Signal Generators to cover Audio, RF and Pulsing. Mains operated (TG series Battery).

AUDIO (All sine/square) AG202A $20 \mathrm{HZ}-200 \mathrm{KHZ}$ £65.55 LAG26 $20 \mathrm{HZ}-200 \mathrm{KHZ}$ £69.00 AG203 $10 \mathrm{HZ}-1 \mathrm{mHZ}$ sine/square
LAG120A $10 \mathrm{HZ}-1 \mathrm{mHZ} \begin{aligned} & \mathrm{E} 137.00\end{aligned}$
LEVELL (Battery Portables)
152 SERIES 3 HZ - 300 KHZ Sinel Square
200 SERIES $1 \mathrm{HZ}-1 \mathrm{mHZ}$ Sine/Square
TG152D TG152DM TG200D TG200DM
TG200DMP
$£ 92.00$
£113.85
f 124.20
$\mathbf{f 1 4 9 . 5 0}$
$£ 155.25$

STOCKISTS FOR TRIO. KAISE. HAMEG. CSC. OPTO ELECTRONICS. THANDAR. LEADER. LEVELL. LASCAR ETC. Also
*Mini Drills and Kits
Desolder Tools PL259/BNC Plugs Sockets, Leads, etc.

DIGITAL MULTIMETERS

HAND HELD (Uk post atc. 850t BENCH PORTABLES (Ux efo 1.00)
TM352 31/2 Digit LCD plus 10 ADC and Hfe checker PDM35 31/2 Digit 16 range LED (no AC current) ME502 31/2 Digit LED plus 10A DC and Hfe checker LM2001 31/2 Digit LCD 2 amp AC/DC 0.1%
$620031 / 2$ Digit LCD 0.2 A AC/DC $620031 / 2$ Digit LCD $0.2 A$ AC/DC,
Auto range Auto range
6220 As 6200 plus 10A AC/DC 6220 As 6200 plus 10A AC/DC
6100 As 6200 plus Cont. testrange hold 6110 As 6100 plus 10A ACIDC

BENCH PORTABLES
OM235 $31 / 2$ Digit LED 21 ranges. 0.5\% ACIDC 2A £56.50 OM 350 O $31 / 2$ Digit LED 34 ranges AC/DC 10A TM353 31/2 Digit LCD AC/DC 2 TM351 31/2 Digit LCD AC/DC 10 LMp $10031 / 2$ Digit LCD AC/DC 2 LM100 31/2 Digit LCD AC/DC 2 DM450 41/2 Digit LED 34 ranges AC/DC 10 amp IDM series options, Carry case £8880, N1tions, Carry case $£ 8.80$,
cads $£ 7.95$, Mains adaptor
$£ 4.00$).

LOGIC PROBES/MONITORS

LP3 50MHz logic probe
\qquad £55.95 $£ 35.50$ E19.95

Logic menitor 833.00 .
Also in stock range of Proteoard kits and breadhoards.

FREQUENCY COUNTERS

Portable and Bench LCD and LED Counters up to 600 mHZ . Prices include batteries and leads.

HAND HELD tuk past elc B5pl
PFM200 20 HZ to 200 mHZ 8 Digit LED $\quad 554.50$ MAX50 100 HZ to 50 mHZ 6 Digit LED MAX550 30 KHZ to 550 mHZ 6 Digit LED
$£ 61.00$
$£ 106.00$

BENCH PORTABLES IUK שa Elvot
MAX100 8 Digit LED 5 HZ to $100 \mathrm{mHZ} \quad £ 89.00$ TF200 8 Digit LCD 10 HZ to $200 \mathrm{mHZ} \quad £ 166.75$ 7010A 9 Digit LED 10 HZ to $600 \mathrm{mHZ} \quad £ 175.00$

CLAMP METERS/ INSULATION TESTERS
[All multirange excepl $\times 2303$)

K2303 30 AMPS 500 VAC E23.50 3101300 AMPS 600 VAC 1 K OHM
$\times 2803$
300 AMPS $600 \quad$ VAC
E32.95 K2803 300 AMPS 600 VAC 2 K
OHM
E56.95 K2903 900 AMPS 750 VAC 2 K OHM Transistorised $\begin{aligned} & \text { © } 86.60 \\ & \text { K } 3103\end{aligned}$ tion)continuity tester, 100 MEG 600 VAC, $0 / 21 / 2 \mathrm{~K} \quad \mathbf{f 9 9 . 9 5}$ M500 insulation tester 100 MEG. 500 VOLT. O/200 OHMS continuity
E75.00 Also digital and $O C$ types in stock

ELECTRONIC METERS

UK c/p $E 1.50$

110
K200 38 range FET 10 m OHM input 20 Hz 10 TM11 120 range multimeter 3 Hz to 200 K KHz_{2} TM3A Multirange AC micro voltmeter $£ 149.50$ TM3B As TM3A larger size meter $£ 166.75$

Stockists of electronic equipment, speakers/kits, PA equipment plus huge range of accessories UK carriage/packing as indicated Export - prices on request

E \& OE All prices include VAT

The TBC 2080

For more information and demonstration please contact:
MICROTIME INTERNATIONAL, INC., Rokin 9-15, Amsterdam, Netherlands • Tel. 020-23.07.34 - Telex 16354 M I NL or the following dealers:
ARGENTINA: Kappa S.A.C.I.F.I.A., Tucuman • AUSTRALASIA: Rank Industries Ltd., New South Wales • BELGIUM/FRANCE: Shintron Inc., Bruxelles • GERMANY: Fernseh System Gesellschaft, Munchen-Oberschleissheim • ITALY: Telav S.A.S., Milan-Rome - NETHERLANDS: Inter Electronics, B.V., Giesbeek - NIGERIA: Friden Tech. Company Ltd., Kano - SCANDINAVIA and FINLAND: Ercotron AB, Stockholm - SOUTH AFRICA: South African Philips̈Ltd., Johannesburg • SPAIN: Moncaday Lorenzo S.A., Madrid • SWITZERLAND: DICSA, Yvonand • UNITED KINGDOM and IRELAND: SeItech Equipment Ltd., Maidenhead.

USA Headquarters:

MICROTIME INC., 1280 Blue Hills Avenue, Bloomfield, CT 06002 • Tel. (203) 242-4242 • TWX 710-425-1165

(6)TRIO TEST INSTRUMENTS

THE RANGE HAS INCREASED THE PRICES ARE DOWN

THE CS 183030 MHz + Sweep Delay
The CS 1830 is a completely new 30 MHz dual trace oscilloscope employing a square format, internal-graticle, PDA tube for accurate bright display. A new feature is the inclusion of calibrated sweep delay with a range of $1 \mu \mathrm{~S}-100 \mathrm{mS}$ and trace bright up to show the delay position. As you can see from close study of the photograph, the CS 1830 has all the facilities you could require in a high performance instrument but for more detail, simply ask us for a comprehensive leaflet.
Brief specification

Rectangular PDA tube $120 \times 96 \mathrm{~mm}$. P3 1 phosphor
Bandwidth $D C-30 \mathrm{MHz}$
Sensitivity $\quad 5 \mathrm{mV} / \mathrm{cm}(30 \mathrm{MiHz})$
$2 \mathrm{mV} / \mathrm{cm}(20 \mathrm{MHz})$
Input R.C. $1 \mathrm{M} / 23 \mathrm{pF}$
Risetime 11.7 nS
Oversh oot less than 3\% Sweep time $200 \mathrm{nS} / \mathrm{cm}-0.5 \mathrm{~S} / \mathrm{cm}$ Linearity better than 3\% Trig. band width $\mathrm{DC}-30 \mathrm{MHz}$ Sweep delay 1μ S -100 mS
CS1830 only $£ 455$ + VAT includes 2 probes
THE C51572 30 MHz for the VTR Lab If you are in Video, you need the CS 1572

The CS 1572 is a dual trace 30 MHz oscilloscope designed for the video tape recorder engineer. Video delayed sweep facilities are provided to allow magnification and analysis of any point in a single video frame together with separation of video odd and even fields. A truly unique tool for anyone concerned with video measurements as well as a top specification dual trace wide band oscilloscope for general lab use. The complete range of video facilities is too great to explain in a small advertisement so why not call us and ask for the full story on the CS 1572

Brief Specification

As for CS1830 except that the sweep delay feature is replaced by comprehensive video sweep delay facilities which allow complete analysis of video wave forms and VTR alignment.
CS 1572 only $£ 425+$ VAT, includes 2 probes
THE CS 157730 MHz at 2 mV + Signal Delay The most popular scope in the range.
The CS 1577 is, without doubt, our most popular oscilloscope and hundreds of satisfied users in all sections of the electronics industry will confirm this. The CS 1577 combines a wide bandwidth DC- 30 MHz performance with extremely wide trigger bandwidth (DC-40 MiHz) and 2 mV sensitivity over the full bandwidth.
Fixed signal delay is provided by a helix delay line which allows viewing of the leading adges of fast pulses for accurate rise time measurement, and the 130 mm PDA tube gives a bright, stable trace even at the highest sweep speeds ($20 \mathrm{nS} / \mathrm{cm}$ using $\times 5$ expansion). Good triggering, even at low levels has always been an outstanding feature of Trio oscilloscopes and the CS 1577 demonstrates this to perfection. Triggering, as in the other 30 MHz instruments can be from CH 1 or CH 2 or can be alternated with the beam switching so that input signals of differing frequency will provide stable displays. Truly an oscilloscope master piece. CS 1577
CS 1577 only $\mathbf{£ 4 1 0}$ + VAT, includes 2 probes.
THE CS 1575, unique dual trace 4 function Audio Scope
The CS 1575 is a unique tool for the audio engineer. It features the normal facility of dual trace display with sensitivity to $1 \mathrm{mV} / \mathrm{cm}$ but not only can it display the input signial on two chaninels, it can simultaneously display the phase angle between them and measure the phase angle referenced to a zero phase calibration display. In addition to these unique features, you also have independent triggering from each channel to give stable displays even with widely differing input frequencies.
Absolutely indispensable to the professional audio engineer, the CS 1575 is now in use all over the world. See it in action or send for complete details.
CS 1575 only $£ 235$ + VAT
AND TWO NEW ADDITIONS TO THE RANGE
DL705 MULTIMETER
DC to 1000 V
AC to 1000 V Ω to $20 \mathrm{M} \Omega$ I to. 2 A
Semi Auto Ranging

FC756 500 MHz COUNTER
$10 \mathrm{~Hz}-500 \mathrm{MHz}$ 50 mV

Superb instrument

For further details and ex stock delivery contact
트룬NT
CHESTERFIELD ROAD, MATLOCK, DERBYS. 0629-2430 - TELEX 377482

INTRODUCING THE EXCITING RANGE OF LCD MODULES FROM AMBIT

Ambit multifunction lcd clocks REOUIRE $1.5 \mathrm{v} @ 6 \mathrm{UA}$ TYP POWER.

5 selectable alarm outputs
10 min snooze
1 hour countdown timer
Optional 120 min timer
Optional low battery indicator

6 time keeping functions
Month, Day, Date, Hours, Mins, Secs.
12/24 hour display option
24 Lour alarm - direct drive to piezo buzzer.
0.25 inch LCD with built in backlight
7.5 mm thickness

1-9 £12.45, 10-99 £9.33, 100-999 £7.85

CM 161
$1-9 £ 9.95,10-99 £ 7.46,100-999 £ 6.35$.

Dual time facility
24 hour alarm with snooze
Stopwatch -- mins \& secs to 24 mins max Counter - Displays up to 720 events

CM174, 0.5 inch LCD with built in backlight. 1-9 £12.45, 10-99 £9.33, 100-999 £7.85.

AMBIT DVM176 DIGITAL VOLTMETER MODULE

200 mV full scale input Supply current typ 1 mA Accuracy $0.15 \% \pm 1$ count Temp drift typ 80ppm/C

Combining latest techniques with high quality construction and appearance.

Checkout these features and prices with the competition

True differential input \& reference 1pA typical input current Decimal point selection with on board EX-OR integrated circuit

Polycarbonate auto - zero capacitor
Polypropylene integrating capacitor for minimal roll - over error

Large easy to read 0.5 inch LCD

1-4 £18.26,5-24£16.20, 25-99 £15.10, $100+$ OA.
W 60 mm . H $38 \mathrm{~mm}, \mathrm{D} 15 \mathrm{~mm}$.
Containing all the features of the famous ICL7 106 within a small compact unit
this module must surely represent the finest DV'M value on the market today

Exciting new addition to the Ambit LCD range Frequency display module FC177.
Direct frequency readout to 3999.9 KHz .
Frequency readout to 399.99 MHz with suitable
external prescaler
Built in IF offsets - 25 typical freqs selectable

0.4 inch LCD provides resolution to 100 Hz on $\mathrm{MW}, 1 \mathrm{KHz}$ on $\mathrm{SW}, 10 \mathrm{KHz}$ on FM .

Annunciators for band selected
Built in backlight for night use $\mathrm{MHz} / \mathrm{KHz}$ annunciators
Automatic decimal point selection

AMBIT FREQUENCY DISPLAYS \& MOUNTING BEZEI. UNITS

BEZ-10
Provides invisible front panel mounting for CM172/4 and DVM176.
C/W fixing hardware, clear window etc.

1-49 £1.00, 50-99 £0.90,
100-499 £0.75, 500+ OA.
Dimensions (mm)
CM161 $31 \times 19 \times 7.5$
CM172 $60 \times 30 \times 8.5$
CM174 $60 \times 38 \times 8.5$
FC177 $60 \times 38 \times 10$ BEZ10 $64 \times 34 \times 6$

1-9 £22.75, 10-99 £20.15, 100-999 £17.65, 1k+ OA.
Matching prescaler PCB - S177 $\div 10 \mathrm{SW}, \div 100$ VHF $£ 11.751$ off
For further details of these modules contact John Mills (SAE with private enquiries)

STOP PRESS ST
Available soon
$31 / 2 \& 4$ digit LCD display decoder modules.
Built in backplane oscillator
Devices available for either MUX BCD inputs, or serial data inputs. (Both latched)
0.5 inch LCD with decimal point and special
symbol annunciators
$3.5-6 v$ operation (MUX BCD version)
$3-15 v$ operation (Serial data input version)
Backlight facility
Send now for full data when available
STOP PRESS - STOP PRESS - STOP PRESS

All prices exclude VAT

PRE-AMP MODULE £63.50, BUILT £92

The most cost-effective pre-amplifier available. It provides a perfect match for any cartridge. moving coil or magnetic and also accepts auxiliary and 2. or 3 -head tape machine withoutstanding technical performance from an elegant circuit configuration. We also have separate mains supplies for the pre-amplifier in kit form and ready-b
modules/hardware for moving coil head amps $\#$ Coming soon, active cross-overs.

POWER AMPS: KITS FROM $£ 100.50$

 BUILT £151.00There are stereo and mono domestic power amplifiers from 45 W to $200 \mathrm{~W} / 8$ ohms, ready built or in kit form. The kits use built and tested printed circuit boards and require only simple assembly and point-to-point wiring.
Exemplary specification includes t. .h.d. less than $.01 \%$ at 1 kHz , slew rate greater than $30 \mathrm{~V} / \mu \mathrm{S}$, noise greater than 110 dB , fully protected against overload, unconditionally stable.

45W channel: kit, P2, £100.50; built, 202D £151.00 $110 \mathrm{~W} /$ channel: kit, P4, £ 126.00 ; built, 204D £185.00

POWER AMP MODULES AND SUPPLIES

 QE 1708, 1704, £31.96

M1504, 1508, £35.79 M854, £26.00

M2603, $£ 50.28$

We offer a wide fange of power amplifier modules to suit virtually any applicatlon with a performance that is unbeatable at the price. Using circuitry basically identical to our widely acclaimed amplifiers above, they are available in both the popular 'L' bracket versions for 60 to 170 W 'module rating' for medium duty use and also in high dissipation formats using separate heatsinks for ultimate reliability at up to 260 W r.m.s. Matching power supplies
using toroidal transformers (available separately up 10500 VAl) are available.

\star EXCELLENT TRADE PRICES *

We also build rack mounting power amplifiers, sub-assem
individual specifications. Please telephone with your enquiry

Have you wondered why the existing sources of speaker kits offer a bewildering choice of systems, particularly combinations of 200 mm bass unit and tweeter? Don't they know which ones are best? If so, why bother with the rest! Well we have sorted out these super kits so you can order in confidence, knowing you get our full endorsement of their periormance already mounted so all the.fiddly work is done for you. All that is left to do is the drive units box. Crossover networks, foam and terminals are included. Systems 1 and 2 use a 200 mm bass and 25 mm dome tweeter from Son Audax. Systerm 2 being a reflex design that we enthusiastically recommend. System 3 is a competitive 3 -way I.B. using Seas bass and mid with a Son Audax iweeter, cleverly incorporating a stand at the bottom of the enclosure, as does System 4, undoubtedly the best kit on the market, using a Volt 250 mm bass driver with a 250 mm ABR on the rear baffle (also supplied), a modified Peerless mid and Son Audax tweeter. We will also be retailing selected drive units at competitive prices, e.g. Son Audax 200 mm bass, $20 \mathrm{~B} 25 \mathrm{~J} 4 \mathrm{E13.50;} 25 \mathrm{~mm}$ iweeter, HD $100025, £ 9.00$,
All our prices include V.A.T. and delivery. Export no problem - please send for a specific quote by retum. All equipment can be wired for 110 V mains. Please send a large S. A. E. or

PLEASE NOTE THE ADDRESS OF OUR NEW LARGER PREMISES:
8 ALBION STREET, LEICESTER
Tel: (0533) 546198

Thermalloy dissipates heat not money.

First, take the Slip-Clip range of heat sinks (top three products). They save time, board space and costs need no mounting hardware, PC Board drilling or adhesive. Simply clamp them to the device for maximum heat transfer. Slip-Clips are available for TO-202, TO-220, TO-126, Motorola case 90 and most other popular case styles.

The Timesaver Sol derable range cut assembly time in half. They eliminate hand soldering of transistor leads and all work is done from one side of the board. An anti-rotation feature stops the device from turning during assembly. Find out more about Thermalloy's time and money saving ranges.

MCP Electronics Ltd., Alperton, Wembley, Middx. Tel: $01-9025941$ WW - 019 FOR FURTHER DETAILS

1.234^{-3}

Keithley D.M.M. Test Equipment:

Quality. With machines like the 169 shown above. $31 / 2$ digits; $.25 \%$ accuracy. A nononsense five function D.M.M. at a no-nonsense price.

Choice. The Keithley range spans Pocket,
$31 / 2,41 / 2,51 / 2$ digit D.M.M.'s; many with I.E.E.E. options. So we can be sure of having exactly the right product for your own requirements. Built to a standard that very few people can equal.

Cost. And at a price even fewer can match.
From $£ 79$ + V.A.T., Keithley D.M.M. test equipment is backed by the resources of a specialist company with a formidable reputation. To find out more, just fill in the coupon, and get your free literature today.

KEITHLEY

Keithley Instruments Ltd
1Boulton Road Reading Berkshire RG2 ONL. Telephone (0734) 861287

The second user test and measuring instrument specialists

Thefreshidea from Carston which brings yourecen (12.4 weeks). Every

Thefreshid at competitive prices, with ast deliverl Guarantee covering "Prime" instrumen parts and labour

HEWLETT PACKARD

8640 BPrecis AM-FM Signal Generato ${ }^{141 T}$ Spectrum Analyzer - Mainframe 8552B Spectrum Analyzzr - IF Section 8553B Spectrum Analyzer - RF Section 8555A Spectrum Analyzer - RF Section 8556A Spectrum Analyzer - LF Section 1600 A 16 Channel Display Logic Analyzer PHILIPS PM 3212 Dual Trace $25 \mathrm{MHz} 2 \mathrm{mV} /$ Div Oscilloscope
PM 3214 Dual Timebase Dual Trace DC .25 MHz Oscilloscope

RACAL
£1975
> £525
> 625

Ger 130 dBm AM/FM
£2995
EKTRONIX
485^{\prime} Dual Trace 350 MHz Oscilloscope T912 Dual Trace Storage Oscilloscope $D C-10 \mathrm{MHz} 250 \mathrm{~cm} / \mathrm{ms}$ writing speed
7313 Storage Oscilloscope Mainfram MHz
$4.9 \mathrm{~cm} / \mathrm{us}$ writing speed DC-25 MHz
7 A 22 Differential Ptug-in. As new DC
$10 \mu \mathrm{~V}-10 \mathrm{~V} /$ Div $(12$ month guarantee) 7A26 Dual Trace Plug-in.
£780 DC- $150 \mathrm{MHz} 5 \mathrm{mV}-5 \mathrm{~V} /$ Div. £650
7B53A Dual Timebase 5ns-5s/Div CRT Readout

Acoustic/Vibration	Prices fromis	Cable Test Equipment MARCONI TF2333 Transmission Test set HEWLETT PACKARD 3556A For psophometric measurements from $20 \mathrm{~Hz} \cdot 20 \mathrm{kHz}$. $0.1 \mathrm{mV}-30 \mathrm{~V}$ input level	Prices from 5 5	PHILIPS PM5127. $0.1 \mathrm{~Hz}-1 \mathrm{MHz}$. Sine/ Square/Triangular/Pulse outputs. External sweep facility 30 Vp . p max oulput Logic Analysers HEWLETT PACKARD	Prices from E
BRUEL \& KJAER 1613 Octave filter set 31.5 Hz		NEC		1601 L Logic state analyser	
31.5 kHz	250	TTS 37B. Noise. level and VU		12 channel display	250
2203 Precision sound level meter 2608 Measuring Amplifier. Hi pass	400	measurement Sensitivity -80dBm up to - 20 dBm	275	1600A 16 channel 20 MHz clock MAPA \& B store	1850
filter	375	STC		160716 channel 20 MHz clock	500
4135 Microphone	60	74216A Noise Generator CCITT	240		
4220 Pistonphone calibrator ZROO2O Integrator Converis 2203 \& 09 for vibration meas.	175 56	74261A Psophometer CCITT WANDEL u. GOLTERMANN	475	TEKTRONIX 7D01F 16 channel up to 50 MHz clock MAP	2650
ZR0001/2/4/5/6 Altenuators	52	$\begin{aligned} & \text { DLM } 1 \text { Send/receive system for } \\ & \text { measuring phase jitter random noise } \end{aligned}$		Mains Monitors	
4424 Noise Dose meter builh in mic. 2215 Prec. Sound Level Meter A\&C	250	and frequency shift on data transmission lines	1500	COLE	
Oct. Filter	1095	LDS $2200 \mathrm{~Hz}_{2} 600 \mathrm{kHz}$ sender for		Threstolds $10 \mathrm{~V}, 5 \mathrm{~V}, 100 \mathrm{~V}, 200 \mathrm{~V}$	75
2218 Integrating Sound Level Meter A/LIN	1525	measuring group delay and -ttenuation variations	3250	DATALAB	
4230 Sound Level Calibrator for 1^{-1} and $\%^{\circ}$ mics	95	LDEF 2 Filters for DLM unit	250	DLO19 Power line interface for transient recording	50
CEL		HEWLETT PACKARD		DL905 Digital Storage Unit DC-3 MHz 10 mV	1055
112 LEO meter digital readour	450	5300 A/53038 DC. 520 MHz 6 digits	210	DRANETZ	
144 LEQ Meter 72dB Dynamic Range Batt Opld	1325	5300 A $3 \times 10^{\text {Display Module }}$. 6 Digits.	90	606-3 Disturbance Analyser Avg.	
DAWE 1461. CVIMI Portable Vibrateon	350	53008 Display Module. 8 Digits. 2×10^{8}. $5302 \mathrm{ADC}-50 \mathrm{MHz} .100 \mathrm{mV}$ sens.	140	GAY LDM Records + vel - ve transients	
Accelerometers		Time interval. Period. Ratio. Totalise.	73	Modulation Meters	
BRUEL \& KJAER		53038 DC -5\%, MHz. (Plug on)		AIRMEC	
43435 Uni-gain type. Gen Purpose	55	125 mV sens. 508	120	2101.300 MHz AM/FM	150
4338 S Uni-gain High sens med frequency	110	5308 A 075 MHz . Universal Module. 50 mV sens $1 \mathrm{M} \Omega$	100	409 3-1500 MHz. AM/FM MARCONI	5
NARDA		5267 A Time Interval Plug-in 10 ns	120	TF2300A 1.1000 MHz . AM/FM	450
	155	5345 DC .500 MHz Time Int. Ave.		Multimeters-	
Attenuators			1225	Analogue	
MARCONI SANDERS		Plug-ins to 5345	225	AVO	
6593 VSWR Indicator. Batr/Mains	175	RACAL		8MKIII AC/DC V.AC/DC Amps.	
Bridges		$835 \mathrm{DC} \cdot 15 \mathrm{MHz} 6$ digits			60
CINTEL		Time interval/Period/Ratio	100	Oscilloscopes	
277 Measures iron core inductances		$902410 \mathrm{~Hz}_{2} 600 \mathrm{MHz} 7+1$ digits	250	ADVANCE	
$0.01 \mathrm{H}-1000 \mathrm{H}$ Iwith a Q value not		98356 Digit DC. 20 MHz 10 mV	100	OS 1000 A DC. 20 MHz . dual trace	310
less than 2)	130	9837 DC-80 MHz 6 digits	130	33008 Dual Trace DC-50 MHz	
DAWE		S.E. LABORATORIES		$5 \mathrm{mV} /$ div. Dual Timebase	600
2108 Decade Capacitance box		SM202 DC 150 MHz 8 Digits.		COSSOR	
0.14 F . 1 mF 0.1 uf step	20	50 Mv . A. B C. Input. Time Interval		3100 Dual Trace DC• 40 MHz	00
HEWLETT PACKARD 4342A O' Meter OLC complete		SYSTRON DONNER	20	7210. DC. 15 MHz . Dual Trace 1 mV	
MARCONI		60539 Digit $20 \mathrm{~Hz} \cdot 3 \mathrm{GHz}$ BCD O/P $6054 \mathrm{~A} / 0411$ Digit $20 \mathrm{kHz}-18 \mathrm{GHz}$	850	sensitivity on CHI. Delayed Timebase	300
TF1245 ${ }^{\circ} \mathrm{O}$ ' meter Freq. range 1 kHz		BCD O/P	2800	GOULD ADVANCE	
- 300 MHz using external osc.	350	Function Generators		OS $1000 \mathrm{BDC-20} \mathrm{MHz} \mathrm{Dual} \mathrm{Trace}$	
TF868A Universal Bridge	250			X-Y TV Sync	400
-TF1313A Universal LCR Bridge 0.1\%	375	HEWLETT PACKARD		HEWLETT PACKARD	
WAYNE KERR		10V/50:2 sine. square, trianquiar	250	1703A Storage 1000Div/ms.	
B224 Wide range LCR Bridge	475	INTER-STATE		DC. 35 MHz . Duat rrace Mains/	
B500 Log LCR Bridge 8601 AF LCR Bridge	125	ELECTRONICS		$17078 / 020 \mathrm{DC} .75 \mathrm{MHz}$. Dual trace.	0
(Detector and Oscillator not incl).		F51A Mult, Mode - and offset.		Dual Time Base.	
B641. Measures L/C/R/G Accuracy		0.0005 Hz to $10 \mathrm{MHz} \quad 10 / 15 \mathrm{~V} / 5088$	250	$17078 / 012$ As 170	
of 0.1\%	450	F55A Multı-Mode, 0.0025 Hz 10		Internal Battery fitted	750
0801. Y parameter test set. Plus		MHz. 10V/5032 Ext VGC Burst		1814 Storage 1000 iv/ms	
transistor adaptor unit	30	O/P up to 100 k burst/ $/ \mathrm{sec}$	350	DC. 100 MHz Main frame only	65

Acoustic/Vibration
 RUEL \& KJAER

2203 Precision sound level meter 2608 Measuring Amplifier. Hi pass

135
4220 Pistonphone calibrator 09 for vibration meas.
ZR0001/2/4/5/6 Allenuators
2215 Prece. Sound Level Meter A\&C
Oct. Filter
2218 Integrating Sound Level Meter A/LIN
and \% mics
CEL
144 LEQ Meter $72 d \mathrm{~d}$ Dynamic Range
Batt Opid
DAWE
Analyser Kı
Accelerometers
$4343 S$ Uni-gain type. Gen Purpose 4338 S Uni-gain High sens med frequency

3044B-20 Dit. Coupler 3.7-8.2 GHz

MARCONI SANDERS 6593 VSWR Indicator. Batt/Mains

Bridges

27 Measures iron core inductances
$0.01 \mathrm{H} \cdot 1000 \mathrm{H}$ l with a Q value not
DAWE
2108 Decade Capacitance box 0.1μ F. 1 mF 0.1 is step

TF1245 ' O' meter Freq. range 1 kHz 1F0日8 TF1313A Universal LCR Bridge 0.1\% 250

8224 Wide range LCR Bridge 8500 Log LCR Bridge
(Detector and Oscillator not incl). B64. Measures L/C/R/G Accurac
0801. Y parameter test set. Plus transistor adaptor unit
\hat{N}

Cable Test Equipment

 MARCONIHEW
3556 A For psophomerric
, imurements from $20 \mathrm{~Hz} \cdot 20 \mathrm{kHz}$
NEC
TYS $37 B$. Noise. level and VU up to . 20 dBm
STC
74261 A Psophometer CCIT
WANDEL U. GOLTERMANN
DLM 1 Send/receive system for measuring phase jitter random noise trequency shiti on dara

LDS $2200 \mathrm{H}_{2} 600 \mathrm{kH}_{2}$ sender for
measuring group delay and
attenuation variations
Counter Timers
HEWLETT PACKARD
5300 A Display Module 6 Digits
3×10^{7}
2×10^{8}
Time interval. Perz. 100 mv sens
Totalise
$53038 \mathrm{DC} \cdot 5 \mathrm{~S}^{\prime}, \mathrm{MHz}$. (Plug. on)
125 mV sens 500
5308 A 075 MHz . Universal Madule
5267 A Time Interval Plugg-in IOns
5345 DC. 500 MHz Time int. Ave.
10590A Adaplor converts 5245
Plug-ins 105345
835 DC .15 MHz 6 digits
Time interval/Period/Ratio
$902410 \mathrm{~Hz}^{2} \cdot 600 \mathrm{MHz} 7+1$ digits
$9837 \mathrm{DC}-80 \mathrm{MHz} 6$ digits
S.E. LABORATORIES

50 Mv . A. B.C. Input. Time Interval and Totalise
SYSTRON DONNER $6054 A^{\prime} 0411$ Digir 20 kHz 18 GHz
BCD O/P

HEWLETT PACKARD 10V/503 sine, square trianquiar

INTER-STATE

F51A
0.0005 Hz to $10 \mathrm{MHz} \quad 10 / 15 \mathrm{~V} / 508$

MHz $10 \mathrm{~V} / 50 \mathrm{~s}$ E, 0.0025 Hz No
O/P up to 100 k bursts/sec

182C DC. 100 MHz Mainframe, large screen
MEDELEC
M-scope 4 channel DC- 100 kHz U/V Chart
PHILIPS
PM $321 i$ DC- 15 MHz Dual Trace 2 mV PM3233 Dual Beam DC. 10 MHz 2mV/div.

SCOPEX

40. 10 B Dual Trace DC. 10 MHz

TEKTRONIX
475 Dual Trace DC- 200 MHz 2 mV 475 Dual Trace DC- 200 MHz 2 mV
485 Dual Trace DC- $350 \mathrm{MHz} 50 \Omega$ $1 \mathrm{M} \Omega 250 \mathrm{MHz}$
556/1A1. True dual beam.
DC. 50 MHz . Can display 2 separate signals at different sweep rates. Signals at differ
Includes tralley
$5458 / 1 \mathrm{~A}$. DC- 30 MHz . dual trace Delayed timebase
$561 \mathrm{~A} / 3 \mathrm{~A} 6 / 3 \mathrm{~B} 1$. DC. 10 MHz . Dual Trace. Migh persistence fube Delayed Timebase

Delay. 80 .

10 mV sensitity Mz dual trace
$547 / 1 \mathrm{~A} 1$. DC-50 MHz. dual trace
DTB
$547 / 1 \mathrm{~A} 4$. DC. 50 MHz , four trace
$7403 \mathrm{NDC}-60 \mathrm{MHz} 3$ Plug-in
Mainframe
$7704 \mathrm{~A} \mathrm{DC}-200 \mathrm{MHz}$, CRT Readoun 450
Mainframe for 4 Plug-in
TELEQUIPMENT
D53A. DC- 25 MHz . dual Irace.
10 mV sensitivity with $\mathrm{C}-2$ plug-in
DC. 15 MHz with JD plug-in

D63/V1/V3 DC. 35 MHz . Depending on sensitivity. $50 \mu \mathrm{~V}$ or 1 mV
Sensitivity

D34 Dual Trace DC. 15 MHz 2 mV
Mains/Batt
D75 Dual Trace DC-50 MHz Dual
Oscilloscope Plug-ins
HEWLETT PACKARD
1804A DC. 50 MHz Four channel
20 mV -10V/div.
1825A Dual Timebase $50 \mathrm{~ns}-1 \mathrm{~s} /$ div.
1805A Dual Trace DC- 100 MHz 5 mV .
$1 \mathrm{M} 8 / 50 \Omega$
TEKTRONIX
Type R. Transistor R.T. tester. Pulse rate 120 pulses $/ \mathrm{sec}$. R.T. Less than
5 mus
Type G. Differential amplifier. 100:1 CMR DC. 20 MHz .50 mV sensitivity
Plug-ins for 500 series
1 AI dual trace Plug-in DC. 50 MHz
1 A2 dual trace Plug 10 MHz
1A4 four trace Plug in DC. 50 MHz
1A4 four trace Plug-in
A
Z Differential Plug-in
81 Adaptor Plug-in 1A Series to 580
Series
7 A12 Dual Trace DC- 105 MHz 7 718 Dual
7A18 Dual Trace DC. $75 \mathrm{MHz} \quad 410$
$5 \mathrm{mV} / \mathrm{div}$
7 A22 High gain diff. amp.
$0.1 \mathrm{~Hz} .1 \mathrm{MHz} 10 \mu \mathrm{~V}$
7 A 26 Dual Trace DC. 150 MHz

$5 \mathrm{mV}-5 \mathrm{~V}$ /div.
7 B 53 A Dual Timebase $5 \mathrm{~ns}-5 \mathrm{~s} / \mathrm{div}$.

7853A Dual $\begin{aligned} & \text { For } 7000 \text { Series Mainframes }\end{aligned}$
7B53AN as 7B53A Less CRT
Readout
D67 DC-25 MHz. Dual trace. Dual
Time Base. TV sync.
D83 DC-50 MHz. Dual trace. Large
$61 /{ }^{\prime \prime}$ CRT. Dual Time Base
Oscilloscopes (storage)

DYNAMCO

7r. DC. 30 MHz . Dual trace.
Writing speed $20 \mu \mathrm{~s} / \mathrm{Div}$.
TEKTRONIX
549/1A7. DC- 30 MHz .5 mV sensitivity. Dual trace. Storage scope. Writing speed: $5 \mathrm{~cm} / \mu \mathrm{s}$ with enhancement. Includes trolley $564 / 3 A 74 / 3 B 4$. DC-2MHz, four
channel. 20 mV sensitivity. Writing speed up to $500 \mathrm{~cm} / \mathrm{ms}$
$5648 / 3 A 6 / 2 B 67$. DC-10 MHz. Dual
trace 10 mV sensitivity. split screen
storage ascillascope
466 Storage $1350 \mathrm{~cm} / \mu \mathrm{s}$ Variable
Persist DC- 100 MHz
7313 Split screen $4.9 \mathrm{~cm} / \mu \mathrm{s}$. DC.
25 MHz (M/F for 3 Plug-ins)
TELEQUIPMENT
DM64 Storage 250 Divs/ms.
DC. 10 MHz Dual trace.

400

Phase Meter

DRANETZ
$301 \mathrm{~A} 5 \mathrm{~Hz}-500 \mathrm{kHz}, \mathrm{Z}$ in 100 k ?
Accuracy $\pm 1^{\circ}$ to $\pm 2^{\circ}$. Analogue

Recent massive stock
 investment means-
 Today Carston Value makes even more sense

Power Meters DYM
$2081 /$
30 mW
HEW
432 A
478 A
$435 A$
18 GH
8481
MA
6460
Hea
642

TF2512 DC-500 MHz 0.5-30w 50Ω
TF $893 \mathrm{~A} 10 \mathrm{~Hz}-20 \mathrm{kHz} .20 \mu \mathrm{~W}-10 \mathrm{~W}$.
Power Supplies
ADVANCE
IVI 12V OC to 240 V 50 Hz , 150 w
BRANDENBURG
475R $10-2100 \mathrm{~V} 5 \mathrm{~mA}$ OC Stab.
FARNELL
L30B 0.30V iA DC $\$$ sab.
FLUKE
$41580 \pm 3100 \mathrm{~V} 30 \mathrm{~mA} 0.005 \%$ reg Protected

ITT

Power Lab. up to 30V Dual Supply MARCONI
TF2154/10.30V 1A. $0 \pm 15 \mathrm{~V} 2 \mathrm{~A}$
$0 \pm 7.5 \mathrm{~V} 4 \mathrm{~A}$
SMITHS
47015 7V o/p Power Pack
SORENSEN
DCR $300 \cdot 2.50$-300V 2.5A DC Stab.
Pulse Generators
DB ELECTRONICS
150. I.C. pulse generato

EH RESEARCH
122. $1 \mathrm{KHz}-200 \mathrm{MHz} 5 \mathrm{~V} / 50 \Omega$
$139(\mathrm{LI} .10 \mathrm{~Hz}-50 \mathrm{MHz} 10 \mathrm{~V} / 50$ s
RT 5 ns
1221. Timing Unit 6 Channel
$0.10 \mathrm{MHz} 5 \mathrm{~V} / 50 \Omega$ RT 8 ns
G710. $5 \mathrm{~V} / 50 \mathrm{~N} 30 \mathrm{~Hz} \cdot 50 \mathrm{MHz}$ RT 5 ns $132 \mathrm{AL} .50 \mathrm{~V} / 50 \Omega 5 \mathrm{~Hz} \cdot 3 \mathrm{MHz}$ RT 12 ns
HEWLETT PACKARD
214 A 100 $/ 50$?. Double pulse O/P
W50ns. 10 ms .10 Hz .1 MHz . 15 ns RT
MARCON
TF2025 $0.2 \mathrm{~Hz}-25 \mathrm{MHz} \pm 10 \mathrm{~V} / 50 \mathrm{~V}$ RT 7 ns
PM5776 3V/50ת. $1 \mathrm{~Hz}-100 \mathrm{Mz}$ Rise /fall Times less than Ins. Recorders and Signal Conditioning Equipment AMPEX
PR2200 Instrumentation Recorder up 1016 channels. FM/DR. Record replay all speeds. $\mathbf{1}^{\prime \prime}$ tape FM/OR I.R.I.G. DC. 40 kHz FM. 100 Hz 300 kHz DR
BRUNO WOELKE
ME102B. Wow and flutter meter MEIO2C. Wow and flut

BRUEL \& KJAER

2305B Bench type. Mains operated Log recording of AC: 2 Hz .200 kHz and OC. 50 or 100 mm paper width ZR0001 Linear Pat DC: $10-35 \mathrm{mV}$ 2R0002 Linear Pat DC: $10-110 \mathrm{~V}$ ZR0004 25 dB Potentiometer 2R0005 50 dB Potentiometer 7R0006 75 dB Potentiometer

Prices
BRYANS SOUTHERN 29000 X-Y Recorder A4 0.25 mV $10 \mathrm{~V} / \mathrm{cm}$
BS 3144 channel 1 mv -10V
16 speeds
BS316 6 channel 1 mv -10V
$29300 X$ - Y Y Single pen $A 40.25 \mathrm{~m}$
$10 \mathrm{~V} / \mathrm{cm} 0.1 \mathrm{~s}-50 \mathrm{~s} / \mathrm{cm}$
HEWLETT PACKARD
G80M. 5 inch. Siripchart Single Pen 5 mV -120V $1 / \mathrm{P} 20 \mathrm{~cm} / \mathrm{min} 2.5 \mathrm{~cm} / \mathrm{M}$ 7046A Two pen A3 $0.25 \mathrm{mV}-5 \mathrm{~V} / \mathrm{cm}$

KUDELSKI

Nagra 4.2 LSP Professional Audio Recorder (Batt optd)
NAGRA
Mains Unit for 4.2 L3P
PHILIPS
PM 8251 Single pen 10 in chart RACAL
Store 4. Uses D/4 inch magnetic
perates at 7 different speeds.
S E LABORATORIES
150/6151 12
$1250 \mathrm{~mm} / \mathrm{s}-25 \mathrm{~mm} / \mathrm{min} 6$ in chart
9946 Channel Pre-Amp $\pm 1 \% \pm 1 \mathrm{~V}$ $0 / 0$
600825 Channel $\mu \vee 8$ in $4 \mathrm{~m} / \mathrm{sec}$ to
$25 \mathrm{~mm} / \mathrm{min}$
SMITHS INDUSTRIES
RE541.20 Single Pen. 0.5 mV - 100 V FSD. $3-60 \mathrm{~cm} / \mathrm{min}$ and hour
YOKOGAWA
3046. 10 inch Chart Single Pen. 0.5 $\mathrm{mV}-100 \mathrm{VI} / \mathrm{P} 2.60 \mathrm{~cm} / \mathrm{min}$ and $/ \mathrm{hr}$ 3047. 2 Pen Version of 3046

Signal Sources and
Generators
BOONTON
1028 4.3-520 MHz Int/Ext FM/AM
DYMAR
$1525100 \mathrm{kHz}-184 \mathrm{MHz} \operatorname{Int} / E x$
AM/FM Batt/Mains
GOULD ADVANCE
SG70 $5 \mathrm{~Hz} \cdot 125 \mathrm{kHz} 600 \Omega$ 4w
HEWLETT PACKARD
$204 \mathrm{D} 5 \mathrm{~Hz}-1.2 \mathrm{MHz} .600 \Omega .80 \mathrm{~dB}$ att O/P SV RMS
204D/001 As for 2040 (Battery
operated
608 E .10 .480 MHz AM
$620 \mathrm{~B} 7-11 \mathrm{GHz} 5052$ FM/PM 1 mw
$3614 \mathrm{~A} 800 \mathrm{MHz}-2.4 \mathrm{GHz}+10 \mathrm{dBm}$
R616A 1.8-4.5 GHz Ext AM/FM/PM
10 mw
MARCONI
MF144 H/4S HF Generator
10 kHz .72 MHz AM
TF791. FM Deviation Meter
4.1024 MHz

TF801/D1. 10-470 MHz AM. FM. TF995A / 2. 1.5-220 MHz AM. FM. TF2171 Digital Synchroniser for TF2015
TF2002/AS 10 kHz - 72 MHz FM/AM .1-1V o/p
TF2012 UHF, FM $400-520 \mathrm{MHz}$.
6500
75
90
PACAL
$90815-520 \mathrm{MHz}$ LED Display O/P
130 dBm AM/FM
ROHDE \& SCHWARZ SWOB II 051200 MHz 50 s SCHAFFNER
NSG101 Mains Interference
59 Simulator. Superimposes Puises on mains for tesing mmunur of equipment to interference Puls equplitude $\pm 800 \mathrm{~V}$ Rise Time 0.25 V Width 50 \& $200 \mu \mathrm{~s}$

Prices
from E

1650
2350
545

275
995

1215

AA Log Amplifier
T.V. Test Equipment

M 5508 B Patlern Generatol 625
ines PAL UK Systems
Voltmeters-Analogue
AVO
8 Mk IV
BOONTON
92AD/01/09 10 kHz-1.2 GHz 1999
FSD $10 \mu \mathrm{~V}$ Res
$92 \mathrm{C} 10 \mathrm{kHz}-1.2 \mathrm{GHz} 500_{\mu} \mathrm{V}-3 \mathrm{~V} .1 \%$ of FS
BRADLEY
CT471C. ACIDCISzicurren
mult,meter and RF
HEWLETT PACKARD
400 E Millivoltmeter
$10 \mathrm{~Hz}-10 \mathrm{MHz} \mathrm{B} / \mathrm{W} 1 \mathrm{mV}$ FSS
27 A AC IOC. Ω mullimeter
3406 A .10 kHz 1.2 GHz .
8405A Vector Volt meter

1. 1000 MHz B/W

Auto Phase Lock
$3400 \mathrm{~A} 10 \mathrm{~Hz}-10 \mathrm{MHz} 1 \mathrm{mV}-300 \mathrm{~V}$
True RMS
KEITHLEY
610C Electrometer DC 1 mV . 100 V
Amps $10^{-1} \bullet$ Recorder o/p
LEVELL
TM38 $5 \mu \mathrm{~V}-500 \mathrm{VAC} 1 \mathrm{~Hz}-3 \mathrm{MHz}+$
5010100 dB
LINSTEAD
M2B DC AC $10 \mathrm{~Hz} \cdot 500 \mathrm{kHz}$
MARCONI
TF2603. AC volmeter to $1.5 \mathrm{G} \cdot \mathrm{Hz}$
PHILIPS
PM24548 1 mV 300 V 10 Hz 12 MHz
Z in 19Mst DCO F
RACAL
9301 RMS Millivoltmeter
$10 \mathrm{kHz}-1.5 \mathrm{GHz}$ with carry case
Voltmeters-Digital
ADVANCE
DMM 7A/01 1999 FSD
FARNELI
FM131B 1999 FSD AC DC
Current, Temperature

Prices
from E
150
250

315

525
195

All equipment for sale is fully refurbished to manufacturers' original specifications
fluke frame
BOOCA 1999 FSD
AC/OC/OHMS Current
HEWLETT PACKARD
34740A 34702 A 9999
FSD.AC/DC/OHMS

SOLARTRON

LM1420.2.2300 FSD DC only 0.05%
LM1420.2BA. 2300 FSD AC
True RMS, DC
A200. 19999 FSD OC only
A203.19999 FSD AC/DC/Sl.
Sensituvily. $11 \mu \vee D C, 10 \mu \vee \mathrm{AC}$.
100 ml resistancel
A205.19999 FSD ACIDCIO
A243. 119999 FSD AC, DC 18.
Sensitivity: $\left(11_{\mu} \vee D C, 10 \mu \vee A C\right.$
10 ml resistancel
7050.99999 Auto AC/DC/88 350

Voltmeters Vector/Phase
DRANETZ
$305 B 9999$ FSD Mainframe for PA
3001 module
HEWLETT PACKARD.
3490 A 100000 FSD $1 \mu \mathrm{~V}-1000 \mathrm{~V}$ DC 0.01%
$10 \mu \mathrm{~V}-1000 \mathrm{~V}$ AC \& Ω

AS NEW -

EX STOCK DELIVERY
Oscilloscopes
TEKTRONIX 465 OC- 100 MHz Oual Trace
5 mv -5V/Div $0.05 \mathrm{ws}-0.5 \mathrm{~s} /$ Div Delayed T/B XY DC 4 MHz
TEKTRONIX $475 A$ OC- 250 MHz Dual Trace
5 mV - $5 \mathrm{~V} /$ Div $0.01 \mu \mathrm{~s}-0.5 \mathrm{~s} /$ Div Delayed
T / B XY DC 3 MHz
£1950

THESE INSTRUMENTS SOLD
WITH ONE YEAR FULL GUARANTEE
SPECIALISTINSTRUMENTS
Gas Detection \& Analysis
AIINDUSTRIES
TCS Leakseeker. Thermal Conduct
det.
CROWCON
71PGasalarm. Combustible gas
monitor
Water Quality
Measurement
YELLOW SPRINGS INST.
57 Dissolved Oxygen Meter
Airflow - Sampling
ROTHEROE \& MITCHELL
L2SK Personal Alr Sampling Kit
Data Comms. \& Cable
Test Equipment
MARCONI
TF2333 Transmisslon Test Set 30
Hz .550 kHz
WANDEL 8
GOLTERMANN
PS3 Selective Level Osc. 300 Hz .
SPM3 Selective Level Meter 300
$\mathrm{Hz}-612 \mathrm{kHz}$
Temperature Measuring
Equipment
COMARK
1601 BLS A nalogue Thermometer
or Type A thermocouples. 4 ranges
$-8710+1000^{\circ} \mathrm{C}$
604 BLS As 1601 except ranges
-60 to $+170^{\circ} \mathrm{C}$ in 23 steps
625 BLS Type T thermocouples
-100° 10 $+300^{\circ} \mathrm{C}$ in 40 steps
Batt/optd
642 BLS Type J Thermocouples
$-120^{\circ} 10800^{\circ} \mathrm{C}$ in 9 steps
Batt/opid
Radio Telephones 8 Test
Equipment
DYMAR
BC282 4 Port Battery Charger 50 Hz -
240 V AC
115
Hand Held
Phase Meters
DRANETZ
A. 3001 Phase module 2 Hz .700 kHz
+0.1 to 0.25°
301 A 5 Hz .500 kHz Z in $100 \mathrm{k} \Omega$ +
${ }^{18-2}$

Redundant

Test Equipment
Why not iurn your under-utilized

INSIST ON
 VERSATOWER
 BY PROFESSIONALSFOR PROFESSIONALS

The VERSATOWER range of telescopic and tilt-over towers cover a range of 25 ft to $120 \mathrm{ft}(7.5 \mathrm{M}$ to 36M).

Designed for Wind Speeds from 85 mph to 117 mph conforming with CP3 Chapter V, part 11

Functional design, rugged construction and total versatility make it first choice for telecommunications

Trailer mounted or static, the VERSATOWER solves those difficult problems of antenna support, access and ground level maintenance.

A programme of continuous product development has led to a range of over 50 models, all available at highly competitive prices. This coupled with our quality assurance scheme ensures that we maintain the leader position we enjoy today.

VERSATOWER

THE PROFESSIONALS' CHOICE

STRUMECH

PORTLIAND HOUSE, COPPICE SIDE BROWNHILLS, WEST MIDLANDS TEL: (05433) 432! TELEX: 335243 SEL

The New FM/AM 1000s with Spectrum Analyser-we call it the SUPER=S
A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope, tone generator, deviation meter, modulation meter, signal generator, wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!
For further information contact Mike Taylor

FieldTech Ltd Heathrow Airport London Hounslow TW6 3AF
Tel: 01-759 2811
Telex: 23734
FLDTEC G

Introducing the latest professional state-of-the-art $31 / 2$-digit DMM - at really oldfashioned prices! From just an unbelievable $£ 39.95$ inc. VAT, plus $£ 1.15$ p\&p!

I believe you! Please send me the DMM/s as marked.
__6200@ E41.10 each, Inc. VAT, p\&p. Total price \notin \qquad __6220@ 51.10 each, inc. VAT, p\&p. Total price f \qquad 6100 @ $£ 66.10$ each, inc. VAT, p\&p. Total price $6110 @$ E76.10 each, inc. VAT, p\&p. Total price

Total cash/cheque enclosed t Cheques payable to Maclin-Zand Electronics Ltd., please. Available exclusively from the company that gives you tomorrow's technology today. 38 Mount Pleasant, London WCIX OAP. Tel. 01-278 7369/01.837 1165

6200 6220

\square

Why such a low, low price? Because the A/D converter and display are custom built! This is a genuine top-spec DMM. Check these features for unbeatable value - you won't find a hand-held DMM with these features at these prices again!

Businesses havebeen builtonour ferrites. Oursincluded.
 If you're a manufacturer, even the most inexpensive

components must be checked out - or they'll let your product down. And it's particularly true of ferrites. Apex are the sole UK agents for one of America's largest ferrite manufacturers, Fair-Rite. Apex use Fair-Rite products in their own manufacture of wound components and know how good they are.

The range covers most shapes from torroidal and pot cores to E cores, shield beads and baluns.

Full data is available on request.
The most useful kit in the business.
We've put together a kit of assorted ferrites
that contains a versatile selection of ferrite cores that will enable designers of RFI suppression devices and wideband transformers to optimise circuits and approximate final designs very quickly.

A comprehensive data kit is included that contains impedance vs frequency curves, attenuation curves and wideband transformer design data.

It costs just $£ 17.00$ plus VAT (cheque or company order).
It's really too good to miss.

Apex. Big enough to look after you. Properly. Apex Inductive Devices, 27 Abbey Industrial Estate, Mount Pleasant, Alperton, Middx. Tel: 01-903 2944.

WW - 026 FOR FURTHER DETAILS

Use CRT displays in your systems or equipment? Then it's well worth getting to know the KGM resources. We can take both design and production problems onto our own experienced shoulders. Far better than struggling with complex video concepts yourself!
For a quick scan of KGM capabılity, look through our new colour folder - featuring some of the units we have produced for major customers. Some are based on our standard monitor range - but even these come with a choice of thick film modules or discrete components, for maximum 'tailor-made' flexibility. And today our technology extends to complete keyboard and micro-processor units. If you're ready to talk monitors now, ring our Sales Applications Engineer. Or start with one of those folders.
KGM Electronics Limited
Clock Tower Road, Isleworth, Middlesex TW7 6DU. Tel: 01-568 0151. Telex: 934120

WW - 013 FOR FURTHER DETAILS

AND THERE'S MORE WHERE THIS CAME FROM

It's a long time since one of our adverts was presented in 'list' form - but simply because we do not try to squeeze this lot in every time doesn't mean that it's not available. Our new style price list (now some 40 pages long) includes all this and more, including quantity prices and a brief description. The kits, modules and specialized RF components - such as TOKO coils, filters etc, are covered in the general pric
list - so send now for a free copy (with an SAE please). Part 4 of the catalogue is due out now (incorporating a revised version of pt.1)

LINEARICS-NUMERIC LISTINGS

TEA120S	1.00	KB4413	1.95
L200	1.95	KB4417	1.80
U2378	1.28	TDA4420	2.25
U2478	1.28	KB4420B	1.09
U2578	1.28	KB4423	2.30
U2678	1.28	KB4424	1.65
[M30 ${ }^{\text {H }}$	0.67	KB4431	1.95
LM301N	0.30	KB4432	1.95
[M308H	0.96	KB4433	1.52
LM308N	0.65	KB4436	2.53
LM339N	0.66	kB4437	1.75
[M348N	1.86	KB4438	2.22
LF351N	0.38	K84441	1.35
LF353 ${ }^{\text {N }}$	0.76	KB4445	1.29
[M374N	3.75	KB4446	2.75
[M380N-14	1.00	кв4448	1.65
[M380N-8	1.00	NES044N	2.26
LM381N	1.81	NE5532N	1.85
2N419CE	1.95	SD6000	3.75
NE544N	1.80	SL6270	2.03
NES55N	0.30	SL6310	2.03
NE556N	0.50	SL6600	3.75
NE560N	3.50	SL6640	2.75
NES62N	4.05	SL6690	3.20
NE564N	4.29	SL6700	2.35
NE565N	1.00	ICL8038CC	4.50
NES66N	1.60	MSL9362	1.75
NE570N	3.85	MSL9363	1.75
SL624	3.28	HA11211	1.95
TBA651	1.81	HA11223	2.15
LA 709 HC	0.64	HA11225	1.45
LAP709PC	0.36	HA12002	1.45
LAF10HC	0.65	HA12017	0.80
LA71 OPC	0.59	HA12402	1.95
LA7410	0.66	HAL2411	1.20
LA7410N	0.27	HA12412	1.55
LA7470N	0.70	LFF13741	0.33
${ }^{\text {LA }}$	0.36	SN76660N	0.80
	2.45		

路

)

Please send an
SAE with all
enquiries.
Access/Barclaycd (Calll Es 5 please)

TRANSISTORS

AUDIO DEVICE \begin{tabular}{ll}
$\begin{array}{ll}\mathrm{BC237} & 0.08 \\
\text { BC238 } & 0.08\end{array}$

\hline

BC238 \& 0.08

BC239 \& 0.08

\hline

 $\begin{array}{ll}\text { BC239 } & 0.08 \\ \text { BC307 } & 0.08 \\ \text { BC308 } & 0.08\end{array}$ $\begin{array}{ll}\text { BC } 308 & 0.08 \\ \text { BC309 } & 0.08\end{array}$ BC309 0.08 BC41 30.10 $\begin{array}{ll}\text { BCA1 } 4 & 0.11 \\ 8 C A 15 & 0.11\end{array}$ $\begin{array}{ll}\text { BC415 } & 0.07 \\ \text { BC416 } & 0.08\end{array}$ $\begin{array}{ll}\text { BC546 } & 0.12 \\ \text { BC556 } & 0.12\end{array}$ $\begin{array}{ll}\text { BC556 } & 0.12 \\ \text { BC550 } & 0.12\end{array}$

BC550 \& 0.12

BC560 \& 0.12

\hline
\end{tabular} BC639 0.22 $\begin{array}{ll}\text { BC640 } & 0.23 \\ 2 S C 1775 & 0.18\end{array}$ $\begin{array}{ll}\text { 2SC1775 } & 0.18 \\ \text { 2SA872A } & 0.14\end{array}$ $\begin{array}{ll}\text { 2SDD666A } & 0.30 \\ \text { 2SB646A }\end{array}$ $\begin{array}{ll}\text { 2SB646A } & 0.30 \\ \text { 2SD668A } & 0.40\end{array}$ $\begin{array}{ll}\text { 2SB648A } & 0.40 \\ \text { 2SD760 } & 0.45\end{array}$ $\begin{array}{ll}\text { 2SB720 } & 0.45 \\ \text { 2SC2546 } & 0.19\end{array}$ $\begin{array}{ll}\text { 2SA1084 } & 0.20 \\ 2 S C 2547 & 0.19\end{array}$ $\begin{array}{ll}2 S C 2547 & 0.19 \\ 2 S A 1085 & 0.20\end{array}$ AUDIO POWER DEVICES

$\begin{array}{ll}\text { 2SB753 } & 2.34 \\ \text { 2SB723 } & 2.34\end{array}$ $\begin{array}{ll}2 S K 133 & 3.00 \\ 2 S J & 48 \\ 3.00\end{array}$ | 2SK134 3.10 |
| :--- |
2SK135 3.75	$\begin{array}{ll}\text { 2SI } 50 & 3.75 \\ \text { RD535 } & 0.52\end{array}$ $\begin{array}{ll}\text { BD5 } 35 & 0.52 \\ \text { BD536 } & 0.52 \\ & \end{array}$ $\begin{array}{ll}\text { BD536 } & 0.52 \\ \text { BD377 } & 0.33 \\ & \end{array}$ $\begin{array}{ll}\text { BD378 } & 0.33 \\ \text { RD165 } & 0.30\end{array}$ $\begin{array}{ll}\text { BD165 } & 0.30 \\ \text { BD166 } & 0.31\end{array}$ SMALL SIGNAL RF DEVICES BF194 0.18 $\begin{array}{ll}\text { BF195 } & 0.18 \\ \text { BF224 } & 0.22\end{array}$	BF224	0.22	
B241	0.18		BF274	
:---	:---			
BF440	0.18	$\begin{array}{ll}\text { BF440 } & 0.21 \\ \text { BF441 } & 0.21\end{array}$ $\begin{array}{ll}\text { BF362 } & 0.49 \\ \text { BF395 } & 0.18\end{array}$ BF479 0.66 $\begin{array}{ll}86679 S & 0.55 \\ \text { BFR91 } & 1.33\end{array}$ BFW92 0.60 BFT95		

0.99

BFY90 $\begin{array}{ll}\text { BFY90 } & 0.90 \\ 40238 & 0.85\end{array}$ RFPOWER $\begin{array}{ll}\text { VN66AF } & 0.95 \\ \text { ZN3868 } & 0.85\end{array}$ 2N3866 0.85 SMALL SIGNAL \begin{tabular}{ll}

RFFET/MOSFET	
EF256	0.38
2SK55	0.28

\hline 25635
\end{tabular} $\begin{array}{ll}\text { 2SK55 } & 0.28 \\ \text { 2SK168 } & 0.35\end{array}$ $\begin{array}{lr}25 K 168 & 0.35 \\ \mathrm{~J} 310 & 0.69\end{array}$ $\begin{array}{ll}\mathrm{J} 176 & 0.65 \\ 40823 & 0.65 \\ 40673 & 35851\end{array}$ $\begin{array}{ll}40673 & 3.6551 \\ \text { 3SK45 } & 0.49 \\ \text { 3SK51 } & 0.54\end{array}$ $\begin{array}{ll}\text { 3SK60 } & 0.58 \\ \text { MFM680 } & 0.75\end{array}$ $\begin{array}{ll}\text { MFM680 } & 0.75 \\ \text { BF961 } & 0.70 \\ \text { BF960 } & 1.24\end{array}$ $\begin{array}{ll}\text { BF960 } & 1.24 \\ \text { 3SK48 } & 1.64\end{array}$

SCHOTINY DIODE EAL

CAPACITORS
CF:FAMIC 50 V
 18P. . 0.04 .0 .04 $22 \mathrm{P}, 27 \mathrm{P}, 33 \mathrm{P}, 47 \mathrm{P}$
$56 \mathrm{P}, 68 \mathrm{P}, 82 \mathrm{P}, 100 \mathrm{P}$. 330P, 390P, 470 P 330P,390P, 470P,... 0.055 1NO, 2N2,3N3,4N7, .0.06
10N (0.01UF)0.05 2ZN, 4 TN....
100N,220N. .0 .06
.0 .09 MONOLITHIC
$10 \mathrm{~N}, 100 \mathrm{~N}$. ic 0.09 FERETHR
INO SOLDER IN. 0.09 POLYESTER (SIPMENS)
10 mm LEAD SPACING
$10 \mathrm{~N}, 22 \mathrm{~N}, 33 \mathrm{~N} .$.
$47 \mathrm{~N}, 68 \mathrm{~N}, 100 \mathrm{~N}$
$220 \mathrm{~N}, 470 \mathrm{~N}$. .0 .17
0.19
.0 .22
luF
POLYESTER (GENERAL
10 mm LEAD SPACING $10 \mathrm{~N}, 15 \mathrm{~N}, 22 \mathrm{~N}, 3 \mathrm{~N}, .0 .06$
$47 \mathrm{~N}, 68 \mathrm{~N}, 100 \mathrm{~N} . \ldots .0 .08$ $220 \mathrm{~N}{ }^{2} . . .{ }^{2} .0$ 20 nm LEAD SPACING
$220 \mathrm{~N}, 330 \mathrm{~N}, 470 \mathrm{~N} \ldots .0 .18$ MYLAR
5mi lead spacing $1 \mathrm{NO}, 10 \mathrm{~N}, 22 \mathrm{~N}, 33 \mathrm{~N} .0 .08$
$100 \mathrm{~N} . \ldots0 .0 .09$ 20 mm LEAD SPACING 22ON, 470N. . POLYSIYRENE. 10P,15P,18P,22P, $27 \mathrm{P}, 47 \mathrm{P}, 56 \mathrm{P}, 68 \mathrm{P}, .0 .08$ $100 \mathrm{P}, 180 \mathrm{P}, 220 \mathrm{P}$, 270P,330P, 390P...0.09
$470 \mathrm{P}, 680 \mathrm{P}, 820 \mathrm{P}$ INO,1N2,1N5,1N8..0.11 2N2, 2N7, 3N3, 3N9. .0.12
$4 N 7,5 N 6,6 N 8,10 N .0 .13$ TANTALUM BEAD CAPS 16v: $0.22,0.33$, $0.68,1.0 \ldots \ldots, 0.18$
$16 \mathrm{v}: 2.2,4.7,10.0 .19$
$6 \mathrm{v} 3: 22,47 \ldots \ldots .0 .30$
$10 \mathrm{v}: 22,100 . \ldots .0 .35$ ALUMIN ELECTROLV̇TICS (uF/voltage) 1/63,2,2/50,4.7/35 $10 / 16,15 / 16,22 / 10$ $32 / 16,33 / 10$. $47 / 10 \ldots0 .09$
$10 / 53,22 / 50,33 / 50$, $47 / 16,100 / 16 \ldots . .0 .1$
$47 / 63,100 / 25,220 / 16$ 470/6.3.
$100 / 63,470 / 16$, 1000/16,470/63....0. 0.23 1000/63,2200/16.. 0.23
.0 .30
0.69 $1000 / 100$.

AXIAL (HORIZ. MOUNT $1 / 25,4.7 / 16,6.4 / 25$ $10 / 16 \ldots0 .08$
$4.7 / 63,22 / 10,2216$ $33 / 16,10.16 .$.
$47 / 25,100 / 16$. 100/25.
$1000 / 16 . \ldots \ldots . .10$
$2200 / 16,1000 / 25$. $2200 / 16,1000 / 25,0.36$
$1000 / 35,4700 / 16 \ldots 0.45$
$1000 / 50 \ldots \ldots . .0 .58$ RESISTORS $0.25 \mathrm{~W}, 58$ घ 12 CARHON $10 n \mathrm{~m}-10 \mathrm{M} \mathrm{M}^{2} .0 .02$
0.25 W 18 El 2 MEAL FIU 1.1 hIm-1M......... 0.05
HORIZ CARBON PRESETS 10nas TYPE
100 hims-2M5
ORI2 CERMET HRESETS

MIXERS (SBLL $=$ MLI 08) SBLI 1-500M12 $\begin{array}{lll}\text { SBL } 1-8 & 1-200 \mathrm{MHz} & 4.55 \\ \text { SBLI-X } & 10-1000 \mathrm{MH} 2 & 5.75\end{array}$
 $\begin{array}{llr}\text { SRAL } 1 & 5-1-500 \mathrm{MHz} & 9.25 \\ \text { SRAlH } & .150 \mathrm{M} \\ \text { SRAlH } & .5-500 \mathrm{M} 12 & 13.35\end{array}$ $\begin{array}{lrl}\text { SRAlH } & .5-500 \mathrm{MTR} & 13.35 \\ \text { SRA3 } & .025-200 \mathrm{MH} 2 \mathrm{~L} & 10.25\end{array}$

LCD Module

 CM161. Miniature clock, $12 / 24 \mathrm{hr}$., alarm day, date,backlight.
backlight.
All for..... 9.95

CATALOGUES
$2 \& 3 \ldots . .60 \mathrm{p}$ e 14 inc. rev
part 1) part 1)
ALL PARTS

Before Gold Lion valves reach you they've been hit with a hammer!

True. With Hi-Fi enthusiasts demanding higher and higher standards of sound you can't afford poor quality valves. That's why every Gold Lion valve survives an awesome series of tests before it reaches your equipment including testing under amplifier conditions and being hit with a rubber hammer!

So we hand-build Gold Lion valves and use advanced pumping techniques to ensuretop quality.

Gold Lion KT77's and KT88's cover 30-200 watts. If you would like to know more send for these Application Report Leaflets, you'll find them fascinating reading.

MOV
AMEMBER OF THE GEC GROUP

Kepthase Contacts CLEAN

BY USING A
 DIACROM SPATULA

No other cleaner has all these advantages:-

1. Only 100% pure, natural diamond grains are utilised.
2. Eledes are treated with hard chrome to reinforce the setting of the diamond grains. to obviate loosening or breakaway during use. This process aiso prevents clogging of the diamonded surface by residues resulting from use.
3. All diamonded blades are rectified to ensure an absolutely smooth surface by eliminating dlamond grains which may rise above the surface. This eliminates all excessive scratching during use.
4. All diamond grains are rigidly calibrated to ensure a perfectly uniform grain size of either 200, 300 or 400.
5. The chrome gives a very weak co-efficient of friction and the rigidity of the nylon handle is calcuiated to permit proper utilisation and yer pliant enough to avoid undue pressures on highly delicate relays.

- Grain size 200. thickness $55 / 100 \mathrm{~mm}$.. both faces diamonded. For quick cleaning of industrial relays and switching equipment. atc.
- Grain size 300 , thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For smaller equipments. like telephone relays. computer relays. etc
- Grain size 400 , thuckness $25 / 100 \mathrm{~mm}$., one face diamonded. For sensitive relays and tiny contacts. Two close contacts facing each other can be individually cleaned, because only one face of the spatula is abrasive

Sole Distributors for the United Kingdom
SPECIAL PRODUCTS (DISTRIBUTORS) LTD
81 Piccadilly, London W1V OHL. Phone: 01-629 9556
As supplied to the M.O.D., U.K.A.E.A., C.E.G.B. British Rail and other Public Aurthorition: also major industrial and electronic users throughout the United Kingdom

Peace and quiet

The quietest sound the ear can hear moves the eardrum about $10^{-9} \mathrm{~cm}$, one tenth the diameter of a hydrogen molecule. Movement due to random thermal bombardment of the eardrum by air molecules is around this same level and largely accounts for this limit of sensitivity.*

But the distortion contribution from a QUAD 405 amplifier in normal use (say 85 dBa) moves the eardrum less than this amount.

Perhaps sitting in a very quiet room at $-100^{\circ} \mathrm{C}$ and without the music we might nearly hear thembut "'tis bitter cold."

For further details on the full range of QUAD products write to:

The Acoustical Manufacturing Co. Ltd. Huntingdon, PE18 7DB. Tel: (0480) 52561.
*Sensitivity is never made more acute by the presence of other sounds.

QUAD

The finest amplification kits from Crimson Electric

* \star * \star * LATEST DEVELOPMENTS $\star \star \star \star$

CRIMSON ELEKTRIK Power amplifiers are the most sophisticated on the market day. Yet now with the latest Issue 5 innovations THEY ARE EVEN BETTERI We day. Yet now with the latest Issue 5 innovations THEY ARE EVEN BETTERI We circuit which obviates the need for output fuses. In fact, such fuses can seriously degrade the performance of amplifier. They can blow under heavy drive conditions - even with non-faulty loads (due to thermal fatigue), they can be a fime-consuming nuisance and even dangerous to replace, but more importantly they are responsible for 'envelope distortion' i, e., dynamic compression of the signal, even fuses in the feed disadvantages, and the lars two disadvantage, and the latter to a lesser extent.
$\star \star$ * \star EST VALUE $\star \star \star \star$
CRIMSON have an enviable reputation for supplying the best value amplifier kits. You can prove this to yourself by checking out the competition in the following crucial areas: * professional grade phon sockets for ALL signal connections \ddagger Silver/Gold plated switch contacts \# Adequate heatsinking for full -rated output * , Available from stock \$ Manufactured by a specialist company with a reputation for 'friendly and helpful service before and AFTER sale *Forms the basis for high quality active loudspeaker systems. Considering the advantages of CRIMSON Kits, why choose anything else?

* * * SOUND ADVICE $\star \star \star \star$

Crimson Amplifiers are versatile and dependable. The new CP 3000 will give up to 300 watts into 4 ohms at 0.03% THD and is the obvious choice for P.A. and Disco equiring the best performance. For Hi.Fi we produce the ever-popular pre-and power amp hardware kits which enable our advanced modules to be houses in tractive metalwork and include everything down to the last nut and bolt.

Our Preamplifier can be fitted with the moving coil module allowing it to be use with the latest M.C. cartridge (which can now be bought for as little as £3O).
Write for details, specifications and full price list or send 50 p. cheque /P.D. for our comprehensive application/user's manual.

Space precludes us from publishing all our products and prices, below are just a few examples:

- Power Amp Modules (single channel)

CE 608 (60 WRMS/8 ohms)
£23.10 $£ 38.50$
CE 1708-(170 WRMS/8 ohms)
CP +60 watt stereo ore and power amplifier complete kit

- Stereo Moving Coil Pre.Pre Amplifier Module MC1
- 3 Way Active Crossover (single channel)

Don't forget. Crimson modules are available throughout the country from all branches of Marshalls and Mail Order from Badger Sound Services and. of course, Crimson Elekurik
Prices include V.A.T. and post to anywhere in the U.K

두 Crimson Flektrik

WW - 052 FOR FURTHER DETAILS

Enow delivery from current production.
Quick darters of international repute, establisher over Exporters of internationaireput, Dost rental users and good value wholesalers. Overseas distributor enquiries welcomed Write, ring or telex for details:

In our bock you'll find the broadest range of power switching devices in planar construction plus extensive application notes. In short, an invaluable reference that no design engineer should be without.

TRW have established a reputation as a leader in the semiconductor field by continually developing new and better products.

TRW pioneered the power Schottky rectifier, bringing it from its initial role as an interesting laboratory project to a highly usable efficient low voltage rectifier.

Varactors represent another success story with the trade name Varicap © becoming virtually generic for these devices.

Make sure you send for this book that contains the fullest data on TRW's

WW - 018 FOR FURTHER DETAILS
high reliability products; both off-the-shelf or designed to customer's specifications.

You'll find that supplying the components you need is well within our power.

TRW

POWER SEMICONDUCTORS

MCP Electronics Ltd.
38 Rosemont Road, Alperton, Wembley, Middlesex.
Telephone: 01-902 5941. Telex: 923455.

－more performance and reliabilty than you ever thought possible

A Leader instrument for every need．
 The full range of Leader Test Equipment，the first choice of engineers around the

 world，is now avallable in the U．K．Leader Products，with a long history of high reliability，backed by a 1－year

OSCILLOSCOPES

4． 35 MHz Osclllascopes with more performance and reliability for less cose．The Leader range of oscilloscopes includes 12 models，single and dual trace，for bench or field use．All models offer comprehensive triggering controls．TL compatible Z－AXIS modulation and convenient colour－keyed front panel layout

AUDIO TEST

ww－065
Audio Generators－Frequency Response Recorders Audlo Systems．Analyzers Wow \＆Flutter Meters

LFR5600 FREQUENCY RESPONSE

 RECORDERDesigned to graphically record wow and flutter，drift voltage，temperature and frequency response of
Audio equipment．
－Frequency Range $20 \mathrm{~Hz}-30 \mathrm{KHz}$
V Vriable chart speed
Voltage range $0.1 \mathrm{~V}, 1 \mathrm{~V}, 10 \mathrm{~V}$
Sweep Oscillator
Pilot Signal
Metered，Swept frequency input／output voltage

For full technical details together with price list please contact：

L三Aロニマ

SINCLAIR ELECTRONICS LTD

London Road，St．Ives，Huntingdon，Cambs．PE17 4HJ Telephone：St．Ives（0480）64646．Telex： 32250

Sinclair Electronics Ltd．reserve the right to alter prices and specifications on Leader equipment without prior notice．

BUILD YOUR OWN PROFESSIONAL QUALITY DMM AS AL READY USED BY HUNDREDS OF LABORATORIES, RESEARCH UNITS. UNIVERSITIES ETC. THE LASCAR RANGE OF MULTIMETERS IS NOW ALSO AVAILABLE IN KIT FORM, CONTAINING ALL PARTS NEEDED KT FORM, CONTAANGG ALL PARTS NEEDED TO CONSTRUCT THESE SUPERBLY STYL
MULTMETERS-EVENBATERIESAND TEST LEADS. BOTH TYPES FEATURE FIVE FUNCTIONS (AC AND DC VOLTS, AC AND DC CURRENT RESISTANCE) WITH ABILITY TO CHECK DIODES. 0.5 " LCD DISPLAY WITH 'BATTERY LOW' WARNING. AUTO-POLARITY, AUTO-ZERO. FULL PROTECTION AGAINST AUTO-ZERO. FULL PROTECTION AGAINST
OVERLOADS AND TRANSIENTS, CAN WITHSTAND MAINS ONANY RANGE. RUGGED ABS CASES AND A COMPREHENSIVE 1-YEAR WARRANTY.
The LMM 200 has been featured as a project in the July 80 Practical Electronics. It is a compact handheld multimeter with a 0.5% basic accuracy and 15 different ranges. It measures AC/DC voltage from 0.1 mV to $500 \mathrm{~V}, \mathrm{AC} / \mathrm{DC}$ current from $0.1 \mu \mathrm{~A}$ to 2 Amps and resistance from 0.1Ω to $2 \mathrm{M} \Omega, 200$ hours battery life.
The LMM 100 is suitable for field or bench use. It has a basic accuracy of 0.1% and 25 different ranges. It measures AC/DC voltage from 0.1 mV to $1 \mathrm{Kv}, \mathrm{AC} / \mathrm{DC}$ current from $0.1 \mu \mathrm{~A}$ to 2 Amps and resistance from 0.1Ω to $20 \mathrm{M} \Omega$. Battery life is over 2,000 hours. It also features a unique 'digital hold' facility and adjustable carrying handie.
We also offer a calibration service $(£ 5.00+$ VAT $=£ 5.75)$ and a trouble-shooting and calibration service ($£ 7.50+$ VAT $=£ 8.62$).

To: Lascar Electronics, Unit 1, Thomasin Road, Basildon, Essex. Please send me Data \square LMM 200 Kit $£ 39.04 \square$ LMM 100 Kit $£ 69.80 \square$ Assembled LMM 200 £47.09 \square Assembled LMM 100 £91.13 \square

WW - 081 FOR FURTHER DETAILS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be inade to order.

Full Information from:

HARRIS ELECTRONICS (London)

138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

WW - 010 FOR FURTHER DETAILS

AMATEUR RADIO RETAILERS ASSOCIATION

Secretary: Fred Hopewell, P.O. Box 36, Loughborough LE1 1 DW
Presenting the NINTH

AMATEUR RADIO AND ELECTRONICS EXHIBITION

at the

GRANBY HALLS, LEICESTER on 6th, 7th and 8th NOVEMBER, 1980

OPEN DAILY, 10 a.m. to 6 p.m

£500 IN VOUCHER PRIZES TO BE WON!

piuis̄ fábulous free draw prizes throughout the EXHIBITION!

DON'T MISS THIS EXCITING EVENT - BARGAINS GALORE, REFRESHMENTS, BAR AND ALL THE USUAL AMENITIES

ADMISSION: 75p. Concessionary Tickets 50p for Parties of 15 or over

NO ADVANCE TICKETS. ON RECEIPT OF YOUR REMITTANCE WITH ORDER, TICKETS WILL BE RESERVED FOR YOU TO PICK UP AT THE BOX OFFICE. IF YOU REQUIRE AN ACKNOWLEDGE MENT, PLEASE ENCLOSE A STAMPED-ADDRESSED ENVELOPE

BOOK THE DATES NOW FOR THE SHOW OF THE YEAR!

Model 146
ALSO
Model A0113. Sine/Square. 1 volt into 600n Dist . 02%. £31.60 (Kit version £26.50) p.p. £1

LOW COST

AUDIO SIGNAL GENERATORS
(Sine \& Square Waves) $10 \mathrm{~Hz}-100 \mathrm{kHz}$
Very low distortion ($\times 0015 \%$) £41.40 (or in kit form) £35.65 p.p. and ins. $\mathbf{E 2}$

TELERADIO ELECTRONICS

325 Fore Street, Edmonton, London N9 OPE
S.A.E. for leaflets . . . Closed afl day Thursdays ... 01-807 3719

WW - 027 FOR FURTHER DETAILS

 DMM with true RMS on $A C$ volts and current DC volts $200 \mathrm{mV}-1 \mathrm{KV}$, $10 \mu \mathrm{~V}$ resolution AC voits. 200 mV - 750 V , $10 \mu \mathrm{~V}$ resolution. DC/AC current $200 \mu \mathrm{~A}-2 \mathrm{~A}, 0.01 \mu \mathrm{~A}$ resolution resistance 200 $2-20 \mathrm{M} \Omega, 0.01 \Omega$ resolution. Also reads dB direct referenced to 16 stored impedances. Conductance ranges 2 mS and 200 ns . E199 mains model £239 mains battery. $8012 \mathrm{~A} 31 / 2$ Digit LCD DMM with true RMS on AC volts and current. DC volts $200 \mathrm{mV}-1 \mathrm{KV}, 100 \mu \mathrm{~V}$ resolution. AC volts $200 \mathrm{mV}-750 \mathrm{~V}$, $100 \mu \mathrm{~V}$ resolution. DC/AC current $200 \mu \mathrm{~A}-2 \mathrm{~A}, 0.1 \mu \mathrm{~A}$ resolution. Resistance $200 \Omega-20 \mathrm{M} \Omega, 0.1 \Omega$ resolution Low resistance 2Ω and 20Ω, $1 \mathrm{~m} \Omega$ resolution Conductance ranges $2 \mathrm{mS}-20 \mu \mathrm{~S}-200 \mathrm{~ns}$
£199.00 mains model $£ 219.00$ mains battery. 8010A $31 / 2$ Digit LCD DMM Same spec as 8012A plus a 10Amp AC/DC current range. but no low resistance range.
£159.00 mains model $\mathbf{\$ 1 7 9 . 0 0}$ mains battery. 8024A $31 / 2$ Digit hand held LCD DMM with peak hold Level Detector and continuity tester. DC volts $200 \mathrm{mV}-1 \mathrm{KV}$ $100 \mu \mathrm{~V}$ resolution.
AC volts $200 \mathrm{mV}-750 \mathrm{~V}, 100 \mu \mathrm{~V}$ resolution. DC/AC current $2 \mathrm{~mA}-2 \mathrm{~A}$. $1 \mu \mathrm{~A}$ resolution. Resistance $200 \Omega-20 \mathrm{M} \Omega, 0.1 \Omega$ resolution. Conductance 200 nS . Peakhold of AC or DC volts and current. Level detector operates around +0.8 V reference. Audio tone on level and continuity. $\mathbf{£ 1 3 5 . 0 0}$ carrying case $£ 7.00$ extra.

8020A $31 / 2$ Digit hand held LCD DMM. spec as per 8024 A with extra conductance range of 2 mS but no peak hold, level or continuitv ranges. Complete with carrying case. £112.00 8022A $31 / 2$ Digit hand held LCD DMM. Spec as per 8020 A but no conductance ranges and slight reduction on accuracy. Was $£ 89.00$ now reduced to $£ 75.00$ carrying case $£ 7.00$ extra.

Also available a range of accessories including current shunts, EHT probe, if probe, Temperature probe and touch and hold probe. Full details on request. The warranty period on all items shown is 1 year other than the 8020A which is 2 years.

Electronic Brokers

49-53 Pancras Road, London NW1 2QB
Tel: 01-837 7781. Telex: 298694 Prices do not include carrage or VÁT
WW - 069 FOR FURTHER DETAILS

INTERFACE COMPONENTS LMMTED
OAKFIELD CORNER SYCAMORIEROAD, AMERSHAM, BUCKS HPG GSU TELEPHONE:02403 22307. TELEX:837788
Write, telephone or call. Access or Barclaycard accepted

Cut costs and speed trouble shooting

with the

Huntron Tracker

This easy to use test instrument displays shorts, opens, and leakage in solid state components. Check diodes, unijunctions, bipolars, Darlingtons, J-FET's, MOS FET's, LED's, electrolytics and IC's. . IN CIRCUIT!
Test pure digital or analogue hybrid boards .. . WITHOUT CIRCUIT POWER! Current limited to protect delicate devices in the MOS.CMOS family Save $20 \ldots 30 \ldots 40 \ldots$ even 50% of trouble shooting time and recover your investment fast! Exclusive 12 months warranty, available fromSEE US AT TESTMEX
MTL Microtesting Limited
1-15 Butts Road, Alton, Hampshire Telephone: Alton (0420) 88022

WW - 006 FOR FURTHER DETAILS

\& UICK ACTING $\&$ ANTI SURGE
CARTRIDGE FUSES
from $£ 2.80$ per 100
Wirewound Power Resistors (Ceramic). 5w-17w OR 5-39K from $£ 9.35100$.
Cable Sleeves and Markers from $£ 1.311000$.
C. Resistors. 1/ww-2w from §4.00 1000.
Crimp Terminals. Elma Knobs and Dials, Audible Warning Devices from £1.14 each. Catalogue available [state interests)

Cf. Resistors

 1/4 5\%£3.00 1000 (per value) + carr. and V.A.T. Following values only.

GE8 33E 100E $120 E 360 \mathrm{E}$ 470E 560E 2 K 4 2K7 4K7 5K6 7K5 8K2 100K 120 K 150K 220 K 300 K 390 K 820 K
PBRA LTD.
Golden Green, Tonbridge Kent, TNII DLH Hopfield (073274) 345
Member Crystalate Group

WW - 090 FOR FURTHER DETAILS

NEW OFFER!!

MICROPHONE TRANSFORMERS

2×300 ohms input for 200 balanced microphone
47 K output-7:1 ratio.
Mumetal can with fixing bush and $6^{\prime \prime}$ flying leads.
Maximum input level 700 mv RMS (200 ohm). Response 10 Hz $20 \mathrm{KHz} \pm 1 / 2 \mathrm{db}$
PRICE $£ 3.40$ inc. VAT.

DIRECT INJECT BOXES . .

Jack input XLR output isolate switch and level control.
PRICE £19 inc. VAT.
XLR CONNECTORS
High quantity connectors, most popular models at very low prices QUANTITY DISCOUNTS GIVEN
TRADE AND EXPORT ENQUIRIES WELCOMED
MWM Co.
159 Park Road, Kingston, Surrey KT2 6BX
01-549 9130
Please add $£ 1$ postage
WW-060 FOR FURTHER DETAILS

World-beating Oscilloscope Offers FROM

The AIRAMCO Mikro IOOO -The Scottish Solution.

The Mikro 1000 is a Scottish built micro-computer which combines State of Art technology with simplicity and durability to give a powerful small business system at a very competitive price.
Driven by a 2.5 MHz or ${ }^{\prime} 4 \mathrm{MHz} \mathrm{Z80}$ processing unit constructed around Industry Standard S 100 Bus, the Mikro 1000 is designed to provide the ease of expansion necessary in a modern growing business or industry - memory is expandable from 32 K to 256 K , with up to 4 Megabytes of on-line disk storage.
The integral VDU has an 80 cols. $\times 24$ lines screen, and incorporates a green phosphor CRT, while the 117 key keyboard can be used remotely from the main body of the machine, and may be programmed for user functions such as word processing commands.
As well as supporting all CP/M based languages, the Mikro 1000 has a full range of business software, including Sales, Purchase and Nominal Ledger, Inventory Control, and Payroll, as well as Word Processing (which is available at even lower cost as a separate system on the Mikro 1000 WP).

For further information on either Mikro 1000 system, please contact:
Unit A2, Longford Avenue, Kilwinning Ind. Est., Kilwinning, Ayrshire, KA22 8NP.
Tel: 029457755 Telex: 779808

WW - 087 FOR FURTHER DETAILS

Verowirap risnew TISBRITISH AND... ITSCHEAPER

Vero Systems have developed two new British made wire wrapping tools for the electronics industry. The 'Hobby' is designed to offer the newcomer wire wrapping at a reasonable price. Complete with wire wrapping bit suitable for 30AWG wire and any mini-wrap terminal. Ideal for low volume users. The 'Verowrap' is fitted with a chuck which will accept any wrapping bits and sleeves, making it adaptable for different terminal sizes where 30AWG and 26AWG wire is in use.
 The by the flick of a switch. The high capacity nickel cadmium batteries are charged in situ by use of a plug-in charger

VERO SYSTETS
VERO SYSTEMS (ELECTRONIC) LIMITED
362 Spring Rd, Sholing, Southampton, Hants. SO9 5QJ Telephone: (0703) 440611 Telex: 477164

WW - 0.96 FOR FURTHER DETAILS

Electronic components

 \& applications appications Use your scissors to keep informed.Cut the coupon and subscribe to Electronic Components and Applications. Its 64 pages, contain in-depth articles like - Microprocessor applications TV and radio digital control - Electronic news gathering -30 AX -latest TV techniques - AC motor speed control, written by top specialists from Philips, Signetics and Mullard.

Vol 2 No. 3
May 1980

PRIME COMPONENTS LOW PRICES

DTI

SPECIAL PURCHASE

OF TOP QUALITY LCD MULTIMETERS

CHOOSE FROM FOUR MODELS

* $31 / 2$ digit autoranging (volts/OHms)
* 200 hours battery life (2 pencells)
$\star 10 \mathrm{amp} \mathrm{AC} / \mathrm{DC}(6220 \& 6110) \star 1000 \mathrm{v}$ DC
600 v AC
* $200 \mathrm{~mA} \mathrm{AC} / \mathrm{DC}(6200$ \& 6100)
* Range hold facility (6100 \& 6110)
* Unit and range sign (6110 \& 6220)
\& Continuity buzzer (6100 \& 6110)

RESOLUTION

100μ VDC. 1 mVAC
$10 \mu \mathrm{~A}$ AC/DC. 0.1 OHM
10 mA on 10 A . AC/OC

OTHER FEATURES

(ALL MODELS)
Low power OHms Range
Zero Adjust key
Battery Warning
In circuit resistance test
Size $155 \times 85 \times 28 \mathrm{~mm} .250 \mathrm{~g}$.

6200	$\mathbf{8 3 9 . 9 5}$
6220	$\mathbf{4 9 . 9 5}$

6220
f49.95

ACCURACY

6100/6110
0.5% DC Volts
1% DC Current
1.2\% AC Current
1.2\% AC Current
0.5% Resistance

6200/6220

0.8% DC Volts
1.3\% DC Current
1.4\% AC Current 0.8\% Resistance

6100
6110
£64.95
$\mathbf{1 7 4 . 9 5}$

* All prices include batteries/leads and UK VAT (UK c/p 65p) * Order By Post or Telephone with Barclay or Access.

OR CALL IN AND SEE FOR YOURSELF

W W - 020 FOR FURTHER DETAILS

WOW/ FLUTTER driftmeter WM1A

Bang \& Olufsen wM1A is a combined wow/flutter meter and driftmeter suitable for testing all sorts of tape recorders, scientific equipment as well as domestic equipment.

A built-in frequency analyser makes it a handy and precise instrument for faultfinding.

Osciliator	3.15 kHz crystal controlled
Driftmeter	$\pm 0.316 \%- \pm 3.16 \%$ f.s.d.
Wow/flutter meter $\pm 0.0316 \%-3.16 \%$ f.s.d.	
Freq. analyser	$1 \mathrm{~Hz}-316 \mathrm{~Hz}$ in 5 ranges
Inputs	$3 \mathrm{mV}-10 \mathrm{~V} / 47 \mathrm{kohms}$ or $30 \mathrm{mV}-$
	$10 \mathrm{~V} / 470$ kohms

Bang \& Olufsen electronic instruments are also power supplies, oscillators, milliohmmeters, voltmeters, and distortion meters.

Bang\&Olufsen

DK - 7600 Struer

[^0]
EXPERIMENTOR BREADBOARDS

No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build a breadboard of any size.
All EXP Breadboards have two-bus-bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP 48.

EXP 325 £1.60 The ideal breadboard for 1 chip circuits. Accepts $8,14,16$ and up to 22 pin ICs. Has 130 contact points including two 10 point bus-bars.

EXP 350 E3. 15 Specially designed for working with up to 40 pin ICs perfect for 3 \& 14 pin ICs.
Has 270 contact points including
 two 20 point bus-bars.

EXP 300 E5. 75 The

 most widely bought bread-board in the UK With 550 contact points, two 40 point
bus-bars, the EXP 300 will accept any size IC and up 106×14 pin DIPS. Use this breadboard with Adventures in Microelectronics.
EXP 600 £6.30 Most MICROPROCESSOR projects in magazines and educational books are built on the EXP 600

EXP 650 E3.60 Has $\cdot 6$ "centre spacing so is perfect for MICROPROCESSOR applications.

EXP 4B ©2.30 Four
more bus-bars in
"snap-on" unit.

The above prices are exclusive of P\&P and 15% VAT

THE CSC 24 HOUR SERVICE TELEPHONE (0799) 21682

With your Access, American Express, Barclaycard number and youF order will be in the post immediately

C.S.C. (UK) LTD Dept. 7PP Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex CB11 3AQ.
Tel: Saffron Walden (0799) 21682 Telex: 817477

Roll the dice - the electronic way! The digltal dice gives you an instant score randomly chosen from 1 to 6 . every time you press the button. No losing this under the tablel
No. 8 QUIZ MASTER
Play your own 'Sale of the Century'! Up to four contestants pit their wits; the first one to get the answer lights up his 'win' light, and stops anybody else from having a go.
No. 9 MOVING TARGET GAME Test your reactions! A moving 'line of light' travels along from left to right, over and over again. You've got to "ire' at just the right moment to score a hit. Fun for all the family!
Want to get started on building exciting projects, but don't know how? Now using EXPERIMENTOR BREADBOARDS and following the instructions in our FREE Electronics By Numbers' leaflets, ANYBODY can build electronic projects. For example, take one of our earlier projects, a L.E.D. Bar Graph:

You will need: One EXP 300 or EXP 350 breadboard, 15 silicon diodes, 6 resistors, 6 Light Emitting Diodes. Just look at the diagram, Select R1. plug it into the lettered and numbered holes on the EXPERIMENTOR BREADBOARD, do the same with all the other components, connect to the battery, and your project's finished. All you have to do is follow the large, clear layouts on the 'Electronics by Numbers' leaflets, and ANYBODY can build a perfect working project. to us, and you will receive the latest
'ELECTRONICS BY NUMBERS' leaflet.
If you missed projects, 1, 2 and 3 , or 4,5 and 6, please tick the appropriate box in the coupon.

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost. Two easily assembled kits.

PB6 Kit, 630 contacts, four 5 -way binding posts accepts up to six 14 -pin Dips.
PROTO-BOARD 6 KIT 99.20

PB 100 Kit complete with 760 contacts accepts up to ten 14-pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy
PROTO-BOARD 100 KIT £ 11.80

TO RECEIVE YOUR FREE COPY OF PROJECTS 7,8 and 9

Just clip the coupon

Give us your name and full postal address (in block capitals). Enclose cheque, postal order or credit card number and expiry dard, indicating in the appropriate
box(es) the breadboard(s) you require.

For immediate action

The C.S.C. 24 hour, 5 day a week senvice.
The C.S.C. 24 hour, 5 day a week service.
Telephone 0792168 and 2 and give us your Accoss.
American Express or Barclaycard number and your order will be in the post immediatley
address

1 enclose cheque/P.O. for $£$ Debit my Barclaycard, Access, American Express card No.

Expirydate.
If you missed project No's 1,2,3, 4, 5, and 6, tick box For Free catalogue tick box
C.S.C. (UK) Ltd. Dept. 7PP, Shire Hill industrial Estate Unit 1, Saffron Walden, Essex CB11 3 AO

WW - 023 FOR FURTHER DETAILS

Advertisement produced co-operatively

EVERY PICTURE TELLSA STORY!

Last year, 70% of all home video recorders bought or rented in Britain used the.VHS format.

The evidence of its popularity is right in front of your eyes.

VHS offers superb picture and sound reproduction, combined with an unparalleled standard of reliability.

It's also the most compatible system - a fact which never fails to impress: Customers like the idea of being able to swap tapes with friends who also own VHS machines. And they appreciate the bigger choice of prerecorded material a vailable on VHS too.

When it comes to specifications, the real clincher is the number of top-name manufacturers and video companies who have put their names behind VHS People like Akai, Ferguson, Hitachi, JVC, Panasonic and Sharp.

You'd do well to stock VHS. In fact we'd even go solar a s to say that any dealer whodoesn't stock VHS isn't in the videó picture.

TheWorld's No. 1

HERE'S HOW TO TALK TO

ALL OF THE PEOPLE ALL OF THE TIME

with a communications system built up from the all-embracing, constantly expanding range of

REDITRONICS EQUIPMENT

The latest additions to that range -
業 A104K AUTOMATIC ANNOUNCER
with ENCODED SPOT CAPABILITY for central recording on erasureproof spots, local recording on blank spots with spot omission switch facility, built-in chime, monitor loudspeaker and/or headphone, direct paging priority via associated mic.
with MAINS-DERIVED OR BATTERY-OPERATION CAPABILITY
for Versatility. with quad ($4 \times 40 \mathrm{~W}$). stereo $(2 \times 80 \mathrm{~W})$, or
mono ($1 \times 160 \mathrm{~W}$)
Mobility. with battery operation on $4 \times 12 \mathrm{~V}$ battery-pack
Availability, with emergency standby operation (automatic switchover on mains failure by associated Reditronics CU106 standby power control unit incorporating a battery charger).

Send for details of any item, and our full brochure, of a range of equipment that can provide every integrated link in the chain of a tailor-made sound communications system.

20 usitune are appointed as Reditronics distributors for Greater London and the Home Counties.

WW - 054 FOR FURTHER DETAILS

Compact, versatile field service monitors for two-way radio maintenance

CE-50A: FM / AM Field Service Monitor CE-50A-1 : FM / AM Field ServiceSpectrum Monitor

Exclusive representative:

Aspen Electronics Limited
 Communications Equipment and Components
 2 Kildare Close, Eastcote, Ruislip, Middlesex HA4 9UR
 Telephone: 01-868 1188
 Telex: 8812727

MORE SPEC. FOR YOUR MONEY
digital panel meters

TYPE 35 LCD from $£ 18.38$
+75 P C\&1 (1 ofl)
LCD DISPLAY
0.1% accuracy
200 mV . $2 \mathrm{~V}, 20 \mathrm{~V}$ or 200 V RANGE
9 V .12 to 24 V and
120 or 240V AC POWER OPTIONS AUTOZERO and AUTOPOLARITY Low CONSUMPTION LOW PROFILE

AUTOZERD and AUTOPDLARITY
LOW PROFILE

PANEL INDICATORS

TYPE 20 STEREO LEVEL and BALANCE INDICATOR twin level and balance inolcation SCALED in dB USER ADJUSTABIE
f17.94 + 50P
amb electronics riversioe, evnsforo, kent dat oae Tel. Farningham (0322) 863567

Prices, which are CWO and ex-VAT, are correct at the time of going to press and are subject to change without notice

FROM OMB ELECTRONICS WW - 076 FOR FURTHER DETAILS

DC/DC AND DC/AC CONVERTERS

The table below shows our standard range. Please contact us for your other requirements.

Type	Input	Output Volt DC Max. current			
692	6	12	2 A	d	
707	6	12	3 A	d	
712	24	12	2 A	b	
744	24	12	5 A	b	
7411	24	12	6 A	b	
$7413 / 24$	24	12	8 A	bd	
$7413 / 48$	48	12	3 A	bd	
7413	48	24	3 A	bd	
7508	$12 / 24 / 48$	$12 / 24$	8 A	abd	
	$80 / 120$				

$\mathrm{a}=$ primary/secondary with galvanic separation
$\mathrm{b}=$ stabilized output voltage.
d = switch mode.
DC/AC converter type 7804: Input 12V
DC, output 220 V AC, $90 \mathrm{VA}, 120 \mathrm{~Hz}$
We also supply:

* power supply units from 220 V AC mains operation, with output voltages up to 42V DC and load current from 50 mA DC to 10A DC.
* chargers for nickel cadmium and lead batteries.

Ask for our catalogue

THAERGE electrone

TIf: 032/11 200 Telex: 17516 1601 Fredrikstad NORWAY

fact: this condenser microphone sets a new standard of technical excellence.

The Shure SM81 cardioid condenser is a new breed of microphone. It is a truly high-performance studio instrument exceptionally well-suited to the critical requirements of professional recording, broadcast, motion picture recording, and highest quality sound reinforcement-and, in addition, is highly reliable for field use.

Shure engineers sought-and found -ingenious new solutions to common
problems which, up to now, have restricted the use of condenser microphones. Years of operational tests were conducted in an exceptionally broad range of studio applications and under a wide variety of field conditions:

As the following specifications indicate, the new SM81 offers unprecedented performance capability-making it a new standard in high quality professional condenser microphones

SM81 puts it all together!

- WIDE RANGE, 20 Hz to 20 kHz FLAT FREQUENCYRESPONSE
- PRECISE CARDIOID polar pattern, uniform with frequency and symmetrical about axis, to provide maximum rejection and minimum colouration of off-axis sounds.
- EXCEPTIONALLY LOW (16 dBA) NOISE LEVEL.
- 120 dB DYNAMIC RANGE.
- ULTRA-LOW DISTORTION (right up to the clipping point!) over the entire audio spectrum for a wide range of load impedances. MAXIMUM SPL BEFORE CLIPPING: 135 dB ; 145 dB with attenuator.
- WIDE RANGE SIMPLEX POWERING includes DIN 45596 voltages of 12 and 48 Vdc.
- EXTREMELY LOW RF SUSCEPTIBILITY.
- SELECTABLE LOW FREQUENCY RESPONSE: Flat, 6 or $18 \mathrm{CB} /$ octave rolloff.
- 10 dB CAPACITIVE ATTENUATOR accessible without disassembly and lockable.

Outstanding Ruggedness

Conventional condenser microphones have gained the reputation of being high quality, but often at the expense of mechanical and environmental ruggedness. This no longer need be the case. The SM81 transducer and electronics housing is of heavy-wall steel construction, and all internal components are rigidly supported. (Production line SM81's must be capable of withstanding at least six random drops from six feet onto a hardwood floor without significant performance degradation or structural damage.) It is rellable over a temperature range of $-20^{\circ} \mathrm{F}$ to $165^{\circ} \mathrm{F}$ at relative humidlties of 0 to 95% !

Send for a complete brochure on this remarkable new condenser microphone!

SM81 Cardioid Condenser Microphone

 S円UFE

Shure Electronics Limited, Eccleston Road, Maidstone ME15 6AU—Telephone: Maidstone (0622) 59881

wireless world

Editor:

TOM IVALL, M.I.E.R.E

Deputy Editor:

PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor:

GEOFF SHORTER, B.Sc
Phone 01-261 8443

Projects Editor:

MIKE SAGIN
Phone: 01-261 8429

Communications Editor:
TED PARRATT, B.A.
Phone 01-261 8620
Drawing Office Manager:
ROGER GOODMAN

Technical Illustrator:
BETTY PALMER
Production \& Design:
ALAN KERR
Advertisement Controller:
G. BENTON ROWELL

Advertisement Manager:
BOB NIBBS. A.C.I.I.
Phone 01-261 8622
DAVID DISLEY
Phone 01-261 8037

Classified Manager:

BRIAN DURRANT
Phone 01-261 8508 or 01-261 8423

ANTHONY HADLEY
(Classified Advertisements)
Phone 01-261 8508
JOHN GIBBON (Make-up and copy)
Phone 01-261 8353
Publishing Director:
GORDON HENDERSON

Personal hygiene or public health?

The director of the CCIR, Richard Kirby, made a good point recently when he said, in opening an IEE conference in London, that studies of spectrum utilization should be better recognized as a legitimate and challenging discipline of communication science (News, September issue). In spite of the fact that the welfare of peoples had "become intricately dependent on a great array of radio techniques and services" all sharing the common resource of the electromagnetic spectrum, only a few specialists were fully aware of "the precarious balance that is this matter of spectrum utilization and of its increasingly critical and complex character." This came well from the head of an international body. And the content of the IEE conference itself, on spectrum conservation, strongly reinforced his argument. No doubt from necessity rather than choice it had plenty of papers on particular techniques bandwidth efficiency, frequency re-use, station siting, reducing spurious emissions etc. - but not a single "overview" paper that tackled spectrum conservation as a general socio-economic requirement and analysed comparatively the 'different radio services' information handling needs. We had detailed results from specialists who are working away in separate compartments but not speaking to each other. Everyone is diligently practising personal hygiene in this field but nobody is concerned about public health.

The central fact that an "overview" paper would have brought out, of course, is that spectrum conservation is much more than the business of reducing frequency bandwidth to a minimum. Efficient use of the spectrum also depends on sharing frequencies in time or in geographic space - and also, less commonly, by different polarizations of wave propagation. This was at least implicit in the IEE conference. As one of our contributors, Leslie Berry, has pointed out, we should not be talking about spectrum
pure and simple but what he called "spectrum space" with the three dimensions of frequency bandwidth, time and physical space as area or volume (see "Measuring spectrum use", December 1978). And in his article Mr Berry proposed a measure for determining the efficiency with which radio systems use this quantity - a ratio of communications output to spectrum-space input. Some such quantity (cf. Shannon's formula for the maximum capacity of a
communications channel) should surely be the starting point for all studies in spectrum utilization.

How far should communication science go in pursuing fundamentals? It depends on what you understand by communication. Those of us who think that engineering should concern itself with the human communicators as well as the hardware will claim that spectrum conservation should study both the demands and the real needs of the users of spectrum space. Any user who demands more space than he really needs is clearly planning to use the spectrum inefficiently. At present the goods are carved up arbitrarily and irrationally by authorities whose decisions are little more than passive responses to the demanders. He who shouts loudest gets most. Those with the loudest voices are the political and economic interests that determine the established order in any place. Because they benefit from maintaining the status quo these people do not want any other system of spectrum apportionment and least of all a system based on a rational assessment of human needs. They have a direct interest in continuing the piecemeal, divisive approach to spectrum studies and keeping engineers and scientists where they belong. This is why there is so little money available, as Richard Kirby noted, to support the fundamental study of this resource - a natural resource which, an international commission has rightly claimed (News, May issue), should be more equitably shared as the common property of mankind.

Radio tuner frequency counter

Digital frequency display for a receiver or for general use

by J. L. Linsley Hood

The addition of a numerical display of

 the tuned frequency can make a useful improvement to the ease of use of a radio receiver, especially in the case of broadcast reception on the short-wave bands, and a circuit is given for such a display designed for use with a Yaesu FRG 7communications receiver. However, the circuit techniques employed for this purpose may be adapted with little difficulty to other applications ranging from l.f. frequency measurement to f.m. tuner station identification.

One of the most attractive of the facilities offered by digital circuit components is the simple numerical display of voltage or frequency, with a substantial reduction in the ambiguities in the reading of either of these variables.

A particular area where the numerical display of frequency is of substantial value is in the display of the tuned frequency of a short-wave radio receiver, since the crowding of transmitters in the broadcast bands demands a degree of adjacent channel selectivity which makes an analogue tuning dial very difficult to interpret. The instrument described below was intended for use in the display of the frequency of the second, tuned, i.f. in a Yaesu Musen FRG 7 communications receiver, but the design was deliberately chosen so that it could be used equally well in other frequency counter applications with appropriate small modifications to the arrangement of the circuit.

Since it is the belief of the author that there is a wide, and growing, divergence between the areas of understanding of those electronic engineers whose interests and experience lie in 'linear' or 'analogue' electronics, such as amplifiers and radio systems, and those whose experience is mainly confined to 'digital' circuitry, as in numerical display systems and microprocessors, it is thought that any description of digital circuitry which is accessible to the former will appear very ingenuous to the latter. Apologies are therefore offered in advance on this score, to those whom it may offend.

Circuit arrangement

The method employed in frequency counting is shown in the block diagram of Fig. 1, and consists basically of five
parts. The first of these is a circuit designed to define an accurately determined time interval, during which some form of 'gate' will-be opened to allow the frequency to be measured to pass through to a counter. This interval generating circuit is almost invariably quartz crystal controlled, and usually consists of a crystal oscillator, followed by an appropriate number of frequency divider stages. The 'gate' can be one of a number of logic elements, but an And or a Nand is usually the most convenient.

Fig. 1. General arrangement of frequency meter.

Fig. 2. Crystal oscillator, with test point output.

The second necessary part is some form of signal conditioning circuit, which will convert the probably small amplitude sinusoidal input signal at a high impedance into a well-defined square wave of adequate amplitude to swing cleanly between the ' 0 ' and ' 1 ' levels of the logic and counter elements.

The third essential section of the counter is a suitable logic-sequence generator which will perform the operations of resetting the counter, either to zero or to some predetermined number, opening the gate, and operating the display at the conclusion of the counting operation.

The two remaining stages are the frequency counter chain, which will normally have an output in binary coded decimal (b.c.d.), and the display section, which can be a b.c.d.-to-sevensegment decoder, some form of latch or display gating, and a seven-segment, light-emitting-diode, vacuum-fluorescent or liquid-crystal numerical indicator.

By far the most cost-effective way of providing a numerical display of this type, is to use one of the many largescale integrated-circuit 'single chip' counters - available from Ferranti, National Semiconductor, Intersil, Oki and many other makers. The only drawback to this approach is that there is often very little scope for a change of intention once the integrated circuit has been acquired, and the choice of display, offset frequency, or operating range may be fairly circumscribed. Indeed, in using a single-i.c. frequency counter, there is little point in going to the trouble of building the counter for oneself, rather than buying a complete ready-built circuit, so long as the desired specification is available - but this necessarily precludes the possibility of a versatile unit.

For these, and other, reasons it was decided to put a frequency counter together from standard digital i.c. building blocks, while retaining as many options within the structure for other uses as appeared practicable.

For reasons of practical convenience, adaptability to supply voltages, and low power consumption within the counter circuitry, it was decided to use c.m.o.s. logic elements, of the 74 C . . series, which offer pin-for-pin interchangeability with the equivalent 74 (t.t.1.), $74 \mathrm{~S} \ldots$ and 74 LS .

WIRELESS WORLD, OCTOBER 1980
transistor-transistor, Schottky, and low-power Schottky 5 V logic families. This would allow a subsequent increase in operating speed, if required, without the need for major redesign, by the simple replacement of some of the leading counter i.c.s and a reduction of the supply voltage.
Experience with the National Semiconductors 74C... c.m.o.s. logic elements, in the unbuffered types, has shown that at 12 V supply-line levels, an operating frequency in excess of 7 MHz can be assured, with 10 MHz being typical. Also, in common with other c.m.o.s. logic circuits, the very high input impedance of the gates allows various quasi-linear operating modes to be employed, which are very useful in signal level translation.

Crystal-controlled oscillator. The circuit of this is shown in Fig. 2, and employs a 1 MHz parallel-resonant, ATcut quartz crystal, of the type intended for use with a 30 pF load capacitance. The first element of the 74 C 04 hex. inverter is self biassed with a shunt 1 M0 resistor, and a high-gain, phase inverted feedback signal is derived from the third of the series-connected stages.
A 1 nF capacitor from input to ground prevents spurious overtone modes. Two further stages act as buffers to the counter and test points respectively. The unused input is grounded to prevent uncontrolled action, a practice which should be observed, where appropriate, with all c.m.o.s. gates. A small, preferably ceramic, capacitor in the range 1 to 100 nF - is connected from the h.t. line to the ground line as close as convenient to the supply to the i.c. to prevent spurious triggering of these or other stages.
The output from this circuit is a clean square wave at 1 MHz frequency, and of about $0.8 \mathrm{~V}_{\mathrm{cc}}$ amplitude, peak to peak. Precise frequency adjustment may be made by alteration of the $3-30 \mathrm{pF}$ trimmer capacitor.

Divider chain. The circuit of this is shown in Fig. 3, and consists of a chain of four 74C90 decade counters. These i.c.s are internally organized as a divide-by-five and a divide-by-two counter, connected in such a manner that the output is taken from the divide-by-two stage, which has an equal mark-to-space ratio squarewave output. Since the input is fed by a 1 MHz signal, the output of the first i.c. in the divider chain, at pin 11 , is a 200 kHz signal. The crystal may be tuned to approximately 1 MHz by adjusting for zero beat note between this and the 200 kHz carrier from the Droitwich Radio 4 transmitter, or more accurately if a double-beam oscilloscope is available on which these two signals may be displayed simultaneously.

Signal conditioner. This circuit is shown in Fig. 4. The input stage is an f.e.t. amplifier with a gain of $6-10$ in the range

Fig. 3. Divider chain provides 100 Hz for gate control.

Fig. 4. Unknown-frequency input amplifier and signal conditioner.

Fig. 5. Logic circuit to control gate and display.
$1-10 \mathrm{MHz}$, and capable of operating down to very low frequencies if the coupling capacitors are increased in ${ }^{*}$ value. Half of the six inverter stages of the 74 C 04 are used as a three-stage cascaded amplifier, with the input stage self-biassed to sit at a potential suitable for linear amplification.
Since the operation of this stage at high frequencies can be embarrassed by h.t.-line ripple being amplified by the cascaded stages, the input coupling capacitor is made small deliberately, and the h.t. supply to this i.c. is decoupled through a diode 'hook' and a large value electrolytic. The source of this problem is described later. The input sensitivity of the conditioner stage is better than 10 mV at up to 5 MHz .

Counter logic circuit. The design of this stage is of considerable importance in
the operation of the counter, and a number of variations of possible circuitry have been published, having varying degrees of complexity. The basic task is, however, a simple one. In order of required performance, an appropriate pulse must be provided to reset the counter, the gate must be opened to allow the signal to be routed to the counter, and after the count has been completed, the final count must be displayed; either by means of a pulse which turns on the display, or by a pulse which allows a 'latch' to transmit an input signal to its output, and then hold this signal until the next 'latch-enable' pulse is received.

In the particular application for which this unit was designed, that of displaying a $3-2 \mathrm{MHz}$ signal with a 100 Hz accuracy, a gate open time of 10 milliseconds was required. This was achieved by dividing the 100 Hz output
signal of the counter chain by two, using part of a 74C90, giving waveform C in Fig. 6, and this is used to control one input of a 3 -input Nand gate, as shown in the logic circuit diagram of Fig. 5.
A fundamental problem in all frequency counters is that posed by the statistical fluctuation of the count by ± 1 digit due to the random sampling of the count during the gate open period. This causes an irritating flicker in the display of the last digit. A partial solution to this problem, normally employed, is to sample less frequently, and usually a free-running, slow, multivibrator is used to limit the sample frequency to one which will minimize the flicker without making the counter too sluggish in its rate of response to a change in the frequency of the input signal. In the design shown in Fig. 5, this reduction in sampling rate is accomplished by using the divide-by-five output of the 74 C 90 to give a 10 Hz sample frequency, as shown in waveform D in Fig. 6. When combined with the signal input at H and the 10 ms pulse from C , the result is a negative-going count waveform train as shown at G , having a 10 ms duration but occurring only every 100 ms .

Since the counter i.c. chosen, a 74 C192 (CD40192), requires a negativegoing reset pulse, which must occur before the count begins, two gates from a quadruple 2 -input Nor gate are used to combine waveforms B and C to give a
suitably timed 5 ms duration pulse, which is gated by another 3 -input Nand to give a negative-going 5 ms pulse at 100 ms intervals, as shown in waveform F. This is used to reset the 74 C 192 to a predetermined count number, in a binary-coded decimal form. This operation is described as 'load'.
Two options are available in the display of the count, which require different operating waveforms D and E. This choice is described later.

Counter chain. The circuit layout of the FRG 7 receiver is such that the first frequency changer is driven by a highfrequency oscillator, used in conjunction with a quartz crystal oscillator in a drift-cancelling mode, to give a 1 MHz bandwidth 1st i.f. signal, reduced by the second frequency changer to a $3.455 \mathrm{MHz}-2.455 \mathrm{MHz}$ bandwidth slab of signals, corresponding to a $0-1 \mathrm{MHz}$ increment above the 1 MHz interval to which the first oscillator is tuned.
'The task of the frequency counter is therefore to represent 3.455 MHz as ' 0 ' and 2.455 MHz as ' 1000 kHz ', which is accomplished by the use of a 74 C 192 synchronous up/down counter in the 'down' mode, with the initial count level of 455.0° (the presumed 3rd i.f.) loaded into the counter by the load pulse. The loading table is given in Table 1, and the general organization of the counter chain is shown in Fig. 7. As can be seen, the choice of 'up' (from zero or any other chosen number) or 'down' count-

Fig. 6. Waveforms in logic circuit of Fig. 5.
Fig. 7. Part of four-stage down counter.

	A	B	C	D
0	L	L	L	L
9	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H

Table 1. Preloading.
ing is made by the selection of either the pin 5 or the pin 4 inputs to this i.c. The unwanted input is taken to the positive ' V_{cc} ' rail.

Any number of counter stages may be cascaded in this fashion but, in the example shown, four are used with the signal input being taken to the least significant digit counter - which, in this case, will display the 100 Hz number since the gating period is 10 milliseconds. Although a number of counts between 34,550 and 24,550 will be received during this period, the first digit is not of interest and is therefore not displayed. An input frequency of $3,455 \mathrm{kHz}$ will therefore be represented simply as ' 000.0 ' and $3,355 \mathrm{kHz}$ as ' 100.0 ', ascending to '999.9' as the input frequency decreases to 2.4551 MHz , which is the required condition.

Display. Two possible display modes are feasible, depending on whether leading-zero suppression is needed, based on the 74 C 48 b.c.d. to seven segment decoder - which permits leading zero suppression but not input latching - or the CD4511, which incorporates a latch but not leading-zero suppression. If both of these facilities are required, the 74 C 48 should be used with a separate quad or octal latch interposed between counter chain and decoders. An example of this using the 74 C 373 octal latch is shown in the Appendix.

The first of these two options is shown in the diagram of Fig. 8, using the 74 C 48 coupled to common-cathode l.e.d. seven-segment displays, via 180 ohm, current-limiting resistors. The decimal point is permanently illuminated via a 1 k 2 resistor to the rail, at a position to the left of the least significant digit. Pin 4 on this i.c. performs the dual function of blanking input or leading zero suppression output, so that if pin 4 is always connected to the pin 5 of the next, less-significant digit, no leading zeros will be shown when the input pin 5 of the most significant digit is connected to the 0 V line. Connecting this to the positive line will allow leading zero indication.
If pin 4 on these i.cs is taken to the 0 V line, the display is suppressed, and this is used to prevent display during the count or reset periods by connecting these pins through small-signal silicon
diodes to the display pulse output E of the logic circuit. This causes the display to be illuminated at a 50 Hz frequency on a 1:4 duty cycle. Persistence of vision prevents visible flicker.

The major snag with this arrangement is that a mean current of some 50 mA for each seven-segment l.e.d. display is necessary for adequate daytime brightness, which means 200 mA in total for four digits. Since this current is pulsed on a 1:4 duty cycle, the peak display current can be 0.8 amps at a 50 Hz pulse frequency. This inevitably causes some h.t.-line ripple, and argues both the need for a separate power supply and some decoupling of sensitive portions of the circuit such as the signal conditioner stages, to prevent h.t.-lineborne interference with their operation. Nevertheless, with these precautions, this option is a satisfactory one.

As mentioned above, one of the inherent problems of any counter system is the inherent statistical uncertainty of the input count, which can cause a ± 1 digit flicker in reading. An amelioration of this problem which is possible with c.m.o.s. logic elements, because of their very high input impedance, is to put an $R C$ input filter in the b.c.d. signal lines feeding the decoder, and this arrangement is shown in Fig. 8.* The only snag with this is that on changing frequency, the last digit (in this case the 100 Hz one) tends to lag behind the others in its response. Since this digit is the least significant one, this is only a small penalty.
*The use of analogue averaging techniques with digitally encoded signals poses a number of interesting intellectual problems, in deciding whether such a system would work at all, or, if it did, whether the results would be spurious or would lead to non-numerical characters, which is'presumably why this technique is not known. However, having inwardly debated this point for some time, and having carried out a number of (admittedly simple) statistical analyses of the likely outcome of a 2 - or 3 -digit jitter, based on the b.c.d. encoding sequence shown in Table 1, the matter remained in doubt, and was resolved empirically by a parallel operation of a damped and an undamped input decoder stage.

What was found in this trial was that occasionally the 'damped average' was biassed in one direction or another, by comparison with the visual estimate of the digit jitter, and that, very occasionally, unexpected numbers - i.e., more than one digit away from the central number - could appear briefly in the display. However, the visual comfort of a stable indication was thought, in this instance. to be of greater benefit than a possible ± 1 digit averaging error. No non-numerical digits have been seen.
Presumably, the result is predictable statistically if a Gaussian distribution is used to determined the weighting of the individual ' H 's and ' L '. and if the gate is assumed to behave in an ideal manner in which any input $>\mathrm{V}_{\mathrm{cc}} / 2$ is an ' H ' and any input $<V_{c c} / 2$ is an ' L '.

Fig. 10. Counter in use with communications receiver.

Fig. 8. Two sections of count and display circuit.

Fig. 9. Decoder and display using CD4511 latched decoder i.c.

CD 4511 option. This type of b.c.d.-to-seven-segment decoder has a built-in latch circuit, which allows it to store the input b.c.d.-coded signal until such time as a refresh instruction is received.
The operation of this latch is such that no information can be transferred to the output while the input to pin 5 is high (i.e. at $\mathrm{V}_{\text {cc }}$ line level). In this condition, the decoded output refers only to the last instruction received on its inputs while pin 5 was low (i.e. at the 0 V line level). Since the output from pin 11 of the last 74 C 90 divider (D) is high during the whole of the reset (load) and count cycles, this waveform makes a convenient latch-enable signal, and causes the display to show only the number attained when the counter has finished counting.

Since this display is then continuous, there is no display flicker, with the important feature that the current demand from the decoder/display is nonpulsating. The value of the series resistors should be amended (to 680 ohms) to take account of this. The circuit connexions are shown in Fig. 9.

Use as FRG7 frequency counter The complete circuit, as used, is shown in the photographs of Figs. 10 and 11. In view of the high sensitivity of the receiver - if properly aligned in accordance with the manufacturer's instructions, the background sensitivity threshold is below 0.1 microvolt - it is very necessary that the frequency counter should be well screened, and enclosed in a metal case. One of the Vero G range cases was used for the author's unit, with an internal mains transformer having an electrostatic screen, and with a coaxial socket input for the i.f. signal input.

A small modification is necessary to the receiver itself. This consists of a mains outlet cable, terminating in a suitable free socket, connected to the internal transformer primary - so that the display extinguishes when the receiver itself is switched off - and a coaxial socket outlet on the rear of the receiver, connected with a short length of low-capacitance coaxial cable to the second oscillator buffer output (test point TP 404).
Since it was anticipated that there would be some unwanted radiation from the counter, in spite of all precautions, an on/off switch was included on the counter unit. In the event, this was only receivable at the $25,27,28$ and 29 MHz frequencies, where it heterodyned with the small amount of stray radiation from the internal 1 MHz crystal within the FRG 7. By adjusting the frequency counter crystal tuning to give a zero beat on the 29 MHz harmonic, it can be brought into concordance with the internal crystal to better than a few Hertz in $1,000,000$. With this heterodyne removed, the total spurious radiation level on the prototype is so low that the

Fig. 11. Inside view of instrument.

Fig. 12. Power supply circuit.
additional on/off switch is only used to check that occasional whistles on the tuning scale are not due to the counter.

A suitable power supply unit is shown in Fig. 12.

Appendix

Other applications. As shown in Table 1, the counter can be preloaded to any desired frequency offset. This can be 0 , if inputs A, B, C and D are all taken to the 0 V rail, so that the frequency read is that of the input. In this case, it will be a straightforward frequency meter, and will normally be used in the count-up mode. (Pin 4 of the leading 74C192 taken to the $+V_{c c}$ rail, with the input signal fed to pin 5.) If a sampling rate of 100 Hz will give adequate display accuracy, the circuit can be used as it stands. If, however, the circuit is to be used for an l.f. frequency counter, with the sample frequency reduced to, say, 1 Hz , by additional 74 C 90 s in the frequency divider chain of Fig. 3, the display flicker with the 74C48 decoder, used as shown, would be unacceptable.

Since leading zeros would normally require to be blanked (the least significant one never is, since it would cause the display to extinguish on a count of 0 - so if leading zero blanking is used, pin 5 of the RH 74 C 48 must be connected to $+\mathrm{V}_{\mathrm{cc}}$) the CD4511 is unlikely to be suitable. A separate latch will then be necessary. A convenient
system is shown in Fig. 13, using the 74C373 octal latch. Since the latchenable signal with this is high, the switching waveform from D requires to be inverted. The remaining Nor gate of the 74 C 02 in Fig. 6 is used for this purpose.

The remaining useful application of this circuit is in the display of the tuned frequency of an f.m. tuner, in the range $86-108 \mathrm{MHz}$. Since the oscillator frequency of the f.m. tuner head will be above the tuned frequency by 10.7 MHz , the counter will be used in the count-up mode, with a preloaded number equivalent to the 9 's complement of 10.7 (89.2). If a 100 kHz indication accuracy is adequate, a 4 -digit counter will again be used, with the decimal point wired in ahead of the least significant digit.

Since leading-zero blanking will be needed, at least for the first digit, pin 5 on this 74 C 48 should be connected to the 0 V rail.

As mentioned earlier, the upper reliable frequency limit of the c.m.o.s. counters is about $7-8 \mathrm{MHz}$ on a 12 volt supply. The input frequency from the f.m. tuner oscillator will be well above this, and the most convenient way of solving this problem is by using an input divide-by-100 i.c., such as the RS 8629. This should be mounted with a transistor emitter-follower input, as close as practicable to the tuner head. The output frequency from this, in the range 1.187 MHz to 0.967 MHz , can then be

Fig. 13. Modification for use as low-frequency counter, using external latch.
taken to the counter by a screened cable. The count accuracy required will be 1 kHz , and will allow a sample period of 1 millisecond. One fewer 74C90 in the divider chain of Fig. 3 will be required. Apart from the modified input signal interface, as shown in Fig. 14, this reduction in the length of the divider chain and the change in the count mode and offset of the 74 C 192 s , the circuit form of Fig. 10 is as required.

Fig. 14. Divide-by- 100 prescaler for use with f.m. tuner.

Tone filters for electronic organs

Part 1: organ tone spectra and source waveforms

by C. E. Pykett, B.Sc., Ph.D.

As the organ is a sustained-tone

instrument, achieving a satisfactory imitation of the steady-state acoustic emission of organ pipes is of paramount importance. In this respect the design of the tone-forming filters is crucial, yet there is a curious absence of definitive material dealing with filter design. This is apparently reflected in the range of commercial instruments on the market: with few exceptions their "voicing" seems to be mainly empirical.

To derive a simple expression for the frequency response of a tone filter consider the basic organ system, representative of a wide range of electronic instruments, shown in Fig. 1. The waveforms are initially derived from a continuously running tone generator. Waveforms at various frequencies are selected by depressing keys, and envelope shaping may be applied at the instants of key attack and release to simulate the transient phenomena of organ pipes. (Whilst of considerable importance, transients are not further discussed here). The signals are passed through various tone forming filters depending on the stops or tone colours selected and the output from the filters is then finally amplified and fed to loudspeakers.
A tone filter may be thought of as an amplifier whose gain varies with frequency. The gain can therefore be explicitly written as a function of frequency, $G(f)$. Similarly, each harmonically rich waveform from the generators is equivalent to a large number of individual sine waves of different frequencies, each sine wave having a different amplitude. This waveform can also be written as a function of frequency, say $H(f)$. Therefore the output from the tone filter. $F(f)$, is the product of the input voltage and the gain just as with any amplifier

$$
F(f)=G(f) \cdot H(f)
$$

In general the tone filter will also modify the phase as well as the amplitude of each frequency component in the input signal. As the ear is insensitive to relative phase for present purposes, this does not matter, which
makes the design of tone filters much easier than it would otherwise be. It does mean, however, that the waveform emerging from the tone filter will not necessarily bear any resemblance to the waveform emitted by the organ pipe if both were to be viewed on an oscilloscope screen. It is only the frequency spectra that need to be matched as closely as possible.

If the frequency functions are expressed on a logarithmic amplitude scale then new functions are obtained that are related by addition rather than multiplication

$$
P(f)=Q(f)+R(f)
$$

Rearranging this equation gives the frequency response of the tone filter, $Q(f)$, in terms of the input spectrum from the tone generator, $R(f)$, and of the output spectrum $P(f)$

$$
Q(f)=P(f)-R(f)
$$

This simple equation shows that filter design involves three basic steps. First, the logarithmic spectrum of both the tone generator waveform and of the sound to be simulated must be available. Second, the frequency response of the required filter must be derived by subtracting one from the other. Third, the response so obtained has to be realised in hardware. Subsequent sections discuss each of these stages in detail.

Acoustic spectra of organ tones Before a filter can be designed to imitate the sound of a particular type of organ pipe the spectrum of that sound must be obtained. Following a careful search of the scientific and engineering literature extending back into the 1930 s, it was discovered that very few systematic investigations into the acoustic spectra

Fig. 1. Basic electronic organ system considered in this article is the subtractive kind in which an harmonically rich waveform is filtered.
of organ tones have been reported. As this information is vital to the design of an imitative electronic instrument, three of the most useful references are appended here ${ }^{2,3,4}$. Boner's article (1938) describes one of the first attempts to use electronic techniques to analyse the sound of an organ pipe radiating in a free field (that is away from the reverberant conditions of an auditorium) by mounting organ pipes atop a 24 foot tower out of doors. From the three references quoted, spectra corresponding to the four main classes of organ tone can be extracted, viz flutes, diapasons, strings and reeds, and this goes some way toward providing a framework for the design of a wide range of filters. To augment this information I made recordings of organ sounds and analysed them. A large amount of information was obtained from a fourmanual instrument by Rushworth and Dreaper with some particularly fine solo stops.

Recordings were made of organ pipes in situ using omnidirectional capacitor microphones with a frequency response from below 20 Hz to about 20 kHz . Two microphones were used, feeding separate channels of a tape recorder with a frequency response from 35 Hz to $16 \mathrm{kHz}(\pm 2 \mathrm{~dB})$. The recordings were subsequently replayed monaurally into a high resolution spectrum analysis system with a dynamic range of 60 dB . The reason for using two microphones and then summing their outputs on replay was to reduce distortion of the spectrum through reflections from the surfaces in the auditorium. Because they set up standing waves, such reflections can result in a significant increase or decrease in the intensity of sound of a particular frequency at the microphone location. By using two microphones there is a reduced likelihood of an identical distorting effect occurring at both simultaneously. (A better method for averaging out the effects of reverberation would have been to use averaging in the frequency domain after phase information had been removed.) Recordings were made of four octavelyrelated samples from each stop on the organ, and the whole exercise has resulted in a library of some hundreds of pipe spectra.

The steady state emission of a pipe is periodic at its fundamental frequency This is the lowest frequency present in the spectrum in most cases and it defines the musical pitch of the pipe. Because the emitted waveform is periodic, the only other frequencies present in the spectrum are harmonics or integer multiples of the fundamental; there is virtually no acoustic energy lying between adjacent harmonics. Certain pipes, however, possess a significant noise component due to random fluctuations of the air. In other cases the amplitudes and phases of each harmonic fluctuate randomly to a significant degree. Both of these effects produce energy that is not confined to the harmonic frequencies in the spectrum. However assume for simplicity that the spectrum of an organ pipe consists only of equally spaced lines at the fundamental and harmonic frequencies.

This structure is shown in Fig. 2, with examples of spectra corresponding to each of the four classes of tone. These have been normalized to the frequency of the fundamental so that the abscissae represent harmonic numbers (on a logarithmic frequency scale). All of these spectra contain a large number of harmonics, at least 15, within the dynamic range of 60 dB . This is significant in that it clearly demon-

Table 1. Harmonic amplitudes of various pipe spectra in dB, corresponding to Fig. 2.

har. monic	claribel flute	open dia- pason	viol	cornopean
1	60	60	55	60
2	29	46	56	58
3	30	45	57	55
4	18	35	60	54
5	19	29	48	53
6	11	21	49	49
7	10	26	46	47
8	5	18	43	42
9	5	19	47	37
10	4	12	42	33
11	4	14	40	27
12	3	8	34	25
13	3	5	32	16
14	2	2	28	15
15	2	1	27	10
16	-	0	26	7
17	-	-	25	9
18	-	-	23	6
19	-	-	22	-
20	-	-	22	-
21	-	-	18	-
22	-	-	20	-
23	-	-	19	-
24	-	-	15.	-
25	-	-	20	-
26	-	-	11	-
27	-	-	14	-
28	-	-	13	-
29	-	-	-	-
3 a	-	-	-	-

strates that the flute is far from being a single sinewave as commonly stated. Nevertheless, as the amplitudes of the harmonics in this spectrum decrease rapidly with increasing harmonic number, it is possible to approximate to a reasonable flute tone using only a few harmonics. This is why additive sinewave instruments, which rarely have more than nine harmonics available, are able to provide good flutes whereas their performance at synthesizing almost any other type of tone leaves much to be desired. A glance at the remaining spectra in Fig. 2 shows why. For a subjectively satisfying imitation of these pipe tones, one should aim to embrace all harmonics within a dynamic range of about 60 dB . Therefore even the diapason requires about 15 harmonics and the other two spectra need more. Unless a very large number of harmonics is available in an additive instrument, the only cost-effective way to proceed is with the subtractive approach. (Whilst there are a very few additive instruments that have large numbers. perhaps in excess of one hundred, harmonics available for tonal synthesis, these are expensive experimental developments using advanced microprocessor technology and as yet they are scarcely suitable for amateur construction.)

Returning briefly to the imitation of an organ flute stop of the sort illustrated by the spectrum in Fig. 2(a), this type of tone is in some ways the most difficult to simulate in spite of the apparent simplicity of the spectrum. Merely de-

Fig. 2. Large number of harmonics in organ pipe spectra means high cost for additive instruments.
signing a filter to produce the same overall spectral features often produces a tone that seems somewhat dull and lifeless compared to the original, especially on A-B comparison using tape recordings. Ladner ${ }^{3}$ made the same point, and it seems that the role of the low-amplitude high-order harmonics is not well understood. Sumner ${ }^{1}$ reports that physical features such as the "chimney" in the flute stop of that name are responsible for subtle formant bands in the spectrum, though he does not give further details.

Passing on to the other sounds, where imitation is much easier than for flutes, consider the diapason. The spectrum shows that the amplitude of the harmonics gradually falls off with increasing harmonic number. The viol, on the other hand, has harmonics that increase in amplitude up to the fourth, whereafter they fall. This is the result of a viol pipe being of smaller scale (narrower) than a diapason pipe of the same length.

Finally the cornopean has a spectrum in which the harmonic energy falls with frequency though the fall is not in excess of 6 dB until harmonics beyond the fifth are encountered. The relative smoothness of this curve compared to the previous three in which more scatter is apparent seems to be characteristic of many reed tones.

The four examples of organ pipe spectra represent the four principal categories of organ tone, and there is no reason why essentially the same spectrum should not be used to design filters for several footages, thereby producing a diapason chorus or a reed chortıs, etc. Together with other examples in the references cited, a reasonably broad base of data is available for the construction of filters.

Electrical waveforms

As well as the spectrum of the sound to be simulated, we also need that of the source waveform from which the tone

Table 2. Harmonic amplitudes of various waveforms in dB corresponding to Fig. 3.

harmonic	waveform		
	square	$\begin{aligned} & \hline 7: 1 \\ & \text { pulse } \end{aligned}$	saw tooth
1	60	60	60
2	-	59	54
3	50	58	50
4	-	56	48
5	46	54	46
6	-	50	45
7	43	43	43
8	.	4	42
9	41	41	41
10		46	40
11	39	47	39
12	.	47	38
13	38	46	38
14	\cdot	42	37
15	37	37	37
16			36
17	35	36	35
18		40	35
19	35	42	35
20		42	34
21	34	41	34
22	,	38	33
23	33	33	33
24			33
25	32	33	32
26	.	37	32
27	32	39	32
28		39	31
29	31	38	31
30		36	31

Fig. 3. Easy-keying pulse waveforms such as in (a) or (b) are defficient in harmonic content.
filters are fed. It would be a short and simple matter to present the spectra of commonly used waveforms at this point but several other practical aspects require discussion first.

Probably the easiest waveform to generate is a square wave. With the ready availability of top-octave synthesizers, dividers and envelope shapers in integrated circuit form a complete generating system of, say, 84 frequencies (seven octaves) can be contained on one card. Unfortunately the square wave is far from ideal for tone forming, except in a few cases, because it contains only the odd-numbered harmonics, whose amplitudes decrease at 6 dB per octave, Fig. 3(a). A square wave cannot therefore be used to derive any of the spectra shown in Fig. 2 as these contain even harmonics. It is, however, suitable for use where tones such as a stopped diapason or a clarinet are required, in whose spectra the odd harmonics are much more prominent than the even ones.

In a square wave multi-frequency generating system it is relatively simple to generate pulse waveforms of different mark-space ratios. These possess, in general, both even and odd harmonics and the spectrum of a pulse waveform with a 7:1 mark-space ratio has been discussed by Ryder ${ }^{5}$; this special case is of particular interest to those readers who may be building his organ. The spectrum, Fig. 3(b), shows that certain harmonics are missing. This effect is always obtained with pulse waveforms, including the square wave just discussed. This is merely a "pulse" waveform with a $1: 1$ mark-space ratio, where the nulls happen to coincide with the even harmonics. Whilst pulse waveforms again have the desirable advantages of simple generation and keying (envelope shaping) one possible problem concerns the low average energy of a waveform consisting of short pulses. This could give rise to noise difficulties at the output of the tone
filters which usually introduce considerable insertion loss.
The "classical" waveform that is often used when both odd and even harmonics are required is the sawtooth. This has a spectrum containing all harmonics, whose amplitudes decrease at 6 dB per octave as in Fig. 3(c). Unfortunately the sawtooth is not particularly economical to generate, and once generated it cannot be keyed by the simple non-linear envelope shapers commonly used for square or pulse waveforms without introducing distortion. One way to circumvent of pulse waveforms, and then combine them with appropriate weights so that a staircase waveform obtained. This is a good approximation to a sawtooth.

Another approach is to generate and key a single square wave and then convert it to a sawtooth using a discharger circuit of the type shown in Fig. 4. The square wave is first converted to a series of narrow pulses, for example by differentiation followed by rectification, which are then used to repeatedly discharge the capacitor C through the electronic switch S. Inbetween discharges the capacitor charges exponentially through R. A linear ramp is obtained if R is replaced by a constantcurrent source, though for musical purposes this would seldom be required. An exponential ramp produces little significant difference in the spectrum even at harmonics as high as the 30th. The source voltage V can be used to

Fig. 4. It is easier to generate and kev a rectangular wave and then convert it to a sawtooth than to operate on the sawtooth.

SOUND PRODUCTION IN THE PIPE ORGAN

Organ pipes emit sound when compressed air at a low pressure enters via a valve controlled from a keyboard. Various mechanical, electromechanical or pneumatic contrivances are used to control the valves. Each stop on an organ controls a whole rank of pipes, and has to be "on" before that rank will sound from the keyboard. In each rank there are as many pipes as notes on the keyboard (with a few important exceptions). Therefore even a very small organ will contain several hundred pipes, and a large one many thousands. It is this multiplicity of individually adjusted tone sources that gives the pipe organ its extraordinary richness of sound. (The origin of the term "stop" to denote a particular rank of pipes is of considerable antiquity, and is thought to derive from the great organs of the Gothic period which were. originally built with no means of isolating one set of pipes from another. Not surprisingly, such means were soon introduced so that certain sections of the instrument could be "stopped" from sounding!)
Pipes fall into two categories known as flue pipes and reed pipes. Flue pipes are constructed in much the same way as a recorder or tin whistle in that the incoming wind is formed into a narrow sheet which then encounters a lip fashioned in the wall of the pipe. An oscillatory motion is imparted to the wind sheet whose frequency is controlled by the air column in the remainder of the pipe, acting as a close-coupled resonator. Thus the musical pitch is controlled by the length of the pipe. (This highly compressed description tends to hide the complexity of the physics of the flue pipe, a subject that cannot be adequately treated here). The tone quality of the sound is determined
by the distribution of the energy in the frequency spectrum and for flue pipes this is to a large extent controlled by the relative proportion of length to breadth. This parameter is termed the scale of a pipe, and it gets numerically smaller as a pipe of constant length gets narrower. The smaller the scale, the greater the proportion of higher harmonics in the sound. You might think that the scale should remain constant across a rank of pipes if the tone quality is to remain constant. This is true, but in practice the scale is varied in a systematic manner so that the volume especially toward the top end can remain subjectively the same.
Another factor controlling the timbre of the pipes is whether they are open or closed at the top. An open pipe encourages the formation of harmonics, whereas a stopped one has a sound that is dominated by the odd harmonics only.

Flue pipes are generally made of wood or metal and can have a variety of cross sectional shapes. They are used to generate three of the traditional types of organ tone (flutes, diapasons and strings) and the front pipes in an organ case often form part of a diapason rank. The physical difference in tonal structure between these types of tone is discussed later.
Reed pipes form the fourth type of organ tone and generate sound by means of a metal tongue (the reed) alternatively opening and closing an aperture that communicates with the rest of the pipe. Again, this is a closelycoupled generator-resonator system whose detailed physics is even more obscure than those of the flue pipe. An important factor however is that the shape of the resonator tube controls the timbre to a large extent. Pipes that are
flared reinforce all harmonics to a greater or lesser degree, whereas cylindrical bores emphasize only the odd harmonics. The names of reed stops, often fanciful, imply that they are attempting to imitate orchestral instruments such as the oboe, clarinet or trumpet. This imitation is usually in name only since the tone of organ reeds is unique and part of the tradition of organ building.
Perhaps the most artistic and subtle part of organ building resides in the hands of the voicer, who tunes and adjusts the tone quality and volume of each pipe individually, a process which is the result of centuries of skill and craftsmanship. By basing the design of tone filters on the harmonic structure of actual pipes one attempts to en dow the electronic instrument with some of the artistic virtues of the real one.
The relationship between the fundamental frequency of a pipe and its length has resulted in widespread use of the "footage" nomenclature to indicate pitch. An eight foot stop. for example, means that the frequency of the note two octaves below middle C (usually the lowest note on the keyboard in a church organ) is the same as that which would be produced by an open pipe as used on a piano. Stops of 16 foot pitch therefore sound an octave below this, and a four foot pitch an octave above, etc. The ability to control many ranks of pipes at once from one keyboard, or a variety of tone colours and pitches depending on the stops selected, contrinutes to the tonal variety and brilliant ensemble that is characteristic of a first rate pipe organ.
A complete account of the physical and aesthetic design principles of the organ can be found in the book by the late Professor Sumner. ${ }^{1}$
achieve envelope shaping during key attack and release
Several filters are discussed in the next article, all designed assuming the availability of a sawtooth wave to feed them with. This has been chosen for the following reasons:
$\$$ Its spectral structure is simple. Harmonic amplitudes decrease monotonically with increasing frequency rather than in the oscillatory fashion of a pulse spectrum. This results in a filter frequency response that is also much simpler than if a pulse waveform had been used. This is important because of the comparative ease with which an electrical implementation of the filter can be built.
3: A square wave has already been rejected as being unsuitable for all but a few special tones (though in these cases it is essential).

* Sawtooth and square waves are available in the author's instrument. This meant that a subjective oudgment could be made as to the effectiveness of a filter design and in particular it was possible to make A-B comparisons of the electronically generated sounds against tape recor-; dings of the originals.

References

1. Sumner, W.L.: The Organ, Macdonald (London).
2. Boner, C. P., Acoustic spectra of organ pipes. JASA, July 1938.
3. Ladner, A.W., Analysis and synthesis of musical sounds, Elec. Eng, October 1949.
4. Fletcher. H., et al. Quality of organ tones. JASA, March 1963.
5. Ryder. A.D.. Electronic organ tone system. Wireless World, March 1979.

Marconi Fellowship

The Marconi International Fellowship maintains the motto "to commission creative work in science, technology and humanism," and recognises such work with an annual award of $\$ 25,000$. The general criteria for eligibility include the importance of the candidate's contributions to communications, science or technology, and the degree to which the candidate's life exemplifies commitment to applying communications science or technology to bettering the human condition. For information of the award, write to Dr. Walter Orr Roberts, Marconi International Fellowship Council, Aspen Institute for Humanistic Studies, 1229 Uni'versity Avenue, Boulder, Colorado 80302 USA.

Floppy disc system for the scientific computer - 1

8 in disc stores 400 K bytes

by J. H. Adams, B.Sc. M.Sc.

Storage of data in small computer systems is often accomplished by a 300-baud cassette tape recording. With a transfer rate of only 2 K-bytes per minute, this method makes locating and transferring long strings of data a rather slow process. The introduction, through the users' club ${ }^{1}$, of a more advanced operating system for the computer ${ }^{2}$, and the availability of memory expansion kits, has made a faster store very desirable. To solve this problem the author has developed a store based on an 8 in flexible (floppy) disc. which can accommodate 400K-bytes ${ }^{\text {. }}$ of data and transfor 0.5 K -bytes per second.
Recordings on disc are made by con? verting the data bytes into a serial stream of 1 s and 0 s at a rate of 250,000 bits per second, i.e. one bit every $4 \mu \mathrm{~s}$, truncating the ls down to about $0.5 \mu \mathrm{~s}$ pulses and then interleaving a regular stream of 0.5μ s pulses from the system clock as shown in Fig. 1. These pulses are used to reverse the current in the recording head and, hence, the sign of the flux recorded onto the disc. Con-: verting the parallel input data to a stream of pulses is most easily achieved by one of the controller i.cs which are, in essence, dedicated microprocessors combined with programmed logic arrays to feed control information between the controller, the disc-drive electronics and the computer. Recordings are made on concentric rings, or tracks, 77 on an 8in disc, and a drive unit; with two motors rotates the disc and steps the combined record/read/erase
head from track to track. Optical devices provide signals which indicate when the head is over the outermost track 0 and, using a small hole punched in the disc, an index pulse to indicate when the disc starts each revolution.

The electronics in the drive unit convert t.t.l. levels to switching currents in the head and vice versa, operate the stepping motor and provide erasing signals. Other functions may include door locking, motor-on indication, adjustment of recording current on inner tracks, separation of data, disabling the write operation on write-protected discs, and loading the head against the disc on read operations. This drive unit contains most of these features, although separation of data is achieved in the controller i.c.

Recording format

At 360 r.p.m. it is possible to record over 5000 bytes of data on each track of the disk. To allow the controller to identify recorded clock pulses from serial data pulses from the disc, the start of the decoding process is triggered by the index pulse, and the recording begins with a standard code which the controller can recognise and synchronize with. This code is often produced by repetitive recording of the byte 00 , i.e. the clock pulses are recorded with no interleaved data pulses. The next task for the controller is recognition of the start of the first byte in the data stream. As all possible data bytes may start the stream, no single byte can be reserved for this purpose. Instead, a data byte with a few of the clock pulses missing is

Fig. 1. Interleaved data and clock pulses.
used and is known as a mark byte. Normal bytes can be thought of as data bytes interleaved with the clock byte FF, i.e. all eight pulses. A typical mark byte is data byte FC, interleaved by the clock byte C7. After this index mark, about 5000 bytes of data follow and the recording runs to the start of the next index pulse with a final code of bytes, usually 00 s or FFs. The total number of code bytes is determined'by the accuracy of the clock and drive motor.

Sectored tracks

If data transfers, which match the above, are all that is required of the disc, it is an efficient way of using the system in terms of bytes stored per disc. Usually, however, transfers are of variable length and, as it is not directly possible to access part of the way through a track, there is a limit of one recording per track, no matter how short the data block. To improve the potential disc capacity, each track is split into sectors which each require start and stop codes and identification marks. This leaves less space for data, but normally provides the most efficient mode. Such a format, now widely in use, is the IBM 3740 which fits 26 data sectors into each track, with 128 data bytes in each sector as illustrated in table 1.

In the present format, sectors consist of an identifying block followed by the data. Six 00s synchronize the clock/ data separator, an address mark (data FE, clock C7) indicates the boundaries, of the bytes, and, as previously ex: plained, track and sector numbers are given. This is followed by a CRC, which is a two-byte cyclic recognition code used by the controller to check for errors when reading information. The sector then has a short code, immediately followed by six more 00 s , a data mark (data FB, clock C7), the 128 bytes of data, a two byte CRC for the data, and a final code. Each track has 26 of these sectors end to end, prefixed by a large block of 00 s , an index mark (data FC, clock C7), and trailed to the end of the track jy a code. The copious supply of synchronizing bytes and CRC codes can, with suitable software in the computer, produce a very reliable system.

Formatting all of this information onto the disc is a complicated operation,

IBM 3740 sector

6 bytes 00	Ident mark	Track no.	00	Sector no.	00	CRC 2 bytes	17 bytes 00	Data mark	Data 128 bytes	CRC 2 bytes	27 bytes FF
Data fietd											

IBM 3740 track

40 bytes FF	6 bytes 00	Index mark	26 bytes FF	26 sectors	approx. 240 bytes FF

Table 1. Formatted disc arrangement,
and most discs are supplied formatted with dummy data (usually byte E5). Such discs are marked 128 bytes per sector or per record, soft sectored. The last mentioned term means that the start of the sectors is indicated by software recorded onto the disc, as opposed to permanent hard sectoring, achieved by punching index holes in the disc for each sector (sometimes called 33 hole media for this reason). One disadvantage of soft sectoring is that, if formatting information gets magnetically corrupted, the sectors affected become useless. For this reason, even unused discs should be treated with care. Fortunately, if this should happen, the controller can re-format tracks to this and a number of other formats.

Computer-controller interface

To the computer, the controller looks like four input and four output ports. However, to address the controller, the computer only needs to supply one line each from IC_{2} and IC_{3}, (the computer's input and output-port decoders) along with address lines A_{3} and A_{4} as shown in Fig. 2. Because neither of the address lines go to the decoding i.cs, they take no part in decoding the 8 -bit port addresses which the Z 80 sends along the bottom eight address lines during I/O instructions. Therefore, I/O commands such as IN(05), IN(0D), IN(15) and IN(ID) will activate the same line from IC_{2}, the bottom three bits of each number being the same, 101, but each provides a different combination on A_{3} and A_{4}. By connecting the IN line to the controller's $\overline{R E}$ (read enable) input, and the two address lines to the A_{0} and A_{1} inputs, all four controller registers may be read by the computer. In a similar fashion, one line from IC_{3} drives the $\overline{\mathrm{WE}}$ (write enable) line of the controller, which allows the computer to write information inta any of the registers. For details of these see Table 2.

As well as the data bus into and out of the device, and the four control lines described above, there are two lines from the controller to the computer. One indicates that, either through natural completion or through a failure, the controller has finished an operation and wants servicing, $\overline{\text { INTRQ, the other, }}$
$\overline{\mathrm{DRQ}}$, indicates that the controller desires a data transfer either to or from it. This information is present in the status register but, because of the high rates of data transfer taking place, these lines must be used to enter the 280 , through the interrupt line, in preference to the much slower polling of the status register. The Z80 can therefore keep up with the steady demand for, or supply of data between it and the controller. For
this reason, part of the interface consists of a simple but effective interrupt controller.

Controller disc-drive interface

Lines from the controller to the drive comprise step and direction signals for the head-position motor, data and gating signals for the write operation,

Fig. 2. Floppy-disc controller/formatter.
$\left.\begin{array}{|lllll|}\hline \text { A3 } & \text { A4 } & \text { Register } & \text { Addressed as } & \begin{array}{l}\text { Remarks }\end{array} \\ \hline 0 & 0 & \text { Status } & \text { IN A, (O5) } & \begin{array}{l}\text { Read on INTRQ, checked for CRC } \\ \text { error and record not found bits } \\ \text { during Read, Write and Seek. }\end{array} \\ \hline 0 & 1 & \text { Track } & \text { IN A, (OD) OUT (A8), A This register normally contains the } \\ \text { current head position, OO to 4C. It } \\ \text { is reset to OO on completion of the } \\ \text { Restore command. }\end{array}\right\}$

Table 2. Register structure of the floppy-disc.controller. Note that these details refer to the controller in this interface. More details are given in the data sheet ${ }^{3}$.
and a head loading signal. In the opposite direction, the drive provides data in the form of interleaved clock and data pulses, the index pulse and signals to indicate that the head is over track zero, the disc drive is ready for use, and whether the disc is writeprotected. Some drives provide a headloaded signal, or can load the head onto the disc in the 10 ms delay provided internally by the controller. As this drive does not, a monostable is used to provide a delay signal which is triggered by the outgoing headload line. To improve noise immunity when transferring signals to and from the electromechanical drive, the lines at both ends are pulled high via low value resistors, and high-current sinking buffers are used to drive signals to and fro.

Interrupt controller

Interrupts allow external hardware to divert the microprocessor temporarily from its stream of instructions, and accept instructions from, or more usually, to call a block of instructions which deal with the hardware's needs. In the computer, the INT line to the Z80 is driven by the MM57109 which only requires the Z 80 to read (for Mk I and II systems) or transfer (for Mk III), data between the two. This is a fairly simple procedure and the interrupt mode is chosen, which causes a call to the address 0038 where, in the earlier two systems, there is a short routine to read the data. In the Mk III, there is a re-enable of the interrupt and return so that the interrupt line makes the Z80 pause until the MM57109 is ready for a data transfer. With the disc, faster and more complex responses are required because either of the two interrupting lines can become active separately or simultaneously and, depending upon the operation in hand, different responses may be required. To provide the extra flexibility without sacrificing
speed, Mode 2 interrupts must be possible, and this is carried out by the interrupt controller in Fig. 3.

In Mode 2, after the Z80 has completed its existing operation, it responds to the interrupt by asking the interrupting device to supply an 8 -bit byte onto the data lines which it uses, in conjunction with the previously loaded I register, to form the address of the first of two consecutive memory locations where it will find the starting address of a subroutine to be executed. With these
two locations in the r/w.m., the disc operating system can make alterations to their contents and so alter the Z80's response to, in particular, a $\overline{\mathrm{DRQ}}$ interrupt to cope with read, write and verify operations which are at the heart of a disc system.
The circuit uses a 74LS147 priority encoder to generate a 4 -bit code derived from the highest priority active input line. This code forms bits 1 to 4 of the byte which, when both MI and IORQ are active low, (a combination which only occurs during the Z80 interrupt acknowledge sequence) is gated onto the data lines. Direct connection to the Z 80 is necessary because, during the interrupt response, both $\overline{\mathrm{RD}}$ and $\overline{W R}$ are inactive and the bus transceiver isolates the Z 80 from the main data bus.
The connection from the MM57109 to the INT pin of the Z 80 must be broken and re-routed through one of the unused inputs to the interrupt controller. As the 57109 is now driving a low-power Schottky device, the pull-down resistor on this line must be changed to $10 \mathrm{k} \Omega$ connected to the -5 V supply.
Part 2 will describe the controller circuit and software.

References

1. Users' club, contact Mr P. L. Probetts, 50 Cromwell Road, Wimbledon, London SW 19 8LZ.
2. Mk III manitor, contact the author at 5 The Close, Radlett, Hertfordshire WD7 8HA (Radlett 5723)
3. Data sheet, Western Digital FD 1771, Mar 77.

Fig. 3. Interrupt controller.

"CRANKY" VIEWS

In May's letters Mr Williamson made two statements. Firstly he said that the millibel is rubbish, and secondly he said that a magazine of Wireless World's stature should not provide a platform for cranky views.
In respect of the former he may be right but in réspect of the latter he is definitely not. Let us see what J. S. Mill has to say:
"To refuse a hearing to an opinion because they are certain that it is false is to assume that their certainty is the same as absolute certainty. All silencing of discussion is an assumption of infallibility. Though the silenced opinion be an error, it may, and very commonly does, contain a portion of truth; and since the prevailing opinion on any subject is rarely or never the whole truth it is only by the collision of adverse opinions that the remainder of the truth has any chance of being supplied.
Even if the received opinion be the whole truth, unless it is contested it will be held in the manner of a prejudice, with little comprehension of its rational grounds.
If there are any persons who contest a recelved opinion let us thank them for It. In an imperfect state of the human mind the interests of truth require a diversity of opinion.'
(On Liberty, abridged)
And let W. E. Weyl end the subject with a flourish:
"To every shade of thought, religious, scien-
tific, polittcal, economic, and social; to every
craze, fad, dogma, heresy, and inspiration;
there should be accorded a forum, a soappobox,
a ton of type, and, subject to a subsequent
responsibility for utterances, full liberty of
speech and print."
(The New Democracy, 1912)
(The New Democracy, 1912)
Long live cranky views.
S. Frost

Edinburgh

VHF PROGRAMME LABELLING TESTS

I would be obliged if you could draw your readers' attention to the fact that the $B B C$ are conducting experimental transmissions on their Radio 4 broadcasts from the Wrotham transmitter which can give rise to apparent interference when receiving stereo transmissions with some types of receiver, as the BBC seem to be keeping quiet about it.
Having experienced interference for the past few months which only affected Radio 4 and then only when a stereo broadcast was being received, which interference vanished when I disabled the stereo decoder, I rang the BBC's Engineering Information Department and was told that this trouble was caused by adjacent channel interference from a continental station, that I should fit an attenuator, and that there was definitely nothing wrong with their transmitted signal. I subsequently found out, quite by chance, that they are in fact making experimental transmissions from Wrotham, and on speaking to their Research Department was told that these were known to affect certain receivers, of which mine (an Alba UA800) was one. The noise on my receiver is somewhat like that of a distant diesel engine ticking over, which is
quite noticeable during quiet passages in music or speech.

On ringing the BBC's Engineering Information Department a week or so later I was , again told that my trouble was due to a foreign station. Only after I said that I knew that they were making experimental broadcasts which were affecting my receiver was the existence of these broadcasts admitted, and I was told that they would shortly be extended to Radio 2, as their Research Department had not had any complaints. Personally I cannot see how their Research Department could receive complaints when there has been apparently no publicity about these broadcasts, and it would appear that anyone making enquiries about interference is told that a foreign station is to blame, this despite the fact that the BBC's Research Department appear to know that problems will be experienced with certain receivers.

Some of my colleagues have reported noticing similar background noise with their receivers (various Philips and Ferguson models), but had attributed it to outside interference. It does not in any case make itself apparent very often due to the scarcity of stereo programmes on Radio 4. I would ask anyone who has noticed this effect and wha has thought or been told that it is interference to contact the BBC.

I must say that I am somewhat puzzled by the BBC's approach. Although they have usually been quite open in the past about experimental transmissions, and requested feedback from the listeners, it seems that in this case feedback has been blocked for reasons best known to themselves.
R. Camp

Romford
Essex

The BBC replies:
May I fill in the background to the points in Mr Camp's letter?

As has been publicised in Wireless World and elsewhere, the BBC is investigating proposals for inclusion of data signals in radio broadcasts. If a suitable system can be established it could offer a number of facilities of considerable benefit to the listening public, including channel and programme identification; automatic receiver tuning and switch-on as pre-selected in advance by the listener; automatic receiver search for the type of programme desired (e.g. light music, news); and visual display at the receiver of simple text such as channel and programme title; clock time and news headlines.

Compatibility with existing receivers is clearly an important factor. BBC Research Department has carried out laboratory tests on a range of domestic receivers and these tests have been supplemented by broadcast trials wherein data signals on a 57 k Hz subcarrier have been included in Radio 4 v.h.f. transmissions from Wrotham.

The results of these broadcast trials have been assessed by means of questionnaires issued to selected listeners, including receiver manufacturers' representatives. The trials have not been generally publicised since to do so would inevitably mean that many unrelated interference or other diffi-
culties would be ascribed to the data signals and the trials largely vitiated.

Although the trials were unpublicised it would have been quite wrong for us to have wished to deny their existence or to give misleading advice to listeners complaining of interference. I very much regret that this happened to Mr Camp and freely apologise to him. In fact there was no intentional coverup, simply human failure in that Engineering Information Department engineers answering enquiries were insufficiently alerted to the possibility of interference from this source: that this was so is my responsibility and their suggestion of interference from other stations was reasonable since this is a common problem at this time of year.

The desirability of a system of data signalling on a subcarrier in v.h.f. transmissions has been recognised for some time in many countries. The international (CCIR) Recommendation for f.m. stereophonic broadcasting allows for the use of a 57 kHz subcarrier in this way and receiver designs should be capable of handling signals according to this Recommendation: such a subcarrier is widely used in other countries. Some receivers, including Mr Camp's, are not so designed and some other older receivers may suffer some degree of interference unless their stereo multiplex decoders are very carefully aligned.
In September we shall assess very carefully the results of the current trials and Mr Camp's report on his experience will represent useful additional information in this context. We shall wish to be sure that no difficulty will be caused to receivers which are designed with the CCIR recommendation in mind, and to assess the degree of any problems experienced with older receivers. D. P. Leggatt

Head of Engineering Information
BBC, London WI

MAXWELL'S EQUATIONS REVISITED

As mentioned in the May correspondence columns, we received a large number of letters commenting on Ivor Catt's article in the March issue. Our original intention was to present collectively the main points of all these letters. After discussions between the author and some of the correspondents, however, we finally decided to print one letter which was considered by an independent referee to be fairly representative. (This referee is a senior engineer in a large computer firm.) The letter chosen is followed by a direct reply and some general remarks by the author.
Regarding Mr Catt’s latest article, "Maxwell's equations revisited" in the March issue, I feel that he should be relieved of some of his pseudo-mathematical delusions. For example, what exactly does he mean by the equation
$\frac{\partial h}{\partial x} \cdot \frac{d x}{d t}=\frac{\partial h}{\partial t}$
One criticism is that $d x / d t$ can only be used to represent the velocity of the train if x represents the x -co-ordinate of a fixed point
on it. Mr Catt originally introduced x and t as independent variables to define a point in space-time, so $d x / d t$ is a meaningless quantity.

Also, if Mr Catt had really performed a "careful analysis" he would have had great difficulty in deriving equation (1) in the first place, as anyone with even elementary knowledge of partial differential calculus could tell him. Equation (2)
$\frac{\partial H}{\partial x} \cdot \frac{\mathrm{~d} x}{\mathrm{~d} t}=-\frac{\partial H}{\partial t}$
falls into the same category of fallacies. Small wonder it never appears in the textbooks!

Mr Catt then goes on to say that "almost anything" is a solution to the equations
$\frac{\partial E}{\partial x}=-\frac{\partial B}{\partial t}$
$\frac{\partial H}{\partial x}=-\frac{\partial D}{\partial t}$
This, to put it mildly, is a slight exaggeration of the facts. It is a fact that a sinewave, or a number of sinewaves, is the solution of the equations given the correct boundary conditions. Mr Catt's train is also a solution of the equations but since it obeys a different set of boundary conditions it does not appear as a sinewave. More rigorously, the train profile can be considered as a Fourier series comprising an infinite number of sinewaves with different frequencies and amplitudes, and possibly also some exponential terms.

Having demonstrated the non-existence of any justification for the "theoretical" part of the article, I would like to ask the author if he has any justification for the abuse he proceeds to hurl at mathematicians in general. Mathematics is a tool for the scientist or engineer to enable him to concisely describe physical phenomena. Insight, or a "feel" for the phenomena, is built into the equations and a competent engineer should be able to "look inside" the equations and visualise what they represent. Visualisation of abstract concepts is more difficult but simply because mathematics is used as an aid in describing them does not make the theory "ludicrous and false".

Waveguides, antennae and the like are designed using Maxwell's equations, not by hit-and-miss methods, and behave as predicted by the mathematics. Electromagnetic theory is mathematical by its very nature and if Mr Catt abandons the mathematics he will be left with very little of any practical use.

R. C. Hayes

University of Liverpool

The author replies:

Equation (l) relates three things:
(a) the slope of a surface,
(b) its forward velocity,
(c) the rate of rise of the surface.

If the slope is 1 in 4 , the forward velocity 10 metres per second, then the rate of rise of the surface is $2^{1 / 2}$ metres per second. This kind of

relationship is the stuff of which science and engineering is composed of. I think Mr Hayes knows full well what (1) means, since he has studied A-level mechanics.

Equation (2) says that if an unchanging TEM wave moves forward at the speed of light, the gradient of H with forward distance is related to the gradient of H with time. If it is a fallacy, then what is the correct formula?

Or are we not allowed to relate $\partial H / \partial x$ to $\partial \mathrm{H} / \partial \mathrm{t}$ for a TEM wave?
Let Mr Hayes tell mechanical engineers to convert their trains into a Fourier array of sinewaves, and see how they react! Thank God mechanical engineers are too practical to be sucked into the kind of quagmire that permeates electromagnetic theory! I do not want to travel in a train with some exponential terms designed into or out of it! Would Mr Hayes recommend that the passengers be positioned so as to minimize their harmonic content?
Waveguides, antennae and the like are emphatically not designed using Maxwell's equations, any more than a tribal dance wins the battle that follows.
My successful pioneering attempts to interconnect high speed (1 ns) logic in Motorola in 1964 forced me to abandon all the maths that had grown like weeds to choke electromagnetic theory. A logic step is emphatically not a Fourier array of sinewaves, and you will run into all sorts of nonsense if you kid yourself that it is. Also, you can only successfully decouple the 5 -volt supply to sub-nanosecond logic because it is untrue that capacitors have stray series inductance. The regular abandonment, at vast cost, of high speed logic systems during development will only cease if we can infiltrate some common sense into electromagnetic theory, and it stops serving merely as a favourite stamping ground for physically ignorant, fancy maths obscurantists. We must take the blarney out of electromagnetic theory.

The author also makes the following general remarks on the whole of the correspondence: - All twenty-two correspondents ignored the physics and concentrated on the mathematics. It seemed that whether Maxwell's equations mapped meaningfully and usefully onto reality mattered not. All that mattered was that the maths should be internally correct, or at least respected. An engineer like myself, who has sometimes worked as if through a blizzard of irrelevant, convoluted maths, takes the opposite view.

Some of the replies thought the minus sign should be there; some said it should not be. None noticed or contradicted my point, that the minus sign had no physical significance. (In fact it is an outgrowth of partial differentiation. Full differentiation has no minus sign, being a completely different operation from partial differentiation, in which the sign appears regardless of the nature of that which is being differentiated).

Always at a point on a surface in a three dimensional graph, the three slopes are related by
$\cdot \frac{\partial z}{\partial x} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial x}{\partial y}=-1$
The minus sign has nothing to do with electromagnetic theory. This contrasts with
$\frac{d x}{d y} \cdot \frac{d y}{d z} \cdot \frac{d z}{d x}=+1$
which is always true of the gradients of lines in two-dimensional graphs.
I. Catt

IEEE 488 BUS
Mr Ellesfen's article in the June/July issue on the IEEE 488 bus standard is timely, but bitter experience convinces me that he has
over-simplified things a little. The IEEE, IEC, GPIB and HP-IB systems are not all identical. Try interconnecting a 'strict' IEEE instrument (e.g. a Fluke 8502 d.v.m.) to a European GPIB bus instrument - lo and behold, the plugs are different. In fact Mr Ellesfen's Fig. 3 may show a typical GPIB rear panel but those aren't IEEE connectors. I do wish you engineers could agree on these things - it would make life a lot easier for us mere mortals! John Hennessy
Department of Physics
University of Sheffield

IMPEDANCE MISMATCHING

The article "Impedance Mismatching" by Dr Lidgey in the March issue calls attention to an often overlooked point, because students fail to read the whole definition of equivalence in networks. For instance, one source says:
"If one network can be substituted for another without change in the currents and voltages at the ports, the two networks are externally indistinguishable and are said to be equivalent at the ports. Nothing need be known of the internal network configuration."
An equivalent network is not identical internally but has only identical values of external voltages and currents at the terminals. Thus comes our practice of substitution of "black boxes" to replace whole complex networks.

It is desirable to point out, as is done in the article, that power systems are not matched in impedance as 50 per cent efficiency rather raises the generation costs! But in communications where microwatts of power are very expensive, it is desirable to get out all we can, and so we match.
J. D. Ryder

Ocala
Florida, USA

Reference

1. J. D. Ryder, Introduction to Circuit Analysis p.175. Prentice-Hall, Englewood Cliffs, NJ 1973.

DESIGNING WITH MICROPROCESSORS

I would be grateful if you would allow me to draw attention to an error in Fig. 3 of "Designing with microprocessors" by Zissos and Valan in the May issue. The 8228 status latch shown would not produce the signals shown, since it decodes the status information placed on the data bus during the status pulse, STSTB, which is absent from the diagram. The outputs from the 8228 are much more akin to other processors, and comprise $\overline{\text { MEMR, }}, \overline{M E M W}, \overline{\mathrm{I} / O R}, \overline{\mathrm{I} / O W}$, and INTA.

The diagram as shown would be correct if the status latch was a simple eight-bit latch clocked by the STSTB line.
P. B. Hodgson

Grantham
Lincs
The authors' reply We thank Mr Hodgson for pointing out the omission of the STSTB strobe pulse in Fig. 3. This was intentional, for the sake of clarity.
D. Zissos and L. Valan

DESIGNING WITH MICROPROCESSORS

In their current series of articles "Designing with microprocessors" Zissos and Valan opened in the May issue with some remarks with which I profoundly disagree. They may be right, or I may be right; but either way, the questions involved are of such fundamental importance that I think both sides of the question need to be put.
To summarize, the authors put forward two views: that inefficient, machineindependent approaches are no longer justified, and that an understanding of the functioning of microprocessors is needed by their users. Let us look at this second point first.

It is obviously an advantage to understand how something works if you want to use it. It may also be more satisfying to know, but that is not the point. The question is, can a designer of something which incorporates a microprocessor do a better job if he understands how microprocessors work? I am sure that the answer is that he will probably use the microprocessor more effectively, but not by any means that he can produce a better design overall.
The problem is that designers are already overloaded with things that they ought to understand. Adding in the understanding of microprocessors is not a simple plus: it almost certainly means forgoing the attempt to understand something else.
Take the case where a microprocessorbased device is used as a circuit component - say an 'intelligent' filter which can discriminate between signal and noise far better than any array of passive components. The things that a designer could usefully come to understand better are how that filter itself works, or what its effect on the circuit as a whole will be. Understanding the filter may open up new opportunities, or avoid mis takes. Understanding the effects on the circuit will involve seeing the effects of a fixed, rather than frequency-dependent, delay, and may likewise open up opportunities or avoid mistakes. If the designer has time to take both on board, all well and good. More likely, though, something has got to go. Which? Well, the suppliers of the micro based filter can tell him the salient features of the device as a whole. But who can tell him the salient features of its impact on the circuit he is designing? Nobody. He must sort that out himself.

The situation gets even more acute where a micro is used as a systems component, say as part of office equipment. There the range of aspects that a designer needs to understand gets very wide indeed - including marketability, the psychology of the operator, safety legislation, and so on. The poor designer can hardly keep his head above water. Let's not load him even more.

What the designer needs to know is what micros can do, not how they do it. One day I really must learn how transistors work (I grew up on valves). Even so, I seem to be able to use transistors, because I can find documentation which tells me what the result is.

I am not objecting to the inclusion of . articles describing how micros work -I, like most readers of Wireless World I su spect, am a person who likes to know how things work. But those articles should not contain the implication that such knowledge is the best way to approach their use.

That argument pales into insignificance beside the one of machine independence. It
took the 'big computer' world a decade or two to learn the lesson of machine independence. Now the microprocessor world seems determined to repeat the mistakes, against an economic basis that is far less tolerant of such mistakes.

Several years ago a fair size mainframe might cost $£ 1,000,000$. The application programs which used the machine probably cost somewhat less, but not much less. Originally they were written to suit the characteristics of the machine. Provided that no major growth required intermediate change, replacement might be needed in, say, seven years. Then there was good news and bad news. The good news was that the replacement cost less (despite inflation) than the predecessor. The bad news was that modifying the software would cost far more, and would be such a major undertaking that the resources would not be available to make the change. Thus we see people buying ICL 2900 s, which are something like a hundred times as fast as some machines they replace, but running programs slower than their predecessors, because the old programs have to be run, and when a 2900 pretends that it is an older machine it is very inefficient indeed.
This is actually rather a favourable example! As the 2900 is a replacement for earlier ICL machines, and as it is a major cost item, the incentive and the money to provide the software for it to pretend to be an earlier machine have been there. In other cases users have been left in a real mess.

How do micros compare? For a start, the cost of programs typically far outweighs the cost of the device itself. So replacing the hardware is almost trivial in cost terms. But if the software is tied to the hardware the resultant software change cost can be crippling. Microprocessors are only cheap if they are cheap to use; if the way in which they are used brings crippling costs, they are extraordinarily expensive.

The situation is made worse by the rate of change in microprocessors. With the mainframe instanced above, the effective life was the life of the machinery. When micros are used in products, so that it is the product manufacturer who develops the software, the life is from the time he starts buying one version to the time that that version is superseded. Currently that timescale appears to be about nine months.
Put it another way. If you develop a prototype of a product incorporating microprocessors, the chances are that by the time you go into production that particular version will be obsolete. Later, when an assembly fails in service and requires replacement, the production chip originally incorporated will no longer be available. If the software is linked to a particular chip, you've got problems, and pretty severe ones. Among them is the fact that the people who designed the original software (which will no longer work on the latest version of the micro) might no longer be around, so that the new designers have to start from scratch. By the time that they have finished their work, a new version of the micro will already be on its way.
The large computer users have already learnt that there are considerable risks associated with machine dependent designs. The factors which have forced them to start using inefficient approaches to avoid being trapped are far more potent in the micro world. Far better endure the $50 \%, 100 \%$ or, even 200% overhead of machine-independent software than be trapped in a short time by the $10,000 \%$ overhead instanced above.

What it comes down to is this. If you want
to use a microprocessor as an educational toy, then learn how it works, and write programs which exercise the individual capabilities of different chips. It is a fascinating pastime. But if you want micros as a serious tool, think again. If you have got some time to spare, use it on thinking how the tool can help you, how it will affect the system where you use it. And whatever happens, try to avoid getting so tied up with a particular version (which will probably be obsolescent by the time it comes on the market) that very shortly you will find yourself occupied full time in just keeping things working.
R. M. O'Connor

St Albans
Herts

The authors reply:

We must disagree with Mr O'Connor's contention that a better overall design cannot be produced by the understanding of how microprocessors work, as will be demonstrated in later articles. This understanding can be gained by first-year Computer Science or Electrical Engineering undergraduates in two to three 50 -minute lectures.
Because of the methodology available today it is unnecessary for a designer to feel overloaded. Much of the stress experienced is normally caused by lack of knowledge of the idiosyncrasies of v.l.s.i. chips. Although this lack of knowledge may be tolerated in users, it should not be acceptable in doers.
The analogy drawn with computers of a few years ago is invalid, because we now have step-by-step procedures for designing and implementing digital systems that did not exist then.
A closer look at the 'new' microprocessors shows no fundamental changes in the basic structure, and therefore they can be easily accommodated in systematically designed systems. The figure of $10,000 \%$ overhead is simply unrealistic or a result of a bad design. D. Zissos and L. Valan

TV SETS FOR THE HARD OF HEARING

My hearing is poor and over the years I have found that I can best listen to the radio or television via a pair of headphones. Radio is, of course, no problem. But when I wished to purchase a television set with an outlet for 'phones I was just met with blank stares!

I am retired, and was in no hurry, so I went around all the television retailers in my area just to see what there was. The young assistants just did not want to know. Apart from one helpful dealer the only other trader willing to help was a stockist of exclusively Japanese products. The Japanese tv sets mostly had outlets fitted as standard for tape recording the sound, and for headphones. On some, inserting the headphone plug cut out the loudspeaker, on others there was a choice of cutting out or not cutting out the loudspeaker.
I bought one! What would you do? A circuit diagram was included and looking at it I concluded that the additional cost of fitting the outlets would be around $£ 5$.
About ten per cent of the population have hearing problems, while five per cent have serious hearing problems requiring some form of assistance. On this basis it seems to me that someone is missing out on sales. Fred Holloway
Essex League of the Hard of Hearing Rayleigh, Essex

Pulse control of analogue functions

by Peter Williams, Ph.D. Paisley College of Technology

Any other device interposed between one integrator and the next, having a controlled transferfunction, will vary the frequency of the oscillator/filter. Analogue multipliers are designed to have an output proportional to the product of a pair of inputs. Interposing a pair of such multipliers with one input of each fed from a control voltage results in linear control of the frequency. The multiplier is being used for the restricted function of a gain-controlled amplifier, other forms of which may be substituted. Only two-quadrant operation is required as the control voltage is unipolar. Variable transconductance circuits can also be used. In some cases the output is in the form of a current and the following drive resistor may be omitted. Overall stability may be affected by the additional lags introduced by the multipliers though with standard operational amplifiers, the dominant lags caused by internal compensating capacitors are likely to affect the response first.

A completely different approach is possible if the nature of the integrator is reconsidered. The voltage across the capacitor depends on the total charge and not on the manner in which that charge is acquired. This suggests that the current may be allowed to flow in short controlled bursts provided that the switching rate is high enough to minimize the ripple voltage that is inevitably superposed on the output. This is essentially pulse-width modulation, and n is replaced by τ / T, where τ is the pulse duration and T the pulse period. In the first configuration an analogue switch is assumed to be repetitively closed at a frequency of $1 / T$ with τ being varied to control the mean current over the cycle. Typically, for an oscillator frequency f then $1 / T>10$ fould be preferable for minimum ripple. As analogue switches operating up to the MHz region are readily available this places little constraint on the usable signal frequencies. As before any number of sections can be used with the switches drive in synchronism from a common generator - the last consisting typically of a fixed frequency astable driving a variable period monostable.

The accuracy and resolution obtainable in the previous methods are restricted by the analogue sections of the circuit. Purely digital methods are possible for the control section which can increase the resolution without limit. One method is shown in which two interlinked counters are used to determine τ and T each as multiples of the period of a clock generator. The ratio T / T is thus independent of any timing circuitry, being the ratio of two integers either one of which may be preset or controlled by an external digital control word. The T counter sets the flip flop and starts the τ counter. At the end of the τ counter duration, e.g. counting down to zero from the previously loaded control word, the flip flop is reset until the start of the next period. In this particular case the switch is closed for counts and open for $T-\tau$ counts, and any number of switches can in principle be driven from the given flip-flop.

As an illustration of the range of possibilities, consider the circuit shown, with a binary comparator driven from a 2^{n} binary counter. The output of the comparator is high until the counter output matches the control word N applied to the comparator. For the rest of the time the comparator output is driven low. Hence any switch activated by the counter will be on for $N / 2^{n}$ of the time and the circuit would be capable of controlling a filter or oscillator such that $f \propto$ N. A restriction on this and the previous form is the difficulty of filtering the switching waveform if the switching frequency becomes too low. It is desirable that $\mathrm{f}_{\text {clock }} / 2^{n} \gg \mathrm{f}$. Any other switching circuit that can close a switch for a controlled fraction of the time can be employed, and the method has been employed as a precision voltage divider for measurement applications.

One particular class of digital circuits seems particularly appropriate to this application -binary-rate multipliers and dividers. In the former a digital control word N directly sets the number of pulses that are transmitted during a complete cycle of operation of 2^{n} input pulses Moreover these circuits can be combined to give output pulse rates that are complex functions of the input control numbers if required. Because the on and off states are distributed throughout the cycle the filtering problem is a little less severe, though they are not randomly distributed. The main advantage of these circuits is that no additional comparator or decoding action is required and the output can be applied directly to an analogue switch or switches. CMOS logic is the obvious family to use since analogue switches are readily available that are compatible with the b.r.ms. The restricted supply voltage range (typically $\pm 7.5 \mathrm{~V}$) restricts the associated analogue circuitry to the same value.

Pulse control of analogue functions

THEORY

- The first method strictly belongs to the previous section in that the analogue multiplier produces a continuous variation in the scaling factor by applying a control voltage to one of the inputs

$$
\text { i.e. } \frac{i}{v}=n G
$$

where n represents the control voltage on the Y input. The Y input may however receive a discontinuous voltage switching between zero and some maximum value but with a variable mark-space ratio: Provided the switching frequency is high the mean value of n is controlled by that mark-space ratio

If discontinuous control is adopted the analogue-multiplier can be omitted with the voltage applied. to the integrator through a switch Let the switch be closed for a time τ out of a period T.

$$
\begin{gathered}
\text { Mean } \frac{i}{v}=\frac{T}{T} \cdot G \equiv n G \\
\text { for } n=\frac{T}{T}<1
\end{gathered}
$$

The ripple voltage across the capacitor is minimized for $T \ll 1 / f_{1}$ where $f_{0}=\omega_{\mathrm{l}} / 2 \pi$. is the lowest sinusoidal frequency to be controlled and $f_{1} \infty_{\tau}^{\circ}$.

- The second counter, a down-counter, is loaded with a control word when the first counter fills and sets the flip-flop. Until the second counter empties the switch is held closed for a time τ proportional to the control word. For the remaining time until the first counter fills the switch remains open because of the resetting action on the flip-flop by the second-counter.

Mark / space ratio is

$$
\frac{\mathrm{T}}{\mathrm{~T}-\mathrm{T}}
$$

A related method compares the output of a single 2^{n} counter with a control word N in a binary comparator such that the output is high for $\mathrm{N} / 2^{n}$ of the time. This is again available to control the on-off ratio of a set of switches.

- For the bit-rate multiplier the internal logic causes an output pulse rate

$$
\alpha \frac{\text { control word }}{2^{n}}
$$

or mark-space ratio

EXAMPLES

1. A iwo-integrator loop has the resistors switched into and out of conduction periodically - the period of the switching waveform is T and the conduction-time per switching cycle is τ. Given R is $100 \mathrm{k} \Omega$ and C 10 nF , calculate the frequency of oscillation for $\tau=\mathrm{T}$ and $\tau=$ 0.1 T assuming that that frequency $\mathrm{f}_{0} \ll 1 / T$ i.e. that the ripple superimposed by the switching frequency on the sinusoidal oscillation is small.

The effective value of each conductance is $G^{\prime \prime}=\frac{G T}{T}$

$$
\text { i.e. } R^{\prime}=\frac{T}{T G}=\frac{T R}{\tau}
$$

Therefore following the previous analysis, and assuming a unity gain inverter.

$$
\begin{aligned}
& \omega_{0}=\frac{1}{C R^{\prime}}=\frac{T}{T C R} \\
& \text { i.e. } \omega_{0}^{\prime}=\frac{T}{T} \omega_{0} \\
& \text { For } \tau=T \quad f=\frac{1}{2 \pi .10 .10^{-9} \cdot 10^{5}} \\
& \therefore f=159 \mathrm{~Hz} \\
& \text { For } \tau=0.1 T \quad f^{\prime}=0.1 f=15.9 \mathrm{~Hz}
\end{aligned}
$$

2. In the previous question a switching frequency of 1.59 kHz is used Estimate the peak ripple as a fraction of the sinusoidal amplitude.
(i) $\tau=T$: the switch is closed permanently and there is no ripple due to the switching. If τ is finite but very close to T, then the switch is off for very brief periods and the capacitor voltages remain constant for that brief interval.
(ii) $\tau=0.1 \mathrm{~T}$: the effect is that of a rectangular wave at a frequency of 10 kHz with an amplitude equal to the value of the slowly changing output of the previous integrator i.e. the output $V \sin \theta$ of one is applied discontinuously to the second whose output approximates to $-\mathrm{V} \cos \theta$ Hence the max. ripple on the output of the second occurs when $\sin \theta=$ 1 i.e. when the second integrator output is passing through zero. Note that $V \sin \theta$ itself contains a small ripple but this error is ignored. The peak ripple is thus

$$
\frac{V}{R} \cdot \frac{T}{C}=V \tau \omega_{0}
$$

- or expressed as a fraction of the peak output, $V_{\tau} \omega_{0} / V=0.1 \omega_{0}^{\top}$

$$
\begin{aligned}
& \text { But } T=\frac{1}{10^{4}} \mathrm{~s} \\
& \omega_{0}=10^{3} \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

> peak ripple sinusoidal amplitude

The "twins" paradox of relativity

'What is long overdue is a general summing up of the whole matter, so that the source of the scandal can be located and removed without futile polemic."

by the late Herbert Dingle

In Nature, volume 269, page 284 (22 September 1977) I put a question to Dr Tom Wilkie concerning an often advanced suggestion he had repeated for disposing of the twin paradox of relativity. He did not reply, but added a note stating that he would be writing me "privately" on the matter. It was, of course, entirely proper that misunderstandings should be removed before the reply appeared, but although after considerable correspondence this seems to have been achieved, Dr Wilkie has not accepted my invitation to him now to publish his reply. It does not accord with recognised scientific practice that questions considered worthy of publication should remain without published answer, and it therefore become my duty to comment publicly myself on the implications of this incident.

But far more is involved here than the incident itself. The so-called "twin "paradox" has been the centre of more or less continuous controversy for more than half a century, and still remains unsettied. Because of its peculiar - I believe unique - character it is no exaggeration, but a considered temperate statement, to call this a scandal, for reasons which I shall show, and what is long overdue is a general summing-up of the whole matter so that the source of the scandal may be located and removed without further futile polemic. This is attempted here and the uniqueness of the problem in scientific discussions made clear, but first it is desirable, notwithstanding its familiarity, to state what the "paradox" is in its simplest form. For brevity and clarity a particular extreme example that given in my letter in Nature of 31 August 1973 - is chosen. There is no disagreement about the legitimacy and typicality of this example, and therefore no begging of the question in selecting it.
Peter and Paul are twins, of whom Paul travels at birth with uniform velocity ν to a distant planet stationary with respect to the Earth, and immediately returns at the same ve.ocity having aged by three days, to find his Earthbound twin, Peter, 30 years old. In the general case, any two identical forms of standard clock may be substituted for the twins, and if t is "Peter's" age when "Paul" returns, "Paul's" age at that event is $t \sqrt{ } 1-v^{2} / c^{2}$, where c is the velocity of light. It is
evident that in this example v must be very slightly less than c .
Now the peculiar nature of this "paradox" lies in the fact that this has never been observed in any form: the result is wholly a deduction from a theory. In all the traditional controversies or paradoxes of science - the Ptolemaic and Copernican theories of celestial motions, the wave or particle nature of light, etc. - the problem has arisen from observations, and what has called for decision has been the correct theory for explaining them. Here the reverse is the case. The dispute is not

"'Failure to agree on the implications of our own constructed and accepted theories is not excusable. This is what makes the endless persistence of this controversy a scandal."

about what theory best explains the observations (which do not exist), but about what observation - equal or unequal ages of the twins on reunion - is required by an independently accepted theory. And indeed there is an allied peculiarity in that if the observation were made, its result, whatever it might be, would still leave the problem unsolved: the question would still remain, what is wrong with the deduction from the theory of the opposite result? The problem, therefore, lies within the theory itself. Failure to understand the course of nature is excusable and observation of nature might be expected to bring enlightenment: failure to agree on the implications of our own constructed and accepted theories is not excusable. That is what makes the endless persistence of this controversy a scandal.

Let us assume that the theory is true, and give the net results of the arguments for its requirement of symmetrical and asymmetrical ageing, respectively. The first can be stated very simply. The relativity theories, both special and general, require that it is equally true to regard Paul as moving with respect to a stationary Peter and planet, and Peter and planet as moving with respect to a stationary Paul. Therefore if, as the theories also require, the moving twin ages more slowly than

Herbert Dingle 2 August 1890 - 4 September 1978

Herbert Dingle was a distinguished scientist and philosopher who was Professor of History and Philosophy of Science at University College, London, from 1946 to 1955. Before that he was Professor of Natural. Philosophy at Imperial College, from which he had graduated in 1918. His numerous scientific distinctions included the presidency of the Royal Astronomical Society (1951-53) and of the British Society for the History of Science (1955-57): he wrote several well-known books and an enormous number of scientific papers.

The early part of Professor Dingle's scientific career was a period of intense interest in relativity, and he became an expert on the subject. Although an admirer of the theory, he was sceptical about the well-known clock paradox or twin paradox, and did not agree with its generallyaccepted resolution. After a prominent but inconclusive debate on the paradox, during the 1950s, he became convinced that the special theory, though mathematically impeccable, was physically impossible, and he spent much of his time and energy during the last 20 years of his life trying to persuade the scientific world that the theory was untenable. His criticisms of the theory, and his Socratic ability to ask questions that nobody else could answer, were not always well received; I have suggested elsewhere (Canadian Electrical Engineering Journal, April 1980) that his thesis has not been satisfactorily answered.

The accompanying paper is Professor Dingle's final summing-up of his views on the twin paradox. He sent me the manuscript a few months before his death, in the hope that I would be able to have it published, and I commend it to scientists in the hope that they will give it the serious attention that it deserves.

I am grateful to Mrs Pamela Dingle for giving her permission for this paper to be published, and to Wire less World for publishing it. lan McCausland University of Toronto
the stationary one, a difference of ages on reunion would require Peter and Paul each to be the older at that event. This is impossible, so asymmetrical ageing cannot occur, and it is up to those who claim that it can to discover their error. (Though not among them I once thought I had done this ${ }^{1}$, but later found that my argument failed, though not for the reasons alleged by my critics at the time ${ }^{2}$. That left me with no alternative to rejection of the theory. However, we are for the present regarding it as true.)
The arguments for asymmetrical ageing - by far the most favoured alternative - are legion but only one calls for serious attention, namely that given first by Einstein himself ${ }^{3}$ and supported by Born ${ }^{4}$, Tolman ${ }^{5}$, Pauli ${ }^{6}$, among others, and elaborated in detail by Moller ${ }^{7}$ and Born \& Biem ${ }^{8}$. No other has a weight of authority behind it comparable with this, or indeed when examined carries any conviction at all, while, granting the validity of the theories, every step in this argument is irresistible. I shall therefore consider it alone.

The essence of this argument is that, indeed, during the main part of the whole journey - that at constant velocity in both directions - the moving twin, whether he be regarded as Paul or Peter must be held to age more slowly than the stationary one, but if Paul is regarded as stationary, then the field of force* must be assumed to exist every-, where during the period of reversal of motion to keep Paul at rest, despite the impulse given him by the working of the engine of his vehicle, and also to bring Peter back to him although no such impulse is given to Peter. The effect of this force-field is to make Peter, during the period of reversal of motion, gain so much in age, and Paul to lose so much, as to far outweigh Paul's more rapid ageing during the uniform motions, and ultimately to give the same ages of the twins on reunion as those following from the assumption that Paul, and not Peter, is the one who moves. The calculation in this last case is simple. No force-field is required, since the engine suffices to reverse Paul's motion and Peter does not move, so Peter's gain during the periods of uniform motion is the sole effect. (Incidentally, when Peter moves similar force-fields are needed to accelerate him initially from rest to velocity v and to bring him to rest again at the end, and at these events Peter and Paul are virtually at the same place, and the general theory requires that in such circumstances the difference in the effects on ageing is negligible.)

Now let us apply this to our example. If Paul is the traveller he ages by 1.5 days during each of his outward and return journeys and by a negligible

[^1]
Why not discuss relativity?

After the accompanying article by Herbert Dingle had been submitted for publication, there appeared an article in New Scientist ${ }^{1}$, by Paul Davies, bearing the title "Why pick on Einstein?". This article defends relativity from its critics by presenting some of the evidence that is claimed to support the theory. As the only critic mentioned by name is Herbert Dingle, who is not able to answer back, I am briefly replying on his behalf. Because Professor Dingle has already presented the arguments in question himself, I shall not re-state them, but merely indicate the general nature of the arguments and cite appropriate references. I think the fact that Professor Davies does not even mention these arguments is evidence that they have not received enough attention from the scientific community.
Professor Davies mentions the Michelson-Morley experiment, stating that it consisted of comparing the times that light pulses travelling in perpendicular directions took to cross the same distance. But, as Dingle pointed out on various occasions ${ }^{2,3.4}$, the experiment did not involve a direct measurement of time; the time comparison has been inferred from interference patterns. Of the possible interpretations of the experiment, one is that Newton's laws of motion are wrong, another is that Maxwell's electromagnetic theory is wrong; the usual interpretation of the experiment, in which the time difference is deduced using Maxwell's theory, eliminates in advance the interpretation that that theory is wrong. This illegitimate elimination of one of the possible interpretations of the experiment rules out that experiment as evidence in support of the special theory.

Dingle has also pointed out ${ }^{3.4}$ that, in experiments that involve elementary particles moving at very high speeds, the speeds of the particles are not measured directly but are inferred from certain observations by a process that involves the use of Maxwell's electromagnetic theory; this fact also rules out experiments of this kind as evidence in support of special relativity.

Professor Dingle ${ }^{4}$ has also questioned observations of double stars as evidence supporting the special theory. Although one of his hypotheses - that light travels at constant velocity with respect to its own source, however the source may move - may seem rather difficult to accept, it is surely no more difficult to accept than some of the other phenomena that many physicists appear to believe in. The hypothesis is based on a suggestion already made by Faraday, and if it were true it would also, according to Moon and Spencer ${ }^{5}$, allow clocks to be synchronised regardless of their state of motion. Dingle has also suggested that more attention should be devoted to the work of Ritz, whom he mentions in his article and whose work has recently been discussed by Waldron ${ }^{6}$.

Furthermore, according to Dingle ${ }^{4}$, all the experimental evidence that is taken to support the special theory could with equal validity be taken to support Lorentz's quite different theory if Eins-
tein's special theory had never been conceived. In another New Scientist article, Roxburgh ${ }^{7}$ appeared to agree with this when he stated that Einstein's thoery and Lorentz's were "observationally indistinguishable."

In his book Space and time in the modern universe, Professor Davies ${ }^{8}$ makes the following statement in connection with two clock-carrying observers in uniform relative motion: "It is not that each observer merely sees the other clock running slow, it actually is running slow - a real physical effect." [Emphasis in the original]. This statement seems to me to provide strong. support for Dingle's claim that, if there are two clocks in uniform relative mo-tion, the special theory requires each clock to run (not merely seem to run) faster than the other.
The heading of the New Scientist article' uses the term "scientific malcontents" to refer to those who attack relativity. If being a relativist entails: acceptance of all the mutuallycontradictory arguments (some of which I have recently documented ${ }^{9}$) that have been published in defending special relativity against the criticism of Herbert Dingle, then I prefer to be a scientific malcontent, and I accept that designation with pride. I think every scientist should be a malcontent; after all, what is the value of trying to contribute new knowledge unless one is dissatisfied with the present state of knowledge?

I could write at length about my encounters with what Davies calls the "special provision" that most editors of science journals make for coping with papers of the type he describes, but this is not the time or the place. In any case, Dingle has described his own experiences so eloquently ${ }^{4}$ that it is scarcely necessary to augment his description, but it is noteworthy that a supporter of relativity has now stated openly that most editors of scientific journals do make such special provision; it is not merely a figment of the critics' imaginations. Others who have encountered the "special provision" may tend to agree with me in thinking that the question in the heading of the New Scientist article should be amended to read: Why is criticism of relativity so resented?

Ian McCausland

References

1 Davies, P. Why pick on Einstein? New Scientist, vol. 87, 7 August 1980, pp.463-5.
2 Dingle, H. A Re-examination of the Michelson-Morley Experiment. Vistas in Astronomy, vol.9, 1967, pp.97-100.
3 Ref. 2 of the accompanying article
4 Dingle, H. Science at the Crossroads. Martin Brian \& O'Keeffe, 1972.
5 Moon, P., and Spencer, D. E. On the establishment of a universal time. Philosophy of Science, vol.23, 1956, pp.216-29.
6 Waldron, R. A. The Electrodynamics of Ritz. Speculations in Science and Techno-* logy, vol.2, August 1979, pp.259-71.
7 Roxburgh, 1. Is special relativity right or wrong? New Scientist, vol.55, 28 September 1972, p. 602.
8 Davies, P.C.W. Space and time in the - modern universe. Cambridge University Press, 1977, p. 39.
9 McCausland, 1. Science on the defensive. Canadian Electrical Engineering Journal, vol.5, April 1980, pp. $3 \& 4$.
amount during the three periods of acceleration, while Peter ages regularly by 30 years during the complete process: hence, when they meet again, Peter's age is 30 years and Paul's three days. On the other hand, if Peter is the traveller he ages by 1.5 days during each of his outward and return journeys, and by almost 30 years during the change from recession to approach with respect to Paul, while the stationary Paul ages by 15 years during Peter's outward journey, changes during Peter's reversal to a state nearly 15 years before birth, and then ages by 15 years during Peter's return, somehow getting born shortly before Peter arrives. Consequently, when they meet, Peter's age is 30 years and Paul's three days - exactly as in the former case.

We can hardly suppose that Einstein, Born and the others believed that these processes were both actual occurrances, the one entitled to claim reality depending on our preference in choosing to whom to assign the motion, nor did they. What they supposed was that the only observable events in the whole process were the separation of Peter and Paul at the beginning and their reunion at the end. Everything that happened in between was regarded as being beyond possibility of observation and therefore demanding compatibility only with theory, not with experience, with which it had nothing to do. This is obviously so important that it is necessary to confirm it by quoting Einstein's own words (in translation), all that needs explanation being that the clock U_{1} is Peter and U_{2} Paul and that "the right and left hand columns" give the descriptions of the process, as I have described them, when Peter and Paul, respectively, are regarded as moving. Einstein writes ${ }^{3}$:
"You must bear in mind that exactly the same process is described in the right and in the left hand columns, but the description on the left refers to the coordinate system K while that on the right refers to K^{\prime}. According to both descriptions, at the end of the process the clock U_{2} is retarded by a definite amount compared with U_{1}. With reference to K^{\prime} this is explained as follows: it is true that during the stages 2 and 4 , the clock U_{1}, moving with velocity v, works more slowly than U_{2}, which is at rest. But this retardation is over-compensated by the quicker working of U_{1} during stage 3 . For, according to the general theory of relativity, the clock works the faster the higher the gravitational potential at the place where it is situated, and during stage $3 U_{1}$ is indeed situated in a region of higher gravitational potential than U_{2}. Calculation shows that the consequent advancement amounts to exactly twice as much as the retardation during stages 2 and 4. This completely clears up the paradox."
What Einstein means here by "the same process" is, of course, everything that is observable, while "the description", which differs in the two cases, is wholly a mental construction. The first is unique, for it must be the one thing
that would actually occur; the last owes. allegiance only to theory, not observation, and can vary within the limits allowed by the theory.

But it is clear, beyond possibility of question, that Einstein's "descriptions" relate to what is observable, and cannot therefore both be permissible; and furthermore, as the credentials of both are exactly the same, it. is impossible to decide which must be rejected. Paul could be accompanied by a nurse, of such an age as to become 30 years younger without losing her power of intelligent observation, and she would report on return whether it was a baby or a teenage boy who arrived at the planet, and whether or not a baby was born during the return journey, even if she were unable to confirm the antenatal age of the being whom the planet left. The question I asked Dr Wilkie was, in effect, whether what the nurse would observe would admit of both of Einstein's "descriptions", or whether a
> ".. .. Mathematical consistency, though a necessary condition, is not a sufficient one for the truth of a physical theory."

theory that required it to do so must be abandoned. I am not surprised at his reluctance to commit himself to a choice; nevertheless, it is imperative that scientists shall make a choice if the ethical demands of science are not to be jettisoned.

What is the net result of all this? As I have said, it throws no light at all on what would happen if the experiment were made, for it is an analysis, not of a physical process that has never occurred, but of the requirements of a theory that purports to accord with physical processes, and I think it shows beyond doubt that the special relativity theory at least must be wrong. If the motion can be ascribed equally rightly to either twin, it cannot make them age at different rates; if it makes them age at different rates, there must be an absolute standard of rest to provide a criterion for distinguishing the faster from the slower developer. The special relativity theory requires different rates of ageing to result from motion which belongs no more to one twin than to the other: that is impossible.

It is impossible to exaggerate the importance of this result, for this theory is, by common consent, "taken for granted" in Max Born's words, in all modern atomic research, and it determines the course of practically all current developments in physical science, theoretical and experimental, whether concerned with the laboratory or with the universe. To continue to use the theory without discrimination, therefore, is not only to follow a false trail in the investigation of nature, but also to
risk physical disaster on the unforeseeable scale, modern atomic experiments being what they are. It should therefore be a point of honour with those on whose authority atomic research is now being conducted to acknowledge at once the untenability of the theory, and to take without delay the necessary steps to discover where the theory falls.
That does not necessarily mean complete abandoning of its use, but it does demand the determination of the limits of its usefulness. It has already proved its effectiveness in many respects, and this has been mistaken by physicists for evidence of its truth. What the many successes of the Lorentz transformation equations have shown is that those equations are an effectual corrective of the imperfect classical electromagnetic equations within a limited range of experience. But it is now clear that the interpretation of those equations as constituting a basis for a new kinematics, displacing that of Galileo and Newton, which is the essence of the special relativity theory, leads inevitably to impossibilities and therefore cannot be true. Either there is an absolute standard of rest - call it the ether as with Maxwell, or the universe as with Mach, or absolute space as with New"ton, or what you will - or else all motion, including that with the speed of light, is relative, as with Ritz. It remains to be determined, by a valid experimental determination of the true relation of the velocity of light to that of its source, which of these alternatives is the true one. In the meantime, the fiction of "space-time" as an objective element of nature, and the associated pseudo-concepts such as "time-dilation", that violate "saving common sense", should be discharged from physics and philosophy, and the fact realised that mathematical consistency, though a necessary condition, is not a sufficient one for the truth of a physical theory. Only thus can the scandal of more than half a century of confusion about the meaning of our own creations be ended.

References

1. Dingle, H., Proc. Phys. Soc. Lond., vol. A69, 1956, p. 925.
2. See my introduction to Duration and Simultaneity, Bobbs-Merrill, New York, 1965. (English translation by L. Jacobson of Duree et Sultaneite by H. Bergson.)
3. Einstein, A., Naturwissenschaften, vol. 6, 1918, p. 697.
4. Born, M., Einstein's Theory of Relativity. Dover Publications, New York, 1962, p. 355.
5. Tolman, R. O., Relativity, Thermodynamics and Cosmology. Clarendon Press, Oxford, 1934, p. 194.
6. Pauli, W., Theory of Relativity. Pergamon, London, 1958, p. 152.
7. Moller, C., Theory of Relativity. Clarendon Press, Oxford, 1955, p. 258.
8. Born, M., and Biem, W., Proc. Kon. Ned. Akad. v. Weten (Amsterdam), vol. B61, 1958, pp.110-20.

Audio gain controls

A survey of the methods used to achieve acceptable control of gain in audio amplifiers.

by Peter Baxandall B.Sc. (Eng.), F.I.E.E., F.I.E.R.E., M.A.E.S., F.B.K.S.T.S.

The design of gain controls is by no means as simple as it might appear. Peter Baxandall examines the difficulties in design and comments on many circuits which have
appeared over the years, from very simple types in which compromises must be accepted, to those used in high-performance equipment.

An ideal audio amplifier with variable gain would have the following characteristics:
(i) noise output voltage $=$ (source Johnson noise voltage) \times (gain)
(ii) ability to deliver its full output voltage even at very low gain settings, which may be less than unity. The amplifier is therefore capable of handling very large input voltages at the lowest gain settings.

The simplest way to achieve (i) is that shown in Fig. 1(a), but this simple tech-

Fig. 1. Two small gain controls which do not fuffil both main requirements. Circuit (a) gives low noise, but will overload at low gain settings, while (b) introduces additional noise.
nique obviously fails lamentably with regard to (ii), for the maximum input voltage that can be handled without overloading is the same at all settings. The arrangement of Fig. l(b), on the other hand, achieves (ii) perfectly, but fails with regard to (i).
By using sufficiently subtle gaincontrol systems, it is possible to satisfy (i) and (ii) concurrently and almost perfectly, but the simple and widely used arrangement shown in Fig. 2 provides a compromise solution which is very satisfactory for many practical purposes.

An ideal amplifier would give a variation of output noise voltage with

Fig. 2. This arrangement combines circuits of Fig. 1 (a) and (b) to give compromise performance.
gain setting as shown by the full-line graph in Fig. 3, whereas the Fig. 2 scheme gives a characteristic as depicted by the broken line. Below a certain setting of P, the noise level from amplifier A at the output of P becomes less than the noise level of amplifier B referred to its input, so that the noise of amplifier B becomes the dominant contribution, establishing the level of the broken-line "plateau".

Now there is obviously no practical advantage in achieving an output noise level which is a long way below audibility at very low gain settings, so that a characteristic of the broken-line type is normally perfectly satisfactory, provided the level of the horizontal plateau is low enough. For a given overall maximum gain requirement, the product of the voltage gains of amplifiers A and B in Fig. 2 is fixed, but there is a choice with regard to the apportionment of this gain between the two amplifiers. The higher the gain of A is made, the lower is the position of the Fig. 3 plateau, but there is the disadvantage that the maximum signal input that can be handled without overloading amplifier A is reduced.

In domestic audio control units, the

Fig. 3. Dotted line shows gain variation given by circuit of Fig. 2, where residual noise from amplifier B is predominant at low gain settings.

Fig. 2 arrangement is usually used. A suitable choice for the gain of amplifier B is normally such that full output level is delivered to the following power amplifier for an output level from the pot. slider of about 100 mV r.m.s. If the wideband noise of amplifier B, with P set to zero, is equivalent to a noise input voltage to B of $0.5 \mu \mathrm{~V} \mathrm{rms}$, which is fairly readily achievable, the zero-volumesetting noise output from B will then be 106 dB below the full signal output level. (It may be added, however, that if the gain of B is made high enough to cope with the least sensitive of power amplifiers, which may require an input level of several volts, then the signal level at the pot. slider for full power output when used with a very-highsensitivity power amplifier, will be much less than 100 mV rms, and a figure much less than the 106 dB mentioned above will then apply. Thus, for ver: satile use, it is desirable to provide a preset gain adjustment within amplifier B, or in the form of a simple passive attenuator after this amplifier.)

A closer approximation to concurrently satisfying conditions (i) and (ii) at the beginning of the article may be obtained, on the same principle as in Fig. 2, by employing three amplifiers with ganged gain-control pots. between them, but in general it is much better, instead, to employ schemes in which variable negative feedback provides much of the gain variation.

Variable-feedback gain control offers advantages both with regard to achievable performance (noise and signalhandling) and often with regard to economy of circuit design. Variable feedback alone cannot normally reduce the gain to zero; for 100% voltage feedback reduces the gain to unity rather than zero. Thus, it is usual to combine feedback variation with passive gain control, sometimes using a ganged pot. and sometimes using the parts of the track either side of the slider, in an ordinary single pot., to perform these functions. There are many possible schemes, of which some have been known for thirty years or more.

One of the simplest schemes is that shown in Fig. 4. The pot. resistance can be made quite low, e.g. $1 \mathrm{k} \Omega$, since it is driven by the op. amp., not the signal source. This results in a good noise performance at all settings. Disadvantages of the circuit are:
(a) the minimum gain is unity, not zeró, and
(b) a floating signal source is required.

Disadvantage (b) is of little consequence when an input transformer is used, and (a) may be overcome by taking the signal output from the pot. slider. The latter change, of course, sacrifices the virtue of very low output impedance possessed by the Fig. 4 version.

Fig. 4. Simple feedback gain control.
In assessing the pros and cons of various circuits, it is very helpful to appreciate the relationships between the circuits in the most vivid possible way, rather than relying purely on formal analysis. Very often the differences between circuits are much smaller than they appear to be, involving merely the choice of earthing point and/or the way of drawing the circuit diagram, rather than differences of more fundamental significance. Sometimes, in redrawing circuits employing op. amps. to facilitate better understanding of them, it is helpful to replace the op. amp. symbols by ordinary single-transistor symbols - an unfamiliar-looking circuit may then suddenly be recog. nised as an old friend! At other times, replacing a detailed transistor circuit by the op. amp. equivalent may reveal its true nature in the best way.

Fig. 5. Single transistor equivalent to Fig. 4, neglecting d.c. conditions.
Rearrangement in (b) shows circuit to be easily recognizable.

On replacing the op. amp. in Fig. 4 by a transistor, the circuit of Fig. 5(a) is obtained. Though the collector would in practice be taken to a positive supply line, it is here shown as earthed, for in the present context we are concerned only with a.c. aspects and it is best to omit irrelevant details.
Shifting the earthing point to the emitter of the transistor, but making no other changes, leads to Fig. 5(b), which ios a simple common-emitter amplifying stage with adjustable feedback.
If the output in the Fig. 4 circuit is taken from the pot. slider instead of from the point shown, then the circuit, redrawn with a transistor in place of the op. amp., is as in Fig. 6(a). Merely shifting the earthing point to the pot. slider then yields the circuit of Fig. 6(b). It is now evident that moving the slider to the right has two separate effects - it increases the amount of resistance in the emitter lead, thereby increasing the amount of negative feedback, and it reduces the collector load resistance. Both these effects contribute to reducing the gain, which becomes zero with the slider fully to the right.

Fig. 6. Fig. 4. Circuit with output taken from pot slider and rearranged at (b) to show dual function - varying emitter resistance and varying feedback.

Employing just a single transistor, as in Fig. 6(b), will give a noise performance which is inferior to that achieveable with more elaborate arrangements. This is largely because the resistance inserted in the emitter lead is itself a generator of Johnson noise, which is effectively added in series with that generated in the internal resistance of the signal source. The transistor d.c. operating current must be chosen in relation to the source impedance, for good noise performance, and it will then be found that to obtain a substantial reduction of gain by inserting emitter resistance, the amount of resistance needed will give considerable degradation of the noise figure.
The above noise difficulty may be

Fig. 7. Fig. 6(b) using an op. amp.
solved by replacing the single transistor by a suitable pair or triple, having a much higher mutual conductance than the single transistor but whose input stage operates at a similarly low current. The increased mutual conductance and output current permit the resistance values associated with the gain-control pot. to be made much lower, with a correspondingly reduced effect on the noise performance at low gain settings. The well-known configurations for pairs and triples as used in audio class ' B ' output stages may be adapted to the present application, but an interesting alternative is that shown in Fig. 7. Here the supply connexions to the op. amp. are used as the equivalent of the transistor collector in the Fig. 6(b) circuit - a way of using an op. amp. which perhaps deserves to be more widely borne in mind.

Assuming infinite mutual conductance, the voltage gain of the Fig. 6(b) idealized circuit is simply $k /(1-k)$, Expressing this in decibels gives the graph of Fig. 8(a). The Fig. 8(b) graph is a measured one for the circuit of Fig. 7.

With the idealized circuit of Fig. 6(b), unity gain occurs when the pot. is set for $k=0.5$, and the curve is quite symmetrical about this centre point. With the Fig. 7 circuit, however, the curve is not symmetrical about the unity-gain point. This is because the right-hand part of the pot. is shunted by the parallel value of the two $1 \mathrm{k} \Omega$ resistors going to the supply lines.
Another very simple feedback gaincontrol circuit is shown in Fig. 9. With high forward gain in the op. amp. itself, this circuit gives a gain, between the input and output terminal pairs shown, accurately equal to $k /(1-k)$. (This formula, as for the Fig. 6(b) case, may be prefixed by a minus sign if it is desired to allow for the fact that phase inversion occurs.)
The Fig. 9 circuit, unlike those previously discussed, has the feature that the current in the gain-control resistance chain is supplied by the signal source. This makes it impossible to achieve a good noise figure over a wide range of gain adjustment, no matter how the resistance values are chosen in relation to the signal-source impedance. That this must be so can best be understood as follows. Negative feedback as such never has any effect on the signal-

Fig. 8. Gain variation of Fig. 6(b) circuit is at (a). Measured performance of equivalent op. amp. circuit of Fig. 7 is shown at (b).

Fig. 9. Feedback gain-control circuit, which has disadvantage of source-fed resistor chain, giving poor noise figure over wide range.
to-noise ratio, at a given frequency, of an amplifier circuit to which it is applied, though the resistors introduced for the purpose of providing the feedback may do so. Thus the output signal-to-noise ratio of the Fig. 9 circuit is the same as that of the circuit shown in Fig. 10. If R is made low, say equal to the internal resistance of the signal source, it will degrade the signal-tonoise ratio at the source terminals*, whereas if R is made much higher, a

[^2]

Fig. 10. Circuit of Fig. 9 gives same noise performance as circuit shown here.
large amount of resistance is introduced into the op. amp. input circuit at intermediate slider settings, with correspondingly large Johnson noise and maybe noise from the op. amp. equivalent current-noise generator.

Comparing Fig. 10 with Fig. 1(b) might suggest that the Fig. 9 circuit is no better than that of Fig. 1(b) as regards noise performance. This is not so, however, for to effect a given number of decibels reduction of gain below maximum, the slider in Fig. 9 has to be moved a smaller fraction of the way from the signal-source end of R than is necessary for the same gain reduction in the Fig. 1(b) circuit. The noise performance of Fig. 9 is better than that of Fig. 1(b), but is nevertheless not very good.

Another feature of the Fig. 9 circuit which makes it undesirable for some applications is that the loading of the signal source varies with the pot. setting. If the signal source has a complex internal impedance, the overall frequency response will vary with the gain setting.

This undesirable characteristic of the Fig. 9 circuit may, to a large extent, be overcome by inserting an emitterfollower (or op. amp. follower) between the signal-source and the left-hand end of the resistance chain. With a $50 \mathrm{k} \Omega$ signal-source, for example, R could be made about $5 \mathrm{k} \Omega$, giving reduced Johnson noise from R but nevertheless subjecting the signal-source to negligible loading.

As already mentioned, the Fig. 9 circuit as it stands produces the gaincontrol characteristic shown in Fig. $8(a)$, which is symmetrical about the unity-gain point. Over a range of about 30 dB , and using an ordinary linear pot., the scale shape obtained approximates fairly reasonably to the desirable one having uniformly-spaced decibel divisions, though for many applications a gain of more than unity would be preferred at the centre of this control range. The modification shown in Fig. 11 provides an increased gain at the point of inflexion of the control characteristic, but has the weakness that the gain cannot be reduced right down to zero. Provided R_{a} and R_{b} are made much lower in value than the pot. resistance, however, the minimum gain may be made sufficiently low for many purposes.

If a stud type pot. is used, and assuming there is complete freedom in the choice of its law and total resistance
value, the Fig. 11 modificiation gives no advantage, the required performance being obtainable with better economy of components by adopting the Fig. 9 arrangement.

The circuit of Fig. 12 possesses a combination of several good features. It employs only one op. amp.. has a high input impedance, the feedback network can be of low resistance for good noise performance, and the values of R_{a} and R_{b} can be chosen, in relation to R, to make the point of inflexion in the control characteristic occur at a gain of much greater than unity, as sometimes desired.

Analysis shows that the gain of the Fig. 12 circuit is given by:
$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{R+\frac{R_{\mathrm{b}}}{1-k}}{R+\frac{R_{\mathrm{a}}}{k}}$
or $\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{k}{1-k} \times \frac{R(1-k)+R_{b}}{R_{\mathrm{k}}+R_{\mathrm{a}}}$
Thus, if R_{a} and $\boldsymbol{R}_{\mathrm{b}}$ are each much greater than R, the gain is approximately proportional simply to $k /(1-k)$, and is approximately equal to $R_{\mathrm{b}} / R_{\mathrm{a}}$ when $k=0.5$. Thus the control characteristic is fairly closely as in Fig. 8(a) but shifted upwards. For lower values of R_{a} and/or R_{b} the characteristic is of modified form, covering a smaller number of decibels with reasonable linearity.

The curve shown in Fig. 13 is the result of a measurement using the Fig. 12 circuit with the following values:

$$
R=1 \mathrm{k} \Omega R_{\mathrm{a}}=330 \Omega R_{\mathrm{b}}=3.3 \mathrm{k} \Omega
$$

Comparison of this curve with Fig. 8(a) shows that it gives a poorer

Fig. 11. Variation of Fig. 9, giving increased gain at halfway position of slider.

Fig. 12. Circuit featuring only one amplifier, high input impedance, low-resistance feedback chain for low noise and flexibility in choice of inflexion point.
approximation to the ideal linear shape for values of k above about 0.2 . (The ideal curve would not, of course, remain linear down to $k=0$, for this would make it impossible to fade a programme down to zero volume. For most audio purposes, the ideal characteristic would cover about 40 dB linearly, curving down to "minus infinity dB " below about $k=0.2$.)

Another circuit combining feedback and passive gain variation by means of a single linear pot. is shown in Fig. 14.

Fig. 13. Curve of circuit in Fig. 12.

This, in essence, is the circuit used by the BBC in their OBA9 outside broadcast amplifier, published in 1952. The gain is given by:-
$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{k R+R}{R_{\mathrm{a}}} \times \frac{R_{\mathrm{b}}}{(1-k) R+R_{\mathrm{b}}}$
or $\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1+k R / R_{\mathrm{a}}}{1+(1-k) R / R_{\mathrm{b}}}$
The Fig. 14 circuit cannot give zero voltage gain, the gain with $k=0$ and

Fig. 14. Circuit providing feedback and passive control in one pot.

Fig. 15. Full-line curve shows calculated performance of Fig. 14 for two values of R_{b}.

100% negative feedback being $R_{\mathrm{b}} /(R+$ R_{b}). Though not an ideal feature, the minimum gain in the BBC design is nearly 90 dB below the maximum gain, and is stated to be "effectively nil in normal conditions of use" ${ }^{2}$.

The full-line curve in Fig. 15 is a calculated result for the Fig. 14 circuit using the values $R=100 \mathrm{k} \Omega, R_{\mathrm{a}}=330 \Omega$ and $R_{b}=3.3 \mathrm{k} \Omega$. For the broken-line curve, R_{b} was changed to $10 \mathrm{k} \Omega$. (The values in the BBC design were $R=1 \mathrm{M} \Omega$, $R_{\mathrm{a}}=390 \Omega$ and $R_{\mathrm{b}}=100 \mathrm{k} \Omega$.)

Figure 15 shows that with an ordinary, linear $100 \mathrm{k} \Omega$ pot. in the Fig. 14 circuit, a control law not departing by more than 2 dB from the ideal linear decibel scaling is obtained over an approximately 40 dB range. In the BBC design ${ }^{2}$, a stud type of $1 \mathrm{M} \Omega$ pot. was used, giving 38 steps of 2 dB each and two larger steps at the low-gain end. Of course, if the luxury of stud pots. is allowed, any of the circuits here discussed may be given whatever control law is desired.

Though there is much to be said on grounds of economy, especially in stereo systems, for using a single pot. section to vary the feedback and effect passive attenuation, the use of ganged stud type pots. to perform these operations separately gives the designer greater freedom of choice in optimizing the design in all its aspects. This technique was used in the BBC OBA8 outside broadcast amplifier, designed well over forty years ago ${ }^{1}$. Starting at the maximum-gain setting, anticlockwise rotation of the knob first simply applied increasing negative feedback to the first stage, by raising the effective value of the feedback resistance in the cathode circuit. When this purely local feedback had been increased sufficiently to give a gain reduction of 16 dB , further rotation of the knob maintained this first-stage feedback constant but proceeded to insert increasing passive attenuation between the first stage and the second (output) stage. In this way the twovalve amplifier was made capable of delivering full output level to line, at low distortion (abour 1\%) for peak microphone input levels extending over a range of 56 dB . (It is evident that the designers of this amplifier and the associated units gave high priority to keeping the number of valves used down to the absolute minimum necessary number. This is understandable enough. bearing in mind that the $\mathrm{AC} / \mathrm{SP} 3$ television pentodes used were physically large and consumed four watts of heater power each. Now that high-gain devices are very small and cheap, and consume relatively tiny amounts of power, the designers of today are justified in adopting a very different outlook. often exploiting the plentifulness of gain to eliminate. or reduce the size of. transformers and also to achieve lower distortion levels in equipment of very much smaller size. Now that it has become fairly easy and cheap to obtain very low distortion

Fig. 17, BBC OBA9 circuit, designed in 1952.

Fig. 18. Author's design of 1961.

Fig. 19. Circuit by McWhorter of 1966.
levels, there is little argument for doing otherwise, whereas when the OBA8 was designed, lower distortion would have meant more valves, higher power consumption and shorter operating time on standby batteries. The designers were therefore justified in making the distortion just comfortably low enough, but no less, though they were doubtless
quite capable at that time of achieving much lower distortion levels had this been thought desirable. In most circumstances of use, it is doubtful whether the subjective quality of the OBA8 could be distinguished from that of the best modern equipment. The weakest feature of the design is that the secondary of the input transformer,
which stepped up to the exceptionally high impedance of $300 \mathrm{k} \Omega$, is shunted by a $300 \mathrm{k} \Omega$ resistor, thus sacrificing, in simple theory, 3 dB of potentiallyavailable signal-to-noise ratio. This point does not appear to have been appreciated at the time.)

Figures $16-19$ show four practical amplifiers which use a combination of feedback and passive gain control. The McWhorter design ${ }^{4}$ of Fig. 19 employs the basic circuit of Fig. 12, which has also re-surfaced recently in a Philips tape recorder ${ }^{8}$.

My own circuit ${ }^{3}$ of Fig. 18 is the same in broad principle, but unlike Fig. 12 has the negative feedback and the signal output taken from different electrodes of the output stage. This permits injection of the feedback voltage in series with the transformer secondary, thus obviating the introduction of local emitter feedback in the input stage. Though this circuit was in regular and very successful use for some years, a weak point in its design ultimately became evident, but only after hard service had caused the pot. slider to make erratic contact with the track. Unfortunately, if the slider fails to earth the track, there is a signal path straight through the track from the output collector to the input base. This is positive feedback and is of greater magnitude than the negative feedback from the output emitter. Violent oscillation therefore occurs during moments of poor slider contact, with accompanying very loud noises from the loudspeaker! The other circuits described do not have this weakness - a point worth bearing in mind.
To be continued

References

1. Barrett, A. E., Mayo, C. G. and Ellis, H. D. McD. "New Equipment for Outside Broadcasts." World Radio July 21, 1939, pp. 12-13 and July 28, 1939, pp. 10-11.
2. Berry, S. D., "New Equipment for Outside Broadcasts", The BBC Quarterly, Vol. V11, No. 2, pp. 120-128. (Summer 1952).
3. Baxandall, P. J., "Low Distortion Amplifiers - Part 2", B.S.R.A. Journal, Vol. 6, No. 11, pp. 246-256. (Nov. 1961).
4. McWhorter, M. M. and Warner, G. S., "A Low-Noise Transistor Microphone Amplifier", IEEE Trans. on Audio \& Electroacoustics, Vol. AU-14, No. 1, pp. 27-31. (March 1966).

A Users Guide to Copyrighi, by Michaei F. Flint, is intended to make clearer the subject of copyright "to enable people whose jobs or even hobbies - cover any copyright field, to acquire a general understanding". It is, however, only a reference book, and does not cover all the more complex legal aspects which may arise when dealing with this intricate subject. The book is laid out in a manner which will enable its reader to obtain the relevant piece of information quickly, and each chapter is sub-divided into well defined sections, each with a reference number and a bold sub-heading. Part 1 , the first 14 chapters, is a general explanation of the copyright law, whilst the second part gives a more specified description of copyright in practice, with chapters directed at publishers and printers, advertising agencies, the music industry etc. The book is published by Butterworth Law Publishers Ltd, 88 Kingsway, London WC2B 6AB, and its price is $£ 8.50$ in limpback form.

Microcomputers are responsible for a great number of paperbacks, mainly from the USA, and the pace of publication does not appear to be slackening. Three such books have reached this office recently, among others too numerous to mention, each slanted in a different way.

The first is by a British author, Robin Bradbeer, and is entitled The Personal Computer Book, published by Input Two-Nine at $£ 5.25$ and distributed by MCB Publication, 198/200 Keighley Road, Bradford, West Yorks. BD9 4JQ. This one assumes no knowledge of computers - not even enough to know what computers will do - and, accordingly, the first two chapters are extremely basic. The rest of the book is an attractively written explanation of the more important aspects of computing techniques and of computers, a very useful feature being a survey of equipment currently on the market. Several appendices provide information which is quite difficult to find elsewhere in one place, such as bus standards, addresses of clubs, manufacturers and publications.

The second book, by E. A. Parr, is published by Bernard Babani (Publishing) Ltd., The Grampions, Shepherds Bush Road, London, W6 7NF at $£ 1.75$. This one is entitled A Microprocessor Primer, and approaches the subject by way of a hypothetical device, the DIM-1, so that the author can explain general features of microprocessors without being constrained by any particular design. Having gone through this process, he then sets out to study the Z-80. This is a small book (75 pages) but within its scope achieves its purpose.
Thirdly, there is Introduction to Microcomputers for the Ham Shack, by Harry L. Helms, Jr., published by Howard Sams and distributed by Prentice-Hall International, 66 Wood Lane End, Hemel Hempstead, Herts HPZ 4RG at $£ 3.20$. Also a small book, this is concemed with the application of micros to amateur radio. Three chapters are allocated
to the basics of micro operation and programming, after which two chapters describe present and future operations using micros to send and receive Morse, to convert slow-scan tv to fast-scan for ordinary viewing, to store frequencies, in digital modulation, and in several other roles.

Early Radio Wave Detectors, by V. J. Phillips, gives a comprehensive account of various radio wave detectors used before the advent of the crystal and thermionic valve. Among the types described are spark-gap, electrolytic, magnetic, thin-film and capiliary detectors, as well as tickers, tone wheels. heterodynes and coherers, the type of detector which makes use of "a phenomenon which occurs in a poor electrical contact, the sort of contact which the engineers of today would call a 'dry joint' ".

Among the items described under the heading "Miscellaneous detectors," are the 'physiological' receiver, which made use of the electrical sensitivity of a frog's leg to displace a pointer on the smoked surface of a rotating drum, and the use of a human brain as a coherer, the description of which is supplemented by a photograph for which an advisory note is given for the benefit of "readers of delicate sensibilities". Be forwarned, however, the note appears at the bottom of the page, and the photo at the top!

The last chapter, entitled "And so to the modern era," covers the early crystal and thermionic valve type detectors and how they were used - an appropriate finale to an interesting and well-illustrated book. The publishers are Peter Peregrinus Ltd, Marketing Dept, Station House, Hitchin, Hertfordshire SG5 IRJ, and the price of the book in hardback form is £16.

Digital Techniques and Systems, by D. G. Green, is intended as a first course book for students with a basic knowledge of electronics and telecommunication transmission techniques, but the combined coverage of basic techniques used in modern digital circuits, and elementary principles of data communication, laid out in a logical sequence, make it useful for anyone wishing to gain insight into this field.

Chapter l gives a concise introductory description of a few of the uses of modern digital applications to which he may put the knowedge that he is about to learn. The second and third chapters cover the operation of electronic gates of all kinds and the remainder of the book, which includes chapters on digital modulation, data-links and pulse code modulation, is devoted to the subject of data transmission over telephone lines.

Worked examples are included in the text, and each chapter concludes with exercises, some of the questions of which have been taken from past C and G examination papers. Multiple-choice questions are also provided at the end of the book, which is priced at $£ 4.95$ and published by Pitman Books Ltd, 39 Parker St, London WC2B 5PB.

* Modeł C Miniature - 15 Watts Price $£ 4.20$ * Madel $\mathbf{C X}-17$ Watts Price $£ 4.40 *$ Model X25 - 25 Watts Price £4.40
*S.T. 3 Stand to fit all irons Price $£ 1.60$ * Model S.K. 1 Kit contains a 15 Watt miniature iron with 2 spare bits, a coil of solder. a heat sink and a hooklet "How to Solder" Price $£ 6.25$ *Model S.K. 3 Kit contains Model CX 230 iron - 17 Watts with the S.T. 3 Stand Price $£ 6.00$ * Model S.K. 4 Kit contains Model X25/240 iron - 25 Watts with the S.T. 3 Stand Price $\mathbf{E 6 . 0 0}$.

Model TCSUI. Temperature controlled soldering stations, now made from the toughest of tough plastics, have anti-static earthing connections to protect your MOS devices. They come with either the miniature CTC or the XTC low voltage (24V) iron. Included also is a range of 3 sizes of bits, 2 m anti-static cable, jack, crocodile clip. separate sponge tray. Zero voltage switching to prevent spikes or arcing; no magnetic fields. Temperatures can be set between 65° and $420^{\circ} \mathrm{C}$. Current leakage is negligible. Price $£ 38.00$

NEW R.F. MILLIVOLTMETER

The TM8 is a new autoranging analogue true r.m.s. millivoltmeter with a specified operating range of 10 kHz to 1 GHz and useful indications up to 1.5 GHz . It measures r.f. voltage from 1 mV to 3 V (or 300 V using the 100:1 precision divider) and also has a logarithmic range which spans four decades-useful in setting-up tuned circuits.

Careful consideration of the circuit design resulted in the use of CMOS low power IC's thus the whole unit only uses five watts of power and has minimal temperature drift as well as high reliability.

The meter is provided with damping so that fast changes in amplitude of the signal can be filtered out without either registering on the meter or on the pen recorder output. This output socket gives a 0 to 1 V output for zero to full scale reading on the meter.

Like most Farnell r.f. test gear, the TM8 is b.c.d.
programmable and will soon be 'busable' using the Farnell Omnibus IEEE488 interface.
A final touch of refinement to the design is the 'hold-reading' switch on the probe which will, as its name suggests, hold the reading that appears in the meter to within 1% for at least 3 minutes.

The TM8 is supplied complete with probe (integral with iniput lead) probe to b.n.c. adapter, 'T' connector and 100: 1 high impedance divider.

Leaflet available.

An acoustically small loudspeaker

Unusual design gives low colouration and good off-axis response

by R. I. Harcourt B.Sc., M.I.E.E.

This design for an active-crossover loudspeaker system is based on acoustic principles which are well established, and on psycho-acoustic criteria which are subjective in nature. As with all designs, trade-offs are possible. The acoustically small loudspeaker is designed to reduce colourations of the sound, below the limit of audibility where possible.
This can be done at the expense of bass distortion, though since 40% second harmonic distortion is inaudible at $80 \mathrm{~Hz}^{1}$, it is not considered important. In addition, a novel fourth-order, bandpass sub-woofer is described using an acousto-electronic crossover and feedback \mathbf{Q} correction.

The basic aims of the design were low colouration and a uniform off-axis frequency response. A flat on-axis frequency response is the accepted criterion, but the off-axis response often compromised in commercial designs - determines the stereo imaging qualities. Colouration and off-axis response depend upon both the drive unit and its enclosure, particularly in the mid-range, where the ear is most sensitive: it is between $1-4 \mathrm{kHz}$ that most of the image is found. To avoid compromising this part of the spectrum, the Jordan 50 mm aluminium-coned unit was used for its small size, low colouration, and good transient response - this was the only drive unit found for which the impulse response is published. It must be emphasized that it was not designed as a mid-range unit, and is specified to 22 kHz : the booklet advocates using the unit, together with a bass driver, to form a two-way system ${ }^{3}$. However, to the author's and a colleague's ears, an improvement was obtained with the use of a dome tweeter above 4 kHz , making a three-way system. Whichever way the unit is used, there are no crossovers in the critical range 500 Hz to 4 kHz to detract from the imaging quality by giving rise to an uneven polar response around the crossover frequency ${ }^{2}$.
The design of a loudspeaker is often influenced by the ease, or otherwise, of its manufacture. For example, it is rare to find other than a cuboid of wooden construction used for the enclosure. But
even ideal drive units are at a disadvantage in a wooden cuboid. The shape, size, materials and construction of an enclosure all have audible effects on the response. The great advantage of home construction is that one is freed from many of these constraints, and this advantage is exploited in the design. A mid/high frequency enclosure is made of modelling clay which does not require firing. Thus, the shape and materials of the enclosure are optimized.

Cavity resonance

Distortions in musical sounds take several forms, and the total harmonic distortion is often quoted. More recently, it has been found that this measurement does not correspond well
with how a unit sounds: indeed, sometimes a valve amplifier with a high t.h.d. is preferred to a transistor design. It has become clear that steady-state measurements do not give a good indication of performance, and other measurements have been used. With pickup cartridges and loudspeakers, there is a large variation between units sometimes expressed as "detail" or "dynamics", perhaps due to the presence or absence of masking effects of one sound upon another. More complex effects have been found, which are time-dependent, such as the 1 millisecond forward inhibition of a sound upon a following one, and the 30-120 millisecond backward inhibition of a sound upon a preceding one ${ }^{4}$. These

could be stimulated by delayed resonances in transducers, which often have time-constants within these ranges. With this in mind, and the author having a particular dislike of the sound of delayed resonances, the design for the acoustically small loudspeaker sets out to minimize them.

The cavity resonances of an enclosure constitute an inharmonic series given by the solution to the wave equation for rectangular (or other) boundary conditions. The cuboid has resonances at

$$
f_{n x . n y . n z}=\frac{c}{2} \sqrt{\left(n_{x} / x\right)^{2}+\left(n_{y} / y\right)^{2}+\left(n_{z} / z\right)^{2}}
$$

where c is the velocity of sound, n_{x}, n_{y}, n_{z} are integers chosen separately and x, y, z are the dimensions. These resonances can be heard because they present a widely varying acoustic load to the rear of the diaphragm and thus affect its motion. At high frequencies they can be damped using acoustic filling material, but this is not true at lower frequencies, nor necessarily for small enclosures; for both frequency and thickness of material affect the absorption. An acoustically small loudspeaker is of such a size that the lowest, and therefore all, the cavity resonances are outside the passband, and the loudspeaker is used below these frequencies. This applies, then, to a bass unit. Choosing $n_{x}=1, n_{y}=0, n_{z}=0$ gives the lowest resonance at

$$
f=c / 2 d
$$

where d is the largest dimension of the enclosure, and this is the onedimensional half-wave standing wave.

Panel resonance

Many loudspeakers have a "boxy" sound while reproducing male speech. The box can produce sounds in various ways, one of which is given above. Another way is by the panels of the box vibrating. It has been found ${ }^{5}$ that at certain resonant frequencies, the output of the box is within a decibel or so of that of the loudspeaker. As an experiment, some enclosures were made after Linkwitz ${ }^{2}$. constructed of 6 mm plywood with a 10 mm internal layer of roofpatching tar. The transmission of the cabinet side-panel was measured by placing two such units together, fed by sine-waves of equal amplitude but opposite phase, so as to null the sound from the loudspeaker. The microphone was placed 1 cm from the side-panel so that the near-field response was measured. The results are shown in Fig 1. After correcting for the relative emitting area of the panel and allowing for two panels. the output from the box at 150 Hz was found to be about 8 dB below that from the drive unit. Since the Q was measured to be 5 , the box will continue to produce the sound after the drive unit has finished. which constitutes a delayed resonance. In this case the 40 dB decay time will be $Q / 0.7 f=48 \mathrm{~ms}$.

Fig. 1. Near-field transmission of cabinet side compared with that from B110.

Fig. 2. Cavity and panel resonances for varying maximum dimension.

A panel has a series of resonant frequencies, the lowest one of which is at

$$
f=\frac{B t}{2 \pi a^{2}} \sqrt{\frac{E}{\rho\left(1-\mu^{2}\right)}}
$$

where t is the panel thickness, a its dimension (for a square panel). E the Young's modulus of the material, ρ the density and μ the Poisson's ratio. B varies according to the construction, and is higher for a clamped panel than a freely supported one. For loudspeaker enclosures, B is taken as 8 . An acoustically small loudspeaker can be made so that the lowest. and therefore all, the panel resonances are above the frequency of operation. The two resonance functions mentioned are plotted in Fig 2. From this can be determined the maximum dimension of an enclosure for it to be acoustically small. It can also be appreciated that most loudspeakers are acoustically large. The graph of the lowest cavity resonance
coincides with a criterion for determining the maximum frequency at which to operate a drive unit to ensure wide dispersion, and the maximum enclosure width.
The sound emitted by an enclosure depends upon its dimension and the degree of its motion. For a circular piston, the emitted sound pressure level increases by 12 dB for a doubling of its diameter, which implies that as a box is made smaller, so the sound radiated from it decreases. However, the internal pressure within the box increases as the volume is decreased, so that the deflecting force on the panel increases. This is compensated by a decrease in the actual deflection with reducing dimension, according to a square law. The combined effect of all this is a decrease of about 6 dB in the emitted sound with a halving of the dimension. All the above factors represent a confluence of ideas pointing to acoustic size as being an important parameter. It is therefore no coincidence that listening tests have
revealed a preference for small loudspeakers, provided that these are also well designed in other respects.
The panel transmission loss below the first resonance depends on the stiffness of the material used, not its mass or damping properties. The bass enclosure is best constructed of a thick material of high Young' Modulus. In this respect plywood is better than chipboard and hardwood better than plywood. Glass would seem to be an ideal material, for it has a Young's modulus 75 times that of chipboard, and an enclosure can be fabricated in the same way as an aquarium, using silicone rubber as an adhesive. This is a subject for further work.

Clay enclosure

Diffraction round an enclosure has been found ${ }^{6,2}$ to have a bearing on the frequency response and stereo imaging qualities of an enclosure, and Fig. 3 shows the frequency response of differently shaped enclosures, other things being equal. The sphere was found to give the smoothest response of the shapes tested, since there are no discontinuities in the surface to give rise to frequency-dependent effects. A novel enclosure is made as close to a sphere as practicable, and consists of a short vertical cylinder with domed top, as shown in Fig. 4. The shape is achieved by using modelling clay, which has a high density and large internal losses - it is acoustically "dead". The clay used is sold under the trade name of "Das", and does not require firing. It is not possible to include the bass unit in this enclosure, so only the mid/high-frequency unit or units are placed in it, and it is stacked on top of the bass enclosure. Because of the rounded shape, advantages are obtained in suppressing cavity resonances. The top-to-bottom, onedimensional'standing wave which normally occurs in a pipe is suppressed by

(a) Sphere
(b) Cuboid with slant races
(c) Vertical cylinder

Fig. 3. Frequency response of four different cabinet shapes.

Fig. 4. Author's prototype. Clay enclosure on top contains mid and high-frequency units, while wooden bass enclosure is for B110. Single . sub-woofer is not shown.
the domed top, and similarly the axial one-dimensional standing waves are suppressed by the cylindrical walls. This leaves the two-dimensional waves, and the lowest is calculated to occur at 1.4 kHz , where the damping material used .has a high absorption.

Bass enclosure

The simplest way of making an acoustically small bass enclosure is to make it physically small, and for operation up to 500 Hz the lowest resonance is placed higher, at 1 kHz , where the response is 20 dB down. This, combined with the high absorption of the filling material and the internal losses of the enclosure material, will give only very small amounts of unwanted sound. The maximum dimension for the bass enclosure is found from Fig. 2 and is 16 cm . The volume of a 16 cm cube is 4 litres, and it is clear that this will give insufficient bass extension. A cube is to be. avoided, since resonances coincide to give a higher Q, and the bass enclosure
is best made with dimensions in the ratio $2.3: 1.6: 1$, this being the ratio used for designing listening rooms. The maximum volume is around 1.1 litres, which is too small, and so a modification is called for. A 5 in bass unit requires an enclosure dimension of 15 cm on the front panel, and so the box is made square at 16 cm : the other dimension is determined by the volume obtained from the design procedure for bass loading. The volume is divided internally by a partition placed to brace the magnet against the back panel, which also suppresses the offending double resonance caused by the square dimension.

An acoustically small loudspeaker does not have to be physically small, and this is achieved by a scheme of internal partitions, in which each subvolume is acoustically small, but is connected to the adjacent one by a low resistance path. The partitions simultaneously brace the panels, effectively sub-dividing them into smaller ones which are acoustically small. The smallest dimension of the box is the width to ensure wide dispersion, and this is equal to or slightly greater than that required to house the drive unit.

Sub-woofer

The bass extension in this design is obtained by a novel sub-woofer, the aim being to achieve economy in space and expense. A 12 in bass guitar speaker is capable of producing high levels of bass below 100 Hz , and is inexpensive. However, it has a rather high resonant frequency, which was utilized by placing it in an acoustically small enclosure and using it below resonance, with a second-order filter, to give the required amount of bass boost. The closed-box enclosure acts like a second-order high pass filter, and the flat part of the response above resonance is made to fall off at 12 dB / octave using the filter. The portion of the response below resonance which was falling off at an ultimate slope of $12 \mathrm{~dB} /$ octave is made flat with the same filter. The falling part of the new res: ponse is tailored to form half of a 12 dB / octave crossover, the other half being. the natural fall-off of the bass enclosure
continued on page 73

Fig. 5. Frequency response of system plotted using one-third octave pink noise signals.

928 MHz proposed for UK's Open Channel

Concern about interference seems to be the main reason why the Home Office is proposing "just above 928 MHz " as a frequency for Britain's citizens' band service. The thinking behind this choice is published in a Green Paper discussion document entitled "Open Channel" - which is what the Government intends to call the UK service to disssociate it from the bad reputation of c.b. operation on 27 MHz in some countries. By placing the service in this part of the u.h.f. band they would put it above all the television channels used in Britain and also above most of the communication and other systems - notably those of the police, the fire brigades and aircraft landing systems where interference could have serious consequences. Because of likely interference they have rejected the National Electronics Council's proposal for a band somewhere between 100 MHz and 500 MHz (August 1978 issue, p.38). Having looked particularly closely in this region at suggested bands in the neigh bourhood of 225 MHz and 450 MHz , the Home Office remarks in the Green Paper that here the interference "could be so severe and intractable as to lead to the dropping of certain television channels. This could not be contemplated in the context of European television planning, quite apart from the effect on the broadcasting authorities".

The choice of the particular figure of 928 MHz , above which the Open Channel would be placed, is determined by several factors. First, several other countries, including the USA, Canada and some in Western Europe, are also considering setting up personal radio services in this part of the spectrum, notably in the new 900 MHz mobile radio band $(862-960 \mathrm{MHz}$ in Region 1) which was allocated by international agreement at the WARC in Geneva last year (February 1980 issue, p. 48). International standardisation would be a good thing, particularly to give manufacturers opportunities for economies of scale and larger markets in the design, production and sale of equipment. Secondly, in this respect, "just above 928 MHz " would avoid the ISM (Industrial, Scientific, Medical) band of 902 MHz to 928 MHz which is designated for use in ITU Region 2 (the Americas). Thirdly, there are the constraints of other, fixed communication services in this u.h.f. area which help to determine the figure of 928 MHz . But the most important factor in fixing it is the possibility of image interference in television charinel 68 resulting from frequencies immediately below 928 MHz . The Green Paper in fact envisages a band 1 MHz wide containing a maximum of 40 channels, each of 25 kHz . This implies the possibility of frequency modulation, although the document does not say this directly. The Home Office's Radio Regulatory Denartment sees the question of choice of modulation as a commercial rather than a technical matter.

The proposal for a frequency of 928 MHz
raises the question of the likely range of Open Channel transceivers because of the relatively high absorption of r.f. energy by obstructions in this part of the spectrum. Of course, the Government doesn't want longdistance transmission in any case, and they consider a range of about 15 km is enough. The Green Paper says that the frequency selected must enable this desired range of 15 km "to be achieved in most environments without excessive transmitter power, thus minimising local interference, enabling frequency channels to be re-used and at the same time avoiding long range interference". After quoting some earlier studies of propagation at 900 MHz and the ranges achieved, the document goes on to mention a limited serles of tests done by the Home Office themselves in and near London to obtain additional data in this part of the spectrum: "From these tests it was estimated that with 25 W e.r.p., a sensitive receiver and with aerial heights of 4 and 1.5 m , the range in urban and suburban environments would be from 3 to 10 km and that in open, flat country with no trees it might approach 20 km ."
To revert to the question of interference with other services, the Green Paper analyses what could happen with an Open Channel band near three different frequencies: $225 \mathrm{MHz}, 450 \mathrm{MHz}$ and 900 MHz . Around 225 MHz , the third harmonic of the transmitter "would come withirl the range 669 675 MHz and reception of television channels $45(662-670 \mathrm{MHz})$ and $46(670-678 \mathrm{MHz})$ would be potentially affected." Up to 1.1 million television sets could be affected here by transmissions from equipment mounted in vehicles or from portable transceivers with integrated aerials. Below 450 MHz , television reception of channels $64,65,66$ and 67 would get interference from the second harmonic of the transmissions. Up to 1.7 million tv sets could be affected. Above 450 MHz , the problem "is one of spurious responses in television receivers tuned to channels 23 and 24. It is estimated that 2.6 million installations receive a television field strength which is less than that necessary to protect them from the transmissions of fixed Open Channel equipment." At 900 MHz , and up to 928 MHz , Open Channel frequencies in this region "would potentially affect the reception of television ch annels 59-68 inclusive . . "' and it is estimated that ". . . up to 1.8 million tv installations receive a lower field strength from main stations than would be necessary to protect them from nearby Open Channel transmitters." Here, and in the band above 450 MHz , the interference could be dealt with by filtering "but the scale of the possible problem is daunting."

On the question of regulatory control of Open Channel, the discussion paper says that the Government proposes "to combine the simplest possible licensing system with a limited technical control." The licensing system "would be flexible, simply author-
ising a named user, or a person acting with his permission, or a person to whom he had hired equipment, to use Open Channel." Licences would be renewed annually "and unlicensed transmissions would constitute, as now, an offence under the Wireless Telegraphy Act." Revoking licences would be a way of applying sanctions, short of prosecution, against deliberate illegal use. The licence fee would be set to pay for the administration of the service.

For technical control, only minimum standards for equipment would be set, and the Government's responsibility to users would be "confined to ensuring that a certain standard of service can be obtained rather than ensuring that it is obtained." There would be no formal specification system as with p.m.r. equipment. Regulations under the Wireless Telegraphy Act could set out technical requirements - on modulation, power, frequency stability, spurious radiation etc. which equipment manufacturers would have to meet. These regulations "could make manufacturers liable to certify their products as conforming to those requirements; the onus would then be on the user to ensure that he used only certified equipment." In general the Green Paper makes it clear that the Government sees its responsibility as creating the technical conditions for a reasonable service but not in coping with abuses.
Reactions to the Government's proposal have been mixed. The UK radio amateurs, for example, are quite pleased (for reasons explained in World of Amateur Radio this issue). So are those who concur with the Government's view of citizens' band as basically an amusement or hobby (Mr Timothy Raison, the minister concerned at the Home Office, has remarked that "it will be fun for people"). They see no reason'to strive particularly to make life easy for manufacturers, dealers and users in what will be essentially a luxury trade. The equipment manufacturers, however, are predictably not at all happy with the proposal of 928 MHz . They think there will be insufficient demand to make the design and production of sets for this frequency profitable. American experience suggests that the transceivers may cost about 20% more than comparable p.m.r. equipment for, say, the 200 MHz band. The president of the Citizens' Band Association pressure group, James Bryant, has described the Green Paper as just another delaying tactic by the Government, and Walter Stevenson, of Air Call Ltd, has commented that many potential operators will now just go ahead on the illegal 27 MHz band.

The Government is, of course, inviting such comments on its discussion paper and has asked all concerned to send in their views not later than 30th November, 1980 to the Radio Regulatory Department, Home Office, Waterloo Bridge House, Waterloo Road, London SE1 8UA.

Government begins erosion of Post Office monopoly

Referring to "a transitional period of three years," Sir Keith Joseph announced on July 21 that British Telecom's monopoly would be limited by government changes in the way terminal equipment is used as well as in the supply of services to third parties.
The new provisions, for which legislation will be introduced in the next parliamentary session, are expected to make it easier for privately supplied equipment to be connected to the Post Office network, assuming that the equipment meets the required technical standards. Similarly, more freedom will be extended to people who wish to use British Telecom's circuits to offer services to third parties which are not currently provided by the company, data processing facilites, for example.

In announcing these changes, Sir Keith also mentioned the possibility of "allowing the private sector to provide telecommunications transmission services such as satellite business systems." He said that he expected the main changes to lead to a significant growth in information, data transmission, educational and entertainment services provided over telephone circuits and to the emergence of new business. He said that he would be commissioning an independent economic assessment of the implications of allowing complete liberalisation for what are commonly referred to as "value added" network services. These include database services, providing archives, advertising and entertainment services, electronic office facilities such as word processors, verbal message services, etc. as well as facilities for the interconnection of normally incompatible apparatus such as computers, facsimile machines and word processors. Monitoring and security alarm services also fall under this heading.

The first telephone and associated wiring
connected to the main net work will remain the responsibility of British Telecom, as will the maintenance of private branch ex: changes (PABX) and associated wiring.
In theory, this should make available to the user a wider variety of equipment and sources and Sir Keith said that he is looking forward to seeing at an early stage approved extension telephones on sale in the shops, as well as greater competition in the installation and wiring of currently approved apparatus on business premises.

A spokesman of the Post Office Engineering Union, responding to the an'nouncement, said that the changes would allow private operators to "cream off" the more profitable side of the business, leaving British Telecom to deal with the less profitable but necessary sector.

At the same time, Sir William Barlow, the Post Office chairman said that consumers' bills were likely to rise as a result of the changes.

IEC nuclear reactor standard published

The 70th standard produced by the International Electrotechnical Commission was issued late in July, and deals with periodic tests and monitoring of the protection systems of nuclear reactors. This standard, IEC publication 671, lays down principles for testing protection systems during both normal power operation and shutdown. Am ong details such as short interval or continuous surveillance checks the standard also considers the effect of test equipment failure on the reliability of reactor protection. The full publication can be obtained from the International Electrotechnical Commission, Central Office, Geneva, Switzerland, price 39 Swiss francs.

Pergamon Press makes first

data deal with Russia

An investment of $£ 10$ million a year for the next ten years as part of a deal to provide western customers access (in English) to literature in Russian scientific and technical data stores, has been announced by Robert Maxwell, chairman of Pergamon Press.
The agreement made with Viniti, the Soviet Institute of Scientific and Technical Information, and Vaap (Soviet copywright) also includes the joint development of computerised information services. The guardian reports that these services would be immediately available on computer terminals. through the Infoline service, which was acquired recently by Pergamon and the agreement also includes the supply by the Russians of all documents in microfiche form.

The English language service is expected to begin in the first quarter of 1981 and will include material on information retrieval systems and the environment, with mathematics, energy and engineering following in 1982.

Phone charges up

Price increase proposals have recently been put by British Telecom, the telecommunications part of the Post Office, to the government and the Post Office Users National Council. The increases, which are expected to take effect from November 1, include a $0.5 p$ increase in the telephone call unit fee to $4 p$ accompanied by a reduction of time in the inland cheap rate period, although the IDD (International Direct Dialling) cheap rate will be extended to 8 a.m. Foreign affairs will clearly be easier to arrange! Teleph one rental charge increases to $£ 16.75$ per quarter for a business line and $£ 12$ per quarter for a residential line. Installation and extension charges will also rise. Further details can be obtained from British Telecom, Public Relations Department, 23 Howland St, London WIP 6HQ.

Data logger keeps an eye on the dairy

Two projects to determine economic use of energy are being run simultaneously at the Seale-Hayne College dairy unit in Newton Abbot, Devon, using a multi-channel data logging system, the Microdata M1600L.

One is aimed at energy conservation in the farm's milking parlour and associated dairy and involves a comprehensive study of energy input and consumption, while the other looks at the development of a solar energy system for use in the farm, this being linked to a study of dairy water requirements. More than 50 parameters are being monitored at regular intervals over several years involving the interfacing of a variety of transducers, both analogue and digital, with the data logger. This is achieved by the use of a separate plug-in signal conditioning module for each channel.
Where checking of fluid flow is concerned, turbine-type sensors deliver a pulse output with frequency proportional to flow rate and although this is an analogue signal, the data logger handles it digitally, with signal conditioning modules operating as tachometers to provide the pulse rate in digital form.
Recorded data is subsequently fed into the Plymouth Polytechnic Computer for
 analysis.

Government set to introduce cheap-rate engineering authority

The formation of a new body to govern the engineering profession, probably a $20-\mathrm{man}$ committee with chartered status, is expected to be announced by Industry Secretary Sir Keith Joseph as we go to press. The new authority is likely to be only a small affair compared with the powerful engineering authority (which was to be directly responsible to government) envisaged by the Finniston Report of April 1980. This amounts to a compromise which could save the government about $£ 8$ million, reports the Sunday Times, and would also dispose of the present system of self-regulation by the institutions, through the CEI
It is thought that the government will appoint members after recommendations made by engineering employers, unions and the institutions, with an initial expenditure level of $£ 1$ million to $£ 2$ million to get the new
independent body started.
Most of the savings will be effected by "tapping into" the current Engineers' Registration Board and accreditation will probably depend at first upon the goodwill of existing institutions, once members reach the standards agreed by the new authority.

An alternative form could be a chartered body created by the Fellowship of Engineering (set up by the CEI in 1976), which would imply that membership would be decided entirely by the profession although the most likely authority is the former, partly because so many of the DOI's respondents to offer their views on the Finniston Report suggested that the impetus of an independent body was vital. This type of authority is also supported by the IEE (70,000 members) and the Engineering Employers Federation,

First small-dish digital video transmissions by satellite

Successful transmission of digital video colour tv signals through a European space satellite using small-dish terminals at both ends of the link, has been achieved by the IBA at Crawley Court, Winchester, reports Pat Hawker.

Digital signals were passed through the 120 MHz transponder on the OTS satellite launched in May 1978 and the experiment was carried out with the co-operation of British Telecom and the European EUTELSAT organisation. The test signals, using the IBA-developed experimental $60 \mathrm{Mbit/s}$ encoder/decoder, were both sent and received at Crawley Court using the 14 GHz 2.5 metre dish "up-link" terminal (at about 1.5 kW transmitter power) and the 3 metre dish receiving aerial.

During preliminary tests using pseudorandom digital signals, error rates of the order of only one in 10 million bits were recorded. During transmission of 625 -line

Despite one or two humorous suggestions as a caption to this picture, including
"off-resonance draught detector in action" and "an obsessive approach to stereo speaker positioning", the gentleman is in fact a fully-equipped boardroom "buy" detector. The equipment is the Scanlock Mark VB and the makers. Audiotel International, claim that its sensitivity and frequency coverage 1100 to 1800 MHz) make it possible to detect a bug automatically in less than a second.
colour tv pictures through the system no degradations, other than those introduced by the encoder/decoder system, were observed.

The techniques used here are for experimental purposes only and are not being proposed as an international standard, but the work has shown that digital video could provide useful advantages for news gathering and national and international links through satellites.

Londsaf working again

NASA's five-year-old Landsat spacecratt is now back in service after a six month retirement caused by a malfunction preventing correct orientation in its orbit. The spacecraft developed problems on Nov. 51979 when the yow attitude flywheel, part of the mechanism which kept it pointed towards earth ceased functioning, probably due to a lubrication breakdown.

University technicians get 12%, lecturers 17%

The standing commission's report on pay comparability, published at the end of July, recommends a salary increase of about 12% for university technicians, while university lecturers are expected to be awarded 17%, although the Association of university Teachers had originally made a provisional agreement for 19.6% with the university authorities.
The commission recommended that an additional lump sum should be paid to technicians, varying from $£ 46$ to $£ 140$ according to grade and the increases are back-dated to April 1980. The basic minimum salary for a trainee technician is now $£ 2,367$ (at age 16) owith the grade 1 A technicians minimum at $£ 3,288$. Grade 8 represents the maximum at £9,045.

Under the 17% settlement, minimum lecturers' salary will be $£ 5,505$ with the maximum at $£ 11,572$, rates effective from October 1980.

Professors' average pay will go up from $£ 14,148$ to $£ 16,765$. An additional cost of living figure is to be added to lecturers' and professors' salaries after talks with the government in September.

Seeing and hearing things at Decca

London Print and Design, a relatively unknown company based in Northington Street, has bought the old Decca record manufacturing plant, lock, stock, and barrel. The plant, which is located at New Malden, Surrey, was taken over by Racal earlier this year (see Wireless World, April 1980) and immediately offered for sale again.

Speculation about who would eventually make a move to acquire the high technology disc business has been running high since the non-manufacturing part was sold to the German company Polygram.

Rumour has it that LPD will use the plant, through the co-operation of key technical staff from Decca, to press videodiscs in
partnership with companies interested in the home video entertainment field. LPD has been advertising the sale as well as asking companies interested in the pressing equipment to approach them. The plant has an annual production capacity of 14 million discs, although there is a chance that the central matrix unit could be retained at New Malden, with up to four "satellite" pressing plants operating at other sites, each producing about $31 / 2$ million discs annually.
For some reason best known to itself, LPD chooses not to reveal the nature of its current business, but informed guesses point to links with printing, designing and maybe some more pressing business in the near future.

Japanese satellite completes global telex link

An arrangement made recently between British Telecom and the Japanese telephone authority makes it possible for telephone and telex users in the UK to reach ships in the Indian Ocean, using the satellite earth station at Yamaguchi, south-west of Hiroshima.

This amounts to an extension of the Marisat system which already provides satellite links for ships in the Atlantic and Pacific and is the final link required to provide global coverage. The main advantage of the system, set against normal radiotelephone messages, is that calls are free of fading and distortion. About 320 ships throughout the world are now equip-
ped to use the Marisat system.
To make a satellite telex call, British users should follow the dial/key procedure for making international calls to places outside Europe and North Africa. The keying codes to use are 581 for ships in the Atlantic and 582 for those in the Pacific. The caller then keys the ship's seven-digit call number, followed by a plus sign.
To make a satellite telephone call. British customers should dial 100 and ask the local exchange operator for Freefone 2187, the International service at Faraday Exchange, London. Callers should give the name of the ship it is wished to contact, its location and the vessel's satellite call number.

Designing with microprocessors

5 - Test-and-skip systems
by D. Zissos and Laurelle Valan
Department of Computer Science, University of Calgary, Canada

Abstract

This and the following article describe step-by-step procedures for the design and implementation of microprocessor-based systems using the test-and-skip mode. In the second article the design steps will be illustrated by means of a fully worked out example.

In the previous article we explained the nature of the synchronization problem, which results from the fact that the microprocessor operation cannot be slowed down to the speed of slow peripherals by reducing the frequency of its clock. Two solutions, which do not involve adjusting the clock frequency, were outlined. One uses software and the other hardware. In the first case, the microprocessor executes a programming loop, during which the status of the peripheral is read and tested. If the peripheral is found to be busy, the process is repeated, that is the microprocessor skips execution of the next instruction. The test-and-skip process is repeated until the peripheral becomes ready, at which point the microprocessor exits the software wait loop. In the

Fig. 1. (a) Microprocessor/peripheral links during execution of an ilo instruction. (b) Microprocessor signals during execution of an ilo instruction.
second solution hardware is used to put the microprocessor chip into an idling (wait) state while the peripheral is responding. When in the wait state all microprocessor activities are suspended without turning off the clock. Microprocessor-based systems using this method are referred to as wait/go and will be discussed in detail in a later article.

$1 / 0$ instructions

Before we describe the philosophy and steps we use to design and implement test-and-skip, and indeed all types of microprocessor-based systems, it will be useful, particularly in the case of the inexperienced reader, to recall the step-by-step execution of i/o instructions, which was described in detail in an earlier article.
Briefly what happens is this. The op code is fetched from memory and copied into the instruction register (i.r.) during cycle M1. Next, the i/o address is fetched from memory and copied into

addressing register r. The i/o instruction is executed by connecting within the m.p.u. chip the address bus to the addressing register and the data bus to the accumulator, as shown in Fig. 1. In addition, the timing and control unit generates on specified pins of the m.p.u. chip either a read or write pulse, denoted by In and Out, depending on whether data is to be copied from the peripheral into the accumulator, or vice versa - see Fig. 1(b). The presence of an allotted address signal and an i/o pulse at the input of an interface causes it to activate the peripheral. In other words the input to an interface in a microprocessor-based system consists of software-generated electrical pulses.

In practice the relative timing of $1 / 0$ pulses, addresses and data vary from microprocessor to microprocessor. However, in our design procedures it is not necessary to consider such signals until the implementation stage.

Design philosophy

The design philosophy adopted is one that allows the inexperienced user to produce sound and reliable systems simply, while at the same time providing the specialist with the tools to improve his technique in dealing with more sophisticated assemblies. As in the case of logic circuits, elegance of design is not sought but can be achieved.

In developing our design philosophy, we considered the following as important.
System reliability. All systems must function correctly.

Fig. 2. Chart showing the successive steps in the design process.

Fig. 3. Configuration of a basic test-and-skip system.

Fig. 5. Left-shift through carry.

Circuit maintainability. The systems should be easy to maintain.
Design effort. This must be minimal to allow for greater creavity.
Documentation. This should be concise and to the point. Symbols and diagrams are preferable to verbal statements; they are more readily understood by non-English speaking persons and are likely to prove more attractive to the export market.
Design steps. These must be easy to apply. In our case no specialist knowledge is necessary.
Modifications. The systems should be easily modifiable to meet new conditions as they arise.

Design steps

Our design process is accomplished in five steps, listed below. See also Fig. 2.
Step 1: aim of the design. The system specification is expressed in the designer's terms. This step is introduced to ensure that the system requirements are interpreted correctly by the system designer.

This stage is critical for successful co-operation between the system designer and the user. Failure at this stage is usually the cause of system misoperation which then produces the need for subsequent design modifications.
Step 2: device characteristics. In this step the designer studies the terminal characteristics of the devices to be used Any consideration of purely internal characteristics should be avoided.
Step 3: system design. In step 3 the designer specifies the system characteristics in general terms by means of a block diagram_and a system flow chart.

Fig. 6. Terminal characteristics of action / status devices. Signal a means that a O to 1 signal transition on the action terminal activates the device. No activation is possible when signal $r=0$. Signal r indicates the availability $(r=1)$ or unavailability $(r=0)$ of the device.

whether it is ready or not), and to activate the peripheral at the correct time, that is when i/o instruction with address Aq in our case is being executed.

Peripheral status information is made available to the program through an input port. If the ready/unready state of the peripheral is indicated by the ' 0 ' and ' 1 ' values of signal r in Fig. 3, to determine whether the peripheral is ready or not, the programmer proceeds in the following manner. He executes an IN instruction with address Ap. Execution of this instruction copies the signals $r x x x_{x} x x_{x}$ in Fig. 3 into the accumulator. If $r=0$ the process is repeated, otherwise the next (i / o) instruction is executed, which allows the microprocessor to communicate with the peripheral, as shown in Fig. 4. The programmer has several options to determine the value of r. We shall describe two such options. He can AND the contents of the accumulator (rxxcscxxx) with 10000000 (80 in hex), which modifies them to 0000000 . If $r=0$ the zero flag is set, otherwise it is reset. Alternatively, he can shift the accumulator left through the carry flip-flop, as shown in Fig. 5, which shifts the value of r into the carry flip-flop.

If we assume that our peripheral is an action/status device, that is a device whose terminal characteristics are shown in Fig. 6, the hardware implementation of a test-and-skip system is shown in Fig 7. Action/status devices are described in Appendix 1 of "System Design with Microprocessors", Academic Press, 1978.

In the next article we shall demonstrate design steps by means of a PRINT problem. This problem, which will also be implemented using the wait/go, interrupt, d.m.a. and d.d.t. modes, has been chosen, first because a printing operation can be readily visualized and secondly, the character printer used can be assumed to have been in existence in the 1940 s , that is well before the era of computers and microprocessors.

WW index for 1979

The index for Volume 85 (1979) of Wireless World is now available, from the General Sales Department, IPC Electrical-Electronic Press Ltd, Room CP34, Dorset House, Stamford Street, London SE1 9LU, price 75p including postage. Cheques should be made payable to IPC Business Press Ltd.
We apologize for the unusually long delay in the production of this index. This was due to a combination of editorial staff problems andmore general industrial disputes.

An acoustically small loudspeaker

continued from page 67

containing the 5in unit. In this fashion, a two-way, second-order crossover is obtained for the price of a single-stage filter, and considerable bass extension with an inexpensive unit. The success of this design is best judged by the observation that, when placed in a corner, 102dB SPL peaks were measured while playing a recording of cannon shots during the "1812" overture, without any sign of stress. Naturally there is a price to be paid, and that is increased harmonic distortion. This could not be heard during music, but sine-waves or pink noise showed it up, and the result was that the source of sound could be located, which is not generally true for such low frequencies. Frequencies below 100 Hz were found to occur infrequently during most music, but bass guitar, bass drum, and organ enthusiasts may prefer some other solution below 100 Hz . That due to Linkwit z^{2} is an alternative.
The on-axis response of the units was measured above 300 Hz in situ using third-octave pink noise. That below 300 Hz was measured by taking the nearfield response of each unit to eliminate the effects of the room. The results are shown in Fig. 5. The off-axis response was measured above 300 Hz in situ, rotating the loudspeaker. Curves are shown for 30 and 60 degrees horizontally off-axis, and show that an integration has been achieved between drive units, and that there are no large steps in the off-axis response to cause shifting or diffuse stereo imaging.
Design and construction will be described next month.

References

1. Moir, J, "Doppler distortion in Loudspeakers", Wireless World p65 April 1974.
2. Linkwitz, S., "Loudspeaker System Design". Wireless World May/June 1978.
3. Jordan. E. J., "The Jordan Manual", from the author.
4. Von Bekesy, G., "Auditory Backward Inhibition in Concert Halls", J. Audio Eng. Soc. p780 27 No 10 Oct 1979.
5. Barlow, D. A., "Sound Output of Loudspeaker Cabinet Walls", Proc. Audio Eng. Soc. 50th convention, London, March 1975.
6. Olsen, H. F., "Direct Radiator Loudspeaker Enclosures", J. Audio Eng. Soc. 17, No. 1, pp22-29 1969.

IN OUR
 NEXT ISSUE

Unique pickup arm

By displacing the horizontal and vertical pivots of an arm from each other it becomes possible to increase the radius of the arc in which the pickup travels across the record and so reduce tracking distortion. This article describes a practical design for home construction.

Amplifierloudspeaker interface distortion

Matti Otala examines distortion caused by intermodulation between the signal and a delayed, frequency transformed version generated by the loudspeaker and propagated in the feedback loop
Measurements on four power
amplifier circuits are discussed.

Designing inductors carrying d.c.

It's difficult to select initially a core for a winding that is carrying d.c. A simple procedure allows different cores to be compared and the optimum one chosen for a particular inductor design.
 October 15

Voice synthesiser

The "Wooden Fender" group of amateurs in and around Colchester, Essex including a number at the University of Essex - have built and installed what is thought to be the first computergenerated voice synthesiser on a local u.h.f. repeater, GB3CE, located in the Colne Estuary and using channel RB14 (output on 433.350 MHz). According to Ian Dilworth, G3WRT, the computer has initially been programmed to synthesise the call-sign and "QRA locator" (ALO5E); in addition the repeater announces frequency and channel number. The basic system, however, has been designed to provide a voice output of the strength and frequency check of the incoming signals, although this has not yet been implemented.
The value of v.h.f. repeaters to provide relatively long ranges in conjunction with simple hand-held transceivers is being proved by experiments that have been carried out by the Canadian Department of Communications during recent years in a remote arctic area 500 km north of Fort Chimo, Quebec. There an experimental system for "trail and remote camp radio" has been under. test to enable an Inuit hunting community to keep in touch with their village by means of a speciallydeveloped battery-operated h.f./v.h.f. repeater installed on Diana Island, 280 metres above sea level and from the community village at hoartac. The Department acknowledges that the system uses technology drawn from North American amateur use of v.h.f./f.m. "autopatch" repeaters (shared hilltop facilities with automatic, mobile toneaccess to the public switched telephone network). The economic existence of many arctic communities depends on hunting, fishing and berry-picking requiring villagers to spend long periods away from their homes, on the trailor in remote camps.

Repeater abuse

In the UK and USA, unfortunately, the use of amateur v.h.f. repeaters continues to be the subject of controversy and abuse. Paul Essery, G3KFE, in a strongly-worded editorial in Shortwave Magazine writes provocatively "The outcome of the inept plan to quadruple the number of London repeaters can now be seen this appeasement of the deliberate interferers (of all kinds) has merely played into their hands and produced four times the abuse and misuse of these relays. The time is now well overdue for firm action to be taken, for the good of amateur radio . . . If the Home Office is unable or unwilling (as seems to be the case) to make a concentrated effort to find, close-down and
prosecute the offenders, then the RSGB - which holds the licences for these repeaters - has no choice but simply to close down'the repeaters."
Not everyone will agree with this analysis but it is a fact that, in the USA, the owners of repeater licences are increasingly complaining that they are being held responsible by the FCC for the content of the communications, including the profanities and jamming, going through their repeaters. Under American regulations, both the repeater owner and the station originating a message are responsible for the content of any communications transmitted through the repeater. The real miscreant is clearly more difficult than the owner to identify and trace. The FCC, it has made clear, has no intention of relaxing regulations in this area.

Open Channel

While the general question of the recent Home Office discussion document on "Open Channel" is not a matter for WoAR, the reaction of radio amateurs, as such, seems generally favourable. It is of course recognised that it will not be easy for industry to provide low-cost, rugged base, mobile and handheld transceivers at the unexpectedly high frequency of 928 MHz . Few existing inexpensive u.h.f. power transistors or varactor multipliers could provide 5 watts output, though it is possible that some use could be made of superregenerative receiver techniques and s.a.w. (surface acoustic wave) u.h.f. oscillators.

928 MHz meets the RSGB request that Open Channel should not be placed close to an amateur band; it is conveniently almost exactly mid-way between the 432 and 1300 MHz bands. Amateur experience on these bands shows that 928 MHz is not necessarily a short-range "line of sight" band, particularly during conditions of anomalous propagation or from hill-top sites.

There remains the danger that Home Office efforts to reduce illegal activity on 27 MHz could result in more "piracy" in the amateur bands, particularly 28 MHz . In the USA, despite the availability of the 40 channels around 27 MHz , there is already increasing intrusion into the low-frequency (c.w.) end of the 28 MHz amateur band. Similarly despite efforts by the FCC to stamp out the use of high-power "linears" by c.b. operators (including forbidding the sale of any linears covering the 28 MHz band) there are still c.b. operators using 2kW p.e.p. s.s.b. equipment

The Home Office makes the valid point that "if an individual wishes to use sophisticated equipment to communicate over long ranges and make
international contacts, he should become a licensed radio amateur by taking the appropriate radio examination." The introduction of "multiplechoice" questions in the Radio Amateurs' Examination since 1979, and the consequently higher "pass rate," has removed the argument that amateur radio is open only to those experienced in taking written examinations. But it is to be hoped that the Home Office will consider the possibility of introducing some form of "novice" licence.

The fact that the Home Office is not proposing to allocate "call-signs" for Open Channel should also prevent its becoming a "shamateur" band and so help keep it as a useful and welcome facility for the general public, while not ruling out its use for "fun" purposes.

Amateurs in hospital

Fred Judd, G2BCX, points out that provided permission is obtained in advance, there is usually no objection to the use of amateur radio equipment in British hospitals. Permission needs to be obtained from the Unit Administrator and/or the District Works Officer of the hospital concerned and tests should always be made to ensure there are no electromagnetic compatibility (e.m.c.) problems with sensitive hospital equipment.

In brief

Fee for the Morse test in the UK has gone up from $£ 6$ to $£ 8$... Danish amateurs now have permission to use 1720 1740 kHz and $1830-1850 \mathrm{kHz}, 10$ watts c.w. ... "Rusty" Russell, G5WP, of Guildford, one of the only two British amateurs ever to have won the BERU Commonwealth Contest and a consistent "dx" operator on 3.5 MHz , has died

Australian amateur licences rose in 1979 from 10,587 to 12,596 , of which 6,126 are "full" licences, 3,273 "limited" and 3197 "novice" ... RSGB reports show that the number of RAE courses being run this season at local adult education centres is about 50 including many towns not listed last month Amersham, Birmingham (2), Borehamwood, Brentwood, Burgess Hill, Bury, Canterbury, Chester, Chingford (2), Cove, Crawley, Derby, Dudley, Exeter, Grafton, Harrow, Hemel Hempstead, Highbury, Huddersfield, Knottingley, Nottingham, Paddington, Southampton (2), Stockton-on-Tees, Stretford, Turnford, Wakefield and Walsall ... Forthcoming events include Welsh Amateur Radio Convention at Blackwood, Gwent on September 28 and the British Amateur Television Club Convention at Post House Hotel, Leicester on October 5 (from 11 a.m.).

PAT HAWKER, G3VA

Bach-Simpson Quality test equipment now available at new LOWER PRICES!

464A (240V. A.C.) 464D (240V. A.C./Battery) 3½ digit DMM - LED-basic accuracy $\pm 0.1 \%$ - range coverage to 1000 V. D.C., 600V. A.C. 20 meg ohms and 10A A.C. and D.C. 465A (240V. A.C.) $£ 169$ 465D (240V. A.C./Battery) $£ 189$ As the model 464 but is fully autoranging and has low power ohms ranges

460-3D (240V. A.C./Battery) As model 465 but without autoranging, but does include a self-contained edgewise analogue meter for peaks and scanning trends

Small portable 3 digit
3/2 digit DMM - LCD display - basic accuracy $\pm 0.2 \%$ transient suppression and overload protection - wide KHz A.C. Voltage response

£123

D143 461 Small portable 312 digit DMM-LED display - 23 ranges - basic accuracy $\pm 0.25 \%$ - overload protection. Complete with charger, mains lead and rechargeable batteries

260-6P

$\$ 49$
The world's largest selling AMM sturdy construction - taut band movement - 33 ranges - D.C accuracy $\pm 2 \%$ over a wide temperature range. Push button high speed circuit breaker together with additional fuses for excellent overload protection

260-6XLPM
£61
As the model 260-6P but includes high impact shock resistant case, mirror scale and extra low voltage and low power ohms ranges

G 886
SOUND LEVEL METER fully conforming to I.E.C. and B.S. specifications. Fast or slow response - full coverage 40$140 \mathrm{~dB}-\mathrm{A}, \mathrm{B}$ and C weightings selection Direct reading battery operated portable MICROWAVE LEAKAGE TESTER. Measuring microwave leakage at a frequency of 2450 MHz . Complete with carrying case
11 small compact FREQUENCY
Smio
METER covering 10 Hz to 60 MHz .
Accurate to ± 1 count \pm time base
accuracy - switchable low pass
filter.

And how have we managed this good news?
Through direct marketing we can now offer these test instruments and many many more at very competitive prices, which include. Securicor delivery to your address and our product guarantee for one year. The only extra is VAT at the current rate. Existing customers need only send their purchase order direct to us. New customers - cash with order please. But first, why not write now for our multi-page catalogue and detailed price list. Remember you are looking at only a few of our instruments - there are many more plus a comprehensive range of accessories.

Bach-Simpson (UK) Limited,
Trenant Estate, Wadebridge, Cornwall PL27 6HD Tel: (020881) 2031 Telex: 45451

PA GROUP \& DISCO UNITS

Audax HD 12.9025	c8.25
Audax HD11P25EBC	¢7.50
Audax HD20B25H4	£14.95
Audax HD13D34H	E12.95
Audax HD24S45C	E21.95
Baker Superb	£25.00
Castle Super 8 RS/DD	¢14.95
Chartwell CEA205 pairs only	pairs only $£ 61.25$
Coles 4001	¢7.65
Coles 3000	¢7.65
Celestion HF1300 II	E10.95
Celestion HF2000	¢10.95
Dalesford ABR 10"	¢10.25
Dalesford D30/110	¢11.25
Dalestord D50/153	¢12.25
Dalesford D50 / 200	¢12.25
Dalesford D70/250	E25.50
Dalesford D100/310	¢35.75
Dalesford D10 iweeter	¢8.45
Decca London Horn	¢61.95
Decca CO/1000/8	¢10.25
Elac 6NC204 61/2"	67.50
Elac 8NC298 ${ }^{\prime \prime}$	¢7.95
EMI type 350.13" $\times 8^{\prime \prime}$, 4 ohm	. 4 ohm $¢ 9.45$
EMI 14A/720, $14^{\prime \prime} \times 9^{\prime \prime}$, 80 hm	, 8 ohm ¢19.50
Isophon KK8/8	¢8.15
Isophon KK10/8	c8.45
Jordan Watts Module	£24.95
Jordan Watts HF kit	¢10.50
Jordan 50 mm unit	£24.50
Jordan CB crossover E24	¢24.50 pair
Jordan Mono crossover $£ 24$	¢24.50 pair
Kef T27	¢9.45
Kef 8110	¢12.25
Ket B200	¢13.50
Kef B139	¢27.75
Kef DN 13	E6.75
Kef DN 12	¢9.40
Kef DN22 pair	pair ¢42.00
Lowther PM6	£59.00
Lowther PM6 Mk I	$E 62.00$
Lowther PM7	$£ 94.50$
Peerless KO100T	£10.95
Peerless OT 10HFC	£10.50
Peerless KO40MRF	¢13.60
Radford BO25 Mk ${ }^{\text {H }}$	¢36.95
Radford MD9	E14.85
Radford MD6	C25.50
Radford FN8/FN831	E22.50
Richard Allan CG8T	£13.50
Richard Allan CG 12 T Super	er E29.50
Richard Allan HP8B	E20.75
Richard Allan LP8B	£14.50
Richard Allan HP 12B	¢33.50
Richard Allan DT20	¢9.95
Richard Allan DT30	¢10.75
SEAS H107	¢8.95
Shackman Electrostatic with polar	with polar, network
\& crossover $£ 130$	£130.00 pair
Tannoy DC296 10' $0^{\prime \prime}$	£107.35
Tannoy DC316 12" E	£148.50
Tannoy OC386 15" E	£178.90

SWIFT
 OF WILMSLOW

The firm for $\mathrm{Hi}-\mathrm{Fi}$ 5 Swan Street, Wilmslow, |Cheshire.

> Celestion G12 / 60 TC Celestion G12/80CE Celestion G12/125CE Celestion G15/100CE Celestion G15/100TC
> Celestion G18/200
> Celestion HF 1300
> Celestion HF2000
> Celestion Powercell 12/150
> Celestion Powercell 15/250
> Celestion MH 1000
Fane Classic $452^{\prime \prime}$
> Fane Classic $451^{\prime \prime}{ }^{\prime \prime}$
> Fane Classic $55^{\prime \prime} 12^{\prime \prime}$
> Fane Classic $855^{\prime \prime} 5^{\prime \prime}$
> Fane Classic 15015°
> Fane Classic $15015^{\prime \prime}$
Fane Classic $1258^{\prime \prime}$
> Fane Classic $12618^{\prime \prime}$
Fane Classic $1758^{\prime \prime}$
> Fane Guitar 801 $12^{\prime \prime}$
> Fane Guitar 80B/2 12'
> Fane Disco 100 12"
> Fane PA85 12"
> Fane Bass $10015^{\prime \prime}$
> Fane Crescendo 12 E
> Fane Crescendo 15E
> Fane Crescendo 18 E
Fane Colossus $15 E$
> Fane Colossus $15 E$
Fane Colossus 18 E
> Fane J44
> Fane J44
Fane J104
> Fane J 73
> Fane HPX1/HPX2
> Fane HPX3A
> Fane HPX3B
Goodmans 8PA
> Goodmans PP12 Goodmans D112 Goodmans GR 1 Goodmans 18P McKenzie C1 280 GP McKenzie C1280TC McKenzie C1280 bass McKenzie GP15 McKenzie TC15v McKenzie C15 bass Motorola Piezo horn $312^{\prime \prime} \mathrm{C}$
Motorola Piezo $2^{\prime \prime} \times 6^{\prime \prime}$ Richard Allan HO8T Richard Allan HD12T Richard Allan HO12T
Richard Allan HD 15 Richard Allan HD 15 P Richard Allan Atlas $15^{\prime \prime}$
Richard Allan Atlas $18^{\prime \prime}$

£107. F air
£148.50 $\begin{array}{ll}\text { Tannoy OC316 } 12^{\prime \prime} & £ 148.50 \\ \text { Tannoy DC } 386 & 15^{\prime \prime} \\ & £ 178.90\end{array}$

Tel: 0625529599 FOR MAIL ORDER \& EXPORT OF DRIVE

KITS FOR MAGAZINE DESIGNS. etc. KITS INCLUDE DRIVE UNITS, CROSSOVERS BAF/LONG FIBRE WOOL, etc.
FOR A PAIR OF SPEAKERS Carriage $£ 3.75$

Practical Hifi \& Audio PR09-TL (Rogers)
As above but including felt panels
E146.00
$£ 152.75+£ 5$ carriage
Hi Fi Answers Monitor (Rogers) E146.00 Hi Fi News State of the Art (Atkinson)
$£ 185.00$
Hi Fi News Miniline (Atkinson)
Hi Fi For Ples $£ 49.00+£ 3$ carriage Hi Fi For Pleasure Compact Monitor (Colloms) $£ 116.00+£ 5$ carriage Popular Hi Fi Mini Monitor (Colloms) $£ 74.00$
Popular Hi Fi Round Sound (Stephens) including complete cabinet kit
Popular Hi Fi Jordan System $£ 96.00+£ 3$ carriage Practical Hifi and Audio BSC3 (Rogers) (Giles) Practical Hi Fi and Audio Monitor (Giles)
§ 180.00 Practical Hi Fi and Audio Triangle (Giles)
$£ 120.00$ Hi Fi News Tabor (Jones) with J4 bass units Hi Fi News Tabor (Jones) with H4 $£ 66.00$ Hi Fi News Tabor (Jones) with H4 bass units Wireless World Transmission Line KEF (Bailey) $£ 125.00$ (Balley)
Wireless World Transmission Line RADFORD (Bailey) $£ 179.00$ Everyday Electronics EE 70 (Stephens) Everyday Electronics EE20 (Stephens) ${ }^{\mathbf{E}} 150+£ 5$ carriage E29.50 $+£ 3$ carriag
SMART BADGES FREE WITH ABOVE KITS TTO GIVE THAT PROFESSIONAL TOUCH OO YOUR DIY SPEAKERSII

REPRINTS/CONSTRUCTION DETAILS

CARRIAGE \& INSURANCE TWEETERS/CROSSOVERS 50p oach		
SPEAKERS $4^{\prime \prime}$ to $61 / 2^{\prime \prime}$	80 p sach	
$8^{\prime \prime}$ to $10^{\prime \prime}$	E1 each	
$12^{\prime \prime}, 13^{\prime \prime} \times 8^{\prime \prime}$.		
$14^{\prime \prime} \times 9^{\prime \prime}$	¢1.95 emch	
15"	¢2.95 ench	
$18^{\prime \prime}$	¢4.50 eech	
SPEAKER KITS	£1.05 omeh	
MAG. DESIGN KITS £3.75 pair		
unless otherwise stated		

ALL PRICES INCLUDE VAT @ 15\%

Send 50p for 1980 56-page catalogue 'Choosing a Speaker'

Tel: 0625526213 (SWIFT OF WILMSLOW) FOR HI-FI \& CO PLETE SPEAKER SYSTEMS

Lightning service on telephoned credit card orders

Prices per pair Carriage $£ 3.95$ pair
Dalesford System 1 Dalesford System 2
£54.00 Dalesford System 3 Dalesford System 4 Dalesford System 5 Dalesford System 6 $£ 104.00$ ع110.00 Dalesford System 6 £142.00 ecial offer) KEF Reference 104 aB kit
KEF Cante $£ 133.00+£ 5$ carriage S3 Micro Mit \quad E213.50 + $£ 5$ carriage £ \quad 71.00 + £3.75 carriage owther PM6 Mk I kit Lowther PM 7 kit
Peerless 1070
Peerless 1120
Peerless 2050
Peerless 2060
Radford Studio 90 kit
Radford Studio 270 kit
Radford Studio 360 kit
RAM 50 kit (makes RAM 100) Richard Allan Tango Twin kit Richard Allan Maramba kit Richard Allan Charisma kit Richard Allan Super Triple kit Richard Allan Super Saraband II Richard Allan RA8 kit Richard Allan RA82 kit
Richard Alla RA82L ki
SEAS 223
SEAS 253
SEAS 403
SEAS 603
Wharfedale Denton XP2 kit
Wharfedale Shelton XP2 kit
Wharte dale Linton XP2 kit
Whartedale Glendale XP2 k
£ 112.00
E 122.00 195.00 ع157.00 \& 169.90 659.95 £181.00 E309.00 E 243.00
E 40.00 ع76.25 $€ 76.25$
$\mathbf{6 5 5 . 5 0}$ 677.50
6111.00 £102.50 $£ 159.95$
$\mathbf{f} 2.75$ $£ 62.75$
$£ 98.75$ $£ 98.75$
$£ 108.00$ $£ 108.00$
842.50 ع 82.50

ع67.00 | E 79.00 |
| :--- | £134.95 c31.45 631.45

540.40
WILMSLOW AUDIO BAI sub bas
amplifier/cros
$£ 37.95+£ 1$ carriage

EVERYTHING IN STOCK FOR THE SPEAKER CONSTRUCTORI
BAF, LONG FIBRE WOOL,
FOAM, CROSSOVERS, FELT
LARGE SELECTION OF GRILLE FABRICS.
(Send $22 p$ in stamps for grille fabric samples)

Swan Works, Bank Square, Wilmslow, Cheshire.

Satellite broadcasting in the eighties

A report on technical progress in Europe

by G. J. Phillips, M.A., Ph.D., B.Sc. BBC Research Department

Abstract

This article outlines the frame work set by the 1977 ITU plan for satellite broadcasting in Regions 1 and 3 and reviews the work that has been done so far to implement it. After showing the coverage areas for different countries in Europe the author discusses the life expectancy and costs of broadcasting satellites, considers the design of domestic receiving equipment and aerials and, in a second article, will report on the current plans for building satellites by the European Space Agency and other groups.

We are in the decade of a new method of transmitting broadcast programmes television and sound - into the home. The transmitter is placed in an orbit above the equator at a height of 36.000 km so that it moves round at the same rate that the Earth spins on its axis; it can thus remain at a fixed point in the sky. Doubts on the one hand and over-optimism on the other hand existed in the early seventies. Now, however, three points seem to be established; experiments have proved it works as expected; costs can be assessed and appear acceptable and, finally, it is increasingly appreciated that (whatever other methods of distribution such as optical-fibre cable may ultimately prevail in the nineties or beyond) it is a method of distribution that comes closer to the ideal concept of broadcasting than any other method. There is surely an elegant simplicity in a transmitter of about 100 watts being able to provide a television programme to any home within a moderatly-sized country provided there is access to a simple receiving system in line-of-sight from the satellite.

The ITU plan for 12 GHz

A broadcasting satellite conference held in Geneva in 1977 agreed a plan for ITU Region 1 (Europe/USSR/Africa) and Region 3 (Asia/Australasia), in which orbit positions and frequencies were assigned to prescribed beams covering each country (or sub-division of a large country). This plan will not only ensure the orderly development of satellite broadcasting itself, but will also help to
avoid mutual interference problems with other services using the same frequency band, notably terrestrial microwave links. With a few exceptions, every country in Europe and Africa was assigned five frequency channels within the 11.7 to 12.5 GHz range. Polarisation (circular, clockwíse or anticlockwise) was also specified. Each channel is suitable for a frequency-modulated television signal within a 27 MHz bandwidth; the actual channel spacing was about 19.2 MHz , giving 40 channels in all, but possible adjacent-channel as well as co-channel interference was allowed for in the plan. A regional conference to conduct a similar assignment plan for Region 2 (Americas) is due to take place in 1983.
In the 1977 plan a power was also specified for each transmission. This was derived on the basis of providing a power flux density of at least $-103 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$, sufficient for good reception with an individual 0.9 m
diameter antenna, for 99% of the time in the worst month*. Fig. 1 gives the areas of coverage to this standard for the UK and Ireland. Fig. 2 gives some examples of coverage on the same basis for four other cases: France, Luxembourg, Monaco and the large beam that was allowed on certain channels to cover the four Nordic countries as a group. These figures assume ideal pointing of the satellite antenna; it is seen the coverage areas allow some latitude for pointing error (0.1° maximum is assumed). Considerable overlaps occur: for example, the French beam covers southern England. Switzerland and northern Italy.
One can also indicate over what area

[^3]Table 1: Channel assignments and orbit positions for countries of Western and Southern Europe

Orbit position	37' West	31' West	19* West	5% East
Lower half (11.7-12.1 GHz) Right-hand polarisation	San Marino $1,5,9,13,17$ Lichtenstein $3,7,11,15,19$	Ireland 2,6,10,14,18 United Kingdom 4,8,12,16,20	France 1.5.9, 13.17 Luxembourg $3,7,11,15,19$	Turkey $1.5 .9,13.17$ Greece $3,7,11,15,19$
Upper half (12.1-12.5 GHz) Right-hand polarisation	$\begin{aligned} & \text { Monaco } \\ & 21,25,29,33,37 \\ & \text { Vatican' } \\ & 23,27,31,35,39 \end{aligned}$	-	Belgium $21,25,29,33,37$ Netherlands $23,27,31,35,39$	$\begin{aligned} & \text { Cyprus } \\ & 21,25,29,33,37 \\ & \text { Iceland }^{2} \\ & 23,27,31,35,39 \end{aligned}$
Lower half (11.7-12.1 GHz) Left-hand polarisation	Andorra $4,8,12,16,20$	$\begin{aligned} & \text { Portugal }{ }^{3} \\ & 3,7,11,15,19 \end{aligned}$	West Germany $2,6,10,14,18$ Austria $4,8,12,16,20$	Finland 2,6,10 Norway 14,18 Sweden 4,8, Denmark 12,16,20
Upper half (12.1-12.5 GHz). Left-hand polarisation	-	$\begin{aligned} & \text { Iceland } \\ & 21,25,29,33,37 \\ & \text { Spain }^{5} \\ & 23,27,31,35,39 \end{aligned}$	Switzerland $\begin{aligned} & 22,26,30,34,38 \\ & \text { Italy } \\ & 24,28,32,36,40 \end{aligned}$	Nordic ${ }^{4} 22,24,26$ 28,30,32,36,40 Sweden 34 Norway 38

[^4]78

Fig. 1. Examples of coverage areas for individual reception in the UK and Ireland. Flux density is $-103 d B\left(W / m^{2}\right)$.

Fig. 2. Coverage areas for individual reception in W. Germany, France, Luxembourg, Monaco and the Nordic countries. Flux density is $-103 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$.
a satisfactory signal can be received with a somewhat larger receiving antenna. For convenience we can take the $-111 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$ flux density limit corresponding to the level indicated at the 1977 conference for reasonably noisefree community reception; this is illustrated in Figs. 3 and 4 for the same countries. In some areas this coverage may not extend to the limits shown because interference from other satellites, while planned to be negligible for individual reception within the country to which the transmissions are aimed, may be slightly disturbing near the limit shown for community reception.

A summary of the allocations for all countries in Western Europe is given in Table 1. Where possible, a definite request by a country to have the same orbit position as another country was met in the plan; this facilítates individual reception of transmissions of two or more neighbouring countries in border areas, where there may be common interests, cultures or language.

In order to bring out the factors which affect the ease of reception in any country of transmissions other than those intended for that country, the table distinguishes groups of channels according to polarisation and whether they are in the upper or lower half of the 11.7 to 12.5 GHz band. This is discussed later.

Satellite life and costs

Transmitters in the sky are no new thing. We have employed geostationary satellites for more than a decade to relay telephone traffic and television signals between continents. The powers of the transmitters on a satellite for this purpose are generally below 20 watts; they also beam their signals over large areas. As a result a very large receiving antenna is needed on the ground (e.g. a 30 m diameter reflector to receive 4 GHz signals) in such point-to-point links.

For broadcasting the available transmitter power is concentrated by beaming over the limited coverage areas, typically with a bandwidth of one degree for many European countries. A power of the order of $100-200$ watts is then sufficient for individual reception with an antenna diameter of 0.9 m .

The experiments in Canada and USA since 1976, with the CTS (Hermes satellite), have come closest to this concept and successfully demonstrated television reception with small terminals. The satellite employs a 200 W repeater at 12 GHz and the beąm is about 2.5 de grees wide.

Two important points govern the costs of satellite, systems. First, the reliability should be as high as that from current terrestrial services. Secondly, the satellite should remain accurately in its allocated position so that individual receiving antennae set up in fixed positions, pointing to the satellite. will remain effective. Because of orbit-
perturbing forces, station-keeping requires fairly frequent correction by gas jets on the satellite, and the quantity of fuel to operate these is the critical factor which governs the life of a satellite. A seven-year life is typical if a reasonable allocation of payload be-
tween the fuel and other essential items is made. Thus a reliable service requires a spare satellite in orbit and a third ready to be launched at any time, so the cost of making and launching a single satellite is not sufficient investment to provide a service for 10 or 20 years.

Fig. 3. Coverage area for reception on a larger antenna (1.8 to 2.Om diameter), for countries given in Figs. 1 and 2. Flux density is $-111 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$.

For example, for 10 years' reliable service, allowance must be made for the provision and launching of five satellites. So if the cost of a satellite giving transmissions on four channels is $£ 12$ million, with a similar cost for launching, some $£ 120$ million is required over 10 years. ${ }^{1}$ Nevertheless the cost of $£ 3$ million per annum per channel is actually less than total engineering cost to the broadcasters of providing a national service at u.h.f. by terrestrial transmitters. Of course, an overall national picture, taking into account the receiver cost, would show a somewhat greater total cost for a satellite system. National decisions to implement satellite broadcasting will have to take into account total costs but, if broadcasters' costs are not prohibitive, it is reasonable to expect that continuing development in receiver technology will provide receivers at a price acceptable to a steadily increasing proportion of the public.

The receiving antenna

For terrestrial television we are used to aerials which range from little more than the proverbial wet string near transmitters to large Yagis at the fringe which usually need mounting high up to get good signals.

Receiving antennae for domestic reception of satellite broadcasting signals, however, are uniformly sized because everyone will get a flux within the narrow limits of -100 to $-103 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$ according to the standard mentioned earlier. Also, the 12 GHz signals are such that a clear line-of-sight is usually essential, but with the angles of arrival of satellite signals for the UK, as shown in Fig. 4, almost everyone can find somewhere on their premises that meets the requirements. This has in fact already been confirmed ${ }^{2}$ by asking the occupiers of several hundred homes to observe shadows when the sun was shining at 3 p.m. British Summer Time in mid-October this being a time when the sun has the same position in the sky for the UK as the assigned satellite position. The limited sample suggested that suitable sites for antennae could be found in 99.5% of cases. Furthermore in many, but not all, cases the most suitable site is low on the side of the house or on the ground rather than at roof level.

The requirement of a 0.9 m diameter antenna is not a precise one. It depends on receiver noise performance, the available signal flux and the importance attached to a low-noise signal. As a guide, with the suggested antenna size, 8 dB noise figure gives 14 dB carrier-tonoise and a slightly noisy picture when the flux is just $-103 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$: Manufacturers' developments now suggest that noise figures of 5 dB with a mixer first stage. or 4 dB with a f.e.t. amplifier, will be obtainable at modest cost. Some allowance for pointing error and reduced antenna efficiency should
be borne in mind when considering the likely performance of domestic equipment over a period of several years.
In order to exploit extensive frequency re-use in the 1977 plan, advantage was taken of the directivity of receiving antennae, corresponding to a 2 degree beamwidth (at -3 dB) for a 0.9 m dish. Antennae lined up on one satellite position have a poor response to signals from neighbouring positions. The plan used 6 degree spacing between adjacent allocated orbit positions, and at 6,12 and 18 degrees respectively the antenna responses are assumed to be 20 , 28 and 33 dB below the maximum. Furthermore it is assumed that in the direction of maximum response (i.e. for the same orbit position) the response to a signal with a polarisation opposite to that of the wanted signal is 20 dB down. It is thus clear that an antenna, when set up for one orbit position, cannot be used by the viewer to receive from another. Receiver requirements are considered next, but clearly where a viewer in the UK wishes to receive transmissions planned for France or vice-versa, a first essential is either to have two antennae, or one that can be rocked between two carefully set-up aiming positions. Possibly, if there is a demand, some neater arrangement such as a single reflector with two feeds will be designed.

Domestic receivers

The ITU plan, as seen from Table l, calls for a tuning range of 400 MHz to receive

Fig. 4. Angle of elevation of UK satellite at $31^{\circ} \mathrm{W}$.
all channels of any one country, although it can be foreseen that, when several countries have begun using most of their channels, there will be some demand for means of receiving over the full 800 MHz band. Considering the basic 400 MHz receiving system first,

UK's change of heart on satellites

In 1976 we reported that Britain's broadcasters were showing very little interest in the prospect of satellite broadcasting. Their general attitude seemed to be that the UK already had good coverage from terrestrial broadcasting and consequently there was little need for this new type of service Since then they have shown a distinct change of heart. The BBC for example has stated that it proposes to take up two of the five satellite broadcasting channels allotted to the UK (see table in Dr Phillips's article), one for subscription television and the other carrying " the best programmes from BBC1 and BBC2.' Thames Television's director of sales has publicly discussed the interest of the tv programme companies. The IBA, though somewhat less positive, have said that if a national decision is made to establish satellite broadcasting in the UK they would not stand aside

The reasons for this volte-face are largely commercial. First there is the fear of losing British audiences and advertising revenue to competition from Continental satellite broadcasters - notably from those countries whose satellite coverage areas "overspill' onto the UK. Secondly, programme companies in Britain see opportunities
to get revenue from advertisements broadcast into European countries by this means. In addition British space and electronics manufacturers see profitable markets in supplying the actual satellites and their associated ground equipment, and in seeking such business they are officially encouraged by the Department of Industry.

In response to all this the Home Secretary, who is of course responsible for the regulation of broadcasting in the UK, said in March that he had decided to launch a study of the implications of setting up a satellite broadcasting service by about 1985 which would be the earliest practicable date - or by about 1990. The Home Office is now conducting this study, which covers technical, financial and resource matters, in consultation with the BBC, IBA, Dol, other government departments and organizations which might have a direct interest. It takes account of the Government's plans for the fourth television network. The results of the study, which will present the various options and their implications as a basis for making a decision on satellite broadcasting, are expected to be published at about the end of this year. - WW staff.
it might well be as outlined in Fig. 5. A down-converter to $900-1300 \mathrm{MHz}$ is placed on, or adjacent to, the aerial and employs a fixed-tuned oscillator, and avoids a microwave down-lead (which would be either lossy or expensive) but leaves the actual tuning in the room set. Secondly, terrestrial television must continue to be catered for since, in the foreseeable future, this would continue as the most practical system for television networks giving regional or local programme variations. Thirdly, an f.m./a.m. converter is not featured Rather, the early appearance of sets with dual tuners (i.e. a.m./f.m. television receivers) is to be encouraged if the benefit from the picture quality with direct f.m. demodulation is to be obtained. (A f.m./a.m. unit demodulating and remodulating for feeding a conventional television receiver would have three intermediate frequencies with a change to base-band, i.e. a quadruple superhet; this could be prone to interference and suffer a.m. system distortion.)

The basic set-up in the home of the future could well expand somewhat from this modest start as Fig. 6 shows. The system now extends the distribution of the $900-1300 \mathrm{MHz}$ signals to more than one room. The one containing audio/radio equipment now uses an a.m. television receiver with a video input facility, and a separate f.m.-tovideo tuner so that interplay with the video cassette and television set is pos sible. The possibility of a digital sound multiplex in place of television on one of the satellite channels has also been anticipated. The assumption in this example is that the digital sound signal
would be approximately within the normal video bandwidth and would frequency-modulate the transmission in the same way as for television.

A receiver for the international viewer can be considered with reference to Table 1. Here the situation may vary. Certain pairs of countries (UK and Ireland, France and Belgium, West Germany and Austria, for example) need no more than the basic receiver to see each other's programmes. In other cases the neighbour might have the other half of the 800 MHz band, different polarisation, or both. A receiver to tune over 800 MHz would be very convenient but could be difficult to design on the basis of a fixed oscillator and extending the range of the first intermediate frequency to $900 \cdot 1700 \mathrm{MHz}$. I would suggest a simple alternative: if the basic 400 MHz units have a wide market and therefore reasonable cost, two such units could be attached to the antenna with two down-leads, each carrying $900-1300 \mathrm{MHz}$, one for each half of the band. The receiver would have two input sockets and a two-way selector switch.
To change polarisation, a remotelycontrolled switched-polarisation feed could be fitted at the antenna. However, with more than one television set in the home, this solution could frustrate independent choice of viewing. An alternative would be an 'orthogonal feed' from which the left- and righthanded polarisations could be simultaneously connected to two basic first frequency-changers, again using two down-leads. Elaborating further, some 19° West satellite viewers in favourable locations might want to receive most or all of the eight European national services. They would require four 400 MHz units and four down-leads in order to cover both polarisations over an 800 MHz bandwidth.

To complete the picture on the receiver design the u.h.f. tuner must be considered. This will select channels within the first i.f. range and the conventional approach would be to have a second, tunable, frequency-changer and a final i.f. in the region of 125 MHz . Image rejection would be necessary in this tuner. A surface-acoustic-wave filter could be a good choice for the i.f. filter in front of the f.m. discriminator which has to operate with a 27 MHz

Fig. 5. Simple system with an a.m. / f.m. room television receiver unit.

Fig. 6. Possible developments for unit video and unit aidio in the home.
bandwidth with low group-delay distortion. A less conventional approach, under study in France, is a phase-locked-loop f.m. demodulator which can operate directly on the required signal in the $900-1300 \mathrm{MHz}$ band and provide a video output directly.
The method of transmitting the television sound component in satellite broadcasting is under active study by the European Broadcasting Union. Although the starting point in 1977 was to consider a f.m. subcarrier compatible with the terrestrial system (e.g. a 6 MHz subcarrier in the case of television Standard I, as used in the UK), serious consideration is being given to alternatives for enhancing the sytem to provide a pair of channels for stereo or second language. Digital modulation for the sound signal, which could give better quality and higher signal-to-noise ratio than is possible with analogue systems, is also being considered.

Feeder links (up links)

The system envisaged for a broadcasting satellite system is that a signal modulated to exactly the same standard as the downcoming transmission should be sent up to the satellite. This allows the satellite to be designed as a frequency-translating relay. The detailed assignments, or even the choice of the frequency band, for the up-links or feeder links were not dealt with at the 1977 conference because priority was given to attaining an agreed down-link plan. Studies having established that a bandwidth at least as great as the down-link broadcasting band would be essential, the 1979 World Adminis. trative Radio Conference was able to allocate for world-wide use the band 17.3 to 18.1 GHz for feeder links to broadcasting satellites transmitting in the 12 GHz band. In limited geographical areas, alternative frequencies have also been allocated for feeder link use, if required, including the 10.7 to 11.7 GHz band in the European area.

Although interim arrangements can easily be made at early stages when the band is relatively uncrowded, it is agreed that a detailed assignment plan for feeder links should be made and the expectation in the case of Regions 1 and 3 is that the frequency channelling and assignments could, as a starting point, be a carbon copy of the down-link plan translated from $11.7-12.5 \mathrm{GHz}$ to $17.3-$ 18.1 GHz . One advantage would be a constant frequency change of 5.6 GHz for all transponders, which would lead to some economies in design. If changes or adjustments had to be made to the assigned frequencies, they could be made without enormous repercussions (as would be the case in attempting to change the closely interwoven downlink plan). This is because up-link antennae at Earth stations are expected to be so directional that the choice of frequencies for transmissions aimed at one satellite would have little effect on the choice for transmissions aimed at other orbital positions. The main task is to agree on a series of mini-plans, each acceptable to a group of countries assigned to one orbit position, but with an overall check on the effect on other orbit positions. An ITU conference to be held in 1983 for planning down-links in Region 2 will also be asked to consider detailed feeder link planning for the same region. It is not yet decided whether the conference needed for feeder link assignments in Regions 1 and 3 will take place at the same time or later.

To be continued

References

1. Terzani. C. Economic survey of satellite broadcasting and comparison with terrestrial systems. European Space Agency Proceedings ESA/SP 125 (Dublin. 1977. Symposium on Direct Satellite Broadcasting), p. 73.
2. Harvey. R. V. Satellite broadcasting: results of a preliminary coverage survey in the UK. BBC Engineering Research Report 1979/18.

The floating bridge - 2

Unconventional amplifier circuits for 15 and 200 watts

by R. M. Brady, BA

As well as giving practical circuits and test results, this article describes a general plan for A_{1} and for A_{2} which makes full use of the unique way in which these circuits may be simplified. In particular by using an i.c. which is able to control A_{1} without loss of performance, and by exploiting the fact that A_{2} need be made only to poor performance specifications. It also takes a further, more quantitative, step in distortion analysis. The unconventional approach to these circuits, was outlined in the first part of this article, September issue.
A design for A_{1} which uses a B-type feedback loop with the simplest earthing system is shown in Fig. 11, and although the following analysis is based on this circuit, it applies equally well to A-type bridges, and to circuits incorporating a change-of-origin device. \mathbf{P}_{1} is a high voltage-gain i.c., and $E F_{1}$ is what would conventionally be called an emitter follower, containing the power transistors. C and D are points which are kept at a constant potential with respect to earth by C_{1} and C_{2}, and they act as power supply points for $P_{1}{ }^{*}$. Impedances $\mathrm{Z}_{1}, \mathrm{Z}_{2}, \mathrm{Z}_{3}$ and Z_{4} are part of the feedback loops of the circuit.

Closer inspection of the circuit shows that $E F_{1}$ is arranged in an A-type feedback loop, and its complex voltage gain is $\mathrm{Z}_{4} / \mathrm{Z}_{3}$ (not unity, so that "emitter follower" is probably a misleading name for this part of the amplifier). It is this ability to extract voltage gain from EP, which makes this circuit uniquely suited to be controlled by an i.c. - it may be arranged that the voltage gain demanded of the i.c. is around unity, so that a high bandwidth may be obtained.
If G is the gain of the i.c., and if Z_{3} and Z_{4} are small enough that the gain of the emitter follower approximates to Z_{4} / Z_{3}, then the open-loop gain of the whole amplifier becomes

$$
\frac{G Z_{4} Z_{1}}{Z_{3}\left(Z_{2}+Z_{1}\right)}
$$

In the actual circuits, described later, $Z_{3} / Z_{4}=Z_{1} /\left(Z_{1}+Z_{2}\right)$, so that this expression reduces to $G^{* *}$. The 741

[^5]
amplifier is used and as this is frequency compensated the whole amplifier is stable. Fig. 12 shows the loop gain of the 741 amplifier as a function of frequency.

To quantify the coupling between A_{2} and A_{1}, imagine that A_{2} produces a distortion signal of V volts. At low frequencies this couples into A_{1}, largely via the extra current $2 V / R_{1}$ which is injected into point x through R_{1} and R_{2} ($R_{1}=R_{2}$). If the impedance of the emitter follower $\left(V_{1} / I_{1}\right)$ in Fig. 11 is Z, and the loop gain of P_{1} is G, then this current results in a distortion voltage across y - x of

$$
\frac{2 V Z\left(Z_{1}+Z_{2}\right)}{R_{1} G Z_{1}}
$$

Fig. 11. Circuit for amplifier A_{1}, based on version B. Z_{1}, Z_{2} and R_{3} are part of the feedback loop of Fig. 5 with $Z_{1} \equiv R, C_{4}$ $Z_{2} \equiv R_{7} \cdot R_{3} \equiv R_{5} \cdot E F$, is arranged in an A-type feedback loop with voltage gain $Z_{4} i Z_{3}$ so only low voltage swings are needed in the operational amplifier P_{1}..

Taking typical values of $Z=0.1 \mathrm{hm},\left(Z_{2}\right.$ $\left.+Z_{1}\right) / Z_{1}=30$, and $R_{1}=2200 \mathrm{hm}$ the distortion coupling is around $3 / \mathrm{G}$ percent at low frequencies. Inspection of Fig. 12 shows that this coupling is hardly worth considering. At high frequencies, the value of $\left(Z_{2}+Z_{1} / Z_{1}\right.$ falls, to some extent counteracting the fall in gain of the i.c., and also the distortion produced by A_{2} diminishes because of the low response cut-off of this amplifier.

Cheapness and simplicity are the main criteria for the design of A_{2}. Figs 13 \& 14 show two alternative designs for this amplifier, the first being suited to low-power applications where supply voltage is accurately controlled for example where a car battery is used, and the second being a little more complicated but far more robust.

In Fig. $13 \mathrm{C}_{1}, \mathrm{R}_{1}, \mathrm{C}_{2}$ and R_{2}, are the same components as those shown in Fig. 11 Resistors R_{3} and R_{4} are set so

[^6]

Fig. 13. Simple design for A_{2} - cutting all corners because distortion in this amplifier does not affect the output. So that $y=-x$. Gain should be about -1 and is $Z_{5} / R_{t}=$ Z_{6} / R_{2}. At high frequencies, the gain must fall and so a capacitor is included in each of Z_{5} and Z_{6}. Components C_{1}, C_{2}, R_{1} and R_{2} are needed for A_{1} also and so serve a double purpose.

Fig. 14. High power design for A_{2}. This is a more conventional design, with gain Z_{5} / R_{2}.

that in the quiescent state Tr_{1} and Tr_{2} are only just turned on (one of R_{3} and R_{4} may be a preset if desired). As x rises with respect to point A, C_{1} and C_{2} pull C and D up with it, thus switching off Tr_{1} and switching on Tr_{2}, so that y falls. The gain of A_{2} is $(y-A) /(x-A)$ and is a little less than Z_{6} / R_{2}; it is arranged to fall off at around 5 to 10 kHz where full power output is not required from A_{1}.

Fig. 14 shows an emitter follower version which is controlled by Tr_{1} so that the gain is Z_{5} / R_{2}. To prevent large distortion at low signal levels due to effects at the crossover point, R_{3} is included.

A large open-loop gain is made possible by low values of Z_{5} and R_{2}, so that $T r_{1}$ and R_{3} are capable of helping substantially at the crossover point.

Fig. 15 shows this circuit with current protection incorporated. When Tr_{1} and Tr_{3} are conducting, a voltage is showed across R_{7} which is proportional to the current flowing. When this voltage becomes about $0.6 \mathrm{~V} \mathrm{D}_{3}$ and D_{2} conduct, preventing large currents from passing through Tr_{3}; a similar mechanism around D_{1} and D_{4} protects the $\mathrm{Tr}_{2}-\mathrm{Tr}_{4}$ pair. If desired, more accurate control may be obtained by inserting a $\mathrm{p}-\mathrm{n}-\mathrm{p}$ silicon transistor in place of D_{2} and D_{3}, with its emitter to the + supply, its collector to the base of Tr_{1} and its base to the emitter of Tr_{1}; and a second in a similar configuration around Tr_{2}.

12 volt 15 watt amplifier

A circuit for a type-B bridge amplifier which is suitable for operation using a 12 volt power supply is given in Fig. 16. Comparing this with Fig. 11 components R_{1} and C_{1}, R_{3} and $C_{2}, R_{4}{ }^{*}$, and R_{5} and C_{3} are represented by $\mathrm{Z}_{1}, \mathrm{Z}_{2} \mathrm{Z}_{3}$ and Z_{4} in the block diagram representation. Transistors 2 to 5 are represented by $E F_{1}$, and $\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{R}_{9}$ and R_{10} have their counterparts in $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{R}_{1}$ and R_{2}. Capacitors 6 \& 7 are represented in Fig. 13 by Z_{5} and Z_{6}. The circuit shown differs from the plan in that Z_{5} and \mathbf{Z}_{6} are largely reactive, so that at low frequencies the gain of A_{2} is dictated mostly by the current gain of Tr_{6} and Tr_{7}. Notice P_{1} is being operated with a low supply voltage, so that a potentiometer is needed to control the

* In series with the output impedance of P1 which is about 75 ohms.

Fig. 15. High power design for A_{2} with current protection. This protects both amplifiers A_{1} and A_{2}, but it is easier to put current protection into A_{2} as quality output is not required from this amplifier. Current must pass through R_{1} - if too much passes D_{2} and D_{3} conduct switching off the drive, or through R_{8} when D_{4} and D, conduct it too much passes.

Fig. 16. 12-volt version of the floating bridge gives 12 watts output, distortion-free, into 4 ohms; more power is available if a lower impedance loudspeaker is used. High quality amplifier A 1 comprises a 741 i.c. driving the "emitter follower" stage T_{2} and T_{3}, gain R_{3} / R_{1}. Low-quality amplifier A_{2} is based around T_{6} and T_{7}. Potentiometer is adjusted until the output voltage y is half way between the supply rail voltages in the quiescent state. If a supply voltage other than 12 volts is used R_{13} and R_{14} may need adjustment.
quiescent value of y accurately. Components R_{15} and C_{8} are included to by-pass inductive loads.

A computer analysis of the response of this amplifier is shown in Fig. 17 in which G is the signal gain, stretching across the whole audio bandwidth. It is dangerous to attempt to restrict this response because the loop gain L is already falling at. 6 dB per octave and so any interference would almost certainly result in instability. Also on this graph is the calculated A_{2} rejection factor, which does not fall below 55 dB hence .distortion induced in the output by A_{2} is negligible. The distortion to be expected of this amplifier at medium signal levels is discussed in the appendix. The performance to be expected of the amplifier at high and very low signal levels is not very different from that discussed here.
Fig. 18 shows a change of origin suitable for this amplifier; in the circuit tested it was mounted on the same board as the main amplifier, though this is not necessary. Point F is suitable for use as a power supply point for a preamp, though this may need slight modification if the pre-amp takes significant current. If a positive earth is to be used, the change of origin may be modified by changing Tr_{101} and Tr_{102} for similar p-n-p devices e.g. BC212. point C for point D , and +12 V supply for -12 V supply, so that the input signal is now .compared to the + rail.

Fig. 17. Predicted performance of the amplifier, showing open-loop and closed-loop gain of A_{1}, and rejection factor of A_{1}, to distortion in A_{2}. Rejection factor is very high, showing that A_{2} can indeed be of very poor quality without affecting output.

Before switching on for the first time, set the preset resistor to its maximum resistance, and set the potentiometer to the middle of its resistance range. When power has been switched on, adjust the pot so that $x=Y=V / 2$ where V is the power supply voltage. Now insert an ammeter in the power rail, and adjust the preset until the current begins to increase rapidly as it is turned, and then adjust back a little. The amplifier is now ready for operation.

If the change of origin is to be mounted on a separate board, use the following screening system. Connect the screen of the coaxial lead from pre-amp to main amplifier to point x at the amplifier end only; leave the other end flying. (If convenient provide a track in the pre-amp to which the screen may be physically mounted). This cable is at x potential, so keep it well away from the sensitive components of the pre-amp.

Fig. 19. Response of the 12 volt version to a 3 kHz square wave input. Upper trace shows the 30 kHz cutoff due to C_{2} in Fig. 15. Lower trace is the output of the poor quality amplifier. A_{2} showing cutoff at about 5 kHz . Note that the output, $y-x$, is decoupled from the A_{2} output, y :

Fig. 18. Practical circuit for a "change of origin" for the 12 volt amplifier allows earth to be connected to the negative power rail. If a positive earth is required, use BC212 for Tr_{101} and Tr_{102} and replace point C by point D, so that a "mirror image" may be built.

Fig. 20. Quiescent current through the 12 volt version of the floating bridge as a function of supply voltage. If a supply other than 12 volts is used, or if the transistors are liable to become hot, resistors R_{13} and R_{14} which control the quiescent current through A_{2} should be altered accordingly.

Fig. 21. Signal response of the A_{2} amplifier as a function of frequency.

Performance of this amplifier under test is very much as predicted. Fig. 19 is an oscilloscope photograph of the output of the amplifier with a 3 kHz square wave input, a 16 -ohm resistive load, and an accurately controlled 12 volt power supply. Top trace is $y-x$ or the output across the load, and below is a trace of y, or the A_{2} output. The integrating times of these traces correspond to 20 kHz for $y-x$, and 5 kHz for y. Crossover distortion is clearly seen in the lower trace (crossover occurs when $y-x$ goes through zero, not when y does so), but this does not show up in the upper. The high A_{2} rejection factor is strikingly seen in this photograph, for the output remains horizontal after A_{1} has got over the transient, even though A_{2} 's long integrating time constant causes y to be changing at a great rate at this time.

Fig. 20 shows the quiescent current taken by the amplifier as a function of supply voltage. Below 10.5 volts the i.c. becomes unstable and low frequency oscillation sets in, whereas above 13.5 volts A_{2} begins to take an unacceptable current. (This may of course be changed by altering the value of the resistors connected between base and emitter of Tr_{6} and Tr_{7}. The i.c. is capable of operating with up to 30 volt supply.)

The measured frequency response of the amplifier is shown in Fig. 21. Cut-off at the high frequency end of the range is didctated mostly by the characteristics of the change of origin device, and these are fairly "safe" if changed.

40 Volt 200 Watt amplifier

A 40 -volt amplifier design is suitable for high power applications, and is capable of driving an eight-ohm load at 100 watts or four-ohm load at 200 watts, with high fidelity performance. The circuit for A_{1} is shown in Fig. 22 and the feedback loops are identical with those in the 12 volt amplifier. The design of A_{2} in Fig. 23 follows the plan of Fig. 15. The value of R_{3} determines the power supply voltage which the amplifier will be able to use: the quiescent value of y is approximately $190 / R_{3}$ volts below the positive power rail, and if this is about half supply voltage then all is well. The change of origin used is identical with that for the 12 -volt circuit, excepting that Tr_{102} is replaced by a higher voltage BC147 transistor; and that R_{104} is increased to $27 \mathrm{k} \Omega$.

The distortion analysis given in the appendix is valid for this amplifier also Though finer control of the crossover region may be had because of the emitter resistors. Tr_{4} is now included in possible sources of crossover distortion.
Fig. 24 is an oscilloscope photograph of the response of this amplifier to a 3 kHz square wave input. Hideous crossover distortion in the lower trace does not couple into the signal across the load. A further point to notice is that the y signal is more accurately controlled, being very closely one half of the $y-x$ signal.

4Fig. 24. Response of the 40 volt version to 3 kHz square wave input. Upper trace is the output, $y-x$, and appears to be distortion-free despite the very bad crossover distortion in the output y of amplifier A_{2} llower trace).

Fig. 25. Suitable power supply for the 40 volt amplifier. Values shown are for 100 watt version; alternative values in brackets are for 200 watt use.

Appendix: distortion analysis

Distortion produced by A_{2} and induced in A_{1} may be neglected, and the internal feedback in P_{1} is large enough that distortion of D G/3P volts peak is neglected. The main source of nonlinearity is the $E F_{1}$ system, see Fig. 11. With a sine wave input at low frequency, V_{1} will look typically like:

This may be regarded as the sine wave plus an extra:

which is the voltage required to drive
the $E F_{1}$ if Z_{4} is removed. Its major Fourier harmonic is the third, and this has a peak magnitude of a little less than D/3. This component is the dominant source of distortion in the amplifier. If P is the voltage gain of P_{1} and G is the amplifier gain, then a third harmonic distortion of D G/3P volts peak is produced at the output. The value D depends on the adjustment of the preset resistor in Fig. 16 but will be typically 0.1 volt. The resulting harmonic distortion for a pure sine wave and an output of 5 volts peak is:

New computer products

The fourth Microcomputer show, which this year moved to the Wembley Conference Centre, attracted 52 exhibitors and increased the attendance by 500 to 8,500 over three days. Although the show specializes in small business systems and personal computers, James Scott Electronic Developments reported a sale of v.d.us, worth around $£^{1 / 2}$ million, to a German client. Comart were demonstrating a North Star Horizon hard-disk system which provides 18 M bytes, expandable to 72 M bytes, of storage on a 14 in Winchester disk/drive. The Byte shop, now a subsidiary of Comart, announced a Prestel board which uses their own software to create Prestel compatible colour displays that can be stored, edited and transmitted.

A new serial printer from Mannesmann Tally features a print mechanism and print head which are claimed to offer a double life of 200 million characters. The printer, type MT1602, looks like the T1602 but offers improved performance. A microprocessor selects the shortest print path and accelerates the head across blank spaces to provide a printing speed of about 160 c.p.s.

Micro byte's new "stereo S100 sound computer board" is an interesting add-on for the hobbyist. This card uses two AY-3-8910 sound i.cs which accommodate three tone channels, three amplitude controls, a noise generator, a 16 -bit envelope period control, two parallel $1 / 0$. ports and three d-to-a converters. The card is supplied in kit form with four parallel I/O ports, two amplifiers and a prototyping area. A 60 page manual supplements the card, and Basic and assembly language programming examples are provided.

A single-board computer kit was also announced by Micro byte, who expect deliveries to start in September. The board comprises a 280 operating under CP/M, 64 K of r.a.m., one floppydisk controller, serial and parallel ports, and a 24×80 v.d.u. Very little literature was available at the show, but the advertised price of $£ 395+$ v.a.t. makes it worth investigating.

BMG Microsystems, a wholly British computer company, has developed a production management system, based on their MS5000 microcomputer, for scheduling and cost control.

BMG say that the system provides small and medium sized engineering companies with a versatile tool that is easy to use and does not require computer expertise. The standard system uses an 8 in floppy-disk and a single v.d.u., but this can be expanded to include several v.d.us and up to 20 M bytes of exchangeable disk storage. The makers are currently working on the implementation of a 16-bit processor and larger disk capacities.

Miniature power resistors

Wirewound resistors of small physical size, yet with good surge capabilities and power ratings up to 3 W at $20^{\circ} \mathrm{C}$, are introduced by Erg Components. With features such as an all welded construction for good reliability, a black silicone resin coating and a temperature coefficient of typically

60 p.p.m. $/{ }^{\circ} \mathrm{C}$ for values above 1Ω, the Erg 74ER series is said to fill in a gap between metal-oxide arid vitreous enamel w.w. type resistors. Their performance complies to BSE 9114 N 001 , and they measure 11.8 mm long with a diameter of 5.25 mm . Resistance values down to 30 milliohm are available. Erg Industrial Corporation Ltd, Luton Rd, Dunstable, Bedfordshire LU5 4LJ.
WW301

Btu meter

A portable infrared sensing device, the Thermoflow, which enables the measurement of heat losses and gains without actual contact. is now available from Unity Power Systems. A large digital display gives a direct readout in $\mathrm{Btu} / \mathrm{ft}^{2} \mathrm{~h}$ when the unit is pointed at the source, making it a

simple matter to determine heat flow over a certain period of time. Two modes of operation, selected by means of a trigger switch, enable either the checking of heat losses from steam, pipes, walls, windows etc. or the checking of heat loading from such items as lighting units and electronic appliances. Features are battery operation, automatic ambient temperature compensation and an 8-14 micron filter which eliminates potential errors due to water vapour, carbon dioxide. sky radiance and reflected sunlight. The instrument is supplied complete with carrying case, weighs about 1 kg and costs in the region of $£ 600$. Unity Power Systems, Pembroke House, 44 Wellesly Rd, Croydon, Surrey CR9 2BU.
WW302

Eurocard boards

Extensions to Vero Electronics Ltd's Eurocard range have been made to include fully pierced Veroboards, which are available with or without maximum copper colander ground planes. Positions are provided for linking directly to board or pins from connectors, and either soldering or wire-wrapping techniques can be used for wiring. Grid reference numbers are silk-screened onto
the component side for the convenience of the user, and their size makes them compatible with subracks to DIN 41494, IEC 297 and SC 48D specifications. Also introduced are single-height, square-pad boards with maximum copper colander ground planes. These boards have been designed primarily to accommodate wire-wrap sockets. With holes accurately positioned on a 2.54 mm matrix, they will accept any size of integrated circuit. Vero Electronics Ltd, Industrial Estate, Chandlers Ford, Eastleigh, Hampshire SO5 3ZR.
WW303

Digital storage oscilloscope

Storage of waveforms in a digital memory of 8 -bit $\times 1024$-word capacity is the main feature of the MS-1650 oscilloscope from Trio, which, when used as an ordinary oscilloscope, has a frequency bandwidth of zero to 10 MHz , and an input sensitivity of $10 \mathrm{mV} / \mathrm{div}$. Maxlmum write speed is $1 \mu \mathrm{~s} /$ word, and analogue input signals may be sampled at any time, converted into 8 -bit digital signals by an a.-to-d. converter, and then stored temporarily in the memory. The stored signal may be displayed immediately on the oscilloscope screen, or used to drive a pen recorder via the memory output. Ability to store the signal generated prior to the trigger pulse, facilitates the storage and display of one-shot, transient and repeated signals, and simultaneous display of stored and real-time waveforms. which may also be overlapped, enables comparisons to be made. Retention of the memory data when the power is removed. is possible by means of an optional NiCad battery for which space is provided inside

the cabinet. The MS-1650 incorporates a $118 \times 98 \mathrm{~mm}$ c.r.t., weighs only 9 kg , measures $284 \times 138 \times 400 \mathrm{~mm}$, and costs £1440 with a two year guarantee. House of Instruments, 34/36 High St, Saffron Walden, Essex CB10 IEP.
WW304

Multi-turn encoders

Tracking absolute encoders with resolutions of up to 1 part in 500000 , and a choice of 10,64 or 100 turns for full-scale count, have been introduced to the UK by Techmation Ltd. These units, manufactured by Computer Conversions Ltd, convert any shaft input to 5 or 6 digit b.c.d. or 19 bits of binary information, corresponding directly to the shaft angle, with an error of less than ± 1 part in 10^{5}. Output data is continuously available, accurate up to input rates of 10^{4} degrees/second, and in addition, readout units are available with either 4,5 or 6 digit, 0.5 in high displays, and have t.t.1.compatible data, busy and inhibit outputs for interfacing with a computer. Resetting of the zero point to any value is possible via an offset adjuster, and any output scale factor can be provided (such as pounds, feet, etc.). Rack or panel mounting versions exist, either with an internal power supply or without, in which case external supplies of $\pm 15 \mathrm{~V}$ and +5 V d.c. are required. Other specifications include 0 to $70^{\circ} \mathrm{C}$ (or -55 to $+85^{\circ} \mathrm{C}$) operating temperature range and a maximum transducer/readout-unit cable length of 1000 ft . Techmation Ltd, 58 Edgware Way, Edgware, Middlesex HA88 8JP.
WW305

Matrix panel

ASCll compatibility enables the new version of the Argus gas plasma display panel, from Perdix Components Ltd, to be used as a direct replacement for a c.r.t. It can accept ASCII data in one of three ways, 20mA Loop. RS232-C or differential t.t.l., and among
the standard commands to which it can respond are "carriage return", "line feed", "form feed" and "shift out" (cursor home). Cursor addressing can be carried out by using device control channels one and three. Standard panels are manufactured in a variety of forms, from a single line of 40 characters, to a 480 character (40×12) message panel, all having 120° viewing angles in both planes and 5×7 dot characters. Operation at data rates from 150 to 19200 baud is possible. Other features of the new Argus display, which is expected to be of particular use in applications where weight, size and power-consumption are critical factors, are its highbrightness and dead background, optimum line-to-line spacing, and a flicker-free display during updating, made possible by the use of superior data organization. Perdix Components Ltd, 98 Crofton Park Rd, London SE4.
WW306

Capacitive sensor

- Angular displacement can be measured directly using the CllK capacitive sensor from Jackson Brothers (London) Ltd. Error in linearity is less than 1% f.s. of the 100 pF devices, which have a differential arrangement consisting of two sets of statorvanes, and one set of rotor-vanes, enabling their use in bridge circuits for improved accuracy and cancellation of the effects of environmental changes. The standard unit costs around $£ 10$ with electrical characteristics such as an insulation resistance of $10^{9} \Omega, 500 \mathrm{~V}$ d.c. breakdown voltage, 50 p.p.m. $/{ }^{\circ} \mathrm{C}$ temperature coefficient and a Q of 1000 . Continuous rotation can easily be translated, with minimal step inaccuracies, into a triangular waveform, which has a pitch corresponding to 180° of angular movement. A virtually unlimited life is claimed for the C 11 K , the only points subject to wear under normal.conditions being the constant-contact wiper and the low-torque bearings. Maximum
operating torque is less than $1 / 20 z$-in and the sensor, with vanes made from silver-plated brass, measures 1.3 cu in without shaft and solder-lugs. Its drive shaft protrudes from both ends, one end having a plain diameter of $1 / 8 \mathrm{in}$, the other stepped, with diameters of $1 / 8 \mathrm{in}$ and $1 / 16 \mathrm{in}$, and mounting into transducer heads, linear/rotational translator units etc., is possible via two thread bushes, with one inch

centres, in each ceramic endplate. Jackson Brothers (London) Ltd, Kingsway, Waddon, Croy. don, Surrey CR9 4DG.
WW307

Microprocessor tutor

Developed with the aid of the Newcastle Science and Technology Education Centre, this desk-top unit, called the Microprocessor Tutor (MPT), is manufactured by Welwyn Electric Ltd, and has been designed to teach the uses and applications of the microprocessor simply and cheaply in schools, colleges and universities. It is claimed that the MPT has already been tested in more than fifty educational establishments. Program instructions and data are entered in the form of 8 -bit words by means of eight switches with " 0 " and " 1 " positions, the program and data entry being indicated by a row of eight l.e.d.s, and the instruction set is intentionally limited to load,
store, add, substract, and, complement, branch (always), branch (if accum $=0$) and halt, for reasons of simplicity. A 'step' button allows programs to be run, one instruction at a time, with the l.e.d.s displaying the current data or the address at each step. Among the operations which can be demonstrated using the MPT, are the entering, storing and recalling of digital data, the addressing of memory locations and stepping from one instruction to another automatically. For practical demonstrations, a "traffic lights" simulator is provided along with instructions for writing programs to control their speed of operation. and program modifications to enable the delay time of the lights to be automatically changed as "traffic" builds up. Also included is a small d.c. motor for use in conjunction with motor-speed control programs. Welwyn Electric Ltd, Bedlington, Northumberland NE22 7AA.

WW308

Wire-wrap kits

UK-manufactured kits, each comprising base board, precision screw-machined socket terminals, 96 -way DIN connector(s), ejector keys, solder clips and a pin insertion/extraction tool, are made by Cavac Systems Ltd, and offered in single, double or triple Eurocard and maximum I/O double Eurocard styles. They feature maximum-power and ground-plane areas and are developed for use in prototype and pre-production applications. An alternative version can be supplied with a selection of discrete i.c. sockets instead of loose socket/terminals. A full data sheet, detailing the component parts and giving ordering information, can be obtained from Cavac on request. Cavac Systems Ltd, Unit 15, Suttons Park Avenue, Suttons Industrial Estate, Early, Reading RG6 IAZ.
WW309

\star POWER RESPONSE DC $-20 \mathrm{KHz} \pm 1 \mathrm{~dB}$.

* OUTPUT POWER IN EXCESS OF 1.5 kW INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.).
* D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2 KVa .
* HARMONIC DISTORTION LESS THAN 0.05\% DC-20KHz AT 1 kW INTO 6 OHMS
* PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION OSCILLATORS * UNIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS.
* OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD.
* FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD
* TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4 kW
* INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS.
* 3-YEAR PARTS AND LABOUR WARRANTY.

For full details on all Amcron Products write or phone Chris Flack
Kirkham Electronics
MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL DIVISION OF K.R.S. LIMITED
TELEPHONE (037 976) 639/594

" NEVER KNEW COLOUR VIDEO COULD COST SO LITTLE"

Don't be put off by what you may have heard - or imagined - about the cost of colour video.

Talk to Bell \& Howell or one of our Video Centres and get the current facts.

The fact,for example, that a portable JVC colour camera costs little more than an ordinary black-and-white camera.

And the further fact that by adding a JVC VHS you have a complete colour recording system for as little as $£ 1,300$ plus VAT: For. playback, a standard TV receiver is all you need

At these prices every user can benefit from colour. Training will be easier to understand; publicity more compelling; management communications more interesting; rôle-playing more effective. After all, we live in a coloured world.

PUSH-BUTTON FEATURES

Don't think for one minute that the low price has been achieved at the expense of useful features. Among other things the camera has an iris control which automatically adjusts lens aperture to match lighting conditions; a $6: 1$ power or manual zoom, giving close-ups as close as 50 mm ; $\Pi \mathrm{L}$ indicators which automatically show exposure level, auto-white balance, operating mode and power level.

BETTER STILL

Or, if you feel inclined to make even fuller use of the camera's capabilities, couple it to a JVC $3 / 4$-inch U-format recorder.

The picture will be improved. You'll have another
sound track to use for foreign-language commentaries or question-and-answer training routines.

On $3 / 4$-inch, moreover, you'll be in the right format to edit and duplicate - or add in library material. And still

the cost of the system needn't exceed $£ 2,700$ plus VAT. Alternatively, at very attractive rates, it can be leased.

SEE FIRST, THEN DECIDE

You can, of course, spend more. At any Bell \& Howell Video Centre you'll see more expensive cameras, video recorders and electronic editing equipment that wouldn't be out of place in a national network.

But do you need them?
Let the Video Centre, or Bell \& Howell, help you decide.
Whatever your decision, two things are certain.
One, colour video now costs a lot less than it used to (as well as being highly dependable and very easy to use).

Two, every unit in the system you choose qualifies for the Supershield warranty, unique to Bell \& Howell.

Under Supershield, all adjustments, repairs and replacements (except for tubes and tapes) are free for two years after purchase. And if a job can't be done on the spot we also provide free transport anywhere in mainland Great Britain to and from a fully equipped Supershield video workshop.

Convert to (or start with) colour. With JVC video equipment. And the Bell \& Howell Supershield guarantee

Let Bell \& Howell show you the answer:

[^7]WW 7/10

8K ON BOARD MEMORY!
$5 K$ RAM, $3 K$ ROM or $4 K$ RAM. $4 K$ ROM (link select able). Kit supplied with 3 K RAM, 3 K ROM. System expandable for up to 32 K memory.

2 KEYBOARDS!

56 Key alphanumeric keyboard for entering high level language plus 16 key Hex pad for easy entry of machine code.

GRAPHICS!

64 character graphics option - includes transistor symbolst Only $£ 18.20$ extra!

MEMORY MAPPED
High resolution VOU circuitry using dis crete TL for extra flexibility. Has its own 2 K memory to give 32 lines for 64 characters

KANSAS CITY
Low error rate tape interface

PSI COMP 80 280 Based powertul scientific computer. Design as published in WIRELESS WORLD

Pantermar
COMPLETE KIT
NOW ONLY
2225 + vatI

The kit for this outstandingly practical design by John Adams published in a series of articles in Wireless World really Is completel
Included in the PSI COMP BO scientific computer kit is a professionally finished cabinet, fibre-glass double sided, plated-throughthole printed circuit board, 2 keyboards PCB mounted for ease of construction, IC sockige, of course, wire, nuts, bolts, etc

KIT ALSO AVAILABLE AS SEPARATE PACKS
For those customers who wish to spread their purchase or build a personalised system the kit is available as se parate packs e.g. PCB (1 $6^{\prime \prime} \times 12.5^{\prime \prime}$ ' $£ 43.20$. Pair of keyboards $£ 34.80$. Firmware in EPROMS $£ 30.00$. Toroidal transformer and power supply
components $£ 17.60$. Cabinet (very rugged, made from steel. components $£ 17.60$. Cabinet (very ruged, made from steel,
really beautifully finished) $£ 26.50$. P.S. Will greatly enhance any other single board computer including OHIO SUPERBOARO to other shing it can be readily modified. Other packs listed in our FREE CATALOGUE.

PSI COMP 80 Memory Expansion System

Expansion up to 32 K all inside the computer's own cabinetl
By carefully thought-out engineering a mother board with buffers and its own power supply (powered by the computer's transformer) enables up to 38 K RAM or BK ROM boards to be fitted neatly inside the computer cabinet. Connections to the mother board from the main board expansion socket is made via a nibbon cable.
Mother Board: Fibre glass double sided plated through hole PCB B. $7^{\prime \prime} \times 3 . \mathrm{O}^{\prime \prime}$ set of all components including all brackets, fixing parts and ribbon cable with socket
8K Static
RAM board Fibre glass double sided plated through hole PCB $5.6^{\prime \prime} \times 4.8^{\prime \prime}$........ $£ 12.50$ Set of components including IC sockets, plug and $\begin{aligned} & \text { socker but excluding RAMs } \\ & 2114 \text { RAM (} 16 \text { required) }\end{aligned}$. Complete set of board, components, 16 RAMS
8 K
ROM board
Fibre glass double sided plated through hole ${ }^{\text {PCB }} \times 1.40$
$56^{\prime \prime} \times 48^{\prime \prime}$ $5.6^{\prime \prime} \times 4.8^{\prime \prime}$ Set of components including iC sockets, plug and socket but excluding ROMs $£ 10.70$ 2708 ROM (8 required) ${ }^{66.00}$ Complete set of board, components, 8 ROMs. ${ }_{\text {E68.50 }}$
our catalogue is FREE! write or phone NOW!
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE ANDOVER HANTS SP 10 3NN

ANDOVER
(0264) 64455

Being published in Electronics Today International

Parnol eize $19.0^{\prime \prime} \times 5.25^{\prime \prime}$. Depth $12.2^{\prime \prime}$

14 CHANNELS! NOISE GENERATOR! SLEW RATE CONTROL!

ETI VOCODER
COMPLETE KIT onty £195+VAT

Kit includes FREE foot control and test oscillator!
Like all our kits, the ETI VOCODER really is complete - fully finished metelwork, profestional quality component: (all rosistore 2% motal oxide), nuts, bolts, otc. - oven a $13 A$ plugl

MANY MORE KITS

ON PAGES 93,95

2 OSCILLATORS voiced/unvoiced detector! LED PPM METERS!

certainly less than you think. By incorporating a custom made LSI chip, these fully auto-ranging $3 \frac{1}{2}$ digit multimeters are available at prices from

under £50.00.

(illustrated) £67.17

 SK-6220 $\sum 45_{+ \text {VAT }}^{\text {sK. } 6220}$
-4

TRANSCENDENT DPX

DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER
Another supert design by synthesizer expert Tim Orr - published in Electronics Today International
The Transcendent OPX is a really versatile new 5 octave keyboard instrument. There are two audio outputs which can be used simultaneously. On the first there is a beautiful harpsichord or reed sound - fully polyphonic, i.e. you can play chords with as many notes as you like. On the second output there is a wide range of different voices, still fulty polyphonic. It can be a sraightforward piano or a honky tonk piano of even a mixture of the two! Alternatively you can play strings over the whole range of the keyboard or brass over the whole range of the keyboard or should you preter - strings on the top of the keyboard and brass at the lower end (the keyboard is electronically split after the first two octaves) or vice versa or even a combination of strings and brass sounds simultaneously. And on all voices you can switch in circuitry to make the keyboard touch sensitive! The harder you press down a key the louder it sounds - just like an acoustic piano. The digitally controlled multiplexed system makes practical touch sensitivity with the complex dynamics law necessary for a high degree of realism. here is a master volume and tone controf, a separate controf for the brass sounds and also a vroilo circuit with variable depth control toge ther whit a variable delay conirol so that the vibrat comes in only after waiting a short time after the note is struck for even more realistic strong sounds

Cabinet aize $36.3^{\prime \prime} \times 15.0^{\prime \prime} \times 5.0^{\prime \prime}$ (rear) $3.3^{\prime \prime}$ (front)

COMPLETE KIT ONLY £299 +vat

To add interest to the sounds and make them more natural there is a chorus/ensemble unit which is a complex phasing systern using CcO (charge coupled device) analogue delay lines. The overall effect of this is similar to that of soveral acoustic instruments playing the same piece of music. The ensemble circuitry can be switched in with either strong or mild effects. As the system is based on digital circuitry digital data can be easily taken to and from a computer (for storing and playing back accompaniments with or withoutpitch orkey change, computer composing, etc., etc.)
Although the DPX is an advanced design using a very large amount of circuitry. much of it very sophisticated, the kit is mechanically extremely simple with excellent access to all the circuit boards which interconnect with multiway connectors, just four of which are removed to separate the keyboard circuitry and the panel circuitry from the main circuitry in the cabinet The kit includes fully finished metalwork, solid teak cabinet, professional quality components (all resistors 2% metal oxide), nurs, bolts, etc., even a 13 A plug!

POWERTRAN
 MANY MORE KITS ON PAGE 95. MORE KITS AND ORDERING INFORMATION ON PAGE 93.
 TRANSCENDENT 2000 swlele baapo swruhesrer

LIVE PERFORMANCE SYNTHESIZER DESIGNED BY CONSULTANT TIM ORR (FORMERLY SYNTHESIZER DESIGNER FOREMS LIMITED) AND FEATURED AS A CONSTRUCTIONAL ARTICLE IN ELECTRONICS TODAY INTERNATIONAL

The TRANSCENDENT 2000 is a 3 octave instrument transposable 2 octaves up or down giving an effective 7 octave range. There is portamento. pitch bending. a VCO with shape and pitch modulation, a VCF with both low and high pass outputs and a separate dynamic sweep control, a noice generator and an ADSR envelope shaper. There is also a slow oscillator, a new pitch detector, ADSR repeat. sample and hold, and special circuitry with precision components to ensure funing stability amongst its many teatures.
The kit includes fully finished metalwork, fully assembled solid teak
cabinet, fitter sweep pedal protessional quality components (all resistors either 2% metal oxide or $1 / 2 \%$ metal film) and it really is complete - right down to the last nut and bolt and last piece of wire! There is even a 13A plug in the kit - you need buy absolutely no more components are on the one professionat quality fibreglass PCB printed with component locations. All the controls mount directly on the main board. all connections to the board are made with connector plugs and construction is so simple it can be built easily in a few evenings by almost anyone capable of neat soldering! When finished you will possess a synthesizer comparable in performance and quality with ready-built units selling for many times the price

> COMPLETE KIT ONLY $£ 168.50+$ VAT!

Comprehensive handbook supplied with all complete kits! This fully describes construction and tells you how to set up your synthesizer with nothing more elaborate than a multi-meter and a pair of ears!

320 pages worth of the latest \& best in signal processing components.

Write to Pascall for this new M80 catalogue which covers the complete Merrimac range of signal processing components and integrated networks from DC to 4 GHz . It also provides relinbility data in the form of MTBF calculations for each product area.

Merrimac is one of the World's most technically-advanced companies specialising in low frequency lumped element components and integrated networks; microwave stripline components, subsystems, high power ferrite isolators and cliculators.

So write fo Pascall foday for your copy of the M80 on your company's notepaper (or phone if you prefer) indicating your area of interest - we guarantee you'll find it one of the best.

Merrimac
Now there is one
in signal processing

Telephone. 109327187418 Telex 8814536
WW - 094 FOR FURTHER DETAILS

IIappy Memories

$4116200 n s$	$£ 3.75$	$4116150 n s$	$£ 5.50$
2114200 ns	$£ 3.45$	2114450 ns	$£ 2.95$
2708450 ns	$£ 4.95$	27165 volt	$£ 10.95$

MEMOREX mini discs soft sectored - with FREE library case $£ \mathbf{1 9 . 9 5}$ per ten.

WE'VE MOVED!!

All prices, include VAT
30 p postage on orders below $£ 10$
Access \& Barclaycard
All orders to:
Dept. WW
HAPPY MEMORIES
Gladestry
Kington
Herefordshire HR5 3NY
Tel. (054422) 618

It's easy to complain about advertisements.

A.S.A. Ltd. Brook Houise. Tornngton Place, London WCIE 7HN.

MPA 200100 WATT (rms into 8Ω) MIXER/AMPLIFIER

Featured as a constructional article in ETI, the MPA 200 is an exceptionally low priced - but professionally finished - general purpose high power amplitier. It features an adaptable inpu mixer which accepts a wide range of sources such as a microphone, guitar, etc. There are wide range tone controls and a master volume control. Mechanically the MPA 200 is simplicity itself with minimal wiring needed making construction very straightforward.
The kit includes fully finished metalwork, fibreglass PCBs, controls, wire. etc. - complete down to the last nut and bolt.

Panel size $19.0^{\prime \prime} \times 3.5^{\prime \prime}$. Depth 7.3"
COMPLETE KIT ONLY $£ 49.90$ +VAT!

MATCHES THE CHROMATHEQUE 5000 PERFECTLY!

CHROMATHEQUE 5000 ©

his versatile system featured as a constructional article in ELECTRONICS TODAY INTERNATIONAL has 5 frequency channels with individual level controls on each channel. Control of the ights is comprehensive to say the least. You can run the unit as a straightforward sound-to-light or have it strobe all the lights at a speed dependent upon music level or front panel control or use the internal digital circuitry which produdes some superb random and sequencing effects. Each channel handles up to 500 W and as the kit is a single board design wiring is minimal

Kit includes fully finished metalwork, fibreglass PCB controls, wire, etc. - Complete right down to the last nut and bolt!

COMPLETE KIT ONLY

 $£ 49.50$ + VAT!

Panel size 19.0" $\times 3.5^{\prime \prime}$. Depth 7.3"

POWEFTRAN

SYNTHESIZER KITS ON PAGE 93. MORE KITS AND ORDERING INFORMATION ON PAGE 91.

DE LUXE EASY TO BUILD LINSLEY HOOD 75W STEREO AMPLIFIER $£ 99.30$ + VAT

This easy to build version of our world-wide acclaimed 75 W amplitier kit based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and Record Review and fully straightionward. The design was published in Hi-Fi News and Record Review and features include rumble filter, variable scrat
controls and tape monitoring while distortion is less than 0.01%.

$\mathbf{T} 20$ +20 20W STEREO AMPLIFIER $\mathbf{£ 3 3 . 1 0 + V A T}$
This kit, based upon a design published in Practical Wireless. uses a single printed circuit board and offers at very low cost. ease of construction and all the normal facilties found $\mathrm{£38.40+VAT}$. MATCHING TUNERS - See our FREE CATALOGUEI

Above 2 kits are supplied with fully finished metalwork, ready assembled high quality teak veneer cabinet, cable, nuts, bolts. etc. and full instructions - in tact everythingl

BLACK

MUSIC EFFECTS DEVICE - AS FEATURED IN ELECTRONICS TODAY INTERNATIONAL!
The BLACK HOLE designed by Iim Orr, is a powertul new musical eftecis device for processing both natural and electronic instruments, offering genuine VIBRATO (pitch modulation) and a CHORUS mude which gives a spacey" feel to the sound achieved by delaying the input signal and mixing it back with the original. Notches (HOLES), introduced in the frequency response move up and down as the time delay is modulated by the chorus sweep generator. An optional double chorus mode allows exciting antiphase effects to be added. The device is floor standing with foot switch controls. LEO effect selection indicators. has variable sensitivity has high signal/ noise ris obris bis a
COMPLETE KIT ONLY £49.80

+ VAT (single delay line system)
De Luxe version (dual delay line system) also available for $£ 59.80$ + VAT
Cabinet size $10.0^{\prime \prime} \times 8.5^{\prime \prime} \times 2.5^{\prime \prime}$ (rear) $1.8^{\prime \prime}$ (front)

Simply ahead...

POWER AMPLIFIERS

ILP Power Amplifiers are encapsulated within heatsinks designed 10 meet total heat dissipation needs. They are rugged and made to last a lifetime. Advanced circuitry ensures their suitability for use with the finest loudspeakers, pickups, tuners, etc. using digital or analogue sound
 sources.

Madel	Outpui Power R.M.S.	Dis. tortion Typical at 1 KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price + V.A.T
HY30	$\begin{aligned} & 15 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.02\%	100 dB	$20 \cdot 0 \cdot+20$	$105 \times 50 \times 25$	155	$\begin{array}{r} \varepsilon 6.34 \\ +95 n \\ \hline \end{array}$
HY50	$\left\|\begin{array}{l} 30 \mathrm{~W} \\ \text { into } 8 \Omega \end{array}\right\|$	0.02\%	100 dB	25.0. +25	$105 \times 50 \times 25$	155	$\begin{array}{\|ll\|} \hline £ 7.24 \\ +£ 1 & 09 \end{array}$
HY 120	$\begin{aligned} & 60 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.01\%	100 dB	$35 \cdot 0 \cdot+35$	$114 \times 50 \times 85$	575	$\begin{array}{\|c\|} \hline £ 15.20 \\ +£ 228 \end{array}$
HY200	$\begin{array}{\|l\|} \hline 120 \mathrm{~W} \\ \text { into } 8 \Omega \\ \hline \end{array}$	0.01\%	100 dB	$45 \cdot 0 \cdot+45$	$114 \times 50 \times 85$	575	$\begin{array}{\|l\|} \hline £ 18.44 \\ +£ 277 \\ \hline \end{array}$
HY400	$\begin{array}{\|l\|} \hline 240 \mathrm{~W} \\ \text { into } 4 \Omega \end{array}$	0.01\%	100 dB	$45 \cdot 0 \cdot+45$	$114 \times 100 \times 85$	115 Kg	$\begin{array}{\|c\|} £ 27.68 \\ + \\ \hline \end{array}$

Load impedance - all models $4 \Omega-\infty$
Input sensitivity - all models 500 mV Input impedance - all models $100 \mathrm{~K} \Omega$
Frequency response - all models $10 \mathrm{~Hz}-45 \mathrm{KHz}-3 \mathrm{~dB}$

POWER SUPPLY UNITS

ILP Power Supply Units with iransformers made in our own factory are designed specifically for use with It. P power amplifiers and apart from PSU 30 and 36 which are smalier PSUs - all the other ILP's own manufactured oroidal transformers are used which are half the size and weight of laminated equivalents. They are also more efficient and have greatly reduced fields of radiation

PSU $30 \pm 15 \mathrm{~V}$ at 100 mA to drive up to $12 \times$ HY 6 or 6 x HY 66 $£ 4.50+£ 0.68$ VAT THE FOLLOWING WILL ALSO DRIVE ILP PRE - AMPS PSU 36 for 1 or 2 HY 30 's $£ 8.10+£ 1.22$ VAT The following include toroidal transformers
PSU 50 for 1 or 2 HY5O's $£ 9.75+£ 1.46$ VAT PSU 60 for 1 HY 120 £ $9.75+£ 1.46$ VAT PSU 70 for 1 or 2 HY 120 s £13.61 + £2.04 VAT PSU 90 for 1 HY200 £13.61 + £2.04 VAT PSU 180 I HY 400 or $2 \times$ HY 200

this time with two new pre-amps

 OF HYG PRE-AMP, WITH STEREO CONNECTION SHOWN

 HY6 mono HY66 stereo

 HY6 mono HY66 stereo}

When ILP add a new design to their audio-module range, there have to be very special reasons for doing so. Youexpect even better results. We have achieved this with ewo new pre-amplifiers - HY6 for mono operation, HY66 for stereo. We have simplified connections, and improved performance figures all round. Our new pre-amps are short-circuit and polarity protected; mounting boards are available to simplify construction.
 circuits provide $\pm 12 \mathrm{~dB}$ cut and boost. Inputs Sensitivity - Mag PU 3 mV Mic - selectable $1-12 \mathrm{mV}$. Allothers 100 mV Tape O/P-100mV Main O/P - 500 mV : Frequency response-D C 10100 KHz - 3 dB

HY6

£5.60 +VAT 840
£10.60
+VAT £1.59
Connectors included
86 Mounting Board $78 p+12 p$ VAT
866 Mounting Board $99 p+15 p$ VAT

- LOW OISTORTIOH - Typically 0.005\%
 S/N RATIO- Typically 90 dB (Mag. P.U. -68 dB) high overloao factor - 38 dB on mag. P.U. Latest oesign high puality connectors REQUIRE ONLY POTS, SWITCHES, PLUGS AMO SOCKETS. COMPATIBLE WITH ALL ILP POWER AMPS AND PSUS neEos ONLY UNREGULATEO POWER SUPPLY $£ 15 \mathrm{~V}$ to $\pm 60 \mathrm{~V}$.
* ALL U.K. ORDERS DESPA TCHED POST PAID HOW TO ORDER, USING FREEPOST SYSTEM Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pay postage on allletters senttous byreaders of this journal.

THE LEADING EXHIBITION OF COMPUTERS, PERIPHERALS AND SYSTEMS

will be in the Grand Hall OLYMPIA, LONDON November 4, 5 \& 6, 1980

CAN YOU AFFORD

 TO MISS COMPUTER
EXHIBITION?

TRADE ONLY - NO SCHOOL PARTIES - NO ADMITTANCE UNDER 16 ENTRANCE £2
Sponsored by "Computer Weekly," "Data Processing," "Practical Computing" and
"Systems International" and with the support of "Electron", "Electronics Weekly" all members of IPC Business Press, the worlds largest publisher of specialist and business journals.

All prices include VAT: Add 50p post per order - Just quote your Access or Barclaycard number Terms: Cash with order, cheques, POs, payable to Bı-Pak at above address

Access and Barclaycard also accepted

E

SEMICONDUCTORS

SEM						${ }_{8}^{8 D 13}$	0.40	${ }_{8 \mathrm{BF} 2 \mathrm{P} 25}$	$\begin{aligned} & 0.28 \\ & 0.30 \end{aligned}$	CRS3/6	${ }_{1.73}^{1.04}$	OAZ201	${ }_{1}^{1.15}$	${ }_{0} \mathrm{O} 20$	2.8. ${ }_{2}^{2.88}$	$\xrightarrow{\text { ZTX }}$ Z75502	0.18 0.20	2N1309	$\begin{aligned} & 1.38 \\ & 0.29 \end{aligned}$	${ }_{\text {2N3771 }}^{\text {2N37 }}$. 102
${ }^{\text {A } 119}$	0.12	As	1.44	BC_{172}	0.12	${ }_{\text {BD135 }}$	0.39	BF2	0.37		4.60	OAZ207	1.15	$0_{0} \mathrm{C}_{2}$	${ }^{2} .88$	27X504	0.23		${ }_{1.73}$		15
			1.44		0.14	BD	0.39		0.35		0.88	Oc	2,	OC	202		${ }^{0.23}$			${ }_{2 N 3}^{2 N}$	0.41
${ }_{\text {AAY }}$	0.21	${ }^{\text {AS217 }}$	${ }_{1}^{1.49}$	${ }^{\text {CC178 }}$	${ }_{0}^{0.17}$	BD137	- 0.40	${ }_{8 \times 338}$	0.35 0.36	$\stackrel{\text { GM }}{ }$	0.52	${ }_{0} \mathrm{C} 22$	2.88	OCP71	1.4.	1N91	0.06	${ }_{2 \text { N2148 }}$	${ }_{1.89}$	2 N 3823	0.63
${ }_{\text {AAZ } 15}$	0.39	${ }_{\text {ASZ21 }}$	230	BC1	0.18	${ }_{\text {BDI }}$	0.49		4.55		0.92	oc	3.16	ORP12	1.15	1 N 9	0.08	2N2218	0.29	2 N 38	0.83
AAR17	0.31	AU113	1.96	BC	0.13	BD14	0.51	BFS28	2.56		1.35	0	3.45			1 N 4001	0.07		0.28		0.15
			2.30	${ }^{\text {BCL183 }}$	0.12		2.30		0.23		0.71		1.04	R20	2.59	${ }^{1 N}$		2N2			15
	0.23		1.96		0.13					MJES	0.60	0×28	1,04	R2018		in 40	. 0	${ }^{2}$		2 N 3	0.15
			0.15	BC212 0	0.15		1.3	BFW	0.74	M.E5	0.63	0	2.30		O2,	$1{ }^{1}$		2 N	0.21		
	0.23		0.15	ВС213	0.14	BD23	0.46	BF	0.76	MJE29	1.4	OC2	2.30		13	N4		2 N			12
	0.23		0.10	BC214	0.17		0.6		0.25	MJE3	0.85		,			N40					4
	0.29	BA155	0.12	BC237	0.10	BDxio	1.06		0.26	MPFFIO	0.35		1.7		,						
	0.40		0.10	BC2	0.14			BFX	0.24	MPF	0.15		. 92		-	IN+		2 N 2		2N4	5
	0.23		0.06	ВСЗ	0.38		1.4	BFX88	0.24	MPFFI	0.35		2.38	$1{ }^{\text {P3 }}$	0.55	1N				${ }^{2}$	17
	0.35		0.07	${ }^{8}$	0		1.72	BFY50	${ }^{0.30}$		0.38	OC4	${ }_{0.69}$	TIP3	0.79	IN54	0.15	$2 \mathrm{2N} 29$	0.29	${ }_{2} 2 \mathrm{N4} 4$	0.17
${ }_{\text {AClig7 }}$	${ }_{0} 0.23$		0.14	${ }_{\text {BC }} \mathbf{C} 38$	0.12	${ }_{8 F 152}^{8 F 15}$	${ }_{0.21}$	${ }_{8 F Y 5}$	0.30	MPSAS	0.30	0 C 45	0.63	T1P3	0.84	1544	0.05	2 N 2006	0.24	2 N 4288	0.25
	0.23	BC	0.14	BC327	0.23	BF	0.23	BFY\%	0.30	MP	0.41							2 N 2		${ }^{2 N 4289}$	0.28
17	0.98	(109	0.15	${ }_{\text {BC328 }}$	0.21	BF159	0.20	Y	1.4	MPS	0				,			2		$2{ }_{2}$	0.40
${ }_{\text {ACYIS }}$	0.98	(13	0.15	${ }^{\text {BCO}} 37$	0.20		0.26	${ }^{\text {BSx }} 19$	0.24	NE5S	${ }_{0.52}$	0	0.74	TIP	0.64	26302	1.15	2N292	0.15	2 N 54	0.40
${ }_{\text {ACY20 }}$	0.80	${ }_{\text {BCI } 15}$	0.16	${ }_{\text {BCY }}{ }^{\text {c }}$	1.15	${ }_{\text {BFF167 }}$	${ }_{0.23}$	${ }_{\text {BSX } 21}$	0.23	NKTA	2.30	\bigcirc	0.74	TIS	0.52	263	1.27	2N3053	${ }_{0} .20$	25017	7.48
	0.88	${ }_{8 C 116}$	0.17	${ }^{\mathrm{BC}} \mathrm{C}$	1.15	BF173	0.23	B7106	1.4	NKT	${ }^{1.98}$		0.63		0.29	${ }^{2 N}$	${ }^{1.15}$	${ }^{2} \mathrm{~N}$			7.48
	1.72	${ }_{8 C 117}$	0.20	${ }^{\text {BC }}$		177	0.28						1.74	${ }_{2 S} \mathrm{SL}_{178}$	${ }_{0} 0.62$	2 N			0.81		\%
	\%	${ }^{8 C 178}$	0.12	${ }_{\text {ВС¢З }}$	1.04	${ }^{\text {BFF }} 178$	0.28	BU205		OAT	${ }_{0.63}$	$\mathrm{OCBI}^{\text {c }}$	1.38	zS271	0.26	2 Ne	0.35	${ }_{2}$	0.69	25302	${ }_{0}^{1.88}$
AD	0.52	${ }_{\text {BC }}{ }^{\text {C26 }}$	0.23	${ }_{\text {BCY }} \times$ 39	3.45	${ }_{8 F 180}^{\text {BF }}$	0.35	Bu206	2.59	OA	0.74	\bigcirc	0.74		0.65	2N705	1.38	2N3442	1.26	25333	0.88
	0.52	${ }^{\text {BC1 } 135}$	0.16		1.15	BFF181	0.35	Buzas	2.30		9.16		0.74	${ }^{2 \times 1 \times 107}$	0.13			${ }^{2} \mathbf{N} 3614$			
${ }_{\text {AF }}{ }^{\text {AFIIS }}$	${ }_{0}^{0.86}$	${ }^{\text {8C136 }}$	${ }_{0}^{0.17}$	${ }_{\text {BC }}$	0.89		${ }_{0}^{0.35}$	${ }_{\text {BY }}^{8120}$	0.16	OA	${ }_{0}^{0.35}$	${ }_{0}$	1.73	2TX	0.14	${ }_{20}^{2 N 930}$	0.23	${ }_{\text {2 }}^{2 \times 37302}$	0.13	${ }_{2}^{25701}$	1.74
AF116	0.86	${ }^{\text {BCC147 }}$	0.10	${ }^{\text {BCY }}$ 58	0.18	${ }_{8 F 184}$	0.29	${ }^{\text {BY } 127}$	0.17	OA81	0.35	, O	2.02	2TX	0.14	${ }^{2 \times 131}$	0.30	2×3704	0.15	25745 A	0.40
1179	${ }_{0}^{0.86}$	${ }^{\text {BCl }} 148$	${ }_{0}^{0.09}$	BCY70 BCY71	017	8F185	0.29	BZX61	0.21	OA	${ }_{0}^{0.095}$	OC	2.59 3.16	2T13301	0.17	2N1132	1.30	${ }_{\text {2N30, }}^{2 \times 3705}$		25746A	0.40
${ }_{\text {AFI } 186}$	${ }_{1}$	${ }_{\text {BC157 }}$	${ }_{0}^{0.10}$	${ }_{\text {BC }}$	0.15	${ }^{\text {BF }} 194$	- 0.10		0.15	OA	0.09		3.74	2TX3	0.20	2 N 13	0.86	${ }_{\text {2N30307 }}$	0.15		
AF239	0.52	${ }_{\text {BCI }}{ }^{\text {S }}$	0.09	BCZ11	1.72	${ }_{\text {BF }} 196$	0.12	Ser		OA	0.09		1.15		0.22		1.38	2N3708	0.12		
AFZ11	${ }^{3.16}$		0.12	BDIIS	${ }^{0.52}$	BF	0.14	CRSL 140	0.69	OA200	${ }_{0}^{0.10}$	\bigcirc	${ }_{1}^{1.15}$	${ }_{2 T \times 314}^{27 \times 31}$	0.14	${ }^{2 N 13}$	${ }^{1.03}$	2N3709	0.15		
${ }_{\text {Asfr26 }}$	${ }_{1.158}^{1.18}$	${ }_{8 \mathrm{BC}}$	${ }^{0.14}$	${ }_{80}^{\text {BD }}$	1.50 1.50 1	8F2	0.31	${ }^{\text {CRSS3/05 }}$		A20	${ }^{0} 1.15$	-	${ }_{2.02}^{1.73}$	2TX500	0.15	2N1306 2N130	${ }_{1}^{1.15}$	$\underset{\text { 2N3711 }}{\text { 2N370 }}$	${ }^{6.12}$		
${ }_{\text {ASYZ }}$	${ }_{1.03}^{1.188}$	${ }_{\text {BCL } 171}$	${ }_{0}^{0.12}$	${ }_{\text {BD } 124}$	1.50		${ }_{0}^{0.32}$			OAZz200	1.15	${ }^{\circ} \mathrm{C} 202$	2.02	2TX501	0.16	2 N 13	2.30				
VAL	ES	F1731:	19.39	EF86	1.74	Gxu1	16.1			QY5-3000		UY41	1.44	5B254M	${ }^{23.12}$		24	12E14			
Al83	10.35		9.66	EF	1.27		2.43					${ }_{1 / 563}$		${ }_{5}^{5823}$	${ }^{23.12}$	${ }_{6 F 6}$	2.02				
	13.58	F182	9990	EF92	6.69	GXU4	32.77	PCC85	1.38		5.75	XGI.2500	40.42	5 JIBOE	1380.00	${ }^{6723}$	1.84	$19 \mathrm{H5}$	40.25	${ }_{5727}^{578}$	${ }_{5}^{362}$
${ }^{\text {A2134 }}$	${ }^{10.06}$		${ }^{12.58}$	EF93	1.15	GXU50	17.25	PCC\% 8	1.38	R17	1.89	XG2-6400		5 St	2.30	$6{ }^{628}$	1.33	$24 \mathrm{B9} 9$	53.07	5749	5.14
${ }_{\text {A } 2426}$	${ }^{8.62}$			${ }_{\text {EFP94 }}$	1.22	GY50	3.16	PCC89	1.56	R18	1.89	KG5.500	${ }^{28.52}$		${ }^{3.86}$	${ }_{6}^{673}$	2, ${ }^{\text {a }}$	${ }^{30} \mathrm{C} 15$			4.80
${ }^{\text {A } 2521}$	${ }_{24.38}$	F223CC	9.02	EF93		${ }^{\text {Gz32 }}$	1.4	${ }^{\text {PCCC189 }}$	1.61		,	$\times \mathrm{X} 1.1600$ A	A		${ }^{2.75}$	${ }_{6 H 2 N}$	1.21	${ }_{3} 300$	1.84	63	4.66
900	14.43	F28sCC	18.54	EFF183	0.92	GZ34	${ }_{2}$	Pecr805	1.31	RG3.	35.77			5 Y3	0.98	6 H 3 N	1.21	30 F	1.38		${ }^{4.28}$
${ }_{\text {A }}^{\text {A } 2341}$	${ }_{\text {cki }}$	EAS2	${ }_{\text {cose }}^{\substack{23,69}}$	EFF194	${ }^{0.956}$	G237	460	PCE83	2.07	RG3.250A	${ }^{37.49}$	XR1.3200	39.13	523 574	${ }^{1.73}$	${ }_{6}^{6} \mathbf{6} 6$	1.71	$30 \mathrm{FL} 1 / 2$	1.28	58	13.90
A231	1.26		230			KT61	4.02	${ }^{\text {PCFF80 }}$	1.15	RG3-1250	36.23	XR1.3200A			1.75	${ }_{6} 16$	6.10	309 FL 12	2.07	587	19.55
${ }_{\text {A }}{ }_{\text {A }}$	106. 03	EAC9	1.38 0.92 		12.6	${ }^{17868}$	11.50	${ }^{\text {PCFF82 }}$	1.15		42.93	XR1.6401	102	56.30	1.75	${ }_{6}^{617}$	6.27	30 FL	1.94		5.38
BK484	143.35	EAF42	L4	E.K90	1.24	KTw	${ }_{2} 1.02$	${ }_{\text {PCFF87 }}$	1.94	RR3-250	53.54	XR1.6400	A	6 AB	1.44	6K4	1.4	30 L 15	?	5886	12.08
10	52.27 3.24	FF8	${ }_{2.02}^{2.02}$	${ }_{\text {EL32 }}$	1.73	${ }^{\text {KTW62 }}$	202	PCFF200	3.74		9.83		164	${ }^{\text {6AB7 }}$	1.73	${ }_{6} 66$	1.50	30117	2.07	5955	4.00
	${ }_{5261}^{35.24}$	${ }_{\text {EB91 }}^{\text {EB9 }}$	2301 1.01	EL33	${ }_{2}^{4.02}$	${ }_{\text {M }}$	2.02	PCF201	2.45		+2.25	YDIL240	${ }_{366.62}^{264.20}$	bAF	1.61		1.73			6 mas	
BT17	96.83	${ }^{\text {c }} 3$	202	EL34M	3.16	M8080	${ }_{9}$		1.94	S 130 P	4.03	2759	19.32	${ }_{\text {baC }}$	230	6 k D6	7.31	3019	1.38	6021	5.13
	12.78	C41	1.44	EL36	1.84	M808	11.30	PCFE805	${ }^{1.184}$	sTv	11.50	ZM1000	6.03	6A	5.52	${ }^{6.6 G}$	2.8	30 Pl 3	2.07	${ }_{6058}^{6057}$	${ }_{1245}$
в729	230.70	S8	1.26	EL41	1.44			F806	1.84	ST	024.15	2M1000	619	6AK 5	4.15	${ }_{6160}$	1.73		2.88	6059	4.60
${ }_{\text {BT }}$	102.46	${ }_{\text {FRBCs }}$	0.95		${ }_{2}^{2.02}$		${ }^{8.54}$	PCF888	1.85		${ }_{\text {20,35 }}^{2.288}$	${ }_{\text {ZM1021 }}$	- 10.17	6ALS	${ }_{1.01}^{2.81}$	${ }_{6}^{6164}$	${ }_{2}^{2.88}$	30 PL		6061	4.89
${ }^{\text {Br }}$	${ }^{100.15}$	EbF83	1.44	E183	4.03	M 8096	4.31	${ }_{\text {PCLI83 }}$	${ }_{2}^{1.35}$	TD03-10	32.78	ZM1022	10.60	6AM	265	617	2.30		${ }_{0}^{2.69}$	${ }_{6062}^{6062}$	4.31
	2.30	F89	0.97	FLes	1.15	M8097	409	PC184	1.15	TDO3.10E	32.7	zM1023	8.81	6AM	8.21	6 N 2	1.21	50 CS	0.81		8,
	,	EBL31	${ }^{2.88}$	${ }^{1185}$	${ }^{2.88}$		5.29	PCLES	1.24			ZM10	${ }^{22.26}$	6AM	2.0	${ }^{8 N 3 P}$	1.21	${ }^{7581}$	5.18	6067	4.02
	21.30	EC91	${ }_{8}^{1.288}$	FL900	410	M M 099	${ }_{9.99}^{5.94}$	${ }_{\text {PCL } 186}$	12.124	TT15	34.50 14.16	2M1041	19.16 20.44	6an	${ }_{3}^{4.95}$	${ }_{68} 6$	4.14	75 Cl	2.70	6072	5.80
C3A	1150	f.C92	1.4	495	1.51	M8136	9.75		-14	TT22	18.17	zM1051	100.05	6AQ	1.10	607	2.53	${ }_{855 A}$	${ }_{2.65}$		
	23,23	157	310.50	EL. 156	27.60	M8137	9.73	PE06.40N	31.40	TT100	59.51	${ }^{183} 3 \mathrm{GT}$	2.58	6AS6	5.73	6R7	2.07	${ }^{90 A G}$	14.90	697 T	
		Cc3	402		9.77	M8140	5.17	PFL200	2.07	TY2-125	69.01	${ }^{1824}$	11.50	6As7	9.49	6SA 6SC	1.73		14.90	6146 A	10.30
DA100	${ }_{52} 29$	ECC35	${ }_{2.30}^{4.02}$	ELL509	2168	M814]	${ }_{7} 5.58$	${ }_{\text {PL }}$	1.128	${ }_{T Y}^{\text {TY }}$	101.4	${ }_{1863}^{1833}$	${ }_{57.50}^{28.75}$		4.97	${ }_{65 \mathrm{~F} 7}$	1.84		70	6146B	8.12
DAF91	0.46	ECC81	1.01	ELS21	11.46	м814	4.31	PLPIA	1.38	TYY-50	178.25	1R5	1.21	6 6ub	1.24	${ }^{65 H 7}$	1.73	90 CV	17.50	${ }_{6}^{61598}$	17.27
	1.15	ECCC82	0.82	E1822	12.55	M8149	5.46	PLA2	1.3	TY6.80	181.70	${ }^{155}$	0.16	6AvSC	4.52	${ }^{\text {6SS }} 7$	1.48	92 A	14.90	${ }_{6201}^{689}$	
24	52.90	ECC84	1.15	EM34	3,75	${ }^{\text {M8161 }}$	9.11	P183	2.55	TYG:3000		174	${ }^{\text {. }} .46$	6AV	. 9.98	${ }_{6 S}^{6}$	1.08	92 AV	80	. 6442	17.25
	0.46	ECC85	${ }_{1.38}$	EM81	1.15	${ }_{\text {M8163 }}$	1036	PLest	1.24 1.61 1	6.5000 B		${ }_{2 C 39 A}$	${ }_{21.85}$	${ }_{687}$	${ }_{1.73}$		1.84	${ }^{95 A} \times 1$	7.19	68838	12.77
DK	1.15	ECC86	2.30	Embs	1.15	м8190	5.29	PL508	2.07		284.50	2 C 43	30.70	688	2.02	${ }^{6507}$	1.50	1508	6.15	${ }_{7025}^{6973}$	4.38
D691	1.21	${ }^{\text {ECCC88 }}$	207	FM25	1.4	M8195	4.25	PL509	373	TY6.500		2 D 21	294	6BA6	1.15	${ }^{6587}$	1.73	150	2.13	7551	${ }_{6}^{2.45}$
${ }_{\text {DK96 }}$	1.26	ECC89	${ }_{1}^{1.28}$	${ }_{\text {f.M }} 87$	${ }_{1}^{173}$	M8196	7.47	${ }^{\text {PL519 }}$	3.73		290	${ }^{2 E 25}$	15.34	${ }^{\text {6BA }}$	5	65s	230	150	2.65	7586	11.66
DL92	1.26	189	1.30	EN32	1628	MR204	${ }_{16.17}{ }^{657}$	${ }_{\text {PLSO2 }}$	${ }_{3}^{1.27}$	Tr7.60	157	2155	${ }^{239.97}$	${ }_{6 B C 4} 684$	4		0.92		6.90 40.25	${ }_{7589} 7$	20.11
${ }_{\text {PLP4 }}$	1.38	CC807	${ }_{2}^{2.02}$	EN92	6.18	M8223	3.80	PY33	1.27	TY7.6000		21704	${ }^{270.25}$	${ }_{\text {6BEB }}$	1.25	6U8	3.38	803	11.50	${ }_{7888} 7$	${ }_{5}^{36.37}$
Disio	${ }_{9.48}^{1.26}$	ECC888	${ }_{1.24}^{2.59}$	${ }_{\text {EYSI }}^{\text {EYYI }}$	${ }_{1.89}^{2.02}$	M822	${ }^{688}$	${ }_{\text {PY8 }}{ }^{\text {PY8 }}$	0.97		${ }^{288.83} 17.25$	${ }_{2}^{21728}$	418.34 40.25		${ }_{1}^{1.75}$	${ }_{6}^{6 \times 4}$	${ }_{1}^{1.84}$	885	$\underset{\substack{23.00 \\ 4.31}}{ }$	7895	1325
	${ }_{1237}^{12.37}$	ECF88	1.38		20	M8248	13.32	PY83	0.98	U18.	288	3.4002	575	6В	444	6×5	0.97	8114	18,32		5.a3
DLS	12.37 1237	${ }_{\text {ECFF86 }}$	1.73	84	${ }^{10.57}$	MU14	源		1.01	42	${ }^{15.81}$	3.50	- 63.25	6BL6	${ }^{97.75}$		1.96	812 A	18.26	8122	60.11
dsis	1.14	${ }_{\text {E.CH42 }}^{\text {ECH3 }}$	${ }_{1.32}^{2.30}$		2.02	M	\%\%85	PY500	207	${ }^{425}$		${ }_{3}^{3} 824$	${ }_{9.20}^{2.70}$		97.75	${ }_{7 C 6}$	${ }_{\substack{3.40 \\ 2.60}}$	813	85.87	36	
171	1.44	ECH81	1.38	500A	2.23	MX145	59.65	PYs01	${ }^{1.97}$	U37	10.35	3828	8.63	6BN	1.89	7H7	2.30	8363	-158.23	841	6.76
${ }^{4160}$	${ }^{3.736}$	${ }_{\text {ECH }}$	1.44	EY802	94	${ }^{\times 1} 151$	${ }^{17525}$	voz 6		UABC	1.44	3329	11.50	${ }^{\text {6BOP7 }}$	4.28	7R7	1.73	872 A	21.17	18002	- ${ }_{12,06}$
802	0.98	ECL80	1.15		1.4	M $\times 15161$	${ }_{1}^{135.70}$			U84)	1.44	${ }_{38241 \mathrm{M}}^{38240}$	${ }_{17.25}$	68R8	2.02	${ }^{2} 4$	${ }_{1.84}$		3.01 16.97 1		
Col	25.17		1.73	EZ41	1.44	MX163	27.11	v0e-40A		UBC41	1.73	${ }^{3} \mathrm{C} 23$	18.73	$6 \mathrm{BS7}$	4.60	724	2.13	${ }_{1624}$	2.58		
Cry	${ }^{12.95}$	L83	${ }_{1}^{1.75}$	881	${ }^{0.36}$		${ }^{25,88}$			UBFE	1.38	${ }_{3 C 45}$	2818	${ }_{6}^{68 W 6}$	4	${ }_{12}^{1123}$	${ }^{60.1 .32}$	1625	1.96	Ex-Fquip	
${ }_{\text {EReOF }}$	14.19 1398 18	ch	1.61	EZ90	1.38	M M 168	+18.30	${ }_{2} 2 \mathrm{ZO} 23.20 \mathrm{~A}$	A	UCCA5	1.38	3 E 29	29.67	6BX7GT	5.70	$12 A 7$	1.01	${ }_{4}^{22125}$	304.75	$4 \mathrm{CX2501}$	
$\mathrm{FBPICC}^{\text {che }}$	${ }_{6.62}$	${ }_{\text {ECLI }}$	1.288	${ }_{\text {FW }} \mathrm{FW}_{4} 8000$	${ }_{288}^{288}$	N78	${ }^{10.35}$		59.80	UCFFs	1.32	354	${ }_{1}^{1.26}$	${ }^{6826}$	2.73	${ }^{124046}$	2.97	4212 H	30475		
E811	14.06	E.537A	4.02	371	2.80	${ }_{\text {OA }}^{\text {O }}$	${ }_{5}^{2.15}$	QQZO6.4	${ }^{\text {a }}$	UCH48	${ }_{267}^{1.38}$	${ }_{4} 465$	${ }_{29.15}^{1.15}$	${ }_{\text {CB6A }}$	${ }_{2,86}^{1.91}$	12AV6	${ }_{2.55}$	5544	62.10		
E832C	${ }_{7}^{7.03}$		3.16	G	1265	OA4	4.02		14.38	UCLR2	1.20	4.125A	41.99	6CDGGA	5.83	12AV7	1.00	5551 A	106.03		
	${ }^{72.16}$	${ }_{\text {EFF4 }}^{\text {E.F40 }}$	3.45 2.30 2	${ }_{6} \mathrm{G} 180.2 \mathrm{M}$	18.42	${ }^{082}$	1.44	Qvas 12	5.13	UCL83	1.66	4-250A	${ }^{41.99}$	${ }_{6}^{6 C G 7}$	2.62	12A	1.01	5552A	143.35		
E88C	7.12		2.30	1001 L	${ }_{19,28}$	${ }^{1}$	-	Qvent	2.88	UF41	1.15	32	${ }_{39} 2.16$	${ }_{6}^{6 C H}$	9.78	12A	\%	3533A	255.10		
${ }_{\text {Fsech }}$	3.96		17	GN4	8.62	$0_{0}{ }^{\text {c }}$	${ }_{2}$	${ }_{Q Y 3.65}$	122.26	UF80	1.68	4 C 35	46.00	6 CW	8.83	128	${ }_{2.52}$	-	${ }_{7}^{6.93}$		
			5.75	GN+A	\% 8.62	O23	2.20	2Y3-125	61.02	UF85	1.66	$4 \mathrm{CX2508}$	31.63	$6 \mathrm{6D}^{2}$	1.01	${ }^{12856}$	2.79	5651	${ }_{2.65}$		
89\%	5.34		2.88 0.92		10.39	${ }_{\text {P4, }}^{\text {O24 }}$	${ }_{1}^{1.61}$	OY4-250	70.16	UF89	1.66	${ }_{\substack{\text { a }}}^{+C \times 1530 A}$	${ }_{24.41}^{4888}$	DK	${ }^{3.60}$	28r	1.29	5670	5.18		
${ }^{\text {F922C }}$		EF83	2.02	GU50	14,31	${ }_{\text {PC }}^{5}$	1.51	OY4.400		UL84	${ }_{\text {2 }}$	${ }_{4 \times 1500}$	${ }_{29} 28.75$	6E. ${ }^{\text {6 }}$	3.38	${ }_{1251} 1281$	${ }_{19.67}^{3.17}$	- 5685	${ }_{6.31}^{19.91}$		
	10.16	E.F85	0.92	51	13.62	(9,	1.49			UM80	1.15					22E117	26	5689	${ }_{4.55}^{6.51}$		
										ATED		U		7495							
BAS	ES	CR	Ts					7400 $7+01$	18	7423	0.37	7460	0.21	7496 7497	${ }_{3}^{1.45}$	74136 74.141	${ }_{0}^{0.63}$	74174 74175	1.73	TAab30S	4.02
								7402	0.18	${ }_{74727}^{7425}$	${ }_{0}^{0.35}$	7772	-3.48	74100	${ }_{1}^{1.73}$	${ }_{74142}$	2.68	${ }^{741776}$	1.26	TBA 4800	2.120
Bra sk		2 BPI	10.35	${ }_{\text {SBPI }}^{5 A D P 1}$	${ }_{11.50}^{70.25}$	YCR138A VCR 139	3A 14.38	${ }_{7}^{7403}$	0.18 0.20 0.0	7428	0.49	${ }_{7474} 7$	0.41	74109	${ }_{0.81}$	74143 74144	${ }_{2.88}^{2.88}$	74178 74179	1.4.4	TBA	${ }_{2}^{2.285}$
89A unski	inted 0	${ }^{38} \mathrm{BP}$	11.50	SCP1	11.50	VCR 517	A 11.50	7405	0.18	7432	0.35	7475	0.6	24110	0.58	7145	1.04	74180	1.32	tbas	${ }_{2.65}^{2.85}$
B9A skirt		3DP	5.75	${ }_{5 C P 1 A}$	+6.00	R5178	B	7406	0.46	533	d	7476	0.46	24111	0.81	74147	2.30	${ }_{7}^{74190}$	73	A35	70
${ }_{\text {Oct }}$		${ }_{\text {cke }}$	8.05	${ }^{\text {SFPPILA }}$	17.25	CCR517C	C	${ }_{7} 7407$	0.46	7437	0.37	7480	0.63	781	${ }_{1,15}^{2: 02}$	74148	${ }_{1}^{2.02}$	${ }_{7} 71491$.735	T	3.70
粗	base 0	${ }_{3}{ }^{3} \mathbf{F} \mathbf{P P}_{1}$	${ }_{6.90}$	sup7	${ }^{16,75}$	Tube is		${ }_{7+109}$	0.27 0.23	7438 $7+10$	0.37	7482	${ }_{1.04}^{0.86}$	74119	1.73	74151	${ }_{0} 1.97$	71193	1.55	TBA	${ }^{2.52}$
${ }^{8} \mathrm{pin} \mathrm{DiL}$		$3 \mathrm{3P1}$	9.20	DG7. 32	41.40	applicati		7410	0.18	7+11	0.97	7484	1.15	74120	0.95	74154	2.02	74194	1.44	TBA7200	2.65
14 pm DLL		$7{ }^{3}$	920	DH3.91	${ }^{35.65}$			7412	0.30	7412	0.83	7186	0.40	74121	0.46	${ }^{74155}$	0.97	74195	1.15	TBA7500	238
		${ }^{\text {a }}$	11.50					7413	0.37	7442	1.04	2490	0.60	24122	0.69	${ }_{7} 71156$	0.97	74196	. 38	Tha	1.38
,	zees ${ }^{\text {enting }}$		$\begin{aligned} & 1.25 \\ & 40.25 \end{aligned}$	VCR97	8 $\begin{aligned} & 13.89 \\ & 11.50\end{aligned}$			${ }_{7} 7416$		2450	0.21	7491	0.92	${ }_{4} 4125$	$\xrightarrow{1.15}$	74157 7159	- 0.9 .42.		${ }_{\text {1 }}^{1.26}$	TBA920	
	zes	${ }_{3}^{3}{ }_{\text {3 P P }}$	${ }_{23.00}^{40.25}$					7417 7420	0.37 0.20	${ }_{7451}^{7451}$	0.21	7492 $7+93$	${ }_{0.09}^{0.09}$	74125 74126 7128	${ }_{0}^{0.63}$	7159 74170	${ }_{2.65}^{2.42}$	77419	2.59	Tras200	3.34
								7422	0.23	7454	0.21 0.21	${ }_{7494}$	0.92	74128	0.69	74172	5.06:	${ }_{76013 N}$	2.02	TCAZ7OO	
Terms of business: CWO. Postage and packing valves and semiconductor 30p per order. CRTs £1. All prices include VAT. Price ruling at time of despatch. In some cases prices of Mullard and USA valves will higher than those advertieed. Prices correct when going to press. Account facilties available to approved companies with minimum order charge $\mathcal{E} 10$. Carriage and packing E 1 on credit orders. Over 10,000 types of valves, tubes and semiconductors in stock. Quotations for any eypes not listed. S.A.E. Telephone 01-677 24-24/7 Telex 946708 E. \& O.E. Open to callers Mondey-Friday 9 a.m.- 5 p.m.																					

COMPONENTS DEMONSTRATIONS SPECIAL OFFERS MAGAZINES BOOKS Royal Horticultural Halls Elverton Street

Westminster London SWI November 26-30 1980 It's all at Breadboard ' 80
This is the exhibition for the electronics enthusiast. From November 26-30 there is only one place in the universe for the electronics enthusiast to be - Breadboard '80, at the Royal Horticultural Hall in London. The majority of leading companies will be exhibiting, including all the top monthly magazines in the field. There will be demonstrations on most stands and many feature special offers that are EXCLUSIVE to Breadboard!
All aspects of this fascinating field are catered for, from CB to home computing, so whether you want to buy a soldering iron or a synthesiser - or just keep up to date with your hobby - don't miss Breadboard ' 80 .

AVOID QUEUES - GET ADVANCE TICKETS Send to: Advance Tickets, Modmags Lid, 145 Charing Cross Rid, London WC2H OEE

HEREITIS! THE BRAND NEW 8022 A HAND-HELD DMM
Consider the following features:
6 resistance ranges from 200 6 resistance r
ohm 20 ohms
8 current ranges from $2 \mathrm{~mA}-2 \mathrm{~A}$
8 curren
$A C$
10 voltage ranges from 200 mv-1000v DC-200 mc-750V
Pocket size - weigḥing only 370 gms .
Full overload protection - will withstand 6 kv spikes
Rugged construction - virtually indestructable
Meets tough military specs -
droo proof drop proof
In line, pushbutton operation for
single-handed useage single-handed useage Incorporates low power cmos All this plus a 2 -year full guaran.
For only $£ 75$ + vat

SOFT CARRYING CASE £7 extra

Even more sophiaticated the Fluke 8020A Identical in most respects to the 8022A but in addition incorporates a conductance range from $2 \mathrm{~ms}-200 \mathrm{~ns}$

Price $£ 112$

Carriage and insurance $£ 3.00$ A handsome soft carrying case is included (this model only)

DIGITAL MULTIMETERS GRAND NEW FROM FLUKEII! NOW AVAILABLE
THE 8024A HAND HELD DMM This model incorporates all the features of the 8020A but in addition has: A peak hold switch which can be used in $A C$ or $D C$ for volts and current functions. Audible continuity testing and level detection for sensing logic levels. A temperature (${ }^{\circ} \mathrm{C}$) range for use with a thermocouple. £135 Carriage and Insurance £ 3

 The 8010A is a general purpose, bench/porable digital multimeter with more tunctions
and features than ever othered for such a low price. Its companion, the $8012 A$ A. has
idenitical characteristics except that it has two additional low resisfance ranges. 28 and idenical characteristics oncept that it has two additional low resistance ranges, 28 and 20! to replace the 8010 A 's 10 ampere current range.
The 8010 A and 8012 A feature 10 voltage ranges from $200 \mathrm{mv}-1000 \mathrm{vdc} .200 \mathrm{mv}-75 \mathrm{vac}$. 3 conductance ranges from 2 ms . 200 ns . 20.7 resistance ranges from 2000.20 ma . 10 current ranges canges 10 A AC and 10 AOC . $2 \mathrm{~A} \mathrm{AC} / 0 \mathrm{C}$ - the 8010 A has iwo aaddional current 8010A £159 8012A £199

LOW COST, AUTORANGING MULTI-FUNCTION COUNTER MODEL 1900A

[^8]
bendix magnetic clutch

Superb example of electro-mechanics Main body in two sections, coll section lized with th' sleeve drive section cotating on outer Denmeter Uniling plate has " ${ }^{\prime \prime}$ " 10 bearing concentric with main sectron and 18 -tooth cog wheel Eutremely powerlul transmission 24 V DC $240 \mathrm{~m} / \mathrm{a}$	Dozens ot uses in Home. Farm Workshops \& Lab £4.75. P\&P:5p

S-2020TA STEREO TUNER / AMPLIFIER KIT
 NEW HIGH PERFORMANCE TUNER
 A high-quality push-button
 FM Varicap Stereo Tuner with pilot cancel decoder combined with a 24 W r.m.s. per channel Stereo Amplifier, using Bifet op. amps.

Briaf Spec. Amplifier Low tield Toroidal transformer. Mag. input. Tape In/Out facitity (for noise reduction unit, etc.) THD less than 0-1\% at 20W into 8 ohms. High Slew Rate. Low noise op. amps used throughout. Power on/off FET transient protection. All sockets, fuses. etc., are PC mounted for ease of assembly. Tuner section uses UM 1181 FET module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, ana phase-locked IC pilot cancel, stereo decoder, LED tuning and stereo indicators. Tuning range 88-108MHz 30dB mono S/N@ $0.7 \mu \mathrm{~V}$. THO 0.3%.

PRICE: £69.95 + VAT

NELSON-JONES Mk. 2 STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer ready built front end, triple gang varicap tuning. linear phase I.F. and 3 state MPX decoder.

NRDC-AMBISONIC UHJ SURROUND SOUND DECODER

The first ever kit specially produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years' research by the Ambisonic team. W.W. July, Aug.. 77. The unit is designed to decode not only UHJ but virtually all other 'quadrophonic' systems (Not CD4), including the new BBC HJ. 10 input selections. The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 2 input signals and 4 or 6 output signals are provided in this most versatile unit. Complete with mains powe supply. wooden cabinet. panel. knobs, etc.
Complete kit, including licence fee $£ 57.70+$ VAT or ready built and tested $£ 76.95+$ VAT

S5050A STEREO AMP

Very high performance kit
50 watts rms-channel. 0.015% THD. $\mathrm{S} / \mathrm{N} 90 \mathrm{~dB}$. Mags $/ \mathrm{n} 80 \mathrm{~dB}$. Output device rating 360 w per channe heatsinks.
Complete kit only $£ 69.95$ + VAT
 (Also available our 20w/ch BIFET S2020 Amp)

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval
The original "Wireless World" published Intruder 1 has been re-designed by Integrex to incorporate several new features, along with improved performance. The kit is even easier to build. The internal audible alarm turns off after approximately 40 seconds and the unit re-arms. 240 V ac mains or 12 V battery operated. Disguised as a hard-backed book. Detection range up to 45 feet. Internal mains rated voltage free contacts for external bells Complete kit $£ 52,50$ plus VAT, or ready built and tested $\mathbf{£ 6 4 . 5 0}$ plus VAT

Wireless World Dolby noise reducer
 Trademark of Dotby Laboratories Inc.
 Typical parformance Noise reduction better than 9dB weighted.

Complete Kit PRICE: $\mathbf{£ 4 9 . 9 5}+$ VAT (3 head model available)

[^9]Caiibration tapes are available for open-reet use and for cassette (specify which)
Single channel plug-in Dolby (TM) PROCESSOR BOARDS $(92 \times 87 \mathrm{~mm})$ with gold plated contacts and all components

Clipping level 16.5 dB above Dolby level (measured at 1% third harmonic content)
Harmonic distortion 0.1% at Dolby level typically 0.05% over most of band, rising to a maximum of 0.12%
Signal-to-noise ratio: $75 \mathrm{~dB}(20 \mathrm{~Hz}$ to 20 kHz , signal al Dolby level) at Monitor output

Dynamic range $>90 \mathrm{~dB}$
30 mV sensitivity
Price $£ 67.60$ + VA Price $£ 2.75$ + VAT Price $£ 10.50$ + VAT

We guarantee full after-sales technical and servicing facilities on all our kits, have you checked that these services are available from other suppliers?

All kits are carriage free
interrek limited
Please send SAE for complete lists and specifications Portwood Īndustrial Estate, Church Gresley, Burton-on-Trent, Staffs DE11 9PT
Burton-on-Trent (0283) 215432 Telex 377106

U．K．RETURN OF POST MAIL ORDER SERVICE，ALSO WORLDWIDE EXPORT SERVICE

GARRARD AUTOCHANGER CC10A
3 speed stereo cartridge．Plays all sizes of records．

HEAVY METAL PLINTHS

Silver grey finish．
Size $16 \times 14 \times 3$ ．
Post $£ 2.00$
$£ 4.50$
Special Timed Plastic Cover for above
$£ 6.00$
in． $\mathrm{C3} .50$
 $171 / 2 \times 91 / 2 \times 31 / 2 \mathrm{in}$ ．£3． $18 \times 121 / 2 \times 3$ in． \mathbf{E} ． $18 \times 13 \% \times 3$ ．in．wi．standup hinges

BSR SINGLE PLAYER DECKS
BSR P182 3 speeds flared aluminium furnabe ceramic cartridge E26
Post $£ 2.00$ ．

Ready cut mo

BSR C142 RIM DRIVE QUALITY DECK
Manual or automatic play．Two speeds．
Precision ultra slim arm．
Cueing device．Bargain price
$\varepsilon 20$
With stereo ceramic cartridge
Post $£ 2$
GSR PZO7 BUDGET SINGLE PLAYER ideal for disco or small two－speed Hi－Fi system with stereo cartridge $£ 15$
carridge and cueing device．

GARRARD 6－200 SINGLE PLAYER DECK
Brushed Aluminium Arm with stereo ceramic carrridge and Diamond Stylus，3－speeds．Manual and Auto Stop／Start Ready cul mounting board only $£ 1$ extra．
£22 pont E 2
ELAC HI－FI SPEAKER 10in．TWIN CONE

8 ohm impedanc
10 watts．RMS．
$£ 7.95$ posi 99p

POTENTIDMETERS Carbon Track

DP £1．30．Edge Pot 5K．SP 45p．Sliders Mono 65p．Stereo 85p．
EMI $131 / 2 \times 8 \mathrm{in}$ ．LOUDSPEAKERS crossover． 10 watt．With tweeter and
8 ohm． 15 watls
3 or 8 ohm

$£ 9.95$
 £10．95

SUITABLE BOOKSHELF CABINET ¢9．50．
Bass wooter．EMI
15 ohm． 20 watt．
10.95 Post 99p
THE＂INSTANT＂BULK TAPE ERASER Suitable for cassettes．and all sizes of tape with switch and lead
Head Demagnetiser small to
$£ 7.50$
RELAYS．12V DC 95 p． 6 V DC 85
BLANK ALUMINIUM CHASSIS． $6 \times 4-95 p ; 8 \times 6-$ £1．40； $10 \times 7-£ 1.55 ; 12 \times 8-£ 1.70 ; 14 \times 9-£ 1.90 ; 16 \times$ －£1．85； $16 \times 10-£ 2.20$ ．ANGLE ALI． $6 \times 3 / 4 \times 3 / 4 \mathrm{in}-25$ ， $16 \times 6-70 p ; 14 \times 9-94 \mathrm{p} ; 12 \times 12-\mathrm{E1} ; 16 \times 10-\mathrm{f1} ; 16$ PLASTICANDALI BOXES IN STOCK．MANY SIZES ALUMINIUM BOXES． $4 \times 4 \times 11 / 2 £ 1.4 \times 2 \times 2 £ 1.3 \times 2 \times$ 80 p． $6 \times 4 \times 2 £ 1.30 .7 \times 5 \times 21 / 2 £ 1.45 .8 \times 6 \times 3 £ 2.20 .10 \times$ $7 \times 3 £ 2.50 .12 \times 5 \times 3$ £2．30． $12 \times 8 \times 33$ ．
BRIDGE RECTIFIER 200 V PIV 4 amp \＆ 1.50 .8 amp £2．50． TOGGLE SWITCHES SP 30p．DPST 40p．DPDT 50p PICK－UP CARTRIDGES ACOS，GP91 £2．00．GP94 £2．50 SONOTONE 9TAHC Diamond E3．75．V100 Magnetic £6．50 RESISTORS． 100 to 10 M ． $1 / \mathrm{WW}$ ． $1 / 2 \mathrm{~W}$ ． 1 W ． 1 p ； 2 W 10 p
HIGH STABILITY． $1 / 2 \mathrm{~W} 2 \% 10 \mathrm{ohms}$ to 1 meg .8 p ． Ditto 5% Preferred values， 10 ohms to 10 meg .3 p

£6．50

MINI－MULTI TESTER
Deluxe pocket size precision moving 2000 o．p．v．Battery included 11 instantranges measure： DC volts $10,50,250,1000$ AC amps 0.100
Continuity and re ohms in wo rances．
Complete with Test Prods and instruction book showing how

J．V．C．BELT DRIVE STEREO DECK

 Detachable head，adjustable counter balance weight，hydraulic damped cueing platiorm，automatic pick－up arm return． 2 speeds，33 and 45 rmm ．suppression circuit to start stop switch． 240 V AC motor dynamic pendulous bias compensator Teak veneered motor．oynamic pendulous bias compensator．Teak
base． 19 in．$\times 141 / 2$ in $£ 9$ ．Plastic cover $£ 6$ ，post $£ 2$ ．
Recommended stereo magnetic cartridge E6． 50 extra
RCS SOUND TO LIGHT KIT Mk． 2 Kit of parts 10 build a 3 channel sound to light unit
$£ 18$
Easy to build．Full instructions supplied．Cabine E18 E4．50 extra．Will operate from 200 MV to 100 watt signal． 200 Wart Rear Reflecting White Light Bulbs．Ideal for
Lights．Edison Screw． 6 for $£ 4$ ，or 12 for $£ 7,50$ ．Post 50 p．
＂MINOR＂ 10 watt AMPLIFIER KIT £12．50 This kit is suitable for record players．guitars．tape playback， electronic instruments or stal PA systems．Wo versians 10 W per channel；input 100 mv ；size $91 / 2 \times 3 \times 2 \mathrm{in}$ ．approx．SAE details．Full instructions supplied．A

RCS STEREOPRE－AMP KIT．All parts to build ${ }^{-1}$ this pre－amp． control and PC Board $£ 2.95$
Can be ganged to make multi－way stereo mixers Post $35 p$
MAINS TRANSFORMERS ALL POST 99p

GENERAL PURPOSE LOW VOLTAGE

3 mmp 6． 8.			
10.0 .10 V 2amp$30 \mathrm{~V}, 5 \mathrm{mmp}$ and0			
			c1．
$30 \mathrm{~V} 11 / 2 \mathrm{mp} \mathrm{C} 3.002 \mathrm{amp}$			
	． 75	2.0	
Otransformers． 115 SV to 240V 150W LE．00 500W E10．00．			
ANSFORME			
3 a	¢4．00	6.12 voll 2 an	1.
2	E6．5	12 volt 4 a	

 LOW VOLTAGE ELECTROLYTICS ALL ${ }^{10 p}$ mid． 100 mfd． 250 mfd ．All $15 \mathrm{vgls} .22 \mathrm{mid} / 6 \mathrm{v} / 10 \mathrm{v} ; 25$ $\mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v} ; 47 \mathrm{mfd} / 10 \mathrm{v} ; 50 \mathrm{mfd} / 6 \mathrm{v} ; 68 \mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v} /$
$16 \mathrm{v} / 25 \mathrm{v} ; 100 \mathrm{mld} / 10 \mathrm{v} ; 150 \mathrm{mid} / 6 \mathrm{v} / 10 \mathrm{v} ; 200 \mathrm{mfd} / 10 \mathrm{v} /$ 16 v ； $220 \mathrm{mfd} / 4 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 330 \mathrm{mfd} / 4 \mathrm{v} / 10 \mathrm{v} ; 500 \mathrm{mid} / 6 \mathrm{v}$ $680 \mathrm{mid} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v}$ ． $1000 \mathrm{mtd} / 25 v / 4 v / 10 v$ ； 1500 mid $/ 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v}: 2200 \mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v}: 3330 \mathrm{mfd} / 6 \mathrm{v}$ ：
$4700 \mathrm{mfd} / \mathrm{AV}$ ．ALL 10 p ．
$500 \mathrm{mf} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$ ．
$1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p}: 50 \mathrm{~V} 50 \mathrm{p}$ ； 100 V 70 p ．
$2000 \mathrm{mF} 6 \mathrm{VV} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{D} ; 1200 \mathrm{mF} 76 \mathrm{~V} \mathrm{80p}$. $2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p}$ ．
4500 mF 64 V £2． 4700 mF 63 V £1．20． $2700 \mathrm{mF} / 76 \mathrm{~V}$ £ 1 5000 mF 35 V 85 p ．
high voltage electroirtics
$8 / 350 \mathrm{~V} \quad 35 \mathrm{p} \quad 8+8 / 500 \mathrm{~V} \quad 95 \mathrm{p} \quad 50+50 / 300 \mathrm{~V} \quad 50 \mathrm{p}$ $16 / 350 \mathrm{~V}$ 45p $8+16 / 450 \mathrm{~V}$ 75p $32+32 / 450 \mathrm{~V}$ 90p $32 / 500 \mathrm{~V} \quad 75 \mathrm{p} \quad 16+16 / 450 \mathrm{~V} \quad 75 \mathrm{p} \quad 100+100 / 275 \mathrm{~V} 65 \mathrm{p}$ $50 / 500 \mathrm{~V}$ £1．20 $\quad 32+32 / 350 \mathrm{~V} 50 \mathrm{p} \quad 150+200 / 275 \mathrm{~V} 7 \mathrm{TO}_{\mathrm{p}}$ $\begin{array}{llllll}8 / 800 \mathrm{~V} & £ 1.20 & 50+50 / 500 & £ 1.80 & 220 / 450 \mathrm{~V} & 95 \mathrm{p} \\ 16 / 500 \mathrm{~V} & 65 \mathrm{p} & & & 80+40 / 500 \mathrm{~V} & \mathbf{C 2}\end{array}$

SHORT WAVE 100 pf air spaced gangable tuner． 95 p ． TRIMMERS 10pF，30pF，50pF．5p．100pF， $150 \mathrm{pF}, 15 \mathrm{p}$ ． CERAMIC， 1 pF to 0.01 mF ．5p．Polystyrene 2 to $5000 \mathrm{pF}, 5 \mathrm{p}$ ．
PAPER $350 \mathrm{~V} .0 .17 \mathrm{p} ; 0.513 \mathrm{p} ; 1 \mathrm{mF} 150 \mathrm{~V} 20 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V}$ $20 \mathrm{p} ; 500 \mathrm{~V}-0.001$ to $0.0512 \mathrm{p} ; 0.115 \mathrm{p} ; 0.2525 \mathrm{p} ; 0.4735 \mathrm{p}$ ． MICRO SWITCH SINGLE POLE CHANGEOVER 20p． SUR－MIN MICRO SWITCH，25p．Single pole change over TWIN GANG，385p £1；500pF E1； $365+365+25$ 25 pF ．Slow motion drive $£ 1,12 \mathrm{OpF} 50 \mathrm{p}$ ． 3 Gang $365 \mathrm{pF} £ 2$ ． TRANSISTOR TWIN GANG．Japanese R
NEON PANEL INDICATORS 250 V 30 p ．
NEON PANEL INDICATORS 250 V 30p．
ILLUMINATED ROCKER SWITCH．single pole．Red 65 p ． WIRE－WOUND RESISTORS 5 watt， 10 watt 15 watt $15 p$ CASSETTE MOTOR． 6 VOII E1．00
CASSETTE MECHANISM．Stereo heads with motor $£ 5.00$

BAKER LOUDSPEAKERS

＂SPECIAL PRICES

WMODEL	SIZE		POWER	TYPE	OUR
	inches		Watts		PRICE
masor	12	4－8－16	30	H1－FI	£12
DELUXE WX II	12	$8-16$	15	H1－5	E14
SUPERB	12	$8-16$	30	Hi－Fi	£20
AUDITORIUM	12	$8-16$	45	H1－FI	£20
auditorium	15	$8-16$	60	H1－FI	¢29
GROUP 35	12	4－8－16	40	PA	¢12
GROUP 45	12	4－8－16	45	PA	15
GROUP 50	12	4－8－16	60	PA	¢20
GROUP 75	12	4－8－16	75	PA	E22
GROUP 100	12	8－16	100	PA	526
GROUP 100	15	$8-16$	100	PA	£29
DISCO 100	12	8－16	100	DISCO	E26
DISCO 100	15	$8-16$	100	Disco	£29

BAKER
50 WATT
AMPLIFIER

£69 Post $£ 2.00$
 Mixer，Volume Controls，Master Bass．Trebie and Gain Controls． 50 watts rim． s ．Three loudspeaker outlets $4,8,16$ ohms．
BAKER 150 WATT MIXER／POWER AMPLIFIER

volume controls．Will min

 mics，decks，musical $£ 89$

Slave version available $\mathbf{〔} 75$

FAMOUS LOUDSPEAKERS

＂SPECIAL PRICES＂				Post $£ 1.50$ e	
MAKE	model	\＄12E	WATTS POWER	OHMS	OUR PFICE
SEAS	TWEETER	4 in	50	8	¢7．50
GOODMANS	TWEETEA	31／2m	25	8	$£ 4.00$
AUDAX	TWEETER	3\％／in	60	8	£10．50
SEAS	MID－RANGE	4 in	50		£7．50
SEAS	MID－RANGE	5 in	80	。	£10．50
SEAS	MID－RANGE	41／4n	100	8	£12．50
GOODMANS	PULL－AANGE	51／2m	15	8	£6．50
GOODMANS	PULL－RANGE	8 in	20		£5．50
SEAS	WDOFER	8 in	30	8	£14．00
R．C．S．	GENERAL	10in	20	8	$\underline{8.50}$

BATTERY ELIMINATOR MAINS to 9 VOLT D．C．

 Stabilised output， 9 volt 400 m ．a．Ready made in plastic case with screw terminals．Safety overload cuin．Size $5 \times 31 / 4 \times 21 / 2 i n$ ．Transformer Rectifier Unit．Doubleinsulated．Suitable Radios，Cassettes，models，$£ 4.50$ ． post 50 p

GOODMANS TWIN AXIOM 8 inch dual cone loudspeaker． 8 ohm， 15 watt hifi unit £10．50．Post £1．Cabinet £10 £1．90． 3 －way $950 \mathrm{cps} / 3000 \mathrm{cps} . £ 2.20$
LOUDSPEAKERS PM $3 \mathrm{ohm} 7 \times 4 \mathrm{in}$ ．$£ 1.50 ; 61 / 2 \mathrm{in} . . £ 3.00$ $8 \times 5 \mathrm{in}$, E3．00； 8 in ．，E3．50．
SPECIAL
25
SPECIAL OFFER： 64 ohm， $2 \% / \mathrm{in}$ ．， 35 ohm， 3 in $25 \mathrm{ohm}, 3 \mathrm{in}, 5 \times 3 \mathrm{in} ., 7 \times 4 \mathrm{in},, 8$ ohm， $2 \mathrm{in} ., 2 \% \mathrm{in}, 3 \mathrm{in} \ldots 31 / \mathrm{in}$ 3 ohm ， 4 in ．， 5 in ．． $7 \times 4 \mathrm{in}$ ．．． $120 \mathrm{ohm}, 31 / \mathrm{in}$ ，dia，$£ 1.50$ each RICHARD ALLAN TWIN CONE LOUDSPEAKERS 8 in ．diameter $4 \mathrm{~W} £ 3.50$ ． 10 in ．diameter $5 \mathrm{~W} £ 3.50$ ； 12 in ．diameter 6 W 〔4．50． $3 / 8$ or 15 ohms，please state．
MOTOROLA PIEZO ELECTRIC HORN TWEETER E6．50 Handies up to 100 wat BLACK PLASTIC CONSTRUCTION BOX with brushe aluminium facia．Sturdy job．Size $61 / 4 \times 41 / 4 \times 2 \mathrm{in}$ ． E .50

GOODMANS RUBBER

SURROUND BASS WOOFER
Standard 12 in ，diameter fixing with
cut sides $12^{\prime \prime} \times 10^{\prime \prime} .14 .000$ Gauss cut sides $12^{\prime \prime} \times 10^{\prime \prime} .14 .000$ Gauss
magnet． 20 watts RMS 4 ohm imp． Bass resonance $=30$ c．p．s．
frequency response $20-8000$ c．p．s． BARGAIN，E8．50．Post £2
ALUMINIUM HEAT SINKS．FINNED TYPE
Sizes $5^{\prime \prime} \times 4^{\prime \prime} \times 1^{\prime \prime} 95 p .61 / 2^{\prime \prime} \times 2^{\prime \prime} \times 21 / 4^{\prime \prime} 45 p$
JACK PLUGS Mono Plastic 25p；Metal 30p JACK PLUGS Stereo Plastic 30p；Metal 35p． JACK SOCKETS．Mono Open 20p；Closed 25p
JACK SOCKETS Stereo Open 25p；Closed 30p． FREE SOCKETS－Cable end 30 p
2.5 mm and 3.5 mm JACK SOCKETS $15 p$
2.5 mm and 3.5 mm JACK PLUGS 15 p ． DIN TYPE CONNECTORS
Sockets 3 －pin，5－pin 10p．Free Sockets 3－pin，5－pin 25p
Pugs 3－pin 20p；5－pin 25p．
PHONO PLUGS and SOCKETS ea． 10 p
Free Socket for cable end ea．15p．
TV CONVERGENCE POTS 15 p each
Values $=5,7,10,20,50,100,200,250,470,2000$ ohms．

GAM6	12K7GT	PCF82	PLB4	EBFBO	EF80
6K8G	$35160{ }^{\text {a }}$	PCFE6 6	PY33	UFB5	EM 34
6076	954	PCLE2	PY80	ECC84	EF 36
6 V 6 G	UY41	PCLE4	PY82	ECF80	E8C33
120769	3524GT	PL81	PYa 3	ECLbo	EY51
$12 \mathrm{K8M}$	PCC84	PL82	E891	ECL82	EYB6
25	C	PL83		EF41	EZA

forls
 Zaerix Electronics Limited

46 Westbourne Grove London，W2 5SF

399 instrument cases and boxes in 10 styles now available－more to follow

INTERNEPCON
Stand 9126 Beige Hall in Brighton Centre

Telex： 261306
Tel：01－7275641

Conquer the chip．

Be it a career，hobby or interest，like it or not the Silicon Chip will revolutionise every human activity over the next ten years． Knowledge of its operation and its use is vital．Knowledge you can attain， through us，in simple，easy to understand stages．

Learn the technology of the future
today in your own home：

MASTER ELECTRONICS

－Buiding an oscilloscope．Recognition of components
－Understanding circuit daa －Carry out over 40 experiments on basic circuits and on digital electronics． Ti．

MASTER COMPUTERS

LEARN HOW TO REALLY UNDERSTAND COMPUTERS，HOW THEY WORK－THEIR＇LANGUAGE＇AND HOW TO DO PROGRAMS
－Complete Home Study library．－Special educational Mini．
Computer supplied ready for use．Self Test program exercise．
－Services of skilled tutor available

MASTER THE REST

－Radio Amateurs Licence．Logic／Digital techniques．
－Examination courses（City \＆Guilds etc．）in electronics
－Semi－conductor technology
－Kits for Signal Generators－Digital Meters etc．

E E E

．
paacticat lutcrionces cowutif tectmoloor OTHE Subler Ts
\qquad ww／10／817
BRITISH NATIONAL RADID \＆ELECTRONICS SCHOOL 4 CLEVELAND ROAD，JERSEY，CHANNEL ISLANDS．

NEW VALVES
 BRANDEO \＆ NDIVIDUALLY BOXED －AVAILABLE FRDM：

PM COMPONENTS LTD．

VALVE \＆COMPONENT SPECIALISTS CONINGSBY HOUSE WROTHAM ROAD，MEOPHAM KENT

${ }^{2} 134$	9.20	ecess	0.75	E221	9.50	0×2	1.75	P788 0.08	VR105／30	1.55	954	9.00
42179	9.20	eccal	0.75	Elsz2	9.58	ac3	1.05	PY500 1.55	VR150／30	1.55	15082	1.75
${ }^{2} 2293$	8.30	ECC199	0.90	Eun	8.05	003	1.55	Pr800 0.69	X61．2500	32.00	15083	4.50
${ }_{8158}$	32.20	Eccreat	0.53	${ }^{\text {E M M }}$	0.75	am ${ }^{\text {a }}$	1.05	PY\＄01 0.69	Y11080	29.90	155016	33.65
8117	74.75	ECC807	1.50	El38	10.90	0 m_{5}	1.75	083．300 32.50	2759	10.35	8114	7.00
038	21.85	ECF50	0.75	EH91	1.94	PCs9	0 \％	OQVO2－6 9．50	2033	20.70	807	1.25
077	0.63	Ecta	0．69	E1992	2.95	PC97	0.98	DOYO3 10 2．t5	2 Cl 140	9.20	${ }_{18} 13$	13.00
D．170	1.32	ЕСН81	0.67	Ev51	0.92	PCC84	0.55	govazaza	${ }^{215154}$	13.25	${ }^{833}$	55.00
DM160	2.40	ECM83	0.90	ETM	10.35	PCC85	0.62	14.0	2021	1.45	886	2.85
Dr86／87	0.63	ECM84	1.10	EY86／	0.68	PCCR8	0.92	00006 400	2021w	3.45	56	4.50
OYS 52	0.69	Echa	0.76	E230	0.55	PCC99	0.92	16.00	3／147J	0．65	56	5.90
E55i	21.85	E1282	0.67	E281	0.64	PCCL189	0.92	90206－400	3A／167m	11.05	5722	4.50
1socc	5.45	Eccas	1.30	E290	1.10	P480	0.83	45.2	3／17E		5128	1.73
Esocr	9.75	eclas	0.85	61／371	23.00	PCF82	0.80	0512003.60		500.00	5727	3.45
180F	7.20	ECL85	0.85	6 610	13.25	PCr86	1.26	05120981.75	4 Cx 2508	25.00	5149	3.45
¢810	4.50	ECL 85	0.85	6月16	7.45	PCF200	1.72	OS1212 3.75	58／254m	17.25	5763	3.65
tall	6.50	E¢37	3.45	6T16	12.65	PCF201	1.72	OV0312 12.75	58／255m	1725	5042	7.45
Eazce	2.60	EF39	2.30	buso	13.50	PCFPO1	1.06	QVas $25 \quad 1.45$	5R46Y	1.45	5879	4.50
E83CC	3.45	छ80	0.55	6xul	13.25	PCLICP	0.76	Or3－125 $\quad 35.00$	5月4w	2.15	5963	1.75
E835	3.45	EF85	0.55	6xU50	13.80	PCP805	1.75	01425060.00	51.46	105	5955	3.45
E36C	6.90	EFE6	0.80	6Y501	1.44	PCFP806	0.69	0V4－400 70.00	5246	1.05	5993	6．90
188 C	3.45	Efrg	0.75	6732	0.87	CFP808	1.70	（1）5500 52．50	6156T	1.84	5005	5.45
E8CCL	3.00	EF91	1.40	6233	213	PCH200	1.00	AE1－125 9.00	${ }_{6165 Y}$	2.25	6057	3.15
E83CC－D	4.15	Ef93	0.75	6234	200	PCLB2	0.78	R61－240a 13.50	61661	1.94	6059	5.75
f91F	5.15	Ef94	0.75	6237	2.13	PCLEA	0.83	AE3－250A 13.50	651761	1.21	5050	1．38
E9SF	5.15	ef95	0.90	K761	4.00	PCLIS	0.80	S月S361 34.50	6S14769	1.05	5063	3.65
t130	14.95	［183	0.64	KTE6［USA］		PCLS 5	0.85	STY280／40 9.20	5v66T	1.20	6067	3.45
E180C0	4.60	Efim	0.64		4.60	PCL 805	0.86	STV280／40	12847	1.05	6080	4.85
E180\％	6.50	EHSO	0.75	KT66［UK）		p0510	3.28	26.45	12.1	17.25	5146	4.75
E182CC	5.15	EK90	0.75		11.50	P¢P200	1.30	T72．1254 34．50	12SN1761	1.85	6201	4.50
E188CC	3.40	EL33	287	KT77	4.00	P．36	1.10	TY\％2504 32.20	25466	1.40	6267	460
${ }^{\text {E810\％}}$	9.50	E134	1.77	KTEA MSA		Pr81a	0，85	TY4．500A 47.75	30 Cl 18	1.75	6829	7.50
eabcso	0.65	E136	1.8	（1）	6.90	PLI82	0.60	$\begin{array}{ll}195 & 13.50\end{array}$	3072	120	6870	13.25
EMBC1	1.60	${ }^{\text {E137 }}$	4.50	（89［u｜		P184	0.75	$425 \quad 0.78$	30×14	1.70	${ }^{7025}$	1.75
${ }^{\text {eag }}$	0.60	ELS1	1.25		13.80	P．L504	1.30	U26 0．78	30P． 14	1.20	${ }^{7032}$	8.90
ECCS 1	0.63	E184	0.69	WE1400	4.60	P658	1.70	UCM81 0．80	${ }^{8541}$	6.20	7318	8.90
eccas	0.63	E185	1.10	Me1402	5.15	P1509	265	ULi 18280.80	8502	1.45	7360	8.65
ecxas	0.69	11.90	0.94	W78	10.25	H．519	3.00	UL64 0.89	soci	1.55	1551	5.15
есСа4	0.69	E195	0.34	OM2	0.90	P1802	3.25	U785 0．80	90C6	12.50	7558	8.90
Eccas	0.6	13300	10.3	082	0.95	PY8）	0.62	U． 5631	9246	9.00	7687	8.

MANY OTHER TYPES AVAILABLE，INCLUDING SPECIAL QUALITY \＆VINTAGE．PLEASE PHONE OR SEND LIST OF YOUR REQUIREMENTS

[^10]Prices subject to change withour notice．

EXPORT\＆TRADE enquiries welcome．
Phone our sales desk
0474813225

gAY TAA FAST PCB BiHYTOTOR PROTOTYPES

SAMME CAV ロ[SEPATET

Prototype epoxy glase printed clrcuit bosrde up to $250 \mathrm{~mm} \times 200 \mathrm{~mm}$ from your camer ready artwork.
Up to $125 \mathrm{~mm} \times 100 \mathrm{~mm}-\mathrm{E} 18+\mathrm{VAT}$ per side elched only, drilling $\mathrm{E} 5+\mathrm{VAT}$ Up to $250 \mathrm{mmx} 200 \mathrm{~mm}-\mathbf{£ 2 4}+$ VAT per side etched only drglling $\mathbf{£} 10+\mathrm{VAT}$ Send your order with arwork cheque and insiructions-orders recewed by 10 am .
guaranteed despalched furst class same day etched only (nexi day etched and drilled) or your money refunded. subject to acceptance of ariwork
 42 Blackhouse Road, Huddersfield HD2 1AR (625) -WW - 093 FOR FURTHER DETAILS

FREQUENCY COUNTERS—OFF/AIR RECEIVERS
250 MHz
801 B E250
Crystal oven
3 parts 10

OFF/AIR RECEIVER TYPE 103 PRICE 1135

401A 801B/M 250 MHz Did $901 \mathrm{M} \quad 520 \mathrm{MHz} 8$ Digit $£ 325$ $1001 \mathrm{M} \quad 1-2 \mathrm{GHz} 8$ Digit $£ 550$
20 models available including LED versions
RCS ELECTRONICS
WOLSEY ROAD
ASHFORD, MIDDX
Phone 53661

SPECIAL AUTUMN OFFERS! TELETEXT

Kits, Components \& Ready-Builts

WW-059 FOR FURTHER DETAILS

COM

To: General Sales Manager, Room CP34
ORDER FORM IPC Business Press Ltd., Dorset House. Stamford Street, London SE1 9LU
Please send me..............copy/copies of Hi Fi Year Book and Home
Entertainment 1980 @ £4.25 a copy inclusive. remittance enclosed. Cheque/p.o. should, be made payable to IPC Business Press Ltd.
Name...
(please print)
Address.

Registered in England No. 677128
Registered Office: Dorset House. Stamford Street. London SE1 9LU
ww

WW - 0.30 FUR FURTHER DETAILS

This is an ideal low-cost controller for production. test and laboratory applications. It has a simple interface to the outside world - we can design special hardware if required programmed in BASIC or Assembler.

King Pin Computers

UNIT 38, WEDGWOOD WAY, STEVENAGE, HERTS
TEL: (0438) 56049

KELVINATOR Environmental Control cahinet - 90 in 170 F used condhtion but in workinsi ordes buyer collects $\quad \mathbf{5 4 0 0 . 0 0}+$ VAT	
的 prome	(
MARCONI Type TF7910 carrer deviatron meter very gand condition pew anly f90.00+VAT	
MARCONITyPe TF 1060 wh l signal generator 0.1200 MHz lew only $660.00+\mathrm{VAT}$	
MARCONI Tyne TF1054 vhi signal generator 68.108 MHz $118.185 \mathrm{MHz}_{2} 450.470 \mathrm{MHz}$ am and fm qood condition 〔 $80.00+$ VAT	
TARTAN Educanonal systems demnnstrator with module display and storage ideal for schools or cotleges Contains circuit panels of high voltage nower supply iv regulated power supply triode pentode amp. complementary symmetry multivibrator and simple transistor curcunts delpuery at cost E $100.00+$ VAT	
VARICAP TUNER MEADS 4 buton type 22 k res with AFC switch and station indicator Brand new $\mathbf{5 2 . 0 0 + V A T}$	
SCREWS Pack of nut, bolts washers lags sell taps erc mixed 8 A and metric Sold by weight oer kilo	
LOW VOLTAGE ELECTROLYTICS Pack of mumed values and volinges androx 100 utems E1.50 + VAT	
JAYBEAM STARBEAM U.H.F. Set top aerials boxed and new $£ 2.00+$ VAT	
TR10 CS 1562 A 10 MHz riggered sweep oscilloscone $\mathbb{2 5 9 . 0 0}+$ VAT HAMEG OSCILLOSCOPE NM 307 LPS triggering bandwidth DC in 10 MHz component tester Timebase O2 US O2 ${ }^{\prime} \mathrm{CM} \quad \mathrm{E} 149.00+$ VAT HAMEG HZ 36 switchable probe ndeal for NM 307 $\{11.00+$ VAT ISEPSLOTTED HORIZONTAL RAIL in 9 ft lengihs $64.00+$ VAT RADIOGRAM LIO PUMPS Few nnly $₹ 11$ no each or 2 ft	
RADIOGRAM LIO PUMPS Few only 11100 each or 2 tnr$\text { \& } 1.50+\text { VAT }$	
40×250 bases bra	
-	
R RADIO LOUDSPEAKER Cha	
(y) E2 50 each or 2 lor	
HIGM QUALITY RELAYS 4 pole C $/ 03 \mathrm{O}$ contacrs 12 v OC coll	
RIGHT-ANGLEO U.H.F. SERIES AOAPTORS PL259 to 50359	
each + VAT	
IC TEST CLIPS clip over iC whilst still soldered to PCB or in socket gold plated pins ideal for experimenters or service enymeers 25 pin dil $\{1.75$	
niated pins ideal for experimenters or service enymeers 25 pan dil $E 1.75$ 40 pan dill $£ 2.00$ save by buying one of each $\mathbf{£ 3 . 5 0 + \text { VAT }}$	

badio telephone equipment

PFS	
PYE PF2 U8 1 band ideal lor 70 cm These sets are in as new con	
($\quad 880$ each + VAT	
¢45 each + VAT	
	c 45 each + VAT
PYE WESTMINSTER W 15 AMO mid band multi-channel sets only nn	
PYE REPORTER MF6AM. High hand spls complete buit less cranlias	
E RTC Controller unis lor remotely controlting V HF or U	
E WESTMINSTER W15AM. High band and low hane	
Sets complete and in goont condilion but are less speakers mikes cradles and LT lears isets nniy) E 70 each + VAT	
PYE BASE STATION F.27. LOW ANO HIGM BAND. FEW OnIY E 75 each + VAT	
PYE BASE STATION F3OAM. Low and high hand with and withuat	
PYE CAMBRIDGE AM 108 ithol mmintl low hand 12.5 KHz sels only	
PYE U.H.F. LINK	
F30 AM spares Mod trans	
Mans trans 55.00 each $80+40$,	
$650.00 \rightarrow \text { VAT }$	
PYE T412 UHF base station one only	¢250
PYE T150 HIgh	
	EF460/470
control geat $¢ 20$ each + VAT	
PYECAMBRIDGE AM 10 D low band dash mount fair condition	
Riage on m/t equipment mobiles f	

IC AUDIO AMP P.C.B. Oulpu? 2 watts into 3 nhm sneaker 12 valk
 NICAD CWARGER CONVERTER P.C.B. LLow power nverien) Sye
 the boand fitted with star- type heatsink inot suppothedt
10. $7 \mathrm{MHz} \times$ TAL FILTERS 124 KHz Bandwidrh) Low imn yypé cartupt
and unwanted sideband repection min - 40 de (neads 1089835 and
 LOW PASS FILTERS How imp rypel 29 HM , Small metal XTALS FOR TV SYNC. GEN. 2025 KHz for 405 lines B7G glass type TV OFF AIA RECEIVER KIT. Comatns Mulard EtC 1043 , O5 runer $\{10.00+$ VAT WIRE WOUND RESISTORS 330 ohn 5 watt $5^{\text {W/ }}$ vartical moumting WRE WOUNO RESISTORS 5 K 17 wall 5\% wertical wait 8 wertical monntung flam TWIN MAINS LEAD $2 \times 05 \mathrm{~mm}$ whte 100 mplees $\quad \mathbf{E 6 . 0 0}+$ VAT WIRE WOUNO RESISTORS $2 R 710$ walt 10 Her herzontal mounting Hamp prmil boto
 SKELETON PRESETS, slandard type $10 \mathrm{~K} £ 5.00$ per $1,000+$ VAT
 REOWING REFRIGERATED MILK CABINET and dispenser takes 3 ec portable ty fere

TERMS OF BUSINESS: Cheques or P.O. with order, made payable to B. Bamber Electronics, or phone your Access or Barclaycard No. Please add 15% VAT on all goods advertised after adding postage as applicable CARRIAGE: Orders under $£ 5$ nett invoice add 75 p. Orders over $£ 5$ but less than $£ 20$ add 50 p. Orders over $£ 20$ carriage paid. Callers welcome. Tues.-Sat. 9.30 a.m.-5.30 p.m.

B. BAMBER ELECTRONICS
 DEPT. W.W., 5 STATION ROAD, LITTLEPORT, CAMBS CB6 10 E

 TEL: ELY (0353) 860185

WW - 082 FOR FURTHER DETAIL.S

great deal from arshall's

We are old established specialist electronic component distributors carrying a very wide range of quality stock We are franchised distributors for Arrow Hart switches: Mullard; National; Siemens; Texas; Thomson; CSF etc.

Send for our latest 60 page catalogue. Free to industrial customers: 65p post paid to private individuals.

New lines not yet in catalogue are new range Sinclair (Thandor) meters; Crimson Elektrik High F Modules; Rechargeable Nickel/ Cadmium Batteries; Send S.A.E. for details.
A. Marshall (London) Ltd., Kingsgate House,
Kingsgate Place,
London N.W. 6 4TA.

Industrial Sales: 01-328 1009
Mail Order: 01-624 8582
Retail Branches: London: Glasgow: Bristol

Thexiling Whe new name in Hinearl/Cs

Analog Systems, the fest growing linear I/C company of Arizona whose products are available from Pascall, offer a wide range of high performance linear integrated circuits.

Audio Amplifiers and pre-amplifiers

MA 700 Hi Voltage Op Amp $\pm 13 \mathrm{~V} / \mathrm{\mu S}$ slew rate for O / P swings to +40 V2 MHz GBW product, audio S/N ratio 140 dB
MA 60391-80391 equivalen to LM 391N-60/80

MQ 328 Voltage Variable Gain Block. 100 dB dynamic range. 2 MHz B/W and $800 \mu \mathrm{~S}$ settling time

Send for full product listings of Analog Systems exciting
product range

MA 332 Audio Operational Amplifier 0.0002% THD, $4 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ input noise voltage. $\pm 20 \mathrm{~V} / \mathrm{\mu S}$ slew rate and 20 V O/P swing into 600 ohms

TV TUBE REBUILDING

Faircrest tngineering Ltd., manufacture a comprehensive range of equipment for processing all types of picture tubes colour and mono. Standard or custom built units for estab lished or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team
rull training courses are indiviaually tailored to customers requirements

For.full details of our service contact Neil Jupp

FAIRCREST ENGINEERING LTD.

Willis Road, Croydon, CRBO2XX $01-6841422,01-6898741$

WW - 028 FOR FURTHER DETAILS

FT3 NEON FLASH TUBE

High intensity multi turn high voltage, neon glow discharge flash tube. Design for ignition timing etc. E1.50. PR P 25p
($\mathbf{E 2 . 0 1}$ inc. VAT) 3 for $\mathbf{E 3}$. P\&P 50 p ($\mathbf{E 4 . 0 3}$ inc. VAT \& P). WHY PAY MORE?
MULTI RANGE METERS Type
MF15A. AC/DC volis $10,50,250500$ 1000 Ma 0.50 .100 .100 . Sensitivity 2000 V 24 ranges dimensions $133 \times 93 \times 46 \mathrm{~mm}$. Price $£ 7$.
P\&P ($\varepsilon 8.63 \mathrm{inc}$. VAT \& P.).

- Inpur 230 V A.C. Fully isolated outpur. 10 mm spark. - Approx. 15 KV . Built-in 10 sec . Timer. Easily modified - for boiler ignition. Dozens of uses in the field of physics and electronics, e.g. supplying neon or argon tubes, etc, E.M.T. stanter for lasers, xenons, C.S.I. lamps, Van de - Graatf Generator, loss of vacuum detector, Ouidini coils, - elc, etc. Size: Lgth 155 mm . Wdth 85 mm . Ht 50 mm . Wi 530 gms. Price $£ 5.00+85 p$ p. \& p. (Total incl. VAT: 230 VOLT AC FAN ASSEMBL
Powerful continuously rated AC motor compliate with 5 blade $6^{1 / 2}$ or 4 blade $3^{\prime \prime}$
aluminium fan. New reduced price $£ 3.50$ P\&P 65 p (E4.77 inc. VAT \& P.) N.M.S. A.E.G. CONTACTOR

Type LS6/L11. Coil 240 V 50 Hz . Contacts -3 make 600 V 20 amp 1 break 600 V 20
ARROW-HART MAINS CONTACTOR
Cat. No. 130A30
Coil 250 V or 500 V AC. Contacts. 3 make 50 amp up to
660 V AC 20 hp at 440 V 3 phase 50 Hz . Price $\mathrm{£7.75+P} \mathrm{\& P}$ 660 V AC 20 hp at 440 V 3 phase 50 Hz . Price $£ 7.75+\mathrm{P} \& \mathrm{~F}$ $£ 1.00$ (Total inc. VAT \& P £ 10.06). N.M.S.

SMITH BLOWER

Type FFB. 1706. Small quiet smooth running. 240 V AC operation. Output aperture $45 \times 40 \mathrm{~cm}$. Overall size
$135 \times 165 \mathrm{~mm}$. Flange mounting. Price: $£ 4.25$ P\&P 750 . ($£ 5.75$ incl. VAT \& P). N.M.S. Other types available SAE for

24V DC BLOWER UNIT

USA made 24 V DC 0.8 amp blower to operates well on 12 V 0.4 amp DC producing 30 cu ft min at normal air pressure. Maximum housing dia 110 mm , depth inc motor 75 mm ,
nozzle length 19 mm , dia 22 mm . Ideal for cooling mobile equipment, car, caravan, etc. E4.50 P\&P 75 p (£6.04 inc.
VAT \& P) N.M.S.
Airflow Development Ltd.
CENTRIFUGAL BLOWER UNIT powered by G.E.C. $230 / 250 \mathrm{~V}$. $2,850 \mathrm{rpm}$ motor producing approx. 120 cfm . Aperture: $65 \times 90 \mathrm{~mm}$. O verall size $222 \times 225 \times 195 \mathrm{~mm}$ incl. starter capac. Price: $£ 16.00+P \& P £ 2.00$ (total inc. VAT £20.70). N.M.S.

MINIATURE UNISELECTOR 12 V 11 way 4 bank (3 non-bridging, inc. VAT \& P).
MICRO SWITCHES

Sub. Min. Honeyweil Lever m/s type 3115 m

These V3 types.

Butto
VAT)
Short Lever type. 1 6amp. raling (Grouzet)
E4.00 ($£ 4.60$ incl. VAT)
Roller Type (Bonnella). 10 for $£ 3.50$ ($£ 4.37$
HEAVY DUTY SOLENOID
Mig by Magneric intermitrent operation. approx. 201b. pull a at 1.25 in Ex equip. Tested. Price $£ 5.50$
$75 p$ P P ($£ 7.19$ inc. VAT \& P) R\&T

12 V DC SOLENOID

12 V OC heavy duty Solenoid 4 kp pull. Easily removable from plate. Ali. chassis containing $4 \times 24 \mathrm{~V}$ DC Push Solenoids ($11 / 2 \mathrm{lb}$ approx). 5 -fig Counter. 6 min photo cells.
, Sub-min Microswitches etc. etc. Ex-equip London Transport Sub-min Microswitches etc, etc. Ex-equip London Transport
Printer. Price: $£ 9.00+£ 1.00 \mathrm{p}$ \& p . (1otal incl. VAT Printer. Pri
12V DC SOLENOID
 \& P).
TYPE AG/TG
TYPE AG/TG
$18-24 V$ DC 70 ahm Coil Solenoid. Push or Pull Adjustable travel to $3 / 16 \mathrm{in}$. Fitted with mounting brackets and spark suppressor. Size $100 \times 65 \times 25 \mathrm{~mm}$. Price
30 p P\&P (min 3 off) ($\mathbf{E} 3.10$ inc. VAT \& P)
Westool Series D6 Model A3. 24 V D.C. Price £1.50 +50 p P\&P ($£ 2.30 \mathrm{incl}$. VAT). Westool Series D4 Model A 24 V D.C. Price £1.00 + 30p P\&P (E1.50 incl. VAT). INSULATION TESTERS (NEW) Test to I,E.E. spec. Rugged metal conconsiant speed clutch. Size L $8 i n$. W 4 in. H Gin, weight 6 lb
500 VOLTS 500 meghohms $£ 49.00$ Post 80 p (557.27 inc. VAT \& P). 1000 VOLTS 1000 megohms E55.00 Post $80 p$ (E64.17 inc. VAT \& P). SAE for

YET ANOTHER OUTSTANDING OFFER New 1 MFD 600 V Dubilier wire ende
¢1.50 P\&P 50 p ($\$ 2.30$ inc. VAT \& P).

VARIABLE VOLTAGE TRANSFORMERS
INPUT $230 / 240 \mathrm{~V}$ s.c. $50 / 60$ OUTPUT
VARIABLE 0-260V
200W 1 amp inc. a.c. voltmeter $£ 14.50$ 0.5 KVA ($21 / 2 \mathrm{amp}$ MAX) $\quad £ 18.00$ 1 KVA (5 amp MAX) 2 KVA (10 amp MAX) 3 KVA (15 amp MAX) 5 KVA (25 amp MAX) 10 KVA (50 amp MAX) $17 \mathrm{KVA}(75 \mathrm{amp}$ MAX) $) \cdots \mathrm{E} \quad \ldots 68.00$ 3-PHASE VARIABLE VOLTAGE

TRANSFORMERS
 $E 106.43$

All plus Carriage

3 KVA (max. 15 amp)

10 KVA (max 50 amp) £327.43
CARRIAGE, PACKING \& VAT EXTRA

LTTRANSFORMERS

 (E26.05 inc VAT \& P)
$0.6 \mathrm{~V} / 12 \mathrm{~V}$ at $20 \mathrm{amp} £ 16.20 \mathrm{P}$ \& $\mathrm{P} £ 1.00$ (inc. VAT £19.78) 0.12 V at 20 amp or $0-24 \mathrm{~V}$ at $10 \mathrm{amp} £ 12.00$ P\&P $£ 1.50$ (E15.53 inc VAT \& P).
$0.6 \mathrm{~V} / 12 \mathrm{~V}$ at $10 \mathrm{amp} £ 9.10$ P\&P $£ 1.60$ (inc. VAT £12.19) $0-6 \mathrm{~V} / 12 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V} / 20 \mathrm{~V}$ at 20 amp E $20.90 \mathrm{P} \& \mathrm{P}$ £2.00 C26.34 inc. VAT \& P)
-10V/17V/18V at $10 \mathrm{amp} £ 11.55 \mathrm{P} \& \mathrm{P} £ 1.50$ (inc. P\&P £15.35)

TR POWER RHEOSTATS

amel embedded winding, heavy duiy amel embedded winding, heavy 25 WATT $10,25,100,150,250,500,1 \mathrm{k}, 1.5 \mathrm{k} \mathrm{ohm}$ £2.80 Post 20p ($£ 3.45$ inc VAT \& P). 50 WATT 250 ohm £2.90 Post 25 p ($£ 3.62$ inc VAT \& P). 100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 300 / 500 / 1 \mathrm{~K} / 1.5 \mathrm{k} /$
$2.5 \mathrm{k} / 5 \mathrm{kohm}$ £6.90 Post 35 p ($£ 8.34$ inc. VAT \& P).

Black Silver Skirted Knob calibrated in Nos 1.9 ,
dia brass bush. Ideal for above Rheostats 24 p ea.

STAOBE! STROBE! STROBE!

HY-LIGHT STROBE KIT Mk. IV

* Latest type Xenon white light tube. Solid state timing ad ingtable 1.20 f.p.s. Designed for large rooms, halls etc. Light output greater than many (so called 4 joule) etc. Light outpur
strobes. Price: $£ 22.00$ post $£ 1.50$ ($£ 27.03$ inc. VAT $\& 1$ strobes. Price: $£ 22.00$ post $£ 1.50$ refecially designed case and reflector for Hy-Light £9.00 Post $£ 1.00$ ($£ 12.08$ inc. VAT $\&$ P). U
* FLUORESCENT TUBES
4.4 ft 40 watt $£ 8.70$ (callers only $\mathrm{E1} 0.00$ inc. VAT). 2 ft * 20 wotts E6.20. Post 75 p ($£ 7.99$ inc VAT \& P). (For use

K Mini 12 in 8 warr $£ 2.80$. Posi 35 p ($£ 3.62$ inc VAT \& P)
 Complete ballast unit for either inc VAT \& P). 230 V AC op. $£ 4.50$ plus P\&P 35 P ($£ 5.58$ inc VAT $\& P$ Also a available for 12 V DC op $\$ 4.50$ plus P \& P 35 p . * (E5.58 inc VAT \& P).

* 400W UV lamp and ballast complete £38.00 Post $£ 3$ (EA7.73 inc VAT \& P). 400 watt UV lamp only £14.00. \#

REED SWITCHES

Size $28 \mathrm{~mm} \times 4 \mathrm{~mm}$ dia. Price: 10 for $\mathrm{E} 1.00+$ P\&P 20 p (total incl. VAT E1.38). 100 for E8.00 + P\&P 30p (total inc. VAT ©9.55).
WIDE RANGE OF DISCO LIGHTING EQUIPMENT S.A.E. (Foolscap) for details. XENON FLASH GUN TUBES Range of Xenon tubes avajlable

RELAYS
 Wide range of $A C$ and $D C$ relays write in your enquinies

230/240V AC Relays: 50 (E. 1.96 inc. VAT \& P). T.E.C Arrow type $3 \mathrm{c} / 010$ amp $£ 1.10$ (E1.50 inc. VAT \& P P). $3 \mathrm{c} / \mathrm{o}$ sealed 11 pin base £1.25 P \& P 25p ($£ 1.73$ incl. VAT) KMK1 Relay. $230 \mathrm{VAC} 1 \mathrm{c} / \mathrm{o}$. Open type 10 amp contact, mf . by "Keyswitch $80 \mathrm{p}+20 \mathrm{p}$ P \& P ($£ 1.15 \mathrm{inc}$. VAT). 5 for モ. 3.75 post paid ($\mathbf{E} 4.32$ inc. VAT). DC Relays: Open type $9 / 12 \mathrm{~V} 3 \mathrm{c} / 07 \mathrm{amp} \mathrm{E} 1.00$ (E1.38 inc VAT \& P). 11 -pin £1.35 (E1.78 inc. VAT \& P) 24 V Sealed $3 \mathrm{c} / 07 \mathrm{amp} 11 \mathrm{pin} £ 1.38$ (Ef.78 20 p (amps $=$ contact rating) P\&P on any relay
Very special offer. $012 \mathrm{~V} D \mathrm{C} .2$ make c for £1.75 plus 25p P\&P (inc VAT £2.30). Diamond H heavy duty $A C$ relay $230 / 240 \mathrm{~V}$ AC. two $\mathrm{c} / 0$
contacts 25 amps res at 250 V AC $\in 2.50$ P\&P 50 p ($£ 3.45$ inc. VAT + P\&P) Special base 50 p .
HELLERMAN DEUTSCH. Hermetically sealed sub.-min. Relay. 12-24V. D.C. $2 \mathrm{c} / 0850 \mathrm{ohm}$ coil. 0.2 pitch. P.C mounting. L. 20 mm . W. 10 mm . H. 12 mm . Fraction o
maker's price: $\mathbf{E} 2.50$ post paid ($\mathbf{~} 2.88 \mathrm{incl}$. VAT). N.M.S.

METERS (New) - 90mm DIAMETER AC Amp. Type 62T2: 0-1A. 0-5A, 0-20A. AC Volt, 0.15 V . 0.300 V . DC Amp. Type 65 C 5
0.2 A
0.10 A
0.20 A
0.50 A DC Volt. 0.15 V . 0.30 V . All types $£ 3.50$ ea plus P\&P 50 p ($\mathbf{£ 4 . 6 0 \text { inc }}$ $0-50 A$ DC. $0-100 \mathrm{~A}$ DC. Price E5.00 plus 50 p P\&P (E5.94 ine VAT).

24V D.C. Reversible Motor
Garvatux type ratio 30.1 . Current 6.8 amp . Rating cor. 133 rpm .65 mbo in.
 150 mm , Shati dia. 16 mm . Price E16.00
VAT). N.
60 mpm toOth in

100 rpm 110 V AC 115 sibe , in. 50 Hz . 2.8 amp .
Single phase split capacitor
Single phase split capacitor. Sommense power.
Totally enclosed. Length 250 mm . Dia. 135 mm .

$8.000+75 \mathrm{p}$ P\& ($£ 10.05 \mathrm{inc}$. VAT).
200

12 V DC type SD2 Shunt $1 / 30$ th ph continuously rated 4.000 rpm . Mf. PARVALUX. Price $£ 10.00+P \& P$ (E12.35 inc. VAT). N.M.S.
1 rpm $230 / 240 V$ AC SYNCHRONOUS GEARED Motor. Mf.
HAYDON $2 \mathrm{rmm} 230 / 240 \mathrm{~V}$ AC Synchronous Motor. Mf. CROUZET. Either type $£ 3.90+30 \mathrm{p}$ P\&P ($£ 4.83$ inc. VAT). N.M.S.

24V DC GEARED MOTOR

$24 V$ DC $200 \mathrm{rpm} 10 \mathrm{lbs} / \mathrm{ins}$ continuously rated geared Motor mfg by either Parvalux or Canter. Easily removable
from heavy ali chassis containing $9 \times 24 \mathrm{~V}$ DC Solenoids. from heavy ali chassis containing $9 \times 24 \mathrm{~V}$ DC Solenoids.
microswitches, friction clutch, precision gearing. etc, etc. microswitches, friction clutch, precision gearing. etc, etc. Ex-equipment London Transport Ticket Printe
$£ 11.00+£ 2.00 \mathrm{p}$. \& p . (total incl. VAT $£ 14.95$).

ROTARY CARBON VANE VACUUM \&

COMPRESSOR
Direct coupled to $1 / 3 \mathrm{~h} .0 .110 / 115 \mathrm{VA.C}$. . Motor 4.2 amp .1380 rpm
 Suitable transtormer for 240 V op E10.00 P. \& P. $\mathbf{E 2 . 0 0}$ (E13.80 incl.

REDUCTION DRIVE GEARBOX

Ratio 72 . 1 input spindle $1 / 4 \times 1 / 2 \mathrm{in}$. Output spindle $3 / 6 \times 3$ in long. Overall size approx $120 \times 9 \mathrm{~B} \times 68 \mathrm{~mm}$. All metal construction. Ex-equip
(22.88 inc VAT \& P)

AC Wkg TUBULAR CAPACITORS

fraction$1.5 \mathrm{mod} .$	440 VaC					
		${ }_{60 p}$	10	mod.	400 V AC 400 V AC	
mid.	250 V AC	${ }^{60}{ }^{\text {p }}$	14	mid.	400 VAC 250 V AC	¢ $¢ 1.50$
mid.	450 VaC	75p	15	mid.	250 V AC	
2.2 mid.	440 V AC	75p				
3 mid .	440 V AC	¢1.00	19	mid.	250 VaC	
4.1 mid.	4.40 VaC	E1.00	20	mid.	250 VaC	62.25 65.00
5 mtd .	400 VAC	¢1.25	50	mid.	370	
5.3 mid	160 V AC	60 p				
5.4 mid.	280 V AC	75		up to	2.5 mid	2p. 3
6.5 mfd .	280 V AC	¢1.00		to	0 mfd .	p. 50
7.5 mid .	200 V AC	¢1.00		E1.5	0. All pl	VAT.
10	250 V	£1.00		S.		

VENNER TYPE' ERD TIME

 SWITCH200/250V A
y manually 30 mp 2 on $/ 2$ off every 24 hrs ai eserve and day omitting device. Built to highest 75p ($\$ 11.79$ inc. VAT) R\&T.

SANGAMO WESTON TIME SWITCH
Type S251 200/250 AC 2 on 2 off every 24 hours: 20 amps contacts with override switch. Diameter $4^{\prime \prime \prime} \times 3^{\prime \prime}$ price $£ 8.50$
P\&P 50p ($\mathbf{£ 1 0 . 3 5}$ inc. VAT \& P). Also available with solar dia. R\&T.

PROGRAMME TIMERS

12 Cam Programmer Timers. 240v. A.C. op. Each Cam individually adjustable. Price $£ 7.50$ plus 75 p p\&p. (E9.49 inc. V.A.T.). R\& T
Ditto, 6 adjustable 6 fixed cams. Price $\mathbf{£ 6 . 0 0}$ plus $75 p p \& p$ ($£ 7.76$ inc. V.A.T.) R\&T
MINIATURE PROGRAMMER
Crouzet 1 rpm 115 V AC Motor operating 2 roller microswitches (4 amp). Can be used on 240 V AC with either 0.25 midd 250 V Condenser or 5.6 K wirewound resistor 7 watts (supplied).
N.M.S.

800 WATT DIMMER SWITCH
(3)
except fluorescent at mains voltage. Price:
$£ 3.90+50 \mathrm{p}$ P \& P ($£ 5.06$ incl. VAT).
N.M.S. - New Manufacturers' Surplua

All Mail Orders - Callers Ample parking space
Showroom open Monday-Friday

We use advanced winding iechnology to make our toroidal transformers. They have only half the weight and height of their laminated equivalents and are outdated laminated equivalents and hum is down to a negligible tenth of what it used to be. Supplied with rigid mounting kit with centre bolt, two neoprene and one steel washer. Available so far in a range of 37 sizes with more to come.

TYPE	VA	SECONDARY RMS VOLTS	SECDNDARY RMS CURRENT	OIA. : HT in mm	WEIGHT	PaICE
2×010	50	6+6	4.16	80×35	0.9	
2×011		$9+9$	2.71			EACH
2×012		12+12	2.08			
2×013		$15+15$	1,66			t. 4.40
2×14		$18+18$	1.38			+11.10P\&P
2×015		$22+22$	1.13			+98p Var
2×016		$25+25$	1.00			
3×010	80	6+6	5.64	90×30	1.0	
3×011		$9+9$	4.44			
3×012		12+12	3.33			
3×013		$15+15$	2.66			EACH
3×014		18+18	2.22			cc 76
3×015		$22+22$;	1.81			$\pm .76$
3×016		$25+25$	1.60			+11.20 P\&P
3×028		110	0.72			+ 11.04 Vat
3×029		220	0.36			
3×030		240	0.33			
4×010	120	$6+6$	10.00	90×40	1.2	
4×011		$9+9$	6.66			
4×012		12+12	5.00			
4×013		15+15	4.00			EACH
4×014		$18+18$	3.33			f672
4×015		$22+22$	2.72			10.72
4×016		25+25	2.40			+ 11.30 P \& P
4×028		110	1.09			+ 11.20 VAT
4×029		220	0.54			
4×030		240	0.50			
5×016	'160	$25+25$	3.20	110×40	1.8	EACH
5×017		$30+30$	2.66			f8 88
5×028		110	1.45		,	18.88
5×029		220	0.72			+ [1.40 P \& P
5×030		240	0.66			+ $\mathbf{+ 1 . 5 4 ~ V A T ~}$
6×016	300	$25+25$	6.00	110×50	2.6	
6×017		$30+30$	5.00			EACH
6×018		$35+35$	4.28			
${ }_{6 \times 026}$		$40+40$	3.75			t 1 2.27
6×025		$45+45$	3.33			+11.50 P \& ${ }^{\text {P }}$
6×028		110	2.72			+ 12.07 Vat
6×029		220	1.36			
6x030		240	1.25			

CHOICE OF 3 PRIMARY INPUTS

1.L. P. Toroidal Transformers are available in choice of $110 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}$, coded as follows: (Secondaries can be connected in series or parallel)
For 110 V primary insert 0 in place of "X" in type number.
For 220 V Prmary insent in place of " X " in type number.
For 240 V Primary insert 2 in place of " X " in type number.
Example - $120 \mathrm{VA} 240 \mathrm{~V} 15+15 \mathrm{~V} .4 \mathrm{~A}=42013$.

* TYPES TO SPECIFICATION CAN BE SUPPLIED TO ORDER IN

QUANTITY, AGENCIES IN CERTAIN COUNTRIES AVAILABLE ENQUIRIES INVITED

FREEPOST facility.

We pay postage on U.K. enquiries and orders. Simply address envelope to FREEPOST T5 to address below. NO STAMP REQUIRED
TO ORDER,Enclose cheque/Postal Order/Money Order payable to I.L.P Electronics Lid or quote your ACCESS or BARCLA YCARD account No. To pay C.O.D. add $£ 1$ extra to TOTAL value of order.
 - Tr TRANSFORMERS A division of I.L.P. ELECTRONICS LTD
FREEPOST T5 GRAHAM BELL HOUSE ROPER CLOSE CANTERBURY CT2 7EP Phone (0227) 54778 Telex 965780

FACTORY CLEARANCE!

A. R. DAVIES HAVE APPROX. 25 TONNES OF BRAND NEW COMPUTER SPARES TO CLEAR AT RIDICULOUSLY LOW PRICES. CALL AT OUR CODICOTE WAREHOUSE OPEN TO THE PUBLIC FOR TWO DAYS ONLY!!

OCT. 4th AND OCT. 11 th, 9 a.m. to 5 p.m.

STOCKS INCLUDE

PCBs, Resistors, Capacitors, Transistors, Diodes, Thyristors, Triacs (up to 50 Amps), Chips of all sorts, Wire (single or multicore), Plugs, Sockets, Tape Heads, Card Readers, Tape Recorders, Switches, Toggle, Lever, Micro, etc.
Electric Motors, all sorts from 50p. 2,000 in stock. Multicore solder tin/copper wire and enamelled copper wire all gauges.

Transformers
Chokes
Relays
VDU
Keyboards
Fans
Blowers
from $£ 1$
Geared Motors from $£ 1.50$
from 50p from 50p from 10p from $£ 10$ from $£ 5$
from $£ 1$

JUMBO BAGS OF MIXED COMPONENTS £5.00-100 ONLY!!

A. R. DAVIES (FACTORY CLEARANGE)
A. R. JA 28 ST ALBANS ROAD, CODICOTE NR. OLD WELWYN, HERTS NR. OLD WELN 0438832481
WW - 097 FOR FURTHER DETAILS

Meters
 Clocks Units from 1-25 Amps to 0.5 V

 from 50p Counters from 50p Stabilised Power Supply£2.50 Vacuum Pumps, Compresfrom $£ 1$

DANGER from RADIATION

General Information:

Pocket dosimeters provide an accurate, reliable and immediate method of measuring the integrated ionising radiation. The dose may be read at any time and in any place, providing a source of light is available.

Principle:

The dosimeter is an fonisation chamber type using a quartz fibre electroscope as the indicating element., A microscope is used to project the image of the moving quartz fibre element on to a graticule scale. The quartz fibre is mounted on a wire electrode; which in turn is supported by a high quality insulator. When the instrument is charged, positive charges distribute themselves over the wire electrode and quartz fibre causing the fibre to bend away from the electrode. The fibre will take up a position depending on the a moum
of charge on the system. of charge on the system.
Wher is ionised negative air in the ionisation chamber is ionised negative ions will be attracted to the positively charged electrode thereby reducing its directly to the quantity of radiation producing the ionisation. The fibre movement can thus be calibrated directly in roentgen units and the rate of-movement of the fibre will be proportional to the roentgens received per unit time.

Construction:

The microscope, eleciroscope and ionisation chamber are housed in an outer skin which may be of brass or aluminium. At one end of the tubular case is fixed a charging assembly, and at the other an into the outer case to ensure a hermetic seal lo
Each dosimeter is provided with protective end cap removed for reading.
Dosimeters meet vibration, drop, salt spray, humidity, water immersion and iemperature tests.

Features:

- These units will read automatically the amount of radiation in the air
- This instrument is only a little larger than a fountain pen
- Clips on to your top pocket

Weight less than 3 oz .
Contains three lenses

- Fully charged, tested and guaranteed. Refurbished by us - British design and manufacture, rugged construction - Manufacturer's list price of similar model is over $£ 25$
- Buy now whilst stocks available. Delivery by return post
Features:
SECTIONAL DRAWING ———Window \square

NEW FROM BARMECO

Introducing a new 3 -element H.F. Tribanda with proven performance and reliability

THE WORLD RANGER TRIBANDER

Designed, engineered and manufactured in the U.K. Use of high quality materials ensures high electrical stability under all weather conditions with exceptional mechanical rigidity and strength. All traps are high grade P.T.F.E. formers with insulated windings.

SPECIFICATION:

Frequency	$10,15 \& 20$ metres
Impedance	52 ohms
R.F. Power (max.)	1 kW (AM)
	2 kW (PEP)
VSWR (at resonance)	Less than $2.0: 1$
Forward gain	Up to 8.0 dB
Front-to-back ratio	25 dB
Mast diameter	31.75 mm to 41.30 mm
Wind survival	80 mph
Turning radius	$14^{\prime} 10^{\prime \prime}$
Longest element	$26^{\prime} 0^{\prime \prime}$
Boom length	$12^{\prime} \mathrm{O}^{\prime \prime}$
Net weight	21 lbs.

10, 15 \& 20 metres
52 ohms
1 kW (AM)
Less than 2.0:1
Up to 8.0 dB
25 dB
31.75 mm to 41.30 mm $1 \mathrm{~m}^{\prime}$
$26^{\prime \prime} 0^{\prime \prime}$
$12^{\prime} 0^{\prime \prime}$
21 lbs.

Price: $£ 135.00$ complete with Balun, plus carriage @ $£ 3.50$. High quality 50 ohm coaxial cable available @ 50 p per metre. Balun available separately@£12.50 each. All items subject to current VAT

COMING SOON: A range of HF Monobanders and a 2 metre base station vertical
Orders to
BARNET METAL \& CAR CO. LTD.
Towin Road, Welwyn Garden City, Herts.
Telephone: Welwyn Garden 24327. Telex: 28125. Cable: BARMECO

Why Scopex?

There's a range of answers.

There's something every one of our scopes has in common. Great accuracy, tremendous reliability and keener pricing, plus free delivery on UK mainland.

Take the new 4D-10B. The fully stabilised power supply gives 3% accuracy. There's a full XY facility using CMOS IC'S for extra reliability, Z modulation for brightening or dimming the trace, 10 MHz scan at full band width over the full screen area, trace locate and TV field trigger. At £210.00* it's astonishing value.

Or the 4D-25. A dual trace model with $\mathrm{DC}-25 \mathrm{MHz}$ band width and $10 \mathrm{mV} / \mathrm{cm}$ sensitivity. Signal delay allows you to trigger from and see the leading edge of any signal. Trigger level and slope are selected on one dual function control. 3\% accuracy and still only $£ 360.00$ *:

Plus the 4 S 6 single beam 6 MHz bandwidth model with easy to use controls. 10 mV sensitivity and timebase range of 1 us to $100 \mathrm{~ms} / \mathrm{cm}$. Lightweight, compact and a very good price. $£ 144.00^{*}$.

Return the coupon for full details of the range that gives you a lot more scope.
*UK list price excluding VAT.

ROHDE \& SCHWARZ

TV Demodulator. AMF. 55.90 MHz
Selective UHF V/Meter. Bands 4 \& 5 . USVF Selectomar Vollimeter USWV, $£ 450$. UHF Sig. Gen type SDR 0.3-1 GHz. $£ 750$ UHF Signal Generator SCH. 8175 .
XUD Decade Synthesizer
\& Exciter POLYS̄KOPS SWOBI and II. Modulator / Demodulaior BN1 1950\%/2 UHE Sig. Gen. type SCR. 1-1.9GHz.

MARCONI

TF2360R TV Transmitter Sideband Analyser TM6936R UHF Converter for above.
TF1101 RC oscillators $£ 65$.
TF 109920 MHz sweep generato
TF1152A/1. Power meter. 25 W .500 MHz . $£ 75$ TF1370A RC Oscillator $£ 135$ TF890A/1 RF Test Set. $\mathbf{E 3 9 5}$

U.H.F. SIGNAL GENERATORS

TF1066B/2 $400-555 \mathrm{MHz}$. Deviation to 300 KHz
TF 1060/2 $450-1250 \mathrm{MHz}$.
TF 1058 1.6-4000MHz

BECKMAN TURNS COUNTER DIALS

Miniature type (22 mm diam.). Counting up to 15 turn "Helipots." Brand new with mounting instructions. Only $£ 2.50$ each.

KAY ELEMETRICS SONA-GRAPH Sona-Graph model 7029A. 5-16000Hz Spectrum Analyser with type 6076C Plug-in unit. For the spectrogrphic Analysis of transient sounds such as speec, voice, doppler shifts, explosions erc. Supplied in excellent condition with handbooks.
AUVANCE CONSTANT VOLTAGE TRANSFORMERS
Input 190-260V AC. Output constant
220 Volts. $250 \mathrm{~W} . £ 25$. ($£ 2$ carriage)
LABORATORY OVENS. - Gallenkamp, 3 cu t. £145. Also Morgan Grundy 1 cu . ft. £55. 20-WAY JACK SOCKET STRIPS. 3 pole type with two normally closed contacts. $£ \mathbf{2 . 5 0}$ each (+25 ppp). Type 316 three pole plugs for above -20 p ea. (pp free).

P. F. RALFE ELECTRONICS

10 CHAPEL STREET, LONDON, NW1 TEL: 01-723 8753

AIRMEC 314 A Voltmeter. 300 mV (FSD)-300V.
LEVELL TG66A-1 Decade oscillator
DERRITRON 1 KW Power Amplifier with control equipment for vibration testing etc.
HEWLETTT-PACKARD 7123 A pen recorder.
HEWLETT-PACKARD tuned amp \& null detector TF2600 Voltmeter $1 \mathrm{mV}-300 \mathrm{~V}$ fsd. RADIOMETER Distortion Meter BKF6. £125. EDDYSTONE VHF RECEIVERS AM /FM $70-90 \mathrm{MHz}$. £45

VAGUUM/COMPRESSOR PUMPS

Bell \& Goslett type and Doeer. U.S.A. Models available in excellent condition at prices well below normal.

SOLARTRON LM 1420.2 . DVM. 6 ranges to 1 KV .
MUIRHEAD type K-134-A Wave Analyser. Portable. MUIRHEAD type K-134-A Wave Analy
WAYNE KERR B521 Universal Bridge.
HEWLETT PACKARD 608 C Signal generator. $10-480 \mathrm{MHz}$. WEINSHEL Power supply Modulator type MO3.
BRUEL \& KJOER type 1504 Deviation Bridge BRUEL \& KJOER Vibration equipment 1018. BRUEL \& KJOER Frequency analyser 2105

OSCILLOSCOPE SALE

SOLARTRON CD1400. D/Beam 15MHz. £150
SOLARTRON CD 1740 . D/Beam $50 \mathrm{MHz} . £ 450$.
ADVANCE OS 250 . D / Beam 10 MHz . £185.
HEWLETT-PACKARD $1707 \mathrm{~A}, 75 \mathrm{MHz} . £ 650$.
HEWLETT-PACKARD 1707 A .75 MHz .
PHILIPS PM $3226 \mathrm{D} / \mathrm{B}, 15 \mathrm{MHz} . £ 325$.
TELEQUIPMENT D53. D/Beam. £175.
TEKTRONIX $581 A, 545 A \& B, 544,661,515 A$.
SOLARTRON CD1220. £135. (+ VAT)
NOTICE. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in first-class Calibration and certificates, can be arranged at cost. Overseas enquiries welcome. PLEASE ADD 15% VAT TO ALLPRICES

DC POWER SUPPLIES

*APT10459/8.12-14V.@5Amps. £25. (£2 p.p.) $10459 / 8.24 \mathrm{~V}$. @ 6 Amps. £25. ($£ 2$ p.p.)

HWe camsupply the above power supply at any fixed voltage between 5 V and 36 V at 5 A . £25. *Mullard Dual supplies. Brand new with handbook. Pos \& Neg 12 V . at 1 A and 0.4 A respectively. Dimensions $9 \times 4 \times 5$ ins. $£ 10.00+(£ 1$ p.p.) 7x5RNELL Current limited. Dimensions $7 \times 5 \times 4$ ins. Following types available. 5 Volts @ @ 1A £15.13-17Volts @ 2A. £15.27-32 Volts @ 1 A $£ 15$. Plus $£ 1.50$ each postage All the above power supply units are 230 V . AC input and are stabilised and regulated and fused. All are fully tested before despatch and guaranteed in first-class order throughout. As
with all our equipment there is a money-back with all our equipment there is a m
guarantee.if not completely satisfied.

MODULATION METERS

AIRMEC 2103 300MHz AM/FM

RADIOMETER AFM/1 $3.5-320 \mathrm{MHz}$. AM/FM. RACAL $4093-600 \mathrm{MHz}$. AM /FM.

ROTRON INSTRUMENT COOLING FANS

Supplied in excellent condition, fully tested:
$115 \mathrm{~V} .4 .5 \times 4.5 \times 1.5^{\prime \prime} £ 4.50$. 230 V . £5. $115 \mathrm{~V} .3 \times 3 \times 1.5^{\prime \prime} £ 4+$ postage ea. 36 p.
CT212 BF Signal Generators. $85 \mathrm{KHz}-32 \mathrm{MHz}$. £55.

BELL \& HOWELL MICROFICHE

 VIEWERSType SR5. Scr
condition. $£ 75$.

DIGITAL MULTI-METERS

DE FOREST ELECTRONICS TYPE MM 200. DC.V.0-1 KV. AC.V.O-700. DC.I.0-1 A. AC.I.O1 A . Each in 4 ranges. Resistance 0-19.99 Mohms. 5 ranges. LED Display-1999. BRAND NEW. SPECIAL REDUCED PRICE OF £39, INCLUDING VAT \& P.P.

Samson's

$9 \& 10$ CHAPEL ST., LONDON, N.W. 1 01-723 7851

01-262 5125 ADJACENT TO EDGWARE ROAD MET. LINE STATION

PLEASEADD 15% TO ALL ORDERS INC. CARA. CURAENT RANGE OF NEW L.T. TRANSF ORMERS OPEN TYPE TAG CONNECTIONS

SUPER BARGAIN TUNER OFFER

Brand new by famous manufacturer. MW/LW/FM Tuner and Stereo Decoder Board
Features include capacitor tuned mosfèt front end, integrated circuit I.F. strip, and phase locked loop stereo decoder chip. Stabilised power supply and rectifier on board only requires 19 V AC at 175 MA to power. Size, $121 / 2 \times 31 / 2 \times 13 / 4$.
Supplied complete with circuit diagram and ferrite rad aerial. FM section fully aligned and tested before despatch. Fantastic value at ONL.Y $£ 9.99$ plus VAT. P.P. $£ 1$

SUPER BARGAIN OFFERS
LENCO FFR CASSETTE DECK

For those who missed our recent bargain CT4s we now are delighted to be able to offer Brand New Lenco FFR Decks complete with motor speed and auto-stop, control board litted and tested. These will 16 volts. This deck can be used for both record and playback applications and is, fitted with an erase head. A mono record/play head is fitted and we can supply an extra stereo head, if ordered with the deck at the very special price of $£ 2$ plus VAT. We also supply, with each deck and completely FREE. one of our specially moulded escutcheons. This deck would normally cost about $£ 25$ but we are able to offer them, while they last, at only £ 9.99 plus VAT

SUPER BARGAIN OFFERS

VFL 910. Vertical front'loading Super Hi-fi deck as used in our new Linsley-Hood Cassette Recorder $2 . \mathrm{E} 31.99$ + VAT. Set of knobs $\mathrm{E} 1.46+$ VAT

Our new improved performance model of the Linsley Hood Cassette Recorder incorporates our VFL 910 vertical front mechanism and circuit modifications to increase dynamic range. Board layouts have been altered and improved but retain the outstandingly successful mother and daughter airangement used on our Linsley H ood Cassette Recorder

This latest version has the following extra features. Ulira low wow-and-flutter of . 09% easily meets DIN Hi-fi spec. Deck controls latch in rewind modes and do not have to be held. Full Auto stop on all modes. Tape counter with memory rewind. Oil damped cassette door. Latching record button for level setting. Dual concentric input level controls. Phone output. Microphone input facility if required. Record interfock prevents re-recording on valued cassettes. Frequency generating feedback servo drive motor with built-in speed control for thermal sability. All these desirable and useful features added to the excellent design or he Lins mon with built-up units of much higher cost than the modest $£ 94.90$ VAT we ask for the complete kit.

LINSLEY-HOOD 30 WATT AMPLIFIER

The very latest amplifier design to be published and in our opinion the best yet. The concept was to produce an amplifier that sounded as good as the authors 75 watt design but which was cheaper and simple to build for applications where the higher power is not needed. This new kit is designed to match the Linsley-Hood Casseme Recorder 2 and a àssembly system has been to make a complete stackable system. A very advancod who can solder components in a printed circuit board will find it great fun. Conventional wiring is at an irreducible minimum, only being needed to connect the mains transformer and pilot light. For an amplifier of this quality this kit represents incredible value for money.
All parts can be bought separately at a total cost of $£ 79.12$ but complete kits are available at a special introductory discount price of only $£ 78+$ VAT.

STUART TAPE CIRCUITS
)

(For reel-to-reel decks) \qquad
These circuits are just the thing for converting that ofd valve tape deck into a useful transistorised recorder. Total system is a full three head recorder with separate record and replay sections for simultaneous off tape monitoring. We also stock the heads. This kit is well engineered but does not have the detailed instructions that we give with our more recent designs. We would not therefore recommend it to beginners. Reprints of the original three articles 45 p. Post free. No VAT

CASSETTE HEADS

HS 15 SENDUST ALLOY SUPER HEAD. Stereo R/P. Longer life than Pefmalloy. Higher output than Ferrite. Fantastic frequency response. Complete with data 7.60 HC20 Stereo Permalloy R/P head for replacement uses in car players. eic.
HM 90 Stereo R/P head for METAL tape. Complete with data
H561 Special Erase Head for METAL tape
524 Standard Ferrita Erase Head
$R 4842 / 2$ (Double Mono) R/P Head. Sid. Mio
ME151 2/2 Ferrite Erase. Large Mig.
CCE/8M $2 / 2$ Erase. Std. Mtg.

VALVES

Mlnimum
Order $£ 1.09$
VALVES VAT IS INCLUDED

解思思

${ }^{\infty}$

あぁw

E182
EAB6
EABC
E891

EBC
EBF
E8F
ERE
事

Electronic Brokers No. in Europe for Second User Test Equipment
 HAVE MOVED
 to extensive new premises

Widest range of state-of-the-art equipment in Europe Latest in-house calibration techniques Even greater cost effectiveness

Electronic Brokers Limited 61/65 Kings Cross Road London WClX 9LN England Telephone 0l-278 3461 Telex 298694 Elebro G Telegrams Selelectro London WCl
A.C. VOLTMETERS BOONTON
True R.M.S. Voltmeter 93A FLUKE
$A C / D C$ Differential Voltmeter 883AB
$£ 375$ HEWLETT PACKARD
Log Voltmeter/Amplifier 7563A
MARCONI INSTRUMENTS
A.C. Voltmeter 400 EL

Valve Voltmeter TF 2600
Valve Voltmeter TF 2604 R.F. Millivoltmeter TF 2603 PHILIPS
A.C. Millivoltmeter PM 2454 B ANALYSERS bIOMATION
Logic Analyser 1650D
GENERAL RADIO
Vibration Analyser 1911A
HEWLETT PACKARD
Spectrum Analyser 141 T
c/w 855\%A \& 8554L
Logic Analyser 1600A
Network Analyser System B407A+841 £1350 $8600 A+8601$ A Sweep Marker Generator
$100 \mathrm{KHz}-110 \mathrm{MHz}$ range.

Swept Amplitude Analyser 182T + 8755A
$15 \mathrm{MHz}-18 \mathrm{GHz}$.

BRIDGES

BOONTON

VHF O' Meter. 280AP ($210-610 \mathrm{MHz}$)
Inductance Bridge 63 H GENERAL RADIO
Immitance Bridge 1607A , LCR Bridge (0.05\%) 1608A 'MARCONI INSTRUMENTS
Universal Bridge TF 1313
Q' meter TF 1245 c/w TF 1246 and TF 12425
RHODE AND SCHWARZ
Inductance Meter LRT
Capacitance Meter KRT
WAYNE KERR
A.C. Testamatic A60

Universal Bridge B221 (0.1\%)
D.V.M.s AND D.M.M.s DATRON
$51 / 2$ digit D.V.M. 1051
FLUKE
31/2 digit D.M.M. 8020A
$51 / 2$ digit D.M.M. 8800A
$51 / 2$ digit D.M.M. 8800A-01
51/2 digit D.V.M. 8300A
PHILIPS
Autoranging D.M.M. PM 2514
4 digit D.M.M. PM 2524
Autoranging D.M.M. PM 2527
SCHLUMBERGER
$51 / 2$ digit D.M.M. A 243
Microprocessor D.M.M. 7065
As above with processor option Micpoprocessor D.M.M. 7055 As above with processor option

FREQUENCY COUNTERS

ADVANCE

500 MHz Counter TC 15 \& TC 15 P1 £495 FLUKE
250 MHz Multifunction Counter $1911 \mathrm{~A}-01$
£325 125MA Mitun 125 MHz Multifunction Counter 1925A £350

£ 1395

HEWLETT PACKARD 3490A DMM
$51 / 2$ digit. $A C I D C$ volts.
$1 \mu v$ resolution on $D C$.
Autoranging. Variable display time. Resistance down to $1 \mathrm{~m} \Omega$
UNBELIEVABLY LOW PRICE

E375
Manufacturer 's price
over :7500
30 day warranty

MARCONI INSTS. TF1370A R.C. OSCILLATOR

$10 \mathrm{~Hz} .10 \mathrm{MHz}+$ sq. wave 10100 KHz 1 mV to 3.16Vat $75,100,130$, or 600 n via attenuator. High OIP 31.6 V to 1 MHz .

Iتs= 49|53 Pancras Road London NW12QB Tel: 01-837 7781. Telex 298694

Unless otherwise stated all equipment offered in the Electronic Brokers advertisement is refurbished and in the case of Test Equipment also calibrated. Test equipment is guaranteed for 12 months; computer peripherals for $\mathbf{3}$ months.

TEST

PHILIPS
520 MHz Univ. Counter/Timer PM6614 £395 80 MHz . Freq. Counter PM6664 £250

OSCILLOSCOPES

COSSOR

410075 MHz Portable Dual Trace, Delayed Sweep. 30-day warranty. Only £450

HEWLETT PACKARD
 75 MHz Dual Trace 1707 A

£600
High Sensitivity Single Trace 130C £250 1707 B 75 MHz Portable Dual Trace, Delayed Sweep, 30 -day warranty Only $£ 650$ MARCONI INSTRUMENTS
X-Y Display TF $2213 / 1 \mathrm{c} / \mathrm{w}$ Memory Unit TK 2214
$£ 790$

PHILIPS

25 MHz Dual Trace PM $3212 \quad \mathbf{E 6 2 5}$
PM3260E 120 MHz Portable Dual Trace, De-
layed Sweep.
1 Only £975

S.E. LABS

6 Channel Monitor SM 121
£395

TEKTRONIX

465100 MHz . Spec. similar to 465 B but no alternate sweep.
W. Diff. Plug in
£295
1A6 Plug In
£199
TELEQUIPMENT.
D75 50MHz Portable Dual Trace, Delayed Sweep.

2 Only £715

RECORDERS

BRYANS SOUTHERN

4000012 channelUV Recorder plus 2 Off 40501 galvo amps. 6° chart width. Grid and timing lines. Superb condition
$£ 950$

PHILIPS

Single Channel Recorder PM $8110 \quad £ 195$
RACAL
Store 4 FM Tape Recorder, 4 tracks DC-20KHz, 7 speeds.
$£ 1950$

S.E. LABS.

300612 channel UV Recorder. 6" chart width. Grid and timing lines
£550
601250 channel UV Recorder $12^{\prime \prime}$ chart width. Servo paper drive up to $5 \mathrm{Mtr} / \mathrm{Sec}$. Two event markers, Trace identification

1 Only. £1100

WATANABE

£2250 6 Channel Cha
YOKOGAWA
Chart Recorder 3047
£450

SIGNAL SOURCES

HEWLETT PACKARD

Variable Phase, Sine and Signal Generator 203A
Oscillator $10 \mathrm{~Hz}-10 \mathrm{MHz} 651 \mathrm{~B}$
Oscillator
ع415
V.H.F. Oscillator 3200 B
£400
Decade Oscillator 4204A
U.H.F. Signal Generator 612 A $£ 750$ V.H.F. Signal Generator 608F £ 850 Phase Lock Synchraniser 8709A 450 £475 $8601 \mathrm{~A} \quad 100 \mathrm{KHz}-110 \mathrm{MHz}$ - $8600 \mathrm{~A}+$ frequencies.

MARCONI INSTRUMENTS
 A.F. Oscillator TF 2000
 £ 325
 A.F. Oscillator TF 2100

,
 A.M. Signal Generator. TF801D/8S L.F. Oscillator TF 2102/1M1
 0
 $£ 550$
 £195
 U.H.F. Signal Generator TF 1060/3 Two Tone Source TF 2005R £650
 £295 H.F. Generator TF 144H/4 £750 F20028 AM /FM Signal Generator 0 KHz-

 Pulse Generator 2101 £420

 82 MHz .1 Only £1200
TF2361 c/w TM9692 Video Sweep Generator $25 \mathrm{KHz}-30 \mathrm{MHz}$. Sweep rate 0.01 to 100 Hz . TV Field locks on 405-505-625 lines.
£750 PHILIPS
Function Generator PM 5108
£250
Function Generator PM 5127
Function Generator PM 5167

TELONIC

R.F. Sweeper $2003 \mathrm{c} / \mathrm{w} 3302,3331$
$3341,3351,3360,3370(1-300 \mathrm{MHz}) £ 1150$

MISCELLANEOUS

ADVANCE

Off Air Frequency Standard OFS 2B
$£ 150$
AVO
Valve Tester VCM 163
BRADLEY
AC Calibrator 125B
DC Calibrator $126 B$
156 Oscilloscope Calibrator
BRUEL KJAER
Sound Level meter 2203 \& Microphone 4145

DATALABS

£395
Power Line Disturbance Monitor DL01 9
£175
FLUKE
DC Differential Voltmeter 895A
332 AC Vollage Calibrator 0.003% ion Accuracy 0.1 PPm resolution Calibra-
£1750 GENERAL RADIO
Sound Level Meter 1933
Cassette Recorder 1935
Recording Sound and Vibration Analyser
HEWLETT PACKARD
DC Microvolt-ammeter 425A
AC /DC Differential Voltmeter 741B
Vector Impedance Meter 481 5A
S Parameter Test Set. 8745A
Insulation Resistance Meter 4329A
MARCONI
M.F. Attenuator TF 2162 A.F. Power Meter TF 893A

Transmission Test Set TF 2332
Transmission Test Set TF 2333
P.C.M. Regenerator Test Set OA 2805A P.C.M. Multiplex Tester TF 2807A RHODE AND SCHWARZ
Stereocoder MSC
S.E.I.

Super 50 Selectest

SIEMENS
Carrier-Freq. L.M.S. D2021/W2021/G2021 $10 \mathrm{KHz}-25 \mathrm{MHz}$
£1700

TM515 Main Frame c/w FG504 0.001 Hz 40 MHz function generator. 2 Off PS503A Triple Power Supplies.
£1250
TM515 Main Frame c/w SC502 15 MHz Oscilloscope. FG503 1.0Hz-3MHz Function Generator. DM502 $31 / 2$ digit DMM. DC503 100 MHz Counter. £1495 TEXSCAN
Sweep Generator VS 40
$£ 650$
WANDEL \& GOLTERMAN
Andimat (2 MHz system)
$£ 9500$
WAVETEK
Sweep Generator 135 £275
Programmable Phase Meter $755 £ £ 550$

POWVR SUPPLIES

ADVANCE
PMA47.0-15V @ 3A (Presetable). £37 PMA 50.0-15V @ 5A (Presetable). £45 PMA 53.0-15V @ 10A (Presetable). £65 MG5-605V@60A (Switching). £160 MG5-205V@20A (Switching). E120 MG5-105V @ 10A (Switching). £95 MG24-12 24V@12A (Switching). £130 MG24-5 24V @ 5A. (Switching).
$£ 95$

Only 9 months old SP3 - 200A
Infrared Spectrophotometer.
Pye Unicam. Ratio Recording Type. Still under warranty. Current List Price $£ 5150$

ONLY £3950
Also available 15 ton hydraulic Press with Safety Guard S
ONLY SMALL SELECTION OF OUR VAST STOCKS SHOWN HERE

12-MONTH WARRANTY

All Second User Test Equipment is fully guaranteed for 12 months unless otherwise stated.

Iت= $49 / 53$ Pancras Road London NW12QB Tel: 01-837 7781. Telex 298694

ASR 33 Teletype
input/Output terminal incorporating paper tape punch and reader. 64 ASCII upper case character set. 170 baud operation, even panty keyboard, chore of RS232 or 20 m interlace. NOW ONLY E595.00.
Options: ICL-type keyboard $£ 50.00$, 81 h level marking $£ 25.00$, remote reader control $£ 50.00$, reader 5 tep $\mathbf{£ 2 0 . 0 0}$. Auto reader $£ \mathbf{2 5 . 0 0}$, pedestal $£ 30.00$

PDP11/04 Processor chassis 16 kW MOS Dt11W KrItB-.BRANO NEW $£ 4.500 .00$ (can be enharced to 28 KW)

CENTRONICS 101 A

Heavy duty Matrix Printer with 64 ASCII upper case character set. 165 cps operation. 132 print positions with adjustable tractor feed. 7×9 dot matrix, parallel input.
E750.00.

NEW ASCII KEYBOARDS NEW LOW PRICES

KB 771 Superb 71 -station ASCII Keyboard incorpor ating separate numeric/cursor control pad and installed in custom-built steel enclosure with textured blue enamel finish. Ideal for the VDU builder. Case dimen sions $171^{\prime \prime} \times 71 / 2^{\prime \prime} \times 3^{3 /} / 8^{\prime \prime}$. Total weight 4 kg . PRICE
(mail order total £1 08.10)

Mail
Order
KB756 56-station ASCII Keyboard mounied on KB756 56-station ASCII Keyboard mounted on
P.C.B. $\quad £ 45.00 \quad £ 53.48$ KB756MF As above, fitted with metal mounting frame for extra rigidity $£ 49.50 \quad £ 58.65$ KB710 10-key numeric pad, supplied with connecting cable......$£ 8.00$ £9.78 KB701 Plastic enclosure for KB 756 or KB756MF $£ 12.50$ £15.24 KB702 Steel enclosure for KB756 or KB756MF
£18.00 £23.00 KB2376 Spare ROM Encoder£12.50 £15.24 KB15P Edge connector for KB756 or KB756MF
£3.25 £4.31 $\mathrm{DC}-512 \mathrm{DC}$ convertor to allow operation at 5 V
only (plugs in to P.C.B.) only (plugs in to P.C.B.) £7.50 DB25S Mating connecior for KB77 £4.25 £5.46 PERK 56-station ASCII Keyboard for PET Complete with PET interface, built-in power supply and steel enclosure
£145.00 £172.50 Discounts available for quantities

MISCELLANEOUS

BALL MIRATEL $9^{\prime \prime}$ Monitor with case including space for keyboard. Integral power supplies included. Requires separate horizontal and vertical video input $\mathbf{£ 5 . 0 0}$ CLARE KEYBOARD SWITCHES. Special purchase of top quality Clare SF-type reed switches. BRAND NEW SURPLUS £25p each DATA GENERAL model 1210 CPU with 4 K core € 795.00 DIGITRONICS P135 paper tape punches 35 cps Solenoid device with 27VDC coil $\quad € 95.00$ EMI MONITOR $15^{\prime \prime}$ dia. tube, integral power supplies. Accepts composite or separate vidfo input. BRAND NEW SURPLUS . $£ 100.00$ FACIT 4070 Paper Tape Punch ... £675.00 GE TERMINET 1200 RO Printer, 80 columns tractor feed, upper/lower case ASCII, 20 mA Interface
$£ 495.00$
HAZELTINE THERMAL PRINTER 80 -column 30 cps silent RO printer with parallel TTL input
$£ 395.00$
SHUGART SA400 Mini-floppy disc drive BRAND NEW £ 195.00
SHUGART SA800 8'" Floppy disc driveBRAND NEW $£ 395.00$ TALLY 1602 MATRIX PRINTER Parallel input Upper/Lower case. Tractor feed, as new
$£ 995.00$
TERMIPRINTER 7075 RO Impact Printer. Upper/Lower case. Pin feed, RS232
£395.00
TEXAS 725 Portable Terminal with acoustic coupler
£625.00
TEXAS 733 ASR Terminal $£ 1375.00$

Hazeltine $\mathbf{H}-1000$

The low, low priced teletypewriter-compatible video display terminal, offering your choice of transmission speeds up to 9600 baud as well as parity generation and checking.
Specification
SCREEN SIZE - $12^{\prime \prime}$ diagonal
SCREEN CAPACITY - 960 characters; 80 per line $\times 12$ lines.
CHARACTERS - 5×7 Dot Matrix: 625-line raster.
CHARACTER SET - 64 ASCII alphanumerics and symbols.
KEYBOARD - TTY format.
INDICATORS - Power On. Parity Error.
PARITY - Parity error indicated by Parity Light and question mark (?) displayed in character position.
TRANSMISSION - Asynchronous. Switchselectable for any two standard rates up to 9600 baud
OPERATING MODES - Full/Half Duplex MEMORY - High Speed MOS refresh
STANDARD INTERFACE - CCITT V-24 (EIA RS-232 B/C).
REFRESH RATE - 50 fields per second
When ordering please specify your choice of switch-selectable baud rates.

Standard: - Either A) 110/300 baud or B) $300 / 1200$ baud Optional: A combination of any 2 of the following transmission speeds can be provided at a surcharge of $£ 25.00$.
75. 110, 150, 200, 300, 600, 900, 1200. 1800. 2400, 4800, 9600 , (N.B.: $900 / 1800$ not compatible with $110 / 200$ respectively).

Hazeltine H-2000

The world 's largest-sel ing telety pewriter-com patible video display terminal. The Hazeltine 2000 se1s the standard in features, performance, reliability and value in an ever-expanding list of applications in Universities, Hospitals. Business, Finance and Government.
Features include $\$$ Switch-selectable transmission rates to 9600 baud *Three switch-selectable operating modes - full duplex, half-duplex or batch * Direct cursor addressability Dual-intensity video *Tabulation *Powerful editing capability *Remote keyboard \& Selective or automatic roll-up \# Teletype compatible \#Parity select \# Large screen capacity * Clear 5×7 matrix character image *Full remote command set *Format capability *Standard peripheral interfaces.
Specification
SCREEN - 12" diagonal. 1998 characters: 74 per line $\times 27$ lines.
CHARACTERS -5×7 Dot Matrix; 625 lines raster CHARACTER SET -64 alphanumerics and symbols. 32 ASCII control codes.
KEYBOARD - Detachable, solid state. TTY design 10 -key numeric cluster plus editing and cursor control keys.
TRANSMISSION - Asychronous.
Switch-selectable, for combinations of 5 standard rates. 110 to 9600 baud.
OPERATING MODES - Switch-selectable, full duplex, hatf-duplex or batch.
MEMORY TYPE - 2048×8 RAM.
EDITING FEATURES - Full Cursor Controls plus Insert/Delete Character, Insert/Delete Line. Clear Screen, Clear Foreground Data Only, Tab. STANDARD INTERFACE - CC ITT V- 24 (EIA RS-232 B/C
REMOTE COMMANDS - Insert/delete Line, Clear Screen, Clear Foreground Data Only, Home Cursor, Address Cursor, Set Background intensity. Set Foreground Intensity, Carriage Return Backspace, Ring Bell, Transmit, Print AUXILIARY OUTPUT - Standard printer

Hazeltine MODULAR ONE

The Hazeltine Modular One terminal offers the full range of terminal performances - from simple teletypewriter compatibility to enhanced editing and polling capabilities.
The Modular one is supplied in two different versions. The BASIC MODEL provides the following features: $\$ 1.920$ character display $(80 \times 24) * 12$-inch bonded \star Incremental and absolute cursor positioning. \star Dual video intensity * 11 -key numeric pad \star Movable keyboard * Choice of 8 transmission rates up to 9600 baud \star Communication interfaces: EIA RS-232 and current loop * Choice of block or blinking underscore cursor \star Choice of white-on-black or black-on-white display representation.

Optional

l.ower Case

Printer Port (parallel) Printer Port (serial) EIA Data Cable
Remote Edit Current Loop Interface Synchronous Interface External Baud \& Parity Switch
Also available: EDIT MODEL
POLLING MODEL
$i=-=4953$ Pancras Road London NW120B Tel:01-837 7781. Telex 298694 m

Codespeed Iscirnonios

P.O. BOX 23, 34 SEAFIELD ROAD, COPNOR, PORTSMOUTH HANTS, PO3 5BL

Special Offer DIP PLUG JUMPERLEADS

14 \& 16 way:
Grey Cable with red trace
SOUND EFFECTS PCB, brand new, made for spaceman robot toy. Gives 5 spaceman sounds winh
flashing LEDs (speeker not supplied). Entertan the kids for only 85 . FLUORESENT AEJECT
 CALCULATORS. modem. , ien function calculators win full memory. Most repairale. but no
guarantees, $£ 2.50$ each. ALARM CLOCK CHIP, MM 5316 digita alarm clock I.C. With date. E2.35 ea. GIANT LED CLLCK DISPLAY, non multiplexed. common cathode display panel. With dala. 63.95 each WRISTWATCH LEO DISPLAY, uny, brigh displays for LED watches. Note dispora is housed in legless liapack packoge and edurre farity the multimeter (requires additional circuit y) With data sheet. E3.55. B-DIGIT CALC CLATOR DISPLAY, common cathode. multiplened. 0 "" digits With dala, 99 p each. PLASTIC
 plated contacts for high reliabithty Mono 25p, Stereo 30p each CALCULATOR KEYBOAROS excellent value, 2 for 99 p. LM 555 TIMER I.C., surtable for most timer aoplications, and is supplied with applications booklet. 25p each CALCULATOR CHIP NORTEC 4204, four function ond constant. With data and dagram, 80p each. PUSH-BUTTON SWITCHES, with 1 n.o. contact
(momentary action). With red bution. 15 p each. MINIATURE SLIDER SWITCHES, with 2 pole change-over contacts. 16 p each. STATIC RAMS, 2102 memories, with data, only $99 p$ each. REJECT LED CALCULATORS, some repairable but excellent value for spares. Yields lots of grey background, could also be used for freq. meter, dums, etc. With data $\mathbf{E 5}$.25. PROFESSIONAL GUCY backiry. CONTROL KNOBS, rotary knobs, satin finish, black nytonknobs to tit standard $1 /{ }^{\prime \prime}$ " D shaped shatts Coloured snap in caps also have position indicator line Cap colours avalable, black white grey. red, green blue and yellow . Knob and coloured cap 20 p (state cap colour required)
Skirted rotary knobs. As above but has "ilared" nut cover around base of knob, 27 peach . (State cap colour requrred). Slider control knobs fits 5 mm or 8 mm shatts. Available in black, white. groy red. green, blue and yellow. 14p each (state colour required), OUALITY REED SWITCMES, tiny but sensitive reed switches, ideal for burglar alarms, otc. Only 39p each. RECTANGULAR BAR RELAYS $12 \mathrm{vd.c}$. coil, one n.o. contact. Small enough for PCB mounting. 79 p each. POWER RELAYS 12 v d.c. coil. Two change-over contacts. each rated at 10 amps . Contacts solid silver fo high reliability. Only $£ 2.55$ each. Relay bases for above relays are 36p each. TR ANSISTOR Single ended $40^{\prime \prime}$ long overall. Double ended 4" \& $6^{\prime \prime}$ long between connectors RADIO I.F. TRANSFORMERS. all brand new. May include several types. Ton tuanstormera for
55p. NYLON CABLE TIES 25 for 35 p (ties are 4 l" tong). SHRINK TUBE available in 3 bore sizes. Shrinks by approx. 50% when heated. 2.4 mm bore $15 p$ per matre. 4.8 mm bore 16 p per metre 2.7 mm bore 23p per metre TEN UNTESTED LED DISPLAYS,

SATISFACTION GUARANTEED ON ALL ITEMS OR FULL CASH REFUNDED NEW CATALOGUE (NO. 8) NOW AVAILABLE-JUST SEND MEDIUM-SIZED S.A.E POST AND PACKING PLEASE ADD 40 (OVERSEAS ORDERS ADD E1)
V.A.T. $\begin{aligned} & \text { ADD } 15 \% \text { TO TME TOTAL COST OF YOUR } \\ & \text { ORDR (INCLUDING POST ANO PACKING) }\end{aligned}$

Slinfold Lodge, Horsham West Sussex RH13 7RN Tel: Slinfold 790661 Telex 87530

Stand for President with.....

Bribe your way to the world's most powerful position - President of the United States - in this month's cynically realistic computer game. Also in October PRACTICAL COMPUTING

- An interview with Neil McFarlane, MP, on the applications of microcomputing in education.
- Micros advise gardeners at Syon Park
- How Winchester discs store a million words of text in a shoe box

If you are one of the growing number of businessmen, teachers, engineers, scientists, and professional people with access to a microcomputer, you'll want to get the most out of it PRACTICAL COMPUTING helps you to do just that with practical down-to-earth advice designed to enable you to make more effective use of your micro.
At your newsageńt or post this coupon now

To: Marketing Services Department, Room 626A, IPC Electrical

 Electronic Press Ltd, Dorset House, Stamford Street, London SE1 9LU. Please post me a copy of Practical Computing everyImonth for a year. I enclose cheque/P.O. for £8 U.K.I£14 overseas (incl.) payable to IPC Business Press Ltd.

Name
\qquad

COMPITER WIRETDISE now?urion 9.30-5.30

PROFESSIONAL EQUIPMENT AT HOBBYIST PRICES SO LOW EVEN OUR COMPETITORS GASP!

TELETYPE ASR33
 ITO TERMINALS

 $\mathrm{f} 235{ }^{+}$CAR

Fully fledged industry standard ASR33 data terminal. Many features including: ASCII keyboard and printer for data $1 / 0$, auto data detect circuitry. AS232 serial interface, 110 baud, 8 bit paper tape punch and ready for off line data preparation and ridiculously cheap and reliable data storage. Supplied in good condition and in working order
potions. Sound proof enclosure 95

THE CHIPS ARE DOWN

MOSTEK, INTEL, NEG, MOTOROLA IC. PRICES SLASHED!
A massive purchase of brand new "state of the art" data processing equipment enables us to offer the following chips at never, and we mean never to be repeated prices.

8085A
8155C
8253C
8255A Programmable Interval Timer 8259A-8 Programmable Interrupt Control 8755A $2 \mathrm{~K} \times 8$ Eprom 16 1/0 Lines MC6850 2652 MPCC Corms. Controller $1702 \quad 256 \times 8$ Eprom $5101 \mathrm{~L}-1 \quad 256 \times 4$ Static Ram 450 ns And Remember All Chip Prices Include V.A.T P.C.B.s. Eproms supplied washed

All full spec. and guaranteed
SEMICONDUCTOR GRAB BAGS

semiconductors, includ

 transistors, digital, linear I.C. 's, triacs, diodes, bridge rocs. wit. eth manufacturers markings, fully guaranteed $50+$ BAG £2.95 $100+$ BAGS E5.15
MUFFIN FANS

Keep your equipment Cool and heibabe with our tested exequipment Muffin Fans" almost stent running and easily mounted. Available in

ELECTRONIC COMPONENTS \& EQUIPMENT

Due to our massive bulk purchasing programme which enables us to bring you the best possible Relays, Cap's., P.C.B.'s, Sub-assemblies, Switches, etc, etc. surplus to our requirements. Because we don't have sufficient stocks of any one item to include in our ads., we are packing all these items into the "BARGAIN PARCEL OF A LIFETIME" Thousands of components at giveaway prices! Guaranteed to be worth at least 3 times what you pay plus we always include something from our ads. for unbeatable value!! Sold by weight
 10kls $£ 11.75+p p\{2.2520 \mathrm{kls} £ 19.99+p p £ 4.75$
$\underset{8^{\prime \prime} \text { Floppy Disk Drives }}{\text { SHUN }} \boldsymbol{\star}$
8 Floppy Disk Drives
as new $£ 225.00+$ VAT

ILL TERMIPRINTER 300 BAUD TERMINALS
$\mathrm{E} 325+$ CAR
Made under licence from the world famous GE CO. The ICL Termiprinter is a small attractive unit with so many features it is impossible to list them in the space available! Brief spec. as follows; AS232 serial interface, switchable baud rates 110,150 ,
300 . 30 cos), upper and lower case correspond ence type face, standard paper almost silent run. ming, form feed, electronic tab settings, suited for word processor applications plus many more features. Supplied in good condition and in working order. Limited quantity.

MAKE YOUR COMPUTER TALK!!! VIA OUR EX-GPO MODEM UNITS
Well, not exactly talk, but communicate over standard dial up G.P.D. line with any other modem. The modem unit $2 A$ is housed in an attractive fibre glass case measuring only $15^{\circ} \mathrm{w}$ $13^{\prime \prime} \mathrm{d} \times 5^{*} \mathrm{~h}$, inside are the electronics and mains power supply which enable serial duplex dat communication between terminallcomputer etc at any speed up to and in excess of 250 baud (300 at a push). Made to the most stringent exacting specification for the G.P.D. These units feature Modular plug in P.C.B.'s, internal test points, Standard tone frequencies, Configurable to terminal of computer end, Auto unattended answer, RS232/V24 interface on standard 25 way ' D ' socket, etc. etc., supplied complete with dias., at a fraction of $\mathrm{P55} .00+$ E4.50

NOTE. Units believed working, but untested, unguaran reed. Permis
G.P.O. lines.
in stock now test equipment, microprocessors, teletypes, peripheral transformers, power supplies, scopes, sig. gen's. mopboards quipment, I.C. s, tools, cos. V.D.U's sub-assemblies + thousands of transistor, mines Just a mere fraction of our vast range, is other stock lines. 100's of bargains for callers.
displayed below.

\pm RAM AND EPROM STAR OFFERS \star

2716 Single 5 v rail EPROMS
2716 Three rail EPROMS
2708 EPROMS
$411616 \mathrm{k} \times 1200 \mathrm{~ns}$ RAMS 8 for

32K x 8 DYNAMIC/STATICRAM CARDS

 A masterpiece of electronic engineering and our own advantageous buying enables us to bring you a complete memory system at a giveaway price. Originally made for a large processor the RAM card has many features, including on board refresh, internal parity generation and checking. Standard TTL inputs/outputs, $+5,+12,-15 \mathrm{v}$ supply rails and its effective STATIC capability make it useable with many CPU's. A fast cycle time of approximately 400 ns make this a snip at only $£ 90.00+£ 3$ p \& p. Supplied complete with circuits.
-

DISPLAY IC. AND GAINS TRANSISHEAPER

NEVER CHEAPER

well known manufacturers and fur t guaranteed No facturers and fully guaranteed. No fall outs. Comprehensive data on I.C.s 15 p per type. 2 N4351 N channel MOS FE 2 N4352 P channel MOS HIGH VOLTAGE NP POWER SWITCHING transistors BVcbo 600 V BVceo 500 v BVebo 15 v 1 c 5 amps Pc 125 watts HFE 60 typ ft 2.5 mhz ideal inventors, etc. TO 3 $£ 1.60$ each 4 for 55.40
BF258 NPN 250v @ 200 ma 45p each 3 for £1. 08.
1.R. BSB01 2.5 amp 100 v bridge rec. fl 08 .

fl. 08.

IN4998 4 amp i00v P.C. mount diodes long leads $14 p$ each 10 for $£ 1.10$ each 6 for $\mathbf{5 5 . 3 5}$
AGFA C10 computer grade cassettescom pete with library cases 68 peach, 10 for 55.5 IN 4004 SD 4 1 amp 400 v diodes 7 p each 18 for E 1.00
1.R. 12 amp BRIDGE RES 400 volt

POWER
POWER DARLINGTON SCOOP!
11000 NP $60 v 90 w$ I amos 103950 . 2uczes MPN 80 y 100 w 10 amps 7035125 ea th Mu 030 NP 60 v 150 w 16 amps Fin fl 25 each

2 243001 35v 350 ma FO18. 22. each 6 for 1100 2N5051 GOv 8U0 ma 9018 27p each 4 for $f 1.00$ 2 medit 50 v A amps 7022045 peach 10 for $\mathbf{~} 4.00$ C10601 400v 5 amps TO202 55p each 10 tor 55.00 GE. 12 TRIALS
 A.E.I. 10 amp 400 r ready mounted

LOW PROFILE IC. SOCKETS 8 0.1. . Top each 12 for Et .00 $160.1 . \mathrm{L}$. Gold Plated for E . 0
$220.1 . \mathrm{L} .27$ p each 5 tor E 1.00
$24011 \mathrm{35p}$ each 3 loo $\{100$
400.1 L
600 e each 2 tor 5100
ONJO55 OTHER GOODIES

2N3055 IR .C. AI 65p each

2 MSs 43 R.F. output 40 volts. I watt up to 1000 MH T. 0.555 each in for 55.00
M. 304 WN720 E ET

2M304. WN720 F.E.T transistor 37p each 3 for $[1.00$ each 8 for 66.00
each 8 for 56.00
CA.30288 OC
CA 30288 OC. 120 MHZ differ entialicascode amp
C 301120 MHZ widetand amp TO99 case 65p each 2 lot $\{1.00$
TMS3114 OVAL MOS 128 bit static shit t reg. OC
$2.5 \mathrm{MHZ} \mathrm{f1} .50$ each 4 for $\{425$
NE 555 27p each. 10 for $\mathbf{5 2 . 5 0}$
GE 424 zero voltage switch, tray SCR relay diver
IM384 5 Watt audio I.C. ft 50 each 10 for E11.09
FPO 3725 \& NPN SOw 500 ma rrarisisiots in 14 0.1 pack 70 peach 2 for f 100

Dept. W.W. 64 . 66 Melfort Rd., Thornton Heath Croydon, Surrey. Tel: 01.6897702 or 01.6896800

MAIL ORDER INFORMATION Unless otherwise stated all prices inclusive of VAT. Cash with order. Minimum order value E2.00. Prices and Postage quoted for UK only. Where post and packing not indicated please add 40 p per order. Bona five account orders same day where possible. Access and Barciaycard Visa welcome.

SUPERVALUE P.C.B. SPECIAL

 Another great buy. Board contents include 62 Digital I.C.'s all located in 1 pin D.I.L. sockets. Original cost over $£ 90$ our price only $£ 4.95+\mathrm{pp} 65$ p
5v D.C. POWER SUPPLIES

Following the recent "SELL OUT"' demand for our 5 v 3 amp P.S.U. we have managed to secure a large quantity of ex-computer systems P.S.U.'s with the following spec.; 240 or 110 v A.C. input. Outputs of 5 v @ $3-4$ amps, 7.2 v @ 3 amps and $6.5 \mathrm{v} @ 1$ amp. The 5 v and 7.2 v outputs are fully regulated and adjustable with variable current limiting on the 5 v supply. Unit is self contained on a P.C.B. measuring only $12 \times 5 \times 3$. The 7.2 v output is ideal for feeding "on board" regulators or a further $3 \mathrm{amp} L \mathrm{M} 323 \mathrm{~K}$ regulator to give an effective jv @ 7 amp supply.
Supplied complete with circuit at only $£ 10.95+£ 1.75$ pp

KEYBOARDS

* LOW PRICE CHASSIS t

A special bulk purchase enables us to offer the above keyboard at a lowest ever price. 49 coded keys encoded into a direct TTL compatible but output. Features such as delayed strobe 5 volt $0 . C$ single rall operation and rollover protection make this an absolute must for the connector at art Supplied con £20 $0^{00+\text { P. P. } 61.60}$ "no time to les
price of only
SUPER CASED VERSION Same as above spec. but housed in attractive two tone moulded, free standing case. Unit also includes an all $\Pi \mathrm{L}$ parallel
to serial convertor (no details) atc.

TOROIDAL TRANSFORMERS
 All voltages mascaraed off load.

$$
£ 27^{.50+\rho \cdot P . \varepsilon 1.85}
$$

Plugs, Sockets \& Connectors Cannon 'D' Range

EX STOCK
 SOFTY

SOFTWARE DEVELOPMENT SYSTEM, INVALUABLE TOOL FOR DESIGNERS, HOBBYISTS ETC Enables "open heart surgery" on 2708, 2716, etc, Blows, Copies, Reads EPROMS or emulates EPROM/ROM INSITU whilst displaying contents off ROM/RAM on a domestic TV receiver. A host of other features. one for more details
f 115 + VAT \& CARR You'll never regret buying a SOFTY

LEAR SIEGLER model 310 Ballistic printer. Save £400. OUR PRICE ONLY $£ 950$ or make us an offer. Used but clean $£ 650$.
DEC VT52,
TERMINET 30 PRINTER WITH TWIN CASSETTE. 30 cps . Standard 232, E700 or offer.
NEWBURY VDU with Keyboard Model 24.80 £ 350 or offer.
CIPHER VDU with separate Keyboard (No case). Printer, port; reverse video/flashing etc €375
CKICOMP 564 BARRELPRINTER. MUST GO. 6550.
CIL PLOTTER ON STAND. Ex-Ministry VGC. $\mathbf{C 8 5 0}$.
FACIT 4001. READER with 2 spoolers 4015 . $£ 475$ the set. Please make an offer we can
FACCPIT PUNCH with 5107 CONTROLLER 8250 .
DICOM Disk Drive $8^{\prime \prime}$ Ex-Ministry Clean E120 each.
TELETYPE PUNCH in Silent Case $£ 45$ each.
ARCTURUS A18D, 16 bit mini. With Data.
ARCTURUS A18D, 16 bit mini. With Data. Another gift $£ 425$
COMPUTER AUTOMATION ALPHA 16 with TTL Input Interiace. Massive Documentation \&
quantity of paper tapes. And again a gift at $£ 390$.
TELETYPES ASR 33 with 20 ma . No Interiace. No data. HENCE $£ 475$,
E225 ench.
TWIN SHUGART Floppy Drives a C4 50 gift.
A FEW OLIVETTI PRINTERS \& KEYBOARO Type Te 300 still available --please enquire.

STEPPING MOTORS

STEPPING MOTO
200 Steps -20 -oz/in. torque. 12
input 4 .wire.
E12 each. $P \& P$ ¢ 1.50

| $1 N 4305 \quad 5 p$ |
| :--- | :--- |

BZX79C12 10p
$\begin{array}{llll}\text { MC4012 } & 15 p & \text { 2N3704 } & 8 p \\ \text { MC4020 } & 75 p & \text { 2N5447 } & 5 p\end{array}$
STEPPING MOTORS

REGULATORS -all at 45 p each.
MC7805; 7812; 7815; 7912 .

MC14961 70p. TIS 50-10p each. MC4016-25p each. $74100 \mathrm{~N}-75 \mathrm{p}$ each
Miniature 4.7K PRESET. 10 for 25 p. 100 for 62
Miniature 4.7K PRESET. 10 for 25 p. 100 for $£ 2$.
16 pin OIL Socket 10 . 14 pin SIL Socket 8 .
16 pin DIL Socket 10p. 14 pin SIL Socket 8p.
LED type TIL 209 Red with holder $10 p$ each.
SLOTTED OPT SWITCH supplied with data - normally over $£ 2$. OUR PRICE 75 p each
ROCKER SWITCHES 2 pole clo- $15 p$ each
Spring Action TERMINALS - normally over 30p ea. OUR PRICE 15 p each
TOROIDAL TRANSFORMER $0-115 \mathrm{~V}-230 \mathrm{~V}$ Inpul: $13.5 \mathrm{~V}-0-13.5 \mathrm{~V}$ rated 8 VA output $£ 1.70$
Such. P\&P TRANSFORMER $0.120-240 \mathrm{~V}$ Input. 12 V .0 .12 V rated 4 VA . Output 75 p each. P\&P
50b-m

DIODES
 1S44: fN4148: 1N3470: 1N4 spec. devices IN 3063 BA
 100 off €1. $50-1,000$ off ह10.

BLUE THERMAL PAPER 430 tr roll $81 /^{\prime \prime}$ wide

MUST CLEAR
LARGE OUANTITY OF
all with information. British. Approx. window $£ 2$ each. British. Approx. $5^{\prime \prime}$
window $£ 3.50$ each. American. Approx. $2^{\prime \prime}$ window $£ 4$ each. Special American version by RCA $£ 6$ each. P\&P all photomultipliers

709 DIL 14-PIN OPERATIONAL AMPLIFIERS ar 8 g arach
100 of 25% discount.

MINIATURE

 KEYBOARD Push contacts, marked $0-9$ and A-F and 3 optional function keys. E1.75 each. P\&P 65 p .
MAGNETOS
 Brand New. Boxed

Ei. Minisisty
Originally for Ministry aircraft, therefore finest quality

Aidiculous $£ 4.75$ aach

STEPPING MOTORS

North American Phillips, 5 volt 3.3 Amp operation. 2 wire PPS a-200 revs per min
$0-250$ used. Tested $\& 16$ each. P\&P $£ 1.50$.

pol must clean

RAD SPECTRUM ANALYSER
5" Display. These are supplied with STU plug in. 1 to 45 GHz . c85 each

TRANSISTOR INVERTOR

 115 V AC 1.7 Amp Input. Switching is at 20Khz. Output windings from Pot Core. Can be rewound to suit own purpose or unit can supplied. $£ 1.25$ each. P\&P $£ 2$.
SUPER BATTERY CHARGER

 Altracive green ministry quality case withremovable top and bottom plates - heavy duty power switches - high powered resist ors to conirol current - good qualily centre mounted amp meter - strip of wing nut for connecting leads. ALL THIS FOR $£ 3.50$, P\&P £2. Four Units $£ 12$. Carriage $£ 5$

STEPPING MOTORS

$6 / 12$ position with additional where the rolor is coils. Device can be used as a tacho
Diagram supplied. Will aclually work on 5 volis, $12 / 24$ recommended.
E1.50 each P8P 75p or

INFRA RED IMAGE

 CONVERTER type 9606 (CV 144) 3 KV to 6 KV supply inditudally boxed. With data£12.50 each P\&P 75p Infra Red Lamps also advertised

KEYBOARD PAD

Size $3 \times 21 / 2 \times 2^{\prime \prime}$ high with 12 Alma Reed Switches. Blue keys marked in green 0.9 and a star with one blank. £ 4 each, P\&P £1, or 5 for $£ 15$ P\&P £2

770R used tested
£95 each 730/10 used tested $\mathbf{£ 7 7 . 5 0}$ each 94024 V invertor version. Special Government Quality vgc $£ 165$ each.
TANTALUM BEAD CAPACITORS. 4.7 uf 25
OA.
TEXAS Low Protile 40 pin IC Sockets $45 p$ ea. SO SIMPLE SO SAFE which one when ordering. 75 Peakeh.
AMP METER $21^{\prime \prime}$, State Shunt. £2.50 ea. P\&P ${ }^{2} \mathrm{P} 1.50$.

Motor $12 \mathrm{~V} D C$ with pulley and integral semiconductor. Speed
Comind. New E1 ee. DIAMOND H CONTROLS ROTARY SWITCN. SIngle pole
 Secondary centre lapped. New 20p or.
MOTOR by Intand Motor Corp. OC MOTOR by Intand Motor Corp. OC High Torque. Reversible.
Usable torque at 5 V Man voliage 24 V £2.50 os. P\&P \mathcal{Z}. Usable torgue ar 5 V Man volage $24 \mathrm{~V} \mathbf{E 2 . 5 0}$ os. PGP $\mathcal{E} 2$.
REMO TV TYPE MULTIPLIER. Two high voliage outpuls and DON'T TAKE CHANCES. Use the proper EHT CABLE, $10 p$ per metro or $\mathrm{E7.50}$ per 100 motre/drum. P\&P E2.
PHOTOGRAPHIC LAMPS. Pearl 230 V 500
 RAPID OISCHARGE Capsetors Bmid AkV $E 5$ each. P\&P $E 2$ MYSTERY IC PACK. Some 40 PIn - good murture - all new
devices. 25 ICs for $C 1$. P\&P 50 P You find oul what they are and we will buy the intor mation from yout .
VACUUMM PUMPS - RRAPS. ETC. Send tor list.
DECOUPLING CAPACITORS
005 mld 10 V . 0.01 mfd 0047 mid 250 V . 33k. 330pt. All
 MoETC. 10 metreo for E. 3.

GEC UHF A-button tuner C1. 50 each.

GEC UHF/VHF G butron furer 62 esch.
DIGITAL 24 HOUR CLOCK
DIGITAL 24 HOUR CLOCR with buill.in alarm as used in Braun
 Window and buith-n resision nenvork E2 emel. PP P E1. calibrated $50-200$ degree C $E 2.50$ esch. calibrated $50-200$ degree C E2. 50 esch.
SOLIO STAF UHF TUNERS. 30 acs Cl BRAND REX Dlue wire wraps. 30 mestes for E1. P\&P 25 p.
SLIDER CONTRROL $500 K$.

```
hnob Length \(31 / 2^{\prime \prime} 250\). 500 ck .
```

Knob Length $31 /{ }^{\prime \prime}{ }^{2}{ }^{2}$
TRANSFORMERS

 240 V input 12 V 100 MA Size $60 \times 40 \times 42 \mathrm{~mm} 50 \mathrm{p}$ each.

CRYSTALS
OUD HALLERS. Transistorised hand-held. no leads. Standard internal batteries supplied How Swizch. 220 .e.. P\&P \& 2
INFRA RED OUARTZ LAMPS. 230 V 520 Want. Size 13% " x
Y/'" dia. E1.50.
BRIDGE RECTIFIER. 2 Amp 50 pen .
PHOTODIODE DETECTOR 4" fily leads. $25 p$.a.
at connectors 0
Spacing. 15p an 1 C Standard MAINS LEAD. Moulded 3 vertical flat pins centre
FANS. 115 V 13 Watts. Size $3^{1 / 4} \times 3 / 4 \times 1 / 2^{\prime \prime}$ BRAND NEW,
E4.50 Se Secondhand $\mathbf{E 2 . 5 0}$ \%
$\times 7 / 16 \times 5 / 16^{\prime \prime}$ New 25 p eo.
Minusture MOTORS 12 V with ge 50 p .
 BA154. BA243.
TIPSp TIPATA. 2N296, AF 139.2 TK34
 DEGULEDTORC. $50 p$ aech BF 256 C 20 p . TV AMPLIFIER TBA 12020 omch

Tmagrod Cicwit 74474 12 P					
7453	${ }_{5} \mathrm{p}$	74474	${ }^{12 p}$	75325	1
7451	$5 p$	$74 \mathrm{HS1}$	${ }_{10}^{7 p_{p}}$	SN15862	4 p
7402	12p	74538		MC4028	$69 p$
7476	200	74502 74954	120	7417	$14 p$
7495	350	14 CO 2	180		${ }_{50} 40$
74122	12 p	${ }_{74 \mathrm{CO}}$	10^{0}	$74 \mathrm{C86}$	500
74.400	17p	74 C 74	18.	74 Cl 161	24 p

plate lester version 50 exch EPROME 2708 E 5.50 ouch

5 MITHS encapsulated tansistorised AUDUBLE WARNING
 Other ranges avalable Please enquire
TRIMMERS. Sub min 025 to 125 pt 1 to 4.5 pf . 7 to 45 pt . All

THYRISTOR TIMER. Solid State. 15 secs adqustable (reset) in plastic relay case. Standard 7 -pin base. Series delay 50 P (rach.
MINIATURE PC MOUNT SLIDE SWITCH. Single pole 3 . 10p osch.

LARGE EX-AINISTAY SPEAKERS. OUTSIDE 15 ohm or

 500 onm Tested. £25 each or 5 for $£ 100$.Some EHT Transiormers ond Capaciors avalible. Please enquire.
TELEPHONES 706 style black, grey or blue $\mathbf{~} 5.50$ as 746 in black or grey $\mathbf{£ 7 . 5 0}$. Older style black $£ 2.50$ eoch. Discoloured grey $706 £ 4$ es $P \& P \& 150$ per teiephone. INSERT can be used as
 Brand new ${ }^{4}$ wire 4 brush $\mathbf{6 2 5}$ as. Plus carriage PC Mount POTS. Wire wound with inob 200 ohm \& 10 Ohm 10 p CAPACITORS at 5 p ea - 0.1 us 400 V Small rec block PC Mount Capacioro 11 mit 250 V AC - 10 p .e. cenve minus sign to the leth of the ligure one with decimal places
between digus Good brilliance it $15 y$ is connections

WW - 107 FOR FURTHER DETAILS

Technician today, RN Artificer tomorrow. SEVEN WEEKSAFTER JOINING THE ROYAL NAVY, YOU COULD BE EARNING £7,200p.a.

Skilled technicians (TEC Diploma, ONC or CE G Tech II) play a vital role as artificers in today's Royal Navy.

A varied life
There's a wide variety of interesting jobs in ships, aircraft and submarines, on equipment in the forefront of technology, plus the bonus of overseas travel. And the Royal Navy is quite justly famed for its sporting prowess and recreational facilities.

Excellent pay

If you're 22 or over you'll usually be a Petty Officer after seven weeks' satisfactory initial training-and that means a guaranteed $£ 7,200$ a year.

Guaranteed promotion opportunity
Ifyou pass your Naval exams,there are guaranteed promotional opportunities.
If you would like to find out more ... You will have the opportunity of doing so in an informal and relaxed atmosphere at one of the hotels we are visiting all over the country. You can also see a private viewing of our new video film "Technician today, Artificer tomorrow".
Why not bring your wife or fiancée along, there are many advantages for them too if you choose a career in the Royal Navy.

For details of times and places, please ring:
BIRMINGHAM, Lieutenant Hutchins. Tel:021-6435552. Ext. 47
BRISTOL, Lieutenant Gilchrist. Tel:0272293718
DERBY, Lieutenant Worthington. Tel:0332 42691
GLASGOW, Lieutenant Kennedy. Tel:041-332 6896
LONDON, Lieutenant Drew. Tel:01-405 9951

TELEVISION SOUND IS GOOD!

Yes it's true - but you'll need to listen through a Minim Television Sound Tuner to be convinced. Music, wildlife, even the news suddenly comes to life when you can hear all the detail that you expect from High Fidelity equipment Connect the Minim Television Sound Tuner to the amplifier or music centre or listen directly on headphones so as not to disturb others.

Further information will only cost you $12 p$ - stamp out poor televison sound!

Name
Address

Minim Audio Limited, Lent Rise Road, Burnham
Slough SL1 7NY. Tel: Burnham 63724 MINIM AUDIO
make a note of our name!

MARKING PENS

with fluorescent colour inks

A range of marking pens is availade ... ten colours for permanent and removable markings. The inks are highly fluorescent, electrically non-conductive and can be used for marking metal, plastic, fabric or through an oily film.

STANDARD PNEUMATIC MOTOR CO.
 35 Stafford Road, Weston-super-Mare BS23 3BN

Tel: 0934834209 . Telex 449460
 DC volts $200 \mathrm{mV}-1 \mathrm{KV}, 100 \mu \mathrm{~V}$ resolution. AC volts $200 \mathrm{mV}-750 \mathrm{~V}$, $100 \mu \mathrm{~V}$ resolution. DC/AC current $200 \mu \mathrm{~A}-2 \mathrm{~A}, 0.1 \mu \mathrm{~A}$ resolution. Resistance $200 \Omega-20 \mathrm{M} \Omega, 0.1 \Omega$ resolution Low resistance 2Ω and 20Ω, $1 \mathrm{~m} \Omega$ resolution Conductance ranges $2 \mathrm{mS}-20 \mu \mathrm{~S}-200 \mathrm{nS}$
£199.00 mains model
 $£ 219.00$ mains battery. 8010A $31 / 2$ Digit LCD DMM Same spec as 8012A plus a 10Amp $\mathrm{AC} / \mathrm{DC}$ current range, but no low resistance range
£159.00 mains model $£ 179.00$ mains battery. 8024A $31 / 2$ Digit hand held LCD DMM with peak hold Level Detector and continuity tester. DC volts $200 \mathrm{mV}-1 \mathrm{KV}$, $100 \mu \mathrm{~V}$ resolution
$A C$ volts $200 \mathrm{mV}-750 \mathrm{~V}, 100 \mu \mathrm{~V}$ resolution. $\mathrm{DC} / \mathrm{AC}$ current $2 \mathrm{~mA}-2 \mathrm{~A}$; $1 \mu \mathrm{~A}$ resolution. Resistance $200 \Omega-20 \mathrm{M} \Omega, 0.1 \Omega$ resolution Conductance 200 nS . Peakhold of AC or DC volts and current. Level detector operates around +0.8 V reference. Audio tone on level and continuity. $£ 135.00$ carrying case $£ 7.00$ extra 8020A $31 / 2$ Digit hand held LCD DMM. spec as per 8024 A with extra conductance range of 2 mS but no peak hold, level or continuity ranges
Complete with carrying case. $£ 112.00$

8022A $31 / 2$ Digit hand held LCD DMM. Spec as per 8020A but no conductance ranges and slight reduction on accurasy. Was $£ 89.00$ now reduced to $£ 75.00$ carrying case $£ 7.00$ extra.

Also available a range of accessories including current shunts, EHT probe, if probe, Temperature probe and touch and hold probe. Full details on request The warranty period on all items shown is 1 year other than the 8020A which is 2 years.

\section*{| Electro |
| :--- |
| $1=-1$ |}

Brokers 61-65 King's Cross Road London, WC1X 9LN
Tel: 01-278 3461 - Telex 298694
prices do not include carriage or VAT
WW - 069 FOR FURTHER DETAILS

Roxburgh Suppressors Ltd.

If our standard range of suppressors isnt good enough for you, you know what you can do!!! Tell us. And well design one for you.

Whatever your needs, R.E. suppression or ciruit protection, tell us your problems and well give you an answer.

You don't have tobe a suppressor expert. We are.
Call us Now.
Roxburgh Suppressors Ltd.
Eagle Road,
Rye, E.Sussex.
Phone. 079733725

World-beating Oscilloscope Offers

[^11]Base 2
MODEL 800MST
80 COLUMN HIGH PERFORMANCE IMPACT PRINTER

- suitable for most Micros.

JUST LOOK AT THESE STANDARD FEATURES:
*RS-232, 20 mA , IEEE 488 and Centronics $1 / 0$ * 15 Baud rates to 9,600 * 100 Chrs. per second Bidirectional * 6 print densities $60,72,80,96$, 120 or 132 Chrlline *Self test switch * 96 Chrs. ASC II Standard * Auxilliary User Defined Ch. set * Tractor and fast paper feed/graphics * $2 k$ Buffer * Accepts $81 / 2$ " max. paper pressure feed and $91 / 2$ " max. paper tractor feed.
with up to 32 k RAM expansion free games disc

* 9 Digit extended Basic * Plugs straight into 8k Compukit requires no hardware mods. (5v.5A required for 610) 610 Expansion (8k) ONLY $£ 159$ + VAT Disc Drive with DOS ONLY $£ 285$ + VAT

VERBATMM 5% " DISCS $£ 1.85$ each $($ min. 10$)+$ VAT STATIC RAM $21141-12 £ 3$ each + VAT $13+£ 2.50$ each + VAT

Exatron Stringy Floppy

COMBINES ECONOMY OF CASSETTE WITH SPEED \& RELIABILITY OF DISC

16k loads in approx. 24 secs. - Wafers to 75 ft (48k approx.)

Ohio Superboard II \& Challenger IP
with reef amm
*Ready Built *8k Microsoft in ROM, 6 digit floating point basic plus full features. 4k RAM - expandable to $32 k$

SUPERBOARD II (24×24 format) $£ 159+$ VAT SUPERBOARD II (48×32 format) $£ 199+$ VAT POWER SUPPLY $5 v .3 A$. $£ 27$ + VAT CASE $£ 29$ + VAT CHALLENGER 1 P $(24 \times 24$ format) $£ 219+$ VAT CHALLENGER 1 P (48×32 format) $\mathbf{f 2 5 9 + V A T}$ (Superboard is used in Challenger)

Stringy Floppy with 10 Wafers (Tapes) BUS EX. 2 for 1. Machine Lang. Monitor

Please add V.A.T. at 15%. Carriage extra, will advise at time of order. Official orders welcome 61 NEWMARKET SQUARE, BASINGSTOKE, HAMPSHIRE. RG21 1HWD Telephone: Basingstoke (0256) 56468 and 56417

Explorer / 85

NOW AVAILABLE with 8"' Floppy Disc System. An inexpensive 8085S Based S100 Computer system designed for maximum flexibility.

EXPLORER / 85 offers you real flexibility. you can build the exact system you require. EXPLORER/85 can be your Beginners system, OEM Controller or IBM formatted $8^{\prime \prime}$ disc Business system. You don 't buy more
than you need Prices starn from $\mathbf{£ 9 1 . 7 5 \text { . }}$.
HARDWARE, Mother board (A) 8085 cpu .8355 ROM with powerful 2 K monitor system and $1 / 0$ ports, 8155 RAM-10 with 256 byies of scratch pad. Two S 100 pads. room for RAM. ROM, PROM. EPROM and S100 expansion plus prototyping space. Level 'B' allows address decoding for onboard RAM \& EPROM, address $\&$ data bus drivers for Onboard expansion. Wait state generator.
SOFTWARE. Microsoft. 90 in ROM or cassette or CP/M disc operating system which will support four $8^{\prime \prime}$ drives.
PACKAGE EXPLORER / 85 is available in kit form or assembled complete or in separate levels to suit your requirements and pocket. Cabinets and other peripherats are available.

VIDEO KEYBOARD TERMINAL. Microprocessor controlled. 1 K RAM character generator, processor controlted cursor control and parallet ASC 11 /Baudot to serial conversion plus serial to video processing all crystal controlled. Upper and lower case keyboard. choice of 32 or 64 characters by 16 lines with select ${ }^{\circ}$ baud rate, RS232 or 20 ma loop.
In kit form §114 or assembled $£ 139$
8" DISC DRIVE SPECIFICATIONS $\#$ Control Data Corp professional drive $\begin{gathered}\text { (LSI controller *Write protect }\end{gathered}$ *Single 6 r double density \#Data capacity: 401.016 bytes $\langle S D$) 802.032 bytes (DD) unformatred $\#$ Access DISC CONTROLLER BOARD SPECIFICATIONS * Controls up to $48^{\prime \prime}$ drives * 1771 IALSI (SD) floppy disc controller \# On board data separator (IBM compatible) \# 2 serial $1 / 0$ ports \# Auroboot to disc system when system reset * 2716 PROM socket for user custom applications \# Onboard crystal controlled * Onboard I/O baud rate generator to 9600 baud $\begin{gathered}\text { Double-sided PC board (glass epoxy) £156 }\end{gathered}$ DISC DRIVE CABINET/POWER SUPPLY UNIT * De Luxe steel cabinet for two 8 ' drives with

 Complete Business Software Package *incluces CP / M 2.0 * Microsoft Basic * General Ledger \# Accounts
Receivable *Accounts Payable *Payroll Package

64K 'JAWS' DYNAMIC RAM S 100 8D intel 8202 Controller
Hidden refresh. low power consumption. latched data outputs, 4116 RAMS Onboard crystal. 8 k bank select, fully socketed designed for 8080 . 8085 and 280 .
 64 K kit $£ 346$; W\& $\mathrm{T} £ 376$; 16 K expansion kits $£ 69$.

ELF11 RCA COSMIC 1802 cpu

Computer kits, basic board £59.95. Ideal for Hobbyists * Education * Control applications and expands to fult 64 K compurer. Extensive range of add-ons, send for fully illustrated brochure

NETRONICS TVM MONITOR

- Designed for computers. closed circuit TV and Video Tape Recorders
* 9 " black and white screen
* 10 Mhz band width
* Inpur impedance 75 ohms or high
- Compact and lightweight (13lbs)
- Solid state circuirry for maximum reliability and minimum power consumption
Stabilised
- Stabilised power circuit for stable trouble-free and sharp picture. - Metal cabinet - Input level range 1.0 to 2.0 V (P.P.) - 240 v 50 hz
- Size $9^{\prime \prime} \times 9^{\prime}$
* PRICE 999.50

三

Ilemutronias
255 ARCHWAY ROAD, LONDON N. 6
TEL: 01-348 3325

Appointments

Advertisements accepted up to 12 noon Monday, September 29, for November issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 12.00$ per single col. centimetre (min .3 cm) LINE advertisements (run on): $£ 2.00$ per line, minimum three lines.
BOX NUMBERS: $£ 1$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU). PHONE: Anthony Hadley, 01-261 8508.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.
 of technology

AMPEX

World leaders in Magnetic Recording, requires an

INSTRUMENTATION SERVICE ENGINEER

to join its customer support group in Reading
Key requirements are:

* Five years' experience of instrumentation electronics, preferably with some digital and some mechanical engineering content.
* Evidence of sound relevant educational achivement, preferably C \& G or HNC.
This appointment will appeal to Electronics Engineers in industry or development or soon after completing an HNC course or on leaving the Armed Forces. It involves travel (mostly in the UK) and gives scope for working independently.
Competitive salary plus car. Pension, Life Assürance and Permanent Health Schemes. Staff restaurant.
Ampex Great Britain Ltd., Acre Road, Reading RG2 OQR. Phone: 073485200.

CHIEF ENGINEER
 INDEPENDENT LOCAL RADIO STATION

Applications are invited for the position of Chief Engineer for a new I.L.R. Station based in the West of Scotland (mainland). The Appointment would take effect from January, 1981, and applicants should be suitably qualified individuals having an enthusiasm for Local Radio and practical experience in all aspects of Installation, Maintenance, and Technical Operation of Sound Broadcast Equipment to the I.B.A. Code of Practice Standard.

Salary would be by negotiation.
Please reply, by 31 st October, 1980, giving fullest career and qualification details to

Moorfoot Services
"Argentine", Whiting Bay
Isle of Arran KA27 8PZ
Applicants for other Engineering Positions, to be engaged by May, 1981, are invited to respond to this advertisement.

Medical Customer Engineer North\&Central London

Hewlett-Packard is a highly successful instrumentation and computer company with manufacturing divisions and sales offices worldwide. We are still enjoying sustained growth and currently require an experienced Customer Engineer in our Medical Group.

Working in the north and central London area you will be expected to provide a speedy, efficient and economical on-site repair and maintenance service to customers.

We would particularly like to hear from young Engineers with HNC Electronics or equivalent. Experience in the medical products area and particularly in Customer Service would be advantageous. Since the job involves Customer Interface, candidates need to have good communication skills and a pleasant personality.

Full training will be given in the U.K., and abroad. An attractive salary is offered for this position in addition to a comprehensive range of benefits including:-

> * 2 Litre company car.
> * Twice yearly cash profit sharing.
> * Non-contributory pension plan.
> * Share purchase plan.
> * Christmas bonus.

For an application form, please ring Annabel Bayly on Wokingham 784774 or write to her at Personnel Department, Hewlett-Packard Limited, King Street Lane, Winnersh, Wokingham, Berkshire.

UNIVERSITY OF WARWICK TELEVISION ENGINEERS

Vacancies exist for two experienced television engineers to share responsibility for the maintenance and repair of high quality equipment in use in the Audio-Visual Centre's two studios, as members of a team providing television production, off-air recording and videotape playback facilities. Qualification to HND/HNC or Advanced C \& G is desirable and previous experience of similar work or domestic radio and TV servicing would be an advantage. Salary would be at an appropriate point on the Technician Grade 4 scale: $£ 4,431$ £5.097 p.a., depending on age, qualifications and experience. Application should be made by letter quoting Ref. No. 2/2T/80/20 and should give full background details and the names of two referees, one of whom should preferably be the applicant's current employer, to the Per-
sonnel Office, University of Warwick Coventry CV 47 AL by 24 th Sep tember, 1980.
(652)

> BAISTOL POLYTECHNIC DEPARTMENT OF ENGINEERING Applications are invited for the following posts:
> GRADE T3/4 - Ref. No. $13382 / 54$
> GRADE T3/4 - Ret. No. T3371/40

SALARY SCALE for the above: $£ 4581$ £5784 per annum
8oth of these posts are situated in the Electronic Engineering Department and heir basic function is to assist in the
developmemt and maintenance in a wide range of novel equipment.
For further details and an application form, to be returned by 30 September 1980 , please contact Personnel Office. Bristo Bristol 8516 1ay.
Please quote appropriate Reference Numbers in all communications.
1664)

INSTRUMENTATION OR ELECTRONICS ENGINEERS

G. Cussons supply test equipment to education establishments and instruments for research on automotive engines. We urgently require two engineers to spearhead the future expansion of existing and new automotive instrumentation products. The first position will involve liaison with the sales department for the specification of exhaust gas analysis equipment to customers and the design and development of future enhanced models. The second vacancy will be concerned solely with the development of research instruments where a knowledge of 16 bit microprocessors and standard digital and analogue circuitry would be useful. As an alternative, experience in the testing of internal combustion engines or the application of commercial instruments would also be relevant in both positions.
Applicants should ideally have a degree in electronics, physics or mechanical engineering.
The salary will be negotiable in the range of $£ 5,600$ to $£ 8,000$ depending upon age, qualfications and experience.
Generous relocation assistance will be provided where necessary
Please reply to:
Dr. R. A. Haslett
G. CUSSONS LTD.

102 Great Clowes Street, Manchester M7 9RH
CUSSONS

CAPITAL

APPOINTMENTS LTD

CAPITAL HOUSE 29-30 WINDMILL STREET
LONDON W1P 1HG
TEL: 01-6375551

THE UK's No. 1 ELECTRONICS AGENCY

Design. Dev, and Test to $£ 9,000$ Ask for Brian Cornwell
SALES to $£ 12.000$ plus car Ask for Ken Sykes

FIELO SERVICE to $£ 8.000$ plus car Ask for Maurice Wayne
We have vacancies in ALL AREAS of the UK
Telephone: 01-6375551 (3 lines)

Customer Engineers Electronics

Register now - and let us help you in your search for a suitable job.

PERSONNEL
CONSULTANTS
LIMITED
LIMITED

Abu Dhabi Marine Operating Company (adma-opCo)

TELECOMMUNICATIONS ENGINEERS

\$21,000-26,000 p.a. (tax-free)

Reference:
OPS/80/S/R/24 (Offshore based)
OPS /80/S/R/27 (Abu Dhabi based)

We are a leading Oil Producing Company operating in offshore areas of Abu Dhabi, United Arab Emirates and producing $500,000 \mathrm{~b} / \mathrm{d}$ with water injection techniques and gas gathering system.
We require two telecommunications Engineers to be based either in Abu Dhabi or offshore. He will direct and control all installations, maintenance and operation of telecommunications equipment in offshore areas. This includes MF radio beacons, HF, SSB networks, automatic dialling radio telephones, VHF and UHF aircraft stations, VHF ship stations, multi-channel microwave circuits with associated multiplex equipment, mobile VHF radios, small telephone exchanges and telephone distribution, etc.
He will have had a B.Sc. in Telecommunications Engineering or equivalent and has good command of English. He will also have had a minimum of five years' experience in repair of industrial radio related telecommunications equipment. Age range 27 to 45 years.
The climate in the area is hot and humid in summer, temperate in Autumn but moderate and pleasant during the rest of the year.
Abu Dhabi is a modern city with good shopping, communications and recreational facilities. Primary and secondary schools are available. The company provides fully-furnished married and bachelor air-conditioned 'accommodation at nominal rent and air passage to home country with annual leave of 49 days.
Offshore, the company provides adequate recreational facilities and offers free messing and air-conditioned bachelor accommodation to a high standard with a very generous leave scheme (29) days on site followed by 27 days' leave with passage paid to home country
In addition to attractive salaries, the company also extends financial assistance to school age direct dependants up to completion of secondary school.
Clear handwritten applications in ENGLISH, quoting the name of the publication where this advertisement was published and giving full details of their qualifications, training and experience as well as membership of professional associations and supported by copies of relevant testimonials, should be submitted separately to both the following addresses:

Senior Personnel Officer (R)

ADMA-OPCO
P.O. Box 303

Abu Dhabi
United Arab Emirates

Department of Petroleum
P.O. Box 9

Abu Dhabi
United Arab Emirates

Appointments

Challenging positions

 at home and abroad
RADIO TECHNICIANS COMMUNICATIONS ENGINEERS

Plessey EAE design, install and maintain communications systems for the oil industry, at home and abroad.
Due to rapid and continuing expansion in our activities, we constantly require Radio Technicians, with experience of HF, MF, VHF and UHF, and Engineers (preferably qualified to HNC level or above) in the fields of Microwave, Multiplex and Tropospheric Scatter.
In the North Sea, earnings are in the range $£ 9,000$ to $£ 12,000$ p.a. Overseas earnings could be up to $£ 20,000$ - plus tax concessions and generous home leave.
The work is demanding, but rewarding, offering you the chance to use your skills and your initiative to the full.

The company is based in Great Yarmouth, with offices in Aberdeen and Lerwick but where relocation is necessary, we will give generous assistance with removal, legal and temporary accommodation expenses.

Please apply, with details of your career to date, to: Personnel Manager, Plessey EAE Limited, Dept WW, Offshore House, 284/285 Southtown Road, Gt. Yarmouth, Norfolk NR31 OJB Telephone 049358541

OPIESSEY EII

FOR
CLASSIFIED
ADVERTISING
RING
ANTHONY
HADLEY
ON
01-261 8508

COLOUR VIDEO AND ELECTRONICS ENGINEERS

Varted work in small experienced team operating broadcast quality studios/copying service, plus research and development

SENIOR VIDEO ENGINEER

£6636-£7772 plus 1980 award
To run development / maintenance sub-section, supporting video player network, broadcast colour recorders. E. N. G units, etc.

ELECTRONIC ENGINEER

£5268-£6381 plus 1980 award
Digital and analogue skills for new equipment development and some maintenance work.
Forms and details from: Personnel Officer, Brighton Polytechnic, Moulsecoomb. Brighton BN2 4AT. Tel. (0273) 693655. Closing date: 10 October, 1980. (684)

MANAGEMENT \& EXECUTIVE SELECTION

 telepnone$01-6379611$ JUNIOR \& EXPERIENCED COMPUTER ENGINEERS
Join a successful, progressive company and reap the benefits. Engineers with 1-6 years computer maintenance experience are required in many UK regions. Salaries £7K - £12K + car. Interested?
Call Howard Wynne or Peter Gorton today!
Suite 201/6 Albany House
MANACEMENT \&
(682) 324 Regent Street London w1 EXiCUTIVESELEcTION

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY DEPARTMENT OF ELECTRICAL AND COMMUNICATION ENGINEERING
SENIOR
TECHNICAL INSTRUCTORS $1 / 2$

TELECOMMUNICATIONS
Applicants should have practical experience in telecommunications. T.V. or broadcast engineering. and teaching experience at technician or technician / engineer level.
Salary: K 12,810 or K 14,660 (Kina 1 $=$ Stg. 0.6262).
The initial contract will be for 3 years. Other benefits include a gratuity of 24% taxed at 2%, appointment, repatriation and leaves fares for the staff member and family after 18 months of service, settling in and out allowance, six weeks paid leave per year. education fares and assistance towards school fees, free housing. Salary continuation and medical benefit schemes are available.
Detailed applications (two copies) with curriculum vitae, together with the names and addresses of three referees, should be received by the Registrar, Papua New Guinea University of Technology, P.O. Box 793 , Lae, Papua New Guinea by 15 October 1980. Applicants resident in the U.K. should also send one copy of application to the Association of Commonwealth Universities (Appts) 36 Gordon Square, London WC1H OPF

OXFORD UNIVERSITY
DEPARTMENT OF ATMOSPHERIC PHYSICS

ELECTRONICS TECHNICIAN

A vacancy exists for ar electronics technician (grade 5) to work on the construction, testing Department's space research programme. The successful applicant will become part of a small, energetic group involved in deve-
loping scientific instruments and launching loping scientific instruments and launching them on Earth satellites and probes to the planets, Training will be given, as
necessary, to young persons with suitable backgrounds. The salary scale is currently £4776-£5577 p.a. Applications, giving details of qualifications and experience, and the names of two referees, should be sent to Dr. F. W. Taylor, Dept. of Atmospheric Physics, Clarendon Laboratory. Oxford OXi
3PU 3 PU .
(653)

DIGITAL EXPERIENCE?
FIELD, SUPPORT AND PRODUCTION. VACANCIES IN COMPUTERS, NC, COMMS, MEDICAL, VIDEO, ETC.
Fore free registration ring 01-464 7714 ext. 502 24 HOURS
LO G్viEx
EEETRONICS RECRUITMENT SERYICE HIGH ROAD. LOUGKTOM. ESSEX 01-502 1589/01-464 7714. EXT. 502

HF/VHF Radio

Substantial benefits

A highly successful company on the South Coast is seeking high calibre, commercially oriented, Graduate Electronic Engineers to form the nucleus of a new team involved in development work on an exciting new generation of tactical radio communications equipment.

The standards are high but then so are the rewards. In particular we are looking for the following men or women.

CHIEF ENGINEER

A position that combines technical expertise with considerable managerial skills, in leading and directing a team of Design Engineers working with the most sophisticated techniques in radio communications applying advanced integrated circuit technology. Candidates must be honours graduates with a number of years post graduate development experience.

TECHNOLOGY SPECIALIST

Reporting to the Chief Engineer you should be an Electronics graduate with a minimum of six years experience of circuit design with a wide ranging knowledge of modern semi-conductor and thick film IC's, preferably covering both RF and digital applications.

SYSTEMS CO-ORDINATOR

Co-ordinating and preparing technical proposals, specifications and tender bids for new development programmes, this position calls for considerable communication skills and commercial acumen. Applicants should be Electronics graduates with at least 10 years relevant experience.

Salaries of up to $£ 10,500$ and beyond are offered plus an excellent benefits package including BUPA membership and generous relocation assistance. Opportunities for further advancement are very good indeed.

Telephone Rod Evans.

Harrison Cowley Executive Selection

 35 Queen Square, Bristol BS1 4LU.Tel. 0272213151 (24 hr.answering service).The Institut for Radio Astronomy in the Millimeter Wavelengths (IRAM) is interested in employing

RADIO FREQUENCY ENGINEERS
 (VC1 $2 / J C$)
 and
 TECHNICIANS
 (VC13/JC)

to work at Grenoble (France) on intermediate frequency systems (up to 2 GHz) for fitter and correlator spectrometers.

Candidates with relevant experience should send a résumé by 30 September, 1980, to:

INSTITUT DE RADIO ASTRONOMIE MILLIMETRIQUE, (I.R.A.M.), Administration, B.P. 391, 38017 GRENOBLE CEDEX, Frnace.

LEEDS CITY COUNCIL

Department of Education

Leeds Polytechnic - School of Mumanities \& Contemporary Squdies

SENIOR TECHNICIAN
 (Ref. 150/2)

T3/4£4581-£5784 (olus technician qualification allowance)
Responsible for the care and operation of iwo psychology laboratories. Duties will include the design, construction, repair and maintenance of electronic and laboratory equipment.
Ideally applicants might hold a City \& Guilds Technician Certificate in Electronics or equivalent qualification, although relevant practical experience is equally important, and design and general enginearing abilities are desirable

Application forms, quoting reference number, from the Administrative Services Officer, Leeds Polytechnic, Calverley Street, Leeds LS 13 HE . (681)

Develop your Electronics experience

In atrainingrole

If you have sound up-to-date electronics engineering experience, plus an HNC or equivalent qualification and an ability to communicate what you know clearly and effectively, then a job as a Technical Instructor in our newly established Training School in
Borehamwood, Herts might well appeal to you

We're a top name in the development and manufacture of highly advanced avionics equipment and we regard the training function as particularly important in preparing our, personnel to face the challenges of this rapidly expanding technology in the 80 's.

As a member of our Training team
you'll be developing and preparing courses; giving instruction and demonstrating techniques to a wide range of staff from junior craft apprentices to professional engineers.

We can offer you a good salary. attractive benefits and first-class opportunities to develop your career in this highly progressive company.

Write with details of your background which need not necessarily include experience of training, to Chris Hill at Marconi Avionics Limited, Elstree Way, Borehamwood, Herts. Or telephone 01-207 3455 any time and we'll send you more information. Quote reference MA 80/47.

ELECTRONICS TECHNICIAN

Grade 5 or 6

required for the Department of Physiology to be responsible for the design and construc. of a wide range of electronic instruments for both research and teaching in the Medical Faculty. Good electronic background and qualifications (at least O.N.C. or equivalent) essential. Some experience in medical or biological field preferable though not essential. Salary on scale Grade 5 §5556 p.a.
ising to $£ 6357$ p.a. (finclusive) according to rising to $£ 6357$ p.a. (inclusive) according to
qualifications and exoerience with possibility of the higher grade 6 salary on scale $£ 6258$ p.a. rising to $£ 7323$ p.a. (inclusive) for suitable applicant possessing higher qualifications and experience. Five weeks ${ }^{\circ}$ annual holiday. Contributory pension scherne. Apply in writing with full details to The Head Clerk. Ref: 221796, King's College, London WC 2R 2LS.
(675)

GLOOM RECESSION UNEMPLOYMENT

how does it affect the average electronic ENGINEER?

Our placements show that your salaries are 30% higher than they were this time last year However. employers do pick and choose - it is definitely a buyer's markel

CURRENT VACANCIES INCLUDE

SENIOR DESIGN ENGINEER to head up a small team in design consultancy. Good degree. lots of microprocessor hardware/software experience. Knowledge of telecommunications an advantage. To $£ 11,000+$ car
MICROWAVE ENGINEERS - always at a premium. Salaries up to £12,000 Greater London, South Coast, Berkshire.
DESIGN ENGINEERS. Good knowledge of computer architecture either DEC IBM or Zilog who wish to work on data communications, pattern recognition and image processing. Surrey. To $£ 13,000$
DESIGN ENGINEERS for reat-time automotive control system. Very high technology - dynamic company. West Country to $£ 8,500$
YOUNG DESIGN DEVELOPMENT ENGINEERS for a wide range of medical equipment. Software knowledge desirable. Cambridgeshire. Good salaries. COMPUTER ENGINEERS - vacancies throughoui U.K. in field service permanent site, technical support and systems test - some excellent salaries. CMOS, LSI, THICK FILM, THIN FILM BI-POLAMIC DESIGNERS APPLICATIONS ENGINEERS. Now is the time to move Vacancies in Scotland. West Country and South Coast - $10 £ 15.000$.
TEST ENGINEERS for wide range of data acquisition equipment includingdigital videoproducts, i.e frame stores, synchronous standard converters and real time picture manipulators. Berkshire. Good salary.
COMMISSIONING / TEST ENGINEERS - data transmission equipment Duties include testing, configuration of installation and fault finding on customer specials. Berkshire. Salary $£ 7.200$
COMPUTER ENGINEERS - vacancies throughout U.K. in field service permanent site, technical support and systems test - some excellent salaries.

For further details, please telephone (532)

Charles Airey Associates

[^12]
SAUDI ARABIA

Major electronic and electromechanical companies require for their affiliated company in Saudi Arabia

ENGINEERS AND TECHNICIANS

to maintain professional colour television equipment
Candidates should have 5 to 12 years" experience in any or all of the following fields

- TV Transmitters
- Studio Equipment (Cameras, Film Scanners etc.)
- Radio Links
- Audio Equipment

Competitive remuneration. Accommodation provided Please send C.V. to:
R. Zeenny, SAEMCO, 3rd Floor, 55 Piccadilly, London WIV 9AA, UK

GROADCAST ENGINEERS, $\{16,000$ neg. Permanent positions overseas. Tax free salaries, first class ac. commodation and conditions. Apply: SPS EXECUTIVES (Ref Delme Court, West Street, Fareham, Hampshire or better still telephone (0392) 235611/236857. (597

MARINE ELECTRONICS ENGINEER able to deal with all aspects of installation and repair within this wide range of equipment. Must live in London. Previous experience. Telesonic Marine Lid, 60/62 Bruns. wick Centre, London WC1. 01.837 4108.

CHELSEA COLLEGE DEPARTMENT OF ELECTRONICS
MICROPROCESSOR TECHNICIAN ENGINEER GRADE 6
required for new Microprocessor Develop. ment Unit providing a design and applications service to teaching and research. Experience essential in both hardware and software.
Salary scale (to be reviewed 1 st October $1980) £ 6258-£ 7323$ p.a. inclusive.
Generous holidays Generous holidays.
Further particula
Further particulars and application form rrom: Mr. M. E. Cane (MP6), Chelsea
College. Pution Place College, Pulton Place, London SW6 5PR.

TECHNICIAN III

(Clinical Measurement Department Salary: £5003 p.a.- $\mathbf{6} 344$ p.a. The duties include the servicing, construction and modification of a wide range of
medical electronic equipment and applicants medical electronic equipment and applicants digital circuit design.
We would weicome informal visits to the Department, and application form and job description are available from Mrs. R. Sutton, Personnel Olficer. The Middlesex Hospital. Mortimer Street, London W1. Tel: 01-636 8333, ext. 7462 .

Nuffield Institute for Medical Research University of Oxford (on John Radcliffe Hospital slte)

MEDICAL PHYSICS TECHNICIAN IV

The post involves assistance in the develop. ment, construction and maintenance of electronic equipment for medical research. Applicants should have at least 2 years previous experience and possess either 2 passes at GCE A level in appropriate science
subjects, or equivalent qualification, or a subjects, or equivalent qualific
recognised trade apprenticeship.

Salary range $£ 3882-£ 5106$.
Applications, stating age, qualifications and experience and giving the names and addresses of two referees, should be sent to: The Administrator, Nuffield Institute for Medical Research, Headley Way. Headington, Oxford OX3 90S
(651)

TOP JOBS IN ELECTRONICS

Posts in Computers, Medical, Comms, etc. ONC to Ph.D. Free service.
Phone or write: BUREAUTECH, AGY, $4 \bar{J}$ SELVAGE LANE, LONDON, NW7. 01-906 0251.

Are you an electronics enthusiast, living in the Herts area? Time to put your skill and knowledge to work for you! As a leading company in office equipment, mainly plain paper copiers and facsimile transceivers, we need more electronics engineer technicians to help with the repair, testing and maintenance of equipment.

And how...

* We have much to offer you. Attractive working conditions. Large, light, clean and airy workshops, set in open spaces.
* Friendly atmosphere; you'll be part of a close-knit group.
* We're confident, profitable. We're offering secure work.
* Full training given - and of a kind that'll help your career.
Interested? Then phone me, Bill Stratton on 01-207 2700. Or write to me with brief work details at: Dept 33 Kalle Infotec Ltd., Stirling Way, Barnet By-pass, Borehamwood, Hertfordshire.
* We're expanding too, with 8 new products under development. More job variety for you.
* Earnings including paid overtime - up to $£ 5,750$, reviewed again for January. Company benefits include LVs, free Private Patients Plan, 4 weeks annual holiday, company pension scheme.

Part of the intemational Hoechst organisation

ELECTRONIC COMPUTER AND MANAGEMENT APPOINTMENTS LTD
148.150 High St. Barkway Royston Herts SG8 8EG

Professional Careers in Electronics

All the others are measured by us...
At Marconi Instruments we ensure that the very best of innovative design is used on our range of communications test instruments and A.T.E. We have a number of interesting opportunities in our Design. Production and Service Departments and we can offer attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation. If you are interested to hear more, please fill in the following details:-

Return this coupon to John Prodger, Marconi Instruments Limited, FREEPOST. St. Albans, Herts; AL4 OBR. Tel: St Albans 59292

TECHNICIAN/ STUDIO ENGINEER

An estabished $\mathbf{W}_{\text {Est }} \mathbf{E}_{\text {nd }} A_{\text {udio }} \mathbf{V}_{\text {Isual prod- }}$ uction Company requires an energetic young person to take responsibility for all the technical aspects of its operations. The successful candidate will have an enthusiastic interest and knowledge of electronics and its applications. Duties will include operating and maintaining a small recording studio, working with producers to assemble AV soundtracks operating AV equipment in house and on road shows, and maintaining audio and projection equipment.

The successful candidate will have several years' experience in a similar or related field, with a broad based technical knowledge. Some in house training may be instigated if it is considered necessary to ensure that the successful applicant is fully equipped to cope with all aspects of the job. He/she will posses a current driving licence, and will be expected to become a key member of a small but highly motivated team providing a high level of client service.

Salary by negotiation plus bonus scheme.
TELEPHONE 01-734 3733 FOR APPLICATION FORM

Imperial War Museum

 London
Audio Technician

£7115-£7915

[^13]
Technicians in Communications

GCHO We are the Government Communications Headquarters, based at Cheltenham. Our interest is R \& D in all types of modern radio communications - HF to satellite - and their security.

THE JOB All aspects of technician support to an unparalleled range of communications equipment, much of it at the forefront of current technology.
LOCATION Sites at Cheltenham in the very attractive Cotswolds and elsewhere in the UK; ofportunities for service abroad.
PAY Competitive rates, reviewed regularly. Relevant experience may count towards increased starting pay. Promotion prospects.
TRAINING We encourage you to acquire new skills and experience.
QUALIFICATIONS You should have a TEC
Certificate in Telecommunications, or acceptable equivalent, plus practical experience. HOW TO APPLY For full details on this and information on our special scheme for those lacking practical experience, write now to Robby Robinson, Recruitment Office,
GCHO, Oakley, Priors Road, Cheltenham, Glos. GL52 5AJ, or ring 0242-21491 ext 2269.

ONE IN A MILLION?

Among the million or so leaving school or university this year there is a chance that one - perhaps two - is destined to make a significant development in audio
That person's first decision might well be to join QUAD in Huntingdon. At school, he or she will have realised that amplifier design is not just a matter of having a listen or a fiddle with standard circuits and their variations. Later will have come an adolescent stage of great discoveries. "Increase the rise time to eliminate TIM". "Regulate the power supply for better imaging
Following on from such childish things will have come an ability to distinguish between the characteristic impedance of the medium and the third row of the dress circle and between peak flux density and the rather gooey substance fed by spoon to small children. He or she will, nevertheless, be sufficiently down to earth to know that one newton is about the weight of the average apple
1 in 10^{6} ?
Well, drop us a line anyway
Mr. P. J. Walker
THE ACOUSTICAL MANUFACTURING COMPANY LIMITED
30 St. Peters Road, Huntingdon, Cambs. PE18 7 DB

Radio Communications Electronics Engineers and Software Designers

Mid-Sussex-S.w. London

Salaries up to $£ 8,000$
To join our expanding R\&D Laboratories covering a wide range of R.F. spectrum, from L.F. to V.H.F. Equipments include transmitters and receivers for marine- and land-based use, radio navaids and radio monitoring remote computer-controlled systems
Electronics Engineers should have experience in transmitter or receiver design, analogue or digital circuit design, microprocessor applications Software Designers should be experienced Programmers with an interest in control, signal processing or navigational software
Atractive salaries are complemented by excellent prospects and generous benefits.
Contact: David Bird, Redifon Telecommunications Limited, Broomhill Road, Wandsworth, London, S.W.18. Phone: 01-874 7281 (reverse charges)

Electronics Technicians

Petty-Ray Geophysical Division of Geosource is one of the leading Companies in the field of oil exploration and due to our ever increasing workload require single personnel, in the age range 21-25, who are looking for a varied and interesting career working overseas.

You should be educated to HNC/ONC in Electronics or C\& G Radio and TV Technician level and on appointment you will be assigned to one of our field crews either in Africa or the Middle East for on the job training in the operation and
maintenance of digital seismic recording equipment.
Candidates must be in possession of a current driving licence.
We offer a good starting salary which is paid NET, food and accommodation will be provided and rest leaves are generous.
If you would like to have more information about these positions please write, giving brief career details, to:-The Personnel Officer, Petty-Ray Geophysical Division of Geosource, 3-5 The Grove, Slough, Berkshire SL1 1 QG.

TESTERS TEST TECHMICIANS TEST ENGINESERS TECHNICIANS, you're reelly worth in London working for a World Leader in Radio \& Telecommunications. Phone Len Porter on 01-874 7281, or write: REDIPON TELECOMMUNTCATIONS Lid., Broomhill Road, Wandsworth, London, SW18
(9856

Classified

Radio Communications Engineers

Are you really getting the best deal?

Our client is in the market for HF/VHF radio engineers who are at, or close to the top of their particular company's ladder. Men and women with foresight, flair and strong commercial awareness who know they can make a major contribution towards the advancement of communications technology.

The Company, which is based on the South Coast, is
offering exceptional rewards for talent such as this. Not only in financial terms but also environment, job satisfaction and career prospects.

Doubtless you are already well thought of by your present employer. A phone call now might be a little unsettling but from your point of view it must be worth finding out.

Talk to Rod Evans.

BROADCASTING ENGINEERS Middle East £10-\&18000 Tax Free

A major European telecommunications company is currently undertaking the construction, commissioning and operation of a comprehensive HF and MF broadcasting network based on multi-megawatt MF transmitters and HF or microwave programme and telecommunication links.

They require several grades of Broadcasting Eng ineers with qualifications ranging from ONC/C \& G to degree level for operations and maintenance work on a new station.

Experienced in radio engineering, broadcasting, nanufacture and installation or HM Forces communication is necessary.

Benefits include 45 days leave, 4 return air fares (but you may come home every two months) life and accident cover, single furnished accommodation and short duration contracts if required.

Write enclosing your curriculum vitae quoting ref. FE1017 to: The Managing Director:

KTA
 international recruitment
 4-6 Oxford Street, Nottingham. Telephone: 060247634.

 THE KITCHIN THOMPSON GROUP
ARTICLES FOR SALE

TO MANUFACTURERS, WHOLESALERS \& BULK BUYERS ONLY

Large quantities of Radio, $\bar{\top} . V$. and Electronic Compinents.
RESISTORS CARBON \& C/F $1 / 8,1 / 4,1 / 2,1 / 3.1$ Watt from 1 ohm to 10 meg.
RESISTORS WIREWOUND. $11 / 2,2,3,5,10,14,25$ Watt
CAPACITORS. Silver mica, Polystyrene, Polyester, Disc Ceramics, Metalamite, C280, etc.
Convergence Pots, Slider Pots, Electrolytic condensors, Can Types, Axial, Radial, etc.
Transformers, chokes, hopts, tuners, speakers, cables, screened wires, cōnnecting wires, screws, nuts, transistors, ICs, Diodes, etc., etc. All at Knockout prices. Come and pay us a visit. Telephone 4452713, 4450749

BRÖADFIELDS \& MAYCO DISPŌ\$ALS
21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho Corner (9461!]

AUDIO ANO INSTRUMENTATION-TAPE
RECOROER-REPRODUCERS
Ferrograph YD 2 track $1 / 4 "$ " EMI RE- 301
Amper R 13007 track $y^{\prime \prime \prime}$ UHER 400
Consolidated 38007 track $1 / /^{\prime \prime}$
Plessey 1033 .
Plessey 1033 Digitital Units. 7 track $/{ }^{\prime \prime}$
Plessey M5500 Digital Unit. 7 rracks $1 /{ }^{\prime \prime}$
Ampex FR. 1100 . 6 speeds. gtereo $1 / \mathbf{n}^{\prime \prime}$
Ampex FR600. 4 speeds. 7 track $1 / 2$
D.R.I. RC.I. 4 speeds. 4 tacks $1 / 4$

Prices of above E 70 to E 500
Aso Transpon Decks only evailable

-We have a large quamtity of "birs and pieces". we cannot lise - please send us your requirements. We

 connot ist - please send us your requirements. Wocen probably help - all enquifies answered.
 - Clare Fiash essters Advance Signal Generators M1E-JT Westrex Multi Cellular H.F. Iens Homs a

- Racal MA 1350 a symhesisers Plessey PR- 1556 filter Modulator
Marconi MR 23 ISB feceivers K.B. Discomatic Domestic Juke Boxes SCR-625 Mine Detectors in crests Hewlett Packard 400 H VI VM M Meters Hewlatt Packard 211 A Sq. Wave Gen $\cdot \begin{array}{r}£ 65.00 \\ £ 95.00 \\ \hline\end{array}$ Astrodala \& Ikor Meteorological Equidment - Ha mes D.W. 500 W Cased Transiormers $240 / 115 \mathrm{~V}$ Racal Ma 1350 symhesisers 1125.00 Tektronix 551 Scopes Tetronix 565 Scopes Teleonic VR2M Sweeps
Hell Schriber RC 28
Lenkur Model 260 Daia Sets
Aerial Multicouplers from
Marconi TF 1168 Disc Oscillators
Hughes Memoscopes
Temstunken Surveillance Receivers
- Hefin Aerials $11^{\prime \prime} \& 18^{\prime \prime}$ and Retlec

Textronix 543 AA Oscilloscopes
Textronix 545 A Oscilloscopes
Textronix 5454 Oscilloscopes
Marcom TF 22000 Oscilloscopes
Solatron 1016 Oscilloscopes $6^{\prime \prime}$ closed. Mourted on 4 wheel drive extended, $12^{\prime \prime}$ self levelling. raised and lowered in 10 minutes. Used tor servicing dist aerials. ... Collins KWT 6 Transminter Receivers SSB - Roband RO 50 OA Oscilloscopes B \& K 2407 Electronic Vortmeters Winston " 5 "' Band Spec trum Analysers
Airmec 352 Sweep Generators D Advance Transistor Testors TI IS Martoni TF 329 Magnifc cation Meters - Marcanti 7.5 KV Va Auto Voltage Regutatrato Marson TFM. 101 Multipliars Sevomex 2 kw Auno regulators 125 h . Lattice masts. 26"" sides
30 h . Latrice Masts, $95^{\prime \prime}$ sides 301. Lattice Masts. P $^{\circ "}$ sides,

 8 Rransisionsed
SE $4 / 2 B C R T$
SE4/2BC.R.T.S Racal 3 \& KCS S.S.B. Iiters
AVOCT 471A Electronic Multimeter
EMI R301 Tape Recorders

- Stonorette L T Tape Reccuders

Multi-purpose Trolleys with Jacks 19 天 17
Advance 3 KVA CV Transformers
Metal V. D.U. Tables $30^{\prime \prime} \times 36^{\prime \prime} \times 3$

	MANUALS
We have a quantity of Technical Manuals and Perodicals of Electronic Equipment, not photostars. 1940 to 1960. Brtish and American. No lists. Enquiries invited.	
	Data Efficiency Respoolers 240 v $\mathbf{E 2 8 . 0 0}$ Belling Lee 100 Amp Interference Filters ..E 76.00 $\mathbf{£ 1 8 . 0 0}$ Osciloscope Trolleys from Aacal Ma 1978 pre-Selectors Aack Mountung Operator Tables Aacal MA- 175 L.S B. Modulators (new) Taily $5 / 8$ Track Tape Readers Track Spooling $\begin{aligned} & \text { E } 65.00 \\ & \text { Racal RA. } 63 \text { SSB Adaprors, new }\end{aligned}$......... $£ 70.00$ Racal RA 63 SSB Adaprors, new 298 I.S.B. Transistorised Adoplows (new) $\$ 120.00$
We have a varted assortment of industrial and protessional Cathode Ray Tubes available. List on request.	
please ado carriage and v.a.t. P. HARRIS ORGANFORD, DORSET BH16 6BR (0202) 765051	

The posts are based in Edinburgh but entail some travelling throughout Scotland and the Isle of Man including offshore and distant islands.

Applicants, who should be under 35 years of age must be \bar{C} hartered Engineers and corporate members of the Institution of Electrical Engineers, or Institution of Radio and Electronic Engineers or have passed examinations necessary for attaining such membership together with relevant experience.

The Assistant Radio Engineer will assist senior engineers and be involved in the acceptance, installation and maintenance of equipment including VHF links, radio beacons, radar beacons, remote control and monitoring and shipborne navigational aids.

The Assistant Electrical Engineer will assist senior engineers with the design of control schemes and asociated equipment and the management of contracts from concept to final account.

Salary scale from $£ 7000$ per annum rising to $£ 8100$ by 5 annual increments with placing according to qualifications and experience. 4 weeks 2 days paid annual leave on commencement rising to 6 weeks by service related increments, plus 11 days Bank/public Holiday. Sick pay and non-contributory pension scheme similar to Civil Service.

For application form and further particulars please write to the Personnel Officer, Northern Lighthouse Board, 84 George Street, Edinburgh EH2 3DA.
(642)

ARTICLES FOR SALE

LDGIC PIDBES

High Performance Mofer 3300A for DTL, TTL or CMOS. 1 Meg. Input Impedance DC300Khz. Protected against Reverse Polarity or Overvoltage. Complete with vinyl case and 16 -pin IC Clip. Full instructions £16 (£18.97 with VAT and Post). Also 31004 ; 3200A DC-10Mhz DLP50 DC-50MHz 10 Meg . Input Impedance. 10 nsec Detec. tion. Audible warning against overvoltage or reversed connection.

Retail Stockist:
WATFORD ELECTRONICS LTD.
33 Cardiff Road Watford, Herts. (0923 37774)
Or direct from: J. H. Associates Lid., The Maltings,

Sawbridgewiorth, Herts.
(0279732156)

| Discoums for quantities |
| :--- | :--- |
| SAE for full data and orices |

DIGISCOPE DS 2 LOGIC MONITORS £27.40. Leaffet: J. E. Sinclare \& Co, ${ }_{3 \text { RE }}^{82}$ Plumstead Common Road, $\underset{1661}{\text { SE18 }}$ 3RE.
JASMINE Teletext decoder, perfect Working order, 665 . Wireless perfect Telextext decoder, full facilities with key pa
$01-250$
0626 .
COMP-BO computer 3 K ROM. 5 K RAM Graphics and UHE modulator fitted. 5190. - Tel Thurso 3652.

CLEARANCE SALE. Oscilloscopes, signal generators, transformers and signal generators, transformers and
variable transformers. cables, variable transformers. cables,
adaptors and many other items. Everything has to be sold. Sale starts Monday, September 29, and finishes Saturday, October 11. Personal callers only. No list of goods as such. The stores are at rear of the premises 550 Kingston Road. London, SW20 8DR. Entrance from Edna Road. Open 9 am to 7 pm . Telephone 543 2515. 1680
BUILD YOUR OWN LASERS. FUll plans and instructions on how to construct three fully working lasers: Pulsed dye, Argon and Hellum - neon, at a fraction of the cost of a commercially produced device. All parts available. Send $£ 4.95$ plus 25p P\&P to A. V. Services, 10 Agecroft Road West,
Prestwich. Manchester M25 8RL. Also Laser Scanning Systems. Send for Ifterature. 1647

WIRELESS WORLD, 1973 to date, seven missing. Offers. J. Pawson. 104 Mosside Drive, Blackburn, W. Lothian.
ELECTRONIC IGNITION. Tested, unboxed, otherwise complete, $£ 3.50$ plus P\&P. Storrington 4830, after 6.30 pm .

FOR SALE: TEK 585A and manuals $£ 375$ ono, type M, plug in and manual $£ 75$ ono, equipment in ful working order, trolley Included if wanted. Tel: 061-434 4670, after 6 pm .
TEST EQUIPMENT. Audio \& R.F Signal Generators Grip Dip and S.W.R. Meters. Transistor Testers Reg. P.S.U, Send S.a.e., stating re-
quirements, to TELERADIO, 825 fore Street, London N9 0PE. (292)

AGRICULTURAL RESEARCH COUNCIL
 LETCOMBE LABORATORY

ELECTRONICS ENGINEER

required to develop research apparatus generally in support of the Laboratory's programme in plant and soil science.
The main duties at present involve the design, development, and construction of microprocessor systems for analysing, calculating and tabulating measurements recorded automatically or manually in the field and for controlling field and laboratory experiments
Appointment as Professional and Technology Officer Grade 11. Salary Scale £7,000 to £8,100. Non-contributory superannuation.
Qualifications required: Degree or equivalent in appropriate field with at leas five years' recognised study, or professional experience.

Apply to the Secretary. Agricultural Research Council Letcombe Laboratory Wantage, Oxfordshire, OX12 9JT, for further details and application form Closing date: September 30, 1980. Quote ref. 80/5

ARTICLES FOR SALE

Regional or Nationwide representation required for

RADIO COMMUNICATIONS EQUIPMENT

Importers of high quality radio communications equipment wish to establish representation with companies already in the field to promote and sell a range of sound reinforcement equipment with internationally-known name.

Please reply to
Box No. 408, Charles Sell Advertising Ltd., 14 St. Cross Street, London ECIN 8 FQ.

US GOVERNMENT ELECTRONIC SURPLUS. Buy at fraction of original cost. All info needed to receive notices of direct mail sales.
Send $£ 4$ for air delivery, to Talex International, PO Box 19346, Wash DC 20036, USA. Box 1934, 1660

TEST EQUIPMENT. Well-established trading company seeks new customers, particularly from overseas.
We are bulk suppliers of used elecWe are bulk suppliers of used elec-
tronic test equipment to the trade, tronic test equipment to the trade, ie: signal sources, analysers, bridges, scopes, sweepers, counters,
PSUs, Polyscops, DVMs, etc. Whole PSUs, Polyscops, DVMs, etc. Whole or part parcels available. Carriage
and shipping can be arranged. and shipping can be arranged. State your requirements, Terms
negotiable. Also interested negotiable. Also interested in
purchasing parcels of anything purchasing parcels of anything
electronic, radio, etc, speedy quotations, and immediate cash settlement. COOKE INTERNATIONAL SERVICES, Ramalla House, Ancton Lane, Middleton-on-Sea. Bognor Regis, Sussex PO22 6NJ. Tel: 024-369 2849.

CCTV EQUIPMENT FOR SALE. FUll colour PAL SPG vision mixer, posneg telecine proc-amp, clamp. arious dist amps, video monitors. Wave-form generators. etc, unused scope. Phone 0783.863612, evenings.

THINKING OF RENTING
 A TELEPHONE ANSWERING MACHINE? THEN STOP!

Did you know that for the equivalent of just one year's rental you could actually buy one outright?

For details write to
Javal Supplies Ltd. (Dept. 2C), 120 Alexandra Road, Burton-onTrent, Staffs DE16 OJB or telephone (0283) 47427 any time.

ELECTRONIC TESTING \& FAULT DIAGNOSIS

by G. C. Loveday Price: $£ 5.50$ DIGITAL TECHNIQUES 8 SYSTEMS by D. C. Green. ELECTRONICS FICE: £5.50 DIAGNOSIS by I. R. Sinclair. Price: $£ 3.50$ ELECTRONIC DESIGNER'S H/B by K. Hemingway Price: $£ 13.50$ HANDBOOK OF ELEC. TRONICS CALCULATIONS FOR ENGINEERS \& TECH NICIANS by M. Kaufman Price: $£ 14.70$ H/B OF MICROCIRCUIT DESIGN \& APPLICATION by D. F. Stout. Price: $£ 19.20$ UNDERSTANDING MICROPROCESSORS by Texas Inst. Price: $\mathbf{£ 4 . 0 0}$ INTRODUCTION TO MICROCOMPUTERPRO. GRAMMING by P. C. Sanderson. Price: $\mathbb{4} .50$ THE COMPLETE MICRO. COMPUTER SYSTEMS H/B by E. L. Safford. Price: $£ 8.25$ TOWERS' INTERNATIO. NAL TRANSISTOR SELEC. TOR by T. D. Towers, 1980.

Price: $\mathbf{E 1 0 . 5 0}$
"all prices include postage"

THE MODERN BOOK CO.

Specialist in Scientific 8 Technical Books
19-21 PRAED STREET LONDON W2 1NP
phone 402.9176
Closed Sat. 1 p.m.

ARTHCLES FOR SALE

TELETEXT, TV SPARES \& TEST EqUIMENG TELE'TEX'S. Lates: hanz external unit kit incl. Mullard vecoder 6101 ML remote control 2258 , p/p $£ 2.50$ (furmer detanls on request). Also MM1 decoder, special otter price 1108 , p / p £\%.50, Both kits incl. UHr' modulator, and plug into iv set modulator, and plug into IV set aerial Socket. SPECIAL Xew and tested, Ilmited quantity at it price, £65. p/p $£ 1.40$. Stab. power supply (5v) for Teletext decoders, $£ 5.80$, p / p £1. Thorn design XM11 interSAW FILTER IF AMP PLUS TUNER complete \& tested for sound \& vision), $£ 28.50$, p / p £1. COLOUK BAR \& CROSS HATCH GENERATOR KIT (MK4) PAL, UHF aerial input type. ${ }^{8}$ vertical colour bars, K-X. B-Y, grey scale, etc. P/B controls 835 . Batt holders $£ 1.50$ or stab. mains power supply kit case Deluxe case $£ 5.20$ or alum. case $£ 2.90$, p / p £1.40. Built lested in De-luxe casess HATCH KTT ÚH/p $\mathbf{~} 1.50$. put type also gives peak white \& put type also gives peak white olack levels, batt. op. $\mathbf{\text { old }}$ Add 11 p/p 45 p .
 p/p 35p. De-luxe case $\begin{aligned} & \text { £5.20. UHF } \\ & \text { SIGNAL } \\ & \text { STRENGTH }\end{aligned}$ £17.50. Alum. case $£ 1.80$. De-luxe case $£ 5.20$, p/p 51.40 . CRT TEST \& REACTIVATOR KIT for colour \& mono $£ 22.80$, p/p $£ 1.70$, THORN 9000 Touch Tune Remote control receiver unit plus transmitter handset £16, p / p £1.40. THORN 9000 Fascia incl. channel select. indicator, $^{\text {s }}$ set controls, speaker, TRANSTD. Tested, $£ 6.80$, p/p 85 p . BUSH SURPLUS IF PANELS. A816 £1.80, TV312 (single 1.C.) $55,2718 /$ BC6100 £5, A823 (Exp) £2.80, p/p 85p. BUSH Z718/BC6100 Line Time Base Panel 2904, incl. LOPT, EHT stick, Focus, etc., 181 in or 22 in, $\mathrm{E15}$. panel A634 £3.80, p/p £1.20. DECCA panel A634 $\begin{gathered}\text { £3.80, p/p } \\ \text { colour TV Tiyristor Power supply }\end{gathered}$ colour TV Thyristor Power supply
 panel 11, p/p 90 p . GEC 2040 CDA G6 S/S conv'. panel $£ 2.50$, p/p $£ 1.20$. G8 Decoder panels for spares $£ 1.80$, p/p 81.20 G G9 Signal panels for THORN 3500 Line TB panel 55 p/p §1. 3000 ex-rental panels 1F, VIDEO. DECODER, £5, p/p 11.20 . 8000/8500 TB salv/spares $£ 4.80$. p/p $£ 1$. 9000 Line TB (incl. LOPT) salv/spares £7.50, p/p 11.60 . COLOUR SCAN CoILS iMullard or plessey) $\varepsilon 6$, p / p £1.80. Yoke $£ 2.50$, p/p £1. Blue Lat 75p, p/p 35p. Mono Scan Coils (Thorn, Phillps, Pye) $£ 2.80$, p/p $£ 1$. U321 £7.80. ELC $1043 / 05$ £5.50. G.I. £3.50. Salv, (asstd) $£ 1.50, \mathrm{p} / \mathrm{p} 45 \mathrm{p}$. Bush (dual) 17.50 , p/p 70 p . TOUCH TUNE CONTROL units, Bush 16 pos) $84.50 \mathrm{~N} / \mathrm{p} 80 \mathrm{p}$. VARICAP CON-
 f1.50, special offer f 1 , p/p 45 p . UHF transtd. Tuners (rotary) incl. s / m drive $£ 2.50,4$ pos. P / B £2.50, 6 pos. P/B 44.20 . p/p 1120 . ISpeclal types
 Large selection of Lopts. Triplers. Mains Droppers. and other spares for popular makes of colour \& VAT TO ALL PRICES. - MANUR SUPPLIES. 172 WES END LANE. WEST HAMPSTEAD, N.W.6. S751. Easily accessible W. Hampstead dubl Rail and St Pancras-Bedsord. Buses $28, \quad 159, \quad 2 . \quad 13$. Callers welcome. Thousands of additional items not thousally advertised available at shop premises. Open daily all wee shop premides Saturday (Thursday half day MAIL ORDER: 64 GOLDERS MANOR DRIVE. LONDON NW11 9HT PLEASE ADD 15% VAT to ali

CAPACITY AVAILABLE

SMALL BATCH productions wiring assembly to sample or drawings. Spectalist in printed circuits a sembly Rock Electronics, 12 Bishopsfield, Harlow, Essex 027933018. (9094

TRADE BUYERS

J.P.R. DISTRIBUTORS

New trade counter is now open. We stock: Carbon film resistors from $\mathbf{£ 3 . 5 0}$ per 1000. Rotary pots from 10p. Pre sets from $2 p$. Single cables from $£ 5$ pe Km . BSR decks from $£ 8.50$. Also, Elec rolytic \& polyester capaci:ors, switches indicators, plugs \& sockets, semicon ductors, chassis speakers microphones, mains cables, etc., etc.
49 WADESON STREET, LONDON E2 9DP
Tel: 01-980 1028/1029
Phone or cail for quote on any
component
(630)

TIME?

MSF CLOCK is ALWAYS CORRECT - never gains or loses. self setting at swich-en. 8 digits show Dale.
 and leap year. also parailel BCD oulput and audio oulpui which can be recorred wilh commentary to show time on praybock, recerves hugby time signals. 1000Km range. AESOLUTE TIME. E54. 80

GOKHz RUGBY RECEIVER, as In MSF. Clock. serial dala and audio outputs, buill-in anitenaa, $£ 15.70$.

Each fun-to-bulld kit includes all parts printed circuit, case, postage etc, mone back assurance so SEND off NOW.
Cambridge Kits, 45 (WK). Old School Lane, Milton, Cambridge

GAPACITY AVAILABLE

BATCH PRODUCTIOM wiring and assembly to sample or drawings. MeDeane Electricals, 19b Station Parade, Ealing Common, London,
W5. Tel. 01-992 8976.

ELECTRONIC DESIGN SERVICE Immediate capacity avallable for circuit design and development work, PC artwork, etc. Small batch and prototype production welcome. MAIDSTONE Lid., 93 b King Street MAIDSTONE, Kent. 0622-677916.

PCB ARTWORK DESIGN SERVICE with component notation masters and assembly drawings. PADS Southwood Road, New Eltham SE9. (7905

COMPARE our charges, quality and turnround for printed board artworks, assembly, test and proto. type manufacture Please phone 357935 or write to H.C. B Artwork 357935 or Write to H.C.R. Artwork Street, Chelmsford. Kissex.

EQUIPMENT WANTED

TO ALL-MANUFAGTUPERS
 ANV PHOLESALEAS
 IN THE ELEGTRONIG RADIO AND TY FIELD

BROADFIELDS \&

MAYCO DISPOSALS

will pay you top prices for äny large stocks of
surplus or redundant components which you surplus or redundant components which you may wish to clear. W
the United Kingdom.
21 LODGE LANE NORH FINCHLEY, LONDON N12 8JG etephone Nos. 01-445 0749/445 2713 After office hours 9587624

[^14]
ELECTRONICS FOR THE 80s

Microprocessor Short Courses
The department of Electronic and Communications Engineering is
offering a series of short courses aimed at professional engineers for 1980/81.
6502 Machine code programming
2 days: $£ 75$
13-14 Oct., 17-18 Nov.
12-13 Jan., 16-17 Feb., 16-17 Mar
Applications Engineering:
3 days: $£ 250$
3-5 Dec., 4-6 Mar.
Microprocessor Troubleshooting:
3 days: $£ 300$
5-7 Nov., 4-6 Feb.
8085 Applications and Software:
Pt. 1: Introduction to 8085 : 5 days : $£ 200$
20-24 Oct., 24-28 Nov.
19-23 Jan., 23-27 Feb., 23-27 Mar
Pi. 2: Applications: 5 days: $£ 200$ 6-10 Oct., 10-14 Nov., 8-12 Dec. 5-9 Jan., 9-13 Feb., 9-13 Mar
Details from Secretary, Department of Electronic and Communications Eng ineering. Polytechnich London. Holloway, London, N7 808.
Nort

ThePolytechnic of NorthLondon

CAPACITY AVAILABLE

 PCB ASSEMBLY
CAPACITY AVAILABLE

Low or high volume, single or double sided, we specialise in flow line assembly.
Using the Zevatron flow soldering system and on line cutting, we are able to deliver high quality assemblies on time, and competitively priced
Find out how we can help you with your production. Phone or write. We will be pleased to call on you and

TW ELECTRONICS LTD.
120 NEWMARKET ROAD
BURY ST. EDMUNDS, SUFFOLK TEL: 02843931
Sub-contract assemblers and wirers to the Electronics Industry

I.H.S. SYSTEMS

Due to expansion of our manufac turing facilities we are able to under take assembly and testing of circuit boards or complete units in addition to contract development
We can produce. test and calibrate to a high standard digital analogue and RF equipment in batches of tens to RF equipm
thousands.
Telephone to arrange for one of our
engineers to call and discuss you requirements, or send full details for a prompt quotation

TEL. 01-253 4562
or reply to Box No. WW 8237
(8237)

PRINTED CIRCUIT BOARDS. Quick deliveries, competitive prices. Quotation on request. roller tinning. drilling, etc. Speciality smali batches, Larger quantlies avallable. Boardraven Lid. Lancaster Road, Carnaby Industrial Estate, Bridlington, North Humberside,
YO15 $3 Q Y$. For YO15 3QY. For the attention of M J. Harrison. Tel: 10262) 78788

8.84 TAA3 fast PCB PROTOTYPES

SARIE DAV DEESPATEE

Prototype epoxy glass printod circuit boards up to $250 \mathrm{~mm} \times 200 \mathrm{~mm}$ from your cemers ready artwork. Up to $125 \mathrm{~mm} \times 100 \mathrm{~mm}-£ \mathbf{£} 8+$ VAT per side eiched only. drilling $\mathrm{£} 5+$ VAT
Up to $250 \mathrm{~mm} \times 200 \mathrm{~mm}-£ 24+$ VAT per side etched only. drglling $\mathbf{£ 1 0}+$ VAT Send your ordar with artwork, cheque and instructions-orders received by 10 a m guaranteed despatched first class same day etched only (next day etched and drilled) or your money refunded, subject to acceptance of arwork
PRINTED CIRCUIT MANUFACTURE,
Very fast, reliable service. Lowest
prices. Prototypes welcome. Inhouse
photography. Phone $06474 \cdot 573$ for
instant quote or write to AKTRO-
NICS Ltd., 42/44 Ford Street, More-
tonhampstead, Devon.

DESIGN SERVICE. Electronic Design Development and Production Service available in Digital and Analogue Instruments, KF Transmitters and Receivers for control of any function at any range. Telemetery, Video Transmitters and Monitors, Motorised Pan and rit Heads etc. Suppliers to the Industry for 16 years. Phone or write Mr. sey Road Ashecd Midilesex Phone Ashford 53661. (8341

ARTICLES WANTED
WANTED: Recording equipment of U.S.A.). Tel. (415) 232-7933. (9814

STORAGE SPACE is expensive, why

 store redundant and obsolete equipment? For fast and eficient clearance of all test gear, power supplies, PC boards, components, etc., regardless of condition or quantities. Call 01-771 9413. (8209SMALL BATCH PCB's produced trom your artwork. Also DIALS, PANELS, LABELS. Camera work undertaken. FAST TURNAROUND. - Detalls: Winston Promotions, 9 Hatton Place, London ECIN 8RV Tel. 01-405 4127/0960. (9794

ELECTRONIC DESIGN SERVICES. MICROPROCESSOR HARDWARE and SOFTWARE design facllities have now been added to our established expertise and comprenensive test facilities previously available to you for ANALOGUE and COMMUNICATIONS destgns. - For fastest results please phone Mr. Anderson, Andertronlcs Ltd, Ridgeway, Hog's Back, Seale (nr. Farnham), Surrey. 02518-2639.
(275.)
P.C.B. PROTOTYPE and small batch production, Design layout, assem. bly and testing. Fast, relible serHice. Wt Lydney Glos. Tel: Dean $\underset{(0594)}{ }$ 41267.

PRINTED CIRCUIT BOARDS. Single/ double sided from circuit diagrams to assembled and tested boards. Any intermediate stages at manufacture undertaken. Quick turnround on prototypes. Phone Maldon (0621) 741560 or write to Mayland Electronics, 4 The Drive, Maylandsea, Chelmsford, Essex CM3 6AB (445

CIRCOLEC

THE COMPLETE ELECTRONIC MANUFACTURING SERVICE Let us realise all or any part of your project from prototypes to production, from artwork design and component sourcing, through assembly and test to final quality assurance, packing and delivery We also provide a test, repair and modification service to suit your individual requirement.
For competitive prices and fast turnaround contact:
CIRCOLEC, 1 Franciscan Road, Tooting, S.W. 17
Telephone: 01-767 1233
(544)

SAVE TIME!

PRINTED CIRCUIT BOARD INTERNATIONAL FASI TURNAROUND

- PTH boards in 3 days.
- Conventiona boards in 24 hours. - Soldermask. component legends etc - Arwork service.
- Volume assembly in our plants in the Far East.

AEC Mierotechnology
Milon Keyace: Bucke.
Telex: 837879 AECLTD G
TEL: 0908611086 (624)
REPETITION SHEET METALWORK on Wiedemann turret press. Long/ short runs. Highly competitive. Quick deliveries commission for introductions. - EES Ltd. Clifford Rd., Monks Rd., Exeter 36489. ${ }_{(8060}$

TUEE REBUILDING PLANTS PROTUEE REBUILDING PLANTS PROoperation. They can be installed operation. They can be installed 554 Statfond Road, Birmingham B11 AAL. $\begin{array}{ll}\text { DESIGN AND DEVELOPMENT. } \\ \text { Analogue, digital, } & \text { RF and micro- }\end{array}$ Analogue, circult and system design. wave circuit and system design. Also PCB design, mechanical production - Adenmore Limited, Unit 103 Liscombe, Bracknell.' Berks. Tel: Brackneli 52023. (656

FOR ELECTRONIC INSTRUMENT SERVICE AND CALIBRATION CALL ORION TECHNICAL SERVICES LTD. ON ST ALBAN'S 51639 FOR DETAILS.

ABC ${ }^{\circ}$
MICROTECHNOLOGY
A.D.S. LTD. (Analog \& Digital Specialists Ltd.), 199a Dunstable Road. Luton, Beds LU1 1DD (Luton) 31732. Our highly qualified design team offers you a comprehensive prototype electronic design service Why not write to us with your proble response guarantee an

RADIO TELEPHONE SALES AND SERVICE. Used equipment includ. ing Storno available. Alcomm, 145 Salisbury Rd, Blandford, Dorset TeI: (0258) 53963.

EXPERIENCED COMMERCIAL ART/ ILLUSTRATION CONSULTANCY Specialising in techn!cal manuals and publications, instructional literature, diagrams and technical lllustrating. A professional service for effective communicating. Brochure avallable. Box WW 673. 6673

CLASSIFIED ADVERTISEMENTS

 Use this Form for your Sales and Wants
To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SEI 9LU PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- Rate $£ 2$ PER LINE. Average six words per line. Minimum THREE lines
- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus $£ 1$
- Cheques etc., payable to "Wireless World and cross " \& Co

NAME...
ADDRESS \qquad
\square

PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION
NUMBER OF INSERTIONS.

Here's why you should buy an I.C.E. instead of just any multimeter

* Best Value for money

* Used by professional engineers, D.I.Y enthusiasts, hobbyists, service engineers. * World-wide proven reliability.
* Low servicing costs.
* 20K/volt sensitivity and high accuracy.
* Large mirror scale meter
* Fully protected against overload.
* Large range of inexpensive accessories. * 12 month warranty, backed by a full after sales service at E.B.Sole U.K.Distributors
Prices from $\mathbf{£ 1 6 . 6 0 - \mathbf { £ 3 2 . 0 0 + V A T }}$ Seind for full colour leaflet and prices on whole range including accessories.

1 퍽 = ELECTRONIC BROKERS LIMITED

49-53 Pancras Road, London NW1 2QB.

INDEX TO ADVERTISERS OCTOBER

Appointments Vacant Advertisements appear on pages 131-143

PAGE

PAGE
PAGE

Acoustical Mfg …............................ 17	GEC M-O-Valve	16	OMB Electronics	
A.E.L. Crystals . 106	GMT Electronics	129	Orion	
Ambit International 7,15	Guide to BroadcastIng Stations	127	Pasćall	94,108
Antex 63			P.B.R.A. Ltd.	94, 25
Apex 14	Hameg	20	P.M. Components	104
Airamco 26	Hall Electric Ltd.	2	Powertran Electronics	91, 93,95
Amateur Radio Assoc. 23		94	Practical Computing 122
Aspen Electronics Ltd ${ }^{94}$	Harris Electronlcs (London) Lid	92		
Audio Elec . 4, 28	Hart Electronics	115	Quantum Electronics	
Austerfield Clark 105	Hi-Fi Y/Book	106	Radio Components Specialists	
Bach-Simpson 75	House of Instruments	20 24	Ralfe, P. F. 114
Bamber, B. Electronics 107			R.C.S. Electronics	105
Bang \& Olufsen 28	I.L.P. Electronics Led	96 \& 97	Rediffusion Resitronics	32
Barnet Metal . 112	ILP Transformers Ltd	110	Royal Navy	26
Barrie Electronics Ltd . 105	Integrex Led	102	Roxborough	
Bell \& Howell . 90	Interface Comps	24	RST Valves	100
BIB Hi-Fi . Cover iv				
Bi-Pak Semiconductors Lid 99	Jackson Music	116	Sagin (Circuit Services)	108
Breadboard 80 101			Samsons (Electronics) Ltd.	
British National Radio 104	Keithley Insts.		Scopex Instruments Ltd.	113
	Kelsey Acoustics	110	Service Trading	
Carston Electronics Ltd 10,11	KGM Electronics	14	Shure Electronics	
Catronics 105	Kirkham Amplifier	89	Sinclair Radionics	21
Chiltmead Ltd 124	Langrex	100	Sonic Sound Audio	107
Codespeed Elec 122	Lascar Electronlcs		Special Products Etd.	16
Colomor 116	Levell Electronics Lid	3	Standard Pneumatic	
Compec UK 98	Lowe Electronics Ltd		Strumech Eng'g	12
Computer Appreciation 106			Strutt Electrical \& MSH Ltd.	92
Consumers Assoc. Loose insert	Maclin-Zand Elec. Ltd Mascot Elec		Surrey Electronics Ltd. ...	108
Continental Specialities 29	Mascot Elec		Swanley Electronics Lid.	+110
Crimson Elektrik 18	Maplin Electronic Supplies Marshall, A. \& Sons (London) Ltd	$\begin{gathered} \text { Cover ili } \\ \therefore \ldots 108 \end{gathered}$	Swanley Elecronics Lid.	
Davies, A. R. 110	MCP Electronics	8. 19	Technomatic	111
Display Electronics 123	Microcircuits Ltd.	27	Teleradio Elec.	23
Dondene 112	Microtime			
	Mills, W.	105	Valradio Ltd.	
Edicron 18	Milward, G. F.	116	Vero Speed	33
Electronic Brokers Ltd	Minim Audio	130	Vero Systems Ltd.	26
\ldots 23, 25, 117, 118, 119, 120, 121, 125, 127, 129, 144	MTL Microtesting	${ }^{25}$	VHS Committee	30.31
Electro-Tech Comps Ltd 101	Mullard	26		
Eraser Int'1 . 22	Multicore Solders Ltd.	Cover iv	West Hyde Developments Ltd.	23, 92
Faircrest Eng 108	Mura Electronics	125	Wilmslow Audio	
Farnell Instruments Ltd .. Cover ii, 64 Readers card	MWM Co.	25		
Field Tech 12	Newtronics	100	Zaerix Elec.	104

[^15]Mr Jack Mentel. The Farley Co.. Suite 650, Ran Cleveland, Ohio 4415 - Telephóne: (216)6211919. Mr Ray Rickles, Ray Rickles \& Co., P.O. Box 2028, Miami Beach, Florida 33140 - Telephorie (305) 5327301 Mr Tim Parks, Ray Rickles \& Co., 3116 Maple Orive N.E. Atlanta, Georgia 30305. Telephone: (404) 2377432. Mike Loughlin. IPC 8usiness Press. 15055. Memorial Ste 119 Houston. Texas 77079 - Telephone (713) 7838673

Canada: Mr Colin H. MacCulloch, International Advertising Consultants Lid., 915 Carlton Tower, 2 Cartion Street, Toronto 2 -Telephone: (416) 3642269.

Opens Tuesday 16th September, 1980 Opening Hours 9.45 am to 5.30 pm Tuesday to Saturday (Closed Monday)

Stereo Cassette Tape Deck

Utilising the superb JVC deck
 made for Tandberg and a ready-made pre-aligned, tested and guaranteed module, this cassette deck has a superb sound and a high quality specification. We've got everything you need (except cabinet) including full instruction leaflet for only $£ 39.95$. Order as XY36P (Cassette Recorder Kit)

Space Invaders

Fight the space invaders, be a polaris captain or a spaceship commander. Full colour action on your own TV set and over 450 games to play.
Basic console with Combat cartridge (ACOOA) £99.50 + £2.50 carriage All cartridges available including:

Space Invaders (AC26D)	¢29.95	Adventure (AC22Y)	$¢ 23.95$
Indy 500 (AC24B)	¢34.50	Skydiver (AC13P)	£16.95
Chess (8levels) (AC28F)	£34.50	Breakout (AC05F)	£16.95
Golf (9holes) (AC 18U)	E16.95	Slot Racers (AC19V)	£16.95
Air Sea Battle (AC01B)	£16.95	Programming (AC27E)	E34.50
Space War (AC02C)	E16.95	Olympics (ACO4E)	£16.95
Brain Games (AC16S)	£16.95	Street Racer (AC14Q)	E16.95
Outlaw (AC03D)	£16.95	Keyboards per pair (AC294)	£11.95

กำ|ำ니ำ

Maplin Electronic Supplies Ltd
All mail to:- P.O. Box 3, Rayleigh, Essex SS6 8LR Telephone: Southend (0702) 554155.

Shop: 284 London Road, Westcliff-on-Sea,
Essex. (Closed on Monday)
Telephone: Southend $(0702) 554000$

Picture the ulimate

 in precision soldering.

When a solder medium for the microprocessor-based circuitry of the new Nikon EM camera was needed, a Multicore Oxide-Free Solder Cream was chosen

Multicore, the world's leading authority on solder and soldering, has developed its own unique method of producing solder powders so that they are practically oxidefree. This means that the resultant solder cream will melt and flow as cleanly and as

A typical ordinary cream revealing poor particle shape and dross.

Multicore Oxide. Free Solder Crearn displaying clean. uniformglobules.
quickly as rosin-cored solder wire. Merely a faint residue of flux is left and any risk of solder globules being formed is minimised or even eliminated altogether.

Where the Multicore Oxide-Free Solder Cream differs is in the physical characteristics of its particles. Ordinary creams contain atomised solder powder, with each particle covered with a layer of oxide. This has to be removed by the flux after heating but non-corrosive, rosin-based fluxes cannot do this effectively given the nature of the solder technique used. The particles in Multicore Oxide-Free Solder Cream, as the electron-microscope enlargement shown illustrates, are much cleaner and more uniform. The result: cleaner, quicker soldering.

Available in a wide range of alloys and flux combinations, with particle size, flux content and viscosity equally variable, there can be a Multicore Oxide-Free Solder Cream tailor-made to suit your requirements.

If, like Nikon, you need a solder medium that can be applied with a high degree of accuracy, either by syringe or silk screening, will give you a thoroughly reliable joint, and will fully comply with health and safety regulations*, you need to talk to Multicore about Oxide-Free Solder Creams.

To find out more, use the reader reply service, cut the coupon or contact us direct.
"Multicore Rosin-based Solder Creams are safe to use provided certain precautions are observed. Detalls of these are provided centinprecautions are ooserved. Deatis of these avalable on request. Multicore Solders Ltat is a Registered
Supplie of Solder Creams on the U.K. Defence Contractors Supplier of Solder Creams on the UK. Defence Contracti List and are type approved by the Ministry of Defence to
DTD. 599 A . Muticicore Rosin based Solder Creams are DTD. 599 A. Multicore Rosin based Solder Creams are
appoved
USD the Qualififed Products List QQ. 5 STIIE of the USDefense Supply Agency.

The biggest name in solder world wide

[^0]: UK agent: Danbridge (UK) Limited, Sherwood House. High Street Crowthorne, Berkshire RG11 7 AT Tel: (034 46) 2369 TLX: 847782

[^1]: *It is called a gravitational field, but this is misleading because it must be granted properties not found in natural gravitational fields.

[^2]: *When a resistive source of internal resistance R is shunted by a load resistance equal to R, the signal voltage is halved, but the Johnson noise voltage is reduced by a factor of only 2 . The signal-to-Johnson-noise ratio is therefore worsened by 3 dB .

[^3]: *Power flux density figures can be converted into the more familiar field strength figures by subtracting them from 146. The result is then in dB relative to 1 microvolt per metre. Thus $-103 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{*}\right)=43 \mathrm{~dB}(\mu \mathrm{~V} / \mathrm{m})=$ $140 \mu \mathrm{~V} / \mathrm{m}$. - Ed.

[^4]: Notes

 1. 0.6 degree beam except channel 23 which covers mainland Italy. 2. Covers Iceland, Azores and part of Greenland. Channels 27 and 35 registered under Denmark. 3. Same transmission channels also beamed to Azores (common programme). 4. Eight channels in a wide-beam covering Nordic countries; assigned to Finland (22, 26), Sweden (30,40). Denmark $(24,36)$ and Norway (28, 32). 5. Same transmission channels also beamed to Canary Islands (common programme).
[^5]: "C is the "semi-stabilized" voltage point referred to in part 1.
 ** The actual situatiuon Is a more complicated, but this analysis is a good approximation.

[^6]: Robert Brady is researching in superconductivlty at the Cavendish Laboratory, Cambridge.

[^7]: To Pieter Glas, Bell \& Howell A.V Ltd., Freepost, Wembley, Middlesex HAO 1BR. Please send me more information about video equipment and a list of your Video Centres. Name
 Organisation
 Address

[^8]: Whde Frequency range -5 Hz to 80 period
 High sensitiviy -25 .
 overtiow
 Optional internal batterv oach Droviding 4 hours continuous operatio
 Aunoreset on all gare times, all function swiches Aurereset on al gale times. alfunction swinches
 Four manually selected gate times providing reso Event counting to 10% events with overflow indicator Rugged moulded case with convenient tulting / carrying handle Optional paraliel data output
 £195

[^9]: Also available ready builr and tested

[^10]: Post \＆Package 50p on all orders
 PRICES INCLUDE VAT

[^11]: WW - 070 FOR FURTHER DETAILS

[^12]: PROBABIY IHE BE SI ANOWN SUPPIIER OF EEECTRONIC ENGINEERS IN PHE COUNJRY

[^13]: The Department of Sound Records is a National Archive for sound recordings relating to war in the 20th century.

 This is an opportunity for an experienced technician to contribute to the work of the Department by taking charge of a modern professional Sound Suite incorporating Leevers-Rich E200 and Revox tape machines, disc reproducers, a Neve BCM 10/2 mixing desk and a wide range of ancillary equipment and facilities. Work will involve carrying out a wide range of transfer operations, some location recording, editing, control of public listing facilities and servicing and maintenance on all the Department's audio equipment.

 Candidates should preferably have an ONC, C\&G,
 TEC / SCOTEC or equivalent qualification in Engineering or other relevant subject. They must have an aggregate of at least 8 years recognised training (e.g. apprenticeships) and experience (which may include up to 3 years' relevant full-time study), and be experienced audio equipment technicians. Ex-Service personnel who have had suitable training and at least 7 years' appropriate service (as Staff Sergeant or equivalent) will also be considered.

 Salary within the range $£ 7.115-£ 7.915$ according to experience. Non-contributory pension scheme.

 For further details and an application form (to be returned by 6 November, 1980), write to Civil Service Commission, Alencon Link, Basingstoke, Hants. RG21 1JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote Ref. T/5434.

[^14]: HIGHLY SKILLED and experienced team available for P.C.B. Building and Wiring. specislising R. F. work. Prototype work undertaken. For estimate phone Mr Chauhan, 01 .
 485 F 523 .

[^15]: OVERSEAS AOVERTISEMENT
 AGENTS:
 France Re Belgium: Norbert Hellin. 50 Rue de Chemin Veat F-9100, 8oulogne, Paris.
 Hungary: Mrs Edir, Bajusz. Hungexpo Advertising Agency. Budapest XIV, Varosliget.
 Telephone: 225008 - Telex: Budapeș1 22-4525
 raly: Sig C. Epis. Etas-Kompass. S.p.a. - Servizio Estero. Via Mantegna 6. 20154 Milan.
 Telephone: $\mathbf{3 4 7 0 5 1}$ - Telex: 37342 Kompass.

