. . . catch this bus with Farnell

and arrive economically at an efficient ATE workstation.

Comprehensive testing under low cost desk computer control.
Manual systems too.

Front cover is an abstract design by Geoff Harrold, based on an illustration from tan Wilten's article on microcomputers.

IN OUR NEXT ISSUE

Floating-bridge amplifier is a version of the bridge amplifier. providing 15 W from a 12 V supply. Article also describes a 200 W design.

Satellite television reception at 4 GHz and $11 / 12 \mathrm{GHz}$ is described by S. J. Birkill. System has worked with Intelsat IVA, Molniya, OTS, etc. and screen photos are included.

Versatile active filters. Multichannel tone control, using 'LCR' circuit with synthesized inductance.

Current issue price 50 p. back issue (if available) £1.00, at Retail and Trade Counter, Paris Garden, London SE1. Available on microfilm: please contact editor.
By, post, current issue 86 p, back By. posi, current issue 86 p, back
issues (if available) $£ 1.00$, order issues (if available) $£ 1.00$, order
and payments to Room CP 34 , Dorand payments to Room CP3
set House, London SE 1 9LU.
Editorial \& Advertising offices:
Dorset House, Stamford Street. London SE 1 9LU
Telephones: Editorial 01-261 8620. Advertising 01-261 8339. Telegrams / Telex: Wiworld Bisnespres 25137 BISPRS G. Cables Ethaworld, London SE 1
Subscription mates: 1 year $£ 9.00$ UK and \$31 outside UK.
Student rates: 1 year, $£ 4.00$ UK and $\$ 15.50$ outside UK.
Distribution: 40 Bowling Green Lane. London EC1R ONE Telephone 01.8373636
Subscriptions: Oakfield House Perrymount Road, Haywards Heath, Sussex RH 16 3DH. Telephone 044459188 . Please notify a change of address. USA mailing agents: Expediters of the Printed Word Ltd, 527 Madison Avenue, Suite 1217 . New York, NY 10022. 2nd-class postage paid at New York.
¢ IPC Business Press Lid, 1980 ISSN 00436062

wireless world

ELECTRONICS /TELEVISION / RADIO / AUDIO

AUGUST 1980 Vol 86 No 1535

25 Are engineering ethics possible?

26 Graphical communication with microcomputers

by I. H. Witten

31 Solid state level indicator
 by Quentin Rice

34 Novatexts: Digital control of analogue functions
by P. Williams
36 Letters to the editor
Multipath distortion
Programmable keyboard notes
Displacement current

40 World of amateur radio

41 Miniature, ten-line telephone exchange
by L. D. Gunn

45 Literature received
46 Circuit ideasAccurate motor speed control Multiple a-d conversion

49 Designing with microprocessors - 3

by D. Zissos and L. Valan
52 News of the month
Government, Inmos and Ferranti Radar contracts go abroad Air crash radio messages

56 Organ stop control
by A. D. Ryder

60 Books

61 Colour tv receiver design - 2
by R. Wilkinson
65 Binary clock
by J. M. Osborne

69 Transient recorder

by G. J. Adams

74 New Products

Out of bounds

A power amplifier has to produce an adequate output voltage. This voltage has to be able to change at a sufficiently high rate to trace accurately any possible programme waveform. It has to be able to do all this independently of the current drawn by the loudspeaker.

These are the three dimensional limits of a power amplifier, usually referred to as voltage clipping level, slew rate and output current limit.

If an amplifier is operated so that none of these limits is exceeded, and is otherwise competently designed, then the amplifier will not degrade the programme. (If the programme were auditioned at the input or the output of such an amplifier there would be no audible change).

QUAD amplifiers are such arnplifiers.
For further details on the full range of QUAD products write to:

The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs. PE18 7DB. Telephone (0480) 52561

QUAD

for the closest approach to the original sound

QUAD is a registered trade mark

LEVELL Aectrancs sto.

Model - M600

* POWER RESPONSE DC $-20 \mathrm{KHz} \pm 1 \mathrm{~dB}$.
* OUTPUT POWER IN EXCESS OF 1.5 kW INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.).
* D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2 KVa .
* HARMONIC DISTORTION LESS THAN 0.05\% DC-20KHz AT 1 kW INTO 6 OHMS
* PLUG-IN MODULES: CONSTANT VOLTAGE / CURRENT, PRECISION OSCILLATORS \star UNIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS
* OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD.
* FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD
* TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4 kW .
* INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS.
* 3-YEAR PARTS AND LABOUR WARRANTY.

For full details on all Amcron Products write or phone Chris Flack
Kirkham Electronics
MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL

PRIME COMPONENTS LOW PRICES

$\stackrel{C}{C}$ ごニ
マニ
20

4K CMOS（1K $\times 4$ ）450NS ONLY £7．95

18 PIN Plastic Package
Full Static Operation
－Tirree State Output．
－Inpul／Output TIL Compal

 cassette recorder and television (black and white or colour); everything!

Yet the ZX80 really is a complete, powerful, full-facility computer, matching or surpassing other personal computers at several times the price.

The $\mathbf{Z X 8 0}$ is programmed in BASIC, and you can use it to do quite literally anything from playing chess to managing a business.

The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron. It immediately proves what a good job you've done : connect it to your TV... link it to an appropriate power source * ... and you're ready to go

Your ZX 80 kit contains.

- Printed circuit board, with IC sockets for allics.
- Complete components set, including all ICs-all manufactured by selected world leading suppliers.
- New rugged Sinclair keyboard, touchsensitive, wipe-clean.
- Ready-moulded case
- Leads and plugs for connection to domestic TV and cassette recorder. (Programs can be SAVEd and LOADed on to a portable cassette recorder.)
- FREE course in BASIC programming and user manual.

Optional extras

- Mains adaptor of 600 mA at 9 VDC nominal unregulated (available separately - see coupon).
- Additional memory expansion boards allowing up to 16 K bytes RAM. (Extra RAM chips also available - see coupon).
*Use a 600 mA at 9 VDC nominal unregulated mains adaptor. Available from Sinclair if desired (see coupon).

The unique and valuable components of the Sinclair ZX 80.

The Sinclair ZX80 is not just another personal computer. Quite apart fromits exceptionally low price, the ZX 80 has two uniquely advanced components: the Sinclair BASIC interpreter; and the Sinclair teachyourse If BASIC manual
The unique Sinclair BASIC interpreter offers remarkable programming advantages

- Unique 'one-touch' key word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.
- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you try to run them.
- Excellent string-handling capability - takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The $\mathrm{ZX80}$ also has string inputto request a line of text when necessary Strings do not need to be dimensioned.
- Up to 26 single dimension arrays.
- FOR/NEXT loops nested up 26.
- Variable names of any length.
- BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
- Exceptionally powerful edit facifities, allows modification of existing program lines.
- Randomise function, useful for games and secret codes, as well as more serious applications.
- Timer under program control
- PEEK and POKE enable entry of machine code instructions, USR causes jump to a user's machine language sub-routine.
- High-resolution graphics with 22 standard graphic symbols.
- All characters printable in reverse under program control.
- Lines of unlimited length

Fewer chips, compact

 design, volume production more power per pound!The 2X80 owes its remarkable low price to its remarkable design: the whole system is packed on to fewer, newer, more powerful and advanced LSI chips. A single SUPER ROM, for instance, contains the BASIC interpreter the character set, operating system, and monitor. And the $Z \times 80$'s 1 K byte RAM is roughly equivalent to 4 K bytes in a conventional computer-typically storing 100 lines of BASIC. (Key words occupy only a single byte.)

The display shows 32 characters by 24 lines
And Benchmark tests show that the ZX80 is faster than all other personal computers.

No other personal computer offers this unique combination of high capability and low price

 $J=H$ THN GC TM now available!

See the advertisements in Personal Computer World (June) and Electronics Today International (July).

New dedicated software - developed independently of Science of Cambridge reflects the enormous interest in the ZX 80 . More software available soon - from leading consultancies and software houses

The Sinclair teach-yourself

 BASIC manual.If the specifications of the Sinclair ZX80 mean little to you-don't worry. They're all explained in the specially-written 128-page book free with every kit! The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC programming - from first principles to complex programs. (Available separately - purchase price refunded if you buy a $\mathrm{ZX80}$ later.) A hardware manual is also included with every kit.

The Sinclair ZX80. Kit: £79.95. Assembled: £99.95. Complete!

The $\mathbf{Z X} 80$ kit costs a mere $£ 79.95$. Can't wait to have a ZX80 up and running? No problem! It's also available, ready assembled, for only £99.95.

Demand for the ZX 80 is very high: use the coupon to order today for the earliest possible delivery. All orders will be despatched in strict rotation. We'll acknowledge each order by return, and tell you exactly when your ZX80 will be delivered. If you choose not to wait, you can cancel your order immediately, and your money will be refunded at once. Again, of course, you may return your ZX 80 as received within 14 days for a full refund. We want you to be satisfied beyond all doubt - and we have no doubt that you will be.

Science of Cambridge Ltd
6 Kings Parade, Cambridge, Cambs., CB2 1SN Tel: 0223311488.

ORDER To: Science of Cambridge Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN. RORM Remember: all prices shown include VAT, postage and packing. No hidden extras. Please send me

Quantity	Item	Item price \&	
	Sinclair 2×80 Personal Computer kit(s). Price includes ZX80 BASIC manual. excludes mains adaptor.	$£ 79.95$	
	Ready-assembled Sinclair ZXBOPersonal Computer(s). Price includes $Z \times 80$ BASIC manual. excludes mains adaptor	$£ 99.95$	
	Mains Adaptor(s) (600 mA at 9 VDC nominal unregulated).	8.95	
	Memory Expansion Board(s) (each one takes up to 3K bytes).	12.00	
	RAM Memory chips - standard 1 K bytes capacity.	16.00	
	Sinclair ZXBO Manual(s) (manual free with every ZX80 kit or ready-made computer).	5.00	
TOTAL			

I enclose a cheque/postal order payable to Science of Cambridge Ltd for $£$ \qquad
Please print
Name: Mr/Mrs/Miss
Address

The world overYou get the best service from Haltron

For high quality electronic valves, semiconductors and integrated circuits - and the speediest service specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron product quality and reliability are clearly confirmed. The product range is very. very wide. And Haltron export expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited.
Electron House.
Crà Avenue, St. Mary Cray.
Orpington, Kent BR5 30J.
Telephone : Orpington 27099
Telex: 896141
 specification
and we'll
eat it.

From the raw material to the finished component, Erie has been deeply involved in producing crystals for the past twenty years - to exacting specifications. The factory and test facility
complies with the latest MIL standards. Each crystal is tested at

Before Gold Lion valves reach you they've been hit with a hammer!

True. With Hi-Fi enthusiasts demanding higher and higher standards of sound you can't afford poor quality valves. That's why every Gold Lion valve survives an awesome series of tests before it reaches your equipment including testing under amplifier conditions and being hit with a rubber hammer!

So we hand-build Gold Lion valves and use advanced pumping techniques to ensure top quality.

Gold Lion KT77's and KT88's cover 30-200 watts. If you would like to know more send for these Application Report Leaflets, you'll find them fascinating reading.

SEC

© TRIO

 TEST

 TEST INSTRUMENTS

THE RANGE HAS INCREASED THE PRICES ARE DOWN

THE CS 183030 MHz + Sweep Delay

The CS 1830 is a completely new 30 MHz dual trace oscilloscope employing a square format, internal graticle, PDA tube for accurate bright display. A new feature is the inclusion of calibrated sweep delay with a range of $1 \mu \mathrm{~S}-100 \mathrm{mS}$ and trace bright up to show the delay position. As you can see from close study of the photograph, the CS 1830 has all the facilities you could require in a high performance instrument but for more detail, simply ask us for a comprehensive leaflet
Brief specification
Rectangular PDA tube $120 \times 96 \mathrm{~mm}$. P3 1 phosphor.
Bandwidth $\mathrm{DC}-30 \mathrm{MHz}$
Overshoot less than 3\%
Sensitivity $\quad 5 \mathrm{mV} / \mathrm{cm}(30 \mathrm{MHz}) \quad$ Sweep time $200 \mathrm{nS} / \mathrm{cm}-0.5 \mathrm{~S} / \mathrm{cm}$
$2 \mathrm{mV} / \mathrm{cm}(20 \mathrm{MHz})$
nput R.C. $1 \mathrm{M} / 23 \mathrm{pF}$
Risetime 11.7 nS
Trig. band width $\mathrm{DC}-30 \mathrm{MHz}$
Sweep delay $1 \mu \mathrm{~S}-100 \mathrm{mS}$
CS 1830 only $£ 455$ + VAT includes 2 probes

THE C51572 30 MHz for the VTR Lab.

If you are in Video, you need the CS 1572
The CS 1572 is a dual trace 30 MHz oscilloscope designed for the video tape recorder engineer. Video delayed sweep facilities are provided to allow magnification and analysis of any point in a single video frame together with separation of video odd and even fields A truly uniquetool for anyone concerned with video measurements as well as a top specification dual trace wide band oscilloscope for general lab use. The complete range of video facilities is too great to explain in a small advertisement so why not call us and ask for the full story on the CS 1572.

Brief Specification

As for CS 1830 except that the sweep delay feature is replaced by comprehensive video sweep delay facilities which allow complete analysis of video wave forms and VTR alignment
CS 1572 only $£ 425+$ VAT, includes 2 probes

The CS 1577 is, without doubt, our most popular oscilloscope and hundreds of satisfied users in all sections of the electronics industry will confirm this. The CS 1577 combines a wide bandwidth $\mathrm{DC}-30 \mathrm{MHz}$ performance with extremely wide trigger bandwidth (DC-40 MHz) and 2 mV sensitivity over the full bandwidth.
Fixed signal delay is provided by a helix delay line which allows viewing of the leading adges of fast pulses for accurate rise time measurement, and the 130 mm PDA tube gives a bright, stable trace even at the highest sweep speeds ($20 \mathrm{nS} / \mathrm{cm}$ using $\times 5$ expansion). Good triggering, even at low levels has always been an outstanding feature of Trio oscilloscopes and the CS 1577 demonstrates this to perfection. Triggering, as in the other $30 \mathrm{MHz}_{2}$ instruments can be from CH 1 or CH 2 or can be alternated with the beam switching so that input signals of differing frequency will provide stable displays. Truly an oscilloscope masterpiece CS 1577
CS 1577 only $£ 410$ + VAT, includes 2 probes

THE CS1575, unique dual trace 4 function Audio Scope
The CS 1575 is a unique tool for the audio engineer. It features the normal facility of dual trace display with sensitivity to $1 \mathrm{mV} / \mathrm{cm}$ but not only can it display the input signal on iwo channels, it can simulraneously display the phase angle between them and measure the phase angle referenced to a zero phase catibration display. In addition to these unique features, you also have independent triggering from each channel to give stable displays even with widely differing input frequencies
Absolutely indispensable to the protessional audio engineer, the CS 1575 is now in use all over the world. See it in action or send for complete details.
CS1575 only £235 + VAT
AND TWO NEW ADDITIONS TO THE RANGE
DL705 MULTIMETER

DC to 1000 V
AC to 1000 V Ω to $20 \mathrm{M} \Omega$ 1 to . 2 A
Semi Auto Ranging

FC756 500 MHz COUNTER
$10 \mathrm{~Hz}-500 \mathrm{MHz}$ 50 mV

Superb instrument

$£ 225$ + VAT
For further details and ex stock delivery contact

CHESTERFIELD ROAD, MATLOCK, DERBYS. 0629-2430 - TELEX 377482

Carston Electronics

 specialists in second user testand measuring instruments

NEW

Prices
frimet
Acoustic
BRUEL \& KJAER
2203 Precision sound level meter 400
112 LEO meter digital readout
Attenuators
MARCONI SANDERS
6593 VSWR Indicator. Batt Mains
Bridges
CINTEL
277 Measures iron core inductances
$0.01 \mathrm{H} \cdot 1000 \mathrm{H}$ (with a Q value not
less than 21
DAWE
2108 Decade Capacitance box
0.1 F. imF 0.1 af step

MARCONI
TF1245 ' O ' meter Frea, range 1 kHz
300 MHz using external ose
WAYNE KERR
B641 Measures L C R G Accuracy
010.10°
Q801. Y parameter test set. Plus
iransistor adaptor unit
Cable Test Equipment
MARCONI
TF2333 Transmission Test set
HEWLETT PACKARD
3556A For psophometric
measurements from 20 Hz 20 kHz
$01 \mathrm{mv}-30 \mathrm{~V}$ input level
NECTTS.378. Noise, level and VUmeasurement. Sensitivity ${ }^{\prime} 80 \mathrm{dBm}$up $10+20 \mathrm{dBm}$STC
74216 A Noise Generator CCITT 74261 A Psophometer CCITT WANDEL U. GOLTERMANN DLM 1 . Send receive system for OLM-1. Send receive system for measuring phase fiter random nois and frequency shift on data trans 200 Mz . 600
LDS.2. $200 \mathrm{~Hz} \cdot 600 \mathrm{kHz}$ sender for measuring group delay and LDEF.2. Filters for DLM uni Counter Timers HEWLETT PACKARD 5300 A 53038 DC 520 MHz 6 digits 5300 A Display Module. 6 Digits. 53008 Display Module, 8 Digits. $2=10^{8}$
530 5303 A DC. $50 \mathrm{MHz}, 100 \mathrm{mV}$ sens. Time interval. Period. Ratio Toralise.
53038 DC .520 MHz . (Plug. ont 125 mV sens. 50 ? 5308 a 0.75 MHz Universal Module 50 mV sens. TM! 5267a Time Interval Plug-in 10 ns

Prices
from E
MARCONI
TF2414A DC. 40 MHz 7 digits TF2416:8 DC. 50 MHz .7 pigits. 10 mV sens. Stab: $\mathrm{t} \times 10^{7}$ day. BCD $0 / P$. TF2416/2 As for 2416 ' 8 without BCD. O:P RACAL
835. DC. 15 MHz 6 digits
Time interval Period Ratio
$902410 \mathrm{~Hz} \cdot 600 \mathrm{MHz} 7$ + 1 digits $9837 \mathrm{DC} \cdot 80 \mathrm{MHz} 6$ digits S.E. LABORATORIES SM202 DC -150 MHz .8 Digits. $50 \mathrm{Mv.A,B,C}$. Input. Time Interval and Totalise

Data Loggers

 SOLARTRON 32403301 Data Transter Unir and 100 Channel Scanner with ihe 3205 Hingersal Unisertaise 3205 Universal Imertace 3211 Comroller3115 Scan Contru
3115 Scan Contrulle
3238 Power Supply
3221° Drive for Facir 4070 s ASC 11 3220° Drive tor Clarv Pinter - Fitted as renurred
Fire as requret
3213 Push Bution Display for or Mieasured Value: of Selected Channel

100

as required) Price per 10 Channels
FACIT

4070 Tape punch (ASC 11) CLARY
35/3220/3264 10 columns, $21 / 2$ wide paper. 0.55 print cycle. Interface for 3240 only Function Generators ADVANCE
J4. $10 \mathrm{~Hz} \cdot 100 \mathrm{kHz} .10 \mathrm{~V}$ r.m.s.
output Sine/\$quare Wave
HEWLETT PACKARD
33100.0005 Hz .5 MHz . Multi-Mode 10V/50? sine, square, triangular INTER-STATE
ELECTRONICS
F51A Multi-Mode. + and -offset 0.0005 Hz to $10 \mathrm{MHz} .10 / 15 \mathrm{~V} / 50$? F55A Mglti-Mode, $0.0025 \mathrm{~Hz} \cdot 10$ MHz. 10V/50л. Ext. VGC. Burst O/P up to 100 k bursts $/ \mathrm{sec}$ PHILIPS
PM5127. 0.1 Hz .1 MHz . Sine Square/Triangular/Pulse outputs. External sweep facilioy 30 Vp . p max External sweep facili outpul
Logic Analysers
HEWLETT PACKARD
1601L Logic state analyser
12 channel display
Modulation Meters AIRMEC
$2101-300 \mathrm{MHz}$. AM/FM
$2101-300 \mathrm{MHz}$. AM/FM
4093.1500 MHz . AM/FM
MARCONI
TF2300A 1.1000 MHz . AM/FM
Multimeters-
Analogue
AVO
8MKIII AC DC V.AC DC Amps.
OHMS
ADVANCE
ADVANCE
OSIO00A DC. 20 Mmz . dual trace 310
DYNAMCO
7200. DC. 15 MHz . Dual Trace 1 mV
7210. DC. 15 MHz . Dual Trace 1 mV sensitivity on CHI. Delayed
Timebase
HEWLETT PACKARD
1703 A Storage 1000 Div/ms. DC
$1707 \mathrm{~B} / 020 \mathrm{DC} .75 \mathrm{MHz}$. Dual trace.
Dual Time Base.
$1707 \mathrm{~B} / 012$ As $17078 / 020$ with
Internal Battery fitted
181A Storage 1000Div/ms
OC. 100 MHz Main frame only
PHILIPS
PM3410. DC. 1 GHz . Sampling oscilloscope
TEKTRONIX
556. 1A1. True dual beam
DC. 50 MHz . Can display 2 separate
signals at different sweep rates.
Includes trolley
5458 iA . DC- 30 MHz dual trace.
Delayed timebase
$561 \mathrm{~A} 3 \mathrm{~A} 6 \mathrm{3B1}$. DC. 10 MHz . Dual
Trace. High persistence tube.
Delayed Timebase
585 A $82 . \mathrm{DC} \cdot 80 \mathrm{MHz}$, dual rrace
10 mV sensitivity
547 1A1. DC. 50 MHz . dual trace
DTB
547 1A4. DC. 50 MHz , four wace
$7704 \mathrm{~A} D \mathrm{C} .200 \mathrm{MHz}$. CRT Readou
Mainframe for 4 Plug in

TELEQUIPMENT

D53A. DC -25 MHz . dual trace.
10 mV sensitivity with $\mathrm{C} \cdot 2$ plug-in
DC- 15 MHz with JD plug in
D63 V) V3 DC. 35 MHz . Depending
on sensitivity. $50 \mathrm{\mu V}$ or 1 mV
180

-all equipment for sale is fully refurbished to manufacturers' original specifications

Oscilloscope Plug-ins
TEKTRONIX
Type R. Transistor R.T. tester. Pulse rate 120 pulses $/ \mathrm{sec}$. R.T. Less than 5 mus
Type L. DC. $20 \mathrm{MHz}_{2} .5 \mathrm{mV}$ sensitivity fast rise time amplifier
Type G. Differential amplifier. 100:1 CMA DC- 20 MHz .50 mV sensitivity Plug ins for 500 series
1A1 dual trace Plug-in DC. 50 MHz 1 A2 dual trace Plug-in DC. 50 MHz
1 A4 four trace Plug-in DC. 50 MHz
IA5 Differential Plug-in
z Differential Plug-in
81 Adaptor Plug-in 1A Series to 580 Series
TELEQUIPMENT
DM64 Storage 250 Divs/ms
DC. 10 MHz Dual trace,

D67 DC. 25 MHz . Dual trace. Dual
Time Base. TV sync.
D83 DC. 50 MHz . Duat trace. Large $61 /{ }^{\prime \prime}$ CRT. Dual Time Base Oscilloscopes (storage) DYNAMCO
7110. DC-30M Hz. Dual trac Writing speed 20 ms / Div.
TEKTRONIX
$549,1 \mathrm{~A}$. DC .30 MHz .5 mV sensitivity. Dual trace. Storage scope, Writing speed: $5 \mathrm{~cm} / \mu \mathrm{s}$ with $564 / 3474 / 3$ P 2 DC 2 MMz to channel. 20 mV sensitivity. Writing channel. 20 mV sensitiv
$564 \mathrm{~B} / 346 / 2867$ DC. 10 MMz Dual 56are 10 mV sensitito splir . Dual trace 10 mV sensitivito. Split screen
Phase Meter
DRANETZ
301 A 5 Hz .500 kHz . Z in $100 \mathrm{k} \Omega$ Accuracy $\geq 1^{\circ} 10 \geq 2^{\circ}$. Analogue

Power Meters
MARCONI SAUNDERS
$646010 \mathrm{MHz} \cdot 40 \mathrm{GHz}$ 1Depending on Head)
$642010 \mathrm{MHz} \cdot 12.4 \mathrm{GHz} 10 \mathrm{mw}$ $6421 \mathrm{D} 0 \mathrm{MHz} \cdot 1 \mathrm{~B} .4 \mathrm{GHz} 100 \mathrm{mw}$
$642210 \mathrm{MHz} \cdot 12.4 \mathrm{GHz} 1 \mathrm{mw}$ 6428 26.5.40 GHz 10 mw
Power Supplies
OLTRONIX
A2.5 KV. $10-2500 \mathrm{~V}$ up to 10 mA Current limit 2.12 mA . either = Current

60

SOLARTRON
AS 757. 50V. 1A. Variable
Pulse Generators
DB ELECTRONICS
150. I.C. pulse generator

EH RESEARCH
122. $1 \mathrm{KHz} \cdot 200 \mathrm{MHz} 5 \mathrm{~V} / 508$ RT 12 ns
$139(\mathrm{~L}) .10 \mathrm{~Hz} .50 \mathrm{MHz} 10 \mathrm{~V} / 50 \Omega$ RT $5 n$
rom E
1221. Timing Unit 6 Channe
$0-10 \mathrm{MHz} 5 \mathrm{~V} / 50 \Omega$ RT 8 ns
$132 \mathrm{AL} .50 \mathrm{~V} / 50 \mathrm{SZ} 5 \mathrm{~Hz} \cdot 3 \mathrm{MHz}$ RT 12 ns
HEWLETT PACKARD
$214 \mathrm{~A} 100 \mathrm{~V} / 50 \Omega$. Double pulse D/P W50ns. 10 ms . $10 \mathrm{~Hz}_{2} 1 \mathrm{MHz}: 15 \mathrm{~ns}$ RT PHILIPS
PM5705. $0.1 \mathrm{~Hz} \cdot 10 \mathrm{MHz}$. Typical RT 6ns Output 1.15 V
PM5776 3V/508. 1 Hz. 100 Mz Rise/fall Times less than 1 ns.
Recorders and Signal Conditioning Equipment AMPEX
525 PR2200 Instrumentation Recorder up 1016 channels. FM/DR. Record replay all speeds. I" tape FM/DR I.R.I.G. DC- 40 kHz FM. 100 Hz . 300 kHz DR
BRUNO WOELKE
ME102B. Wow and fluter meter ME102C. Wow and flutter meter BRUEL \& KJAER
2305B Bench type. Mains operated. Log recording of $\mathrm{AC}: 2 \mathrm{~Hz}-200 \mathrm{kHz}$ and DC. 50 or 100 mm paper widrh.
CHESSEL
301 B 3 Pen Potentiametric. $1 \mathrm{~cm} / \mathrm{s}$ $1 \mathrm{~cm} / 6 \mathrm{~min}$. Panges 25 mV .1 cmV 12 V DC power supaly required HEWLETT PACKARD 680M. 5 inch. Stripchart Single Pen $5 \mathrm{mV}-120 \mathrm{~V} 1 / \mathrm{P} 20 \mathrm{~cm} / \mathrm{min} 2.5 \mathrm{~cm} / \mathrm{Hr}$ RACAL
Store 4. Uses D/4 inch magnetic tape. Will record 4 F.M. channels Operales at 7 different speeds. SMITHS INDUSTRIES RE541.20 Single Pen. $0.5 \mathrm{mV} \cdot 100 \mathrm{~V}$ FSD. $3.60 \mathrm{~cm} / \mathrm{min}$ and hour YOKOGAWA
3046. 10 inch Chan Single Pen. 0.5

30472 Pen Version of 3046 Signal Sources and Generators
ADVANCE
50 638. FM/AM 5-200 MMz HEWLETT PACKARD $204 \mathrm{D} 5 \mathrm{~Hz} \cdot 1.2 \mathrm{MHz} .60052 .80 \mathrm{~dB}$ att DIP SV RMS 204D/001 As for 204D (Battery operated) 608E. 10.480 MHz AM MARCONI
TF791. FM Deviation Meter 4.1024 MHz

TF8O1, DI. 10.470 MHz AM. FM TF995A 2, 1.5.220 MHz AM. FM TF2005A. Two tone $20 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$ PHILIPS
PM5326. $100 \mathrm{kHz}-125 \mathrm{MMz}$. Digital display of frequency. AM. FM Sweep facility for I.F. measurements 525
ROHDE \& SCHWARZ
SWOB 110.51200 MH , 50 !? SCHAFFNER
NSG101 Mams Interterence Simularor Supenmporses Pulses on mains for testing mimunity of equpmeitt 10 interforence: Pulse amplitude: -800 V Rise Tune 0.25 us Width 50 \& 200 us
NSG330 Iqntion limerierence Altachinemt
3900.10300 MHz Sweep generator with CRT display
Spectrum Analysers NELSON ROSS
011 DC 20 kHz 80 dB dynamic ranupe Dispersion. $100 \mathrm{H} z^{\circ} 6 \mathrm{kHz}$ 022 DC 100 kHz Dynanic rancle 60 d 8 fits into various 500 sermes CRO's
TEKTRONIX
325 Plug in unit fils nizto various 500 B serles CRO s. 50 Hz 1 MHz

Sweep Generators
Sweep Generators
HEWLETT PACKARD 8690B Manframm. Imı Ext AM. Exı 8693
86938100.3 .78 .3 GHz 5 mW PIN levelied N
8699 B 100014 GHz .6 mW 120 nW 8699 B 100014 GMZ . 6 m $102 \mathrm{GH}_{21}$
corneciors
T. V. Test Equipment PHILIPS PM55088 Pallern Generator 625
unes PAL UK Svstems
Vibration
DAWE
1461 CVIMI Pispalale Viluratum
Voltmeters-Analogue
BRADLEY
CTA71C AC DC It curremt
HEWLETT PACKARD
4274 AC DC 12 multumeter
3406 A .10 kHz 12 GHz
LINSTEAD
M2BRCONI
TF2603 AC vothmeter in 15 GH ,
PHILIPS
PM24548 $1 \mathrm{mV} 300 \mathrm{~V} 10 \mathrm{H} / 12 \mathrm{Nm} /$ 2 II 19M』 DCJ P
Voltmeters-Digital
FARNELL
DM131B. 1999 FSD AC DC
FLUKE
8000A 1999 FSD
AC DC OHMS Cument
HEWLETT PACKARD
34740A 34702A 9999
FSD.AC DC OHMS
SOLARTRON
SM1420.2 2300 FSD OC
LM1420.2BA. 2300 FSD AC
True RMS DC
A200 19999 FSD OC only A203 19999 FSD AC DC !!
lVOm!! resistance)
A205 19999 FSD AC DC $3 t$ Spmsirivily 11 iv DC 10 V AC
$10 \mathrm{~m}!$ rensistance)
705099999 Aute AC DC

350

Wave Analysers
HEWLETT PACKARD
302 A 20 Hz 50 kHz 75 clB taruge
MARCON
TF 233020 Hz 50 kHz Selinctive
Rance - $3.5 \mathrm{if} 80 \mathrm{H} /$ Dynamic
rancu: 75 clB
WAYNE KERR
125
trom I

Redundant

Test Equipment

Why not turn your under-utilized test equipment into cash? Ring us and we'll make you an offer.

The 'System One' series of micro computers is probably the most flexible series of micro computers available today.
Flexibility of hardware coupled with a wide range of software. allows the user to choose the most cost effective hardware/software configuration to solve his/her problem.
HARDWARE CONFIGURATION
Internal storage from 32 to 64 K .
1 or 2 single-sided $51 / 4^{\prime \prime}$ or $8^{\prime \prime}$ floppy disks.
1 or 2 double-sided $5 \frac{1 / 4 " ~ o r ~}{\prime \prime} 8^{\prime \prime}$ floppy disks
Support for most popular makes of printers. 1 or 2 terminals.
SOFTWARE FROM
FORTRAN Compiler
BASIC Compiler
STRUBAL Compiler
Text Processor
Assemblers

LABEL BASIC
PILOT

Basic interpreter both sequential and Random Access Versions. Plus full development and debugging software
You even have a choice of two Operating Systems. SSBDOS or FLEX
With all this to choose from you might begin to think you could not afford it - well a 32 K storage system one with dual-single sided $51 / 4$ " floppy disks. SSBDOS and a
basic interperter would cost you £1,650.
If you require a terminal as well, the above system together with the ACT-1 keyboard and $9^{\prime \prime}$ video monitor would cost you $£ 1,970$
Call SEED at our Brownhills office for further details of demonstration.

STRUMECH ENGINEERING ELECTRONIC DEVELOPMENTS LTD.

 Portland House, Coppice Side, Brownhills, WalsallWest Midlands. Telex 335243 SEL. Tel. No. 054-33 78151
WW-026 FOR FURTHER DETAILS

WW - 021 FOR FURTHER DETAILS

Versatile Professional Hand Tools

'SERIES 99' from XCELITE

All most needed 99 Senes tools etc, snips or other tools.

99PS40. Allen Hex Socket S/driver

Set (inch sizes)

Also available:
99PS4 1 mm (metric) 99PS4OBP (inch sizes-ballpoint)

99PS50 13pc. S/ driver, $n / d r i v e r$ set. finch sizes)

Also available with metric sizes. Ref. 99 PS 51 mm .

99SM Service Master

Versatile 23 pc . set of quality toois in roll-up, plastic coated canvas case. Quick change 100 ls and 1001 com binations for assembly and service work.

Check our prices Complete Xcelite catalogue freely available on request from
SPECIAL PRODUCTS DISTRIBUTORS LTD.

Krohn-Hite Function Generators

But not only sweep!
Tone-burst, sine, square, triangle and ramp pulse outputs are all embodied in the new 1600, which includes built-in pause marker, and a frequency range of 0.2 Hz to 3 MHz . The 1600 is one of the many Function Generators available from Krohn-Hite, with frequency ranges of between .003 Hz to 30 MHz . Prices start at around £245.

Together with our Filters, Oscillators, Amplifiers,
Phasemeters and Distortion Analyzers they form the basis of a supertb range of equipment for general purpose, audio and communications areas.

To find out more fill in the coupon.
And see why Krohn-Hite are sweeping the board!

KEITHLEY

Keithley Instruments Ltd
1 Boulton Road Reading Berkshire RG2 ONL
Telephone (O734)861287

WW-057 FOR FURTHER DETAILS

HILOMAST LIMITED
THE STREET HEYBRIDGE - MALDON ESSEX CM9 7NB ENGLAND
Tel. MALDON (0621) 56480
TELEX NO. 995855

The finest amplification

CPR 1 - THE ADVANCED PRE-AMPLIFIER. The best preamplifier in the U.K. The superiority of the CPR 1 is probably in the disc range. The overload margin is a superb 40 bB , this together with the high slewing rate ensures clean top. even with high output cartridges tracking heavily modulated records. Common -mode distortion is eliminated by an unusual design. R.I.A.A. is accurate to 1 dB ; signal to noise ratio is 70 dB relative to 3.5 mV ; distortion $<005 \%$ at 30 dB overload 20 kHz . Following the stage is the flat gain/balance stage to bring tape. tuner, etc. up to power amp. Signal to noise ratio B6dB; slew-rate $3 \mathrm{~V} / \mathrm{US}$; T.H.D. 20 Hz $20 \mathrm{kHz}<008 \%$ at any level. F.E.T. muting. No controls are fitted. There is no provision for tone controls. CPR 1 size is $138 \times 80 \times 20 \mathrm{~mm}$. Supply to be ± 15. volts

MC 1 - PRE-AMP-AMPLIFIER. Suitable for nearly all moving-coll cartridges. Send for de tails.

X02: X03 - ACTIVE CROSSOVERS. X02 - iwo way. X03 - three way. Slope 24 dB /octave. Crossover points set to order within 10%

REG 1 - POWER SUPPLY. The regulator module, REG 1 provides $15-0-15 \mathrm{v}$ to power the CPR 1 and MC 1. It can be used with any of our power amp supplies or our small transformer TR 6 . The power amp kit will accommodate it.

* NEW ISSUE 5 *

POWER AMPLIFIERS. Our new issue 5 power amplifier modules have automatic shutdown that will not allow serious overloads for more than 0.1 sec - thus vastly increasing reliability at elevated temperatures. Other improvements to the circuitry have improved the subjective qualities which keeps CRIMSON even further ahead of the field.

POWER SUPPLIES. Wo produce suitable power supplies which use our superb TOROIDAL transformers only 50 mm high with a 120.240 primary and single bolt fixing (includes capacitors/bridge rectifier).

들

POWER AMPLIFIER KIT. The kit includes all metalwork, heat sinks and hardware to house any two of our amp modules plus a power supply. It is contemporarily styled and its quality is consistent with that of our other products. Comprehensive instructions and full back-up services enable a novice to build it with confidence in a few hours.

PREAMP KIT

This includes all metalwork, pots, knobs, etc., to make a complete preamp with the CPR 1 (S) module if required

POWER AMPLIFIER MODULES CE 608 CE 1008 CE 1008
CE 1708
HEATSINKS
light duty, $50 \mathrm{~mm} .2 \mathrm{C} / \mathrm{W}$ Medium power, $100 \mathrm{~mm} .1 .4 \mathrm{C} / \mathrm{W} .70$ Discolgroup. 150 mm , 1.1 Cl .70 £3.50
Fan mounted on two drilled 100 mm hearsinks
2×4 C/W 65 max. when used with No 170W
modules E36.00
HEMAL CUTOFF, 70C $£ 1.00$

REGI E9.30 TR 6 BRIDGE DRIVER, BD 1
Obtain up to 350 W using. $2 \times 170 \mathrm{~W}$ amps and this module Write for free literature or and 50 p for application / users'

You Need

Integrated Circuits?

WE HAVE THEM!

(Even the "Difficult" ones!) Silcon Solar Cells?

Solar Cell Arrays?

Photovoltaic Solar Cell Panels? Solar powered Toys \& Novelties?

Just Phone or Telex Bob Owen
TELEX 181-758 Answbk. "Calconsdg' PHONE (714) 5658303

CALCON LIMITED
9235 CHESAPEAKE DR. STE. F. S.D., CA 92123 , USA

Recognise me?

your
authorised

Avo Sales and Service Centre
Quick turn round on estimates/repairs Large stocks of new AVOMETERS

[^0]
Adastra public address equipment
 Adastra

A40
 p.a. centre

All Solid Stare Power: 20 W Musis Mano Cassetie Dect Slider Controls V.U. Meter IIrputs: 2-Mic (ImV) 1-Aux (100 mV) 1-Aux (100 mV)
1-Aux (15 mV)

 nernin

A 55 MOBILE AMPLIFIER

All Solid Stat

 Power: 20W RM S.N.R.: 60 dBPos. or Neg. Eart Cor Mounting Brock Ratary Controls Inputs: 2 - Mic (3 mV)

1-Aux (40mV)

 smikh wimt Ind colot lamg.

L81

L83 megaphone iser. miket Power: 16 W , Range: $\frac{1}{2}$ mile Batteries: $8-1 \frac{1}{2} \mathrm{~V}$

MICROPHONES - supplied c/w lead, jack plug, busby, U-bracket (if oppropriote)

M12 CONDENSOR CARDOID - 600 OHM
M2O ELECTRET CONDENSOR, OMNI-DIRECTIONAL - 600 OHM
M21 ELECTRET CONDENSOR, UNI-DIRECTIONAL - 600 OHM
M30 DYNAMIC CARDOID, BALL WINDSHIELD - $50 \mathrm{~K} / 500 \mathrm{OHM}$
MA8 ELECTRET PAGING, CARDOID. (CAST BASE) - 600 OHM
MSO COMMUNICATIONS, OMNI-DIRECIIONAL. (HAND HELD) $=600$ OHM

MICROPHONE STANDS
M121 BANQUET STAND, CAST BASE -11" TO 181"
MI22 TRIPOD TABLE STAND, SCREW IN LEGS - $4 \frac{1}{2}{ }^{\text {N }}$
M124 FOLDING FLOOR STAND - UP TO 60"
M125 STUDIO FLOOR STAND, SCREW IN LEGS - UP TO $63^{\prime \prime}$
M129 SOLID BASE FLOOR STAND, C̈ST BASE - UP TO S4"
MI30 FLOOR STAND WITH CURVED BOOM, SCREW IN LEGS - UP TO 591"
MIGROPHONE ACCESSORIES
M142 12" FLEXIBLE GOOSENECK STEM - CHROME FINISH
M143 20* FLEXIBLE GOOSENECK STEM - CHROME FINISH
MI7O GOOSENECK FLANGE ADAPTOR - BLACK SPRA YED CASTING
M1040 WINDSHIELO COVER (BUSBY - MEDIUM (ENTRY 17MM DIA.) PER PAIR
M1041 WINDSHIELD COVER (BUSBY) - LARGE (ENTRY 32MM DIA.) PER PAIR
£26. 43
$£ 26.43$
$£ 13.80$
£19. 32
£28. 98
£26.22
\& 6.90

SPEAKER SYSTEMS - CABINETS
L106 1OW, 8 OHM - BLACK FOAM FRONT, 'TEAK' FINISH, 8" DRIVER. PER PAIR $£ 35.19$
LIIO 4OW, 8 OR 16 OHM (SPECIFY WHICH) - BLACK 'VYNIDE' COVERING $£ 89.70$ (fitted with metal corner protectors and complete with a slip-on cover)

SPEAKER SYSTEMS - HORNS
L73 5W, 8 OHM WEATHERPROOF HORN, SUITABLE FOR VEHICLE USE
LJ4 IOW, 8 OHM METAL HORN
LTo IOW, 8 OHM WEATHERPROOF A.B.S. HORN
L7. $15 \mathrm{~W}, 8,660,1 \mathrm{KO}, 2 \mathrm{KO}, 4 \mathrm{KO}, 100 \mathrm{~V}$ LINE WEATHERPROOF ALUMINIUM
L78 20W, 8, 500, 600, IKO, 2KO, 100V LINE WEATHERPROOF ALUMINIUM
L78-8 AS FOR Lフ8, BUT 8 OHM IMPEDANCE ONLY

CABLES
22 MICROPHONE CABLE, HEAVY DUTY, SINGLE, GREY
($16 / 0.2 \mathrm{~mm}$ centre conductor, 100 m reel)
225 FIGURE 8 FLEXIBLE, RIB POLARISED, GREY
($13 / 0.2 \mathrm{~mm}$ conductors, 100 m reel)
Z29 TWO CORE OVAL, GREY
$(16 / 0.2 \mathrm{~mm}$ conductors, 100 m reel)
$Z 55$ GAMP MAINS LEAD, THREE CORE, ORANGE (24/0.2mm conductors, 50 m reel)

25613 AMP MAINS LEAD, THREE CORE, ORANGE

MIXER
M104 SIX CHANNEL STEREO MIXER AND PRE-AMPLIFIER - BATTERY POWERED §O2.10 (occepts high\& low impedance microphones, and has R.I.A.A. Input)

A56 sow a.c./b.c.
All Solld State S N R S5 RM S.N.R.: 55 dB V.U. Meter
 1- Mog Phono (3mV) 1-Aux (200 mV)
A 70 PROFESSIINAL
All Solid State
Power: 175W RMS
S.N. R.: 55dB
Rotory ond Slider Controls
V.U. Merer
Inputs: 4 - Mic $(0.5 \mathrm{mV})$
1 - Mag Phono (3mV)
1-Aux (200 mV)

 .

SIX INSTRUMENTS IN ONE - THE NEW LAI AUDIO ANALYSER

\star SIGNAL GENERATOR -15 Hz to $150 \mathrm{khz}, 0.008 \%$ THD, mid band

* Digital frequency meter -6 digit, bright, LED display.
* MILLIVOLTMETER - $100 \mu \mathrm{~V}$ to 100 V , FSD, fast or slow response
* DISTORTION METER - down to 0.005% at three frequencies.
* WOW \& FLUTTER METER - down to 0.01% FSD. DIN quasi-pk.
* WEIGHTING FILTERS - CCIR/ARM, DIN Audio Band, DIN Rumble, RIAA Output

Lindos
Lindos Electronics
Sandy Lane
Bromeswell WOODBRIDGE
Suffolk, IP 12 2PR
Tel. EYKE (03947) 432

Reliability • Convenience • Quality

Colour Film Developing costs less when you use our Film Service. Send any make of colour print film for developing, using the envelope enclosed in this issue. Or use any strong envelope, complete the coupon on this page, enclose with the film and send to
Wireless World Film Service, Freepost, P.O. Box 1, Teddington, Middlesex TW1 1 8BR
No stamp is needed. Just see what you get.
FREE Kodacolour Film
For every film you send for developing you will receive a replacement film FREE-and look how much you could be saving. Here are Kodak's normal prices: 110/20-£1.44; 126/20-£1.51; 135/24-£1.67: 135/36-£2.12.

Beautiful Colour Prints

Prints with round corners made on hi-definition sheen paper, borderless to give more picture space and elegant style.

Giant Superprints

Giant Superprints make pictures out of snaps. Now you can choose to have bigger prints made from your film with 30% more print area for just 1 p more than for the standard size. These are the relative sizes:

	35 mm	110	126
Superprints	$5334^{\prime \prime} \times 4^{\prime \prime}$	$5118^{\prime \prime} \times 4^{\prime \prime}$	$4^{\prime \prime} \times 4^{\prime \prime}$
Standard	$5^{\prime \prime} \times 31 / 2^{\prime \prime}$	$41 / 2^{\prime \prime} \times 312^{\prime \prime}$	$3112^{\prime \prime} \times 31 / 2^{\prime \prime}$

Please note that Superprints are only available from Kodacolour II, C41 and Agfa CNS cassette and cartridge film.

Prices

Just look at what you save. We charge only 80p for developing 126 110 or 35 mm film. Administration, post and packing is 20 p and prints are $16 p$ for standard and $17 p$ for giant Superprint. There is a surcharge of 20 p for both 400 ASA and Roll film-minimum charge $£ 1$. Compare these with Kodak's suggested prices: $£ 1.35$ for developing and 18p for a standard print. And remember, we give you a free film. So by using our service you could be saving as much as £3.19.

Send No Money
Not until you see your prints. An invoice will be sent together with the prints and free Kodacolour film.
Free Album Sheets
Our voucher collecting scheme (1 voucher for each set of prints) means you can get a set of Album Sheets-Free-to show off your pictures.

Albums

To hold the free Album Sheets, our Album is elegant and keeps your pictures safe. The album comes complete with 4 sheets and will display both standard and giant superprints. It is only $£ 3.25$ plus $75 p p$ \& p. Reliability, Convenience and Quality. You get all these when you use our film service. Try it for yourself, we are confident you will be pleased with the results.
Offer applies to U.K. Only: B.F.P.O., Eire and C.I. include handling surcharge. Offer excludes Minolta and Subminiature and Black and White film. Prices correct at date of printing. Standard terms of business apply (available on request)

From: Wireless World Film Service
Freepost, Teddington, TW11.
Mr/Ms.
Address

Postcode

[^1]

Advertisement produced co-operatively by: Akai, Fergusor

Believe it or not, 2 out of every 3 home video recorders sold or rented in this country in 1979 were VHS models. VHS was also the most successful home video system worldwide.

That represents a pretty overwhelming vote of confidence. How did we manage it?

At the outset we were determined to produce a home video system that was nothing short of outstanding. That's why VHS offers standards of reproduction, reliability and compatibility that are quite simply second to none.

And of course, if you build a better system in the first place there's less need to change it later on.

So while we have continually improved the quality of our recordersthere are now triple standard VHS machines which accept PAL, SECAM and NTSC - we have never changed the design of the VHS cassette. And it will not change in the future either. Which is more than can be said for some of our competitors.

By maintaining the same cassette, VHS has become the most compatible system available. So your customers will find it much easier to swap tapes with friends and enjoy the greatest range of pre-recorded material too.

VHS is the No. 1 system in the UK, Europe, the US and Japan.

Make sure you've got it. Right?

Theworld's No.l system.

WW - 038 FOR FURTHER DETAILS

3/2DICHLCMMINT MFIRKI
 Build the Practical Electronics handheld DMM. This superb product offers professional precision with extended battery life. Five function operation (AC and DC VOLTS, AC and DC CURRENT, RESISTANCE) with ability to check diodes. $0.5^{\prime \prime}$ LCD display with 'Battery Low' warning. Auto-polarity, Auto-zero. Full protection against transients and overloads with ability to withstand mains on any range 0.5% basic DC accuracy and 15 different ranges. It measures AC/DC voltages from 0.1 mV to 500 V . AC/DC current from $0.1 \mu \mathrm{~A}$ to 2 A . Resistance from 0.1Ω to $2 \mathrm{M} \Omega$. 200 hour battery life.
 The Kit contains all parts needed to construct the multimeter plus assembly instructions, battery and test leads.
 We also offer a calibration service
 To: Lascar Electronics, Unit 1, Thomasin Road, Basildon, Essex.

 ($£ 5.00+$ VAT) and a trouble-shooting and calibration service ($£ 7.50+$ VAT). Various other component parts are also available as listed.The multimeter is also available fully assembled and calibrated at a cost of $£ 39.70+$ P\&P + VAT:

Lascar Electronics Ltd., Unit 1, Thomasin Road, Basildon, Essex. Telephone No: Basildon (0268) 727383.

WW - 052 FOR FURTHER DETALLS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be inade to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7987
WW - 020 FOR FURTHER DETAILS

MORE SPEC. FOR YOUR MONEY

TYPE 747 UNIVERSAL COUNTER TIMER

DC to $150 \mathrm{MHz} \quad 8$ DIGITS, 3 CHANNELS
MEASURES -
FREQUENCY Ch A and Ch C
PERIOD Ch A
TIME \pm Ch A to $\pm \mathrm{Ch} B$
PULSE WIDTH Ch $A+$ or -
count
Ch A (may be gated and reset by $\mathrm{B} \& \mathrm{Cl}$
AVERAGES 1 to 1000 events
\& 3.50 carriage, ins. etc.

TYPE 745 COUNTER TIMER
OC to 32 MHz
MEASURES -
FREQUENCY
PERIOD
TIME
COUNT
6 GATE TIMES / TIME UNITS
$10 \mu S$ to iS

TYPE 746 AUTORANGING FREQUENCY METER $\mathbf{£ 7 5 . 0 3}$
1 Hz to 99.9 KHz
TYPE 615 OFF-AIR STANDARD $\mathbf{5 8 0 . 9 3}$
10 MHz . 1 MHz and 100 KHz
OMB ELECTRONICS, RIVERSIDE , EYNSFORD, KENT DA4 OAE
Tel. Farningliam (0322) 863567
Prices, which are CWO and ex-VAT, are correct at the time of going to μ ress and are subject to change without notice.

IT'S AS EASY AS A,B,C...

A EXP 650 For microprocessor chips. $£ 3.60$
B EXP 300 The most widely sold breadboard in the UK; for the serious hobbyist. $\mathbf{£ 5 . 7 5}$
C EXP 600.6" centre channel makes this the Microprocessor Breadboard. £6.30
D EXP 4B An extra 4 bus-bars in one unit. $£ 2.30$
E EXP 325 Built in bus-bars accepts $8,14,16$ and up to 22 pin ICS. $£ 1.60$
F EXP 350270 contact points, ideal for working with up to 3×14 pin DIPS. $£ 3.15$
G PB6 Professional breadboard in easily assembled kit form. $£ 9.20$ (Not illustrated.)
H PB 100 Kit form breadboard recommended for students and educational uses. $£ 11.80$ (Not illustrated.)

The above prices do not include P\&P and 15\% VAT

CONIINENIAI SPECIAAIIFS CORPORAIION C.S.C. (UK) Limited, Dept. 700
 Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. Tel: Saffron Walden (0799) 21682 Telex: 817477

Continental Specialties Corporation, (U.K.) Limited, Dept. 700
Unit 1. Shire Hill Industrial Estate, Saffron Walden, Essex. Tel: (0799) 21682

ASK OUR DEALERS.

35 High Bridge AITKEN BROTHERS,
35 High Bridge, Newcastle Upon Tyne, NE 1 1EW. Tel: 063226729.
ARROW ELECTRONICS LTD.,
Leader House, Coptfold Road, Brentwood, Essex. Tel: 0277226470.
BASIC ELECTRONICS LTD.,
18 Epsom Road, Guildford, Surrẹy, GU1 3JN. Tel: 048339984.

BI-PAK SEMICONDUCTORS,
P.O. Box 6, Ware, Herts.

Tel: 09203442.
F. BROWN \& CO.,

45 George IV Bridge, Edinburgh, EH1 1EJ, Scotland.
Tel: 031225 3461. Telex: 922131.
THE CHILDRENS SHOP \& TACKLE BOX., 73-75 High Street, Ryde, Isle of Wight. Tel: 098363437.
CUBEGATE LTD.,
301 Edgware Road, London, W2 1BN Tel: 017243565.
ETESON ELECTRONICS,
15b Lower Green, Poulton-Le-Fylde, Blackpool, FY6 7JL. Tel: 0253885107.
H. GEE ELECTRONIC SUPPLIES, 94a Mill Road, Cambridge, CB1 2BD. Tel: 0223358019.
LEEDS AMATEUR RADIO.
27 Cookridge Street, Leeds, LS2 3AG. Tel: 0532452657. MARSHALLS,
108A Stokes Croft, Bristol. Tel: 0272426801.

85 West Regent Street, Glasgow, G2, Scotland. Tel: 0413324133.
325 Edgeware Road, London, W2. Tel: 017234242.
40 Crick lewood Broadway, London, NW2 3ET. Tel: 014520161.
RASTRA ELECTRONICS LTD., 275-281 King Street, Hammersmith, London, W6. Tel: 01748 3143. Telex: 24443 RASTRA G.

SHUDEHILL SUPPLY COMPANY,
53 Shudehill, Manchester, M4 4AW. Tel: 0618341449.
SPECTRON ELECTRONICS (M/C) LTD., 7 Oldfield Road, Salford, M5 4NE. Tel: 0618344583.
SWANLEY ELECTRONICS, 32 Goldsel Road, Swanley, Kent, BR8 8EZ. Tel: 032264851.
TECHNOMATIC LTD.,
17 8urnley Road, London, NW10 1ED.
Tel: 01452 1500. Telex: 922800.

TOMORROW'S TOOLS TODAY

Also ask your local stockist.
If no dealer in your area, contact CSC direct.

C.S.C. (UK) Limited, Dept. 700 Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB1 13 AO. Tel: Saffron Walden (0799) 21682 Telex: 817477

wireless world

Are engineering ethics possible?

Editor:
TOM IVALL, M.I.E.R.E.

Deputy Editor:

PHILIP DARRINGTON
Phone 01-261 8435
Technical Editor:
GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443
Projects Editor:
MIKE SAGIN
-Phone: 01-2618429
Communications Editor:
TED PARRATT, B.A.
Phone 01-2618620
Drawing Office Manager:
ROGER GOODMAN

Technical Illustrator:
BETTY PALMER
Production \& Design:
ALAN KERR
Advertisement Controller:
G. BENTON ROWELL

Advertisement Manager:

BOB NIBBS, A.C.I.I.
Phone 01-2618622
DAVID DISLEY
Phone 01-261 8037

Classified Manager:

BRIAN DURRANT
Phone 01-261 8508 or 01-261 8423
MIKE THRAVES
(Classified Advertisements)
Phone 01-261 8508
JOHN GIBBON (Make-up and copy)
Phone 01-261 8353

Publishing Director:

GORDON HENDERSON

The title of a recent article in IEEE Spectrum, "How to be ethical and survive", says it all. There is the clear implication that you might not in fact survive in engineering if you act according to your ethical principles. Your job may be at risk, as some engineers have already discovered. The "whistle-blower" is not liked by managements and colleagues who do not share his scruples. And by suggesting that ethics really belongs to the individual, to the realm of personal and private convictions, the title raises the question of whether ethics is in fact applicable to.such a public and collective activity as engineering.

In the USA they obviously think it is. Over there an attempt is being made to frame a unified code of ethics that will be relevant to. all branches of engineering. And for some months 18 teams of engineers and philosophers have been exploring this question. under the impressive title of The National Project in Philosophy and Engineering Ethics, apparently believing, in typical American fashion, that truth will be found by sheer application and weight of numbers. If philosophers are anything to go by they will not provide any answers but simply analyse and clarify the questions with finer and finer distinctions - which is what philosophers have been doing ever since Plato.
'The practical questions which may force engineers into making ethical judgements range from the clearcut to the hazy. Will this design of bridge carry the intended load or will it collapse and kill people? Will this design of tv set operate safely or will it catch fire in somebody's home? If "commission" is paid to certain people to help along the sale of equipment, is this bribery? If I use somebody else's ideas in my work without permission, is this theft? But even if one succeeds
in making a private judgement on such matters, deciding whether to act on it publicly is quite another thing. The act, or lack of it, could be crucial to your material prospects or to your dearly prized image of yourself as a decent human being. Being forced to decide could make you think really hard about whether your first responsibility is to the public or to your employer.

It is to help the individual in such circumstances that the imposed code of ethics is useful. If the code is accepted and has authority he can shelter behind it. It is simply the law, isolated from all those difficult questions of morality. But if the code is derived from what is socially acceptable, rather than what is right, does it have any real worth? Here we encounter the old problem of whether ethics should be descriptive (what people actually do) or prescriptive (what they ought to do). And there are many others. For example, is morality altruistic, the result of social pressure, or egoistic, arising from individual self-interest? Can there be an objective basis for ethical judgements or must they always be subjective and relative? One could certainly devise a practical code of enginzering ethics based on the criterion of protecting individuals from malpractices. But this would be accepted by engineers' employers only to the extent that it served the purely technical function of satisfying the customer. Ethics are good for business. In other respects it would be treated as just another engineering constraint, to be got around by cleverness. Any genuine effect it might have would depend entirely on those few who saw it as a human claim rather than a technical means or obstacle. For, as the philosopher A. J. Ayer recently admitted in a newspaper interview, "morality is mainly about respect for other people's feelings and interests."

Graphical communication with microcomputers

Input and output of data for interactive graphics

by I. H. Witten M.A., M.Sc., Ph.D., M.E.E. Department of Electrical Engineering Science, University of Essex.

This article introduces the techniques of interactive computer graphical input and output, concentrating on the low-cost raster type of display. Input devices described include the light pen and touch tablet, and mention is made of a hand-printing input recognizer. The first part deals with point-plotting and raster-scan displays.

Pictures are a venerable, a natural, and often a most effective way of communicating information, and can greatly enhance a dialogue between man and machine. On the simplest level, functional or empirical relationships can be displayed as a computergenerated plot, and as an example a trend curve for the stock market, together with the individual stock prices on which it is based, is shown in Fig. 1. Rather more exciting is the representation of three-dimensional surfaces like the one in Fig. 2 of a mathematical function. Notice that "hidden lines" have been removed from this picture by the computer - the same function could be plotted with all lines visible. Figure 3 shows an electrical circuit diagram. Here, the computer can perform analysis of the circuit as well as simply drawing_it, probably presenting the results of this as electrical waveforms expected at key test points. Since circuits are often etched directly on the surface of a printed circuit board using a photographic process, this too can be automated.

The display of text itself is a most important application of computer graphics, and Fig. 4 shows a typical v.d.u. (visual display unit) computer terminal. Text can be presented in new ways which are impossible on paper, for parts of the screen may be dynamically overwritten, or highlighted by blinking. Suitable software can restrict any input typed on the keyboard to pre-defined parts of the page, for example to assist with filling in a questionnaire. On the other hand, the v.d.u. can be very constraining - annotating a text or scoring out sections is often much easier on paper. A large variety of type fonts can be accommodated, and Fig: 5 shows Chinese text on a v.d.u. screen.

Limited graphics capability is provided in many microcomputer display system, like that used in the teletext facility of the British television services
and also in the viewdata scheme (promoted by the Post Office under the name "Prestel"). This generates lowresolution pictures of the type shown in Fig. 6, which are particularly effective in colour. On home computers, such facilties are usually designed to enhance computer games.

Much more expensive equipment is needed to draw three-dimensionall shaded objects, and here the computational burden of hidden-line removal can become very great. The illusion of depth is greatly enhanced by the ability to change the apparent viewing position by rotating the object: this too places heavy demands on both the display hardware and supporting software. Systems exist which provide a cockpit view from a simulated aeroplane, allowing you to bank and loop, swoop low over roads and fields, land, and taxi across the airfield into a hangar!
Graphical input is much more primitive. Of course you can interface a television camera to a computer bus and digitize visual images, but interpreting them with a program is currently a challenging research problem. The effects of lighting and shadow, which at first seem to confound recognition by tarnishing and confusing the objects which are being viewed, are in
fact important, but subtle, clues to shape and orientation in real-world scenes. Further complications arise from binocular vision, and motion of the object or observer. Even twodimensional line drawings present considerable difficulties. The thumbnail sketch which so greatly assists communication between engineers or architects is virtually impossible to interpret automatically. Of course, it is easy to record such pictures by computer, and they can be processed by scale changes or rotation and stored for subsequent output on demand - the difficulty is in deducing facts about the structure of the objects depicted. While recording and replaying pictures can be most useful for communication between one person and another, the emphasis of this article is on mancomputer communication, and for this it is necessary for the machine to interpret its input.

The easiest thing to interpret is pointing - and this can be put to extraordinarily good use. It is well suited to the machine's capacity for highspeed display, and to man's potential for rapid assimilation of pictorial information, quick decision-making, but rather restricted output capability. This leads

Fig. 1. Stock prices, with a trend curve.

Fig. 2. A three-dimensional surface, with hidden lines removed.
to the use of a "menu" to show possible options which are selected by pointing; to a stylus which can "pick up" part of a picture and "drag" it around the screen; to "rubber-band lines" which extend from a point on the screen to the stylus tip and move around with it, keeping straight all the time. All these facilities can be provided by a display and suitable software if only the pen coordinates are continually known.
This article introduces the technology of interactive computer graphics. The "interactive" qualifier is important here because it excludes displays which cannot be used for quickly-changing pictures. For example, a plotter which draws lines on paper with a computercontrolled pen is not considered interactive, for it produces pictures slowly, one at a time. In fact, once you appreciate the principles of interactive

Fig. 3. Electrical circuit diagram.
displays, non-interactive ones are easy to grasp. Two fundamental techniques of random point-plotting and rasterscanning are described first. Although random point-plotting is the oldest and

Fig. 4. V.d.u. computer terminal.

Fig. 5. Chinese text.
still the dominant technique for high quality graphics, it is being ousted by raster-scanning, particularly in massproduced low-cost systems. Hence, we spend rather more time on the latter, discussing the generation of characters, cell-organized raster displays, and related graphics facilities like those of the teletext and viewdata systems. Then, two devices for input are described, one of which is inherently a pointing device while the other is not but can be made so by suitable software. Finally, there is a new input peripheral which recognizes hand-printing, to give a taste of things to come.

Point-plotting displays

The simplest kind of display needs to be able to position a spot on the face of a screen by controlling its x and y coordinates. Think of an oscilloscope, where x and y deflection mechanisms steer the beam of light to any position on application of suitable control voltages. The details of the deflection mechanism
itself are not important for an understanding of the potential of the display for man/machine interaction; however, certain properties of it do affect the kind of pictures that can be drawn and the cost of the display, and we will come to these in a moment. In addition to x and y control, a z - or brightness-control is needed to turn the spot on and off.

Figure 7 shows how the display can be connected to the computer bus. Three output ports are provided, one for each of the beam's degrees of freedom. Digital-to-analogue converters change the digital x and y coordinates to voltages which control the deflection mechanism, while since the brightness is either on or off, only a buffer is needed to provide two suitable voltage levels. (This buffer is really a l-bit $\mathrm{d} /$ a converter!) The resolution that is required of the converters depends on the accuracy with which the position has to be specified. Typically, 10 -bit converters are used, giving a grid of 1024×1024 points. Notice that this grid contains a total of just over one million points, and if each can be on or off then there are over $2^{1000000}$ possible patterns that can be displayed. This is a truly enormous number, whose decimal representation has around 300,000 digits, and the old adage that a picture is worth a thousand words is clearly an underestimate!

Part of a program for driving the display is shown below. This presents a spot at the point with coordinates $(52,716)$ Can you see why the program manipulates z and does not just leave it at 1 all the time? Physical considerations of the display hardware may dictate some changes in the program: it may be necessary to wait between steps 4 and 5 to give the spot time to brighten up, and between 3 and 4 to allow the position of the beam to settle.

Refresh. What happens when the program is executed once? The spot will move to the specified point, brighten up, and that will be that. If you're lucky you might catch a glimpse of a brief and microscopic flash on the face of the screen. To give an illusion of a sustained point, the display needs to be refreshed periodically, every 20 msec or so.

The refresh rate required depends on the properties of the display itself: usually light is produced by an electron beam striking a phosphor-coated screen and the duration of the spot depends on the "persistence" of the phosphor used. The need to refresh brings many problems in the design and use of computer displays, because if several thousand points are to be refreshed every 20 msec there is not much time for each; for a 1024×1024 display contains over a mil-

Fig. 6. A teletext weather map
lion points. If the display is not refreshed quickly enough the picture will flicker: this begins to become noticeable at a refresh rate of about 30 Hz (33 msec between refreshes).

Timing considerations. Important parameters of a point-plotting system are d/a conversion time, deflection speed of the beam, attack time of the phosphor, persistence of the phosphor, refresh rate and computer speed. A typical settling time for d / a converters is 1 or $2 \mu \mathrm{sec}$. The currents in the bank of resistors must stabilize and, after the operational amplifier sums these, its output voltage must settle. High-speed d/a converters can be built to stabilize after as short a time as 30 nsec . The deflection speed of the beam depends on the deflection system used. There are two important ones, magnetic and electrostatic deflection, the former taking as long as $25 \mu \mathrm{sec}$ for a corner-to-corner movement of the beam and the latter accomplishing even this large movement in $1 \mu \mathrm{sec}$. Why not always use electrostatic deflection? It costs more! The magnetic scheme is used in television receivers, and these are available very cheaply because of their high sales volumes. The attack time of the phosphor causes no difficulty, being of the order of 50 nsec , and its persistence varies depending on the type of phosphor used. While long persistence - and it can be as long as several seconds means that the refresh rate can be lower, it prevents rapid changing of the display contents because after-images of the old picture remain on the screen. This is quite distracting, and so persistences of around 5 to 10 msec are used for interactive displays, allowing a refresh rate of $25-50 \mathrm{~Hz}$ to be employed without after-images. Finally, if the computer is used in a simple pointplotting mode, as indicated in Figs. 7 and 8, the program execution time to display one point will be $30-100 \mu \mathrm{sec}$ on present-day microprocessors.

With a refresh rate of 25 Hz and a $40 \mu \mathrm{sec}$ point-plotting time, only 1,000 points can be displayed on the screen. This is just 0.1% of the total points, and corresponds to a single full-length line. If characters are to be displayed and each has 20 points, then only 50 of them can be accommodated - less than a line of text. Clearly, computer speed is the big limitation.

From interface to display processor. The scheme of Fig. 7 requires the processor to pick up the coordinates of each point from store and send them along the bus to the display interface. A direct memory access arrangement can substantially increase the speed, with the interface gaining bus mastership and reading the coordinates from store without intervention by the processor. Then, the speed of the bus-mastership protocol becomes the limiting factor, unless the display interface hogs the bus for substantial periods by refusing to relinquish bus mastership once it has been granted. This in turn can prevent the processor from operating at a reasonable speed.
Figure 9 shows a solution which uses a dual-port store. The display interface has private access to the store along a special display bus, and transfers on this do not interfere with the main bus or the processor's operation. Of course, the store must arbitrate between simultaneous read or write requests from the two ports. In general, the processor will have another store on the main bus which it uses unless it specifically requires to update the display: then the processor and the display interface can each work at full speed quite independently.
Now what is the limitation on the display system's performance: Coordin-

Fig. 8. Part of a program to drive the display.

Fig. 9. A display scheme with a dual-port store.

ates can be retrieved from the store very quickly -500 nsec is a typical store access time. $1 \mu \mathrm{sec} \mathrm{d} / \mathrm{a}$ converters will keep up with this, since two coordinates must be read for every point displayed. However, the $25 \mu \mathrm{sec}$ corner-to-corner deflection offered by a typical magnetic system will not, and this will severely restrict the images that can be displayed unless the points are arranged in the store in a way that minimizes large jumps. Furthermore, when large jumps do occur, the display interface must detect them and wait for a suitable period for the beam to settle. An electrostatic display eliminates the need for this and provides a far more satisfactory, but expensive, solution.

More serious limitations are the size of the display store, and the time it takes the processor to write a picture into it. A thousand points need 2,000 coordinate specifications. Thus even a large 64 K word store will only accommodate 32 full length lines. And the processor will take a correspondingly long time to
change the picture in the display store, so to avoid a muddled display during the change a second 64 K store will be needed, with a switching arrangement to allow the display to change over instantaneously from one picture to another (a technique known as " "double-buffering").

It is worth considering adding linegenerating hardware to compute the intermediate points of a straight line from its beginning and end coordinates. Such hardware interpolates in a straight line from the beginning x voltage to the final one, and similarly for the y voltage. This is not difficult to implement in either analogue or digital hardware, although there are trade-offs between the two that we will not go into.

The display interface must distinguish commands to the line generator from (x, y) coordinate specifications of individual points, and one or more bits must be reserved for this purpose with every data item in the display
store. Now the display interface becomes more like a processor in its own right, interpreting instructions in the display store, and in fact is usually called a display processor
What other tasks would it be nice for the display processor to do? It could have circle generators, ellipse generators, and so on. If characters are to be shown then a special hardware character generator is useful, for it is extremely wasteful of store to specify a character as a set of points each time it is to be displayed. We will discuss character generators in another section. It could do windowing of data, allowing the display store to contain a picture larger than that actually drawn on the screen. Rotation of pictures is also possible. Rotation in two dimensions is accomplished by the coordinate change

$$
\begin{aligned}
& y \kappa=x \sin \text { theta }-y \cos \text { theta, } \\
& x \kappa=x \cos \text { theta }+y \sin \text { theta }
\end{aligned}
$$

where theta is the angle of rotation, and since this transformation needs to be done on all points it is rather slow unless special facilities are provided in hardware. (Note, however, that if a hardware line generator is used the rotation transformation need only be done on the end-points of lines.) Threedimensional rotation is almost as easy, and can be combined with perspective transformations to provide viewing of an object from any position. This brings in hidden-line suppression and shading, which can also be done by the display processor. A subroutining facility is useful too, for it is often convenient to define a component of a picture (like a house) once and regenerate it from the same description at various places on the screen.

Now the display processor, which started as a simple interface, has become quite a sophisticated piece of hardware, much more complicated than the average microprocessor. It needs an expensive electrostatic display screen with an impressive array of intricate supporting hardware. The exploitation of such sophisticated displays for man/ machine interaction is a specialist topic in its own right. Let us climb down a little and look at less expensive, and less powerful, display techniques.

Raster-scan displays

The picture on a domestic television is painted by scanning across from left to right on the screen, one line after another, from top to bottom. The technique is known as "raster-scanning". It places relatively light demands on the deflection system of the tube, for the flyback time from the end of each line to begin the next and the frame flyback time across the diagonal of the screen are known, and picture information is not broadcast during these periods. Hence a cheap magnetic deflection mechanism can be used, and this, along with the economies of large-scale pro-

Fig. 12. Television raster-scan, with interlace.
Fig. 13. Memory-mapped bit-per-point display system.
 system.
duction, accounts for the low cost of domestic TV sets. To reduce flicker, two successive rasters are displayed, each one generating alternate lines in an interlaced fashion, as shown in Fig. 12. One raster is transmitted every 20 msec and so the complete picture is redrawn in 40 msec . This rather low refresh rate of 25 Hz does not cause noticeable. flicker so long as the pictures on the tworasters are similar - as they always are in TV transmissions.
In Britain, the screen size is nominally 625 lines, some of which are lost in the frame flyback time. If interlace is ignored the number of lines is halved, giving around 290 on the screen. Rounding this down to a power of 2 and assuming a square picture, a screen size of 256×256 is obtained - a quarter the resolution of the high-quality displays described in the previous section. It is possible to double the number of lines on the screen by taking interlace into account, but this may increase flicker to an intolerable level because, unlike the case of normal TV transmission, the interlaced pictures are significantly different.
If a single bit is stored for each point to indicate whether it is bright or not, each line needs 32 bytes of storage and the full screen needs 8 K bytes. If this. resides in the computer's main store then the result is the memory-mapped bit-per-point display system of Fig. 13. The operation of the scan-generator
interface between the store and the TV set is quite simple. Each of the 32 bytes in a line is read in sequence at the appropriate time and its bits used to modulate the beam intensity. Notice that the store is a dual-port one, but the line and frame flybacks provide periods when the processor can access it without contention. In contrast with the point-plotting display, it is easy to brighten up whole areas of the screen, for a point occupies the same fraction of the raster whether it is white or black. There is no limitation on the total length of lines which can be drawn.
As always, however, there are problems. For example, to display a line between point $(32,255)$ and point $(0,240)$ you must set bit 4 of word 4 , bit 6 of word 36 , bit 1 of word 67 , bit 3 of word 99 , and so on, as shown in the figure. This can take rather a long time to calculate. And characters are just as time-consuming: imagine the bits that would have to be changed in Fig. 14 to move a page of text up one line! So while memory-mapped bit-per-point displays are certainly flexible, they are not at all convenient to use. Furthermore, to take advantage of the greyscale possibilities afforded by TV, where there are several shades of grey between white and black, several bits must be reserved for each point, multiplying the size of a store needed. This goes for colour as well, of course.
To be continued

Solid-state level indicator

20 I.e.d. circuit gives numerous options

by Quentin Rice

Unlike earlier '"bargraph'" driver circuits, this one can be used with any mix of l.e.ds. Log, or linear-scale operation is possible, and other options include dot or bar modes, a.c. or d.c. operation, and adjustable decay time.

Bargraphs have been gaining wider acceptance as a rugged alternative to their analogue counterparts either as the victim of hi-fi gimmickry or in professional recording applications. This unit was designed as a clear visual indicator of high quality, low cost, simplicity and compactness. It can be used for a.c. or d.c. measurement, as discussed later. The display uses 20 lightemitting diodes of any colour mix, and functions in two modes: the bar or strip mode and the dot mode where a single l.e.d. is illuminated giving a low overall current consumption of 35 mA , making it ideal for battery applications. This mode select can be externally switched, on a bus if required. Provision has been made for on-board regulation. Sensitivity and decay time presets are accessible from the front of the unit. The decay is linear giving a better feel to the display and can be adjusted to suit up to an infinite decay, which is useful for long-term peak analysis of programme. The circuit has three component parts which are discussed individually.

Input level to the precision rectifier is adjusted by R_{19}. The components around IC_{1} form a conventional fullwave precision rectifier; R_{1} to R_{5} should be close tolerance for symmetrical rectification. The overall gain is set by R_{6} which has been chosen for a full scale deflection of 0 dB and can be altered to suit. Resistors 21 and 22 compensate for offset and C_{5} helps stability at low levels.

The peak detector consists of a comparator, steering network and an integrator. The input from the rectifier is compared to the integrator output and the output of the comparator passed through the steering network $\mathrm{R}_{20}, \mathrm{R}_{9}$, R_{10}, D_{3} and D_{4} to the integrator input. This gives a fast attack and an adjustable decay current. As the input current is constant, changes in the integrator output will be linear. By turning the decay preset full off, D_{4} no longer conducts. This gives the infinite hold facility because f.e.t. op-amps have been
used, and there should be very little drift (in theory) from the integrator. The circuit has a high loop gain and as one can imagine, ripple on the input causes instability. This has been overcome by series resistors 21 and 22 which should never be less than $1 \mathrm{k} \Omega$ except in d.c. applications, where they may be omitted. These have been increased to give lower ripple and a reasonable decay. The detector is very stable and does not overshoot. Capacitor C_{2} should be a low leakage, polycarbonate type.
The original design used the Siemens UAA180 bargraph driver. These were found to be very troublesome in practice because l.e.d. forward voltage differences affected linearity. The LM3914 from National Semiconductor provided

Specification

Dimensions: $133 \times 25 \times 67 \mathrm{~mm}$
Current: 35 mA dot mode, 220 mA bar mode, max.
Supply: $17-35 \mathrm{~V}$ or 15 V
Attack time: 1 ms minimum f.s.d.
Decay time: 1 ms to infinity (linear and adjustable)
Amplitude response: 3 Hz to 100 kHz flat (-3 dB limits)

Panel dimensions are for standard rack
fitting. Terminal block is RS type
423-762. A kit of parts costing around E19.55 inclusive is a vailable from Ambit International, 2 Gresham Place
Brentwood, Essex. (Tel: 0277230909.$)$

a versatile and easy to use alternative which can be used with any mix of l.e.ds. Each i.c. drives ten l.e.ds at a preset constant current, about 10 mA each in this circuit. Up to ten i.cs can be cascaded for greater resolution although only two have been used here By external switching the dot or bar mode can be selected by the components around $\operatorname{Tr} 1$ and $\operatorname{Tr} 2$. This is switched by taking the mode pin 1 to 0 V ; as many units can be switched simultaneously by bussing this pin.
Space for an on-board regulator has been provided, and if this is not required link across the two outside pins. This regulator has no heatsink, and if used in the bar mode from supplies exceeding 24 V it gets rather hot. If this is to be used from a higher voltage input, use an external regulator or a dropping resis tor. In the dot mode, supplies of up to 35 volts may be used.

Since the introduction of the LM3914, National have introduced two other versions of this chip: the LM3915 and LM3916. The first is a \log scale version in ten steps of 2 dB , which may be cascaded to give a dynamic range of 60 dB , which may be of use for noise analysis. The second is scaled from -20 to +3 dB for tape recorders and is not cascadeable.

Good quality l.e.ds were hard to find. Recommended makes are Hewlett Packard, Siemens, Monsanto and AEG as these gave a consistent brightness and a uniform viewing angle. AEG flat l.e.ds were used in the prototype.

Construction is straightforward. However, take care with the l.e.ds. Preform the leads and tape to the circuit board, making sure they're the right way round. Solder with a low-power iron, as sustained temperature may damage them. The bracket was made from 25 mm aluminium angle; with careful drilling and filing this should present no problems. The slot is best milled or punched but can be drilled and filed. Mount the p.c.b. to the bracket using 6BA screws and insulated washers.

There is no alignment to be done. If the sensitivity is too low increase R_{6}. Check soldering before applying power. The prototype was designed for recording use and has no graduations. The first ten l.e.ds are green for normal recording, the next six yellow for peaks, and the last four red for overload.

For direct-current operation omit all of the components associated with IC_{1} and link the wiper of R_{19} to the position of pin 7 of IC_{1}. Take pin 4 of IC_{2} to a -15 V supply. Omit R_{14}, D_{6} and C_{4} and link across D_{6}. If peak detection is not required, omit $I C_{2}$ and its associated components and link the wiper of R_{19} to the position of $I C_{2}$ pin 1 . This gives a full-scale deflection of 2.4 V . If a conventional analogue meter is used, connect this across IC_{2} pin 5 and $V_{g g}$. The meter law can be varied by replacing \mathbf{R}_{6} with a resistor-diode network.

Further information

National Semiconductor linear data book 1979.
Peak detector with linear decay, Q. A Rice, New Electronics Nov. 15, 1977.
Wireless World Circards, set 4, card 9. (Also in Circuit Designs-1, IPC Business Press, 1975.)

Components	
R1, 2, 3	47k 2\%
4	22k 2\%
5	11 k 2\%
6	47k
7	1k1 2\%
8	20k
9, 14, 12, 17	2k2
10, 11, 18	100k
13, 16	3k3
15	2k4 2\%
19. 20	10k (Piher)
21	22k
22	10k
C1, 4	$22 \mu 16 \mathrm{~V}$ tantalum
2	1μ polycarbonate
3	47 n ceramic
5	1 n ceramic
D1: 2, 3, 4, 5, 27	1N914, etc
6	BZY88 9V1
7-26	AEG I.e.ds (Ambit)
Tr1, 2	BCY71, 2N4 126, etc
IC1, 2	TLO 74, TLO84, CA3820. LF353
3. 4	LM3914
5	7815, TO220

Quentin Rice is self-taught in electronics, starting as an inspector five years ago before going onto R\&D two years later. Now working for Morfax in industrial and military development, his current activities include high density multiplexing and music synthesis. Otherpastimes are art, music, literature and antiquarian books. Born Texas, 1952, London since 1962.

Digital control of analogue functions

by Peter Williams, Ph.D. Paisley College of Technology

Add some circuit that varies ' 2 ' according to some analogua on aigitab control signal

The frequency and gain characteristics of circuits are traditionally controlled by means of variable resistors and capacitors. This has two major disadvantages. For many circuits such as RC oscillators and fitters two or more components need to be varied simultaneously while retaining an accurate match. This is difficult and costly and because of the mechanical properties of such elements becomes increasingly unacceptable if more than one circuit is to be controlled or if the control is to be achieved remotely. To illustrate some of the alternative techniques a circuit is selected that forms the basis of many oscillators at $\omega_{0}=1 / R C=G / C$ assuming equal resistors and capacitors. Dual-gang resistors can be replaced by fixed resistors and dual-ganged potential dividers across the outputs of the two integrators. Any imbalance would in general need a readjustment of one of the other elements to restore the oscillatory conditions. This could be achieved automatically with thermistors, but not with active filters, where the damping would vary as the frequency changed.

The frequency depends on how rapidly the capacitors charge, i.e. on the current flowing into one as a function of the voltage generated across the other. While the resistance or conductance offers one means of varying that current as above, other possibilities exist. If we take $i=n \vee G$ then the frequency becomes proportional to n whether that parameter represents a variation in the voltage or the conductance to which it is applied. The variation can be by analogue or digital means, and may be extended to include voltage and current or time division methods as indicated in the following suggestions. In most cases it is desired that the frequency be a linear function of some external variable though other laws, e.g. logarithmic can be accommodated by interposing logarithmic amplifiers. The methods are applied to an oscillator circuit simply as illustrations, but are equally applicable to the remote control of amplifiers, power supplies, control systems.

The most obvious digital method corresponds to the weighted resistor d. to a convertor. Sèts of resistors of value $2^{\circ} \mathrm{G} \ldots 2^{n} \mathrm{G}$ are placed in series with analogue switches and two (or. more) sets inserted in place of the integrator input resistors. The resultant current is then proportional to the set of integers from zero up to $\left(2^{0}+2^{1}+\ldots 2^{n}\right)$. The problem is not quite so easy of solution as it might appear. In the first place the switches must have low - on-resistance, high off-resistance, must operate with both polarities of input and over the widest possible range of frequencies. The introduction of c.m.o.s. analogue gates allows these conditions to be met economically. The remaining difficulty with this form is that the resistor values spread over perhaps a 1000:1 range making matching more difficult. In addition the need for floating switches can be restrictive since it excludes the use of bipolar transistors, which have particularly fow on-resistance. Switches can also be operated sequentially to provide an arbitrary pattern of frequencies via an appropriate set of resistors. This is convenient in automatic test equipment.

A neat alternative that uses a grounded variable conductance and hence grounded switches is based on the balanced-bridge amplifier. For $n=0$ the gain is zero and with a pair of these amplifiers inserted in the system the frequency of oscillation would tend to zero. The frequency is proportional to n as before. In itself the circuit is already a resist, ance controlled amplifier meeting one of the other common applications of the principle. The amplitude response is limited by the common-mode behaviour of the amplifier and by stray capacitance across the resistors but the circuit has been used successfully up to 50 kHz . The variable resistance can be provided by a field-effect transistor with variable gate-source can be provided by a field-effect transistor with variable gate-source voltage provided that the signal level is low enough to avoid distortion caused by device non-linearities. Alternatively temperature or light-dependent resistors may be substituted for direct control of gain.

The main advantage of the previous circuit is that it uses grounded elements while permitting the gain to be a linear function of conductance. This can be extended to digital control as shown. All the switches are grounded extending the range of possibilities to include e.g. junction transistors. The weighted resistor method is convenient. If a multiplying d . to a. convertor is available, one in which the output is the product of the digital control word and the analogue input, then it may be substituted entire for the amplifier shown. The proviso is that either the output needs to be buffered before feeding the following virtual earth, or that the convertor retains its control relationship when short-circuited. This is found to be true for one connection of the standard d. to a. ladder network which has a constant output resistance at one port for all switch conditions. In such a circuit a variable attenuator is being substituted for a variable amplifier.

Digital control of analogue functions

THEORY

- Assuming the RC products are the same for the two integrators then the denominator of any transfer function based on the two-integrator loop is of the form

$$
\begin{aligned}
& S^{2}+\frac{\omega_{0} S}{Q}+\omega_{0}^{2} \text { where } \\
& \omega_{0}^{2}=\left(\frac{1}{R C}\right)^{2}=\left(\frac{G}{C}\right)^{2} \text { i.e. } \omega_{0}=\frac{G}{C}
\end{aligned}
$$

If both Rs or both Cs are varied simultaneously the frequency shifts without change in Q e.g. if set for $Q \rightarrow \infty$ the circuit is an oscillator whose frequency is varied withour loss of oscillation.

Let the instantaneous voltage at each integrator output be v. Scaling each G by a factor n then changes $\omega_{0} \rightarrow \omega_{0}^{\prime}$, where $\omega_{0}^{\prime}=n \omega_{0}$.

The same effect is achieved by preceeding G by an amplifier of voltage gain n since both cases the current transferred to the following stage is increased by that factor. This can also be expressed in terms of the trans-resistance between the output of a stage and the following integrator summing junction viz $\mathrm{i} / v=n G$ where n may be raised by any desired means.

For a set of switched resistors with conductances in the binary steps $2^{\circ} \mathrm{G}, 2^{1} \ldots . .2^{n} \mathrm{G}$ the trans-resistance term can range from zero up to

$$
\frac{1}{v}=\left(2^{0}+2^{1}+2^{2}+\ldots+2^{n}\right) G
$$

in steps of G. If these conductances are switched into and out of circuit by external control voltages, direct digital control of frequency is achieved.

To use grounded switches for the same purpose the modified differential amplifier is used.
Applying Millman's theorems

$$
\begin{gathered}
\frac{v G+v_{0} G}{(2+n) G}=\frac{v}{2} \\
n v+2 v=2 v+2 v_{0} \\
v_{0}=n \frac{v}{2}
\end{gathered}
$$

i.e. the voltage gain is controlled by the grounded conductance and is proportional to n.

The single grounded conductance is replaced by a set of weighted reistors as before and the total conductance G_{T} is again controlled by the switches. Hence the gain is digitally controlled and a pair of such blocks can be inserted in the drive paths to the two integrators.

EXAMPLES

1. Show that the circuit sustains sinusoidal oscillations for equal resistances in the inverter, derive the frequency and evaluate for R $10 \mathrm{k} \Omega$, C 10 nF .

Break the circuit at any output and show that the loop gain is precisely unity at a single frequency ($\beta \mathrm{A}=1$) the Barkhausen criterion for oscillation.

$$
\begin{aligned}
& \begin{array}{l}
v_{0}=v\left(\frac{-1 / s C}{R}\right)\left(\frac{-1 / s C}{R}\right)(-1) \\
\\
=
\end{array} \begin{array}{l}
\text { For } \frac{v_{0}}{v^{\circ}}=1,(s C R)^{2} \\
(j \omega C R)^{2}=-1 \\
\omega^{2}=-1
\end{array} \\
& f=\frac{1}{2 \pi C R}=\frac{r}{2 \pi 10^{4} \cdot 10 \cdot 10^{-9}}=\frac{10^{4}}{2 \pi}=1.59 \mathrm{kHz}
\end{aligned}
$$

2. Derive the corresponding equations f the integrators have $R_{1} C_{1}$ and $R_{2} C_{2}$, finding the appropriate gain of the inverter.

Let the inverter gain be $-K$.

$$
\begin{aligned}
& v_{0}=v\left(\frac{-1 / s C_{1}}{R_{1}}\right)\left(\frac{-1 / s C_{2}}{R_{2}}\right)(-K) \\
& \text { For } \frac{v_{0}}{v}=1 \cdot \frac{-K}{s^{2} C_{1} C_{2} R_{1} R_{2}}=1 \\
& \therefore \frac{\omega^{2} C_{1} C_{2} R_{1} R_{2}}{K}=1 \\
& \omega=\sqrt{\frac{K}{C_{1} C_{2} R_{1} R_{2}}}
\end{aligned}
$$

This shows that for all values of K there is a corresponding frequency of oscillation. The magnitude of the loop gain increases at higher frequencies but $\beta A=1$ has to be met identically for oscillation to be sustained.
3. A gain controlled stage has $G=G^{\prime}=100 \mu \mathrm{~s}$. If the gain is to be 25 calculate the resistance to be used at nG. It is to be implemented by binary weighted resistors. How many switches are needed? What are the resistor values? Estimate the max switch on-resistance for an error of 1%.
For G $100 \mu \mathrm{~s}$, R $10 \mathrm{k} \Omega$
Let the input and output voltages be v, v_{0}.

$$
\begin{gathered}
\frac{v}{2}=\frac{v+v_{0}}{2+n} \therefore v_{0}=\frac{n v}{2} \\
\therefore n / 2=25 \text { and } n=50
\end{gathered}
$$

i.e. the gain increases in 50 increments of 0.5 from 0 to 25 with $50=$ $2^{5}+2^{4}+2^{1}$. Hence three switches are needed. operating conductances of $32.100 \mu \mathrm{~s}, 16.100 \mu \mathrm{~s}$ and $2.100 \mu \mathrm{~s}$ respectively $\equiv 312.5 \Omega$, 625Ω, and $5 \mathrm{k} \Omega$.

The errors are mainly in the low resistance switch where $r_{\text {on }} \approx 3 \Omega$ would reduce the gain due to this term by $\sim 213 \%$. Similarly for the next most significant term the contribution would be $1 / 2 \times 1 / 3 \%$. This would result in a reduction in the total gain of $<1 \%$.

MULTIPATH
 DISTORTION

I read with interest the article by Pat Hawker on multipath distortion in your April issue. The author mentions the possibility of using delay lines to reduce ghosting on television and comments that little thought seems to have been given to the use of similar methods in v.h.f./f.m. reception.

Unfortunately, the problem is not so simple. Television signals are amplitude modulated, and the effect of multipath is to add to the wanted carrier envelope a delayed envelope of the same signal. This results in an 'echo' seen on the screen as a displaced image.

In f.m. systems the delayed carrier has a different instantaneous frequency from the desired signal (although its centre frequency is the same). These two frequencies, simultaneously received, will beat in the receiver's mixer stage to produce an i.f. with added a.m. and phase modulation (p.m.) components at an instantaneous frequency of
$f_{s}=1.41 \delta f \quad \sqrt{ }\left[1-\cos \left(2 \pi D f_{m} / c\right)\right]\left[\sin \left(2 \pi f_{m} t\right)\right]$
where $f_{s}=$ instantaneous spurious frequency; $\delta f=$ peak deviation, $D=$ path difference and $f_{m}=$ modulation frequency.

As can be seen, this is a frequency varying at twice the modulation rate between d.c. and an upper frequency. In the worst case when $D=c / 2 f_{m}=\lambda / 2$, the upper frequency is $2 \delta f$.

This can be considered as a frequencymodulated d.c. 'tone' with a deviation increasing with path difference and frequency, thus producing sidebands within the audio range, and also in the difference channel for stereo broadcasts. Furthermore, there will be one such series for every component of the modulating signal.

Stereo broadcasts are more susceptible because not only are the modulating frequencies involved higher, but every audio note in the difference channel is represented by two frequencies, 'mirrored' either side of 38 kHz . Hence, twice as many spurious frequencies are produced by this channel. These signals need not be harmonically related to the audio tone.

For example, a 12 kHz tone is represented by a 26 kHz signal and a 50 kHz signal. The second harmonic of 26 kHz occurs at 52 kHz which, after decoding, will yield 14 kHz . If this tone also exists in the sum channel, side frequencies at $24 \mathrm{kHz}, 36 \mathrm{kHz}$, and 48 kHz will also possibly be produced, yielding 14,2 , and 10 kHz respectively. Any attempt to cancel this distortion after demodulation using a delay line is clearly doomed to failure.

The a.m. component of the signal will be removed by amplitude limiting and balancing arrangements. However, the p.m. component is indistinguishable from the wanted signal. Indeed. p.m. is progressively used for frequencies above 3 kHz in the broadcast signal as a result of pre-emphasis.

It might be possible to use a delay line to derive an a.f. control voltage for the local oscillator, thus cancelling the phase modulation. However, such an arrangement would be complex, and customer controls would be necessary to balance the system, since path difference is an important factor. Unfortun-
ately, the distortion produced is not as easy to distinguish on normal programme material as is ghosting on television. Could the customer set up such controls?
K. J. Petrie

Romford
Essex

STORECASTING FOR SCHOOLS PROGRAMMES?

I would like to make a tentative suggestion regarding the use of v.h.f. by the BBC for school broadcasts, and this especially in view of Mr D. P. Leggatt's letter in the February issue.

School installations are normally somewhat more sophisticated than the simpler domestic set-up. This is especially true of the antenna connected to the receiver. Normally an excellent signal can be expected to reach the receiver terminals.
Such a situation ought to allow the use of 'storecasting' as permitted in the USA (FCC Rules and Regulations, para. 73.319 of 1964) for school broadcasts which would be inaudible to the normal listener. This subsidiary channel would be multiplexed on the main channel by the frequency modulation of a subcarrier in the $53-75 \mathrm{kHz}$ range and be demodulated by a small addition to the school receiver. The fidelity and signal-tonoise ratio achievable ought to satisfy the requirements and all this at very little cost.
My suggestion is only tentative since l can hardly believe that the BBC did not investigate this way of achieving extra channels without disturbing the general listening public. It would be interesting to hear, at least, why this system is not being considered.
P. Hirschmann

Haifa
Israel

The BBC comments

Mr Hirschmann makes a sensible and wellinformed suggestion. He is good enough to acknowledge that the BBC has probably investigated the possibility of 'storecasting' and such is indeed the case. We conducted a series of broadcast trials about five years ago, using some specially-produced 'storecasting' receivers and also assessing compatibility with a range of standard $v . h . f$. receivers.

The conclusions were clear. With any usable load of injection of the subsidiary channel (on a 67 kHz subcarrier), impairment of monophonic programme on the main channel was just acceptable; but impairment of a stereophonic main channel programme could be grossly unacceptable. Furthermore, if impairment of a stereo main channel is to be minimised, the achievable quality of the subsidiary channel must be severely limited.
V.h.f. stereo receivers could, perhaps, be designed to avoid or reduce this incompatibility. Provision of a 'storecasting trap' is of little benefit, and it is such things as i.f. phase response, limiter and discriminator performance or symmetrical decoder switching which would need careful attention.
Summing up then, we could not adopt
'storecasting' without rendering many current v.h.f. receivers unusable, and the achievable quality of the subsidiary channel would be hardly adequate for educational broadcasting.
D. P. Leggatt

Head of Engineering Information
BBC, London WI

OSCILLATING CRYSTALS

I am pleased to see that 'Sixty Years Ago' is with us still, (May issue, p.60), especially as it drew my attention to an article I was unaware of. Ditcham's oscillating crystals seem to have been a flash in the pan, though attracting the interest of the famous $\mathrm{H} . \mathrm{J}$. Round (Wireless World 19 Aug 1925, p.217) and J. Scott-Taggart (Wireless Weekly 2 July 1924, p.280.) And by 1928 one could even buy a Russell's Wonder Oscillating Detector for two shillings (call it $£ 2$ in today's Mickey Mouse money) as advertised in Wireless World, 1 Feb 1928, p.28. Published static negative resistance characteristics seem to have been similar to those of a modern u.j.t. rather than a tunnel diode; and I lack any theoretical explanation of how this could arise in an essentially two-electrode device. Perhaps other readers can enlighten me.

Although Eccles worked on galena, and silicon was also used, the recommended material in the twenties was apparently a synthetic zinc oxide crystal, Arzinite. This was honey coloured, or perhaps pale yellow, and Captain Round found that his 'dealers will not give the source away'. The method of manufacture was an equally well-kept secret, though Nesper does say 'in elektrischen Lichtbogen gewonnen' (Der Radio Amateur 'Broadcasting', Springer, 1923).

I would be pleased to hear from someone who can throw further light on Arzinite or the Russell's Wonder, even though neither succeeded in fulfilling the prophesies of Ditcham quite as well as silicon has done.
Desmond Thackeray
University of Surrey
Guildford

ELECTRONIC IGNITION PROBLEMS

I read with interest the letter of Mr D. J. Bruyns in the March issue concerning the problems he has experienced with electronic ignition units.

I have also experienced many such problems with a homemade c-d ignition unit which I had fitted to my Fiat 127. The circuit I used was published many years ago in one of the popular electronics monthlies. This circuit uses a simple d.c.-d.c. converter and a resistor-capacitor-diode network to trigger the thyristor and to suppress contact bounce.
The original unit I had constructed worked first time with no problems until I made a mistake during testing in the car that caused the failure of the thyristor. This was replaced with a new identical unit but, alas, the ignition circuit simply was not the same again. It became almost impossible to start the engine and when successful it would misfire badly and run very roughly. I changed the thyristor again but no significant improvement was evident. After
many efforts on the test bench I realised that the thyristor would latch on occasionally when triggered. Checks with an oscilloscope revealed that when the thyristor fired it would short effectively the inverter, causing it to oscillate at 25 kHz with an output of a few volts instead of the usual 400 volts at 1 kHz . Moreover the output waveform had rather sharp loading and trailing edges of short rise and fall times. A check on the gate with the 'scope indicated that there was enough of this waveform, normally present at the anode only, to trigger the thyristor.
I concluded therefore that this triggering signal leaked through from the anode to the gate via their internal leakage capacitance. A $0.01 \mathrm{HF}, 1000 \mathrm{~V}$ capacitor from the anode to ground almost completely bypassed this waveform and cured the latching problem. Tests in the car showed much improvement but there was still a certain amount of misfiring which was objectionable especially at high speed. After more tests I realised that the $1 \mathrm{k} \Omega$ resistor from the gate to ground in the original circuit was too large, permitting inherent electrical noise from the car to fire the thyristor at random. Replacing this resistor with 100Ω completely cured the problem and after the timing was adjusted the car ran perfectly.

1 hope this letter will be of some help to Mr Bruyns.
N. Kyriazis

Limassol
Cyprus

DISPLACEMENT
 CURRENT

In their reply to my criticism in the April issue, p.77, Messrs Catt and Davidson and Dr Walton are challenging me to a defence. They mysteriously read out nonexistent statements from my letter. As an example, I never implied that D is displacement current. Nor did I state that there is an E-field in a perfect conductor. And my illustration clearly shows two diffarent forms of displacement current, one in a capacitor and the other in a conducting wire.

The worst misconception by the authors occurs with reference to their meaningless derivation, eq. (1) to eq. (8). They invent a "world devoid of displacement current", but with a TEM wave. Indeed, freedom from displacement current is their postulate for the derivation. After a number of mathematical manipulations, they arrive at the striking result: "See, no displacement current". How could there be any when the postulating statement forbids it? Worse, right under their final equation, they claim no displacement current, not realizing that the r.h.s. i.e. $\epsilon(\mathrm{dE} / \mathrm{dt})$ is displacement current. The authors perform the amazing feat of having and not having displacement current at one and the same time. They borrowed myeq. (1) to provide the starting point for their derivation, but the net result is that my equation remains correct.

The disturbing fact about the authors' reply is that they picked out various minor details for scrutinization, carefully staying away from any comments on the main message of my letter, which was that as a means for elimination of displacement current, the author's contraption of a transmission line model is a failure! Remember the title of the original paper in Wireless World, December 1978, p.81, "Displacement Current - and how to get rid of it". The message of my letter was that they failed to get rid of it.

Their transmission-line model contraption just does not work, since the displacement current now appears in the model. The authors seem to agree about the failure of their model, because in the third paragraph of their reply they admit to the existence of $\mathrm{d} D / \mathrm{dt}$ in a transmission line, with reference to the one shown in their Fig. 3. Twice, they back up their derivation by references to the July 1979 issue of Wireless World. Anyone still not convinced of the faiure of the attempt by Catt, Davidson, and Walton to get rid of displacement current would do well to read Dr Lago's excellent letter in that issue.
H. E. Stockman

Sercolab
Arlington,
Mass., USA.

For almost thirty years I have reluctantly accepted the concept of displacement current. When your contributors Catt, Davidson and Walton proposed an alternative theory I was impressed. Here at last was a concept that was intuitively acceptable. It did not occur to me then that this would cause controversy. It seemed that those who wished to stick to the displacement current theory could do so without dissent. It was after all only an idea thought up to explain a paradox, and the paradox most satisfactorily disappears if we accept the idea of energy current and treat the capacitor as a transmission line (I. Catt et al). The fierce defence of the displacement current concept has however convinced me of the importance of establishing a sound fundamental theory. The fact that so much energy is being expended in trying to prove the unprovable, with such scant regard for logic, is in itself thought-provoking.
One recent attempt in your journal to justify displacement current (August 1979) beats all. After a page of general discussion Professor Bell says in effect that if Wireless World readers believe in the existence of electromagnetic waves then Maxwell's equations must be true! Then, after stating Maxwell's equations, he says that the righthand side of the fourth equation would be zero without displacement current. He carefully shuns the heresy that the current implicit in the term $\mathrm{d} E / \mathrm{d} t$ could be something other than that exactly defined by the Great Prophet.
But I have now fallen into the trap of nit-picking about Professor Bell's interpretation of Maxwell's theories and this can only lead to fruitless argument. Let me end with a question. Who would ever invent such a contrived and artificial concept as displacement current if it were not a necessity? Thanks to Catt, Davidson and Walton it is no longer a necessity.
K. E. Wilkinson

Hertford
Herts

The author replies:

The first point to dispose of is r Walton's red herring of Aristotelian philosophers and linear motion (November letters). I mentioned early speculation about the planets because Newton's theory of gravitation was that the same force accounted for objects "falling" to earth (the notorious apple!) and for planets describing closed orbits about the sun. The theory of gravitation then involves the conceptual difficulty of action at a distance, unless one prefers to postulate fields of
force or the "curved space" of general relativity. Incidentally Newton was not the first to suggest that a body in motion would so continue if undisturbed: Hobbes in his book The Leviathan mentions that it was a subject for discussion whether this be so or not, and himself unhesitatingly chose Newton's answer. The difference between them is that Newton formulated the precise law and "proved" it by incorporating it in his complete system of mechanics which was supported by experimental evidence.

Everyone tends to believe what he wants to believe (Mr Wilkinson refers to "a concept that was intuitively acceptable"), but scientists accept the discipline of two tests of new concepts:
(1) A theory should be consistent with all the known evidence.
(2) It should need the minimum number of supplementary hypotheses.

I do not believe that Maxwell's electromagnetic theory has ever been faulted on experimental evidence: the point at issue is that the concept of displacement current is so intellectually repugnant to some people that they refuse to accept it. Some other ideas of modern physics are also difficult: for example, "tunneling" as in the Josephson junction and the representation of the electron as a packet of waves which may extend over a considerable space.
Are all such theories of modern physics to be rejected because they are not "intuitively acceptable"? The second test must then be applied to whatever theory is proposed as an alternative to Maxwell's. Now I do not know what the "energy current" proposed as an alternative is (it surely cannot be defined by Poynting's vector, since that relies on Maxwell's theory of electromagnetism) but it would require some supplementary hypotheses to explain the electric and magnetic phenomena which accompany the supposed energy current. The most spectacular phenomenon is the production of an electric spark in air by a focused laser beam. Coming nearer home, the advantage of a loop aerial in the presence of some types of local interference (Wireless World July 1979) is predicted by the solution of Maxwell's equations. It is not an obvious result of a theory of energy current.
Turning to the issue of displacement current in capacitors (as distinct from radiation), the article by Joan Blomberg to which Dr Walton referred in his November letter is concerned with Maxwell's difficulties in arriving at a satisfactory definition of displacement current in electrostatics (without reference to electromagnetic radiation); and so it confirms my statement that displacement current was an inherent part of Maxwell's theory of electricity, not merely a device to complete a differential equation. As I stated in my article, others since have found it convenient or even essential in electrostatics.

Messrs Catt, Davidson and Walton stated that no-one had ever measured the inductance of a capacitor. Why, then, did we have non-inductive capacitors? There cannot be a magic dividing line in either frequency or electrode geometry between low-frequency capacitors which may be inductive and high-frequency capacitors which never have inductance. The use of a transmission line representation changes nothing because the equations for a transmission line are based on distributed inductance and capacitance. This approach has served very well. taking account of the dielectric, of electrode geometry, of losses in both and application
to non-uniform transmission lines. There is no justification for departing from it.
To summarise, displacement current is not the only physical concept which is difficult to accept. Before logically rejecting it and everything that has been built upon it one would need a fully defined and comprehensive theory which had passed the two tests of scientific discipline.
Dr Walton commented that much of the content of my article can be found in any elementary text book on electromagnetism. Of course it can. The article was written on the supposition that there are many readers of Wireless World who have not studied such a book.
D. A. Bell

PROGRAMMABLE NOTES FOR KEYBOARD INSTRUMENTS

I was interested to see P. A. Tipping's suggestion (Letters, April 1980) for an interval keyboard. In the early sixties, with the help of a colleague (M. Bennett), I constructed a simple, experimental, electronic musical instrument using such a keyboard. Rather than providing a natural scale with full modulation capability, our aim was to provide a keyboard which reflected my belief that musicians play by intervals and not by notes. The design was, however, simplified by using a diatonic (7 -note) scale, with stop switches to provide key changes, rather than to provide a full chromatic (12-note) scale.

The accompanying diagram shows the general arrangement of the initial design The organ proper consists of an emitter. coupled astable multivibrator tone generator, with the tuning capacitors switched by bipolar transistors used as bidirectional switches. (No doubt f.e.ts would be used today but we had to make do with OC71s). Dividers with switchable feedback provide true fourths and a two-octave range. The output amplifier is a simple Darlington-pair pulse amplifier (i.e. single-ended class-B, using an OC16). Attack and decay circuits, associated with the output gates, provide organ or piano-like (?) sounds.

The note emitted is determined by the state of the store/counter. This is driven by the pulser which uses a monostable controlled astable circuit to provide from 0 to 7 pulses, on depression of a key, in order to increment the counter by the desired number of notes to give the required interval. Negative intervals are provided by triggering the 'octave bistable' to give an octave drop in pitch, followed by incrementing the counter as required.

The astable keyer, provided to eliminate the effects of contact bounce, gives a semiautomatic action. Notes are of preset duration and intervals may be preselected by pressing a key any time during the preceding note. (Holding the +2 nd key down produces a diatonic scale automatically.) This keyer proved troublesome and confused judgement of the interval keying system. It was replaced by a simple time-constant bounce suppressor.

The final design worked quite well but key contacts were not 100% reliable (as they have to be) and the need to release a key fully before depression of the next was a serious disadvantage. Further development aimed at eliminating these defects was never completed due to lack of spare time.

An incidental advantage of the interval keyboard is the ability to use a short keyboard to cover a wide pitch range. This was not exploited in our prototype, which used a two-octave keyboard to control a two-octave instrument, but consideration was given to providing a pseudo endless range by suitable harmonic mixing. (An interesting audio illusion.)
Some thought was given to the possible nature of a polyphonic instrument using an interval keyboard. One possibility is to relate all notes to the highest one being played. This, however, assumes that the top line always carries the melody: not always true in practice. A separate manual for each hand may be desirable. When the multiphonic organ design appeared (W.W. June 1973 and February 1980), it seemed to offer some potential for tackling the problem.
Returning to Mr Tipping's proposal, I wonder how his instrument would know which major second (or other ambiguous
interval of the natural scale) to apply (see table). With this in mind, could it be that

Freq.
ratio

| Reltve
 freq.$\quad 1$ | $\frac{9}{8}$ | $\frac{5}{4}$ | $\frac{4}{3}$ | $\frac{3}{2}$ | $\frac{5}{3}$ | $\frac{15}{8}$ | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Messrs Robins (Letters, November 1979 and March 1980) and Tipping are attempting to solve the wrong problem or, at least, an intractable one? Perhaps what is needed is equal temperament for successive notes but just (natural) temperament of chords. This would give smooth harmonies, without difficulties in modulation from key to key. Maybe the multiphonic organ principle could also help with this problem. All tone generators could be pulled into exact harmonic synchronism with, say, the highest frequency one.
G. Harland

Barnet
Herts

DISTRESS FREQUENCY AT SEA

A. K. Tunnah, in letters, May issue, asks: "Is 500 kHz a suitable frequency for distress traffic at sea?" The answer to this question is yes, it is the only universally suitable frequency because it is the only frequency offering reliable ground wave transmission over a radius of several hundred miles 24 hours per day, yet still permitting the erection of reasonably efficient antennas in the space available onboard ship. Higher frequencies, even 2182 kHz , are plagued by unpredictable problems of 'skip', particularly at dawn and dusk. It is not for nothing 500 kHz was originally chosen.

On the coast of Mr Tunnah's Australia there is in operation a supplementary distress watch network on frequencies in the 4 and 6 $\mathrm{MHz} \mathrm{r/t}$ service. It works in Australia, a special case, because skip or no skip, the

signal will be heard at some point on the coast and there is an efficient internal telex network, an organisation involving air and naval forces, the people speak one language If the vessel in distress, in the Third World for example, has only the nearest ship to rely on, then only 500 kHz offers 24 hours per day reliable communication.

The Admiralty Handbook of Wireless Telegraphy, pre-war editions, has quite a lot to say about 500 kHz antennas. It points out that (a) an aerial of small capacitance will operate at higher peak voltage, $V=I \sqrt{ }$ (L/C) and (b) equivalent series leakage resistance $=1 / \omega^{2} C^{2} R$ approx., so that attenuation due to insulator leakage is inversely proportional to frequency squared, which explains why wet insulators cause worse problems at low frequencies than at high. There is the further complication that a wet insulator behaves not as a simple resistance, but as resistance and capacitance in series. (See my letter in the June/July issue.)

The fallacy, so popular with modern shipowners, that higher power will compensate for a poor antenna is at the root of many of the modern 'failure of distress signal' problems. The antenna of small capacitance has less tolerance to leakage.
Assuming insulator leakage of 100,000 ohms, then series equivalent leakage will be 4.05 ohms for a 500 pF antenna, 16.2 ohms for a 250 pF antenna and 45 ohms for a 150 pF antenna, at 500 kHz .
Shifting to some other distress frequency will simply mean exchanging one set of problems for another. The solution to the problems at 500 kHz is to be found with more thoughtful aerial design, fewer insulators, better shielding, more antenna capacitance. All that is necessary to know can be found in old text books, as far back as the first world war. The origins of good antenna design have simply been forgotten.
John Wiseman
London E3

I read with interest the letters published on this subject, starting with tnat in June 1978 by J. Wiseman, followed by R. Philpot in November 1978, P.C. Gregory in March 1979 and A. K. Tunnah in May 1980.

By summarizing the problems of the aerial system in use on ships for the 500 kHz distress frequency, I came to the conclusion that it could be that the wrong aerial system is used. During severe gale conditions at sea, the ship, the feed-through insulator and the aerial are coated with a film of salt water, representing a low impedanced short circuit for the transmitter and pi-coupler system. In such conditions the atmosphere surrounding the vessel and its antenna represents a poor dielectric. The antenna, much shorter than a quarter wavelength, acts as a high impedance capacitive load and even the feed-through insulator has to be a high impedance point in the circuit. Due to the contradiction between the low impedance gale conditions and the high impedance optimal circuit conditions, millions of tonnage is lost while no radio calls are heard.
The solution to the problem in my opinion is to use a low impedance inductive small loop antenna for the $410-516 \mathrm{kHz}$ band. No dielectric losses or low impedance short circuit effect will appear, due to the very low loop impedance. By using a 90° phase network and two loop aerials an almost circular radiation pattern can be obtained.
Last year I did some research on these unshielded small loops, and although the
radiation resistance is very low it ought to be possible with proper engineering to design a matching network and antenna construction.
R. R. Venekamp

Eindhoven
Holland

SCIENTIFIC COMPUTER NEWSLETTER

I should like to take the opportunity of thanking Wireless World and, in particular Mr Mike Sagin, for the assistance in publicising the newsletter on the Scientific Computer and for the helpful advice on setting it up (see May issue, p.40).
I should also like to thank John Adams for his splendid effort in virtually filling the first edition with three articles - on future developments, a 32 K r.a.m., line printer, etc. The second article deals with some of the various problems which have cropped up from time to time during the building and use of the Comp 80 and suggests remedies. The third article is the first of a series on the Mark III firmware. The first part of the article deals with the specification; later articles will deal with this firmware in detail together with more information on the computer itself.
Should any readers wish to receive copies of this newsletter, which is issued monthly, please send a remittance of $£ 5$ (one year's subscription) to the editor of the newsletter, P. L. Probetts, 50 Cromwell Road, Wimbledon, London SW19 8LZ, England.
Philip L. Probetts
London SW19

WHAT'S SO NATURAL ABOUT e?

One appearance of e, as the logarithm, which Mr Finlay (December, February, April) does not mention, and which I have not seen mentioned elsewhere, is of some topical interest. The analysis was carried out some time ago, in more stable times, but the conclusions are probably still valid.
If we take the income statistics, which are published annually, and plot the number of people in a unit income band against the logarithm of income we find that we have a normal distribution. In practice the statistics are presented in such a way that we must plot percentage of population below I against log I. The result, on probability paper, is a surprising fit to a straight line.

What are the conclusions which we can draw?

The first arises from the appearance of the logarithm of e. We feel our pay packet. We perceive it as we perceive brightness, loudness, even age. There is a limen for an increase, there is a ratio judgement against our fellows: I am worth 10% more than you, but I agree he is 15% better than me. The absolute difference, so forcibly peddled by some populists, is nonsense.

Just as interesting is the appearance of the probability functions. In statistical quality control we know that this implies a number of independent random causes. There is no one reason why you do your job for your pay. One colleague of mine, in an important research unit, once said we were there because we could not afford labs of our own. I did not know how to do anything else: X and Y were there because father put them there. A multiplicity of random causes.

Politicians, usually innumerate and often
illiterate, have yet to realize that, in the words of a Greiter axiom: If things are found to be functionally related, there is probably a functional relation between them.
O. Greiter

London W8
My attention has been drawn by Mr Dennis Lovely to the books by Martin Gardner, culled from Scientific American. Like Wireless World, this magazine has a very lively, intelligent and well-informed readership, so that when a problem is presented to them they will respond, more often than not, with interesting, diverse and sometimes unexpected answers.

In 'Mathematical Puzzles and Diversions' (originally published by Penguin) there are recorded several mnemonics for expressing the value of ' e ', contributed by various readers:
(1) To express e remember to memorize a sentence to simplify this.
(2) To disrupt a playroom is commonly a practice of children.
(3) By omnibus I travelled to Brooklyn.
(4) It enables a numskull to memorize a quantity of numerals.

Noting that the value of ' e ' to 11 figures is 2.7182818284 , it is easy to see how the above sentences help out. Wireless World unfortunately does not fit into the pattern but here is a sentence that does:
(5) In Britain a football is circular, a snowball is anyshape.

I am sure that $W . W$. readers will not be outdone in improving upon these gems.
John C. Finlay
Sunderland
Tyne \& Wear

LIQUID-STATE AMPLIFIER

The letter from B. Whatcott in your March issue prompts me to ask what became of Solions? If I remember correctly, these had some publicity in the early 1960s and were a kind of electrolytic triode.

I kept an eye open for further information and possible applications for Solions, but they seemed to fade away. Maybe my reading was not consistent or wide enough and I missed later news of them.

I would be grateful if any of your readers could give me references to or recent information on Solions.
W. J. Grant
"Fairlands", Finchmead Lane.
Stroud
Petersfield, Hants

GENERATING THREE PHASES

It would be a pity if the cheapness and availability of i.cs meant that older, simpler and efficient circuits were forgotten.

A three stage RC-coupled amplifier with identical stages, back coupled to its input, produces a very good sinusoidal three-phase output. Even if only one phase is required it is still a useful circuit for the generation of very low frequences.
F. M. Colebrook describes such a circuit due to Van der Pol in Wireless World February 8th 1935.
E. V. Hurran

Margate
Kent

Broadband solid-state transmitters

Recent contacts with K6PWP Los Angeles, JA6JYM Fukuoka, JGIYLX Tokyo, SP9ATE Skawina, LA20D Oslo, OH6GN Finland and several other stations have underlined what looks like becoming the trend of the early 'eighties: all were using Japanese h.f. transceivers of 'all-solid-state' design such as the FT301, FT7, TS120V, TS120S etc, with input powers from about 10 to 100 watts.

The h.f. transmitter/transceiver has been the last item of amateur equipment (apart from the add-on highpower 'linear') to adopt the solid-state approach. It was only in 1974-75 that Heath marketed the SB104, the first medium-power h.f. transceiver to feature a broad-band, transistor output stage. Yet today one senses that the long popular 'hybrid' designs are already in retreat.

Several factors are encouraging this trend (though the vast majority of amateur transmissions continue to come from thermionic powet amplifiers): the taming of bipolar r.f. bipolar power transistors by the use of emitter resistors; the recent development of 100 -watt broad-band amplifiers using push-pull v-m.o.s. power f.e.ts (not yet in commercial designs); and especially the broadband facility to change band without having to re-tune the final amplifier. A recent poll of users of one of the most popular hybrid transceivers listed the "tune up time and use of valve final amplifier" as the "worst feature" in the eyes of 23.4 per cent of users, even though "ease of operation" (in other respects) was regarded as the "best feature" by 27.9 per cent of users.

Another reason why r.f. power transistors, once regarded as the world's fastest "fuse", are becoming the popular choice is the increasing worry of purchasers about the future availability of valve replacements at reasonable prices. The long lifetimes of much existing equipment is under threat less from reasons of performance than from this form of scarcity obsolesence.

E-m-e and satellite news

Although terrestrial distances have little significance in comparison with the total earth-moon-earth path lengths, the Banningham E-M-E Group (operators include James Keeler, G4EZN, Nick Whyborn, G4JNX and Richard Newstead, G3CWI) believe that a new "world record" for moonbounce was established on April 18 when their 30 ft dish aerial (illuminated at 16 ft to provide maximum gain) located near

Aylsham, Norfolk made contact on 432 MHz with Graham Alderson, ZL3AAD at Christchurch, New Zealand.

The group has so far been unable to obtain a 1 kW permit for experimental work and power was limited to 150 watts d.c. input. Front-end receiver amplifier uses a Gasfet (Alpha 1000) with a noise factor less than 0.5 dB . The aerial at ZL3AAD consists of 16 WoEYE-type Yagi arrays with 1 kW transmitter input. Contact was made at the first attempt (ZL3AAD's signals peaking $4-5 \mathrm{~dB}$ above noise) during a period of closest approach of the moon. The group made $e-m$-e contacts with all continents in two nights of operation.

The present aerial was erected primarily for reception with initial sun tests measuring about 15 dB . A larger aerial, with diameter approaching 50 ft , is planned at the same site.
The write-off of the first, Germanbuilt, Phase 3A Oscar satellite in the abortive Ariane LO- 2 launch on May 23 has underlined the financial problems in maintaining from voluntary contributions the ambitious Amsat programme. Dr Karl Meinzer, DJ4ZC, initiator of the Phase 3A project, is reported by Amsat-UK as saying: "The project has suffered a great set-back but is not dead. The knowledge learned during the development work can be applied unaltered to further satellites. The material is partly to hand, our present problem is to find a suitable starting possibility." The various national Amsat organisations have launched an appeal on behalf of an Amsat-International fund.

Band scan

The first two-way 50 MHz contact between amateurs in Europe and Japan is believed to have taken place on April 10 at 0012 GMT between ZB2BL in Gibraltar and JA1BK with propagation over the "long-path" across South America, representing a great-circle distance of some 17,000 miles. Subsequently, the Gibraltar station contacted several other Japanese 50 MHz stations during a 30 -minute opening. Although the level of sunspot activity has declined fairly sharply and is now below predictions, the 50 MHz north-south path remained open at least until mid-April, with South African beacon stations heard in the south of England almost daily.

A 144.830 MHz beacon station, 9 HIVHF , has been installed at Rabat, Malta with continuous operation (1.5 watts to an omnidirectional aerial). A 28 MHz beacon transmitter has now reached the British Antarctic Survey Headquarters and is currently being tested. The 3B8MS beacon on Mauritius
has been re-activated on 28.210 MHz . A 28.280 MHz beacon, YV5AYV, located at Caracas, Venezuela has been built and supplied by the German society DARC.

Amateurs have learned with regret of the death of Dr John Saxton, the only person in the post-war period to have been twice elected president of the RSGB.

GA8AAA proposal dropped

One of the minor tragedies of amateur radio in recent years has been the breaching of the conventions surrounding international prefixes, etc. - notably by the American FCC which has largely destroyed the "district" identification feature of American call-signs as well as confusing the position in US overseas territories.

In the UK for many years distinctive prefixes have been available for Scotland (GM), Wales (GW), etc. but leaving all British amateurs with their own "figure-letters" callsign. This convenient system was not followed by the Home Office for "special" exhibition, repeater calls with the prefix GB which is used anywhere in the British Isles with 'call-letters' already issued to other amateurs.
The Home Office appears to have come very close to abandoning the traditional system altogether in initially proposing to use the sequence GA8AAA when, shortly, the Class B licences reach G8ZZZ.

However, fortunately, this plan has been changed and callsigns for Class B licences will soon be in the G6AAA series, permitting the retention of the traditional country prefixes.
The total of UK amateur licences now exceeds 28,000 representing a doubling of the number in the past 12 years.

In brief

Solar activity rose to a peak on May 25 exceeded in Cycle 21 only in November 1979 which now clearly appears to represent sunspot maximum ... The West German national society, DARC, has awarded Roy Stevens, G2BVN their "Goldene Ehrennaded" award for outstanding services to amateur radio... Miss Diane Parker, G8VVV, recently became the 25,000 th current member of the RSGB . . . King Juan Carlos of Spain holds the amateur callsign EAoJC. Arthur Collins, WoCXX, founder of Collins Radio at Cedar Rapids in the early 1930s is to receive an Electronic Industries Association (USA) "Medal of Honour"

PAT HAWKER, G3VA

Miniature, ten-line telephone exchange

Small relays give low power, quietness and secrecy

by L. D. Gunn

Abstract

With the better availability of dial telephones now on the market several articles have been published in various magazines with the object of improving their utility. Some articles have given circuitry which uses uniselectors to establish connexions between up to 23 telephones, and others have used integrated-circuit modules for selective ringing systems. The disadvantages of using uniselectors are the high power requirement and the mechanical noise, while designs using integrated circuits use a common speech path, which does not give secrecy to the established conversation. The system described overcomes these objections by using miniature relays, which are fairly easily obtainable from surplus stores at reasonable prices.

There are four elements to the system. The Call Sensor identifies the calling line and provides for it a discrete circuit to the Transmission Feed, which supplies the telephones with power for their microphones. It also monitors the progress of a call and relays information to the Control, which sequences the system according to information received from the transmission feed. The fourth element is the Binary Counter, which consists of a group of relays which count the dialled pulses from the caller to select the wanted line, and provide a discrete path from it to the transmission feed, which also supplies ringing current for the a.c. bell until the handset is lifted.
When the system is in the normal state all the lines are connected to the call sensor via the contacts of two relays in the control. When a call is originated, the call sensor identifies the calling line and provides a discrete connexion from it to the transmission feed, which then tells the control that a call is about to mature. The control disconnects all the lines from the call sensor and prepares a path for the dial pulses to be transferred from the transmission feed to the binary counter. When dialling is completed, the control connects ringing current to the wanted line, via the transmission feed and the appropriate contacts of the binary counter relays. The ringing current is interrupted periodically by a
transistorized timing circuit in the control, since continuous ringing would be very irritating. When the called telephone is answered, the transmission feed signals to the control that the ringing current can be disconnected. The speech path is then established. The control holds all the appropriate relays operated until both telephones are replaced on their rests.

Circuit operation

Originating calls sensor. The circuit consists of six relays and twenty-one diodes. Two of the relays, BC and BD connect the four sensing relays, CA, CB, CC and CC, to the lines via diodes which are coded so that different combinations of the sensing relays operate when a telephone is lifted to make a call. The relays are operated in accordance with Table 1 and their contacts are arranged to provide a path for one line to connect with the transmission feed relay A. One contact on each of the sensing relays is used to hold the relay operated under the control of the transmission feed and control elements.

Transmission feed. This comprises the three relays, A, D and FC. Relay A supplies current to the calling telephone and responds to the pulses generated by the dial of the telephone. D provides current to the called telephone, in addition to controlling the disconnexion of

Fig. 1. Divided-feed transmission dridge. Power is fed separately to each telephone, thus eliminating problems which arise with a single-feed system when long and short lines are connected.
the ringing current when it is answered. Relay A operates when the circuit of the telephone is extended to the transmission feed on the path set up by the call sensor. The make contact of Al operates relay B in the control. Soon afterwards (about 20 milliseconds) the caller will hear dialling tone and may commence dialling. Relay A responds to the pulses from the dial, its break contact sending pulses to the control to indicate that dialling is in progress, and via the control to the binary counter to select the wanted line. At the make contact of Al, pulses are sent to the B relay to hold it operated (it is slow to release by virtue of the shunt capacitor) whilst dialling is taking place.

Control. This is a group of four relays $\mathrm{B}, \mathrm{ON}, \mathrm{C}$ and BB and, as mentioned above, relay B operates when a call is detected and the calling line is connected to the transmission feed. Contact Bl provides a holding path for the call sensor relays, operates relay C via contact ON1 normal and energizes relay BB. Contact B2 prepares a path for the operation of relay ON when the first dial pulse is received and also prepares a path for passing the dialled pulses to the binary counter. Relay C operating at contact Cl completes the path for passing the dialled pulses to the binary counter and for holding relay C operated during the dial. pulsing. Con-

Fig. 2 (over page). Complete circuit diagram of the exchange. Resistors of 200Ω in series with A and D relays are $1 \mathrm{~W} ; 100 \Omega$ resistors across B and C relays are $1 / 2 W$; all rest are $1 / 4$ types.

tact C 2 disconnects the transmission feed from the binary counter contact 'tree' to prevent bells tinkling whilst the counter is selecting the wanted line. Contact C3 delays the start of the ringing interrupter circuit until dialling is completed. Relay BB , operating at contact BB , disconnects the operating path for relays $B C$ and $B D$ in the originating call sensor, thus causing them to release and disconnect all the lines from that element to prevent interruption by another telephone. Contact BB2 connects the ringing supply to the calling line through a leak path consisting of a resistor and capacitor to provide the 'dialling tone'.

At this stage dialling takes place and pulses are sent from the Al break contact to contact B2 and via contact Cl to the binary counter. The first pulse operates relay $O N$ in the control and relay FC in the transmission feed. Relay ON operating at contact ON1 breaks the original operating path for the C relay, which still holds due to the resistive/ capacitive shunt and the pulses via contacts B2 and Cl. Contact ON1 holds relay ON operated via contact Bl . Contact ON2 disconnects the dialling tone.

At the end of dialling, relay A in the transmission feed remains operated and holds the B relay operated via the make contact of A1. The break contact of A1 remains open and after a short time (about 150 milliseconds) relay C releases. Contact Cl disconnects the holding path for relay C and the path for extending the pulses into the binary counter. Any further pulsing cannot

Photograph shows one form of the exchange, built in case measuring $10 \times 41 / 2 \times 3 \mathrm{in}$. Order of relays shown: top pair - D, A; second row - B,C,ON,FC,Rl; third row - BB,HD,HC,HB,HA; fourth row - BC,SD,SC,SB,SA; - bottom row - BD,CD,CC,CB,CA.
then affect the setting of the counter. Contact $C 2$ connects the selected line to the transmission feed D relay coil which, by the operation of contact FC3 has been connected to ringing current via the ringing interrupter RIl; the bell of the wanted line is now rung. Contact C3 completes the circuit for the ringing interrupter which uses three transistors and relay RI in a resistive/capacitive timing circuit, the time constant of which can be made to suit the constructor's preference. (The circuitry shown gives a ringing pulse of about two seconds and a silent period of about four seconds.)

The first dial pulse received energizes relay $F C$ in the transmission feed, which provides a holding path for itself via contact FCl to the break contact D 2 . Contact FC2 completes the circuit for the operation of the ringing interrupter unit, and FC3 disconnects the d.c. supply from the D relay coil, providing a circuit to contact RII which controls the ringing and silent periods. The coil of relay D in the transmission feed is shunted by a diode, in series with a resistor and a capacitor, whilst the 'ringing current is sent to line. This arrangement prevents the D relay from being energized by the ringing current, but permits its operation through the d.c. path via the called telephone when it is answered. When the call is answered, relay D operates: contact Dl disconnects the shunt from the D coil and completes the speech path between the two telephones. Contact D2 releases relay FC and completes a holding path for relay B . Contact FCl disconnects the holding path of relay FC and prevents it from re-operating during the call. Contact FC3 restores the d.c. supply to the D relay coil and contact FC2 disconnects the ringing interrupter circuit.

When a call is finished, both telephones are replaced on their rests
and relays A and D release. In turn, relay B releases and contact $B 1$ releases relays $O N$ and $B B$ in addition to all the relays which were operated in the originating call sensor and the binary counter. Contact BBI completes a circuit for relays $B C$ and $B D$, which operate and re-connect the lines to the originating call sensor in readiness for the next call.
Binary counter. Four pairs of relays are wired as flip-flops. The left-hand, or ' S ' relay of each pair operates at the beginning of a pulse and the ' H ' relays operate at the end. Contact B1 in the control provides a holding path for all the relays once they are operated. Diodes are used to mask the transients of the change-over contacts.

The start of the first pulse is caused by the release of the A relay in the transmission feed. The earth potential from contact Al normal is connected, via contacts B2 and C1 operated and SA1 normal, to the coil of relay SA, which operates. The breaking of contact SAl is masked by the diode D . The make contact of SAl connects relay SA to the main earth via contact $B 1$ in the control. During this time the coil of relay HA is short-circuited via contact HA1, thus preventing relay HA from operating whilst the pulse persists. The diode D prevents this short-circuit from being maintained from the holding path of relay SA when the pulse ends. When the A relay re-operates at the end of the pulse, the short-circuit is removed from the relay HA coil by the opening of the Al contact, and relay HA operates. Contact HA2 connects the pulse to the next pair of relays, SB and HB. Contact HAl switches the circuit so that the next pulse not only operates SB of the next pair of relays but short-circuits relay SA which releases, whilst a holding path, initially via diode D, is maintained to hold relay HA operated until the end of the pulse. At the end of the pulse, the holding path for relay HA is disconnected at contact Al and relay HA releases. At the same time, relay HB operates, since the coil is no longer short-circuited when the pulse finishes. Relay HA releasing disconnects the pulse from relays SB and HB so that the third pulse is effective only upon the pair of relays SA and HA. The fourth pulse operates relays SC and HC and releases SA, HA, SB and HB. The full sequence is set out in Table 2.

Power supply

The power requirement depends entirely upon the relays used for the system, bearing in mind that the line current for a telephone should lie between the limits of $30-100 \mathrm{~mA}$. In the systems made by the writer, a mains transformer was used which gives a secondary output tapped at 0-24-30-40-48-60 V. The 0 V tag is grounded and the 40 V tap is taken to a silicon diode of 1 A rating to give the d.c. supply which is smoothed conventionally with two capacitors, $500 \mu \mathrm{~F}, 64 \mathrm{~V}$,

Table 1 - Relay combinations in line sensor Table 2 - Relay combinations in binary counter

Calling	Relays	Calling	Relays	Called	Relays	Called	Relays
line	operated	line	operated	line	operated	line	operated
1	CA	6	CB, CC	1	SA, HA	6	SB, HB, SC, HC
2	CB	7	CA, CB, CC	2	SB, HC	7	SA, HA, SB, HB, SC, HC
3	CA, CB	8	CD	3	SA, HA, SB, HB	8	SD.HD
4	CC	9	CA, CD	4	SC, HC	9	SA,HA,SD,HD
5	CA, CC	0	CB, CD	5	SA, HA, DC, HC	0	SB,HB,SD,HD

wkg., and an inductor of around 150 ohms d.c. resistance. The 60 V tap is used for the ringing current supply: 75 V would be preferable for ringing normal telephone bells and it may be found necessary to adjust some bells to perform adequately on $60 \mathrm{~V}, 50 \mathrm{~Hz}$.
With the system as described, working on approximately 50 V , the maximum current drawn from the power supply is just over 250 mA . The highest value will be drawn when a call is made from a line operating two of the call sensor relays on line 7 , which requires the operation of three pairs of relays in the binary counter.
The system should operate satisfactorily with lines up to 600 ohms loop resistance and is ideal therefore for use on large estates or farms.
The capacitors shunting the B and C relay coils and those in the ringing interrupter circuit are electrolytic, 64 V working. It is important that those shunting the relay coils do so in series with 100 ohm resistors in order to prevent heavy sparking at the Al relay contacts. All other capacitors must be non-electrolytic.
The relays $B C$ and $B D$ are, permanently operated when the system is not in use in order that there is a small load on the power supply which prevents peak voltages from damaging the smoothing capacitors in the power supply. The current drain is only about 10 mA .

With different relays, the system can be adapted to operate on 24 V , but this would reduce the line length over which transmission would be satisfactory. However, at least 60 V a.c. is required for ringing nevertheless.

Installation

In the original models made by the author, a sixteen-way terminal strip was used for terminating the leads from the call sensor and binary counter relays. The first ten connexions were used for the lines and the remaining six were used as a 'ground' common. One wire from each telephone is connected to the appropriate numbered terminal and the other is connected to one of the 'ground' terminals. It is preferable to use two wires from each telephone back to the exchange, particularly if the lines are long. Overhearing and noise is likely to arise if a single wire is used with a ground return via a water pipe. Under no circumstances should a 'mains' earth be used.

Components list

Mains transformer: 1 Type 124 Barrie Electronics, London EC3N 1BJ.
Coke: small output transformer - use primary winding not more than 200 ohms resistance.
Transistors: 32 N4036 p-n-p silicon, ringing interrupter timer and relay driver.
Terminal strip: 16 way; any type available to the constructor which will provide for ten lines and adequate capacity for the common leads.
Case: The aluminium case used in the example shown in the photograph is $10 \times 4.5 \times 3 \mathrm{in}$, but other examples have been constructed to fit into cases $8 \times 6 \times 2.5 \mathrm{in}$.

Literature Received

Technical information booklet from Mullard is entitled "Applications of field-effect transistors". Use of f.e.ts in several roles is discussed, from d.c. amplifiers to f.m. front ends, with practical circuit details. Publication is obtainable from Mullard Ltd, Mullard House, Torrington Place, London WCIE 7HD.

WW 401
Leaflet giving a quick look at Newmarket's capabilities in thick-film modules can be had from Newmarket Transistors Ltd, Exning Road, Newmarket, Suffolk CB8 0AU.

WW 402
Switching regulator design, with particular reference to filter design, is discussed in Application Note 349 from Fairchild Camera and Instrument Ltd, 230 High Street, Potter's Bar, Herts'. EN6 5BU.

WW 403
Lead-oxide camera tubes (Leddicons) made by EEV are listed and tabulated in a brochure, which recommends tubes for every known colour camera in all applications. It is produced by English Electric Valve Company Ltd, Waterhouse Lane, Chelmsford, Essex CMI 2QU.

WW 404

Vero have published a catalogue containing descriptions (but no prices) of their range of cases, wiring systems and hardware
accessories for the amateur. The S100 bus system is included. The catalogue can be obtained from Vero Electronics Ltd, Industrial Estate, Chandler's Ford, Eastleigh, Hants, SO5 3ZR at 50p.

A range of low-frequency (up to 2 MHz) digital storage oscilloscopes made by the American firm Nicolet is described in a booklet, which can be obtained from Nicolet Instruments Lid, Budbrooke Road, Warwick CV34 5XH.

WW 405

Catalogue of components, accessories and systems from Transam, the Triton microcomputer people, is obtainable at 50 p from Transam, 12 Chapel Street, London NWI 5DH.

Wire-wound precision reslstors are listed in several ways by Hamlin in a new selection chart, which can be had from Hamlin Electronics Europe Ltd, Diss, Norfolk IP22 3AY.

WW 406

Instrument cases and accessories, tools, components and instruments for the amateur are fully described in a new cataloque from West Hyde Developments Ltd, Unit 9, Park Street Industrial Estate, Aylesbury, Bucks, HP20 IET.

WW 407

Automatic turn-off for cassette motor

Many domestic cassette recorders do not have an automatic stop mechanism on replay, but use a friction clutch so that the motor can keep running at the end of a tape without causing damage to the motor or drive mechanism. However, this system does not protect the tape because the revolving capstan wears the tape at each end.
This circuit is easy to fit because, apart from an optional l.e.d., there are no mechanical changes, additions or modifications, and connexion is via five wires with T joins, so that no breaks have to be made. Points A and B supply power to the tape-end circuit only when required, and point A also detects a positive edge when the motor starts. Connexion C is the output from the tape-end circuit which connects to the remote motor-stop line, and point D feeds an audio signal to the circuit when the tape is playing. The final connexion at E feeds an audio tone to the cassette recorder and must be placed after D. There must be no feedback from E to D because this could cause the tape-end circuit to be activated by its own audio signal.
When the motor starts, the positive edge at A is differentiated by $C_{1} R_{1}$ and the signal from A_{1} holds the output of A_{2} at 0 V , which turns Tr_{1} off and allows the motor to remain running. The time constant maintains this state for 80 s , which allows the tape to completely wind or rewind and, when replay is
selected, the delay ensures that the motor runs for long enough to produce an audio input at D. When this input occurs, the output of A_{3} is rectified, buffered and ORed with the decaying output from A_{1}. Therefore, the motor will run provided an audio signal is present at D. Short breaks in the audio are ignored because the time constant $\mathrm{C}_{2} \mathrm{R}_{2}$ prevents the voltage at A_{2} from falling below the threshold for approximately 60 s. When this period elapses after the end of a tape, the l.e.d. and Tr_{1} are turned on and the motor stops. The output of A_{2} also triggers a one-minute monostable formed by $\mathrm{C}_{3} \mathrm{R}_{3}$
and a 4011 whose output turns on an audio oscillator and gates the output to point E. This tone sounds for one minute and is then turned off by $\mathrm{C}_{3} \mathrm{R}_{3}$. M. Holmes

Newbury
Berks

Economic electronic lock

Electronic locks generally compromise between complexity and security. This simple design does not require a keyboard and offers high security. A 64stage static shift-register stores a code by switching the mode-control input low and feeding is and 0 s to the shift register via switches A and B respectively. To produce an unlock-pulse. this code has to be repeated. The coincidence gate clocks counter A provided that the unlocking code agrees with the stored code, and counter B is
simultaneously clocked by the switches. Counter B resets itself and resets counter A after the 65th clock pulse so, if the code is incorrectly entered, counter A is reset before an unlocking pulse is produced, and the code has to be repeated. If a complex code is not required, different counters and a shorter shift register can be used.
K. R. Srinivasa Murthy Bangalore
India

Accurate motor speed control

In this design the motor voltage-drop is the sum of the back e.m.f., V_{b}, and the voltage dropped across the internal armature resistance R_{a}. If the armature current is I_{a},

$$
V_{\mathrm{x}}=I_{\mathrm{a}} R_{\mathrm{a}}+V_{\mathrm{b}}
$$

$$
\begin{aligned}
& \text { and } \\
& \qquad \begin{array}{l}
V_{y}=\frac{R_{2}}{R_{2} 7 R_{3}} \cdot V_{c}+ \\
\frac{R_{3}}{R_{2}+R_{3}}\left[V_{\mathrm{b}}+I_{\mathrm{a}}\left(R_{\mathrm{a}}+R_{1}\right)\right]
\end{array}
\end{aligned}
$$

Because

$$
V_{x}=V_{y}, V_{b}=
$$

$V_{c}+I_{a}\left[\left(R_{a}+R_{1}\right) R_{3}-\left(R_{2}+R_{3}\right) R_{a}\right]$
Therefore, if

$$
\frac{R_{2}}{R_{3}}=\frac{R_{1}}{R_{\mathrm{a}}}
$$

$V_{b}=V_{c}$, so the back e.m.f. is always equal to the control voltage V_{c}, and the motor speed can be regulated with the potentiometer. The preset control is

adjusted until the motor speed remains constant with different loads.

The circuit has been used with a domestic cassette recorder and has improved the motor performance with C120 tapes. Note that motor speed is not dependent on the supply voltage.
H. S. Malvar

University of Brazil

D-type with enable

If a D-type flip-flop with enable is required, it is cheaper and often more convenient to use the circuit shown. When the $\overline{\mathrm{EN}}$ line is high, the flip-flop is held in one state by the asynchronous $\overline{\mathrm{S}}, \overline{\mathrm{R}}$ line, and clock transitions have no effect. When the EN line is low, the flip-flop operates normally.
T. Clark

Trinity College
Cambridge

Dual supply

If a negative supply is required from a transformer which only has one secondary winding, a capacitor coupled bridge-rectifier provides a simple solu-
tion.
A. J. Strike

Norwich
Norfolk

Wide band phase-shift network

When generating two signals in quadrature, most 90° phase-shift circuits produce errors of up to 10° and operate only over a limited audio bandwidth. The simplest phase-changing circuit is an all-pass filter. By connecting four all-pass filters in series, a linear phasefrequency relationship can be achieved over several octaves. Two such circuits connected in parallel and fed from a common source can produce a constant phase difference which is independent of frequency.
The circuit shown provides a phaseshift of $90^{\circ} \pm 5^{\circ}$ from 23 Hz to 24 kHz . The critical components, denoted by asterisks, should be 2% or better and the transistors should have a h_{fe} of at least 400 to prevent loading. Overall gain of the circuit is unity, but the power supply must be adequately decoupled because the gain-bandwidth product is high.
C. J. Gibbins

Sunningdale

Berkshire

Acoustic level-indicator

If the voltage at the testpoints exceeds 2.5 V , the indicator oscillates at approximately 2 kHz and drives a sounder. The indicator can be connected to the testpoint and positive rail for a logic high, or to the testpoint and negative rail for a logic low. The circuit will operate with input frequencies up to 10 kHz , although the output signal is reduced with an input above 2 kHz .

The current drawn by the circuit increases with voltage, but at 5 V only $500 \mu \mathrm{~A}$ is required.
J. W. Richter

Backnang
W. Germany

Multiple a-to-d conversion

A single d-to-a converter can be used with several independent a-to-d converters as shown. The d.a.c. is continuously ramped upwards through its entire range and, when the output exceeds the input to a comparator, the associated digital word is stored in a latch. The number of comparators and latches is only limited by the drive capability of the converter and counter.
Gain and level shifting can be applied to the analogue inputs to provide a.d.cs with different ranges. Also, the comparator latch commands can operate sample-and-hold circuits at the inputs to signal Data Ready, and to inhibit further latching
J. W. Rimmer

London

Pulse delay

Pulse delays from milliseconds to several seconds can be achieved with one i.c. provided that the delay time is less than the duration of the pulse. M. Miller

Reading
Berks

Designing with microprocessors

3 - Microprocessor addressing modes

by D. Zissos and Laurelle Valàn Department of Computer Science, University of Calgary, Canada

Abstract

The previous two articles described the basic components of the microprocessor chip and the internal functioning of the device from the designer's point of view. The authors now continue with a concise description of the most commonly used microprocessor addressing modes, from the points of view of both the designer and the user.

In the previous article (June/July issue) we saw that the microprocessor operation consists of repeating cycles during which each instruction in a program is fetched from memory, executed, and succeeded. Clearly, the process of pulling out each byte of our instruction from memory and loading it into the microprocessor chip slows down considerably the execution of programs the main drawback of microprocessorbased systems.

Different actions to speed up the response time of microprocessor-based systems have been taken by manufacturers, system designers and, to a lesser degree, by programmers.
In the case of manufacturers their main response has been to produce microprocessor chips, which, (a) can
address external memory and peripherals more effectively, (b) can transfer more data between the microprocessor chip and the external circuitry (example: 16 -bit machines), and (c) include more internal circuitry, such as registers, which reduces the need to access external memory.
The system designer can increase the response of microprocessor-based systems by imaginative use of present-day technology and design methods ${ }^{2}$. At this level the problem is one of effective management of the available resources, rather than detailed technical knowledge. This aspect is the main theme of these articles.
In the case of programmers, it is encouraging to detect an increasing level of awareness of the interplay that exists between hardware and sof tware. For example, more programmers are now able to generate vectoring addresses in interrupt-driven systems using standard i.c. chips (priority encoders), instead of using the very slow and

Fig. 1. Process of direct addressing, (a) for one-byte operand and (b) for a two-byte operand.

highly inefficient method of pollings and-testing each interrupt flag in turn ${ }^{2}$.

Addressing modes

Addressing modes in microprocessorbased systems refer to the methods used to generate the address signals for routing data within the microprocessor chip and through the system itself.
Because each microprocessor chip has its own set of addressing modes, in this article we shall describe the most commonly-used modes, which are

Direct addressing,
Indirect addressing,
Indexed addressing,
Relative addressing,
Immediate addressing,
Inherent addressing, and
Implied addressing.
For the sake of simplicity we shall use eight-bit microprocessors with sixteenbit address lines when describing the addressing modes.
Different manufacturers may use different terms to describe the same addressing mode. For example, what most manufacturers refer to as direct addressing is called extended addressing by Motorola.

Direct addressing

In direct addressing the memory of i/o is said to be directly addressed, which implies that the address of the operand is part of the instruction (bytes p and I), and appears explicity in written form, as shown in Figure 1(a). The reader will recall from the previous article that during machine cycle 1 the op code is pulled out of memory and loaded into the instruction register (i.r.) in the microprocessor chip. During machine cycle 2 the page number (upper half of the sixteen-bit address) is loaded into the appropriate section of the addressing register (r), also in the microprocessor chip. The line number is loaded similarly into the other section of register r during machine cycle 3 . In machine cycle 4 the address of the operand, held in register r, is output on the system's address bus, and the operand is moved in the other direction.
In the case of a two-byte operand the value of 1 held in addressing register r is, automatically incremented after byte 1 of the operand has been transferred.

A special form of direct addressing is provided on the 6800 microprocessor in addition to the normal type we described. In this mode, an address on page 0 is privileged in the sense that op codes are provided which load automatically ' 0 ' in the upper half of the addressing register (r), leaving only the 1 byte to be written explicitly. For example, the contents of accumulator A in the 6800 may be copied into memory location $0034_{\text {hex }}$ using one of the following two instructions.
B7 0034 - ordinary direct addressing, called extended addressing by the manufacturer.

* 9734 - privileged direct addressing, called direct addressing by the manufacturer ${ }^{1,3}$.

Indirect addressing

In indirect addressing the address of the operand (p and 1) has to be taken either from a memory location (p_{1} and 1_{1} in Fig. 2) defined in the instruction, or from an addressing register in the microprocessor specified in the op code as shown in Fig 3(a) and 3(b). The first mode is referred to as memory indirect addressing and the second mode as register indirect addressing.

In the case of two-byte operands the value of variable 1 (defining the line number of the operand) is automatically incremented after byte 1 of the operand has been transferred in or out of the microprocessor chip.

Indexed addressing

In indexed addressing the address of the operand, denoted by variables p and 1 , is generated by adding a number D, which follows the op code, to an index register, and outputting the sum onto the address bus, as shown in Fig. 4. That is, in indexed addressing the location of the operand is IX + D. Variable D, which can be either a positive or a negative number, expressed in twos complement (see Appendix), is referred to as offset or displacement. Note that the index register (i.x.), which is an addressing register* that can be incremented or decremented by software, is not affected by this operation.
Indexed instructions are particularly useful when we need to access consecutive locations in memory, for such operations as block transfers.

Relative addressing

In relative addressing the current value of the program counter, $\mathrm{PC}+2$, is incremented by the byte that follows the op code, denoted by variable R in Fig. 5. This clearly allows the program to jump from $\mathrm{PC}+2$ to $\mathrm{PC}+2+\mathbf{R}$. Variable R, as in the case of indexed addressing, can be either a positive or a

[^2]
(a)

(b)

Fig. '2. Memory indirect addressing, (a) for a one-byte operand and (b) for two-byte. operand.

Fig. 3. Register indirect addressing. (a) for a one-byte operand and (b) for a two-byte operand.
negative number, expressed in two's complement (see Appendix).

The value of relative addressing is that it allows jumps to nearby locations to be implemented with two-byte instructions. For most programs, relative
jumps are by far the most prevalent type of jump due to the proximity of related program segments. Thus, these instructions can significantly reduce memory space requirements. The signed displacement can range between
+127 and -128 from the jump relative op code address.

Immediate addressing

In immediate addressing the byte following the op code in memory contains the actual operand, as shown in Fig. 6(a). An application of this type of instruction would be to preset an internal register to a given value, where the value is the byte following the op code.
The operand in immediate addressing may contain two bytes, as shown in Fig. 6(b).

Inherent addressing

In inherent addressing the operand is embedded in the op code, as shown in Fig. 7. For example, in the 6800 microprocessor
010001111 (4F) increments accumulator A, whereas
01011111 (5F) increments accumulator B.
Instructions involving inherent addressing define operations that take place within the microprocessor chip, and are always single-byte instructions.

Implied addressing

Implied addressing refers to operations where the op code automatically implies one or more internal registers as containing the operands. An example of implied addressing is the set of arithmetic and logic operations in the Intel 8080 , where the accumulator is always implied to be the destination of results.

Appendix: twos complement

The twos complement is a method of representing negative binary numbers. The twos complement of a binary number can be formed either by inverting each binary bit and adding 1 to $i t$, or

Examples

$\left.\begin{array}{rlll}+5 & 000 & 0 & 01\end{array}\right) 1$

Fig. 4. Indexed addressing.

Fig. 6. Immediate addressing for (a) a one-byte operand and (b) for a twobyte operand.

Fig. 5. Relative addressing.

by using a scanning process as follows. Starting from the least significant digit, we copy each digit as it is up to and including the first ' 1 ' digit. The remainder digits are inverted.

The most significant (left-most) digit is a sign digit - ' 0 ' for positive and ' 1 ' for negative.

References

1. Duncan, F. G., "Microprocessor programming and software development," Prentice Hall, 1979.
2. Zissos, D., "System design with microprocessors," Academic Press, 1978.
3. M6800 microprocessor system design data, Motorola, 1976.

The next article will deal with the synchronization problem.

m.p.u. chip

(a)

(b)

Fig. 7. Inherent addressing.

Largest slice of CAA's radar renewal contract goes to Dutch

A Dutch company, Hollandse Signaal Apparaten (HSA) has won a $£ 10$ million order from the Civil Aviation Authority to supply primary radars as a part of the authority's radar replacement programme, brought about by the need for compatibility with radar data processing systems, and systems currently being developed at the London Air Traffic Control centre.

The total cost of the programme is around $£ 25$ million, of which 30% will be met by the Ministry of Defence. A $£ 2.5$ million contract was placed with AEG Telefunken in 1979 for some of the required primary radars, the remainder (about 50% of the total workload) going to British companies, with a $£ 1.1$ million contract going to Cossor for secondary radars in 1979 and a $£ 1.2$ million contract for remote control and monitoring equipment going to Marconi Radar Systems earlier this year. A further $£ 10$ million-worth of contracts is still to be let covering buildings, radar towers, etc., and this is expected to be covered mainly by British firms.

The main reason HSA radars were chosen is their "advanced state of development", although the CAA also claims that other important requirements included technical performance and reliability. Similar equip-
ment is already in service in Singapore and with NATO.

Frank Chorley, managing director of Plessey Electronic Systems, in a statement to The Times in January 1980, said that "shortterm ordering decisions may threaten the future export prospects of British electronics companies." He said that the principal danger was that orders might be placed with foreign companies which would offer the cheapest immediate solution but which
could damage the credibility of UK companies in export markets generally.

At the time Mr. Chorley made these remarks, the US company Westinghouse was expected to emerge with the contract for the major share of the work. The new primary radars will be sited at Heathrow Airport (to provide services for Airport Approach Control and Terminal Control) and at locations in Yorkshire, Lincolnshire, Essex and Sussex. The radar at the Yorkshire site will have the largest range, at 210 nautical miles and that at the Heathrow site with the smallest, at 80 nautical miles.

Delivery of new radars is expected to begin early in 1981, the replacement programme being scheduled for completion in 1983.

Exchange of radio messages just before air crash

A further statement on the Tenerife air crash of April 25th was made in the House of Commons on June 10 by John Knott, the Secretary of State for Trade. The statement results from meetings between the Accidents Investigation branch of the Department of Trade and the Spanish Commission of investigation, and it reads as follows:
"The Dan-Air accident at Tenerife on 25 April 1980. First radio contact with Tenerife Air Traffic Control was made by DA 1008

A 2.4 metre dish used by BBC engineers to receive experimental signals from OTS. The BBC hopes to be able to take up two of the five channels allocated for satellite broadcasting in Britain, one for pay television and the other to provide selected "best" programmes from $B B C 1$ and $B B C 2$.
when it was 14 nautical miles from the VOR/DME* beacon TFN. The flight was then cleared "to the FP (radio beacon) via TFN, flight level 110 , expect runway 12, no delay." Up to this time the flight had been without incident. Some three minutes later it was instructed to descend and maintain flight level 60.

The crew reported "overhead TFN" about 35 seconds after passing the facility - Air Traffic Control then informed them that "the standard holding over FP is inbound, heading 150°, turn to the left." This indicates an anticlockwise pattern. However, this procedure was not published and was not included in the appropriate radio facility charts carried on the aircraft. In spite of this, the instruction was accepted by the pilot.

The aircraft did not pass over the FP but flew to the South of the beacon calling "entering the hold" and passing abeam about a minute after the previous transmission. About half a minute later it was cleared to descend to 5,000 feet.

Although he had expressed his intention of entering the holding pattern, the Commander, for reasons which are not clear, turned the aircraft to the left (towards the South-east) into an area of high ground where the sector minimum safe altitude is 14,500 feet.

During the descent to 5,000 feet, the Ground Proximity Warning System operated, and the crew immediately commenced an overshoot procedure. With high engine power being applied, the aircraft was put into a steep turn to the right, but it struck the mountainside before it had climbed above 5,500 feet.

The radio navigational facilities at Tenerife North Airport were checked after the accident and were found to have been operating normally."
*V.h.f. omni-range/distance measuring equipment.

Old firm fading away

Armstrong Audio, the well-known British stalwart of the audio industry (50 years old), is to go into voluntary liquidation. The company's managing director, Alex Grant, said that the availability of 600 series products in this country will not be affected. The 48 hour service and supply of spares for series $400 / 500$ and 600 models will continue to operate from the company's North London premises in Warlters Road.

Government stalls over Inmos and NEB "plays" with Ferranti

In a Commons statement in reply to ques tions about the future of Inmos, Industry Secretary Sir Keith Joseph said "I am conscious of public concern on this matter. It presents complex and difficult considerations. Proposals are being considered by the parties concerned but they are commercially confidential and there is nothing I can say about them at the present."
Only a week or so before this statement, Margaret Thatcher had said, referring to the second charge of $£ 25$ million due to be released to Inmos, that the Government was "carefully considering" the conditions attached to any money going to the com pany. The first payment of $£ 25$ million had been made by the last Labour government as a part of NEB funding.
Sir Keith added to his statement by saying that "it would be imprudent for me to force upon the NEB taxpayers money at the same time as commercial interests are expressing interest in possibly replacing some of that money," clearly indicating that the government's stance is that of waiting for a positive move (initiated by the NEB) to private ownership of Inmos. Two American firms and a Belgian consortium are said to be interested in buying out the government's 70\% holding in the venture.

Tory MP Timothy Renton had asked when Sir Keith proposed to announce his decision
and suggested that the delay was causing damage to Inmos, its employees and British microelectronics as a whole.

Referring to a similar situation at Ferranti, Labour MP Robin Cooke urged the Prime Minister to ask the NEB to stop "playing football" with the future of the company. He said the proposal to dispose of the NEB's interest in the company has been rejected by the workforce and condemned by the management as being against the best interests of Ferranti. Cooke asked the question "Why, for the sake of a fast buck is she taking such a gamble with the future of high tech nology industry in Britain, which we need if we are to survive as a manufacturing nation?"

Mrs Thatcher replied, "The NEB helped Ferranti when it was in need. Ferranti no longer needs help through the NEB. It is for the board to dispose of the shares in the best way possible."
The truth is that in the past 5 years, Ferranti's health has improved out of all proportion. Last year, pre-tax profits were $£ 9.9$ million and are this year expected to show an improvement to $£ 11$ million. The company is heavily committed through its contracts, to the government's programme of defence spending and the consensus view is that it enjoys a technological lead in a range of defence activities and projects. It

The 26 inch Philips viewdata receiver now being used by members in the House of Commons library The set was presented by Mullard Ltd, who are now committed to heavy investment in i.cs for information systems. At the presentation ceremony, lan Lloyd, MP, chairman of the all-party Information Technology Committee, stressed the need for the government to exploit the opportunities offered by viewdata - a major British invention.

certainly has a healthy immediate future if only from the proceeds of equipment it will be supplying for the Tornado aircraft programme.
Workforce and management at Ferranti favour disposal of the NEB holding via the stock market, either as a complete deal or in various stages. However, the more attractive possibility (for the Government) is disposal to a single buyer due to the fact that this would provide an additional premium for the shares as the buyer would have to bid for the balance of the shares. Taking into consideration the bias of the company's military contracts with the government, foreign buyers seem to have been ruled out - the most likely interested party is therefore GEC, which creates a number of possible problems.

Takeover would mean "rationalization" and redundancies, not to mention competition for military contracts between major GEC subsidiaries and Ferranti itself.

The company's financial report, due the last week in June, may well harden some attitudes on both sides.

Home Secretary shows more interest in company than person in data privacy exchange

The Data Protection Authority and other recommendations by the Lindop Committee, which finished its work about two years ago, was given only a nodding recognition by the Home Secretary in a recent exchange in the Commons. In written answers to questions, William Whitelaw said that he is still considering the results of consultations (which finished last year) and he asked MPs for instances where firms have encountered problems because of data privacy laws now operating in other countries.

Although Mr. Whitelaw said that he was conscious of the concern in industry, he did not give much attention to the concern of private citizens. The written answers were provided in response to the findings of a questionnaire conducted by the National Computing Centre, which showed that 90% of managers believe some form of regulation is needed to prevent the misuse of personal information held in computer data "banks". They also believe that the Lindop committee's principles and codes of practice form an "acceptable and practical" way of tackling the problem and 75% of managers said a government statement of intent is urgently needed.

There was a 90% majority for voluntary codes of practice if the Government fails to act.

Viewdata standards agreed

THE CCITT (International Consultative Committee on Telephones and Telegraphs) has recognised Prestel, the Post Office's public viewdata service, as meeting the requirements of the recommended international standard for information retrieval systems.
Study groups of the committee, meeting recently in Montreal, also approved Teletel, the French system, and laid down international viewdata standards. British Telecom, the PO organisation set up to market Prestel, has so far exported to four countries - West Germany, the Netherlands, Hong Kong and Switzerland.
One of the two study groups involved dealt with service aspects of each system and the other with technical aspects. Four types of viewdata system were recognised:
1 Alpha-mosaic, which produces characters and pictures from a mosaic of dots. This method is used by both Prestel and Teletel.
2 Alpha-geometric, a method of forming letters and pictures by drawing them geometrically. Canada's Telidon system is an example of this technique.
3 Alpha- d.r.c.s. (dynamically redefinable character set). This is a new British technique, which is also being adopted by France, allowing special purpose characters stored in the viewdata computer to be transferred to a second character generator in the terminal.
4 Alpha-photographic, used in "picture" Prestel to build up full colour photographs as part of the complete page; a wide-band version of this technique is used in Cap-
tains, the Japanese viewdata system which generates more than 3,000 Japanese characters in the central computer and then transmits them to the tv receiver over a telephone link.

The CCITT proposal for alpha-mosaic systems recommends two ways of providing control information. In one, the serial attribute technique (used by Prestel) injects information in the appropriate points in the text. In the other, parallel attribute technique, additional information is sent with each character (used in Teletel), adding to the data transmission requirement for a given page of information.
The alpha-mosaic recommendations are based upon the European 625 -line standard, which gives a viewdata frame or page of 24 lines, with a maximum of 40 characters per line. The document tentatively suggests a 20 -line frame for American 525 -line tv , but makes no firm recommendations because of views held in Europe and the USA that a 24 -line frame can be created for a 525 -line tv system.
Hundreds of viewdata terminals which form a system called Topic by the contracting company C. W. Cameron, are to be installed at the London Stock Exchange and through out its member firms. The contract is worth $£ 500,000$ and as well as being Innked to the exchange's computer, the systen can also be connected to Prestel. Each terminal will provide instant read-out of current stock fluctuations with blue figures showing an increase and red showing a decrease.

Nascom in danger-or is it?

In an announcement made on 23 May 1980, Nascom Microcomputers revealed that they had requested Grovewood Securities Ltd, to appoint a receiver. This move was taken after Grovewood's decision not to inject further capital into the company and efforts by Nascom's managing director, John Marshall, to secure alternative investment.
Nascom Microcomputers was founded in June 1978 following the launch of the Nascom 1 single board computer but the company is thought to have suffered from cashflow problems associated with the slow recovery of development costs and delays in component supply. An investment of $£ 500,000$ was received from Grovebell shortly after the launch of the Nascom- 2 , the packaged version of the System 80 which appeared in our May 1980 issue.
It was intended that the Nascom 2 would use a new memory chip (the MK4118) and within weeks of the computer's launch the company was advised that supply of the new chip would be seriously delayed. As a result, no Nascom 2 s could be shipped even though the company had invested thousands of pounds in advertising and marketing, as well as hundreds of thousands in general stock which was to lie idle.
The situation was partially relieved by the decision to provide a 16 K r.a.m. expansion board, thus eliminating the need for the MK4118 and April 1980 saw Nascom's most successful month since formation, with sales on target at $£ 250,000$.

More recently, a "rescue team" plan has been put forward by an interested Nascom
user, John Margetts. He suggests the sale of 50 p shares in blocks of 20 to both users and distributors in an attempt to buy Nascom from the Receiver.

If the company's distributors commit themselves to a large enough stake, it is just possible that the company might be saved, and Margetts is also attempting to mobilise the Nascom Microcomputer Club (based at Interface Components) which comprises about 18,000 members. Interested parties should contact John Margetts on 0242 511472.

NEWS IN BRIEF

Crellon Electronics Ltd, of Slough, Berks, are now offering the Motorola MCM6665L25 64 K dynamic r.a.m. as an off-the-shelf item. This particular device is a 65,536 -bit r.a.m. using n -m.o.s. technology, and is supplied in a 16 -pin ceramic package. For more informa tion contact Crellon Electronics Ltd, 380 Bath Rd, Slough, Berks, or ring 062864300.

The Department of Industry has established the Technology Advisory Point (TAP), to "assist in making the expertise and facilities available from British R and D establish ments more accessible to British industry." A single sheet brochure is available from the department; ring Orpington (0689) 72918 and ask for either Ian Melville or Dick Vance.
"Choosing and using microprocessor development systems" is the title of a two-day seminar being organized jointly by Sira Institute Ltd, and Era Technology Ltd. The aim of the seminar is that of providing information and practical experience on which to base the selection and use of microprocessor development systems. The programme is intended for senior engineers and engineering managers who already have some knowledge of microprocessors. The Seminar will be held at the London Press Centre, EC4 on 1 and 2 October 1980. Further enquiries should be made to Carol Meads Sira Institute Ltd, South Hill, Chislehurst Kent BR7 5EH, or telephone 01-467 2636.

The tenth European Microwave conference begins in Warsaw on 8th September 1980 and continues until 12 Sept. Information on hotel bookings and other details of the meeting are available from Promotor Services Ltd, 247, Regent St, London, W1

An exhibition on Technical Education Methods and Aids is to be held at the West Centre Hotel in South West London between 28 and 30 April 1981. A programme of lectures and seminars, covering the major aspects of the education and training of engineers and technicians in both developing and industrialized countries, will run concurrently with the exhibition of technical teaching equipment, systems and related services. Contact Electrical and Electronic Fairs Lt, Wix Hill House, West Horsley Surrey, KT24 6DZ.

Satellites detect vibrating stars

An explosion of a neutron star, occurring billions of miles from earth, was recorded by nine earth satellites, and produced the largest burst of gamma radiation yet observed.
It marked the first time that scientists have been able to trace a gamma ray burst to any known astronomical object and has provided evidence, for the first time, of a vibrating neutron star. Another significant point is that the vibrations could be a source of gravitational radiation previously only a theoretical possibility, mooted by Einstein.

The explosion was measured by devices aboard US, Soviet and US/German spacecraft on March 51979 and was reported on during a scientific colloquium at Nasa's Goddard centre on April 24 1980. A scientific paper on the event was also given at the spring meeting of the American Physical Society in Washington in May of this year.

The source of the March event was tracked by timing the triangulation to a decaying star ("supernova"), in the galaxy called the Large Magellanic Cloud. Scientists traced the burst to a supernova remnant identified as N-49 and the source of the gamma radiation is believed to be another neutron star lying inside the debris of $\mathrm{N}-49$. A neutron star is so dense that a spoonful of material from the centre might weigh a billion tons.

Until this event, astronomers had merely speculated that such stars went through gigantic vibration episodes, explosively stretching outwards then just as violently snapping back towards their original shapes through the energy of external forces
Einstein's theory of Relativity holds that such vibrations should emit gravitational radiation. This part of the theory appears to have been substantiated.

Japanese set-makers beaten to second place by Thorn

A deal described by Thorn Consumer Electronics as "substantial" has been achieved by them in the face of strong competition from Japanese tv set producers. A Hong-Kong based company, Promoters Ltd, is being licensed by Thorn to assemble the TX9 single-board chassis in a joint venture factory in China. This chassis can be used for screen sizes between 14 and 22 ins and in common with the TX10 (for larger screen models) uses about 30% fewer components than the range of sets it replaced.

Thorn has undergone an extensive modernization programme, bringing it up to
the manufacturing capabilities of many Japanese manufacturers. Robot production techniques have been introduced which the company says improve reliability quite dramatically and, coupled with ease of servicing, this factor is expected to give the technology considerable export potential. A manufacturing agreement worth $£ 2.5$ million has already been finalized with Philco-Italian and a smaller agreement with a Scandinavian company is in the air.
First supplies of the new chassis kits will start from Thorn's Gosport factory in October.

Concept for 50 inch tv display

The basic concept for a 50 inch diagonal colour tv display for wall mounting was presented by RCA laboratories at the Society of Information Display conference in San Diego.

The conceived tv display consists of 40 modules, side by side, each with a height of 30 inches and a width of 1 inch. The three electron beams in each module are directed along "beam guides" until they are electrostatically deflected through 90° onto the red, green and blue phosphors. The point in the length of the module at which deflection occurs is determined by selection from a row of electrodes lying at right angles directly under the beams.
Dr. Tietjen, Staff Vice President at RCA laboratories believes that as far as brightness, energy requirements and manufacturing feasibility are concerned, this is the best approach, but says "While we are optimistic, we are by no means certain as to when all the problems facing us will be overcome. It will probably be closer to 1990 before such a flat-panel display can be manufactured at a price the consumer will be willing to pay."
Among the difficulties already encount-
ered was that of achieving uniform brightness in each of the 40 modules, and circuits are now being developed to over come this problem. But so far, the RCA lab, scientists have only worked with black and white tv pictures with an experimental display consisting of five, one-inch modules, each ten inches high.

The colour technology planned for the flat-panel screen will be similar to that of the shadow-mask system, but the problems concerning the control of electron beams and manufacturing processes must be overcome before the work on the colour system can be realized.

'Colossus' inventor honoured

The first recipient of the new Martlesham Medal, to be presented annually to past and present British Telecom engineers for outstanding contributions to telecommunications, is Dr Tommy Flowers, perhaps best known for his development of Colossus, the computer used in World War II to break the German geheimschreiber cypher.
His work for the Post Office, when he joined in 1926, gave him an insight into electronic switching and formed a sound base for his war work at Dollis Hill, the predecessor to Martlesham, and subsequently at Bletchley Park, where he was involved with the Government Communication Headquarters and the Enigma operation He developed the equipment needed to break the Enigma cypher quickly enough to be of use and received the M.B.E. for the work. Dr Flowers then went on to produce Colossus, which was certainly the first operational computer in the U.K., and possibly in the world: it was working two years before its American equivalent. The achievement of the Bletchley Park computer is all the more impressive when it is remembered that it was not only the first, with no previous experience to draw on, but that the only switching devices available were valves and neon tubes.

Dr Flowers remained with the G.P.O. until 1964, consolidating and greatly expanding his ideas on computers in communications later leaving to join S.T.C. to work on switching systems. He is now retired, and is occupied with developing aids for the disabled.

PO opens world's first facsimile service

Intelpost is the name the Post Office has given to the electronic mail service it launched on June 17th. The service enables facsimile copies to be transmitted over vast distances by means of earth satellites, and although the first part of the service is restricted to message flow between London and Toronto, Canada, other links will be established later in the year.

The cost of the new service to the user is high - about $£ 4$ for an A4 size message to Toronto against 15 or 20 p by traditional postal methods, although this level will clearly fall with increasing use. The central advantage is that of speed, each message taking only a few hours from sender to recipient, against several days by conventional letter post.

Home Office report

 on WARC '79 publishedA report comprising 192 pages dealing in general with the World Administrative Radio Conference in Geneva in 1979 and in particular the revised versions of Article N1 (Terms and Definitions) and Article N7 (International Table of Frequency Allocations), has just been published by the Home Office, price $£ 8.50$ net.

Information covering Region 1 (Europe, Scandinavia and Africa) only was published in Wireless World in Feb. and March 1980 but this report provides the remainder of the allocation information covering Region 2 (the Americas and Greenland) and Region 3 (roughly, the USSR, India and Australasia).
The complete Final Acts of the Conference will be obtainable later in the year from the headquarters of the International Telecommunication Union in Geneva at a cost of 360 Swiss Francs.

The instrument being used here is the Redac "Cadet" p.c.b. designer, the complete system having been launched recently by Racal-Redac. It is a microprocessor-based system which the makers say is the first true example of computer-aided design in this field and at a "reasonable" price. This particular system costs E20,000.

Organ-stop control

Further developments

by A. D. Ryder, M.A., Ph.D., F.I.E.E.

Abstract

Convenient and flexible control of stops is musically important to any organ, and electronic devices are increasingly used, particularly for control in groups or combinations. Some circuits and designs are described which may be equally useful for the construction of an electronic organ as published from October 1978 to March 1979, or the modernisation of a pipe organ.

In early organs, power and brilliance were achieved by using several pipes for each note, including pipes of different harmonically-related pitches, all of which sounded together. The idea of stopping-off some ranks seems to have come later. A stop was originally a multi-pole mechanical switch arranged as a sliding piece of wood under the pipes, with holes to block or admit the wind. The wooden switch was extended at one end to be more or less accessible to the player and, in modern mechanical organs, this construction is still used. A slider-type stop action is preferred by many organists, even though the organ may be electrically operated. A stopswitch with push-pull action is called a drawstop and one with an up-down action, as on a theatre organ, is known as a tab. The rank or group of pipes controlled by a stop is also called a stop, although it would be more logical to call it a go. Console switches control further switching within the organ, such as a solenoid-driven slider, or a relay, referred to here as stop-selection switching. Stops are segregated by departments, i.e. keyboards, although there is usually provision for coupling more than one department to one keyboard.
As a piece of music may call for frequent changes of loudness and timbre, which requires rapid manipulation of the stops for one or more departments, most organs of any size are provided with combination pistons at each keyboard. These are buttons for thumb operation, or toe pistons for the pedal department, and also general toe pistons for controlling all departments at once. In operation, each combination piston acts to set, or bring on, all those stops included in its combination, and reset the rest. Usually this is effected by actual movement of the console stopswitches, which are motorised by two electromagnets, set and reset. The abreviation TMS is used here for a
motorised tab or drawstop, which are standard components, although they are relatively expensive.
Occasionally the combinations are built-in, but it is better for them to be selectable. A separate matrix of selector switches, p pistons \times s stops, may be provided, but the capture method using the stops themselves is more convenient, saves space and, with semiconductor switching, is cheaper. A combination manually set up is allocated to a chosen piston by holding in a separate capture button and momentarily operating the piston. This switches the combination into a memory (originally electromagnetic) at the address determined by the piston

Fig. 1 Pallet-magnet with finger-tab extension. The contacts are not shown.
and can thereafter be read out at will. One objection to the capture system is. that there is no neutral option, as with selector switches with a third position, which allows a stop to be isolated from a combination and controlled independently by the player. This point is considered later.
Stop control can be extended by second-touch contacts which are operated by a heavier than normal finger pressure. On a tab, rather than a draw-stop, such contacts can be arranged to reset all tabs except the one pressed, leaving that stop as a solo, a facility known as second-touch cancelling (STC). On a departmental piston, ST contacts may be used in parallel with the pistons of another department, in particular to change pedal combinations at the same time as those of the great manual.
Other types of piston used with motorised stops are cancel, departmental and general, and reversible (RP) Reversible types have push-on push-off switching and are usually provided for the more important couplers which, although not strictly stops, are treated as such on the console to bring them under thumb or toe control. There are some advantages in including couplers within the combination system, but this is not universal practice.

Fig. 2. Prototype assembly of four single-magnet tabs. The p.c.b., type EO3, accommodates 8 circuits, but can be cut down as shown.

Fig. 3. Drive for single-magnet tab. The memory line M is used to capture the tab position and to supply the drive signal. Cancel line Cd feeds all tabs of one department.

Fig. 4. Single-magnet tab with relay load.
One EO3 board is used for each group of 8 stops, or a board can be cut down to suit other groupings. Normally, one EO4 is used per department, and each board caters for 16 stops. Quantities below refer to fully assembled boards.

EO3 board	
2TX450	
1N4148	8
$5 k 6$ resistor	8
$3 k 9$ or 27 k resistor	8
(see Fig. 22)	8
Contact wire	40 cm approx.
EO4 board	
4036	4
4093	2
4539	2
1N4148	12
$20-$ pin connector	1
$10-$ pin connector	1
$1 \mu \mathrm{~F}$ tant	1
10 n ceramic	3
100 p ceramic	1
470 k resistor	3
47 k resistor	15
470 resistor	1

Printed circuit boards are available from Hiykon Lid. (W). Woodside Croft, Ladybridge Lane, Bolton, BL 1 5ED.

Single-magnet stop

The TMS is an example of a two-way powered actuator, found in many automatic mechanisms, which can often be used instead of a one-way powered device with spring return. In the present application this alternative offers a substantial economy in the stop-unit and the control circuits. Reference 1 suggests that a pipe organ pallet-magnet, Fig. 1, can be adapted as a motorised stop by adding a finger-tab and a light pair of contacts. A prototype assembly is shown in Fig. 2. The drive circuit in Fig. 3 causes the tab to stay up or down as operated by the finger, and the memory line M goes high or low and can be captured by writing into the memory. A subsequent readout, initiated by a combination piston, drives M high or low and sets or resets the tab irrespective of the contacts. The signal at T switches a 4016, as used for stop-selection in reference 1 , and with some re-arrangement other loads may be switched as shown in Fig. 4.

In contrast with the direct switching of Fig. 3, a TMS requires two separate signals which must be momentary, i.e., active only when a piston is operated, a condition introduced by the signal Pd in Fig. 5. The signal at T switches a 4016 and Fig. 6 shows an alternative relay load. The coils are typically 30Ω and may require $1 / 2 \mathrm{~A}$ at 15 V . A suitable twostage driver is shown in Fig. 7.

Capture memory

Table 1, Fig. 8 and Fig. 9 relate to the E04 p.c.b., which uses the circuits given in reference 1 . Eight combinations of 16 M lines (stops) are provided, but these can be reduced to 4×16 by omitting packages 12 and 22 , or to 8×8 by omitting 21 and 22. The M lines connect to terminal pins and to a 20 -pin socket, which is used when the T outputs are taken from the M connections. By incorporating a small battery in the power supply, combinations are retained when the mains power is off. If this facility is not required, the B pos. terminal is connected to L pos. Normally, one E04 board is used per department, more if there are more than 61 stops, in which case the piston connections are commoned and the Pd signal is taken from only one EO4. Fig. 10 shows each set of eight combinations allocated to four pistons, CP , per department, i.e. 12 in all, wired separately to the 10 -pin connectors, and four general pistons, GP, wired to the GP pins of all EO4 boards in parallel. However, any GP input may be used for a CP instead, and GP4 is available at the socket for the alternative of 5 CP or 3 GP. Second-touch contacts on the great CP may be paralleled with the pedal CP, and so on.

Reversible pistons

Each EO4 also carries two independently accessible toggle circuits for RP, Fig. 11, which provide the push-on push-off function from normal single

Fig. 8. Memory and logic board, type EO4, has a capacity of 16 stops, 8 combinations, and provision for two reversible pistons.

Fig. 9. Component layout and connections for EO4 board.

circuit contacts. These are slow-counter cells ${ }^{2}$ which have a high immunity to contact bounce. The A signal sets the stop, and the stop-contact signal is fed back to a. For the Fig. 3 circuit this requires the modifications noted in Fig. 22. In Fig. 5 and 6, the connection points are shown as links. If the RP stop is to be captured, an M line connected to a is still required, and with a TMS, the RP signal must be ORed with Pd as shown in Fig. 12. If the RP stop is independent, the RP signal can replace Pd for the TMS concerned. An advantage of the Fig. 11 circuit is that an M signal at a sets or resets the toggle as well as the stop, and a subsequent RP operation produces the result expected.
The single-magnet tab can be parti-

Fig. 10. Example of piston connections for three departments.

Fig. 12. Gating also from RP signal. \bar{V}

Fig. 11. Toggle circuit. Feedback from A to a is via the stop unit.

cularly quiet in operation if the supply voltage is consistent, and it is worthwhile to use a stabilized C supply. In Fig. 13, the additional diodes postpone 723 dropout by providing a partly independent positive rail. Output voltage is set by R_{1}, and current limit by R_{2}, which is adjusted on maximum load so that the output voltage falls slightly. Both settings increase with increasing resistance. The L supply in Fig. 3 and 4 is a separate 12V, and Fig. 14 shows the biasing and battery connections. As noted, TMS usually require higher currents. For example, a piston controlling 48 TMS may momentarily demand 24 A because it will energise either the set or reset coil of every stop. Therefore, an unregulated C supply is normally used.

for economy. The unloaded voltage, which may be controlled by a bleed of about 5%, is limited by the drive transistor ratings, 40 V for the BC547 suggested in Fig. 7. Fig. 15 shows a nominal L. voltage of 7.5 V to reduce the smoothing needed for the C supply. The loaded voltage, including ripple, should not fall below the L supply. The C rails should be low resistance and twisted together to minimise a.f. radiation. If necessary, the di/dt, and hence the radiation, can Be reduced by using 4 k 7 resistors in series with each Tr_{1} base in Fig. 7, with $2.2 \mu \mathrm{~F}$ from base to C negative.

Second-touch cancelling

The ST movement of a tab is usually obtained by mounting the on-buffer on

Fig. 14. Biasing for Fig. 13 C supply. The battery can have two or three 90 mAh cells.

Fig. 13. Coil supply of 11 to 12 V for single-magnet tabs. The bridge rectifier and 2N3055 require heatsinks, and the series resistor is selected to drop 1 V at maximum current.

Fig. 15. Nominal L voltage for TMS using
Fig. 5, 6 and 7. The series resistor is selected to pass 50 mA from a maximum C voltàge.

Fig. 17. Use of two M lines. The cross connection from gate 1 to gate 3 is omitted.

Fig. 16. Pulse timer for use with second-touch cancelling.

Fig. 18. Two types of spring-centred console switch.

Fig. 19. Latching for spring-centred stop and l.e.d indicator.

Fig. 21. Contact details for a single-magnet tab. A pin jig should be made for forming the moving contact.

Fig. 20. Single-circuit stop with toggle.

Fig. 22. Component layout and connections for EO3 p.c.b. For a normal $t a b, R$, is $5 k 6, R_{2}$ is $3 k 9, A=M(T)$, a is unused. For a tab with $R P, R$, is $27 \mathrm{k}, R_{2}$ is $5 k 6, a=M(T)=$ toggle input, $A=$ toggle output. Cut track Aa below.
a stiff spring which can be deflected by extra finger pressure to close auxiliary STC contacts. All STC contacts for one department are paralleled, and it is preferable that the cancel signal terminates before the finger is removed. Fig. 16 shows a method appropriate to a TMS driven as shown in Fig. 5, and a similar circuit may be used with Fig. 3. The function of a departmental cancel piston is mainly superseded by STC.

Neutral option

When playing requirements are analyzed, sometimes only two or three stops need the option of being within br isolated from the capture system. One simple method is to provide each stop with a conventional switch to disconnect the M line when required. Another solution is to provide duplicate stopswitches outside the combination system (except for cancelling). When TMS are used, a more elegant method is to provide each with an additional back contact in the off position, and a stable mid-position used for capture only where neither contact is made. An additional M line is then allocated to the back contact, see Fig. 17, so that two M lines are used for each TMS having a neutral option, which is exercised by selecting the mid-position before capturing. The action should be light and not interfere with normal motorised operation.

Indication

The main cost of a motorised combination system is the stop-unit, even if single-magnet tabs are used. Nonmotorised stops with indicator lamps, although not universally accepted, can be cheaper and combinations are selected silently. The contacts must have momentary action, and Fig. 18 shows two types of spring-centred console switch which may be used in a latching circuit such as Fig. 19. However, the simplest console-switch with momentary action is a single-pole push button, and Fig. 20 shows a circuit using a toggle which makes each button a RP with indicator. In Fig. 19 and Fig. 20, the cancel button may be replaced by Fig. 16 to provide STC from additional contacts. Fig. 21 and 22 show the detail of Fig. 2, and table 1 lists the components for the EO3 and EO4 p.c.bs. The fixed contact is set about 1.5 mm above the p.c.b. using a temporary spacer, and contact pressure is applied by bending the terminal pin carrying the moving contact. A 0.9 in . spacing allows the screws for the p.c.b. pillars to pass between the magnet feet, which may be clamped by the pillars.

References

1. A. D. Ryder. "Electronic organ tone system", Wireless World, March 1979.
2. A. D. Ryder. "Slow counters", Wireless World, November 1979.

Hi-Fi Choice No 17 is a new edition of the cassette decks and tapes review by Angus Mckenzie, this time including a short section on open-reel decks and tapes. The familiar format is retained, since it has been found to present the maximum amount of information most economically and in a form which is easy to assimilate. The reviews are prefaced by two introductory chapters for both non-technical and technical readers, and each instrument is described in a qualitative manner as well as in a more factual, quantitative way. A later section on the types of tape available is extremely well and thoroughly done - a collection of information which is possibly worth the price of the book in itself. The book is published in paperback at $£ 2.00$ by Sportscene Publishers Ltd, 14 Rathbone Place, London W1.

Introductory Clrcuit Theory, by J. K. Fidler, is intended for first-year students in electrical degree or diploma courses who are also engaged in circuit design and mathematical. studies. The mathematical level is such that differential equations, complex numbers and matrices are needed, though they are dealt with in the text. The range of the book is from an understanding of basic electrical quantities and concepts in Chapter 1 to Fourier analysis of complex waveforms in Chapter 8, with frequency and time-domain analysis and non-linear circuits covered on the way. The book is a good example of the better style of teaching, in that the writing is clear and purged of any intent to demonstrate the author's cleverness at the expense of lucidity. Examples and problems are provided in each chapter, with answers. Mr Fidler is a Senior Lecturer at the University of Essex. The book is in paperback, contains 214 pages and is published at $£ 5.95$ by McGraw-Hill Book Company (UK) Ltd, Shoppenhangers Road, Maidenhead, Berks.

Choosing and Using Your Hi-Fi, by Maurice L. Jay, is one of the vast series of Babani books for the enthusiast who may not want to approach the more advanced texts. There are many books on this subject which are claimed to be for the non-technical, but which often lose sight of their function and use terms with which the layman cannot be expected to be familiar. The author of this book does not succumb to that temptation, keeping the treatment to a practical and easily-understood level throughout, while not compromising on accuracy. For example, the subject of amplifier output specification is well explained, the "watts r.m.s." fallacy being discussed at length - no mean achievement in this type of basic book. For the complete newcomer to audio who may easily be baffled by some of the more spectacular advertising copy, this little book can be recommended. It is published at $£ 1.65$ by Bernard Babani (Publishing) Ltd, The Grampians, Shepherds Bush Road, London W6 7NF.
'Consumer electronics' is an expression of the 1970s. Ten years ago, the amount of electronics in the average home amounted to a radiogram and a television set (probably
monochrome). Since then, of course, all manner of entertaining and useful devices have emerged, largely as a result of the extreme speed of i.c. development, and this book, From Television to Home Computer, is one attempt to survey the whole field. Most of the latest developments are reviewed, with comments, by several prominent writers, the whole being co-ordinated by Angus Robertson, who dealt with some of the video-based chapters.

The book is not for engineers, the language being non-technical, but does affoŕd an overall understanding of the equipment now appearing in the shops for the interested layman. A rather surprising omission is a section on the radio control of models - a rapidly increasing interest - but the rest are well described in readable language. The Publishers are Blandford Press Ltd, Link House, West Street, Poole Dorset BH15 1LL, and the 323 page book costs $£ 8.95$ in hard back.

Discover Data Communications was written by Brian Warrington, managing director of a data communications company, because he found from experience in searching for staff that there was inadequate literature on this subject at the technician level. The 128-page, well-illustrated book begins by discussing basic communication techniques and modes, covering general development and defining terms on the way. Hardware of terminals, media devices and interface circuits is described, together with standards, PTT regulations and communications protocols which the terminals may use. Also included are the four character code sets most widely used today, one appendix comparing six character codes for translation and another consisting of a comprehensive glossary of terms. Northwood Books, 93-99 Goswell Road, London ECIV 7QA. Price $£ 4.50$ from bookshops or $£ 5.00$ inclusive from the publishers.

Computer programming in BASIC by I. Williamson, R. Dale and T. Eiloart is a selfinstruction course supplied in four volumes. Part one, predictably called "Basic Basics", comprises 17 lessons which initially describe a computer and explain popular jargon. Subsequent lessons cover simple maths and give programme examples in Q and A form. Part 2, Introducing Basic, takes the student through high- and low-level languages, flow charts, trigonometry, and a more detailed explanation of Basic statements. Applying Basic is discussed in Part 3, with lessons covering compilers, interpreters, loops, and more about statements, followed by debugging, arrays, computer games and more problems. The last volume deals with advanced Basic and covers subroutines, string variables, recursion, integration, matrices, files, with supplementary lessons covering series expansion, and numerical integration. Again, the book is well provided with problems and answers. The complete course does not require the use of a computer and each volume has cartoons to break up the text. The course is priced at $£ 7.50$ and is available from Cambridge Learning Enterprises, Rivermill Lodge, St Ives, Cambs.

Colour tv receiver design

2 - The r.f., i.f. and colour decoder sections

by R. Wilkinson, B.Sc. (Hons), M.I.E.E. Decca Radio \& Television Ltd

The tuner

Fig. 4 is the circuit diagram of the Mullard U321 u.h.f. tuner for the British market, covering the range 470 to 860 MHz (channels E21 to E68). Three factors combine in this tuner to give improved signal to noise ratio and signal handling characteristic: they are a p-i-n diode attenuator, an r.f. amplifier which always operates at high currents, and a Schottky diode mixer.

The p-i-n diode attenuator (BA 379's) is controlled by a.g.c. current from the i.f. sub-panel. Maximum tuner gain is obtainable when the a.g.c. circuit is sinking the maximum current of 9 mA from pin 3 of the tuner.

The r.f. amplifier Tr_{701}, a BF 480 high current low noise transistor, is d.c. coupled to the p-i-n diode attenuator to optimise the a.g.c. characteristic. The
tuning of the double-tuned bandpass circuit in the collector is varied by applying a variable d.c. to the varicap diodes.

The BA280 Schottky diode mixer is driven by the local oscillator Tr_{702} (a BF480) whose tuning is varied by a varicap diode

The final r.f. amplifier Tr_{703} (a BF324) compensates for the conversion losses of the diode mixer.

When both the v.h.f. and u.h.f. tuners are used (for export markets), bandswitching is easily effected by switching the 12 V supply line to whichever tuner is required.

Vision i.f
The vision i.f. section (Fig. 5) is centred on the TDA 2540 i.c., which provides i.f. amplification and demodulation, a.g.c.,
a.f.c. and noise inversion. The use of a single i.c. to provide all these functions results in a great reduction in components and the circuitry within the i.c. for each function is much more advanced, and hence the performance much improved, relative to discrete circuits.

Most of the band-pass shaping and the traps are provided by a surface acoustic wave (s.a.w.) filter. The mode of operation and construction of these components have been described in detail elsewhere but, briefly, the i.f. signal is converted by transducers to an acoustic wave which travels over the surface of the substrate (Fig. 6) to be

Fig: 4. Circuit diagram of the u.h.f. tuner

Fig. 5. Vision i.f. section, based on a TDA 2540 i.c.
reconverted to an electrical signal by the receiving transducers. The shaping of the "fingers" of the transducers determines the shape of the i.f. response (Fig. 7).
It is only comparatively recently that s.a.w. filters have become suitable for incorporation in a tv receiver. The response is very stable over a wide temperature range and the cost is comparable with the coils and traps the device replaces. It does away with the need to align these coils in production and avoids the possibility of drift or accidental maladjustment in operation or servicing. It also takes up much less space than these coils.
A further advantage is its much improved group delay characteristic (Fig. 8) which is desirable for good reception of teletext.
The only significant disadvantage of the s.a.w. filter is its insertion loss of about 20 dB at mid-band. For this reason it is preceded by an amplifier with fixed gain of 20 dB .
The output of the s.a.w. filter is fed differentially to the TDA2540, where the signal is amplified and limited and the carrier filtered by the 'tank' circuit across pins 8 and 9 . This signal is then used to provide a reference for the synchronous video demodulator whose other input is fed with the non-limited i.f. signal.

A proportion of the vision carrier from the tank circuit is coupled by capacitors formed by adjacent tracks on the printed circuit panel to the a.f.c.

Fig. 6. Simplified diagram of a s.a.w. (surface acoustic wave) filter.

Fig. 7. Frequency response of i.f. given by s.a.w. filter.

Fig. 8. Group delay characteristic of s.a.w. filter.
tuned circuit. This drives one input of the a.f.c. synchronous demodulator. The other input to the demodulator is driven with the carrier signal taken directly from pins 8 and 9 within the i.c. The phase shift between these two inputs varies with the frequencies of the i.f. signal. The output of a synchronous demodulator varies with the relative phase of the inputs and this results in an output voltage which varies with frequency.
For optimum performance, low harmonic distortion and intermodulation the Q of the reference tuned circuit must be high but this means that the tuning point is critical. Automatic frequency control is therefore included in the system to minimise the effected drift and slight mistuning. When aligned correctly, a.f.c. is an advantage in operation, providing a predictably correct tuning point.
Some receivers have an arrangement which switches off the a.f.c. to enable the customer to tune to the approximately correct position then switches on again to lock the receiver exactly on tune. It is possible for the customer to be confused by this procedure (in fact, many customers call in a service engineer just to tune the set) and one has heard of instances where the customer has switched on the a.f.c. while tuning and switched it off near the approximate tuning position.
The system used in all Decca models adds the a.f.c. voltage to the tuning voltage so that there is sufficient

automatic control to lock the receiver when on tune whilst still allowing tuning from station to station when required.

The a.g.c. signal, which is detected from the output of the videopreamplifier, is applied within the i.c. to the three-stage i.f. amplifier where control is applied progressively to each stage, starting with the third stage.

To accommodate high aerial input signals without overloading the tuner, a.g.c. is applied to the p-i-n diode attenuator (see above). When the limit of control of this attenuator is reached, the i.f. a.g.c. can again resume control for a further increase of signal.

The TDA2540 also contains sophisticated circuits for noise inversion. These are required for two reasons: to prevent false a.g.c. action due to noise pulses, and to limit the video signal amplitude in the presence of noise. Negative noise pulses (i.e. those going below video black-level) are inverted and clamped to black-level. Positive noise pulses, which could produce high peak beam currents in the picture tube and defocused white spots on the screen, are inverted to a mid-grey level.

Sound i.f. and output

The output from the TDA2540 is fed to a ceramic filter tuned to the sound carrier (6 MHz in the UK). The sound signal processing is thence carried out by a TDA1190Z which has an i.f. amplifier/ limiter followed by an f.m. detector and audio power amplifier with d.c. volume control.
The main advantages of having all this circuitry in one package is, clearly, reduction in components, which means lower cost; smaller printed panel area (important in a portable); shorter factory test time and increased reliability. The main disadvantage is that features suitable for larger sets, such as tone controls, higher output power, audio input, are more difficult (albeit not impossible) to accommodate.

Colour decoder

A three-chip decoder is used in the 70 series chassis (Fig. 9). At the time of development of the chassis the singlechip decoder was still in its infancy and came under the heading of "advances in technology" (see previous article).

The TDA 2522 contains the main PAL signal processing and demodulation; the TDA 2560 processes the luminance part of the video signal and includes circuits for the customer control (brightness, colour and contrast); the TDA 2530 contains black level clamps and the luminance-chrominance matrices; it also contains some circuitry which forms part of the video output amplifiers. Because the black level clamps are at a low level, fairly early in the system, the subsequent circuitry up to the tube cathodes must be d.c. coupled.

The chrominance input, filtered out from the full video signal, is applied differentially (pins 1 and 2) to the automatic chrominance control amplifier in the TDA 2560 whence it is operated on by the contrast and saturation controls in turn. These are both d.c. controlled amplifying/attenuating stages. The former operation ensures that the picture colour saturation remains constant as the contrast control is adjusted.
To reduce any differential phase effects between the colour burst and the chrominance signal, both burst and chrominance are sent through the chrominance delay line before the burst is processed and used to regenerate the colour subcarrier. As is normal in colour decoders, the burst amplitude is maintained at a constant level by a control loop to minimise saturation changes due to detuning or interference. In this decoder the a.c.c. loop includes the PAL delay line in order to compensate automatically for tolerance variations in the insertion loss of the line. Since the a.c.c loop operates on the burst, the saturation and contrast controls must not affect the burst amplitudes. Thus during the burst period the contrast and saturation control amplifiers are gated out to maximum gain and the burst amplitude is fixed at the level determined by the a.c.c. loop.

A novel feature in the TDA 2522 is the use of an oscillator running at twice the colour subcarrier frequency. This frequency is divided by two within the i.c. to produce two 4.43 MHz subcarriers with a phase difference of 90° suitable for demodulating the two colour difference signals directly. Thus, an accurate stable phase shift is produced automatically without the need for adjustment or for external components.
A special feature in the 70 series 14 inch portable receiver is the disabling of the colour killer at low aerial signal levels. As the signal becomes degraded or becomes a monochrome signal the half-line frequency ident circuit determines the point where colour killing action begins. This may be accompanied by flashing on and off of the colour if the signal is a poor one.
In a portable receiver it may be desirable to display a colour picture even if the reception is poor at some remote location. Thus when the a.g.c. drives the tuner to maximum gain, it also switches on a transistor which "un-kills" the colour killer. This does have the slight disadvantage that if a poor monochrome signal is transmitted then the colour killer will still be disabled and coloured noise will appear on the picture. If felt objectionable this can, of course, be removed by reducing the colour control.

Normal colour killing action on monochrome signals is retained at normal aerial signal levels.

To be continued

N OUR NEXT ISSUE

Floating-bridge amplifier

The floating bridge is claimed to possess all the advantages of a bridge amplifier - high power. large voltage swing with low-voltage devices, low power dissipation and low voltage power supply - with none of the drawbacks of complexity, limited bandwidth and relatively high distortion. These articles describe the design and construction of a simple, 15 W amplifier, which can be powered by a 12 V car battery. A 200 W version is also described.

Satellite television

Since S. J. Birkill's experiments with the 860 MHz ATS-6 television satellite were described in 1976, he has worked successfully in the 4 GHz and $11 / 12 \mathrm{GHz}$ regions, receiving good results from Intelsat - 1VA, Molniya, Sirio OTS and the Russian Rainbow and Horizon satellites of the Intersputnik system. He describes the equipment used and gives a selection of off-screen photographs of pictures received.

Versatile active filters

The majority of multi-channel tone controls use either active filters, which can cause trouble with the noise generated in the filters being fed to the output amplifier, or series LCR types, which suffer from the use of large inductors. The performance of the LCR type of filter tends to exceed that of the RC variety and the author has used it, but has synthesized the inductance by means of an operational amplifier and a CR network.

Binary clock

A practical example of binary counting for displaying time

by J. M. Osborne

Abstract

This design does not seriously challenge other published clock circuits, but is intended as an educational application of logic i.cs. The low-cost binary display may, however, have other applications where a translation to the decimal format is not necessary.

Because this clock design was originally intended as a school project, I decided to use an unconventional but low-cost binary readout. Only two displays are needed, one for minutes and one for hours as shown in Fig. 1. In practice this type of display can be read quickly because pattern recognition replaces mental arithmetic. The natural sequence seemed to be clockwise from the top so, when viewing, the most significant illuminated segment is located and the display is read anticlockwise by adding the values of the less significant segments.
The 50 Hz mains frequency was chosen as a simple timing source and this is divided by 3000,60 and 12 to produce the minute and hour pulses as shown in Fig. 2. The power supply is Zener stablized because the current varies with the number of segments illuminated. At noon and midnight only a decimal point is on, which requires about 5 mA . At 07.59 and 11.59 the display draws about 45 mA . A separate half-wave rectifier provides a 50 Hz pulse train, and to prevent mains noise from causing false counts, a Schmitt trigger is used as shown in Fig. 3.

Negative going edges from the pulsetrain clock a 12 -stage binary counter whose outputs are decoded by an eight-input NAND to recognise the 3000 count, binary 101110111000 . The NAND output switches a flip-flop which then resets the divider and provides a minute pulse. The next positive going edge from the Schmitt resets the flip-flop. The minute pulses clock another counter which divides by 60 , binary 111100 , and a 4 -input AND decodes the last count. The outputs drive six segments of a display as previously explained. Because the forward drop across a l.e.d. segment is typically 1.7 V , the necessary input voltage for the AND gate is not reached. This problem is solved by including a 6.8 V Zener in the

Fig. 1. Binary display based on two seven-segment characters.

Fig. 2. Block diagram of the clock ∇

cathode lead of the display. On logic 1 , the segment voltage rises to $6.8+1.7 \mathrm{~V}$, and on logic 0 the segment becomes reverse biased by -6.8 V , which is well within the typical reverse breakdown voltage. To ensure that the 8.5 V represents a logic 1 , the supply to the AND gate is lowered from 12 to 9.25 V by a potential divider. A logic 1 of 9.25 V from this gate is adequate to set the flip-flop and hence reset the counter. The rising edge of the Schmitt output is again used to reset this flip-flop. Therefore, a short pulse every hour drives the divide-by-twelve counter, which has four outputs wired to a display and two outputs to the AND gate for decoding binary 1100 . Normally, a flip-flop would
be used at this stage to give a reset pulse, but this was omitted to save one i.c. In practice the counter resets reliably and, as this is the last stage no further pulse is required.
The clock is set by two push-button change over switches, wired via an inverter/buffer, which clock the displays at about 1 Hz . Ideally, extra gates should be used to prevent contact bounce, but these circuits were omitted to retain simplicity.
Two remaining inverters are used to flash the two decimal points alternately. This indicates that the clock is operating, particularly during the first minute after twelve when the display is blank. The decimal points also provide a

Fig. 3. Complete circuit comprising seven i.cs.
reference so that at night the eye can identify which bars of the display are illuminated.

Although the binary clock is an educational toy which demonstrates binary counting; it can be built for nearly half the cost of a traditional decimal clock using four displays and decoding i.cs.

A'high definition heat study of the British Isles taken by satellite, NOAA-6, equipped with infra-red sensors, from an altitude of 833 km . The darker land mass denotes the relatively warmer ground temperatures compared with the sea -
temperature differences as small as $1{ }^{\circ} \mathrm{C}$ can be detected by the satellite. The data broadcasts which built up the study were recorded at Dundee University's satellite station using SE Labs' SE 7000 instrumentation tape recorders.

Questionnaire draw winners

Winners in the draw associated with the 1980 Wireless World reader survey questionnaire are as follows:

The first prize, a pocket digital multimeter, goes to the reader who returned questionnaire form No. 9497; the second prize, a cordless soldering iron, to the sender of form No. 17760. Six further prizes, copies of the 18th edition of "Guide to Broadcasting Stations", have been sent to the readers who returned form numbers $01260,04007,06761$, 12260,15015 and 20519.

Digital
 capacitance
 meter

In the printed-circuit layout for this project, published in the M ay issue (p.64), a slight thickening of the tracks has caused pins 13 and 14 of IC_{8} to be joined together. The two should be separate.

In the component list, C_{2} should be C_{4}, and in Fig. 3, pin 15 on $I C_{7(a)}$ should be pin 5. IC 6 pin 3 is the one to which R_{21} is connected. \mathbf{R}_{6} and \mathbf{R}_{7} are transposed on the layout of Board A (May issue).
fact: there's a Shure cartridge that's correct for your system -and your cheque-book:

V15 Type IV - The perfectionist's pickup overcomes such ever-present problems as warp, static electricity, and dust. Ultra-flat response. Reduced distortion. Unprecedented trackability. $3 / 4$ to $11 / 4$ grams tracking. Premium-priced.

猬97HE - The top model from an entire new line of Shure pickup cartridges, each with the exclusive Dynamic Stabilizer and the unique SIDE-GUARD stylus protection system, and available in a range of stylus tips, tracking forces, and prices. The M97HE features the distortion-reducing Hyperelliptical stylus. $3 / 4$ to $11 / 4$ grams tracking.

M95HE - New mid-priced cartridge with distortion-reducing Hyperelliptical stylus. Flat response. $3 / 4$ to $11 / 2$ grams tracking.

M75ED Type 2-Deluxe carlfidge with a nude-mounted Biradial (Elliptical) stylus for outstanding high frequency trackability. $3 / 4$ to $1 / 2$ grams tracking. Overall performance previously unavailable at this price level.

The hi-fi pickup cartridge functions as the source of sound (the point at which the recording is linked with the balance of the hi-fi system) - therefore, its role in high fidelity is absolutely critical. Just as the camera can be no better than its lens, not even the finest hi-fi system in the world can transcend the limitations of an inferior cartridge. The cartridge represents a relatively modest investment which can audibly upgrade the sound of your entire record playback system.

Consult with your nearby Shure dealer who will help you select the Shure pickup cartridge that is correct for your system and your cheque-book. We especially recommend that you audition the Shure V15 Type IV. Discriminating critics throughout the world praise this cartridge as the new standard for faithful sound re-creation. It overcomes such ever-present problems as dust, static electricity, "hot" signals, and record warp that cause "clicks" or "pops," and distorted record reproduction. May we send you our brochure?

Shure Electronics Limited, Eccleston Road, Maidstone ME15 6AU Telephone: Maidstone (0622) 59881

Cartridge Clinic-Harrogate Hi-Fi Festival Exhibition Centre, Stand B-5 Bring along your Shure Cartridge/Stylus for Free Inspection

FAST ERECTING TELESCOPIC MASTS

For World-wide

 Telecommunications in the 1980sClark Masts are specialists in the design and manufacture of telescopic and sectional mast systems. With over 25 years' experience in supplying masts to meet exacting military and civil specifications we have the expertise you can depend on
Extended heights $4 \mathrm{~m}-30$ metres capable of lifting headload $1-\mathrm{Kg}-200-\mathrm{Kgs}$, sectional or telescopic air operated for field or vehicle mounting. Write or phone us for details today.

CLARK MASTS LTD., 8INSTEAD, ISLE OF WIGHT PO33 3PA, ENGLAND
Telephone Ryde (0983) 63691 Telex 86686

GLARK

SOFTY $\underset{\substack{\text { Software Development System } \\ \text { and Eprom Programmer }}}{\text { ETOCK }}$

SOFTY is intended for the development of programs which will eventually become sottware residing in ROM and forming part of a microsystem. Ouring the development stage of a microsystem, SOFTY will be connected in place of the firmware ROM via a ribbon cable, terminated in a 24 pin DIL plug.

Data may be entered into the SOFTY RAM via the serial port, parallel port, direct memory access, or the keypad, and manipulated using the assemblerkey-functions. When the program has been entered, the internal microprocessor can be "turned off", and the external microsystem and its resident microprocessor allowed to access and run the made until the required program is complete - the contents of the RAM being clearly visible as a 'page' on TV or monitor. 4 pages are available. 2 of the Data RAM an 2 of the programming socket
In the end, when the program is complete and working, the DIL plug is removed and replaced by an EPROM device programmed by SOFTY. SOFTY is able to program the 2704/2708/2716 family which have 3 voltage rails

To help in the process of program development SOFTY has various assembler key-functions, which include - block shift withouz overwriting, block store, cursor control, match byte and displacement calculations (for jumps, etc.). A high-speed cassette interface is also provided for storing working programs and useful subroutines.
SOFTY Kit-of-parts: (including zero insertion force socket for EPROM programmer). Price E1 15 (inc. VAT p\&p). SOFTY built and tested - E138 (inc. VAT p\&p). Buils SOFTV power supply - £23 (inc. VAT p\&p). Write or telephone for full details.

NEW - SOFTY CONVERSION CARD - EX-STOCK Enables SOFTY to program the single rail EPROMS 2508, 2758, 2516, (INTEL 2716). 2532
Selection of device type and $1 K$ block are by 4 -way pcb slide switches. Programming socket is zero insertion force. Supplied ready buift and tested with. Dip jumper for connection to SOFTY. £46 (inc. VAT p\&p).

NEW - SOFTY PRINTER CARD - EX-STOCK

- 40 column electrosensitive printer 5×7 dot matrix - soltware selection of characters per line (1 to 16 bytes) push-button printing of EPROM/RAM / Intercursor contents including power supply edge connector and paper roll for £166.75 (inc. VAT p\&p). Spare paper rolls ($\mathbf{2 8} \mathbf{8 0} \mathbf{3 0}$ metres/roll) - 4 rolls for $\mathbf{£ 8}$ (inc. VAT p\& p).

MODEL 14 EPROM ERASERS

MODEL UV141 EPROM ERASER

- Fast erase times (typically 20 minutes for 2708 EPROM)

14 EPROM capacity
Built-in 5 to 50 minute timer to cater for all EPROMs
Safety interlocked to prevent eye and skin damage
Convenient slide-tray loading of devices
MAINS and ERASE indicators

- Priced at only $£ 89.70$ (inc VAT, p\&p)

MODEL UV 140 EPROM ERASER

Similar to Model UV141 but without time
WRITE OR TELEPHONE FOR FULL DETAILS OR SEND CHEQUES/OFFICIAL COMPANY
ORDERS TO
GP Industrial Electronics Limited
(Retail Sales), Skardon Place, North Hill, Plymouth
PL4 8HA. Telephone: Plymouth (0752) 28627
TRADE AND EXPORT ENOUIRIES WELCOME

Transient recorder

Digital instrument stores analogue waveforms

by G. J. Adams B.Sc., Ph. D:

With the current development in logic based test instruments the transient recorder has become a popular and, in many cases, essential piece of laboratory equipment. This design uses low-cost r.a.ms for storage and allows the stored data to be examined word by word. The recorder can also be interfaced to a microcomputer which uses memory mapping. Total cost of the prototype was about £150, which compares with commercial models costing around £800.
The function of a conventional transient recorder is quite straightforward. On receipt of a trigger pulse from either a manual trigger control or from a test rig, the recorder samples the amplitude of a signal at regular intervals, known as the sampling period (1/sampling frequency). After each sample the amplitude is converted to a digital word of usually 8 to 10 bits, and is stored in a memory. The number of samples which can be stored depends on the number of memory locations, and the duration of the "recording" is determined by the product of the sample period and the number of memory locations.
When the signal is captured, the contents of the memory can be read out sequentially at a suitable rate into a d-to-a converter. If the contents of the memory are read out repeatedly, the analogue signal can be displayed on an oscilloscope as a continuous waveform. Alternatively, if the memory is "played back" once at a slower rate, the analogue signal can be plotted on a chart recorder.
Some commercial transient recorders have additional facilities which allow triggering from the test signal by defining a trigger threshold. In some instruments it is also possible to store information before or after the trigger occurs, a facility known as pre-trigger and delayed trigger.

Although transient recorders are widely used for storing single-shot events, they can also be used for measuring and plotting part of a continuous waveform.
This design allows the capture of one-shot events for subsequent continuous display, and it also has the facility to examine the contents of the

memory word-by-word via a suitable display for on the spot measurements of the test signal.

Because the circuit has the ability to address any memory location and read or write data, the recorder can easily be interfaced to a microcomputer system which uses memory mapping. In this system the recorder memory is treated as part of the computer memory so the computer can analyze recorded data as required and write information into the recorder memory to display graphical results.

Fig. 1 shows a block diagram of the transient recorder. The d.c. input range is +5 to -5 V , and a switched-gain preamplifier increases low level a.c. signals to this range. The low-frequency $-3 d B$ point of the pre-amp is approximately 8 Hz , and the high frequency limit, which is restricted by the maximum sampling frequency, is about 16 kHz . After amplification, the signal is processed by a unity-gain lowpass filter, sampled and then converted to a binary representation by the a-to-d converter. After each sample and conversion, the digital word is stored in the next available memory location. The sequence of sample, conversion and storage is controlled by a variablefrequency clock, timing circuits and a memory-address counter. The clock
frequency is equivalent to the sampling frequency, and switched ranges are provided from 0.3 Hz to 33 kHz . After a recording, the contents of the memory can be read out under control of the same clock/counter circuit or by a manual single step clock control. Memory data can be displayed by a l.e.d. readout or on an oscilloscope via a d-to-a converter. To remove the staircase appearance of the oscilloscope display, a low-pass filter can be switched in circuit.

Because any memory location can be addressed, the contents of a location can be changed by applying the required data to the external digital input and pulsing the external write-signal line.

The prototype recorder stores 256 8 -bit words, but the memory can be increased without difficulty. An 8-bit word gives a resolution of 1 part in 256 , i.e. a signal-to-noise ratio of approximately 48 dB . This figure can be improved if necessary by using a 10-bit a-to-d converter which will give a s-to-n ratio of about 60 dB .

The a.c. input amplifier in Fig. 2 is a simple fixed-gain stage with a passive attenuator, which provides a constant input impedance of about $100 \mathrm{k} \Omega$.

If the amplified signal contains frequencies higher than half of the

sampling frequency, after reconstruction of the signal, the waveform will contain components having frequencies below half the sampling frequency which were not present in the original signal. This effect is known as aliasing because the high frequency components produce their alias in the form of lower-frequency components in the reconstructed waveform. The hazard can be prevented by ensuring that the sampling rate is at least twice the highest-frequency component of the input signal which can be resolved by the a-to-d converter. Alternatively, an anti-alias filter as shown in Fig. 3 can be used. The cutoff frequency and rate of this low-pass filter are chosen so that the attenuation is about the same as the dynamic range of the a-to-d converter, e.g. 48 dB for an 8 -bit converter, at a frequency equal to half the sampling rate.

The prototype uses an 8 -pole unitygain Butterworth filter with a cutoff frequency of 6 kHz and a cutoff rate of 48 dB /octave. The cutoff frequency can be changed as desired by scaling all of the resistance or capacitance values, or both by a suitable factor. For example, to double the cutoff frequency, the capacitance values can be halved. If the filter is used with a cutoff frequency above about $12 \mathrm{kHz}, 741 \mathrm{~S}$ op-amps

should be used to prevent slew-rate limiting.
When the filter is used with an 8 -bit a-to-d converter, a sampling rate of 24 kHz or greater will prevent aliasing errors. A filter with a faster cutoff rate will allow a lower sampling rate to be used, but for good visual definition of a signal of frequency f, a sampling rate of at least $4 f$ is recommended. Therefore, for signals up to 6 kHz , a sampling rate of 24 kHz or greater is recommended and an anti-alias filter with a cutoff rate of $48 \mathrm{~dB} /$ octave is suitable for most
purposes. A switch is provided for bypassing the filter, but ideally a different filter should be used for each sampling rate. Alternatively, the eight filter capacitors can be switched.

The sample-and-hold circuit in Fig. 4 is based on an i.c. with an acquisition time of 4μ s for 0.1% accuracy. When a sample is required, the t.t.l.-level line is taken low for $6 \mu \mathrm{~s}$ and then returned to the high state to hold the output voltage. Approximately $4 u$ s later, conversion starts which takes a further $20 \mu \mathrm{~s}$. The total cycle time is therefore about
$30 \mu \mathrm{~s}$ and this limits the maximum sampling frequency to 33 kHz . Voltage drift in the hold state does not exceed a few microvolts during the conversion period when a 1 nF hold capacitor is used. The d.c. offset control allows a signal with a non-zero mean level to be positioned within the +5 to -5 V range of the sample-and-hold i.c. To facilitate this adjustment the sample-and-hold input is made available as a pre-amp output for display on an oscilloscope.

The sample-and-hold i.c. is followed by a unity-gain amplifier which shifts the output range by 5 V to $0-10 \mathrm{~V}$ as required by the a-to-d converter in Fig 5. This circuit is based on an 8 -bit successive approximation type of converter and requires two adjustments for correct operation. With 20 mV d.c. applied to the input, pulse the start line momentarily to the high state with a suitable switch. The state of the output word can be conveniently viewed by temporarily connecting l.e.ds from the outputs of IC_{11} and IC_{12} to ground. If the converter is operating, the output states will all be low except for the least significant bit which may be high. The offset potentiometer R_{3} is adjusted while repeatedly pulsing the start line until the l.s.b. oscillates between high and low states in a random fashion. This procedure is repeated with 9.94 V d.c. at the input, using the gain potentiometer R_{2} until the 1.s.b. again flickers between the low and high states, and with the other seven outputs in the high state.

If the enable line is taken low, the output lines of IC_{10} float and data presented to the input lines then appears on the output lines and can be stored in the memory if required. When the converter is transferring data to the memory, enable high or floating, the input lines should be high or floating.

Fig. 4. Sample and hold circuit. The signal can be checked, prior to sampling, to ensure that it is within the +5 to -5 V range of the a-to-d converter.

The busy output goes low when a conversion is in process, and can be monitored to check that the conversion time is approximately $20 \mu \mathrm{~s}$. If the conversion takes longer, the 47 pF capacitor should be reduced to 39 or 33 pF .

The memory circuit shown in Fig. 6 uses two 256×4-bit r.a.ms. Both halves of the memory are addressed by an 8-bit input, and a data word is stored by pulsing the write line low. The writecycle time depends on the memory in use, the prototype provides a $6 \mu \mathrm{~s}$ pulse which is also used for the sample-and-hold circuit. Therefore, while the sample-and-hold circuit is in the sample mode, the digital word for the previous sample is stored in the memory.A $6 \mu \mathrm{~s}$ pulse allows low-speed memories to be used, the P8101 device has a cycle time of 1.3μ s. However, if the memory is to be accessed by a computer using memorymapped input/output, IC_{14} and IC_{15} should have similar cycle times to those in the computer memory. The contents

Fig. 3. Anti-alias filter. With the values shown, the cutoff frequency is 6 kHz .
of the addressed memory location are available on the output lines and are buffered by IC_{16} and IC_{17}. The states of the output lines can be displayed by eight l.e.ds as shown, or in a two digit hexadecimal format.

To view a transient which has been stored, the recording must be converted to analogue form by an 8 -bit d-to-a converter, see Fig.7. This circuit is based on the ZN 425 E and has a settling time of typically $2 \mu \mathrm{~s}$, which can easily cope with the maximum playback rate of 33 k words/s. Op-amp IC_{21} buffers the output and amplifies the signal to produce a voltage range of 0 to +10 V . The system gain from the input of the anti-alias filter to the analogue output is therefore unity.

No set-zero or gain adjustments are shown for IC_{21} as these were nat found necessary in the prototype. However, IC_{20} may be subject to sample variations, so check that the analogue output is within a few millivolts of 0 V when the input lines are all in the low state. When the input lines are all in the high state, the analogue output should be within a few millivolts of 9.96 V d.c. Circuit modifications for set-zero and gain adjustments are given in the ZN425E data sheet. Fig. 7 also shows a four pole unity-gain Butterworth low-pass filter with a cutoff frequency and rate of 12 kHz and $24 \mathrm{~dB} /$ octave respectively.

It is normal practice to use a cutoff frequency corresponding to half the playback rate. One filter is sufficient in this case because the playback rate can be selected. However, the cutoff frequency of the filter can be modified in a similar way to the anti-alias filter.

The logic required to trigger a single sweep of recorded data is shown in Fig.8. Momentary operation of the reset button clears the address counter via the clear line, and momentary operation of the trigger button, or a high-to-low transition on the trigger input, causes the counter to start at a rate determined by the sampling frequency. If the sweep switch is in the single position, the counter reaches 255 and remains in that

state. The contents of the 256 memory locations are therefore scanned or swept once. If the repetitive mode is selected, the counter continues and scans the memory repeatedly. To store data in the memory the reset button is operated, followed by the arm button which turns on the l.e.d. to indicate that the recorder is ready for a trigger pulse. When a trigger is received, the memory is swept once as before, except that write pulses are sent to the memory, which stores the output of the a-to-d converter after each sample has been taken. During this period the recording l.e.d. is on. When the recording is complete, the address counter continues to scan the memory contents if the sweep switch is in the repetitive position. However, the write signal is now disabled.

To be continued

Fig. 7. Digital-to-analogue converter and low-pass filter which can be switched in circuit to smooth the staircase output waveform.

Fig. 8. Control logic triggers a sweep of the recorded data.

Lightweight magnetron

This device, the MG5200, is a fixed-frequency magnetron operating in the $94-96 \mathrm{GHz}$ band and is a recent addition to English Electric Valve Co's range of tubes. EEV claims a 50% reduction in weight over the standard design, which has been achieved by the use of a rareearth samarium cobalt magnet structure, although the tube is basically an extension of the company's range of 80 and 90 GHz magnetrons. Like the earlier forms, this item has an expected life of more than 750 hours. The MG5200 can operate at pulse lengths down to 4 ns and is suitable for use in high-resolution radar applications. Essential data includes a peak anode voltage rating of 13 kV , peak anode current of 7 A , duty cycle at 0.0002 , pulse duration 50 ns , and output power 3 kW . Cooling is by forced air. Overall dimensions are 152 x $108 \times 76.5 \mathrm{~mm}$ and the magnetron weighs 1.8 kg . English Electric Valve Co Ltd, Waterhouse Lane, Cheimsford, Essex CM1 2QU.

WW301

R.f. amplifier modules

The QB-614 and QB14-2 are r.f amplifier modules which cover the ranges of 2 to 300 MHz and 5 to 200 MHz respectively. Each amplifier is encapsulated in a black epoxy case which, according to the distributors, March Microwave, represents a total volume of 0.17 ins. The quoted inherent noise figure is 1.5 dB

(QB-614-2), v.s.w.r. is $1.5: 1$ and signal gain is $12-13 \mathrm{~dB}$. Several amplifiers can be cascaded without loss of bandwidth and an internal power-line-decoupling network minimizes interference problems. Each module operates from a supply of 15 V at 10 mA , although satisfactory operation is possible with a supply rail of only 9 V ; connexions are made to 5 pins and each unit can be p.c.b. mounted. In small quantities the QB-614 costs $£ 28$ each and the QB-614-2 £35. March Microwave Ltd, 112 South St., Braintree, Essex.
WW302

Auto-ranging Avometer

Full autoranging facilities are claimed for the model DA117 Avometer by the makers, Avo Ltd. This meter is an l.s.i.-based version of the Avo digital model DAll6, which has been in production for some time. According to the company responsible for the development of the 1.s.i. chip used in the DA117, GEC Semiconductors, fast autoranging was not possible in the field for vital checks on d.c. voltage, current and resistance, using the "separate chip" methods used in the DA116. The 50 or so needed to give the required auto-ranging capability were therefore replaced by a custom-designed l.s.i. chip. Measurement ranges cover a.c. ord.c. voltage up to $1000 \mathrm{~V}, \mathrm{a} . \mathrm{c}$. or d.c. current up to 2 A (10 A manual) and resistance up to 20M. A semiconductor junction
test facility is also included. The price of the DA117 is $£ 135$ plus v.a.t. Avo Ltd, Archcliffe Road, Dover, Kent.
WW303

CIRCUITS CONTAINEO WITHIN THE L.s.t. CUSTOM CIRCUIT

block olagram of the avo oall autoranging multimeter

High friction mats

One of the main problems related to delicate work on small circuits or instruments is the tendency of the workpiece to move about on the workbench. "Stop slip" high friction mats are intended as an answer to this problem. The mats, made by the Swiss company Spirig and marketed in the UK by Cobonic, are elastomer material available as 1 mm or 2 mm thicknesses in dimensions up to 1 m square. This material constitutes a scratch-preventive working surface which, according to the makers, can act as. a "third hand" while soldering or fine adjustment is being carried out without the workpiece suffering crushing or scratching in the jaws of a vice. Cobonic Ltd, Knapton Mews, Seely Rd, London SW 17 9RL.

WW304

Mini thumbwheel switches

A new range of thumbwheel switches, made by Roxburgh Electronics, is said to be resistant to process contamination as well as being suitable for wave soldering to p.c. boards, without the need for special precautions. The switches are available in two main forms: a low profile form and a taller, sealed form; each switch can be mounted directly to a p.c. board and is available with clockwise or anticlockwise rotation. In the sealed form a

heat-sealed sub-assembly encloses the electrical contacts and an O-ring gasket seals the rotating surfaces. Maximum non-switching load of all forms is 1 A at 28 V d.c., max. switching load is 100 mA at 28 V d.c., contact resistance is 100 milliohms (first contact) and the operating temperature is $-10^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$. Roxburgh Electronics Ltd, 22 Winchelsea Road, Rye, Sussex. WW305

Audio level meter

Levels of audio signals between -72 dB and +22 dB with respect to zero level can be measured 'with this instrument, which comprises a peak-programme meter preceded by an amplifier. The p.p.m. measurement technique conforms to BS 5428 and calibration accuracy is 0.1 dB . Amplifier gain is selected by eight press switches, giving 10 dB steps from -60 dB to +10 dB , and there is also a rotary control which can be switched in to give a continuous 0 to -10 dB uncalibrated variation. Input impedance is $100 \mathrm{k} \Omega$ balanced but switchable to 600Ω and maximum input is 400 V pk continuous. The amplifier output, available through a headphone jack socket, has an impedance of 50Ω and is shortcircuited protected. The instrument is powered by rechargeable batteries and has a built-in mains adapter which continuously recharges them. Dimensions are $175 \times 67 \times 166 \mathrm{~mm}$. Named, perhaps misleadingly, "Audio Multimeter', the level meter costs £198.28 plus v.a.t. Bulgin Electronics Soundex Ltd, Park Lane, Broxbourne, Herts, EN10 7NQ. WW306

Felephone answering machine

Each function of the Storacall Ansamaster II telephone answering machine is continually monitored by the self-contained microcomputer which directs operations. The makers say that the unit can "talk" to the operator through an alphanumeric display, the machine also indicating how much recording time has elapsed, how many calls have been received, which call is being played back, whether a call is being taken and faulty operation either by user or due to a faulty cassette being used. Standard features such as fast forward and fast rewind are complemented by a "remote call" facility, which enables the user to listen to messages without having to return to home or office. A voice code is used to activate the unit, this code being programmed by the setting of five switches on the back panel. The unit can be rented for $£ 3.36$ per week or purchased outright. Price is available from the manufacturer on request. Storacall Ltd, 28 York St, Twickenham, Middlesex.
WW307

Cassette data recorder

The primary application quoted by B and K for its type 7400 digital cassette recorder is the monitoring of measurement instrument digital outputs. Up to 500 K -bytes of data, transmitted over the IEC/IEEE bus or B and

WW306

WW307

WW308

K low-power interface bus, can be recorded on a standard digital tape cassette and reconstructed on the bus later. The unit incorporates full manual and remote control facilities, permitting use independently of an IEC/IEEE controller during the recording or reading of data in the field. The recording formats meet ECMA 34 and ECMA 41 (Basic System). A 4-digit tape location display indicates the position of the tape and a "search" function can be used to speed the retrieval of data. In view of its conformity to ECMA standards, cassettes recorded on the 7400 can be read by ECMA compatible terminals and vice versa. The average record/read speed is 1000 bytes $/ \mathrm{sec}$ with a tape speed of 15 i.p.s. Errorchecking procedures are incorporated to ensure recording and reading accuracy; the search speed is 30 i.p.s. and the re-wind speed approximately 100 i.p.s.

The unit may be powered from either a.c. or d.c. supplies. B and K. Laboratories Ltd, Cross Lances Road, Hounslow, Middlesex.
WW308

Gallium phosphide l.e.ds

Ten times as much light, compared with conventional l.e.d. lamps, is the main claim made by General Instrument for its two new ranges of l.e.ds, specified as MK9150/MK9350. Unlike most l.e.ds, the new il. luminator is made using a process in which a nitrogen-doped gallium arsenide phosphide layer is grown on a gallium phosphide substrate. As gallium phosphide is transparent to light, greater light emission is possible and the makers claim operation of each

WW309

WW310
l.e.d. at 500 mW , with a light output comparable with that of incandescent filament lamps, although with a longer lifespan and less susceptibility to damage by vibration. Each l.e.d. consists of two chips wired in series and mounted in an injection moulded package with an integral lens and reflector. General Instrument, Unit 2, Cock Lane, High Wycombe, Bucks.

WW309

Combined accelerometer and pre-amp

An accelerometer with a frequency response of 1.5 Hz to 25 kHz , a nominal sensitivity of 2 mV per G and a noise floor of 0.01 G r.m.s. is combined with a pre-amplifier to form the BBN instruments' 501-ER. Natural frequency of resonance of the accelerator is 85 kHz and it is said by the distributors, Data Acquisition Ltd, to be capable of withstanding a shock of $10,000 \mathrm{G}$. Amplitude error from noise floor to 1000 G is 1% and special versions, with a similar error level, are available for shock levels up to $4,000 \mathrm{G}$. Output impedance is $1.200 \leq 2$. The case, which measures approximately $8 \times 6 \mathrm{~mm}$. is made of titanium and the complete unit is fitted with a coaxial cable and microdot connector. Matching power supplies are available which include a b.n.c. output connector to enable results to be viewed on an oscilloscope or spectrum analyser. Data Acquisition Ltd. Electron House. Higher Hillgate. Stockport. Cheshire.
WW310

Chimera

It's no good - I've got to say it. There is something about the way everyone is going steadily crackers over microcomputers and things that makes me want to hit somebody. Private small computers and processors have been with us several years now, and off-hand I can't think of one single way in which the human spirit has been uplifted or the sum of human happiness increased by their presence. I suppose I ought to keep my mouth shut, because I don't want to be a bore on the subject, but it's hard to sit by and watch the world's youth dedicatedly chasing rainbows without at least a nod as they go past.

There are two aspects of this madness that bother me, either of which is a subject fit for the pen of a philosopher or a psychologist, or both. Since I am neither, my views will probably be dismissed, but I'm having a go anyway. Firstly, there is the colossal waste of intellect and skill in designing and making the equipment. You take a team of scientists, engineers and production workers, put them to work for a couple of years with the directive to produce a better home computer. They carry out the task happily, because at least the product isn't going to kill anyone. It will perform all manner of impressive tricks in hardly, any time at all and there will be thousands of people perfectly willing to be convinced that life without their own microcomputer is barely worth living. So they lay out anything up to $£ 1,000$ on the gear and promptly come face to face with a problem. Once they've worked out a set of trig. tables, discovered that they can't really afford to go on paying the mortgage and driven themselves and all their friends daft with playing one of those games, the overriding and pressing reasons for buying the thing in the first place begin to seem less than obvious. Not everyone has a compelling need to know the date of Easter in 2067, and many people I know find that a set of boxwood Staunton pieces on a big wooden board that doesn't go 'bleep' every so often satisfies most of their needs.

I don't propose to labour the second point, because I'm going on a bit, but I did just want to say that the sight of a bright-eyed youngster of twelve or thirteen solemnly sitting in front of a keyboard and v.d.u: is one that fills me with a sense of deep unease.

Maybe a government mental health warning would be a good idea.

Jingo lingo

It looks as though a citizens' band - or open channel - will be with us eventually, for certain. It's been approved in
principle and all we need to know now is the frequency and type of modulation. It's good news - I think. Yes, I'm sure it is. Isn't it? Of course it is. It's what we've wanted for a long time, and it's a very good thing. It must be, I suppose.

I am, as you may have been able to discern, over the moon about the prospect of o.c. Well, actually, there is just one niggling little thought that is preventing me from climbing Nelson's column to proclaim my exultation to the world - what about language? What I mean is, will we be expected to use the same kind of gobbledegook as I am led to believe the Americans do? Will we require to become adept at assuring each other that, for example, a number of bears in plain wrappers have been sighted using a camera? Must we really refer to slavedriving sneakers in boots who are bleeding?

From the information I have been able to obtain from a study of some of the more strident c.b.'publications, the language used by US c.b. operators seems to be designed more to conceal the message than to convey it. Since it appears not to be playing the game at all to say what you mean, we are going to have to develop our own o.c. language, if only to avoid incongruities. Tijuana taxis, for example, possess little relevance to Basingstoke.

There is a whole new sub-culture emerging here. Police cars will become fuzz-boxes; linear amplifiers can be outboards; the Post Office may well be referred to as Big Ears and the o.c. system itself as a rod and tackle. All it needs is a little imagination.

Closed shop

In any occupation where you are accessible to thousands of people, you are pretty well certain to come across one or two oddballs sooner or later. It can sometimes be a bit tricky, though, to decide which of the apparent oddballs are the one hundred per cent, 22 carat, genuine article and which only appear to be, their seemingly screwy ideas being revealed after mature consideration to be full of sound sense. Faced with someone who does appear, at first sight, to be a little off the beaten track, the people here usually find it pays not to jump to conclusions but to listen first and at least to extend the normal courtesies of reply to anyone who wants to talk to us. We get ourselves into some fairly glutinous conversational and postal quagmires this way, but it's a lot safer and certainly less offensive than simply refusing to talk to anyone who seems unconventional.

Judging by what I am told by a friend of mine who might qualify as an
oddball, there are a great many people around in editors' chairs and in universities who seem to imagine that anyone who doesn't have a Ph.D. to wave and who prefers fishermens' jerseys to more pedestrian wear must have a tile loose and cannot be worth the negligible trouble of a considered reply to straight proposal or question.

My friend is a qualified mechanical engineer who has had the colossal cheek to venture away from his ordained path and to question some established natural 'laws' of nature. Whether he is right in his ideas or not, I am not able to judge, although they do possess considerable force and logic. Right or not, though, he experiences an almost total refusal by scientists to discuss his ideas or even, in some cases, to acknowledge his existence.

If his work is ill-founded tripe, then he has yet to hear an explanation of why it is. If it is not, why does no one acknowledge that, just possibly, he might have something? Scientists, by definition, are supposed to be seekers after knowledge: there is no law which says that the search must be the prerogative of those with a conventional training.

Look and learn

It was, I thought, considerate of the BBC and IBA to show all us trainee terrorists how the army and police go about their side of an operation like the Iranian Embassy caper. There aren't many ways in which we can gain experience of modern methods, apart from applying to join a terrorist gang, and they all have long waiting lists. So the training course on television, especially IBA television, will have been very worthwhile for a lot of probationers who haven't yet got much beyond blowing out the odd shopfront here and there.

Of course, the television programmes weren't really for our benefit: of course not. That would have been silly. No, I expect the chaps actually inside the embassy found them much more immediately useful than we did. And all praise here to the IBA, who smuggled their cameras courageously past the pi
police cordon to the back of the building, where the soldiers came down from the roof. Without those pictures, our lot might have made the same mistakes again, sometime in the future

It has often been said that British television is the best in the world, particularly by British television people, who ought to know, and I think this proves their point. Which other country's networks would display such devotion to the educational interests of minority groups?

Celestion G12/50TC

Celestion G12/80CE
Celestion G12/80TC
Celestion G12/125CE
Celestion G15/100CE
Celestion G15/100CE
Celestion G18/200
Celestion HF1 300
Celestion HF2000
Celestion Powercell 12/150
Celestion Powercell 15/250
Celestion MH 1000
Fane Classic 45 12'
Fane Classic $5512^{\prime \prime}$
Fane Classic $8012^{\prime \prime}$
Fane Classic $8515^{\prime \prime}$
Fane Classic $15015^{\prime \prime}$
Fane Classic $15015^{\prime \prime}$
Fane Classic $12518^{\prime \prime}$
Fane Classic $1258^{\prime \prime}$
Fane Classic $1758^{\prime \prime}$
Fane Classic 175 18" $^{\prime \prime}$
Fane Guitar 80L $12^{\prime \prime}$
Fane Guitar 80B 1212
Fane Disco $10012^{\prime \prime}$
Fane PA85 12"
Fane Bass $10015^{\prime \prime}$
Fane Crescendo 12 E
Fane Crescendo 15 E
Fane Crescendo 15 E
Fane Crescendo 18E
Fane Colossus 15 E
Fane Colossus 18E
Fane $\mathrm{J44}$
Fane J 104
Fane J104
Fane J73
Fane HPX1/HPX2
Fane HPX3A
Fane HPX3B
Fane HPX
Goodmans BPA
Goodmans PP 12
Goodmans DI12
Goodmans GR 12
Goodmans 18 P
Goodmans Hifax 50HX
McKenzie C1280GP
McKenzie C1280TC
McKenzie C1280 bass
McKenzie GP15
McKenzie C15 bass
McKenzie C1 5 bass
Motorola Piezo horn $31 / /^{\prime \prime} \mathrm{C}$
Motorola Piezo $2^{\prime \prime} \times 6^{\prime \prime}$
Richard Allan HDBT
Richard Allan HD1OT
Richard Allan HD 12 T
Richard Allan HD15
Richard Allan HD 15P
Richard Allan Atias 15",
Richard Allan Atlas $18^{\prime \prime}$
£8.95 Richard Allan DT30 Shackman Electrostatic with polar. network Tannoy DC296 10 \quad 先 \quad E107.35 Tannoy DC316
Tannoy DC3
$1^{\prime \prime}$

KITS FDh Magazine designs, ate KITS INCLUDE DRIVE UNITS. CROSSOVERS, BAF/LONG FIBRE WOOL, etc
FOR A PAIR OF SPEAKERS Carriage $£ 3.75$ unless otherwise stated
Practical Hi Fi \& Audio PRO9-TL (Rogers)

> As above but including felt panels Hi Fi A $£ 152.75+£ 5$ carriage Hi Fi Answers Monitor (Rogers) $£ 146.00$ Hi News State of the Ant (Atkinson) $£ 185.00$ Hi Fi News Miniline (Atkinson) £ 185.00 Hi Fi For Pleasure C49.00 $+£ 3$ carriage loms) Popular Hi Fi Mini Monitor (Colloms)
Popular Mi Fi Round Sound (Siephens)
Popular Mi Fi Round Sound (Stephens) including complete cabinet kit $\quad € 71.00$
Popular Hi fi Jordan System 1 Popular Hi Fi Jordan System
Practical Hi Fi and Audio BSC3 $\mathrm{ERO}^{\text {cerriage }}$
\qquad
Practical Hi Fi and Audio Monitor (Giles)
Practical Hi Fi and Audio Triangle (Giles) E120.00 Hi Fi News Tabor (Jones) with J4 bass units Hi Fi News Tabor (Jones) with H4 bass units Wireless World Transmission $£ 70.00$ Wireless World Transmission Line KEF (Bailey) $\mathrm{E125.00}$ FORD (Bailey) Everyday Electronics EE70 (Stephens)
Everyday Electronics EE70 (Stephens)
Everyday Electronics $\begin{array}{r}\text { EE } 20 \text { (Stephens) } \\ \text { £29.50 }+£ 3 \text { carriage }\end{array}$
SMART BADGES FREE WITH ABOVE KITS (TO GIVE THAT PROFESSIONAL TOUCH TO YOUR DIV SPEAKERSI)
REPRINTS/CONSTRUCTION DETAILS OF ABOVE DESIGNS 10pEACM

Prices per pair Carriage $\mathbf{£ 3 . 9 5}$ pair

Dalesford System $1 \quad £ 54.00$ Dalesford System 3 E104.00 Dalesford System 4 E110.00 Dalesford System $5 \quad$ E142.00 Dalesford System $6 \quad £ 95.00$ Goodmans DIN 204 ohm (special offer) $\begin{gathered}\mathbf{£ 2 7 . 6 0}\end{gathered}$ KEF Reference 104 aB kit
£133.00 $+£ 5$ carriage KEF Cantata kit $\quad £ 213.50+£ 5$ carriage LS3 Micro Monitor kit £71.00 $+£ 3.75$ carriage Lowther PM6 kit
Lowther PM6 Mk I kit owther PM 7 kit Peerless 1070 Peerless 1120 Peerless 2050 Peerless 2060
Radford Studio 90 kit Radford Studio 270 kit Radford Monitor 180 kit Radford Studio 360 kit RAM 50 kit (makes RAM 100)
Richard Allan Tango Twin kit Richard Allan Maramba kit Richard Allan Charisma ki Richard Allan Super Triple kit Richard Allan Super Saraband II Richard Allan RA8 kit
Richard Allan RAB2 kit
Richard Allan RAB2L kit
-SEAS 223
SEAS 253
SEAS 403
SEAS 603
Wharfedale Denton XP2 kit Wharfedale Shelton XP2 k Wharfedale Glendale XP2 kir

WILMSLOW AUDIO BAI sub bass
amplifier/crossover kit
£ $37.95+£ 1$ carriage

EVERYTHING IN STOCK FOR THE SPEAKER
CONSTRUCTORI
BAF, LONG FIBRE WOOL.
FOAM, CROSSOVERS, FELT PANELS, COMPONENTS, ETC. LARGE SELECTION OF GRILLE FABRICS.
(Send 22 p in stamps for grille fabric samples)

ALL PRICES INCLUDE VAT @ 15\%

Send 50p for 1980 56-page catalogue 'Choosing a Speaker'

Tel: 0625529599 FOR MAIL ORDER \& EXPORT OF DRIVE UNITS, KITS, ETC
=
Lightning service on telephoned credit card orders!

Tel: 0625526213 (SWIFT OF WILMSLOW) FOR HI-FI \& COM
PLETE SPEAKER SYSTEMS
 WILMSLOW sylitio The firm for Speakers

WASP SYNTHESISER

DREAM PLANT ELECTRONICS

 -.- Now Mallagle II Mit fonm for ouly

FEATURES INCLUDE:-
TOUCH SENSITIUE DIGITAL KEYBOAR 2 OSCILLATORS CONTROL OSC. WITH RANOM SAMPL WHITE NOISE FULLY COMPREHENSI CONTROLS FOR WITH FREQUENCY \& 'G' CONTROLS FOR
LOW/BAND/HIGH FASS. 2 ENVELOPE GENERATORS WITH REPEAT \& DELAY CONTKOLS. OUTPUT JACKS TO CONNECT TO OTHER WASPS USING A SIMPLE TO FOLLOW CONE FOR CONNECTION TO

$$
\begin{aligned}
& \text { FOLLOW CONE FOR CONNECTIUN } \\
& \text { ANY INTEFFACEH MICFOFROCESSOF. }
\end{aligned}
$$ SUILT IN SPEAKER \& 9 VOLT ALIAFTOR INFUT. LINE \& HEARIFHONE OUTPUTS THIS SYNTHESISER IS ENTIFELY SELF-CONTAINEII

IN A TOUGH FLASTIC CASE COMPLETE WITH

 THe complite wit come with an easy to follow Assemby dulo and plaving mavual

 CMPLETE WITH
 - THIS SYN PLASTIC CASE COMPLETE WIH

WILL TAKE PLACE
 29th-31st OCTOBER 1980 WEST CENTRE HOTEL, LILLIE ROAD, LONDON 10 am to 6 pm
 (Closing 5 pm on the last day)

The response to the second exhibition for professional and business people has been overwhelming, justifying the decisiors to "take the whole hall at the West Centre Hotel.

An additional feature to this year's show will be a Workshop/Forum, where sponsoring company's will hold an open discussion on the latest related topics. Entry to this will be free.

This year's event is designed as it's title suggests, to interest not only those professionally involved with viewdata \& teletext, but also those businessmen whose companies are able to use viewdata or are already doing so.

The event has over 40 exhibitors including: Sony, GEC, Information Services, The Post Office, Langton Information Services, CAP CPP,

Granada TV Rental, Fintel, Eastel, Cherry Electrical, Centronics, Link House Communication, Ansafone, STC, ITT, Bishopsgate Terminals, Oracle (London Weekend TV), and Barco Video Terminals (C.W. Cameron Ltd), showing a wide variety of exhibits such as:

Editing equipment basic and advanced, monitors and user terminals, private viewdata systems and equipment, peripherals including printers, magnetic media recorders, light pens, graphic design aids and keyboards, accessories such as camera attachments, anti-glare sprays, screen hoods and masks, telephone timers, microcomputers for telesoftware and other "umbrella" activities and facilities, software services for advanced editing, publications, semiconductor devices and many more.

ENTRANCE TO THE EXHIBITION IS FREE BY REGISTRATION

Advance tickets are available on demand from the organisers at:
Viewdata Tickets
IPC Exhibitions Ltd
40 Bowling Green Lane
London EC1R ONE

NEW TEST EQUIPMENT FROM KEITHLEY'S

130 Digital Multimeter $31 / 2$ digits 25 Ranges 5 functions $100 \mathrm{uV}: 1 \mathrm{AA}: 0.10 \mathrm{hm}$ sens. 1000 D.C.: 750 V A.C. 20 Mohms . $£ 79.00$. Optional Case $£ 7.00$

169 Bench Model Digital Multimeter $31 / 2$ digit 25 Ranges. 5 Functions. 100 uV : $1 \mathrm{nA}: 0.10 \mathrm{hm}$ 2 Amps 20 Mohms f99.00
Carriage \mathcal{C}_{2} each + VAT. Cash with order unless accredited account.
NEW BRITISH OSCILLOSCOPES FROM SCOPEX
4 S 6 Single beam 6 MHz 10 mV sens.
0 m V-50 . 8144.00
D-10B Dual Trace DC-10MHz $10 \mathrm{~m} V-50 \mathrm{~V} / \mathrm{cm} X$ - Y operation, Z Modulation. Acc. $\pm 3 \%$,
4D-25 Dual Trace DC-25MHz 10 mV sens.
E 360.00
CARRIAGE \& VAT EXTRA ON ALL ITEMS

MARTINASSOCIATES
34 Crown Street
Reading
Berks. RG $125 E$
Tel. Reading (0734) 51074

Youill do better at Martin Associates we guarantee it!

USED TEST EQUIPMENT

ANALYSERS $10 \mathrm{MHz}-18 \mathrm{Ghz}$.. TEKTRONIX 1L5 Spectrum Analyser Unit $50 \mathrm{~Hz}-1 \mathrm{MHz}$. $\mathbf{6 8 5 0 . 0 0}$

BRIDGES

WAYNE KERR B. 641 Auto Balance Bridge 0.1\%
. $\mathbf{£ 4 0 0 . 0 0}$
WAYNE KERR B. 601 R.F. Bridge $15 \mathrm{KHz}-5 \mathrm{MHz} 1 \%$
MARCON1 TF. 2701 Universal Bridge Battery Operated
GENERAL-RADIO 1607A Transfer \& Immittance Bridge
c200.00

COUNTERS
 PHILIPS 6620 DC. 45 MHz 6 diglt Counter Timer MARCON1 TF. 2416 DC-50MHz 7 digit Counter Timer
-.. E125.00
ع110.00

METERS

RADIOMETER BKF. 6 Distortion Meter 20Hz-20KHz 185.00
MARCONI TF.1020A/1 R.F. Power Meter 0-100W 50 Ohms
A.E.1. FB. $22 /$ B Gauss Meter $0-25 \mathrm{KG}$.
£100.00

OSCILLOSCOPES
HEWLETT-PACKARD 130 C X.Y.T. Single Beam DC-500KHz 200uV/cm-20V/CM
SCOPEX 4 S6 Single Beam $6 \mathrm{MHz} 10 \mathrm{mV} / \mathrm{cm} 3$ months old
£125.00
SOLARTRON CD 1400 Dual Beam DC-15MHz $100 \mathrm{mV} / \mathrm{cm}$
©150.00

SIGNAL GENERATORS
HEWLETT-PACKARD $606 B 50 \mathrm{KHz}-65 \mathrm{MHz}$ o/p $1 \mathrm{uV}-3 \mathrm{~V} 50 \mathrm{Ohms}$
HEWLETT-PACKARD $608 \mathrm{~F} 10 \mathrm{MHz}-455 \mathrm{MHz} \mathrm{O} / \mathrm{P}$ O. $1 \mathrm{uV}-0.5 \mathrm{~V} 50 \mathrm{Ohms}$ MARCONI $995 \mathrm{~A} / 5 \mathrm{AM} / \mathrm{FM} 1.5 \mathrm{MHz}-220 \mathrm{MHz}$ O/P $0.1 \mathrm{UV}-200 \mathrm{uV}$
RECORDERS
CLEVITE 260 Brush Recorder 6 Channel $+u / s$ one for spares
MISCELLAN SOUS 277 -FFF Climatic Oven $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
WAYNE KERR TM. 60 Testamatic
$£ 750.00$
£400.00
$£ 400.00$
$£ 450.00$
$£ 450.00$
£750.00
C500.00
£150.00

WW - 055 FOR FURTHER DETAILS

NEW PRICES ON MEMORIES

$2102 \mathrm{~L}-450 \mathrm{~ns} 1 \mathrm{KX} 1$ SRAM
.55
$2114-300 \mathrm{~ns} 1 \mathrm{KX} 4$ SRAM
3.51

2114-200ns $1 \mathrm{~K} \times 4$ SRAM
3.86

4116-200ns $16 \mathrm{~K} \times 1$ DRAM
2708-450ns $1 \mathrm{~K} \times 8$ EPROM
4.50
4.39
11.50

Carter ASCII Keyboard
£39.50
AY-5-1013 UART
2.60
$2102 \mathrm{~L} \times 8450 \mathrm{~ns}$ SRAM
2114×8.300 ns SRAM
3.85
24.45
$4116 \times 8200 n s$ DRAM
26.89
31.35

Please add 50p Postage and 15% VAT to all orders.

STRUTT LTD.

(ELECTRONIC COMPONENTS
DISTRIBUTORS)
3C Barley Market Street
Tavistock, Devon PL19 0JF
Tel. Tavistock 0822-5439
Telex 45263

Faircrest Engineering Lid., manufacture a comprehensive range of equipment for processing all types of picture tubes. colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team.
Full training courses āre individually tailored to customers requirements.

For.full details of our service contact Neil Jupp
FAIRCREST ENGINEERING LTD.
Willis Road, Croydon. CRO2XX.
01-6841422.01-6898741

Expandable Random Access Memory Board

Features

*S-100 Bus Compatible * 4 MHz Operation

* Board Select for Multi-user System
* Expandable Memory from 16 K to 256 K using 16 K or 64 K devices
* DIP Switch selectable boundaries at any 16 K or 64 K boundary
* Page Mode Operation Allows up to 8 boards on a Bus
* Operates with Z80 CPUs
* Phantom Output Disable and a manual Switch Selectable Output Disable
* Power Dissipation - 5 watts, Typical
* Wait States and Invisible Refresh Synchronized
* 4-64K Banks are available with 4164's

The ExpandoRAM II provides a low cost means for expanding Random Access Memory capability for computers using the S-100 Bus structure. The board's design allows eight boards to operate from the same S-100 Bus.

Page mode operation provides the system with the capability of servicing multiple users without RAM interference. Synchronization of the walt state and invisible refresh deliver faster operation, allowing processing speeds up to 4 MHz .
The ExpandoRAM II is compatible with most S-100 CPUs based on the $\mathbf{Z 8 0}$ microprocessor. When other SD SYSTEMS 200 series boards are combined with the ExpandoRAM II, they create a microcomputer with exceptional capabilities and features.

OUR PRICE: $£ 129.00$ to $£ 299.50(64 \mathrm{~K}$ Kit) Built \& Tested from: $\mathbf{~} \mathbf{£ 2 7 2 . 0 0}$ to $\mathbf{£ 3 9 8 . 0 0 (6 4 K ~ B - T)}$
All items subject to V.A.T
For further information on this board, or any other boards in our comprehensive range
i.e.: SBC100, Versafloppy I + II, VDB 8024, Z80 Starter Kit etc. Please write or telephone.

Unit A2 9 Longford Avenue Kilwinning Industrial Estate Kilwinning Ayrshire KA136EX Tel. 029457755 Telex 779808

HERE'S HOW TO TALK TO ALL OF THE PEOPLE ALL OF THE TIME

with a communications system built up from the all-embracing, constantly expanding range of

The latest addition to that range -

CU107 AUDIO CONTROL UNIT

with AMBIENT NOISE SENSING CAPABILITY

for automatic volume control adjustment according to background noise at any given time during the announcement to optimise.overall performance. plus override pre-set level switching for emergency announcements.

When it comes to SOUND communications, REDITRONICS EQUIPMENT does MORE FOR LESS. REDITRONICS is the one name that says it all.

Send for details of any item, and our full brochure, of a range of equipment that can provide every integrated link in the chain of a tailor-made sound communications system.
and to meet growing demand-

- Usitune are appointed as Reditronics distributors for Greater London and the Home Counties.

Contact Musitune Lid., 388 Green Lanes. London N4 1 DW (Tel: 01-802 1163) for Reditronics systems-planning to your exact requirements.

Simply ahead...

POWER AMPLIFIERS

ILP Power Amplifiers are encapsulated within heatsinks designed to meet total heat dissipation needs. They are rugged and made to last a lifetime. Advanced circuitry ensures their suitability for use with the finest loudspeakers, pick. ups, tuners, etc. using digital or analogue sound sources.

Model	Output Power R.M.S.	Dis. tortion Typical at 1 KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price + V.A.T.
HY30	$\begin{aligned} & 15 \mathrm{~W} \\ & \text { into } 8 \end{aligned}$	0.02\%	100 dB	-20.0. +20	$105 \times 50 \times 25$	155	$\begin{array}{r} \mathbf{£} 6.34 \\ +95 p \end{array}$
HY50	$\begin{aligned} & 30 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.02\%	100 dB	. $25.0 .+25$	$105 \times 50 \times 25$	155	$\begin{aligned} & \varepsilon 7.24 \\ & +£ 109 \end{aligned}$
HY 120	$\begin{aligned} & 60 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.01\%	100 dB	$\cdot 35 \cdot 0 \cdot+35$	$114 \times 50 \times 85$	575	$\begin{aligned} & £ 15.20 \\ & +£ 228 \\ & \hline \end{aligned}$
HY200	$\begin{aligned} & 120 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.01\%	100 dB	-45.0.+45	$114 \times 50 \times 85$	575	$\begin{array}{\|} \hline & 18.44 \\ +[277 \end{array}$
HY400	$\begin{aligned} & 240 \mathrm{~W} \\ & \text { into } 4 \Omega \end{aligned}$	0.01\%	100 dB	$-45 \cdot 0 \cdot+45$	$114 \times 100 \times 85$	115 kg	$\begin{array}{r} 627.68 \\ +\quad £ 415 \\ \hline \end{array}$

Load impedance - all models $4 \Omega-\infty$
Input sensitivity - all models 500 mV
Input impedance - all models $100 \mathrm{~K} \Omega$
Frequency response - all models $10 \mathrm{~Hz}-45 \mathrm{KHz}-3 \mathrm{~dB}$

POWER SUPPLY UNITS

ILP Power Supply Units with transformers made in our own factory are designed specifically for use with ILP power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled laminated transformer, for smaller PSU's - in the other for larger PSU's, ILP toroidal transformers are used which are half the size and weight of laminated equivalents, are more efficient and have greatly reduced radiation.

PSU $30 \pm 15 \mathrm{~V}$ at 100 mA to drive up to $12 \times$ HY 6 or 6 \times HY66 £4.50 + £0.68VAT
THE FOLLOWING WILL ALSO DRIVE ILP PRE - AMPS
PSU 36 for 1 or 2 HY30's $\mathbb{8} .10+£ 1.22$ VAT
PSU 50 for 1 or 2 HY50's $£ 8.10+£ 1.22$ VAT
PSU60 with toroidal transformer for
1 HY $120 \quad$ £9.75+E1.46VAT
PSU 70 with toroidal transformer for 1 or
2 HY120's £13.61+£2.04 VAT
PSU 90 with toroidal transformer for
1 HY200 £13
1 HY 400 or $2 \times$ HY $200 \quad £ 23.02+€ 3.45$ VAT

AVAILABLE ALSO FROM WATFORD ELECTRONICS, MARSHALLS AND CERTAIN OTHER SELECTED STOCKISTS.

this time with two new pre-amps

 HY6 mono HY66 stereo

 HY6 mono HY66 stereo}

When ILP add a new design to their audio-module range, there have to be very special reasons for doing so. You expect evenbetter results. We have achieved this with two new pre-amplifiers - HY6 for mono operation. HY66 for stereo. We have simplified connections, and improved performance figures all round. Our new pre-amps are short-circuit and polarity protected: mounting boards are available to simplify construction.
Sizes - HY6-45 $\times 20 \times 40 \mathrm{~mm}$ HY66 $90 \times 20 \times 40 \mathrm{~mm}$ Active Tone Control circuits provide $\pm 12 \mathrm{~dB}$ cut and boost. Inputs Sensitivity - Mag PU. -3 mV Mic - selectable 1.12 mV : Allothers 100 mV Tape O/P - 100 mV Main O/P -500 mV : Frequency response - D C to 100 KHz - 3dB

OTARI DP4050 C2 cassette duplicator

Now-highest quality copying at low cost

The first low cost copier to give you reliability and performance to professional standards. No other copier can match its precision engineering, and it is the only budget copier suitable for music programmes.

* One master, 2 slaves.
* Add on units available up to 11 slaves.
* Automatic rewind.
* Ferrite heads.
* 16:1 duplicating ratio.
* Modular slave decks with DC servo motors.

Also available: Reel to cassette version with 6 slaves.

OTARI from ITA

1.7 Harewood Avenue, Marylebone Road, London NW1. Tel: O1-724 2497. Telex: 21879.

WW-058 FOR FURTHER DETAILS

CRYSTAL ELECTRONICS CC ELECTRONICS

XTAL BASIC 2.2 NOW ON SHARP MZ80K

 All the features of SHARP BASIC and more-occupies 5K less RAM MZ 80K RAM£520 + VAT (with XTAL'BASIC leaves 11 K for programs) XTAL BASIC for Sharp
only $£ 40.00+$ VAT
The Sharp MZ80K \& XTALBASIC Guaranteed for 12 months
NASCOM OWNERS
have you got your XTAL BASIC yet, a lot already have NASCOM VERSION
only $£ 35$ +VAT
AT GOING TO PRESS, WE HAVE THE FOLLOWING ICS SURPLUS TO OUR REQUIREMENTS Terms Cash with Order, Min Order £5.00, please add VAT Please phone to confirm availability before ordering.

74	193	900	S74	35p	S175	97 p	191	85p	
Serles	393 £1.00		586	400	S180 1750S194 1.00			196	
0012 p			S112	55p					
02120	743			£1.80	S280	£2.00	248 £1.85		
15 25p	serles		S132S133	86p$60 p$			279		
74 20p	SO2 12p				S283		395		
8560 p	S03	120	S135S139	570	74Ls				
8630 p	S04	80p		700			In		
90300	S10	17p	S140	75p	Series				
93 25p	S11	24p	S151	800	85	¢1.00	NE556	600	
$13655 p$	S15	30 p	S153	76p	151	900	LM3900	50 D	
155 45p	S28	41p	5157	760	161	90 p		20 p	
161 85p	S37	40p	S158	96p	173	£1.00	280P10	£7.00	
165 90p	S40	20p	S174	¢1.05	175	80p	Z80CTC	¢7.00	

Members of Computer Retailers Association \& Apple Dealers Association
Shop open 0930-1730 except Saturday \& Sunday
40 Magdalene Road. Torquay, Devon, England. Tel: 080322699

WW - 023 FOR FURTHER DETAILS

Codesoesed \#ecrionios

P.O. BOX 23, 34 SEAFIELD ROAD, COPNOR, PORTSMOUTH, HANTS. PO3 58J GIANT $0.8^{\prime \prime}$ LEO Clock display, common cathode. non. multiplexed. Winh data E3.95 oach. ALARM clock modute with 0.7" LED display. Witht date 85.9 each. LIDUID crysal clock display. $0.5^{\prime \prime}$
digits. With data and FREE socker. E5.25 each. FLUORESEENT reiect caicularors. Modern, 10

 swith. Red cap. 15 peach. $\mathbf{S L I O E}$ swich, 2 pole c.i. 16 pe each. TWO calculator keyboards thol
 8 mm shats. Sate colour 14 p each. Rotary contro knobs. Diack (18 mm diam) with coloured cap. state colour required. 20p each. Skinted rotary knob, same as rotary conirol knob above but has
 99p each. LED WRISTWATCM CHIP with data 95p each. LEO WRISTWATCH DISPLAY maiches above waich chip. With data, 95 p each. NOTE The wrisiwatch chip and display are housed in 'legless fllipack' sntle package and require some farty fine soldering. OUALITY iack sockets,
 data 80p esch. UNTESTED $0.1{ }^{1}$ "LED displays. 10 single digit displays tor $85 p$. 4 calc lest POST AND PACKING PLEASE ADO 40 P (OVERSEAS ORDERS ADD $£ 1$)
VAT ADD 15% TO TOTAL COST (INCLUDING POST AND PACKING).

S-2020TA STEREO TUNER / AMPLIFIER KIT

NOW WITH BIFET OP AMPS

A high-quality push-button FM Varicap Stereo Tuner combined with a 24 W r.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifier Low field Toroidal transformer, Mag. input, Tape In/Out facility (for noise reduction unit. etc.) THD less than 0.1% at 20 W into 8 ohms. High Slew Rate. Low noise op. amps used throughout. Power on /off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic IF.
INTERSTATION MUTE, and phase-locked IC stereo decoder, LED tuning and stereo indicators. Tuning range $88-104 \mathrm{MHz}, 30 d B$ mono $/ \$ N @ 1.2 \mu V$. THD 0.3%. Pre-coder birdy filter.

PRICE: £59.95 + VAT

NELSON-JONES

 Mk. 2 STEREO FM TUNER KITA very high performance tuner with dual gate MOSFET RF and Mixer ready built front end, triple gang varicap tuning, linear phase l.f. and 3 state MPX decoder.

PRICE: £69.95 + VAT

NRDC-AMBISONIC UHJ SURROUND SOUND DECODER

The firet ever kit specially produced by Integrex for this British NRDC backed surround sound systern which is the result of 7 years' research by the Ambisonic team. W.W. July, Aug., ' 77. The unit is designed to decode not only UHJ but virtually all other 'quadrophonic' systems (Not CD4), including the new BBC HJ. 10 input selections. The decoder is linear throughout and does not rely on listener fatiguing fogic enhancement techniques. Both 2 or 2 Input signals and 4 or 6 output signals are provided in this most versatile unit Complete with mains power supply, wooden cabinet, panel, knobs, etc.

Complete kit, including licence fee $£ 49.50$ + VAT or ready built and tested $\mathbf{£ 6 7 . 5 0}$ + VAT

S5050A STEREO AMP Very high
 50 watts rms-channel. 0.015% THO. S/N 90 dB, Mags/n 80 dB . Output device

 rating 360 w per channel.one cancel switch 2 tape monitor switches. Metal case - comprehensive
heatsinks.
Complete kit only $£ \mathbf{£ 3 . 9 0}+$ VAT

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval
The original "Wireless World" published Intruder 1 has been re-designed by Integrex to incorporate several new features, along with improved performance. The kit is even easier to build. The internal audible alarm turns off after approximately 40 seconds and the unit re-arms. 240 V ac mains or 12 V battery operated. Disguised as a hard-backed book. Detection range up to 45 feet. Internal mains rated voltage free contacts for external bells etc.
Complete kit $£ 49.50$ plus VAT, or ready built and tested $£ 64.50$ plus VAT

Wireless World Dolby
 noise reducer

Trademark of Dolby Laboratories Inc.

Complete Kit PRICE: £43.90 + VAT (3 head model available)

Also available ready built and tested

Calibration tapes are available for ópen-reel use and for cassette (specify which)
Single channel plug-in Oolby (TM) PROCESSOR BOARDS ($92 \times 87 \mathrm{~mm}$) with gold plated contacts and all components

Typical porformance
Noise reduction better than 9 dB weighted.
Clipping level 16.5 dB above Dolby level (measured at 1% third harmonic content)
Harmonic distomion 0.1% at Dolby level typically 0.05% over most of band, rising to a maximum of 0.12%
Signat-o-noise ratio: 75 dB (20Hz to 20 kHz , slgnal at Dolby level)) at Monitor output
Dynamic range $>90 \mathrm{~dB}$
30 mV sensitivity
Price $£ 59.40$ +VAT
Price $\mathrm{E2.40}+\mathrm{VAT}$
Price $£ 9.00+$ VAT

All kits are carriage free
ITTEGREK LIMITED

Please send SAE for complete lists and specifications
Portwood Industrial Estate, Church Gresley. Burton-on-Trent, Staffs DE11 9PT Burton-on-Trent (0283) 215432 Telex 377106

	BC108 FALLOUTS Manufäcturers out of spec. on volts or gain or nelther Metal TO18 case - You test. O No. SJ124 50 for 1			
		31. TO-126-NPN. Untested	$1 C$ SOCKET PAKS	
200 Mixed Diod Case DOT. Value all ched and uncoded - You to test O No. SJ127 $\mathbf{E 1}$ per Pak.		O No. SJ84 $\mathbf{2 5}$ for $\mathbf{f 1}$ SCRs TO66 SCRs 5 Amp - ALL good - untested volt ${ }^{-}$- good vield $400+$. oNo. SJ130 10 for $£ 1$		
SIL. DIODES		AERIALS	VOLTAGE REGULATORS	
200 Mixed Diodes - mainly SILICON case DO-7. OA200:202. General purpose 200 mA marked and uncoded - you to son and test - Ourstanding valuel O No. SJ128 £1 per pak		FM Indoor TapeRibbon Aerial o No. 107 40p each HI-FI CAR AERIAL 4. section fully retractabie and locking. SPECIAL PRICE OiNo. $109 £ 1.40$ each		
AUDIO AMPLIFIER 5 wat1 Audlo Amplifier Module. Special Clearance Offer 0 No. AL20 $£ 2.50$	SMM. 1	STEREO 30 Complete 7 wart per channel Stereo Amplifier Board - includes amps, pre-amp. power supply. front panel knobs, etc. PLUS transformer and real Teak Cabinet for that professional finish!	TEXAS NPN	
	The last of the Germanium PNP OC71-71.75 etc. Muilard Black Glass Type - You test (5 could cost you that!) o No. SJ126 50 pcs $£ 1$ GERM. POWER TRANS. AD149-OC26-AD140................ $\mathbf{£ 0 . 5 0}$ each AD142.OC28-2N3614 f0.65 each		Texas NPN sificon transistors. metal can perfect and coded $2 S 503=\mathrm{BC} 108, \mathrm{TO}-18$. o No. SJ29 50 off £2.50 100 off £4. 1,000 off £35	
HEADPHONES	VERO PLASTIC CASE Complete with tid and fixing screws. Fintished white. Size: $72 \mathrm{~mm} \times 50 \mathrm{~mm} \times 25 \mathrm{~mm}$. oNo. 173 35p each			
NEW Improved Lightweight Stereo Headphones including double headband and padded earcups Impedance Bohms Frequency $30-1800 \mathrm{HZ}$. ALL Black. ONo. 885 £4 As above but with colled lead and rotary volume controls. $\text { O No. } 884 \text { £7 }$		SPECIAL SALE PRICE SAVING £5! OUR PRICE E 25	AUDIO ACCESSORIES SJ75. FM coax cable plain coppar conduction cellular polythene insulated and plain cop braided PVC sheath impedance 75 ohms . f. 0.10 per metre SJ76. 1 Board containing 2×5 pin DIN sockets 180° SJ77. A 5 pin DIN 180° chassis/normal socket incl. DPDT Switch £0,20.	
HEADPHONE ACCESSORIES 7 metre Headphone Extension Lead	BI-PAK'S OPTO BARGAIN OF THE YEAR Valued at over $\mathbf{E 1 0}$ - Normal Retail - We offer you a pack of 25 Opto devices to include LED's Large and Small in Red, Green, Yellow and Clear. 7 Segment Displays both Common Cathode and Common Anode PLUS bubble type displays - like DL-33. -Photo Transistors - similar to OCP71 and Photo Detectors - like MEL11-12. This whole pack of 25 devices will cost you just £4.00! And we guarantee your money back if you are not completely satisfied. FULL data etc. included O/No. S. 120.		DISC CERAMIC CAP.	
HEADPHONE JUNCTION BOX Gives facillty for using Stereo Headphones with amplifiers and radiogrammes which do not have a headphone outlet. TO CLEAR o No. 889. £1.20 each.			100 Disc Ceramic CAP. Mixed values covering complete range 3PF.4,900PF. SUPER VALUE O No, S」121. £1.00.	
ANTEX			SWITCHES Push-to-make. 6 mm panel mounting. O No. Sai31. 5 for $\mathbf{X O} 50$ Push-to-break as above O No. SJ132. 4 for $\mathbf{~} \mathbf{O} .50$	
Antex X25 Iron - 25 watt soldering iron OUR SUPER SALE PRICE, Great reduction. O No. 1931. £4.00. ST3 Iron Stand - Suitable for above - OUR Sale Price o No. 1939. £1.25 each.				
METERS 23 mm Level Meter Special Sale Price. O No. 1320 £1.00. 40 mm V.U. Meter OUR SPECIAL PRICE O No. 1321. £1.50.	SILICON TRANS	PRECISION VOM MULTITESTER 20,0000hms volts DC Com. plete with test leads and Instructions. OUR SPECIAL OFFER PRICE £11.00 each Use your Barclay or Access Cardl	LED	
	SJ25. 100 Silicon NPN transistors all perfect and coded - mixed types with data and equivalent sheet no rejects SJ26. 100 Silicon PNP transistors all perifect and coded - mixed types and cases, data and $\mathrm{SJ27} 50$ Assorted pieces of SCR's, diodes and rectifiers incl. stud types, all perfect - no rejects. fully coded dara incl.			
PLUGS \& SOCKETS	TTL's	NPN TRANSISTORS	MISCELLANEOUS SJ20. 2 Large croc clips 25A rated - ideal for batrery chargers etc. $\mathbf{£ 0 . 3 0}$ driver chrome finish $\mathbf{E 0 . 8 5}$ SJ22. Small pocket size Mains Neon Tester SJ23. Siemens 220 V AC relay DPDT' contacts 10 mp rating - housed in plastic case ... $£ 1.00$ SJ24. Black PVC tape (5/8) $15 \mathrm{~mm} \times 25 \mathrm{~m}$ tape for electrical and househoid use	
Set of 41 -metre Colour colled leads with phono plug ends ideal for audio and test use. Outstanding Value O No. SJ122. £1.00 per Pak 1 mm Plugs \& Sockers in Red \& black O No. SJ123. 5 prs. £1.00	SJ28. 20 TLL74 serles gates - assorted 7401 . SJ53. Mammoth in Prak Approx. assorted fathlout integrated circuirs including assoriced series Linnear audio and OTL many coded devices but some unmarked identily identily	SJ68, 302 2TX 300 type transistors. NPN pre- formed for PC Board colour codec Blue ail tormed for PC Board colour codec Blue $\mathbf{£ 1 . 0 0}$ SJ70. 25 BC107 NPN TOMO6 case partect tran. 		
CAPACITORS SJ11. 150 Capacitors mixed types and values SJ12. 60 Electrolitics all sorts mixed,$\ldots . \quad$ £ $\mathbf{£ 0 . 5 0}$ SJ13. 40 Polyester polystyrene capacitors mixed SJ14. 50 C280 iype capacitors mixed £1.00 SJ15. 40 High quality electrolitics $100-470 \mathrm{mid}$. SJ1f. 40 Low volts electrolitics mixed values up to 10 v .	RESISTORS	POTENTIOMETERS	OPDMENTS	
			16170. 50 metres asst. colours single strand wire 16187. 30 metres stranded wire mixed colours 16178. 5 Main slider switches assorted...... $£ 0.50$ SJ76. ${ }^{9}$ Board contalning 2×5-pin, DIN sockets $180 \& 2 \times 2$-pin, OIN loudspeaker sockets	
TRANSFORMERS	CASSETTES super value GREAT SAMINGII! C120 Dindy Cassettes value and sound DiNo. 10 for $£ 3.50$	METAL SLIDERS	KNOBS	
miNIATURE MAINS Primary 240 v .		Mertal Case Dual Slider Pots: 45 mm travel S. 565.10 K 109 \$0.25 each S.j66. 100K lin E0.25 ench SJ67. Chrome sider knobs 10 lit........ 80.10 each	SJ62. 515 mm chrome knobs standard push fil E0.50 Su63. Instrument knob black winged $129 \times$ 20 mm) with pointer. $1 / 4^{" 1}$ standard screw fit SJ64, Instrument knob black silver atuminium $\operatorname{top}(17 \times 15 \mathrm{~mm}) 1 / 4^{\prime \prime}$ standard screw fit $\mathbf{C 0 . 1 2}$	
	Send SHOP TERM BARC 7006 ADD	ur orders to DEPT W W 8, BI-P T: 3 BALDOCK ST. WARE CASH WITH ORDER, SAME YCARD ALSO ACCEPTED. T \% VAT AND 50p PER ORDER	PO BOX 6 WARE HERTS. RTS. Y DESPATCH, ACCESS. (0920) 3182. GIRO 388 STAGE AND PACKING	

LINSLEY HOOD CASSETTE RECORDER 1 -

We are the Designer Approved suppliers of kits for this excellent design. The Author's reputation tells all you need to know about the circuitry and Hart expertise and experience guarantees the engineering design of the kit. Advanced features include: High quality separate VU meters with excellent ballistics. Controls, switches and sockets mounted on PCB to etiminate difficuht wiring. Proper moulded escutcheon for cassette aperture behind a narrow finger trapping slot. Easy to use, robust Lenco mechanism. Switched bias and equalisation for different tape formulations. All wiring is terminated with plugs and sockets for easy aseembly and test. Sophisticated modular PCB system gives a spacious, easily built and tested layout. All these features added to the high quality metalwork make this a most sarisfying kit to build. Also included at no extra cost is our new HS 15 Sendust Alloy record / play head, available separately at $£ 7.60$ plus VAT, but included FREE as part of the complete kit at $£ 81.50$ plus VAT. REPRINTS of the 3 articles describing this design 45p No VAT REPRINT of Postcript anticle 30 p No VAT.

VFL 910. Vertical front loading Super Hi-fi deck, as used in our new Linsley.Hood Cassette Recorder $2 . £ 31.99$ + VAT. Set of knobs $£ 1.46$ + VAT

CASSETTE HEADS

HS 15 SENDUST ALLOY SUPER HEAD. Stereo R/P. Longer life than Permalloy. Higher output than Ferrite. Fantastic frequency response. Complete with data

H561 Stereo R/P head for METAL tape. Complete with data
H524 Standard Ferrita Erase Head
4.Track R/P Head. Standard Mountin

R484 2/2 (Double Mono) R/P Head. Std. Mig.
ME151 2/2 Ferrite Erase. Large Mig.
CCE/8M $2 / 2$ Erase. Std. Mtg. ...
We are the actual importers of these heads and invite Trade/quantity enquiries.
All prices plus VAT

年
We regret that due to the latest increase in postal costs we must now charge for carriage. Please add as follows:
Order up to $£ 10-50 p$
Orders £10 to £49 -
P\&P
Over $\mathbf{£ 5 0}$ - $£ 1.50$
Export Orders - Postage or shipping at cost plus
Please send 9×4 SAE for lists giving fuller details and price breakdowns
Instant easy ordering, telephone your requirements

and credit card number to us on
Oswestry (0691) 2894

Personal callers are always welcome but please note we are closed all day Saturda

Our new improved performance model of the Linsley Hood Cassette Recorder incorporates our VFL 910 vertical front mechanism and circuit modifications to increase outstandingly successful mother and daughter arrangement used on our Linsley Hood Cassette Recorder 1.

This latest version has the following extra features. Ultra low wow-and-flutter of . 09% easily meets DIN Hi-fi spec. Deck controls latch in rewind modes and do not have to be held. Full Auto stop on all modes. Tape counter with memory rewind. Oil damped cassette door. Latching record button for level setting. Dual concentric input tevel controls. Phone output. Microphone input facility if required. Record interlock prevents re-recording on valued cassettes. Frequency generating feedback servo drive motor with buitt-in speed control for thermal stability. All these desirable and useful features added to the excelient design of the Linsley-Hood circuits and the quality of the components used makes this new kit comparable with built-up units of much higher cost than the modest $£ 94.90+$
VAT we ask for the complete kit.

LINSLEY-HOOD 30 WATT AMPLIFIER

The very latest amplifier design to be published and in our opinion the best yet. The concept was to produce an amplifier that sounded as good as the authors 75 watt design but which was cheaper and simple to build for applications where the higher power is not needed. This new kit is designed to match the Linsley-Hood Cassette Recorder 2 and a tuner will be available later to make a complete stackable system. A very advanced assembly system has been devised by us to make construction ultra simple and anyone who can solder components in a printed circuit board will find it great fun. Conventional wiring is at an irreducible minimum, only being needed to connect the mains transformer and pilot light. For an amplifier of this quality this kit represents incredible value for money.

All parts can be bought separately at a total cost of $£ 79.12$ but complete kits are available at a special introductory discount price of only $\mathbf{£ 6 5} 5$ +VAT

STUART TAPE CIRCUITS

(For reel-to-reel decks)

These circuits are just the thing for converting that old valve tape deck into a useful transistorised recorder. Total system is a full three head recorder with separate record and eplay sections for simultaneous off tape monitoring. We also stock the heads. This kit is rell engineered but does not have the detailed instructions that we give with our more ecent designs. We would not therefore recommend it to beginners. Reprints of the original three articles 45 p. Post free. No VAT.

GARRARD AUTOCHANGER CCIOA.
3 speed stereo cartridge. Plays all sizes of records, $7^{\prime \prime}, 10^{\circ}$ $12^{\prime \prime}$. Turntable 7 in . $£ 8.50$, post $£ 1$.

HEAVY METAL PLINTHS Cut out for most
Silver grey finish.
Size $16 \times 14 \times 3 \mathrm{in}$ Post E2.00 £4.50 Tinted Cover for above $£ 6.00$
Special Tinted Plastic Cover for above Sizes: $141 / 2 \times 121 / 2 \times 41 / 4$ in or $141 / 2 \times 121 / 2 \times 3 \mathrm{in}$. $£ 3.50$. $151 / 4 \times 131 / 2 \times 4$ in. £4. $18 \times 131 / 2 \times 4 \mathrm{in}$. $\mathbf{c 6}$.
$171 / 4 \times 91 / 2 \times 31 / 2 \mathrm{in} . £ 3.18 \times 121 / 2 \times 3 \mathrm{in} . \mathrm{E}$. $171 / 2 \times 91 / 2 \times 31 / 2$ in. £3. $18 \times 121 / 2 \times 3$ in.
$18 \times 133 / 4 \times 31 / 2$ in with standup hinges $£ 7$.

POTENTIOMETERS Carbon Track

$5 k \Omega$ to $2 \mathrm{M} \Omega$. LOG or LIN. L/S 50p. DP 90p. Stereo L/S £1.10 DP £1.30. Edge Pot 5K. SP 45p. Sliders Mono 65p. Stereo 85p
EMI $131 / 2 \times 8 \mathrm{in}$. LOUDSPEAKERS

£9.95 £10.95

Post 99p

THE "INSTANT" BULK TAPE ERASER Suitable for cassettes, and aid sizes of tape eels. AC mains 200/250
Will also demagnetise small tool
Head Demagnatiser only 55
$£ 7.50$
RELAYS. 12VDC 95p. 6 V DC B5p.
BLANK ALUMINIUM CHASSIS. $6 \times 4-95 p ; 8 \times 6-$
 ALUMINIUM PANELS. $6 \times 4-24 \mathrm{p} ; 8 \times 6-38 \mathrm{p}$;
 PLASTIC AND ALI BOXES IN STOCK. MANY SIZES 'ALUMINIUM BOXES. $4 \times 4 \times 11 / 2 £ 1.4 \times 2 \times 2 £ 1.3 \times 2 \times 1$
70 P. $6 \times 4 \times 2 £ 1.20 .7 \times 5 \times 21 / 2 £ 1.45 .8 \times 6 \times 3 £ 2.20 .10 \times$ 7×3 E2.50. $12 \times 5 \times 3 £ 2.30 .12 \times 8 \times 33$. BRIDGE RECTFIER $200 \vee$ PIV $4 \mathrm{amp} £ 1.50 .8 \mathrm{amp} £ 2.50$. TOGGLE SWITCHES SP 30p. DPST 40 O . DPOT 50p.
 SONOTONE 9TAHC Diamond E3.75. V100 Magnetic E6.50 HIGH STABIITY $1 / 2 \mathrm{~W} 2 \% 10$ ohms io 1 meo 2 W 10 Ditto 5%. Preferred values, 10 ohms to 10 meg . 3 p .

$€ 6.50$

MINI-MULTI TESTER
Deluxe pocket sire precision moving
coil instrument, jewelled bearings -
coil instrument, jewelled bearin
2000 o.p.v. Battery included
2000 o.p.v. Bathery incluced $O C$ volts $10,50,250,1000$.
$A C$ volts $10,50,250,1000$ OC amps o. 100 mA . ohms in two ranges.
Complete with Test Prods and
instruction book showing how
instruction book showing how to measure capaciry and
50 p post and insurance.

J.V.C. BELT DRIVE STEREO DECK Detachable head, adjustable counter balance weight, hydraulic damped cueing plattorm, automatic pick-up arm return, 2 speeds, 33 and 45 rpm , suppression circuit to starn stop switch, 240 VAC moror. dynamic pendulous bias compensator. 6 eak vene
base, 19 in. $x 141 / 2$ in $£ 9$. Post $£ 2$. plastic cover $£ 6$, post $£ 2$. Suitable stereo magnetic cartridge $£ \in .50$ extra.

RCS SOUND TO LIGHT KIT Mk. 2 Kit of parts to build a 3 channel sound to light unit
1.000 watts per channel. Suitable for home or disco. \& 18 Easy to build. Full instructions supplied. Cabinet
ost 50 p £4.50 exira. Will operate from 200 MV to 100 watt signal. 200 Wart Rear Reflecting White Light Buibs. Ideal 50 .
Lights, Edison Screw. 6 for $\mathrm{E4}$, or 12 for $£ 7.50$. Post 50 p.
"MINOR" 10 watt AMPLIFIER KIT $£ 12.50$
This kit is suitable for record plavers, guitars. tape playback,
electronic instruments or small PA systems. Two versions electronic instruments or small PA systems. Two versions
available: Mono. $£ 12.50$; Stereo, $\mathbf{\Sigma 2 0}$. Post 45 . Specification available: Mono. E12.50; Stereo, E20. Post 45p. Specification
10 W per channel; input 100 mV ; size $91 / 2 \times 3 \times 2 \mathrm{in}$. approx. SAE 10 W per channel; input 100 mV ; size $91 / 2 \times 3 \times 2$ in. approx. SAE
details. Full instructions supplied. AC mains powered. details. Full instructions supplied. AC
Input can be modified to suit guitar.

RCS STEREO PRE-AMP KIT. All parts to build this pre-amp. Inputs for high, medium or low imp per channel. with volume
control and PC Board
$£ 2.95$
Can be ganged to make multi-way stereo mixers Post 35p
MAINS TRANSFORMERS ALL POST 99p.

63 BV iA
6.3 VA .6 3 Z2OV A5MA, 6.3V AA

ALL ${ }^{10 p}$
LOW VOLTAGE ELECTROLYTICS $30 \mathrm{mtd}, 50$ 1 mfd 2 mfd .4 mfd .8 mfd , $10 \mathrm{mtd} .16 \mathrm{mid}, 25 \mathrm{mfd}, 30 \mathrm{mfd}, 50$ $\mathrm{mid} 100 \mathrm{mid}, 250 \mathrm{mid}$ Als 15 vols . $\mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v} ; 47 \mathrm{mfd} / 10 \mathrm{v}: 50 \mathrm{mfd} / 68 / 6 \mathrm{~m} / 10 \mathrm{v} /$ $16 \mathrm{v} / 25 \mathrm{v}: 100 \mathrm{mfd} / 10 \mathrm{v}: 150 \mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v}: 200 \mathrm{mid} / 10 \mathrm{v} / \mathrm{c}$
$16 \mathrm{v}: 220 \mathrm{mfd} / 4 \mathrm{v} / 10 \mathrm{c} / 16 \mathrm{v}: 330 \mathrm{mfd} / 4 \mathrm{v} / 10 \mathrm{v}: 500 \mathrm{mfd} / 6 \mathrm{v}$: $680 \mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 1000 \mathrm{mfd} / 2 \mathrm{v} / 5 \mathrm{v} / 4 \mathrm{v} / 10 \mathrm{vid} / 1500$ mid $/ 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 2200 \mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v} ; 3330 \mathrm{mfd} / 6 \mathrm{v}$
$4700 \mathrm{mtd} / 4 \mathrm{v}$. ALL 10 p .
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$.
1000 mF .
$1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.
$2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$ $2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$.
4500 mF 64 V \& 4700 mF 63 V \& $20,2700 \mathrm{mF}$. 4500 mF 64 V £2. 4700 mF 63 V £ $1.20 .2700 \mathrm{mF} / 76 \mathrm{~V}$ ह1.
$5000 \mathrm{mF} 35 \mathrm{~V} 85 \mathrm{p} .5600 \mathrm{mF} / 76 \mathrm{~V} £ 1.75$
high voltage electrolytics
$8 / 350 \mathrm{~V} 35 \mathrm{p} \quad 8+\mathrm{B} / 450 \mathrm{~V} 75 \mathrm{p} \quad 50+50 / 300 \mathrm{~V} 50 \mathrm{p}$ $16 / 350$ V 45p $\quad 8+16 / 450 \mathrm{~V} 75 \mathrm{p} \quad 32+32 / 450 \mathrm{~V} 90 \mathrm{p}$ $32 / 500 \mathrm{~V} 75 \mathrm{p} \quad 16+16 / 450 \mathrm{~V} 75 \mathrm{p} \quad 100+100 / 275 \mathrm{~V} 65 \mathrm{p}$ $50 / 500 \mathrm{~V}$ £1.20 $32+32 / 350 \mathrm{~V} 50 \mathrm{p} \quad 150+200 / 275 \mathrm{~V} 70 \mathrm{p}$ $8 / 800 \vee £ 1.20$
$16 / 500 \vee 65 p$ $\begin{array}{rl}220 / 450 \mathrm{~V} & 95 p\end{array}$
SHORT WAVE 100 of air spaced gangable tuner, $95 p$.
TRIMMERS $10 \mathrm{pF}, 30 \mathrm{pF}$. 50 pF , 5 p . $100 \mathrm{pF}, 150 \mathrm{pF}, 15 \mathrm{p}$. CAPERIC, 1pF to $\quad 01 \mathrm{mF}$, 5 p . Silver Mica 2 to 5000 pF . 5 p . 20 p ; $500 \mathrm{~V}-0.001$ to $0.0512 \mathrm{p} ; 0.115 \mathrm{p} ; 0.2525 \mathrm{p} ; 0.4735 \mathrm{p}$. MICRO SWITCH SINGLE POLE CHANGEOVER 20 . SUB-MIN MICRO SWITCH. 25p. Single pole change over.
TWIN GANG, $385+385 \mathrm{pF}$ 80p: 500 pF slow motion 75 p . TWIN GANG. $385+385$ pF 80 p; 500 pF slow motion 75 p .
$365+365+25+25 \mathrm{pF}$. Slow motion drive 85 p . 120 pF 50 p . $365+365+25+25 \mathrm{pF}$, Slow motion drive 85 p . 120 pF 50
TRANSISTOR TWIN GANG. Japanese Replacement 50 p. NEON PANEL INDICATORS 250 V 30p.
ILUMINATED ROCKER SWITCH. Single pole. Red 65p. CASSETTE MOTOR. 6 voli $£ 1.00$
CASSETTE MOTOR. 6 voli £1.00
CASSETTE MECHANISM. Mono heads, no motor $£ 3.00$

8K ON BOARD MEMORY!

$5 K$ RAM, 3 K ROM or $4 K$ RAM, 4 K ROM link selectable). Kit supplied with 3 K RAM, 3 K ROM. System expandable for up to 32 K memory

2 KEYBOARDS!

56 Key alphanumeric keyboard for entering high level language plus 16 key Hex pad for easy entry of machine code.

GRAPHICS!

64 character graphics option - includes transistor symbolst Only $£ 18.20$ extra!

MEMORY MAPPED
High resolution VDU circuirry using discrete ΠL for extra flexibility. Has its own 2 K memory to give 32 lines for 64 cha racters
KANSAS CITY
Low error rate tape interface

PSI COMP 80 280 Based powertul scientific camputer. Design as published in WIRELESS WORLD

2 MICROPROCESSORS

280 the powertul CPU with 158 instruction including all 78 of the 8080, controls the MM57109 number cruncher. Functions include,,$+- \%$ squares, roots logs exponemials, log functions, inverses, etc. Range $10-99$ to $9 \times 19-99$ ro 8 figures plus 2 exponent digits.

EFFICIENT OPERATION

Why waste valuable memory on sub routines for numeric processing? The number cruncher handles everything internally!

RESIDENT BASIC

With extended mathematical capability Only 2 K mernory used but more powerful than most 8K Basics!

IK MONITOR Resident in EPROM.

SINGLE BOARD DESIGN Even keyboards and power supply circuitry on the superb quallty double-sided

COMPLETE KIT
NOW ONLY
£225 +var!

Cabinet size $19.0^{\prime \prime} \times 15.7^{\prime \prime} \times 3.3^{\prime \prime}$
Television not included in price

The kit for this outstandingly practical design by John Adams published in a series of articles in Wireless World really is completel
Included in the PSI COMP 80 scientific computer kit is a professionally finished cabinet, fibre-glass double sided, plated-through-hole printed circuit board, 2 keyboards PCB mounted for ease of construction, ic designed toroldal transformer, 2 K Basic and 1 K monitor in EPROMS and, of course, wire, nuts, bolts, etc

KIT ALSO AVAILABLE AS SEPARATE PACKS
For those customers who wish to spread their purchase or build a personalised system the kit is available as separate packs e.g. PCB (116"×12.5 $\left.{ }^{\prime \prime}\right)$ £43.20. Pair of keyboards $£ 34.80$. Firmware in EPROMS £30.00. Toroidal transformer and power supply components $£ 17.60$. Cabinet (very rugged, made from steel, really beauritully finished) $£ 26.50$. other single board computer including OHIO SUPERBOARD for CATALOGUE.

PSI COMP 80 Memory Expansion System
Expansion up to 32 K all inside the computer's own cabinet!
By carefully thought-out engineering a mother board with buffers and its own power supply (powered by ine computer's transiormer) enables up to 38 K RAM or 8 K ROM boards to be fitted neatly inside the computer cabinet. Connections to the mother board from the main board expansion socket is made via a riboon cable.
Mother Board: Fibre glass double sided plated through hole PCB 8.7 " $\times 3.0^{\prime \prime}$ set of all components including all brackets, fixing parts and ribbon cable with socket to connect to expansion plug $\mathbf{E 3 9 . 9 0}$
8 K Static
RAM board

8 K
ROM board
Fibre glass double sided plated through hole PCB $5.6^{\prime \prime} \times 4.8^{\prime \prime}$ et of comple $\mathbf{E 1 2 . 5 0}$位 2114 RAM (16 required) $\quad .$. Complete set of board, components. 16 RAMS

Fibre glass double sided plated through hole PCB $5.6^{\prime \prime} \times 4.8^{\prime \prime} \ldots 12.40$ Set of components including IC sockets, plug and socket but excluding ROM s £10.70 2708 ROM (8 required) Complete set of board, components, 8 ROMs ¢ 78.50
our catalogue is FREE! write or phone NOW!
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER HANTS SP10 3NN
(0264) 64455

14 CHANNELS NOISE GENERATOR! SLEW RATE CONTROL!

ETI VOCODER
COMPLETE KIT only $£ 195+$ vat

Being published in Electronics Today International

Panel eize $19.0^{\prime \prime} \times 5.25^{\prime \prime}$. Depth $12.2^{\circ 4}$

2 OSCILLATORS! voiced / unvoiced detector LED PPM METERS!

Kit includes FREE foot control and test oscillator!
Like all our kits, the ETI VOCODER really is complete - fully finished metalwork, professianal quality components (all resistors 2% metal oxide), nute, bolts, etc. - evena 13 A plugl

MANY MORE KITS
ON PAGES 103, 105

POWEFTTRAM

Value Added Tax not included in prices

PRICE STABILITY: Order with confidence! Irrespective of any pric changes we will honour all prices in this advertisement until October 31 s? 1980. if this month's advertisement is mentioned with your order. Errors and VAT rate change excluded.
EXPORT ORDERS: No VAT. Postage charged at actual cost plus E1 handing and documentation
U.K. ORDERS: Subject to 15% surcharge for VAT. NO charge is made for carriage. Or current rate if changed. add E 2.50 (VAT inclusive) per kit.
SALES COUNTER: If you prefer to collect your computer from the factory, Call at Sales Counter. Open 9 a.m.-12 noon. 1-4.30 p.m. Monday Thursday.

Z \& I AERO SERVICES LTD.
Head Office: 42-44A-46 WESTBOURNE GROVE, LONDON W2 5SF Tel. 7275641 Telex 261306

RETAIL SHOP
85 TOTTENHAM COURT ROAD, W. 1 Tel. 580-8403
SPECIAL OFFER OF BRAND NEW USSR MADE MULTIMETERS

TYPE U4323
COMBINED WITH SPOT FREQUENCY OSCILLATOR

Sensitivity
Voltage ranges
Current ranges.
Resistance
Accuracy
Osciliator output.
20,000 $2 / \mathrm{V}$
2.5-1000V A.C. $/$ D.C.
Q.05-500mA D.C. only
$5 \Omega-1 \mathrm{M} \Omega$
5% F
5\% F.S.D
$1 \mathrm{kHz} 50 / 50$ squarewave 46 bKHz smewave
modulated by 1 KHz squarewave

PRICE, in carrying case, complete with leads and manual $£ 8.00$
Packing and postage (U.K.) £1.00

TYPE U4324

D.C. Current A.C. Current. D.C. Voltage A.C. Voltage. Resistance: Resistance:

06-0.6-60-600mA-3A
0.3-3-30-300mÁ-3A
0.6-1.2-3-1 2-30-60-1 20-600-1 200 V

3-6-15-60-150-300-600-900V
500 -5-50-500k
D.C. 2.5%. A.C. 4% (of F.S.D.)

PRICE complete with test leads and fibreboard storage case £9.50

Packing and postage (U.K.) £ 1.20

TYPE U4341

COMBINED MULTIMETER AND TRANSISTOR TESTER

Sensitivity: $\quad 16,700 \Omega / V$ D.C., $3,300 \Omega / V A . C$.
0.06-0.6-6-60-600mA D.C.. 0.3-3.0-30 300 mA A.C.
0.3-1. 5-6-30-60-1 50-300-900V D.C.
1.5-7.5-30-1 50-300-750V A.C.
2-20-200k $\Omega-2 \mathrm{M} \Omega$
Collector cut-off current $60 \mu \mathrm{~A}$ max
D.C. current gain 10.350 in two ranges

PRICE, complete with steel carrying case, test lead, battery and instruction manual £9.50
Packing and Postage (U.K.) £1.50

THHIS OFFÉR IS VALID ONLY FOR ORDEŔS ACCCOMF̈PANIED BY REMITTANCE. WHICH SHOULD INCLUDE DELIVERY CHARGES AS INDICATED AND 15\% V.A.T. ON THE TOTAL

OUR 1980 CATALLOGUE/PRICE LIST OF VALVES, SEMICONDUCTÓRS AND PASSIVE COMPONENTS IS AVAILABLE. PLEASE SEND P.O. for £O. 60 FOR YOUR COPY

Every week, millions of advertisements appear in the press, on posters and in the cinema.

Most of them comply with the rules contained in the British Code of Advertising Practice and are legal, decent, honest and truthful.

Butt if you find one that, in your opinion, is wrong in some way, please write to us at the address below.

We would like you to help us keep advertising up to standard.

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right.
A. . . Ltd. Brook House.Tornngton Place. London WCIE 7 HN.

\section*{Happy Memories
 | $4116200 n s$ | $£ 3.95$ | $4116150 n s$ | $£ 5.50$ |
| :--- | :--- | :--- | ---: |
| $2114200 n s$ | $£ 3.95$ | $2114450 n \mathrm{n}$ | $£ 3.45$ |
| $2708450 n \mathrm{n}$ | $£ 4.95$ | 27165 volt | $£ 13.50$ |
| $21 \mathrm{~L} 02450 n \mathrm{n}$ | $£ 1.00$ | | |}

MEMOREX mini discs soft sectored - with FREE library case £ $\mathbf{1 9 . 9 5}$ per ten.

SALE

We're moving shortly to new premises and don't want to carry much.

Bargains for all
All prices include VAT
30 p postage on orders below $£ 10$ Access \& Barclaycard

All orders to:
Dept. WW
19 Bevois Valley Road
Southampton, Hants, SO2 OJP
Telephone (0703) 39267

TRANSCENDENT DPX

DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER
Another superb design by synthesizer expert Tim Orr - published in Electronics Today International
The Transcendent DPX is a really versatile new 5 octave keyboard instrument. There are two audio outouts which can be used simultaneously. On the first there is a beautiful harpsichord or reed sound - fully polyphonic, i.e. you can play chords with as many notes as you like. On the second output there is a wide range of different voices, still fully polyphonic. It can be a straightforward piano or a honky tonk piano or even a mixture of the two! Alternatively you can play strings over the whole range of the keyboard or brass over the whole range of the combination of strings and brass sounds simultaneously. And on all voices you can switch in circuitry to make the keyboard iouch sensitivel The harder you press down a key the louder it sounds - just like an acoustic piano. The digitally controlled multiplexed system makes practical touch sensitivity with the complex dynamics law necessary for a high degree of realism. There is a master volume and tone control, a separate controf for the brass sounds and also a vibrato circuit with variable depth control together with a variable delay control so that the vibrato comes in only after waiting a short time after the note is struck for even more realistic strong sounds.

Cabinet size $36.3^{\prime \prime} \times 15.0^{\prime \prime} \times 5.0^{\prime \prime}\left(\right.$ rear) $3^{\prime \prime} 3^{\prime \prime}$ (front)

COMPLETE KIT ONLY £299 +vat

To add interest to the sounds and make them more natural there is a chorus/ensemble unit which is a complex phasing system using CCD (charge coupled device) analogue delay lines. The overall effect of this is similar to that of several acoustic instruments playing the same piece of music. The ensemble circuitry can be switched in wirh either strong or mild effects. As the system is based on digital circuitry digital data can be easity taken to and from a computer (for storing and playing back accompaniments with or without pitch or key change. computer composing, etc., etc.)
Although the DPX is an advanced design using a very large amount of circuitry, much of it very sophisticated, the kit is mechanically extremely simple with excellent access to all the circuit boards which interconnect with multiway connectors, just four of which are removed to separate the keyboard circuitry and the panel circuitry from the main circuitry in the cabinet. The kit includes fully finlshed metalwork, solid teak cabinet, professional quality components (all resistors $\mathbf{2 \%}$ metal oxide), nuts, bolts, etc., even a $13 A$ plug!

POWEFTTRAN

MANY MORE KITS ON PAGE 105. MORE KITS AND ORDERING INFORMATION ON PAGE 101

TRANSCENDENT 2000 swcit baapo swruturize

LIVE PERFORMANCE SYNTHESIZER DESIGNED BY CONSULTANT TIM ORR (FORMERLY SYNTHESIZER DESIGNER FOR EMS LIMITED) AND FEATURED.AS A CONSTRUCTIONAL ARTICLE IN ELECTRONICS TODAY INTERNATIONAL.

The TRANSCENDENT 2000 is a 3 octave instrument transposable 2 octaves up or down giving an effective 7 octave range. There is portamento, pisch bending, a VCO with shape and pitch modulation, a VCF with both low and high pass outputs and a separate dynamic sweep control, a noice generator and an ADSR envelope shaper. There is also a slow oscillator. a new pitch erector, ADSR repeat sample and hold, and special circuitry with precision components to ensure tuning stability amongst its many features.
The kit includes fully finished metalwork, fully assembled solid teak cabinet, filter sweep pedal, professional quality components (all resistors either 2% metal oxide or $1 / 2 \%$ metal film) and it really is complete - right down to the last nut and bolt and last piece of wire! There is even a 13 A plug in the kit - you need buy absolutely no more parts before plugging in and making great music Virtually all the components are on the one professional quality fibreglass PCB printed with component locations. All the controls mount directly on the main construction is so simple it can be built easily in a few evenings by atmost anyone capable of neat solderingl When finished you will possess a synthesizer comparable in performance and quality with ready-built units selling for many times the price

COMPLETE KIT
 ONLY £168.50 + VAT!

[^3]
NEW

 HANDLE PROFILE

 HANDLE PROFILE MAKES LIFTING AND MAKES LIFTING AND CARRYING EFFORTLESS

 CARRYING EFFORTLESS}

The Mod- 1 type U series, an addition to the AKA Mod-1 range, is a free-standing instrument case with one very important feature. In each side of the case there is a unique handle profile, making it easy to grip, lift and carry, however heavy the contents.

These distinctive cases are made of anodised aluminium extrusions with attractive blue top and base plates, and side panels. Type U cases are manufactured in three widths, two depths, and heights of 3,4 and 6U. Front handles, folding feet and a rear panel are provided; the front panels, card guides, edge connectors and other accessories are ordered separately. Send for free catalogue and price list.

THE 日IGGEST SELECTION DF CASES IN EURDPE

TELEPRINTER TYPE 7B: Pageprinter 24v d.c. power supply. Speed 50 bauds per min. S/hand good cond. (no parts broken) £23 or GPO model, as above except motor $110 / 230 \mathrm{v}$ a.c. . 28.75 . GPO model also available in 'as new' unused condition £40.25. G9. Send S.A.E. for hist of Teleprinter spares available.
PLUG-IN for TEKTRONIC OSCILLOSCOPE: Type 3B3 Time Base £95. Type 3A6 Dual Trace $£ 95$. Carriage extra.
AUTO TRANSFORMER: $230 / 115 \mathrm{v} 50 \mathrm{c} / \mathrm{s} 1000$ watts. Mounted in strong steel case $5^{\prime \prime}$ $\times 6^{\prime \prime} 4^{\prime \prime} \times 7^{\prime \prime}$. Bitumen impregnated. $\varepsilon 17.25+$ carriage.
TRANSISTORISED 3 cm RADAR AMPLIFIER SWITCH: with 24 v waveguide switch. $9 \times 4 \mathrm{~cm}$ ins. wlith crystal CV. 2355 and spark gap VX. 1046 . $£ 17.25+£ 1$ post. INSULATION TEST SET 0 to 10 KV , negative earth, whith Ionisation Amplifier, 100/230 Volts AC. E48.87 + carr.
BC-221 FRECUENCY METER; $\mathbf{1 2 5} \cdot 20,000 \mathrm{kc} / \mathrm{s}$ complete whith original calibration charts $£ 24.15+$ cart.
ROTARY INVERTER TYPE PE-218E: Input $24-28 \mathrm{v}$. DC $80 \mathrm{amps}, 4.800 \mathrm{rpm}$. Output $11 \mathrm{y} . \mathrm{AC} 13 \mathrm{amp} 400 \mathrm{c} / \mathrm{s}$. 1 Ph. P.F.9. £23 + carr.
RECTIFIER UNIT: $200-250 \mathrm{v}$ AC input, 24 v . DC at 26 amps output continuous rating. £40.25 + carr.
MARCONI PLUG-IN TIME BASE UNIT TM6967 $£ 54$.
RESONATOR PERFORMANCE CTC 4248.5 to $9.0 \mathrm{kmc} / \mathrm{s} 3 \mathrm{~cm}$ E80.50 + post $£ 2$.
INVERTER 24 v . DC input 400 cycles 1 pH 6600 r.p. m. 200v. peak. $£ 8.05+£ 2$ post.
OXYGEN BOTTE E 18001 b . w.p. E11.50 + carr.
NOISE SOURCE UNIT with CV. 1881 noise source mount. Produces thermal poise 15.5dB 200/250v. AC C80.50.

MIERHENS POWER METER REL 3 U $/ 84 /$ Alb: 0.12 kmHz 1 mw 500 mw 6 ranges. 0.17 dB 50 ohms. 292 + carr.
CV. 1596 CATHODE RAY TUBE: ($09 \mathrm{D}, 09 \mathrm{G}$), $\mathbf{4}^{\prime \prime}$ screen, green electrostatic base B12B. HT 1200 volts. heater 4 volts $£ 11.50$.
RADAR RECEIVING ANTENNA TYPE X443 Mk.D: Suitable for detecting signals on $\mathrm{X}, \mathrm{K} . \mathrm{J}$ and Q bands. $9 \mathrm{~g} \mathrm{~Hz}-6 \mathrm{~g} \mathrm{~g} \mathrm{~Hz}$. Complete with waveguide horns, associated crystals. Transistorised amplifier and geared motor, etc. E143.75.
VACUUM \& PRESSURE DEAL TEST EQUIPMENT: complete with 2×4 "gauges indicating 0.201 bs p.s.i. 0 -301bs vacuum. With stand, hand pump, etc. $\mathrm{E} 34.50+$ carr.

BARGAIN MAPS

Large stocks of unused U.S.A.F. surplus maps, weather charts, etc. including
ONC.E1 - U.K. in full and part N.W. Europe. Scale 1:1,000,000. JNC. 9 N - N. Europe, U.K., Scandinavia. Scale 1:2.000.000. JN-21N - Europe (Mediterran Pre $x 5$ (inc P\&P) Many others. Please send SA.E. for list. $25 \times$ Maps (either same $10 \times$ Maps (either same type $O R$ assorted), $\varepsilon 6.50$ (in $P \& P$)

All prices include VAT at 15%
Carrlage quotes given are for 50 -mile radius of Herts.

W. MILLS

The Maltings, Station Road SAWBRIDGEWORTH, Herts. Te:: Bishop's Stortford (0279) 725872

RADIO SHACK LTD for \triangle DRAKE

Ham Bands with $1.5-30 \mathrm{MHz}$ receive with built-in 150 MHz frequency counter plus option of $0-1.5 \mathrm{MHz}$ receive and / or any transceiving application 1.8 .30 MHz .

RADIO SHACK LTD

For Communications equipment including Trio products and Trio testgear

We are situated just around the corner from West Hampstead Underground Station (Bakerloo line). A few minutes' walk away is West Hampstead Midland Region station and West End Lane on the Broad Street Line. We are on the following Bus routes: 1.2 . Saturday we are open $9-12.30$ only. World wide exports.

DRAKE *SALES * SERVICE

RADIO SHACK LTD

188 BROADHURST GARDENS, LONDON NW6 3AY Giro Account No, 588 7i5is. Telephone: 0f-624 7 T74 Cables: Radio Shack, London, NW6. Telex: 23718

MPA 200100 WATT (rms into 8®) MIXER/AMPLIFIER

Featured as a constructional article in ETI, the MPA 200 is an exceptionally low priced - but professionally finished - general purpose high power ampltier. It features an adaptable input mixer which accepts a wide range of sources such as a microphone. guitar, etc. There are wide range tone controls and a master volume control. Mechanically the MPA 200 is simplicity itself with minimal wiring needed making construction very straichiforward
The kit includes fully finished metalwork, fibreglass PCBs, controls, wire, etc. - complete down to the last nut and bolt.

Panel size $19.0^{\prime \prime} \times 3.5^{\prime \prime}$. Depth $7.3^{\prime \prime}$

COMPLETE KIT ONLY $£ 49.90$ + VAT! MATCHES THE CHROMATHEQUE 5000 PERFECTLY!

This versatile system featured as a constructional article in ELECTRONICS TODAY INTERNATIONAL has 5 frequency channels with individual fevel controls on each channel. Control of the ights is comprehensive to say the least. You can run the unit as a straightforward sound-to-light or have it strobe all the lights at a speed dependent upon music level or front panel contro or use the internal digital circuitry which produces some superb random and sequencing effects. Each channel handles up to 500 W and as the kit is a single board design wiring is minimal and construction very straightforward.

Kit includes fully finished metalwork, fibreglass PCB controls, wire, etc. - Complete right down to the last nut and bolt

COMPLETE KIT ONLY $£ 49.50$ + VAT!

рошенrRan

SYNTHESIZER KITS ON PAGE 103. MORE KITS AND ORDERING INFORMATION ON PAGE 101.

DE LUXE EASY TO BUILD LINSLEY HOOD 75W STEREO AMPLIFIER $£ 99.30$ + VAT

This easy to build version of our world-wide acclaimed 75 W amplifier kit based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and Record Review and features include rumble filter, variable scratch filter, versatile tone controls and tape monitoring while distortion is less than 0.01%.

Panel size $19.0^{\prime \prime} \times 3.5^{\prime \prime}$. Depth $7.3^{\prime \prime}$

Above 2 kits are supplied with fully finished metalwork, ready assembled high quality teak veneer cabinet, cable, nuts, bolts, etc. and full instructions - in fact everything

BLACK HOLS

MUSIC EFFECTS DEVICE - AS FEATURED IN ELECTRONICS TODAY INTERNATIONAL!
The BLACK HOLE designed by Tim Orr, is a powerful new musical effects device for processing both natural and electronic instruments, offering genuine VIBRATO (pitch modulation) and a CHORUS mude which gives a spacey" feel to the sound achieved by delaying the input signal and mixing it back with the original. Notches
(HOLES), introduced in the sweep generator. An optional double chorus mode allows exciting antiphase effects to mo added. The device is floor standing with foot switch controls. LED effect selection indicators, has variable sensitivity, has high signal/noise ratio obtained by an audio compander and is mains powered - no batteries to change! Like all our kits everything is provided including a highly superior, rugged steel. beautifully finished enclosure.
COMPLETE KIT ONLY $£ 49.80$

+ VAT (single delay line system)
De Luxe version (dual delay line system) also available for $£ 59.80+$ VAT
Cabinet size $10.0^{\prime \prime} \times 8.5^{\prime \prime} \times 2.5^{\prime \prime}$ (rear) $1.8^{\prime \prime}$ (front)

The New FM/AM 1000swith Spectrum Analyser-we call it the SUPER-S

A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope, tone generator, deviation meter, modulation meter, signal generator, wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!
For further information contact Mike Taylor

FieldTech Ltd Heathrow Airport London Hounslow TW6 3AF Tel: 01-759 2811 Telex: 23734 FLDTEC G

Quanturn Electronics

NEW PRODUCTS - NEW PRODUCTS
Our product range for the 80s is oultined but it is impossible to cover everything in such a small space. For detailed intormation and a price list send a large SAE or a dollar bill.

PRE-AMP \& POWER AMP KITS

The pre-amp is now available in kit form in versions to suit any cartridge and consists of the Module C2 (betow) and the hardware kit HK1. No soldering is involved and assembly takeabout 20 mins. There are six power amp kits, four mono and two stereo, from 45 to 260 W to saristy virually every requiremen, They use ready-buil and rested p.c. boards to achieve upply kits to enable independent use of the preamp, which is normally powered via power amp. Similar equipment is also available ready-built from us or via our dealers.
$\mathrm{C}_{2}+\mathrm{HK} 1$
c70.95

MOVING-COIL \& PRE-AMP MODULES

C2 (C2mc)

MC1
Previously restricted to trade and export, the C2 pre-amp module is now available separately in 3 versions 10 match any cartridge. It has unbeatable specifications, caters for disc, d.c. The new moving coil pre-pre-amp achieves low thd high overtoad good ± 8 to 35 V and good noise performance without resorting to the expensive multiple transistor design. Only tantalum capacitors and metal oxide resistors are used in the signal path and it can be powered either via the C2 or by a battery. Hardware kits are available to build both types and they are also available ready-buitt.
MC 1 Module: $£ 22.25$

POWER AMP MODULES AND SUPPLIES

The power amp modules are now also a vailable to retail customers in a variety of powers and formats up to 260 W r.m.s. They use the same high performance circuitry as the kits above, giving t.h.d. below. 01% at kHz , but are capable of sustained high level use with excellent which use toroidal transformers, also available separately. The module illustrated is a medium duty 150 W r.m.s. type, the M1508, which requires the MS 3 supply.

M1508: £35.79 MS3: £26.28
Exports: We can deal efficiently with orders to any country. Please write with your specific requirements for a quote by return. All equipment can be wired for 110 V mains.

PLEASE NOTE: OUR NEW ADDRESS FROM ist MAY 8 ALBION STREET, LEICESTER. Tel: 546198
OX DISCO, BOX 123 CLAYMONT, DE 19703, U.S.A. Tel. 1-302-798-7932 MINICTELEPROOUCTOR, BOX 12035, S-750 12, UPPSALA 12. SWEDEN

There's a range of answers.

There's something every one of our scopes has in common. Great accuracy, tremendous reliability and keener pricing, plus free delivery on UK mainland.

Take the new 4D-10B. The fully stabilised power supply gives 3% accuracy. There's a XY facility using CMOS ICs for extra reliability, Z modulation for brightening or dimming the trace, 10 MHz scan at full bandwidth over the full screen area, trace locate and TV field trigger. At $£ 210.00^{*}$ it's astonishing value.

Or the 4D-25. A dual trace model with DC-25MHz bandwidth and $10 \mathrm{mV} / \mathrm{cm}$ sensitivity. Signal delay allows you to trigger from and see the leading edge of any signal. Trigger level and slope are selected on one dual function control. 3\% accuracy and still only £360.00*.

Plus the 4 S 6 single beam 6 MHz bandwidth model with easy to use controls. 10 mV sensitivity and timebase range of 1 us to $100 \mathrm{~ms} / \mathrm{cm}$. Lightweight, compact and a very good price. $£ 144.00^{*}$.

Return the coupon for full details of the range that gives you a lot more scope
*UK list price excluding VAT

BRANDED \& INDIVIDUALLY BOXED - AVAILABLE FROM:

PM COMPONENTS LTD. VALVE \& COMPONENT SPECIALISTS CONINGSBY HOUSE WROTHAM ROAD, MEOPHAM KENT

Abstract

^[| .55 | 951 |
| :--- | :--- |
| .55 | 150092 |]

MANY OTHER TYPES AVAILABLE, INCLUDING SPECIAL QUALITY \& VINTAGE. PLEASE PHONE OR SEND LIST OF YOUR REQUIREMENTS

Post \& Package 50 p on atl orders
PRICES INCLUDE VAT
Prices subject to change without notice.

EXPORT\& TRADE enquiries welcome.
Phone our sales desk
0474813225

$\sqrt{1} \sqrt{4}+$| Minimum |
| :--- |
| Order $£ 1.00$ | | VALVES VAT |
| :--- |
| IS INCLUDED |

A1065 \＆\＆\＆

 DY86
OY802
E551 EB8CC
E92CC
E180C
E180 E180F
E182C
EA76受 N．．우웅 EBFB3
EEF89
EC52
EC91騕要茹总

－

＊

H．

む
$\begin{array}{ll}6232 & 1.05 \\ 6233 & 4.20\end{array}$
VALVES AND TRANSISTORS
PHCESMAY VARY

TELUROMETER MRA3 DISTANCE MEASURERS
LOW RESISTANCE MEADPMONES TYPE CLB EI 50
40p pestape VAT 15% ．
HIGH VACUUM VARIABLE CAPACITORS－CEI
 TEST SET FT 2 for resung Transceivers A40，A41，A4 and CPRC26．
UNIVEASAL WIRELESS TRAINING SET No 1 Mk 2YA 8316 to train 32 operators simultaneousty on key
and phone Complete instailition consisis of 3 krts
 ＂J1＂＂． $22 . "$ Microphones No 5．6． 7 connectior
trames，carrier sets etc．
DRUM CABLE COntinuous connection YC 00433.
INTEGRATED CIRCUITS

 6．AERIL MAsts 0.22 ／a dia．Complete with all accessories to 6 sert 8^{\prime} Mullard C11．High power installation． 1000W．Technical details and prices available on reques1．For expon only．
SPARES FOR AR8\＆－D．Ask for lis？． POSTAGE：£1－£3 30p；£3－£5 40p； £5－£1045p；£10－£15 60p；over £15 free．

COLOMOR
（ELECTRONICS LTD．） 170 Goldhawk Rd．，London W． 12

Tel．01－743 0899 Open Monday to Friday 9－12．30，1．30－5．30 p．m．

World－beating Oscilloscope Offers FROM Electronic Brokers 1 ニー・ー ー Tel：01．837 7781．Telex： 298694
Prices do not include carriage or VAT
WW－ 075 FUR FURTHER DETAILS

AMATTER OF LIFE OR DEATH

When an accident occurs involving severe electric shock, people on the spot may be suffering from a kind of shock themselves. The realisation that one has literally only seconds to save a life can itself be momentarily paralysing.

That's why Electrical Review has completely re-styled its Electrical Shock Chart. The new chart, prepared in consultation with St. John's Ambulance Brigade, highlights the main points
in red, and explains and illustrates the actions to be taken so clearly that they can be grasped instantaneously even in a crisis. It also includes vital instruction on what to do if the casualty does not respond to artificial respiration - with a section on external heart compression.

Action this second could save a life. Post this coupon NOW.

VIVID RED AND BLACK. PLASTIC,CARD OR PAPER.
SIZE 19 in $\times 131 / 2 \mathrm{in}(474 \mathrm{~mm} \times 346 \mathrm{~mm})$

ELECTRUC SHOCK
 ACT AT ONCE - DELAY IS FATAL
 If the cesvolty is not clear of the source of wrenching the cable free. H this is not the shock brook the contact by switching possible, stand on dry Insulating material off the current. removing the plug, or (rubber, wood, brick, thickly folded nows-
 if the casualty is breathing
 - casualty in the recovery position and recovery posi

Sicial respiration-speed is essemtial

4. Remove mouth and wath chest fall 5. Repeat and continue inflotions of your natural rote of breathing.
When cesvolty sterts breathing place him immodiately In the recovery position. amall o thump will pulse is present continue inflotions. - ineffective but when the casualty breathes on his own too lorge o thump place him immediotely in the recovery could injure the position. If the pulse is still absent stort casualty. Assess external heart compression. the cesvelty - o thin person will require lase force

on recovery continue to wetch cesualty corofully as breathing may stop. If it does, furn casuolty on his beck ond start ertificlal whth one blonket only.

Complete Audio/Tuner Kits

Radio/Audio/Communications Modules

Mk III FM Tuner series

Carriage for Mk III tuner $£ 3$ inc
The Mark III series FM tuner has been updated, and now includes a centre zero tuning meter as standard. The instruction manual has been meticulously revised, enabling easy assembly by constructors of various levels of experience - a preview copy may be purchased for $£ 1.00$ Mark III A series 'Reference series' tuner modules
Mark III B series 'Hyperfi' modules, with switched
IF BW, pilot cancel decoder
A matching synthesiser unit will be made available later this year, and can be retrofitted to either version. All versions include digital frequency readout/clock, VU deviation meters, 6 preset stations, 10 turn pot manual tuning, toroidal PSU, output level adjustment, $110 / 240 \mathrm{v}$ AC input. Full alignment service available.

Power Amplifier $\begin{aligned} & \text { Style and performance - with a real } \\ & \text { 'belt and braces' PSU design. }\end{aligned}$

After a couple of preview comments, it seems that many of you are waiting to hear about the matching HMOSFET power amplifier for the Mk III tuner. Well, it's out at last - complete with twin toroidal PSUs for comfortable $80 W$ RMS per channel, over 100 W peak, but limited by thermal shutdown of the HMOS. $10 \mathrm{~W} \cdot 100 \mathrm{~W} \log$ LED output peak indicator, DC of fset protection and switch-on pause relay. AC or DC input coupling, direct or relay protected output terminals. The works.
Only one version of this item: Complete kit£178.25 inc. Carr. $£ 5$.

Preamplifier

 More features and facilities, thanks Previewing whe most comprehensive audio preamplifier yet...... $D C$ swiching of 7 inputs, plus two tape in/ouss. 2 low pass, 2 high pass active filters, genuine volume related loudness, 1 d8channel matching, with DC volume, balance, bass and treble controls. Soitable for bus/remote control, tape dubbing, switched monitor etc. $80 \mathrm{~dB} \mathrm{~S} / \mathrm{N}+$, THD .75 dB or better. Pluggable PU equalization boards, tone control override. Price for complete unit about £149 ex VAT.

LW-MW-SW-SW DC tuned and switched

91072.

All switching of bands by a single pin to gnd. Varicap tuned, with LO output for synth. MW/LW version MW/LW: $£ 15.58+1$ or $£ 16.73$

VHF Tunerheads

Europes largest stock range for broadcast and communications. Probably also the world's details in the catalogues and PL. Specials are

Pilot Cancel PLL Stereo decoders

Again, Europe's widest range of stereo decoders including pilot cancel PLL types. The pic shows $26 / 38 \mathrm{kHz}$ filtering and muting preamp output

Switched bandwidth FM IF strips

Broadcast FM IF strips for all occasions, including the new 911225 - with diode switched narrow filter option, ultra linear phase ceramic filters, $84 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$, and 0.04% THD (40 kHz deviation). Plus usual things like AGC, AFC, dev. mute, level meter drive. $£ 23.95$ (supplied in screen can with 0.1 edge connection system)
Also the 7230 hyperfi series. as the 911225 , but with slope controlled AFC that operates in conjunction with signal level-and an extra IF amp stage for DXing.

Various digital frequency displays

The World's largest range of receiver DFMs is now joined by the DFM7 (shown) - and L shaped version of the DFM3 with remote display mount connecto 10.7 MHz offsets, 100 Hz res up to 3.9999 MHz , and 10.7 MHz offsets, 100 Hz res up to $3.999941 .5{ }^{2}$
VHF to 299.99 MHz in 10 kHz steps $: £ 41.75$

Semiconductors

Components

$10.7 \mathrm{MHz} \quad 25 \mathrm{kHz}$ Channel spacing 8pole $121 / 2 \mathrm{kHz}$
 Monolithic dual roofing filter $34.5 \mathrm{MHz} \quad 1.3 \mathrm{~dB}$ loss, 80 dB stopband HF RC XTALS first filter in synth. RX AM pairs USB/LSB Xtals for 10.7 SSB filter $£ 2.88$ ea

Piezo Sounders The most efficient warning sounders yet
The latest thing in electro-acoustic efficiency. 1 mA of drive from CMOS will give an SPL of 83dB. 10v RMS drlve from CMOS uses 3 mA for 100 dB SPL at 4.8 kHz (88 d b at 1.65 kHz)
The data sheets shows various drive circuits, and give full
specifications with regard to broadband responses and power
consumption etc. 1 off 44 p inc. 100 off 28.75 p (25p ex vat)
POWER MOSFETS
100W PA's made simple

unce proneering "iw toow complementary MOSFET rechnique - Hitachi have developed a range

 of output devices and drivers that ought to revolutionise opinions and attitudes towards the design of all LF amplification systems. We have a new 48 page application note (51.50 inc) and 2SK135 160v N-ch 100W MOSFET E7.29 2SJ50 Pch complentent $\quad 67.39$ PA101B Kit for 100W MOSFET PA less Heatsink £16.10. (£23 inc heatsink/bkt)
ULTRA LOW NOISE PU PREAMPLIFIER
The HA12017 is the last word in PU preamps, and general low noise audio design. It is an SIL IC, with 86 dB S/N in RIAA configuration, 10 v RMS output capability 0.002% typ THD at 10 V RMS output limagine the overload margin !!!. It comfor ably supercedes discrete circuit designs in terms of price/performance, and takes

Radio Control ICs We have various RC ICs, including NE54

> KB4445 . 4 channel dig.prop. FM TX ic. 30 mW our (amplifyablel $£ 2.30$ inc KB4446 KB4446 4/5 ch. dig. prop FM RX IC. Suits KB4445 or RCME syst. $£ 2.65$.

CMOS, LPSNTTL, TTL, MPU:

Listings in the new pricelist. volume - also LPSN. Standard Things like ICM7216B, ICL8038, 8080A, 6800P, 2708, NE555,NE556, etc Coming Soon. Contain yourselves, RF fans! Not vet ready for
af full faunct until autumn but oreviewed here: SSB transceiver system : 10 kHz to 1000 MHz !! A modular VLF to UHF SSB TX/RX system at last. With the correct first mixer, the basic PCB
covers 10 kHz to 1000 MHz . USing LO fect from ext. source (Our 2 IC Mullard synth for instance covers 10 HHz to 1000 MHz , using LO fed from ext. source (Our 2 IC Mullard synth for instance and RF PA for AX an RF PA for full TRX for another $£ 50$. See one in our foyer, and marvel.

Keyboard switches and caps
From the world's most widely used switch
manufacturers - ALPS - come the biggest and best range of keyswitches, and data entry key board switches. The SCM81101 is shown here, easy fitting 2 -par cap (with clear top, to enable easy fitting of your chosen legend. Other types are available with built in LED, 90° mounting etc
SCM81101: $17 p$. KT5: 16 p - or $29 \mathrm{p} / \mathrm{pair}$

LCD CLOCKS
 Clocks use 1.5

LCD DVM LCD DVM DVM $\mathrm{Vv}^{2} / \mathrm{mA}$
CM161: 7 mm LCD $12 / 24 \mathrm{hr}$, alarms eic $£ 11.44$ each CM172: 13 mm , 12 hr , alarms, timer etc $£ 14.32$ each CM174: $13 \mathrm{~mm}, 12 \mathrm{hr}, \mathbf{m i n} / \mathrm{sec}$ stopwatch $£ 14.32$ ea DVM 176: ICM7 106 based LCD $31 / 2$ digit $£ 22.36$ each

WHAT's NEW at AMBIT

NEW PRICELIST/SHORTFORM:-

28 pages, FOC with A5 SAE pse
If you still need convincing to invest $£ 1.60$ in the cats, be
POWER MOSFET APPLCATIONS
HANDBOOK by HITACHI:

Bigger print than our recent one page list
and vastly extended and vastiy extended

Please send an
SAE with all enquiries.
Phone orders by
ACCESS but
minimum $£ 5$
Callers welcome
 A massive purchase of brand new "state of the art" data processing equipment enables us to offer the following chips at never, and we mean never to be repeated prices
8085A
85A
256×8 Sratic Ram
$\begin{array}{ll}8155 \mathrm{C} & 256 \times 8 \text { Static Ram } \\ 8253 \mathrm{C} & \text { Programmable Interval Timer }\end{array}$ 8253
8255 A \quad Programmable Interval Timer 8259A. 8 Programmable interrupt Control 8755A $2 \mathrm{~K} \times 8$ Eprom $161 / 0$ Lines 2716 5volt Singe Rail $2 \mathrm{~K} \times 8$ Eprom 2652 MPCC Comms. Controller E10.50 88.95

$c 8.95$ c9.95 | 69.95 |
| :--- |
| | 4.75 24.00 2102 1K Static 650 ns Rams 8 for $\mathbf{E 5 . 2 5}$. 1702

256×8 Eprom
E3.75
And Remember All Chip Prices Include V.A.T.
ar above l.cs are brand now or
All full spec. and guaranteed

DATA DVNAMICS330 ASCII PRINTERS

 Anese Ahese superb condition quality printers at a fraction of their original cost. The 390 is a standard Teletype printer housed in a soundproof case. Standard features such as 80 columns, 20 ma
RS232 interface and 110 Baud enable direct connection to your M.P.U. Supolied in excellent condition and guaranteed in working order.

SEMICONDUCTOR GRAB BAGS

Amazing value mixad semiconductors, include transistors, digital. linear I C.'s, triscs, diodes, bndge recs. eic. etc. All devices guarsnieed brand new, full 50 + BAGE2.95 100 + BAGS $£ 5.15$

MUFनाN Fans

Keep your equipment Cool and Reliable with our tested ex equipment
 65p Dimensions Hi $^{2} \times 41 \times 1$

ELECTRONIC COMPONENTS \& EOUIPMENT

65\%

DISCOUNT

Due to our massive bulk purchasing programme

 which enables us to bring you the best possible bargains, we have thousands of I.C.'s, Transistors, Relays, Cap s., $. C . B$. S, Sub-assembles, Switches don't have sufficient stocks of any one item to include in our ads., we are packing all these item into the "BARGAIN PARCEL OF A LIFETIME" Thousands of components at giveaway prices Guaranteed to be worth at least 3 times what you pay plus we always include something from our ads. for unbeatable valuell Sold by weigh$2.5 \mathrm{kls} £ 4.75+p p £ 1.25 \quad 5 \mathrm{kls} £ 6.75+p p £ 1.80$ 10kls $£ 11.75+p p \mathrm{f} 2.25 \quad 20 \mathrm{kls} \mathrm{f} 19.99+\mathrm{pp} £ 4.7\}$

COMPUTER BARGAINS NORTH STAR HORIZON, 56K Ram dual double sided, double density floppys, 4 //O ports, software etc, as new $£ 1850.00$ CASE 16 Bit Processor, 16K Ram, dual 8 floppys V.D.U. etc. running $£ 1250$ + VAT

SHUGART SA800

$\star \quad 8^{*}$ Floppy Disk Drives \star as new $£ 225.00+$ VAT

SUPERVALUE P.C.B. SPECIAL Another great buy. Board contents include 62 Digital I.C.'s all located in 14 pin D.I.L. sockets. Original cost over $£ 90$, our price only $\mathbf{£ 4 . 9 5 + \text { PP } 6 5 p . ~}$
in stock now test equipment, scopes. sig. gen's, motors. p iranstormers, power sups components, variacs, keyboards equipment, i.c.s. ther stock lines Just a mere fraction of our vast range, displayed below. 100 's of bargans for callers.

OPCO SNASHI!

TIL 302/MAN 77 wegment LED
common anode direct drive (via
resistorst from 7447 E 1.10 each
common anode direct drive (via
resistorst from 7447 E1.10 each isolator 3 for $£ 100$.
TIL305 0.3"7 75 matrix LED alphanumeric readouts f 3.75 each. PHOTO TRANSISTOR
Fairchild FPT. 100 NPN silicon 30 v
25 ma .4 for $£ 1.00$ AND

DISPLAY I.C. AND

TRANSISTMEAPER
NEVER CHEAT
well known manufacturers and fully
guaranteed. No fall outs. Comprehensive
data on l.C. $s 15 p$ per type.
2 N4352 P channel MOS FET
60 peach f 1.00 per pair.
HIGH VOLTAGE NPN POWER SWITCHING transistors BVcbo 600v BVceo 500 v 8Vebo 15 v 1 c 5 amps Pc 125 watts HFE 60 typ ft 2.5 mhz ideal invertors, etc. TO3 Ct .60 each 4 for E5. 40 .
BF258 NPN
BF258 NPN 250v @ 200 ma 45 peach 3 for f 1.08
I.R. BSBO1 2.5 amp 100 v bridge rec
P.C. mount long leads 35 p each 4 for

IN4998.
IN4998 4 amo 100 V P.C. mount diodes long leads $14 p$ each 10 for $£ 1.10$ each 6 for f 5.35
AGFA C10 computer grade cassettescom. plete with library cases 68 peach, 10 for 55.50 IN4004 SD4 1 amp 400 v diodes 7 p each 18 for E 1.00 .
I.R. 12 amp BRIDGE RECS. 400 volt
c1. 25 each
POWER DARLIMGTOM SCOOP!
MU1000 NPW 60 v 90 w 8 amps TO3 95 p each
Mum030 MPW 60 v 150 w 16 amps T03 f 2.25 each

We've done it again! We've purchased a large quantity of C P CLARE top qualit eyboard reed switches plus full OWERTY kevtop sets and thrown in a PCB enable you to customise the keys just as YOU want them, just add and wire an encoder chip and you can arrange ASCII, BAUDOT, anythingl Adding up to a quality keyboard which would normally cost around
layout and assembly info at only $£ 26.99+£ 1.50 \mathrm{pp}$. layout and assembly inf

2 M 300130 v 350 ma Tot8 22 p each 6 for $\mathrm{C1} .00$ 2W5061 60v BUOMa TOIB 27p each 4 for $\{1,00$ 2 MmHis 50 v 8 amps TO220 45 p each 10 for C 400 Ctos01 400v 5 amps TO202 55 peach 10 for 55.00 TAIACS GEL 12 ant 10 for f8. 7 A.E.I. 10 amp 400 v ready mounted on $2 \frac{1}{}^{\circ}=2 \frac{1}{2}^{\circ}$ LOW PROFILEIC. SOCMETS 80.1 L 10 p each 12 for fl 100 0.1.L. 14p each 8 for $\{100$

2 O.1. 27 p each 5 for ficion
2401.1 35p each 3 lor $\$ 100$
400.1 L 60p each 2 tor 51.00

OTHER GOOOIES

T. 0.555 p each 10 for 55.00 l . 1 wat up to 1000 Mr M304. WN720 F.E.T. transistor 37p each 3 lor f1.00 M330w St G051 14 O.1. 2 wat A.F amp 80 each 8 tor 66.00
A3028B DC. 120 MHZ dilterentiatic cascode amp 1.00 each 3 for $[2.50$ ach 2 for 1.00
TMS3114 DUAL MOS 128 bill static shilt reg. OC 25 MH2 11.50 each 8 for ${ }^{6} 4.25$ MES55 10 for $\mathbf{5 2 . 5 5}$
GEA2A zero voltage swit. Triac SCh reiay diver O5 can $\{1.10$ each 7 lor $\mathbf{5 6} 50$
SN27198 independent diodes IN4 148, IN91

0.:1. pack 70 peach 2 for 11.00

DECADE 0-9 THUMBWHEEL SWITCHES. Stackable, gold plated contacts, dim. $33 \times 43 \times 8 \mathrm{~mm}$. 90 p each, 10 for $£ 5.50$.
Miniature Continental Series 12 VDC $4 \mathrm{c} / 0$ plug in relays fI .30 each.
Greenpar 50 \& BNC Chass, socket single hole fixing 65ρ
C90 Audio Cassettes screw type construction 45 p each 3 for $£ 1.00$
Bulbs 24 v 14 watt white frosted S.B.C. 8 for f 1.00
Bulbs 12 v 100 watt clear, base similar S.B.C. $45 p$ each.
S.B.C. Bulb Holders All steel cad. plated panel mount easily fixed via nut and S.8.C. Bulb Holders All stee cad. plated disco displays. scoreboards, etc. 4 for E 1.10

VMOS VMPI Siliconix TO3 power FET $0-60 \mathrm{v}$, DC- 200 mhz will drive direct from CMOS etc, f 1.50 each, full date 30 p.
Hesvy Duty Fiat Insulated Earth Braid $100-200$ amp braided tinned coppe
in heavy clear PVC sheath 50 p per merre $\mathbf{6 6}$ for 15 metres + PP $£ 1$ per 15 metres. BULGIN miniature 6 way male chassis mount socket and matching free plug 60 p each, 2 for $f 1.10$
Red L.E.D.'s full spec. 0.214 p each. 10 for f 1.25
Red L.E.D. s $10.125^{\circ} 10$ p each 10 for 80 p)
Dynamic Stick Mics 600Ω with built in
TOS HEATSINKS "Thermaloy" black anodised press on aluminium finned

rype 18 p each. 8 for f 1.00

1.B.M. /O GOLFBALL TYEVVRICERS

Still the cheapest way to superb quality print, when interfaced they will print at 15 C.P.S. and give indistinguishable copy as if typed by a highly paid secretaryl A large range of type fonts make them ideal for all word processor applications, and even without the computer they still function as a quily writer. Supplied in 2 grades.

1) Good general condition with I/O mechanics/ $£ 295.00+$ VAT electrics may require modification for full corre spondence use. Complete with interface dat via aculablinterface complete $£ 355.00+$ CARR with new golfball
ACULAB parallel to 18 M inter- $£ 165.00+$ CARR
face for Apple, Sorcerer, TRS80, etc.

BARGAINS GALORE!

in our waik round Warehouse
NOW open Monday to Saturday 9.30-5.30

Deot W. W. 5S Cf Mathort Rd Thamton Hoath Surey Dept. W.W. 6466 Mefort Re., Thomton H
Telephone 01.6897702 or 01.6896800

MAIL ORDER Unless otherwise stated all prices inclusive of VAT Cash with order. Minimu order value $£ 2.00$. Prices and Postage quoted for UK only. Where post and packing not indlcated please add 40 p per order. Bona Fide account orders minimum C10.00. Export and trade enquiries welcome. Orders despatched same day where possible. Access and Barclaycard Visa welcome.

POWER SUPPLY UNITS

5 VOLT 2.5/8 AMP TTL Made for TTL this compact ex computer systems unit features a 10 amp transformer. DC outputs of 5 volts @ 2.5 amps and 7.5 volts @ 5 amps are available. The 5 v output is fully regulated and smoorned 5 volts @ $7-8 \mathrm{amps}$. Sold complete with circult, believed 5 volts @ $7-8$ amps. Sold complete with
working but untested. $88.25+81.60 \mathrm{pp}$.

5 VOLT 3 AMP Ex computer systems, complete on one small chassis, features full regulation and crowbar over voltage protection.
$\mathbf{E 8 . 5 0}+\mathrm{pp} 80 \mathrm{p}$

PRINTERS

CENTRONICS 1014132 cohum
Matrix printer, serialparallel input $\mathbf{£ 5 2 5 + V A T}$
OATA PMOOUCTS 3001100 LPM.
Barred printer, standard T.T.L parallel interlace $\mathbf{f 6 5 0}+$ YAT Many other printers avaitable from $£ \mathbf{4 5 . 0 0}$

KEYBOARDS

76 KEY ASCII CASED

At last a coded 76 key cased ASCII keyboard at the right price. Housed in an attractive light grey case, this unit was originally made for ICL for use in airport reservation systems so only the BEST parts were used. It has everything, we think, to meet your most exacting requirements, numeric keypad, upper and lower case, cursor controls, single 5 volt rail, serial and parallel data outputs, plus eight LEDs mounted on the case. Supplied with circuits, believed brand new, but may have minor scratches on cases.

Only $£ 43.50+\varepsilon 1.60 \mathrm{pp}$
LOW PRICE CHASSIS \star

special bulk puichase enables us to otter the lowest evet price 49 coded teys encoded into a direct TI compatible bit output. Features suth as delaved strobe, 5 volt D. C single rait aration and rollovet protection make this an absolute must for the MPU constructor! Supplied complete with connection diagram and ade $\left.\begin{array}{l}\text { no lime to test' } \\ \text { price of only }\end{array}\right\} .00+$ P.P. £1. 60 SUPER CASEO VERSIOM Same as above spec but housed in attractive two tone moulded, free standing case. Unit also includes an ail TIL paraile lo serial convertor Ino details)
$£ 27^{.50+\text { P. P. } £ 1.85}$
TOROIDAL TRANSFORMERS
 PR 24Ton at \&
 TM 240v 110 ov pri see. 15015 Bua dumensions 26 All voltages masure ed ofl load.

MINIMUM ORDER £3 VALUE OF GOODS. MINIMUM P\&P £1 - where P\&P not stated please use own discretion - excess refunded. CARRIAGE ALL UNITS. £5 P\&P or CARRIAGE and VAT at 15% on total MUST BE ADDED TO ALL ORDERS
CALLERS VERY WELCOME STRICTLY BETWEEN 9 am- 1 pm and $2-5 \mathrm{pm}$ Monday to Saturday inc
BARCLAYCARD (VISA) and ACCESS taken. Official orders welcome.

780A 8 bit. This will run at 4 Mhz but is selected between $2 / 4 / \mathrm{Mhz}$. On-board, addressable memory. 2 K 2K Monitor - Nas-sys 1. 1K Video RAM
(MK 4118). 1 K work space/User RAM
(MK 41 18) (8K Microsoft Basic PR) (MK 3600 ROM). 8K Static RAM / 2708 EPr

Power Supply £29.50 + VAT.

Microprocessors 280A, 8 bit CPU. This will run at now been generally accepted as the most poweriul 8 bit processor on the market.
interface
Keyboard New expanded 57 key Licon solid state keyboard especially built for Nascom. Uses standard Nascom, monitor controlled, decoding.
T.V. The Iv peak to peak signal can drive a monitor directly and is also fed to the on-board modulator to drive the domestic $T . V$
1.O. On-board UART (Int. 6402) which provides serial handling for the on-board cassette interface or the
RS23220mA telerype interface.
The cassette interface is Kansas City standard at either
The cassette interiace is Kansas City standard at either
300 or 1200 baud. There is a link option on the NASCOM- 2 for 2400 Baud.
The RS232 and 20 mA loop connector will interface directly into any standard teletype.
The input and output sides of the UART are independently switchable between any of the options -
i.e. it is possible to have input on the cassette and output on the printer.
PIO There is also a totally uncommitted Parallel I/O (MK 3881) giving 16 , programmable, $1 / 0$ lines. These are addressable as 2×8 bit poris with complete
handshake controls. handshake controls.
Documentation construction article is provided for those who buy a kit any an extensive software for those who buy a kit any an extensive
manual is provided for the monitor and Basic.
Bastc The Nascom 2 contains a full 8 K Microsof Basic in one Rom chip with additional features like DEEK, OOKE, SET-RESET for simple programming

PLAIN PAPER PRINTER

Fwly built and housed in a
stylish enclosure for just $£ 325$ plus VAT. Interfaces with all micro
computers
The Nascom IMP (Impact Matrix Prinzer) features - 60 lines per minute are 80 characters pef line Automatic CR/LF 9610 line print buffer. (including upper/lower case, s,\#, E). OAccepts $8 \frac{1 / 21 "}{}{ }^{10}$ paper (pressure feed). Accepts $91 / 2^{\prime \prime}$ paper (tractor leed). Tractor/ pressure ieed - Baud rate from 110109600 . External signal for IDEAL FOR WORD PROCESSING

5Yรा|n
 KITS from £225

Microprocessor board (Nascom 2)
4 MHz Z80 CPU; TV or Video +1200 baud Kansas City + Serial RS 232 printer
Interfaces; Keyboard; 128 character ASCII plus 128 Graphics in $2 \times 2 \mathrm{~K}$ ROM; free 16 -way parallel port; 8 K BASIC: NAS SYS operating monitor. £280 built and tested

Firmware \& MOS ICs
Zeap Assembler (4, $1 \mathrm{~K} \times 8$ EPROMS) $£ 50$ Nas Pen text editor ($2,1 \mathrm{~K} \times 8$ EPROMS) $£ 30$

Floppy disc system
Double sided, double density $51 / 4$ in disc giving 280K bytes formatted, including controller board/PSU/Housing and interconnects. $£ 480$ Controller board $£ 127.50$. Second Disc $£ 240$. CP/M $£ 80$.

System 80 housing

High strength GRP moulding
Accepts 12×8 Nascom 2 CPU board, four 8×8 expansion boards. $£ 85 \mathrm{incl}$ frame racking. interconnects and motherboard.

Expansion Boards ${ }^{\circ}$ (in kits)
16 K RAM $£ 127.50$ - 32 K RAM £ 175
48K RAM E220
Migh Resolution Programmable Graphics $£ 90$ High Resolution Colour add on $£ 37.50$ Colour Board Kit $£ 140$

All prices subject to VAT

COMPUTER KEYBOARDS

TASA 56 key touch sensitive keyboard. All ASCi characters including control keys. Parallel output with strobe. Shift lock. Keys coded in 3 colours to indicate
function. 18 VDC at $35 \mathrm{~mA} .15^{\prime \prime} \times 6.25^{\prime \prime} \times 0.38^{\prime \prime}$ function. 18 V DC at 35 mA . 1
thick. Black resin
$£ 49.50+$ VAT
Star Devices Mk 11171 key touch sensitive keyboard. With numeric pad. All ASCII characters including control keys. Auto key repeat. Parallel output with strobe. Shift lock with indicator LED. Built in 'beeper' $1.25^{\prime \prime}$. Grey case with white keys on blue.
C48.50 + VAT
Carter 57 key ASCll keyboard. Conventional keyboard. 128 ASCII characters including control keys. Parallel output with strobe, Shift lock +5 V and $-12 \vee D C$. $12^{\prime \prime} \times 5.5^{\prime \prime} \times 1.5^{\prime \prime}$. Black keys with white legends.
£39.34 + VAT
FERRAN
FRONT
FRONT 55 Key ASCII Coded in steel case. Complete with Pl and Cable with circuir to convert to T.T.L. levels.
In good condition at only $£ 25+$ VAT, P/P $£ 2.50$

Nomore slaving over a hot soldering iron. The Nascom 1 is now supplied BUILT!
Britain's biggest small system is available fully constructed for you to slot into your own housing. for the ridiculously low price of $£ 140$ plus VAT (kit price stith

only £ 125 plus VAT)
 ?

120 \times Ca carrying 5LSI MOS packages, 161 K
MOS memory packages and 33 TTL packages. There is on-board interface for UHF or unmodulated video and cassette or teletype
The 4 K memory block is assigned to the operating system, video display and Eprom option socket,
1 K user RAM
K user RAM
The MPU i
80 which is the standard
capable of executing
158 instructions includ. ing all 8080 code.

NASCOM PRODUCT LIST

I/O board kit less $1 / 0$ chips
UART + BAUD rate generator + crystal for $1 / 0$ board
clock generator for $1 / 0$ board
P/IO-MK3881 + interconnect for $1 / 0$
board
$\mathrm{P} / 10$ interconnect only (for $1 / 0$ board)
Econographics kit for additional 128 char
acters (N1 only)
$2708 / 2716$ Pr \qquad
Nascom 19 " rack mounting card frame
for N1 and N2
Nas-DA disassembler 3 EPROM for Nas-sys MK 36271 8K BASIC in $8 K \times 8$ ROM
Naspen VS in 2 EPROM
Nas sys monitor in 2 EPROM
Nasbug T2 $1 \times$ EPROM
Nasbug T4 $2 \times$ EPROM
Tiny Basic $2 \times$ EPROM
Super Tiny Basic $3 \times$ EPROM
Super Tiny Basic $3 \times$ EPROM
Super Tiny Basic upgrade $1 \times$ EPROM
Super Tiny Basic
Tape Soltware
Tape Software
ZEAP 1.2 tape and documentation for N
ZEAP 2 tape and documentation for
Nas-Sys
8K BASIC tape and documentation for N
MEMORIES Discounts 10% for $4,15 \%$ for 8
20\% for 16
MK3880 (ZBO) for N 1
MK3880-N4 (Z80A) for N2
MK4116 $16 \mathrm{~K} \times 1$ dynamic RAM
MK 4027 4K $\times 1$ dynamic RAM
$21021 \mathrm{~K} \times 1$ static RAM
$41181 \mathrm{~K} \times 8$ static RAM
$41181 \mathrm{~K} \times 8$ static RAM
Unprogrammed 2708
Unprogrammed 2708
Unprogrammed 2716
Unprogrammed
IM6402 UART
$21141 \mathrm{~K} \times 4$ Static RAM 8080A
8080A $\times 4$ Staic RAM

CENTRONICS QUICK PRINTER
LIST
PRICE
PRICE
E.459.00
IMCL. VAT

OUR
PRICE
PRICE
E195.00
+VAT

EXCLUSIVE TO HENRY'S
50% OFF MAKER'S PRICE
Soltware selectable 20, 40 and 80
TANDY column using 120mm aluminiumised PET 150 lines per minute NASCOM Centronics parallel data interface for - 240 volt mains input, ASCII character

- Paper feed, and on / off select switches. 'BELL' signal. Weight 10 lbs . Size: $13^{\prime \prime} \times 101 /{ }^{\prime \prime} \times 41 / 4$. list price $£ 400$.
New bioxed and fully guaranteed
-

POST PAID Price $£ 195.00$ + VAT
See COMPUTING TODAY Recommendations March/May issues

Lower case pack, incl. VAT £10.90

Chunky Graphics Pack, incl. VAT $£ 7.50$

Complete Tangerine range available STATED

A.C. VOLTMETERS

BOONTON

True R.M.S. Voltmeter 93A
FLUKE
AC/DC Differential Voltmeter 883AB HEWLETT PACKARD
Log Voltmeter / Amplifier 7563A

£3600
ANALYSERS

BIOMATION

Logic Analyser 1650D
£1750
Vibration Analyser 191 1A
HEWLETT PACKARD
Spectrum Analyser 141 T $£ 4350$ c/w 8552A \& 8554L $£ 1350$ Logic Analyser 1600A Network Analyser System $8407 \mathrm{~A}+8412 \mathrm{Ac} / \mathrm{w}$ 8600 A +8601 A Sweep Marker Generator
$100 \mathrm{KHz}-110 \mathrm{MHz}$ range. $£ 3500$
Swept Amplitude Analyser 182T + 8755A
$15 \mathrm{MHz}-18 \mathrm{GHz}$.
MARCONI INSTRUMENTS
Wave Analyser TF 2330A

BRIDGES

A.V.O./B.P.L

Capacitance Bridge CZ1154/5
BOONTON
VHF 'Q' Meter. 280AP
($210-610 \mathrm{MHz}$)
Inductance Bridge 63H
2750
GENERAL RADIO
$\begin{array}{lr}\text { Immitance Bridge 1607A } \\ \text { LCR Bridge }(0.05 \%) \text { 1608A } & £ 750 \\ \text { L1195 }\end{array}$ MARCONI INSTRUMENTS
Universal Bridge TF 1313 £325
Q' meter TF1 245 c/w TF 1246 and TF 1247
RHODE AND SCHWARZ
Inductance Meter LRT $£ 950$

Capacitance Meter KRT
$£ 475$

WAYNE KERR
A.C. Testamatic A60
£475

Universal Bridge 8221 (0.1\%)
£1500
D.V.M.s AND D.M.M.s

DATRON

5½ digit D.V.M. 1051
$£ 995$

FLUKE

$£ 89$
$31 / 2$ digit D.M.M. 8022A (New) $31 / 2$ digit D.M.M. 8020 A
$51 / 2$ digit D.M.M. 8800A-01
51/2 digit D.V.M. 8300A
Autoranging D.M.M. PM 2514
3½ digit D.M.M. PM 2522
£125
4 digit D.M.M. PM 2524
Autoranging D.M.M. PM 2527
£225

SCHLUMBERGER

51/2 digit D.M.M. A 243
$£ 425$
Microprocessor D.M.M. 7065 As above with processor option Microprocessor D.M.M. 7055 E950

E= = 49/53 Pancras Road London NW12@B Tel:01~837 7781. Telex 298694

Unless otherwise stated all equipment offered in the Electronic Brokers advertisement is refurbished and in the case of Test Equipment also calibrated. Test equipment is guaranteed for 12 months; computer peripherals for 3 months.

WW - 100 FOR FURTHER DETAILS

FREQUENCY COUNTERS advance
500 MHz Counter TC 15 \& TC 15 P1 £495 FLUKE
250 MHz Multifunction Counter 191 1.A-01
£325
500 MHz Multifunction Counter 1912 A - $\mathbf{〔 9 5}$ T25MHz Multifunction Counter 1925A E350 Counter Timer 1953A opt. 15 \& 16
PHILIPS
1 GHz Timer Counter PM 6615 £500 80 MHz Universal Counter PM $6611 / 02$ £275 520 MHz Univ. Counter/Timer PM6614 £395 80 MHz . Freq. Counter PM6664 £250 RACAL
520 MHz Freq. Counter 9915

OSCILLOSCOPES

COSSOR

35 MHz Dual Trace CDU 150
HEWLETT PACKARD
75 MHz Dual Trace 1707A High Sensitivity Single Trace 130 C
£395

MARCONI INSTRUMENTS
X-Y Display TF $2213 / 1 \mathrm{c} / \mathrm{w}$ Memory Unit TK 2214
PHILIPS
25 MHz Dual Trace PM 3212
25 MHz Dual Trace PM 3214

S.E. LABS

6 Channel Monitor SM1 21
£395

TEKTRONIX

100 MHz 4658 "Brand New" Dual Trace, Swep Delay, Alternate Sweep, Trigger View, 5 mV sensitivity c/w all sta ndard accessories. £1395 465100 MHz . Spec. similar to 465 B but no alternate sweep.
£1195
200 MHz D. Trace Portable $475 \quad £ 1790$
35 MHz Dual Trace T932
1790
W. Diff. Plug In
$£ 550$
$£ 295$
1A6 Plug in
£199

RECORDERS

PHILIPS

Single Channel Recorder PM 8110
$£ 195$
RACAL
Store 4 FM Tape Recorder, 4 tracks DC-20KHz, 7 speeds.
SHANDON SOUTHERN
6 Channel U/V Recorder 10-650
$£ 1950$ WATANABE
£725
6 Channel Chart Recorder MC 641 YOKOGAWA
Chart Recorder 3047
£2250

SIGNAL SOURCES

HEWLETT PACKARD

Variable Phase, Sine and Signal Generator 203A
£495
Oscillator $10 \mathrm{~Hz}-10 \mathrm{MHz} 651 \mathrm{~B}$
V.H.F. Oscillator 32008

Decade Oscillator 4204 A
U.H.F. Signal Generator 612A
V.H.F. Signal Generator 608F $£ 750$ R.F. Sweeper 8620A c/w. 86220A £1750 R.F. Sweeper $86908 \mathrm{c} / \mathrm{w} .8698 \mathrm{~B}$

8699 and 8694B
$£ 2800$
S.M.F. Signal Generator 618 C (Mint cond.)
£1985
RF Sweeper/Marker Generator 8600A + 8601 A . $100 \mathrm{KHz}-110 \mathrm{MHz} .5$ marker frequencies.

MARCONI INSTRUMENTS

A.F. Oscillator TF 2000
A.F. Oscillator TF 2100
A.M. Signal Generator. TF801D/8S
L.F. Oscillator TF 2102/1M1
U.H.F. Signal Generator TF1060/3

Two Tone Source TF 2005R
H.F. Generator TF 144H/4

PHILIPS

Function Generator PM 5108
Function Generator PM 5127
Function Generator PM 5167
TEKTRONIX
Pulse Generator 2101
£420
Time Mark Generator $2901 \quad \mathbf{£ 3 9 5}$
TM515 Main Frame c/w FG504 0.001 Hz 40 MHz function generator. 2 Off PS503A Triple Power Supplies.

E1250
TM515 Main Frame c/w SC502 15 MHz Oscilloscope. FG503 1.0Hz-3MHz Function Generator. DM502 3 $1 / 22$ digit DMM. DC503 100 MHz Counter.
£1495.

TEXSCAN

Sweep Generator VS 40
$£ 650$
WANDEL \& GOLTERMAN
Level Measuring Set-up. PSM 5. 10KHz-36MHz
£1850

TELONIC

R.F. Sweeper $2003 \mathrm{c} / \mathrm{w} 3302,3331$
$3341,3351,3360,3370(1-300 \mathrm{MHz}) £ 1150$

MISCELLANEOUS
 ADVANCE

Off Air Frequency Standard OFS 2B
£150
AVO
Valve Tester VCM 163
£475
BRADLEY
AC Calibrator $125 B$
$£ 475$
DC Calibrator 1268
£250
BRUEL KJAER
Sound Level meter 2203 \& Microphone 4145
£395
DATALABS
Power Line Disturbance Monitor DLO1 9

FLUKE

DC Differential Voltmeter 895A £950 Meter Calibrator 760A/AF £2150 GENERAL RADIO
Sound Level Meter 1933
£1000
Cassette Recorder 1935
HEWLETT PACKARD
DC Microvolt-ammeter 425A $£ 250$
AC /DC Differential Voltmeter 741B £695
Vector Impedance Meter 4815A £1950
S Parameter Test Set. 8745A £2750
Insulation Resistance Meter 4329A §500 MARCONI
M.F. Attenuator TF 2162 £135
A.F. Power Meter TF 893A £185

Transmission Test Set TF 2332 £425
Transmission Test Set TF 2333 £600
P.C.M. Regenerator Test Set OA 2805A $£ 2700$
P.C.M. Multiplex Tester TF 2807A £1500

RHODE AND SCHWARZ
Stereocoder MSC
$£ 850$

SIEMENS

Carrier-Freq. L.M.S. D2021/W2021/G2021
$10 \mathrm{KHz}-25 \mathrm{MHz}$ £ 1700
Level Measuring System. D2074/W2074/ G2006 £2600 Carrier Frequency Level Test Set W 2007 + D $2007,6 \mathrm{KHz}-18.6 \mathrm{MHz}$. $£ 1750$
PS-4) $200 \mathrm{~Hz}-2 \mathrm{MHz} £ 2200$

WAVETEK

Sweep Generator 135 £275
Programmable Phase Meter 755 £550

POWER SUPPLIES

ADVANCE
PMA47.0-15V@3A (Presetable). £37 PMA 50.0-15V@5A (Presetable). £45 PMA 53.0-15V@10A (Presetable). £65 MG 5-605V@60A (Switching). £160 MG5-205V@20A (Switching). £120 MG5-105V@10A (Switching). £95 MG24-1224V@12A (Switching). £130 MG24-524V@5A. (Switching).

ONLY SMALL SELECTION OF OUR VAST STOCKS SHOWN HERE

> BRAND NEW! TEKTRONIX SCOPES

> Model 465B
> 100 MHz Dual Trace
> Portable
> Quick Delivery
> OUR PRICE: £1395

BRAND NEW!
 FLUKE D.M.M.s

We now stock all the
8000 Series D.M.M.s
Specs. \& Prices on request

İ二= 4953 Pancras Road London NW1 20B Tel:01-837 7781. Telex 298694

Hours of Business: 9 a.m.-5 p.m., Mon.-Fri. Closed lunch 1-2 p.m. Add 15% VAT to ALL PRICES

12 MONTH WARRANTY

All Second User Test Equipment is fully guaranteed for 12 months unless otherwise stated.
 \title{
108
 \title{
108
 Electronic Brokers No. 1 in Second User Minis \& Peripherals
}

CENTRONICS 101A
Heavy duty Matrix Printer with 64 ASCII upper case chatacter set. 165 cps operation. 132 print positions with adjustable tractor feed. 7×9 dot matrix. parallel input. €750.00.

GETERMINET 1200 RO

High-Speed typewriter-qualiny Impact Printer with switch-selectable print speeds of 30,60 and 120 cps .80 print positions with adjustable pin-feed paper tractor Full upper and lower case ASCII character set Current loop (20 mA) Interlace. NOW ONLY £495.00. (optional extra parity card $£ 50,00$)

DEC EQUIPMENT

BA11-KF Expander Box ... £1,325.00 DL1 1 W Asynchronous Interface $\mathbf{£ 3 9 5 . 0 0}$ DRV11 Parallel I/O (LSI11) ... £75.00 KL8JA Asynchronous Interface $£ 275.00$ KW11P Programmable Clock . £345.00
LA11PD 180 cps printer \& control
$£ 1,500.00$
MF 1 1L 8KW Core including 9-slot system unit
$£ 975.00$ MM11LP 8KW Parity Core £750.00 MSV11C 16KW MOS Memory (LSI11)
$£ 495.00$
MS 11 JP 16 KW MOS Memory $£ 895.00$ PDP11/40 Processor with 32 KW parity core.

KT11D Memory Management,
DL1 1 Interface, 6 ft . cabinet $£ 4,950.00$ PR1 1 High speed reader \& control
£925.00
REV11 Bootstrap (LSI 11) £75.00 RK05F Add-on disk drive .. £2,250.00

PDP8E Series modules large stocks of option modules, add-on core, CPU boards etc. all at reduced prices

HEWLETT PACKARD PROGRAMMABLE CALCULATOR

MODEL 9830A

8K Memory, Extended I/O ROM, String Variables ROM, 4 Peripheral interfaces (1 serial, 3 paraliel). PRICE C2,750.00

DEC MM11DP CORE MEMORY 16 KW core for PDP $11 / 04 \& 11 / 34$ series. BRAND NEW SURPLUS. ONLY E 750.00 (while stocks last)

NEW ASCII KEYBOARDS NEW LOW PRICES

KB 771 Superb 71 -station ASCII Keyboard incorpor ating separate numeric / cursor control pad and installed in custom-built steel enclosure with textured blue enamel finish. Ideal for the VDU builder. Case dimensions $171 / 4^{\prime \prime} \times 71 / 2^{\prime \prime} \times 3^{5 / 9^{\prime \prime}}$. Total weight 4 kg . PRICE
(mail order total £108.10)

Mail Order
Total KB756 56-station ASCII Keyboard mounted on P.C.B. $£ 45.00$ £53.48 KB756MF As above, fitted with metal mounting rame for extra rigidity ... $£ 49.50$ £58.65 K 710 10-key numeric pad, supplied with connecting cable £8.00 £9.78 KB701 Plastic enclosure for KG756 or KB756MF $£ 12.50$ £15.24 KB702 Steel enclosure for KB 756 or KB 756 MF $£ 18.00 \quad £ 23.00$ KB2376 Spare ROM Encoder 12.50 £15.24 KB1.5P Edge connector for KB756 or KB756MF £3.25 £4.31 DC. 512 DC convertor to allow operation at 5 V only (plugs in to P.C.B.) ... £7.50 £9.20 DB25S Mating connector for KB771 PERK 56-st plete with PET interface, built-in power supply and steel enclosure ... £145.00 £172.50

Discounts available for quantities

ASR 33 Teletype

input/Output terminal incorporating paper tape punch and reader 64 ASCII upper case character set, 110 baud operation, even parity keyboard, chorce of RS232 or 20 mA nteriace. Now 25.00 . 20.00 Auto reader $£ 25.00$, pedestal $£ 30.00$

EMI MONITOR

$15^{\prime \prime}$ Diagonal Tube Integral Power Supplies. accepts composite or separate video input. BRAND NEW COMPOsite or separate video

MISCELLANEOUS

BALL MIRATEL 9" Monitor with case, including space for keyboard. Integral power supplies included. Requires separate horizontal \& vertical video input.
$£ 95.00$
CLARE KEYBOARD SWITCHES. Special
purchase of top-quality Clare SF-type switches BRAND NEW SURPLUS 25p each DATA GENERAL Model 1210 CPU with 4 K core £795.00 DIGITRONICS P 135 paper tape punches. 35 cps. Solenoid device with 27 VDC coil $£ 95.00$ HAZELTINE THERMAL PRINTER, 80 column 30 cps silent RO printer with parallel TTL input
£395.00
SHUGART SA400 Mini-floppy disc drive BRAND NEW
£195.00
SHUGART SA800 8" floppy disc drive BRAND NEW
£395.00
TALLY 1602 MATRIX PRINTER, Parallel Input Upper/lower case, Tractor feed, as new
$£ 995.00$
TEKTRONIX 4010-1 GRAPHICS TERMINAL
£1,500.00
TERMIPRINTER 7075 RO Impact Printer,
Upper/lower case, pin-feed, RS232 £395.00 TEXAS 725 Portable Terminal with acoustic coupler
$£ 625.00$
TEXAS 743 Portable Terminal RS232 £795.00
TEXAS 733 ASR Terminal
£1.375.00

WW - 101 FOR FURTHER DETAILS

ELECTRONIC BROKERS LTD

 VDU PRICES SHATTERED

The low, low priced teletypewriter-compatible video display terminal, offering your choice of transmission speeds up to 9600 baud as well as parity generation and checking.
Specification
SCREEN SIZE - $12^{\prime \prime}$ diagonal.
SCREEN CAPACITY - 960 characters; 80 per line $x 12$ lines.
CHARACTERS - 5×7 Dot Matrix; 625-line
CHARACTER SET - 64 ASCII alpha numerics and symbols.
KEYBOARD - TTY format.
INDICATORS - Power On. Parity Error.
PARITY - Parity error indicated by Parity Light and question mark (?) displayed in character position.
TRANSMISSION - Asynchronous. Switchselectable for any two standard rates up to 9600 baud.
OPERATING MODES - Full/Half Duplex
MEMORY - High Speed MOS refresh.
STANDARD INTERFACE - CCITT V- 24 (EIA RS-232 B/C).
REFRESH RATE - 50 fields per second
When ordering please specify your choice of switch-selectable baud rates.

Standard: - Either A) 110/300 baud or B) $300 / 1200$ baud Optional: A combination of any 2 of the following transmission speeds can be provided at a surcharge of $£ 25.00$.
$75,110,150,200,300,600,900,1200$. 1800, 2400, 4800, 9600 , (N.B.: $900 / 1800$ not compatible with $110 / 200$ respectively).
 video display terminal. The Mazeltine 2000 sets the standard in features, performance, reliability and value in an ever-expanding list of applications in Universities, Hospitals, Business, Finance and Government.
Features include \$ Switch-selectable transmission rates to 9600 baud *Three switch-selectable operating modes - full duplex, half-duplex or batch * Direct cursor addressability * Dual-intensity video *Tabulation \#Powerful editing capability \#Remote keyboard \# Selective or automatic roll-up $\#$ Teletype compatible \# Parity select * Large screen capacity * Clear 5×7 matrix character image \star Full remote command set \#Format capability *Standard peripheral interfaces.
Specification
SCREEN - 12" diagonal. 1998 characters: 74 per line $\times 27$ lines.
CHARACTERS -5×7 Dot Matrix; 625 lines raster. CHARACTER SET -64 alphanumerics and symbols. 32 ASCli control codes
KYYBOARD - Detachable, solid state. TTY design 10 -key numeric cluster plus editing and cursor 10 -key nume
TRANSMISSION - Asychronous.
Switch-selectable, for combinations of 5 standard rates, 110 to 9600 baud.
OPERATING MODES - Switch-selectable, full duplex, half-duplex or batch
MEMORY TYPE -2048×8 RAM
EDITING FEATURES - Full Cursor Controls plus insert / Delete Character, Insert/Delete Line, Clear Screen, Clear Foreground Data Only, Tab. STANDARD INTERFACE - CC ITT V- 24 (EIA RS-232 B/C).
REMOTE COMMANDS - Insert/delete Line. Clear Screen, Clear Foreground Data Only, Home Cursor, Address Cursor, Set Background intensity Set Foreground Intensity, Carriage Return, Backspace, Ring Bell, Transmit, Print.
AUXILIARY OUTPUT - Standard printer
interfaces; Standard cassette interface.
£35.00
$£ 70.00$
$£ 70.00$
£15.00
P.O.A.
P.O.A.
P.O.A.
P.O.A:
£69.5
P.O.A.

HIGH PERFORMANCE BUT LOW COSTAUDIO SIGNAL GENERATORS SINE/SQUARE WAVE

Model 146-9. Distortion .0015\% [a/ 1 Kla] Racio

Pricas:

thas mrion. Assin iod E46 $1+$ UK Tax 5690
UK P/P $\mathfrak{\text { f2}}$. Over seas lrom E5.50.

and 10113
Distortion . 02% (I Khz) atherwise as 146.9
 it itans mant P/P 1.50

TELERADIO ELECTRONICS
325 Fore Strevt, Edmonton, Landon, M9 OPE T\&: 8073718
Also available: R.F. Sig. Gen. P.S.U. T.H.D. Analyser, Frequency Meter, MVMT.
Function (Sweep) Generators. SAE for full lists. Function (Sweep) Generators. SAE for full lists.

WW— 073 FOR FURTHER DETAILS

GOOD OISCOUNTS AND FREE POSTAGE ON SUBSTANTIAL C.w.O. U.K. ORDERS COMPUTER-CONTROLLED SERVIGE AIDS PROMPT DELIVERY 128-Page catalugue free for the asking
ELECTROVALUE LTD., 28 (W5), Si. Jude's Road, Englefield Green, Egham, Surrey TW20 OHB. Phone: 33603 (London 87) STD 0784. Telex 254475.

NORTHERN BRANCH (Personal Shoppers Only): 680 Burnage Lane, Burnage, Manchester M 19 iNA. Phone (061) 4324945.

COMPUTER APPRECIATION

86 High Street, Bletchingley, Redhill, Surrey RH1 4PA. Tel: Godstone (0883) 843221

PDP $11 / 03$ SYSTEM comprising LSI//11-2 processor with EIS/FIS. 64 K bytes, REV11
boostrap RXO1 dual floppy disc drive. DIABLO Model 31 RKO5 compatible disc drive bootstrap. RXO1 dual floppy disc drive. DIABLO Model 31 RKO5 compatible disc drive REMEX high-speed reader/punch, NEWBURY LABS. 24×80 VOU. In a rack cabinet. TEXAS IN

M Minicomputer with $24 \mathrm{~K} \times 16$ MOS memory \& TELETYPE Model ASR 33 with 20 mA current loop interface. 110 Baud, remote reader control (Which may be disabled by insertion of a jumper), paper tape reader/ punch and stand (when available). $£ 295.00$.
OATA DYNAMICS Model ASR 390 . Mechanically identical to ASR 33 but with addition of 240 v operation, motor cut our feature, reader single stop, stand and silencing cover. RS 232 interface. With low hours and in immaculate condition. $£ 375.00$.
DATA DYNAMICS Model KSR 390. As above, but without tape reader and punch. RS data dynamics miti ro
DI/AN Model 9030 . Desk top terminal similar to DECwriter LA36. Upper/lower case matrix printer, up to 300 Baud. Features switchable, Baud rate, parity, keyboard and duplex options. £295.00.
G.E. TERMINET terminal. Compact KSR unit operating at 10, 20 and 30 cps and with correspondence quality upper /lower case. All ASCII control etc. RS 232. (RO version also available at $£ 275.00$). $£ 325.00$
TEXAS SILENT 700 terminal. 30 cps dot matrix terminal using thermal paper. With 20 mA Eurrent loop interface. £325.00.

magnetic card stations. €295.00

ITEL Model 1051 lerminal Similar to Model 441 but with Available in either SEIECTRIC or EBCDIC code $£ 375.00$
DIABLO SERIES 30 DISC DRIVES. These are offered fully refurbished and may be viewed operating on-line at our premises prior to purchase. 2.5 megabyte removable carridge version is directly compatible with the DEC RKO5 drive for PDP /LSI 11. E650.00.
CDC Disc Drive. Further information awaited, but probably 30 megabytes. BRAND NEW and WANGCO Model T1222 disc drive. With $\mathbf{\text { Whe fixed platter and one top loading cartridg }}$ Combined capacity 5 megabytes. £650.00. (Other disc drives by PERTEC and IOMEC available, please enquire).
PERTEC Madel 6840.9-25 9-rack PE and NRZI tape drives usually available from stock PERTEC
8475.00
R.D.L. Model MTD 10.510 tape drive. 7 -track, NRZ1, 4 to 50 ips. BRAND NEW in origina carton etc. $£ 375.00$.
PERTEC Model 4311 Key to 9 -track magtape encoder. 800 bpi. Portable unit. £195.00. OATEK Model 40 Paper Tape Reader. Solenoid operated finger type. 40 cps . BRAND NEW
.

- VAT and carriage extra all items.
* Visitors welcome, but by appointment please
* We are keen to bid competitively for all good used equipment

FUSES Quck acting, Anti surge. Ceramic, from $£ 2.80$ per 100. WIREWOUND POWER RESISTORS $5 w-17 w$. OR5-39K from £8.50 per 100 .
PCB Guides, self-fixing from $£ 4.86$ per 100
C.f. RESISTORS, AEL \& Iskra $1 / 8 \mathrm{w}$ - 2 w , from $£ 4$ per 1,000 ELMA knobs \& accessories. Crimp (solderless) TERMINALS
CABLE SLEEVES \& Markets from $£ 1$ per 1,000
SLEEVING, Neoprene, PVC, Silicone rubber-all colours
SPECIALLY REDUCED PRICES for C.f. resistors, Polystyrene
Capacitors etc. for values on which we are overstocked. Special list available
Write, phone or call for lists required.

PBRA LTD.
 Hopfield 345
 (073274)

Golden Green, Tonbridge, Kent TN 11 OLH Member Crystalate Group.

STEREO DISC AMPLIFIER 2

THE MOST THDROUGHLY RESEARCHED DISC AMPLIFER TMERE IS
Magnelic cartridge lo baianced lines with superialive quality. Total harmonic. static Intermodulation and dynamic intermodulation distortions ail exceptianally low: Feb. pape 108. Distortion partormance and requency response unatfected by resislive or inductive source imperances. Remarkably low nolse levels隹 1 kHz a1 5 mb set
khz al 5 mV set tor OdBY. 7 output. loaded 6000.

$$
e, 1 H+1 k \Omega \quad-68 d 8 V .
$$

subtract lurther 11 dB from CCIR 468 -2 figures for domestic CCIR/ARM method Radio frequency breakthrough. Output level in a car rier fieid sirength of $+10008 \mu \mathrm{~V} / \mathrm{m} .84 \mathrm{MHz}$ 00\% amplitude modulated with

Less than -70ad8y

Linear crosstaik $\quad 1 \mathrm{ktt}-76 \mathrm{~dB}$: $30 \mathrm{~Hz}-20 \mathrm{kHz}-60 \mathrm{~dB}$.
Non-linear crosstalk Below nolse. all conditions below clipping
Satety Meels IECG5-2. BS415.
10 Outiel Distribution Amplifier 2 * Stabilizer * Frequency Shift Circuit Borrds * Paak Programme Meter Drive Circuits 2 \& 3 and Ernest Turner Movements * Chart hacorders * Peall Deviation Meler * Moving Coil Prazmplifier *Starea Disc Amplifier 3 ler unbalanced outputs

Exhibiting al INTE MMATIOMAL GROADCASTIWG COIVENTION. 8rightan. Seplember 20-23
SURREYELECTRONICS
The forge, Cranleigh, Surrey EU6 7BG. Tei. (04866) 5997

The Standard of the Industry What more need we say.

Exclusive UK representative

ㄹㅇㅇ electronics limited

2 KILDARE CLOSE, EASTCOTE, MIDDX. HA4 9UR TELEPHONE: 01-868 1188 - TELEX 8812727 WW-067 FOR FURTHER DETAILS

Marshall's

We are old established specialist electronic component distributors carrying a very wide range of quality stock We are franchised distributors for Arrow Hart switches: Mullard; National; Siemens; Texas; Thomson; CSF etc.

Send for our latest 60 page catalogue.
Free to industrial customers: 65p post paid to private individuals.

New lines not yet in catalogue are new range Sinclair (Thandor) meters; Crimson Elektrik High Fi Modules; Rechargeable Nickel/ Cadmium Batteries; Send S.A.E. for details.
A. Marshall (London) Ltd., Kingsgate House,
Kingsgate Place,
London N.W. 64 TA.
Industrial Sales: 01-328 1009
Mail Order: 01-624 8582
Retail Branches: London: Glasgow: Bristol

TRANSFORMERS

CONTINUOUS RATINGS

Please add
atter P \&ip

MAINS ISOLATOR

VAT 15\% 12 or 24-VOLT

quired. Pri. $0.220-240 \mathrm{~V}$. Pri 220-240V.Sec. $0-20-25-33.40-50 \mathrm{~V}$.
Voliages available $5,7,8,10,13,15$,

Pri 220 VOLT RANGE

CASED AUTO TRANSFORMERS 240 V cable input USA 115 V Flat pin outlets pe po

DC1000V. AC-1000V
DC. 100 mA . Res -150 K

Bargain at E7.20
VAT 15% P\&P 71 p
VAT 15\% P\&P $71 p$
PANEL METERS

VU Indicator todge $54 \mathrm{~mm} \times 14 \mathrm{~mm} \mu \mathrm{a}$ FSD VU Panel Ind. $48 \times 45 \mathrm{~mm}, 250 \mu$ a FDS

Carriage 76p VAT 15%
U4315 Budget Meter $20 \mathrm{~K} \Omega / \mathrm{V}$. Rangers to 1000 V 2.5A AC/DC 500 K . Res in steel case £15.85.
P\&P 1.32. VAT 15%. NEW RANGE TRANSFORMERS Pri 0.120 ; O-10 give 72 v or 92 v . 220 - 0 PP 2.11 $\begin{array}{llllll}\text { 2A } & \text { £13.35 } & \text { PP } & £ 1.40 & 4 A & \text { E20.65 }\end{array}$ PP $\mathbb{E 2 . 1 1}$ METAL OXIDE RESISTORS $5 \% ~ \% W$ (Electrosil)
$3900 \cdot 470 \mathrm{~N} \cdot 510 \mathrm{n}-560 \mathrm{n} \cdot 82001 \mathrm{~K} \cdot 1 \mathrm{~K} 1$
$1 \mathrm{~K} \cdot 1 \mathrm{~K} \cdot 1 \mathrm{~K} \cdot 2 \mathrm{~K} \cdot 2 \mathrm{~K} \cdot 3 \mathrm{~K} \cdot 16 \mathrm{~K} \cdot 20 \mathrm{~K} \cdot 22 \mathrm{~K}$ $1 K 2 \cdot 1 K 6 \cdot 1 K 8 \cdot 2 K \cdot 2 K 4 \cdot 3 K \cdot 16 K \cdot 20 K \cdot 22 K$
$\cdot 24 K-47 K \cdot 82 K \cdot 100 K-130 K \cdot 180 K \cdot 220 K$ $-24 \mathrm{~K}-47 \mathrm{~K} \cdot 82 \mathrm{~K} \cdot 100 \mathrm{~K}-130 \mathrm{~K} \cdot 180 \mathrm{~K} \cdot 220 \mathrm{~K}$ 270K-300K E1.50-100.

MAINS ADAPTORS
Plugs into 13A socket 3 V at 100 ma or $6,9,12 \mathrm{~V}$ at 300ma 54.60 p\&p $55 p$ + VAT
isOlator.
p\&p £1. 10

SPLIT BÓBBIN TYPE

0-12-15-20-24-30V
Ret 0091 amp
£2.98 p\&p £1. 10 +VAT. £4.62 p\&p£1.10 + VAT Send 15° p for catalogue. Prices correct at $30 / 10 / 79$

> Barrie Electronics Lid.
> 3,THE MINORIES,LONDON EC $3 N$ 1BJ TELEPHONE: 01-488 3316/8
> NEAREST TUBE STATIONS: ALDGATE \& LIVERPOOLST

SAB B SvewBear. in 1980 「

8300 RM PRINTER

80/132 ch per line (switchable); 125 c.p.s.; 2K Buffer; V24 RS232/ Current loop interface; Speed switchable between 110-9600 baud; Double width char. available under software control; sprocket feed; 7×9 dot matrix; Paper width $4.5^{\prime \prime}$ to $9.5^{\prime \prime}$.
Price
£525 + carriage

| SPECTRONICS U.V. EPROM-ERASING | LAMPS | |
| :--- | :--- | :--- | :--- |
| PE14 | Erases up to 6 chips, takes approx. 19 mins | $£ 56.00$ |
| PE14T | Erases up to 6 chips, takes approx. 19 mins | $£ 76.58$ |
| PE24T | Erases up to 9 chips takes approx. 15 mins | $£ 111.22$. |
| PR125T | Erases up to 16 chips, takes approx. 7 mins | $£ 237.84$ |
| PR320T | Erases up to 36 chips, takes approx. 7 mins | $£ 384.09$ |
| U.V. EPROM ERASING CABINET | | |
| PC1000 | Erases up to 72 chips, takes approx. 7 mins | |
| PC2000 | Erases up to 144 chips, takes approx. 7 mins | $£ 1227.83$ |

SHARP MZ80K

Z-80 based CPU: 4 K bytes monitor ROM; Internal memory expansion up to 48 K bytes of RAM; 14 K extended BASIC (occupies 14 K bytes of RAM); $10^{\prime \prime}$ video display unit -40 characters $\times 25$ lines; 80×50 high resolution graphics; 78 key ASC11 keyboard alphabet (capital \& small) plus graphics, Built in music function; Fast reliable cassette with tape counter-1200 bits/sec.; 50 pin universal BUS connector for system expansion-printers, floppy dises etc.
FROM
$£ 520.00$
Machine code tape and manual . $£ 19.00$
Assembley code tape and manual . £45.00

Sharp Monitor Listing (fully commented) £15.00 Sharp basic manual

Look!
SPECIAL OFFER 2708
£ 5.99
4116 f 5.99 2716(5v) £18.50

NEW BOOKS

The S100 and other Micro-buses Software Development
Computers \& Commonsense
Architecture of Small Computer Systems
Principles of Data-base Management
16-bit Microprocessor Architecture
6502 Assembly Language Programming
Introductory Experiments with Digital Electronics and 8080A Book 1 Book 2
Microcomputers for Business Applications
Handbook of Microprocessors,
Microcomputers and Minicomputers Introduction to Microprocessors
The VNR Concise Encyclopedia of Mathematics
Micro Program Software Development
Handbook of Electronic Analysis Using
Programmable Calculators

AUTHOR
Poe Jones Hunt

Lippiatt
Martin Dolhaff Osbourne Rony Rony

Bardeñ
Lenk Levanthal

Gellert Duncan

Murdock

PRICE
GAMES
£14.45
£ 3.95
£ 4.50
$£ 12.99$
f16.70
f 6.95
£ 8.40
E 8.40
E 5.80
€11.65
E 9.45
£15.35
$£ 13.45$
£19.90

E 5.15	$\overline{32}$ Basic Programs for the PET
E14.45	Game Playing with Computers

BASIC
The Basic Handbook
Learning Level II.
Basic with Business Applications
Illustrated Basic

Z80 BOOKS

Introduction to TRS80 Graphics Z80 Instant Programs (book) for Nascom
Z80 Instant Programs (cassette) for Nascom
Z80 Assembley Language Programming 6502
Programming the 6502
6502 Applications Handbook

Rugg

£ 8.90 £10.20 £ 4.20 | $£$ |
| :--- |
| $£$ | £ 9.50 Spencer

£11.00
Lien . $\quad £ 11.00$
Lien . $\quad \mathbf{£ 1 1 . 0 0}$
Lott : : $\ddagger 8840$
Alcock : E 2.50

Inman
£ 5.75
Hopton
€ 7.50
Hopton . . . £10.00
Osbourne
£ 8.15
R. Zaks
£ 7.95
£ 7.95

Terms: Official Orders (min. £10). Barclaycard \& Access welcome. Add 15% to hardware prices. Book prices include p \& p. Send for catalogue and booklist. All mail order to Newbury.

Mail Order \& Head Office: 40 Bartholomew Street, Newbury, Berks. Tel: 063530505
Manchester Showroom: 220-222 Cheadle Heath, Stockport. Tel: 0614912290
Birmingham Showroom: 1st Floor Offices, Tivoli Centre, Coventry Road, Birmingham. Tel: $0217077 \uparrow 70$

METERS (New) - 90 mm DIAMETER AC Amp. Type 62T2. 0-1A. 0-5A. 0-20A. AC Volt. O. 15V, 0.300 V DC Amp. Type 65 C 5.
VARIABLE VOLTAGE TRANSFORMERS
INPUT 230/240V a.c. 50/60 OUTPUT
VARIABLE 0-260V
200W I amp inc a.c. voltmeter $£ 14.50$ $0.5 \mathrm{KVA}(21 / 2 \mathrm{amp}$ MAX) 1 KVA (5 amp MAX) 2 KVA (10 amp MAX) $3 \mathrm{KVA}(15$ amp MAX) 10 KVA (50 amp MAX) 17 KVA (75 amp MAX)

3-PHASE VARIABLE VOLTAGE

 TRANSFORMERS $10 \mathrm{KVA}(\max .50 \mathrm{amp}) \ldots £ 327.43$ CARRIAGE PACKING \& VAT EXTRA
LT TRANSFORMERS
13.0 .13 V at 1 amp E2.50 P\&P 50p (E3.45 inc VAT)
13.0 .13 V at 1 amp £2.50 P\&P 50p ($£ 3.45 \mathrm{inc} \mathrm{VAT})$
$0.4 \mathrm{~V} / 6 \mathrm{~V} / 24 \mathrm{~V} / 32 \mathrm{~V}$ at $12 \mathrm{amp} \mathrm{E} 18.50 \mathrm{P} \mathrm{\& P}$ £1.90 ($£ 23.46$
inc. VAT \& P)
$0.6 \mathrm{~V} / 12 \mathrm{~V}$ at $20 \mathrm{amp} £ 14.70 \mathrm{P} \& \mathrm{P} £ 1.50$ (inc. VAT £18.63) 0.12 V at 20 amp or 0.24 V at $10 \mathrm{amp} £ 12.00 \mathrm{P} \& \mathrm{P} £ 1.50$ © 15.53 inc. VAT \& P)
$0.6 \mathrm{~V} / 12 \mathrm{~V}$ at 10 amp E8. 25 P\&P E1. 25 (inc. VAT E10.93) $0.6 \mathrm{~V} / 12 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V} / 20 \mathrm{~V}$ at $20 \mathrm{amp} \mathrm{E} 19.00 \mathrm{P} \& \mathrm{P} £ 1.50$ (£23.58 inc. VAT \& P)
$0.10 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V}$ at $10 \mathrm{amp} \mathrm{E} 10.50 \mathrm{P} \& \mathrm{P}$ £ 1.50 (inc. VAT
£13.80) ©13.80)

STROBE! STROBE! STROBE!

BLOWER /VACUUM PUMP
3 phase AC motor, $220 / 250 \mathrm{~V}$ or $380 / 440 \mathrm{~V} .1 .425 \mathrm{rpm} 1 / 6$ hp cont. Direct coupled to William Allday Alcosa carbon vane blower / vacuum pump. 0.9 cfm 8 hg
$£ 2.00$ ($£ 27.60$ inc. VAT \& P). N.M.S.

MINIATURE UNISELECTOR homing). E3.00 P\&P 35 p (E3.85 inc. VAT \& P).

MICRO SWITCHES
Sub. Min Honeywell Lever m / s type 3115 m
These V 3 types
These V3 lypes
Button Type (Pye) 10 for $\mathbf{£ 3 . 0 0}$ ($\mathbf{E 3 . 4 5}$ incl
Short Lever type. 16 amp. rating (Grouzet)
$£ 4.00$ ($£ 4.60$ incl VaT)
Roller Type (Bonnella). 10 for $£ 3.50$ ($£ 4.37$
incl VAT) N M.S.

HEAVY DUTY SOLENOID

 Mfg by Magnetic Devices. 240V A intermitent operation. approx. 201. pull 75 p P P ($£ 6.33$ inc. VAT \& P) R\& T

12 V DC SOLENOID

(in) All Aly chassis comtaining $4 \times 24 \mathrm{~V}$ DC Push Ib approx). 5 -fig Counter. 6 min photo cells. ib mi Micruswitches etc. etc. Ex-equip London Transport r 11.50)

TYPEAG/TG

18-24V OC 70 ohm Coil Solenoid. Push or Pull Adjustable travel to $3 / 16 \mathrm{in}$. Fitted with mounting brackets and spark 30 p P\&P (min 3 off $103.10 \times 25 \mathrm{~mm}$. Pric
Westool Series D6 Model A3. 24 V D.C. Price $£ 1.50+50$ p P\&P (E2.30 incl. VAT). Westool Series D4 Model A 24 V D.C. Price $£ 1.00+30 p$ P\&P ($£ 1.50$ incl. VAT).
INSULATION TESTERS (NEW) Test to IEE spec. Rugged metal construc constant speed clutch. Size L. Bin, W. 4 in, constant speed clu
H. 6 in , weight 61 b

500 VOLTS 500 megohms

C49.00 Post 80 ($£ 57.27$ inc. VAT \& P)
1,000 VOLTS 1,000 megohms $£ 55.00$
Post 80 p ($\mathbf{E 6 4 . 1 7 \text { inc. VAT \& P). SAE for leafler }}$

YET ANOTHER OUTSTANDING OFFER

E1.50 P\&P 50 p ($£ 2.30$ inc. VAT $+P \& P$)
(Min. 10), N.M.S.

All Mail Orders - Callers
Ample parking
Showroom upen Monday-Friday

9 Little Newport Street London WC2H7JJ Phone 01-4370576

HERE IT IS! THE BRAND NEW 8022A HAND-HELD DMM

Consider the following features:
6 resistance ranges from 200 ohm- 20 ohrns
8 current ranges from $2 \mathrm{~mA}-2 \mathrm{~A}$ $\mathrm{AC} / \mathrm{DC}$
10 voltage ranges from 200 mv-1000v DC-200 mc-750V
Pocket size - weighing only 370 gms .
Full overload protec
withstand 6 kv spikes
withstand 6kv spikes
Rugged construction
indestructable
Mestructable tough mility - virtually drop proof
In line, pushbution operation single-handed useage
Incorporates low power cmos chip for low power consumption All th
tee

For only $£ 89$

DIGITAL MULTIMETERS BRAND NEW FROM FLUKEH! THE 3024A MAND MELD DMM This model incorporates all the features o he 8020A but in addition has A peak hold switch which can be used in $A C$ or $D C$ for volts and current functions. Audible continuity testing and level de tection for sensing logic levels.
A temperature (${ }^{\circ} \mathrm{C}$) range for use with a thermocouple. £135

Carriage and Insurance £3
The following accestories are in stock now
Y8008 Touch and Hold Probe …. ${ }^{18} 18.00$
$80 \mathrm{~K}-40$ High Volizge Probe $\begin{array}{r}£ 45.00 \\ . \\ \hline 32.00\end{array}$ $807-150 C$ Temperaturo Prove (C) $\quad . \quad 55.00$
801.600 Clempon AC Curremt Probe $\quad \mathbf{5 5 . 0 0}$

8010A AND 8012 A BENCH MODEL D.M.M.s

 The 8010A is a general purpose. bench/portable digltal multimeter with more functionsand features than ever offered for such a low price. Its companion, the 8012 A , has indentical characteristics except that it has two additional low resistance ranges. 20 and 208 to replace the 80104 's 10 ampere current fange.

3 conductance ranges irom $2 \mathrm{~ms}-200 \mathrm{~ns}$
22 res istance.
to current ranges from 200
8010A £159 8012A £199
Carriage and insurance 53
ne 80. 0 AA is also a
$-0 t \mathrm{a}^{\prime} \mathrm{E179.00}$.

LOW COST, AUTORANGING MULTI-FUNCTION COUNTER MODEL 1900A

Even more sophisficated the Fluke 8020A
ldentical in most respects to the 8022A but in addition incorporates a conductance range from $2 \mathrm{mS}-200 \mathrm{nS}$.

Price £112
Carriage and insurance $£ 3.00$

PLEASE ADD 15% VAT

E3.25 P\&P 50p

BENDIX MAGNETIC CLUTCH

ELECTRO-TECH COMPONENTS LTD.
 364 EDGWAREROAD, LONDON, W.2. TEL: 01-7235667

ROHDE \& SCHWARZ

V.Demodulator. AMF. $55-90 \mathrm{MHz}$

Selective UHF V/Meter. Bands 4 \& 5 .
UHF Sig. Gen type SDR 0.3-1 GMz. ©750
UHF Signal Generator SCH $£ 175$
UHF Signal Generator SCH. £175.
POLYSKOPS SWOB I and II.
Modulator/Demodulator BN $17950 / 2$
UHF Sig. Gen type SCR. 1.1 .9 GHz .

MARCONI

TF 2360 R TV Transmitter Sideband Analyser
TM6936R UHF Converter for above.
TF 1101 RC oscillators $£ 65$.
TF 1101 RC oscillators $£ 65$.
TF 1041 B Valve Voltmeter $£ 65$.
TF $1152 \mathrm{~A} / 1$. Power meter. 25 W .500 MHz . £ 75 TF1370A RC Oscillator £ 135.
TF890A/1 RF Test Ser. £395

U.H.F. SIGNAL GENERATORS

300 KHz

TF $1060 / 2450-1250 \mathrm{MHz}$
TF 1058 1. $6-4000 \mathrm{MHz}$

BECKMAN TURNS COUNTER DIALS

Miniature type (22 mm diam.). Counting up to 15 turn "Helipots." Brand new with mounting instructions. Only $£ 2.50$ each.
KAY ELEMETRICS SONA-GRAPH Sona-Graph model 7029A. 5.16000 Hz Spec. trum Analyser with type 6076C Plug-in unit. For the spectrogrphic Analysis of transient sounds such as speec, voice, doppler shifts, explosions etc. Supplied in excellent condition with handbooks.

AuVANCE CONSTANT VOLTAGE TRANSFORMERS
TRANSFORMERS
Input 190-260V AC. Output constant
LABORATORY OVENS. - Gallenkamp. 3 cu fi. £145. Also Morgan Grundy 1 cu . ft. £55. 2O-WAY JACK SOCKET STRIPS. 3 pole type with two normally closed contacts. £2.50 each ($+25 p$ pp). Type 316 three pole plugs for above $-20 p$ ea. ($p p$ free).

P. F. RALFE ELECTRONICS

10 CHAPEL STREET, LONDON, NWI TEL: 01-723 8753

AIRMEC 314 A Voltmeter. 300 mV (FSD) 300 V .
EVELL TG66A. 1 Decade oscillator
DERRITRON 1 KW Power Amplifier with control equipment for vibration testing etc.
HEWLETT-PACKARD 7123A pen recorder
HEWLETT-PACKARD tuned amp \& null detector
TF2600 Voltmeter $1 \mathrm{mV}-300 \mathrm{~V}$ fsd
RADIOMETER Distortion Meter BKF6. £125.
EDDYSTONE VHF RECEIVERS AM/FM $70.90 \mathrm{MHz}, £ 45$

VACUUM/COMPRESSOR PUMPS

Bell \& Goslett type and Doeer. U.S.A. Models available in excellent condition at prices well below normal

SOLARTRON LM 1420.2. DVM. 6 ranges to 1 KV . MUIRHEAD type K-134-A Wave Analyser. Portable WAYNE KERR B521 Universal Bridge
HEWLETT PACKARD 608 C Signal generator. 10.480 MHz WEINSHEL Power supply Modulator type MO3
BRUEL \& KJOER type 1504 Deviation Bridge
BRUEL \& KJGER Vibration equipment 1018
BRUEL \& KJOER Frequency analyser 2105

OSCILLOSCOPE SALE

SOLARTRON CD1400. D/Beam 15 MHz £ 150
SOLARTRON CD 1740 . D / Beam 50 MHz . $£ 450$
ADVANCE OS 250. D / Beam 10 MHz . $£ 185$.
HEWLETT-PACKARD $1707 \mathrm{~A}, 75 \mathrm{MHz} . £ 650$.
PHILIPS PM 3226 D/B. 15 MHz . 325.
TELEQUIPMENT D53. D/Beam. £175
TEKTRÓNIX $581 \mathrm{~A}, 545 \mathrm{~A}$ \& $\mathrm{B}, 544,661.515 \mathrm{~A}$
TEKTRONIX 581 A, 545 A \& B, 544,661
SOLARTRON CD 1220 . £135. (+VAT)
OTICE. All the pre-awned equipment shown has been carefuly tested in operational condition and most items carry our three months' guarantee Calibration and certuficates can be arranged at cost. Overseas enquiries welcome. PLEASE ADD 15% VAT TO ALL PRICES.

DC POWER SUPPLIES

*APT 10459/8.12-14V.@5Amps. £25. (£2 p.p.) -APT 10459/8. 24V.@ 5 Amps. £25. (£2 p.p.)
*We can supply the above power supply at any fixed voltage between 5 V and 36 V at 5 A . $£ 25$. Mullard Dual supplies. Brand new with handbook. Pos \& Neg 12 V . at 1 A and 0.4 A respec tively. Dimensions $9 \times 4 \times 5$ ins. $£ 10.00+(£)$ p.p.)
*FARNELL Current limited. Dimensions $7 \times 5 \times 4$ ins. Following types available. 5 Volts @ 3A. £15.13-17 Volts@2A, £15.27-32 Volts @1A£15. Plus £1.50 each postage.
All the above power supply units are 230 V . $A C$ input and are stabilised and regulated and fused. All are fully tested before despatch and gused. All are fully tested before despatch and guaranteed in first-class order throughout. As with all our equipment there is a m
guarantee if not completely satisfied.

*ornens in sock. please hivo *

MODULATION METERS

AIRMEC 210 3-300 113.5 .320 MHz AM /FM RADIOMETER AFM/1 $3.5 \cdot 320 \mathrm{M}$
RACAL $4093-600 \mathrm{MHz}$. AM /FM

ROTRON INSTRUMENT COOLING FANS

Supplied in excellent candition, fully ested
$115 \mathrm{~V} .4 .5 \times 4.5 \times 1.5^{\prime \prime} £ 4.50 .230 \mathrm{~V}$ E5. $115 \mathrm{~V} .3 \times 3 \times 1.5^{\prime \prime} £ 4+$ postage ea. $35 p$.

CT2 12 RF Signal Generators. $85 \mathrm{KHz}-32 \mathrm{MHz}$.

BELL \& HOWELL MICROFICHE VIEWERS

Yondition c75

DIGITAL MULTI-METERS

DE FOREST ELECTRONICS TYPE MM 200. DC.V.O.1KV. AC.V. 0.700 DC. 1.0 .1 A. AC. 1.0 . 1A. Each in 4 ranges. Resistance 0.19 .99 Mohms. 5 ranges. LED Display-1999. BRAND NEW. SPECIAL REDUCED PRICE OF
E39, INCLUDING VAT \& P. P.

Give for those who Gave

Thousands of men and women who served in the Royal Air Forces have given their health or even their lives in the defence of Freedom and many of them or their dependants are now in need of help.
Please assist by giving all you can for an emblem during WINGS WEEK or please send us a donation PLEASE WEAR THIS EMBLEM

Wings Appeal

in September
(1) Royal Air Forces Association, 43, Grove Park Road, London, W4 3RU.
Incorporated by Royal Charter and registered under the War Charities Act 1940 and Charities Act 1960).

Space donated by:

RUSH

 Cleaning Brushes for Gold EdgeConnectorsA long lasting brush where a light brushing action will remove oxidation, dirt, grease, etc., and polish the gold surface without reducing the thickness of the gold plating, or damaging the work surface. The brushes are manufactured from pure spun glass and will not alter the electrical propertids of the surface or leave any contamination. No need for solvents etc.

Also useful for cleaning PCB tracks,

raser International Ltd.
Unit M, Portway Industrial Estate,
Andover, Hants SP10 3LU.
Tel: Andover (0264) 51347/8 Telex: 477291
WW - 015 FOR FURTHER DETAILS

COMPUTAR AppR=ClATION

86 High Street, Bletchingley, Redhill, Surrey. RH1 4PA Godstone (0883) 843221

DATA DYNAMICS MODEL RO 390 PRINTERS

- ASCll coded plain paper hard-copy printer.
- 110 Baud serial interface, 20 mA current loop/V24/RS232.
- In excellent condition, tested and fully operational.
- All units with very low hours (mostly under 500 hours).
- Current list price $£ 800.00$.
- Our price $£ 120.00$ + VAT and carriage.
N.B.
- KSR 390 (with keyboard) available at $£ 175.00$
- ASR 390 with reader and punch (illustrated) available at $£ 350.00$.
- Many other items in stock. Send for list.

ANY MAKE-UP OR COPY QUERIES CONTACT JOHN GIBBON OR BRIAN CHAPMAN 01-261 8353

MASS INTERCOM

MARKING PENS

with fluorescent colour inks

For the complete catalogue of Beyer products. send to the address below.

WW - 07I FOR FURTHER DETAILS

THE BEST OF BOTH WORLDS

Casio's new LCD Analogue/Digital Stop watch, countdown, 12 or 24 -hour display Time display. Digital: Hours, minutes, seconds, am/pm (optional 12 or 24 -hour display). Analogue; Seconds. Time/calendar display. Digital: Month, date day. Analogue: Hour, minute.
Stopwatch: Measuring net, lap and first and second place times from $1 / 10$ second to 59 minutes, 59.9 seconds.
Countdown. Measuring capacity 60 minutes in $1 / 10$ second units. Setting to 1 second Countdown can be stopped and restarted for net time measurement.
Calendar. Auto 4 year. Case. 8.3 mm thick Water resistant.
Mineral glass. Backlight. 2-year battery.
56QS-50B. Stainless steel ($£ 39.95$) $£ 34.45$.
81QS-35B
Alarm
Chronograph Stainless steel. Mineral glass. Water resistant
5.year battery.

Hours. minutes. seemonds. day:
And dayy date, month and year And day. date, monent and y year. alam. hourly chimes.

 (ㅌ..99) $\mathbf{£ 2 9 . 4 5}$

C-80 Calculator

 Watch Hours, minutes, seconds, auto calender pre-programmed
aut date
 place to $1 / 100$ sec.
Dual time
Dual time. 8 digit calculator. Nightlight. Water resistant Mineral Glass. Black resin case $/ \mathrm{stra}$
10.2 mm .
only $£ 24.45$
(R.R.P. 229.95).
$€ 29.95$
KELVINATOR. Environmental control cabinet- 90° to $170^{\circ} \mathrm{F}$. used condition but in working order. Que to size and weight buyer collects FRIDEN FLEXOWRITER, Fitted with tape reader and punch. Housed
in dust cabinet, on stand. Good condition in dust cabinet. on stand. Good condition $\quad £ 150+$ VAT
GENERAL RADIO. TYpe 128 oscillator $900 \cdot 2000 \mathrm{MHz}$ wlit modulating power supply. Type $1284 . \mathrm{A}, \ldots$. $880+$ VAT
AIRMEC. Type $319 A$ watt meter complete but less probe $£ 40+$ VAT AIR MEC. Type 301 A millivoltmater complete but less probe $\ldots .$. AIRMEC. Type 210 modulation meter. Good condition $E 45+$ VAT MARCONI. Type FF7910 carrier devation meter. Very good condition MARCONI. Type TF 1060 UHF signal generator, $0.1200 \mathrm{MHz}_{2}+\mathrm{VAT}$ MARCONI. Type TF 1064 VHF signal generator, $68-108 \mathrm{MHz}^{2}$ $118-185 \mathrm{MHz}_{2}, 450-470 \mathrm{MHz}$, am and m . Good condition TARTAN. Educational systems demonstrator with module display and storage, ideal for schools or colleges. Contams circuit panels of high
voltage power supply, lv igquated power suoply, triode pentode amp voltage power supply, Iv regulated power supply, triode pentode amp,
complementary symmetry, mulivibrator and simple transistor circuis. complementary symmetry, mulivibrator and simple transistor circuns.
Delivery a cost Delivery a cost
VARICAP YUNER MEADS. \&-bution vpe. 22k res. with AFC switch
and station indicator. Brand new and station indicator. Brand new
SCREWS. Pack of nuts. bolts, SCREWS. Pack of nuts. bolts, washers. tags. self taps. etc. Mired BA IOW VOtric. Sold by weight. Per kilo $\mathrm{CL}+\mathrm{VAT}$ Johages Appox. 100 STARAEAM UH.F Sotion aerials Bral E1.BO + VAT $\mathrm{Ez}+\mathrm{VAT}$ Emg. Aly $60 / 40$ tin lead. Averiable in 500 gm reets on plastic reel, 20 CHANNEL MASTER COLORATOR. Aefial volator. Model 9502 pin poimp postrioning to wrthin one degree. Special offer E39 + VAT JAYBEAM. T.V. and radio aerials. S.a,e. For full delails.
ISEP SLOYTED HORIZONTAL RAIL. Available in $9 h$. Ie
ISEP SLOTTED HORIZONTAL RAIL. Available in 9h. lengths
RADIOGRAM LID PUMPS. Few only E1 each. or 2 for $11.50+$ VA RIBBON CABLE. 19-Way decimal coded a metres for $£ 1.25$ + VAT heatsink. Ex-equipment ….......... 29.25 each + VAT RZV93C 75 DIODES. 75V 20 W Zener mounted on tinned heatsink
 Onch or 12 for

(R.R.P. E17.95)

£15.45
FX-100. 10 digits. sclentific functions. Six levels parentheses. Standard deviations. Co-ordinates
conversion. Fractions. cube
roots
FR, SCL, NORM, RND, ENG
FIX, SCL, NORM, RND, ENG.
RAN (random no.) $w^{\prime \prime} \times 3^{\prime \prime} \times$

FX-800

I Year batteries. Hours, minutes. seconds.
m / pm. day. Calendar pre-programmed to year 1990 24.hour alarm. Alarm timer.
interval timer, or $1 / 100$ secon hterval timer, or $1 / 100$ second
opwatch; net, lap. 1 st and 2 nd tlace. fractions, \%, cube roots, 5 levels parentheses. yperbolics, standard onversions.
 Only £24.45

AQ-2200

ermanent display of full month calendar. Clock, alarm, hourly chimes. Stopwatch fro ap Ist and 2nd place times. alculator with full memory, \% \downarrow. One year batte $£ 19.45$ MQ12. Card version of AQ22
$3 / 16 \times 34^{\prime \prime} \times 25^{\prime \prime}(E 21.95)$. £19.45

MELODY 81 (ع24.58)

 £22.95 Clock, calendar, twomusical alarms. countdown timer Stopwatch from $1 / 10 \mathrm{sec}$.
$\$ 012$ hours: nec. lap 1 ss ind place. Cacculatoor with
 1 year batteries.
$£ 22.45$
$3 / 16^{\prime \prime} \times 3 \psi^{\prime \prime} \times 2 \%^{\prime \prime}(£ 24.95)$.
FX-330 £16.45.

LADIES' CASIO WATCHES from £12.45

TERMS OF BUSINESS: All Casio items include VAT, P\&P and insurance in price. Send cheques, P O.s or quote Barclaycard or Access No. to B. BAMBER ELECTRONICS, 24-hour phone service (0353) 860185 . Callers welcome. Tues-Sat. 9.30 a.m.-5.30 p.m Send 20 p for catalogue of Casio watches and calculators

RADIO TELEPHONE EQUIPMENT

 PYE OLYMPIC M201 high band AM multh-hannel. Sets complate butless loudspeakers and mikes. Few only
$£ 100$ eeech $\&$ VAT PYE PF 8 U.H.F. hand poriable complete less batteries. 3 only.
PYE PFS U.H.F. hand portable complete with leather case + VAT batteries. Only E40 ench + VAT Preteries.
PYE PF 2 UB T band ideel for 70 cm . These sets are in as new
condition. Complete with mike, battery and serial
E80 euch + VAT condition. Complete with mike, battery and serfial 880 esch + VAT
PYE P.C.1. Radio felephone controller. Good condition. 2 only PYE U.H.F. PAGERS. PG3U. Used condition, less batteries, few only PYE MFSAM MOTOFONES. Low band, sets complo aech \& VAT Ondition EA5 each + VAT PYE POCKETPHONE. Base station $F 450$. complete less mike VE WESTMINSTER W15 and mid-band multi-channel sets only, no Mike. speaker, cradie or leads \qquad cas ench + VAT Pew ony PYE RTC Controller unite for remotely controlling V.M.F. or U.H.F. lixed
stations, radio telephones, overland lines
E 20 ouch + VAT
 complete but less batteries. Supplied wrth service manual $£ 26$ per pair + VAT PYE WESTMINSTER WISAM. Migh band and low band avallbble. ets complete and in good condition but aro less speakers, mikes. PYE WESTMINSTER W15 AMB (boot mount) Low band, complete
 PYE BASE STATION F.27. LOW AND WIOH BAND. FEW ONIY VAT YE BASE STATION F30AM. Low and high band with and without YE CAMPRIOGE AM 10B (boot mouni) Low band 12.5 KHz sets PYE U. M.F. UNK 405L. Base station TX E15, RX E15 or E25. FOf VAT

U.H.F. 4 cx 250 bases. brand new. Fow only $\quad E 15$ oach + VAT
PYE PR5. Leather cases, brand new. Fow only 1.50 ouch + VAT GAR RADIO. Loudspeaker chassis 8 ahm. 5ins. ceramic magnet type R1O CSi566 20 MHz There $\mathbf{E 2 . 5 0}$ esch or 2 for $\mathrm{Et0}+$ VAT R10 CS 156620 MHz . Tr Gg gered sweep oscilloscope $\quad \mathbf{E 3 3 9}+\mathrm{VAT}$ HAMEG Oscilloscope NM307 LPS. Triggering bandwidth d.e. to 10
 HAMEG HZ36. Switchable probe. Ideal for NM 307 £ $£ 1$ + VAT CONVERTER 12 v to $24 v 2$ 2mp built-in die cast bor. Brand new $\begin{aligned} & \text { ex-equipment supplied with drcuit diagrams } \\ & \text { IC TEST CLIPS. Clip over IC while still soldered io PCB or }\end{aligned}+$ VAT 1.75 .40 pin DIL $£ 2$, C. AUDIO AMP P.C.B. Output 2 -watts into 3 ohm speaker. 12 -volt C. supply. Size approx. $5 y^{\prime \prime}$ " $11^{\prime \prime}$ " $\left.\right|^{\prime \prime}$ high with intergral heat sink. NICAD CHARGER CONVERTER P.C.B. (Low power inverter). Size charging portable batteries from mobile supply. Only needs on BFY $50 / 51 / 52$ or similar transistor which can be mounted direct on to
P.C.B. pins on the board fitted with star-type heatsink (not supplied) 0.7 MHz a TAL FILTERS (2.4 KHz Bandwidth) Low imp. type carrie $10.70165 \times$ XALS for USB/LSB not supplied). Size spprox 2 . 683. OW PASS FILTERS (low imp typt), 2.9 HMz . Small metal
 T.V. OFF AIR RECEIVER KIT. Containt Mullard ELC $1043 / 05$ tune coil. Supplied with circuit diagram. Ex-brand new equipment. Rad Lua MR41 type). 5 for 70p + VAT UR41 ATTENUATOR CABLE. Nominal 72 ohm overall dia. approx 449 dB 3000 MHz 625 dD . Ideal for KX or low ower TX fixe attenuators. Supplied with attenuation graph. 4.metres E1 + VAT
HIGH QUALITY RELAYS. 4 -pole c / I 3A contacts, 12 v dc coil, 150 RIT AOP each or 2 for $\mathrm{E1.5}$ BACK TO BACK SOCKETS SO239 only

1 each + VAT
1 each + VAT

1980 CATALOGUE. Send 40 p and you will receive our 104 -page catalogue with products by Eagle, Ynesu. Standard, Trio. Hameg, Casio, Microwave-Modules, Amtrow kits and boxes, Vero, Oraper. Spiralux. Knipex, Weller, Servisol. Jaybeam. Books by Barnard \& Babani-Newnes and many more.

TERMS OF BUSINESS: Cheques or P.O. with order, made payable to B. Bamber Electronics, or phone your Access or Barclaycard No. Please add $\mathbf{1 5 \%}$ VAT on all goods advertised after adding postage as applicable CARRIAGE: Orders under $£ 5$ nett invoice add 75 p. Orders over $£ 5$ but less than $£ 20$ add 50 p. Orders over $£ 20$ carriage paid. Callers welcome. Tues.-Sat. 9.30 a.m. -5.30 p.m TEL: ELY (0353) 860185

HOW DO MICROCOMPUTERS WORK?

Practical Computing tells you that and much, much more

The July issue, available now from leading newsagents, contains practical information for all businessmen, engineers, scientsts, teachers and professional people who want to know about microcomputers. In this issue:
\square First in a series of articles by a computer designer explaining how a new £200 microcomputer works and how it can be expanded into a business system worth $£ 3,000$.
\square Review of Clive Sinclair's controversial ZX80- one of the cheapest computers currently available - which is all set to penetrate the US market.
\square Artcles on applications, robotics, soltware together with expert advice on the Pet, Apple and Tandy micros and a comprehensive Buyers Guide.
All this, plus the official guide to the 1980 Microcomputer Show (Wembley
Conference Centre, July 22-24), in the biggest-ever issue of Practical Computing.
208 pages for only 60 p. From your newsagent or post this coupon now.

To: Marketing Services Department, Room 628 A. IPC Electrical Electronic Press Ltd, Dorset House, Stamford Street, London SE1 9LU. Please post me a copy of Practical Computing every month for a year, I enclose cheque/p.o. for $£ 8$ (inclusive) payable to IPC Business Press Ltd.

RADIOCODE CLOCKS*

As supplied to the National Physical Laboratory

Can provide the most reliable, accurate and cost effective solution to your time or synchronization problem

Patent Pending

Radiocode Clocks are extremely advanced and flexible instruments which automatically receive, decode and display the atomic time and date information transmitted by MSF Rugby or DCF77 W. Germany. All models are portable and self-contained, and feature a highly refined receiver which operates reliably even in remote or electrically noisy areas.
To complement our Radiocode Clocks we have developed a range of accessories which enable almost all time problems to be solved simply, reliably and inexpensively.

Applications include:

- Master clock and slave displays (no initial or subsequent adjustment required).
- Synchronizing numerous points throughout Europe (no wires, schedules or adjustments).
- Precise control or calibration of industrial/ scientific equipment.
- Record/display time and date via magnetic tape (a conventional low grade recorder will store information once per second).
- Hardware clock for computers (unaffected by mains failure or transmission breaks).

Battle of Britain Wings Appeal

DURING SEPTEMBER

Please helpus maintan our Home for the Permanently and Severely Disabled and our convalescent homes for those Ex R.A.F men and women who are in need by giving all you can for an emblem during WINGS WEEK or please send us a donation.

PLEASE
WEAR THIS EMBLEM
Give for those who Gave
Roval Air Forces Association, 43, Grove Park Road, London, W4 3RU. (Incorporated by Royal Charter and reglstered under the War Charlties Act 1940 and Charities Act 1960).

[^5]
reprints

If you are interested in a particular article/ special Feature or advertisement published in this issue of

WIRELESS WORLD

why not take advantage of our reprint service.
Reprints can be secured at reasonable cost to your own specifications providing an attractive and valuable addition to your promotional material. (Minimum order 250.)
For further details contact
Brian Bannister, IPC Electrical-Electronic Press Ltd. Phone 01-261 8046 or simply complete and return the form below
To Brian Dorset House, Stamford Street London SE1 9LU
I am interested in copies of the article /
advertisement headed

WIRELESS WORLD

on page(s) in the issue dated
Please send me full details of your reprint service by return of post.
Name
Company
Address
Tel. No

Is your name last on the Electrical Times circuit?

Isn't it time you had your own copy of Electrical Times

Every week Electrical Times gives you NEWS on: people, prices, contracts, financial deals, international events \& new products.

Regular features are included on: contracting \& installation, repair \& maintenance, distribution plant \& operation, and motor applications and control.

Electrical Times also carries top quality job opportunities for people at all levels in the electrical industry in its appointments pages.

An annual subscription costs £10.00 - not much to pay to ENSURE that you're the first to be plugged in to the power of the Electrical Times circuit.

To: Subscription Dept., IPC Business Press
(SD) Ltd., Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH, England.

Please send me ELECTRICAL TIMES every week for a year. I enclose cheque/P.O. for $£ 10.00$ (inc. postage) payable to IPC Business Press Ltd.

Name..

Address

Company

Appointments

Advertisements accepted up to 12 noon Monday, August 4th, for September issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 10.00$ per single col. centimetre (min. 3 cm). LINE advertisements (run on): $£ 1.50$ per line, minimum three lines.
BOX NUMBERS: 70p extra. (Replies should be addressed to the Box Number in the advertisement. c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.) PHONE: Mike Thraves 01-261 8508.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Test Engineers \& Test Gear Engineers Move intonewareas of Electronics Development and anassured qualityof life...
 benefits and assistance with your relocation to this

EMI Electronics Ltd. builds quality and reliability into every product. Our reputation for excellence is long established and is a major factor in generating new orders.

The growth of our business here in histor ic Wells creates the need for more Test Engineers to take us through the 1980's.

As one of the world's leaders inspecialised defence electronic systems - particularly the fields of radar, proximity fusing, telemetry and radio modelling we maintain stringent quality standards. You will join one of our professional teams responsible for ensuring that our wide range of "State of the Art" electronic systems on test equipment meet our exacting standards.

We are looking for people with either ONC or HNC Electronics and varying levels of experience of testing or servicing modern detection systems in the electronics industry or armed forces.

We offer competitive salaries, comprehensive

EMI EMI Electronics Limited, Wells

A Member of the THORN EMI Group beautiful part of Somerset.

For further information fill in the coupon and send it to F. M. Taylor, Assistant Personnel Manager, EMI Electronics Ltd., Penleigh Works, Wookey Hole Road, Wells, Somerset, BA5 1AA or phone him for more information on Wells (0749) 72081.
\qquad

ROYAL LIVERPOOL HOSPITAL
Prescot Street, Liverpool L7 8XB

Electronics Technician

(Medical Physics Technician Grade III)

To assist with the maintenance / Development of equipment used in the Department of Nuclear Medicine at the above hospital.
Applicants should ideally have approximately 10 years experience (including apprenticeship) in electronics servicing.
Salary Scale: $£ 4,605$ to $£ 5,952$ per annum.
Further details and application form available from the Personnel Department at the above address. Closing date: 31 st July, 1980.

UNIVERSITY OF BATH SCHOOL OF ELECTRICAL ENGINEERING

RESEARCH OFFICERS

LSI MICROELECTRONICS DESIGN

Applications for two positions are invited, to work on a research project concerned with the development of computer-aided-design methods for the custom design of Isi microelectronic circuits. Applicants for the first position should hold or expect to hold a higher degree and be conversant with both logical design and the writing of PDP11/34 system software. Applicants for the second position should hold a good honours degree which includes digital logic design, and preferably knowledge of integrated-circuit technologies.
The project is funded by the Wolfson Foundation with industrial cooperation for a period of three years.
Commencing salaries up to $£ 7000$, according to qualifications and experience.
Application forms and further particulars from the Personnel Officer, University of Bath, Bath, BA2 7AY, quoting reference numoer 80/52R.

Appointments

INAWORD WE NEED Qeativity Technical Authors-Berkshire $\varepsilon 7,500$ to $£ 9,50+$ Benefits

 गयाA major British company is urgently seeking experienced Technical Authors to join a team coping with the requirements of a highly comprehensive project, whose application will have wide ranging effect on the future of telecommunications.

The position will be filled by experienced Senior Authors with a good academic record (HNC/D or Graduate in a numerate or engineering discipline) and real knowledge of producing documentation on computer system's and software. A good creative technical ability is essential, coupled with an inquisitive nature and a forceful personality.

The company are located in a large 19th century countryhouse with several acres of grounds which are open at the week-ends for individual and family activities. The area is in pleasant Berkshire countryside but with easy access to the M4. Public transport is also available. An excellent relocation package is offered where necessary, and house prices are reasonable.
Ring Jack Cowdy on 01-603 7335

58 Pembroke Rood, London W8. Telephone (24 nours): OT-603 7335/6.Telex: 261298

OXFORD UNIVERSITY
 DEPARTMENT OF ATMOSPHERIC PHYSICS

Electronics
 Technician

A vacancy exists for an electronics technician (grade 5) to work on the construction, testing and maintenance of equipment used in the Department's space research programme a small, energetic group involved in developing scientific instruments and launching them on Earth satellites and probes to the planets. Training will be given. as necessary The salary scale. which is under review, is currently $£ 4.257$ - $£ 4,974$ p.a. Applications, giving details of qualifications and experience, and the names of two referees should be sent to Dr. F. W. Taylor, Dept. of Atmospheric Phy
Oxford OXI 3PU
'DIGITAL EXPERIENCE?
FIELD, SUPPORT AND PRODUCTION. VACAN. CIES IN COMPUTERS, NC, COMMS, MEDICAL, VIDEO, ETC.
For free registration ring $01-464$ 7714, ext. 502
 Hish RDad. LOUGHTOM ESSEX 01-502 1589/01-464 7714. EXT. 402 (538)

TECHNICIANS

Technicians are required for this expanding department to be responsible for the maintenance of medical equipment located throughout the West Birmingham Health District. The successful applicants must have sound knowledge and experience of maintenance of the following equipment:
Post A - Electro-mechanical Technician
Mechanical Services - Anaesthetic Apparatus
Post B-Electro-medical Technician
Therapeutic and Diagnostic Physiological measurement.
Post C - Electro-medical Equipment Laboratory and specialist equipment Salary dependent on qualifications and previous experience.
Scales: Technicians Grade II - £5547-£6918 Technicians Grade III - £4605-£5952
Application forms and job descriptions from District Works Officer, Dudley Road Hospital, Birmingham, B 187 QH . For further information Telephone Mr. D. L. Hall. District Engineer, $021-5543801$, Ext. 4838
Please quote Ref: 597 /WW.

WEST BIRMINGHAM Health District

AUDIO
 VISUAL AIDS TECHNICIANS

Two experienced technicians are required by the Croydon Education Service.
One to maintain and prepare language laboratories in schools. A knowledge of other visual equipment would be an advantage.

Salary £4971-£5520 per annum depending on qualifications and experience.

The second technician will maintain and repair a range of audio and video equipment including TV receivers in schools.

Salary $£ 5658$-£6 174 per annum inclusive according to qualifications and experience.

Apply in writing giving details of age, qualifications, present post, relevant work experience and the names and addresses of two referees to The Superintendent, Education Service Centre, Princes Road, Croydon, Surrey, stating for which post you wish to be considered.

Further information may be obtained from the Superintendent, Mr. A. Bevan, telephone no. 01-684 9393
(531)

TOP JOBS IN ELECTRONICS

Posts in Computers, Medical. Comms, etc. ONC to Ph.D. Free service.
Phone or write: BUREAUTECH, AGY, 46 SELVAGE LANE, LONDON, NW7. 01-906 0251.

UNITED NATIONS

Invites Applications for the following positions at New York Headquarters

1. CHIEF, TECHNICAL SERVICES SECTION (P-5)

Supervises and specifies arrangements for the installation, operation and maintenance of equipment associated with the United Nations conference servicing and radio and television programming operations. This includes a wide range of broadcast standard audio and video equipment, simultaneous interpretation installations and electronic voting equipment.
Responsibilities include directing the work of some 100 personnel, design of and supervision of construction of equipment, advising other divisions on technical matters and preparation of budgets.
Should have advanced university degree in relevant engineering discipline, good electronic knowledge, computer experience and management skills particularly in the fields of budgeting projection and cost control, with 13 years' professional experience.
Level P-5 carries net base salary per annum from US \$24,298 (single) and US \$26,298 (with dependants) plus post adjustment from US $\$ 11,627$ (single) and US $\$ 12,584$ (with dependants) per annum.

VA. 80-D-DAM-109-NY

2. CHIEF, TELEVISION AND FILM UNIT (P-4)

Controls the technical aspects of the United Nations television and film unit which works to full professional broadcast standards.
Is responsible for system development and specifying operational and maintenance techniques and for assessing needs and making recommendations for purchase of equipment.
Supervises the operations in the technical areas and maintains contact with outside TV networks and operators.
Should have advanced university degree in electrical engineering with eight years' professional experience in the operation and maintenance of television and film equipment.
Level P-4 carries net base salary per annum from US $\$ 20,209$ (single) and US $\$ 21,755$ (with dependants) plus post adjustment from US $\$ 9,779$ (single) and US $\$ 10,527$ (with dependants) per annum.

VA. 80-D-DAM-108-NY

3. ENGINEER (TELECOMMUNICATIONS) (P-4)

Supervises the technical aspects of conference servicing operations with particular regard to simultaneous interpretation, audio distribution systems and electronic voting equipment.
Responsible for system development and design and for the installation of these facilities both at Headquarters and for conferences away from headquarters.
Should have advanced university degree in an engineering discipline, with eight years' professional experience.

VA. 79-D-DAM-357-NY.
APPLICATIONS: Please complete two copies of United Nations Personal History Form (P. 11), or send detailed curriculum vitae to: Professional Recruitment Service, United Nations, New York, N.Y. 10017, USA. Mention the date of birth and nationality, and quote the Vacancy Announcement number.

-
 Norwich Airport

SENIOR TECHNICAL OFFICER

£7,287-£8,097 plus

A vacancy exists for an experienced Air Traffic Engineer to fill the post of Senior Technical Officer at Norwich Airport.

The Senior Technical Officer is responsible for the management of and participation in the maintenance, modification and installation of a wide range of navigation, communication and airfield lighting equipment. Equipments already in use include Plessey ACR 430 , PLAN 17/18 ILS, Ecko VDF, an off-site Redifon NDB, and VHF/UHF AM/FM transmitters and receivers with associated recorders.
N.J.C Conditions apply, subject to the Norwich City Council's local variations and local agreements. The post is graded PO 1, points 1-5, $£ 7,287-£ 8,097$ per annum, and at present the Senior Technical Officer participates in alternating shift working which attracts an addition of 14% of salary, and week-end and Public Holiday working for which the appropriate enhanced payments are made. A pay award is pending commencing July 1980 .
Removal and relocation expenses up to $£ 1,150$ and temporary housing accommodation in approved cases
Entry point on the salary scale dependent on qualifications and experience.
Norwich, situated amidst the Norfolk Broads, surrounded by areas of outstanding natural beauty, offers a stimulating mixture of old and new with a thriving commercial/shopping centre and lively arts and theatre.
Application form and fuller details of the job may be obtained from the Administrative Department, Norwich Airport, Norfolk NR6 6JA, telephone Norwich (STD 0603) 411923; completed form to be returned within 14 days of publication of this

ELECTRONIC ENGINEER

A unique opportunity occurs to work for a British Company in the U.S.A.

Brookes \& Gatehouse Ltd. are looking for an Electronics Engineer to provide a workshop back-up for a keen young team in their American subsidiary company

Initial contract minimum one year.
About HNC level with good sound knowledge of transistor circuitry and digital techniques. Experience in the marine field and an interest in sailing would be advantageous. Full training given at our head office in Lymington. Contact Arthur Gale.

BROOKES \& GATEHOUSE LTD.
Bath Road, Lymington, Hampshire SO4 9Yp
Tel: (0590) 74252

SENIOR ENGINEER / SUBSTANTIVE ENGINEER

MME Facilities Limited, have a vacancy for a SENIOR ENGINEER in VTR and a SUBSTAN TIVE ENGINEER in the Cassette Department, both to be based in their Broadcast Facility House in he West End.
The equipment line up is, 3 Quad VTR's, a sophisticated cassette duplicating bank and an IKEGAMI EFP / ENG Unit recording onto a 1 "VPR20.
included in our plans for expansion is the installation of a ${ }^{\prime \prime}$ editing suite.
Salaries $£ 11,000$ and $£ 9,000$ respectively plus profit related banus and overtime.
All applications to:

Andrew Coppin Esq.

MME FACILITIES LTD.
Enterprise House
9 Great Chapel Street
London W1V 3AL
$01-4342021$

Radio Technicians Work in Communications R\&D and add to your skills

Át the Government Communications Headquarters we carry out research and development in radio communications and their security, including related computer applications. Practically every type of system is under investigation, including long-range radio, satellite, microwave and telephony.

Your job as a Radio Technician will concern you in developing, constructing, installing, commissioning, testing, and maintaining our equipment. In performing these tasks you will become familiar with a wide range of processing equipment in the audio to microwave range, involving modern logic techniques, microprocessors, and computer systems. Such work will take you to the frontiers of technology on a broad front and widen your area of expertise - positive career assets whatever the future brings. In the rapidly expanding field of digital communications, valuable experience in modern logic and software techniques will be gained.

Training is comprehensive: special courses, both in-house and with manufacturers, will develop particular aspects of your knowledge and you will be encouraged to take advantage of appropriate day release facilities.

You could travel - we are based in Cheltenham, but we have other centres in the UK, most of which, like Cheltenham, are situated in environmentally attractive locations. All our centres require resident Radio Technicians and can call for others to make working visits There will also be some opportunities for short trips abroad, or for longer periods of service overseas
You should be at least 19 years of age, hold or expect to obtain shortly the City and Guilds Telecommunications Technician Certificate Part I (Intermediate), or its equivalent, and have a sound knowledge of the principles of telecommunications and radio, together with
experience of maintenance and the use of test equipment. If you are, or have been in HM Forces your Service trade may allow us to dispense with the need for formal qualifications.
Registered disabled people may be considered
Pay scales for Radio technicians start at $£ 4640$ per annum, rising to $£ 6525$, and promotion will put you on the road to posts carrying substantially more; there are also opportunities for overtime and on-call work, paying good rates.

Get full details from our Recruitment Officer, Robby Robinson, on
Cheltenham (0242) 21491, Ext 2269, or write to him at GCHQ, Oakley, Priors Road, Cheltenham, Glos GL52 5AJ. We will invite suitable applicants (expenses paid) for interview at Cheltenham.

Recruitment ()ffice
Government Communications Headquarters:
Oakley. Priors Road, Cheltenham (11.52 5AJ

CAPITAL
APPOINTMENTS LTD
CAPITAL HOUSE
29-30 WIND MILL STREET
LONDON W1P 1 HG
TEL: 01-6375551
THE UK's No. 1 ELECTRONICS AGENCY
Design, Dev. and Test to £9,000
Ask for Brian Cornwell
SALES to $£ 12,000$ plus car Ask for Ken Sykes

FIELD SERVICE to $£ 8,000$ plus car Ask for Maurice Wayne

We have vacancies in ALL AREAS of the UK

SENIOR TEST ENGINEER

£7,000 +
We require a test engineer to test and commission a new range of sophisticated phototypesetting terminals.

QUALIFICATIONS

HNC or Degree in Electronics with at least 5 years' experience in the testing of Digital Electronic equipment. Conversant in the latest TTL MSI. Knowledge of microprocessors or a background in phototypesetting would be an advantage.
This is an interesting and rewarding position with all the benefits of a small company. Some foreign travel envisaged
Please telephone Mike Reynolds on 01-961 5425 or write for an application form to:

HEIGHLIN LIMITED

2 Morland Gardens, Stonebridge Park, London NW 10 8DY

When the ship comes home, why not settle down?
 We're British Telecom Maritime Service
 You must have a United Kingdom
 good pension scheme, sick-pay benefits and at

and we have everything in a job that you'd want: the kind of work youre trained to do, good pay, job security and all the comforts of home where they really count - at home!

Radio Officers

Vacancies exist at several coast stations for qualified Radio Officers to carry out a variety of duties that range from Morse and teleprinter operating to traffic circulation and radio telephone operating. And for those with ambition, the prospects of promotion to senior management are excellent.

Maritime Radio Communication Operator's General Certificate or First Class Certificate of proficiency in Radio-telegraphy or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic. Preferably you should have some sea-going experience.

The starting pay at 25 or over will be about $£ 5,381$; after 3 years service this figure rises to around $£ 7,087$. (If you are between 19 and 24 your pay on entry will vary between approximately $£ 4,229$ and $£ 4,937$). Overtime
is additional, and there is a
least 4 weeks' holiday a year.

For further information, please telephone Kathleen Watson on Freefone 2281 or write to her at the following address:
IE Maritime Radio Services Division (WWA), IS8.1.1.2, Room 304, Landsec House, 23 New Fetter Lane, London EC4A 1AE.
PARTOF THE POST OFFICE
PART OF THE POST OFFICE

Senior Test Technician/Engineer

£5000-£6000

 sophisticated communication systems and are Europe's leading supplier of sonobuoys. We now require an engineer aged $25+$ who has had at least 5 years practical test and fault finding experience on VHF low power AM/FM transmitters, audio circuits low and high power timing and pulse circuits. You should have an engineering qualification coupled with the ability and initiative to gain promotion in a forward thinking and progressive company.In addition to a salary of $£ 5000-£ 6000$ there are excellent benefits that include 22 days holiday, sports and social club, subsidised canteen and contributory pension scheme.
For further details please write to or telephone
Mrs J Foreman, on 01-578 0081

Ultra Electronic Communications Ltd. 419 Bridport Road, Greenford Trading Estate, Greenford, Middx

£25 REWARD

for anyone who can re-christen our hard-working computer. "Einstein" isn't quite right. Our scientific researcher has suggested "Lovelace," confident that all readers of this magazine will immediately think of Charles Babbage's assistant, the Hon. Ada Augusta - not the dreaded Linda. Our Einstein is indiepensable, but what a prime donna - gets the vapours in hot weather! Further details of his performance are very wittily reviewed by David Tebbutt in the June issue of Personal Computer World.
Current vacancies include:
SENIOR SEMI-CONDUCTOR PROCESS ENGINEERS, to £14.000 SEMI-CONDUCTOR QUALITY ENGINEERS, to £11,000. L.S.I. DESIGNERS, to $£ 12,000$ (Scotland)
DIGITAL DESIGN / RESEARCH ENGINEERS, to work on a new generation of data acquisition/recording instruments and special-purpose displays. Equipment based on $8048 / 8085$ and $6800 / 6802$. To £10,000 (South Coast). P.D.S. ENGINEER for mobile radio. To £8,000 West Country). SOFTWARE ENGINEERS for a wide range of device, i.e. PROM programmers, mpu programmers, programmable array units and mpu test equipment. To £8,000 (Herts.).
TEST ENGINEERS for a wide range of RF and microwave navigational beacons. Very progressive firm with lots of chance to progress. To $£ 7.000$ (West Country).
MICROWAVE ENGINEERS for test equipment design and application of special-purpose components to standard range of test equipment. To $£ 7,000$ West Country)
JUNIOR ENGINEERS to join a team working on the application of mpu's including 16 -Bit devices to aircraft data recording systems and environmental control systems. Salary confidential (West Country)
P.D.S. ENGINEER for mobile radio. To $\$ 8,000$ (West Country). SOFTWARE ENGINEERS for a wide range of device i.e. RPOM programmers, mpu programmers, programmable array units and mpu test equipment. To £8,000 (Herts.)
TEST ENGINEERS for a wide range of RF and microwave navigational beacons. Very progressive firm with lots of chance to progress. To $£ 7.500$ (West Country).
MICROWAVE ENGINEERS for test equipment design and application of special purpose components to standard range of test equipment. To $£ 7,000$ West Country).
For further details of these and other vacancies, please ring
(532)

Charles Airey Associates

4 Hammersmith Grove. London W6 ONA Tel: 01 - 7414011 "PROBABIY THE BEST KNOWN SUPPLIER OF ELECIRONIC ENGINEERS IN THE COUNTRY" financial Times.

STRATHCYME KS

MICRO ENGINEER MIDDX/SURREY

E $6^{1 / 2}-$ E $^{1 / 2} \mathrm{~K}^{\mathrm{K}}$
Computer Equipment manufacturer - leading Micro Boom - is expanding its design team for new Products/Markets/ Applications. Using 'State of the Art' techniques.
Imagine a career path that includes:

- Training in hybrid hardware/software design
- Challenge and reward
- Your skills and ideas matter
- Friendly go ahead management
- Promotion from within
- 1st class salary and regular reviews.
If you are an ambitious graduate or have sound technical experience already then ring Richard Butcher our Micro Specialist now! Ref ER 110.
01-549 6441 (Day) 01-644 3595 (atter 7.30pm) A.B. Executive (Kingston) Lid.

GRADE 5 ELECTRONICS TECHNICIAN

 We are seeking an experienced lechnlcian tojoin the Electronics Workshop of the Basic join the Electronics Workshop of the Basic
Medical Sciences Group. Experience of and imterest in solving biological problems using electronic devices is essential. A flair for digital electronic design and an ability to communicate with medical scientists with research problems would be useful. In addition, there will be every opportunity to collaborate with the teaching and research programs of the microprocessor/ microcomputer applications group of the
Basic Medical Sciences Group.
Salary: £5037-£5754 per annum inclusive (under review). 5 weeks' annual leave plus Public Holidays and other concessionary days.
Appllcation forms from the Personnel Officer, Chelsea College, Frlese Greene House, Chelsea Manor Street, London SW3 3TW.
Closing date: 1st August, 1980.

Applisatiens are lavitad for three posis at the Luboralory which is locatod in a downland village near Wrango. The work A within a section whien develops, consiructs and maintains a whe range of electronic inatruments. including microproc assors, for labortion and lien experiments in agricultural rasearch.

Appontmants will be made according io qualifications tili oxprimenes as foliows:
POST A: HIGHER SCIENTFIC OFFICEA, mIIMImum qualification dagres or aquivion! plus 5 years' posi qualliyimg experisnce. Satary in Scale E5.097.-66.737.
POST B: SCIENTFIC OFFCER, minmum qualification dequas, H.N.C. or aquinaleat. Salary In Scala £3.591-E5.486.
POST C: PROFESSIONAL 8 TECHNOLOGY OFFICE GRADE IV, minin qualifiteation OMC, City 8 Guilds or TEC/SCOTEC in Electrical Enginearing/ Electronics. Salary on wry 55.500 p.s. rising ty annual increments to 58,300 .
How contributary Super annalion
Further particulars and application lorms can bo
 Council, Letcmbe laboralery, Wamage, ox on, oxil2
 $80 / 2$.

TUNE IN TO A NEW CHALLENGE

Good communications play a significant role in every business. In a Company the size of ARAMCO good'communications are vital.
Aramco currently employ over 40,000 people in Saudi Arabia and the scale and diversity of operations is impressive.
On behalf of the Saudi Arab government, Aramco are involved in a massive gas gathering and processing programme, have built the biggest seawater desalination plant in the world and are committed to several other major, on going projects. All this as well as being the largest oil production company in the world.
These extensive investments within the Eastern Province of Saudi Arabia needs a good communications network to ensure the smooth and efficient running of the various operations organisations.

Salaries are as you would expect with a world leader.

ENGINEERS $£ 11,450$ to $£ 19,200$ TECHNICIANS $£ 10,100$ to $£ 14,500$ per contract year after tax.
THE COMMUNICATIONS PROJECTS MANAGEMENT DEPARTMENT require Engineers and Field Technicians in the following skills:-
ENGINEERS \& TECHNICIANS for the installation and commissioning of telemetry systems. Field work covers substations, remote terminal units, pipelines etc. You will be involved at module, unit and systems levels using a range of test equipment, digital diagnostic test procedures and control systems.
Engineers should have B.Sc or HNC in Electrical or Electronic Engineering plus minimum of 4 years relevant experience. Technicians should have apprenticeship plus at least 3 years relevant experience.
DATA ENGINEERS with at least 5 years experience in systems engineering on data terminalling equipment and analogue systems. A degree in electrical engineering or computer science is required for these positions.
COMMUNICATIONS ENGINEERS to act as technical consultants and systems planners on specification and design. Degree plus 5 years experience is required. COMMUNICATIONS ENGINEERS for communications hardware and systems including local distribution and coaxial versus paired cables, multiplexers, multichannel radio bears, VHF/UHF/HF/MF equipment, outside telephone cable plant and telephone/electronic switching.
Contracts are single status and renewable yearly with air conditioned accommodation and free medical care provided. Good recreation facilities include libraries, cinema, TV, swimming pools etc. Married mén receive leave after each 4 month period on a 14,14 and 25 cycle. Single men receive 30 days leave at end of each year. Fares paid.
A valid UK driving licence is required for all the above positions.
Certain senlor positions will qualify for married status after satlsfactory completion of one year's employment.
Please write with brief career details etc. quoting ref:WW/16/7 to:-

(537)

Radio Communications Electronics Engineers and Software Designers

Mid-Sussex-S.W. London

Salaries up to $£ 8,000$
To join our expanding R\&D Laboratories covering a wide range of R.F. spectrum, from L.F. to V.H.F. Equipments include transmitters and receivers for marine- and land-based use, radio navaids and radio monitoring remote computer-controlled systems.
Electronics Engineers should have experience in transmitter or receiver design, analogue or digital circuit design, microprocessor applications. Software Designers should be experienced Programmers with an interest in control, signal processing or navigational software.

Attractive sala ies are complemented by excellent prospects and generous benefits.

Contact: David Bird, Redifon Telecommunications Limited, Broomhill Road, Wandsworth, London, S.W.18. Phone: 01-874 7281 (reverse charges).

ELECTRONICS ENGINEER

CENTRAL LONDON

£5,250 +
Electronics Engineer with good knowledge of digital electronics wanted for fault finding and repair work on microcomputer systems.

2 years' experience with digital systems or a good apprenticeship background are the minimum qualifications. Possession of a driving licence would, be an advantage.
Phone Brian Levison
01-729 4483

All the others are measured by us...

At Marconi Instruments we ensure that the very best of innovative design is used on our range of
communications test instruments and A.T.E. We have a number of interesting opportunities in our Design, Production and Service Departments and we can offer attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation. If you are interested to hear more, please fill in the following details:-

Return this coupon to John Prodger, Marconi Instruments Limited, FREEPOST, St. Albans, Herts, AL4 0BR. Tel: St Albans 59292

Royal Observatory, Edinburgh Professional and Technology Officer

GRADE II

There is a vacancy in the Technology Unit of the Royal Observatory for an electronics engineer to work on the development of prototype astronomical instruments such as photometers, polarimeters, measuring machines and guidance and acquisition systems.
The Technology Unit provides technological support to the three national facilities for which the Observatory is responsible: the UK Infrared Telescope in Hawaii, the UK Schmidt Telescope in Australia and the COSMOS Measuring Machine in Edinburgh.
The successful candidate will work as a member of a small team engaged on the design, development, commissioning, documentation and support of the hardware and software for astronomical instruments. These instruments will typically involve control functions using microprocessors, detectors such as CCD arrays, TV cameras or photomultipliers, and a variety of mechanical and optical devices.

The successful candidate may be required to work abroad on short-term detached duties or on postings of up to three years. It will be a pre-requisite of working in Hawaii that a special high-altitude medical examination be taken and passed.

Applicants should have qualifications at degree level in an appropriate subject and several years' experience of design and. development involving analogue, digital microprocessor and software techniques.

Starting salary would be in the range $£ 7000-£ 81000$ per annum. There is a non-contributory superannuation scheme.

Application forms from: The Personnel Officer, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ. Telephone 031-667 3321.

Closing date for return of application forms: August 1, 1980

Broadcast Engineer

TEST AND SERVICE

Seltech Equipment Limited is a leading supplier of broadcast equipment and its increasing share of the market requires a major expansion programme which has involved moving to large modern premises and the employment of additional engineering staff.
The position offered will involve testing and servicing a full range of broadcast products including switching, pulse generation, time code, clock and audio systems, utilising the latest technology.
The successful applicant will probably be qualified to HNC level but broadcast related experience is of prime importance.
The position is based in the company's new premises at Bourne End, Bucks. Limited travel will be required.
Salary and conditions will be in keeping with the position offered.
In the first instance apply to D. Craddock, General Manager.

SELTECH EQUIPMENT LTD Rose Industrial Estate,
Cores End Road,
Bourne End. Bucks. SL8 5AT Tel: Bourne End (06285) 29131

B.Sc. (Hons) in Physics and Physical Electronics

This course is designed to give a broad-based understanding of modern physics and the physical basis of electronics and computing. It is available in full-time (3. year) and sandwich (4 year) options.
Further details from: The Secretary (Ref. WW5), Physics Department, Polytechnic of North London, Holloway Road, London, N 7 8DB. (Tel: 01-607 2789, Ext. 2181).

ThePolytechnic

 of NorthLondon```
ROYAL FREE HOSPITAL
 HAMPSTEAD,NW3
 DEPT. OF MEDICA
 PHYSICS
 MEDICAL
 PHYSICS
TECHNICIANS
```

for well equipped Electronics Laboratory for maintenance of Radiotherapy machines, Physics equipment, CT scanners, and Uitrasound apparatus. Equipment includes Linear accelerator, two Cobalt units. 300 kV superficial machines. Also development work on computerised Cobalt treatment unit. film badge reader etc.

Post 1 - MPT IV
Qualifications - ONC. HND or equivalent specialising in electronics.
Salary £4280-£5504 p.a. (1V)
Pose 2 - 11 or 111 as above plus 3 yrs. experience. ( $£ 5003-£ 7316$ )
For details and application form-Personne Dept. Tet: 01-794 0500, ext. 4286. Quote ref. 1487.

## Unique opportunities for

# Technician Engineers 

## Havant, Hants

We are currently looking for experienced personnel to fill key roles as Technician Engineers within our expanding laboratories and to undertake design, development, test and field trials on avionics and communications equipment from our wide range of electronic products.
The work will be extremely varied, involving the development, evaluation, debugging, design proving and field trials of advanced RF analogue and digital equipment using the most up-to-date techniques, including microprocessors.

Ideally, applicants will bequalified to C\&G, HNC or equivalent level, havehad several years' experience of radio communications or electronic equipment and be familiar with both analogue and digital circuitry. However, we can currently offer opportunities at all levels and we welcome applicants with alternative experience, who wish to broaden their knowledge.

Salaries offered will be highly attractive and there are excellent prospects for career progression, both within the technician engineer grades and the Company, with potential being recognised and rewarded accordingly.

Generous relocation expenses are available together with a comprehensive range of company benefits. Situated in a semi-rural environment near Portsmouth, Chichester and the South Downs we are also well placed for housing, educational and recreational amenities.
If you feel you can meet our requirements please write or phone for an application form to Tony Czapp, Technical Resourcing Officer, The Plessey Company Limited, Martin Road, West Leigh, Havant, Hampshire. Tel: (0705) 486391 ext. 433.

## SENIOR VIDEO ENGINEER [DEVT. \& MAINT.)

## £6,636-E7,722 plus 1980 award

To make an important contribution to the varied work of a small team of experienced engineers and technicians. This post is responsible for staff and workload in the Development and Maintenance sub-section which supports and improves a large netwórk of colour video players, low guage production systems, and broadcast quality E.N.G. and mobile facilities. Must be a professional working engineer with good abilities in V.T.R. maintenance and development up to broadcast standard. Opportunities for contributing to original research and development.

Application form and more details from: Personnel Officer, Brighton Polytechnic, Moulsecoomb, Brighton BN2 4GJ. Tel: Brighton (0273) 693655 Ext. 2536.
(519)

## TELECOMMUNICATIONS TECHNICIANS

## c. $£ 8000$

Experienced Telecommunications Technician, with ONC or City and Guilds in Telecomms., for the maintenance of an international telecommunications network. Equipment includes electronic teleprinters, VDUs and facsimile equipment. Knowledge of Post Office line plant practice an advantage. NGA pay scale.
Apply in the first instance to.
Miss L. J. Walker, U.P.I.
8 Bouverie Street, LONDON, EC4Y 8BB

## A RARE OPPORTUNITY IN ELECTRONICS

We are offering the opportunity for someone with a sound background in analogue electronics and some experience in digital techniques to join a very small company with a very good order book.
The right person will be capable of taking a wide technical responsibility in the first instance, but should also have the ambition to become fully involved with the company as a whole, to the extent of eventually managing it.
This is, in fact, one of those comparatively rare chances to get in on the ground floor of something. However, it will undoubtedly need a lot of talent, ambition and sheer hard work to build a success on the foundations that have already been laid.
If you are interested, please telephone or write to Mrs. Jean Tottem, Personnel, Thor Research Instruments, Henley Road, Berinsfield, Oxford. Telephone Oxford 340601, in the first instance.
(534)

## PHILIP DRAKE ELECTRONICS LTD.

manufacture Audio equipment for the Broadcast industry and have vacancies for the following staff

## PROJECT ENGINEER

to work in the Project Department. The job includes Project discussion with customers, the detail design of systems, test supervision, and the compilation of system hand books. Experience in the Broadcast Audio industry and a suitable qualification would be an advantage.
The company offers a $371 / 2$-hour week with $31 / 2$ weeks' holiday minimum. Salary negotiable dependent on experience. Apply by telephone or writing to:

## Alan Brill

PHILIP DRAKE ELECTRONICS LTD.
23 Redan Place, London, W2 4SA
Tel: 01-2211476

## charing choss hospital <br> ELECTRONIC <br> TECHNICIAN <br> ENGINEER

with, ideally, at least 2 years' experience in the maintenance of electronic equipment -
not necessarily in a Hospital - and ONC qualified or equivalent, to join the electronics team.
The work involves maintenance, calibration, and Electrical safety testing of a large range of electronic equipment used throughour the Hospital with particular emphasis on Patient care and monitoring in the Intensive Care Units and the Operating Theatres, Design and development of special equipment. both digital and analogue and microprocessorcontrolled is undertaken
Inclusive salary scale: $£ 4280$ - 5504 (MPT IV grade).
ered for entry applicants may be considE3920. Salary scales subject to review from 1st April, 1980.
For further information and an application form, please contact Miss J. Newbigin, Personnel Department, Brandent argh House, 116 Fulham Palace Road, London W6. Telephone: 01-748 2040 Ext. 2992.
Plessey EAE design, install and maintain communications systems for the oil industry, at home and abroad.

Due to rapid and continuing expansion in our activities, we constantly require Radio Technicians, with experience of HF, MF, VHF and UHF, and Engineers (preferably qualified to HNC level or above) in the fields of Microwave, Multiplex and Tropospheric Scatter.

In the North Sea, earnings are in the range $£ 9,000$ to $£ 12,000$ p.a. Overseas earnings could be up to $£ 20,000$ - plus tax concessions and generous home leave.

The work is demanding, but rewarding, offering you the chance to use your skills and your initiative to the full.

The company is based in Great Yarmouth, with offices in Aberdeen and Lerwick but where relocation is necessary, we will give generous assistance with removal, legal and temporary accommodation expenses.

Please apply, with details of your career to date, to: Personnel Manager, Plessey EAE Limited, Dept WW, Offshore House, 284/285 Southtown Road, Gt. Yarmouth, Norfolk NR31 0JB Telephone 049358541

## OPIESSEY A.IE

UNIVERSITY OF LONDON INSTITUTE OF EDUCATION

## ELECTRONICS TECHNICIAN GRADE 5

The Department of Child Development and Education Psychology seeks a second technician to take charge of and develop a modern electronics workshop. Varied interesting work includes liaison with staff and students researching with chitdren, and video work. Experiênce in maintaining psychological and for physiological equipment together with ability to advise on and construce special purpose apparatus is necessary. Salary range £4257-£4974 (under
wance.

Please telephone Mary Griffin on 6361500 extension 254 or write to her at University of London Institute of Education, 20 Bedford Way, London WC1H OAL for an application form.
(508)

## BRIGHTON POLYTECHNIC LEARNING RESOURCES

## VIDEO RECORDING \& STUDIO ENGINEER <br> £6636-£7722

To be responsible for a newly established production centre equipped with state of the art facilities, including Plumbicon studio and telecine cameras, a wide range of video recorders and a video editing area based on Ampex one-inch broadcast VTRs. The two studios cover straight production, multi-track audio and advanced video postproduction facilities. Active participation in related engineering developments is required. Operational experience of sound and colour video systems (preferably in a broadcasting or educational institution) and a degree or equivalent educational qualification are desirable.

## ELECTRONIC ENGINEER

〔5268-£6381
To work with a team of experienced engineers and technicians developing colour television and other audio visual facilities throughout the Polytechnic. The systems developments range from simple sound and T.V. production equipment to video recording and editing to near broadcast standards.
The Electronics Engineer will apply digital and analogue techniques to develop and install new equipment, up-grade existing facilities, and assist with its maintenance. Formal training to degree or equivalent standard will be expected but proven ability and experience in electronic design and construction (preferably including television) will be rated even more highly.
Further details and application forms from the Personnel Officer, Brighton Polytechnic, Moulsecoomb, Brighton BN2 4AT. Telephone: Brighton 693655, Ext. 2536.

BCL. The leading supplier of Reagents and Research Biochemicals to Hospitals and Universities is expanding.

If you live within easy access to London, have a good electro-mechanical analogue digital background and think you could do field service work, read on:

We require a

## FIELD SERVICE ENGINEER

Male or Female to service our equipment in hospitals throughout London and the South East of England.
Good salary/car/expenses/pension scheme.
Interested?
For more information and application form contact: Chris Williams, Service Manager BCL LTD., Bell Lane, Lewes BN71LG, East Sussex

Tel: Lewes (07916) 77811

[^6]RF CALIBRATION / communication engineer; MOD timeserved HNC experience with DC to 40 Ghz , radio
expe experience with 25 years old, seeks interesting and rewarding job incorporating world travel. Box No.
549 ( 549

## TOP JOBS IN ELECTRONICS

Posts in Computers, Medical, Comms, etc. ONC to Ph.D. Free service.
Phone or write: BUREAUTECH, AGY, 46 SELVAGE LANE, LONDON, NW7. 01-906 0251.

[^7]
## TESTERS, TEST TECHNICIANS,

 TEST ENGINEERS. Earn what you're really worth in London working for a World Leader in Radlo \& Telecommunications. Phone Len Porter on 01-8747281, or write: REDIFON TELECOMMUNICATIONS Ltd., Broomhill Road. Wandsworth. London, SW18
# Electronic Engineers What you want, where you want! 

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 8000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES, 12 Mount Ephraim, Tunbridge Wells, Kent. TN4 8AS.

Tel: 089239388

Please send me a TJB Appointments Registration form: Name .

Address

## ALCAN LABORATORIES LIMITED ATLANTIC REGION RESEARCH CENTRE

# INSTRUMENT TECHNICIAN 

Alcan Laboratories Limited require an Instrument Technician at their Research Centre in Banbury, Oxfordshire. The work will be conceined mainly with the development of electronic measurement and control equipment which will be used in the Laboratory and in Alcan factories.

The Research Centre, which is one of Europe's leading metallurgical laboratories. carries out Research and Development work for associated Group companies in the U.K., Europe. Africa and South America; it is part of the Canadian-based Alcan Aluminium Limited Group, which is one of the world's major aluminium producers.

Candidates will be required to work largely on their own initiative: they should have an HNC in Electronic Engineering followed by several years' experience in the development of protorype electronic equipment.

The Company offers excellent working conditions, progressive salary scales, flexible working hours and a contributory pension scheme. Assistance with the cost of moving house will be given where appropriate.
Application forms can be obtained from: Miss G. Rogers, ALCAN LABORATORIES LIMITED, Southam Road, Banbury, Oxon. OX16 7SP Tel. Banbury (0295) 2821.

$$
441
$$

## UNIVERSITY OF OXFORD ELECTRONICS TECHNICIAN

 An electronics technician is $r$ quired for work on mass spectrometers and other equipment in the, logy under the lechnical direction ogy, under the lechnical direction of the Electronics Group in thePhysics Department. Applicants should have wide experfence in fault-finding and building of mod. ern electronic equipment.
Appointment is for tive years from 1 August $19 \times 0$. Salary range f4sht to $\{5 \mathrm{k} 32$. under review. Applications with full persunal and professional details as soon as pos. slble, to The Adminstrator. Department of Geologs and Mineralogy; Parks Ruad. Oxfurd 0XI 3PR.

ELECTRONIC TECHNICIANS Grades 3 and 4 required to assist in the construction. modification and maintenance of electronic equip. ment for use in teaching and research carried out in the Psychology Dept. of UCL. the Work is varied and interest-
ing and covers wide range of ing and covers a wide range of andogue and digital $G$, onch- or 3 equibalent required. The Grade electrical/mechanical buckuround Salary in range: Grade 4 \& 428.
 E4.x-2 inclusive of Londun Welghting. Applicalion form frum Persun. nel Officer Technical Staft CK4). Universify College London. fiower St., london WCiF. 6BT. 1370 I

## BRIGHTON POLYTECHNIC LEARNING RESOURCES VIDEO RECORDING \& STUDIO ENGINEER

£6636-£7722

To be responsible for a newly established production centre equipped with state of the art facilities, including Plumbicon studio and telecine cameras, a wide range of video recorders and a video editing area based on Ampex one-inch broadcast VTRs. The two studios cover straight production, multi-track audio and advanced video postproduction facilities. Active participation in related engineering developments is required. Operational experience of sound and colour video systems (preferably in a broadcasting or educational institution) and a degree or equivalent educational qualification are desirable.

## ELECTRONIC ENGINEER

## €5268-£6381

To work with a team of experienced engineers and technicians developing colour television and other audio visual facilities throughout the Polytechnic. The systems developments range from simple sound and T.V. production equipment to video recording and editing to near broadcast standards.
The Electronics Engineer will apply digital and analogue techniques to develop and install new equipment, up-grade existing facilities, and assist with its maintenance. Formal training to degree or equivalent standard will be expected but proven ability and experience in electronic design and construction (preferably including television) will be rated even more highly
Further details and application forms from the Personnel Officer, Brighton Polytechnic, Moulsecoomb, Brighton BN2 4 AT. Telephone: Brighton 693655 Ext. 2536. Closing date: June 27th.

BROADCAST ENGINEERS / TECHNICIANS M/F. We have a number of vacancies for experienced personnel to maintain these National Broadcasting Stations. These are permanent positions. accommodation and condltouns are first class. with excellent salaries itax free, and regular U.K. leave Apply SPS Executives. iRef. 17401 Recruitment Consultants. Delme. Court. West Street. Fareham. Hampshire. or belter still telephone
$235611 / 236 \times 57$

## BOOKS

FREE 1980 AMTRON CATALOGUE With new range of kits and equip. ment cabinets. Send S.A.E. Ampron UK I.te. 7 Hughenden Huad. Haslings, Sussex TN64 3TG. Tel Hastings 436004

## With Plessey Semiconductors

# Discover the difference between doing alright and doing really well 

## Design/Product/Test/QA Applications/Development

Are your talents fully utilised? Is your job really holding your interest? And are you properly rewarded?
Consider a job with Plessey Semiconductors at Swindon now. Currently we are manufacturing and developing products for telecommunications, radio communications, radar systems, television and power control.
To expand this activity, we seek electronic engineers with ONC through to BSc (Hons) qualifications for a variety of opportunities. We have openings for both junior and senior engineers. You don't need specialist IC experience, a good general electronics background or interest is sufficient.
We are as keen as you are to ensure that your ability is not only utilised to the full but properly rewarded.
We are the largest British semiconductor company by a wide margin. Disregard anything you may have been led to believe about IC manufacture being exclusively an American operation. We have invested heavily in our future. We are growing rapidly. Over $50 \%$ of production is exported. Our product and market spread offers very considerable scope for individual men and women.

Opportunities also exist for surface acoustic wave engineers, particularly those with previous experience
Salary parameters are 5 k and 10 k .
Design Engineers analogue or digital experience for bipolar, MOS and surface acoustic wave technologies.
Product Engineers analogue or digital experience in design or test engineering, with an interest in production.
Test Development Engineers broad knowledge of electronics, with a real interest in test method concepts-hardware and/or software.

## Applications Engineers

experience in IC applications, radar IF's, use of ECL or high speed A-D conversion.
Development Engineers
MOS IC design or digital design including CMOS and TTL logic design experience

## QA Engineers to work on approval of devices to BS9000 specifications.

Apply to Shirley Cave, Resourcing Officer, Plessey Semiconductors Limited, Cheney Manor, Swindon SN2 2QW. Swindon (0793) 36251.

## PLESSEY

[^8]PCB ARTWORK DESIGN SERVICE with component notation masters Electrical Lid 01.850 6516 PADS Southwood Road New Eitham seg Southwood Road. New Eitham SE9.

BATCH PRODUCTION wiring and askembly to sample or drawings. Mcluane Electricals 19b Station Parade. Ealing Common. London. W.5. Tel. 01-992 8976.

## INVERTERS

High quality DC-AC. Also "no break" (2ms) static switch, 19" rack. Auto Charger.


COMPUTER POWER SYSTEMS Interport Mains-Store Ltd. POB 51, London W11 3BZ Tél: 01-727 7042 or 0225310916

[^9]LAB CLEARANCE: Signal Gener. ators; Bridges; Signal Gener transistor analysers; callbrators; standards; millivoltmeters; dynamometers; KW meters; oscilloscopes; recorders; Thermal, sweep.
low distortion true RMS, audio Fis devlation. Tel. 040.376236 . ( 8250

## CAPACITY AVAILABLE

## I.H.S. SYSTEMS

Due to expansion of our manufacturing facilities we are able to undertake assembly and testing of circuit boards or complete units in addition to contract development.
We can produce, test and calibrate to a high standard digital analogue and RF equipment in batches of tens to thousands.
Telephone to arrange for one of our engineers to call and discuss your requirements, or send full details for a prompt quoration.

TEL. 01-253 4562
or reply to Box No. WW 8237
(8237)

## PCBs Production

runs or prototypes
Assembly to sample or drawings

* Design Service if required
* Quick response to demand
* Expert hand soldering
* Nothing too large or too small

Telephone or write:
SEAHDRSE ELECTRONICS LTD.
Unit 2, Picow Farm Roed
Sunco Cheahise
Runcom, Cheshire
Tel. Runcom (09285) 75950
PROTOTYPE SERVICE capacity avallable to produce your prototypes or small baich quantities from samples or drawings, alsn PCB artwork design and mare - Lintek Electronics. facture. - Lintek Electronics. 14 0622679584. . 1282

PRINTED CIRCUIT BOARDS. QUICK delveries. competitive prices. Quo tatlon on request, roller tinning drilling. ete. Speciality smali batches. Larger quantities available. Boardraven Lid. Lancaster Road. Carnaby Industrial Estate. Bridlington. North Humberside. YUI5 3Q). For the attention of Mr J. Harrison. Tel: 10262 ; 78788.

ELECTRONIC DESIGN SERVIEE. Immediate capacity avallable for clrcuit design and develupment Work. PC artwork, etc. Small batch and prototype production welcome MAIDSTONE. Kent. 0622-677916..

## kinc's college hospiral <br> MEDICAL PHYSICS TECHNICIAN III

required for Electronic Equip ment Servicing at this busy London teaching hospital. The successful candidate will be responsible primarily for the maintenance and repair of
nuclear medicine imaging and counting nuclear medicine imaging and counting
equipment. Experience of similar work with electronic equipment essential though training on particular instruments will be given. Minimum qualifications: an appropriate HNC or equivalent plus three years: relevant experience.
Salary: £5003-£6350 inclusive
For job description and application formplease contact Sector Administration, King's
College Hospital. Denmark Hill, London SE5 9RS. Tel: 01-274 6222 ext. 2408. Please quote reference no. SA/190.

Closing date: 30th July. 1980

(528)

ESSEX COUNTY COUNCIL, ChelSENIOR TECHNICIAN A (with degree allowance) is required im. mediately to assist with telecommunications research work. Salary: T3/4 $£ 4,581-£ 5,784$ per annum. The person appointed would ideally have at least an ONC, but an HNC or equivalent experience in Electronics would be an advantage. Interpretation and construction of prototype units using current technology will be a major part of the work. This post offers a real op. purtunity for career development in the research activities of todiays electronic technology and should suit applicants with ambition. Apavallable from the Institute Secretary, Chelmer Institute of Higher Eduoation, Victoria Road South, Chelmsford CM1 1LL, to whom ap. plication forms should be returned within 14 days of the date of this advertisement. (Telephone Chelmsford 354491)

## Doyouhave four '0'levels and an interest in radioelectronics? thenininithe wortdo idPP as aradio cadet.

BP Tanker Company operates a Cadetship scheme leading to the award of the Marine Radio Communications General Certificate, the DOT Radar Maintenance Certificate and a TEC (Scotec) Higher Certificate. A few vacancies exist in our September 1980 intake.

Entry requirements are limited to UK
residents between the age of 16 and 19 , who are physically fit and have or expect to obtain at least four GCE 'O' Level (or equivalent) passes, including Maths and Physics at grade A or B, also an English base subject and one other academic subject at minimum grade $C$.
Please fill in and post the coupon below for further details:

I am interested in joining BP as a Radio Cadet and training to become a Radio Officer. $\square$ I have, or expect to get, the ' $O$ ' level passes referred to in your advertisement:
$\square$ lalso have good health (PLEASE TICK SQUARES)
Name
Age
Address
(BLOCK LETTERS PLEASE)
Post to: Recruitment Branch, (Ref: WW/90/A)

## ARTICLES FOR SALE

## INVERTERS

 High quality DC-AC. Also "nobreak" (2ms) static switch, 19" rack. Auto Charger.


COMPUTER POWER SYSTEMS Interport Mains-Store Lid. POB 51, London W11 3B2 Tël: 01-727 7042 or 0225310916 (9101)

## THINKING OF RENTING A TELEPHONE ANSWERING MACHINE?

 THEN STOP!Did you know that for the equivalent of just one year's rental you could actually buy one outright?

## For details write 10 :

Javal Supplies Lid. (Dept. 2C), 120 Alexandra Road, Burton-onTrent, Staffs DE16 OJB or telephone (0283) 47427 any time.
(337)

LAB CLEARANCE: SIgnal Gener. ators; Bridges; Waveform, transistor analysers; callbrators; standards; millivoltmeters; dynamometers; KW meters: oschlolow distortion true RMS, audio FR. deviation. Tel. $040 \cdot 376236$. 18250

POLYSKOP SWOB 11 £450. R \& S Power Signal Generator $.1-30 \quad \mathrm{MHz}$ £150. Power Signal Generator 300 MHz - 1 GHz E 150 . Power Signal Generator 30 MHz - $303 \mathrm{MHz} \underset{\mathrm{MH}}{\mathrm{K}} \mathrm{K}$. UHF Test receiver 885 . 585 A DC to 80 MHz Sweep Delay Oscilloscope with 1 L 10 Spectrum Analyzer Unit $1-36 \mathrm{MHz} £ 980$. 585 DC to 80 MHz Sweep Delay Oscilloscope with 1 L 20 Spectrum Analyzer Unit 10 $\mathrm{MHz}-4.2 \mathrm{GHz}$ f1,450. 647A DC to 100 MHz Oscilloscope $f 690$. FM Signal Generator TF1066B £385. Dynamco Oscilloscope Type 710030 £275 Type 1607 A Tnansfer-Function 2275. Type 1607 A Transfer-Function 150 Oscilloscope 35 MHz , double beam. Portable only 1195 . All goods sublbject to VAT P\&P extra. Tel. 01. 4045011 or 01.543 2515. 1539

ELECTRONIC IGNITION TESTER, unboxed, otherwise complete, $£ 295$ | plus P\&P. Storrington 4830 | after |
| :--- | :--- | :--- |
| 6.30 |  |
| 529 |  |

GRAFCOLOR SPECTRUM ANALYSER. C/w system desk. colour T.V. camera and digitiser. First reason4137012 . 8506

ISOLATION Transformers: $240 / 240 \mathrm{~V}$ Double wound 6 amp, Ideal T.V. W/shop etc, will take much more, only 1 Kw. $£ 24.50$ each. Autos, $240 / 110 \mathrm{~V}$ $1 \mathrm{Kw} . \mathrm{E} 24.50$. Malden Transformers, 134 London Road, Kingston-on-
Thames. $01-546$ 7534. LISTS.

[^10]CLEARANCE SALE: Components hardware and studio equipment, gth August, 10 am to 3 pm . Sound don NW1. Tel 01-586 1271. Rd, Lon don NW1. Tel. 01-586 1271.

MICROWAVE EQUIPMENT, wave guides, attenuators, all used but in good condition. Barretts, 1 Mayo Road, Croydon, CRO 2QP. 01-684 9917.

FOR SALE. Electronlc Megus 500 or 1000 volts, pocket size, a bargain for all Electricians, only $£ 28.50$ plus batteries and P\&P $\mathbf{P} 1.50$. P. Bowers, 16 Melbourne Road, Wallington, Surrey.

TRANSFORMERS Tapped Autos 220 , 380 v 415 v 440 v at 5 KVA \&4.50. $230 /$ 110 v 1 KVA auto $£ 23.50,230 \mathrm{v} 12 \mathrm{v}$ lamp 24 v 1 amp £5. Lists. Malden Transformers Supplies, 134 London | Road. Kingston-on-Thames. Surrey. |
| :--- |
| $01-546$ |
| 7534. |

TV AND RADIO Aerials supplied, fitted and repairs etc., also tions aerials fitted. Notts, Derby area. Leehrook's 107731 , 606301 area. Leehrook's (0773) 606301.

BZ Y95 C13 Mullard Zeners, new in original packaging, 600 available | offers to T. Scott, 37 | Regents |
| :--- | :--- | ---: |
| Street. Rowhedge. Essex. | 1543 |

| THE SCIENTIFIC |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| WIRE COMPANY <br> P.o. Box 30, London. E. 4 |  |  |  |  |
| EMAMELLED COPPER WIRE |  |  |  |  |
| SWG |  | . 802 |  | 202 |
| 81029 | 2.76 | 1.50 | 80 | 60 |
| 301034 | 3.20 | 1.80 | 90 | . 70 |
| 351040 | 3.40 | 2.00 | 1.10 | . 80 |
| 411043 | 4.75 | 2.60 | 2.00 | 1.42 |
| 41 | 8.37 | 5.32 | 3.19 | 2.50 |
| 48 18 49 | 15.96 | 9.58 | 6.38 | 3.69 |
|  | TED COPP | PER WIRE |  |  |
| 14 to 30 | 6.50 | 3.75 | 2.20 | 1.40 |
|  | COPPER | WIRE |  |  |
| 141030 | 3.38 | 2.36 | 1.34 | . 90 |
| Prices include P8. Vat and wire 0ata SAE for list Dealer enquiries welcome. |  |  |  |  |
|  |  |  |  |  |
| Reg OHice: 22 Conings by Gardens. (9063) |  |  |  |  |



## A POWERFUL WORD PROCESSOR

 reduction word processor; IBM Golf Ball typewriter linked to twin magnetic tape cassette for twin magnetic card) memory module. Full edit/search/formatting capabilities. $£ 595$ plus VAT. Autotype,Abingdon 10235 ) 831245 .

## TO MANUFACTURERS, WHOLESALERS \& BULK BUYERS ONLY

Large quantities of Radio, T.V. and Electronic Compinents
RESISTORS CARBON \& C/F $1 / 8,1 / 4,1 / 2,1 / 3$. 1 Watt from 1 ohm to 10 meg .
RESISTORS WIREWOUND. $1 \frac{1}{2}, 2,3,5,10,14,25$ Watt.
CAPACITORS. Silver mica, Polystyrene, Polyester, Disc Ceramics,
Metalamite, C280, etc.
Convergence Pots, Slider Pots, Electrolytic condensors, Can Types, Axial, Radial, etc.
Transformers, chokes, hopts, tuners, speakers, cables, screened wires, connecting wires, screws, nuts, transistors, ICs, Diodes, etc., etc.
All at Knockout prices. Come and pay us a visit. Telephone 4452713 , 4450749

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho Corner

## TIME?

MSF CLOCK is ALWAYS CORRECT never gains or loses, self-setting at switch-
on. 8 digits show Date, Hours Mintes and on, 8 digits show Date, Hours, Minutes and
Seconds, auto GMT / BST and leap year, also parallel BCD out put for computer. etc.,
receives Rugby time signals. 1000 Km range, built-in antenna. get ABSOLUTE
TIME, E54.80.
V.L.F.? 10.150 KHz Receiver. $£ 13.70$.
Each fun-to-build kit includes all par printed circuit, case, postage, etc.. money back assurance. so SEND off NOW

CAMBRIOGEKITS
(WH) Old School Lar
Milton, Cambridge
(556)

WIRELESS WORLD Aug. 1950 to Dec. 1974. - Telephone Bracknell
(0344) 51276 (evening and $w / e$ ). i 552

SULLIVAN INDUCTANCE BRIDGE $0.1 \mu$ to 100 H . 10 ms to 10 Ks , requires an oscillator and detector for operation, f100. Armec Wave A. J. Nailer. 12 Weatherbury Way,
Dorchester, Dorset.

TEST EQUIPMENT, new. Aud to and R.F. Signal Generators. Grip dip and S.W.R. meters. Function gen. $\begin{array}{ll}\text { Regulated P.S.U. THD analyser. } \\ \text { M.V.M.T. } & \text { \& } \\ \text { Details from }\end{array}$ Teleradio. 325 Fore Street. London,

ENVIRONMENTAL OVEN Montford Mark II -70 to $+200^{\circ} \mathrm{C}$, hardly
used $£ 450-$ Tectronics osclllo. used. £450. - Tectronics Oscillo.
scopes plus other test gear. Ger. rards Cross 83641.

STC 4001. TWEETERS bargaln clearance offer, 2 for £6. 4 for £10. £1.50 p\&p. - Seasim Ltd. The Paddocks,
Frith Lane. London N.W.7. 1319)

CLEARANCE PARCELS: Transistors, resistors. boards. hardware, 10 Ibs
only $£ 5.80$ ? 1.000 Resistors 84.25, $\begin{array}{lll}500 & \text { Capacitors } \\ 171 . & \text { BC } 204.75, ~ B C ~ & 108, \\ \text { BC }\end{array}$
 $\begin{array}{lllll}\text { £5.80. } & 2 \mathrm{~N} & 3055 . & 10 \text { for } & \text { £3.50. } \\ \text { S.a.e. lists: } & \text { W.V.E. (3). } 15 & \mathrm{High}\end{array}$ Street. Lydney. Glos. $\quad 1444$

ALFAC ELECTRONIC TRANSFERS.
 P. C. B. layouts. Return service. Send $17 p$ stamp for catalogue.
sample etc. PKG Electronics, Oak Lodge. Tansley. Derbyshire. (367)

TEST EQUIPMENT. AUdIo \& R.F. Signal Generators Grip Dip and S.W.R. Meters. Transistor Testers. Reg. P.S.U. Send S.a.e.. Stating re-

quirements. to TELERADIO. 325 | quirements. to TELERADIO. 325 |
| :--- |
| Fore Street. London N9 0PE. |

ENCAPSULATING, COIIS, transformers, components. degassing, sillwax casting for brass. bronze, sil. ver, elc. Inpregrating colls, trans-
formers. cuinponenis.
Vacuum formers. cuinponenis. Vacuum equipment low cost. used and new. Also for CRT regunning met allising. Research \& Development.
Barratts. Mayo Road. Croydon. $\begin{array}{lrrr}\text { Barralts. Moyo Road. Croydon. } \\ \text { CRO } 2 Q P . & 01-\delta 84 & 9917 . & 19678\end{array}$

## ELECTRONIC TESTING \& FAULT DIAGNOSIS

by G. C. Loveday Price: $£ 5.50$ DIGITAL TECHNIQUES \& SYSTEMS by D. C. Green

Price: $£ 5.50$ ELECTRONICS FAULT DIAGNOSIS by I. R. Sinclair. Price: $£ 3.50$ ELECTRONIC DESIGNER'S H/B by K. Hemingway.

Price: $£ 13.50$
HANDBOOK OF ELECtronics calculations FOR ENGINEERS \& TECHNICIANS by M. Kautman

Price: $£ 14.70$ h/b of Microcircuit DESIGN \& APPLICATION by D. F. Stout. Price: $£ 19.20$ UNDERSTANDING MICROPROCESSORS by Texas Inst. Price: $£ 4.00$ INTRODUCTION TO MICROCOMPUTERPROGRAMMING by P. C. Sanderson. Price: $£ 4.50$ THE COMPLETE MICRO COMPUTER SYSTEMSH/B by E. L. Safford. Price: $£ 8.25$ TOWERS' INTERNATIO NAL TRANSISTOR SELEC TOR by T. D. Towers, 1980.

Price: $£ 10.50$
ALL PRICES INCLUDE POSTAGE*

## THE MODERN BOOK CO.

Specialist in Scientific \& Technical Books
19-21 PRAED STREET LONDON W2 1NP
phone 402.9176
Closed Sat. 1 p.m
(8974)

GWM RADIO LTD, 40/42 Portland Road, Worthing, Sussex Tel: 0903 443. Modet 7 MK II ${ }^{2} 32$ inclusive


 pneumatic masts by Scam Clark. etails. AVO movements. Ail types of radio telephones large or small quanilites bought and sold. many one off Items in stock. No lists, we | are worth a vist, wholesale and |
| :--- |
| $\begin{array}{l}\text { and } \\ \text { retail. }\end{array}$ |

TELEQUIPMENT O75 Scope $£ 450$. Keithley 168 DMM 690 . FRG7000


## BOOKS

FREE 1980 AMTRON CATALOGUE with new range of kits and equip. Ment cabinets. Send S.A.E. Amtron
 Hastings. Sussex
Mastings 436004.

TELETEXT, TV SPARES \& TEST EQUIPMENT. TELETEXT. Latest MK2 external unit kit incl. Mullard Decoder ${ }^{6101 \mathrm{VML}}$, and infra-red
remote control $£ 258, \mathrm{p} / \mathrm{p} £ 2.50$ (furremote control
ther details on request). Also MK1 external unit kit incl. Texas XM11 decoder, special offer price $\mathbf{1} 168$ $\mathrm{p} / \mathrm{p} \& 2.50$ Both kits incl. UHF modulator, and plug into TV set aerlal socket. SPECIAL OFFER
TEXAS XM11 Decoder, new and tested limited quantity at $\ddagger$ price, £65, p/p $£ 1.40$. Stab. power supply (5v) for Teletext decoders, ${ }^{\text {¢5.80, }}$ face unit, $£ 1.80$, p/p 80 p . NEW SAW FILTER IF AMP PLUS TUNER
(complete \& tested for sound \&
 BAR \& CROSS HATCH GENERATOR KIT (MK4) PAL, UHF aerial input type, 8 vertical colour bars,
R-Y, B-Y, grey scale, etc. P/B controls $£ 35$. Batt holders $£ 1.50$ or stab mains power supply kit $£ 4.80$, Deluxe case $£ 5.20$ or alum. case $£ 2.90$,
p/p 11.40 . Built $\&$ tested in De-Iuxe case (battery) \&58, p/p 11.50 put type also gives peak white \& put type also gives peak white \&
black levels, batt. op. $£ 11$, p/p 45 p. Add-on GREY SCALE KIT $£ 2.90$, p/p 35p. De-Juxe case 55.20 . UHF £17.50. Alum. case 11.80 . De-luxe case $5.20, \mathrm{p} / \mathrm{p}$ case 11.40 . CRT TEST \&
cat REACTIVATOR KIT for colour \& ${ }_{9000}$ Touch Tune Remote control receiver unit plus transmitter recender f16, p/p $\mathbf{\text { hand.40. Transmiter }}$ 9000 Fascla incl. channel select. ${ }_{\$ 5.80}$ indicator, set controls, speaker, TRANSTD. Tested, 86.80 , p/p 85p BUSH SURPLUS IF PANELS. A816 £1.80, TV312 (single I.C.) 15, Z718/ ${ }_{8 C 6100}$ \&5. A823 (Exp) $£ 2.80$, P/p 85p. BUSH Z718/BC6100 Line Time Base Panel 2904, incl. LOPT, EHT stick. Focus, etc. 18 in or 22 in, $£ 15$.
 panel A634 $53.80 \mathrm{p} / \mathrm{p}$ £1.20. DECCA colour TV Thyrlstor Power supply s3.80, p/p 11.40 . GEC 2010 series TB anel $11, \mathrm{p} / \mathrm{p} 90 \mathrm{p}$. GEC 2040 CDA panel $£ 4.50$, p/p $£ 1.20$. PHILIPS
 p/p 81.20 . G9 Signal panels for
 THORN 3500 Line TB' panel 55 , p/p THORN 3500 Line TB panel 5 , p/p
£1. 3000 ex-rental panels IF, VIDEO DECODER. 55 , $p / \mathrm{p}$ \&1.20 8000/8500 TB salv/spares $£ 4.80$, $p / \mathrm{p}$ £1. 9000 $\mathrm{Line}^{27.50, \mathrm{~TB} / \mathrm{p} \text { f1.60. COLOUR SCAN }}$ Colls (Mullard or Plessey) f6, p/p £1.80. Yoke $£ 2.50, \mathrm{p} / \mathrm{p}$ £1. Blue Lat 75p, p/p 355 . Mono scan Coils VARICAP UHF TUNERS. Mullard U321 £7.80. ELC1043/05 55.50 . G.I. £3.50. Salv. (asstd) $11.50 \mathrm{p} / \mathrm{p}$. 45 p .
Varicap UHF/VHF ELC2000S $£ 8.50$, Bush dual) $£ 7.50$. p/p 70p. TOUCH TUNE CONTROL units. Bush 16 posi $£ 4.50$. p/p 80 p . VARICAP CONTROL UNITS 3 pos. $61.20, ~$
$£ 1.50$. 5 pos.
$51.80,6$ pos. $£ 1.80,6$ pos. special offer $£ 1, p / p 45 p$. UHF ranstd. Tuners (rotary) incl. $\mathrm{s} / \mathrm{m}$ $\mathrm{P} / \mathrm{B} £ 4.20$, $\mathrm{p} / \mathrm{p}$ £1.20. I Special types avallable. details on request) DL50 Delay Line $£ 2.50$, p/p 50 p Large selection of LOPTS, Triplers Mains Droppers, and other spare for popular makes of colour \& mono receivers. PLEASE ADD $15 \%$ VAT TO ALL PRICES - MANOR SUPPLIES, 172 WEST END LANE. WEST HAMPSTEAD, LONDON N.W.6. SHOP PREMISES. Tel. 01 794 8751. Easily accessible W Hampstead Jubliee Tube \& Brit Rail N. London : Richmond-Broad St. I and St. Pancras-Bediord. Buses 28. 159. 2. 13. Callers welcome. Thousands of additional items not normally advertised available at shop premises. Open daily all week nel. Saturday iThursday half day) MAIL ORDER: 64 GOLDERS MANOR DRIVE, LONDON NW11 9HT PLEASE ADD $15 \%$ VAT to all

FOR SALE: Various radio and tele printer equipment at Reading and tarious teleprinter equipment Crewe. Offers invited. Tenders ob Lainable from British Rail, Director of Supply, Railway Technical $\begin{array}{ccc}\text { Centre. London Road. } & \text { Derby. } \\ \text { Reference } & 53 / 230 / 232 \mathrm{~T} / 207 & 1553\end{array}$

EXCLUSIVE OFFER

| rack mounting cabinets HIGHEST QUALITY 19 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Ref}_{\substack{\text { Ret } \\ \text { pe }}}$ | $\mathrm{Hr}_{10}$ | width" | Depth" | co |
|  | 54 |  |  | ¢10.00 |
| ${ }_{\pi}$ | 64 <br> 64 | 25 | ${ }_{26}$ | ${ }_{\text {E45 }}^{42000}$ |
| SL | 11 | 25 | 26 | 650.00 |
| ST | 85 | 22 | 24 | ¢70.00 |
| Racal cabinets lor RA. 17/119 |  |  |  | ¢30.00 |
| Unitrame. single $\begin{array}{c}\text { c30.00 } \\ \text { U40.00 } \\ \text { Uniframe. double }\end{array}$ |  |  |  |  |
|  |  |  |  |  |
| Unitrame, double |  |  |  |  |
| Over 60 types available from $12^{\prime \prime}$ to $90^{\prime \prime}$ high Also twins. triples and consoles. Above are only a fow |  |  |  |  |
|  |  |  |  |  |


$\qquad$


- SCR-625 Mint Domestic Juke Box * Marconi TF/868 Universal Bridges - Hewlen Packard 400 H VI VM Meters
 - Lon Pump E.H.T. Power Supplies Euionent
* Haynes D.W. SOOW Cased Transtormers $240 / 115 \mathrm{~V}$ - Racal RA66 Panoramic Adaptors

 Tektronix 555 Scopen * Hell Ichriber AC-28
- Lenkurt Model 260 Data




## We have a quantity of Technical Manuals and 1940 to 1960 . British and American. No lists


P. HARRIS

## ORGANFORD, DORSET

 BH16 6BR(0202) 765051

## SERVICES

## CIRCOLEC

THE COMPLETE ELECTRONIC MANUFACTURING SERVICE
Let us realise all or any part of your project from prototypes to production, from artwork design and component sourcing, through assembly and test to final quality assurance, packing and delivery. We also provide a test, repair and modification service to suit your individual requirement.
For competitive prices and fast turnaround contact:
CIRCOLEC, 1 Franciscan Road, Tooting, S.W. 17
Telephone: 01-767 1233

## MICROPROCESSORPROGRAMMING

English, French and Germanspeaking Swiss-team offers capacity for F8-programming [3870-3872-3874 and multichip version]. Charge sFr. $40-$ per instruction. Delivery time: for $2 K=16$ weeks after specs

Box No. WW5 52

PRINTED CIRCUIT MANUFACTURE. Very last, rellable service. Lowest prices. Prototypes welcome. Inhouse photography. Phone 06474-573 for instant quote or write to AKTrotonhampstead, Devon. ${ }^{(9857}$

REPETITION SHEET METALWORK on Wiedemann turret press. Long/ short runs. Highly competitive. Quick deliveries commission for
introductions. - EES Ltd., Clifford Rd., Monks Rd., Exeter. 36489. ( 8060

DESIGN SERVICE. Electronic De; sign Development and Production Service available in Digital and Analogue Instruments, RF Transmiltters and Receivers for control of any function at any range. Telemetery, Video Transmitters and Monitors, Motorised Pan and Tut Heads etc. Suppliers to the Industry Ior 18 years. Phone or Write Mr.
Falkner, R.C.S. Electronics, 6 Wolsey Road, Ashford, Middlesex. Phone Ashford 53681 . Midalesex.

SMALL BATCH PCB's produced from your artwork. Also DIALS PANELS, LABELS. Camera work - Detalls: Winston Promotions, 9 - Detalls: Winston Promotions, 9 Tel. 01-405 4127/0960. (9704

| SURO CIRCUITS |
| :---: |
| Printed Circuit Boards - Master layouts - Photography - Legend printing - Roller tinning - Gold plating - Flexible films - Conventional fibre glass - No order too large or too small - Fast turnround on prototypes. All or part service available NOW! (9630 |
| EURD CIRCUITS TD. Hightield House West Kingsdown |

ELECTRONIC DESIGN SERVICES. MICROPROCESSOR HARDWARE and SOFTWARE design facilties have now been added to our established expertise and comprehensive test facilities previously available to you for ANALOGUE and COMMUNICATIONS designs. - For fastest results please phone Mr. Anderson, Andertronics Litd, Ridgeway, Hog's Back, Seale (nr, Farnham), Surrey. 02518-2639.
P.C.B. PROTOTYPE and small batch production. Design tayout, assem. bly and testing. Fast, relible service. Wye Valley Electronics, 15 ${ }_{(0594)} 41267$. (0594) 41267.
(365)

SMALL BATCH FLOW SOLDERING. Up to 500 per week. PC boards flow soldered and inspected. Maximum size 8 in X 121 n . Send sample PCBS for quotation or phone Musicaid, 176 Tel: St Albans (0727) 34321/33868.

PRINTED CIRCUIT BOARDS. Single/ double sided from circuit diagrams to assembled and tested boards. Any intermediate stages at manufacture undertaken. Quick turn. round on prototypes. Phone Maldon Electronics, 4 The Drive, MaylandElectronics, 4 The Drive, Maylandsea, Chelmsford, Essex CM3 (445

ANALOGUE CIRCUITRY visiting hour. London area. Error take-off - 586-3406. 1550

## ARTICLES WANTED

## WANTED

Test equipment, receivers, valves, transmit ters, componenjs, cable and electronic scrap, any quantity. Prompt service and
cash. Member of A.R.R.A.

M\&BRADIO
86 Bishops gate Street Loeds LSI 4B8

STORAGE SPACE is expensive, why store redundant and obsolete equipment? For fast and efficlen clearance of all test gear, power supplies, PC boards, components, quantities. Call 01-771 8413. ( 8209

## SPOT CASH

paid for all forms of electronics equip ment and components.
F.R.G. General Supplies 550 Kingston Road London SW20 8DR
Tel: 01-404 5011
Telex: 24224. Quote Ref. 3165 (8742)

WANTED, SEMICONDUCTORS and clean new surplus components Hewitts, 52 Barkby Road, Syston,

## I.H.S. STSTEMS

Due to expansion of our manufac turing facilities we are able to under-r take assembly and testing of circuit' boards or complete units in addition to contract development.
(We can produce, test and calibrate to a high standard digital analogue and RF equipment in batches of tens to thousands.
Telephone 10 arrange for one of engineers to call and discuss your requirements, or send full details for a prompt quotation.

## TEL. 01-253 4562

or reply to Box No. WW 823

SMALL BATCH productions wiring assembly to sample or drawings. Specialist in printed circuits as Specialist in printed circuits as hopsfield, Harlow, Essex 027933018.
(9094
BATCH PRODUCTION wiring and assembly to sample or drawings. McDeane Electricals 19b Station Parade, Ealing Common, London, W5. Tel. $01-9928976$.
(169
ELECTRONIC DESIGN SERVICE. Immedtate oapacity avallable for circutt design and development work, PC artwork, etc. Small batch and prototype production welcome. M E.P.D.S. Ltd., 93b King Street, MAIDSTONE, Kent. 0622-677916,

PCE ARTWORK DESIGN SERVICE with component notation masters and assembly drawings, PADS Electrical Ltd, $01-8506516,45$ Southwood Road; New Eltham $\underset{(7905}{\text { SE }}$ PRINTED CIRCUIT BOARDS. Quick deliveries, competitive prices. Quotation on request, raller tinning. drilling, etc. Speciality small batches. Larger quantities avail-
able. Boardraven Ltd, Lancaster able. Boardraven Lurnaby Industrial Estate, Bridlington, North Humberside, Y015 3QY. For the attention of Mr Harrison. Tel: (0262) 78788.
$\qquad$

## PCB ASSEMBLY

## CAPACITY AVAILABLE

Low or high volume, single or double sided, we specialise in flow line assembly.
Using the Zevatron flow soldering system and on line cutting, we are able to deliver high quality assemblies on time, and competitively priced.
Find out how we can help you with your production. Phone or write. We will be pleased to call on you and
discuss your requirements

## TW ELECTRONICS LTD.

120 NEWMARKET ROAD
BURY ST. EDMUNDS, SUFFOLK TEL: 02843931
Sub-contract assemblers and wirers to
the Electronics Industry
(9068)

## PC8s Production runs or prototypes

Assembly to sample or drawing's

* Design Service if required
* Quick response to demano
* Expert hand soldering
* Nothing too large or too small

Telephone or write:

## SEAHORSE ELECTRONICS LTD.

## Unit 2, Picown Ferm Roed

ernics Induetry Entato
Runcorth, Chenhire
Tel. Runcom (09285) 75950
COMPARE our charges, quaHty and turnround for printed board artworks, assembly, test and prototype manufacture. Please phone Sharon Halfhlde on Chelmsford 357935 or write to H.C.R. Artwork Designs, 1 Bankside, off New $\begin{array}{ll}\text { Designs, } \\ \text { Street, Chelmsford, Essex. } & \text { New } \\ \text { (557 }\end{array}$

## PROTOTYPE SERVICE capacity

 available to produce your prototypes or small batch quantities trom samples or drawings, also PCB artwork design and manufacture. - Lintek Electronics, 14 Adam Close, Coxheath, Kent. Tel. 0622679584.
## ARTICLES WANTED

## URGENTLY REQUIRED ALL TYPES OF ELECTRONIC EQUIPMENT

Components, Computers Peripherals, Printers Teletypes, Test Equipment. I.C.s, P.C.B.s, Valves, etc, etc etc.
Wherever your location, U.K or Overseas, for best offer and immediate cash settlement telephone London 01-689 7702 or 01-689 6800.

EQUIPMENT WANTED
TO ALL MANUFACTURERS AND WHOLESALERS IN THE ELECTBONIG fadIo and TY FIELD
BROADFIELDS \&
MAYCO DISPOSALS
will pay you top prices for any large stocks of surplus or redundant components which you may wish to clear. We will call anywhere the United Kingdom.

## WANTED

## ANGLIAN INDUSTRIAL

 AUCTIONSWe sell by auction, all radio and electronic components and equipment. Why not let us sell your surplus and end of production materials. All entries must be received at least 21 days prior to sale.

For entry forms or catalogue of next auction contact:

## B. BAMBER ELECTRONICS

5 STATION ROAD LITTLEPORT
CAMBS. CB6 10E
TEL: (0353) 860185
(263)

DEAD OR ALIVE
NORTH FINCHLEY, LONDON N 128 8JG Telephone Nos. 01 -445 0749/445 2713 Affer office hours 9587624

WANTED: Recording equipment of WANTED: Recording equipment of U.S.A.). Tel. (415) 232-7933. (9814


* Best Value for money.
* Used by professional engineers, D.I.Y.
enthusiasts, hobbyists, service engineers.
* World-wide proven reliability
* Low servicing costs.
* 20K/volt sensitivity and high accuracy. * Large mirror scale meter. * Fully protected against overload. * Large range of inexpensive accessories. * 12 month warranty, backed by a full after sales service at E.B. Sole U.K. Distributors Prices from $£ 15.60-\mathbf{£ 3 2 . 0 0 + V A T}$ Send for full colour leaflet and prices on whole range including accessories


## ELECTRONIC BROKERS LIMITED

49-53 Pancras Road, London NW1 2QB Tel: 01.837 7781. Telex: 298694.

## INDEX TO ADVERTISERS AUGUST

Appointments Vacant Advertisements appear on pages 121-135


[^11]Japan: Mr. Inatsuki, Trade Media - IBPA (Japan), B. 212 Azabu Heights, 1.5.10 Roppongi, Minato-ku, Tokyo 106 Telephone: (03) 5850581

United States of America: Ray Barnes. IPC Business Press, 205 East 42nd Street, New York. NY 10017 - Telephone: (212) 6895961 -Telex: 421710.

Mr Jack Farley Jnr.. The Farley Co.. Suite 1584, 35 East Wacker Drive, Chicago, Illinois 60601 - Telephone: (312) 63074.

Mr Victor A. Jauch. Elmatex International, P.O. Box 34607 LOS Angeles, Calif. 90034 . USA - Telephone (213) 821

Mr Jack Mentel, The Farley Co., Suite 650. Ranna Building. Cleveland, Ohio 4415 - Telephone: (216) 6211919 Mr Ray Rickles, Ray Rickles \& Co., P.O. Box 2028, Miami Beach, Florida 33140-Telephone: (305) 5327301 Mr Tim Parks. Ray Rickles \& Co. 3116 Maple Drive N.E., Atlanta, Georgia 30305. Telephone: (404) 2377432. Mike Loughlin, IPC Business Press, 15055 , Memorial Sie 119 Houston, Texas 77079 - Telephone ( 713 ) 7838673.

Canada: Mr Colin H. MacCulloch, International Advertising, Consultants Lid.. 915 Cartion Tower. 2 Cariton Sireet, Toronio - Telephone: (416) 3642269
'Also subscription agents.

## 

For beginners or professionals, the Maplin catalogue will help you find just about everything you need for your project.

Over 5,000 of the most useful components - from resistors to microprocessors - clearly described and illustrated.




Applications don't come much more critical than digital watch manufacture.
Here, discrete deposits of Multicore Oxide-Free Solder Cream are screened onto the PCB. A precision job, with no risk of operator error or fatigue. And, a convenient temporary adhesive for the positioning of components.


Solder-flow is accomplished by simply passing the units over a hot plate.
Fast. No oxide to contend with. No dirty residues
This manufacturer says Multicore Oxide-Free SolderCream has reduced reject rate substantially and offers superior soldering quality.

$$
\begin{aligned}
& \text { ordinarysolder creamscannotmatch this } \\
& \text { profitable performance.Heres why... }
\end{aligned}
$$

## .because ordinary solder creams or pastes contain rosin-

 based flux mixed with solder powder produced by atomisation. This means that every particle of the powder is covered with a layer of oxide-slowing down the soldering process, leaving a dirty flux residue and causing solder globules to stick to the flux and possibly fall loose into the equipment after shock or vibration. But, Multicore have developed a very special method of producing solder powders that are virtually oxide-free.These can be used in cream form - comprising an homogeneous stable mixture of pre-alloyed powder and flux, designed specifically for hybrid microcircuits, PCB's and critical component joints.
When heated, Multicore Oxide-Free Solder Creams melt and flow as quickly and cleanly as rosin-cored solder wire, leaving a pale clear flux residue without solder globules.
The in-built quality of Multicore Oxide-Free SolderCreams make them the ideal specification for almost any application calling for low cost yet high reliability.
They are available in a wide range of combinations of solder alloys, fluxes, particle sizes, flux contents and viscosities - often replacing solder preforms.
However, if you have an application that specifically requires preforms, remember that Multicore supply a wide variety of those as well.
Multicore Solders Ltd are Ministry of Defence Registered Contractors and on Qualified Products List QQ-S-571E of U.S. Defense Supply Agency for solder creams and preforms.

Compare these electron-microscope enlargements at $\times 240$ magnification:

'Ordinary' cream solder powder, revealing poor particle shape and dross.


Solder powder from Multicore Oxide-Free Solder Cream displays clean, uniform particles.


Maylands Avenue, Hemel Hempstead, Herts, HP2 7EP, Telephone:HemelHempstead 3636. Telex:82363.


[^0]:    Farnell International
    Farrell International Instruments Ltd., Sandbeck Way. Wetherby West Yorkshire LS22 4DH Tel 093763541 Telex 557294 Farist G

[^1]:    Prints are normally despatched within four working days of receipt of

[^2]:    *An internal register that can be connected to the address bus.

[^3]:    Comprehensive handbook supplied with all complete kitsI This fully describes construction and tells you how to set up your synthesizer with nothing more elaborate than a multi-meter and a pair of earst

[^5]:    Space donated by:

[^6]:    TESTERS, TEST TECHNICIANS, TEST ENGINEERS. EARN what you're really worth in London working for a World Leader in Radio of Telecommunications. Phone Len Porter on 01-874 7281, or write: REDIFON TELECOMMUNICATIONS | Ltd., Broomhill Road, Wandsworth, |
    | :--- |
    | London, SW18. |

[^7]:    ELECTRONICS TECHNICIAN Grade Chysiology. UCL, to work in the Phystology. WCL, to work in the include the design. construction and malntenance of a wide range of sophisticated equipment used in teaching and research laboratories. Candidates should hold HNC or equivalent and have a good know. ledge of electronics, Including digital circuitry. Experience in a University or similar institution would be an advantage. Salary in range $£ 5,664$ - $£ 6,612$ inclusive of London Weighting. Application form from Personnel Officer ITechnical Staff FF29), University College. London, Gower St , London WCIE 6BT

[^8]:    SMALL BATCH productions wiring assembly to sample ur drawings. specliellst in printed circuits as sembly. Ruck Electronics, 42 Bishopsfield. Harlous. Essex 0279 3301\%. (9094

[^9]:    IBM SELECTRIC 735 TYPEWRITER suitable for microprocessor 1/0 terminal, with manual and plug. £240 ono. - Tel. Painswick (0452) 813699.
    (353)

    FREQUENCY COUNTER $50 \mathrm{Mhz}, 6$ digits, start/start facility RCS Type 401 TM. Absolutely brand new, surplus to requirements, $£ 135$. - Tel. $01-898 \quad 0678$ after 7 p.m.

[^10]:    ACORN/6502 PROGRAMS: E1 for 20. SAE for details. J. Adamson, The Rectory, Reedham, NR13 3TZ, 520

[^11]:    ## OVERSEAS ADVERTISEMENT

    AGENTS:
    France a Balgium: Norbert Hellin, 50 Rue de Chemin Veat F-9100. Boulogne. Paris

    Hungary: Mrs Edit, Bajusz. Hungexpo Advertising Agency Budapest XIV, Varosligel
    Telephone: 225008 - Telex: Budapest $22-4525$
    INTFOIRE
    Italy: Sig C. Epis, Elas-Kompass. S.p.a. - Servizio Estero. Via Mantegna 6, 20154 Milan
    Mantegna 6,20154 Milan. $\mathbf{T e l e p h o n e : ~} 347051$ - Telexb; 37342 Kompass.

