
see stile CTuctor testing test fiximediate cont ion. division.

Froñt cover shows thyristor stack with heat sinks, made by Pinnacle Electronics Ltd. Photographer Paul Brierley.

IN OUR NEXT ISSUE
Pulse-induction metal detector incorporates method of eliminating magnetic viscosity offects
Electronic security lock uses m.n.o.s. non-volatile devices to give a four-digit combination which is invulnerable to power cuts

Acoustic measurement without the use of anochoic conditions is.described

Current issue price $\mathbf{5 0}$ p, back issue (if available) £1.00, at Retail and Trade Counter, Paris Garden, London SE1. Available on microfilm: please contact editor.
By post, current issue 79p. back issues (if available) $£ 1.00$, order and payments to Room CP34, Dorset House, London SE1 9LU.
Editorial \& Advertising offices: Dorset Mouse, Stamford Street, London SE1 9LU.
Telephones: Editorial 01-261 8620. Advertising 01-261 8339.

Telegrams/Telex: Wiworld Bisnespres 25137 BISPRS G. Cables Ethaworld, London SE 1
Subscription rates: 1 year $£ 9.00$ UK and $\$ 31$ outside UK.
Studemt rates: 1 year, £4.00 UK and $\$ 15.50$ outside UK.
Distribution: 40 Bowling Green Lane, London EC1R ONE. Telephone 01-837 3636
Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH 16 3DH Telephone 044459188 . Please notify a change of address.
USA mailing agents: Expediters of the Printed Word Ltd, 527 Madison. Avenue, Suite 1217. New York, NY 10022. 2nd-class postage paid at New York.
© IPC Business Press Lid, 1980 ISSN 00436062

wireless world

ELECTRONICS /TELEVISION / RADIO / AUDIO
FEBRUARY 1980 Vol 86 No 1530

33 Status symbols

34 Microwave intruder detector - 1
by K. Holford

39 Circuit analysis by small computer
by A. S. Beasley
41 Adaptable-anatomy a.t.e. 54 Literature received 81 Books received

42 World of amateur radio

43 More on the scientific computer - 2
by J. H. Adams

46 New frequency allocations

49 Multiphonic synthesizer organ
by J. H. Asbery

51 What's so natural about e?

by J. C. Finlay

55 Letters to the editor

Loop aerials Scientific computer
Perceiving direction in surround sound

58 News of the month

Twelve more London radio stations
Meteosat 1
Automatic car telephones

62 Circuit ideas
Radio control encoder Fuse tester
Reverberation amplifier

67 Adapter unit for spectrum analyser

by R. C. V. Macario

70 Novatexts: two-transistor astables

by P. Williams

72 Townsman aerial

by B. J. P. Howlett

77 Clock timer

by R. D. Clemow and T. C. Carden

82 Electronic focusing

by D. Di Mario

84 New products

THINKOFA SHAPE

Whatever it is, the
 r||r S' range of power amplifiers will handle it

 The 'S' range is designed to handle heavy industrial usage in the fields of vibrator driving, variable frequency power supplies and servo motor systems.S500D
Dual Channel
$19^{\prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high
500 w r.m.s. into 2.5 ohms per channel
900 w r.m.s. in bridge mode
DC-20 KHZ at full power
0.005% harmonic distortion (typical) at 300 w r.m.s. into 4 ohms at 1 KHZ 3KW dissipation from in-built force cooled dissipators

S 250D
Single Channel
$19^{\prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high
500 w r.m.s. into 2.5 ohms
Retro-convertible to dual channel
DC-20 KHZ at full power
Full short and open circuit protection
Drives totally reactive loads with no adverse effects

A complete range of matching transformers and peripheral equipment for closed loop, constant current and voltage use are available.
Alternative input and output termination to order. Rack case for bench use built to specifications. For complete data write or call.

Kirkham Electronics
MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL DIVISION OF K.R.S. LIMITED
TELEPHONE (037 976) 639/594

ELECTRONIC

120 BASIC RANGES

$A C V, 1 \& d B$
DC V, I \& NULL

RESISTANCE
LEAKAGE at $3 V$
VOLT DROP at 10 mA

RF VOLTS
HIGH VOLTS
HIGH CURRENT
TEMPERATURE
$50 \mu \mathrm{~V} / 500 \mathrm{~V}$ fsd, $50 \mathrm{pA} / 500 \mathrm{~mA}$ fsd, $-90 \mathrm{~dB} /+50 \mathrm{~dB}$ mid scale. Acc. $\pm 1.5 \%$ fsd above $500 \mu \mathrm{~V} \& 500 \mathrm{pA}$. Response $3 \mathrm{~Hz} / 200 \mathrm{kHz}$ above $500 \mu \mathrm{~V}$ and 500 nA . Input $\mathrm{R}=100 \mathrm{M} \Omega$ on volts.
$150 \mu \mathrm{~V} / 500 \mathrm{~V}$ fsd, $150 \mathrm{pA} / 500 \mathrm{~mA}$ fsd, polarity reversible. Acc. $+1.5 \%$ fsd above $500 \mu \mathrm{~V}$ \& 500 pA . Input $R=100 \mathrm{M} \Omega$ on volts. 5 Null ranges have centre zero $\operatorname{lin} / \log$ scale covering ± 4 decades. $0.2 \Omega / 10 \mathrm{G} \Omega$ in 7 ranges, polarity reversible. Low test voltage for solid state circuits.
Uses 3 V source with current ranges to test capacitors, diodes and resistance up to $100 \mathrm{G} \Omega$. Uses 10 mA source with voltage ranges to test diodes, LED's and resistance down to $10 \mathrm{~m} \Omega$.

30 OPTIONAL RANGES

$0.5 \mathrm{~V} / 500 \mathrm{~V}$ fsd, $10 \mathrm{kHz} / 1 \mathrm{GHz}$, using RF Probe. Price $£ 28+\mathrm{VAT}$.
$1.5 \mathrm{kV} / 50 \mathrm{kV}$ fsd, $A C / D C$, using HV Probe. Price $£ 21+V A T$.
$1.5 \mathrm{~A} / 50 \mathrm{~A}$ fsd $A C / D C$, using Current Shunt. Price £19+VAT.
$-150^{\circ} \mathrm{C} /+500^{\circ} \mathrm{C}$ fsd in 7 ranges using Temperature Probe. Price £ $46+$ VAT .

The instrument operates from a 9 volt battery, life 1000 hrs ., or, AC mains when optional Power Supply Unit is fitted.
Size is $240 \mathrm{~mm} \times 150 \mathrm{~mm} \times 80 \mathrm{~mm}$. Weight is 1.75 kg . Meter scale length is 140 mm . Leather case is available at £18+VAT

HM 307
Single Trace DC-10 MHz, $5 \mathrm{mV} / \mathrm{cm}$ Plus built in Component Tester
$£ 149$
HM 312 Dual Trace DC-20 MHz, $5 \mathrm{mV} / \mathrm{cm}$ Sweep Speeds $40 \mathrm{~ns}-0.2 \mathrm{~s} / \mathrm{cm} 8 \times 10 \mathrm{~cm}$ Display
$£ 250$
HM 412

HM 512 Dual Trace DC- $50 \mathrm{MHz}, 5 \mathrm{mV} / \mathrm{cm}$

HM 812
Dual Trace DC-20 MHz, $2 \mathrm{mV} / \mathrm{cm}$ Sweep Speeds $40 \mathrm{~ns}-2 \mathrm{~s} / \mathrm{cm}$ and Sweep Delay
£350 Sweep Speeds 20 ns -5 s/cm plus Sweep Delay
$£ 580$
Dual Trace DC - $50 \mathrm{MHz}, 5 \mathrm{mV} / \mathrm{cm}$

20 ns - $5 \mathrm{~s} / \mathrm{cm}$, Sweep Delay and Storage
$£ 1325$

We may be ar new name to you, but each instrument is backed by over 21 years experience in oscilloseopes.

Distributed by
Electronic Brokers
49/53 Pancras Road
London NW1 2QB
Tel. 01-837 7781

All prices UK list exc. VAT.

GIGROCHIPS AT MIGRO PRICES	INTERSIL CHIPS ARE DOWN		THE MOST VERSATILE LIQUID CRYSTAL DISPLAY $1.2425+100+$
Compare our prices before you buy elsewthere \qquad	Due to bulk purchase, we are able to offer unbeatable prices on INTERSIL chips.you save. ICL 7106 CPL ICL7106CPL ICL7107CPL iCLBO38CCPO	time interval and period to 10 seconds winh 0.1 microsecond res. units up to 10 winh 0.1 microsecond res. units up to 10 million and ratio. A breadboard provided for user to add his own input conditioning circuiry or prescalers and digititl outputs are available as multidigital out puts are avaliable as plexed as well as being displayed. Complete kit ONLY $\mathrm{E39.50}+\mathrm{VAT}$	$5^{\prime \prime}$ Field effect LCD display featuring $31 / 2$ digits, colon, plus / minus sign, 3 decimal points and
	LINEARICs	SE 01 Sound Effects Kit	"LO BAT" indicator. Ideal for DMMs, DPMs
IPRROMS 3.75 1772 A 2708 2716 Single 5 V supply 5.95 19.95		The SE-01 is a complete kit that contains al build a pro.	AM/FM radio readouts. Just look at the features.
NATM $A Y-5-1013 A$	POWER GONVERTER		Ultra low power consumption, high contrast
CHARACTER GENERATOR RO-3-2513 UC	Now you can operate $115 / 120$ VorrsAmarican eacuipment from 240 Volts. This convererer has outlets for American type 2 or 3 pin plugs. Rated 20 VA		ratio, wide viewing angle, rapid response,
FLOPPY OISK CONTA OLEE FD 1771 Single Density IBM Compatible			proven sealing techniques, superior MTBF,
	IC. Drives 10 LEDs with adjustable analog steps. Units are cascadable up to 10 (100 steoss). Orives LEOs directly. Great for	\qquad binations sif Oscillator	Over 300,000 already sold! Perfect interface for Intersil 710640 Pin DIL.
7 WATT AUDIO AWP KIT	$\begin{aligned} & \text { Simlar in eatures to } \\ & \text { and ciccuit noese. } \\ & \text { oN.ly NEW! } \end{aligned}$	One Shot and Envelope Controls. A Quad Op Amp IC is used to implement an Adjustable Pulse Generator, Level Comparator and	Ortering intormotion: For orders under E50 add $50 \mathrm{p} . \& \mathrm{P}$. Add 15% VAT io total All hems are subject to orior sale and theretore subbect to availability. Prices are
Small. Single hybrid IC and components fit on a $2^{\prime \prime} \times 3^{\prime \prime}$ board (included). Runs on 12 VDC . Great for any project that needs (@) 5 watts. Compatible with SE-01 sound kit. E4. 50 plus 50 p P\&P and VAT.	FAIRCHILD RED LED LAMPS ear Case REO EMITTING. These are not retested off spec. units as sold by some of our com petitors. These are factory prime, firs	prototype area to allow for user added Exploolon, Phener Guna, Stoam Troins, or almost an infinte number of othe	Quantity discounts are available for OEMs and dealers. Send SAE for details.
DISPLAY LEDS AT LOWKT PRIGES	\qquad	runs on a $9 V$ battery (not drive a small speaker direcily, or the unit can be con-	g Street Ir. Bideford
FNO 500 75p	-	COMPI (Speaker not included.) COMT ONLY £ 12.50 P\&P 50 - VAT	North Devon EX39 1 RY Telex 8953084

WW - 043 FOR FURTHER DETAILS

WHEN QUALITY COUNTS . . . Count on OPTOELECTRONICS USA for State-of-the-Art top quality Frequency Counters at Pace Setting prices.

MODEL 8010

(Complete with built-in Nicads)

- Range 10 Hz to 1 GHz
- 1 ppm TCXO
- 9 digits red LED 0.4
- Black Anodized Aluminium Case Providing RF Shielding
- Input Sensitivity Control
- 8 Gate times
- NBS traceable Calibration
- 10 MHz time base
- External time base input
- HiZ and 50 ohm inputs
- Full year guarantee
- AC/DC NiCad battery portable operation
- Compact size: $3^{\prime \prime} \mathrm{H} \times 7112^{\prime \prime} \mathrm{W} \times 612^{\prime \prime} \mathrm{D}$ weight approx. 2 lbs.

MODEL 7010
NEW
9 DIGITS 10 Hz to 600 MHz ONLY £99 + VAT
(Complete with built-in Nicads)

- Range 10 Hz to 600 MHz
- 9 red 0.4 LED digits
- NBS Calibration traceability
- Black Anodized Aluminium Case
- 3 Gate times - LED indicator
- 1 ppm TXCO
- 10 MHz time base
- Optional external clock input £15 + VAT
- 1 Megohm and 50 ohm inputs
- AC/DC or Nicad rechargeable battery operation
- Full year guarantee
- Comprehensive manual
- Miniature size - weight 1 lb .

MODEL TRMS 5000

NEW $41 / 2$ DIGIT TRUE RMS
 MULTIMETER/THERMOMETER ONLY £190 + VAT

 (Complete with built-in Nicads)

 (Complete with built-in Nicads)}

- Precision ocfof Thermometer
- 10 Amprange
- AC/DC or portable operation

Test leads and temp. probe included

- Anodized Aluminium Case $-31 /{ }^{\prime \prime} \mathrm{H} \times$
$71^{\prime \prime} W \times 6 \%{ }^{\prime \prime} \mathrm{D}-2 \mathrm{lbs}$
- High - Low ohm measurements
- Full year guarantee
- Input impedance 10 Megohm shunted by less than 80 pF ,

bRIEF SPECIFICATIONS

Sole Uk Distributors: Order yours from us
Maclin-Zand Electronics Ltd. 38 Mount Pleasant, London WC1X OAP. Tel: 01-837 1165/01-2787369 Telex:8953084 Maclin G
Also available from retail shops: Audio Electronics, 301 Edgware Road, London W.2. Tel: 01.724 3564
Z \& I Aero Services, 85 Tottenham Court Road, London W. 1. Tel: $01-5808403$
WW-044 FOR FURTHER DETAILS

HILOMAST LIMITED

THE STREET HEYBRIDGE - MALDON ESSEX CM9 7NB ENGLAND Tel. MALDON (0621) 56480 TELEX NO. 995855
 changing the chuck. This will save
considerably on the time factor where absolute accuracy is not highly essential. Employs the same motor and has the same characteristics as the P2 drill without removeable head, and fits the S2 Drill Stand. Send for details of this reliable and robust new drill and accessories now and save yourself those valuable moments. SAE please.

Sole UKDistributors

PRECISION PETITE LTD

119a HIGH STAEET TEDDINGTON MIDDLESEX TWII BHG TEL: $01-9770878$

WW - 008 FOR FURTHER DETAILS

Quantum Electronics

 NEW PRODUCTS - NEW PRODUCTS

 NEW PRODUCTS - NEW PRODUCTS}

Our product range for the 80 s is outlined below but it is impossible to cover everything in such a small space. For detailed information and a price list send a large S.A.E. or a dollar bill.

The pre-amp is now available in kit form in versions to suit any cartridge and consists of the module C 1 (below) and the hardware kit HK1. No soldering is involved and assembly takes about 20 mins. There are six power amp kits, four mono and two stereo, from 45 to 260 W to satisty virtually every requirement. They use ready-built and tested p.c. boards to achieve an ease of construction similar to module based kits at lower cost. There are also mains supply kits to enable independent use of the pre-amp, which is normally powered via our power amp. Similar equipment is also available ready-built from us or via our dealers.
$\mathrm{C} 1+\mathrm{HK} 1$
€68.70
P2 (stereo 45W per channel) kit
$\subset 87.28$
C1mc + HK1
$€ 70.95$
P4 (stereo 110W per channel) kit
£109.42

MOVING-COIL \& PRE-AMP MODULES

MC1

C1 (C1mc)

Previously restricted to trade and export, the C 1 pre-amp module is now available separately in 3 versions to match any cartridge. It has unbeatable specifications. caters for disc, auxiliary and 2 or 3 head tape machines and requires only a rough supply of ± 18 to 35 V d.c. The new moving coil pre-pre-amp achieves low thd, high overload, good r.f. rejection and good noise performance without resorting to the expensive multiple transistor design. Only tantalum capacitors and metal oxide resistors are used in the signal path and it can be powered either via the Cl or by a battery. Hardware kits are available to build both types and they are also available ready-built.

POWER AMP MODULES AND SUPPLIES

The power amp modules are now also available 10 retail customers in a variety of powers and formats up to $260 \mathrm{Wr.m.s}$. They use the sarne high performance circuitry as the kits above, giving t.h.d. below $.01 \%$ at 1 kHz , but are capable of sustained high level use with excellent reliability. There are power supplies for use with any one or two of these modules, all of which use toroidal transformers. also available separately. The module illustrated is a medium duty 150 W r.m.s. type, the M 1508 , which requires the MS3 supply.

Exports: We can deal efficiently with orders to any country. Please write with your specific requirements for a quote by return. All equipment can be wired for 110 V mains.

1A STAMFORD STREET, LEICESTER. Tel. 546198

OX DISCO, вох 123 CLAYMONT, DE 19703. U.S.A. Tel. 1-302-798-7932
MINIC TELEPRODUCTOR, Box 12035, s-750 12, UPPSALA 12, SWEDEN
L.A.B. (A.P.S.), vandounsten 4, dк 1467, copenhagen, denmark

LOWE ELECTRONICS LTD.

119 CAVENDISH ROAD, MATLOCK, DERBYSHIRE. 'TEL. 06292430 OR 2817. TELEX 377482 LOWLEC G.

CS1352 DUAL TRACE 15 MHz/2mV PORTABLE

CS1575 DUAL TRACE 4 FUNCTION

The CS1575 is a unique rool for the tacility of dual trace display with sensitivity to $1 \mathrm{mV} / \mathrm{cm}$ but not only can it display the input signals on two channels, it can simultaneously display the phase angle between them and measure the phase angle referenced to a zero phase calibration display. In addition to these unique features, you also have independent triggering from each hith widely dity ing trequeries. Absolutely indispensable to the professional audio engineer, the CS1575 action or send for complete details.

$£ 278+$ VAT

The Trio range of oscilloscopes offer top quality at moderate cost. The briet specifications show the pertormance features which have made these oscilloscopes firm favourites in all parts of the world, with bandwidihs 1030 MHz and sensitivities down to $1 \mathrm{mV} / \mathrm{cm}$ on 130 mm FOR FULL DETAILS ON THESE AND UTHER MODELS, CONTACT,THE SOLE AGENTS, LOWE ELECTRONICS

WW - 033 FOR FURTHER DETAILS

THE M-O VALVE CO. LTD.. HAMMERSMITH. LONDON. ENGLAND. W6 7PE. TELEPHONE 01-603 3431. TELEX 23435. GRAMS THERMIONIC LONDON. WW - 011 FOR FURTHER DETAILS

VERO SYSTEMS (ELECTRONIC) LTD
362 Spring Rd. Sourhampton Hants. SO9 5QJ Tel: (0703) 440611 Telex: 477164 WW - 024 FOR FURTHER DETAILS

the Euro-source you've been hoping for!

The alternative source that's near to hand...
KGM. A video production line with high volume capability, here in Europe. Ready to meet your orders for open frame monitor chassis that neatly replace those long-range imports you're using currently. Same mounting, same internationalstandard connections. But one big, competitive advantage ...
We're so much nearer, with the stocks, fast production
response, spares and service you could only expect from a home based source. KGM prices are highly competitive too, especially on big orders. We can prove that with a quote, but how about product performance?
The specifications you want... bright, clear CRT data display, with superior resolution.
The quality you get from years of video experience. Your popular screen sizes, in any phosphor colour. Latest miniaturised pcb construction of course, in an open chassis that allows screen tilt and mounting variations to fit your package.
So if you buy video display this way . . call KGM now. See how keen we are to win your next order.

[^0]
Hall Electric Limited International

Semiconductor Distributor

Electron House, Cray Avenue, Orpington, Kent BR5 30J Telephone: Orpington 27099. Telex: 896141 Cralec G

The 14D-15 is the very latest addition to the Scopex range of brilliantly engineered, easy to use oscilloscopes. Here's what it offers:-

- Large screen $10 \mathrm{~cm} \times 8 \mathrm{~cm}$
- Triggers on channels 1 and 2
- $2 \mathrm{mV}-10 \mathrm{~V} / \mathrm{DIV}$ sensitivity
- 3\% accurcicy - a Scopex speciality
- DC-15 MHz bandwidth over the entire screen
- Probe test output
- Wide time base range
- Switched mode power supply

Plus a host of well throught-out additional facilities.
free delivery in the UK mainland and a very good price of £280 plus VAT.

Trust Scopex to get it right.

Pixmore Avenue, Letchworth,
Herts. SG6 1 JJ.
Telephone: 0462672771.
ww-052 FOR FURTHER DETAILS

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK

We now offer the widest range of sound products -

STEREO
PRE-AMPLIFIER

CPR 1 - THE ADVANCEO PRE-AMPLIFIER. The best pre-amplifier in the U.K. The superiority of the CPR 1 is probably the disc stage. The overload margin is a superb 40 dB , this together with the high slewing rate ensures clean top, even with high output cartidges design. R.I.A.A. is accurate to 1 dB ; signal to noise ratio is 70 dB relative to 3.5 mV ; distortion $<.005 \%$ at 30 dB overload 20 kHz .
Following this stage is the flat gain / balance stage to bring sape, tuner. etc. up to power amp. signal levels. Signal to noise ratio 86 dB ; slew-rate $3 \mathrm{~V} / \mathrm{US}$: T.H.O. $20 \mathrm{~Hz}-2$) $\mathrm{mz}<00 \mathrm{H} \%$ at any level.
F.E.T. muting. No controls are fitted. There is no provision for tone controls. CPR 1 size is $138 \times 80 \times 20 \mathrm{~mm}$. Supply to be ± 15 volts.

MC 1 - PRE-PRE-AMPLIFIER. Suitable for nearly all moving-coil cartridges, Sensifivity $70 / 170 \mathrm{uV}$ switchable on the p.c.b. This module brings signals from the now popular low output moving-coil cartridges up to 3.5 mV ftypical signal required by most pre-amp disc inputs). Can be powered from a 9 V battery or from our REG 1 regulator board.

X02:XO3 - ACTIVE CROSSOVERS. XO2 - two way. XO3 - three way. Slope 24 dB /octave, Crossover points set to order within 10%.

REG 1 - POWER SUPPIY. The regulator module. REG 1 provides $15-0-15 \mathrm{v}$ to power the CPR I and MC 1. It can be used with any of our power amp supplies or our small transformer TR 6. The power amp kit will accommodate it

POWER AMPLIFIERS. It would be pointless to list in so small a space the number of recording studios, educational and government establishments. eic.. who have been using CRIMSON prices. The power amp is available in five types, they all have the sames specification. T.H.O typically $.01 \%$ any power 1 kHz B ohms. T.I. 0 . insignificant, slew fate lımit $25 \mathrm{~V} / \mathrm{uS}$; signal 10 noise ratio 110 dB ; trequency response $10 \mathrm{~Hz}-35 \mathrm{kHz},-3 \mathrm{~dB}$; stability unconditional, protection drives any load safely; sensitivity 775 mV (250 mV or 100 mV on request). size $120 \times 80-25 \mathrm{~mm}$. POWER SUPPLIES. We produce suitable power supplies which use our superb TOROIOAL transformers only 50 mm high with a 120.240 primary and single bolt tixing (includes capacitors/bridge rectifier).

POWER AMPLIFIER KIT. The kit includes all metaiwork, heatsinks and hardware to house any two of our power amp modules plus a power supply. It is contemporarily styled and its guality is consistent with mat of our orter producls. Conprensiv insilyctions and full

PRE-AMP KIT
This includes all metalwork, pots, knobs, etc., to make a complete pre-amp with the CPR 1 (S) module and the MC1 (S) module if required.

"The perfect definitive power amplifier should run absolutely stable and completely undistorted across a full frequency range up to the highest powerlevel with total dependability", we said. Our resolve was to make that ideal a reality.

Thus, our boffins at Cambridge donned their thinking caps and with typical panache sliced across convention with a radical new solution:MOS-FET technology.

And the result? No thermal runaway. No secondary breakdown. Simplercircuits. Fewercomponents. Therefore, greater reliability under tough conditions. Whateveryour application;variable frequency power supplies, servo motor

Graduate to the 80's. MOS-FET.

HH Electronic, Dept. A5, Viking Way, Bar Hill, Cambridge CB3 8EL. Telephone:Crafts Hill (0954) 81140.
Telex: 817515 HHElec G.

Revolutionary New Console

Finally! The best of both worids. A console so easy to use that it won't overwhelm the beginning group, yet with the advanced features and capabilities required by experienced professional performers - such as pre-fader monitor mixing, effects and/or built-in reverb, with their own tone controls, LED clipping indicators with attenuators on each input, and full patching facilities for every system component. Super power: twin 200-watt solid-state power amplifiers / Doubles as a stereo recording console for groups that want to "lay down a few tracks" without paying for studio time, or can be used as an ultra-sophisticated keyboard mixer with power. Unitized ARMO-DUR' structural foam combination case and chassis makes it more durable than steel. Ultra-light: only 47 pounds.

Sound System

> Advanced new variable dispersion high-frequency horn sysfem projects your sound - everywhere in the house, giving you a choice of 60° long-throw, or 120° wide-angle dispersion with the twist of a knob. Tailors the sound to the roomeven L-shaped rooms.

Revolutionary New Loudspeaker

Every extra ounce - every unnecessary cubic inch - has been computer designed OUT of the PRO MASTER loudspeaker. Modern materials and moulding techniques accommodate a high-performance 15 -inch woofer and a high-frequency horn and compression driver in a startlingly small, efficient enclosure. Less than 28 inches high, 23 inches wide, 16 inches deep. Weighs an easy-to-handle 58 pounds. Yet, the power handling capacity is a remarkable 150 watts, and the frequency response is 50 to 15 kHz .

Replaces All this Equipment... And Does More!

The impressive array at left includes a mixing console, two graphic equalizers, a pair of 200 -watt power amps, a monitor mixer and an octave analyzer. The PRO MASTER gives you all these capabilities - plus features that you can't find in any other console, at any price: Unique FEEDBACK FINDER" circuit, exclusive PATCH BLOCK "w patch panel, wide-range LED peak output and input clipping indicators. Plus pre-fader monitor send controls, LED power amp overload, temperature warning and shutdown indicators, 0 to 30 dB input attenuators, full stereo features, simultaneous effects and reverb on each channel. What's more, you have $\mathrm{Hi}-\mathrm{Z}$ and Lo-Z balanced transformer-coupled mic inputs on all six mic channels, (can handle 12 mics simultaneously). plus two additional auxiliary input channels for adding synthesizers, tape players, tuners, sub mixers or any other high level output components. And each Lo-Z input features built-in simplex powering for condenser microphones.

Revolutionary: LED Status Indicators

Alerts you to developing trouble before it gets serious! You have time to correct the problem before it interrupts the performance. Temperature warning LED warns you if ainplifier is overheating. Shutdown LED indicates power amplifier and speaker protection system activation. Only the power amplifiers are shut down until the internal cooling fan lowers the temperature.

LED peak indicators virtually make VU meters obsolete. They respond to short transients that wouldn't budge a needie, and cover 42 dB without range switching. PA overload LED slight at full power and also warn you of distortion-causing problems such as bad speaker cables or too many speakers.

Revolutionary: FEEDBACK FINDER / Equalizer

Controls feedback - the number one enemy of a successful performance. FEEDBACK FINDER visually indicates the troublesome frequencies for precise adjustment of the twin 10-band equalizers. Enables you to equalize for maximumg gain on the house and/or monitor system. Nothing else like it!

Revolutionary: PATCH BLOCK"' Patch Panel

The back panel is a unique combination block diagram and patch panel with 12 patching jacks located at appropriate points on the block diagram. For the beginner who is taking his act on the road for the first time, the PRO MASTER works "as is," with no special connections. But with the PATCH BLOCK, the professional can
create a wide variety of setups and add auxiliary equipment without makeshift connections. And you can change setups at a moment's notice without confusion. Simplicity and versatility, the PRO MASTER has them both!

Hear the Revolutionary New Sound!

Shure Electronics Limited, Eccleston Road, Maidstone ME15 6AU-Telephone: Maidstone (0622) 59881

Topvalue testequipment fromTANDY

LCD DIGITAL MULTIMETER.

Low-cost hand held digital multimeter with a full $31 / 2$ digit LCD display. 0.5% basic accuracy, auto polarity operation. 10 Mohm DC input impedance.
Reading to ± 1999. $\quad \begin{aligned} & \text { Scales: } \\ & \text { DC votis: }\end{aligned}$

AC/DC 8 MHz OSCILLOSCOPE
A new approved 8 MHz version of last Specifications: years' winner! The advance design features of this oscilloscope make it an absolute essential for industrial uses on production lines, in laboratories and schools. Ideal for radio and TV servicing, audio testing, etc.

Herizontal axis: Defiection sensisivily better than 250 mV Div. Vertical axis: Deflection sensitivity
better than 10 mV DIV (IDiv 6 mm) Bandwidin better than 10 mV DIV (IDIV
0.8 MHz . Input impedance: 1 MO Hm . Barallel capacitance 35 pF. Time base: Sweep range: capacitance 35 p . Time base: Sweep range
$10 \mathrm{~Hz} \quad 100 \mathrm{kHz}(4$ ranges) Syinhronzzation: Internal() Size: $200 \times 155 \times 300 \mathrm{~mm}$. Supply $220240 \cdot 50 H 2.22-9501$.

You save because we design, manufacture, sell and senvice. Tandy have over 7,000 stores and realerships worldwide. Over 2,500 products are made
specifically for or by Tandyat 16 factories around the world. The quality of our produc is has been achieved by over 60 years of continuous technological advancement.

LOW-COST LCD MULTIMETER COMPONENTS AND PARTS

CAT. No	description	PRICE
276-032	LED	4 for 69p
276-033	LED	2 for 48p
276-034	LED	2 for 59p
276-142	Infra-Red Emitter Detector Pair	$£ 1.37$
277-1003	12V DC Auformoive Digtal Clock Modtile	$£ 17.52$
276-9110	6 pil edge cominector for 2771003	40p
276-1373	Power Transistor Mounting Hardware	50p
276-1363	T0 220 Heat Sink	60p
276-1364	to 3 Heat Smk	81p

DEALER

Most items also available at Tandy Dealers. Look for this sign in your area.

The largest electronics retailer in the world.

Offers subject to avaılability. Instant credit available in most cases.
OVER 170 STORES AND DEALERSHIPS NATIONWIDE.

Aucess, Barrlaycardanis
Iriste.and wisterysp

Finally, you can have all the advantages of DM Ms and none of the disadvantages of analogues for about the same price.

Our new 169 is a tough, lightweight, battery-powered digital multimeter for use in the field or on the bench. It is a $3 \frac{1}{2}$-digit, full 5 -function DMM with respectable $.25 \%$ DC accuracy.

Its low-parts-count, high-efficiency design keeps power consumption to a minimum for longer component life and fewer failures. MTBF is $20,000 \mathrm{hrs}$. or about 10 years.

All 5 functions are fully protected -1400 V peak on DCV and ACV, 300 V on Ω,
 Is this the end for Analogue $2 \mathrm{~A}(250 \mathrm{~V})$ on DCA and ACA. The fuse is externally accessible for quick replacement. Extensive vibration stress-testing assures the 169 will stand up to all the mechanical shock and abuse normally associated with tough applications.
 Cost-conscious ease of maintenance is

 meters? only one calibration adjustment a year is required. That adds up to a cost-of-ownership no other competitive DMM can touch. For example, the 169 needs only one battery change per year at a cost of about $£ 1.50$.When you factor in features like function and range annunciation right on the display, auto-zero, auto polarity, 60% larger display than other DMMs and the easy-to-read, colour coded front panel, we think you'll get the point. No analogue meter or DMM can match the price/ performance of the new 169. It costs $£ 99$ (plus VAT)

For information on the 169 or any Keithley DMM call (0734) 861287
Telex: 847047

Ex stock

WW-062 FOR FURTHER DETAILS

KEITHLEY

Keithley instruments Lid. 1, Boulton Road
GB-Reading, Berkshire RG2 ONL
UNITED KINGDOM
(0734)861287 Telex: (851)847047

Keithley Instruments $\mathbf{G m b H}$ Heiglhofstrasse 5
D-8000 München 70
(089) 714-40-65

Telex: 5212160

Keithley Instruments SARL 44, Rue Anatole France F-91121 Palåiseau Cedex 01-014-22-06.
Telex: (842) 204188

Carston Electronics

 specialists in second user testand measuring instruments

Acoustic
BRUEL \& KJAER
2203 Precision sound level meter 1613 Ocrave filter set couples directly to 2203 \& 2204
112 LEO meter digital readour Amplifiers
MICRO MOVEMENTS
M1270 DC Amplifier 15 mV -150 V
2 and 10 channel rack systems
vailable
Attenuators
STC
746003 decade units. $0 \cdot 100 \mathrm{~dB}$ atten, in steps of $0.1 \mathrm{~dB} 75 \Omega$
Bridges
CINTEL
277 Measures iron core inductances
$0.01 \mathrm{H}-1000 \mathrm{H}$ (with a Q value no:
less than 21
DAWE
210B Decade Capacitance box
$0.1 \mu \mathrm{~F}-1 \mathrm{mF} 0.1 \mu \mathrm{f}$ step
MARCONI
TF1313 Measures C/L/R with an
FF1245 ' O ' meter Freq. range 1 kHz - 425
300 MHz using external osc. 350
WAYNE KERR
B221. Plus low impedance adaptor
0221. Measures L/C/R

B641. Measures L/C/R/G Accuracy
of01. Y parameter test set. Plus
0801. Y parameter test set. Plus

Cable Test Equipment
MARCONI
TF2333 Transmission Test set
HEWLETT PACKARD
3556A. For psophometric
3556 A. For psophometric
neasurements from $20 \mathrm{~Hz}-20 \mathrm{kHz}$
0.1 mV -30V input level

NEC
TTS-37B. Noise, level and V
measurement. Sensitivity ' 80 dBrm
up to +20 dBm
STC
74216A Noise Generator CCITT
74261A Psophometer CCITT
WANDEL u. GOLTERMANN
DLM-1. Send/receive system for
measuring phase jitter random noise
and frequency shift on data
ransmission lines
LOS.2. $200 \mathrm{~Hz} \cdot 600 \mathrm{kHz}$ sender for
measuring group delay and
attenuation variations
LOEF-2. Filters for DLM
Counter Timers
HEWLETT PACKARD
$5300 \mathrm{~A} / 5303 \mathrm{DC} \cdot 520 \mathrm{MHz} 6$ digits 2
MARCONI
TF2414A DC-40MHz 7 digits
RACAL
835. DC. $15 \mathrm{MHz}_{2} 6$ digits

Time interval/Period/Ratio
$02410 \mathrm{~Hz}-600 \mathrm{MHz}^{7} 7+1$ digit
8837 OC. 80 MHz 6 digits

Prices

PM5705. $0.1 \mathrm{~Hz}-10 \mathrm{MHz}$. Typical RT 6ns Output 1-15V
Records and Signal Conditioning Equipment BRUNO WOELKE
ME102B. Wow and flutter meter FERROGRAPH
RTS2. Recorder test set, Wow and flutter etc.
HEWLETT PACKARD
G80M. 5 inch. Stripchart Single Pen $5 \mathrm{mV}-120 \mathrm{~V} \mathrm{I} / \mathrm{P} 20 \mathrm{~cm} / \mathrm{min} 2.5 \mathrm{~cm} / \mathrm{Hr}$
Power Meters
MARCONI SAUNDERS $646010 \mathrm{MHz}-40 \mathrm{GHz}$ (Depending on Head)
$642010 \mathrm{MHz}-12.4 \mathrm{GHz} 10 \mathrm{mw}$ $642110 \mathrm{MHz}-12.4 \mathrm{GHz} 100 \mathrm{mw}$ 6422 26.5-40GHz 10 mw Power Supplies APT TCU250. 0-50V, 0-2A. Current limit KSM
MV601. 0-60V, 1A. Constant voltage or current ROBAND

50V. 1A. Variable SOLARTRON
As 751.50 V . IA. Variable
$117,20 \mathrm{~V} .0 .5 \mathrm{~A}$. Variable twin TRYGON
0-20V. 3A. Current limit
Pulse Generators DB ELECTRONICS 50. I.C. pulse generator EH RESEARCH
1200. $100 \mathrm{~Hz}-10 \mathrm{MHz} 20 \mathrm{~V} / 50 \Omega$ RT Ins
122. $1 \mathrm{KHz}-200 \mathrm{MHz} 5 \mathrm{~V} / 50 \Omega$ RT 12 ns
1391L). $10 \mathrm{~Hz}-50 \mathrm{MHz} 10 \mathrm{~V} / 50 \Omega$
RT 5 ns
1221. Timing Unit 6 Channel

G710. $5 \mathrm{~V} / 50830 \mathrm{~Hz}-50 \mathrm{MHz}$ RT $5 \mathrm{~ns} \quad 50$

Prices
.
300
75
75
75
50
50.
50

100
220
175

11 DC. 20 kHz .80 dB dynamic range Dispersion: 100 Hz .6 kHz $022 \mathrm{DC} \cdot 100 \mathrm{kHz}$. Dynamic range 60 dB fits into various 500 series CRD's
TEKTRONIX
25. Plug-in unit fits into various

5008 series CRO's. $50 \mathrm{~Hz}-1 \mathrm{MHz}$.
Greater than 60 dB dynamic range
1L20. Plug-in fits various 500 series
CRO's $10 \mathrm{MHz}-4.2 \mathrm{GHz}$. 40 dB
CRO's $10 \mathrm{MHz}-4.2 \mathrm{GHz}$. 40 d
dynamic rang
Vibration
30 DAWE
1461. CV(M) Portable Vibration 45 Analyser Kit

Voltmeters-Analogue
BRADLEY
malic. AC/OC/s/7current
HEWLETT PACKARD

LM 1420.28A. 2300 FSD AC
A200. 19999 FSD DC only
A203. 19999 FSD AC/DC/ Ω.
75 Sensitivity: $11 \mu \vee \mathrm{OC}, 10 \mu \vee \mathrm{AC}$.
A205.19999 FSD AC/DC/ Ω
A243. 119999 FSO AC/DCR
$10 \mathrm{~m} \Omega$ resistancel
7045. 19999 Auto AC/DC/ $/ \Omega$

250
295 Wave Analysersin
HEWLETT PACKARD
302A. $20 \mathrm{~Hz}-50 \mathrm{kHz} 75 \mathrm{~dB}$ range
WAYNE KERR
125
RACAL
Prices
tape. Will record 4 F . M channetic
Operates at 7 different speeds.
SOUTHERN INSTRUMENTS
10-100. 6 channel U.V. 5. 1000
$\mathrm{mm} / \mathrm{sec}$
M1330. 10 channel U. V 5.2500 250
$\mathrm{mm} / \mathrm{sec}$ Selection
Selection or Galvonomer
YOKOGAWA
3046. 10 inch Chart Single Pen. 0.5
$\mathrm{mV}-100 \mathrm{VI} / \mathrm{P} 2.60 \mathrm{~cm} / \mathrm{min}$ and $/ \mathrm{hr}$
3047. 2 Pen Version of 3046

Signal Sources and
Generators
ADVANCE
63B. FM/AM $5-200 \mathrm{MHz}$
HEWLETT PACKARD
$200 \mathrm{CD} .5 \mathrm{~Hz}-600 \mathrm{kHz}$ D/P 10 V RMS
weeper plug-in
$618 \mathrm{C} .3 .8-7.6 \mathrm{GHz}$ FM 410
1600

MARCONI
TF791. FM Deviation Meter
-1024 MHz
F801/D1. 10.470 MHz AM. FM.
TF995A/2. 1.5-220 MHz AM, FM
F2005A. 220 MHz A. FM.
PHILIPS
PM5326. $100 \mathrm{kHz}-125 \mathrm{MHz}$. Digital
display of frequency. AM. FM.
Sweep facility for I.F. measurements
M6456. FM Stereo generator.
aF output 100 MHz
525

SWDB 11.0.5.1200 MHz. 505 850
TEXSCAN
$9900.10-300 \mathrm{MHz}$. Sweep generator
with CRT display

427A. AC/DC/ת multimeter 2
$3406 \mathrm{~A} .10 \mathrm{kHz}-1.2 \mathrm{GHz}$
M2B. DC/AC $10 \mathrm{~Hz}-500 \mathrm{kHz}$
MARCONI
TF2603. AC voltmeter to $1.5 \mathrm{GHz} \quad 300$
Voltmeters-Digital
FARNELL
DM1318. 1999 FSD AC/DC/R
Current/Temperature
SOLARTRON
85
75

A321 $20 \mathrm{~Hz}-20 \mathrm{KHz}$ Sens 75 dB

Redundant

Test Equipment
Why not turn your under-utilized test equipment into cash? Ring us and we'll make you an offer

WW - 019 FOR FURTHER DETAIL̦S

NEW UNBEATABLE 1980 PRICES NOW! EXPLORER / 85 Professional Computer Kit FEATURES INTEL 8085 CPU WITH ON BOARD S-100 EXPANSION

FLEXIBILITY: Real flexibility at LAST. The EXPLORER / 85 features the Intel $8085 \mathrm{cpu} 100 \%$ compatible with all 8080A and 8085 software. Runs at 3 MHz . Mother Board (Level A) with 2. S-100 pads expandable to 6 (Level C).

MEMORY

2 K Monitor ROM
4K WORKSPACE / USER RAM
1 K Video RAM 8K Microsoft BASIC in ROM or Cassette

> NEW S100BD
> 16K Dynamic RAM Kits $£ 139+$ VAT
> Expandible to 64 K on one board
> Extra 16 K kits at $£ 88.95+$ VAT

£275 + VAT

Microsoft BASIC on Cassette

$16 K$	$£ 376+V A T$
$32 K$	$£ 459+V A T$
$48 K$	$£ 540+$ VAT
$64 K$	$£ 625+$ VAT

£295 + VAT

Microsoft BASIC in ROM

AVAILABLE NOW!

WE ARE KILLING INFLATION WITH

STOP reading about computers and get your "hands on" an ELF II and Tom Pitman's short course. ELF il domonstrates all the 91 commands which an RCA 1802 can oxecute, and the short course speedily instructs you how to use them.
ELFII's VIDEO OUTPUT makes it unique among computers selling at such a modest price. The expanded ELF II is perfect for engineers, business, industry, scientific and educational purposes.

ELF II EXPANSION K
- Power Supply 16.3 y AC] for ELF il - Giam Board Kit Sysiem/Monitor, Interisce to casselte. AS232. TTY. etc. - 4k Static Rall board kits \|requires expansion power supply! * Expansion power supply /required whan adding 44 RAMs) - ASC11 Kaytoard Kits 96 printable characters, elc. - ASC11 D/lux stoel cat p89 Blues - Kuge pretotype beard favild your own circuils) - 86 pin Gald plated cennactors, each * EvF Light pen writes/draws on TV scrsens - Video graphics board 32/64 characters by 16 lines on TV/monitar screans - ELF II Tiny basic on cassefte * ELF-Bug/monitar pawerful systems manitor/aditor - I. Pitmans short course in programming manual (nill VAT) - T. Pitman short course on tiny basic manual niil Vat) - RCA 1802 users manual [nil VAT] - On cassette Text Editor. Assombler. Disas sembler [pach\| Save 10% and buy all three tagather.

ELF II BOARD

SPECLICATION
EX VAT
$〔 5.00$
ع 19.75
19.75
£25.50
$£ 57.50$
usplay program on TY
E19.00 screen via the RF Modulator
E39.95 Single Board with
£12.75 Professional hex keyboard -
£11.00 lufly decoded to eliminate the
£3.75 waste of memory for keytoard decoding circuits keyooard decoding circ
$\begin{array}{cl}651.50 & \text { Load. run and memorn } \\ 69.75 & \text { protect swilches }\end{array}$
$\begin{array}{cl}69.75 & \text { protecl swilch } \\ & 9.75 \\ 16 \text { Registers }\end{array}$
$\begin{array}{ll}\mathbf{~} 9.75 & \text { I6 Hegisters } \\ \mathbf{5 3 . 0 0} & \text { Interrupt, OMA and ALU }\end{array}$
E3.00 Stabte crystal clock
£ $£ 2.00$ Buill in power regulator £12.75 5 stot plug in expansion bus [less connectors)

NEWTRONICS KEYBOARD TERMINAL AT £114.20 + VAT

The Newtronics Keyboard Terminal is a low cost stand alone Video Terminal that operates quietly and maintenance free. It will allow you to display on a monitor 16 lines of 64 characters or 16 lines of 32 characters on a modified TV (RF Modulator required). The characters can be any of the $96 \cdot$ ASC II alphanumerics and any of the 32 special characters, in addition to upper/lower case capability, it has scroll-up features and full X-Y cursor control. All that is required from your microcomputer is 300 baud RS232-C or 20 ma loop serial data plus a power source of $8 \vee D C$ and $6.3 v A C$. The steel cabinet is finished in 1BM Blue-Black. And if that is not enough the price is only $£ 114.20$ + VAT as a kit, or $£ 144.20$ + VAT assembled and tested. Plus £2 P\&P (Monitor not included.).

THE ATARI VIDEO COMPUTER SYSTEM $£ 138$ + VAT

Atari' Video Computer System now offer more than $\mathbf{1 3 0 0}$ different game variations and options in twenty great Game Program TM ceriridges!

Cartridges now available. All at $£ \$ 3.90$ each + VAT Basic Maths, Airsea Battle, Black Jack, Breakout. Surround, Spacewar, Video Olympics, Outlaw, Baske1 ball. Hunt \& Score ${ }^{*}$. Space War, Sky Diver, Alr Sea Battle Codebreaker", Miniature Golf

Extra Paddle Controllers $-\mathbf{£ 1 4 . 9 0}+$ VAT
Keyboard Controllers
Keyboard Controllers - $£ \mathbf{£ 1 6 . 9 0}+$ VAT
RACAL AP12, C12 TAPES: 10 for $£ 4.50$ + VAT
NOW AVAILABLE 8K FULL BASIC FOR ELF II
NEWSOFT GAMES FOR ELF II. 4 for $\mathrm{E} 5+$ VAT.

SEND SAE FOR COMPREHENSIVE BROCHURE

Please add VAT to all prices (except manuals). P\&P £2. Please make cheques and postal orders payable to NETRONICS or phone your order quoting BARCLAYCARD, ACCESS number.
We are now open for demonstrations and Sales, Monday-Saturday, 9.30 a.m.-6.30 p.m. Near Highgate Underground, on main A1 into London.

> MEW adoress: NEWTRONICS
> Bigger
> 255 ARCHWAY ROAD
> Premises

New Phone No. 01-348 3325

and here's just one reason why . . WE'VE LINKED OUR STEPPER MOTORS WITH I.C.'s - A GREAT SOLUTION TO YOUR VARIABLE SPEED DRIVE AND POSITIONING PROBLEMS.
It's ideas like this that make Impex leaders in small electric motors. In this case we've done away with costly and complicated electronic drive requirements and given you simplicity and efficiency at a price that makes sense. Why not find out more about the complete range of Impex motors. Contact us at the address below, or phone

VIDEO or AUDIO BULK ERASURE

 LR71
 LR70

MAX REEL SIZE $11 \frac{1^{\prime \prime}}{}$
VIDEO AND AUDIO

MAX REEL SIZE 8푼 AUDIO ONLY

LR70/71 bulk tape erasers are simple to operate and will erase cassettes, cartridges and reels of tape up to a maximum reel size of $11 \frac{1}{2}{ }^{\prime \prime}$ and tape width of $1^{\prime \prime}$, quickly and efficiently.
LR70/71 bulk erasers are currently used in Broadcast Companies, Recording Studios, Government Departments, Educational Establishments and the Computer Industry.

Quality equipment moderately priced

LEEVERS-RICH EQUIPMENT LIMITED
319 Trinity Road, Wandsworth
London SW1 81 YO
01 874-9054 Telex 923455
WW - 015 FOR FURTHER DETAILS

PowerFactor:itFigures!

NEW from Anders.
Power Factor Meters, giving clear, precise digital display in a panel mounting case.

Ask for further details on the new Contrology Range of

DIGITAL Wattmeters,
Voltmeters, Ammeters,
Frequency Meters, Power
Factor Meters and matching
DC panel meters. Standard versions ex-stock.

- Covers full P.F. range and indicates quadrant.
- Unique design-no separate transducer required.
- Rugged, reiliable and accurate.
- From 895 - discounts for quantity -competitive with analogue equivalents.

[^1]WW - 103 FOR FURTHER DETAILS

SIWTIV AHEAD -and staying there!
 0.E.M. PLATE POWER AMPLIFIEBS

MADE IN ENGLAND

I.L.P. offer for prompt delivery, a range of O.E.M. Plate Power Amplifiers in three useful output ratings. These units are typical of I.L.P. design and manufacture - encapsulated circuitry rugged construction, just five pin connections, trouble-free mounting, no output capacitor or KEENLY COMPETITIVE, QUALITY AND MANUFACTURE OF THE HIGHEST POSSIBLE STANDARDS. Modules can also be manufactured to customer's own design.

UNIT PRICE FOR	100 +	250 +	500 +	1000 +	2500 +	5000 +
HY 120P 60W rms 8Ω	$£ 10.30$	$£ 9.37$	$£ 8.51$	$£ 7.74$	$£ 7.04$	$£ 6.40$
HY 200P $120 W$ rms 8Ω	$£ 13.18$	$£ 11.98$	$£ 10.89$	$£ 9.90$	$£ 9.00$	$£ 8.18$
HY 400P $200 W$ 4 ms	$£ 19.26$	$£ 17.51$	$£ 15.92$	$£ 14.47$	$£ 13.16$	$£ 11.96$

0.1\% DISTORTION WIDE BANDWIDTH PROTECTED O/P TRANSISTORS FULL LOAD LINE PROTECTION NO EXTERNAL COMPONENTS ONLY FIVE PINS TO CONNECT

PORTIEIE PR:CSIO

A RANGE OF $31 / 2$ DIḠIT LCO MULTIMETERS OFFERING HIGH PRECISION AND EXTENDED BATTERY LIFE. ALI TYPES FEATURE FIVE FUNCTION OPERATION (AC AND DC VOLTS, AC AND DC CURRENT, RESISTANCE) WITH ABILITY TO CHECK DIODES. 0.5" LCD DISPI_AY WITH 'BATTERY LOW' WARNING. AUTO-POLARITY, AUTO-ZERO. FULL PROTECTION AGAINST TRANSIENTS AND OVERLOADS WITH ABILITY TO WITHSTAND MAINS ON ANY RANGE. RUGGED ABS CASES AND A COMPREHENSIVE 1 -YEAR WARRANTY

The LMM-200 is a compact handheld multimeter with 0.5% basic accuracy and 15 different ranges. It measures AC/DC voltage from 0.1 mV to $500 \mathrm{~V}, \mathrm{AC} / \mathrm{DC}$ current from $0.1 \mu \mathrm{~A}$ to 2 Amps and resistance from 0.1Ω to $2 \mathrm{M} \Omega .200$ hour battery life.

The LMM-2001 is an identical instrument but with a '0.1\% basic accuracy.

The LMM-100 is suitable for field or bench use. It has a basic accuracy of 0.1% and 25 different ranges. It measures $A C / D C$ voltage from 0.1 mV to $1 \mathrm{KV}, \mathrm{AC} / \mathrm{DC}$ current from $0.1 \mu \mathrm{~A}$ to 2 Amps and resistance from 0.1Ω to $20 \mathrm{M} \Omega$. Battery life is over 2,000 hours. It also features a unique 'digital hold' facility and adjustable carrying handle.

To: Lascar Electronics, Unit 1, Thomasin Road, Basildon, Essex.

Please send me Data \square
LMM-100 £82.17 \square LMM-200 £41.34 \square LMM-2001 £52.84 \square TEST LEADS £2.53 \square
Name
Address \qquad

WW-061 FOR FURTHER DETAILS

carbon film RESISTORS

PRICES REDUUCED. SEND FOR DETAILS NOW

z. 1

'AERO SERVICES LTD.

42-44A-46 Westbourne Grove London W2 5SF
Tel. 01-7275641 Telex 261306

WW - 032 FOR FURTHER DETAILS

 Jordan Mono crossover (pair) Kef T27
Kef 8110
Kef 8200
Kef B139
Kef DN13
Kef DN 22 (pair)
Lowther PM6 Lowther PM6
Lowther PM 7 Lowther PM 7
Peerless KO 10DT
£7.65
£12.75 £6.65 £13.25 £20.50 £25.00 \&12.65 natched £61.25 £7.65 £ 7.65 $£ 8.45$ ع 10.25 £8.45 £11.25 £12.25 £12.25 £22.25
£10.25
£35.75
£57.25
£43.25
£10.25
£19.50
£4.05
£9.45 £8.15 £8.45
£20.40
£9.15 $\Sigma 23.00$ 23.00 23.00
69.45 $£ 9.45$ $£ 12.00$ £13.25 $£ 27.00$
$\mathbf{5} 5.40$
$\$ 8.65$
88.65
$£ 40.85$ 51.85
55100 E51.00 88.45 10.50 £10.50 £12.25 T.B.A. T.B.A. T.B.A. T.B.A. £8.95 88.95
$£ 9.45$ f11.25 $£ 11.25$
$£ 25.30$ £ 11.75 E11.75 ¢ 17.60 88.40

$$
8.95
$$ 8.95 Seas H107

Shackman Electrostatic, c/w polar
network and crossover (pair) $\quad £ 130$
 Tannoy DC296 $10 \mathrm{in} \quad £ 107.35$ The firm for $\mathrm{Hi}-\mathrm{Fi}$ 5 Swan Street, Wilmslow, Cheshire.

PA GROUP \& DISCO UNITS

Baker Group 35
Baker Group 50/12 £23.45
e35.15
Celestion Powercell $12 / 150 £ 56: 50$ Celestion Powercell 15/250 £69.25 Celestion G $12 / 50$ Twin cone £ 15.95 Celestion G $12 / 80$ Cambric
edge
Celestion $\mathbf{£ 2 0 . 2 5}$
Celestion G12 / 125 Cambric
edge
Celestion G 15/100 Cambric edge
Celestion.G15/100 Twin cone
Celestion G 18:/200
Celestion MH 1000
Celestion MH
Fane Pop 40
Fane Pop 50 H
Fane Pop 75
Fane Pop 65
Fane Pop 80
Fane Pop 100
Fane Guitar 80L
Fane Guitar 808
Fane Disco 80
Fane PA80
Fane Bass 85
Fane Crescendo $12 E$
Fane Crescendo 15E
Fane Crescendo 18 E
Fane J44
Fane J104
Fane J73
Fane HPX1/HPX/2
Fane HPX3A
Fane HPX3A
Fane HPX38
Gone HPX38
Goodmans 8PA
Goodmans 12P
Goodmans 12 P
Goodmans 12 PD
Goodmans 12 PD
Goodmans 12 PG
Goodmans 18P
Goodmans Hifax 50HX
Motorola Piezo horn $31 / 2 \mathrm{in}$
Motorola Piezo horn 2 inx 6 in
Richard Allan HD8T
Richard Allan HD $10 T$
Richard HD12T
Richard Allan HD 15
Richard Allan Atlas 15 in
Richard Allan Allas 18 in
£32.25
$£ 32.25$
$〔 53.25$
$\mathbf{6} 15.95$
€15.95
£12.50
$£ 13.80$
$£ 19.70$
E 21.25
£25.50
£41.80
£26.10
£27.15
₹27.15
$£ 27.15$
$£ 26.10$
$£ 34.00$
$\mathbf{5} 57.50$
£ 74.50
$£ 94.75$
$\begin{array}{r}86.90 \\ \hline\end{array}$
£13.75
$£ 9.75$
$£ 3.45$
$£$
$£ 3.45$
$\mathbf{~} 5.60$

$\mathbf{8} .60$ $\mathbf{~} 4.55$

$\$ 4.55$
65.05
$\$ 5.05$
$£ 21.00$
821.00
$£ 23.95$
$£ 23.95$
$£ 23.65$
$£ 48.45$
E21.85
$£ 8.50$
$£ 12.25$
617.00
$£ 17.00$
$£ 18.50$
$£ 18.50$
$£ 24.45$
$£ 24.45$
£43.40 $£ 85.15$
$£ 110.75$

KITS FOR MAGAZINE DESIGNS etc. KITS FOR MAGAZINE DESIGNS Kits include drive units, crossovers, Kits include drive units, crossovers,
BAF/long fibre wool. etc, for a pair of BAF/long fibre wool. etc, for a pair of
speakers.
Carriage $£ 3.75$

Practical Mi-Fi and Audio PRO9-T (Rogers) Felt panels for PRO9-TL
£6.72 plus $£ 1.60$ carriage £138 Hi-Fi Answers Monitor (Rogers) £146 Hi Fi News State of the Art (Atkinson)
Hi Fi News Miniline (Atkinson) $\mathbf{E 4 8}$
(carriage $\mathbf{£ 2 . 6 6}$
Hi Fi for Pleasure Compact Monito
(Colloms)
(carriage £5.25)
Popular Hi-Fi Mini Monitor (Colloms)
Popular Hi Fi Round Sound
(Stephens) including complete
cabinet kit
UJordan
£93
Practical Hi-Fi \& Audio BSC3 (Ro.66)
Pras
Practical Mi-Fi \& Audio Monitor (Giles)
Practical Hi-Fi \& Audio Triangle
(Giles) £99
Practical Hi-Fi \& Audio Mini Triangle
(Giles) £108
Wireless World Transmission Line (Bailey) KEF £122
Wireless World Transmission Line (Bailey) RADFORD £184
Hi-Fi News Tabor (Jones) with J 4 bass
units £60
Hi-Fi News Tabor (Jones) with H4 bass units $£ 66$

Smart badges free with all above kits (to give that professional touch to your DIY speakers!). Send $50 p$ for up to 6 reprints/construction details of above designs

CARRIAGE \& INSURANCE	
Tweeters \& Crossovers 50p each	
Speakers $4^{\prime \prime}-61 /{ }^{\prime \prime}{ }^{\prime \prime}$	80p each
Speakers 10' $0^{\prime \prime} 12^{\prime \prime}$	£1.00 each
Speakers 12'", $13^{\prime \prime} \times 8$	
$14^{\prime \prime} \times 9^{\prime \prime}$	¢1.75 each
Speakers 15"'	£2.75 each
Speakers 18'	£4.00 each
Speaker kits $£ 1.75$ eac	
	£3.00 pair
Mag. design kits	£3.75 pair

PRICES CORRECT AT 18.6.79
ALL PRICES INCLUDE VAT @ 15\%

Send 30p stamp for free 38 page catalogue 'Choosing a Speaker'

Telephone Speakers, Mail Order and Export
0625529599
Hi-Fi: (Swift of Wilmslow) 0625526213.
Lightning service on telephoned credit card orders! $-$

SPEAKER KITS

PRICES PER PAIRCARRIAGE $£ 2.66$

Dalesford System

Dalesford System 2 Dalesford System 3 Dalesford System Dalesford System 5 Dalesford System 6 Eagle SK210 Eagle SK210 Eagle SK215
Eagle SK320 Eagle SK320
Eagle SK325 Eagle SK 325
Eagle SK 335

Eagle SK335

Goodmans DIN 20
offer)
$£ 27.60$
LS3/5A equivalent kit
Lowther PM6 kit
Lowther PM6 Mk 1 kit Lowther PM 7 kit Peerless 1070 Peerless 1070
Peerless 1120 Peerless 1120
Peerless 2050 Peerless 2050
Peerless 2060
Peerless 2060 Radford Monitor 180 ki Radford Studio 270 kit
Radford Studio 360 kit
Ram Kit 50 (makes RAM 100)
$£ 71.50$
Richard Allan Tango Twin kit $£ 49.00$
Richard Allan Maramba kit $£ 69.00$ Richard Allan Charisma kit $£ 101.20$ $\begin{array}{ll}\text { Richard Super Triple kit } & £ 81.70\end{array}$ $\begin{array}{ll}\text { Richard Super Triple kit } & £ 81.70 \\ \text { Richard Allan RA8 kit } & £ 52.65\end{array}$ Richard Allan RA82 kit $\quad \mathbf{~ 8 3 . 3 0}$ Richard Allan RA82L kit £89.90
Seas 223
Seas 253
Seas 403
Seas 603
$\varepsilon 40.85$
$£ 76.60$
eas 60322.60
Whartedale Denton XP2 kit $£ 31.45$ Wharfedale Shelton XP2 kit $£ 40.40$ Wharfedale Glendale XP2 kit $£ 69.00$

Everything in stock for the speaker constructor!
BAF, Long Fibre Wool, Foam Crossovers, Felt Panels, Com ponents, etc.
Large selection of grille fabrics (Send 18 p in stamps for grille fabric samples).

Swan Works, Bank Square, Wilmslow, Cheshire.

NEW FROM BARMECO

Introducing a new 3 -element H.F. Tribanda with proven performance and reliability

THE WORLD RANGER TRIBANDER

Designed, engineered and manufactured in the U.K. Use of high quality materials ensures high electrical stability under all weather conditions with exceptional mechanical rigidity and strength. All traps are high grade P.T.F.E. formers with insulated windings.

SPECIFICATION:

Frequency
Impedance
R.F. Power (max.)

VSWR (at resonance)
Forward gain
Front-to-back ratio
Mast diameter Wind survival Turning radius Longest element Boom length
Net weight

10, 15 \& 20 metres
52 ohms
1 kW (AM)
2 kW (PEP)
Less than 2.0:1
Up 108.0 dB
25 dB
31.75 mm to 41.30 mm

80 mph
$14^{\prime} 10^{\prime \prime}$
$26^{\prime} 0^{\prime \prime}$
$12^{\prime} 0^{\prime \prime}$
21 lbs.

Price: $£ 145.00$ complete with Balun, plus carriage @ £3.50. High quality 50 ohm coaxial cable available @ 50 p per metre. Balun available separately@ $£ 12.50$ each. All items subject to current VAT

COMING SOON: A range of HF Monobanders and a 2 metre base station vertical

Orders to:
BARNET METAL \& CAR CO. LTD.
Tewin Road, Welwyn Garden City, Herts.
Telephone: Welwyn Garden 24327. Telex: 28125. Cable: BARMECO

WW - 006 FOR FURTHER DETAILS

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATÜRE
A Thermometer designed to operate, as an Electronic Test Meter. Will measure temperature of Air. Metals, Liquids, Machinery, etc., etc. Just plua-in the Prine. and read the temperature on the large open sc̄ale méter. Supplied with carrying case, probe and internal $11 / 2$ volt standard size battery.
"Model "Mini- $\mathbf{z}^{\prime \prime}$ " measures from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Price $£ 30.00^{-}$ - Model "Mini-Z $2^{\prime \prime}$ " measures from $-5^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Price £30.00
 (VAT I5\% EXTRA)
Write for further details to
HARRIS ELECTRONICS (LONDON)
138 GRAY'Ş INN ROAD, LONDON: WC1X 8AX
(Phone 01-837 7937)

TMEC 19 Rose Lane, Biggleswade, Beds.

Mew Orat mo corrapandence onty:

GASED INVERTERS

Assembled in attractive instrument cases with carrying handles.
Squarewave output or filtered DC input: $12 v$ or 24 v types. Frequency: $50 \mathrm{~Hz} \pm 5 \%$. AC output $240 v$ or $110 v$ types off load. Panel voltage meter indicator. Reverse polarity, protection. DC and AC circuitry fused. Mains output via 13 A type slot. 2 year guarantee

SD $/ 1-8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 150$ watts SD $/ 2-8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 200$ watts SD / $3-10^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 300$ watts SD / 4-10" $\times 6^{\prime \prime} \times 6^{\prime \prime} 400$ watts SD/5-10" $\times 8^{\prime \prime} \times 6^{\prime \prime} 500$ watts SD $/ 6-10^{\prime \prime} \times 8^{\prime \prime} \times 6^{\prime \prime} 600$ watts SD / $7-12^{\prime \prime} \times 8^{\prime \prime} \times 6^{\prime \prime} 800$ watts SD / 8-12" $\times 8^{\prime \prime} \times 6^{\prime \prime} 1000$ watts
$£ 42.00$
$£ 54.00$
$\varepsilon 67.00$
$£ 78.00$
£100.00 £115.00 £135.00 £160.00

Filtered output 18% extra

SINEWAVE INVERTERS

A new range of units designed to power equipment requiring a smooth waveform
Assembled in tough instrument cases with carrying handles
DC input: 12 v or 24 v types ($\pm 2 \mathrm{v}$).
AC output: 240 v or 110 v types on load
Frequency $50 \mathrm{~Hz} \pm 3 \%$ typical
Panel meter indicates voltage output.
Reverse polarity input protection
Separate driver oscillator circuit
Fully fused DC and AC circuits
2 year guarantee.
DD/1-100 watts $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime}$ DD / 2-150 watts $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime}$ DD / 3-200 watts $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime}$ DD / 4-300 watts $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime}$ DD/5-400 watts $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime}$
£100.00 £140.00 §180.00 £250.00 £300.00

SPECIAL CONVERTERS

In response to customers' requests we have included this range.
All units are assembled in tough ABS cases approx $4^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}$
TT/1-12v DC in/24v DC 40 w out $£ 19.00$ TT/2-12v DC in/48v DC 40 w out $\mathbf{\varepsilon 1 9 . 0 0}$ TT/3-24v DC in/48v DC 40 w out TT/4-24vDC in/12vDC 40w out TT/5-6v DC in / 12 v DC 20 w out E19.00 £19.00 £17.00

Terms of Business:

Carriage U.K. inclusive in prices. Overseas charged at cost F.O.B. Cheque, P.O., cash with orders. Official orders welcome but priority given to cash customers. Cased, etc, sizes subject to alteration. Delivery: some goods ex-stock, others up to 28 days average. Quantity discounts with pleasure.

INVERTERS ARE OUR BUSINESS

DC TO DC CONVERTERS

Simple but effective low cost range of converters.

Assembled on small aluminium sheets with no frilly extras.

Combined driver / output transformer.

Input protected to act as free floating to any polarity, output via Ply leads

S/1-4v DC in /9v 500 ma S/2-4v DC in/12v 500 ma S/3-4vDC in/15v 500 ma S/4-4v DC in / 18 v 500 ma S/5-4v DC in / $24 v 500 \mathrm{ma}$ S/6-6v DC in/9v 500 ma S/7-6v DC in/12v 500 ma S/8-6v DC in/18v 500 ma S/9-6v DC in $/ 24 v 500 \mathrm{ma}$ S/10-6v DC in / 30v 500 ma $\mathrm{S} / 11-6 \mathrm{v}$ DC in / 40v 500 ma S/12-6v DC in / 50 v 300 ma S/13-9v DC in/12v 500 ma S/14-9v DC in/18v 500 ma S/15-9vDC in/24v 500 ma S/16-9v DC in / 30v 500 ma $\mathrm{S} / 17-9 \mathrm{vDC}$ in / 40 v 500 ma S/18-12vDC in / $24 v 500 \mathrm{ma}$ S/19-12vDC in/30v 500 ma S/20-12v DC in / 40v 500 ma S/21-12vDC in/50v 300.ma $\mathrm{S} / 22-12 \mathrm{vDC}$ in/50v 750 ma S/23-12v DC in/60v 300 ma S/24-12vDC in/60v 750 ma S/25-12vDC in/70v 300 ma S/26-12vDC in/70v 750 ma S/27-12v DC in /80v 300 ma $\mathrm{S} / 28-12 v \mathrm{DC}$ in/80v 750 ma S/29-12vDC in/90v 300 ma $\mathrm{S} / 30-12 v \mathrm{DC}$ in/100v 300 m
$£ 14.00$ $£ 14.00$ £14.00 £14.00 £14.00 £14.00 £14.00 £14.00 £14.00 £14.00 $£ 14.00$ $£ 14.00$ £14.00 £14.00 $£ 14.00$ $\varepsilon 14.00$ £14.00 $£ 14.00$ £14.00 $£ 14.00$ £14.00 $£ 16.00$ $£ 14.00$ £16.00 $\varepsilon 14.00$ £16.00 $£ 14.00$ $£ 16.00$ £14.00

AUTO/MAINS INVERTER UNITS

These units maintain a source of AC mains power throughout any interruptions in the domestic supply. Assembled in smart instrument cases the units incorporate a built-in inverter, battery charger and full automatic switching circuits. Mains input required $220 / 240 v$ AC. Mains output direct 220 / $240 v$ AC. Inverter output $220 / 240 v$ AC O / F. Frequency $50 \mathrm{~Hz} \pm 4 \%$. 2 year guaran tee.
Inverter smoothed square wave out. Panel voltage meter indicator. AC output via 13A type socket. DC \& AC circuits fused

AM $/ 1-10^{\prime \prime} \times 5^{\prime \prime} \times 4^{\prime \prime} .100$ watts $\quad £ 49.00$ AM $/ 2-10^{\prime \prime} \times 5^{\prime \prime} \times 4^{\prime \prime}, 150$ watts $\quad \mathbf{E 6 5 . 0 0}$ AM $/ 3-10^{\prime \prime} \times 5^{\prime \prime} \times 4^{\prime \prime \prime}, 200$ watts $£ 78.00$ AM/4-12" $\times 6^{\prime \prime} \times 5^{\prime \prime}, 300$ watts $£ 100.00$ AM/5-12 ${ }^{\prime \prime} \times 6^{\prime \prime} \times 5^{\prime \prime}, 400$ watts $£ 115.00$ AM $/ 6-12^{\prime \prime} \times 6^{\prime \prime} \times 5^{\prime \prime}, 500$ watts $£ 130.00$ AM/7-12 ${ }^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime \prime}, 600$ watts $£ 148.00$ AM $/ 8-12^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} .800$ watts $£ 170.00$ AM $/ 9-14^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime \prime} .1,000$ watts
$£ 200.00$
State input required. $12 v$ DC or $24 v D C$

INVERTER PANELS

A range of simple aluminium sheet assembled units without any frilly extras, inputs and outputs by polarity coloured leads
20w to 100 w models use a combined driver / output transformer

PA/1-6v DC in/240v AC 20w. £15.00 PA/2-6v DC in / $240 v$ AC $40 w$. $£ 18.00$ PA/3-12v DC in/240v AC 20w $£ 15.00$ PA/4-12v DC in/240v AC 50w $£ 18.00$ PA/5-12v DC in/240v AC 100w £22.00 PA/6-12v DC in/240v AC $150 w \quad £ 30.00$ PA/7-24v DC in/240v AC 20w $\quad \mathbf{1 1 6 . 0 0}$ PA/8-24v DC in/240v AC 50w $£ 19.00$ PA/9-24v DC in/240v AC 100 w £ $\mathbf{2 4 . 0 0}$ All units are approx $4^{\prime \prime} \times 3^{\prime \prime}$

Square waveform.
50 Hz or 60 Hz type $\pm 6 \%$.
AC output voltages are off load

ELONHURST LIMITED
 104A BRACKENBURY ROAD, LONDON, W. 6 Telex: 8954665. GITS G ELECT.

TEL: 01-7485778

CASE SYSTEMS "CLASSIC" RANGE OF CASES
All cases designed and manulactured by Case Systems

Although the cases are designed as a low-cost case. they are well finished and truly look expensive. This effect is enhanced by the proportion of anodised aluminium, to shiny black leather textured top and bottom plates. Such features as these panels sloting into the front and rear exirusions and into milled grooves in the side plates, keeping them completely flat, increases the impression of a cosily case.

Case Type	A	B	C	C
A	$8.50^{\prime \prime}$	$5^{\prime \prime}$	$2.50^{\prime \prime}$	$£ 8.00$
B	$12^{\prime \prime}$	$5^{\prime \prime}$	$2.50^{\prime \prime}$	$£ 9.50$
C	$177^{\prime \prime}$	$5^{\prime \prime}$	$2.50^{\prime \prime}$	$£ 11.75$
D	$8.50^{\prime \prime}$	$9^{\prime \prime}$	$3.50^{\prime \prime}$	$£ 10.50$
E	$12^{\prime \prime}$	$9^{\prime \prime}$	$3.50^{\prime \prime}$	$£ 11.75$
F	$17^{\prime \prime}$	$9^{\prime \prime}$	$3.50^{\prime \prime}$	$£ 12.50$
G	$8.50^{\prime \prime}$	$9^{\prime \prime}$	$5.25^{\prime \prime}$	$£ 13.50$
H	$12^{\prime \prime}$	$9^{\prime \prime}$	$5.25^{\prime \prime}$	$£ 14.20$
J	$17^{\prime \prime}$	$9^{\prime \prime}$	$5.25^{\prime \prime}$	$£ 14.90$

Case Type	A	B	C	D	Price
101	$3.50^{\prime \prime}$	$9.25^{\prime \prime}$	$11125^{\prime \prime}$	$9^{\prime \prime}$	£13.45
102	$3.50^{\prime \prime}$	$12^{\prime \prime}$	$11125^{\prime \prime}$	$9^{\prime \prime \prime}$	$£ 14.85$
103	$3.50^{\prime \prime}$	$17^{\prime \prime}$	$11125^{\prime \prime}$	$9^{\prime \prime}$	E15 50 5

Case System cases are ava

HEAT SINK BOX
This is an all alloy extrusion ribbed for heat dissipation. Anodised natural satin. Front size $2^{\prime \prime} \times 3.50{ }^{1} 3^{\prime}$.

Length	Price
395	$£ 2.95$
5.95	$£ 3.95$
7.95	$£ 4.95$

LET US PUT A SMILE

 ON YOUR AVO AT A FIXED PRICEPRICES INCLUDE CLEANING, CALIBRATION, TOTAL LABOUR CHARGES FOR REPAIR WORK. THE PRICE DOES NOT INCLUDE THE REPLACEMENT OF COMPONENTS, MOVEMENTS OR CASES.

MARTIN ASSOCIATES (ELECTRONICS) LTD., 34, CROWN STREET, READING.BERKS.
TELEPHONE: READING (0734) 595853/51074
WW-056 FOR FURTHER DETAILS

monogram 1980 NEW
PRODUCTS 700 wateo-£350*

INTRODUCTION OFFER ONLY
洛 Normal List ES50

Amplifier Modules

POWER

Send Cheques/Money Orders to- A4 SAE / \$1 Bill for Literature WANTED. Dealers/Distributers WORLDWIDE MONOGRAM PROFESSIONAL AUDIO. 28I Balmoral Drive. Hayes. Middx. ENGLAND TEL O1-573-1566 10.OAM-8.30PM ranges of miniature RF and IF coils. Many imitators have come - and gone - in the meantime, but none have managed to equal TOKO's consistent quality, and skill in innovative coil design However, perhaps TOKO's supremacy in designing and supplying these types of wound component has tended to overshadow the other product areas of TOKO's manufacturing capability
So the rest of this advertisement is devoted to semiconductors, ceramic and mechanical filters, and their new low cost ceramic resonator to replace the costly quartz crystal in many MPU and ultrasonic systems. And don't forget - not only do we offer you some exciting and innovative products in print the supply is carefully maintained at all times through the only stockist/distributor of signal frequency processing coils in the UK.

6 where can I get a Universal Bridge that's good enough for the labs,simple to use and tough enough for the shop floor and doesn't cost a fortune? 8

"Here"- AVO's Universal Bridge B150 Mk. 3 gives you measurement of resistance, capacitance, inductance accurate to 1%, can be used anywhere, it's battery powered. And anyone can use it, connections are simple and readings easy to take - with no calculations thanks to the mechanical in-line digital display and interlocking units selector.

The B150Mk. 3-for use in production, quality control, development labs-even at goods inwards. Tough metal cabinet, and the AVO guarantee of reliability, serviceability and accuracy, all at a price that's a pleasant surprise. From good distributors everywhere

Ring us for the name of your nearest stockist or for fuller details of AVO's Universal Bridge B150 Mk. 3 .

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be inade to order.

Full Information from:

HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01./837/7937

WW - 023 FOR FURTHER DETAILS

Please tick as required.
For further information on this product

Name
Position
Attach this coupon to your letter heading and send to: MILLBANK ELECTRONICS GROUP LIMITED, MARKETING SERVICES UNIT,
MILLEANK P.O. BOX 33, UCKFIELD, SUSSEX. ENGLAND.

Accurate pin point temperature control
between 65° and $400^{\circ} \mathrm{C}$. Heating element and sensor built in tip of the iron for fast response. Interchangeable slide-on bits from
$4.7 \mathrm{~mm}\left(3 / 16^{\prime \prime}\right)$ down to 0.5 mm . Zero voltage switching. no spikes. No magnetic field, no leakage. Supplied with miniature CTC (35-40 watt) iron or XTC (50watt). TCSU1 soldering station with XTC or CTC iron £36 (6.44). Nett to industry

Model CTC • 24 volts Priced at $\mathbf{C 9 . 7 5 (1 . 8 7)}$

当 VAT + P\&P as shown in brackets C,

Stocked by many wholesalers and retailers or direct from us

A general purpose iron also with a ceramic and steel shaft to give you toughness combined with near-perfect insulation. Fitted with $1 / 8^{\prime \prime}$ bit and priced at £4.20(.98)
Range of 4 other bits
available.
Also available in 24 volts

The soldering iron in this kit can be operated from any ordinary car battery It is fitted with 15 feet flexible cable and battery clips. Packed in a strong plastic envelope it can be left in a car, a boat or a caravan ready Price $£ 4.55(1.14)$

Spare element Model X25/240E

This kit contains a 15 watt miniature soldering iron. complete with 2 spare bits, a coil of spare bits, a coil of and a booklet. How to Solder. Priced at c5.95 (1.53)

 Model SK1

Model MLX 12 volts
ST3 Stand.

wireless world

Editor:

TOM IVALL, M.I.E.R.E.

Deputy Editor:

PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor:

GEOFFREY SHORTER, B.Sc
Phone 01-261 8443
Projecte Editor:
MIKE SAGIN
Phone: 01-261 8429

News Editor:

RAY ASHMORE, B.Sc., G8KYY
Phone 01-261 8043

Communications Editor:

TED PARRATT, 8.A
Phone 01-261 8620
Drawing Office Manager:
ROGER GOODMAN

Technical Illustrator:
8ETTY PALMER
Production \& Design:
ALAN KERR

Advertisement Controller:

G. BENTON ROWELL

Advertisement Manager:

BOB NIBBS, A.C.I.I
Phone 01.261 8622
DAVID DISLEY
Phone 01-261 8037
BARRY LEARY
Phone 01-261 8515

Classified Manager:

BRIAN DURRANT
Phone 01-261 8508 or 01-261 8423
NEIL McDONNELL
(Classified Advertisements)
Phone 01-261 8508
JOHN GI880N (Make-up and copy)
Phone 01-261 8353
Publishing Director:
GORDON HENDERSON

Status symbols

There has lately been a great deal of talk, reaching a focus in The Times correspondence columns, on the titles that workers in our industry should grace themselves with. Considerable thought has clearly been expended on the suggestions correspondents have made; the intention is evidently to differentiate between 'engineers', who sit at desks, lost in thought, and 'craftsmen/technicians' who dwell in workshops, doing the bidding of engineers. Blame is heaped on the daily press for referring to ignoble creatures who man picket lines as engineers, as in "Engineers demand 30\%", when the feeling is that they should be called 'engineering workers' or in some way dissociated from those who use their mental, instead of their manual skills. The man who repairs television sets for a living ought, it is said, to be called a technician, not an engineer.
Notions of social status, abstract except insofar as salaries are concerned, are at the root of the debate. A tenet of the status-seeker is that the more imposing his work-title, the higher the esteem in which he is held by the community: refuse-disposal operatives find it more acceptable to consult a turf accountant than to lay a bet with a bookie. The improbability of such a ploy ought, by now, to be apparent to any observer of mores.
If engineers (for lack of a better word) in electronics are not accorded by society the intangible quality of status they seek, it is more likely to be due to the value society attaches to their work than to the names they are given.
The results of the work are seen to be in entertainment, which is taken for granted, and in industrial and military
systems, which are not understood: put another way, the benefits are thought to be either trivial or necessary, but remote. An engineer's store of experience and knowledge is irrelevant because, unlike a doctor or accountant, he does not, visibly at least, affect their lives in any serious way

Distinction between technician and engineer always used to be indicated by the label 'design engineer' for the originator, and if the others wanted to call themselves engineers, no-one worried: the differential was preserved.
Low standing of engineers is not of great concern to the community. Where it is of consequence is inside a company or organization, where management is too often the preserve of accountants or sales people, or even individuals who have no training in either engineering or administration. Engineers' salaries do not compare wel with those of managers who are often their educational inferiors, simply because engineers are not allowed into positions in which they can influence the direction of a company. If the control of engineers continues to be left to those who are untrained in engineering, then the dismal performance of this country in manufacturing will not improve. This is the vital reason for demanding a greater status, not a self-congratulatory assumption of grand titles.
If the recommendations contained in the Finniston Report are adopted, the engineering profession will not be short of status, and it will be hard-won. The prospect of losing one's registration through complacency should lead to a level of competence not seen in any other profession.

Microwave intruder detector - 1

Design with good interference rejection and noise monitoring

by K. Holford, C.Eng., Philips Research Laboratories

This design provides a simple but effective circuit which uses a cycle counting scheme to prevent the alarm being triggered by short movements or pulses. The circuit has excellent interference rejecting properties. A noise monitoring circuit is described in part 2 so that the alarm can be set up easily and reliably in terms of a low false-alarm probability.

A simple novel design of stabilizer allows the nominal 12 V supply to have one volt or more of ripple before the basic noise level is disturbed.

This design is suitable for the Mullard CL8960 microwave module, a complete microwave front-end containing both the microwave generator (Gunn diode) and a mixer diode to produce the audio Doppler beat signal in response to radial movement. It requires a power supply of about 7.0 volts d.c. at about 150 mA . The module has Home Office approval and has featured in a previous Wireless World design ${ }^{1}$ in 1977. That paper and reference ${ }^{2}$ provide useful background to movement detection by microwaves.

The present design is the result of considerable experience over the years in small radar design and has laid emphasis on false-alarm immunity, reliability and simplicity, and the use of a single nominal 12 volt supply for the complete microwave intruder detector (MID). The lowest usable supply voltage is important to preserve standby battery life. The circuit shows 11 volts although this can be reduced to ten by careful choice of component source and circuit settings, and to 9.5 V by selection.

The great advantage of the MID, apart from its apparent ease of installation, is its constant vigilance. It can be set to sound an alarm for five minutes and then turn off if there is no further movement. This contrasts with a door-and-window switch system which, in simple installations, is likely to be out of action if disturbed. It may be silenced to await the owner's return.
However, both the design of the MID and its installation must be carried out with knowledge of the likely causes of false alarm. This can be simplified, and reliability improved to the point which makes it a very popular device, by providing an interference monitoring circuit that indicates when the alarm has an unreliable setting. Super sen-
sitive MIDs are more likely to false alarm than less sensitive ones. Even those MIDs having good circuit design should be adjusted for a sensitivity which is no more than that necessary to ensure intruder detection. It is the setting of this sensitivity and the monitoring of the safety factor once it is set that is the key to a reliable installation. Some manufacturers "burn in" their alarms for long periods to ensure they are reliable, but this is lost if there is serious unsuspected movement in the vicinity of the MID installation. Part 2 describes a false alarm circuit for monitoring this kind of event

False alarms attributable to the MID itself, particularly when set for a high sensitivity, can be due to amplified thermal noise, such as $1 / \mathrm{f}$ semiconductor noise, to vibration, or simply an interference on the power supply leads which gets into the signal circuits. The MID should contain protection against both power supply pulses and signals caused by external short transient movements.

Setting-up procedure for this intruder alarm circuit (given in part 2) can be simplified using an additional indication circuit that also monitors noise level and indicates when safety margin is reduced.

False alarm due to causes external to the MID can include those due to nearby equipment with an internal cooling fan and an aperture through which the radiation can pass and then return with a Doppler (movement) shift. In fact just an amplitude modulation of the reflection is sufficient. ${ }^{2}$ The gas in fluorescent lamps, when switched on, ionizes to become a fluctuating reflector which can easily cause an alarm. Other causes include pedestrian movement outside windows close to the alarm. Microwave radiation can pass through glass, albeit with a considerable attenuation, as well as through dry plasterboard. Do you keep pigeons in your loft as well as a pig in the bath?

Most industrial MIDs use a lightemitting diode to show when it is detecting movement during setting up.

None, to my knowledge, provide one to show that the noise, including that due to spurious movement, is too high for reliability at the chosen sensitivity setting in the particular environment in which the MID must work. This is covered in part 2.

The starting point for an alarm design must be the power supply, its noise and outside ripple rejection properties. It helps to know that the most critical

aspect of this is going to be the provision of the supply to the Gunn diode. Any ripple on this and the microwave power will be modulated and in turn will result in this ripple appearing at the mixer output. This is caused by the microwave power used for the mixing which affects the direct voltage across the mixer. If this is not satisfactory the rest of the design is suspect. The mixer output signals are in any case caused by an amplitude modulation of the mixer power when the return signal, shifted by the Doppler difference, is added to the local signal used for mixing. ${ }^{2}$ This return signal is many orders of magnitude less than that used for mixing and hence the modulation of microwave power due to the power supply has to be extremely small. Ultimately, the radar sensitivity is limited by the mixer noise and the design should therefore aim not to artificially increase this.

In the past Gunn power supplies have not received the attention in the literature that they deserve; neither have manufacturers of microwave modules volunteered information on the sensitivity to ripple. A need exists for this to be included in the data. The ripple output from the mixer will depend first on the ripple on the Gunn supply and also on the amount of microwave power being used for mixing and the operating condition of the mixer. For instance, if a low level mixer is being used, such as in the Mullard CL8960, there will be supplementary direct current bias used to enhance sensitivity. But a mixer using about 0.5 mW or more of power will often just have a $1 \mathrm{k} \Omega$ resistor across the mixer to cause a current flow. Figure 1 shows these two types together with the resistors.

Ripple factor is defined here as the ratio of ripple voltage from the mixer to that across the Gunn diode. The microwave power used for mixing in the CL8960 is only about 0.02 mW but will increase with a small reflector in front of the module so that ripple factor may be measured for other mixing powers. Such powers can occur if the module front is covered and sometimes intentionally by means of a 3 mm screw or so placed in the front shroud, see Fig. 10 (part 2), and used to optimize signal-tonoise ratio with a particular amplifier or circuit design.*

The actual microwave power in use is evident by the change in direct voltage when the microwave signal is turned on. Thus setting up instructions can specify the type of bias circuit used and the direct voltage that should be expected. (Special anti-static precautions are needed during measurement to avoid mixer damage, given later.)

[^2]Table 1. Ripple transfer factor measured for microwave modules

Mixer	CL8960	CL8960	CL18960	CL8960	In-line module
Ripple factor	0	0.016	0.025	0.06	0.08
Direct voltage M)	0.300°	0.26	0.00	-0.4	-0.2

- Zero microwave power

Fig. 1. Microwave part of the design is contained in Mullard CL8960 module (left). Direct current bias is not needed for in-line module, available shortly.

Gunn diode power supplies

Integrated circuit regulators in general have not reached the performance required for Gunn supplies. At least, they are not generally being released against a suitable specification. Typical is the 7808 from the 7800 series. This has an 8 V output and is suitable for use with a 7.5 volt diode". The guaranteed minimum ripple rejection is 56 dB and the data shows a supply of 14 volts. This rejection is not even enough for a typical CL8960. When tested with a 150 mA output a 66 dB rejection at 14 V became 63 dB at 12 volts. Noise output of $13 \mu \mathrm{~V}$ r.m.s. was acceptable but several times higher than a circuit made from discrete components.

Common practice in providing Gunn supplies is to use a zener diode to set the voltage and follow this with an emitterfollower to provide the power. In the circuit of Fig. 2 the current bias for the zener diode is derived from the supply but decoupled as much as is practical bearing in mind possible problems due to electrolytic leakage current. The $47 \mu \mathrm{~F}$ capacitor across the zener diode reduces noise but only contributes to the decoupling above about 100 Hz .

- This design is based on the use of 7.5 volts, as this improves low temperature reliability. Pressure for the lowest possible working voltage has caused a 7.0 V release specification. Also more recent work has improved the Gunn diode. If 7.0 volt working is essential it can be used.

The $1000 \mu \mathrm{~F}$ capacitor has a typical impedance at 100 Hz of 2 ohms (no maximum quoted) at $0^{\circ} \mathrm{C}$ and the zener diode 20 ohms, so that the ripple rejection to the voltage across the zener is $2200 / 2 \times$ $1000 / 20 \times 20=5500$ or 94 dB (ignoring impedance change). Note that the splitting of the chain increased decoupling by about 30 dB . This 94 dB is much more than can be achieved with an output transistor when this is delivering 150 mA as can be seen from Table 2.

Fig. 2.

Table 2. Ripple rejection with circuit of Fig. 2.

Transistor type	BD139	BD139. BD135	BDX7.7	BFY52	BFX85
Rejection (dB)	97	55	61	52	52
Output noise $(\mu \mathrm{V}$, rms)		1	2	2	2
Load current (mA)	0	150	150	150	150
No. of samples	3	3	3	3	3

The ripple rejection was found to degrade by 2 dB when the supply voltage was reduced to 2.5 volts above the zener voltage.

Improved circuit

The output transistor is the limiting factor and if, as seems likely, better types will not be made available, some form of feedback must be devised using a suitable op-amp. Ideally the performance will approach that of the op-amp alone. One such attempt is shown in Fig. 3.

This circuit will achieve 100 dB rejection although even 83 dB is adequate. The ability of the circuit to reject ripple and tolerate a low supply voltage depends on the current output taken from the i.c. and, not least, who made it. The maximum current required for a CL8960 is 166 mA and the mimimum current gain of BD1 35 is 40 . Thus the i.c. output current can be up to 4 mA . The circuit was tested with what turned out to be a high gain transistor having a base current of only 1.2 mA , so an extra 3.5 mA was taken to see the effect. Results are shown in Table 3.

Fig. 3.

The advantage of the 748 over the 741 is that the 30 pF capacitor can be increased if a loop stability problem is experienced. A 741 of different manufacture did oscillate when the extra 3.5 mA load was applied, although with the 748 the capacitor could be reduced to 10 pF before this occurred. The manufacturer is the most important factor in choosing an i.c. In this instance a National 748 outperformed five samples of a more expensive LM 308 equivalent from manufacturer (2), both in rejection and minimum working voltage.

Finally a two emitter-follower version of Fig. 4 is shown in Fig. 5 with some more measurements.

Fig. 4.

Table 3. Use of op-amp as shown in Fig. 3 improves ripple rejection.

IC type	Noise output	No. of samples	Minimum rejection	MinimumV shown	for 8 dB
748^{1}	2μ	10	101 dB	9.53 V	9.7 V
748^{2}	$2 \mu \mathrm{~V}$	20	103 dB	10.23 V	11.0 V

1 National Semiconductor, 2 other well-known make

Measurements were made at a frequency of 200 Hz to avoid hum problems but at least 100 dB was measured over the band 10 Hz to 1 kHz . The fact that this is greater than the 94 dB of the bias chain is a reflection of capacitor tolerance.

The minimum voltage working was only 0.1 V lower if 30 dB rejection was specified and this ripple breakthrough can easily be seen on an oscilloscope. This can be used as a rough check.

From these figures you can see that a poor i.c. would show advantage in using another emitter-follower with an end-ofspread CL 8960 and BD135, due to the reduced current load which would require less voltage. With a BC547 as the second
transistor the minimum voltage fell from 11.0 V to 10.5 V but with a good i.c. it rose from 9.7 V to 10.0 V , due to the higher output direct voltage required for the extra transistor over-riding the low-current improvement. These voltages and those above assume an exact 7.5 V zener diode. With a 5% tolerance another 0.4 V must. be added.

The circuit of Fig. 3 can be simplified by noting that the i.c. output voltage is above that of the zener diode by the V_{be} of the transistor; see for instance the circuit of Fig. 4. Also by using $1 \mathrm{k} \Omega$ plus $22 \mathrm{k} \Omega$ preset series resistance between F and B, the voltage may be set accurately using a 6.8 V zener.

Table 4. Rejection by fig. 4 circuit with 12 volt supply was also over 100 dB .

IC type	Noise output	No. of samples	Minimum rejection	Minimum V , fors 83 dB as shown astion	+3.5 mA

1 National Semiconductor, 2 other well-known make

Table 5. Two-transistor version for higher currents or poor i.cs

IC type	Noise output	No. of samples	Rejection $1 / 2$ $\mathbf{1 2 V}$ supply	Supply min. for 83dB
748^{1}	$3.5 \mu \mathrm{~V}$	10	100 dB	10.07 V
748^{2}	$3.5 \mu \mathrm{~V}$	20	99 dB	10.62 V

1 National Semiconductor, 2 other.

From the previous results it seems fair to expect that the circuit of Fig. 4 could be put into production with a minimum working voltage of 10.5 V and a ripple rejection of 83 dB , provided the i.c. manufacturer is selected with care, and even better if $B D 135$ s are available with $h_{\text {FE }}$ minimum of 80 . A considerable percentage of the products will work satisfactorily down to a supply voltage of 10 V .

Measurements were made with a zener diode selected for an accurate 7.5 V voltage. Any higher voltage requires the supply minimum to be raised by the difference. But also, the use of the 7.0V specified in the CL8960 data would allow a reduction of 0.5 volts. Thus a 10.5 volt minimum could be met, even with a poor i.c.

Fig. 5.

Note: 784 requires 30 pF compensation capacitor.

Ripple transfer factor for the two modules is shown in Table 1. In both cases the mixer used was the Mullard BAV46 which is a typical type for this application. The CL8960 bias shown uses fewer components than in the data sheet. The direct voltage working point should be chosen for best noise figure. With a $42 \mu \mathrm{~A}$ bias current and the circuit to be described this is is about half the non-microwave bias. For a 300 mV diode, a variation from 90 to 270 mV causes a 1.5 dB worsening of noise figure and some 6 dB sensitivity loss at the extremes.
Measurements show that a factor of about 0.02 should be used for design with the CL8960 and the more stringent 0.08 or more for the in-line design. The aim here will be for a 0.1 design so as to allow for future microwave module development.
If the noise from the module is naturally $5 \mu \mathrm{~V}$ and the design aim is to hold the noise increase to just 1 dB , the ripple contribution on its own must be not more than about $2.5 \mu \mathrm{~V}$. If it contributed $5 \mu \mathrm{~V}$ the overall noise would degrade by 3 dB .

The rejection required of the power supply is therefore 83 dB for $2.5 \mu \mathrm{~V}$ r.m.s. from 1 V pk-pk with ripple factor of 0.1 . Even a typical CL8960 is going to require 69 dB if ripple factor is 0.02 .
The 83 dB minimum ripple rejection factor is achieved (see "Gunn power supplies") so as to allow IV pk-pk on the intruder alarm supply for a module with a ripple factor of 0.1 As a typical CL 8960 has a factor of 0.02 it could tolerate 5 V pk-pk ripple, although due to the voltage swing the minimum supply voltage of 10.5 V would need to be increased to about 13 V .

It might be thought that battery supplies would not need ripple rejection. However, this ignores practical points like switching-on and switching-off surges with long leads, possible bad connections due to corrosion and
trickle charging from mains derived supplies. Thus a IV pk-pk ripple rejection is very useful.

Doppler amplifier design had an aim of about 90 dB gain and also an adequate ripple rejection. Ripple may be present due to the signals originating from outside the power supply, or caused by the power supply itself, or generated by the amplifier drawing signal current from the power supply and its associated impedance. Feeding back a voltage due to an inadequate ripple rejection can lead to an unstable amplifier. The nature of this problem is illustrated in Fig. 6. Currents I_{a} and I_{b} supply the amplifiers but contain components at the signal frequency. These in turn generate voltages via the finite output impedance of the power supply. A low impedance supply eases the problem, as do lightly loaded amplifiers which do not generate large signal currents. After this the amplifier should beldesigned for a good rejection factor.

A suitable amplifier circuit is shown

Fig. 6. Ripple may be due to signals originating from sources internal or external to the power supply. Currents shown can generate voltages through the output inpedance of power supply, hence the need for a low impedance supply and lightly-loaded amplifiers.

Fig. 7. Beat frequency amplifier with mixer bias current supply was designed to tolerate supply impedance of more than five ohms.
in Fig. 7. It was designed to tolerate a supply impedance of more than 5 ohms which is much higher than needed for a stabilized supply, but often a good design does not look very different from a poor one at first sight. The main point is not to inject signals from the supply via the networks which supply amplifier bias. The Gunn power supply can be used to power the amplifier and as this has a very low output impedance of about 0.05 ohms this will greatly help the design. For instance, some of the decoupling of the input bias chain can be omitted.

Starting at the left hand side the resistor chain R_{1} and R_{2} provides welldecoupled current bias for the mixer, the diode being merely for protection against the input charging up when the mixer is absent which carries the risk of mixer damage when it is re-connected. Even without microwave bias the mixer voltage is only 0.3 V which is below diode conduction with the $43 \mu \mathrm{~A}$ direct current bias.

The second resistor chain biases the op-amps to the best point for a symmetrically-clipped sinewave output on overdrive. With the use of the Gunn power supply capacitors C_{1} and C_{2} can be omitted.

The first op-amp has a voltage gain of 100 and the second 300 , a total of 90 dB ignoring impedance differences. Gain of the second can be reduced 50 times with R_{9}. Because radar range varies as the fourth power of power gain, this is equivalent to a range change of seven times. For a lower range of sensitivity the first op-amp $330 \mathrm{k} \Omega$ resistor can be reduced.

The second op-amp is directly connected to the first and the circuit is both very economical in the use of components and has good ripple rejection properties. No economy is sacrificed in performance.
The amplitude-response of the amplifier is suitable for an MID. The low frequency cut-off is controlled by C_{5}

and C_{8}. The input capacitor plays little part as it was chosen large for low noise reasons. At maximum gain C_{5} and C_{8} and their associated resistors cause the response to be -3 dB at 11 Hz which corresponds to a radial velocity of $15.8 \mathrm{~mm} / \mathrm{s}$ or $0.6 \mathrm{in} / \mathrm{s}$, assuming the UK MID frequency of 10.687 GHz . Range will be roughly proportional to velocity below this due to the 12 dB per octave response of the two time constants. With reduced gain R_{9} will reduce the fall-off of the second time constant and response will fall with speed more slowly.

The ability of the radar to reject faster-than-walking-speed targets is also controlled by two time constants, those of the capacitor across each opamp feedback resistor. With 5.6 nF capacitance across 330 kohm the -3 dB point per stage is at 86 Hz or $1.25 \mathrm{~m} / \mathrm{s}$ ($1.5 \mathrm{ft} / \mathrm{s}$ or 2.8 mile $/ \mathrm{h}$). Range will be half at twice this velocity and decrease inversely proportional to velocity thereafter.
Amplifier noise was measured with both a mixer connected and a 1 kohm substitute. At the time the amplifier had only one third of the size of feedback capacitors and an upper response of approximately 240 Hz . Noise voltage equivalent input for the resistor varied from 0.3 to $0.6 \mu \mathrm{~V}$ r.m.s. depending on which of ten i.cs was used, as measured by the usual averaging "r.m.s." meter. On an oscilloscope the larger figure corresponded to $4.4 \mu \mathrm{~V}$ pk-pk equivalent. This is well below that expected from the microwave module and makes the exact value inimportant.
Amplifier gain required can be seen from the $5 \mu \mathrm{~V}$ r.m.s. expected noise input and the 2 V pk-pk output from the opamps which will cause a build-up to an alarm level in the circuit which follows the op-amps. This is 103 dB and so 90 dB offers a reasonable safety factor. The threshold at which the circuit following the op-amps just begins to work is 1.5 V pk-pk.

Fluorescent lights can interfere with the operation of an MID and the use in the presence of these must be avoided unless a circuit is fitted with rejection capabilities. The ionized gas fluctuates at 100 Hz and can induce a signal in the radar. With just one lamp predominating this may be substantially at 100 Hz but with several lamps a strong 200 Hz component may also be present. The phase of the signal relative to the mains can also vary over the full 360° due to differences in target distance. The design of a suitable comb filter is not within the scope of this article. Low-pass filters are only marginally acceptable, even when of multipole design, because of the loss of response to all but slow movement.
In the past the MID design has paid far too little attention to protection against being set off by interference pulses, even single ones, let alone several. To some extent this is due to a lack of designers with both electronic

Fig. 8. Normal practice is to have a relay energized so that power failure can be indicated. For a high security area a 555 timer (fed by Tr_{4} or with Tr_{3} collector connected to pin 2) could be arranged to short a relay hold-off after a short interval. For use with a 555, (A) connects to OV, the diode is omitted, Tr_{4} collector becomes pin 3. and its base connects to pin 2.
circuit design experience and microwave engineering experience.
Radar wavelength at 10.687 GHz is 28 mm and one beat frequency cycle is produced by the mixer for each 14 mm of radial movement toward or away from the radar. Thus a counting or similar process is possible and hence a circuit which requires a certain distance of movement before an alarm is set off. This is not complete proof against much shorter oscillating movements which can wobble the vector ${ }^{2}$ and produce a beat signal but it does provide valuable protection against multiple interference pulses of a few at a time and against single short infrequent movements. A memory can be provided to defeat an approach in a series of short movements and the proportioning of the memory time versus degree of protection provided is a matter for design consideration.

In the circuit shown the capacitor C_{11} is used as a bucket to charge C_{12} with one bucket of charge per cycle. Thus the radial movement distance required to charge C_{12} to about half the supply voltage and so set off the alarm by causing Tr_{2} to conduct, is determined by the ratio $\mathrm{C}_{11} / \mathrm{C}_{12}$. A single movement of about 600 mm or 24 inches will trip the circuit shown. Capacitor C_{11} loses some charge voltage due to the diodes.

The memory time constant is controlled by R_{13} across the capacitor and is about 47 seconds with a low leakage electrolytic - preferably tantalum for stability. Thus 37% of any previous movement is still remembered after 47 seconds. Values of C_{12} and R_{13} may be altered if required, provided electrolytic leakage-current is paid due regard. In practice any changes are unlikely to be more than three times. For instance 9 inches of movement is probably good enough for the most critical user and a 50 second memory will take some beating.
Transistor Tr_{1} is a bootstrap arrangement to ensure that the charge per bucket does not fall off appreciably when C_{12} charges up. With the alarm detecting an intruder and a 7.5 volt
amplifier supply the output of the opamp will usually be at least $4 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$.

In use: the output transistor Tr_{3} is intended to short the base-emitter junction of a relay transistor, such as in Fig. 8. It is normal with alarms to have the relay energized when the circuit is working and no alarm condition so that power failure is indicated. Transistor Tr_{3} will sink several mA and is very conservatively used at 2 mA . It could be ten with little risk.

Alternatively, Tr_{4} could operate a 555 timer, or itself be a 555 timer in which case the base connection shown would be pin 2 . The 555 appears to have a built-in diode suitable for relay driving, although this is not stated in the data. The use of a five minute alarm which expires if there is no further movement is a useful feature for avoiding a noise complaint and leaves the system ready to detect the next disturbance. For ahigh security area the 555 would be arranged to short a relay hold-off control as in Fig. 8. Thus an alarm is given if wires are cut.

Both the amplifier on its own and complete with the microwave module were tested for power supply ripple rejection. The amplifier at that time used smaller feedback capacitors and had an upper -3dB point per stage of 240 Hz . Thus ripple rejection will be generally better above 100 Hz than the figures shown.

Table 6. Typical ripple rejection for Fig. 7 and module

Ripple frequency $(\mathrm{Hz}) \quad 10 \quad 50 \quad 100 \quad 500$
Rejection with 12 V
supply (mV pk-pk) $\quad \begin{array}{lllll}55 & 55 & 70 & 500\end{array}$
Rejection with 7.4 V
$\begin{array}{lllll}\text { supply (mV pk-pk) } & \begin{array}{ll}36 & 36\end{array} 45 \quad 500\end{array}$

These are typical rather than worstcase ripple figures but not too important as the use of a stabilizer with only 30 dB rejection would allow a IV pk-pk ripple on the stabilizer input. Thus, as expected, the performance is limited by the less tolerant microwave circuits. With the microwave module fitted and the stabilizer to be described a IV pk-pk ripple over the frequency range 10 Hz to 1 kHz had no effect with a supply voltage of 10.5 V . Also with a 12 V supply the ripple had to be increased above 5 V pk - pk before the ripple could be seen in the noise. Removal of C_{1} and C_{2} from Fig. 7 when the circuit was powered from the Gunn supply did not alter this.

To be continued

References

1. M. W. Hosking, Microwave intruder alarm. Wireless World vol. 83 1977, July pp. and August pp.
2. Holford K. Doppler Radar With Sense, Wireless World vol. 78 1972, pp. 535-9.

Circuit analysis by small computer

Tedious though flexible matrix technique lends itself to computer calculation

by A. S. Beasley, B.Sc., McMichael Ltd.

As the price of desktop computers falls, they are coming to be regarded as another piece of lab equipment, along with oscilloscopes and analysers. Using such machines designs may be checked and components "tweaked" for optimum performance, without any danger of damaging expensive components.

This article shows the principles of computer circuit analysis; a second shows how a Commodore Pet can be used to "bread-board" circuits ranging from micro to audio frequencies. As desktop machines become more common this approach must look increasingly attractive to professional users in industry and education, as well as to non-professionals.

Many textbooks deal with linear two-port analysis; because of their familiarity I shall use them as an introduction to a far more powerful multiport technique.
Consider the two-port network of Fig. 1. Choose any two of $V_{1}, V_{2}, I_{1}, I_{2}$,

Fig. 1
as independent variables and the remaining two as the dependent variables. Choosing the voltages as the independent variables and assuming linearity, write

$$
\begin{aligned}
& I_{1}=y_{11} V_{1}+y_{12} V_{2} \\
& I_{2}=y_{21} V_{1}+y_{22} V_{2}
\end{aligned}
$$

or in matrix form

$$
\binom{I_{1}}{I_{2}}=\binom{y_{11} y_{12}}{y_{21} y_{22}} \quad\binom{V_{1}}{V_{2}}
$$

where the y-parameters have the dimensions of admittance, the reciprocal of impedance. Figure 2 gives the y-

Fig. 2
parameter equivalent circuit of any linear two-port network and Table 1 gives the gain and impedance properties

\equiv

Fig. 3
terminated in a load admittance Y_{L} and driven from a source of admittance Y_{S}.

Consider paralleling two different two ports, as in Fig. 3. It is immediately obvious from the equivalent circuit representation that the overall two-port network (formed by the combination of networks A and B) has the following y-parameters

$$
\begin{array}{ll}
y_{11}={ }_{A} y_{11}+{ }_{B} y_{11} & y_{21}={ }_{A} y_{21}+{ }_{B} y_{21} \\
y_{12}={ }_{A} y_{12}+{ }_{B} y_{12} & y_{22}={ }_{A} y_{22}+{ }_{B} y_{22}
\end{array}
$$

The overall y-parameters are simply the sum of the parts. It is this property of the admittance representation that we shall now generalize: the property of adding small matrices to describe the whole circuit,

$$
\text { i.e. }[y]=\left[y_{A}\right]+\left[y_{B}\right]
$$

Indefinite admittance matrix

The indefinite admittance matrix or YF matrix relates the total current at any node in the circuit to the voltages at the nodes, where voltages are referenced from some node external to the circuit. This is best illustrated by an

Fig. 4

$$
\text { where } Y_{01} Y_{02} Y_{12} \text { are admittances }
$$

example; consider Fig. 4. Yoú can see that

$$
\begin{aligned}
& I_{0}=\left(Y_{01}+Y_{02}\right) V_{0}-Y_{01} Y_{1}-Y_{02} V_{2} \\
& I_{1}=-Y_{01} V_{0}+\left(Y_{01}+Y_{12}\right) V_{1}-Y_{12} V_{2} \\
& I_{2}=-Y_{02} V_{0}-Y_{12} V_{1}+\left(Y_{02}+Y_{12}\right) V_{2}
\end{aligned}
$$

or in matrix form
$\left(\begin{array}{l}I_{0} \\ I_{1} \\ I_{2}\end{array}\right)=\left(\begin{array}{ccc}Y_{01}+Y_{02} & -Y_{01} & -Y_{02} \\ -Y_{01} & Y_{01}+Y_{12} & -Y_{12} \\ Y_{02} & -Y_{12} & Y_{02}+Y_{12}\end{array}\right)\left(\begin{array}{c}V_{0} \\ V_{1} \\ V_{2}\end{array}\right)$
Notice that the YF matrix exhibits a great deal of symmetry. It may be

Table 1
$Z_{\text {in }}=\frac{y_{22}+Y_{\mathrm{L}}}{D_{y}+y_{11} Y_{\mathrm{L}}} \quad A_{\mathrm{v}}=\frac{V_{2}}{V_{1}}=\frac{-y_{21}}{y_{22}+Y_{\mathrm{L}}}$
$Z_{\text {out }}=\frac{y_{11}+y_{5}}{D_{y}+y_{22} Y_{\mathrm{s}}} \quad A_{1}=\frac{I_{2}}{I_{1}}=\frac{y_{21} Y_{\mathrm{L}}}{D_{\mathrm{y}}+y_{11} Y_{\mathrm{L}}}$
where $D_{y}=y_{11} y_{22}-y_{12} y_{21}$
shown rigorously* that for any passive circuit

- $Y_{n n}$ is the sum of all admittances connected to node n
- Y_{nm} is minus the sum of all admittances connecting the n to the m node
- the sum of any row or column is zero (this applies to active circuits as well as it derives from conservation of charge)
- $Y_{n m}=Y_{m n}$

These four properties of the YF matrix allow any passive network to have its YF matrix written down by inspection. These same properties also allow a computer to create the YF matrix with great ease; only the nodes that components lie between and their value need be known.

The technique in summary

For passive networks rote application of the four rules produces the YF matrix.
For active networks use Table 2 to find the YF matrix
For a network with active and passive components simply add the individual YF matrices obtained by considering the passive and active components on their own.
YF matrix may be reduced to a simple two-port network and then application of Table 1 gives the impedances and gains of the network.

Reduction of the YF matrix

The way to extract information from the YF matrix concerning impedances and gains (as for the two-port network) is to note that the currents in the YF representation give the total current flowing into a particular node. By Kirchhoff's Law we know that this is zero for all internal nodes, i.e. nodes not connected to the input or output of the network.
To demonstrate by means of an example, see Fig. 5. You can see that

Fig. 5

where Y_{0}, etc. are admittances.

YF matrix for active components

Consider the transistor in Fig. 6. From the data sheet we can quickly discover its common-emitter y-parameters, which relate the currents into the base and collector to the voltages applied (referenced from the emitter). Now even for active components conservation of charge is obeyed so by rule three the YF matrix for the transistor is

$$
\left(\begin{array}{ccc}
y_{\mathrm{ie}} & y_{\mathrm{re}} & -\left(y_{\mathrm{le}}+y_{\mathrm{re}}\right) \\
y_{\mathrm{fe}} & y_{\mathrm{oe}} & -\left(y_{\mathrm{fe}}+y_{\mathrm{oe}}\right) \\
1-\left(y_{\mathrm{ie}}+y_{\mathrm{fe}}\right)-\left(y_{\mathrm{re}}+y_{\mathrm{oe}}\right) & \Sigma
\end{array}\right)
$$

where $\Sigma=y_{\mathrm{le}}+y_{\mathrm{re}}+y_{\mathrm{fe}}+y_{\mathrm{oe}}$
Table 2 gives the YF matrices for other common two-port networks.

Because $I_{3}=0$ eliminate V_{3} by putting

$$
\begin{aligned}
& V_{3}=\left(Y_{03} V_{0}+Y_{13} V_{1}+Y_{23} V_{2}\right) / \Sigma \\
& \text { where } \Sigma=Y_{03}+Y_{13}+Y_{23}
\end{aligned}
$$

For a two-port network measure voltage from node 2 (i.e. $V_{2}=0$). Substituting these relationships into the YF matrix:

Fig. 6

$$
\binom{I_{0}}{I_{1}}=\binom{Y_{02}+Y_{01}+Y_{03}-Y_{03}^{2} / \Sigma-\left(Y_{01}+Y_{03} \cdot Y_{13} / \Sigma\right)}{-\left(Y_{01}+Y_{13} \cdot Y_{03} / \Sigma\right) \quad Y_{01}+Y_{12}+Y_{13}-Y_{13}^{2} / \Sigma}\binom{V_{0}}{V_{1}}
$$

So by equating all internal currents to zero we have found the two-port y parameters, and using Table 1 we deduce the impedances and gains of the network.

YF matrix for active and passive components

Now that YF matrices of active and passive networks can be created the "parallel networks add y-parameters" rule can be used, which carries over the more general YF matrix. The following example illustrates the techniques we can now use.
It is because this technique is so flexible, handling any configuration of components, yet is a rote procedure with straightforward though tedious calculation, that it is ideally suited to the computer.
A second article will outline a program based on the YF matrix and discuss modelling techniques.
*High Frequency Amplifiers by R. S. Carson. Wiley Interscience.

Example

To analyse

$$
Y F_{1}=\left(\begin{array}{ccccc}
Y_{04} & 0 & 0 & 0 & -Y_{04} \\
0 & Y_{12} & -Y_{12} & 0 & 0 \\
0 & -Y_{12} & \Sigma_{1} & -Y_{23} & -Y_{24} \\
-Y_{04} & 0 & Y_{24} & 0 & Y_{04}+Y_{24}
\end{array}\right)
$$

where $\Sigma=Y_{12}+Y_{23}+Y_{24}$

The overall YF matrix is then

$$
\mathrm{YF}=\mathrm{Y} \mathrm{~F}_{1}+\mathrm{Y} \mathrm{~F}_{2}+\mathrm{Y} \mathrm{~F}_{3}
$$

The tedious but simple calculations to reduce the YF matrix are best left to a computer; these calculations will yield the impedances and gains of the circuit.
and

where $\Sigma_{B}={ }_{B} y_{i e}+{ }_{B} y_{r e}+{ }_{B} y_{o e}+{ }_{B} y_{\text {fe }}$

Table 2
Op-amp
$\left(\begin{array}{cccc}\dot{Y}_{\text {in }} & -Y_{\text {in }} & 0 & 0 \\ -Y_{\text {in }} & Y_{\text {in }} & 0 & 0 \\ -A \cdot Y_{\text {out }} & A \cdot Y_{\text {out }} & Y_{\text {out }} & -Y_{\text {out }} \\ A \cdot Y_{\text {out }} \rightarrow A \cdot Y_{\text {out }} & -Y_{\text {out }} & Y_{\text {out }}\end{array}\right)$

Ideal transformer

$$
\left(\begin{array}{cccc}
a^{2} Y & -a^{2} Y & -a Y & a Y \\
-a^{2} Y & -a^{2} Y & -a Y & a Y \\
-a^{2} Y & a^{2} Y & a Y & -a Y \\
-a Y & a Y & Y & -Y \\
a Y & -a Y & -Y & Y
\end{array}\right)
$$

where $Y=1.5 \times 10^{4}$

Transmission line

Line impedance Z_{0} length l at a frequency where $h=2 \pi / \lambda$

given y_{e} parameters
$Y F=\left(\begin{array}{ccc}y_{\mathrm{ie}} & y_{\mathrm{re}} & -\left(y_{\mathrm{ie}}+y_{\mathrm{re}}\right) \\ y_{\mathrm{fe}} & y_{\mathrm{oe}} & -\left(y_{\mathrm{fe}}+y_{\mathrm{oe}}\right) \\ -y_{\mathrm{ie}}-y_{\mathrm{fe}} & -y_{\mathrm{re}}-y_{\mathrm{oe}} & \Sigma\end{array}\right)$

where $\Sigma=y_{\mathrm{ie}}+y_{\mathrm{re}}+y_{\mathrm{fe}}+y_{\mathrm{oe}}$.

Adaptable anatomy for
a.t.e.

A new form of integrated automatic test equipment, the GRADUATE, unveiled by its maker, Marconi Space and Defence Systems at the recent Brighton a.t.e. conference, offers the central advantages of "virtual instrumentation" and "reconfigurability." Although it will have to live down a laboured cap and gown presentation (it forms the "T" in the name whenever a mention occurs in the technical literature headings), the facilities lurking behind these two terms are quite real.
"Virtual instrumentation" involves dispensing with conventional test instruments, using instead software-combined modules, with the intention of simplifying measurement and readout, and adapting easily to different test requirements. Checks are made by the a.t.e. circuits and the results fed to the central v.d.u., which also displays simulated front panel controls, the instrument being simulated depending upon the way in which the a.t.e. has been "configured" by the software. A set of functional modules carries out the work and comprises three main sections, l.f., r.f., and digital. These modules are inserted into a kernel composed of four shelves, each of which has eight injection mouldings capable of holding one double or two single modules. Matching connections are provided at each module for service inputs, permitting any module to be inserted anywhere in a kernel.

The central controller is a 24 -bit word processor using bit-slice technology with a fixed microcode in p.r.o.m. and an extension e.p.r.o.m. for controller firmware development. The main memory is expandable in 32 K word steps up to 1 M word, and standard peripherals are a v.d.u. and keyboard, dual floppy-disc drive, line printer for program development and strip printer for test results.

Part of the control process is a calibration facility, deviations of each module from its "standard" performance being stored in p.r.o.m. within the module at the time of calibration. This means that close-limit accuracy in the modules themselves is made unimportant and, assuming that the characteristics of each module are stable, their stimulus outputs and measured inputs can be automatically corrected using the stored data.

A self-test facility provides for individual modules and integral p.c.bs to be tested using resident programs, and a self-test module permits on-line validation checks to be carried out during normal testing, ensuring that any failure is not incorrectly attributed to the equipment.

Module isolation is effected using a 25 kHz , three-phrase power distribution system. This is transformer-coupled and rectified on the interface power assembly board contained in each module. One ribbon cable is used to distribute the supply to each module and another carries analogue signals between them. For high frequency and fastedge signals the performance of the ribbon highway becomes inadequate and appropriate functional modules therefore have separate front panel connectors. A high-frequency, three-switch design is available, working into the microwave region.

Physically, the GRADUATE is made up by combining up to four kernels and four 19 in racks, the layout being determined by the table top. In this way it can be tailored to satisfy particular constraints of space or can be laid out in a different shape to cater for expansion, relocation or change of function.

WARC and the amateurs

The ending, early in December, of the World Administrative Radio Conference at Geneva has left both professional and amateur communications with the major problem of sorting out exactly how they will fare when the new international table of frequency allocations comes progressively into use over the years ahead. The problem, as some of us foresaw, is that a divided and highly political conference has added such a proliferation of "footnotes" to the regulations that it has almost destroyed any remaining coherence of the frequency table, and indeed some observers go so far as to suggest that it has left world spectrum management virtually in tatters. There are also now many "resolutions" not directly reflected in the frequency table.

However, at least by comparison with some other services, radio amateurs in Region 1 (and also radio astronomers) have emerged without having suffered any immediately obvious major calamities, indeed with a few useful gains, though nobody is prepared to admit being pleased with the results until the impact of various footnotes has been more fully evaluated. Certainly it is clear that all amateurs have every reason to be grateful to the International Amateur Radio Union, the R.S.G.B. and a number of the other national societies for their long-term efforts to promote better international understanding of the value of this hobby in both developed and developing countries.

The three new h.f. bands reached the international table: 10.100 to 10.150 MHz (about 29.6 metres); 18.068 to 18.168 MHz (16.5 metres); and 24.890 to 24.990 MHz (12 metres). It will, of course, be several years before these become available to amateurs (possibly 10.1 MHz will be the first to be transferred to the amateur service). The availability of amateur allocations at 7 , $10,14,18,21,24$ and 28 MHz should prove a useful incentive for further ionospheric research as well as making long-distance operation possible at most times of the day or night, throughout most of the sunspot cycle. However the allocations are only 50 or 100 kHz wide and this will call for a high degree of self-discipline to avoid the worst effects of over-crowding, particularly if the bands are open for all modes of transmission. A small "Top Band" allocation (1810 to 1850 kHz) is now back in the International Table from which it vanished in 1947, with the "footnote" that permits U.K. operation between 1800 to 2000 kHz remaining attached to the table. In fact U.K: amateurs do not appear to have lost any
h.f. or v.h.f. frequencies, though it is too early to say whether or not operation on some bands will be adversely affected by the many new footnotes.

According to returning delegates and observers, one of the many surprises of WARC was the very disappointing attitude shown towards amateur radio by the Japanese delegation, despite that country's domination of the world market for amateur radio equipment. Amateurs are also hoping that the active role taken at Geneva by the Chinese delegation may mean less use of 7 MHz amateur frequencies by broadcasting stations in that country and possibly licensing of amateurs there. There is also a sense of relief that the new h.f. allocation for international broadcasting above 13.6 MHz is unlikely to extend beyond 13.8 MHz instead of the proposed 14.0 MHz and this gives rise to the hope that a "cordon sanitaire" will be maintained between the megawatters and the amateur 14 MHz band.

From all quarters

North American amateurs on 50 MHz continued to be received in Europe daily throughout November and it seems likely that this month will prove to have been the peak period of Solar Cycle 22. Even low-power stations were received with excellent signal-to-noise ratios, usually around 1400 GMT . On November 18th, Angus McKenzie, G30SS could still copy signals from VE1ASJ near St. John, New Brunswick, Canada when that station progressively reduced power from 0.6 W to about 10 mW ! While most of the 50 MHz openings were to the East Coast of Canada and the USA, on some days excellent signals were received from stations from Texas, California and even Mexico City.

The original 144 MHz London repeater GB3LO at Crystal Palace has been extensively modified and reinstalled in readiness for the change to the planned new four-repeater coverage of London and for which it will become GB3SL (R2) with GB3NL at Enfield on R7; GB3WL on R1 at Hillingdon (all these three repeaters being run by the UK FM Group (London); and GB3EL on R0 at Havering. Some at least of these should be in operation by the time these notes appear. A new u.h.f. (70 cm) repeater, GB3SK, has opened at Folkestone on channel RB6.

RACE (radio amateur club de l'espace), a group of French amateurs mostly working at scientific research establishments, is aiming to build equipment for a French amateur satellite.

According to observations made by Ron Ham at Storrington, Sussex, sporadic E reception of signals between 40 and 80 MHz occurred on 48 days between May 19 and August 21, 1979 compared with 69 days in 1978 and 37 days in 1977, once again emphasising that there appears to be no direct connection between solar activity and the seasonal Sporadic E conditions.

There have been many different versions of how amateurs acquired their not-always-appreciated sobriquet "ham". According to a story in "Worldradio", it began in 1911, and a station operated by three young members of the Harvard Wireless Club: Albert Hyman, Bob Almy and Reggy Murray. In the period before official licences were issued in the USA, they used a self-assigned callsign formed from the initial letters of their surnames, HAM. Subsequently Albert Hyman was asked to appear before the US Congressional committee where his arguments against imposing licence fees on American amateur stations, such as HAM, attracted nationwide publicity. It is a plausible story, but there have been other accounts suggesting that like " 73 " (best regards) it all started much earlier, in the days of land-line telegraphists.

In brief

An American amateur, Mike Vestal, WOYZS last year became the first amateur to "Work All States" on the $430 \mathrm{MHz}(70-\mathrm{cm})$ band \ldots The 1980 R.S.G.B. National VHF Convention is to be held at the "Winning Post." Twickenham, Middlesex on March 8 ... Forthcoming 7 MHz contests organised by the R.S.G.B. comprise a telephony contest on February 2-3 and c.w. on February 23-24 ... Decisions taken at WARC, Geneva may make it possible for Class B licensees to use the 70 MHz band ... A long-range planning committee of the A.R.R.L. is attempting to identify "the opportunities and the obstacles that lie ahead and what the League should be doing to prepare for them" . . . P. Balestrini, G3BPT was due to be installed as the 46 th president of the R.S.G.B. in the course of an evening cruise on board the motor vessel "Mayflower Garden" on the River Thames on January 12th ... American amateurs are concerned at the very high failure rate of candidates sitting examinations for "Advanced Class" licences and have pointed out that the official FCC "study guide" often bears little relationship with the questions asked as a result of the updating of study guide and examination to different timetables.

PAT HAWKER; G3VA

More on the scientific computer - 2

An improved monitor

By J. H. Adams, M. Sc,

Since publication of the scientific computer, correspondents have suggested several features to improve the performance. This new monitor incorporates many of those features and includes a general expansion of the facilities available in BURP, including the routines for graph plotting. By restructuring the interpreter four extra functions, described in table 7, have been fitted into the three original e.p.r.o.ms. The demonstration programs have been removed, but these could be stored on tape, and the Creed 75 teleprinter interface has been replaced by a standard 110 baud ASR/KSR interface. The KSR machine is now cheaper and is fairly standard whereas the 75 may have different speeds and encoding as I suspect some readers have found to their cost.

Hardware modifications

Connections for the two extra keys are shown in Fig 3. The interface for the teleprinter is essentially a latch as in the original design, but this must be connected to D_{0} instead of D_{7}. Most teleprinters contain an interface card for a 20 mA loop or an RS-232 link. For a current loop, the second circuit drives the printer quite satisfactorily.

Firmware modifications

Changes to the firmware are detailed in tables 8 and 9 . Primarily, space has been made in the first e.p.r.o.m. for three of the subroutines originally in the second which deal with instruction entry and condition testing of the MM57109. This has been achieved by using a simpler and shorter teleprinter interface, eliminating the subroutine at 034 E , and trimming the low level monitor so that it ends at 024 E . This has left space in the second e.p.r.o.m. for a new subroutine 051 D which extends the old 04E6, now 047 C , and together they can recognise and deal with the new facilities. Because these routines are quite complex, a disassembled listing of each is given in table 10.
The third r.o.m. is slightly briefer because checks for ends of lines, present in virtually all of the statement handling routines, are replaced by 051D. The command MOD (08BE) has been changed so that PRINTs buried in multi-statement lines are also changed to WRITEs. CALLs have been readdressed to suit the first two r.o.ms and CALL 042E has been replaced by the single RST byte CF (see 0008). In the
original r.o.m., after going through the sequence of recognition checks for encoded commands or, later, first words of statements, the interpreter returns to the command state or ignores the rest of the line respectively, if it cannot find a match or the generated code within the firmware.
This is particularly useful for dealing with REM because, being unrecognised, such lines are ignored as explained last month. A major change in the modified r.o.m. provides jumps to 1 C 00 (at 0975) for commands, to 1C60 (at 0AD7) for new statements and to ID00 (at 0BDE) for new functions. As a result REM has disappeared but the apostrophe has the same effect and retains the facility for remarks.
0993 is an example of where 051D is used solely to jump spaces between the
line number and the first word of the statement. Therefore, it is the point to which 051D transfers execution after coming across an ! in the text being interpreted. 097F pops off the stack, increments and pushes back the C register which is used as the line register store and then looks for and executes that new line. Thus, it is the point to which 051D transfers control after finding a ' or 8 DH number in the text. Because the computer scans the text for line numbers whether they exist or not, the lines in a program should be as close together as possible (say every other line) for the fastest program execution. Using multiple statements avoids this problem to some extent and can therefore reduce the execution time of some programs, particularly simple ones, by up to 20%.

Table 7. Additional facilities for the new monitor

1NT (OB64) Outputs the number in the 57109 to 1 EOO - F and tests the exponent sign. If negative, the whole number is written to zero, if positive, the lower mantissa exponent is drawn and used to calculate (OB72-8) where blanking should start. If the exponent is not less the 09 (OB80-B), blanking is carried out. The number stack in the 57109 is then collapsed by one to remove the old value (OB97) and the new value is entered into the 57109 by a jump to 050F at OB9A.
FRAC (OBA1)

RND (OBB4)

ABS (OBD3) Outputs the number and tests as in INT. If the exponent sign is negative, execution jumps to OB96 (OBA5) and effectively does nothing. For positive exponents a similar sum involving the lower mantissa exponent digit is performed and a jump is made back to OB79 in the INT routine (OBAE).
029F is called which loads the refresh register into A, converts it to a three digit decimal integer and enters it into the 57109 (this subroutine runs straight into 02AD). A pseudo-random delay (OBB8-A) based on the current v.d.u. printing position is then called so that a second call of 029 F will generate a second number from the $Z 80$ refresh register which is only tenuously linked to thé first. These numbers, now in the Y and X registers of the 57109, are combined through the sequence of instructions at OBBE to give $X=128 X+Y / 16383$, i.e. a reasonably random number between 0 and 1 . Note that as this uses two of the 57109 stack registers, no more than two other variables must be present in the 57109 when RND is used.
This simply uses the number cruncher test instruction 12 to test for a negative number in the X register. The result of this test governs whether the instruction to change sign, OC, is executed.

Table 8. Alterations to the first r.o.m

O24F was 03CE	0263 was 0260	0282 was 058A
O2AD was 024E	O2C7 was 0446	0326 was 0317
0345 was 0336	0367 was 0729	0374 was 0372
0395 was 0393	03A1 was 039F	03AB was 03A9
03C6 was 03C4	03D 1 was 0260	

029F Generates a 7-bit pseudo-random number and inputs it to the 57.109
02D1 Converts the computer 6-bit ASCII to true ASCII and prints it.
02D9 Prints a space.
02DE Prints carriage return and líne feed
02E8 Prints the contents of register A.
02F0 Prints (A) as a two character hexadecimal byte.
0317 Prints CR, LF, the contents of HL in hexadecimal and a space

Using the new facilities

In low level the first feature to be noted is that READY does not disappear when a command is typed in nor does the first letter appear at the beginning of the second v.d.u. line. This is because the same algorithm is now used for both high and low level word recognition. Clashes produced in the changeover explain the changes of COR to MOD and PROM to PROG. To leave LOAD, the space key is now used instead of @. The main change which affects both levels is that the interrupt-and-reset, which occurred whenever any key was depressed, has been omitted because control can be regained by using RESET. The "arrow" keys now revert to standard keys, RESET enters the low level and Control A (depressing A and the control key simultaneously) enters the high level. The delete key to the right of] can be used to delete complete bytes by one depression per byte. Although this will cause the formatting to go out of true during the LOAD, the grouping by four is maintained and on pressing the space bar at the end of the load the format will be restored.

When loading programs in high level
language, another character Control E is used to signify the end of LOADing or ADDing. This allows the colon, which was previously used for this purpose, to be included in printed messages etc. without terminating the current operation. Ensuring correct format of the input has been eased by a cursor, although with the original monitors few
problems will be encountered if a space is typed when in doubt. The DEL key backsteps and clears the last v.d.u. character and also backsteps HL. Corrections are, therefore, easily typed in, but mistaken returns and line numbers cas-: not be corrected in this way because
Fig. 3. Modifications to the keyboard and teleprinter interface.

Underside of keyboord

Teleprinter interfoce

Table 9. Firmware changes.

Old 04D4 running straight into 040D
Old 0460
Old 04BA
Old 04E6, 04FA-E is added to this so that when a code of less than OB is drawn from the look-up table at the end of the r.o.m., execution jumps to OB60. These new codes are for ABS, FRAC, INT, RND and any others which are not simple MM 57109 operations and will thus require some $Z 80$ software.
Jumps spaces and then returns on bytes less than $1 B$ and greater or equal to 2 A (except for 8D). Thus, for letters, operators and spaces, this routine will just jump spaces and return with HL pointing to the first non space, i.e. 051D is a supplement to 047 C . If the byte found lies between 1 A and 2 A it will, after:
(a) "(O52D) transfer text up to the next" onto the v.d.u. and then jump back to the start of the subroutine to deal with whatever follows.
(b)) (053B) collapse the stack and return.
(c) ((0542) call 051D to jump spaces and then 047C to execute the text within the parentheses until the call of 051D finds a). As this) will have been found during the calling of 051 D at 0546 and as) indicates that the original call of 051 D is no longer required, i.e, the bracketed term has been computed, detection of) drops the stack pointer past the return address the call at 0546 so that a return is made to the original point in the interpreter from where 051 D was called. After dealing with an expression in parentheses, the computed result is left in the X register of the 57109 and the SCII for), 29, is left in register A.

If the interpreter has not yet recognised the byte it must now be at the end of the statement. Before looking for a 1^{\prime} or 8 DH , two types of statement need special attention. 1FE1 is used in the third r.o.m. (0999) to store the code generated from the first word of the line. If it is 33 (i.e. a WRITE statement), execution shifts from 0554 to O56B. WRITE lines are similar to print types except that the material to be displayed is fed to locations from 1 D 80 rather than to the v.d.u. 056B sets an FF at the end of the block used and then resets DE to 1 D80 and outputs the characters up to FF on the teleprinter. After restoring AF and DE it returns to 0563.
If the line is a LET (code 2C) the variable to which the computed value is to be assigned is drawn from its store (1FE2) and the contents of the 57109 X register are fed to it.
After dealing with these two special cases, checking of the original byte continues (0560). The remaining possibilities will transfer control rather than return from the subroutine and so the pointer is moved down the stack, losing the previously stored return address and then, after;
(d) 1 (0563) execution passes to 0993.
(e) 8 DH ' or anything else, passes execution to 097F. 8 D is the code for return and indicates the end of a line. signifies that the rest of the line is a remark which the interpreter will also want to treat as the end of a line.
Jumps text and then calls 051 D and, when required (i.e. letters, operators or digits), 047C as well.
Calls 051 D as above.
Old 0714.
Unchanged
Unchanged.
Modified 074A.
Old 076D.
Used in the above two to cover common parts and thus save space.
Used in INT and FRAC.
Unchanged.
Unchanged.
Unchanged.
Look-up table which now includes codes for new functions (O7DA/DC/E3/E9).
they involve internal operations by the interpreter rather than the byte by byte storage which takes place during lines． The critical formatting points are LET lines where the variable following let must be followed immediately by the equal sign，and IF lines where，when a variable precedes the comparison sign， there must be a space in between．
A program in table II demonstrates the uses of the new facilities．Lines 3 and 4 show the new REM and in this case they are complete lines on their own． Remarks may be appended to any ＂active＂line just preceded by an apost－ rophe．Line 5 shows printed text in an INPUT line．The input variable X is against the＂to save r／w．m．space but again，spacing is not critical．In line 7， two spaces are left between step and 1 without any effect on the interpreting of the line．Note that the expression in parenthesis is spaced exactly as in a LET statement．Line 9 demonstrates the compounding of two LET type state－ ments（with the LET omitted）by the use of an exclamation mark．The statement following ！is typed immediately after the ！，again to conserve r／w．m．space． Line 11 is＂If K is a whole number and if Z is also a whole number，then print half of K plus A to two decimal figures and then half of the positive difference bet－ ween K and $\mathrm{A}^{\prime \prime}$ ．This line illustrates the need for a space between the variable and the greater than，equals or less than sign．A space is required because，under the original interpreter，this had to be a variable but it can now be a variable， number or function in parenthesis and therefore has to be distinguishable．A closing parenthesis has no other meaning and does not need the space， i．e． $\operatorname{IF}(X \operatorname{SIN} I-$ ）$=Q$ print．．
The text following an IF comparison can be any other permitted statement including another IF as shown in the example program．Therefore，the old form IF $\mathrm{X}=0$ THEN I 25 will be IF $\mathrm{X}=0$ GO 125．It might seem that the freedom to place statements end to end on the same line will reduce all programs to one line in length（note that a line is not determined by the length of a v．d．u．line and may consist of any number of cha－ racters）．However，this is not so because whenever a statement has to be entered as the result of a jump，or it initiates a specific jump，the statement must either start or end a program line respectively． This means that the first instruction in a FOR loop must be at the beginning of a line because further through the execu－ tion a NEXT will try to jump back to it． Similarly，the statement after the com－ plete IF term must be on a new line because IF is basically＂perform the operation specified after the conditional test if the latter is true or jump to the next line＂．

By similar reasoning，GOSUB and GO should be at the end of lines，as should RETURN and END．The lines to which GOSUB and GO refer should start with the statement to which the jump was directed．

While encoding the new functions by algorithm，several clashes occurred with already assigned codes and this provided an opportunity to re－encode the two log．functions into a more standard format，i．e．CLG for a com－ mon \log and LOG for log．to the base $e_{\text {．}}$ ． The radian to degree conversions have
also been changed by dropping the first letter，i．e．TD for a conversion to de－ grees and TR for one to radians．
The author is offering a set of three p．r．o．ms programmed with the new monitor firmware for $£ 30$ ．Alternatively，existing p．r．o．ms can be reprogrammed for $\mathbf{6 6 . 5 0}$（both plus 35p post and packing）． 5 The Close，Radlett， Hertfordshire．

Table 10．Disassembled subroutines．

847 C	L．A，（HL）	94D9	$E \times A F A F{ }^{\prime}$	e515	INC	14.
2470	1 VC ： 1 L	04 DA	LD A， 20	051 E		A（ $\mathrm{H}_{\text {L }}$
0475	LD C．OF	$34 D C$	CP（HL）	$051 F$	CP	28
0.43 C	CP 20	64DD	JP．Vさ 03 84E2	0521	JT2	FA RSID
C432	JP\％F3 847C	04DF	ERAF AF＇	0523	CP	1 B
3484	CP 19	34 ER	JR 2E0510	0525	RET	
0486	JR．C 51 34D？	$84 E 2$	DEC H2	0526	CP	85
0488	C？ 3 C	04：3	CALL 0715	0528	J：2	Q 3 C52D
048 A	JTV． 17 － 4 A3	04EE	CP 28	052A	CP	2 A
0.48 C	CP 25	04 E 3	JRVC 02 04EC	052C	PET	jc
6435	JマJ？ 03 ¢493	94EA	ADD 20	O52D	CP	22
8490	C．（HL）	CLEC	CP 50	052F	J．3NZ	2040538
3491	JRC CC C49F	94EE	JRC O2 04F2	E531	IVC	HL
0493	ADD OL	$84 F 0$	SUS 10	8532	LD A	A．（HL）
0495	AJD A	0452	ADD B4	0533	CP	22
849 t	．JP PEO49D	0454	P＇JSH．BC	0535	J？${ }^{\text {d }}$	E6 351D
0493	278	8455	LD C，A	3537	LD	（ $D E$ ），A
2493	AID FB	$04 F t$	LD B．e？	9538	IVC	DE
8430	RST 1	C4F8	LD A，（BC）	8539	38	Fe 0531
249E	RE？	6459	9\％P 3C	2539	CP	29
049 F	LD Cigc	$84 F A$	CP OB	653D	J！	$\because 38542$
84 Al	LD A，（HL）	$84 F C$	JP C 0360	E53F	IVC	SP
84 AL	I．JC HL	04 FF	C\％ 80	2540	IJC	SP
24 A3	$E \times A F A F \prime$	8581	J3C 050503	8541	PET	
2444	P＇SM DE	0503	E：${ }^{\text {AF }}$ AF＇	0542	CP	28
34 A5		8504	LD A， $2 \mathbb{1}$	2544	JアT？	？ 08 254E
34 AE	LD HL．IE00	2506	RST 1	2546	CALL	L 0510
14A3	L． D ，of	0587	EX $A F A F^{\prime}$	0549	CALL	L 047 C
3443	CALL OSAR	0528	AND 3F	054C	J？	F8 05／4E
CLAF	LD L．g9	250 A	RST 1	054 E	PISSA	H AF
0438	LD（ HL ），C	050 B	RET	254F		A，（1FE1）
8431	LD L．bo	958c	DEC DE	8552	CP	33
3483	EX AF AF＇	0500	E：${ }^{\text {P }}$ D，HL	0554	JRT	$1505 \in B$
8434	AVD 0 F	0585	ROP DE	0556		2 C
0436	CP OF	0505	Y9R A	2558	JTN？	二 Of 2588
0485	リアリコ 02 O43C	0510	P＇SSH HL	－55A	LD A	A，（1FE2）
048 A	LD $A, 0 A$	0511	CALL OTAC	955D	Call	L 0485
O15C	LD（ HL ），A	0514	LD B， 18	0560	POP	$n \mathrm{~F}$
0435	LD A，（DE）	0516	LD A，（HL）	0561	IVC	SP
6455	IVC HL	0517	IVC HL	05t2	IVC	Sp
8435	I JC DE	0518	TST ！	0563	CP	21
$84 C 0$	CP 28	0519	DJV：FB 051E	3565	$J P 2$	20973
$84 C 2$	JPNC FO 0434	9518	POP HL	2568	JP	8975
04.4	CP 20	051 C	RET	25 EB	LD A	A，FF
04 CE	JRZ 44 E50C			056 D	LD	（ $D E$ ），A
84.8	LD Lera			OSEE	LD E	E， 80
O4CA	LD（HL2．0E			8570	LD A	A．（DE）
34 CC	INC HL	．		0571	CP	FF
OACD	LD A，（DE）			0573	52	288570
$04 C E$	INEDE			2575	AvD	3 F
g4CF	CP 20			0577	CALL	－02D1
OADI	JRNZ F1 e484			057A	IVC	DE
0403	LD（HL），\＆C			057B	JR	F3 0578
C4D5	INC HL			6570	POP	AF
e4DE	LD A．（HL）			9598	POP	DE
$04 D 7$	JR DB 0434			257F	por	$D E$
				8580	Jת	El e．5e3

Table 11．Demonstration programs．
003 －THIS PDOGRAM，PUBLISHEL IN PART 4 ，TOO： 19 LIVES BEFORE．JOK．． 005 PRINT＂TMIS PROGRAM USES＇JEUTOJS METHOD FOR SOLVIVG＂
007 INPUT＂$F=F(X)$ ．EVTER AJ INITIAL VALUE NO＇N＂Q IERASE

013 TOP ：IF（G ABS ）CQ．000日E 1 PRINT＂SDLUTIOV＝＂GG IEND
$015 \mathrm{Q}=1 \mathrm{FG} / 1$－REC Q．B0001＊－Q＊IPRIVT QS 1609
$025 F=X \operatorname{LOG} \times 3 *+10.9074$－
027 RETUSV
2078
003 ＇THIS PROGRAM COMP＇JTES PAIRS OF IUMBETS MHICH，WHEN
204 ＇SQJARED AVD SYBTRACTED，GINE THE IVPUT VUMBER
ge5 IMPUT＂IUPUT vMBER IN QUESTIOV＂X
067 FOR $A=1$ STEP 1 INTIL（ 8 ROOT $1+$ ）
$009!!=x$ A／$!==!$ A－ $2 /$ ABS
Q11 IF：$K=(K$ IVT $) I F Z=(Z I V T)$ PRIVT（K $A+2 /) 2(K A-2 / A B S)$ 013 JEMT A ！GJ 5

New frequency allocations

WARC 79 decisions for radio services in Region 1

The list opposite gives frequency allocations to radio services decided at the World Administrative Radio Conference (WARC 79) held by the International Telecommunication Union at Geneva, 24 September to 6 December. It is taken from the revised Radio Regulations which will come into force on January 1982 and will replace the allocations made at the previous event of this kind held in Geneva in 1959 (see October 1979 issue, p.52, for background). Because of lack of space, and the interests and geographical distribution of our readers, the information presented here is no more than an extract from the international table of frequency allocations which will be part of the Regulations and in its present form runs to 174 pages and includes hundreds of footnotes, giving additions, qualifications, restrictions etc for particular countries. First, our list covers only ITU Region 1 (Europe, Africa, Middle East and Russia). Secondly, its upper limit is 10 GHz whereas the WARC allocations in fact go up as far as 275 GHz . Thirdly, all the footnotes have been omitted. Nevertheless, the list does give details of the main changes which are particularly important to radio services in the UK.

For example: as a result of a change in the long-wave band limits, Droitwich (Radio 4) frequency will eventually have to be moved to 198 kHz ; the BBC have obtained a medium-wave frequency for their Carfax traffic information service; international shortwave broadcasting has acquired overall an additional 780 kHz , including an extra band; television Channel 1 (Crystal Palace and other stations) will be transferred from broadcasting to radio communication; land mobile radio may be moving into parts of television Band I and Band. III by internal agreement within the UK (the 405 -line television services in these bands probably will be closing down by 1985); v.h.f. radio broadcasting will eventually be extended up to 108 MHz , though for a long time it will be sharing the top end of this band ($104-108 \mathrm{MHz}$) with communication services; at u.h.f. two 8 MHz channels will eventually become available, perhaps for land mobile radio or television, between television Bands IV and V ; and at the top end of the u.h.f. band there is more space for mobile services. However, it will take a good many years
for all these changes to be implemented and some will not occur till near the time of the next WARC, possibly in 2000AD.

In the lists, the code letters show the radio services to which the frequencies have been allocated, and these codes are explaind in the key below. The terminology here is approximately the same as that used in the ITU frequency allocation document. In all cases the first code letter, to the immediate right of the frequency band, indicates a "primary" service (using ITU terminology) in the band, that is, a service which has equal rights with a "permitted" service but has prior choice of frequencies when frequency plans are made. The next code letter to the right could also indicate a primary service, but in some cases it could be a "permitted" service (which has rights equal to those of a primary service except that it gets the second choice in frequencies), or a "secondary" service (which must not cause interference to primary services and cannot claim protection from interference produced by them). To avoid complications in a short article, our list does not indicate the actual categories of service applying to the second and subsequent code letters, but in general a rough guide is that the order of categories when moving through the code letters from left to right is: primary, permitted, secondary.

The following notes highlight some of the changes which may be of interest to our readers.

Long waves

The limits of the l.w. broadcasting band $(150-285 \mathrm{kHz})$ have been moved downwards in frequency by 1.5 kHz to $148.5-283.5 \mathrm{kHz}$. This has been done to bring the band in line with medium waves in having its carrier frequencies at integral multiples of the 9 kHz channel spacing, to avoid heterodyne interference and facilitate digital tuning of receivers using synthesizers. The 15 channels will be moved in three blocks of ' 5 channels, starting in 1986 with the lower limit and ending in 1990 with the upper limit. As a result the 200 kHz Droitwich broadcasting frequency will be changed to $198 \mathrm{kHz}(9 \mathrm{kHz} \times 22)$. Radio beacon frequencies for aircraft navigation within this range will be changed accordingly.

Medium waves

The band limits of the m.w. broadcasting band ($525-1605 \mathrm{kHz}$) have been adjusted upwards to $526.5-1606.5 \mathrm{kHz}$ to give the correct amounts of space for the sidebands at these limits - an adjustment that was not made at the 1974-75 regional I.f./m.f. broadcasting conference (January 1976 issue, p.42). Just below this the BBC have acquired a 7 kHz band of 519.5 to 526.5 kHz on a secondary basis for their experimental Carfax traffic information service.

Short waves

The short-wave broadcasters did not get the hoped-for increase of sixty per cent or more in spectrum space but did achieve an extra 780 kHz overall, which amounts to 32.5% over the present allocation. They acquired a new band at $13.6-13.8 \mathrm{MHz}(21 \mathrm{~m})$, extended the 13 m , $16 \mathrm{~m}, 19 \mathrm{~m}, 25 \mathrm{~m}$ and 31 m bands by amounts varying between 100 kHz and
continued overleaf

Key to code letters in list

A

MLS Microwave landing system
MM Maritime mobile
MMS Maritime mobile - satellite
MR Maritime radionavigation
MS Meteorological - satellite
RA Radio astronomy
RL Radiolocation or radar
RN Radionavigation
RNS Radionavigation - satellite
SAT Satellite (Earth exploration)
SE Space to earth (satellite)
SF Standard frequency
SFS Standard frequency - satellite
SI Satellite identification
TS Time signal
Amateur
Aeronautical fixed
Aeronautical mobile - satellite
Aeronautical radionavigation
Amateur satellite
Broadcasting
Broadcasting - satellite
Earth to space (satellite)
Fixed communications
Hearing aids
Industrial, scientific, medical
Land mobile
Mobile
Meteorological aid
$\square-\quad$ -

Table of frequency allocations for Region 1

L.F. (kHz)	SERVICES	7.0-7.10	A, AS	40.02-40.98	F, M
9-14	RN	7.10-7.30	B	40.66-40.70	ISM
14-19.95	F, MM	7.30-8.10	F, LM	40.98-41.015	F, M, S
19.95-20.05	SF \& TS	8.10-8.195	F, MM	41.01 5-47.00	F, M
20.05-70	F, MM	8.195-8.815	MM	47.0-68.0	B, LM
70-72	RN	8.815-9.040	AM	68.0-74.80	F, M
72-84	F, MM, RN	9.040-9.50	F	74.80-75.20	AR
84-86	RN	9.50-9.90	B	75.20-87.50	F, M
86-90	F, MM, RN	9.90-9.995	F	87.50-100.0	B, LM
90-110	RN	9.995-10.003	SF, TS	100.0-108.0	B, F, M, LM
110-112	F, MM, RN	10.003-10.005	SF, TS, S	108.00-117.975	AR
112-115	RN	10.005-10.10	AM	117.975-136.00	AM
115-117.6	RN, F, MM	10.10-10.150	F, A	136.0-137.0	AM, F, M
117.6-126	F, MM, RN	10.150-11.175	F, M	137.0-138.0	SE, MS, F, M
126-129	RN	11.175-11.400	AM	138.0-143.60	AM, LM, MM
129-130	F, MM, RN	11.40-11.650	F	143.60-143.65	AM, SE, LM, MM
130-148.5	MM, F	11.650-12.050	B	143.65-144.00	AM, LM, MM
148.5-255	B	12.050-12.230	F	144.0-146.0	A, AS
255-283.5	B, AR	12.230-13.20	MM	146.0-149.9	F, M
283.5-315	MR, AR	13.20-13.360	AM	149.9-150.05	RNS
		13.360-13.410	F, RA	150.05-153.0	F, M, RA
M.F.		13.410-13.60	F, M	153.0-154.0	F, M, MA
315-325	AR, MR	13,553-13.567	ISM	154.0-156.7625	F, M
325-405	AR	13.60-13.80	B	156.7625-156.8375	MM (Distress)
405-415	RN	13.80-14.00	F, M	156.8375-174.00	F, M
415-435	AR, MM	14.00-14.250	A, AS	174.0-223.0	B, LM
435-495	MM, AR	14.250-14.350	A	223.0-230.0	B, F, M, LM
495-505	M (Distress)	14.350-14.990	F, M	230.0-267.0	F, M
505-526.5	MM, AR	14.990-15.005	SF, TS	267.0-272.0	F, M, SE
519.5-526.5	BBC Carfax	15.005-15.010	SF, TS, S	272.0-273.0	SE, F, M
526.5-1,606.5	B	15.010-15.10	AM	273.0-322.0	F, M
1,606.5-1,625	MM, F, LM	15.10-15.60	B		
1,625-1,635	RL	15.60-16.360	F	U.H.F.	
1,635-1,800	MM, F, LM	16.360-17.410	MM	322.0-328.6	F, M, RA
1,800-1,810	RL	17.410-17.550	F	328.6-335.4	AR
1,810-1,850	A	17.550-17.90	B	335.4-399.9	F, M
1,850-2,025	F, M	17.90-18.030	AM	399.9-400.05	RNS
2,025-2,045	F, M, MA	18.030-18.052	F	400.05-400.15	SFS
2,045-2,160	MM, F, LM	18,052-18.068	F, S	400.15-401.00	MA, MS, SE
2,160-2,170	RL	18.068-18.168	A, AS	401.0-402.0	MA, SE, ES, F, MS, M
2,170-2,173.5	MM	18.168-18.780	F	402.0-403.0	MA, ES, F, MS, M
2,173.5-2,190.5	M (Distress)	18.780-18.90	MM	403.0-406.0	MA, F, M
2,190.5-2,194	MM	18.90-19.680	F	406.0-406.1	ES
2,194-2,300	F, M	19.680-19.80	MM	406.1-410.0	F, M, RA
2,300-2,498	F, M, B	19.80-19.990	F	410.0-420.0	F, M
2,498-2,501	SF, TS	19.990-19.995	SF, TS, S	420.0-430.0	F, M, RL
2,501-2,502	SF, TS, S	19.995-20.010	SF, TS	430.0-440.0	A, RL
2,502-2,625	F, M	20.010-21.0	F, M	433.05-434.79	ISM
2,625-2,650	MM, MR	21.0-21.450	A, AS	440.0-450.0	F, M, RL
2,650-2,850	F, M	21.450-21.850	B	450.0-460.0	F, M
2,850-3,025	AM	21.850-21.870	F	460.0-470.0	F, M, SE
		21.870-21.924	AF	470.0-582.0	B
H.F. (MHz)		21.924-22.000	AM	582.0-606.0	AR (UK only)
3.025-3.155	AM	22.0-22.855	MM	606.0-790.0	B, BS
3.155-3.195	HA	22.855-23.000	F	790.0-862.0	F, B
3.155-3.20	F, M	23.0-23.2	F, M	862.0-890.0	F, M, B
3.20-3.40	F, M, B	23.20-23.35	AF, AM	890.0-942.0	F, M, B, RL
3.40-3.50	AM	23.35-24.00	F, M	942.0-960.0	F, M, B
3.50-3.80	A, F, M	24.00-24.890	F, LM	960.0-1,215	AR
3.80-3.90	F, AM, LM	24.890-24.990	A, AS	(GHz)	
3.90-3.950	AM	24.990-25.005	SF, TS	1.215-1.240	RL, SE
3.950-4.0	F, B	25.005-25.010	SF, TS, S	1.240-1.260	RL, SE, A
4.0-4.063	F, MM	25.010-25.070	F, M	1.260-1.30	RL, A
4.063-4.438	MM	25.070-25.210	MM	1.30-1.35	AR, RL
4.438-4.650	F, M	25.210-25.550	F, M	1.35-1.40	F, M, RL
4.650-4.750	AM	25.550-25.670	RA	1.40-1.427	SAT, RA, S
4.750-4.850	F, AM, LM, B	25.670-26.100	B	1.427-1.429	ES, F, M
4.850-4.995	F, LM, B	26.10-26.175	MM	1.429-1.525	F, M
4.995-5.003	SF, TS	26.175-27.50	F, M	1.525-1.530	SE, F, SAT, M
5.003-5.005	SF, TS, S	26.957-27.283	ISM	1.530-1.535	SE, MMS, SAT, F, M
5.005-5.060	F, B	27.5-28.0	MA, F, M	1.535-1.544	MMS
5.060-5.450	F, M	28.0-29.7	A, AS	1.544-1.545	MBS
5.450-5.480	F, AM, LM	29.7-30.005	F, M	1.545-1.599	AMS
5.480-5.730	AM			1.559-1.610	AR, RNS
5.730-5.950	F, LM	V.H.F.		1.610-1.6265	AR, RA
5.950-6.200	B	30.005-30.010	SI, F, M, S	1.6265-1.6455	MMS
6.20-6.25	MM	30.01-37.5	F, M	1.6455-1.6465	MBS
6.525-6.765	AM	37.5-38.25	F, M, RA	1.6465-1.660	AMS
6.765-6.795	ISM	38.25-39.986	F, M	1.660-1.6605	AMS, RA
6.765-7.0	F, LM	39.986-40.02	F, M, S	1.6605-1.6684	RA, S, F, M

1.6684-1.670
$1.670-1.690$
$1.690-1.700$
1.700-1.710
1.710-2.290
2.290-2.300
2.300-2.450
$2.400-2.500$
2.450-2.500
2.500-2.655
2.655-2.690
2.690-2.70
2.70-2.90
2.90-3.100

S.H.F.

S.100-3.400
3.40-3.60
$3.60-4.20$
4.20-4.40
4.40-4.50
4.50-4.80
4.80-4,990
4.990-5.000
5.0-5.250
5.250-5.255
5.255-5.350
5.350-5.460
5.460-5.650
5.650-5.725
5.725-5.850
5.725-5.875
5.850-7.075
7.075-7.250
7.250-7.450
7.450-7.550
7.550-7.750
7.750-7.900
7.900-8.025
8.025-8.175
8.175-8.215
8.215-8.400
8.40-8.50
8.500-8.750
8.750-8.850
8.850-9.000
9.0-9.2
9.2-9.8
9.80-10.0

MA, F, M, RA
MA, F, MS, M
MA, MS, F, M
F, MS, M
F, M
F, S, M
F, A, M, RL
ISM
F, M, RL
F, M, BS
F, M, BS, SAT, RA, S
SAT, RA, S
AR, RL
RN, RL

RL
F, SE, M, RL, A
F, SE, M
AR
F, M
F, SE, M
F, M, RA
F, M, RA, S
AR, MLS
RL, S
RL
AR
RN, RL, LM
RL, A, S
ES, RL, A
ISM
F, ES, M
F, M
F, SE, M
F, SE, MS, M
F, SE, M
F, M
F, ES, M
F, ES, M, SAT
F, ES, MS, M, SAT
F, ES, M; SAT
F, M, S
RL
RL, AR
RL, RN
AR
RL, RN
RL, F

200 kHz (see list) but lost 70 kHz from the lower end of the 11 m band, which is now $25.67-26.1 \mathrm{MHz}$. There was no change below 9 MHz . These gains were obtained, initially against considerable opposition, at the expense of the fixed h.f. communication bands, which tend to alternate with the broadcasting services; but the fixed services will be offered replacement frequencies. The transfers will not start until 1984, but in any case it was decided that there will be a new conference for planning the h.f. broadcasting bands and this could take place in 1982 or 1983. The first part will establish the technical parameters, then, when everyone has digested the same basic data, the planning proper will start a year or more later. At WARC 79 nineteen delegations, including the UK's, "reserved their positions" on h.f. broadcasting, which means that, in the absence of an adequate plan, they do not intend to be bound by these decisions. They felt, for example, that not
enough spectrum was allocated in the 41 m and 49 m broadcasting bands.

The maritime mobile service has also gained some extra space at h.f., several of the higher bands being increased by 100 kHz or more.

V.h.f. bands

The radio communication services gained some extra frequencies at v.h.f. in parts of the spectrum they have not been in before. For example, 41.015 47.0 MHz will be exclusively for fixed and mobile communications. Hitherto in Britain 41.47 MHz has been allocated to 405 -line television broadcasting (Channel 1 of Band I) and in fact the BBC will be able to keep it on a primary basis till 1987 (and the French broadcasters till 1986). Furthermore, the land mobile service of 30 countries including the UK have been allocated $47.0-68 \mathrm{MHz}$ (the remainder of the UK tv Band I) on a permitted basis, leaving broadcasting as the primary occupant. When, however, $405-$ line television broadcasting is closed down, and in the absence of alternative broadcasting requirements, land mobile radio could be allowed to take over the whole band.

The land mobile service of the UK and 15 other countries has also obtained the band $174-223 \mathrm{MHz}$ on a permitted basis. Hitherto $174-216 \mathrm{MHz}$ has been occupied exclusively by television broadcasting (Band III for 405 -line transmissions in the UK) and this service will continue to use it, and the extension to 223 MHz , on a primary basis until 405 -line tv is closed down. And land mobile radio in 19 countries including the UK will also be moving into an adjacent band $223-230 \mathrm{MHz}$ on a permitted basis. The primary occupant of this band will be broadcasting, while fixed and mobile communications are to use it on a secondary basis.

The land mobile and maritime mobile services have primary allocations in 29 countries, including the UK, throughout the band $138-144 \mathrm{MHz}$.

However, mobile radio will be losing some spectrum in the region of 100 MHz as v.h.f./f.m. sound broadcasting is extended upwards in frequency (January issue, p. 63). Broadcasting in fact will eventually become the primary service in a band $87.5-108 \mathrm{MHz}$ and has a common world-wide allocation from 100 to 108 MHz (a decision forced mainly by the African countries) and the UK police and fire mobile radio at present using $97.6-102.1 \mathrm{MHz}$ will have to move by the end of 1989. Up to then they will remain on a permitted basis and there will probably be a phased withdrawal over the next ten years. Meanwhile fixed and mobile services will continue to use $100-104 \mathrm{MHz}$ on a primary basis until a new plan made by a regional broadcasting conference (possibly in 1983) comes into force. And 104 108 MHz is allocated to mobile radio on a permitted basis till the end of 1995 and on a secondary basis thereafter. In the UK this $104-108 \mathrm{MHz}$ is at present used
for private mobile radio (e.g. the nationalized public services). Thus broadcasting and radio communication will be equally sharing $104-108 \mathrm{MHz}$ for probably the next twenty years. At the bottom end of the $87.5-108 \mathrm{MHz}$ band, the section $87.5-88 \mathrm{MHz}$ is also allocated on a permitted basis to the land mobile service in ten countries included the UK. A new conference entirely devoted to mobile radio is likely to be held in about 1982 .

U.h.f. bands

Broadcasting will be the primary service in the band 470.790 MHz and will share with fixed communications, also a primary service, from 790 to 862 MHz . In the UK however, television Bands IV and V are at present separated by three 8 MHz channels of the aeronautical navigation service, taking $582-606 \mathrm{MHz}$. The channel at $582-590 \mathrm{MHz}$ will continue until the end of 1987 and the channel $598-606 \mathrm{MHz}$ until the end of 1994. Thus this aeronautical service will eventually be squeezed into one 8 MHz channel at $590-598 \mathrm{MHz}$ and the other two could be used either for land mobile radio or television broadcasting. The top end of the u.h.f. band, $862-960 \mathrm{MHz}$, has been opened up to mobile radio, which is something the UK delegation particularly wanted to achieve. In this $862-960 \mathrm{MHz}$ band the broadcasting service shown in the list applies only to certain countries in the African broadcasting area.

Amateur radio

The amateur radio service uses frequencies throughout the spectrum for conventional and satellite communication. For comments on the WARC 79 allocations, see World of Amateur Radio by Pat Hawker elsewhere in this issue.

We hope to deal with the allocations above 10 GHz in a later issue. This is the part of the spectrum used by satellites, where some noteworthy changes have been made; for example the satellite allocation in the 10 GHz region has been almost doubled and provision has been made for a mobile satellite service at 14 GHz which would enable transportable earth stations to be taken to remote places for relaying television news and other events directly by satellite. Direct broadcasting from satellites to domestic rooftop aerials can now take place in the three bands: $11.7-12.5 \mathrm{GHz}$ (see January 1979 issue); $40-42.5 \mathrm{GHz}$; and $84-86 \mathrm{GHz}$. (The broadcasting satellite allocation in our list at $2.50-2.690 \mathrm{GHz}$ is limited to national and regional community reception systems.)

More detailed and complete information on the WARC 79 frequency allocations can be obtained from the Radio Regulatory Department, Home Office, Waterloo Bridge House, London SEl 8UA (tel: 01-275 3000).

Multiphonic synthesizer organ

Improved circuit to eliminate 'thumps'

by J. H. Asbery, B.Sc.

The novel keyboard switching system described in an article in this joumal in June, 1973, enabled six notes to be played simultaneously with the use of only six generators. One drawback to the original system was the production of 'clicks' and 'thumps' when keys were pressed and released: this new version uses the same switching arrangement, but an additional circuit to provide a smooth decay is included.

A multiphonic organ is one in which there are only as many generators as notes you wish to play at the same time, as distinct from one generator for every note on the keyboard, which is the case with a polyphonic organ. Two completely different types of multiphonic organ are in use.

The computer organ has a polyphonic generator system, producing a signal for each note of the keyboard, but only one basic waveshape. An electronic multiphonic switching system connects
this signal to one of a limited number of waveshape processing units when a key is pressed. There are typically 12 of these units, so that only 12 notes may sound at the same time. A computer organ with only 6 wave shape processing units would be an attractive proposition, if a significant reduction in cost could be achieved.

The second type ${ }^{1}$ uses a mechanical keyboard changeover switching system and generators, in which the frequency is determined by the value of the resistor connected to it by the keyboard switching system. Whilst these organs are satisfactory for home use, they are subject to a fundamental limitation: when the hand is lifted from the keyboard the connection to the resistor is broken, so that the signal ceases abruptly. At higher volume levels, such as those required for church or theatre use,

Fig. 1. Circuit of the multiphonic synthesizer organ
this gives rise to objectional key clicks and thumps. The use of a reverberation unit mitigates this effect a little, but despite much work to find alternative means of reducing the clicks and. thumps to an acceptable level, it appears that the only satisfactory and acceptable solution is to arrange for the sound to die away over a few cycles when the key is released.

Most synthesizers are monophonic, which is a severe limitation. There are a number of instruments in which a polyphonic generator system is used, the output waveform from the keyboard switching system being fed to a programmed, voltage-controlled filter, but the output from the keyboard switching system consists of a mixture of the different notes, so that it is not possible to process the signals individually by the usual synthesizer techniques.

By combining multiphonic techniques with synthesizer techniques, it is possible to overcome the limitation of the synthesizer, namely its monophonic

characteristic, by multiphonic techniques, and to overcome the limitation of inexpensive multiphonic organs by synthesizer techniques. The generators are voltage-controlled oscillators: it is therefore possible to store the switched voltage on a capacitor so that they will continue to oscillate at the correct frequency after the key has been released, and arrangements can be made to cause the sound to die away over a few cycles, completely eliminating click and thump. The waveform from each generator is available separately and unmixed for individual treatment and processing by existing synthesizer techniques.

Voltage-controlled oscillators

The requirements placed on voltage controlled oscillators for use in a multiphonic organ are more stringent than for a v.c.o. in a monophonic instrument. As there are more than one of these units, the cost and size become more significant and it is more important to minimize these. In a multiphonic instrument, the voltage for a given note is the same for all the v.c.os, so that high consistency between all the oscillators in the one instrument is essential.

The design of the ramp-type v.c.o. adopted, IC_{4}, and IC_{5}, is conventional except for the switching transistor Tr_{1}, which is used in a new way. When this design of v.c.o. is used with a switching transistor in conventional mode the transistor gives rise to a large variation between similar v.c.os: f.et.s. are sometimes used, but these are also subject to a wide tolerance spread. In conventional mode, the bottoming voltage of the transistor collector (transistor on) is of the order of 40 mV . Transistors are sometimes used in the reverse mode, in which the functions of collector and emitter are interchanged and the bottoming voltage is reduced to around 25 mV . In the mode of operation used here, when the transistor is on, current flows from base to emitter and from base to collector in the same direction, rather like two separate diodes (except with much better characteristics). The bottoming voltage, that is the voltage between collector and emitter, is of the order of 2 mV . As a result of this there is much better consistency between a number of similar v.c.o. units.

Decay switching

The second main problem of a multiphonic synthesizer is that it is not practical to provide two-pole, or two separate keyboard switching systems: the one system has therefore to perform two functions. It has to connect the v.c.o. to the voltage corresponding to the key pressed, and it provides an on/ off control signal, for that generator, to control the modulation envelope sequence and any other signal processing sequence desired. The keyboard switching system connects the v.c.o. memory circuit, $\mathrm{C}_{1}, \mathrm{IC}_{2}$, to the correct

Components list

Integrated circuits	
1,2,3,4	741
5	709
6	74C93
(two 74C93s for three dividers)	
Transistors	
1,2,3	BC 307
4	BC. 149
Capacitors	
1	0.1μ, polyester 20\%
2	0.025 μ, polyester 5\%
3.4	0.47μ, polyester 10%
Resistors	
1	$2 \times \mathrm{R}_{2} 2 \%$ metal film
2	$5 \mathrm{k} 20 \%$ metal film
3	162 1\% metal film
4	10.0 1\% metal film
5	10.51% metal film
6	11.3 t\% metal film
7	11.81% metal film
8	12.81% metal film
9	13.3 1\% metal film
10	14.0 1\% metal film
11	15.0 1\% metal film
12	15.81% metal film
13	16.91% metal film
14	17.81% metal film
15	18.71% metal film
16	20.0 1\% metal film
17	21.0 1\% metal film
18	22.6 1\% metal film
19	23.7 1\% metal film
20	25.51% metal film

26.7 1\% metal film 28.0 1 \% metal film 30.1 1\% metal film 31.61% metal film $33.2,1 \%$ metal film 35.3 1 \% metal film 37.41% metal film 165.01% metal film 100k carbon film $=R_{31} 2 \%$ metal film 20k 20\% metal film $2 \times R_{33} 2 \%$ metal film 7.7k 5\% metal film 10k carbon film 10k carbon film 1 k carbon film 1. $2 \mathrm{k} 20 \%$ metal film $=R_{40} 2 \%$ metal film $33 \mathrm{k} 20 \%$ metal film $2.2 \mathrm{k} 5 \%$ carbon film 4.7k 5\% carbon film 100k 5% carbon film 10k 5% carbon film 220k 5\% carbon film 100k 5% carbon film 100k 5\% carbon film 33k 5\% carbon film 3. $3 \mathrm{k} 5 \%$ carbon film 1k 20\% pot

The product of R_{33} and C_{2} should be nominal plus or minus 1%.

We understand that Mr Asbery is prepared to supply components from 87. Oakington Manor Drive, Wembley, Middleséx.
voltage, enabling the oscillator to continue oscillating at the correct frequency after the note has been released. As the capacitor, C_{1}, holds the control voltage, there is no change of voltage and no signal available to initiate the decay sequence. If the capacitor, C_{1}, is omitted or much reduced, when the key is released the output voltage of IC_{2} falls, providing a signal to initiate the decay sequence, but the frequency of the oscillator will be incorrect. In a monophonic synthesizer this problem is solved by a two pole switching system.
The solution adopted here is to interpose a resistor, R_{29}, between the switching system and the memory capacitor, $\mathrm{C}_{1} . \mathrm{IC}_{3}$ detects the direction of current flow through this resistor by detecting the polarity of the voltage across it. When the note is pressed the input current to the non-inverting input of IC_{3} flows through R_{29}, so that the non-inverting input of IC_{3} is more negative than the inverting input: the output is therefore low. When the key is released, the input current to the inverting input of IC_{3} and the non-inverting input of IC_{2} is derived from memory capacitor, C_{1}, and flows through R_{29}, and the inverting input of IC_{3} becomes more negative than the non-inverting input, so that the output goes high. The output of IC_{3} is the required control signal. When the key is released the output voltage of the memory, IC_{2}, falls by the sum of the voltages across R_{29} in the one and off states. In the organ de-
scribed in this article the resulting. change of frequency could not be detected by ear. However, if this slight frequency shift is not acceptable, correction can be made by mixing a small amount of the output of IC_{3} with the output of IC_{2}.

The keyboard switching system is divided into two halves to minimize the work and cost and to reduce the range required from the v.c.os to two octaves. The left-hand oscillators are similar to the right-hand ones to ensure the required accuracy and avoid two sets of keyboard resistors. Two-stage, divide-by- 2 units, to reduce the frequency by four are interposed between the output of the lefthand oscillators and the modulators or signal processing.

The keyboard resistors form a series system so that a low impedance can be provided without undue current consumption, and so that the value of each resistor only affects the frequency step from one note to the next.

The part of Fig. 1 to the left of the dotted line is the generator and on/off detector, which may be used to drive synthesizer circuits as desired. The circuit to the right of the dotted line is a simple organ envelope generator and modulator.

References

1. Multiphonic organ, J. H. Asbery. Wireless World, Jūne 1973, p303.
2. 'Transistor organs for the amateur." Alan Douglas

What's so natural about \boldsymbol{e} ?

2 - The relationship of Euler's number to logarithms

by John C. Finlay

Abstract

In the previous article the author presented the first part of a popular study of Euler's number, the key to universal laws of change. Here he continues with his use of graphical methods to show the relationship of e to natural logarithms, after discussing the invention of logarithms by John Napier.

The more inquisitive type of schoolboy, who has just managed to conquer the technique of using logarithms to the base of 10 (thanks to Henry Briggs from Yorkshire, 1561-1630), leafs through his new book of tables and comes across another table of logarithms, variously described as natural, hyperbolic or (wrongly) as Napierian. However, on seeing the odd-looking figures and the cumbersome calculations required for numbers lying outside the range of 1 to 10 he promptly shuts the book and forgets about them. That word 'natural' is pushing itself forward again and no doubt you are thinking "I won't be caught the second time. It's obviously going to be natural and has something to do with ' e '." And so, of course, it is. The really remarkable fact about natural logarithms is that a system very close to them was originally published by the landed Scottish aristocrat, John Napier (or Neper), 1550-1617, as the first-known logarithms, and long before Euler revealed any of several series for e. Now the historical approach to the study of a science is often rewarding, at the very least in clothing it with some often welcome human interest, and at best presenting a logical sequence of development of ideas and terms on a leisurely time scale, which may offer some consolation to the student of today who is expected to take it all in within five minutes! I can offer no such neat justification for looking at the history of logarithms - it is unbelievably tortuous, certainly curious, mathematically revealing and utterly fascinating. Above all, the invention of logarithms was, uniquely in mathematics, an unheralded 'bolt from the blue' (as it was described at a tercentenary celebration in $1914^{10,}{ }^{11}$), owing nothing to any previous work.

Baron Napier, of Merchiston Castle, Edinburgh, had a major preoccupation, as a good Protestant in the dangerous times of the Spanish Armada, in lam-
basting Roman Catholicism and proving scientifically that the Pope was Antichrist. Fortunately, however, he took time off to try and help astronomers and navigators in their complicated calculations, a matter of growing importance in the expanding world that followed the explorations of the first Elizabethan age. In particular he wanted to reduce the labours of multiplication and division in frequently used trigonometrical formulas such as

$$
\sin A \sin B=\frac{\cos (A-B)-\cos (A+B)}{2}
$$

which you and I learned at school, and which was also well known in Napier's time.

Now suppose that, like Napier, you had no knowledge of the laws of indices and therefore no incentive to express numbers in that form, just what might you deduce from a comparison between these two sets of numbers:
12345 6(Arithmetic progression) 248163264 (Geometric progression)
(which we looked at earlier)? Obviously the first set is an A.P. because all the terms differ by the same value, namely unity, whereas the second is a G.P. since successive terms increase by the same multiplier, namely 2 . You will then note that the G.P. is made up of multiples of 2 equal to the corresponding A.P. term, e.g. $16=2 \times 2 \times 2 \times 2$ (four 2s). Perhaps you have also spotted that any two terms in the G.P. multiplied together give another term somewhere in the list, e.g. $2 \times 4=8$ and $4 \times 16=64$. All this so far was well known before Napier's time. But now have another look at the A.P. terms corresponding to the last twb examples:

$$
\begin{array}{ll}
\text { A.P. } 1+2=3 & \text { A.P. } 2+4=6 \\
\text { G.P. } 2 \times 4=8 & \text { G.P. } 4 \times 16=64
\end{array}
$$

Isn't it self-evident where Napier received the inspiration that was to earn him the gratitude of a myriad workers doing their calculations in science, engineering and business?
To convert the multiplication of awkward numbers into the simpler process of addition and back again clearly requires many fine steps to be practical, and they must range in geometrical progression against their 'artificial numbers' (as Napier first termed them) in arithmetic progression.

Commonsense dictates that, without any precision aids to calculation, the geometric ratio should be as simple as possible, but what about the starting artificial number? Here the plot thickens, because this number was not 0 , as you might expect, but 10^{7}.

To see where this arose, we must recall that Napier's objective was to draw up a table of artificial numbers for dealing with the multiplication of sines, and the sine in his day was not the ratio as we understand it but simply the length of the side opposite the relevant angle in a right-angled triangle (it must surely astonish you to realize the sexappeal of this half-chord, due to a translation error made over 800 years ago^{12}. Sinus in Latin means 'bosom' or 'curve', i.e. the cleavage!). Moreover the convenient idea of the decimal point for decimal fractions had not been used - it was in fact introduced by Napier when he was preparing his tables!
Tables of sines (as then defined) for various angles were commonly available, and to have the convenience of stating them in whole numbers a very high round number such as 10^{7} was arbitrarily given to the hypotenuse of the corresponding right-angled triangle, thus allowing a 7 -figure statement of the 'sine'. The sinus totus or 'whole sine' for 90° was than 10000000 , for 21° was 3583679 (see Fig. 13) and for $\boldsymbol{0}^{\circ}$ was just 0 . Napier used such figures in drawing up his tables, based upon a G.P. starting with 10000000 and taking off 1/ 10000000 as an easily calculated fraction from this first term and every subsequent term. He kept going until he reached the hundredth term, which worked out at about 100 less than the first term, actually 9999900.0004950 (note his use of the decimal point! ${ }^{10}$).
He realised then that the gaps between the terms would eventually become very small, requiring millions of calculations between any two consecutive integers! Another approach was needed and Napier had a further inspiration, a geometrical model which provided not only the basis for his calculations but also a firm scale to which to peg them. Talking of pegs, let us note that by this time he had also invented the word 'logarithm' (to replace 'artificial number') from two wellknown Latin words logus = ratio and arithmos $=$ number. A logarithm was

Fig. 11. Napier's dynamic model for the definition of his logarithms
thus a 'ratio-number'. What a pity it was that the laws of indices were unknown to Napier! Not only would this have eased his self-imposed task, but it would have spared us yet another redundant mathematical word (logarithm = index $=$ exponent $=$ power! $!^{13}$).
The model was a dynamic one, visualizing the comparative motion of two points along two parallel lines (Fig. 11) to the same scale of distance. One point P_{L}, representing the logarithm, moves at steady velocity v_{L} along the lower line, which is of infinite length. The other point P_{N}, representing the number, moves along the upper line of 10^{7} units long, and at a velocity v_{N} equal to its distance y from the far end of the line. At the starts, for the 1st term, both P_{N} and P_{L} move away at the same velocity, equal therefore to 10^{7} units, but P_{N} steadily slows down as y diminishes and gradually falls behind P_{L}. Napier defined his logarithm as
(Napierian) logarithm $=x$ for the corresponding number y
as obtained from the model. So a zero logarithm implies a number of 10^{7} and an increase in value of the logarithm corresponds to a decrease in the number. P_{L} also has to reach infinity before P_{N} arrives at the scale end at number zero.

Now consider the comparative positions of Napier's G.P. terms on the scales. The 2nd term, by definition, was $10^{7}-1$, and so the distance along the number scale from 1st to 2 nd terms is 1 unit (on either scale) as marked. The corresponding logarithm for the 2nd term was estimated by Napier as 1.0000001 , which for practical purposes on the diagram can be shown as approximately 1 . This establishes the linear log. scale and the term markings at approximately 23456 etc. Napier was also able to fill in on the number scale (in principle, anyway) the values he had already calculated for the first 100 terms. You will see straightaway that the terms will steadily crowd up. on the number scale as P_{N} moves to the right (the degree of compression is exaggerated for effect in Fig. 11 for the few terms shown), and that you would need an infinite number of them to reach the zero number, as suggested by the lower scale rising to infinity.

Now suppose, as I suggested before, that you, like Napier, had no knowledge of the laws of indices, nor of the calculus
(the work of Newton and Leibniz was still to come). What else could you discover from his model which would help you to calculate just those logarithms that you wanted for particular numbers, instead of a thicket of largely useless G.P. terms? Well then, you might suddenly realize that by spanning equal lengths along the log. scale you could use the other favourite trick of the engineer and extrapolate your number values from those already found, skipping over a lot of unwanted ones. More generally, as Napier used ${ }^{10}$, for 4 numbers $a b c d$, if $a / b=c / d$, then $\log b-\log a=\log d-\log c$. He was thus able to extrapolate from one number whose logarithm he had already calculated to another whose logarithm was to be found, at least very closely, by matching up to a ratio already calculated.

His objective, remember, was to produce a table of logarithmic sines, recorded for every minute of angle from 0° to 90° alongside the sine values already published by Vieta (1579) and others ${ }^{10}$. He matched the sine values as nearly as possible to the numbers appearing in his series and used ratio methods to account for the small differences in the logarithms ${ }^{\text {I }}$. The tables were laid out in complementary form, reading down the left-hand sides from 0° to 45° and up the right-hand sides from 45° to 90°, so that cosines and log. cosines were also obtained by reading right across the table. A central 'difference' column, recording the difference between the two adjacent columns of logarithms, also enabled log. tangents to be obtained ${ }^{10}$.
So, after some twenty years of complex calculations, Napier eventually and valiantly accomplished his purpose in easing the multiplication of sines (and other trigonometric functions). During this work he came to realize the broader application of his logarithms to multiplication in general, although taking such logarithms from his original tables was no easy matter if they had to be interpolated between the available figures (allocated of course to particular angles) ${ }^{15}$. The book, published in 1614 in Latin ${ }^{14}$, was an instant success, not only in Britain but throughout Europe as well (it included 90 pages of the tables and 57 pages of description of their uses).
Professor Henry Briggs (of London
and later Oxford Universities), the leading mathematician of the day, was so impressed that in 1615 he visited Napier at Merchiston to pay his respects and to discuss the system. This was a most famous and fruitful meeting, resulting in an agreed change of 0 to be the logarithm of 1 (which Napier had already been considering) and an appropriate power of 10 to be the logarithm of 10 , as being more convenient for general calculations using logarithms. This was the basis of ordinary or Briggsian logarithms. Napier died in 1617 and in the event Briggs chose the now familiar base of 10 for the new 14-place tables for numbers from 1 to 20000 and 90000 to 100000 which he published in 1624^{16}. Vlacq, a Dutch mathematician, filled in the gap and republished the Briggs figures in 1628^{10}.

Now can we leave the history of logarithms here, enthralling though it may be to some ${ }^{17} .18 .19,20,21$ and boring to others? If the latter think I seem to have been carried away by it, I have had a very definite goal - to answer the burning question of the difference between Napierian and natural logarithms, a matter fundamental to the understanding of ' e '. I am staggered to find that even many mathematicians do not recognize a difference (quotations would be invidious!), so it is no wonder that engineers are often confused. This is a classic example of the merit of going back tooriginal sources for information. Also, above all, there is the fascinating question as to why Napier's logarithms, as the first-born, are related to e , of which he knew nothing.

Let's make a rough graph of the numbers (y) which Napier found in his series, plotted against the logarithms (x) which he allocated to them (Fig. 12).

Fig. 12. Napier's series for calculating logarithms fits this curve.

He assigned 10^{7} to a log. value of 0 and two or three points taken from his tables ${ }^{14}$ for logs. up to around 1.5×10^{7} will do. Here are some typical values:

Angle	$\begin{gathered} \text { Sine } \\ \text { (old form) } \end{gathered}$		Log. sine (Napierian)		
${ }^{\circ}$		0			
$12^{\circ} 53^{\prime}$	2229	666		007	330
$21^{\circ} 35^{\prime}$	3678	541	10	000	685
$37^{\circ} 20^{\prime}$	606	511	5	001	310
90°	10000	000			

The curve looks suspiciously like an exponential of a^{-x} form (Fig. 7), es.pecially as it dies away with a feather
finish to infinity on the log. scale. Perhaps it is of the e^{-x} form? To see this we can cheat a bit by looking forward to the useful curves of Fig. 17 (next part) Now examine the value of y for $x=10^{7}$. Napier quotes 3678541 for 10000685 respectively (which is as near as we can -get without resorting to Napier's tortuous interpolation). Divide the second figure by the first on your ever-eager electronic calculator and what do you find? Yes - e again! (l/e is of course 0.36788 to 5 figures). Fig. 12 is then of e^{-x} form (compare with Fig. 17) because when x, running right from zero, reaches the value of y at which the curve crossed the y axis (here 10^{7}), the value of y has fallen to $1 / e$ of its crossing-over value. With a bit of careful comparison of the two figures you will see, I hope, that $y=e^{-x}$ in Fig 17 has to become $y=10^{7} \mathrm{e}^{-x / 10^{7}}$ for Fig. 12

$$
\begin{aligned}
& \mathrm{e}^{\mathrm{x} / 10^{7}}=\frac{10^{7}}{y} \\
& x / 10^{7}=\log _{\mathrm{e}} 10^{7} / \mathrm{y}
\end{aligned}
$$

Thus Nap. $\log y=x=10^{7} \log _{e} 10^{7} / y=$

$$
10^{7} \log _{1 / e} y / 10^{7}
$$

(In case any of you with a knowledge of calculus, like our old P.M. friend, have been uneasily shuffling about during the last bit of trickery, you might like to read a very simple and elegant proof of the above results ${ }^{17}$. Whichever way you prove it, you can be proud of doing more than Napier could - he didn't understand negative indices!)

Now why should the numbers for Napier's logarithms have anything to do with e? Well, of course, they were formed in a geometric series of reducing terms, falling in proportion to their value, similar but opposite to those in the strip-by-strip build-up of $y=\mathrm{e}^{-x}$ (Fig. 8), so that we get the mirror-image curve e^{-x} (see Figs. 7 and 17). And what about the base of Napier's logarithms? The result $10^{7} \log _{1 / e} y / 10^{7}$ shows that the Napierian base is $1 / \mathrm{e}$, as is also clear from the fitting of the y / x curve to e^{-x}. In contrast, for the e^{x} curve the logarithmic base is e. By common agreement this is termed the 'natural' logarithmic base, which it is then for the natural growth curve. On the other hand, Napier's base is a 'natural' (if you will forgive the confusion of meaning!) for the natural decay curve!

If I am allowed another brief reference to history, ${ }^{21}$ what we now call 'natural' logarithms first appeared accidentally as interpolating numbers in Edward Wright's 1618 translation (into English) of Napier's Descriptio. The first deliberate tables of 'New Logarithms', as he called them, were published for numbers 1 to 1000 in 1620 by John Speidell in London, being

Fig. 13. Slope relationships on various log. curves.
natural logarithms without the decimal point. More than a century was to pass before the importance of natural logarithms was appreciated in analysis, including the work of Euler on negative and complex numbers (mentioned later). Johann Heinrich Lambert, an Alsatian, published the first such table in 1770.
To see how the value of e can be derived from natural logarithms as such, let's first consider the slopes of logarithm curves for exponential curves in. general. Earlier we looked at exponential curves of the form $y=a^{x}$, but this time we'll interchange x and y to focus attention on the exponent as the dependent variable:
If $x=a^{y}$ then $y=\log _{a} x$ (from the definition of a logarithm).
Here are some calculated values of y for various values of x and a :
proportional to x, or $\mathrm{d} y / \mathrm{d} x \approx 1 / 0.7 x$, and in fact this will check out against any further measurements you may care to make.
Also for $a=4 x=5$ slope $=\mathrm{d} y / \mathrm{d} x=$ $0.5 / 3.5=1 / 7$
and at $x=10$ 0.5/7 Again the slope is inversely proportional to x, and in this case $d y / d x \approx 1 / 1.4 x$. In the same way you can find out for $a=3$ that $d y / d x \approx 1 / 1.1 x$.

It now strikes you that there must be a curve for some value of a between 2 and 3 for which $d y / d x=1 / x$. So let's interpolate again to find it by plotting $1 /(x(d y / d x))$ against a as in Fig. 14. If you are beginning to feel that you've been here before, just look back at Fig. 6. The curve is the same, and all we've done is to exchange x and y ! Those approximate coefficients $0.7,1.1$ and 1.4 ring a bell or two, and if you turn Fig. 13

x	$1 / 8$	$1 / 4$	$1 / 3$	$1 / 2$	1	2	3	4	8	9	16
$\log _{a} x$											
for $a=1$											

I have put in only the key values to keep the table uncluttered, and have plotted $y\left(=\log _{\alpha} x\right) / x$ in Fig. 13. The vertical line for $a=1$ is a special and academic case (a 'limit'), having y at all values between $-\infty$ and $+\infty$ for $x=1$. This is the sole value of x for $a=1$ since 1 to any power (y) is always 1 . You will observe that the slopes of the curves all diminish as x gets larger. Try to find what relationship they have to x by using the tangential ruler again at a couple of points, for convenience at $x=5$ and $x=10$.
For $a=2 x=5$ slope $=d y / d x=1 / 3.5$ whereas at $x=10$
This suggests that the slope is inversely

Fig. 14. What's the value of a for $d y / d x=1 / x$?
'sideways and look at it in a mirror it becomes identical with Fig. 5. The point is hammered home in Fig. 15 where the curves for e^{x} and $\log _{e} x$ are shown against the same axes.
So, as well as finding another way to bring out the value of e, we have proved (no, after some ominous rumblings from the P.M. I had better substitute 'verified') that for $\mathrm{e}^{x}, y=\mathrm{d} y / \mathrm{d} x$, and that for $\log _{e} x, 1 / x=d y / d x$. Those of you who aspire to the calculus will note that we have also obtained the differential coefficients with respect to x of $\mathrm{e}^{x}\left(=\mathrm{e}^{\mathrm{x}}\right)$ and of $\log _{\mathrm{e}} x(=1 / x)$.

There is still one more graphical wile that we can use to find e, which you may think is even trickier than any I have so far mentioned. Consider the innocent-looking equation $y=1 / x$ and draw up a table of values for it:

$$
\begin{array}{rccccc}
x & 1 & 1.5 & 2 & 2.5 & 3 \\
1 / x & 1 & 0.67 & 0.5 & 0.4 & 0.33
\end{array}
$$

Now plot these out as in Fig. 16. Construct a square as shown, spanning unity on both axes. Its area is clearly unity. Now see if you can mark off an area under the curve also equal to that of the square. You can do this by using another traditional engineer's dodge of counting squares, in a number of vertical strips for convenience, adding narrow strips one by one, as required, from left to right. Obviously you're going to have to move further up the baseline than 2, but how far? Yes, you've guessed that it will be to e!
Why should this be so? The curve is called a rectangular hyperbola, which suggests there might be a link here

Fig. 15. The mirror image curves e^{x} and $\log _{\mathrm{e}} \mathrm{x}$.

Fig. 16. Finding e from the area beneath a rectangular hyperbola.
between natural and hyperbolic logarithms. We can justify the method from what we have already discovered about such logarithms. Now we have shown that the slope of the curve for $y=\log _{e} x$ is always $1 / x$. That is differentiation in the calculus, and the reverse process is integration or summing up,
meaning graphically that we must find the area under the y / x curve. If then we do this for the curve of $y=1 / x$ between two particular values of x, we are reversing the action and will finish up with the difference between the two corresponding values of $\log _{e} x$. The area under the curve between values $x=1$ and $x=e$ is thus $\log _{\mathrm{e}} \mathrm{e}-\log _{\mathrm{e}} 1=1-0=1$, as already discovered.

References

10. A. Hooper. Makers of Mathematics, Ch.V pp.169-193 (The invention of logarithms), Faber \& Faber 1949.
11. ed. C. G. Knott. Napier Tercentenary Volume, pp.1-32 (Inaugural address by Lord Moulton: The invention of logarithms, its genesis and growth), Longmans, Green 1915. 12. Ref. 10, pp. 127-132.
12. L. Hogben. Mathematics in the Making, p.177, Macdonald 1960.
13. J. Napero (or Napier). Mirifici Logarithmorum Canonis Descriptio (A description of the marvellous law of logarithms), Andrew Hart (Edinburgh) 1614.
14. Ref. 11, p. 121 (G. A. Gibson: Napier's logarithms and the change to Briggs's logarithms).
15. H. Briggs. Arithmetica Logarithmica, William Jones (London) 1624.
16. Ref. 6, pp. 242-6 (Logarithms).
17. D. E. Smith. History of Mathematics Vol.II, Special Topics of Elementary Mathematics, pp.513-523 (Logarithms), Ginn 1925.
18. ed. E. M. Horsbrugh. Napier Tercentenary Celebration - Handbook of the Exhibition pp.1-16 (G. A. Gibson: Napier and the invention of logarithms), Royal Society of Edinburgh 1914.
19. E. Kasner, J. Newman. Mathematics and the Imagination, pp.78-85 (e), republished Pelican 1968.
20. Encyclopaedia Brittannica, Vol. 14 p. 304 (Origin of natural logarithms) 1959.

Literature Received

Leaflet on solid-state transient protectors is new from Unity Power Systems, offering complete technical information and application advice. Write to Unity Power Systems, Pembroke House, 44 Wellesley Road, Croydon, Surrey or circle

WW 401
Reliability of the Intel $3636,16 \mathrm{k}$ p.r.o.m. is assessed in a report recently released by the company. Copies are obtainable from Intel Corp (UK) Ltd, Dorcan House, Eldene Drive, Swindon, Wilts SN3 3TU

WW 402

Wire-strippers and d.i.p.-socket inserters for high-volume production are described in two brochures, available from Automation Ltd, Marbaix House, Bessemer Road, Basingstoke, Hants RG21 3NT

WW 403
Semiconductor Summary for $1979 / 1980$, from ITT is now available giving the full range of information on all ITT devices, infra-red remote control, i.cs for entertainment, clock, car and musical instrument applications. ITT Semiconductors Ltd, Maidstone Road, Foots Cray, Kent. WW 404
'Intelligent' tape transport, type 8800 from EMI, which incorporates microprocessor control and a built-in fault-diagnosis routine,
is illustrated in a brochure from SE Labs (EMI) Ltd, Data Products Division, Spar Road, Feltham, Middx TW140TD. WW 405

A new type of crystal cut, the thermal transient compensated (t.t.c.) is described in a paper and leaflet from Cathodeon Crystals Ltd, Linton, Cambridge CB1 6JU. WW 406

Brandenburg describe their range of static inverters, the 060 range, in a leaflet just produced. Copies can be obtained from Brandenburg Ltd, 939 London Road, Thornton Heath, Surrey CR4 6JE. WW 407

Work in universities on vibration and noise, funded by the Science Research Council, is reviewed by the SRC in a 47 page booklet, obtaintable from SRC, PO Box 18 , Swindon SN2 1ET.

WW 408
Aspect is a new publication, by Vermason Ltd, on the subject of static - causes, problems and solutions. The two-page sheet is to be published three times a year. Hunter Bureau of Communications Ltd, Drayton House, Gordon Street, London WC1H 0AX.

WW 409
A brochure on tungsten carbide drills and routers for printed-board production is
available from Dymet Alloys Ltd, Frimley Road, Camberley, Surrey GU15 2QC.

WW 410
The process of mechanical plating of small parts and its claimed advantages over electroplating are explained in a brochure, obtainable from Morlock Industries Ltd, Bridgnorth Road, Wombourne, Wolverhampton WV5 8AU.

WW412

Brochure on the AXE digital telephone switching system is available from The Ericsson Group, Telefonaktiebolaget L.M. Ericsson, S-126 25 Stockholm, Sweden.

WW413

Catalogue of small electronic components for the home constructor is obtainable at 30 p from Ace Mailtronix Ltd, Tootal Street, Wakefield, West Yorkshire WF1 5JR.

Video production switchgears, an extended effects generator and an audio mixing switching unit made by Central Dynamics of Canada and handled by Pye are briefly described in leaflets from Pye TVT Ltd, PO Box 41, Coldhams Lane, Cambridge, CB1 3JU.

WW414

LOOP AERIALS

A careful exploration of the medium and long wave broadcast bands leads to the conclusion that their neglect by many listeners is as much to do with poor receiver and aerial performance as with band congestion and interference. The r.f. selectivity of most portables and tuners is so poor that attaching a long wire aerial (as advised by Mr McLeod ${ }^{1}$) simply makes second channel interference impossibly bad. However the resonant loop or the "H-field multiplier" described by Mr Schemel ${ }^{2}$ overcomes the twin problems of insensitivity and poor r.f. selectivity, and with large well designed loops some astonishing results can be obtained with poor receivers. The price paid is that the aerial needs to be tuned independently of the receiver, or left tuned to a preferred station. Nevertheless this is an excellent way of widening the scope of listening experience.

Following experiments with a feedercoupled loop (described in Wireless World many years ago^{3}) a $2 \mathrm{~m} \times 1 \mathrm{~m}$ six-turn m.w. tuned loop was set up and used either as an "H-field multiplier" with portable receivers or coupled with 300 -ohm cable to the ferrite rod of an f.m./a.m. tuner. Favourable results obtained during winter months suggested that with some receivers even larger loops would be useful. Mr Schemel has shown that in view of inherent noise levels $1 \mathrm{~m}^{2}$ is the largest size necessary. However I find that the $8 \mathrm{~m} \times 4 \mathrm{~m}$ single-turn outdoor loop now in use gives a better performance, probably because the very large signals help the a.g.c. of the receivers to deal better with fading. This aerial is coupled to the ferrite rod of the tuner by a few turns, 2 cm in diameter, in series with the loop.
For long-wave reception a $2 \mathrm{~m} \times 2 \mathrm{~m} 15$ turn loop is used, situated in a loft and coupled by means of a single turn to 80 -ohm cable. At the receiver end there is an 8 cm diameter coil of about 25 turns, fixed to the side of the receiver case with tape. The receiver itself is of the Hong Kong transistor sort, which in fact cost less than the wire and cable used for the aerial.
A low-pass audio filter with a deep (-30 dB) notch at 8 kHz is in circuit through out and is considered indispensable.
Finally a comment on the operation of the "H-field multiplier". I follow Mr Schemel's theory ($p .51$) up to the final paragraph where he mentions the conservation of energy, and says that the enhanced field, QH , is in phase quadrature with the incident field. This cannot be generally correct since the phase of the loop current passes rapidly from positive to negative (or vice versa) as the circuit is tuned through resonance. It seems better to suppose that the loop acts as a transformer, making the absorbed energy available at an impedance different from that of free space. If we regard the loop as parallel tuned, this impedance is very high, so that the ferrite rod of a receiver has only to be lightly coupled to the loop to absorb a useful proportion of the energy from it (see Mr Schemel's footnote, p.51). On the other hand a small coil in series with the loop makes the energy available at very low impedance. These are complementary points of view, the
former being more appropriate when the receiver is near the middle of a large loop, the latter when it is near one of the sides.
R. A. W. Hill

Glasgow College of Technology
Glasgow G4

References

1. McLeod, N. Wireless World, letters, November 1978.
2. Schemel, R. E. "The Loop Aerial Revived", Wireless World, July 1979, p.48-52.
3. Hill, R. A. W. Wireless World, letters, February 1953.

The author replies:
Mr Hill, like myself, is obviously a loop proponent, and I would only like to add some observations of my own to those in his letter.
Coupling a long wire into a modern radio may be unsatisfactory, quite apart from the reasons put forward in the original article, because transistor mixers are much more liable to overload than their valve counterparts. Both overload and the decreased r.f. selectivity have the effect of producing audible beats and cross modulation.
Separate tuning of the loop increases selectivity but only improves sensitivity when coupling to the first tuned circuit is insufficient. Since this useful technique may be tried by some readers, they are cautioned to avoid overcoupling. It would appear that Mr Hill's installation is undercoupled, since he observes that quite large loop areas give a noticeable improvement in reception; it could also be that the receiver is of very poor sensitivity, and I can confirm that a large tuned loop used in this way works wonders. Notwithstanding this, my own experience with a good receiver and a closely coupled untuned loop would indicate that an area of $1 \mathrm{~m}^{2}$ is more than adequate.

Finally, Mr Hill observes that the phase of the loop field passes from 180° to 0° as the loop is tuned through resonance. This is indeed the case, and exactly at resonance the phase angle is 90° as stated in the article Readers who constructed the field multiplier may have noted that the loop can almost suppress the signal rather than boost it at a critical tuning point. This occurs when the out-of-phase component of the loop field almost cancels the incident.
R. E. Schemel

THE INTELLIGENT PLUG

1 was interested in the article "The intelligent plug" in the December issue. In your warning note you refer to p.m.e. and 1 hope you will not mind if I mention that this stands for protective multiple earthing.

Where the electricity supply authority has applied this method of earthing to its distribution system, the consumer will have been offered an earth terminal which is, in fact, a connection to the neutral of the electricity supply system. The injection of a carrier frequency between the neutral and earth on the consumer's installation will effectively be short-circuited at the incoming point of supply in that the consumer's earth
conductor and neutral are both connected to the incoming supply neutral.

In an electricity distribution system where the system neutral is earthed only at the distribution sub-station, the neutral and earth connections will again be shortcircuited but the impedance loop, as seen at the consumer's installation, will be sufficiently large not to significantly attenuate the injected carrier frequency
I. E. Elliot

Eastern Electricity
Lowestoft
Suffolk

COMMITMENT IN WORK

It is heartening to find an editor who is prepared to take on the task of raising (by whatever degree) the level of awareness of his readers. Your excellent editorial in the January 1979 issue on military electronics, and more recent ones on the unpleasant social consequences of our profession, have been salutary.

What has been insufficiently stressed so far, though, is the absolutely imperative need for individual commitment. This applies right across the board - including involvement with "defence" projects, nuclear power ("clean, safe and cheap"), broadcasting and telecommunications (information manipulation) It is only too easy for the average engineer to look no further than the rim of his coffee cup; he has a wife and kids to support, he expects a certain standard of living and he expects society to provide it for him: the fact that his society is morally bankrupt, supported on very shaky economic foundations and in imminent danger of catastrophic collapse is comething that he doesn't want to think about, let alone do anything about. Yet society is only made up of individuals; if individuals will not rouse themselves (no-one can do it for them) from their ostrich posture no improvement in society's state can come about.

Commitment on this personal level can be painful. For instance, if you do not wish to work in socially harmful areas you are restricting the variety of jobs open to you, and you may be forced to accept a. lower salary, with a consequent lowering of living standard. The latter also applies if you wish to be more conservative, say, in your use of energy; electric heating is the most wasteful and inefficient misuse of energy there is (except perhaps writing letters to magazine editors), but it is also the most convenient. The commitment to a saner way of living is fundamentally the same in either case. The misuse of technology, and electronics in particular, which you have so accurately portrayed can only be finally corrected by a "grass-roots" awakening of awareness at the individual level.

There are, fortunately, signs that this is happening. For example I was recently told by an employment agency that it was by no means uncommon for candidates to specify "no military involvement" on their job application forms; perhaps the almost continuous recruitment adverts from the likes of

MSDS, Ferranti, Plessey and GCHQ are indictive of the shortage of people prepared to work on such projects. On a wider scale, the extent of interest in renewable energy sources and of opposition to the nuclear juggernaut shows a change of attitude in many people. Perhaps you could help nurse it along?
One point on your editorial "Trickle, trickle little chip" (November 1979) concer ning alternative (or "appropriate") technology for the developing nations. Firstly, alternative technology is not concerned primarily with producing goods - goods are not what the Third World needs. What it needs are reliable means of feeding and sheltering itself, so that AT is generally aimed at the agricultural, building and energy supply areas. For these areas (particularly the first two) labour intensive techniques are more appropriate than capital intensive ones - though micrelectronics can still have a part to play. Alternative techno logy should not necessarily exclude sophisti cation where it is justifiable and applicable Secondly, there is the danger that high technology produces a gap between its users and its end products, so that there is no feeling of identification between the maker and what he has made. This gap has been recognised as a major source of dissatisfaction in Western manufacturing industries and it is one problem that the developing countries should try hard to avoid.
Tim Williams
Tunbridge Wells
Kent

SCIENTIFIC COMPUTER

I have followed with great interest the articles on the scientific computer by John Adams (April-September 1979). As an electronics engineer from a "pre-micro" era, I saw this as an ideal project to enable me to become updated. I accordingly constructed the hardware and now, with a limited amount of experience in "driving" it, I would like to offer a number of points which I feel are worthy of discussion:
(a) The "number cruncher" approach seems to me to be so very logical that it is surprising that more systems do not apply it. It must surely set the pattern for the future.
(b) I would be very interested to see detailed explanations of many more of the machine language sub routines, particularly those associated directly with the "number cruncher"
(c) The Adams computer is already excellent value for money, but could, I feel, become even better with upgraded monitor and Basic programmes. For example, there is no cursor, or backshift/delete facility (except in graphics). There is no apparent means whereby a list of results can be fed into the middle of a programme from a peripheral Perhaps Mr Adams can be persuaded to look into this
(d) Software programming in BURP is obviously somewhat limited at the present time. Could we have some information on how to set about writing our own, or converting those already available for the TRS80 or the Nascom, both of which employ the Z80?
If I were to ponder longer no doubt I could produce a long list of other desirable features and information requirements. I hope, however, that I have said sufficient to convince you that there are many engineers like myself who need to familiarise themselves with these latest techniques but will not have
either the time or the opportunity to attend any of the many courses being offered by device manufacturers. We must, therefore, resort to the written word, and immediately are faced with a bewildering array of text books - and who can guide us in our choice? As professionally I will be designing microprocessor controlled systems, machine language is of paramount importance. Articles on the approach to and construction of typical programmes would be of considerable interest. If one turns to the magazine press the various publications with "Computers" in their title, excellent though they may be, do not approach the subject from the design engineer's standpoint. There does, therefore, seem to be a void which I hope that a periodical of the high technical standing of Wireless World can fill. What is really needed is a "Foundations of Microprocessor and Peripherals" series by a "Sçroggie of the micros"; perhaps he already exists in John Adams. These could be supplemented by a regular flow of articles describing in detail actual applications covering all spheres, not just the computer as it is popularly understood

I hope that I may have said sufficient to convince you that far from being minority readership, microprocessors etc. are of considerable interest to a high percentage of your readers, many of whom have no professional interest in "wireless" these days.

J. W. H. Freeman

Red Forge Ltd
Redditch

The author replies.

May I take the opportunity to thank Mr Freeman and many others for their comments on my design for a computer which was published in your AprilSeptember issues 1979. They have been of great value in drawing up the specification for the monitor described in this issue, as well as giving food for thought for further ones.
With so many users of these machines, it would now, I think, be a good time for some individual or group to set up a users' club to distribute a newsletter and, perhaps, organise meetings etc.*

Might I also reply to Dr Whittington's letter published last month. I think it a mistake to look for 'mainframe' performance from an arrangement which costs only a few per cent of the price of such equipment. Constraints on format, language (such as they are) and speed are thus inevitable. must take issue with Dr Whittington on one point though, as, whilst it is possible (just!) to make a FOR loop take 200 ms , a more typica time for a loop covering, say, 10 program lines is 60 ms . To put the machine in the context of the so-called 'benchmark' tests which have been applied to five commercially available machines, for BM5, which computes.

$$
A=\frac{K}{2} \times 3+4-5
$$

for $K=1$ to 100 , the mean execution time was 27 s for the 5 , as against 21 s for the Scientific Computer. A monitor which is in the development stage at the moment cuts this time down to 13.8 s . Should one of the semiconductor manufacturers produce a number cruncher' which can run at a faster clocking rate than the 800 kHz which the great majority of MM57109s seem to manage, at a reasonable price, then these times, measured at that clocking frequency, should be reduced even further.
After, perhaps, more experience with the monitors Dr Whittington will find them
easier to use. I must admit to a mistake in the original series in that I forgot to describe the register display facility which is present in original monitor. It is fully described in this issue. The COR command isn't quite so dangerous as is suggested as it does list back all the addresses at which it makes corrections. Experience has shown that using COR, or MOD as it now is, and then checking back for unwanted changes using this address list avoids the usual problem when, say, readdressing a block of instructions for loading into an e.p.r.o.m., and that is missing one or two of the alterations required. MOD has a second use too, in that by changing the byte XX to YY , the computer just lists the addresses where that byte may be found

Finally, there is a mistake on the p.c.b. supplied with the kit for the computer of which some constructors may not be aware. The 470 -ohm resistor adjacent to the 'Data In' l.e.d. connector pin at the back of the board should be removed and this connector pin wired directly to pin 12 of the 4013 i.c. The l.e.d. will then perform as originally intended. John H. Adams

Radlett

Herts
"We would be glad to hear readers' views on this suggestion. - Ed

VHF RADIO AND ITS PROGRAMMES

May I respond to Mr MacKay and Mr Watson (October 1979 letters)* concerning the use of v.h.f. radio.

In the early days of v.h.f., the BBC certainly tried to encourage listeners to change over to these channels, for very good reasons of technical quality and freedom from interference. I cannot recall that we ever said that all broadcasting would be on v.h.f. only, with the implication that medium and long wave transmissions would be abandoned.

In the event, the public in general have been most reluctant to make the change and the v.h.f. channels are to this day (more than 20 years later) used by only a minority of listeners. Accordingly, it was a sensible choice to put Open University broadcasts on v.h.f. and to confine schools programmes to v.h.f., since this offered good coverage for the educational material while inconveniencing as few members of the general public as possible.

It is perhaps worth emphasising that the $B B C$ is in no way on the defensive about the inclusion of educational material in our programming; together with information and entertainment, education is one of the prime requirements of our charter. Schools programmes are clearly of considerable importance in their field and the Open University is an imaginative and successful British venture which is very rightly supported by the Corporation.

The realities of the situation are therefore as follows. Educational broadcasting merits good coverage throughout the country; it is on v.h.f. for good reasons and could not be transferred to medium or long wave without inconveniencing far more listeners and nullifying the considerable investment in v.h.f. equipment by schools and others; insufficient v.h.f. channels are available to separate educational from other programming.

Turning now to more positive matters, it is clearly very much in the BBC's interests that the programmes which we make shall be received as well and as widely as possible. We are very conscious of the dissatisfaction
caused by the enforced sharing of channels by educational and other programmes and we examine most carefully what can be done to relieve this. The most satisfactory long term solution is the provision of more channels by extension of the v.h.f. broadcasting band. This has been an important factor in the World Administrative Radio Conference in Geneva, although if such extension is agreed it must be some years before existing mobile users (police, fire, ambulance etc.) can be moved elsewhere and new broadcasting networks created. For short-term relief we are looking into the feasibility of transferring a proportion of schools broadcasting to the night hours, with time-switch recording in schools for replay the next day. Furthermore, we have concentrated much of the educational programming on to the Radio 4 v.h.f. channel, avoiding Radio 3 where musical items in particular benefit from high quality stereo transmission. As a result, educational material on Radio 3 v.h.f. is in general transmitted outside normal programme hours, with the exception of an hour and a half on weekdays in the early evening. The sharing of a single v.h.f. channel by Radio 1 and Radio 2 is a separate problem, to which the only solution would be an additional v.h.f. channel.
I would not presume to challenge Mr MacKay's catalogue of shortcomings and perhaps I am indeed fulsome, irrelevant, contradictory, evasive, arrogant and smooth. Although anxious to please, I have found it difficult to demonstrate all these qualities within the compass of a single letter; but I have tried as best I can to set out the facts which, unwelcome though they may be, make up a problem for which a quick and easy solution is not available.
D. P. Leggatt

Head of Engineering Information Dept
BBC, London WI

* Owing to a clerical error the publication of this letter has been delayed. Apologies to readers and the correspondents concerned. - Ed.

PERCEIVING DIRECTION IN SURROUND SOUND

The article by Ken Farrar on the Soundfield Microphone (October and November 1979) prompts some observations on the development of surround sound which I feel it timely to make. Most technical developments tend to evolve from previous practice but it is always wise as new technology becomes available to take a long hard look, unhindered by the past, at the means and at the objectives. It is therefore to be hoped that before standards are finally set the full potential of Ambisonics is properly established.

Having been intrigued by the somewhat puzzling failure of binaural reproduction to recreate concrete centre-front sound sources, the writer has carried out many experiments in the field of perception of direction by our sensors. I use the word 'sensors' rather than ears because I now have doubts as to whether our outer ears are the sole mechanism.

The following facts emerged. Firstly, using white noise as a sound source, there was no difficulty in locating the direction of its origin with one ear effectively closed. This appears to indicate that there are clues on which the brain can operate to determine direction other than the generally accepted ones of inter-aural intensity, phase and transient
arrival-time differences. Secondly the frequency response of the ear changes quite markedly as the incident direction of the sound changes. This effect is in addition to the well known ability of the pinnae to introduce minute colorations which are direction dependent and from which we have learned to derive clues. The head appears to act as a baffle for sound coming from the side which intensifies mid-frequency components. These mid-frequency components are relatively reduced in loudness if the sound comes from the front. Thirdly there appears to be evidence that more than the outer ear may be involved in hearing. There is a passage which can convey sound between the nose and mouth and the inner ear and it was observed that the sound of white noise changed with the opening and closing of these apertures! This may have a bearing on what appears to be the ability to assess the distance of a sound source by the shape of the radiated wave-front. The more distant the sound source, the 'flatter' will be the portion of the wave-front affecting our ears. If a point source loudspeaker is replaced by one with a number of units so as to create an approximation to a plane wave, the sound in the latter case will appear to originate some distance behind the loudspeakers. Since the sound reaching the outer ears in both cases should be the same, it is impossible to explain these phenomena by conventional theory

Returning to the failure of binaural sound to recreate concrete central front images, this can only be because some vital clue is missing. It would appear that a really concrete centre-front image can only be created by a sound coming from centre-front in actual practice. While the illusion of centrefront images created by the left-right speakers of conventional stereo are undoubtedly established by the dominance of the intensity/phase/transient time delay mechanism, the overall effect may be less than perfect. The fact that there are individuals for whom this illusion does not work confirms this. In any case this function is clearly over-sensitive to head movements.
This brings us back to the subject of four channel reproduction and I would like to suggest that before we are committed to the two front and two rear loudspeaker configuration - really an extension of stereo experiments should be carried out with what could be a more logical system, i.e., one central front loudspeaker, one left loudspeaker, one right loudspeaker and one rear loudspeaker, For reasons too lengthy to discuss here, the writer believes that this format would have many advantages, just one of which would be that a centrally positioned soloist would tend to remain central even if one moved from the ideal 'central' seat.
James Kerr
Kerr Research
Wendover
Bucks

UHF CITIZENS'BAND IN aUSTRALIA

It is not recorded in any history book that King Canute sat on an Australian beach trying to curb the tide (your editorial, September 1979 issue). But recent Australian history has shown that our telecommunication authorities and government can do the same and succeed! Yes, c.b. is good fun, and the population has the right to expect a small part of the spectrum to be allocated for personal use. But our

Canutes here were far more canny in trying to stem the tide. Instead of telling the sea to draw back, they asked - can we get the sea to recede by providing another beach? Instead of asking the sea, they asked our population and industry. They asked if there were other frequencies which could be used, if equipment could be designed and manufactured within one year at a price competitive with its 27 MHz s.s.b. counterpart. They asked if the coverage on another band of frequencies would be equivalent to the local coverage of 27 MHz . And, most importantly, they asked what interference problems could result from the use of other frequencies.

The result was the introduction of the world's first u.h.f. c.b. service; I MHz of spectrum for public use, 40 channels that anyone could use anytime, anywhere. All the answers to the questions have been fully vindicated. It is better service with minimum interference, and, equipment was designed and produced within the period required and at a competitive price. What is more, it has injected sanity into an area which was fast becoming imbecilic. It has provided local industry with a new market, and employment and export opportunities

New fraternities are springing up. Long distance truck drivers are enthusiastic and enterprising roadside cafe owners advertise the fact that they are on the air on channel ' x ' and will accept messages to pass on to other travellers. Sporting and particularly boating clubs are taking to the medium. The flexibility of having 40 channels from which to select at will is a real benefit.
It has also given the amateurs a 70 cm unit capable of providing 40 channels each of single and two frequency simplex, a fact that has not escaped the UK amateur, as this unit is already on the UK market.

Your editorial implies by omission that there is no other choice. The antipodean experience has shown that there is. It is not too late for the UK to consider alternatives, but it will be too late if the Home Office procrastinates. As we know from the multimillion dollar disaster in the States and our own experience, if the public wants something, some enterprising entrepreneur will provide it legally or illegally. You will then be stuck with it, to the continued disadvantage of wonderwomen watchers and radiocommunication users in general.

R. B. Hooper

Philips - TMC Ltd
Clayton Victoria, Australia

LEVY ON COPYING

Your columnist Mixer's notion in the November 1979 issue that the record industry's claim for a levy on all blank tape cassettes and recorders "would be just as reasonable, and stand just as much chance of being accepted" as a similar levy charged on the use of photocopying machines is not as incredible as Mixer seems to think, at least not in Scandinavia.
Backed by existing copyright laws, very similar to those in force in Britain, the Technical and Fiction Writers Union has effectively banned duplication of printed material by photocopy-machine "until a suitable fee has been negotiated." Their present claim is 3.3 pence per copy. In Sweden, the Government is already paying writers 0.18 pence per copy, based on statistics of the copies taken in universities, school, public libraries and by local and national authorities.
Gisle Hannemyr
Porsgrunn
Norway

Europe-wide information retrieval uses packet switching

On-line information retrieval services throughout Europe - the kind using computerised data bases - are now being linked together into a comprehensive network by a dedicated telecommunications system. Any professional worker with access to a Teletype-compatible data terminal (with printer or v.d.u.), a telephone line and a password for the system can retrieve information from general and specialised data bases in a number of European countries at a standard tariff which is independent of distance. By the end of 1980 about 140 such data bases are expected to be available. To make connection, the user has to dial on his telephone one of the computerised informa tion services in his own country which is linked to the system. These are known as "hosts" and in the UK, for example, one of them is BLAISE, the British Library's Automated Information Service. Another UK host is Infoline, which, incidentally, will be bringing into the system the well known IEE Inspec database of physics, electronics, computing and mathematical information.

This European link-up called EuronetDIANE, was opened in November last year. Initiated by the European Communities Commission, it is intended in the first instance for the benefit of the present nine Common Market countries but probably later will bring in Switzerland, Norway, Sweden, Spain, Austria, Yugoslavia and Greece. Euronet is the hardware part, operated by the telecommunication authorities of the EEC. Its backbone is a dedicated high-speed data transmission system operating at $48,000 \mathrm{bit} / \mathrm{s}$ on the packet switching principle (in which packets of digital data are sent by the best route at a given time to achieve the most efficient use of available lines - often interleaving packets for different addresses). The international lines carrying this data stretch across Europe from Dublin through London, Paris and Frankfurt to Rome, with branches off to Amsterdam, Copenhagen, Brussels and Luxembourg. Exchanges for packet switching are located in London (in the Post Office's Electra House, Temple Place, London WC2, which also houses the management centre controlling the day-to-day operation of Euronet) and in Paris, Frankfurt and Rome. Users' terminals are connected through the hosts to this backbone by slower speed data transmission on public or leased lines working at anything from $110 \mathrm{bit} / \mathrm{s}$ to $9,600 \mathrm{bit} / \mathrm{s}$. A detailed description of Euronet is given by P. T. F. Kelly of the UK Post Office in The Radio and Electronic Engineer (IERE Journal) for November 1979. (See also "Switching into European data" by D. E. Hadley and A. C. Barnes, Post Office Telecommunications Journal, Autumn 1979). We understand there is some possibility that viewdata terminals (Prestel in the UK) could be made compatible with the system.

DIANE is an acronym meaning Direct

Information Access Network for Europe and is the organisation of the various on-line information services themselves - the software side. At present there are 23 hosts, offering a spectrum of scientific, technical, medical, legal, social and economic knowledge. Inquiries about it can be made to:
Euronet DIANE Information, Jean Monnet Building; B4 009, ECC, Luxembourg (Grand Duchy). Local enquiries about Euronet in the UK can be made to the Post Office contact: Mr T. Lake, International Telecommunications, Landsec House, New Fetter Lane, London EC4 (tel: 01-583 4945 or 8832).

Many of the on-line information retrieval
systems available through DIANE use different sets of commands. The potential user is therefore faced with the possibility of having to learn several search languages. But recently a study carried out for the ECC by Scicon in the UK has devised a common command language which allows users to search on different retrieval systems using one language. This has been accepted as a formal guideline for use by the hosts and is already being implemented by some of them. The standard command language is not meant to replace existing sophisticated search languages but as an alternative to help users who need to search on a number of different systems.

CEI honours Sam Fedida

One of the UK's foremost engineering accolades, the Macrobert Award, has been given to Sam Fedida, well known to readers of this journal as the author of a series of articles (Wireless World, February to May 1977 and April to June 1978) dealing with Viewdata, the information system using telephone and television in a communication/display combination he had invented while working as a Post Office research engineer.
The prize of $£ 25,000$ and the MacRobert Medal were presented to Fedida by H.R.H. the Duke of Edinburgh in his capacity as founder president of the Council of Engineering Institutions (CEI) at Buckingham Palace on 5th December 1979. The MacRobert Gold Medal was also presented on this occasion, to Post Office Telecommunications for the development of Prestel, the first public Viewdata service in the world.

Sam Fedida was born in Alexandria, Egypt, in 1918. He was educated in England and graduated with a B.Sc.(Hons) at Imperial College, London, and during the second world war served as a radar officer in the R.A.F. After the war he joined Marconi, becoming a development manager in 1960 and Assistant Director of Research in 1965. He joined the Post Office Research Department as Manager of Computer applications in 1970 and soon afterwards invented the Viewdata system, which he demonstrated publicly in 1975. He had obtained an M.Sc. in computer sciences at Birkbeck College, London in 1973

The MacRobert Award has traditionally been awarded for the development of a novel engineering project or process and has shown a general bias towards hardware. However, the last two decades have shown that software aspects of complex electronic systems are now at least as technically challenging and this award tends to indicate the CEI's awareness of the growing significance of information retrieval systems.

PET automatically checks impedance

A combination of instruments including a Rohde and Schwarz ZPV vector analyser, a signal generator and a Commodore PET computer can, according to Aveley Electric, a British distributor for Rohde and Schwarz, be used for automatic impedance measurements. Frequency range covered is from 0.4 to 1040 MHz and the test permits automatic voltage measurements of magnitude and phase, measurement of S parameters, impedances and admittances as well as group delay measurements. Measured values are displayed on the screen of the PET or are fed out via an IEC bus-compatible printer.

Post Office introduces microprocessor pay-phones

: A completely new type of Post Office payphone, featuring microprocessor control and a numerical key-pad instead of a rotatable idial, began trials on December 10. This marks the beginning of a Post Office programme to re-equip coin-operated call boxes and an initial order of 100 of the new units has been placed with Agitelco, a member of the AGI group.

Unlike the conventional pay-phone, cash is inserted before the required number is keyed and there is no "pay tone." Coins held in store are credited to the caller and this amount is indicated on a digital display. As the call proceeds the cost is deducted from the amount in credit and 10 seconds before the credit runs out the visual display requests more money, the display being accompanied by a "bleep" on the line. The microprocessor calculates the rate from meter signals received from the local exchange in the conventional manner, disconnects the call if there is no credit left or pays out unused coins. The rate of charge is similar to that of the conventional pay-phone and depends upon distance and time of day; a "follow-on" facility is included where, upon pressing a button, further calls can be made using credit still in store.

Operator calls can still be made although these will be restricted to the UK area initially and on these calls another "bleep" signal tells the operator that the call is coming from a new "blue payphone", so called because the phones have all instructions printed in blue. Each unit is housed in a stainless steel casing and the Post Office maintains that the microprocessor approach used in this unit offers advantages including ease of installation, faster servicing resulting from the "watchdog" action of the m.p.u. in reporting faults immediately and overall cheaper running due to the elimination of the special call-charging equipment at present necessary at local exchanges.

During the trial period the Post Office will be carrying out research into customer reactions and the extent of use of the new phone compared with that of the conventional type, with the intention of a realistic assessment of the quantity needed to cover the first phase of modernisation.

Aiwa to set up "micro" hi-fi plant in Wales

Speaking in response to Aiwa's decision to set up a British subsidiary of the Japanesecompany, Lord Trenchard, Minister of State for Industry said, "I am delighted at Aiwa's decision to set up a plant in the UK . . Aiwa will be the first manufacturer of miniaturised hi-fi in the UK and the first Japanese audio manufacturer to come here."
In fact, both Toshiba and Matsushita preceded Aiwa in setting up plant in the UK, although this is the largest projected undertaking in the field of "micro" hi-fi here, the estimated cost being $£ 2$ million, drawing $£ 600,000$ of British government aid. "Micro" hi-fi employs microelectronic circuits in a complete package of about 12 ins by 8 ins and the UK manager, Mr Stephen Chorley, expects 50% of output from the Newbridge. South Wales, plant to be exported. About half of the components used will be British
and at the start of production in June 1980, between 70 and 100 new jobs will be made available to local people. The Welsh Development Agency has provided the factory on a 25-year lease to the Japanese company.

Zenith buys Heath

Zenith Radio Corporation has completed the purchase of Heath from Daystrom Inc, a wholly-owned subsidiary of Schlumberger Ltd. Heath, the Michigan-based electronic kit manufacturer, will be operated as a whollyowned subsidiary of Zenith. New Zenith subsidiaries have been established to operate the 55 Heathkit Electronic Centres in the United States and the Heath business in Canada and Europe. Daystrom Inc, was acquired by Schlumberger in 1962.

Microprocessor and Electronics Centre

A showroom for electronics manufacturers funded by private and ICFC money, was opened by Lord Trenchard in December. Jeremy Prosser, of Prosser Scientific Instruments, had the idea of a base for electronics companies to show their wares in London, to conduct interviews and to meet their potential customers. One or two economists and marketing people evidently agreed with him and combined with him to set up the venture in the World Trade Centre in East Smithfield, near the Tower of London.

A coincident exhibition helped to set the scene for the opening ceremony (it actually opened its doors in September, but the celebratory junket was delayed a few months) though many exhibits were not, one felt, of the type to inflame the imagination of the civilised world. Examples of the ways in which electronics can enrich our lives and widen our horizons included the K9 dog machine from the Dr Who television programme, a toy train controlled by a microprocessor in a manner no one present felt able to discuss, and some 'Star Trek'-inspired 'phasors', which made funny noises. Measuring instruments were in evidence, as were microcomputers in various guises.

Lord Trenchard's opening speech was a worthy example of its kind, impressing on all of us the need to use microelectronics for all we were worth and spelling out to us the disastrous consequences of failing to do so. The effect of the homily was not heightened by his aside, on leaving the still-live microphone, that he supposed he was now going to be shown the exhibits, which he couldn't, of course, be expected to understand. Lord Trenchard is a Minister of State for Industry.

The Microprocessor and Electronics Centre will be permanently open and will run a series of small exhibitions throughout the year.

Radio amateurs provide communications in Indian disaster

Radio amateurs provided emergency communications in disaster-struck Morvi, India, during the afternoon of August 11. Unusually heavy rains caused one of the Macchu dams to burst at both sides of the spillway, engulfing the entire city which had a population of 75,000 people. A wave seven or eight feet high devastated 80% of the buildings and left an estimated 10,000 people dead. The water continued to rise to about 15 feet and when these flood waters receded, the streets and houses were under 14 feet of mud.

Communications and power supplies were cut off almost immediately and even towns within 10 to 15 km away remained unaware of the tragedy for 24 hours. When the news finally got out, India's Home Guard from the city of Rajkot, 70 km away from Morvi, were the first to reach the devastated city and they set about extricating the wounded from the debris, disposing of bodies and organising relief.

The Federation of Amateur Radio Societies of India and the Radio \& Electronics Society of India, realising that communications would be needed, held an emergency meeting and within three days volunteers were mobilised, equipped with transceivers, antennae and other communications equipment, borrowed from various amateurs. Flying indirectly from Bombay to Rajkot, a small team of radio amateurs joined other helpers. One of the local amateurs contacted the Home Guard and introduced the District Commandant to their facilities. The Com-
mandant indicated that these facilities were just what they desperately needed, their own vhf equipment being totally inadequate to the problem. A main station was set up in the Commandant's office at the Home Guard's base at Rajkot, a jeep was made available and was quickly fitted out with mobile hf and two-metre equipment.

The two-metre portable equipment in particular, proved to be invaluable to the working parties who went out into the mud-filled lanes.

The amateur's facilities were used by the Red Cross and many other relief groups; they gave up 18 days of their time to provide emergency communications round-theclock. When tl:e telephones were reconnected between Morvi and Rajkot, the amateur's usefulness diminished and operatlons were wound up on September 5.

The amateurs obtained a good deal of satisfaction from the provision of emergency communications but they were also quick to point out that they had come to realise just how unprepared they were for the event and how lacking they were in suitable equipment and trained manpower. Their hope now is that, with government and other help, they can improve this situation. A story like this must encourage organisations such as RAENET (Radio Amateur Emergency Network) in the UK and other services even if they do find little opportunity to put it into practice.

Report says "Space for 12 more radio stations in London"

A study of v.h.f. spectrum availability in the London area, carried out by the former IBA engineer Fred Wise and commissioned by the Community Communications Group (COMCOM), reports that there is space for at least a dozen small radio stations in the area. The report splits possible further coverage into three categories including small stations with a coverage radii of about 1.5 km , medium size stations covering a sector of the city and larger stations, aimed at specialist interests, covering the entire city.
The forthcoming extension of the v.h.f. broadcast band to, initially, 104 MHz and later to 108 MHz (see News columns, January 1980 Wireless World) as a result of allocations at WARC '79, means that a further six stations
in the first category, four in the second and one in the third would be possible, but the latter would have to compete for space with dboth the BBC and the IBA.

Emphasis is placed in the report on the need for adequate representation of community radio interests in any plans to develop local or national services in the v.h.f. band. Commenting on the report, a spokesman for COMCOM said "We are delighted to have expert confirmation that our proposals for a "third force" of small, democratically-controlled, non-profit radio stations are technically feasible. Over the country as a whole, this finding shows there is room for many more stations than is officially admitted."

Hoff awarded microprocessor prize

The Franklin Insitute has awarded the Stuart Ballantine Medal, one of the United States' most coveted awards for scientific and technical achievements, to Dr Marcian E. Hoff, for his work in developing the microprocessor.

In addition to his work on digital microprocessors. Dr Hoff, or Ted Hoff as he prefers to be called, has contributed to the development of the first high-density memories for both mainframe computers and small computers, and more recently the development of the first analogue microprocessor. Between 1962 and 1968, he worked on computer equipment design as a research
associate at Stanford. In 1968 he joined the then newly-formed Intel Corporation as applications research manager where he worked on a variety of microprocessor and memory devices. In 1969 he proposed the microprocessor architecture and his work led to the production of the first microprocessor, the 4004, in 1971.
Since 1974, Ted Hoff has specialized in Intel's telecommunications products, contributing to the development of l.s.i. circuit technologies as used in the a.-to-d. and d.-toa. converters employed in telephone coderdecoder circuits and the 2920 analogue microprocessor.

NEWS IN BRIEF

The sixth European Conference on optical communication is to be held at the University of York from 16th to 18th September 1980. The papers presented will cover fibres and fíbre cable, devices (l.e.d's, lasers and detectors) integrated optics, equipment and techniques and total systems. The deadline for abstracts is 31 st March 1980 and communications regarding the conference should be addressed to Conference Dept, The Institution of Electrical Engineers, Savoy Place, London WC2R 0BL.

Six training modules, which Texas Instruments describe as a complete introduction to microprocessor technology, are being run by them as an extended range of courses at their headquarters in Bedford. Subjects covered include an introduction to microprocessing, assembly language programming, microprocessor software development using a diskette-base operating system, advanced microprocessors, Pascal language programming, Pascal executive runtime support and target system debugging. A brochure covering the range of courses is available from Mike Hughes, Microprocessor Training Centre, Texas Instruments Ltd, Manton Lane, Bedford MK41 7PA.

South London College is running a short course of nine lectures on receiver decoders (Teletext), to be held in the lecture theatre on consecutive Tuesday evenings from 6.30 to 8.30, starting on January 29th 1980. Slides and demonstrations will be features of the lectures and the course is intended for television and telecommunication technicians and engineers. Fee for the course is $£ 7$. Contact A. A. Rowlands, Course Organiser, South London College, Knights Hill, London .SE27 0TX.

The 65 th convention of the Audio Engineering Society is to be held at the Hilton Hotel, Park Lane and the Park Lane Hotel from Feb. 25th to 28th, 1980. Pre-registration fees are non-members $£ 17.50$, members $£ 12.50$ and student members $£ 3.00$ (student non-members $£ 4.50$). Fees at the door are. non-members $£ 20$, students $£ 6$, members $£ 15$ and student members $£ 4$. Details from Laurie Fincham, K.E.F. Electronics Ltd, Tovil Maidstone, Kent ME 15 6QP.
B. Sandham, electrification planning engineer, British Rail Board, will present "Future Developments in Electrification (Railways)" at a joint IEETE/ITEME meeting to be held at the IEE, Savoy Place, London WC2 at 5.30 pm on January $30, .1980$.

The IEETE have two optical fibre events planned for February 1980. D. J. Blake of the Post Office, will present "Optical fibre communications systems" at Swansea University at 7.30 pm on February 14, and an "unconfirmed" speaker will present "Optical fibres and cables" at Gwent College of Higher Education, Newport, on February 19.
K. Tabor of Post Office Telecommunications "will present "Post Office System X" at Bucks Higher Institute of Technology, High Wycombe. The IEETE meeting will be held on February 28 at 7.30 pm .

Car telephone service to go automatic

A service which will permit car radiophone users in the London area to dial direct or receive calls from any of Britain's 25 million telephones or 400 million numbers available on International Direct Dialling in 90 countries, is to be introduced by the Post Office in May 1980.
The new service will operate in exactly the same way as the 'phone at home and will enable 1,500 subscribers who have been waiting for connection to take advantage of this phone-in-a-car facility. At the moment it is necessary to call the radiophone operator, ask for the number and when an unoccupied radio channel is found the number is selected and routed through to the caller. With the new service it will no longer be necessary to follow special procedures such as depressing the "press to speak" button.
"New" radio frequencies, made available by reducing the bandwidth of existing channels, have been created to accommodate the increased number of subscribers using the service. At present, the London Radiophone service, which has been in operation since

1963, is stretched to its limit at about 3,500 customers. Customers using the current manual system are being given the opportunity to switch to the automatic process, but those who choose to remain with the old service will have to have their car equipment modified to work on the reduced bandwidth channels. Conversion will be carried out free of charge by the Post Office in conjunction with Radiophone suppliers under a carefully phased programme.
Customers will rent or buy the necessary equipment from three authorised suppliers; Marconi Communication Services Ltd, Pye Telecommunications Ltd, or Storno Ltd, who will install and maintain the hardware.
Two charge rates are applicable to the automatic service; normal (working hours, 8 am to 6 pm) at $31 / 2 \mathrm{p}$ for eight seconds and cheap (evenings and weekends) at $31 / 2 \mathrm{p}$ for 15 seconds. The charge will depend on duration of call irrespective of distance and there will be no three-minute minimum. The quarterly rental will be $£ 100$, vat extra, and although the first subscribers will be dealt with in May

1980, work on the new service as a whole will begin in January 1980 and take 18 months to complete.

Additional equipment is required at the Radiophone stations and $£ 13 / 4$ million worth of the necessary work will be provided by Pye. These improvements will also permit users of the automatic system to make use of the facility in other Radiophone areas.

Datel 4800

A high-speed Datel service, to be known as Datel 4800 , will enable users to send data at up to $4,800 \mathrm{bits} / \mathrm{s}$ over the national telephone network; the system is to be introduced by the Post Office this month and offers three types of synchronous operation; full duplex, half duplex and full duplex private circuit with half duplex public network operation as a standby facility. The system also incorporates customer test facilities enabling checks on circuits or modems before calling in PO engineers.

Is breath-festing BORIS bogus?

According to a report by Radio Australia, inventor Jim Blackwell has developed a "fool-proof" device which will keep intoxicated motorists off the road. He calls the equipment BORIS, which stands for Breath On Re-circulating Ignition System and Jim says the device is now ready for marketing after four years of development. It is fitted to the car's ignition system and the engine will not start "until the driver has blown into it. If the driver's blood alcohol level is above the legal limit, the engine does not turn over."

The inventor claims that tests at Sydney University prove that the gadget is 100% effective. The practical implications of the method, unless it is now possible to breathprint a particular driver, are that in normal use (and in the tests at Sydney University, presumably) the sober spouse and kids have to be chained up to a local lamp post or left at home; the naughty driver might otherwise be tempted to get one of them to blow into his BORIS so that he/she could roar off on a characteristic zig-zag path in a haze of alcohol and burning rubber. There's also a distinct odour of red herring in the air!

Hounsfield wins major

German award

Dr Godfrey Hounsfield, who was joint winner of the 1979 Nobel Prize for Physiology and Medicine, received the 1979 Aachen and Munich Prize for Technology and Applied Natural Sciences at a ceremony in Munich recently. The prize, which is worth about $£ 15,000$, is also in recognition of Dr Hounsfield's invention and development work relating to computer tomography. The annual award was instituted in 1975 to mark the 150th anniversary of the founding of Aachen and Munich Insurance Company.

Meteosat fails

Saturday, 24 November, 1979 marked the 2nd anniversary (plus a day) of the successful operation of Meteosat 1 and at 19.30 hours on that day an apparent overload in a power supply circuit caused the spacecraft to switch itself into the stand-by mode.

A statement issue by the European Space Agency (ESA) on 6 December, 1979 points to the source of the trouble as being "a component fault in a power control unit. The fault manifests itself as a spurious signal in the circuit designed to produce protection against overload situations (such as short circuits). This prevents many of the satellite sub-systems from being switched on. This particular component is not duplicated so there is no way in which the problem can be avoided by choice of alternative circuits. - However, it appears that the failure is inter-
mittent in nature and it may well be that the satellite can restore itself to a normal mode The investigation is continuing and ground simulations with similar circuits are being used to try to identify possible actions and to gain an understanding of the likely longer term forecast for the affected missions."

It is impossible to generate or disseminate images or to distribute information via the S band transponders, although the data collection mission continues to function normally. M. L. Christieson, author of "Meteosat earth station", Wireless World June 1979, says, "The failure of this satellite is a great disappointment to the many people involved with this project." Its failure may carry important implications for Meteosat 2 which is scheduled for launch in September 1980 aboard the "Ariane" launch vehicle.

Store recorders aid disease research

Syringo Myelia, a disease which affects the central spinal canal and which causes pain, loss of touch sensation and paralysis is being placed under renewed scrutiny at the Midland Centre for Neuro-surgery, Smethwick, using Racal's 14 channel "store" recorders. Information from transducer probes inserted into brain and spine cavities is compared with electrical signals from the heart. The seven speeds of the machine permit a "time lapse" approach which it is hoped will eventually yield a coherent picture of the disease.

Reverberation amplifier

An effective 100 mW reverberationspring amplifier can be constructed by combining a current dumping circuit with a feedback technique described by G. Hibbert in the August 1976 issue. The feedback around $R_{2} R_{3} R_{5}$ and C_{3} provides an approximately equal output power when the load impedance drops at resonant frequencies. Current dumping is performed by $R_{1} R_{4} C_{1}$ and C_{2}. Although the open-loop voltage gain of the op-amp is insufficient to cancel all of the cross-over distortion, with reverberation this is not audible. For other audio applications such as a headphone amplifier, the op-amp should be replaced by a high gain amplifier.
H. E. Riegstra

Amsterdam
Holland

Radio control encoder

A simple seven-channel radio control encoder can be built with two i.cs as shown. The circuit operates from 5 to 15 V at 2.5 to 8 mA and will provide an output current of up to 200 mA . The 555 is used in the astable mode with an off time of 0.25 ms and an on time between 1 and 2 ms except for channel 0 which produces a 0.5 ms sync. pulse.

The decade counter is clocked by the
falling edge of the output and is reset when Q8 goes high. Resistor R_{1} ensures that the 555 oscillates at a low frequency if no outputs are selected. If proportional control is not required, resistors R_{A} can be fixed values. For a supply below 8 V a Zener regulator should be used to prevent variations in pulse width.
S. Ingham

Moseley
Birmingham

Unity gain buffer with wide frequency response

By d.c. coupling a $n-p-n$. common emitter stage with a p-n-p emitter follower stage sharing a common load resistor, a unity gain buffer is formed which offers a high input impedance, wide frequency response, low output impedance and low current consumption.
The 3 dB bandwidth is above 80 MHz and by selecting better transistors this can be extended. Care in minimising the lead inductance and stray capacitance will also improve this figure. Current consumption is about a mA with a 10 V supply. The circuit will operate from 3 to 30 V without degrading its performance. It is important to select the correct input biasing resistors because they reduce the input impedance.
A. L. Equizabal

Vancouver
Canada

Low-frequency multivibrator

This multivibrator is based on the CA3290 dual voltage comparator which uses the bi.m.o.s. technique of combining bipolar and m.o.s. devices on a chip. The use of m.o.s. transistors in the input stage of the CA3290 provides an input impedance of around $1 T 7 \Omega$ and common-mode rejection for input signals below the negative supply rail.

In the circuit diagram one half of the CA3290 is used as a conventional multivibrator. Because the input impedance is very high the value of the timing resistor can be large which enables a small low leakage timing capacitor to be used for a long time delay. The second half of the CA3290 is used as an output buffer so that the multivibrator frequency is not affected by output loading.
R. Buckley

RCA Solid State
Middlesex

F.m. channel scanner

This circuit scans through 10 channels of an f.m. radio or transceiver by switching crystals in the local oscillator. Point B is connected to the audio switching transistor in the receiver which is normally saturated when no signal is present. On reception of a signal, point A rises to $V_{c c}$ and triggers the 74121 which enables the display and
gates out the 7413 oscillator. The display is enabled for three seconds and if, during this time, the channel is wanted S_{1} is pushed. The display disappears for the remaining period of the monostable pulse and is then enabled to confirm that the channel has been locked. If S_{1} is pushed again the channel is released and the circuit continues scanning.
J. W. Jarvis

Huntingdon
Cambridgeshire

Analogue trigonometric function generator

When a function generator is needed where the output is a trigonometric function of the input variable, this is usually accomplished with a digital memory or with a non-linear circuit which approximates the function over a limited range. This circuit is comparatively simple and simultaneously provides the sine and cosine functions over an angle of $\pm 2 \pi$. By using analogue dividers, other trigonometric functions can also be obtained.

The circuit operates by continuously sampling two harmonic waveforms, the phases of which are displaced by 90°. An oscillator generates sine and cosine waveforms at frequencies much higher than $V_{\text {in }}$. Purity of the waveforms has a direct influence on the quality of the outputs. The two waveforms are sampled and held by a dual analogue gate, C_{1}, C_{2}, and buffered by $\mathrm{A}_{\text {ic }}$ and $\mathrm{A}_{\text {ld }}$ Sampling is synchronized to the harmonic waveforms and time displaced proportionally to the input voltage by the p.1.1. The 4046 is locked to the sine waveform and V_{In} is resistively summed with the phase-detector output which feeds the v.c.o. input. To remain locked to the input frequency the p.1.1. cannot allow a change in the v.c.o. input and therefore generates a voltage at the phasedetector output which exactly opposes $V_{\text {in }}$. Due to the linear characteristic of the phase-detector, the output square wave is displaced and its leading edge

Fuse tester

When it is necessary to test a mains fuse, unless the plug is taken apart, a conventional check relies on the resistance of the appliance. This circuit uses the capacitance between the line and neutral wires in the mains lead so a faulty connection or open circuit within the appliance cannot cause a misleading reading.

The oscillator formed by gates a and b : feeds pulses into the neutral wire which induce a signal into the line. If the fuse is intact the induced signal is amplified by gate c , rectified and used to charge C_{2}. The voltage on C_{2} is amplified and used to drive the l.e.d. The fuse tester can be checked by touching the contacts with a finger.
P. Kelly and M. Dixon

Shrewsbury
used as a control for the two sample and hold circuits. To be symmetrical about $V_{\text {in }}=0$, the p.1.1. should have zero phase shift at this point and this is achieved by adjusting the v.c.o. frequency. The input is coupled to the p.1.1. by a summing network so that $V_{\text {in }}$ can vary symmetrically about ground by $\pm 4 \mathrm{~V}$ which
simulates an argument variation of \pm 2π. Transistor Tr_{1} squares the sinewave at the input of the p.1.1. to provide lock. Similarly, capacitor C is needed to eliminate lock loss near $V_{\mathrm{in}}=\mathbf{0}$.
Y. Netzer

Haifa
Israel

Test More

LP-1 Logic Probe

The LP-1 has a minimum detachable pulse width of 50 nanoseconds and maximum input frequency of 10 MHz . This 100 K ohm probe is an inexpensive workhorse for any shop, lab or field service tool kit. It detects high-speed pulse trains or one-shot events and stores pulse or level transistions, replacing separate level detectors, pulse detectors, pulse stretchers and pulse memory devices. All for less than the price of a DVM

£31.00*

LP-2 Logic Probe
The LP-2 performs the same basic functions as the LP-1 but, for slower-speed circuits and without pulse memory capability. Handling a minimum pulse width of 300 nanoseconds, this 300 K ohm probe is the economical way to test circuits up to 1.5 MHz . It detects pulse trains or single-shot events in TTL, DTL, HTL and CMOS circuits,
replacing separate pulse detectors, pulse stretchers and mode state analysers.
(Available in kit form LPK-1 £11-92)

£18.00*

The logic probes shown are all suitable for TTL. OTL. HTL and CMOS circuits.
*price excluding P.8P. and 15\% VAT

LP-3 Logic Probe

Our LP. 3 has all the features of the LP- 1 plus extra high speed. It captures pulses as narrow as 10 nanoseconds, and monitors pulse trains to over 50 MHz . Giving you the essential capabilities of a high-quality memory scope at $1 / 1000$ th the cost. LP-3 captures one shot or low-rep-events all-but-impossible to detect any other way.
All without the weight, bulk,
inconvenience and power consumption of conventional methods.
£49.00*

The New Pulser DP- 1
The Digital Pulser: another new idea from C.S.C. The DP-1 registers the polarity of any pin, pad or component and then, when you touch the 'PULSE' button, delivers a single no-bounce pulse to swing the logic state the other way. Or if you hold the button down for more than a second, the DP- 1 shoots out pulse after pulse at 1000 Hz .
 The single LED blinks for each single pulse, or glows during a pulse train. If your circuit is a very fast one, you can open the clock line and take it through its function step by step, at single pulse rate or at 100 per second. Clever! And at a very reasonable price. 851.00 *
C.S.C. (UK) Ltd., Dept. 7J, Shire Hill Industrial Estate, Unit 1, Saffron Walden Essex CB11 3AQ Prices include P.\&P. and 15% VAT

I enclose Cheque/P.O. for ε

American Express card no. \qquad ebit my 8
OR The C.S.C. 24 hour, 5 day a week service Telephone (0799) 21682 and give us your Barclaycard, Access. American Express number and your order will be in the post immediately.

A complete range of reel to reel, cassette, and test equipment for the professional and enthusiast.

The Ferrograph SP7
A transportable recorder for fast, safe tape handling under all conditions and a new concept that brings custom-building within the price range of standard models. It takes all spool sizes up to 27 cm and provides 3 speeds and positive action push buttons in association with logic circuits as well as motion sensing and command memory. Based on the Logic 7. individual specification allows choice of mono full track or half track head, stereo half track or quarter track head, line-in/ine-out, microphone inputs and many other features.

The Neal 302

A studio cassette recorder that incorporates three a.c. motors for reliability and smooth effortless power. It is controlled by a full solid state logic system actuated by ultra light touch buttons. A massive decoupled flywheel and oversize capstan result in exceptionally low wow and flutter. Tapes are protected by constant monitoring and in the event of snag or snarl the machine returns to stop. The 302 is used by top-recording studios and broadcasting stations for quality cassette copies and in-cassette duplication masters.

The Ferrograph Studio 8
A professional studio tape recorder, logic controlled and offering a choice of stereo, twin track and full or half track mono heads, PPM or VU meters, IEC (CCIR) or NAB equalisation. It is designed to meet the needs of modem radio and television broadcasting organisations and features include servocontrolled run and spooling, tape motion sensing and three editing modes. For up to $10 \frac{1}{2}$ " spools it accepts standard, long. play and double play $1 / 4^{\prime \prime}$ tape and has total type protection by electronic interlocks.

The Ferrograph RTS2 and ATU1

An all-in-one audio test set, the RTS2 puts an end to the use of separate instrumentation and its inherent complication of connections. The result is faster, cheaper servicing. It combines in one easy to use compact instrument the measurement of gain, noise, frequency response, input sensitivity. output power, distortion and the perameters relating to recording equipment such as wow and flutter, crosstalk, drift and erasure. Linked with a Ferrograph Auxiliary Test Unit, ATU1, its range of applications can be extended to include measurement on professional equipment.

Spectrum analyser adaptor

Using an r.f. instrument for audio frequency measurements

by R. C. V. Macario, B.Sc., Ph.D., M.I.E.E. University College of Swansea

The unit described, based on two mixer integrated circuits, enables an r.f. spectrum analyser to display a.f. system responses without loss of performance accuracy. Examples of the application of the unit presented here are measurements of the frequency responses of active audio filters and radio receivers.

Many laboratories possess versatile r.f. spectrum analysers and often associated r.f. tracking oscillators. Unfortunately the lowest frequency of operation of these instruments is often confined to a few kilohertz and this means that audio-frequency filter circuit responses usually cannot be examined directly on such instrumentation - and, indeed, if an audio frequency network analyser is not to hand the measurement of audio frequency response becomes very tedious.

Fig. 1. The complete adaptor unit, with a photographed trace in front.
Fig. 2. Circuit diagram and waveforms of unit. To improve the carrier balance, add the circuit in the small box (top right) to pin 8 of each mixer.

The unit shown in Fig. 1 provides a simple means of shifting an r.f. signal down to audio frequencies, and then up again to the same radio frequency. Operation is centred about a frequency determined by a c.m.o.s. crystal oscillator. This has good stability and its frequency is easily changed. The centre frequency can be between 1 and 5 MHz and is determined either by a crystal one has to hand or by the frequency required to match a receiver system being measured.
The frequency shift operation is carried out using the Siemens SO42P double balanced mixer device, which needs few external components. The natural signal balance of this device is about 30 dB ; if better than 50 dB is required the balance circuit shown in a box as an option may be added. Two of these devices are used in the unit, as shown in the circuit diagram Fig. 2. (The circuit diagram of the mixer device itself is shown in Fig. 3 for reference as it makes clear the pin connection availability, Pins 11 and 13 are used as the signa input (unbalanced arrangement in Fig. 2); Pins 7 and 8 are used as the shift carrier input (balanced); the output (unbalanced here) is taken from pin 2.)

The principle of operation is quite simple. The swept r.f. input voltage is simply shifted down to audio frequencies (and d.c.) by choosing the appropriate unit crystal frequency. These audio frequencies are then shifted up again to r.f. by an exact counterpart circuit, the second SO42P. An aspect of the circuit is the symmetry of the two operations and the equality of the shifting r.f. reference waveform.

The c.m.o.s. oscillator (4011 quad 2 -input Nand gate) produces a nine volt square-wave at the crystal frequency. This is divided down to produce a 100 mV signal to each mixer via the untuned wideband transformer, T_{1}. The
maximum r.f. signal level that should be applied to the mixer inputs is 100 mV peak-to-peak. This produces about. 400 mV peak-to-peak audio as an input to the test circuit. If the audio circuit under test produces gain then an attenuator must be inserted after the circuit under test. Responses down to 100 Hz can be examined; for lower frequency responses the values of C_{1} and C_{2} should be increased, provided the r.f. analyser has a narrower bandwidth.

The r.f. spectrum analyser is tuned to the centre frequency of the unit, say, 2 MHz . The response of the audio filter appears both sides of the centre frequency, e.g. $\pm 10 \mathrm{kHz}$. Normally one would view one side only with an r.f. sweep of, say, 1 kHz per division. The dynamic range of the unit exceeds 60 dB . The normal sweep rates, etc., of the spectrum analysers apply.

Construction

The circuit has been committed to a p.c. board which fits in a RS Components case type 509-383. Normal wander plug connections are assigned to the audio lines, whilst BNC sockets on the back of unit are assigned to the r.f. input and output. Because the circuit only takes 3 mA it has been made battery operated using a 9V PP6 cell. A double-sided board construction is assumed.

Applications

Active filters. The unit arose because of a need to examine certain active audio filters. In particular, there is a great interest in limiting the bandwidth of a.m. medium and long wave broadcast transmissions ${ }^{1.2}$ and to some extent good audio filtering in a receiver can aid this desire. Also, in the construction of s.s.b./i.s.b. phase shift modulators/ demodulators the design of the audio frequency low-pass filter is as important

Fig. 3. Circuit diagram of the Siemens symmetrical mixer i.c. type SO42P (14 pin dual-in-line).

Fig. 4. Examples of active low-pass filters; (below) pole-zero realisation using op-amps; (opposite) conventional LC realisation using gyrators. Traces above diagrams show measured responses using the adaptor (vertical scales $10 \mathrm{~dB} /$ div; horizontal scales $1 \mathrm{kHz} /$ div.).

 2. 3, 5, 6, 7, $9-1$ n5; 4. $8-3$ n.
as that of the phase shift networks ${ }^{3}$.
The usual approach today in the construction of audio filters is to use RC operation amplifier networks. An alternative, however, is to use a conventional LC filter synthesized design, replace the L by a gyrator and capacitance, and have an RC gyrator design. It is of interest to examine the number of components one needs in the two cases to realise the same filter performance. The filter performance considered for comparison is as follows:

Cut-off frequency	$=4 \mathrm{kHz}$
Stop band frequency	$=5 \mathrm{kHz}$
Stop band attenuation	$\geqslant 40 \mathrm{~dB}$

Consulting filter tables (Zverev, ref. 4) indicates a promising design is an elliptic design with:
Maximum passband attenuation

$$
\leqslant 1.25 \mathrm{~dB}
$$

Minimum stopband attenuation

$$
\geqslant 43 \mathrm{~dB}
$$

Fig. 4 summarises the two filter realiza-

tions. On the left-hand page the pole/ zero realisation is accomplished by using a triple op-amp arrangement based on a synthesis technique given by Huelsman ${ }^{5}$. On the right-hand page an LC tabulated design ${ }^{4}$ is realised using gyrators ${ }^{6}$.
The feature of particular interest in Fig. 4 is the list of the number of components required. For example, in the op-amp design (one device only necessary e.g. Siliconix L144, Texas TL084), one requires 9 critical capacitors and 10 critical resistors. On the other hand, in the gyrator design one needs two devices, but only 7 critical capacitors and 5 critical resistors.

Photographs of the responses of two such filters, constructed on breadboards using 'stores' components are also shown in Fig. 4. In the gyrator version it is possible to 'tune' the response by means of R_{1} and R_{3} (inductances), so that it can be adjusted to be closer to the theoretical response.

Continued on page 74

Fig. 6. Arrangement of apparatus for measuring frequency response of a radio receiver.

Fig. 5. Gyrator filter response as applied to a receiver response. Centre frequency is now the r.f. or i.f. frequency fvertical scale $10 d B /$ div.; horizontal scale 5 kHz /div.).

Resistors: 1, 3-47k pot; 2, 4-12k. Capacitors: 1 - $16 \mathrm{n} 2 ; 2-2 n 7$; 3-18n6; 4 $4-8 n ; 5-12 n 8 ; x-1 n 2 ; y-820 p$

Two transistor astables

by Peter Williams, Ph.D. Paisley, College of Technology

IMPROVEO RISE-TIME

The two-transistor astable shown is the standard text-book example. It was also justifiably the standard industrial form of astable, though it needs a number of additions and modifications to improve the rise-time, remove voltage-breakdown limitations, etc. These modifications remain important as applications of principles that can be applied to other generators and pulse circuits. This form of astable also remains useful but has lost its dominance in the face of integrated-circuit alternatives. If transistor Tr_{2} increases its current the fall in collector voltage is coupled through the capacitor to the other base $\left(\mathrm{Tr}_{1}\right)$ driving that transistor off. The resulting rise in the collector voltage of Tr_{1}, is capacitively coupled back to the Tr_{2} reinforcing its original increase in current. The switching is regenerative and any such change always proceeds to the limit of one transistor on $\left(\mathrm{Tr}_{2}\right)$ and the other off $\left(\mathrm{Tr}_{1}\right)$. When the potential at B falls rapidly it drives C to a correspondingly negative value, C having started close to zero (in practice 0.7 V corresponding to $V_{B E(s a t)}$). Point C then charges towards $V_{B B}$ through R_{B} eventually passing zero and then, at 0.5 V , bringing Tr_{1} into conduction. The process is then repeated with Tr_{1} saturated and Tr_{2} cut off. Independent control of the two parts of the cycle is inherent in the use of different CR sections for the two transistors.
ideally the collector waveform should be a squarewave and the base waveform a section of a perfect exponential followed by a period at zero volts. The departures from this ideal are indicated and can be explained as follows. When a transistor is driven into conduction the collector current can be very large depending on the current gain while the capacitor to which it is coupled sweeps the opposite base out of its conducting region. The transition is then slowed only by the device self-capacitances together with strays. Thus the fall-time at each collector is very short. When a transistor ceases to conduct, the capacitor has to charge through the full supply range via R_{c} and the opposite base-emitter diode. The rise time is thus of order $2.2 R_{c}$ by the theory given earlier. As the timing cycle is of order $0.69 C R_{B}$ if $V_{B B}=V_{C C}$ then the rise time clearly occupies a significant fraction of the on-duration $2.2 R_{c} / 0.69 R_{B}$ or $3 R_{c} / R_{B}$. It is not possible to reduce this greatly by manipulating the ratio R_{c} / R_{B} because that is constrained by the need to ensure saturation of the transistors when switched on. $R_{B} \approx 10 R_{c}$ is a typical constraint leaving the rise time at 30% of the pulse width.

The rapid capacitor charging also shows up as a spike at the start of the base-waveform saturation region. The collector rise-time can be dramatically improved by isolating the collector from the capacitor during the recovery period. Assume the base voltage of a transistor has been swept negative so that it ceases to conduct. The capacitor begins to recharge and the potential at A rises exponentially due to the current through R_{c}. This rise is relatively slow and A^{\prime} rises more rapidly reverse-biasing the diode. This isolates the collector from the capacitor and the rise-time is limited only by strays and self-capacitance. There is one disadvantage of the circuit and that is that R_{c} is involved in the recovery period while $R_{c} / / R_{c}{ }^{\prime}$ has to be driven by the transistor. For a given maximum current gain this requires a reduction in R_{B} shortening the pulse-duration or an increase in R_{c} increasing the rise-time. Thus an improved waveform at A^{\prime} is obtained at the expense of a worsening at A. A second snag is that A is no longer pulled down to $V_{C E(s a t)}$ i.e. the step transferred to the other base is reduced by $V_{0}, 0.6 \mathrm{~V}$.

At low supply voltages the fact that the base-emitter junction is subjected to a reverse voltage equal in magnitude to the supply is of no consequence. Above about 5 V this reverse bias may be enough to produce breakdown in the junction. This need not be dangerous as the current is limited by the peak current available from the other transistor but it clips the base waveform. This makes the oscillation frequency more dependent on supply variations. The simple circuit is largely free of this problem as the resistor voltage ratio remains supply-independent as tdiscussed earlier. As soon as one of the voltages becomes dependent on a constant breakdown voltage the ratio ceases to be constant as the supply changes. Three possible solutions are shown (i) a diode in series with each emitter absorbs the reverse voltage at the expense of raising the collector saturation voltage: this can have serious consequences if the astable is to remain compatible with, for example, logic circuits; (ii) a more complex network requires up to two diodes where D_{1} will generally be slower than D_{2}, its stored charge helping to turn the transistor off rapidly; with D_{2} omitted and D_{1} of low capacitance the circuit becomes suitable for higher speeds, (iii) the collector voltage is caught by a diode at some reference level too low for breakdown to result during the following transition; the simple time-interval equation is again modified because the voltages depend partly on a constant reference and partly on a variable supply.

This is a problem that is all too rarely discussed. At switch-on the vast majority of two transistor astables begin oscillating immediately. The start-up requires only a slight imbalance between the initial conduction buitd-up, which normally applies. Theoretically however the circuit could immediately go into a stable, non-oscillatory condition. If the transistors go into that saturated state simultaneously, the loop gain is less than unity and oscillation never starts. The real difficulty arises if an otherwise satisfactorily oscillating astable has its output temporarily short-circuited. Both transistors would then be driven into their saturated state and the very small rise in collector voltage from zero to $\mathrm{V}_{\mathrm{CE} \text { (sel) }}$ on removing the short-circuit is insufficient to propagate around the loop and raise the loop-gaih to an oscillatory level. One simple way of avoiding this possibility is to ensure that the quiescent state of both devices is in the linear region i.e. that if oscillation ceases for any reason the loop gain always returns to a value sufficient to re-establish it. Each base resistor is returned to its own collector meeting this condition with only a small shift in the frequency equations.

Two transistor astables

THEORY

The voltage at B switches from $V_{c C}$ to $V_{C E(s a t) 2}$. Prior to that instant C is at $\mathrm{V}_{\mathrm{BE}(\text { sat) })}$, and falls by $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{CC}(\operatorname{sav}) 2}$. With the resistor returned to V_{BB}

$$
\begin{aligned}
V_{1} & =V_{\mathrm{BB}}-V_{\mathrm{BE}(\mathrm{sax}) 1}+V_{\mathrm{CC}}-V_{\mathrm{CE}(\mathrm{sat}) 2} \\
& \left.\left.=\stackrel{V}{C C}+V_{\mathrm{BB}}\right)-N_{\mathrm{BE}(\mathrm{sat}) 1}+V_{\mathrm{CE}(\mathrm{sat}) 2}\right)
\end{aligned}
$$

This is composed of the major term $\mathrm{V}_{C C}+\mathrm{V}_{B B}$, obtained for ideal transistors, reduced by the finite transistor voltage drops in saturation. The corresponding value of V_{2} is $\mathrm{V}_{\mathrm{BB}}-\mathrm{V}_{\mathrm{BE}(\mathrm{nn)}}$, since the transistor enters its linear region at some voltage $V_{B E(t h) 1}$, where $V_{B E(s a t)}>V_{B E(t h)}>0$. Thus the interval between one transition and the next is

$$
t_{2}-t_{1}=\tau \log _{e}\left[\frac{\left.\left(V_{\mathrm{CC}}+V_{\mathrm{BB}}\right)-N_{\mathrm{BE}(\text { sat) }}+V_{\mathrm{CE}(\text { (sat) } 2}\right)}{V_{\mathrm{BE}}-V_{\mathrm{BE}(\mathrm{~h}) 1}}\right]
$$

This result is greatly simplified if

$$
\begin{aligned}
V_{C C} & =V_{B B} \gg V_{B E(\text { sat) })}, V_{C E(\text { sat }) 2}, V_{B E(t h)} . \\
\text { Then } t_{2}-t_{1} & =\tau \log _{\mathrm{e}}\left(\frac{2 V_{C C}}{V_{C C}}\right) \\
& =0.69 \tau \text { where } \tau=R_{B C}
\end{aligned}
$$

- When Tr_{1} ceases conduction potential at A has a finite rise-time due to the collector time constant. Again assuming $V_{B E} \ll V_{C C}$, and defining the rise-time as the time taken for A to rise from 10 to 90% of its final value then

$$
\begin{aligned}
& V_{1}=0.9 V_{c c} \\
& V_{2}=0.1 V_{c c}
\end{aligned}
$$

and rise time $=\tau^{\prime} \log _{6} 9$

$$
\begin{aligned}
& =2.2 \tau^{\prime} \\
\frac{\text { rise time }}{\text { pulse width }} & =\frac{2.2 \tau^{\prime}}{0.69 \tau} \\
& \approx \frac{3 R_{C}}{R_{B}}
\end{aligned}
$$

8ut $R_{B} \approx 10 R_{C}$ is typical to ensure saturation of the transistor i.e. rise time $\approx 30 \%$ pulse width

Voltage breakdown in the base-emitter junction modifies the waveforms and the frequency, which in the simple case is

$$
f=\frac{1}{T}=\frac{1}{2 \times 0.69 \tau}=\frac{1}{1.38 T}
$$

and is independent of $V_{c c}$
Let V_{R} be the voltage on the base-emitter at which it conducts clamping the capacitor

$$
\begin{aligned}
& V_{1}^{\prime}=V_{C C}-V_{R} \\
& V_{2}^{\prime}=V_{C C} \\
& t_{2}^{\prime}-i_{1}^{\prime}=r\left(1-\frac{V_{\mathrm{R}}}{V_{C C}}\right)
\end{aligned}
$$

$$
f^{\prime}=\frac{1}{2 \tau \log _{e}\left(1-\frac{V_{R}}{V_{C C}}\right)} \text { and depends on } V_{R}, V_{C C}
$$

EXAMPLES

1. A two-transistor astable has the following values $R_{C} 1 \mathrm{k} \Omega, R_{B} 15 \mathrm{k} \Omega$, $\mathrm{C} 68 \mathrm{nF}, \mathrm{V}_{\mathrm{CC}} \& \mathrm{~V}_{\mathrm{BB}} 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}(\text { (at) })} 0.15 \mathrm{~V}, \mathrm{~V}_{\text {BE (sat) }} 0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}(\mathrm{th})} 0.5 \mathrm{~V}$. Evaluate the frequency of oscillation from first principles.

The waveform sketch is of a collector waveform falling from V_{s} to $\mathrm{V}_{\mathrm{CE}(\operatorname{san})}$. Just prior to that instant the other base is at $\mathrm{V}_{\mathrm{BE}(\mathrm{san})}$ and is driven down by the same amount. When the base recovers to $V_{\text {BE(N) }}$ the other transistor takes over the second half-cycle.

$$
\begin{aligned}
V_{1} & =V_{s}-V_{B E(s a l)}-\left[V_{1}-V_{C E(\text { seit }}\right] \\
& =2 V_{s}-\left[V_{B E(\text { sayt }}+V_{C E(\text { sat })}\right] \\
V_{2} & =V_{s}-V_{B E(t h)} \\
V_{1} & =10-0.85=9.15 \mathrm{~V} \\
V_{2} & =5-0.5=4.5 \mathrm{~V} \\
\therefore T & =2 \pi \log _{e}\left|\frac{9.15}{4.5}\right| \\
& =1.42 \mathrm{~T} \\
f & =\frac{1}{1.42 \times 10^{4} \times 68 \times 10^{-9}}=1.04 \mathrm{kHz}
\end{aligned}
$$

Note the likely tolerance on this figure is likely to be dominated by the T value as the $V_{B E}, V_{C E}$ values have mode only a marginal difference raising Tfrom 1.39τ to 1.42τ.
2. For the previous question, show that the rise-time of the collector waveform is about 20% of the pulse width. Can this figure be improved?
When a transistor switches off the charging time-constant is $\mathrm{R}_{\mathrm{e}} \mathrm{C}$ and the rise-time is taken for simplicity as the usual in level between the 10% and 90% levels. This is inaccurate as it fails to allow for the initial $V_{B E}$ value, but it gives a useful guide.

$$
\begin{aligned}
\text { Thus rise-time } & =\mathrm{CR}_{\mathrm{C}} \log _{\mathrm{e}}\left|\frac{0.9 \mathrm{~V}}{0.1 \mathrm{~V}_{\mathrm{s}}}\right| \\
& =2.2 \mathrm{CR}_{\mathrm{c}} \\
\text { But collector on-time is } & \approx 0.71 \mathrm{CR}_{\mathrm{B}} \\
\therefore \frac{\text { rise time }}{\text { pulse width }} & =\frac{2.2}{0.71} \times \frac{\mathrm{R}_{\mathrm{C}}}{\mathrm{R}_{\mathrm{B}}} \\
& =\frac{2.2}{15 \times 0.71} \approx 20.6 \%
\end{aligned}
$$

say 20% allowing for the over-simplification.
The figure can be improved in theory by reducing R_{C} raising R_{B} or both (re-adjusting C as necessary to maintain τ). The limit is that the transistors must remain saturated i.e. $R_{B} / R_{C}<h_{\text {FE(sat) }}$
The guaranteed figure for saturated current gain is not likely, to exceed say 20 making large improvements difficult. Circuit modifications are necessary for such improvements and an example is show opposite.

Townsman $2 \mathrm{~m} / \mathbf{7 0} \mathrm{cm}$ aerial

Two-band design with no ground plane.

by B. J. P. Howlett, G3JAM

The continued witholding of the citizen's band by the Home Office has caused vastly increased occupancy of the amateur 2 m and 70 cm bands for everyday purposes of mutual communication between friends, and most of them use commercially-made private mobile radio equipment tailored for these frequencies, and for the 80 or so automatic/unattended repeater stations dotted about the UK.

Several years ago, the author foresaw the need for a somewhat tidier aerial for the average householder than the tooprevalent, quarter-wave, ground-plane, vertical aerial; an aerial which would be stick-like, with no ground-plane, and operating on both bands without switching. It should be weather-proof and cheap, and easily clamped to a short stub-mast with Jubilee clips from the local garage. It wasn't an easy job!
The first design, a half-wave rod driven from a quarter-wave concentric transformer, did work, but the thinness of the centre wire to match 50 ohms to 1200 ohms (the end resistance of a 12 mm , half-wavelength rod at 145 MHz), relegated the design to the roofspace.
However, in the aerial shown diagrammatically in Fig. 1, the wire is 0.7 mm and the inductor can be 127 mm of p.v.c.-covered wire, fashioned into a hairpin shape and soldered on in parallel to the feeder cable at the point of entry. Very careful tests disclosed the interesting fact that the transformer needed to be about 0.185 wavelength long when the insulator/spacer S was $0.015 i$ wavelength. With 12 mm tubing, v.s.w.r. could easily be made $1: 1$, and the feederdid not radiate. Pro rata scaling from the 2 m band to the 70 cm band proved that the hairpin needed to be, not one: third, but $(1 / 3) 1 / 2(=0.5774) \times 127=$ 73 mm long at three times the frequency. The inductance changed inversely as the frequency.

Already it was felt that enough was known about the aerial to go ahead with a full patent for the matching features, and this has now been obtained (British Patent No 1527800).
From a practical viewpoint, the aerial suffered in rain and high winds. It had to be precision-made and sealed if water was to be kept out of the two joints, either side of the precision-turned insulator/separator. The solution,

Item	2m	70cm	Red	Yel.	Brn.	Grn.	
Dipole A	96.5	30	27.4	24.5	22.2	19.9	
Transf. T	40.64	13	10.55	9.43	8.55	7.67	
Space S	2.0	0.8	0.6	0.6	0.6	0.6	
Hairpin L, total wire length	12.7	7.24	-	-	-	-	
Harmonic shield	29.3						

Dimensions are given in cm for 1 cm wide material, as cut. Hairpin loop made of p.v.c. insulated hook-up wire.
shown in Fig. 2, was to build the aerial flat, from off-cut strips about 1 cm wide, with a flat drilled strip insulator (of Perspex, in the author's case), the whole lot being pushed into $3 / 4$ in plastic conduit and put on a high stub mast so that it would rattle, and keep the author awake at night.

Quite right! That is exactly what the

Fig. 1. Basic aerial, a half-wave element A and coaxial impedance transformer T. Loop inductor to augment impedance ratio obtainable.
kinks are for; to stop the assembly rattling in a high wind. The kinks have no electrical purpose whatsoever. The two end-plugs, one drilled for the feeder, were actually cast from body-repair (the automobile kind) resin, but could be turned from solid material, of course.

Gone is the taut centre wire in the transformer, T. Instead (see construc-tion diagram), the centre core of the feeder itself, UR43, (F) with the braiding stripped back, forms the "centre" wire. Actually, an insulated wire taped on to a wide strip is not unlike a coaxial line, except that there is the added advantage that, for fine matching adjustment, it can be flared away from the strip as shown.

So what about 70 centimetres? Well, around the outside of the plastic conduit, and directly over the middle of the 2 m radiating element, a "cooking foil" (actually aluminium Silglas glazing strip), cylinder is glued, resonant at the third harmonic of 2 m . This prevents radiation from the centre current maximum when the aerial is used at its third harmonic on 70 cm , and leaves just the upper and lower half wavelengths (which are in phase) operating as a two-element colinear at 70 cm .

The author is, perhaps, lucky to have discovered a matching and radiating system that can be adjusted to give very good matching at both frequencies at once. It did take four years, of course, and quite a bit of help along the way was given by other radio amateur

Fig. 2. Construction of $2 \mathrm{~m} / 70 \mathrm{~cm}$ aerial.

friends. None of them ever saw the final model, except from a considerable distance, but a number of the early models were made by the author and farmed out for reports. G8NCW, G3PCA, G3IMC, G8LWA, G8BAM, G3YNC (callsigns given in a random order) were early users of the aerial, and some went on to build their own. Thanks are due to all of them for the assistance they gave.

Scaling the aerial to Band V television, proved a very pleasant surprise. With short, fat dipoles, and 75 ohm feeder, the inductor L is not needed. This helped the bandwidth problem. Red zone is particularly difficult in this respect, though it must be admitted that even 1 cm wide material does quite a good job, and the feeder is absolutely 'dead', allowing one to pin up the feeder after setting the aerial to the best position, without upsetting the picture again. Some users have been known to get quite light-headed about this particular feature, only rarely encountered, apparently.
No dark plans are afoot to manufacture the aerial. No doubt, however, some character will make one or other of the suggested models and sell huge quantities in a clandestine manner. Good luck.

To others, I would say, please build one with my compliments. It was a challenge to make exactly the aerial I wanted; it was a challenge, in this day and age, to invent a virtually new aerial which turned out to be a new aerial, at least within the definition of the patents law, whatever that is.

The table shows the dimensions of aerials for single-frequency use in other bands.

Fig. 3. Townsman without plastic tube cover.

No more film for Channel

The smallest of the UK independent television companies, Channel Island Communications (Television) of Jersey claim to be the first European broadcaster to use electronic news-gathering equipment exclusively. All the existing film processing facilities have now been removed.

Sony Broadcast BVP300 cameras, BVU100 U-matic video recorders, editing and time-base correction equipment is used and has so far proved to be highly reliable in almost all conditions. Channel's managing director, Ken Killip, expressed his enthusiasm for the new techniques, and feels that "the electronic cameras have given a new dimension to local television broadcasting". It is no longer necessary, for example, to have people in studio to interview them; the reduction in costs and elimination of film processing time means that outside interviews are now practicable. Camera sensitivity gives freedom from the necessity to use kilowatts of lighting and the automatic colour balance in the electronic

cameras obviates the use of filters for different lighting conditions. Running cost is "'negligible", since tape produced by the U-matic is dubbed onto a master for broadcast, the original being refused.
There has been no union opposition to the use of the equipment, the technicians being "most impressed", according to Brian Turner, Channel's operations manager.
continued from page 69

Fig. 7. Radio receiver selectivity response measurement, a car radio with $100 \mu \mathrm{~V}$ input at 1 MHz . (vertical scale $10 \mathrm{~dB} /$ div. relative to 1 W ; horizontal scale $1 \mathrm{kHz} / \mathrm{div}$. relative to 1 MHz centre frequency).

Finally, Fig. 5 shows the equivalent response of these filters when used in an a.m. radio receiver. The response bandwith is now of course twice the audio bandwidth.

Radio receivers

Another application is the examination of overall receiver responses. Fig. 6 shows an arrangement for this measurement using a standard signal generator, e.g. Marconi type TF 2002. The adaptor unit converts both the input r.f. signal to audio and the output audio to r.f. The signal generator is tuned to the receiver centre frequency, e.g. 1 MHz , and the output set to desired output level, e.g. $100 \mu \mathrm{~V}$. Some adjustment in the a.f. levels may be necessary in order to keep within the 100 mV pk-pk requirement, but this is not difficult to arrange at audio. It will now be appreciated that the spectrum analyser tracking generator sweeps the r.f. signal generator input frequency across the passband of the receiver under test. The resultant audio response is then selectively monitored.

The response of a high quality car radio is shown for example in Fig. 7. This response is the aggregate of the r.f., i.f. and audio stages of the receiver. The spectrum analyser sweep rate must be sufficiently slow so as not to mislead the a.g.c. response of the receiver.

References

1. Reed, C. R. G. "Reduction of Interference by reduction of modulation bandwidth," BBC Engineering J., Jan. 1972, p. 23.
2. Eden, H. "A filter for the bandwidth limitation of a.f. programme signals in lf/mf sound broadcasting,"EBU Tech. Review, 169, June 1978, p. 118.
3. Macario, R. C. V. "Meeting mobile radio specifications with operational amplifier phasing networks," I.E.R.E. Conference on Land Mobile Radio, London, 1975.
4. Zverev, A. I. 'Handbook of Filter Synthesis," Wiley 1967, p. 222.
5. Huelsman, L. P. "Active Filters; lumped, distributed, integrated, digital and parametric." McGraw-Hill, 1970, Chpt. 2.
6. See Mullard TCA 580 data sheet.

NOBODY CAN DO IT LIKE SABTRONICS CAN. NOBODY!

We pioneered the first benchtop professional quality Digital Multimeter at lowest price anywhere. We sold tens of thousands of units around the world and are still selling. Nobody has been able to beat our price/performance ratio.

Now we are making the impossible again. A $31 / 2$ Digit LCD hàndheld professional quality multimeter at an absolute low price of only $£ 59.95^{*}$. But don't get sold yet, wait till you have read further.

QUALITY, PERFORMANCE AND ACCURACY

The model 2035A offers you long term accuracy with a laser trimmed resistor network, a stable bandgap reference element, and single chip LSI circuitry. Expert circuit design and board layout have reduced component count to the optimum minimum. With 32 ranges** and 6 functions, you can measure $A C$ or $D C$ volts from $100 \mu \mathrm{~V}$ to 1000 V ; AC and DC current from $0.1 \mu \mathrm{~A}$ to $2 \mathrm{~A}_{;}$resistance from 0.1Ω to $20 \mathrm{M} \Omega$. Typical DCV accuracy of $0.1 \% \pm 1$ digit.

OVERLOAD PROTECTION FOR GREATER SAFETY

Input overload is protected to 1000 V ($D C+A C$ peak). Ohm and current ranges are fuse protected. These features, plus a high immunity to voltage transients, protect the 2035A against uncertain input conditions. Input and battery eliminator jacks are recessed to ad to operational safety.
Wait don't order it untill you have read further.

OTHER FEATURES FOR GREATER CONVENIENCE AND FLEXIBILITY

Automatic zero; Automatic polarity (+ implied, - shown); Large $1 / 2^{\prime \prime}$ LCD readout with automatic decimal and low battery indicator; uses inexpensive 9 V transistor battery; 200 hours battery life; push button switches for easy ${ }^{\circ}$ operation; light weight (only 11 oz); fits easily into a jacket pocket; specially designed injection moulded rugged plastic case in beautiful grey beach colour with matching switch buttons; only 2 caliberation controls. Whether you are professional or amateur, you should check out the Model 2035A for yourself.

* Model 2035A as shown.

Model 2037A with temperature measuring. circuitry $£ 69.95$.
** Model 2037A has 34 ranges and 7 functions ${ }_{\text {i }}$)

Send your orders with payment to:

TIMWOOD LTD.
14 Albert Street, Cowes Isle of Wight, England:

Telex 86892

Please sena me by parcel post:
_ Model 2035A
assembled and tested at $£ 59.95$ £
_ Model 2037A
assembled and tested at $£ 69.95$
_ Model THP 20
Touch and Hold probe at $£ 9.95 \quad £$ \qquad
Plus VAT at 15% and p.p. $£ 3.50$ each $£$
Total enclosed herewith:
$€$

Name:
Address:
City: Postal Code:

From Science of Cambridge: the new MK 14. Simplest, most advanced, most flexible microcomputer-in kit form.

MK 14 including optional RAM I/O and Extra RAM.

The MK 14 is a complete microcomputer with a keyboard, a display, 8×512-byte preprogrammed PROM, and a 256-byte RAM programmable through the keyboard.

As such the MK14 can handle dozens of user-written programs through the hexadecimal keyboard.

Yet in kit form, the MK 14 costs only $£ 39.95$ ($+£ 6.60 \mathrm{VAT}$, and $\mathrm{p} \& \mathrm{p}$).

More memory - and peripherals!

Optional extras include:

1. Extra.RAM-256 bytes.
2. 16-line RAM I/O device (allowed for on the PCB) giving further 128 bytes of RAM.
3. Low-cost cassette interface module-which means you can use ordinary tape cassettes/ recorder for storage of data and programs.
4. PROM programmer and blank PROMs to set up yor own pre-programmed dedicated applications.
5. VDU Interface, displays 512 characters on 625 line domestic TV by memory mapping contents of MK 14. Incorporates a 64 character ASCll display chip, graphic facility, UHF modulator.
All are available now to owners of MK 14.
A valuable tool-and a training aid As a computer, it handles operations of all types-from complex games to digital alarm clock functioning, from basic maths to a pulse delay chain. Programs are in the Manual, together with instructions for creating your own genuinely valuable programs. And, of course, it's a superb education and training aid providing an ideal introduction to computer technology:

A set of Further Applications Programs is available covering advanced programs, dealing particularly with the use of the $1 / 0$ capacity of the

MK14 including the VDU and several programs written in a form of interpretative language called MINIL

SPECIFICATIONS

- Hexadecimal keyboard 8 -digit, 7-segment LED display 8×512 PROM, containing monitor program and interface instructions - 256 bytes of RAM $\bullet 4 \mathrm{MHz}$ crystal -5 V regulator requires single 8 V power supply - Space available for extra 256-byte RAM and 16 port I/O \oplus Edge connector access to all data lines and I/O ports.

Free Manual

Every MK14 kit includes a Manual which deals with procedures from soldering techniques to interfacing with complex external equipment. It includes 20 sample programs including math routines (square root, etc), digital alarm clock, single-step, music box, mastermind and moon landing games, self-replication, general

To: Science of Cambridge Lad, 6 Kings Parade, Cambridge, Cambs., CB2 ISN.

Please send me the following, plus details of other peripherals:
\square MK14 Standard Microcomputer Kit "، $£ 46.55 \square$ Cassette (11 $£ 7.25$

\square Extra RAM ${ }^{\prime \prime}$ / [4.14

RAMI/O device(t' L8.97

\square PSU (1) 16.10

All prices include $\mathrm{p}+\mathrm{p}$ and VAT. Allow 21 days for de livery. I enclose cheque/money order/PO for \mathcal{L}
purpose sequencing, etc.

Designed for fast, easy assembly

The MK14 can be assembled by anyone with a fine-tip soldering iron and a few hours' spare time, using the illustrated step-by-step instructions provided.

How to get your MK 14

Getting your MK 14 kit is easy. Just fill in the coupon below, and post it to us today, with a cheque or PO made payable to Science of Cambridge. And, of course, it comes to you with a comprehensive guarantee. If for any reason, you're no completely satisfied with your MK 14, return it to us with in 14 days for a full cash refund.

Science of Cambridge Ltd,
6 Kings Parade, Cambridge, Cambs., CB2 1SN. Telephone: Cambridge (0223) 311488

Name

Address (please print)

Science of Cambridge

WW-009 FOR FURTHER DETAILS

Clock timer - 1

Random access memory stores 16 alarm times over seven days

By R. D. Clemow and T. C. Garden

The alarm timer was originally

 designed to operate with a time-code clock published in the February to April 1976 issues of Wireless World, but it can be adapted for use with other types of digital clock. The standard circuit offers 16 alarm times during a week, although this can be expanded to 64. Alarms can be inhibited on selected days and a back-up battery powers the volatile memory during a power cut.There are many industrial and domestic situations where it is necessary to generate a number of alarm times. This design provides up to 16 alarm times, although it is possible to increase this to 64. The timer was primarily designed for use with a time-code clock, but it can be connected to a more conventional digital clock.

The design is based on a static 1 K r.a.m. which stores the alarm times.

Although this form of storage is only suitable for multiplexed systems, it simplifies the circuit considerably.

The alarm times are stored as four digits of b.c.d. so that they can be easily compared with the clock time to the nearest minute.

One advantage of using a time-code clock is its automatic setting after a power cut. To make the timer compatible, a rechargeable battery is used to power the memory and a few associated i.cs during such a power cut.

If it is necessary to inhibit alarms on certain days of the week this can be achieved by using an optional circuit. A day-of-the-week indicator comprising seven l.e.ds is also included.

Fig. 1. Block diagram of the complete timer. The circuit is designed for use with a multiplexed clock. All external connections refer to the time-code clock mentioned in the text.

The block diagram of the timer in Fig. 1. can be divided into four sections; the power supply, the day-of-the-week circuit, the memory input circuit and the memory output circuit.

Power supply

The power supply provides 5 V to run both the timer and a clock. It also controls the charging/discharging of the back-up battery and provides control signals to prevent spurious clocking of the memory and shift registers when the mains supply is cut or restored. The 5 V supply shown in Fig. 2. is based on a standard 3A regulator. Fig. 3. shows the battery charger and power control circuit which uses a constant current source around Tr_{1} to charge the battery through $D_{1} R_{1}$ with a current of about 45 mA . Transistor Tr_{5} regulates the 10 V supply to provide 5 V for the memory circuits. If the mains input fails, the 10 V

supply decays rapidly and at $8 \mathrm{~V} \mathrm{Tr}_{2}$ turns off via D_{4} which enables the voltage regulator Tr_{3} to supply current from the battery to the V_{s} line. Diodes D_{1} and D_{6} prevent damage to Tr_{1} and Tr_{5} from reverse currents. During normal operation Tr_{4} is turned off and the power fail line is high. When the mains supply is removed the power fail line goes low as soon as Tr_{2} has turned off and when the mains is restored, the clock display is blanked and Tr_{4} is switched on via R_{8}. When the display blanking line goes low, Tr_{4} switches off and the power fail line goes high. Capacitor C_{1} prevents any switching noise reaching the power fail line which is also used to disable the memory during power cuts so that pulses on the memory read/write pin have no effect. This prevents data in the memory from being erased because if the main 5 V supply fails, the memory is left in the write mode. If the timer is used with the time-code clock mentioned previously, some alterations are necessary to ensure that the display is always blanked at switch-on, see Fig. 4.

Although it is impossible to alter the data in the memory by interrupting the mains supply, the data will be lost if the battery is completely discharged after about six hours of continuous use. To indicate that a power cut has occurred, the on l.e.d. flashes until it is reset manually.

Day of the week circuit
Pressing the day key clocks a divide-by-seven counter and 7 -bit shift register via a debounce circuit. The output of the counter is connected to the l.e.d. day indicator and the shift register is clocked with the counter so that they remain in step. The shift register can be set to enable or inhibit the alarm for each day of the week and the l.e.d. alarm indicator monitors the output of the shift register corresponding to the day indicated.

As shown in Figs. 5 and 6, the keyboard is inoperative with S_{2} at run because the common line is left floating. With S_{2} in the set position, pressing any key grounds the corresponding output pin. Therefore, pressing the day key triggers a monostable in IC_{22} which produces a 150 ms low pulse at pin 12 . This pulse is gated through $\mathrm{IC}_{17 \mathrm{a}}, \mathrm{IC}_{21 \text { a }}$ and $\mathrm{IC}_{21 \mathrm{~b}}$ to produce a low pulse which clocks the counter IC_{8} whose output is decoded by IC. Pressing the day key therefore advances the indicator by one. The counter is reset when pin 9 of the decoder goes low.

If the day indicator is to be automatic it must be clocked at midnight when the tens-of-hours B bit goes low. This switches Schmitt trigger $\mathrm{Tr}_{7}, \mathrm{Tr}_{8}$ whose low edge is differentiated by $\mathrm{C}_{13}, \mathrm{R}_{38}$ and then fed to IC_{8} via $\mathrm{IC}_{17 \mathrm{a}}$. Diode D_{11} prevents a spike appearing at the input of $\mathrm{IC}_{11_{a}}$ when Tr_{8} is turned off at 20,00 . hrs.

Any necessary correction to the time

Fig. 2. Main $5 V$ power supply.

Fig. 3. Battery charger and power control circuit. Resistor R_{1} is chosen for a trickle-charge current of about 45 mA .

Fig. 4. Modifications to the time-code clock. The component numbers marked with an asterisk refer to the published clock circuit. C_{17} replaces a $100 \mu F$ capacitor and D_{23} has been added to discharge C_{17}, during short breaks in the mains supply.

display is achieved by clocking the display at 100 kHz . This causes a short pulse at $\mathrm{IC}_{17 d}$ output which is filtered by R_{33} and $C_{i 2}$ to prevent false clocking. If the power fail line goes low, IC_{8} cannot be cleared and signals from $\mathrm{IC}_{17 \mathrm{a}}$ are blocked. When the mains is restored, the power fail line remains low while the 5 V supply is recovering and only goes high when the display blanking line goes low. The day indicator is not clocked at midnight if the mains supply is interrupted when the midnight pulse is to be produced. If this occurs the day indicator will be one day behind when the supply is restored, but the flashing 1.e.d. provides a warning.

The alarm enable/inhibit circuit is shown in Fig. 7. The output of $\mathrm{IC}_{21 \mathrm{a}}$ clocks IC_{10} so that it is always in step with IC_{8}. The Q outputs of IC_{11} are normally high and gates $\mathrm{IC}_{18 \mathrm{c}}, \mathrm{IC}_{18 \mathrm{~d}}$ recirculate data from Q7 to the data input. The alarm enable l.e.d. monitors the output of $\mathrm{IC}_{18 \mathrm{~d}}$ and indicates whether the alarm is enabled or in-

Fig. 5. Keyboard encoder and memory input circuit.
hibited. With S_{2} at set and S_{3} at day, the Z line is grounded and the alarm is inhibited for the day indicated by pressing 0 on the keyboard. This clocks IC ${ }_{11 b}$ via $\mathrm{IC}_{16 \mathrm{~b}}$ so that its Q output goes low which forces the data inputs of IC ${ }_{10}$ high and switches the alarm enable l.e.d. off. If the day key is then pressed, the new data is clocked in and the low pulse at $\mathrm{IC}_{21 \mathrm{~b}}$ output clears $\mathrm{IC}_{11 \mathrm{~b}}$ after IC_{10}. has been clocked.
To enable the alarm for the day indicated the 1 key is pressed which clocks $\mathrm{IC}_{11 \mathrm{a}}$ via $\mathrm{IC}_{15 \mathrm{c}}$ and clears $\mathrm{IC}_{11 b}$ via $\mathrm{IC}_{17 \mathrm{c}}$. This forces the data inputs of IC_{10} low, the alarm enable l.e.d. is switched on and, if the day key is then pressed, data is clocked into IC_{10}. This also resets IC $_{\text {Ila }}$. When entering data, an error can

Table 1. Power supply connections for the i.cs.

4Vs	Type			
IC	OV	$5 V$	Vs	Type
1	8	16		74147
2	8		22	TMS4039
3	7	14		74266
4	8	16		74157
5	1	8		NE555
6	7	14		7474
7	10	5		7493
8	10		5	74 LS93
9	8	16		74145
10	7		14	$74 L S 164$
11	11	4		7473
12	7	14		7411
13	7	14		7427
14	7	14		7410
15	7	14		74266
16	7	14		7432
17	7	14		7408
18	7	14		7400
19	7	14		7404
20	7	14		7404
21	7		14	$74 L S O 2$
22	8	16		74123
23	8	16		74123

Fig. 6. Day-of-the-week indicator.

Fig. 7. Alarm enable / inhibit circuit.

be easily rectified by pressing the correct key, 0 or 1 , which will override the previous data. Note that the data is not entered into IC_{10} until the day key is pressed, therefore the last action when setting the alarm enable/inhibit must be to press the day key. Capacitors C_{14} and C_{15} ensure that the Q outputs of $I C_{11}$ go high when the mains supply is connected. When the supply is cut, the output of $\mathrm{IC}_{21 \mathrm{a}}$ stays low and ensures that IC_{10} cannot be clocked. Table 1 shows which i.cs are supplied by the V_{s} line and the main 5 V line. To reduce battery drain as much as possible, low power t.t.l. i.cs are used with V_{s} To be continued

LETTER

In recent issues of your journal I noticed a number of articles and letters concerned with the controversy surrounding the potential introduction of a citizens' band service in Great Britain. As I have many years of experience as a user of c.b. I would like to add my thoughts on this subject.

Five years ago I installed the first c.b. set in my car; recently 1 replaced it with a 40 channel set. The price of the first set was $\$ 150$; the price of the new set only $\$ 55$. Both Japanese made sets perform admirably. I use c.b. mostly while travelling. Calling or tuning in to Channel 19 (by custom this is the highway channel in most of the US) gives me instant information on road conditions many miles ahead, accidents, traffic congestions, where to find an open gasoline station etc. When travelling in an unknown area I can find out about a good restaurant, how to find a landmark and, of course, location of speed traps and other hazards of civilisation. In general I find c.b. to be an invaluable companion which keeps me alert and awake on long trips. Being able to contact in most areas a member of the REACT group or a local police department on the emergency Channel 9 gives me an additional peace of mind.

Here and in your country the major opposition to c.b. seems to originate in the ham radio community having no experience with c.b. use. I feel that this opposition comes mostly from misunderstanding of the actual and beneficial use of c.b. and from nonwillingness to share the r.f. spectrum with the less disciplined brethren.

Some of the letters in your magazine also reflect a certain fear of offending authority (local constable?). I assure you that the attitude of most US police departments is quite friendly towards c.b.; in many areas Channel 9 is continuously monitored by the local police to find out about emergencies. After 10 years of motorists warning each other of speed radar they still catch enough speeders.
Cass R. Lewart
Holmdel
New Jersey, USA

Beneath the City Streets, by Peter Laurie, an updated version of an earlier book of the same title, contains a good deal of Information about government communication systems in the UK set up to cope with "external attack, almost certainly with nuclear weapons, and internal revolution". Most of the book however, is concerned with the citadels, bunkers and other dispersed centres of government that exist in Britain to deal with such emergencies. In a chapter on civil defence there is a 9 -page section on over-the-horizon radar. Will feed the prejudices of those who hate the apparatus of the state. A Panther paperback from Granada Publishing, it costs $£ 1.95$.

Teletext and Viewdata, by Steve A. Money, is an attempt to explain the still cloudy subject of television data display systems, in a simple way, to non-specialists. The book is detailed, but not specific - the author covers the whole operation of a decoder without concentrating heavlly on circuit technique or confining himself to speclfic component types: rather, a broad understanding is offered. Several commercial decoders are described and a glossary of data display terms is included as an appendix. The book has 151 pages, is publlshed in hard back by Butterworth and Co., 88 Kingsway, London, WC2B 6 AB , and costs $£ 5.50$.

Handbook of Electronic Formulas, Symbols and Definitions, by John R. Brand, concentrates a vast amount of information into a small enough book to be conveniently to hand when it is needed. The design of the book is unusual and completely logical; the symbol being dealt with is printed at the top of the page, being followed by its definition (and it is surprising to see how many meanings some symbols possess) and formula involving it, in the convenient transposition. Formulae have been expressed in suitable form for attack by electronic calcultor. Three main sections of the 359 page book are: passive circuits, transistors and operational amplifiers; two useful appendices give a list of ratios obtainable from 5% passive component values, and a llst of terms with their symbols - the reverse of the main body of the handbook. The publishers are Van Nostrand Rheinhold Company Ltd, Molly Millars Lane, Wokingham, Berkshire, although the book is American, and the price is $£ 11.95$ in hard back.
Sound Recording for Motion Pictures by Charles B. Frater, is a broad introduction to current techniques and equipment and has helpful illustrations on most of its pages. Assuming no technical knowledge, it starts with elementary chapters on the nature of sound and electricity then goes on to specific techniques such as synchronous sound recording, transfer from tape to film, editing and dubbing. Dolby noise reduction and digital sound recording are just mentioned. Too general for those already working in the field, it seems intended for beginners going -into the motion picture industry. With 210 pages, in paperback, the book is published by the Tantivy Press, London, at £2.95.

Newnes Book of Audio is another compllation of articles written by the half-dozen or so
people whose names seem to crop up most frequently in the audio magazines. It is intended for those who would like to buy high-quality equipment, but who are bemused by the technicalities inherent in any subect in which electronics plays a leading part, and in which advertisers tend to use pseudo-scientific expressions to give an aura of professionalism.

The first chapter is a general look at the whole field, and is followed by nine sections on individual components of an audio system, their use and testing. A very useful addition is a directory of makers and distributors. Butterworth and Co (Publishers) Ltd publish the book at $£ 4.95$ in paperback.

Microelectronics into the ' 80 s is a view of the economic, commercial, technological and political factors which will govern the development of the industry in the next decade. It is published by Mackintosh International, a market consulting group who specialize in the electronics industry. Analyses of the semiconductor industry (its current state, government involvement, forward planning, finance) is presented for France, Italy, Japan, UK, USA and West Germany, and three articles by Mackintosh, Petritz and Barron give personal views on the future of integrated-circuit technology and application. The book contains 88 pages and costs €30. Mackintosh Publications Ltd, Mackintosh House, Napier Road, Luton.

Electronic Logic Circuits, by J. R. Gibson, is a first-level text, intended for students who have no previous knowledge. It is based on courses for first and second year students at Liverpool University.

The first two chapters are introductory, dealing with number systems, coding and components, and leading to an explanation of logic elements, Boolean algebra and circuit analysis. Chapters are then devoted to theoretical and practical logic design, both combinational and sequential, with a final section on applications.

Books on logic design tend to be very similar to one another, being of about the same length and possessing the same organization. This one is a little different, in that the author has not felt compelled to introduce logic functions via the usual Venn imagery, its explanation gaining clarity with the omission. Symbols used are those in common use in, for example, Wireless World. The book is published by Edward Arnold, 41 Bedford Square, London, WC1B 3DQ at £3,95 in paper back. It contains 114 pages.
Power Sources 7, edited by J. Thompson, is the latest in a series of books recording the proceedings of the International Power Sources Symposia held every two years. This one contains the 49 papers from the 11 th symposium held in Brighton, 1978. Most of the contributions are accounts of advanced electrochemical research work in primary, secondary, high temperature and reserve batteries, including fuel cells, but the papers also contain reports on applications in vehicle propulsion, portable electronics, heart pacemakers, communications and other fields. Discussions on papers are included. Although its price is high at $£ 65.00$, this 774-page well-printed hardback book
will be good value to specialists in the field. Publishers are Academic Press, London.

Guide to Technical Short Courses is published by the Institution of Electrical Engineers, and is abstracted from their computer database Coursefinder. Courses listed are those on electrical or electronic engineering and are of the variety lasting less than one year. Full-time or part-time studies are covered, including intensive courses of up to two weeks duration, and are listed under the college, university or company running them. Details provided include the level of study, type and duration of the course, dates, subjects covered and general remarks. There are subject and geographical indexes. The guide is published at $£ 25$ by the IEE Marketing Department, Station House, Hitchin, Herts SG5 1RJ.

Volume 12 of the IBA Technical Review is entitled Techniques for Digital Television. As is usual in this series, the 70 page book consists of a number of contributions by IBA engineers on a central topic - in this instance, digital video processing. The discovery some years ago of the possibility of sub-Nyquist sampling rates (less than twice the maximum analogue frequency component) led to the design of a digital television studio using the proposals, and these articles describe the components of the system. In common with the other volumes in the series, this book is extremely well presented. Libraries or engineers and students directly involved in broadcasting can obtain a free copy by writing to IBA Engineering Information Service, Crowley Court, Winchester, Hants, SO21 2QA.

Electronic Projects Index for 1978 is now available. This is the second edition, the first covering the period 1972-77, and contains entries from a further elght publications. The compiler has taken constructional articles from sixteen electronics magazines and listed them by subject, with references and a short descriptive note on each, including an estimate of the type and number of com. ponents needed for many of the projects. Classification of the articles Into types of equipment described is well done, and the index is simple to use and informative. It is published at $£ 1.30$, by post, by Central Library, Northumberland Square, North Shields, Tyne and Wear NE30 1QU.

280 Instant Programs - machine-code routines for Nascom and other 280 Computer systems - Is by J. Hopton. The programs are listed in memory location/Op-code/ Meaning columns and are Intended for a small Z80 system cabable of up to 1000 program steps. New owners of computers may find the book useful, since it begins with very simple examples, such as the production of the delays and single tones, and finishes by programming for a game. Hex notation is used throughout. The book is published in paperback by Sigma Technical Press, 23 Dippons Mill Close, Tettenhall, Wolverhampton WV6 8HH, at the very high price of $£ 7.50$. There are 190 pages.

Electronic focusing

Simulation of the human eye mechanism

by D. Di Mario

Abstract

Conventional focusing systems depend on the knowledge of distance but the human eye can focus without making any distance measurements. This article outlines an electronic system which simulates the eye's ability to use colour and luminosity differentiation for focusing an image.

MOST READERS will be familiar with the manual focusing ring and distance scale on common cameras, but Konica have produced an automatic focusing camera that performs a triangulation for indirectly calculating distance. Another system developed by Polaroid uses a beam of ultrasonic waves to measure distance. However, the human eye does not use any of the above methods. The purpose of focusing is to obtain the maximum amount of information from a given image area and the knowledge of distance is only a consequence which comes from our visual experience. The photographs in Fig. 1. illustrate what is meant by maximum information. The human eye operates more like a computer than a camera and focusing seems to be achieved by scanning the area and comparing the luminosity and colour of adjacent points. When the difference reaches a maximum the image is in focus. The block diagram in Fig. 2. is an electronic version of the eye, where a phototransistor moves back and forth between two positions which are close together. A reading of the light level is taken at each position and then compared, integrated, amplified, rectified and displayed as a peak reading from an instrument. The use of two phototransistors has been excluded because high linearity is required. A logarithmic amplifier was used to accommodate the great variation in input signal due to the large range of luminosity. In the prototype the phototransistor was glued to the centre of a $1 / 2$ in speaker with most of its diaphragm removed to reduce acoustic noise. A 200 Hz oscillator was used to drive a $1 \mathbf{W}$ amplifier for the speaker and to provide gating pulses for the analogue switches. To avoid a beat frequency caused by the 100 Hz of artificial light, a sync pulse was derived from the mains. The speaker and phototransistor were housed in a sealed probe which was placed in the image area.

Fig. 1. Photographs illustrating the loss of information and contrast ratio as the focus deteriorates

Fig. 2. Focusing system which measures light levels between two adjacent areas. The difference signal is amplified and displayed as a peak when the picture is in focus.

Fig. 3. Output of the phototransistor (top) and gating pulses to one of the analogue gates when the picture is (a) out of focus and (b) in focus.

Fig. 4. Double differentiator used to detect a change in the variation of light. The majority gate ensures that a click is heard only when all of the channels produce a pulse at the same time.

Fig. 5. Output of one channel (upper trace). The oscillation is the residual 100 Hz artificial light frequency. Output from the majority gate (lower trace).

Fig. 6. Differentiation focusing system for television scanning. A focussing signal is obtained by detecting the high frequency content of a video signal.

In use the gating time is adjusted so that the instrument reads zero with the picture out of focus. The picture is then focused which should produce a peak reading. A photographic enlarger or a slide projector can be used for experimentation. To simulate the human eye accurately, several detectors should be used to cover the picture area. However, fairly accurate results can still be achieved with only one detector. Displacement of the phototransistor is dependent upon the required accuracy. A small displacement improves the point of exact focus but reduces sensitivity. In the prototype a 0.2 mm displacement was used with a $300 \times 300 \mathrm{~mm}$ picture.

With very low light levels the human eye has difficulty in differentiating because the colour is absent and the depth of field is narrow. It seems that under these conditions focusing is achieved by time differentiation. The light value from a certain point is compared with the value seen a moment before until the variation of light reaches its maximum. Also, a large number of points are analyzed and when they seem to correlate we assume the picture is in focus. The diagram in Fig. 4. shows a method for constructing such a circuit. The outputs of the detectors are fed to a majority gate which gives a pulse at the output only when there are pulses simultaneously at the three inputs. Occasionally two output pulses are produced but they are always very close together and near the focusing point. During focusing a click is heard from the speaker and this corresponds to the point of best focus.
Television scanning is an ideal application for space differentiation focusing and a simplified system is shown in Fig. 6. When the picture is ip focus the video signal has the highest percentage of high frequency signals. The reading on the instrument is very accurate and reaches its peak when the bars are in perfect focus.
In these examples there has been no attempt to implement a servomechanism for automatic focusing. The main purpose was to study the mechanism of focusing used by the human eye and to investigate an electronic simulation.

The Author

Although born in England, D. Di Mario was educated in Italy and received a diploma in telecommunications. His career started in research and development at Autovox and he later worked with computers at NCR. After a period at Siemens where the author worked on electronic PABX and switching networks, he joined Italtel as a foreign contractor where he is currently involved in radio communication.

Pocket information

Do you know...

- wavelengths for BBC external services?
- what a gray per second is?
- how to build a simple graphic equalizer?
- whether UK colour sets work in Australia?
- the function of a c.m.o.s. 4040?
- what the Radio 3900 Hz test tone is for?
- the band for di.y. television?
- how accurate the GBR, MSF transmissions are?
- the exact value of the semitone ratio?
- how much speech power you need for a hall?
- a simple circuit for a 1.4 V regulated supply?
- how to wind a crossover choke for 5 mH ?
- a near equivalent of the BC 179 ?
- the maximum voltage of a completely red polyester capacitor?
- how to find the impedance of a loudspeaker?
- the Fourier series for a triangular wave?
- how to work out logs and trig. functions without tables?

The answers to these and countless other questions are contained in the 1980 edition of the Wireless World Diary. The list of telephone numbers for UK electronics organisations is expanded yet again, the tv standards section brought up to date and several new sections added. Unfortunately you can't buy it directly from the publishers, T. J. \& J. Smith Ltd, of Deer Park Road, London SW19, and you will need to ask a retailer to order it through the book trade. Wireless World has a limited number of copies for overseas readers, price £1.92. inclusive obtainable from the editorial office.

Dot matrix print mechanism

A mobile head consisting of 7 vertical needles, used to build up characters on a 7×5-dot matrix, constitutes the heart of the DP. 822 print mechanism. This is a 21 character machine with primary feed working at about 580 Hz , resulting in a printing speed of 2.5 lines per second at a character height of 2.9 mm . Further features are a quickly replaceable ink ribbon and the capability, according to the makers, Roxburgh Electronics, to print a good copy on 2-ply carbonless paper. For microprocessor connection a complete interface or the controller chip alone can be supplied. Dimensions are 106 mm wide by 145 mm long by 52.5 mm high and the printer weighs 570 g . The unit operates from a 12 V d.c. supply and has an operating temperature range of +5 to $+45^{\circ} \mathrm{C}$ at up to 95% relative humidity. The one-off price is $£ 50$ and $£ 34$ each in quantities of 100. Roxburgh Electronics Ltd, 22 Winchelsea Road, Rye, East Sussex TN31 7BR. WW 301

Digital pH/mV meter

Mains or battery operation and a $31 / 2$ digit display are the principal features of the CD330 pH and mV meter recently introduced by Walden Precision Apparatus. Functions are selected by a switch on the front panel and the instrument operates over the ranges 0 to 13.99 pH units, 0 to 199.9 mV (positive or negative) and 0 to 1.999 V (positive or negative). The voltage ranges are provided in order to cater for redox and specific ion measurements. A digital thumbwheel switch permits selection of the exact compensation temperature required, in the range 0 to $99^{\circ} \mathrm{C}$. Price is $£ 180+£ 2 \mathrm{p}$. and p ., ex cluding v.a.t. Walden Precision Apparatus Ltd, Shire Hill Indust rial Estate, Saffron Walden, Es sex CBll 3BD.

WW 302

Underwater telephones

Designed mainly for diving bell applications, the Mesotech 715B underwater telephone is completely self-contained in a rugged, pressure-proof housing. Both speaker and microphone

WW 301

WW 302

WW 303
are mounted inside the bell and the unit has been developed with high pressure helium and oxygen atmospheres in mind. The 703A telephone unit is a single sideband transmitter/receiver for voice communication. It is a dual frequency unit operating at frequencies of 8.0875 kHz for long range communication and 25 kHz for short range, and features phase-lock loop frequency control; a telemetry in/out facility for data transmission is also included and it can be used on other frequencies as a pinger receiver. Techmation Ltd, 58 Edgware Way, Edgware, Middlesex HA8 8JP.
WW 303

Pocket l.c.d. multimeter

The model 130 l.c.d. digital mul. timeter has five functions, each with five ranges, and meets many of the measurement require. ments for field service use. Each function and range is selected using two rotary switches. The multimeter has direct voltage ranges from 200 mV (100 uV resolution) to 1000 V (1V resolution) with a maximum error of $\pm 0.5 \%$ of reading plus 1 digit, and alternating voltage ranges from 200 mV , ($100 \mu \mathrm{~V}$ resolution) to 750 V (1 V resolution) within $\pm 1 \%$ of reading plus 5 digits. Maximum allowable inputs on these ranges are 1000 V d.c. or peak a.c. non-switched, 750 V peak switched, continuous except on the 200 mV a.c. range where inputs above 300 V are limited to 15 s . The input impedance on these ranges is $10 \mathrm{M} \Omega$, shunted by less than 100 pF . The meter has direct current and alternating current ranges from 2 mA , ($1 \mu \mathrm{~A}$ res.) to 10 A (10 mA res.) within error margins of $\pm 1 \% \mathrm{rdg} .+1 \mathrm{~d}$. to $\pm 2 \%$ rdg. +1 d . on the d.c. ranges and from $\pm 2 \%$ rdg. +5 d . to $\pm 3 \% \mathrm{rdg} .+5 \mathrm{~d}$. on the a.c. ranges. Overload protection on the mA inputs is by a 2A fuse (250 V) and the 10A input, which is unfused, can withstand 20A for $15 s$ maximum. Resistance ranges are from 200Ω ($100 \mathrm{M} \Omega$ res.) to $20 \mathrm{M} \Omega$ ($10 \mathrm{k} \Omega$ res.) with accuracies from $\pm 0.5 \%$ rdg. +4 d . to $\pm 2 \%$ rdg. +1 d . On these ranges the maximum open circuit voltage is 1.5 V and the maximum allowable input is 300 V d.c. or r.m.s. The accuracy figures quoted above are guaranteed for one year and are valid for operating temperatures from 18 to $28^{\circ} \mathrm{C}$. The multimeter, which measures

$778 \times 78 \times 38 \mathrm{~mm}$ and weighs only 400 g , uses a $31 / 2$-digit, 0.6 in -high 1.c.d. and costs $£ 79$, excluding case and v.a.t. Keithley Instruments Ltd, 1 Boulton Road, Reading, Berks:
WW 304

Optical-fibre data link evaluation kits

Two kits intended for the evaluation of optical fibre data links are now available from the manufacturer, Burr-Brown. These are specified as the FODLK1 and FODL-K2, the former employing the 3712T transmitter and 3712 R receiver, while the later uses the 3713T transmitter and 3713R receiver. The main difference lies in respective

transmission speeds, that for the FODL-K1 being 25 k baud, with a fibre optic cable 20 feet long complete with fitted connectors, compared with the FODL-K2 which is equipped with a six-foot long terminated cable but offers a transmission speed of 250 k baud. Each transmitter/receiver combination is contained in a $42 \times 77 \times 17 \mathrm{~mm}$ metal case. BurrBrown International Ltd, Cassiobury House, 11-19 Station Road, Watford, Herts WDI IEA.
WW 305

Constant voltage transformers

Recommended by the makers, Banner Electric Co, for a.c. applications where harmonics can radically affect circuit operation, the Sola CVS range of transformers contains harmonicneutralizing circuits which obviate the need for additional LC filters. These transformers are smaller and are claimed to be more rugged than conventional
transformers using filters for waveform improvement, and stabilization error is within 5% of quoted output voltage. This margin is related to an input range of 15% about the nominal input voltage. The CVS range features a harmonic content of less than 3% (r.m.s.) in the sinusoidal output waveform at full load operation. The CVN range provides the same 5% level of load stabilization but the harmonic content is 20% (r.m.s.) and these transformers are therefore more suitable for use with solenoids, filaments, etc., and applications where rectification is usually

"required. All transformers can be provided for either 50 or 60 Hz operation, in power ratings from 30VA up to 7 kVA , and they may be operated in cascade to obtain stabilization down to 0.25% if required. Banner Electric Co, Ltd, Pindar Road, Hoddesdon, Herts EN110EF.
WW 306

Multi-purpose mobile radio

A v.h.f./a.m. portable mobile radio, the Pocketfone P5001, can be held in the hand or worn on the body. A quick release holster is equipped for rapid, automatic switching of the send/receive facilities to or from a loudspeaker unit which may be clipped to the - lapel of a coat. The portable can also be used inside vehicles. A

vehicle adaptor accepts the portable, making automatic connection to the vehicle antenna, to a rapid-charge system powered by the vehicle supply and to a highpower audio amplifier. The unit is available for bands in the frequency range $68-174 \mathrm{MHz}$. Single- and up to six-channel versions are available. Transmitter output is IW. Various plug-in options are offered and space is provided for the addition of tone signalling circuits. Among the varieties available are 5 -tone encode/decode to the standard European systems, Pyecall twotone decode, tonelock encode/ decode, or a single tone encoder to provide switching of a talkthrough repeater from the portable. There is a choice of interchangeable telescopic, coiled whip or pendant antennas, and also a choice of standard or heavy duty batteries. Pye Telecommunications Ltd, St Andrews Road, Cambridge CB4 1DW.
WW 307

Teletext / Prestel

 chipsThree m.o.s./l.s.i. chips are the basis of the GIM Teleview system for teletext/viewdata television sets. This system, which can be accommodated on a single-sided

p.c. board 6 inches by 4 inches, is modular and can be extended from a basic teletext or viewdata decoder to a combined unit operating with a remote-control user's keypad. The set of chips is compatible with existing standard television circuits for digital tuning, channel indication and remote-control, as well as external accessories such as hard copy printers and keyboards, using GIM devices. The use of a standard, mask -programmed 8bit microcomputer, i.c. PIC 1650 , for control purposes means that "production costs are expected to be low enough to attract manufacturers of tv add-on equipment as well as the tv set makers, once quantity production levels have been reached." The video generator chip, although currently programmed for English language displays, has been mask programmed for other languages and character
sets. The data acquisition chip takes data from either the tv receiver or telephone line via the appropriate interface, processes it according to requests and loads the data into a store. General Instrument Microelectronics Ltd, Regency House, 1-4 Warwick Street, London WIR 5WB.
WW 308

A-d-a
 microprocessor

Containing digital-to-analogue and analogue-to-digital converters, the Intel 2920 analogue ${ }_{s}$ signal processor contains a 25 -bit digital processor, an e.p.r.o.m. and a small scratch pad r.a.m. The unit accepts analogue input signals between 0 and 10 kHz (which limits its applications where digital filters are concerned) converts them into digital format, processes them at high speed under program control and then re-converts them into analogue form for output. The analogue section accomodates up to four inputs and eight outputs. Control of analogue and digital sections is carried out by an e.p.r.o.m. with a storage capacity of 19224 -bit words (4608 bits). The instruction format for each word is divided into five linked sectors; digital operator, source address, destination address, extent of shift and analogue operator. The r.a.m. scratch pad, which handles the arithmetic, is structured as a 40×25 bit memory. To boost processing flow, the r.a.m. has been designed with dual-port cells which can be addressed through either port. Typical applications of the 2920 might be low-pass and band-pass filters with up to 20 complex pole and/or zero pairs, threshold detectors, limiters, rectifiers, up to 25 -bit multiplication and division, approximations to non-linear functions and waveform generators. Several units may be cascaded for complex processing with no loss of process rate. Intel International, Parc Seny, Rue de Moulin a Papier, 51 Boite 1, B-1160, Brussę̀ls, Belgium.
WW 309

Spy fever

Some of that breakaway group over the Atlantic are obviously not especially averse to a fast buck.
In the land of the free, if we are to believe the evidence of television and film, one can no longer ring the butcher to order a couple of t-bone steaks without someone illicitly earwigging in on the conversation and recording it on tape for, presumably, nefarious purposes. Concealed radio microphones, miniature cameras and telephone taps are big business and, as a natural consequence, so are the countermeasures for these little horrors. One American company, CCS, claims a yearly turnover of 25 million dollars in this field of activity.

Assuming that attack is the best form of defence, or perhaps stretching the analogy of setting a thief to catch a thief, CCS has managed to square its conscience by providing not only the defence, but the attack as well. Dismissing any inconvenient abstract notion of ethics as "arcane moral philosophy", Gerald Freeman, a New York public relations man, implied that if you want to get on in business, your first move must be to get yourself a bit of "candid surveillance" equipment. For example, it seems that no well-equipped businessman is now roadworthy without his security system for eavesdropping, his briefcase with a secret "conversations recorder", and a covert spy a camera that shoots round corners.

CCS will, I think, have to recognize the new opportunities presented to them on entering the UK market. Have they properly understood the real function of the standard-issue umbrella, for instance? It is nothing to do with the weather: that long stem is of exactly the right proportions to conceal a directional microphone, its amplifier being concealed in a hip-flask. All those fountain pens - they aren't just for signing for expense-account lunches most of them contain powerful telescopes for finding out what that rotter who's pinched one's seat on the 8.45 has got for 11 across and 21 down. Mr Freeman, we're way ahead of you.

Fish and chips

I've been waiting to use that heading for a couple of years now, and I finally located the excuse in a report in a daily paper, on the subject of what the future holds in store for us. Ever since the 'microchip' became the leastunderstood and and most-quoted household word since Einstein published his thoughts on relativity, any poor hack who can't think of a
thing to write about for his daily 500 words lies back with his feet on the desk for twenty minutes and dreams up a few uses for microprocessors. He then writes his piece entitled "Our Future" With the Chip" or some such.

Since it is well known that the chip in question can do anything or that, if it can't now, it soon will, a lot of the brainst ormed suggestions are feasible. I saw one last week, though, that gave every indication of having been brought forth by someone whose idea of a brisk walk is a belt down the Ml in an MGB; the end being confused with the means. The notion put forward was a fishing rod with an attached microprocessor, the idea being to set everything up automatically to catch any fish in any stretch of water at any time.

I've never been one for gratuitously attacking fish of any kind, except when they lie, surrounded by chips, in a piece of Daily Express, but I do have the distinct impression that whoever's diseased mind thought that one up had got hold of the wrong end of the stick. The whole idea, I've always thought, was to sit reflectively on the bank, pondering on the nature of the Universe: if a fish happens along and is unwise enough to investigate, then so be it, but it's the sitting that counts. If it is to be turned into a kind of production line, then the poor old fish are in for a pretty hectic time. Simply isn't cricket, at all.

Scots wha hae . . .

I have fulminated in the past over electronics being used for trivial purposes, when greater needs go unrecognized. It is gratifying, therefore, to see a genuine requirement which is capable of being fulfilled, simply and at little cost, with aim of giving a group of citizens a bit of peace and quiet.

One of my colleagues recently received a call from someone in a Scottish village, whose sleepy charm is currently being shattered fairly regularly by a Klaxon horn. It appears that the garage owner's telephone operates the horn so he can hear it over the noise of engines and British Leyland cars disintegrating. That would be all right in the normal way, but the village is a quiet one, and every time someone rings the garage to ask if their car is done yet, please, the whole village responds with a concerted leap into the air of about six inches.

One's heart goes out to these unfortunate denizens of the northern mists. There they all are, replete with haggis and fresh-caught local salmon, relaxing after a hard day tossing the caber and flogging about the grouse moor 'til fit to drop, when all Hell breaks loose at the
garage and the timeless tranquillity of this little corner of Scotland is shot to pieces.

What they want, it seems, is a small transmitter, driven by the telephone, which will trigger a pocket bleeper.

They must be a more easy-going lot up there than I had previously supposed. My image of the Scotsman of yore is of a great, red-haired, redbearded, kilt-swinging, wild-eyed giant, careering about with his claymore and doing severe damage to whoever he took exception to. It would be a foolhardy garage-owner who would upset a village full of characters like that. I can only suppose that soft living has sapped their natural boisterousness.

Ship chips

They tell me that sailing ships are coming back. It's all to do with the oil, you see - or rather the lack of it. I've seen several proposals, from sail assistance on propeller-driven ships to complete, full-blown(!) latter-day clippers, cleaving through the waves with acres of canvas billowing from the masts, miles of ropes, or sheets or whatever they call them, and all the romance of the old East India Company days. All those lovely old words will come back into everyday use - scuppers, marlinspikes, t'gallants and microprocessors. Oh, yes; it is not, it seems, the intention to use more than a modicum of musclepower to raise and lower the aforementioned canvas (nylon, more like) but to do it with motors under the control of silicone chips (they're the waterproof kind).

Well, I don't know about that. One might conceivably feel a little selfconscious bawling out "Heave-ho, my hearties" to a couple of boards full of i.cs; there is also the matter of what sanctions to impose on a mutinous dog of a u.a.r.t. that won't.

Anyone with a little imagination could work this up into the ideal transport scheme. What you need is a sailing ship, with its computer, to start with. Satellite and shore-based navaids, coupled into the computer together with heading information and met. forecasts, and maybe a maintenance man with another to stop him going potty, and you've got a virtually handsoff system. Pop all the cargo into the hold, point her in approximately the right direction, give her a shove and forget about her for a few weeks. Eventually a message will be received: "Yours of the 15 th ult. turned up yes. terday".

As I said, all you need is a little imagination.

The superb 3.77 is the only choice in compact professional recorders.

Who says?

Hundreds of satisfied professional users - Broadcast authorities, studios, record companies, universities etc etc.

What makes it the best?

The 3.77 provides more performance and features for your $£$ than any other model. Like 3 speeds, flat metal facia with excellent editing facilities, 100% variable speed control, logic control with motion sensing, line-up oscillator.

Simply ahead . . ILP'S NEW GENERATION OF HIGH

With I.L.P. performance standards and quality already so well established, any advances in I.L.P. design are bound to be of outstanding importance

- and this is exactly what we have achieved in our new generation of modular units. I.L.P. professional design principles remain - the completely adequate heatsinks, protected sealed circuitry,
rugged construction and excellent performance.

These have stood the test of time far longer than normally expected from ordinary commercial modules. So we have concentrated on improvements whereby our products will meet even more stringent demands
such, for example, as
those revealed by vastly improved pick-ups, tuners,
loudspeakers, etc., all of which can prove merciless to an indifferent amplifier system. I.L.P. modules are for laboratory and other specialised applications too.

PRODUCTS OF THE WORLD'S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

and staying there PERFORMANCE MODULAR UNITS

VALUES OF COMPONENTS FOR CONNECTING TO HY5 Volume - $10 \mathrm{~K} \Omega \mathrm{log}$.
Bass/Treble $-100 \mathrm{~K} \Omega$ linear. Balance $-5 \mathrm{~K} \Omega$ linear.

The HY5 pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s. It is contained within a single pack $50 \times$ $40 \times 15 \mathrm{~mm}$. and provides multifunction equalisation for Magnetic/ Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins. Active tone control circuits; 500 mV out. Distortion at $1 \mathrm{KHz}-0.01 \%$. Special strips are provided for connecting external pots and switching systems as required. Two HY5's connect easily in stereo. With easy to follow instructions.
$\mathrm{f} 4.64+74 \mathrm{p}$ VAT

THE POWER AMPLIFIERS

I.L.P. Power Supply Units are designed specifically for use with our power amplifiers and are In two basic forms - one with circuit panel mounted on conventionally styled transformer, the other with toroidal transformer, having half the weight and height of conventional laminated types. HOW TO ORDER, USING FREEPOST SYSTEM
Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pay postage on all letters sent to us by readers of this journal.

Model	Output Power R.M.S.	Dis- tortion Typical at 1KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price + V.A.T.
HY30	15 W into 8 Ω	0.02%	80 dB	$-20-0-+20$	$105 \times 50 \times 25$	155	$£ 6.34$ $+95 p$
HY50	30 W into 8Ω	0.02%	90 dB	$-25-0+25$	$105 \times 50 \times 25$	155	$£ 7.24$ $+£ 1.09$
HY120	60 W into 8Ω	0.01%	100 dB	$-35-0-+35$	$114 \times 50 \times 85$	575	$£ 15.20$ $+£ 2.28$
HY200	120 W into 8 Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 50 \times 85$	575	$£ 18.44$ $+£ 2.77$
HY400	240 W into 4Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 100 \times 85$	1.15 Kg	$£ 27.68$
$+£ 4.15$							

Load impedance - all models $4-16 \Omega$
Input sensitivity - all models 500 mV
Input impedance - all models $100 \mathrm{~K} \Omega$
Frequency response - all models $10 \mathrm{~Hz} \cdot 45 \mathrm{~Hz}-3 \mathrm{~dB}$

PSU 30
PSU 36 PSU 70
PSU
PSU 90
PSU180

PSU 50 for 1 or 2 HY50's $£ 8.10+£ 1.22$ VAT
$\pm 15 \mathrm{~V}$ at 100 ma to drive up to five HY5 pre-amps $£ 4.50+£ 0.68$ VAT with toroidal transformer for 1 or 2 HY120's
$\mathrm{f} 13.61+\mathrm{f} 2.04$ VAT with toroidal transformer for 1 HY200 $£ 13.61+$
with toroidal transformer for
1 HY400 or $2 \times$ HY 200
$£ 23.02+£ 3.45$ VAT

NO QUIBBLE
5 YEAR GUARANTEE
7. DAY DESPATCH ON ALL ORDERS INTEGRAL
HEATSINKS
BRITISH DESIGN AND MANUFACTURE FREEPOST SERVICE -see below

ELECTRONICS LTD.
FREEPOST Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP.
Telephane (0227) $54778 \quad$ Telex 965780

Please supply

Total purchase price $£$.
I enclose Cheque \square Postal Orders \square International Money Order \square Please debit my Account/Barclaycard Account No.

NAME
ADDRESS

Signature

The PM 2517 has set the standard and the pace in Europe for hand-held digital multimeters and still it remains in a class of its own.
Remember, its many important features include full four digits, so on mains voltage readings, for example, you might get 240.3 instead of the 240 , which a $31 / 2$ digit meter would read.

Some other PM $\mathbf{2 5 1 7}$ plus points:

 OLED or LCD displayTrue RMS readings of $A C$ voltage and current Autoranging with manual override
Optional accessories include temperature and data hold probes Reader inquiry number 220

The PM 3207 - Super
Scope-is a tough, general purpose oscilloscope which offers at a low price the quality and technology you expect from Philips Test and Measuring Instruments.

- I 5 MHz dual trace
- Auto triggering from either channel with adjustable level between peaks and TV triggering
- 5 mV sensitivity, Y and X (via A input)
- B invert facility

Reader inquiry number 221

Both these instruments are avalable off the shelf from the Philips Electronic Instruments Department (see address below) or from the following distributors. British Tungsram, West Road. Tottenham, London NI7 ORN. Tel: 01 - $808-4884$. Philips Service Centres (25 throughout the country). Tel; 01 - 686 -0505 for the address of your nearest branch. Wessex Electronics Ltd, 114 - 116 North Street, Downend, Bristol BSI6 5SE. Tel: (0272) 571404.

PATTERN FOR THE FUTURE

The PM 5519 colour TV pattern generator is already a widely used instrument. As a major manufacturer of Video cassette recorders, and colour television receivers - and the company which has developed the world's most advanced video disc system - Philips have carefully selected the best patterns for aligning and testing these products. With over 20 colour and b / w test patterns to choose from it is the most versatile pattern generator on the market.

- PM 5519 I for British system - versions avalable for other TV systems
- RF signals available in bands I, III. IV and V
- Variable Video Output (with I volt fixed position)
- External video and sound modulation facility - Composite sync output for triggering includes the line frame and blanking pulses to the local TV standard
Reader inquiry number 222
Some other Philips audio and video service instruments:
PM 5326 RF SIGNAL GENERATOR
- $100 \mathrm{kHz}-125 \mathrm{MHz}$ in 9 overlapping ranges
- Built-in 5 digit counter
- 50 mV RF output at 75Ω can be attenuated to over 100 dB
- Electronically stabilised output level
- Wobbulator facility

Reader inquiry number 223
PM 6307 WOW AND FLUTTER METER

- X-ial controlled oscillator
- High accuracy and frequency stability - 3150 Hz or 3000 Hz switchable

All Philips audio and video service instruments are also available from Philips Service Centres (for details see end of PM 3207 section).
input adverisements are designed to meet the needs of our professional customers. They are a shop window for Philips Test and Measuring instruments - and we will be changing the display frequently becouse we have a lot of produces to show you.
Where you require full information obout a product. wck the coupon and attach it to your name ond address. or letterheod - or. of course. use the journal's reader inquiry service. You will receive in return a detaled information pock reflecting your specific requirements.

	inquiry no.	
PM 2517 multimeter	$\mathbf{2 2 0}$	\square
PM 3207 oscilloscope	$\mathbf{2 2 1}$	\square
PM $\mathbf{5 5 1 9}$ colour TV pattern generator	$\mathbf{2 2 2}$	\square
PM 5326 RF signal generator	$\mathbf{2 2 3}$	\square
PM 6307 wow and flutter meter	$\mathbf{2 2 4}$	\square

Pye Unicam Ltd
Philips Electronir Instruments Dent
Yoik Stieet Cambridge Fngland CBI 2PX

PHILIPS

With JVC's help, no non-broadcast video producer need feel embarrassed when a producer from the broadcast side of the fence looks at one of his tapes. That's because JVC have developed, at an affordable cost, a portable camera which brings truly professional quality to CCTV.

It's the three-tube CY-8800E Nothing at anywhere near the price handles colour so faithfully, with so small a registration error, with such excellent signal-to-noise ratio even in poor light.

But you don't have to believe an advertisement. Ask one of the Bell \& Howell Video Centres (addresses opposite) to make an appointment to bring the camera to where you work. This will prove that among its other merits the CY-8800E travels well and is easy to carry around. Then try it on your shoulder and a tripod. This way you'll discover that it's going to serve you just as well in the studio as in the field.

Finally, when you've admired the pictures on the colour monitor, admire the features-features to optimise performance under all conditions. Fully automatic features that help make the CY-8800E so remarkably easy to use (which means you can concentrate on images, not have to apply half your mind to controls).

With the camera and monitor, the Video Centre demonstrator will be
bringing (probably wearing) the JVC CR-4400LE. This is the portable, but equally professional, recorder/player for $3 / 4$ " U-format cassettes. It's the perfect complement to the CY-8800E (indeed, it was designed to be just that).

The CR-4400LE will give you colour playback, direct into a monitor, on site.

It has an automatic assemble editing function and drop-out compensation. Best of all, its designers have made no concessions to quality to achieve portability. It records and plays as well as non-portable U-format equipment (with which, of course, its tapes are fully compatible).

Are all these claims valid? It will cost nothing except a phone call to a Video Centre to discover for yourself that the CY-8800E and CR-4400LE are as good as we think them to be.

If you'd prefer to read the leaflets first, use the inquiry service or send your name or headed notepaper to Dept CY/8, Bell \& Howell A-V Ltd., Freepost, Wembley, HAO 1BR (nostamp needed). We'rethe exclusive distributor of JVC video equipment to industrial, institutional and commercial markets in the UK and Eire. And, of course, we offer the exclusive Bell \& Howell Supershield warranty which guarantees free repairs and replacements (except for tapes and camera tubes) for two years from date of purchase. Plus free transportation to and from video workshop. \dagger Plus free advice.

First-class equipment from JVC. First-class support from Bell \& Howell Video Centres. And Supershield, a first-class guarantee.
(BelleHowell

[^3] WW-057 FOR FURTHER DETAILS

This professional quality touch sensitive keyboard has the full ASCII Sitive keyboard has the full ASCII
code set of characters available from the main keyboard, plus a separate 12 key pad to allow fast numeric entry. The MK III has a 'bleep' facility with volume control and power 'on' light plus a polyester sealed wipe clean surface making the unit particularly suitable for use in hostile environsuitable for use in hostile environments. The MK III is supplied com-
plete with mating gold plated edge plete with mating gold plated edge
connector in a low profile matt grey plastic case with non-slip feet.
STANDARD FEATURES

* Operates from single $+5 \pm 0.25$

Volt supply

* Industry standard pad spacing
$3 / /^{\prime \prime}$
* Electronic hysteresls
* 2 key rollover
* ODD \& EVEN parity check bits (bit 8)
* Positive light touch keys - two user definable.
* 7 bit parallel ASCII encoded output with positive \& negative strobes.
* Operating life typically greater than five million operations per pad
* SHIFT LOCK PAD - Illuminating and electronically latched - reset by the operation of either SHIFT pad.
* Repeat pad. Dimensions $14.4 \times 8 \times 1.2$ inches. $365 \times 203 \times 31 \mathrm{~mm}$.

Optional extras (all options are incorporated in the unlt)
A. Serial output compatible to RS 232/V24

ع6.00
AI. Internal Baud Rate Generator. For use with option A and/or C NOTE 1

E5.00
A2. Internal Generation of ± 12 volts for use with option A. NOTE 2
E8.00
C. 20 mA Current Loop Output - Passive. Details in handbook of simple conversion to active mode. \quad C6.00
D. On-Board +5 volt regulator. Requiring DC input of 7 to 12 volts
E. Earphone socket \& plug in earphone

C4.00
T. Teletypewriter (TTY) 102 chara link selectar (TY)
e-only
£10.00
U. Tri-state outputs on all data bits
c4.00
V. Open Collector outputs on all data bits

Various other optlons and modiflcations are posslble with this keyboard. Contact STAR DEVICES for further details.

NOTE 1. With option• A and/or C the Baud Rate may be externally supplied by the user.

NOTE 2: With option A the ± 12 volts 10 mA may be externally supplied by the user

STAR DEVICES use a proved fully sealed - high technology - flexible membrane key switch requiring a light activation pressure. All character printing is done on the back surface thereby ensuring the unit stays looking good even after many millions of operations - simply wipes clean with a damp cloth.
Dimenslons Fixing centres
$4 \times 3.5 \times 0.125$ Inches $\quad 3.2$ inches 81.3 mm
$101.6 \times 88.9 \times 3.2 \mathrm{~mm}$
STAR DEVICES use a proved - fully sealed - high technology flexible membrane key switch requiring a light activation pressure. All characters are printed on the back surface there by ensuring that the units stays looking good even after many millions of operations - simply wipes clean with a damp cloth.
© CUSTOM KEYBOARD DESIGN \& MANUFACTURING SERVICE - CONTACT US
FOR DETAILS *

STAR DEVICES LIMITED

P.O. BOX 21 UNIT 1 MILL LANE, NEWBURY BERKSHIRE
UNITED KINGDOM
TEL: 0635-40405

The unique MK II keyboard with a dedicated pad for each ASCII character is avallable at \&42.50

FULL DATE SHEET ON REQUEST
The MK III is stocked by:
Newbear Computing Store Newbury 30505
Transam Components Ltd: - London NW 1. 01-402 8137
Cavern Electronics
Cavern Electronics
Milton Keynes 314925
U.K. \& Overseas Tirade enquiries welcomed

Please Supply the Following:

DESIGNED AND MANUFACTURED IN THE UNITED KINGDOM
MK III KEYBOARD
Quantity. KEYPAD TYPE
Please circle Options requlred with your keyboard.
A Al (Specify Baud Rate) $\ldots \ldots \ldots$....... A2 C D E T U V
CHEQUE/P.O. Enclosed for $£ \ldots \ldots \ldots \ldots \ldots$.............................
ACCESS - BARCLAY CARD - MASTERCHARGE - EUROCARD - TRUSTCARD - VISA
CARD NUMBER ... Expiry Date .
NAME
ADDRESS
BLOCK
CAPITALS
PLEASE
Allow 7.10 days
Tel
POST \& PACKING (including insurance) Keypad prices in brackets
U.K. £1.50 (40p). EUROPE $£ 3.00^{*}$ (80 p). OUTSIDE EUROPE $£ 5.00^{*}$ ($£ 1.50$). *This includes airmall delivery
PAYMENT SHOULD BE MADE IN STERLING DRAWN ON A U.K. BANK OR I.M.O. MK III Handbook is available for $£ 1.00$ (inc. P\&P). Refundable on purchase.

ELECTRO-TECH COMPONENTS LTD.
 364 EDGWARE ROAD, LONDON, W.2. TEL: 01-723 5667

 JVC-VICTOR HIGH FIDELITY STEREO CASSETTE

 JVC-VICTOR HIGH FIDELITY STEREO CASSETTE TRANSPORT MECHANISM

 TRANSPORT MECHANISM}

ELECTRO-TECH COMPONENTS have secured a very large quantity of cassette transport mechanisms, equipped with all the latest improvements, as well as "SEN-ALLOY" type 1.5 micron record/replay heads, and solenoid-controlled auto-stop action. These were manufactured by JVC/VICTOR of Japan to specification of TANDBERG OF NORWAY, for inclusion in a cassette deck costing over $£ 250$. This mechanism alone would normally cost over $£ 50$.

FEATURES:

* Close-tolerance, high-quality, top loading transport
* "Sen-Alloy" (SA type) R/P head
* Solenoid-driven autostop circuit
* Automatic head cleaning device
* Air damped "soft" cassette eject
* Miniature microswitches for switching
* Pre-aligned heads and calibrated motor speed regulator built in
* Three-digit tape position counter ."Record ." ."Rewind

Six-function keyboard controls: "Record,"" "Rewind,"" "Forward, "Play," "Stop/Eject," "Pause."

- PCB connectors and cables attached
* High-mass balanced flywheel with permanent lubrication spindle
* Full specifications for motor, heads, and switches available on request.
Price of above unit $£ 14.95$ VAT Inc.
Plus f 1 P\&P

APOLOGY

WE REGRET THAT IN THE JAN. ISSUE OF W.W. DUE TO A TYPOGRAPHICAL ERROR THE CASSETTE DECK KIT (BELOW) WAS INCORRECTLY PRICED AT £15.95. THIS SHOULD HAVE BEEN $£ 35.95$. THE COMPONENT PARTS FOR THIS KIT COST OVER £40 IF BOUGHT SEPARATELY.

Trade and Export Enquiries Invited

Regular readers of WIRELESS WORLD will know of the original LINSLEY-HOOD CASSETTE DECK design, published in May 1976 . Subsequent articles by Mr. Linsley-Hood have confirmed that the design far exceeded his original expectations, so much so that he published a number of improvements, modifications, and additional features to the original design, which are now incorporated in our:

*CASSETTE DECK KIT BASED ON DESIGN OF MR. LINSLEY-HOOD *

We have developed an outstanding stereo cassette kit with the aid of Mr. Linsley-Hood, to complement the improved specification and latest important advances in cassette electronics since the original design was published. The kit is ideal for use in conjunction with the JVC transport mechanism (above).

Included in the kit are two fibreglass PCB's, drilled and plated for immediate assembly, two VU meters, Dual LED Peak Meters, Variable Bias system, Power Supply, over 10 micro-circuit IC's for the most up-to-date performance, as well as monitoring amplifier, test and calibration cassette, etc.

Price of Kit (without transport mech.) $£ 35.95$ VAT inc. plus $£ 1.00$ P\& \mathbb{P}
Also available: A custom-designed case for the Kit, this is a fully screened enclosure, sloping panel, satin anodised, wood end panels, professional finish.
Price of Case $£ 9.75$ VAT inc. plus $£ 1.00$ P\&P.

HERE IT IS! THE BRAND NEW 8022A HAND-HELD DMM

Consider the following features:
6 resistance ranges from 200
ohm 20 ohms
8 current ranges from $2 \mathrm{~mA}-2 \mathrm{~A}$ AC/DC
10 voltage ranges from 200 $\mathrm{mv} \cdot 1000 \mathrm{VDC}-200 \mathrm{mc}-760 \mathrm{~V}$
AC
Pocket slze - welghing only 370 gms .
Full overioad protection - will withstand 6 kv spikes
Rugged construction - virtusily
Meets tough
drop proof
In ilne, pushbutton operation for single handed useage
Incorporates low power cmos chip for low power consumption All this plus a 2 -year full guartino

For only $£ 89$
 Cerriage and Inturenci $\mathfrak{f 3}$

SOFT CARRYING CASE £7 extra

Even more sophisticated the Fluke 1020A
Identical In most respects to the 8022A but in addition Incorporatel a
conductance range from $2 \mathrm{~ms}-200 \mathrm{~ns}$.
Price $£ 112$
Carriage and Insurance $£ 3.00$
A handsome soth carrying case is included (this model only)

Acsuratrly covarr
KCS. To 500 MCS in
bonda.
Directlly callbrated. Vart
able A.F. Altenuat
ale
$240 v \mathrm{AC}$. Altonustor
2imen. 140×215
170 mm .
$\underset{\text { P.8P } £ 1.25}{ }$

DIGIȚAL MULTIMETERS
BRAND NEW FROM FLUKEIII THE SO24A HAND MELD DMM
This model incorporates all the teatures of the B020A but in addition has:
A peek hold switch which can be used in AC or DC for volts and current functions. Audible continuliy testing and level de. tection for sensing logic levels.
A temperature (${ }^{\circ} \mathrm{C}$) range for use with a thermocouple.
ci38
Carriage and Insurance £3
This following accemeritas are in atook now
Y8008 Touch and Hold Probe © 18.00
$80 \mathrm{~K}-40$ Migh Voltage Probe
O1-40 Migh Volago Probe
81RF AF Probe to 100 MHZ
Bot. 1 BOC Temperature Prod

PLEASE ADD 15% VAT
TO ALL ORDERS EXCEPT WHERE ITEMS MARKED "Vat included."

CALLERS WELCOME

We are open 9 a.m. $6 \mathrm{p} . \mathrm{m}$ Monday-Saturday We carry a very large selection of electronic components and
alectro-mechanical items Special quotations on
quantities

8010A AND 8012A BENCH MODEL D.M.M.s

 The 8010 A is a general purpose, bench/ porisble digital multimeter with more functionsand features than ever offered for euch o low price, It and featuras than ever ofrered or such iow price. It companion, the 8012 A , has 20Ω to replace the $8010 \mathrm{~A}^{\prime} \mathrm{B} 10 \mathrm{ampere}$ curront range. The 8010A and 8012A fanture:

3 conductance ringes from 2 ms . 200 ns ,
BOI 2 A hat two uditional resibitance renges

8010A E159 8012A E178 Carrigge and insuranea E3

LOW COST, AUTORANGING MULTI-FUNCTION COUNTER MODEL 1900A

High semsitivity -25 mV , typically 15 mV
Six dight
overtiow

- Aunorges on ell gate tlmes. will function a hourn cont

Four manubly sullected gate timen providing resolution to 0.1 Mz

- Event counting to 10° ovents with overflow indicelor

Signol input conditioning with awitehabie 1 MMz low pabin ilter end attenuetor Optonal perailea datis output with dectmal pitarning handie
Truditionel hiah Fiuke qualify dectmal point and ennunciation
soll chock
$\varepsilon 175$
Carriage ond inuwranee $£ 3$

Pошенrian

PSI Comp 80 Z80. Based powerful scientific computer.
Design as published in Wireless World, April-September, 1979.

The kit for this outstandingly practical design by John Adams being published in a series of articles in Wireless World really is complete!
Included in the PSI COMP 80 scientific computer kit is a professionally finished cabinet, fibre-glass double sided, plated-through-hole printed circuit board, 2 keyboards PCB mounted for ease of construction, IC sockets, high reliability metal oxide resistors, power supply using custom designed toroidal transformer, 2 K Basic and 1 K monitor in EPROMS and, of course, wire, nuts, bolts, etc.

PSI COMP 80 Memory Expansion System

Expansion up to 32 K all inside the computer's own cabinel!
By carefully thought-out engineering a mother board with buffers and its own power supply (powered by the computer's transformer) enables up to 3 8K RAM or $8 K$ ROM boards to be fitted neatly inside the computer cabinet. Connections to the mother board from the main board expansion socket is made via a ribbon cable.

Mother Board	Fibre glass double sided plated through hole P.C.B $8.7^{\prime \prime} \times 3.0^{\prime \prime}$ set of all components including all brackets, fixing parts and ribbon cable with socke to connect to expansion plug £39.90
8K Static RAM board	
	Fibre glass double sided plated through hole P.C.B. $5.6^{\prime \prime} \times 4.8^{\prime \prime}$
	Set of components including ic sockers, plug an
	socket but excluding RAMs $£ 11.2$
	2114L RAM (16 required) £5.
	Complete set of board, components, 16 RAMS
8K	
ROM board	Fibre glass double sided plated through hole P.C.B.
	$5.6^{\prime \prime} \times 4.8^{\prime \prime} \ldots . . .{ }^{\prime \prime}$. ${ }^{\text {a }} 12.40$
	Set of components including IC sockets, plug an
	socket but excluding ROMs £10.70
	2708 ROM (8 required) 88.0
	Complete set of board. components, 8 ROMs
	£78.50

Floppy Disk. PROM programmer and printer interface coming shortly

Value Added Tax not included in prices

PRICE STABILITY: Order with confidence! Irrespective of any price changes we will honour all prices in this advertisement until March 31 st, 1980. if this month's advertisement is mentioned with your order. Errors and VAT rate changes excluded.
EXPORT ORDERS: No VAT. Postage charged at actual cost plus 50p handling and documentation
U.K. ORDERS. Subject to 15% surcharge for VAT. NO charge is made for carriage. Or current rate if changed
SECURICOR DELIVERY: For this optional service IU.K mainland only) add 22.50 iVAT inclusive) per kit

PCB size $16.0^{\prime \prime} \times 12.5$

UK Carriage FREE

POWERTRAN COMPUTERS
(a division of POWERTRAN ELECTRONICS)
PORTWAY INDUSTRIAL ESTATE
ANDOVER
ANDOVER HANTS SP10 3NN
(0264) 64455

New books from Newnes Technical Books

Two Metre Anténna Handbook

F.C. Judd, G2BCX, FISTC, MIOA, Assoc. IPRE

* A comprehensive book for all operators on 144 MHz bands, which includes design descriptions of omnidirectional and directional arrays
* Gives details for the first time of two original designs as well as the Slim Jim and the ZL
* By an author and designer of wide repute
1980
166 pages
£3.95
US $\$ 9.00$

Coming Shortly - the new eighteenth edition of Guide to Broadcasting Stations

* Lists stations broadcasting in the long, medium, short and vhf bands in both frequency and geographical alphabetical order
* More than 270,000 copies sold

200 pages approx. $£ 3.50$ approx. US $\$ 8.00$ approx.

Borough Green, Sevenoaks, Kent TN15 8PH, England
Tel: (0732) 884567

N.M. SNewBear SBooks

\star SEND FOR COMPLETE LIST. \star

GAMES

Chess \& Computer Chill in Man and Machine 32 Basic Programs for the Pet Game Playing with Computers Basic Computer Games Star Ship Simulation Game Playing with Basic Sargon
MISCELLANEOUS
Intro. to TRS 80 Graphics
Microprocessors C201
Scelbi Ryte Primer
Business Data Systems The Systems Analyst Your Home Computer
Programming a Micro 6502
6502 Applications Handbook BASIC
Learning Basic Fast
Basic Basic
Advanced Basic
Illustrated Basic.
Basic with Business Applications Basic Primer
The Basic Handbook
COBOL

D. Levy	£ 7.16
P. Frey	¢11.84
	¢ 8.90
D. Spencer	fiu.zo
D. Ahl	£ 5.50
	£ 5.10
D. Spencer	£ 4.10
Spracklen	£ 9.50
	£ 5.7 .5
Zaks	£ 7.50
	£ 9.95
Clinton	£ 5.75
Atwood	£ 6.60
hite	[4.95
Foster	\& 7.95
Zaks	¢ 8.95
De Rossi	- 6.30
J. S. Coan	¢ 5.00
J. S. Coan	[5.50
D. Alcock	12.25
Hayden	\& 8.40
Waite	£ 5.80
Lien	£11.00
Nickerson	£ 6.95
De Rossi	£ 6.20
Hayden	£ 4.20
Mc Clue	£11.30

PASCAL
Pascal: User Manual and Report Problem Solving Using Pascal Programming in Pascal
A Practical Intro. to Pascal
An Introduction to Programming and
Problem Solving with Pascal Introduction to Pascal Z80 BOOKS
Z80 Programming for L.ogic Design Z80 Technical Manual Z80 P10 Technical Manual Z80 Programming Manual Z80 Microcomputer Handbook Practical Microcomputer Programming (Z80) . Z80 Instruction Handbook Z80 Assembly Language

Programming
Introduction to TRS 80 Graphics Zilog Data Book
Z8001/Z8002 Product
Specification.
Z8000 CPU Instruction Se
Z80 Micro Programming \& Interfacing
NEW BOOKS
COBOL for Beginners BASIC for Everyone

Worth .
± 7.75
MICROS for Business Applications
Fortran 77
T) CREDIT SALES (Minimum $£ 10$), Access and Barclaycard is Welcome. "BY RETURN ORDER SERVICE"

RADIO SHACK LTD for
 (4) DRAKE

Ham Bands with $1.5-30 \mathrm{MHz}$ receive with built-in 150 MHz frequency counter plus option of $0-1.5 \mathrm{MHz}$ receive and/ or any transceiving application $1.8-30 \mathrm{MHz}$

RADIO SHACK LTD

For Communications equipment including Trio products and Trio testgear.

We are situated just around the conner from West Hampstead Underground Station (Bakerloo line). A few minutes walk away is West Hampstead Midland Region tation and West End Lane on the Broad Street Line. We are on the following Bus routes: 28,59 , 159 . Hours of 1230 only World wide exports. Closed for Lunc

THRULINE WATTMETER
$0.45-2300 \mathrm{MHz} / 0.1-10,000$ watts
The Standard of the Industry What more need we say.

We are the Designer Approved suppliers of kits for this excellent design. The Author's reputation tells all you need to know about the circuitry and Hart expertise and experience guarantees the engineering design of the kit. Advanced features includp High quality separate VU meters with excellent ballistics. Controls, switches and sockets mounted on PCB to eliminate difficult wiring. Proper moulded escutcheon for cassette aperturs improves appearance and removes the need for the cassette transport to be set back behind a narrow finger trapping slot. Easy to use, robust Lenco mechanism. Switched bias and equalisation for different tape formulations. All wiring is terminated with plugs and sockets for easy assembly and test Sophisticated modular PCB system gives a spacious, easily built and tested layout. All these features added to the high quality metalwork make this a most satisfying kit to build. Also included at no extra cost is our new HS 15 Sendust Alloy record/play head, available separately at $£ 7.60$ plus VAT, but included FREE as part of the complete kit at £81.50 plus VAT
REPRINTS of the 3 articles describing this design 45 p No VAT.
REPRINT of Postscript article 30 p NO VAT

VFL 910. Vertical front loading Super Hi-fi deck, as used in our new Linsley-Hood Cassette Recorder 2. £31.99 + VAT. Set of knobs £1.46 + VAT

LENCO CASSETTE MECHANISMS

We hold stocks of a range of Lenco tape transports for all uses, we can also supply spare parts. For example:
CRV Motors complete £ 4.00 plus VAT
CRV Drive Belts 90 p plus VAT

CASSETTE HEADS

A large range of cassette heads for domestic, industrial and audio visual purposes is available from us. The very best stereo head that we can find is our HS 15 Sendust Alloy Super Head. This has an even better high frequency response than our HS 14 which it replaces. Unlike cheaper and ferrite types this excellent high frequency performance is combined with a high output, thus maintaining the best possible signal to noise ratio. Price $£ \mathbf{7 . 6 0}$ plus VAT.
4.TRACK Record/play head. Scans all 4 tracks on cassette tape. Suitable for auto-reverse mechanisms, film sync, quadrophonics and many other purposes. Standard impedance $£ 7.40$ plus VAT.
Full details of these and other heads are in our lists.
ALL UK ORDERS ARE POST FREE
Please send 9×4 SAE for lists giving fuller details and price breakdowns.

HART ELECTRONICS

LINSLEY HOOD CASSETTE RECORDER 2

Our new improved performance model of the Linsley Hood Cassette Recorder incorporates our VFL 910 vertical front mechanism and circuit modifications to increase dynamic range. Board layouts have been altered and improved but retain the outstandingly successful mother and daughter arrangement used on our Linsley Hood Cassette Recorder 1.
This latest version has the following extra features. Ultra low wow-and-flutter of $.09 \%$ - easily meets DIN Hi-fi spec. Deck controls latch in rewind modes and do not have to be held. Full Auto stop on all modes. Tape counter with memory rewind. Oil damped cassette door. Latching record button for level setting. Dual concentric input level controls. Phone output. Microphone input facility if required. Record interlock prevents re-recording on valued cassettes. Frequency generating feedback servo drive motor with built-in speed control for thermal stability. All these desirable and useful features added to"the excellent design of the Linsley-Hood circuits and the quality of the components used makes this new kit comparable with built-up units of much higher cost than the modest $\mathbf{5 4 . 9 0}+$ VAT we ask for the complete kit.

SUPER BARGAIN OFFER LENCO FFR CASSETTE DECK

For those who missed our recent bargain CT4s we now are delighted to be able to offer Brand New Lenco FFR Decks complete with motor speed and-auto-stop control board fitted and tested. These will operate with any supply between 9 and 16 volts. This deck can be used.for both record and playback applications and is fitted with an erase head. A mono record/play head is fitted and we can supply an extra stereo head, if ordered with the deck at the very special price of with the deck at the very special price of £2 plus VAT. We also supply, with each deck and completely FREE, one of ou specially moulded escutcheons. This deck would normally cost about $£ 25$ but we are able to offer them, while they last, at only $£ 9.99$ plus VAT.

BAILEY 30 WATT AMPLIFIER

We have now completed our redesign of this popular amplifier to make it as easy to build as our latest kits. The power amplifiers are complete modules plugging into a power supply master board all possible wiring has master board, all possible wiring has been eliminated but faith has been maintained with the existing metal
work to enable owners to update if work to enable owners to update if
they wish. Send for full details in our they
list.

COME AND SEE US ON STANDS C9 \& C10 AT BREADBOARD ' 79

Penylan Mill, Oswestry, Salop
Personal catlers are always weicome
but please note we are closed all day Saturday

Instant easy ordering, telephone your requirements and credit card number to us on Oswestry (0691) 2894 Telex: 35661 Hartel G

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

BSR DE LUXE AUTOCHANGER

Plays $12^{\prime \prime}$. $10^{\prime \prime}$ or $7^{\prime \prime}$ records. Auto or Manual. A high quality unit backed by BSA reliability. Stereo Ceramic Cartridge. AC
$200 / 250 \mathrm{~V}$. Size $131 / 2-11 / 4 \mathrm{in}$. $200 / 250 \mathrm{~V}$. Size $131 / 2-11 / 1 / \mathrm{in}$.
3 speeds. Above motor board 3 speeds. Above motor board with Ceramic Stereo carridge.

£20, Post $£ 1.60$

HEAVY METAL PLINTHS

Culver grey finish
Sill
Sluer grey finish. A. ${ }^{\text {Size }} 141 / 2 \times 121 / 2 \times 31 \mathrm{ln}$
posicu. 0
Model "B" Slze $16 \times 133 \times 3$ in
84.50

TINTED PLASTIC COVERS
Sizes $141 / 2 \times 121 / 2 \times 41 / 4$ in or $141 / 2 \times 121 / 2 \times 3 \mathrm{in}$. $£ 3.50$ each $151 / 2 \times 131 / 2 \times 4$ in. $£ 4.18 \times 131 / / \times 4 \mathrm{in}$. $£ 6$.
$141 / 2 \times 143 / 4 \times 21 / 2 i n$. Rosewood sides EA . Post $£ 1.60$
Ideal for record decks. tape decks, etc.
$18 \times 13^{3 / 4} \times 31 / 2$ in with standup hinges $£ 7$

8SR P182 3 speeds flared aluminium turniable " S " shape BSR P182 3 speeds flared aluminium turntable BSR MP60/P128 Stereo Ceramic, balanced arm, cueing

GARRARD AUTO

 CHANGER CC10A -lays all size records. 7 .in table
B.S.R. P163 BELT DRIVE QUALITY DECK Manual or automatic play. Tw
Precision balancer arm. Slide Precision balancer arm.
in head, cueing device.
in head, cueing
Bargain price

£ $\mathbf{3 0}$ Post $£ 1.60$

Sultable magnetic cartridge $\mathbf{E 6 . 5 0}$.
 ELAC MI-FI SPEAKER
 8in. TWIN CONE

LOW VOLTAGE POWER PACK for MODELS Ready made. Famous make. Wil supply 10 volts $\mathbf{4}$. . . at
400 mA . With terminals and mains lead. $£ \mathbf{2 . 7 5}$ Post 50 p

POTENTIOMETERS

 With spindlesKN to 2MO LOG or LIN 35p. DP 60p. Stereo L/S 85p. DP dge Pot SK. SP \quad E1. 85p.

80 Ohm Coax fringe low loss $15 p$ yd PLUGS 10p, SOCKETS 10p, LINE SOCKETS $25 p$ 300 ohm FEEDER $5 p$ yd.

ENUII $131 / 2 \times 8 \mathrm{in}$. LOUDSPEAKERS With tweeter and With weeter and crossover crossover. 10 watt: 8 chm. 15 watts.
£9.95 $£_{\text {Pall } 10.95}$

Bass wooter only. 150.95 Post $75 p$
Suitable Bookshelf Cabinet Teak finish. For EMI 13×8 speakers.
Size $16 \times 11 \times 8$ inches approximately.

THE "INSTANT" BULK TAPEERASER Suitable for cassettes, and all sizes of tap
reels. A.C. mains $200 / 250 \mathrm{~V}$. Leaflet S.A.E. Will also demagnetise small tools $£ 7.50$

RELAYS. 12V DC 95p. 6V DC 85p. 240V AC 95 BLANK ALUMINIUM CHASSIS. $6 \times 4-95 p ; 8 \times 6-$ €1.40; $10 \times 7-£ 1.55 ; 12 \times 8-£ 1.70 ; 14 \times 9-£ 1.90 ; 16 \times$ 6-£1.85; 16×10-E2.20. ANGLE ALI. $6 \times 3 / 4 \times 3 / 4 \mathrm{in}-20 \mathrm{p}$. ALUMINIUM PANELS. $6 \times 4-24 \mathrm{p} ; 8 \times 6-38 p ; 14 \times$ $3-40 p ; 10 \times 7-54 p ; 12 \times 8-70 p ; 12 \times 5-44 p ; 16$ PIASTIC AND ALISOXES IN STOCK MANY SIZES
VARICAP FM TUNER HEAD with circuit \& connection
Some rechnical knowledge required $£ 4.95$.
TAG STRIP 28 -way 12 p.
TAPE OSCILLATOR COIL. Valve type, 35p.
BRIDGE RECTIFIER 200 V PIV $1 / 2$ amp $50 \mathrm{p} .8 \mathrm{amp} £ 2.50$ TOGGLE SWITCHES SP 30p. DPST 40p. DPDT 50p.
MANY OTHER TOGGLES IN STOCK. Please enquire.
PICK-UP CARTRIDGES ACOS, GP91 £2.00. GP94 £2.50. SONOTONE 9TAHC Diamond E3.75. V100 Magnetic E6.50. RESISTORS. 100 to 10 M . $1 / 4 \mathrm{~W} .1 / 2 \mathrm{~W}, 1 \mathrm{~W} .20 \% 1 \mathrm{p}$; 2 W . 10p. HIGH stability. $1 / 2 \mathrm{~W}$ 2\% 10 ohms io 1 meg. ep.

RCS SOUND TO LIGHT KIT Mk. 2 \& 8 Kit of parts to build a 3 channel sound to light unit . Easy to build. Full instructions supplied. Cabinet $£ 4.50$ extra. Will operate from 200 MV to 100 watt signal.

LŌ̄̄VOLTAGEE ÉLECTRÓL VIICS

$1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} ; 420 \mathrm{mF} / 500 \mathrm{~V} \in 1.30$
$1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p}: 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{l}$ $1000 \mathrm{mF} 12 \mathrm{~V} 17 p ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.
$2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$. $2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$.
$2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mf} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$.
4500 mF 64 V e2; 4700 mF 63 V . $20.270 \mathrm{mf} / 76 \mathrm{~V}$
5000 mF 35 V 85 p . $5600 \mathrm{mF} / 76 \mathrm{~V}$ \& 1.75
HIOH YOLTAGE ELECTROLYTIC
HIGH YOLTAGE ELECTROLYTC
$8 / 350 \mathrm{~V}$ 22p $\quad 8+8 / 450 \mathrm{~V}$. $50+50 / 300 \mathrm{~V} 50 \mathrm{p}$ $16 / 350 \mathrm{~V} 30 \mathrm{p} \quad 8+16 / 450 \mathrm{~V} 50 \mathrm{p} \quad 32+32 / 450 \mathrm{~V} 75 \mathrm{p}$. $32 / 500 \mathrm{~V} 75 \mathrm{p} \quad 16+16 / 450 \mathrm{~V} 50 \mathrm{p} 100+100 / 275 \mathrm{~V} 65 \mathrm{p}$ $50 / 500 \mathrm{~V}$ E1.20 $32+32 / 350 \mathrm{~V} 50 \mathrm{p} 150+200 / 275 \mathrm{~V} 70 \mathrm{p}$ -MANY OTAERE ELECTROLYTICS IN STOCK
SHORT WAVE 100pt air spaced gangable tuner, 95p TRIMMERS $10 \mathrm{pF}, 30 \mathrm{pF}, 50 \mathrm{pF}, 5 \mathrm{p} .100 \mathrm{pF}$, 150 pF . 15 p CERAMIC, 1 pF to 0.01 mf , 5 p . Silver Mica 2 to $5000 \mathrm{pF}, 5 \mathrm{p}$.
PAPER $350 \mathrm{~V}-0.17 \mathrm{p} ; 0.513 \mathrm{p} ; 1 \mathrm{mF} 150 \mathrm{~V} 20 \mathrm{p} ; 2 \mathrm{mF} 15 \mathrm{~V}$ PAPER 350V-0. 1 7p; $0.513 \mathrm{p} ; 1 \mathrm{mF} 150 \mathrm{~V} 20 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V}$
$20 \mathrm{p} ; 500 \mathrm{~V}-0.001$ to $0.0512 \mathrm{p} ; 0.115 \mathrm{p} ; 0.2525 \mathrm{p} ; 0.47$ 35p. MICRO SWITCH SINGLE POLE CHANGEOVER 20p. SUB-MIN MICAO SWITCH, 25p. Single pole change over TVIN GANG, $385+385$ pF 80p; 500pF slow motion $75 p$. $365+365+25+25$ pF, Slow motion drive 85 p . 120 pF 50 p . HEONSISN INDIC GANG, 50p.
NEON PANEL INDICATORS 250 V . Amber or red 30p. ILLUMINATED ROCKER SWITCH. single pole. Red 65 p.
CASSETE MOTOR 6 VII E1 00 .
CASSETTE MECHANISM. MOno heads, no motor £3.00.
"VALVES" special offer eubject to being unmold 60p. Pout froes

'Valves'					
6 6M6 6	12 K 7 GT	PCF82	PL84	E8F80	EF80
$6 \mathrm{K8G}$	35L6GT	PCF86	PY33	ECC83	EM84
6076	954	PCL82	PY80	ECC84	EM85
6 V 6 G	30PL1	PCLB4	PY82	ECFBO	EM87
$12076 T$	3524GT	PL81	PY83	ECL80	EY51
12K8M	PCCB4	PL82	E891	ECL82	EYB6
25Y5G	PCC89	PL83	EBC8	EF41	EZ40

BAKER LOUDSPEAKERS "SPECIAL PRICES

Mode	Size	Power	Type	Our price	List price
8 or 16 ohms	in	watts			
Major	12	30	Hi-Fi	E12	E17.25
Detwe Mk II	12	15	Mi -Fi	¢14	$£ 19.75$
Superb	12	30	$\mathrm{Hi}-\mathrm{Fi}$	¢22	¢27.60
Auditorium	12	45	Hi Fi	E20	¢27:60
Auditorium	15	60	$\mathrm{Hi}-\mathrm{Fi}$	¢30	¢40.25
Group 35	12	40	PA	¢12	¢17.25
Group 45	12	45	PA	¢15	£17.25
Group 50	12	60	PA	¢20	£26.45
Group 50	15	75	PA	¢30	£40.25
Group 75	12	75	PA	E24	$£ 27.60$
Group 100	12	100	PA	E29	£33.35
Group 100	15	100	PA	E35	£40.25
Disco 100	12	100	Disco	E29	£33.35
Disco 100	15	100	Disco	¢35	£40.25

BAKER 50 WATT AMPLIFIER

£63

Ideal for Halls/PA systems. Discos and Groups. Two inputs 50 watts $\mathrm{P} . \mathrm{m} . \mathrm{s}$. Three loudspeaker outlets $4,8,16 \mathrm{ohm}$.

BAKER 150 watt mixer/amplifier

 Protessional 4 inpurs withvolume controls. Will mix
mics deas. baker mics, decks, musical instru. 525
£ 85 Post $£ 1.6$

FAMOUS LOUDSPEAKERS

"SPECIAL PRICES" Post $E 1.50$

Make	Model	Size	Watts Ohms							
	Odel	Size	Power	Ohms	Price					
Seas	Tweeter	4	50	8	¢ 7.50					
Goodmans	Tweeter	$31 / 2 \mathrm{in}$	25	8	$¢ 4.00$					
		square								
Audax	Tweeter	31/in square	60	B	¢10.50					
Seas	Mid-range	4 in	50	8	57.50					
Seas	Mid-range	5 in	80	8	£10.50					
Seas	Mid-range	$41 / 2 \mathrm{in}$	100	8	£12.50					
Goodmans	Full-range	Bin	20	8	¢5.50					
Seas	Woofer	8 in	30	8	¢14.00					
Moscow	General	10 in	30	8	¢10.50					
McKenzie	Disco-group	15 in	150	$8+16$	¢56.00					
Celestion	Disco-group	18 in	100	$8+16$	¢59.00					
Selestion	Disco-group	18 in	200	$8+16$	¢69.00					
TEAK VENEERED HI-FI SPBEAKER CABINETS For $13 \times 8 i n$. or 8 Bin . speaker For $61 / 2 \mathrm{in}$. speaker and tweeter ع9.50 Post $£ 1.00$ ¢8.50 Post 75p Many ot her cabinets in stock. Phone your requirements. SPEAKER COVERING MATERIALS. Samples.Large S.A.E. LOUDSPEAKER CABINET WADDING 18 in wide 20 p ft .										

GOODMANS TWIN AXIOM inch dual cone íd dspeake.
ohm, 15 watt hi-fi unit $£ 10.50$.
CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 3$ or 8 or 15 ohm £1.90. 3-way $950 \mathrm{cps} / 3000 \mathrm{cps}$, £2.20. LOUDSPEAKERS PM 3 OHM $7 \times 4 \mathrm{in}$. £1.50; $6 \mathrm{y} / 2 \mathrm{ln}$., £1.95: $8 \times 5 \mathrm{in}$., £1.90; 8 in ., $\mathbf{2} .50$.
SPPECIAL OFFER: 64 ohm, 25 is... 35 ohm, 3 in , $25 \mathrm{ohm}, 2^{1 / 2 i n} ., 3 \mathrm{in} ., 5 \times 3 \mathrm{in} ., 7 \times 4 \mathrm{in} ., 8$ ohm, $21 / \mathrm{in} ., 3 \mathrm{in} ., 31 / 2 \mathrm{in}$,

 PHILIPS LOUDSPEAKER, 8 in., 4 ohms, 4 watts. $£ 2.50$. RICHARD ALLAN TWIN CONE LOUDSPEAKERS 8 in . diameter $4 \mathrm{~W} £ 2.50$. 1 Oin. diameter $5 \mathrm{~W} £ 3.50$; MOTOROLA PIEZO ELECTRIC HORN TWEETER. Handles up to 100 watts. No crossover required. BLACK PLASTIC CONSTRUCTION BOX with brushed | aluminium facia. Sturdy job. Size $61 / 4 \times 43 / 4 \times 2 \mathrm{in}$. | E .50 |
| :--- | :--- |

GOODMANS RUBBER

SURROUND BASS WOOFER
Standard $1^{12} 2 \mathrm{n}$. diameter fixing with
cut sides $12^{\circ} \times 10^{\prime \prime} .14 .000$ Gauss cut sides. 20 watts R.M.S. 4 ohm
magnet. 20 when
imp. 8ass response $30-\mathrm{B00}$ c.p.s.
£9.95 each Post $£ 1.60$

ALUMINIUM゙ HEAT SINKS. FINNED TYPE
Sizes $5^{\prime \prime} \times 4^{\prime \prime} \times 1^{\prime \prime} 95 p .61 / 2^{\prime \prime} \times 2^{\prime \prime} \times 214^{\prime \prime} 45 p$
JACK PLUGS Mono Plastic 25p; Metal 30p.
JACK PLUGS Stereo Plastic 30p; Metel 35p.
JACK SOCKETS Mono Open 20p; Closed $25 p$.
JACK SOCKEIS Mono Open 20p; Closed 25p.
JACK SOCKETS Stereo Open 25p; Closed 30p.
FREE SOCKETS - Cable and 30 p .
2.5 mm and 3.5 mm JACK SOCKETS 15 p
2.5 mm and 3.5 mm JACK PLUGS 15 p . DIN TYPE CONNECTORS

Sockers 3-pin, 5 -pin 10p. F

Plugs 3-pin 20p; 5-pin 25p.
PHONO PLUGS and SOCKETS ea. 10 p .
Free Socket for cable and es. $15 p$
Screened Phono Pluge ea. 15p.
TV CONVERGENCE POTS. 15p oach
0, 20, 50, 100, 200, 250, 470, 2000 ohms.
MONO PRE-AMPLIFIER. Mains operated solid state pre-amplifier unit designed to phono and tape input stages. R.I.A.A. equalisation on magnetic phono input and N.A.B.
37 WHITEHORSE ROAD, CROYDON
Open 9-6. Closed all day Wed. Open Sat. 9-5.

ELEGTRDNG MITS DF DIS DE LUXE EASY TO BUILD LINSLEY-HOOD 75W STEREO AMPIIFIER \&99.30 + VAT 75W STEREO AMPLIFIER $£ 99.30$ + VAT

This easy to build version of our wortd-wide acclaimed 75 W amplifier kit based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and construction delightfully straightforward. The design was published in HIFI News and Record Review and monitos include rumble filter, vaniable scratch filter, versatile tone controls and tape monitoring whilst distortion is less than 0.01%

WIRELESS WORLD FM TUNER $\mathbf{\varepsilon 7 0 . 2 0 ~ + ~ V A T ~}$
 A pre-aligned front-end module makes this Wireless World published design very simple to construct and adjust without special instruments. Features include an excellent a.m. rejection

 stereo decoder, incorporating active filters for "birdy" suppression
LINSLEY-HOOD CASSETTE DECK $£ 79.60$ + VAT

This design, published in Wireless World, although straightorward and relatively low cost provides a very high standard of performance. There are separate record and replay amplifiers and switchable equalisation together with a choice of bias levels are also provided. The mechanism is the Goldring-Lenco CRV with electronic speed control

TRANSCENDENT 2000 SINGLE BOARD SYNTHESIZER

Cabinet size $24.6^{\prime \prime} \times 15.7^{\prime \prime} \times 4.8^{\prime \prime}$ (rear) $3.4^{\prime \prime}$ (front)

The kit includes fully finished metalwork, fully assembled solid teak cabinet. filter sweep pedal, professional quality components (all resistors either 2% metal oxide or $1 / 2 \%$ metal film!) and it really is complete - right down to the last nut and boit and last piece of bbsolutely no more parts before plugging in and making great musicl Virtually all the components are on the one professional quality fibre glass PCB printed with component locations. All the qualify fibre glass PCB printed with component locations. All the board are made with connector plugs and construction is so simple it can be built easily in a few evenings by almost anyone capable of neat soldering! When finished you will possess a synthesizer comparable in performance and quality with ready built units selling for between $£ 500$ and $£ 7001$

COMPLETE KIT ONLY $£ 168.50$ + VAT!

Comprehensive handbook supplied with all complete kits! This fully describes construction and tells you how to set up your synthesizer with nothing more than a multi-meter and a pair of earst

CHROMATHEQUE 5000 5-channel lighting effects system

This ver satile system featured as a constructional article in ELECTRONICS TODAY INTERNATIONAL has 5 frequency channels with individual level controls on each channel. Control of the lights is comprehensive to say the lease. You can run the unit as a straightforward sound-to-light or have it strobe all the lights at a speed dependent upon music level or front panel control setting or use the internal digital circuitry which produces some superb random and sequencing effects. Each channel handles up to 500 W and as the kit is a single board design wiring is minimal and construction very straightforward.

Kit includes fully finished metalwork, fibreglass PCB. controls, wirs, etc. - Complete right down to the last nut and bolt!
COMPLETE KIT ONLY £49.50 + VAT

Panel size $19.0^{\prime \prime} \times 3.5^{\prime \prime}$. Depth $7.3^{\prime \prime}$
MrA200 100W MIXER/AMPLIFIER
Featured as a constructional article in Electronics Today International the MPA 200 is an exceptionally low-priced but professionally finished general purpose, rugged, high power amplifier which has an adaptable range of inputs such as disc, microphone, guitar, ete. There are 3 wide range tone controls and a master volume control. Mechanically the design is simplicity in th extreme with minimal wiring making construction very straightforward. Kit includes fully finished metalwork, fibreglass PCB's, controls, wire etc. - Complete right down to the last nut and bolt!

COMPLETE KIT ONLY $£ 49.90$ + VAT

All kits also available as separate packs (e.g. P.C.B. component sets, hardware sets, etc.) Prices in FREE CATALOGUE

Cabinet size $36.3^{\prime \prime} \mathrm{n} 15.0^{\prime \prime} \times 5.0^{\prime \prime}$ (rear) $3.3^{\prime \prime}$ (front)
Also available as separate packe - prices in free catalgoue no more
§ 1200 !

EXPORT A SPECIALITY!

Value Added Tax not included in prices UK Carriage FREE PRICE STABILITY. Order with confidence! Irrespective of any price
changes we will honour all prices in this advertisement uncil February 28 th. 1980, it this month's advertisement is mentioned with your order. Errors and VAT rate changes excluded U.K. ORDERS. Subject to 15% ' surcharge for VAT. No charge is made for carriage. Or current rate it charged
SECURICOR DELIVERY: For this optional service IU.K. mainland only) add $£ 2.50$ (VAT inclusive) per kit
SALES COUNTER: If you prefer to collect your kif from the factory, call at Sales Counter. Open 9 a.m-4. 30 p.m. Monday-Thursday.

Destigned by Texas enginoers and described in Practical Wireless. the Texan wes an immediate success. Now $\mathrm{T} 20+20$ delivers 20 W rms per channel of true Hi-Fi at exceptionally low cost. The anay to buitd design is based on a single F/Glass PCB end features all the normal facilities found on quality amplifiers including scratch and umble filters, adaptable input selector and headphanes socket. In a follow-up article in practical Wireless further modifications were suggested and these have been incorporated into the $\mathrm{T} 30+30$. These include ff SPECIAL PRICES FOR COMPLETE KITS

T20+20 KIT PRICE $£ \mathbf{3 3 . 1 0}+$ VAT
T30+30 KIT PRICE $£ 38.40+$ VAT
available as separate packs - prices in our free catalogue
POWERTRAN SFMT TUNER

PRICE FOR COMPLETE KIT $£ \mathbf{3 5 . 9 0}$

+ Vat
AVAILABLE AS COMPLETE KIT ONLY
This is a simple, low cost design which can be constructed easily without special alignment equipment but which still gives a first-class output suitable for feeding any of our very popular amplifiers or any other high quatity audio equipment. A phase-locked-loop is used for stereo decoding and controls include switchable afc, switchable muting and push-bution channel and $\mathrm{T} 30+30$ amplifiers

INCREASED CAPACITY AT OUR BIG NEW FACTORY MEANS MANY PRICES DOWN! ALL OTHER FROZEN!
 Another superb design by synthesizer expert Tim Orr!

 TRANSCENDENT DPX

 TRANSCENDENT DPX
 As featured in Electronics Today International August, September October, 1979 issues

DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER

> The Transcendent POX is a really versatile new 5 octave keyboard instrument. There are wo audio outputs which can be used simultaneously. On the first there is a beautiful harpsichord or reed sound - fully polyphonic i.e. you can play chords with as many notes as you like. On the second output there is a wide range of different voices. still fully polyphonic. It can be a straightforward piano or a honky tonk piano or even a mixture of the two! Alternatively you can play strings over the whole range of the keyboard or brass over the whole range of the keyboard or should you prefer - strings on the top of the keyboard and brass at the lower end (the keyboard is electronically split after the first two octaves) or vice versa or even a combination of strings and brass sounds simultaneously. And on all voices you can swich in circuitry to make the keyboard touch sensitive? The harder you press down a key the louder it sounds - just like an acoustic piano. The digitally controlled multiplexed system makes practical sensitivity with the complex dynamics law necessary for a high degree of realism. There is a master volume and tone control, a separate control for the brass sounds and also a vibrato circuit with variable depth control together with a vartable delay control so that the vibrato comes in only after waiting a short time atter the note is struck for even more realistic string sounds.

COMPLETE KIT ONLY £299.00 + VAT!
To add interesi to the sounds and make them more natural there is a chorus/ ensemble unit which is a complex phasing system using CCD (charge coupled device) analogue delay lines. The overall effect of this is similar to that of several acoustic instruments plaving the same piece of music. The ensemble circultry can be switched in with either strong or mitd effects. As the system is based on digital circuitry data can be easily taken to and from a computer for storing and playing back accompaniment with or without pich or key change. comput Although the DPX is an advanced design using a very large amount of circuiry. much of it very sophisticated, the kit is mechanically extremely simple with excellent access to all the circuit boards which interconnect with multiway connectors, just four of which are removed to separate the keyboard circuitry and the panel circuitry from the main circuitry in the cabinet.

The kit includes fully finished metalwork, solid teak cabinet. professional quality components (all resistors 2% metal oxide), nuts, bolts, etc., even a $13 A$ plug - vou need buy absolutely

Our Export Departmeni can readily despatch orders of any size to any country in the world. Sonse of the countries to which we sent kits last year are shown in this advertisement. To assist in estimating postal costs our catalogue gives th weights of all packs and kits. This will be sent ree on request, by airmail, logether with our "Export Postal Guide" which gives current postage prices. There is no minimum order chatge. Prices same as for U.K. customers but no Value Added Tax charged. Postage charged at actual cost plus 50p documentaton and handling. Please send payment with order by Bank Draft, Pnstal Order. International Money Order or cheque drawn on an account in the U.K. Alternatively for orders over $£ 500$ we will accept Irrevocable Letter of Credit payable at sight in London.

QUALITY: All components are brand new first grade full specification guaranteed devices. All resistors lexcept where stated as metal oxide) are low noise carbon film types. All printed circuil boards are fibreglass. drilled roller tinned

NEW FACTORY ON SAME INDUSTRIAL ESTATE
ADDRESS AND PHONE NUMBER UNCHANGED our catalogue is FREE! write or phone NOW!

POWERTRAN ELECTRONICS

OVBE Vew Bear Components

CALLLERS AND MAIL ORDER: 40 Bartholumew Street, Newbury, Berks. Tel: 063530505

Microcomputing I.C.'s
MC6800
MC6802
MC6821
MC6850
MC6810AP
MC6840
MC8602P
MCl 4536 P
MC3459
7.80 CPU 2.5 MHz

Z80 P10 2.5 MHz
Z80 CTC 2.5 MHz
Z80A CPU 4 MHz
Z80A P10 4 MHz
Z80A CTC 4 MHz
SC/MP 11
(INS 8060N)
INS 8154 N
8080A
6522

AMD 9511: arithmetic package15
8.50
4.63
6.74
3.6112.723.69

$$
\begin{aligned}
& 2.43 \\
& 8.99
\end{aligned}
$$

$$
3.99
$$

$$
7.99
$$

6502
6532
6551
6545
28001
2.88
7.9913.9910.00
10.00£ 8.88ACORN
Memories
Disc Drives
SA400 SHUGART 51/4" S.S. \& 189
6106 BASF 51/4" S.S. £ 1907100 DRI8' $^{\prime \prime}$ S. S. 44385$8^{\prime \prime}$ S.S. £4385
7200 DRI $\begin{array}{lll}8^{\prime \prime} & \text { D.S. £ } 430 \\ 8^{\prime \prime} & \text { D.S. } ~ & 465\end{array}$
6104 BASFPlus range of Media, PSU's andConnectors.4116 (16K DYNAMIC) $£ 6.99$
2102-1* £ 0.85
$2102 \mathrm{~L}-1$
2112 £ 2.25
2114 $\begin{array}{lr}£ & 2.25 \\ £ & 6.99\end{array}$
$\begin{array}{lr}£ & .6 .99 \\ £ & 6.99\end{array}$
MC6803L7 (MIKBUG) £ 13.65
2716 (INTEL) £ 21.50

6502 BASED MICRO KIT

8K RAM KIT

MAINS ADAPTOR
V.D.U. KIT

SPECTRONICS

UV Eprom-Erasing Lamp
PE14 Erases up to 6 chips. Takes approx.
19 mins. £ 56.00
PE14T* Erases up to 6 chips. Takes approx.19 mins.£ 76.58
PE24T* Erases up to 9 chips. Takes approx 15 mins. 1111.22
PR125* Erases up to 6 chips. Takes approx.7 mins.$£ 237.84$
PR320T* Erases up to 36 chips. Takes approx

UV Eprom-Erasing Cabinet
PC2000* Erases up to 144 chips. Takes approx. 7 mins .
£1227.69

* Includes a 60 min . Timer.

TERMS: Credit Sales (minimum $£ 10.00$) Barclaycard and Access Welcome. Please add 15% VAT.
£1 36.50

CALLERS ONLY: 220-222 Stockport Road, Cheadle Heath, Stockport Tel: 0614912290 SEND FOR OUR NOVEMBER CATALOGUE AND BOOK LIST.
West Hyde have the greatest range of instrument cases

industrial design award at Hanover
A case for good looks, strength and efficiency. Particularly suitable for applications needling power dissipation.

	L	B	H	
SWF 212	432	268	88.9	$£ 23.85$
SWF 22	219	268	88.9	$£ 18.35$
SWF 312	432	268	133.4	$€ 28.25$
SWF 322	219	268	133.4	$\mathbf{£ 2 2 . 5 0}$

IEA• ELECTREX International Electrical Electronic and Instrument Exhibition National Exhibition Centre Birmingham 25-29 February 1980

HALL 4
STAND 4228

All West Hyde cases are available with substantial discounts for quantities. Most cases have discounts at 5, 10 and 25 off with discounts up to 25% at 100 off. Prices do not include VAT. Except where otherwise state P\&P 5\% of order value. Send for catalogue. Prices correct at press date. WEST HYDE DEVELDPMENTS LIMITED, Unit 9, Park Street Industrial Estate, AYLESBURY, BUCKS. HP20 1ET. Phone: Aylesbury (0296) 20441. Telex: 83570 WW - 046 FOR FURTHER DETAILS

LINES FROM OUR VAST STOCKS - IMMEDIATE DELIVERY NEW STOCKS BELOW MANUFACTURERS' PRICES. Postage \& packing add 50 p per order. CALCULATOR CHIPS General instrument GIMT4 on anti-static foam 24 pin D.I.L socket for use with Bowmar dispiay $£ 1.50$ ea. Pack of 25 chips E2B. 100 for $\mathbf{E 3 0}$. 500 for E350. DISPLAY 8 Y HEWLETT-PACKARD. Seven segment OL 707 (5082.7750) O5p. Commen anode hatt inch red display, brend new in makers cartons, 6 for $\mathbf{E 5} .50$ for 70 es. 1.000 for $55 p$ \qquad for ©5, 100 for ESO, 1,000 for £350. BECKMAM 500 kce Triggerable clocking with circuit £1, 10 for £8, 100 for £85. BURROUGHS E DIGIT Panaplex catculator display 7 segmant $0.25^{\prime \prime}$ digits. Neon type with red bezel socket and data. Ei.ge ea. 10 for $\& 17$. 100 for E140. HONEVWELL PROXIMITY DETECTOR inte. gral amplifier 8v D.C. $£ 3.50$ ea. 10 for $£ 30$. MULLARD TBA800, I.C. audio amplifier. 95p ea. 10 for $£ 8,100$ for $£ 70,500$ for $£ 300$. RCA CA 3089 . F.M. If $£ 1.50,10$ for $£ 12$. HCA CA3000AO. F.M. decoder C2.50. 10 for £20, 100 for £175. BU 205 MULLARD. $\mathbf{E 1 . 5 0}$ ea, 10 for $\mathbf{E 1 2 .} 100$ for E 100 . \qquad 100 for $£ 28,500$ for $£ 125,1000$ for $£ 200$. BU20s TO3 Texas T.V. Power transistors. £1.75 BETTH CODER, £ 1.20 each, 10 for $£ 1$ ea, 100 for $85 p$ MULUAMD ADI81-AD162 Matched pairs. 1 peir sop, 10 pairs \& 6,100 pairs £50. RADIATION DETECTORS Quartz FIbre Dosimeters. Pan type with clip with ions and scale $0.50 R$. Originally over $£ 5$ OUR PRICE 8 Bp EACH, 10 for ES.100 tor $£ 60.1 .000$ for $£ 500$. CLOCKING OSCILLATOR (Pye-Dynamics). thick film 1 mHZ supply $5 \mathrm{v} 18 \times 25 \times 8 \mathrm{~mm} 85 \mathrm{p} .10$ for E7, 100 for £. E , 500 for $£ 250$. TV TUNERS by Mullard. U.H.F. 38 mes size $33 \times 23 / \mathrm{mx} 1 / 4 \mathrm{CZ} .50$ ea. 10 for $£ 20,100$ for £175, 500 for $£ 750,1,000$ for $£ 1,250$. MULLARD TUNER MODULES wit LP 1171 combined AM/FM IF strip $£ 3.50$. LP 1179 FM front end with AM tuning gang. used with LP 117183.50 . LP1 171 and 89 pair 55.75 . 10 pairs for $\mathbb{E} 50,100$ pairs for $£ 400$. CA 3085 RCA 5 volt 100 m amp variable $1.8-24 \mathrm{v} 55 \mathrm{p}$ es REG. £5, 100 for $\mathrm{E} 3 \mathrm{~s}, 1,000$ for $£ 300$. MULLARD LP 1187 AM quner modules with circuit E2.50 es. 10 for $£ 20,100$ for $£ 175$. LUSTRAPHONE MIBBON Mitk $\$ 1.50,+$ pre amp on chassis $3 \times 2 \times 1$ in, 10 for $£ 12.50$. RT ORDEAS add 10% for carriage TAAE61B \{14-pin DIL) I.C. T.V. Sound \& F.M. other parts. Complete with data and connections. 60p. 10 for E5, 100 for 400 ea, 500 for 35 p ea. AVO-8 METER MOVEMENTE AVO-8 METER MOVEMENTS for military version. Precision 37.5 microamp $\{50 \mu$ with integral strunt) movement $£ 10.50$. PHOTO CONOUCTIVE CELL E1.25. High power Cds cell 600 mw for control circuits. Resistance 800 ohm to 4 K . Max volts 240 . Size $11 / 2 x^{1 / 2 i n}$. 10 for $£ 11,100$ for $£ 100$. DYNAMIC MICROPHONE. Low inset. £1.45, 10 for £18, 100 for $£ 100$. Foster UMF TUNER BY OEC. $38 \mathrm{mc} / \mathrm{s}$ with sfow motion £220. 500 or 51.20 . ea, 10 for £25, 100 for TWO GANG MINIATURE VARICAP TUNER, 500 pf whth tuning knob, size $3 \times 11 / 3 \times 1 \mathrm{kin}$, $\mathbf{E 1} 25$ ea. 10 for $\mathrm{E} 10,100$ for $\mathrm{£85}$. ATES U14582 AUDIO I.C. AMPLIFIER 14 PIN O.I.L. 300 m , watts 55 p each, 10 for $£ 4.50$. 100 for $\mathbf{5} 5$. GENERAL audio chips with circuit \& data \& 1.95 each. ACA CDS028AE 16 pin D.I.L. preteltage up-down counter 85 p each, 25 tor e15, 100 for C50, 1.000 for $£ 355($ in anti static tubes of 25). U.A.F. TV TUNER (preamp) with EF180 55p each. Built on P.C. board $2 \times 2 \mathrm{in}$ (sold without data), 10 for $£ 4.50,100$ for $£ 35,1.000$ for MARCONI I.C. Oscillator Datil (TO99 can) 30p sach, 10 tor £2, 100 for E15, 1,000 for E125. PLESSEY SL432A I.C. IF amplifier (TO99 can) $85 p$ each, 10 for $£ 8,100$ for $£ 39,500$ for $£ 150$. V.H.F. MoDULATORS for TV V.H.F. MODULATORS for TV games 55 p esch. 2 transistor - on built P.C. sizes $2 \times 2 \times 1 / \mathrm{min} .10$ for $£ 4,100$ for $£ 35,500$ tor $£ \$ 50$. components and coils on built p. orcuit, size 2×2 $\times 1 / 4 \mathrm{in} .10$ for $£ 3.50,100$ for $£ 30,500$ for $£ 125$. MIGH VOLACE TV TRIPLER DIOOES BY I.T.T. stick type per 10 \&1.50, per 100 £18, per $1.7 . \mathrm{T}$. stick ${ }^{\mathrm{t}}$ 1.000 em. THAB25 ATES voltage regulators $55 p$ ea. 5 volts $400 \mathrm{~m} /$ amps (TO99) per 10 E4.50, per 100 £38, per $1,000 £ 280,12 v$ TBA625A. Also 16 PiN low profile D.I.L. sockets $12 \mathrm{p}, 10$ tor $£ 1$. 100 for $\mathrm{CE}, 1,000$ for $6 p$ each. THYRISTORS, Motorola 2N506: 0.8 amp 80 volt 1\%p, 10 for 15p, 100 for 13p, 1,000 tor 11p Aach. ULTRASONIC TWANSOUCERS. 40 KCls, pair £2.95, 10 pars £2B, 100 pairs $£ 220$. All mail to: 404 Edgware Road London W2 Englarid Phone 01-723 1008 TELEX 262284. REF 1400.	

£125. SAFGAN ST-45

SINGLE TRACE OSCILLOSCOPE

$10 \mathrm{mv} / \mathrm{div} 5 \mathrm{MHz}$ BRITISH CHOICE OF FRONT PANEL

ST-45 SPECIFICATION
VERTICAL SYSTEM
DC COupied: DC. -5 MHz
C Coupled: $5 \mathrm{~Hz}-5 \mathrm{MHz}$
input Impedance: $1 \mathrm{MR}+22 \mathrm{PF}$ approx. (for all rangest 50n tor 1omv/div-50

HORIZONTAL SYSTEM

 As/div: $=5 \%$
Exxernal Sensitivity: $1 w /$ div approx
External Bandwidit: $D C-500 \mathrm{KHz}$

ACCESSORIES

nsive Probe switched $\alpha 1$; REF: $\times 10$) 100 MHz
NC to $\mathbf{4 m m}$ Socket Adapior $\mathbf{2 2 , 9 5}+$ VAT.

TRIGGER
External: 100 My (10 MHz -2 MHz ($12 \mathrm{MHz}-5 \mathrm{MHz}$) 5 MHz .
trace tree runs in absence of signal
Trigger Level: Selecis tiggering point
Irigger (+)ve and (-)ve slope selection
DISPLAY

FRONT PANEL
Black, silver, white. ST-45.S. The Silver S
black. gold, white. ST.45-G. The Gold Scope

GENERAL

Power consumption: 10VA approx
Mains selection: $200 \mathrm{~V}-220 \mathrm{~V}-24 \mathrm{~V}$ rms $(4 \mathrm{OHz}$ Mains
60 MHz)
Werget $10 \mathrm{Hs}-4.5 \mathrm{~kg}$ appror.
Cergm: $\begin{aligned} & \text { aibs- } 4.5 \mathrm{~kg} \text { appror. } \\ & \text { Case, aluminium with black pve finish and black }\end{aligned}$ handle: front panel with black control knobs, Black

```
ORDERS TO: SAFGAN ELECTRONICS LTD
Bishoos Wood, St. Johns, Woking
Surrey GU21 308 or Tel: Woking }66836
Please send me . . . . ST-45.S .... ST.45-G . .... Probe . . . . Adaptor
I enclose PO/cheque
    (Goods + 15% VAT + £3.00 p&p)
Address
-Ex. VAT. U
```


> Barrie Electronics Ltd.
> 3,THE MINORIES,LONDON EC3N 1BJ TELEPHONE: 01-488 3316/8
> NEAREST TUBE STATIONS: ALDGATE \& LIVERPOOLST

Z \& I AERO SERVICES LTD.
Head Office: 44a WESTBOURNE GROVE, LONDON W2 5SF Tel. 7275641

Telex 261306
SPECIAL OFFER OF BRAND NEW USSR MADE MULTIMETERS

TYPE Sensitivity D.C Sensitivity A.C D.C. Curren D.C. Cuiren D.C. Volts Resistance Capacity Capacity
Accuracy

Price complete with pressed stee carrying case and test leads Packing and postage

44313 20.000 o.p.v 2,000 o.p.v.
$60 \mu \mathrm{~A}-1.5 \mathrm{~A}$ $0.6 \mathrm{~mA}-1.5 \mathrm{~A}$ 75 m V-600V $15 \mathrm{~V}-600 \mathrm{~V}$ $1 \mathrm{~K}-1 \mathrm{M}$
$0.5 \mu \mathrm{~F}$ $0.5 \mu \mathrm{~F}$ 1.5\% D.C.
$\varepsilon 10.50$ $£ 1.50$

44315 20,000 o.p.v 2,000 o.p.v. $50 \mu \mathrm{~A}-2.5 \mathrm{~A}$ $75 \mathrm{mV}-1000 \mathrm{~V}$ $1 \mathrm{~V}-1000 \mathrm{~V}$ $300 \Omega-500 \mathrm{k} \Omega$ $0.5 \mu \mathrm{~F}$ $0.5 \mu \mathrm{~F}$ 2.5\% D.C
10.50
$\varepsilon 1.50$

TYPE U4323

COMBINED WITH SPOT FREQUENCY OSCILLATOR

PRICE, in carrying case, complete with leads and manual $£ 8.00$ Packing and postage 1.00

Sensitivity
Voltage ranges Current ranges Resistance Accuracy Oscillator output
$20.000 \mathrm{n} / \mathrm{N}$
2.5-1000 V A.C. ID.C. $0.05-500 \mathrm{~mA}$ D.C. only 5 (1 M)
5% F.S.D
$1 \mathrm{kHz} 50 / 50$ squarewave 465 KHz sinewave
module
modulated by 1 KHz squarewave

THIS OFFER IS VALID ONLY FOR ORDERS ACCOMPANIED BY REMITTANCE WHICH SHOULD INCLUDE DELIVERY CHARGES AS INDICATED AND 15% V.A.T. ON THE TOTAL

RETAIL SHOP

85 TOTTENHAM COURT ROAD, W.
Tel. 580-8403

TYPE U4324

D.C. Current A.C. Current A.C. Current A.C. Voltage Resistance Accuracy
$0.06-0.6 \cdot 60-600 \mathrm{~mA}-3 \mathrm{~A}$ 0.3-3-30-300mA-3A $500 \Omega-5-50-500 \mathrm{k} \Omega$ 0.6 -1.2-3-12-30-60-120-600-1200V 3-6.15-60-150-300-600-900V D.C. 2.5% A.C. 4% (of F.S.D.)

PRICE complete with test leads and fibreboard storage case £9.50

Packing and postage £1.20

TYPE U4341

COMBINED MULTIMETER AND TRANSISTOR TESTER

\(\begin{array}{ll}Sensitivity. \& 16,700 \Omega / V D.C., 3,3000 / V A . C
Current\end{array} \quad 0.06 .0\). Current $\quad 0.06-0.6-6-60-600 \mathrm{~mA}$ D.C. O.3-3.0-30 300 mA A.C.
0.3-1.5-6-30-60-150-300-900V D.C 1.5-7.5-30-150-300-750V A.C $2-20.200 \mathrm{k} \Omega-2 \mathrm{M} \Omega$
Collector cut-off current $60 \mu \mathrm{~A}$ max
D.C. current gain 10.350 in two ranges

PRICE, complete with steel carrying case. test lead, battery and instruction manual $£ 9.50$
Packing and Postage £1.50

OUR 1978 CATALOGUE/PRICE LIST OF VALVES, SEMICONDUCTORS PASSIVE COMPONENTS AND TEST EQUIPMENT IS AVAILABLE. PLEASE SEND P.O. for EO. 30 FOR YOUR COPY

WW - 031 FOR FURTHER DETAILS

HEAVY DUTV L.T. TRANSFORMERS

 Pritively rated $£ 37.50$ cars
 €25 cari $£ 5$. Both lypes ex equipment

(ELECTRONICS) LTD.
9 \& 10 CHAPEL ST., LONDDN, N.W. 1 01-723 7851

ADJACENT TO EDGWARE ROAD MET. LINE-262 5125
PLEASEADD 15% TO ALL ORDERS INC. CARR. CURRENT RANGE OF NEW L.T. TRANSFORMERS PPEN TYPE TAG CONNECTIONS
True
1
2
3
3
4
5
6

Sectaps	Amps	Price	Carr
24-30.40-48-60\%	12	c36.50	¢2.00
$24.30-40-48-60 \mathrm{~V}$	10	$\underline{61.50}$	¢2.00
24-30-40-48-60v	8	c27.50	¢1.75
$24.30-40.48-60 \mathrm{v}$	5	E16.75	E1.75
24-30.40-48-60v	3	E11.50	¢1.25
24.30-40-48-60v	2	¢7.50	£1.25
$6-8-10-12$	6.18.20	$36-40-48$	

LOW POWER LT TRANSFORMERS
$\begin{array}{ccc} & & \text { All prum } \\ \text { ype } & \text { Sect Taps } & \text { Amps } \\ 1 & 15 v i \text { wice } & 200 \mathrm{~m} \\ 2 & 6 \text { viwice } & 500 \mathrm{~m} \\ 3 & 6 \mathrm{v} \text { iwice } & 4 \text { amps }\end{array}$
6 V wice
6 v wite
6 v tice
6 v wice

SPECIAL OFFER OF SURPLUS LT TRAN\&FORMERS BY
No 1 GLL PRIMARIES 220-240v
ropicalised open type wire connections
£3.95 pDE1.25
No 2 Parmento sec 30.5 amps shrouded No 3 Pri 220.240 v sec 36 vv 6 a ¢ $£ 1.50$ board con nections $\mathbf{\Sigma 7 . 5 0}$ cerr El .50 . These anslormers are ideat for mmplifier powe Special ofter tor two $\mathbf{\$ 1 5} \mathbf{~ i n c ~ c a r r . ~}$ No 4 Gurdners ' C ' coro. Sec tapped 29.28 -
$27.0-27.28-29 \mathrm{v} 350 \mathrm{M} / \mathrm{A}$ conservatively ared $\mathrm{E3.00} \mathrm{pop}$!
No 5 Gardners. C. core 5 Sc 20 $500 \mathrm{~m} / \mathrm{a} \mathrm{c} 3.00 \mathrm{po}$
No 6 Gardners ${ }^{\circ} \mathrm{C}$ core. Sec 12.6v 5.75 amps conservatively rated $£ 5.75 \mathrm{pp} £ 125$
Hoy Gardners open type tag connections Hoy Gardners open type tag connections sec
55 y
$\mathrm{y} / \mathrm{tamp}_{\text {amp }} \mathrm{conservatively} \mathrm{rated} \mathbf{2 . 5 0} \mathrm{pp}$ $\mathrm{E} 1 \mathrm{Sec} \cdot 17 \mathrm{v}+2+11_{4}+1$ sepa
all ot 20 amps E 9.95 carr E 2.

AEG L.T. TRANSFORMERS Computer power supply design. Prii 220 .
240 v sec 10 v 13.8 amps and 22.8 Bv 105 240 v 5 ec 10 v 13.8 amps and $22 . \mathrm{Bv} 10.5$
amps. Conservatively rated open type, tag connections Brand new Ifaction of makers price 8850 carr CR 2 PARTRIDGE Pri 110.220 .240 v secs $15 \mathrm{5}-0.15 .5 \mathrm{v} 1$ amp 4 tumes 19 v 1.8 vamps
Twice 27.0 .27 v V .3 a 27 v 1.8 amps C ' core
 WODEN Pri 220.240 v secs 31 v 7 Va 26 v
5 a .16 v 4 a twice. 25 v 2 a 5a. 16 v 4 a iwice. 25 v 2 a iwice. Open
10p panel connections E 12.00 carr $£ 3$.
HEAVY DUTY C' CORE
L.T. TRANSFORMERS BRAND NEW
$\begin{aligned} & \text { Fraction of makers' price } \\ & \text { Primaries } 110-220.240 \mathrm{v} \text { cont raing No }\end{aligned}$
$\begin{aligned} & \text { sec } 12 v 40 \text { amps } £ 22.50 \text { carr } £ 3 \text {. No } 2 \text { sec } \\ & 14 v+3+14 / \mathrm{vv} 40 \text { amps. Cont pating limited }\end{aligned}$
number $£ 25.00$ carr $£ 3$. DC supply units.
AC, inpul 200.220.240V OC output, tapped
$\begin{aligned} & 112 v \text { or } 125 v 3 \text { amps conservatively rated } \\ & \text { plus or minus } 3 \% \text { choke/capaciso }\end{aligned}$
$\begin{aligned} & \text { moothed FW selenium recultication buil } \\ & \text { on open chas sis size } 15 \pi 9 \text { //ins } £ \mathbf{2 2} \mathbf{5 0} \text { car }\end{aligned}$
${ }^{5} 5$ core pulse transtormers AERE design
\& 3.50 po § 1

HIGH VOLTAGE TRANSFORMERS Pri 240 sec 2500 v 0.1 ia primary is also
tapped at 260.280 300.330-350.387v to one varation on sec open type table top connections brand now. Fraction of makers price. $£ 15 \mathrm{carr} £ 3$. Parmeko potted type Pr
$220.240 \mathrm{vec} 1875 \mathrm{v} 60 \mathrm{~m} / \mathrm{a}$ and 500 s $220-240 \mathrm{vec} \mathrm{sec}$
$31 \mathrm{~m} / \mathrm{E} 6.50 \mathrm{carf} \mathrm{f} 2$

H.T. TRANSFORMERS GYFAMOUS MAKERS ALI PRIMARIES 220.240 No $1890.710 .0 .710 .890 \mathrm{v} 120 \mathrm{~m} / \mathrm{a}$ ope type top panel connection $\mathrm{E} 3.00 \mathrm{pp} \mathrm{f1}$. No 3 woden type 8680281 sec 260.0 .260 V $150 \mathrm{~m} / \mathrm{a}$ and $205.0 .205 \mathrm{v} 60 \mathrm{~m} / \mathrm{a} 6.3 \mathrm{v}$ 6a 6.3 v 1 a 5 v 2 a drop thruly pe tag connections E4.95 po E1.25. No $4 \mathrm{MT} 2 \mathrm{sec} 350-0.350 \mathrm{~V}$ $3.5 a 5 v 2 a$ or $6.3 v$ 1a $64.75 \mathrm{pp} £ 1$. No 6 Gardners $350-0.350 \mathrm{v} 60 \mathrm{~m} / \mathrm{a} 6.3 \mathrm{v} 4 \mathrm{~A} .5 \mathrm{v}$ $8 \mathrm{sec} 112 \mathrm{v} 262 \mathrm{~m} / \mathrm{a}$ and $6.3 v 033 \mathrm{a}$ c2.00 3a open type. Top panel connections $£ 6.00$
 L.T. SMOOTHING CHOKES Heavy duty open frame type. $24 \mathrm{~m} / \mathrm{h} 45$ amps. Terminal block connections 513

 amps. Terminal block connections $\$ 12 \mathrm{E}$$8 \times 8 \times 8 £ 19.50$ casf. $£ 4 .{ }^{\circ} \mathrm{C}$ core 1ypes 10
 amps $\mathrm{E} 3.75 \mathrm{pp} \mathrm{f} 1.25 .15 \mathrm{~m} / \mathrm{h} 3.8$ amps
$\mathrm{E} 3.50 \mathrm{pp} £ 1.25$. Potled types 13 m mp €3.50 pp f1.25. Potled types $13 \mathrm{~m} / \mathrm{h} 1.15$ amps- $-1.75 \mathrm{pp} 75 \mathrm{p} \quad 100 \mathrm{~m} / \mathrm{h} 2 \mathrm{amps}$
$£ 3.50 \mathrm{pp} \mathrm{f1} .4 .8 \mathrm{~m} / \mathrm{h} 10 \mathrm{amps}$ open frame £3.50 pp £ i. Swinging " "C" core type 10 $\mathrm{m} / \mathrm{h} 4$ amps. $100 \mathrm{~m} / \mathrm{ht} 4 \mathrm{tamp}$ to $\mathrm{E3} .95$ carr E1.50 HT chokes $4 \mathrm{H} 250 \mathrm{~m} / \mathrm{ec}$ © pp E 1.5 pp $75 \mathrm{p} .50 \mathrm{H} 25 \mathrm{~m} / \mathrm{s} \mathrm{E} 1.50 \mathrm{pp} 75 \mathrm{p}$.

AC WIG BLOCK CAPACITOAS BY FAMOUS MANUFACTURERS		
MFD	Volts	Prico
075	440 VaC	50 p
1	470 vaC	60 p
1.25	360 VAC	65p
2	400 vaC	75 p
2.4	360 vaC	75p
2.5	360 vaC	75p
$2.7+0.1$	700 vAC	E1.25
3	440 VAC	E1.00
4	250vac	¢1.00
5	360 VAC	E1.25
6.	440 vaC	$E 1.50$
7,2	440 VAC	¢1.50
B. 4	250vac	E1.00
$\text { PP up to } 2 .!$ $+8 \% \text { on tot }$	$25 \mathrm{p}, 2.7$	$1 F 050 \mathrm{p}$

STANDARD OPEN TYPE RELAYS SINGLE HOLE FIXING 7 AMP CONTACTS BY FAMOUS MAKER $\$$		
Coil		
Voltag.	Coniscts	Price
240 VAC	3 Co	¢1.00
240 VaC	2 CO	$85 p$
240 VAC	1 CO	$75 p$
115 VAC	3 CO	75p
115 VAC	2 CO	65p
$48 \vee \mathrm{DC}$	3 CO	${ }^{85} 5$
24 VDC	1 CO	75p

Sealed 11 pln plug in type. $12 \mathrm{vaC} 3 C O$
C1.50. B pin 2 CO 12vDC $\mathrm{E1}$. 48 vDC 2 CO on total. Mumature relay 6 V DC 1 CO size 1 k $x 1 / k i n$. three for $£ 1 \rho 0250$. Elliott sealed conlaci reed relays type ERM 12 VOC 1 make Low

LOW CURFENT L.T.TRANSFORMERS No sec bev 2 2A and $30-0.30 \mathrm{v} 100 \mathrm{~m} / \mathrm{a}$ $3 A$ tag connections $E 3.50$ po 2 sec 27 15.0.15v 2 A taq connections $\mathbb{C 2 . 7 5} \mathrm{po} \mathrm{f1}$ No 4 sec appped 3.9-12.27.30-36v 1.6 $27 \mathrm{v} 250 \mathrm{~m} / \mathrm{sp}$ wice $£ 2.75$ pof $£ 1$. $24 v 480 \mathrm{~m} / \mathrm{a}$ twice $\mathrm{E2} .95 \mathrm{pp}$ ¢1 No 7 sec No $8 \mathrm{sec} 12 v 3 \mathrm{a}$ GPO rating E 3.50 PDP EP. $\mathrm{HOO} 12 \mathrm{v} 1 / \mathrm{ze}$ and $24 \mathrm{v} 1 / / \mathrm{amp} \mathrm{E1.50}$
50 p No $10 \mathrm{sec} 55 \mathrm{v} ~$
 $45 \mathrm{z} 1 \mathrm{a} 150 \mathrm{v} 15 \mathrm{~m} / \mathrm{a}$ potted E 2 op है।

Unimax micro switherfers

double pfescure swilleches. Type DAW 15 CO each pressure 240 V 15 a contactis, three for $E 1.50 \mathrm{pp} 50 \mathrm{p}$ ETA overioad switches 10 amp $250 v$ panel mounung, three for $\mathbf{Q 2 . 5 0}$
Op $50 p$. Micro switches. x 3hin roller lever action 1 Co, 10 for $£ 2.50$ pp 25 p . Burgess standasd plungert ype
38 PR 7 i Co. three for $£ 1$ pp 25 p . Sangmo panel mount hour meters 4 digits $* 1 / 10$
hour dugn $A C 240 v$ s.ze $11 / 2 \times 1 / 2 \times 14 / 4 \ln \mathrm{E} 2$ pp 25 p.
Stonebridge GPO typa reselable counter 12 v
DC 4 digits $£ 3$ po 25 . ENM counters 110 y AC 6 digits, three for $£ 1$ pp 50 o

FORME DUTYISOLATION TRANS. TO MERS $240-240 \mathrm{~V}$ or ${ }^{240-110 \mathrm{~V} \text { UP }}$
TO 15 AMPS makers. traction of list all by famous telephone us for furher delaits

AUTO STEPDOWN TRANSFORMERS FOR AMERICAN EQUIPMENT 24 Fusly shrouded. fitted with America Fufly shrouded. fitted with American two or
three pin outiet and three core 240 v mains three pin outiet and incee core 240 v main

YOUR COMPLETE RANGE OF ELECTRONIC HARDWARE.
bimenclosures

ALL METAL BIMCASES Red, Grev or Orange 14 swg Aluminium removable top and bottom covers. 18 swg black mild steel chassis with fixing support brackets.

BIM 3000
$(250 \times 167.5 \times 68.5 \mathrm{~mm})$ £15.52

MINI DESK BIMCONSOLES Orange, Blue, Black or Grey ABS body incorporates 1.8 mm pcb guides, stand-off bosses in base with 4 BIMFEET supplied. 1 mm Grev Aluminium panel sits recessed with fixing screws into integral brass bushes.
BIM $1005(161 \times 96 \times 58 \mathrm{~mm}) \quad £ 2.48$
BIM $1006(215 \times 130 \times 75 \mathrm{~mm}) £ 3.48$

ALL METAL B'MCONSOLE

All aluminium. 2 piece desk consoles with Colour Code either 15° or 30° sloping fronts, sit on 4 self-adhesive non-slip rubber feet. Ventilation slots in base and rear

Top Panel Off White Sand panel for excellent cooling See latest catalogue for Satin Black Gold 15° Sloping Panel 30° Sloping Panel BIM7151 ($102 \times 140 \times 51$ (28) mm) BIM7301 (102×140×76[28) mm\} £11.36 BIM $7152(165 \times 140 \times 51 / 28) \mathrm{mm})$ BIM7302 ($165 \times 140 \times 76 \mid 28) \mathrm{mm}$) £ 12.28 BIM $7153(165 \times 216 \times 51[28) \mathrm{mm})$ BIM $7303(165 \times 183 \times 102[28) \mathrm{mm}) £ 13.43$ BIM $7154(165 \times 211 \times 76[33] \mathrm{mm})$ BIM $7304(254 \times 140 \times 76[28] \mathrm{mm}) \quad £ 14.83$ BIM $7155(254 \times 211 \times 76(33) \mathrm{mm})$ BIM $7305(254 \times 183 \times 102[28) \mathrm{mm})$ £ 16.36 BIM7156 ($254 \times 287 \times 76\{33) \mathrm{mm}$) BIM7306 $(254 \times 259 \times 102[28) \mathrm{mm}\} £ 17.71$ BIM $7157(356 \times 211 \times 76(33) \mathrm{mm})$ BIM $7307(356 \times 183 \times 102|28| \mathrm{mm}) ~ £ 18.83$ BIM $7158(356 \times 287 \times 76(33) \mathrm{mm})$ BIM $7308(356 \times 259 \times 102[28] \mathrm{mm}) £ 19.92$

ABS \& DIECAST BIMBOXES

6 sizes in ABS or Diecast Aluminium. ABS moulded in Orange, Blue, Black or Grey. Diecast Aluminium in Grey Hammertone or Natural. All boxes incorporate 1.8 mm pcb guides, stand-off supports in base and have close fitting flanged lids held by screws into integral brass bushes (ABS) or tapped holes (Diecast)
$(50 \times 50 \times 25 \mathrm{~mm})$ $(100 \times 50 \times 25 \mathrm{~mm}$) $(112 \times 62 \times 31 \mathrm{~mm})$ $(120 \times 65 \times 40 \mathrm{~mm})$ $(150 \times 80 \times 50 \mathrm{~mm})$ $(190 \times 80 \times 50 \mathrm{~mm})$
N/A ABS Diecasi Hammertone Natural N/A BIM5001/11 BIM2002/12 £1.09 BIM5002/12 BIM2003/13 £1.27 BIM5003/13 BIM2004/14 £1.51 BIM5004/14 $\begin{array}{lll}\text { BIM2005/15 } & \text { £ } 1.72 & \text { BIM5005/15 }\end{array}$ $\begin{array}{lll}\text { BIM2005/15 } & \text { £1.72 } & \text { BIM5005/15 } \\ \text { BIM2006/16 } & \text { £2.69 } & \text { BIM5006/16 }\end{array}$
£ 1.54
£ 1.66
£ 1.66
E 2.24
E 2.81
£3.19
E
$\mathbf{E} .94$ Natura £1.23
$£ 1.32$ $£ 1.32$
E 1.70 £2.11 £2.72

A Iso available in Grey Polystyrene with no slots and self-rapping screws
BIM 2007/17 (112×61×31mm) $£ 1.06$

MULTI PURPOSE BIMBOXES
Orange, Blue, Black or Grey ABS with 1 mm Grey Aluminium recessed front cover held by screws into integral brass bushes. 1.8 mm pcb guides incorpor a ted and 4 BIMFEET supplied

BIM $4003(85 \times 56 \times 28.5 \mathrm{~mm}) \quad £ 1.34$ BIM 4004 (111×71×41.5mm) £1.8 BIM $4005(161 \times 96 \times 52.5 \mathrm{~mm}) \quad £ 2.48$

LOW PROFILE BIMCONSOLES Orange, Blue, Black or Grey ABS body has ventilation slots as well as 1.8 mm pob guides and stand-off bosses in base. Double angle recessed front panel with 4 fixing screws into integral brass bushes. 4 BIMFEET
supplied supplied.
BIM $6005(143 \times 105 \times 55.5(31.5) \mathrm{mm}) £ 2.76$ BIM $6006(143 \times 170 \times 55.5[31.5] \mathrm{mm}) £ 3.58$ ВІМ $6007(214 \times 170 \times 82.0\{31.5) \mathrm{mm}) £ 4.83$

- EUROCARD BIMCONSOLES

Orange, Blue, Black or Grey ABS
2. body accepts full or $1 / 2$ size Eurocards, with bosses in the base for direct fixing. 1.8 mm wide pcb guides incorporated
and 4 BIMFEET supplied. 1 mm
Grev aluminium lid sits flush with body
too and held by 4 screws into integral brass bushes.
BIM $8005(169 \times 127 \times 70(45) \mathrm{mm}) \quad £ 4.71$
BIM $8007(243 \times 187 \times 103(66) \mathrm{mm}) £ 6.70$

BIMTOOLS + BIMACCESSORIES

MAINS BIMDRILLS
Small, powerful 240 V hand drill complete with 2 metres of cable and 2 oin DIN plug. Acceots all tools with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ or $.125^{\prime \prime}$ dia. shanks Drills brass, steel, aluminium and pcb's. Under 250g, off load speed 7500 rom . Oranae ABS, high impact, fully insulated body with integral onloff switeh $£ 11.21$
Mains Accessory Kit 1 includes $1 \mathrm{~mm}, 2 \mathrm{~mm}$, $125^{\prime \prime}$ twist drills, 5 burrs and 2.4 mm coltet $£ 2.64$
Mains Kit 2 includes Mains BIMDRILL as above, 20 assorted drills, mops, burrs, grinding wheels and mounted points, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 2.4 \mathrm{~mm}$ and $.125^{\circ \prime}$ collets. Comflete in trans. parent case measuring $230 \times 130 \times 58 \mathrm{~mm} £ 23.57$

BIMDAPTORS

Allows peb's to be flat mounted sandwich fashion in BIMBOXES, BIMCONSOLES, and all other enclosures having 1.5 mm wide vertical guide slots. One plastic BIMDAPTOR on each corner of pcb(s) enables
assembly to be simply slid into place .54 mm long, 10 slots on 5 mm spacing and can be simply snipped off to length. $£ 1.15$ per pack of 25 .

BIMFEET

11 mm dia. 3 mm high, grey rubber self-adhesive enclosure feet £0.81 per pack of 24.

12 VOLT BIMDRILLS

2 small, powerful drills easily hand held or used with lathe/stand adaptor Integral on/off switch and 1 metre cable
Mini BIMDRILL with 3 collets up to 2.4 mm dia, $£ 8.62$
Major BIMORILL with 4 collets up to 3 mm dia. £ 14.49
Accessory Kits 1 have appropriate drills and collets as above plus 20 assorted ools. Mini Kit 1 - $£ 16.10$, Major Kit 1 - $£ 20.70$. Accessory Kits 2 have appro priate drills, collets plus 40 tools and mains-12V dc adaptor. Mini Kit 2 - £36.22, Major Kit 2 - £41.97. Accessory Kits 3 as appropriate Kits 2 plus stand/lathe unit. Mini Kit 3 - £ 48.30, Major Kit 3 - £54.05.

BIMPUMPS

2 all metal desolder BIMIRONS ing tools provide high suction power and have easily reolaceable screw in Teflon tips. Primed and released by thumb operation with in-built safety guard and anti-recoilsystem 8IMPUMP Major (180 mm long) : $£ 8.51$ BIMPUMP Minor (150 mm long) $£ 7.24$

Tyoe 30 Generál Purpose 27 watt iron with long life, rapid change element screw on tip, stainless steel shaft and clip on hook. Siyled handle with neon. £4.37 Type M3 Precision 17 watt iron. quick change tip. Iona life

BIMEDARDS

DIL

 COMPATIBLE BIMBOARDS

Accept all sizes (4.50 pin) of DIL IC packages as well as resistors, diodes. capacitors and LEDs Integral Bus Sirips up each side for power lines and Component Support Bracket for holding lamps, switches and fuses etc. Available as single or multiole units, the latter mounted on 1.5 mm thick black aluminium back plate which stand on non slip rubber feet and have 4 screw terminals for incoming power
BIMBOARD 1 has 550 sockets, multiple units utilising 2,3 and 4 BIMBOARDS incorporate 1100,1650 and 2200 sockets, all on 2.5 mm (0.1") matrix.

BIMBOARD $1 £ 9.40$
BIMBOARD $2 £ 22.37$
BIMBOARD $3 £ 31.83^{\prime}$
BIMBOARD $4 £ 41.53$
DESIGNER PROTOTYPING SYSTEM 12 or 3 BIMBOARDS mounted on BIM 6007 BIMCONSOLE with Integral Power Supply $(\pm 5$ to $\pm 15 \mathrm{Vdc} @ 100 \mathrm{~mA}$ and fixed $+5 \mathrm{Vdc} @ 1 \mathrm{~A}$ All O/P's fully isolated. Short circuit and fast fold back protection. Power raits brought out to cable clamps that accept strıpped wire or 4 mm plug.

DESIGNER 1 £58.65
DESIGNER 3 £71.30

IIDOUSRHAL MOULDINGS LlWITEEO

The $\mathbf{7 2 0 8} \mathbf{6 0 0}$ MHz Mini Counter

the quality low cost counter

FEATURES

- All Metal Cabinet 8 Digit . $4^{\prime \prime}$ LED Display Built-in Prescaler Automatic Dp Placement Gate Light IC Sockets Included 240 V or 12 V Operation Proportional Control Crystal Oven (Optional) Built-in VHF-UHF Preamp Completely Portable with Rechargeable

Batteries (Optional)

AVAILABLE FROM THE EXCLUSIVE U.K. DISTRIBUTORS: SOTA COMMUNICATION SYSTEMS LTD.
26 CHILDWALL LANE, BOWRING PARK, LIVERPOOL L14 6TX
MERSEYSIDE. TEL. 0514805770 Telex 627110 SOTA G

7208 COUNTER

E[1].717日:
[IRCDM ELCTHONKS

DESCRIPTION

The Davis 7208 VHF-UHF Frequency Counter incorporates the latest LSI technology in a wide range portable instrument at a reasonable price. The 7208 offers outstanding features including an all metal cabinet for RF shielding, large 8 digit display, built-in prescaler, automatic DP, and with the built-in VHF-UHF preamp the 7208 can directly measure low level RF signals from RF generators. The 7208 can also be operated completely portable with the Ni -Cad battery option. Price £145.00 + VAT.

WW - O79 FOR FURTHER DETAILS

ASTRA-PAK
 92 GODSTONE ROAD WHYTELEAFE SURREY CR3 OEB

Codesosesd IEatronics

 CLOCK MODULE with O.7"' display, with data $£ 5.99$ asch. 4 DIGIT CLOCK LCD O.5" digits, CALCULATORS, U Utested, but good value for spares, $£ 2.50$ each. LED WRISTWATCM IC
Mostek MK5030, with data 950 each, LED WRISTWATCH DISPLAY type DIS501, 0.1 "digits. Mostek MK5030, with data $95 p$ each. LED WRISTWATCH DISPLAY type DIS501, 0.1 "digits
With data $95 p$ each. SUPER SAVER purchase an MK 5030 and a DIS 50 f for only E1.50 the parr NOTE the MK5030 and DIS501 are housed in a legless flatpack' style package and require some tairly fine soldering. 20 KEY KEYBOARDS calculator keyboards. 2 lor $99 p$ (not for use with NORTEC4 204 crlec. chip). 4 DIGIT 0. g'" $^{\prime \prime}$ LED DIS PLAY comman cattode, with data E 3.75 each. DIGITAL MULTIMETER CHIP MM 533016 to build a $41 / 2$ digit mutimeter, with data E3.49 each.
SUPER QUALITY JACK SOCKETS $1 / /^{\prime \prime}(6.35 \mathrm{~mm})$ jack sockets, mono 23 p each, stareo 25 F each. SLIDE POT KNOBS, please state colour required, 11p each. ROTARY VOLUME CONTROL KNOBS, nice style, 18 mm diam. black with coloured cap. Please state colour required, 18 P each. 10 DISPLAY multiplexed, common cathode, 99 . 556 TIMER IC with data and applications booklet.
230 . POLARIZING FILM, max $19^{\prime \prime}$ wide. any lengit, only 2 p per sq inch. Any size cur. SLIDER SWITCHES 2 pole, change over, 15p each. PUSH BUTTON SWITCHES, spring laded (momentary) with one n.0. contact 14p each. CALCULATOR CHIP, Norlec 4204, 4 lunction and
constant, with data, 80 p. 2102 ME MORIES, dynamic memories for your micros. with data. $95 p$ ach. MM5314 digital clock chip. with data, £1.99 each. WRISTWATCM LCD, supplied with
NEW CATALOGUE AVAILABLE FROM JANUARY. SEND S.A.E. FOR YOUR FREE COPY T AND PACKING PLEASE ADD 35P (OVERSEAS ORDERS ADD 90p) V.A.T. ADLISATISFAGTION GUARANTEE ONALLITEMS

WW - 045 FOR FURTHER DETAILS

TV TUBE REBUILDING

Faictess Enginesing Ltd, manutacurue a comprenensive range of equipment for processing all types of picture tubes, colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team.
Full training courses are individually tailored to customers* requirements.

For full details of our service contact Neil Jupp

FAIRCREST ENGINEERING LTD.

Willis Road, Croydon, CRO2XX
01-684 1422, 01-6898741
WW - 020 FOR FURTHER DETAILS

MAIL ORDER PROTECTION SCHEME (Limited Liability)

 pos 1 in advance of delivery. Wir eless Worid will consider you lor compensation if the asverilisar should become insolvenl or bankrupl. provided
You have nol received the goods or had your money ralurned: and
. Wou write to the publissier of wireless worid expisining the poaition not artior than 28 dyys from lise tay pru sent your order and nol later than 2 months from that day.
Prease do not wail until the last mument to infarm us. When you write. we will tell you how to make your cisim and what evidence of piymert is requirod.
We purarales to metct claims trom readers made In accordance wilh the above procedure as soon as possibit atter the advertiser has been declared bankrupt or insolvent up to alimii of 53.550 overtisers. Claims may te paid for higher amounls, or when ihe above procedure has not been comelied with, al the discretion of Wireless World: but we do not guarantee to do 30 in view of the need 10 zel some limil to this commiment and lo tearn quickly of readers' diftice culises.
This guasantioe covirs onfy atwance paymants senn in direct response to an adverlisement in this

PPM2: PEAK PROGRAMME METERS

Approved by broadcasting authorities in the U.K. and overseas for critical programme

 monitoring.Reviewed Studio Sound September. 1976. Meets IEC268-10A. draft BS5428-9 Accurate law at and between all PPM marks with minimal preset adjustment: Margina adjustment is retained to allow compensation for the olerance in scale markings between meter manufacturers and different meters from the same maker. Decay matching of all boards allows use with iwin movements without parring Flat frequency response at all PPM marks and also below minimum calibration point Gold plated connector and floating input protected against mains or static voltages on the signal lines. Supply input protected against reverse polarity
throughout. Shroughout.
mounting adaptors and illumer meter movements 640, 642, 643, and TWIN flush IEC268-10A Type $11 \mathrm{a}-12 /$ TEST/ +12 Type 11 b stock. Scalings available $1 / 7$ CCITT recommendation N15(1972) but not recommended by us except for EBU and rereo Disc Amplifier 2 当 10 Outlet Distribution Amplifier 2 *Stabilizer \& Peak Deviation

Meter $*$ Chart Recorders

SURREY ELECTRONICS

Penny Dropped?

Switchcraft QG Connectors are money savers

Because we have introduced an attractive new quantity discount structure. Switchcraft are still the same high quality, with unique features such as captive design screws and shell ground terminals.
Two new additions to the range are -
FAS-DISCONNECT
A new non-locking feature allowing immediate disconnection that requires only a $4 \mathrm{lb}(1.8 \mathrm{~kg})$ force. Great for that fast equipment take-down in hard to reach, darkened areas. Stage hands never had it so good!
REAR MOUNTED RECEPTACLES
The new Y serles $Q G$ receptacles permit a complete sub assembly to be soldered, cleaned and tested prior to chassis mounting. Available with PC or solder terminals with lock or Fas-disconnect latching, the Y series offers real savings in production costs. Extra colour trim escutcheons provide functional panel trimming and colour coding.

Switchcraft QG Connectors are just right for audio mixers consoles, PA systems and in computer applications. The professionals choose Switchcraft QG and save the pennies!

EMTMHENEN

FW.O. Bauch Limited
49 Theobald Street, Boreham Wood, Hertfordshire WD6 4RZ Telephone 01-953 0091. Telex 27502

WW - 070 FOR FURTHER DETAILS

ORGAN and PIANO KEYBOARDS Price inc. VAT		
4-Octave C-C 5-Octave C-C 5-Octave F-F 6-Octave C-C	£32.20	£2.75
	£34.50	£2.75
	£34.50	£2.75
	£36.80	$£ 3.00$
DALSTON ELECTRONICS 40a Dalston Lane, Dalston Junction London, E8 2AZ Tel: 01-2495624		

WW - 065 FOR FURTHER DETAILS

ATHERY ELIMINATORS. 3-way type $6 / 71 / 2 / 9 v$ 30 maz £3.14. 100ma radio type with press-tiuds
$9 v £ 3.57 .9+9 v £ 4.79$. Car convertor 12 v input. gve $£ 3.57 .9+9 \mathrm{v} £ 4.79$. Car convertor 12 v input. utput 4 . ATTERY ELIMINATOR KITS. 100 ma radio

 sed power kits 2.18 v 100 ma £2.98, 1.30 v 1A sed power kits $2-18 \mathrm{~V}$
$\mathrm{E} .20,1.30 \mathrm{v}$
$2 A \mathrm{E}$
E 11.24 . 12 v cer converto 6/71/2/9才 1A E1.35.
-DEC AND CSC BREADBOARDS. s-dec E3.79
 1.84. BL-PAK AUDID MODULES. $\mathbf{S 4 5 0}$ £25.06. AL 60
¢5.06. pa 100 £17.33. spm80 £4.74. bmt 80 £5.O6. pa 100 £17.33. spmBO £4.74. bmt 80
E6.08. Stereo 30 E21.57. Al 30 £4.O8. pal £8.38 ps 12 £1.58. ma60 £38.27.

OHIO SCIENTIFIC Superboard II. Fully buill 50 Hz model lor British tv sets. cassette interface. uses you
tw as a vdu, full keyboard, 8 K basic. 4 K ram. W ar the only people who include a free power supply and modulatorkl m ar pis SINCLAIR PRODUCTS. New 10 MHz scope E 145 ptm 200 E51.95, case E3.40, adaptor $£ 3.40$ connector kit $£ 11.27$. Microvision ty $£ 91$, adapto dm 350 E 71.82 . dm4 40 £ 102.17 . dm 235 £51.95. rechargeable batts $£ 7.99$, adsptor $£ 3.94$, case $£ 9$. Enterorise prog calculator + accessories $£ 19.95$. Choss Challenger 7 C84. Philips 67000 nome compuler $\mathbf{E 1 4 9}$. Videopaks $\mathbf{£ 1 2 . 9 5}$. Atari video computer ©147. Cartidges $£ 14.85$.
COMPONENTS. 1 N4148 0.9p. IN4002 3.1p.
 100
10.22 mi 5 p . 100 mi 6 p , 1000 mt 10 p .1 it FeC 11.30. Dalo pen 84 p. 40 sq ins pcb 45 p . Poly-
styrene capachors E12 63 V 10 to 1000 pt 3 p . n 2 to 10 n 4 p. Ceramic capacitors 50 V E 622 pH to 47 n 2 p TV Gers 4 OMESW AY 3.8500 to $33 v 7 p$. TV GAMES. AY-3.8500 +knf E7.26. AHtle kit ES.27. AY-3-8600 + kn 117.28 . Stunt evcle chip
k tis.66. AY- 3 -8603 chip $£ 13.63$. TRANSFORMERS, 60.0 V 100ma $76 \mathrm{p}, 11 / 2 \mathrm{a}$ £2.60, $9.0-\mathrm{gV} 75 \mathrm{ma} 76 \mathrm{p},{ }^{1 a}$ £2.22, 2 a £3.13. 12.0 .12 V 100 ma 92 p .12 E 2.80 .
C AUDIO AMPS with pCb JC12 10W C3.14.

SWANLEY ELECTRONICS

Oept WW, 32 Goldreot Rd., Swanley, Kont
Post 30 p extra. Prices include VaT unless stated. OHicial and overseas orders welcome. Lists 24 p pos

CROPICO-A CERTAIN MEASURE OF PERFECTION

Cropico, established as one of Britains leading manufacturers of precision electrical measuring equipment, offer a wide range of instruments which have been proved for accuracy and performance throughout the world.

Resistance Boxes Resistance Bridges Resistance Standards D.C. Potentiometers Thermocouple Reference Junctions
Thermocouple Switches
Pt 100 Switches
Pt 100 Simules
Pt 100 Simulators And many
Cropico - Britains leading manufacturer, exporter and importer of precision electrical measuring equipment.
Request full details - Visitors Welcome CROPICO LTD., Hampton Road, Croydon CR9 2RU
Telephone: 01-684 4025 and 4094
Cables: CROPICO-CROYDON
Telex: 945632 CROPCO G

CROPICO

Digital Temperature Indicators Electronic Standard Cell Multimeters. Digital or Analogue Wattmeters, Digital or Analogue Insulation Test Sets Earth Resistance Meters Fluxmeters And many more

$$
1
$$

\qquad logue rs

$$
\Rightarrow
$$

A.C. ADAPTOR (Battery Charger) 120 vac input, 5.8 vdc . at 200 mA output. USA type mains plug to 3.5 mm jack plug. Brand new \& boxed $£ 1.25$ each. A.C. ADAPTOR (Battery charger) 117 vac input, 4.5 vdc at 150 mA output. USA type mains plug to , 2.5 mm jack plug. Brand new \& boxed $£ 1.00$ each. VARICAP TUNER HEADS, 4 button type, 22 K res. with AFC switch \& station idicator, Brand new £2.00 each.
SCREWS. Pack of nuts, bolts, washers, tags, self taps etc. Mixed 'BA \& metric. Sold by weight. £2.00 per Kilo.
LOW VOLTAGE ELECTROLYTICS. Pack of mixed values \& voltages. Approx. 150 items $£ 1.50$. JAYBEAM STARBEAM UHF set top aerials. Brand new \& boxed $£ 2.00$ each
MODERN TELEPHONES Type 746 with dials, colour cream, used but new condition. $£ 8.00$ each. ERSIN MULTICORE SOLDER 3 core solder wound on a plastic reel. 20 swg. Ally $60 / 40$ tin lead. Available in 500 gm reels. $£ 5.70$ each.
CHANNEL MASTER COLORATOR aerial rotator Model 9502. Rotation speed 1 rpm , gear ratio $3200: 1,3$ conductor wire for economy, pinpoint positioning to within one degree. Few only at £45.00. We also stock Jaybeam T.V. and Radio aerials. SAE for lists.
ISEP SLOTED HORIZONTAL RAIL avaliable in 9 ft. lengths. $£ 4.00$ each.
WATCH STRAPS Black stainless steel 50p each. Black plastic $25 p$ each. Watch spring bars 10 p each. Discount for Quantity.
RADIOGRAM lid pumps $£ 1.00$ each, 2 for $£ 1.50$
.RIBBON CABLE 19 way decimal coded, 4 metres for $£ 1.25$
PYE TELECOM Yagi aerials. 4 element, very rugged construction, 71.1 mHz (ldeal for four metres). Brand new $£ 10.00$ each.
DISGUISED MOBILE AERIALS (dustbin lids). Available in mid band \& high band. Brand new $£ 5.00$ each.
BYX25-100 \& BYX25R Rectifiers, 1000v 20A mounted on finned heatsink. Ex-Equip. £1. 25 each. BZY93C75 Diodes, 75v 20W Zener mounted on finned heatsink similar to above. Ex-Equip. 75 p each.
FERRANTI MICROSPOT CATHODE RAY TUBES Type 3H/1010 Suitable for Photographic Multi-Channel Recorder Systems. Fitted with a mounting collar and prism cemented to the faceplate, screen aluminised Phosphor P. The tubes are also fitted with mounting units type MU1053 and deflection coil type SC48A. Few only at $£ 55.00$ each.

RADIOTELEPHONE EQUIPMENT

Pye Westminster W15AM high band \& low band available. Sets complete and in good condition but are less speakers, mikes, cradles and LT leads. (sets only) $£ 70.00$ each.
Pye Westminster W15AM mid band 6 channel similar to above (sets only) $£ 45.00$ each.
Pye Westminster W15AMB (Boot Mount) low band complete with control gear and accessories, good condition $\mathbf{£} 80.00$ each.
Pye Westminster W30AM low band, sets only no control gear, complete and in good condition. $€ 45.00$ each.
Pye Westminster W30AM mid band. sets only good condition. $£ 35.00$ each.
Pye Base Station f27 Low \& High band, few only at £75.00 each.
Pye Base Station F 30 AM Low \& Migh band, with \& without T/T Prices from $£ 220.00$ each.
Pye Cambridge AM 10B (Boot Mount) low band. 12.5 kHz , sets only, no control gear, good condition, $£ 20.00$ each.
Pye UHF Link U450L Base Station Tx £15.00 Rx $£ 15.00$ or $£ 25.00$ for the two. Sold as seen.
Pye BC14 Battery Charger for PFI (Pocketfone) batteries, will charge up to 12 Tx batteries \& 12 Rx batteries at the same time. $£ 15.00$ each.
Pye RTC Controller units, for remotely controlling a VHF or UHF fixed station radiotelephones over landlines. $£ 35.00$ each.
Pye PF1 Pocketfones suitable for convertion to 70 cm , sets complete but less batteries, supplied with service manual. £26.00.
Pye PF2FMB Low band FM portable, complete and good condition but untested, few only at $£ 65.00$ each.
Pye PF2UB UHF portable, complete and good condition but untested, few only at $£ 65.00$ each.
Pye Europa MF5U 3 channel UHF mobile good condition £90.00.
Pye Reporter MF6AM High band mobile, very good condition £200.00.
Pye Olympic M212 UHF mobile, new condition. £185.00.
Pye Voltage Converter MF24PU 24 v plug-in converter for Europa range of sets, to provide for 12 volt floating ground from 24 volt supply. $£ 15.00$.

PHILLIPS 25" Monochrome Monitorr new cond tion with service manual. $£ 25.00$, carriage $£ 2.00$. IC TEST CLIPS, clip over IC while still soldered to pcb or in socket. Gold plated pins, ideal for experimenters or service engineers. 28 pin DIL £1.75. 40 pin DIL $£ 2.00$. Or save by buying one of each for £3.50.
IC AUDIO AMP. PCB. Output 2 watts into 3 ohm speaker. 12 volt DC supply. Size approx
 complete with circuits. $£ 2.00$ each.
NICAD CHARGER CONVERTER PCB. (Low power inverter). Size $4^{\prime \prime} \times 1^{3 / 4} 4^{\prime \prime} \times 1^{\prime \prime}$ high. $12 \mathrm{v} d c$ supply. 60 v dc output through pot on pcb for charging portable battieres from mobile supply. Only needs one BFY50/51/52 or similar transistor which can be mounted direct on the pcb pins on the board fitted with a star type heatsink (not supplied) $£ 2.00$ each.
10.7 MHz SSB XTAL FILTERS $(2.4 \mathrm{kHz}$ Bandwidth) Low imp. type. Carrier and unwanted sideband rejection min -40 db (needs 10.69835 \& $10.70165 \times$ tals for USB/LSB. not supplied) Size approx $2^{\prime \prime} \times 1^{\prime \prime} \times 1^{\prime \prime}$. $£ 10.00$ each.
LOW PASS FILTERS (Low imp. type). 2-9 MHz, small metal encapsulation. Size $11 / 2^{\prime \prime} \times 3 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}$ $75 p$ each.
BSR AUTOCHANGE RECORD PLAYER DECKS with cue device. $33-45-78 \mathrm{rpm}$ for $7^{\prime \prime} 10^{\prime \prime}$ $12^{\prime \prime}$ records. Fitted with SC12M Stereo Ceramic cartridge and styli. Brand new $£ 12.00$ each.
XTALS FOR TV SY NC GEN. 20.25 kHz for 405 line, B7G glass type. $£ 2.00$ each
RED LEDs (M in. type) 5 for 70 p .
VIDICON SCAN COILS (Transistor type, but no data) complete with vidicon base $£ 6.50$ each. Brand new.
UR41 ATTENUATOR CABLE, Nominal 720 hm , overall dia. approx. $1 / 4^{\prime \prime}$, Att. per 100 ft : 100 MHz $218 \mathrm{~dB}, 200 \mathrm{MHz} 316 \mathrm{~dB}, 600 \mathrm{MHz} 449 \mathrm{~dB}, 3000$ MHz 625 dB . Ideal for Rx or Low power Tx fixedattenuators. Supplied with attenuation graph. 4 metres for $£ 1.00$.
HIGH QUALITY RELAYS, 4 pole C/O, 3A contacts, $12 \mathrm{~V} D C$ coil, 150 ohm . Size approx. $1^{\prime \prime} \times 3 / 4^{\prime \prime} \times 11 / 4^{\prime \prime}$, with plastic covers. 80 p each or 2 for $£ 1.50$.
OSMOR REED RELAY COILS (for reed relays up to $1 /{ }^{1 \prime \prime}$ dia., not supplied) $12 \mathrm{~V}, 500 \mathrm{ohm}$ coil, 2 for

50 p .
 RIGHT ANGLED UHF SERIES ADAPTORS.

PL259 to SO239 £1.00 each.
BACK-TO-BACK SO239 SOCKETS, $£ 1.00$ each.

SEMICONDUCTORS

BFY50 Transistors 4 for 60 p .
BSX20 (VHF osc/mult) 3 for 50 p . BC 108 (metal can) 4 for 50p. BC109 (metal can) 4 for 50 p. 2N3819 fet. 3 for 60p.
BC 158 PNP Silicon 4 for 50 p.
741 CG Op Amps 4 for $£ 1.00$. TIP 2955 Silicon PNP 2 for $£ 1.50$. LM309K 5 V Regulator $\mathbf{£ 1 . 0 0}$. BCY72 Transistors 4 for 50p. BC 107 (metal can) 4 for 50p.

VALVES

EZ81 new 50p.
ECC81 new 50p.
CCC83 new 50p.
E180F new $£ 3.00$
85A 2 new 80p.

Large Stocks of Quartz Crystals for R.T. equipment HC6U, HC 18, HC25, £2.00 each. Ring your requirements or SAE for lists.
PYE WESTMINSTER PCBS ALL BRAND NEW
TX AUDIO PCB AT268838
MULTI-CHANNEL OSC. PCB FOR AM \& FM
AT26812/810 channel Low band
AT26811/10 \& / 26 channel High band
RX MULTIPLIER PCB FOR AM \& FM
AT 26808 Low band $/ 24$
AT $26808 / 2330 \mathrm{MHz}$ band
M TX MOD DRIVER PCB
AT $26826 / 68$ B band (will tune High band)
PBC108 (plastic BC108) 5 for 50p. BF 152 (UHF amp/mixer/ 3 for 50p.
BC148 NPN Silicon 4 for 50p.
BAY31 Signal Diode 10 for 35 p.
SCR 400 V at 3 A stud type, 2 for \&1.00.
1N4148 (1N914) diodes 10 for 25p.
LM340/12 12v Regulator £1.00.

Q0Z06-40 ex-equip. £10.00. QQVO3-20A ex-equip. $£ 5.00$. QQVO3-20A ex-equip. $£ 5.00$.
QQVO3-10 ex-equip. $£ 1.20$.
Quvo2-6 ex-equip. £2.00.
6BH6 ex-equip. 60.

AT26826/68 B band (will tune Migh band) Order code WS5 £15.00
PA BOARDS WITH ALL TRANSISTORS AND HEATSINKS /screen covers not
Order code WSO $\quad £ 8.00$ supplied)
AT 10784/10 P band (will tune Low band) Order code WS? £18.00 Low band pcb only, complete except for transistors and heatsink (for spares only)
AM 10.7 MHz IF PCB WITH XTAL FILTER
AT $26805 / 1025 \mathrm{kHz}$ spacing
AT $26805 / 1150 \mathrm{kHz}$ spacing
Order code WS8
$\mathbf{E 1 . 5 0}$

AM TX MULTIPLIER / DRIVER PCB
AT26838/13 8 band (will tune high band)
AT26838/14 Low band
$\begin{array}{ll}\text { Order code WS9 } & \mathbf{£ 1 5 . 0 0} \\ \text { Order code WS10 } & \mathbf{£ 1 0 . 0 0}\end{array}$
Order code WS 11
Order code WS 12
$£ 10.00$
$£ 10.00$
$\begin{array}{lll}\text { X FILTERW15AM } & \text { Order code WS13 } & £ 4.00 \\ \text { AT10787/21 } & \text { Order code WS14 } & £ 4.00 \\ \text { AT10787/23 } & \text { Order code WS15 } & £ 4.00\end{array}$
AT $10787 / 23$
AT $10787 / 30$

£4.00

B. BAMBER ELECTRONICS
 DEPT. W.W. 5 STATION ROAD.
 LITTLEPORT, CAMBS CB6 1 OE
 Tel: ELY (0353) 860185

A selection of items below from our 1980 catalogue, the products we stock are by Eagle, Weller. Draper, Spiralux. Knipex, Servisol, Barnard's \& Babani, Newnes, Jaybeam, Vero, and others. If you send us $£ 1.35$ you will receive the prices and special offers. A free pack of Blob Board comes with this month's

issue.

ISSUE.
EAGLE MA780T Electric fully automatic 6 section retractable car aerial with built-in voltage sensor. Remote drive system makes fitting easier. Aerial length, built-in voltage sensor. Remote drive system makes fitting easier. Aerial length,
1.000 mm , below wing 220 mm , lead length $9,000 \mathrm{~mm}$, flexible drive link 1.000 mm , below wing 220 mm ,
700 mm . Price $£ 16.95$ plus VAT.

700 mm . Price $£ 16.95$ plus VAT.
EAGLE DD7 Paging microphone, impedance 600 ohm or 50 K ohms, sensitivity 2.25 mV at 50 K ohms, frequency response 300.9000 Hz . desk or wall mounted. £1 4.85 plus VAT.
EAGLE MULTIMETER EM50 50.000 opv. DC volts: $0-1200$ volts, AC volts: $0-1200$ volts, DC current $0-6 A$, Resistance $0-10$ megohms. Price $£ 19.95$ plus VAT.
DRAPER super-chrome $1^{1 / 4}$ square drive socket sets. 38 piece, 9 AF hexagon sockets, 3 AF bi-square sockets, 11 MM hexagon sockets, 9 BA hexagon sockets, and 6 accessories. Price £12.75 plus VAT
sockets, and 6 accessories. Price $£ 12.75$ plus VAT.
SPIRALUX metric nut spinner sets, contains 8 nut spinners $4,4.5,5,5.5,6,7$ $8,9,10 \mathrm{~mm}$. Packaged in a plastic wallet with cellulose ecetate handle. Price £7.53 plus VAT.
WELLER TCP3 IRONS 24 volt series, 3 wire power units, for applications requiring earthed tip. TCP 3 irons $£ 13.84$, PU3D power units $£ 24.12$ plus VAT WELLER instant heat guns Model No. 8100 E £ 3.21 each plus VAT,
WELLER cordless soldering irons Model No. WC 100 £ 25.47 plus VAT.
JAYBEAM "STEREOBEAM" VHF /FM antennas ModeI SMB2, folded dipole and reflector with universal clamp. $£ 8.00$ each. Full range of Jaybeam aerials and accessories available. (See 1980 Catalogue).
ECA TVT78/78 semiconductor equivalent and data books. Data covering 12.000 transistors and more than 60.000 equivalents. 2 volumes for $£ 6.00$ Zero VAT
ORYX DE-SOLDER TOOLS model SR3A, desoldering pump with built-in safety guard. Price $£ 6.50$ plus VAT.

AUCTION NOTICE

As from Sat. 3rd February 1980 we will hold weekly auctions on Saturday mornings of Radio \& Electronic components \& equipment, you bring and buy. Entries will be accepted on morning of sale from 8 am . The Sale will start at 10 am. So come along and bring something with you to sell. Light refreshments will be available.

Callers welcome by appointment
 TERMS OF BUSINESS: CASH WITH ORDER

Carriage:

Packing and carriage charges for orders of under $£ 5.00$ nett invoice value - 75 p .
Orders exceeding $£ 5.00$ but less than $£ 20.00$ invoice value $-50 p$.
Over $£ 20.00$ carriage paid
VAT at 15% must be added to the total of all orders.

OEM - let Drake Transformers advise you on a component specification and design to solve that special problem. Preproduction prototypes and development undertaken as necessary.

Well known over a quarter century for personal service and high-quality products, Drake specialise in the design and manufacture of transformers and other wound components for large and small quantity production.

Expertise and service put DRAKE
TRANSFORMERS in a class of their own.
DRAKE TRANSFORMERS LIMITED
South Green Works Kennel Lane Billericay Essex CM11 2SP
Telephone: Billericay (02774) 51155 Telex: 99426 (prefix Drake)

Versatile Professional Hand Tools

'SERIES 99' from XCELITE

99MP purpose	$\begin{aligned} & \text { Multi- } \\ & \text { se tool kit } \end{aligned}$
718!	- Hnilil
F	Ition
41)	1

All most needed 99 Series tools etc. snips or other tools

99PS40. Allen Hex
Socket S/driver
set (finch sizes)

Also a vailable:
99 PS 41 mm
9PS 41 mmBP (metric (meiric).
g9PS40BP (inch sizes ballpoint)
Check our prices. Complete Xcelite catalogue freely available on request from
special products distributors ito.

ELECTRONICS ELECTRONIC VALVES
BELOW ARE A FEW EXAMPLES FROM OUR EXTENSIVE STOCK

082	1.00	5656	7.00	EH90	0.90	CV371	12.00
OC3	1.50	6442	15.00	EL32	1.00	CV395	8.00
003	1.50	A1834	7.00	EL38	8.00	CV4 16	3.50
2156	45.00	A2134	8.00	EL49	1.20	CV2203	6.00
3824 W	7.00	A2521	9.00	EL84	1.00	CV2179	8.00
3021A	15.00	BT 17	45.00	EL85	3.00	CV2220	12.00
6AG5	0.90	DA49	16.00	EL86	1.75	CV2224	15.00
6AS6	1.00	DA42	10.00	EY84	6.00	CV2347	12.00
6at6	1.25	DM160	3.00	G1/371K	20.00	CV2492	3.20
6av6	0.75	EB8CC	3.20	GXA160	8.00	CV3998	5.00
6BAB	0.80	E180F	5.00	M505	45.00	CV4003	1.00
68H6	1.00	EA76	1.75	M506A	45.00	CV4004	1.00
6BN6	1.00	EABC80	0.75	M5918	56.00	CV4006	5.50
68R7	5.00	E891	0.60	ME1400	4.00	CV4007	1.00
6CH6	4.50	EC8B	1.75	QuV03.20A	12.50	CV4010	1.20
6 J 4 W	4.00	EC90	1.00	Quvo6-40A	15.00	CV4014	1.20
6 J 6	0.75	ECC40	1.20	$\times 61 \mathrm{M}$	2.00	CV4015	5.00
6L6G	2.00	ECCB 1	0.75	X79	10.00	CV4024	1.20
607G	0.90	ECC82	0.75	CV120	35.00	CV4025	1.10
6X5GT	0.75	ECC83	0.75	CV131	1.50	CV4044	7.50
25L6GT	0.90	EF86	1.00	CV138	1.00	CV4055	4.50
805	10.00	EF91	1.00	CV140	0.75	CV4062	9.00
807	1.75	EF92	1.50	CV276	6.00	CV5031	45.00
931A	3.00	EF95	1.00	CV370	60.00	CV5311	5.20

Please contact us for quantity discounts and types not listed above. Export enquiries welcome. All our valves are tested and guaranteed. We supply Government Departments, Universities and major manufacturers.

UNIT D6, PEAR INDUSTRIAL ESTATE STOCKPORT ROAD WEST LOWER BREDBURY STOCKPORT, CHESHIRE SK6 2BP TEL: 061-406 2441

Who makes what? And where can you find them? The Trader Year Book tells you. It's the essential guide to buying and selling for busy retailers as well as an invaluable reference work for everyone in the audio/TV/domestic electrical business.' Separate sections cover Products, Trade Addresses, Proprietary Names, Wholesalers, Service Agents and Depots, Trade Organisations and Electricity Board Offices. There's lots of technical and legal information too. In short, a book that's good for trade. ELECTRICAL AND ELECTRONIC TRADER YEAR BOOK 1980/1

MAIL THIS COUPON NOW.

To IPC Electrical-Electronic Press Limited. General Sales Department, Room CP34. Dorset House, Stamford Street, London SE1 9LU
Please send me..........copies of the Electrical and Electronic Trader Year Book 1980/81. I enclose cheque/p.o. number to the value of((6.50 per copy inclusive). Cheques made payable to IPC Business Press Ltd. Name

Address

Now you can get Avo,quality in digital thermometers. There are two units to cho ose from. The AT1, a battery operated, portable unit which is fast, accurate and easy to use; and the AT2, a battery/mains bench top model. Bothfeature large, easy to read displays, and together cover a wide temperature range from -65° to $+1200^{\circ} \mathrm{C}$.

The range of 5 thermocouple probes enables measurement of anything from solid surfaces to the inside of a joint of beef!

Learn about the full benefits of the new Avo digital thermometers, get in touch with us today or contact your usual Avo distributor.

AVO LIMITED,
Archcliffe Road, Dover, Kent,
CT17 9EN.
Tel: 0304202620 Telex: 96283
1 Thorn Measurement \& Components Division
You'll never meet a better meter

WW - 083 FOR FURTHER DETAILS

In three years there will be 300,000 personal computers in Britain: an essential part of every professional person's working life. Practical Computing is the leading journal in this important and fast growing area.

February Issue
on sale now at all good newsagents at 50p.
Oakfield Ho., Perrymount Rd., Haywards Heath, W. Sussex RH16 2DH.

Subscriptions: £6, Subscription Servicing, 2nd Floor postroom,

Electronic Brokers

49/53 Pancras Road LondonNW12QB Tel: Ol-837 7781. Telex 298694

 No. 1 in Second User Minis \& Peripherals

EXAS SILENT 700

al 726KSR Terminal mounted in megral carrying case complete buithen acoustic coupler. 64 ASCll character sel with 5×7 dot ix. 30 cos. Weight 351 bs . Dimensions $211 /^{\prime \prime} \times 19^{\prime \prime} \times 61 / 2^{\prime \prime}$ 5.00
el 733 ASR $£ 1,450.00$. Model $742 £ 1,750.00$.

rERMIPRINTER 7075

ypowriter-quality Keyboard Send/Recelve Impact Printer roviding full upper and lower case character set,
118 -column print line with pin-feed platen suitable for pape olls of continuous stationery (paper width 12.85') Standard V .24 (RS232) interface £575.00.

BALL MIRATEL MONITOR $9^{\prime \prime}$ diagonal P4 phosphor tube Bandwidth $12 \mathrm{MHz}(-3 \mathrm{~dB})$ Input voltage 220 V 5060 Hz 24 W Outpul voltage +15 VDC (short circut protected) +12 kVDC 126 V ms Separate horizontal and vertical sync Supplied complete with high and low voltage power supplies amplifier and attractive moulded plastic housing including space for keyboard. Case $\left.20^{\prime \prime} \times{ }^{\prime \prime}\right)^{\prime \prime}-20^{\prime \prime} \times 19^{\prime \prime} \times 10 / 2^{\prime \prime}$ (including keyboard space 20 x x, Full rechnical manual p

DEC PDP11/04 SPECIAL PURCHASE

PDP11/04-8D 9-stot 51/2" Processor with 8 kW MOS and DL1 1 W interface $\mathbf{£ 3 , 2 5 0}$

ASR33 and KSR33 TELETYPES
Input Output termenais with 64 ASCII character set. 110 baud operation. Paper tape punch and reader (ASR33 onfy). Chotce of interface (20 mA or RS232) KSR33 - £425.00. ASR33 - £650.00. Pedestal §30.00.

FLOPPY DISC DRIVES
SA400 Minifloppy - $110 / 220 \mathrm{~KB}$ SA800 Floppy $-400 / 800 \mathrm{~KB}$ capacity. 35 tracks, transfer rate capacity, 77 tracks. transfer tale $125 \mathrm{bits} / \mathrm{sec}$. Av access time 550 msec Powar requirements $+5 \mathrm{VDC}+12 \mathrm{VOC}$
prace $\{195.00$ $50 \mathrm{Kbits} / \mathrm{sec} A \mathrm{~A}$. access time 260 msec Power requirements $+24 \mathrm{VDC} .+5 \mathrm{VDC}-5 \mathrm{VDC}$. price $\mathbb{£ 3 9 5 . 0 0}$

DEC EQUIPMENT

PDP11/40 System 48KW Parity Core Processor complete with KT11D Memory Management, DL1 1 Asynchronous Interface, RK11D Disc Controller, $2 x$ RKO5J Disc Drives, $2 \times 6 \mathrm{ft}$. Rack Cabinets, Fully DEC maintained in immaculate condition (or could be reconfigured to suit) £9,750.00 PDP11/05 51/4" Processor with 8KW core memory £1,850.00
 MM11DP 16 K parity core (for PDP11/04 and $11 / 34$ series). BRAND NEW SURPLUS - ONLY
£995.00
PR1 1 High Speed Paper Tape Reader \& Control
£1.450.00
Large stocks of DEC modules and add-ons

PRINTERS \& TERMINALS

CENTRONICS 101 Matrix Printer
CENTRONICS 102 Matrix Printer
$£ 750.00$
£895.00
GE TERMINET 300 KSR Impact Printer
GT TERMINET 1200 RO Impact Printer
HAZELTINE H-1200 VDU
HAZELTINE H-2000 VDU from $£ 625.00$

- $£ 375.00$

TEKTRONIX 611 XY Storage Monitor

NEW ASCII KEYBOARDS -NEW LOW PRICES
 KB756 56 -station ASCII Key-

£45.00
£53.48 KB756MF As above, fitted with
metal mounting frame for extra rigidity
$£ 50.00 \quad £ 59.23$
KB710 10-key numeric pad. supplied with connecting cable
$£ 8.00 \quad £ 9.78$
KB701 Plastic enclosure for KB756 or KB756MF
KB702 Steel enclosure for KB756 or KB756MF
KB2376 Spare ROM Encoder
KB15P Edge connector for KB756 or KB756MF DC-512 DC convertor to allow operation at 5 V only (plugs in to P.C.B.)

KB771 71 -station ASCII Keyboard including numeric/ cursor control cluster, mounted in steel enclosure
$£ 95.00 £ 115.00$
DB25S Mating connector for KB771
PERK 56-station ASCII Keyboard for PET. Complete with PET interface, built-in power
supply and steel enclosure .. £145.00 £172.50 Discounts available for quantities

MISCELLANEOUS

AMPEX $1^{\prime \prime} \times 3000^{\prime}$ Video Tape CALCOMP 565 Drum Plotters £15.00 £1.250.00 CIPHER 100X Magnetic Tape Drive . . $£ 950.00$ DATA GENERAL NOVA $12104 \mathrm{KCPU} . £ 795.00$ DIGITRONICS P120 Paper Tape Punches £75.00 EMI 15" Diagonal TV Monitors £100.00 SEALECTRO 11×20 Patch Boards $£ 12.50$ WW-050 FOR FURTHER DETAILS

Electronic Brokers

49/53 Pancras Road LondonNW12QB Tel: Ol-837 7781. Telex 29869

ONLY SMALL SELECTION OF OUR VAST STOCKS SHOWN HERE - SEND FOR LATEST CATALOGUE

Electronic Brokers unique catalogue contains 62 pages plus update of second user Test Equipment, and Mini Computers and Peripherals. Vast lists of Signal Sources, Oscilloscopes, DVMs, Counters, Recorders, DEC Computers, VDUs, Teletypes, etc Largest stocks - most cost effective

LATEST EDITION. SENT FREE IN UK
Airmail to overseas addresses $£ 2.00$

Unless otherwise stated all equipment offered in the Electronic Brokers advertisement is refurbished and in the casa of Test Equipment also calibrated. Test equipment is guaranteed for 12 months; computer peripherals for 3 months."

Hours of Business: 9 a.m.-5 p.m., Mon.-Fri. Closed lunch 1-2 p.m.

A copy of our trading conditions is available on request.

Carriage and Packing charge extra on all items unless otherwise stated.
Add 15% VAT to ALL PRICES

Spectrum An
8552A IF Sectio
85541 RF Section
$500 \mathrm{KHz}-1250 \mathrm{MHz}$
TOTAL PRICE £5,250
INSTS
0.111 dB . Steps of 0.1 dB
DC. 1 MHz 6000

Large Stocks

HEWLETT PACKARD

54 L. RF Secrion

NEW EQUIPMENT

HAMEG SCOPES (from W. Germany) from 10 MHz to 50 MHz See ad. at top of index page at rear of this magazine AVAILABLE EX-STOCK ICE MULTIMETERS (from Italy) Microtest 80, Supertesters 680G \& 680R and their accessories always in stock

K120n THIE U.S.A. BE KORESTEIECTRONICS

 (and onenswargevernel 840

PHILIPS

OLIVETTI PRINTER \&
 KEYBOARD type Te 300

with PUNCH \& READER. Upper case ASCII with V24 Interface. 240

£125 each

TELETYPE MODEL 390

 ¢325
HONEYWELL VDU

1920 Character Upper Case ASC11. With edit and block transmission. Limited quantity with
NEW LOW PRICE $£ 200$ each

BRUEL \& KJOER EQUIPMENT

AUOOO FREQUENCY SPECTOMETER tyPe 2112 £175 e日.
BEAT FREQUENCY OSCILLATOR type $1013 £ 140$
BEAT FREQUENCY OSCILLATOR type 1014 £ 140
BEAT FREQUENCY OSCILLATOR type 1022 £ 140
AUTOMATIC VIBRATION EXCITER CONTROL type $1018 £ 90$
AUTOMATIC VIBRATION EXCITER CONTROL type 1019 £90
AUTOMATIC VIBRATION EXCITER CONTROL type 1016 £90

INFRA RED IMAGE
 CONVERTER type 9606 (CV 144)

$13 / 4^{\prime \prime}$ diameter. Requires single low current 3KV to 6KV supply Individually boxed. With data £ 12.50 each $P \& P 75 p$
Infra Red Lamps also advertised

STRATHEARN AUCTION - Yes we were

 LARGE PURCHASER OF COMPONENTS \& TEST GEAR
Abstract

BC337	8p	2N3704	8p	BTF60	5p	MC145	15p
BC327	$8 p$	$2 N 5447$	5p	TLO82CP	$15 p$	LM3900	30p
BC251	5p	2N5449	5p	TIS92	$10 p$	4013	30p
BC171A	Ep	2N3053	15p	TIS93	$10 p$	741	12p

16 pin DIL Socket 10p. 14 pin OIL Socket 8 p LED type TIL 209 Red with holder 10 p gach - normally over C2. OUR PRICE 75 peach

MICROSWITCHES SPCO - 12 p each; SP - 8p each Spring Action TERMINALS - normally over 30p an. OUR PRICE $15 p$ each TORDIOAL TRANSFORMER 0.115 V - 230 V Input; $13.5 \mathrm{~V}-0-13.5 \mathrm{~V}$ TORDIDAL TRANSFORMER 0.115 V . 230 V Inpul: $13.5 \mathrm{~V}-0-13.5 \mathrm{~V}$ rated 8 VA output $£ 1.70$ each. P\&P 75 p Sub-min TRANSFORMER 0.120 .240 V Input; 12 V .0 .12 V rated 4 VA Output 75 p each P\&P 50 p ALL GOODS ARE GUARANTEEO TO BE NEW AND FULL SPEC. DEVICES. 100 off discount 25% other discounis by arengemen

POLAROID SPECTRUM ANALYSER
$5^{\prime \prime}$ Display. These are supplied with STU plug-in. 1 to 4.5 GHZ

E125 each

4K RAM
22 pinn with data
type 2680

65 peach
${ }^{655_{\text {peach }}}$

TELEQUIPMENT SERVICE SCOPE MIMOR

Modem style - Small size $5 \times 7 \times 1$ 1" approx Circuit diagram supplied
£55 each

STEPPING MOTORS

$6 / 12$ position with additional where the roto

 is coils. Device can be used as a tacho. Diagram supplied. Will actually 150 end P .IF YOU CONSIDER THE PRICE ON ANY OF OUR ADVERTISED ITEMS TOO HIGH - PLEASE MAKE US AN OFFER WE CAN CONSIDER

TEKTRONIX Spectrum Analyser Plug-In IL3
TEKTRONIX 1 A4 Pluc-in
 WOELKE WOW \& FLUTTER MET HEWANCET PACKARD RMS Voltmeter type 340 MARCONI Spectrus Analyser type TF 1094 100HZ RES GEN EN 41026 SCR $1000-19000 \mathrm{MHZ}$.27000MHZ
 Hos oEm Bn 1524 USVU D.9.2.7 GHZ Ras GEN BN
Res GEN BN $2412 / 50$ NRD 0.32000 MHZ Re 8 OEN BN 4242 SWH $50 \mathrm{KHZ}-12 \mathrm{MHZ}$ Mes POL HE KOP BN 4244 SWOB Ras
RIEN OEN BN4
OEN
BN 1523 SMLM $30-305 ~ M H Z ~$ RU 8 OEN BN422 WID 30-300MHZ FERROBRAPH Recorder Test Set RTS 2 HEWET PACKARD Oscilloscope ype 1208 MEWLETT PACKARD AC Convertor tye 3461 A Racal Auto Frea Convertor 803 BR 500 MHZ COHU DC Vothege Siondard 303B AVO Procision meter 79
POLARAO Siq source Model 1208 A 7.11 GHz FLLKKE RMS VOltmeter type 910 A WAYME KERR Bridge CT 530 with adapto TEONIC SWEEPER SO. $3450-900 \mathrm{MHZ} \mathrm{M}$
TWENTY MILO TWENTY MILLION Megohm meter BbV E. AVO A Mk 3 or simiar
 Cosson cou 30 small, com Barterios supplied
${ }_{6}^{6425} \mathbf{6 2 5}$

817500.
8100
5080
5

675
¢120
E140
E120
$\varepsilon 140$
E
680
6200
6180
$\varepsilon 180$
$\varepsilon 120$
E120
61120
61300
6

E120
E 350

$\varepsilon 350$
$\varepsilon 190$
£240

TRANSFORMERS - Slandard Moins input.

Secondary outpuls

3440 V 0.66 A whth matching 40 H Choke $£ 30$ the pair.
BV 6000 Amps 2 255.
5 KV 300 MA \&15.
5KV 300 MA E15.
12 KV 30 MA ERO.
KV 50 MA है ea. 4 Vols 250 Amps E 10 ea.
2.5 KV 110 MA ESO ©s.

OOKV 0.0273 c150.
MUITI PURPOSE MAINS TRANSFORMER 4 windings each
minding 0.10 .110 .125 at 48 A C15 ai.
STEP at $1 / 2$ rating $\varepsilon 15$ Ea. OHZ Output 115 V 1.8 KVA GRAND NEW. These are very donservatively rated ELE ea.
Apacitoas 2 mfd 5 KV \&A ob.
00 mfta 4 KV Repid discharge E 10 e
0.5 mid 10KV ct ea

CARRIAGE on these unirs mill be charged at cos

 Ama Reed Swithes. Biue kevs niarked ing green 0.9 and a star with
ane black. Now is ie. PaP 75 P . Amphenol.
SE.C. Standard MaINS LEAO. Moulded (3 vertical flat pins centre

ANs, 115 V 13 Wams. Size $3 \% \times 3 / 4 \times 13^{\prime \prime}$ BRAND NEW. MOTOROLLA REGULATOHS PAP 750
Miniature Motors 12 V with geared wheel $(8 \mathrm{lemp} \mathrm{s5pes}$. Size $1 / 1 / \times 1 / s^{\prime \prime}$ dia. New 30p geared wheel (8 teeth $3 / 16^{\prime \prime}$ dia). moror 12 V DC with pulley and iniegral semiconductor Speed
 OIAMOND H CONTROLE תOTAMY SWITCM. Singte pole 10 may. Printed Circuit Mount. Now 10 p aw. $2 \times 7 / 16 \times 1{ }^{10}$ nanosecs. 3 connections. PULSE TRAN SFORMEM. Sub min. S motor by Inland Motor Corp. DC High Torque, Reversible. Usable torque at 5 V . Max vollaye. 24 V C2. 50 Oe. P\&P $£ 1.50$. CEMO TY TYPE MULTIPLEA. Two high voltago outputs and DON'T TAKE CHANCES. Use the proper EHT CABLE, $10 p$ per metre or $£ 7.50$ per $100 \mathrm{mecre} / \mathrm{drum}$. P\&P $£ 1$. 50 .
MOTOR by Easiem Air Devices Inc. 125 V reversible with toothed MOTOR by Eastem Ar Devices Inc . 125 V rever sible with toothed
 75p on Box of 12 C5.50 P\&P $E 1.50$
Decoupling CAPACITORS 0.05 mid 10 V . Size $0.25^{\prime \prime}$ between eads $1 /{ }^{\prime \prime}$ height. 100 for $E 1$. PRP 50 p.
CAPACTTORS 0.01 m/d. Size $5 / 16^{\prime \prime}$
00 for $\mathrm{E1}$. PR, P 50 p .
MYSTERY IC PACK. Some 40 Pin - good mixture - all new
devicos. 25 ICe for $£ 1$. P $\$$ P 50 . You find out what they are and devioss. 25 ice for $£ 1$. $\mathrm{P} \& \mathrm{P} 50 \mathrm{p}$. You find out what they are and
we will buy the information from you. we will buy the intormation from you.
SUPERE I 0^{\prime} RACK CABINET. Approx $4^{\prime} 6^{\prime \prime}$ high $\times 33^{\prime \prime}$ deap. Instrument from panel position can be adjusted. Chociolate colour.
These are new but have sight scratches and imperfections - hardiy hese are new but have slight scrat
noticeable. E35 mech. Carr. E4.
(a-Way Multi-Colour Ribbon Cable. New. 4Op per metre. P\&P
PEEAKERS $2 y^{\prime \prime \prime} .50 \mathrm{hm} 0.2 \mathrm{~W}$. New 40 p oech. PRP 50 p . 50

GEC UHF 4 bution tuner. 22.50 eech. P\&P 85p.
BIO INCH Motor 110 V AC 3 rpm 50 cycle . Very small 50 p eech P\&P 50p. CXUTAUR E 115 VAMS. $4.5 \times 4 \times 1 / 2{ }^{\prime \prime} \mathbf{6 4 . 5 0}$ EXUSEO Equipment, tested 60 p eemt. P\&P 75 p . duyy 7 Dot anumfield TME日 TELAY, 1 dury, 7 pole c / s with 2 second delay Charge R \& C for difterent CONTMCTORS
GPC UHF/VMF 6 button tuner \& 6 . 0 mech. P\&P E1 GPC UHF/ YHF 6 bution tuner EA bo ach. P\&P E1.
DIOTTAL 24 HOUR CLOCK with bult-in alarm as used in Braun Digital clocks. Silent running. Large illuminated numerale. AC
 531 A PMOTO MULTIFLIER in stainless steol contaner mindow and builtin resistor network. $\subset 2$ esech. P\&P $£ 1$. knob. Lengrh 3 $3 h^{\prime \prime}$, 25p eech. P\&P 25 p .
 calibrated 50.200 . F . 2.50 . c . With Control knobs
 Sin soud RUEBER RINGS ($11^{\text {" }}$ dian rubber). Keep the kids for dogi) happy. 4 for E1. P\&P E1. 25 THANBFORMERS
 E1.50 es. P\&P 240 V input. Soc. 12 V 0.92 . Size $2 \% \times 2 \times 2^{\prime \prime}$. Good quality.
ET.50 ou. P\&P 1 . E1.50 ou. P\&P E1.
240 V inpur 12 V 100 MA . Size $60 \times 40 \times 42 \mathrm{~mm} 50 \mathrm{p}$ ench. P\&P
750 V input Soc. $12-0.12 \mathrm{~V} 50 \mathrm{MA}$. Size $53 \times 45 \times 40 \mathrm{~mm}$. \&1 aech. P\&P 75 p.
115 V inpurt Soc. 5 V 250 MA . Slze $111 / 6 \times 1.5 \times 11 / \mathrm{ad}^{* 1} 2$ for
sOp. P\& 750 . 50p. P\&P 75p.

Ae $2 p$ eocch. 1 M 3053 in

1 M 3053134
BC147. BCABS. BC157, BC158, BC237, BF197, OA90, OAB1 BA 154, BA24,
At 25 p
eech. AIP 31 TIP41A 2N5296, AF139. 2 TX 341 . BY 12 10p. BF181 20p: 80239 40p: B0241 40p: MA343AT
40 p; BO222 50p; BD233 \& BD234 Comp Pair 25W - $80 p$ per
 eech. EF 256C 20p.

7453	5 p	709	$15 p$	75325	1
7451	$5 p$	$74 \mathrm{H74}$	12p	SN15862	$4 p$
7401	5p	$74 \mathrm{H51}$	$7 p$	MC4028	80p
7402	12p	74538	100	7417	14 p
7476	20	74502	12p	7441	400
7495	${ }^{35}$	74154	70p		

AM9140 4K RAMS STATIC 5 Vole ceramic C4 eact.
2709 E5.E0 eech. P\&P 250 . Black or Grey $\mathbf{£ 7 . 5 0 ~ e a c h . ~ O i d e r ~ s t y i e ~ B i a c k ~} \mathbf{E 2} .50$ ench. Postage Honewwell hurnidity Controllers 50 opech. F \&P 40 p . TMYMIsTOA TIMER. Solid State. 15 secs adjustable (resey) in
plastic relay case. Standard 7 pin base. Series delay 50 peech. P\&iP MINLATUAE PC MOUNT SLLDE SWITCH. SInge pote 3 way 10p mith AMALOQUE CONVERTER. 8 bit mill fit standard diortal
T1 socket. With data. E2. 50 ewch. P\&P 25 p
 Other ranges avai lable. Please enquire. 5 KV EB eech. P\&P E1 TRIMMERS. Sub min 0.25 to 1.25 pl . 1 to $4 \mathrm{5pf}$. 7 to 45 pf . All on
Bp .
GR
CROWN replacement MOTOR for 18M GOLFBALL TYPEWRITER
115 Volt 50 HZ 1350 rgm . 4.50 өa. P\&P E 1.50 .

CAMBRIDGE

LEARNING
ENTERPRISES
Instruction

Microcomputers are coming - ride the wave! Learn to program. Millions of jobs are threatened but millions more will be created. Learn BASIC- the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problemn definition, flowcharting, coding the program, debugging, clear documentation.
Book1 Computers and what they do well; READ. DATA, PRINT, powers, brackets, variable names: LET; errors; coding simple programs.
Book 2 High and low level languages; flowcharting; functions; REM and documentation; INPUT, IF...THEN, GO TO: limitations of computers, problemn definition.
Book 3 Compilers and interpreters; loops, FOR.....NEXT, AESTORE; debugging; arrays; bubble sorting; TAB.
Book 4 Advenced BASIC; subroutines; string variables; files: complex programming: exemples: glossary.

Understand Digital Electronics

Written for the student or enthusiast, this course is packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits and finally to an understanding of the design and operation of calculators and

Book 1 Octal, hexadecimal and binary number systenis; conversion between number systems; representation of negative numbers; complementary systems.
Book 2 OR and AND functions: logic gates; NOT, exclusive-OR, NAND, NOR and exclusive-NOR functions: multiple input gates; truth tables; De Morgans Laws, canonical forms; logic conventions; karnaugh mapping; three state and wired logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and ALU's: multulication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive - OR teedback counters; ROMS and RAMS.
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM: address decoding.
Book 6 CPU; memory organisation; character representation; program storage; address modes: input/output systems; program interrupts; interrupt priorities; programming,

assemblers computers' execulive programs: operating sestems.

GUARANTEE - No risk to you

If you are not completely satisfied your money will be refunded on return of the books in good condition.
Please send me:-
....Computer Programming in BASIC (4 books) @ $\mathbf{7 . 5 0}$
....Design of Digital Systems (6 books) @ £11.50
All prices include worldwide surface mailing costs (airmail extra) IF YOUR ORDER EXCEEDS £15, DEDUCT f2
I enclose a cheque/PO payable to Cambridge Learning Enterprises for $£$
or please charge my Access/Barclaycard
account no.
Telephone orders from credit card holders accepted on 0480-67446 (Ansafone). Overseas customers (inc Eire) send a bank draft in sterling drawn on a London bank, or quote credit card and number.
Name
Address

Cambridge Learning Enterprises, Unit 37, Rivermill Site, FREEPOST, St. Ives, Huntingdon, Cambs PE17 4BR England.

Communications
 81Communications Equipment and Systems National Exhibition Centre Birmingham England 15 April - 18 April 1980
 AN INVITATION TO

Communications 80 , the fifth in a series of international expositions dealing with the applications of communications equipment and systems, particularly in the major growth areas of data and business communications which are being created by the converging tech-
 nologies of computing and telecommunications. The other important themes of the exposition are PTT telecommunications, civil fixed and mobile radio and emergency communications.

Communications 80 will attract visitors from all over the world (from 69 countries at the last event in 1978) who will be coming to see the latest developments in communications technology displayed by leading international manufacturers. Many of the visitors will also attend the integral conference, organised by the Institution of Electrical Engineers in association with leading international learned societies, to learn about the latest technical advances in communications equipment and systems.

Communications 80, the world's leading international exposition in the field, is actively supported by the International Telecommunication Union - the world telecommunications authority representing 153 governments; the British government, through the Home Office; the British Post Office; Cable and Wireless Ltd; and the two main UK trade associations - the Electronic Engineering Association and the Telecommunications Engineering and Manufacturing Association.

Please make a note of the dates and venue of

Communications 80 - Tuesday 15 April to Friday 18 April, 1980, at the National Exhibition Centre, Birmingham, England.
You cannot afford not to come if you make, use or specity communications equipment and systems.

Iam intesesed in aterading

Communications 80

Please send me details of exhibition \square conference \square
Name

Position

Company \qquad
Address \qquad

Complete, detach and mail to

Tony Davies Communications
c/o Industrial and Trade Fairs Ltd, Radeliffe House, Blenheim Court,Solihull, West Midlands B91 2BG,England.

A major exhibition of computers, peripherals, terminals and services, held each spring in the most highly industrialised area of Western Europe. GONPE EURDPE 80 \& Centre International Rogier, Brussels, May 6, 7 \& 8, 1980

The ever-growing international attendance gives Compec Europe exceptional status as a sales platform for providers of hardware, software and services from every country. Ensure participation in its benefits by posting the coupon below.

COMPEC EUPDPE'8D stand RESERVATION FORM

To: The Exhibition Manager, Compec Europe, Room 821, Dorset House, Stamford Street, London, SE1 9LU, England.
Please provisionally reserve for us stand space at Compec Europe 80 and send the undersigned more information.
Name \qquad Company

APLAB 3131 PORTABLE OSCILLOSCOPE

 $\mathbf{5}^{\prime \prime}$ DUAL TRACE, 15 MHz (3dB) AT $£ 260$ + VATAPLAB 3131 Dual Trace DC to 15 MHz Triggered Oscilloscope has, two fully calibrated 12 step vertical Attenuators from $5 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ and a fully triggered Time base with 18 calibrated sweep speeds, $5^{\prime \prime}$ flat-faced CRT with a full $10 \mathrm{~cm} \times 8 \mathrm{~cm}$ graticule. Channel II Attenuator also acts as calibrated Horizontal Amplifier control in $X-Y$ mode. An Attractive case of $11^{\prime \prime} \mathrm{H} \times 8 \frac{1}{2}$ ' $\mathrm{W} \times 15^{\prime \prime} \mathrm{D}$. Weighs only 26 lbs. Operates on $110 / 220$ VAC $45-65 \mathrm{~Hz}$ at 25 W .

APLAB 3030 MINI-OSCILLOSCOPE AT $£ 170$ + VAT

10 MHz , Portable (10 lbs), Triggered, Calibrated Scope. $3^{\prime \prime}$ CRT, 1 KV Acc. potential: DC-10 MHz Bandwidth, 5 mV / div. - $20 \mathrm{~V} / \mathrm{div}$. sensitivity, $0.2 \mathrm{sec} / \mathrm{div}-0.5 \mu \mathrm{~S} / \mathrm{div}$. sweep speeds $1,2,5$, sequence. EXT $\times, 400 \mathrm{mV} / \mathrm{div}, 1 \mathrm{MHz}$ bandwidth. Dimensions: $81 / 2^{\prime \prime} \mathrm{H} \times 41 / 2^{\prime \prime} \mathrm{W} \times 10 \frac{1}{2} 2^{\prime \prime} \mathrm{D}$.

For discounts, distributorships and direct purchases contact:
CROUCHCLIFF LIMITED
VICTORIA HOUSE, 26 QUEEN VICTORIA STREET, READING RGI, ITG, U.K., TELEPHONE: (0734) 6928 26/(10734) 595047 TELEX: 847777 'DELRAYG'.

ELECTRONIC VALVES WANTED

All Types Receiving, Transmitting, Industrial
PL504 - PL802 - PCL805 - CV131-CV1 36 CV138 - CV329 - CV345 - CV450 - 805 -807-813-2K25, Etc.

Phone/write to:
PYPE HAYES RADIO LTD.
606 Kingsbury Road
Birmingham B24 9PJ
021-373 4942

ANY MAKE-UP OR COPY QUERES CONTACT JOHN GIBBON OR TONY FAYERS 01-261 8353

TERMINALS

EXTEL
 MATRIX PRINTERS

featuring:-

* optically coupled RS-232 interface
* switched crystal controlled Baud rates
* simple twin stepper motor mechanism
* compact size
* full $81 / 2$ inch paper width
* impact printing.
* Baudot code suitable for either teleprinter or microprocessor applications
- fully tested
$£ 150$ plus VAT

ITEL Model 1051

- IBM GOLFBALL Typewriter
* RS232/V24 Interface
* Correspondence-quality upper/ lower case
* Integral paper tape reader and punch
* Operates as stand alone typewriter
* Operates as self-contained word pro-
 cessor
* Selectric/EBCDIC coded
£425 plus VAT

IT’S HAPPENINED RCAIII! THE PART THREE CRTRLOTIE IS PUBLISHED \& WE HRUE MOUED TO BIGEER PREMISE5.

Yes, it's here at last - the all new Part Three Catalogue. Fun for all the family, and the usual update on all that is new, worthwhile and exciting in the world of Radio and Communicatlons. A big section on frequency synthesis techmiques covering broadcast tuners, to communication quality transmitter systems. More new products than ever. RADIO CONTROL parts, crystal filters, ceramic filters for 455 kHz and the new range of TOKO CFSH low temperature coefficient types for 10.7 MHz . Details on new radio ICs, including the new HA11225, the CA3189E lookalike with 84 dB signal to noise, and adjustable muting threshold. Radio control ICs - and an updated version of the RCM\&E 8 channel FM receiver now with an Ambit designed screened front end, with 27 MHz ceramic bandpass filter. LCD panel clock/timer modules - the neatest and best LCD panel DVM yet (only $£ 19.45$ each + VAT), the new 5 decade resolution DFM3 for LW/HF/VHF with LCD readout. The DFMG with fluorescent display to 10 kHz resolution on $\mathrm{VHF}, 1 \mathrm{kHz}$ on $\mathrm{SW} . \mathrm{A} 1 \mathrm{KHz} \mathrm{HF}$ synthe siser with five ICs- the list is endless. Get your copy of the catalogue now Post publication price is 60 p (inc PP etc). The previous two sections are also required for a complete picture: Parts $1 \& 2$ \&1 the pair. All 3 fl .50 . And don't miss our spot the gibbon contest, together with a quiz to see if you can spot the differences between a neolithic cave drawing and a.
(* Yes, we still haven't learnt how to spell.)
circuit diagram of one of our competitor's tuners.

UM1181 VHF band 2 VARICAP TUNERHEAD
5 tunad circuit, with imaga/fourii, berter than - 80 did, buftered $L 0$

911225 FM IF strip with all mod cons for the HiFi tuner: All typas use $80+d B S / N$ Mitachi $\mathcal{I C}$, with muting, $A F C, A G C$, metor outputs for digal level and centre zero. IF preamp stage
preamp and 3rd narrow firles, with DC filter seloction. Dual
 (All ' A ' series units are sot up withed spectrium anolyzer for Dest THD) 91072 AM RADIO TUNER MODULES: DC TUNED and DC SWITCHED Available February " 80
All include butfored LO outpur, mechanical if firter (TOKO CFMO)
1 1.10 tuning bisa, switthing by a single pole to 1-10v tuning biss, witching by a single pole to arth
A MWW/LW 1150 to 350 KHz LW range) with ferrite rod antenna
B As 'A' but also including SW1 or SW2 (specify
$\mathrm{SW}_{1}=1.8$ to $4 \mathrm{MHz} \mathrm{SW}^{2}=5$ to 10 MHz
c With both SW ranges
Prices one off INC VAT
' A ' $\mathbf{E 1 4 . 4 3}{ }^{\prime} \mathrm{B}$ ' $\mathbf{E 1 5 . 9 0}$ 'C' $\quad \mathrm{E} 17.50$ (Custam types OA)

There is a danger - when advertizing in some magazines - that because we do not find space to list everything we sell in every ad. that some readers forget about half the ranges we stock. So to summarize the general ranges:

токо

Chokes, coils for AM/FM/SW/ MPX, Audio filters etc
Filters: Ceramic for AM/FM, LC for FM, MPX etc. Polyvaricons
ICs for radio, clock LSI, radio control, MPX decoders etc

> Micrometals Dust iron cores for toroids for resonant and EMI filters Toroid mounts
Hitachi
Rod MOSFETs, sinear ICs 100W MOSFETs, small signal FETs, MOSFETs and bipolar

And the following groups of products from a broad range of sources:
Semiconductors -specializing in radio devices Plessey SL 1600, EUROPE's best selection of AM/FM and communications devices. Power MOSFETS, WORLD's LOWEST NOISE AUDIO small signal transistors, BAR graph LED drivers for linear and log.
CD4000 series CMOS, TTL/LPSNTTL, standard linears (741, 301, 3080 etc). MPUs, memories. Small signal transistors from AEG BC237/8/9 families etc. (1000 off BC239C : 5.2 p ea) LEDs: AEG $3 \mathrm{~mm} / 5 \mathrm{~mm}$ round, $2.5 \times 5 \mathrm{~mm}$ flat, red, greem, orange, yellow. The best prices you will find for quality products. MOSFETs for RF signal processing, including the BF960 UHF device, and 3SK51 for VHF. Varicap diodes for 17:1 capacity ratio tuning

FREQUENCY READOUT LSI from OKL with a one-chip answer to most digital frequency display needs (and various modules).
Crystal and ceramic ladder filters from leading manufacturers, ferrite rods, various ferrite beads and a range of crystals for standard frequencies and both $A M$ and $F M$ radio control at 27 MHz . Trimmer capacitors.
METERS - a new range of linear movement types, plus many 'indicator' types for VU, all types of tuning indicators etc.
SOCKETS - a new. range that are better quality than Texas low profile, yet better priced. Modules for AM/FM/STEREQ, complete kits for tuners, audio amplifiers from Larsholt. SWITCHES - complete low cost DIY systems for push button arrays, keyboard switches. DOUBLE BALANCED MIXERS - MCL SBLI DOUBLE BALANCED MIXERS - MCL SBLT,
replacement for MD108 etc. And cheaper.

DOES YOUR ONE GLOW GREEN IN THE DARK ??
Our DFM4 does, since it uses a vacuum fluorescent display for direct readout of MW/LW/FM. Basically the same as the DFM2, (LCD Version). $\mathbf{\Sigma 2 4 . 4 5}$ kit (inc VAT)
Transformer with all necessary windings for DFM4 - $£ 2.50$ inc VAT.

Not illustrated here - but also now available is the DFM6. This is a vacuum fluorescent display version of our immensely popular DFM3 (LCD). Resolution is 100 Hz to $3.9999 \mathrm{MHz}, 1 \mathrm{kHz}$ to 39.999 MHz , and 10 kHz to 200.00 MHz ; all standard IF offsets (inc. 10.7 MHz on shortwave) are available via diode programming.

KELSEY ACOUSTICS LTD 28 POWIS TERRACE, LONDON W11. TEL: 01-727 1046

NEW YEAR SPECIAL OFFERS

SCOPES - SCOPES - SCOPES

OVER 75 SCOPES EX-STOCK NOW FROM £25.00 UPWARDS RING OR CALL FOR DETAILS

BULK BUY SENICONDUCTOR SAVINGS

Type	Per 100	Per 1.000	Tүp•	Per 100	Por 1,000
2N3702	¢9.00	670.00	2N5447	¢10.00	675.00
2N3704	¢9.00	E70.00	2N5449	¢9.00	¢70.00
TIS92	c16.00	E150.00	8 C 337	¢9.00	E70.00
TIS93	¢22,00	¢200.00	BFT60	¢33.00	¢200.00
MJ1000	E45.00	¢400.00	MC1458	¢35.00	¢300.00
MC14013	¢38.00	¢310.00	TH.119	¢30.00	¢275.00
LM709	E33.00	¢280.00	1S44	¢2.00	E14.00
TLL209	¢8.00	665.00	1N4148	¢2.00	E16.00

1,000s OF BARGAINS for callers in our walk-round warehouse situated 200 yards from Thornton Heath Station

Dept. W.W., GE66 Melfort Rd., Thornton Heath,
MAIL ORDER INFORMATION
Unless otherwise stated all prices inclusive of VAT. Cash wlih order. Minimum order value £2.00. Prices and Postage quoted for UK only. Where post and packing not indicated please add $30 p$ per order. Bona Fide account orders
minimum £10.00. Export and trade enquiries welcome. Orders despatched same day where possible. Access and Barclaycard Visa welcome.

WW - 077 FOR FURTHER DETAILS

For use in Professional Equipment

Exceptionally wide range of spares for most equipment in use

Write for catalogues or just state your requirement to

AERO ELECTRONICS (AEL) LIMTED GATWICK HOUSE, HORLEY, SURREY ENGLAND RH6 9SU

Telephone: Horley (02934) 5353
Telex: 87116 (Aero G Horley) Cables: Aero G Telex Horley
 WW - 080 FOR FURTHER DETAILS

SERVICE TRADING CO

FT3 NEON FLASHA TUBE

High intensity, multi turn, high voluage neon glow discharge
flash tube Designed for ignition tuning etc. $\& 1.50$ P\&P 25 p (E2.01 inc. VAT). 3 for E3. P\&P 50P ($£ 4.03$ inc. VAT \& P).

WHY PAY MORE?

MULTI RANGE METERS TYPE MFI5A. AC/DC vols 10.50 .250 .500 . 1000 . Ma. O-5. O-10. 0.100 , Sensitivity
2000 V . 24 ranges, dimensions $133 \times 93 \times 46 \mathrm{~mm}$. Price E7.00 plus 50p TRIAC.
Raytheon tag symmetrical Triac. Type Tag 250/500V 10 amp 500 piv. Glass passivated plastic triac. Swiss precision
product for long term reliability $\& 1.25$ P\&P $10 \mathrm{p}\{(\mathbf{\Sigma}) .55$ inc. product for long term reliability $\mathbf{~} 1.25 \mathrm{P} \& \mathrm{P} 10 \mathrm{p}(£ 1.55$ inc.
VAT \& P) (indusive of date and application sheet). Suitable Diac 22p.

MERCURY SWITCH

cluding VAT E6.10. Min, quantity 10.
Hoevy duty type $36 \times 15 \times 10 \mathrm{~mm}$ Minimum quantity 10 . $£ 7.50$ post paid (Es.83 Nc. VAT a P). N.M. 230 VÓLTĀĀ FAN̄ ASSEMBLIY Powerful continuously rated AC motor
complete with 5 blade $612^{\prime \prime}$ or 4 blade $3^{\prime \prime}$ aluminium fon. New reduced price $\mathbf{E 3 . 0 0}$ 21-WAY SELECTOR SWITCH The ingenious electro mechanical device can be switched up to 21 positions and can be reset from any position by energising the reset coil. $230 / 240 \mathrm{VAC}$
operation. Unit is mounted on strong chassis. Complete with cover. Price 85.50 ALE.G. CONTACTOR
A.E.G. CONTACTOR

Type LS6/L11. Coil 240 V 50 Hz . Contacts -3 make: 600 V : 20 amp . 1 break: $600 \mathrm{~V}: 20 \mathrm{amp}$. Price: $\mathrm{E} 5.50+50 \mathrm{p} \mathrm{P} \& \mathrm{P}$
ARROW-HART MAINS CONTACTOR
Cat. No 130 A30
Coil 250 V or 500 V AC. Contacts, 3 make 50 amp up to
660 V AC 20 hp at 440 V 3 phase 50 m Price $£ 7.75+$ P P $£ 1.00$ (Total inc VAT \& P $\mathbf{~} £ 10.06$). N.M.S. TORIN BLOWER
$220 / 240 \mathrm{~V}$ AC Aperture $10 \times 41 / 2 \mathrm{~cm}$ 75 p (incl VAT E5.18).

VARIABLE VOLTAGE TRANSFORMERS

INPUT $230 / 240 \mathrm{~V}$ a.c. 50/60 OUT PUT VARIABLE 0-260V
200W 1 amp inc a.c. voltmeter $£ 14.50$ $0.5 \mathrm{KVA}(21 / 2 \mathrm{amp}$ MAX)
$1 \mathrm{KVA}(5 \mathrm{mp}$ MAX)
K 10 KP . 2 KVA (10 amp amp MAX) $2 \mathrm{KVA}(10 \mathrm{amp} \mathrm{MAX})$
3 KVA (15 amp MAX) 3 KVA (15 amp MAX)
5 KVA (25 amp MAX) 10 KVA (50 amp MAX) $£ 17.00$
$£ 22.50$ 17 KVA (75 amp MAX) $£ 22.50$
$£ 37.00$ $£ 37.00$
$£ 45.50$ $£ 45.50$
$£ 74.00$
$£ 168.00$ 3-PHASE VARIABLE VOLTAGE
TRAMSFORMERS
3 KVA (max. 15 amp$)$
$6 \mathrm{KVA}(\max .30 \mathrm{amp})$
 $6 \mathrm{KVA}($ max. 30 amp$) \quad .. . £ 159.37$ CARRIAGE PACKING \& VAT EXTRA
LT TRANSFORMERS $13-0.13 \mathrm{~V}$ at 1 amp £2.50 P\&P 50 p (£3.45 inc VAT)
$0-4 \mathrm{~V} / 6 \mathrm{~V} / 24 \mathrm{~V} / 32 \mathrm{~V}$ at 12 amp £ $18.50 \mathrm{P} \mathrm{\& P}$ £1.90 ($\mathbf{(E 2 3 . 4 6}$ inc. VAT \& P)
$0.6 \mathrm{~V} / 12 \mathrm{~V}$ at 20 amp $£ 14.70 \mathrm{P} \& \mathrm{P}$ £ 1.50 (inc. VAT $£ 18.631$ 0.12 V at 20 amp or $0-24 \mathrm{~V}$ at $10 \mathrm{amp} £ 12.00 \mathrm{P} \& \mathrm{P} £ 1.50$ ($£ 15.53$ inc. VAT \& P)
(inc. VAT $£ 10.93$)
$0.6 \mathrm{~V} / 12 \mathrm{~V}$ at $10 \mathrm{amp} £ 8.25 \mathrm{P} \mathrm{\& P} £ 1.25$ (12V/7V/18V/20V at 20 amp $£ 19.00 \mathrm{P} \& \mathrm{P} £ 150$ $0-6 \mathrm{~V} / 12 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V} / 20 \mathrm{~V}$ at $20 \mathrm{amp} \mathrm{E19.00} \mathrm{P} \& \mathrm{P} £ 1.50$
$(\mathbf{(£ 2 3 . 5 8}$ inc. VAT \& P) ($£ 23.58$ inc. VAT \& P) E13.80)

POWER RHEOSTATS amel embedded winding, heavy 25 WATT $10,25,100,150,250,500,1 \mathrm{k}, 1.5 \mathrm{k}$ £2.40 Post 20 p (2.99 inc VAT $\&$ P). 50 WATT 250 ohm E2.90 Post $25 p$ ((E3.62 inc VAT \& P). 100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 300 / 500 / 1 \mathrm{k} / 1.5 \mathrm{k} /$ $2.5 \mathrm{k} / 5 \mathrm{k}$ ohm $£ 5.90$ Post 35 p ($£ 7.90$ inc VAT $\&$ P). dia brass bush. Ideal for above Rheostats 24 pen . SPECIAL OFFER
 186 amp 7.50 P\&P 50 (

STROBE! STROBE! STROBE!

Type FFB1706. Small quiet smooth running. $240 \mathrm{~V} A C$ operation. Output aperture $45 \times 40 \mathrm{~cm}$. Overall size
$135 \times 165 \mathrm{~mm}$. Flange mounting. Price $£ 4.25$. P\&p 75 p . $\mathbf{E 5 . 7 5}$ incl. P \& VAT. Other types available, SAE for details. N.M.S.

24VDC BLOWER UNIT

USA made 24 V DC 0.8 amp blower that operates well on 12V 0.4 amp DC producing 30 cu ft min at normal air 75 mm , nozzle length 19 mm , dia 22 mm . Ideal for cooling mobile equipment, car, caravan, etc. E4.50 P\&P 75 p ($£ 6.04$ inc VAT \& P). N.M.S.
BLOWER/VACUUM PUMP
3 phase AC motor, $220 / 250 \mathrm{~V}$ or $380 / 440 \mathrm{~V}, 1,425 \mathrm{rpm} 1 / 4$ hp cont. Direct coupled to William Allday Alcosa carbon vane blower/vacuum pump. 0.9 cfm 8 hg . Price $£ 22.00$ P \& P
2.00 (E27.60 inc. VAT \& P). N.M.S. 2.00 (E27.60 inc. VAT \& P). N.M.S.
MINIATURE UNISEIECTOR 12V 11 WRE UNISELECTOR 12 V 11 way 4 bank (3 non-bridging.
homing). ©3.00 P\&P 35 p ($£ 3.85$ inc VAT \& F).

MICRO SWITCHES
Miniature roller micro switch, 5A C/O contacts. Mi
by Bonnello. Price: 10 for $£ 2.00$. P\&P $25 p$. Total ind. VAT \& P $£ 2.59$. As above less roller 20 for E1.80. P\&P 25p. Total incl. VAT \& P E2.36. D.P. C/O lever $\mathrm{m} / \mathrm{switch}$, mfg. metal, low resistance contacts. 10 for
inc. VAT $E 3.22(\min 10)$. N.M.S.
HEAVY DUTY SOLENOID
Mig. by Magnetic Devices. 240V AC. Intermittent operation. Approx. 201 l pull at 1.25 in . Ex. equip. Tested. Price £4. 75 P\&
PYE EYTHER
240 V AC solenold. Approx 1 ib pull, $1 / /^{\prime \prime}$ travel, interminten 240V AC solenold. Approx 1 ib pull, $1 / 4^{\prime \prime}$ irsvel, interminten
rating. Price $£ 1.00$ P \&P 20 p (1.38 Inc VAT \& P) N.M.S. rating. Price E1.00 P\&P $20 p$ (E1. 38
WESTOOL TYPE MM 8 MODEL 2
240 V AC. Approx, $13 / 4 \mathrm{lb}$ pull at $1 / 2$ lnch. Rating 1. Price C1.50 P\& $P 200$
TYPE AG/TG
TYPE AG/TG
18-24V DC 70 ohm Coil Solenoid. Push or Pull. Adjustable suppressor, Size: $100 \times 65 \times 25 \mathrm{~mm}$. Price: 3 fots $\{2.40 \mathrm{P} \mathrm{\&} \mathrm{P}$ $30 \mathrm{p}(\mathrm{min}$. 3 off) ($£ 3.10 \mathrm{inc}$. VAT \& P) INSULATION TESTERS (NEW) tion, suitable for bench or fleld work. constant speed clutch. Size L. Bin, W. 4 in, M. 6 in, weight 6 Ib .
500 VOLTS 500 .

500 VOLTS 500 megohms
£49.00 Post 80 p ($£ 57.27$ inc. VAT \& P)
1.000 VOLTS 1,000 megohms $£ 55.00$

Posi 80 p ($£ 64.17$ inc. VAT \& P). SAE for leaflet.
YET ANOTHER OUTSTANDING OFFER
(1.50 P \& P 50p. ($£ 2.30$ inc. VAT + P \& P).

All Mail Orders - Callers
Ample parking

Appointments

Advertisements accepted up to 12 noon Friday, February 1st for March issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 10.00$ per single col. centimetre ($\mathbf{m i n} .3 \mathrm{~cm}$). LINE advertisements (run on): $£ 1.50$ per line, minimum three lines.
BOX NUMBERS: 70p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SEI 9LU.) PHONE: Neil McDonnell on $01-2618508$
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

DESIGN \& DEVELOPMENT ENGINEERS

Are you sceking an opportunity to work on sophisticated lest gear employing the latest analogue and digital techniques?

If so, join Rediffusion and work on a number of exciting projects associated with the design and development of equipment for production line testing of our future colour TV receivers.

Effective testing plays an important part in ensuring that the finished product reaches the high quality levels necessary for success during the 1980's. To increase the scope and flexibility of our testing, new equipment will be microprocessor controlled. Even if you only have limited knowledge of digital techniques this opportunity will enable you to learn the mysteries of microprocessors and their application to testing complex clectronic sub-assemblies.

Applications are invited from engineers with a creative ability to work in a congenial and stimu -
lating environment at our Engineering Centre at Chessington, Surrey. We have vacancies at senior and intermediate levels offering opportunities for career advancement. Salaries are obviously commensurate with qualifications and experience, but will be extremely attractive to those engineers whose test equipment background is such that they can make a significant contribution to the performance of our test gear team.

The usual big company benefits, such as pension scheme, free life insurance, 4 weeks holiday with choice of leave period, sports facilities and assistance with relocation expenses are offered for these posts.

If you are interested in these challenging positions and would like more details or wish to discuss the matter in depth, please write or telephone :-

Mr. H. Brearley, Head of Technical Services; Rediffusion Consumer Electrónics Ltd., Fullers Way South, Chessington, Surrey. KT9 1HJ.
Telephone: 013975411

LEVER (AUDIO) ITD

Audıo and Electronic Equipment Manufacturers

LOUDSPEAKER DESIGNER

Experienced in the design and manufacture of loudspeaker systems. The applicant must have had several years experience in the industry and be familiar with the design of driver units.

We are an established expanding Company with 90\% export to over twenty different countries.

An exciting opportunity exists for someone with a practical outlook to see the product of their endeavours.

Salary is negotiable, subject to experience.
Apply in writing with a brief c.v.a.
The Managing Director, 29 Heathfield, Stacey Bushes, Milton Keynes, Buckinghamshire. MK12 6HR.

ELECTRONICS/CONTROL ENGINEER SENIOR MECHANICAL DESIGN ENGINEER ELECTRONICS TECHNICIAN

URGENTLY REQUIRED TO EXPAND OUR R. \& D. TEAM WORKING IN MEDICAL REHABILITATION ENGINEERING

Stimulating and rewarding work with excellent pay offered by a long-established Company specialising in the development and supply of Artificial Limbs and Aids for the disabled

Senior Mechanical Engineer:
Experience in bio-mechanical engineering, light engineering or aerospace design, preferably with experience of electro-mechanical or plastics design work. Responsible for design and project management from concept to manufacture on lightweight mechanisms, limb structures and motorised manipulators.
Electronics/Control Engineer:
To be responsible for all product development and liaison with sub-contractors. Experience in design of low power, low noise analogue is essential. Familiarity with digital and electro-mechanical systems would be advantageous.

Electronics Technician:

Experience with development of prototype electronic circuit breadboards. The range of work is varied and the ability to work from initial design diagrams, in close liaison with an engineer and with the minimum supervision, is essential
Applicants for the senior posts should possess a Degree or equivalent or have a proven record of achievement
Written applications / telephone calls to
Mrs. Kay Cole
HUGH STEEPER LTD.
237 Roehampton Lane
London, SW 15 4LB 01-788 8165

Pye TVT~The challenge of world leadership in a unique city

Pye TVT is a world leader in the development, production and marketing of professional broadcast equipment. We export 90% of our production and our sales have grown rapidly in the last five years, with some notable recent successes. We are situated in Cambridge, and have been closely associated with its commercial and cultural activities for many years. There are good schools, historic buildings and large, green, open spaces. We are only 65 minutes away from London and an hour or so from the coast.
We need enthusiastic electronic engineers to work in the following areas:

Customer Service Engineering

We are looking for an enthusiastic and self-motivated engineer who is able to work (after equipment training) on complex broadcast equipment with the minimum of supervision. The work involves the investigation and correction of technical problems arising on equipment, including cameras, telecine and vision mixers, both in Cambridge and in the field. The job also includes customer liaison, world wide travel and a very high level of job responsibility. It would ideally suit someone looking for variety and a strong element of problem-solving.

Studio Installation

This is another position that offers the applicant the opportunity of an independent and exciting life, coupled with the responsibility of a highly technical and important job. It involves the installation and commissioning of our studios and associated equipment worldwide. This equipment includes a variety of TV cameras, the latest video tape recorders, outside broadcast vans and sound studios. The job would probably suit a young engineer who wishes to gain a greater knowledge of TV systems.

Test Engineering

This opening is for an engineer to work with transmitter co-axial equipment. The overall purpose of the job is to test and align a broad range of co-axial combining and switching equipment. We're looking for someone who is able to operate independently and work to schedules, with a strong background of work on co-axial lines, wave guides or antennae.

Quality Assurance

Our Quality Department plays an integral part in a complex, technical, yet highly commercial environment, auditing the safety and performance of our equipment for adequate quality levels. Our reputation depends on their judgement, expertise and instincts.
We are either looking for a young graduate in electronic engineering, who has gained 2 or 3 years experience in industry, or someone with a solid background in electronic quality assurance, who qualifies for membership of I.Q.A. Our industry is being revolutionised by the advent of microprocessors, and the person we are looking for must be able to cope with these changes. He or she will be involved, from the quality point of view, in the design and development of new equipment, as well as being concerned with the production process.

Transmitter Development

Our continued success in the transmitter field worldwide, means we now have attractive openings in this department at all levels. We're looking for people with the ability to take responsibility for all aspects of design in TV, FM and AM sound broadcast transmitters. Applicants should be qualified to at least H.N.D. level with a minimum of around two years development experience - but the most important qualities are the interest and enthusiasm to become part of this highly successful team.

Studio Development

We are looking for people to join a highly-skilled development group, specialising in the design and development of studio equipment. As we are constantly initiating new developments, including a range of digital products used in signal processing and control, we would like to meet adaptable young engineers who can contribute to this fascinating and continually changing area. They would take responsibility for all aspects of digital equipment design for broadcast TV applications. Qualifications to degree standard are required for these posts.

We are offering generous relocation expenses, very good salaries and excellent working conditions for all of these positions. For further information or ápplication forms, please contact David Barnicoat on Cambridge (0223) 45115.

Radio Technicians Work in Communications R\&D and add to your skills

At the Government Communications Headquarters we carry out research and development in radio communications and their security, including related computer applications. Practically every type of system is under investigation, including long-range radio, satellite, microwave and telephony.

Your job as a Radio Technician will concern you in developing, constructing, installing, commissioning, testing, and maintaining our equipment. In performing these tasks you will become familiar with a wide range of processing equipment in the audio to microwave range, involving modern logic techniques, microprocessors, and computer systems. Such work will take you to the frontiers of technology on a broad front and widen your area of expertise - positive career assets whatever the future brings. In the rapidly expanding field of digital communications, valuable experience in modern logic and software techniques will be gained.

Training is comprehensive: special courses, both in-house and with manufacturers, will develop particular aspects of your knowledge and you will be encouraged to take advantage of appropriate day release facilities.

You could travel - we are based in Cheltenham, but we have other centres in the UK, most of which, like Cheltenham, are situated in environmentaliy attractive locations. All our centres require resident Radio Technicians and can call for others to make working visits. There will also be some opportunities for short trips abroad, or for longer periods of service overseas.

You should be at least 19 years of age, hold or expect to obtain shortly the City and Guilds Telecommunications Technician Certificate Part I (Intermediate), or its equivalent, and have a sound knowledge of the principles of telecommunications and radio, together with experience of maintenance and the use of test equipment. If you are, or have been in HM Forces your Service trade may allow us to dispense with the need for formal qualifications.
Registered disabled people may be considered.
Pay scales for Radio Technicians start at $£ 3900$ per annum, rising to $£ 5530$, and promotion will put you on the road to posts carrying substantially more; there are also opportunities for overtime and on-call work, paying good rates.
Get full details from our Recruitment Officer, Robby Robinson, on
Cheltenham (0242) 21491, Ext 2269, or write to him at GCHQ, Oakley, Priors Road, Cheltenham, Glos GL52 5AJ. We will invite suitable applicants (expenses paid) for interview at Cheltenham.

Recruitment Office
Government Communications Headquarters
Oakley, Priors Road. Cheltenham (1..525AJ

Chelsea college
University of London

ELECTRONICS WORKSHOP

DEPUTY SUPERVISOR (Grade 6) and ELECTRONICS TECHNICIAN ENGINEER (Grade 5) required for interesting work for Electronics and Physics research and teaching. Includes prototype instrument design, development and construction and the servicing and repair of commercial electronic equipment.
Experience and qualifications in Electronics at an appropriate level are essential. Generous holidays. Inclusive salaries (under review):
Grade 6: $£ 5023$ to $£ 5848$ per annum Grade 5: $£ 4480$ to $£ 5100$ per annum.
Further details and application forms from: Mr. M. E. Cane (EW). Chelsea College, Pulton Place, London SW6 5PR.

ELECTRONIC ENGINEERS NEEDED IMMEDIATELY

Trec Video is expanding its Broadcast facilities at its new premises close to Waterloo Station.
Applications are invited for Engineers interested in working in the following areas:
A) Outside Broadcast
B) Broadcast Video Tape Recorders
C) General Equipment Servicing

Please ring, or write to: Mr. Derek Oliver Chief Engineer

TREC CONSULTANTS

 LIMITED1.7 Boundary Row London, S.E. 1 Tel: 01-6339494

roval college of art

An

ELECTRONICS TECHNICIAN

is required in the Department of Environmental Media to assist students in the creative use of equipment, and control all aspects of maintenance. This is a broad based Department using Sony video facil recording equipment, film and slides recording equipment. film and slides
cameras and projectors.

Applicants should have at least the equivalent of a City \& Guilds Certificate (Part II) and some practical experience.

Starting salary on scale £4767-£5592 (£5026-£5901) from 1.4.80).

Write, giving full details of age, qualifications and experience, to: Assistant Registrar (Staif). Royal College of Art, Kensington Gore, London, SW7 2EU.

THE POLYTECHNAC OF CENTRAL LONDON Division of Engineering

ELECTRONICS TECHNICIAN

Applicants should have minicomputer hardware and/or operating systems experience.
The following qualifications are required: ONC, OND with 7-9 years experience (in-
clusive of training) or the equivalent and $/$ or appropriate industrial experience.
Application form and job description from Application form and job description from
the Establishment Officer, PCL, 309 the Establishment Officer, PCL, 309 Regem Street. Lond 2020 ext. 212).
01.580
(9984)

Television Engineers The search for excellence starts here...

Standards of BBC broadcasts are higher now than they have ever been-and the excellent quality of our transmissions is due largely to the expertise of our Engineering teams. We want to expand those teams, and for men and women who make the grade, the possibilities are endless. Our Engineers are closely involved with production staff in the making of programmes, either by providing the facilities required or by operating equipment.

and here...

They are also responsible for the technical standards of our broadcasts and for the maintenance of our technical equipment. You should have a degree in Electrical or Electronic Engineering, Applied Physics or a relevant science subject, an HNC/HND or higher TEC certificate or diploma, or a C\& G Full Technological Certificate in Telecommunications or Electronics (Course 271 or 281); a strong interest in broadcasting, and normal colour vision and hearing.

and here...

Salaries, to be reviewed in April, range from $£ 5760$ to £6260 including shift allowances and the jobs, which are based mainly in the West London area, also carry such benefits as a pension scheme, social clubs and staff restaurants.
Opportunities for personal development through training and promotion are good.
If you are interested please complete the coupon below and then return the whole advertisement to
The Engineering Recruitment Officer, BBC, Broadcasting House, London W1A 1AA, quoting reference no. 79.E.4156/WW.

Name Mr/Mrs/Miss Address

Tel. No

We are a leading German electronics company in Munich. Our reputation is based on the manufacture of high-precision measuring instruments and communications equipment.
Our German translators need the help of a British graduate.

Electronics Engineer

qualified to give the master touch to their English translations of data sheets, catalogues and manuals on electronic measuring and communications equipment.
His/her knowledge of German should be such that after about six months he/she can also do translations.
The applicants should be willing to work for some years in our translation department in Munich where he/she will find a friendly atmosphere and British fellow-workers.

ROHDE\&SCHWARZ MUNCHEN

Starting salary will be in the region of $£ 8,000$ to $£ 10,000$ p.a., holiday $26-29$ days depending on age. Along with the usual benefits of a large company we offer flexitime, subsidised canteen and travel costs for those living far from the office.
If you are interested, please send your application together with full curriculum vitae to ROHDE \& SCHWARZ, Personalabteilung P176.

> ROHDE \& SCHWARZ GMBH \& CO. KG : MUHLDORFSTR. 15 8000 MÜNCHEN 80 : TEL. [089]4129-2403 : W. GERMANY

DIAL 01-741 4011

Think of the Op Amp and the NAND Gate and your are through to: CHARLES AIREY ASSOCIATES 4 Hammersmith Grove London W6 ONA

CURRENT VACANCIES INCLUDE:
Chief Control Engineer for multi-million pound company engaged in the manufacture of roof tiles. Managerial ability as important as the ability to create a new generation of process automation products. Surrey. Excellent salary.

Young Entrepreneurial Engineers to join a multidisciplinary company with interests in: radio-controlled target systems, range finders, aerospace products, etc. Good microprocessor hardware/ software experience. Wilts. Salary good

Microprocessor Hardware/Sottware Engineers to design systems and supply modules for a very wide range of applications. Experience in either:M6800, R.P.A. 1802, GM 1650 or INTEL 8085. Berks. Salary - "What es worth.'

INTEL Microprocessor Engineers for message switching systems based on a minicomputer and the INTEL 8080/85/86. Surrey - to £9,000.

Digital Engineers for exceptionally advanced technology associated with an MPU control system for shipborne aerials or early warning radar. To £9,000. Berks.

Compurter Engineers for either technical support, field service, permanent site or systems test. Vacancies througout the U.K.

For further details, please contact:

Charles Airey Associates

4 Hammersmith Grove. London W6 ONA. Tel: 01.7414011 "PROBABIY THE BEST KNOWN SUPPLIER OF ELECTRONIC ENGINEERS IN THE COUNIRY"-financiat Times.

Chief Electronics Technician II

We are seeking a person who holds an HNCElectronics or equivalent qualification. The post holder (male / female) will be responsible to the District Engineer for the maintenance of very sophisticated Electronic and Bio Medical Equipment within this Health District. As woll as day-to-day maintenance the operation and extension of a planned preventive maintenance scheme is also required.

A pleasant manner and the ability to advise and instruct operators on safety, and technical use of equipment is an important aspect of the post.
Salary: £5945-£7316 p.a. incl.
Job description and application form available from the District Personnel Department, Lewisham Hospital, High Street, SE 13 6LH. Tel: 01-690 4311 ext. 344.
Closing date: 8 February, 1980
ewisham
(9981)

Health District

Radio Communications Electronics Engineers and Software Designers

Mid-Sussex-S.W. London

Salaries up to $\mathbf{£ 8 , 0 0 0}$
To join our expanding R\&D Laboratories covering a wide range of R.F spectrum, from L.F. to V.H.F. Equipments include transmitters and receivers for marine- and land-based use, radio navaids and radio monitoring remote computer-controlled systems.
Electronics Engineers should have experience in transmitter or receiver design, analogue or digital circuit design, microprocessor applications. Software Designers should be experienced Programmers with an interest in control, signal processing or navigational software.
Attractive salaries are complemented by excellent prospects and generous benefits.
Contact: David Bird, Redifon Telecommunications Limited, Broomhill Road, Wandsworth, London, S.W.18. Phone: 01-874 7281 (reverse charges).

without hitting the first hurdle

Second interviews are where it all happens.
You meet the decision-makers and you know they're interested.

Let Lansdowne save you from all the drudgery of the first-interview rat-race. Just send for our 'First Interview' form and fill it in in the comfort and privacy of your own home.

It will say as much about you as any first interview ever can and we can match it against positions in over 3,000 companies, large and small.

Where there is a position that might suit you, we send your form straight to senior management.

If they're interested, they get straight in touch with you. We don't get in the

middle.

As you'd expect from Britain's most professionally respected register, we maintain total confidentiality throughout.

And you can specify those companies to whom you do not want your details sent.

Stop going to first interviews, just put yourself straight onto the shortlists.

Send us the coupon now.

Lansdowne Appointments Register, Design House, The Mall,
London W5 5LS Tel : 01-579 2282 (24 hour answering service).

Field Engineers

Oil-Well Surveys - worldwide

Selsmograph is an international leader in seismic exploration for oil and gas throughout the world.
We have openings for hardy, single people, under 28, qualified in Electronics to at least HNC level, to train as Oil-Well Field Engineers. Applicants must be prepared to work in all weathers on world-wide assignments at short notice. Please do not apply unless you meet these requirements.
The job involves responsibility for the operation and servicing of electronic instrumentation and for the production of seismic information from drilled wells. You will receive specialist training at our headquarters near Bromley, Kent, and you may be based there whilst working from the UK.
We offer competitive salaries, attractive conditions of employment and leave entitlement plus generous allowances and free messing when on operations.

Please write or telephone for an appilcation form quoting ref. OWS. Appointments Manager, Selsmograph Service (England) Limited, Holwood, Westerham Road, Keston, Kent BR2 6HD. Tel: Farnborough Kent 53355.
(10023)

LONDON BOROUGH OF HOUNSLOW Education Department AUDIO VISUAL TECHNICIAN (HOUNSLOW BOROUGH COLLEGE)
Salary £3657-£3975
To repair and maintain audio visual equipment including " U " Matic and VHS video. Some production work will also be involved and the ability to work in a small team is vital. City and Guilds qualifications are necessary.
Application forms from Mrs G. Beach, Services Officer, Hounslow Borough Colege, London Road, Isleworth, Middlesex. Tel: 01-568 0244, ext. 235.

ROHDE\&SCHWARZ

SENIOR TEST AND CALIBRATION ENGINEERS

With a background in RF and microwaves, experienced in analogue, digita techniques, logic and microprocessor controlled ATE.
also vacancies exist for

TEST \& CALIBRATION ENGINEERS

with knowledge of one or more of the above rechniques.
We offer an exceptional salary * Pefformance related bonus scheme Training abroad Prospects of promotion * A wide variety of work * A happy atmosphere * Non-contributory pension scheme Subsidised restauran

Please write or phone 10
Mr. Z. Eres (Technical Manager) extension 43

Electronic Instruments \& Communications Equipment

Roebuck Road
 Chessington Surrey KT9 1LP
 01-397 8771

BRUNEL UNIVERSITY Special Engineering Programme

LABORATORY TECHNICIAN

Grade 4 required to undertake a wide range of duties relating to mechanical, electrical and electronic engineering including construction, installation, modification, maintenance and servicing of equipment for teaching and project work, which will involve a close working relationship with staff and students.

Applicants should be educated to O.N.C. or C. \& G. level.
Salary (under review) in the scale £3,757-£4,275 including London Weighting.

21 days' annual leave plus Christmas and Easter weeks. Good funcheon, sports and social facilities.

Write for application form to the Establishment Secretary, Brunel University, Uxbridge, Middlesex UB8 3PH or telephone Uxbridge 37188 , extension 49. Closing date: 31 January, 1980.
(9987)

Radio Mechanic

An experienced radio mechanic, male or female, is urgently required to work on installation, maintenance and construction of a wide range of fixed, portable and vehicle radio equipment at London Fire 8rigade HQ, Lambeth, S.E. 1
Rate of pay is over $£ 85$ p.w. for a 40 -hour, 5 -day week with excellent conditions of service.
For further details and an application form, write or phone the Brigade Personnel Officer (E3), Fire Brigade Headquarters, 8 Albert Embankment, London, S.E. 1 (01-583 3811, ext. 527).

London Fire Brigade

NeneCollege Northampton

Applications are invited for the post of:

LECTURER GRADE I/II in Electrical Engineering

Candidates should be graduates or Chartered Engineers with recent industrial experience. The successful applicant will be required to teach general electrical engineering subjects including Instrumentation of the level of a TEC Higher Certificate

Salary Scale Lecturer Grade I £3552-£6060 Lecturer Grade II £4542-£7221

point of entry depending on previous experience.
Applications forms, which should be returned within fourteen days from the date of appearance of this Advertisement, are available, together with further particulars, from: The Dearr, School of Technology, Nene College, St. George's Avenue, Northampton.
(t0005)

Land a goodjob

Your Radio Officer's qualifications could mean a lot here onshore

If you're thinking of a shore-based job, here's where you'll find interesting work, job security, good money, and the opportunity to enjoy all the comforts of home where you appreciate them most - at home!

The Post Office Maritime Service has vacancies at Portishead Radio and some of its other coast stations for qualified Radio Officers to undertake a wide variety of duties, from Morse and teleprinter operating to traffic circulation and radio telephone operating.
To apply, you must have a United Kingdom Maritime Radio Communication Operator's General Certificate or First Class Certificate of proficiency in Radio-telegraphy or an equivalent certificate issued by a

Commonwealth Administration or the Irish Republic. Preferably you should have some sea-going experience.
The starting pay at 25 or over will be about $£ 5381$; after 3 years' service this figure rises to around £7087. (If you are between 19 and 24 your pay on entry will vary between approximately $£ 4229$ and £4937). Overtime is additional, and there is a good pension scheme, sickpay benefits, at least 4 weeks' holiday a year, and excellent prospects of promotion to senior management.

For further information, please telephone Kathleen Watson on 01-432 4869 or write to her at the following address: ETE Maritime Radio Services Division (ET17.1.1.2, Room 643, Union House, St. Martins-le-Grand, London EC1A 1AR.

Post Offifice Telecommunications

Air traffic Engineers

The Civil Aviation Authority has vacancies for men and women as Air Traffic Engineers Grade 2 in its Telecommunications Division offering a variety of work on a wide range of electronic systems and specialised equipments.

Air Traffic Engineers Grade 2 are involved in the installation and maintenance of radio, radar, air navigational and landing aids, and data processing systems. Staff are employed at Air Traffic Control Centres and some Civil Airports and other locations throughout the U.K. but at present most of the vacancies are likely to be in the South of England with some in Scotland and Shetland.

Qualifications and Experience

You should be at least 20 years of age and have obtained either the ONC (ENG) with an electronic bias or C \& G Telecommunications Technician T3 Certificates or T.E.C. Telecommunications Certificate with Radio options or other similar technical qualifications.

You should also have had skilled working experience in radio, radar or data processing.

Salary

Salaries are on the incremental scale $£ 4777-£ 7472$. Posts in the London area attract an additional allowance (Inner London £831 - Outer London £347) Grade 1 posts (maximum salary $£ 8980$) are normally filled by promotion from Grade 2.

For full details and an application form, complete and send the coupon to : CAA' Tels Staff Management (ATE2), Room K206, CAA House, 45/59 Kingsway, London WC2B 6TE. Name Address $\mathrm{s} \quad . \quad$ (WW2/80)

the Long Arm of the Law needs its voice...

Dorset Police Force depends upon its communications system to direct its varied operations, from crime fighting to law enforcement, so its voice must be heard. As

Assistant Communications Officer

it will be your job to see that it is, by assisting the Communications Officer in the maintenance of an efficient communications system throughout the area. This will entail you in inspecting all Force owned equipment concerned with the computer based command and control system and instructing both the Police and civilian personnel in its use. You will also be expected to supervise the installation of telex and teleprinter equipment, emergency radio and telephone links and oversee the manufacture, alteration and installation of specialist electronic and electrical apparatus: This is a highly responsible and specialised post and while we realise that it will be difficult for someone to meet our exact requirements, we would prefer you to have extensive G.P.O. experience and technical training qualifications, such as a Radio Officer's Certificate, Civil Aviation Standard with relevant experience on the most modern communications equipment.

We would be interested in hearing from you when you have completed your service with the Force and we will give you training in areas that you lack experience.

We offer excellent conditions, a salary of $£ 5,067$ inclusive, an essential 'Car User' Allowance and a generous assistance car purchase scheme.

If you'd like to find our more and help the long arm of the law really roar, then please contact the Chief Constable, Police Headquarters, Winfrith, tel. Bindon Abbey (0929) 462727, oxt. 254 for further details and an application form.
Closing date for completed applications: 22nd February, 1980.

PROJECT ENGINEERS

We need two Engineers to work in our Engineering Projects group and assist us with a major programme of expansion and re-equipment.
Duties within this small group include the design and construction of specialised equipment, the appraisal and acceptance testing of new equipment and the planning of system installations.
A thorough knowledge of digital techniques or modern television colour cameras would be an advantage.
Applicants should ideally be qualified to at least HND or equivalent standard and have had several years relevant training and experience in television broadcasting.
Starting salary up to $£ 7500$ depending on qualifications and experience.

Applications in writing to
Personnel Executive Yorkshire Television Ltd The Television Centre Leeds LS31JS

Member of the Trident Television Group

HNC Level Engineers~

(Electrical or Electronic)

Train for the future as a Broadcast Transmission Engineer

Through our network of over 500 transmission stations the IBA is responsible for the transmission of all Independent Television and Local Radio services. With a steadily increasing number of stations, the preparations for the fourth television channel and more local radio stations now underway we are taking on increased responsibilities.
We take great pride in the fact that our system is one of the best in the world and great importance is placed on maintaining the efficiency of the service. To do this we have teams of highly trained and experienced engineers all over the country.
Internal promotions and continued expansion have created a number of opportunities for H.N.C. or H.T.C. or equivalent level engineers (male or female) to train for a challenging future. Our carefully devised training programme, which will commence this summer, can lead to a recognised Diploma and combines theoretical study and practical training. This comprehensive training is a step beyond traditional learning and gives a grounding in broadcast engineering that is second to none. Naturally, course fees, accommodation and meals will be paid during the course. A full driving licence is required, but if you do not already have one, we will assist you by arranging and paying for instruction.
On the satisfactory completion of the training programme, your salary will be $£ 5,880$ per annum and then rise annually to $£ 7,280$ per annum, with further progression to $£ 8,202$ per annum. (During the training period you will receive a salary of up to $£ 4,700$ per annum, depending upon experience.) At higher levels it will be up to you to demonstrate your ability as promotions are based on internal competition - all of our Regional engineering managers started their careers at transmitting stations.
Employment benefits include Free Life Assurance and Personal Accident Schemes, a Contributory Pension Scheme, generous relocation expenses and subsidised mortgage facilities.
Please write or telephone Mike Wright for a fully illustrated information package and application form, at IBA, Crawley Court, Winchester, Hampshire SO21 2QA. Telephone: Winchester 822574.

BRIGHTON POLYTECHNIC LEARNING RESOURCES THREE VACANT POSTS GOOD SALARIES OFFERED ELECTRONIC ENGINEER

To work with a team of experienced engineers and technicians developing colour television and other audio/visual facilities throughout the Polytechnic. The systems developments range from simple sound and TV production equipment to video recording and editing to near broadcast standards.
The Electronic Engineer will apply digital and analogue techniques to develop and install new equipment, up-grade existing facilities and assist with its maintenance. Formal training to Degree or equivalent standard will be expected but proven ability and experience in electronic design and construction (preferably including television) will be rated even more highly.

VIDEO RECORDING AND STUDIO ENGINEER

To lead the work of staff in a newly equipped recording and editing area (using state of the art techniques, including Plumbicon colour technique and a wide range of VTRs - some to broadcast standard) and to contribute to the engineering development of the systems of the area. Also to supervise the two adjoining studios, containing systems with colour corrections and multi-track sound.
Operational experience of sound and colour video systems (preferably in a broadcasting or educational institution) and a degree or equivalent qualification are desirable.

VTR ENGINEER

Unique opportunity to work in the forefront of helical vir developments; using new $1^{\prime \prime}$ high band, broadcast $3 / 4^{\prime \prime}$ and all consumer formats, requiring a qualified engineer to work to broadcast standards but interested in working with all vtr. formats.

Further details and application forms from the Personnel Officer, Brighton Polytechnic, Moulsecoomb, Brighton BN2 4AT. Tel. 0273693655 Ext. 2536. Closing date 30 th January. 1980.
(997)

> East Sussex

ELECTRONICS JOURNALISM

Electron, the weekly technical magazine for designers and managers in electronics, requires a

FEATURES EDITOR

We're looking for someone with a good allround knowledge of electronics to commission features articles. Experience of technical writing or publishing, although preferred, is not essential, but a good command of the English language is important.

Salary: $£ 6464$ plus $£ 210$ reading allowance.
Telephone: Barrie Nicholson on
01-2619111 extension 257 for an application form

Brunei

Training Officer (Teleprinter)
Department of Telecommunications Tax iree salary up to $£ 8,100$

As part of its continuing expansion and improvement programme the Department of Telecommunications requires a Training Officer (Teleprinter).

Candidates should be over 35 years of age and have at least ten years' experience in telecommunications with a minimum of five years in a supervisory capacity. They must have a sound knowledge of teleprinter servicing and overhaul of either the CREED 444 or SIEMENS T100 machines.
The successful candidate will be responsible for the training of local staff both formally and in the field on all aspects of the discipline.
The tax free salaries include a special allowance and attracts a 25% gratuity.
Benefits include free passages, leave allowance, subsidised housing, education allowances, children's holiday visit passages, interest-free car loan and outfit allowance. Contract 3 years.
For full details and application form telephone Anne Eames 01-222 730 ext 3231 or write quoting reference number MT/310/WD.

Grown Agemis ©
 The Crown Agents for Oversea Governments and

 Administrations, Recruitment Division, 4 Millbank, London SW1P 3JD.
Broadcast Engineer

TEST AND SERVICE

Seltech Equipment Limited is a leading supplier of broadcast equipment and its increasing share of the market requires a major expansion programme involving a move to larger modern premises and employment of additional engineering staff.
The position offered will involve testing and servicing a full range of broadcast products including switching, pulse generation, time code, clock and audio systems, utilising the latest technology. The successful applicant will probably be qualified to HND level but broadcast related experience is of prime importance.
The position is based in the company's new premises at Bourne End, Bucks. Limited travel will be required.
Salary and conditions will be in keeping with the position offered.
In the first instance apply to: D. Craddock, General Manager.

SELTECH EQUIPMENI LIMITED

Rose Industrial Estate, Cores End Road. Bourne End, Bucks, SL8 5AT Tel: Maidenhead (0628) 36315 or Bourne End (06285) 29131

ENGINEERS \&

1980 The Decade to Develop your future

If you want a real professional challenge and the rewards your efforts deserve, then

ARAMCO

could be the employer you need
Aramco are the world's largest oil producers with a massive scale of operations in Saudi Arabia. You will be working with modern equipment in a highly professional team on some of the most challenging projects.

The Communications Department of

ARAMCO

require Engineers and Technicians in the following disciplines:

COMMUNICATIONS ENGINEERS 8 TECHNICIANS

ELECTRICAL \& ELECTRONIC ENGINEERS

Salaries are high, as you would suspect with a world leader. Engineers can earn up to £16,900 per contract year, Technicians up to $£ 13,700$ - after tax.

Contracts are single status and renewable with air-conditioned accommodation and free medical care. Married men receive 14 , 14, 25 days' leave after each 4 -month period, single men 30 days after 12 months.

A valid U.K. Driving Licence is required
Find out more about the opportunities with Aramco. Please write, giving brief career details, quoting ref. WW/1/1 to:

COMMUNCCATE NORTH

Development of North Sea installations has increased the need for advanced technology in the field of communications and computer controlled oil production systems. This area offers challenging opportunities and career security throughout the 80 's and beyond.
Our client, a leading communications company, expanding to meet the needs of its clients within the oll industry, invite applications from suitably qualified persons for the positions outlined below:

Communications Engineer Cross Salary £9,000 + p.a.

in addition to a varled workload at onshore locations, responsiblilty will also include troubleshooting, repair and maintenance, and the Installation of communications equipment on offshore platforms. It will be necessary to have experlence of Broad-band systems, multiplex and telephone exchanges, HF/SSB / ISB Systems, VHF/FM Transceivers, portables and teleprinters. Candidates should hold an H.N.C. or B.Sc. In a relevant disclpline or an equivalent forces qualification I.e. Foreman of SIgnals.

Communication Technician Cross Salary $£ 7,000+$ p.a.

 This position is workshop based but provides a varled and interesting workload with a commitment to offshore and fleld work on an ad hoc basis as and when required. A minimum of 5 years experlence In Installation and repair of radio and telecommunications equipment, with competence in the operation of associated test equlpment. Full Clty and Gullds Telecommunications, ONC or equivalent Forces qualifications would be regarded as sultable.
Computer Service Engineer Gross Salary £9,000 + p.a.

This is an extremely interesting position for highly quallfied engineers who will be working on projects both on and offshore. Projects include the Installation of telemetry, supervisory and computer alded oll production systems. Englneers should have broad digltal experience in computer and perlpheral maintenance and have the potentlal to develop systems for clients. Applicants should possess an HNC or B.SC In a relevant discipline and have prevlous supervisory experlence.
Due to the fact that engineers and technicians are required to work both on and offshore it is necessary for them to live in the Aberdeen area. Personnel staff will provide expert help and advice for those wishing to relocate and generous allowances are given to cover relocatlon costs.
Please contact Margaret Duthie at Aberdeen (0224) 28921 for an application form.

GTS Personnel Services

29 York Place, Aberdeen. Telephone: (0224) 28921
Employment Agency Licence No. SC 324.

Appointments
 COMPUTER

Vermont Research Limited

CIRCUIT DESIGN ENGINEER

\star Do you want to join a fast growing international company manufacturing sophisticated computer disc and drum systems.

* Do you want involvement, responsibility and job satisfaction.
* Do you prefer discrete component advanced circuit design.
* Do you want to earn $£ 6,000-£ 7,000$.
* The above position is available to further develop our advanced disc systems incorporating high technology servo and data channel electronics.

> Telephone: Mrs. Amery on Leatherhead (03723) 76221
> Or apply in writing to: Vermont Research Limited Cleeve Road, Leatherhead

> Surrey KT22 7NB

PERIPHERALS

IMPERIAL WAR MUSEUM LONDON Audio Technician

The Museum illustrates and records all aspects of the two world wars and all other military operations involving Britain and the Commonwealth since 1914.

This post is in the Department of Sound Records, where the technical operations are based on a Sound Suite incorporating Leevers-Rich E200 and Revox tape machines, disc reproducers, a Neve BCM 10/2 mixing desk and ancillary facilities. It carries responsibility for regular servicing of all the audio equipment, dubbing operations and training and supervising an assistant to carry out transfer operations. Duties include some location recording, control of public listening facilities, production of programme material for the Museum's public and educational services and supervising the production of copy tapes.

Candidates should preferably have an ONC, C \& G, TEC / SCOTEC or equivalent qualification in Engineering or other relevant subject, but those with special experience will be considered.

All candidates must have an aggregate of at least 8 years recognised training (e.g. apprenticeships) and experience (which may include up to 3 years" relevant full-time study). and be experienced audio equipment technicians.

Salary (under review) starting at $£ 5760$ rises to $£ 6330$. Non-contributory pension scheme.

For further details and an application form (to be returned by February 5, 1980) write to Civil Service Commission, Alencon Link, Basingstoke, Hants, RG21 1JB; or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote ref: T/5272.

UNIVERSITY OF ST. ANDREWS Deppertment of Chernistry Applications are invited for a post of ELECTRONICS
TECHNICIAN
Grado 5
to design and maintain electronic equipment in the Department of Chemistry, Candidates should have an O.N.C., City \& Guilds Ordinary Certificate or equivalent qualification.
Salary at appropriate point on scale $£ 3700$ to £4320 per annum (under review).
Applications with the names of two roferees should be sent to the Establish ments Officer, The Unlversity, College Gite, St. Andrews, fite, by 3182
January, 1980 . (9985)

Thames Television

We have a vacancy for a TELECINE ENGINEER
based at our Euston Studios
The post involves the operation and maintenance of Flying Spot and Photoconductive machines.

Applicants without practical experience must have a theoretical experience must have a theoretical
knowledge of Teiecine operations knowledge of Teiecine operatio and should possess an ON Salification or equivalent. annum to $£ 7480$ per annum, dependent upon experience, for a 38 -hour week.

There are 21 days holiday,
Company Pension Scheme and
subsidised meal facilities.
For an application form please telephone ro write to:-
Ms Pat Evans, Staff Relations Department, Thames Television Ltd Teddington Lock. Middlesex. Telephone: 01-977 3252, Ext. 325.

(10010)

King's College, London ELECTRONICS TECHNICIAN

This post in the Department of Electronic and Electrical Engineering requires experience in the construction, modification and repair of electronic equipment. Salary according to age and experience on scale $£ 4480$ p.a. to $£ 5100$ p.a. ($£ 4706$ p.a. to $£ 5364$ from 1.4.80) inclusive (under review). 5 weeks' annual holiday. Superannuation scheme. Interest-free loans for annual rail season tickets.
Apply in writing with full details to: The Head Clerk (Ref: 221751/WW), King's College, London, Strend WC2R 2LS.
(9971)

ELECTRONIC SERVICE ENGINEER

We are looking for an engineer to take charge of the maintenance of our U.K. computer centre. This position will require good digital electronics background with particular experience in computer peripherals. It will be necessary to travel to the U.S.A. for training courses and liaison with service engineers in our Canadian and North American centres. A company car will be supplied after full training. Our company offer a realistic bonus and free medical schemes.

Salary offered $£ 7,500$ p.a. negotiable depending upon experience in computer systems

Please apply to:

Roy Self
SEFEL GEOPHYSICAL (UK) LTD.
Turriff Building
Great West Road
Brentford
Middlesex
Telephone: (01) 5683273

All the others are measured by us...
At Marconi Instruments we ensure that the very best of innovative design is used on our range of communications test instruments and A.T.E. We have a number of interesting opportunities in our Design, Production and Service Departments and we can offer attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation. If you are interested to hear more, please fill in the following details:-

Return this coupon to John Prodger, Marconi Instruments Limited, FREEPOST, St. Albans, Herts, AL4 OBR. Tel: St Albans 59292

DEVELOPMENT ENGINEER

To work on the design of new broadcast TV studio products. Applicants should have some knowledge of television studio techniques and be qualified to HND or Degree level.

TEST ENGINEERS

At senior and intermediate level to work on our range of advanced broadcast television studio products, including colour and monochrome television studio cameras.
Applicants should have an up-to-date knowledge of digital and linear circuit techniques gained from experience working on television studio equipment, radar equipment or similar sophisticated products and qualified to HND, HNC or equivalent level.

SYSTEMS ENGINEER

You would be involved in all stages of product management on the design and building of studio and mobile TV systems and should be prepared for occasional world-wide travel. The appointment requires someone with a background in this type of work, or in the operational side of television with the ability to take charge of people and deal with problems in the field on your own initiative

Employment benefits include excellent salary, generous holidays, free life and health insurance, pension scheme, subsidised meals and relocation expenses.
Please apply for further details and application forms to Jean Smith at the address given below.

Link Electronics Limited, North Way, Andover, Hants, SP10 5AJ.

Electronics Design Engineers

Rank Research Laboratories are looking for young engineers who are keen to tackle analogue and digital electronic design for thermal imaging systems and the application of microprocessors. This work will attract engineers with ability in digital and analogue design and keenness to exploit the power of electronics in creating new systems in the fields mentioned.

Good salaries will be offered to suitable candidates and it is a Rank Organisation policy to assist professional career development. The company has a contributory pension fund and non-contributory life assurance scheme.

Men and women with a few years' R \& D experience and a degree or equivalent in electronic engineering or physics are invited to phone or write for an application form to the

Administration Manager, Rank Research Laboratories, P.O. Box 33, Phoenix Works, Great West Road, Brentford, Middlesex TW8 9AG. Tel. 01-5689766, extn. 26.

RANKRESEARCH LABORATORIES

Opportunities for Test Engineers

If you've experience in thyristor control drives, digital logic techniques, computer systems, or microprocessors, then you could be the test engineer we're looking for

We need several engineers to work on a wide range of electronic control equipment.
Ideally, you will have served an apprenticeship in the electrical industry, and be qualified to ONC or HNC standard, although experience could well take the place of formal qualifications.

If you're interested, apply to our Personnel Officer on Rugeley 5151 or write to him at:

Applications are welcome from both men and women.

THORN AUTOMATION LIMITED
P.O. Box 4, Rugeley

Staffordshire, W15 1DR

THNER LONDON EDUCATION
AUTHORITY
THE LONDON COLLEGE OF
PRINTING
Elephant and Castle
London SE1 6SB

TELEVISION TECHNICIAN/ ENGINEER

Candidates should be conversant with $1 / 2^{\prime \prime}, 3 / /^{\prime \prime}$ and $1^{\prime \prime}$ black and white colour equipment and be capable of electronic malntenance. Experience in professional broadcasting would be an advantage, as well as an interest in experimental video work. The successful applicant will be expected to assist in the running studio productions, and video tape editing.
Salary scale $£ 4,436.64$ - $£ 6,509.64$ inclusive (ST1/2).
Application form, returnable within 14 days, obtainable from the College on 735-8484, Ext. 227

THE UNIVERSITY OF LEEDS,
SCHOOL OF CHEMISTRY. LELEC: TRONICS TECHNICIANS. Grade 5 , required to work with a team on a wide variety of challenging and interesting work for research and teaching. A wide range of elec tronic experience (minimum 7 years) is required, preferably including analogue and digital circuitry. Minimum qualifications, O.N.C. or equivalent (H.N.C. or Full Technological certificate preferred). Grade 3, this post involves the construction, modification, maintenance and repair of electronic equipment. Applicants should have 3 years' relevant experience and have obtained O.N.C. or equivalent qualifications. Salaries in the range: Grade 5 f3700-f4320 pa rising to $13926-£ 4584$ from 1st April 1980. Grade 3 f 53122 - $\mathrm{f3} 353 \mathrm{pa}$ rising to $\begin{aligned} & \text { s3313- }\{3770 \text { from } 1 \text { st April } 1980, \\ & \text { salaries subject to further review }\end{aligned}$ salaries subject to further review
from 1st October from 1st October 1979. Applications Elo: Mr J. E. Farish, Supervisor Electronics Workshop, School of Chemistry. The University,
LS2 9JT.
(9890)
(9937)

MEDICAL PHYSICS

TECHNICIANS

YOUR EXPERIENCE COULD LEAD TO A HAPPY EXPERIENCE IN HAMPSTEAD. Working at the Royal Free Hospital, Britain's newest and largest teaching
hospital. hospital
We offer an experienced Technician (Grade IV - Electronics) the chance of worklng on the design and construction of specialised electronic equipment, which will be used in both research and clinical applications. This is an excellent for a man or woman who holds City and Guilds Final Technological Certificate in appropriate subjects and ideally has experience in the use of both analogue and digital circuit techniques.

You will be working with four other Technicians and, apart from your design work, you will be expected to carry out mainrenance on a wide range of commercial apparatus within our purpose-built and well-equipped workshop.
In addition to the salary of: $£ 4,280$ $£ 5.504$ (including all allowances - starting point depending on qualifications and
experience), we offer a first-class working experience), we onder a superb choice of
environment and a sup tacilities which include a good staff restaurant, a social club and a brand new recreation and leisure centre with a large sports hall, swimming pool and bar

If you would like to find out more, write to the Personnol Departmens, The Royal Free Hospital, Pond Sirees. N.W.3, or telephone 01.7940500 , ext. 4286. Please quote reference 0761.

Camden and Ialington Area Health Authority (T).
(9994)

UNIVERSITY OF ST. ANDREWS Department of Pzychology

TECHNICIAN GRADE 5 (ELECTRONICS)

Applications are invited for the above post in the Electronics Workshop of the Psychology Department. Applicants should have a good electronies background together with practiconstruction of digital equipment and the design of computer interfaces.

The person appointed will work together with other members of the technical staff on the development of on-line experimental facilities using the Department's Data General computers and DEC GT40 Graphics Display Terminal. There will also be work with the Department's dedicated microcom-
puter systems (Cromenco. Minc-11). Exputer systems (Cromenco. Minc-11). Ex-
perience with small digital computers and a perience with small digital computers and a
knowledge of programming languages is knowledge of programming languages is
desirable. The duties will also involve the use and maintenance of other electronic equipment in the Department.

Salary at appropriate point on scale £3700£4320 (under review). Applications, with full details of career to date, and the names of two referees, should be sent to the Establishments Officer, The University, College Gate, St. Andrews, Fife by 31st January. 1980
(9970)

ELECTRONICS TECHNICIAN

The School of Chemical and Physical Sclences requires a technician to be res ponsible for an electronics teaching Equipment includes oscilloscopes, signal generators, oscillators, various power supplies etc. The technician will be expected to work unassisted if necessary and make all preparatory arrangements in conjunction with course supenvisors. Day release avail able.

T2 salary range £3975-£4383 inclusive.
Application forms from Assistant Registrier (Personnel), Kingaton Polytechnic, Penityn Roed. Kingston upon Thames. 01.5491366.
(9982)

UNIVERSITY OF BRISTOL OEPARTMENT OF ELECTRICAL \& ELECTRONIC ENGINEERINE

TECHNICIAN GRADE 5

A vacancy exists for a technician to work

 the electronic research and teaching attached to these laboratories. The work attached to these laboratories. The workincludes the use of general workshop skills includes the use of general workshop skills for the design and construction of electronic sibility will be taken for supporting students in the electronic teaching and research laboratories and for meintaining the elec tronic equipment.

In addition to applications from candidates who have experience appropriate to this post, applications will also be considered from candidates who are sufficiently ver satile to benefit from training in electronic skills provided that they have suitable ducational qualifications and

Commencing salary will be within the range £3700-£4320 per annum (scale under

Applications should be sent to Professor B. M. Bird. Department of Electrical and Elec Tronic Engineering, University of Bristol, University Engineering Laboratories. Uni versity Walk, Bristol BS8 ITR.

University of London Reactor Centre

ELECTRONICS

 ECHNICIAN GRADE 5hequired for an establishment angaged in research and taaching based on a nuciear research reactor. Must be capable of contructing and maintaining i ariety of olactr anic equipment as lound in a nuclaar oslabilishmanal but previous experience in this particular figld is nol essential. A knowledge of dipilaf circuitry would be an advintago. Applicants our have sevornh yars experience and an appropriate qualificalion is desiritite.

Suary in the scale £3.700-.44,320. Under review 226-5264 from 1.3.80. Post is supernanauable: enerous suck pay scheme: working wedk 37 k Generaus sick pay scheme: working weak 37 h hours. 5 weeks annal soliday plus several days in ppllicalions to: Reactor Supervisor, Univeraliy of London Reactor Centre, sllwood Park, Sunninghill, Ascot, Barks. SL5 7PY. Tel. Ascot 23911 STD 0990), Ext. 272.

LONDON BOROUGH OF 8RENT WILLESDEN COLLEGE OF TECHNOLOGY
Principal: A. K. Barnard, BSc, PhD, cChem, FRIC

Department of Electrical

 EngineeringApplications are invited for the post of

LECTURER I

 IN ELECTRONICSto teach both theory and practice on
TEC Electrical Enginearing and City and Guilds Electronics Servicin courses.
Applicants should have good practical experience preferably in servicing maintenance and possess at least an appropriate final C \& G Technical/ Craft qualification
Salary Scale: $£ 3.954$ to $£ 6,466 \mathrm{in}$

clusive

Further particulars and application forms (SAC) are available from the Chiaf Administrative Office. Willesden College of Technology, Denzil Road LONDON NW10 2XD (Tel: 01-459 0147) returnable within 14 days.

Relocation assistance available in
approved cases.
(10017)

king's College, london

TELEVISION TECHNICIAN

Applications are invited for this post which others interesting and varied opportunities in the mobile unit and studio of the Faculty o Education. Closed circuit experience and current driving licence essential. Salary on
scale $£ 4480$ p.a. $10 ~$
5100
p.a. . $£ 4706$ p. scale £4480 p.a. $10 £ 5100$ p.a. ($£ 4706$ p.a to $£ 5364$ p.8. from 1.4 .80) inclusive (sub
"ject to further review). 5 weeks' annus ject to further review). 5 weeks annus
holiday. Superannuation scheme Interest free loans for annual rail season tickets.

For further detaite and application form write to: The Hend Clork (Rot Strand WC2R2LS.

ARTICLES FOR SALE

GWM RADIO LTD., 40/42 Portland Road, Worthing, Sussex. Tel: 0903
34897 for surplus supples. Av0 8 34897 for surpius supples. AVO 8
£43. Model 7 MK II f 32 . inclusive P x P receivers. Eddystone 730 's Atdanta Marine, B40 ex-Govt. 4 aft
pneumatic miasts by Scam Clark. pneumatic masts by Scam Clark. Microwave Test Equipment, S.a.e for details. 50 micro-amp AVO
movements. All types of radio telemovements. All types of radio telephones, large or small quantities bought and sold, many one of worth a visit, wholesale and retail. LAB CLEARANCE: Signal Gener $\begin{array}{ll}\text { atorsi } & \text { Bridges; } \\ \text { transistor } & \text { Waveform, }\end{array}$ standards; millivoltmeters; dyna: mometers; KW meters; oscilloscopes; recorders; Thermal, sweep low distortion true RMS, audio FR,
deviation. Tel. $040-378296$. deviation. Tel. 040-3762s6. Air or VHF MONITOR RECEIVERS, AIr OI Marine band from 550 . FM Business 50 p P.O., not stamps. Radio Communications Ltd, 13 Clos du Murier, St Sampson, Guernsey, Channe Isles.
SPECTRUM ANALYSER Polarad 641-1 with digital memory 0.01 to 18 GHZ (40 GHZ with ext. mixer not supp.), full service manual,
hardly used, mod. 2nd L.O. out hardly used, mod. 2nd L.O. out
at 5 dBm . No VAT. $£ 6,250$ o.n.o.
 eves. (10001) 'AA' SIZE 500 MAH nicads, $£ 1$ each,
inc VAT, from: SMC Lid S.M. inc. VAT, from: SMC Lid., S.M, House, Osborne Road Totton,
Southampton SO4 4 DN . Tel. (0703) 867333. Telex 477351 SMCOMM G Dealer enquiries Invited. (10002) SOLATRON 436 double beam scope good working order. First $E 60$

TEK 575 semiconductor test set, £500. Hewlett Packard 7123 chart recorder. $£ 500$. Keithley 414 picoammeter, 5150 . - Tel. Rickmansworth 76382 . 500 WATT Boozy \& Hawkes ampli-
fier. 16 and 30 watt paging amplifier. 16 and 30 watt paging ampli(0622) 50350 MKS, Upper Stone St. (0622) 50350 MKS, Upper Stone St. TELEPHONE ANSWERING machine TELEPHONE ANSWERING machine Telephone Burton-on-Trent (0283) 47427 . EX-GOVT. TAPE RECORDERS: E.M.I., Ferrograph, Tandberg, Uher,
Vortexion etc. S.a.e. for details, A. Wright. . Sunningdale, Broad-
Stal heath, Worcester. PRINTER MECH1 UNUSED BARREL PRINTER MECH. Ribbons, hammer drivers included. £150 ono. - Ring Bracknell 50491 after 6 p.m. Ring Bracknell (9976)

SERVICES

ELECTRONIC DESIGN SERVICES. Wide engineering experience avall Wide engineering experience available for the design of basic circuits to complete systems. Analogue DC to 1 GHz and Digital. Write or phone Mr Anderson, Andertronics (Nr. Farnham), Surrey. Runfold (Nr. Farnham), Surrey. Runfold REPETITION SHEET METALWORK on Wiedemann turret press. Long/ short runs. Highly competitive. Quick deliveries commission for introductions. - EES Ltd., Clifiord SHEET METAL WORK fine or general front panels chassis, covers, boxes, prototypes. 1 off or batch work fast turnround. 01-449 Road, New Barnet, Herts. (9908

INDUSTRIAL \& COMMERCIAL ELECTRONICS

PCCB. AND SYSTEMS ASSEMBLY. LARGE AND SMALL BATCHES BACK PLANE, PROTOTYPE AND PRODUCTION WIRING TO SPECIFICATION • PROMPT QUOTATIONS AND DELIVERIES
Park Farm.Hoxne.Diss.Norfolk. Tel: Hoxne 520

PCBs Production
runs or prototypes
Assembly to sample or drawings - Design Service if required * Ouick response to demand

- Expert hand soldering
* Nothing too large or too small

SEAHORSE ELECTRONICS LTD.
Unit 2, Mcow Fam Rood
Rerrico Indurty Esta
Tat. Runcom (09285) 75950

K.A.H. ELECTRONICS LTD.

CONSULTANTS - DESIGNERS

ASSEMBLERS

SPECIALISTS IN MICRO-BASED SYSTEMS 50 Flixton Road Urmaton; Manchester
Tel: 061-748 3878
19919)

PRINTED CIRCUITS BOARDS,

 Quick deliveries, competitive prices. Quotations on reqeust, roller thinning, drilling, etc. Speciality small batches. Larger quantities avallable. Jamieson Automatic Ltd., $1-5$Westgate, Bridlington, North HumWestgate, Bridlington, North Hum-
berside. For the attention of J . berside. For the attention
Harrison
(0262)
74798
77877
ELECTRONIC DESIGN SERVICE. Immediate capacity available for circuit design and development work, PC artwork, etc. Small batch - E.P.D.S. Ltd., 93 b King Street, MAIDSTONE, Kent. 0622-677916.
'KEBMORE for printed circuits, rapid prototype to production runs, also panal printing design, layout, artwork and photographic services. Surrey. Tel. Reigate 41010 . (9973)

I.H.S. SYSTEMS

Due to expansion of our manufac-
turing facilities we are able to undertake assembly and testing of circuit boards or complete units in addition to contract development
(Ẅe can produce, test and calibrate tó la high standard digital ianalogue and RF equipment in batches of tens to thousands
Telephone to arrange for one of our
engineers to call and discuss your
requirements, or send full details for a
prompt quotation.

TEL. 01-253 4562

Circolec

for Electronlc/Electra-Mechanlcal Assembly. We offer the lollowing
large balchas.
PCB and Final Assembly, Repairs and Servicing, Inspection and Functional Test, Protofypes and Associated Ser vices, and modifications.
For compalttye prices and last turnaround. contact Circolec. Tel: $01-767$ 1233: I Ifranciscan hoad. Tooting.
[9989]

> PCB ARTWORK DESIGN SERVICE with component notation masters and assembly drawings. PADS Southwood Road, New Eltham SE9.

> SMALL BATCH productions wiring assembly to sample or dnawings. Specialist in printed circuits as hopsfield, Harlow, Essex 027933018.

> ELECTRONIC ASSEMBLY, High quality. Quick turn around for all Our needs: Prototypes, Batch
${ }^{-C B}$ Hardwiring. Testing, Wand CB Hardwlring. Testing. Wand Lronics, Frogmore, Wandsworth,

DESIGN SĖRVICE E Electronic De

 sign Development and Production Service avallable in Digital and Analogue Instruments, RF Transmitters and Receivers for control of any function at any range. Telemetery, Video Transmitters and Montors, Motorised Pan and Tilt Heads etc. Suppliers to the Industry for 16 years. Phone or write Mr. Falkner, R.C.S. Electronics, 6 Wolsey Road, Ashford, Middlesex. Phone Ashford 53661 . 8341DESIGN DEVELOPMENT MANU FACTURE, We can offer a high quality, professional service, covering all aspects from original design to small batch production. Digital/ Analogue prototypes welcome. For competitive pricing and quick delivery phone Mr. Flower, Digitalis Ttd,, 9, Milldown Road, Goring-onThames, Oxfordshire. Tel: 04914 3162.
$(9925$
cision ELECTRONIC and light precision engineering, design, prototype, work batch production. Hine Electronics. Tel. Bradford 583210.

SERVICES

TEST EQUIPMENT CALIBRATION AND REPAIR

 Quick turn round, attractive rates, ring for
DUTCHGATE LTD.

Southemption

SMALL BATCH

Productions assembled irom Sample or
Drawings. Quick deliveries. Competitive
pricesign Service also available. Write or telephone
SYMERGY BRITON ELECTRONICS HMITED
BRITON HOUSE, 62 RAIL WAY ROAD DOWHHAM MARKET NORFOLK PE38 9EL
Tedephone p336 63] 5222 (9942)

PRINTED CIRCUIT MANUFACTURE.

Very fast, reliable service. Lowest prices. Prototypes welcome. Inhouse photography. Phone 06474-573 for instant quote or write to AKTRO. NICS Ltd., $42 / 44$ Ford Street, Moretonhampstead, Devon. (9857
SMALL BATCH PCB's produced from your artwork. Also DiALS, PANELS, LABELS. Camera work undertaken. FAST TURNAROUND. Hatton Place, London ECIN 8̇V. Tel. 01-405 4127/0960.

TO MANUFACTURERS, WHOLESALERS \& BULK BUYERS ONLY

Large quantities of Radio, T.V. and Electronic Compinents
RESISTORS CARBON \& C/F $1 / 8,1 / 4,1 / 2,1 / 3$. '1 Watt from 1 ohm to 10 még.
RESISTORS WIREWOUND. $11 / 2,2,3,5,10,14,25$ Watt
CAPACITORS. Silver mica, Polystyrene, Polyester, Disc Ceramics, Metalamite, C280, etc
Convergence Pots, Slider Pots, Electrolytic condensors, Can Types, Axial, Radial, etc.
Transformers, chokes, hopts, tuners, speakers, cables, screened wires, connecting wires, screws, nuts, transistors, ICs, Diodes, etc., etc. All at Knockout prices. Come and pay us a visit. Telephone 4452713, 4450749

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho Corner

RCA SOLID STATE COS/MOS MEMORIES
MICROPROCESSORS AND
SUPPORT SYSTEMS DATA
800K
by RCA
H/B OF ELECTRONICS
CALCULATIONS FOR ENGINEERS \& TECHNICIANS by M. Kaufman Price; $£ 14.70$ ELECTRONIC DESIGNER'S H/8 by K. Hemingway Price: $\mathbb{E 1 3 . 2 5}$ ACTIVE FILTERS FOR
COMMUNICATIONS \&
INSTRUMENTATION
Iby Bowron P. WITH EXPERIMENTS
by H. M. Berlin Price: ©6.4 DESIGN OF PHASE LOCKED LOOP CIRCUITS WITH EXPERIMENTS
by H. M. Berlin Price: $\mathbf{E 6 . 4 5}$ Z80 ASSEMBLY LANGUAGE PROGRAMMING
by L. A. Leventhal
LOGIC \& MEMORY
Price: £5.75
EXPERIMENTS USING TTLIC'S BKI
by D. G. Larsen Price: $£ 7.60$ TELETEXT \& VIEWDATA by S. A. Money Price: $£ 6.00$
THE EUROPEAN CMOS SELEC TION
by Motorola
Price: £7.75

* ALL PRICES INCLUDĖ POSTAGE *

THE MODERN BOOK CO.
Specialist in Scientific \& Technical Books
19-21 PRAED STREET LONDON W2 1NP

Closed Sat. 1 p.m
(8974)

TRANSFORMER PROBLEMS?

1VA-1 KVA Prototypes in 7.10 days.

 Phone Vince Sellar on 06076 6671.6.TRENT TRANSFORMERS LTD. 26 Derby Road
Long Eaton, Nottingham (8363)

TEK 545 B mainframe
TEK 547 mainframe TEK 151 mainframe Sameling plug in 1 LIO Spectrum analyser plu TEK 42215 MHZ portable RACAL 9913200 MHZ counter
SYSTEM Donner 5008500 MHZ SYSTEM Donner 5008500 MHZ sw
POLYSKOP 1400 MHZ
POLYSKOP 21200 MHZ POLYSKIP 3110 MHZ
FLUKE 8300 DMM AC FLUKE 8300 DMM AC IDC $/ O H M S$ BRADLEY 233 post generato
PHILIPS PM 6505 television

MARCONI TF 144 H sig/gen MARCONI TF 868/1 LCR bridge MARCON TF $1370 / 9$ oscillato
MARCONI TF 2162 attenuator MARCONI TF 220130 MHZ scope MARCONI TF 2169 pulse modulator $\begin{array}{r}\mathrm{E} 195 \\ \mathrm{E} 195\end{array}$ HP 3200 B VHF oscillator
HP 211 A square wave gen
HP 400 H voltmeter
HP 140 A mainframe
HP 140 A mainframe
HP 1416 A swept frea ind
HP 8694 A $8-12.4$ GHZ sweeper plu
HP 8694 B 7.12.4 GHZ sweoper plu
HP 8693 A 3.7-8.3 GHZ sweeper plug in
HP 1403 verical plup in ….. $£ 400$
HP 1420 thrizontal plug in
SINTEL Capacitance bridge
ADVANCE DVM5
BPLCL
AVO 7
AVO 8

TELEQUIPMENT S 51 E OscillosCOPe $\begin{array}{lll}\text { TELEQUIPMENT S } 52 \text { scope } & \ldots . . & \text { E110 } \\ \text { TELEQUIPMENT S } 61 \text { A scope } & \ldots & £ 185\end{array}$ Ail $+15 \%$ Vat
ALL EQUIPMENT WORKING \&

DUTCHGATE LTD

94 ALFRISTON GARDENS
HOLING, SOUTHAMPTO
SOTON (0703) 431323
INVERTERS
High quality DC-AC. Also "no brean' (2ms) static switch. 19" rack. Auto Charger.

COMPUTER POWER SYSTEMS Interport Mains-Store Lid. P0851, Londan W11 3BZ
Tel: 01-727 7042 or 0225310916
(9101)

MSF CLOCK

NEWI Gives ABSOLUTE TIME, always correct, never gains or loses. auto-reset
after power failure, 8 digit LED shows date, hours, minutes and seconds, also parallel BCD output. receives Rugby 60 KHz time signals, only $5 \times 8 \times 15 \mathrm{~cm}$,
built-in antenna, 1000 Km range for built-in antenna, 1000 Km range for navigation. $£ 48.80$
V.LF. 7 10-150KHz Receiver $\mathbf{1 1 0 . 7 0 .}$ Each fun-to-build kit includes all parts, printed circuit, case, postage, eIC.
back assurance so SEND off NOW.
Cambridge Kits, 45 (WB) Old School Lane, Milton, Cambridge.

COLOUR, UHF AND TV SPANES (miniature size 43 x 3才 $\times 28$). New Saw Filter IF Amplifier plus tuner (complete and tested for sound and vision, $£ 28.50, \mathrm{p} / \mathrm{p} £ 1$.
TELETEXT, Ceefax and Oracle in Colour, Manor Supplies "easy to assemble ". Teletext kit including Tezas Thaz XM11 Decoder. External unit aerial input, no other connections to set. Wide range of facilities in colour include 7 channel selection, Mix Newsfash and Update. (Price: Texas Tifax Xmil $\begin{aligned} & \text { E130, } \\ & \text { Auxiliary Units } 888 \text {, } \\ & \text { Case }\end{aligned}$ p/p £2.50). Demonstration model at 172 West End Lane, NW6. Also latest Mullard Teletext bolle or module available. call, phon
COMBINED COLOUR BAR AND CROSS HATCH GENERATOR KIT (MK 4) UHF aerial input type. Eight pal vertical colour bars, R-Y, B-I'rols $£ 35 \mathrm{p} / \mathrm{p} \mathrm{f1}$; Battery Hold. controls $£ 35 \mathrm{p} / \mathrm{p}$ fl; Battery Hold. ers $£ 1.50$; Alternative Mains Supply Kit £4.80; De Luxe Case £4.80; Aluminium Case £2.60. Built and £58, p/p $£ 1.20$.
CROSS HATCH KIT, UHF aerial in. put type, also gives peak white and black levels, battery operated $£ 11$ $\mathrm{p} / \mathrm{p} 45 \mathrm{p}$. Add-on Grey scale kit $\begin{array}{llll}\mathrm{p} / \mathrm{p} & 45 \mathrm{p} \text {. Add•0n Grey scale kit } \\ \mathrm{k} 2.90 & \mathrm{p} / \mathrm{p} & 35 \mathrm{p} ; & \mathrm{De} \text { Luxe Case }\end{array}$ £4.80; Aluminium Case $£ 2$ p/p 85 p . Built and tested in De Luxe Case $£ 23.80 \mathrm{p} / \mathrm{p} £ 1.20$.
UHF SIGNAL STRENGTH METER KIT $£ 16.80$, alum. Case $£ 1.50$, De Luxe Case $£ 4.80 \mathrm{p} / \mathrm{p}$ £1.
CRI TEST AND REACTIVATOR KIT or Colour and Mono £20.80, p/p 11.30; TV 625 IF Unit for Ei-fi amps or tape rec. $£ 6.80$, p/p 75p. Surplus Bush IF panels. A816 £2.80, TV312 (single IC) £5. BC5600 (Exp) $£ 5$, A823 (Exp) $£ 2.80 \mathrm{p} / \mathrm{p}$ 85p. Bush A823 (A807) Decoder panel $£ 7.50$ p/p f1. A823 Scan Control panel E3.50, blue lat, 75p. Philips G6 single standard convergence unit $£ 3.75$ p/p 90p. GEC 2040 ex rental panels, Decoder $£ 5$, Time Base $£ 5 \mathrm{p} / \mathrm{p} 90 \mathrm{p}$. Thorn 3000 ex rental panels, Video, Decoder, frame, IF is p/p 90 p . Colour Scan colls, Plessey 26 , Yoke £3.50, blue lat, 76 p (Mullard also avallable). Mono Scan colls Philips Pye £2.80. Thorn £2.80 p/p 85p. Phillps G8 Decoder panels, Salvaged for spares $£ 3.80 \mathrm{p} / \mathrm{p} 90 \mathrm{p}$. Varicap OHF tuners Gen Instruments $£ 3.50$, Philips G8 $£ 5.50$, ELC1043/05 5.50 ; Philips G8 £5.50 p/p 35p. Salvaged UHF Varicap tuners $51.50 \mathrm{p} / \mathrm{p} 35 \mathrm{p}$ $88.50 \mathrm{p} / \mathrm{D} 65 \mathrm{p}$. Varicap control units ${ }^{3} .50 \mathrm{p} / \mathrm{p} 65 \mathrm{p}$. Varicap control units, £1.80, 6 pos. (special offer) £1.80 7 pos. $£ 3.80$ p/p 45p. Touch Tune control unit Bush 6 pos. $£ 5 \mathrm{p} / \mathrm{p}$ 75 p . UHF transtd tuners, rotary incl. slow motion drive $£ 2.50,4$ pos.
push button $£ 2.50,6$ pos. push butpush button $£ 2.50,6$ pos. push but-
ton $£ 4.20 \mathrm{p} / \mathrm{p}$ £i. (Thorne, GEC, Bush, Decca, etc., special types available, detalls on request). Delay Línes DL20, DL5 £3.50, DL1 80 p p/p 65p. Remote Control Thorn-type Transmitter, receiver $£ 2$ pair p/p 45 p . Large selection of lopts, triplers, mains droppers, and other spares for popular makes of colour
and mono receivers. MANOR SUPPLIES, 172 WEST END LANE, WEST RAMPSTEAD, LON
DON NW6, SHOP PREMISES, EON NW6, SHOP WREACCESSIBLE, WEST HAMP. STEAD-BARERLOO, JUBILEE TUBE, and BRITISH RAIL N. LONDON PANCRAS-BEDFORD, BUSES 28 , 159, 2, 13. Callers welcome. Thousands of additional items available at shop premises not normally adcluding Saturday (Thursday day). MAIL ORDER. MANOR DRIVEDER: 64 GOLDERS $9 H T$ Tel. 01-794 8751. All prices 9HT. Tel. 01-794 87
subject to 15% VAT.

ENCAPSULATING, coils, transformers, components, degassing, sillcone rubber, resin, epoxy. Lost wax casting for brass, bronze, silver, etc. Impregnating coils, trans-
formers, components. Vacuum formers, components. Vacuum equipinent low cost, used and new. Also for CRT regunning met allising. Research \& Development. Barratts, Mayo Road, Croydon,
CR0 2QP. $01-684$ 9917.

EXCLUSIVE OFFER

Ferrograph YO 2 rack $1 /{ }^{\prime \prime} /$ EMI RE-301 Ampex FR 13007 track $1 / 2^{\prime \prime}$ UHER $40001 / 4^{4 \prime}$ Consolidated 28007 track $\cdot / 2^{\prime \prime}$ Plessey 1033 Digital Units. 7 track $1 / 2$ " Plessey M5500 Digital Unit. 7 tracks ${ }^{\prime \prime}{ }^{\prime \prime}$ Ampex FR-1100. 6 speeds, stereo $1 / 4$ " Ampex FR600. 4 speeds. 7 track $1 / 2$ " D.R.I. RC.I. 4 speeds. 4 tracks $1 / 4^{\prime \prime}$ Min-com CMP. 100. 6 speeds, 7 tracks $1^{\prime \prime}, 1 / 2^{\prime \prime}, 1^{\text {o1 }}$ Ampex 3512 speed 2 tracks $1 / /^{\prime \prime}$ 3M. H. 4 speeds 14 track ${ }^{\prime \prime}$	
Prices of thoove $£ 70$ to $\mathbf{£ 5 0 0}$ Also Transport Decks only aveilable	
We have e targe quantity of "bits and pieces" we cannot list - please send us your requirements. We can probsbly help - all enquiries answered.	
own meriel equipmemt to professional MOO que	
Marconi HR-23 T.S.E. Aecsivers K.B. Discomatic Juke Boxes SCR-625 Mine Detectors in chests Hewd TF/868 Universal Bridges Hewlet Packard 21 IA Sa. Wave Gen\qquad Astrodata \& Ikor Meteorological Equipment Ion Pump E.M.T. Powér Supplies Haynes D.W. 500W Cased Transformers 240/115V	
Racal Rá6i Adaptors	
Telequipment C.I. Oscilloscope Calibravors	
Tektronix 551 Scopes 555 Scopes $\quad ~$	
1 Schriber RC-28 $^{\text {d }}$	
	Lenkurt Model 260 Data
noramic SB 154 Analyse	
Marconi TF 1168 Disc Ostillators	
Hughes Memoscopes	
Nems Clarke 1306 VAF Receivers	
Helix Aerrals $11^{\prime \prime}$ \& $188^{\prime \prime}$ and Reflectiors ... E26.00	
Texironix 543A Oscilloscopes CA Plug-ins £210.00	
coni TF 2200A Oscilloscop	
Simon Mobile 80 foot Tower Mydraulic Bot extended, 12 $6^{\prime \prime}$ closed. Mounted on 4 wheel drive Bedford Truck. self tevelling. raised and lowered in 10 minutes. Usedtor servcing dish aerials. P.U.R.	
Collins KWT 6 Transmitter Receivers SSB ... P. ${ }^{\text {R }}$	
-	
9 Magnification M	
coni TF $801 / 0 / 1$ AM Signal Gererst	
* EMI $1 / 2^{*}$ Audio Tape 3600+1 $10^{1 / 2^{\prime \prime}}$ nab. New E4.50	
$15^{\prime \prime} .4$ amplifiers Montor Scope. All rack mounting \& Transistorised E250.00	
	E4/28 C.R.T.S £18.00
	SE5/2AC.R.T.s ${ }^{\text {a }}$.
	ZP/Z [DM
	B. filte
	avo CT 4714 Electronic Multimeters $£ 75.00$
	A301 Tape Recorders E5
	Stonorette L Tape Recorders ¢29.00
	Uniselectiors. 10 Bank 25-way $£ 3.50$
	Aluminium Masts, complete \quad ¢55.00
Man	
We have a quantity of Technical Manuals and Periodicals of Electronic Equipment, not photosiats. 1940 to 1960. British and American. No lists Enquiries invited.	
* Oate Efficiency Respoolers 240 V - Belling Lee 100 Amp Interference filters - Oscilloscope Trolleys from - Racal MA1978 pre-Selectors - Rack Mounting Operator Tables * 75 ft . Aluminium Latice Masis, 20 " sides - Recal MA. 175 L.S.B. Modulators (new) * Tally 5/8 Track Tape Readers Track Spooling $\begin{aligned} & \text { E65.00 }\end{aligned}$ - Racal RA. 63 SSB Adaptors, new $£ 70.00$ - Racal RA 298 I.S.B. Transistorised Adaptors (new)	
We have a variad assorment of industrial and professional Cathode Ray Tubes available. List on request.	

P. HARRIS

ORGANFORD, DORSET,

BH16 6BR

(0202) 765051

EOUIPMENT WANTED	ARTICLES WANTED
TO ALL MANUFACTUFERS AND WHOLESALERS IN THE ELECTRONIC RADIO AND TV FIELD	
BROADFIELDS \& MAYCO DISPOSALS will pay you top prices for any largif stocks of surplus or redundant components which you "may wish to clear. We will call anywhere in: the United Kingdom. 21 LODGE LANE NORTH FINCHLEY, LONDON N12 819 Tidephone Mos. $01-4450748 / 4452713$ Aftier office houre 8587624	Cumsar ien Fuxpment, Compubarn Pexigherala, ale:

A.R. Sinclair

Electronic Stockholders Stevenage 812193
We purchase all types of Mechanical and Electronic Equipment and Surplus stocks.

ARTICLES WANTED

HU-GO offer prompt settlement for surplus electronics components, TV/ audio spares are of particular interest. Contact Miss Hughs, 9 Westhawe, Bretton, Peterborough. Tel. 265219.

WANTED: Recording equipment of all ages and varieties (California U.S.A.). Tel. (415) 232-7933. (9814

WANTED

Test equipment, recelvers, valves, transmitters, components, cable and electronic scrap, any quamtity. Prompt service and cash. Member of A.R.R.A

```
M B B RADIO
86 Bishopsgate Street
``` 0532-35648

\section*{SPOT CASH}
paid for all forms of electronics equip. ment and components.
F.R.G. General Supplies 550 Kingaton Road London SW20 8DR Tel: 01-404 5011
Telex: 24224. Quote Ref. 3165

\section*{COURSES}

THE UNIVERSITY OF ASTON IN BIRMINGHAM
msc course in ELECTRICAL AND ELECTRONIC ENGINEERING
With specialisation in any one of the following: Electrical Machines and Power Electronics, Electrical Machines and Power Systems, Communication Systems, Electronic Instrumentation. Systems Control Engineering and Digital Electronic Systems, Systems. Micro-processors.
The course, which commences in October 1980 may be taken on a full-time, part-time, sandwich or block-release basis, and is open science or engineering, or who will hold equivalent qualifications, by that date. The Science Research Council has accepted the course as suitable for the tenure of its advanced course studentships.
A Diplome Course, in some of the above A Diploma Course, in some of the above
topics or in Power Systems, is also open to topics or in wower Systems, is also opents with the above, or slightly lower qualifications.

RESEARCH IN ELECTRICAL AND ELECTRONIC ENGINEERING
Applications are also invited from similarly qualified persons who wish to pursue a course in research leading to the degree of MPhil or PhD in any of the above ropics, or in Electro-heat
Application forms and further particulars from the Head of the Department of Elec tical and Electronics Engineering (Ref. MSc 5). The University of Aston in Birmingham, Birmingham B4 7PB. (10022)

\section*{ARTICLES WANTED}

STORAGE SPACE is expensive, why store redundant and obsolete equipment? For fast and efficient clearance of all test gear, power supplies, PC boards, components etc., regardless of condlion or quantities. Call \(01-771\) 9413. (8209

TURN YOUR SURPLUS Capacitors, transistors, etc, into cash. Contact COLESS-HARDING \& Co., 103 South Brink, Wisbech, Camibs. 0945-4188. Immediate settlement. We also welcome the opportunity to quote for complete factory clearance. (9509

\section*{CLASSIFIED ADVERTISEMENTS}

\section*{Use this Form for your Sales and Wants}

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SEI 9LU
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW
- Rate £1. 50 PER LINE. Average six words per line. Minimum THREE lines.
- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plüs 60p.
- Cheques, etc., payable to "Wireless World" and crossed " \& Co.

NAME.

ADDRESS
\(\qquad\)
\(\qquad\)
\(\square\)

1 펑
ELECTRONIC
BROKERS LIMITED
49.53 Pancras Road, Lond on NW1 2 QB. Tel: 01.8377781 . Telex: 298694.

\section*{Brand New -}

Top Quality Performance Be Value HM 307
Single Trace DC-10
\(\mathrm{MHz}, 5 \mathrm{mV} / \mathrm{cm}\)
Plus built-in Component Tester.

\section*{£149}

HM 312
Dual Trace DC-20 MHz,
\(5 \mathrm{mV} / \mathrm{cm}\). Sweep Speeds
\(40 \mathrm{~ns}-0.2 \mathrm{~s} / \mathrm{cm} 8 \times 10\)
cm Display.

Other models up 1050 MHz bandwidth available. Prices and full specs on request. Full demonstration at ourpremises Quick delivery
Prices do not include VAT (\(15 \%\)) or Carriage.

\section*{INDEX TO ADVERTISERS Appointments Vacant Advertisements appear on pages 126-143}

PAGE
8 Olson Electronics
20

Powertran Electronlcs \(\ldots \ldots . .\). 97, 102, 103
Precision Petite Ltd 6

Pype Hayes Radio 122
Quantum Electronics 7
Radio Components Specialists 101
Radio Shack Ltd 99
R.C.S. Electronics 100
R.S.T. Valves

91
Sabtronics International 75
Safgan Electronics Ltd . 105
Samsons Electronics . 106
Science of Cambridge . 76
Scopex Instruments Ltd 11
Service Trading 20
Sescom 20
Shure Electronics Lid 14, 15
Sonic Sound Audio ….................... 12,110
Sota Communications 108
Special Products Ltd 112
Star Devices
Sugden, J. E. \& Co Ltd 28
Surrey Electronlcs Ltd 108
Swanley Electronics Ltd 109
Switchgear
109

Tandy Corporation

Technomatic Ltd

119
cover ili
23,28
Tektronix (Telequipment)
Teleradio Electronícs 110
TMEC
110
26

Vero Speed 30
Vero Systems Ltd .. 8

Cover iv Wellbury 124
West Hyde Developments Ltd 124
Wilmslow Audio 2
Z. \& I. Aero Services Ltd

24, 106

\section*{overseas advertisement}

\section*{AGENTS:}

France \& Belgium: Norbert Hellin, 50 Rue de Chemin Veat F-9100, Boulogne, Paris.

Hungary: Mrs Edit, Bajusz, Hungexpo Advenising Agency
Budapest XIV, Varosliget.
Telephone: 22500 B - Telex: Budapest 22.4525
INTFOIRE
Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero. Via Mantegna 6, 20154 Milan.
Telephone: 347051 - Telex: 37342 Kompass

Japan: Mr. Inatsuki, Trade Media - IBPA (Japan). B. 212. Azabu Heights, 1.5.10 Roppongi, Minato-ku, Tokyo 106. Telephone: (03) 585058
United State of America: Ray Barnes, IPC Business Press, 205 East 42 nd Street, New York. NY 10017 - Telephone: (212) 6895961 - Telex: 421710.

Mr Jack Farley Jnr., The Farley Co., Suite 1584, 35 East Wacker Drive, Chicago, Hlinois 60601 - Telephone: (312) 63074.

Mr Victor A. Jauch, Elmatex International, P.O. Box 34607 LO5 Angeles, Calif. 90034, USA. - Telephone (213) 821 8581 - Telex: 18.1059.

Mr Jack Mentel. The Farley Co., Suite 650, Ranna Building. Cleveland, Ohio 4415 -Telephone: (216) 6211919. Mr Ray Rickles, Ray Rickles \&. Co., P.O. Box 2028, Miam/ Beach, Florida 33140 - Telephone: (305) 5327301. Mr Tim Parks. Ray Rickles \& Co., 3116 Maple Drive N.E., Atlanta, Georgia 30305 . Telephone: (404) 2377432. Mike Loughlin, IPC Business Press, 15055 , Memorial Ste 119,
Mouston, Texas 77079 - Telephone (713) 783 8673 Housfon, Texas 77079 - Telephone (713) 7838673.

Canada: Mr Colin M. MacCulloch, International Advertising Consultants Lid, 915 Cartion Tower, 2 Carlion Street, Toronto 2- Telephone: (4 16) 3642269

A 63-key ASCII keyboard with 625-line TV interface, 4-page memory and microprocessor interface. Details in our catalogue.

Our catalogue even includes some popular car accessories at marvellous prices.

A 10-channel stereo graphic equaliser with a quality specification at an unbeatable price when you build it yourself. Full specification in our catalogue.

These are just some of the metal cases we stock. There are dozens of plastic ones to choose from as well. See pages 52 to 57 of our catalogue.

A massive new catalogue from Maplin that's even
bigger and better than before. If you ever buy electronic components, this is the one catalogue you must not be without. Over 280 pages - some in full colour-its a comprehensive guide to electronic components with hundreds of photographs and illustrations and page after page of invaluable data.
Our bi-monthly newsletter contans guaranteed prices, special offers and all the latest news from Maplin.

Mobile amateur radio, TV and FM aerials plus lots of accessories are described in our catalogue.

A digitally controlled stereo synthesiser the 5600 S with more facilities than almost anything up to \(£ 3,000\). Build it yourself for less than £750. Full specification in our catalogue.

A superb range of microphones and accessories at really low prices.
Take a look in our catalogue - send the coupon now!

An attractive mains alarm clock with radio switching function and battery back up! Complete kit with case only £18.38 (inct. VAT \& p \& p) MA1023 module only \(£ 8.42\) (incl. VAT).

A superb technical bookshop in your home! All you need is our catalogue. Post the coupon now!

A hi-fi stereo tuner with medium and long wave, FM stereo and UHF TV sound! Full construction details in our catalogue.

Add-on bass pedal unit for organs. Has excellent bass guitar stop for guitarists accompaniment. Specification in our catalogue.

All mail to:-
P.O. Box 3, Rayleigh, Essex SS6 8LR.

Telephone: Southend (0702) 554155.
Shop: 284 London Road, Westcliff-on-Sea, Essex. (Closed on Monday).
Telephone: Southend (0702) 554000.

\title{
Even if tin prices stabilised, a change from 60/40 alloy to Savbit Solder could save you floo/tonne, ensure a better job...
}

The reason is that Multicore Savbit not only solves the problem of fine copper wires and thin foils deteriorating during soldering, but also contains less tin than 60/40 alloy. We make both so we are just offering to alleviate your rising metals costs.

During normal soldering, a dissolving action causes the wire to weaken and embrittle-often to break during subsequent field use.

Savbit, however, is a rosin based, 5 -core wire solder comparable in joint quality to standard high performance alloys, but capable of dramatically inhibiting the copper dissolving action.

As this diagram shows," compared with a 60/40 alloy, Savbit can reduce the dissolution of copper by as much as 100 times. Yet wetting rate, flow, conductivity and capillary force are almost identical - with creep strength and shear strength actually increased.
*(Indicative of product advantages only; not to scale)

Cracked iron-plated bit, after 40,000 simulated operations using 60/40 Solder.

Some people think Savbit alloy is only usable with plain copper soldering iron bits, but this isn't true.

As these photographs illustrate dramatically, Savbit also saves significantly on the cost of iron-plated soldering iron bits, which have a copper core. This is exposed through cracks in the plating.

Add this advantage to the increased reliability and joint quality Savbit offers, and you'll understand why more and more 60/40 users are making the changeand profiting. The Ministry of Defence have given a special new Approval No. DTD 900/4535A for Savbit alloy with ERSIN 362 flux to be used in lieu of Solders to B.S. 219 and B.S. 441 .

Cracked iron-plated bit, after 40,000 simulated operations using SAVBIT Solder. Savbit or any other Multicore products, please write on your company's letterhead direct to:

Multicore Solders Limited,
Maylands Avenue, Hemel Hempstead, Herts. HP2 7EP.
Telephone: Hemel Hempstead 3636. Telex: 82363.```

[^0]: KGM ELECTRONICS LIMITED
 Clock Tower Road, Isleworth, Middlesex TW7 6DU, England.
 KEM
 ELECTRONICS
 LIMITED
 Telephone: 01-568 0151. Telex: 934120

[^1]:
 Anders Electronics Ltd., 48-56 Bayham Place, London, NW1 OEU Tel: 01-387 9092 Telex: 27364

[^2]: *The intended optimum mixer power will occur naturally if the module is boited to a $160 \times 430 \mathrm{~mm}$ aperture in a $1 / 16$ in thick metal plate, such as the side of a box, and the other side of the aperture is fitted with the shroud shown in Fig. 10 which comes with it.

[^3]: The two year giarantee and free advisoify service apply throughout the United Kungdom ard Eire and free transportation is provided in Engiand. Scotiand and Wates. excluding the Channer istands and the isle of Man.

