

wireless world

Electronics, Television, Radio, Audio

MAY 1977
 Vol 83
 No 1497

Contents

35 Surround sound - time to consolidate
36 Radio in the '80s by Duncan MacEwan
41 BBC Matrix H by P. A. Ratliffe and D. J. Meares
46 World of amateur radio
47 Automatic electrolytic tester by A. Drummond-Murray
50 Variomatrix adapter for System 45J and Matrix H
by Michael A Gerzon
51 H.F. predictions
52 Logic design - 4 by B. Holdsworth and D. Zissos
55 Viewdata - $\mathbf{4}$ by S. Fedida
60 Letters to the editor
Mobile radio planning
Do-it-yourself biofeedback
Audibility of phase effects
63 News of the month
Annan and technology
ITU Conference results
British Rail high-speed track measurements
67 Two-stage linear amplifier by Helge Gronberg
71 Power semiconductors - 2 by Mike Sagin
79 Circuit ideas
Linear voltage/frequency converter
Pulse-counting frequency comparator
Op-amp power output stage
82 New tomography machine by John Dwyer
85 New products
APPOINTMENTS VACANT
INDEX TO ADVERTISERS

[^0]

Front cover is a print produced by the Tomoscanner, described by John Dwyer on page 82 of this issue. Print supplied by J. \& P. Engineering (Reading) Ltd.

IN OUR NEXT ISSUE

Loudspeakers and rooms. A discussion by James Moir of the interaction between the output of a loudspeaker and the acoustic performance of the listening room.

Matrix H decoding. Circuit details of a matrix H variable matrix decoder, a development of Sansui's Variomatrix, for use with experimental surround-sound programmes.

Using a microprocessor. The start of a series of articles on the design of a typical processor-based control system, starting with no assumptions of prior knowledge on the reader's part.
:

QUAD-Quarter of a century of amplifier development

The Acoustical Manufacturing Co. Ltd. have been designing and producing amplifiers since 1936 but it was not until 1951 that the Q.U.A.D. 1 was introduced, the forerunner of the Quad serfes of Amplifiers which have earned an unrivalled reputation for originality of design. excellence of performance and reliability in the ensuing twenty-five years.
The introduction of the Quad 405 current dumping amplifier represents yet another contribution to the science of sound reproduction.
Current dumping successfully overcomes many of the problems associated with high power amplifiers. crossover, thermal tracking and matching of components, added to which the complete absence of adjustments or alignment requirements, ensures that performance will be consistently maintained.
For further details on current dumping and other Quad products write to Dept. WW
The Acoustical Manufacturing Co. Ltd.
Huntingdon; Cambs., PE187DB
Design Council
Telephone: (0480) 52561
Award 1976

QUAD is a Registered Trade Mark
WW—064 FOR FURTHER DETAILS

LOW COST VOLTMETERS

A.C. MICROVOLTMETERS

VOLTAGE E dB RANGES: $15 \mu \mathrm{~V}, 50 \mu \mathrm{~V}, 150^{\circ} \mu \mathrm{V} \ldots 500 \mathrm{~V}$. Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 1 \mu \mathrm{~V}$ at $1 \mathrm{kHz}-100,-90^{\circ}$ $+50 \bar{d} 8$
Scale - $20 \mathrm{~dB} /+6 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 600 \Omega$ RESPONSE: $\pm 3 \mathrm{~dB}$ from 1 Hz to $3 \mathrm{MHz}, \pm 0.3 \mathrm{~dB}$ from 4 Hz to 1 MHz above $500 \mu \mathrm{~V}$. Type TM3B can be 4 Hz to 1 MHz above $500 \mu \mathrm{~V}$. Type TM3B can be
set to a restricted $\mathrm{B} . \mathrm{W}$. of 10 Hz to 10 kHz or 100 kHz set to a restricted B.W. of 10 Hz to 10 kHz or 100 kHz .
INPUT IMPEDANCE: Above $50 \mathrm{mV}>43 \mathrm{M} \Omega<20 \mathrm{pf}$ INPUT IMPEDANCE: Above $50 \mathrm{mV}>$
On $50 \mu \mathrm{~V}$ to $50 \mathrm{mV}:>5 \mathrm{M} \Omega<50 \mathrm{pf}$
AMPLIFIER OUTTPUT: 150 mV at f.s.d

BROADBAND VOLTMETERS

H.F. VOLTAGE \& dB RANGES: $1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV} . .3 \mathrm{~V}$ Acc. $\pm 4 \% \pm 1 \%$ f.s.d. at $30 \mathrm{MHz},-50 \mathrm{~dB},-40 \mathrm{~dB}$ -30 dB to +20 dB . Scale $-10 \mathrm{~dB} i+3 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 50 \mathrm{~B}$ $\pm 0.7 \mathrm{~dB}$ from 1 MHz to $50 \mathrm{MHz} \pm 3 \mathrm{~dB}$ from 300 kHz to 400 MHz .
L.F.RANGES: As TM3 except for the omission of $15 \mu \mathrm{~V}$ and $150 \mu \mathrm{~V}$.
AMPLIFIER OUTPUT: Square wave at 20 Hz on H.F. with amplitude proportional to square of input. As TM3 on L.F

D.C. MULTIMETERS

VOLTAGE RANGES: $3 \mu \mathrm{~V}, 10 \mu \mathrm{~V}, 30 \mu \mathrm{~V} \ldots 1 \mathrm{kV}$. Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 0.1 \mu \mathrm{~V} . \mathrm{LZ}$ \& CZ scales. CURRENT RANGES: $3 \mathrm{pA}, 10 \mathrm{pA}, 30 \mathrm{pA} \ldots 1 \mathrm{~mA}(1 \mathrm{~A}$ for TM9BP).
Äcc. $\pm 2 \% \pm 1 \%$ f.s.d. $\pm 0.3 \mathrm{pA} . L Z$ \& $C Z$ scales
AESISTANCE RANGES: $3 \Omega, 10 \Omega, 30 \Omega \ldots 1 \mathrm{G} \Omega$ linear Acc. $\pm 1 \% \pm 1 \%$ f.s.d. up to $100 \mathrm{M} \Omega$.
'RECOROER OUTPUT: 1 V at f.s.d. into $>1 \mathrm{k} \Omega$ on $L Z$ ranges.

D.C. MICROVOLTMETERS

VOLTAGE RANGES: $30 \mu \mathrm{~V}, 100 \mu \mathrm{~V}, 300 \mu \mathrm{~V}$. . 300V. Acc. $\pm 1 \%, \pm 2 \%$ f.s.d., $\pm 1 \mu \mathrm{~V}$. CZ scale.
CURRENT RÁNGES: $30 \mathrm{pA}, 100 \mathrm{pA}, 300 \mathrm{pA} \ldots 300 \mathrm{~mA}$
Acc. $\pm 2 \%, \pm 2 \%$ s.s.d. $\pm 2 \mathrm{pA}$. CZ scale
LOGARITHMIC RANGE:
$\pm 5 \mu \mathrm{~V}$ at $\pm 10 \%$ f.s.d., $\pm 5 \mathrm{mV}$ at $\pm 50 \%$ f.s.d., $\pm 500 \mathrm{mV}$ at f.s.d.

RECOROER OUTPUT: $\pm 1 \mathrm{~V}$ at f.s.d. into $>1 \mathrm{k} \Omega$.
\%77

These highly accurate instruments incorporate many useful features, including long battery life. Äll A type models have 83 mm scale meters, and case sizes $185 \times 110 \times 130 \mathrm{~mm}$. B types have 127 mm mirror scale meters and case sizes $260 \times 125 \times 180 \mathrm{~mm}$

LEVELL ELECTRONICS LTD.
Moxon Street, High Barnet, Herts. EN5 5SD Tel: 01-449 5028/440 8686

Prices are ex works with batteries. Carriage and packing extra. VAT extra in U.K. Optional extras are leather cases and mains power units. Send for data covering our range of portable instruments.

On site instrumentation recording. From the world's leading Datatape manufacturer

The Bell \& Howell CR3000 battery operated cassette recorder enables engineers to collect data at source. Forget the problems of threading tape out of doors. Just load the cassette and the four channel CR3000 is ready to make recordings of instrumentation quality. Specifically developed for portability, the CR3000 is compact and lightweight, you no longer have to strain with heavy equipment to achieve high quality recordings. Plug-in self-contained preamplifier provides for input levels down to one millivolt, so no more signal conditioning to recorder problems either.
The built-in noise canceller means high quality reproduction, even when recordings are made in rugged environments. Use of standard cassettes reduces costs, saves storage space and ensures a local supply of tape.

CR3000 is available in three I.R.I.G. speed versions with FM and direct electronics selected at the press of a button, providing frequency coverage

For further information please contact C. Southee. ELECTRONICS E INSTRUMENTS DIVISION \square BelleHowell Lennox Road, Basingstoke, Hampshire RG22 4AW Basingstoke (0256) 20244 WW - 074 FOR FURTHER DETAILS
of d.c. to 24 kHz dependent on speed and electronics used.
The CR3000 is competitively priced and includes built-in metering, voice and battery charger as standard.
Measurement and control systems available from Bell \& Howell: Pressure Transducers
Level Measurement
Physiological Instruments Marine Pressure Measurement Instruments
Transmitters-Gauge \& DP Intrinsically Safe Pressure Transmitters
Flameproof Pressure Transducers Pressure Standards Liquid Density Transmitters Vibration Monitoring Systems Accelerometers
Instrumentation Magnetic Tape Recorders
Direct Writing Oscillograph Recording Systems Microcomputer Instrumentation Systems

Why are we bothering to become sole distributors of Omron relays when our own are so good?

The IMO Series 60 are a fine range of relays, but only by the inclusion of the wide Omron range are we able to offer relays for every conceivable relay application.

Omron covers the whole spectrum of the relay industry. From switching dry circuits with electronic and reed relays to heavy duty control circuits with miniature relay contactors. IMO with Omron will meet every specification.

This puts the whole Omron component range conveniently under the same roof. And that means the same consistent, reliable and helpful IMO service.

IMO and Omron; a combined range that covers just about every application and every price bracket.

Isn't that something worth bothering about?
-

To: IMO Precision Controls Ltd
 349 Edgware Road. London W2 1BS. Tel: $01-7232231$

Please send me full details on IMO and Omron relays

Name
Position
Company

Address

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air. Metals, Liquids, Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied with carrying case, Probe and internal $11 / 2$ volt standard size battery.
Model "Mini-Z 1" measures from- $40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Price $£ 25.00$ Model "Mini-Z 2" measures from-5 $5^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ 'Price $£ 25.00$ Model "Mini-on HI " measures from $+100^{\circ}$ C to $+500^{\circ}$ C $£ 20.00$ (VAT 8\% EXTRA)
Write for further details to
HARRIS ELECTRONICS (LONDON)
138 GRAY'S INN ROAD, LONDON. WC1X 8AX ('Phone 01-837 7937)
WW-028 FOR FURTHER DETAILS

EIMEDARD

Stop Ruining Your I.C.'s And Wasting Time Soldering Plug Into The Revolutionary New BIMEOARD
The Only Professional Quality Breadboard That Accepts All DIL Packages With 6 To 40 Pins
Incorporates Bus Strips For Vcc And Ground
Includes A Component Support Bracket
Has Over 500 Individual Sockets
And Allows You To Use And Re-Use
IC's, Transistors, LED's, 7 Segment Displays, Diodes, Resistors, Capacitors

Only $£ 9.72$ (cheque with order) Including VAT and P.P Special Quantity Discounts Available For Radio Clubs, Retail Outlets, Distributors
$=0-5$ INOUSTRIAL MOULDNGS ITO
Higgs Industrial Estate, 2 Herne Hill Road, London, SE24 0AU, England
Telephone 01-737 2383
Telex 919693

The Allen and Heath Broadcast Feed Forward Delay Limiter.

The only limiter that makes it IMPOSSIBLE for a transient peak to pass through the unit, without the use of clipping devices. Included in its design is a revolutionary bucket brigade integrated circuit. This delays the main signal path by approximately one thousandth of a second. Thus gain reduction is fed forward before there is any increase in the programme level. The unit can be used with high powered equipment such as'broadcast units and P.A. systems. Use it too in studios with effects units.

Try and test one at our demo. studio. Pembroke House, Campsbourne Road, Hornsey, London N8.
Or, for more information, call Andrew Stirling at 01-340 3291.

Allen and Heath Limited.

Looks like adisplay. Works like a newscaster.

BREFRTHR ULEA- - ©?

The new Hewlett-Packard Alphanumeric Display from GDS.

This important development from Hewlett-Packard is a significant advance in the design and manufacture of Alphanumeric displays.

The HP HDSP-2000 is a 3.8 mm . 5×7 LED array, available in 4 character clusters and packaged in a 12 pin DIL ceramic glass pack. A serial-in-parallelout, 7 bit shift register associated with each digit controls constant current

LED drivers. Full character display is achieved by external column strobing.

Applications include interactive I/O terminals, point of sale equipment, portable telecommunications gear plus a good many more that you can now consider.

For full data and highly informative answers to your questions, write or telephone:

GDS Sales Ltd.
380 Bath Road, Slough, Berks SL1 6JE.
Tel: Burnham (06286) 63611

An'off-the-shelf' solution to allyour filtering problems Barr \& Stroud Active Filter Modules

In so many electronic projects there is a need to incorporate an element of filtering. Quickly, easily and-above all-for a minimum cost.

The most rapid solution is to select one of the Barr \& Stroud 'ready to use' compact filter units. They are inexpensive and readily available. They come 'one-off' or in 'thousands' to match your requirements.

Each containing a basic filter function, adjustable for cut-off or centre frequency and response type. Adjustment is simple. No filter knowledge is required. The modules are available in low-pass, high-pass, universal and notch designs with a pass band capability from d.c. to 1 MHz . Complete details are in freely available literature, yours on request.
BARR \& STROUD LIMITED

London Olfice:

1 Pall Mall East,
London SW1Y 5AU
Tel: 01-930 1541
Telex: 261877

WW--023 FOR FURTHER DETAILS

People often bring their need to us. They know the Whiteley speciality. Being helpfu!! And the item that started life as a customer request, joins the Whiteley 'product list, ready to help other designers over a problem. You, perhaps? Consider a neat relay assembly - one or two dry reed switches with a rating of 25 W , housed in a mounting tube, with either 'normally open' or 'changeover' contacts. Around them, a coil operating from 8, 12,24 or 50 V supply, 30 kV isolated from the contacts. The whole unit mounting on a 0.25 " insulating plate with a couple of 3 way tag strips. If you're interested, ask for a data sheet. But more, keep Whiteley in mind as the people who make useful things.

Mansfield, Notts NG18 5RW, England. Tel: 062324762.

specify CINCH

BARRIER TERMINAL BLOCKS \& ACCESSORIES J-SERIES MULTIWAY PLUGS\& SOCKETS PRINTED CIRCUIT BOARD EDGE CONNECTORS D-SUBMIINATURES

and be certain

United-Carr Supplies carries the widest range of CINCH parts available in the UK, and will accept for quick delivery mixed or small quantity orders. So make United-Carr Supplies your Single CINCH Source. Send for free catalogue illustrating the full range of components available.

United-Carr Supplies Limited The largest CINCH. DOT and FT stockist
${ }^{112}$ Station Road. IIkeston, Derbyshire DE75LF Tel: 0602 3287॥ Telex 377117

WW - 007 FOR FURTHER DETAILS

The world's most famous company in communication, the Nippon 'Electric Company L.td., Tokyo, has developed the famous NED CQ radio amateur gears, being with regard to design, quality, reliability. and price real pace-setters for today's communicators.
First in history of amateur radio, such a big and famous company with more than 80 years of experience in construction of communication facilities, made its experience available to radio amateurs around the world.
The NEC, which has declared microwave space communication to its speciality, knows perfectly which attributes equipments must have for becoming bestsellers.
Today we present:

NEC CO 110 E DIGITAL

allband, $\mathrm{HF}, 300$ wattstransceiver, $160 / 80 / 40 / 20 / 15 / 11 /$ $10 \mathrm{~A} / 10 \mathrm{~B} / 10 \mathrm{C} / 10 \mathrm{D} / \mathrm{WWV}$, modes FSK, USB, LSB, CW, AM. with separate 8 pole X-tal lattice fiters for each mode fitted Further features: Side tone- at CW, VOX (automatic transmit-receive 'by talking into microphone), 11 meter CB band. all channels easily selectable through digital counter, excellent receiver sensitivity at extreme crossmodulation security by application for the 7360 low noise beam, deflection mixer tube
This feature alone makes of the NEC CQ 110 E a toprider. Fixed channel communication on 22 channels is possible. A 60 page manual and a high quality dynamic microphone are supplied with the transceiver. Speaker, AC 100-235 volts and DC 13.5 volts power supplies are built in of course.

NEC CQ 301

allband HF, 3KW, linear amplifier, $160 / 80 / 40 / 20 / 15 / 11 /$ 10 meter, for modern amateur communication. Two EIMAC 3-500 z triodes, in zero bias grounded grid application guarantee long trouble free communication. The NEC CQ 301 can be driven by our CQ 110 E or other exciters capable of about $50-100$ watts of drive. AC power supply 100-235 volts is built in of course.
RETAILERS: Do not hesitate to accept our offer. Join us in selling these bestsellers!
Sole distributor in Europe:
CEC Corp., Via Valdani 1 - CH 6830 CHIASSO-SWITZERLAND Phone: (091) 4426 51. Telex: 79959 CH

Join the Digital Revolution

Understand the latest developments in calculators,

computers, watches, telephones,
television, automotive instrumentation . . .
Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 8 \frac{1}{4} 4^{\prime \prime}$ and contains 60 pages packed with information. diagrams and questions ${ }^{4}$ designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
Uesign of Diqital Systems.

plus 80 p packing and surtace post anywhere in the world.
Payments may be made in foreign currencies.
Quantity discounts available on request
VAT zero rated

Also available - a more elementary course assuming no prior knowledge except simple arithmetic.
Digital Computer Logic and Electronics.
in 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical F•nctions
4. Flipflops and Registers
$£ 4.20$
plus 80p P. \& P
Offer Order both courses for the bargain price $£ 9.70$, plus 80p P. \& P.

> Designer
> Manager
> Enthusiast
> Scientist
> Engineer
> Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digita. Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.
To Cambridge Learning tnterprises, Uept. COM, FREEPOST
Rivermill House, St. Ives, Huntingdon. Cambs. PE 17 4RR
Rivermill House, St. Ives, Huntingdon, Cambs. PE17

- Flease send me ...set (s) of Design of Digital Systems at $£ 7.00$ each
Please send m
p \& p included
or
orset(s) of Digital Computer Logic and Electronics at $£ 5.00$ each.
p \& p included
orcombined set(s) at £10.50 each. p \& p included
Name
Address
1
delete as applicable
No need to use a stamp - just print FREEPOST on the envelope

We measure up to your standards

Self-balancing 0.01\% Precision Bridge

B642
Autobalance Universal Bridge 0.1\%

B421
Direct-reading Component Meter 0.25\%

Wilmot Breeden Electronics.
Ferrograph Rendar
Wayne Kerr

Wilmot Breeden Electronics Limited, 442 Bath Road, Slough, SL1 6BB, England.
Telephone: Burnham (06286) 62511 Telex: 847297

Whether you check components at Goods Inwards, during production or on Final Test, Wayne Kerr has the bridge you need. For fast measurements of resistance, capacitance and inductance, or for continuous monitoring of changing values, you can select the ideal instrument from our comprehensive range.

All models-AF, RF and VHFhave a wide measurement range and are easy to use. Many have automatic readout and automatic lead compensation; most will measure components in situ.

Only part of our range is illustrated. Send in the coupon for further information.

Thisisan echochamber?

 RETICON SAO 10242821

Yes, and much more! It is the first N -channel Bucket Brigade Device designed with the audio engineer in mind. The SAD-1024 Serial Analog Delay will provide reverberation, echo, tremolo, vibrato and chorus effects in electronic organs and musical instruments. It will equalise speaker systems in an auditorium, or can be used in speech compression or voice scrambling systems. The SAD-1024, which contains two independent sections of 512 analog storage elements will accomplish all of these with a signal-tonoise ratio in excess of 75 dB . The two sections may be used independently or they may be connected in sequence to provide 1024 clock periods of delay. The delay provided by the device can be continuously varied by the clock rate from less than one millisecond to more than one second.
Other performance characteristics include: signal bandwidth from 0 to 200 KHz , less than 1% total harmonic distortion, 0 dB insertion loss, and less than 5 mW power requirements from a single 15 V power supply.
You get all these features for less than 1p per storage element in OEM quantities.
We also offer an optional complete circuit card to help you evaluate this exciting new device. Other devices for applications such as time base correction in the video bandwidth are also available.

RETICON"

The SAD-1024 and circuit card-is available immediately from Reticon's sole UK distributors, Herbert Controls and Instruments Limited, Spring Road, Letchworth, Hents SG64AJ. Telephone: 04626-3841. Telex: 825535.

POWER UNITS

Vabradio

PRODUCTION TESTING \star DEVELOPMENT SERVICING

TYPE 250VRU/30/25
Input $200-250 \mathrm{v} 50 \mathrm{~Hz}$ or $100-120 \mathrm{v} 60 \mathrm{~Hz}$ to order. Output 1 : $0-30 \mathrm{v} 25 \mathrm{~A}$ DC. Output 2: $0-70 \mathrm{v} 10 \mathrm{~A}$ AC. Output 3: $0-250 \mathrm{v} 4 \mathrm{~A}$ AC.

PRICE: $£ 233.60$ excluding VAT

Regulated and unregulated outputs with output voltages of $12,24,50,110$ or $220 v$ DC are also available at very competitive prices.
Send for further details of these versatile units to:-

Vahradio

BROWELLS LANE, FELTHAM, MIDDX. TW13 7EN
PHONE: 01-890 4242 or 4837
WW-043 FOR FURTHER DETAILS

Switching problems? Rely on Zettler.

Producing 30 basic types of relay and 15.000 variants with regard to contact stacks, terminals, energizing current and contact
material, Zettler is among the largest manufacturers of electro-mechanical components.

Our product range comprises:
Low profile (flatform) Timing - Miniature Low contact capacity Hermetically sealed Stepping Mains switching Latching Contact stacks Solenoids

Impulse Latching Relay AZ 340
Make contacts
Resistive load: $10 \mathrm{~A} / 240 \mathrm{~V}$ AC. Lamp load: $8 \mathrm{~A} / 240 \mathrm{~V}$ AC Compensated fluorescent tubes 3.7 A/240 V AC.

Break contacts:
Resistive load: 8 A/240 V AC. Lamp load: $5 \mathrm{~A} / 240 \mathrm{~V}$ AC. Compensated fluorescent tubes: 3.7 A/240 V AC.

We resolve your switching problems rapidly and expertly. Please contact us for further details.

Zettler UK División
Brember Road, Harrow, Middx HA2 8AS. Tel. (01) 4220061
please look us up at
IFSSEC 77. Olympia, London. 25th-29th April Stand No. 27 All-Electronics Show. Grosvenor House, Park Lane, London 19th-21st April. Stand No. 141. Great Room
A member of the woridwide ZETTLER electrical engineering group. est. 1877 WW - 017 FOR FURTHER DETAILS

The new Philips range of $4 \frac{1}{2}$ digit multimeters is designed to meet modern technology's demand for ever higher measuring accuracy and resolution - and to meet individual application requirements and budgets. They are all high quality instruments, fully tested to IEC standards, and offer numerous attractive features to make your measurements easier, safer and more efficient.

The one manual ranging multimeter in the family. PM2522A, features a display-hold facility which can be remotely controlled at the measuring probe, while the other models incorporate intelligent auto ranging circuits providing ultra-fast stable displays.

True r.m.s. measurement is possible with the PM2526 and PM2527 and these models can also be fitted with an optional IEC bus interface. In addition the PM2527 features
sophisticated guarding, very sensitive current and wide resistance ranges, making it ideal for measurements on advanced low-power circuitry.

All mode's permit measurement of surface temperature with an extremely fast-acting probe, over a range of -60 to $+200^{\circ} \mathrm{C}$.

Numerous options and accessories allow you to further tailor the specifications to your requirements and keep the cost with in your budget. Study the basic specifications below.

Please write, telephone or use the reader enquiry service for further information.

(0)

Pye Unicam Ltd.

Philips Electronic Instruments Dept York Street Cambridge England CB1 2PX Tel Cambridge (0223) 58866

,	PM 2522 A	PM 2524	PM 2526	PM 2527
Parameters	$\begin{gathered} V-, \quad V \sim, 1=.1 \sim . R \\ \text { Temperature } \\ \hline \end{gathered}$	$\begin{gathered} V \ldots, V \sim, 1=, 1 \sim, R \\ \text { Temperature } \end{gathered}$	$V=, V \sim, R, V h f$ Temperature	$\begin{gathered} \mathrm{V}=, \mathrm{V}-, 1 \ldots, 1 \sim, \mathrm{R}, \mathrm{Vhi} \\ \text { Temperature } \end{gathered}$
Ranging	Manual	Auto and Manual	Auto and Manual	Auto and Manual
VDC Accuracy	$\pm 0.03 \%$ rang	$\pm 0.02 \%$ rdng	$\pm 0.02 \%$ rdng	$\pm .0 .02 \%$ rdng
Voc Resolution in Lowest Range	$100 \mu \mathrm{~V}$	$10 \mu \mathrm{~V}$	$10 \mu \mathrm{~V}$	$10 \mu \mathrm{~V}$
$\begin{gathered}\text { Max. } \Omega 2 \\ \text { value }\end{gathered} / \begin{gathered}\$ 2 \text {-Resolution in } \\ \text { Lowest Range }\end{gathered}$	$20 \mathrm{MS} / 0.1 \mathrm{~s}$	$20 \mathrm{MS} / 0.1 \mathrm{~S}$	$20 \mathrm{MS} 2 / 0.01 \Omega$	$2000 \mathrm{MS} 2 / 0.01 \mathrm{~S} 2$
Max. I / Current Resolution value in Lowesi Range	2000 mA / 10.11	$2000 \mathrm{~mA} / 100 \mathrm{HA}$	-	$2000 \mathrm{~mA} / 100 \mathrm{pA}$
VAC Frequency Range	$35 \mathrm{~Hz}-30 \mathrm{kHz}$	$40 \mathrm{~Hz}-30 \mathrm{kHz}$	$30 \mathrm{~Hz}-100 \mathrm{kHz}$	$30 \mathrm{~Hz}-100 \mathrm{kHz}$
AC-DC Conversion	Averaging	Averaging	True RMS ($V_{\text {AC }}+\mathrm{VDC}$)	True RMS VAC; ${ }^{\text {ac }}$
Type of Input/Power Supply	Floating/Mains and Battery	Floating/Mains and Battery	Floating/Mains	Guarded/Mains

WW—032 FOR FURTHER DETAILS

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight-realistic prices.

49/51 Fylde Road Preston PR1 2×0

Fylde Electronic Laboratories Limited.

REPAIRS

OF ELECTRICAL MEASURING INSTRUMENTS
7-14 DAYS SER VICE

\triangle MODEL 8 MK.V

$4 \sqrt{n}$
STOCKISTS
ALSO SUPPLIERS OF GEC RISSO AND OTHER MULTI-RANGE TEST SETS

WE SPECIALISE IN ASSEMBLIES, ANO IN THE REPAIR, CALIBRATION AND CONVERSION OF ALL TYPES OF INSTRUMENTS, INDUSTRIAL AND PRECISION GRADE

LEDON INSTRUMENTS LTD

 GLADSTONE WORKS, GLADSTONE RD, FOLKESTONE, KENT. TEL: (STD) 030357555Safe, tough, efficient and versatile - that's our new miniature CX iron.
Safe because it is virtually leak-free (leakage current less than $1 \mu \mathrm{~A}$). Earth it if you like three core lead. It is made to conform with B.S. 3456 and has a breakdown voltage of more than 4000 V .
Tough because the handle is almost unbreakable and the ceramic shaft is covered by a stainless steel shaft.
Efficient because the element is situated right inside the soldering bit and the heat generated by its 17 watts is not wasted.
Versatile because the iron can be used for a wide variety of soldering jobs; with six easily interchangeable, slide-on bits, ranging from $\frac{1}{4}$. right down to $\frac{3}{64}$ " (1 mm). It's suitable for small, miniature and micro miniature joints.

Available for $220-250$ volts or $100-120$ volts. Weight - $1 \frac{1}{2}$ az (40 gram). Length $7 \frac{1}{2}$ " (19 cm). Price - $\mathbf{E} 3.40$ fitted with standard bit $\frac{3}{32}$ " $(2.3 \mathrm{~mm})$. Spare bits $£ 0.46 ;$ £0.72; 10.84 exclusive of VAT.

Stocked by most of the well-known wholesalers and many retailers. Or direct from us if you are desperate.
Send for colour catalogue from:
Amex Freepost, Plymouth PLi :BR

Model $\times .25$ is a general purpose soldering iron, also with two shafts for toughness and perfect insulation. Available for $220-250$ volts or 100-120 volts at 25 watts and priced at E3.40 exclusive of VAT.

Stand model S.T. 3 has a chromium plated steel spring, two sponges for cleaning the bits and is priced at $\mathcal{£ 1 . 4 0}$ exclusive of VAT.

$(a x=y=0=(x)$
Mayflower House. Plymouth. Telephone (0752) 67377/8 Telex 45296 Giro 2581000

Forget all you've ever read about miniaturised soldering irons. This is the NEW ANVEK CK.

HIGH POWER DC-COUPLED AMPLIFIER

 * UP TO 500 WATTS RMS FROM ONE CHANNEL * DC-COUPLED THROUGHOUT * OPERATES INTO LOADS AS LOW AS 1 OHM * FULLY PROTECTED AGAINST SHORT CCT, MISMATCH, ETC.

* 3 YEAR WARRANTY ON PARTS AND LABOUR

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over $20,000 \mathrm{~Hz}$. The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended: amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Power Bandwidth
Power at clip point (1 chan) Phase Response Harmonic Distortion Intermod. Distortion Damping Factor
Hum. \& Noise $(20-20 \mathrm{kHz})$

DC-20kHz a 150 watts +1 db . -0 db . 500 watts rms into 2.5 ohms +0 . $-15^{\circ} \mathrm{DC}$ to 20 kHz . 1 watt 8Ω Below 0.05\% DC to 20 kHz Below $0.05 \% 0.01$ watt to 150 watts Greater than 200 DC to 1 kHz at 8Ω At least 110 db below 150 watts

Other models in the range: D60 - 60 watts per channel

Slewing Rate Load impedance Input sensitivity Input Impedance Protection Power supply
Dimensions

MAGINNES LABORATORIES LTD.
Macinnes House, Carlton Park Industrial Estate
Saxmundham, Suffolk IP172NL. Tel: (0728) 22622615

8 volts per microsecond
1 ohm to infinity
1.75 V for 150 watts into 8Ω

10K ohms to 100 K ohms
Short, mismatch \& open cct. protection $120-256 \mathrm{~V}, 50-400 \mathrm{~Hz}$
19^{*} Rackmount, 7" High. 937 ${ }^{*}$ Deep

MAGINNES FRANCE
18 Rue Botzaris
Paris 75019,.France
Tel: 206-60-80 or 206-83-61

$3009+F D 200$

The FD200 is a new accessory from SME : a fluid damping device which can be fitted, easily and quickly, to any Series II or Series II Improved arm. The benefits

The illustrations show typical extreme low frequency response characteristics of three cartridges in the Series // Improved arm.

Note the substantial reduction in the Q of the low frequency resonance. Although
of fluid damping have long been known audibly improved bass and the reduction of spurious low frequencies; but these are not fully realised when the damping is applied at the bearings. For this reason the FD200 is designed to be fitted at a point along the length of the arm

The FD200 design overcomes the usual problems of leakage and low efficiency. It offers a choice of two damping rates, to suit a wide range of cartridge compliances. The attractively presented kit includes ready-filled tank and full instructions.

Write to Dept 0643 • SME Limited Steyning-Sussex - England

The best pick-up arm in the world

WW - 076 FOR FURTHER DETAILS

Ourforte

$40,000 \mathrm{~L}$ series bench power supplies sold and 50% of the U.K. market is certainly a strong point in favour of buying Farnell.

The latest version provides either constant voltage or constant current, features large recessed meters, overload and short-circuit protection, coarse and fine adjustment controls, a separate output switch and LED indicators for mains on and current limit.

FARNELL INSTRUMENTS LIMITED - SANDBECK WAY - WETHERBY - WEST YORKS LS22 4DH • TELEPHONE 0937-3541 - TELEX 557294 • LONDON TEL. 01-864 7433 WW - 081 FOR FURTHER DETAILS

Hews of the Decade

Brook Avenue, Warsash, Southampton SO3 6HP Tel: Locks Heath 4221

FAST RESPONSE STRIP CHART RECORDERS
 Made in USSR

Series H3020

Basic error 2.5\%
Sensitivity 8 mA F.S.D.
Response 0.2 sec .
Width of each channel
Single and three-pen recorders: $\quad 80 \mathrm{~mm}$
Five-pen recorders 50 mm

Series H327

Polarized moving iron movements with syphon pens directly attached. Built-in solid state amplifier (one per channel) provides 8 calibrated sensitivity steps. Two marker pens are provided.
Basic error 4\%. Frequency response from $D C$ to 100 Hz 2 dB .

Chart speeds, selected by push buttons: 0.1-0.2-0.5-1.0-2.5-5.0-12.5-25 mm/sec.

Chat drive $200-250 \mathrm{~V} 50 \mathrm{~Hz}$
Recording Syphon pen directly attached to moving coil frames. Curvilinear co-ordinates.
Equipment: Marker pen, timer pen, paper footage indicator, 10 rolls of paper, connectors, etc.
H3020-1 (Single pen): 285 mm wide $\times 384 \mathrm{~mm}$ deep $\times 165 \mathrm{~mm}$
PRICE E108.00
H3020-3 (Three pen): 475 mm wide $\times 384 \mathrm{~mm}$ deep $\times 165 \mathrm{~mm}$
high PRICE £160.00
H3020-5 (Five pen): 475 mm wide $\times 384 \mathrm{~mm}$ deep $\times 185 \mathrm{~mm}$ high

Sensitivity 0.02-0.05-0.1-0.2-0.5-1-2-5 volts $/ \mathrm{cm}$ Width of each recording channel: 40 mm
Chart drive $\mathbf{2 2 0 - 2 5 0 V} 50 \mathrm{~Hz}$
Chat speeds 1-2-5-10-50-1 $25-250 \mathrm{~mm} / \mathrm{sec}$.
Type H3271-1. Single pen: Dimensions: $259 \times 384 \times 165 \mathrm{~mm}$ Weight 15 kilos

PRICE £265.00
Type H327-3. Three pen: Dimensions $335 \times 384 \times 165 \mathrm{~mm}$ Weight 20 kilos

PRICE £520.00
Type H327-5. Five pen. Dimensions $425 \times 385 \times 165 \mathrm{~mm}$. Weight 25 kilos

PRICE E770.00

Note Prices are exclusive of VAT
Available for immediate delivery

Z \& I AERO SERVICES LTD.

44A WESTBOURNE GROVE, LONDON W2 5SF
Tel. 01-727 5641
Telex: 261306

The Quickest, Simplest Way of Punching Holes in Sheet Metal

Q-Max punches make clean, accurate -holes every time. In no time. With no filing, no jagged edges, virtually no burrs - with no hard work. And no holes are barred. Round or square, Q-Max punches are available in sizes down to 10 mm up to 75 mm for use on sheet metal up to 16 gauge. No wonder they're used by all government services.(Atomic. O, Ministry of Works) and all over the world by radio, motor and industrial manufacturers,
 44 PENTON STREET•LONDON N1 9QA Tel: 01-278 2500

[^1]
Test Equipment Multimeters

 The Eagle range of multimeters covers every possible need of the electrical or electronic engineer. They cost from about $£ 6$ to $£ 58$ (inc V.A.T.). There's at least one which suits your job precisely.
 We have a lot of other test equipment too. Send the coupon and we'll send you our complete catalogue.

An'Arklone'cleaning plant costs $£ 410$

There has never been a stronger case for solvent cleaning with Arklone ' K '. Combining efficiency, simplicity, speed, safety and surprising economy in use, Arklone ' K ' has rapidly become the firm-favourite solvent choice of Britain's leading electronics companies for cleaning p.c. boards. And in times when labour is increasingly expensive, old- fashioned hand-wiping could be making a sizeable hole in your profits.

Installation of a solvent cleaning plant is unlikely to break your bankwhen for less than $£ 500$ you could be set up in business, and the improvements you'll get in results
are really quite dramatic. Arklone ' K ' not only searches out flux and contamination from even the most inaccessible places, but also dries perfectly cleanly-leaving no problems of residue or stain. And, of course, as your throughput goes up, your labour bill and unit cleaning costs go down. So you recover your capital outlay in next to no time. You won't need much space either-because the plants made specially by ICl to suit the solvent are neat and compact.

You'll find solvent cleaning with Arklone 'K' makes a very good deal of sense. So clip out the coupon and do yourself a good deal.

for effective low-cost cleaning

FOR THICK FILM PROOUCTS

As the leading Thick Film manufacturer in the U.K., Erie are the obvious choice for these cost saving, highly reliable products, with over twelve years experience in the design and production of Passive and Hybrid Thick Film circuits.

Erie offer a comprehensive range of units including:-
Dual In Line Custom designed and Standard Resistor Networks in Ceramic Sandwich and Plastic Transfer Moulded formats.

Single In Line Custom designed and Standard Resistor Networks.

Power Resistors with Pluggable terminations, and High Value High Voltage wire ended Resistors.

Our experience, engineering and production facilities enable us to offer hybrid circuits in a variety of formats including Dual and Single In Line conformally coated and transfer moulded packages for a wide range of applications.
For more information about Thick Film contact:-
ERIE ELECTRONICS LIMITED
Resistor Division
South Denes, Great Yarmouth, Norfolk.
Tel: 049356122 Telex: 97421

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:

HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937
WW - 039 FOR FURTHER DETAILS

WW-041 FOR FURTHER DETAILS

SOPHISTICATION IN SOLDERING

- TEMPERATURE ACCURACY $\pm 2 \%$ OF INDICATED DIAL. TEMPERATURE
- ELECTRONIC CONTROL (NO MOVING PARTS).
- FULLY EARTHED SYSTEM.
- RADIO SUPPRESSED WITH NO MAINS "SPIKING"
- LOW VOLTAGE ON ACTUAL SOLDERING INSTRUMENT.
- A SELECTION OF ELEVEN "ADIRON" BIT PROFILES.
- MANUFACTURED GENERALLYTOB.S. 3GE IAPPROVALS ALREADY HELD SEV \& VDE!.
- FULLY GUARANTEED AGAINST ELECTAICAL/ MECHANICAL DEFECTS.
- MINIMAL HEAT TRANSFER TO SLVM LIGHTWEIGHT HANDLE.
ARE YOU MANUFACTURING QUALITY ELECTRONIC EQUPPMENT?

WORKING ON MOS AND SETS?

ADCOLA 'ADIRON' IRON PLATED PLUG-IN BIT PROFILES
End section of bits actual size

$)_{-4.2}^{4 \mathrm{tan}}$
$8^{-15.7 \mathrm{~mm}} 2 \mathrm{~mm}$
$4-4 \mathrm{~mm}$ INTERNATIONAL LONDON ELECTRONIC COMPONENTS SHOW OLYMPIA MAY 17-20 1977
FULL TECHNICAL INFORMATION CAN BE OBTAINED FROM
ADCOLA PRODUCTS UMMTED ADCOLA MOUSE LOWDCD SWA BLH TELEPHONE 01-6220201/3 TELEX 21851 ADCOLA

The measure of our success.

Signal Injectoryll 5750

Useful for both
valve and transistorised equipment. Frequencies up to 500 MHz VHF \& UHF Pentype style.

Cupacirance Meter f-27.50

30 Ranges
10 Kohm/V DC
1.5 KV AC. 1 Amp DC.

Resistance \& dB Ranges.

Precision Instrument Laboratories have rapidly become the most comprehensive instrument stockist in the U. K. Shown above are just 5 of the instruments that we have available for the Radio and Television engineer

Our full range includes Oscilloscopes. DVM's, Field Strength Meters, Valve Testers, Lngic, Probes and Colour Bar Generators.

Instruments Electrical Co. Ltd., the repair associate company of P.I.L., offer a complete repair service on Precision Instrument Laboratories all these and many other types of instrumentation.
 Precision instrument Laboratories
Instruments Electrical Co. Ltd Instrument Hse., 212 Ilderton Road London SE15 1 NT. Tel: 01-6390155 or North London. Tel: 01-965 2352 Items illustrated may be purchased by enclosing a cheque for amount shown-18\% VAT. Wholesale Enquiries Welcome.

FREQUENCY COUNTERS

$1 / 10 \mathrm{~Hz}$ to 1.2 GHz
High pertormance instruments measuring trequency, period, thime, freq./ratio and calibrated output facility. Fast delivery. Specials by arrangement.

CRYSTAL OVEN
tprerating manual
ne blue case
Sensitivity 10 mV . Stability 5 parts $10 .^{10}$ Resolution ± 1 Count

301 M	32MHz 5 Digit £95	401A	32MHz 6 Digit
501	32MHz 8 Digit £188	701A	80MHz 8 Digit £205
8018/M	250 MHz 8 Digit E274	901 M	520 MHz 8 Digit £375
		1001M	-1.2GHz 8 Digit £670
	versions plus £15	Mem suffix	ons available if not £25 extra

Type 1011 MHz 100 KHz 10 KHz Cryslal Standard $£ 95$

 Type 103 Off/Air Standard $£ 95$SUPPLIERS TO: Ministry of Defence, G.P.O., B. B.C., Government Depts., Crivaiai Manutacturers and Electronic Laboratories world-wide

R.C.S. ELECTRONICS 6 WOLSEY ROAD, ASHFORU MIDDX. TWI5 2RB Telephone: Ashford (Code 69) 53661/2

WW-56 FOR FURTHER DETAILS

745 GOUNTER TIMER

DC-32 MHz

FREOUENCY, PERIOD, TIME \& TOTALISE

$\pm 5 \mathrm{ppm}$ STABILITY @ $25^{\circ} \mathrm{C}$

745 COUNTER TIMER £94 + £2.50 p\&p WWOO9 Other products include.
744 Counter Timer £85
WW 010
643 Function Generator £98 WW 011
643A Function Generator £85 WW 012
631 Filtęr Oscillator £108
WW 013

OMB electronics, Rivarside, Eynsford, Kent. Tel: 0322863567 TICK THE APPROPRIATE REPLY NO. FOR DETAILS

TELFORD COMMUNICATIONS

TC15 Inductance Bridge $\mathbf{1 u H}$ to $\mathbf{2 0 H}$

TC14 Cap. Meter 1 pf to 1 uf .

Measure rapid and accurately with Telford Digital Test Equipment. Suppliers to Industry and Educational Establishments World Wide. 78B HIGH STREET, BRIDGNORTH WV16 4DS, SALOP, ENGLAND. TEL, 074-62 4082

WW-07I FOR FURTTHER DETAILS

ELECTRONORGTECHNICA

carbon film RESISTORS

$1 / 8$ and $1 / 4 \mathrm{w} 70^{\circ} \mathrm{C} 5 \%$ tol. E. 12
EX-STOCK
$\mathbf{£ 4 . 9 0 \text { PER } 1 , 0 0 0 \text { PLUS \& POSTAGE }}$
Minimum export order $£ 100$
Contact John Gingell

AERO SERVICES LTD.
44A Westbourne Grove
London W2 5SF
TEL: 01-7275641 TELEX 261306

JES AUDIO INSTRUMENTATION

0000	Illustrated the Si452 Distortion Measuring Unit-low cost distortion measurement down to. 01% £48.00
51 £60.00	Si453 £60.00
Comprehensive Millivoltmeter 350μ Volts 20 ranges	Low distortion Oscilla sine - square - R
J. E. SUGDEN \& CO. LTD. Tel. Cleckheaton [0274] 872501 CARR STREET, CLECKHEATON, W. YORKSHIRE B195LA	

WW-048 FOR FURTHER DETAİLS

E5PCapacitance measuring

1 pF to $10 \mu \mathrm{~F}$

ESP 200 A 0.1 pF to $50 \mu \mathrm{~F}$

Wide scale
laboratory model $\mathbf{£ 1 2 0 . 0 0}$ + V.A.T

Autoranging capgcitance bridge $£ 235.00$ + V.A.T.

MIDDLE MARCH
LONG MARCH INDUSTRIAL ESTATE
DAVENTRY
NORTHANTS NN11 4PQ
Telephone: (03272) 76720

A complete range of British-made instruments designed to simplify capacitance measuring

- Accurate and sensitive
- Requires no inanual balancing
- Takes less than a second to measure a capacitor
- Updates changes in capacitance automatically
- Wide range of applications

Send for technical literature and free booklet: "Modern methods of capacitance measuring
Suppliers to: Ministry of Defence, Post Office. B.B.C., Government departments and Electronic Laboratories world-wide.

PAY LESS FOR LOADS?

With nearly 3 decades of experience built into every TERMALINE " Coaxial Load Resistor, buying BIRD will often cost no more or save you money. BIRD QC Quick-Change Connectors on many models offer a choice of any common RF connector, eliminating the need for performance-degrading adapters.
Twenty aircooled dry Loads (2W 10 225W), thirteen aircooled liquid Loads (20W to 5 kW) and nineteen watercooled TERMALINE" models (1 kW to 50 kW) are listed in our 1977. Catalog. Ask for it.

EXCLUSIVE U.K. REPRESENTATIVE FOR BIRD ELECTRONICS

aspen

electronics limited
2 KILDARE CLOSE. EASTCOTE, MIDDX. HA4 9UW.
Tel: 01-868 1188. Telex: 8812727

WW-095 FOR FURTHER DETAILS

Look up to a Versatower installation and your radio communications will achieve new heights!
Acclaimed as the World's leading telescopic tilt-over tower in the international field of radio communication.
A complete range of models: from 20 to 120 feet, static and mobile.
Full details and specifications are in our brochure.
Send for it today!
Strumech Engineering Limited, Portland House, Coppice Side, Brownhills, Walsall,
West Midlands WS8 7EX
Telephone: Brownhills 4321
Due to the enormously increased demand for Versatower systems we have now opened our new West Works. Phone us - we'll be glad to show you around.

STRUMECH

WW - 068 FOR FURTHER DETAILS

the Digitron 175 could solve YOUR temperature measurement problem

We evaluated most of the digital thermometers on the market and the Digitron 175 came out the best buy on almost every count. The unique auto-ranging facility gives the user the advantage of a wide temperature span without having to select individual ranges

Automatic cold junction compensation and automatic zeroing gives a high degree of accuracy and reliability. All readings taken throughout the range -50 to $+1200^{\circ} \mathrm{C}$ are shown on a clear bright LED seven-segment display. A range of interchangeable Type K thermocouple probes are available. The instrument is supplied in an attractive carrying case which can accommodate several alternative probes and the unit is available powered from dry batteries or with an optional rechargeable battery pack and charger
Contact Electroplan today and put us to the test.
Electroplan Ltd., P.O. Box 19,
Orchard Road, Royston, Herts, SG8 5HH.
Tel: Royston (0763) 41 171 Telex: 81337

Priced too low for comfort?

No need to worry: it's an Exact Model 121 swept-frequency waveform generator, with all of the quality assurance that superb breeding brings. You may wonder what corners have been cut to get the price down to $£ 225.00$
Relax, the answer is "None"

Sine, square, triangle, pulse \mathcal{G} ramp waveforms over 0.02 Hz to 2.2 MHz
Most compact, but rugged : 18.7 cm wide by 21.6 cm deep by 7.3 cm high
10 V peak-to-peak signal into a 50 -ohm load (20 V open circuit)
Internal sweep generator to sweep the main generator with a 3-decade sweep width
Sweep rate adjustable from 1 ms to 10 s
60 dB attenuation on low output, using the 30 dB variable amplitude control

WW - 092 FOR FURTHER DETAILS

WW-085 FOR FURTHER DETAILS

Gardners TheBest of British

Where performance

 is paramount, professionals prefer Gardners...We, at Gardners, have been in the communications busi ness for many more years than we care to remember - so have our Audio Transformers. Used throughout the world by leading broadcasting and recording companies or wherever only the highest technical standards and levels of reliabllity are good enough our products are still preferred by professionals who know

From microphone to tape (or flim), speakers or headphones, studio consoles, manpacks, amplifiers, modems, we at Gardners have tried to anticipate your needs. Miniaturisa tion (yes!) plus good performance (yes!) through to exceptional performance (of coursel). Impedance changing, coupling, isolation, bridging, low and high power, with or without D.C. Choose from our standard range of 95 models! Every one an example of sheer professionalism.

All have low loss, low distortion. low phase-shift, low pick-up, BUT wide frequency range.

Gutcostsby 50\% with the same high performance. Isn't that what new ideas areallabout?

 in cost,new Thermalloy heat sinks are designed specifically for plastic or metal case power devices.

They are remarkably simple to use, no extra mounting hardware is requiredand they can be attached to the device after board assembly.

The slip on types have positive retention and can be supplied with locking tabs.

For full details of the range, simply return the coupon-cutting costs without cutting performance is a good idea you ought to know about.

F.M. MODULES, KITS \& TUNERS by

MAIN RECEIVER MODULE M1

We have claimed before that this F.M. system is the most advanced on the market, and after nearly three years we repeat our claim. Some have borrowed ideas, some have not, but no other tuner gives you all the features of this unit. How many tuners mute the spurious tuning effects found at either side of a correctly tuned station? How many tuners fade the sound out as you tune too far off station for good quality sound? How many tuners kill the tuning indicator so that it does not indicate when there is no station there? How many offer you drift free tuning? We could go on. If you want a tuner that has been well thought out and engineered, start with this module.

DIGITAL FREQUENCY METER M6
We are very proud of this one. We don't have to say it's the best, as far as we know it's the only one! On a board less than $4^{\prime \prime}$ square is all the electronics of a stable counter with i.f. offset (added) and a stabilized power supply! With the aid of a small dautghter board (not shown) which fits neatly into the above module (M1), the exact station frequency is displayed to the nearest 0.1 MHz . It's a tuning scale $20^{\prime \prime}$ long with accurate calibrations every $0.1^{\prime \prime}$! You get the transformer, daughter board (ready wired in), polarized filter, and a list of station frequencies. What more do you want?

TOUCH TUNE MODULE M5

This module must put the finishing touches to an outstanding combination. Six pre-set stations at the touch of a button. No moving parts to go wrong, or contacts to get dirty. Internal illumination shows you which button has been touched, while the tuning adjustment is made using high reliability multi-turn cermet pots for repeatable selection of the most used stations, yet retaining the use of separate manual tuning. This module interfaces directly with the M1 above, being wired between the board and the normal manual tuning control. A touch of sheer genius!

FULL DETAILS FROM

-All prices subject to VAT
(12.5\% at the time of printing)

Fully descriptive booklet (issue 2) with circuits and assembly instructions U.K. 50p. Export $£ 1$ post free

View
Purton, WILTS SN5 9DG

PLASTIC FASTENERS FOR ELECTRONICS

SELF-ADHESIVE CABLE CLIPS are a quick and simple means of securing cables, cords and small looms to flat surfaces. No drilling or fixing screws necessary. The peel-off backing is removed immediately before placing the clip. The coating adheres to most clean, flat surfaces and withstands a wide range of humidity and temperature. Cable clips are moulded in natural nylon and have rounded edges to prevent damage to the cables.

CABLE STRAPS are semi-permanent fasteners for strapping wires and cables into tight, compact looms. The ratchet lastener is adjustable and can be released by pinching-in the sides of the fastener head. Cable straps are made from black nylon.

WIRE TIES are a flexible means of fastening wires and small cables into orderly, compact looms. They are quick and easy to fit and can be re-used, greatly reducing re-looming times. Wire ties are made from nylon and are available in varlous sizes each determined by a different colour.
The P.C. BOARD GUIDE is a self-retaining edge support for printed circuit boards. It has good panel retention and grips p.c. boards firmly and securely. The oulde is avallable in two types of material - yellow acetal or grey Noryl, for high temperature and voltage applications.

P.C. BOARD SPACERS are simple to fit, oneplece mouldings for use with p.c. boards. They have a self refaining shank for fastening into panels and a T-shaped anchor for securing p.c. boards of $0.062^{\prime \prime}$ thickness. They have good resistance to vibration and are suitable for board-to-board or board-tochassis use.
P.C. BOARD STAND-OFFS are qulckly assembled, self-retaining panel supports for p.c. boards. Made from natural (off white) nyion and have good resistance to vibration. Suitable for panels up to 0.079" thickness. Stand-Offs accept a No. 4 self-tapping screw.

PLASTIC RIVETS fasten panels, fittings and name plates to metal plastic and wood. Resilient enough to fix into brittle materials like fibreglass, hardboard and glass. Shank, head and pin are one piece. Fixing is by driving the pin through the head Into the space between the legs, gripping the work.
DRIVE FASTENERS hold two br more panels together. Easily fixed, normally by thumb pressure. No special tools required. Boatshaped DRIVE Fasteners are for panels of thin and medium thickness and are removable. Ribbed Drive Fasteners are used in blind holes Ribbed Drive Fasteners are used in blind holes
where hole length exceeds lergth of shank.

PLASTIC HOLE PLUGS are quick, inexpensive means of plugging unwanted holes. Hole Plugs keep out dust, dirt and molsture. Attractively shaped heads give a neat finish. The snap action grip of the Hole Plug makes a vibration resistant seal. Hole Plugs are made from nylon and are non-corrosive.
LOKUT ANCHORS are used to strengthen holes by providing additional screw thread engagement in materials where self-tapping screws would be unsatisfactory. Made from high strength nylon and used in insulation, and electrical chassis work. Easily fitted by hand.

10OD's OF OTHER TYPES OF PLASTIC AND METAL FASTENERS LEAFLETS ON REQUEST
HARMSWORTH
HARMSWORTH, TOWNLEY \& CO. LTD. HAREHILL TODMORDEN LANCS OL14 5JY
Phone TODMORDEN 2601 (STD 070-681 2601)

DEF-approved STAN 05-21
BEAB accepted SELIKO approved 20 mm $\times 5 \mathrm{~mm}$ fuse linhs

Conforming to IEC 127
Range of fuseholders meeting European safety requirements.

- Fast acting (F) L 1427B 32 mA to 6.3 A . Time lag (T) L 2080A 50 mA to 5 A .

Available from stock and through countrywide network of Belling-Lee distributors.

Belling and Lee Limited, Electronic Components Group. Gt. Cambridge Road, Enfield, Middlesex. England, EN1 3RY. Telephone: 01-363 5393 Telex: 263265.
KWPS/BLI76

When failure spells

 disasterAdvanced electronic technology now forms a major part of systems designed to support man's activities in increasingly demanding and even hostile environments. In such systems, an equipment malfunction may take on a new and more serious significance.

When so much depends on maintaining the performance of such vital equipment, the provision of the right test instrument can be of paramount importance.
 exceptional performance at modest cost. A large size CRT operated at

15 KV provides a bright sharp display and a wide range of plug in amplifiers offers a choice between $5 \mathrm{mV} /$ div sensitivity at maximum bandwidth and $50 \mu \mathrm{~V} /$ div differential sensitivity with high common-mode rejection. A dual time base option provides comprehensive sweep intensifying, sweep delaying and single shot facilities while a simple single time base plug-in offers additional X. Y capabilities. Measurements on 625 line TV waveforms are made simple with a special TV amplifier plug-in.

Telequipment \ll

Tektronix U.K. Limited
P.O. Box 69, Beaverton House, Harpenden, Herts.

Tel: Harpenden 63141 Telex: 25559.

Telequipment DT5

This is a lightweight portable version of the dual trace 50 MHz D83 model. It brings the same laboratory standards of measurement and performance in a rugged monolithic form ideal for mains-driven field use. The $8 \times 10 \mathrm{~cm}$ CRT operated at 15 kV provides a bright sharp display under all normal conditions, while a choice of factory fitted options from the well proven D83 series plug-ins make it suitable for a wide variety of measurement applications. When fitted with the S2A dual time base, for instance, the D75 offers comprehensive features such as mixed sweep, sweep intensifying and delaying modes. As with the D83 measuring accuracy is $\pm 3 \%$.

wireless world

Editor:
TOM IVALL, M.I.E.R.E

Deputy Editor:
PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor:
GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443 .

Assistant Editors:

MIKE SAGIN
Phone 01-261 8429
RAY ASHMORE, B.Sc., G8KYY
Phone 01-261 8043
JOHN DWYER
Phone 01-261 8620

Production:
D. R. BRAY

Advertisement Controller:
G. BENTON ROWELL

Advertisements:
PHILIP NOSSEL (Manager)
Phone 01-261 8622

LEO KEMBERY
Phone 01-261 8515

CHRIS PRIER
Phone 01-261 8037

Classified Manager
BRIAN DURRANT
Phone 01-261 8508 or 01-261 8423

EDDIE FARRELI. (Classified Advertisements) Phone 01-261 8508

JOHN GIBBON (Make-up and copy)
Phone 01-261 8353

Publishing Director:
GORDON HENDERSON

Surround sound - time to consolidate

It may seem strange that when surround-sound equipment sales are at a low level, the systems confrontation is still unsettled, and people apparently are disillusioned by the whole thing, interest in surround sound seems as high as ever among broadcasters, particularly in Europe. This apparent paradox is the consequence of having forced quadraphonics on the public, discovering what went wrong (Wireless World, December 1974) and trying to put it right second time round. Wireless World is in the midst of publishing details of what may be the most significant contributions to the art, reflecting an escape from the blind alley into which quadraphonics, as conceived at the turn of the decade, appears to have led.
One of the effects of these early attempts at coding two channels for surround use was to send people away thinking of other ways of doing it. One such avenue, followed independently by Duane Cooper and Peter Fellgett, in 1971, led to the omni-phasor idea. This phase-encoding of direction could, by simple sum and difference matrixing, produce a reasonably compatible stereo pair of signals. The snag was a 90° phase difference between the pair.

A derivative of this was therefore studied by the BBC Research
Department in 1973. Dubbed Matrix H, it was last in a list of eight arrangements tested. The front part of its pan-locus was bent toward the in-phase mono point on the energy sphere, which gave a front centre sound a reduced phase difference of 48° and appeared to give commendable overall compatibility.
Then in 1975 an effort was made to achieve a compromise, between the limit of RM on the one hand and BMX on the other, that would suit both broadcasters and the record industry. But the move' failed (see Neuss page 65) and messrs Fellgett and Gerzon were left to put forward their idea for a provisional
industry standard in Electronics Letters later that year.
Now that patents have been granted, fuller details of this NRDC-sponsored work are available. They show that a range of options exists for pairwise mixed material to enable a variety of needs to be met; indeed the H matrix could almost be one of the options.

For a surround encoding to be universally adopted, allowance must be made for the addition of a third channel where feasible (a fourth would allow three-dimensional sound reproduction but that seems very much in the future), the resulting system not then needing "rescue" by non-linear circuitry.
The record industry seems well able to produce band-limited carrier-channel discs, but the transmission of quadrature sidebands along with the in-phase difference-signal sidebands can have undesirable effects in some stereo receivers. To prevent this one could transmit the quadrature information at a level chosen to reduce these effects to agreed proportions, hopefully negligible. And to avoid signal-to-noise ratio problems it follows that the bandwidth of this third channel would need to be restricted. Design procedures are now available that allow computation of third signal coefficients so that reduction of its level does not upset localization.

What we now have is the opportunity to standardize on a rational, unified surround sound technology, which will meet the needs of broadcasters and the record industry, now and for the foreseeable future, with an assurance that the system is not likely to be bettered. As these two British proposals - BBC H and NRDC J - have much in common, it would be most unfortunate if this opportunity were to be wasted. We urge the two parties to get together: there is so much to be lost by fighting and so much to be gained by pulling together.

Broadcasting and the ideal sound receiver of the future

by Duncan MacEwan, Chief Engineer, Radio Broadcasting, BBC

A number of policy changes and trends in broadcasting over the last two decades have a very definite bearing on reception difficulties and the adequacy or otherwise of present day receivers:

- There has been a move away from mixed programming on networks towards channels and stations which can be clearly identified with one particular kind of output, e.g. news, orchestral music, light middle-of-the-road music, rock, country and western, "pop", etc. This "generic broadcasting" concept applies to a greater or lesser extent in many countries of the world today. The BBC itself has for its own national networks such a format (as indicated in Fig. 1).
- Within these basic frameworks, however, most countries run networks which also offer strands or segments of specialised programming, e.g. education, ethnic languages, sport, motoring information, immigrants' programmes, etc. Fig. 2 shows something of BBC Radio's special programme services within its four networks, which it can be seen offer seven different programme outlets. Such widening of choice to the listener must be matched by his ability to take advantage of this by means of a receiver with adequate facilities.
- Programme scheduling on networks has become much more closely geared to the realities of life in the 70 s . For example, television competition, not only from outside but also from within the same organisation, is recognised by radio programme planners. Peak listening times - breakfast, middle of the day and early evening - are established and programme patterns developed against such a background. In the process, some of radio's inherent advantages speed, range of outlets, fulfilling needs which television cannot - can be capitalised on. As a second example, different programming is scheduled during clearly identifiable leisure times, which are the weekends and weekday evenings for most. Furthermore, listening habits have changed dramatically. The television set now occupies the place in the room previously held by the mains radio of the ' 40 s and early ' 50 s , and by far the largest amount of listening is
now done on portables, but with a growing element in cars.

The introduction of more radio services, many of which have found their outlets on f.m. However, in some parts of the world, for a variety of reasons, countries have grown to rely heavily not just on a.m. in the medium wave-
band but also on long waves. This gives rise to the need for a three-waveband set, even before any short-wave requirement is taken into account for those who either actually need such a facility in order to receive their own national services, or simply wish it in order to extend the range of choice by being able

Fig. 2. Examples of specialist programming on BBC Radio's seven network outlets. Note that radio sets must have three wavebands, m.f., l.f. and v.h.f.

Fig. 3. Band II (v.h.f.) allocation for broadcasting. Notes: *applies to Austria, Belgium, Denmark, Israel Italy, Netherlands, Spain, Switzerland, W. Germany and Yugoslavia. **All frequency spacings suitable for stereo transmissions.
to listen to broadcasts from distant countries. Whereas in a modern television set channel selection is normally effected by simple switches or buttons, the counterpart of these in the radio set is usually required to band change, leaving station selections to be subsequently achieved by a second process, manual tuning; this in itself is not always found easy, nor can stations invariably be located and identified positively. The problem for the listener in the UK may be highlighted by brief reference to the situation now obtaining in certain cities. In both London and Birmingham, for example, a total of 13 radio broadcasting outlets is available, viz. the BBC's nine plus the a.m./f.m. pairs of two independent commercial local radio stations.

Many broadcasting organisations' programme journals usually have to give pride of place to television programmes and indeed are encouraged to do so in light of the lucrative advertisements they attract. This often results in too little space being left for a proper, easily readable display of radio's multifarious choices. The would-be listeners find difficulty in spotting programmes of their taste and perhaps miss many they might otherwise have enjoyed.

Technical factors

The demand for the increased number and range of services has given rise to severe congestion in the a.m. medium and long wave bands. The Geneva fre-
quency conference of 1974-75 authorised transmission for some 10,000 stations in Regions 1 and 3, within spectrum space which allows for a total of only 135 channels (120 medium wave and 15 long wave). This represents an increase of $21 / 2$ times the present number of assignments with a total carrier power of 540 megawatts - a greater than four-fold increase. Services after dark will inevitably suffer badly and greater reliance must therefore be placed on f.m. in the future. Broadcasting organisations may well find themselves having to work out a strategy for weaning listeners off a.m. where such outlets are merely carrying in duplication the same programmes. "On air" and written publicity would be key factors in any campaign of this kind.
Because of the different propagation characteristics prevailing during the hours of darkness, which give rise to the all too familiar night-time interference, population coverage figures are lower at these times. For example, in the BBC's own case:

Daylight	Night-time
87%	37%
98%	83%
94%	72%
98%	74%

Radio 1
Radio 2
Radio 3
98\%
In the face of these night-time figures alone, a case can be made for duplication on f.m.

Many of the world's a.m. services were planned on the basis of much lower signal strengths than are now found necessary in city centres, with their high rise, steel framed buildings. In an earlier era the BBC considered 3 to 5 millivolts per metre to be adequate, whereas now it recognises the need for about -10 millivolts. In certain other countries signal levels as high as 25 millivolts are considered essential. This
is also a function of which end of the a.m. medium wave band the station lies. At the high frequency end, due allowance has to be made for the increased attenuation which is experienced as the signal traverses a city.
While the position in respect of f.m. (Band II v.h.f.) is a good deal easier, the packing density of stations is getting dangerously high in some countries. Stereo channels, which are on the increase, call for more spectrum space than monophonic services. In Band II, frequency allocation is fast becoming very difficult and pressure is being put on other users - taxi, fire authorities, police and ambulance services - to move out of it. In the UK the degree of privation (Fig. 3) is such as to have inhibited the development of further national networks, while extension in the number of local services is in jeopardy. The same is true in certain other countries including those which are restricted by their geographical proximity to the densely populated areas of their neighbours. It is hardly surprising, therefore, that most European countries seek an enlargement of that part of Band II allocated to them as broadcasters. The Americas and the countries in the Far East are in a privileged position with at least 20 MHz of band space within which frequencies may be allocated, whereas in the UK it is only 9.6 MHz at present.

Many f.m. services were planned in the early ' 50 s in an era when practically all receivers were mains operated and used in fixed positions. Coverage areas were predicted on the basis of roof top (or loft) aerials at a height of 10 metres. The advent of the battery operated transistor set changed all this, and small portables with a built-in aerial and often with only one a.m. band became the norm; many are still in use. Those sets capable of receiving the f.m. services were provided additionally with an extendable rod aerial and used at a height rarely exceeding one metre above ground level. For satisfactory reception at this level, the signal strength required at roof level would have to be four times the strength normally needed for a roof-top aerial. To give point to this, the BBC has quoted for some years, and quite correctly so, its f.m. monophonic service national coverage figure as 99.3% of the population for all three v.h.f. networks, the figure applicable to the roof-top aerial situation. More recently it has estimated, however, that reception on transistor portables of all types is nominally unsatisfactory possibly for as much as 10% of the population. Even with a roof-top aerial good stereo reception calls typically for about twice the signal strength adequate for the same standard of mono, but in difficult reception conditions much more may be needed. Put another way, this means that stereo service areas are always smaller than the monophonic ones.

A recent BBC Engineering/Audience

Fig. 4. Radio set statistics in the UK.

Research survey in some depth has demonstrated the continuing importance to $B B C$ radio of its a.m. services. Over 86% of all listening is done on the medium and long wavebands and 58% on portable receivers. This latter figure indicates very clearly that there are almost equal markets for both the good quality fixed-position mains receiver and the portable. Listening in cars (6.5\%) was established as of growing importance.

The survey has also shown that even now, 20 years after the BBC's first v.h.f./f.m. transmitter went on the air, only 40% of the sets in the hands of the British public have facilities for receiving such transmissions. F.m. receivers, in spite of affording vastly improved quality, remain in many cases more difficult to tune, and the portables are equipped with awkward rod aerials, consume more battery power and have to be carefully placed within the room for optimum results. Since they also invariably cost more, customer and listener resistance is generated. Furthermore many v.h.f. portables have too small loudspeakers to take much advantage of the higher quality offered by the transmitted signals. Under these circumstances it is more difficult to convince the public that the f.m. service is so very much better than the a.m. one. In addition, good f.m. car radios tend to be very costly, and suppression of ignition, wiper and other local electrical interferences proves difficult. Since this
varies from model to model and is often a function of the car manufacturing process, no one solution can be universally applied, which means that installation costs tend to be high. Too few good economically priced f.m./a.m. car radios are available; even fewer have built-in suppression and cover all three wavebands.

In other parts of the world the position may well be different.

Most broadcasting organisations, when establishing their f.m. services some time ago, did so with a horizontal plane of polarisation. How well does this serve the listener to a portable set with its vertical rod aerial in and out of doors, and those in cars? A recent EBU Working Party K study showed under what circumstances horizontal, vertical or mixed polarisation gave optimum results. For this particular type of potential audience it concluded that in other than rugged terrain served by an existing horizontally polarised transmitter it would be advantageous to change to or establish from the outset either mixed or vertical polarisation. (Many transmitting stations in the USA have been modified in this way during the last decade.) The cost of such a programme of work for a national broadcasting organisation is, however, prodigious. Of the BBC's own 20 local radio stations built during the 1970-72 period, seven are slant polarised as a result of the same kind of considerations, coupled with the need to keep faith with those f.m. listeners who had equipped themselves in earlier years with horizontal roof-top aerials for the three national network services and for
whom a move to vertical polarisation would have meant too severe a drop in signal strength.

In the duplicated service situation, considerable problems can arise in those parts of a country where the a.m. and f.m. transmitter coverages differ, leaving a proportion of the listeners solely dependent on one or other outlet. In the UK this difficulty is prevalent in mountainous regions of Wales and in parts of the north and north west of Scotland. For two principal reasons finance and frequency allocation such situations can present nearly insoluble problems, and are most acute for a public service broadcasting organisation which has as its objective 100% national coverage.

The language of both the broadcasting engineer and set manufacturer often act against the public's interest and certainly its understanding of wavebands and frequencies - there is much talk of a.m. and f.m., medium wave, long wave and v.h.f., m.f. and l.f., of metres, kilohertz and megahertz. On the European continent many countries adopt the simple expedient of quoting channel numbers only, where the f.m. band is concerned, while some manufacturers continue to put station names on their

Fig. 5. Features of the ideal set of the future. In addition to those listed it should have an internal aerial, built-in recorder, rechargeable batteries and an integral charger, interference protection, and a sealed rigid and waterproof cabinet with improved acoustics.

set dials - a restriction for the broadcaster in the face of any impending reallocation of frequencies and a potential source of frustration to the listener.

Requirements for sets

The conclusions which might be drawn from all this are that if in the future the broadcaster is not to be restricted and the listener suffer deprivation:

- every set sold in the country must be capable of receiving at least all the indigenous services available in that country. This must be made to apply to both home produced and imported sets, and legislation will be required to ensure the inclusion of all the necessary wavebands
- f.m. portables must be made easier to tune and be rid of the rod aerial
- an adequate number of pre-set push buttons should be provided for making network or station selection and switching as simple as it already is on television sets
- channel identification must be simplified
- programme journals need designing with the problems outlined earlier very much in mind
- the frequency with which stations are identified "on the air" needs to be increased in subtle ways
- signal strengths will in some cases have to be increased to take greater account of the indoor listener using his portable in one room or another, and often within a steel framed building
- changes need to be made in the plane of polarisation of many f.m. transmitters
- f.m. portables could with advantage be made more sensitive to help the "fringe area" listener.

The immediate problem is one of ensuring that the right programmes can be easily found and listened to around the home in a variety of domestic situations, in the car or out of doors. Potential audiences will be lost and programmes missed unless these can be easily and positively located. The complex programming of a multiplicity of transmission outlets can only be really successful if programme people as well as engineers understand the technical parameters of the problem and jointly engage with the receiver industry in seeking a solution.

The ideal set of the future?

Looking forward into the 1980s, the ideal radio set might well have the following features:
No dial but either an alphanumeric

Fig. 6. Receiver with "electronic search tuning" operating on the f.m. band (Phillips type RH752).
display or an electrochromic indicator. The frequency or channel identification could simply appear as a number in a "window". Some of the more sophisticated tuner-amplifier combinations at the expensive end of the market already use an alphanumeric display of which Toshiba, Revox and Telefunken are examples. Electrochromic cells which might well prove suitable for this purpose have been developed by ICI.

No manual tuning control as such, the set using pre-tuned button selection, or this combined with "memorised selection". A new Swiss Revox tuner has a programmable memory - 16 presets with a storage time of 6 months before any re-establishing of the choices originally made becomes necessary. Philips are marketing a receiver with "electronic search tuning" - by pressing a button the tuner will search up or down the band, stopping for 2 seconds on any f.m. signal of sufficient strength before moving on to the next one. When the listener is satisfied with what he hears he simply releases the button. This particular tuner also includes a "fast run-on" or "back" facility (Fig. 6). Blaupunkt have had a car radio on the market for some years with "search" mode.
Plug-in pre-set frequency cards for the channels applicable to the area in which the set is to be used; these could be issued with the local area's edition of the programme journal and would ensure that the receiver was tuned to the correct station. (A decision at the Geneva l.f./m.f. conference that the a.m. m.f. broadcast carrier frequencies be multiples of 9 kHz greatly assists concepts like those above.)
Electronic programme "labelling" by the broadcaster, using unobtrusive data
signals travelling with the broadcast signal signifying, for example, a particular channel or type of programme. Various technical possibilities suggest themselves using a sub-carrier in or out of band. Frequency modulation of the a.m. carrier is another avenue of approach. Many applications for such labels are possible:

- Programmes could be selected by type or channel and a receiver designed to "search" the frequency band for a programme carrying a particular label; generic broadcasting makes such a concept more meaningful for the listener. Since searching may take time, it is possible to envisage a second, auxiliary receiver contained within the same box that would search and log behind the scenes, as it were, so that: programmes or stations would be available for the listener without. delay.
- A receiver could be pre-programmed for an evening's listening, making use of broadcast data labels to switch "on" and "off", channel select, etc, according to a pre-set plan.
- Coupled with a built-in recorder and using similar methods to that above, selected programmes (e.g. news bulletins, weather forecasts, educational programmes, etc) could be stored for later recall by the set owner.
- Such a receiver could incorporate a digital clock either driven from an internal quartz oscillator or "running free" but corrected at regular intervals by clock-time data signals transmitted by the broadcaster, thus absolving the listener from the need to take any action himself.
- Remote control by the broadcaster of

Fig. 7. Set which automatically watches for "programme-labelled" news broadcasts from Radio Luxembourg and becomes audible when one is being transmitted (ITT "Oceanic").

Fig. 9. Portable with stereo decoder for earphone listening (Hacker "Silver Knight").
the volume required for satisfactory speech and music levels by 'datalabelling', which would solve an age-old listeners' complaint.
Radio Luxembourg uses a simple form of programme-labelling by adding coded signals just before and after its news broadcasts. A frequency within the audio band (2325 Hz) carries frequency modulation in the shape of a square wave; a deviation of 175 Hz is used to open the receiver and 75 Hz to close it. ITT market the "Oceanic" receiver (Fig. 7) with a fixed tuning button for RTL associated with which is another marked "VEILLE"; with both pressed the receiver "watches" for news broadcasts only, and bursts into audio life when one is being transmitted. The Dutch are also beginning to experiment with coded programme-labelling using a sub-carrier well out of the audio and stereo bands.
The American SCA (Subsidiary Communications Authorisation) or "storecasting' facility as it is commonly
called. This could be used for an additional low quality monophonic service of narrow bandwidth when the main transmission was also monophonic.

An f.m. as well as a.m. ferrite aerial contained within the body of the set. The BBC's Research Department has modified a portable in this way and has. also produced two different versions for cars, all with encouraging results (Fig. 8).

Armchair control of channel, volume, tone and stereo balance using remote acoustic, infra-red, etc, control.

Improved f.m. interference protection drawing upon new techniques evolved for digital processes. At least one wellknown European manufacturer of car radios has incorporated such a circuit with advantageous results.
Frequency compensation for listening level, since both the low and high audio frequencies require to be boosted for low volume control settings.

Stereo decoder in portables for earphones listening. BBC Designs Department produced such a thing about five years ago for our own use, since when Hacker have taken this idea up commercially with their "Silver Knight"

Fig. 8. Ferrite rod aerial for v.h.f./f.m. reception (the vertical one) in a portable set modified by the BBC Research Department.
model (Fig. 9), as have ITT and others. (A new Hacker model takes the proposition a stage further with a loudspeaker facing out from either end.)
"No-wires" stereo becomes possible if two f.m. portables are equipped with these small, relatively inexpensive decoders, provided each is also fitted with a left-channel/right channel switch; paired up they could be arranged to provide good stereo listening on their loudspeakers.
A cabinet which is rigid, sealed, waterproof, rugged and with improved acoustics.
Rechargeable batteries with inbuiltcharger.

The technology clearly already exists to bring all of these facilities into being. Which do the world's broadcasters consider the most important for (a) fixed set listening; (b) portables, and (c) car radios, and what are likely to be the price restrictions on the degree of sophistication? For its part, the BBC has had discussions with the British Radio Equipment Manufacturers Association (BREMA) as part of its continuing dialogue with that body, and has been encouraged by its response. BREMA has agreed to co-operate in any experiment the BBC decides to mount.
In conclusion, the author believes that since technology is no longer holding back either the broadcaster or the manufacturer, major developments in receiver design are possible; the receivers of the future are, however, only going to match our needs if the broadcaster specifies these clearly and works closely with the set-making industiy. .

Acknowledgements

The author wishes to record his thanks to S . M. Edwardson of the BBC's Engineering Research Department for his help and advice in preparing this article, and to Howard Newby, Managing Director, BBC Radio, and James Redmond, Director of Engineering, for their permission to publish it.

Compatible system for broadcasting

by P. A. Ratliff, B.Sc., Ph.D and D. J. Meares, B.Sc.(Hons) BBC Research Department

During the past few years the $B B C$ has been involved in assessing the performance of "surround sound" systems to determine whether the provision of a surround sound broadcast service would be viable. Most system proposals may loosely be called "quadraphonic" and they use four loudspeakers for reproduction, arranged as a fore and aft stereo set-up. To carry four loudspeaker signals to the listener, multiplexing techniques have been devised for discs in which four nominally independent signals are recorded, and a decoder, not unlike two stereo broadcast decoders in concept, is required to extract them. In circumstances where only two channels are available (as for conventional stereo discs, cassettes/tapes, and broadcasting), many proposals for channel-reduction matrices have been made whereby four loudspeaker signals are derived in the listener's decoder from two signals as recorded or broadcast.

The broadcasting of four independent signals would require either two complete stereo networks for each quadraphonic programme (as for example the BBC experimental broadcasts on 6th July and 23rd December, 1974, which used Radio 3 and 4 v.h.f. transmitters) or alternatively the inclusion of the additional signals by quadrature modulation of the 38 kHz subcarrier and/or the addition of a further subcarrier. There are not enough Band II v.h.f. broadcast channels to permit the first-mentioned possibility on a permanent basis, and although the last has been discussed at some length ${ }^{i}$, including the transmission. of only three signals*, there are serious problems in practice ${ }^{2,3}$.

To overcome some of these problems three-channel systems have been proposed which transmit the third signal with a reduced bandwidth and/or modulation level. These could substantially reduce the problem of incompatibility with existing stereo receivers, but at the same time would reduce the service area.

Most attention has therefore been

[^2]paid to two-channel matrix systems for possible broadcast use, as these would not, in principle, require any changes in distribution, transmission, or receiving apparatus. It would also be possible to record them with conventional stereo equipment. However, some loss of information is inevitable in mixing surround-sound signals into only two independent channels, and re-creation of the surround sound-stage, by means of a suitable decoder to provide four loudspeaker signals, has enjoyed a varying degree of success. The lack of loudspeaker signal separation inherent with any linear decoding matrix ${ }^{4}$ has led to considerable effort being devoted to the design of variable matrices, whose decoding parameters are dependent upon the programme content. Such systems can only work ideally for one source direction at a time, and thus compromises must be made to enable a complex sound distribution to be accommodated.

Of paramount importance, the two encoded matrix signals must be capable of sensible reproduction, both directly in stereo and when summed in mono. This compatibility requirement, which is desirable in the disc, cassette, and tape market to eliminate the need for double inventories (i.e. the same programme material being released in both stereo and "quad" editions), becomes essential in broadcasting because all but a small proportion of the public will use existing stereo and mono receivers for the same broadcasts. Indeed, there must be no penalty paid by the existing stereo and mono audiences, who are likely to be in the majority for many years to come, if not permanently, in order to satisfy a minority quadraphonic audience. This requirement is perhaps the most important of a matrix system for broadcasting, and is the one which the commercial systems have failed to satisfy completely so far.

Psychoacoustics

Initial studies at BBC Research Department concentrated on investigating the subjective properties of the human hearing mechanism, to find out the extent to which quadraphonic signals are capable of producing a subjective enhancement of the sound sensation for
the listener. Ideally, by surrounding the listener with sound information, a system should create a greater sense of realism and involvement in the programme. It is important to realise, however, that the programme must satisfy the listener subjectively, and merely the re-creation of the actual sound field at a suitable position in the recording environment may not be sufficient. Thịs feature is, of course, well known in stereo reproduction, but applies equally for surround sound, because the lack of other perceptions of the recording environment (e.g. visual) often requires that the aural presentation be artificially exaggerated.

From a large number of subjective experiments, it was found that at normal listening levels the listener is almost equally sensitive to the loudness of a sound at any azimuth around him, and although his assessment of the location of a sound exhibits a left/right expansion in the rear of the soundstage, he can co-locate two separate sounds to an accuracy of better than \pm 3° for all stage azimuths. This lastmentioned factor is clearly the more important for surround sound reproduction, as the listener will not be so concerned about the true positions of the various sound sources in a programme, but will be likely to be more critical of their relative positions.

Studies were then made of quadraphonic presentation of sounds; in particular, the effects of combinations of signals with various amplitude and phase relationships typical of those produced by proposed matrix systems. Using conventional stereophonic sound-panning techniques* for positioning a sound-image, a discrete system (i.e. four independent audio signals) is capable of giving good sound-image localization in the front and rear of the sound stage, but is sensitive to the listener's head position for the sides unless the listener turns to face the sound, particularly in non-reverberant surroundings. Fortunately, the acoustics of typical home living

[^3]rooms serve to mitigate the last mentioned effect. When groups of directional microphones or channel reduction matrices are employed, more complex output signal configurations occur which can give rise to most unnatural sound effects, changing the location, definition and quality of the sound. On the other hand, with suitable control of these parameters, it is possible to enhance the sound image considerably.
Furthermore, it was necessary to examine the compatibility requirements of a sound system for stereo and mono reproduction. All the two-channel matrix proposals use phase difference between the left and right stereo signals, in addition to their amplitude ratio, to convey left/right and front/ back directional information. For normal stereo the phase difference between the two signals is maintained at a nominal zero degrees, and it is well known that completely antiphase signals give rise to quite unpleasant, even nauseating, effects when the amplitude difference between the signals is small. Nevertheless, a much more detailed knowledge was required with the advent of matrix systems, and a comprehensive investigation into the effects of phase on stereo image formation was undertaken. As a result, the compatibility of any two-channel system can be predicted from a knowledge of its encoding parameters.
A useful pictorial representation of the stereo signal is given by Scheiber's sphere ${ }^{5}$, which maps the amplitude ratio (L / R) and the phase differences β of the two-channel signals onto the surface of a sphere. This is facilitated by expressing the amplitude ratio as an angle, by the relationship $\alpha=2 \tan ^{-1}$ $|L / R|$. Thus $\alpha=0^{\circ}$ when the signal is totally in the right channel, 90° when it is split equally between the left and right channels, and 180° when the signal is totally in the left channel. The right-hand half of the sphere is represented in Fig. 1, where the phase difference β is plotted as the angle around the circle, and the amplitude ratio α is plotted as the radius of the circle, so that $\alpha=0^{\circ}$ (signal all in the right channel) is at the centre of the circle, and $\alpha=90^{\circ}$ (signal equal in the left and right channels) is on the circumference. The left-hand half of the sphere can be regarded as mirrored the other side of the paper with $\alpha=180^{\circ}$ (signal all in the left channel) at the centre of the circle on that side. Usually left/right symmetry pertains in stereophonic transmission systems and it is sufficient to examine only the one half of the sphere.
From the work on the effects of phase it was possible to divide the sphere into areas of impairment of stereo image quality, and in Fig. 1 three nominal regions are defined, namely negligible, slight, and severe impairment zones, as shown by the appropriately shaded areas. Impairment zones can be defined

for mono reproduction. but these are less severe, resulting only in a reduction of level for large values of the twochannel phase difference β thus affecting the balance in mono of sounds from different encoding azimuths.
The compatibility problems found with earlier matrix system proposals could now clearly be seen when the system loci were plotted on the sphere; they all transgressed into the slight and/or severe impairment zones to too great an extent. What was required was a system whose encoding locus lay principally within the negligible impairment zone, having a sensible image distribution in stereo reduction, and yet retaining the capability to be decoded in surround sound with both left/right and front/back sound-stage discrimination.

Matrix H encoding

The requirement was met with the development of Matrix $H^{6,7}$ at the Research Department. The two-channel encoding matrix may be defined in terms of the position of the sound source in the surround sound stage to give left and right channel coded signals of ${ }^{\text {* }}$
$\left[\begin{array}{l}\mathrm{L} \\ \mathrm{R}\end{array}\right]=\left[\begin{array}{lll}0.63-7.5^{\circ}, & 0.43+73^{2}, & 0.63-75^{\circ} \\ 0.63+7.5^{\circ}, & 0.43-73^{2}, & 0.63+75\end{array}\right]\left[\begin{array}{c}1 \\ \cos \\ \operatorname{Hin}\end{array}\right]$
where $r \angle$ o represents a quantity of magnitude r and phase-shift ϕ relative

[^4] surround systems may be found in reference ${ }^{-1}$.
to an arbitrary reference, and θ is the azimuth angle of a unit amplitude sound source measured in a clockwise sense from the centre-front direction of the sound stage. The first component represents the mono, or omnidirectional response, the second the front/back directional response, and the third component represents the left/right directional response. The locus of this encoding equation on the sphere is shown by the dashed line in Fig.l, with marks for the encoding positions of the eight cardinal sound-stage locations $\left(C_{F}, R_{F}, C_{R}, R_{B}, C_{B}\right.$ shown, and L_{B}, C_{L}, L_{F} are on the other side of the sphere to the corresponding right-hand positions). This locus also corresponds to that obtained using coincident group-microphone techniques for recording the natural sound-field at a single location.

It is common studio practice however, to position a sound-source electrically by panning a source signal between pairs of channels (pairwise panpot mixing). In quad mixing such panning is usually arranged to take place between the four corner channels $L_{F}, R_{F}, L_{B}, R_{B}$, and the equation for Matrix H given above has to be adapted to accommodate these inputs. It then takes on the form

The locus of this equation is shown by the solid line in Fig. 1 for pairwise panpot mixing, and is the form in which IIatrix H is usually instrumented. This
configuration also provides ideal group-microphone encoding, following the dashed curve, for four coincident hypercardioid-response microphones arranged to point in the directions of the corresponding loudspeakers used in quadraphonic reproduction. In practice four cardioid-response microphone elements are used, and their signals are mixed to give the required hypercar-dioid-response signals, with a forward/backward response ratio of 5.83 .
For maximum front/back discrimination the centre-front (C_{F}) and centreback (C_{B}) encoding points should be diametrically opposite one another on the sphere, as are the centre-left $\left(\mathrm{C}_{\mathrm{L}}\right)$ and centre-right (C_{R}) encoding points. However, this would involve using too much of the slight and severe impairment zones, thus seriously affecting compatibility, and so the Matrix H loci have been bent so that 80% of the locus lies in the negligible impairment zone. None of the locus enters the severe impairment zone and only the region near C_{B} significantly enters the slight impairment zone. This last-mentioned feature is used to advantage in that even the stereophonic listener gains an impression of the depth of the sound stage.
The distribution of encoding azimuths around the locus is arranged to give sensible localization in stereo as well as correct localization in quad. Fig. 2 shows experimental results for the stereo image localization and image spread, or diffuseness, using Matrix H and, for comparison, using a direct stereo fold-down from a four-channel discrete system. (The corresponding front and back signals are simply summed to give what is known as discrete-blend stereo.) With discreteblend stereo, full stage width is given to the front and back quadrants of the sound stage whilst the side quadrants are compressed to two points. This usually results in a very "ping-pong" stereo presentation of the programme. Also there is no differentiation between front and back quadrants, which can make the sound presentation dull or even confusing.
Matrix H , on the other hand, gives a more uniform distribution of the sound-stage whilst maintaining prime emphasis on the all-important front sector. The front quadrant spans most of the stereo stage with C_{L} and C_{R} actually at the loudspeakers, and the rear corner positions are arranged so that overwidth stereo may be obtained, particularly when using pairwise-panpot mixing. Thus, images may be localized outside the space enclosed by the loudspeakers and, without generating unpleasant phase effects, a "super stereo" can be produced when desired. Centre-back is reproduced somewhat spread compared with C_{F} and also displaced slightly to one side. This diffuseness of rear images is subjectively very good in a complex programmë mix in that it gives a more distant

Fig.2. Stereo image localization and spread for Matrix H and "discrete blend".

Fig.3. Variation of mono signal with sound-stage location.
perspective and hence creates depth to the stereophonic sound-picture, with the front sound stage appearing more prominent.

In monophonic reproduction, Fig.3, Matrix H gives a small bias towards the front of the sound-stage when compared with discrete-blend mono (obtained by summing the four-channels of a discrete system). With pairwise panpot mixing, a maximum level reduction of 3.6 dB with respect to the front corner stage locations occurs at the rear corner positions. This is a highly desirable feature for stage/ambience (e.g. concert hall) recordings, where a reduction of ambience level is required in mono to retain a subjectively satisfactory sound balance with principal sources. In surround presentations, where such a level drop would not be desirable, the rear corner sounds
are simply panned inward slightly toward stage centre, equivalent to about -15 dB cross-mix to the opposite front corner encoding point. This corresponds to moving the rear corner encoding point on the sphere towards that for coincident microphone recording. Thus "quad" presentation is not substantially altered, and the only penalty paid is that the overwidth effect in stereo is reduced slightly.

Matrix H decoding

To obtain surround sound, a suitable decoder is required to extract the directional information from the coded two-channel signal. A linear decoding matrix may be formed by taking the complex conjugates of the row elements of the encode matrix and writing them down as the column elements of the decode matrix

$$
\left[\begin{array}{l}
L_{\mathrm{F}}^{\prime} \\
R_{\mathrm{F}}^{\prime} \\
\mathrm{L}_{\mathrm{B}}^{\prime} \\
\mathrm{R}_{\mathrm{B}}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
0.94-10^{\circ}, & 0.34-65^{\circ} \\
0.34-65^{\circ}, & 0.9410^{\circ} \\
0.94-25^{\circ}, & 0.34-1 i 5^{\circ} \\
0.34115^{\circ}, & 0.94-25^{\circ}
\end{array}\right]\left[\begin{array}{l}
\mathrm{L} \\
\mathrm{R} \\
\end{array}\right]
$$

This results in an overall transfer function for the Matrix H system of

Low separation figures are obtained between adjacent outputs; this characteristic is typical of two-channel linear matrix systems, as only two outputs can be completely isolated. However, in the case of Matrix H decoding the signal separations obtained are not symmetrically disposed, and were optimized by taking account of psychoacoustic properties so that a centrally-seated, forward-facing listener obtains optimum results. In addition, the phase relationships between these signals were modified to further enhance the directionality of sound sources and substantially eliminate unpleasant
(a)

(d)

Fig.4. "Quad" image localization and spread (length of radial bars). (a) Ideal test-image positions, (b) four-channel results, (c) two-channel Matrix H linear decoder, and (d) Matrix H with programme-dependent decoder.
phase effects which can occur with basic matrix decoding due to large phase differences between associated signals.
The performance of this decoder was initially assessed in single-source localization tests, in which the listener was asked to estimate the position and spread, or diffuseness, of the sound-image produced when a sourcesignal was encoded at any one of 16 azimuth positions. Fig. 4(a) shows the ideal locations of the test sound-images (numbered 0 to 15 , position 0 corresponding to the C_{F} position) and Fig.4(b) shows the corresponding mean assessed image positions together with their image spreads, for a discrete four-channel system.

A reasonable distribution of images is obtained, although the side quadrant positions are more diffuse and sensitive to positioning. In comparison, Fig. 4(c) shows results for the basic linear Matrix H system. Although there is more variation in absolute positional accuracy, a fairly uniform image distribution is maintained and hence relative sound localization is good. Image spreads are greater for Matrix H, notably in the
corner locations, but again remain fairly uniform around the whole sound stage.
These results were substantially better than for any other linear matrix system tested. However, a limitation of linear matrix decoding is that it is sensitive to listening position if the correct directionality of sounds is to be maintained. Also the sound stage is reproduced too close to the listener. Nevertheless, linear Matrix H creates a pleasing sound sensation, even when listening off-centre, possessing the warm and spacious characteristics of good surround sound reproduction.
For a larger effective usable listening area, signal separations greater than can be provided by linear matrix decoding are required. These can be achieved by a programme dependent technique in the decoding process. The decoder is still based upon the linear matrix of the system, but circuits are introduced which detect the principal (loudest) sound-source location and vary the decoding parameters to enhance its subjective localization.
In principle, an enhanced two-channel matrix decoder is capable of reproducing sources at any single location with the same fidelity as a four-channel discrete system. However, it is a fundamental limitation of such matrix systems that sources at different locations cannot all be reproduced faithfully at the same time. In fact, some of the early "enhanced" decoders caused quite unpleasannt effects, such as severe image instability and/or level variations, but if the variable decoding mechanisms are
suitably controlled, e.g. the gain-laws and time-constants selected with care, these objectionable effects can be reduced almost to the point of inaudibility.

It has been found that a variablematrix enhancement technique, first developed by Sansui ${ }^{8}$ (see for example reference 9) is the most successful to date. The detailed mechanics of such decoding are complex and there are many possible variations, but details of such a technique for matrix. H and a suitable decoder are to be published in a subsequent issue of Wireless World. With Matrix H, however, the advantages of a good linear decoding matrix are combined with those of variable matrix enhancement, so that a good decoding performance is obtained not only when there is a principal sound source to command the enhancement circuits, but also in an ambience-sound situation when there is no dominant sound source to cause the decoding matrix to vary from its quiescent linear condition. This obviously eases the compromises that have to be made in decoder design to make it perform well with both simple and complex soundstage arrangements.

Subjectively, when enhancement is applied to a Matrix H decoder, the sensitivity to listener position is reduced, and the "closing in" characteristic of the linear matrix disappears. Fig. 4(d) shows image localization and spread results obtained for an experimental enhanced Matrix H decoder. Positional accuracy is close to that of a discrete four-channel system and image spreads are very similar. Assessments on pre-mixed programme material also show a surround-sound performance similar to that of a discrete system is obtained. The performance is better than that from the best commercial systems with programme-dependent decoding, but with the significant advantage that it combines with a highly compatible stereo and mono presentation from the same encoded signals

System assessment

Matrix H had proved to be highly compatible and effective in the laboratory, but it was then necessary to find out whether the system was readily useable in practice, under the normal processes of programme production in existing studio installations. Also it was important to set up an impartial experiment to find out whether any of the other system proposals had developed to the point where they might in practice be equally, or better suited to a surround-sound broadcast service. The BBC invited the proponents of all known practical systems to submit their equipment and supervise its installation. The following accepted:BMX, SQ, QS and Matrix H.

Programme production teams selected material recorded on 16 -track mas-ter-tapes, some recorded using indivi-
dual spot microphones and some recorded using coincident groups of microphones, and were asked to make surround-sound programmes, suitable for compatible broadcasting, with each of five anonymous systems, one of which was a discrete four-channel system which served as a reference. They had to mix the programme independently through each system to try and attain their desired intention, making compromises where necessary to maintain good stereo and mono compatibility.

The resulting programme mixes were recorded and later played back for independent assessment of the quad, stereo, and mono performances, still as anonymous systems to the listeners. The listeners were told of the producers' broad intentions, in the form of an ideal stage layout chart for each programme item and were asked to score each system by placing a mark at the appropriate point on a linear scale running from "bad" to "good". Fig. 5 shows the averaged results for separate assessments of the quad, stereo, and mono performances together with an overall assessment. As the systems were presented in a randomized order in each set of tests, listeners were then told which of their results pertained to the same, but still anonymous, system so that they could give their overall assessment.

Listening in quadraphony Fig.5(a), the discrete four-channel system came out best, with Matrix H a close second; and the three other systems (labelled X , Y and Z) were significantly worse. In stereo, Fig.5(b) Matrix H was clearly preferred, and in mono the preference for Matrix H was slight. Note that the direct fold-down of the discrete fourchannel system (discrete blend) was not particularly well liked for its stereo and mono performances, as was predicted. Finally, Fig.5(d) shows the average of listeners overall assessments and confirms that as a broadcast system Matrix H is the best viable choice.

Broadcast developments

Matrix H encoded programmes have been made by the BBC and other European broadcasters; some of the Promenade Concerts broadcast during the 1976 season were encoded by Matrix H. Recordings of the latter were made off-air, using a conventional v.h.f. stereo receiver, and later compared with recordings made on site at the recording environment. Such comparisons provided confirmation that the BBC's normal stereo broadcast network can handle Matrix H transmissions without problem.

The advantage of the two-channel compatible system is that surroundsound broadcasting can take place over existing stereo networks and transmitters, and all existing stereo facilities can continue to be used. Most importantly, this includes the listener's equipment, and not only his v.h.f. stereo receiver, but also his disc and tape apparatus.

(c) MONO PERFORMANCE

(d) OVERALL PERFORMANCE

Fig.5. System comparison tests showing listener's preference for 'serious" music (horizontal bars show standard deviations).

Nothing is rendered redundant, but it is of course necessary to provide a decoder, loudspeakers, and amplifier, to gain the extra sound dimension.

Systems using a third or fourth signal could not be handled by existing receivers or recording apparatus, and the additional cost to both listener and broadcaster of adding extra signals would be large. The question would be whether any achieved improvement in performance over that of two-channel Matrix H could be considered worth-
while. In the unlikely event of it becoming possible to devise a new broadcasting system, with the necessary extra bandwidth and improved s / n Matrix H could, of course, readily be expanded to provide three or even four transmission signals. Even so, as it would retain its present excellent stereo and mono compatibility and the present high standard of quadraphony for existing listeners, one wonders how many listeners would consider the additional expense of three- or fourchannel receiving apparatus justifiable.
The BBC intends to broadcast a number of experimental programmes using Matrix H throughout the remainder of 1977, and the early part of 1978 at least. Details of these will be published in Radio Times. Listeners who wish to decode these broadcasts to give the full surround-sound effect will be interested in the forthcoming Wireless World article describing a suitable decoder. Existing decoders designed for use with other systems will not normally provide a satisfactory performance without modification ${ }^{*} \dagger$ and naturally optimum performance can only be expected from a purpose-built decoder.

Acknowledgements. The authors wish to thank the Director of Engineering of the BBC for permission to publish this article and are also grateful to the many people who have helped during the development of Matrix H, in particular Messrs Crompton, Gaskell, Harrison, and Wright.

References

1. Carey, M. J. and Sager. J. C. Quadraphonic broadcasting - current proposals and the way ahead. Wireless World Vol. 80 November 1974, pp.422-5.
2. Meares, D.J. Quadraphonic broadcasting an alternative view Wireless World Vol.81, February 1975, pp.65/6.
3. Netzband, R. Multiplex systems for v.h.f./f.m. sound broadcasting. E.B.U. Review, (Technical,) October 1974, pp.225-9.
4. Shorter, G. Four-channel stereo. Wireless World, Vol. 78 January 1972 pp.2-5 and February 1972, pp.54-7.
5. Scheiber, P. Analysing phase-amplitude matrix. Journal of the Audio Engineering Society, vol. 19 November 1971, pp.835-9.
6. British Patent Application no. 34839/74.
7. Meares, D. J. and Ratliff, P. A. Development of a compatible 4-2-4 quadraphonic matrix system, Matrix H. E.B.U. Review (Technical), October 1976, pp.208-17.
8. British Patent No. 1,402,320.
9. Heller. D. Surround-sound decoders. Parts 3 and 4 (QS Variomatrix). Wireless World, Vol. 82 August 1976 pp. $57-9$ and September 1976 pp.53-6.

[^5]

Changes in amateur examination

Since its introduction in 1946 the Radio Amateurs' Examination of the City and Guilds of London Institute the examination which must be passed to obtain either a Class A or Class B licence in the United Kingdom - has been conducted as a three-hour written paper, divided into two parts: Part 1 with two compulsory questions; Part 2 with eight questions of which six should be attempted.
But from 1979, City and Guilds are expected to introduce a new format to the examination based on objective tests containing multiple-choice questions, i.e. four possible answers are provided and the candidate indicates which he thinks is the right one. This technique, if pitched at the right level, can provide a revealing assessment of the knowledge of a candidate without reference to his "literary" abilities and can result in more consistent marking. Such an approach would seem very suitable for an examination taken by candidates who range from about 14 to over 70 years of age.
In preparation for these changes the City and Guilds is inviting readers in the London area to take part in pre-tests of the new form of exam on May 3, as follows:
"The RAE from 1979 will be in the form of Objective Tests containing multiple-choice questions. If you are preparing for your amateur licence on your own and live in the London area, you may be able to assist. It is the Institute's policy to pre-test objective questions, trying them out on candidates who have reached examination standard. Pre-tests are intended to test the performance of individual questions and syllabus coverage. Information is obtained which assists the Institute's reviewing panels in judging whether each individual question should be included in the question bank for use in future exams . . . pre-tests must be administered to a sample of students representative of those who will take the exam. Many would-be radio amateurs prepare for exams without fol-
lowing a college course and the Institute invites such candidates who live in the London area to assist.
"The pre-tests are to be held at the Institute, 76 Portland Place, W1, on Tuesday, May 3, from 10.15 a.m. As well as helping us the tests may help wouldbe examinees to revise their work and gain some exam experience. If you are willing to assist please telephone Miss Jackie Clifford (01-278 2468, ext. 491). Invitation will be issued to eligible candidates."

Promoting RTTY

The British Amateur Radio Teleprinter Group seems to have stepped up its efforts to encourage more use of r.t.t.y. by British amateurs. Apart from publishing information on the principles and practice of r.t.t.y., BARTG has recently established a team of lecturers prepared to talk on r.t.t.y. to amateur radio clubs. Requests should be made to J. P. G. Jones, GW31GG, Hon. Sec. BARTG, 40 Lower Quay Road, Hook, Haverfordwest, Dyfed SA62 4LR.

BARTG is holding its annual convention on Saturday, May 21, at the Village Hall, Meopham, Kent, where there will be lectures, trade stands, bring-and-buy stall and a "tape factory". Trains arriving at Meopham station before 1315 hours will be met by transport.

An American amateur who first demonstrated a radio teleprinter system as long ago as 1921 has recently been honoured by the Radio Club of America. The club's 1976 Sarnoff Medal has been awarded to Captain W. G. H. Finch, first licensed in 1912 as 8MK and 8IE. His early r.t.t.y. was based on his invention of a highly sensitive relay.

Silver Jubilee prefix

To mark the Queen's Silver Jubilee the Home Office is authorizing all British Class A and B amateurs to use the special commemorative prefix "GE" instead of the usual G. GM etc. in all parts of the UK from 0001 hours on Saturday, June 4 to 2359 hours on Sunday, June 12. This is the first time a special prefix has been made generally available to UK amateurs to mark a national event and the Home Office state that it will not set a precedent.

Scanning the bands

Sunspot activity seems to be rising again (at last!) with h.f. conditions in December, January and February benefiting from the small but noticeable improvement. Particularly fortunate was the ARRL DX contest (c.w. section) on February 10-20 with many of the new " N " two-letter calls pounding in on 7,14 and 21 MHz . Maritime activity on 21 MHz also seems to be on the increase: recent contacts have been with JF3HAN/mm near Hong Kong;

JA4GY/mm in the Arabian Sea; and YU3EO/mm a freighter in mid-Atlantic.
It is reported that during the American bicentennial year (1976) Dick Spencerley, KV4AA - operating as AJ3AA - made some 35,000 contacts, an average of nearly 100 a day, from the Virgin Islands - surely a record!
Microwave Associates are producing a 20 mW Gunn-diode 10 GHz transceiver specifically for the amateur. It is supplied with (or without) a 17 dB gain horn antenna, Schottky diode mixer and circulator. It can put an amateur on the 10 GHz band at costs very favourable in comparison with those for factory equipment at lower frequencies. Details are in "Bulletin 7624 " issued by the firm.
"World Radio Club" - the BBC World Service programme for DX enthusiasts and amateurs - celebrated its 500 th weekly edition with one of the few audience participation broadcasts ever produced at Bush House. Over 32,000 listeners have joined the club since it began in July 1967
"Employers in the communications industry have reason to be grateful to the RSGB for the enthusiasm and expertise implanted in many of their young apprentices through membership of local radio clubs and the society itself. I hope more firms will take a closer and more practical interest in the RSGB in the future" - Lord Wallace of Coslany at his installation as 1977 president of the RSGB held at the Palace of Westminster.

In brief

The new honorary secretary of the Radio Amateur Invalid and Bedfast Club is Mr H. R. Boutle, G2CLP, 14 Queen's Drive, Bedford MK41 9QB ... A feature of the RSGB International Radio Communication Exhibition and Convention at Alexandra Palace, London on May 6-8 will be a "Members' Mart" on May 8 in the west corridor . Northern Radio Societies' Association annual convention and exhibition sponsored by a number of radio societies in the north of England, is at Belle Vue, Manchester, on Sunday, April 24. A record number of trade exhibitors and club standards are expected ... The 3rd European Conference for Radio Amateurs under the aegis of the German society DARC takes place May 27-30 at Wolfsburg. Earlier conferences were held in 1968 and 1972 . . . Harold Wood-' head, G2NX, who died recently was one of the first, if not the first, amateur to use single-sideband in the UK . . A busy time for mobile rallies: May 1 Spalding Tulip-Time Rally (Gleed Boys School, Spalding); May 22 Welsh Mobile Rally (Barry Rugby Football Ground) and Northern Mobile Rally (Victoria Park Hall, Keighley); May 29 Suffolk Wireless Revival (Ipswich), Southend (Fitzwimarc School, Rayleigh) and a Hull rally.

Electrolytic capacitor tester

Automatic instrument offers a reform facility and meter display

by A. Drummond-Murray

This instrument uses a charge injection technique to develop a voltage across the capacitor under test. The voltage is measured on a calibrated meter and no balancing or adjusting is required except for range selection. A reform facility allows an old or unused capacitor to have a voltage applied for about 15 s which re-polarizes the dielectric before a measurement is made. An indication of leakage is also provided by the meter movement which is buffered by a f.e.t.-input amplifier.

Electrolytic capacitors depend on a dielectric formed on a aluminium or tantalum electrode by a thin layer of oxide. This dielectric requires polarizing to maintain its insulating properties and long periods of rest can result in de-polarization, a high leakage current and even total breakdown. Fortunately, the dielectric layer can be restored by applying a polarizing potential to the capacitor for at least five minutes via a current limiting resistor. This process is known as reforming. If a capacitor is to be tested and has started to de-polarize, a reforming period is necessary before any meaningful results can be obtained. The tester is provided with a reform facility which charges the capacitor to +12 V via a 12000 resistor for about 15 seconds prior to the capacitance measurement. Although this period is too short for complete reforming, it is sufficient for most capacitors to recover enough for testing. The main property to suffer from incomplete reforming is leakage current. If, on test, a capacitor exhibits , a high leakage current, a second reform period will often suffice. If no such improvement is apparent, the capacitor is fauly and unlikely to benefit from a prolonged reform. A short tone from the instrument indicates that the reform period is complete. Three l.e.ds indicate the state of the circuit during the test process. A green l.e.d. indicates that the reform process is ready to start and a red type indicates than an excessive current is flowing during the polarizing period. This facility is useful for detecting short circuit capacitors.

During the measuring cycle, a further l.e.d. flashes when the test capacitor is being charged.

An equivalent circuit is shown in Fig. 1. The charge period on any range is the same for any unknown capacitance, and the voltage developed across the capacitor is proportional to its capacitance. If this voltage is measured from 0 V instead of 12 V , the capacitance increase is indicated as an increased voltage. This voltage rises exponentially. Fig. 2 shows the sequence of events following a start pulse. After a polarizing potential is applied, the capacitor is completely discharged through a circuit which limits the peak current to 100 mA . A finite charge is then injected into the capacitor and the voltage is measured on a calibrated meter. The rate of decay is taken as a measure of internal
leakage. A complete circuit of the tester is shown in Fig. 3.

Input impedance of the measuring circuit is important because of the shunting effect which occurs. Fortunately, modern operational amplifiers are ideally suited for producing high input

Fig.1. Simplified circuit of the tester
Fig.2. Block diagram of circuit operation.

impedances. Simple devices like the 741 can be made to have a high input impedance, but the bias current taken by the input transistors can still cause the capacitor voltage to vary. F.e.t.-input op-amps do not suffer from this problem, and the input resistance is greater than $1000 \mathrm{M} \Omega$. Using a f.e.t.-input amplifier the meter reading obtained with a $1 \mu \mathrm{~F}$ polyester capacitor had no change after 20 minutes. Leakage current through any conventional electrolytic capacitor is certain to be many times higher than this, so the meter-drive loading may be disregarded.

In general the range of the instrument is altered by varying the charge current period. Because each range is ten times larger than the previous one, the charge injected increases by the same proportion, so the scale calibration is correct for all ranges. Calibration of the instrument is achieved by using known values of capacitance and marking the scale accordingly. Mullard $10 \% 100 \mathrm{~V}$ polyester types with values $0.33 \mu \mathrm{~F}, 0.47_{\mu} \mathrm{F}$ and $1.0 \mu \mathrm{~F} \times 3$, were used and checked on a capacitance bridge and found to be within $\pm 5 \%$. These are quite adequate for calibration in view of the wide tolerance of electrolytic types (up to $+100 \%-50 \%$). On the $3000 \mu \mathrm{~F}$ range a ten-fold increase in charge current is used to avoid a $47 \mu \mathrm{~F}$ non-electrolytic capacitor, which is both large and expensive. The charging current is determined by the series resistance in the circuit and by the exponential rise in voltage across the capacitor. On the $3000 \mu \mathrm{~F}$ range the
initial current is a little under 100 mA , so a well regulated supply is required to prevent a momentary fall in voltage as the 100 mA demand is met.

The timing sequences are controlled by three monostable multivibrators. The initial forming period is determined by the $1000 \mu \mathrm{~F}$ electrolytic capacitor on $\mathrm{IC}_{1 \mathrm{a}}$ and will vary with the component used. If it is not desired to reform a capacitor before testing, the $1000 \mu \mathrm{~F}$ capacitor is switched out of circuit, and the period reduces to a few nanoseconds. At the completion of this period the test capacitor is fully discharged. The duration of the discharge cycle is 0.25 s on all except the $3000 \mu \mathrm{~F}$ range which is increased to 2 s . Capacitor C_{5} is switched in parallel with the existing timing capacitor, C_{4} for this purpose.

As discussed earlier, the accuracy of the instrument depends on each range having a ten-fold change in the amount of charge injected during the test period. Stable capacitors are therefore required on the timing multivibrator, IC_{3}. Polycarbonate and polystyrene capacitors are particularly suitable but mylar, paper or ceramic devices are not recommended.

On all but the $3000 \mu \mathrm{~F}$ range, the test capacitors are charged through a series $1.2 \mathrm{k} \Omega$ resistor and consequently the accuracy with which the periods change directly affects the meter calibration from range to range. On the

Fig.3. Complete circuit of the capacitor tester. Switches 3_{a} and 3_{b} only close on range M of switch 3_{c}
$3000 \mu \mathrm{~F}^{\circ}$ range the test capacitor is charged through 120Ω, formed by the addition of 135Ω in parallel with R_{12}. Two extra resistors are used to prevent aging due to the relatively high peak current of 100 mA .

A monostable is used to drive the precision charge circuit because this device is recommended by the manufacturer for stability and repeatability.

Operation of the circuit is indicated by the pulsing of LED_{2}. During the reform period, current passing through R_{12} is monitored by Tr_{4}. If the $V_{b e}$ exceeds 0.7 V then Tr_{4} turns on LED_{3} Resistor R_{14} limits the base current and prevents Tr_{4} from shunting R_{12}. The l.e.d. is illuminated fully when the capacitor current exceeds about 5 mA . During the discharge sequence, Tr_{2} is turned on by Tr_{3} and Tr_{1} remains cut off. When Tr_{2} turns on, the discharge path is completed via R_{12} and R_{13} in series. Because R_{12} is in parallel with a diode which will be forward biased, the maximum potential across R_{12} is limited to 0.7 V so the remainder of the voltage drop will be across R_{13} which is a low resistance. Diode D_{3} removes R_{12} from the discharge path during the initial current flow, and until the capacitor voltage falls below 0.7 V . Schmitt trigger $\mathrm{IC}_{4 \mathrm{a}}$ is connected as a simple oscillator producing a continous rectangular waveform. The second Schmitt trigger $\mathrm{IC}_{4 \mathrm{~b}}$ isolates the oscillator from the loudspeaker. The trailing edge of the reform cycle pulse at Pin 13 of $I C_{1 \mathrm{a}}$ has ä positive-going edge which is differentiated by $\mathrm{C}_{2}, \mathrm{R}_{5}$ and used to switch the oscillator output to the loudspeaker. It

Fig.4. Power supply.
is important that this spike is applied only to a Schmitt trigger input to prevent oscillation when the input voltage lies between logic 1 and 0 .

The operational amplifier requires positive and negative supplies in order to operate on inputs that are very close to 0 or +12 V . Current consumption of the amplifier is low, and the inherent ripple rejection is high so a simple power supply as shown in Fig. 4 is adequate.

Construction \& calibration

Leads should be kept short and wherever possible separate. This is particularly important in the relatively high impedance wiring associated with the timing circuits of IC_{1} and IC_{3}. An efficient ground plane should be provided on the circuit board to keep the earth impedance as low as possible. Disc ceramic capacitors should be used to decouple the circuits at h.f. If the power supply leads are more than 25 cm long sufficient l.f. decoupling must also be provided. The best solution is to mount the power supply regulators on the circuit board. If monolithic voltage regulators are used, it is advisable to decouple the input lead with a disc ceramic capacitor to ensure stability.

Calibration of the meter movement is achieved by adjusting the preset potentiometer on IC_{3} with a capacitor of known value on test. Calibration for other values and ranges should then be correct. Resistor R_{19} is used for scaling the voltmeter circuit. The prototype uses a 1 mA meter movement and consequently a $10 \mathrm{k} \Omega$ resistor is required to provide a 10 V f.s.d. range. The tester is not really suitable for capacitors with voltage ratings of less than 10 V . Lower voltage components may be tested provided that no attempt is made to reform them from the internal 12 V current-limited supply, and the range selected for testing ensures that the terminal voltage is less than the capacitor peak voltage rating. The meter scale
can be marked with the capacitor terminal voltage corresponding to the capacitance value of this purpose. The table shows the prototype meter calibration figures.

Electroytic capacitors vary in value according to the applied voltage, and when a capacitor is severely under-rated, the nominal capacitance is reduced: 'This must be borne in mind when relatively high voltage capacitors are tested. Because the tester measures voltage from 0 V , the capacitor voltage will decay upwards. Some capacitors, always faulty, exhibit a fall of meter reading. This effect is similar to a c.r.t. regaining the e.h.t. potential, after switch-off, due to the physical properties of the glass dielectric.

P.C.Bs

A glass fibre printed circuit board which accommodates board mounted switches will be available for $£ 3.50$ inclusive from M. R. Sagin at 23 Keyes Road, London NW2.

We understand that Circuit Services, 36 Hallows Crescent, S. Oxhey, Herts, will be offering a set of components for this design.

Correction

In the article "Metal detector," published in the April issue, the values of R_{3} and R_{7} were printed incorrectly in the parts list. The correct values are 4.7 k) as shown in the circuit diagram.

Readers of the April issue may have been fooled by Part 2 of the article entitled Power Semiconductors - so were-we; it should have read Part 1

Variomatrix adaptor for System 45J and Matrix H

Phase shift circuit allows Variomatrix to decode Matrix H and System 45J

by Michael A. Gerzon, M.A., Mathematical Institute, Oxford.

Mäny hi-fi enthusiasts have Sansui Variomatrix decoders, and the present article describes an adaptor suitable for converting the Variomatrix for decoding signals encoded via the NRDC System 45J or BBC Matrix H systems. While such a decoder cannot by psychoacoustically optimal, it does permit existing owners to extend the usefulness of their equipment.
The adaptor essentially does the job of converting the 45 J or Matrix H signals into a form which the Variomatrix is designed to handle, i.e. into signals which are good approximations of Regular Matrix signals. The optimum method of conversion is slightly different for these two systems, but fortunately involves in both cases the use of a 58° phase-shift network, so that the circuit is kept fairly simple despite its two-fold function.

Essentially, the Matrix H adaptor consists of a 58° phase lead put into the right-channel signal relative to the left channel. The System 45 J adaptor adds to this a -15 dB blend circuit at the outputs of the phase shifters. The six pole phase shifter described gives a 58°
shift with $\pm 4^{\circ}$ error over the frequency range 44 Hz to 17 kHz if precision components are used, and so is suitable for use even with a studio-quality Variomatrix. In practice for domestic applications, 5% tolerance components may be used, although the use of 2% resistors will give better results.
The input circuit of the adaptor is shown in Fig. 1. Depending on the quality desired, the operational amplifiers may be 741 types or special audio types. The circuit is designed to offer a fairly high and resistive input impedance (18 k or 14 k depending on switch position), and gives approximately unity overall gain in all modes. The mode switch offers three positions: normal (i.e. conventional use for stereo and Regular Matrix), Matrix H, and System 45J.
An odd feature of the way the adaptor is connected is that (except in normal

Fig. 1. Circuit of pre-Variomatrix adaptor. For best results, components should be 2% tolerance, though 5% should be acceptable.
mode) all left input signals are fed to the inputs labelled right on the Variomatrix, and vice-versa as shown in Fig. 1. Similarly, all outputs labelled left on the Variomatrix are connected to the corresponding right quadraphonic inputs on the preamplifier, and viceversa. The reason for the switching. shown is to ensure that the left/right interchanging of the Variomatrix inputs and outputs does not occur in the normal switch position, and for this reason, the mode switch is six-pole three-way. Also shown in Fig. 2 is a +2 dB gain for the back channel outputs in the System 45J mode only; such a +2 dB gain is necessary for best results. However, constructors may omit these gains from the circuit provided that the front/rear balance control of their system is adjusted to give this +2 dB rear gain when decoding System 45 J .

Owners of Sansui equipment in which the Variomatrix is integrated with the preamplifier and amplifier may not always find it convenient to use the output switching circuitry of Fig. 2, since this would involve breaking into the equipment. For such users, we

Fig. 2. Post-Variomatrix circuit, includes rear channel switched gain compensation. Resisting 5 or 10% tolerance.
suggest that they use the circuit of Fig. 1 , for example in the tape monitoring circuit, but with the following modifi-; cations.

Connect the top output of Fig. 1 to the left Variomatrix input (and not the right), and the bottom output of Fig. 1 to the right Variomatrix input (and not the left), and
Feed the two $56 \mathrm{k} \Omega$ resistors connected to the normal switch position from the left input for the top switch of Fig. 1, and the right input for the bottom switch of Fig. 1.
When used in this way, no left/right interchanging is used, and the switch need only be two-pole three-way. This method of use does not handle "interior encoded" sounds quite so well, but still generally works. For best results with System 45J with this simplified method of use, the front/rear balance control should be set to give +2 dB gain to the rear speakers.
The Matrix H switch position will decode existing BMX discs (e.g. the UD-4 discs of Nippon Columbia) with reasonably accurate results, so that in practice the circuit allows decoding of Regular Matrix, Matrix H, System 45J and BMX.
As the author is connected with the NRDC Ambisonic project, in order to avoid possible misunderstandings it is pointed out that the use of a Variomatrix with the adaptor described will not give proper NRDC Ambisonic decoding

with optimal psychoacoustic results, but is merely a means of enabling Variomatrix owners to use their existing equipment with some of the newer systems.

Also, the method of using the Variomatrix described is solely the author's responsibility, and neither Sansui Elec-
tric Company Ltd nor the BBC would necessarily regard such use as being according to their own recommendations.

The BBC have applied for a patent (34839/74) on the use of a Variomatrix decoder with a prior phase shifting circuit of about $60^{\circ},-E d$.

IF predictions

Ionospheric conditions this month are about the same as they were in 1974 except that solar activity then was decreasing and now is increasing.
Magnetic disturbance is likely to occur over the whole of the second half of the month.
Sporadic E propagation is forecast on at least 20% of the days and should modify the FOT curves as follows: Hong Kong peaking to 21 MHz at 10 GMT; Johannesburg rising to 22 MHz at 09 GMT and remaining so until 15 GMT ; Montreal maintaining 10 MHz from 23 through 08 GMT; Buenos Aires dip between 06 and 10 GMT smoothed out.

Causes of malfunction in event-driven circuits

by B. Holdsworth* and D. Zissos \dagger
*Chelsea College, University of London +Department of Computing Science, Un̄iversity of Calgary, Canada.

In the last article, the procedure needed for the design of event-driven logic circuits was discussed. This second half of that article goes on to describe the causes of misoperation in such circuits and concludes with some examples of design. It is unfortunate that some of the diagrams concerned with this half of the article appeared in the first half - for this, we apologise.
Races between primary signals. The circuit shown in Fig. 11 is required to operate three lamps $\mathrm{L}_{1}, \mathrm{~L}_{2}$, and L_{3}, according to the following specifications.
(1) $\operatorname{Lamp} L_{1}$ is to turn-on when both X and Y are operated, but only if switch X is operated before switch Y
(2) Lamp L_{2} is to turn-on when both input switches are operated simultaneously.
(3) $\operatorname{Lamp} \mathrm{L}_{3}$ is to turn-on when both X and Y are operated, but only if switch Y is operated first.

In practice, a logic circuit responds with different speeds to changes in the input signals. Hence the response time of the circuit to a change in the input signal X must be assumed to be different from the response time to a change in Y. As a consequence the circuit, instead of assuming state S_{3} on leaving state S_{0}, either assumes state S_{2}, if the circuit responds to the change in X first, or alternatively it enters state S_{5}, if the circuit responds to a change in Y first. In both cases the circuit operation is not according to specification.

Since there is no remedy to this problem the circuit constraint applied is that only one input signal is allowed to change at a time.

Races between secondary signals. In the internal state diagram shown in Fig. 12(a), the coding of the internal states is such that circuit transitions S_{0} to S_{1} and S_{2} to S_{3} involve the change of more than one secondary signal. In practice because of variations in the response times of the two secondary signals to a change in the input signal X from 0 to 1 , either A or B will change first

Assuming that A changes first the circuit, when it leaves S_{0}, first enters S_{2}.

From state S_{2}, because $X=1$, the circuit assumes state S_{3} instead of S_{1}, and this a stable state for $\mathrm{X}=1$. This is clearly incorrect operation of the circuit: Obviously a similar analysis of the circuit operation can be performed for the case when B changes faster than A.
The solution to this problem is to ensure that each circuit transition involves the change of one secondary signal only and a race-free assignment of the state variables should be used as described earlier in this article ànd as shown in Fig. 12(b).
Races between primary and secondary signals. A circuit implementation of Fig. 12(b) is shown in block schematic form in Fig. 13. The letters a and b are
assigned to the two sections of the circuit which generate the secondary signals A and B.

Consider the transition from S_{0} to S_{1} in Fig. 12(b). This transition will take place in the time t_{s}, which it takes to turn-on the secondary signal B. It will also be assumed that the time taken to invert the primary signal X is t_{p}. If $t_{p}>t_{s}$ the following sequence of events will take place.
(1) At time t_{s}, B changes to 1 and the circuit assumes state S_{1}.
(2) Since $t_{p}>t_{s}, \bar{X}=1$, and the condition for turning A on exists.
(3) A turns on causing the circuit to move to state S_{2}.
(4) On assuming state S_{2}, the circuit

Fig. 11. Three-lamp circuit and its state diagram.

Fig. 12. Elimination of races between secondary signals.
moves to state S_{3}, since $X=1 .$.
If $t_{p}<t_{s}$ on assuming state S_{1} the input signal to section a has already changed, i.e. $\bar{X}=0$, and the circuit remains in state S_{1}.

Unlike the previous two cases, elimination of races between primary and secondary signals cannot be achieved, since a change in a primary signal initiates a change in a secondary signal. Therefore to avoid circuit misoperation it is necessary to ensure that $t_{p} \leqslant t_{s}$. It follows that incorrect circuit behaviour will not occur if the maximum delay associated with a primary signal $t_{\text {pmax }}$, is less than the minimum delay associated with a secondary signal $t_{\text {smin }}$ Hence

$$
\frac{t_{\mathrm{pmax}}}{t_{\mathrm{smin}}} \leqslant 1
$$

The $331 / 3 \%$ property

The sequential circuits designed with the aid of the sequential equations are hazard-free when implemented with gates whose maximum speed tolerance is $\pm 331 / 3 \%$. The justification for this statement is as follows

The maximum delay by which a primary signal in primitive sequential circuits can be delayed is one gate delay, t_{g}, when it has to be inverted. Allowing

Fig. 13. Races between primary and secondary signals.
$x \%$ variation due to production spread, loading etc. $t_{\mathrm{pmax}=t_{\mathrm{g}}}(1+x)$.

The minimum delay associated with a secondary signal is $2 t_{\mathrm{g}}$, since at least two levels of switching are involved, as an examination of the NAND sequential equation $\mathrm{Q}=\mathrm{S}+\overline{\mathrm{R}} \mathrm{Q}$ will show. Allowing $x \%$ variation, $t_{\text {smin }}=2 t_{g}(1-x)$

Substituting these values in the equation developed in the last section gives $t_{\mathrm{g}}(1+x) / 2 t_{\mathrm{g}}(1-x) \leqslant 1$ for correct circuit behaviour. The reader should observe that this property is valid for

Fig. 14. Function to be realized in Example 1 is at (a) and its state diagram is at (b), while the state table is shown in (c) and in merged form at (d). Initial state diagram based on (d) is shown at (e). and realization of the circuit is (f) Output of r.h. circuit is a.
circuits in which the sequential equations are implemented in their primitive form. Algebraic manipulation of the sequential equations will lead to a modification of the relative delays of the primary and secondary signals and therefore invalidate the $331 / 3 \%$ property. Hence, processing of the sequential equations is not advised.

Design steps

Step 1. Draw a block diagram showing the available input signals and the required output signals.
Step 2. Draw a state diagram describing the internal performance of the circuit.
Step 3. This step is optional and can be omitted. Its purpose is to provide the designer with a means of reducing the number of internal states obtained in Step 2, if such a reduction is possible or desirable.
Step 4. With the aid of a race-free diagram if necessary, each internal state is given a unique code. From the coded state diagram the turn-on and turn-off sets for the secondary signals are obtained and these are used to derive the primitive sequential equations. Expressions are also obtained for the output signals. The implementation of these equations is the required circuit.

(a)

(b)

	00	01	11	10
So	$\underbrace{S_{0}}_{g=1 r=0}$	$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{aligned} & \$ 1 S_{2} \\ & 010 \end{aligned}$	$\begin{gathered} S_{1} \\ 011 \end{gathered}$
S_{1}	$\begin{gathered} S_{0} \\ 100 \end{gathered}$	$\begin{gathered} \mathrm{S}_{0} \\ 100 \end{gathered}$	$\begin{gathered} S_{2} \\ 010 \end{gathered}$	$\frac{S_{1}}{011}$
S_{2}	$\begin{gathered} S_{3} \\ 101 \end{gathered}$	$\begin{gathered} \$_{3} S_{0} \\ 100 \end{gathered}$	$\frac{\left(S_{2}\right)}{010}$	$\begin{aligned} & \mathrm{S}_{2} \\ & 010 \end{aligned}$
S_{3}	$\frac{\left(S_{3}\right)}{101}$	So 100	$\begin{gathered} S_{2} \\ 010 \end{gathered}$	$\begin{gathered} \mathrm{S}_{2} \\ 010 \end{gathered}$

(c)
(d)

S_{01}	00	01	11	10
	${\substack{S_{01} \\ g=1 r=0 \\ b=0}}_{S_{0}}$	$\begin{aligned} & S_{01} \\ & 100 \end{aligned}$	S_{23} 010	$\begin{aligned} & \left(\mathrm{S}_{01}\right) \\ & 011 \end{aligned}$
S_{23}	${ }_{\left(S_{23}\right.}$	S_{01} 100	$\left(\mathrm{S}_{23}\right)$ 010	$\begin{aligned} & S_{23} \\ & 010 \end{aligned}$

(e)

(\dagger)

The design procedure will now be applied to the solution of two problems.

Example 1

Design a fault detector with the following terminal characteristics. The appearance of a fault signal f activates an alarm bell, turns a green light off and a red light on. The operator turns off the bell by pressing an acknowledge button a. When the fault is cleared, the red light turns off, the green light turns on and the bell is reactivated to attract the operator's attention. The bell is turned off when the operator presses the acknowledge button. Should the fault clear before the operator has responded, the circuit is to reset. Also if a fault reappears before the operator has responded the green light turns off, the red light turns on and the bell turns off.
Step 1. See Figs. 15(a) and (b)
Step 2. A suitable state diagram is shown in Fig. 15(c).
Step 3. The state table corresponding to Fig. 14(b) is shown in Fig. 14(c).
Applying Caldwell's merging rules to the state table in Fig. 14(c), states S_{0} and S_{1} can be merged to form state S_{01} and states S_{2} and S_{3} can be merged to form state S_{23}. The reduced state table is shown in Fig. 14(d).

The internal state diagram based on the reduced state table is shown in Fig. 14(e).
Step 4. By direct reference to Fig. 14(e)

Fig. 15. Function required by Example 2 is seen in (a) and (b). State diagram in (c) provides turn-on and turn-off sets for use in NAND realization. Circuit is shown in (d).
the turn-on and turn-off sets are: Turn-on set of $A=$ af. Turn-off set of $A=a \bar{f}$. Therefore the NAND circuit equation for A is

$$
\begin{aligned}
\mathrm{A} & =a f+\mathrm{A} \bar{a} \bar{f} \\
\mathrm{~A} & =a f+\mathrm{A}(\bar{a}+f) \\
g & =\bar{f} \\
r & =f \\
b & =f \overline{\mathrm{~A}} \bar{a}+\bar{f} \mathrm{~A} \bar{a}
\end{aligned}
$$

The corresponding circuit is shown in Fig. 14(f).

Example 2

Water is pumped into a water tower by two pumps p_{1} and p_{2}, where p_{1} is an auxiliary pump used for boosting purposes. Both pumps are to turn on when the water goes below level 1 and are to remain on until the water reaches level 2 , when pump p_{1} turns off and remains off until the water is below level 1 again. Pump p_{2} remains on until level 3 is reached when it also turns off and remains off until the water falls below level 1 again.

Level sensors are used to provide level detection signals as follows:
Signal $a=1$ when the water is at or
above level l, otherwise $\alpha=0$.
Signal $b=1$ when the water is at or above level 2, otherwise $b=0$.
Signal $c=1$ when the water is at or above level 3, otherwise $c=0$.

Develop a sequential logic circuit to control the pumps p_{1} and p_{2} according to the specification given above.
Step 1. See Figs. 15(a) and (b)
Step 2. A suitable state diagram is shown in Fig. 15(c).
Step 3. It is left as an exercise for the reader to draw the state table and examine the possibility of state reduction.
Step 4. By direct reference to Fig. 15(c) the turn-on and turn-off sets are:

$$
\begin{aligned}
\text { Turn-on set of } \mathrm{A} & =b \mathrm{~B} \\
\text { Turn-off set of } & =\overline{\mathrm{B}}+\bar{a} \mathrm{~B} \\
& =\overline{\mathrm{B}}+\bar{a}
\end{aligned}
$$

Turn-on set of $B=\bar{a} \bar{A}$
Turn-off set of $\mathrm{B}=\mathrm{CA}$
Therefore the NAND circuit equations are:

$$
\begin{aligned}
\mathrm{A} & =b \mathrm{~B}+\mathrm{A}(\overline{\mathrm{~B}+\bar{a}}) \\
& =b \mathrm{~B}+\mathrm{A} a \mathrm{~B} \\
\mathrm{~B} & =\bar{a} \overline{\mathrm{~A}}+(\bar{c}+\overline{\mathrm{A}}) \mathrm{B} \\
p_{1} & =\overline{\mathrm{A}} \mathrm{~B} \\
p_{2} & =\overline{\mathrm{A}} \mathrm{~B}+\mathrm{AB} \\
& =\mathrm{B}
\end{aligned}
$$

The corresponding circuit is shown in Fig. 15(d).

Article 5 of the series will be a discussion of clock-driven circuits.

Viewdata

4 - The Viewdata terminal in more detail

by S. Fedida, B.Sc.(Eng.), M.Sc., F.I.E.E., A.C.G.I, Post Office Research Centre

A Viewdata decoder may be considered as being made up of six parts, as shown from left to right in Fig 1(a): a line isolation unit; a modem; a keypad; an input processor; a store (possibly r.a.m.); and an output processor. Indeed the breakdown of facilities is very similar to that of teletext, shown in Fig. 1(b). This diagram also indicates that, apart from additional minor interconnections, parts common to Viewdata and teletext are the store and output processor. These are substantial components and therefore combined Viewdata/teletext receivers show important savings over two separate decoders for the two services. This is a slightly over-simplified picture but the situation will be clarified later.
Note however, an important difference. The input circuits in Viewdata, up to and including the store are bidirectional, thus highlighting the interactive nature of the system. On teletext the input circuits are one way only.

Line transmission

The transmission code used over the telephone line between the Viewdata terminal and the computer is at present 8 -bit, 10 -unit asynchronous (or start stop), as shown in Fig. 2. Each character

Fig. 2. Transmission code used between a Viewdata terminal and the computer is an 8-bit, 10-unit asynchronous code.
consists of an 8 -bit code, the first 7 bits containing the information while the 8th bit is a parity bit. Preceding each character is a start bit, with a stop bit terminating the character. The character illustrated in Fig. 2 is M, with odd parity. A 10 -unit asynchronous system

Fig. 1. Comparing the main sections of (a) a Viewdata decoder with (b) those of a teletext decoder
was chosen for simplicity. It is clearly not as efficient as a synchronous transmission mode, in which characters follow each other without the intervention of start and stop bits, but it is simpler to implement and is currently used by many time-sharing computer systems.
In order to transmit this code over a telephone line, a modem (modulatordemodulator) is required. Essentially this device modulates the code on to a voice frequency carrier, within the speech band, thus obviating the problems encountered with very low frequency transmission over the telephone network. The modem also enables the go and return transmission to take place

simultaneously over the two-wire telephone line.

Transmission rates selected for Viewdata during the present experimental phase are 1200 bits per second from computer to terminal and 75 bits per second in the reverse direction.

In the computer-to-terminal direction as high a transmission rate as possible is desirable in order to achieve a fast picture build-up. 1200 bits per second was chosen to fit in with a well tried and readily available modem. For the majority of Viewdata displays, consisting for example of mainly alphanumeric characters, the picture build-up is much faster than can be read by the user, and hence quite adequate from this point of view. Where, however, large uniform areas of graphics are displayed, the build-up may appear rather slow (the display shows repetitive information), and improvements to the build-up in this case may be obtained by using special means. But in general the additional complexity is not really worthwhile.

In the direction from terminal to computer the bit rate of 75 bits per second (7.5 characters per second) is quite adequate for hand keying.

The frequencies used in line transmission are as follows:
Forward channel: \quad binary $\mathrm{l}=390 \mathrm{~Hz}$ (from terminal
to computer)
binary $0=450 \mathrm{~Hz}$
Return channel: (from computer to terminal)
binary $\mathrm{I}=1300 \mathrm{~Hz}$
binary $0=2100 \mathrm{~Hz}$
When no data transmission is taking place on the line the terminal is transmitting continuously at 390 Hz and the computer at 1300 Hz . These tones are used in the modems at either end of the line to provide an indication of continuity, which as we shall see below is of some importance in the operation of the whole system.

When data is being transmitted the

Fig. 3. Simplified block diagram of a Viewdata terminal, with adaptation to teletext shown in broken lines. The number and bar on certain connecting lines indicate that the line is carrying parallel information on that number of wires.
carrier is frequency modulated (frequency shift keying), between the binary 1 and binary 0 frequencies, the change being smoothed out to give a gradual transition between the frequencies.
The transmission arrangement used at present is duplex, with "echoing" facilities provided from the computer to the terminal. In a duplex system transmission may take place in both directions at once over the telephone with no mutual interference (hence, of course, the choice of frequencies). Characters keyed at the terminal are first transmitted by the modem to the computer and displayed only when they are "echoed" back. This arrangement gives some important advantages. First, it provides a measure of error detection, the user being aware of any corruption in transmission, errors in the computer or mis-keying errors. Secondly, duplex working also increases the user's confidence in the working of the system, as "echoed" characters provide a continuous indication that the whole system is in satisfactory order.
"Echoing" from the terminal to the computer is not necessary. A parity check is sufficient to provide for the detection of the majority of errors, the computer usually responding in these cases by requesting a repetition of the instruction. The computer also monitors continuously the terminal carrier, thus ensuring that a line break is noted as soon as it occurs. This avoids the possibility of the user being incorrectly charged for using the system after the occurrence of a line interruption.

Experimental Viewdata terminal

The experimental Viewdata terminal at present in use is best introduced in two parts: (a) the data transmission unit, which deals with the Viewdata signal between the telephone line and the internal store, and (2) the display unit, which deals with the Viewdata signal between the store and display device (the c.r.t. of a television set). As explained earlier, much of the display part is common with teletext.
A typical arrangement of a Viewdata terminal is shown in Fig. 3. There are four major units as follows: the data transmission unit (1); the address selector (2); the random access memory (3); and the display unit (4).

The address selector (2) is the only unit which interconnects the input and output processors, essentially for the purpose of preventing mutual interference. Unlike the situation in teletext data is received at random times from the telephone line, completely unsynchronized with the operation of the display. It is therefore necessary to organise the access to the memory for reading out and display on the one hand, and writing-in incoming characters on the other hand, without crossinterference. This function is carried out by the address selector. The write address generated in the data transmission unit (1) and the read address generated in the display unit (4) are both available at the address selector.

A mixed blanking waveform, also generated in the display unit, indicates the times at which characters are required to be extracted from the memory for display purposes essentially during 40 microseconds of every line period, excluding blank lines at the top and bottom margins of the display. During these times incoming characters are made to dwell a little longer in an input character buffer in the data transmission unit and the address supplied to the memory is the read address. At other times the write address is
switched to the memory. The address selector also notes the coincidence between the read address and the write address when it delivers a pulse to the display unit to initiate the generation of the cursor display (see Part 3).
Shown also in Fig. 3 in broken lines, are the units required for interfacing Viewdata with teletext. In a receiver already fitted with a teletext decoder, one additional unit is required: the data selector (5), while the Viewdata display unit may be dispensed with and the teletext display unit (6) used instead. The connections required are shown also as broken lines. A Viewdata/teletext switch unit (7) is also shown. This sets data and address selectors to Viewdata or teletext as required.

In the teletext mode the address and data selectors switch the memory to the teletext input circuits, while in the Viewdata mode the memory is available to Viewdata. The read address, however, is now provided by the teletext address, which scans the memory during the mixed blanking period.

Data transmission unit

The data transmission unit is shown in more detail in Fig. 4. This consists of a line isolator (1) and a modem (2, 3, 4), the last-mentioned including a modulator (4) which transforms the outgoing data stream to a voice frequency signal, a demodulator (3) which accepts a voice frequency signal from line and extracts the data stream from it, and a control circuit (2) which switches the connection of the telephone line to the telephone receiver or to the modem.
The transmission control unit (6), which is synchronized by the clock unit (5), accepts the demodulated data in serial form, checks character parity and
offers assembled characters to the control codes decoder (9). It also triggers the operation of the timing unit (10) which generates the necessary waveforms used throughout the data transmission unit. The control codes decoder recognises the special control characters used in Viewdata, initiates the corresponding control functions and enables the memory (8) to store the appropriate characters. It also controls the memory address unit (11), which maintains a record of the addresses at which incoming characters are to be stored and instructs the terminal identifier (12), to generate the automatic identification code in reply to an enquiry signal received from the Viewdata computer.
The transmission control unit, the timing unit and the page transmission unit (7) together control the transmission of a complete page from the terminal to the computer. The keypad unit (13) generates and encodes the terminal responses and outputs these direct to the modem, for transmission to the computer.
The data transmission unit operates in two different modes: reception mode and transmission mode.

Reception of Viewdata signals

Isolator and modem. The Viewdata signal enters the terminal from the telephone line, after passing through the isolator. This may consist simply of

Fig. 4. Data transmission unit at Viewdata terminal. The number and bar on certain connecting lines indicate that the line is carrying parallel information on that number of wires.
two pairs of opposite polarity gas discharge tubes, each pair connecting one of the telephone wires to earth. It ensures that voltages originating from the terminal are limited to safe values before entering the telephone network. It also contains fuses, in series with each telephone wire and on either side of the gas discharge tubes, to limit the current flowing. The gas discharge tubes have a striking voltage of about 150 V , to avoid breakdown in the presence of ringing tones originating in the telephone line.

Following the isolator is the modem control unit, which contains a relay operated by the "data" button on the telephone. When this button is depressed it switches the telephone line from the telephone receiver to a hybrid transformer within the control unit. This separates the go and return channels connected to the modulator and demodulator respectively.
The incoming Viewdata signal is superimposed on an f.s.k. (frequency shift keying) carrier, binary 1 corresponding to a frequency of 1300 Hz and binary 0 to a frequency of 2100 Hz . The incoming carrier first goes through two stages of bandpass filtering to eliminate unwanted signals. After this it is frequency shifted by 10 kHz , thus becoming a frequency modulated carrier centred on 11.7 kHz with a deviation of $\pm 400 \mathrm{~Hz}$, the modulation rate being 1200 per second. Frequency shifting the carrier by 10 kHz makes the demodulation process much easier by virtue of increasing the number of carrier cycles per modulation cycle.

The incoming carrier is now applied to an unbalanced discriminator and a detector which extracts the data modulation. After filtering, amplification, squaring and level changing the data

signal is fed out to the transmission control unit at a level of -6 V for a frequency of 1300 Hz (binary 1) and +6 V for a frequency of 2100 Hz (binary 0).

The transmission control unit. The transmission control unit accepts data in serial form and, using a sampling technique controlled by the clock generator, recognises the start and stop bits of each 10 -bit character sequence, and stores each character in a temporary buffer. This completed, it signals the event to the timing unit, and control codes decoder, i.e. that a character has been received and is available for transfer at the input data highway in a 7 -bit parallel form.
The transmission control unit also checks character parity and feeds out IPE (input parity error) to the control codes decoder if parity is found in error.

The timing unit provides a number of waveforms which control the storage of characters in the memory. On receipt of a "data available" signal from the transmission control unit, it transfers the intended location of the received character from memory address to memory, enables memory to accept the character, clocks memory address to the next character position and resets the transmission control unit to indicate that the character received has been accepted.

The control codes decoder accepts incoming characters from the input data highway, decodes the special control codes and initiates the appropriate actions as follows. The unit is "transparent" to all characters other than control codes, the former being applied direct to the memory to be stored' therein.
The control codes decoder performs the following functions. On receipt of:' (a) Non storing characters such as NUL, $\mathrm{CR}, \mathrm{LF}, \mathrm{BS}, \mathrm{FF}$, etc. it inhibits their storage in memory. (Write disable to timing unit.)
(b) BS, it causes memory address to count down one character
(c) VT, it causes memory address to count down one row.
(d) CR, it causes memory address to be reset to character address of zero, leaving row address unchanged.
(e) LF it causes memory address to count up one row.
(f) FF it causes memory address to be reset to character address of zero and row address of zero. It also causes the complete content of memory to be erased by setting the code on the input data highway to "space" and entering this in the whole memory.
(g) ESC it causes bit 7 of the received character to be changed from 1 to 0 , before storage.
(h) DCl to DC 4 , it sets latches to control internal devices.

The control codes decoder, when receiving input parity error, substitutes
character $7 / 15$ for the character re-ceived in error before it is entered in the memory. The implementation of memory and memory address may be either in the form of a random access memory or a series of shift registers. A r.a.m. appears to lend itself to a rather simpler logic circuit than a shift register memory and because of this has been assumed in the description of the ter-minal.
The memory address consists of characters and row counters which are controlled by the control codes decoder to indicate the address at which the next character is to be stored in the memory.

Transmission of Viewdata signals

The transmission of Viewdata signals originates either from the keypad unit or the page transmission unit.

The keypad unit controls a keyboard connected in a cross-matrix of 5 columns and 9 rows, with a shift button, which together with the 45 keys, provide a maximum of 90 codes. The basic keypad with which most of the Viewdata facilities may be used provides only. 12 codes, (0 to 9), * and \#, with additional optional codes for automatic calling.
In both cases the output of the keyboard matrix is applied to an encoder which generates codes appropriate to the keys selected, serializes the bit pattern thus obtained, adds parity, start and stop bits and applies the resulting data stream directly to the modulator, under the control of an internal timing unit which generates the appropriate clock signals. Characters fed out are not displayed on the screen until they have been "echoed" back by the computer.
The page transmission unit operates jointly with the transmission control unit and timing unit, and its operation is initiated manually by a push-button on the terminal. This causes the page transmission unit to reset memory address zero and enables transmission buffer empty (TBE) signal from the transmission control unit to start the timing unit (using the page transmission enables signal). It also inhibits the writing into memory, via write disable to timing unit.
On receipt of TBE, the timing unit generates a load signal to the transmission control unit which causes the latter to accept a character from memory, and to clock it out in serial form at 75 bits/ second, complete with start, stop and parity bits, to the modulator. The timing unit also increases the memory address count by one. When a character has been discharged from the transmission control unit, the next transmission buffer empty signal recommences the above cycle on the next character. When 960 characters have been sent out, the page transmission unit notes the fact and resets the terminal to the quiscent state.
At the beginning of a Viewdata session the computer interrogates the
built-in terminal identifier. The control codes decoder initiates the operation of this unit, which sends out an identification code to the transmission control unit. This code is transmitted to the modulator, complete with start, stop and parity bits. The operation is similar to that of the page transmission unit except that the identification code is stored in the terminal identifier.

Display unit

The display unit is shown in more detail in Fig 5. The function of the display unit is to generate line and frame synchronising signal for the television raster, to decode the special display control characters for colour and graphics and to generate alphanumeric and graphic symbols for display.

As mentioned earlier, the display unit is nearly identical to the corresponding part in the teletext decoder. The major differences are in the line and frame synchronising generators and in the provision for the cursor, which is not required in teletext. With respect to the line and frame synchronising pulses, these are essential in a Viewdata-only receiver since it is required that the Viewdata service should be available at all times and not just during tv broadcasting hours; thus it is not always possible to rely on the presence of tv line and frame sync to maintain the raster. The provision of line and frame sync pulses is also very useful in a combined Viewdata/teletext decoder, as indeed in a teletext-only decoder, since it is provided in teletext that viewers should be able to store a page of information transmitted during tv broadcasting hours and to view it later at their convenience, possible outside broadcasting hours.
The display unit consists of a sync generator and memory scanner (1), a display control codes decoder (2), an alphanumeric character generator (3), a graphics generator (4), a character rounding unit (5), and an output unit (6).

The sync generator and memory scanner generates line and frame synchronising pulses which are applied to the tv timebase generators, and row and character addresses which are applied to the r.a.m. via the address selector. The unit derives these waveforms from an 8 MHz crystal controlled master oscillator followed by a chain of dividers. The extraction of characters from the memory and their display on the screen occurs at a rate of 1 MHz , which is derived directly from the 8 MHz clock by a divide-by-8 circuit, a further division by 64 providing the line synchronizing pulses. There is a certain amount of flexibility in the choice of master oscillator frequency; a lower frequency, say 7 MHz or 6 MHz , giving a wider character on the display, while not being quite so demanding on the width of the video passband. The width of individual characters may also be altered by adjusting the blank margins

to the left and right of the page on display. The choice of 8 MHz here is mainly of convenience to simplify the subsequent dividing circuits. The sync generator and memory scanned must also generate the mixed blanking waveform which provides the margins around the display area. Thus every $1 \mu \mathrm{~s}$ a read signal is applied to the ra.m. which then feeds out the character stored at the location indicated by the row and character addresses generated by the unit.

The timing of the whole display unit must take into account delays occurring in the r.a.m. and in the alphanumeric character generators. These delays may be each of the order of 200 to 600 nanoseconds, depending on cost, the faster unit obviously being more expensive. Thus in order to take up these tolerances and allow the cheaper units to be used, a 2μ s delay is allowed for from the instant a character is requested from memory to the time it is displayed.

As in teletext, a row of characters consists of 10 television lines in each frame (20 lines counting the interlace), made up of 7 display lines and 3 spacing lines, each character space in the horizontal direction consisting of 8 dots, 5 display dots and 3 space dots, the dots occurring at the 8 MHz rate.

As each character is fed out from the memory it is transferred to the display control codes decoder which is programmed to recognise the characters in columns 0 and 1 of Fig 7 in the April issue, i.e. the special colour, graphics and other display control characters; provide blanking for the duration of these characters (since these are nondisplay characters); and inhibit the character generator or graphics generators as appropriate.

At the beginning of every row of characters all the latches are set to white, alphanumeric, steady according to the teletext convention. The output

Fig. 5. Display unit at Viewdata terminal. The number and bar on certain connecting lines indicate that the line is carrying parallel information on that number of wires. Some commercial Viewdata tv receivers may have clock frequencies other than 8 MHz .
of the decoder is applied the output unit which provides R, G, B signals to the guns of the cathode-ray tube.

Non-control codes are applied to the alphanumeric character generator which generates the required character pattern. This generator also receives a 4 -bit line address from the sync generator, which indicates which line out of the ten lines required for character display has been selected at any one time. When a line of dots is fed out from the character generator it is entered in 5 -bit parallel form in a 5 -stage shift register and clocked out in the next $1 \mu \mathrm{~s}$ period at the 8 MHz rate, under the control of the 8 MHz clock.
If a graphics control character is displayed, a latch is set in the display control codes decoder to indicate that all subsequent characters are graphics. The inhibition is lifted, however, in the case of the "blast-through" characters in columns 4 and 5 of Fig. 6 in the April issue.
Generation of graphic symbols is carried out under the control of vertical and horizontal bright-up waveforms, generated in the graphics generator. The horizonal bright-up waveform picks up left, right or both coloumns of the graphics symbol while the vertical bright-up waveform picks up one or more of the top, middle or bottom pair of squares in the graphics symbols. The 7-bit graphic character is decoded with the aid of these two waveforms and control signals applied to the output unit.

The display of the Viewdata cursor is initiated by the address selector, which notes the coincidence of input and output memory addresses and enables an exclusive-OR gate in the output unit. This causes normal display of characters when the cursor is off, but inverted display (i.e. black on white) when the cursor is on. Thus characters on display may be read through the cursor.
Character rounding is provided in the character rounding unit when this feature is required, i.e. mostly with large screen displays. Character rounding is initiated by the odd/even signal generated together with the line interlace pulse in the sync generator unit. A second alphanumeric character generator unit similar to unit (3) may be required, both units operating simultaneously out of step by one line of the 7 $\times 5$ character matrix. The two outputs, one delayed with respect to the other, are compared in the character rounding unit and additional dot pulses generated half way in the 8 MHz dot interval and transmitted to the output unit to give the required result.
The use of character rounding is not necessary in the case of the small-size Viewdataphone display for use in the office, and this results in a useful simplification.
(To be continued)

A limited number of commercial television sets containing Viewdata/teletext decoders are now being manufactured for marketing trials of Viewdata due to start in March 1978. In a later issue we hope to publish an article outlining the main features of a typical commercial set of this kind.

Leterers to the Editor

MOBILE RADIO PLANNING

Recent editorials in your journal have complained about the secrecy surroundin: the planning of mobile radio in the UK and have also referred to a document on the subject, which has been given a limited circulation by the Pye company. Unfortunately, the Pye document, which is issued in two versions, is not available to the generality of your readers so it does not contribute greatly to the ventilation of the subject which you rightly judge to be desirable. I am one of the small number of people who have been privileged to see both the government and commercial documents and my views may therefore be of interest. I trust I am not giving away state secrets when I say I find the overall picture confused.

You have expressed concern about the issues involved, particularly in relation to the forthcoming World Administrative Radio Conference to be held in Geneva in 1979. This conference may however be of less importance in the matter than you anticipate, for two reasons. First, the ability of the UK delegation to influence the international decisions affecting mobile radio must be necessarily limited. Second, many of the important decisions which have to be taken about mobile radio (like shall we have a Citizens' Band) are national ones and can be taken now before the WARC or after it. I trust that the Wireless World's interest in the subject is a lasting one and not tied to the WARC, which may possibly turn out to be something of a non-event as far as mobile radio is concerned.

As an example of a national decision, one of the most rewarding steps that can be taken to make more channels available for mobile radio is to split the u.h.f. channels from 25 kHz to 12.5 kHz . This would provide hundreds of additional channels and it is a step which can be initiated immediately. The Pye report in its full version agrees that this can be done and suggests a date for its introduction (1978), yet surprisingly this proposal is omitted from the later and shortened version. Splitting the u.h.t. channels was shown to be eminently practical no less than seven years ago by I.T.T, and one wonders why, if channels are really short, this proposal has been kept so long on the back-burner. In the meantime, the more 25 kHz u.h.f. equipment which continues to go into the field, the longer it will be before the channel splitting dividend can be reaped.

A puzzling feature which emerges from the current reviews is that mobile radio in the UK seems to make very poor utilisation of the spectrum available to it. A total of approximately 1,000 channels accommodates some 200,000 equipments, an average of only 200 mobiles per channel spread over the entire country. There are some 20 populous centres in the UK where each frequency can be repeated and this suggests an average of 10 mobiles per centre, ignoring all rural development which in itself cannot be negligible. The populous south east of England only accounts for about one fifth of the vehicle population so it is difficult to see that average channel loading can be very heavy even there. I am told that if you listen on many of the channels, which you are not supposed to do (more secrecy), message traffic is surprisingly light even in the London area.

A further point of concern is that other countries, notably the USA, Germany, Sweden and Denmark, seem to have been able to equip a much higher percentage of their vehicles within their existing frequency allocations. I believe a main factor in this has been better channel sharing arrangements and I have been long of the opinion that the UK channel sharing arrangements are unsatisfactory, discourage investment and are badly in need of review.
I have no doubt that mobile radio in the UK should be allocated more frequency space but it must be remembered that any such additional space must be taken from other important spectrum users. These users will certainly resist badly made claims. The present situation in which the long established mobile radio consultative machinery has failed to produce a unanimous report and a leading manufacturer is disputing the ministry viewpoint is a disturbing one and cannot strengthen any claims being made for more mobile radio frequency space. The frequency spectrum is one of our greatest national assets and claims for revised shares in it should be well made and be seen to be well made.

You have rightly sensed a serious failure and your journal's continuing interest in the matter can, I believe, only be beneficial.
J. R. Brinkley,

Redifon Ltd,
London, SWI8.

DO-IT-YOURSELF BIOFEEDBACK

A number of articles published in the technical press in recent years give popular accounts of biofeedback, together with details of the instrumentation required to "do it yourself". I write to draw attention to two aspects of this which are disquieting to the professional biomedical scientist.

The first is the impression of technological simplicity that is often conveyed. Probably the simplest demonstration of biofeedback is to convert the electrical activity of the muscles - the electromyogram - into sound using an audio amplifier, or a visual display via an oscilloscope, and hear or see what happens when a muscle is tensed or relaxed. The arm muscles are convenient and all that is required is to (a) clean and abrade the skin overlying a muscle in two places, (b) fix small metal plates to these areas with surgical plaster and a conducting interface, e.g. cotton wool soaked in salt solution, and (c) connect these "electrodes" to the display
system via a differential amplifier. The overall gain of the system should be sufficient to cope with millivolt signals. This procedure would not meet the professional standards of the clinical neurophysiologist, but would certainly demonstrate biofeedback and help one to learn to relax muscles.

Other physiological variables are not so easy to use in the feedback situation, however. Most publicity has probably been given to the electrical activity of the brain, the electroencephalogram, or e.e.g. and particularly that part of it in the 8 to 14 Hz frequency band, the alpha rhythm. Here the technological requirements are much more stringent and it is exceedingly difficult for even the professional electroencephalographer to record his own e.e.g. There are two reasons for this. One is that the signals are very much smaller in amplitude, of the order of tens of microvolts, and so require higher gain amplifiers and more careful attention to common mode rejection. The second reason is that the electrodes will detect other signals as well as the e.e.g. These will be physiological from the muscles, skin and other tissues around the head, and also physical from electrodes, interference fields, and mechanical displacement of electrode relative to skin surface. All of these artefacts can quite easily be larger in amplitude than the e.e.g., and will certainly have components in the same frequency range. In the biofeedback situation it is usual to filter the e.e.g. with a bandpass filter to reject all but the alpha rhythm, or other frequencies of interest. It is therefore impossible to tell whether the output signal is in fact e.e.g. or artefact without considerable experience of e.e.g. recording

The professional e.e.g. technician spends several years learning to record these signals, to differentiate true e.e.g. signals from artefacts, and to improve technique to reduce these artefacts to a minimum. ${ }^{1}$ Appropriate application of electrodes to one's own scalp is very difficult indeed.
The second area of disquiet concerns the interpretations of the subjective effects of biofeedback, particularly the so called "alpha experience". It is generally assumed in popular articles that learning to enhance alpha activity via biofeedback invariably results in a state of mind associated with tranquility, relaxation, meditation states, and generally pleasant feelings. Experiments which have attempted to control for the effect of feedback on these factors have not always confirmed these claims however. Thus Sackset al ${ }^{2}$ used well established methods for measuring subjects' feeling and mental states and found no difference when subjects enhanced their alpha to maintain a light on or inhibited it to maintain the light off. In a study of 140 subjects by Travis et al^{3}, "under both eyes-open and eyes-closed conditions, approximately 50 per cent of the subjects reported that alpha enhancement was 'pleasant' and 50 per cent 'unpleasant/neutral'". Plotkin and Cohen ${ }^{4}$ concluded from their experiments that " . . . undirected, free-flowing thought or thoughtlessness, and pleasant emotional states, are in no way intrinsically associated with enhanced occipital alpha strength

These are just a small selection from many research studies urging caution in the interpretation of alpha feedback results, and of course, one could quote an equal number putting a more optimistic point of view. The popular interpretation of the "alpha experience" is by no means established however.

There is no doubt that biofeedback is an exciting and valuable research tool. Whether it will be clinically useful is still to be proved ${ }^{5}$.

The laboratory situation of "do it yourself" enthusiasm which accompanies it may indeed result in subjective feelings of relaxation or other pleasant sensations. It does not necessarily follow that these are directly due to subjective control over brain mechanisms. After all, as Lynch and Paskewitz have pointed out ${ }^{6}$ "Simple physical manoeuvres like closing or opening the eyes have not been related to mood changes of the sort reported in feedback situations and yet such eye manoeuvres markedly affect alpha density."
J. C. Shaw,

MRC Clinical Psychiatry Unit
Graylingwell Hospital,
Chichester, Sussex.

References

1. Cooper, R., Osselton, J.W. and Shaw, J.C. "EEG Technology", second edition, Butterworth, London, 1974.
2. Sacks, B., Fenwick, P. B. C., Marks, I., Fenton, G W., and Hebden, A. An investigation of the phenomenon of autocontrol of the alpha rhythm and possible associated feeling states using visual feedback. Electroencephalography and Clinical Neurophysiology, 32, 461, 1972.
3. Travis, T. A., Kondo, C. Y. and Knott, J. R. Subjective aspects of alpha enhancement. British Journal of Psychiatry, 127, 122-6, 1975
4. Plotkin, W. W., and Cohen, R. Occipital alpha and the attributes of the "alpha experience". Psychophysiology, 13, 16-21, 1976.
5. Blanchard, E. B. and Young, L. D. Self-control of cardiac functioning: a promise as yet unfulfilled. Psychological Bulletin, 79, 145-163, 1973.
6. Lynch, J. J. and Paskewitz, D. A. On the mechanisms of the feedback control of human brain wave activity. The Journal of Nervous and Mental Disease, 153, 205-217, 1971.

DIGITAL FILTERS USING MICROPROCESSORS

I am very grateful to Mr V. J. Rees for giving the extra bit of explanation I needed to understand digital filter principles (October 1976 issue). And in spite of the possible shortcoming of the article, I think that the criticisms of M. J. Brazier (December 1976 letters) are unjustified.
Firstly, even if it is obviously impossible to "operate the filter in real time" on a calculator, it is very instructive to do so for a student and very informative for a designer.
Secondly, I did not have any problem in realizing from the example that the coefficients were constant unless the filter characteristics were time varying.

Thirdly, there is an improved form of the digital filter which requires only one multiplication and two subtractions. These can $\tilde{b} e$ performed within the suggested 100 microseconds on a Motorola 6800 in single precision (see appendix)
Finally, digital signal processing is more likely to be used in process control or similar applications where the frequencies involved are much lower. Present "slow" microprocessors will certainly be used in that area, if they are not already.
Gérald Garon,
Otterburn Park,
Quebec, Canada.

Appendix

The improved form of digital filter is shown in the figure, and the 6800 programme to implement it is given below. The coefficient is inserted in the programme by putting NOP in the bit positions where the coefficient has

$$
\begin{aligned}
& E_{h}=E_{i}-E_{l} z^{-1} \\
& E_{l}=E_{i}-A E_{h} \\
& E_{i} \text { input signal } \\
& E_{l} \text { low pass output } \\
& E_{h} \text { high pass output } \\
& A \text { coefficient } e^{-a T} \\
& z^{-1} \text { delay } T
\end{aligned}
$$

zeros and ABA where it has ones. In the example, the coefficient is 11101100_{2} (0.921875). The execution time of this programme is independent of the coefficient value. For any given coefficient value, it is possible to speed up the program by either omitting the NOPs or using Booth's algorithm.

Programme

INSTR	CLA B	Clear B on initial start
NWSMP	lda a sample	Get new sample
	STA A SVSMPL	Save it
	SBA	$\left.E H=E 1-E L_{\text {i }} \mathrm{PREV}\right)$
	Sta a hpout	Output High Pass
	TAB	Get Ready For Multiply
	CLA	
		Multiply
	NOP	O.LSB)
	ASR A	
	NOP	0
	ASR A	
	ABA	1
	ASR A	
	ABA	1
	ASR A	
	NOP	0
	ASR A	
	ABA	1
	ASR A	
	ABA	1
	ASR A	
	ABA	1
	ASR A	
	NEG A	Make Result Negative
	ADD A SVSMPL	$\mathrm{EL}=\mathrm{El}$-- A. EH
	STA A LPOUT	Output Low Pass
	TAB	Save In B
	BRA NWSMP	Go Get Next Sample

67 microseconds

References and further reading

Gold B. \& Rader C. M., "Digital Processing of Signals," McGraw-Hill, 1969
Mick J. R. (ed), "Digital Signal Processing Handbook," Advanced Micro Devices, 1976.

BROADCASTS MODULATE PAGING SYSTEM

Over a period of more than a year I have heard on 27.26 MHz a weak carrier which is amplitude modulated with material corresponding to that of the Radio 3 transmission on 647 kHz including, prior to 0700 local time, material from the BBC World Service.
At intervals this carrier disappears for about ten seconds and it was later noticed that these interruptions coincided with
periods of calling signal and short speech announcement from a hospital paging system on 27.23 MHz . A band of noise embraces this latter frequency and this too is interrupted during operation of the paging system.

During evening hours of darkness the noise band can be resolved as a large number of separate carriers, some of which are modulated with programme material which matches certain transmissions in the m.f. band around 600 kHz .

By now some of your readers will have suspected, as I do, that the receivers of the paging system are of the superregenerative type and this is borne out by quenching of the noise when the calling carrier is switched on.

What is not so clear, however, is the mechanism by which the sidebands are modulated by transmissions in the medium frequency band and it is this peculiarity that your readers may be able to suggest a reason for.

I should explain that my receiver is a double superhet with i.fs of 4.034 MHz and 455 kHz , but spurious operation can, I believe, be ruled out and tuned aerial traps have confirmed that the signal I receive is borne on 27 MHz . It is moreover occasionally subject to aircraft flutter.

My receiver location is about $21 / 2$ miles from the hospital concerned and the signal is a weak one but in an area within a few hundred yards of the grounds it provides an almost usable relay of Radio 3.

All this may be only a minor instance of spectrum pollution but I am reminded that frequencies of the order of 27 MHz are allotted to model aircraft control.

I do not think, however, that there is any likelihood of these aircraft being affected by a new-style Bermuda triangle! Gwilym Dann,
Chipstead,
Surrey.

RIAA EQUALIZATION IN PRE-AMPLIFIERS

Having just read Graham Nalty's and D. Self's arguments on disc RIAA equalization in your March issue, I would like to add a few words.

While I was living in Japan I designed an expensive pre-amplifier for a well known company which has earned good reviews everywhere. Anyway, the RIAA circuit was conventional in that the time constants were in the feedback loop. However, the problem is that at high frequencies the amplifier ultimately becomes a unity gain circuit above about 60 kHz so compensation becomes a real problem; therefore in its open loop form the amplifier starts to roll off at a low of 30 Hz and t.i.m. never is perfect, although in my case it was lower than that of -any of its competitors.

I have for myself designed a totally passive RIAA amplifier with accurate equalization from below 10 Hz up to beyond 200 kHz . I had succeeded in getting as good an input over load value from 20 Hz to 20 kHz to compare with feedback methods.
As to listening and also square wave tests, ,the purely passive circuit always performed better (I always use polystyrene and polycarbonate capacitors as they are more musical!). This went through many hours of listening, with many types of cartridges, power amplifiers and loudspeakers.

I sacrifice 3 dB of signal-to-noise since impedances are not perfectly optimum and distortion at 2 dB below clip is only 0.03% over $20-20 \mathrm{kHz}$.

But this is the way thoughts are going in Japan.
Tim de Paravicini,
London NW6.

ADVANCED
 PRE-AMPLIFIER DESIGN

In reply to Mr Williamson (Letters, April), I think there are mainly two points to be made. One, that any pre-amplifier should have adequate signal handling capacity in excess of the performance of any pickup cartridge both dynamically and in pure consideration of the amplitude of signais. Second, that as far as I am concerned the two pickup cartridges which are capable of giving peaks in excess of 200 mV are the Ortofon SL15 with appropriate transformer and the Decca London cartridge.

The reference to signal peaks of $80 \mathrm{~cm} / \mathrm{s}$ observed on gramophone records came from the book "Hi-Fi Systems" by G. King where there is a graph illustrating the velocities measured on gramophone records at various frequencies.

I nominate my favourite charity as the Musicians Union!
A. J. Watts.

SGS-ATES (United Kingdom) Ltd,
Aylesbury,
Bucks.

LONG WAVES FOR
 AMATEURS?

I am normally in favour of amateur radio but a statement in your March 1977 issue (p. 78) that the USA may request a frequency allocation in the l.f. band for amateurs fills me with anger. How can anyone be so wickedly irresponsible or unappreciative of the value of long wave channels!

Just in case the unique feature of long wave transmission has slipped anyone's mind I would point out that the long wave channels are the only ones capable of giving reliable, fade-free global communication without resorting to the use of satellites.

In my opinion it shows a serious lack of appreciation of the potentialities of these frequencies to allow anyone to use them just for low power local broadcasting, and hence it is quite wrong to allow more than one transmitter on each channel unless the carriers are synchronised and they are radiating the same programme.
H. G. May,

Barton-on-Sea,
Hants.

AUDIBILITY OF PHASE EFFECTS

In view of the continuing controversy in these columns over the audibility (and hence undesirability) of non-linear-phase shifts in an audio signal - i.e., phase shifts which leave the harmonic structure unaltered but distort the signal waveform - the following
recent observations of mine may be of interest to your readers. In particular, they may enable readers who have built the Wireless World Dolby B noise reducer to verify some of these effects for themselves.

Having completed the noise reducer kit from Integrex Ltd., I was somewhat surprised to find that, listening to the built-in calibration signal at the monitor output (with the input selector in the auxiliary position), I could hear a subtle but distinct difference between the apparent purity of the (approximately 456 Hz) tone with the record/play button in and the sound with the button out. Reference to the circuit diagram shows that the only change introduced by this switch is the insertion of a unity-gain polarity inverting stage into the output circuit. Further investigation showed that the gain of this stage was indeed unity (within 0.02 dB) and its harmonic distortion very low (of the order of 0.02% t.h.d.). So it clearly was not the culprit. It was at this point that I measured the calibration oscillator t.h.d. and found that this was 2.66%, comprised of 2.57% second harmonic, 0.62% third harmonic, 0.25% fourth harmonic and approximately 0.16% higher-order harmonic distortion. The pronounced second harmonic distortion, like alt even-order harmonic distortions, rendered the waveform asymmetrical; this asymmetry was sufficient to be just barely visible on an oscilloscope.

Here, then, was the explanation of the change in sound quality observed before. It is known from recent work $1,2,3$ that the inner ear does not respond symmetrically to compression and rarefaction, and at lowish frequencies (below say 1 kHz) where the rate of neuron firings can be modulated by the audio waveform, the ear performs to a certain extent at least like an asymmetrical waveform detector, responding more to one signal polarity than to the other. In this connection reference should be made to the publications cited in references ${ }^{1,2}$ and ${ }^{3}$ and in particular to the work of J. H. Craig and L. A. Jeffress. By switching from "record" to "playback", and hence inverting the slightly asymmetrical calibration waveform, the fact that the ear treats compressions and rarefactions unequally resulted in an audible difference in the tonal quality. Of course, this polarity reversal of the asymmetrical signal is equivalent to a phase shift of the harmonics relative to the fundamental, and so this result has direct relevance to the current discussions on the audbility of phase distortion. The letter by M. A. Gerzon ${ }^{4}$ should also be consulted for corroborative evidence.
The above explanation has subsequently been confirmed by introducing polarity reversals at other points in the reproduction chain, with the same effect. The audible effect of the polarity reversal in the Dolby noise reducer could be exactly counterbalanced by another polarity reversal later in the chain. In this way, it was possible to rule out transducer asymmetry as a contributory cause. The audibility of the polarity reversal has also been confirmed by friends on whom I have repeated the experiment.

The audibility of the polarity reversal depends to a great extent on having the volume level just right - neither too loud nor too soft. This also agreed with the earlier experiments cited. The change is audible on both headphones and loudspeakers, but for convenience the former were used primarily in my tests.

I would like to invite readers who have constructed the Wireless World Dolby B circuit to try this experiment themselves. Of course, I cannot vouch that the distortion of
their calibration oscillators will be the same as mine and so produce the desired asymmetry! It should be emphasized that the change is subtle, and some perseverance may be required in order to hear the tonal difference. (Experiment also with the volume level.) The noise reduction should be switched "off." (Switching it "on" exaggerates the difference in the right-hand channel, by pre-emphasizing the higher harmonics when in the "record" mode and de-emphasizing them when in the "playback" mode. The left-hand Dolby side-processor loop is not performing its normal function when the calibration oscillator is on, and so the - left-hand channel does not display this further effect. Thus it may be found helpful initially to monitor the right-hand channel output with the noise reduction switched "on," to serve as an aid in learning what to listen for. The change under these circumstances is, however, not a simple polarity reversal.)

At first sight, all the above would seem to bear only on the audibility of polarity reversals of non-sinusoidal waveforms. As such, it strongly suggests that an effort shouid be made to standardize the polarities of the whole recording/reproduction chain from microphone, through record or tape, to loudspeaker. This suggestion has been made before, for example by D. S. Stodolsky ${ }^{1}$. It also serves as a warning to those who conduct A / B comparison tests on audio components without taking into account the possible relative polarity reversals which such components can introduce. For example, some power amplifiers are inverting from input to output, whereas others are non-inverting. Some of the alleged differences between components compared A/B may be due to such oversights.

Our observation does, however, indeed bear directly on the vexed question of the audibility of non-linear-phase shifts for the following reasons. Non-linear-phase distortion results in waveform distortion, and hence can change the symmetries of the signal waveform. As shown above, such symmetry changes can be detected by the ear, and so such phase distortion must be classed as undesirable, whatever the component is which introduces it. So, to conclude, it is my belief that phase distortion is audible under suitable circumstances, that more effort should be devoted to obtaining bounds on the allowable phase distortion on programme material (by means of properly conducted experiments with source signals which have not been phase-distorted by the audio chain), and that in principle the goal of phase-linearity (at least over the bulk of the audio band) is a desirable one which is worth pursuing, especially in transducers.
Stanley P. Lipshitz,
University of Waterloo,
Ontario, Canada.

References

1. Stodolsky, D, S. "The standardization of monaural phase", IE.E.E. Transactions on Audio and Electroacoustics, vol. AU-18 (1970), 288-299. 2. Hansen, V.. Madsen, E. R. "On aural phase detection. Parts I and II", J. Audio Eng. Soc., vol. 22 (1974), 10-14 and 783-788.
2. Schroeder, M. R. "Models of hearing, " Proc. iF..F.F.. vol. 63 (1975). 1332-1350.
3. Gerzon. M. A. Letter to the Editor. Wireless World, vol. 82, March 1976, 60-61.

Further letters on the audibility of phase effects, and also letters on transient intermodulation distortion in amplifiers, will be published in a later issue.

Annan and technology

Mobile radio should get some of the frequencies freed from 405 line tv transmissions in 1982, Professor Geoffrey Sims said at a press conference marking the publication of the Report of the Committee of enquiry into broadcasting of which he was a member. Asked what would happen to the 405 line channels and whether they would be used for citizens' band radio Professor Sims said: "I think there are certain problems about these frequencies. They are not well suited to colour television. Certain of them, band three for example, could be reserved for a colour television channel, but not all of these frequencies will be used for television services. For example they could be used for mobile radio services."

Pressed further to say why a report over 500 pages long which had been awaited eagerly as a sign of the way new techniques would affect broadcasting in the future contained only 20 pages on technology Mr Sims pointed out that there were in fact 35 pages, or two chapters on technology. "We are all aware" he said, "that we are surrounded by new forms of technology which can be deployed in broadcasting." The difficulty was that there was a shortage of money to develop these techniques, and a shortage of good material to broadcast by them. All sorts of techniques, from fibre optics to satellite transmission were available, "but the way it's done is neither here nor there provided you can afford to do it some way. Either new technology is not developed to the point where it would be sensible to create these new large networks, or there is a lack of programme material. It's all right to talk about a fourth or fifth channel but when you come to the 24 th or 25 th, which is what these things could provide, the whole question becomes a different matter." Citizens' band was outside the scope of the committee's remit, but "It must be introduced at frequencies which do not interfere with public broadcasting."
Professor Sims's final point on the
adoption of new technology was that the u.h.f. investment programme was still going forward. "By the early 1980s some u.h.f. transmitters will be going out of service, and some people who now get programmes won't get them unless these are replaced." Mr Phillip Whitehead, MP, a member of the committee, added that citizens' band was mentioned at the end of chapter 24. "We can't take that in this country." The kind of service that existed in the United States, on 27 MHz , would cause "grave interference with services which are much more important."
The report makes scathing criticisms of the British television manufacturers, and presses for tighter control on the illegal use of c.b. equipment, including banning its sale as well as its manufacture and importation. The committee also recommends the setting up, as suggested in evidence by the National Electronics Council (see Wireless World, October 1975, p.447) of a telecommunications advisory committee to advise the government on the prospects for and implications of technical developments for all telecommunications, including broadcasting.
The committee over-rode suggestions by the Newspaper Publishers Association and the Newspaper Society that teletext development should be held back for five years "to enable newspapers to adjust to the new competition." Neither need they be consulted about these developments. "We recommend that the BBC and IBA should be authorised to provide CEEFAX and ORACLE as an extension of their existing services." There should however be an enquiry by the new Public Enquiry board.

Wireless World will publish a full account of the less publicised aspects of the report in our next issue.

Battery car charges while braking

The Department of Industry is funding the development of a braking system for electrically powered vehicles which will feed the energy normally lost during braking back into the battery. Although the technique adopted, using the traction motor as a dynamo during braking, is fairly well established, up to the present time, the Department say, "regenerative braking systems have required a considerable number of additional components in the control circuit and hence have been costly, have necessitated critical adjustments to provide the requisite safety margin against miscommutation (which would effectively short circuit the battery and blow the traction fuses) and were not capable of operation at low road speeds."

The solution, developed after joint funding by the Dol and Cableform Ltd,
is to use a Cableform Pulsomatic Mk 10 controller, developed for control of the acceleration of the vehicle, to control braking as well. Mr P. F. Hodges, field sales manager of Cableform, told Wireless World, "We started looking at this two years ago and, like everyone else, we ended up with about 250 discrete electronic components in the circuit. Then we noticed that the acceleration characteristics had so much in common with the braking characteristics that we could use the same controller for each function with only 120 components, and of course, as always happens when you reduce the number of components, the reliability shot up."
The detailed operation of the device is complicated, but in essence it overcomes the difficulty of absorbing the large amounts of energy that are generated by motors in a short time during braking. On the one hand there is a large current surge which may destroy the battery, and on the other a large voltage surge which is hostile to the semiconductor sections of the thyristor control circuit. Cableform have managed to mitigate the effects of both by feeding the energy back in smaller, more manageable quantities over a longer period. They have also overcome the reduced braking rate at lower speeds. The Department of Industry appear delighted with the device, and full of praise for Cableform.
The money, $£ 16,500$ to match Cableform's contribution, was channelled through the transport section of the Research Requirements Board. The Department of Industry sees it as its duty to put help under one of several publicised schemes into any company or organisation which comes forward with a proposal which the Department of Industry judges to be viable. That means the proposal must produce sales, and a project which represents solid judgement and good engineering will be preferred to one which, as one spokesman put it, "is a technological marvel that collects dust on someone's shelf."
One of the tasks with which the Department was charged was to look at the technical options offered by electric vehicles and the amount of energy that could be saved in using them. They came across "an ingenious way of simplifying a regenerative control". In particular, Cableform's design, described in three versions in the patent specification, eliminates the need for any tricky adjustments, according to the Dol.

ITU conference results

The sense of accord at the ITU Broadcasting Satellite Conference, which ended in Geneva on February 13,

Johnny Longden, chief engineer of BBC Radio London (right) examines a forerunner of the audio amplifier with David Clifton, until recently presenter and producer of the station's Sounds Good programme. The valveless amplifier was originally used to drive loudspeakers from crystal circuits normally able only to power headphones. According to Longden the device, made by S. G. Brown, may have been intended for morse code rather than audio, since there was a peak of 12 dB at around 1.5 kHz .

Sounds Good has been running on Radio London almost since the station opened in October 1970. If the Annan Committee gets its way the BBC will lose all its local radio stations (full report next month).
was such, according to one report, that no votes were taken even on matters about which the 660 delegates from 111 countries disagreed. The amount of work done was therefore prodigious. A plan was adopted which gave every country present, with the exception of those in region 2, the Americas, frequencies and orbital positions for satellite broadcasting which will come into force on January 1, 1979. Region 1 (Europe and Africa) was given 40 channels and Region 3 (Asia and Australasia) 24. Region 3 has the frequency band from 11.7 GHz to 12.2 GHz , and region 1 up to 12.5 GHz . The allocations are in the form of a 42-page table worked out by computer in channel order from 1 to 40. The plan is valid for 15 years. The final document produced by the conference, some 150 pages, contained 16 articles, including the plan, 11 annexes, a final protocol, nine resolutions and eight recommendations, as well as a small section relating to the rearrangement of the radio regulations, some additional regulations and a recommendation that they be published this September in good time for the 1979 WARC in Geneva, when the regulations agreed last month will form the basis for proposals to that conference.

Region 2, dominated by the United States, decided to wait for its final orbital station and frequency allocation until they hold their own regional administrative conference in 1982. Contingency plans have been made establishing a claim to orbital space, and each country in region 2 will get at least four channels at the 1982 conference.

The technical details of the plan, we believe, include the following: the
broadcast signal will be either f.m, which will predominate, or another type of modulation which has at least the same interference standards; circular polarisation; at the edge of the coverage area in regions 1 and 3 the power flux density will be -103 dBW , needing a receiver with a figure of merit (defined as the aerial gain divided by the system noise temperature in degrees Kelvin) of $6 \mathrm{~dB} / \mathrm{K}$ and a 90 cm aerial. This is the equivalent of an effective isotropic radiated power of 67 dBW at the satellite; and a nominal spacing has been set for the satellites in regions $1 \& 3$ of $6^{\circ} \pm 0.1^{\circ}$ at the equatorial orbit. Narrower spacings are allowed at lower powers provided interference does not result.

The American countries are adopting slightly different standards, it is understood. Their power will be 2 dBW lower at -105 dBW at the edge of the coverage area, or a radiation from the satellite of 63 dBW e.i.r.p, needing a 1 m aerial. As a comparison, the Canadian communications satellite (see WW, March, p40) has an e.i.r.p. of 59 dBW .

IBA host EBU surround sound demonstrations

Working Party S of the European Broadcasting Union will be meeting at IBA Engineering HQ, Crawley Court, June $14-17$ to investigate sur-round-sound broadcasting systems. The IBA will be giving demonstrations of five systems: BBC Matrix H, CBS SQ, NRDC 45J, Nippon Columbia UMX and Sansui QS. The aim is eventually to arrive at a single agreed system for the whole of Europe.

The IBA is currently exploring several surround systems, but still at a relatively early stage of its investigations and is anxious to complete them before making any formal statement of its views. "The choice of a preferred system involves questions not only of subjective performance" the IBA say "but also of the degree to which it would affect listeners relying on monophonic or two-channel stereophonic reception; whether it would significantly affect the coverage of the transmitting stations; whether it would cause, or be vulnerable to, interference to or from stations using adjacent channels and so complicate frequency planning; and of course the costs to broadcasters and listeners.
"It is also recognised that it would be highly desirable that the same system should be adopted nationally and internationally. In Europe the adoption of a particular system is primarily a question of achieving general agreement among the members of the European Broadcasting Union and ultimately the CCIR. Thus while the IBA and other members of EBU are currently investigating and making individual contributions in this field it is hoped that it will prove possible to agree on the system best suited to European broadcasting. The work in this area is being shared through Working Party S of the EBU."

During the meeting of the Working Party the IBA expects, with the co-operation of the BBC and the other broadcasters concerned, to stage a comprehensive series of demonstrations and experiments based on a number of different proposals, using different types of programme material.
"It must be stressed however that these experimental demonstrations to Working Party S cannot be expected to lead to an immediate recommendation by the EBU. It is only after consideration in detail of the technical and economic factors involved that European broadcasters are likely to be satisfied that a wise and prudent choice has been made from among the proposed systems, all of which appear to have useful features but also some ambiguities. It is interesting to note that despite the intensive work in this area since 1972 in the United States of America no final recommendation has yet been made by the Federal Commu. nication Commission."

High speed track measurement

As the speed of passenger rail transport increases it becomes more necessary than ever to make sure that track is fault-free. The High Speed Track Recording Coach, which has already gone into service with British Rail, uses gyroscopes, accelerometers and mini-
computers to take track measurements at speeds up to $125 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. These measurements enable two types of fault to be located; those related to passenger comfort and those related to safety. Parameters measured include vertical (top) and horizontal (alignment) railprofiles, cross-level (cant), curvature, gauge and slope. An Interdata model 70 digital computer samples the analogue measurements and allows other parameters such as twist, to be derived. The track assessments employ calculations based on the statistical standard-deviation principle.

Data from the gyroscopes and accelerometers is processed using a Membrain digital/analogue computer, acting as an integrator, to provide a measure of the dynamic motion of the coach. This enables the main computer to distinguish between cants and curvatures due to natural slopes and corners and those due to faults.

Vertical measurements are made to within 1 mm using potentiometric displacement transducers mounted above the centre of running wheels. Lateral sensing, however, is by a non-contacting optical system. Light projectors are mounted on the bogies and arranged so that a small area of each railhead is illuminated. The reflected illumination from the railheads is converted into a video waveform by linescan cameras so that the gauge face, where the illumination intensity changes rapidly, can be sensed, to an accuracy of about 2 mm , by using a threshold detector. While an ultra-violet recorder monitors the real-time analogue data, a 14-channel f.m. magnetic recorder stores this information for later playback at The Railway Technical Centre in Derby, where detailed studies can be made. In addition there is a magnetic tape recorder which is used to store the digital data and act as a transfer medium for the main computer. A character printer also provides printed pages of data indicating track statistics at 200 m intervals.

This coach, a result of work by British Rail's Research and Development Division, will run over 80,000 miles each year checking most of Britain's 21,000 miles of track. The existing system of track recording has been in use for over 20 years and is often limited to a speed of $20 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.

Other countries also have track geometry coaches but this, the first to use a computer, is believed to be the most accurate and reliable.

British Rail are also collaborating with Harwell in the development of a new system for their Ultrasonic Test Train. At present, data from the train, which looks for defects such as cracks in rails by recording the reflections of ultrasonic pulses, are recorded on film before subsequent interpretation by a computer system at Paddington. The new system will be fully automated and will save about one mile of film for every

100 miles of track inspected. Ultimately, it is hoped that the complete evaluation will be made on board the vehicle by using mini-computers. This real-time system, which could increase the inspection speed from $20 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. to 40 m.p.h., is expected to be installed by the summer of 1978.
British Rail is confident that the Recording Coach and the Ultrasonic Test Train are likely to be of considerable interest to railways throughout the world and, together with its consultancy company, Transmark, and Harwell Laboratories, it is taking steps to sell them in Germany and Eastern Europe. According to Transmark, the coaches, which are custom-built units, will be taking a stand at the American Railway Supplies Exhibition in Chicago.

Rise in components industry morale

The destinations of the $£ 20$ million of government funding for the electronic components industry (WW March p39) became a little clearer at a press conference to mark the merging of the Electronic Components Board with the larger Radio \& Electronic Components Industry Federation, held on March 11. $\overline{\mathrm{Mr}}$ M. St A. Eley, of Plessey, said, "We won't have the final say in how or where the money goes, but I think it will be going towards projects that are convincing enough to the Department [of Industry], whether from a small, large or medium sized company."
Former director of the ECB Sir Ronald Melville, now an additional director of the new Electronic Components Industry Federation, said, "A lot of thought will be given to what use the technology is to be put." As well as being used for $R \& D$ the accent would be on the creation of new jobs and the building of factories. Eley added that the Department of Industry would sift potential projects very carefully. The announcement of the first successful applications is expected within a maximum of two months. The Secretary of State for Industry, Mr Varley is said to be already impatient to have the money available.

The formation of the ECIF, which first met on February 23 under the chairmanship of Jack Akerman of Mullard, coupled with the prospect of Government money, appear to mark a heightening of morale in the industry. Also contributing to this is what the ECIF calls the "five star treatment" that the industry will get as one of the five special industry sectors in the Government's industrial strategy, worked out with the National Economic Development Council and the trade unions. It appears that it is still no clearer what this "five star treatment" means and, asked by Wireless World to put a little
more flesh on the skeleton the ECIF council were clearly at a loss. Akerman seemed satisfied with the Government's attitude, however: "It means that the Secretary of State will take a personal interest in the industry. In effect, we have got an open door to go straight to the government, up to cabinet level if necessary, to put forward our views."

Also indicative of a more positive approach on the part of the industry is the reduction of emphasis on import controls. "What we are pressing for," said Jack Akerman, long the leading campaigner for controls, "is effective import surveillance." This meant that they would expect to be able to retaliate! against the importation of colour sets made by our European trading partners using tubes made in the Far East. "We want fair trading, and effective import surveillance so that we know what is going on. For example the declaration of current domestic value on the import documentation."

Commenting on the $£ 20$ million funds he said, he regarded it as merely the first instalment, although "We don't want to give the impression that this industry exists solely on the basis of taking its cap to the government. We must be careful that we don't come over as a lame duck."

ECIF members seem to feel that large research and development expenditures may have to be forgone in favour of less glamourous activities: "We do know that the government wants the money put into the sharp end rather than the blunt end. It's tempting to put the money into $\mathrm{R} \& \mathrm{D}$ but we should put the money into marketing and making our product acceptable abroad."

Digital course

Chelsea college will hold a one week course in Digital system design beginning May 16. The course, says the Department of Electronics, "is designed to give practising engineers and scientists a formal approach to the logical design of digital systems and should also prove useful to those engineers and scientists working in the field of digital electronics who have had no previous training in the methods of logic design." Professor J. E. Houldin, department of electronics, Chelsea College, Pulton Place, London SW6 5PR. 01-736 1244.

Owing to a communication error, the date of the course for teachers of the new A level course in electronic systems was published as June 18 to 20 instead of the correct date, July 18 to 20.

'"UD-45'?

In case you're wondering why articles on the NRDC system 45J decoding are appearing without there being any encoded material available, a clue to the
probable answer appeared in our last issue. No prizes, but if you want to do a bit of detective work stop reading here and read "NRDC surround sound system."

Concurrent with the gradual emergence of System 45J, moves were made to bring about a compromise settlement with surround-sound system codes. What seemed to be needed was a circle locus on the energy sphere that lay between two extremes. On the one hand was the BMX or "bimodal" matrix coding of Duane Cooper, used in the Nippon Columbia UD-4 basebands, and of Peter Fellgett's patent (with its one day priority over Bauer's similar "New Orleans" patent!) and on the other, was the amplitude coding of the Japanese Regular Matrix, to which Sansui's QS System approximated. The BMX vertical circle gave good mono performance but had a 90° phase difference between stereo channels, and the RM locus gave disastrous mono performance.

Now the best compromise is not necessarily the half way mark between these two extremes. The best plan may well have been to allow for a range of loci over which the balance may be tipped, in favour of reduced phasiness in the front section or else in favour of improved performance in mono, to suit the application. (Actually, the 45 J system allows for such a range, but in its pairwise mixed options, rather than in its kernel form.) The BBC chose their locus to be about half way for the front part of the sound stage, and to be more like BMX for the rear part. Nippon Columbia tended to record front sounds with a reduced phase angle anyway when soloists appeared at centre front. The trend of the NRDC-sponsored project was departing from the originally patented scheme to a titled locus (but still a circle in its kernel form). It all looked very hopeful.

But this opportunity of producing a joint standard didn't appear to be grasped. Nippon Columbia went quiet; Sansui would have preferred to tilt their locus in the opposite direction; the BBC

Left lags Right
Side view of amplitude-phase energy sphere model shows how H and 45J "kernel"' loci relate to the BMX code of UD-4 and the Regular Matrix of EIAJ
seemed happy with what they had. Result: apparent stalemate. Yet looking at that article it is clear that someone is about to produce a 45J decoder. ". . . in the near future a decoder will be publicly demonstrated reproducing sounds via an arbitrary rectangle speaker layout . . ." We subsequently learnt from the UK section of the AES that Dr T. Takagi, who is general manager of Nippon Columbia's research laboratory, may also be taking part in a lecture that will include discussion of the 45 J system . . . Perhaps this is the year to consolidate on the part of broadcasters and the record industry (page 35), lest this new enthusiasm should go off at half cock.

Spacelab experiments

The first Spacelab mission towards the end of 1980 will carry 61 European, 15 American and one Japanese experiments. The mission, jointly planned between the National Aeronautics and Space Administration of the United States and the European Space Agency, will involve 222 experimenters from 16 countries. The experiments were chosen from 2,000 replies to invitations to participate. Eighty-one of the investigators come from Japan, 135 from Europe and the rest from Canada, India and Japan.

Spacelab will be launched aboard the NASA space shuttle, remaining attached to its three-man orbiter. The first mission carrying two instrument operators will last a week, but the re-usable Spacelab may stay in orbit for up to a month on subsequent occasions, carrying four operators, or "payload specialists", as they are called. The laboratory is expected to fly 50 missions during its ten-year life. The two operators will work shifts with the orbiter crew to ensure the laboratory, which is expected to complete 100 man hours experiments, is used round the clock.

The two payload specialist posts have now been advertised and they are expected to be filled in the summer of next year.

Of the nine experiments selected in the life sciences Britain has managed to capture three, compared with one each for France, Germany, Italy, Sweden, Switzerland and the United States. The three are:

Canal otolith interactions and adaptation in man (A. J. Benson of the RAF Institute of Aviation Medicine); Mass discrimination during weightlessness (Dr Helen Ross, Stirling University Department of Psychology); Personal miniature electrophysiological tape recorder (Mr Heinz Wolff, Clinical Research Committee).

Of the three Astronomy experiments Britain has one, France, Germany and Italy sharing the other two. It is a Mullard Space Science Laboratory
experiment on X-ray astronomy spectrosopy using a gas scintillation proportional counter. The four participants are Professor Boyd, Dr Brownlie, Dr Culhame and Dr Sanford.

Dr H. M. Rosenburg of Oxford University has one of the 39 material science experiments, Processing of composite materials in Spacelab. From the School of Chemistry, Bristol, Dr J. M. Haynes has two experiments: Kinetics of the spreading of liquids on solids, and a model study of interspatial instability and capillary hysteresis. Almost half a dozen materials science experiments put forward by the Department of Industry are being considered for funding, of which two or three will be successful. As we go to press the decisions had not been made.

No decision yet on microwave landing system

A working party of the International Civil Aviation Organisation, meeting at the ICAO's headquarters in Montreal, has failed to reach agreement on the choice of a worldwide microwave landing system (m.l.s.). For two weeks beginning February 28 the All Weather Operations Panel of ICAO tried, in the final session of discussions that have lasted over a year, to decide among three rival systems: the British Doppler system; the American Federal Aviation Authority-sponsored scanning beam system; and a German ground-based system.
The search for a microwave replacement for the current instrument landing system (i.l.s.) began in the late 1950s when it became clear that, in view of the growth in air traffic, the current v.h.f./u.h.f. equipment was inadequate. However, the ICAO has endorsed the view that i.1.s. will be standard for another 25 years. First used in 1946, and adopted by the ICAO in 1949, it provides, essentially, three sets of information for the pilot: azimuth, or bearing, elevation and "distance to go." Three marker beacons five miles, one mile and 300 feet from the end of the runway provide distance. A "glide path" transmitter provides two overlapping beams modulated at 90 and 150 Hz which are equal in received amplitude only when the angle of approach, normally 3°, is correct; above or below that angle one or other tone will predominate. A similar localizer beam operates down the centre of the runway, and another provides lateral information.

In a typical large airport installation meeting ICAO's "Category 3" standards (full instrument guidance from 25 nautical miles to the safe end of the runway with various subcategories for visibility) some 87 signals have to be continued on page 76

Two-stage h.f. linear amplifier

by Helge O. Granberg

Motorola Semiconductor Products, Phoenix, Arizona

This article discusses the design of 50W and 300W linear amplifiers for the 1.6 to 30 MHz frequency band, both of which employ push-pull design for low, even-harmonic distortion. This harmonic distortion and the 50Vd.c. supply voltage make the output impedance matching easier for 50Ω interface, and permit the use of efficient 1:1 and 4:1 broadband transformers. The four . 300W modules are combined to provide a 1 to 1.2 kW p.e.p. or c.w. output capability. The driver amplifier increases the total power gain of the system to approximately 34 dB .

Bias voltage

The bias voltage source shown in Fig. 1 is employed with each of the 300 W modules and the preamplifier. Its basic components are the integrated-circuit voltage regulator MC 1723 C , the current boost transistor Tr_{3}, the temperature sensing diode D_{1} and the voltage adjustment element R_{10}. advantages of 'this type of bias source are:
-line voltage regulation, which is important if the amplifier is to be operated from various supply voltages,
-adjustable current limit,
-very low stand-by current drain.
The supply voltage is reduced by D_{2} and R_{12} to a level below 40 V , which is the maximum input voltage of the regulator. The base-emitter junction of a 2 N 5190 , in a Case 77 plastic package, forms the diode D_{1} of which the temperature compensation has a slight negative coefficient. Current limiting resistor R_{5} sets the limit to approximately 0.65 A , which is sufficient for devices with a minimum h_{FE} of $17,\left(I_{\mathrm{B}}=I_{\mathrm{C}} / h_{\mathrm{FE}}\right)$ when the maximum average I_{C} is 10.9 A . Typically, the MRF428 h_{FE} is 30-40.

Measured output voltage variations of the bias source ($0-600 \mathrm{~mA}$) are ± 5 to 7 mV , which implies a source impedance of approximately 20 milliohms.

300W amplifier

Due to the large emitter periphery of the MRF428, the series base impedance is as low as $0.88-\mathrm{j} 0.80 \Omega$ at 30 MHz . In a

push-pull circuit a $16: 1$ input transformer would provide the best impedance match from a 50Ω source but would result in a high v.s.w.r. at 2 MHz , and would make it difficult to implement the gain-correction network design. For this reason a 9:1 transformer, which is more ideal at the lower frequencies, was chosen. This represents a 5.55Ω base-to-base source impedance.

A centre tap, common in push-pull circuits, is not necessary in the input transformer secondary, if the transistors are balanced. ($\mathrm{C}_{i b}, h_{\mathrm{FE}}, V_{\mathrm{BEF}}$) The base current return path of the momentarily amplifying transistor is through the base-emitter junction of the momentarily non-amplifying transistor, which acts as a clamping diode, and the power gain is somewhat dependent upon the bias current. The equivalent input circuit of Fig. 2 represents one half of the push-pull circuit, and for calculations R_{S} equals the total source impedance ($\mathrm{R}_{\mathrm{s}}{ }^{\prime}$) divided by two.

Since a junction transistor is a current amplifier, it should ideally be driven from a current source which, in r.f. applications, would result in excessive loss of power gain. However, input networks can be designed with frequency slopes having some of the current source characteristics at low frequencies, where excess gain is available.

The complex base input characteristics of a transistor would require a very complicated input compensation network for optimum overall performance. The design goal here was to maintain an input v.s.w.r. of 2:1 or less and a maximum gain variation of $\pm 1.5 \mathrm{~dB}$ from 2 to 30 MHz . Initial calculations indicated that these requirements could be met with a simple RC

Fig.2. Equivalent base input circuit for Tr_{r}
network in conjunction with negative collector-to-base feedback. Fig. 2 shows this network for one device, where L_{1} and L_{2} represent lead lengths, their values being fixed. The feedback is provided through R_{2} and L_{2}. Because the calculations were done without the feedback, this branch is grounded to simulate the operating conditions.

Calculated values of R_{1} and R_{2} along with other known values and the device input data at four frequencies were used to simulate the network in a computer programme.An estimated arbitrary value of 4000 pF for C_{1} was chosen, and $\mathrm{V}_{\mathrm{CS} 2}$ represents the negative-feedback voltage (Fig. 2). The optimization was done in two separate programmes for $\mathrm{R}_{1}, \mathrm{R}_{2}$, C_{1} and $\mathrm{V}_{\mathrm{CS} 2}$ and in several steps. The goals were (a) V_{CS} and R_{2} for a transducer loss of 13 dB at 2 MHz and a
minimum loss at 30 MHz . b) R_{1} and C_{1} for input v.s.w.r. of <1.1 :1 and <2 :1 respectively. The optimized values obtained were $\mathrm{C}_{1}-5850 \mathrm{pF}, \mathrm{R}_{2}-1.3 \Omega$, $\mathrm{R}_{1}-2.1 \Omega$ and $\mathrm{V}_{\mathrm{CS} 2}-15 \mathrm{~V}$. The minimum obtainable transducer loss at 30 MHz was 2.3 dB , which is partly caused by the highest reflected power at this frequency, and can be reduced by "over-compensation" of the input transformer. This indicates that at the higher frequencies, the source impedance $\left(R_{S}\right)$ is effectively decreased, which leaves the input v.s.w.r. highest at 15 MHz .
In the practical circuit the value of C_{1} (and C_{2}) was rounded to the nearest standard, or 5600 pF . For each half cycle of operation R_{2} and R_{4} are in series and the value of each should be $1.3 \Omega / 2$ for a $\mathrm{V}_{\mathrm{CS} 2}$ of 1.5 V . Since the voltage across ac

Fig.3. Practical circuit of 300 W amplifier.
and $b d=V_{C E}$, a turns ratio of $32: 1$ would be required. It appears that if the feedback voltage on the bases remains unchanged, the ratio of the voltage across $\mathrm{L}_{5}\left(\mathrm{~V}_{\mathrm{CS} 2}\right)$ and $\mathrm{R}_{2} \mathrm{R}_{4}$ can be varied with only a small effect to the overall input v.s.w.r. To minimize the resistive losses in the bifilar winding of T_{2} in Fig. 3 , the highest practical turns ratio should not be much higher than that required for the minimum inductance, which is

$$
\frac{4 \mathrm{R}}{2 \pi}=\frac{50}{12.5}=4.0 \mu \mathrm{H}
$$

where R is the collector-to-collector impedance of 12.5Ω and $f=2 \mathrm{MHz}$. The inductance of ac or bd will then be 1.0 $\mu \mathrm{H}$, which amounts to 5 turns. A margin of 25% over this represents a $7: 1$ ratio, setting $\mathrm{V}_{\mathrm{CS} 2}$ to 6.9 V .

The currents for each half cycle are in opposite phase in ac and bd and, depending on the coupling factor between the windings, the even harmonic components will see a much lower impedance than the fundamental. The optimum line impedance for ac, bd would equal the collector-to-collector impedance, but experiments have shown that increasing this number by a factor of 2 to 3 affects the second and fourth harmonic amplitudes by only 1 to 2 dB .

Since the minimum gain loss obtainable at 30 MHz with the network in Fig. 2 , and the modified $\mathrm{V}_{\mathrm{CS} 2}$ source was about -3.8 dB at $30 \mathrm{MHz}, \mathrm{C}_{5}$ was added to form, with L_{5}, a parallel resonant circuit with a Q of approximately 1.5 . Its purpose is to increase the shunting impedance across the bases, and to disturb the 180° phase difference between the input signal and the feedback voltage at the higher frequencies. This reduces the gain loss of 3.8 dB , of which 1.4 dB is caused by the feedback at 30 MHz . The amount depends upon the resonant frequency of $\mathrm{C}_{5} \mathrm{~L}_{5}$, which should be above the highest operating frequency to avoid possible instabilities.
The input transformer is a 9:1 type, and uses a television aerial balun type ferrite core, made of high permeability material. The low-impedance winding consists of one turn of $1 / 8 i n$ copper braid. The sections which pass through the openings in the ferrite core are rounded to resemble two pieces of tubing electrically. The primary consists of $23 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. p.t.f.e insulated wire, threaded through the rounded sections of braid, with the primary and secondary leads in opposite ends of the core ${ }^{1,2}$. The saturation flux density is about 60 gauss, which is well below the limits for this type of core.

Several types of output transformer configuration were considered. The 12.5Ω collector-to-collector impedance estimated earlier requires a $4: 1$ transformer for a 50Ω output. A coaxial cable version was adapted for this design, since the transmission line type transformers are theoretically ideal for r.f.

Fig. 4. Intermodulation distortion (3rd) and power gain are shown at (a), while (b) gives input voltage standing-wave ratio and efficiency (η) against frequency.

Fig. 5. Driver amplifier for 50 W output.
applications, especially in the $1: 4$ impedance ratio. A balanced-to-unbalanced function would normally require three separate transmission lines including a balun, ${ }^{2,3}$, but the third line can be omitted, if lines a and b in Fig. 3 are wound on separate magnetic cores, and the physical length of the lines is sufficient to provide the necessary isolation between the collectors and the load. Measurements showed the core losses to be negligible compared to the line losses at 2 MHz and 30 MHz . However, the losses increase as the square of $B_{\max }$ at low frequencies.

With the amount of h.f. compensation dependent upon circuit layout and the exact transformer construction, no calculations were made on this aspect for the input (or output) transformers. The values of C_{3}, C_{4}, and C_{6} were selected by employing adjustable capacitors on a prototype whose values
were then measured. The performance data of the 300 W module is shown in Fig. 4.

Driver amplifier

The driver shown in Fig. 5, uses a pair of MRF 427 devices, and the same circuit board layout as the power amplifier, with the exception of the type of the output transformer.
The input transformer is similar to that used with the power amplifier, but has a $4: 1$ impedance ratio. The required minimum inductance $(4 \mu \mathrm{H})$ in the one turn secondary (Fig. 3) being considerably higher in this case, the A_{L} product of the core is barely sufficient. The measured inductances between a number of cores range $3.8-4.1 \mu \mathrm{H}$.
This formula also applies to the output transformer, which is a $1: 1$ balun. The required minimum inductance at 2 MHz is $16 \mu \mathrm{H}$, amounting to 11

Fig. 6. Four-port input power divider.
Fig. 7. Balancing resistors R in Fig. 6 when one or more loads open-circuit.

(a)
$R=28 R 13$

(b)
$R=25$

(c)
$R=18 R 75$

turns on a Ferroxcube 2616P-A100-4C4 pot core.

Input power divider

The purpose of the power divider is to divide the input power into four equal sources, providing an amount of isolation between each. The outputs are designed for 50Ω impedance, which sets the common input at 12.5Ω. This requires an additional $4: 1$ step down transformer to provide a 50Ω load for the driver amplifier. Another requirement is a 0° phase shift between the input and the 50Ω outputs, which can be accomplished with $1: 1$ balun transformers (a,b,c and d in Fig. 6). For improved low frequency isolation characteristics the line impedance must be increased for the parallel currents. This can be done, without affecting the physical length of the line, by loading the line with magnetic material. In this type of transformer, the currents cancel, making it possible to employ high-permeability ferrite and a relatively short physical length for the transmission lines.
The purpose of the balancing resistors R is to dissipate any excess power if the v.s.w.r. increases. Their optimum values, which are equal, are determined by the number of 50Ω sources assumed unbalanced at one time, and the resistor values are calculated accordingly.

Examining the currents with one load open, it can be seen that the excess power is dissipated in one resistor in series with three parallel resistors, whose total value is $50-12.5=37.5 \Omega$. Similarly, if two loads are open, the current flows through one resistor in series with two parallel resistors, totalling 37.5Ω again. This situation is illustrated in Fig. 7.

Output combiner

The operation of the output combiner shown in Fig. 8, is the reverse of that of the input power divider. In this application we have four 50Ω inputs and one 12.5Ω output, which is transformed to 50Ω by a 1:4 impedance transformer.

Fig. 8. Circuit of four-port power combiner - the reverse of circuit of Fig. 6.

An arrangement similar to the input power divider is employed in the combiner. The baluns consist of straight pieces of coaxial cable loaded by. a sleeve of magnetic material (ferrite). The line length is determined by the physical dimensions of the ferrite sleeves. Straight-line baluns such as these have the advantage over multiturn toroidal types in introducing a smaller possibility for phase errors, due to the smaller length of the line. The largest possible phase errors occur in the input and output connnecting cables, whose lengths are 18 in and 10 in respectively. All four input and output cables must be of equal length within approximately $1 / 4 \mathrm{in}$, and the excess in some, caused by the - asymmetrical system layout, can be coiled or formed into loops.
The output connecting cables between the power amplifier outputs and the combiner are made of low loss RG-142B/U coaxial cable, that can adequately handle the 300 W power with the average current of 2.45 A .

The purpose of the step-up trans-
former T_{2} is to transform the 12.5Ω impedance from the combiner up to 50Ω. It is a standard 1:4 unbalanced-tounbalanced transmission line type transformer $3,4,5$ in which the line is made of two RG-188 coaxial cables connected in parallel. As in the input transformer, the h.f. compensation (C2) was not required.

References

1. Granberg, H.: Get 300 Watts PEP Linear Across 2 to 30 MHz From this Push-Pull Amplifier, EB-27, Motorola Semiconductor Products Inc.
2. Granberg, H.: Braodband Transformers and Power Combining Techniques for RF, AN-749, Motorola Semiconductor Products Inc.
3. Hilbers: Design of H.F. Wideband Power Transformer Techniques, Philips Application Information 530.
4. Pizalis-Couse: Broadband Transformer Design for RF Transistor Amplifiers, ECOM-2989, U.S. Army Electronics Command, Fort Monmouth, New Jersey, July 1968.
5. Philips Telecommunication Review, Volume 30, No. 4, pp.137-146, November 1972.

Power semiconductors - 2

A survey of devices, technologies and applications

by Mike Sagin Assistant editor, Wireless World

Last month's article discussed the group of switching power semiconductor devices known as thyristors. This concluding article looks at power devices which can be used in the linear or switching mode.

Power transistors

Bipolar junction transistors have been in use since 1948 and, although the early types used germanium, almost all of today's devices are silicon. A power transistor is a current amplifying device whose parameters are dependent upon the structure and geometry. There are four important parameters, voltage breakdown, current gain, speed, and power dissipation, all of which are mutually dependent. This places constraints on the design of a power transistor, and in general the most important parameter is given priority and the others are a compromise.
At low current density, the peak current-gain is determined by the emitter efficiency, base lifetime, and sometimes surface recombination. At high current density, the geometry and base-width are the most important factors. Voltage breakdown is generally proportional to the resistivity or impurity doping concentration on both sides of the junction. Most of the voltage drop occurs on the side of the junction with the lower impurity doping. Power dissipation is restricted by thermal and electrical limitations. Thermal limitation is controlled by the pellet size, thermal capacitance and resistance of the device. Electrical limitation is controlled by the secondary breakdown characteristic. Speed, or transient response, is determined by the capacitance and resistance of the transistor. Junction area and periphery control the capacitance, while doping and thickness of the active regions control the resistivity.

Because of the various trade-offs that exist in power transistors, several different structures have been developed.

Single diffused, sometimes called hometaxial-base, transistors - Fig. 20 start with a wafer of moderately high
resistivity silicon which then has several thin layers of impurities deposited and diffused deeply into both sides. Early in this diffusion process the top of the wafer is etched to produce a plateau which becomes the emitter area. This raised area is called a mesa. The process is completed when the deeply-diffused junctions are separated by a base region of about 25 micro-metres.

The single diffused process produces a very rugged device which has a high safe operating area (s.o.a.). The wide

Fig.20. Single-diffused structure.

Fig.21. Double-diffused mesa structure.

Fig.22. Double-diffused planar structure. Because the collector base junction terminates at the surface of the wafer it can be protected by an oxide layer.
undiffused base region, called homogeneous; allows injected charge carriers to spread out and reduce the charge carrier density at the collector junction where most of the heating takes place. The wide base region does, however, restrict the maximum f_{T} to around 2 MHz . Large batch processing allows these devices to be manufactured cheaply although only n-p-n varieties can be produced. Maximum ratings for single diffused transistors are $V_{\text {CEO }}$ of around 200 V and continuous I_{C} of about 30A.

Double diffused mesa transistors - Fig. 21 start with a moderately high resistivity silicon wafer which has a dopant impurity deposited and then diffused to a shallow depth. Silicon dioxide is selectively etched to define regions where the emitter impurity is to be deposited and diffused. The oxide forms a mask which causes the emitter to diffuse more rapidly than the base. This action provides a narrow base region. Double diffused structures have the high-resistivity side of the collectorbase junction on the collector side. As a result, the collector voltage can be designed almost independently of the base width.

The narrow nonhomogenous base provides an f_{T} up to around 20 MHz but the base is also more fragile which reduces the s.o.a. The thick high-resistivity collector region also produces a high saturation resistance.

Double diffused planar transistors Fig. 22 are very similar to the mesa type except for the collector-base junction. An additional selective mask is used for the base impurities which terminates the collector-base junction at the surface of the wafer instead of on the side. This junction is therefore passivated by a protective oxide layer as is the base-emitter junction in the mesa structure.

The planar transistor offers a greatly reduced collector leakage current and more predictable device characteristics. Disadvantages are similar to those of the mesa type but the planar structure also has a collector voltage capability
which is up to 20% lower than a comparable mesa type. Again, only n -p-n devices are available.

Triple-diffused transistors - Fig. 23 are similar to double-diffused devices except for a third diffusion on the opposite side of the silicon wafer. This eliminates the high saturation resis-

Fig.23. Triple-diffused planar structure.

Fig.24. Triple-diffused etch cut. This is a variation of the standard triple diffused device which offers a much higher $V_{C E O}$ rating.

(b)

Fig.25. (a) Double-diffused epitaxial mesa structure, (b) planar structure.

Fig.26. Epitaxial-base mesa structure.
tance. The structure shown in Fig. 23 is the planar version and, like the double diffused, a mesa structure is also available. Devices with f_{T} ratings up to $30 \mathrm{MHz}, V_{\text {ceo }}$ ratings around 400 V and continuous I_{C} ratings up to 15 A are possible. Because the high - resistivity collector region is narrowed by a third diffusion, and the bulk of the collector is heavily doped and highly conductive, the junction is very fragile which greatly reduces the s.o.a. As with previous diffused devices, only n-p-n types are available.
A variation of this structure is the triple-diffused etch-cut device from Motorola - Fig. 24. This produces transistors with $V_{\text {CEO }}$ ratings of up to 1000 V , and continuous I_{C} ratings up to 15 A . The $h_{f e}$ rating is normally reduced together with the f_{T}, up to 10 MHz , but the s.o.a. is slightly increased. Only n -p-n devices are available.
Double-diffused epitaxial transistors Fig. 25 (a) and (b) are similar in appearance to the triple-diffused types, except that the diffused collector region is replaced by a heavily doped homogeneous layer referred to as the expitaxial substrate. A difference in doping produces improvements in the f_{T}, up to 100 MHz , and saturation resistance. However, the s.o.a. is very low and this type of device is unsuitable for driving capacitive or inductive loads. Both mesa and planar structures are available with $V_{\text {CEO }}$ ratings up to around 300 V and continuous I_{C} ratings up to 50 A . Unlike the normal diffused transistors, both n-p-n and p-n-p types are available.

Epitaxial-base mesa transistors - Fig. 26 use epitaxial layers in the actual formation of the base-collector junction. A layer of impurity is epitaxially grown, rather than diffused, on to an opposite polarity and highly doped substrate. Oxide masking and emitter diffusion into this epitaxial layer completes the construction. The main

Fig.27. Multiple epitaxial base mesa structure.

Fig.28. Multiple-epitaxial double-diffused mesa structure.
advantage of the epitaxial-base structure is its ruggedness and s.o.a.
The epitaxial-base mesa transistor also has a higher frequency response, up to 10 MHz , and the ability to carry higher currents for an equivalent emitter area. Maximum $V_{C E O}$ ratings are around 160 V with continuous I_{C} ratings up to 50 A . The disadvantage of this design is the low voltage limitation which is due to the abrupt base-collector junction formed between the heavily doped collector substrate and the

Table 3. Silicon power transistor structures and trade-offs

Structure	Advantages	Disadvantages
Single diffused (hometaxial-base)	Rugged, low cost	Low speed
Double-diffused mesa	High speed	High saturation resistance
Double-diffused planar	High speed, low leakage	High saturation resistance
Triple-diffused	High Speed, low saturation resistance	Moderate cost, moderate leakage
Triple-diffused etch cut	High voltage	Moderate speed
Double-diffused epitaxial mesa	High speed, low saturation resistance	Moderate cost, moderate leakage less rugged
Double-diffused epitaxial planar	High speed, low leakage, low saturation resistance	'Higher cost, less rugged
Epitaxial-base mesa	Moderate speed, low saturation resistance, moderately rugged	Low voltage, moderate leakage
Multiple epitaxial base mesa	Moderate speed, low saturation resistance. rugged, high voltage	Moderate cost
Double-diffused multiple-epitaxial mesa	High speed, rugged, low saturation resistance	Moderate cost, moderate leakage

epitaxially deposited base layer. A second disadvantage is the moderate collector leakage-current resulting from the mesa construction. Both n-p-n and $p-n-p$ devices are available.

Multiple-epitaxial base transistors Fig. 27 are similar to the epitaxial base devices except for an added high-resistivity epitaxial layer for the active collector region. The transistor is constructed from a heavily doped silicon wafer on which alternate layers of p-n or n-p high resistivity silicon are epitaxially grown to create a $\pi-v$ or $v-\pi$ base-collector junction. An emitter area is then diffused into the structure.

The main advantages of this construction are high voltage ratings and good current carrying abilities together with an improved s.o.a. The higher voltage ratings are due to the base and collector regions which both support the applied collector voltage. Good current ratings are due to the lower collector resistivity. The moderately wide base region and partial homogenous base doping, which spreads the charge carrier density, provides good secondary breakdown characteristics. The main disadvantage of this construction is the relatively high manufacturing cost.

Multiple-epitaxial double-diffused mesa transistors - Fig. 28 are similar to the double-diffused epitaxial types except that multiple epitaxial layers are used in the collector region. The top collector is a thin highly resistive layer followed by one or more thin heavily doped layers. These layers are grown sequentially onto a thick and heavily doped silicon substrate wafer. Advantages of this process are high speed, low saturation resistance, higher collector-junction voltage ratings and an increased s.o.a. Disadvantages are high cost and moderate leakage in the structure.

The types of structures already discussed are summarized in Table 3 with advantages and disadvantages. Performance curves for five popular types of device are shown in Fig. 29.

The geometry of a transistor can be considered as its topography. This together with the structure defines most of the fundamental properties. Most geometry designs in power transistors are aimed at increasing the current handling per unit area of device. The diagrams in Fig. 30 show various configurations from the inefficient ring-dot format to a present day overlay system. The recent interdigitated and overlay-geometries greatly increase the emitter periphery which in turn reduces high current density. This reduction in current crowding effectively increases the current gain of the device.

Two general methods exist for connecting the ohmic portion of the emitter and base contacts to the external leads of the package. Either wire bonds or soldered contact clips are used and Table 4 shows a range of connections.

Fig. 29. Performance curves for five different transistor structures.

Fig. 30. Various transistor geometries.
"Table 4. Methods of Iead attachment

Thermocompression	High temperature and pressure	Gold-wire ribbon	Very small areas	Costly in large devices
Nailhead bond	High temperature and pressure	Gold wire with end balled	Stronger than thermocompression bond, less costly	Larger contact area required
Ultrasonic bond	Ultrasonic weld	Aluminium or gold wire	Avoids gold-alum problems	Costly in large devices
Wire solder	Insert wire in molten solder	Suitable solderable wires	Moderate cost	Large contact area required
Clip solder	Pre-set into clips; solder	Phosphor-bronze or nickel	Low cost	Large contact areas required

Darlington transistors

The Darlington pair is a well-known current-gain configuration which uses two transistors and one or two passive components. A relatively new device is the monolithic power Darlington which combines these components on one chip. The structure and equivalent circuit of such a device is shown in Fig. 31. This particular structure uses a double-epi:axial, single-diffused process where the collector consists of an n^{+}substrate plus an epitaxially grown n-type layer. The p-type base is epitaxially grown on top of the substrate, and the n-type emitter impurities are diffused into the base. For p-n-p versions the structure is similar. Construction of such a power Darlington is essentially the same as an epitaxial single-diffused transistor. The geometry, however, is very different. The driver transistor in the structure of Fig. 31 is in the centre of the pellet and is surrounded by the output transistor. The base emitter connection of the two devices is formed by metallization on the surface of the pellet.
Although monolithic Darlingtons have not been in existence for many years, some awesome devices are currently being produced. Toshiba have introduced a range of switching devices, one of which can handle a current of 400 A at 300 V and dissipate a staggering 3000 W while offering a $h_{f e}$ of 100 and a turn on time of $1 \mu \mathrm{~s}$. This sort of device is intended to replace thyristors in the control of d.c. motors.
Most Darlington structures have an integral diode connected across the output collector and emitter. The diode forward voltage drop is designed to be
less than the rated $V_{\text {EBO }}$ and can be useful as an emitter clamp. A new device from Texas, the BU180/A, also has an integral speed-up diode connected between the base and emitter of

Fig.31. (a) Monolithic power Darlington structure, (b) equivalent circuit.

Fig. 32. Power Darlington bridge used to replace conventional thyristor motor-drive circuit. Each transistor has a high speed rectifier and surge sup- pressor across the collector/emitter.

the driver transistor. This type of device has been designed to compete with medium and high power thyristors in d.c. applications. Faster devices are also being developed to compete with conventional low-gain power switching transistors.

Power f.e.ts

Over the last three years f.e.ts have challenged conventional bipolar power devices. Advantages of these f.e.ts include high input impedance, greater linearity, majority carriers as opposed to minority carriers in bipolar devices, fast switching, and a negative temperature coefficient for the drain current. The last mentioned prevents secondary breakdown and provides an inherently short-circuit proof device when used in the output of an amplifier.

Although there are only two main types of power field-effect transistor available at the moment, much confusion has arisen from the use of loose terminology. The current "buzz" word is " V " f.e.ts which has been used to describe either the vertical current flow within the device, the physical V shaped groove in the device, or both. The most 'publicised f.e.ts at present are the Japanese devices, first reported in Wireless World July 74 and July 76. These are vertical-junction depletionmode (normally on) f.e.ts and are currently being used in audio equipment. Six devices from the three manufacturers are shown in table 5 , and Fig. 33(a) shows a simplified construction. Current flows vertically from the substrate through the chip, which measures about $3 \times 3 \mathrm{~mm}$, and allows a greater current density for high power applications. This type of construction permits the production of complementary pairs. Output characteristics of these devices are very similar to a triode valve. One disadvantage of this construction is the relatively high capacitance ($C_{\text {ISS }}$), around 700 pF for the NEC type and 3000 pF for the Yamaha, which limits the upper frequency response. Also, when used in linear amplifiers, several different supply voltages are necessary. Because the devices are

Table 5 Power ratings of commercial vertical junction f.e.ts

Nippon Electric	Sony	Yamaha
2SK70 2SJ20	2SK60 2SJ18	2SK75 2SK77
$\begin{array}{cc}\mathrm{n} & \mathrm{p} \\ \text { chan- } \\ \text { chan- }\end{array}$ nel nel	$\begin{array}{cc} \text { n } & \text { p } \\ \text { chan- } & \text { chan- } \\ \text { nel } & \text { nel } \end{array}$	chan- channel nel
100 W at $25^{\circ} \mathrm{C}$	63 W at $25^{\circ} \mathrm{C}$	20W 200W
--	170 V	200V 200V
-	5 A	0.5A` 20A

normally on, a gate bias has to be applied before power is supplied to the output stage. Conversely, power has to be removed from the output stage before the gate bias.

Up to date these devices have only been commercially used in linear hi-fi equipment but in a recent paper presented at the 55th AES Convention, Mr T. Suzuki of the Sony Corporation outlined the design of a pulse-width modulation audio power amplifier using vertical junction f.e.ts.

Although these f.e.ts are better suited to low frequency application, future devices will offer lower saturation resistances by using larger chip sizes, and higher amplification factors.

Power m.o.s.f.e.ts, commonly called v.m.o.s, are the second group of devices and several companies are developing this technology. At present most of the devices are lower power than junction f.e.ts, but offer faster switching speeds. American Microsystems and Electronic Arrays are developing v.m.o.s structures - see Fig. 33(b) for use in r.o.ms, rams and possibly microprocessors. Westinghouse Research Centre have experimented with "shadow mask" gate metallization in the structure shown in Fig. 33(c). The overhanging oxide layer forms an aperture through which the gate metallization is sputtered over the channel. This process has been used to produce microwave devices which exhibit an F_{T} of 4.8 GHz , but there are no commercial products available yet.

Harris Semiconductor have developed a 12 W device using the structure shown in Fig. 33(d). This offers depletion mode performance and is called v.m.o.s. because of the groove and not the current path. Hitachi have produced a v.m.o.s. device without the groove, see Fig. 33(e). Current flow is again vertical but a polysilicon gate is used and this allows a high packing density but limits the high frequency performance to 1 MHz . By using a large geometry size of $5 \times 5 \mathrm{~mm}$, the device has an 80 V 20 A capability and is aimed at the high fidelity market as an alternative to the vertical-junction f.e.ts. Siliconix have commercially available, a range of v.m.o.s. devices under the trade mark MOSPOWER. These f.e.ts are based on the structure in Fig. 33(f). The $n+$ substrate becomes the drain and an n^{-} epilayer increases the drain-snurce breakdown voltage by absorbing the depletion region from the drain p-body junction which is normally reversed biased. Because the gate overlaps n^{-} instead of n^{+}material, the feedback capacitance is reduced by the epilaver. A p^{-}body and n^{+}source are then diffused into the epilayer, similar to the base and emitter diffusions in a bipolar transistor. A V groove is then etched through the source body and into the n^{-} epilayer. Oxide is grown, followed by the deposition of an aluminium gate. The completed chip is then passivated. In operation the gate is taken positive with respect to the source. The resulting

Fig. 33 Various power f.e.t. structures under development and in production.

Fig. 34 Output characteristics of a typical v.m.o.s. field effect transistor.
electric field induces an n-type channel on both surfaces of the body facing the gate. Electrons can then flow directly from the source through the n-type channel and epilayer into the drain.
The V groove structure offers sereral advantages over conventional m.o.s. devices. The length of the channel is determined by diffusion depths which are much more controllable than the mask spacings used to define the channel length in standard low power devices. The substrate forms the drain contact, so drain metal runs are not required on top of the chip. This reduces chip area and keeps the saturation
resistance low. Because the groove creates two channels the current density is doubled, which also keeps the chip capacitance low.
Output characteristics of a typical device are shown in Fig. 34. Because of the extremely fast switching time, 1 amp in 4 ns , and typical on resistance of around 3Ω, these f.e.ts can be used in converter, r.f., and switching regulator circuits. Although the maximum dissipation is around 25 W at $25^{\circ} \mathrm{C}$ several devices can be used in parallel operation as shown in Fig. 35. This practical audio amphfier circuit will deliver around 40 W continuous into 8Ω. As the f.e.ts

Fig. 35. Practical audio amplifier using six v.m.o.s. f.e.ts in the output stage. The circuit has a bandwidth of 800 kHz . and a typical distortion content at 1 kHz 40 W , of 0.04%.

Resistors R_{16} to ${ }_{18}$ and R_{21} to ${ }_{23}$ should be connected to within one inch of

the f.e.t gate to prevent parasitic oscillations. The four diodes marked with an asterisk are Siliconix current regulator types.

are enhancement mode (normally off) only one split power supply is needed. The circuit has a bandwidth from 1 Hz to 800 kHz , a typical distortion figure of
0.04% at 1 kHz 40 W , and the output is short circuit proof due to the negative temperature coefficient.

The future of v.m.o.s. devices seems
well assured especially as Siliconix are talking about transistors with $10 \mathrm{~A}, 200 \mathrm{~V}$ capabilities, and on-resistances of below one ohm.

continued from page 66

communicated not counting voice channels.
I.1.s. has a limited number of channels, and some airports do not have suitable ground sites for the equipment. It is also susceptible to severe multipath interference, scattering and diffractions from buildings, geographical features and moving aircraft. Aircraft must land one at a time.

The ideal ICAO-approved m.l.s: system will have left-right guidance up to 30 miles away, two elevation aerials providing "coarse" and "fine" height information, and a back azimuth beam to guide aircraft that overshoot. The information will be available over a much wider area than can currently be provided by the thin i.l.s. beam, and thus it will be within the range of more than one aircraft at a time.
In addition, the ICAO wants to move towards making it possible to use the landing system when visibility is zero. At the moment the category 3(a) standard applying to most major airports provides for landing with an external visual reference of 200 m . Category 3(b) is defined with a visual range of 50 m . The zero range is category 3(c).

Following the setting up of a committee in 1967, when about 50 microwave landing systems were competing, the decision to base future systems on microwaves was taken about five years ago. Broadly, the choice is between two, the American and the British, though both sides have changed their proposals frequently in a way reminiscent of the surround-sound matrix battle in audio systems. The British system was devised by Charles Earp of Standard Telephone Laboratories, Harlow, in 1968. He thought that if a fixed frequency r.f. signal were moved back and forth perpendicular to ideal path down the centre of the runway, a plane approaching at a wrong angle would observe a change in its frequency, a Doppler shift, proportional to the sine of the angle the plane's path made with the correct approach. Any Doppler shift caused by the movement of the plane could be compensated by an additional stationary reference beam at the same frequency.

A horizontal Doppler beam would provide the azimuth, and a vertical one the approach angle. In a practical system the moving source could be replaced with a switched series of
stationary sources. The British proposal is now being put forward by Plessey, for whom STL are now subcontractors.

The American system, the time-reference scanning beam (t.r.s.b.) devised by Bendix, works by sending out two fan-shaped beams which scan through predetermined angles. One beam provides azimuth and the other elevation information. During each scan, the aircraft receives two pulses, one each during the to and fro scans. The position angle of the aircraft is determined by the time differences between these pulses; since the aircraft will only receive them at equal intervals if it is directly on course. A third "flare" transmitter provides the low-angle guidance needed in the last half mile before touchdown.

In the voting in Montreal Britain was supported by Dutch and Canadian delegates and the representatives of the International Federation of Airline Pilots' Associations. The US system was supported by a formidable alliance of Russia, Australia and the International Air Transport Association, for the airlines. The ICAO navigation committee is expected to meet in the autumn.

The world overYou get the best service from Haltron

For high quality electronic valves, semiconductors and integrated circuits - and the speediest service specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron product quality and reliability are clearly confirmed. The product range is very, very wide. And Haltron export expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited,
Electron House,
Cray Avenue, St. Mary Cray.
Orpington, Kent BR5 30J.
Telephone: Orpington 27099
Telex: 896141

Zero crossing detection with exponentially decaying hysteresis

Ciruit Ideas

Op-amp power output stage

This circuit overcomes the difficulty in setting quiescent current by using R_{2} for adjustment and R_{3}, within the feedback loop of the op-amp, for stabilization.

Positive signals are handled by Tr_{1} with base current flowing down L_{1}. Negative signals are handled by Tr_{2} with base current initially via R_{1}. For large negative signals D_{1} becomes forward biased and base current for Tr_{2} is then drawn through the load and D_{1}. Resistor R_{1} must be large enough to forward bias D_{1} for negative excursions in order to prevent Tr_{1} from being turned on. It is possible to omit $\mathrm{R}_{1}, \mathrm{C}_{4}$ and R_{4}, but the crossovers are then less smooth. The op-amp may be used in the virtual earth mode if desired.
D. Rawson-Harris,

Ferranti Ltd,
Manchester.

It is well known that a zero detector may be constructed as shown in Fig. 1. Assuming that the output V_{0} of the operational amplifier is at its positive limit V_{1}, then the voltage V_{+}on the non-inverting input is $\mathrm{V}_{1} \mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$, and the amplifier output will not change

Fig 1

Fig 2

unless $\mathrm{V}_{\mathrm{i}}>\mathrm{V}_{+}$. Once V_{0} starts to fall, V_{+}decreases and the switching process is accelerated due to positive feedback through R_{1}. The penalty for this sharp switching is that when V_{0} is at its negative limit $-V_{2}$, the amplifier will not start to switch unless $\mathrm{V}_{1}<-\mathrm{V}_{2} \mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$ and thus exhibits a^{i} hysteresis band of width $\left(V_{1}+V_{2}\right) R_{2} /\left(R_{1}+R_{2}\right)$ as shown in Fig. 2. This hysteresis is often valuable because it avoids multiple switching of the detector when the input consists of a low frequency signal corrupted with high frequency noise. It does, however, reduce detector sensitivity for small inputs.

The modified circuit shown in Fig. 3 gives improved zero detection. When the circuit changes state, V_{0} changes by an amount $\left(V_{1}+V_{2}\right)$ and thus V_{+} immediately changes by $\left(V_{1}+V_{2}\right) R_{2} /\left(R_{1}+R_{2}\right)$, because the charge on the capacitor cannot change instantaneously. Subsequently, V_{+}: decays exponentially to zero with time constant $\left(R_{1}+R_{2}\right) C$. Since V_{0} only

Fig 3
changes when $V_{i}=V_{+}$the hysteresis in the detector is large just after a change of state has occurred, but later decays to zero. Therefore, there is sharp switching between the limits and when noise is present multiple switching is avoided. If the time constant is significantly shorter than the average time separation of the zero crossings the zero detection is very accurate.

To avoid error with the input bias currents of the amplifier, $R_{3}=R_{1} R_{2} /\left(R_{1}+R_{2}\right)$ in Fig. 1 and $R_{3}=R_{2}$ in Fig. 3. Also in Fig. $3 R_{1}>R_{2}$ so that the input-voltage limits of the operational amplifier are not exceeded.
M. L. Bransby,

University of Sheffield.

Contributors to Circuit Ideas are urged to say what is new or improved about. their circuit early in the item, preferably in the first sentence.

Linear v-f converter

In this circuit a NE556 timer is used in a dual mode. Frequency of operation is $0.91 / 2 R C$ where R is the resistance of the f.e.t. Because the resistance R is indirectly proportional to the input voltage, the circuit is very linear. Frequency range is from 0.1 Hz to 100 kHz and the linearity is within 0.005\%.

Kamil Kraus,
Rokycany,
Czechoslovakia.

True count-by-twelve circuit

An ordinary divide-by-twelve circuit gives a logical sequence of output states that go from zero to eleven, whereas a true count-by-twelve circuit will do so from the count 1 through 12 and will come back to 1 with no zero. One application of such a circuit is in a 12-hour digital clock. The design is fairly straight-forward and relies on the truth table of the J-K flip-flop. On resetting, all the outputs go to logical zero but, on clocking, the zero state does not recur.
Ijazur Rehman,
University of Islamabad,
Pakistan.

Speech

compressor/limiter

This simple compressor/limiter, which was developed for p.a. applications, uses the voltage-controlled attenuator designed by D. Self, Wireless World, December 1975. Resistor R_{1} sets the threshold voltage and the compression law. The output signal from the attenuator is made as large as possible by the inverting CA3130 before being applied to the rectifier and low-pass filter. This minimizes the effects of diode non-linearities and capacitor leakage. The low-pass filter is necessary to obtain a fast attack time of around $500 \mu \mathrm{~s}$ and long decay time of about 1 min.
The circuit was used súccessfully with a microphone in a p.a. system with no noticeable distortion. Bandwidth of the circuit is 15 Hz to 25 kHz .
M. B. Taylor,

Kingston-upon-Hull.

Pulse-counting frequency comparator

With two periodic signals of nearly equal frequency, it is easy to generate their beat frequency and make it drive a pulse-counting discriminator. This produces an output voltage linearly proportional to the modulus of the difference frequency. The circuit shown works on the same principle but the output is positive or negative according to which input is at the higher , frequency.

The Schmitt triggers and dividers convert the inputs to square waves of unity mark-space ratio. These i.cs may be omitted if the inputs are already suitable, in which case divider (a) must be replaced by an inverting gate. Unity mark-space ratios are desirable if operation over the maximum range of beat frequency is required.

Dividers (c) and (d) produce two square waves in quadrature at frequency $f_{1} / 4$. The interconnection of (c) and (d) ensures that the quadrature wave is always lagging. These waveforms together with $f_{2} / 4$ drive two D-type flip-flops as shown. The outputs at points X and Y define four possible states. Monostables (s) and (t) feed positive and negative-going pulses respectively, of constant area into a summing and integrating network to produce the desired output.

The output is proportional to the frequency if f_{2} lies between $4 / 5 \mathrm{f}_{1}$ and $4 / 3 \mathrm{f}_{1}$. There is negligible offset on the output voltage because when the inputs are phase locked, neither monostable is triggering. The circuit can be used in frequency servo-systems where a signal has to be locked in frequency, though not in phase, to a reference frequency.

University of Bradford.
B.c.d. converter

Conversion of "2 shift" b.c.d. to standard b.c.d. can be achieved with the circuit shown. Circuits which drive "Nixie" tubes or similar decimal displays may be economically converted for driving other displays such as seven segment l.e.d. types via a decoder driver i.c.
P. M. Weston,

Birkenhead, Merseyside.

Unusual sinewave generator

With the values shown the frequency is about 3.8 kHz .
Jorge S. Lucas,
Brazil.

A new tomography machine

Machines still appearing despite slowdown in the medical equipment scramble.

by John Dwyer

A company with less than 100 employees has launched what they say is "a diagnostic instrument complementary to the much publicised EMI scanner, but costing only a quarter of the price." Mr Anthony Bernard, managing director of $\mathrm{J} \& \mathrm{P}$ Engineering (Reading) Ltd, said in a statement: "We will be competing for sales with the EMI scanner, but in an ideal world the two pieces of equipment would be used together to provide an entirely new dimension to diagnosis." The price is £65,000.
The Tomoscanner uses a different technique from that exploited by EMI. Instead of measuring the degree to which certain tissues absorb external X-rays, the Tomoscanner measures the concentrations of injected chemicals within the body. This is known as an "invasive" technique. In a process called 'labelling,' radioisotopes are bonded to the molecules of the pharmaceutical used and radioactivity in a series of points in the organ under study is measured. Gamma ray photography has been used since the early '60s, but the resolution of the plots achieved with it has been notably less than seems possible with the Tomoscanner method, and it is only the use of a computer that enables the construction of a section through the patient. The radioactive dose the patient has to take is "comparable with a normal chest X-ray," according to technical director John Eppstein.

Dual detectors

The patient lies on a padded plywood couch between two sensors placed at either side of the couch so that they can either rotate through a circle with the patient at the centre, or, for rectilinear scans used to build up a conventional profile, move in two parallel planes with the patient between them. The whole apparatus can be moved down the couch to take scans of any part of the body, though most of the clinical experience with the Tomoscanner, some 1,000 case histories over the last 18^{\prime} months according to $\mathrm{J} \& \mathrm{P}$, has been gained with brain scanning.
The detectors are sodium iodide, and the field of view is 40 cm by 40 cm . Using

$J \& P$ Engineering's Tomoscanner. The two detectors are shown tilted at about 45. They are each capable of detecting two different activity-level isotopes. The movements of the detectors, either around the patient, along her body or in two parallel planes at either side, can be controlled by a small hand-held device connected to the scanner.
the moving couch for bone scans the field of view can be extended to $40 \mathrm{~cm} x$ 160 cm . The scanning speed is adjustable from 0 to 5 cm with line spacings of 1.7 , 2.5 or 3.4 mm . Each detector can differentiate between two types of isotope, so that in the case of organs such as the liver and spleen, which may need to be viewed together but which absorb different pharmaceuticals, addition and subtraction can be used to differentiate between the two and to view them together.
In normal use, a rectilinear scan is first taken of, say, the upper half of the head. Each detector will provide a profile of one side of the head, or a view of the front or back. Once any abnormal. features are seen on any of these scans, the Tomoscanner can take 30 angled views around the head in any plane through it. The information from each
of these scans is processed by a computer which assembles a printout showing a section about 12 mm thick through the head in that plane. "The section image is computed as an 80×80 cell matrix, and is subsequently interpolated and played back as a 160×160 cell picture for display purposes." The printout is the same size as the patient's head. J \& P say a typical scan lasts seven minutes, with another three for computing and plotting time. The printout can be in a scale of nine colours or a corresponding gray scale on X-ray plates.
J \& P say the advantage of the method is that it shows only the organs under investigation, unlike the X-ray method, which shows up a lot of extraneous detail. "Experience . . shows that the section view confirms lesions which are equivocal in other scans, and helps to distinguish between cerebral infarcts, subdural and extradural haematoma."

Rivalry

J\&P stress they have no wish to suggest that their machine in any way supercedes the X ray scanner, but EMI have taken exception to the ambiguity of a phrase in the J\&P press statement saying: "the complementary isotope mission technique can yield more valuable clinical data of the physiological and biochemical processes for the same view." Neither do they see how it can give more physiological data than the X ray method. Linked with that, EMI say they see little point in trumpeting the selective nature of the Tomoscanner. If EMI want to show a particular organ, they say, they just use the approprate part of the X ray scan, which can be altered in size to concentrate on chosen areas.

At a somewhat higher level of argument, one source involved in similar research described the Tomoscanner as "a backward step." Asked why, he said that it went against the general tendency to lower the radioactive doses administered to patients, with the eventual aim of using totally non-invasive techniques which can carry out all the clinical procedures needed without any danger or discomfort to the patient
at all, however slight. If isotopes of very low radiation were used absorption and scattering in the tissues between radiating organ and detector caused loss of resolution.

Scan times

In the case of the Tomoscanner there is also the problem of long scan times. American machines, admittedly a very great deal more costly than either that or the EMI machine, can scan the patient in under 5 s , well within the time that most patients can hold their breath. But in seven minutes, the Tomoscanner scan time, the body will make involuntary movements which produce a blurred image. That is one reason why early machines, such as the original EMI machine of early 1972 , could only .scan the head, which can be held still. The current EMI machine can scan in 20 s , a considerable reduction on the original $4 \frac{1}{2}$ minutes.

Shorter scan times can be obtained by greatly increasing the number of detectors and, if an X-ray technique is being used, rotating the source to scan the detectors through the patient. This adds considerably to the cost, however, since the detectors may be the most expensive part of the device. A General Electric machine developed in the US used 320 Xenon detectors and cost $\$ 615,000$. The EMI system uses 30 detectors where once there were two.

Another difficulty of whole body scanning is that the range of tissue densities to be handled is so much greater. Yet typically the spread of densities is still very small. Whole blood has a specific gravity of 1.034 , fat of 0.93 , the liver 1.05, heart muscle 1.04 and breast tissue 0.97 .

Wireless World asked Dr David Everett of the Medical Research Council's National Institute for Medical Research what he thought of the merits
of the two methods: "The present objectives in diagnostic medicine are towards the investigation of body functions. This is the strongest potential advantage of a radioisotope system over X-rays or ultrasonics, which can only reproduce the structure in the region of interest. The function of organs can be investigated by labelling gases for lung function, iodine for thyroid investigation etc. These are slow processes which can be partially followed with conventional gamma cameras and to some extent by X-ray and ultrasonic techniques, but the study of blood flow in the heart, for instance, poses a problem which we feel could be handled by our 'Compton' camera system. The medical implications of such imaging techniques are immense."

Compton effect

The X-ray scanners currently in use have beam energies of around 70 keV and, like the gamma ray cameras,
operate mostly in the photoelectric region, the detector measuring simply the number of photons arriving at it normal to the detector.

At higher energies, between about 400 keV and 2 MeV for sodium iodide, the Compton effect takes over. In 1927 American physicist Arthur Compton was awarded the Nobel Prize for discovering that the trajectory of a photon incident on the electron of an atom in a low atomic weight absorber, in this case body tissue, can be calculated from the change in wavelength of the incident and scattered photons and their change in angle. Because the collision reduces the energy of the incident photon, there is a slight reduction in frequency, the scattered radiation containing both the original and modified wavelengths. This means there is a linear relationship between tissue density and the alterations in energy and direction of the X-ray photon.

A scan of the left side of a patient's head. The lighter areas show high isotope activity, meaning that there has been increased blood flow to these regions where there should be none.

Having obtained the side view, the Tomoscanner is adjusted to take a section through the patient's head at the level of the light spot on the side view. This shows the result, which tells doctors the extent and shape of the abnormality. "Further investigation indicated presence of a parietal cyst associated with a mural tumour," say J $\& P$. The large light area to the right of the left side scan proved to be a scalp lesion due to a plexiforma neuroma.

The detectors in present scanners are highly collimated to reduce scatter photons. EMI estimate that only about a thousandth of the particles reaching the detectors are used in building up the final picture. The Compton camera, which should be able to produce three-dimensional pictures, is an attempt to use all the particles, including the scatter, and, by measuring their incident angles, build up a picture of their trajectories before they reached the detector. This means using two arrays and observing the displacement the particle undergoes in travelling from one array to the next.

Schottky arrays

In the Compton camera the detector is analogous to the lens in an optical system, and each photon incident on the detector defines an ellipse on the image plane. The source could be on any point on the circumference of that ellipse. Successive interactions produce a series of ellipses which intersect on the image plane to define a point. This point can be . found by direct summation of all the ellipses generated. "It is possible to project images on to a multitude of planes using the same set of measurements, and even to superimpose them to obtain three dimensional images."

The Compton camera detector is based on a lattice of Schottky barrier orthogonal arrays of 0.4 mm cubic elements. The elements are Schottky barrier junctions on n-type high resistivity silicon slices. There are 50 slices of silicon each 5 cm in diameter and each having an associated energy amplifier, or photomultiplier. The imaging time is about a second. Resolution is about. 2.5 mm , compared with 8 mm on conventional gamma cameras.

This technique is certainly attractive, particularly because of the number of photons being used, each one providing information and contributing to the final picture. But it has drawbacks. EMI say they have already thought about the technique a great deal. The chief scientist at EMI's central research Laboratories, Dr R. J. Froggatt, told Wireless World EMI had "done the sums and we are very, very dubious."

He identified two main difficulties: the particles may already have been through two or more collisions before they reach the Compton detector lens so "you're never sure where they're coming from"; and each time you looked at the incident photon, which you had to do twice, you tended to deflect it - it could not be incident on each of the two matrices without something happening to it. Dr Froggatt added, however, that "We're waiting to see whether they can bring it off."

Scanner business fall

The US congress reported last August that there were about 300 scanners in use in the country and several hundred more on order. A year ago EMI's:

One of the prototype silicon detector elements in the NRDC-funded National Institute for Medical Research Compton camera. Fifty such elements determine the trajectory of a gamma ray from a labelled pharmaceutical by measuring wavelength and path changes in photons. Southampton University teaching hospital and the National Centre for Alternative Technology were also involved.
excellent financial record for the year to the end of the previous June was largely attributable to the success of their brain scanner, even before the body scanner had gone into production.

EMI's brain scanner was the first. In October 1973 the American National Biomedical Research Foundation announced a colour, whole body scanner with better resolution, they claimed, than that from a normal X-ray. EMI's body scanner arrived in July 1975, and by September press reports in American journals were reflecting the growing size of the scanner bandwagon.

Digital Information Sciences Corporation began to make the scanner developed by NBRF, and it was marketed in the US by Pfizer medical systems. Ohio-Nuclear made another scanner which Siemens marketed in Europe as well as their own Siretom scanner. Ohio-Nuclear told the American journal Electronics in September .1975 that they expected to sell $\$ 50$ million worth to Siemens alone. The world wide market at this time was estimated at around 10,000 units a year, with an average price of perhaps $\$ 0.5$ million each. General Electric jumped in with their 5 s scanner and, in a single week in December that year, half a dozen new makers of scanning equipment announced their products.

Medical instrument legislation

There has been growing concern in America about the proliferation of scanners, and it has been suggested that patients are not benefiting as greatly from that proliferation as they might. The same congressional report said that each machine scanned 12 patients a day
at a charge of at least $\$ 200$ per scan. So Americans now appear to be spending at least $\$ 200$ million a year on scanning although, the report says, many more scans are being made than can be accounted for by substitution for previously available techniques. The implication is clear: that some patients are paying for scans they don't need.
Linked with this is the enactment of the 1976 Medical Device Amendments to the Food, Drug and Cosmetic Act. The amendments followed agitation by the Association for the Advancement of -Medical Instrumentation as far back as 1969, and the setting up by the department of Health, Education and Welfare of a study group under the chairmanship of the director of the National Heart and Lung Institute, National Institutes of Health, Theodore Cooper. The Cooper report advocating legislation to improve safety was published in September 1970, and various bills were introduced in congress over the following years. as well as bills sponsored by the administration, but because of delays caused by Watergate, among other things, it was not until May last year that the legislation was signed, by President Ford.

Devices "too exotic"

The Amendments will oblige manufacturers to establish the safety and effectiveness of their products to the satisfaction of the food and drugs administration before they are marketed. The journal IEEE Spectrum reported in January that "compliance with this new law may result in increases in the costs of medical devices. And ... real questions have arisen as to the cost benefit and cost effectiveness of such expensive equipment."
Throughout the seventies doctors have been criticising the standards of medical instruments. In 1973 the Electronics interviewed 12 doctors, most of whom said that "the electronics industry has a tendency to place too much emphasis on exotic devices with little or no legitimate applicability, while insufficient stress is placed on a variety of urgent problems, some of which appear to be mundane." There was concern that in the welter of instrumentation the patient might be forgotten.

Dr Froggatt of EMI says he thinks it would be difficult to prove that there was any racketeering in X-ray scanning, but he felt the British public were well protected in any case because there were very many fewer patients paying for their own treatment. In addition, he thought that scanning had provided a useful amount of clinical information.

Whatever doubts may be being expressed elsewhere, $\mathrm{J} \& \mathrm{P}$ are gearing up for a boom. Managing director Anthony Bernard said in a statement: "If the Tomoscanner generates the global attention we expect, then a large and rapid expansion is in prospect."

Terminal covers

A range of insulating terminal covers, from Highvol Connectors Ltd, have been developed to comply with international safety regulations. The covers are preformed and require no heating or chemical agent for attachment to their terminals. The range includes many different covers to suit wire and cable terminals of most shapes and sizes. Highvol Connectors Limited, Uddens Trading Estate, Wimborne, Dorset BH21 7NL.
WW301

Digital multimeter

In addition to a $31 / 2$-digit, 11 mm l.e.d. display, the $460-3$ multimeter has a calibrated analogue meter, intended for nulling and scanning peaks and variations. The meter has 32 overloadprotected, push-button ranges giving five direct voltage ranges up to 1000 V , five alternating voltage ranges up to 600 V , six a.c. and six d.c. ranges, both up to 10 A , and five resistance ranges up to $2 \mathrm{M} \Omega$. There are also five low-power

WW 302

WW301

resistance ranges up to $2 \mathrm{M} \Omega$. Accuracy on all direct voltage ranges is $\pm 0.1 \%$ of reading plus one digit. The instrument, available in either mains/rechargeable battery or mains only, is priced at about £200. Bach-Simpson (UK) Limited, Trenant Industrial Estate, Wadebridge, Cornwall PL27 6HD.
WW302

Crystal frequency sources

Small plastic encapsulated crystals, in the SPXO range from Cathodeon Crystals Ltd, provide a stability of $\pm 0.002 \%$ over the range 4 to 10 MHz , operating in the temperature range -20 to $+70^{\circ} \mathrm{C}$. Pin positions are on a standard 0 . lin grid but a variety of mounting arrangements are also available. Cathodeon Crystals Limited, Linton, Cambridge CB1 6JU.
WW303

Inductance bridge

The model B324, from Wayne Kerr, is a low-inductance bridge suitable for measuring audio-frequency coils, as used in amplifiers, filters and telecommunication circuits. The unit provides a choice of three switch-selected measurement frequencies, $400 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 10 kHz , and an adjustable test signal level. An aperiodic high-gain amplifier is used as the detector and provision is made for the connection of an external tuned detector for specialized tests. On its most sensitive range, the discrimination available from the B324 is 1 nH and $100 \mu \Omega$. Top values measurable are 1.111 H and $11.11 \mathrm{k} \Omega$. The bridge is subject to a maximum error of 0.25% up to 10 mH and $1 \mathrm{k} \Omega$, increasing to 0.5% for measurements of higher values. Wilmot

Breeden Electronics Limited, 442 Bath Road, Slough SL1 6BB.
WW304

Power supplies

A series of chassis-mounting power supplies, from Datel Systems, comprises two single-output models, types UCM5/1000 and UCM5/2000, and three dual-output models, types BCM15/100, BCM15/200 and BCM15/300. The UCM models are designed for digital applications and have outputs of +5 V d.c. at 1 and 2 A respectively, with line regulations of 0.05% max, load regulations of 0.1% max. and output ripples of 1 mV r.m.s. max. The $B C M$ models are designed for linear applications and these have outputs of $\pm 15 \mathrm{~V}$ at 100,200 and 300 mA respectively, with line regulations of 0.02% max., load regulations of 0.05% max. and output ripples of 2 mV r.m.s. max. Units are encapsulated in a phenolic case measuring 3.5 in long by 2.5 in wide and up to 1.56 in high. Datel Systems Incorporated, 1020 Turnpike Street, Canton, Mass. 02021 U.S.A.

WW305

Mains capacitors

A range of paper and foil Duralit capacitors, from Wima, is approved to VDE0560-7 for use between line and neutral (Class X), for 630 V ratings, and for use between line and earth (Class Y), for 1000 V ratings. The capacitors, which are available in values from 470 to 4700 pF , have axial leads and are epoxy resin impregnated for a high ionization inception level. These capacitors can also be supplied for 400 and 1250 V . Waycom Limited, Wokingham Road, Bracknell, Berks.
WW306

Television aerials

Three television aerials, having extra large screen grid reflectors, have been added to the range available from Jaybeam Ltd. Type MSG-8 has eight-by-four directors, type MSG-15 has 15-by-four directors and type MSG-21 has 21-by-four directors. In addition to the above, each aerial has two launch directors. These aerials, which are available for television channel groups A (21 to 24), B (39 to 53) and C (48 to 68), give improved directivity and signal rejection characteristics compared to previous models. Maximum gain figures, referred to a half-wave dipole and measured in accordance with IEE $138 \mathrm{~A} / 63$ and BASC recommendations, are 14,16 and 18 dB respectively. Jaybeam Limited, Moulton Park Industrial Estate, Northampton NN3 WW307

Ceramic interference filters

Filters in the 1000 and 2000 series are 100% tested and are suitable for use up: to 240 V and 400 Hz . Type 2000 has a relatively stable dielectric and is for use in military and aerospace applications requiring high reliability and a capacitance change of less than $\pm 20 \%$ over the range -55 to $+125^{\circ} \mathrm{C}$, together with a guaranteed insertion loss over this range. Type 1000 uses a slightly less stable and cheaper dielectric and is suitable for commercial and industrial applications. These filters meet the requirements of MIL-SPEC-202 and MIL-F-15733. Uncased ceramic disc filters, giving up to 10 times as much capacitance per unit volume, are also available. G. E. Electronics (London) Limited, Eardley House, 182/4 Campden Hill Road, Kensington London W8 7AS.
WW308

Low profile keyboards

The KL series of low profile keyboards are now available with encoding facilities for dual tone multi-frequency switching, for communications applications, and row and column formats for microprocessor sytems. These keyboards, called Minikeys, have precious metal contacts with ratings of 50 mA at 28 V d.c. resistive. The top of each key on the Minikey extends only 1.78 mm from the face of the keyboard and has a travel of 1.27 mm . Total keyboard depth is less than 3.12 mm . Tactile "feedback" is by a mechanism which ensures fast positive closure of the contact. Prices for a one-off are from $£ 5.20$. Digitran Endevco UK Division, Melbourn, Royston, Herts SG8 6AQ.
WW309

Wire cutters

Two low-cost side cutters, types 2131 and 2132 from Bahco Tools Ltd of Sweden, are produced by blanking instead of forging, depending on grinding and heat treatment for the cutting edges. Bahco claim that the useful life of the cutters, which cut copper wire from 0.3 to 1.2 mm dia., is comparable to that of more expensive forged patterns. Type 2131 has a bevel on the outer face of the jaws, while type 2132 has no bevel and may be used for flush cutting. The pliers have polypropylene grips for comfort, and include a detachable clip which holds the wire off-cut after each operation. Prices are $£ 6.38$ each. Bahco Tools Ltd, Bahco House, Beaumont Road, Banbury, Oxon.
WW310

Low-loss soft ferrites

Ceramag 24 B is a ceramic ferrite material which, it is claimed, offers a reduction in losses of 30% at

16 kHz and 25% at 60 kHz , with no changes in permeability or saturation. In addition, losses are lowest in the range 85 to $95^{\circ} \mathrm{C}$. A wide range of these cores is available, including E-cores with heights of 0.937 in and lengths up to 4.062 in , and toroids up to 5.938 in outside diameter. Walmore Electronics Limited, 11-15 Betterton Street, Drury Lane, London WC2H 9BS. WW311

10 MHz oscilloscope

The VP-5100A is a general-purpose 10 MHz oscilloscope having nine calibrated ranges from $10 \mathrm{mV} /$ div. to $5 \mathrm{~V} /$ div. A variable control allows continuous variation between steps up to $12.5 \mathrm{~V} /$ div. In addition to seven. calibrated sweep rates, from $0.1 \mu \mathrm{~s} / \mathrm{div}$. to $0.1 \mathrm{~s} /$ div., the timebase provides a mode for viewing composite TV signals. Telonic Altair UK, 2 Castle Hill Terrace, Maidenhead, Berkshire SL6 4JR.
WW312

Strain gauge indicator

The Doric 420 Digital Indicator displays the output of strain gauge devices in engineering units. This instrument can be used to measure pressure, torque, thrust and force, etc., with a resolution of one part in 10,000 . The sensitivity is adjustable from 1 to $12 \mu \mathrm{~V}$ per increment. Five 0.63in l.e.ds provide the display. Lee Engineering, Napier House, Bridge Street, Walton-on-Thames, Surrey KT12 1AP.
WW313

Miniature slide switch

A single-pole, double-throw slide switch, type 1101 , is said to be capable of breaking 6A at an alternating voltage of 120 V or a direct voltage of 28 V . The

WW 310
switch, which incorporates the C \& K toggle mechanism, measures 0.5×0.26 $\times 0.25$ in and may be mounted directly on to a p.c.b. Typical characteristics include a maximum contact resistance of $10 \mathrm{~m} \Omega$, minimum insulation resistance of $100 \mathrm{G} \Omega$ and dielectric strength of 1 kV r.m.s. Roxburgh Electronics Limited, 22 Winchelsea Road, Rye, Sussex.
WW314

Microwave absorber

A flexible microwave absorber called Eccosorb RMP is intended for frequencies of 2.4 GHz and above. The absorber, available in silicone rubber (RMP-S-75) or vinyl rubber (RMP-V-75), is a mould of pyramids each having a height of about 2.5 cm and a base of about 2.54 cm square. The silicon product is fabric reinforced and is preferred for high temperature, high power and airborne applications. The vinyl absorber is more rugged and is intended for outdoor use. Both products have nominal reflectivities of 17 to 20 dB down, over the useful frequency range, and are supplied in 30.5 cm square sheets. Both absorbers conform to curvature, can be bonded in place and cut with a knife. Neither product will support combustion. Emerson \& Cuming (UK) Limited, Colville Road, Acton, London W3.
WW315

Programmable pulse generator

A programmable pulse generator, designated as model EH1501A/129, is specifically designed for e.c.l. and other high speed applications. The programmable output stage can deliver positive or negative pulses of up to 2 V amplitude and $\pm 1 V$ offset with rise and fall times of less than 500 ps at full amplitude. This generator has a programmable fre-
quency of up to 50 MHz . A variety of programming interfaces are also available and include the IEC 488 and facilities such as memory read-out or optical isolation. Elex-Electronics, 22-24 Bell Street, Henley,-on-Thames, Oxfordshire RG9 2BG.
WW316

Piezo-electric sounder

A long-life, low-power piezo-electric sounder, the U3-50R, generates a single tone in excess of 85 dB at a rated current of 8 mA and rated voltage of 24 V . The sounder, which is 60 mm square and 10 mm deep, has no moving parts and is claimed to have a life of 1000 h , compared with about 50 h for a conventional electro-mechanical bell. ITT Components Group Europe, Standard Telephones and Cables Limited, Edinburgh Way, Harlow, Essex.
WW317

Spectrum analyser

A spectrum analyser, from Court Acoustics, uses a 28 by 11 l.e.d. matrix, measuring $14 \times 4 \mathrm{in}$, to provide an easy-to-read real-time display of audio frequencies from 28 Hz to 20 kHz with standard ISO centre frequencies from 31.5 Kz to 16 kHz . An extra l.e.d. display reads the full programme level, in dBm on line settings and in s.p.l. on microphone settings. Facilities are included for a 2.5 ms attack and decay, a 2 s decay, peak accumulation readings and display storage. The unit has a digital pseudorandom noise generator with a word length of 16 Mbits which can provide pink or white noise to an isolated socket. On pink noise an output of 20 Hz to $20 \mathrm{kHz} \pm 0.5 . \mathrm{dB}$ is available with a peak-to-mean ratio of 4:1. Court Acoustics, 50 Dennington Park Road, West Hampstead, London N.W.6. WW318

Low-cost logic wiring system

The Wire Distribution System, from Zartronix, uses solderable synthetic enamel wire (36 s.w.g.) for producing prototype logic circuit boards. The point-to-point wiring is retained by moulded distribution strips which may be used for any desired i.c. packing density. Two types of strip are available: a general purpose moulding which can be used on all types of circuit board (when used with a quick-set adhesive), and another, designed specifically to press fit into any board with 1 mm dia. holes on a 2.54 mm pitch matrix. The versatility of the strips ensures that there is no restriction on size or type of prototype breadboard used. An introductory kit is available and consists of wire distribution strips and pencil, a spare spool, i.c. leg deformer, circuit board and a comprehensive instruction leaflet. Zartronix, 115 Lion Lane, Haslemere, Surrey.
WW319

Wire-wrapping tool

A battery-operated wire-wrapping tool from Vero Systems Ltd, is designed for 0.63 mm square terminals using 0.25 mm wire. The tool, priced at $£ 32.50$, is fitted with a bit and sleeve so that $1^{1 / 2}$ turns of insulation are wound around the terminal before the bare-wire wrap is made. A built-in device prevents overwrapping and the unit is self-indexing to simplify use and provide a constant wire turn consistency. The tools are moulded from impact resistant material, weigh 11 oz and can be supplied with rechargeable nickel-cadmium batteries and a charger. Vero Systems (Electronic) Limited, 362a Spring Road, Sholing, Southampton. WW320

WW319

Breakdown voltage tester

An instrument, available from Stoneleigh Electronics Ltd, has been designed for determining the voltage breakdown characteristics of transistors, diodes, neon lamps and other semiconductor devices. The device to be tested is placed across the test terminals of the instrument and then a constant current source, which can be set within the range of 1 to 15 mA , is applied to it. This source has an output potential of up to 300 V . The breakdown voltage is then displayed on a voltmeter which has switched ranges of $10,30,100$ and 300 V f.s.d. The instrument, which can also be used to check voltage ratings of semiconductor devices, has a polarity switch allowing forward and reverse characteristics to be checked quickly. Stoneleigh Electronics Limited, Mawney Road, Romford, Essex RM7 7SE.
WW321

Infrared pyroelectric vidicon

The P8092 is a lin vidicon which is sensitive to infrared radiation from 1.8 to $1000 \mu \mathrm{~m}$, with optimized performance in the 8 to $14 \mu \mathrm{~m}$ band. When used with a high-performance lens, this tube can resolve increments in scene temperature of lèss than $0.2^{\circ} \mathrm{C}$. The tube has a_{1} spatial resolution capability of 300 TV lines, and deuterated triglycine-sulphate target having a useful diameter of 18 mm . The P8092 requires no gas coolant or mechanical scanning system and it has a fully compatible TV output signal. English Electric Valve Co. Limited, Chelmsford, ESssex CM1 2QU. WW322

High-power switching transistors

Four transistors, designated as RCA-2N6338, 2 N 6339 , 2 N 6340 and 2N6341, have maximum rise and fall times of 0.3 and $0.25 \sim \mathrm{~s}$ respectively at a collector current of 10 A d.c. Voltage ratings are high, for example V_{CB} (max) for the 2 N 6341 is 180 V . For an I_{C} of 10 A , V_{BE} (sat) is only 1.8 V and with an I_{C} of 25 A a high gain is maintained and a minimum forward-current transfer of 12 is obtained. The devices are in hermetic steel TO-3 packages. RCA Solid State-Europe, Sunbury-onThames, Middlesex TW16 7HW. WW32 $\overline{3}$

Fast-recovery rectifiers

A range of fast switching rectifiers, designated as the RGP series, has devices rated at $1,1.5,2$ and 3 A with peak-inverse voltages between 50 and 1000 V . The rectifiers, which are claimed to meet all international requirements, have recovery times varying from 150 ns for 50 V types to 500 ns for 1000 V types. Typical reverse leakage currents are less than $1 \ldots$ A. In all cases the peak forward surge currents are at least 30 times the rated value. The devices comply with UL flammability classification $94 \mathrm{~V}-0$ and generally exceed the environmental MIL-Std-19500/228 General Instruments UK Limited, Cock Lane, High Wycombe, Bucks.

WW324

Field programmable logic array

Two military-range versions of industrial programmable logic arrays (f.p.l.a.s.) are now available from Mullard. Type S82S100 has a three-state. output and type S 82 S 101 is an opencollector version. The Schottky-t.t.l devices employ nichrome fuse technology and have typical power dissipations of 600 mW and maximum access times of 80 ns . Signetics IC Marketing Group, Mullard Limited, Mullard House, Torrington Place, London WC1E 7HD.

WW325

V.h.f. m.o.s.f.e.t.

The BF327 is a protected-gate depletion mode m.o.s.f.e.t. suitable for use in v.h.f. amplifier and mixer circuits. It has a low feedback capacitance of $0 . \overline{03 \mathrm{pF}}$, a low noise figure, typically 2.3 dB , and offers high gain. The plastic encapsulation reduces manufacturing costs without
impairing performance and conforms to the outline requirements popularly adopted as the European standard for these v.h.f. and u.h.f. devices. Mullard Limited, Mullard House, Torrington Place, London WClE 7HD.

WW326

R.f. transistor

The BFT 96 transistor has been added to the range of silicon $p-n-p$ devices available from SGS-ATES. This transistor is a driver or medium power amplifier giving linear outputs up to 0.5 V across $75 ?$ at 1 GHz . By using the BFT96 with the BFT95 (see New Products August 1976) as the first stage in a wideband amplifier, typical noise figures of 2 dB can be obtained between 40 and 1000 MHz . The two devices may also be used for medium-power complementary applications for centralized antennae systems. SGS-ATES (UK) Limited, Walton Street, Aylesbury, Bucks.
WW327

Planar transistor

The BFW92, from SGS-ATES, is an n-p-n silicon planar transistor designed for use in broadband amplifiers. It offers low noise (4 dB at 500 MHz) and low cross-modulation with a high f_{T} $(1.6 \mathrm{GHz})$. The package is in a com-mon-emitter configuration and offers reduced parasitics for u.h.f. applications. SGS-ATES (UK) Limited, Walton Street, Aylesbury, Bucks HP21 7QN.
WW328

Avalanche diodes

Two silicon planar epitaxial con-trolled-avalanche diodes, types BAW21A and BAW21B, are fast switching devices intended for use in general applications where transients occur, or where a very steep forward characteristic is required. Avalanche breakdown ,voltages are 90 to 150 V for type A and 120 to 175 V for type B , at an I_{R} of $100 \mu \mathrm{~A}$. The diodes, in a DO-35 package, have maximum rectified forward currents of 0.4 mA when averaged over a 20 ms period. Mullard Limited, Mullard House, Torrington Place, London WClE 7HD. WW329

Impatt diodes

Two Read-profile Impatt diodes, types MS927A and MS927B, are intended for operation from 12 to 14 GHz . The MS927A offers a power output of 2.5 W minimum at 20% minimum efficiency and the MS927B is for 1.5 W minimum at 15% minimum efficiency.
Walmore Electronics Limited, Microwave Division, 11-15 Betterton Street, Drury Lane, London WC2H 9BS. WW330

SEW analogue panel meters are now available ex-stock (compared with 6-8 week delivery date from competitive manufacturers). And that's not the only advantage to buyers now ITT Instrument Services are sole UK stockists and distributors.

You also enjoy big choice of types, in-depthstocks, smooth streamlined progressing of your order and of course, a friendly personal sèrvice.

- Broad range of sensitivities and sizes.
- Low individual cost* with attractive quantity discounts.

■ Special scales to meet individual customer requirements on quantity orders.
. Precision construction with high quality pivot and jewel movement.
mChoice of moving coil, rectified moving coil and moving iron movements to suit applications.

Edinburgh Way, Harlow, Essex. Tel: Harlow (0279) 29522 Telex: 81525

IIII instrument services

THE ONLY WAY TO BUY.

Anagus Penel Meters.
 Only SEW and ITT give you all this.

Put new life into your equalising....

With the Trident Parametric.

THE TRIDENT MODEL CB9066 PARAMETRIC EQUALISER / FILTER is a comprehensive equaliser offering the user a degree of flexibility in tone correction hitherto unavailable. The five sections of the Equaliser can be used simultaneously. Silent switch operation enables the facility to be used during critical applications such as Disc Mastering. Re-Mixing, etc.

FEATURES:

Low, Mid and High range, continuously variable control of Frequency, Amplitude and Q .

* Separate High-Pass and Low-Pass Filters with continuously variable control of Cut-off frequency and slope.
* Silent IN /OUT switching of ranges and system.
* Automatic compensation for sharp and broad Q settings adjusts for apparent loss of loudness in sharp 0 modes.
- Compact $19 \mathrm{in} . \times 13 / 4 \mathrm{in}$. $\times 8 \mathrm{in}$. rack mountable.
* Built-in Power Supply.

Send for details to:

Trident Audio Developments Ltd.
Sales Office: 36-44 Brewer Street
London, W. 1
Tel. 01-439 4177. Telex 27782 Tridisc.

United States Agents:

East Coast:
Audiotechniques Inc.
142 Hamilton Avenue, Stamford, Conn. 06902 Tel. (203) 3592312
Contact: Adam Howell.

West Coast:

Studio Maintenance Service
2444 Wilshire Blvd., Suite 214, Santa Monica Ca. 90403
Tel. (213) 9905855
Contact: David Michaels

The Finest

The "S.K.A." Plastic Keyboard was developed by Kimber Allen Ltd in co-operation with a Swedish company and the manufacturers state that in their opinion it is the finest moulded plastic keyboard made and is not to be confused with cheaper keyboards available.
The keys are moulded in Acrylic plastic, a material chosen for its hard wearing properties and ideal feel to the touch. They are moulded in two parts, the key face, which has to be perfect in appearance and finish; and the action, which has to be strong and carry the mechanism. The strong section of aluminium extrusion upon which they are mounted is specially designed to take all the pressures of playing. Springs, felts, and contact actuators are supplied ready-fitted.
The contact assemblies are constructed of laminated bakelite, thus giving smooth slot walls and completely free movement of the gold-clad contact wires. Types available as follows (Contact pairs normally open)
GJ-SPCO: 24p each GE-4 pairs : 45p each GB-2 pairs: 27p each GH-5 pairs : 57p each GC-3 pairs: 36p each 4PS-SPCO\& 3 prs: $53 p$ ea Palladium Wire Bus Bars - 1 octave lengths : 50p each
We also stock kits and PCBs for the P.E. Synthesiser, P.E. Joanna (electronic piano), P.E. Minisonic, and other sound synthesising and modifying projects published in Practical Electronics. Send SAE for full list (Overseas send 40p).

PHONOSONICS
 DEPT. WW75, 22 HIGH STREET SIDCUP, KENT DA14 6EH

KEYBOARDS
 \& CONTACTS

U.K. POST \& HANDLING: Keyboards: $£ 1.50$ each Contacts:

Orders under £15.00: 25p Orders over £15.00: 50p

37 Note C-C Keyboard : £25.50
49 Note C-C Keyboard : £32.25 61 Note C-C Keyboard : £39.75

VAT: Add $121 / 2 \%$ to final total on all U.K. orders EXPORT ORDERS ARE WELCOME but please see our price list for Export Postage Rates. N.B. EIRE, CHANNELISLES 8 B.F.P.O. classify as Export.
mall order and c.w.o. only - sorry but no callers please Prices are correct st time of Press, E. D.E. Delivery subject to availability

-TURNER -

STEREO POWER AMPLIFIERS (from 100 watts to 500 watts)

Professional Stereo Power Amplifiers designed and manufactured to the very highest standard.
TURNER POWER is setting a new standard in the studios for ultra-clean monitoring, and with bands on the road for ruggedness and reliability.
Customers include: Air Studios, Wessex Studios, Gooseberry Studios, Lansdowne Studios, Decibel Studios, Queen and leading hire companies.

TURNER ELECTRONIC INDUSTRIES LTD.
175 Uxbridge Road, London W7 3TH
Tel. 01-5678472

REL Equipment 8 Components Ltd.
Croft House, Bancroft, Hitchin. Hertfordshire, SG5 1BU, England Telephone: Hitchin(0462)57181(10lines) Telex:82431

...The leaders through creativity

 GR 1657 DigibridgeAutomatically measures R, L, C, D and Q . Ranging from 0.001Ω to $99.999 \mathrm{M} \Omega, 0.0001 \mathrm{mH}$ to 9999.9 H , 0.0001 nF to $99999 \mu \mathrm{~F}$. D from 0001 to 9.999 and Q from 00.01 to 999.9 . Basic accuracy 0.2%. Five digit display for R, L and C, four digit display for D and O .
Microprocessor - directed ranging. Selectable test frequencies of 1 KHz and $100 \mathrm{~Hz}(120 \mathrm{~Hz})$.
Series or parallel measurement selection. Built-in Kelvin test fixture tests radial and axial lead
components. Other bridges from our range include:
GR1650
RLC Bridge
Precision 1\%

GR1656 RLC Bridge
0.1\%

GR1608 RLC Bridge 0.05\%

It is easy to test components with GenRad. Write or call for descriptive literature to GenRad Ltd. Bourne End, Bucks SL8 5AT
(06285) 26611

(ब)
 GenRad

WW-087 FOR FURTHER DETAILS

HEYCO NYLON SNAP BUSHINGS convert sharp edges to smooth, insulated holes, quickly and easily. Snap lock into panels. 56 sizes to fit holes from $\frac{3^{\prime \prime}}{16}$ to $3^{\prime \prime}$ diameter.

FREE SAMPLES
and catalogue showing our full range of bushings on request. Heyco Manufacturing Co. Ltd.

Uddens Trading Estate.
Nr. Wimborne, Dorset BH21 7NL
Tel: Ferndown (STD: 0202) 871411/2/3
(1) Telegrams: HEYCOMAN Wimborne. Telex: 41408 WW-038 FOR FURTHER DETALLS

\square \sim

Used Video Equipment bought and sold daily. If we do not have what you want, we enter your requirements on our register and advise you when it is available
U.M.F. Modulators supplied for connecting a camera directly to a domestic N or Philips V.C.R Camera Kits for the enthusiast also in stock.
Fujinon lens available
Repairs of all types of Video equipment undertaken.
WHATEVER YOUR VIOEO REOUIREMENTS
FAST CONTACT CHOFTON
CROFTON ELECTRONICS LTO. 35 Grosvenor Road.
Twickenham
Middx. TWI 4AD 01-891 1923

TIME +FUEL+EFFORT =MONEY

You can effectively reduce costs by the installation of a STORNO mobile radio system.

To investigate further, write, telephone or telex to

Storno Limited, Frimley Road, Camberley, Surrey. Telephone: Camberley (0276) 29131 Telex: 858154

WW-035 FOR FURTHER DETAILS

[^6]The New ETC/2B 'CALPLUG' Electronic Soldering System

From Citesolat

The Litesold ETC/2B provides simple, tamperproof. electronic temperature control.

- CLOSELY temperature controlled
- INSTANTLY adjustable, yet tamper-proof
- ENTIRELY static and transient free
- LOW voltage DC operated
- INEXPENSIVE and simple to maintain

LIGHT SOLDERING DEVELOPMENTS LIMITED 97-99 Gloucester Road, Croydon, Surrey.
Tel: 016890574 Telex: 8811945

WW - 082 FOR FURTHER DETAILS

DEMA ELECTRONICS
 international

 ELECTRONIC COMPONENTS DISTRIBUTOR FOR INDUSTRY AND HOBBYIST

TERMS: PRICES LISTED ARE BRITISH POUNDS \& PENCE. SEND CHEQUE WITH ORDER. ACCESS CARD, BANKAMERICARD, BARCLAY CARD ACCEPTED. (Card \# and expiration date requested). TERMS CFFERED TO SCHOOLS \& INSTITUTIONS POSTAL AND HANDLING CHARGES SHIPMENT VIA AIR MAIL
under 4.99 add 45 5.00.9.99 add 35 No Charge

[^7]DEMA ELECTRONICS INTERNATIONAL P.O. Box 407

San Ramon, Ca. 94583 USA
Cable DEMAELINTL

Xcelite technology has created some new additions to the famous 99 SERIES of Interchangeable Tools. The first of these is the Compact Set of Ball-End Hex drivers which, as illustrated, can drive from any angle.

Also now available in the same series are the pOSIDRIV blades Nos. 1, 2 and 3

Send for the complete Xcelite precision tools catalogue from:
Special Products Distributors Limited 81 Piccadilly, London W1V OHL
Telephone: 01-629 9556
XCELITE PROFESSIONAL HAND TOOLS WW - 066 FOR FURTHER DETAILS

MORE POWER= MORE TORQUE with the -NEW MK.IIDRILL•

SPEED

10.000 r.p.m

TORQUE 120 cmg

vOLTAGE

O-14vd.c.
DRILL ONLY £8.79
(p\&p 35p)
STAND £4.40
(p\&p 35p)
Inc. VAT
(Together 50p p\&p)
Send a $9^{\prime \prime} \times 4^{\prime \prime}$
SAE for illustrated leaflet and order form.

to:

PRECISION PETITE LTD.
 119A HIGH STREET, TEDDINGTON, MIDDX. TEL. 01-977 0878

Sameson's

9 \& 10 CHAPEL ST., LONDON, N.W. 1 01-723 7851 01-262 5125 NE STATION PLEASE ADO $\%$ TO ALI OROERS INC CMRM.

CEMTRE TAPPED TRANSFORMERS

 Fully shrouded terminat block connections. Screen. Pr. 220-240vsec. tapoed $36-25-0.25-36 \mathrm{v} 5 \mathrm{~A} £ 13.50$, pp $£ 1,30-25-0-25-30 \mathrm{v}$
 ri. 220.240 v

PARMEKO ISOLATION TRANSFORMERS Ex. equipment in perfict condrion. Metal shrouded open table 100
connections Pri 200.250 v in 5 v steps. Sec. 240 v 10 amps E 35

GARDNERS ISOLATION TRANSFORMERS New. fraction of maker's price. Open tye table top connections
Pn 220.240 V . Sec. 240 O
6 amps E 22.50, carr. E3. Open ype

MEAVY DUTY AUTO TRANSFORMERS
output 240 v 6 kVa . Enclosed in metal case. E40. cart. £5. On
3 PMASE ISOLATION TRANSFDRMERS
Inpul tapped $380-400-415-430$ volts RMS NOM line to line 3
phase 4 whe 50 Hz outpul 415 volis. NOM 3 phase 4 wire al

WODEN 3000 WATT AUTO TRANSFORMERS
 block connections 222.50 find mains lead. Carrying handle $\mathbf{£ 3 7 . 5 0}$, carr. $\{3$

AUTO TRANSFORMERS FOR

240/1 tov 80.3000 Watis. litted with 2.3 pin sockets and 3 cors lor price list We have England's ! selection of American elecirical accessories. 2.3 pin plugs.
recessed and surface type. 2.3 sockels, multi-way adaptors, 2.3 recessed and surface type. $2 \cdot 3$ sockels, mult.way adapiors, Let us know your requirements.
 Constuction Open tian chassis. Size $26 \times 13 \mathrm{c} 19 \mathrm{~cm}$ transtorme carr. E1 50.

By tamous makers. Fion in mers

MINIATUAE L.T. TRANSFORMERS Pr. 240 v . Sec. 24.0 .2 C
$35 \times 30 \mathrm{~mm}$ £1, pp 30 p . DURAPLUG 3.PIN CONNECTORS
Rubber cased 3.pin in line cable connectors.
250 . 5 amp Colour yellow Three for f 2 inc
postage.

AIR MINISTRY SWITCHES 2 pole push io make. Robusily bult in black bakeline housing. size len 2 in in dia Pane
mounting. Thee loi t1. mcluding posiage

WHARFEDALE O.P. TRANSFOHMERS
TyPe P Four ratios. $30-45-60$ and 90 to 1
Also 90.1 cenve tapped for push pull Class B .
"C" CORE L.T. CHOKES

. carr. 75 p . $20 \mathrm{H} 180 \mathrm{~m} / \mathrm{A}$ (2.75, pp

HIGH VOLTAGE DC SUPPLY UNITS AC Input 220 F FAMOUS MAKER DC OUTPU $3900-3100-0$ AC impu 220.240 V DC output $3900-3100-0$.
$3100-3900 \mathrm{~V} 100 \mathrm{~m} / \mathrm{A}$. incorporating c / V
. inpul vansformer. Cap smioothed. Housed in
metal case. size $15 \approx 10 \approx 8$ ins. 8 amp satery cut out and input
front panel $\mathbf{5 0}$, carr \mathbb{E}

部

HEAVY OUTY HIGH VOLTAGE THANSFORMERS Pr. 230 v , sec. sapped $4500-3500-2600$ $500 \mathrm{~m} / \mathrm{A} 6000 \mathrm{v}$ who. Open type. Size 12 .

HEAVY DUTY BLOCK CAPACITORS

PRESSURE SWITCHES

KDC range 0 SOvO psi $250 v$
0 amp switch of
OI

Howell .e. Core fransformens

PLEASE ADD 8\% VAT ALL ORDERS INC. CARR

\section*{| M.T. Transformers |
| :--- |
| BFAMOUS MAKERS |} friction Pollod AlL PhimA Alis 2 20. 240 V

 Ser 1zppedd $370 \cdot 390-410 \mathrm{v}$ 6m/A Corra

 ${ }_{\text {E4.75. pp 5 }}$.

MIOM VOLTAGE TRANSFORMERS

REPANCOINVERTER TRANSFORMERS Trpe TT51 $12 v$ OC 10240 VAC 15 watt $\mathbb{C 3}$, pp c3. pp 50p.

Mult tapped type MRT3 7 watts max DC $60 \mathrm{~m} / \mathrm{A}$. single 13.1 to 100.1 P.P. $20-1$ to 100.1 f 1.95 , op 50 . Type MRT2 4 watts mak OC $50 \mathrm{~m} / \mathrm{A}$. single' $7.7-1$ to 80-1. P.P. 16.5-1 to 80.1 E1.25, pp 50p. Elstone OT3 pr. load 5000 ohms. sec. 15 and 3.75 ohms E3. pp 50 p. Type OT28EL fully shrouded, pti. 1.75 K ohms (EL34×4). sec to suit $3.75 \cdot 7.5 \cdot 5.15$ onms 100 watis $\mathbf{E 7 . 5 0}$. pp $£ 1.50$. All types with data sherl.

A.E.R.E. HIGH VOLTAGEINSULATION "C" CORE TRANSFIRMERS. EXEQUIP. whg £3.00, carr $£ 1$. Potted types. Woden ' C . Core: Pri. 230 vecc . $2.5 \mathrm{v} 10 \mathrm{~A} .-2.5 \mathrm{v} 5 \mathrm{~A}, 2.5 \mathrm{v}$ 5 A . ihree separate windings E 4.50 , pp E1.

 $\mathrm{pp} 50 \mathrm{p} .20 \mathrm{M} 75 \mathrm{~m} / \mathrm{A} \mathrm{E} 1.75$, pp 50 p . Potted
swingig typ. $5 \mathrm{H} 40 \mathrm{~m} / \mathrm{A}-\mathrm{H} 250 \mathrm{~m} / \mathrm{A} £ 2$, pp
 2 AEA . Pp El . $13 \mathrm{~m} / \mathrm{H} 1.15 \mathrm{~A} \mathrm{E1.50}$, pp 50 p
Open swinging type: $60 \mathrm{~m} / \mathrm{H} 2 \mathrm{~A} .180 \mathrm{~m} / \mathrm{H}$

PAINTON SWTTCHED ATTENUATORS 60019 m th steps. Stud rotary switch type, fulty screened. Size $21 / 1 \mathrm{in}$. dia. 2 ins .. 1/4in. dia
spindie $£ 1$, pp 25 p.

AC WKG BLOCK CAPACITOAS

MFD	Vollis	Price
0.25	1500 vaC	50p
0.75	440 VAC	50p
1	470 vaC	60 p
1.25	360 vAC	$65 p$
2	400 vAC	750
2.4	$360 v A C$	75 p
2.5	360 vAC	$75 p$
$2.7+0.1$		E1.25
3	440 vaC	¢1.00
3.5	250 vaC	E1.00
4	$250 v A C$	£1.00
5	$360 v A C$	E1.25
5	44 OvAC	¢1.50
72	440 VAC	c1.50
8.4	250 vAC	c1.00
15	250 vaC	£1.75

PP up to 2 SMFU $25 \mathrm{~F}, 27$ 1 2 SMFD $50 \mathrm{p}+$
8 * on total TOMFD SOOVDC $\mathbf{~} 1.50$. PP 50 p

MULTLTAPPED "C" COAE LT TRANSFORMERS
3 v . 9 v . 21 v, all at $5 \mathrm{~A}, 13 \cdot 9 \cdot 1 \mathrm{a} \cdot 12 \cdot \mathrm{R1}$ $22 \cdot 23 \cdot 24 \cdot 30 \cdot 31 \cdot 33 \cdot 34 \mathrm{v} 5 \mathrm{~A}$ can be obtaned. $\mathbf{6 5 . 5 0} \mathrm{PPE}$:

Ceyswiteh, Oper Relars KMKI 230 V AC 1 CO 5 p : KMK3 230 V AC 3 CO 85 p ; KMK1 12 vOC
 2 CO 85 p . Schrack plug in type. 11 pin 24 V

 Miniature open typee single hold fixing, $6 v D$

berco sliding aesistors

 RT/Angle geared drive 30 onms 1.5 ampsE1.50. DP 50 Heavy duty enclosed type ixed
 pp 750 Weiwyn $7-10$ wan W.W. resisior, i
R.A.F. SWITCM DIMMERS
OO ohm 10 watis enclosed in moulded case
with control knob. Overall size. Three for \&1, with control
inc. postage

SMITHS CLOCKWORK TIME R Up to 30 munules. Switches off st end al geriod
D. 15 armp. 250 V . Swich contictis. Dverail size 2 ins. dia $\times 2$ 2/ins. Less contiol knob 75 p .

SANGAMO SYMCHRONOUS
AC 240v MOTORS, TVPE 7
 Time Swnch Moiors, AC $240 \mathrm{OV}, 1$ rev. per
hours. An exxelient motor with spring rese
Overall case size 5ins. dia. $\mathbf{E 2 . 0 0}$. pp 50 p .
TCC: 112 FILLED BLOCK CAPACITOAS

 ${ }^{2}$

MIGH CAPACITY ELECTROLVTICS f1, pp 35 p ; $58,000 \mathrm{mfo} 20 \mathrm{~V}$ DC whg 70 d $75 \mathrm{p}, \mathrm{pp} 35 \mathrm{p}$. Mullard 5600 mld 40 V DC wkg:
3000 midd 50 v OC wkg. 60 p . po 25 p . 3000 mid 50 v OC wkg. 60 p . pp 25 p

LOAD MASTER D.P. CIRCUIT BREAKERS 440-250v AC 5A. Type M15. new and boxed
1.50, pp 50p: English Electric 60 A 500 AC . panel type fuses. Type SM60 £1, DP 25p

LIGMT SENSITIVE SWITCM UNITS Panet mounting, tor $2 v$ circuits, with $C 0$ manual swith nad connectors. Desinned fo automatic light switching at dusk and dawn instructions supplied $\mathrm{E1.75}$, pp 30 .

A.E.I. 240 v AC CDNTACTORS Type 06566 make, 2 break contacts. 20A
c1.50; 110 AC troes. $2 \mathrm{~m}, 20$ contacts. 20A
 Cutler and Hemmer 230v AC contactors
NO or NC 16 A BOOv AC contacts, in melat ca NO OO NC
f1.EO. DP 50p.

MINIATURE DC MOTORS Size Ihins.. dia lin. $3-41 / 2$ high speed, lenglh ot spindle 4 in. an ideal motor lor models. small of spindle \#wn. an ideal motor for models. small

 6000 cont. rating. Size of moior $4 \times 2 \frac{1 / 4}{4} \times$ 21/4ns. Cowing

ITT LEVER SWITCHES
 contacis. 60p. Three for EY.50, DP 25p.

PLESSEY MINIATURE MICRO Tyoe LIC SISTTCHES

bensons solenoids AC. 243025% duty Approw 2 ins $1 /$ in pul
Size $2 \times 1 / 2 \times 1$ ins. Res $350: 275$ p. Pp 1 Up.

AC 240 V BLOWERS
Ex computer equipment. Perfect condition
Robusily housed on metal Robustly housed on metal frame. Overall siz
$11 x 7=7 \mathrm{in}$. Alr outlet size $4 \times 3 \mathrm{ins}$, Moro
 included
carr. 11.

COMPUTER FANS

HIGM VOLTAGEINSULATION
TRANSFORMER
One only. $220-240 \mathrm{~V}$ Tapped $4.5-6.3$ v 12
O.

Wireless World Dolby ${ }^{\text {n }}$ noise reducer

Trademark of Dolby Laboratories Inc.
We are proud to announce the latest addition to our range of matching high fidelity units.

Featuring

- switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

The kit includes
-complete set of components for stereo processor
-regulated power supply components
-board-mounted DIN sockets and push-button switches
-fibreglass board designed for minimum wiring
-solid mahogany cabinet, chassis, twin meters, front panel, knobs, mounting screws and nuts
PRICE: $£ 39.90$ +VAT

Also available ready built and tested

Price $£ 54.00$ +VAT
Calibration tapes are available for open-reel use and for cassette (specify which)
Price £2.20 + VAT *
Single channel plug-in Dolby PROCESSOR BOARDS ($92 \times 87 \mathrm{~mm}$) with gold plated contacts are available with all components

Price $\mathbf{£ 8 . 2 0 + V A T}$
Single channel board with selected fet
Price $£ 2.50+$ VAT
Gold Plated edge connector
Price 1.50 +VAT*
Selected FETs 60p each + VAT, 100p + VAT for two, $£ 1.90+$ VAT for four
Please add VAT @ $12 \frac{1}{2} \%$ unless marked thus*, when 8% applies (or current rates)

We guarantee full after-sales technical and servicing facilities on all our kıts, have you checked that these services are available from other suppliers?

Typical performance

Noise reduction better than 9 dB weighted
Clipping level 16.5 dB above Dolby level (measured at 1% third harmonic content)
Harmonic distortion 0.1% at Dolby level typically 0.05% over most of band. rising to a maximum of 0.12%

Signal-to-noise ratio: $75 \mathrm{~dB}(20 \mathrm{~Hz}$ to 20 kHz , signal at Dolby level) at Monitor output

Dynamic Range $>90 \mathrm{~dB}$
30 mV sensitivity.

Also available ready buir and rested

Olease send SAE for complete lists and specifications

S-2020TA STEREO TUNER/AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality pirsh-button FM Varicap Stereo Tuner combined with a 24 W r.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifier Low field Toroidal transformer, Mag, input, Tape In/Out facility (for noise reduction unit, etc.), THD less than 0.1% at 20W into 8 ohms. Power on/off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range $88-104 \mathrm{MHz} .30 \mathrm{~dB}$ mono $\mathrm{S} / \mathrm{N} @ 4.2 \mathrm{LV}$. THD 0.3%. Pre-decoder 'birdy' filter

PRICE: $£ 58.95+$ VAT

NELSON-JONES STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning range $88-104 \mathrm{MHz} .20 \mathrm{~dB}$ mono quieting @ $0.75 \mu \mathrm{~V}$. Image rejection - 70 dB . If rejection -85 dB . THD typically 0.4%.
IC stabilized PSU and LED tunir.g indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.
Compare this spec. with tuners costing twice the price.

Mono £32.40 + VAT
With ICPL Decoder $£ 36.67$ +VAT
With Portus-Haywood Decoder
$\mathbf{£ 3 9 . 2 0}+$ VAT

Sens. 30dB S/N mono @ $1.2 \mu \mathrm{~V}$
THD typically 0.3%
Tuning range $88-104 \mathrm{MHz}$
LED sig. strength and stereo indicator

STEREO MODULE TUNER KIT

A low-cost Stereo Tuner based on the 3302 FET RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE. PLL stereo decoder IC. Pre-decoder 'birdy' filter

PRICE: Stereo £31.95 + VAT
S-2020A AMPLIFIER KIT Developed in our laboratories from the highly successful "TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring
Power 'on/off' FET transient protection.
${ }^{\prime}$ Typ Spec. $24+24 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input S/N 60 dB . Radio input S / N 72 dB . Headphone output. Tape in /Out facility (for noise reduction unit, etc.). Toroidal mains transformer.

PRICE: $£ 33.95+$ VAT
ALL THE ÁBOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS

BASIC NELSON-JONES TUNER KIT
BASIC MODULE TUNER KIT (stereo)
£ $14.28+V A_{i}$
$£ 16.75$ +VAT

PHASE-LOCKED IC DECODER KIT
£4.47 + VAT
PUSH-BUTTON UNIT

Marshall's

A. Marshall (London) Ltd Dept: WW

40-42 Cricklewood Broadway, London NW2 3ET
Tel: 01-452 0161/2 Telex: 21492
\& 85 West Regent St Glasgow G2 20D Tel: 041-332 4133 \& 1 Straits Parade Fishponds Bristol BS 16 2LX Tel: 0272 654201/2
Call in and see us 9-5.30 Mon-Fri 9-5.00 Sat
Trade and export enquiries welcome. Please enquire for types not listed.
NEW 168 PAGE CATALOGUE WITH 500 NEW LINES 55p post paid (40p to callers)

Our range covers over 7,000 items. The largest selection in Britain. Top 200 ICs, TTL, CMOS \& Linears

TAA560 1.60 TCA2HOA 130 | TAA560 | $\mathbf{1 . 6 0}$ | T |
| :--- | :--- | :--- |
| TAA570 | 2.30 | T |
| TAA611B | 1.85 | T |
| TAA | | |

SEE US AT THE ALL ELECTRONICS SHOW GROSVENOR HOUSE, 19-21 APRIL

POPULAR SEMICONDUGEOAS YA very smal selection from our vast stocks, please enquime about devices not listed.]

DATA AND

 COMMUNICATIONS TERMINALSTeletype 28, 32, 33, 35, 40 TermiNet 30, 300 \& 1200 (30 and 120 cps) Teleterm 1132 and 1200 series (portable / fixed 30 cps) with integral coupler and RS 232C)
Other page printers (by Siemens, ITT Creed, etc.)

* Spares, repairs, overhauls and maintenance * Other types and models available * Refurbished units also available
* Short and long period rentals * Minicomputer interfaces * Quantity discounts * Immediate delivery

TELEPRINTER EQUIPMENT LTD. 70-80 AKEMAN STREET TRING, HERTS., U.K.

```
Telephone 0442-82-401
Cables RAHNO Tring
Telex 82362
A/B Batelcom Tring
```


RADFORD HD250
 High Definition Stereo Amplifier

for sound reproduction in
the home! We believe that no other amplifier in the world can match the overall specification of the HD250.

Rated power outpur: 50 watts av. continuous per channel into any impedance
Maximum power output: 90 watts av, per channel into 5 ohme.
Distortion, preamplifier: Virtually zero (cannot be identified or measured as in te below inheremt circuit noise.)

Distortion, power amplifier: Typically 0.006% watts, less then $\mathbf{0 . 0 2 \%}$ at rated output (Typically 0.01% at $1 \mathbf{K h z}$)
Hum and nofes: Disc, -83 dBV measured flat with noise band width 23 Khz (ref)
5 mV); -88 dBV " A " weighted (ref. 5 mv)

Hear the HD250 at
SWIFT OF WILMSLOW
Dept. WN, 5 Swan Street, Wilmslow, Cheshire (Tel: 26213)
Mail Order and Personal Export enquiries: Wilmslow Audio, Swan Works, Bank
Mail Order and Personal Export
Square, Wimslow (Tel. 29599)
Wow available ZD100 power ampliter and 2022 pre-amplifier

RETURN OF POST MAIL ORDER SERVICE

BSR HI-FI AUTOCHANGER

 STEREO AND MONO £11.95 Post 75p guarantee. A.C. $200 / 250 \mathrm{~V}$.
Size $131 / 2-11 / 4 \mathrm{in}$. 3 speeds.
Above motor board $33 / \mathrm{sin}$.
Eelow motor board $21 / 2 \mathrm{in}$.
with STEREO and MONO CARTRIDGE
 B.S.R. SINGLE PLAYER similar to above with stereo cartridge and cueing device, large turntable $£ 13.50$
B.S.R. P128 with magnetic carridge. Balanced B.S.R. P128 with magnetic cartridge. Balanced arm

PORTABLE PLAYER CABINET Vynair front grille. Chrome fittings $£ \mathbb{£ 4 0}$ Post 75 p
Size $17 \times 15 \times 8$ in. approx.
HEAVY METAL PLINTHS
With P.V.C. Cover Cut out for most B.S.R. $\underset{\text { Post }}{\boldsymbol{E} .50}$ or Garrard decks. Silver grey finish.
Model "A" Size $121 / 2 \times 14^{3 / 4} \times 71 / 2 \mathrm{in}$.
Model B " Size $16 \times 133 / 4 \times 7 \mathrm{in}$. $\mathrm{E7.50}$.
Extra large plinth \& Cover, leak \qquad

COMPLETE STEREO SYSTEM

Two full size loudspeakers $133 / 4 \times 10 \times 33 / \mathrm{in}$. Player unit clips to loudspeakers making it extremely compact, overali
size only $133 / 4 \times 10 \times B 1 / 2$ ing. 3 watts per channel, plays records $33 \mathrm{r} . \mathrm{p} . \mathrm{m} ., 45 \mathrm{p} . \mathrm{p} . \mathrm{m}$. Separate channel, plays all controls Attractive Teak finish $£ 22.50$

SPECIAL OFFER! SMITH'S CLOC
0-60 MINUTES $£ 2.95$ Post $35 p$
Single pole two-way. Surface mounting
with fixing screws. Will replace existing will switch to give light for return home, garage, automatic anti-burglar lights, etc. Variable knob. Turn on or off at full or intermediate settings. Brand new and fully guaranteed.

0-6 Hour version - $\mathbf{2} 3.30$
EAKWOOD LOUDSPEAKER GRILL
R.C.S. "MINOR" 10 watt AMPLIFIER KIT Thic kit is suitable for record players, guitars, tape playbback, evecrionic instrumens smal S. systems. Two versions avaliable Mono, E11.25; Slereo. E18. Post 4 So. Specification
1ow per channel, input 100 mV , size $91 / 2 \times 3 \times 2 \mathrm{in}$ approx. S.A.E. details. Full instructions supplied. AC mains powered.

	STANDARD TYPE VHF fRINGE Low loss 15 p yd. Ideal 625 and colour PLUGS IOp. SOCKEIS LINE SOCKETS 18 p. OUTLET BOXES 50p.
ELAC HI-FI SPEAKER 8 in . TWIN CONE Dual cone plasticised roll surround. Large ceramic magnet. $50-16,000 \mathrm{c} / \mathrm{s}$. Bass watts, music power. $\mathbb{2} 3.95$ post 35 p	

E.M.I. $131 / 2 \times 8$ in. SPEAKER SALE!
With tweeter and
crossover. 10 watt.
State 3 or 8 ohm.
As illustrated.

$£ 5.95$

Ditro
15 wans.

15 wans,
8 or 15 hm

With weeter and cross
over. 20 wart.
Bass res. 25 c.p.s.
$£ 8.50$
ost 65 p

Flux $=11,000$ gauss
$£ 9.50$
or 15 ohm . 20 to 20,000 c.p.s
Bookshelf Cabinet

peakers.

THE "INSTANT" BULK TAPE ERASER AND HEAD DEMAGNETISER. Suitable fo mains 200/250V. Leaflet S. A E
will also demagnetise small $\quad £ 4.50$
vill also demagneise sma
BLANK ALUMINIUM CHASSIS. $6 \times 4-70 p ; 8 \times 6-90 p$; $10 \times 7-£ 1.15 ; 12 \times 8$-£1.35; $14 \times 9-£ 1.50 ; 16 \times$
$6-£ 1.45 ; 16 \times 10-£ 1.70$. ANGLE ALI. $6 \times 3 / 2 \times 3 / 4$ in $^{15} 15 p$. ALUMINIUM PANELS. $6 \times 4-17 p ; 8^{-} \times 6-24 p ; 14 \times$ $3-25 p ; 10 \times 7-35 p ; 12 \times 8-43 p ; 12 \times 5-30 p ; 16 \times$ $6-43 p ; 14 \times 9-52 p ; 12 \times 12-68 p ; 16 \times 10-75$ p.
 £2.95 printed circuit rectifiers and double wound main Posi voltages available 10 100 mA or R.C.S. POWER PACK KIT
£3.35 circuit board and assembly instructions.
 al for Mike, Tape PLIER - BRITISH MADE 9/in. Response $25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{kc} / \mathrm{s}$. 26 dB gain. C 1.45
for use with valve or transistor equipment.

ELECTRO MAGNETIC

PENDULUM MECHANISM

R.C.S.

BOOKSHELF
SPEAKERS

E16 pair post 19.30
 KUBA-KOPENHAGEN STEREO

TUNER-AMPLIFIER CHASSIS AM-FM $5+5$ WATT

 This Continental 4 -band radiogram chassis uses first class quality components throughout. Features: Large facia panel with 7 push butions for medium, long, short, VHF-FM, AFC, phono, mains on-off., 4 -rotary controls, tuning, volume, tone, balance. Facia size $17 \times 41 / 2$ inches. Chassis size $17 \times 41 / 2 \times 51 / 2$ inches. DIN-connector sockets for tape record/playback, loudspeakers, phono pick-up, external FIM-AM aerials. Automatic stere 1OW VOLTAGE ELECTROLYTICS 200 mF 15 V 10 p . $500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$.
$1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$. $2000 \mathrm{mf} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 50 \mathrm{~V} 57 \mathrm{p}$. $2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$. 3900 mF 100 V E1.60.
$5000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 12 \mathrm{~V} 42 \mathrm{p} ; 25 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V} 85 \mathrm{p}$. SHORT' WAVE 100 pF air spaced gangable tuner, 95 p . TRIMMERS 10 pFF , $30 \mathrm{pF}, 50 \mathrm{pF}$, 5p. 100 pF . 150 pF . 15 p .
 $15 p ; 500 \mathrm{~V}-0.001$ to $0.055 \mathrm{5p} ; 0.110 \mathrm{p} ; 0.2513 \mathrm{p} ; 0.4725 \mathrm{p}$. MICRO SWITCH SINGLEPPIE CHANGEOVER 20 p . MICRO SWMCH
SUBMIN MICRO SWITCH, 25p. SIngle pole change over.
TWIN GANG, $385+385$ pF 50p; 500 p standard 75 p ; 365 $+365+25+25 \mathrm{pF}$. Slow motion drive 65 p . 120 pF TWIN GANG, 50p; 365pF TWIN GANG, 50p. NEON PANEL INDICATORS 250 V . Amber or red 30 p . RESISTORS. $1 / 1 \mathrm{WW}, 1 / 2 \mathrm{~W} .1 \mathrm{~W} .20 \% 2 \mathrm{p} ; 2 \mathrm{~W}$, 10 p ; 102 to 10 HIGH STABILITY. $1 / 2 \mathrm{~W} 2 \% 10$ ohms 106 meg., 12 p .
Ditio 5%. Preferred values 10 ohms to 10 meg.. 5 p . Dirto 5%. Preferred values 10 ohms to 10 meg., $5 p$.
WIRE-WOUNO RESISTORS 5 watt, 10 watt, 15 wat. 10 ohms to 100 K 12 p each
TAG STRIP 28 -way 122 p.
TAPE OSCILLATOR COIL. Valve type, 35 p .
BRIDGE RECTIFIER 200V PIV $1 / 2$ amp 50 D
TOGGLE SWITCHES S.P. 20P. D.P.S.T. 25P. D.P.D.T. 30p. MANY OTHER TOGGLES IN STOCK
PICK.UP CARTRIOGES ACOS GP91 £1.50. GP93 £2.50

BAKER "BIG-SOUND" PPEAKERS. Post $£ 1.00$ each. 'Group 25' 'Group 35' 'Group 50/15'

BAKER LOUDSPEAKER, 12 INCH. 60 WATT
GROUP $50 / 12,8$ OR 15 OHM HIGH POWER.
FULL RANGE PROFESSIONAL QUALITY. $£ 20.95$ FULL RANGE PROFESSIONA
RESPONSE $30-16.000 \mathrm{CPS}$

Post E 1.60
MASSIVE CERAMIC MAGNET WITH
ALUMINIUM PRESENCE CENTRE DOME.
TEAK VENEERED HT-FI SPEAKERS AND CABINETS For 12 in. or 10 m . speaker $20 \times 13 \times 12 \mathrm{in}$. $£ 14.50$ Post $£ 2$ For $61 / 2 \mathrm{in}$. speaker and tweeter $12 \times 8 \times 6 \mathrm{in}$. $£ 5.80$ Post 75 p
for
R.C.S. 100 wátt

VALVE
AMPLIFIER

CHASSIS

Four inputs. Four way mixing. master volume, treble and bass controls. Suits all speakers. This professional quality amplifier chassis is suitable for all groups, disco, P.A., where high quality output socket. Produced by demand for a quality valve amplifier.
100 V line output to order.
Suitable carrying cab E14. Price $£ 85 \begin{gathered}\text { Send for leaflet. } \\ \text { carr. } \\ \text { P2.50 }\end{gathered}$
SPEAKER COVERING MATERIALS. Samples Large S.A.E. LOUDSPEAKER CABINET WADDING 18 in . wide 20 p ft . Horn Tweeters $2-16 \mathrm{kc} / \mathrm{s}$. 1 OW 8 ohm or 15 ohm $£ 3.60$ De Luxe Horn Tweeters $3-18 \mathrm{kc} / \mathrm{s}$, $30 \mathrm{~W}, 8 \mathrm{ohm}, ~ £ 7.50$. CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 3$ or 8 or i 15 ohm 1.90. 3 way $950 \mathrm{cps} / 3000 \mathrm{cps}$, £2.20.

LOUDS PEAKERS P.M. 3 OHM $7 \times 4 \mathrm{in}$. £ $1.50 ; 61 / 2 \mathrm{in}$.. © 1.80 ; $8 \times 5 \mathrm{in}$., € 1.90 ; 8 in., $€ 1.95$.
SPECIAL OFFER: 80
SPECIAL OFFER: 80 ohm. $21 / \mathrm{inn}$., $23 / \mathrm{in}$., $35 \mathrm{ohm}, 3 \mathrm{in}$., 25
 PHILIPS LOUOSPEAKER, Bin 4 ohms 4 watts' $£ 1.85$ RICHARD ALLAN TWIN CONE LOUDSPEAKERS in. diameter $4 W$ €2.50. 10 in . diameter 5 W €2.95; 12 in . diameter $6 \mathrm{~W} £ 3.50,3 / 8 / 15 \mathrm{ohms}$, please state. PIEZO ELECTRIC HORN TWEETER. Handles up to 100 watts. No crossover required. $£ 10.95$.
Tweeter Volume Control 15 ohms 10 W with one inch long
BAKER 150 WATT PROFESSIONAL
MIXER AMPLIFIER
All purpose transistorised.
Ideal for Groups. Disco
and P.A. 4 inputs
Output $48 / 15$ ohms
ohms. a.c. Mains. Separate treble and bass controls. Master volume control. £68 £ 1.50 cairr.
Guaranteed. Details S.A.E. NEW MODEL MAJOR- 50 watt. 4 input.
2 vcl. Treble and bass. Ideal disco smplifiar $£ 49$ Carr. £!
100 WATT DISCO AMPLIFIER CHASSIS
volume, treble, bass controls. $500 \mathrm{M} . \mathrm{V}$. or 1 volt input. E 52
four loudspeaker outputs 4 to 16 ohm . All transistor
BARGAIN 4 CHANNEL TAANSISTOR MONO MIXEAR
Add musical highlights and sound effects to recordings. Will mix Mlcrophone, records, tape and tuner
with separate controls into single output. 9 V . $£ 5.95$ TWO STEREO CHANNEL VERSION £7.50 dARGAIN 3 WATT AMPLIFIER. 4 Trans
Push.Pull Ready Built, with volume. Treble £3.95
Push bass controls. 18 volt d.c. Mains Power Pack $£ 3.45$
and
ALUMINIUM HEAT SINKS. Finned type. Sizes $612^{\prime \prime} \times 412^{\prime \prime}$
$\times 21 /{ }^{\prime \prime} 95 p .61 /{ }^{\prime \prime} \times 2^{\prime \prime} \times 21 / /^{\prime \prime} 65 p$.
BALANCED TWIN RIBBON FEEDER
BALANCED TWIN RIBBON FEEDER 300 ohms. 5 p vd. JACK SOCKET Std. open-circuit 20p, closed circuit 25p; Chrome Lead-S ocker 45p. Mono or Stereo.
hono Plugs 8p. Phono Socket 8p
ACK PLUGS Sid. Chrome 30p; Plastic 25p; 3.5mm 15p STEREO JACK PLUG 30p. SOCKET $25 p$.
OIN SOCKETS FREE 3-pin 25p; 5-pin 25p. DIN PLUGS 3-pin 25p; 5 -pin 25p. VALVE HOLDERS, 10p; CANS $10 p$.

> R.C.S. SOUND TO LIGHT KIT Kit of parts to build a 3 channel sound to light unit. 1,000 watts per channsl. £14. Post $35 p$. Easy to build. Full instructions supplied. Cabinet $£ 3$,

PEfiod LOUDSPEAKER CABINETS. Two styles available, Regency and Queen Anne. Size approximately $34 \times 19 \times 16 \mathrm{in}$. These cabiners are slighty soiled and are priced from $\& 10$ each. Callers only.

PAKS - PARTS - AUDIO MODULES

PANEL METERS

4' RANGE		
Size $41 / 4^{\prime \prime} \times 31 /{ }^{\prime \prime} \times 13 / 4^{\prime \prime}$		
Value	No.	Price
O-50UA	1302	¢4.50
0.100UA	1303	¢4.50
0.500UA	1304	¢4.50
O. 1 MA	1305	£6.00
0-50V	1306	¢6.00
$2^{\prime \prime}$ RANGE		
Value	No.	Price
0.50UA	1307	£3.50
0.100UA	1308	£3.50
0.500UA	1309	£3.50
0-1 MA	1310	£3.50
$0-50 \mathrm{~V}$	1311	£3.50
MR2P TYPE		
Size $42 \times 42 \times 30 \mathrm{~mm}$		
Value	No.	Price
0-50UA	1313	E4.80
0-1 MA	1315	E3.20
EDGEWISE		
Size $31 / 2^{\prime \prime} \times 13 /{ }^{\prime \prime} \times 21 / 4^{\prime \prime}$		
Cut out $\mathbf{2}^{31 / 41} \times 11 / 4^{\prime \prime}$		
Value	No.	Price
0.1 MA	1316	¢4.05
0-500UA	1317	¢4.05
Miniature		
BALANCE/TUNING		
METER		
Size $23 \times 22 \times 26 \mathrm{~mm}$		
100/0/100MA		
No.1318		Price
		E1.95
BALAN	E/T	NG

Size $45 \times 22 \times 34 \mathrm{~mm}$
Sensiviy 100 HA
No.
1319
MIN. LEVEL METER Size $23 \times 22 \times 26 \mathrm{~mm}$
Sensitivity 200 AA
No.
1320
Vu METER
Vu METER
Size $40 \times 40 \times 29 \mathrm{~mm}$
Sensitivity 130 GA
No.
1321
MINI
MULTI-
METER
Size $60 \times 24 \times 90 \mathrm{~mm}$
Sensitivity 1000 ohms $/$
$\begin{array}{llll}\text { AC VOLTS } & 0.10, & 50 . & 250, \\ 1000 & & & \end{array}$ 1000
DC CURRENT $0.1-100 \mathrm{~mA}$
$\begin{array}{ll}\text { Resistance } 0.150 \mathrm{~K} \text { ohms } & \\ \text { No. Price } \\ 1322 & \mathbf{E S . 9 5}\end{array}$

high Sensitivity

TEST METER

Sensitivity 50.000 ohms/y
Size $6 y / z^{\prime \prime} \times 4 h^{\prime \prime} \times 2 / k^{\prime \prime}$

TRANSISTORS

BRAND NEW - FULLY GUARANTEED

$A A$
A

£20.45

Fitted with Phase Lock-loop Decoder

The 450 Tuner provides instant program selection at the touch of a button ensuring accurate tuning of 4 pre-selected stations. any of which may be altered as often as you choose, by simply' changing the settings of the pre-set controls
Used with your existing audio equipment or with the BI-KITS STEREO 30 or the MK60 Kit etc. Alternatively the PS12 can be used if no suitable supply is available, together with the Transformer T538.
The $\$ 450$ is supplied fully built, tested and aligned. The unit is easily installed using the simple instructions supplied.

- FET Input Stage - VARI-CAP diode funing - Switched AFC * Multi turn pre-sets * LED Stereo Indicator

Typical Specification
Sansitivity 3μ volts Stereo separation 30 db Supply required 20-30 V af 90 Ma max.

STEREO PRE-AMPLIFIER

OUR PRICE £13.75

Frequency Résponse $+1 \mathrm{~dB} \mathrm{20Hz}$ 20KHz . Sensitivity of inputs
1.: Tape Input 100 mV into 100 K ohms 2. Radio Tuner 100 mv into 100K ohms
3. Magnetic P.U. 3 mV into 50 K ohms
P.U. Input equalises to RIAA curve with P.U. In from 20 Hz to 20 KHz
Supply $-20-35 \mathrm{~V}$ at 20 mA .

The versatility of the design makes it ideal for use in record players, tape recorders, stereo amplifiers and cassette and car tridge tape players in the home.

AUDIO AMPLIFIER MODULE

A top quality stereo pre-amplifier and tone control unit. The six push-button selector switch provides a choice of inputs together with two really effective filters for high and low frequencies, plus tope output.
MK. 60 AUDIO KIT: Comprising 2. x AL60's. $1 \times$ SPM80. 1 x BTM80. $1 \times$ PA100. 1 front panel and knobs. 1 Kit of parts to include on/off switch, neon indicator, stereo headphone sockets plus instruction booklet. COMPLETE PRICE $£ 29.55$ plus 85 p postage. TEAK 60 AUDIO KIT:
Comprising: Teak veneered cabine size $163 / 4^{\prime \prime} \times 111 / 2^{\prime \prime} \times 3^{3 / 4^{\prime \prime}}$, other parts include aluminium chassis. heatsink and front panel brackét plus back panel and appropriate sockets etc. KIT
plus $85 p$ plus $85 p$
postage.

SPECIFICATION:
Harmonic Distortion $\mathrm{Po}=3$ watts $\mathrm{f}=1 \mathrm{KHz} 02.5 \%$
Load Impedance $8-160 \mathrm{hm}$ iSize: $75 \mathrm{~mm} \times 63 \mathrm{~mm} \times 25 \mathrm{~mm}$ Frequency res̄ponse ± 3 d8 $\mathrm{Po}=2$ watts $50 \mathrm{~Hz}-25 \mathrm{~Hz}$

AL30 10w R.M.S. £3.45

MPD 30

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new M.P.A. 30, a high quality pre-amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges only. it is provided with a standard DIN input socket for ease of connection Full instructions supplied

The Stereo 30 comprises a complete stereo pre-amplifier, power amplifiers and power supply. This, with only the addition of a transformer or overwind will produce a high quality audio unit suitable for use with a wide range of inpuss i.e. high quality ceramic pick-up. stereo tuner, stereo tape deck etc. Simple to install, capable of producing really first class results, this unit is supplied with full instructions, black front panel knobs, main switch, fuse and fuse holder and universal mounting brackets enabling it to be installed in a record plinth, cabinets of your own construction or the cabinet vailable. Ideal for the beginner or the advanced enstructor who requires Hi -Fi performance with a minimum of installation difficulty (can be installed in 30 mins).

TRANSFORMER $£ 2.45$ plus $62 p p$ \& TEAK CASE E5.25 plus $62 p p$ \& p.

A 5125 Watts (RMS)

pletely radesigned for use with modules. Features include on Amplifier Balance, Bass and Treble controle Complete.

 * Max Heat Sink temp 90․ * Frequency response 20 Hz to 100 KHz \# Distortion better than 0.1 af 1 KHz * Supply voltage $15-50 \mathrm{v}$ * Thermal Feedback ${ }^{(}$Latest Désign Improvements ${ }^{\circ}$ Load - 3,4,8, or $\overline{16}{ }^{*}$ ohms * Signal to noise ratio 80 db * Overall size 63 mm .105 mm . 13 mm .Especially designed to a strict specification. Only the finest components have been used and the larest amplifier which should satisfy the most critical A.F enthusiast.

Stabilised Power Supply Type SPM80

SPM80 is especially designed to power 2 of the AL60 Amplifiers, up to 15 watts (R.M.S.) per channel simultaneously. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 A at 35 V . Size: 63 mm .105 mm . 30 mm Incorporating short circuit protection. Transformer BMTBO £2.60 +62 p postage

Input voltage 15.20 v A.C. Output voltage $22-30 \vee$ D.C
OUR PRICE Output current 800 mA Max. Size $60 \mathrm{~mm} \times 43 \mathrm{~min} \times 2 \overline{6} \mathrm{~mm}$ \& 31 Transformer T 538 £2.30

SHOP 18 BALDOCK ST., WARE, HERTS AT OPEN 9 to 5.30 Mon. / Sat

(5) TRPTTDU5

58.60 GROVE RD. WINDSOR,BERKS. SL4 IHS.

TEL. 54525

FAST SERVICE

SEVEN SEGMENT LED DISPLAYS BRIGIT DL707 COM ANODE \&
 DIGITAL CLOCK IC 51224 £ $4 *$ RED LEOS ITP. RED LEDS 209. STYLE 0.125^{*}
OR 0.2" DIA. NO CLIP 10 p* TIL209 RED LED \& CLIP 12p* $\begin{array}{ll}\text { BIG 0.2" RED LED \& " } 14 p^{*} \\ \text { GRFEN OR ORAVGE LEDS } & 29 p^{*}\end{array}$ ORP12 54p*2N5777/OCP71 34p*

INDUSTRIAL, EDUCATIONAL, TRADE \& EYPORT SUPPLIED. SEND FOR OUR FREE CATALOGUE LIST SAE PURCHASED. DISCOUNTS 10% OFF
$100 \mathrm{up} .15 \%$ OFF 1000 up.

TOP DISCOUNTS

NEW LOW PRICES.

TRANSISTORS AND DIODES
INS BUSH SET Sp ea* TIP31/32 50p* MATCHIUG 0 P Pr TIP31c32c68p* AC127/8 $17615 p^{*}$ TIP41/42ea 66p* $\begin{array}{lrl}\text { AD161/162 ea36p* TIP41c42e"§1.50* } \\ \text { BC107 } & 8 p^{*} & \text { TIP2955 } \\ \text { BCI }\end{array}$ $\begin{array}{lrrr}\text { BC107 } & 8 p^{*} & \text { TIP2955 } & 69 p^{*} \\ \text { BC107B } & 13 p^{*} & \text { TIP3055 } & 65 p^{*}\end{array}$ $\begin{array}{lcll}\text { BC107B } & 13 p^{*} & \text { TIP3055 } & 65 p^{*} \\ \text { BC108 } & 8 p^{*} & \text { TIS43 UJT } & 26 \mathrm{p}\end{array}$ $\begin{array}{lll}\text { BC108 } & 8 p^{*} & \text { TIS43 UJT } \\ \text { BC108B or } C \text { 13p* } & \text { 1N914/4148 }\end{array}$ $\begin{array}{lrl}\text { BC108B or C } & \text { 13p* } & \text { 1N914/4148 } \\ \text { BC109 } & \text { 9p* } & \text { 1N4001/2 }\end{array}$ BC109 BC109B or C 12p* 1N4004 $\begin{array}{ll}\mathrm{BC1} 47 / 8 / 9 & 8 \mathrm{p} \\ \mathrm{BC157/8} / 9 & 11 \mathrm{p}\end{array}$ $\begin{array}{llll}\text { BC157/8/9 } & 11 p & 2 N 706 / 8 & 14 p^{*} \\ \text { BC167/8/9 } & 12 p & \text { 2N2G4G }\end{array}$ BC177/8/9 16p \quad 2N2904/5pnp29p* 2N2902/5pnp29p* 2N3053 ory 17 p * 2N3055 90W 33p* BD131/132ea 36p* BFY50/51 $15 \mathrm{p}^{*}$ $\begin{array}{lll}\text { BFY52/53 } & 16 \mathrm{p} & 2 \mathrm{~N} 3702 / 3 / 410 \mathrm{p}\end{array}$ BSX $19 / 20 / 2119 p^{*} \quad 2 N 3705 / 6 / 7 \quad 9 p$ BZY88 ZENER $10 p$ 2N3708/9 9p C106D SCR 54p* 2N3710/11 15p $\begin{array}{lll}\text { MJ2955 T03 99p* } & \text { 2N3819 R23e17p } \\ \text { U.JE2955 } & 90 p * & \text { 2N3820 PFET40p }\end{array}$ $\begin{array}{lll}\text { HJE3055 } & 99 p * & \text { 2N3820 PFET40p } \\ \text { H5 } & \text { 2N3904/5/6 15p }\end{array}$ 0A81/91 5p 2N5457 FET 32p TIP29 \& 30 40p* BRIDGF1A50 20p*

BAPGAI.I PAKS FULL SPEC flea
PAK A: 11 RED LEDS full spec $\{1$ *
 PAK C: 4 2N3055 E1* D 12 BC109 £1* PAK E: 11 BC182 £1 F 11 2N3704 £1

 PAK P: 20 PLASTIC BCIO9 TYPERPIE1

10-365PF TUNER. SINGLE GANG FOR MED/SHORT WAVE, XTAL SET etc £ $1 *$
SET3/IF CANS $455 / 470 \mathrm{KHZ}$ TOKO £1*

Full spec devices DAO
PCB ETCH KIT 3 ITEMS £2* ETCH RESIST PEN 2TIPS 75p* FEC ETCH PAK TUB 600mm £ 1 * 6x4" SRBP 45p*NYLON F/G\& ${ }^{\text {* * }}$

SCR AND TR!ACS BR100 25p* TAG 1A400V 50p*1A600V 69p 1 A50V 37 p *.C106D 4A400 60p TRIACS:SC146D 104400V 〔1* DISCO TRIAC 15A400V £2* AUDIBLE WARNING BLEEPER 12V35ra f1. 20\%10 off £1* CAPACITORS 22pf - . ol 5 p ELECTROLYTIC IN 10 \& 25 V $1 / 2 / 10 / 50 / 1007 \mathrm{p} 50 \mathrm{~V} 10 \mathrm{p}$ 200/500 10p.1000/25 200 POTENTIOMETERS AB etc 20 p PRESETS 6p $\frac{1}{2}$ RESISTORS $2 p$ HEATSINKS TOS or 18 7p T03 16p. 103 4 ininned 50 DIN:PLUGS a 11 15p. Sock 10 p SHITCHES SPST 20p Dpdt :29p GAS DETECTOR TGS 308etc£4*

vero

VERO 0.1" PITCH COPPERCLAD $2 \frac{1}{2} \times 5^{\prime \prime} 40 p^{*} \cdot 3 ; " x 5^{\prime \prime} 45 p$ *
 3ix17" 22 FACE CLTTER 65p*
DIL BREADBOARD $2 " \times 4$ " 1 or $6^{\prime \prime} \times 4^{"}$ £2, VERO PINS 36 30p* BLACK PLASTIC CASES 42 mmx . 80×60 50p* 100×75 60p*99x

WW-022 FOR FURTHER DETAIIS

INSTANT SINAD MEASUREMENTS

with the

The SINADDER is a s distortion meter for Sinad Measurements. Just connect i to the audio output and read SINAD directly. No adjustments to make. Autornatic circuitry does the level setting for you

PUT IT ON RECORD WITH WATANABE

MULTICORDER-SERVOCORDER

- POTENTIOMETRIC
- 1-6 PENS • 250 mm CHARTWIDTH
- MULTI RANGE • MULTISPEED
- MULTI RANGE MULTISPEED

LINEARCORDER - MINIWRITER

- FAST RESPONSE DC - 100 Hz
-1.16 PENS - 4 \& 8 cm PER CHANNEL

X - Y RECORDERS
- HORIZONTAL \& VERTICAL USE - 1 \& 2 PEN - TIME BASE - ROLL CHART OPTION

RELAYS

SERVICE IMADING CO

CONTACTOR

CONTACTOR
Mig. oy Hendrey Relays, type C2839 $220 / 250$ AC ops. Comact 4C/O

CITENCO

FHP moler type C7333/15 $220 / 240$ volts AC. 19 Ipm reversible motor, 10 rque 14.5 kg , gear ratio
our prite $£ 14.25$. P\&P $£ 1.25$.

230 VOLTFAN ASSEMBLY

 Continuously rated removable aluminum blades.Price $£ 1$ 25, Poss 50 p.
VAT $12 \frac{1}{2} \%$.

PRECISION CENTRIFUGAL
 BLOWERS (230/240v AC) Mg. by Smiths Industries. Minature model. Sefiles $\$ F / 200$. Size $95 \mathrm{~mm} \times 82 \mathrm{~mm}$. Aperture.
 Seties $\$ F / 200$. $\$ 12 \mathrm{ze} 95 \mathrm{~mm} \times 82 \mathrm{~mm}$. Aperture $38 \mathrm{~mm} \times 31 \mathrm{~mm} .12 \mathrm{c} .1 \mathrm{~m} . \mathbf{C 2 .} 75$. Post 50 p .
 $38 \mathrm{~mm} \times 31 \mathrm{~mm} .12 \mathrm{c}, 1 \mathrm{~m} . \mathrm{m} .1 .75$. Post Oither types avalable, phone for delarlso
 BLOWER UNIT

 NI-CAD BATTERIES
 40 AH 12 v Plasic Coated $£ 8.00$, 35 4.00 16 AH Meial $£ 3.00$. P\&P 75 p . 4mited slock. Buy now
 UNISELECTOR SWITCH

 MINIATURE UNISELECTOR

MICRO SWITCHES

 50 for $\& 10.00$, post paid.
Sub-minature Honeywell
lor $£ 2.50$, post pard
LEVER OPERATED $20 \mathrm{amp} \mathrm{c/o}. \mathrm{Mfg}$.by
Unimax USA 10 for $£ 4.00$ plus 50 OP P\&P (min. order 10)
NEW HEAVY DUTY

SOLENOID

Mifg. by Magnetic Devices, 240v, A.C.
operation approx. 20ib. pull at $1.25^{\prime \prime}$. Pnce
$\varepsilon 7.00$ P $8 . \rho 75$.
E7.00. P\& 8 P $75 p$.
Sminar to
to above approx. 1010 pull $£ 3.50$.

230-250 VOLT A.C. SOLENOID Simular in appearance to
Approximately $1 / 1216$. pull
Pice $\mathbf{~} 1.00$. Post 250 .

24 VOLT D.C. SOLENOIDS

VARIABLE VOLTAGE TRANSFORMERS
INPUT 230 v. A.C. 50/60 OUTPUT VARIABLE 0/260v. A.C. BRAND NEW. All types. 200w (1 Amp) firted A/C
volt meter 0.5 KVA (Max. $21 / 2 \mathrm{Amp}$) 2 KVA (Max. 5 Amp) $2 \mathrm{KVA}($ Max. 10 Amp$)$
3 KVA (Max. 15 Amp$)$ $4 \mathrm{KVA}($ Max. 20 Amp$)$

E11.50
E14.00
$\varepsilon 14.00$
$\varepsilon 18.00$
30.00
38.00

E60.00

LT TRANSFORMERS

$0-12 v / 24 v \quad 10$ amp.
$0-4 / 6 v / 24 v / 32 v$ ar 12 amp. $0.12 v$ at 20 amp or 0.24 v at 10 amp .
£2.50 p\&p $50 p$
$£ 2.50 p \& p 50 p$
$£ 4.50 p \& p 75 p$

© 13.00 呎 $£ 1.50$ E12.40 p\&p E1.50
E14.00 p\&p E1.50 E11.85 p\&P $E 1.00$

300 V.A. ISOLATING TRANSFORMER

$115 / 230$ screened primary two separate or $115 v$ for 115 or 230 v
Secondary wo 115 v al 150 V . A each for 115 or 230 v . output Can be used

RODENE UNISET TYPE 71 TIMER 0.60 sec. 230v AC operation. Incorporating a lapsed ume
indicato and repear factiluss. A pireclision motors ised timeer

BIG INCH

Tiny precision built 3 rpm USA motor size only 1×1100 volt $A C$ op
suppled with resisior for 230 volt $A C$ price $£ 2.00$ p 20 . supplied with res
$\mathbf{E 5 . 0 0}$ posi pard.

INSULATION TESTERS

 (NEW)Test it te. sper. Pugged metal construction.
surtabe for bench or fieled work. constant speed
cluich. Size L. 8 in. W. 4 in H. 6 in. weight 6 Ib. 500 VOLTS 500 megohms $\quad £ 40.00$ Post 80 p
1000 VOLTS 1000 megohms $£ 46.00$ Post 80 p

AT CURRENT RATE MUST BE ADOED TO ALL ORDERS
FOR THE TOTAL VALUE OF GOODS INCLUDING POSTAGE UNLESS OTHERWISE STATED ACCOUNT CUSTOMERS MIN, ORDER $£ 10.00$

GEARED MOTORS

100 R.P.M. 115 lbs. ins.!!
 15 R.P.M.
Type SO48 15 r.p.m. 80 Ib. ins. Input $100 / 120$ volt A.C Length incl
gearboz 270 mm . Herght 135 mm . Width 150 mm . Shalit drive 16 mm gearboz 270 mm . Herght 135 mm . Width 150 mm . Shatt dive 16 mm . Suitable transtormer

DRAYTON MOTOR

RPM, ROR $2301250 v$ 50c. Continuousiy rated 1 size 100 mm by beversible motor. Twin sodndle 50 mmn by 8 mm.
$£ 16.50$. P\&P $£ 1.0$

BODINE TYPE N.C.I.

 GEARED MOTOR
Trpe 1 Pli.p.e. torque 10 b ib in

as new condition. Inpuil volitage of motor 115 V A.C. Supplied cored in Price lype $\mathbf{6 . 2 5}$. Post 75 or less transformer $\mathbf{£ 3 . 7 5}$. Post 65 p. (Type 3) 71 r.p.m. 230 voh A.C.
$6 / 9$ VOLT O.C. GOVERNED $40 \mathrm{~mm} \times 40 \mathrm{~mm}$. Spindle 10 mm . O.a.
24 R.P.M. 230 volt A.C. Continuously rated. Mig. Mycalex Ex. equip. Fully tested 53
1 R.P.M. $230 / 240$ VOLT A.C. SYNCHRONOUSH Ex equpment Thoroughly tested and guaranteed. ONLY £1.50. Post 20p.
20 R.P.M. GEARED MOTOR. $230 / 240$ volt 20 HP m. motor $£ 1.00$

HALF REV. PER HOUR

REVERSIBLE MOTOR 230V A.C.

 95 mm . Spindle $5 / 16^{\prime \prime}$ dia. 20 mm long. Ex-equipment tested. ©3,00

REVERSIBLE MOTOR

METERS NEW 90 mm Diameter Typs: 65Cs D.C. mc. 2. 5, 10. 20. 50 amp E3.00. reo amp $£ 3.25$. Type: 6272 A.C. M/I. 10.50 amp.
E3.00. 0.150 voh. A.C. M/I E3. 25 and 300 Volt A.C.

BENDIX MAGNETIC CLUTCH Superb exampie of electro-mechanics Main body
m wo sections Coll section is fixed and has $\$$ \%",
sleve. The drive section rotating on the outer pertimeter. When engaged the transmirssion is
entremely powerful. Duameler $11 / /^{\prime \prime}$. Tatal widih
$13 h^{\prime \prime} .24 V O C$

A.C. MAINS TIMER UNIT

PROGRAMME TIMERS

SERVICE TRADING CO.

SHOWROOMS NOW OPEN AMPLE PARKING

PERSONAL CALLERS ONLY
9 LITTLE NEWPORT STREET LONDON, WC2H 7J. Tel.: 01-437 0576

Z \& I AERO SERVICES LTD. Head Office: 44A WESTBOURNE GROVE, LONDON W2 5SF

 Tel.: 7275641 Telex: 261306Retail Branch:
85 Tottenham Court Road London W1. Tel: 5808403 ¹

MULTIMETER F4313 (Made in USSR

SENSITIVITY:
1200 V DC range: $10,000 \Omega \mathrm{~N}$ Other DC ranges: $20,000 \Omega / \mathrm{V}$ 1200 AC range: $6.000 \Omega / \mathrm{V}$ 600 V AC range: $15.000 \Omega / \mathrm{V}$ 300V AC range: $15.000 \Omega / \mathrm{V}$ Other AC ranges: $20,000 \Omega / \mathrm{V}$
AC/DC current ranges: $60-120-600 \mu \mathrm{~A}-3-12-300 \mathrm{~mA}-1.2-6 \mathrm{~A}$ AC/DC voltage ranges: $60-300 \mathrm{mV}-1.2 \cdot 6 \cdot 30-120-300-600-1200 \mathrm{~V}$ Resistance ranges: $300 \Omega-10-100 \cdot 1000 \mathrm{~K}$
Accuracy. $1.5 \% \mathrm{DC} ; 2.5 \% \mathrm{AC}$ (of full scale deflection)
Mirror scale and knife edge pointer. Taut suspension of movement. Transistor amplifier is used for all AC ranges thus achieving a common linear scale for both AC and $D C$ ranges
Meter is prölected by a trạnsistorised "̈ut-out reláy circuit. Range selection is? achieved by clearly marked piano keys. Power source: 51.5 V dry cells. Dimensions: $95 \times 225 \times 120 \mathrm{~mm}$.
PRICE $£ 39.50$ plus VAT
OSCILLOSCOPE CI-5 Made in USSR
Extremely simple and easy to use single beam oscilloscope. Well proved design based on standard octal valves makes servicing and maintenance straightforward and inexpensive. Because of its bandwidth of 10 MHz the instrument is suitable for general electronic applications and educationa purposes where a sophisticated instrument would be both too expensive and delicate, 3 in tube giving a 50 $\times 50 \mathrm{~mm}$ clear display. Amplitude and time base calibrations. Sensitivity $30 \mathrm{~mm} / \mathrm{v}$ max. Triggered and free-running time base, suitable for displaying pulses from $0.1 \mu \mathrm{sec}$. to 3 m sec . A.C. mains operation
Price $£ 55.00$ ex. works, plus VAT
Packing and carriage (U.K. only) £ 3.00

A SELECTION FROM OUR LARGE STOCKS

TRANSISTORS				AF239	0.36	BF177	0.18	*1N4004	. 5
2N696	0.15	-2N3705	0.10	ASY26	0.25	8F178	0.32	*1N4005	0.05
2N697	0.15	- 2 N3706	0.10	ASY27	0.30	BF179	0.35	-1N4006	0.06
2N706	0.10	*2N3707	0.10	ASY28	0.30	8F 180	0.31	*1N4007	0.06
2N706A	0.10	*2N3708	0.10	BC107	0.10	8 F181	0.35	-1N4148	0.04
2N753	0.23	-2N3709	0.10	BC107A	0.12	BF184	0.29	+1N5408	0.20
2 N 929	0.14	*2N3710	0.10	BC1078	0.12	BF 185	0.30	-8Y101	0.15 .
2N930	0.14	*2N3711	0.10	8С108	0.10	* Br 194	0.08	*8Y105	0.15
2N1131	0.25	*2N3819	0.35	BC108A	0.12	*EF195	0.08	*-Y126	0.10
2N1132	0.25	- 2 N3904	0.20	вC1088	0.12	* 8 F 196	0.10	*EY127	0.13
2 N 1302	0.17	*2N3905	0.25	BC109	0.12	* 6 F 197	0.11	merizo	0.10
2 N 1303	0.15	* 2 N3906	0.25	BC109A	0.12	BF 200	0.28	*eri64	
2N1304	0.20	AC125	0.20	8С1098	0.12	8F×88	0.20	82X61	
2N1305	0.20	AC126	0.20	BC109C	0.12	BFY50	0.19	series	. 20
2N1306	0.27	AC127	0.17	$\mathrm{HECl}^{\text {ch }}$	0.12	* BFY 5	0.19	B2Y88	
2N1307	0.25	AC132	0.25	- BC149	0.08	BFY52	0.20	serie	0.10
2N1308	0.25	AC176	0.22	*EC158	0.10	* \quad U208	2.00	- 0470	0.07
2N1309	0.25	AC187	0.20	* \quad C 171	0.10	OC36	0.65	*0479	0.07
2N1613.	0.17	AC188	8.18	BC178	0.18	$0 \mathrm{C4} 1$	0.25	-0481	0.07
2N1711	0.18	ACY21	0.20	-8C182	0.11	0 C 45	0.20	-0485	0.07
2N2221	0.20	ACY22	0.14		0.10	0C70	0.15	*0490	0.07
2N2222A	0.20	AD161	0.38	8 Cl 186	0.25	0 C 71	0.15	*0491	0.07
2N2369A	0.25	AD162	0.38	8C187	0.25	OC72	0.18	*0495	0.07
2N2646	0.40	A0Z11	1.25	* 8 C 212	0.11	0 C 75	0.15	- 04200	0.07
2N2905	0.25 ,	ADZ12	1.25	${ }^{\text {¢ CC2 }} 37$	0.11	$0 ¢ 76$	0.18	-0a202	0.08
2 N 2906	0.20	AF 106	0.25	${ }^{-8 C 238}$	0.11	OC81	0.20	RAS310af	0.35
2N2907	0.20	AF114	0.17	BCY32	1.20	- 083	0.30	Ras50baf	0.40
W2N2926	0.10	Afl15	0.17	BCY70	0.15	OC84	0.30		
2N3053	0.20	AF116	0.17	BCY71	0.20	0 C 204	0.60	TTL SER	IES
2N3054	0.65	AF117	0.17	BCY 72	0.15	0C206	0.70	Russian	
2N3055	0.55	AF118	0.25	B0115	0.39	$00^{\text {CP7 }} 1$	0.90	Special ofter	
2N3391	0.17	AF124	0.25	B0116	0.59	ORP92	0.60	7400	0.09
2N3392	0.17	AF 125	0.25	80132	0.39	\#TIP30A	0.50	7401	0.09
2 N 3934	0.15	Af126	0.25	80133	0.45			410	0.09
2N3414	0.20	AF127	0.25	*B0137	0.30	DIODES		7420	0.11
2N3415	0.15	AF 139	0.30	BFP115	0.28	-1N914	0.05	7422	0.20
* 2 N3702	0.10	Afl 178	0.50	*BFF 152	0.20	*1 1 4001	0.04	7430	0.11
- 2 N 3703	0.10	AF180	0.50	BF 167	0.25	-1/1002	0.05	7440	. 0.11
-2N3704	0.10	AF181	0.50	BF173	0.25	-1N4003	0.05	7450	0.11

P\&P 25p min. (U.K. only). Please add 8\% VAT $\star 12.5 \%$ MINIMUM EXPORT ORDER $£ 100$ FULLY GUARANTEED

1976/1977 catalogue AVAILABLE 30p

WW - 054 FOR FURTHER DETAILS

Bargain Time!
 Unique alpha-numeric listings of ratings and characteristics of a very wide range of semiconductors of international origin and with an extensive substitution guide. USED WORLDWIDE • PRDFESSIONALLY

to introduce the
nev Im edition of
 THE SEMICON

INTERNATIONAL TRANSISTOR INDEX AND THE DIODE/SCR INDEX

WE HAVE

A SPECIAL OFFER

FOR NEW AND EXISTING SUBSCRIBERS

SEND FOR DETAILS - DON'T DELAY

AVAILABLE FOR
A LIMITED PERIOD ONLY
SEMICON INDEXES LтD.

MARCONI TEST EQUIPMENT

TF329G circuit magnification meter TF455E Wave analyser
TF801D RF signal generator.
TF868 Universal bridge
TF995A/2 AM/FM generator.
TF1041B V.T. Voltmeter.
TF2200 Oscilloscope.
TF1100 Sensitive v/voltmeter
TF1152A/1 RF power meter. TF1245 Q-meter
TF1417 200 mHz frequency counter
TF1342 Low capacitance bridge.
TF1370 Wide-range RC oscillator
TF2163 UHF attenuator DC-1 GHz
TF2500 Af power meter
TF2600 Sensitive v/voltmeter
TF2604 Electronic voltmeter
TF2606 Differential DC voltmeter
TF2660 Digital voltmeter

MARCONI TF995B/2. AM/FM

 GENERATORS.$200 \mathrm{kHz}-220 \mathrm{mHz}$ in 5 bands. $0.1 \mu \mathrm{~V}-200 \mathrm{mV}$. Continuously variable FM in two ranges to 75 kHz . Price and full spec upon request.

EVER-READY NICKEL-CADMIUM BAT TERIES
Size ' D ' (HPZ) 1.25 V .3 .5 AH . Only small quantity available at $£ 2+10$ p. post.

AVO UNIVERSAL MEASURING BRIDGE. Measures LC\&R. Small portable instrument. A new £125.00.

BECKMAN TURNS COUNTER DIALS

Miniature type 122 mm diam.) Counting up to 15 turn 'Helipots'. Brand new with mounting instructions. Only $£ 2.50$ each
FRACMO Geared motors. 24V. AC 0.5RPM 68 A . Torque 40 lb . in. Price including starting capacitor TYPE Blowers 12 V DC Outlet diam 7 cms Overall diam, 15 cms and 17 cms deep. Very powerful fans $\mathbf{£ 9 . 5 0}$

P. F. RALFE ELECTRONICS
 10 CHAPEL STREET, LONDON, NW1

 TEL: 01-723 8753NOTICE. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in first class operational condition and most items carry our three months ${ }^{\circ}$ guarantee. Calibration and certificates can be arranged at cost. Overseas enquiries welcome. Prices quoted are subject to an addltional 8\% VAT.

[^8]
ROHDE \& SCHWARZ EQUIPMENT

Midget crystal clock type XSZ. BN 15221 Selective UHF V/meter, bands $4 \& 5$. USVF Selectomat. RF Voltmeter. USWV BN 15221
Standard attenuator . $0-100 \mathrm{db} .0-300 \mathrm{mHz}$ DPR
UHF Receiver type ESM300.
UHF Signal generator type SCR
UHF Test receiver type USVD.
POLYSKOP. SWOB I
POLYSKOP. SWOB II
SBTF. T.V. Signal generator, vision-sound modulator and transmitter.

ICL type 2640 Paper tape readers.	250cps.
New	¢95
Westrex 8-hole paper-tape punches.	695
Sound-proof case available.	¢15

MUFFIN INSTRUMENT COOLING FANS

Made by Rotron Holland. These are very high quality, quiet
running fans, specially designed for the cooling of all types running fans, specially designed for the cooling of all types
 We hac. II Warts. The list price of these is over $5 \times 4.5^{\circ}$ We ha

500V TRANSISTORISED INSULATION

TESTER

Lightweight, smalt size ($13 \times 7 \times 4 \mathrm{cms}$). Reads insulation from $0.2-100 \mathrm{M} \Omega$ at 500 V pressure. Runs from

AVO MULTI-METERS

Type Multi-minor Mk 4. Light. small size instrument ($14 \times 9 \times 31 / 2 \mathrm{cms}$). Measures volts $A C / D C$ to 1 KV . $D C, 1$

MUIRHEAD DECADE OSCILLATORS

 type 890A.$1 \mathrm{~Hz}_{\mathrm{z}}-110 \mathrm{kHz}$ in four decade ranges. Scope monitored output for high accuracy of frequency. Excellent generator. £135.

DETECKNOWLEDGEY

DETECKNOWLEDGEY?
Not a spelling mistake, but a new publication from AMBIT that sets out to explain some of the basic theory that surrounds metal location techniques. It is an explanation, that builds up from first principles, why iron sometimes reacts like a non-ferrous metal, what determines detector range, what the shortcomings are, how to avoid them. In fact, it explains about BFO, IB, VCO and Pulse Induction techniques, as a result of research carried out to produce our range of locators, and why we chose the methods we used. As a general purpose reference work for designers, constructors, users etc., we think you will find it unique, $£ 1.00$ inc. postage.

Bionic Ferret Metal Locators

As a result of our investigations, we offer you three metal locators now: The VCO 4000 the IB phase angle meter, and the 'Pulsedec' pulse induction metal locator. It is impossible to catalogue the relative virtues of each type here, so please send an SAE for details.
Components for Wireless: ICs, Coils, Ceramic \& Mechanical Filters, trimmers et

ar ICs				Tuner modules/TOKO parts
CA3089E/KB4402	1.94	ICL8038CC*	4.50	EF5800 6 cet varicap head 14.00
MC1310/KB4400	2.20	NE555V*	0.70	EF5600 5 ctt varicap head 12.95
TBA120/SN76660	0.75	NE565/6/7*	2.50	EC3302 3 cet varicap head 7.50
UA753	1.80	NE560B*	3.50	7030 linear phase FM if system 10.95
HA1137W	2.20	Discrete devices		91196 high spec mpx decoder 12.99
CA3090AO	3.75	dor		other types in catalogue
HA1196	4.20	40673/MEM616*	0.57	91197 varicap MW/LW tuner 11.35
UA720/CA3123E	1.40	MEM680*	0.75	7701 Mk2 double conversion TV
HA1197	1.40	MEM614*	0.38	UHF off air sound tuner board 27.00
TBA651	1.81	BF256L/S	0.34	Larsholt Signalmaster Mk 8 complete
LM380N	1.00	MVAM115 varicap	0,95	FM tuner for all levels of experience
LM381N	1.81	MVAM125	0.90	in electronics (kit) 85.00
Lм3900*	0.75	MVAM2	1.35	Larsholt Audiomaster $25+25 \mathrm{~W}$ superb
tDa2020	2.99	BB104	0.45	audio amplifier kit 79.00
TCA940	1.80	B8105	0.32	Ambit Int. Mk 2 series: all the pleces,
tbas10as	1.09	BA102/BA121	0.30	case/chassis/hardware/panel/PSU/presets
MC1312	1.50	ZTX/BC107/8/9	0.14	etc. for you to present your FM tun
7805UC*	1.55	ZTX/BC212/4	0.17	in a stylish unit. 33.00
78M12* /TDA1412	1.20	BC413	0.18	NEW NEW NEW NEW NEW NEW
78920*	1.20	ZTX451/551	0.18	Stiron soldering irons, made in UK to
78M24**	1.20	BD609	0.70	meet all known safety spor
UA723CN*	0.80	BD610	1.20	regulated with stand, also pro tools for
TAA550B*	0.50	more in price	PCB construction: SAE for leaflet pse

PLEASE NOTE; Vat is extra, at 12.5% except where marked * (8%). PP 22p per order. An A5 size SAE for free current price lists, or 40 p for the complete catalogue. Write to: 37a High Street, Brentwood, Essex. CM14 4RH. (tel. 0277-216029)

WW-078 FOR FURTHER DETAILS

Audio Connectors

Broadcast pattern jackfields, jackcords, plugs and jacks.
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut
Hirschmann Banana plugs and test probes $\bar{X} L R$ compatible in-line attenuators and reversers.
Low cost slider faders by Ruf.
Future Film Developments Ltd. 90 Wardour Street London WIV 3LE 01-437 1892/3

THE ELECTRONICAL REMOTELY CONTROLLED AERIAL AMPLIFIER RB 45

To acquire long-distance TV reception, an aerial amplifier is needed which combines high gain and low noise performance. These properties you will find in a narrow band or channel amplifier. To obtain more amplified channels iprogrammes) SCHRADER ELECTRONICA has developed an electronic remotely tunable amplifier, which can be tuned at any desired channel from 21 up to 65 in other words the whole UHF Band (IV/V). The ideal position is to mount the RB 45 as near as possible to a UHF wide band aerial, in order to obtain a good signal to noise ratio. The RB 45 should be applied in combination with the power supply and control unit VR 12/01

TECHNICAL DATA:

$\begin{array}{ll}\text { Channel range } & 21.65 \\ \text { Gain } & 22.30\end{array}$

Gain
Noise ratio
Impedance input output
Transistors
Varicapacitors
Max output voltage at $d_{\mathrm{im}}-30 \mathrm{~dB}$
Power consumption
$8 \mathrm{~mA} / 18$
Complete unit price £50 IRB $45+$ VR 12/01)
Long Distance Aerial £32.50. Channel $21-69$ gain 13-18 dB
Prices mentioned are FOB Amsterdam. By sending an international Money Order we will send you these articles

immediately.
 SCHRADER
 ELECTRONICA BV

Lippijnstraat 4 B AMSTERDAM HOLLAND
Tel. 020-861543 Telex: TELAM +18118

PHILIPS

The top sellers for home assembly in Europe - now available in the U.K.

Now - read all about the Philips range of quality kits for home assembly - mixers, amplifiers, speakers, etc, etc. Send today to
S.S.T. Distributors (Electronic Components) Ltd., West Road, Tottenham, London N17 ORN

buy, lease or rent:

- Teletype 33 and D0 390 (10 cps) printer terminals
- DECWRITER LA36 and DD303 (30cps) printer terminals
- OKIDATA $110(66 \mathrm{lpm})$ and Teletype $40(300 \mathrm{lpm})$ high-speed printers
- Lear Siegler ADM 1,2 and 3A video keyboard display
- Teletype 40 (7200 baud) asynchronous and synchronous displays
- DD Paper tape punch range (up to 110 cDs)

lor prompl delvery
relephone London (O1) 848.9781 Edinourgh (031) 2266201 Manchester (1081) 2243306
totax 935429

WW-024 FOR FURTHER DETAILS

ASTONISHING
 STEREO DISC
 AMPLIFIER 2

FOR BROADCASTING, DISC MONITORING ANO TRANSFER WITH THE HIGHEST QUALITY. Stereo Disc Amplifier 2 is a self-contained mains powered unit which accepts cartidge inputs and produces balanced line level outputs, Permanent rurnble filtering and switched scratch filtering is included.
FURTHER SPECIFICATIONS: (For THD. IMD, etc., see March advertisement, page 11 2) 1 KHz at 6 mV set for OdBV. 7 output. Loaded 600 ohms
Frequency Response RIAA Accuracy
$30 \mathrm{~Hz}-20 \mathrm{KHz}$
Clipping at $1 \mathbf{k H z}$
Wrthin 0.5 dB
Clipping Point Complementary to RIAA Curve
$30 \mathrm{~Hz}-20 \mathrm{KHz}$
Outpur +24 dBV .7

Crosstalk
Outputa - Electronically balanced
H.F. Filter
oducts or THD exceeding -80 dB

Front panel switch
Change in response at BKHz or below
Sensitiviry@1KHz
$1 \mathrm{KHz}-76 \mathrm{~dB} ; 30 \mathrm{~Hz}-20 \mathrm{KHz}-60 \mathrm{~dB}$
Source impedance 50 ohms
OKMz, 18dB/octave
Less than 0.5 dB
2.8 .13 mV for OdBV. 7 outpur. Presets adjustable through holes

SURREY ELECTRONICS

The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG (STD 04866) 5997

You've got to hand it to the 3001 thermometer.

Weighing only 300 gms., and easily fitting into the palm of your hand. the 3001 digital thermometer's bright green 8.2 mm display gives $0.5^{\circ} \mathrm{C}$ resolution over the range $-50^{\circ} \mathrm{C}$ to $+1000^{\circ} \mathrm{C}$.

A front panel thumb switch makes for simple control, and the unit's dry 'batteries or rechargeable cells give up to 7 hours operational life.

Designed for use with thermocouple sensors the 3001 is completely selfcontained, so if you need a reliable and durable thermometer that you can take anywhere ; then you need a 3001. You'll find it really handy.

SINGLE-CHIP SYNC PULSE GENERATOR

Our SPG is designed around a new Ferranti i.c. and is probably the simplest you can build.
Constructed on a p.c.b. (available through Readers' PCBs Services) and housed in a verobox measuring only 6 " $\times 3 \frac{11_{4}^{\prime \prime}}{} \times 1 \frac{3^{\prime \prime}}{4}$ that includes an integral power supply unit, it provides mixed sync, mixed blanking, line drive, field drive and camera tube blanking

Teletext decoder

This issue carries part 3 which deals with the construction of the input logic card.

Extending the Scope of VCRs

A special article shows how you can increase the scope of VCRs by some simple modifications.

Plus all our regular servicing features.

powertran ELECTRONICS
 AMBENTAcoust||CS
 HI-FI NEWS 75W / CHANNEL AMPLIFIER

In Hifi News there was published by Mr. Unsley-Hood a series of fouranticles (November, 1972 -February, 1973) and a subsequent follow.up aricle (April, 1974) on a design for an amplifier of exceptional performance which has as its principal feature an ability to supply from a direct coupled fully protected output stage. power in excess of 75 watts whist maintaining distortion at less than 0.01% even at very low power levels. The power amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier reforred to as the Liniac which is employed in the two most critical points of the system, namely the
equalization stage and tone control stage, positions where most conventionai designs run out of gain at the extremes of the frequency spectrum. Unusual features of the design are the variable transition trequencies of the tone controls and the variable slope of the scratch filter. There is a choice of four inputs, two equalized and two linear, each having independently adjustable signal level. The attractive slimline unit pictured. :has been made practical by highly compact PCBs and a specially designedi Toroidal transtormer
11.

12 ...85
12 Son of resistors. capaciors. siciondary luss.

3. su d 2 cicconciors ior pown i....

PI 2 srillod finner tolal sinh
5. Fitrmbess minime cireut marl fer …... 81.10
 pro-smp $E 4.10^{\circ}$
 8. Sel ol potentiometiors (including mains switch) $£ 3.50$

 impar stat has lover imer connecting cible coritral
 lascia panel and all brachets. fixalng paris. etc
15. Handbook free with cemplete kill ${ }^{£ 8.20}$

2 asch of macks 1.7 incluavive are remuired lor compiato pachs spate............................ 590.80 pachs.

Designed in response to demand for a tuner to complement the world-wide acclpimed Linsley Hood 75W Amplifier, this kit provides the perfect match. he Wireless World (Skingley and Thompson - April, May 1974) published original circuit has been developed further for inclusion into this outstanding rejection and and features a pre-aligned front end module, excelient a.m. controlled either continuously or by push button pre-selection. Frequencies are indicated by a frequency meter and sliding LED indicators, attached to each "birdy" selector pre-set. The PLL stereo decoder incorporates active filters for birdy suppression and power is supplied via a toroidal transformer and throughour.
phict

 12. Seid capacitors, rectifiers, voliage regulator fo

 5. Firroquss printor circill Doart for slerto dacoder

8. Sul of components for chanmel sellector E2.90 88.30 15. Construction notes fir re witio compiete tit) . . 80.25 16. Teak cabinet $10.3^{\prime \prime \prime} \times 12.7^{\prime \prime} \times 3.1^{\prime \prime} \ldots \ldots \in 10.70$ Dase each of packs 1.16 inclusive are required tor comptete

FREE

KIT PRICE ONLY
reak case with full kits $£ 79.80$

WIRELESS WORLD FM TUNER
\qquad
10. Frequency metor. meter drive components fibregiass printed cirevit board................. ci0.35 ster eo FWM funere. Total cost ol individualty purchased
packs

LINSLEY-HOOD CASSETTE DECK

Published in Wireless World (May. June, August 19̄76) by Mr. Linsley-Hood this design, although straightforward and relatively low cost nevertheless

provides a very high standard of performance. To permit circuit optimization component front-end designed such that the noise level is below that of the tape background. Push button switches are used to provide a choice of equalization time constants, a choice of bias levels and also an option of using an additional pro-amplifier for microphone use. The mechanism used is the Goldring-Lenco CRV, a unit distinguished in its robustness and ease of peration. Speed control and automatic cassette ejection are both implemented by electronic circuitry. This unit which is powered by a toroidal transformer and uses metal oxide resistors throughout offers an excellen

PRICE STABILITY

Order with confidence! Trrespective of any price changës we will honour all prices in this advertisement for two months from issue date provided that this advertisement is quoted with your order. E\&OE VAT rate changes excluded. All components are brand new first grade full specification devices. All resistors (except where stated) are low noise carbon film types. All printed circuit boards are fibre-glass, drilled, roller tinned and supplied with circuit diagrams and construction layouts.
Value Added Tax not includey in prices.
EXPORT ORDERS. No VAT charged. Postage chärged at actual cost plus $5 \overline{0}$ p documentation and handling. Please make payment by Ir revocable Letter ol Credit £500 minımum. Bank Draft, Postal Order, Internatıonal Money Order in Sterling
SECURICOR DELIVERY. For this optlonal service (U.K. Mainland only) add SECURICOR DELIVERY:
£2.50 NAT INC.) per kit.
U2.50 NAT INC.) per kit. $121 / 2 \%$ s surcharge for VAT. Carriage free.
MAIL ORDER ONLY. (由or at current rate if changed)

Indonesia Brazil Switzerland Canada Saudi'Arabia New Zealand Norway İceland Sweden

Pack
Pack ${ }^{1 .}$ Siereo pCB faccommodales 2 rep. amps. 2 Price umps. 2 mater amps. bias/erase osc. relay) 3.35 2. Starse sal of capilers. M. O. reslstors. pol entiomatars lor above. $£ 9.80$ 4. Mmiature relay with socket 4. Mmiature reiay with socket90 errcuits 6. Goidring Lenco machanism is spacified. E21.95 7. Funclion switch, knobs 1.90 8. Dual VU meter with illuminating lamp ... E8.70 9. Toroidal Ir uastormer with ES. screen prim. 117 V .23 V. Sec. 15 V PRICE FOR
SPECIAL PRIC
COMPLETE KITS
Further details of above given in our FREE CATALOGUE EXPORT CUSTOMERS. Please send five INTERNA
TIONAL REPLY COUPONS OR EO. 50 for catalogue to DEPT. WW4
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP10 3NN

Pet io. Sel of capacitors. rectifiers. I.C. voliage regulator Ior powier supply (Powerirs dessigu) ... £2.00 11. Sat of miseollameous parts. ineluding soctars. fuse 2. Set ol Sot ol metalwark inciuting silk screened faci panel, internal screen, fixing paris. etc. . E7,10
3. Canstruction notas

One each of pact $7^{\prime \prime} \neq 3.1^{\prime \prime} \ldots £ 10.70$ required for compote stereo cassette dequ. Total cost of individually pur chased packs $£ 90.05$

£85.90

Guernsey Cyprus Belgium Uganda Brunei Trinidad. South West Africa Italy Java G̈ro

AUDIO KIT SUPPLIERS TO THE WORLD

Wrabese Word Amplifier Designs. Full kns are not available for these profecis bui component packs and PCBs are stocked for the highly regarded Baitey and 20 W class AB Linsley Hood designs, together with an efficient regulated power supply of our own
design. Surtable for diving these amplifiers is the Bailey Burrows pre-amplifier and our crccut board, for the stereo version of in features 6 inputs, scratch and rumble filters and mide range tone controts which may be either rovery or slider operating. For those
miending to get the best out of their speakers. we also offer an active tilter sysitem described by D. C. Read, which splits the output of each channol from the pre-amplifier amplifter. The Read/Texas 20W, or any of our other'kits are suitabie for these. For tape performance stereo Stuart desich Details of componen packs aie cul based, high 30 W Bailey Amplifier.
BAIL Pr $1 \mathrm{~F} /$ Glass PCB \qquad
ball Ph. 3 Semmiconductor set
LHAB Psley Hood Class AB
HAB PR 2 Resislass PCB Capacitor, Potentiometer sei
thab Pk. 3 Somiconductor ser
Regulator Power
Regulator Power Supply
60 VS Pk. $1 \mathrm{~F} /$ Glass PCB
GOVS Pk. 2 Resistor. Capacitor Bel
60VS ph 3 Semicond

60VI Pk. 68 Toroidsl trantiormer (hor use with $20 \mathrm{~W}(\mathrm{H}$)

8BPA Pk. 3R Rolary Potentiometer set Stereo,
Rative Filter
FIT Pk, 1 F/Glass PCB
FIIT Pk, 2 Resistor, Capactior sel imetal oxide 2%. polystyrene 2 y/2 \%
2 off Pks 1, 2, 3 rad for ster
Read/Tenas 20 W Amp
READ Pk. 1 F/Glass PCB
READ Pk. 2 Ressistor, Capacitor sel
REAO PK. 3 Semiconductor sel
Stuar Tape Recorder
$\begin{array}{ll}\text { TRRC Pk } & 1 \text { Replay Amp F/Glass PCB. stereor } \\ \text { TRecord Amp F/Glass PCB/Stereo }\end{array}$

EXPORT NO PROBLEM

Our Export Department will be pleased to advise on postal costs to arty country in the world. Some of the countries to which we sent kits in 1976 are shown surrounding this advertisement

CONVERT NOW TOO QUADRAPHONICS!

Owners
Owners of T20 +20 and Temen ampltiars which hove no tupe monitor outlet,
purchasing an SOM $1-30$ will be supplied on request. ofreeconversion kin to fite tuppe morvonng tacility to the oxistang smplither.
This makes simple the connection to the

SQ QUADRAPHONIC DECODERS

Feed 2 channels $(200-1000 \mathrm{mV}$ as obtanable from most pre-amplifiers or amplifier
tape monitor ouifets) into any one of our 3 decoder's and take 4 channels out with no overall signal level reduction. On the logic enhanced decoders Volume. Front-Back. LF-RF balance. LB-RE balance and Uimension controls can all be implemented by simple single gang potentiometers.
These state of -the-art circuits used under licence from CBS are offered in kits of superior quality with close tolerance capacitors, metat oxide resistors and fibre glass PCBs designed for edge connector insertion. All kit prices include
 11. Full logic controlled decoder with "wave matching". and "front back logic" tor enhanced channel separation. All

L2A. More advanced full logic decoder with "variable blend" for increased front back separation. All components. PCB 3A. Decoder similar to L2A but with discreet component front end with high precision 6-pole phase shift networks fo Also availabency response. All components (carbon film resistors). PCB
\& 4.20
SEMICONDUCTORS as used in our range of quality audio equipment

2n695	¢0.20	. 6×108	¢0, 10	BF257	c0. 40	MPSA05	60.25	TIP29 ${ }^{\text {c }}$	c0. 55
2N1613	£0.20	8 Cl 109	60.10	8F259	¢0.A7	MPSA12	co. 35	TiP30C	${ }^{80.50}$
2N3055	c0.45	BC109C	¢0.12	BFR39	c0. 30	MPSA 14	c0, 30	T1P41A	c0.70
2N3442	¢1.20	BC125	$\underline{6.15}$	BFR79	$\underline{50.30}$	MPSA5S	£0.25	TIP42A	E0.80
2 N 311 t	£0.09	8C126	¢0.15	BFY51	$\underline{60.20}$	MPSA65	£0.35	T1P418	$\underline{60.75}$
2N3904	£0.17	BC 182	E0.10	EFY52	¢0.20	MPSA66	co. 40.	T1P428	c0.90
2N3906	¢0. 20	EC212	c0.12.	Ca3046	$\underline{60.70}$	MPSU05	co. 50	1N914	¢0.07
2NSO87	E0. 25	BC182L	c0.10 ${ }^{\text {- }}$	$1 \mathrm{LP186}$	E8.50	SBaj50a	E1.90	1 N916	$\underline{50.07}$
2N5457	¢0.45	BC184L	$\varepsilon 0.11$	MC1310	E2. 20	SL301	£1.30.	. 15920	¢0.10
2 N 5459	¢0.45	BC212L	c0. 12	MC1351	E1.05	SL3045	E1.20		
2N5461	c0.50	BC214L	£0.14	MC1741CG	$\mathrm{c}_{0} 0.85$	SN72741P	£0.40	FiLTE	
2N5830	co. 35	BCY72	c0.13.	MFCC4010	60.95	SN72748P	¢0.40.		
40361	¢0.40	B0529	¢0.65	M 481	E1.20.	TH209	¢0.20	SFJ $10,7 \mathrm{Ma}$	¢1.50
40362 BC 107	60.45 $\mathbf{c o s e r}$	B0530 B0Y56		MJJ491	${ }_{60.60}$	TIP29A	60.40 60.45		

With ' 100 s of tivies now available no longer is there any problem 'over suitable sotware. Na problems with hardware sither. Our new unit the SOM1-30 simply plugs into the tape monitor socke or pour existing ampinel. A full complement of controls including volume, bass, treble and balance are provided as are volume, bass, streble and balance are throvided as are
comprehensive switching facilities enabling the unit to be used for either front or rear channels. by-passing the decoder for stereo-only use and exchanging left and right channels. The SO matrix decoder is based upon a single integrated circuit and was designed by CBS whilst the power and tone control sections are Identical to those used in our $\mathrm{T} 30+30$ amplifier which the SOM 1-30 matches perfectly. Kit price includes CBS licence fee

15-240 Watts!

HY5

Preamplifier

HY30
15 Watts into 8Ω
The HY5 is a mono hybrid amplitier ideally suited for aft applications. All common input functions (mag Cartridge, tuner, etc.) are catered for internally, the desired function is achieved either by a multi-way switch or direct connection to the appropriate pins. The internal volume and tone circuits merely require connecting to external potentiometers (not included). The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C. connector is upplied with each pre-amplifier.
FEATURES: Complete pre-amplifier in single pack - Multi-function equalization - Low noise - Low distortion - High overload - two simply combined for stereo

- Mixers - Disco - Guitar and Organ - Public address

SPECIFICATIONS
INPUTS Magnetic Pick up 3 mV Ceramic Pick-up 30 mV ; Tuner 100 mV ; Microphone 10 mV . Auxiliary $3-100 \mathrm{mV}$; input impedance 47 kt) at 1 kHz .
OUTPIJTS Tape 100 mV : Main output 500 mV R.M.S
ACTIVE TONE CONTROLS Treble $\pm 12 \mathrm{~dB}$ at 10 kHz ; Bass \pm at 100 Hz
DISTORTION 0.1% at 1 kHz ; Signal/ Noise Ratio 68dB
OVERLOAD-38dB on Maqnetic Pick-up: SUPPLY VOLTAGE $\pm 16.50 \mathrm{~V}$
Price $£ 5.22+65 p$ VAT P\& P free
HY5 mounting board B1 $48 p+6 p$ VAT P \& P free
The HY30 is an exciting New kit from I.L.P., it features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of I.C., heatsink. P.C. board, 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is FEATURES: Complete kit - Low Distortion. Short Open and Thermal Protection - Easy to Build APPLICATIONS: Updating audio equipment - Guitar practice amplifier - Test amplifier - Audio Applications: Updating audio equipment - Guitar practice amplifier - Test amplifier - Audio
SPECIFICATIONS:
OUTPUT POWER 15 W R.M.S. into 80 . DISTORTION 0.1% at 15 W
NPUT SENSITIVITY 500 mV . FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$
SUPPLY VOLTAGE $\pm 18 \mathrm{~V}$
Price $£ 5.22+65 p$ VAT P\&P free.
HY50
25 Watts into 8Ω
The HY50 leads I.L.P.s total integration approach to power amplifier design. The amplifier teatures an he amplifier has Fidelity modules in the World
FEATURES: Low Distortion - Integral Meatsink - Only five connections - 7 Amp output transistors - No external components.

APPLICATIONS: Medium Power Hi-Fi systems - Low power disco - Guitar amplifier
SPECIFICATIONS: INPUT SENSITVITY 500 mV .
OUTPUT POR 25W RMS in 80 LOAD IMPEDANCE 4-1612. DISTORTION 0.04\% at 25 w at kHz
SIGNAL/NOISE RATIO 75 dB . FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$-- 3 dB . SUPPLY VOLTAGE $=25 \mathrm{~V}$. SIZE 105.50 .25 mm
HY120
60 Watts into 8Ω
The HY1 20 is the baby of I.L.P.'s new high power range, designed to meet the most exacting requirements including load line and thermat protection, this amplifier sets a new standard in modular design
FEATURES: Very low distortion - Integral Hearsink - Load line protection - Thermal protection Five connections - No external components
APPLICATIONS. Hi-FI - High quality disco .- Public address - Monitor amplifier -- Guitar and organ. SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER 6OW RMS into 81). LOAD IMPEDANCE 4-16 2 . DISTORTION 0.04% at 60 W at
1 kHz SIGNAL/NOISE RATIO 90dB. FREOUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$. SUPPLY VOLTAGE
$\pm 35 \mathrm{~V}$. $114 \times 50 \times 85 \mathrm{~mm}$
Price $£ 15.84+£ 1.27$ VAT P\&Pfree.
HY200
120 Watts into 8Ω
The HY200, now improved to give an output of 120 Watts, has been designed to rugged conditions, such as disco or group while still retaining true Hi-Fi performance. FEATURES: Thermal shutdown - very low distortion - Ladiline protection - Integral Heatsink No external components.
SPECIFICAONS: Ri-Fi - Disco - Monitor - Power Slave - Industrial - Public address SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER 120W RMS into 812. LOAD IMPEDANCE 4.161. DISTORTION 0.05% at 100 W at
SIGNAL/NOISE RATIO 96 dB . FREQUÉNCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$. SUPPLY VOLTAGE SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price $\mathbf{\varepsilon 2 3 . 3 2}+\mathbf{£ 1 . 8 7}$ VAT P\&P free,
HY400
240 Watts into 4Ω
The HY 400 is I.L.P.'s "Big Daddy" of the range producing 240 W into 4 ! 2 It has been designed for high power disco or public address applications. If the amplitier is to be used at continuous high power levels a cooling tan is recommended. The amplifier includes all the qualities of the rest of the family to FEATURES: Thermal shuidown - Very low disportion -
components.
APPLICATIONS: Public address. - Oisco - Power slave - Industrial.
SPECIFICATIONS:
OUTPUT POWER 240W RMS into 412. LOAD IMPEDANCE 4.1612. OISTORTION 0.1% at 240 W at
SIGNAL/NOISE RATIO 94 dB . FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$. SUPPLY VOLTAGE $\pm 45 \mathrm{~V}$
INPUT SENSITIVITY 500 mV . SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price £ $32.17+£ 2.57$ VAT P\&P free.
POWER
SUPPLIES
PSU36 sultable for two HY30's $£ 5.22$ plus 65 D VAT P/P free
PSU 50 sutbble for two HY 50 's $£ 6.82$ plus 85 DAT P/P tree
PSU 70 surtable for 2 HY 120^{\prime} ' $£ 13.75$ plus $£ 1.10$ VAT P/P 1
PSU90 suitable for one HY200 $£ 12.65$ pius $£ 1.01$ VAT P/P free.
PSU180 surable for two HY2000 sor one HY400 £23.10 plus

TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS

I.L.P. Electronics Ltd
Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Please Supply

Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name \& Address

WW - 725 FOR FURTHER DETAILS

Signal chokes

Miniature low-cost precision inductors for radio, TV, calculators, filters etc.

10RB: 1 mH to 120 mH 10RA: 1 mH to 80 mH TOKO (UK) Ltd. Ward Royal Pde., Alma Rd., Windsor, Berkshire . (07535-54057)
Ambit International, 37a High St., Brentwood, Essex. (0277-227050) for ex-stock values.

TRANSFORMERS

ALL EX-STOCK - SAME-DAY DESPATCH
MAINS ISOLATING VAT 8\%: 12 and/or 24-VOLT
RI 120/240V SEC 120/240V
Centre Tapped and Screened

				Rof	A	-	E	P\& P
Ref.	(Watts)	£			12v	24v		
07*	20	3.57	. 6.	111	0.5	0.25	1.77	36
149	60	5.39	. 80	213	1.0	0.5	2.14	65
150	100	6.13	95	71	2	1	2.77	65
151	200	9.82	1.25	18	4	2	3.42	80
152	250	11.87	1.53	70	6	3	5.09	80
153	350	14.34	1.53	108	8	4	5.85	95
154	500	16.48	1.79	72	10	5	6.33	95
155	750	25.23	OA	116	12	6	6.67	1.10
156	1000	35.16	OA	17	16	8	8.60	1.10
157	1500	40.12	OA	115	20	0	2.55	1.73
158	2000	44.76	OA	187	30	5	6.33	1.73
159	3000	70.70	OA.	226	60	30	0.32	OA
\$115 or 240 sec only				30 VOLT RANGE Primary 20-240V SEC. JAPS 0-12-15-20-25-30V				
	VOL	RAN						
Primary 220-240VSEC. TAPS 0-19-25-33-40-50V								
				$\overline{\text { Ref. }}$	Amp			
Ref.	Amps	£	P8, ${ }^{\text {P }}$	112	0.5			65
102	0.5	3.12	65	79	1.0			80
103	1.0	4.08	80.	3	2.0			80
104	2.0	5.69	. 95	20	3.0			95
. 105	3.0	7.02	1.10	21	4.0			95
106	4.0	9.18	1.25	51	5.0			1.10
107	6.0	14.62	1.37	117	6.0			1.25
118	8.0	15.56	1.73	88	8.0			1.37
119	10.0	20.41	OA	89	10.0			1.53

60 VOLT RANGE			
Primary	220.240 V		
SEC TAPS $0.24-30-40-48-60 \mathrm{~V}$			
Ref.	Amps	ε	P\& P
124	0.5	2.85	.80
126	1.0	4.23	.80
127	2.0	6.13	.95
125	3.0	9.09	1.10
123	4.0	10.57	1.53
40	5.0	11.78	1.37
120	6.0	13.88	1.53
121	8.0	18.11	BRS
122	10.0	22.31	BRS
189	12.0	23.30	BRS

GE	AUTO TRANSFORMERS					
-48-60V	Ref.	VA	Varts)	TAPS	E	PAP.
P\&P	113	20	0.115	5.210-240V	2.01	59
80 80	64	75	0-115	5.210.240	3.51	80
95	4	150	0.115	-210-220.240V	4.98	80
1.10	66	300	..	.,	7.03	95
$1: 53$	67	500	..	.	10.76	1.37
1.37	84	1000		"	16.51	1.73
1.53	93	1500	'		21.87	BRS
BRS	95	2000	.,		29.22	BRS
BRS	73	3000	..		42.37	BRS

HIGH VOLTAGE
MAINS ISOLATING
Pi 200 . Pri 200/220 or 400/440 $\begin{array}{cccc}\text { Sec } & \text { Ref. } & \text { or } & \text { E } \\ \text { VA } & \text { Pap } \\ 60 & 243 & 5.03 & 1.10\end{array}$

SCREENED MINIATURES Primarv 2				
Ref.	mA	Volts	E	Pst
238	200	3-0.3	1.86	. 46
212	1A, IA	0.6, 0.6	2.22	65
13	100	9-0-9	1.78	. 32
235	330.330	0-9, 0.9	1.89	. 32
207	500,500	0-8-9, 0-8-9	2.32	. 59
208	1A, 1A	0-8-9, 0-8.9	3.53	65
236	200, 200	0-15, 0-15	1.78	. 32
214.	300, 300	0-20, 0-20	2.33	65
221	700 (DC)	:20-12-0-12-20	2.74	65
206	1A. 1A	0-15-20, 0-15-20	4.17	80
203	500, 500	0.15-27, 0.15-27	3.62	80
204	1A, 1A	$0.15 \cdot 27,0.15-27$	4.76	80
S112	500	0-12-15-20-24-30	2.27	

CASED AUTO. TRANSFO
240 V cable input. USA 2 -pin outlets

20 VA	$£ 3.78$.	P\&P 80 p	Ref. 113 W	
75 VA	$£ 5.51$.	P\&P 95 p	Ref.	64 W

BRIDGE RECTIEEER

TI MINI-MULTIMETER
DC-100OV. AC.100OV
AC/DC-1000 $/$ /V
DC-100mA. Res - 150 K Bargain at $£ 5.30$ VAT 8\% P\&P 45p

STEREO F.M. TUNER Pre-selected sta
Switched AFC

$$
\begin{aligned}
& \text { Supply } 20-35 \text { v } 90 \text { Ma Max. } \\
& \text { £20.45. P\&P } 25 \text { p. VAT } 121 / 2 \text {, }
\end{aligned}
$$

E20.45. P\&P 25 p. VAT $121 / 2 \%$
MAGNETIC TO CERAMIC
CARTRIDGE CONVERTER
perating Voltage $20 / 4$
ONLY E2.85 P\&P 18 p VAT $12 \frac{1}{2} \%$

Barrie Electronics Ltd. 3,THE MINORIES,LONDON EC3N 1BJ TELEPHONE: 01-488 3316/8
 NEAREST TUBE STATIONS: ALDGATE \& LIVERPOOLST.

A range of communications amplifiers having power ratings from 15 to 200 watts
plug-in input facilities ensure individual requirements can
be provided.

WWenden'tange mneádurannelitiers

vided.

Manufacturers of sound systems and electronics

Station Road, Wenden Saffron Walden Essex CB11 4LG Saffron Walden (0799) 40888

30×30 WATT AMPLIFIER KIT

Specially designed by RT-VC for the experienced constructor, this kit comes complete in every detail. Same facilities as Viscount IV amplifier Chassis is ready punched; drilled and formed Cabinet is finished in teak veneer. Black tascia and easy-to-handle aluminium knobs. Output $30+30$ watts rms, $60+60$ peak

4×4 STEREO AMP KIT £ 14.50 pap 22.00

For the experienced constructor who wants to design his own stereo, kit includes all necessary components including constructors manual. Plus pair of easy to build 4 watt speakers in kit form, with teak simulate finish cabinets $12^{\prime \prime} \times 9^{\prime \prime} \times 5^{\prime \prime}$ approx

FANTASTIC SAVING. =in =in STEREO AMPLIFIER KIT WITH PZ 20 POWER UNIT A build- it-yourself stereo power amplifier with latest integrated circuitry. 10W RMS per channel output, full short-circuit and overheat protection. £ $95{ }^{\text {OUR }}$ Palce Complete with PZ20 Power Supply

DIY SPEAKER KITS

EASY-TO-BUILD WITH ENCLOSURE
Specially designed by RT-VC for cost-conscious hi-fi enthusiasts, these kits incorporate two teaksimulate enclosures, two EMI 13" $\times 8^{\prime \prime}$
(approx.) woofers, two tweeters and a pair of matching crossovers. Easily constructed, using afew basic tools. Supplied complete with an easy-tofollow circuit diagram, and crossover components. Input 15 watts ms. 30 watts peak, each uni ²550 Cabinet size $20^{\prime \prime} \times 11^{\prime \prime} \times 9^{1 / 2}$ PER PAIR (approx).
$+p \& p £ 5.50$

15-WATT KITIN £ $17.00 \underset{\text { Steren }}{\text { PER }}$ CHASSIS FORM \quad E3.60 \& \& P PAIB

 When you are looking for a good speaker, why not build your own from this kit. It's the unit which we supply with the above enclosures. Size $13^{\prime \prime} \times 8^{\prime \prime}$ (approx.) woofer, (EMI) tweeter, and matching crossover. Power nandling capacity 15 watts rms. 30 watts peak.
'COMPACT' FOR TOP VALUE

How about this for incredible bookshelf value from RT-VC! A pair of high efficiency units for only $£ 7.50$ - just what you need for low-power amplifiers. These infinite baffle enclosures come to you ready mitred and protessionally finished. Each cabinet measures $12^{\prime \prime} \times 9^{\prime \prime} \times 5^{\prime \prime}$ (approx.) deep, and is in wood simulate Complete with two $8^{\prime \prime}$ 850 (approx.) speakers for max per pair power handling of 7 watts.

BSR TURNTABLES

BSR MP60 TYPE

Single play record plaver
(Chassis form) less cartridge $£ \mathbf{£} \mathbf{5 . 9 5}$ Cartridges to suit above $P \& P\{2.00$ ACOS MAGNETIC STEREO. . . £ 4.95 CERAMIC STEREO. $£ 1.95$ BSR automatic record player deck (Chassis form) with cueing device and stereo ceramic head $\mathbf{£} 9.95$

20×20 WATT STEREO AMPLIFIER

 2990

Superb Viscount IV unit in teak-finished cabinet. Silver fascia with aluminium rotary controls and pushbuttons, red mains indicator and stereo jack socket. Function switch for mic, magnetic and crystal pick-ups, tape, tuner, and auxiliary. Rear panel features two mains outlets, DIN speaker and input sockets, plus fuse. $20+20$ watts rms, $40+40$ watts peak.

HOWTOUENS SAV $=1$

SYSTEM 1B For only $£ 80$, you get the $20+20$ watt Viscount IV amplifier, a pair of our 12-watt-rms Duo Type lib matched speakers; a BSR MP 60 type deck complete with magnetic cartidge, de luxe plinth $£ 80^{00}$ and cover.

SYSTEM 2 Comprising our 20+20 watt Viscount IV amplifier: a pair of our large Duo Type III matching speakers which handle 20 watts mm each. and a BSR MP 60 type deck with magnetic cartridge, $£ 2^{00}$ de luxe plinth and cover. +p 8 p £7.60
Carnaes surcharge to Scotiant: System 18 E2.50, System 2 e5.00

SPEAKERS Two models- Duo llb, teak veneer, 12 watts rms, 24 watts peak, $181 / 2^{\prime \prime} \times 13^{1 / 2 \prime} \times 71 / 4^{\prime \prime}$ approx £34 ${ }_{+1}^{\text {PER PAIR }} \mathrm{p}$ p P .50
 Duo III, 20 watts rms, 40 watts peak, $27^{\prime \prime} \times 13^{\prime \prime} \times 111 / 2^{\prime \prime}$ §52 PER PAIR ${ }^{\text {approx }}$ - 080 E ¢ 50 de luxe plinth and cover. £2900 $+p \& p \varepsilon 4.50$
 Special offer to personal shöppers oniy CHASSIS citect © 35.00 Complete ready to install-Wave bands L. M, \& 35.00 VHF STEREO. VHF MONO. Controls for tuning
 volume, balance, bass and treble. Power output 7 watts R.M.S. per channel 14 watts peak into 8 ohms. $2 \times 8^{\prime \prime}$ approx chassis speakers and BSR C141 auto record player deck

TURNTABLE Popular BSR MP 60 type, complete with magnetic cartridge, diamond stylus, and

CAR RADIO KIT

MOTOR TOP 10 AWARD

Complete with speaker, baffle and fixing strip.The Tourist IV for the experienced constructor only. The Tourist IV has five push buttons, four medium band and one for long wave band. The turing scale is illuminated and attractive small a luminium control knobs are used for manual tuning and volume control.
The modern syle fascia has been designed to blend with most ca interiors and the finished radio will slot into a standard car radio aperture. Size approx $7^{\prime \prime} \times 2$ " $\times 43 / \%^{\prime \prime}$ Power Supply Nominal 12 volts positive or negative eath (altered internally) Power Ouptut 4 watts into 4 ohms.
£12.50
22.50

35-WATT DISCO AMP

Here's the mono unit you need to start off with. Gives you a good solid 35 watts rms, 70 watts peak output. Big features include two disc inputs, both for ceramic cartridges, tape input and microphone input. Level mixing controls fitted with integral push-pull switches Independent bass and treble $£ 2750$ controls and master volume. 2

PORTABLE DISCO CONSOLE
with built-in pre-amplifiers
Here's the big-value portable disco console from RT-VC! It features a pair of BSR MP 60 type auto-retum, single-play professional series record decks. Plus all the controls and features you need to give fabulous disco performances. Simply connects into your existing slave or external amplifier.

$70 \& 100$ WATT BISCO AMPS

Brilliantly styled for easy disco performance! Sloping fascia, so that you can use the controls without fuss or bother. Brushed aluminium fascia and rotary controls. Five smooth-acting, vertically mounted slide controls - master volume, tape level, mic level, deck level, PLUS INTER-DECK FADER for perfect graduated change from record deck No. 1 to No. 2, or vice versa. Pre-fade level control (PFL) lets YOU hear next disC 10 WATT before fading it in. VU meter $\varepsilon_{4} 900$ monitors output level 70 watts rms, 140 watts peak output. All the big features as on the 70-watt disco amplifier, but with a massive 100 watts mm 200 watts peak output power

IOO WATT
${ }^{2} 65^{00}$ +D8854

ALL PRICES INC.VAT. AT 12 $\frac{1}{2}$ \%

GOODS NOT DESPATCHED OUTSIDEUK All items subject to availability. Price correct at We are unable to show all our oroducts. so please Send stamped addressed envelope for our fully descriptive catalogue and any further information

D̄o not send cáró Just write your order giving your credit card number

21 E HIGH STREET, ACTON, LONDON W3 6NG 323 EDGWARE ROAD, LONDON W2
Personal Shoppers Eog ware road 9.30 am- 5.30 pm. Halif day Thurs. ACTON: Mail Order only. No callers

Hither. Tent HDTTPDIEITS ITI

315, 317, 364 EDGWVARE ROAD, LONDON W2

TEL: 01-723 5667 \& 01-402 5580

Shops and mail order depl (mail to 364) open 9 to 6 Mion. to Sat.
Prices include VAT. Carr. 1 p. \& p. quoted U.K. only
ACCESS \& BARCLAY accepled. Minimum order $£ 5$ otherwise C.W.O. For credit on approved account

FANS

DUAL EXTRACTOR FA
240 V .50 Hz . Two thick slack shaded pole motors make this
heavy steel frame each has five elemen $61 / 2^{\prime \prime}$ blades. Size
SINGLE FAN with motor similar 10
above. Very usetul in home and

PROGRAMME TIMERS
Magnetic Devices Lid. Synchronous $230 \mathrm{~V}, 50 \mathrm{~Hz}$ motor,
geared down to 1 rev. per 8 hours. Drves shall mouning geared down to 1 rev. per 8 hours. Drves stall mouning micro-5witchiwith 10 amp contacts. Any switch can be set size $4 h^{\prime \prime}{ }^{\prime \prime} 4 h^{\prime \prime} \mathbf{n}^{\prime \prime}$ to 8 hrs. Push-on connecuons. Overall switching on and off radios and ughts as burglar deterrent Smis
 p. \& p. 4 or more $£ 1.50$ oach plus 70 p p. \& p . per pack

Midgley Marmer Ltd, $200 / 250 \mathrm{~V}$. synchionous motor
geared to 1 iev. pet $7 / 2 \mathrm{~min}$. All dimensions $21 / \mathrm{a}$ E1.50 each plus 250 p \& p. 4 or more \&1.0G 48p p. \& p. per pack of 4 . ROTARY STUD SWITCH
 break belore make. Stop intinitely adjusiabi-
allowing for any desired arc of yravel.

UNI-SELECTOR
$240 \mathrm{v} . \mathrm{AC}$ of OC operation. Split
30 way double bank contacts. Overa!!
syze approx. $2 \mathrm{wa}^{\prime \prime}$ dia, $x 2 Y_{r^{\prime \prime}}^{\prime \prime}$ deep.
Brand new. Bargain at $£ 4.50$. p\&p.

TRANSFORMERS

2 KVA continuousiv rated. Tabped for any voltacie from $6-260 \mathrm{v}$. in sleps of 5 v . With an isolated winding of
$0-5-10 \mathrm{v}$ at $81 / 2 \mathrm{amps}$. this transformer is on extremely
 really robust job. Bargan ar £23.50. Carr. £3.00.
 Size 4 2 ${ }^{\prime \prime \prime} \times$
C2.00.
GRESMAM
PII 10.D.20D.220.240\%. Sec. rapped 0.31/2.7-11-32-33-34.35 at 10 amps . to give 24 uselu

fi. $15-0-210-240 \mathrm{v}$. Sec. 140 v . at $35 \mathrm{~m} / \mathrm{a} ., 31 \mathrm{v}$. al 500 m/a.c.t. 10 v . at 1.
f3.95p. p .30 p .
 etcal $£ 1.50$ ea. p. $\&$ p. 20 op. 6 off $₹ 1.00$ ea. p. \& p. 45 s GOODYEAR 1 KVa automatic transiormer
$0.110 .115 .120-200-220-240 \mathrm{~V}$. Fully, shrouded. Terminal block connections. Size $5^{\prime 4} \times 41 /{ }^{\prime \prime} \times 51{ }^{\prime \prime \prime}$ plus
block. cannot be bettered at $£ 13.95$, o \& p. $£ 1.50$. ARROW SWITCM
 extends $1 / 2^{\prime \prime}$, Rated $1 /$ amp. as
$240 \mathrm{v} .21 /$ amps. al $^{2} 125 \mathrm{v}$, Price tor 5 (min. qty.) $£ 1.75 \mathrm{p}$. \& \& p
30 p . 10 or more 30 p each p . p

REED SWITCHES
 SYLVANIA SWITCH
 $14.5 \mathrm{Ko} / \mathrm{cm} .5 / 16^{\prime \prime}$ dia. shath. Sire ase
$6^{\prime \prime} \times 3 \% \mathrm{y}^{\prime \prime}$ dia, plus base. Brand new. Limited quantity. £16.50.p\& p £1.50.
CROYDON $1 / 10$ HP. reversible moror 230/240v. 50
 $1 / 8 \mathrm{HP}$, reversible geated
molor. $220 / 240 \mathrm{~V} .50 \mathrm{~Hz} .1$
 molor, cap start, cont, tating.
 $51 / 2$ "d da. plus cap. and base. New. Robust. £23.95. cart,
E3.00.
ACADEX shaded pole motor. Open frame 230v. 50 Hz .
 for fans, models, etc. Size.
spindles. 11.50 p\&p 45 p.

spindles. © 1.50 patp 45 . Crouzet shaded pote motor. Open frame $115 / 230 \mathrm{v}$

PAPST mators. Noted for advanced design
and superb construction. Rotating diecast and superb construction. Rotating diecast
outer body acts as flywerght and ellminales wow and flutter, 50 Hz . capacitor start.
MODEL HSKZ $32.80-6 / 12.220 \mathrm{v}$. Oual speed tape deck motor $500 / 1000$ rpm 12 mm . drue spert gives tape
speeds of $9.53 / 19.05 \mathrm{~cm} / \mathrm{sec}$. $13 / 4 / 71 / 2 \mathrm{ins} / \mathrm{sec}$.
 Spindis. E16.E0. p8 8 p. ©1. 10 .
MODEL RO $32.65-4$ Dual
MODEL RO $32.65-4$. Dual voltage $125 / 250 \mathrm{v}$. Size $24^{\prime \prime}$

MODEL HSZ $20.25-2$. Basically 42 v . but can be operate

 motor. Size $1 \% h^{\prime \prime}=2 h^{\prime \prime}$. spindie $5 / 16^{\prime \prime \prime}$ dia. $\mathbf{~} 5.95$. p\&ip.
SOLENOIDS 240V A.C

$11 / h^{\prime \prime h} \pi 21 / h^{\prime \prime}$ plus lrave ${ }^{5}$

30p p. ap.

PYE ETMER LTO Thrust operates through spring loaded mount ling bracket and push oun or push. Complete with
mounctions Size overall

RELAYS

LOGIC OP / AMP POWER SUPPLIES

Tppe Ho,	CPS 40	SPS 5	SPS 7w	sps 941
	Card form	Fulty mancasd	Fulty encased	Suly anca
0/p molls	4.5/5.5 [3]	$45 / 6.00^{(3)}$	12/18	5/60
Amos. Man.	1.25	20	0.5121	10.0
${ }^{\text {Rippoio }}$ (4)	0.5	0.5	0.15	0.1
Repulation\%	0.02	0.02	0.005	0.02
Price	E14.00	¢25.00	92800	E51.00
	609	£1.20	11.20	£1.20

protection. (4) Pk-Pk M/V. All have stabiity of 10,000 : current limiting re-entrant and output impedance of 0.25 i MINIATURE LAMPS

	8	(1)	6	17	等
A	B	c	D	E	F G
$\begin{aligned} & \text { rype } \\ & \text { A } \end{aligned}$	Sue			Sixo	
		Volt/Curi 5.6 V 60 MA	$\begin{aligned} & \text { Type } \\ & 0 \end{aligned}$	3MM	Volt/Curr. 2.5 V 360 MA . $5-660 \mathrm{MA}$ 6 V 200 MA 6.3200 MA
	4 Mm	4 V 250 MA			
		5 V 60 MA	E	4 MM	
		12 V 40 MA			
		12 V 100 MA			14V 40 MA
		14VV75MA	F	4MM	2.7V 50 MA
		28 V 40 MA			12V 160 MA
c	5 MmA	28 V 40 mA			14 V 80 MA
G		Small telephone jack type 6 or 24 V			

elecro-mechanics Main body in in wo sections. coll section fixed
 cotaing on outer pelimeter,
Uning polate has zoin, ID bearing
concenvic with main section and $18-100$ th cog wheel. Extrembly
powertuil transmission. $24 \mathrm{~V} 0 / \mathrm{C}$ PCB EDGE CONNECTOR

fixang endplates enabiing connector to be cut and used any length desured. 50 pp . \& p. 15 p .10 off $\mathrm{E} 4,00 \mathrm{p}$. \& MEM LIMIT SWITCH

Snap action 5 amps at $240 / 410$ A.C. sire base. $336^{\prime \prime}$
$1 / 6^{\prime \prime}$ " $1 h^{\prime \prime}$ plus heavy duty roller plunger $11 /{ }^{\prime \prime}$ "
$1 \%^{\prime \prime}$ \# 11^{4} " plus heavy duty roliler pliunger $11 / z^{\prime \prime}$ e
JABSCO (ITT) ROTARY PUMP

put $2 / 3$ galls, per min. at 2400 rpm
Dozens of uses in home and workshop.

Strobes, Tachos, Meters, Generators and Telecommunications Test Equipment

G430 provides Sine-wave ($0-10 \mathrm{Vrms}$) and Square-wave ($0-20 \mathrm{~V}$ p-p) from 600s2, continuously variable, via 4 -position $0-60 \mathrm{~dB}$, push-button operated step attenuator. Frequency range1 Hz to 1 MHz .

£95

Send for
details of our
complete range

NEW PULSE GENERATOR Model 70 (illustrated above)
Compact, low-cost pulse and square-wave generator, featuring
P.R.F. 4 Hz to 400 kHz , gated or free-running. O/P 10 V peak from 50 D , also synch. O / P. Pulse width $1 u \mathrm{Sec}$ to 100 mSec . Delay $1 \mu \mathrm{Sec}$ to 100 mSec . Pulse mark/space inversion. TTL/CMOS HI LO gating facility

NEW WIDE-RANGE MULTIMETER UM-11

Features 38 -colour-coded ranges

1.5 V to 1500 V f.s.d. at $31.6 \mathrm{k} \Omega / \mathrm{v}$. d.c. Current, $10 \mu \mathrm{~A}$ to 15 A . a.c. Current_15A.

Other star features include mırror-scale, rugged taut band suspension, dB scale, diode and fuse protection. Supplied complete with test-leads and $£ 39.50$

See inside back
cover for details of ICE Super range of multi-

ELECTRONIC BROKERS LIMITED (New Products Division) 49-53 Pancras Road, London NW1 2QB. Tel:O1-837 7781

HART ELECTRONICS The Only Firm for Quality Audio Kits J. L. Linsley-Hood High Quality Cassette Recorder

As these circuits in recent issues of "Wireless World" are capable of such an excellent performance we feel that it is not sensible to sacrifice this potential by designing a kit down to a price. We have theretore spent a little more on professional hardware allowing us to design a very advanced modular system. This enables a more satisfactory electrical layout to be achieved, partiçularly around the very critical input areas of the replay preamps. These are totally stable with this layout and require no extra stabilising components. Many other advantages also come from this system which has separate record and replay amps for each channel plugging in to a master board with gold plated sockets. The most obvious is the reduction of crosstalk and interaction which could cause trouble on a single plane board, with our modular system the layout is compact but there is no component crowding. Testing is very easy with separate identical modules and building with the aid of our component-by-component instructions is childishly simple, but the finished result is a unit designed not to normal domestic standards but to the best professional practice.

ALL PARTS ARE POST FREE

Please send 9×4 SAE for lists giving fuller details and Price breakdowns.
\bar{A} suitable Metalwork and Front Plate is now available
Penylan Mill, Oswestry, Salop

Stirin! sound

DO AWAY WITH YOUR V.A.T. AND POSTAGE PROBLEMS

and provide a speedier direct-from-the-factory delivery service

Why worry about working out V. A.T. ($12 \% \%$ on $£ 4.87$ plus 8% on E 3.39 plus $85 p$ for p / p. or should in be items together cost us less to post, we credit you the difference. Buy at our shop in person and we deduct the postage charges automatically. This is not aill. Now you send your orders durect to our factory (see below) and we send back your order directil from there - real time saving that ANO STIRLING SOUND PRICES
REMAIN KEENLY COMPETITIVE ALL THE TIME maintaining the lead we took in 1959 by being first to sell REMAN KEENLY COMPETITI
bargan component packs. We vecome a long way since then - with our exciting programme tor the

YOU PAY THE PRICE YOU READ AND NOTHINE MORE
subject only to (very farely) thers being a printing error or really vicious price rise in production cosis. Yourre
SAFE when you buy trom Strifing Sound - the business that has grown on really understanding customers needs and inter

POWER AMPS FROM 4 TO 100 WATTS R.M.S.
$\mathbf{\$ 5 . 1 0 5}$
4 watts R.M.S. invo 3 ohms using 12 V supply.
deal for use in in-car entertanment. Size $-89 \times x$
S. 110
$\$.11$
Simil Similar in size and design to SS. 105 . Inis QV
module delivers 10 warts A.M.S. into 4 ohms \$s. 120
Using a 34 volt supply, such as SS.334. this
amplifier will d
Same dimensions as above.

SAVE
SS. 1100 WITH SS. 370
22.25 (lotal £26 45) You PAY ONLV' $£ 24.20-a$ genune saving of $£ 2,25$. 25 on power amplitier assembly
WHILE OFFER LASTS.

S5. 140
M. 3 version. Delivers 40 watts R.M.S. into 4 ohms Hom a 45 volt supply such as the SS. 345. Designed

SS. 1100 watts R.M.S. into 40 using 70 valt supply. Idea A. or disco unit. With o/p copacitor and heatsink typ mounting flange. Hent Sink tor abover

STIRLING SOUND PRE-AMP/TONE CONTROL UNITS

 UNIT ON Combined pre-amp with active tone-control on 10 to 18 V supply Treble ± 15 de at10 KHz , Bass ± 15 dB at 30 Hz . Stereo 1 aKHz , Bass ± 15 dB at 30 Hz . Stere
Balance, vol., reble and bass controls

SS. 100
Active to
89.00

SS. 101
Pre-amp for caramic carridges. etc... passive
tone control circuil shown in data supplied
tone control circuit shown in data supplied
SS. 102 STEREO PRE-AMP
P.LA.A.
radio. et.
tape,
E4.04

TODAY'S FINEST VALUES IN POWER SUPPLIES Of the eight modets avatabte in this wide ranging series, all except $\$ \$ 312$ have a low vollage $(13-15 \mathrm{~V}$)
outiet. The range is catculated to meat the majority of users' needs.

SS. 312	$12 \mathrm{~V} / 1 \mathrm{~A}$	c6.35	SS. 345	45V/2A	C. 0.8
\$5.318	18V/1A	c6.54	S5.350	50V/2A	E10.38

\$5.318	18V/1A	¢6.54	\$5.350	50V/2A	E10.38
			SS. 370	.7012A	E14.63
SS. $\mathbf{S S . 3 4 4}$	${ }^{24} 4 \mathrm{~V} / 2 \mathrm{~A}$	c8.31	SS. 310		

[16.69

ORDERING COULD NOT BE SIMPLER
The advertised price includes V.A.T. and postage charges, so pay the price you read
and make cheques payable to BitPre. Pak Lid. Every, ettort is made to ensure correctness of indorwation al time of going to press
Stiring Sound
Send your order to: STIRLING SOUND, Dept. WW. 5 37 VANGUARD WAY, SHOEBURYNESS, ESSEX

Telephone (0702-28) 5543
Shop customers as usual to:
220-224 West Rd., Westcliff-on-Sea, Essex, S50 9DF

Bl-PRE-PAK
 COMPONENT BARGAIN SALE

PRICES INCLUDE V.A.T., POSTAGE IN U.K. NO EXTRAS POSTAGE DEDUCTED FOR PERSONAL SHOPPERS

	TRANSISTORS mixed types. PNP geran silicon. AF and RF types. Unmarked and untested. Good yield.	£1.35
100	1.C.s mixed types, marked. Ideal for experimenters. elc. Limited supplies	£1.35
40	WIRE WOUND RESISTORS mixed values and wattages	85p
40	POTENTIOMETERS various values and types, some switched. pre-set. etc.	£1.35
100	DIODÉS silicon, equal to 1N914. IN4148. etc. unsorted, untested	75p
100	DIODES, germanium. glass and metal types. untested	75p
10	EHT RECTIFIER STICKS for colour TV triplers. ${ }^{\text {ing. Type CSD } 118 \mathrm{KXP}} \mathrm{F}$ work-	65p
100	ZENER DIODES 400 mW . Mixed volrages. Untested	75p
PCB	Printed circuit board. plain copper laminate, approx. 250 sq. ins. in about 7 pieces	£1.35

2 LIGHT ACTIVATED S.C.RS $50 \mathrm{v} / 1.6 \mathrm{~A}$. Type LF9. With full data	
PUSH BUTTON TUNER	
ASSEMBLIES for FM. TV. and Radio varicap tuners.	
4 -bution assemblies	E1.95
7.burion assemblies	£2.80

EX-C.P.O.

INSTRUMENT CASES
Heavy gauge stove enamelled Igrey
aluminum. Internat racking and panels usable as hearsinks. etc. Ideal tor PA
power supplies, oscilloscopes, instruments,
ERC. BRAND NEW, BOXED
SIZE 'A' $-14^{\prime \prime}$ $15^{\prime \prime} \times 6^{\prime \prime}$ deep $€ 8.00$

50 ONLY SIGNAL
GENERATORS
(Med. Wave \& I.F.). pocket size.
$\quad £ 5.25$

POCKET SIGNAL INJECTOR o trace fault, in A.F., R.F etc. $\mathbf{2} 2.75$

WHEN ORDERING
 ADDFORPOSTAGE \& VAT IN UG.K. Any small credited io you accordingly. Above offers open 220-224 WEST ROAD WESTCLIFF-ON-SEA, ESSEX SSO 9D Telephone Southend (0702) 46344

Better instruments. Better service.

We have established a nationwide network of approved service organisations to deal with the repair and
maintenance of our instruments. Every repair is backed
by a full 12 month guarantee. Here's where to find them.
ENGLAND London Instrument Repair Centre, Acton Lane, Chiswick London W4 5HJ. Trade Reception: Cunnington Street. Tel: 01-995 9212 London Instrument Repair Centre, Archcliffe Road, Dover, Kent. Tel: Dover (0304) 202620
Farnell International Instruments Ltd.. Sandbeck Way, Wetherby,
West Yorkshire LS22 4DH. Tel: Wetherby (0937) 3541
T.E.R. Instrumemnts Ltd. Peel Lane. Astley. Manchester M29 7JJH

Tel: Atherton (05234) 2275 or 5611
Midlands Instrument Repair Centre, Thorn Automation Ltd.
Armitage Road. Rugeley, Staffs. Tel: Rugeley (08894) 5151
SCOTLANDFalcon Electronics, 92 High Street. Johnstone, Scotland. Tel: Johnstone (0505) 23377

WALES Electro Services, 25 Chepstow Road. Newoort. Gwent NPT 8BX Tel: Newport (0633) 211243

A LONDTRUMENT

- REPAIR

CENTRE
The manufacturers' joint service organisation.
WW-105 FOR FURTHER DETAILS

A NEW RANGE OF

 SINTEL INDUSTRIAL MODULE KITS
 piug and sockel, nuls, screws. washers, instructions, elct. Sockers are NOT included and we rcommend thal you order Soldercon Pins separately (112 tor a 2 dign module. 224 for a 4 dign Each module consists of one verical PCB holdng the
full Kit or 2 dignt TTL Counter with Larch Order as
Full Kit for 2 dign TiL Counter with Laten: Order as
Full Kil or 4 dignt TL Counter with Latch: Ordet as

687-12

524-412

Latch

 Modupe wint Larch incligues PCB $2 \times$ dign sungle PCB CMOS Counteo 4511 1 * 4518 . Rs sockel pins etc Sue h fi $7 \mathrm{~mm} w 71 \mathrm{~mm}$ a 18 mmOrder as 142.269.
SETS OF JUMBO DISPLAYS WITH DISPLAY hOLOING PCB
Each set consists of the approprate number of $0.5^{\prime \prime}$.ed LED displays (enter common anode
TiL321/FND507s or common cathode TIL322/FND500s) and edisplay nolding PCB OPTIONS. PCBs wired for multiplexing or nonmuliplexing. clock format or counter format.

TYPE Non-Multipiexed	COMMON ANODE Part No. Price		COMMON CATHODE Part No. Price	
2 dign Counter	574-822	¢3.37	$446-822$	¢2.97
4 digit Counter	777.822	c6.63	128.322	c5.83
6 digit Counter	884-822	[9.89	271-822	¢.8. 69
Mutiplered				
4 digil Clock	301.822	£6.86	262-822	c5. ${ }^{\text {c }}$ 6
6 dign Clock	417822	¢10.15	452-822	c8.95
8 digil Counter	119:822	\&13.09	515-822	¢11.49

DATABOOKS

RCA CMOS and Lnear IC Combined Databook
National Semiconductor
TTL Pin OuI Card Index

Intel Memory Design Handbook C. 280 pages
inlel 8080 Microcomputer System Users Manual, c. 220 pages
Motorola McMOS Dalabook (Vol. 5 Series B). 500 pages
Motorola M6800 Micro Application Manual, c. 650 pages
Molorola M6800 Programming Manual c. 200 pages
Motorola M6800 Programming Manual. c. 200 pages
Motorola Booklet introducing Microprocessors
National SC/MP introtit Users Manual
National SC/MP Technical Description
Zitog 280-CPU Tectnical Manual (NEW).
Z.log
Z80-CTC Product Soecificaloon (NEW)
2.log 280-CTC Product Specificalıon (NEW)
Z.log Z80-P1O Technical Manual (NEW).

OATASHEETS on Microprocessors, anc. (Usually Xerox Coptes)
Interst IM M6100 12 bit
National SC/MP 8 bil
$\begin{array}{ll}\mathbf{8 0 . 7 5} & \text { RCA CDP } 18028 \text { bic CMOS } \\ £ 0.75 & \text { Z.log } 280 \text { (ennanced } 8080 \text {) }\end{array}$
Signetics 26508 bit. Low cost
TMS 8080
TMS 8080
9131 Memory

Our offices are at Link Property, 209 Cowley Alad. Oxford, but please do not use inis as a posial address. FAST SERvicE. We quarantee that Teiephone Orders tor goods in srock, recerved by 4.15 o.m. Mion. Frn will be despatched on the same day by 1 s! Class Post (some heavy items by parcel post) and our stocking is
yood Private customers should telephone and pay by giving theip Access or Barclaycard number, with a goodumumate customers should telephone and pay by giving their Access or Barclaycard nu
OROERS: CW.Ö add VAT @ $8 \%+25 \mathrm{p}$ p\&pp. TELEPHONE and CREDIT (linvoicel Orders add VAT @ 8% +

SEND YOUR SINTEI

ORDER TO PO BOX 75C, OXFORD Tel. 086549791

LOW COST ic sockets

Oft the lengits you need ideal low cosi merthod of providing sockets for TTL. CMOS. Displays and ICs. Sumply cur Pins gives you any socket you may need. and at low pricer. 50 p per strip of 100 pins. 1.000 for $\mathrm{E4} .3 .000$ for
10 f 50

COMPONENTS Send for Catalogue				CD4032	1.02	CD4073	0.23
CLOCK CHIPs	MPU:	CMOS		CO4O33 CO 4034	1.48	CO4075 CD4076	0.23 1.34
AY51202 3.10	$6800 \quad 24.84$			CD4035	1.22	C04077	0:45
AY51224 3.50	SC/MP CPUISP8A/5000	ain		CD4036	3.29	CO4078	0.23
MK50253 5.6		$\begin{aligned} & \text { CD4000 } \\ & \text { C04001 } \end{aligned}$	0.17	CD4037	0.98	C04081	0.23
	14.50		0.18	CD4038	1.10	C04082	0.23
flat cable	$280 \quad 48.50$	C04002	0.17	CD4039	3.20	CD4085	0.74
$20 \mathrm{wlm} \quad 1.00$	MPU Kit	CD4006	1.20	CD4040	1.11	CD4086	0.74
10 mfor 8.	INTRO KIT 15P8K/200E	CD4007	0.18	CO404 1	0.86	CO4089	1.60
		C04008	1.00	CD4042	0.86	CD4093	0.92
verocases	68.81	C04009	0.58	CO4043	1.01	CD4094	1.94
751410 J 3.36		CO4010	0.58	CD4044	0.96	CD4095	1.08
$7514110 \quad 4.10$	TRANSFORMERS	CD4011	0.20	CD4045	1.45	CD4096	1.08
751237J 2.50	LEDTAF 1.95	CO4012	0.23	CD4046	1.37	C04097	3.85
$7512380 \quad 3.00$	5 LTRF	CD4013	0.58	CD4048	0.58	CO4098	1.13
$751239 \mathrm{~K} \quad 3.58$	SWITCHES	C04014	1.04	CD4049	0.58	C04099	1.90
CRYSTALS	Slde switchesSL.PK (5)SP.	CD4	1.04	CD4050	0.58	C04502	1.24
		CO403	0.58	CD4051	0.94	CD4510	1.41
		CO4017	1.04	CD4052	0.94	CD4511	1.72
	Push Button PB-PK (5) OIL swith	CD4018	1.03	CD4053	0.94	CD4514	2.84
		CO4019	0.58	CO4054	1.20	CD4515	3.24
		CD4020	1.28	CD4055	1.36	CD4516	1.40
	$\begin{aligned} & \text { OLL swi } \\ & \text { (8way) } \end{aligned}$	C04021	1.04	CD40	1.36	CD4518	1.25
MEMORIES 9131 (New) 19.50	VEROBOAROS	CO4022	0.94	CO4059	4.93	CD4520	1.19
$2102 \mathrm{~A} .6 \quad 3.10$		CD4023	0.23	CO4060	1.15	CD4527	1.64
${ }_{6508}$	103/P16 * ${ }_{1.12}$	C04024	0.80	CD4063	1.13	C04532	1.39
		C04025	0.23	CD4066	0.63	CD4555	0.90
	$4.7{ }^{\prime \prime} \times 17.9^{\prime \prime}$	C04026	1.78	CD4067	3.85	CD4556	0.90
SUNORIES	126/P16-2.55	C04027	0.58	CD4068	0.23	MC1452	1.22
CA3130 0.94	VEROPINS	C-04028	0.92	CD4069	0.23	MC1455	4.68
A741 0.40	(c. 200)	C04029	1.18	CD4070	0.51	IM6508	8.05
78L12WC 0.77		CO4030	0.58	CD4071	0.23		
2022 Cutler 0.74	Veropins.Pkt 1.18	CD4031	2.30	CD4072	0.23		

ANY MAKE-UP OR COPY QUERIES CONTACT JOHN GIBBON 01-2618353

INJECTION AND COMPRESSION MOULDING TO YOUR REQUIREMENTS ALSO INDELIBLE PRINTING OF G.R.P. ALUMINIUM AND COATED PANELS.
GLASS FIBRE CASES. D.M.C. OR S.M.C. GREY, BUT OTHER COLOURS BY ARRANGEMENT. BOX WITH

SIZES	ALDNE	ADDITION
$\times 5^{1 / 2} 2^{\prime \prime} \times 5^{\prime \prime}$	$£ 1.94$	$£ 2.71$

Plus VAT and carriage
WITH FÁONT PANEL. INSIDE PANEL (BOTH ALUMINIUM) AND 4 RUBBER FEET
trade prices on aequest
Polythene Bags to your requiremant, Depr. DP
THOMAS MAUGHAN \& ASSOCIATES (DEPT. AW)

LYNX ELECTRONICS (London).LTD.
92 Broad Street, Chesham, Bucks. Tel (02405) 75154 VAT 8% except * which are $121 / 2 \%$
P\&P 30p. Overseas 90p. Matching 20p per pair New Price List 20p Prices correct at 31st March. ACCESS WELCOME

ORCHARD ELECTRONICS

NEW BIG CAT 50p , .Refundable Vouchers

WW - 089 FOR FURTHER DETAILS

(IT1) WEET HYDE Instrument cases
 WEET HYDE OH

 steel strengit and rigidity. PVC aluminum grey front and rear panels are
 black. 301 -price of 302. Bk 302 303. 6k 304-305.

 Alumintum panets 20 p exxra up 1016127 only.

Mod-2 cases ovet 24 sizes. Front and back panels grey PVC. Aluminium chassis included. Packed flat. Outer casing blue PVE steel or up to suze L
also avalable in wood-grain and black. (Price as for next price bigher ie A Black is B pitcel.
 Jumbo Ell 10 MOO-2 CASES

BUY A CASE FROM A SMALL RANGE, YOU GET A CASE-BUY A CASE FROM A BIG RANGE, YOU GET A SOLUTION

A prestige anodised case, black PVC sleel top and botiom which can be in rack or haft-width assembled in special polystyrene pack for sale postage.
 either alt or PVC steel. Built in slots for PC cards, dividers

THE INETRUMENT

Instrument cases

 $\begin{array}{cc}\text { Mi } & 100 x \\ \text { M } & \text { Bare } \\ \text { M3 } & \text { Bart } \\ & \end{array}$

89 lower hall, clipun feet, 2 screws allow the cover to hinge off cases, 2 mo

Avalabte in 3 sizes. Heavily constructed in zintec steel, welded corner with heavy hunges 2 screw fixings and toam around the door. In the base
 DEVEL DPMENTS LIMITEB
Avaliofd Cre, Northwod Wits Northwod, Middx, HA6 1NM
Tolephone: Nor hwood $24941 / 26$ i32/27059 Tolephone: Nor thwood $24941 / 26132 / 2705$

COMPONENTS

Above: Red LED, R Threaded chrome LED, Q, S, PCG, PCE, PCH, PCI PCF, PCC, PCB, PCA. PPA, PPB. LEDS in red, green on own or in 7 mm d . Neons in PC housings 9.5 mm d., 3 cap.colours, dome, top-hat quare. PP 12.5 mm d. $6^{\prime \prime}$ leads std., $30^{\prime \prime}$ extra cost: neon only. 110,220 or
HANOLES

Wide range (47 different) in PVC, nylon.

ranges, 1.000 ohms/v. TS 15 mm scale, $5 \mathrm{amps} A C$ \& DC, 2.500 v . AC, well damped. many accessor ies.

ABADBAD COINEDUT ADE

Lo R. $2 \% /{ }^{\prime \prime}$ Bradrad. dilis and deburrs, $1 / /^{\prime \prime} / 1 \% / 11$ diameters Bradrad 4 Conecuts, $1 / \ell^{\prime \prime} / 2$ ". Adel nibbling tool, square or tound holes. 11 mm eniry. Un,

THE INETRUMENT

WEGT HYOE

 Trat:

Hundreck of knobs, collet or screw fixing. plastic or aluminium, fluted, textured. smooth, wing, pointer, insulated. slow-motion, digital, crank handin

A very good holding system. Four vices, 3 difterent bases, all interchange.

SIGNAL SOURCES

advance
$\begin{array}{lll}\text { VHF. Square weve Generator SG2 } \\ \text { KHz-100MHz. Mar } & 10 \\ \text { E35 }\end{array}$ H1 Aúdio Signal Generator. $15 \mathrm{~Hz}-50 \mathrm{KHz}$ Sine and Square
E2 R.F. Signal Gen 635.00

676.00

HIE Audio Signal Generator. Sine \& Square Wave $15 \mathrm{~Hz}-50 \mathrm{KHz}$. $200-\sqrt{2}$ to 20 V (Sine) Distortion 1° o 1.4 mV to 140v (square). Brand new condition
£70.00
general radio
Unit Oscillator 1209 C . Freq. 250.920 MHz . Accuracy with Power Supply Type 1201-CO HEWLETT PACKARD
$10515 A$ Frequency Doubler. Extends the useable
frequency range of signal generators. Operating on frequency range of signal generators. Operazning on
input trequencies 0.5 MHz to 500 MHz it provides a input frequencies 0.5 MMz to 500 MHz it provides a
doubled outpul in the range of 1 MMz 10 GHz . The frequency response of this 50 ohm device is very fitat
(< $22 d 8$ rypically) over the enire frequency range end $\frac{\text { undestrod harmonics are well suppressed. Brand }}{211 A}$ Square Wave Generator $1 \mathrm{Hz.1MH}$

 Audio Signal Generaior
taccuracy Distontion $\angle 1 \%$ $206 \mathrm{~A} \quad 20 \mathrm{~Hz}$-20KHz $=2 \%$ $612 \mathrm{~A} \cdot \mathrm{U} . \mathrm{H} . \mathrm{F}$ Signal Generator $\mathbf{4 5 0 . 1 2 3 0 \mathrm { MHR }} \mathbf{0}$ $01_{\text {IVV. }} 5 \mathrm{VV}(50$ onms) A M internal \& external Pulse
Mod facilities. SUPERB CONDITION
E1250.00 MOd. iacilities SUPERE CONS
MAMCONI INSTRUME NTS
TF 1060 UH F Signal Generator $450-1250 \mathrm{MHz}$. Sune
E350.00
wave and pulse a m
 T2005R Two Tone Source The instrument comprises
two identical low-distortion a.f oscillarors and a monitored attenuator unnt, to form a compact lest , al
for the measurement of inter-modulation distortion Using the methods recommended by SMP T.E. and leach oscequency range 20 Hz to 20 KMz in six bands
lean be adjusted and used undependently). Marmonic distortion Less than 0.05% belween
63 Hz and 6 KHz when using Generatly less than O $\mathrm{i} \%$ und under orther condritions Intermodulation Below $-80 \mathrm{~B}^{2} 8$ with respeci to the
wanted signal. Amphtite Roference Leval
 111 dB in O ldB sleps Outpu1 impedance 60017

unbalanced, or 600015017 or 7512 balanced and | centre tapped |
| :--- |
| SHF Signal Generator 618 C 2.8. $76 \mathrm{GHz}=1 \% 50$ |
| 485.00 | 6ahr 8500

 Distortion (1) on internal FM. -25 Hz (12 on internal
$A M$. 6% at 30% mod. A M Signal Generator TF8010:1 Freq range
$10-470 \mathrm{MHz}$ R F output $01 \% 1 \mathrm{~V}$ Pision aitenuator
50 M

 VSWR. 1.2 or less $A M$ Signal Generator TF8010/IS Miltary 400 - 8800 | $10-485 \mathrm{MHz}$ |
| :--- |
| RC Osilator TF $1370 \mathrm{~A} 10 \mathrm{~Hz} \cdot 10 \mathrm{MHz}$ E450-E800 | RC Oscllator TF1370A 10 Hz . 10 MHz Square Wave

up to 100 KHz Migh Outputs up to 316 V Phase/A M
. 4.12 MHz AM Signal Generalor TF $8018 / 3 \mathrm{~S} .12485 \mathrm{MH}$?
E150
O.1 uV.iv A. Oscillator Tf 1 tol Frequency range
$20 \mathrm{~Hz}-200 \mathrm{KHz}$ Oulput Direct

 Less than 1世 2OHz-200K Hz
FM/AM SIGnal Generalor TFg37/1 $120-1150$
CT 320 FM/AM Stgnal Generator TF $937 / 1$ CT 320
$35 \mathrm{KHz}-183 \mathrm{MHz}$ As seen condition.

 $200 \mathrm{KHz}-220 \mathrm{MHz}$ Narrow devianon model for mobile
radio testing. 3 mod treas. marconi-sanders
Microwave Sweep Generator type 6600A c/w 6619
Mlug in $1.7 \mathrm{Ghz}-4.2 \mathrm{GHz}$ plug in $1.7 \mathrm{Ghz}-4.2 \mathrm{GHz}$ MUIRHEAD LF Decade Oscillator D880 $\$ 2900.00$
M
 Decade Oscillator DB900 1 Mz -11, 2KHz
NEUWIRTH (WEST GERMANY)
 230 MHz Turret Osc. for each band Accuracy 1.2%
$0 / \mathrm{p} 30 \mathrm{mV}-1-\mathrm{V}$ Frea Dex 1 KHz .100 KHz Amp Mod 30 mV -
Mon

PHILIPS

PM 5167 Function Generator Sine triangle square
positive pulse, negative pulse and ramp 91 and 19 postive pulse. negative pulse and ramp 91 and 19
0 oot Hz to 10 MHz (sawrooth and pulse up to man
1 MHH)
 Variabie DC Oftset External sweep Single shot set
phase Hoid function Overange warning light Superb
condition

Electronic Brokers Lit. are one of the leading electronic instrumentation companies in the UK, providing a full range of servicas to Universities, Industry, Colleges and Govamments both at home and overseas. We have the largest stocks of secondhand text equipmant in Europa as well as a selected renge of new products. These are on display at orr London showrooms whers customers can examine the equipment of their choice and 8 ee it working

Electronic Brokers Lid. have fully equipped workshops on the premises to test and report in the majority of equipment we sell.

WRITE NOW. . .
for a FREE copy of our latest Test Equipment Catalogue. Please apply on headed paper

MULTIMETERS

noime

OSCILLOSCOPES

ornamco

Type 720015 MHz Dual Channel Porrable c / w Plugg
Ins 72018 \& 7212
 GREENPAR E310.00 GREENPAR
Probe Kits GEB1600 $1 i^{-}$- New HEWLETT PACKARD
175 A 50 MHz Oscilloscope. c/w Plug-ins. 1750 B Dual
Trace Vert Amp $50 \mathrm{mV} / \mathrm{cm}$ ith Plug-1n $£ 295.00$
 PHILIPS
15 MHzP
15MH2 Portable double srope PM3 $226 \quad$ € 380.00 SOLARTAÓN
Portable Scope DC-6MMz Double Beam CT 436 € 105 Porlable Scope $C D$
C1400c- 144 MHz Plug ins avallable tektronix
Sampling Scope $661 \mathrm{c} / \mathrm{w}$ plug ins
Scope Camera C-12. Superib cond. \& complete $£ 450$

 start steps. eliminates HF High Pass - Passes H F
eluminates star steps IRE - meers IRE standards for level measurements Sensituvity - meets IRE standards for

(e300

MISCELLANEOUS

ADVANCE Frequency Counter TC16 Heeordel Caltitrator HC20

 E325.00

 AIRMEC Tume Interval Meter 369 Mans operated transistorised
unit Time imervals 100 nsecs to 30 msecs Superb COEKMAN \quad E95.00 75 MHz .15 GHz without counter Sensitivity 100 mV (RMS)
$8 \& K$ B \& K
Deviation Bridpe 1504 BIRD Coaxiat Resistor 8053 10W RF coaxial load resistor Wattmeter Termaine 68353 ranges $0.120 \% 0.600 / 0$ 1200W $30.500 \mathrm{MHz} \ldots . . . \quad$............. 425.00 Watimerer Termaline $\quad{ }^{67} \quad 3$ innges
$0.250 .100,0.500 \mathrm{~W} 30.500 \mathrm{MHz}$ B.P.L.
Component Comparator C7457
5 BRUEL A KJAER Aulomatic
DECCA
Power Su LI

ELECTRONIC

AMATEUA CDMPDNENTS ORCHARD WORIS. CHURCH LANE. WALLIMGTON. SURREY SM6 7WF
For Semiconductors Capacitors Resistors I/C Sockets L.E.D.s and

A full frequency range graphic equaliser YOU can afford ! !
For JUST £38.85 plus VAT
You can tune out all unwanted noises at seven different frequencies!
Bring all your recordings, P.A. discos, lead guitar, bass guitar, organ, anything amplified to life at the touch of a slider
No more annoying amplifier noises - just clear, true sound Frequencies from 60 Hz to 10 kHz ! Cut or boost each frequency by maximum of 15 dB
Hi and lo gain inputs.
Powered by just two PP3 batteries which last for ages. Or mains powered unit available. $£ 49.95$ plus VAT
Try it and you'll buy it - it will charige your concept of sound.
Trade enquiries welcomed.

BATTERY ELIMINATOR BARGAINS 3-waY MODELS
With 4 -way multijack connector. Type ! $3 / 41 / 2 / 6 \mathrm{~V}$ at $100 \mathrm{~mA} £ 2.30$. Type 2
$6 / 71 / 2 / 9 \mathrm{~V} 300 \mathrm{~mA} £ 290$ 100MA RADIO MODELS
With press-stud connectors. $9 \mathrm{~V} £ 3.45$. 6 V €3.45. $9+9 \mathrm{~V}$ ©5.45. $41 / 2+41 / 2 \mathrm{~V}$ ¢5.45. $6+6 \mathrm{~V}$ £5.45.
150MA CASSETTE MODELS
FULLY STABIUZED MODEL E5.45
Switched $3 / 6 / 71 / 2 / 9 \mathrm{~V} 400 \mathrm{~mA}$
BATTERY ELIMINATOR KITS
100 mA radio' types with press stud £2.10. 9 V £2.10. $41 / 2 \mathrm{~V}+41 / 2 \mathrm{~V}$ £2.50. $6 \mathrm{~V}+6 \mathrm{~V} £ 2.50 .9 \mathrm{~V}+9 \mathrm{~V} £ 2.50$
Cassette TYpe $71 / 2 \mathrm{~V} 100 \mathrm{~mA}$ with DIN plug $£ 2.10$.
Stabilized 8-way Types transistor stabilized to give low hum
$3 / 41 / 2 / 6 / 71 / 2 / 9 / 12 / 15 / 18 \mathrm{~V}$. 100 mA model £3.20. 1 Amp model £6.50. Heavy Duty 13-way Trpea $28 / 34 / 42 \mathrm{~V}$ 14 $495,24 € 7.95$ Car Convertor Kin . Input 12 V DC Output $6 / 71 / 2 / 9 \mathrm{~V} 1 \mathrm{~A}$ regutated E 1.95 Stablifzed Laboratory Power Kit. ©12.45. 2 Amp € 14.95 .
SINCLAIR IC20
C20 10W +10 W stereo amp kit with printed circuit $£ 4,95$. PZ20 power supply
for above $£ 3.65$. VP20 control and for' above $£ 3.65$. VP20 control and JC12 AND JC40 AMPLIFIERS JC12 6W IC au* and printed circuil
c1.95.
Also new JC40 20 W model with pcb
83.95. Send s.a.e. for free leaflet on both models and associated power supply and

INCLAIR MICROWONDER
Scientific pockel Scientific Calculator $\mathbf{£ 8 . 9 5}$. Assembled
grey watch with free bracelet $£ 16.45$.

SWANLEY ELECTRONICS

DEPT. WW, PO BOX 68, 32 GOLOSEL ROAD, SWANLEY, KENT BR8 8 TQ

MARCONI TF675F WIDE RANGE PULSE GENERATOR
 +/- variable outputs up to 50 V . Optional delay. Small compact unit £18 ea.

ROYAL INVERTORS manufac-

 tured USA. 28V. DC Input. Output 115 V AC 400 HZ up to 2 KVA . Brand new. Crated $£ 12.50$ ea.MARCONI NOISE GENERATOR TF987/1.
4 Ranges $0-5 ; 0-10 ; 0-15 ; 0-30$ Due to large purchases now priced at £ 15 ea.

AVO TRANSISTOR

ANALYSER CT446
Suitcase style
NOW £27.50 each

FOR THE VDU BUILDER. New stock of Large Rectangular Screen $30 \times 20 \mathrm{~cm}$ tube. Type M 38 at the ridiculous price of $£ 4$ each. And also still available the CME $220,24 \times 15 \mathrm{~cm}$ at $£ 9$ ea. Base connections for both tubes supplied.

HONEYWELL MAGNETIC TAPE UNITS

Self-contained, complete with heads, magnetic tape, leads. etc.
Tested. Carriage paid $£ 57.50$

WE ARE BREAKING COMPUTERS
UNIVAC/HONEYWELL/ICL 1900 eIC.
Boards, Power Supplies, Core Stores are available CALLAND SEE

SPOOLS OF $1 / 2^{\prime \prime}$ MAG
TAPE
APPROX. 2000ft
50p ea. P\&P £1 ea.

EDWARDS HIGH VACUUM PUMPS Type 1SC30@£55 each. Type ES35 @ £45 each
Carriage $£ 2.50$

COMPRESSOR/VACUUM PUMP

Twin Cylinder opposed with Integral $1 / 2$ H.P. 50 Hz Single Phase Motor Tested \& Checked. 110 Volts models only $£ 15 \mathrm{ea}$. $1 / 2$ H.P. Motor 110 V £ 10 ea.

R\&S DIAGRAPH \& GENERATOR 3-300MHZ. Very nice condition E440.
RHODE \& SCHWARZ ADMITTANCE METER BN3511. As new 665.
POLARAD RECEIVER MOdel FIM-B2. Complete 1-10GHZ E 395.
MARCONI OSCILLATOR TF1101 20 Hz -20 KHZ. Nice condition. Special price $£ 50$.
MARCONI Wide Range Oscillator TF 1370 . Freq. range 10 HZ to 10 MHZ . Sine Wave
10 HZ to 100 KHZ . Square Wave. High outputs up 1031.6 V . Fantastic value at C 90 ea.
MARCONI ADAPTOR TM6113 for TF2700: TF 1313: TF8668B £20 ea.
AlRMEC 4 race scope Tybe 2 Sio tag scroen E95.
MARCONI TF142F DISTORTION FACTOR METER giving percentage distortion on a directly calibrated dial and includes all spurious components up to $30 \mathrm{KHZ} £ 32.50$ ea MARCONI PORTABLE FREQUENCY METER TF1026/11. 100 to 160 MHZ . Very fine
DECCA NAVIGATOR DISPLAY UNIT. Very impressive. $£ 12.50$ ea.
COURTENAY MAJOR Mk.2. 250 joules, 5 outputs. Can be combined - 1250 joules. No heads. $\mathbf{E 3 0 .}$
MARCONI SIONAL GENERATORS. TF801B from E140; TF8010 from £190. Usually avatable ex stock.
MARCONI DEVIATION METER. TF791D E75 ea.
RHODE \& SCHWARZ POWER METER. BNRD.BN $2412 / 50$ £50.
MARCONI RF POWER METER. TF1020A/1 50 ohmn E65.
HEWLETT PICKARD 11 Channel Numerical Printer E30.I.C. TESTER by SCHLUMBERGER. Model TCL232 - tests 741: 709 etc. Dual in lines: flat packs or TO's
${ }^{\text {E }} 65$ each. MODULATION METER 210 E95.
HILGER \& WATTS SPECTROMMETR H1 170 E275.
GHODE \& SCHWARZ Tunable Indicating Amplifier UBM $£ 75$.
TEKTRONIX 1BOA TIme Marker Generator E55.
S.E. Labs Oscilloscope type 102 E220.

TEKTRONIX 181 Time Marker Generator £40.
HEWLETT PACKARD Oscilloscope type 175 DC -50MHZ Double Beam E180 with delay amplifier GENERAL $^{2} 20$.

SPECTRUM ANALYSER by NELSON ROSS. Plug.In for TEKTRONIX

SOLARTRON CO1212 SB 40 meg £85. OB24meg twice £120. Many other types available.
Ex-Ministry OSCILLOSCOPE. CT436 Double beam DC. $6 \mathrm{MHZ} £ 95$ each.
*TELEPHONES. Post Office style 746. Black or two-tone grey $\mathbf{E 6 . 5 0}$ ea. Modern style 706 Black or wo-tone grey $£ 4.50$ ea. P\&P 750 ea. Old black style $£ 1.50$ ea. P\&P $75 p$. TELEPHONE EXCHANGES. eg 15 , way automatic rexchange only from $£ 95$. MODERN FANS. $41 / 4 \times 41 / 4 \times 11 / 2^{\prime \prime} .240$ Volts. Superbly quiet. 6 Blades $£ 4.50$ ea. P\&P ${ }^{750}$ paps
PAPST model 240 V available at $£ 7.50$ ea. P\&P 75 p .
PHOTOMULTIPLIER Type 931 A \& 4 ea. $\mathrm{P} \& \mathrm{P}$ P 75 p. Other types available.
©POTENTIOMETERS - All 5 p ea. P\&P extra. Metal bodied AB Linear. PCB Mount. Brand New. 10K: 100 K ganged: 250 K ganged; 100 K ganged, concentric shaits.
*BEEHIVE TRIMMERS $3 / 30 \mathrm{pf}$. Brand New 10 off 40 p P $\& \mathrm{P} 15 \mathrm{p} \cdot 100$ off E 3.50 pep

LARGE RANGE OF ELECTROSTATIC VOLTMETERS. FTOM $0-300 \mathrm{~V} 2^{\prime \prime} \mathrm{E} 3$, to 20 KV Max. Generat guide $5 \mathrm{KV} 31 / 2^{\prime \prime} £ 5$. Thereatter $£ 1$ per KV . P\&P 75 p .
VARIACS 240 V input 0-240V output 8 A $£ 18$ ea.: 20 A £ 30 ea. Carr. $£ 2.50$.
E.H.T. TRANSFFRMERS 20KU 2 KVA £ 70 ea. Many oher EMT transiormers and EHT Cadacitors available.
OONT FORGET YOUR MANUALS. S.A.E. with requirements.
TUBE type DB7/36-Replacement for Telequipments S31 £11 ea. P\&P $£ 1.50$
SEMICONDUCTORS - All at $5 p$ ea.ఉ. P\&P extra. Guaranteed all full spec. devices. Manufacturer's markings.
BC147: BF197: BC327: 2 N
2N3055RCA 40 p ea. P\&P 8 p 2N5879 with 2N5881 Motorola 150 Watt Comp. pair E2 pr. P\&P $15 p$. tLinear Amp $70925 p$ ea. P\&P 8p.

PICK-A-PACK- 50 PENCE A POUND

FROM OUR "PICK-A-PACK" AREA WEIGH UP YOUR OWN COMPONENTS NO RESTRICTIONS ON WHAT YOU TAKE

SUPERB PROFESSIONAL VDU CASES, size $23^{\prime \prime} \times 16^{\prime \prime} \times 27^{\prime \prime}$ on stands Hammer grey. BRAND NEW SCHLUMBERGER Surplus $£ 35$ each. Carriage $£ 2.50$

EX.DYNAMCO Oscilloscopes INVERTORS
30 V Input 6 KV Output. Size $2^{\prime \prime} \times 41 / 2^{\prime \prime} \times 11 /{ }^{\prime \prime}$
Complere with circuir $£ 10$ each. P\&P $£ 1$

LINE PRINTERS - VARIOUS MODELS
$£ 100$ each. Carriage $£ 15$
Size approx. $4^{\prime} 4^{\prime \prime} \times 3^{\prime} \times 4^{\prime}$ high
MINIATURE - OXLEY PATCH PANELS - BRAND NEW
EX-DYNAMCO
10×10 complete with pins. $£ 8$ each. P\&P 50p
C.D.C. DISK DRIVES complete with electronics, power supply, etc. Fine condition with Disk Pack.
£100 each. Carriage £15
Size approx $2^{\prime} \times 2^{\prime} 10^{\prime \prime} \times 3^{\prime} 5^{\prime \prime}$ high

Quantity of CABINETS - Approximately 5 th 6 in . and smaller. Computer types - very smart Prices from $£ 4$ to $£ 20$ dependent on size. Carr. £2.50

SURPLUS - BRAND NEW - REPLACEMENT TUBES FOR DYNAMCO 7100 SERIES OSCILLOSCOPES TYPE BRIMAR DI3-5IGH

Mesh P.D.A. Transistor Scan Wide Bandwidth 60MHZ + Rectangular $6 \times 10 \mathrm{~cm}-1 \mathrm{KV}$ EHT \times Sensitivity $15 \mathrm{~V} / \mathrm{CM}$.
Senstivity $6 \mathrm{~V} / \mathrm{CM}$. Standard heaters Length $131 / 40$ THIS IS A MUST AS A SPARE FOR THE DYNAMCO 7100 SCOPE OR IDEAL FOR THE HIGH QUALITY TRANSISTOR SCOPE BUILDER At $£ 65$ each. Carriage $£ 2.50$

To Tube purchasers only. Numetal Shields at' $\Sigma 2.50$ ALSO AVAILABLE TUBE TYPE BRIMAR D $10-210 \mathrm{GH} / 32$ Rectangular $7 \times 5 \mathrm{~cm}$. Mesh P.D.A. Short $9 \%{ }^{\prime \prime}, 30 \mathrm{MHZ}+{ }^{-}$ Carriage $£ 2.50$

DATA LOGGER by DYNAMCO

These are BRAND NEW not finished - DATA LOGGERS BY
DYNAMCO

They are completed but for the plug-in boards. The case with hinged lid is quite superb and extremely adaptable. It contains as well as the mother board an equally superb Power Supply with the following voltages $+28 \mathrm{~V} ;+15 \mathrm{~V} ;+5 \mathrm{~V}(2.5 \mathrm{~A})$ - this supply is crowbar protected; $-5 \mathrm{~V} ;-14 \mathrm{~V} ;-20 \mathrm{~V} ;-24 \mathrm{~V}:-48 \mathrm{~V}$ and other supplies including auto 110 V . This unit supplied in its original cardboard box complete with original manual and must be of serious interesi to the professional constructor and anyone considering the construction of a micro processor system. Unit size $71 / 2^{\prime \prime}$ high $\times 19^{\prime \prime}$ wide $\times 23^{\prime \prime}$ deep.

Price $£ 45$ each. Carriage $£ 2.50$

APOLLO SCRIBEMASTER
PRINTED CIRCUIT BOARD MAKER
£425

FRY'S ELECTROVERT WAVESOLDERING MACHINE
Type WASL 12 - Complete with Ultrasonic cleaner, Fluxwave applicator, je
blower, etc.
£950

Minimum Mail Order £2. Excess postage refunded. Unless stated - please add £2.50 carriage to all units VALUE ADDED TAX not included in prices - Goods marked with $121 / 2 \%$ VAT, otherwise 8% Official Orders Welcomed. Gov./ Educational Depts., Authorities, etc., otherwise Cash with Order Open $9 \mathrm{a} . \mathrm{m}$. to 5.30 p.m. Mon. to Sat.

Uniquefull-function 8-digit wrist calculator... available only as a kit.

A wrist calculator is the ultimate in common-sense portable calculating power. Even a pocket calculator goes where your pocket goes - take your jacket off, and you're lost! But a wrist-calculator is only worth having if it offers a genuinely comprehensive range of functions, with a full-size 8-digit display.
This one does. What's more, because it is a kit, supplied direct from the manufacturer, it costs only a very reasonable $£ 9.95$ (plus 8\%VAT, P\&P). And for that, you get not only a highcalibre calculator, but the fascination of building it yourself.

How to make 10 keys do the work of 27

The Sinclair Instrument wrist calculator offers the full range of arithmetic functions. It uses normal algebraic logic ('enter it as you write it'). But in addition, it offers a \% key; plus the convenience functions $\sqrt{x}, 1 / x, x^{2}$; plus a full 5 -function memory. All this, from just 10 keys! The secret? An ingenious, simple three-position switch. It works like this.

1. The switch in its normal, central position. With the switch centred, numbers - which make up the vast majority of key-strokes - are tapped in the normal way 2. Hold the switch to the left to use the functions to the left above the keys.
2. and hold it to the right to use the functions to the right above the keys.
The display uses 8 full-size red LED digits, and the calculator runs on readilyavailable hearing-aid batteries to give weeks of normal use.

Dimensions:
$113 / 15^{7}(46 \mathrm{~mm})$ wide. $13 / 16^{-1}(37 \mathrm{~mm})$ deep. Weight: less than $10 \mathrm{z}(28 \mathrm{~g})$.

Sinclair Instrument Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN.
Tel: Cambridge (0223) 311488.

To: Sinclair Instrument Ltd,
6 Kings Parade, Cambridge, Cambs., CB2 1SN.

- Please send me . . (qty) Sinclair Instrument wrist-calculatori kits at $£ 9.95$ plus 80 p VAT plus 25 p P\&P (Total $£ 11$).
- I enclose cheque/PO/money order for £....................
- Complete as applicable.

Name
Address

(Please print

I understand that you will refund my money in full if I return the kit undamaged within 10 days of receipt.

			:									
为												
为												
,												

The greatest publicic show of home entertcinmment -at Olympia in September

That's the Audio Fair this year. It's moved with the market as the emphasis changes, so does the Fair.
More people buy systems. More people look to home electronics for entertainment, as outside attractions become priced out of the market. More people want the package deal. So ... not only audio and hi-fi, but also the whole spectrum of

RADIO ...TELEVISION...MUSIC...TV GAMES .RECORDS ...TAPES ... HOME RECORDING and MUSIC-MAKING

More young people are among the buyers. More older people are getting into the new scene of sound. That's why the Audio Fair is a big family occasion, with the big family attractions.
Already the exhibitors include Agfa-Gevaert. Amstrad,
Hitachi, National Panasonic, Natural Sound Systems, Rank, Sanyo - to name a few that indicate the width of appeal.

There's a whole world of Home Entertainment at the Audio Festival and Fair this year. You ought to be there! It's Sound Sense!

- LONDON'S OLYMPIA - the industry's favoured location, where the people and the money are ... and the only venue with the size, scope and facilities for this great trade and public festival.
- SEPTEMBER 12 to 18, 1977 - the preferred pre-Christmas selling-time period ... and opening with a day and a half for the trade only.
- BACKED by major IPC specialist, trade and consumer publications, commanding a combined readership of 1,750,000.

ORGANISED by the IPC Business Press specialist exhibition company, with a remarkable record and reputation for handling specialist fairs.

THE COMPLETE HOME ENTERTAINMENT SHOW

To: Audio Fair.
lliffe Promotions Limited, Dorset House,
Stamford Street London SE1 9LU
YES, I MUST find out more about the 1977 International Audio Festival and Fair Please send me an exhibitor's brochure right away.
Name
Position in firm Address

Products we want to exhibit

RELAYS-UNISELECTORS-
 SWITCHES

MINIATURE PLUG-IN RELAYS (Siemans/Varley) with perspex dust cover and base.
6-12-24-48v D.C. In Stock
$4 \mathrm{c} / 075 \mathrm{p}$: P \& P 10p
S.T.C. MINIATURE (P.C, Mounting)
with dust cover
$2 \mathrm{c} / 0(18 / 24$ v $) 45 p$ P.P. $10 p$
$4 \mathrm{c} / 0(24 / 36 \mathrm{v})$ 50p P.P. 10 p
$6 \mathrm{c} / \mathrm{o}(36 / 48 \mathrm{v}) \mathrm{J5p}$ P.P. 10 p
I.T.T. 240v A.C. Plug-In RELAYS
with perspex cover) 10 amp contacts
3 c/0 75p P.P. 10p
H.D. TIME SWITCHES (100 amp contacts) 1 on/off in 24 hrs. Excellent condition. $240 \mathrm{v}-50 \mathrm{hz}$ E6.50 P.P. © 1.00 UNISELECTORS 25 WAY
5 Bank Full Wipe 75 ohm E5.50 P.P. 50p
6 Bank Full Wipe 75 ohm E6.25 P.P. 500
8 Bank Full Wipe 75 ohm E7.50 P.P. 50 p
12 Bank Half Wipe 68 ohm 66.50 P.P. 60 p
SMALL I2V UNISELECTORS 4 Bank 11 way C2.50P.r. 50p
D.C. SOLENOIDS 24 v (Cont. Rated)

101b Pull .20 mm Stroke. Size $50 \times 48 \times 42 \mathrm{~mm}$
75p P.P. 15p
H.D. MONEYWELL MICRO.SWITCH (contacts 2 N. $\overline{0} / \frac{1}{2}$ N.C. 20 amp) $1 / 4$ turn action complete with roller actuator. E2 P.P. 35p
DECADE INDICATOR SWITCHES with plus \& minus
Push Buttons. 6 mm digits 75 p each P.P. 10 D
Also in BC.D.
KEY SWITCHES '1000. TYPE
$4 \mathrm{c} / 0$ each way locking 60 p P.P. 10 p
Bank of $4.4 \mathrm{c} / 0$ each way. 1 biased ह1. 25 P.P. 15 p
MAGNETIC COUNTERS
MICROFLEX COUNTERS (HZ4OB6) 240v 50 hz Switches off or automatically resels after pre-determined number a input pulses. Contact rating 15 amp . 10.00 P.P. £ 1.00 3 DIGIT RESET COUNTERS (12v D.C) C1.50 (Ex. Equip.) P. P. 20p
3 DIGIT RESET COUNTERS (240 v 50 hz) \& 1.75 (new) P.P. 25p

6 DIGIT RESET COUNTERS (24 v D.C.) E4 (new) P.P 25p
4 DIGIT NON-RESET (24vD.C.) £ 1 (New) P.P. 20p 6 DIGIT NON-RESET ($24 v$ D.C.) \& 1 (Ex Equip) P.P. 20p

MULTICORE CABLES

4 CORE RIBBON (RAINिBOW) CABLE $4 \times 10 / .2 \mathrm{~m} . \mathrm{m}$ forming $1 / 4$ in. wide strip $10 m-75 p: 50 m-£ 3: 100 m-£ 6$

8 CORERIBBON (RAINBOW) CABLE
$8 \times 14 / 76$ Forming $1 / 2$ in wide strip
10m-£1.50: $50 \mathrm{~m}-\mathbf{E 6 . 5 0}: 100 \mathrm{~m}-£ 12.00$ P.P. $1 p$ per
5 CORE H.D. CABLE 5×7 - 176 P.V.C.
Black Outer P.V.C. O.D. $1 / 2$ in
10m-E2.50: $50 \mathrm{~m}-\mathrm{E} 12$: $100 \mathrm{~m}-\mathrm{E} 22.50$ P.P. $2 p$ per metre
6 CORE ARMOURED̄ $6 \times 40 / 76$ P.V.C. INS
Outer Sheath-Flexible Galvanised Tubing. O.D. \%in.
$10 \mathrm{~m}-\mathrm{E}$: $50 \mathrm{~m}-£ 14$: $100 \mathrm{~m}-£ 25$. P.P. 2 p per metre
10 CORE CABLE $10 \times 7 / 76(10$ colours) P.V.C. O.D.
$7 \mathrm{~m} . \mathrm{m}$.
10m-£2: $50 \mathrm{~m}-\mathrm{E} .50: 100 \mathrm{~m}-\mathrm{E} 16$. P.P. $2 p$ per metre 16 PAIR RIB8ON CABLE 16×2 core P.V.C. double sheathed forming $55 \mathrm{~m} . \mathrm{m}$. wide strip. $10 \mathrm{~m}-£ 3$ 225: 100m-540. P.P. 2p per metre
EQUIPMENT COOLING FANS (100 C.F.M.)
PAPST-LUFTER $120 \mathrm{~m} 120 \times 38 \mathrm{~m} . \mathrm{m} . \mathrm{il} 5 \mathrm{v} 50 \mathrm{hz} \mathrm{e} .75$ PAPST-LUFTER
(New) PP 50p
PAPST $112 \times 112 \times 55 \mathrm{~m} . \mathrm{m} .220 \mathrm{v} 50 \mathrm{hz}$ £ 3.50 (Ex. Equip.) P.P. 50p

MUFPIN TYPE $120 \times 120 \times 38 \mathrm{~m} . \mathrm{m}$. §3 (Ex. Equip.) P.P 50p
SMALL TRANSFORMERS $240 / 115 \mathrm{v} 40 \mathrm{p}$ each
WOODS EXTRACTOR $130 \times 130 \times 80 \mathrm{~m} . \mathrm{m} .240 \mathrm{v} .50 \mathrm{hz}$ £3.50 (Ex. Equip.) P.P 75p
PAPST (SQUIRREL CAGE) 9 Blade. Less Mounting
E 3.50 (new) 240 v 50 hz P.P.

VARIOUS

E.H.T. MODULES. Input $190-260 \mathrm{v} 50 \mathrm{HZ}$. Output 13.7 Kv PK@ $0.50 \mathrm{~m} / \mathrm{a} .(150 \times 95 \times 70 \mathrm{~mm})$ £ 12.P.P. £
MYRIA MEGOMMMETER TYPE 35A. 20-200K MEG/OHMS 500v test. Excellent condition. ©45. carr £2.50.
SYNCHRONOUS GEARED MOTORS (Smiths) 2 r.p.m 3 r.p.m: 30 r.p.h: 20 r.p.h: 6 r.p.h: 2 r.p.h: all 240 v e 1.50 ea P.P 25p
P.C. EDGE CONNECTORS

32 way (.1 pitch) finished ends 45p P.P. 10p
56 way (. 1 pitch) cuttable 65p P.P. 10p
64 way (. 1 pitch) cuttable 75 P.P. $10 p$
Mounting Pillars for $56 / 64$ way 15 p pai
Gold Plated 5
32 way (.15 pitch) Double-Sided Gold Plate Contacts 50 p P. 10p
way (. 15 pitch) Double-sided 50p P.P. 10p 4 in Dome (Ext. Gong) $41 / 2 / 6 \vee$ D.C. £ 2.50 P.P. £ 1.00 6 in . Dome (Ext. Gong) $6 / 8 v$ D.C. E2.75 P.P. © 1.25 6 in. Dome (Internal Gong) 12v D.C. £3.75 P.P. £1.25 10 in . Dome (Int. Gong) $24 / 48 v$ D. Є. ©5.00 P.P. € 1.50 D.C. POWFER SURPLIES Input $240 v$ A.C. TYPE i 20 V D.C. at 1 amp. Fully regulated $155 \times 155 \times 75$ mm totally enclosed $£ 5$ P.P. 75 p
$191 / 193$ LONDON ROAD
ROMFORD, ESSEX RM7.9DJ ROMFORD 44473

Wilmslow Audio
 THE firm for speakers!

Baker Group 25. 3. 8 or 15 ohm
Baker Group 35. 3.8 or 15 ohm Baker Deluxe 8 or 15 ohm Baker Major. 3.8 or 15 ohm Baker Regent, 8 or 15 ohm Baker Superb. 8 or 15 ohm Celestion HF1300 8 or 15 ohm Celestion MH. 1000 horn. 8 or
£13.00
£14.50
£17.50
£15.00
£12.50
£22.50
£7.50 15 ohm £13.50
Coles 4001 G super tweeter $£ 5.90$ Coles 4001 K super tweeter Decca London and X over Decca DK30 and X over £5.90 $£ 38.45$ £25.25 EMI $5^{\prime \prime}$ Mid range $£ 3.50$ EMI $61 / 2^{\prime \prime} \mathrm{d} /$ cone roll surr. 8 ohm . £3.95 EMI 8×5.10 watt. d/c. roll/s 8 ohm $£ 3.95$ EMI $14^{\prime \prime} \times 9^{\prime \prime}$ Bass 8 ohm
£12.50
Elac 59RM 10915 ohm. 59RM 1148 ohm
£3.50
Elac $61 / 2^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s 8 ohm
Fane Pop 15 walt $12^{\prime \prime}$
Fane Pop 33T 33 watt $12^{\prime \prime}$
Fane Pop 50 watt, $12^{\prime \prime}$
Fane Pop 55. $12^{\prime \prime} 60$ watt
Fane Pop 60 watt. $15^{\prime \prime}$
Fane Pop 70 watt $15^{\prime \prime}$
Fane Pop 100 watt. 18"
Fane Crescendo 12A or B. 8 or
£42.95
Fane Crescendo 18. 8 or 15 ohm . £75.95
Fane 807T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$. rolls/s, 8 or 15 ohm $£ 5.40$
Fane 801T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s 8 ohm .. $\mathbf{£ 9 . 5 0}$
Goodmans 8PA 8 or 15 ohm
Goodmans LOP 8 or 15 ohm

Kef DN8 £2.75
Kef DN12 $£ 7.25$
Kef DN13 £4.95
Richard Allan HP8B $8^{\prime \prime} 45$ watt £12.50
Richard Allan CG8T $8^{\prime \prime} \mathrm{d} / \mathrm{C}$ roll/s $£ 7.95$
£18.00
£51.95 Goodmans Mezzo Twinkit, pair £15.75
£26.75£38.50£21.95$£ 59.50$$£ 56.00$£13.95£20.75£25.95$£ 29.50$$£ 37.80$£59.40£23.25
£3.50£6.95 Wharfedale Glendale $3 \times \mathrm{P}$ kit, pair £49.50

All Radford, Gauss, Castle, Jordan Watts, Eagle, Lowther, Peerless Tannoy units in stock

Prices correct at $21 / 3 / 77$

ALL PRICES INCLUDE VAT
FREE with all orders over £10-Hi-Fi Loudspeaker Enclosures Book Send stamp for free 38 -page booklet
'Choosing a Speaker'
Cabinets wadding, Vynair, Crossovers etc
All units are guaranteed new and perfect
Prompt despatch
Carriage: Speakers up to $12^{\prime \prime} 60$ p; $12^{\prime \prime} £ 1 ; 15^{\prime \prime} £ 1.75 ; 18^{\prime \prime} £ 2.50$
Kits $£ 1$ each ($£ 2$ per pair). Tweeters \& Crossovers 33 p each.

WILMSLOW AUDIO

Dept. WW
Loudspeakers \& Export Dept: Swan Works, Bank Square, Wilmslow, Cheshire SK9 1HF. Discount Hi-Fi, PA, etc.; 10 Swan Street, Wilmslow, Radio, Hi-Fi, TV; Swift of Wilmslow, 5 Swan Street, Wilmslow. Tel. (Loudspeakers), Wilmslow 29599 (Hi-Fi, etc.), Wilmslow 26213.

Access and Barclaycard orders accepted by phone

Appointments

Advertisements accepted up to 12 noon Monday, May 2, for the June issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 7.50$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $£ 1.10$ per line, minimum three lines.
BOX NUMBERS: 50p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.) PHONE: Eddie Farrell on 01-261 8508
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Radio Officers-now you can enjoy the comforts of home.

Working for the Post Office Maritime Services really makes sense. You still do the work that interests you, but with all the advantages of a shore-based job: more time to enjoy home life, job security and good money. To qualify, you need a United Kingdom Maritime Radiocommunication Operator's General Certificate or First Class Certificate of competence in Radiotelegraphy, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting salaries, at 25 or over, are $£ 2905$ rising to $£ 3704$ after three years service. Between 19 and 24 , the starting salary varies from $£ 2234$ to $£ 2627$ according to age. In addition, a supplement of $£ 312$
p.a. is payable. You'll also receive an allowance for shift duties which at the maximum of the scale averages $£ 900$ a year and there are opportunities to earn overtime: There's a good pension scheme, sick pay benefits and prospects of promotion to senior management.

Right now we have a few vacancies at some of our coastal radio stations, so if you're 19 or over, preferably with sea-going experience, write to: ETE Maritime Radio Services Division (L690), ET 17.1.1.2., Room 643, Union House, St. Martins-le-Grand, London EC1A 1AR.

Post Office Telecommunications

ELECTRONIC FIELD ENGINEER

to supervise commissioning and operation servicing of NC machine tools. The applicant should be qualified to at least HNC level or equivalent, having organising ability and preferably should have had practical experience of machine tools.
The position attracts a salary commensurate with the responsibility of the appointment, together with the total use of a company car.
Please apply in writing, gjving details of experience, qualifications and age to:-Mr. A. Turner, Products Engineer,

hepworth iron co. (ENGINEERING) LIMITED

Bridge Mills, Holmfirth Huddersfield HD7 2TW (7171)

SOUTH COAST
Several of our clients require the following personnel urgently, offering excellent salaries and relocation expenses where necessary.
PROJECT ENGINEERS
ELECTRONICENGINEERS
TEST ENGINEERS AND
TECHNICIANS
QUALITY ASSURANCE ENGINEERS TECHNICAL. AUTHORS SYSTEMS PROGRAMMERS DRAUGHTSMEN/WOMEN, ElectroMechanical and BUYERS
Please write ör ring: CBS APPOINTMENTS 224 Old Christchurch fid... 日ournamouth. Bournemoulh 292155 or Wimborne 4891 atter 7 p.m. (7142)

DESIGN TEST FIELD SERVICE

 Immediate vacancies exist in most areas for engineers qualified to 'BSc/HNC/C\&G with analogue, digital or R.F. experience.Phone or write
APEX PERSONNEL
800 FULHAM ROAD LONDON S.W. 6
01.7314353

ELECTRONIC DESIGN/ DEVELOPMENT ENGINEERS FERRANTI OFFERS YOU FREEDOM

..... freedom to create. Over the years leading design and development engineers have been attracted to Ferranti by our reputation for truly innovative engineering and together they have formed specialised teams involved on a variety of sophisticated projects related to the Tornado, Sea Harrier, Jaguar, Nimrod 2 and other front line aircraft.

We now require additional engineers to join these teams engaged on the creative work of designing and developing airborne radar, laser and inertial navigation systems and their associated test equipment.

Engineers are required in the following technical fields:Digital and analogue electronic circuitry design.
Design and application of small digital computers.
Microwave and laser techniques.
Advanced instrument design including gyroscopes of inertial quality.
Design of small mechanical structures and analysis of stress.
In addition to the above we have vacancies for production engineers with either electrical or mechanical backgrounds in these fields.

Applicants should havesome design/development experience to offer in avionics and a desire to expand their experience to project leader level.

Edinburgh, with its outstanding facilities for education, housing, sport and entertainment, is one of the ideal cities in Europe in which to live, work and bring up a family. And to make moving here easier, we pay realistic relocation expenses. Salaries are negotiable and the Company operates a contributory pension and life assurance scheme.

Apply in writing, with full details of experience and qualifications to

Staff Appointments Officer, Ferranti Limited,
Ferry Road,
EDINBURGH, EH5 2XS.
Please quote Ref. WW/3

Radio Communications Engineering Hampshire to $£ 5,000$

Plessey Avionics and Communications at West Leigh, Havant, is a leader in the design, manufacture and development of advanced radio communications equipment and systems. A number of opportunities exist, at various levels, for electronics engineers. The work is stimulating and rewarding, and there is considerable scope for career progress.

HF/VHF Military Radio Design

Successful candidates will be involved in the design of new products using advanced miniaturisation techniques. Experience of digital systems and RF techniques at HF and VHF would be particularly' valuable. These appointments will be of particular interest to designers willing to work against short time scale development plans on products mainly for the export market.

UHF/SHF Radio Relay Design

Engineers to work on the design of transmitters and receivers at UHF and SHF, IF amplifiers, and baseband amplifiers for multi-channel radio relay equipment. It would be useful if experience included liaison with production.

Radio Relay Systems Design

Engineers for the design of overall radio relay systems; the development of sub-equipments and systems evaluation. Previous experience in the design and/or commissióning of radio communications systems is desirable.

Candidates should be educated to degree level or equivalent and have at least two years experience. Situated in a semi-rural environment near Portsmouth, Chichester, the South Downs and several seaside resorts, we are well placed for housing, shops, school and recreational amenities. Relocation assistance will be given where appropriate and there is a comprehensive range of large company benefits. Attractive salaries will be negotiated in line with experience and qualifications.
Please write with brief career details or telephone for an application form. L. Wise, Recruitment Manager, The Plessey Company Limited, Martin Road, West Leigh, Havant, Hants. Tel (07012) 639.1 Applications are invited from either sex.

DIGITAL RADIO COMMISSIONING

International Aeradio, world leaders in the overseas telecommunications field, require an Engineer with extensive experience of Digital Radio Links. Although UK based, the successful applicant will spend periods overseas.

Applicants must have HNC or an equivalent practical background, combined with field experience of digital radio. PCM testing and of associated proprietary test equip. ment.

The post offers attractive carser opportunities in a rapidly expanding and progressive company, a pensiort scheme. generous leave and allowances, staff restaurant and social club facilities are available.

Please write now with brief résumé of career activities and quoting ref: 97, to: The Technical Recruitment Officer. International Aeradio Limited, Aeradio House, Hayes Road. Southall, Middlesex or telephone 01-571 1808 or 01-572 2892.

7159

TELSEC INSTRUMENTS LTD. are manufacturers of one of the widest ranges of X-ray Spectrometers and due to an internal promotion we have the following vacancy

ELECTRONICS ENGINEER

We need a person with at least HNC to join a team testing and setting up computerised spectrometers in the role of Senior Test Engineer. Experience in instrumentation or computers is desirable.
An excellent salary will be offered and there are prospects of promotion to the head of the Test Section.
Applications to

K. M. Field

Telsec Instruments Ltd. Sandy Lane West, Littlemore Tel: Oxford 770361

 SENIOR PROGRAMMER

(COMPUTER GRAPHICS)

The BBC Television Service is examining ways of developing interactive computer aided graphics for programme makers.

We should like to hear from experienced programmers who are interested. and have experience, in the development of this type of application

Programmers who have considerable real time programming experience plus either training in or a practical knowledge of the creative side of graphic arts are particularly invited to apply. Knowledge of D.E.C. equipment and the RSXII operating system would be desirable. This appointment will be on a contract basis for a period of up to two years, and based in West London.

Salary in the range of $£ 4953-£ 5913$ per annum, plus appropriate Pay Supplement

Write or telephone immediately for application form ,enclosing addressed foolscap envelope and quoting reference number 77.G.647WW) to Appointments Department, BBC. London W1A 1AA. Telephone 01.580 4468 Ext. 4619.
(Applicants may also telephone Terry Smith, 01-743 8000 extns. $4593 / .4$ Head of Television Computer Projects, for further details of this post.

ELECTRONICS/ELECTRICAL ENGINEERS COMPUTER SCIENTISTS PHYSICISTS

 If you want to develop the computers

 If you want to develop the computers of the future...joinICL

 of the future...joinICL} £3500-£5500 Manchester or Kidsgrove

We are offering you an opportunity to join one of the foremost computer development teams in the world. Its reputation has been built on the successful 2900 Series, the most powerful and successtut 2900 Series, the most powertul and Europe, which the team is evolving to meet the needs of the 1980s. The work, incorporating radically new technologies, is creative; it is also exciting and demanding.
You could be part of it. With the team's expansion,
we have a large number of vacancies for men and women. We can offer generous relocation expenses where appropriate and planned career development in a variety of roles, such as:

- LOCIC SYSTEMS DESIGNER
- bIPOLAR/MOS LSI DESIGNER
- qaencineer
- CIRCUIT DESIGNER

Have you a degree or equivalent in electronics, electrical engineering, physics or computer science
and post-graduate experience in digital electronics, semiconductor or process engineering? If you want to put your knowledge and experience into practice, we'd like to see you. Contact John Davies, CDD Personnel, ICL Wenlock Way, West Gorton, Manchester M12 5DR. Telephone 067-2231301 extension 2694 or 2797. (Reverse the charges.)

Electronic Test Engineers

Pye Telecommunications of Cambridge has immediate vacancies for Production Test Engineers, of either sex
The work entails checking to an exacting specification VHF/UHF radio-telephone equipmen before customer delivery; applicants must therefore have experience of fault finding and testing electronic equipment, preferably communications equipment.
Formal qualifications while desirable, are not as important as practical proficiency. Armed service experience of such work would be perfecily acceptable.
Pye Telecommunications is a major exporter of radio-telephone equipment and is shortly moving into a new purpose built factory.

There are good opportunities for promotion with in the Company.
Pye also encourages its staff to take higher technical and professional qualifications

Write or telephone without delay for an application form to: Miss C. Barton

Brunei

Training Officers

a) In the field of cable jointing
b) Laying subscribers apparatus installation and maintenance are required for on-job training of in-service staff who have minimal formal training and little or no knowledge of correct telecommunications methods and of new entrants to complement formal class training. They will be required to support the overall departmental training programme wherever necessary including the organisation of practical training classes.

Candidates must have 5 years' experience either in or working on behalf of a telecommunication operating organisation in a relevant field, preferably in a developing country.
 including special allowance

Appointment is for 2 or 3 years. Benefits include 25% gratuity. free passages, education allowances and subsidised housing.

For full details and application form write quoting MT / 309 /WD, to:

The Crown Agents for Oversea Governments and Administrations. Appointments Division,

Appointments

SERVICE ANDTEST ENGINEERS maintaining

 complex electronic equipment, including fault diagnosis using sophisticated test gear. A recognised qualification would also be desirablebut sound practical experience is more important.
A good salary will be offered together with an attractive range of benefits. Working conditions are excellent and the establishment is conveniently situated in pleasant surroundings within easy reach of the A1 and M1.

Write with details of experience to Mrs. E. Wagg, Marconi-

Elliott Avionic Systems
Limited, 22-26 Dalston
Gardens, Stanmore,
Middlesex HA71BZ.
Tel: 01-204 3322.
in servicing and

GAPITAL
APPONTMENTS LTD.
FREE JOBS LIST
FIELD SERVICE ENGINEERS
BASIC SALARIES TO
$£ 5,000$ + CAR

34 Percy Street, London. WI 01-6375551

VIDEO SALES
REPRESENTATIVES
Due to expansion, we require additional experienced salespersons with proven sales record, enthusiasm and sell-motivation. Excellent salary and bonus. plus car and expenses. for the right applicants. Please write, stating relevant details. to REW Audio Visual Company 10/12 HIgh Street, Colliers $10 / 12$ High Street, Colliers Wood SW192BE (7122)

INTEROFFICE

TELEPHONES LIMITED An opportunity exists to join our Sound and Time Section to maintain in London/H. Counties various types of Radio/Amplifiers. Some knowledge of Impulse Clock Systems and direct speech installations would be an advantage.
Please telephone for an appointment: 01-274 3214/5; 01-274 5091;7131)

PIPCO

(S \& W SERVICES)
For Electronic Engineers. Technicians \& TV Service Engineers.

26a High Street
26a high Streer
Hounslow, Middx.
Telex Pipco Hounslow 935413
(6552)

We are one of the European leaders in the manufacture of thick film hybrid circuits.
We are looking for a young circuit designer to join an established team which deals with design, limitations and potential of thick film technology. You should have experience of analogue and digital circuit design, but not necessarily in thick film, and have an understanding of C.A.D. procedures and tolerancing for production. You should not be bound by currently accepted solutions to problems, but be prepared to explore unconventional methods within the manufacturing technology.
Salary is negotiable, there is an excellent range of fringe. benefits and relocation expenses are available to this very pleasant location.
For further information and an application form, please contact:
C. L. BORROW

NKT
Newmarket Transistors Ltd ExNing Road New market Suffolk Engimond CB8 OAU
Tel Newmarket 3381 Telex: 81358 simicon NewMkr

ELECTRONICS ENGINEER

An interesting and challenging opportunity exists within our international organisation which will appeal to the individualist electronics engineer.
Our range of highly sophisticated scientific instruments is of advanced design and involves all aspects of electronics from high-power RF to high-speed digital switching.
We require a first-class Electronics Engineer to carry out installation. commissioning and after-sales service at customers' premises.
The ideal applicant will be aged 25-35, have a minimum qualification of HNC (Electronics) and some industrial experience, preferably in a design/development environment, and be capable of working with a minimum of supervision.
Extensive travel in the United Kingdom is involved with occasional trips abroad.
Knowledge of the German language though not essential would be an advantage
The job is both rewarding and demanding and requires a high degree of technical ability, as well as a keen sense of responsibility. In return we offer a good salary and excellent conditions, as well as a great deal of personal freedom.
If you want a job which will really give you something to think about, then apply in writing giving fullest possible details of age, qualifications, career to date, salary, etc., to:

R, F, LADBURY

BRUKER SPECTROSPIN LIMITED

UNIT 3, 209 TORRINGTON AVENUE COVENTRY CV4 9HN

TECHNICIAN

Carshalion College of F.E.

Technical 2 £2529-£2853 plus £285 London Weighting and £312 supplement
required in the Department of Electrical Engineering to be responsible for. Electronic Laboratories and associated equipor over and hold City \& Guilds Technician Final Certificate or equivalent and have at least three years' experience in this field. Application forms and further details from Application forms and further details from Principal. Carshatton College of Further Education. Nightingale Road, Carshalton, envelope. Tel. No. 01-6470021/7. Closing date 2nd May, 1977.

Britain's No. 1 Mobile Recording. Unit producing only prestige material require an

ENGINEERING ASSISTANT

Technical) to take charge of audio equipment maintenance. Applicant must be experienced with mult-track audio facilities. able to drive,
and prepared to work on location. The unit is based at Henley-on-Thames and the successfut apphcant will be expected to reside locally.
Phona: Bob Auger 04912-5434 for an appointment.

1118

AUDIO
 MAINTENANCE ENGINEER

Duties will include assisting in the service and maintenance of some of the mosi up-1o-date audio equipment currently available. For further details please apply to A. Cameron
ADVISION LTD.

23 Gosfield Street. London W. 1 Tel: 01-580 5707

The Cable and Wireless Group is continuing its impressive growth record, and is now seeking additional Engineers and Assistant Engineers in the following disciplines, for its Head Office Engineering Department in Central London:
International and National Telex and Telephony; MF, HF, VHF, Microwave and Satellite Radio; Primary Power Plant and distribution; Data and Telegraph Transmission and Switching; Telemetry.
The responsibilities could involve the complete range of project work, from assessment, through to commissioning and acceptance. Occasional overseas visits may be necessary. Applicants should have specialist knowledge and experience of one or more of the above disciplines together with a wide appreciation of telecommunications operations in general. Some experience of customer liaison would be an advantage
Candidates for the Engineer posts would probably have a relevant degree or professional qualification, although this is not essential. At least five. years related experience is required. Salary will be up to $£ 6,000$.
For the Assistant Engineer posts an HNC/C\&G FTC is desirable and several years' related experience. Salary will be up to $£ 5,000$
Benefits include a pension scheme, staff restaurant, sports and social club and generous overseas allowances.

If you think that your qualifications and experience make you suitable for. one of these opportunities, please send a summary of your career. Write to:

Recruitment Manager, Cable \& Wireless Ltd.,
(A587/WW),
Theobalds Road, London WC1X 8 RX . Tel: 01-242 4433 Ext. 4008

UNITED GLASS LTD.
 TECHNICAL OFFICER

A person is required to join a small team engaged in the development and use of electronic equipment for monitoring process variables in the glass container industry. This will initially concern time and temperature measuring equipment, but subsequently involvement in the use of a microprocessor system currently being developed will be necessary. The applicant should be familiar with digital and analogue circuitry. The starting salary is expected to be in the range $£ 3,000-£ 3,500$ per annum.

We offer excellent working conditions, inclúding a subsidised staff restaurant, four weeks' paid holiday and Pension Scheme.

Apply to:
Group Research Maniager UNITED CLASSLTD
Research \& Development Centre Porters Wood St. Albans Herts. AL3 6NY

Data Acquisition Engineer

Within an extensive application of electro and electronic measuring systems used in the development of aero engines we have positions for engineers interested in the collection of data of an experimental - nature.

The work encompasses measurement techniques applied to static and dynamic parameters, that is, stress, pressure, flow and temperature.
Ideally candidates (male or female) should possess an HND or HNC in Electrical or Electronic Engineering with experience in this type of work, but candidates with suitable alternative backgrounds who are prepared to undergo specialist training will be considered.
Salary will be paid according to age, qualifications and experience.
The Company operates a Staff Pension Scheme. We should be pleased to discuss re-location expenses with candidates who are invited for interview.
Enquiries should be addressed to:

Mr J A J Clarke, Senlor Personnel Officer Rolls-Royce Limited
PO Box 31 Derby DE2 8BJ
Telephone: Derby 42424 Extension 109

Service Engineers

C $£ 3400+$ Car

Our Client, based 50 miles North of London are leading distributors of electronic organs, amplifiers, synthesisers and mixers.

They now require an Electronics Engineer to repair and service their equipment. You will be liaising with Retailers' Engineers and Professional Musicians' Engineers on technical matters. This position will involve trips to Hamburg or Japan for product training. A higher salary will be considered for an applicant who is fully conversant with this type of work.

Contact Sue Skidmore, PER, 56-62 Park Sireet Luton LU1 3JB. Telephone (0582) 417562

This vacancy is open to male or female candidates.

YAMAHA
Nakamichi

AUDIO ENGINEERS

We require experienced bench engineers to work to a high standard on the above products.

Applicants should have a keen interest in, and at least 3 years' experience of all aspects of Audio servicing with similar quality equipment.

For further details and application forms please contact the Service Manager, Terry Finn, at
Natural Sound Systems Ltd.
10 Byron Road Wealdstone, Harrow, Middx. Tel: 01-863 8622

Strathcona Road, North Wembley, Middlesex HA9 8 QL

ALCAN LABORATORIES LIMITED ATLANTIC REGION RESEARCH CENTRE

INSTRUMENT TECHNICIAN

Alcan Laboratories Limited require an Instrument Technician at their Research Centre in Banbury, Oxfordshire. The work will be concerned mainly with the development of electronic measurement and control equipment which will be used in the Laboratory and in Alcan factories.

The Research Centre, which is one of Europe's leading metallurgical laboratories, carries out Research and Development work for associated Group companies in the U.K., Europe, Africa and South America; it is part of the Canadian-based Alcan Aluminum Limited Group, which is one of the world's major aluminium producers

Candidates will be required to work largely on their own initiative; they should have an HNC in Electronic Engineering followed by two / three years' experience in the development of prototype electronic equipment.
The company offers excellent working conditions, progressive salary scales, flexible working hours and a contributory pension scheme. Assistance with the cost of moving house will be given where appropriate

Application forms can be obtained from

Mrs. S. M. White
 ALCAN LABORATORIES LIMITED Southam Road

Banbury, Oxon OX16 75P
Tel: Banbury (0295) 2821

UNIVERSITY OF LEEDS. Applica tions are invited for the post of electronics technician Grade 3 in the Department of Psychology, University of Leeds. Duties inciuce maintenance of existing equipment and building of new equipment for interface with a mini-computer for monitoring on-line experiments. able successful candidate without constant supervision, should hold ONC and/or fications and have at least three years relevant experience including some digital work. Salary on the some digital work. Salary on the
scalc $£ 2455-£ 2788$. Applications, giv. ing full detalls of education and experience together with names and experience together with names and D. Pritchatt, Department of Psychology.

ELECTRONICS TECHNICIAN fOT Educational Services Unit. Candicate should have interest in tele. tool, sound background in electronics with ability to communicate with patients, students and staff at all levels. Major part of the post involves maintenance of small studio in Department of Psychia. try, preparation and replay of video-recordings. Salary scale £2,889-£3,367 p.a. Application forms from: Assistant Secretary, Personnel Office, University of Birming ham. P.O. Box 363 , Birmingham B15 2TT, Ref. 496/C/57.

[^9]LANCHESTER POLYTECHNIC, COV Entry site. Technician, Centre for Media Studies. An Electronics Tech nician is required to constitute part of the work of a highly creative team involved in all aspects of the Media. The appointee will work in the areas of Electric Media (study of light, sound and motor), Video include constructing, fitting will inciude constructing, fitting, maintal equipment and involvement in under-graduate projects. The successful candidate will be expected to have experience in one of these fields, be suitably qualified and be prepared to use his/her own initlative in coping with a diversity of demands. Salary scale: $£ 2529-£ 3282$ plus $£ 312$ supplement per annum with possible progression to $£ 3702$ per annum. For application form please apply in writing enclosing a poolscap stamped and addressed envelope to the Assistant Secretary (Personnel) Lanchester Polytechnic,
Priory Street, Coventry, CV1 5FB, returnable within ten days of the appearance of this advertisement.
(7121)

TEST ENGINEER with sound kndwledge of logic circuitry for work on ou range of instruments. Phone or
write R.C.S. Electronics 6 Wolsey write R.C.S. Electronics, 6 Wolsey
Road, Ashford, Middlesex. STD 69 / 53661. Ashord, Middesex. STD

ELECTRONIC TECHNICIAN Grade 5 required in the Chemical and blorequired in the Chemical and biochemical Engineering bepark. Good knowledge of fault-finding and serknowledge of fault-tinding and servicing standard electronic instruability to work on prototype circuits. Salary in range $£ 3,377$ to £3,856 including London Weighting. Application form and further details from Personnel Officer (Techniclal Stafi EB3/WW), University College London. Gower Street. WC1E 6BT.

Marconi Instruments
Professionala Electronics
Inst Albans
Development Engineers
Designing state of the art r.f. and digital circuitry as members of small project teams.

Components Engineer

To specialise in the analysis of new components used in electronic equipment manufacture

ATE Field Service Engineers

Servicing Automatic Electrical Inspection Systems throughout the UK.

Advanced Test Engineer

To develop test methods in particular programming systems in new generation instrumentation that utilize microprocessors and state of the art logic.

Export Engineer

Based in St. Albans, travelling the world selling the
Company's range of r.f. and digital test equipment.

Technical Author

Compiling instruction manuals on communications test equipment and ATE.

Test Technicians

Commissioning a wide.range of batch produced test equipment eg. Spectrum analyses, signal generators and modulation meters.

Technician Engineer

Working within a Test Gear Maintenance Department repairing a very wide range of modern, commercial and special to type test equipment.

Inluton

Test Engineers

Servicing customer owned equipment in the largest communications test equipment maintenance
organisation in W. Europe.
Further information may be obtained from John Prodger: Marconi Instruments Ltd.,
Longacres,
St. Albans, Herts.
Tel: St. Albans 59292.
A GEC-Marconi Electronics Company.

PROJECT ENGINEER

(LIGHTING CONTROL SYSTEMS)
We are a leading Company in the field of thyristor controlled lighting and associated equipment, including standby power sources, power distribution and industrial control. A high percentage of our production is exported.
Due to our continued expansion. we require a project engineer to assist in the design and planning of equipment to meet customer requirements, provide design and planning of equipment to meet customer requirements, provide manufacturing information, and organise on-site commissioning. Th
work with minimal supervision and to be self-motivated is essential.

Contact: P. J. Harrison, Technical Director

The Electronics Group

Botswana Telecomms Maintenance Engineer

To co-ordinate the planning, installation and maintenance of all telecomms equipment, co-ordinate responsibility between operating switching, and transmission services; control and estimate spending; plan maintenance schedules and maintain quality control; and inspect outstations and equipment. You would have sole responsibility for the efficient functioning of telegraph, telex, telephone and broadcast transmission equipment, supervise Senior Assistant Engineers, and train staff. You must be MIEE or MIERE and preferably possess a degree in telecomms, electronics or electrical engineering. You should have at least 5 years' experience in a senior position in a telecomms organisation with full responsibility for engineering and administrative activities. Your experience should cover radio relay and multiplex systems, maintenance and operation of step by step and common control automatic telephone and telex exchanges and subscriber's equipment including PABX distribution networks and open wire routes.
Starting salary is equivalent to $£ 6145$ $£ 7680$ pa and includes a substantial and normally tax-free allowance paid under Britain's overseas aid programme. Basic salary attracts a 25% tax-free gratuity.
Benefits include free passages, generous paid leave, children's holiday visit passages and education allowances, subsidised housing, appointment grant and interest-free car loan. For full details and application form write quoting M1X/1202/WQ to

Crown Agenis A

The Crown Agents for Oversea Governments and Administrations, Appointments Division, 4 Millbank, London SW1P 3JD.

ARTICLES FOR SALE

E.M.I. VIDEO EFFECTS GENERATOR AND CONTROL PANEL

Provides.a wide vartely of whes and heyng
effifects togelinet with several special eftectis
 on ine sctieen may pe varied. The parncipal lacithes are tor mping between two picture
sources in il patierns. selected oy push.bution conivols theterore yiving a 10131 of 22 patterns Quadrant lader conirol.
Self or external keying ol 2 sources
Many other
Syslems 625 line .CCIR/OIRT. 525 line
REE EIA. Syserns.
Oue to special putchase we have a lew unins only
available complete with all necessaty connecior tuil insiruction manual/ cticuirs All unis new in On, ynimal manulacturet spacking
PRICE $5500+540$ VAT each

LEKTROPACKS, 17 Turnham Green Te London, W4. Tel. 01-994 2784

ENAMELLED COPPER WIRE

Nigerian Radio Technician

A radio technician is required to provide an installation and maintenance service for the Company's private radio systems in Nigeria.

The systems utilise HF, VHF and UHF equipment and the technicians must, in addition to basic training to City and Guilds intermediate level, have relevant experience in all these categories.

The technician will be based in the Lagos area, but frequent visits to other parts of Nigeria will be needed.

Salary will be negotiable.
All applicants should be of Nigerian nationality and should address their enquiries to:
Company Radio Engineer George Wimpey \& Co. Limited Stockwood Road Brislington Bristol

Glaxo ELECTRONICS TECHNICIAN

We require an Electronics Technician, preferably under the age of 35 , to assist in the maintenance and construction of electronic instruments in our Research Laboratories at Greenford and neighbouring sites

The successful applicant will be a member of a small team responsible for the design and servicing of a wide range of electronic instruments used in our chemistry and biological laboratories.

A qualification equivalent to O.N.C. or H.N.C. would be an advantage. Consideration would be given to granting day-release for further training

The appointment will be made in our Technical Officer grade. The minımum starting salary would not be less than £2.732 per annum (including supplement and London Allowance) but could be higher for those with experience Present scale maximum rises to above $£ 4,800$ per annum
There are pension and bonus schemes and four weeks annual holiday entitlement.
Please write or telephone for an application form, quoting Ref $\mathrm{ZH} / 155$ to:

EXCLUSIVE OFFER

WORLD-WIDE RANGE NEVER BEFORE OFFERED
 PHILCO HC-150 POINT-TO-POINT STRIP RADIO HF RECEIVERS $2 / 30 \mathrm{~m} / \mathrm{CS}$. Ten fully tuneable channels to 0.5 kes with synthesisers. Single and diversily reception on ISB. DSB, SSB with 4 sub-bands to prices on application.

HIGHEST QUALITY 19" RACK MOUNTING CABINETS \& RACKS

ENQUIRIES INVITED FOR NEW STOCKS NOW AVAILABLE

AUDIO AND INSTRUMENTATION

TAPE RECORDER-REPRODUCERS

```
-Plessey M5500 Digital Unit,7 tracks
Ampex FR-II00,6 speeds, stereo %
- Ampex FR600,4 speeds,7 tracks %/
* D.R.I. RMI, 4 speeds,4 tracks 1/4
* EMI TRS0 2 speeds. }1\mathrm{ track y/
* EMI R301G. 2 speeds, 2 rracks %%
* EMI RE321 14", 7%" I crack
* Ficord 1A 14", i**.74", 1 track
* Mincom CMP-100, 6 speeds, 7 (racks k, %/2
* Leevers Rich DA-2P, 2 speeds. 2 tracks 1//4
```

 Prices of above \(\mathbf{£ 7 0}\) to \(\mathbf{£ 5 0 0}\)
 Aks Tranpl Deck oly avable
 We have a large quantity of "bits and pieces" we
cannot list - please send us your requirements, we
cannot list - please send us your requiremen
can probably help - all enquiries answered.

PLEASE ADD CARRIAGE AND
V.A.T.

P. HARRIS

ORGANFORD-DORSET BH16 6BR
BOURNEMOUTH (0202) 76505

Sulcom masitic nectiriens - 1.5 amg

 MARCO TRADING (Dept P5)

VHF POCKET PORTABLE RADIO tuning $108 / 138 \mathrm{MHz}$. High sensitivity. Easily adjusted to tune over \& VAT). Romak Lid, 10 Hibel Road. Macclesfield, Cheshire.

WE INVITE ENQUIRIES from anywhere in the world. We have in stock several million carbon resistors the wound and 1 watt. $\frac{1}{2}$ million wire wound resistors 5 and 10 watt electrolytic condensers - 1 million electristors and diodes thousands transistors and diodes, thousands of potentiometers, and hosts of call at our warehouse. - Broadfields and Mayco Disposals Lid. 21 Lodge Lane, North Finchley, London, N.12. 01-445 0749, 4452713. (5907)

TV CRT TUBE REBUILDING equip-

 ment, training, supplies from 'The Experts'. Faircrest Tubes, THE tubes. Guaranteed $2 / 4$ years Vacuim Degassing Outfits for silicone rubber, etc. Transformer impregnation equipment, low cost vacuum units. General vacuum quipment, new and secondhand pumps, plant, coaters, ovens, etc. Barretts, Mayo Road, Coydon. CRO 2QP. 01-684 9917.[^10]
D. C. POWER SUPPLIES. AMTRON UK $6825-35 \mathrm{v} 2.5 \mathrm{amp}$ f45. As new. Neat $10-20 \mathrm{~V} 3.0 \mathrm{amp}$ Italian job $\frac{530}{}$.

300,000 MULLARD C280 \& C281 for 300,000 MULLARD C280 \& C281 for
sale, values from 01uf to above luf sale, values from oluf to above 1 uf
$250 / 400 \mathrm{v} / \mathrm{w}$, price per mixed pack. $250 / 400 \mathrm{v} / \mathrm{w}$, price per mixed pack,
$100 / £ 1.50 \quad 500 / \mathrm{s} 6.00$ P\&eP (export $\begin{array}{ll}100 \\ 50 \mathrm{p}) \text { Electronic Mallorder } & \text { Ltd. } \\ \text { Ramsbottom, Bury, Lancs. } \\ \text { (} 7172\end{array}$
C.R.T. REGUNNANG PLANT. NEw and secondhand recondilthoned training, demionstrabion, colour or B/W. Barretts, Mayo Road Croy.
don. Surey. CRO 20P. 01-684 9917.

CUT PRICE COMPONENTS 1000s valves (1926-1977) transistors, resistors, capacitors, etc. 10 p for is stream. Rickmansworth, Herts.

EQUIPMENT BARGAINS. Transmitters, Receivers and Test Equipment 10 y for list B6. S. Dunning, "RustHerts.
$(7192$

PROFESSIONAL TV TUBE REsUILDING PLANT designed and manufactured with 20 years' exper-
lence of tube rebuilding. Also all lence of tube rebuilding. Also anh
assodiated isupplies including assodiated su'pplies including
Electron guns. Regular training clectron guns. Regular training
courses. Westerm-Whybrow Engincourses. Western-Whybrow Engin-
eerirgg, wBOO Works, Penzance, eeriryg, WECO Works, Penzance,
TR20 9 Q , 0 (073676) $2265 . \quad(6542)$

COLOUR, UMF AND TV SPANES. NEW colour bar generator k. Me. (adds on to Manor Supplies cross hatch units) $£ 25^{\circ} \mathrm{pp} 85 \mathrm{p}$. Also Mk 4 combined colour bar generator and cross hatch, kit fu5", pp 85p "Wireless World" TV Tuner Read. Kits of parts available. Cross Hatch kit, Aerial Input type. No other connections. Battery operated, portable. Incl.
Sync \& UHF Modulator units Sync \& UHF Modulator units £2.90. p/p 45p. GRT Reactivator p/0 80 p Signal strenono $\mathrm{m} 17.48^{\circ}$ 118. p/D 70p. 625 TV IF Unit for $\mathrm{Hi}-\mathrm{Fi}$ amps or lape reciording $£ 6.80$ p/p 65p. Decca Colour TV Thyris.
bor Power Supply Unit, incl. H.T. bor Power Supply Unit, incl. H.T.
L.T., etc. Incl. circuits $£ 3.80 \mathrm{p} / \mathrm{p}$ $95 p$. Bush CTV 25 Power Supply
Unit, incl. H.T., L.T., etc. ${ }^{2} 3.20$ p/p fl.20. Bush CTV 25 Conver. gence panel plus yoke, blue lateral
$\mathbf{3 3 . 6 0} \mathrm{p} / \mathrm{p} 80 \mathrm{p}$. Philips single stand convergence units complete, incl 16 controls, $£ 3.75 \mathrm{p} / \mathrm{p} 75 \mathrm{p}$. Colour
Scan Coils, Mullard or Piessey 86 Scan Coils, Mullard or Plessey f 8
$\mathrm{p} / \mathrm{p} 80 \mathrm{p}$ Mullard AT1023/05 or $\mathrm{p} / \mathrm{p} 80 \mathrm{p}$ Mullard AT1023/05 or
Plessey Converg. Yoke $82.50 \mathrm{p} / \mathrm{p}$ Plessey Converg. Yoke $22.50 \mathrm{p} / \mathrm{p}$
55 p . Mullard or Plessey Blue Laterals 75p p/p 30p. BRC 3000 type
scan coils $£ 2$ p/p 80p. Bush CTV ${ }_{25}$ scan coils Scan Colis $22.50 \mathrm{p} / \mathrm{p} 80 \mathrm{p}$. Delay 25 Scan Colds $22.50 \mathrm{p} / \mathrm{p}$ 81p. Delay DLI $85 \mathrm{p} \mathrm{p} / \mathrm{p} 40 \mathrm{p}$. Lum. delay lines $50 \mathrm{p} \quad \mathrm{p} / \mathrm{p} \quad 30 \mathrm{p}$. Bush/Murphy $8850 \mathrm{p} / \mathrm{p} 75 \mathrm{p}$ Special quadrupler triplers, ITT TH25 1TH \&2 GEC 2040 f1.75 p/p 50p. Phillps G8 Panels, part complete, surplus/salvaged: £2.25, T Base f1 p/p 70p. CRT Base 75p p/p 30p. GEC 2040 Decoder panel for spares $£ 3.50 \mathrm{p} / \mathrm{p}$
70 p . VARICAP TUNERS. UHF: ELC 1043 f 4.00 , ELC $1043 / 05 £ 4.50$ VHF; ELC 1042 E4.40, Philips VHF $\begin{array}{ll}\text { f3.80. Salvaged UHF \& VHF Vard- } \\ \text { caps } & 81.50 \mathrm{p} / \mathrm{p} \\ \text { 35p. SPECIAL }\end{array}$ Caps 81.50 p/p $35 p$ SPECIAL
OFFER: RBM 6 pSn. Varicap controi unit $£ 1$ p/p 35p. UHF Tuners transd. incl. slow motion drive £3.80. 4 Psn and 6 Psn. push but. ton transd. $£ 4.20 \mathrm{p} / \mathrm{p} 70 \mathrm{p}$. Philips.
Bush Decca interrated UHF/VHF transd. tuners $£ 4.50 \mathrm{p} / \mathrm{p} 80 \mathrm{p}$. Thorn 850 dual stand, time base panels 50 p . Philips 625 IF panel incl. cct. $50 \mathrm{p} . \mathrm{p} / \mathrm{p} 65 \mathrm{p}$. VHF Turret tuners
AT 7650 for KB Featherlight. Philips 19 TG170, GEC 2010 etc. f2.50. Hye miniature Incremental tuners E1, Frreball tuners Ferguson, HMV, Marconi 80 p p/p all tun. ers 70 p . Mullard Mono scan colls for Philips, Stellia, Pye, Erco, Ferrantl, Invicta 52 p/p 70p. Large selection LOPTs, FOPP's avallable for most popular makes MANOR SUPPLIES, 172 West End Lane, London, N.W.6. Shop premises. Callers welcome. (Nos. 28, 159 buses or West Hampstead-Bakerloo Line and Brittish Rail). Mail Order: 64 Goldens Manor Drive, London. N.W.111. Tell: 01-794 8751. V.A.T. Please ADD 123\% TO ALL PRICES (EXCEPT WHMRE MARKED (60)

OUTSIDE UK? Electronics exprort. With one order and one payment you can purchase the wide range of semiconductors and other electronic components available in UK. List requirement or send for de tails of a purchasing service. Large and small enquiries efficiently handled. Triangle Digital Services.
$\mathbf{B C M}-8477$, London WC1V $\mathbf{6 X X}$. (7163
P.A.L. COLOUR MONITORS with P.I.L. Tube. Mitsubishi $14 i n$. f336 Mitsubishi $18 i n$. £402. Mitsubish (UK 2) 44 . Colour recelving monitors Philips 26in sa71.12 (all prices sub Philips $26 i n$. 4771.42 (all prices sub ject to VAT). For everything in Lid. Broadgate House, 10 Broad gate Lane. Leeds 0532587067

$$
(7179
$$

MARCONI TR2300B FB-AM modula tion meter as new. Used for only about 20 hours. For a quitk sale £750. Phone any time, Shoreham
by-Sea 260 g

WORLD RADIO tV HANDBOOK 1977

ed. PRICE $£ 5.50$

THE RADIO AMATEUR HANDBOOK by A.R.R.L Price £6.50
THE MEMORY \& MICROPROCESSORS DATA BOOK by TEXAS. Price $£ 3.50$.
INTERNATIONALTRAN.
SISTOR SELECTOR, 1977
ed. by T. D. Towers. Price $£ 5.00$.
INTRODUCTION TO DIGI-
TAL FILTERING by R. E Bogner. Price £8.50.
ACTIVE - FILTER COOKBOOK by D. Lancaster. Price £10.00.
THE CATHODE-RAY OSCILLOSCOPE \& ITS USE by G. N. Patchell. Price $£ 3.85$. VIDEOTAPE RECORDING by J. F. Robinson. Price $£ \mathbf{7 . 0 0}$. FREQUENCY. SYNTHE SIZER THEORY \& DESIGN by V. M E20.00.
TTL DATA BOOK by National Price £3.10.

THE MODERN BOOK CO
SPECIALISTS IN SCIENTIFIC
\& TECHNICAL BOOKS
9-21 PRAED STREET
LONDON W2 1 NP
Phone 7234185
Closed Sat. 1 p.m.

LINSLEY-HOOD 75 watt amplifiers constructed and repaired. Brand new guaranteed spares, by return.
 Interference suppression kit (also reduces preamp noise) with instructions f1.35. Inclusive price. P\&P 15p. SAE for list. I. G. Bowman
(Dept WW), 59 Fowey Avenue, Tor. quay, South Devon.

LABORATORY EQUIPMENT SALE: Marconi A.M. Signal Generator T.F. 801 D/1, £180. Cambridge: Unipiv ot Galvanometer With A.C. Range Box. D.C. Range Box, Potentiometer Volt Box, A.C. Range Multiplier, Vibra. tion Galvo Shunt and 17 Voltage and Current Shunts P.O.A. MuirVolt Ratio Box A-202-A. Logarithmic Resistance A-36-A. W.G. Pye: Standard Resistors (Manganin) 19k. 30 k . 50 k . Wayne Kerr: Univesal Bridge B221, £80. Solartron: Osellioscope Type CD 513.2, f80. L. F. Os. cillator Type C0546, £30. Cossor: Oscilloscope 1049 Mk 2, £50. Camera 1428 Mk 2, £35. Polaroid, Oscilloscope Camera CR-9, £35, Phillids: L.F. Amp/Voltmter GM 6017/03. 550. All the above are in good condition. Prices negotiable. Ring Henlow Camp 695 (evenings). Offers for
job lot considered.

TELETEXT Decoder Catronics kit of the Wireless World design assem bled but untested, £125. A. Barton
Maidenhead 35246 after 6.30 pm . 7182

TELEPHONE ANSWERING Machines for sale. New il20. Answers and Records. Plus 2-way Conversations and Dictation. Free accessories and guaranteed 1 year. Callsaver.
C.R.V. Electronics Lid. $01-249$
0416. $01-580$ 1800. 30 Goodge Street, Lon don W1.

MAGNETIC MICROPHONE
 SPEAKERS

\qquad
B. SUPPLIES, 14 i Shatmeford Sueo
Nr. CANTEREURY, Kent CTA TOZ

MIV

Best choice for used TV Largest stock and selection of colour and mono TV in Britain.

- 1976 exports exceeded 250,000 sets

Trade enquires 10 an
Midland TV Trade Service
Worcester Road, Kidderminster DY10 1HY,

CAPACITY AVAILABLE
ANY CAPACITY WIRING AND ASSEMBLYPCBS CABLE FORMS,

etc.

Collection and delivery refs.avail
be.
LESLIE TROUT \& CO. LTD.
$01-6992395$
ARTRONICS LTD., for Coil Wind ing - larse or small production runs. Also PC Boards Assemblies. Suppliers to P.O., M.O.D., etc. Exyort enquiries welcomed, 3a Walerand Road, London SE13 7PE,
Iel: 01-852 1706.
5MALL BATCM PRODUCTION Wiring, assembly to sample or dirawings. Speciallists in printed
civrcuit assembly. Rock Electronics, Gircuit assembly. Rock Eiectronics, 41 Silver Street Stanisted, Essex,
Tel. Stansted (0279) $33018 / 814006$,

PRINTED CIRCUIT BOARDS Quick deliveries competitive prices, quotations on request, roller tin-
nings, drilling, etc., speciality smaill nings, drilling, etc., speciality small
batches, langer quamtities available batches, larger quantities avauliable
Jamiesons Automatics Lbd, 1-5 Jamilesons Automatics Lbd, 1-5
Westgate, Bridllingtom. N. Humber Westgate, Bridung for the attention of Mr .
side, for side, for the attention of Mr.
Harrison. Tel: (0262) $4738 / 77877$.

AIRTRONICS LTD. for coil winding Large or small production runs Bobbin - Layer - Wave - Bifila - Miniature - Toroidals. Airtron ics Limited, Gardner Industria Estate. Kent House Lane, Becken ham, Kent BR3 7UG, Tel. $\begin{aligned} & \text { 01-659 } \\ & 1147 \text {, }\end{aligned}$ (7158 CAPACITY AVAILABLE for small CAPACITY AVAILABLE for small assembly of cableforms. p.c.b's gun assembly of cableforms, p.c.b's gun
wire wrapping's mech. assembly and spot welding. Contact Citron ics, 36 Coles Road, Milton, Cam ics, 36 Coles Road, Milton,

SERVICE AND REPAIRS

EURO CIBCUITS

Printed Circuit Boards
layouts
layouts - Photography -
printing
plating - Flexible films - Convention.
al fibre glass - No order too large or too
small - Fast turnround on prototypes.
EURO CIRCUITS 10.
Kightield House
West Kingstown
Nr. Sevenoaks, Kent.
WK2344
LABELS NAMEPLATES, FASCIAS on aluminium or plastic. Speedy G.S.M. Graphic Arts delivery G.S.M. Graphic Arts
Ltd., $1-5$ Rectory Lane, GuisLtd.. ${ }^{1-5}$ Rectory Lane, Guis
borough $(02873-4443)$. Yorks, U.K.

ARTWORK LAYOUTS by experl enced draughtsmen manufacturing facilities available to every requirement. For all enquiries please write to H.C.B. Artwork Designs. 3 koden Sireet, Ilford, Essex.

WANTED IN LARGE QUANTITIES

Electronic components, resistors. capaci-
tors, potentiometers, chassis, toud.
speakers, semi-conductors, diades. TV speakers, semi-conductors, diodes. TV
tubes, especially colours, etc., etc. Ist and tubes, especially colours, etc.. etc. Ist and
2nd grades. Finished 'or incomplete products. record players. amplifiers. products, record players. amplitiers.
radioners. tape recorders. enclos ures.
etc. enc. etc.
We will buy complete factories and pay
Telephone 01-4914636 E.C.E. Avon House
360-366 Oxford Siree 360-366 Oxford Stree
London W1N SHA

WE PURCHASE ALL FORMS

 OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC.CHILTMEAD LTD.
7. 9, 11 Arthur Road

Reading, Berks.
Tel. (0734) 582605

* MINICOMPUTERS
 * PERIPHERALS
 * INSTRUMENTATION

COMPUTER APPRECIATION Godstone (088 384) 3221

WANTED, all types of communica sions receivers and test equipment. Details to R. T. \& I. Electronics Ltd., Ashville old Hall, Ashville Rd., London, E.11. Ley 4986. (63

SURPLUS COMPONENTS Equip. ment and Computer panels wanted for cash. Ring Southampton 772501.
(16)

WE BUY new valves, transistors and clean new components, large or sman quantities, all details 55 Worcester St. WoIverhampton
wANTED

CRYSTALS, new or used, any "requency, any quantity. HC6U/HC25U/HC18U only, W. H. | Westlake. Clawton, Holsworthy, |
| :--- |
| $\begin{array}{l}\text { Devon. } \\ \text { Devi62 }\end{array}$ | Devon.

B-D ELECTRONICS offer prompt settlement for your surplus components. Our main field of interest is consumer electronics. Please telephone our Miss Hughes, Peter barough (0733) 265219 .

EQUIPMENT WANTED

BROADFIELDS AND

 MAYCO DISPOSALS21 Lodge Lane, N. Finchley
London, N12 \&/G
Telephone:
Telephone:
$01-445$
2713
$01-4450749$
01-958 7624
WE ARE INTERESTED IN PURCHASING ALL KINDS OF RADIO, T.V. AND ELECTRONIC COMPONENTS AND EQUIPMENT IN BULK QUANTITIES.
WE PAY PROMPT CASH AND CLEAR MATERIAL BY RETURN.

* MINICOMPUTERS \star PERIPHERALS \star INSTRUMENTATIOW

For fastest, best CASH offer phone:

CHILTMEAD LTD.
Reading (0734) 586419

WANTED: TEST AND

 COMMUNICATION EQUPMENT single items or quan tities, also fF plugs,
Call or phone sockets and cannectors
170-Goldhawj Road, London, W. 12
01-743 0899

TOP CASH AVAILABLE

NEW SURPLUS-COMPONENTS
All delails to:
SKYWAVE ELECTRONICS
01-568 1331

RADFORD VALVED AMPLFIERS STA 100, STA60, STA25, STA 15 . power lamps. Sćz2 pre-amps. FM tuners. Godod prices paild. - Deballs to 64A Walb nook Road, Derby ${ }^{2} 1738$

WANTED: Test equipment, RF power transistors, and components of VHF/UHF type. Immediate cash Phone: 024-361 2916, Mr Craig.

[^11]WANTED: Modulation Monitor/De vlation Meter AM/FM Signal Generator Power Meter (R.F.), Mobile Radio Test Set (TF2950). Double Beam Scope and any test equip ment suitable for mobile radio testTel: 03742 plash ing clean goods.

ALL SURPLUS or used equipment wanted. Radio telephones - com. plete systems purchased. Ships equipment and small boat radio's - components, partly assembled chassis etc, etc. Established 20 years. For prompt attention contact Mr Grout at Worthing 34897. GWM Radio Limlted 40/42 Portland Road, Worthing, Sussex
(6594)

WILL BUY ANYTMING, any quantity if price is right ring Stan Willetts, West Bromwich, 021553 0186.

RECEIVERS AND AMPLIFIERS

 HRO Rx5s, etc AR88, CRIO0, BRT400. G209, 5640 , etce etc., in Ashville oid Hall Ashville Rd. London, E11. Ley 4986.SIGNAL Generators, Oscilloscopes, Output Meters, Wave Volimeters, Frequency Meters, Multi-range Meters etc., etc. in stock, R. T.
\& I. Electronics. Lid. Ashville OId Hali, Ashwille did., London. E.11.

The Polytechnic of NorthLondon

Department

of Physics

B. Sc.(Hons.) THE PHYSICS AND TECHNOLOGY OF ELECTRONICS
with the theory, practice and dealing tions of physics and electronics applicalng solid-state physics, integrated circuits, microwaves. lasers, nuclear physics, computers and computing.
B.Se.(Hons.) and B.Sc SCIENCE
These are three-year full-time or
five-year part-time modular degree courses offering a wide choice of units. of which up to two-thirds may be in physics (including electronles) and the remainger subjects, if desired.
M.Sc. THE PHYSICAL BASIS OF ELECTRONICS
Available as a one-year full-time.
two-year part-time and three-year two-year part-time and three-year
evenings-only courses for graduates in Physics. Electrical Engineering and
H.N.C. IN APPLIED PHYSICS
A two-year day-release course, including etectronics. vacuum physics and
spectroscopy. For technicians and thers with suitable Q.N.C. A-levels or

RESEARCH DEGREES

There are active research groups in magnetic properties of thin films and data-storage techniques, particle
counting and cosmic-ray physics. plasma physics and spectroscopy.

Further details may be obtained from
The Secretary, Physics Department
(Ref. WWI)
THE POLYTECHNIC OF NORTH
Holloway Road. London N7 8DB
(Ref. 01-607 2789. Ext. 2180)

RADIO and Radar M.P.T, and C.G.L.I. Courses. Write: Principal, Nautical College, Fleetwood, FY7
8JZ.

BOOKS

We are the U.K.'s leading
stockists of
TEXAS INSTRUMENTS
TECHNICAL PUBLICATIONS
Data Books, Text Books, 9900 Software, etc.
Send S. A.E. for leaflet and Price List
BEDFORD DISTRIBUTION CO
Dept W, St Johns Works, Bedford
"VINTAGE CRYSTAL SETS 1922 1927". Just published by Wireless World, contains 128 pages. Chapters on the first days of broadcasting. The Crystal Set, Vintage Wireless Trademarks. Also catalogue sections listing and describing crystal sets together with their original prices. in f:s:d. A book for the collector or those interested in nostalgia. Available from main bokshops or direct from us. Please send £2.80 inclusive to IPC BusiHouse, Stamford Street, London. HEI 9Lis.

tape recording etc.

YOUR TAPES TO DISC. MONO OF Stereo Cubting. Vinylite Pressings, gleeves/Labels. Top professional quality. S.A.E. for photo leallet. peroy Records. "Eastwonod,
Cove Dunbartonshire, Scotlland.

$S P E C A$ LON PRCE ARRANGEMENTS FOR MSMNE $01=P S E A S$ TRADE FARS

I PC Electrical－Electronic Press Ltd．，the world＇s largest publishers of computer，electrical and electronic journals，have made special arrangements for readers wishing to visit important overseas trade fairs، The cost，in most cases，is little more than the normal air fare but includes－travel by scheduled airline from Heathrow and Manchester 米 first－class hotelaccommodation 米 arrival and departure transfers 米 admission to the trade fair $⿻ 丷 木$ services of an experienced tour manager．The current programme comprises the following tours．

Two hooks from Wireless World

These books are of very special appeal to all concerned with designing, using and understanding electronic circuits. They comprise information previously included in Wireless World's highly successful

Circards - regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. Each of these magazine-size hard cover books contains ten sets of Circards plus additional circuits and explanatory introduction.

BOOK 1

Basic active filters Switching circuits Waveform generators AC measurements Audio circuits

Constant-current circuits Power amplifiers Astable circuits Optoelectronics Micropower circuits

BOOK 2

Basic logic gates Wideband amplifiers Alarm circuits Digital counters Pulse modulators
C. d. as - signal processing

C d.as - signal generation C d.as-measurementrand detection
Monostable circuits
Transistor pairs

ORDER FORM

To : General Sales Department, IPC Business Press Limited,
Room 11. Dorset House.
Stamford Street, London SE1 9 LU
Please send me........................copy/copies of
Circuit Designs - Number 1 at $£ 10.40 \square$
Circuit Designs - Number 2 at $£ 12.50 \square$ each inclusive. I enclose remittance value $£$ (cheques payable to IPC Business Press Ltd.)

Name (please print:)
Address

I.C.E. MULTIMETERS TWICE the information in HALF the size
 The I.C.E. range of multimeters provides an

unrivalled combination of maximum performance within minimum dimensions, at a truly low cost. Plus, a complete range of add-on accessories for more ranges, more functions.

All I.C.E. multimeters are supplied complete with unbreakable plastic carrying case, test leads, etc., and a 50 -plus page, fully detailed and illustrated Operating and Maintenance Manual.
Now available from selected stockists. Write of phone for list, or for details of direct mail-order service

Supertester 680R (illustrated)
-20k』/VV. $\pm 1 \%$ fsd on d.c. $4 \mathrm{k} D / \mathrm{V}$ - 2% fsd on a.c.
.80 Ranges -10 Functions $.140 \times 105 \times 55 \mathrm{~mm}$
£25.25 + VAT

Supertester 680G

$20 \mathrm{k} 7 / \mathrm{V}$. $+2 \%$ isd on d.c. $4 \mathrm{k} 2 / \mathrm{V}$. -2% fsd on a.c. 48 Ranges - 10 Functions $109 \times 113 \times 37 \mathrm{~mm}$ £19.95 + VAT

Microtest 80

 $20 \mathrm{kDD} / \mathrm{V}$. 2% isd on d.c klp/V. -2% isd on a.c 40 Ranges - 8 Functions only $93 \times 95 \times 23 \mathrm{~mm}$$£ 14.95$ + VAT
Electronic Brokers Ltd.
49-53 Pancras Road, London NW1 2QB
Tel. 01-8377781
WW-111 FOR FURTHER DETAILS

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 130-141

Acoustical MFG Co. Ltd
Adcola Products Letd. .
AEL Crystals Led.
Allen \& Heath
Amateur Components
Ambit International
Antex
Aspen Electronics Lid.
Astra-Pak
Audio Fair
Audix Ltd.
Barr \& Stroud Led
Barrie Electronics Ltd.
Bell \& Howell
Belling \& Lee Ltd
Bentley Acoustic Corp. Lid
Bi-Pak Semiconductors Ltd.
Bi-Pre-Pak Lid.
Boss Industrial Mouldings Ltd.
Bull, J.
Cambridge Learning
Catronics
CEC Corporation
Chiltmead Ltd.
Circuit Designs
Colomor (Electronics) Ltd.
Comark Electronics
Comark Electronics
Commercial T/Travel
Crimson Elek trik
Crofton Electronics Ltd.
Dana Electronics Led.
Data Dynamics
Data Dynamics
Eagle International
Eddystone Radio Ltd.
Edicron Ltd.
Electronic Brokers Lid
Electroplan Ltd.
Electro-Tech Components Lid.
Environmental Equipments Lto
Erie Electronics Ltd.
ES Electronics
ESP.
Farnell Instruments Lid Future Film Developments

- Fylde Electronic Comps. Lid.

G.D.S.

Gardners Transformers
Genrad Ltd.
Greenwood Electronics Ltd.

OVERSEAS ADVERTISEMENT
 AGENTS:

France: M. D. Soubeyran, Compagnie Francaise D'Editions Division Internationale, 40 Rue du Colisee, Paris 8 e Telephone: 225-77-50 - Telex: 280274.

Hungary: Mrs. Edit Bajusz, Hungexpo Adverīsing Agency. Budapest XIV. Varosliget
Telephone: 225008 - Telex: Budapest 22.4525

Izaly: Sig. C. Epis, Etas-Kompass, S.p.a. - Servizıo Estero. Via Mantegna 620154 Milan
Telephone 34705% - Telex 37342 Kompass

PAGE
Hall Electric Ltd.
PAGE
Harmsworth Townley \& Co. Ltd
Harris Electronics (London) Ltd.
Harris \mathbf{P}.
Harris P.
105. 111

17
28
127
128
$\begin{array}{r}4 \\ 3 \\ \hline\end{array}$

Small wonder.

One of the world's smallest dynamic-element lavalier microphones is designed to be heard, nat seen. Other mini-mics may be O.K. at first, but, as you know, there have been problems with sudden failures. . . sometimes on the air! The new Shure 5M11 lavalier solves the problem with an unusually high quality dynamic element that delivers all the reliability of a desk microphone-yet it weighs less than a third of an ounce.
Rugged, all-around durability and a
field-serviceable design keeps this new breed of lavalier on the air when you need it most. Without batteries or unnecessary wiring. And without a big price tag either.
The SM11 has everything: size, performance, durability, price. That's not just small ralk!

Shure Electronics Limited

 Eccleston Road,Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881

TECHNICORNER
Frequency Response: 50 to $15,000 \mathrm{~Hz}$ Polar Patrern: Omnidirectional Impedance: 150 ahms (200 ohms actual) for connection to microphone inputs rared ar 25 ro 200 ohms
Hum Pickup: Less thon 35.3 dB equivolent SPL in a 1 millioersted field Accessories Supplied: Speciolly designed lavalier,assembly; clip-on clasp; rie-rack assembly; connector belt clip.

"There's a lot more to Multicore...

Multicore now solders the 'impossible: ALU-SOL 45D solders most types of aluminium and has a good corrosion
resistance. Arax 96S for diffi-
cult stainless steels, being

[^0]: Current issue price 40 p. back issues (if available) 50 p , at Retail and Trade Counter, Paris Garden. London SE1. By post, current issue 55 p, back issues (if available) 50 p, order and payment to Room 11 . Dorset House, London SE1 9LU.
 Editorial \& Advertising offices: Dorset House. Stamford Surcet, London SEI 9L̈Ủ.
 Telephones: Editorial 01-261 8620: Advertising 01-261 8339.
 Telegrams/Telex, Wiworld Bisnespres 25137 BISPRS G. Cables. "Ethaworld, London SEI.
 Subscription rates: 1 year: $£ 7.00$ UK ann overseas ($\$ 18.20$ USA and Canada). Student rate: 1 year, $£ 3.50$ UK and overseas ($\$ 9.10$ USA and Canada)
 Distribution: 40 Bowling Green Lane, London ECIR 0NE. Telephone 01-837 3636.
 Subscriptions: Oakfield House. Perrymount Rd. Haywards Heath. Sussex RH16 3DH. Telephone 044459188 . Subscribers are requested to notify a change of address. © I.P.C. Business Press Ltd, 1977
 "USA mailing agents: Expediters of the Printed Word Ltd., 527 Madison Ävenue, Suite 1217, New York, NY 10022 . 2nd-class postage paid at New York.

[^1]: WW-10I FOR FURTHER DETAILS

[^2]: * The minimum number of channels which intuitively can provide independent directional information in one plane, i.e. a horizontal sound-stage.

[^3]: * A sound-image is moved between the two stereo loudspeakers by electrically altering the ratio of the sound signal fed to each loudspeaker. keeping the total power constant. This technique is also known as pairwise panpot mixing.

[^4]: An explanation of matrix notation in relation to

[^5]: *However the latest NRDC proposals (system 45.3, see last issue) are close to Matrix H encoding specification; this should enable a suitably designed decoder to give a satisfactory performance with either system.
 t. See elsewhere in this issue for Vitriomatrix modification details.-Ed.

[^6]: ELECTRONIC DIGITAL CLOCK

 ## From this

 * CHRONOMETER ACCURACY WITH SOLID STATE

 RELIABILITY

 $10.5 \times 5.7 \times 8 \mathrm{cms}$

 SAME DAY DISPATCH
 ORDERS RECEIVED BEFORE 2 p.m. are posted on the same dav.

 A professional product for the home constructor. It has been designed
 by engineers using the most modern techniques and components. It will appeal both to the confirmed hobbyist and to the man who simply wants to 'have a go'. The kit contains everything except a mains lead. The only tools required are a small soldering iron, solder, screwdriver
 and wire cutters.

 - ATTRACTIVE ACRYLIC CASE
 * $12 / 24$-HOUR READOUT

 SEND YOUR ORDER TO'

 ## DAVENTRY

 67 HIGH STREET DAVENTRY TEL: (032-72) 76545

[^7]: al nom

[^8]: HEWLETI PACKARD 432A. Power meter
 ADVANCE TCD500 Frequency dividers to 500 mHz £ 100 AIRMEC 210A Modulation meter $3-300 \mathrm{mHz}$.
 APT 504 Power supply. 0.500 V at 250 mA c35
 BPL Capacitance decade (5) CD133. 100 pf-1 uf $£ 45$ BRANDENBURG High voltage generator type S.0530/10 0.20 KV and MR50 type $0-50 \mathrm{KV}$.

 GERTSCH Frequency meter and
 $20-1000 \mathrm{mHz}$ \qquad
 $20-1000 \mathrm{mHz}$ meter
 E250
 Slandard sweep frequency generator, $400 \mathrm{kHz}-230 \mathrm{mHz}$ HEWLETT PACKARD. 612. Signal generator HEWLETT PACKARD. 208A. Banery powered oscillator -500 KHz.
 HEWLETT PACKARD 6930 sweep oscillator. . E350 MEDISTOR type A.75A Potentiometri
 RACAL 1.2 mHz counter timer. 6 Digits. SA535B EA5
 RADIOMETER Wave analyser ivpe FRA 28 RADIOMETER Wave analyser type FRA28 SCHNEIDER type cf 52.100 mHz frequency COHOMANDL Frequency meter type FD1 E235 SOLARTRON Pulse generator type G01101.2 £65
 TEKTRONIX 585A oscilloscope with TEKTRONIX type 526. Vectorscope
 TEKTRONIX type 180A. Time mark generator . $£ 110$

[^9]: MEDICAL Electronics Engineers re-
 quired for servicing, testing and fault finding must ibe fully exfault finding must be fully exjevel. Salary being negotiable. Contact Mr Cooper for Interview telephone 2729212 . 7134

[^10]: SEMICONDUCTORS. Knobs meters,
 resistors, capacitors. SAE for price resistors, capacitors. SAE for price
 list. - R. B. Electronics, 24 Springfield Park. Holyport, Maidenhead field Park, Holyport, Maldenhead
 39798 .

[^11]: BACK NUMBERS. W/W 1965 to date $(7$ missing). Electronics Eng. 1964 to June 72 (1 missing). Offers inford, oxon. Tel Warborough 8491 ,

