worldAPRIL 1974 20p

 Build a stereo tuner

 Build a stereo tuner

 Doppler in loudspeakers

 Doppler in loudspeakers}

wireless world

Electronics, Television, Radio, Audio

APRIL 1974 Vol 80 No 1460
 SIXTY-FOURTH YEAR OF PUBLICATIO'N

This month's cover picture shows the red, green and blue triple optical head of a colour television projection equipment made by Pye TVT.
(Photographer Paul Brierley)

IN OUR NEXT ISSUE (published May 22)

Radar for cars. Clutter-free system for avoiding road collisions.
Colour-sound system. Compact equipment for controlling light hue and brightness by audio signal frequency and amplitude.

Novel stereo F.m. tuner. Part 2: decoder, assembly; setting-up; and a frequency meter.
Electronic piano. Part 3: assembly of the electronics and the cabinet.

Contents

57 What is an engineer worth?
58 Novel stereo f.m. tuner by J. A. Skingley and N. C. Thompson
63 Paris components exhibition
64 Research notes
65 Doppler distortion in loudspeakers by J. Moir
69 Communications '74
70 News of the month
UK semiconductor industry growth
Telephone dialling microcircuit
Solid-state TV camera
72 Letters to the editor
Sound radio compression
Plug-in p.c. boards
Multimeters for blind students
75 Electronlc piano-2 by G. Cowie
80 H.F. Predictions
81 Guglielmo Marconi by W. J. Baker
85 Colour TV tube developments
86 Sixty years ago
87 Photographic development timer by R.G. Wicker
90 Colour separation overlay by G. Dann
93 IEA exhibition preview
95 Traffic information broadcasting by R. C. V. Macario
98 World of amateur radio
99 Circards-13: Alarm circuits by J. Carruthers, J. H. Evans?
J. Kinsler \& P. Williams

101 F.E.T. curve tracer-2 by L. G. Cuthbert
103 Literature received
104 New products
108 Real and imaginary by "Vector"
a92 APPOINTMENTS VACANT
all6 INDEX TO ADVERTISERS

ibpa

LP.C. Electrical-Electronic Press Lid
Managing Director. George Fowkes
Administration Director: George H. Mansell
Publisher: Gordon Henderson

Price 20p. (Back numbers 40p.)
Editorial \& Advertising offices: Dorset House, Stamford Street, London SE1 9LU.
Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
Telegrama/Telex. Wiworld Bianespres 25137 London. Cables, "Ethaworld, London S.E.1."
Subscription rates: Home, 24.35 a year. Overseas, 1 year E5; 3 years 212.50 (U.S.A. \& Canada 1 year $\$ 13$, 3 years $\$ 32.50$) Student rates: Home 1 year $£ 2.18,3$ years $£ 5.55$. Overseas, 1 year $\mathbf{f 2 . 5 0}, 3$ years $\mathbf{E 6 . 2 5}$ (U.S.A. \& Canads 1 year $\$ 6.50,3$ years $\$ 16.25$).

Distribution: 40 Bowling Green Lane, London EC1R ONE. Telephone 01-837 3636.
Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH16 3DH. Telephone 044453281. Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.

\#strologically speaking...

. . the best and most promising times of the year are May, June and December, however if you are careful and do not attempt anything too rash, the remainder of the year should not present you with too many problems.

All in all a productive future is forseen in your horoscope.

now discover our scope!

The 5AV and 1EV series of high voltage cartridge rectifiers are rated at 50 mA and 10 mA average rectified currenf respectively.

The $5 A V$-series is offered over the voltage range $2 k V$ to $6.5 \mathrm{kV} V_{\text {RRM }}$ and is in a $5 \mathrm{~mm} \times 10 \mathrm{~mm}$ diameter package offering the design engineer an extremely compact solution to many high voltage rectifier problems.

The $1 E V$ series offered with $V_{\text {RRM }}$ ratings up to 12 kV is in a 16 mm long package that provides longer tracking paths than the $5 A V$ series enabling the lower voltage types to be used without further encapsulation.

The 1 EV series has fast reverse recovery characteristics and so is suitable for use in high frequency systems where rectifier efficiency is important.

Both series are available now.

INTERNATIONAL FECTIFIER
HURST GREEN OXTED SURREY RH8 9BB TELEX RECTIFIER OXTED 95219 TELEPHONE OXTED 3215/4231

wireless world

Editor:
TOM IVALL, M.I.E.R.E.

Deputy Editor:
PHILIP DARRINGTON

Technical Editor:
GEOFFREY SHORTER, B'Sc.

Assistant Editors:

BILL ANDERTON, B.SẼ.
BASIL LANE

Drawing Office:
LEONARD H. DARRAH

Production:
D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)

Phone 01-261 8339

KEITH NEWTON

Phone 01.2618515
A. PETTERS (Classified Advertisements) Phone 01-261 8508 or 01-928 4597
JOHN GIBBON (htake-up and copy)
Phone 01-261 8353

What is an engineer worth?

The short answer to the question What is an engineer worth? is: what he can get. This may seem cynical to those who have certain ideas about the intrinsic worth of an engineer-in terms of his education, qualifications and so on-but because this intrinsic worth cannot be evaluated in money there can be no other answer. In practice the engineer has to accept a prospective employer's evaluation of his worth, perhaps after the two of them have bargained about it. In private industry the settlement may be a capricious one, very much dependent on market forces and therefore seemingly unfair in relation to other workers. At the time of writing there are bricklayers and carpenters earning $£ 4,000-£ 5,000$ p.a. in the London area. How many engineers can command this level of salary? It may seem that in state-run organizations such as the Civil Service things are better because they are more regularized and predictable. As a result the engineer may be more ready to accept without question the employer's evaluation of his worth: it seems to be based on the accumulated wisdom of the state and the will of the people.

Of course there have been plenty of studies, reports and recommendations made on behalf of the engineer. Last year, for example, we had the fourth CEI survey of professional engineers and the IEEE manpower report. Such investigations are mainly intended to let the engineer see where he stands and what are his prospects: they don't hope to change anything. One of the most forthright statements was in the famous "Brain Drain" report, which said there was clear evidence "that industry undervalues its engineers, technologists and scientists" and recommended that industry should be prepared to "promote within its own salary structure the pay of qualified engineers, technologists and scientists". More recently the United Kingdom Association of Professional Engineers has been campaigning against engineering employers' "apparent willingness" to classify professional engineers "alongside the mass of technicians and manual employees" in concluding pay agreements.

Much of the agitation for improved pay rests on the assumption of a superior order of intellectual ability in the professional engineer relative to other engineering workers-an ability to analyse and conceptualize, to see clearly the fundamentals of problems-which has been brought to a high level by three or more years' education and given the stamp of an official qualification. This is the core of the engineers' claim. It is a strong case and nobody disputes it. Why, then, do not engineers have the courage of their convictions and organize themselves to deploy this advantage in a more effective way? Mere recognition is not enough. The CEI is a toothless watchdog. The reluctance of engineers to organize themselves into pressure groups or unions is partly because, like many creative people, they are individualistic by nature, and partly because the word "professional" for them has an image that is aloof from the cloth-cap image of the trade union. They therefore turn their backs on collective bargaining in a world which operates on collective principles. If only they were able to recognize fully the significance of their own strength they would find the will to use it.

Novel stereo f.m. tuner

1 -Circuits and operation

by J. A. Skingley and N. C. Thompson

Plessey Components Ltd, Swindon

Abstract

Using a ready-made front-end, integrated circuits and only one inductor, this tuner design is simple to operate, construct and set up. It includes novel circuitry to give inter-station muting, a.f.c. restricted to less than station spacing, a single-lamp tuning indicator, temperature-compensated varicap tuning allowing stations to be preset, and a linear-scale frequency meter. A simple stereo decoder circuit (part 2) uses active filters to eliminate "birdies" and remove subcarrier harmonics. Printed circuit wiring diagrams, assembly instructions and setting up procedure will appear in part 2.

The designer of technical equipment for the domestic market faces a problem. On the one hand the technical operating requirements can dictate a multiplicity of controls and demand a detailed knowledge of their use. On the other hand the operation must be simple and easily understood by people of all walks of life and professions. This design had to cater for non-technical people and children.
The first requirement then was that the system used should mask the technicalities and present the user with the simplest possible mode of operation, relying at most on traditional skills learned from more conventional a.m. receivers, without sacrificing the advantages to be had from a modern f.m. tuner.

The second requirement was to provide a tuner which was at least as good as the best commercial unit on all technical parameters. The total design objectives were therefore
requirement 1-ease of operation:
(a) provision for push-button tuning
(b) no undesirable outputs
(c) powerful a.f.c.
(d) sensitive, unambiguous tuning indication
requirement 2-good performance :
(a) $2 \mu \mathrm{~V}$ for $30-\mathrm{dB}$ signal-to-noise ratio
(b) $3-\mathrm{dB}$ limiting $0.5 \mu \mathrm{~V}$
(c) image rejection 40 dB
(d) i.f. rejoction 65 dB
(e) capture ratio 2 dB
(f) a.m. rejection 60 dB
(g) a.f. response $\pm 1 \mathrm{~dB}, 20 \mathrm{~Hz}$ to 15 kHz .

The combination of these objectives led to a system which to our knowledge is unique (Fig. 1).
The core of an f.m. system is its i.f. strip, and in this design it was decided to use a block filter and integrated-circuit limiting amplifier. The distribution of selectivity and gain has conflicting requirements. From the point of view of noise selectivity should
come after gain; from the view point of intermodulation effects gain should come after selectivity. The ideal choice is one where the gain and selectivity are uniformly distributed throughout the system, and this was more nearly achieved in traditional i.f. amplifiers using discrete components. The use of integrated circuits however precludes the use of this system because selectivity cannot be integrated.
There are however a number of advantages to the use of block filters over distributed systems. They can be designed as a single entity, providing a shaped response via the controlled interaction between sections to give a complex pole system, and avoiding the need for delicate stagger tuning of discrete sections. Termination conditions are easily allowed for, the filter as a whole is less sensitive to variations in transistor parameters. The filter used in this receiver is the Murata SFG-10.7 MA, which has excellent bandwidth and selectivity (Fig. 2).

Fig. 1. In this turer design limiting and demodulation is provided in a five-stage amplifier and a balanced demodulator, both in the SBA750A i.c., additional gain being provided by a two-stage discrete-component preamplifier. Integrated muting circuit eliminates inter-station noise and the novel one-lamp indicator makes tuning simple.

Fig. 2. Filter characteristic is maintained by making filter "see" 330 ohms at source and load.

The integrated amplifier must have excellent limiting characteristics to provide a good a.m. rejection, and the device chosen achieves this by the use of a five-stage limiting amplifier and a balanced demodu: lator. This is the Plessey SBA750A which has 45 dB rejection at $200 \mu \mathrm{~V}$ and 60 dB at 2 mV input. These figures correspond to $2 \mu \mathrm{~V}$ volts and $20 \mu \mathrm{~V}$ respectively at the input in this design. This device also features a mutable a.f. amplifier which is used in the mute circuit to be described later.

It is interesting to reflect here that, at the present stage of integrated circuit development, the system designer has a wide choice of such building blocks, and, being relieved of the detailed design of these, has far more scope for originality than he used to have. This would seem in contrast to the gloomy forecast once made that all design would be done by the i.c. manufacturer, leaving the system designer the simple task of plugging in devices. In fact it is this new freedom which brings to light the need for new building blocks, and in turn produces more advanced systems.

Objective $1(a)$, is met by using a varicaptuned front end. The performance of com-mercially-available units, although capable of improvement, is equal to our design objectives and presents the simplest solution. The unit chosen was the Mullard LP1186, which can beconveniently mounted on a printed circuit board.
To achieve objective 2(a) more gain is required than that given by the above items. This extra gain is provided by a two-stage feedback amplifier as shown in Fig. 3. The first stage acts as a transconductance amplifier, its gain being defined by the 100 ohm emitter resistor. The second stage then functions as a transresistance amplifier or current-to-voltage converter. The combination therefore has a gain defined by the $100-\Omega$ resistor and the $2-\mathrm{k} \Omega$ feedback resistor, and has a value of 26 dB . The output impedance of this stage is around 90 ohms,

Features of this simple-to-operate stereo tuner include a minting circuit to prevent unwanted signals being heard (e.g. weak stations, signals affected by flutter, and mistuned stations), a single-lamp tuning indicator and a linear frequency meter.

Fig. 3. Feedback amplifier consisting of voltage-to-current converter followed by a current-tovoltage converter has $26 d B$ gain, defined by 100 -ohm and $2 k$-ohm resistors. Output impedañce of 90 ohms is made up to 330 ohms to correctly feed the filter.

Fig. 4. Mute circuit, operated by the amount of amplitude modulation in the i.f. output, has the advantage of suppressing unwanted outpits due to detection on the non-linear regions of the S-shaped demodulation curve. Point X, fed from the demodulator via Fig. 5, feeds the tuning indicator, which is held off by ${T r_{11}}$ in the presence of noise. An output from this circuit unmutes the stereo output from SBA750 i.c. First five transistors are contained in SL 3045 i.c.
and so a buffer resistance of 240 ohms is used to present the filter with its required source impedance of 330 ohms . This introduces a slight loss of gain, but ensures that the correct filter characteristic is obtained.

Muting circuit

The system so far described provides an audio output from an aerial input and could therefore be used as a tuner as it stands. However, this is really where our story begins. If the above system is used, the first thing soon realized is that the interstation noise is highly objectionable. In fact it corresponds to a fully modulated signal over the entire audio band, since the input stage noise is sufficient to achieve limiting in the last i.f. stage, with a bandwidth equal to the i.f. filter pass-band.

In addition to this ear shattering blast, as a station is tuned a highly distorted version of the station programme is received before the correct tuning point is reached, also at a high volume. This is of course due to detection via the " S " curve of the detector, and will be produced at equal intervals either side of the correct tuning point. The net result of all this is design objective 1(b), the suppression of all unwanted outputs. Put the other way round, the only sounds heard should be correctly tuned stations.
Audio muting is achieved by using the remote gain control facility of the SBA750.

This is a pin connection usually taken to a remote potentiometer carrying d.c. only. For our use the potentiometer is replaced by a p-n-p transistor (Tr_{12}. Fig. 4) which is controlled from a number of sources.

Because the noise level is sufficient to produce a fully limited signal from the i.f. amplifier, the magnitude of this cannot be used to detect the presence of the station to un-mute the system, and this presents a problem. The solution is simple in concept.

What is required is a measure of the degree of limiting taking place within the i.f. amplifier, and this is easily monitored by detecting the amount of amplitude modulation present in the i.f. output. This has the advantage of detecting the spurious responses mentioned earlier, as these are in fact caused by the high-slope edges of the i.f. filter response converting the frequency modulation into amplitude modulation which is then detected by the quadrature detector.

The first device in Fig. 4 acts as a buffer to the i.f. amplifier output, which is very sensitive to capacitance loading. The next two devices form the amplitude detector. Transistor Tr_{14} is diode-connected and fed with a small current from the supply. As the five devices Tr_{13} to Tr_{17} are contained on one chip of silicon (SL3045), they have well matched base-emitter voltages, and this causes $T r_{15}$ to conduct the same current as
$T r_{14}$. The 1-k Ω resistors in Tr_{14} and $T r_{15}$ bases provide a higher input impedance for the signal while preserving the voitage match, since the base currents are also equal.

The collector of Tr_{15} would sit at a relatively high voltage due to its smaller load resistance, but application of the i.f. signal (noise or "clean" 10.7 MHz), which is about 400 mV pk-pk, causes this stage to rectify bringing its collector down to a low voltage. The collector time constant is chosen so that the $10.7-\mathrm{MHz}$ signal is filtered out but allowing a mplitude modulation up to about 100 kHz to be followed. This modulation can only be negative, as the i.f. is amplitude limited, and this produces positive-going signals, when present, at T_{1} collector.

The following transistor pair is biased with Tr_{17} normally on, so that this positivegoing signal turns on Tr_{16} and hence Tr_{3}, both of which are normally non-conducting. In the presence of noise therefore the capacitor in Tr_{3} collector is charged rapidly taking the base of Tr_{11} positive. This will happen in the presence of any form of a.m. noise or spurious signals, and may be used to mute the receiver.

Single-lamp tuning indicator

There are many ways, of meeting objective 1(d). However there is a need to provide an indication which is readily understood by all, without the need for instruction, which

Fig. 5. A.F.C. amplifier has its voltage swing limited to restrict a.f.c. action to less than station spacing. Using a computer programme, the tuning potentiometer network was optimized to provide uniform lock-in range over the tuned band and correct temperature compensation of the front-end. Diodes in potentiometer smoothing circuit allow quick charging of capacitors and keep setting time after switch-on short.

Fig. 6. Circuit of f.m. receive section of tuner with a.f.c., muting and tuning indicator circuits. Frequency is displayed on a moving-coil meter (circuit in part 2). Resistors in this circuit should be 2% tolerance.
ruled out several of the recently-used types. These include the centre-zero meter and the two-lamp system, as neither of these provide a maximum response at the correct tuning point, which is the conventional mode of adjustment. This topic is to be covered in another article and the final design is shown. in Fig. 5.
Inputs are taken from the balanced demodulator output via $10 \mathrm{k} \Omega$ resistors and fed to a long-tailed pair with the addition of a third transistor. This device is connected so that it conducts a maximum current (one third of the tail current) when the inputs are balanced. The collector of this (point X) is connected to the base of Tr_{7} (Fig. 4), the d.c. conditions being arranged so that at balance, and assuming Tr_{11} is off, Tr_{7} conducts 20 mA into the single l.e.d. indicator, D_{3}. This then has a maximum brilliance at the correct tuning point.

The $7 r_{11}$ tuning indicator is extinguished in the presence of noise, since $T r_{11}$ conducts away the current supply to it when its base
is made positive by the action described earlier.
Objective l(b) can now be easily obtained. We only require the audio signal to be unmuted when there is a correctly tuned station being received, that is, when the tuning indicator is fully lit. The voltagecurrent characteristics of a l.e.d. are similar to those of a zener diode; therefore a 240 ohm resistor is placed in series to give a voltage-varying point, and this is used to operate the mute transistor Tr_{12} (Fig. 4). The system will only pass a correctly tuned signal of significant signal-to-noise ratio. Very weak stations, stations suffering from gross interference or aircraft flutter, spurious respulses, and even strong stations which are mis-tuned by more than'a few tens of kHz will be completely muted.
A.F.C. circuit

There now only remains the objective 1 (c), the provision of a.f.c. This function received a lot of thought and discussion before the
system described was finalized. A high degree of loop gain was required to reduce the tuning error to negligible proportions, but when this was tried, however, several disadvantages came to light.

Firstly it was found impossible to tune the receiver with a.f.c. applied. One station would be captured and the tuning control rotated past several others on the dial before the original station was lost, and then it was not known which station had been recaptured. The tuning was completely ambiguous, in opposition to the main requirements and objective 1(d) in particular. There are several expensive commercial tuners having this fault.

The solution to this problem is simple in hindsight. What is needed is indeed high gain, but the frequency range should be restricted to less than the typical station spacing. This is easily achieved by limiting the swing voltage available from the a.f.c. amplifier. One requirement for the above system to be successful is that the tuner

Components (main board)

Filter Murata SFG 10.7MA
Front-end module Mullard LPII86
Mains transformer
RS Components (634 Trans)
Push buttons
RS Components (Press 2P)
Pre-set pots
RS Components (Lin Cerm 50k)
Multi-turn pots
RS Components (Multi pot 50k)
Regulator
RS Components (MVR 15)
Rectifier
RS Components (REC 70)
Meter RS Components (MR 42A)
Semiconductor devices

$I C 1_{1}$		SBA750A	R_{12}		$5.6 \mathrm{k} \Omega$
I_{2}		SL3045	R_{13}		$1 \mathrm{M} \Omega$
$T r_{1}, T r_{2}$		2N3904	R_{14}, R_{33}, R_{34}	R_{40} to R_{42}	$6.8 \mathrm{k} \Omega$
$\operatorname{Tr}_{3}, \operatorname{Tr}_{\mathrm{B}}$ to Tr_{1}		BCI79	R_{15}, R_{18}, R_{19}		$1 \mathrm{k} \Omega$
Tr_{4} to $\operatorname{Tr}_{7}, \mathrm{Tr}_{1}$,, rr_{12}	BCl09	R_{17}		$100 \mathrm{k} \Omega$
D_{1}, D_{2}		1N4148	R_{21}, R_{22}, R_{36}		$20 \mathrm{k} \Omega$
D_{3}		5082-4403 (1.e.d.)	R_{23}		$5.1 \mathrm{k} \Omega$
D_{4}, D_{5}		1 N 4001	R_{25}		150Ω
			R_{29}, R_{31}		$12 \mathrm{k} \Omega$
Capacitors			R_{35}		$5.1 \mathrm{k} \Omega$
C_{1}, C_{14}	10 nF	disc ceramic)	R_{37}		$11 \mathrm{k} \Omega$
$C_{2}, C_{3}, C_{5}, C_{7}$	47 nF	disc ceramic)	$R_{4,}, R_{45}$		$1.2 \mathrm{k} \Omega$
C_{4}, C_{24}	$0.1 \mu \mathrm{~F}$	disc ceramic)	R_{46}		$8.2 \mathrm{k} \Omega$
$\mathrm{C}_{7}, \mathrm{C}_{8}$	8.2pF	min. plate ceramic)	$R_{4}{ }_{4}$		$6.2 \mathrm{k} \Omega$
$\mathrm{C}_{9}, \mathrm{C}_{15}$	100pF	(min. plate ceramic)	R_{48}		$2.7 \mathrm{k} \Omega$
C_{10}	470pF	(disc ceramic)	R_{49}		$82 \mathrm{k} \Omega$
C_{11}	$0.22 \mu \mathrm{~F}$	(stack foil	$R_{\text {so }}$		$200 \mathrm{k} \Omega$
		polycarbonate)	$R_{s_{1}}$		$1.1 \mathrm{k} \Omega$
C_{12}, C_{18}	$2.2 \mu \mathrm{~F}$	63V electrolytic)	$R_{s 2}$		120Ω
C_{43}	10 nF	tack foil	$R T_{1}$		VA10555

should not have a temperature drift greater than the hold-in range of the a.f.c. This would anyway render the tuning calibration unreliable. In this design the a.f.c. amplifier is used to provide temperature compensation independently of the hold-in range. The circuitry used is shown in Fig. 5.

The differential output from the tuning indicator triple is further amplified by Tr_{s} and $T r_{6}$. Due to the action of the triple there is a common-mode signal present in its output, and this is rejected by Tr_{5} and Tr_{6} by providing them with a constant-current tail from Tr_{4}. Also under extreme mistuning it would be possible for Tr_{5} or Tr_{6} to bottom, causing a spurious output voltage and incorrect a.f.c. action. Diodes D_{1} and D_{2} are included to prevent this from happening. They limit the swing available by clamping $\operatorname{Tr}_{\mathrm{B}}$ and Tr_{10} collectors together at a maximum of 0.6 volts difference.

The a.f,c. can easily be cancelled by closing switch S_{2}, thus removing differential gain. The output voltage is now determined by the current from Tr_{4}, which is fixed, and the total load resistance in the common mode. This includes the thermistor common to both collectors which is selected to provide the correct compensation of the front end, via the following network.
This network was optimized by a computer programme to provide a shift of the end voltages of the tuning potentiometer by
amounts representing equal frequency shifts. This results in a uniform lock-in range over the tuned band, and also correct temperature compensation. A possible method of switching and tuning potentiometers is shown; alternatively these may be connected in parallel provided that the total resistance remains at $50 \mathrm{k} \Omega$.

The positive end of the tuning potentiometer, point A, is connected via a total of $10.6 \mathrm{k} \Omega$ to the positive supply, and any residual mains ripple at this point will modulate the tuning and produce a hum at the output. Less than 0.1 mV ripple is required to produce a hum level at least 60 dB down on full
signal. Therefore, the resistance is split and two $220 \mu \mathrm{~F}$ capacitors inserted as shown. This has the desired effect, but produces a slow sweep across the tuning range as these capacitors charge up after switch-on. This is annoying as several stations are captured by the a.f.c. in passing, before the wanted station is reached.

To overcome this defect, it is arranged that D_{4} and D_{5} diodes rapidly charge the capacitors, by-passing the $1.2-\mathrm{k} \Omega$ resistors.
When fully charged, the voltage drop across these is insufficient to keep the diodes forward biased and they cease to conduct, allowing the full time constant to become effective. By this means the switch-on settling time is greatly reduced. These diodes can be seen in Fig. 6 which shows the discrete components and their inter-connection with the integrated circuit and frontend module.
The tuner circuit described provides the optimum performance with regard to the needs of all users. Operation is simplicity itself. The set is silent while tuning between stations and the tuning indicator is un-lit. When a station is encountered the tuning indicator lights fully and the set un-mutes. The tuning control is now left untouched in the knowledge that no further adjustment is required. If an adjacent station exists, the control may be turned further and the tuning lamp will blink off then on again and the new station will be heard; again no further adjustment will be required. This action is similar to turning a rotary switch. If this new station is further away, the set will remain silent until it is reached; mis-tuned stations cannot be received. If the a.f.c. is disabled, for instance when hunting upband for foreign stations, the tuning indicator allows a sensitive fine adjustment to be made. The mute facility may also be removed under these conditions to allow weak stations of less than 5 to $10 \mu \mathrm{~V}$ to be received.

The design has been sufficiently thorough to ensure that the performance can be guaranteed, provided that the components specified are used and the layout of the p.c. board is as recommended. Setting up can be done with nothing more than a trimming tool, for the single tuned circuit, and a pair of eyes.

Part two will include details of an improved stereo decoder, assembly instructions, and setting up procedure.

Paris components exhibition

As semiconductors have been a marker, for many years, of the state of development, we thought we would have a look and see what was happening here. Trends are towards larger-scale integration of almost everything, from computers to car radios, and the number of stands on which displays for meters, calculators, clocks, watches and any parameter not previously thought of makes one wonder whether liquid crystals, light-emitting diodes, neons, or some device yet to see the light of day will be the standard in ten years' time.

Semiconductors

To get down to details, an example of i.s.i. was shown by Motorola, who had the MC6800 set of ion-implanted, n-channel integrated circuits, which together form a microcomputer. (Will the next step be a nano-computer, one wonders?) The set consists of an 8 -bit central processor, an 8 k ROM, a 1 k RAM, an interface for peripherals and an asynchronous line interface. The processor, in a 40 -pin pack, handles decimal or binary and accommodates 72 instructions, with provision for up to 64 bytes of external memory-in any form.

Also by Motorola is the set of three i.cs for a PAL decoder, giving final R, G and B tube drive from the composite video signal. One of the set is the MC1327 colour demodulator, which is already known, together with the TBA 395 (chrominance) and TBA 396 (luminance) modules. The last two contain a gain-controlled chrominance amplifier, a gated burst amplifier, p.l.1. reference oscillator, chrominance amplifier a.g.c. generator (this is usually known as a.c.c. -automatic chrominance control) and colour killer, together with black-leve! clamps, beam current limiting and tracked control of saturation and contrast.

Chips for calculators continue to evolve, and General Instrument Microelectronics showed two new ones. The 8 -digit C595 possesses automatic constant on all four functions, and percentage. It has one memory, but four separate keys allow the memory to be updated, information stored, cleared or read. All functions are in the one chip, including display and clock. The Cl50 is a 14 -
digit unit for office or scientific work, which offers the facility of storing and operating upon two numbers simultaneously, for example, in the solution of quadratic equations. C151 is a version for general use, with a direct square root key.

SGS-Ates showed a range of seven integrated circuits-in various stages of development-which together make up a virtually complete colour receiver. The planning is such that three of the i.cs are concerned with the colour section of receivers, the remaining four being usable in monochrome sets. One remarkable chip, the TDA1170, contains the entire vertical deflection circuitry, providing 1.6A peak-to-peak to the deflection coils. A voltage stabilizer is built in to provide immunity to supply variations.

SGS-Ates also had their TDA2020, a 15W audio amplifier on one chip, claiming high-fidelity performance at a t.h.d. figure of 1% at 15 W . It requires $\pm 18 \mathrm{~V}$ supplies, and has a power-limiting circuit with thermal shut-down. The two-rail supply enables direct coupling of the loudspeaker. The amplifier is also available in industrial guise as the LO68, to be used as a servo driver and error amplifier combined.

An automotive i.c. by ITT Semiconductors, the SAJ280, is intended to ensure that seat belts are worn. The unit is named "Interlock" and creates all manner of visual and aural commotion if the belts are unfastened either before or after ignition, which it also prevents in such circumstances. It will refrain from such behaviour if the vehicle is moving when the belts become unfastened.
"Old-fashioned" semiconductors-transistors-are acquiring a very humdrum connotation lately, but nevertheless development continues in all the important parameters. Motorola had the range of high-power Darlingtons which are intended as replacements for the 2 N 3055 , 2N6253 and 2N625 single types. The new pairs offer $h_{\text {FE }}$ between 500 and 5000 , with $V_{\text {ceo }}$ of 45 to 80 V . Shunt diodes across the output transistor are built in. RTC were also showing power Darlingtons, in p.n.p. and n.p.n. configurations, offering h_{FE} of 3000 typical at collector currents of 1.5 A to 10 A . Collector voltage ratings are between 60 and 100 V and,
again, the shunt diodes are built in.
Transistors and diodes for high frequencies, shown by RTC, include the BFT50 low-noise type (less than 2 dB at 500 MHz); the BFT51, a $1 \mathrm{~W}, 12 \mathrm{~V}$ type with an \int_{T} of 2500 MHz at 140 mA ; the BLX38 linear class A wide-band amplifier, delivering 700 mW at -60 dB intermodulation in Bands IV and V; two Gunn oscillators for 3 cm work and some gallium arsenide avalanche diodes for use as X -band oscillators, producing 4W.

Pentawatt is the name given by SGSAtes to the new 5 -lead package with an integral bolt-down heat sink, claimed to be usable up to 50 W .

Instruments

While we were not primarily looking for new instrumentation, it was there in abundance, and must be mentioned at least.

Marconi Instruments TF2370 spectrum analyser displays the spectrum of the signal in a completely new way. The information normally presented in analogue form-the spectrum-is stored in a memory which is organized as a $256 \times$ 512 -point matrix. The 512 -point axis corresponds to the x axis, or frequency base of the display, and the memory is addressed as the sweep progresses, so that at the end of a sweep, the point of the spectrum at each frequency increment is stored at one of 256 (vertical) addresses or one of the 512 (horizontal) lines. At the end of the sweep, the memory is read at a rate of 76 Hz , modulating the brightness of 512 vertical lines to produce a representation of the spectrum. The system has the advantage that the spectra of nonrepetitive signals can be displayed without loss of brightness or the use of storage tubes. It also permits two images to be displayed, for example a reference trace and the signal from a circuit under test. Resolution is 5 Hz and 0.1 dB , a 100 dB dynamic range is provided and a 9 -digit frequency meter is incorporated.

New equipment from Philips includes the PM3260, a dual-trace 120 MHz oscilloscope with 5 mV sensitivity. An extremely high e.h.t. of 20 kV enables the observation of the "two nanoseconds every other Thursday" type of phenomena. Time-base speed is $5 \mathrm{~ns} / \mathrm{cm}$ and y rise time is 3 ns . The PM3010 is a dualtrace instrument measuring only $86 \times$ $153 \times 190 \mathrm{~mm}$ and weighing 1.8 kg , but providing a y bandwidth of 5 MHz with sensitivity of $30 \mathrm{mV} / \mathrm{div}$. The battery pack is rechargeable.

From Iskra, the Digimer 1 is a 3 -digit multimeter for a.c. and d.c. volts and current, and resistance. Resolution is from $0: 1 \mathrm{mV}, 0.01 \mathrm{~mA}$ and 0.1Ω. The unit is of unusual form, being somewhat like a tiny petrol pump in appearance, the readout being where the gallons normally appear. Each function is selected by a separate unit, which is plugged into the base to form a foot.

Research Nołes

Yoga and electronics versus stress disease

A medical use of a closed-loop feedback system has been reported in the Lancet. The patient is part of the loop and the feedback is used to change of the state of his body.

High blood pressure is often the result of psychological stress. A possible treatment is to relieve the stress by Yoga exercises. which can relax both the mind and the body. An Indian-born doctor. Mrs Chandra Patel, now working in London, has reported encouraging results. She uses a simple measurement (skin resistance) as an indicator of tension. The patient's skin resistance is made to control the frequency of an audio oscillation. By monitoring the pitch the patient can "hear himself relaxing" and this helps him to improve his performance of the relaxation exercises. Some of Dr Patel's patients have been able to reduce or even abandon the use of drugs to relieve blood pressure.

The Lancet, 73.11.09

Neutron radiography

If a metal-and-plastic clock is X -rayed, only the metal parts show up clearly. If neutrons are used instead of X-rays only the plastic parts appear. This useful property makes neutron radiography complementary to X -radiography.

The physical basis of neutron radiography is the way in which neutrons interact with matter. A neutron has about the same mass as a proton, and this makes it interact more strongly with single protons than with heavier nuclei. (It merely "bounces of?" a heavy nucleus, with little loss of energy-an elastic collision.)

In nature, single protons occur in hydrogen atoms, so the substances which stop neutrons most effectively are hydrogen compounds such as water and plastics. Living tissue, which contains both water and organic compounds, is also revealed.

A difficulty in neutron radiography is that the silver compounds in photographic
film do not interact strongly with neutrons. so ordinary photographic film cannot be used to register neutron pictures. At the Nuclear Research Centre at Karlsruhe in West Germany, where neutron radiography is used to take pictures of the insides of fuel elements, much work has been done to find ways of facilitating photography. What is required is some means of image conversion which can change the emergent neutron beams into some form of radiation which affects a photographic emulsion. The required conversion can be accomplished by allowing the neutrons to pass ihrough thin films of metals such as dysprosium. gold, indium and gadolinium. The neutrons activate the metal atoms and make them emit various kinds of radioactive rays which follow the same density pattern as the neutron beams.

Exposure of the film can either be direct, with the film and foil in contact during neutron bombardment. or indirect. The indirect method makes use of the fact that the neutron bombardment leaves the metals slightly radioactive. The foil therefore serves as a storage device, and a photograph can be made by laying it over a film and leaving it there until the "remembered" radiation pattern has exposed the film sufficiently.

The exposure times required for neutron radiography are short. compared with X-radiography, and the technique has possible medical uses.

Black holes and naked singularities?

Astronomers are beginning to search for "black holes", strange dead stars. Since they emit no light or radiation of any kind the search is difficult. and may well require the aid of electronics for success.

The notion of a black hole is quite simple, and goes back to the 18th century. Laplace pointed out that, according to Newtonian physics, the "escape velocity" which a moving object has to reach in order to leave a star increases as the gravity at the star's surface increases. In a very large star, with the same density as the earth, gravitation could be so intense that the escape velocity would exceed the velocity of light. So nothing, not even light, could leave the star. which must appear black to an outside observer.

Stars of the required size do not exist, but there is good reason for believing that the necessary gravitational strength can be obtained in another way, namely the packing of all the mass of a normal-sized star into a very small space. What governs density is energy. Thermal energy keeps atoms and molecules apart. The energy inside the atom keeps the electrons away from the nucleus. It is theoretically possible for this energy to be lost as radiation, giving rise to an unimaginably dense body made up of closely packed atomic nuclei. If such a collapsed star has a mass
greater than about 1.3 times the mass of the sun then the gravitation can be large enough to prevent light, radio waves, Xrays and all other forms of radiation from leaving. The star is black. But the process doesn't stop there. The gravitation is by now so strong that the matter of the star continues to be crushed. The star becomes even smaller and denser, until perhaps it shrinks away to nothing. But so long as its gravitation remains it appears from the outside as a black hole of a size which depends on the mass; in other words, the "black hole" begins where gravitation reaches the required intensity and does not depend on the size of the lump of matter inside.

How do you detect a black hole without going close to it and so running the risk of being sucked in and destroyed? One possibility is to find a black hole which is one partner of a double star, that is. two stars orbiting about one another. To an observer, the pair would appear as a single visible star which exhibited peculiar motions. Another possibility involves a possible amplification effect on passing electromagnetic waves. A wave passing near the star could split into two parts, one being sucked into the black hole and the other continuing outside. These two waves could in theory interact in such a way that the internal wave reinforced the external wave. The effect is small, but it is possible that a positive feedback mechanism might exist which would allow the external wave to reach a large amplitude before leaving the sphere of influence of the black hole.

An even stranger possibility is the "naked singularity", which is a completely collapsed star not contained in a black hole and therefore capable of being communicated with. It may seem impossible to communicate with a speck of nothingness made of energy-less matter, but the prospect is not necessarily as bleak as that. If the collapsing star is spinning, as many stars are, then it still has angular momentum, and this prevents it from collapsing into nothing. There may, therefore. be very small, dense, spinning bodies which can reveal their presence in some way, such as exciting nearby gas into states which produce radiation.

It all sounds rather abstract, but black holes and singularities are of such great interest to physicists and cosmologists that the search for them is bound to continue over the years.

"Horn loudspeaker design'"

We apologize that it has been necessary to postpone the publication of the second part of J. Dinsdale's article "Hom loudspeaker design ${ }^{n}$. This second part will now appear in the May issue.

Doppler distortion in loudspeakers

Simple techniques for the separation, measurement and assessment of intermodulation distortion due to the Doppler effect

by James Moir, Fil.E.E.

James Moir \& Associates

The significance of the Doppler distortion produced by loudspeakers has been the subject of discussion for many years, opinions ranging all the way from "there isn't any such distortion", to the very opposite view that it is "the main source of distortion in loudspeaker reproduction". Such wide differences of opinion generally arise when there is no well founded body of measured data on the extent of the distortion, but in this instance, the issue has been clouded by the different methods of expressing the scanty data that is available. It should assist our understanding if the origin of Doppler distortion is clarified.

Frequency intermodulation distortion

Consider a loudspeaker reproducing two tones having frequencies f_{1} and f_{2}, with a frequency ratio of twenty to one, then while the loudspeaker cone is moving towards the listener to reproduce one half cycle of the lower frequency, f_{1}, it will simultaneously reproduce ten complete cycles of the higher frequency, f_{2}. On the reverse half cycle of the lower frequency, while the cone is moving away from the listener, it will reproduce the second ten cycles of thehigher frequency. This is a classical Doppler situation, the pitch of the higher frequency as heard by the listener, being increased as the source moves towards the listener, and decreased as the source moves away from the listener.

An observer listening to a signal frequency, f_{2}, from a source moving towards him with a velocity, v, hears the resultant note with a frequency, f_{2}^{\prime}, where,

$$
f_{2}^{\prime}=f_{2}(c+v) / c
$$

where $c=$ velocity of sound in air. When the source is moving away from him he hears the note as having a frequency,

$$
f_{2}^{\prime \prime}=f_{2}(c-v) / c
$$

The velocity of sound in air is around $1125 \mathrm{ft} / \mathrm{s}$ and the velocity of the cone generally below $10 \mathrm{ft} / \mathrm{s}$ but dependent, of course, on the frequency and amplitude of the lower frequency. Thus the maximum change in pitch (frequency) due to the Doppler effect is in the region below 1%.

When the moving source is a loudspeaker diaphragm executing a sinusoidal motion, the note as heard by the listener will swing cyclically between the two limit frequencies
quoted above at the frequency of modulation, f_{1}, a simple example of frequency modulation. The mathematics of this are well understood, the known result being the appearance of two sidebands, symmetrically disposed about the carrier frequency at frequencies $\left(f_{2} \pm f_{1}\right)$ and having amplitudes that are an indication of the extent of the Doppler distortion. It is necessary to differentiate between the value of the carrier frequency shift Δf_{2} measured in hertz and the frequency at which the sidebands due to this shift appear. The carrier shift is an indication of the extent of the Doppler distortion and it is at its acceptable limit when it is only $20-30 \mathrm{~Hz}$. The sidebands are always spaced from the carrier at the frequency of the modulation, f_{1}, because the carrier frequency deviation is cyclic at this modulating frequency.
The amplitude of the two sidebands can be prodicted by some mathematical manipulation of the basic equation for a frequency modulated wave.

$$
\begin{equation*}
v=V_{0} \sin \left(2 \pi f_{1} t+M \sin 2 \pi f_{2} t\right) \tag{I}
\end{equation*}
$$

where

$$
\begin{aligned}
M & =\frac{\text { carrier frequency deviation }}{\text { modulating frequency }} \\
& =\frac{\Delta f_{2}}{f_{1}}
\end{aligned}
$$

Quantity M is the modulation index, familiar to the engineer interested in frequency modulation broadcasting. With the standards adopted for f.m. broadcasting a transmitter fully modulated to a deviation of 75 kHz by a 15 kHz signal, has a modulation index of $75 / 15=5$ but as will be seen in the later discussion the frequency deviation in any audio application is at its very worst, only a few tens of herz and the resultant index, M, is almost invariably much less than unity.

The amplitude of the two sidebands that are generated can be obtained by expanding Equation 1 in Bessel form. It has been shown that this results in the series,

$$
\begin{align*}
e= & E J_{0}(M) \sin 2 \pi f_{2} t \\
& +J_{1}(M) \sin \left(2 \pi f_{2} t+2 \pi f_{1}\right) t \\
& +\sin \left(2 \pi f_{2}-2 \pi f_{1} t\right) t \\
& -J_{2} \ldots \tag{2}
\end{align*}
$$

where J_{0} : Bessel function of order 0 J_{1} : Bessel function of order 1
J_{2} : Bessel function of order 2.
Values of $J_{0}(M), J_{1}(M), J_{2}(M)$ can be obtained from standard mathematical tables but examination of the data indicates that if the analysis is confined to the frequency deviation range that is of real interest in Doppler distortion problems, then M is always below 1 and the sideband amplitude is then simply $M / 2 \times$ the amplitude of the carrier frequency.

If it is assumed that the lower frequency signal applied to the loudspeaker is 100 Hz then for $M=0.1, M / 2=0.05$ and the two sidebands have amplitudes that are 5% of the amplitude of the carrier frequency f_{2}. The deviation $\Delta f_{2}=0.1 \times 100=10 \mathrm{~Hz}$. This is the frequency deviation Δf_{2} of carrier f_{2} and if this has the standard test frequency of 3 kHz the flutter amounts to $10 / 3000=0.3 \%$.

Amplitude intermodulation distortion

Distortion sidebands of a very similar type appear when a two frequency signal is applied to any device that has a non-linear input/output characteristic ${ }^{1}$. If two sinusoidal voltages $V_{1}=V \sin \left(2 \pi f_{1} t\right)$ and $V_{2}=$ $\sin \left(\pi f_{2} t\right)$ are simultaneously applied to a device having a transfer characteristic represented by the power series,

$$
\begin{equation*}
V_{0}=a_{1} V+a_{2} V^{2}+a_{3} V^{3}+a_{4} V^{4} \tag{3}
\end{equation*}
$$

the output will include in addition to the harmonics of f_{1} and f_{2} two sidebands having frequencies of $\left(f_{2}+f_{1}\right)$ and $\left(f_{2}-f_{1}\right)$ with amplitudes proportional to the coefficients a_{2} and a_{4} in Equation 3. It will be seen that the frequencies of these two sidebands are identical to those produced by frequency intermodulation but the amplitude of the two sidebands is determined by an entirely different factor, the degree of amplitude non-linearity in the device. The extent of this non-linearity is indicated by the value of the coefficients a_{2} and a_{4} in the power series of Equation 3. The sidebands produced by this amplitude dependent intermodulation are subsequently referred to as the a.i. sidebands. These a.i. sidebands are produced in loudspeakers by non-linearities in the suspension, non-uniform distribution of the magnetic field in the gap and at higher
frequencies by non-linearities in the conẽ material.

The distortion spectrum that results from applying two separate test frequencies is in the simplest example like that shown in Fig. I. The two sidebands $f_{2} \pm f_{1}$ are the sum of the Doppler and amplitude modulation components whereas the $f_{2} \pm 2 f_{1}$ are almost invariably due to amplitude intermodulation. The remaining two distortion components are the first two harmonics of the two test frequencies f_{1} and f_{2}.

It should be remembered that the presence of the amplitude intermodulation sidebands implies the simultaneous presence of harmonic distortion components having frequencies of $2 f_{1}, 3 f_{1}, 2 f_{2}, 3 f_{2}$, etc. These have no equivalent in the frequency intermodulation case. With the same amount of distortion power in both the f.i. and a.i. sidebands, the total distortion power due to the amplitude dependent distortions will usually be the greater proportion of the total distortion. The first order intermodulation sidebands whether due to Doppler or amplitude intermodulation are seen to form only a small part of the total distortion. It is thus unlikely that their presence will be easily detected.

It has generally been considered that the amplitude dependent distortions were the prime cause of much of the residual distortion in loudspeakers. Perhaps it should be remembered that it has never been conclusively demonstrated that the addition of the lower order harmonics alone results in
any significant loss in sound quality. Thus violins, all of unquestionable tonal quality, differ markedly in their harmonic structure. The quality deterioration that is evident when harmonic distortion is present is generally assumed to be due to the sidebands components $\left(f_{2} \pm f_{1}\right),\left(f_{2} \pm 2 f_{1}\right)$ etc., that inevitably accompany harmonic distortion, but do not accompany the harmonics in musical instruments.

Measurement technique

Separate determination of the amplitude of the a.i. and f.i. sidebands has evidently proved difficult if judged by the complexity of some of the techniques used. The technique to be described provides a simple method of not only separating the two sets of sidebands from each other but allows the f.i. sidebands to be separated from the music being reproduced by the loudspeaker.

Our technique is to insert an amplitude limiter and f.m. discriminator designed for a carrier frequency of 3 kHz into the measuring system. This particular carrier frequency was chosen as it allows data obtained to be compared with that obtained by other investigators ${ }^{2}$ when assessing the subjective effect of wow and flutter, a very similar form of frequency intermodulation distortion.
The arrangement of the test equipment is shown in the block diagram of Fig. 2. Test signals are provided by two Bruel and Kjaer type 1014 signal generators, adequately decoupled and fed via a Quad type 303, 50

watt amplifier to the loudspeaker under test mounted in the open air. The output signal from the loudspeaker is picked up by a Bruel \& Kjaer type 4131 microphone mounted on the axis of the speaker at a distance of 1 metre, amplified and then fed in parallel to the 3 kHz limiter and discriminator and to a Marconi type 2330 narrow band analyser. Meter M_{1}, checks the amplitude of the two separate input signal components f_{1} and f_{2} and the total amplitude of the combined signals, meter M_{2} reads the f.m. distortion components only, while meter M_{3} indicates the amplilude of each of the individual components of the speaker output signal spectrum. The reading of M_{2} is proportional to the frequency deviation of the carrier f_{2}. This is related to the modulation index, M, by the simple relation,

$$
M=\left(\Delta f_{2} \times f_{2}\right) / f_{1}
$$

Beers and Belar ${ }^{3}$ derived an equation for the f.m. distortion components. This is,

$$
\begin{equation*}
\text { distortion factor }=2900 \frac{f_{2} \times \sqrt{P_{1}}}{f_{2}^{2} \times d^{2}} \tag{4}
\end{equation*}
$$

where P_{1} is the power at frequency f_{1} and d is the cone diameter.
This equation provides a guide to the relations that should exist among the data collected.

It will be seen that the distortion should be proportional to the frequency f_{2} and to the amplitude of f_{1} (i.e. $\sqrt{P_{1}}$), be independent of the amplitude of f_{2} but inversely proportional to the square of the cone diameter. A measuring system intended to obtain data on the amplitude of frequency modulation sidebands should meet the following requirements. (I) The limiter and discriminator should not respond to an amplitude modulated signal. (2) No frequency intermodulation components should be measurable at the amplifier output terminals when the two-frequency test signal is applied.
As used, the measuring system provided loudspeaker distortion values that were independent of the amplitude of f_{2} over a range of at least $10: 1$ and they were directly proportional to the amplitude of f_{1} up to a power output at least ten times the power applied to any of the loudspeakers during lesting. The requirements of (1) and (2) were met with a large factor of safety.

Fig. 1. Distortion spectrum of a 7 in loudspeaker unit.

Fig. 2. Block diagram of the test equipment.

Fig. 3. Level of Doppler distortion. See text for further explanation (a) $12 \mathrm{in}(30.4 \mathrm{~cm})$ diameter loudspeaker (b) 4 in (10.1 cm) diameter loudspeaker.

Amplitude intermodulation measurement

While the test system as shown in Fig. 2 measures the frequency intermodulation components alone. and ignores the amplitude intermodulation components, it appeared desirable to be able to separately measure these amplitude intermodulation sidebands. To do this advantage was taken of the absence of any frequency term in Equation 3. Thus when none of the coefficients of V in Equation 3 are frequency dependent, the amplitude intermodulation distortions produced are independent of the test frequencies, provided only that the amplitudes of the test signals are held constant. A choice of two frequencies such as 4 kHz and 900 Hz eliminates almost all the components due to frequency intermodulation. leaving only the intermodulation components due to amplitude interactions.

Experimentally, this is found to result in a modulating frequency of about 200 Hz . Below this, the coefficients become frequency sensitive. To obtain data in this region. advantage is taken of the dependence of the a.m. components and the independence of the f.m. components on the amplitude of f_{2}. Experience, subsequent to the development of the technique, has shown that there is little advantage in using it for measuring the amplitude of the a.m.. sidebands, values of adequate accuracy being obtained by subtracting the measured value of the f.m. sideband amplitudes from the measured value of the total sideband amplitude. There is some phase ambiguity in this but it does not appear to be significant in typical loudspeakers. We now have a test system in which the amplitude intermodulation and frequency intermodulation components can be separately measured.

Measurement of frequency intermodulation distortion is generally carried out with the lower frequency f_{1}, somewhere around 70 to 90 Hz . A loudspeaker having a frequency response limited by a high cone-surround-enclosure resonance frequency will not reproduce at constant level frequencies below this resonance frequency because of the restriction to cone motion. In consequence, it will minimize Doppler distortion. Conversely a loudspeaker having
a prominent bass resonance in that portion of the frequency band containing high levels of bass signal, will introduce considerable f.i. distortion.

Test samples

The data obtained on three of the speakers is typical of the results obtained on many other units. They are fairly representative ol the products available on the market but the choice was biased towards demonstrating the effect of radiator size on the frequency intermodulation distortions.

The first unit tested was a $12 \mathrm{in}(30.4 \mathrm{~cm})$ cone speaker covering the full audio range mounted in a ported enclosure having a volume of 3.200 cu . in. The second was an enclosure of 1498 cu . in using a single 7 in (17.7 cm) diameter unit to cover the full range. The third was a 4 in (10.1 cm) diameter unit in an enclosure of 400 cu . in.

All three systems were operated at an onaxis sound pressure level of 85 dB at the carrier frequency of 3 kHz . 11 is appreciated that this may be a little below the sound level at which the hi-fi enthusiast may operate his system but it enabled the performance of the three systems to be compared without grossly overloading the smaller units. In all cases the level of the lower frequency, f_{1}, was varied over a range sufficient to confirm the expected relation between sound pressure level and distortion.

Test data

The first result was the finding that the amplitude of the f.i. sidebands as calculated from Equation 2, for the two smaller speakers, agreed almost exactly with the measured values. This suggested that subtantially all the distortion sidebands $\left(f_{2} \pm f_{1}\right)$ introduced by these speakers were due 10 frequency intermodulation, the amplitude intermodulation sidebands being at least 20 dB below the frequency intermodulation sidebands at the same frequencies. This was confirmed by further analysis of the 12 in unit where the a.i. distortion just about equalled the f.i. distortion. Typical test data is quoted in the following table, the results applying to a sound pressure level of the f_{1} component of 85 dB at a frequency of 80 Hz .

It is interesting to note that the amplitude

Intermodulation distortions in typical speaker systems

Cone diameter (in)	Amplitude (dB)	Frequency (dB)
4	-40	-16
8	-41	-25
12	-43	-41

intermodulation components showed little dependence on cone diameter, not only in the three units used for the tests quoted above, but in a large number of other units tested. This rather suggests that this residual distortion is a basic property of the diaphragm material, but no further work has been carried out on this aspect of speaker performance.

Distortion on programme

In practice, frequency intermodulation takes place between all the components of a complex music signal rather than between one high frequency and one low frequency signal. Music has an extremely complex and continuously varying frequency spectrum so another technique was devised to show the amount of frequency intermodulation distortion developed during the playing of an ordinary programme. This technique takes advantage of the lack of dependence of the frequency intermodulation distortion on the level of the higher frequency carrier signal, f_{2}.

A notch filter tuned to 3 kHz is inserted at a convenient point in the amplifier system to remove the 3 kHz components of the music, but at a later point in the chain, a 3 kHz signal from a signal generator is inserted and adjusted 10 about 50% of the programme level.

A filter in the microphone pre-amplifier circuit removes this inserted signal and the 3 kHz band from the reproduced signal and channels it through the limiter and discriminator and into a high speed chart recorder. With the filter and the limiter and discriminator out of circuit a chart record of the signal at the microphone output is obtained. The chart is then re-wound, the filter inserted, the record replayed and the

Fig. 4. Level of Doppler distortion for a well-known electrostatic loudspeaker.

Fig. S. Subjective thresholds for sinusoidal modulation of piano music.
output of the discriminator recorded below the upper music curve. Thus we obtain two curves showing music and f.i. distortions on the same chart. This arrangement has the subtle advantage that it also eliminates all the wow and flutter modulation present in the recordings where these were used as test material.
Typical results obtained on two speaker systems are shown in Fig. 3 as confirmation that the test system is not a limiting factor. Fig. 4 illustrates the results obtained on a well-known electrostatic loudspeaker. This particular unit has lower f.i. distortions than any other type so far tested.

Significance of Doppler

We now come to the significance of the Doppler distortions, a more contentious subject, ignoring the suggestion that it does not exist. The next line of defence is usually that the Doppler distortion cannot be heard and therefore is of no consequence. This is a sterile line even if it were well founded. Progress towards the perfect reproduction can only be achieved if each distortion is removed as it is identified. If we find a way to remove an inaudible distortion, it should be removed to help bring into prominence the remaining distortions and allow those to be deat with. As each distortion is removed those remaining become more obvious and at a later stage in the development, the distortion that was inaudible becomes of prime concern.

How should we assess the importance of Doppler? The existence of several schools
of thought has led to much misunderstanding. If in a particular loudspeaker the sidebands due to Doppler are of greater amplitude than the sidebands at the same frequency due to amplitude modulation, it is almost certain that the Doppler sidebands are subjectively more significant. The amplitude of the Doppler sidebands as a percentage of the carrier can then be compared with the amplitude of the a.m. sidebands at the same frequency expressed in the same way. This is the technique we use to indicate the relative importance of the a.m. and f.m. sidebands. On this interpretation virtually all the sidebands are due to Doppler when using single loudspeakers having cone diameters below twelve inches. At this diameter the a.m. and f.m. sidebands are about equal, but in speakers having cone diameters above this value the a.m. distortions predominate.
We have earlier noted that the sidebands whether due to Doppler or amplitude intermodulation are only a sma!l part of the total distortion spectrum and if judged on this basis it is possible to show that their presence is of no significance. There is, however, little evidence to suggest that the lower harmonics themselves are subjectively annoying, largely because they are harmonically related. This simple harmonic relation does not hold for any of the sum and difference components so they may be expected to be more annoying per per cent, than the harmonics. For these reasons it would seem unreasonable to expect the subjectively judged distortion to be indicated by com-
paring the power in the Doppler sidebands to the total distortion power.
Yet other approaches are to express the amplitude of the f.m. sidebands as a percentage of the amplitude of the carrier frequency f_{2} or to compare the total power in the two f.m. sidebands to the power in the carrier frequency f_{2}. We feel that neither of these are as realistic as comparing the amplitude of the a.m. sidebands and Doppler sidebands at the same frequency.
An alternative way of assessing the importance is to compare the values of flutter that result from the Doppler process with the known data on the significance of flutter. The most comprehensive data is that due to Stott and Axon. ${ }^{2}$ In a well conducted experiment they found that the "just audible" amount of flutter was around 1% when reproducing piano music. Their data is reproduced in Fig. 5. On this basis all the loudspeakers used in our music recording tests would be adequate. I personally would reject this view, feeling that even a moderately experienced observer is about ten times more sensitive to flutter than Stott and Axon suggest. Thus on balance, \mathbb{I} feel that comparing the amplitude of the f.m. and a.m. sidebands gives a true picture of the relative importance of the f.m. and a.m. sidebands.

Listening tests

Obtaining a decision by listening tests is unlikely to be a simple matter. Not only is the distortion power in the sidebands a small part of the total distortion but the f.m. and a.m. sidebands vary in different ways when the amplitude of the high frequency signal, changes. The Doppler component is not dependent upon the amplitude of the high frequencies being reproduced, whereas the amplitude intermodulation distortion is directly proportional to the amplitude of the higher frequencies. Thus the proportion of the f.m. and a.m. sidebands to the total sideband distortion power varies continuously as the ruusic spectrum changes.
We have attempted to assess the importance by experiment but only with a smalf listening crew. The Doppler sidebands in the 3 kHz region were removed by suitable filters and tape recorded. The a.m. sidebands were similarly obtained by filtering from the signal spectrum in a slightly overloaded amplifier and these were also tape recorded. The two sets of sidebands were then compared when reproduced at the same level. Both observers were agreed that the Doppler sidebands were subjectively more annoying than an equal percentage of the a.m. sidebands.
As a second check the performance of three loudspeakers having very similar frequency response and amplitude distortion figures but very different Doppler distortion figures were subjectively compared and again both observers decided that the speakers with the higher Doppler distortion values sounded rougher than the speaker with low Doppler distortion values. The result is more convincing because the decision about the sound quality was made before either of the observers knew that one of the speakers had much lower Doppler distortion values than the other two units.

Fig. 6. Level of Doppler distortion (a) three unit monitor with 3 kHz cross-over frequency (b) three unit monitor with 2 kHz crossover frequency,

Reduction of Doppler

On the basis of the test data presented carlier it appears necessary to have a bass radiator area not less than about $120-150$ square inches in any single wide band loudspeaker.

It is often thought that the use of a two unit system is a complete solution but this is highly unlikely when changeover frequencies in the kHz region are used, a practice that is almost universal because of the extension of the frequency range that results. All the signal components below the changeover frequency are then Doppler modulated. If two separate units are used, each dealing with a fraction of the total spectrum the crossover must be in the $300-500 \mathrm{~Hz}$ region to remove the relatively large low frequency signals from the high frequency unit.
This aspect Is well illustrated by the charts in Fig. 6 representing two high quality (and high priced) speaker systems. In respect of Doppler distortion, it will be seen that neither system is significantly different to the single 12 inch unit. On comparing these results with those quoted earlier for the electrostatic speaker, the electrostatic unit distortions are about five times lower than the speaker system using a 3 kHz cross-over.
Simple cross-over networks are of little value. A series capacitor achieved very little, for the current in the speaker unit is then directly proportional to frequency below the cross-over frequency and the h.f. unit tends to operate as a constant velocity device up to the changeover frequency. Any crossover network must have an attenuation of at least $12 \mathrm{~dB} /$ octave below cross-over to effectively eliminate low frequency modulation of the high frequency speaker.
A three unit system can be a further step in the right direction if the lower changeover frequency is below about 500 Hz but it is no automatically so. The acoustic impedance facing the middle range and high frequency unit diaphragm is modulated by the low frequencies reproduced by the larger low frequency speaker and in some systems this results in appreciable Doppler distortion.
As another alternative, horn loaded designs, can be adopted. The mouth area of the horn is then the effective area of the low frequency radiator. This is generally several
hundred square inches and thus Doppler distortion is almost invariably very much lower than from any other type of speaker. This is one reason and possibly the major reason why horn loaded loudspeakers usually have a "cleaner sound" than any open diaphragm speaker system though this may be accompanied by a more restricted bass response. It is suggested that the achievement of low distortion is much more important in obtaining good sound quality than any extension of the frequency range below $70-100 \mathrm{~Hz}$.

Acknowledgement

I have to thank Mr W. R. Stevens of out laboratory who produced practically the whole of the experimental data.

This article is the essence of a paper read at the September 1973 meeting of the Audio Engineering Society of America in New York.

References

1. Waddington, "Intermodulation Measurements", Journal of the Audio Eng. Soc.. July 1964. Vol. 12, No. 3.
2. Stolt \& Axon. "The Subjective Discrimination of Pitch and Amplitude Changes", Proc. Inst. Elec. Engs, Vol. 102B, No. 4, 1949. pp. 643656.
3. Beers \& Belar. "Frequency Modulation Distortion in Loudspeakers", Proc. I.R.E., Vol. 31, No. 4, April 1943.

Communications 74

Brighton June 4 to 7

Users of radio and line communications systems will find the very latest techniques and equipment described and demonstrated at "Communications 74", a four-day conference and exhibition to be held at the Metropole Convention Centre, Brighton, Sussex. from June 4 to 7. Over 100 exhibitors will take part and 56 papers will be read. Some papers and exhibits will be of interest to communications equipment designers. Full details will be given next month but here is some advance information:
Exhibition. The 100 or more exhibitors will include many of the best-known names in the UK electronics industry, together with organizations such as Cable \& Wireless, the Post Office, the MPT, the Ministry of Defence and the Home Office. The event is supported by the Department of Trade and Industry and the Electronic Engineering Association, and will cover the fields of data communications, civil mobile radio communications, fixed radio communications, defence communications, recording systems, test equipment and ancillary devices and equipment. For free exhibition
tickets contact the organizers: ETV Cybernetics Ltd, BETA, 109 Kingsway, London WC2 6PU (telephone, 01-405 6233; cables, BUSQUIP LONDON WC2).
Conference. The 56 papers are to be presented by speakers from well-known companies, colleges, Government departments and other organizations in the field of communications. Overseas speakers will come from Canada, Denmark, Germany, Japan, Sweden and the USA. Organized by Electronics Weekly and Wireless World. the conference will be divided into four broad subject areas: June 4, data communications day; June 5, mobile communications day; June 6 , fixed communications day; June 7 , defence communications day. While the emphasis of the conference is on uses of communication systems, there will be four equipment design papers presented on each day, run in a separate morning session. For further information contact: Roger Woolnough, IPC Electrical-Electronic Press, Dorset House, Stamford Street, London SE1 9LU (telephone, 01-261 8590).

News of the Month

Anglo-French digital telecommunications pact

France and Britain are to collaborate in the development, manufacture and marketing of a digital telecommunications switching system. It will be based on a combination of the existing E10 digital switch, developed by the French company CIT-Alcatel and at present operated in the French public telephone network, and the system 250 stored programme confrol processor, developed by Plessey.

The importance of the digital switch is its use in the pulse code modulation system of digital transmission which has already been adopted by the British and French Post Offices as their future standard and which administrations all over the world are expected to turn to in the 1980s.

Development costs could be 5 to 10 million pounds, and the partners claim that the world market for their sort of product in the early 1980s will be around $£ 500 \mathrm{~m}$ a year-excluding the US, Japan and Germany. The system is code-named Felicite and the partners should be ready to take orders by the end of 1976 .

Sonex versus

Hi-Fidelity '74

Competition for the annual Sonex audio exhibition held this year at the Post House Hotel, Heathrow will have given the organizers food for thought. Thirty companies exlibited their products at the nearby well-organized Hi-Fidelity '74 exhibition in the Heathrow Hotel, as opposed to 35 at Sonex. Both exlibitions ran during the same period from March 27 to 31. The need for a new exhibition arose, according to the organizers, Pyser Britex (Swift) Ltd, through increasing annoyance expressed by manufacturers and distributors at the conditions under which they have been obliged to display their products at recent exhibitions-"It is impossible to mount a worth-while hi-fi exhibition where most of the products have to be displayed in small hotel bedrooms".

Atlendance at Sonex was similar to that at the Hi-Fidelity 74 exhibition. In-
formation on new products introduced at both shows will be presented in the next issue of Wireless World.

17\% UK semiconductor growth predicted

40\% for m.o.s. circuits

In predicting the growth of the UK semiconductor industry for 1974 at a "conservative" 17% J. D. Hurley who is general manager of ITT Semiconductors said his forecast had been tempered because of recent increases in the price of gold (gold content can account for as much as 25% of device prices) and other raw materials. Despite the shortage of silicon wafers, due to the "lead" time of capital investment of two to three years following the 1971 recession, device prices had been held firm. Mr Hurley said in reviewing the semiconductor industry for 1973.

During that year there was a sharp growth in custom circuits (up by 100%), and a general semiconductor growth (28%) that exceeded ITT expectations (16\%). A trend to m.o.s. and complex i.cs was confirmed, and "forward integra-tion"-the semiconductor industry making complete calculators, watches, microcomputers and electronic cash registersbecame fact. EEC legislation came into operation, one effect of which is that duty must be paid on equipment if the majority of devices used are not European.

For ITT Semiconductors it was a year of record export growth, and of 55 new products, contributing to a 25 -fold increase in m.o.s.. television and custom bipolar i.cs and an overall sales increase of 60% (against a predicted 30%). It also
marked record capital investment for ITT-in new diffusion and design areas and in new equipment, both for maskmaking and automated assembly. Threeinch silicon wafers can now be handled.

Other UK electronics industry predictions for 1974 include a 15% increase in value of semiconductor device usage in colour receivers, a 20% increase in telecommunications equipment and a 17% increase in the computer and industrial sectors. In the semiconductor industry, exports are expected to be up and imports down. A 40% growth in m.o.s. devices is anticipated with a doubling for silicongate and complementary devices-see histogram on this page. For themselves, ITT Foots Cray expect another year of high capital expenditure and a 47% sales increase. maintaining their capability in both m.o.s. and bipolar devices, and in both digital and analogue areas. Current m.os. involvement includes automotive products, "white" goods controls, indus= trial controls, telephone devices, display drivers for electronic voltmeters, cash registers, cipher machines, computers and calculators, as well as unspecified military systems.

Universal telephone microcircuit

A new m.o.s. I.s.i. microcircuit can provide the electronics for a line-powered, pushbutton telephone incorporating both access pause and re-dial facilities. It can be programmed to suit the impulse dialling speed, the mark-to-space ratio and the inter-digit pause of any national telephone system employing impulse dialling principles.

Forecast for UK m.o.s. market shows an overall 40% increase for 1974 over 1973. This masks a forecast 100% increase for silicon-gate and complementary devices. (Source: ITT Semiconductors.)

The microcircuit, AY-5-1100 series, was developed by General Instrument Microelectronics at their Glenrothes, Scotland design centre and has a 20 -digit capacity to provide adequate storage for future intercontinental STD numbers. A re-dialling facility is provided in two of the versions. If a number is engaged, the caller merely presses the retain-button and replaces the receiver. Then when he picks up the phone, if the line is free, the number is set up ready to be re-dialled with one button depression. The microcircuit has been designed to work with a store-and-control chip to form a short number or "repertory" dialler.

The complete microcircuit sub-system, providing re-dialling facilities is available in an 18-lead di.i.l package. Control pins are provided for externally adjusting the impulse rate, inter-digit pause and markspace ratio.

In the 12 -lead TO8 version, impulse rate, inter-digit pause and mark-to-space ratio are all mask programmed to the customers's specification, and the access pause and re-dial facilities are omitted. This circuit arrangement provides the optimum packaging solution for applications where single number repertory dialling is not required. Versions with 14 and 16 leads complete the options open to the manufacturer.

Error-free underwater communication

What is believed to be the first telegraph error detection and correction equipment designed specifically to provide teleprinter to teleprinter communication under water has just been completed. The equipment, called Sonar 2010 by the Royal Navy, was designed by Marconi Communication Systems Ltd, in collaboration with the Admiralty Underwater Weapons Establishment for Royal Navy underwater tactical communications.

The programme to produce the type 2010 equipment started in 1967 with a series of studies in which research equipment was taken to sea on vessels of the Royal Navy to determine the techniques that could be best employed to overcome the many difficulties that face the underwater communicator. The problem is particularly acute in data transmission, which has to cope with the effects of fades, multipath, noise bursts and doppler shifts caused by the relative motion between communicating vessels.

From the early research trials, a combination of techniques was involved, and this was followed by the design and manufacture of prototype production equipment. A further series of sea trials took place and the equipment was evaluated under a variety of propagation conditions chosen to represent those found in service use.

The trials were highly successful and beat the target of 98 per cent error free copy under a wide range of propagation

These watches don't tick. Even so, 180 million were sold in 1972 and RCA expect the total to reach 300 million by 1980.
conditions from shallow water, deep sea and rough sea to calm tropical conditions. It was also shown that the 2010 can pass traffic at a greater transmission rate than can be achieved by speech.

Production is scheduled to start this year and will cover a shipfitting programme of existing and new RN vessels over a period of years. Interest has also been expressed by NATO and Commonwealth countries.

Sensitive solid-state TV camera

A very sensitive solid-state television camera. capable of taking pictures by the glow of a candle has just been developed. The new television camera is wallet-sized and weighs less than a pound. Developed by General Electric in the United States, it can be adapted for use with an ordinary television set to produce exceptionally crisp images even when light levels are extremely low.

The camera light sensor is a chargeinjection solid state device-a quarter-inch-square m.o.s. chip which performs the same job as the camera tube in conventional TV cameras. Since the miniature device can be fabricated with current solid-state manufacturing techniques, it could be manufactured for a fraction of the cost of a conventional television camera.

Each pair of 20.000 capacitors on the imager-chip functions as an individual light-sensing device. As light strikes the chip, each capacitor-pair collects a charge proportional to the light striking it. To process the electrical charge into a television picture, each pair of capacitors is individually addressed by scanning circuits to release its charge, "injecting" it
into the base of the chip. The imager can be scanned at speeds compatible with ordinary television sets. If a pair of capacitors should fail, the result is only one minute dark spot on the screen.

Circards award

The Circards idea has won recognition as the best innovation in IPC Business Press journals during 1973; Wireless World entered the scheme on behalf of the compilers-Jack Carruthers, John Evans, Joe Kinsler and Peter Williams, all of Paisley College of Technology with the conviction that Circards was a unique innovation in electronics information publishing.

As well as providing performance graphs and data on tested circuits, both new and standard, Circards describe circuit operation, effects of component changes, how to modify circuits to extend performance, and give component values and suggestions for further reading. Articles published in the journal alert and introduce readers to the chosen topic. Format is chosen for ease of handling "at the bench".
Circards are available in sets of ten or 12 cards, at $£ 1$ per set (see p.100).

Optical reader captures data

A system based on an optical page reader has been developed by the Communications Branch of British Airways for use as an input device to their worldwide telegraph network. The airline is marketing the equipment in the UK under the name BARDATA.

An electric typewriter produces both the clearly human readable character and, immediately beneath it, a miniature bar code. By separating the need for the machine to read from a complicated character-comparison technique and allowing it to simply scan the bar code, it has been possible to produce an economic desk-top optical reader.

The technique, using a page reader by the Datatype Corporation of Miami, USA, was originally designed to provide an effective means of converting typed script into typeset for the newspaper industry. It can also be used as a computer input system and has application in the field of order entry and stock control.

Arthur Bulgin

A well-known personality in the British electronics industry, Arthur F. Bulgin, chairman of A. F. Bulgin \& Co. Ltd, died at Westcliff, Essex, on March 29, aged 75 years. He was one of the founders in 1932 of the Radio \& Electronic Component Manufacturers' Federation. His passing marks the end of 51 years in the industry.

Letters to the Editor

Sound radio compression

I realize that m.f. broadcasting is, by and large. a passé subject in this swinging quadraphonic era. Nevertheless, there must still be a lot of people about who, like myself, live in poor reception areas for v.h.f., listen to reasonable quality car radios, and have perforce to use m.f. when, as is becoming increasingly common, the complementary v.h.f. channels are devoted to different programmes.

In general I have no complaints about the quantity of signal received or of interference. What does get my goat is the apparently unnecessary and deliberate degradation of programme quality which results from the application of excessive degrecs of audio compression at some transmitters.

Until a year or so ago the local prize for wooden sound was firmly held by the Brookmans Park Radio 4 transmitter but it has now passed to the most effective audio mangler l've heard for a long time, the Radio London transmitter at the same location. To hear the compressor of this one attacking the individual syllables of the words of slow speakers and rendering them almost unintelligible is an experience to forego.

I wonder if your erudite readership could provide me with a rationale for the practice and perhaps persuade me that, as a manifestation of "progress", it improves my listening lot.
C. Higham,

Oiney,
Bucks.

Plug-in p.c. boards

As large users of professional audio equipment we have become increasingly concerned about one particular aspect of reliability. It has been our experience that a high proportion of faults are due to contact failure in switches, connectors. etc. Switches have improved considerably in recent years with the use of better contact material, but one area of persistent trouble is the plug-in printed circuit board.

This all seems to stem from the very widespread practice, with most manufac-
turers, of noi fitting a male connector to the board, It is almost standard to form contact "fingers" on the edge of the board which are then "hard gold plated", and this then mates with various forms of edge connector. Without exception, we have had contact trouble with this type of board from every manufacturer whose products we use. In contrast to this we have been using p.c.bs in equipment that we have built ourselves, for about seven years, and each board is fitted with a male connector. usually the ISEP type made by ITT. To the best of our knowledge we have never had a failure using this system. The cost of a typical 25 -way male connector is about 90 p , and we consider this a small price to pay for reliability. The cost of a fault occurring on a recording session, with a studio full of musicians, can be very high. It is still worse if the fault is not a complete break and is not noticed until after the session. One further disadvantage of the board with integral connector is that, if you have the misfortune to drop a board on its connection edge, this can easily be broken. The whole board is then a write-off.

So manufacturers please note, you are indulging in dangerously false economy. Some of the p.c.bs can cost as much as $£ 300$ for a spare, and still they won't spend $£ 1$ or less on a male connector. One manufacturer of tape recorders even multiplies the madness by plugging one board into another which is itself plugged into a third board!
R. N. Goodman,

The Decca Record Company Ltd, London, N.W. 6.

The costs of engineering

Your editorial in the December 1973 issue on the "Costs of Engineering" calls for some comment. In the first place, the cost estimates made at the start of large engineering projects are usually made by engineers themselves and not. as you imply. imposed from without by authorities deficient in engineering competence. However, it is not my purpose to discuss this aspect of the problem in detail.

A more important matter which I wish to raise is to question the justification for basing policy in engineering project work so strictly on a purely "cost" basis as we have tended to do in the last two decades. To the accountancy minded managers by whom we have come to be dominated. "cost" has come to mean cost in the short term. Since accountants rarely look more than five years ahcad. if as far. the cost of a project tends to be based entirely on the estimate of present-day costs or at best an extrapolation of these for a year or two ahead. It takes no account whatever of the real cost to the community as a whole over a much longer period extending often to several decades. An example which is currently only too
obvious is the readiness with which we turned to oil for electricity generation and away from coal only ten or so years ago just because oil was then so much cheaper. Nor do the cost-accountants pay very much attention to the hidden or secondary costs of projects such as costs which may be attributable to polution of the environment.

It seems to me to be imperative to cease to regard short-term costs as so overwhelmingly important and instead to attempt to use value to the community in the longer term as the criterion by which to judge whether new engineering projects should go ahead or not. I accept that it is extremely difficult to arrive at credible estimates of value to the community but this is no excuse for not trying. William Ross,
Malvern,
Worcs.

Model railway control system

I would like to reply to Mr Ganderton's criticisms (March, Letters) about my article "Model railway control system" published in the November 1973 issue.

Armature inertia after power is removed permits coasting for a few milliseconds as shown "typically" in Fig. 1 of the article. The mechanism used does not affect the control system function; gear or worm and wheel mechanisms are both successful. The addition of a large flywheel increases the starting load of the motor and makes smooth "start from rest" more difficult than without a fly wheel.

The "armature slot" (after removal of the armature) of some Hornby, now Hornby/Wrenn, mainframes can be sawn and filed out to take a ring field magnet and still retain the original bearings, A suitable magnet is obtainable from a "Monoperm" motor sold by Radio Control Supplies Ltd, 581 London Road, Isleworth, Middlesex. A 2-6-4 tank has been succesfully modified.

I agree that anyone lacking confidence in their skills with saw and file and electronics "should leave well alone".

Criticisms regarding Hornby ring field motors are best directed to Hornby \& Co. Motors taking 2A under stalled conditions are quite suitable for the control system. The "about 6 -watt" dissipation quoted in my article is for an eightcoach train traversing 3 ft radius curves on a typical gradient $(1: 200)$ at full speed. Apparently, Mr Ganderton has overlooked the fact that it slould not be necessary to apply full power to start a heavy train. On the train detailed above a 25% duty cycle was necessary, thus even under a $2 A$ stall condition and with coach illumination the dissipation in $T r_{28}$ or $T r_{31}$ is typically (24.5-12)2 \times $0.25=6.25$ watts, using Trix 'Scotsman with Milliperm motor.
3.05A in Fig. 2 relates to the peak on-demand current at 29.5 volts expected of the power supply and is equal to a nine-coach train pulling away from stop with lights and whistle on, i.e. full load for this controller. The Peco Streamline track used to run the system on has given no trouble during 12 months of service. Track current, carrying capacity has been found adequate at 0.1 volts drop/yd/amp. Every possible track type has not been tried and tested; however, the track used by Mr Ganderton will probably be adequate provided sufficient connection points are used. Mr Ganderton's figure of 2.5 A for $1.5^{2} \mathrm{~mm}$ c.s.a. copper conductor is surely incorrect; the IEE Regulations for Electrical Equipment, page 126, rate $1.5^{3} \mathrm{~mm}$ c.s.a. copper conductor at 13 A . Current collection limitations of the brush system and contact pressure of the wheels are a more likely source of trouble; however, no trouble has been experienced so far, standard brush gear being used.

Electronics for coach lighting fits inside the toilet or parcels compartment of most coaches, other coaches having room under the seats. The original coaches modified had ample room to house the electronics and still retain the original seats and passengers etc. A photo depicting the above, and another showing electronics for whistle and locomotive etc in a Trix 'Scotsman, was supplied with my article but not published.

I am well aware of the scales used by Trix and that I have accepted a compromise. However, eventually this is true of most modelling in my opinion, e.g. full size track is not nickel plated, nor do railway companies require 15 locos to handle 35 coaches!

The first* loco cost $£ 3.50$ to modify. the whistle a further $£ 4$ and each coach about $£ 1 \cdot 25$. A controller cost about $£ 12$ to build, since a controller has to be provided anyway. The real extras are only the locomotive and coach costs, which. considering the extra realism derived from train operation, is, I feel, cheap. The system has been fitted without interfering with cab fittings or crew.

Mr Ganderton states that the system is "not a viable proposition" and that the same or better results can be obtained at lower cost by other electronic circuits. In the absence of such circuits I can only conclude that Mr Ganderton is doing a little pointless huffing and puffing.
P. Cowan.
*Not including motor modifications which may cost a further 50 p- $£ 1$.

Modified automatic noise limiter

Having tried out most of the modifications to the Nelson-Jones tuner suggested in your columns during the past

two years, I was most interested in the automatic noise limiter described by \mathbf{P}. Hinch (November 1973 issue) as his circuit offered a simple, add-on method of muting the high inter-station noise characteristic of these tuners.

I built and installed a noise limiter. It worked well except when the sensitivity of the noise sensing circuil was increased (by R_{19} on Mr Hinch's Fig.1) to remove all but the signals from the local transmitter. When a programme with high stereo content was being received, the limiter would intermittently mute on loud passages. Apparently some of the multiplexed stereo signal (up to 53 kHz) was getting past the 3 -pole higli-pass filter used to separate broad-band noise from the broadeast signal.

The filter used by Mr Hinch is equivalent to three 100 kHz single-pole filter sections cascaded, and has a rather gentle roll-off, as can be seen in curve (a) in the accompanying graph. By tolerating some pass-band ripple, this filter can be replaced by a Chebychev filter having a much sharper cut-off. Curve (b) shows the response of a 0.5 dB ripple, 3 -pole, Chebychev, having a similar (150 kHz) -3 dB frequency to Mr Hinch's design, but with the attenuation at 50 kHz increased from 21 dB to 35 dB . This filter response can be obtained, using the tables given by M. Bronzite (W.W. March 1970 , p.117), without changing the design of Mr Hinch's circuit, by making the following component value changes (referring to his Fig.1):
$C_{t} \quad 33 \mathrm{pF}$ silver mica or polystyrene.
$R_{2} \quad 27 \mathrm{k} \Omega$
$R_{3} 33 \mathrm{k} \Omega$
$R_{6} \quad 1.8 \mathrm{k} \Omega$
$R, 33 \mathrm{k} \Omega$
$R_{8} 82 \mathrm{k} \Omega$ all 5% carbon film.
I have also added a 22 nF disc ceramic decoupling capacitor between +V and earth. close to Tr_{1}. As C_{1} has been halved, these modifications also reduce the loading on the tuner output in the $0-53 \mathrm{kHz}$ frequency range.

Using a noise limiter with these modifications, I have been able to cut off all but the local transmitter, and, even
with R_{19} set for maximum sensitivity, there is no muting due to strong stereo signals.
M. L. G. Oldfield,

Department of Engineering Science, Oxford University.

TV picture interference

I have read with interest D. C. Cooper's letter published in December concerning moving dots on his TV picture.
I. too, have noticed the appearance of similar dots on my monochrome u.h.f. set. first on BBC2 and then, a few months later, on BBC1. The ITV picture is. so far, unaffected. Unlike Mr Cooper's, though. my dots appear in a single line, slightly above the field test pulses, i.e. outside the picture area.

I cannot explain these dots, except that I think they cannot be anything to do with cable distribution systems as suggested by Mr Wood of the BBC, as my reception is direct from the Mendip transmitter. George Cavarra,
Bristol.
I, too, have observed the moving pattern of dots on a television screen and supposed that they were connected with the BBC data transmission experiments. Unlike Mr Cooperss. (December 1973 issue) observations, mine occurred on a monochrome receiver (BBC2 transmission) but at the extreme top of the picture. They are, I assume, only scen because the frame amplitude has deter-iorated-the set is some ten years old. I have not observed it on a new colour set operating from the same aerial. Like Mr Cooper, I live in the Guildford area.
J. G. Steel,

Guildford,
Surrey.

Multimeters for blind students

Readers may be interested to hear of two d.c. multimeters for blind students built recently for schools in Sydney. The circuitry of the instruments, as shown, owes much to that of the aural-tactual meter described by Dr R. S. Maddever (Wireless World, January 1973).

As in Dr Maddever's circuit. Tr_{2} drives a constant current of 0.1 mA through R_{7} which thus produces a variable reference voltage between 0 and 100 mV . Now, if the reference voltage is appreciably greater than an applied input voltage, the output of amplifier \mathbf{A} is positive and that of amplifier B is negative. Conversely, if the reference voltage is appreciably less than that applied to the input, the amplifier output polarities are reversed. Thus in both cases, either amplifier A or B in conjunction with

Circuit of multimeter for blind students (G. P. Roberts). $T r_{1}$ and $T r_{2}$ are silicon p-n-p types, e.g. BC177, BC187. $D_{\text {s }}$ is a $400 \mathrm{~mW}, 4.3 \mathrm{~V}$ zener diode, e.g. BZX79/C4V3, and other diodes are small signal silicon types, e.g. BA100, IN914A.
diodes D_{6} or D_{7} is able to sink the 3 mA required to operate the "minisonalert" which produces an audible signal at 3500 Hz . However, the network consisting of R_{8}, R_{9} and R_{10} is arranged so that for values of reference voltage very nearly equal to the input voltage. the outputs of both amplifiers go positive, producing an audible null. The width of the null-a compromise between accuracy and ease of setting of R_{T}-is adjusted by means of R_{8}. In practice, the high open loop gain of the Motorola 1458 dual op-amp ensures that the "edges" of the null are quite sharply defined, allowing the null width to be made as small as 0.2 mV .

Where an attenuator raises the source impedance as seen by the input, the capacitor C_{1} allows the instrument to be used to measure d.c. quantities containing moderate amounts of a.c. ripple. Although slowing the response time, this facility is useful when poorly regulated mains supplies are involved. The zener diode D_{s} is included to further stabilize the current sources $T r_{1}$ and $T r_{2}$ against changes in battery voltage.

The instruments were built in diecast aluminium boxes measuring $8 \frac{1}{2}$ in $\times 5 \frac{1}{2}$ in $\times 2 \mathrm{in}$. A simple in-built attenuator provides push-button selection of three voltage ranges ($1 \mathrm{~V}, 10 \mathrm{~V}$ and 100 V) and three current ranges $(10 \mathrm{~mA}, 100 \mathrm{~mA}$ and 1A). A standard linear wirewound potentiometer was used for R_{7} and this, in conjunction with a large pointer and
embossed scale of 2.2 in radius, was found to be easily read to accuracies of within 2% of full scale. Front panels were made from plastic laminate board. Braille dots were made by pushing ordinary dress-making pins through tight fitting holes drilled in the board, and cutting off their stems flush with the other side. The panel was also engraved for the benefit of sighted teachers.

The materials and metalwork were provided by the School of Mathematics and Physics, Macquarie University, with help particularly from Mr Ingram Paterson.
G. P. Roberts,

Cheltenham.
N.S.W., Australia

Buying groups

May I through the courtesy of your columns bring to the attention of component retailers the way we are attempting to deal with an urgent problem which affects all of us-I refer to the shortage of electronic components.

There are many buying groups operating successfully in commodities ranging from groceries to television sets, but we believe we are the first (and perhaps the only one) dealing in electronic components. We are the poor relation of this industry and it is the manufacturer who can buy bigger quantity who comes first. "Group One"
has been functioning for about three years, during, which time it has prevented the total disappearance of many vital components by large purchases. To give us more buying power we would like to recruit more members. Would any electronic component retailer who is interested, please contact me at the address below.
A. Sproxton,

Home Radio (Components) Etd,
234-240 London Road,
Mitcham,
Surrey CR4 3HD.

Licences

I would like to point out for the Ministry of Posts and Telecommunications that the installation and use of wireless telegraphy apparatus in the UK is an offence contrary to the Wireless Telegraphy Act 1949 except under and in accordance with the terms of a licence issued by the Ministry. Furthermore it is an offence to manufacture and import apparatus for wireless telegraphy capable of operating on frequencies between $26.1-29.7 \mathrm{MHz}$ and $88-108 \mathrm{MHz}$. Any enquiries should be sent direct to the Ministry of Posts and Telecommunications, Waterloo Bridge House, Waterloo Bridge Road, London SE1 8UA.

B. Griffin,

Ministry of Posts and Telecommunications, London, S.E.1.

Electronic piano design

Part 2 -assembling circuits and case

by G. Cowie, B.Sc.

Most electronic keyboard instruments are insensitive to touch, the keys operating on/off switches. The touch-sensitive feature of string pianos is retained in this design, while still being simple and inexpensive to construct. It is small, portable and, with headphones, is ideal as a practice instrument. Basic design points and detailed circuits were given in part 1 (vol. 80 no. 1459 pages 8-13). This article gives constructional details of a case, together with guidance on component layout, assembly and wiring. Part 3 will describe how to test and tune the instrument, suggest an alternative tone generator using an m.o.s. master oscillator, and give some other optional circuit refinements.

The piano is designed so that the 33 -in keyboard will just fit inside its case. There is a metal projection at the low end of the keyboard that must be sawn off flush with low C for the keyboard to fit. The keyboard base plate is used as a chassis for the keying circuitry, and the remaining circuitry is mounted in the upper rear of the case.
Before starting work, you should consider the finish for the case. As described, the case is suitable for finishing with paint, leatherette, or, like the prototype, with Formica. If a Formica-type finish is wanted then a lot of time can be saved by using a plastics-surfaced board for parts $2,3,5,7$ and possibly 11 (Fig. 9). Some dimensional changes will be necessary, and parts 4,5 and 6 must be shortened to 33.1 in . Exposed wood edges may be painted. Wood parts are fastened together by glueing and.dowelling or nailing.
Start by cutting the wood parts to shape, using a rasp if necessary to trim them to exact size. Parts 2 have notches cut in them to fit parts 4 and 6 . Parts 2 should be identi= cal, and this can be checked by clamping them together. It is important that the internal width from front to back is a fraction over 33in (say 33.lin) otherwise the keyboard will not fit. This dimension is identical to the length of part 3.

The case is deeper from front to back than strictly necessary, and if you do not intend to put anything other than the circuitry described inside the case, you can reduce the front-back dimension by up to three inches. This involves shortening parts 1, 2 and 7.

Case assembly

Begin assembly by gluing and panelpinning part 1 to part 4. Add parts 2, and dowel part 4 to parts 2 . Next attach part 6 with glue and dowels. (Dowelling should be done by drilling one of the parts to be joined and then, holding the parts in their
final position, passing the drill through the hole already drilled to drill the mating part to about an inch deep. Spread glue on the dowel and the mating surfaces, place the parts together and knock the dowel fully in.)

Part 3 rests on top of part I and is fixed to parts 2 by dowelling. Tack parts 3 and 1 together with a few panel pins and fill up the crack with glue and strips of wood. Part 3 has one edge planed off at 45°, and the op-
posing edge is also planed at 45° to fit against part 1.
Part 5, the back paniel, should be left slightly oversize until fixed in place. It is more convenient to drill the holes, with a bit and brace, before fixing. Three holes of $\frac{3}{8}$-in dia. and two holes for a mains connector and fuse are required, their positions not being critical. Apply glue to mating surfaces and secure the part 5 with panel pins.

Fig. 9. Top part of the case, comprising nine wood parts and a front panel. carries the keyboard-bolted to parts 13 with angle brackets-and lifts to expose wiring about hinge (14). Parts $16,17 \& 18$ are shown in Fig. 10. Dimensions given in parts list.

Notes on components

The pieces of Veroboard for the key circuits boards are $17 \times 5 \mathrm{in}$, as advertised by various suppliers, but which does not appear in Vero's current lists. If the board specified cannot be obtained, a slightly longer and narrower board could be used instead.
The resistors used on the keying boards are $\frac{\mathrm{d}}{}$-watt because larger resistors would be more difficult to fit in the space available. Similarly the diodes should not be bigger than the Do-7 size, which is about 0.3 -in long excluding leads. "Untested" silicon signal diodes were used in the prototype, and proved to be satisfactory. They are very cheap, but it is necessary to test them with an ohmmeter, both to weed out a few faulty diodes from the batch and also to determine the polarity of each diode. The ohmmeter will give a reading characteristic of a silicon junction when its red lead is applied to the cathode (+) end the diode and its black lead to the other end.
"Untested" transistors may be used to save money but in my experience they are less satisfactory than cheap diodes. It is to be expected that nearly all the batch will be usable for something, but that half will be leaky with a tendency to deteriorate. They should be tested as thoroughly as possible to ensure that the transistors used have a gain of greater than 40 at 100 mA and a leakage of less than a microamp or so. The transistors specified are a medium-power type, and low-power transistors should not be substituted in the key circuits. The dividers and op-amps must be good devices, not rejects. They can be bought nowadays for little more than 55p and 25p each, respectively. In the remainder of the circuitry the choice of semiconductor devices is not critical.

Capacitance values for the key circuit capacitors C_{1}, C_{2} should be adhered to as closely as possible. Voltage ratings are low to minimize bulk and cost, but are not critical provided that C_{1} is 10 V or more and C_{2} is 6 V or more. Tantalum capacitors are preferred as the tolerance on capacitance values is closer. On the other hand it is not known what effect the better power factor of the tantalum capacitors (without series resistors) will have on the life of contacts S_{1} and the tantalum capacitors are more expensive. Aluminium electrolytic capacitors performed adequately in praclice. Essentially the question is one of initial cost versus reliability.
The operational amplifier used for the summing preamplifier should be a 741 as this type is internally compensated. As no compensation is needed for the oscillator op-amps the slightly cheaper 709 type can be used instead. Lead connections for several packages were given in part 1.

At each step in the assembly check that the parts are squared up. If a rear panel of plastics-coated board is used, cut out a neat aperture about $3 \times 4 \mathrm{in}$ before assembly. Subsequently the aperture can be closed by a connector panel fixed to the inner surface of part 5 . When the lower casc assembly is completed set it aside for the glue to harden.

The keyboard is bolted to two metal channel sections 13 , which in turn are screwed to the hinged upper half of the case. In their normal position, parts 13 rest on part 1, touching parts 2 , so that they fix the height of the keyboard and its position; ideally 0.5 in clear of parts 2 .

Parts 13 are fixed to the vertical front part of the keyboard chassis by two brackets of $\frac{3}{3}$-in angle, $1 \frac{1}{4}$-in long. For each fixing, drill two holes in the keyboard chassis and two in parts 13 , the last-mentioned being countersunk. A section of flange of each part 13 must be cut away over a length of three inches to clear the top and bottom C actuator slots and the keyswitch mounting area behind. (To do this with an ordinary hacksaw cut and file away a portion of the flange so that the hacksaw blade can be got into position to cut away the remaining scrap section with a longitudinal cut.) Bolt the parts 13 in place, with the nuts inside, and place the whole assembly on a flat surface. Make sure that parts 13 are square to the keyboard, and drill at each end of the keyboard, near the springs, a 6BA-clearance hole so that the chassis plate can be bolted to part 13 flange.

Place the assembly inside the lower case to check that it fits without jamming. and decide on the precise position of the keyboard with respect to part 3. If the keyboard is to be well forward, as in the prototype, then the edge of part 3 must be relieved so that the white keys do not strike it. (It is a good idea to put small packing pieces underneath parts 13 as then it will not matter so much if swarf and shavings collect there.)

On looking at the top of the keyboard,
there is an obvious transition between the seen and unseen parts of the black eyes. It is important to know the exact horizontal distance (about 11 in) between this point and part 6. This dimension, less 0.05 -in clearance, less the hinge thickness, less the thickness of any laminate finish on part 11, is the front-to-back depth of the upper case assembly. If a mistake is made then either the black keys will strike on part 11 or there will be an unsightly gap.

Lay the parts of the upper case, 7-12, together to check that they form a structure of the right size when fitted together. Parts 8 rest on parts 13. and part 7 placed on top should be flush with the top of the lower case. Make sure the gap between pieces 12 and 13 is sufficient to clear the keyboard.

Glue and nail parts 7 and 9 together. and add parts 8, dowelling it to part 9 and dowelling or nailing them to part 7. Plane the front edge of part 12 to a 30° angle and fix it to parts 8 with dowels. Add part 15 with dowels to give some central support to piece 12. Leave this assembly to dry. Check that the upper case assembly fits into the lower case without jamming or leaving an excessive gap at the sides.

Part 11 is thin so that the mains on/off switch and any extra controls can be mounted on it. Fit it by relieving the front of part 7 at 30° or by relieving part 11 . leaving some gap 10 be filled or concealed: the lower edge of part 11 should be relieved at 30° on the inner side. Use glasspaper or a sanding dise to smooth down the mating surfaces for part 11. Attach part 11 with glue and a few panel pins. Use the parts 10 , suitably shaped, and some glue to fill and strengthen the join between parts 7 and 11 . Put the assembly aside to dry upside-down so that parts 10 will stay in place. (At this stage the upper and lower case halves may be painted on the inner surfaces.)

Attach two lengths of $\frac{1}{2}$-in or $\frac{5}{8}$-in square wood (parts 16 and 17, Fig. 10) to the keyboard chassis plate to act as bearers for the key circuit boards, which are to be $\frac{7}{8}$ to lin

Footswitch for sustain action is simply a push-button switch embedded in a wood block.
below the main plate. Fix part 16 by woodscrews to the front vertical plate. which must be drilled for four fixing holes. Secure part 17 by woodscrews at its ends to parts 13; a countersunk hole is required in each part 13. Drill the main plate in two places by the springs, about one-third and twothirds of the length of the board, so that packing pieces can be fixed in place to stiffen par 17. The keys scratch easily so protect them during drilling.
The desired surface finish is most conveniently applied to the outside of the upper and lower case at this stage. In the prototype all visible surfaces are white Formica except for the inner surfaces of parts 2 and the top edge of part 3 , which are black.

Various accessories are next fitted to the case. Fit the three jack sockets, the mains connector socket, and the mains fuseholder to the rear panel. Next fit the mains switch and indicator lamp to the front panel. Attach the piano hinge to the upper case, with the axis rod above the top surface. Arrange the upper case in the fully open position. supported on a block, and screw the hinge to the lower case. This is trickier than it seems and it is best to put in two small screws first so that the assembly can be closed to check whether it is all lined up and fits properly. If all is well then the hinge may be securely fastened by $\frac{1}{2}$-in counter-sunk-head brass screws.
Screw parts 13 to parts 8, thereby fixing the keyboard into the upper part of the case. Serew an eyelet into each side of the case, inside, next to part 3, and provide a similar fixing on the keyboard chassis. Permanently attach two restraining cords to hold the upper casc open in a suitable position for working inside. Check that the assembly still closes. Fit the case carrying handle and add metal ties between pars 3 and I at the handle location. Two large selftapping screws are used to hold the case closed. Turn the case upside-down and drill two holes near the front of the case in such a position that they pass through the flange of part 13. These holes must be of the root diameter of the self-tapping screw. Next drill the wood to the clearance diameter, grease the screws and screw them into place by repeatedly making one turn in and half a turn out.

Circuit assembly

In one sense the assembly work is very simple as there are only five major circuits involved, none of which has more than a dozen components. There is, on the other hand, a great deal of work to be done, and very boring and repetitious work at that. To give some idea of the time involved, fitting 60 components on boards will take $1 \frac{1}{4}$ to $1 \frac{1}{2}$ hours from unpacking to checking the soldered joints, and putting in the 183 key wires will take at least a day. Clean soldering and general neatness are very important, greatly increasing the chances that the circuitry will work as intended.
Make up the power supply, oscillators, and amplifiers first, so they can then be used to test the key circuits.

No detailed assembly is shown for the power supply as it is a simple wired unit and the original was made from junk. For safety

Fig. II. Keyswitch as bought is normallyopen (top) and is simply modified to normally-closed (bottom).

Fig. 12. View of underside of keyboard (with lid raised) shows key circuit boards with dividers and, beneath, keyswitches and actuators.

it is best to make the power supply on a metal baseplate and completely enclose it in an earthed metal case. Mount the $+5-\mathrm{V}$ regulator on a small heatsink of $\frac{1}{16}$-in thick aluminium forming the lid of the case. As the case of the regulator forms its $0-\mathrm{V}$ connection it should be isolated from the heatsink with the standard kit of mica washer etc, so that the $0-V$ line can be floated or grounded as necessary. Make sure that no live terminal is within $\frac{1}{d}-\mathrm{in}$-of anything on the low-voltage side. Earth any metal parts of the on/off switch showing on the front
panel, as well as the metal case of the power supply. Mount the unit in the lower lefthand part of the case.

Keyswitch modification

The keyswitches as bought are of the triple normally-open type, not normally-closed as required. This is of no consequence as it is a simple matter to hook the bent wire of each pair around the straight wire, so that the switch becomes normally-closed (Fig. 11). It is less easy to arrange for the contacts to open in the correct sequence. In the proto-
type this was done by mounting the keyswitches and then bending both wires of all three pairs until the desired result was achieved. As the differential between S_{1} and S_{2} opening is fairly critical, and there are 366 wires in all, this was tedious. I therefore devised a procedure which is not only less laborious but should give more satisfactory results.

Under each key is a plastics actuator rod capped by a rubber boot which is designed to push the straight key switch wires (see Figs 12 \& 13). A notch $0.1-$ in deep must be effectively produced at one side of each pusher, and the simplest way of achieving this scems to be to stick a tiny square of plastics sheet. not to the rubber boot, but to the two wires that must move first (Fig. 13). This should be $0.10-\mathrm{in}$ ($2.5-\mathrm{mm}$) thick, and about $0.15-\mathrm{in}(4-\mathrm{mm})$ square. One side of the keyswitches has a large rectangular notch which exposes the wires. This is the visible side, and the opposite side is the mounting side. The plastics squares of course go on the mounting side of the wires.

Simplest way to attach them is to apply a little glue with a matchstick to the ends of the two wires, touch them on the square to pick it up, adjust it carefully for position, and leave the assembly upside-down to set. Contact adhesive should stick most materials: alternatively a solvent adhesive or Araldite could be used.

The keyswitches must be mounted on at spacing piece (part 18. Fig. 10) stuck to the main plate of the keyboard chassis. The thickness of the spacer must be determined before the keyswitches are mounted. Find a piece of packing which will support one of the keyswitches in an operating position so that the rubber actuator is almost touching the plastics pad. This should ensure that when the key is pressed, the actuator opens first two contacts almost together, and the third before reaching the end of the travel (the differential is 0.10 in). A piece or pieces of packing. preferably of plastics, two inches wide and in all 33 -in long are stuck down with contact adhesive, and the keyswitches are stuck to this with contact adhesive. They should be as far back as possible consistent with correct operation; and they can be placed with sufficient accuracy by hand.

Oscillator assembly

The twelve oscillators (Fig. 14) are identical except for the tuning resistors (see Table 3 in part 1). The frequencies used depend on whether a C-C or F-F keyboard is chosen : 2093 to 1108 Hz and 1397 to 739.8 Hz respectively.

The layout shown in Fig. 15 is designed to enable six oscillators and six buffer transistors to be assembled on a $2 \frac{1}{2} \times 5 \times 0$. 1 in pitch Veroboard. In the prototype two of these were mounted on plug-in carriers so that the oscillators could be removed easily for tuning and repairs, but to make things as simple as possible I recommend that all twelve oscillators and the buffer transistors be mounted on a piece of Veroboard of at least $5 \times 5 \frac{1}{2}$ in which is wired for plugging into a suitable edge connector with a minimum of 16 ways (that is twelve outputs, three power lines, and a space for a polarizing/locating key).

Use the layout given, placing the oscillators in four rows of three. The order is not important, but it is helpful if they are arranged on the board in strict alphabetical order. Break the copper tracks where shown with a Vero spot face cutter or drill. All tracks should be broken between oscillators except the three power lines, and the four tracks under the i.c. must also be broken. Wire resistor R_{205} to the buffer transistor.

The integrated circuits may be cither the 709 or the 741 : see part 1 for pin connections. Note that the twelfth or eighth pin is not connected in the 741 but is internally connected in the 709 and so no connection must be made to it. Either skeleton or button-type preset pots may be used, the skeleton type being easier to mount. Resistors R_{201} to $R_{20.4}$ should be $2 \%, \frac{1}{2}$-walt types, and the capacilors polystyrene or polyester. The component leads may be left a little long to stand them off the board. The presets form a small part only of the tuning resistance so their stability is less important.

Mount the edge-connector of the oscilators in the upper right part of the case, and arrange a clip to hold the free end of the oscillator board.

Amplifier assembly

The summing preamplifier and headphone amplifier (Figs 16 \& 17) can both be assembled on a $2 \frac{1}{2} \times$ sin piece of Veroboard, of $0.1-$ in pitch, and arranged to plug into a suitable edge-connector. An internal connection must be made between R_{404} and the input of the headphone amplifier, and the external connections are the three power lines, two inputs. low level output, and headphone output. A 741 op-amp must be used in this circuit.

Fig. 15. Twelve top-octare driver transistors (Tr_{201}. six shown) can be arranged to enable six o.cillators and drivers to be accommodated on $2 \frac{1}{2} \times \sin$ Veroboard or, preferably, all iwelve on a 5×5 in board.

Mount the edge-connector for this board in the upper right part of the case, logether with a 12 -way tagstrip.

Wire the three power lines to the tagstrip, using fairly thick stranded wire ($24 / 0.2 \mathrm{~mm}$). Connect a lead for the $+8-V$ line from the power supply to the tagstrip, and check that none of the wires can be trapped when the case is closed. Mount the dropper resistors R_{506} and R_{507} on the tagstrip. Mount the components $R_{501-3}, D_{501}, T_{501 / 2}$ on the tagstrip, making connections to the power lines. Two of the tags are also terminals for the bias and damper lines. Wire the amplifier edge-connector to the two output sockets. The low-level socket should be
wired conventionally, but the headphone socket should be a three-way socket with the $0-V$ line wired to the middle contact and the signal to the inner contact, so that normal connection is made to a two-way jack, but the coils of stereo headphones are connected in series. Wire the sustain pedal connection from the tagstrip to the sustain pedal socket. Connect power lines to the oscillator and amplifier edge-connectors from the tagstrip. If the power supply uses a 9 -volt transformer then R_{507} must be about 18 ohms to drop the raw direct voltage to the 8 V required for the switch busbar, and for a 6.3 -volt transformer it must be about 3 ohms.

Key circuit assembly

The key circuits are assembled on two large pieces of 0.1 -in pitch Veroboard, one $5 \times$ 15 in, the other. containing the odd key circuit, $5 \times 16 \frac{1}{2}$ in. The overall length is calculated to be just less than the distance between parts 13 flanges. The 12 groups of key circuits are identical, and the 61 key circuits are themselves identical save for the connections of diode D_{1}. The assembly details are given in Fig. 18 which shows the divider and the top key circuit. The whole group should be exactly five inches long. the pitch of the key circuits being 0.9 in.
Mark each circuit board with two rows of three $2 \frac{1}{2} \times \operatorname{Sin}$ rectangles, using a scriber. Mark within these the areas occupied by the key circuits. Each occupies a width of eight holes, the boundaries between key circuits falling on the ninth rows of holes where several tracks must be cut to electrically isolate the circuits. Fit the divider i.cs in their correct positions, at the top of each rectangle and one hole from the left-hand edge. Use Veroboard pins or some cheaper equivalent to attach the key wires, three to each key circuit.
At the assembly is quite a large operation ${ }_{3}$ much time will be saved if it is approached methodically, for instance by taking 61 components (e.g. R_{3}), bending all the leads, fitting to the board, bending the leads flush with the tracking, clipping the leads to 0 . lin from hole, and then soldering.

Each group of key circuits must be assigned to a letter, C, A etc. and the resistors R_{4} fitted, following Table 3. The lowest values go with the highest pitch notes. and so the key circuit nearest the divider will have R_{+}of $1 \mathrm{k}, 1.2 \mathrm{k}$ or $1.5 \mathrm{k} \Omega$. The positions of diodes D_{1} vary; in the no. 1 key circuit the cathode goes to track 1 (pin 14 of i.c.); in no. 2 to track 3 (pin 12); in no. 3 to track 6 (pin 9); in no. 4 to track 7 (pin 8) and in no. 5 to track 4 (pin 11).
The lowest pitch key circuit takes the form of a small 13th letter-group, in physical arrangement. It fits on the extra $1 \frac{1}{2}$-in of board next to the C letter-group. The divider could be almost any t.t.1. flipflop but 1 recommend a 7493, mounted on a dual in-line socket so that it can be changed easily. The connections are casily deduced: pin 14 is wired to track 4 of preceeding stage, D_{1} cathode goes to track 3.

Lines for $+5-\mathrm{V}, 0-\mathrm{V}$, output, and collector busbars run the length of each board. Three tracks should be commoned for the ground busbar to reduce the resistance.

Fig. 16. Summing preamplifier and headphone amplifier (Fig. 17) can be inchuded

Fig. 18. Layout of one divider and key circuit. Outputs from divider feed four similar (except for D_{1} position) key circuits alongside that shown: (Thirteenth divider feeds only one key circuil). Two large boards bear 61 key circuits and 13 dividers. In the five key circuits related to any one divider, uppermost wire of D_{1} connects to different i.c. terminals or tracks (see text). A minor modification to this board is suggested in pari 3.

Parts list

1 Plywood $34 \frac{1}{2} \times 16 \times \frac{1}{4}$ in
2 Plywood* $18 \times 6 \times \frac{3}{3}$ in (two)
3 Ply or hardwood* $33 \times 34 \times \frac{3}{4}$ in
4 Deal $34 \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$ in
5 Ply or hardboard* $34 \frac{1}{2} \times 6 \frac{1}{2} \times \frac{3}{16} \mathrm{in}$
6 Ply or hardwood $34 \frac{1}{2} \times 1 \frac{1}{4} \times \frac{3}{3}$ in
7 Plywood* $33 \times 9 \frac{1}{2} \times \frac{1}{9}$ in
8 Plywood or deal $10 \times 3 \frac{1}{2} \times \frac{3}{4}$ in (two)
9 Deal $33 \times 1 \frac{1}{2} \times \frac{3}{4}$ in
10 Deal $15 \times \frac{3}{\frac{3}{8}} \times \frac{1}{8}$ in (two)
11 Ply or hardboard $33 \times 3 \times \frac{3}{16}$ in
12 Deal $33 \times 1 \frac{1}{2} \times 1 \frac{1}{2}$ in
13 Aluminium or steel channel
$13 \times 2 \times \frac{5}{8}$ in (two)
14 Piano hinge 33 in
15 Plywood or deal $4 \times 1 \frac{3}{4} \times \frac{1}{2}$ in
16 Deal $31 \times \frac{1}{2} \times \frac{1}{2}$ in (or $\frac{8}{8} \times \frac{5}{8} i n$)

17 Deal $33 \times \frac{1}{2} \times \frac{1}{2}$ in
18 Plastics spacer 33×2 in
(see "keyswitch modification")
Dowel rod $2 \mathrm{~m} \times 4$ in
Aluminium angle bracket $2 \frac{1}{2} \times \frac{3}{4}$ in
Deal block to house sustain switch $6 \frac{1}{2} \times 5 \frac{1}{2} \times 1 \frac{1}{4}$ in
Perspex 4 sq in $\times 0$. lin thick
Carrying handle and bolts
Aluminium plate $\frac{1}{16}$-in for heatsink
TO-3 insulator kit
Metal box for power supply
Deal for stand: $26 \times 1 \frac{1}{2} \times 1 \frac{1}{2}$ in (four)

$$
\begin{aligned}
& 16 \times 6 \times \frac{1}{2} \text { in (two) } \\
& 34 \times 5 \times \frac{1}{\frac{1}{2} \text { in }}
\end{aligned}
$$

*Parts $2,3,5 \& 7$ could alternatively be Contiboard "switch" busbar being soldered and insulated first.

Fig. 20. Simple stand for the piano can be made from deal.

Key wiring

Six wires about $\frac{1}{2}$-in long extend from the back of each keyswitch (Fig. 19). Bend down the extreme right-hand wire of each switch (looking from the rear), and solder to them a bare tinned-copper wire of about 22 s.w.g. Inspect this work and cover the wire (switch busbar) with a length of adhesive tape. Do the same for the third wire from the right (left, as shown), and cover the damper busbar with tape. The third, bias, busbar should be of slightly thicker wire, and is soldered to the gold wires as shown. The bias contacts are the pair that open last. Bend the remaining gold wires upwards and outwards to make it easier to connect the flex wires.

To mount the two key circuit boards, use six small nails, bent over at 45°, in part 17 , on which the boards rest. To hold the boards while the case is closed, drill four holes in part 16 to take retaining screws with large washers, which overlap the boards.

Key wiring must be done with miniature stranded flex wire. Connect a wire to the switch contact, top C. Pass the wire through the gap between part 17 and the keyboard plate and lead it-along part 17, then up through a right angle towards the connect-
ing point-the pin on track 11 of the top C key circuit. Similarly, connect the damper wire to the pin on track 2, and the bias wire to the pin on track 18. Place cable ties at intervals along part 17 to hold the wires and tie wires together to the board in groups of six where they pass up over the lower edge of the boards.

When several keys have been wired up check whether the system works. Wire the bias, switch, and damper busbars to the tagstrip, and connect the ground $0-\mathrm{V}$ line to each key circuit board. Check that the power supply delivers the correct voltages and connect the +5 - V and collector busbar lines to both boards. Connect oscillator signal lines for the letter-groups in use, plug in headphones, connect the output busbar to the amplifiers, temporarily ground the positive input of the summing preamplifier, plug in the oscillators and amplifiers, and switch on. If the wired keys do not work look for faults as detailed later (part 3).
The remaining key wires may be put in when you are satisfied that the system is more or less in working order. The wires should be cut a little long, leaving about two inches of slack.

Tuning details together with some optional circuits will be given in the third and final article.

H. F. Predictions
 April

Seasonal trend and low solar activity combine to produce FOTs and LUFs which give a restricted choice of time and frequency for reliable day to day communication. The charts show that the restriction is severe when both ends of a circuit are in the northern hemisphere.

A magnetic disturbance observed at the end of February is almost certain to recur at about 27-day intervals over the next six months: April 16 to 26 is the next expected appearance.

Guglielmo Marconi

An appraisal, on the centenary of his birth

by W. J. Baker

Guglielmo Marconi, who was born on April 25, 100 years ago, was a manysided genius who, in his lifetime, probably achieved more honours, including the Nobel Peace Prize, than any man before or since. For all that, there was a curious thread which ran through his life; it was rather as if some daemon, while -providing him with pre-eminence, always contrived to give it a bitter-sweet quality; a denial of the full satisfaction that was his goal.

If genius is a matter of acquiring the right genes, then Marconi collected his by a circuitous route. The story of his birth has all the ingredients of a romantic novel!. It begins when one Andrew Jameson, together with his brothers, emigrated from Scotland to Ireland, where Andrew founded a distillery (even teetotal readers will have heard of Jameson's Irish whiskey). Concurrently he founded a family of four daughters, the ménage being a moated manor. Daphne Castle of Enniscorthy. One of these girls, Annie Jameson, was not only beautiful but possessed a singing voice of a quality which brought her an offer to appear at the Royal Opera House, Covent Garden.

At this juncture papa put his foot firmly down. No daughter of his was going to appear on the stage; however, by way of recompense he offered Annie the prospect of going to Italy, to stay with some banker friends of the family in Bologna. where she might study bel canto. So, half a loaf being better than nothing. Annie went.

Andrew Jameson's attempt at family diplomacy boomeranged with painful accuracy. For his Italian friends had a son-in-law; a widower with one child. Annie was still a minor; the widower was seventeen years her senior, but they fell in love and Annie returned to Lreland to ask permission to marry. This time papa jumped with both feet. Allow his daughter, a mere child, to marry an unknown Italian, almost old enough to be her father, and of a different religious persuasion? Unthinkable! Annie was kept at home and forbidden to communicate with this foreigner. But somehow she did and as soon as she became legally of age she fled via England to France, where at Boulogne she was met by her suitor. On April 16. 1864, Annie Jameson was
married to Giuseppe Marconi, whereupon the pair returned to Bologna. A year later their first child, Alfonso, was born. Almost as if reluctant to enter the scene. a further nine years elapsed before their second child arrived. on April 25, 1874. So, Guglielmo Marconi's maternal grandfather was a Scot and I am rather surprised that they have not made more of this north of the border.
In spite of the foregoing, this is not a biography of Marconi. Those readers who are sufficiently interested will already have read at least one of the several which are around ${ }^{1,2}$. Those who regard history as bunk would only be bored by a potted account of what he accomplished. All I propose to do is to select one or two of the bitter-sweet episodes referred to earlier, by way of illustration of what I meant. So no more of the boyhood of Marconi, except to say that his father was a well-to-do landowner who was intent that his sons should eventually manage his estates; to this end his younger son's interest in physics was ruthlessly discouraged and the electrical apparatus he constructed was destroyed whenever it was discovered. It is a miracle that Marconi survived this antagonism and that he did is due to his
obdurate refusal to give in and to the secret encouragement and devotion of his mother, Annie Jameson Marconi. Nor must wc forget Alfonso, nine years older than his brother, but helping him whenever possible; Alfonso was Marconi's first assistant, the hewer of wood and the drawer of water; never making the headlines, just staying quietly in the background and, after father Giuseppe's death, looking after their mother while Guglielmo was pursuing his endless quest for improvements to wireless telegraphy. Both Annie Marconi and Alfonso are buried in Highgate cemetery, Guglielno in Italy.

Throughout his life Guglielmo Marconi was a loyal Italian, and his first act, after bringing his wireless telegraphy system to a workable state, was to offer it, unprotected by patents, to the Italian P. and T. Understandably, they were not particularly interested, for what had this odd contraption, with its slow speed and mere mile or so of range, got to offer against their inland telegraph system? It was a mistake; had it been offered to the Italian Navy the reaction would doubtless have been different, for at sea wireless telegraphy had no competitor. But, stung by the P . and T's indifference, the Marconi family

Marconi (left) and his assistant Kemp with apparatus
(Giuseppe had grudgingly come around by this time) decided that England, where they had influential relatives, was the place to send Guglielmo. Britain, too, had the most powerful navy and the greatest mercantile fleet in the world-both potentially valuable customers.

So, Marconi, at the age of 21 , came to London-accompanied by his mother. They arrived in February 1896 and until recently it has always been assumed that he made his first patent application on June 2 of that year. Recently however, it has been discovered that the initial application was on March 5, 1896 (Application No. 5028/96). Provisional protection was granted on March 19-almost three months earlier than supposed and soon after his arrival in England.

Who was the first to "invent" wireless telegraphy? The controversy, over the years, has unfortunately become political rather than technical, involving rival ideologies in terms of prestige and doing nothing to enhance the prestige of either Prof. A. S. Popov or Guglielmo Marconi. It is futile for many reasons. One is that, prior to the critical year 1895, about 20 "inventions" for signalling through space without wires had been made, at least two of which employed Hertzian waves. Another is that, had neither man ever lived, wireless telegraphy would have come almost as quickly. It is also futile because the partisans adopt differing rules and standards and because certain acts of faith are called for.

Prof. Oliver Lodge was the first man to demonstrate publicly that the tube of metal filings that he christened the coherer could be actuated by Hertzian waves. The coherer consisted in essentials of a glass tube containing two metal contacts between which metal filings were loosely packed to give a high resistance. It had been known for years that when a Leyden jar (capacitor) was discharged in the vicinity of the tube the filings cohered and formed virtually a shortcircuit, but it was generally accepted (except perhaps by Prof. E. Branly of France, who did much useful experimental work) that it was the light of the spark discharge that operated the device.

Lodge, in two lectures given in 1894, showed otherwise and presented to the world a much more sensitive means of detecting the presence of Hertzian waves than had been known before. But the Branly type of coherer, as used by Lodge. needed to be tapped to restore it to the high-resistance state after the advent of every wavetrain and it could never be relied upon to return to the same resistance value after successive taps. As a consequence its sensitivity varied pro rata; thus, although, when carefully adjusted in the laboratory, it would unerringly trigger on the first half-cycle of a wavetrain and thus detect its presence, the subsequent decohering :ap might well restore it to a comparatively insensitive state. It follows therefore that when used to receive telegraphy it would miss a large proportion of the dots and dashes.

Part of a letter from Marconi's patent agents, dated March 5, 1896, informing him of the acceptance of the provisional specification for "Improvements in telegraphy and apparatus therefor".

Between the mere initial registration of the presence of Hertzian waves and the faithful following of telegraphy signals there was a great gulf fixed, as both Marconi and Popov were to find out. Both constructed apparatus deriving from Lodge's demonstration equipment, including the electric bell type of tapper, and both ran into trouble. We know that Marconi had to produce several designs of coherer and experimented with 300-400 different types of metallic filings mixtures, as well as introducing important modifications to the electrical circuits of the tapper before a recognizable message could be received. Popov, too, had the sametrouble apparently for he, too, completely redesigned the Branly coherer and modified the tapper.

Back now to Popov versus Marconi. As far as can be gathered the Russian claim is not that on May 7, 1895 Popov actually demonstrated wireless telegraphy but that the apparatus he used for a lecture on that occasion was capable of sending and receiving telegraphic signals had he so wished. During the lecture he did, in fact, show how the coherer could be used as a detector of thunderstorms but as electrical storms do not occur to order even for eminent scientists he used a Hertzian transmitter to simulate natural disturbances. A short antenna was used at the coherer receiver.

That Popov had telegraphy in mind around this date is shown by a newspaper report a week later, which stated that the importance of his experiments lay in their theoretical application to signalling over distances without wires. His own description of his apparatus was published in January 1896 and this also expresses the hope that "when further perfected" the apparatus might be used for signalling over a distance.

Undeniably, Popov was the first to demonstrate in public a practical use for the coherer. Undeniably, he was the first to publish an account of his apparatus. Undeniably, on paper, the equipment had an inherent capability for achieving short-range wireless telegraphy. The critical question is-was Popov's coherer sufficiently good to follow every dot and dash of a Morse message? We do not know, neither are we ever likely to now. The only clues are that the minutes of the meeting make no mention of telegraphy and both the newspaper and Popov's own published article refer to it in the future tense.

One point that further confuses the issue is that Popov was a civilian scientist in the employ of the Russian Navy and therefore subject to security restrictions. It is not impossible therefore that even before May 7, 1895 Popov had demonstrated telegraphy to Russian Navy officials in the privacy of his laboratory and was restrained from doing more than hint at its possiblity in print. But this is pure speculation. unsupported, as far as I am aware, by any shred of evidence.

All that can be said is that if military security robbed Popov of his rightful credit then it did so in vain, for in the Russo-Japanese war of 1904 the Russian Navy was using German wireless equipment while Marconi stations were installed on land.

As for Marconi, his early work was done in secrecy because he had no patent protection. We have his own unsupported statement that he first had the idea of wireless telegraphy "in the fall of 1894 or possibly early in 1895" and that he began his experiments in the early summer of 1895. By September of that year he was demonstrating ranges of one to two miles to close friends (including a Mr William Miller of Dublin). The first official document is the patent application of March 5, 1896, and this was followed by the complete specification on June 2. In that month Marconi was giving demonstrations to William Preece, Engineer-in-Chief of the British Post Office and to War Office officials, all of whom were impressed. Preece gave a public lecture on the demonstrations in September, 1896 and a more complete account at Toynbee Hall, London in December. Technical details of Marconi's apparatus were not published until some time after, for obvious reasons of commercial security. What is certain is that Marconi registered the world's first patent for wireless telegraphy; that he formed the world's first radio company (1897) and the world's first radio factory (1898). As to whether Popov or Marconi sent the first experimental wireless messagewell, the partisans will probably always go out by the same door which they came in. There are indications that neither of them was the first, but as the other candidates also demand acts of faith as a condition of acceptance, perhaps we had better leave them alone.

Another bitter-sweet triumph for Marconi was the famous transatlantic experiment of 1901: The details of this episode are well known, so suffice it to say that Marconi claimed that on December 12 and 13, 1901, he and his assistant, G. S. Kemp. operating a temporary receiving station on a cliff-top at St. John's Newfoundland, received signals in the form of the three dots of the letter S in Morse code, sent by prearangement from Marconi's new high power transmitter at Poldhu, Cornwall.

It would be idle to pretend that this news did not provoke controversy at the time and indeed there is an informed school of thought today that maintains that the signals did not get across. It is not difficult to see why, quite apart from the facts that no witnesses were present and that no further listening watches were possible because of the intervention of the Anglo-American Telegraph Company, which had the message-carrying monopoly in the area. The transmitter at Poldhu was experiencing teething troubles; it was

Marconi demonstrated his ultra-short-wave radio telephone system in Italy between. Santa Margherita Ligore and Levanto, a distance of 25 miles, on November 19, 1931.
feeding an antenna which had been built in one week (to replace the original, destroyed in a gale). The radiated frequency according to Marconi himself was about 800 kHz (366 metres) and therefore quite unsuitable for daylight operation over long distances, although no one was aware of this at the time. The radiated power is not known with certainty but figures lying between 3 kW and 12 kW have been given.

At the receiving end the antenna consisted of 400 ft of wire, elevated at one end by a kite, which was flapping madly up and down in an Atlantic gale. The receiver itself consisted of what was subsequently known as an Italian Navy selfrestoring coherer with a telephone earpiece and a Leclanché cell in circuit with it, the whole being connected between the antenna and earth, either directly or via a jigger or h.f. transformer (it is not known which particular approach was in use at the times the signals were stated to have been heard). No tuned circuits were employed and no amplification was possible.

The self-restoring "coherer" consisted in essentials of a glass tube with threaded rod inserted from either end. One rod terminated in a small cylindrical block of iron, the other in a similar block of carbon. The two were screwed into close proximity and a tiny blob of mercury inserted between them. For many years I have maintained a belief that this was not a coherer at all, but a solid-state rectifier with an oxide film on the mercury's surface providing the rectifying agency. One of these devices has recently been examined by Dr G. L. Grisdale of the Marconi Research Laboratories who has confirmed that this is so. The specimen on test was shown to have a rectifying performance (at best) of about 7 dB below that of a modern germanium point-contact rectifier.

It has frequently been said that a couple of months later Marconi vindicated his claim by his tests aboard the liner Philadelphia. For these he used an antenna slung between two 150 ft masts and connected to one of his new tuned receivers which embodied a Marconi coherer and a Morse inker. Sailing westward he received messages at a distance of 1551 miles from Poldhu, and isolated Morse letters at 2099 miles. This however is not a vindication of actual reception of signals at St. John's, for the ranges quoted were obtained at night. Daylight reception ceased at 700 miles (roughly one-third of the PoldhuSt. John's distance). The Italian Navy device was also tried on the Philadelphia but the rangeobtained was never better than 700 miles. What the Philadelphia experiment did do was to prove conclusively that Marconi was right in his basic belief that signals could cross the Atlantic, albeit (at the frequency employed) only over a night path. (It has always seemed to me to be curious that this was the first time the "night effect" had been noted, considering the number of stations which were by then in operation.) On this occasion Marconi made no mistake; the messages and signals were automatically recorded on paper tape and duly witnessed by ship's officers.

So, to return to the Newfoundland experiment, it will be seen that the doubting Thomas school of thought has a strong case. Let us now consider the other side of the coin. Marconi would have been insane to have pretended that he heard the signals, as exposure would inevitably follow. Furthermore, for him to have done so would have been completely out of character, for he was always meticulous in his public statements.

Various suggestions have been made in attempts to account for the mystery. Some have believed that he genuinely mistook static discharges for the three dots of the letter S. This is hardly likely;
both Marconi and Kemp were far too experienced to have been thus deceived, particularly as the Poldhu signals were machine-sent and precisely timed. Others have theorized that in all good faith he imagined he heard what he so badly wanted to hear-a common human experience. Others have invoked earth currents in order to explain the matter. Another suggestion has been that he heard faint signals but that these emanated from nearer at hand than Poldhu, and it is true that one or two transatlantic liners were by this time wireless-equipped (the Lucania for one was within feasible range). There were also a few shore stations in the USA and Canada and at least one amateur.

Now, after over 70 years of speculation comes a startling theory, namely that Marconi did, after all, receive the Poldhu signals; not, as he believed, on the fundamental frequency, but via a harmonic at h.f. This is a theory which, to my knowledge. lias been privately expounded for some years by Mr G. R. M. Garratt. formerly of the Science Museum and a well-known authority on telecommunications history. I believe that detailed calculations are being made and that there is some reason to suppose that these will vindicate Mr Garratt's ingenious and far-seeing suggestions. I understand that the matter has been discussed in a paper at the joint IEE/IERE colloquium "The Marconi Heritage" on April 25.

The bitter-sweet transatlantic episode had at least one major effect on Guglielmo Marconi. His summary treatment by the cable company turned him into an implacable foe of all such organizations and with obsessive energy he flung himself into the problems of providing a commercially viable transatlantic service, often working a sixteen-hour day and pouring money into his projects at a rate which alarmed his fellow directors. Initial failure gave way to limited success. Invention followed invention, the magnetic detector, the directional antenna and the rotary dise discharger being only three of many. Not until 1907 was a fully reliable day and night two-way transatlantic service possible, by which time the wavelength used had gone from 366 metres to 6000 metres and the power from the original $3-12 \mathrm{~kW}$ to 300 kW . For this purpose a giant station had been built at Clifden, Ireland and was communicating with the refurbished Glace Bay station in Canada ${ }^{3}$.

Even then Marconi was denied complete satisfaction, for the bulk of the traffic was between London and New York. The messages were transferred across the Atlantic quickly enough but the link between Glace Bay and New York was 800 miles of landline which was permanently overloaded. occasioning up to 12 hours' delay. Not until 1914 when Caernarvon (transmitting) and Towyn (receiving) stations were built in Wales and equivalent stations at Tuckerton and New

Brunswick in New Jersey State in the USA could the wireless service compete on equal terms with the cables. Triumph at last for Marconi? Not so. Almost immediately, war broke out and the two British stations came under the control, first, of the Post Office and then of the Admiralty.

For some years prior to this, Marconi had enlarged his anti-cable horizons to the whole world. His ambition now was toown and operate a chain of high-power stations that would link the major areas of the(then) mighty British Empire. Time after time the prospects brightened in this respect, only to cloud over again by reason of Government prevarication or change. Not until 1924 did anything definite emerge and even then it was only half a loaf. An Empire Chain was decided upon, but a Government Committee decided that the Post Office should own and operate all stations in Britain which communicated with the Empire (with a partial exception in the case of Canada) while private enterprise should be free to develop communication bet ween Britain and foreign countries. This by no means was what Marconi had worked for through the years, but at least he already held contracts for building giant long-wave, high power stations in Australia and South Africa, with more in prospect in other countries.

Behind the scenes the Marconi-Franklin h.f. beam system was being developed, with promise that world communication could be achieved at a fraction of the size, power and cost of the mighty longwave stations. The system was not. however, fully engineered and had not been tried on a long-term basis. Should it be kept secret and the long-wave stations proceeded with? Or should Marconi inform everyone concerned and give them the choice? It was a difficult decision, but in the event the customers were told and elected for the untried beam system. So. for once, Marconi got something approximating to his desire. He built all the beam stations in Britain and throughout the world: they were successful beyond all expectations and, to Marconi's intense satisfaction, cast gloom over the world's cable interests. It seemed that at last Marconi had achieved total success.

But no. His daemon intervened again in the form of the British and Dominion governments, who, as a belt-and-braces insurance in the event of war, wanted to retain the cables. Pressure was brought to bear to bring about a merger between the various cable interests and the Marconi Company. In this, Marconi's seemed to hold all the aces, because by 1927 the cable companies had already lost half of their traffic to the beam system. Incredibly, in view of this. a merger was agreed in which the Cable Group held 56.25% of the voting power and the Marconi Company 43.75%.

Thus in April 1929 Cable and Wireless Ltd came into being; the Marconi Company ceased to be directly involved in
message-carrying as' a source of revenue and thereafter was limited to the areas of research, invention, development and manufacture. The lifelong ambition of Guolielmo Marconi, which began on the cliff-top in Newfoundland, was over almost as soon as he had achieved it.

A lesser man would have retired from the scene but Marconi went on to pioneer microwave communications and, towards the end of his life, despite recurring heart attacks, was feverishly working on marine navigation by microwaves and investigations into what eventually became known as radar.

Marconi was from first to last a patriotic Italian subject. He was a member of the Senate and, admiring the way in which Mussolini had so successfully raised the standard of living in Italy in his early years of office, had become a member of the Fascist party in 1923, although never a politically active one. On the other hand, he had a deep affection for England, which had given him his opportunity and where much of his work was done.

Then, at last, the daemon relented. On July 20, 1937, yet another heart attack occurred, this time fatal. At least he had been spared the mental crucifixion which his divided loyalties would inevitably have brought when Italy and Britain went to war.

A strange man; almost, one would think, unknowable. Those who were his chosen assistants served him with fanatical loyalty, yet he was always " Mr Marconi". He could be ruthless; he could be extremely kind, but always aloof. In his later years he seemed to be in some fear of his life; at Marconi House, London, he would never share the lift with someone he did not know personally. He seldom was without an innocent-looking walking stick which concealed a rapier. This, however, might have some justification. Mentally deranged people not infrequently wrote to him complaining that "his" radio waves were the cause of their disturbance.

He sincerely believed that the true role of radio communication was to save lives; although he spoke little of it there can be no doubt that the steadily increasing part that the technology was playing in weapons of destruction brought periods of self-examination, as for instance on the occasion when he was elected Lord Rector of St. Andrew's University, he remarked to the Principal "Have I done the world good or have I added a menace?"

REFERENCES

[^0]
Colour TV tube developments

New types recently on the market

The Trinitron tube developed by Sony was the first colour television receiver tube to break away substantially from the established design technique of the shadowmask tube which came out in the 1950 s (see WW, December 1971, pp. 589-592). It was characterized by cathodes arranged in a horizontal line instead of in triangular or "delta" formation, a single electron gun instead of three separate guns, and an "aperture grille" and vertically striped colour phosphors instead of the circularhole shadow-mask and dot pattern of colour phosphors. Since then a variety of new tubes, all using horizontal "in-line" cathodes, vertically slotted masks and vertical phosphor strips, have been put on the market, and several have already appeared in televísion receivers.

One of the first in this category was the RCA "Precision in line"tubementioned in our 1972 review of sets ($W W$, October 1972, pp. 466-467). The aim of this development has been a colour tube display system, for small receivers, which can operate without any dynamic convergence correction circuitry. The absence of this circuitry, plus the absence of convergence coils on the tube neck and the fact that there is no need for lengthy adjustments by the set manufacturers or service technicians, has made this tube very attractive to set makers. It is a thinnecked type with a 90° deflection angle, available initially in a 20 -in size. A 110° angle would have reduced the depth of receivers but the convergence simplification could only be achieved with a 90° tube. However, shorter electron guns and the omission of convergence coils has enabled the neck to be shortened by 46 mm relative to that of a conventional 90° colour tube.

In the electron gun structure of the RCA tube all three grids are provided by a common component and this makes for a small beam-to-beam spacing of 5 mm . For static convergence correction four small ferrite magnets act on the outer two beams with respect to the middle one. The red beam is placed in the uncritical middle position, the idea being that red errors have the greatest visual effect in the picture. The

Example of the 110° Toshiba tube, showing the neck components fitted.
shadow mask does not have continuous vertical slots like the Trinitron but each slot has horizontal bridges across it to give mechanical stability to the mask. Overall this design has the advantages that the screen can be filled with more phosphor
material than is possible with the conventional dot structure; it avoids the loss of brightness at picture corners that has to be traded in the shadow-mask tube for correction of geometry distortion; and the effect of external magnetic fields, such as the Earth's, is greatly reduced.

Dynamic convergence corrections are provided by the deflection coils themselves, by virtue of the geometry of their windings and the way these are laid on the tube envelope relative to the electron beams. The deflection yoke. known as a "precision static toroid"; is formed by wires laid into grooves in plastic rings cemented to a toroidal core and this, in turn, is cemented permanently to theglass envelope by the tube manufacturers to provide an integrated tube and deflection assembly. Convergence adjustments are made by the manufacturers before cementing, the yoke being moved horizontally and vertically to cause the blue and green rasters to converge with the red raster.

This RCA tube is made under licence by a number of European television tube manufacturers.

Comparison of the neck components required for a 27-inch conventional shadow'-mask tube (right) and for an RCA "Precision in line" tube (left).

The latest European developed tube in the new category is a 26 -inch 110° type, one of a family designated 20 AX , which has been recently announced by the Philips group-in the UK by Mullard Ltd. This has horizontal in-line electron guns, a vertical-stripe screen and a shadowmask with staggered vertical slots. This slotted mask has about the same transparency to the electron beams as the conventional round-hole shadow mask. The electron gun is reduced in length and allows the tube neck to be about 2 cm shorter than that of the 110° conventional "delta" gun tubes so far released by Mullard. The 20AX family has an internal magnetic shield, a $6.3 \mathrm{~V}, 0.75 \mathrm{~A}$ heater and a "quick vision" cathode by which a picture appears on the receiver screen only 5 seconds after switching on the set (normally there is a 15 -second wait).

The tube design is described as "selfconverging", which means that part of the dynamic convergence is performed by the geometry of the deflection coils and part by an additional small winding on the deflection yoke through which suitable currents are paseed. There is no pre-alignment of the yoke and tube by the manufacturer, as with the RCA tube. the tube and yoke being supplied as separate components. Electronic circuitry required is reduced from the normal dynamic convergence correction printed-circuit board to a small p.c. board on which the tolerances of the convergence correction are adjusted by seven independent variable components. The maximum tolerance adjustment required in this system amounts to a 2 mm shift on the screen. Mullard have demonstrated a receiver using the system,

Structure of the slotted mask of the

 Toshiba colour tubes. Note the hexagonal cross-section of the horizontal bridges between slots.which, they claim, eliminates $70-100$ dynamic convergence components and nine related adjustments. It is expected that the 26 -inch tube will appear in "luxury" sets in Germany during 1975 while a smaller version will be available in 1976.

Just before the Mullard announcement the Japanese manufacturer Toshiba showed in London a whole range of tubes with inline guns and vertically structured masks and screens as described above: 14 -inch and 16 -inch tubes with 90° deflection angles; and 16 -inch, 18 -inch, 20 -inch and 22 -inch tubes with 110° defiection angles.

These tubes use a slotted mask (see diagram of structure) and the screen has vertical stripes of red, green and blue phosphors with black stripes bet ween them. The electron beam landing on the screen is wider than the phosphor stripe of each colour (in the horizontal direction) and, of course, is shorter than the stripe in the vertical direction. This provides what the makers call a "hybrid landing system" and is claimed to give superior

Dynamic convergence correction circuitry for a 110° Toshiba tube used in a PAL television receiver. Neck components are shown on the right.
uniformity of white on the screen and insensitivity of the beam to registration with the phosphor in the vertical direction. These characteristics allow greater freedom in the design of the deflection yoke than is possible with the conventional shadow-mask tube and allow a simplification in the dynamic convergence adjustment procedure. In the 90° tubes the number of controls required for dynamic convergence adjustment is only two. Convergence circuitry for a 110° tube used in a PAL receiver is shown in the diagram. The mask and screen structure of the Toshiba tube is claimed to give a 60% increase in brightness and 10% increase in contrast relative to a conventional shadow-mask tube with a tinted faceplate. It is also claimed to give higher resolution-about 50% more information than is possible with a conventional shadow-mask tube.

Incidentally, Sony introduced a 114° version of their Trinitron last year and this is used in an 18 -inch colour television set, KV1810UB, put on the British market early in 1974 by Sony (UK) Ltd. The extra wide angle design is claimed to improve picture quality by giving sharper electron beam focusing and more accurate beam landing on the phosphors.

Sixty Years Ago

Radio-navigation

The use of radio signals as an aid to navigation was brought to public prominence by the development of equipment such as GEE and OBOE during World War II. Aircraft and ships were equipped with navigational radio long before this, of course, but it may come as rather a surprise to read the following extract, taken from our issue of April. 1913. The Government referred to is presumably the French one.
"Wireless lighthouses are being established by the Government along the French coast, the first iwo being located on islands near the approach to the port of Brest. Two more are planned for the port of Havre. The lighthouses will operate by a system almost exactly like that of ordinary lighthouses, except that, instead of light waves, wireless waves will give the information to approaching ships. The great advantage of such lighthouses is that fog will not hinder their efficiency. When a ship approaches Brest. and is within thirty miles of the islands, wireless signals will be picked up. If the ship has an instrument to detect the direction from which the signals come it will be easy to apply the intormation; but even if it does not have such an instrument the receipt of any signals at ald will be of assistance, for the exact positions of the two lighthouses are known, and a comparison of the strength of the signals from each will help in estimating the ship's position. Each station, like an ordinary lighthouse, will send out flashes every few seconds, together with special signals to indicate which station is sending. The sending apparatus is automatic, and is constructed so that it will run for thirty hours without any attention."

Photographic development timer

Multiple unit giving elapsed-time indication and an audible warning

by R. G. Wicker

A multiple timer is described which has been built as an aid to photographic paper development. Six independent timers are used which may be started at random intervals as each sheet of exposed paper is placed in the developer. A "time elapsed" meter is included which indicates the state of the timer which will next reach its terminal condition. An audible signal is given each time a timer reaches the end of its period and an indicator light is included which shows when all six
timers are simultaneously in use.

When printing on photograpic paper from a negative the paper is first exposed to the light in an enlarger or contact printer for a period of the order of seconds. Several timers have been described, using both analogue and digital techniques ${ }^{1 / 2}$ which indicate or control this time to a degree of accuracy which is more than adequate for the required purpose. (Errors of up to 10% are difficult to detect in the final print.)

After exposure the paper is then placed in a developer where it must remain for approximately two minutes-the normal time for black and white prints with developer at $20^{\circ} \mathrm{C}$. Various clockwork clocks are available to time this period but these suffer from a number of drawbacks. The clock not only needs starting but has to be stopped and reset manually. The face, although luminous, is not always easy to see in the near darkness of the darkroom. When several prints are produced from one negative they become available at 15 or 20 sec intervals and the operator must then remember the time intervals at which prints are introduced into the dish to know when to remove them. It is obviously less timeconsuming to develop several prints concurrently than to develop them individually.
It was to overcome these limitations of clockwork timers that the unit was developed and constructed. The timer has proved useful and accurate and the maximum capacity of six simultaneous prints has been found to be just about right. When working alone it is unusual to use more than four timers at a time; with an assistant one does occasionally get up to six. To date the need for a greater number has not been felt.

Circuit operation

Both digital and analogue timers were considered. Whilst it is fully realised that greater accuracy can be achieved by digital

Fig. 1. Block diagram of the timer.
methods using, for example, the 50 Hz mains as a master clock, the complexity needed to realise a multiple timer using these techniques, the cost involved in the digital timers and a suitable elapsed time indicator led one to adopt an analogue technique, shown in block form in Fig. 1. Using a ramp generator as the basic timer circuit means that a simple meter indicator, which gives a continuous and ergonomically satisfactory elapsed time indicator, can be used, although integrated logic circuits are used in the control section of the unit.

An input switch is used to start each timer in turn, the input signal being steered to the appropriate timer. An "end of time" detector produces a reset pulse which resets each timer to zero in turn. The reset pulse is applied to a multivibrator via a pulse lengthener to produce an audible "bleep" and warn the operator should he not be paying attention to the meter at that particular time.
Timer. As mentioned, a ramp generator is used as the basic timer circuit, shown in more detail in Fig 2.
The basic requirements of the timer were considered to be
(a) to produce a time delay of $2 \min \pm$ 5 sec ,

Fig. 2. Ramp generator circuit diagram. C_{1} is $1 \mu F$ and $R, 11 M Q$ in the instrument described, which runs up in 2 min.
(b) to "run". or "standby" in accordance with the state of a logic input,
(c) to provide a linear output at suitably low impedance to drive a 1 mA meter, and (d) to be simple and economical to build. Economics in terms of home construction tend to be affected to some extent by availability of components through retail channels.

A Miller type circuit was chosen for the ramp generator and a "Darlington pair" followed by an emitter follower using three high gain transistors gave the desired result. The timing capacitor C_{1} should be of low leakage and should be a paper or polycarbonate type. Including the emitter follower in the feedback loop helps to linearize the circuit. Field effect transistors, with their high input impedance, are an attractive proposition where long time constants are required but their higher cost is not warranted in this case.

The circuit, as shown, yields a linear ramp with an amplitude of at least 90% of the supply voltage with a run up time of 2 min , having a $C_{1} \cdot R_{1}$ product of some 10 farad.ohms. One microfarad capacitors were used in the prototype but larger values could be used to advantage especially if longer periods are required, for example in some colour processes, where 4 min development is needed. R_{1} was adjusted for each timer to give the required period. The accuracy with which R_{1} is adjusted is a matter of choice but the prototype was adjusted to give an accuracy of ± 2 secs and this has been maintained over a period of several months. No temperature cycling has been attempted as the timer is used in the near constant temperature environment of a darkroom.

When a logic "I" is applied to the anode of $D_{1}, T r_{1}$ and $T r_{2}$ are switched hard on and $T r_{3}$ is consequently switched off, the output voltage at the cathode of D_{2} being 0 V .
When a logic " 0 " is applied to the input, C_{1} charges through R_{1}, the charge being slowed down and linearized by Miller effect. After a period of time the output voltage reaches approximately rail voltage, Tr_{1} and $T r_{2}$ being cut off and Tr_{3} hard on. The input diode D_{1} prevents C_{1} charging via the low output impedance of the controlling logic whilst D_{2} is used to combine the output of all the ramp generators to the metering circuit input. The meter will thus only "see" the ramp generator output with the highest voltage, i.e. the one with the least time to run.

Meter and detector. The metering circuit consists simply of a suitable meter and
multiplier adjusted to read 10 V f.s.d. (if a 12 V supply rail is used). The scale would ideally be calibrated in minutes and seconds but in practice a linear scale reading 0 to 1 or 0 to 100 is quite acceptable, as percentage of time rather than absolute time is a satisfactory indication. The sensitivity of the meter is only of secondary importance as long as the output of the ramp generators is not loaded to the point of reducing the voltage gain of the generators and thus affecting the ramp time. A 1 mA meter is suitable as of course would be any meter of greater sensitivity.

The detector consists of a Schmitt trigger circuit driving a reset pulse generator. As the slew rate at the input to the detector is only of the order of 80 mV per second a ramp amplifier has to be introduced to improve the accuracy of the detector. The bias of this amplifier is adjusted so that only the positive end of the ramp is amplified and adjustment of this bias is a convenient point at which the firing point of the trigger circuit may be set. The hysteresis of the Schmitt is kept small to enable the circuit to differentiate between two nearly equal voltages as may occur when two timers have been started within a few seconds of each other.

The slew rate at the input to the trigger may be further increased by including a suitable zener diode in the feed to the amplifier base but in practice this has not proved necessary.
The reset pulse generator is coupled to the trigger circuit via a small value capacitor and produces the necessary short, t.t.l.-compatible reset pulse for the control logic. Fig. 3 shows the circuit of this part of the system.

Control logic. To control the ramp generators in the required manner the control logic must produce six independent outputs, all at logic " 1 " $(+3.4 \mathrm{~V})$. Means must be provided for each logic output. in turn, to be switched to a logic " 0 " (0.4 V) on command from a unique input switch. The outputs must, similarly. revert to their standby condition (logic "1") in the correct order at the command of the reset pulses.

Fig. 3. Meter and trigger circuit. Meter can be 1 mA or less.

Three dual $J K$ flip-flops are used to provide the necessary outputs and twoinput NAND gates and inverters are used to steer the reset pulses, as in Fig. 4. One pair of two-input NAND gates are used to produce fully compatible input pulses from the input switch control. This circuit not only produces a pulse with correct levels, rise time and fall time, but also ensures that contact bounce does not cause spurious starting of several timers simultaneously.

All the flip-flops have their K inputs grounded and their J inputs connected to the Q output of the previous flip-flop except for the first flip-flop in the chain which has its J input connected to +5 V . Initially. with all the timers in "standby", all the flip-flops are in the reset state with the Q outputs at " O " and the \bar{Q} outputs to the timers at " 1 ".

The first operation of the switch will set the first flip-flop as only this one has a " 1 " on its J input. On release of the switch the " 1 " is transferred to the output of the flip-flop thus enabling timer No. 1 to start its run up and changing the J input of flip-flop No. 2 from " 0 " to " 1 ". Each subsequent operation of the input switch will set the next llip-flop allowing the associated timer to run up and presetting the following flip-flop. When the sixth and last flip-flop is set, its Q output, now at " 1 ", switches on the indicator transistor and lights up the "FULL" indicator lamp.

The first requirement of the control logic is thus satisfied. Resetting of the flip-flops in sequence presents a more complex problem when using a single reset pulse generator for all the timers. Whereas the output of a $J K$ flip-flop changes at the end of a clock pulse it is reset at the start of a pulse applied to the reset terminal. Thus a reset pulse of any duration long enough to ensure resetting under the most adverse conditions would be gated through to subsequent flip-flops and thus reset more than one flip-flop at a time. Gates can be delayed by including a suitable $C R$ network in either the input or output terminal but under these conditions they may become unstable at the transition point and produce what amounts to a train of pulses at the output; an undesirable state of affairs, which can be prevented by using an inverter as the delay element.

The reset pulse is therefore applied directly to the first flip-flop (which will always be the first to be reset) and via gates to all the following flip-flops. The gates are controlled by the state of the preceding flip-flop via inverters which act to delay this "enabling input" to the gates until after the termination of the reset pulse. In this way the gate which drives the reset input of flip-flop " n " will not be enabled by the changing output of flipflop " $n-1$ " until several microseconds after this change has occurred, by which time the reset pulse which reset flip.flop " $n-1$ " has finished.

Fig. 4. The control logic circuit.

Thus each flip-flop and its associated timer is reset in turn in the same order as they were set by the input switch.
Audible warning. At the time when the Schmitt trigger changes state, when a timer has reached its terminal point before being reset. the collector of Tr_{5} in Fig. 3 switches from near 0 V to approximately +6 V . This voltage is applied to the base of $T r_{9}$ in Fig. 5, which in turn switches on to charge C_{4}. The charge thus stored then discharges as base current for $T r_{10}$, one half of a multivibrator operating at a few kHz . Tr_{9} and C_{4} thus lengthen the short reset pulse so that the audible warning multivibrator may oscillate long enough for the signal to be heard. A short "bleep" is thus produced by the device each time a timer has reached its final time and is reset.

Construction and setting up

No particular precautions are necessary in construction other than those appertaining to the use of integrated circuits. The lead lengths around the ramp generators should be kept as short as possible as there is considerable power gain between the input and output terminals of this part of the unit. No parasitic oscillations were experienced using this circuit configuration but some of the early stages of development showed that this particular problem should be kept in mind. The prototype was constructed on two boards, one with the timers and the other all the other parts of the system. The power supply should provide 12 V at about 5 mA and 5 V at about 300 mA for the logic circuits. No supply stabilisation has been found necessary, the only precaution being to ensure that the supply line to the t.t.l. circuits does not exceed the manufacturers' recommendations. Fig. 6 shows a suitable circuit.

On the author's unit a small yellow plastic box, of a type well known to most photographers. was mounted in front of and below the meter face. The inside of this box was lined with chrome-plated

Fig. 5. Circuit to give audible warning of a timer reaching its preser condition.

Fig. 6. Power supply.
adhesive tape and two 6 V .40 mA bulbs were mounted within the box. These bulbs are connected in parallel across the 5 V supply line, thus illuminating the meter face and incidentally providing sufficient light to obviate the use of a separate darkroom lamp.

For setting up purposes R_{1}, the timing resistor, should be replaced or shunted by a resistor of about $220 \mathrm{k} \Omega$-a wait of 2 min each time one wishes to check the operation of the reset or logic soon becomes tedious. Next, each timer should be checked individually to see that the output voltage reaches at least IIV (reset generator not connected). With the meter multiplier adjusted so that the meter reads 10 V full scale the Schmitt threshold should
now be adjusted until the reset pulse is generated just as the meter reaches full scale. When, and only when, one is satisfied that all is in order does one begin to adjust R_{1} to give the correct time. With the threshold set as above it was found that $R_{\text {t }}$ was typically $11 \mathrm{M} \Omega\left(C_{1}=1 \mu \mathrm{~F}\right)$ and the value was made up of suitable resistors until the desired degree of accuracy was reached.

A reset button is useful during the setting up and testing period and if desired can be fitted permanently. Its main use in operation is to reset all the timers to "standby" when the unit is first switched on but it can be considered as an optional extra. Similarly the "FULL" indicator can be omitted as one rarely loses count of the
number of prints which have been passed through the enlarger on to development.

Possible modifications

Often some photographic processes require longer or shorter periods than the 2 min for which this unit was designed. Using larger values of C_{1}, time periods of several tens of minutes can certainly be achieved with no great difficulty. One facility which might be considered for certain applications is the ability to switch from one time to another as required. This can readily be achieved by switching in various values for $V R_{1}$, the threshold control, and simultaneously switching the meter multiplier so that the meter always reads full scale for full time. Should this technique be adopted a more sensitive meter should be used, as in the shortest time position a full scale reading may be required from a ramp voltage of only 1 or 5 V . A maximum to minimum time ratio of at least five-to-one is readily achievable and ten-to-one can be obtained if one can tolerate a certain degree of non-linearity in the elapsed time indicator. This non-linearity is mainly due to the knee voltage of the ramp output diode, D_{z} which, while insignificant in a 10 V ramp, ceases to be so when the ramp is reduced to 1 V . The use of gold bonded germanium diodes could well be considered in this position to improve linearity of the indicator should this be thought sufficiently important.

The unit may be extended beyond the six timers of the present system but care should be taken that the loading of the input switch gates is not exceeded. A gate or inverter can be included to increase the available fanout. Although the present unit does go beyond the recommended fanout for the input gate (just), no trouble has been experienced as a result of this.

A simple multiple timer such as the one described can find numerous applications in industry. The timing C or R could be switched to give a range of times.

A continuously variable control of C or R is hardly a practical proposition due to the number of ramp generators which need to be ganged. Should this facility be required the timing can be continuously varied by means of a potentiometer at the input to the Schmitt trigger circuit to alter its firing point. A ganged control must be included in the meter circuit so that f.s.d. always corresponds to the ramp terminal voltage. A combination of both techniques could be used with a switched C to give, for example, 1,4 or 16 min whilst the threshold control would give a calibrated range of 25% to 100% of the set time.

References

[^1]
Colour separation overlay

Generation of television picture "insets"

by Gwilym Dann

An everyday use of colour separation overlay is seen in news broadcasts where a framed area behind the newsreader is filled with picture material which can be changed with each different news item. A conductor may be seen surrounded by close-up shots of various musicians, or dancers can be given a background which may range from street scenes to pictures of faraway places either in the form of stills, or from film or video tape.

Fundamentally, all that is required to achieve effects of this nature is a highspeed switch which will change-over the signal from a camera looking at the foreground figure to one from a video source providing the new background material. Fig. 1 shows the basic requirements. As distinct from the cuts between video sources performed as a manual operation, this switch must change-over as the -scanning beam passes the image boundaries between figure and background or vice versa.

We must now consider how the switch may be given information so that it will change-over at these boundaries. Before the advent of colour television, overlay was attempted by arranging a brightness or contrast distinction between the foreground figure and its background. The sudden change in the camera signal as the scanning beam passed over the figure/background boundary was used to initiate a pulse which controlled the electronic switch, as indicated in Fig. 2.

From a practical point of view this system required that the figure should be overall light in tone against a background that was as evenly dark as possible. Only the simplest of effects could be achieved in this way and the results were unsatisfactory mainly because the lighting of the foreground figure had to be very flat in order to avoid shadows. Shadows, after all, might have the same tone as the background and this could result in the inserted background appearing in quite the wrong places. Worse still, an open mouth would be a shadow area and it was practically impossible to avoid the new background being seen therein.

The next step was to make use of

Fig. l. Basic requirements for an overlay system.
colour distinction between the foreground figure and the background, albeit with monochrome cameras. The figure was lit with yellow light and the background with blue. Two cameras were then set up so that they received an identical image by means of an optical beam splitter. By fitting one camera with a yellow filter and the other with a blue, it was possible to derive a much more precise switching signal and a much more successful overlay resulted. This ingenious system was, however, operationally clumsy and difficulties in setting it up made it an unattractive production adjunct.

The introduction of colour television naturally re-opened the possibility of making use of colour discrimination between the foreground figure and its background, especially as the colour camera had the built-in ability to provide accurately registered images of red, green and blue components of the scene being viewed. It was fortunate also that in the colour television system there exist signals which embrace parameters of both colour and brightness, namely the colour difference signals, $B-Y, R-Y$ and $G-Y$. The choice of one of these signals for use in an overlay systern is dictated by other than purely eiectronic considerations. The foreground figure will inevitably exhibit flesh colouring and we must choose a colour which is completely different for his or her background. A little thought will show that blue would be a suitable choice of colour which is remote from that of normal flesh. Additionally of course, we must forbid to the artiste any dress material or accessories which are
blue in colour. From this it follows that the chosen colour difference signal will be $B-Y$ and it is interesting to consider the values of this signal for the whole range of colours which may be seen by the foreground camera.

The $B-Y$ values of signal voltage for each colour of the standard colour bars and those for white, black and grey are shown in Table 1. If these values are plotted as shown in Fig. 3, it will be seen that a datum may be drawn for which the value of blue is on one side and the values for the other colours, including white, black and grey, are on the other. Applying the $B-Y$ signal to a suitable voltage discriminator will therefore result in a keying signal which can be used to control the electronic switch of an overlay system.

The basic requirements of an overlay system utilizing the principle of colour separation have now been described. It will be apparent that no great electronic complexity is involved. The necessary hardware is a comparatively small addition to the circuitry of a television studio. In a practical situation however, comprehensive switching facilities have to be provided to gain access to a number of different video sources together with means of controlling the operating level of the voltage discriminator.

It may perhaps be mentioned that considerable care has to be taken in installation to ensure very exact coincidence in timing the arrival of signals on each side of the electronic switch. Errors in this connection could result in displacement of the foreground figure image with respect to the "hole" which has been "punched" in the inserted background.

It is of course necessary for the blue backing behind the foreground figure to have certain requirements as regards hue, saturation and luminance. Stated simply the hue should approximate to the peak response of the system's blue channel. Paint manufacturers can be asked to provide a paint with specific I.E.C. co-ordinates but a certain amount of trial
and error is involved. The final hue and saturation may depend on the material to which the paint is applied and also on the need to introduce fire-resisting additives.

Studio lighting must provide sufficient luminance in the blue backing so that a satisfactory signal-to-noise ratio is provided in the blue channel. However, care must be taken to ensure that the lighting level on the backing is not excessive because reflected light tends to creep round the profile of the foreground figure. This effect is known as "rimming" and if severe, can be quite unpleasant in the final result. Furthermore this blue outline can make determination of the correct switching level somewhat difficult and because of the poor definition of outline an aberration known as "tearing" can occur. A certain amount of blue rimming is usually accepted as an inevitable feature of colour separation overlay. It may be reduced to a satisfactory degree by increasing the physical separation between the backing and the foreground figure, but it is unfortunate that studio-floor conditions do not always allow the necessary degree of separation to be achieved.

As described so far, the requirement has been one where the foreground figure occupies an appreciable portion of the television frame as in the case of news broadcasts. Where trick shots are involved such as a dancer seen floating over rooftops. she has to be small in the frame and this means that her blue backing has to be correspondingly large in area. In addition it will be necessary for an appreciable area of floor to be given blue treatment. Under these conditions, reflected blue light will tend to suffuse the figure of the dancer and it is extremely difficult to avoid a somewhat unnatural effect. Fortunately however, motion of the figure and perhaps the background tends to reduce the subjective awareness of this blemish.

Picture material intended for use as a background in colour separation overlay has fixed dimensions with respect to the

Fig. 2. Principle of contrast discrimination.

Fig. 3. B-Y values from Table I showing discriminating datum.
television frame. There is no simple or direct way in which it may be changed in size or offset so that it appears in only a portion of the final composite picture as seen by the viewer. In news broadcasts, for example, the required material is provided by slide transparencies and it is necessary for the reduction in stze and offset to be obtained optically, in the transparency scanner.

In other programmes the requirement may be for a full-size picture of a remote interviewee to be seen as if on a large-scale monitor beside the interviewer. To achicve this the incoming material is displayed on a "behind-the-scenes" monitor. An auxiliary camera is then trained on this monitor and the shot is adjusted so that the incoming picture fits the overlay blue area beside the inter-

Table 1. Values of R, G,' B and Y with corresponding values of $B-Y$.

	R	G	B	Y	$B-Y$
Yellow	1.0	1.0	0	0.89	-0.89
Cyan	0	1.0	1.0	0.7	0.3
Green	0	1.0	0	0.59	-0.59
Magenta	1.0	0	1.0	0.41	0.59
Red	1.0	0	0	0.3	-0.3
Blue	0	0	1.0	0.11	0.89
White	1.0	1.0	1.0	1.0	0
Black	0	0	0	0	0
Grey	0.5	0.5	0.5	0.5	0

Fig. 5. Studio arrangement for overlay of full-size picture into part of frame.
viewer. This is illustrated in Fig. 4. The signal from the auxiliary camera is now the one which is fed to the overlay equipment for insertion as a background. Since the overlay blue area is all that is visible to the interviewer the illusion that he is addressing the distant speaker is completed by affording him a suitably disposed monitor out of shot of the main or foreground camera. The set-up as shown in Fig. 5 and Fig. 6 schematically shows the signal paths to the overlay switch.

Earlier in this article, good reasons were given for the choice of blue as the colour of the backing in colour separation overlay. This is because blue does not appear in normal flesh tones. However, reference to Fig. 3 will show that an equally satisfactory switching datum can be drawn with respect to the colour yellow. While it can be shown that yellow in this connection has a measure of discrimination against caucasian flesh tones, it would not be a satisfactory colour for the backing if the foreground figure had blond hair. The availability of a $B-Y$ signal in the television system is another reason why the colour blue is almost universally adopted for use in colour separation overlay.

In some types of television production it is not always required to use overlay continually and it may not be desirable or artistically pleasing for other cameras to show viewers the rather vivid blue backing. This difficulty can be avoided by using a neutral backing which can be given the required blue colour by lighting methods. This may be by means of suitably filtered projectors from the front or alternatively by rear projection on to some translucent material. When overlay is not required, the backing may be illuminated by light of another colour. Rearward illumination of a translucent backing with blue light results in considerably less blue rimming of the foreground subject. Future developments in the process may make increasing use of this method when studio conditions allow.

Although colour separation overlay as a process has been available to the broadcaster for many years, its full capabilities have never been fully explored and it may be interesting to consider why this is so. Day-to-day use of the system in news broadcasts involves minor additions to existing production routines; anything beyond this can involve a great deal of preparation and planning. Moreover it is by no means certain that the results will be satisfactory and there may be a good deal of time-consuming rehearsal before success is achieved. In an industry where, as elsewhere, time is money, uncertainties are anathema and there is a preference for old and welltried methods where success is more assured.

One of the criteria involved is whether the effect is required to deceive or merely to produce a dramatic or spectacular result. In the former, success will only be achieved if the viewer is unaware of trickery and this means that a natural effect must be obtained. In the latter case however, naturalness is not essential and it will not matter if the viewer recognizes the effect as an intended gimmick.

An example of the unexplored possibilities of colour separation overlay is its use in providing a substitute for conventional scenery. An actor can be made to appear in a variety of settings obtained from still photographs or moving film which would pass for the real thing. The producer however, is unlikely to be

Fig. 6. Signal paths for overlaving fullsize picture in part of frame.
satisfied with the single viewpoint or size of shot which is forced on him by this arrangement. For example, he would be unable to cut to another camera with a different view of his actor because, unless the scenery is very distant, it too ought to change its appearance or perspective. There would be other difficulties from a production point of view but these are beyond the scope of this article.

Colour separation overlay can be successfully used to take the place of back-projection methods where a moving background must appear behind actors who are seen riding in a train or motorcar. Once again there is a difficulty in that we expect to see such a background out of focus compared with the foreground actors. This is achieved almost automatically with back projection of film due to the rearward spacing of the b-p screen. With overlay, the moving background would, unless special methods are employed, be as sharply in focus as the foreground actors and the effect would not be completely natural.

Colour separation overlay has been more successfully employed in the field of light entertainment. It can easily provide a flying-carpet illusion. an artiste appearing with his "other self" or the turning of a magazine page to disclose a new and moving scene.

It will now have been made clear that successful use of colour separation overlay depends on a large number of factors outside the field of electronics. It is a further example of the engineer's dilemma in that, having produced a clever device he not only looks for someone to use it, but to see it achieve its full potential.

Binding WW volumes

If you wish to have your 1973 (or earlier) volume of Wireless World bound by our publishing company, please send it to: Press Binders Ltd, 4-4a lliffe Yard, Crampton Street, Walworth, London SE17, with your name and address enclosed. Also, please confirm your order and send it with the remittance ($\{2.25$ each volume plus 22p VAT, making £247) to IPC Electrical-Electronic Press Ltd, Binding Department, Room 11. Dorset House, Stamford Street. London SE1 9LU. Please allow us up to ten weeks for delivery.

Instruments Electronics Automation

Exhibitors, exhibition details and new products

The 10th International IEA exhibition is to be held at Olympia, London from May 13 to 17 and this year has approximately 600 exhibitors represented by over 300 companies. Opening time is from $9.30 \mathrm{a} . \mathrm{m}$. to 6 p.m. and admission is free. The organizers of the show, Industrial Exhibitions Ltd, state that increased stand size, keen overseas interest and heavy bookings stimulate confidence that the UK's domestic troubles will not disrupt one of the electronic industry's major international events. A list of manufacturers and distributors at the exhibition is shown below. In addition to these there will be several publishers, banks and ancillary services to the electronics industry present.

AEG-Telefurken (UK) Lid
A.E.P.-International Ltd
A.O. Smith Meter Systems UK

APT Electronics Ltd
Advance Electronics Lid
AIL a division of Cutler-Hammer
Allotrope Lid
Alma Comporents Lid
Aluminium Industric Vaassen BV
AMF Venner
AMP of Great Britain Ltd
Ampex Great Britain Lid
Amphenol
Amplicon Electronics Ltd
Analog Devices Ltd
Analogic Ltd
Aralytical Development Co Ltd
Analytical Measurements Ltd
Anderman \& Ryder Lid
Anders Electronics Lid
Antiference Led
Appliance Components Ltd
Arca Controls Ltd
Arcolectric Switches Ltd
Arrow Hart Led
Aston Electronic
Developments Lid
Athena Semiconductors Marketing Company Led
Austen, Charles, Pumps Ltd
Automatic Oil Tools Ltd
Auxitrol Led
Aveley Electric Led
B \& K Laboratories Lid
B \& R Relays Ltd
Bailey Meters and Controls Ltd
Barden Corporation (UK) Lid
F.W.O. Bauch Led

Bayham Ltd
Belix Co Lid
Bell \& Howell Lid
Belling and Lee Ltd
Bifurcated \& Tubular Rivet Co. Lid
Blakeborough. J.. \& Sons Lid
Blundell Harling Lid
Bofors Electronics Lid
Boums (Trimpot) Ltd
Bowthorpe-Hellermann Ltd
Brady, W. H., \& Co. Ltd

Bristol Automation Led
Britec Elesta
Britimpex Led
British Brown-Boveri Ltd British Insulated Callender's Cables Led
British Oxygen Co. Led
British Standards Institution
Brookdeal Electronics Lid
Budenberg Gauge Co. Lid
Burgess Micro Switch Co. Ltd
Burnt Hill Electronics Lid
Burr-Brown International Ltd
C.G.S. Resistance Co. Ltd
C.P. Clare Electronics Lid

Calcomp Century Data
Cambion Electronic Products L̄td
Cameo Lid
Cannon Electric (GB) Ltd
Cherry Electrical Products (UK) Ltd
Chinaglia (UK) Ltd
Columbia Industrial Developments Ltd
Computing Tcchniques Ltd
Controls \& Automation Ltd
Comish Sign and Manf. Co. Lid
Counting Instruments Ltd
Coutant Electronics Ltd
Critchiey Bros Ltd
Crouzet Led
Croydon Precision Instrument Co . Culton Instruments Lid
D.G. Controls Ltd

D-Mac/C.E.C. Lid
Dana Electronics Ltd
Danbridge (UK) Ltd
Data General Lid
Data Laboratories Ltd
Datel (UK) Ltd
Datron Electronics Lid
Daturr Lid
Davall, S.. \& Sons Led
Davian (Electronics) Ltd
Davu Wire \& Cables Ltd
Dept. of Trade and Industry
Diamond H Controls Ltd
Digicon Electronics Ltd

DISA
Drayton Engraving \& Nameplate Co.
Druck Ltd
Dymar Electronics Ltd
E.D. Publications Ltd

East Grinstead Electronic Comporents
Eckardt Ltd
Eicometer Instruments Ltd Electrical \& Electronic Trades Directory
Electrical Remote Control Co. Ltd Electro Match Ltd
Electronic Machine Co. Ltd
Electronic Visuals Ltd
Electronics Weekly/Wireless World Elektromodule Co.
Elektrotechnik Export-Import
Endress \& Hauser Lid Environmental Equipments Lid Erie Electronics Lid Esterline Corporation Euro Electronic Instruments Lid Eurotherm Ltd \& Chessel Ltd Ever Ready Co. (GB) Ltd Exel Electronics Ltd

Farneil Instruments Ltd
Feedback Instruments Ltd
Fluke International Corp
Fothergill \& Harvey
G.E. Electronics (London) Ltd

Gaebridge Ltd
Gauges Bourdon (GB) Ltd
GEC-Elliot Automation Ltd
General Radio Company (UK) Ltd
GNT Automatic (UK) Ltd
Goldring Led
Gossen GmbH
Government of Ontario
Graham \& White Instruments Ltd
Gresham Lion Group Led
Grundig (Great Britain) Ltd
Guest International Ltd
H.S.B. Controls Led

Hakuto Co. Ltd
Hartmann \& Braun
Harwin Engineers SA
Haywood Electronic
Associates Lid
Headland Enginecring
Developments Ltd
Heidenhain (GB) Lid
Hengstler (GB) Lid
Heyco Manufacturing Co. Led
Highland Electronics Lid
Hollingsworth Terminals Ltd
Huber, J. J., Lid
Hunter Equipment Sales Ltd
Hymatic Engineering Co. Lid
IMO Precision Controls Ltd
ISA Controls Ltd
IVO Counters Ltd
Imhof-Bedco Lid
Impectron Lid
International Rectifier (GB) Ltd

Jermyn Group
Juniper Journals Ltd
KDG Instruments Ltd
Keithley Instruments Lid
Kelor Lid
Kerry Ultrasonics Ltd
Keyswitch Relays Ltd
Kirsten, G. \& A., Lid
Kister Instruments Lid
Klippon Electricals Ltd
Kollmorgen (Ireland) Ltd
Kovo Foreign Trade Corp

Labhire

Lambda Electronics
Landis \& Gyr Ltd
Lectromec Controls Ltd
Leeds \& Northrup Lid
Lemo (UK) Lid
Levell Electronics Lid
Licon Electronics Lid
Limrose Electronics Ltd
Linseis GmbH
Linton Laboratories Ltd
Littelfuse (GB) Lid
Littex
Lloyd, J. J., Instruments Lid
Lloyds Bank Lid
Lock. A. M.i: \& Co. Lid
Lucas Electrical Co. Ltd

Mangood Ltd

Markem (UK) Ltd
Markovits. I., Ltd
Mcasurement Technology Lid
Medelec Led
Mercury House Publications L.td Mesucora
Methrothermo-Salter

International Instruments will be showing the new Radiometer type BKF10 distortion analyzer. Designed as an integrated test system for audio equipment, its readouts include percentage distortion, frequency and signal-to-noise ratio. A self-contained sweep system allow's amplitude response to be plotted (top left).

Allied International are expected to have the Electrovert "Minipak" automatic wave-soldering machine on view (bottom left).

Type BRI00 d.c. resistance bridge from J. J. Lloyd Instruments will grade resistors into pre-set bands with 20 p.p.m: accuracy (above).

Metronex Foreign Trade Enterprise
Micro Consuftants Lid
Midland Bank Lid
Miles Hivolt Lid
Miles Roystone Ltd
Milton Ross Co. Ltd
Mine Safety Appliances Co. Lid
Mitsui Machinery Sales (UK) Ltd
Monsanto
Montford Instruments Lid
Morgan Grampian
(Publishers) Lid
Muirhead Lid

National Economic Development Office
National Westminster Bank Lid
Newport Instruments Lid
Nombrex (1969) Led
C.A. Norgren Lid

Normalair-Garrett Lid
Northover Process Services L.d
Novomic Nixon
Orbit Controls L.td
Ormandy \& Stollery
Oxy Fluid Control

P.S.B. Instruments Lid

P.S.I. Ltd

Pell, Oliver, Control Lid
Pepperi \& Fuchs Ltd
Perdix Components Lid
Permanoid Lid
Plasmoulds Ltd
Polkinghorne Industries Ltd
Portescap (UK) Ltd
Printed Motors Lid
Proper Equipment Prosser Scientific Instruments L.td

Pye of Cambridge Lid
Pye Switches Ltd
Pyle-National (UK) Ltd
Pyrotenax Lid
R.K.B. Precision Products Lid

Racal Electronics Lid
Radiatron Componeats Lid
Rayleigh Instruments Ltd
Redpoint Lid
REL Equipment \& Comporents Lid
Rendar Instruments Ltd
Research Instruments Lid
Reyrolle Parsons Lid
Rilton Electronics Ltd
Rivoir, Carl. \& Co.
Rochester Instrument Systems Lid
Rosemount Engineering Co. Lid
Ross, Courtncy \& Company Lid
Roxburgh Electronics Ltd
S.I.M.A.

Saft (UK) Ltd
Sangamo Electric Ltd
Sangamo Weston Ltd
Scama Lid
Scientific Optics Lid
Scopex Instruments Lid
Sealectro Ltd
S.E. Laboratories (EMI) Ltd

Semiconductor Specialists (UK) Lid
Semikron (UK) Ltd
Semra Benny (Electronies) Lid
Sensors \& Systems Lid
Shackman Instruments Lid
Siemens Ltd
Sifam Electrical Instrument Co. Lid Sintrom Electronics Lid
Smiths Industries L.td

Solidev Ltd
Souriau (UK) Led
South London Electrical Equipment Co. Ltd
Spear Engineering Co. Ltd
Special Products Distributors

Lid

Sperry Vickers
Sprague Electric (UK) Ltd
Stafford King (Engraving) Lid
Standardgraph Sales Co. Ltd
Stanleys (Stratford) Lid
Superior Electric Nederland BV
Surrey Steel Components Lid
Swarovski, D, \& Co.
Swissap/Swiss Assembly Products
Symonds, R. H., Lid
Symot Lid
Systems \& Electrical Supplies Ltd
Tape Recorder Spares Ltd TEC (UK)
T.E.M. Sales Lid

Teledyne Philbrick
Telford Development Corp
Texas Instruments Lid
Texcel Electronics Lid
Texscan Instruments Lud
Thermo Electric International Ltd
Thomson-CSF
Thom Electrical Ltd
Topper Cases L.td
Torin Corporation
Tracor Great Britain Lid
Transitron Electronic L.td
Transradio Lid
Trumeter Co. Ltu
Turner, Emest, Electrical Instruments Ltd

Uniform Tubes Inc.
Unimatic Engineers Ltd
V.F Instruments Lid Varta (GB) Lid
Vega-Grieshaber KG
Vero Electronics Lid

Watesta Electronics Lid
Watson's Anodising Ltd
Waycom Ltd
Wayne Kert Co. Ltd
Weir Electronics Ltd
Welier Electric Ltd
Wessex Electronics
West Hyde Developments Lid
Weyfringe Lid
Whitelcy Electrical Radio Co. Ltd
Willsher \& Quick Lid
Z \& 1 Aero Services Ltd
Żettler UK Division

Traffic information broadcasting in West Germany

by R. C. V. Macario, B.Sc., Ph.D., M.I.E.E.
University College of Swansea

Abstract

The use of v.h.f. car radios with tone decoders will provide varying degrees of automatic traffic information reception. The system illustrates the use of digital techniques within the accepted type of analogue modulation.

The Wireless World a few months ago surveyed some of the possibilities of broadcasting traffic information to the motorist and outlined the principal factors which lay behind various proposals. Since that time tests by the European Broadcasting Union have led to the recommendation of the ARI ${ }^{2}$ (auto-motive radio information) system conceived by Blaupunkt in W. Germany. This system has been undergoing steady development over the last few years so that tests of the system are at a very advanced stage and not confined to small areas or a single town, but indeed cover the whole of W. Germany.

The writer had the opportunity to try the system quite independently with a current v.h.f. car radio and a fully developed ARI adaptor-which will be described-fitted as a normal car radio installation. The unit was used across part of Europe and listening tests were favourable, as indeed the EBU's must have been.
The techniques ${ }^{3}$ behind the system are of special interest as the system makes use of digital techniques within an essentially analogue system. This move towards digital techniques in domestic systems will doubtless show a marked increase in the near future.

The system

The aim of the Blaupunkt v.h.f. radio system is to make use of the existing network of v.h.f. transmitters and appropriate car radios in the country wishing to introduce an ARI system. When an existing v.h.f. transmitter is adapted for the system, it is called a raffic information station. Because there is usually more than one programme in any regional area of a country, not every transmitter need be allocated, and in West Germany the allocation is about one in three. Short regional traffic information messages are then broadcast by these stations, as the need arises. The station is also identified by its transmission of the third harmonic of the 19 kHz v.h.f.-
f.m. stereo pilot tone, namely 57 kHz (see Fig. 1) which can also be amplitude modulated in the manner described below. The additional tone does not cause interference with stereo transmissions. This identifying signal enables the traffic information station decoder attached to a v.h.f. car radio to recognize such stations. We then have the following choices:

1. At home, no changes to the programmes are apparent, except that one knows one's local traffic information station, and can receive so-called strategic traffic information.
2. In the car, with a "decoder", one can recognize traffic information stations in all regions, but has still a free choice of listening. 3. The additional transmitter identifying signal enables automatic functions to be introduced for the motorist, some of which will be referred to.

A great deal of discussion on all the possibilities of this scheme is possible, but probably sufficient has been said so far to give at least the general idea on the system aims.

Transmitter modifications

The principal modifications to the existing v.h.f. transmitter which is to be marked as a traffic information station are sketched in Fig. 2 and are:

- The 57 kHz pilot tone.
- Additional 1.f. amplitude-modulation tones, obtained by division of the 19 kHz pilot tone.
- A traffic information desk microphone which switches on the l.f. tones when it is in circuit.

The tones, A, B, C, D, are called "regional tones". Although four are shown, there could be more or less. A transmitter in region A would use the A tone, marked as 23.75 kHz , a transmitter in region B would use the B tone, etc. The additional tone, marked DK $(125 \mathrm{~Hz})$ from the German Durchsagekennung which has been translated as "message only marking", is an additional identifying signal from the transmitter which enables the car radio decoder to do more than just listen. The DK tone modulation depth is kept to half that of the principal regional tone, which allows a 57 kHz modulation depth of up to 60% without the likelihood of over modulation. The DK tone cannot interfere with the programmes, as it only appears during a traffic information broadcast.

Vehicle decoder

This is an optional extra to the car radio, but is of course the extra which provides the service the system is designed for. The following levels of sophistication exist, in ascending order:

Fig. 1. Modulation spectrum of v.h.f.-f.m. stereo transmitter with traffic information pilot tone.

Fig. 2. Traffic informationstation transmitter showing additional circuits.

1. Station indication only. The decoder indicates which stations being received are traffic information stations by recognizing the 57 kHz identifying signal.
2. Regional station indication. The decoder will recognize only stations on a regional basis, by recognizing the 57 kHz signal and the regional modulation tone.
3. Regional indication and message only. In addition to recognizing stations the decoder controls the audio output of the existing radio so that only traffic messages áre heard.
4. Automatic set tuning, regional station recognition and message handling. In addition to all the recognizing; etc., automatic returning of the receiver for the purpose of the message is possible.

The first three levels are operated by the available demodulated f.m. signal (audio prior to de-multiplexing). The last system with automatic retuning of the recciver requires "access to the set", and is somewhat beyond the principle of an adaptation of an existing receiver, but does illustrate the sophistication which can now be offered to the driver of a vehicle.

Decoder electronics. The electronics used in the system is interesting in the fact that the decoder needs to recognize low frequency tones fairly rapidly. and reliably. We shall consider a specific decoder which is particularly illustrative. namely the station/ region/message type; system 3. A photograph of such a decoder is shown as Fig. 5. The general structure of the decoder circuit is shown in Fig. 3, and this demonstrates the action the unit provides.

For example, by means of a tape recording outlet, the existing audio in the receiver is diverted through the decoder and the audio switch (the unit marked in Fig. 3). Depressing switch "RD" of the push buttons keeps the switch on and the radio works normally. Depressing the switch "SK" (traffic information station), means that the receiver only operates when a traffic information station is received (because of the 57 kHz).

Depressing instead a regional button, "A" for example, means the switch only operates when the selected regional station is tuned in. In other words the receiver is muted except when the driver tunes into an appropriate station. This action requires the rapid response action just mentioned, because the audio needs to come "alive" as the set is tuned. The indicating lamp on the decoder also helps here, and also a.f.c. on the receiver is assumed. On the other hand the system acts as a tuning aid to the driver, especially in a congested v.h.f. spectrum.

The final sophistication in this system is when button DK is depressed. This holds off the audio, even in the presence of the 57 kHz and the regional tone. until the 125 Hz message tone appears. The car radio will then only apparently turn on during a traffic information message.

Fig. 4. Functionalorganization of the decoder circuits.

A more detailed diagram of the arrangement for this type of decoder at the present time is shown as Fig. 4. Apart from the logical connections, three main paths are evident, which clearly look for the three main indication signals from the traffic information transmitter, namely (i) the 57 kHz pilot tone, (ii) the regional modulation tone in the range $20-60 \mathrm{~Hz}$, and (iii) the message tone of 125 Hz .

The 57 kHz tone is conventionally filtered and envelope detected, and will light the indicator lamp with either the RD, or the SK button depressed. The modulation tones are also obtained from the envelope.

The regional tone signal, if selected with a normal active tuned circuit or with a narrow band phase-lock loop, would have a response time which would be too long to enable the tune-in feature described above to be used. For instance, the response time in the worst case could be of the order of 0.5 s . which is far too long. To overcome this problem a digital technique is used, as indicated in Fig. 4 which can be explained as follows. The regional modulation tone is pre-selected in an active bandpass filter covering the possible regional frequencies which are in the band 23.75 to 53.98 Hz in the existing West German scheme. The resulting sine wave is then sharply limited to form a square wave at the tone frequency. The positive going edge, say, is then used to start a square wave oscillator running at
some six to ten times faster than the input tone. The number of oscillations within half a regional tone period are counted. This count is at the same time compared to a preset count set by the regional button, A, B, \ldots, etc. If the two counts are equal at the end of one half period a "yes" is registered. by which means the frequencies can be discriminated. In other words the system acts as a frequency discriminator with a response time of the order of one waveperiod of the frequency being selected, in this case a few tens of milliseconds, which of course is very much shorter than the fractions of a second referred to earlier. Since the modu-

Fig. S. Station/region/message.ARI decoder connected to v.h.f. stereo receiver.
lation tones and the transmitter pilot tones are exactly synchronous it is possible, by using techniques similar to that just described, to signal a very large number of tones with equally rapid unambiguous recognition.

The selection of the message tone of 125 Hz uses a synchronous detecting phaselock loop. Th is gives a better performance with regard to signal-to-noise ratio at the expense of slower acquisition. For instance, the message tone only appears during a message, and not during a tuning operation; also it is at a lower level of modulation and is the most likely tone to be subject to intermodulation by the message speech.

The unit shown as "logic" carries out the operation of turning the "ARI" light on at the right time, and operating the audio switch according to the control button positions.

References

1. "Traffic Information Broadcasting", Wireless World, p. 238, May 1973.
2. Sandell, R. S. "The Broadcasting of Traffic Information to Road Vehicles", I.E.E.Elec.Div. Lecture, November 16, 1973.
3. Information made available by the management of Blaupunkt-Werke GmbH, Hildesheim. W. Germany, and the Institut für Rundfunktechnik, Hamburg.

World of Amateur Radio

V.h.f./u.h.f. notes and news

The remarkable tropospheric ducting conditions on January 19-21 brought "wideopen" band conditions for many amateurs ușing v.h.f. and u.h.f. bands and resulted in what was probably the first contact with this mode between England and Austria at a frequency above 1 GHz when G4BEL and OE2OML made contact on the 23 cm band over a distance of 640 miles. Other examples were the exchange of slow-scan television pictures between several British and West German amateurs on 144 MHz at distances up to about 550 miles; there were many 144 MHz contacts southwards to Spain and eastwards to Poland. An analysis published by Professor Walter Dieminger, DL6DS of the Max-PlanckInstitut für Aeronomie, of atmospheric conditions over Berlin shows a pronounced inversion at heights of about 3 km on the 19th, dropping to about 1 km on the 20 th and 21 st and then gradually rising again. British amateurs must envy the frequent tropo ducting conditions that exist in such areas as the eastern Mediterranean providing excellent paths, for example, between Cyprus and Israel.

On the $13-\mathrm{cm}$ band $(2304 \mathrm{MHz})$ two Czechoslovakian stations (OK1WFE and OKIKIR) have made contact over a distance of 243 km ; OK1WFE uses a 0.8 -watt transmitter, a receiver with Schottky diode mixer and a $1.8-\mathrm{m}$ parabolic dish aerial.

The GB3VHF beacon station at Wrotham, Kent has changed frequency to 144.15 MHz in accordance with the new band plan.

Sic transit gloria DX?

Activity on h.f. bands recently underlines the steady reduction in m.u.f. as we approach another sunspot minimum. 14 MHz has been closing early and on many days 21 MHz opens only for northsouth paths.

Recently Katashi Nose. KH6IJ of Hawaii has written nostalgically in $C Q$ of long-distance working on the h.f. bands in the thirties: "Time was when skill, know-
how. luck and patience were the hallmarks of a DXer. Today I'm afraid it is who you know and how much you can buy. Organized DXing (expeditions, special schedules etc) as we know it today is a postwar phenomenon only 25 yearsold. The 'golden age of DX' was 1934 to 1939-AC4YN from Lhasa, Tibet, ON4CSL 'the voice of the Belgian Congo-such things as 11 -year cycles had not yet been conceived. ZS2A was S 9 on 7MHz. There was no pressure, stations were there for the digging -none of the pettiness and snarling; characteristic of the phone bands today. If someone stole your DX from under you, you admired his skill, but then most of the serious DXing was done by c.w."

He continues: "I remember August 31, 1.939 very well. I worked Europeans never before possible from Hawaii. DX was never the same after that. After the warthe day of the manufactured contact and the Master of Ceremonies had arrived."

Most active h.f. amateurs, even though they may not agree that pleasant DXing died as early as 1939, will understand the sentiments of KH6IJ. Perhaps one of the reasons was the introduction after the war of "single-channel" working where everyone knew the frequency on which the distant station would be listening-a very effective system when there is no great competition to work a particular station but leading to anarchy when a rare call-sign appears.

Top band activity

Despite the general belief that low sunspot activity always means good conditions on 1.8 and 3.5 MHz , Stewart Perty, W1BB does not rate the 1973/74 Top Band season as good as the year before and reports very variable conditions. Nevertheless by January 31 he had worked 32 countries compared with 30 the year before. In his "Bulletin" he reports that Phil Ashton, G3XAP has now completed his "worked all continents" but contacting VK6HD after two years of effort with 9 watts input: now he intends trying to do it all again but this time with 5 watts. Many amateurs must have envied the aerial system at W2WLN/ 2 during ARRL 1.8 MHz tests: a $\frac{1}{4}$ wave insulated vertical with $300-\mathrm{ft}$ radials every 3 degrees (120 radials) and two Beverage aerials 1000 ft long towards Europe and terminated in a 120 -radial earth. Apparently this is a United States Coastguard centre used to test Loran-A transmitters. F. J. ("Dud") Charman, G6CJ has an interesting theory that at the critical sunset/sunrise periods, ionospheric tilts can produce conditions where signals arrive at significantly higher angles than at other times and that when this happens dipole type aerials can be more effective than long-wire aerials designed for lowangle reception. He believes this applies to most h.f. bands but that these periods of "focusing" with the ionosphere tilted from a lower (day) height to the higher (night) height are quite short.

Marconi centenary

Guglielmo Marconi is on record as saying: "You know I have always considered myself an 'amateur'" and once wrote in Wireless World "I consider the existence of a body of independent and often enthusiastic amateurs constitutes a valuable asset towards the further development of wireless telegraphy". To mark the centenary of his birth a special amateur station, GB2MT, operated from April 25 to 28 from the house at 71 Hereford Road, Bayswater, London, where Marconi lived from 1896 to 1897; it used 3.5 ; 14 and 21 MHz s.s.b. Italian amateurs have been operating a centenary station, 114 FGM , from near Bologna, Italy where Marconi was born on April 25, 1874.

Amateur growth continues

Amateur radio licences in the UK at the end of 1973 totalled 23,779 . representing an increase of 1,692 during the year. Since most of the mobile licences are held by amateurs also holding a fixed station licence the total number of British amateurs was about 19.500. The Class B licences (v.h.f./ u.h.f. telephony only) continue to increase more rapidly than the long-established Class A licences, although the rate of increase was a litule less in 1973 than in 1972.

| | end- | end- | end- |
| :--- | ---: | ---: | ---: | ---: |
| | 1971 | 1972 | 1973 |
| Class A | 14,065 | 14,462 | 14.930 |
| Class B | 3.012 | 3,718 | 4,328 |
| Class A/mobile | 2,666 | 2,854 | 3.081 |
| Class B/mobile | 545 | 826 | 1,176 |
| Amateur television | 214 | 227 | 254 |

It would be interesting to know the age distribution of people taking out a licence for the first time: there is a general belief that the hobby is attracting fewer youngsters. One indication is that although RSGB membership has remained roughly the same during the 1970 s (about 16.500), associate membership (mostly youngsters) has dropped from about 1,500 to just over 1,000 .

In brief

The annual convention of the Northern Radio Societies' Association is being held this year on Sunday. May 12 at the Belle Vue Pleasure Centre, Manchester Other mobile rallies during May include: May 5 Spalding Tulip-time rally at Surfleet; May 12 South Leicestershire at the Westfield Activity Centre. Hinckley; May 19 Northern mobile rally at Victoria Park Hall, Keighley; May 26 Hull mobile rally at Bishops Burton ...The annual reunion of RAOTA (Radio Amateur Old Timers' Association) is on May 17 at the Bonnington Hotel, Southampton Row, London WC1 . . GB2ITU will operate May 9 to 19 from Tonbridge School . . . The third convention of the British Amateur Radio Teleprinter Group is on Saturday, May 18 at the Village Hall, Meopham, Kent .

PAT HAWKER, G3VA

Sensing, processing and indicating

by J. Carruthers, J. H. Evans, J. Kinsler and P. Williams
Paisley College of Technology

As well as introducing series 13 of Circards this article touches on the concept of data domains

In this topic the viewpoint changes. Previously in Circards, circuits have been described as separate entities, with the articles laying a foundation, and the cards showing the practical alternatives. The dilemma is that the title used here, though commonly applied to the topic, can be misleading. This is because so many "alarm circuits" have several identifiable subsections each of which can be readily classified under headings such as those of previous series e.g. Schmitt trigger and astable circuits. Even heading this article "Alarm systems" might confuse since it could convey the idea of a conglomeration of alarms.
A typical alarm arrangment is shown in block diagram form in Fig. I. An alarm signal is required from some output transducer when the signal from an input transducer indicates a particular fault condition. The intervening blocks are required to process the signal representing the fault condition, to detect a particular voltage/current level which is an analogue of the input parameter, and to deliver power to the output transducer. Before considering each of these sub-sections individually, there is a general principle which can be very helpful in considering such systems-the concept of data domains.

Data domains

Information on physical systems is obtainable in the form of physical quantities such as force, distance, energy. The required information may often have to be obtained by monitoring some more complex property involving a function of the more common parameters. In few cases is the information in such a form that it can be conveyed and displayed directly. It has to be transmitted through some medium or series of media first. To the practising engineer the medium is not the message but rather the barrier that hinders the appearance of that message.
In passing through these media the information takes on new forms or dimensions. For each new set of dimensions we may postulate a domain in which the data exists. Within that domain there may take place further conversions without going outside the domain. Thus the first main division is between inter-domain and intradomain conversions. The division is arbi-
trary since the selection of domain interfaces is arbitary. One possible division is discussed below but readers may have their own ideas on this.*

For the purpose of this article, the domains are determined by the following considerations: is the data (a) continuous or discontinuous and (b) instantaneous or not. These conditions applied to electrical phenomena provide us with four domains. In addition there is the much larger physical domain (P) containing all non-electrical data. For other disciplines it is this domain that would be sub-divided into more convenient packages, as for example the heat/ light/sound divisions of physics. The electrical domains are thus

	Instan- taneous	Non- instan- taneous
Continuous Discontinuous	D_{p}	D_{s}

An A or amplitude function e.g. voltage/ current/resistance. is an electrical signal precisely and continuously related to some other function which may or may not be within the A domain itself. It has an instantaneous value which is a measure of some property of the unknown. An example is the electrical resistance thermometer where the resistance (A domain) is a continuously variable function of the instantaneous temperature (P domain) i.e. a $P-A$ domain conversion occurs.

At function is also continuously variable, but to represent the data a finite time must elapse i.e. it is not instantaneous. This property should not be confused with the finite delays imposed by the physical limitations of systems, which prevent the instantaneous change in an A function. A t function will have corresponding delays in responding to changes in the data, but even with a fixed input requires a finite time to complete the conversion. An example is an oscillator
whose frequency is proportional to a voltage. To determine that frequency at least one period must elapse (often many) and the data conversion is non-instantaneous. Such a voltage-controlied oscillator is performing an A - t conversion, the amplitude of the output waveform being irrelevant as all the data resides in the time-function.

Conversions may take place through more than one domain, and the shortest route in a system is not necessarily the best. If we wish, for example, to convert from temperature to frequency (a P - t conversion) we can do so by constructing an oscillator whose frequency is temperature dependent \dagger. or we can use a thermocouple to generate a direct voltage that, amplified, controls a v.c.o. The latter can be considered as a $P-A-A-t$ conversion with the voltage amplifier being an $A-A$ converter i.e. input and output both existing in the amplitude or A domain. Better linearity of frequency against temperature could be achieved in this second approach.

Where the data is required in digital i.e. discontinuous form, a similar distinction can be made as to whether the data appears simultaneously at input and output (within the delay constraints mentioned above) or whether a finite time is required for the data conversion. The two categories resulting are the parallel and series modes respectively (D_{p} and D_{s}). They may also be thought of as a spatial and temporal ordering of the data-a pulse train representing the data in serial form conveys that information correctly regardless of the frequency if the order pattern is correct. In a digital voltmeter the data might be converted into serial form following an initial voltage-to-

[^2]

Fig. 1. Typical alarm circuit with input and output transducers.
frequency/time conversion, while it would be stored and displayed in parallel form. The data domain conversion pattern would then be $A-1-D_{5}-D_{p}$.

Within each domain, there may be a great variety of possible forms for the data, and multiple conversions can and do take place. Even a "simple" amplifier may have individual stages best viewed as $V-I$ and $I-V$ converters, while a voltage amplifier can be regarded as a $V-V$ converter.

Transducers

These are the interfaces between the physical (P) and electrical domains (A, I, D_{p}, D_{s}). The range and variety is too large to cover in such an article as this, but some obvious examples are worth discussing. If an electrical conductor is subject to temperature variations its conductivity will vary. For metallic conductors the temperature coefficient of resistance is normally positive and the characteristic is sufficiently welldefined to allow precision thermometers to be based on it (platinum resistance therimometers). For semiconductors the coefficient may be negative or positive and of much greater magnitude though generally less well defined. This makes devices such as thermistors, which depend on this property. particularly useful in alarm circuits as a relatively sharp transition takes place in the resistance value and switching of a load is simplified.

If such a resistance which depends on a physical parameter is incorporated in a bridge circuit (Fig. 2) then by suitable selection of the other resistors the critical resistance value of the transducers may be made to correspond to the bridge balance point. Any high gain differential input amplifier may be used to detect this change of polarity about the balance point, providing a large output swing. Addition of positive feedback provides hysteresis, minimizing the output switching that would occur from noise or other stray input signals, when close-tobalance comparators or general-purpose

Fig. 2. Bridge circuit for including a sensing resistor.
operational amplifiers may be satisfactory in such applications.
Other physical parameters may affect the resistance of particular conductors and semiconductors. For example a polycrystalline film of cadmium sulphide in darkness has a very high resistance ($>1 \mathrm{M} \Omega$), while exposure to sunlight may drop that resistance to a few hundred ohms. Where the changes are as extreme as this, the variable resistance could simply be placed in series with a supply voltage and the load to provide a direct if somewhat imprecise alarm.

Other semiconductors when exposed to particular gaseous impurities show similar large variations in resistance and are now used in gas and smoke detectors, though they require a separate power source to raise their operating temperature. Even the basic resistance thermometer mentioned above can be adapted to detect other physical parameters; for example the flow of air or other fluid across a heated filament removes the heat more rapidly causing the resistance to fall. Thus detection of fluid velocity is a possibility.

Other transducers give a voltage or current that is a function of a physical parameter; the c.m.f. of a thermocouple and the current flow in a reverse-biased photodiode are examples. Yet others may involve the variation of electrical parameters such as capacitance or inductance, coupling between coils. etc. In such cases a common alternative to the bridge technique, still viable with the substitution of a.c. drive to the bridge, is to make the frequency of an oscillator depend on the variation of the reactance used, and follow the oscillator by some form of frequency-sensitive switch.

Following the input transducer the signal may need to be amplified. filtered or modified (domain conversion of some form) in some signal-processing stage prior to being fed to a level-sensing stage. In some cases the two functions can be combined, as operational amplifiers having very high gain can suffice. If the output of the levelsensing device is insufficient in magnitude to drive the required load then a further power stage may have to be substituted (Fig. 1).
Additionally it may be required to cause this output signal to be an audible tone or an interrupted voltage for flashing a lamp. Either case could require an astable oscillator or similar form of generator (Fig. 3). A monostable circuit may be interposed to delay the onset of the alarm output for some period after the appearance of the fault signal and logic gating would be added in more complex systems to generate alarm outputs that depend on a particular combination of input parameters.

Thus most alarm systems can be broken down into simpler blocks and the block diagram of a burglar alarm could be iden-

Fig. 3. Arrangement for operating a lamp and/or loudspeaker.
tical with that for a circuit intended to sense icy conditions on a road. By appreciating and making use of this principle, it is often possible to make very economical designs of alarm circuits by adapting the best individual blocks from previously published alarm circuits. The major design problem is then that of making the blocks compatible in respect of supply voltage load requirements and the like.

Titles of cards in Series 13 are

Flame, smoke and gas detectors
Bridge circuits
Time delay and generator circuits
Level sensing and load driving
Application of 555 timer
Frequency sensing alarm
Digital alarm annunciators
Filament lamps and relays
Signal domain conversion
Pressure, temperature and moisture-sensitive alarms
Security, water level and automobile alarms Electromechanical alarms

How to get Circards

Order a subscription by sending $£ 9$ (U.K. price; $£ 10.50$ elsewhere) for a series of ten sets to:

Circards
I.P.C. Electrical-Electronic Press Ltd

General Sales Dept.
Room 11
Dorset House
Stamford Street
London SE1 9LU
Specify which set your order should start with If not the current one. One set costs $£ 1$ U.K. and $£ 1.15$ elsewhere, postage included.

Cheques should be made payable to
I.P.C. Business Press Lid.

Topics covered in Circards are
1 active filters
2 switching circuits (comparators \& Schmitts)
3 waveform generators
4 a.c. measurement
5 audio circuits (equalizers, tone control, filters)
6 constant-current circuits
7 power amplifiers (classes A, B, C, D) 8 astable circuits
9 optoelectronics: devices and uses
10 micropower circuits
11 basic logic gates
12 wideband amplifiers
13 alarm circuits
Subsequent issues will cover digital counters and pulse modulators. Introductory articles in Wireless World indicate availability of Circards, which are normally ready for despatch on the 14 th of the month, and the Circard concept was outlined in the October 1972 issue. pages 469/70.

An f.e.t. curve tracer

Concluding part of a sixth-form project

by L. G. Cuthbert
Queen Mary College, University of London

It is usually easier to build and test an electronic system as a series of blocks. Each can then be built, connected to the previous one and tested before the following one is added. Furthermore, the use of such blocks does illustrate the concept of the curve tracer as an electronic system.

Circuit description

Ramp generator. The basic ramp is obtained by forming a relaxation oscillator (Fig. 7), with $R_{3,}, C_{1}$ and unijunction Tr_{1}. As explained in the system considerations, it does not matter that the ramp is an exponential rather than a linear function of time, but excessive non-linearity does mean that some parts of the trace would be much brighter than others. The potential divider R_{1}, R_{2} is therefore used to reduce the voltage on base 2 of the unijunction, thus reducing the firing voltage.

The $I C_{1}$ is used to separate those parts of the ramp above and below zero thus producing the triggering and clippedramp waveforms at the two outputs. A small amount of gain is used on this amplifier to keep the voltage swing to about 12 V and the amount of clipping is controlled by preset resistor R_{13} which Shifts the signal, before separation, by a variable amount. Since the amplifier is used in its inverting mode a second inverting stage $I C_{2}$ is used to reinvert and produce a positive going ramp. Similarly, the common-emitter stage (R_{7} and $T r_{2}$) is used to reinvert the triggering part of the waveform. Since a fairly low-value base resistor $\left(R_{7}\right)$ is used, the transistor is easily saturated and a fairly square pulse is produced.

Switch S, enables the drain voltage to be held at a constant value of about $11-12 \mathrm{~V}$ so that the current amplifier can be calibrated. This is explained later.

Current sense amplifier. Drain current passing through the 100Ω resistor R_{14} (Fig. 8) develops a small voltage across it, proportional to the current. This is amplified by a difference amplifier to give the y output (drain current) for the oscilloscope. Preset resistor R_{19} enables the output voltage to be conveniently related

Fig. 7. Circuit diagram of the ramp generator.

Fig. 8. Current sense amplifier.

Fig. 9. X-voltage amplifier.
to the drain current. A value of $200 \mathrm{mV} / \mathrm{mA}$ is quite suitable.

To calibrate this output, the switch on the ramp generator is set to the "cal" position and its output connected to the input side of the series resistor $\left(R_{1}\right)$. The other side (drain terminal) is connected through a milliammeter to R_{20} which is varied until a current of about 5 mA is obtained. Adjustment of R_{19} until the output voltage is 1 V will give a calibration of $200 \mathrm{mV} / \mathrm{mA}$.

X-output amplifier. The x-axis of the display is the drain voltage so this circuit (Fig. 9) is simply a non-inverting buffer amplifier (to take negligible current) connected to the drain terminal. Preset resistor R_{21} is used to enable a suitable calibration of the x scale to be obtained.

Unfortunately, while a positive voltage applied to the x input of many oscilloscopes produces a trace movement from left to right, as expected, on others the reverse happens. A unity gain inverter is therefore provided for such cases.

Staircase generator. This is a standard transistor pump circuit driven by a differentiating and squaring circuit. Using a differentiating input has the advantage that the staircase "block" is triggered by a negative edge rather than by a pulse and therefore it can be used in applications where only an edge is availablefor instance the resetting edge of a normal sawtooth.

A transistor pump rather than a simple diode circuit is used as this ensures that each step is of equal magnitude. As capacitor C_{4} is loaded only by the unijunction and a high-impedance buffer amplifier, negligible current is drawn from this capacitor and therefore the steps do not droop.

Variable resistor R_{21} is used to alter the voltage on base 2 of $T r_{5}$ so that the voltage at which the unijunction fires can be varied, thus changing the number of steps before the staircase is reset.

Gate drive circuit. The output of the staircase generator is a series of steps starting at 0 V and rising in equal positive

Fig. II. Gate drive circuit.

increments. However, the f.e.t. requires that the gate voltage should be negative and therefore an inverting amplifier with variable gain is used to invert the staircase. Since the unijunction transistor (in the staircase "block") does not reset the capacitor quite to zero, a variable offset control $\left(R_{28}\right)$ is provided so that the whole staircase can be shifted, thus enabling a zero step to be achieved. The gate voltage must never be positive but there is enough range on this "zero step" control to shift the waveform across zero producing a positive voltage at the output of the inverter. Clamping diodes are therefore used in the feedback loop to clip the output to zero.

Operation

The curve tracer has been designed to work with any oscilloscope with anexternal x input but on some of the cheaper dualtrace ones where the chopped-beam technique is used the display will have a mottled appearance. This is because the electron beam is rapidly switched between the two traces and, as only one is being used for this display, there will be blank parts when the beam is being used for the other trace. This can be avoided by carefully

Fig. IO. Staircase generator.
setting the gain of both y inputs to be identical, connecting both inputs together and shifting both traces until they are superimposed on top of each other.

The separate triggering pulse should eliminate flyback problems. However, on most oscilloscopes there is a slight phase difference between x and y inputs so that, even though the flyback should follow the main trace, a small Lissajous figure is in fact created and the flyback will depart slightly from the main trace.

Several variable resistors are provided and these fall into two groups: those which are used only to calibrate the curve tracer; those which are used to set up the required gate conditions for the f.e.t. being tested.

Calibration

The variable controls in this category are separation (ramp generator)
set current and y gain
(current sense amplifier)
x gain (drain voltage amplifier)
and a suitable calibration procedure is as follows:
(a) Calibrate the oscilloscope: use the y input in the d.c. mode. Remove the f.e.t.
(b) Use the oscilloscope on its internal timebase. Connect the y input to the gate terminal and adjust the separation control until a staircase just appears.
(c) Connect the x output to the external x input of the oscilloscope and the drain current output of the curve tracer to the y input and switch the oscilloscope to the external timebase. Set the y range to $200 \mathrm{mV} / \mathrm{div}$ and put switch S_{1} of the ramp generator block to the "cal" position. Connect a milliammeter between the drain terminal and the set current terminal of the terminal current amplifier. Adjust the set current control until the milliammeter reads 5 mA and then vary the y gain resistor of the current sense amplifier until the oscilloscope trace is deflected 5 divisions. The y output is now calibrated as $200 \mathrm{mV} / \mathrm{mA}$ drain current.
(d) Put S_{1} in the "run" position. Use the y trace of the oscilloscope to measure the magnitude of the drain voltage at the drain terminal. Adjust the x gain control (R_{21} on the x amplifier block) until a suitable deffection is obtained on the x axis of the oscilloscope display.

Gate voltage conditions

A suggested setting-up procedure is:

(a) Connect the gate terminal to the y input of an oscilloscope.
(b) Adjust the step size resistor until the required step size is obtained.
(c) Adjust the number of steps control to get the required number of steps.
(d) Use the zero step potentiometer to shift the whole staircase until the top (least negative) step just reaches zero. It is important not to raise it any more as the clamp holds the top step at zero but the rest would still move up, thus reducing the step size between the top two steps.

Once adjusted, characteristics of different f.e.ts can be obtained simply by plugging the device into the transistor socket.

Appendix

If any teachers have any difficulty with building the curve tracer or require further information, please do not hesitate to contact me: L. G. Cuthbert, Schools Liaison Tutor, Department of Electrical and Electronic Engineering, Queen Mary College, Mile End Road, London E1 4NS. Telephone 01-980, 4811, ext. 719 or 561 (departmental office).

Suggested semiconductor devices

Many different semiconductor components are suitable for this project, but the following types are those used in the prototype at Queen Mary College. Type numbers are those of Texas Instruments Ltd, but this does not imply that this manufacturer is particularly recommended. Most manufacturers make equivalent or similar components.
Bipolar transistor
Unijunction transistor F.e.t.

Operational amplifier
BC182L
TIS 43
2N3819
SN72558P
(2 in a package)
SN7274IP
(I in a package)
IS44

Diode
Printed circuit boards and components are available from: E. Tomlinson. 33 Manchuria Road, London SW11.

Literature Received

ACTIVE DEVICES

A shor-form catalogue giving data on the range of TAG silicon controlled rectifiers distributed by Jermyn is now available. This range is low cost and available ex-stock from Jermyn Industries. Vestry Estate. Sevenoaks. Kent Ww40I
A publication called C.M.O.S. Integrated Circuit Data Book has information on the Solid State Scientific Inc. range of digital i.cs which incorporates the SCL4000A, SCL4400A and SCL4500A series. Transworld Scientific Lid, Short Street. High Wycombe. Bucks HPII 2QHWW402
The 1974 EEV/M.OV Abridged Data Book describing the European range of professional electron tubes and devices is available from the GEC Electronic Tube Company Led, Chelmsford, Essex .. WW403
A Motorola publication called Phase Lock Loop Data Library gives information on phase detection, oscillators, mixers, counters and related devices as well as application notes. Available from GDS Sales Lid. Michaelmas House, Salt Hill, Bath Road, Slough. Bucks

WW404
A condensed data catalogue by Silec SemiConductors gives information on their range of components, most of which are readily available through S.S.C. distributors. Transworld Scientific Lid, Short Street. High Wycombe, Bucks HP11 2QH

WW405
A data book entitled "Schottky \& Emitter-Coupled Logic" is available from Signetics International Corporation, Yeoman House, 63 Croydon Road, Penge, London SE20
. Price $£ 1$
Motorola Inc have just published the first 1974 edition of their technical journal "Semiconductors". The journal, available only to senior engineers, is published in four languages for distribution throughou: Europe. Motorola Semiconductors Lid, York House. Empire Way. Wembley. Middlesex , ..WW408
Available from Signetics is a data hook entitled "Memory and Interface Handbook", which gives information on m.o.s., t.t.l. and e.c.l. Signetics International Corporation, Yeoman Housc, 63 Croydon Road, Penge, London SE20 Price £1

PASSIVE DEVICES

A revised price list of Erie products is now available. The new prices are applicable to all shipments made on and after February 4, 1974. Erie Electronics Ltd. South Denes, Great Yarmouth, Norfolk WW409
A range of film legends and film symbols are now available for use with the range of illuminated push-button switches and signal lights manufactured by Highland Electronics Lid, 33-41 Dallington Street, London ECIV OBD WW4II
Radio Resistor have published a new catalogue giving full specifications, diagrams, phorographs and prices of over 7,000 stock items a vailable by return of post. Both active and passive components are listed as well as the full range of Sasse switches (sole UK distributor). Radio Resistor Company Lid. 5 Platina Street. London EC2WW412

APPLICATION NOTES

Two application notes on the use of a new Norbit 2 solid-state control module GLD60 are availabie. The first is entitled "Grounded-load

Driver Module" Ref. TPI397; the second is "Selfchecking Solid-state Control System" Ref. TPI398. Requests for copies on company-headed paper to Computer Electronics Division. Mullard Lid. Mullard House. Torrington Place. London WCIE 7HD ... WW4 I5
Mullard have recently published a 22 -page application note on "RF Power Modules" providing information on the BGY22, BGY23 and BGY24 u.h.f. amplifier modules for mobile communications. Mullard Lid, Mullard House. Torrington Place, London WCIE 7HD

WW416
An application note from Sivers Lab describes measurements ideal for the Y.I.G.-tuned crystal video analyzer $1-18 \mathrm{GHz}$. The booklet gives exampies of measurements on oscillators. amplifiers. mixers, passive components antennae and noise. Sivers Lab. Box 42018 S-126 12 Stockholm 42. Sueden

WW4 17
Two new application notes are now available from Siliconix Incorporated. The first, entitled "An Introduction to $\mathrm{FETs}{ }^{\text {", }}$, provides brief but concise information on the nature of f.c.ts. Terminology, characteristics, test parameters and applications are all dealt with in the 20 -page brochure. The second paper. called "LI44 Programmable MicroPower Triple Op Amp", deals with features and applications of the device. Siliconix Incorporated. 2201 Laurelwood Road, Santa Clara. California 95054, USA WW4 19

EQUIPMENT

We have received a brochure describing the Farnel! FGl Function Generator. It provides sine, square, triangular and ramp waveforms, sweep and burst facilities and offers programmable frequency control. Farnell Instruments Lid. Sandbeck Way. Wetherby. Yorks LS22 4DH

WW 420
A new catalogue giving detailed information on the Maxon range of low inertia d.c. micromotors is available from Trident Engineering Lid, Shute End, Wokingham, Berks RG11 1BH WW422
A four-page brochure is available from Oxford Instruments describing their Microlog-Environmental Data Acquisition System. This data logging system, claimed to be the smallest in the world, weighs about 0.5 kg and incorporates its own power suppiy and input amplifiers. Oxford Instruments. Osney Mead, Oxford OX2 ODX

WW424
The latest Linson celloscope manufactured by A. B, Lars Ljungberg \& Co of Sweden, is now available in the UK through D. A. Pitman Ltd. A brochure describes the model 421 celloscope which is a solid-state particle counter for haematological parametcrs. D. A. Pitman Led, Jessamy Road, Weybridge, Surrey
The first of a serics of system reports on the use of mobile radio for communication and data transmission is now available from Storno Ltd. Each report will combine a straightforward description together with a section of technical details. Stomo Lid. Frimley Road. Camberley, Surrey ... WW428
We have reccived the 1974 "Tektronix Products" catalogue and revised UK price list. Tektronix UK Lud, Beaverton House, P.O. Box 69, Harpenden, Herts WW429

GENERAL INFORMATION

Farnell have issued their latest shor-form catalogue describing instruments, power supplies and industrial control. More detailed information can also be obtained from Farnell Instruments Lid, Sandbeck Way, Wetherby, Yorkshire LS22 4DH

WW432
A new short-form catalogue issued by Arrow-Hart gives information on the availability of Arrow switches and controls. The publication also lists the complete European and world-wide distribution network. Arrow-Hart Lid. Plymbridge Road. Estover. Plymouth. PL6 7PN W'W433
The latest Heathkit eatalogue contains several new items including a 4 channe! a.m./f.m. rcceiver. pocket calculator and a 15 MHz oscilloscope. Heath Lid, Gloucester GL 2 6EE

WW434

New Products

Pulse generator

The model 4300 general-purpose pulse generator covers the repetition frequency range of 3 Hz to 30 MHz in seven ranges. The pulse width is variable between 20 ns and 100 ms and the delay when the trig. gering facility is used can be adjusted from less than 50 ns to 100 ms . Transition times are less than 5 ns and jitter on rising and falling edges is less than 0.1% of the repetition interval. The output can be either $\pm 10 \mathrm{~V}$ into a high impedance or $\pm 5 \mathrm{~V}$ into 50Ω, an adjustable base-line offset being provided in both cases. Single-shot and double-pulse modes are made available and the repetition rate may be derived from an external oscillator. The price is $£ 279$. SolartronSchlumberger, Farnborough, Hants.
WW301 for further details

Car radar aerial

Aerials for use with car collision-avoidance radar have been introduced by EMIVarian. Working at 35 GHz , the printedcircuit flat pair configuration provides sufficient cross-coupling for direct pickup between transmit and receive aerials to

WW301
function as the local oscillator signal, when doppler or f.m. modes are in use. The -3 dB aerial beamwidth is $5^{\circ} \times 5^{\circ}$. the bandwidth being 34.5 to 35 GHz . EMI-Varian Ltd, 248 Blyth Road. Hayes, Middlesex.
WW302 for further details

Printed-circuit miller

This small milling machine is intended for use in design offices and similar situations wherein single printed-circuit boards or small proving quantities are needed quickly. It is an adaptation of the conventional engraving machine, in which a stylus follows a sketch or master and controls the movement of a milling cutter on the material. The control of cutter movement is manual, and a power unit is available to drive the 12 V motor. A selection of cutters is provided, and the machine may be used to drill the component holes in the finished board. The miller costs $£ 160$ and is available from West Hydc Developments Ltd, Ryefield Crescent, Northwood, Middx.
WW303 for further details

Signal generator synchronizer

Designed for use with the TF2015 signal generator, the synchronizer enables the output frequency to be set and maintained within 2 parts in 10 ${ }^{7}$, by means of a phase-lock loop. An auxiliary output is taken from the TF2015 to the synchronizer, where its phase is compared with that of a reference frequency. A control voltage resulting from the comparison is applied to an external f.m. connection on the generator, thereby adjusting the frequency of the generator until it is in coincidence with the reference. The reference frequency in the TF2171 is set up on switches, whereupon the signal generator is tuned until the acquisition of lock is indicated. Amplitude

WW302
and frequency modulation of the signal generator can be used while the synchronizer is in control. Marconi Instruments Ltd, Longacres, St. Albans, Herts. WW304 for further details

Stroboscope

Type 1222A Strobotorch from Dawe can be controlled from either its internal oscillator or from an external pickup at rates beiween 300 and 36,000 flashes per minute. Non-contacting pickups of various types producing 200 mV r.m.s. or more will trigger the unit, although the trigger input circuit prevents spurious signals when mechanical contacts are used. The $5-10 \mu \mathrm{~s}$ flashes are produced by a 12 W xenon tube. the repetition rate being indicated by meter. A pulse is emitted for use with a digital frequency meter. Dawe Instruments Ltd, Concord Road, Western Avenue, London W3.
WW305 for further details

Turns-counting dial

Radiatron have produced a turnscounting dial to match the Elma range of collet-fixing knobs and dials. The 025 dial is calibrated and can be adjusted to one hundredth of a turn, complete turns, $0-14$. being indicated in a window. The three standard Elma colours of grey, grey-black or red-grey are used in the dial and caps are available in a variety of colours. The unit can be obtained to fit spindles of $0.25 \mathrm{in}, 3 \mathrm{~mm}, 4 \mathrm{~mm}$ and 6 mm . GDS (Sales) Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Bucks.
WW306 for further details

dBm meter and graphic equalizer

Two American products recently intro-

WW303
duced by the British agency Scenic
Sounds Equipment are a dBm mieter model 81 and an eight-centre-frequency graphic equalizer.

The dBm meter, manufactured by DBX. is battery operated and provides measurement from -70 to +10 dBm on a single scale which has a true r.m.s. response, the result of a patented sensing circuit. The meter is also available with a 50 dBm range. Accuracy is $\pm \mathrm{IdB}$ at 0 dBm to $\pm 2.5 \mathrm{~dB}$ at -70 dBm . Response from -40 to +10 dBm is 20 Hz to 20 kHz and at -70 dB is 20 Hz to 7.5 kHz . Size of the unit is $4 \times 4 \times 7 \frac{1}{2}$ in and it weighs 3 lb . Price is $£ 92$.

The Aengus graphic equalizer uses $R C$ networks throughout and is primarily designed for professional recording studio use as it can be easily slotted into the appropriate point of a mixing desk input channel. Eight centre frequencies can be treated simultaneously and are located at $50 \mathrm{~Hz}, 100 \mathrm{~Hz}, 220 \mathrm{~Hz}, 500 \mathrm{~Hz}, 1 \mathrm{kHz}$, 2.2 kHz .5 kHz and 10 kHz . Eight leveroperated switches provide boost or cut at each frequency in twelve steps: $+15,+12$, $+9 .+6,+4,+2,0,-2,-4,-6,-9$ and -12 dB . Input impedance is $9.5 \mathrm{k} \Omega$ (high level) and $5 \mathrm{k} \Omega$ (low level) and output impedance is 100Ω balanced. Normal operating level is $+4 \mathrm{~dB}, 0 \mathrm{VU}$. At high level, insertion loss is zero. Low level provides 6 dB of gain. Unequalized frequency response is $\pm 0.2 \mathrm{~dB}, 20 \mathrm{~Hz}$ to 20 kHz , measured at +4 dBm . Equivalent input noise is -86 dBm unequalized and -84 dBm equalized. Distortion from 20 Hz to 2 kHz is stated at 0.1% t.h.d. at 4 dBm . Power requirements are $\pm 15 \mathrm{~V}$, 75 mA (maximum output) and the dimensions of the module are $1 \frac{1}{2} \times 5 \frac{1}{4}$ in face, and $5 \frac{3}{9}$ in depth. One other feature is a push-button which can switch the equalizer in or out of the signal path. The module can be mounted in a 19 in rack system. Price is $£ 147$.

Both units are available from Scenic

WW305

Sounds Equipment, 28 Bryanston Street. London W1H 7LS.
WW307 for further details (model 81 dBm meter)
WW308 for further details (Aengus graphic equalizer)

Choppers

Field-effect transistors are used as the switches in three types of chopper intended as plug-in replacements for the mechanical variety used in Controle Bailey, Leeds and Northrup and Cambridge amplifiers and recorders. MTL208, 210 and 211 are claimed to exhibit voltage and current offset drifts of less than $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and $0.03 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ and are said to operate safely at $75^{\circ} \mathrm{C}$. The MTL208 and 211 possess an "on" resistance of 250 ohms and revert to 10° ohms in the "off" state. The drive to the f.e.t. switches is obtained from the $50 / 60 \mathrm{~Hz}$ supply, via a transformer which is double-screened to minimize coupling between the supply and the input. Measurement Technology Ltd, 26-30 John Street, Luton, Beds.
WW309 for further details

Very-low-frequency counter

Digital measurements of very low frequencies normally take several minutes to achieve a sensible resolution (about 17 minutes at 1 Hz to 0.1%). The type 207 by Time Electronics neatly surmounts this obstacle by determining the time of one cycle of the unknown frequency, during which a higher crystal-derived measuring frequency is counted. The reciprocal of this result is then obtained and displayed as frequency-the instrument is also scaled to display revolutions per minute. The range of frequencies acceptable are 0.001 Hz to 100 kHz or 0.1 r.p.m. to 10^{6} r.p.m., the ranges being automatically selected. Digital and analogue outputs are provided and a printer unit is available.

WW307

Time Electronics Ltd, Botany Industrial Estate, Tonbridge, Kent.
WW310 for further details

Servo driver

The EM100 servo drive systems are control units for $12-24 \mathrm{~V}$ d.c. motors and incorporate power supplies. Almost any type of motor up to $1 / 6 \mathrm{~h} . \mathrm{p}$. can be used, including basket-wound and printedcircuit types. Control input amplifiers are 741 op -amps, which confer flexibility on the type and level of control permissible. Stall current is rendered innocuous by a protection circuit. The system will operate in velocity, positional or velocity/ positional modes, in which overshoot is greatly reduced. McLennan Engineering Ltd. King's Road, Crowthorne, Berks.
WW311 for further details

Thick-film power controller

Proportional control is a feature of the ZC1/250-15 zero-switching controller, a new unit in the Hyreg range from Westinghouse. It is intended mainly for use in temperature-control applications and will control resistive loads of 3.75 kW at $\mathbf{2 5}-250 \mathrm{~V}$ r.m.s. The module includes the protected power triac and control circuitry, the only additional components necessary being the thermistor sensor, three resistors and a potentiometer. Engineering publication ZC1 provides a complete specification. Westinghouse Brake \& Signal Company Lid, Semiconductor Division, Chippenham. Wilts. WW31 2 for further details

Printed-board switch

A novel configuration is adopted by NSF for their Type FL switch, which is a ball-index rotary type intended for direct contact to a printed-circuit board. Five

WW309
wafers can be used on each mechanism, each wafer having 12 positions, and $1,2,3$. 4 or 6 poles can be accommodated on each wafer, subject to a maximum of 16 per switch. Shorting or non-shorting 5VA contacts of gold-plated copper can be used, switching up to 0.2 A. N.S.F.Lid, Keighley, Yorks.
WW313 for further details

Frequency synthesizer

With an output of 0.1 Hz to 9.99 MHz , the Syntest SI-60 digital frequency synthesizer produces a t.t.l. compatible square-wave at an accuracy of ± 10 p.p.m. Frequency is set either by front-panel edge switches or by an external b.c.d. signal to a resolution of three figures. with four or five digit versions available. Settling time to within 10% of the desired frequency is 1 ms . Price is $£ 270$. Lyons Instruments Lid, Hoddesdon. Herfordshire.
WW314 for further details

Drum printer

The "Mini-Kit" printer is a system of units which may be assembled by the user to fit his own requirements. The basic unit is the 18 column, 3 lines per second printing head, which is complemented by a parallel-entry logic-compatible drive unit accepting 4 -bit b.c.d. inputs. a power supply and wiring harness. The head. whicl uses red/ black ribbon, prints "on the fly", the paper being ejected either vertically or horizontally with the characters in the correct orientation for easy reading in both cases. The printer costs about $£ 230$. Electrographic Peripherals Ltd, Printinghouse Lane, Hayes, Middx.
WW315 for further details

Sound emitter

A new range of high-power sound emitters, working in the range $200-300 \mathrm{~W}$ is announced by Gearing \& Watson. They have used their experience in the design of large vibration generators to enable them to ensure reliability in the new units. A

WW312

series of horns is available to derive a variety of radiation patterns from the basic drive units, which are designed for operation from the company's power amplifiers. The drive units are capable of producing a pressure level of 130 dB at 1 m using the correct horn for the application. Gearing \& Watson (Electronics) Ltd, Birch Close, Eastbourne, Sussex.
WW316 for further details

Trimmer capacitor

The Trimline is tubular in form, with a constant length of 18 mm . Acljustment is by means of a screwdriver slot at one end. and the elimination of the conventional moving piston has improved the linearity of the law to within 2%. The capacitance range exceeds 0.5 pF to 5 pF in ten turns of the adjuster. Air is used as the dielectric, a coaxial sleeve being the moving element, which is precisely guided by a glass outer sleeve to maintain linearity. A slipping clutch is provided. Jackson Brothers (London) Lid, Kingsway, Waddon, Croydon, Surrey.
WW317 for further details

Servo amplifiers

Two high performance servo amplifier modules, conservatively rated as 250 and 600 wat linear d.c. power amplifiers, are being marketed by the Cranfield Unit for Precision Engineering. They are manufactured to quasi-military standards of ruggedness, and are claimed to provide high reliability and case of use and maintenance under adverse conditions.

Designated the CUPE 2501 and CUPE 6001, the amplifiers are housed in 488.60 mm (19in) rack mounting chassis or free-standing cabinets. They have high open loop gain (10^{7}). wide bandwidth, low drift and distortion, adjustable current limiting and are said to be short-circuit proof. A removable front sub-panel gives in-situ access to the multiple summing functions, compensation networks, zero balance and current limit controls. Power stages are protected against loadinduced voltage, current transients and thermal overload.

WWV3 14

A high-gain f.e.t. input operational preamplifier, with high input impedance and low drift $\left(10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right)$ drives a lowgain. high-power output stage equipped with bi-directional current limiting circuitry. Internal feedback loops make the amplifiers unconditionally stable over a wide range of load and environmental conditions, while anti-saturation networks prevent lock-up and phase reversal under severe input overload conditions.

The pre-amplifier module is mounted on a p.c. card which also accommodates the summing network and additional feedforward and feedback compensation networks as required. Power stage is single-ended, consisting of a complementary pair of silicon power transistors operating in class B. Adjustable current limit controls permit setting the maximum output current between 10% and 100% of peak current.

Current limiting is bi-directional with independent adjustment for each polarity. Rapid response prevents demagnetisation of all electrodynamic loads and devices. A fail-safe automatic load disconnect is provided to prevent damage due to motor back EMF in the event of mains failure or removal. Cranfield Unit for Precision Engineering, Cranfield Institute of Technology, Cranfield, Berks.
WW318 for further details

Racks and cases

Lektrokit Ltd, formerly part of A.P.T. Electronics, have launched a range of enclosures and hardware for the electronics industry. In addition to the company's range of British products they are offering the Motek range which is available in the UK exclusively from Lektrokit. Motek products, which include 19 in racking systems, chassis modules, ventilation units and instrument cases, are offered ex-stock. The racking systems are available in an industrial finish or with anodised-aluminium front sections. There are five basic chassis modules for use in the racking system, each available in five different heights and three depths. The instrument cases are available in three models, also offered in five heights and three depths. Lektrokit Lid, Trafford Road, Reading. Berks RG1 8JR.
WW319 for further details

Solid Stute Devices

The names of suppliers of devices in this section are given in abbreviation after each section and in full at the end of the section.

Field-effect switches

Two high-speed f.e.t. switches, the SD2 10 and SD211 by Signetics, are intended as digital or analogue switches in applications where switching times in the order of 0.7 ns are required. Both are n -channel enhancement devices with permissible input signals of $\pm 10 \mathrm{~V}(\mathrm{SD} 210)$ and $\pm 5 \mathrm{~V}$ and "on" resistances of 30 ohms.
The SD211 has a gate/source protection diode.
WW330 for further details:
Signetics

Power-control circuits

A range of TO-3 encapsulated integrated circuits for power control, including half and fully controlled thyristor bridges and switches for heating and lighting applications. The PH400 range is available in 120 V or 240 V versions and will handle up to 90A peak surges.
WW331 for further details
International' Rectifier

Voltage regulators

Series 843 dual-tracking regulators produce $\pm 12 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$ outputs, the negative line tracking the positive output within ± 10 parts per million over the range -55° to $125^{\circ} \mathrm{C}$. Stabilization and regulation are both 0.005% with a load of 300 mA maximum. The devices are TO-8 packaged.
WW332 for further details Beckman

Dual timer

NE556 by Signetics is a dual version of the established 555 timer, used as a modulator, clock generator, switch and many other applications. The 556 is available in versions in the temperature ranges $0-70^{\circ} \mathrm{C}$ (NE556), -55 to $125^{\circ} \mathrm{C}$ (SE556 and SE556C), all versions being contained in dual-in-line packages.
WW333 for further details
SDS

CCD image sensor

CCD110 is a $128 / 256$ element chargecoupled linear sensor, intended primarily for optical character recognition. It is a two phase device which can be clocked by t.t.I. clocks at rates in excess of 10 MHz . A preamplifier and compensation amplifier are on the same chip, and the dynamic range is $200: 1$. The circuit is
t.t.l. compatible and is contained in an 18 -pin d.i.p.
WW334 for further details Fairchild

Matched dual transistor

A closely-matched transistor pair by Precision Monolithics Inc, the mono-Mat-01 is made by a silicon nitride "triple passivation" process, which is claimed to afford extreme stability of critical parameters. The device exhibits voltage offset matching of $40-100 \mu \mathrm{~V}$ and h_{FE} matching of 0.7 to 3%. Voltage offset drift is 0.15 to $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and h_{FE} at 10 nA collector current is around 590 . Over the range 0.1 to 10 Hz . noise is $0.23 \mu \mathrm{~V}$ peak to peak. The device is in a 6-pin TO-99 case.
WW335 for further details
Bourns

Colour TV i.c.

Mullard announce the TCA300, an integrated circuit consisting of synchronous detector, matrix and clamps to determine black level. Subcarrier filter capacitors are included. A complete decoder can be assembled using this unit, TB540 and a TBA560.
WW336 for furthęr details Mullard

Crystal oscillator

MC 12060 is a 16 -pin d.i.p. circuit from Motorola, which incorporates a crystal oscillator and buffer stage, together with sine-to-e.c.l. and sine-to-t.t.l. converters. The series-mode crystal is external to the package, as are by-pass capacitors and fine-tuning circuit, if required. Stability is around 8 in 10^{8} per degree centigrade. Fundamental crystals from 100 kHz to 2 MHz can be resonated and above this frequency the MC12061 can be used up to 20 MHz , providirig a stability of about 16 in 10^{8}.
WW337 for further details Motorola

Power Darlingtons

Complementary Darlington pairs from Motorola exhibit current gain of 1000 at 10A. The MJ2500 and MJ3000 (p-n-p and $n-p-n$ respectively) comprise driver and power transistors and emitter/base resistors in a single TO-3 pack. Power dissipation is 150 W at a case temperature of $25^{\circ} \mathrm{C}$, the units having a collector rating of 80 V . In a complementarysymmetry audio output stage, a pair of these devices will put out 60 W into an eight-ohm load.
WW338 for further details
GDS

Audio amplifier

A 5W audio amplifier from RS Components incorporates both preamplifier and output stage. Total harmonic distortion is 5% at 5 W r.m.s. $(0.3 \%$ at 1 W .400 Hz)
and noise is -75 dB . The sensitivity and input impedance is suitable for crystal/ ceramic pickups, and the -3 dB amplitude/frequency response is $20 \mathrm{~Hz}-30 \mathrm{kHz}$. Information provided with the amplifiers covers the incorporation of the unit into a stereo amplifier with tone controls.
WW339 for further details
RS

Audio amplifier

The MFC4000B is a simple, integratedcircuit audio-amplifier, designed for small radio receivers. Supply voltages up to 12 V are acceptable, and the device will produce 250 mW in 16 ohms. At 9 V supply and 200 mW , total harmonic distortion is around 2%, an input signal of 240 mV giving full output. Current drain is about 3 mA when quiescent.
WW340 for further details Motorola

Variable capacitance diode

The 574BAY is a silicon diode intended for use in v.h.f. television tuner bandswitching and as a transmit-receive switch in small transceivers. Maximum reverse voltage is 35 V , maximum forward current being 100 mA . Typical capacitance is 0.8 pF and resistance 0.5 ohms.

WW341 for further details Mullard

Suppliers

Signetics International Corporation, Yeoman House, 63 Croydon Road, London SE20.
Mullard Ltd, Mullard House, Torrington Place, London WC1E 7HD.
Motorola Semiconductors Ltd, York House, Empire Way, Wembley, Middlesex.
R.S. Components Ltd, 13-17 Epworth Street, London EC2.
GDS (Sales) Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Bucks.
Boums (Trimpot) Ltd, Hodford House, 17/27 High Street. Hounslow, Middx. TW3 1TE.
SDS Components Ltd, Hilsea Trading Estate, Portsmouth, Hants. PO3 5JW.
Fairchild Semiconductor Ltd. Kingmaker House, Station Road, New Barnet. Herts.
International Rectifier Co, Hurst Green, Oxted, Surrey.
Beckman Instruments Ltd, Queensgate, Glenrothes, Fife.

Real and Imaginary

by "Vector"

"A VOICE CRYING IN THE WILDERNESS . . .'

Professor M. W. Thring, head of the department of mechanical engineering at Queen Mary College. London, is probably best-known to the general public as "the man who designs robots"; a tag which. although justified, is only a part of his story, as most engineers will know and the professor's service on many national committees will testify.

He is, for instance, deeply concerned about the role of the engineer in society. Now, most of us, 1 imagine, are too preoccupied with the problems of meeting the next mortgage payment to bother ourselves overmuch about the suicide course along which the world is accelerating. Naturally, we brood a bit at times over such matters as world over-population, arms escalation, pollution, damage to the environment, the impending exhaustion of minerals, the steady deterioration in the quality of life and the growth of violence, drug-taking, suicides, alcoholism and stress illnesses. "It's a deplorable state of affairs," we say in effect "and it's high time the politicians got down to doing something about it."
"Wrong!" says Professor Thring in a paper* published a few months ago. "It's you, the engineer, who has to get down to it." And he proceeds to tell us why, in no uncertain terms. His point is that we live in a technology-orientated world in which, ever since the industrial revolution, the engineer has been the key factor. Out of that revolution came much that was good and much that was evil, with the engineer solving every problem presented to him by his masters without regard for the consequences for the world at large. It's high time, argues Professor Thring, that we concerned ourselves with the morality of our work instead of blindly carrying out orders. In his view, we can no more shrug off responsibility for what we're doing than could the commandant of Belsen.

The parallel he draws is unpalatable. but apt. For we're blueprinting a fulure which, by comparison, may well make

[^3]Belsen seem a Sunday-school picnic. Merely by conforming to the system we're squandering irreplaceable resources at such a rate that within a few lifetimes there won't merely be shortages: there just won't be anything left; and let's not delude ourselves that magic new minerals will arrive to take the place of the vanished ones, because they won't.

Just consider this at a personal level. No matter what plans we're making for that baby in his cot, it's certain that as an adult the won't enjoy the same quality of life that you take for granted; at best he will live in an ant-like society in which everything that isn't compulsory is forbidden. Your grandchildren will be condemned to misery and squalor, not entirely because of the shortages themseives but because inevitably law and order will collapse as the "have-nots" struggle against the "haves". The legacy we are leaving to later generations-by then probably nuclear-doped mutantsis one of savagery and (as like as not) cannibalism. Time is against us: you, in your lifetime, will see a significant deterioration.

As Professor Thring says, one of the main obstacles is that we just don't want to know. Some of us look on the future as hopeless and trust that we'll be dead before the crunch comes; the more optimistic try to convince themselves that the present system will somehow cope. and, with a bit of patching here and there and a little further effor by engineers and scientists, it will all come right in the end. It won't. Neither will it suffice to content ourselves with theorizing about the situation. Either we get down to the nittygritty or we end up by crucifying our own flesh and blood.

The villain of the piece, asserts the Professor, is the profit motive. To serve this god, vast quantities of precious, irreplaceable materials are squandered day and night in the manufacture of nonessential commodities; it produces evil by-products and dumps them in the cheapest possible way, in callous indifference to the damage done to the environment. With certain miniscule exceptions, we're all thoroughly conditioned to the concept that the acquisition of money and possessions is the yardstick of success; it's the norm; the accepted way of life. In spite of such manifest lunacies as Centre Point, we seldom question whether or not there's a better way of doing things.

If I read him correctly, the Professor's argument is that only by breaking free from the profit motive, with its cardinal tenet that "if there's a percentage in it. go ahead and make it ${ }^{\prime \prime}$, can we clear decks for action in the matter of conserving our resources. We've got to decide what we really need, as distinct from what the persuaders tell us we should have (and "we" in this context means everybody of course).

In a survival situation, human needs are simple; food, drink and some means of maintaining a reasonable body temperature are the basics. Provision of these is top priority. Beyond them, all other items are, in degree, luxuries and parasitic upon the staples. Now, Professor Thring isn't suggesting that we must adopt such a Spartan existence as that, but merely that we should abandon sufficient fripperies to halt our lemming-like march to destruction. We must hold an objective stocktaking and, as the Professor puts it, jettison many of our cherished luxuries. The amount we're prepared to discard is the measure of our concern for the future. Every ounce of metal or other material must be accounted for and only used if absolutely necessary. Every possible scrap must be recycied. Every gallon of fuel must transport the maximum load to an essential destination.

Of course, the conditioned reply to anyone who dares to attack the profit motive is to yell "Yah, boo! Dirty communist!" I've no idea what Professor Thring's political views are, but I would point out that the Communist bloc is as firmly wedded to the profit motive as we are, as anyone who has had dealings with an Iron Curtain trade delegation will testify. There's an interesting point here, though. We tend to sneer at the lack of variety in consumer goods available in Communist countries; but could it be that they're consciously playing the ant to our grasshopper, conserving their resources against the day when we'll have to go begging?

But it's one thing to accept Professor Thring's diagnosis in principle; how does he suggest that we go about applying his remedy? This is a world crisis, not a national one. We've got to have global control of all resources, with equitable shares for all. We've got to provide the present famine-prone areas with an assured standard of living. And we've got to achieve a zero population growth in every area of the world-all this, not at some nebulous future date, but within 15 years, says the Professor. It seems to me that this calls for a super-powerful United Nations organization with one or two miracles, like a mass change of heart, thrown in. Perhaps Professor Thring will give us the nuts and bolts in his book.

What part could electronics play in the new order? We're a relatively clean industry in the sense that in the main we don't use tons of raw materials in our devices. But when we come to a stocktaking of how many of our products are really necessary, then our hands begin to look mucky. Do we, for instance, need such a multiplicity of sound and vision stations operating all day and half the night, churning out (for the most part) escapist rubbish, forgotten by next day when it's time for our next "fix"? But I'll have more to say on this topic in my next article.

LOW COST TESTERS

INSULATION TESTER

A logarithmic scale covering 6 decades is used to display either insulation resistance or leakage current at a fixed stabilised test voltage. The current available is limited to a maximum value of 3 mA for safety and capacitors are automatically discharged when the instrument is switched off or to the CAL condition. The instrument operates from a 9 V internal battery.

RESISTANCE RANGES

$10 \mathrm{M} \Omega$ to $10 \mathrm{~T} \Omega\left(10^{13} \Omega\right)$ at $250 \mathrm{~V}, 500 \mathrm{~V}, 750 \mathrm{~V}$ and 1 kV .
$1 \mathrm{M} \Omega$ to $1 \mathrm{~T} \Omega$ at $25 \mathrm{~V}, 50 \mathrm{~V}$ and 100 V .
$100 \mathrm{k} \Omega$ to $100 \mathrm{G} \Omega$ at $2.5 \mathrm{~V}, 5 \mathrm{~V}$ and 10 V .
$10 \mathrm{k} \Omega$ to $10 \mathrm{G} \Omega$ at 1 V .
Accuracy $\pm 15 \%+80^{\circ} \Omega$ on 6 decadelogarithmic scale-
Accuracy of test voltages $\pm 3 \% \pm 50 \mathrm{mV}$ at scale centre.
Fall of test voltages $<2 \%$ at $10 \mu \mathrm{~A}$ and $<20 \%$ at $100 \mu \mathrm{~A}$.
Short circuit current between $500 \mu \mathrm{~A}$ and 3 mA .

CURRENT RANGE

100 pA to $100 \mu \mathrm{~A}$ on 6 decade logarithmic scale.
Accuracy of current measurement $\pm 15 \%$ of indicated value.
Input voltage drop is approximately 20 mV at $100 \mathrm{pA}, 200 \mathrm{mV}$ at 100 nA and 400 mV at $100 \mu \mathrm{~A}$.
Maximum safe continuous overload is 50 mA .

MEASUREMENT TIME

< 35 for resistance on all ranges relative to CAL position.
<10 s for resistance of $10 \mathrm{G} \Omega$ across $1 \mu \mathrm{~F}$ on 50 V to 500 V .
Discharge time to 1% is 0.1 s per $\mu \mathrm{F}$ on CAL position.

RECORDER OUTPUT

1 V per decade $\pm 2 \%$ with zero output at scale centre. Maximum output $\pm 3 \mathrm{~V}$. Output resistance $1 \mathrm{k} \Omega$.

TRANSISTOR TESTER

Tests bipolar tränsistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2 V to 150 V . Current gałns are checked from $1 \mu \mathrm{~A}$ to 100 mA . Breakdown voltages up to 100 V are measured at $10 \mu \mathrm{~A} .100 \mu \mathrm{~A}$ and 1 mA . Collector to emitter saturation voltage is measured at $1 \mathrm{~mA}, 10 \mathrm{~mA} .30 \mathrm{~mA}$ and 100 mA for $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ ratios of $10,20,30$. The instrument is powered by a 9 V battery.
TRANSISTOR RANGES (PNP OR NPN)
${ }^{1} C B O^{\& I_{E B O}}: 90 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at voltages of $2 \mathrm{~V}, 5 \mathrm{~V}$, $10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}$, 120 V , and 150 V acc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to $10 \mu \mathrm{~A}$ with fall at $100 \mu \mathrm{~A}<5 \%+250 \mathrm{mV}$.
$B V_{\text {CBO }} \quad 10 \mathrm{~V}$ or 100 V f.s.d. acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at currents of $10 \mu \mathrm{~A} .100 \mu \mathrm{~A}$ and $1 \mathrm{~mA} \pm 20 \%$.
$I_{B} \quad 10 n A, 100 n A, 1 \mu A \ldots 10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at fixed I_{E} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$. $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, and 100 mA acc. $\pm 1 \%$.
$h_{F E} \quad 3$ inverse scales of 2000 to 100,400 to 30 and 100 to 10 convert I_{B} into $h_{F E}$ readings.
$V_{B E}: \quad 1 \mathrm{Vf.s.d}$. acc. $\pm 20 \mathrm{mV}$ meas ured at conditions on $h_{\text {FE }}$ test.
$V_{C E(s a t)} \quad 1 \mathrm{~V} . \mathrm{s.d.acc} . \pm 20 \mathrm{mV}$ at collector currents of $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $\mathrm{I}_{\mathrm{C}} / \mathrm{I} \mathrm{B}$ selected at 10,20 or 30 acc. $\pm 20 \%$.
DIODE \& ZENER DIODE RANGES
$I_{D R}$ As $I_{E B O}{ }^{\text {transistor ranges. }}$
$V_{\mathbf{Z}}$: Breakdownranges as $B V_{C B O}$ for transistors.
$V_{D F}: \quad .1 \mathrm{Vf.s.d}$ acc. $\pm 20 \mathrm{mV}$ at I_{DF} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$, $100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA .

Prices include batteries and U.K. delivery. V.A.T. extra. Optional extras are leather cases and mains power units. Send for data covering our range of portable instruments.

PROFESSIONAL USER?

Have you seen our latest catalogue?

PLEASE SEND TO ME AKG's NEW CATALOGUE
NAME
title
adoress \qquad
AKG Equipment Ltd., 182 Campden Hill Road, London, W8 7AS WW5/74

AKG Equipment Ltd 182/4 Campden Hill Road London W8 7AS. Telephone 01-229 3695.

Wayne Kerr's top-selling bridge

Meets modern requirements. Is accurate to 0.1\%. Is self-balancing. Has 2,3 and 4-terminal connections. Continuous readout of real and quadrature terms. Overall range 10 micro-ohms to 100 gigohms, 0.001 pF to 10 farads, 1 nanohenry to 10 megahenrys and 10 picomhos to 100 kilomhos. Built-in source/detector (1592 Hz). Connectors for $200 \mathrm{~Hz}-20 \mathrm{kHz}$ manual operation. Comparator facilities. Analog outputs. Adjustable sensitivity. Ask for B642 Data Sheet.

WAYNE KERR
 Amemberofthe Wilmot Breeden group.

For more information phone Bognor (02433) 25811. or write to: Wayne Kerr, Durban Rd., Bognor Regis, Sussex PO22 9RL.

Vortexiot QUALITY AMPLIFIERSFORTHE PROFESSIONAL

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 5-WAY MIXER USING F.E.T.S
$£ 93.17$
(inc £8.47 VAT)
£96.80
(inc $£ 8.80 \mathrm{VAT}$)
(inc $£ 12.65$ VAT)
(inc £11.42 VAT)
£139.15 THE 100 WATT MIXER AMPLIFIER
$\underset{\text { (inc } £ 3.85 \mathrm{VAT})}{£ 42.35} \quad 20 / 30$ WATT MIXER AMPLIFIER
$\underset{\text { £123.42 }}{\text { £1 }} \mathbf{~ C P ~} 50$ AMPLIFIER
$\underset{\text { £163.35 }}{ } \quad 200$ WATT AMPLIFIER
100 WATT ALL SILICON AMPLIFIER

F.E.T. MIXERS AND PPMs

Vortexion Itd

TEL: 01.5422814 and 01.542 6242-3.4 I TELEGRAMS: VORTEXION' LONDON SW 19 257-263 THE BROADWAY-WIMBLEDON - SW19 1SF

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER

anders menns meters...

LANCASTER RANGE $24 \mathbf{0}^{\circ}$

- Models CS60 and CS80 with scale lengths of $4^{\prime \prime}$ and 5.5".
- S.A.E. styling in matt black moulded case.
-1. Employed extensively for Tachometry. Simulator and Marine applications.
- Availability from sensitivities of 200 microamps
- Competitive prices.

Anders provide what is probably the largest range of meters available from a single source in Europe: MC/MI, dynamometer, vibrating reed, electrostatic, etc. in over 100 case styles and sizes, a few of which are shown below.

Popular models and ranges are stocked in depth while a specially equipped instrument department enables swift production of non-standard ranges and scales, to suit individual customer requirements, in large or small quantities.

Vulcan Moving Iron. 4 models, $1 \cdot 5^{\prime \prime}, 1 \cdot 8^{\prime \prime}, 2 \cdot 7^{\prime \prime}$, $3.7^{\prime \prime}$ scales. Voltmeters, ammeters and motor starting meters.

Kestrel Clear Front. 7 models. $1 \cdot 3^{\prime \prime}-5 \cdot 25^{\prime \prime}$ scales. DC moving coil. AC moving coil rectified $A C$ moving iron.

Profile 350 edgewise $4 \cdot 3^{*}$ scale.
DC moving coil and $A C$ moving coil rectified. Horizontal or vertical mounting.

Oxford Long Scale 240°. 2 models, $5 \cdot 5^{\prime \prime}, 8^{\prime \prime}$ scales. DC moving coil and AC moving coil rectified.

Stafford Long Scale 240 6 models, $3.5^{\prime \prime}-11.5^{\prime \prime}$ scales. DC moving coil, AC moving coil rectified, AC moving iron. Also 98 scale.

Profile Miniature Edgewise Meters. 3 models, $1^{\prime \prime}, 1 \cdot 2^{\prime \prime}, 2^{\prime \prime}$ scales. DC moving coil and AC moving coil rectified.

Regal Range 100° flattened arc. 2 models $2.5^{\prime \prime}$ and $32^{\prime \prime}$ scales. Taut band. DC moving coil and AC moving coil rectified.

A good-looking-lineup-the Arrow miniature rocker brigade! They're reporting for 10 A 250 V ac duty, and just as soon as you call them up, they start saving you assembly time-and panel space. They parade shoulder, to shoulder with their unique snap-in facility securing them tightly in an instant. Eight single and eight double pole versions, 2 and 3 position switching with blased action, pilot lights, illuminated rockers-there's a really wide matching choice. Many to BS3955 and CEE24 standards, and ready to face 100,000 ops and still come out switching! Ask for the full data on Arrow 1100 series rockers.

16 AMP VERSIONS
The single pole on/off and some changeover versions are now avallable with a 16 amp rating. Send for further detalls.

TluCUIII ARROW-HART (EUROPE) LTD. HTM PLYMBRIDGE ROAD, ESTOVER. TEL: 0752701155 Telex 45340 Cables: ARROWHART PLYMOUTH

Arrow switches on Stand No. 114 I.E.A. Exhibition

Scottish Office 13 MURRAY PLACE. STIRLING FK8 1 DO Telophone: 07863823

U. K. Distributors itt electronic services harlow - 027-96 26777 RENFREWSHIRE Johnstone 23457 LEIGH-Leigh 5211/2/3 SUTTON COLDFIELD. 021 - 3554511 BRISTOL- 0272290125 COMWAY ELECTRONICS BRACKNELL. 034424765 JERMYNINDUSTRIES. SEVENOAKS - 51174 S.A.S.C.O. LTO. CRAWLEY-0293 28700 GLASGOW. 041-221 6152/3

THE FG1 FUNCTION GENERATOR

WAVEFORMS AVAILABLE
Sine, square, triangles and ramps. Continuous swept, triggered, gatedbursts, frequency modulated, externally sync'd.

AMPLITUDE

Max. 20Vpk-pk into open circuit (10 V into 50Ω) on selected waveform at main output. Adjustable from 1 mV .
Four basic waveforms available simultaneously from 600Ω at fixed level of $2.5 \mathrm{~V} p \mathrm{pk}-\mathrm{pk}$.

ATTENUATOR

4 positions, 60 dB in 20 dB steps. For best possible resolution and signal to noise ratio at low signal levels.

FREQUENCY

0.02 Hz to 2 MHz in seven decade ranges - sine, square and triangle. 1000:1 continuous coarse and fine adjustment on each range. 0.01 Hz to 1 kHz in five decade ranges - ramp. Dial accuracy $\pm 3 \%$ of range max. 0.02 Hz to 200 kHz .

OFFSET

$\pm 5 \mathrm{~V}$ d.c: bias will offset waveform above or below zero. Push-pull adjustable control.
EXT. VCO
0 to +10 V gives 1000:1 frequency upshift from min. dial setting.
0 to-10V gives 1000:1 frequency down shift from max. dial setting, within any selected range.
Voltage may be a.c. or d.c.
Frequency modulation of the output abouts centre frequency is possible.

SWEEP

Range: 1000 to 1 . Mode: Lin or log. Times 1 mS to 1000 S .
Width: 5 position siwitch gives stepped reductions as a percentage of max.

SYNC

Sync. pulse output may be used to trigger an oscilloscope, X-Y plotter etc. Or the output frequency of the FG1 may be locked to a periodic reference signal for tests requiring coherent signals. _real value for money at 5230 U.K. (excluding V.A.T.)

INSTRUMENTS DIVISION

THIS IS HOW YOU CAN USE mecrewlf-stike

 INSTANT PRINTED CIRCUIT BOARD SYSTEM*

 INSTANT PRINTED CIRCUIT BOARD SYSTEM*}

Save months of scheduling time. Eliminate design, artwork, photowork, etching and drilling, in all prototype systems.

1. SKETCH YOUR BOARD

Be sure all components are included and placed In the best position for easy copper tape Interconnections.

4. ALIGN SUBELEMENT

Align pre-drilled holes in subelements to matching holes in the pre-drilled board. Backlighting or guide pins allow easy registration.

7. INSULATE CROSSOVERS

Use insulating mylar tape between copper tape when making crossovers.

2. CUT PULL TAB

Cut a corner through first layer to make a pull tab.

5. PRESS IN PLACE

Press firmiy in place. The pressure sensitive adheslve holds the subelements firmly in place, yet they may be repositioned if necessary. After the adhesive has cured, 48 hours or speeded by heat, the bond strength doubles. The subelement may still be removed but not reused.

8. INSERT COMPONENTS

Insert electronic components through the pre-drilled holes from the opposite side of the board. Bend leads over against circult so that they are firmly held in place, then cut off ends.

3. REMOVE QUIK-RELEASE

ADHESIVE LINER
Remove polyolefin liner to expose pressure sensitive adhesive.
10. FINISHED CIRCUIT BOARD

Don't lose anymore time. You can go from schematic drawings to card cage systems IN ONE STEP with CIRCUIT-STIK. All types of circuit element configurations may be mixed and combined on the same board.

LOCAL STOCK
Rastra Electronics stocks the complete line of CIRCUIT-STIK Adhesive-backed Copper Patterns. Over 50 of the most popular types are described on the opposite page -- but if you don't see what you need, give us a call ...

circulf-stik
 INSTANT CIRCUIT BOARDS ${ }^{\text {T }}$ PRODUCT SUMMARY

EASY-TO-ORDER: Each element shown below is referenced and described in the table.

FAST FLEXIBLE Sub-elements are pre-drilled on .100 grid and preplated ready for soldering. CIRCUIT-STIK provides exceptionally good adhesion, yet can be removed when an "instant" modification is needed.

TO-5 \& TO-18 SUB-ELEMENTS					PLUG-IN CONNECTOR STRIPS 'HARD GOLD OVER NICKEL PLATE"				
Mfr's Type	Fig.	Pcs. Per Pkg.	Sub-Element Description	Pricés Per Package	Mfr's Type	Fig.	Pes. Per Pkg.	Sub-Element Description	Prices Per Package
	A A C C E	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	TO-18 or TO-5 3 Lead TO- 18 or TO- 53 Lead on 5 strips TO-5 3 Lead TO-5 3 Lead on 5 strips TO-5 6 Lead	$\begin{array}{r} 1.80 \\ \hline 4.85 \\ 1.80 \\ 4.85 \\ \hline 2.15 \\ \hline \end{array}$		2 2 2 2 2 2	5 5 5 5 5	15 Pin, $156^{\prime \prime}$ Spacing Component Side 15 Pin. $156^{\prime \prime}$ Spacing. Clrcuil Side 22 Pin, $100^{\prime \prime}$ Spacing. Component Side 22 PPin, $100^{\prime \prime}$ Spacioing. Circult Side 22 Pin, $156^{\prime \prime}$ Spacing. Component Side	
$\begin{aligned} & 1023-030 \\ & 1024010 \\ & 1024.030 \end{aligned}$	$\begin{aligned} & \hline E \\ & F \\ & F \end{aligned}$	$\begin{aligned} & 30 \\ & 10 \\ & 30 \end{aligned}$	TO-5 6 Lead on 5 strips TO-5 8 Lead To-5 8 Lead on 5 strips		$\begin{aligned} & 1336-005 \\ & 2367-005 \\ & 2368-005 \\ & \hline \end{aligned}$	$\begin{aligned} & z \\ & j \\ & j \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	22 Pin. $158^{\prime \prime}$ Spacing. Circult Side 22 Pin, -156" Spacing. Comporent Side 22 Pin. . 156" Spacing. Circult Side	6.50 5.40 5.40
1025.010 1025	G	10 30	T0-5 ${ }^{\text {che }} 10$ Lead 10 Lead on 5 sirips	2.15 5.85	DISCRETE COMPONENT STRIPS				
DUAL-IN-LINE PACKAGE SUB-ELEMENTS					$1302-005$ 1311.010	14	5	18 Discrete, Component Strip. mounts 80 Undversal Strip, mounts 80 dincretes	3.95 4.90
$\begin{aligned} & 1101-010 \\ & 1801-030 \\ & 2101-010 \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \\ & \mathrm{~K} \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 30 \\ & 10 \end{aligned}$	Dual-In-Line 14 Lead Dual-In-Line 14 Lead on 5 atrips Duat-In-Line 14 Lead	2.15 5.85 2.15	2301-005	L	5	Mounts 105 componenss	3.40
4 PADS					1321-010	cc	10		2.50
$\begin{aligned} & 1201-005 \\ & 1203-005 \end{aligned}$	V	5		6.50 5.40	$\begin{array}{r} 1322-010 \\ 1325-010 \\ 1326-010 \end{array}$	¢ $\begin{gathered}\text { GG } \\ \text { HM }\end{gathered}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	Single Row $100^{\prime \prime}$ hole spacing Double Row $100^{\prime \prime}$ hole spacing	2.95 2.90 3.25
$\begin{array}{r} 1205-005 \\ 1207-005 \end{array}$	W	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	Universal, 30 DIP's on 5 strips 6 DIP's/Strip. 14 Lead	6.50 5.40				OPPER TAPE, DONUT PADS	
3 PADS SHOWN					7901 7102	P	1		0.55 0.65
$\begin{aligned} & 1202.005 \\ & 1204005 \\ & 1206-005 \\ & 1208-005 \end{aligned}$	$\begin{aligned} & \hline U \\ & V \\ & W \\ & X \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	8 DIP's/Strip. 14/16 Lead, pwr. and gind. avait. 6 OIP $3 /$ Strip. 14 Lead. pwr. and gnd. plns $7 / 14$ Universal, 30 DIP 1 is on 5 strips 6 DIP's/Strip. 14 Lead	5.68 4.70 5.60 4.70	7103 7104 7104 7201 7202 7251	P 	1 1 250 250 5		0.75 0.70 1.45 1.80 1.80 4.15
'DOUBLE PADS									
$\begin{aligned} & 1221-005 \\ & 12220.005 \\ & 1223-005 \end{aligned}$	$\begin{aligned} & y \\ & v \\ & v \\ & y \end{aligned}$	5 5 5 5	6 DIP's/Strip. $14 / 18$ Lead. pwr. and gnad avail. $6 \mathrm{DIP} \cdot 3 /$ Strip. 14 Lead. pwr. and gnd. plns $7 / 14$ Universal, 30 DIP's on 5 strips	5.05 4.70 5.05	EPOXY-GLASS BOARD MATERIALS -- PRE-SHAPED BOARDS PRE-DRILLED HOLES on . 100 INCH GRID PATTERN				
1224-005	x	5	6 OIP's/Strip, 14 Lead	4.70					
SINGLE PADS					$\begin{aligned} & 7402 \\ & 7405 \end{aligned}$	V	1		3.85 3.05
1231.0051232.005$1233-005$$1234-005$1062.010$1406-010$	V	5	6 DiP's/Strip. 14/16 Lead, pwr. and gnd, avail. 6 DIP's/Strip. 14 Lead, pwr. and gnd. pins $7 / 14$ Universal, 30 DIP's on 5 strips 6 DIP's/Strip. 14 Lead Flat Pack, 14 Lead SCR Flat pkg. Mig.	4.70 4.30	CONNECTORS. . 156 PIN SPACING				
	$\begin{aligned} & \text { W} \\ & \underset{0}{2} \end{aligned}$	5 5 10		4.70 4.30 2.15	7503 7504	$\overline{\mathrm{M}}$	1	$\begin{aligned} & \text { 22 Pins } \\ & 44 \text { Ping } \end{aligned}$	2.15 2.50
	O	10		2.15	8951	M	1	Prototype Kit	Each 71.65

Order CIRCUIT-STIK components from:

RasTRa ELECTRONICS LTD.

275-281 King Street • Hammersmith • London W6 9NF • Tel. 01-7483143/2960 • Telex 24443

Motorola LED sentriesneverdie.

MOTOROLA Semiconductors

ACTUAL SIZE

The Dymar Lynx.

A mobile radiotelephone system so special we put our own name on it.

This Lynx has a pedigree. Since 1964 Dymar has designed and built VHF radiotelephones which have borne some of the most famous names in the industry.
Now we have something special. A complete VHF AM and FM mobile radiotelephone system. It cost $£ 100,000$ to develop. It's different. It's our own. The name is Dymar. The brand is Lynx.
Lynx mobiles come as local control units. The entire circuitry, space for options and a 5 in elliptical speaker in a single - $15 \mathrm{ft}^{3}$ package. Or as extended control types, when the panel unit demands only $6.75 \times 3.5 \times 2.3$ in of dash space and the transmitter/receiver vanishes into the boot or under a seat.
Selective calling, if specified, is one of the options that gets built-in.
AM sets - $15 / 20$ W RF output standardare Low, Home Office, Air, Mid or High band. FM cover Low, Home Office or High at a standard $20 / 25 \mathrm{~W}$. One, six or 10 channel versions are available, with 12.5 kHz or 25 kHz channel spacing.

Before specifying a VHF mobile, check on the rest of the spec. The tough diecast aluminium construction; the clever use of ICs and FETs; the modular approach to sub-assemblies and the accessibility of components; the safety padding; the lot.

It's all in the leaflet Lynx Mobile Communication, and in a series of Data Sheets. Use the Reader Enquiry Service today, or write direct to Dymar.

DYMAR ELECTRONICS LIMITED, Colonial Way, Radlett Road, Watford, Herts. WD2 4LA. Tel: Watford 37321 Telex: 923035. Cables: Dymar Watford.

Varley miniature plug-in relays including the Miniaturised Bi-stable polarised relay type VPR

If you have a relay requirement or problem contact Varley Technicians now, or send the and Post Office approved relay type 23 are used and approved by most leading electr. onic manufacturers throughout the world. The reasons : PERFORMANCE, RELIABILITY, PRICE.

Varley go to great lengths to ensure a consistently high standard of performance and reliability in the manufacture of their range of relays. Ultrasonic cleaning is used throughout manufacture. Each relay is checked under dynamic conditions for contact performance and timing.
coupon for the Varley catalogue.

Oliver Pell Control Ltd.
Cambridge Row, Burrage Rd., Woolwich, London, SE18. Tel: 01 -854 1422 Telex: 897071

Name

\qquad
Address \qquad

虫 K\&P KEF ELECTRONICS LIMITED TOVIL MAIDSTONE ME15 6QP Tel 062257258

Registered in England No 702392

KEF offer you an excellent choice of loudspeaker systems whatever your requirements. The larger speaker systems such as the Concerto are capable of reproducing more extreme bass and handle higher amplifier power. The difference in sound between the largest and the smallest speaker system is subtle - the high quality and detailed engineering is evident throughout.

KEF believe that restricted space need not necessarily restrict performance - visit your KEF dealer and hear what we mean.

Full details of the Coda ${ }^{1}$, Cantor ${ }^{2}$, Chorale ${ }^{3}$, Cadenza ${ }^{4}$ and Concerto ${ }^{5}$ will be sent on request.

The case for interface 74 is backed by research

Texas Instruments take pleasure in inviting you to Interface 1974 - the Technical Seminar of the year at London's Talk of the Town. This year Texas Instruments stage a completely new presentation made possible by the hundreds of new products, new applications and new ideas springing from their advanced technology. Interface 1974 will contain Product and Applications information vital to the job you are doing for your company. Subjects covered include New Bipolar I.C.s, Timtor transistors, Consumer I.C.s, Power transistors, Optoelectronics and new MOS products. Nowhere else would you accumulate so much important, comprehensive information in one day.
At every Seminar Texas Instruments conduct a survey among delegates. In 1973 the research document drew a sample of 462 answered questionnaires. These indicated
that 89 per cent of the delegates attending found the Seminar informative, 78 per cent liked the presentation, 90 per cent found the Seminar useful to them personally and 87 per cent said it would be useful to their companies.
Texas Instruments also use this feedback to ensure that the technical content and presentation of their seminars is improved every year to meet delegate needs as closely as possible.

T.I. Technical Seminars-Whefe experience counts

Interface 74 combines the renowned facilities of the Talk of the Town with highly sophisticated audio visual equipment to provide interesting and well illustrated lectures. This year extensive use will be made of video-taped material to demonstrate semiconductor devices in working applications.
To derive full concentration and the maximum benefit from lectures each delegate will be seated in comfort. Large screen presentation of slides and video will be used to ensure clear and comfortable viewing. Coffee and biscuits will be provided on arrival and a three course lunch served at your table. Every delegate receives a slide book
which reproduces the Seminar slides (over 300) shown through the day. In addition a comprehensive data pack is provided covering the major topics of the Seminar. Tickets for Interface 74 cost $£ 12$ plus VAT. This is inclusive of coffee, lunch and data pack. Training Board grants greatly reduce the net cost to a company. Certificates of Attendance will be provided.

interface 74

Tues. 11 June, Wed 12 June, Thur. 13 June at The Talk of the Town, Leicester Square, London. operating efficiency with absolute wearer comfort.
With Minilite, Amplivox have avoided the problems of the old fashioned earplug inserts through ingenious use of an adjustable earpiece. An acoustic tube with sibilant filter replaces the heavier and more familiar boom microphone. Pressure pads are out too, instead there is a non-metallic headband with special bars that give stability without uncomfortable pressure.
Specified for Eurocontrol, Minilite is being widely used in air traffic control, aviation and communications control as well as other branches of industry. Minilite is, undoubtedly, the headset of the seventies. It's just one of the wide range of high-quality specialist products for civil and military use from Amplivox. No-one else offers so much for so little.
To find out more about the Amplivox range of communications products-write today stating your application requirements to:
Racal - Amplivox Communications Limited Beresford Avenue, Wembley, Middx., England. Tel: 01-902 8991. Cables: Amplivox Wembley. Telex: 922101

Adcola LONG LIFE soldering bits are still in use after 100,000 soldering joints, if you use copper bits you will need at least ten of them plus nine bit changes and the continual dressing of bit facesto equal this.

Its a must to consider the saving from the use of ADCOLA LONG LIFE soldering bits.
 LONG LIFE SOLDERING BITS Our sobering instruments are second to mone!

AMTRON electronic kits OFFER YOU A CHOICE

With 200 different kits in the range there's a choice for everyone. From a simple signal tester to complex I.C. Digital equipment they come complete with comprehensive assembly instructions and even the solder required.

They provide hours of enjoyment and make up into reliable, well-tested electronic units.
So whether you're a dabbler or an expert make AMTRON your choice.

THE BIG NAME IN ELECTRONIC KITS.

4 \& 7 Castle Street, Hastings, Sussex TN34 3DY
Tel: Hastings 2875

THE MOST ADVANCED SINGII TUBE COMPACTCOIOURTVCAMERAYET The HV-1500 from Shibaden

Combining compact, lightweight design with excellent colour fidelity this new single tube Shibaden camera fills the need for a high performance camera. small and simple enough for every CCTV application.
The HV-1500 has a unique Filter Integrated Colour Vidicon which does away with the usual complicated optical separation system and replaces it with a special vidicon filter, complemented by simple colour separation circuitry. The result is beautiful colour pletures, even In low light conditions, with no overlapping of images.
This simplicity of design also contributes to the camera's sturdiness. Coupled with the built-in automatic light sensitivity control, this makes the HV-1500 as easy to operate as a black and white camera, Besides being ideal for all studio and outside broadcast uses. the simplicity. compactness and colour quality of the HV-1500 make it the perfect camera for applications such as surveillance, medical diagnosis, research and development and process control.

To see the HV- 1500 in action, or for complete techsical information, contact Shibaden's Technica! Service Department at 01-203 4242/6 or write to:
HITACHI SHIVEATEA (U.K.) LIMITED
brondcast $\&$ CCTV EGUIPMENT MANLFACTURERS Lodge House Lodge Road Hendon - London NW4 4DO.

CU-1500 camera control unit

era.

VOLTAGE TO FREQUENCY FREQUENCY TO VOLTAGE

* All ANCOM converters have built-in reference sources
* Linearity and stability, factory specified
* Negative or Positive input types
* Floating output
* Applications, A-D conversioh Precision Integrators Telemetry of analogue signals Shaft rotation etc.
* Auxiliary modules Telemetry amplifiers Clock modules

BRITISH MADE QUICK DELIVERY

DEVONSHIRE STREET
CHELTENHAM, ENGLAND
2024253861 or 24690

Ampexand WHAT?.."

The JAMESSCOTT Alignment Units for D.R. and F.M. Multi-Channel Tape Recorders.

Unit Type FMU/1 fllustrated was designed a
the Royal Radar Establishment, Malvern, to suit
Ampex Recorders working on the IRIG intermediate
band specification (using ES 100 Electranics) e.g. Madel
Numbers FR 1200, FR 1260, FR 1300, FR 1800L, FB 400. PR 500
If you have a sophisticated Ampex RecorderAlign it to the Manufacturers specification using our Alignment Units for D.R. \& F.M. Systems.

Speedy and inexpensive
For Further information and Technical Literature Write or telephone.

DC/AC SINEWAVE TRANSVERTORS (transistorised Invertors/Convertors)

Many world famous car manufacturers such as FORD. BRITISH LEYLAND, inclu ding ROVER-TRIUMPH, VAUXHALL, develop their cars under exact laboratory conditions. The AC electric power to drive the precision instruments and computers is provided by Valradio Trans vertors.

Type	Input Volts	Output	Price
C12/30S	12	$115 / 230 \mathrm{v}$ 30W sine wave	$£ 32.45$
C12/60S	12	$115 / 230 \mathrm{v}$ 60W sine wave	$£ 43.60$
D12/120S	12	$115 / 230 \mathrm{v} 120 \mathrm{~W}$ sine wave	$£ 57.00$
D12/200S	12	$115 / 230 \mathrm{v} 200 \mathrm{~W}$ sine wave	$£ 81.80$
D12/400S	12	$115 / 230 \mathrm{v} 400 \mathrm{~W}$ sine wave	$£ 197.00$
D24/500S	24	$115 / 230 \mathrm{v} 500 \mathrm{~W}$ sine wave	$£ 197.00$

All prices $+10 \%$ VAT. All $50 \mathrm{~Hz} \pm \frac{1}{4} \mathrm{~Hz}$. Also available $60 \mathrm{~Hz} \pm \frac{1}{d} \mathrm{~Hz}$ at same price.
For operating frequency and wave form sensitive equipment such as sound tape recorders. video tape recorders. professional film cameras, sensitive instruments, etc.
Other models available for inputs of 24, 50, 110 and 220 volts DC. Square waveform output also available. generally from stock. Send for informative brochure.

VALRADIO LIMITED BROWELLS LANE, FELTHAM, MIDDLESEX TW13 7EN, ENGLAND TEL: 01-890 4242/4837

WW- 023 FOR FURTHER DETAILS
Abeurate and dipeat measuremant of speed without cuupling to moving parts

FRAHM

resonant reed TACHOMETERS

for hand use or permanent mounting
Ranges and combinations of ranges from 900 to 100.000 s.p.m.
Descriptive Literature on Frahm Resonant Reed Tachometers and
Frequency Meters available from the sole U.K. Distributors. Manufacture and Distribution of Electical Measuring Instruments and Electronle Equipment. The largest stocks In the U.K. for off-the-shelf delivery.

Anders means meters

ADDERS EEETRODUCS LIMIED

48/56 Bayham Place, Bayham Street. London NWt Tol: 01-387 9092

Purpose-built servo and actuator systems using standard components

McLennan have considerable experience in the solution of actuator and servo problems using synchronous, stepping and D.C. motor techniques as well as solonoid -powered types. An important facet of our skill lies in purpose-designing around standard components for speed and economy of building.

Servomotor

TYPICAL APPLICATIONS

- Machine Tool Drives
- Positioning in Radiology
- Fast Panning of Heavy Cameras
- Stable Variable Speed Drives for Research and Production - Jacking Systems

Gearhead with
integral feedback
Potentiometer

Mclennan Engineering Ltd
 Control Systems and Components

 Kings Road, Crowthorne, Berkshire. Tel: Crowthorne 5757/8.WW-025 FOR FURTHER DETAILS

Soe us at the I.E.A. Exhibition on stands 108 and 232.

mmes Thin 21 Easy-handling, superb performezce!!

PORTABLE VHF TRANSCEI TER

(150MHz.1W)

FEATURES:

- Three operating frequencies in any 2 MHz segment of the $142-172 \mathrm{MHz}$ range may be selected.
- A monolithic HCM filter produced by our own crystal division is used in the IF amplifier. Performance and selectivity in this single superheterodyne set are excellent.
- A light emitting diode is used to indicate the transmit output level and condition of the battery. This approach improves reliability and allows checks under poor lighting conditions. - Use of a posistor eliminates the troublesome fuse and alleviates maintenance requirements.

reliable high performance \& practical controls individually powered modules-mains or dc option single cases and up to 17 modules
in standard $19^{\prime \prime}$ crates small size-low weight -realistic prices.

Fvide Electronic Laboratories Limited 6/16 Oakham Court, Preston PR1 3XP

Telephone: PRESTON 57560
WW- 028 FOR FURTHER DETAILS

First of a new range of all-British miniature encapsulated power supplies, the Minimod series is designed and manufactured by

Gardners to provide reliable.
regulated power supplies in a neat pack designed to plug into your P.C.
board. Minimod simplifies
development or production of equipment by providing power where
you need it. Minimod provides a choice of a standard 5 volt output (avallable up to 1 Amp) for digltal circuits or 12-0-12 or 15.0-15 volts for linear circuits, using a $\mathbf{2 3 0}$ volt input. Each unit is fully stabilised with fold back current limiting, and in the case of 5 volt unlts, over voltage crowbar is provided . . .

Ask Gardners to tell you more about Minimod.
Standard or special models cen be supplied.

Specialists in Electronic Transformers and Power Supplies.

TRANSFORMERS LIMITED
Gardners Transformers Limited, Christchurch, Hampshire BH23 3PN
Telephone 02-015 2284 Telex 41276 Gardners XCH
WW-029 FOR FURTHER DETAILS

WW--030 FOR FURTHER DETAILS

Jermyn now offer a stereo decoder module that simply and easily converts your existing mono tuner for stereo reception. Multiplex output equipped tuners simply have the module plugged in. older types need the de-emphasis capacitor disconnected.

The unit will do justice to the most expensive equipment. Channel separation: Typically 40dB

Distortion: Typically 0.3% at 560 mV RMS Composite input signal
Stereoswitching: Automatic with lighted indicator
Power supply: $10-16$ volts.
Assembled and fully tested with a no-strings 12 month guarantee the module costs an astonishing £6.90. Excluding VAT. (Also available as a Kit at £4.90.) Beat that!
To Jermyn Industries Flease rush me IKit(s). ̄made up Stereo decoders. 150 Vestry Estate I enclose cheque/postal order for £
Sevenoaks Kent Name Address

HIGH POWER DC-COUPLED AMPLIFIER

* UP TO 500 WATTS RMS FROM ONE CHANNEL \star DC-COUPLED THROUGHOUT
* OPERATES INTO LOADS AS LOW AS 1 OHM
\star FULLY PROTECTED. AGAINST SHORT CCT, MISMATCH, ETC.
* 3 YEAR WARRANTY ON PARTS AND LABOUR

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over $20,000 \mathrm{~Hz}$. The abllity of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended a mplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Power Bandwidth	DC. 20 kHz @ 150 watts +1 db , - Odis
Power at clip point (1 chan)	500 watts rms into 2.5 ohms
Phase Response	+ 0. $-15^{\prime} \mathrm{DC}$ to 20 kHz . I watt 88
Harmonic Distortion	Below 0.05\% DC to 20kHz
Intermod. Distortion	Below 0.05\% 0.01 watt to 150 watts
Damping Factor	Greater than 200 DC to 1 kHz at 83
Hum \& Noise ($20-20 \mathrm{kHz}$)	At least 110 db below 150 watts
Other models in the range:	watts per channel

MACINNES LABORATORIES LTD
MACINNES HDUSE, CARLTON PARK INOUSTRIAL ESTATE,
SAXMUNDHAM, SUFFDLK IP17 2NL
TEL: (0728) 22622615

Laboratory Instruments

WIOE RANGE MILLIVOLTMETER High impedance millivoltmoter with 20 scales total messurament range 60 micro-ampa.e. to 400 volts d.c. 10 -megohm input with overioad protection and frequency range of 500 kHz £38.80
 corporaing whort circuit protecton.
the best for less

battish made ey linstiad

Linstead Electronics. Roslyn Works, Roslyn Road, London N15 5JB. Telephone: 01-802 5144 reland, Lannox Laboratory Suppliaz Lid., 3/4 South Leinstor Street. P0 Bax 2124 Dutlin 2.
Denmatk, Scantyaik, 13-9t Hjorringgade, DK 2900. Copenhagen. Sweden, EMI Svanska A/B. Tritonvagen 17, Fack, 87119 Sotna 1 Norwny. EMI Norsk A/S. Postboke 42 Korivoll, Oalo 8. Maloysia. Laboratory Equipmert Sdn. Bhd., P.O. Box 60, Batu Pahat. Benelux, A.S.E. Lid., Nationalestreet 38, B-2000 Antwerp.

The model EF $5603 U$ high performance
FM Varicap Tuner, incorporates back-to-
back diodies with a five gang triple interstage coupling
FEATURES: * High selectivity * Low oscillator harmonic content

* All rejectiona above 90 dB * Receiving frequoncy $87 \mathrm{MH}_{*}$ and 109 MHz
- Low price plus good delivery time

T1) T1 Tin里
 Shirkeylodge, 470 London Road,Stough,Bucks. Tet (75) 48444 Telex: 847185

WW- 034 FOR FURTHER DETAILS

Tand $1 / 2 / 2$ Videotape from Dixonstechnical. At very non-technical prices.

Our $\frac{1}{4}$ " Tape range.
Recommended Price Dixons Price

Now 1 'tape at less than half price!
Average recommended Dixons price price (Exc. VAT)

STORAGE OSCILLOSCOPE

WIDE-BAND OSCILLOSCOPE
TYPE C1-54*

Screen area	
	$90 \times 40 \mathrm{~mm}$
Pass band	
	DC to 20 MHz
Sensitivity	
10 to	
Features	
temal a	
brator.	
trolled frequency	
Calibrator. Beam loca-	
tor. Push-button singleshot operation. ${ }^{\text {Z }}$ '	
modulation	
minated	
PRICE	

PLEASE WRITE FOR FULL CATALOGUE OF TEST EQUIPMENT
*Made in USSR
OBTAINABLE FROM STOCK FROM

Z \& I AERO SERVICES LTD 44A WESTBOURNE GROVE, LONDON W2

Telephone 01-7275641
Telex 261306
WW- 036 FOR FURTHER DETAILS

Endiess Loop Cartridge Units
 - Designed, Developed, Manufactured.
 As used in industrial monitoring alarm and public address systems etc., - by manual or remote control. All enquiries welcomed.

 FITCH TAPE MECHANISMS

Write or phone:
7 a Balham Grove, London, SW12. 01-673 1362.
WW-037 FOR FURTHER DETAILS

THEN CONTACT THE APPOINTED U.K. DISTRIBUTORS :-

REPAIR AND
RECALIBRATION
SERVICE AVAILABLE ON AVO MULTIMETERS

farmell insthuments limited, sandeeck way. wethergy, yohkshife LS22 4DH TEL: 09373541 TELEX 557294 LONDON OFFICE TEL: $81-8025359$ WW-038 FOR FURTHER DETAILS

MODEL 8 MK. V

INSTRUMENTS
Industrial and Precision Grade
7-14 DAYS SERVICE
to solve your instrument problems CONTACT

76-78 DEPTFORO HIGH STREET. LONOON. SE8. TEL: 01-692 2689

These actlve filters are designed to take over the functions of passive filter networks in audio telecommunications systems. They offer several advantages, in space-saving, economy and reliability.
As a size comparison, one active filter will take up the same space as two Post Office Type 3000 relays. By using the same fixing and terminal holes as the relays, it offers an extra convenience when baseboards are being prepared. By replacing inductive components with solid state devices, filter characteristics havebeen obtained at less cost, without insertion loss, and with increased flexibility and economy. These new active filters have B.P.O. approval, and have wide applications, in the audio area and in signalling and control systems.

PLASTICS MOULDING
ENCAPSULATION
WHITELEY ELECTRICAL RADIO CO. LTD.
Mansfield, Notts, England. Tel. Mansfield 24762
London Office: 109 Kingsway, W.C.2. Tel. 01-405 3074
WW-040 FOR FURTHER DETAILS

low cost memory card is easy to interface....

Limrose's tow cost Random Access PAemory' Cyd Type R5S 3000 uses 'stotic' memery chips and is very easy to interface with any equipment. All inputs and out puts are TTL compafible and no clock or timing eensiderotions are necessory when reading or writing into the r tacry.

The RS5 3000 features a complete menory system on a simgle printind cirevit boord and meonures of Inch $\times 7 \frac{1}{2}$ Inch with a 43 -wof edge connecter temminotion. Also oveilable is a Atemery Address Ropister for exponsion up to 4096 words, and a power supply cord suitablo for driving up to four R\$S 3000 cards at a rime.
Fully deceded address lines, Tri-stote out put, simple asynchronous control lines and low cast mok cs this sytrem ideal for wes as a buffer stero in amalt computars ete.

8-IO KINGSWAY, ALIRINCHAM, GHESHIRE, WAI\& IPI
Iel. 0619288063

WW-04I FOR FURTHER DETAILS

BIGBOOST FORTHIEGARDNERS RANGE 50 Hz .300 A Syuare Wave Inverters

It it's produced by Gardners it must be something special, and it is! Now available, models 107A and B are 240 volts ac trom 12 and 24 voit battery systems.

Both models ofler unusually high oulput ratings enabling the user to operate many conventional loads such as lighting and small power fools in situations where main power supplies are not available

Gardners inverters are designed to dnve any mams operated equlpment which is not unduly sensitive to the dilterence between sine and square waveforms incandescent lamps. TV sets electric drils are typical of a wide tield of possible applications Both the 107A and 8 models are rated a! 300VA (300W UP.F.) and will accommodate rasonable short term overloads. Price EB7 plus VAT. Brochure GT 28 gladly semt on request.

Specialists in Electronic Transformers and Power Supplies

GARDNERS

TRANSFORMERS LIMITED
Gardners Fransformers Limited Christchurch Hampshire BH23 3PN Telephone 02-015 2284 TELEX 41276 GARDNERS XCH IVW-042 FOR FURTHER DETAILS

A NEW STANDARD FOR SOUND REPRODUCTION HD250 High Definition Stereo Control Amplifier

Designed for disc and tuner input and two tape machines, with complete recording and reproducing facilities. .

The HD250 amplifier establishes a new standard in amplifiers for sound reproduction in the home. Improvements have been made in respect of performance, engineering design and quality of construction. We believe that no other amplifier in the world can match the specification of the HD250 at any price. Look at extracts from the specification below.

Power output Rated:

Maximum:
Distortion
Pre-amplifier:
Power amplifier: at rated output: at 25 w output:

50 watts average continuous power per channel. into àny impedance from 4 to 8 ohms. both channels driven. 90 watts average power per chamel into 5 ohms load.

Zero. (Cannot be identified of measured as it is below inherent cirauit noise.)
Less than 0.02% (typpically 0.01% at 1 kHz) Typically 0.006%.

Hum and noise output

Sizē: $\quad 17^{\prime \prime} \times 4 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$ deep overall.
Weight: $\quad 21 \mathrm{lo}$.

Write or phone for leaflet A25.274 which describes the design philosophy

 and conception of the HD250, together with a complete specification.RADFORD AUDIO LIMITED, BRISTOL BS3 2HZ. Tel. 0272662301
WW-043 FOR FURTHER DETAILS

The STARWET spectrumanalyser module ST 858 is the latest item to stem from the STARWET design team. The result of several years work it incorporates new concepts based on a different approach to spectrum analysing. The outcome being an ultra reliable instrument with an excellent specification (by any standards) at a price hitherto thought impossible for equipment of this calibre and type.

SPECIFICATION: Frequency range 10 MHz to 850 MHz in two calibrated ranges Sensitivity Better than 50 mv for 0.5 V per cm Resolution Better than 25 KHz . Dispersion From less than 1 MHz to 400 MHz variable Input Via 50 ohm BNC connector on front panel Output 1 Coax cable for connection to Y input on scope Output 2 Coax cable for connection to sync. input on scope Power requirements 240 volts AC 50 Hz 10 watts. (Other voitages and frequencies available as required) Size Width $11 \mathrm{in}(28 \mathrm{~cm}$.) Height $4.375 \mathrm{in} .(11.2 \mathrm{~cm}$.) Depth 8.5 in . $(\mathbf{2 1 . 6} \mathrm{cm}$.) Nett weight $7.5 \mathrm{lbs}(3.4 \mathrm{Kg}) \mathrm{Gross}$ weight 10 lbs (4.5 Kg .)
For further details contact the sole distributors of STARWET equipment:

7-9 ARTHUR ROAD, READING, BERKS (rear Tech College) Tel. Reading 582605

The new Rank WOW \& FLUTTER Meter Type 1742

Fully transistorised
for high reliability

Versatile

Meets in every respect all current specifications for measurement of Wow, Flutter and Drift on Optical and Magnetic sound recording/reproduction equipment using film, tape or disc

High accuracy
with crystal controlled oscillator
Simple to use
accepts wide range of input signals with no manual tuning or adjustment

Two models avallable:
Type 1742 'A' BS 4847: 1972 DIN 45507
CCIR 409-2 Specifications
Type 1742 'B' BS 1988: 1953 Rank Kalee Specifications

For further information please address your enquiry to Mrs B. Nodwell
Rank Film Equipment, PO Box 70
Great West Road; Brentford Middlesex TW8 9HR
Tel: 01-568 9222. Telex 24408. Cables Rankaudio Brentford
RANK FILM EQUIPMENT

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air. Metals. Liquids. Machinery. etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied in zippered vinyl case with transparent front and carrying loop. Probe, and internal $1 \frac{1}{2}$ volt standard size battery.
Model "Mini-On $1^{\prime \prime}$ measures from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, price f 17.50
Model "Mini-On Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$, price £20.00 (V.A.T. EXTRA)
Write for turther detals to
HARRIS ELECTRONICS (LONDON), 138 GRAY'S INN ROAD, LONDON. WC1X $8 A X$ ('Phone 01-837 7937)

WW- 045 FOR FURTHER DETAILS

HEPWORTH ELECTRONICS

A DIVISION OF B. HEPWORTH \& CO. LTD
Bank Buildings, Kidderminster.
PRESENT
ELECTRONIC
AC-DC DEVELOPMENT PRECISION CORPORATION CALIBRATORS

DC milli Volt Calibrator MV105
THIS IS ONLY ONE UNIT FROM THE E.D.C. RANGE OF MANUAL OR PROGRAMMABLE VOLTAGE STANDARDS.
Tel: 05622212 or 3 for Data and Price

\title{

Eidystone Radio

 Economy! Simplicity!

 Economy! Simplicity!

1830 Series C.W, M.C.W, A.M, S.S.B

Reliability!

Reliability!

Crystal controlled
Transistorized HF/MF general purpose receiver
$120 \mathrm{kHz}-30 \mathrm{MHz}$ in 9 ranges
Rack mounting' as standard
Cabinet optional extra
AC or battery operation
British MPT approved as ships reserve receiver

Illustrated brochure from:
Eddystone Radio Limited
Alvechurch Road, Birmingham B31 3PP. Tel: 021-475 2231. Telex 337081.
A member of Marconi Communication Systems Ltd

BIAS ELECTRONICS

PROFESSIONAL RECORDERS

for broadcasting and studio use.
Our range includes console, transportable and rack mounting machines.
Mono-stereo $\frac{1_{4}}{4}$ ". 4 track $\frac{1}{2}$ ". 4 track $\frac{1}{4}{ }^{\prime \prime}$ slow speed radio station loggers all to IBA requirements.
BIAS ELECTRONICS LTD.
$01-9473121$
Unit 8, Coombe Trading Estate, 112-120 Coombe Lane, London SW20 0BA

More than 350 different types to choose from

nombrex

MODEL 40
WIDE RANGE AUDIO GENERATOR

* 4 RANGES. $10 \mathrm{~Hz}-100 \mathrm{KHz}$.
* SINE AND SQUARE WAVE OUTPUT.
* DUAL CALIBRATED ATTENUATOR.
* STABILIZED OUTPUT LEVEL 1 V .

Trade and Export enquiries welcome Send for full technical leaflets
Post and Packing 35p per unit
NOMBREX (1969) LTD., EXMOUTH, DEVON.
Tel: 03.9523515
WW-050 FOR FURTHER DETAILS

ROGERS

AUDIO TEST EQUIPMENT

A comprehensiva, versatilesange of test equipment primarily designed for the measurement of high quality audio equipment, but with additional applications in the electronics industry in generat. The equipment is of particular interest to the prolessional audio engineer, recording studios, broadcasling authorities and aducational establishmants.

DM344A Distortion Factor Meter. Designed to make accurate and rapid measurements of total harmonic distortion generated within high quality audio amplifiers. recording and transmission equipment. Selling Price: Cfassis - £132.50.c/w. Case - £140.00 + VAT.
S324 Low Distortion Oscillator. Generates a pure sine wave and has been designed as a general purpose low distortion signal sousce. The primary application, used in conjunction with the DM344A is the measurement of total harmonic distortion. Salling Price: Chassis - £56.50.c/w. Case - £62.50 + VAT.
AM324 AF Millivaltmeter. Designed for voltage measurements in the audio and low RF ranges and. principally for measuring low level signals in high impedence circuits. Selling Price : Chassis - £64.00.c/w. Case - $£ 70.00+$ VAT.

Model 'A' Noise Generntor. A partabie bettery operaled unit designed for carrying out listening tests on loudspeakers. 'Pink or 'White' noise can be selected andoutput can be continuous or burst. Output is continuously variable. Selling Prico: $\mathbf{£ 3 2 . 5 0}$ +VAT.
Fult Colose literature describing the compatet range may be bad on oncuest
ROGERS DEVELOPMENTS (Electronics) LIMITED 4/14 Barmeston Road, London SE6 3BN. England Telephone: 01-698 7424/4340

WW-052 FOR FURTHER DETAILS

DAVENPORT

FULLRANGE LINE SOURCE PUBLIC ADDRESS

Twelve $8^{\prime} \times 5^{\prime \prime}$ elliptical and one $12^{\prime \prime}$ twin cone CABINET MEIGHT 66.'

SPEAKERS

Eight $8^{\circ} \times 5^{\prime *}$ elliptical and one 10° twin cone CABINET HEIGHT 48*

A BRDCHURE GIVING FULL SPECIFICATIDN; INCLUDING SPECIFIC SOUND PRESSURE LEVELS. FREQUENCY RESPONSE GRAPHS AND POLAR DIAGRAMS. AVAILABLE FROM THE MANUFACTURERS.

U.V. Recorder, Storage Scope, Scope \& Camera?
 The alternative!

 000000000000000000
 RECORDING OSCILLOSCOPES

Medelec Fibre Optic Recording Oscilloscopes are highly versatile top quality general purpose units specially designed for industry and research. They are based on the wide experience gained by Medelec in the exacting field of medical instrumentation.

High quality, low cost recording is Wideband brilliance modulation \& Five Recording Modes include Raster Simultaneous recording and viewing \& Single frame or continuous records from a built-in camiera

For full technical details or a personal demonstration of the FOR-4 or any Medelec unit please contact us.

medelec

Medelec Limited Woking Surrey
Tel: Woking (048 62) 70331 Telegrams: Medelec Woking

The Great Sound of Vitavox

Nothing succeeds like success.
You met the new Vitavox power range last year. Its success was instantaneous, and has been growing ever since.
Good - but not good enough for us. We have been, and are, continuously improving our units. We want to give you the best value and performance - so now we offer you, improved on 1973. the latest ...

```
- S3 Pressure Unit
AK 156 Loudspeaker
- H.F. Horn
Dividing Network
```

The matchless range -now better than ever... Giving You ...

Westmoreland Road,
London NW9 9RJ
Telephone: 01-204 4234

Please send me further information on your product range
Name
Company \qquad
Address

Р.С.BORED?

- not with the

DAIO ${ }^{33 P G}$

A unique drafting aid for the electronics engineer enabling him to prepare in minutes a perfect PCB.
A fine-tipped marker charged with a free-flowing etch-resist ink. Simply draw the desired circuit onto copper laminated board-etchclean.
The circuit is ready to use.

NO MESS - NO MASKING A perfect circuit every time!
£1. 10 for one-off, $£ 4.40$ for six, $£ 8.80$ for twelve. VAT -and post included. Available now in every country in Europe.
Please send me further details on the 33PC:
Name
Address
Post to: DECON LABORATORIES LTD.
FREEPOST
PORTSLADE, BRIGHTON, ENGLAND
(No Stmp Needed) Phone O273 414371

400 to $10,000 \mathrm{c} / \mathrm{s}$...tell us what you need, and our little plugin fixed frequency oscillator will supply it, dependably! It's solid state, based on a single silicon transistor and available encapsulated in epoxy resin, with all the Whiteley experience of the technique, or in a cased form as illustrated-both giving a long working life. Output is 10 mW into a 600 ohms load. Standing on its octal base, it is very proud of its P.O. approval. There's no doubt, when you need a single audio frequency sine wave output for any purpose... this is a very useful little chap to have around. Ask us for details.

PRODUCTION CAPABILITY
CABINET MAKING
SHEET METAL FORMING/FINISHING
PLASTICS MOULDING
Further information from:
ENCAPSULATION
WHITELEY ELECTRICAL RADIO CO. LTD.,
Victoria Street, Mansfield, Notts., England.
Telephone: Mansfield 24762
London Office: 109 Kingsway, W.C.2. Telephone: 01-405 3074

Over 50years... Nothing succeeds like success.

In 1924, we employed six people. Then, wireless was a novelty. We were selling condensers as piece parts tohome radio builders. We've diversified alot and have become an international name, synonymous with quality components for the communications industry.

Traditionally, we've been involved in Variable Capacitors. Our latest is the Trimline Capacitor, an advanced and extremely miniaturised component.

Several new products will come on to the market this year. One new area is in Angle and Linear Displacement Transducers.

We're not standing still in other areas either - we've expanded our range of Tetfer Trimmers. And increased its versatility.

A third of our business is export. All in all, the last 50 years have been good. And we've no reason to expect the next 50 won't be better.

That's success for you.

Write for further information to:-

JACKSON BROTHERS (LONDON) LIMITED

Kingsway, Waddon, Croydon CR9 4DG Tel: 01-681 2754/7 Telex: 946849 U.S. Office: M. Swedgal, 258 Broadway, New York, N.Y. 10007.

A new Loudspeaker of advanced design suitable for studio use and for home installations of the highest quality. UNITS: HF 2000 (dome 'pressure' type) MF 500 (Mid-range Dome 'pressure' type) Ultra linear $12^{\prime \prime}$ bass driver and $12^{\prime \prime}$ $A B R$. The crossover has resulted from considerable research and crossover points are at 500 Hz and 5000 Hz 80 Watts Maximum, 4-8 ohm. This monitor loudspeaker system has an exceptionally wide and flat frequency response. Very low order harmonic and inter-modulation distortion. Precise response to transients. Beautifully maintained polar response ensures absence of unwanted directional effects and provides a highly satisiactory stereo image throughout the listening area. Matched pairs.
SIZE $40 \times 15 \times 11 \frac{1}{2}$ Natural Teak or Walndt Cabinet

Celestion

Loudspeakers for the Perfectionist ROLA CELESTION LTD. OITTON WORKS, FOXHALL ROAD. IPSWICH, SUFFOLK IP3 8,

AUDIO I.C'S
Audio I.C. Leaflat No. 12 (Circuit data ate) FREE with $1 . \mathrm{C}: \mathrm{s} 10 \mathrm{p}$ soparate'y.

Low noiso Dual Pre-amp Singla
MFC 4000 A or $\mathrm{B} \quad 49 \mathrm{p}$
250 mW
TAA30D
1 Wart into An. 9v rail
LIM380
2 Watt
S4414.
3 Watt NEW gin for pint
roplaciment for SL4030
tbaboo
Watt into 358

BHA0002. \quad f3.95

HE540L
35 Wart driver
T099 Cen
MCi310
Inductarless. phase-locked toop
multipler stereo docoder, supplied with
FREE lasilat No 11 lavailable seporalaly 10 P] MC1312
The I.C. CBS SQ Quadraphonic decader Availabla, only with alt components inc. varoboard 8 datailed lasflot. Prica is all incluative.
'see $\$ 1414$ above. Also available, heatsiank lor SL414 or SL415 15β Suitable starso P/C Board 69 p . $\mathrm{SL415}$ (5 Watl Amp) 2N4 14 wih fiee laaflet no 10

74 Suries ITL
NTERNATIONALLY
KNOWN BRANDS
Ist. GRADE DEVICES AT NEW

IsI.GRADE DEVICES AT NEW		
FOCK BOTTOM PRICES		
SN7400	20p	5N7473
SN7401	$20 p$	SN7474
SN7402	20p	5N7475
5N7404	20p	SN7476
SN7408	25p	SN7490
SN7410	20p	SN7492
5N7413	31p	SN7493
SN7420	20p	SN74100
SN7430.	20p	SN74121
SN7441	$81 p$	SN74141
SN7442	$81 p$	SN74192
SN7447	£1.45	(1)

$41 p$
$41 p$
$63 p$
$44 p$
$82 p$
$82 p$
$82 p$
2.37
$45 p$
$81-10$
$82-16$
Cheapest Opto yet Galsp LED's

$: 8$ $-: 8$
 \section*{}

ERBOMASOMTE Electronics

Dept. 5.
56, Fortis Green Road, London. N10 3HN .

DIGITAL CLOCK

MM5314

12 or 24 hour. 4 or 6 digu 50 or 60 Hz operation leading zeio supression single voltage supply similir to DIGITRONIC in P.W. March 1973. Only

InDUCTORS
LP1 178 MULLARO 470KM Block I.F. Filfer Now only $£ 1$ Ag

Denco (Clecton) Led. Maxd-a Colit

Transiator Range

Sories $1 T$ to $5 T$ inclusive Blue: Yeliow: Aed \& White All 49 p each
Dual Purpose Range: Series 1 to 7 inclusive
Btus: Yellow: Red \& Whit All 49p each 1 to 5 Green 53 peach
Farrite Rod Aariala Mediums \& Long Wave for 300 pf \& 500 pf tuning tetare which) 88p eech
R.F. Chok Aange 0.1 uH to 19 mH For tull deralia ask for leaflet No. 5 p各p5

Mullard LP 1186

Varacior diode tuned F.M. runing heart E4.15 as described in P.E. May 1973 LPIIA5 matching l.Fi strip 44.05

11 5ith
$20+20$ Watl integrated ttareo amplifier Kit Eupert state-ol-the-art, dosign by engineera of Temas Instevenginect
mont:

ㄷㅌㅋ EA1000
3 Watt amplifies modula Price intluding handbox and FREE HEATIINK IQuantity Discountaf Our Price E2AB

A1005S
F.M. tuner ehassis. fully trensietorised. 9 Volt ponitive earth pperation Our Price E8. 20

A1018
F.M. Tuner, similar to Multiplex Stereo Decoder A10055 but in oiled fully buith of aligned to walnut case. Wlack \& match A1005S silver fascia ate Our Price E11.39

A1005MS

Oue Price E6-60

A Marriage of Perfection

. . between the world famous 3 M Wollensak cassette tape transport and no compromise electronics designed and manufactured in Britain.

The Wollensak transport, renowned for maintaining its high performance throughout years of use, is matched to electronics designed to give reel to reel quality with cassette convenience and economy:
\star high reliability, ensured by solid state switching:
\star intrinsic low noise further improved by Dolby Noise Reduction System;
\star low distortion at every stage:
\star correct equalisation and bias levels for regular and chromium dioxide tapes:
\star high overload margins throughout:
\star separate amplifiers for microphone. Iow level line and high level line inputs;
\star controlled headphone output:
\star twin peak programme meters.
Recommended retail price $\mathbf{£ 1 6 5 . 0 0}$
(excluding V.A.T.)

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$
WW-063 FOR FURTHER DETAILS

Acclarmed as the World's leading telescopic tiltover tower in the field of radio communication Models from 25' to 120^{\prime}

Look for the name STAUMECH
Strumech Engineering Co Litd Coppice Side. Brownhills, Walsall. Stafls

THE NEW NELSON-JONES FM TUNER

PUSH-BUTTON VARICAP DIODE TUNING

(6 Position)
('WW' JUNE '73)

Exclusive Designer Approved Kits

What ara the Important festuras to look for In an FM tuner klt $?$ Naturally itmust heve an attractive appearance when bullt. but it must also embody the latest and best in clrcuit design such as:-
MOSFET
Front end for excellent cross modulation performance and low noise.
3 GANG Tunling for high selactivity
VARICAP :uning diodes in back to back configuation fo low distortion. CERAMIC IF tithers for defined IF response.
INTEGRATED circult IF amplifiers for roliability and excellent limiting/AM rejection.
The Nelson-Jones Tuner has all of these features and many more. and more importantly the design is fully proven not just with a lew prototypes but with many thousands of working tuners spread across the world.

PHASE LOCKED Stereo decoder with Stereo mute, see below.
LED
PUSH BUTTON
IC STABILISED
CABINET
fine tuning indicators.
tuning (with AFC disable) over the whole FM band. and S/C protected power supply. veneared Insida and out.

Typa Speen: 20 dB qulating 0.75 uV . Image rejection -70dB.1.F. Rejẹction -85 dB
Basic tuner module prices stert as low as $£ 10.79$, with complete kits starting at $\mathbf{£ 2 3 . 9 5}$ (mono) + PP 50p. and of course ell components are available seporately.
Ourlow cost alignment service is available to customers without access to a signal generator. Piease send lerge SAE for our latest price lists which detall all of tha many optlons and special low prices for complate kits. All our other products remain availabla.
PORTUS AND HAYWOOD PHASE LOCKED DECODER (W.W. Sept. '70). Still the lowest distortion P.L. decocer available. THD typlcelly 0.05% (at Nelson-Jones Tuner O/P level) I Supplied complete with Red LED.
Price £5.50 when bought with a complate N-J tuner kit or $£ 7.68$ if bought separately. (P.P. 19p.)

PLEASE NOTE. Existing tuners ere readily convertible and kita/parts aie available for this purpose.
TEXAN AMPLIFJER. We have deslgned the tuner case and metalwork to match the Texan amplifier (see photograph). Complete designer epprovod Texan kits aro available et £ $28-50$ plus p.p 50 p including Toak Slaeve.

Avallable Shortly: Vericap tuner using Mullard LP1185 module-no alignment

THE RONDO QUADRAPHONIC SYSTEM
 (20 WATTS/CHANNEL)

Complete designer approved kits for this outstanding Quadraphonic Sound System ('P.E.' Sep. '73. etc.) with the following features:-

[^4]
V.A.T. Please add V.A.T. at 10% to all prices for U.K. orders.

INTEGREX LIMITED, P.O. Box 45, Derby, DE1 1TW

WV- 066 FOR FURTHER DETAILS

COMMUNICATIONS

an international exposition showing complete Radio \& Data Communications systems under the following categories

DATA COMMUNNICATIONS:

Systems for the transmission of data (and speech) by digital methods; data modems, data loggers, terminals, networks; telemetry: facsimile and broadband data systems; error correction.

MOBILE RADIO COMMUNICATIONS: (Civil)

Systems for communications with and between aircraft, ships and land vehicles; radio determination and radio navigation systems; personal radio and paging systems; orbiting satellites for maritime and aeronautical mobile systems.

FIXED RADIO COMMUNICATIONS:

Point-to-point services for speech and data transmission using löng-distance radio links; VHF. UHF and microwave radio-relay links; over-the-horizon (and tropospheric scatter) communications satellites and earth stations.

DEFENCE COMMUNICATIONS:

Systems for tactical and strategic situations, taking into account the special requirements of military (land. sea and air) communications including transportability, flexibility, robustness, reliability and compatibility.

WORLD"S LARGEST COMIMUNICATIONS EXPOSITION

COMMUNICATIONS 74 the second Radio \& Data Communications Exposition has five completely interrelated dimensions which together justify our claim that the event is the world's largest.

Dimension 1 THE EXHIBITION

The Exhibition has already attracted well over 100 International Exhibitors, both manufacturers and users. They include the following world famous company names and authorities.
Bell Telephone (Belgium). BAC, Cable \& Wireless. Decca, Exchange Telegraph. The Home Office, Honeywell. IAL. ITALTEL (Italy). ITT. Marconi, Ministry of Defence, Post Office Telecomms.. Racal, Redifon, RF Communications (USA). Siemens. Storno. Thomson CSF (France).
Together they cover the fields of DATA-MOBILE RADIOFIXED RADIO \& DEFENCE COMMUNICATIONS.

Dlmension 2 THE CONFERENCE

So many papers were submitted for the Conference that it was necessary to introduce an additional session on each of the four days. There will now be 56 papers presented in the course of the Conference.
The main user stream will be linked to the daily themes of the total COMMUNICATIONS 74 event. and the technical and designer sessions in parallel will ensure that delegates will find something of interest to them during the whole run of the Conference.
Another innovation. the introduction of afternoon sessions on two days for the shorter presentation of papers on a wide range of topics. Interest will be maintained on two evenings with films on communications subjects.

Dimension 3 THE INWARD MISSIONS

Six Inward Missions sponsored by the Electronic Engineering Association are being brought into this country to coincide with COMMUNICATIONS 74 . Four are made up of uisers of Radio \& Data Communications systems, covering the four major aspects of communications in the exhibition, an official delegation from NATO/SHAPE and a mission of International Journalists.
Official guests. they are invited into this country through the British Overseas Trade Board and the Ministry of Defence in association with leading manufacturing companies. The Home Office. Post Office Telecommunications and The Communications 74 Committee are also host authorities, and a two-day visit to COMMUNICATIONS 74 is part of the Missions programme.

Dimension 4 THE DELEGATES

The most important dimension of all, we need to receive many thousands of you THE DELEGATES. if we are to call COMMUNICATIONS 74 a success. However, we already know that we may expect a very heavy traffic of senior Radio \& Data

Communications systems users throughout the four days. You will have noted under the headings of Exhibition and Conference that there will be a lot to see and hear and that means hard work. However, we have also designed a social programme. it is below and we hope it will help to make you feel that you are seen to be very important in our scheme of things and that you will be made very welcome at COMMUNICATIONS 74.

Dimension 5 THE VIP PARTICIPATION AND THE SOCIAL EVENTS

In COMMUNICATIONS 74 we have a full commitment on the part of government ministries and agencies, and an international line up of the best known manufacturers in Radio \& Data Communications.
They have come together and have supplied leading authorities in their various fields to speak in our planned schedule of four official luncheons and a banquet. In addition we finish off on a friendly note with a Farewell Supper-Dance.
From all of this you will realize that a complete programme is waiting for you the user. manufacturer or designer of Communications systems throughout the four days of COMMUNICATIONS 74.

Free Exhibition and Conference Programmes are now ready, so please fill in and return coupon below. If you have already done so. you may expect your Exhibition tickets and Confererice Programmes in the next week or so.

COMMUNICATIONS 74
An International Radio \& Data Communications Exposition Metropole Convention Centre, Brighton, England.
4-5-6-7 June, 1974
Gentemen: Please send
Free Exhibition Tickets \square Conference Programmes: \square
NAMES
TITLES
COMPANY
ADDRESS

ETV Cybernetics Ltd., Beta, 109 Kingaway. London WC2 6PU Telephone: 0才-405 6233 Cables: Busquip London WC2

NEW STANDARD CASES from OLSON NEW SERVICE FROM STOCK - DESPATCHED BY RETURN OF POST

TYPE	WIATH	HEIGHT	QEPTH	FRONT PAN DIM.	PRICE	LEGEXTRA
21	61/ ${ }^{\text {" }}$	$4 \frac{1}{2}{ }^{\text {. }}$	$4 \frac{1}{2}{ }^{\text {. }}$	6"x4"	f2.95	70p
22	$8 \frac{1}{2}{ }^{\prime \prime}$	$5 \frac{1}{2}$:"	$5 \frac{1}{2}$ "	8"×5"	£3.30	70p
23	$10 \frac{1}{2}{ }^{\prime \prime}$	$6 \frac{1}{2}{ }^{\text {. }}$	$6 \frac{1}{2}{ }^{\prime \prime}$	$10^{\prime \prime} \times 6$ "	f3.95	75p
24	121 ${ }^{\prime \prime}$	$7 \frac{1}{2}{ }^{\prime \prime}$	$7 \frac{1}{2}{ }^{\text {. }}$	12"×7"	f4.30	75p

Our Trade Counter is open for personal caliers from 9 a.m. to 5.30 p.m. Monday-Friday
POSTAGE EXTRA + 10\% V.A.T TEL: 01-739 2343
OLSON ELECTRONICS LTD., FACTORY NO. 8, 5-7 LONG ST., LONDON E2 8HJ.
Cases made from 20swg. zinc coated m / s. Front \& rear panels 16 swg. aluminium. Cases finished in Olive green hammertone with front panels in light straw shade 384. All cases fitted with ventilated rear panels and a very attractive chrome plated retractable leg can be fitted as an optional extra.

WW-068 FOR FURTHER DETAILS

COMMUNICATIONS

SUMMARY OF CONFERENCE SESSIONS
 Organised by ELECTRONICS WEEKLY and WIRELESS WORLD

Tuesday June 4-
 Data Communications Day

Session 1: Data Communications
9.30-12.30: Winter Garden
11.20: Highlight Paper

Session 2: Equipment Design 1 9.30-12.30: Clarence Room

Session 3: Mobile Communications 9.30-12.30: Hall 5

Evening Film Session:
From 18.30: Clarence Room
Thursday June 6-
Fixed Communications Day
Session 8: Fixed Communications
9.30-12.30: Winter Garden
11.20: Highlight Paper

Sesšion 9: Equipment Design 3
9.30-12.30: Clarence Room

Session 10: Defence Communications
9.30-12.30: Hall 5

Session 11: Short Communications Papers 14.30-16.30: Hall 5

Wednesday June 5-

Mobile Communications Day
Session 4: Mobile Communications 9.30-12.30: Winter Garden 11.20: Highlight Paper

Session 5: Equipment Design 2 9.30-12.30: Clarence Room

Session 6: Maritime Communications 9.30-12.30: Hall 5

Session 7 7: Short Communications Papers 14.30-16.30: Hall 5

Evening Film Session:
From 18.30: Clarence Room
Friday June 7-
Defence Communications Day
Session 12: Defence Communications
9.30-12.30: Winter Garden
11.20: Highlight Paper

Session 13: Equipment Design 4 9.30-12.30: Clarence Room

Session 14: Testing/Mobile Facsimile 9.30-12.30: Hall 5

Further information on the conferènce can be obtained by completing the relevant parts of the form below and returning it to:

IPC BUSINESS PRESS LIMITED,

Room 15, Dorset House, Stamford Street, London SE1 9LU
If you wish to order tickets immediately please complete the appropriate sections of the form below.
The fees are as follows 1 day: £15 $\mathbf{2}$ days: $\mathbf{£ 2 5}$
$\mathbf{3}$ days: $£ 35 \mathbf{4}$ days: $£ 40$
All prices are exclusive of 10% VAT.

*CONFERENCE PROGRAMME/*TICKET APPLICATION FORM

*Delete as necessary
Please send me the complete conference programme
OR Please send me ticket(s) for the following day(s):
Tuesday, June $4 \square$ Wednesday, June $5 \square$ Thursday, June $6 \square$ 'Friday, June $7 \square$ / enclose remittance
$\mathbf{1}$ day @ $£ 16.50 \square 2$ days @ $£ 27.50 \square \mathbf{3}$ days @ $£ 38.50 \square \quad 4$ days @ $£ 44.00 \square$
Cheques should be made payable to IPC Business Press Ltd and sent to IPC Electrical-
Electronic Press Ltd, General Sales Dept. Room 11, Dorset House, Stamford Street,
London SE1 9LU.

Name

Company
Address
Signature (if ordering tickets)
Date
Company registared in England. Registered address Dorset House. Stamford Sireet. SE1 9LU. Registered Number 677128.

$<\nabla$ CHINAGLIA

STEPPING STONES TO

SUCCESS

PANEL METERS

PAR EXCELLENCE

FOR EVERY WALK OF LIFE

$\square \rightarrow+$(UK) Ltd. Telephone 01-352 1897
WW-070 FOR FURTHER DETAILS

Join the Digital Revolution

Teach yourself the latest techniques of digital electronics

Computers and calculators are only the beginning of the digital revolution in electronics. Telephones, wristwatches. TV, automobile instrumentation - these will be just some of the application areas in the next few years.

Are youprepared to cope with these developments?

This course of four volumes - each $11 \frac{3}{4}^{\prime \prime} \times 8 \frac{1}{4}^{\prime \prime}$ - guides you step-by-step with hundreds of diagrams and questions through number systems, Boolean algebra, truth tables, de Morgan's theorem. flipflops, registers, counters and adders. All from first principles. The only initial ability assumed is simple arithmetic.

At the end of the course you will have broadened your horizons. career prospects and your fundamental understanding of the changing world around you.

£2.95 Acomplete programmed learning course in 4 volumes

including VAT, packing \&
 surface post anywhere in the world.
Payment may be made in foreign currencies. Quantity discounts are available on request.

Guarantee

If you are not entirely satisfied with Digital Computer Logic and Electronics you may return it to us and your money will be refunded in full, no questions asked.

Designer
Manager
Enthusiast
Scientist
Engineer
Student
This course is written to meet your needs in coming to grips with the theory and practice of digital logic and electronics. The programmed instruction system ensures a high level of retention of everything you learn.

To: Cambridge Learning Enterprises. 49 Main Street, Hartford. Huntingdon.
Please send me set(s) of Digital Computer Logic and Electronics at $£ 2.95$ for which I enclose cheque/PO/money order value

Name
Address

CAVERN ELECTRONICS

1974 COMPONENTS CATALOGUE

30p pius 11 p Post and Packing
30 p refunded on your first order of $£ 3$ or over HUNDREOS OF COMPONENTS - ILLUSTRATIONS DATA

Details of our Credit Scheme included Send Cheque or P.O. for 41 p to :-
CAVERN ELECTRONICS 94 Stratford Road, Wolverton MILTON KEYNES MK12 5LU
Retail Counter open Monday to Saturday (Closed all day Wednesday)

ELESTA MINIATURE PLUG-IN RELAYS FOR INDUSTRIAL APPLICATION
High performance 3 -pole \& 4-pole C / O relays.
SEV tested. CSA, VDE \& DEMKO Approved.
Coil Voltage: 3 V to $240 \mathrm{~V} A C \& D C$.
Contact Rating: 4A 250V AC resistive.
BRITEC LIMITED
17 Devonshire Road, London SE23 3EN Tel: 01-699 8844 Telex: 896161

WW-073 FOR FURTHER DETAILS

Telford Oscilloscope cameras

Type A modular system with widest range of film backs, ienses, viewing systems and adaptors to meet virtually all requirements.

Plus inexpensive Type P (prices from £50) utilising coaterleas Polaroid (8) film and Type C with economical 35 mm film for continuous feed.

From Japan's biggest manufacturer of Tape Duplication equipment, the DP4050 reel to cassette copier.
Highest attainable in cassette performance.
Foolproof operation for non-skilled personnel.
Eight times copy speed.
Complete relay-solenoid operation.
Automatic cycle through Record-Rewind-Stop.
Absolute consistency in manufacture through large volume production.
Cassette to cassette version also available.

Otari MX7000 Master Recorder. From $£ 879$ excl. VAT

3-SPEED - $3 \frac{3}{4} / 7 \frac{1}{2} / 15$ ips or $7 \frac{1}{2} / 15 / 30$ ips. Electronic speed change. Cast aluminium deck - $1^{\prime \prime}$ thick. Sel-sync. Cannon inputs, optional balanced or unbalanced. Balanced line outputs. Built-in tone oscillator - 700 Hz or 10 kHz . Vu meter reads input, output or bias current. Equalisation and bias controls on front panel. Headphone output. F.E.T.S. all inputs. 2 or 4 channel.

No other cleaner has all these advantages:-

1. Only 100% pure, naturat ditmond graima are utilised.
2. Alades are treated whh hard chrome 10 reinforce the sorting of the diamond grains. to obviate loosening or besakaway during uae. This process also prevents clogging of the dismonded surface by residues resulting from use.
3. All dizmonded blades are rectified to ensure an absolutely smooth surface by eliminating dismond graina which mar rise above the aurface. This etiminales all excessive scratching during use.
4. All diamond grains are rigidly calibrated to ensure a perfecthy uniform grain size of either 200.300 or 400 .
5. The etrome gives a very weak co-efficient of friction and the rigidity of the nyton handie is calculated to permin proper utilisation and yat pliant enough to avoid undue presauras on highly delicate relays.

- Grain size 200 . thicknass $5 \mathrm{E} / 100 \mathrm{~mm}$., both faces diemonded. For quick cleaning of indubtrial tolaye and ewiching equipment, atc.
- Graln alse 300 , thickresae $55 / 100 \mathrm{~mm}$., both taces diamonded. For emaller equipmunta, like telophone relsys. computer relsy, etc.
- Grain tize 400 , thickness $25 / 100 \mathrm{~mm}$.. one face diamonded. For sensitive relaya and tiny contacts. Two close contacts lacing oach other can be individually cieoned, because onfy one face of the spatula is abrasive.

Sole Distributors for the United Kingdom
SPECIAL PRODUCTS (DISTRIBUTORS) LTD 81 Piccadilly, London WIV OHL. Phone: 01-629 9556 As supplied to the M.O.D, U.KA.EA., C.E.G.B. British Rallland otter Public Authorition: alwo major industrial and electronic users throughour the United Kingdom.

WW--077 FOR FURTHER DETAILS

THE MINITEST
 IS PREFERRED

The SEI MINITEST has made a remarkable impact in the pocket-sized multi-range meter market. by making itself a firm favourite with discerning people in the industry. Let's look into the reasons why.
First, the appearance. Diminutive, neat, wipe-clean plastic cover with pressed steel case. Controls are simple and easy to use. Second, the range. The Minitest measures a.c. and d.c. voltages d.c. current and resistance over 20 ranges 10 a sensitivity of 20.000 and 2.000 ohms per volt d.c. and a.c. respectively. Third, high voltage probes. These extend the range to 25 or 30 kV d.c.

Little wonder the Minitest is preferred! SALFORD ELECTRICAL
INSTRUMENTS LTD
Peel Works. Barton Lane, Eccles, Manchester M30 OHL
Telephone 061-7895081. Telex: 667711. A member company of GEC Electrical Components Lid.

$\mathscr{S E}$

Phoenix Electronics (Portsmouth) Ltd.
139-141 Havant Road.
Drayton, Portsmouth. Hants PO6 2AA
Full member of AFDEC-the industry's association of franchised electronic component distributors.
Our prices include VAT at the current rate--and carriage on all goods is free.
Send for our catalogue and price list-we'll mail that to you free, too.

THIS MONTH'S BARGAIN OFFER-

Small-signal silicon transistor kit.
5 each-BC108, BC178. BC205, BC208,
BFY51. 8SY95A, ME1120. ME8003 and 2N2926-catalogue value $\mathbf{f 6}$-20.
BARGAIN PACK PEP1-£460.
Please send your catalogue-free!
Name
Address \qquad .WW4

WW-079 FOR FURTHER DETALLS

For Components and Service Tel: Sittingbourne 70533 Telex:965313

```
-conNECTORS
-cIRCULAR
```

-R.F.

- EDGE
-RACK \& PANEL

- FANS

 -R.F. CABLE R.f. CableCHOKES Brelays

■BLOWERS
AMPHENOL • ETRI • DELAVAN TUCHEL • U.M.D.

Invader components Ltd

[^5]

Industrial Tape Applications
 5 Pratt Street, London NW1 OAE.Tel: 01-485 6162 Telex: 21879

WW-081 FOR FURTHER DETAILS

bench model

$36^{-} \times 18$ gauge capacity ... $£ 40.00$ carr. froe $24^{\text {a }} \times 16$ gauge capacitye38.00 cart, free Also the well-known vice model of
$36^{7} \times 18$ gauge capocity ... 821.00 carr, froe $\mathbf{2 4 "} \times 18$ gauge capanciry ... c15.00 carr, froe 18- X 16 gauge capocity ...e 515.00 carr. free add 10% Var to topat price of machine

Forms channels and angles down to 45 degrees which can beflattened to give safe edge. Depth of fold accord. ing to height of bench.
One year's guarantes. Monay back if not satisfied.

Send for details:
A. B. PARKER

FOLDING MACHINE WORKS, UPPER GEORGE STREET, HECKMONDWIKE, YORKS. Telephone 403997

ELEETRDIT:KITT

Electronic fun for all ages

THE MOST VERSATILE ELECTROMICS KITS. All components are beautifully encepaulated in unbreakable transparent plastic blocks. Perfect connectiona are mado WITHOUT SOLOERING, SCREWING OR UIRING.
INCREDIBLE VALUE. Build, dismantle and rebuild projacta eny number of times and invent your oun experiments too.
COMPLETELY SAFE, instructive and FUN - all kits operate from 9v. battery only. UALLUABLE MANUALS included with every kit.
Kit 2A-30 projects $E 10.45$ Radios, amplifiers, alarma microphones 2 -morse Kit 3A-100 projactsi20. 4 Qa 2 plus elactronic birds, cats, sirens, organs metroname, guns, light and gound, burglar alarms, ete. 3AOX-105 projects E 25.25 As 3 A plus solar cell experiments and complete sophisticated control民anel:-etc: 4ADX-150 projects $£ 33.95$ As Jadx plus Relay and Mater experimanta: ion concentration-, volume-, output-, field intonaity-valt-, resistance maters, ammeter,illuminometer, etc and many 2 many more: pRICES FULLY INCLUSIVE.

Cheque/P.0. (or 6 p. for literature) to:

ELECTRONI-KIT LTD, 408 St. John's Street, London, EC 1. (01-278 45799)

Samplebest Ltd for the amateur electronics engineer

DISPLAYS

```
CT 5000 series calculator chip
CT5005
```



```
\(\star 28\) pin DIL MOS-LSI chip
\(\star\) Four function \(1+,-, \times, \div 1\)
\(\star\) 12-digit drive
\(\star\) Right hand entry
\(\star\) Selectable (0, 1, 2, 3, 4,5) and fixed decimal point
\(\star\) TTL compatible
£5.65 ea.
```

CT 7000 series clock chip CT 7001

$\star 28$ pin DIL MOS-LSI chip
$\star 28 / 30 / 31$ day calendar

* 12/24 hour clock and 24 hour alarm
\star Snooze alarm
$\star 6$ digit display (hr. min. sec)
\star Clock radio features
$\star 50 / 60 \mathrm{~Hz}$ operation
\star On chip 60 Hz back-up
\star Seven segment or BCD outputs

£16.50 ea.

\star TL compatible
£1.25 ea. $£ 1.25 \mathrm{ea}$.

RESISTORS - Carbon film $\frac{1}{4}$ watt 5% tolerance 2 ohm 1 megohm. Pack of assorted values
Pack of 500- $\mathbf{£ 5 . 0 0}$

CASH WITH ORDER CHEQUES MADE PAYABLE TO SAMPLEBEST LTD AND SHOULD INCLUDE 5p PER UNIT FOR POST AND PACKING (MIN 25p) AND 10\% FOR VAT.

127 CLAYTON ROAD, CHESSINGTON, SURREY

Tel: 9492430

WW- 086 FOR FURTHIER DETAILS

54PAMNPIIEMK II

ELECTRONIC IGNITION KIT

COMPRISES

Everything:-
Ready-drilled Case and Metalwork. Cables, Cail Connectors. Silicon Grease. Printed Circuit Board, 5 -year guaranteed components and a full 8 -page instruction leaffet.

WHEN COMPLETE THE UNIT CAN BE FITTED TO YOUR CAR IN ONLY 15 MINUTES USING THE STANDARD COIL AND CONTACT BREAKER POINTS: TO GIVE YOU:
Instant all-weather starting, Up to 20% fuel seving. Longer battery life. Higher top speed. Faster acceleration. Spark plugs last about five times longer. Misfire due to contact breaker, bounce electronically eliminated. Purer exhaust emission resulting in less air pollution. Contact breaker butn eliminated.

Suitable for all petrol engines up to 8 cylinders
KIT-PRICE ONLY \& 11.62 (12v car only)

Ready-buitt Unit £14.95
Single coilVC.B. Motor Cycle $£ 17.60$ Twin coiVC.B. Motor Cycle E23.24 Triple coiVC. B. Motor Cycle $£ \mathbf{£ 7 . 5 0}$ Motor Cycle unite we not
available in kit form
SEND FOR YOUR UNIT DR FULL BROCHURE NOW

Please state whether Positive or negative earth units are required when ordering. Also required when order
state 6 or 12 volts.

FROM

ICE ELECTRONIC SYSTEMS DEPT W.W.
114 PARK FARM ROAD
BIRMINGHAM B4370H

BECKMAN PLANAR GAS DISCHARGE DISPLAYS
Continuous 7 segment. attractive orange, viewing up to 40 feet. SP-152 $1 \frac{1}{\frac{3}{2}}$ digit $\left(.55^{\prime \prime}\right)$ clock module $\quad £ 400+$ VAT $=\mathbf{£ 4 4 0}$ SP-352 2 digits (.55") Other modules available. including:
SP-151 $3 \frac{1}{2}$ digit ($\cdot 50^{\prime \prime}$). + am/pm, clock module
SP-332 2 digits $\left(\cdot 33^{\prime \prime}\right)$)
$87.20+V A \bar{T}=£ 7.90$

CT5001 4 FUNCTION CALCULATOR IC
$\mathbf{£ 4} \mathbf{0 0}+\mathrm{VAT}=\mathbf{£ 4 . 4 0}$ SLA7 -33 RED LED DIGITAL DISPLAYS Pack of 4: $4 \times £ 1.70$
Pack of 6: $6 \times £ 1.70$
$\mathbf{£ 6 . 8 0}+$ VAT $=\mathbf{E 7} \cdot 48$
MM5316N ALARM CLOCK IC
RCA TAB055T LIQUID CRYSTAL
$\mathbf{\Sigma 1 0 . 2 0}+$ VAT $=\mathbf{£ 1 1 . 2 2}$

DISPLAY

MM5316N + TA8055T
$\mathbf{£ 1 1 . 6 0}+\mathbf{V A T}=\mathbf{£ 1 2 . 7 6}$
Supplied with Soldercon pins to make clock chip socket
PCB for P.E. Digital Clock with RCA L-C $\quad \mathbf{E 1} \cdot \mathbf{5 0}+$ VAT $=\mathbf{£ 1} .65$ NEW MOSTEK ALARM CLOCK IC $\mathbf{\Sigma 6 . 0 0}+\mathrm{VAT}=\mathbf{£ 6} 60$ MK50250N So new that it will only be available sometime in May. 24 hr format-Alarm-Snooze-Multiplexed 4 to 6 digit gas discharge or LED display-Display can be shared with calculator-Low cost.
N.B. CONSTRUCTORS OF P.E. DIGITAL CLOCK

With minor modifications an RCA Liquid Crystal may be substituted for the Slemens Liquid Crystal, and RCA L-Cs bought from us will include clear instructions on how this may be done.
Data supplied with all devices
Also available separately at $10 p$ per device.
No p\&p charge for UK orders. Overseas p\&p 50p.
SINTEL, 53 ASTON STREET, OXFORD

AVELEY ELECTRIC

 AT THE I.E.A. 1974For the 10th and best I.E.A. Aveley are presenting up-to-date cost-effective solutions to measurement tasks such as:

MICROWAVE MEASUREMENTS
NETWORK ANALYSIS
SPECTRUM ANALYSIS
SIGNAL GENERATION
RECEIVERS
RADIO TELEPHONE TESTING
TELEVISION MEASUREMENTS

ON THE STAND WE'LL HAVE
SENIOR ENGINEERING PERSONNEL
FROM OUR PRINCIPALS

ROHDE AND SCHWARZ
SCHOMANDL KG
STEINHEIL LEAR
NARDA MICROWAVE
WILTRON COMPANY
PACIFIC MEASUREMENTS

WE'VE DONE ALL WE CAN TO MAKE VISITING US WORTH WHILE.
COME AND SEE US ON

STAND 638

Olympia phone: 01-931 5720
Office phone: 01-3978771

For complimentary tickets or more info., contact:

> AVELEY ELECTRIC LTD., Roebuck Road, Chessington, Surrey,

Telex: Avel London 928479

Heathkit for Instruments with built-in quality and savings

Send for the latest Heathkit Catalogue and see what Heath offer in Oscilloscopes, Counters, Chart Recorders, Digital Multimeters and Portable Testers.
All are available as kits or factory assembled and calibrated. See the world's largest selection of Test. Marine, Radio Amateur. Hi-Fi. Automotive. Home and Office electronic kits.
Choose cash or Monthly Budget Plan payment.

Showrooms in GLOUCESTER (above) \& LONDON: 233 Tottenham Court Rd. WW-089 FOR FURTHER DETAILS

ACTIVE FILTER

Pack
1 Fibroglass PCB (accomo-
dates all filters for one channel) 1 .
2 Set of pre-sets, solid tentalum capacitors. 2% metal oxide resistors, 2% polystyrene capacitors $\quad \mathbf{4 . 2 0}$ 3 Set of semiconductors 2.65 2 off each pack required for stereo system
SUITABLE ALSO FOR FEEDING ANY OF OUR HIGH POWER DESIGNS

> READ/TEXAS 20w
> 1 Fibreglass PCB
> 2 Set of resistors, capacitors pre-sets (not including O/P coupling capacitors) $1 \cdot 10$ 3 Setof semiconductors $\quad 2.40$ 6 off each pack required lor stereo systern
> 4 Special heat sirk assembly for set of three amplifiers 85
> 5 Set of $30 / P$ coupling capacitors
> 2 off packs 4,5 required for stereo systern

POWER SUPPLY
FOR 2OW/CHANNEL STEREO SYSTEM
Pack
1 Fibreglass PCB
2 Set of rectifiers, zener
diode. capacitors, fuses,
$\begin{array}{ll}\text { fuse holders } & 2.60\end{array}$
3 Toroidal transformer $\quad \mathbf{4 . 9 5}$

ENQUIRIES WELCOME For quality sets of speakers

VAT Please add 10\%*

 to all U.K. orders(•or at current rate if changed)
U.K. ORDERS-Post free (mall ordet only) OVERSEAS-Postage at cost +50 p special packing
POWERIRAN
SEE FOLLOWING PAGE

ICON DESIGN A NOVEL STEREO FM TUNER (see this issue)

We are pleased to offer kits of parts for the above tuner, including P.C. boards, filter, I.C's, etc.

All parts are to the designers specification enabling a guarantee of performance to be offered.
Be ready for part II by sending S.A.E. for details today to

> | ICON DESIGN |
| :---: |
| 33 RESTROP VIEW, PURTON, |
| WILTS SN5 9DG. |
| ww-090 FOR FURTHER DETAILS |

JES AUDIO INSTRUMENTATION

$$
\mathrm{Si} 451 \quad \mathbf{£ 4 0 . 0 0}
$$

Comprehensive Millivoltmeter
350μ Volts $\quad 20$ ranges
£45.00
Low distortion Oscillator sine square RIAA prices plus VAT
J. E. SUGOEN \& CO. LTD. Tel. Cleckheaton (09762) 2501 CARR STREET, CLECKHEATON, YORKSHIRE

ANALOGUE AND HYBRID COMPUTERS

C180 Features:

18-I.C. Operational Ampllfiers, 1% accuracy. Automatic Function Selection and Mater Switching. 3-Four Quadrant Multipliers. Individual Pot-Set Facilitles. built-in stabilised power supplies. D.V.M. optional exira. Price $£ 850$ complete with patching leads.
 We manufacture a range of inexpensive analogue and hybrid machines and are specialists in producing computers to your own specifications. Why pay more than you can afford for a computer which does not quite do what you want? You will be pleasantly surprised at the cost of an analogue or hybrid machine built to your own requirements.

Phone or write for details of our Analogue or Hybrid apparatus
PHYSICAL \& ELECTRONIC LABORATORIES LTD.
MANUFACTURERS OF ANALOGUE AND HYBRID COMPUTERS
28 Athenaeum Road, Whetsione. London N.20. Tel. $01-4457683$
WW-091 FOR FURTHER DETAILS

U-50DX

USED THROUGHOUT THE WDRLD. SAMAAS DCFERIENCE OF 30 VEARS EMEURES
 COMES WTH EVEFY SANWA 6 Momhs ' Cearaciee MODEL P28 MODEL JPSD mode zeota MGDEL 1500 X MODEL A A O3TRD MODEL K30THE
 Please write for illusirated leailet of atra, avelabie for most metern but not zold coparataty SOLE INPOFIESS IN UK

47-49 HIGH STREET, KINGSTON-UPON-THAMES, SURAEY. KT1 11P

Hi Fi News Linsley-Hood 75W Amplifier

* DISTORTION LESS THAN 0.01\%

 * UNCONDITIONAL STABILITYFull circuit description in handbook

```
Pack
    Fibre glass prinled circuit board for power amp.
2 Set of resistors. capacitors, pre-sets for power amp.
3 Set ol sermiconductors for power amp. (highest voltage version).
4 Pair of 2 drilled. finned heat sinks.
fibre glass printed circuit board for pre-amp.
6 Set of low noise resistors, capacitors. pre-sets for pre.amp.
7 Set of low noise. high gain semiconductors for pre-amp.
```

Price Pack

Toroidal $720+20 \star$ WITH TOROIDAL TRANSFORMER

Developed from the famous Practical Wireless TEXAN.

FREE
 TEAK CASE and HANDBOOK with full kits

SEMICONDUCTORS

2N699	0.25	2N4058	0.12	BC214L	0.14
2N1813	0.20	2N4062	0.11	BCY72	0.13
2N1711	0.25	2N4302	0.60	BD529	0.85
2N2926G	0.10	2N5087	0.42	BD530	0.85
2N3053	0.15	2N5210	0.54	8DY56	1.60
2N3055	0.45	2N5457	0.45	BF257	0.40
2N3442	1.20	2N5459	0.45	BF259	0.47
2N3702	0.11	2N5830	0.30	BFR39	0.25
2N3703	0.10	40361	0.40	BFR79	0.25
2N3704	0.10	40362	0.45	BFY50	0.20
2N3705	0.10	BC107	0.10	BFY51	0.20
2N3706	0.09	BC108	0.10	BFY52	0.20
2N3707	0.10	BC109	0.10	MJ481	1.20
2N3708	0.07	BC125	0.15	MJ491	1.30
2N3709	0.09	BC126	0.15	MJE521	0.60
2N3710	0.09	BC182K	0.10	MPSAO5	0.30
2N3711	0.09	BC212K	0.12	MPSA12	0.55
2N3819	0.23	BC182L	0.10	MPSA14	0.35
2N3904	0.17	BC184L	0.11	MPSA55	0.35
2N3906	0.20	BC212L	0.12	MPSA65	0.35

Price	Pack		Price
	13	Set of miscellaneous parts including DIN	
£1.55		skts, mains input skt. fuse holder. interconnecting cable, control knobs	£3.25
£3. 10	14	Set of metalwork parts including silk screen printed fascia panel and alf brackets, fixing parts. etc.	£6.30
	15	Hanobook.	£0.30
£9.15	16	Teak cabinet.	£7.35
£0.55		2 each of packs 1-7 inclusive are required for complete stereo sybtem.	
	3a	Set of semiconductors for Power Amp. (30W version).	£3.40
£3,50	3b	Set of semiconductors for Power Amp. (50W version).	£5.30

-

COMPONENT PACKS FOR

 W.W. AMPLIFIER DESIGNS30W BAILEY

Pk. 1 F/Glass PCE	£0.65
Pk. 2 Resistors, capacitors, pots	£1.75
Pk. 3 Semiconductor set	¢4.70
30W BLOMLEY	
Pk, 1 F/Glass PCB	¢0.70
Pk. 2 Resistors, capacitors, pots	f2.15
Pk. 3 Semiconductor sét	¢5.60
20W LINSLEY-HOOD	
Pk. 1 f/Glass PCB	¢0.70
Pk. 2 Resistors. capacitors, pots	£2.40
Pk. 3 Semiconductor set	£3.35
60V REGULATED POWER SUPPLY	
Pk. 1 f/Glass PCB	£0.65
Pk. 2 Resistors, capacitors pots	f1.40
Pk. 3 Somiconductor set	£3. 10
BAILEY-BURROWS PRE-AMP	
Pk. 1 F/Glass PCB	£1.60
Pk. 2 Resistors, capacitors. pre-sets, transiistors.	£4.95
Pk. 3R Rotary potentlometer set	£1.60
For further detalis on the	

Designed to house Bailey, Blamley or Linsley.Hood Class $A B$ omplfiers with simple or regulated power supplies and Baifey Burrows pre-amp. Options of standard or hum reducing toroidal mains transformer. Also rotary control version. Details in price list.

For FREE LIST write NOW!

Dept. W-04
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE ANDOVER. HANTS SP10 3NN

\square Lightweight $\square 50 \mathrm{MHz}$ bandwidth at $5 \mathrm{mV} / \mathrm{div}$ $\square 1 \mathrm{mV} /$ div at $15 \mathrm{MHz} \square 3 \%$ accuracy \square Mixed sweep \square Calibrated sweep delay \square Gated trigger \square Bright $8 \times 10 \mathrm{~cm}$ display Anew Dual Trace, 50 MHz Portable Oscilloscope for £440

Yes indeed! A 50 MHz dual-trace instrument costing you only $£ 440$. And it's portable too - the lightweight. comfortable-to-carry. take-it-anywhere kind of portable. Developed by engineers for engineers this newcomer from Telequipment offers unprecedented
value when compared with similar 50 MHz instruments. The outstanding specification of the D75 includes a wide-range dual timebase incorporating sweep intensifying. delaying, mixed sweep and single-shot facilities. an $8 \times 10 \mathrm{~cm}$ CRT operating at

TELEQUIPMENT
< 書>

15 kV . and dual-trace operation in alternate and chopped modes with $5 \mathrm{mV} / \mathrm{div}$ all the way up to 50 MHz .
Write or telephone now for the specification and a demonstration. and prove for yourself that the D75 is the oscilloscope for you.
Tektronix U.K. Ltd.
Beaverton House, P.O. Box 69,
Harpenden, Herts.
Telephone: Harpenden 63141
Telex: 25559

wireless world

Electronics, Television, Radio, Audio

APRIL 1974 Vol 80 No 1460
 SIXTY-FOURTH YEAR OF PUBLICATIO'N

This month's cover picture shows the red, green and blue triple optical head of a colour television projection equipment made by Pye TVT.
(Photographer Paul Brierley)

IN OUR NEXT ISSUE (published May 22)

Radar for cars. Clutter-free system for avoiding road collisions.
Colour-sound system. Compact equipment for controlling light hue and brightness by audio signal frequency and amplitude.

Novel stereo F.m. tuner. Part 2: decoder, assembly; setting-up; and a frequency meter.
Electronic piano. Part 3: assembly of the electronics and the cabinet.

Contents

57 What is an engineer worth?
58 Novel stereo f.m. tuner by J. A. Skingley and N. C. Thompson
63 Paris components exhibition
64 Research notes
65 Doppler distortion in loudspeakers by J. Moir
69 Communications '74
70 News of the month
UK semiconductor industry growth
Telephone dialling microcircuit
Solid-state TV camera
72 Letters to the editor
Sound radio compression
Plug-in p.c. boards
Multimeters for blind students
75 Electronlc piano-2 by G. Cowie
80 H.F. Predictions
81 Guglielmo Marconi by W. J. Baker
85 Colour TV tube developments
86 Sixty years ago
87 Photographic development timer by R.G. Wicker
90 Colour separation overlay by G. Dann
93 IEA exhibition preview
95 Traffic information broadcasting by R. C. V. Macario
98 World of amateur radio
99 Circards-13: Alarm circuits by J. Carruthers, J. H. Evans?
J. Kinsler \& P. Williams

101 F.E.T. curve tracer-2 by L. G. Cuthbert
103 Literature received
104 New products
108 Real and imaginary by "Vector"
a92 APPOINTMENTS VACANT
all6 INDEX TO ADVERTISERS

ibpa

LP.C. Electrical-Electronic Press Lid
Managing Director. George Fowkes
Administration Director: George H. Mansell
Publisher: Gordon Henderson

Price 20p. (Back numbers 40p.)
Editorial \& Advertising offices: Dorset House, Stamford Street, London SE1 9LU.
Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
Telegrama/Telex. Wiworld Bianespres 25137 London. Cables, "Ethaworld, London S.E.1."
Subscription rates: Home, 24.35 a year. Overseas, 1 year E5; 3 years 212.50 (U.S.A. \& Canada 1 year $\$ 13$, 3 years $\$ 32.50$) Student rates: Home 1 year $£ 2.18,3$ years $£ 5.55$. Overseas, 1 year $\mathbf{f 2 . 5 0}, 3$ years $\mathbf{E 6 . 2 5}$ (U.S.A. \& Canads 1 year $\$ 6.50,3$ years $\$ 16.25$).

Distribution: 40 Bowling Green Lane, London EC1R ONE. Telephone 01-837 3636.
Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH16 3DH. Telephone 044453281. Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.

\#strologically speaking...

. . the best and most promising times of the year are May, June and December, however if you are careful and do not attempt anything too rash, the remainder of the year should not present you with too many problems.

All in all a productive future is forseen in your horoscope.

now discover our scope!

The 5AV and 1EV series of high voltage cartridge rectifiers are rated at 50 mA and 10 mA average rectified currenf respectively.

The $5 A V$-series is offered over the voltage range $2 k V$ to $6.5 \mathrm{kV} V_{\text {RRM }}$ and is in a $5 \mathrm{~mm} \times 10 \mathrm{~mm}$ diameter package offering the design engineer an extremely compact solution to many high voltage rectifier problems.

The $1 E V$ series offered with $V_{\text {RRM }}$ ratings up to 12 kV is in a 16 mm long package that provides longer tracking paths than the $5 A V$ series enabling the lower voltage types to be used without further encapsulation.

The 1 EV series has fast reverse recovery characteristics and so is suitable for use in high frequency systems where rectifier efficiency is important.

Both series are available now.

INTERNATIONAL FECTIFIER
HURST GREEN OXTED SURREY RH8 9BB TELEX RECTIFIER OXTED 95219 TELEPHONE OXTED 3215/4231

Don't buy a calculator - build one.

Advance Electronics have two calculator kits which would give you great pleasure. In construction and use.
First, our hand-held mini executive which we developed in conjunction with 'Electronics Today International'. It has the four functions plus a constant and a fixed/floating decimal point facility for only $£ 24.95$ (inc. VAT, etc.).
If you're manipulatively dextrous, it will take you about three hours to build the calculator using our fully documented assembly instructions.

We've only got a few left and we suggest you use our coupon and your cheque book today.
Now if you'd prefer a desk top version, look at our beauty. This was designed in conjunction with 'Wireless World' to the same spec as our pocket sized kit but including light intensity control.
It's more expensive (at $£ 34.95$, inclusive of everything) but provides larger keys with the faster desk-top action.

We haven't 100 many of these left, either, so do use the coupon. One other point. Although they're kits, the end-product is robust and comes with the full backing of the Advance Electronics name. They are emphatically nor toys and will give you years of continuous and reliable use.

Shouldn't you be picking upa ball point and a kit right now?

Advance Calculators:

 Our job ismaking yours easier.

To: Advance Elcetronics Limited,
Raynham Road, Bishop's Stortford, Herts. Telephone: (0279) 5siss. Telex: 81510.
Please send me an 'ETI' Kit of your mini Executive hand-held calculator. I enclose my cheque for $£ 24.95$ in full payment.
Or
Please send me a 'Wircless World' Kit of your desk top calculator. I enclose my cheque for $£ 34.95$ in full payment.
Name
Address

Advance Electronics Limited, Raynham Road. Bishop's Stortford, Herts. Telephone: (0279) 55155. Telex: 81510.

The Sinclair Cambridge... no other calculator is so powerful and so compact.

Complete kit-£24•95!

The Cambridge - new from

Sinclair

The Cambridge is a new electronic calculator from Sinclair, Europe's largest calculator manufacturer. It offers the power to handle complex calculations, in a compact, reliable package. No other calculator can approach the specification below at anything like the price - and by building it yourself you can save a further $£ 5 \cdot 50$!

Truly pocket-sized

With all its calculating capability, the Cambridge still measures just $4 \frac{1}{2}{ }^{\prime \prime} \times 2^{\prime \prime} \times \frac{11}{16}$ ". That means you can carry the Cambridge wherever you go without inconvenience-it fits in your pocket with barely a bulge. It runs on U16- type batteries which gives weeks of life before replacement.

Easy to assemble

All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our service department will back you throughout if you've any queries or problems.

Total cost? Just $£ \mathbf{2 7} \cdot \mathbf{4 5}$!

The Sinclair Cambridge kit is supplied to you direct from the manufacturer. Ready assembled, it costs $£ 32.95$ - so you're saving $£ 5 \cdot 50$! Of course we'll be happy to supply you with one ready-assembled if you prefer-it's still far and away the best calculator value on the market.

Features of the Sinclair Cambridge
*Uniquely handy package. $4 \frac{1}{2} \times 2^{\prime \prime} \times \frac{71}{8}$, weight $3 \frac{1}{2} \mathrm{oz}$.
*Standard keyboard. All you need for complex calculations.

* Clear-last-entry feature.
* Fully-floating decimal point.
*Algebraic logic.
$*$ Four operators $(+,-, x, \div)$, with constant on all four.
※ Constant acts as last entry in a calculation.
*Constant and algebraic logic combine to act as a limited memory, allowing complex calculations on a calculator costing less than $£ 30$.
*Calculates to 8 significant digits, with exponent range from 10^{-20} to 10^{79}.
*Clear, bright 8-digit display.
*Operates for weeks on four U16-type batteries.
(MN 2400
recommended:)

A complete kit!

Actual size!

The kit comes to you packaged in a heavy-duty polystyrene container. It contains all you need to assemble your Sinclair Cambridge.
Assembly time is about 3 hours.
Contents:

1. Coil.
2. Large-scale integrated circuit.
3. Interface chip.
4. Thick-film resistor pack.
5. Case mouldings, with buttons, window and light-up display in position.
6. Printed circuit board.
7. Keyboard panel.
8. Electronic components packi(diodes, resistors, capacitors, transistor).

$4^{11 / 2 \text { in long } x} 2$ in wide $x^{11 / 16 \text { in deep }}$

This valuable book - free!

If you just use your Sinclair Cambridge for routine arithmetic - for shopping, conversions, percentages, accounting, tallying, and so on - then you'll get more than your money's worth.
But if you want to get even more out of it, you can go one step further and learn how to unlock the full potential of this piece of electronic technology.

How? It's all explained in this unique booklet, written by a leading calculator design consultant. In its fact-packed 32 pages it explains, step by step, how you can use the Sinclair Cambridge to carry out complex calculations

Why only Sinclair can make you this offer

The reason's simple : only Sinclair - Europe's largest electronic calculator manufacturer - have the necessary combination of skills and scale.
Sinclair Radionics are the makers of the Executive - the smallest electronic calculator in the world. In spite of being one of the more expensive of the small calculators, it was a runaway best-seller. The experience gained on the Executive has enabled us to design and produce the Cambridge at this remarkably low price.
But that in itself wouldn't be enough. Sinclair also have a very long experience of producing and marketing electronic kits. You may have used one, and you've almost certainly heard of them - the Sinclair Project 60 stereo modules,
It seemed only logical to combine the knowledge of do-it-yourself kits with the knowledge of small calculator technology.
And you benefit !
Take advantage of this money-back, no-risks offer today The Sinclair Cambridge is fully guaranteed. Return your kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch - and we guarantee a correctly-assembled calculator for one year.
Simply fill in the preferential order form below and slip it in the post today.
Price in kit form: $\mathbf{£ 2 4 . 9 5}+\mathbf{£ 2} \cdot 50$ VAT. (Total : $£ 27.45$)

Price fully built : £29.95 + £3.00VAT. (Total : £32.95)

What you see is what you get.

The extraordinary Shure SM7 professional microphone features something you've never seen before: a built-in Visual Indication Response Tailoring System that offers you four different frequency response curves-and shows you the curve you've selected with a graphic readout (see above) at the back of the microphone! Choose: 1. flat response; 2. bass roll-off; 3. presence boost; 4. combination of roll-off and presence. And there's more: the SM7 delivers exceptional noise isolation with a revolutionary pneumatic suspension mount . . . an ultra-wide, ultra-smooth frequency response . . . an integral "pop" and wind filter . . . and a cardioid pickup pattern that looks "text-book perfect." The Shure SM7 Studio Microphone was extensively field-tested in recording studios and broadcasting stations! Write:
Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881

Alpha. World Beater.

Alpha from Advance sets a new standard in multimeters.
With 5 functions and 24 ranges (a glance at its front panel reveals all).
What you can't see is the Alpha's 0.5% accuracy on dc - and that it's tough and lightweight . . . at only 2 lbs .
Alpha's fully portable and battery operated - with mains units and rechargeable batteries available. Best of all, Alpha costs only $£ 62.00+$ VAT. And delivery is first class.
Please use our enquiry number. It will get you Alpha's better data.

Advance: our job is making yours easier.

Sinclair Project 80 exciting

Project 80 tuner

Stereo decoder

Project 80 Active Fiter Unit (AFU)

only $\frac{3^{\prime \prime}}{}{ }^{\prime \prime}$ deep $\times 2^{\prime \prime}$ high

Living with hi-fi takes on new meaning with Sinclair Project 80. The electronics of these revolutionary new modules are ald contained within elegantly designed matching cases no more than three-quarters of an inch deep. They are designed for mounting on any appropriate flat surface by means of 6BA bolts extending from the rear of each inodule and which pass through suitably drilled holes. Connections are taken away out of sight in a similar manner. The possibilities opened up by Project 80 are endless - superb hi-fisystems can be installed in ways hithertc only dreamed about and never before made practical. No more cutting out and shaping to put modules in position. A few holes drilled with the aid of templates supplied and the job is done. Now you need never again be faced with problems of keeping the hi-fi from clashing with carefully thought-out furnishing schemes. (That will surely please wivesl) Slider controls have been introduced in place of knobs and all modules in the range incorporate new up-dated circuitry with emphasis on performance standards and bult-in protection against overload and shorting. The aim was to re-think modular construction completely - to make it infinitely more versatile, even simpler and more reliable - the result - Project 80 - another triumph for Sinclair, and the most exciting construction modules ever.

the slimmest,most elegant hi•fi modules ever made

Typical Project 80 applications

System	The Units to use	Units cost
Simple battery record player	2.40	$\begin{aligned} & \text { E5.45 } \\ & 54 \mathrm{p} \text { V.A.T } \end{aligned}$
Mains powered record player	2.40.P2.5	$\begin{aligned} & \mathrm{£10.43} \\ & \mathrm{£104} \mathrm{VA.T} . \end{aligned}$
30W. RMS continuous sine wave stereo amp.	$\begin{aligned} & 2 \times \mathrm{Z.40} \text { s. Stereo } \\ & 80: \text { PZ. } . \end{aligned}$	$\begin{aligned} & £ 30.83 \\ & £ 3.08 \text { V.A.T. } \end{aligned}$
50W (8 ת) RMS contunuous sine wave de luxe stereo amp	$\begin{aligned} & 2 \times \mathrm{Z,60} \text { s, Stereo } \\ & 80 ; \text { PZ.8 } \end{aligned}$	$\begin{aligned} & \text { £3383 } \\ & \text { £3 } 38 \text { VAT } \\ & \hline \end{aligned}$
Indoor PA.	Z.60. PZ.8	$\begin{aligned} & \mathbf{£ 1 4 . 9 3} \\ & £ 149 \text { V.A.T } \\ & \hline \end{aligned}$

[^6]Mount Project 80 on a bookshelf. a loudspeaker. a lampshade base a false wall with two 0.16 loudspeakers... almost anywhere.

new thinking in modular hifi

Stereo 80 pre-amplifier and control unit

 siders, ensbling ideal environmental arth input sige forms part ine obtaned. A virtua earth input stage forms part of the up-dated circuitry that ensures the finest possible quality from all signal sources. Generous overload margins are allowed on all inputs. Clear instructions with template are supplied.
TECHNICAL SPECIFICATIONS
Size $-260 \times 50 \times 20 \mathrm{~mm}\left(10 \frac{1}{2} \times 2 \times\right.$ zins $)$
Finish - Blacik with white indicators and transparent sliders
Inputs - Magneuc pick-up 3mV RIAA corrected: Ceramic pick-up 300 mV
Radıo 300 mV : Tape 30 mV
Signal/noise ratio \rightarrow 60dL
Frequency range - 20 Hz to $15 \mathrm{KHz} \pm 1 \mathrm{~dB}: 10 \mathrm{~Hz}$ to $25 \mathrm{KHz} \pm 3 \mathrm{~dB}$
Power requirements- 20 to 35 volts
Outputs $-100 \mathrm{mV}+\mathrm{AB}$ monitonng for tape
Controls - Press button for tape radio and P.U. Sliders for volume
bass (- 12 dB to -14 dB at 100 Hz) treble $(+11 \mathrm{dg}$ to -12 dB at 10 KHz)
Project 80 FM tuner ${ }^{\text {R.P.P. }} £ 11.95_{\underbrace{+E 1.19}_{\text {V.A.T. }}}^{\text {V. }}$
 state stereo indicating
switchable A.F.C.

beacon.

Making the Project 80 F.M. tuner and decoder available separately gives a wider choice of systems and saves money where stereo reception may not be required. The tuner is a triumph of electronic design and assures excellent performance. The decoder gives a 40 dB channel separation with 150 mV output per channel. Both units may be used with other than Project 80 systems.
TECHNICAL SPECIFICATIONS OF TUNER
Size $-85 \times 50 \times 20 \mathrm{~mm}\left(3 \frac{3}{5} \times 2 \times 1 \mathrm{ins}\right)$
Tuning range $-87 \cdot 5$ to 108 MHz
Detector - I.C. balanced coincidence for good A.M. rejection
One I.C. equal to 26 transistors
Distortion -0.2% at $1 \times \mathrm{XHz}$ for 30% modulation
4 pole ceramic fiter in 1.F. section
Aerial impedance - 75 П or 240-300 Ω
Sensitivity - 4 microvolts for 30 dB quieting.
Oupput -300 mV for 30% modulation
Power roquirements -23 to 33 volts
R.R.P. $£ 11.95+£ 1.19$

DECODER
R.R.P. $£ 7.45$
0.74

Size-47×50×20mm (1z $\times 2 \times$ 䍒ns $)$
One 19 transistor I.C

Guarantee

If, within 3 months of purchasing any product direct from us, you are dissatisfied with It, your money will be refunded on production of receipt of payment. Many Sinclair appointed stockists also offer this guarantee. Should any defect arise in normal use, we will service it without charge For damage arising from mis-use a charge (typically E1-00) will be made.

Sinciair Radionicslid. London Road, St. Ives, Huntingdon PE17 4HJ Telephone St. Ives (0480) 64646
Z. 40 \& Z. 60 power amplifiers totally short-circuit proof

Intended for use in Project 80 installations. these modules readily adapt to an even wider range of applications. Both incorporate builf-in protection against short circuiting and risk of damage from mis-use is greatly reduced.
Z. 40 TECHNICAL SPECIFICATIONS

Size $-55 \times 80 \times 20 \mathrm{~mm}(2 \mathrm{i} \times 31 \times$ Bins $) 9$ transistors
Inpul sensitivity -100 mV
Output - 15 watts RMS contınuous into 8Ω (35v)
Frequency response $-10 \mathrm{~Hz}-100 \mathrm{KHz} \pm 10 \mathrm{~B}$
Signal/noise ratio - 64 dB
Distortion - at 10 watts into 8 aless than 0.1%
Power requirements -12 to 35 volts
2.60 TECHNICAL SPECIFICATIONS

Size $-55 \times 98 \times 15 \mathrm{~mm}\left(2 \frac{1}{1} \times 3 \frac{1}{2} \times \frac{3}{2} \mathrm{~ns}\right) 12$ transistors
Input sensitivity -100.250 mV
Output - 25 watts RMS continuous into 8Ω (45 V).
Distortion - Iypically 0.03%
Frequency response -10 Hz to more than $200 \mathrm{KHz}=1 \mathrm{~dB}$
Signel/noise ratio - better than 70dB
Buit::n protection against transient overload and short circuiting
Load impedance - 4 ת min; max. sate on open circuif
Z. 40 R.R.P. £5.45-0.54 VAT.: Z. 60 R.R P. £6.95 - $0.69 p \mathrm{~V}$. A

Project 80 active filter unit

Makes a highly desırable part of any worthwhile system where inputs may be from record. radio or tape. As with Siereo 80. separate controls applled to each channel make it easier to obtarn ideal stereo balance.
TECHNICAL SPECIFICATIONS
Size $-108 \times 50 \times 20 \mathrm{~mm}\left(4 \frac{1}{2} \times 2 \times \frac{3}{2} \mathrm{tns}\right)$
Voltage gain - minus 0.2 d 8

requency response -36 Hz to 22 KHz controls minimum Distortion - at $1 \mathrm{KHz}-0.03 \%$ using 30 V supply
HF cut off (scratch) -22 KHz to $5 \cdot 5 \mathrm{KHz} .12 \mathrm{~dB} /$ oct slope L.F. cut off (rumble) -28 dB at $20 \mathrm{~Hz} .9 \mathrm{~dB} / \mathrm{oct}$. slope

- For scratch and rumble control
r.r. $£ 6.95_{\text {V.A., }}^{+0.69}$
- Transistorised active circuitry

Power supply units

PZ. 8
Stabilised. Re-antrant current limiting makes damage from overfoad o aven direct shorting impossible Normal working voltage \{adjust able) 45 V .
R.R.P. ©7.98 + 0.79pV.A.T.

Without mains transformer
Z. 5 30V unstabilised

PZ. 6 35V, stobilised R.R.P. $£ 4.98+0.49$ p V.A.T. \quad R.R.P. $£ 7.98+0.79$ PV.A.T

To SINCLAIR RADIONICS LTD. ST. IVES, HUNTINGDON PE17 4HJ

Please send post paid

\qquad
\qquad
for which I enclose Cash/Cheque for \mathbf{f}

The largest selection

BIB HI－FI ACCESSORIES

De Luxe Groov－KIeen
Model 42 £1－84
Chrome FInish Model $60 £ 1.50$

EX COMPUTER BOARDS

SPECTAL AL nbut PLUs Power Tramitnm

FIBRE－GLASS PRINTED
CIRCUIT BOARDS

DECON－DALO 33DC Marker
Etch rexitant pridiel strut nufter pen
VEROBOARDS

REPANCO CHOKES $\&$ COILS

corts

COIL FORMERS \＆CORES

SWITCHES

FUSES

EARPHONES

DYNAMIC MICROPHONES

3－WAY STEREO HEAD－
PHONE JUNCTION BOX

2－WAY CROSSOVER

NETWORK
TRANSISTOR EQUIVALENT
BOOK

INSTRUMENT CASES

 Het，31．Cansette Head Clrager 54p Kef，效．Tage editing Kll it st

28

ANTEX SOLDERING IRONS X25． 25 wath 2193
CCN 240.18 Eat 28.18
 STANDE：BT1 21 21．KT2 770 HOLDEf：IWsw：Multicore ios 82p 22sw：7as 82p．1sxw 0 924 28p 22Bw Tulle 29p
ANTEX BITS and ELEMENTS Blto No．
102 For mentel CNasto h h＂
10：for mindel Csinn tr 1100 Fror model CCN 250 年 Inl For thodel Ccstin 1020 for molel 152ta bi＂
 1021 Yor madel 02401°
1022 For molel 1250 青

35 For ronatel $\times 255^{\circ}$
52 For moicl Xes 毒＂
ECN 2tn E1－16 ECCN 240 12.32

ANTEX HEAT SINKS 10p

NEW COMPONENT PAK

BARGAINS

Pack
No．
Oty

Capacturs milsing valuee approz．
count by weiaht
0.55
Prerinion kealiens mixed valuer
fith tr Renintors mised preferes
valuea
Mecco menortel Perrite Ilods 055
Tuning Ganke，MW／LuF vitcoss
Park Wire
coloure $\mathbf{3 0}$ metrea ameorted 0.55
Ileed Awtiche＊
Mlero unitche＊

Jmek Backets $3 x y \cdot 5$ mo $2 x$
Paper Cotwlenerrs preferted types
mixed valued
Filectiolytice Trana，tyjuez

Maitu gilde swit．thes， 2 Alus $0: 55$
Amorte．Tak Mtripm a larela oss
Amportent Control Knobo 035
Hutssy Whe Chane 8 witchero－55 Relnya 6－2NV Uperating
Sbicela
$10^{\circ} \times$ Cop
PLEASE NOTE：ALL OUR PRICES INCLUDE V．A．T． MODEL AMTRON KITS

Model No UKB5 UK145

```
Sinuple tramulutor tester
Amptifer 1.5SY
Nicinilinjectar
MHe troeAmnultar Ampither
Trehannel liadim Cintrol Tranamtuer
Ita.2um,m,
c:N2:Chantrel eplitifise unt? :.000 & 2,900 Hz
Muperbetmalyme Ratio Control Meceive
V1/P Tumer l:U to 1m| M112
I:-1/0 Cinteal Fielis sirength Mreter
i-C'rampel AV muixer
Elicicoutle= I'nit for
Bultar bre-mmplliser
```

VISIT OUR COMPONENT SHOP

Gel，P． Ali －Fi Cleantr 31p Hel．T2A．Miglua listance 51 ． 3 B Ret．J．Tape Hea．t Cleantis Kil 51p Fiet．3N．Cumerte Cine 2127 fef．36，III－FI Mereo Hinte \＆Tipe 32

PLUGS AND SOCKETS

gets		
P8： 5 ： 1118	2 Pbill （Spraker）	0.06
P8 \％	8 B	0.10
P8：37 418	$3 \mathrm{IFM}^{180}$	0.10
P4 38 lln \％	$3 \mathrm{Jin} 210{ }^{\text {a }}$	0.10
P839	Juck e－Samm Switched	0.09
P8 sa_{0}	Jeck 3 8mam Swilched	0.10
5811	Jaek I－Sultelied	0.17
P4 42	Jack Bteren Bwitcher	028
Ps 43	Thene single	006
Ps if $^{\text {d }}$	Phomu Ifuuble	010
Ps 45	Cors Aerm］	000
Ps to	Co－Axtal surface	009
1＇s 47	Co－Sxial Flush	0.14

INLINE SOCKETS

$\begin{array}{ll}\text { PN 21 } \\ \text { PS } 22 & \text { D．L．} 5.3 \text { ．} 3 \text { Pin }\end{array}$

PX：3 Jack $\because \cdot$ Bum Plactie
13：7 Jack 10 Plastic
P8 24 Jack J－Herrened
$\begin{array}{ll}\text { P88 } 29 & \text { Jack Bterea Plaste } \\ \text { P8 } 30 & \text { Jark Blereo therene }\end{array}$

PS ：72 Car Aetal

PLUGS

I＇s b，b，iN． 6 Pln
th m Jeck？ 7 sinm dercened

PR 11 Jack 18 Mlantic
ph is Jack in firreenes
I8 if lhopo

CABLES

C P I Slowle lalpred Rer in
$\begin{array}{cl}\text { CP } & 2 \\ \text { Twin Camunan } \\ \text { Stereo Scremed }\end{array}$

CP Kitrophone Pully Braited Cable 0.1
CP 7 Three Cort Yains Cable
Cl A Twin Oral Mains Cable
CP ：speaker Cable

CARBON

POTENTIOMETERS
Lons anul Ltn
$172 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~h}, 100 \mathrm{~K}, 220 \mathrm{~K}, 170 \mathrm{~K}$ 13，23
vC 1 shanle Lass Boitch
ves Timern tews Bwitch
VCt 1 Kidn Lesn Swith
HORIZONTAL CARBON

PRESETS

0．1 watl 006 each
100 ， $20.100,1 \mathrm{~K}, 2.2 \mathrm{R}, 15 \mathrm{~K}, 10 \mathrm{~K}, 22$

SELENIUM BRIDGE

RECTIFIERS
18v．2A．Jfienl for those buldilag latiery chargets．15p each， 10 for 55 p
REPANCOTRANSFORMERS

 sus， $80 \mathrm{~V}, 3 \mathrm{mi} 25 \mathrm{~V}-0-23 \mathrm{v}$ ．
Type
3Tso／
MT50／4
2549
20

WORLD SCOOP！

JUMBO SEMICONDUCTOR PACK
Transistors－Germ and Silicon
Rectifiers－Diodes－Triacs－Thyristors
I，C＇s and Zenners ALL NEW AND CODED．
APPROX 100 PIECES！
Offering the amateur a fantastic bargain Pak and an enormous saving－identification and data sheet

$\begin{array}{r}\text { in every Pak } \\ \text { ONLY } \\ \mathbb{Z} \\ \hline 2\end{array}$

EX－COMPUTOR BOARDS
 BY THE BOXFULL！！

20 Boards packed with Semiconductors and oth Electronic Components．Each board approx．siz $8^{\circ} \times 7^{\circ}$ ．All known type no．and easily recognisabl FANTASTIC VALUE AT $£ 2.20$ per BOX p \＆p 52p
SPECIAL PURCHASE by BI－PAK 2N3055．Silicon Power Transistors NP Famous manufacturers out－of－spec devices free fro open and short defects－every one able 1115 watts TO Metal Case．
OUR SPECIAL PRICE 8 for $£ 1$ ．

ALL PRICES INCLUDE VAT

CARTRIDGES

Acos Grrorit． 100 mV at 1 em we
TV：J－z005．Crotai II U Output Corapatilse
TTC 3.200 CS Stera／H1 0ulpul 2160 TTC 2 －2las Cermmir Mrd．Outi ut

CAREON FILM RESISTORS
 1 Eratt svalughe In PAKN of Sto plece KI 50 yised 100 ohmat－Ryo olams Ris ju Milied IOK whan－ezk ohma Kit so 3txed 100 K ohma－1 3re．ohans 40p THFBE ABE UNBEATALLE PHICFE－ LH：S THAN ip HACH 1NOB．V．A．T．

BI－PAKSUPERIOR QUALITY LOW－NOISE CASSETTES CSU．39D C90，429 C120．3\％p

SEE OUR COMPLETE RANGE PRACTICAL ELECTRONICS． PRACTICAL WIRELESS， RADIO CONSTRUCTOR， EVERYDAY ELECTRONICS， ELECTRONICS TODAY INTERNATIONAL
OR SEND 5p．FOR THE FULL LIST OF ALL BI－PAK
PRODUCTS

BOOK BARGAIN BUNDLE
 i Roxiln a Fitectronic culour cude deta rhart
Other cortotruythorias
heerlown．gy Tumerme te－
VALUE \＆S．OUR PRICE £2 p o p 10p．

D．（uiknlente a \＄Substitu
Haritlimink of Hadio．T．Y，
Sontuetria
Finuls：
Itandthonk of
sistor Circalt
Intematimel liandhook

Latinges
Hanitiocer
EPS Hanithock of Ed

Sound Any
Misnuas
38 Prartical Terted
conutructor
Modrm Cryial annl
alnor set Circuila
1 animiterm
Practal To
Exlertsulule Nareltics for

Conimernectonts Manual of E trmber Cireules for
hutme
Dilviral fira
Indicatior
How to make
How to make PM and
Redto bervicing for Ama
Ilish Pidellty Loodspen
Transistor circulte 11 a
Nin． 1 Noun

bati book
T Tanasifters
recelvery rubrointial
Trabisintir Teat Equ
EErvictna Manual
Mapiza of Tratuin
Amplitirra
conupreheraive
A couprehenaive Badto
Eufle Booti 3
How
 shopgle monificatulis
ihart for Coritntrictors
Fiand bork of Iractical
fronle Wulfal Soveltic
I＇rectica！Tranlotoriget？

Clrculte Equivalen
Sexlator Cutour Cond
Healator Cutour
Calculator

[^7]
-the lowest prices!

74 Series T.T.L. I.C'S

EL-PAK 5THL LOWEST IA PRICE FULL SPECLPICATION GUARANTEED. ALL FAYOUS EAMUFACTURERS

	I	23	110%
SN7400	0-18	0-17	0.16
8. 7101	0.18	0.17	018
8, 7402	0.18	0.17	018
SN740:i	$0 \cdot 18$	0.17	$0 \cdot 18$
SN:10.4	0.18	0.17	0.16
Mx-405	$0 \cdot 18$	$0 \cdot 17$	0.16
Bxiziag	0.39	034	031
Exi 707	0.39	034	031
8xi40g	0.20	0-19	0.18
8xitiog	020	0.18	0.18
588740	$0 \cdot 18$	8 817	$0 \cdot 16$
M, 741?	0.28	$0 \cdot 27$	026
scitly	0.39	$0 \cdot 34$	0.31
Sn7ats	0.32	0.31	$0 \cdot 30$
BNT416	048	044	042
MNitit	048	044	$0 \cdot 42$
1337420	0.18	$0 \cdot 17$	$0 \cdot 16$
8N7322	085	063	050
SNT+2:1	0.55	053	050
Sxider	0.55	053	030
SNT+2\%	0.30	048	044
[0]d27	0.50	0.46	044
SNTsta	0.55	0.33	0.50
SNT4:4	0×18	$0 \cdot 17$	$0 \cdot 16$
8x74:42	0.50	0.48	0.44
BNita	0.75	073	0.70
8 M 7 sin	0-70	$0 \cdot 88$	0.85
MNiT3s	0.70	088	0.65
8N74th	0.18	0.17	0.16
HNT+41	074	0.71	086
5.7412	064	071	0.65
8 8574:3	11.20	11.15	£1.10
sNitid	81.20	c1-15	£1.10
8NTH5	11.88	E1-95	2190
80\% 7415	11.20	21.15	¢1. 10
8 SN 717	£1-10	¢1. 07	¢1.05
8. 7448	¢1-10	21.07	E1.05
8N7lint	0-18	0.17	0.16

INTEGRATEO CIRCUIT PAKS

Pak Ko. Costeata	Price	Patimo. Conteris	Price	Pas Mo. Conteatr	Price
V1C00-12 ${ }^{\text {P }}$	0.55	V1C46-5x74 513	085	UIC90 -8×7490	085
U1C01-12x 7001	0.65	UICts- $5 \times 7+48$	0.65	U'C91-5 $\times 7491$	0%
V1C02 $=12 \times 7402$	0.65	U1C50-12 $\times 7480$	$0 \cdot 55$	U1C02 $=6 \times 7492$	055
U1C503-12x 7 103	0.55		0.55	vicga $=8 \times 7493$	055
U1C04 $=11 \times 7404$	055	U1C53-12 $\times 7453$	0.55	U1C94 $=3 \times 7+94$	0.55
U1COS $=12 \times 7400$	0.55	$\mathrm{U} 1 \mathrm{CBS}^{-18 \times 7454}$	0.55	Ulcse $=5 \times 7.45$	065
U1C06-8xi400	055	$\mathrm{U} 1080=12 \times 7460$	0.55	U1C8 $=8 \times 7$ (98	055
V1c07 $=8 \times 7407$	$0 \leq 5$	UIG70-6×7470	0.55	Liction $=5 \times 8+100$	035
U1C10-12×7410	0.55	U1CT2-8x ${ }^{\text {dig }}$	0.55	U1C121-5 $\times 74121$	0.55
VICPU $=12 \times 7420$	055		0.55	UIC141-8 \times Tid 41	085
U1C-30 $=12 \times 1430$	0:55	v1c74-8×7454	0.55	U1C151 $=5 \times 74151$	055
UIC40 $=12 \times 5450$	0.55	$\mathrm{U} 1 \mathrm{C76}=8 \times 7476$	0.85	U1C154 $3 \times 3 \times 154$	055
vicsi -8×7441	0.55	U1C80 $=6 \times$ - 460	0.85	U1C193-5 \times 74193	0 OS
U [C18-5x7442	0.55	v1csi $=0 \times 7+81$	055	vicise cos $\times 7+199$	065
U1C43-5xid ${ }^{\text {a }}$	0.55	UIC82 $=5 \times 7$ - 482	0.55		
	0.55	U1C83 $=5 \times 7483$	0.55	UICXI - 25 Amarte	1.55
U1C $45=5 \times 7+45$	055	v1C86 $=5 \times 7+66$	065	U1CII-2S Amorte	

NOW WE GIVE YOU 50W PEAK (25w R.M.S.) PLUS THERMAL PROTECTION! The NEW AL60 Hi-Fi Audio Amplifier FOR ONLY £3.95

- to 100KHz

Ditiortion betier than 1%

- 5ughy voltage $10-35$ roles
- Thermal Peedback - Latert Denisa Improvemen Loed-3, 4. B or 16 ohme
Sirnal lo noise ratio sodB
Orerall Overall sixa 63 mm
105 mm . 13 mm
 in this powiertul
FULLY BUILT-TESTED and GUARANTEED
STABILISED POWER MODULE SPM80
£3 25
APBD in especialty dealaned ko power 2 of the ALDO Ampliners, up to

 the unit will proride outputs al up to $1 / 5$ armpe it is volle. Sixe:
$63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 20 \mathrm{~min}$. There unite eramils you to bolld Audlo Bymermis of the hifbert quality at a hitherto upotitalnable price. Also hileif for many other applicathons incluidng: Disco Byotens. Pubsle TRANSFORMER BMT80 £2.15 p. \& p. 25p

 kenieral ipeclacailon. However. careful seliection of the plastie power device has
reculted is

Parameler	Conditions	Performante
HARMONTC DIATOHTION	Foos 3 WATTS $\mathrm{S}-\mathrm{m}$ K112	$0 \cdot 25 \%$
LOADIMPELASCE	-	8-168
fifut tmpetiance	$1-1 \mathrm{KHz}$	$100 \mathrm{k} \Omega$
YRFUUENCY HESPONBE \pm 3alk	Po-2 whtre	50 Hz-256118
8ENSITIVITY for Itatill O/P		T3inv. HM8
Distesimiosis	\square	$3^{1} \times 24^{\circ} \times 1$

Paramete:	Aldo	AL20	AL30
Slavimum Supty Vothage	25	30	30
(KI. $-\mu \Omega \mathrm{f}=\mathrm{I} \mathrm{KH} \mathrm{H}$! PRICE:	3 wates Hisis slu. 12.20	$\$$ watts 1tMs Min. 2. 50	If M8 Sin. $53 \cdot 3$

TRANSFORMERS

POWER SUPPLIES

PA 12. PRE-AMPLIFIER SPECIFICATION

Th m: mi

 PRICE

FRONT PANELS FP12 with knobs $£ 1 \cdot 20$

WW-102 FOR FURTHI:R DETAILS

BEDFORD ELECTRONICS ${ }^{7}$.prian stratet
 TELEPHONE 023451961

CCTV CAMERA

A.E.I. Cambra Hoadz comprising scan assembly. optical fotas mechanism video amplitier, 'C' lens mount. al mounsed in mall hammer inish casc PRICE \&6EACH P. \& P. 50

> P.T.F.E. 7/0075 equipment wire to EL1930 Type A E2 per 100 yarde. Please check colour and reel slze availablily belor orderling.
Colvern TEN TURN POTS. SOAR. S\$ Lin. 0.1\%. £.1.25 each. P. \& P. 15 p
MULTICORE CABLE minlature 25 cores
of PVC $7 / 0076$ ecreened overals and PVC sheethed. $£ 2$ so for 10 yds. P. \& P. Sop. RECTIFIER. Texas 1 S 103750 mA 400 P.I.V.
10 tor MM 80
10 lor 20 p .
SCR. Tesas, platic TICAS 600 mA BO Vdem
CARPENTERS polarlsed relay SPCO $2 \approx 1000 R_{\text {p }}$ camplete with base and relalner REOT CORE
BALL, RACES TyPD RCL if. Flanged

DELIVERY

Almost all mall ordert are now dis
patched by return of post.
V.A.T.
PLEASE ADD 10\% V.A.T. TO ALL PRICES.

TELEPRINTER EQUIPMENT LIMITED

Sales . . . Rentals . . . New . . . Refurbished . . . Installation . . .
 Maintenance . . . Overhauls . . . Spare Parts . . . Prompt Deliveries

TELEPRINTERS Models 7B, 54, 75, 444
CREED EQUIPMENT

TELETYPE CORP. EQUIPMENT

SIEMENS EQUIPMENT
OTHER EQUIPMENT

SPECIAL EQUIPMENT

PERFORATORS 7PN, 85/86, PR75, 25
TAPE READERS 6S4, $655,6 S 6,6 S 6 \mathrm{M}, 92,35,71,72,74$
HIGH-SPEED TAPE WINDERS 80-0-80V POWER SUPPLY UNITS, etc.
TELEPRINTERS $15,19,20,28,32,33,35$
ali configurations
PERFORATORS 14, 19, 28 LPRR, RECEIVE \& MONITOR GROUP CABINETS TAPE TRANSMITTERS $14,20,28$ LBXD \& LXD TRANSMIT GROUPS, etc.
TELEPRINTERS T 100 and $T-68$ in various configurations PERFORATORS T-LOCH 12, T-LOCH 15, A, B, D \& F, etc.
KLEINSCHMIDT, OLIVETTI, LORENZ, COCQUELET, BRITISH, AMERICAN, CONTINENTAL, ARABIC and other layouts, 5-8 track.
SOLID STATE MOTOR CONTROLS, MODEM INTERFACE UNITS, TARRIFF J INTERFACE UNITS, TEST EQUIPMENT, COMPUTER INTERFACE UNITS, DEC. PDP8 and others. SILENCE COVERS AND CABINETS, TELEPRINTER TABLES, SIGNALLING RECTIFIERS AND CONVERTORS, TAPE HOLDERS. WW-104 FOR FURTHER DETAILS

COMMUNICATION ACCESSORIES \& EQUIPMENT LIMITED G.P.O. TYPE COMPONENTS FOR PROMPT DELIVERY

JACK PLUGS-201, 310, 316, 309, 404, 420, 609, 610, 1603 - 3201
JACK STRIPS-310, 320, 510, 520, 810
JACK SOCKETS-300,500, 800, B3 and B6 mountings, 19, 84A and 95A
PATCH PANELS \& RACKS-made to specifications
LAMPS, SWITCHBOARD NO. 2, BALLAST PO 11, LAMP STRIPS, 10 -way PO 19, 20 -way PO 17, Lamp Caps, Holder No. 12
CORDS (PATCHING \& SWITCHBOARD)—made to specifications
TERMINAL BLOCKS (DISTRIBUTION) - 20 -way up to 250 -way
LOW PASS FILTERS-type 4B and PANELS, TELEGRAPH $71(15 \times 4 B)$
POLARISED TELEGRAPH RELAYS AND UNISELECTORS-various types and manufactures both P.O. and miniature
LINE TRANSFORMERS/RETARDATION COILS-type $48 \mathrm{~A}, 48 \mathrm{H}, 49 \mathrm{H}, 149 \mathrm{H}, 3 / 16,3 / 216,3 / 48 \mathrm{~A}, 3 / 43 \mathrm{~A}, 48 \mathrm{~J}$, etc. FUSE \& PROTECTOR MOUNTINGS-8064 A/B 4028, H15B, H40 and individual $1 / \frac{2}{2}$
COILS-39A, 40A, 40E, etc.
P.O.-TYPE KEYS-1000 and PLUNGER TYPES 228, 279, etc.

EQUIPMENT RACKS AND CONSOLES-made to specifications
RELAY ADJUSTING TOOLS, TOOL BAGS FOR MECHANICS, TENSION GAUGES, ARMATURE ADJUSTERS, SPRING BENDERS ETC. VARIOUS SWITCHBOARD EQUIPMENT.

WW-105 FOR FURTHER DETAILS

MORSE EQUIPMENT LIMITED

The GNT Range of Automatic Morse Equipment is now manufactured in the U.K. and comprises complete equipment for Morse Training Schools and for Automatic Morse Transmission. Models available include:

$$
\begin{aligned}
& \text { KEYBOARD PERFORATORS for offline tape preparation } \\
& \text { AUTOMATIC TAPE TRANSMITTERS with speeds up to } 250 \text { w.p.m. } \\
& \text { MORSEINKERS specially designed for training, producing dots and dashes on tape } \\
& \text { HEAVY DUTY MORSE KEYS } \\
& \text { UNDULATORS for automatic record and } \mathrm{W} / \mathrm{T} \text { signals up to } 300 \mathrm{w} . \mathrm{p} . \mathrm{m} \text {. } \\
& \text { CODE CONVERTERS converting from } 5 \text {-unit tape to Morse and vice versa } \\
& \text { MORSE REPERFORATORS operating up to } 200 \mathrm{w} . \mathrm{p} . \mathrm{m} \text {. } \\
& \text { TONE GENERATORS and all Students' requirements } \\
& \text { CREED, MORSE EQUIPMENT, PERFORATORS, REPERFORATORS. TRANS- } \\
& \text { MITTERS, PRINTERS, MARCONI UG6 UNDULATORS, BUZZERS, ALDIS } \\
& \text { LAMPS, etc. }
\end{aligned}
$$

Telephone: Tring 4011, STD: 0442-82 Telex 82362, Answerback: Batelcom Tring

$=--1=-1$ SUPPLIERS OF GEMI-CONDUCTORS TO THE WORLD

Telephone Corner

COMPLETE TELEPHONE NORMAL HOUSEHOLO TYPE AS SUPPUED TO THE POST OFFIE EX G.P.O

any fi. 05 p

TELEPHONE DIALS
Dniv $\frac{1}{21}$ P \& \& P $16 \frac{1}{\mathrm{p}} \mathrm{EACH}$
Tested and Guaranteed Paks

79	4	1N4007 Sil. Rec. diodes. 1.000 PIV lamp plastic	p
881	10	Reed Switches I" long $\frac{10}{10}$ dia. High speed P.O. type	$5 p$
H3	100	Mixed Diodas, Gorm. Gold bonded atc. Marked and Unmarked	p
H38	30	Shont lead Tranasions. NPN Sillcon Planar types	551
H39	6	Integrated circuits. 4 Gates EMC 962. 2 Flip Flops tiMC 945	55p
H41	2	Power Teansiators Comp. Pair 80 131/132	55p
H63	4	2N3055 Type NPN Sit, power transistors, Below spec. devices	$55 p$
865	4	40361 Type NPN Sil, uransistors T0. 5 can comp. to H68	55p
H68	4	40382 Type PNP Sill transistors 2 TO-5 can comp. to H 65	55p

OE=Unmarked

Untested Paks

	50	Germantum Trana: PNP, AF and RF	55
${ }^{866}$	150	Garmanium Diodes Min. glass type	55
${ }_{884}$	100	Silifeon Diodes 00.7 glass Equin. to OA200. OA202	
${ }^{886}$	100	Sil. Dlodes sub. min iNE14 and IN916 types	
${ }^{416}$	15	Experimenters Pak of Intograted Cirtuits, Oatill supplied	
H48	40	NPN Silicon Trans. 2N3707-11 range, low noise amp.	
H34	15	Power Transisions. PNP. Germ. Silicon TO-3 Can, P \& P 5 p extr	
	10	3819 N Channal FET's plastic case type	

Make a rev counter for your car
The TACHO BLOCK'. This encapmulated block will turn aniy 0-1mA meter inlo a linear and ascurate rev, counter
$\AA 1 \cdot \mathrm{O}_{\text {oeach }}$

Ex GPO Push-button Intercom Telephones

Exactly as internal telephone syatems still in everyday use where automatic internal exchanges have not vet
taken over. Avallable in 5,10 or 15 ways. Complete taken over. Avalable in 5,10 or 15 ways. Complate
with eirenits and insicuctions. Necessary 24 palr cable with eircuits and insiructions. Necessary 24 palr cable 22p per vard. Price of each instrument is independent of the number of ways.

£2.75

Cable cen be sent by Parcal Post. Posi and Packing per $50 \mathrm{yds}: 73 \frac{1}{\mathrm{f}} \mathrm{p}$
EXTENSION TELEPHONES $71 \frac{1 p}{}$ each p.p. 27 p. ¢1.371 for 2 p.p. 5\%p. These

Electronic Transistor

 Ready built and telted unit $\mathbf{2 9 . 9 0}$ incl. VAT Now in kit form, wo offer this up-to-the minute instructions supplied. with these outstanding features: iransistor and conventional switchaberity. burglar-proof lock-up and automatic alarm, negative and positive compatibility.

New X-Hatch

 Our new, vastly improved Mark TwoCrosa. Hetch Generator is now available. Featuring plug in ICs and a more sensitive sync. pick-up circuit. The case ify virtually unbreskable-ideal for $1^{\text {the }}$ We have atready received a large ordee from a major TV Rental company.

(includas VAT and P \& P. but no battorias)

Over 1,000,000 Transistors in stock

We hold o very targe range of fully merked, tested and guaranteed Trankistors. Oiodes and Rectifiers at ver compelitive prices Please send for Free Catalogue

Our very popular 4 p Transistors TYPE 'A" PNP Silicon alloy, TO-5 can
TYPE B" PNP Silicon. plastic encapsulation
TYPE "E" PNP Germanlum AF dr RF.
TYPE 'F" NPN Silicour plastic encapsulation.
TYPE " $\mathrm{G}^{\text {" }}$ NPN Silicon. sumitar TTX 300 rang
TYPE "H" PNP Sitcon, smiler ZTX 500 eange
8 Reitivis' for $£ 1 \cdot \mid O_{0}$ Part a
27 ;
High-speed magnetic counters

Plastic Power Transistors

NOW IN TWO RANEES
These are 40W and 90 W Silicon Plastic Power Trengistore of the vary lates: design. availeble in NPN or PNP at the most shatteringly low prices of all time. Wo heve been selling these succesaluliy in quantity to under our Tessed and Guaranteed terms. RANGE 1 VCE. Min. 15 1-12 $\quad 13$-25 $\quad 26.50$
40 Watt $\begin{array}{lll}22 \mathrm{p} & 20 \mathrm{p} & 18 \mathrm{p} \\ 26+\mathrm{p} & 24+\mathrm{p} & 22 \mathrm{p}\end{array}$
90 Watt $26 \frac{1}{\frac{1}{p}} 24 \frac{1}{2} p \quad 22 p$
RANGE 2VCE. Min. 40
RAVGE 2VCE. Mn. 40
HFE. Min, 40
40 Watt
GO Watt
$\begin{array}{lll}33 p & 31 p & 29 p \\ 38 \frac{1 p}{} & 36 \frac{1 p}{} & 33 p\end{array}$
 extre oer pair Please atere NPN or PNP on order LM380 AUDIO I.C.
as festured in Practical Wireless. Decamber issue. complete with appliention dota $£ 1.10$.
INTEGAATEO CIRCUITS
We stock a large range of B, Ca as vary competitive pricas (from Ilp each). These are all listed in our FREE Catalogue. ses coupon below.
METRICATION CHARTS now available
This fantascically derailed conversion calculator cartios thousands of classified retarences betwaten matric and Brilizh (and U.S.A.) measuraments of lengith, aree. volume, liquid measure, woighis atc.
Pocket Siza 15 p .
Pocket Siza 15 p .
14 pin trpe at 16 tp each
18 oin lype at 18p abch
We nave a lar
Books in stock.
800 ks

BUMPER BUNDLES
These parcels contain att types al surplua electronic components. prinied pansis. switches. patenlometers

2 LBS in weight for $\mathbf{\$ 1} \cdot 10 p$ Post and Packing $27 \frac{1}{1}$

Dur famous P1 Pak
 is still leading in value

Components, approx. 170 . We guarsitee at least 30 really high quality fectory marked Transiatora PNP 8 NPN and a host of Onodes \& Rectifiers mounted on Printed Circuit Panela. Identification Chant aupohed 10 give tome information on the Transistora.
APP Ef on the Pran

1p Pa po this Pak.
Please ask for Pak P.1. only 55

Please seatd me the FREE Bi-Pre-Pak Catalogue
ALL. PAICES INCLUDE 10\% VAT
NAME
ADDAESS

MINIMUM ORDER 500 CASH WITH OROER PLEASE Add $11 p$ post and pocking par order, OVEASEAS ADD EXTRA FOR POSTAGE.

Buy these goods with Accers

HART ELECTRONICS

F.M. TUNER wooden case lo fil tuner and a mplifier will be offered shortly.
BAILEY/GURRO WSIQUILTER PRE AMP.

GALLEY 30 WATT POWER AMPS. Wooden caso £4 ह5. Front plate £1.37.

DIGITAL MULTIMETER

StUART TAPE CIRCUITS new ones.

REPRINTS
Poaltree, no VAT.
BAIIEY $30 W$. 16o.
STUART TAPE RECORDER
PRE AMP circuit and oscembiy notes 15 p .

AUDIO KITS

This tatest addition 10 our range wilt be in production lata March '74. It is designod to offer the beal posslble performancs allied 10 the oase of operation given by pugh bulton varicap tuning. Wo have ladign great eare to look alfer the conaliuctori point of vitw and inere aro no colia 10 wind, no rf circulis 10 wire and no allonnmere are only 3 sranslstors. one IC and Iwo besazbult and alioned moduliss comprising the active components. We have abandoned the concepl ol having a funer as harge as the amplifiar and this new unit has alroniat miza 11 Jn . $x \&$ in. It can be mounted on the side of our balloy amalinter molniwotk thus turning in

Tha beet engineered hit avallable of the combined best al three pre-amp dealgnt. This it the mil with no wiring to tha conirolis. Withat or inputs. A complele and sophisticated 5 innut signai procesking stage for any power amplifier requiring up to 1 kv Input lor only E 20 50 .

Our bast amaing value tor money.

METALWORK, FRONT PLATES, WODDEN CASES Remember H the finghod lob looke decent the wife won'1 watry sbout the money you spend.

Ous frat venture into instrumenis and by the way ith selling it won"I ba long belore we're afiering othera. It ie of coutse unigue as if meatures OC sid AC volis, resistance, capacitance

Our printed eirculte and componenta offer the asay way to convert any eultable quality det hio a very high qualify Stereo Tape unif. Input and oufput fevels suit balley pre amp.
Total cosi vafles but around ess la ali you need. We can ofler lage heade an well if you wan
ilf above kis have fibreglash PCB's. Prices enclude VAT but PSP is inciuded
SPRING BARGAIN SALE or orand new componentis al trade prices.

Penylan Mill, Oswestry, Salop

Personal callers are always welcome, but please note we are closed all day Saturday

MONEY BACK IF NOT SATISFIED all brand new full spec. Top grade.
fabulous NEW casalogue. Send SA.E

BIG ${ }^{\frac{1}{4}-4 \text { panel clip \&RED LED } 28 p \text {. GREEN \&clip }} 59 p$
INFRA RED LED \&1. ICphoto amp4 4p. \& amp/switch $85 p$
 Minitron type $0 \cdot 9 \mathrm{drDIL}$ EI-19. SOCKETS
L
Texas etc with 4 display $£ 12.6$ displays $\&$ chip $£ 14$.
Mostek date $\&$ alarm chips with 6 displays $£ 19$. Hit:All parts \& case. National chip. 4 digit $£ 20.6 \times £$

 710 35p 723 59p. 555 timer 79 p ZN 414 rx. £1-10 buili $£ 8$
703 rf if $28 p$ mel $310 \&$ led $£ 2.76$ me $1339 £ 1 \cdot 20$ TAD 100 \& if £2 1AMP+ REGULATOR 7 805,5 (\&7-20)V.also $12 \& 15 \mathrm{~V}$ £1-49 AUDIO AMPS : mfc $400050 \mathrm{p} ; 182 \mathrm{~W} £ 1 \cdot 19 ; 3 W £ 1 \cdot 29 ; 6 \mathrm{~W}$.. gales 7400 etc 16P $741332 \mathrm{P} 7447 \mathrm{f1} \cdot 25$
$740 / 7232 \mathrm{P} 7474 / 7639 \mathrm{P} 749063 \mathrm{P}$

NEW 16 pin counter/driver $90 / 47$ £ 2.25 DALO pch.PEN 69
DII. SOCKETS: Profesional / zold P. Pins hior lo Profile 8,14,6 Pin13p

2N3055 33p.four £1. BC107, BC108, BC109 all 7peo

 POTS IIPSWitch 11 PDual 55 P. UTTRASONIC TRANSPUCERS \& 2 a ERII PUS F ADD 10\%VAT TO PRICES.P\&P 10P CWO. BIfRIT OTIGS P.O. BOX 29,BRACKNELL,BERKS

300 mA . Aosimence:
Complate ath -10 to +16 dB . darmplote with baltery, tent Isads end OUR PRICE E3.75 P\&P35p

OUR PRICE E7.50 P\&P 15p

TMK MOOEL TW50K

 46 ranges, mirroscale. $50 \mathrm{~K} / \mathrm{V}$ OC
50 k sak ${ }^{2} A C$.
DC Volts: $0.125 /$ $0.25 / 1,25 / 2.555 / 10 /$
$25050125 / 250 / 1$ 25/50/125/250/
$50 / 100 / \mathrm{AC}$ Vols
$1.5 / 3 / 5 / 10 / 25 / 50 /$ $1.5 / 3 / 5 / 10 / 25 / 5$
$125 / 250 / 500 /$ 1000 DC curtent
$25 / 500 \mathrm{~A} .5 / 5 \mathrm{~F} 2 \mathrm{~s} /$

$55 / 250 / 500 \mathrm{~mA} / 5$! 104. F entience: | $10 \mathrm{k} / \mathrm{t} 00 \mathrm{k} / 1 \mathrm{Mog} /$ |
| :--- |
| 10 Meg |
| 1 |

U91 Clamp VOLT

$$
\begin{aligned}
& \begin{array}{l}
\text { geter } \\
0 \\
60 \\
9 \\
9 \\
0 \\
6 \\
6
\end{array} \\
& \begin{array}{l}
020 \\
60 ; \\
900 \\
000 \\
60, \\
80
\end{array}
\end{aligned}
$$

60/150/600mA/ $1.5 / 6 A$ AC. $0 / 200 / 3 \mathrm{k} / 30 \mathrm{k}$ ohme DC

 $\left\{\begin{array}{l}1.5 / 6 \mathrm{~A} A C, 0 / 200 / 3 \mathrm{k} / 30 \mathrm{k} \text { ohma } \mathrm{AC} \\ \text { sccufacy is AC } 1.5 \% \text { Knife edge } \\ \text { pointer, mirror scale. Complete with }\end{array}\right.$ pointer, mirror scale. Complete withsturdy, metal carrying case, leads and

insiructions.	insiructions.
OUR PRICE E9.75 P\&P 25p	

 $012.5 / 10 / 25 / 100 /$
$250 / 500 / 1000 \mathrm{~V}$
AC. $0 / 5010 / 5 / 50$ AC. $0 / 50 u \mathrm{~A} / 5 / 50$
500 m A. 12 ADC

 $63 \mathrm{al}, 0 / 2 \mathrm{k} 2010 \mathrm{k}$,2 Mog 200 Megohm 2 Meq/200 Megohma
OUR PRICE $£ 22.50$ PAP 30 p

U4317 MULTIMETER

High sensitivity
insirimment for field and laboratory work.
Knife edge pornter.
86 mm . mirror scale. Knif edge pornter,
日6mm. mirror scale.
Rances: 100 my .

Q.5/2.5/10/25/50/100/250/500/1000
VDC. $0.5 / 2.5 / 10 / 25 / 50 / 00 / 2501$ $500 / 1000 \mathrm{~V}$ AC. Current: $500 / 250 /$ $1 / 5 / 10 / 50 / 250 \mathrm{~mA} / 1 / 5 A \mathrm{DC}$. $0.25 /$
$0.5 / 1 / 5 / 70 / 50 / 250 \mathrm{~mA} / 1 / 5 A \mathrm{AC}$.
 $30 / 300 \mathrm{k}$ ohms. Decibels: -5 to ${ }^{+10 \mathrm{~dB}}$
Batiory. operated. Stza: $210 \times 115 \mathrm{x}$
90 mm . Supplied in carrying case rom. 90 mm . Supplied in carrying case romOUR PRICE E15.00 PaP 20p TMK IOOK LAB TESTER $100.000 \mathrm{opv}, 5 \% / 2$
sczie. Buzzer scale. Buzzer
short circult check short circult check.
Sensilivity 100.000
opr OC. $5 \mathrm{k} / \mathrm{A}$ AC opr OC. $5 \mathrm{k} / \mathrm{V}$ AC
DC Volis: $0.5 / 2.5 /$
$10 / 50 / 250 / 1000 \mathrm{~V}$ $10 / 50 / 250 / 1000 \mathrm{~V}$
$\mathrm{AC}, 3 / 10 / 50 / 2501$ $500 / 1000 \mathrm{~V}$ OC current 10/100uA/10/ $10 / 100 / 500 \mathrm{~mA} / 2.5 / 10 \mathrm{DA}$. Resistence:
$1 \mathrm{k} / 10 \mathrm{k} / 100 \mathrm{k} / 90 \mathrm{M} / 100 \mathrm{Mes}$ $1 \mathrm{k} / 10 \mathrm{k} / 100 \mathrm{k} / 90 \mathrm{Mol} / 100$ Mag ohms.
Oecibes: -10 to 44 di . Plasic case Oectibels: $\mathbf{- 1 0}$ to \&idid. Plastic case
with carrying hande. Site: 190×172 $\pi 99 \mathrm{~mm}$.

MOOEL U4311 Sub-standard Multi-range Volt-Ammeter

 Ohm $3 / V$ Vall $A C$
and $O C$. Accursey 0.5%
$\mathrm{DC}, 1 \% \mathrm{AC}$. Scale langth.
165 mm . 165 mm
$0 / 300 / 750, ~ A /$ 30/75/150/300/ $750 \mathrm{~mA} / 1.5 / 3 /$
$75 \mathrm{OCO} .0 / 3 i$ $75 A$ OC. $0 / 3 /$
$75 / 15 / 30 / 75 /$
$150 / 300 / 750 \mathrm{~mA}$
$150 / 300 / 750 \mathrm{~mA}$

0/75/150 $300 / 750 \mathrm{mV} / 1.5 / 3 / 7.5 / 15 /$ $1.5 / 3 / 7.5 / 15 / 30 / 75 / 150 / 300 / 750 \mathrm{~V}$ AC. Automatie cut out device. Suppand tent cortifleates. OUR PRICE E49.00 PAP 50p
 $30 / 5 / 15 / 300 \mathrm{~V}$ DC
$300 / 600 / 1,200 \mathrm{~V}$ AC Gurrent: 0-30/60uA
$\uparrow .5 / 315 / 30 / 150 / 300$ $-3 / 300 \mathrm{k} / 3 / 30 \mathrm{Mohm}$. ocibsls: -10 to +17 dB . Outpur:-
$0-3 / 6 / 15 / 30 / 60 / 120 / 300 \mathrm{~V}$. acy $\pm 3 \% \mathrm{DC} \pm 4 \mathrm{ACC}$. Sensitivity:
50.000 opv $\mathrm{DC}, 5,000$ opv AC. 4 inch metep. 8ullt in protection. 518 : 57 k
$102 \times 153 \mathrm{~mm}$. OUR PRICE E11.95 P89 40p HIOKI MOOEL 700X
protection. Mirror sas
poise. $6 / 1.2 / 1.5 / 3 / 6 /$
$12 / 30 / 60 / 120 / 30 /$
 5/30uA/3200VAC.
$1 / 30 / 60$ / $150 / 500 \mathrm{~mA} / 6 / 12 \mathrm{DOC}$ $2 \mathrm{k} / 200 \mathrm{k} / 2 \mathrm{M} / 20$
-20 to 63 dB.
OUR PRICE E14.95 P\&P20p
Model HT 10084 MULTIMETER
, thack prool circuite.
9.5uA Pleter with
mitror scale. Sonsitivir
mirror x ale. Sensitiviry
fookv. Polartry change
switch. Rompes: change
T. $5 / 20 / 25$,
$1 / 150 / 250 / 500 / 1.000$
$V_{\text {ulis }} 0 \mathrm{C} .2 .5 / 10 / 50 /$
Voits DC. $2.5 / 10 / 50 /$
2501,000 viti AC.
 $200 \mathrm{k} / 2 / 20 \mathrm{Meg}$. ohms.
OC surrent:
$10 / 250 \mathrm{uA} / 25 / 25 / 250$ mA/ 10 A . AC curtent: $-0-10 \mathrm{~A} .-20$
to +62 dB . Opertes to 762 dB . Operates from $2 \times 1.5 \mathrm{~V}$ OUR PRICE E15.00 P\&P 40 p

MODEL AS. 100 D VOM

$100,000 \mathrm{opv}$
Mirrar scate.
Bulitein metor protection.0/3/
$12 / 50 / 120 / 300 /$ $12 / 50 / 120 / 300$
$500 / 1200 \mathrm{~V}$ DC 5001200 V DC.
$0 / 6 / 30 / 120 / 300$. 600 V AC. $\mathrm{O}^{110} 1 \mathrm{H}_{\mathrm{H}} \mathrm{A}$ $6 / 60 / 300 \mathrm{~mA}$
$12 \mathrm{mmp} .0 / 2 \mathrm{~K}$ $200 \mathrm{~K} / 2 \mathrm{M}, 200$ Ohm, 2010.17 d
DUR PRICE E17 KAMODEN HM720B FET VOM Input impodance 10
Megohma. Ranges:Meporms. Ranges:1000 V DC O/2.5/10
$50 / 250 / 1000 \mathrm{~V}$ AC. $0 / 25 \mathrm{LA} / 2.5 / 25 / 250$
mADC ma $0 / 5 \mathrm{k} / 50 \mathrm{k} / 500 \mathrm{k} / 5 \mathrm{~m}$
500 M Hehtms OUR PRICE £ 21.00 P\&P 300

SEW CLEAR PLASTIC PANEL METERS

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES ETC. Over 200 ranges in stock-other ranges to order. Ouantity discounts available. Send for fully fllustrated brochure.

CLEAR PLASTIC MODEL MR 85P Size: $120 \times 110 \mathrm{~mm}$			
50uA	18,45		
100uA -	1540		
200uA --	65.35		
5004 50.0 .50	65.26 6540		
100.0.100uA .-.	18.35		
5000.500 uA ..	1520		
1 mA	$\underline{5120}$		
5 mama ..	$\begin{array}{r}1520 \\ \hline 5.20\end{array}$		
toma.. ..	15.20		
50 mA	15.20		
100mA -	18.20	300 V OC	c5,20
500 mA	18.20	15 V AC	15.30
1 A OC	15.20	300 V AC ...	C8.30
$5 A D C$	15.20	S Meter ima ..	65.20
15A DC	ct 20	VU Meter ..	55.55
30A DC	r8.40	1AAC	85.20
$10 \vee \mathrm{DC}$	1520	6AAC -	85.20
20 V DC	C5 20	10AAC -	c8. 20
50V	2520	20AAC -.	1820
150V DC..	85.20	30A AC	15.20

CLEAR PLAS

 5 mA
10 mA
20 m
50 ma
100

ö
员
员
\vdots
\vdots

CALL INTO YOUR NEAREST LASKYS BRANCH OR ORDER WTH CONFIDENCE BY MAIL ORDER

CENTRAL LONDON

 481 oxFOROST. (Opening late Aprit) $\begin{array}{ll}10 \text { TOTFENHAM CT. W0. } & 01-6372232 \\ 27 \text { TOTTENHAM CT. RO. } & 01.6363715 \\ 33 \text { TOTENHAM }\end{array}$ 33 TOTTENHAM CT. RD. $01-6362605$ 42/4S TOTTEMHAM CT. RD. $01-6360845$ 87 YOTEFHHAM CT. RD. OI-580 3739 257/S TOTEMMAM CT. RD. $01-5800670$ 3 LISLE SY. WCZ14 LISLE ST. WC 118 EDGWARE RD. WI
193 EDGWARE RD W2 193 EDGWARERD.W2

207 EDGWARERD. W2 207 EDGWARE RD. W2 01.7239789 | 311 EOGWARERD. W2 | $01-723$ |
| :--- | :--- |
| 3276 | |
| 346 | | $\begin{array}{ll}382 \text { EDGWARERD. W2 } & 01-7234453 \\ 109 & 01-7234194\end{array}$ $\begin{array}{ll}109 \text { FLEET ST. EC4 } & 01.3535812 \\ 152 / 3 \text { FLEET ST. EC4 } & 01.3532833\end{array}$

ESSEX
86 SOUTH ST, ROMFORD
70-20211
KENT
53/57 CAMOEH RO.. TUMERIOGE WELLS
LEICESTERSHIRE

45 MARKET PLACE, LEICESTER
$0533-537678$
SURREY
$10-16$ WMITGIFT CEMTRE. CROYOOM
27 EOEN ST. KINGSTOM $\quad 01-6813027$ 32 HILL ST. RICHMONO 01.9481441
WARWICKSHIRE
II6 CORPORATIOM ST., BINHIMGHAM
(Opening thorty)
ALL BRANCHES OPEN FROM 9am to Gpm MON. TO SAT.
HEAD OFFICE AND MAIL ORDER DEPARTMENT
AUDIOTRONIC HDUSE
THE HYDE INDUSTRIAL ESTATE. THE HYDE. LONDON NWS 6JJ. TELEPHONE: 01.2053735 \& 5651.

MAIL ORDEA SPECIALISTS We oflet a speety ant eficienl service by mant order. Remember to arid 10\% VAT to tolal value ol qeods incluting catriage ant pachisti and wad cash with ordie to tieat office. TO AVOID DELAYS PLEASE PRINT NAME ANO AOORESS CLEARLY IN CAPITALS
BARCLAYCARD \& ACCESS Holfiers w.tcosne call tmio a"y branch or telephots. your order to head office. CREOIT TERMS available for Persomal Shoppers on valev ol C $\$ 0$ and over

BARGAIN CENTRE Many special clratancr offirs sid TOTTENHAM COURT RO f7 TOTTENHAM COURTRO
FOR PERSONAL SHOPPERS

EXPORT Persomal eneorls arranged for overseas visitors Gooils despalcheti to all paris ol the world thirgugh our fimmediale atlention given to
orters.

CHEQUES ACCEPTED,FROM PERSONAL SHOPPERS ONLY WITH BANXERS CARO.
Alt pricet correct at 13.3-74 but
ant

LEMANIA AIRCREW CHRONOGRAPHS. .Stainless Steel case with screw back; luminous hands and markings. One filth sec. sweep hand controlled independently of main movement by press to start, stop and return to zero button. 15 jewel movement. Many of these watches are as new but all have been cleaned new but all hecked. Fitted strap. White fack $£ 18 \cdot 55$, Black face £ 1950 inc. P. $\$$ P. Inspction against rembltance GS WATCHES ail with brushed saiainlens bieel caso with
 TIMOR. GRANA. JWC. RECORD. SMITHS EIC. to s common specincation. Wo will try to meef yout ravire of ono manulacmaret's production. All sleaned and checked. Fitled 5 trap.
tis ing. P. P.

 P. AP.

GAS CHROMATOGRAPHY RESEARCH OVEN

PAS CHRO PVIOS1/4OS5

A larsoc aspacity oven of 10 thermal mass for une betwenn 35 and $355^{\circ}{ }^{\circ}$. Provid os \& forced alr circuisting sysiem yiflding
1000 changes of air per min. The oven has forced alr cooled 1000 changes of air per min. The oven has arced nigh. 210.250 V ,

MIL SYNCHROS AVAILABLE EX-STOCK In alies 00, 11, 15, 16, 1 B and 23 lor 50,60 and 400 Hz operation.

Synchio Control Dlfererontial Transmitiers
Synchro Torque Transmltiars and Recelivers
Synchro Resolvels Synchro Resolvegs

IONISATION AMPLIFIEA PV 4075

A modern high grade low noise solld stale ampliner to leed a
 with 5 outputs af imv to 100 mV . Linearity $0.1 \% \mathrm{l}, \mathrm{s}$. Noise less than 0.5% f.a. at max, sengitivity, sack of lacilty. Dimension
za $x 10 \times 43 \mathrm{~cm}$ deop. With operaling information $£ 27.50$. 2C. Pd. U.K.)
betalls of these three and other gas chromatography tems are Oetails of these three and other oay chromatography (toms are
available-price 25 (C.W.O. only) Handbooks (eompleto) Avaitable.
ALL PRICES INCLUDE 10% V.A.T.

AERIAL OIRECTIOM INDICATIMG KIT
Thla oft comprises a paif of Megitpe to provida remote IndleaTlon of aerlal azimuth and comprises a Iranamider and rectiver receiret can be mounted al the control point, to provide immedl ate and conlinuoue indication of aerisel ponition. Supply voltage
tequited is $50 y 50 \mathrm{~Hz}$ and the price $£ 7-75$ (P. Pd.) including a requlped is $50 y 50 \mathrm{~Hz}$ and the price ETMS^{7-73} (P. Pd.) including a
 formation by the magslio link. Translormets to provite 50 W
 PLESSEY GROUND EASED U.M.F.GROUNDIAIRTXIRX
FOR EXPORT ONLY OR SALE TO LICENSED USERS. This equipment comprises:
Single Chamnel Recpiver $5820-99-932-5694$. Single Chamnel Receivertior 582-99-932-5698
Single Channel Tranomitter Single Channel A mplifiet 5020-94-932-5701. Power Unit for Amplifler s5020-00-032-5700 Cooler Unil 5020.99-932-3995. communications over $225-0$ to 390 9MHz, the TXXAMalifier unit oiving 800 Whits R.F. oulput Into 50 Onm. Wh. We have sufficient of these untis 10 lorm 12 complete instatiations with a numbst of spare sub-unit

MANUFACTURERS!!

Metal Oxide Resistors (ELECTROSIL \& WELWYN)

Tantalum Capacitors (KEMET, ITt, PLESSEY, ETC.)

Scientific Instruments

Electronic Test Instruments Synchros and Servomotors ALL AVAILABLE EX STOCK! WE HAVE ONE OF THE LARGEST STOCKS IM THE
COUNTRY OF INSTRUMENTS AND COMPOMEMTS COUNTRY OF INSTRUMENTS. AND COMPOMENTS
MANUFACTURERS. TELEX 963255 . RE AVAILABILITY. Servo and Electronic Sales Ltd Post Orders and Technical enquiries to: "BAYS", HIGH ST., LYDD, KENT. Lydd 20252 (STD 0679) TELEX 965265
V.A.T. Reg. No. 20t-1296-21

TELEX 965265

OVER 300,000 IN STOCK! Multiway and R.F. Connectors by twenty different companies! Send us your detailed requirements quoting Nato numbers if known. We are now on TELEX.

WE ARE ANXIOUS TO BUY Synchro Tesi Equipment Dividing Heads. Bridges, Stondards elc. to eapand our teating facillties.

RADAR CABLEFORM INSULATION TESTER IOR Chock | ing insulation between indvidual conductors and each othe |
| :--- |
| and giround at preselected voltages up to lo | anplication.

TAPE STORAGE CANS. Brand now finished steel cani of lape. Our last fupaly of film but ideat lor atoring 7 in . reet al 100 each but ss or result of a massuve new purchasa we ca now ofler ecsae ol 55 (Minimum order) al $\varepsilon 730 \mathrm{Inc}$. P, \& P. and V.A.T. SAmple cha availate at Jip inc. Pio o P. And V.AT.
POLARAD WIDE RAMGE DISPERSION SPECTRUM ANALYSER coreting $10 H H z$ to 40 eakMHz. Model SA $8 t W$
with handbook El2SO plus V.A.T. Send S.A.E. (Foolseap) tof
fintormation. ETHER ELECTROMETHOOS LOW IMERTIA INTE ETHER ELECTROMETHOOS LOW INERTIA INTE. Prices. FIC ${ }^{6}$, 12 IZE 23 PULSE GENERATORS (Shalt Digilizers) VACTRIC SI2E 23 PULSE GENER

INDUCTION GEMERATOR
Reaster a supply voltage of 50 N 50 Hz and provides an outpu of 7 pyr 1.030 r.p.m. ditrectly proportional to epeed. Thls ith myasuring shatt speed etc. In brand new condition $£ 525$ pos paid.
PLAMMA1R. Axial FIow Fans (with mounting) Tyoe BPL122 -331 Mh. 2 finn. 2,800 r.o.m. 400r. 3oh 50 Hz . New and bort Also avaliable tasted but not new in $2201240 \%, 50 \mathrm{~Hz}$ veraton a ع 650 (C.P(t. U.K.).

ELECTMONIC ORGAN DIVIDAR BOARDS bult to high industialicomputer spec. 5 octeve sot C1E. Complate with connection data and oscillator detalis.
COPPER LAMINATE P.C. BOARD $8 \ddagger \times 5 \times 1 / 15 \mathrm{in}$. 12 tp sheet. 5 tot 50 p $11 \times 6+\times 1 / 16$ in. $15 p$ sheot 4 for 50 p $161 \times 4 \times 1 / 16$ in. (Fibragisss). 30 p sheat. Oftcul pack (mmalleat $4 \times 2 \mathrm{in}$.) SOp 300 sq . in P\&P singia shetl 4p. Bargain packs 20p

TELEPHONE DIALS (New) £1 ea reLars (G.P.0. '3000'). All tyoes. Brond new from 37, 3 ip as. 10 up quolationa only. EXTENSION TELEPHONES (TYpe 706) various Colours E3.50. P.P. 25p. Excelioni condition.
RATCHET RELAYS. (310 ohm) Vatious Types 85p. PP 5D.
UNISELECTORS (NEW) 25 way 12 Gank (Non 日ridging) OB ohms. EG.

PRECISIONA.C. MILLIVOLTMETER (SolartIon) $1.5 \mathrm{~m} . \mathrm{V}$. to $15 v$: 60 db to
£22. 50 . P, P. $£ 1.50$.
HIGH CAPACITY ELECTROLYTICS
HIGH CAPACITY ELECTROLYTICS
$2200 \mu \mathrm{f} .100 \mathrm{v} .\left(1 \frac{1}{} \times 4 \mathrm{in}.\right) 60 \mathrm{p} .3 .150 \mu \mathrm{f} .40 \mathrm{v},\left(1 \frac{1}{} \times 4 \mathrm{in}.\right)$ 2200 uf .100 v . (1t x 4 in .) $60 \mathrm{p} .3 .150 \mu \mathrm{f} .40 \mathrm{v} .\left(1 \frac{1}{2} \times 4 \mathrm{in}\right.$.)
 $16 \mathrm{v} .(2 \mathrm{z} 4 \mathrm{in}) 60 \mathrm{p} .21,000 \mu \mathrm{t}$. 40 v . $\{2 \mathrm{f} \mathrm{x} 4 \mathrm{in}$. $\} \mathrm{f}$. Post and packing 50 .
$2,800 \mu \mathrm{f}$. 100 v . (4f $\times 2$ in.). $80 \mathrm{p} \quad 15,000 \mu \mathrm{f}$. 63 v . ($41 \times 21 \mathrm{in}$.). El .
ROTARY VACUUM PUMPS (OS10) with Motot on Gedplate, £25. P.P. E2.
HIGH VACUUM OIFFUSION PUMPS IMetrovac O93C). Now condition. \&40. P.P. C2. A.E,I. P10. ION Pump Control Units. 11750.
OVERLOAO CUT-OUTS. Panel mounting ($1 \times 11 \times 1 \mathrm{in}$) $800 \mathrm{M} / \mathrm{A} / 1-8$ amp/10 amp. 35 p 00. P.P. 5 p.
BULK COMPONENT OFFER. Reslstors/Capacitors. Al rypes and values. All naw modern components. Ovor 500 pleces 82 . (That oider 100pes. 50p.) We are confldent you wlll te-order.
REGULATEO POWER SUPPLY. InPUT $110 / 240 \mathrm{~V}$ Output 9v. DC. 1 t amp. 12 v . D.C. $500 \mathrm{~m} / \mathrm{s}$. E4. P.P. 30 p
U.K. ORDERS 10\% V.A.T. SURCHARGE

TRANSFORMERS

advance "volstat" triansformers. Input

242v. A.C.
CVSO. 38 v . a! $1 \mathrm{amp}: 25 \mathrm{v}$, at $100 \mathrm{~m} / 0.75 \mathrm{v}$, at $200 \mathrm{~m} / \mathrm{e}$, E2 ca. P.P. 40 p.
cV75. 25v. at 21 jmp . E2.50. P.P. 50p.
CV100. 50 v . at 2 amp : 50 v , at $100 \mathrm{~m} / \mathrm{a}$. £3. P.P. 50p
CV250. 25 v , at 8 amp : 75 v . at $\ddagger \mathrm{amp}$. C5. P.P. C1
CV500. 45 v , at $3 \mathrm{amp}: 35 \mathrm{v}$, at $2 \mathrm{amp}: 25 \mathrm{v}$, at 3 amp . E7. P.P. £1.
L.T. TRANSFORMER. Prim. 240v. Soc, 13v. 1.5 amp. 75 p, P.P. 15p.
L.t. transformer. Piim 240y. Sec. 24v, at 1 amp. £1-20. P.P. 20p
L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$, Scc. $0 / 24 / 40 \mathrm{v}$

11 amp. (Shrouded). £1.50. P.P. 30p.
L.T. TRANSFORME R. Prim. $110 / 240 \mathrm{v}$. Sec. 28/0/28v, ai 2 smp: 10 Sv, ol 1 amp. (Shrouded). C2 25. P.P. 40p.
L.T. TRANSORMER. Prim, 200/250v. Sec. 20/40/60v at 2 amp. (Shtouded). £2.25. P.P. 40p.
L.T. TRANSFORMER (H.D.) Prim. 200/250V Scc. 18 v , at $27 \mathrm{amp}: 40 \mathrm{v}$, at $983 \mathrm{mp}: 40 \mathrm{~V}$, at 36 amp 52 v , at $1 \mathrm{amp}: 25 \mathrm{v}$, at 3.7 mmp . E15. P.P. E2
h.t./L.t. TRANSFORMER. Prim. 200/250v. Sec. $1.500 / 0 / 500 \mathrm{v} .150 \mathrm{~m} / \mathrm{s} .50 \mathrm{C} .2 \mathrm{z} 31 \mathrm{v}$. at 5 amp . E3. P.P. 75 D.
E.M.T. TRANSFORMER. 240 v . See. $2 \cdot 5 \cdot 0.2 \cdot 5 \mathrm{~K} . \mathrm{V}$. at $12 \mathrm{~m} / \mathrm{a}: 7.5 \mathrm{v}$, at 1 amp: 2.5 v , at 2 amp . C2.50.P.P. 35p. E.H.T. TRANSFORMER. $\mathbf{2 4 0 \mathrm { V }}$. Sec. 1800 v .50 mA . ع2.50. P.P. 50p.
250W. ISOLATION TRANSFORMER. 240y. 53-25. P.P. 50p.

1000W. ISOLATION TRANSFORMER. 220/240V. 242v. (c' cote tYpe). E12. P.P. E1 50 .
2500W.ISOLATION TRANSFORMER (CONSTANT VOLTAGE). Prim. 190.260 v . $60 \mathrm{H2}$. Sec. 230 v . at VOLTAGE). Prim. ${ }^{190 .}$
10.9 mmp . $\mathbf{E} 30$. Cati. $£ 2$.

SOOW. STEP.OOWN TRANSFORMER wound.) $240 \mathrm{v} .115 \mathrm{v}, 50 \mathrm{HZ}$. E6 50. P.P. E1 2300W. STEP.OOWN TRANSFDRMER. (Double wound.) $240 \mathrm{v}-117 \mathrm{v} .50 \mathrm{HZ}$. E22.50. P.P. C2.

HIGH-SPEED MAGNETIC COUNTERS. 4 digit (non reset) 24 v . of $48 \mathrm{VV}$. . (s13te
40 p . P.P. 5 p .
5 digll (nan-resel) 6-12-24-48v. (state which) 75p. P.P. 5p.

3 digit 12 v . (Rotary A esel) $2 \mathrm{f} \times 1 \mathrm{i} \times 1 \mathrm{f} \mathrm{in}$. E1 aach 3 digit 12v. (Reset) 3t $\times 1 \times 1 \mathrm{in}$. E2.25. P.P. 5p. 5 digit (Reset) 12v. £.3. P.P. 5p.

MULTICORE CABLE (P.V.C.)
6 corb \{ 6 colours\} 3 screened. 14/0048. 15p, ydl. 100 vde. E12.50
20 core (2 scieened) 17 ip yd. 100 ytis. c 15.
24 core (24 colount) 20p. yd. 100 yds . 617 -50.
30 core (15 colouts) 22 ip . yd. 100 yds. 1818.50.
34 core (17 colours) 25 p . yd. 100 yds. 220 .
Minimum order 10 yds .
RIBBON CABLE (B colours)
£1. 25
$£ 10$

SMALL MOTOR ($1 / 50 \mathrm{H} . \mathrm{P}$.) 900 R.P.M. 230/250v. A.C C1 50. P.P. 30p.

relays

SIEMENS/VARLEV PLUG-IN. COMDlele with transastent dust covers and bases. 2 pole c/o contacts 35p es: 6 make
 types in stock.
12 Volt h.d. relays ($3 \times 2 \times 1 \mathrm{in}$.) with 10 amp. silver contacts 2 pole c/0 40p es.: 2 polo 3 way 40p. P.P. 3 p.
24 VOLT H.O. RELAYS ($2 \times 2 \times i \mathrm{in}$) 10 amp. conlacts. 4 pote c/o. 40p ea. P.P. 5p
240v. A.C. AELAYS. (Plug. in type). 3 chenge over 10 amp contacts. 75p (with base), P.P. 5p.
P.A.R. BISTABLE RELAY (Latching) 24v. O.C. $4 \mathrm{c} / \mathrm{o}$ contacts 65 p . P.P. 5 p.
SILICON BRIOGES. 100 PI.V. 1 amp. ($4 \times!\times!\mathrm{in}$.) 30p 200 P.I.V. 2 amp. 60p.
24 VOLT A.C. RELAYS (Plug-in).
2 Pole Change-over 60 p .

PATTRICK \& KINNIE

191 LONDON ROAD - ROMFORD - ESSEX
ROMFORD 44473
RM7 9DD

(0) 0 (ELECTRONICS) LTD.	ck	RELAYS FRACTION OF MAKER'S PRICE	SARONER HT TRANSFORERES 30 mia. Open frame. Table top con. nections EA 50 carr. 73 p
01.	 inswationt aiss. core wo.		
DRAKE ISOLATION 2GHIOV TRANSFORMERS Pri. Tapped $10-0-200-280-240 \mathrm{Sec}$. 110 v 400 waftr. Shrouded. C 650 			
		 puth and al cover . 60p, polt. 5p.	
	scotch magnetic computer maivert mitee El © © Cat: wo.		CONSTANT VOTTAGE
Pation Tropato TRNFOMERS 			
	RADICON WORRK REDUCTION 		
HEAVY DUTY ADMIRALTY TRANSFORMERS 		BPECIAL OFFER OF OMRDN Tyap Mk. 2, 24v. AC. $12 v$. DC. Two 7 amp. CO contacls. S hoie fiamp. contects. micro ewith recilon. Size ix1x polin Sp. poal Sp.	VAT PLEASE ADD 10\% TO ALL ORDERS INC. CARR.
SOLATHENV TRAUTVFORMER 			
		RELAY CONTROL CO. Ametican Size $1 \frac{1}{1} \times 1 x^{2}$ Ins. 35 p . posi, 5 p .	PARMEKO HIoh Voltage Teans-formers. Prl, $220-250 \mathrm{v}$. in 10v, stepl. Sec. $1320-0-4320 v, 250 \mathrm{~m} / \mathrm{a}$. 108 hv ph bloth connocilons. New in maher'scaton. Elo carf. £1.
	SYMCHROMOUS motors ${ }^{2} 20$		
		soroin cos	LEMARKPrI, 240v. Sec. $40 \mathrm{v}, 8 \mathrm{~m} .5-0.5 \mathrm{v}$ E4 50 carf. 75p. Pri. 240 v . $16-0 \mathrm{~m} 18 \mathrm{v}-2.5 \mathrm{a}$. 2a. sute lap on prtmary. Open freme Pd. $240 v$. Sec. $20-0-20$ ita. g-0.5 28. f1-75 carr 35 p .
CCuRENT RAMGE Of Mew lito Transiomer	FULL WeVE SELENUM 	EENSONS SOLENOIDA 12v DC Type above.	
		GRESHAM 'C' CORE 10H 35 M/A 	
	 Sop 0.5 .4100 .		
TRANSFORMERS FOR LINSLEY HOOD AMPLIFIERS Fivis toid			

Lomys U．Ks LARGEST RANGE OF BRANDED AND GUARANTEED DEVICES．（Quantity Discounts 10\％ $12+15 \% 25+$ ，20\％ $100+1$
 （Any one type excapt where quantity discounts show）Min．Ordar $\mathbf{8 1 . 0 0}$ please，Post 10 py

INTEGRATED CIRCUITS VERY IMPORTANT．ONLY branded I．C＇e are to the FULL manulacturere onecift－ calion．ALL others afs not．Henti＇s eill only branded Integrafed Citcults．．．From TEXAS．．．I．T．T．．．FAIRCHILD．．．SIGNETICS，So why buy allernallves or under spec．devleet when you can purchase the ganulne article from ue－x slock． need we say more！					
spmpmi					
Type		Type 1	$\begin{aligned} & 1192 / 2930 / 99 \\ & p \sum_{p} \sum_{p} \end{aligned}$		
SN7400N	－200 210%				
SN701N	$\begin{array}{ll}0 & 20 \\ 0 & 0 \\ 0 & 11 \\ 0 & 0.16 \\ 0\end{array}$				
SN7401AN	O33 03180		${ }^{2}$		＋
SN7403N			－20018		
SNN403AN SNItan	O24 024		－ 230		30 230201
SNTOOSN	020013 OCl		0388888 0		
SN7205AN			\bigcirc	SN	
1073	－ $40.00^{31} 035$		－ 0.59055	SN7 SN7 SN	1.09109180 1.09 109095
SNT700N	${ }^{0}$		0 B		
7499A	0410.40 .38		${ }^{1}+2$		
10 N			1.20 1.20		， 15
			1.57 0.50 0.185	SN7163N	
SNTIL2AN SN7413N			－${ }^{0} 5150$		
1N	0.720 .78083		0.75 1.00		
	0.30 0.30 0 07708025	SN7491A	1.10 0.75		2112012.52
SN720N	$0.20 \cdot 18$		075		\％ 65 140 1.45
$2{ }_{24}$	0.380 .38030	SN^{1}	$0-8$		1．10 1．10 1.57
${ }^{23 \mathrm{~N}}$	0370318		${ }_{2}^{1.00}$		
	$0370{ }^{0} 17832$	SN7410	06	SN7	1.4 1.4 1.4126
SNT723N	${ }^{0} 43043$	SN7	－	SN7488	${ }_{511}^{11} 453$
SN732N	0370300.32		057057050		1414418
SN7433N	－4363	SN			12.1
SNT733N	040.42037	SN74	100 090		64114．10567
SN7438N	04304037	SN741	102		
40N	$0260-11016$	SN74121N	057057050		30230201
SN741A	0350.79073	SN7432	${ }^{0} 1000008.70$	SN77994N	
（enctin	0.350 1.50 1.27 1.27 1.13	SN74t23N SN7412SN			
STH444N		SN74126N	O69 044060		
SN／445N	2．16 2.18181 .19	SN74132N	0.720 .72063	N	3．16 2.75
SN7447AN					
TRANSISTORS		A SELECTION FOR FULL LIST SEND FOR BOOKLET 36 TODAY．			
		cris 35			
	Y32 ${ }^{\text {asp }}$	（thit 558	－${ }^{\text {O45 }}$	$\times 302110$	
${ }^{\text {A Cli28 }}$		GET115 75	－	21×300	2N3900 225
ACY17 35	日CY70	r830	OC72		－
		Lм ${ }^{\text {¢ }}$ 1－99\％ 17	${ }_{0} \mathrm{C} 81$	${ }_{2 N 706}^{2 N 0}$	N
ADIS1 390	80124 100		Oc83		
	${ }^{\text {che }}$		－ 0^{170} 25p	${ }^{2 N 132} 25$	2N4879 35
AF1188 50 D	F180	JE3055	－C202 90	2 N 1613	
	－		OCPI 1100	${ }^{2 N 1671}$	250］ 25303 190
		MPF105 45	ORPt2 SSp	2N2100 ${ }^{\text {a }}$	
AA115 100	日FY50 200	6 60	P366A 20，	－3928	${ }^{10381}$ 4sp
${ }^{81} \times 13$	20p	OAS，${ }^{\text {OAF }}$	TIP29a 99	${ }_{2 N 3059} 450$	
${ }_{8 C 108}{ }^{\text {BL }}$ S		A200 ${ }^{\text {a }}$	TIP30A 59，	－ 2 2N305S	0
${ }^{\text {BC1 }}$ BC109 ${ }^{\text {B }}$	－1436 6.25	${ }^{\text {A } 202} 110{ }^{10}$	$\operatorname{TiPata~}_{\text {TiPa }}$		
$\mathrm{BCl}^{113} 16 \mathrm{p}$	时1135 2.20	120	T1P42A 800		
BC	（1）	23	405A	${ }_{2}^{2 N 3702} 11$	
TRIACS ${ }_{\text {sind．}}^{\text {sind }}$ with mice escointies			SILICON CONTROLLED RECTIFIERS		
3 AMP RAN		400，$E 145$	Type		
	1.15	500r E1．85			
	Tyoe P．I．V．Eich is	P RANGE	CRS 110		
SC3sA 100	，	${ }^{1000} \times 1.45$	CRS CRS 1120		（1）${ }^{350}$
		cor	CRS ${ }_{\text {CRS }} 1 / 1 / 60$		bav
		500r 5223	three		
			CR		50v 40p
		TRIAC	CRS 3／20		
		${ }_{\text {（TR1A6 }}^{\text {TRAC }}$			号
		Piac	E		
T0 AMP RANGESCISA $100 V$ E1105		（Plasilc）90p	Stu00		400\％60p
T043					－ 675
			CRS 71600		${ }^{\text {95p }}$
	080		SIXTEEN AMP（TO43） CRS 16.100 CRS 1600 CRS 16000 CRS 10,600 2000 2000		

Tancy＇s aqoo
 LIMITED

EDGWARE ROAD，W2

ELECTRONICS FOR EVERY PURPOSE See facing page
for addresses

EASY TD BUILD KITS GY AMTRDN

ALL KITS OFFEAED． SUBJECT TOSTOCK
AVALABLITY
AT Prices correct st tume ot
preparailon Sublect to
chang with change wlfhout notice． EXCLUSIVE－SPECIAL OFFERSI
 POdA ADM，
CAR LIGHTER PLUG and AOAPTOR for all cassette

Siereo casselte recorder $£ 59 \mathrm{gs}$ carrlpackg 50 p ．
 RECORDER C11275

BRID GE RECTIFIERS

ZENER DIODES
400 m／w BZYM／BZXIS．FTom 3.3 volt－

 ${ }_{6}^{10}$ walls．Stad．Mounting． 25 series

FREE BOOKLET
All types of Transistor Rectifiers－Bridges SCR＇s－Triacs Integrated Circuits

F．E．T．－Light Devices OVER 1500 DIFFERENT DEVICES ENTIRELY NEW 1973 EDITION More Devices $\star \quad$ New Prices \star New Ranges \star This is a must for all Semi－conductor Users．（Ask for booklet No．36．） SEND FOR YOUR FREE COPY TODAY

yyti yry	
TEAIDOS WATTIC	
SL4030 $5 / 30$ voill operated．	STROBE TUBE
OHM 5 watt output．	
W1th circuite and data	ST2（D32）D1AC ${ }^{\text {S }}$
E1．50．Completo with	CRS $1 / 40$ SCR ${ }^{\text {a }}$
printed elicult bogrde and	ZFT4 E3．00
	2FT12
	Uftrzeonlc Transoucters
	Opernle al 10 Khzz Lo 10100
	lng and tionmling．Com－
nd data． 6	plefe wilh cata Tennumitter
watt ic with printed	and rectiver new w．C
	circulte．Per palr Es．\％．
Intwaraled circult rado az	I．C．alze complote with
	dital
Rinea（PW	$\begin{aligned} & \text { (digltal clock } \\ & \text { No. } 31,13 \mathrm{p}) \text {. } \end{aligned}$

EDGWARE ROAD, LONDON W2

YATES ELECTRONICS
 （FLITWICK）LTD．
 DEPT．WW ELSTOW STORAGEDEPOT KEMPSTON HARDWICK BEDFORD

C．W．O PLEASE．POST AND PACKING
Catalogue which concains data sheets for most of the componencs listed will be sent iree on request． 10p stamp appreciated．

CALLERS WELCOME
MON．－SAT． 9 z．m．－5 p．m．
PLEASE ADD 10\％V．A．T．

RESISTORS

tW Iskra high stability carbon film－very low noise－capless construction．WW Mullard CR25 carbon film－very small body size $7.5 \times 2.5 \mathrm{~mm}$ ．IW 2% ELECTROSIL TRS． Power

DEVELOPMENT PACK

0.5 watt 5% ligra resistors 5 off each value 4.7Ω to IMR．

E12 pack 325 resistors $£ 2 \cdot 40$ ．E24 pack 650 resistors $\mathbb{6 4 - 7 0}$ ．

POTENTIOMETERS

Carbon track 5 tin to $2 M \Omega$ ．log or linear（ $\log \ddagger W$ ，lin $\mathfrak{j} W$ ）．
Single， 12 p ．Dutal gang（stereo）， 40 p．Single D．P．switch， 24 p ．
SKELETON PRESET POTENTIOMETERS
Linear：100，250， 500Ω and detades to SM』．Horizontat or vertical P．C．mounting （ 0.1 matrix）．
Sub－miniature $0.1 \mathrm{~W}, 5$ p each．Miniature $0.25 \mathrm{~W}, 7 \mathrm{p}$ each．

TRANSISTORS										
ACI07	15p	AFI 26	20p	8 BFI 15	25p	OC12		2N3707	12 p	
ACI26		AFI39	32p	BFI73	20p	OC44	12 p		10 p	
AC127		AF178	32p	BFI7	28p	OCis	$12 p$	2N3709	$11 p$	
AC12日		AFI60	40p	BFI78	32 p	OC70	12 p	2N3710	11 p	
ACl31		AFIB1	40p	BF179	32 p	OC71	12 p	2N3711	$1{ }_{32}$	
ACI32		BCI07	12p	BF180	32 p	OC72	12 p	2N3819	12 p	
AC176	15p	BC108	12p	BF181	32 p	OC81	12 p	2N4286	12 p	
AC187	22p	BC109	12 p	BF194	14 p	DC820	12 p	2N1286	20 p	
$A C I B 8$	22p	BC147	12 p	BF195	14p	2N2646	60 p	2N4289	${ }_{35}$	
AD140	SOp	BC14B	12p	BF197	15 p	2N2904	20 p	403661	35 p	
ADI49	45p	BC149	12 p	BF200	32 p	2N2926 2N3054	58p	40362	40 p	
AD161	33p	BC157	14 p	B7750	20 p	2N3054	50p	40408	40p	
ADI62	$36 p$	BCI58	14 p	BF751	20p	2N3055	60p	2TX108	15 p	
AFI14		BC159	14p	BF7S2	20p	2N3702	13 p	27×108	15 p	
AFIIS	20p	BC167	22p	BU7105	225p	2N3703	12 p	2TX300	15 p	
AF116	20p	BDI31	75 p	OC26		2N3704 2N3705	13p	$\begin{aligned} & \text { ZTX302 } \\ & \text { ZTX500 } \end{aligned}$	20p	
AFII7	20p	BDI32	75p	OC28	50p	$2 N 3705$ 2N3706	12p	$\begin{aligned} & 2 T X 500 \\ & \text { ZTX503 } \end{aligned}$	15p	
AFIIB	38p	BDt33	75p	OC35	50p	2N3706			20p	
ZENER DIODES					WIRE WOUND POTS $3 W, 10.25,50 \Omega$ and decades to $100 \mathrm{k} \Omega, 35 \mathrm{p}$ ．					
DIODES										
RECTIFIER 1250V SIGNAL 7p										
1N4001IN4002		50 V		IA		p		OA90		5p
		100 V		1 A		p		OA91		5p
IN4004		400 V		1 A		p		OA20		7p
IN4006		800 V		1 A		p		｜N4｜		5p
IN4007		1000 V		1 A				BAll		$8 p$

BRUSHED ALUMINIUM PANELS
$12 \mathrm{in} \times 6 \mathrm{in}, 25 \mathrm{p}$ ： $12 \mathrm{in} \times 2 \mathrm{i} \mathrm{in}, 10 \mathrm{p}$ ； $9 \mathrm{in} \times 2 \mathrm{in}, 7 \mathrm{p}$
SLIDER POTENTIOMETERS
$86 \mathrm{~mm} \times 9 \mathrm{~mm} \times 16 \mathrm{~mm}$ ．1ength of track 59 mm ．
86mm $9 \mathrm{~mm} \times 16 \mathrm{~mm}$ ，iength of track 59
SINGLE $10 \mathrm{~K}, 25 \mathrm{~K}$ ． 100 K log．or lin． 40 p ．
SUAL GANG． $10 \mathrm{~K}+10 \mathrm{~K}$ etc．log．or Jin．60p．
KNOB FOR ABOVE． 12 p ．
FRONT PANEL．65p．
I日 Gauge panel i2in x 4in with slors cut for use with slider pots．Grey or mats black finish complete with fixings for 4 pots．

THYRISTORS

2N5060 50V 0．8A 30p 2N5064 200V 0．8A 47p 106F 50V 4A 40p $106 \mathrm{D} 400 \mathrm{~V} 4 \mathrm{~A} \quad 65 \mathrm{p}$

MULLARD POLYESTER CAPACITORS C296 SERIES
$400 \mathrm{~V}=0.001 \mu$ F， 0.001 S μ F， 0.0022μ F． 0.0033μ F． 0.0047μ F， $21 \mathrm{p} .0006 \mathrm{R} \mu \mathrm{F}, 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}$ ， $0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p} .0 .15 \mu \mathrm{~F}, 6 \mathrm{p} .0 .22 \mu \mathrm{~F}, 7 \frac{1}{\mathrm{f}} \mathrm{p} .0 .33 \mu \mathrm{~F}$ ， 11 p ． $0.47 \mu \mathrm{~F}, 13 \mathrm{p}$ ．
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p} .0 .1 \mu \mathrm{~F}, 3 \frac{1}{\mathrm{f}} \mathrm{p} .0 .15 \mu \mathrm{~F}$ ．

MULLARD POLYESTER CAPACITORS C280 SERIES
250 V P．C．mounting： 0.01μ F， $0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p} .0 .033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.0 \in \mathrm{E} \mu \mathrm{F}$ ． 3 f p． $0.1 \mu \mathrm{~F}, 4 \mathrm{p}$ ． $0.15 \mu \mathrm{~F}$ ． $0.22 \mu \mathrm{~F}, 5 \mathrm{p}$ ． $0.33 \mu \mathrm{~F}, 6 \frac{4}{2} \mathrm{p} .0 .47 \mu \mathrm{~F}, 81 \mathrm{p} .0 .68 \mu \mathrm{~F}, 11 \mathrm{p} .1 .0 \mu \mathrm{~F}, 13 \mathrm{p}$ ． 1．5 FF，20p．2．2 μ F， 24 p ．

MYLAR FILM CAPACITORS 100 V $0.001 \mu F$ ． $0.002 \mu F, 0.005 \mu \mathrm{~F} .0 .0121 \mathrm{~F}, 0.02 \mu \mathrm{~F}$ ． CERAMIC OISCCAPACITORS 2 fp ． $0.04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 3 \mathrm{3} \mathrm{p}$ ．

100 pF to $110.000 \mathrm{p} \overline{\mathrm{F}}, 2 \mathrm{p}$ each．

ELECTROLYTIC CAPACITORS－MULLARD OI5／6／7
（ $\mu \mathrm{F} / \mathrm{v}$ ） $1 / 63,1 \cdot 5 / 63,2 \cdot 2 / 63,3 \cdot 3 / 63,4.7 / 63,6 \cdot 8 / 40.6 \cdot 8 / 63,10 / 25,10 / 63,15 / 16,15 / 40,15 / 63$ ， $22 / 10,22 / 25,22 / 63,33 / 6 \cdot 3,33 / 16,33 / 40,47 / 4$ ， $47 / 10,47 / 25,47 / 40,68 / 6 \cdot 3,68 / 16,100 / 4$ $100 / 10,100 / 25,150 / 6 \cdot 3,150 / 16,220 / 4,220 / 6 \cdot 3.220 / 16,330 / 4,6$ p．47／63， $100 / 40,150 / 25$,
 $1000 / 16,1500 / 10,2200 / 6 \cdot 3$ ，18p．330／63，680／40， $1000 / 25$ ． $1500 / 16,2200 / 10,3300 / 6-3$ ， 4700 4， 21 p ．

LARGE（CAN）ELECTROLYTICS

SMOKE AND COMBUSTIBLE GAS DETECTOR－GDI

The GOI is the world＇s first semiconductor that can convert a concentration of gas or moke into an electrical signal．The sensor decreases its electrical resistance woxide methane，propane，alcohol．North $\$$ ea gas，as well as carbon－dust containing air or smoke． Thiz decrease is usually large enough to be utillzed without amplification．Full details and circuits are supplied with each decceror．
Detector GOI．C2．Kit of parts for detectors including GOI and P．C．board but excluding case．Mains operated detector 65．20． 12 or 24V battery operated audible alarm 67．30． As above for PPY battery，K6．40．

PRINTED BOARD MARKER
97p
Draw the planned circuit on to a copper laminate board with the P．C．Pen，allow to dry． Draw the planned circuit on to a copper laminate board with the P．C．pen，allow to dry．
and immerse the board in the atchanc．On removal the circuit remains in high relief．

TRANSFORMERS

All have 240 V Primary
MT 30／2 0－12－15－20－24－30V MT 50／1 0－19－25－33－40－50V MT 50／1 0－19－25－33－40－50V MT 50／2 0－19－25－33－40－50V MT $60 / 1$ 0－24－30－40－48－60V MT 60／1 0－24－30－40－48－60V MT 60／2 0－24－30－ $\mathbf{1 0 - 4 8 - 6 0 V}$

HEAT SINKS－REDPOINT

METERS E 1.90
1f＇Stale $500 u \mathrm{~A}$ ． 1 mA ． 10 mA ． 100 mA
WAVECHANGE SWITCH 23p
1p－12W，3p－4W．2p－6W．4p－3W．
ROTARY MAINS SWITCH 32p

THERMISTORS

LI NEAR IC． 5
70914 pin DIL ．．40p 741 日 pin DIL ．．40p 74114 pin DIL ．．38p 72314 pin DIL ．． 95 p 74714 pin DIL ．．85p 7488 pin DIL ．．45p
OIL Sockets 14 pin and
16 pin \ldots.
16p

ALUMINIUM BOXES

AB7	2f＂$\left.\times 5 \ddagger^{\prime \prime} \times 1\right\}^{\prime \prime}$	50p	AB14 $7^{\prime \prime} \times 5^{\circ} \times 21^{\prime \prime}$	84p
AB8	$4^{\text {＂}} \times 4^{-\times 15}$	50p	AB15 $8^{\circ} \times 6^{7} \times 3^{7}$	108p
AB9		50p	ABI6 $10^{-1} \times 7^{\circ} \times 3^{\text {² }}$	122p
AB10	$4^{*} \times 5 z^{\prime \prime} \times 11^{*}$	50p	AB17 $10^{6} \times 41^{\circ} \times 3^{0}$	108p
ABII	$4^{\prime \prime} \times 2{ }^{\prime \prime} \times 2^{\text {c }}$	60 p	ABI8 $12^{\prime \prime} \times 5^{\prime \prime} \times 3^{\prime \prime}$	120p
AB12	$3^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}$	41p	AB19 $12^{\prime \prime} \times 8^{\prime \prime} \times 3^{\prime \prime}$	160p

BULGIN MAINS CONNECTORS
3 PIN İA CHASSIS PLUG
LINE SOCKET …．．．13p
3 PIN 3A CHASSIS PLUG ．．．
3 PIN SA CHASSIS PLUG LINE SOCKET

3 PIN $1 \ddagger A$ CHASSIS CHASSIS SOCK
INE PLUG
3 PIN 3A CHASS15 SOCKET ．．．．．21p $\begin{gathered}\text { 23p } \\ \\ \text { LINEPLUG ．．．．．．．．．} \\ \text { 23p }\end{gathered}$
2 PINSA LINE PLUG ．．．．．．．．．．．20p

W. \& B. MACFARLANE

126 UXBRIDGE ROAD. HANWELL. LONDON W7 3SL
TRANSFORMERS

Ref.	SAFETY MAINS IBOLATING TRANSFORMERS va Pritizo:240V Sec 120;240V Cente Tapped \& Screenad Wefoht stre cm. P\&P									
No.	(Wails									
07	20	18		7.0x	7.08 60	$\bigcirc 332$	30			
149	60	312			7.7×86	6345	36			
150	100	58		$99 \times$	80×8.6	6 3.79	52			
151	200	${ }^{8} 0$		$12.9 \times$	8.3×102	2 31	52		Q!	
152	250	1312		$12.1 \times$	11.8×102	211	87			
153	350	150		$140 \times$	10 8×11.8	811.20	82			
154	500	198		$140 \times$	13.4×11.8	816.25	-			
155	750	$2{ }^{29}$		$7.2 \times$	140×140	22.10				
156	1000	380		$17.2 \times$	160×140	2167	,			
158	2000	$\infty 0$		$1 \cdot \mathrm{x}$	18.3×18.1	1485				
159	3000	850		$235 \times$	17. $\times 19.7$	7 76.53				
160	8000	730		$150 \times$	$206 \times 28 \cdot 3$	125-69	-			
					AUTO T	TRANS	ORMERS			
No.		(Walts)	Weion							
113		20			3.4x 8.1	. 1×4.5	0-115-210	240	1.22	22
64		75	2	4	70×8.7	3 7×1.1	$0-115-210$	-240	240	36
,		150		4	8.9×7.7	7. 7×7.7	$0-115 \cdot 200$	-220-240	2.89	38
65		300		4	9.9×96	6x 8 -5			583	58
67		500	12	${ }^{8}$	12.1×11.2	2 $\times 10.2$			1.36	67
8		1000	10	8	14.0×13.4	. 4×14.3			15.18	2
93		1500	30	4	$160 \times 13-9$	- $\mathrm{x}+1.3$			21.0	
8		2000	32.	0	172×186	6×140	-	"	28.70	
73		3000	40	0	27.8×13.4	- $\times 18.1$			$39 \cdot 17$	

LOW VOLTAGE TRANSFORMERS

Amps.	We
1.5	1
4.0	3
50	6
80	6
12.5	6

7.0×6.1
8.9×7.7
$9.8 x$
9.9
9.9×10.2
14.0×10.2 Please nole. these
unita do not in-
clude reclifiors

-Carrisge via 日.я.S.
Also stocked: SEMICONDUCTORS VALVES AVOMETERS - ELECTROSIL RESISTORS

PLEASE ADD 10\% FOR V.A.T. including P. \& P

BARRIE clectronics
 3, THE MINORIES, LONDON EC3N 1BJ TELEPHONE: 01-488 3316/8
 NEAREST IUBE STAIIONS ALDGATE \& LIVERPOOL ST.

C. T. ELECTRONICS
 267 ACTON LANE, LONDON W4 5DG 01-994 6275

 MAIL ORDER DEPT./REGISTERED OFFICE/COMPONENT COUNTER
semiconductors

ITS SN7.S1

DIGITAL		INTEG	INTEGRATED	D Circuits		SN7451 SN745-	${ }_{20}^{208}$	SN74104	${ }_{\text {E1 }}^{14145}$	SN74156	${ }_{\text {cte }} \times 2.00$
						SN7460	250	SN74107	$5{ }^{51}$	SN7470	Et 10
						(enctiot	${ }_{30 \mathrm{p}}^{30}$	SN74110	300 c1.00	SN74174	${ }_{5}^{6} 1.25$
						SN7473	${ }_{57} 5$	SN7419	51.90	SN74178	c1 60
						($\begin{aligned} & \text { SN7474 } \\ & \text { SN747 }\end{aligned}$	500	SN74121	${ }_{5} 1.35$	SN7417	
						SN7476	600	SN74123	E2 270	SN74181	${ }_{5} 5100$
						SN7780	¢809	SN7441	E1.90	(${ }_{\text {SN74182 }}$	${ }^{2} 2000$
						SN7489	${ }^{1} 20$	SN7445	E, 31	SN74t35	${ }_{52} 20$
SN	23D	SN7412		SN7433	70p	SN743	${ }_{5100}$	SN7451	${ }_{\text {E1. }}^{1.10}$	SN74190	c1.05
SN74	330 ${ }_{2}$	SN743	${ }_{40 \mathrm{p}}^{60}$	SN7437	${ }_{650}^{700}$	SN774	45p	SN74153	E200	SN74191	${ }_{51}^{51} 200$
SN7402		SN717	40 p	SN740	${ }_{350}$	SN769	${ }^{75}$	SN74155	E1.55	SN74192	
$\mathrm{SN}^{\text {N }} 700 \mathrm{~S}$		SN7420	200	SN7411	${ }^{79}$	SN7687	¢1.20	SN74156	${ }_{51} 1.38$	SN14193	${ }_{\text {c2 }} 510$
SN7405	400		${ }_{520}$	(${ }^{\text {SN7442 }}$	(7905	SN492	${ }_{750}$	SN71150	${ }_{\text {E } 26} 16$	SN74195	${ }_{51} 18$
SNT407	$5{ }_{50}$	SN425	480	SN745	${ }_{52} 20$	SN794	${ }_{80} 80$	SN74181	2240	SN74196	ع1.50
SN7408 SN7409	$5{ }^{55}$	(enctiv	${ }_{50 \mathrm{p}}^{48}$	SN7446	E21.75	SN7495	¢ ${ }_{\text {8 }}$ 800	SN7462	${ }_{\text {CJ }}{ }^{1}$	SN74197	E1-50
SN7410	${ }_{28 \mathrm{p}}$	SN1430	30 p	SN7448	${ }_{5} 200$	SN7467	E625	SN7415	${ }^{2}$ 2-75	SN74128	EA ${ }^{\text {co }}$
SN744	248	SN7432	40	SN7+50		SN74100	[2.50	SN74165	560		E4 80

S.C.R.	TRIACS TXL228B 8A 400 V 90p	Low cost
	SC400	OSCILLOSCOPES
	SC435 SC500 S	
		Cot
CRS] 400 $\mathbf{1 0 0}_{100}$		
	3 A 200V Rec. Diode...... 25 P	D.B. EmI
	3A Z20V Rec. Diode....... 251	
		B.
	LINEAR OP. AMPS	CDS13.2. Wı3.
BRIDGE RECTIFIERS	LM309K 3V. 1A. Voltage Req. R2-10...............	cos23 5.2 .
W021A. G200 ,	LMT23C 2.31 V . 150 mA ¢ 105	
	Volsape Reo........... Es os MFC4000 850 mW Audio .. sop	CDS63.
ZENER DIODES	TBA000 5 Wall Audio ... 81.50	WM28.
	rosc DP. AmD D.I.L. TTOOS 45p 741 C Op. Amp 8114 D.I.L. $/$	
${ }^{\text {B2Y88 }}$ entres 400 mW . ${ }^{\text {a }}$		All pricas and derails on epptica.
15 Watt range 48 sp10 Watt range		Uon, phone 01.994 E275. Inspec-
	2N414 Radlo I.C. $£ 1.25$ TADICO Rado t.C. Inc. FIllet	.
L.E.D. $=$ (
	САЗ036 $£ 100$	
L.D.R.$(0) \text {) }$	CA3075 CA30000 \qquad E4. 15	
	MC1303L 6220	

THOUSANDS OF BARGAINS

Test Equipment \star Oscilloseopes \star Signal Generators \star Counters Cabincts t Bridges \star Meters \star Transmitters \star Receivers \star Power Supplies \star Laboraiory Eq alpment
Equipment \star Video Equipment Galvanometers \star Aeters \star Battery Chargers Motors + Etc. $*$ Ete.
20 TONS OF ELECTRONIC EQUIPMENT Resistors \downarrow Relays \star Capacitors \star Switches \star Transformers
 Regret no lises available. Personai callers only. Cash and Carry oniy.

AUDIO ACCE 17 TURNHAM G CHISWI VALVEA	SORY SHOP EEN TERRACE, CK, W. 4 MPLIFIERS
	(1).
TRANSISTOR	AMPLIFIERS
	FAL Phase 100W. 26995
HEAVY DUTY LOUDSPEAKERS	DISCO LIGHTING Sound-Light Modula 3 Channel Sound-Light $£ 2250$ Oil Whed 8 In. die. Suitable $\frac{1}{1} \mathrm{ram}$ Molor \qquad Sisobe 4 Joule. 258 Single Flash Box (100W Red. Blue. Gr... Yel.) Triple Ftash Box 150W Prplecior plus Wheol C16.25
* SPECIAL OFFER PRICE *	
Doces atn 10 waft Hi-Fi epeaker. plus matching tweetet $£ 750$ complele Sultable 2 wey Xover...... Ey-zi	

TEAK VENEERED SPEAKER CABINETS For a \times Sin. Speak

Size	7 ¢ $\times 111 \times 51$
	$9 \mathrm{~T} \times 13 \mathrm{x} \times 5$
	$104 \times 17 \times 8$
	$12 \times 18\} \times 8$
	$15!\times 10 \times 8$

ALSO: Audlo Conneciling Lesde, Tape. Casseltes. Stereo
Systemin. Miners. Mle. Siands. Spester Clolh. Turntables.
Plynthe, Covern, otc, ele.
REXINE COVERED SPEAKER CABINETS
 SPEAKER CLOTH
Availatile In Biack or Green; Approx. widih 54in. $\mathbf{5 1 - 7 5}$ yd.
HEADPHONES
Type H-202 Fesiures. Monolateras switch, Volume controls on each channel. eq. Tesponser $20-20,000 \mathrm{~Hz}$. Impedance $4-16 \mathrm{ohms}$. Ei 50 .

ELECTRONIC COMPONENTS
BARGAIN COMPONENT PACKS Pock
SGS EA1000 3W AMPLIFIER Handbook 10p
B Audlo Amp thick film Cirtull c3 5 5t.
TBA Boosw Audio l.C.
lop.
E1
so. Dala
UAOS1 SW Am-
Dilfter Modufe E. 35

No.
I
2
2 00 Carbon resistors. $\frac{1}{2} \frac{1}{2}, 1,2$ watt.
2100 Eloctrolytic Condensers.
3250 Ceramic. Polystyrene, Silver :lica, etc..
1250 Ceramic. Polystyrene, Silver Plica. etc.
Condensers.
250 Polyaster, Polycarbonate. Paper. ete Condensers.
250 Hith-iometers essorted
50 High-stab. $1 \%, 2 \%$, 5% resistors.
750 Assorted Tasstrips.
925 Assorted switches, rotary. lever. miero.
1050 Prescr Potentiometers.
1330 Unmarked OC71 Transistors.
1425 Unmarked 250 mW . Zener Dlode. 4.7V.
$5.1 \mathrm{~V}, 6.2 \mathrm{~V}, 7.5 \mathrm{~V}, 9.1 \mathrm{~V}$. 10 V . Measured and tested. Please state voltazes required.
$50 \mathrm{G} . E$. Diod $O A 47$ Equive.
LLL COMPONENTS NEW AND UNUSED
EI + 25p p.p. per pack, 65 for 5 packs piliee.

$\star \star$ SPECIAL OFFERS $\star \star$

MINIATURE MAINS TRANSFDRMER. PRI, 240 V . SEC. 12V. 100 mA .
Manut.: Hinctily
Size: $36 \times 45 \times 40 \mathrm{~mm}$. F.C.
Price: 1.05p. 100.59p. ©A. 1000-50p. ©s. 10.000-40p. es. 3 CORE PVC INSULATED MAINE CABLE GREY ML6650. $3 \times 76-2 \mathrm{~mm}$. 647 mId .50 V . MYLAR FILM CAPACITOR Size: Jin $\times 035 \mathrm{in} \times 0651 \mathrm{n}$ Price: $100-4 \mathrm{fp}$. 02. $1,000 \cdot 5 \mathrm{p}$. es. $10,000-4-3 \mathrm{p}$. as.
POWER SUPPLY. 12V, 6.5A. Stabllised Powel Supply. Contalng 18 SV , Redpolnil heatatakt, 12A., 120V. Biridge rectifiter, aitabilisod p.e.b circuil diagram.
 $1 \mathrm{i} \times \mathrm{xj} \mathrm{I}$. No each.

AuTh\{M Ventilateo

AMTRON METAL CABINETS
GIVE EXTRA VENTLLATIDN
Ideal for Stabilised Power Supply Units. A lightweight case with perforated sides and top. The front panel is of heav-gauge anodised ani. The top. bottom, sides and back The front frame is a clever mould The front frame is a clever mould ing holding the parnels, allowing chessis if required thot supplit Integrally moulded front feet elso form the mounting for the tilt support which is standard with this matt blue painted case.

Flb! ENVIRONMENTAL

HOUSING

A cleverly designed protected polycarbonate enclosure: weatherproof. hoseproof and damp and dust protecting. Its high impact strength will with. stand rough handing. The seven sizes caninterconnect and any case will extend vertically or horizontally or both. whille maintaining full protection. Send for new catalogue.

The design of thesa cases permits the instrument to be bult of serviced within their external panels. 48 shapes. Low cost. Blue PVC/steel with white PVC-coated aluminium paneis.

Width	Height	Depth	1 off	Width	Height	Depth	1 off
A 4-5"	3	$6.5^{\prime \prime}$	¢3.17	M 4.5"	$3{ }^{* \prime}$	$13^{\prime \prime}$	£3.97
B 4.5"	7"	$6.5{ }^{\prime \prime}$	¢ 2.91	N $45^{\prime \prime}$	7"	$13^{\prime \prime}$	£479
C $45^{\prime \prime}$	$10^{\prime \prime}$	$6.5^{\prime \prime}$	£4.32	$\bigcirc 4.5^{\prime \prime}$	$10^{\prime \prime}$	$13^{\prime \prime}$	£6.07
D $9^{\prime \prime}$	$3^{\prime \prime}$	$6.5^{\prime \prime}$	£4.32	P $9^{\text {/ }}$	$3^{\prime \prime}$	$13^{\prime \prime}$	£4.79
E $9^{\prime \prime}$	7"	$6 \cdot 5^{\prime \prime}$	¢4.79	$09^{\prime \prime}$	7"	$13^{\prime \prime}$	£6.07
F 9'	$10^{\prime \prime}$	6.5"	£5.52	R 9^{*}	$10^{\prime \prime}$	13*******	E7.39
G $13^{\prime \prime}$	$3^{\prime \prime}$	$6 \cdot 5^{\prime \prime}$	£4.79	S $13^{\prime \prime}$	$3^{\prime \prime}$	$13^{\prime \prime}$	£6.07
H $13^{\prime \prime}$	7"	6.5 ${ }^{\prime \prime}$	£5-52	T 13"	7 '	$13^{\prime \prime}$	¢7. 39
\| $13^{\prime \prime}$	10"	$6 \cdot 5^{\prime \prime}$	£6.07	U13"	$10^{\prime \prime}$	$13^{\prime \prime}$	± 8.95
J 18"	3 "	$6.5{ }^{\prime \prime}$	E5.52	V18"	$3^{\prime \prime}$	$13^{\prime \prime}$	¢7.39
K 18"	7"	6.5"	¢7.39	W 18*	7"	$13^{\prime \prime}$	¢8.95
L. $18^{\prime \prime}$	10"	6.5"	¢8.95	$\times 18{ }^{\prime \prime}$	10^{*}	$13^{\prime \prime}$	£10.70

[^8] VAT

Contil Mod- 3 cases are in six sizes and offer the manufacturer of small instruments an attractive low cost case available ex-stock. Made in blue PVC-coated steel and complete with front and rear panels and chassis, they are light, strong and rigid. PCB and PSU mounting sysioms available.

		width	haight	dexpth
Mod 301	E3.54	$7{ }^{\text {" }}$	$3{ }^{\prime \prime}$	$5 t^{\prime \prime}$
Mod 302	E3.71	$7{ }^{\prime \prime}$	47"	5
Mod 303	¢4.20	$7{ }^{\text {² }}$	8	6
Mod 304	¢4.20	11*	3 "	5**
Mad 305	¢5-21	$11^{\prime \prime}$	41*	5.
Mod 306	¢5.77	11^{*}	6	$5{ }^{\prime \prime}$

BRADRADA
drilling and TOOL

BRAORAD ORIUNG g OEBURRING TOOL equals eleven trits. One cut drills and deburts the normal run of steels. luminum. brass, coppes and all types of plasfics. perspec fobreglass, etc, and hardboard should the nead arise it is lesigned to overcome all the probiems associated with drilting thin materialsit drills interiocking holes for instance
"-2t" in $1^{\text {" }}$ stops or $6-36 \mathrm{~mm}$ in 3 mm steps. Both with $1^{\prime \prime}$ shaniks $[10-75$ Also $1 \frac{1}{\prime}$ "-2f" and $36-60 \mathrm{~mm}$ [27.88 Prices correct to April 30.

a.max Punches f" 81.18
$\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ or $\frac{5}{8}{ }^{n}$ £1.38
 $1^{\prime \prime} .11^{\prime \prime} .1$ n $^{\prime \prime}$ f1. 88
$1 \frac{1)^{\prime \prime}}{} \mathbf{E 2} \cdot \mathbf{2 0}$

ADEL
The Adel cuts holes of virtually ary shape and size starting Irom a ? " ${ }^{\prime \prime}$ hole. cutting cleanky fika a punch and die. tdeal lar notching clearmons on flanges of cabineis or chassis fe-76. All prices include P. 8 P. and VAT.

WEST HYDE (WH

WEST HYDE DEVELOPMENTS LTD.. Pyefield Cres., Northwood Hills, Nortiwood, Midde. HAG INN Tel. Morthwood 24941 or 26732 Telex: 923231

BENTLEY ACOUSTIC CORPORATION LTD.
 7A OLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX.Tal. 6743

\qquad Nis

	PYAO	0.39	UYB				
PYB	0	31	U10				
PY				$\begin{array}{lll}\text { UY8s } & 0 & 38 \\ \text { U10 } & 100 \\ \text { U1214 } & 00\end{array}$	38	2	
:---	:---	:---					
00	2						
00	2						
00	2						

 All orders clensed Lat
order. Cotulitlons of wal
udence.

ADVANCE CALCULATORS. WE ARE NOW APPOINTED

 MAIN DISTRIBUTORS.
H.F.M. AUDIO MODULES WIDE RANGE FROM STOCK

Advanced off-air frequency reference. Phase-locked, with Signal Monitor. A lab standard Signal source. type 1. Precision frequency reference
Osborne source (W.W. Jan 73). de luxe version
Kit for construction of an Osborne-based signal source
Full range of titems for Quadrophony (full lists sent with allgoods supplied) CBS-SQ Matrix Decoder using MC1312P (see W.W. Nov 1973) kit (1 $\frac{1}{2}$-hr. 10 build) CBS-SO Qecoder as above, buitt and tested production board
Advanced phase-lock-loop Stereo Decoder on board, regulator provislon, typically 40 dB separation fits any set-full instructions supplied, uses MC1310P in holder, inc. LEO Stereo Decoder. as above, but in kit form (about 60 mins to build)
Superb 20W 8 亿 Loudspeakers, as used for "P.E. Rondo", built in white or teak per pair Easy-to-build Kits for above Loudspeakers. per pair Goldring G101/2 Turntable Chassis, less cartidge
Deutsche-Elac STS 144/17 Cartridge. ideal high-quality, low-priced unit for Matsix quad
$\mathbf{f 2 2 . 9 0}+\mathrm{fI} .00$ carr. + VAT f 2.39
Instrument Cases, attractively featured with black Vinyi-covered steel top and sides, aluminium front
and back panels. Exclusive!
Case A $B^{\prime \prime} \times 5^{\prime \prime} \times 2^{\prime \prime}$ nom. $\mathbf{f 1 . 4 5 + V A T ~} 14$ p. Case B $11^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$ nom. $\mathrm{f} 1.95+$ VAT 19 p . Case C $9^{\prime \prime} \times 5^{\prime \prime} \times 2 \frac{1}{2}{ }^{\prime \prime} \mathrm{f} 1-70$ + VAT 17 p.
Handy little Aluminium Boxes, with lids and screws: Box $1-5 \frac{1}{" \prime}^{\prime \prime} \times 2 \frac{3}{4}{ }^{\prime \prime} \times 1 \frac{1}{2}=42 \mathrm{p}$. Box $2-4^{\prime \prime} \times 4^{\prime \prime} \times 1 \frac{1}{2}{ }^{\prime \prime}=42 p$. Box $3-4^{\prime \prime} \times 2 \frac{1}{\prime \prime}^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{2}=42 p$. Box $4-5 \frac{1}{\prime \prime} \times 4^{\prime \prime} \times 1 \frac{1}{2}=47 p$. Box $5-4^{\prime \prime} \times 2 \frac{11^{\prime \prime}}{} \times 2^{\prime \prime}=42 p$. Box6- $3^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}=34 p$. Box $7-7^{\prime \prime} \times 5^{\prime \prime} \times 2 \frac{1^{\prime 2}}{2}=66 p$. Box $8-8^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}=84 \rho$. Box $9-6^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}=54 \rho$. BA bolts, nuts, washers: 0. 2, 4,6, B. 10 BA. 20 p Pkt . of 10 . All prices + VAT.
f 2 e 00 + f 2.00 carr + VAT 4.40
$\mathrm{f} 35.50+\mathrm{f} 2.00$ cart. + VAT £ 3.75
$\mathbf{f 7 . 9 0}+$ VAT f0.79
£ $85.00+$ VAT $£ 8.50$ $\mathbf{5 6 6} \cdot \mathbf{0 0}+$ VAT $£ 6.60$ f 38.00 + VAT $£ 3.80$ $£ 30.00+$ VAT $£ 3.00$
£8.00 + VAT $£ 0 \cdot 80$
$\mathrm{f} 11 \cdot 00$ + VAT $£ 1 \cdot 10$
f 6.95 + VAT $£ 0.69$
5.95 + VAT
0 carr. + VAT $£ 2.39$

A FULL TECHNICAL AND AFTER-SALES-SERVICE IS PROVIDED. ALL UNMARKED PRICES POST FREE. AS MANUFACTURERS AND DISTRIBUTORS WE WELCOME TRADE AND EXPORT ENQUIRIES. COMMUNICATIONS CONSULTANTS . . INSTRUMENT DESIGNERS . . . FOURCHANNEL SOUND SPECIALISTS.

0 SE

RAPID REPLY ORDER

Please print clearly and detach
coupon along the dotred fine

D.A.F.R. $\mathbf{8 8 5 \cdot 0 0}+$ VAT $£ 8.50$	
S.S.I.	£66.00 + VAT $\mathrm{f6}$.60
O/L OS.S.	f 38.00 + VAT $£ 3.80$
OS.S. K.	$\mathbf{£ 3 0 . 0 0 ~ + ~ V A T ~} £ 3.00$
SQ.OEC. K.fB.00 + VAT $£ 0 \cdot 80$ SD.OEC B T f $11 \cdot 00$ + VAT $£ 1 \cdot 10$	
PLL-OEC. B \& T, . $£ 6.95$ + VAT $£ 0 \cdot 69$	
PLL-DEC. K. . . . $£ 5.95$ + VAT $\mathrm{f0} 0.59$	
PR/LS/teak/white $£ 44.00$ + VAT $£ 4.40$	
$2 \mathrm{~K} / \mathrm{LS} /$ reakwhite $£ 37.50$ + VAT $£ 3.75$	
$\mathrm{G101/2}$. . . . $£ 23.90$ + VAT $£ 2.39$	
STS 144/17 ... £7.90 + VAT £0.79	
Case A	¢1.45 + VAT 14p
Case B	f1.95 + VAT 19p
ase C	$\mathrm{f} 1 \cdot 70$ + VAT 17 p

Box No. Box No. BA Pkt.BA

Money enclosed £
by chequa/P.O.JM.O./bank draft.
PLEASE LET US KNOW AFTER 7 DAYS IF
b-

Studia Electronics P.D. BOX 18 HARLDW CM18 6SH ESSEX.

	mmmmmmmin

TF104C VTVM A.C. voltage range 300 MV
 O.C. ressasunce 50 onms to 500 ohms. Price

PLEASE ADD 10\% VAT
 TO ALL ORDERS

TF ISSIA VHF SPECTRUM ANALYSER

 (b) 0.7 .74 mfec with $\times 1$ and $\times 2$ multiple

BEST PRICES PAID FOR TEST AND COMMUNICATION
EQUIPMENT. Single items or quantities. Private or Industrial.

TF SO1DMIS SIGNAL GENERATOR.

 at vo to mox deoth. aleo exiomat sine and Dutse modulatlon. Bulitin 3 MHz crystal
Calitimator. Seporate
R.F. and
mod. melers. P.O.A.

TEKTRONIX

OSCILLOSCOPES. ${ }_{56 \text { compleie. }}^{510 \mathrm{H}} \mathrm{Hz}$, solid state, complete wifh 3 AA daal trate vert, and 383 delay
Ulme bise plug ina P.O. A. time baze plug-inil P.O.A.
$561 \mathrm{~A}-33 \mathrm{MHz}$. Cholce of plug-ins. P.A.A. A (545 A)-23MHz, reparate thme ${ }_{545-15 \mathrm{mHz}}$ bases delay. P.O.A. delay. Price on edolication, bases with PLUG-1N UNITS
 $\mathrm{G}-20 \mathrm{MHz}$ differenliad $50 \mathrm{MV}-20 \mathrm{~V}$ $\mathrm{D}-\mathrm{High}$ galn differential 1 MV .50 V . N s 500 MHz sampling $10 \mathrm{mV}-\mathrm{cm}$.
$53 / 54 \mathrm{C}$. Dual trace 33 MHz . $53 / 54 \mathrm{C}$. Dual trace $33 \mathrm{MHz}, \quad 60 \mathrm{MHz}$,
$0.05-20 \mathrm{~V}$.

3 PHASE AUTO TRANSFORMER, Wye
input
HoOv, wye output $241.5 / 2301218.5 \mathrm{~V}$
50 c input
18 KVA . Made by Westinghouse of USA. Brand new In oriainal casee $£ 60.00$ including
UKiranepott.

83 TF AUDIO TESTER. Combined A.F Gzneraior ($0-2 \mathrm{skH} \mathrm{H})$, Outpul meter (up 10 ($0-800 \mathrm{~V}$), w th tepped and variable atfenua tors. 4 m .

TF 526 B OSCILLATOR AND DETECTOR

PLEASE NOTE

 ALL EQUIPMENThauled mechanically and electrically
in our own laboraseries

ARAI SPARES. We hold the largent stock R.F. METER O-8 amp. 2t" (U.S.A.) £1.80 P. \& P. 15p.

23/A1FT. AERIALS each conslating of len 3ft., Jin. dia. tubulas acraw.in Eections. to fit the 7is. rod, inpulaled base, stay plate and stay assemblies, pegs, paamer, hammer, ready to erect brand new and comple \& 4.50 allohty used. Carrlage $£ 1.50$ TELEPRONE TYPE "J" (Trapicalised) SWITCHAGNETO
SWARE

COLOMOR (ELECTRONICS
170 Goldhawk Rd., London, W. 12
Tel. O1-7430899

A precision HFIVHF signal generalor em-
bodying faclidics reldom founc or conof CW/AM/PM and sw. namely outputs
 MATIC FREOUENCY STABILISA. TROL (hold nrecise funling between crystal check points)
MARKERS (lor S. F.M.)
GRIEF SPECiFICATION: Freguency, 10 to
${ }_{4} 40 \mathrm{MHz}$. RF output 0.22 N et 50 ohms. Modes of oneration $\mathrm{CW}-\mathrm{HH} \mathrm{CW}, \mathrm{CW}$ (callbrated
 $150 \& 7500 \mathrm{H}$ Hz der. resp., P.M. - 50 to 5000 pps at 1 to 30 Hzec . witath int. or ext., 150 to 5000 Hz rep rate, 3 meters for: mod, and der. Itequancy diecrimination pulse level output, price on applicalian.

500/250W MEDIUM WAVE BROAD.

 detalto on application. HIGH CAPACITY CONDENSERS
GENERAL ELECTRIC 25,000 MFD 25VDC (4OVDC SPRAGUEE 20.000 MFO S5VOC E1-30.

SCHLUMAERGER B 1200 Odb UHF
ATTENUATOR. 85300
 PLESSY PR S24 OUAL DIVERSITY channetz with motorised 1 uning, automatic
receiver with FSK terminal undt and apare colls lor
turret tunnars. All houzed in sable top cabinet. $\underset{\$}{\$ 10000}$
RACAL RA 117 COMMUNICATIONS roaligned to som new condition.
ROHDE
POWER SCHWARTZ METER.
M200MHz, bullt-in Call.
brellon, sos. 1200 od
TF 1102 AMPLITUDE MODULATOR Oo F.M. outhout of any slonst generator with
a lrecuenty Input wavitiorms to the modulator may be
 Open 9-12.30, 1.30-5.30 p.m except Thursday 9-1 p.m.

TF 1226日, TF9225A, TF 577A. WHITE
KOISE TEST SET E1E5 00. FUll spec.
on request. NOISE TE
on request

New BOLTON COVENTRY SUNDERLAND STOCKPORT DONCASTER \& PRESTON

EIRMINGHAM $30-31$ Gt. Wontern Arcade
(Cloned Wod.) Tol-: 2361278 BOLTON 23 Deantaga (Closed Wed.) Tel: 33512 BRA Dforp 10 North Parade (Closed Wed.) CDVENTRY 17 Shalton Square The Precinct DARLINGTON 19 Norlingate (Closod Wed.)
(Clon Thur.) Tol 25383
DERBY 97 St. Peter's Street
(Closed Wed.) Tol.; 41361
DONCASTER ${ }_{3}$ (Closed Wed.) Tol.; 41361 EDINBURGH 101 Lothlan Rober (Closed Wed.) LASGOW 325 Argyle Si. (Closed Tuen.) HULL. 7 Whitafriargate (Closed Thurs.)
LEEDS 5.7 County (Mecca) Arcade. Briggate LEECESTER 32 Htoh St. (Cloned. Thurk.) LIVERPON 238 Eddoware.fd.. (Closed Thurn.) MANCHESTER 60 OIdham St.(Closed Wed.)
MIDDLESBRO 00 Newport Rd (Closed Wed.)

 Trade rupplled. B.A.K. With enquiries. EXPORT YHCURIBE WELCOYED BRAYCHES OPER ALL DAY BATURDAYS
AMD OPRRATE A DAE WEER
MAILORDERS NOT TO BE BENT TOBEOPE.
 Shopping Centre Grainger St. (Closed Wed.) NOTTINGHAM TP Marke! S!. (Closed Thura).
PRESTON 41 filargate Walk, S1. George's PRESTON A1 Ffiargato Walk, Si. George's
Shopping Precinct.
SHEFFIELD 13 Exchang SL (Closed Thura.) SHEFFIELD 13 Enchange Si. (Clos ed Thura)
STOCKPORT Litle Underbank Tsi. 4800777 SUNDERL-AND 5 Ma: he! Square(Closed Wed.)

ALL TIEMS SUBJECT TO AVAILABIITTY. PRICES CORRECT AT 10-4-i4E. $\$ 0 . E$.

 GOLDRING GL72 T/Table \&PU with G800 approx. val. £47.30 £29-95 Carr. 75 p GOLDRING GL75 T/Table \& PU with G800 approx. val. $£ 67.20$ £34.95 Carr. 85p GURNTABLES with MAGNETIC CARTRIDGE, PLINTH \& COVER GARRARD SP25 MKIV with G800 or G850 SPECIALPRICE £19.95 Carr. £1 MACDONALD MP60 with G800 or 850 SPECIAL PRICE $£ 1895$ Carr. £ 1 GARRARD AP 76 with G800

SPECIAL PRICE £28 95 Carr. £1 GOLDRING GL75 with G800
WHARFEDALE 150 DYNAMIC H/PHONES
WHARFEDALE DENTON SPEAKERS
WHARFEDALE LINTON SPEAKERS
LEAK 150 LOUDSPEAKERS
LEAK 250 LOUDSPEAKERS
 LINEAR $20210+10$ Watt AMPLiFIER £24-75 (List Price £39-93) Carr. 45p WHARFEDALE DENTON TUNER AMP. $£ 59.95$ (List Price £.95.00) Low Oeposll Terms over 8 Months. Prices correct at 10.4.74.
FANE ULTRA HIGH POWER LOUDSPEAKERS
 £ 12.75 :

ALLOTROPE LIMITED

Stand 513 IEA Exhibition

May 13th-17th Olympia

Equipment on show from:-

FUTURE FILM DEVELOPMENTS:

Patchfields and Cords, Cables and Connectors.

HES ELECTRONICS

Telephone Balancing Units and Broadcast Electronics.

INOVONICS INC:

Innovative Electronics for Recording and Broadcasting.

PEARL MIKROFONLABORATORIUM:

Microphones and accessories.

ROLAND ZEISSLER:

Equipment Racks.

ALLOTROPE LIMITED

90 WARDOUR STREET, LONDON W1V 3LE Tel. : 01-437 1892/3

Telex: 21624
WW-112 FOR FURTHER DETAILS

RELAYS PANDTPE 3000 BUILT TO YOUR SPEEIFICATION. HIGHEST OUALITY AT COMPETI TIVE PAICES WITH AA OUICK DEE. LIVERYSERVICE QUOTATIONS BY
RETURN HOME AND OVRSEAS.
P.O. TYPE UNISELECTORS
${ }^{8} 1$ ${ }^{14} 1 t^{2}$

LARGE STOCKS HELD OF G.E.C. MINATURE SEALED AND ERICS:

BRIOGE MEGGERS 1000 Voits Of100 Megohme with Rewlalance Box $0 / 999$ Ohms. Ee4. 70 ea.

RECTIFIERS. Selentum. Fult wave Bridge. 24 volta 8 amp, 2300 for 500.
CROUZET SYNCHRDNOUS GEARED MOTORS, opsrating al 3 rom from 24 volts AC 50 cycles 4 walts, spindte t" $\pi!^{\prime \prime}$, $E 1.35$ en. 24 volt Transformer with 240 volt $A C$ input available E1.73 ea.

CLOCKWORK MECHANISMS precition made Contacte making and breaking: Iwice per second in sound proot case with thermostat controlled heating $\$ 2$ of 24 volis. $£ 3.50$ ea.
FUSE HOLDERS single type Eefling Lee $£ 2$ for fen only. FUSE HOLDERS single type Beilling Lee 5.2 for t
STROBOSCOPE FORKS 125 cycles. 8.25 ea .

scate. Wood cese, with shunts in fitted comparimeni. E3j.62.
 100125 Yolta AC 50 eyclen 2500 rom . E20.90 ea.
HIGH SPEED COUNTERS $\kappa 2.00$ each

voltages are avallable of v.
normsily open, 40 p ertra.

 rendes true charging cursent, which 10 regulated by \& tour position roiary switch
 in to a wal
MINIATURE DICITAL IMDICATOR. Sizo ol dagle I In. Illuminsted by 28 volt lampl, This miniaturized dig tal display operates on a zear-projection principle. when one of the twetive iampes the rear of the unit is lightsed, the lamp projects the eortesponding digit on the condensing lent inrough so prolect.
ci. 40 ea. Illugtrated detalis evilisble.
EQUIPMENT WIRE $7 / 0076$ single shasth PVC. Blue only, 67.17 per 1.000 yde. $14 / 0076$ Type 11, Es.57 1,000 ydt.
HEADLAMP EULES S.B.C. 6 volt 36 watl Double contact, E 250 for B,000.
RESISTORS EX STOCKIN QUANTITY WIRE WOUND. HIGH STABILITY CARBON, ALLPRICES SHOWN 1NCLUDE CARRIAGE PRICES.
L. WILKINSON (CROYOON) LTD., LONGLEY HOUSE,

LONGLEY RD., CROYOON. CRG JLH. Phone of cit Retig Grams: WILCO GROYDON

months best buy
Our new pocket size Spring 1974
catalogue is available now Price 20 p Big Reductions in price on SN 7400 series
A．Marshall \＆Son（London）Limited
42 Cricklewood Broadway London NW2 3HD＇Telephone 01－4520161
\＆65 Bath Street Glasgow G22BX Telephone 041－3324133

Please take the time to look at our prices in this range．They are very competitive and all are
definitely ex－stock．

Transistors

2G301
$2 G 302$
$2 G 303$ $2 G^{306}$
$2 G^{309}$
$2 G 345 B$ Non 2

 ${ }^{0} 2^{0}$
NNNN动动 NNN之心z心 즈N z

ごそうご
に永 ふごN ぞござる zzzen N Nen

\author{

，

} ござ
 추NN NสNN Nici तथ N
 두N NnN
 NW 2 N 339
2 N 339 n
2
2
0
0
0 NN N

2 N 357
2 N 357
2 N 3572
2 N 3702
2 N 370
2 N 3704
2 N 3705
2 N 3706
2 N 3707
$\mathbf{2 N 3 7 0 8}$

Open
 9．30am－5．30pm
 Mon to Sat Return of post service
 Barclaycards
 accepted

Integrated Circuits

Each month wa will show a different range of ii．c．＇s which are kept in stock．

Type	Price	Typa	$\underset{\Sigma}{P}$	Type	Price	Type	Price
SN7400	20p	SN7437	35p	SN7483	51.20	SN74154	c1． 86
SN7401	20p	SN7438	35p	SN7434	95 p	SN74155	c1． 53
SN7401AN	38p	SN7440	20p	SN7485	c1－ct	SN74157	c1 09
SN7402	20 p	SN1441	${ }^{85}$	SN7486	45p	SNA74360	¢1．58
SN7403	20p	SN1442	850	SN7490	6 p	SN74161	E1．58
SN7404	24p	SN7445	C1．51	SN7481	［1．10	SN76162	C1．58
SN7405	24p	SN1446	¢2	SN9792	75 p	SN74164	52.09
SN7406	45D	SN1447	11.30	SN7493	650	SN74165	5201
SN7407	45p	SN7468	c． 1.50	SN7494	85p	SN74167	E．4．10
SN7408	25p	SN74SO	$24 p$	SN7495	850	SN74174	c． $1-50$
SN7409	33p	SN745！	29	SN7496	¢100	SN7417S	［1－2］
SN7410	780	SN7453	20^{2}	SN74100	C． $2 \cdot 18$	SN74176	E1．74
SN74：1	23 p	SN7434	20p	SN74107	43p	SN74180	E． 44
SN7412	280	SN7460	20 p	SN74188	£1．00	SN74181	c5 f8
SN7613	500	SN7470	30 p	SN7419	¢1．92	SN74190	E1．05
SN7416	450	S07472	34 p	SN74121	57p	SN74191	E1．95
5N7437	30口	SN7473	$4 \mathrm{4p}$	SN74122	80p	SN74102	E205
SN7420	20p	SN7474	48 p	SN74123	72p	SN74193	E2． 30
SN7423	370	SN7475	59 p	SN74141	E．1．00	SN74196	Et 59
SN7425	370	SN7476	45 p	SN74145	E．1．44	SN74197	c1．51
SN7427 SN7430 SN7	$45 p$ 200	SN7480 SN7481	750 $\times 125$	SN74150 SN7451		SN74197	c1．518
SN7432	45 p	SN7482	870	SN74153	E109	SN74199	c．2
Diodes d Rectifiers							
PIV	50	100	200	400	800	800	1000
$1 \cdot 5$	04	009	010	011	0.12	0.15	020
	0.15	0.17	020	022	0.25	027	020
10		0.35	040	047	0.56		
35	$0 \cdot 4$	0.92	1.18	$2 \cdot 15$	2.52	3.65	4．20
CATHODE STUD ONLY							
IN3766（35 amp 800 pv ）£3．65 JN3768（35 amp 1000 pv ）£4． 20							
IN34A	0.10	BA141	017	BY237	012 t	OA79	007
1N214	0.07	BA142	0.17	BYZ10	$0 \cdot 35$	OAEf	008
IN915	007	BA144	0.12	BYZ11	0.32	DA85	0.10
AA119	007	BAl45	0.17	BYZ12	$0 \cdot 30$	OA90	007
AA129	0.15	BA154	012	OA9	010	OADI	007
BA100	$0 \cdot 15$	BY100	0.15	OA10	$02)$	OAS5	007
GA102	0.25	BY126	015	OAA 7	0.074	OA200	007
BA：10	025	BY127	0.171	OA70	007	OA202	0.10
BA175	007	BY140	1.00	OA73	010	OA210	0271

Bridge Rectifiers

AB Potentiometers－carbon
Rotary type 45
Singles（Hog and linear） 15 pance
Sinole awitehed（Liog and lintear） 21 pance
Single awitehed（Loo and liphear） 21 pence
Ooutifed（Log and thear） 33 perne
Ooubtea（Log and linear） 38 pence
SHider typa 58
Singles（Log and linear） 30 pence
Ooubfen（Log and thear） 50 pence
Presals（Ptease specify vertical or horizonta）
0.1 wall toence
02 watl prence
Prices subject to
alteration
without notice－
prices correct at
time of
going to press
Prices exclusive
of VAT

M 33000	$2 \cdot 47$
M J 3001	2.79
M J3701	09
M J4502	444
MJEJ40	047
MJE370	073
MJE371	0 to
M JE5RO	0.59
MJE321	073
M．JE1092	183
MJE1102	155
M JE2801	119
M JE2901	1.56
M JE2955	1．45

Kellner Construction Kits

We wre the sole distribuiors in U．K．
EAS 3 watt Mono Transistor Amplifier Kit
EB15 15 watt Hiofi Transistor Amplifier Kil（iwo for stereo） $\mathbf{\varepsilon 4}$ on with Tone Control and Pre．Amp ．．．．．\quad ．13．20
E830 30 wat！Mono HI－FI Power Ampllifier
Easo 50 wat1 Mono HI－FI Power Ampliner
EVS Dintorlion Compensalor Pre－Ampliffer
AV7 Aerlal Amplifler．LW．SW．MW．VHF，TiV criznneig
Uh 870 FM Trasmitter Kit． $65 \mathrm{mH} 2 \cdot 14 \mathrm{SmHz}$ ．A GPO Lisence
MUE required Shorl Wave and VHF Receiver Kit．Companion io
$\bigcup_{U M B 70}^{U T H} 25 \mathrm{mHz}-150 \mathrm{mHz}$
EW18 Electronic Dice Kit
EWzo Electronic Dice with Sensor Bution
101000 Paychedalic Light Conirol，singic chañel
LO350 Psychedelic Light Conirol，three chennel
NTES Protessianal Stabilized Power Suboly，sito 70V，2A ．．

and aligned \quad YFO for 2 metors（ $14 \mathrm{mHz}=140 \mathrm{mHz}$ ）．Bult
All prices plus 10% VAT and plus $15 p$ posi and packing．
All kits with easy lo lollow instructione and covered by full
ouarante．
Full range of Carbon and Wirewound resistors available．
R．S．T．VALVE MAIL ORDER CO．

VALVES

DK82
DK 92
DL94
DL94

TRANSISTORS

$1 N 21$	0.17	$2 N 708$	0.15
$1 N 33$	0.35	2×1702	0.19

 Londoa，SWI6 2BS

以上mut omboskucoiskun	

03	0
0.70	$0 A$
0.60	$0 A$
13.30	$0 A$
0.80	$0 A$
0.12	$0 A$
0.20	$0 A$
0.20	$0 A$
0.40	$0 A$
0.10	$0 A$
0.10	14
0.20	0
0.30	$0 C$
0.30	$0 C$
0.15	0 C
0.15	0
0.07	$0 C$
0.07	$0 C$

11129	3129
$1836 A$	$3 C 22$
$1863 A$	$3 C 21$

1 N 23 B	3 CLS
1 N 23 CX	3 FF 100 A 8

$1 \times 2 \mathrm{~B}$
1×2

2 A 3	$30 / 150 \mathrm{E}$
$2 \mathrm{As15}$	39／195E
2 C 26 A	384
2 C 34	3V／3808
2 C 3 A	35／390A
2 C 53	2v／3908
2121	
2D21W	4．125A

Cvis

$\mathrm{NKT211}_{0.25}$ NKT213 0.25 NKT214］ 24 NKT216 NET217 NKT218 0.45 NKT 1.13 085 NXT304 0.75 NRT401 0.75

$\left\lvert\, \begin{aligned} & \text { gxUz } \\ & \text { GxU3 } \\ & \text { gxU4 } \\ & \text { oxUs }\end{aligned}\right.$

21_{21}
$2 D_{21}$
22_{10}

$2 E 26$	4.25
$2 J 31$	4.4
$2 J 33$	48
2150	4.25

C c_{2325}	CY4043	－ 010
CV2361	CV4044	E1810 C
CV2465	C以4046	E182CC
CV＇2513	C以4048	E188F
CV2519	CV105：1	E188C0
Cv2520	CV408f	EAbO
CY252］	CY4059	EAS2
CV2721	CV4060	EAj6
Cv2pol	CV4062	Ecc35
cV3523		ECF804
CV3029		EFP0
Cv3986	CV4079	EF54
CV3988	Cr4801	EF35
CV3991	C以4502	EF804
CV3998	CY＋503	EFP60
CY4001	Cli450	EL．91
Crs002	CV4307	EN：0
C－1003	CV4808	EN3！
CV4004	CV5060	EN32
CY4005	CV6004	EN91
CV4006	cyboes	ESUT4
CV4007	CV604s	ESU76
CV 1008	DA30	E8077
Cvious	1）A41	Yomm 7
Cr4010	DAS^{2}	P6060
CV4011	DA100	F6001
CV 5013	DET22	F6063
CY4014	E55\％	${ }_{4 \times 219}$
CY4015	\％ 80000	${ }^{5 \times 228}$
CY4018	E80FC	－822
CV4017	\％	$01 / 3.1 \mathrm{~K}$
CV4018	E802	0120118
OV4019	PR07	E130\％28
CY4020	E61CC	0180／2M
CV4022	E811，	6240＇ty
C－4023	E82CC	（9400／1 K
CV4024	Es3CC	GN4
CY4025	E83F	GTsC
CY4028	Esbcc	OTR120w
cr4033	E．900C	OTR130M8
CV $\mathrm{COS5}$	F：901	GU18
CY4038	E91H	GU20／21
crese3s cysoso	E920C E1800C	GXV0

\qquad

ELEGTRO ALDE

Present

ELECTRONIC COMPONENTS FOR THE WIDEST POSSIBLE RANGE OF APPLICATIONS

EVERYTHING BRAND NEW AND TO SPEC \star GOOD DISCOUNTS \star FREE POSTAGE（U．K．）

ELECTROVALUE＂SPECIALS＂

componeris which we stock ara eplatised electronic Magnatic Resiators
Hequid Crystai Display
Touch 5 witch I．C．
Magnetically operated I．C．e．
Photo－electronic devices
FERRITE COMPONENTS
Pot coras in a wide rango of useful sizes：
oubla Aperture Cores
Fing Cores

TRANSISTORS

Very wida range of types is shown together with grouped and tabulated specifications for each ona．Outfines are illussrated，and there is a full range of subporing fiardware．
Also near－equivalent tables are given．

1．C．s

Here too a wide range of TTL types are shown，together with linear and speciat purpose types Over 60 circuit and connection MINITRDN DIGITALINDICATORS
$3016 F$ Seven segment filament，compatible with standard 16 lead molles． $0-9$ and decimal point： 9 mm characters It Suitable 日CD decoder oriver
$\mathbf{3 0 1 5 G}$ showing + or $-\& \uparrow$ \＆dec．pt．

CAPACITORS

Aadial leads for P．C． 8 ．mounting．Working valtage 250 V d．c．
$0.01, ~ 0.015,0.022,0.033,0.047$ $0.01 .0 .015 \cdot 0.022,0.033 .0 .047 \quad$ e．．3p $0.22,5 p: 0.33,7 p ; 0.47,8 p ; 0.68,11 p: 1.0,14 p ; 1.5,21 p$ 2．2．24p

$\begin{array}{ll}\text { TANTALUM BEAD } & \\ 0.1 .0 .22 .0 .47,1.0 \mathrm{mF} / 35 \mathrm{~V} & \\ 2.2 / 16 \mathrm{~V} .2 .2 / 35 \mathrm{~V} .4 .7 / 16 \mathrm{~V} .10 / 6 \cdot 3 \mathrm{~V} & \text { es．} 13 \mathrm{p} \\ 4.7 / 355 \mathrm{~V} .10 / 16 \mathrm{~V} .22 / 6.3 \mathrm{~V} \\ 10 / 25 \mathrm{~V} .22 / 16 \mathrm{~V} .47 / 6 \cdot 3 \mathrm{~V}, 100 / 3 \mathrm{~V} & \text { 日a．} 13 \mathrm{p} \\ & \end{array}$
 $10 / 25 \mathrm{~V} .22 / 16 \mathrm{~V}, 47 / 6.3 \mathrm{~V}, 100 / 3 \mathrm{~V}$
 a．18p

POLYCAMBDNATE
Working Volitige－250V
Values in mF：0．0047：0－0068：0．0082；0．1： 0.012

SILVERED MICA

Working vaftsge 500 V dc．
 4700， 5000 15p： 6800 20p：8200．10．000 25p．

CEAAMIC DISC
$1000 \mathrm{pF} / 500.2000 / 500,5000 / 500,001 \mathrm{mF} / 50,0.02 \mathrm{mF} / 50$
$0.3 \mathrm{mF} / 3$－eresh $2 \mathrm{p} \cdot 0.05 \mathrm{mF} / 50 \mathrm{~V}-3 \mathrm{p}$
CERAMIC PLAIN
In a range of 26 values trom 22 to $6800 \mathrm{pF} / 50 \mathrm{~V}$ d．c． each $2 p$

POTENTIOMETERS

ROTARY．CARBON TRACK．Double wipers for good P． 20 SINGLE loest 1000 hms to 2.2 megohms
$P .20$ SINGLE 4.7 Kohms to 2.2 manohms JP． 20 DUAL GANG lin． 4.7 Kohms to 2.2 megohms IP． 20 OUAL GANG fog．4．7Kohms to 2．2megohm only \＄P． 20 DUAL GANG antilog 10K only
2A DP maine switch for any of above 14p extra．
Oecades of 10,22 and 47 only available in fanges above．
Skeleton Carbon Prasets Type PR，horizontal or varlicat

SLIDER

Linear or log．10K to 1 meg in ath popular value
Escutcheon pletes，Dlack．white of light proy
Control x es． $03,30 \mathrm{p}$

ZENER DIODES

Full range E 24 valuos： $400 \mathrm{~mW}: 2.7 \mathrm{~V}$ to $38 \mathrm{~V}, 14 \mathrm{p}$ each
$1 \mathrm{~W}: 6.8 \mathrm{~V}$ to 82 V 21 p Clip to incresse 9.5 W rating to 3 watis（type 266F）， 5 p p

VEROBOARD

Copper clad 0.1 matrix－ 2.5 ： 3.75 ins．24p； 3.75 3.55 ins． $270: 2.5 \times 5$ ins $-27 p: 3.75 \times 5$ ins， $30 p$ ．

 0.052 pini（for 0.16 matrix ）per $100-30 \mathrm{p}$ ．

ELEGTROALIUE LTD

CATALOGUE 7

SECOND PRINTING

112 pages．thousands of items，illustra tions．diagram5．much useful technical information．The 2nd printing of this cata－ logue has been updated as much as possible on prices．It still costs only 25 p post free and still includes a refund voucher for 25p for spending when ordering goods nett value E 5 or more．

COVERS \＆HEATSINKS

To3 Transiitor cover．clip－on
HEATSINK
Type 6 WI drilled

KNOBS

Al for \dot{t}^{*} shifts in a very wide range of types from utilitatian omodern solid aluminium
S－DEC
Unsurpassed for＂breadboard work＂can be used indefinizely without detertoration．Components just push into plug holes T－DEC
For more advanced work with 208 contacts in 38 tows．Will sake one 18 lead carrier． 23 83．（Cartiers suppliedseparately．） DESOLDER BRAID 6 ft strip
25 mtr ，reel

This is EV Service

GIRO ACCDUNT No．38／671／4002
DISCOUNTS
Avallable on atl items encapt those shown with NETT
FREE PACKING AND POSTAGE
FREE PACKING AND POSTAGE
in U．K．for pre pand masl ordors．For mail orders tor 12 lias路
GUARANTEE OF QUALITY
All goods are sold on the understanding that they conform as such－no fejects．＂seconds＇or sub－standard merchandise ts offered for sale．
Prices quoted do not includa V．AT．for which 10% must be added to total nett value of order，Every effort is made to onsure the conrctiness of information and prices in this advertrsement at time of going to press．Pricess subject to aroanon wnour rotica
Every effort is mode to ensurt the correctness of information and prices in this advertisement ot time of going to press． at Egham address．Dept WW． 5 A．E．with enquirlas requiring

28，ST．JUDES ROAD，ENGLEFIELD GREEN，EGHAM，SURREY TW20 OHB

Telephone Egham 3603．Telex 264475
Shop hours：9－5．30 daily，9－1 pm Sats．
NORTHERN BRANCH：680，Burnage Lane，Burnage，Manchester M19 1NA Telephone（061） 4324945
Shop hours：Daily 9－1 and 2－5．30pm；9－1pm Sats
U．S．A．CUSTOMERS are invited to contact ELECTROVALUE AMERICA．P．O．Box 27 Swarthmore PA 19081.

SPECIAL OFFER

THE
 "WIRELESS WORLD WALLCHART OF
 FREQUENCY ALLOCATIONS"^

 PRICED 30pincluding VAT, postage and packing

This full colour wallchart is available exclusively to readers of Wireless World by a coupon offer in the June issue. The electromagnetic spectrum from 3 kHz to 300 CHz is scaled on eight logarithmic bands containing fifteen main categories of transmissions identified by colours. All the important spot frequencies are marked as well as "special interest" frequencies. The chart is compiled from information provided by the ITU and applies specifically to the U.K. and Europe.

$\left(\frac{y}{2}=\right.$
 "SLO-SYN" 3-LEAD SYNCHRONOUS STEPPING MOTOR

Type SSi5. These fina motorn are eanily reversed atarting and atopoping in leaz than 5^{5} witheut electrical or mech anical braking. Simple relay citcult cen be apoblied to olve DC., to winding lor a manimum holding ioraue of 50 Hz ., 72 ram . STEPPING. Holding torque at so shapa par second- 100 oziin. Can be wired to give 100 ar 200 Eleps
 OPEN FRAME

shaded po

METORS
(Dural gen eane)
240 AC. 23 rpm . NEW
HIGG TÖROUE, approk.

CARTER ELECTRIC
CARTER ELECTRIC
Simllat to aboye with alitor geat case. 50 r.p.m. This

SMITHS RINGER-TIMER

 Rellabie is mifitat timas, soring wound divisions. approximutely
divisions.
betwel meen
bounting with chrome bezel $3 \mathrm{~J}{ }^{\circ}$ dia. $K 140$. 85 p . P. \& P .

FEW ONLY

Fully atabillized "Laboear" Power Supoly Unil Imput Hum and tipole at futi load-leis than 3MV peatio peak. Slabillty improvement ratio for 13% maini chango-1000: 1. Wutput impedance 0.005 ohms.

"LABGEAR ELIMINAC"

O-20v D.C. mic meter. In altractive orey hammer linitin
caso. In maker's cation. E41.50. Corr. \& Pko. 11.50 .

MAINS
SOLENOID
This litile unit gives vertlcal lift of approab-
mately io $^{\circ}$ throup minged "etion". Brackel incorporatos 2 fixing screwa, Lanath of srm, FRĖE P. \& P. Speckal quotes for quantities.

AMPEX MOTOR

An uitra precislon lape motor deaigned for var in the AG20 porithbice retorder. Torgue
i50GMICM. Stall load at 500 ma . Oraws gomi on run. soorpm \pm
 AFIRF supprestlon. is dia. $\times 1$
 quantilias avallable pRICE C3.30. P. © P. 23 PD . Large

ULTR A PRECISION CENTRIFUGAL BLOWER
by Air Control Ltd.
 heavy cust at alloy cate. 2.300 r.p.m.
240y A.C. Vary poweriui and silent unning. 51° dia. 3^{3} intat dia. Outiet hiange $3^{24} \times 2 \overline{3}^{1}$.

SILVANIA

MAGNETIC SWITCH

Now complete with reference magnet! A manonatically ectivated switch, vacuum reated in a plass
 ideal lor turotar alamis. iecurty aystemi ele.iond where-

NORPLEX

The famour Ameticen fibre-gians copper-clad laminate. Fineat quality
 Conductive gropertiles. Heat rosillant. Ideal for P.C. 2 otc. THIS IS A
SPECIAL PURCHASE ANO ONLY AVALABLE WHLE STOCKS

 asportional iheet.
and

KNOWLE (U.S.A.) MINIATURE
MICROPHONE CAPSULES
Impedance approx. 200Ω. outout 80 or Bo DB at 1 KC . AI used in deal

ALL PRICES INCLUDE V.A.T.
Whilat we wolcome officisl ordert fom eatabliahed companion and

SPECIAL 40 MHZ SCOPE SOLARTRON CD1212 ONLY E50．Has to be a shag．There
 24 callbrated fanges． 80 nanocs． per cm ．In with times 5 expanaion． 5^{5} nat laced tubs． Trace iocalor． 0.2 microsec．slonal deloy．
Bull in calibrator， 1 KHZ aquis ways 200 micro volis lo 100 voils in 18 callbrated ranges． Tube senaltivity 3 VICM MANN FRAM Y AMP boogta thla 10 better than 200 mV oer crm．At
40 MHZ ． 240 V ． 80 HZ input．Complate with fuil manual Ineluding plag．ln efrcuite．Come and see one working or Certiage E！．50．

```
Solartion CD \({ }^{8}\) TILSL 2 at Cuz 50 loacope DC－me／s： 3 mv／cm：Oacit－ delay：cryatal eallbrator： 4 ＂flat faced tube．
in good working condition．Carr． \(81 \cdot 50\).
```

SOLARTRON CD 3 Sy Single Beam Oecillo－

 DC coupled down to 1 vol．An．fiat laced | microsecs． |
| :---: |
| eser |
| per |
| cm ．plus timos 5 expansion | eso．

BONTOON AM／FM

Signal Generator type 202E．
100 Khz to 216 Mhz ．$£ 125$ ．

Abstract

MARCONI TF $195 \mathrm{M}-0 / 40 \mathrm{KHZ}$ Sine Wav Generator o／40 Volis outpul Metered．Thes MARCONI TF 807B．AM SIGNAL GEN ERATOR， 12 to 470 MHZ ．In good working condition 590 ． MARCONI TF 938 （CTAA）．Absorption Wattmeter 10 mW to 6 Watts．Input impedance 2.5 ohma to 20 K ohms．Freq．response flat 2.5 ohma to 20 K ohma．Freq．response flat at 20 KHZ ．Calibrated In volts and dbs．，Sin． m ror backed mates 5750 ea．P．\＆P．75p． MARCONI VVM TFIOA1A 528.

MARCONI TF 428 C ．Measures AC 100 MV 10150 V 20 HZ to 15 MHZ ．Measures DC 40 HV to 300 V ．Complate with prebe．Standard 240 Y operation $E 12$ SO＊ach．
MARCONI TFEp9．Masaures 20MV to $2 V \mathrm{AC}$ ．
50 HZ to 100 MHZ ．E 10 each．
MARCON！VVH TF 1300 ．Meanures AC
50 AV ：o $100 \mathrm{~V}, 20 \mathrm{HZ}$ to 300 MHZ ，OC 100 MV 50 MVV to $100 \mathrm{~V}, 20 \mathrm{HZ}$ to 300 MHZ ，DC 100 MV
10300 V ．Ohms 50 to $5 \mathrm{Meg} \mathrm{Dhm}$.In fine con 10300 V ．Ohms
dition Ete each．

AVOTRANSISTOR AND DIODE TESTER TYPE CT S37．In superb COndilion，in oripina！ crates with tull instruetions．eircuit dlagram，
efc．Now price $£ 250$ PJus．OUR PRICE efc．Now pric
Cair． $\mathrm{E1-25}$ ．

SLOPED CASES size $9 \times 7 \mathrm{in}$ ．with Bin． slope．15in．long，in Rammor Grey，Brand Now
bozed $\mathbf{2}$ ．Packing and postage 37 p ．

E．H．T．TRANSFORMERS，e．g．SKV at
0.125 Ampa and others．All 240 volis Input． 0.125 Ampa and others．All 240 volis Input． GRAND NEW AMERICAM HIGH VOLTAGE CAPACITORS． 0.15 smfd
s20kV working．$£ 20$ each．Carriage at cost． ．

MODERN TELEPHONES type 708．Two tone grey． 83.75 at．Two－tone green E 3.75 ea ．Blach ［8：75 ea．P．\＆P．25p ea．
Idaal EXTENSION Telephones with atandatd GPO type dial，bell and lead coding．E．$\$ \cdot 75$ ea．

All telephones complete with hell and dial． POTEMTIOMETERS

COLVERN 3 watt．Brand new．25；50k all at 130 ea．
MORGANITE Speclal Brand new，2．5；10： 100；250；500K； 1 jๆุ．sested，17p ea．

BERCO 23 Waft．Brand now，S：10：50；250； （hma；1：2．5；10；25；50K at 15p es．
STANOARD 2 meg ．log pots．Current type
15p ea． Spea．

INSTRUMENT 3 in ．Coivern 5 ohm 35 pea ． 50 k and 100 K 5 p ea．
BOURNS TRIAPOT POTENTIOMETERS 20：50；100；200； 500 ohms；1：2：25：5；10； $25 \mathrm{at} 35_{\mathrm{D}}$ El ALL BRAND NEW． RELIANCE P．C．B．mounting：275： 470
300 ohme：IOK at jsp es．ALL 日AAND NEW． ALHA precislon resistors 200K：400X：497K
 0.1% zor

CAPACITORS．B and New． 10.000 mid
 50 V 50 D ea． P \＆P ${ }^{15 p}$

RELAYS

Vatley VP4 Plabsic covers 4 dola clo 5 K －
30D es．15K－ 79 p ea．
CARPENTERS polarised Single pole efo 20 and 65 ohm coil as new 770 ash． 14 ohm coil 39p each is ohm coil tio each

TRAMSFORMERS．All standard inpult． GardiParm／Par！．450－400－0－400－450． 180 MA $2883 \mathrm{v}, \mathrm{fj} \mathrm{ez}$ ．

Neptune Serieg．Multi 6.3 volts to glva 48 V at
3.5 ampi otc．Ej 50 Incl．P．\＆P．
chokes．

Vast quantity of good qual ty companente －NO PASSING TRADE－so we offer Las．of ELECTRONIC GOODIES Ior Ei－50 poet pald．

 P．\＆P．IFp．
E1 WORTH OF＇UFS＇．Slx Srand New capa－ cllora all betwesn 15 V and 100 V ．Total capaci－ tance not lesa than $7,000 \mathrm{mfd}$ ．P．\＆P． 45 p ．
CAPACITOR PACK SO Beand new compo－ nenis only 50 p ．P．\＆P． 17 p ．
POTB 10 different values．Brend new． 50 p ． P．\＆P．I7p．
COMPONENT PACK consiating of 5 pola atious valuest 250 realstors $\frac{1}{2}$ and wail value al fop per peche＇P．\＆P．17p．
DELIVERED TO YOUR DOOR 1 ewt．of Rubbish．FOR ONLY E3：sh．N．Ifeland E\％ extre．

P．C．B．PACK S \＆D．Ouantity 2 sq．It．－no tiny pieces． 50_{p} plue P．\＆P． 20 p ．
FIGRE GLASS as above 51 plua P． 1 P．200．
5 CRY8TALS 70 to 90 Hz ．Our cholee，25p．
P． 4 P． 13 p ．

MARCONI TF1066B／1

FM Signal Generator．Brand New．List price．

TRIMMER PACK． 2 Twin 50／200 pt ceramle 2 Twin $10 / 00$ pi caramile； 2 min slripe with 4 preset $3 / 20$ of on pach； 3 air spaced preset 301100 of on ceramic base．ALL BRAND
NEW 250 the LOT．P．${ }^{\text {B }}$ P． 10 p ．
ROTARY SWITCH PACK－6 Brand New
switches（1 ceramic： 14 pole 2 way etc．）．
switchens（1 ceramic： 144 pole 2 way etc．）．
S0p．P．\＆ P .20 p
FLAT FACED 4－Twin Beam Tube．Type
CVI93．（Cosaor aso）．Gicen Truce Brand New． \＆＊ach．P \＆P 37p．
C．R．T．＇A type CVI3as／A CR13，Brand new TUBE type VCRI38 $£ 2$ ea．P．\＆P． 37 p ．Numeta shielda 60 p \％．
BASES 10 CVizes or VCRT38 20 g Ca ．P．\＆P．
15D． 15p．
GRATICULES． 12 cm ．by 14 cm ．In High
Quality platic． 150 each．P．\＆ P ． 5 p ．
PANEL mounting lamp holders．Red or green． po ea．Minlalure．PANEL mounting lamp with
holdert－10V 15MA Sp ea．
$\begin{aligned} & \text { BECKMAN MODEL A. Ten fufn po } \\ & \text { complete with dial. } 100 \mathrm{k} ~ \\ & 3 \% \text { Tol } 0.25 \% \text { - }\end{aligned}$
$\begin{aligned} & \text { oniy } \subset 2.13 \text { es. } \\ & \text { Aiso } 450 \mathrm{~K} \\ & 0.5 \% \text { win dial } £ 2.13 \text { ea. }\end{aligned}$

ELECTROSTATIC VOLTMETERS from 0－500 Volts to 0－10KV．S．A．E．with your require－ ment
FIBRE GLASS PRIMTED CIRCUIT aOAhD．Brand new．Single aided up to $2 j^{\circ}$ wide \times is io per sq．in．Larger pleces ip
per sq．in．Double sided．Any size ip per sq．in． Postage 10 p per order．
IMTEGRATED CIRCUIT test cllg by AP Inc． Gold Plaled clip－on．Grand New Indlvidually
boxed．EI os ea．P．\＆P．10p．
DECADE DIAL UP SWITCH－S DIGIT． Complete wilt escutcheon．Black with white

LIGHT EMITTING DIODES（Red）from

 17p．

VISCOMOL EHT CAPACITORS $005 m i d 25 \mathrm{kV} 50 \mathrm{pea} .003 \mathrm{mid} 5 \mathrm{kv} 40 \mathrm{p}$ ea．

 P．\＆P． 150 ．
OTHEA BLOCK PAPER CAPACITORS AVAILABLE．S．A．E．with requirements． PHOTOCELL equivalent OCP 71．13p ea． MULLARD OCP 70 10p each．

HEWLETT PACKARD OSCILLOSCOPES

Type 175A．Dual 50Mhz £275 each．

5 VOLT $\frac{1}{2}$ AMP LOGIC（I．C＇s） POWER SUPPLY Standard Mains In－ put．£2．75 each． P．\＆P．25p．

MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH． 2 HZ to 8 MHZ ．Hook up a 9 volt battery and connect to your scope and have two traces for ONLY E5－50．P．\＆P．25p．
STILL AVAILABLE our 20 MHZ version at £9－25．P．\＆P．25p．

20HZ to 200 KHZ

SINE AND SQUARE WAVE GENERATOR

In four ranges．Wien bridge oscillator thermistor stabilised．Separate independent sine and square wave amplitude controls． 3 V max sine， 6 V max square outputs．Completely assembled P．C．Board，ready to use． 9 to 12 V supply required．$£ 7.85$ each．P \＆P 25 p．Sine Wave only £5．85 each．P \＆P 25p．

TRANSISTOR INVERTER

12 V to 1.5 KV 2 MA ．Size $1 \frac{1}{2} \times 2 \frac{1}{2} \times 4$ in．Mutti tapped secondary and output level control makes possible large range of voltage and current output combinations without modification．Very flexible unit at $£ \mathbf{£} \cdot \mathbf{9 5}$ each． P．\＆P． 25 p．

NEW WIDE RANGE WOBBULATOR

5 MHZ to 150 MHZ （Useful harmonics up to 1.5 GMZ ）up to 15 MHZ sweep width． Only 3 controls．preset RF level，sweep width and frequency．Ideal for 10.7 or TV If alignment．filters，receivers．Can be used with any general purpose scope．Full instructions supplied．Connect $6.3 V \mathrm{AC}$ and use within minutes of receiving． All this for only £5－75．P．\＆P．25p．

Unless stated－please add $£ 1$－ 50 carriage to all units．

VALUE ADDED TAX not included in prices－please add 10\％

 Official Orders Welcomed，Gov．／Educational Depts．，Authorities，etc．，otherwise Cash with Order Open 9 am to 6.30 pm any day（later by arrangement．）[^9]TELEPRINTER TYPE 7B; Pageprinter 24 V d.c. power supply, speed 50 bauds per min. 'as new' cond, in original packing case, 25 each; or second hand cond. (excellent order) no parts broken, $£ 15$ each. Carriage either type $\{3-00$.
INSULATION TEST SET: $0-10 \mathrm{kV}$ negative, earth with amplifict provision for checking ionisation. $110 / 230 \mathrm{~V}$ a.c. input. S/hand good cond. $£ 30+£_{1} \mathrm{carr}$. APN-1 ALTIMETER TX/RX: Freq. approx. 410 MHz . Complete with 28 V dynamotor, 3 relays, precision resistors, 11 valves. Useful breakdown for parts. 44 each +75 p earr.
AUTOMATIC VIBRATION EXCITER CONTROL UNTT TYPE 1016: Manufactured by Bruel \& Kjoer. 5-5000e/s per sec. Shand V. good cond. $\mathbf{6 0}$, Carr. L^{2}.
TF-1041B VALVE VOLTMETER: Measure $25 \mathrm{mV}-300 \mathrm{~V}, 26 \mathrm{c} / \mathrm{s}-1500 \mathrm{Mc} / \mathrm{s}$ a.c. Also $10 \mathrm{mV}-100 \mathrm{~V}$ d.c. Resistance $0.02 \mathrm{chms}-500 \mathrm{Meg}$. ch
T. 1509 TRANSMITJERS (FOR EXPORT ONLY): General-purpose HF communications transmitter for use in fixed or mobile ground stations. Hand or high-speed keying. Crystal or MO control, with temperature compensated MO circuit.CW, NiCW and R/T. Frequency: 1.5 to $20 \mathrm{Mc} / \mathrm{s}$. Modulation: 100% O/put impedance: 50 ohms. Audio input: 600 ohms . Valves: Power Amplifier 2×813 and Modulator 2×813. Power requirements $200-250$ volti a.c. 50 cycles. Power out put 300 watts. Dimensions 2 ft .6 in . $\mathrm{W} . \times 2 \mathrm{ft}$. D. 5 ft . H. Weight: 800 lbs . Excellent condition, price $£ 22500$ each.
AN/ARC-27 TRANSMITTER/RECEIVER (FOR EXPORT ONLY): Frequency $225-400$ me. 1750 channels 100 Kc apart with 18 preset channels. Modulation: am. Power output 9 watts. Receiver is superheterodyne. Max oupput 2 watts. Antenna: 50 ohm impedance. Power requirements 24 V d.c Complete transmitter with operating cabies, control condition.
phone. Price fijl 1 OW auttable for AN/ARC-27: 100 voits to 250 volts a.c. input. 24v d.c. output @ +11 amps fully smoothed. $£ 45.00 \mathrm{each}$.

CRYSTAL TEST SET TYPE 193: used for checking crystals in freq. range $3000-10,000 \mathrm{KHiz}$. Mains 230 V 50 Hz . Measures crystal current under oscillatory conditions and the equivalent resistance. Caystal freq. can be tested in conjunction conditions and the equivaleat resist with freq, meter. $f 15$. Carr. $f 1.50$.
DELPENA RF GENERATOR TYPE E. $15: 15 \mathrm{~kW}$ at 500 Hz ; input 440 V 3 ph 50 Hz , 2275 . Carr, it cost.
H.V. TRANSFORMER: $8000 / 8000$. Output 300 mA . rms. Size: $12 \mathrm{in} . \times 12 \mathrm{in}$. x $36 \ln .233 \mathrm{~V}$ input. $\{35, \mathrm{Carr}$, $4 \cdot 00$.
COPPER WIRE AERIAL: with insulators, 100 ft . long. $£ 1.50$. Post 40p.
TELEPHONE CABLE: (Twin) PVC covered suitable for extension speakers, butglar alarms etc. 200 yds, per roll, $£ 250$ a 8011 . Post 50 p.
TELEPHONE CABLE: (Twin) 1,350 ft. on metal reel. 55 per reel. Carr. $f 1$.
IISTS OF EQUIPMENT AVAILABLE: MOTORS; TELEPRINTERS; AR88 SPARES; TEST EQUIPMENT ETC. Send 10 p for above lists.
ALL CARRIAGE QUOTES GIVEN ARE FOR 50 MLLE RADIUS OF

LONDON ONLY
ALL CARRIAGE

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ a 8 ranges. Incremental: $+1 \%$ at 1 Mch. Output: continuously variable 1 microvolt io vel Opice I microvalt to 100 millivolts, 10 ohms 100 mV olt 52.5 ohms. Interna! Modulation: $400 \mathrm{c} / \mathrm{E}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}$ Consumption spprox. 40 watts. Measuremerts $29 \times 12 \frac{1}{2} \times 10 \mathrm{nn}$, Secondhand condtion. $£ 27 \cdot 50$ each, Carr. $12 \cdot 00$.
POWER SUPPLY UNIT PN-12, A: 230V s.c. input $50-60 \mathrm{c} / \mathrm{s}, 513 \mathrm{~V}$ and 1025 V a $420 \mathrm{~m} / \mathrm{A}$ o/put. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and
 $2 \times 5 V$ windings at 3 Amps each and $\mathbf{~ D ~ A ~ A l l ~ c o n n e c t i o n s ~ a t ~ t h e ~ r e a r .) ~ E x c e l l e n ~}$ cond. $\{8.50$ each, Carr. $£ 2$.
MODLLATOR UNIT: 50 watt, part of BC-640, complete with 2×811 vaives, microphone and modulstor transformern ete. $\mathbf{~} 7 \cdot 50$ each, Carr. $\mathbb{C} 2 \cdot 00$.
CATHODE RAY TUBE UNIT: With 3 in . tube, Type 3EG) (CV1526) colour green, medium persistence complete with nu-metal screen, e.3.50 each, post 50 p APN-1 INDICATOR METER, 270° Movement. Ideal for making rev. counter. £1.25, post 30p
AIRCRAFT SOLENOID UNIT S.P.S.T.: $24 \mathrm{~V}, 200$ Amps, $£ 2$ each, 30 p poit.
VARIAC TRANSFORMERS: Input 115 V , output $0-135 \mathrm{~V}$ at 2 Amps, $£ 3$ each 75p post.
RACK CABINETS: (totally enclosed) for Sid, 19 tn. Panels.
HNSTRUMENT CABINETS: $19{ }^{\circ} \mathrm{W} . \times 16^{\circ} \mathrm{H} . \times 16^{\circ} \mathrm{D} . \quad 65.00+£ 1.25 \mathrm{cair}$. CLASS "D" WAVEMETER NO. 1 AK. II: Crystal conrolled hecerodyne frequency meter cover
ROTARY INVERTERS: TYPE PE.218E-input 24-28V d.c., 80 Amps $4,800 \mathrm{rpm}$. Output 115 V a.c. $13 \mathrm{Amp} 400 \mathrm{c} / \mathrm{s} .1 \mathrm{Ph}$. P.F.9. $£ 17 \cdot 50 \mathrm{ezch}$. Cart. $£^{2 \cdot 60}$. REDIFON TELEPRINTER RELAY UNIT NO, 12: ZA-41196 and power supply 200-250V a.c. Polarised relsy type 3SEITR. $80-0-80 \mathrm{~V} 25 \mathrm{~mL}$. Two stabiised valves CV 286. Centre Zero Meter $10-0-10$. Size $8 \mathrm{in} . \times 8 \mathrm{in} . \times 8 \mathrm{in}$. New condition $\mathbf{4} \mathbf{7 0}$, Carr. 75 p .
WESTON INDUSTRIAL THERMOMETER MODEL 221: 0-100 ${ }^{\circ} \mathrm{C}$. 3in. dia. scale. Accuracy 1%. Precision made eoil within-coil structure. Changes in temperature cause a rotary action of the Helix turning the shaft to which the pointe is mounted. $£ 2.80$ each 30 p , post. Unured condition.
TS 15C/AP FLUXMETER: Used to provide qualitative measurements of flux densities between pole faces of magnetr. Range $1200-9600$ gausses. $\pm 2 \%$. S/hand good cond. $E 25+60$ p post.
AUTO TRANSFORMER: $230 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}, 1000$ warts. Mounted in strong steel case $5 \mathrm{in} . \times 6 \frac{1}{2} \mathrm{in} . \times 7 \mathrm{in}$. Bitumen impregnated, $£ 10$ each, Carr. $\mathcal{L} 1$.
UHF ASSEMBLY: (suitable for 1000 MHz conversion) incl. Ulif valves; $2 C 42$, 2C46, 1B40. Complete with associated eapacitors and screening; 3 manual counters $0-999$. Valves $6 \mathrm{AL5}$ and $8 \times 6 \mathrm{AK5}$. $610 \mathrm{each}, 60 \mathrm{p}$ post.

ALL. U.K. ORDERS SUBJECT TO 10% VALUE ADDED TAX. THIS MUST BE ADDED TO THE TDTAL. PRICE (including post or carriage)

For your diary

interface74

The Texas Instruments
 Technical Seminar will be held on

Tuesday June 11th, Wednesday June 12th, Thursday June 13th at the Talk of the Town Leicester Square, London

Principles and Calculations for Radio Mechanics Parl 1

R. A. Bravery and A. P. Gilbert

Part of the Radio, Television and Electronics
Servicing Series, this volume deals with the subject matter for Part 1 of the City and Guilds Radio Mechanics Course 222.
$1974 \mathbf{1 5 2} \mathbf{p p}$., illustrated $040800119 \overline{4} \quad £$ ש. 50

Rapid Servicing of Transistor Equipment 2nd Edition

Gordon J. King
This completely revised second edition takes account of recent developments such as capacitor-diodes, f.e.t.s and-integrated circuits.
1973 180pp., illustrated $040800116 \times £ 1.90$

Robolics

John F. Young
The object of this book is to present a comprehensive and orderly account of the principles and practice of robotics. It will provide a valuable source of reference for rescarch workers and those in related fields.
$1973 \mathbf{3 0 4}$ pp., illustrated 0408705222 £6.00
Obtainable through any bookseller or from
The Butterworth Group
Borough Green, Sevenoaks,
Kent TNis 8PH. Tel. Borough Green 2247.

G. F. MILWARD

ELECTRONIC COMPONENTS

Wholesale/Retail: 369 Alum Rock Road, Birmingham B8 3DR. Tel. 021-327 2339

SMALL ELECTROLYTICS

Ref. No. $H 8 / 2$	$\begin{gathered} \text { Capacity } \\ 2: 2 u f \end{gathered}$	Voltage 25v	$\begin{gathered} \text { Price } \\ \text { ip } \end{gathered}$	Ref. No. H7/3A	Capacity Gui	Voltage	$\begin{aligned} & \text { Pilee } \end{aligned}$
Hal2A	3 3ut	25 v	4 p	H7]4	stur	15y	40
Hal3	3 f	50 v	40	H7/4A	Gut	35\%	5 p
H0/3A	dut	Sor	4p	H715	80, 4 l	icv	4 p
H814	4.7ut	258	4 p	H7/7	100u!	25 v	4 p
H8/4A	5 L	Gvi	4 p	H7/8	\$25ut	15 v	5 p
Hels	5 f	10.	4 p	H7/BA	100ut	3 sv	\%
Ha/5A	Suf	150\%	4 p	H710	500 H	83 v	6
Halca	10,4	10 r	4p	H7/9A	125 ut	4 V	4 p
H37	10,41	700	$4 p$	H7/10	124 ${ }^{\text {a }}$	25v	\%
M818	164t	35 v	40	H7/10A	180 ${ }^{\text {f }}$	2.5 v	3 p
H888A	16uf	16v	4 p	H7/11	180 HI	25 v	\%
M8/8	2 OH	6 r	2 p	H711A	15041	18 v	Sp
Ma/9A	2 CuH	700	4 p	H7/t3A	20041	25v	\%
M8/10	22uf	Sov	4 p	H714	22001	50 y	100
H8/10A	22ut	100\%	4 p	H7/15	220 ul	25	5p
H81/1	$25 \mu 9$	12v	$4 p$	H7/15A		35y	100
	324f	15v	4 p	M6/1A	25041	4 V	3 p
M8/12A	30山!	10\%	4 p				
H8/13A	32 $\mu 1$	S0v	4 p	$\mathrm{H}_{6 / 4}$	3204	10\%	. ${ }^{\text {pp }}$
HB/14	40 u	25 v	5 p	H614A	330 n 1	16\%	Sp
H8/14A	40 Hf	15 v	40	M615	330, ${ }^{\text {\% }}$	25v	10 p
H8/95	47 L	50\%	4 p	M6/5A	330519	$35 v$	930
MB/15A	4031	35 V	40	H6/8	470uf	25 v	10 p
M7]t	50,	ev	3 p	H6/BA	47041	35 v	20 p
M7/1A	50ul	10 N	4 p	HSi9a	400 uf	40 v	200
H7/2A	64,41	2.5 v	2 p	H6/13A	1000 ¢f	25v	16

RECTIFIERS 1 N4007 1200 peak volts, 30
amps peak current, 1 amp mean current. 100
for $£ 7 \cdot 50,1,000 £ 50$.

UNREPEATABLE BARGAIN BD112

TO3-NPN DIFFUSED SILICON PLANAR EPITAXIAL,

NEW! NEW! NEW! NEW!
An aerotol spray providing at convenlent means of protucing eny number of coples of a

 Liaht eenslilve ampotol toray

NEWER THAN NEWI!!

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Fibre Glant Board problested wilh itht:zenslitive lacauer enabing you to produce prot
five minutes.} \& \begin{tabular}{l}
\(75 \mathrm{~mm} \times\) \\
\(150 \mathrm{~mm} \times\) \\
\(150 \mathrm{~mm} x\)
\end{tabular} \& \& \& \\
\hline STLCON \& P.M.P. \& frovency \& \& SILICON \& N.P.N. \& \& \\
\hline \({ }_{\text {BCY }} 71\) \& 45 \& \(200 \mathrm{MHz}^{2}\) \& \& 2N 305 \& Vormae \& \({ }^{\text {frequency }}\) \& rlce \\
\hline BFS 92 \& 100 \& 70 MH \& P \& 2 N 307 \& 30 \& \& 2p \\
\hline \({ }_{\text {BFX }}{ }^{\text {B2 }}\) \& \({ }_{25}\) \& 70

210
MHz \& 17p \& 2N 5179 \& \& 000 \& 0

\hline 2N 2906 \& 60 \& 250 MHz \& \& Gekma \& UM \& \&

\hline 2 N 3702 \& 10 \& $100 \mathrm{MHz}^{\text {che }}$ \& 110 \& ${ }_{\text {ADY }}$ \& So \& 1 M \& p

\hline 2 N 3703 \& so \& 100 MHz \& 12 p \& AF 126 \& 20 \& 75 M \&

\hline SILICON \& P. \& \& \& AFY ${ }^{19}$ \& 32 \& ${ }^{350} \mathrm{MMz}^{\text {a }}$ \& 0

\hline \& \& 150 MHz \& 108 \& ASE 21 \& 15 \& 450 MHz \& 磳

\hline 8C 109
BF 179 \& -30 \& 150 M Mz \& 10 p \& GET 113 \& 32 \& \& 100

\hline 8 F 180 \& 30 \& $825 \mathrm{MHz}^{\text {c }}$ \& ${ }_{25}$ \& \& ${ }_{50}^{32}$ \& 2 wath \& 108

\hline BFW ${ }^{58}$ \& 80 \& ${ }^{80} \mathrm{MHz}^{\text {d }}$ \& 15 p \& OCP 70 \& \& \& 100

\hline BFX ${ }_{\text {Bra }}$ \& 30 \& 500 MHz \& ${ }^{200}$ \& 2 N 1307 \& 30 \& 10 Mmz \& 15 p

\hline BFY 53 \& ${ }_{30}$ \& 50 MHz \& 17 p \& ${ }^{2 N 1309}$ \& 30 \& ${ }_{15} \mathrm{MHz}$ \& 15p

\hline ${ }^{2} \mathrm{~N} 697$ \& 60 \& ${ }_{40} \mathrm{MHz}^{\text {d }}$ \& 12 p \& \& \& (150 watts \& E1

\hline ${ }^{2} \mathrm{~N} 709$ \& , \& 500 MHz \& 300 \& BFR 64 \& \& 1.200 MHz \&

\hline 2 N 7 \% \& \& 0 MHz \& 12 P \& \& \& \&

\hline 2 N 753 \& 25 \& 250 MHz \& 12p \& 8LY 93A \& 60 \& 500 MHz \& ${ }_{55}$

\hline 2 N 744 \& 20 \& 300 MHz \& 12 p \& BLY 218 \& 35 \& 1,200 MMz \& S

\hline ${ }^{2 N} 1613$ \& 75 \& 0 MHz \& 17 p \& 2 N 70 \& 45 \& 800 M \&

\hline 2N 2220 \& B0 \& 250 MHz \& 68 \& 2 N 3926 \& 36 \& 250 \& 1

\hline
\end{tabular}

MICROWA			
$\mathrm{CL}_{\text {CL }}^{83300}$	Gunn effect osellator dilice	${ }_{0}^{0.4} \mathrm{CHz}_{0}$	${ }_{8}^{40}$
CL 3380	ditto	${ }^{9.5}{ }^{9.5} \mathrm{GHz}$	c10
Ct. 8390	dilta		k10
CL 8830	ditio	$9.35 \mathrm{GHz}^{\text {d }}$	\& 60
${ }_{\text {CL }}^{\text {CL } 8479}$	difto	${ }_{9} \cdot 356 \mathrm{CHz}^{\text {a }}$	\& 40
- ${ }^{\text {CY } 27}$	Varacter Diode. "S" Band. Cut-oft	${ }^{9} \cdot{ }_{70}{ }^{3} \mathrm{GHz}$	Ef
$8 \mathrm{BY} \mathrm{Sa}^{28}$	Varacter Dlode. Cut-off	100 GHz	E1
BXY $8 \times Y$ 32 P	Frequancy Multipiler. "X" Baíd.	${ }^{150} \mathrm{GHz}$	E1
BXY $36 \mathrm{C} / \mathrm{D}$	difto	${ }^{25} 5 \mathrm{GHz}^{5}$	¢1
ExY 37 Cl	dilito	100 GHz	1
BXY 38CIE	dilito	120 GHz	${ }_{1} 1$
BXY 39ClO	dilito	${ }_{150} \mathrm{CH}^{2}$	E1
	diflio	${ }^{180} \mathrm{GHz}_{200 \mathrm{GHz}}$	\&1

位

FABULOUS
? LHE HATS
COSSOR
COSOR $4000-50 \mathrm{MHz}$ DUAL TRACE OSCILLOSCOPE

MARCONI TYPE TF14
fracumx 10045
 one 2 nits anpols:
suliver

A AMMTED QUANITTY OF Fit $\quad \operatorname{COV} 120 \mathrm{DC}$-60N:H2 DOUBLE COV BEAMOSCILIOSCOPES OUR INCREDIBLE PRICE E275

SMITHE INDUSTHESS DHIKELVO AGTDG DIGITAL MULTIBANE METER.

\star With 4 independent inputs * 3 digits plas polarity * range switching without breaking current measuring circuit \star High input impedance on voltage \star low input impedance on current.

Frequency Range $300 \mathrm{H}-500 \mathrm{~Hz}$ on volts: Measures 801 mV -600VDC. InA299mA current
ImV-800VAC, $100 \mathrm{na}-999 \mathrm{~mA}$ NEW CONDTITION IN MANUFACTUAERS ORIGNAL PACKING
$£ 49.50$

Sensational Offer due to frustrated export Dynameo 71 Oscilloscope

PRECISION ELECTRONICALLY tuned microwave SIGNAL SOURCES
 Hewlett Packard 690 SWEEP

 OSCILLATORS appracimataly 10% of treounco to
 lonved Powar 5Miny $\pm 10 \mathrm{E} \pm 4 \mathrm{Mc}$

$1 \div$ 10 plies

Made for П.А.T.D

(STOCK NO.
$6625-95-223-1190$)
Yours at a fraction of original cost.
COSSOR COUTSact 531
WOINT SEPMCES
hoint services no.)
RUGGEDISED OOUBLE BEAM

Fully tronsistorised carcede- $1 \mathrm{MW} / \mathrm{cm}$ to 8 MHz

Vabiable voltage high current HIGH STABILITY HIGH RELIABILITY

ALPHANUMERIC 1)TE TUBES B7971 The Alphanumeric NDaE fube has the
abifity to diuplay all the

\star FHill Tanaisoroised PRICE: \star Dual Chamel \star Sweep Delay \star Range DC-30MHz * Sensitivity ImV.

Unrepeatable offer-limited quantity only! Listed at over $£ 500$
THE WORLO FAMOUS 545 in any application
£235

Power

28V 20A $£ 39.50$
6V 25A £25

LJMITED QUANTITY Therrounk WIDE-RANGE OSEHLOSEDPESS
fratuatic $£ 175$ (main frame orbyl
revirome 545 complitiv nit
Ca Docute Bam Tman Bese
Also available:
Also available:
TEKTRONX $545 A$ with CA
plug-in $£ 255$
TEKTRONIX 535 with CA
plug-in $£ 175$ CA
 the $0 C$ to 30 MHz tange. Can be used to operate with Tektronix letter serias plug-in unit tor virtually

In purchase some of the World's finest palibration instruments at savinas of
 SODECO IMPULSE PRINTING COUNTER
 4 Dlgit Decimal Counter
 10c/second Electrical
 Reset \& Print-out 24 Volts

Type PN117. PRICE
Brand New.
POWER SUPPLIES.
IBM EX-COMPUTER
HIGHLY STABILISED
TRANSISTORISED LOW VOLTAGE POWER SUPPLIES, These modular unite incorporate overload protectlon on both INPUT response time. Input voliage $120-130 \mathrm{BO} \mathrm{Hz}$. Availabie in the lollowing
voll 8 Amp
Voll 12 Amp

- Voll 16 Amp

12 Voll 4 Amp
12 Voll 12 Amp
12 Volt 20 Amp
30 Vott 7 Amp

LA MBDA REGULATED POWER SUPPLIES
New Range just arrivedl Phone for detalls.

PEN RECORDERS

ELLIOTT SINGLE PEN RECORDER TYPE 200
 a mosl retsatile pen recorder pro-
ducing irace on a curvilfiear
3 ln . alrio chart. Two eynchronous opeect: 1 in. and 8 in. per hour Filled with thigh and low alerfin con acts operated by the moving cotil
Basic movement $0.1 \mathrm{~mA} D C$ cotl reais ence 400 ohms. Fitted with rectifler to impedance al 50 Hz 1000 ohms.
Power \&upoly requised:
230 V 50 Hz .
Adplicatlons: Ideal lor recording Buch as:
Temperalure: Gas or liquid flow Rates, Sound Levels. Speed varfa,
toma. Power Demind. Rainfall, humidity
PRICE
ele.
01 00
Cioch work ver
PRICE 22950
LEEDS \& NORTHRUP STRIP CHART RECORDER
This welloknown Instrument is fited with a Series so control unit servo Primary element: P1. PI. T3 RHH JMC. Reapon vo time: 5 Eecs. for f.s.d. Charl width: 7 in . Chyt ipeed: 1 ln . per hour. Power supply: 120 V 30 Hi

POTENTIOMETERS

COMPUTER AGGESSORIES

80 COLUMN HAND PUNCHES

ELECTRIC

 HAND VERIFIER ess. 50 pius cartiAlt machinis supplied with numerle keytops and dust-cover And covered by our inree month guafantee. Detivery ex-stock Optional extras alphe keytops and chip tray.

THIS MONTH'S SPECIAL

 MINI COMPUTER OFFERSAVE 75\% OF LIST PRICE ON THIS DEC PDP SYSTEM
 BK CPU plua Toleype Exisis PDPS 4 A CPU plua VDU P.O. $\mathrm{A}^{\text {Ef }}$.
ATTENTION: PDP 11 USERS. MEM
AK.
GK, 12K. WIDE RANGE OF SPAREE FOR THE FOLLOWING AMPEX. elc.
COSSOR VISUAL DISPLAY DIDEO COLIU IK board a Dlaplay 402 stand slono capablity for alphing of Key data entry. Avellable from ESCo. Pieabe phone for detalle.

TELETYPE PUNCH

QRPE MIgho-ppeed punch. Solt-contained. consiele of punch nity for use in many data communication
 minute). Available for punchlng 5. 6.7 .

WELMEC 7 \& 8 HOLE ELECTRO-MECHANICAL PUNCHES \& READER Models $\mathbf{S} 110$ and RazC, 17 char. per sec. Rebuilt, avallable
Irom alock. cis.

ICT KEYBOARDS

(
ICT KEYBOARDS
 Magnelic Tape Transporters AMPEX TM4, TM2. TM7, FR300,
IBM 730, POTTER. ICL Magnelic Orums. From E7S.

IBM PUNCH CARD EQUIPMENT FULLY GUARANTEED

HEWLETT PACKARD DIGITAL RECORDER MODEL 565 A Onis Entry, paraliel to it columna Print apeed 5 fines pur ancond.
PYE HIGH RESISTANCE
OHM METER MODEL 10B
Rance Itom 0.3 .20 .000 Mopohma
in 4 fanges ai 500 V . Uned for the in 4 ranges al 500. . Used for the
mea aurement of componenta meanurement of componenta oi dre uititance. havin
capmetance. PRICE 220.00

7-TRACK DIGITAL MAGNETIC TAPE STORAGE DECK
There machines, oridinally ox-computer, aro multi-treck recording Nilt. ideal for data storafo. Record and Raplay Headz acicased in one

Digltal Counter Six Digit 0-1MHz $£ 55.00$ With 15 Meg Counter extenslon for above £85.00. MINITRON 30155 , Segment diaplay NEW LOW PRICEE E1.25 K.G.M. TYpe 301557 Segment diaplay
showing figures $0-9$ SNT4

Character pf omm height. in 16 DIL ease.

STOP PRESS

We have just taken into stock over 20 tons of RF test equipment by various manufacturers. Please telephone us as by the time this advertisement appears, we will have lists available.

WANDEL \& GOLTERMANN
Olytorion Measuring Set VZM- ${ }^{1}$ for colour t.v. 625 Innes PAL. $\mathbf{E 7 5 0}$ Distortlon Mesiuring Se! VZM-83 $52 / 301 / 556 \mathrm{KHz}$ comor and recriver ubed mainly 10 monzure iranamisston distortion on FM voltage of Level Meter 10 K

Selective Level Oseillator soKHz-tAMHz TFPS $42 \mathrm{EM4}$.

HEWLET PACKARD Mlerowave Power Meter 130 C Fost readinas. Read power directly in mW and $\delta \mathrm{Bm}$ UBe 100 or $200-0 h m$. Doyitive or ntgallye temporature
coeflicient bolompters. Read CW and modulated power

ge Swoop Onciliator by HEWLETT PACKARD. EAS5. Meter. P.o.A

TEKTRONIX Spectrum Analyzer ${ }_{10}^{10 \mathrm{MHz}-50 \mathrm{GHz}, ~}$

One only $\leqslant 1,50000$

MARCONI TF 290s/2. SineiSquared Pulee and Bar Generatot lat .V. 625 syalem and colour. caso 00 .
TF 2s04. Colour gain and delay fest sen for NTSC and PAL talcur T.V.

Z \& I AERO SERVICES LTD.

THE MANAGEMENT ANNOUNCES WITH REGRET THAT DUE TO RISING COSTS AND STAFF SHORTAGES OUR MAIL ORDER SERVICE WILL HAVE TO BE CURTAILED. NO MAIL ORDERS WILL BE ACCEPTED BELOW $£ 5.00$ PLUS VAT. I.E. $£ 5.50$ VAT PAID. OUR EQUIPMENT WILL STILL BE AVAILABLE TO PERSONAL CALLERS ONLY AT OUR RETAIL BRANCH. 85 TOTTENHAM COURT ROAD AND TRADE COUNTER, 44A WESTBOURNE GROVE, W2, WHERE THE ABOVE LIMIT WILL NOT APPLY, MINIMUM ORDER CHAAGE FOR ACCOUNT CUSTOMERS IS $£ 10.00$.

OUR NEW 1973/1974 CATALDGUE OF VALVES, SEMICDNDUCTORS. PASSIVE CDMPONENTS AND TEST EQUIPMENTIS NOW READY. PLEASE SEND £0.15 FOR YOUR COPY. EXPORT PRICE LIST AVAILABLE TO BONA FIDE FOREIGN CUSTOMERS.

Head Office.

44a WESTBOURNE GROVE, LONDON, W. 2

Tel: 727 5641/2/3
Cables: ZAERO LONDON
Retail branch (personal callers only) 85 TOTTENHAM COURT RD. LONDON W.2. Tel: 5808403
C.A.A. Approved for inspection and releaso of electronic valves. tubes, klystrons. atc.

WE WANT TO BUY:
SPECIAL PURPOSE VALVES. PLEASE OFFER US YOUR SURPLUS STOCK. MUST BE UNUSED.

TELEX 261306

 ASSEMBLY
Each bunk comprises of a change-ovep
rated of 10 kmps 240 volt A.C Blact rated at $10{ }^{\text {smps }} 260$ volt A.C. Black
thob 1 in, dia. Fixing hale I in. Prices. tbank $30 \mathrm{p}, 2$ 2bank $40 \mathrm{p}_{\mathrm{s}}$ 3-bank sop. fillutimaled) ins. P. A.P. Special quotes
for quantutes.

24 VOLT DC SOLENOIDS

Unit contalning: $\frac{1}{}$ heavy duly solanoid approx, 25 lt . pult

 Prlee HD=Heavy Dulv. All Poni Pald. ('Including Base)
6 VOLT D.C.
9 VOLT D.C. RELAY
12 VOLTD.C. RELAY
24 VOLTT D.C. 3 c/0 600 ohm cosil 75p. Poal 5 p. 100 VOLT A.C.

mp

240 VOLT A.C. RELAY
240V. A.C. heavy duty cio contacis. Octal plug in base.
istmilar to illugtration below.) Pilce 75p. Poat Sp.
HEAVY DUTY SEALED RELAYS
230,240 Volt 2 clo 20 anmp tontacts.
110 Voll 2 cio 20 amp cintacls.

CLARE.ELLIOT Type RP 7641 G8 Mniafure retay, 675 ohm coil. 24 volt D.C. 2 elo. 70 p.
Poat Paid. ITT LOW PROFILE
RE LAY 500 onm coill $12-24$
D.C. 4 do. Price 85 Sp Posi sp each.

DRY REED RELAYS
M.I.o. by ERG 12 voli D.C. encapsulated.
Single cio 6 So. Posi Pald. 7 wo clo $\$ 5 \mathrm{p}$. Post Paid.

STC 280 ohm coil 6112 V D.C 3 make $t_{\text {pntacte metal ahrouded }}$ 60p. Post Pald. Large range of other types avaliable.

BLOWER UNIT
202040 Volt A.C. BLOWER UNIT
Precialon German bull, piecision German bulls. Dynamically balanced, quiet. conlinuoualy raled.
feverablata motor. Consumpilon 60 mA . Stre 120 mm . dia. $x 60 \mathrm{~mm}$. deap.
Pricu EJ 03. Post 300 . power RHEOSTATS

New coramic consiruction. vitreous bruh asasmbly, ennel embedded,
2s WATMaly feled.

 Black SllverSkirted knob calibrated in Nos. 1-9. 1 in. dil brass bush. Ideal for above Rheostats, 22 p ea .

$230 \mathrm{~V} / 240 \mathrm{~V}$ COMPACT SYNCHRONOUS GEARED MOTORS
Manulactured by either Sengamo,
Haydon or Smith. Bullt-in dearbox Haydon or Smlth. Bullt-in gearb
2 RPH, 3 RPH, 6 RPH. 12 RPH.

BODINE TYPE N.C.I. GEARED MOTOR
(Typs J) 71 r.p.m. torque 10 lb . In.
Revarsibl 1/701h h.p. cycle 38
amp. (Type 2) $24 \mathrm{r} . \mathrm{p} . \mathrm{m}$. torque 20
1b. In Reverible 1/BOih h.p. 60 cyele 28 amp.
The ebove two precision made U.S.A. motors are offerec in 'as new' condiflon, ingut valtage of motor 15 v A.C. Supplled
complate with tranatormet lar $220 / 2 i 0 v$ A.C. Input. complote with tranatormer lor 230/240v A.C. Input.

v/4rem
10% VAT.
(lop in the f)
To all orders add 10° 。VAT 10 total value of goods incfuding carriage/

Pogt 4 Cp .

APPOINTMENTS VACANT

DISPLA YED APPOINTMENTS VACANT: $£ 11.88$ per single col. inch
LINE advertisements (run-on): 66pper line (approx. 7 words), minimum two lines.
BOX NUMBERS: 30p extra. (Replies should be addressed to the Box number in the advertisement,
c/o Wireless World, Dorsct House, Stamford Street, London, S.E.I.)
PHONE: Allan Petters on 01-261 8508 or 01-9284597.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

$$
\begin{aligned}
& \text { Advertisement sccepted up to } 12 \\
& \text { noon Thursday. May 9th for the } \\
& \text { May issue subject to space being } \\
& \text { availabie. }
\end{aligned}
$$

Engineers challengingopportunities in Electronic Switching
 exchanges can be handed over to the customer

TXE 4. STC's electronic telephone exchange, has been selected by the B.P.O. as the foundation of its modernisation programme for the public telephone system. The resulting expansion of the Electronic Switching Division at New Southgate has created a variety of opportunities for qualified and experienced engineers to join the teams aiready working on the improvement of the system.

Systems Laboratory Engineers

to carry out commissioning and proving tests of laboratory models and the first exchanges: to evaluate design and then to propose and demonstrate improvements. This work will sometimes require travel to the various locations and applicants should be prepared to take on early responsibility.

Circuit Design Engineers

to analyse and design a wide range of digital circuits using discrete components. The work will involve in-depth analysis, to worst-case limits. of a variety of circuits including the effect on performance of temperature and voltage fluctuation and ageing of components.

Customer Application Engineers

to analyse customers' specifications, identify manufacturing requirements. overcome any interfacing problems with other exlsting types of equipment and produce detailed installation pians. Application Engineers must ensure that all aspects are properly scheduled so that new
in full working order and on time.

Test Engineers Hardware

to join teams working on the Automated Test Equipment of the future. The job involves the design and development, up to laboratory model stage. of specialized digital test equipment. Initially a major task will be the development of equipment due to be on field-trial in Europe in the near future and the subsequent development of test equipment for use in various aspects of the manufacture. commissioning and maintenance of electronic switching systems.

Test Engineers Software

to devise test routines for electronic/light electro mechanical units and to debug test routines with associated hardware. A high level language is used to write the program for interpretation by an on-line computer terminal. Shift work is covered by a generous premium payment.
The educational standards required for these positions range from O.N.C. Mechanical/Electrical to degree level in Electronics. Salaries will be highly competitive and commensurate with experience. The fringe benefits are those normally associated with an international company of our sepute. For further details, and an application form. write or telephone:
Anne Lack. Personnel Dept.. (Ref. WW/4/74) Standard Telephones and Cables Limited. Electronic Switching Division. Oakleigh Road South. New Southgate, London N11 1HB. Tel:01-368 1200 ext. 3073

There is scope, variety and responsibility as a

Radio Technician

Join the National Air Traffic Services of the Civil Aviation Authority as a Radio Technician and you have the prospect of a steadily developing career in a demanding and ever expanding field.

ENTRANCE QUALIFICATIONS

 You should be 19 or over, with at least one year's practical experience in telecommunications. Preference will be given to those having ONC or qualifications in Telecommunications.Once appointed and trained, you will be doing varied and vital work on some of the world's most advanced equipment including computers, radar and data extraction, automatic landing systems, communications and closed circuit television.
Vacancies exist at locations near London (Heathrow), London (Gatwick) and Stansted Airports and for suitably qualified people at the Signals Training Establishment, Milton Keynes, Bucks.
Salary: $£ 1383$ (at 19) to $£ 1836$ (at 25 or over); scale maximum $£ 2158$ (higher rates at Heathrow). Some posts attract shift-duty payments. Promotion prospects are excellent and ample opportunity and assistance is given to study for higher qualifications.

RADIO

 OPERATORS JOIN THE POST OFFICE FROM AGE 19A job in the Post Office Maritime Service is the key to an interesting career, whether you have recently qualified and are looking for a shore-based job, or are seagoing and wish to swallow the anchor. A progressive future in the Post Office could be yours if you hold a General Certificate in Radiocommunication, issued by the Ministry of Posts and Telecommunications, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting pay at age 19 is El,450 a year, including contributions to a compulsory pension scheme, with an additional allowance averaging $£ 300$ for shift duties. After two years, satisfactory service your pay becomes $£ 1,840$, rising to a maximum of $£ 2,450$ at age 26 years. If you are over 19 years of age your salary is dependent upon age at entry.

There are opportunities for further promotion to positions with a basic salary of $£ 3,475$ and prospects for advancement into Senior Management.

For further information, write to the Inspector of Wireless Telegraphy (L57.), IMTR/WTS, Room 643, Armour House. St. Martins-le-Grand, London ECIAIAR.

Electronics Test Engineers

Pye Telecommunications of Cambridge and Haverhill have immediate vacancies for Production Test Engineers. The work entails checking to an exacting specification VHF, UHF radio-telephone equipment before customer delivery; applicants must therefore have experience of fault finding and testing electronic equipment, preferably communications equipment. Formal qualifications, while desirable, are not as important as practical proficiency. Armed service experience of such work would be perfectly acceptable.
Pye Telecommunications is the world's largest exporter of radio-telephone equipment and is engaged in a major expansion programme designed to double present turnover during the next five years. There are, therefore, excellent opportunities for promotion within the company. Pye also encourages its staff to take higher technical and professional qualifications.
These are genuine career opportunities in an expansionist company, so write or telephone without delay for an application form to:

Mrs A E Darkin at
Cambridge Works, Elizabeth Way,
Cambridge CB4 1DW
Telephone: Cambridge 58985
or
Mrs C Dawe at
Colne Valley Road, Haverhill,
Suffolk CB98DU
Telephone: Haverhill 4422

Telecommunications Technicians

Spread your wings and take off to West Midlands Gas

Any Telecummunications 7 echnician worth his salt wants to work "ith the most advanced electronics equipment available. We at West Midlands Gas are proud to tell you that we use microware sadio. digital super isory systems and UHF radio for relemetry and datat transmission and also make dxtensive usc of VHF UHF mohile R T systems. Our compurer communicalions networks are amongst the most sophisticated in the country.
As sou will sec this calls for technicians who hate attained ONC. hatce some knowledge of this kind of equipnent and are keen to lurther their careers in a suphisticated Ielecummunications environment.
Salaries will be up to 51926 per annum with prossible progeression to Senios lechnician in atange up to 22487 per annum on proven ability: Possibilites exist for further promotion to sisemis design and management ponts through career development within the depiarment.
denirtment, ine bated at Solihull but involve travel throughout the revion. Generous re-location facillties will be made availible in appropriate cance.
Applications quoting ref: No A584 10: Senior Perssomel Officer, Headquarters and M larketing). West Midlands Gias. Wharf L.ane, Solihull. Warwickshire B91 2.11 .

WEST MIDLANDS GAS

CIRCUIT DEVELOPMENT ENGINEERS TELEVISION SYSTEMS SALARY RANGE $£ 7,000$ (OPEN)

The Grass Valley Group. Inc. IUSAI. a leading manufacturer of television line and terminal effuipment, has immedrate openıngs for highly qualified circuit development engineers. Specifically. we are looking for creative and resourceful people who are capable of carrying ideas through to compieted products. Applicants are expected to be familiar with the latest solid state devices and techniques, and preferably should have experience in the design of video switching sys. tems, video wrocessing systems, and possibly digital video systems. Some experience in television studio operations and techniques is also desirable. Educational requirements are a C.E. or a B.Sc. in electronic engineering. A minimum of five years' design experience is required.
If you are interested in a challenging and rewarding career with an expanding company, please airmall a resume of your educational and technical background, work experience. and personal history to William L.. Rorden, Chief Engineer, The Grass Valley Group. Inc., P.O. Box 1114, Grass Valley, California 95945, USA. Resumes need not be formal; how. ever. we are interested in learning as much about you and your experience as possible. Immediate consideration will be given and response made to suitable applicants, with a view toward arranging personal interviews in London in early 1974. All resumes will be treated in confidence. References will be required at or prior to the time of interview.
Grass Valley is a small town located in the foothllis of the Sierra Nevada mountains in northern Caltfornia, adjacent io summer resort and ski areas, and $2 \cdot 1 / 2$ hours from San Francisco.

HER MAJESTY'S GOVERNMENT COMMUNICATIONS CENTRE HANSLOPE PARK MILTON KEYNES MK19 7BH

has vacancies in the following fields of $R \& D$ work:
(a) HF Communications;
(b) VHF/UHF Communications:
(c) General Electronic circuit design:
(d) Dȩsign and development of small mechanisms;
(e) Component Reliability and Environmental Testing;
(f) Operational Analysls.

Fields (a)-(e) are at Hanslope Park but field (f) will be in the London area and for this a good engineering/scientific background is essential.
Appointments will be made within the grades of Scientific Officer. Higher Scientific Officer and Senior Scientific Officer in accordance with the following definitions:

SCIENTIFIC OFFICER

Applicants should not be more than 27 years of age and should have one of the following qualifications:
(a) A degree in a scientific or engineerlng subject;
(b) Degrec-standard membership of a Professional Institution;
(c) A Higher National Certificate or Higher National Diploma in a scientific or engineering subject;
(d) A qualification equivalent to (c) above.

Salary Scale: $\{1,435-£ 2,329$ (subject tc review) with the entry point determined by qualifications and experience.

HIGHER SCIENTIFIC OFFICER

Applicants should be under 30 years of age but this requirement may be waived if special qualifications or experience can be offered. Formal qualifications are the same as for Scientific Officer above but in addition the following experience is required:
(a) Applicants with $15 t$ or 2 nd class honours degreesat least 2 years post-graduate experience;
(b) Applicants with other qualifications-at least 5 years pest-qualification experience.
Salary Scale: $£ 2,22 i-£ 2,854$ (subject to review) with entry point dependent upon experience beyond the minimum required.

SENIOR SCIENTIFIC OFFICER

Applicants should be at least 25 and under 32 years of age. although the upper age limit may be waived if experience of special value can be offered.

Applicants should have obtained a lst or 2 nd class honours degree and have had a minimum of four years appropriate post-graduate experience.

Salary Scale: E2.798-\{3.895 (subject to review). Entry will normally be at the minimum of the scale but applicants with experience of special value may be entered above the minimum.

Applications stating the field of work and grade required should be made to:

Administration Officer

HM Government Communicatioñs Centre
Hanslope Park
Hanslope
MILTON KEYNES MK 19 7BH

We are manufacturers of the specialist range of Leak and Wharfedale H -Fi products and the demand for our quation products. which are designed. developed and manulactured to prectse publistied specifications, is continually increasing The company's policies, therefore. include controlled axpansion, continuous improvement to current products and the extension of our product range.
A vacancy is available in the Engineering Function for an Electronic Evaluation Engineer to provide a technical support service on producl evalualion and the supplv of fectored products. This will invoive him in the assessment of performance, construction. safety and suitabillty of factored products and others and the preparation of written reports. This position will also dpmand close tiaison with suppliers, quality control departments and product planning for the preparation and assistance with the technical specifications required.
Applicants should be educated to HNC or degree level and hava had a minimum period of four years project or product experience in $\mathrm{Hi}+\mathrm{Fi}$ Electronics or a closely related field.
The company's premises are located at Idle. Bradtord, convenient for travelling from both Bradford and Leeds and near to the pleasant rural surroundings of the Aire Valley.
The company can offer competitive employment conditions inciuding frae life assurance and contributory pension scheme. Salary: E2.200-62.700
Application forms may be obtained from:

J. R. Murgatroyd,

Personnel Officer,
Rank Radio Imternational,
Bradford Road, Idle.
Tel: 612552

COME DOWN UNDER

Here's a once in a lifetime opportunity to work for Australia's leading electronics company specialising in the supply of components to hobbyists and industry. The Dick Smith Electronics Centre, situated in Sydney, is expanding its activities very rapidly and we desperately need staff, both for counter sales and mail orders. Interested?
We want people with experience in this field who will come out for at least two years. In return we will guarantee your return flight (but we know with all the opportunities out here you will never go back).
Pay naturally depends on experience but would be in the vicinity of $£ 3,000$ P.A. for counter and mail order staff rising to $£ 5,000$, for those with management experience.
The weather is great, our winter is like your summer. The beaches fabulous. The future unlimited. So please write to Dick himself (airmail of course) giving a brief life story and enclosing a photo if possible. All replies will be treated in strict confidence.
Write now to Dick Smith, Managing Director, Dick Smith Electronics Centre, 162 Pacific Highway, Gore Hill, N.S.W. 2065, Australia.
P.S. This advertisement was written by someone who grabbed a similar opportunity three years ago and hasn't looked back since!

The international music. electronics and leisure Group.

The Systems and Weapons Division of EMI Electronics Ltd. at Fcltham is expanding its Trials and Commissioning Staff in order to fulfill major new commitments in the Aero-space field. Therefore the following vacancies have arisen.

Trials Engineers

Senior Trials Engineers are required with specialist experience in some of the following technical areas or other reiated fields. ' L ', C', and ' S ' band transmitting and receiving equipment.

Minicomputers and digital data handling systems Analogue data communication Specialised peripheral test equipment

Following a period of training and familiarisation, the appointments involve overseas travel for short periods while sonie positions will involve overseas residence.

Commissioning Engineers

These positions, although based at Feltham, offer the opportunity of spending varying periods of time testing and commissioning a complex radar type equipment at service establishments. The work involves the investigation of defects and repair of faults found during installation. Familiarity with modern test equipment is essential and applicants should be qualified to at least ONC level.

If any of the above positions appeal to you please contact: J. Morrison, Personnel Officer, EMI Electronics Ltd., Victoria Road, Feltham, Middlesex. Tel: or-890 3600 Ext. 44 or 117 or outside normal hours oi-890 3921 .

ELECTRONIC TECHNICIANS

WALSGRAVE HOSPITAL

Two Electronic Technicians are required for the Electronics Department deating with the maintenance of a wide variety of electronic and electro-medical apparatus.
Applicants must possess H.N.C. H.N.D.. or O.N.C. in electronics or equivalent City and Guilds Certificate.

General diagnostic maintenance experience in the electronic field is necessary. Training in maintenance of specialised hospital equipment will be given.

Salary scale from $£ 1.773$ to $£ 2.211$ p.a. Additional payments are made if overtime is required.

Applications stating age, qualifications and experience, together with two referees, should be sent to the Group Engineer, Coventry Hospital Management Committee, P.O. Box 92, The Birches, Tamworth Road, Keresley
End, Coventry. system engineering.
SALARY: WIthin range 62,000 to £2,500 per annum.
The successful candidate wlll be re quired to take design responsiblity in the areas of R.F. signal processing circules, and telemetry interface systems. A knowledge of digital integrated circult techniques would be useful.
Applications (two copies). giving details of age, education and experience together with the names and addresses of two referees, should be submitted to the Secretary and Registrar, Unlversity College of North Wales, Bangor, by not later than 31 st May, 1974.

Service Area Planning Engineers

The Independent Broadcasting Authority requires additional staff to participate in surveys and planning work associated with the expansion of the UHF colour television service and the Independent Local Radio service. The appointments will be made to the Authority's new offices near Winchester in Hampshire.

Engineers £2,538-£3,087

Vacancies exist for Engineers to assist in the planning of the UHF television and Independent Local Radio station networks and the planning and execution of associated field surveys and site tests. Where field survey and site test work are undertaken, the Engineers will assume responsibility for a survey team in the field and for the analysis of results and the provision of survey reports. These Engineers should be qualified to HNC level and should have a sound basic knowledge of radio wave propagation and basic television principles, plus experience of radio frequency measurements. Ref. WW/2355.

Junior Engineers 1 1,944-£2,358

Those with more limited experience but with good potential, will be considered as Junior Engineers, and will assist more senior staff over the whole range of survey and planning work. Ref. WW/2356.
All candidates should have a clean current driving licence and should preferably have the ability to climb aerial support structures up to about 150 feet. They should be prepared to work throughout the United Kingdom and to spend periods of varying duration away from base, for which appropriate allowances will be payable.

INDEPENDENT
BROADCASTING
AUTHORITY

Those interested should write or telephone for an application form quoting the appropriate reference no. to:
The Personnel Officer, Independent Broadcasting Authority. Crawley Court, Winchester, Hants SO21 2QA. Tel: Winchester 822599.

Closing date for completed applications: May 1st. 1974.

HUDDERSFIELD
 TECHNICAL COLLEGE
 Applications are invited for the following post in the Department of Educational Resources:
 ELECTRONIC ENGINEER

To be responsible for the operational efficiency and malntenance of the College's television service. A thorough. practical understanding of T.V. systems (cameras, videotape recorders, etc.) is essential. The ability to service audio visual equipment (cine projectors) an advantage. A high degree of flexibility. initiative and the abllity to work unsupervised are of paramount importance.

Salary range, 61.644 to El .926 oper annum.
Applications. giving details of age. experience and qualifications, sogether with the names and addresses of two referees should be sent to the Registrar. Huddersfield Technical College. New North Road, Huddersfield, HDI 5NN. Yorkshire, not later than 6th May, 1974.

3867

Sales Engineer-

Northern England and Scotland

Nuclear Chicago, a company in the rapidly expanding Searle Group. require a Sales Engineer to take responsibility for the Northern England and Scotland area, preferably residing in the Manchester area.
The work involves promoting sales of Searle Radiographic and Searle Analytic products in Northern. England and Scotland. Formal qualifications, although desirable, are not as important as practical proficiency. A knowledge of electronic instrumentation is essential, and the familiarity with nuclear techniques is highly desirable. Candidates must be prepared to travel extensively in the U.K.
The post carries a good starting salary with regular reviews, four weeks annual holiday, a company car and excellent conditions of service.
Please apply to:
Mis E M Parr, Personnel Manager. G D Searle \& Co Ltd., Lane End Road, High Wycombe, Bucks.

Microwave Engineer

EEV needs another top-flight man or woman, for R \& D work on duplexing devices

At the English Electric Valve Co., Lincoln, we have some of the best facilities in the United Kingdom for microwave research and development work. Right now, we need a man, or woman, who can use these lacilities to the full, and contribute original thinking to the next generation of duplexing devices. He, or she, will also work on new and improved allied low-power microwave components such as TR tubes, solid state limiters, filters, noise generators, mixers, etc.

Age is less important than experience in microwave work-that's why we are operating within an age range of 25 to 50 for this important post. We would preier to take on a Charlered Engineer, but those with lesser qualifications who feel they have a vital contribution to make, vill be very seriously considered. Salary will be based on previous experience.

Please contact Mr. J.L. Scott, giving details of your career to date, and tell him how you think you could contribute to the future development of duplex devices. English Electric Valve Co. Ltd.,
Waterhouse Lane, Chelmsford, Essex.
Telephone: Chelmsford (0245) 61777.

English Electric Valve Co.Ltd.

COMMUNICATION SYSTEMS ENGINEERS

Qualified Engineers are required as Senior members of a team engaged in evaluation, design and installation of communications systems which cover the use of HF/SSB, VHF. UHF. BROADCAST. MICROWAVE. TROPOSCATTER and DATA TRANSMISSION techniques.

Recent contract awards have necessitated an expansion of the Systems Engineering Group, primarily in the HF/SSB and UHF communication fields. Participation will include negotiations at a senior level with military and commercial organisations, and will involve some overseas travel.

Successful applicants must have a broad theoretical and practical background in communication methods, principally HF/SSB. and UHF, and be able to undertake projects from inception to final system implementation.

Remuneration and conditions are in line with the importance of these positions and include free life insurance and non-contributory pension scheme.

Further information regarding these positions can be obtained by telephoning 01-7599911. ext. 55.

Written applications quoting, ref : WW/CSE to The Personnel Manager,

ELECTRONIC VACANCIES

Engineers

Dräughtsmen - Designers

Service and Test Engineers
Technicians - Technical Authors
Sales Engineers
£1,600-£5,000 ра
Permanent or Contract

Phone MICHAEL NORTH
01-388 0918
MALLATECHNICAL STAFF LIMITED
334 Euston Rd.. London NWI 3BG
3635

Electronic Equipment Mechanics
 required for

Assembly and Servicing of high power level photographic flash equipment.
Good prospects for enthusiastic rypes.
E35 to $£ 40$ p.w.
Telephone 01-253 0791. [3609

IMPERIAL COLLEGE
TECHNICIAN
GRADE 5
required to assist in the maintenance of the S.R.C. sponsored AE1 EM7 1 MEV high vollage electron microscope. The successful candidate will work under the guidance of a Grade 7 Technician to maintain and improve a wide range of electro-mechanical, electronic and vacuum systems. Applicants must have a good knowledge of electronics and will be expected to provide technical guidance with respect to the design of transistor circuitry. Salary range £2,182£2,557, including London weighting.
Applications giving detalls of qualifications and experience together with the names of two referees should be sent to Mr. G. J. Green, Department of Metallurgy and Materials Science. imperial College, London, SW7 2BP, before 17 May 1974.

Are your ears big enough-

1

to pick up the sound of $£ 2,500$ per year?
We are looking for young people with finely tuned ears to the technical world of audio and hi-fi who know what is going on in the marketing fields as well. This ability, coupled with experience of technical writing or publications work, could secure them a post with our group of leading hi-fi publications.
Write to the Group Editor, Clement Brown,
Haymarket Publications, Gillow House, 5 Winsley Street.
London W1A 2HG.

Service Engineer

for Audio/ $\mathrm{Hi}-\mathrm{Fi}$ Department.
Good practical knowledge of leading makes. Attractive employment terms.
Write or telephone for appointment to:

IOHN KING (FILMS),
71 East Street, Brighton
Tel: 25918/27674

ULSTER :

THE NEW UNIVERSITY

C.C.T.V. TECHNICIAN

Applications are invited for the above post (Technician: Grade 5) from persons with at least seven years relevant experience including work in the field of CCTV.
Qualffications: H.N.C. or equivalent. Salary scale: $\{2,007-£ 2,382$ per annum. Application forms and further particu. lars should be obtained from The Registrar. The New University of Ulster. Coleraine. Northern Ireland (quoting Ref: $74 / 36$) to whom completed applications, including the names and addresses of three referees, should be returned not later than 31 st July. 1974.

Telecommunications

South West England

Applications are invited from recently qualified technicians to train for appointments in telecommunications within the South Western Region of the Central Electricity Generating Board.

The successful applicants will initially be based at Durley Park. Keynsham, near Bristol, where training will be given on the Generating Board's telecommunications equipment. After training staff may be asked to move to any of the Region's locations for which relocation expenses will be paid.

Applicants should have a telecommunications or light current background and have academic qualifications leading to H.N.C. or full C. \& G. Technological Certificate.

Salary within a range $£ 1.836-£ 2.535$; the starting point will depend upon qualifications and relevant experience.

Application forms may be obtained from Bristol 32251, extension 33 or 3. or by writing to the Personnel Manager: please quote Vacancy No. 142/74.

Central Electricity Generating Board South Western Region Oakfield Grove, Clifton, Bristol BS8 2AS

FERRANTI have a vacancy in the Applications Laboratory of their Electronic Components Division at Chadderton, Lancs., for an Engineer to work on the application of R.F. Power Transistors at VHF and UHF frequencies. The work involves the design of appropriate circuits, customer liaison and general technical back-up to the marketing and device development engineers.

Candidates should possess a degree or H.N.C.. have previous experience in this field, and be able to work with the minimum of supervision.
Application forms may be obtained from T. J. Lunt. Staff Manager, Ferranti Limited. Hollinwood. Lancs. Please quote reference GH.

TRANSISTOR APPLICATIONS ENGINEER

COMPUTER ENGINEER

is required by the Express \& Star Newspaper to maintain Real Time Digital equipment PDP-11 Computer system with a variety of peripheral equipment.
We are the fourth largest provincial evening newspaper in the country and are the only one, possibly in Europe, to have this type of computer system. It is an integral part of our daily production/ publishing systems. Because of this it is vital that the equipment is available at all times and maintenance and servicing are of the utmost importance.
The person appointed will probably have some two years experience in mainframe and peripheral equipment and be educated to at least H.N.C. standard. He must be able to work without direct supervision, work the hours that are necessary to complete the task and fit into a young team. He should also be able to maintain an adequate spares level.

Anyone interested should write to:-
Group Personnel \& Staff Welfare Manager,
EXPRESS AND STAR, Queen Street, Woiverhampton WV1 3BU.

ELECTRONIC ENGINEERS

In 1961 we introduced the world's first electronic desk-top calculators. with the trade name of ANITA. There have been many changes in technology since then, but we have remained leaders in the field and our calculators have been sold in many countries around the world including the U.S.A. and Japan. Due to further expansion of our activities with calculators and more complex systems we have vacancies for service engineers-at our National Service Centre at Hemel Hempstead. Our range of electronic business equipment is wide and our engineering requirements are correspondingly varied. We are now seeking additional staff ranging from junior technicians (with day release. where appropriate) to qualified, experienced engineers. The positions are permanent and we offer first class conditions of employment. Please write or telephone for an application form from D. D. Davies. SUMLOCK COMPTOMETER LTD., 1. FROGMORE ROAD. HEMEL HEMPSTEAD. HP3 9RJ, HERTS. TEL: 0442 61771

Visual and Aural Aids Technician

Education Department
Fully quallfied and experienced person required to assist in the installation, repair and maintenance of Radios, Tape Recorders, Projectors, Televisions, elc., in schools and other educational establishments. Five day, 40 hour week.
Wages $£ 33.30$ per week, plus bonus.
CROYDON
Applicatlons with detalls of relevant experience to: The Stores Assistant, Educatlon Service Cenire, Princess Road, Croydon CRO 2QZ (telephone: 01 -684 9393.

WORK IN CENTRAL AMERICA

Radio Technician needed for Guatemala. Kadio Engineer needed for Honduras.
Work with the British Volunteer Programme.
Information: Fran Chadwick, Overseas Volunteers, 41 Holland Park, London. W.11.

INSTITUTE OF PSYCHIATRY

TECHNICIAN

The Deparment of Psychology require a Technician for the Dapartmental Workshop.
Duties will include construction and maintenance of Electronic apparatus for use in the research carrled out in the department. Applicants should possess ONC or C \& G Flnat Certificate or equivalent.
Salary:- Technician on a scale £1,440-£2,292 plus London Weighting ($£ 126$).
Starting point dependent on Age. qualification and experience.
Application forms and details can be obtained from The Secretary, Insiltute of Psychiatry, De Crespigny Park, Denmark Hill, London'SE5 BAF quoting ref. IM/WW.

13642

TECHNICIANS AND ENGINEERS FOR ST. ALBANS AND LUTON QUALIFIED OR NOT!

OPPORTUNITIES for challenging work on testing and calibrating valve and solid-state electronic measuring equipments embracing all frequencies up to u.h.f. in Production, Service and Calibration departments.
APPLICATIONS are invited from people of all ages with experience or formal training in electronics and from ExServices technicians.
HIGHLY COMPETITIVE SALARIES, negotiable and backed by valuable fringe benefits. Overtime normally available.
GENEROUS RE-LOCATION EXPENSES available in most instances.
CONDITIONS excellent; free life assurance, pension schemes, canteen, social club.
$37 \frac{1}{2}$ hour, 5 -day, working week.
WRITE or phone for application forms quoting reference WW

MARCONI INSTRUMENTS LTD, Longacres, St. Albans, Herts
Tel: St. Albans 59292
Luton Airport, Luton, Beds
Tel: Luton 33866
A GEC-Marconi Electronics Company

94

Sales Engineer

Power Grid Tubes

A Sales Engineer is needed by the English Electric Valve Company Linlted to sell its expanding range of power grid tubes. He will visit customers in the U.K. and overseas and be responsible for ensuring the satlsfactory conclusion of negotiations with customers at both the technical and commercial levels.

His brief will also include the preparation and implementation of medium and long term marketing plans to further the already considerable success of this major European Company in this field.

The successful candidate will possibly have a recognised professional qualification in engineering and preferably experience in the power tube field, although these are not essentials, as comprehensive product training can be given.

An excellent salary and other beneflts consistent with a majob Company will be offered.

Write or telephone J. L. Scott, English Electric Valve Company Limited, Waterhouse Lane, Chelmsford, Essex. Tel: Cheimsford (0245) 61777.

ELECTRONIC ENGINEERS AND TECHNICIANS

Ferrantl Limited in Edinburgh have a variety of vacancies for Electronic Engineers and Technicians involving work on avionics systems. This includes test equipment design and maintenance. quality and test engineering, reliability engineering and environmental testing.

A background of experience and knowledge in some of the following areas of technology would be particularly relevant:

> Digital and analogue techniques
> Microwave Engineering
> Servo Techniques
> Lasers and Optics
> Electronic Displays

We are particularly interested in applications from ex-Services personnel who have relevant experience of 2 nd- and 3 rd-line maintenance and fault diagnosis. We offer a variety of interesting work in fault finding and acceptance testing of electronic systems.

Qualifications ranging from degree level to Ordinary National Certificate or their Services equivalent will be acceptable.

Those recently qualified with a degres or H.N.D. (Mechanical or Electrical) but who lack the above experience, should also apply.

These posts are based in Edinburgh which offers an attractive living environment with many recreational activities within easy reach.

The Company operates a contributory pension and lifeassurance scheme and will assist with relocation expenses where necessary.

Apply in writing with particulars of qualifications and experience to the:

Staff Appointments Officer.
FERRANTI
Ferranti Limited.
Ferry Road.
Edinburgh EH3 2RS.

JUNIOR TECHNICAL ASSISTANT + SCHOOL LEAVER

We are a busy major international advertising agency working on household name clients. To assist in the operation and maintenance of audio visual equipment we now require a further two assistants.
One should preferably have had experience in using this type of equipment. although full training will be given. Salary is negotiable, four weeks holiday. B.U.P.A. and excellent working conditions.

Ring Colin Forster 01-836 2424 at Leo Burnett Ltd.
48 St. Martin's Lane, London WC2.

SENIOR PROJECT ENGINEER - ELEGTRONICS

An exciting and chailenging porltion exists for an experienced Electronics Engineer. He would be required to take charge of the design and manufacture on fixed price contracts, and also to allocate part of his time to in-house product development.
The company, situated in Hadielgh. enjoys an International reputation and manufactures a range of function generators, phasemeters, r.m.so voltmeters. stepping motor controf systems. and air velocisy meters.
Please send complete resume before teiephoning for an interview, Salary in range $\mathbf{£ 2 . 7 5 0}$ to $\mathbf{£ 4 . 0 0 0}$ per annum. Profit sharing scheme.

ELECTRONIC ENGINEERS

This position is open to qualified electronics engineers with H.N.C. or equivalent who have at least two years practical induserial experience in the electronics manufacturing indusery. The position entails working under a project leader and will cover the whole gamut of electronic circuit and manufacturing design.
Good basic salary on the scale $\mathbf{1 1 , 8 0 0}$ to $£ 2,600$ per annum. Profit sharing scheme.
Applications, to inctude a resume, $\mathbf{v o}$:

[^10]
ELECTRONICS MARKET RESEARCH

```
£2,000 + Bonuses
```

Man with HNC/HND in Electronics, clean driving licence, required by market research agency to maintain, transport and operate tachistoscopic reaction timer, and photographic equipment in varying locations in Great Britain (and Europe if linguist).
Please contact Managing Director specifying qualifications and career to date.

PACKAGING and PERCEPTUAL

 RESEARCH LTD.,18-20 Dryden Chambers, 119 Oxford Street, London, W1R 1PA.
Telephone: 01-734 0528/9

3627

ELECTRONICS ENGINEER

Qualified Engineer required for interesting work on a wide range of devices and systems used by and for blind people.
A sound basic knowledge of analogue and digital techniques. together with several years experience in a field of design. development and maintenance is necessary. Some experience of light electro-mechanical devices would be an advantage. Applications in writing, giving full details of education, qualifications and experience. including present post and salary, to Personnel Officer, Royal National Institute for the Blind. 224 Gt . Portland Street, London WIN 6AA.

3636

ELECTRONIC SERVICE

Office Machine Company has the following vacancy:
SENIOR SERVICE ENGINEER to assist Workshop Manager, must have experience of repairing digital printed circuit boards, preferably electronic calculators, good electronic knowledge and experience in a Service Department. Salary $£ 2,700$.

ELECTRONIC WORKSHOP

SERVICE ENGINEER

to repair calculator printed circuit boards. Good basic electronic knowledge required and experience in a Service Department. Salary up to £2,200.
Apply to:
Mr. V. Knlght,
Automatic Business Machines Lid., 104, New Kings Rd, Fulham, S.W.6. 01-736 5196

3621

WALTHAM FOREST COLLEGE

 FOREST ROAD, LONDON, E17 4JBoffers the following academic pasts becaure of continuing expansion.

DEPARTMENT OF TECHNOLOGY
LECTURER II: RADIO, TELEVISION AND ELECTRONICS
Applicants muse have good practical experience of the Industry and possess iNC or the appropriate City and Guilds qualdications, or equivalene. Knowledge and experience of CCTV an advantage.
LECTURER I: RADIO, TELEVISION AND ELECTRONICS
Applicants must have good prastical experience and Applicants must have good pratsical experience and
should possess City and Guilds 172 (old No. 48), Clty and Gulls 272. or equiralent qualifications.
Mose posts are zenable from lise September, 1974.
but some appointments may be made earlier unless specifically seated. College of Education students may be appointed from the end of their course. 5ALARIES—Burnham F.E. Scale:
Lecturer 1- $11.660 \cdot 62.047$ plus London Altowance C118:
Lecturer 11 - 22.515 .63 .243 plus London Alfowance C118
Senior Lecturer-63.291-£3.655 plus London Allowance Z118:
Head of Dept. Grade IV-63.968-f4.396 plus London Aliowance 6118.
Application forms and further particulars may be obsained from the Principal (Sraffing). Waltham Forest College. Forest Road, Walehamstom. service 1700.09 .00 Tel. 01.527 2268. Ansafone service 17.00.09.00 hours.
Closing date 2 weeks from the appearance of this advertisement.
[3631

CHELSEA COLLEGE

University of London

Electronics Technicion

 (GRADE 3)required for interesting work in Applied Acoustics research group. Salary Scale $£ 1,825$ to $£ 2,095$ per annum including $£ 175$ London Allowance.

Further details and application forms from the Departmental Superintendent (3AA), Departments of Physics and Electronics, Pulton Place, London, SW6 5PR.
[3628

AUDIO TESTERS EXPERIENCED
 FOR LEADING ELECTROMUSICAL COMPANY
 INTERESTING WORK WITH MIXERS. ECHO UNITS, AMPLIFIERS (VALVE AND TRANSISTOR) ETC.

HIGH RATES FOR RIGHT MAN

66 OFFLEY ROAD, LONDON SW9. Tel. 7356568

Sales Engineer

Microwave Tubes

The English Electric Valve Company need a Sales Engineer to join-a team marketing advanced microwave tubes and devices. Based in Chelmsford, his key objectives will be to develop and exploit new markets for a rapidly expanding product range. He will visit and negotiate with customers in the U.K. and overseas and will be personally involved in all aspects of the microwave product marketing plans.

The successful candidate will possibly have a recognised professional qualification in engineering and preferably experience in the power tube field, although these are not essentials, as comprehensive product training can be given.

The Company is the most important professional electronic tube company in Europe and is recognised throughout the world as a major force in the industry. An excellent salary and other benefits consistent with joining this major company will be offered.

Write or telephone J. L. Scott, English Electric Valve Company Limited, Waterhouse Lane, Chelmsford, Essex. Tel: Chelmsford (0245) 61777.

English Electric Valve Co. Ltd.

telesonic marine Itd.

MARINE ELECTRONICS ENGINEER

Are you experienced in installing and servicing marine electronic equipment such as Radar, Navigation Equipment, and radio telephones? We require such a man for a fascinating job travelling to luxury yachts, etc., all round the country. If you live near London and are able to drive, a good salary awaits you working in Idyllic friendly at mosphere.
Apply Telesonic Marine Ltd.
Tel: 01-387 7467
3608

PHILIPS MEDICAL SYSTEMS LTD.

require a

SERVICE ENGINEER

IN NORTH LONDON

Suitable applicants should have experience in electro-medical and closed circuit TV equipment. Applicants with minimum ONC or equivalent qualifications and relevant experience should apply in writing to:-

The Personnel Manager,
PHILIPS MEDICAL SYSTEMS LTD.,
45 Nightingale Lane,
London,
5.W.I2.

FIJ RADIO ENGINEER

required by the Posts and Telecommunications Department to lead a small team engaged in the installation and commissioning of VHF. UHF and SHF radio links, both single channel and multi-channel and all associated equipment. May also be required to assist with detailed planning of systems and Installations.
Candidates must hold a Final City and Guilds Certificate in Telecommunications (includling Radio C) or equivalent plus five years supervisory experience on maintenance or installatlon of VHF. UHF or SHF radio systems.
SALARY in the range 62,280 to 63,340 p.a. which includes an allowance, normally tax frec, of $\mathbf{6 7 0 0}$ to $£ 1,000$ p.a. Terminal gratuity $\mathbf{2 0 \%}$ on basic salary, $\mathbf{2 5 \%}$ on allowance. For a married man with two children paying tax at the standard rate the total emoluments described above, including gratuity, approximate to a gross (i.e. before tax) UK return of $\mathbf{6 3 , 5 0 0}$ to $\mathbf{6 4 , 7 5 0}$ and for a single man about $\mathbf{6 3 , 3 0 0}$ to $\mathbf{6 4 , 8 0 0}$ p.2.
Other benefits include: low local income tax, generous paid leave, subsidised accommodation; free family passages, children's education allowances and holiday visit passages; (tour $2 \frac{1}{\mathrm{t}}-3$ years), appointment or disturbance grant up to $£ 200$, car loan up to E 600 .

The post described is partly financed by Britain's programme of aid to the developing countries administered by the Overseas Development Administration of the Foreign and Commonwealth Office.
For further particulars you should apply, giving brief detalls of experience tô
crawn agents

M Division, 4 Millbank, London SWIP 3JD, quoting reference number M2K/740307/WF

Recording Studio Maintenance Engineer

This is an important position in an international company involving interesting work with a small team concerned with the maintenance of all sound equipment in the studio.
Previous experience is necessary and it will be rewarded by an attractive salary and fringe benefits.

Ring the Studio Manager on 01-636 3434
-or, if you prefer, write to him at
CBS Records,
31-37 Whitfield Street, London W1.

RADIO OPERATORS

Leaving the Service in the next 18 months? If your trade involves radio operating, you qualify to be consldered for a Radio Officer post with the composite signals organisation.
On satisfactory completion of a 7 months specialist training course, successful applicants are paid on a scale rising to $£ 2,893$ p.a.; commencing salary according to age- 25 years and over $£ 2,126$ p.a.
During training salary also by age, 25 and over, $£ 1,607$ p.a. with free accommodation. The future holds good opportunlties for established status, service overseas, and promotion.
Training courses commence at intervals throughout the year. Earliest possible application advised.
Applications only from British born U.K. residents up to 35 years of age (40 years if exceptionally well qualified) will be considered.
Full details from :

> Recuitment Offletr,
> Room A/110S,
> Government Communications Headquarters
> Priors Road. Oakley, Chelienham,
> Glos., GLS2 SAJ.
> Telephone Cheltenham 21491 Exs. 2270 .

TECHNICIANS

We are engaged in the manufacture and servicing of sophisticated audio electronic equipment for the music industry. Due to expansion there are now vacancies for Technicians experienced in this field and top salaries plus fringe benefits are being offered.
For further details please phone or write, giving qualifications and experience to:

MAVIS LTD.,

11a Sharpleshali Street,
London N.W.I.
Tel. 7227161.

HI-FI
 ENGINEERS

This could be the opportunity you've been looking for. Due to continued expansion we are looking for experienced engineers to join our teams in Liverpool. Manchester and Preston.
You will be fully experienced in servicing a wide range of audio equipment and will be capable of supervising a modern, busy workshop.
Salary negotiable around $£ 1.750$.
Assistance with re-location expenses will be given by the company.
Applications in writing to
The Managing Director
Hardman Radio
RADHAN 33 Dale Street
Liverpool L2 2 HF

WORK IN CENTRAL AMERICA
Ŕadio ENGINEERS AND technicians needed IN HONDURAS AND GUATEMALA

The local Radio stations in Guatemala and Honduras transmit classes in agriculture, adult literacy, and simple health soples. so the people in the rural areas-approximately 90% of the population.
The eraining of local people to maintaln the trans, misters and to deal with the rechnical production of the programmes is being carried out by four British valunteers. We need people so replace them for a further zwo-year peciod.
Information: Frances Chadwick, Overseas Volunteers/CIIR, 41 Holland Park, London, W.11. Tel: 01-727 3195. Visitors weicome.

LEEDS POLYTECHNIC EDUCATIONAL TECHNOLOGY UNIT (Re-zdvertisement)

Recording Services
 Techniciuns T

($£ 1,644$ - $£ 1,926$)

(according to qualifications and experience) Ref. 13/17

To operate and maintain the off-air recording service and maintain the television equipment wied in the distribution system for all video recording. Must be able so maintain hetical scan VTRs.

Application forms (quoting rel. no.) together with further details may be obtalned from the Adminalstration Officer. Leeds Polytechnic, Calverley Street, Leeds LSI JHE, and should be returned as soon as possibie.

Electro-Medical Service Department requires
 ENGINEERS

for testing and servicing electronic apparatus. Applicants should be aged 20-30, and should be of O.N.C. standard.

Apply in first instance in writing

to:

SIEREX LIMITED
Electro-Medical Department, Heron House, Wembley Hill Road, Wembley, Middlesex, HA9 8BZ

3244

TECHNICIAN
 CARDIFF

£1,416-£1,644 (Tech 3)

required to work in the Llandaff College of Technology in the Marine Electronics Section of the Maritime Studies. Department. Experience required in the installation. maintenance and repair of the electronic-equipment as installed on ships of the Mercantile Marine. An M.R.G.C. or P.M.G. certificate preferred, but other electronic qualifications would be considered.
Application forms are available from the Personnel Officer, County of South Glamorgan, City Hall, Cardiff, CFI 3ND (Telephone Cardiff 31033. ext. 454) and must be returned within 10 days of the appearance of this advertisement.

COUNTY OF
SOUTH GLAMORGAN

BOTSWANA BROADCASTING ENGINEER

With either a Final City and Guilds Certificate in Telecommunications; HNC, Engineering Diploma, or equivalent, and five years experience of installation and maintenance of studio equipment is required for operational, maintenace and training duties. He must be conversant with all studio equipment and be capable of diagnosing faults and carrying out repairs. He is required to negotiate with Posts and Telécommunicationis engineers for Outside Broadcast circuits and to establish technical facilities at $O B$ loca. tions. The duties also include drawing up training schemes for local Technical Assistants, normal instruction and 'on the job' training.
SALARY in the range $\mathbf{~} 2,470$ to $\mathbf{6 3 , 7 4 0}$ p.a. which includes an allowance, normally tax free, of 6640 to 61,340 p.a. Terminal gratuity 25% on basic salary. For-3 married man with two children paying tax at thed standard rate the total emolument's described above, including gratuity, approximate to a gross (i.e. before tax) UK return of $\mathbf{6 4}, 100$ to $\$ 5,500$ and for a single man about $\mathbf{~} 3,700$ to $\mathbf{~} 4,900$ p.a.
Other benefits include: Low local income tax, generous paid leave, subsidised accommodation, free family passages. children's education allowances and holiday visit passages, tour 2-3 years, appointment grant up to $\angle 200$ and car loan up to $\ell 600$ normally payable.

The post described is partly financed by Britain's programme of aid to
the developing countries administered by the Overseas Developmenf
Administration of the Foreign and Commonwealth Office.
For further particulars you, should apply, giving brief details of experiente to

M Division, 4 Millbank, London SWIP 3JD, quoting reference number M2K/740234/WF

Avionics Inspector

Due to continued growth and expansion in our Avionics Service Centre, an interesting opportunity exists for an experienced electronic test engineer to join our Quality Control team as Avionics Inspector.

Have You?:

ONC or equivalent.
Practical electronic equipment experience including calibration.
Working knowledge of Ministry and C.A.A. procedures.
If so, you could be the engineer we are seeking.

Attractive salary negotiable from $£ 2,200$.
3 weeks' paid annual leave, excellent sickness benefits: and contributory pension scheme.

Please apply Immediately for interview:
Mr. M. J. Hinge, FieldTech Limited, Heathrow Airport (London), Hounsiow, TW6 3AF. Tel: 01-759 2811, ext 28.

SCOTTISH HOME AND HEALTH DEPARTMENT

WIRELESS TECHNICIAN

Applications are invited from men, aged 17 or over, for four posts of Wireless Technician in the Scotilsh Home and Health Department. The location of the posts arz-1 in Edinburgh, 1 in Inverness, and 2 in East Kilbride.
QUALIFICATIONS: Sound theoretical and practical knowledge of Wireless Engineering, including $H F, V H F$ and $U H F$ and Communications equipment generally Possession of an HN or C \& G Certificate an advantage but provision may be made for those who wish to continue their studies for one of these qualifications. The work involves installation and maintenance of equipment located a considerable distance from headquarters. Candidates must be able to drive private and commercial vehicles and have a clean driving licence.
SALARY: $£ 1,253$ (age 17) to $£ 1,836$ (age 25 or over); scale maximum $£ 2,158$. These are unestablished appointments with prospects of establishment after one year's continuous satisfactory service.
Application forms and further information may be obtained by writing to the Scoitish Office Personnel Division, Room 220, 22/25 Queen Street, Edinburgh EH2 1 LY quoting reference PM4/4/74. Closing date for receipt of completed application forms is 16 May 1974.

Electronics Appointments Register

Electronics Engineers

Audio

Engineer required for design and development of high quality audio equipment for home and professional use.

Laboratory Instruments

Engineer required for design and development of laboratory measuring instruments and power supplies.

TECHNICIAN

A technician or junior engineer is required for general duties in drawing office and factory liaison in the manufacture of audio equipment, laboratory instruments and power supplies.
Based at factory in Bristol.
Write in first instance giving qualifications and experience:

RADFORD ELECTRONICS, LTD., Bristol, BS3 2HZ

Why are you looking for a job, when we've got a job looking for you?

Even if you scour the Sits Vac columns you won't find all the good jobs to fit your qualifications. Because the best jobs aren't always advertised.

More and more companies are using the Electronic Appointments Register to find qualified men and women.

Join one of our Registers and soon you could be on a short list for a better job. Cur confidential service costs you nothing.

Send in the coupon-we'll mail you by return.

Graduate Appointments Register
Please send me details of how to enrolon one of your Appointment Registers:
Name
Address
Age limits 20-45.

Project Leaders

Experienced team leaders with proven managerial ability are required to plan and control the progress of development teams building advanced prototype equipment. The work will require the use of modern management techniques.

Candidates, qualified to degree/HNC level should have a good background in digital and analogue development work but some experience in minicomputers andmechanics would be an advantage.

An appreciation of the problems and requirements of putting electronic equipment into production is most essential.

The international music. electronics and leisure Group.

Project Development Engineers

Engineers are required to join project development teams engaged in putting advanced prototype equipment into production. The work involves development and production enginecring during the pre-production run of equipment containing analogue, digital and mechanical hardware.

Candidates, qualitied to degree/HNC level should have a good background in the development and production of electronic capital goods. Some experience in minicomputers would be an advantage.

A maior programme of expansion has created a number of new opportunities forengineers to join our development teams.

The EMI-SCANNER computerised X-ray system, introduced by EMI LIMITED in 1972 and since acclaimed by Ieading neurological hospitals in Europe and the United States as a major breakthrough in diagnostic radiology, has now surpassed the $£ 8$ million mark in export orders.

Engineers for X-ray Systems

Senior Development Engineer

We require a senior man qualified to degrec/HNC level to take part in and control the progress of hardware and software developments requiring the use of modern management techniques.

He will have several years experience in analogue and digital circuit design and should be familiar with use of minicomputers. Some experience in mechanical design would be an advantage. The man appointed must be acquainted with the processes and the problems of putting electronic capital goods into production.

Development Engineers

Engineers are required for hardware developments. This will principally include analogue and digital circuit design but some mechanical work will be involved. Some programming experience with minicomputers would be an advantage.

Candidates, should be qualified to degree/HNC level with at least three years experience in a similar field.

Atractive salaries appropriate to experience and yualifications will be offered. These could be up to $\overline{f 4,000}$ for exceptional candidates. There are good fringe benefits including a contributory Pension Scheme and assistance with removal expenses where appropriate. l'lease write giving bricf details of carecr to: Mr. K. E. Goodman, Personnel Department,
EMI LIMITED,
35, Blyth Road, Hayes, Middx.

UNIVERSITY OF DURHAM

Department of Applied Physics and Electronics
Applications are invited for the post of

SENIOR

DEMONSTRATOR

to supervise the Electronics Laboratory and demonstrate in it. The post is tenable from 1 October 1974 for two years in the first instance renewable for a third and final year.
Salary on the scale $61,719-62,613$ plus F.S.S.U. benefits.

Applications (3 copies), naming three referees should be sent by 3 May 1974 to the Registrar and Secretary. Science Laboratories. South Road, Durham, from whom further particulars may be obtained.

3673

Technical Publications Assistant

We require a Data Sheet Writer/ Editor to compile information and write product data sheets, write and produce leaflets, operating manuals and similar technical publications. Applicants should be qualified to ONC/HNC level in Electrical or Electronlc Engineering. A knowledge
of electronic tubes would be an ádvantage.

Applications in writing to: Mr. R.E. Hinsley, Personnel Officer, English Electric Valve Co. Ltd., Chelmsford, Essex.

British Solomon Islands RADIO TECHNICIAN

Required by the Posts and Telecommunications Department to be responsible to the Senior Technician for workshop construction. manufacture, modification, installation and maintenance of electronic equipment such as transmitters, receivers, radar. distance measuring equipment, aerials and auxiliary apparatus.
Candidates must have passed a five year trade course or have equivalent services qualifications and three years field or factory experience. Knowledge of air navigation aids and raido teletype an advantage.
5 ALARY in the range $\mathbf{~} \mathbf{2 , 4 6 0}$ to $£ 3,350$ p.a. which includes an allowance, normally tax free, of 61,310 to 61,550 p.a. Terminal gratuity $\mathbf{2 5} \%$. For a married man with two children paying tax at the standard rate the total emoluments described above, inciuding (gratuity, approximate to a gross (i.e. before tax) UK return of $\mathbf{~} 3,800$ to $\mathbf{~ 5 5 , 2 5 0}$ and for a single man about 63,000 to 65,400 p.a.
Other benefits include-low local income tax. generous paid leave, subsidised accommodation. free family passages. childrens education allowances and holiday visit passages, teur 2 years, appointment grant up to $£ 200$, car loan E 600 and outfic allowance up to \& 80 normally payable.

The post described is partly financed by Britain's programme of aid to the developing countries administered by the Overseas Development Administration of the Forcign and Commonwealth Office.
For further particulars you should apply, giving brief details of experience to
hroun agents

M Division, 4 Millbank, London SWIP 3JD, quoting reference number M2K/740259/WF

```
EAST SUSSEX COUNTY COUNCIL
BRIGHTON TECHNICAL COLLEGE
FACULTY OF ENGINEERING
ELECTRICAL ENGINEERING DEPARTMENT
```


SENIOR TECHNICIAN

```
Required as soon as possible for work in she Radio and Television Laboratories. Applicants must possess a Required as aoon as possible tor workio and televiston scrvleing and have had relevant practical experience. City \& Gullds Final Certficate in radio and elevinon serving to age. experience and qualifications. An Salary within the T4 Seale ( \(\mathrm{Cl}, 644-\mathrm{fl}, 926\) ), accordine
additional allowance is payable for approved quaitieations. Application form and detalls avalable from Chiel 1 dmin
Petham Street. Brighton. BNt 4FA. Tel: Brighton \(68 \$ 971\).
Petham Street. Brighton. BNt 4 FA. Tel: Brighton Applicatons to be returned within ten days of advertisement.

\section*{FOREIGN AND COMIMONWEALTH OFFICE COMMUNICATIONS OFFICERS}

\section*{APPLICATIONS ARE INVITED TO FILL VACANCIES IIN THE TELECOMMUNICATIONS BRANCH OF HM DIPLOMATIC SERVICE.}

Member of the telecommunications branch serve in more than 60 diplomatic missions overseas and also in the UK.
Applicants should be skilled in the operation of HF radio communication equipment and be competent at sending and receiving the Morse code. They should produce evidence of a sound knowledge of radio and electronic theory, e.g. MPT/PMG grade I or equivalent City \& Guilds certificates. Successful candidates will receive training on specialised equipment before taking up overseas appointments.
Futher particulars may be obtained from:

> Communications Administration Department, Foreign and Commonwealth Office,
> Hanslope Park, HANSLOPE,
> Milton Keynes MK 19 7BH.

CAN YOU WRITE CLEAR, concise technical C handbooks? If you think you could. and have a horough understanding in electronics, why not join us as a technical author. Obviously, previous experience would be an advantage but is not necessary as full training would be given. We have vacancies in many parts of the countre Stangs salats Box No with excel

ELECTRONICS MAINTENANCE ENGINEER reEquired for major London studios. Must be willing to sfavel at moment's notice. Ring 2292345 . |3612

HI-FI AUDIO ENGINEERS. We require experi - enced Junior and Setniors and wid pay top rates to get them. Tell us about your abilitics. 0 0.-437 4607.

DiANO P.C.B.'s for W.W. Electronic pianos. Enqujries 10 Baldock Electronjes, 23 Turpins Way. Baldock. Herts. Tel; Baldock 2559. [3670
YOUNG ELECIRONICS TECHNICIAN required for the constrution. testing and servicing of electronic cquipment at our works in N.W.I. Very varite work. Qualitications: ONC or C\&G or exapp:entice or similar desirable. Exce:lent opporlunity for right person with a small expanding company Plesse wrice for an applicatian form to: Yount Llectronics Lid.. 54 Lawiord Road., London. NW

\section*{SITUATIONS WANTED}

EXPERIENCED Rad?o. TV and CIV, hifisterco E.Sur.ice Enzinetr-Dutch Nationality-secks per Ist August 1974 a suitable position in Hoiland or abrodd alter his relurn from West Africa. He is 28. marricd with pre child. Is in possession ol Certificate N.E.R.G. (British Equivalent for Communication Tezhnician) and studying for M.T.S. (Technical Schuotiny) application). Used to be responsible for Service Department. Pleate sead teactons with salaty staterrent to Bus WW 3638 of this magazine.

\section*{ANNOUNCEMENT}

R EW'ARD for information leading to the recovery R of the following stolen instruments. Cossor scope CDUil0 serial Na. 1213. Solariron DVM A223 scriai No. 401238 . avo meter MK8 serial No. 34813.
relephonc 01-352 5633 .

\section*{ARTIGLES FOR SALE}

A ARVAK ELECTRONICS. 3-channtel sound-light A converters. from £18. Strobes, £25, Rainbuw \begin{tabular}{l} 
Strobes. £132.-12A Bruce Grove, N17 6RA. 01-808 \\
\hline 9096 [23
\end{tabular} 9096 .
BACK numbers of Wireless Wor:s. 1950 to 1973 inciusive, with cdd issues mksing, Ofters invited. buyer cullacis. Craigmore. East End. Witney. Oxfordthirc. Tel Fruciand 892125.

13614
BUILD IT in DEWBOX quality plastic cabine \(\mathrm{R}_{2}^{2}\) in. \(x{ }^{2}{ }^{2}\) in. \(x\) any length. D.E.W. Lid. (W.), Ringwuod Rd.. Ferniwood, Dursel. S.A.E. tor leanit.
Write now-Risht now.

COVSTRUCTION AIDS-Screws, nuts. spacers etc. in small duantities. Aluminium pane's punched to spec. or piain sheel supplied. Fascia pareis elched aluminfum to individual requirements. Pednted circui boards-masters. negatives and board. one-off or small numbers. Send \(6 p\) for tist. Ramar Constructor Services. 29 Shelbourne Road. Stratford on Avon, Warwks.
HEWLETT PACKARD 565A digital recorder, E60: Solartron LMi426 digital voltmeter, \(£ 75\) : Marconi nobbulator TF \(1104 / 1\). £40; 1.C.L. 80 columń punch. E30; 1.B.... 80 colurnn card reader. £120; creed 7B teleprinters. £12; Record pen char recorder. 515. Denby, 104 Rooley Lane. Bradford.
lorks.

HIGH vollage equipment for sale. Oil filled f 10 cupaciturs. 0.35 mld .. 32.5 KV DC wurking. ritice euch. Casriage extra. Box: WW 3645
ADDERS 8 ft 10 in closed-21ft exlended. \(\mathbf{~} 23.54\). 1 dillefed. Hume Sales Ladder Centre (VW2). Huldane (North) Halesficld (I) Tellord. Shropshire;
Til: \(0952-586644\).
NORDMENDE Globetraveller 11. 11 shortwave bands V.H.F.. M.F... L.F. xuperb world wide receplion. nearly new, \(£ 50\) or offer. Harpenden 64463 , 1362

PRINTED Circuit Eoard in 6 widths; 2 in.. \(2 \% 11 .\). 3 in., 34 in. 4 in. and 5 in . \(x\) any length: \(1 / 16\) in. single-sided fibrcglass. \(2 p\) per \({ }^{3}\) sq. in. Double. sided ip per sq. in. \(P\) \& \(P\) Sp per order. SAF
quotations for other sizes and quanily discounts.-quotations for Other sizes Gud qua, Braintree, Essex, CM7 6L \(\mathbf{Y}\). Tel. Braintree 25254 .
SUPERB Iastrument Cases by Bazcllf, manufactured 5 from heavy duty PVC faced sieel. cholec of 30 types, wend for frec list. Bazellf Instrument Cases, Dept. 22. St. Wilfrids. Foundry Lane, Halton. 142 6LT, near Lancaster.

Classifieds cöntinued on page 111

\section*{POLYCARBONATE CAPACITORS}

Cloase tolerance. High ateblity. Eatiemely low leakage.
 E200: 15uF- \(\mathrm{Ez} 7 \mathrm{7s}\). Als TANTALUM GEAD CAPACITORS: Values avallable

 4). JuF \(s 1\) 3v of \(6 v\) : 100 HF al 3 v

50 for \(E 400\).
TRANSISTORS: EC107, BC109, BC109; all at \(9 \rho\) each BCis2 and BC2i2 al 10 p each; mfirs at 30 p each. All prand new and maried, Full spec. devices.
POPULAR OIOOES IN \(142-40\) eoch; 8 for 45p; 98 for

NEW LOW PRICE- 600 mW Zeners, Values avallabte it mA . Alt new and marked. Price 7 m , each: 6 for 29 . 1: for Ha. Spectal offer 8 ol each voliage ( 66 zeners)
RESISTORS. Carban fIms\% if at \(40^{\circ} \mathrm{C}, 1 / 3 \mathrm{~W}\) ot \(70^{\circ} \mathrm{C}\) Mange from \(28 \Omega\) to 22 MAR in E 12 sterics, he. \(10,12,15,18\). low noise. All at 10 each; Ep lor 10 of any one voluc: 70p for 100 of any ons value. Special pach - 10 ol each value \(2 \Omega\) to \(2 \cdot 2 \mathrm{M} \Omega\) (i)30 resillers) E5.
\(40 V\) A.C. CAPACITORS, 0 iuF. size \(13 \ln x\) inn. 43 p ;
 El.isp earh.
SILICON PLASTIC RECTIFIERS 1.5 Amp. Erand
 p.

7p oosl and packing on all ofters below E.5.00 Export Ordert-please add cost ol slrisea mall PLEASE AOO 10\% V.A.T. TO ALL ORDERS
Send S.A.E. for liste of other as. Utohe thems, L.E.D'g avallable to bons fle companies. Wholebale orice Hsts

MARCO TRA
DEDt. DA, THE MALTINGS. STATION ROAD, WEM, SALOP. TEI! NANTWICH (CHESHIRE) E329!

CAREON FILM RESISTORS
 \({ }_{20 E 12 \mathrm{KIT}} 10\) of each value (Tofal of 610) \(£ 3.10\) FRIT. 25 of each value (Total ol 1555) 27.20
FREE CATALOGUE ON REQUEST
 W.O. P. \& P. 100 ( \(10 \Omega .1 \mathrm{M}\) ) Tolal of 915 £3. \(\mathbf{N}\) W.O. B. \({ }^{100}\) on orders undef 55 . Overseas extra Depi. WW., 61 Cheddington Rond, PITSTONE, Lelghton Buzzard. Beds,, LU7 SAQ.

WIRED TELEVISION SPARES


 SUBSCR1BERS T2P HEPE RE151-40, RE141-28,
 SPLITTERS type RD501, RD502. RD503. GREENPAR COAXIAL ROS All GREENPAR COAXIAL CONNECTORS type
GEP7517-C3. GE27519-C3. GE27574-C15, GE7517-C GE GE27519-C3. sealectro sub.Miniatu SEALE type 3000. 3002.3003 .3005 .3014 .3024, 51775. All at 23. 31. 3104, 3105, 3114. 3124, \(T\) Kac
PLES5EY DUAL COMPARITORS at 44 each DISC CERAMICS . \(01 \mathrm{uf} 50 \mathrm{v} . \mathrm{w}\). . \(.02 \mathrm{uf} 50 \mathrm{v} . \mathrm{w}\). 2t 50p per 100
MORGANITE BIPOLAR LADDER 5WITCHES - par 2.41 .2 af 615 earh

MOAND 5 mW GUNN DIODES at 13 each MORGANITE BINARY LADDER NETWORK5 troc \(211-A 115 K\) iq 25.50 . type 211 -B12 \(5 K\) at 210 each, iyde \(211-A 12\) 10K at 25 each. type 262B-100K at E8 each
J. BIRKETT

25 The Strait, Lincoln LN2 IJF
Tel: 20767
[38

\section*{16 mm SOUND S/H}

Fully guaranteed Bell Howell 631
 Projector 2000 cap. 750/1000 W Lamp Sound/Silent Speeds. Supplied CW Transformer £ 120 . Speaker Ex or 4.
hilton cine 7 West Hill, DARTFORD 27566

\section*{SURPLUS BARGAINS KLEINSCHMIDT S.C.M. TELEPRINTER OUTFITS}


Compralng. Toletypowriter fpago printorl type TT-2718/FG (known as Kleinschemidt 180) Aeperforator. Transmitrer thape printerk type TT. 272 A/FG with table FN. \(65 / \mathrm{FG}\). Both units解 whole equipment operates on
ELECTRONIC TIMER KITS 0.8 sec to 100 sec comprines A.E.I. Transistorised Module, Rolay and all electrical components for 115 or 240 VAC operationE 1.75 [25piVAT 20p., Voeder root 4 -digit resoltable counters 115 V C 1.26 (Bp). Pinted Clicult Kits. \(\mathbf{£ 1 . 2 5}(\mathbf{2 5 p}\) ) rolel with VAT E 1.65. AMPEX VIDEO TAPE 2 im . \(X\) 1670 NEW E9 (SOp). AVO CT38 Electronic Test Melars CFO (EI). FERRIC CHLOAIOE 26p ib. Ifopl. 10 Io E2.50 ipaid. Kont Char recorders 115 V AC E20 (1-501. Multipoini Kent Chart recordert E 30 ( \(\mathrm{E} 1 \cdot 50\) ). TELEPRINTER Popars and Tape.
 8, in. ralls 7 -ply NCA no catbon required. Whitg, f1 (32p). \(\frac{f}{1} \mathrm{in} .2 \mathrm{~h}\). core. white, E 2 Der box of 8 rols ( 52 p ). fin.. 2 in. core. buth. E2 per bok of 10 tolis 152 p ). ciear Large 52 per clear. Large SAE for List

\section*{CASEY BROS.}

233-237, Boundary Road, St. Helens. Lancs. 86



\section*{SWITCHE! Don's be held up for themmillion always in stock. Wafer, micro, roggle, push butcon, rocker. reed, slide. relay, mercury, lever, delay, thermostaric, pressure, combination, motorised, uniselectors, sequential. sime. mat, digital, etc. Send for our latest lise. J. Bull (Electrical) Led., 7 Park Sereet. Croydon. CRO IYD. \\ PLUGS \& SOCKETS BARGAINS. Price per item: in brackeri for ten. CO-AX plugs. 6p (50p); Suriace Sockers. 7p (60p): CO-AX Connecrors. \(4 p\) (35p). D.I.N. Plugs, \({ }^{2}\) pin. \({ }^{3}\) pin and 5 pin \(180^{\circ}{ }^{2} 20 \mathrm{p}\) ( \(£ 1.65\) ). lack Plugs, Seandard. 18 p ( 11.50 ): 3.5 mm . \(10 \mathrm{p}(80 \mathrm{p}): 2.5 \mathrm{~mm} .10 \mathrm{p}(80 \mathrm{p})\) ) Earpleces with cord and 3.5 mm pluz. 14 p ( 21.10 ). Toggle 5 witches with on/of plate S.P.S.T.. 6 .
(fis SO). Postage 10 p . Overseas orders welcome. (f1 SO). Postage 10p. Overseas orders weicome. Prices ithelude VAT. Electronic Malorder Lide. Tel: Bridge St, Ram
Ramsbortom 3036. \\ CAPACITV AVAILABLE \\ ELECTRONIC DESIGN ASSEMBLY \\ Highest quality at competitive prices \\ Contact \\ MULTIFORM ELECTRONICS LTD. \\ 27 Ferry Road, Teddington, Middlesex \\ 3527}

\section*{TAPE RECORDING ETC}

CAPACITY AVAILABLE
General Sheel Metal Work including Fabrication of Chassis Panels, Boxes and Guards, Large and Small Runs at highly Competitive Rates. Let us quote you now
ANGUS ASSOCIATES
6 Sunny Place, Sunny Garden Road
London NW4 IRS Tel: 01-203 4822
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{RECORDS MADE TO ORDER} \\
\hline DEMO DISCS
MASTERS FOR
RECORD COMPANIES & VINYLITE PRESSINGS \\
\hline \multicolumn{2}{|l|}{Single dises. 1.20. Mono or Stereo. delivery 4 days from your tapes. Quanticy runs 25 to 1.000 records PRESSED IN VINYLITE IN OUR OWN PLANT. Delivery 3.4 weeks. Sleeves/Labels. Finese quality NEUMANN STEREO/Mono Lathes. We cut for many Studies UK/OVERSEAS. SAE list.} \\
\hline \begin{tabular}{l}
DEROY \\
PO Box 3. Hawk S Tel.
\end{tabular} & fiforth, Lancs. \\
\hline
\end{tabular}

ECONOMISE ON SEMICONDUCTORS


P \& P 6p (UK) By Return service. Aif poods new Texas.
SILICON SEMICONDUCTOR SERVICES
41 Dunstable Raad, Caddington. Luton, LUI 4AL \({ }_{3}\)
2 in. WIRED COLOUR TVs. Bush CTV2S
(domestit chassis) with colour bars disployed 445
+VAT: Non Workert Tube O.K. c3S 4 VAT: Non
Workers Tube U.S. 120 -VAT. 19 in. G.E.C. 2028
available. Quansity discouns over to Secs. C W.O
\(2 \sin\). AERIAL COLOUR TVA. Bush CTV25 Thom
2000 G.E.C. \(2028190+\) VAT (displayed working)
SECONDHAND COLOUR, Lower Church Street,
Stokenchurch. High Wycombe, Sucks. 4 el: 02
026 (Radnasg) 3321. (2 min

A BONANZA FOR CONSTRUCTORS B.B. SUPPLIERS OFFER

CURLIES. 5 fr.. 3 core, \(15 p\) e2.. 4 core. 20 peat STRAIGHT Cords. \(25 \mathrm{tt} .{ }^{4}{ }^{4}\) core. \(25 p\) ea. Silicon, CV7040 (OA202). Jin. leads. 4 for \(25 p\), DIALS (GPO Type). piastic face. mets mech: comprising: 5 E2. TRANSISYR 4 ACYi7. diodes. resistors and capacitors BCY 34, 4 ACYI7. diodes. resistors and leapacitap (ex new equipment-relatively lone lesds) 50p plus surprise itern lor \(\mathbb{1} .25\). (Offer ends plus surprise item boN guarantec. Prices incl. 31.7.74.) MONE ORDERS or SAE for complete
\(V A T\) and p\&p. ORDE tist to:

38 HEATHWOOD GARDENS.
SWANLEY, KENT, BR8 7HN.
3663

\section*{CONSTRUCTOR}

AMATEURS
MANUFACTURERS
American l.C.s. Tranxistors. etc., with no British equivalent. supplied speedily to order. One offs and quantities.
T.M.P. ELECTRONIC SUPPLIES

3 Bryn Clyd, Leeswood, Mold, CH7 4RU, N. Wales

3603

\section*{CLASSIFIEDS ADVERIISING}

\section*{ALLAN PETTERS DORSET HOUSE}

STAMFORD STREET
LONDON, SE1 9LU
01-261 8508
01-928 3597

\section*{for sale}

40 kW Transmiters Collins (USA) FRT-22
4.26, 5 MHz , CW ( \(A 1\) ) and telecype (FI). suitable for SSB (A3J) with external exiter. Buile in crystal oscillator and frequency synthesizer,
ments \(230 \mathrm{~V} 50 / 60 \mathrm{~Hz}(3 \mathrm{ph})\). automatic voltage regulation.
Volume ca. 480 cu. ft. welghe ca. 12.600 lb. There are two identical sets available. Transmitters are used and need overhaul. Several tubes and vacuurm capacitors must be repiaced, minor parts misking.
Price \(\$ 1.800\) per set. ex stock Munich. in seaworthy packing with complere rechnical documentation.

8 München 2. Schillerstr. 40 (FRG) 3606

\section*{EXCESSSTOCK SALE}

TTL. I.C.'s and other components.
Send s.a.e. for lise so
M/s A. Lennox-Martin.
46B. Cricklewood Lane, N.W.2.
3610

Build a mixer to your own
spec. using our easy to wire
ALDID MDロLLES
For full details contact Richard Brown
at Zero 88, 115 Hatlield Road,
St. Albans, Herts. AL1 4JS Tel. 63727

\section*{JAN CRYSTALS}

Fast dellvery of protocype and production military qualicy cryscals. Competitive prices all frequencies: Lf crystals a speciality Details from:

INTERFACE INTERNATIONAL
29 Market Street, Crewkerne, Somerset
Tel: ( 046031 ) 2578. Telex: 46377.
ACRMCRES MANTE日

\section*{ELECTRO-TECH COMPONENTS LTD.}

Are buycrs of all types of electronic components and equipment. They will be pleased to view clearance stocks anywhere in Great Britain at one or two days notice
and negotiate on the spot/
ELECTRO-TECH COMPONENTS LTD.
315/317 Edgware Road, London, W. 2
Tel: 01.723 5667. 01.402 5580
37

\section*{TOP PRICES PAID}
for semiconductor and component redundant or excess inventories

\section*{P.R.S. ELECTRONICS}

126 Headstone Road, Harrow, Middlesex
Tel: 01.9656864

learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence
lfree! Brochure. wlthout obligation to BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL P.O.BOX 156, JERSEY, CHANNEL ISLANDS

NAME ADDRESS

\section*{YOUR CAREER in RADIO \& ELECTRONICS?}

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; eic. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the onty privately run British home study College specialising in electronics subjects only. Fullest details will be glady sent without any obligation.

To: British National Radio \& Electronics School, P.O. Box 15̄6, Jersey, C.I.
Please send FREE BROCHURE to
NAME
ADDRESS
\(\qquad\)
\(\qquad\)

\section*{BRITISH NATIONAL RADIO AND ELECTRONICS SCHOOL}

\section*{CITY \& GUILDS \\ EXAMINATIONS}

Make sure you succeed with an ICS home study communications Technicians and Radio Amazeurs Free detalls from: International Correspondente Schools. Intertext House, Dept. 734 H . London. SW8 4U].

188

\section*{COLOUR TV SERVICING}

Make the most of the current boom. Learn the techniques of servicing Colour \& Mono TV sets shrough new home study courses, approved by courses. Free detalls from: International audio spondence Schools. Dept. 734 H 2 , Intertext Houle London. SW8 4UJ. 189

\section*{TECHNICAL TRAINING}

Get the qualifications you need to sueceed. Home study courses in Electronics and Electrical Engineer. Ing. Majntenance. Radio. TV. Audio, Computer Engineering a Programming. Atso sell buid radio kiti. Free details from: Internatonal Correspon. dence Schools, Dept. 734H3. Intertext House. London. SWB 4UJ.

190

Classifieds conlinued from page 108
Aricles For Sale-Continued
TELEQUIPMENT DS3 with 2 Type A amplificers over E 100 , Teleradio 325 Fore \(\begin{array}{rll} & 3719 . \\ & 13602\end{array}\)
TRANSISORISED U.H.F. T.V. tuner units for sale. Brand new in eartons. Deiails from Mor
Kennedy. \(01-703\) 4040.
VACUUM is our speclatily. New and second-hand rotary pumps. difusion outits. accessories. coalers, etc. Silicone rubber or varnish outgassing equipment from 840 . V. N. Barrelt (Sales) Lid.
1 Mayo Road, Croydon, 01-684 9917.
\([24\)

\section*{SOUTHALL \\ COLLEGE OF TECHNOLOGY}

\section*{Beaconsfield Road, Southali, Middlesex.}

\section*{CEI PART II Options by PART-TIME STUDY}

Electronics-Telecommunications, etc.,
The Engineer in Society Apply: Head of Department of Electrical and Electronic Engineering [3491

COLOUR. UHF and TV SPARES. Cnlour and UHF lists available on request. New Philips G6 single siandard convergence panels eomplete. inct.
16 controis. colts. P. \(B\), swithes 16 controis. colis. P.B. switches. leads. etc. and circuit data 13.75 , or with yoke \(E 5.00\). P/P 30p. New Colour Sean Coils. Multard or Plessey plus convergence yoke and blue tateral. \(£ 10.00\). P/P 40 Mullard ATIO2s/05 Conversence Yoke, E2.50. P/P 25p. Mullard or Plescey Blue Latcrals. 11.25 . P/P 10 p . BRC 3000 rype Sean Coiss. \({ }^{\text {E4.00. P/P }}\) 400. 25 p . Lum. Delay Lines. 500 . P P/P DLT. EHT C 1.50 . P/P \({ }^{25 p}\) Lum. Delay Lines. S0p. P/P \(15 p\). EHT Cnipur E8.25. P/P 25p. EHT Colour Tripler ITTT TH25/ITH suitable minst sets. \(\mathbf{E 2 . 0 0}^{2} . \mathrm{P} / \mathrm{P}\) 25p. KB CVCl Dual Sisnd. convergence nanckis compleke inel. 22 ennirols.
 Makers Colour surplus/kalvared Philips G8 panels part complete: Decoder inel. \(1 / C\). \(\sum 2.50\). \(i \mathrm{~F}\) inel. 3 modules. E2 50 T. Base, 11.00 , PiP 25 p . CRT hase. 75p. PiP isp. GEC 2040 panels. Deender.

 nutput and Focus Control. 53.50 . P/P 350. B9D ELC 1043 NEW. E4.s0. Phillos VHF for Band UHF EL 2.85 inel. data. Salvared VHF and UHF Varican tuners. 11.50 . P/P \(\mathbf{2 5 n}\). UHF TUNERS NEW, Transistorlied, \(\mathbf{E 2 . 8 5}\) nr inel. slow mntion drive. \(\mathrm{E3.85}\). 4 potilion and 6 pos. push-bution transistd., 64.95 . UHF/VHF basie inicurated tuners, 13.25 . Cyldon UHF value uners. 51.50 . All tuncrs \(\mathrm{P} / \mathrm{P} \quad 30 \mathrm{p}\) Transistd. UHF VHF IF panels salvaked. \(\mathrm{E} 2.50 \mathrm{P} / \mathrm{P} / \mathrm{P}\) 25p. MURPHY \(600 / 700\) scries complete UHF Con-
version Kits inel. tuner, drive assy., 625 IF amnlifier. 7 valves. aceessories housed in cabinet nlinth assembly.
\(67.50 \mathrm{P} / \mathrm{P} 50\).
 switehable iF amnlificier and output ehassis inet. ct... hase panel. 61.00 PTP 3. P . PHILIPS 625 IF amplifier panel inel. eet., 1.00 P/P 30p. VHF turtet tuners AT7650 inel, values fir K, B. Featherlizht. Philips 19TG170. GEC 2010, ete.. 22,50 . PYE m!nialure in. ertmental for 110 to 830 . Pam and Invieta, \(11.95^{\circ}\) A.B ministure with UHF inicetion suitabie K.B. Buird. Fcreuson. 75p. New firchall tunerr Ferguson.
HMV. HMV. Marconi.
selectinn LOPTs. Scan P/P 11.90 tuncrs 30 p . Large seicctinn Lopts. Scan Coils. FOPTs available for moxt punular makes. PYE/LABGEAR transierd. Mast-
hread UHF Bonster. 5.5 F . Power Unit. \(\mathbf{E 4 . 6 5}\) P/P 30 p or Scthaek battery operated UHF Boosier 4.65 P/P 30 p. MANOR SUPPLIES. 172 WESTM END LANE. LONDON. N W. 6 (No. 28. 59 , 159 Buses or W. Hampstead Bakerloo and Brit. Rail). MAIL ORDER: 64 GOLDERS MANOR DRIVE. LONDON N.W.11. Te1. 01-794 8751 .

Wireless world. 1950-1970, E7. Box No.
60 KHz MSF Rugby and 75 KHz Neuchatel Radio compact units. Two avalinble Audio outpurs. Small. Toolex. Bristol Road. Sherborne (3211) Dorset


STEREO RADIOGRAM CABINET
Long. Low and Modern Tasal venoerso with diding front ond lapoperd
 aetorose selisery within 200 mile if you can odser 10 oe mort BUSHRECORD PLAYER
 this unviluaty good round ounbily A whate ampinion mpatier unt

 ittera. Makers rocommended price \(\mathrm{Cz7.7}\)

ERRES TABLE RADIO
 then wrotrop tore-themp isoos aro wry wall made form good quahty componemis and whoudt not be cortued with Harco Kong matien Their rocemity futs iect at C18 \&xh and wers well worth i. The ones we
 ecther they will work anly on mex hovoryy and we ere arringing foe s circill ofyom, Price tese plut \(C 1\) post and merrice. ELECTRIC WVELDER
Big cranstormor in motis cons whith carring mandie and control

 furthe \(\ell 1\) to tech 100 mites ents. 24V 3 AMP MAINS TRANSFORMER Jorigh mounting with foung clemes atandard primary 240200/198, MAINS TRANSFORMER
 Uprigh mounting with haing cha, ev oo.
MAINS TRANSFORMER
\(1180-37 v-39 \mathrm{v}-41 \mathrm{y}\) at 2 amp of thif woud function at \(18 \mathrm{x}-0-18 \mathrm{va}\) Primary rapped 110. 115 . 127,200220 and 240 s seifected by with foimpluge Cz jos.
MIDGET TVNO GANGS
Tuning conderser eef fitted to many daponase Hong Kang redios prcobetir 2000 ewch wection with ti" apintio with terminals less FERRITERODS


 \(35 \mathrm{P}:\) Furnte Sino \(3^{\circ} \mathrm{long} x \mathrm{z}^{-x} \mathrm{xd}^{20}\)
PHOTO RESISTOR
 to only toporoe 200 onms in tright light but it is onity quite smal. in Price 22p. A MMETER
- muare th ETER

\section*{I.F. TRANSFORMERS}

Tunsbie around 465 KCC Jopanowe mamuctura as fitted to mand Tunsbe around 465 kCC . sopanown mamuactura at fitec to many


12V POW ER PACK and overioed protection. Completery minosed in plastic casp whin and out terminds and hen lead-idow to operme moded drive motors TIME SWITCH
TIME SWITCH
Meine drwen 24 -hour dock-driving two ppires of onvoll swituhes this wil repeat untib foproy ammed. Complete in petessed RELAY
Clare Elot. Sealud and wive unded. \(675^{\circ}\) ohm ooil whth two paict ctrange over contucta. Price 12185

12V \(1 \frac{1}{2} A N P\) POWVER PACK
Thas comprises docole wound 230240 V mains trantiormer wheh hut
 HEAVY DUTY MAINSPOWERPACK

 than power haevy outy unth with derime of workethop west. Outpuit
 24V 1 AMP POWER PACK Full wave rectifier 4,000 wivd amootiong ulvided catpor tem be peralieled hor itervo. to atiminute crive rall Compietaly encased TRANS ISTOR POWER PACK Mavituty output ह.12V vp to 500 ma tor comprises double wid



\section*{WIRELESS WORLD}

\section*{Binding Volumes of Annual Issues}

Please send your volume to

> PRESS BINDERS LTD. 4-4A ILIFFE YARD, CRAMPTON STREET, WALWORTH, LONDON, S.E.17,

with your name and address enclosed.

Also, please confirm your order and send it with remittance ( \(£ 2.25\) each volume plus 22 p V.A.T.) £2.47, to

\section*{IPC ELECTRICAL ELECTRONIC PRESS LTD., BINDING DEPARTMENT, ROOM 11 , DORSET HOUSE, STAMFORD STREET, LONDON, SEI 9LU.}

Allow up to 10 weeks for delivery

\section*{J. LINSLEY HOOD \\ LOW DISTORTION AMPLIFIERS IN KIT FORM}
1. 10 Watt Class \(\mathrm{A} £ 5.25\)
2. 20 Watt Class B \(£ 20\) (Incl. P.SU)
3. 20-75 Watt Direct coupled f.11-80

Also 'Texan' Amplifier Kits in pack form. Bailey. Texas, Toshiba and Sanken Systems. Send large SAE for delailed lists.

TELERADIO HI FI
325 Fore St.. London N9 OPE \(01-8073719\) (Closed Thursdays)

\section*{EXPRESS}

Prototype Printed Circults
Fastest in London Area
Also medium production runs. call-offs, etc. Electronlc \& Mechanics
Highfiaid House, Wost Kingsdown.
Tel: West Klngsdown 2344

\section*{WILMSLOW AUDIO}

The firm for speakers!


PRICES INCLUDE VAT
Cabinets, for HiFl and PA., wadding, vynair ete. Send for Iree booklet-"Choosing a Speaker" FREE with orders over C7-HIFI Loudspeaker enclosures book

All units guaranteed naw and periect
Prompt despatch
Carriage and insurance: Speakers 35p each Kits 75 p each ([1.50 pair) Tweeters and crossovers 20p each.

Telcphone Wilmslow 29599
(Discount: Hifijradio sales at 10 Swan Strect
WILMSLOW AUDIO, Dept WW,

Swan Works, Bank Square, Wilmelow, Cheshire 5K9 IMF.
 shops．Easy－to－read 2 color scale．Double jeweled 2\％meter．Single positive action switch．－Stabilized 1\％resistors．
SPECIFICATIONS：
－Sensitivity：DC Volts－20，000 \(/\) V，AC Volts \(-10.000 \cap N\)－Accuracy：DC \(\pm 3 \%\) of Full Scale，AC \(\pm 4 \%\) of Full Scale Resistance 4 K n with \(35 \Omega\) Midscale，40K with 350 n Midscale－Decibels：\(-20 \sim+62\) ．Upper Freq． Limit 7 kHz • Power source：One（1）AA 1.5 V ． Eveready 915 or Equal－Size \＆Weight： \(116 \times\) \(84 \times 39 \mathrm{~mm}, 300 \mathrm{~g}\) ．

\section*{B CLAMP TESTER \\ MODEL CT－300}

\section*{SPECIFICATIONS：}
－Range of Measurement：AC：A 6A．15A．60A \(150 \mathrm{~A}, 300 \mathrm{~A}\) ．AC： \(\mathrm{V} 150 \mathrm{~V}, 300 \mathrm{~V}, 600 \mathrm{~V}\) Re－ sistance： \(1 \mathrm{~K} \cap\)（center：300）－Internal battery and fuses：UM－3 battery． 1.5 volts．0．1A fuses （ 9.5 ～11．50）．Max．circuit voltage： 500 V Size \＆Weight： \(190 \times 85 \times 45 \mathrm{~mm} .320 \mathrm{~g}\) Accesso－ ries：Test leads．Leather carrying case．

\section*{－For catalog．please write to：}

TAISEI ELECTRONICS CO．，LTD． C．P．O．Box 847．Tohyo．Japan
Cable Address：＇NESCOELECTRO TOKYO＇
Telex：J24788 SIGMARON Tel：256－9054． 9055

\section*{PEAK PROGRAM METERS TO BS4297} also 200Kitz varsion for high speed copying．
Drive circuit \(35 \times 80 \mathrm{~mm}\) ，tor 1 mA LH．zero meter to BBC
ED1477．Goid 8 －way ectge con ED1477．Goid 8 －way ecge con supplied． of 10 off 50 off

 Twin moverment，weale \(86 \times 54 \mathrm{~mm}\) E 31.00


PUBLIC ADDRESS ：SDUND REINFORCEMENT
In any public－addrass syatem where the microphones and
 round）occurs \(H\) the 3 mplification exceeds a crititerl value．By
anifting the audio spectrum fod to the speakers by a few Hertz thifting the audio zoectrum fod to the soeakers by a tew Hertz
the tenctency to howling oi foom resonance trequancies is
 the onset of foocthack．The \(5 H^{2}\) shift used is imperceptible on both speech and music．
SHIFERS IN BOXES
SHIFTERS IN BOXES with overload LED．shithbyposs awitich， BS4491 mains connector and housed in atrong diecast box日s
finished in atractive durable blue acrylle．Jack oi XLR audio rotl－ nectors．


 SHIFTER CIRCUIT BOAROS FOR WW July 1973 aricio 28

SURREY ELECTRONICS The Forge，Lucks Green，Cranleigh． Surrey GU6 78G．（STD 04866）5997
3430
WW－121 FOR FURTHER DETAILS


Private enquities，send 5p in stamps for brochure
THE QUARTZ CRYSTAL CO．LTD．
Q．C．C WORKS，WELLINGTON CRESCENT． NEW MALDEN．SURREY．03．942．033＊62986

\section*{PRINTED CIRGUITS \\ \＆ELECTRONIC EQUIPMENT \\ －LaRGE 6 SMALL QUANTITIES \\ －FULL DESIGN \＆P．T．H． PROTOTYPE SERVICE \\ －ASSEMBLIESAT REASONABLE PRICES tor lull dotails contact}

K．J．BENTLEY
\＆PARTNERS
18 GREENACRES ROAD．OLDHAM
Tel 0616240939

When replying to Box nos please mention Wireless World．

\section*{EXCLUSIVE OFFERS}

NEVER BEFORE OFFERED WORLD－WIDE RANGE COMPLETE TRANSPORTARLE HIV COMMOMICA－

 2 to sio m／a disithil realout syatheaired frequerur

 PAMCO BC－150 POINT－TO－POINT STRIP RADIO HF


HIGHEST QUALITY 19 RACK MOUNTING CABINETS \＆RACKS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{our Neighe widesimets} \\
\hline \[
\begin{aligned}
& \text { Our } \\
& \text { Ref. }
\end{aligned}
\] & \begin{tabular}{l}
Nelpht \\
in inches
\end{tabular} & Widd \(\boldsymbol{1}\) & Depenh & Reck \(P\) & \\
\hline 119 & 70 & 2 t & \({ }_{2 \rightarrow i}\) & \({ }_{151}\) & 21 \\
\hline DN & Y & 21 & 2.1 & कस & £20 \\
\hline PA & k & 22 & ： & （191） & 222 \\
\hline \(1 \% \mathrm{~B}\) & is & 41 & 22 & 30 & ¢18．00 \\
\hline 1 C & 62 & 25 & 22 & 47 & \\
\hline F1） & 11 & \(\pm 2\) & 24 & \％ & E14 \\
\hline \(\mathrm{H}^{\mathrm{H} / 2}\) & \％ & \＄2． & \(\pm 1\) & 68 & E18 \\
\hline HE & Bi & 䀾 & 213 & 1115 & S17 \\
\hline Fla & 11 & 14 & \(1{ }^{1 /}\) & 118 & 211 \\
\hline FIf & 15 & 21 & 15 & \(1!\) & 212 \\
\hline F1 & 18 & 21 & 15 & 12 & E12 \\
\hline FN & if & 24 & \(\pm 1\) & 部 & ¢17 \\
\hline \(\mathrm{F}_{1}\) & 8. & 22 & 12 & Kil & E12 \\
\hline FM & it & 72 & \(2{ }^{4}\) & 129 & ¢20 \\
\hline 1＇1 & if & 24 & 1 s & 71 & £18 \\
\hline \multicolumn{6}{|c|}{Almo Oumolev．CWin and multi－way Cahhuete． OPEN RACKS} \\
\hline \multicolumn{6}{|l|}{Our Hesqhit in Channel hlatk Patit} \\
\hline Ref． & inca＇s & Depth & Spact & Bare & Prie \\
\hline 1615 & \({ }^{2}\) & 1 & \％ 11 & 15 & 111 \\
\hline \multicolumn{6}{|c|}{} \\
\hline
\end{tabular}


RECORDER－REPRODUCERS

\section*{AMPEX}

FR－100B
FR． 800 tracks 6 speeds
FR． 800
Iraeks and \(\frac{f^{\prime \prime} 14 \text { and ？}}{}\) iractorised

\section*{MJNCOM}

CMP

E．M．I．
TD－1
\(\frac{1}{2} 4\) tracks 7 speeds
Several other smaller
decks．
Full detalla on request．
Prices of above are from \(\& 100\) to \(£ 400\) ．


\section*{COMPUTER HARDWARE}
－CARD RFADER 80 col． 600 c．p．m． ＊\({ }^{2}\) RINTER，High speed 1000 lines p．m．
\(*\) TAPE IREADER，High speed 5／B track ＊TAPE JEADER，Righ speed 5／3 track
\(* 400\) Channel Pulse Height Spectrum
Prices on Application
PLEASE ADD V．A．T．TO ABOVE
P．HARRIS
ORGANFORD－DORSET
BM16 6ER

\section*{BRAND MEW FULL SPEC. DEVICES \\ DELIVERY FROM STOCK}
U.K. CUSTOMERS ADD \(10 \%\) VAT TO TOTAL MICROCIRCUITS; 709 31p: 71041 p ; 323 81p; 761 (16 pln)




OIODES: 3 N9144p: 1N916 5p: \(\mathbf{1 N 4 1 4 8}\) 4p.
ZENERS: BZYEB SETIES 11D. 1 AMP RECTIFIERS: SOV.

 DALOPCPEN BAp. Was\% CAR. Sub Min. Verlcal Presct E12 values- 10 ol ohms to 220 K 4 D eich.
PANEL MOUNTING LED w.th dsis 22p. THERMISTOR op FERRITE BEADS: 13pil 10 beads. THER
ANTEX S. IRONS: 15 W Ci. 15 : 25 W C 9.85. ANTEX S. Trons it pih April. Chech our list.
Discounts start at \(10 \%\) for \(10+\) Semiconductors of one type.
IEF ELECTRONICS (W.W.4)
York Houte. 12 York Orive, Grappenhall, Wartinglon,
WAA 2 EJ .
Mail Order Only. C.W.O. P. \& P. 10p per order minimum, or as cost If more. LIST FREE
Satisfaction or your money back. PROMPT SERVICE


TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and CR also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

\section*{J. Black}

OFFICE: 44 GREER LANE, HENDON, NW 4 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN RDAD, N. 16 Tel: 01-249 2260

\section*{YES \\ WE ARE STILL GOING STRONG}

Our ever popular \(\mathrm{R} \times \times 26\) is available but our NEW T.- 36 is still stronger.
Rated for \(36^{\circ}\) of 16 s.w.g. it has proved amazingly POWERFUL. All models now fitted New. Pat. Jaw Strlps producing true, \(\frac{1}{4}\) circle bends.

Full detalls with pleasure from:

\section*{A. A. TOOLS}

HURST, ASHTON - UNDER - LYNE


WW-122 FOR FURTHER OETAILS

\section*{Grampian}
'SERIES 7' - Studio Monitor Version One of the world's finest Amplifiers.


GRAMPIAN REPROOUCERS HMITED Hanworth Trading Estate. Feltham, Middiesex. Telephone: 01-8949141.

\section*{SOWTER TRANSFORMERS}

FOR SOUND RECORDING ANO REPRODUCING EQUIPMENT We are suppliers to many well-known companies. We are supplitrs to many weriek and were estab: lishod in 1941. Early deliveries. Competitive prices. Large of small quansities. Lat ut quate.
E. A. SOWforturers and Designers

7 Dedham Place Fore Sereet, Ipewich IPG IJP
7 Dedham Place, Fore Sereoc,
\begin{tabular}{|c|c|c|c|}
\hline & COAXIAL & LEADS & \\
\hline PLUG & CABLE & PLUG & PRICE \\
\hline BNC & UR56 & BNC & £1-57 \\
\hline BNC & UR70 & BNC & £1.57 \\
\hline BNC & UR43 & BNC & £1.59 \\
\hline BNC & RG588/4 & BNC & £1.81 \\
\hline UHF & UR43 & UHF & £1.55 \\
\hline UHF & RG580/u & UHF & £1.79 \\
\hline \(N\) type & UR67 & \(N\) type & £2.47 \\
\hline C type & UR67 & C type & £4.40 \\
\hline BNC & UR43 & UHF & £1-57 \\
\hline BNC & RG58c/u & UHF & £1.81 \\
\hline BNC & UR67 & \(N\) type & £3.96 \\
\hline UHF & UR67 & \(N\) type & £2.20 \\
\hline \multirow[t]{2}{*}{C type} & UR67 & N type & £3.96 \\
\hline & TEST & LEADS & \\
\hline BNC & UR70 & Insul. Clips & f0.99 \\
\hline BNC & RG58c/u & Insul. Clips & ¢1.21 \\
\hline UHF & RG58c/u & Insul. Clips & ¢1-21 \\
\hline
\end{tabular}

NOTES. All leads are 1.5 Metres ( 5 ft ) all plugs and cables are 50 ohm except UR56 \& 70 (75 ohm). All pluga are straight entry type except C type Elbow plug. above available in Limited quantity. All prices Inc. VAT \& postage, other tengths and combinations available on request.

\section*{A. H. SUPPLIES}

57, MAIN RD., SHEFFIELD, S9 5HL 444278 (0742).

\section*{Wawd \\ Agind \\ belter care \\ THE ONLY \\ COMPREHENSIVE \\ RANGE OF RECORD MAINTENANCE EQUIPMENT IN THE WORLD!}
of LP and
Stereo
Send P.O. \(15 p\) (plus \(4 p\) pastage) for 48 page booklet providing all necessary informetion on Record Care.

CECIL E. WATIS UMITED Oertry House
Sunbury-on-Thames, Middx.
```

SPECIAL NOTICE
TO ALL MANUFACTURERS in the
ELECTRONIC, RADIO, TELEVISION and ALLIED TRADES.
Please note that we will purchase any redundant and surplus stocks which you may have available after stocktaking, or wishing to make space for more important tems. We are particularly interested in large quantities of components. raw materials, etc.
BROADFIELD \& MAYCO DISPOSALS LTD.
21 Lodge Lane, N. Finchley,
London, N12 8JG.
Telephone:
$01-4450749 \quad 01-445 \quad 2713 \quad 01-9587624$

```

\section*{WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC. SPOT CASH \\ CBILTMEAN LTIS. \\ 7. D. I1 Arthur Boad. Beading. \\ Tel: 582 605}

Berks.

\section*{EX-COMPUTER \\ STABLIISED POWER SUPPIIES \\ RECONDITIONED, TESTED AND GUARANTEED}

Ripple \(<10 \mathrm{mV}\). Over-voltage protection on all except 24 v .7 A . unlt. 120-130v. \(50 \mathrm{c} / \mathrm{s}\) Input. Stepdown transformer to sull about \(\AA 3\).
\(\begin{aligned} & 5-6 \mathrm{v} .8 \mathrm{~A} . \text { Post \& Packing } £ 1.50 \\ & £ 12 \quad 24 \mathrm{v} .7 \mathrm{~A} .\end{aligned}\)
\(\begin{array}{llll}\text { 5-6v. 8A. } & £ 12 & 24 \mathrm{v} .7 \mathrm{~A} . & £ 14 \\ 5-6 \mathrm{v} .12 \mathrm{~A} . & £ 14 & 30 \mathrm{v} .7 \mathrm{~A} . & £ 14 \\ 5.6 \mathrm{v}, 16 \mathrm{~A} . & £ 16 & & \end{array}\)
5.6 V .16 A . E 16

PAPST FANS \(4 \frac{1}{} \times 4 \frac{1}{} \times 2 \mathrm{in} .100 \mathrm{cim}\). ع.3.50 (30p).
PAPST FANS 6/n. dia. \(\times 2\) gitin. deep Type \(7576 £ 5 \cdot 00\) ( 30 p).
WOODS FANS 6in. Plastlc rotor \(£ 6.00\) (36p).
ELECTROLYTICS
\(4000 \mu 70 \mathrm{v} ., 3,600 \mu 40 \mathrm{v}, 10,000 \mathrm{\mu} 50 \mathrm{v}\).,
\(4 \frac{1}{3} \times 2 \mathrm{in}\). dia. 55 p ( 14 p )
\(10,000 \mu 35 \mathrm{v}, 5,000 \mu 35 \mathrm{v} .040 \mathrm{p}(12 \mathrm{p})\)
\(2,000 \mathrm{\mu} 30 \mathrm{v} ., 1,000 \mathrm{\mu} 16 \mathrm{v}\)., wire ends 15 p (6p)
\(4,000 \mathrm{p}-100 \mathrm{v} .14 \mathrm{f} \times 2 \mathrm{5} 5 \mathrm{p}\) (22p)
EX-COMPUTER PC PANELS \(2 \times 4 / \mathrm{n}\). min. 35 transistors with data 50 p (12p). 25 boards for \(£ 1\) (30p).
PANELS WITH 4 POWER TRANSIS
TORS SIM OC28 50p (10p)
QH Bulbs, 12v. \(55 \mathrm{w} . . . . . . . . . . .\).
250 Mixed Resistors .............. 60p (9tp)
250 Mixed Capacitors ............. 60p (9łp)
200 SI Planar Dlodes ............... 50p (7p)
Microswitches.............. 8 for 50p (9p)
Min. Glass Neons
Min. Glass Neons .......... 8 for 50 p (6p)
10-way Terminal Blocks ... 10 Ior 55p (15p)
Postage and package shown in brackets
Please add \(10 \%\) VAT io roral
KEYTRONICS
Mail Order only.
44 EARLS COURT RDAD, LONDON, W. 8 01-478 8499

\section*{ALLOWS COMPLETE \\ A DEXTER \\ वालMASWIIT: \\  \\ LGHTING CONTROL}

The DEXTER DIMMASWITCH is an attractive Dimma untt which simply replaces the normal light switch. It is available as a complete "ready to install" unit or "simple to assemble" kit. Two models are available controlling up to 300 W or 600 W of all lights. excent fluorescents. al mains \(200-250 \mathrm{~V} .50 \mathrm{~Hz}\). Alf DEXTER DIMMASWITCH models have buitt-in radio interference suppression. \(\quad 600\) watt \(£ 3.52\) Kit form £2.97 300 watt \(£ 2.97\) Kit form \(£ 2.42\)
All plus 12p post and packing
Prices include VAT. Please send c.w.o. to
DEXTER \& COMPANY
4 ULVER HOUSE
19 KING STREET
CHESTER CH1 2AH
Tel: 0244.25883

 mpatweins, moshtus
icen sumomitiss

Ett

\section*{THELINEAR ANDINTERFACE CIRCUITS DATA BOOK FOR DESIGN ENGIMEERS}
by Texas Instruments Ltd
PRICE 62.25

\section*{TELEPRINTER HANDBOOK}
by RSGB
Price 65-25
LOGICAL DESIGN OF SWITCHING
CIRCUITS by D. Lewin Price \(£ 5 \% 00\)
ADVANCED INDUSTRIAL ELEC.
TRONICS by N. Morris Price 63.55 INTEGRATED ELECTRONICS by Miliman

Price \(\mathbf{£} 4.20\)
TEST EQUIPMENT FOR THE RADIO
AMATEUR by H. L. Gibson Price \(\mathbb{E} .00\)
THE MAZDA BOOK OF PAL
RECEIVER SERVICING by D. J. Scal
Price \(£ 4.00\)
BASIC THEORY \& APPLICATION of TRANSISTORS by Dover Publications Inc. Price \(\mathbb{K} 1.10\)
IMPROVING YOUR HI-FI
by J. Earl
Price 63.20
WORLD RADIO \& TV HANDBOOK
1974 by J. M. Frost Price \(£ 3.20\)
SEMICONDUCTOR MEMORY
DESIGN \& APPLICATION
by G. Luecke
Price \(\mathbf{E 9 . 5 0}^{5}\)
\(\star A L L\) PRICES INCLUDE POSTAGE *

\section*{THE MODERN BOOK CO.}

SPECIALISTS IN SCIENTIFIC
\& TECHNICAL BOOKS
19-21 PRAED STREET,
LONDON, W2 INP
Phone 7234185
Closed Sat. I p.m.

Classifieds continued from page 111
Articlev For Sale-Continued
104-500 YD. ROLLS \(14 / 0076\) double tinned DEF 12D. Reputable PVC (or metric equivalent) t.1 the lmt . Telephnne: Topthan 4246 . \({ }^{2}\)

\section*{ARTICLESWANTED}

CASH AVAILABLE for surplus semiconductors
WANTED; alt types of communieations recerver and lest equipment.-Detaits 10 R. T. \& 1 Electronies, Lid, Ashville Oid Hall, Ashvilie Rd.
London. E.11. Ley. 4986 .

WIRELESS WORLD January 1973 issue wanted. 3RG. Ault, 23 Newton Strect. West Bromwich 871

\section*{Books}

WORLD RADIO TV HAND8OOK 1974. £3.15 inclusive. Davld MeGurva, Agent for Horld
Publications. P.O. Box 114 X . Edinburgh, EH! 1 HP Ask about quantizies, two and up

\section*{COURSES}

R ADIO and Radar M.P.T, and C.G.L.I. Courses. R Write: Principal, Nautical College, Fleetwood.
FY7 8J7.

\footnotetext{
CAPACITY AVAILAELE
AlRTRONICS LTD., for Coil Winding-large or plies. Suppliers to P.O. Also PC Boards Assem enquiries welcomed 3 B io Walerand Road Ex. Expor SE13 TPE. Te!. 01-852 1706.

A SSEMBLY, alignment and wiring wotk underAtaken. Outworker can do up to 50 hours per week to a high standard. Collection and delivery by arrangement. lan Bowden, 165 Lancaster Road. New Barnet. Herts. 01-440 2979.
}

BATCH Production Wiring and Assemblv 10 Statlon Parade, Ealing Commonne Electrieaks; 198 \begin{tabular}{l} 
Siston Parads, Ealing Common, London, W.S. Tet. \\
\(\begin{array}{l}1.90 \\
01.992 \\
8976 .\end{array}\) \\
\hline
\end{tabular}

CAPACITY avallable to the Electronic Industry erinding booth in metalsts, engraving. milling and erinaing both in metals and plastics. Limilted capa. for lists of full plant Enginecring Led plant capacity \({ }^{10} \mathrm{C} .8\). Industria Tel. 01.985 7057. Mackintosh Lane, E9 6AB

Dand Eler batch electronic assembly of Papacity quaitable units and panels. 11 Croft Close. Shrewsbury. Salop. Telephone Shrewsbury 50550.
\([3582\)
DESIGN, devclopment, repair, test and smalt pro duction of electrantc cqulpmem, Speciallst in production of printed circuit assembliss, YOONG \(01-267\) 0201.

PRINTED CIRCUITS, quick service, competitive uns welcomed. faniesons, driting elcetera. Short ton. Yorkshlre. Tel: (0262) 473877877 .

SMALL Batch Production, wiring, assembly. to sample or drawings. Specialist in printed circuit assemblies. D. \& D. Electronics, 42 Bishopsfield. Harlow. Essex. Harlow 33018.

\begin{abstract}
SERVICE \(\&\) REPAIPS
A UDIO ENGINEER, available shortly, seeks com A missions in consultative, advisor seeks comiinstaltational or sub contract work. Enquiries and offers to Box No. WW 3980.
CLECTRON1C test equipment repair service - offered on Avometers, Signal Generators Pulsé A.M./F.M./C.W./A.F.. Frequency Counters, D.V.M.s. P.S.U.s, Oicjlloscopes. Production test problems? Why not try us, "Q" Services Electronic (Camberley) Lid.. 29 Lawrord Crescent, Yalcley. Camberley. Surrey. Yateley \(871048 . \quad 11 j\)
SCRATCHED TUBES, Our experienced polishing tubes as now again for only colour or monochrome With absolute connfiderce sent to Retube carriage 175 p , Somersote. Louth, Lincs. or phone 0507.85100 North

StGNAL generators, oscilloscopes, outpul meters, \({ }^{5}\) wave voltmeters, frequency miters. multi-fange meters, etc., efc. in stock.-R. T. \& i. Electronics Lid., Ashville Old Hall. Ashville Rd.. London, E.11. Ley. 4986.
\end{abstract}

\section*{TAPE RECORDINE ETC}

F quality, durability matter, consult Britain's oldest tapes. (Excellent Quality records from your suitabia capes. (Excellent tax-iree fund raisers for schonis). News. 18 Blenheim Road. Iondan 4 Grad.-Sound

\section*{VALVES WANTED}

We buy new valves, iransistors and clean new com ponents, large or small quantities, all detaiks, quotation by refurn-Whalton's, 55 Worcester \(\frac{58}{\$ 62}\) Wolverhampton.

FOR
CLASSIFIED
ADVERTISING
RING
01-261 8508
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline MANUA & S AVA/L & ABLE & & EOUPMEN & & & ADVANCE & PYE & FURZEHILL \\
\hline MARCONI & SOLARTRON & COSSOR & TEKTRONIX & TELEQURMENT & TF1041 & CT436 & TCIA & BANTAM - & 0160 \\
\hline TF3296 & AS516 & 339 & 422 & S32 & 100 & c0523S. 2 & T2 & REPORTER & 1684 \\
\hline TFB018 & AS517 & 1035 & \(511 A D\) & D43 & Tft101 & A0557 & TC2A & RADIVE \({ }^{\text {a }}\) & HEWIETT PACKARD \\
\hline TF8018/3/S & ASW51A & 1049 & 524 AD & WAYNE KERR & TFIIO4/1 & collis & 01 & 211 & 200C0 \\
\hline TF8010 & SRS 15181514 & E.M.i. & 524 AD & B221 & TF1300 & CO814 & D2 & RACAL & 130 A \\
\hline TF867A & SRS 1528.1524 & WM2 & 541 & 8121 & TF|345/2 & 00910 & J & -SA28 & BC22t \\
\hline TFB68A & VF252 & WM8 & 541 A - B & B521 & & CD1014 & AIRMEC & SA33 & HARTLEY 13A \\
\hline TF885 & C0546 & WMi6 & 555 & & & C01016 & 701 & & AVO CT38 \\
\hline TF986A & 0300 & & 555 & & & & & & \\
\hline
\end{tabular}

This is only a small example of the manuals we have in stock. S.A.E. with your enquiries - we may be able to help.

\title{

}

7-9 ARTHUR ROAD, READING, BERKS. (rear Tech. College) Tel.: Reading 582605

\section*{INDEX TO ADVEIRTISERS}

\section*{Appointments Vacant Advertisements appear on pages 92-111}


\footnotetext{



 at a price in excess of the reonmmended maximum price thomn on one pletorfal matter zhateneser.
}


\section*{Looked at closely}

The best pick-up arm in the world


Write to SME Limited
Steyning • Sussex • England
Telephone : Steyning (0903) 814321

\section*{Ersin Multicorethe international solder}

\section*{Ersin Multicore 5-Core Solder}

The proved superiority of ERSIN Multicore Solder for over thirty years is due to many factors. We have specialised throughout this period in the manufacture of cored solders. Consequently our research and manufacturing staff have been able to devote all their energies to the development of Multicore Solders. All alloys are of highest purity, carefully formulated and checked.

Our unsurpassed ERSIN flux is rigorously tested before and after it is incorporated in the solder wire. Our five separate cores of flux ensure flux continuity, leave only an ulta-thin layer of solder separating flux from work for instant wetting and provide a more accurate ratio of flux to solder. It is therefore possible to

\section*{ALloy}
\begin{tabular}{l|l}
\begin{tabular}{l} 
Composition \\
(nominal major elements)
\end{tabular} & \\
\(50 / 33 / 17 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Cd}\) & Grade \\
\(62 / 36 / 2 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Ag}\) & TLC \\
\(62 / 35.7 / 2 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Ag} / \mathrm{Sb}\) & LMP \\
\(63 / 36.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Sb}\) & Sn 62 \\
\(60 / 40 \mathrm{Sn} / \mathrm{Pb}\) & Sn 63 \\
\(60 / 39.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Sb}\) & K \\
\(50 / 50 \mathrm{Sn} / \mathrm{Pb}\) & Sn 60 \\
\(50 / 49.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Sb}\) & F \\
\(50 / 48.5 / 1.5 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Cu}\) & Sn 50 \\
\(45 / 55 \mathrm{Sn} / \mathrm{Pb}\) & Savbit 1 \\
\(40 / 60 \mathrm{Sn} / \mathrm{Pb}\) & R \\
\(40 / 59.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Sb}\) & G \\
\(30 / 70 \mathrm{Sn} / \mathrm{Pb}\) & Sn 40 \\
\(20 / 80 \mathrm{Sn} / \mathrm{Pb}\) & J \\
\(15 / 85 \mathrm{Sn} / \mathrm{Pb}\) & V \\
Pure Tin & - \\
\(95 / 5 \mathrm{Sn} / \mathrm{Sb}\) & \(\mathrm{P} . \mathrm{T}\). \\
\(5 / 93.5 / 1.5 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Ag}\) & 95 A \\
& \\
& \(\mathrm{H} . \mathrm{M} . \mathrm{P}\).
\end{tabular}
use less solder and obtain greater reliability.

Our Quality Control at all stages of manufacture is guaranteed and recorded by the batch number on every reel.

\section*{Needle fine gauges}


In addition to our standard range of wire diameters (10-22 swey: \(3.2-0.7 \mathrm{~mm}\) ) supplied on \(2 \frac{1}{2} \mathrm{~kg}\) and \(\frac{1}{2} \mathrm{~kg}\) reels we also massproduce needle-fine gauges (24-34 swg: 0.56-0.23 mm) on 250 g reels for microminiature soldering applications-still with 5 Cores of flux.

\section*{Savbit Solder}

One of our most popular special ERSIN Multicore Solder alloys is SAVBIT alloy. Compared with ordinary tin/lead solders it dramatically reduces the erosion of soldering iron bits, copper wires and printed circuit conductors. It also saves costs and increases reliability. SAVBIT alloy containing 5-Cores ERSIN 362 flux has received special Ministry approval-under DTD. 900/4535 for Military applications.


Sectioned iron-plated bit, after 40,000 simulated operations using 60/40 Solder.

Sectioned Iron-plated bit, after 40,000 simulated operations using SAVBIT Solder.

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Melting Temperature} \\
\hline Solidus \({ }^{\circ} \mathrm{C}\) & \({ }^{\text {Liquidus }}\) & Specification \\
\hline 145 & 145 & DIN 1707 \\
\hline 179 & 179 & DIN 1707 \\
\hline 179 & 179 & QQ-S-57 1E \\
\hline 183 & 183 & QQ-S-57 1E \\
\hline 183 & 188 & B.S. 219 \\
\hline 183 & 188 & QQ-S-57 1E \\
\hline 183 & 212 & B.S. 219 \\
\hline 183 & 212 & QQ-S-57 1E \\
\hline 183 & 215 & \begin{tabular}{l}
DTD 900/4535 \\
DIN 1707
\end{tabular} \\
\hline 183 & 224 & B.S. 219 \\
\hline 183 & 234 & B.S. 219 \\
\hline 183 & 234 & QQ-S-57 1E \\
\hline 183 & 255 & B.S. 219 \\
\hline 183 & 275 & B.S. 219 \\
\hline 225 & 290 & - \\
\hline 232 & 232 & B.S. 3252 \\
\hline 236 & 243 & B.S. 219 \\
\hline 296 & 301 & B.S. 219 \\
\hline
\end{tabular}
```


[^0]: 1. "My Father Martoni" by Degra Marconi. McGraw Hill, 1962.
 2. "Marconi" by Prof W. P. Jolly. Constable, 1972.
 3. "A History of The Marconi Company" by W. J. Baker. Methuen, 1970.
[^1]: 1. Thomason, J. G. "Precision Photographic Timer". Wireless World, Feb. 1955
 2. Jowett, J. H. "Inexpensive Photographic Timer", Wireless World, Aug. 1958
 Acknowledgment
 The author wishes to thank Dr R. C. V. Macario for help in the preparation of this article
[^2]: -This approach was prompted by the excellent book "Digital Electronics for Scientists" by Malmstadt \& Enke (Benjamin) which proposed a slightly different division.
 \$This can also be considered as a hidden form of P-A-I conversion since the temperature affeets some A parameter such as R, C etc.

[^3]: * "Towards a Creative Society." Electronics and Power. Nov 29, 1973. Based on a forthcoming book. "Machines-Master or Slaves of Man?" (Peter Peregrinus Litd.)

[^4]: * SWITCHING FACILITIES AND MODULES FOR SQ, OS AND CD4.

 ㅅ COMPLETE LOUDSPEAKER ENCLOSURE DESIGN.

 * COMPLETE LOUDSPEAKER SYSTEMS AVAILABLE.

 INDIVIDUAL XITS MAY BE INCORPORATED IN EXISTING EQUIPMENT. * MODULAR BUILT IN-AM/FM RADIO. * LOW COST. FUlLy ENGINEERED. INTEGRAL DESIGN.

[^5]: TRINITY TRADING ESTATE - SITTINGBOURNE • KENT

[^6]: Project 80 FM tuner, decoder, and A.F.U. may be added as required

[^7]:

[^8]: Woodgrain: D@£4.79, E \& G@£5.52, H@£6.07.

[^9]: 7／9 ARTHUR ROAD，READING，BERKS．（rear Tech．College，Kings Road）Tel．：Reading 582605／65916

[^10]: J. N. Prosser,

 PROSSER SCIENTIFIC INSTRUMENTS LTD:
 Lady Lane Industrial Estate.
 Hadleigh, Ipswich, IPT 60Q.
 Telephone: Hadleigh (047 338) 3005.

