WirelessWordd Helical v.h.f. aerial

Aurifo oscillator

Marconi Instruments went over 10dB better with the TF 2011

In the normal two-signal method of selectivity measurement, noise in the 'wanted' channel produced by the 'unwanted' signal generator can mask the breakthrough interference to give an apparently low rejection ratio.
However, internally generated noise in the TF 2011 VHF/FM Signal Generator is so low that measurement of rejection ratios greater than 90 dB from the midchannel frequency is possible. TF 2011 is the second of 'the quiet ones', a series of signal generators designed to embody all the features needed for the accurate
evaluation of narrow band mobile FM receivers. Its frequency range is 130 to 180 MHz , and frequency drift is of a very low order. Tuning facilities are unusually comprehensive including, for bandwidth and similar measurements, a calibrated Δf system.
Send for a copy of our brochure 'THE QUIET ONES' and a comprehensive TF 2011 data sheet.

Our cover photograph is of part of the vibrations and sound section of Evoluon, the permanent exhibition at Philips, Eindhoven. In this abstract presentation sounds are converted into electronic pulses, transmitted and reconverted into sound. Photographer Paul Brierley.

IN OUR NEXT ISSUE

How a modified f.m. tuner used in conjunction with a simple oscilloscope and a home-made aerial will receive weather pictures from satellites.
A review of television receiver techniques.
Making a turntable and pickup arm.

Contents

411 The Plight of the Microcircuit Industry
412 Sweep-frequency Audio Oscillator by R. J. Ward
417 Announcements
418 Helical V.H.F. Aerial by G. J. Monser
420 Ceramic Discriminator for Narrow-band F.M. by D. Balfour
421 Dual-trace Oscilloscope Unit-2 by W. T. Cocking
425 News of the Month
427 Letters to the Editor
430 Circuit Ideas
431 Frequencies for Space Communication by D. E. Baptiste
433 Elements of Linear Microcircuits-11 by T. D. Towers
436 Conferences \& Exhibitions
437. The Liniac by J. L. Linsley Hood

441 H.F. Predictions
442 Letter from America
443 Field Sequential Colour Television Receiver-1 by T. J. Dennis
446 Voltage Reference Source by H. A. Cole
448 Electronic Building Bricks-15 by J. Franklin
449 Sampling Oscilloscopes \& Sampling Adaptors by E. B. Callick \& A. Lawson
451 Sound Synthesizers
452 Elapsed Time Graph for Tape Recording by B. W. Lingard
453 Centimetric Television Broadcasting by J. C. G. Gilbert
454 Books Received
455 World of Amateur Radio
456 Personalities
457 New Products
462 Literature Received
A95 APPOINTMENTS VACANT
All INDEX TO ADVERTISERS

ibpa

netranamal Bus mess
Pees Associates
I.P.C. Electrical-Electronic Press Ltd

Managing Director: George Fowles
Publishing \& Development Director George H. Mansell
Advertisement Director: Roy N. Gibb
Dorset House, Stamford Street, London, SE 1
© I.P.C. Business Press Ltd, 1971
Brief extracts or comments are allowed provided acknowledgement to the journal is given.

[^0]
Fromse the oneinamillion DVM

SE's Model SM 215 is the most accurate and linear digital volt meter in the world today. It's the one in a million DVM with unequalled performance: typical daily stability ± 1 part per million, coupled with linearity of ± 1 in a million, and annual stability of ± 10 parts per million. Four input ranges covering $0-1,000 \mathrm{~V}$, full-scale $1,100,000$ input current $<5 \mathrm{pA}$ input impedance over $100,000 \mathrm{M} \Omega$

In spite of its superb specification, this DVM is compact and easily portable to give you standards-room precision wherever you need it, plus SE's true value for money. If you need the best DVM there is, write or ring for details about SE's one-in-a-million SM 215. SE measures up to tomorrow's technology

The Plight of the Microcircuit Industry

Editor-in-chief:
w. T. COCKING, F.IE.E.

Editor:

H. W. BARNARD

Technical Editor:

T. E. IVALL, M.I.E.R.E.

Deputy Editor:
B. S. CRȦNK

Assistant Editors:
J. GREENBANK, B.A.
G. B. SHORTER, B.Sc.

Drawing Office:
L. DARRAH

Production:
D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
G. J. STICHBURY
G. DONOVAN (Classified Advertisements),

Telephone: 01-928 3333 Ext: 533 \& 246.

During the past month there have been some dramatic moves made in the British microcircuit industry. First came the announcement that the G.E.C. proposed closing the Marconi-Elliott Microelectronics factories at Witham, Essex, (which was purpose built in 1968) and at Glenrothes, Fife. Within days of this proposal Motorola held a party in East Kilbride, Lanarkshire, to celebrate the start of work on the building of a new microcircuit factory! Then came a press release from Mackintosh Consultants Company, of Glenrothes, outlining the results of a survey of the British microelectronics industry they had undertaken on behalf of the Department of Trade and Industry and the National Research Development Corporation.

This report, which is confidential, although abridged copies have been made available to the companies who participated in the survey, expresses the views of the consultants and not necessarily those of the companies concerned nor the sponsors of the study. However, the brief details given in the press release must have sent a shudder down the spine of some British companies. The view is expressed that because of the dominance of European markets by American manufacturers, no single national market in Europe (and this applies equally to Britain) is capable of supporting even one major i.c. company and, moreover, no company can succeed in this industry without access to markets which are both large and innovative. When one looks at the production figures of the big five microcircuit companies in the States and compares them with the total output of all the indigenous European companies (including Philips) one finds that the aggregate is not half of any one of the major American i.c. companies. In face of competition from such giants what prospect is there for a British microcircuit industry or even a joint European enterprise. In spite of this, it has been announced by the Italian finance organization I.R.I. that it has taken over SGS and ATES and, reading between the lines it would appear that a national electronic components company - both passive and active-may emerge.

To get back to the British scene, there were, of course, the inevitable questions in the House of Commons and the letters in the Press condemning the proposed G.E.C. closures as, to use the words of Brian Harrison, Conservative M.P., it would be little short of a national tragedy if Government action was not taken to prevent the expertise associated with microcircuit production being lost to Britain. Similar sentiments were expressed in a letter in The Times from the general secretary of the Electrical, Electronic and Telecommunications Union who concluded with the words 'the Government must act now or the future of the British electronics industry must surely be at risk'.

Only a few days before these chilly winds blew through the industry Mr. John Davies, the Secretary for State, stated, in the course of a debate on the conditions in another industry, that the Government would not finance 'lame ducks'. It will, however, be recalled that grants to the tune of $£ 5 \mathrm{M}$ were made by the National Research Development Corporation to three British-owned i.c. manufacturers (one was Marconi-Elliott) only three years ago. This money is recoverable by levy on the sales of i.cs.

What then are the long-term prospects for this country's microelectronics industry? In the present climate of internationalism is it reasonable to think in terms of national companies? American companies have for some time been setting up factories in Europe to be in E.F.T.A. and E.E.C. In the face of such competition and in view of our plans to join the Common Market would it not be in our interest and in the interest of our Continental partners to set up a strong joint European i.c. company to compete in the world market for mass-produced microcircuits? This need not mean the end of i.c. research and production in this country; there would, we believe, still be room for one or two British manufacturers of specialized microcircuits.

Sweep-frequency Audio Oscillator

Two-decade linear sweep using b.f.o. technique

by R. J. Ward, в.A.

For many linear circuits the characteristic of prime practical importance is their frequency-amplitude response. This class of circuits includes tuned circuits, equalizers, filters and selective amplifiers. The response is commonly measured by connecting a variable-frequency oscillator to the input of the circuit and a suitable output measuring meter. Measurements are then made at as many fixed frequencies as necessary and plotted to obtain an overall picture of the performance. Though simple and convenient this becomes tedious when many response graphs have to be measured, and is too slow when demonstrating the properties of such circuits to a class of students.

In such situations it is useful to display the graph of gain or loss against frequency directly and quickly. This article describes an instrument which used with an oscilloscope or X-Y plotter enables such a direct plot to be made.

The components needed to build this oscillator cost at least $£ 20$ which is no doubt more than the cost of the much simpler audio sweep generator recently described by F. H. Trist.* The main difference in performance is the sweep linearity- 0.2% in this design over a 100:1 frequency range as opposed to 15% over a $10: 1$ range for the simpler design. This figure of 0.2% allows direct accurate plotting along the frequency axis and the use of calibrated controls for varying the sweep range.

* Audio Sweep Generator by F. H. Trist, Wireless World, vol. 77 July 1971 pp. 335-8.

Fig. 1. In the swept frequency technique for obtaining the amplitude-frequency response of networks quickly, a sawtooth waveform controls a voltage-to-frequency converter and simultaneously sweeps the oscilloscope beam in the \boldsymbol{X}-direction.

Fig. 2. Using the beat frequency technique two decades can be covered without switching. As well as the $f_{1}-f_{2}$ signal others are generated which must be filtered out.

The present design is single range and therefore limited in total coverage. Other features such as output level and sweeprate controls are not fundamental to the technique but come from aiming for maximum flexibility within one frequency range.
Automatic level control and waveform purity are similar in both designs except that F. H. Trist's generator should be completely free of spurious signals not harmonically related to the fundamental.
The technique used is illustrated in Fig. 1. The sawtooth voltage simultaneously tunes the oscillator and sweeps the beam across the screen, so that the sideways deflection is proportional to frequency-a 'frequency base'. The Ydeflection is proportional to the output amplitude, so assuming the oscillator output level remains constant a plot of gain against frequency is obtained.

In this instrument two decades of frequency are covered in one band using a beat-frequency technique-Fig. 2. Oscil-
lations at frequencies f_{1} and f_{2} are fed into
a mixer which produces -many frequencies at its output, principally the original ones together with the sum $\left(f_{1}+f_{2}\right)$ and difference $\left(f_{1}-f_{2}\right)$ frequencies. The difference frequency signal is selected by a filter. If the original frequencies are well above the difference frequency then the latter can be easily filtered from the mixer output, but if they are too high a small fractional change in either f_{1} or f_{2} will result in a large fractional change in $f_{1}-f_{2}$, so frequency stability will be poor.

Frequency f_{2} is fixed at 20 kHz and f_{1} variable from 20 to 30 kHz giving an output at 0 to 10 kHz . In practice the output wave form deteriorates when f_{1} and f_{2} are very nearly equal so the usable output range is 100 Hz to 10 kHz .

Swept generator

The overall structure of the complete sweep oscillator is shown in Fig. 2. It is convenient to start its description with the sweep generator. Audio-frequency systems

Prototype specification

Frequency range: 100 Hz to 10 kHz in one range, accurate to $\pm 100 \mathrm{~Hz}$ mid-scale or $\pm 20 \mathrm{~Hz}$ by calibrating potentiometer; $\pm 20 \mathrm{~Hz}$ at range ends.
Amplitude: adjustable up to 3 V r.m.s. (open-circuit) in six ranges and accurate to $\pm 5 \%$. Level to 3% over range. Output impedance is $600 \Omega \pm 2 \%$, except on highest ranges ($\pm 20 \%$ for $3-\mathrm{V}$ range and $-2 \%+$ 7% for 1-V range).
Spurious outputs- second harmonic 0.5\% or -45 dB . All other spurious signals at léast 45 dB below fundamental at 1 kHz . Sweep times: 50 ms to 20 s in four ranges. Sweep modes: 'full' $-100 \mathrm{~Hz}-10 \mathrm{kHz}$; 'wide'100 Hz to frequency set on dial; 'sym-metrical'-sweep widths of $30,100,300 \mathrm{~Hz}$, 1 or $3 \mathrm{kHz} \pm 3 \%$, centre frequency set on dial; 'external'-sensitivity about $800 \mathrm{~Hz} / \mathrm{V}$, $\mathrm{Z}_{\text {in }}=50 \mathrm{k} \Omega$.
Other outputs: sweep output +5 V and -5 V from $1 \mathrm{k} \Omega$. Blanking $-20 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ $20-\mathrm{kHz}$ square wave for bright-up from less than $6 \mathrm{k} \Omega$.
can easily have resonances with a width of tens of Hz or less with corresponding response times longer than one tenth of a second; very slow sweep rates are needed if such detail is not to be lost. The circuit used to achieve sweep rates down to 20s per sweep is shown in Fig. 3.

Transistors $T r_{1}$ and $T r_{2}$ are coupled together as a bistable multivibrator with R_{1}, R_{2} and R_{3} chosen so that when the potential at point A is greater than +5 V it switches over to the condition with Tr_{1} saturated. When the potential at point A is more negative than -5 V the circuit switches over to the condition with Tr_{2} saturated. The operational amplifier is used as an integrating amplifier, the associated capacitor being selected by the coarse sweep-rate control.
.When the R-L-H switch is in position R , the sweep starts with Tr_{2} saturated and point A at -5 V . Point B is then nearly at zero potential and current flows from the input of the integrator through the fine sweep-rate control to the negative supply rail, raising the potential at the output of the integrator. When this reaches +5 V the circuit switches over leaving \mathbf{B} at nearly the positive supply potential; current flows into the integrator and the potential at the output returns comparatively quickly to -5 V . The cycle then repeats.

With the switch in position L the sweep generator takes up the stable nonoscillatory condition with A at near -5 V , the precise value being set by the $2-\mathrm{k} \Omega$ potentiometer. In this condition Tr_{1} and $T r_{2}$ behave as a high-gain amplifier feeding any difference between the desired and actual potential at A to the input of the integrator in such a sense as to bring the potential at A back to the value desired. When the switch is turned to $\mathrm{H}, \operatorname{Tr}_{2}$ cuts off and Tr_{2} saturates. The output of the integrator changes in precisely the same

Fig. 3. Sweep generator circuit comprising.bistable multivibrator and integrator achieves sweep times as low as 20s. Beam-blanking waveforms are shown in Fig. 4. In this and subsequent circuits the $L M 709 \mathrm{C}$ integrated circuits require +10 V on lead 7 and -10 V on lead 4. Resistors are $\frac{1}{4}$-watt, 10% tolerance unless shown otherwise.
manner as in position R and so does the output frequency. When the potential at \mathbf{A} reaches +5 V this time it stops changing because the circuit has reached a stable condition with the precise output potential set by the $500-\Omega$ potentiometer. Similarly when the switch is turned back to L the voltage at A flies back to -5 V . By manipulating the switch in this way a manual sweep is obtained which is useful for X-Y plotters. The ability to hold the potential of

Fig. 4. Beam blanking is achieved with an h.f. waveform because input to the c.r.t. grid is often a.c.-coupled. Waveform from $T r_{3}$ is at (c), and (d) is at c.r.t. grid.

A at either end of the sweep rangeis needed to calibrate correctly.

The potential at B (Fig. 3) is such that a positive blanking pulse of nearly 10 V is available during flyback. If this pulse were inverted and amplified to give a negative pulse this would be satisfactory for bright-up on oscilloscopes at the faster sweep rates. Unfortunately, the Z-modulation input of oscilloscopes is commonly a.c.-coupled to the grid of the c.r.t. so that this blanking is ineffective at slow sweep rates. To circumvent this a gated highfrequency oscillation is used.

Referring to Fig. 4, a $20-\mathrm{kHz}$ square wave from the fixed-frequency oscillator is applied to Tr_{3} together with the positive blanking pulse (b). Transistor Tr_{3} and its associated components now behave as a NOR gate with output (c) which after a.c. coupling to the grid of the c.r.t. becomes (d). If the brightness control is adjusted so that the beam is just cut off with no Z-modulation applied, as shown, it will remain cut off during flyback but pulse on some 20,000 times per second during the sweep. Subjectively these dots merge together on the screen to give a normal display, except for some moiré fringing when displaying the envelope of a waveform whose frequency is close to a low-order sub-harmonic of 20 kHz ; this is not normally a nuisance.
Voltage-tuned oscillator
The voltage from the sweep generator

Fig. S. Astable multivibrator-with constant-current sources controlled by input voltage at D-acts as the voltage-tuned oscillator covering 40 to 60 kHz . Bistable multivibrator provides anti-phase outputs with 1:1 mark:space ratio at E and F at 20 to 30 kHz .

Fig. 6. In the hope that frequency drifts in the fixed and variable-frequency oscillators will cancel, this fixed frequency oscillator is identical to Fig. 5.
after passing through the control network (see later) is converted to the frequency of an oscillation by a voltagetuned oscillator. The circuit is shown in Fig. 5 where the basic oscillator is followed by a conventional divide-by-two bistable multivibrator to provide two square waves, at E and F, in anti-phase and with unity mark/space ratio. The basic oscillator is an astable multivibrator with a pair of constant-current sources, controlled by the input voltage at D.

The astable multivibrator tunes over the band 40 to 60 kHz . This is divided by two and mixed with 20 kHz to produce the 0 to 10 kHz audio output. In practice the relation between input potential and output frequency gives a maximum deviation from a straight line of $70 \mathrm{~Hz}-0.7 \%$ of full range at worst. This is reduced to 0.2% by adding a linearizing diode and resistor across the output.

Fixed-frequency oscillator

The design of the fixed-frequency oscillator is identical with that of the voltagetuned oscillator in the hope that frequency drifts in the two oscillators will be similar and to a large extent cancel. The nominal frequency at the point H , Fig. 6 , is 20 kHz . To achieve this within a tolerance of $200 \mathrm{~Hz}(1 \%)$ the input voltage at G is obtained from a potentiometer across the supply lines. To find the values for R_{4} and R_{5}, first connect a $10-\mathrm{k} \Omega$ potentiometer across the $\pm 10-\mathrm{V}$ supply lines, and measure the required voltage. Calculate \boldsymbol{R}_{4} to give a voltage 10% lower than this, using a preferred value, and try values of R_{5} around ten times R_{4} until the frequency is as close as possible to 20 kHz . The square wave for the blanking oscillator is obtained from the collector of Tr_{4}.

Conversion to sine-wave

The $20-\mathrm{kHz}$ output from the fixedfrequency oscillator at H drives Tr_{5} as a
(Below) Fig. 7. Amplitude of the fixedfrequency output is controlled by the shunt a.l.c. transistor and drive. Tuned filter reduces second harmonic to 0.05\% of fundamental before applying signal to balanced mixer.

switch-Fig. 7-producing a square wave at its collector. Transistor Tr_{5} is shunted by Tr_{9} so that the amplitude of the square wave is controlled by the automatic-level-control current flowing from the base of $T r_{9}$.

This square wave goes to the low-pass $R C$ filter consisting of R_{6} and C_{1} whose output is a sawtooth which is applied to the input of the tuned amplifier, containing Tr_{6-8}, due to Faulkner and Downe \dagger. This amplifies the $20-\mathrm{kHz}$ fundamental and attenuates harmonics. Amplitude of the second harmonic is 0.05% of the fundamental $(0.8 \mathrm{~V})$; the amplitude of the other harmonics could not be measured directly but calculated values are 0.1% third harmonic and less than 0.02% fifth harmonic.

Mixer

The mixer forms the product of this sine wave of frequency f_{2} with the variablefrequency square wave. The output from the mixer can be expressed as a Fourier series of sine waves having frequencies $N f_{1} \pm f_{2}$, where f_{1} is the frequency of the square wave and $N=1,3,5 \ldots$ In this application $f_{2}=20 \mathrm{kHz}$, and f_{1} varies from 20 to 30 kHz , giving the following components:

component	relative aplitude	frequency $(\mathbf{k H z)}$
$f_{1}-f_{2}$	1	0 to 10
$f_{1}+f_{2}$	1	40 to 50
$3 f_{2}-f_{2}$	$\frac{1}{2}$	80 to 70
$3 f_{1}+f_{2}$	$\frac{1}{2}$	

There is a clear two octaves $(10 \mathrm{kHz}$ to 40 kHz) between the wanted signal and the lowest unwanted signals, so the latter can be easily filtered out leaving a pure sine wave. If the original sine wave is not pure but contains harmonics then the output from the mixer will have other components in the range 0 to 40 kHz .

Operation of the mixer-Fig. 8-is explained with reference to Fig. 9 where a sine wave is being multiplied by a square wave of 1.5 times the frequency: In Fig.

[^1]

Fig. 8. Balanced mixer produces difference frequency between fixed and variable-
frequency oscillators. Because the summing amplifier Tr_{15} is linear, difference frequency signal amplitude is proportional to fixed-frequency signal amplitude and hence controlled by the a.l.c. circuit: In all these circuits alternative transistors are C724, BC107 for C424; C740, BFY76 for C450; V723, BSX29,36 for V405A and V723, BCY72 for V435A.

Fig. 9. Simplified circuit of switching mixer with points L and M at (a) corresponding to those in Fig. 8. Mixer waveforms at (b) are with fixed and variable frequencies in ratio 2:3. Bottom waveform is filter output.

$$
\mathrm{f}_{\mathrm{c}}=11.7 \mathrm{kHz}
$$

$$
f_{c}=9.6 \mathrm{kHz}
$$

Fig. 10. As well as difference frequency, there are additional components, e.g. $f_{1}+f_{2}, 3 f_{1}-f_{2}, 3 f_{1}+f_{2}$, which must be filtered. Low-pass filter shown has a cut-off frequency of 10 kHz and a slope of nearly 36 dB loctave giving 64 dB attenuation at 40 kHz .

Fig. 11. Signal level is amplified to 3 V r.m.s. and fed to a switched atteriuator, accurate to 5%.

9(a) the switches S_{L} and S_{M} are closed alternately by the square wave while sine waves in antiphase are fed to the top ends of the resistors. When S_{L} is closed S_{M} is open and the output is essentially the inverse of the input sine wave. When S_{M} is closed S_{L} is open and the output is essentially the same as the input. So the required multiplying action is obtained. In practice S_{L} and S_{M} are transistors $T r_{12}$ and $T r_{14}$-Fig. 8-the sine waves are displaced from zero mean level so that these transistors are always forward biased.

Transistor Tr_{10} is a phase inverter producing two equal and opposite signals to feed the emitter followers Tr_{11} and $T r_{13}$. The summing amplifier $T r_{15}$ is

Fig. 12. Filler characteristic has a rise of 2.6 dB at 8 kHz , but is reduced to 3% pk-pk with a.l.c. (at is sweep time). Level control signal is obtained by rectifying signal from D in Fig. 11.

Fig. 13. Sweep control circuit-between sweep generator and voltage tuned oscillator-enables various sweep modes to be set. The integrated circuit provides a low-impedance supply at 5 V for setting zero-frequency output. Upper frequency limit is variable in switch positions W, S and X.
linear in the sense that the amplitude of the component at $f_{1}-f_{2}$ is proportional to the amplitude of the sine wave f_{2}, thus the a.l.c. modulator controls the amplitude of the output.

Filter

The filter used to separate the wanted component from the complex wave consists of three cascaded active low-pass sections-Fig. 10.

The measured overall gain of the complete filter rises from near unity (0 dB) at zero-frequency to +2.6 dB at 8 kHz , after which it falls slowly to +1.3 dB at the cut-off frequency 10 kHz , and then rapidly at nearly 36 dB per octave so that signals above 40 kHz are attenuated by at least 64 dB . The output from the filter is amplified to 3V r.m.s. by a further LM709 used as a linear amplifier feeding the output attenuator-Fig. 11.

Automatic level control

The output level will vary as the frequency sweeps across the range because of the filter characteristic. This variation is only about 3 dB but it can easily be reduced with the automatic level control circuitFig. 12.

With this method the variation of amplitude over the entire frequency range was reduced to $3 \% \mathrm{pk}$-pk when the sweep period was four seconds. The levelling deteriorates at fast sweep rates because of the slow response of the detector caused by the smoothing components.

Control network

Between the sweep generator and the voltage-tuned oscillator, the control net-work-Fig. 13-enables sweep frequency range to be set in several ways by the panel controls. A low-impedance supply at nominally -5 V is provided by the operational amplifier-connected as a voltage follower. This potential, adjusted by the $2-\mathrm{k} \Omega$ potentiometer, is applied to one end of the frequency control and corresponds to zero-frequency output.

There are four sweep modes selected by S_{2}. In the 'full' mode the output frequency is swept from zero to 10 kHz . The $1-\mathrm{k} \Omega$ preset potentiometer adjusts the amplitude of the sweep voltage across the frequency control so that this range can be set accurately. In the 'wide' mode the upper frequency limit is set by this frequency control. Some non-linearity in the calibration of this control is caused by loading but with the values shown this should be less than 1%.

In the 'symmetrical' mode the switch section $S_{2 a}$ disconnects the sweep generator from the frequency control and applies a constant voltage, derived from the +10 V supply, equal to the maximum positive excursion of the sweep waveform at A. If S_{3} is set to 'c.w.', the

(a)

To illustrate the application of the sweep generator, the response of an earphone was investigated by another earphone 2 mm from the diaphragm. Trace (a) shows voltage across the coitproportional to velocity-with a $10-\mathrm{kHz}$ frequency base. Trace (b) shows the trace expanded using 'wide' mode with a base of 3 kHz . Second peak is resolved by using 'symmetrical' mode with a $770-\mathrm{Hz}$ centre frequency and a $300-\mathrm{Hz}$ sweep width (c). Decreasing sweep time from $7 s$ per sweep to 0.5 s per sweep showis the loss of resolution and spurious effects caused by too fast a sweep rate (d).
frequency control adjusts the output frequency (unswept) with the same calibration as it had in the 'wide' mode. With S_{2} and S_{3} so set, the instrument thus behaves simply as an ordinary sinewave signal generator. This is useful for setting the centre-frequency of a sweep to, say, the peak of a system's response and also for examining the output waveform of the oscillator itself. Symmetrical sweep about this mean frequency is provided in five calibrated widths by S_{3}. A similar arrangement holds for 'external' sweep waveforms with the mean frequency adjusted by the frequency control. The sensitivity for external sweep is approximately 800 Hz per volt.
stabilized, both at less than 100 mA The constancy of the ratio between these two voltages is more important for frequency stability than any common change in the supply voltages.

The oscillators were not sure-start if the two supplies were switched on simultaneously, and the +10 V supply should be switched on first.

Announcements

During the British Association annual meeting at Swansea there will be two public lectures at University College. The first, entitled 'The physics of musical sounds' will be given by Prof. C. A. Taylor (head of the department of physics, University College of South Wales) at 20.00 on September 6th. The second is devoted to fuel cells and will be given by F. T. Bacon (consultant to Energy Conversion Ltd) at 20.00 on September 7th.

A course of 20 weekly lectures (2.30-4.30) on sound studios and recording starts at the Polytechnic of North London, Holloway Rd, on October 28th (fee £10.50). On the same day at 6.30 a 15 -lecture course on audio and acoustic measurement begins (fee £6.30). The lecturers include many well-known names in the audio world. Further particulars from the Dept. of Electronic \& Communications Eng., Polytechnic of North London, Holloway Rd., London N7 8DB.

Modern electronic techniques is the title of a course of 10 afternoon lectures for engineers and technicians to be given at Portsmouth Polytechnic from October 8th. Fee $£ 4$.

Two one-day seminars on computer-aided design will be held at the Royal Garden Hotel, London, on September 21 st and 22nd. Organized by our associate quarterly journal Computer Aided Design, the first day will be devoted to computer-aided design in shipbuilding and the second to c.a.d. in engineering. Fee $£ 25$ each seminar.

A residential vacation school on lasers and their applications is to be held at the City University, London E.C.I, from 13th to 24th September. The school is designed for physics and engineering. graduates.

The World Radio Club programme, broadcast in the B.B.C's World Service on Thursdays at 12.45 G.M.T. and repeated on Fridays (23.45) and Sundays (08.15), is offering for the fourth year a DX award. The listening period is August 1-31, and entrants must give a concise reception report on one transmission from Great Britain and from each of the following: the Atlantic; East Mediterranean and the Far Eastern Relay Stations. Details from World Radio Club, B.B.C., Bush House, London WC2B 4 PH .

Racal are negotiating to take over two more companies-Amplivox Ltd, manufacturers of hearing aids and other audio equipment, and Zonal Film (Magnetic Coatings) Ltd, the Ilford subsidiary manufacturing magnetic recording material and tapes.

The recently formed International Radio and Electrical Distributors Association is planning its first trade exhibition to be held at the Bloomsbury Centre, London W.C. 1, from Sunday 21 st May to Thursday 25th May next year.

Specialist Switches, who for almost 20 years have been providing a 24 -hour service in custom built rotary and lever switches type H, DH, Hc and LO, have been taken over by Stoneleigh Electronics Ltd, and are now at Factory No. 8, Bridge Close, Romford, Essex.

Texscan Instruments Ltd, of Lord Alexander House, Hemel Hempstead, Herts, has been formed to handle the sales and service of the range of sweep signal generators, attenuators and filters produced by Texscan Ltd Inc., in America. The new company is also responsible for the marketing of wideband power amplifiers from Electronic Navigation Industries Inc., and function generators and r.f. power sources from Microdot Inc.

Emi has won a contract to develop for the Post Office experimental digital transmitters and receivers for the $10.7-11.7 \mathrm{GHz}$ band 'which could well provide a basis for the next generation of microwave equipment for the telecommunications network'.

An airborne maritime radar to detect submarines as well as to carry out general surveillance duties on maritime surface traffic is to be developed by EMI under a contract placed by the Ministry of Defence (Aviation Supply).

GEC-Mobile Radio, a division of Marconi Communication Systems Ltd, has moved from Coventry to the Chelmsford area. Their new headquarters is at Great Baddow, where the commercial and engineering departments are also housed, but the main service department will remain at Coventry Other service depots, such as those at Altrincham (Cheshire), Edinburgh, Leeds and London, will remain in operation.

Matsushita Electric are marketing a range of printed wiring boards through Steatite Insulations Ltd, of Hagley Rd, Birmingham, B16 8QW. The boards consist of phenolic resin impregnated paper, epoxy resin impregnated glass, and Duston plated-a process whereby powdered copper is fixed with adhesive ink to an insulated board which has a wiring pattern already on it.
R.E.W. Audio Visual Company, of London S.W. 17. have been appointed sole distributors of the new series 7 Ferrograph-Dolby tape recorders in the U.K.
Marconi Instruments Ltd are to supply to the Home Office an automatic test system for firemen's v.h.f. Personal Alerters. The 'Autotest' takes 30 seconds to automatically measure signal frequency, i.f. and audio frequency, as well as d.c.

FieldTech Ltd, of Heathrow Airport, have been appointed sole U.K. agents for a range of epoxy glass fibre whip aerials, manufactured by Valeriote 'Electronics (Guelph) Ltd, of Ontario, Canada. They cover the frequency range $2-30 \mathrm{MHz}$, and are capable of handling 5 kW average, 10 kW peak.

Gresham Recording Heads Ltd have appointed Radio-Equipements, of 9 Rue Ernest Cognacs, 92 -Levallois-Perret, France, agents to handle recording head sales throughout France.
Motorola have appointed GDS (Sales) Ltd to handle the sales of all their semiconductors in Eire and Northern Ireland.

Books Received

Transistor Circuits in Electronics, second edition, by S. S. Haykin and R. Barrett. The book, written for students taking electronics in full-time or sandwich courses to degree, H.N.D. and H.N.C. level, will appeal also to electronics" engineers. In this new edition a chapter has been included on monolithic integrated circuits, and logic symbols have been redrawn to BS3939, 1969, Section 21. Chapter headings are as follows: transistor characteristics; graphical analysis; small signal equivalent circuits and parameters; amplifier circuits; feedback amplifier and oscillator circuits; switching circuits; regenerative switching circuits; logic circuits; modulator and demodulator circuits; and integrated circuits. There is a single page bibliography, an appendix explaining the super-position theorem and the theorems of Thevenin and Norton, and a five-page index. Pp. 367. Price $£ 3.80$ cased and $£ 2.50$ limp. Iliffe Books, Butterworth \& Co. (Publishers) Ltd, 88 Kingsway, London WC2 6 AB .

A Dictionary of Electronics by S. Handel, third edition. Five years have passed since the second edition of this reference work appeared. The first edition published in 1962 contained 384 pages and cost 7 s 6 d . The new edition contains 413 pages and costs 45 p. Penguin Books Ltd, Harmondsworth, Middx.

Helical V.H.F. Aerial

Using twin helices with triangular cross-section

by George J. Monser, m.S.E.E.

To date the helical aerial, which has many desirable reception properties, has been overlooked to some extent for domestic v.h.f. reception, mainly because of the difficulties in building, and installation. An attractive feature to recommendit the helix is that it is circularly polarized, which means that it responds equally well to any linear polarization. As a result, fading effects due to propagation disturbances and multi-path effects tend to be minimized. In short, a gain of 8 to 10 dB over the band can be provided, even under adverse conditions. Multipath propagation can change the plane of polarization. Thus, if you are using an aerial designed strictly for horizontal polarization, a signal loss of 3 dB or 50% of the r.f. power may result.

Other attractive features of the aerial described are:
-It offers a nearly flat resistive impedance of 135 ohms, which means it can be connected directly to 300 -ohm twinlead with little loss.
-The phasing of the turns is such that it gives a maximum gain.of 8 to 10 dB over the band.
With such good features, why isn't the helix more frequently used? Mainly because conventional designs are cumbersome to build and difficult to install. First, as the name suggests, the radiating elements must be helical turns. When the size of these turns and the axial length are chosen for v.h.f. radio or television it is found that building such an antenna isn't so easy. Second, conventional designs are singleended, or unbalanced. Thus, for proper operation, a sizeable ground-screen is required, posing difficult mounting problems.

By two simple modifications, the helix can be adapted for home construction. The first consists of changing the crosssection from circular to triangular. Thus, each turn is formed as a rigid triangle instead of a circular turn.

In the second modification, the turns are bifilar wound so that a balanced aerial is provided, requiring no ground screen. The cost of these modifications is slight.

Typically, conventional helices show 2 to 3 dB variations in response with polarization. This model, when tested, showed 2 to 5 dB variation, which is still quite acceptable.

The design, detailed in the illustrations, covers the band 88 to 170 MHz which in the U.S.A. includes the f.m. sound broadcasting band and most of the v.h.f. television band. But the aerial has useful gain at higher frequencies e.g. about 6 dB at 200 MHz . It can be scaled for other frequency bands-I built a $1 / 15$-scale model for testing.
By using a balun, it can feed receivers with unbalanced 75 -ohm input circuits.

Fig. A. Alternate elements on this U-channel form one side of the two tetrahedral helices. Model in this photograph has an extra element-extreme right-not shown in the table.
Fig. B. One complete helix with support attached to element vertices using either metal tie strips (three vertices on right) or with wire (vertices on left). The extra turn shown on this helix is optional
Fig. C. Completed aerial with feeder cable attached to last two elements.

Fig. 1. Cut the aluminium strips to element lengths given in the table, and drill $3-\mathrm{mm}$ holes as shown.

Fig. 2. For the element supports, cut the Perspex pieces and make notch as shown.

Fig. 3. Make the U-channel from three of the pieces shown in Fig. $2(A, B \& C)$ by drilling $3-\mathrm{mm}$ holes, $25-\mathrm{mm}$ deep at $76-\mathrm{mm}$ intervals along both sides as shown and insert self-tapping screws.

Fig. 4. Attach the support-Perspex piece D-to the U-channel by drilling a $3-\mathrm{mm}$ hole through notch and support, and fixing with nut and bolt.

Fig. 5. Cut 14 aluminium angle brackets to length shown, drill four 3-mm holes in each and bolt centrally to elementsnumbers 1, 4, 7, 10, 13, 16 and 19 of both helices, see Fig. 6.

Fig. 6. Drill holes in U-channel to take elements and brackets as shown.

Fig. 7. Add remaining elements, completing one helix before starting the other. Open out lower support and fix to upper vertices in photographs with straps or wire. Support can be made more rigid by drilling a second hole at the notch and fixing with nut and bolt. Some holes at element joins may need redrilling.

Fig. 8. Bolt completed aerial to wood or plastics mast using four aluminium diagonal supports.

Table 1. Parts needed
Perspex pieces
$1.15 \mathrm{~m} \times 38 \times 6.5 \mathrm{~mm}\left(45 \times 1 \frac{1}{2} \times \frac{1}{4} \mathrm{in}\right) 2$ off
$1.2 \mathrm{~m} \times 76 \times 10 \mathrm{~mm}(48 \times 3 \times 1 \mathrm{in})$
$1.2 \mathrm{~m} \times 38 \times 6.5 \mathrm{~mm}\left(48 \times 1 \frac{1}{2} \times \frac{1}{4} \mathrm{in}\right)$
$1.2 \mathrm{~m} \times 38 \times 6.5 \mathrm{~m}$
Aluminium strips
Aluminium strips
$1.83 \mathrm{~m} \times 13 \times 1.6 \mathrm{~m}$
$1.83 \mathrm{~m} \times 13 \times 1.6 \mathrm{~mm}\left(72 \times \frac{1}{2} \times 1 / 16 \mathrm{in}\right) 13$ off
Aluminium right angle
$1.83 \mathrm{~m} \times 13 \times 13 \times 1.6 \mathrm{~mm}\left(72 \times \frac{1}{2} \times \frac{1}{2} \times 1 / 16 \mathrm{in}\right)$ Also needed are self-tapping screws, nuts. bolts, tie strips and wire. wooden or plastics mast. 300 -ohm balanced feeder cable.

Table 2. Element lengths

Element no.	first helix lengths $(\mathbf{c m})$	second helix
	138	
1	123	131
2	118	115
3	123	111
4	109	116
5	103	100
6	110	94
7	93	103
8	89	86
9	96	81
10	79	90
11	74	72
12	82	66
13	65	76
14	59	56
15	68	51
16	50	61
17	46	43
18	40	37
19		39

[^2]

Ceramic Discriminator for
 Narrow-band F.M.

Product Application Note

by D. Balfour*

Piezoelectric materials have been employed in the communications industry for many years, the most commonly known being the quartz crystal used widely as an oscillator and for filter networks. The ceramic resonator has achieved similar penetration as a frequency determining element or as part of a filter network at frequencies around 455 kHz . Both these devices are similar in that being piezoelectric their mechanical vibrations may be considered in terms of electrical parameters of inductance, capacitance and resistance. Their equivalent circuit in the vicinity of resonance is shown in Fig. 1.

Quartz, however, whether in its natural state or whether grown synthetically, has a fixed set of piezoelectric constants, which limit some of the electrical values obtainable, for instance the ratio of C_{S} to C_{1}.

Fig. 1. Equivalent circuit of a piezoelectric resonator.

Ceramic can have its piezoelectric values altered over a wide range, which enables a more flexible series of designs to be achieved. Ceramic is, however, less stable both with temperature and time than quartz, hence the use of ceramic filters at 455 kHz , where the stability with respect to temperature in absolute terms is equal to that of a quartz filter at 10.7 MHz .
An analysis of the equivalent circuit of Fig. 1 shows that the impedance plot is characterized by a minimum at a frequency F_{R}, very close to the resonance of the series $\operatorname{arm} L C_{1} R$ and an impedance maximum at a frequency F_{A}, where C_{S} has a capacitive impedance equal to the inductive impedance

Table 1

Type	Channel spacing	Resonances ref. 455 kHz	$m H$		Ω	${ }_{\text {sF }}$
TFD4	20-25 kHz	$\pm 18 \mathrm{kHz}$	2.2	61	15	360
TFD5	12.5 kHz	$\pm 12 \mathrm{kHz}$	3.2	40	15	369

of $L C_{1} R$. Between these two frequencies F_{R} and F_{A} the impedance of the transfilter is largely inductive, becoming entirely resistive both at F_{R} and at F_{A}. By altering the piezoelectric coupling of the material we can alter the spacing between F_{R} and F_{A} within wide limits, and have manufactured two devices (TFD4 and TFD5) suitable for 25 and 12.5 kHz channel spacing systems respectively. Brief details of the devices are given in Table 1.
Resonances have been chosen symmetrical to 455 kHz and are placed almost at the adjacent channel frequencies. This placing helps improve the overall rejection of the complete system. Typical values for the parameters of each device are tabulated. In general, the admittance of the device may be calculated exactly from the equation:-

$$
Y=\frac{1}{R+j \omega L+\frac{1}{j \omega C_{s}}}+j \omega C_{s}
$$

This is cumbersome and it can be shown that within $\pm 5 \mathrm{kHz}$ of 455 kHz that the network can be considered lossless with little error. It can further be shown that the impedance may be expressed as follows:
$j Z$ where $Z=$
$1.0+0.11 f+0.006 f^{2} \mathrm{k} \Omega$ (TFD5) or
$1.3+0.24 f+0.02 f^{2} \mathrm{k} \Omega$ (TFD4)
where f represents the deviating frequency in kHz . This impedance is approximately true for $\pm 3 \mathrm{kHz}$ for the TFD5 and $\pm 5 \mathrm{kHz}$ for the TFD4.

The ideal device would have a linear

Fig. 2. Circuit of the discriminator.
change of impedance with frequency and the following procedure may be used to achieve a substantially linear output with the circuit of Fig. 2.

Assuming that both A and B are resistive the following expression gives the ratio of the output volts to the input volts:-

$$
v_{0}=\frac{B}{A+B} \frac{v_{i n}}{\sqrt{1+\left(\frac{A B}{(A+B) \cdot Z}\right)^{2}}}
$$

The problem then resolves itself into two forms:-

1. To linearize the expression:

$$
\frac{1}{\sqrt{1+\left(\frac{A B}{(A+B) Z}\right)^{2}}}
$$

so that it becomes closely linear with frequency. This involves choosing a specific value for the expression $A B /(A+B)$, which is the value of A in parallel with B and is not definitive with respect to A or B.
2. To maximize the value of the output by choosing $B /(A+B)$ to give the greatest sensitivity commensurate with the limits in 1. The value of $A B /(A+B)$ has been computed to give a linear relationship of output versüs deviation for the points $f=-3$, 0 and +3 for the TFD5 and $=-5,0,+5$

Fig. 3. Performance of slope detector using TFD4 and TFD5.
for the TFD4, using figures in Table 1. The results are as follows:-

$$
\begin{aligned}
& \operatorname{TFD} \frac{A \dot{B}}{A+B}=1.5 \mathrm{k} \Omega \\
& \operatorname{TFD} 4 \frac{A B}{A+B}=1.7 \mathrm{k} \Omega
\end{aligned}
$$

For practical purposes values of $2 \mathrm{k} \Omega$ for A and $10 \mathrm{k} \Omega$ for B are satisfactory for both TFD4 and 5.The sensitivities achieved are $32 \mathrm{mV} / \mathrm{kHz}$ for a 1 V input for the TFD4 and $50 \mathrm{mV} / \mathrm{kHz}$ for a 1 V input for the TFD5, as shown in Fig. 3.

The adjacent channel sensitivity is much less than for wanted channel, typically 0.33 . This means that the discriminator acts as a filter for adjacent channel signals giving 8 to 10 dB rejection.

Dual-trace Oscilloscope Unit

2. Field-effect transistor amplifier

by W. T. Cocking*, F.I.E.E.

The basic requirements for a unit which enables two signals to be seen simultaneously on an oscilloscope were discussed in Part 1, where it was shown that two identical amplifiers with input attenuators and an electronic switch are required. A maximum overall gain of unity is needed but, to reduce the effective capacitance of the input cable, input attenuation must be used and so subsequent amplification must be included to offset this. It is important that the input resistance of the amplifier be well defined, which means that it must be provided substantially by a resistor, and so, with the usual parallel connections, the amplifier proper must have an input resistance which is very large in comparison.

The junction field-effect transistor is the obvious choice for the input stage of any amplifier which must have a high input resistance Its main drawback is its enormous tolerances. It is also rather more costly than the usual bipolar transistor.

Fig. 1 shows the characteristics of the
*Editor in Chief, Wireless World

$V_{G s}(V)$
Fig. 1. Curtes of the BFW Io f.e.t. showing the lurge folerances. The hias line $A B$ is for the circuit of Fig. 2 with $V_{C}=4 \mathrm{~V}, R_{S}=470 \Omega$ and $R_{C}=1.5 \mathrm{k} \Omega$. The line $E F$ is for the same values but $V_{c}=6.3 \mathrm{~V} . C D$ is drawn tangentially to the f.e.t. curve at its intersection with $A B$ and its slope gives the mutual conductance. The dotted curves are for two specimens of the TIS58 which were used in the experiments.

BFW10 f.e.t. At zero gate voltage, the drain current may be from about 7.8 mA to about 20 mA , while the gate cut-off voltage may vary from -2.1 V to -8 V . In an amplifier in which it is impracticable to use capacitance interstage couplings, it is imperative that the d.c. level of the output electrode be substantially constant and this is where the difficulty in using the f.e.t. arises.

If the f.e.t. is employed as a sourcefollower, it is necessary for the source to be always at some fixed voltage relative to earth. One can use a variable source resistor which is adjusted to suit the particular f.e.t. employed. For example, one might decide to operate at 1.5 mA to suit a low-tolerance f.e.t., which will demand a gate bias of -1.5 V . If, as is usual, the gate is returned to earth, the source must be 1.5 V above earth and at 1.5 mA , a source resistor of $1 \mathrm{k} \Omega$ is needed. With a high-tolerance f.e.t. the source must still be 1.5 V above earth but the current will be 13.9 mA and the source resistance must be 108Ω only. This is far too low for good source-follower action and instead of the "gain" approaching unity, it will be around 0.23 only.

A better alternative is to use a fixed value of source resistance. Constant voltage then demands constant current, which must be chosen at a suitable value for a low-tolerance f.e.t., say, at 1.5 mA . Control must then be exercised by a variable negative gate bias which is adjusted to suit the f.e.t. It can be seen from Fig. 1 that for a high-tolerance f.e.t. -6 V bias will be needed to give 1.5 mA . This means -4.5 V bias additional to the 1.5 V source bias. The gate return now cannot be earthed, but must be taken to a source of up to 4.5 V negative to earth, which must be stabilized. This is inconvenient. The "gain" is still not constant, but is more constant than with a variable source resistor. This is because at constant current a high-tolerance f.e.t. has a much lower mutual conductance than a lowtolerance one, as can be seen from the slope of the curves in Fig. 1.

In the writer's view there is only one practicable way of coping satisfactorily with the tolerances of the f.e.t. when there. must be an output point at a constant voltage to earth. This is to use it with a $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor (if it is an n -channel f.e.t.) in the circuit shown in Fig. 2. The resistor R_{D} is made variable and is adjusted to bring the collector of $T r_{2}$ to a fixed voltage V_{C} with respect to earth.

Ideally, the voltage amplification is $1+$ R_{C} / R_{S}. In practice, it is somewhat less. It can be within about 95% of this figure for low tolerance to normal f.e.ts, but it falls off more with high-tolerance ones because R_{D} then becomes too small. The circuit is an admirable one for an f.e.t. with a tolerance range of about one-half of that of the

BFW10. Such f.e.ts are available, but naturally tend to cost more.

The circuit has a low output impedance and so is not much affected by a load R_{L} as long as this does not draw direct current. It has a good high-frequency response and works well up to at least 10 MHz .

Assuming, as usual, that the base current of $T r_{2}$ is negligible compared with the collector current,

$$
\begin{aligned}
V_{C} & =V_{S}+I_{C} R_{C} \\
V_{S} & =\left(I_{C}+I_{D}\right) R_{S} \\
V_{B E} & =I_{D} R_{D}
\end{aligned}
$$

from which

$$
V_{S}=V_{C} \frac{R_{S}}{R_{C}+R_{S}}+I_{D} \frac{R_{C} R_{S}}{R_{C}+R_{S}}
$$

The f.e.t. thus behaves as if it were source biased by a resistance having the value of R_{C} and R_{S} in parallel returned to a voltage positive to earth by $V_{C} R_{S} /\left(R_{C}+R_{S}\right)$. If, for example, $R_{S}=470 \Omega$ and $R_{C}=1.5 \mathrm{k} \Omega$, the parallel value is 358Ω. If $V_{c}=4 \mathrm{~V}$ the effective return voltage is 0.95 V . By drawing a bias line from this voltage to represent 358Ω in the usual way, the intersections with the f.e.t. curves enable I_{D} and V_{S} to be

Fig: 2. Circuit for an n-channel f.e.t. with $p-n-p$ bipolar transistor.
read off for low- and high-tolerance and normal f.e.ts. The line $A B$ in Fig. 2 represents the conditions. For a low-tolerance f.e.t., $V_{S}=1.5 \mathrm{~V}, I_{S}=1.5 \mathrm{~mA}$; for a normal f.e.t., $V_{S}=2.35 \mathrm{~V}, I_{S}=3.9 \mathrm{~mA}$; and for a high-tolerance f.e.t., $V_{S}=3.4 \mathrm{~V}$, $I_{S}=6.8 \mathrm{~mA}$, within the accuracy limitations of small-scale graphs.
The required value of R_{D} is $V_{B E} / I_{D}$. Taking $V_{B E}=0.65 \mathrm{~V}, R_{D}$ is $433 \Omega, 166 \Omega$ and 95.5Ω in the three cases. In practice, there is a manufacturing tolerance on $V_{B E}$ which is usually of the order of $\pm 75 \mathrm{mV}$. This is covered by providing R_{D} with a somewhat greater range of resistance.
At this stage I_{D}, V_{C}, V_{S} and R_{D} are known. The collector current is

$$
I_{C}=\frac{V_{C}-V_{S}}{R_{C}}
$$

For the three cases of the BFW10, with R_{C} $=1.5 \mathrm{k} \Omega$, the collector current is 1.67 mA , 1.1 mA and 0.4 mA respectively.

The signal conditions are more complex and the equations for gain are developed in the Appendix. The performance depends very largely upon a quantity which is there
termed y. It is the effective current gain of $T r_{2}$ and in the limit becomes $h_{f e}$. This only occurs when R_{D} becomes infinite and is only approached when the input resistance $h_{f e} r_{e}$ of $T r_{2}$ is very small compared with R_{D} so that substantially all the signal current of $T r_{1}$ flows into the base of $T r_{2}$.
For given values of V_{C}, R_{C} and R_{s}, I_{D} and V_{s} are much greater for a high-tolerance f.e.t. than for a low, and so I_{C} must vary inversely. As I_{D} rises, R_{D} must be reduced, and as I_{C} becomes less, r_{e} increases. The result is that y varies very greatly between low- and high-tolerance f.e.ts.
Taking $V_{B E}=0.65 \mathrm{~V}$, which is typical, the value of y given in the Appendix can be expressed in d.c. terms as

$$
y=\frac{h_{f e}}{1+\frac{h_{f f} I_{D} R_{C}}{25\left(V_{C}-V_{S}\right)}}
$$

It is clear from this that $\cdot V_{S}$ must not approach V_{C} too closely. If it does, the denominator will become large and will vary very much with small changes of V_{S}. This means that the collector current must not be too small. For a large value of y it is necessary that the collector current be much larger than the drain current, but this is not always practicable.
In general, the larger V_{c} the better, but there is a limit set by the requirements of a low-tolerance f.e.t. It is essential that the value of $V_{\mathrm{C}} R_{S} /\left(R_{\mathrm{C}}+R_{S}\right)$ be numerically less than the cut-off bias of a low-tolerance f.e.t.

Tables 1 and 2 give the calculations step by step for the BFW10 using the curves of Fig. 1 and taking $g_{m}=3 \mathrm{~mA} / V$ in all cases, since for the particular conditions it varies very little. In all cases, $h_{f e}=100$, $R_{C}=1.5 \mathrm{k} \Omega$ and $R_{S}=470 \Omega$; for Table 1, $V_{c}=4 \mathrm{~V}$, while for Table 2, $V_{c}=6.3 \mathrm{~V}$. In the two cases, the bias lines in Fig. 1 are AB and EF respectively.

With $V_{c}=4 \mathrm{~V}$, the gain varies from 2.24 to 3.93 , a ratio of $1.75: 1$, whereas with $V_{C}=6.3 \mathrm{~V}$, it varies from 3.48 to 4.09 only, a ratio of $1 \cdot 17: 1$. With the higher voltage, the output resistance is also much less.
If the circuit has a load R_{L} this load must not draw direct current for the analysis of the Appendix to hold. The load can be fed through a capacitor, or it can be connected directly if its earthy end is taken to a voltage equal to V_{c}. The practical difficulty is then to ensure that temperature changes do not upset matters.

Table 1

	Low	Normal	High	
V_{S}	1.5	2.35	3.4	V
I_{D}	1.5	3.9	6.8	mA
$V_{C}-V_{S}$	2.5	1.65	0.6	V
I_{C}	1.67	1.1	0.4	mA
R_{D}	433	166	95.5	Ω
$r_{e} / h_{f e}$	15.6	23.6	65	Ω
$R_{D} / h_{f e}$	4.33	1.66	0.955	Ω
$r_{0}+R_{D} / h_{f e}$	21.65	25.26	65.955	Ω
y	31.9	10.7	1.45	
$g_{m} R_{S}(1+y)$	0.45			
$g_{m} R_{S}(1+y)$	0.97	0.915	0.775	
$1+g_{m} R_{S}(1+y)$				
$1+\frac{R_{C}}{R_{S}} \cdot \frac{y}{1+y}$	4.05	3.77	2.89	
A	3.93	3.45	2.24	
R_{0}	122.5	345	905	Ω

Table 2

	Low	Normal	High	
V_{S}	1.575	2.62	3.65	V
I_{b}	0.7	3.16	6	mA
$V_{C}-V_{S}$	4.725	3.68	2.65	V
I_{C}	3.15	2.45	1.77	mA
R_{D}	925	206	108	Ω
$r_{s} / h_{f e}$	8.25	10.6	14.7	Ω
$R_{D} h_{f}+R_{D}$	9.25	2.06	1.08	Ω
$r_{s}+R_{f e}$	17.5	12.66	15.78	Ω
y	52.9	16.3	6.85	
$g_{m} R_{S}(1+y)$	76	24.4	11.1	
$g_{m} R_{S}(1+y)$	0.987	0.96	0.916	
$1+g_{m} R_{S}(1+y)$				
$1+\frac{R_{C}}{R_{S}} y_{1+y}^{y}$	4.13	4	3.79	
A	4.09	3.84	3.48	
R_{0}	53	161	337	Ω

Rather surprisingly, there is little published information on the temperature characteristics of the f.e.t. Two different effects exist. There is the usual negative effect of a junction which results in the drain current increasing with temperature, but there is a positive effect in the bulk material which has the opposite effect. At one particular low current the two can cancel, but at normal drain currents the junction has the greater effect, and normally drain current increases with temperature.
The bipolar transistor itself behaves normally, of course. However, the change of $V_{B E}$ affects I_{C} by an amount which depends greatly upon the value of R_{D}. If R_{D} is very large, $V_{B E}$ hardly affects I_{C} at all, but it can exercise almost its full effect when R_{D} is small. It can be expected, therefore,

Fig. 3. The circuit of Fig. 2 elaborated to include a gain control; R_{D} is adjusted to bring the collector of Tr_{2} to a design value and R_{2} is adjusted for zero volts across R_{L}
that the overall temperature coefficient will be greater with a high-tolerance f.e.t. than with a low. An intelligent guess would puf the overall temperature coefficient at about $3 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ referred to the gate. At the output this will appear multiplied by the gain as a change of V_{c}. It may thus be $12 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ or about $\pm 0.15 \mathrm{~V}$ for $\pm 12.5^{\circ} \mathrm{C}$ temperature change.

Fig. 3 shows a circuit which was used experimentally. It was designed for $V_{c}=4 \mathrm{~V}$. The fe.ts used had the characteristics shown dotted in Fig. 1. Two rather similar specimens were used and both were much "lower" than a low-tolerance BFW10; obviously $V_{c}=6.3 \mathrm{~V}$ would not be appropriate with these. To set up the circuit an Avo on its 10 V range was connected between earth and the collector of Tr_{2} and R_{D} was adjusted for a reading of 4 V . The meter was then connected across R_{L} and R_{2} adjusted for zero volts, first on the 10 V range, then on the 2.5 V , and finally on the $50 \mu \mathrm{~A}$ range. It was found desirable to use an emitter-follower after the stage, partly to reduce capacitance loading on R_{L} but mainly to reduce the base current in R_{L}. The high-frequency response can be extended by adding a small capacitance (e.g., 25 pF) across R_{s}.

With the following stages an overall response almost flat to 5 MHz , and about -3 dB at 10 MHz , was readily obtainable. The only fault of the circuit lay in the difficulty of maintaining an adequate balance of the voltages at the two ends of R_{L}. An out-of-balance current of $10 \mu \mathrm{~A}$ in R_{L} is about as much as can be tolerated and this corresponds to only 20 mV cross R_{L}. One would expect this to occur with a temperature change of only around $2^{\circ} \mathrm{C}$.

To maintain good balance both ends of R_{L} must be connected to points which vary in voltage by the same amount. The only way which seems likely to give this reasonably well is to replace R_{1} and R_{2} by a duplicate amplifier and this requires the two fe.ts to be fairly closely matched. This was not done because it was considered undesirable to use matched f.e.ts.

The circuit was, thus rather regretfully, abandoned. It should be understood that this was only because of the gain control. If that were not needed, and low-tolerance f.e.ts could be guaranteed, then V_{c} could be 2.7 V only and the stage could drive the switched transistor directly. The temperature coefficient would not be important because it would only affect the position of the trace on the screen and a shift control is needed in any case and could correct it. The shift control would, in fact, be R_{D}, or a portion of it.

Before concluding, it is desirable to point out that a bipolar transistor can be used instead of an f.e.t. This is shown in Fig. 4. For simplicity, we shall treat this as an extension of the f.e.t. analysis and so shall call the collector current of $\operatorname{Tr}_{1} I_{D}$ instead of the more usual $I_{C_{1}}$. The previous equations apply, but additionally,

$$
V_{B 1}-V_{B E 1}=V_{S}
$$

There is now no reason why the current of Tr_{1} should not be much less than that of $T r_{2} ; R_{D}$ can be large and y can be large.

Fig. 4. The circuit of Fig. 2 but with an $n-p-\bar{n}$ urunsistor in place of the f.e.t.

Fig. 5. A form of cascode circuit using $n p n$ and $p n p$ transistors which is useful for passing a signal between points at different d.c. voltage levels. A shift control which does not affect gain can be obtained by adjusting $V_{B 2}$. The gain tends in the limit to $R_{C 2} / R_{E 1}$ but in practice is a little lower.

Ignoring the internal resistance of the emitter junction of $T r_{1}$, the input resistance is

$$
R_{i n}=h_{f e 1} R_{S}(1+y) \frac{R_{C}+R_{C} /(1+y)}{R_{C}+R_{L}+R_{S}}
$$

and it can easily be several megohms. Notice, however, that $R_{\text {in }}$ is reduced by a finite value for R_{L}. This is physically obvious for when R_{L} is present some of the collector current of $T r_{2}$ flows through it instead of it all passing through R_{s}. The feedback, upon which the high input resistance depends, is thus reduced.

The gain equation is now very nearly the ideal of $1+R_{C} / R_{s}$, since g_{m} for a transistor is usually $30 \mathrm{~mA} / V$ or more and y can easily be made 50 or more. It will rarely be less than the ideal by more than 5%. Also the output resistance is much smaller and is nearly

$$
R_{o}=\frac{R_{C}}{1+y}
$$

With this circuit it is possible to obtain with a load of $2 \mathrm{k} \Omega$ an input resistance of at least $2 \mathrm{M} \Omega$, an output resistance of around 15Ω and a gain of about four times and it is useful up to at least 10 MHz . If R_{D} is fairly large, as it can be, (e.g., $1 \mathrm{k} \Omega$) changes of $V_{B E 2}$ have little effect. However, changes of $V_{B E 1}$ are subject to the full gain. Thus, changes of $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ become changes of $8 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ at the output.

It should be understood that the gain variations of the f.e.t. are dependent on the particular f.e.t. used. Design must be carried out so that the minimum gain is greater than the required gain and a pre-set gain control included. It is, of course, possible to reduce the variations by using a fixed value of R_{D} and adjusting V_{c} by negative bias on the gate. As mentioned earlier, this is not a complete cure and the need for a stabilized negative supply line is undesirable. It is a merit of the arrangement of Fig. 2 that the performance and V_{c} are substantially independent of $V_{C C}$ so that a stabilized supply is unnecessary.

We have not so far discussed the possibility of obtaining higher gain. For $A=10$, $R_{C} / R_{S}=9$ ideally, and in practice probably about 12. The effective bias line of 358Ω is about the optimum for minimizing variations of g_{m}, so keeping this figure, we find $R_{\mathrm{S}}=390 \Omega$ and $R_{C}=4.7 \mathrm{k} \Omega$ approximately. For the bias line to start from 0.9 V , as before, V_{C} must be 11.7 V . As $V_{C E}$ must be at least $2 \mathrm{~V}, V_{c c}$ must be at least 14 V . All this is quite possible.

It is unlikely, however, that the frequency response would be adequate, and R_{L} could certainly not be increased proportionately to R_{C} without seriously affecting the response. In view of the difficulty of maintaining an adequate balance of the voltages at the ends of R_{L} it was regretfully decided to abandon the circuit, and no work was done in an attempt to obtain higher gain.

It should be pointed out that further transistors are needed to couple the stage to the output stage. The base of the output stage is to be at 2.7 V ; the output of the amplifier would be at 6.3 V . The amplifier output is in the same phase as the input, but the output stage gives a phase-reversal. It is desirable that there should be no overall phase-reversal, so the intermediate stage should be phase reversing or a common phase-reversing stage can be used after the common outputs of the two channels.

Fig. 5 shows a very useful circuit for connecting two difficult voltage levels. From the signal point of view it is a form of cascode stage and gives phase reversal. For $\boldsymbol{T r}_{1}$

$$
V_{B 1}-V_{B E 1}=I_{C 1} R_{E 1}
$$

and for T_{2}

$$
\begin{aligned}
V_{B 2}-V_{B E 2} & =\left(I_{C 1}+I_{C 2}\right) R_{C 1} \\
V_{o} & =I_{C 2} R_{C 2}
\end{aligned}
$$

and the gain is nearly $R_{C 2} / R_{E 1}$. Also

$$
\begin{aligned}
& V_{C E 1}=V_{C C}-I_{C 1}\left(R_{C 1}+R_{E 1}\right)-I_{C 2} R_{C 1} \\
& V_{C E 2}=V_{C C}-I_{C 1} R_{C 1}-I_{C 2}\left(R_{C 1}+R_{C 2}\right)
\end{aligned}
$$

The usual practical difficulty is to make $V_{C E 1}$ and $V_{C E 2}$ large enough. Suppose, $V_{B 1}=6.3 \mathrm{~V}, V_{o}=2.7 \mathrm{~V}$, and $V_{B E 1}=V_{B E 2}$ $=0.65 \mathrm{~V}$ with $V_{C C}=10.5 \mathrm{~V}$ min. Then $I_{C 1} R_{E 1}=5.65 \mathrm{~V}$. Suppose, $R_{E 1}=1.5 \mathrm{k} \Omega$, then $I_{C 1}=3.76 \mathrm{~mA}$. If $R_{C 2}=1.5 \mathrm{k} \Omega, I_{C 2}$ $=2 \cdot 7 / 1.5=1.8 \mathrm{~mA}$. Now for Tr_{1}, let $V_{C E 1}=3 \mathrm{~V}$. The collector is then 8.65 V above earth and we can drop only $10.5-$ $8.65=1.85 \mathrm{~V}$ in $R_{C 1}$ with a current of $3.76+1.8=5.56 \mathrm{~mA}$, so $R_{C 1}=332 \Omega$. We then have $V_{C E 2}=10.5-1.85-2.7=5.95 \mathrm{~V}$. The only thing wrong with this is that 330Ω
is rather low for $R_{C 1}$. The loss of signal can be corrected by increasing $R_{C 2}$ and frequency correction can be obtained by shunting $R_{E_{1}}$ by a small capacitance ($\approx 25 \mathrm{pF}$). A shift control which does not affect the gain can be obtained by making $V_{B 2}$ variable. It must, of course, be nominally 0.65 V plus the drop across $R_{C 1}$ or 2.5 V negative to $+V_{C C}$ and the supply must be stabilized with respect to $+V_{c c}$. This is easily done with a zener diode.

Thus, with an f.e.t. input stage we need a minimum of one f.e.t. and three bipolar transistors prior to the output stage. The arrangement has been fully tried out and with small capacitances across R_{S} (Fig. 3) and $R_{E 1}$ (Fig. 5) an overall frequency response down by only 3 dB at 10 MHz was readily obtainable. The only fault lay in the inability to maintain the current in the gain control resistor small enough. It was felt that if the circuit was used it would be necessary to provide a balance adjustment as a panel control. In view of this it was decided to investigate other methods.

It may be asked at this point why the gain control was not capacitatively coupled to remove d.c. from it. This was actually tried and abandoned. In the first place, because of the low resistance values needed to maintain the high-frequency response, at least $500 \mu \mathrm{~F}$ is needed. This means electrolytic types must be used and these have a leakage current. This can be small initially if their voltage rating is high compared with the actual voltage across them, and a trial showed it to be negligible. However, according to the books an electrolytic capacitor used on a low voltage gradually reforms to a working voltage near to that applied and then passes a relatively high leakage current. If this does occur, it means that after three months or so, there would be excessive current in the gain control.

A second reason for avoiding coupling capacitors is that it would be necessary to include protective diodes and resistors. Without them, there is no more certain way of obtaining a heavy mortality in transistors! The trouble occurs when switching on and off. Protective circuitry not only adds to the cost, but tends to reduce the high-frequency response. We tried capacitors without such circuitry and several transistors died!

Before concluding this part, it may be well to say a few words about another circuit
which was tried. The merit of this circuit, Fig. 6, is that ideally there is no current in $R_{B_{1}}$, which solves the gain control problem. The circuit is usually used without $R_{E 1}$ and $R_{E 2}$, but they were included so that the currents in $T r_{1}$ and $T r_{2}$ would be better determined.

Transistors $T r_{1}$ and Tr_{2} are supposed to pass equal currents. Their base voltages must be the same except for any difference between $V_{B E 1}$ and $V_{B E 2}$. Ignoring base currents, $R_{B 1}$ and $R_{B 2}$ must thus be returned to substantially the same voltage. Now if current flows in $R_{B 1}$ and $R_{B 2}$ from ${T r_{3}}$, there must be a voltage drop across $R_{B 2}$ and the base of $T r_{2}$ will not be at the same voltage as the base of $T r_{1}$. But the base voltages cannot differ appreciably and so there cannot be current in $R_{B 1}$ and $R_{B 2}$. Thus the collector voltage of Tr_{3} to earth is the same as the base voltages of $T r_{1}$ and $T r_{2}$.

With the particular conditions of Fig. 6, the base supply voltage for Tr_{1} had to be 3.6 V compared with the base supply of 2.8 V for Tr_{2}, a difference of 0.8 V . In part this may be accounted for by differences of $V_{B E 1}$ and $V_{B E 2}$, but it was largely caused by the high base current of $\operatorname{Tr}_{1}(9 \mu \mathrm{~A})$ in the high base resistance ($100 \mathrm{k} \Omega$). This alone gave a bias difference of 0.9 V . In fact, the transistor used for Tr_{1} had $h_{f e}=55$ only.

The gain of the stage is nominally $1+R_{B 1} /$ $R_{B 2}$ and this is 3.45 for the values used. In practice it is very close to this. The input resistance is high and was measured to be about $1 \mathrm{M} \Omega$. Both the input resistance and bias difference could easily be improved by using a higher $h_{f e}$ transistor for Tr_{1}. An improvement of about four times should easily be obtained.

The gain increased with frequency and was at least twice the low-frequency value of 10 MHz . A flat response was secured by adding the $R C$ circuit across $R_{C 1}$. The circuit is a feedback one with three transistors in the feedback loop. It is thus potentially unstable. Theoretical design for stability is very difficult because it would require a detailed knowledge of all the transistor and circuit parameters up to 100 MHz or so, and even then would be very laborious. No difficulty was experienced in obtaining the required frequency response in the bread-board model but positive feedback symptoms were certainly present and it was felt that difficulties might well arise over

Fig. 6. Three transistor circuit which gives a gain of about $3 \cdot 5$ times with an input resistance of at least $1 M \Omega$ and, ideally, has zero current in the gain control.
component tolerances. Further, the input resistance was lower than desired and although it could be made higher, it was doubtful if it could be made high enough.

The circuit is unquestionably an interesting one and it was abandoned rather regretfully because it was felt to be too subject to variation of performance from one amplifier to another. We may be wrong about this but we felt that we could not recommend its use until we had built 20 or 30 specimens to prove it. This was impracticable.

We, therefore, turned finally to an entirely different kind of circuit. It had been in our mind from the start, for it is an eminently designable circuit. It readily gave the required performance and its only fault is that it requires rather a lot of transistors, but they are inexpensive bipolar types. The development of this final amplifier will be treated in Part 3, and all component tolerances will be taken into account. In the main these tolerances have not been considered in this article because the procedure is rather tedious and one normally applies it only when a design is approaching finality.

Appendix

Under signal conditions, as distinct from d.c.,

$$
V_{i n}=V_{s}+V_{g s}=V_{g s}+i_{d} R_{s}\left(1+i_{d} / i_{d}\right)-i_{L} R_{s}
$$

Now $V_{g s}=i_{d} / g_{m}$
and

$$
\frac{i_{L}}{i_{d}}=\frac{R_{s}+\left(R_{c}+R_{s}\right) i / i_{d}}{R_{c}+R_{L}+R_{s}}
$$

Therefore,

$$
A=\frac{V_{s}}{V_{i n}}=\frac{g_{m} R_{L} i_{L} / i_{d}}{1+g_{m} R_{s}\left(1+i_{c} i_{d}-i_{L} / i_{d}\right)}
$$

Now

$$
\frac{i_{c}}{i_{d}}=\frac{R_{D}}{r_{e}+R_{D} / h_{f e}}=y
$$

where $r_{e}=0.026 / I_{C}=$ emitter junction resistance. A little algebra then gives

$$
\begin{gathered}
A=\frac{g_{m} R_{s}(1+y) \frac{R_{L}}{R_{c}+R_{L}+R_{s}}}{1+g_{m} R_{s}(1+y) \frac{R_{L}+R_{c} /(1+y)}{R_{c}+R_{L}+R_{s}}} \\
\begin{array}{r}
{\left[1+\frac{R_{c}}{R_{s}} \cdot \frac{y}{1+y}\right]} \\
=\frac{g_{m} R_{s}(1+y)}{1+g_{m} R_{s}(1+y)}\left[1+\frac{R_{c}}{R_{s}} \cdot \frac{y}{1+y}\right] \frac{R_{L}}{R_{L}+R_{o}} \\
\text { where } R_{o}=\left(R_{c}+R_{s}\right) \frac{1+g_{m} \frac{R_{c} R_{s}}{R_{c}+R_{s}}}{1+g_{m} R_{s}(1+y)} \\
=\text { output resistance. } \\
\text { If } g_{m} R_{s}(1+y) \gg 1, y>1 \text { and } R_{L} \gg R_{o} \\
A \approx 1+\frac{R_{c}}{R_{s}} \\
\text { If, also, } g_{m} \frac{R_{c} R_{s}}{R_{c}+R_{s}} \gg 1 \\
R_{o} \approx \frac{R_{c}}{1+y}
\end{array}
\end{gathered}
$$

News of the Month

Far East hold on TV market tightening

Sales of U.K. manufactured colour television receivers to the trade jumped by 46% in the first half of this year compared with the same period last year; the respective figures being 278,000 and 191,000. As expected there was a fall in monochrome receiver sales during the same period amounting to 16% from 789,000 to 666,000 . It will be interesting to see what effect the recent relaxation in H.P. restrictions and purchase tax will have on sales for the second half of the year.

Looking at the overall picture things are not so bright. In the first quarter of the year total sales of British-made television receivers showed a decrease of 16% over the same period last year, 401,000 $(484,000)$. In contrast imported receivers are selling at treble the rate they did last year.

The importers increasing dominance of the radio receiver market again caused decreases in U.K. produced equipment for the first six months of the year, 323,000 $(342,000)$.

These figures were provided by the British Radio Equipment Manufactuers' Association.

If you can't beat them . . .

At a conference held in London recently, to discuss international harmonization of component standards, delegates from all nations present agreed that a world-wide agreement on standardization should be based on the system established by the Comité Européen de Coordination des Normes Electriques (CENEL). Delegations representating the following governments were present at the Conference: Belgium, Denmark, the Federal Republic of Germany, France, Italy, the Netherlands, Sweden, U.K. and the U.S.A.

Several nations have in the past few years set up various committees with the object of bringing national standards in line with international standards. Our own

BS 9000 , based on the second report of the 'Burghard Committee' which was published in 1965, is fully compatible with the recommendations of the International Electrotechnical Commission (I.E.C.) of which we were one of the creators. The countries of the E.E.C. and E.F.T.A. got together to form CEN and CENEL and, in addition, the governments of France, West Germany and the U.K. formed a Tripartite Committee to discuss component standard harmonization.

At that time the American Electronic Industries Association attacked the Tripartite Agreement. Mr I. D. Secrest, executive yice-president, made the following statement: "The Tripartite Agreement creates an absolute embargo against exports of U.S. electronic components to the U.K., France and West Germany. The agreement is not yet fully implemented. There is time to prevent this blatant violation of U.S. rights under
existing trade agreements from occuring if there is strong and determined action by the United States" (See Wireless World, July 1969, p. 303).

The action, we are pleased to say-to complete the heading . . . is to join them. Recently, two years after the E.I.A. outburst over the Tripartite Agreement, the I.E.E.E., gave its support to a proposed bill, S. 1798 , before the Foreign Commerce and Tourism Subcommittees of the United States Senate, the purpose of this bill is "to foster fuller U.S. participation in international trade by the promotion and support of representation of U.S. interests in international voluntary standards activities, and for other purposes".

Mr Sherr, manager of standards operations of the I.E.E.E., in commenting on the bill said that "it should provide a mechanism to allow professional societies to effectively carry out such activity [international standardization], an effort for which technical societies are best able to provide appropriately qualified manpower".

As the U.S.A. have now expressed the desire, and this bill will give them the means, perhaps we shall see, at last, some truly international component specifications.

Two British i.c. plants to close

A cold wind blew through the i.c. industry recently when GEC Semiconductors

The result of a recent fire at KEF Electronics packing and despatch department at Maidstone. The fire was thought to be caused by some kind of electrical failure in the roof and damage in excess of $£ 80,000$ was estimated. Within 24 hours of the disaster KEF were delivering stocks to a new temporary warehouse and a new cabinet assembly line is being set $u p$ with improved test facilities.

announced that it was to close two of its factories producing microcircuits. The closures were announced because increasing costs and falling prices led to heavy losses. One of the plants to be closed is at Witham, Essex; it has been open only two years and cost upwards of $£ 2 \mathrm{M}$ to build. Also to be closed is a factory at Glenrothes in Scotland. GEC now intends to concentrate its microcircuit manufacture at the Hirst Research Laboratories at Wembley, Middlesex. A. Witham engineer said that this does have advantages in that they will be in close contact with Hirst Labs where a good deal of semiconductor research is done and they will be able to use an 'in house' Myriad computer instead of having to rely on a rented terminal as they do at present. It is likely that we will see GEC pull out of standard i.cs, in which fierce competition exists, and concentrate its resources on custom designed i.cs which might result in an expansion of its m.o.s. activities.

A large American microcircuit manufacturer recently told Wireless World that the British i.c. industry is being killed by its own customers. In America and Germany, apparently, customers seem to be prepared to pay a reasonable price realizing that if the source of supply is not to dry up the manufacturer must have some profit margin, if only to recoup some of the development costs. According to the American manufacturer this does not apply in Britain and customers tend to beat down the price to rock bottom. This argument does not apply to such lines as t.t.l. where the manufacturers are waging' a fierce price cutting war themselves to the customer's advantage, but usually, to their own disadvantage.

Electronic clocks and watches

A number of semiconductor firms are actively engaged in research on allelectronic clocks and watches with no moving parts at all. Producing an electronic timing 'movement' is easy, but the real problem is how to display the information-one can hardly go round with four neon tubes strapped to one's wrist. In an attempt to solve this problem a great deal of work is going on with liquid crystals, but the potential market is so huge that few people are saying anything at this stage. One firm has said that the future of one of its entire manufacturing departments depends on achieving a successful and economic answer.

Motorola have produced a development prototype electronic clock that uses a crystal oscillator for timing and integrated electronics for division and display driving, which will be the standard pattern of things in all clocks and watches.

It employs 72 GaAs diodes for the display. There is an outer circle of 60 to display minutes and seconds and an inner
circle of 12 for the hours. Two miniature batteries will last a year.
A nother approach we have heard about is the use of micro-miniature stepping motors, consuming only a few microamps, which drive conventional hands. We can look forward to a great deal of interesting activity as microcircuit manufacturers strive to develop devices for the very large consumer market (watches, clocks, cars, plus who knows what) in an effort to stay in business. A company who can 'steal a march' on its competitors in this direction could reap rich rewards and perhaps use the extra income to finance unprofitable industrial device production lines.

New hybrid resistor pastes

The Electrical Research Association (E.R.A.) has been trying to find materials which can be used as resistors for thick film hybrid microcircuits to replace the precious metals which are employed at present. Resistor pastes of precious metals are normally used because they retain their electrical conductivity after being fired in air. The electrical characteristics of a large number of materials are seriously affected by oxidization under these conditions.

Work of E.R.A. has shown that certain transition metal interstitials and some of their oxides retain their conductivity after being exposed to an oxidizing environment. Transition metals are those with the atomic numbers 22 to 30,40 to 48 and 72 to 80 and an interstitial compound of these is one where atoms of small physical size (hydrogen, boron, carbon, nitrogen, oxygen, etc) are situated in the interstices of the parent metal lattice.
E.R.A. have successfully made resistor pastes with molybdenum boride and are now proceeding to find other materials with better performances and which are easy to process.
The reason for the behaviour of the transition metal interstitials is not fully understood, but E.R.A. think that the interstitial material may act as a reducing agent on the transition metal counteracting the oxidizing effect of the atmosphere during firing.

Facsimile transmission to police cars

The Home Office and Bristol Constabulary are co-operating in an experiment to discover the value of transmitting documents from headquarters to police vehicles using the v.h.f. radio
system. Ten vehicles have been fitted with facsimile receivers connected to the normal mobile radio installations. The system is capable of transmitting documents of unlimited length but only 108 mm wide such as sketches, maps, typescript, photographs, etc.

Tall buildings \mathbf{v} microwave links

Post Office engineers are carrying out a series of tests to find out what effects tall buildings have on microwave links and how these effects can be calculated. A large number of factors are involved including the position of the building relative to the microwave link and the height, shape and materials used to construct the building. A helicopter has been fitted with a 9.4 GHz radar modified by the Radio and Space Research Station for the job.

A ground, receiver picks up a direct signal from the helicopter and the signal which has been reflected by the building under investigation. By altering the position of the helicopter it is possible to measure the building's radiation pattern. At Romford one building produced a reflection which was only 8 dB down on the direct signal; enough to cause severe interference.

Ideas catalogue

A directory of computer programmes for solving scientific problems is available from Peter Peregrinus Ltd (P.O. Box No. 8, Southgate House, Stevenage, Herts, SO 1 1 HQ) following an agreement with Science Associates International (New York). The directory, called 'Computer programmes in science and technology', enables information to be obtained on how others have used a computer to solve particular problems.

Heatsink court case

Marston Excelsior Ltd has won a court action, under the design copyright act, against Waycom Semiconductors Ltd and Advance Electronics Ltd. The case concerned the manufacture of extruded aluminium heatsinks which were registered as Marston Excelsior model 10D. The court order restrains Waycom and Advance from manufacturing heatsinks to this design and instructs these companies to surrender to Marston Excelsior the heatsinks which infringe the copyright. In addition related drawings, catalogues etc., have to be destroyed.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

F.E.T. audio oscillator

The design by Mr. A. J. Ewins of his f.e.t. audio-frequency oscillator in Wireless World for March, 1971, was most interesting.

The appended circuit may prove of further interest as the simple, economical arrangement gives extremely good results.

The direct-coupled amplifier has its quiescent operating bias conditions set by adjustment of the preset resistor R_{6}. Initially this is adjusted to give half the supply voltage at the emitter of Tr_{3}. Ultimately this control can be further adjusted for minimum distortion from the oscillator providing that a suitable distortion measurement instrument is available.

The amplifier has moderate gain but low distortion when the overall negative feedback loop via the thermistor is open. This is due largely to the local inverse feedback circuits in the individual stages. The thermistor feedback loop is then relieved from controlling large and violent variations in gain due to transient conditions such as range switching or rapid tuning dial excursions.

Jitter accompanying frequency adjustment, familiar (and annoying) in most thermistor controlled $R C$ oscillators, is considerably improved by the above means. This improvement is also assisted by the fact that only one $R C$ time constant
$R_{53} C_{2}$, is present in the negative feedback loop. The combination gives an oscillator substantially free from tuning jitter.

There may have been good reasons for the choice of a $\sqrt{ } 10$ tuning ratio in Mr. Ewins' design, but it is generally more useful for a $10: 1$ frequency range to be available. Using a 450 pF double-gang variable capacitor and $22 \mathrm{M} \Omega$ resistor for the lowest range, frequencies from 15 to more than 150 Hz can be generated. For the other four ranges the resistors are progressively reduced in decade steps so that the top range of 15 to 150 kHz employs 2.2 k resistors.

The frame of the variable capacitor must be insulated from earth as it is connected to the gate of the f.e.t. The tuning capacitor, range switch and associated resistors are vulnerable to hum and other stray field pick-up and thus should be carefully positioned. It is preferable to locate these components within a shielded compartment which should, however, not add too greatly to the stator-to-earth capacitance of the tuning capacitor. This would limit the highest frequency attainable on each range. The stator-to-earth stray capacitance and the input capacitance of the f.e.t. should in any case be compensated by adding a trimmer of similar capacitance across the top section of the tuning gang.

The oscillator described has a range

of 15 Hz to more than 1.5 MHz covered in five decade ranges. It has an output of IV r.m.s. at low impedance. Total harmonic distortion, measured at random spot frequencies on each range, using a Hewlett Packard 333A Distortion Analyser, was between 0.05 and 0.09%.
V. R. Krause,

Johannesburg,
South Africa.

Ceramic pickup equalization

While I would endorse Mr Burrows' conclusions in his article 'Ceramic pickup equalization', part 1 (July issue), I would like to point out that his efficiency calculation is not valid. He has calculated the input power to the cartridge by multiplying the r.m.s. velocity by the component at 45° of the tracking force. Unfortunately he has overlooked the fact that there is no net work done against the tracking force, because the work done against the force by the groove modulation on one half-cycle is returned on the next half-cycle. The tracking force is merely holding the stylus in the groove and has nothing to do with the cartridge input power.
If this is difficult to visualize, imagine a mono signal. This is at 90° to the tracking force and therefore can do no work against it, but yet there is still an output from the cartridge.

What the groove modulation 'sees', in terms of mechanical impedance, is the dynamic mass of the stylus assembly, the compliance (or rather the stiffness) of the cartridge, and the resistance to movement which is converted into electrical output. The question is whether or not the latter is significant in comparison with the former two.

The compliance can be resolved into two parts; the 'Hookean' component in which displacement from the mean position is proportional to the force applied, and the 'hysteresis' (or damping) component, in which displacement from any position is a function of applied force and change of applied force. A simplified electrical analogue of the system is shown in Fig. 1.

No work is done against the dynamic mass or the Hookean component of compliance, because the forces and velocities involved are 90° out of phase, e.g., stylus acceleration is zero when the velocity is maximum, and vice-versa. Therefore, the only work done against the compliance is against the hysteresis part. Forces and
velocities associated with dynamic mass and Hookean compliance result only in 'reactive' dyne cm , no actual ergs of work being done. Without knowing details of the hysteresis, the efficiency cannot be calculated, but what can be done is to compare the electrical output in ergs $/ \mathrm{sec}$ with some of the 'reactive dyne $\mathrm{cm} / \mathrm{sec}$ '.

For a Deram, the stiffness ($1 /$ compliance) at 45° is about 0.16×10^{6} dynes $/ \mathrm{cm}$. At 1 kHz and $20 \mathrm{~cm} / \mathrm{sec}$ r.m.s. velocity, the r.m.s. force required to overcome the stiffness; assumed Hookean, is 500 dynes, resulting in 10,000 'reactive dyne $\mathrm{cm} / \mathrm{sec}^{\prime}$ '. Assuming the stiffness to be Hookean results in the minimum number of dyne $\mathrm{cm} / \mathrm{sec}$ for the given value of stiffness.

Now the maximum output from a Deram under these conditions is $1.1 \mu \mathrm{~W}$ into 270 $\mathrm{k} \Omega$. This is $1.1 \times 10^{-6} \mathrm{~J} / \mathrm{sec}$ or $11 \mathrm{ergs} / \mathrm{sec}$, so taking maximum power from this cartridge has a similar effect on the damping to connecting a resistor taking 11 W across a tuned circuit involving 10 kVA , i.e. a very small effect indeed!

Unfortunately, if weregard a cartridge as a series of black boxes, we conclude that the effect of loading is dependent on the characteristics of the last black box (i.e. the piezoelectric element in the case of a ceramic cartridge) and its coefficient of coupling with the previous black box, rather than on the efficiency of the whole system. Presumably manufacturers realise this and ceramic cartridges are independent of loading, not inherently but as a result of design.
H. C. Mirams,

Bradford,
Yorks.

The author replies:

I was interested to read Mr. Mirams' comments on the efficiency calculation, and he has rightly pointed out that the basis of the calculation was not sufficiently well explained to be rigorous. He is right in saying that there is no net work done against the tracking force (i.e. power $=\bar{k} \bar{F}$ and not $\bar{D} \times \bar{F}$) but of course there was nothing in the article to infer that the calculation was made assuming it to be a cross product.
Mr. Mirams is, I am sure, mistaken in believing that the tracking force has nothing to do with the cartridge input power. On the contrary, the tracking force is a good measure of the forcenecessary to keep the needle in contact with the groove walls (mono or stereo) and is therefore a direct measure of the lateral forces on the needle. So by knowing the tracking force, one knows the force necessary to keep the stylus in the groove at maximum modulation velocities and the calculation was performed for this case.

Taking Mr. Mirams' second point that no work is done against the dynamic mass or the Hookean component of compliance, this is of course true, work is done when there is hysteresis or damping present. I think where I would disagree is in the relative magnitude of the resistive and reactive components of the needle tip mechanical impedance. In the vicinity of 1 kHz this impedance is mainly resistive and was assumed wholly resistive for the calculation. It is
mainly resistive here because at around 1 kHz the two reactive impedances (i.e. the compliance and the dynamic mass) cancel out as in a series tuned circuit at resonance; so, to avoid a high Q resonant system, considerable damping has to be added to the pickup system:

Mr. Mirams' very simplified electrical analogue-which rather confusingly used capacitance as the analogue of mass, where it is conventional to use inductance as the analogue-should be compared to Mr. S. Kelly's electrical analogue as published in W.W. December 1969 which shows the number of damping elements present in a conventional stereo ceramic pickup.

Finally with reference to Mr. Mirams' last paragraph, it can be seen that this point was made in the original article under the heading 'Reasons for low efficiency'.

I certainly endorse Mr. Mirams' conclusion that ceramic pickups are independent of loading by design, but the main point which I tried to put over in the article is that this is a natural outcome from making an aperiodic transducer, and is not achieved by special design effort separate from the essential one of achieving non-frequencydependent action.
B. J. C. Burrows.

Diagnosis of logical faults

I read with great interest the first part of 'Diagnosis of Logical Faults' by R. G. Bennetts (July issue) and readers may find the following comments pertinent. The circuit used to illustrate the various

methods is reproduced in this letter as Fig. 1. This circuit was used as data for one of our standard programmes, CLOIS*, that generates automatically a multi-flow testing procedure from the circuit description using the fault matrix method. The resulting testing procedure is shown in Fig. 2. It can be observed that five tests are used to detect all faults, namely t_{4}, t_{1}, t_{3}, t_{2} and t_{7} instead of the four tests that Mr. Bennetts suggests. The differences arise from the fact that when a node has a fan-out of greater than one Mr. Bennetts does not consider any extra faults whereas CLOIS inserts more faults. For instance input (a) is connected to G_{1}, G_{2} and G_{3} and a fault could be that gate G_{2} is not connected to node C_{1} but it is connected to logical 0 instead. By considering such faults another ten faults can be introduced into! matrices F and G_{D}. However, the problem can also be reduced considerably as Mr. Bennetts later suggests. By deleting identical rows matrix F needs only thirteen rows including the extra faults due to fan-out. The two extra rows are:
(1) f_{17}-connection to C_{2} of gate G_{1} s-a-l which is identical to connection to C_{1} of gate $G_{2} \mathrm{~s}-\mathrm{a}-0$, and
(2) f_{18}-connection to C_{4} of gate G_{3} s-a-0.

The extensions to the F and G_{D} matrices are shown in Figs. 3 and 4. From Fig. 4 it can be seen that fault f_{18} is detected only by t_{4} and therefore t_{4} is also an essential test; t_{4} also detects the presence of fault f_{17} :

This demonstrates that the minimal detection test set of Mr. Bennetts is only minimal for the particular faults he considered and that some simple faults are not detected by such a test set.
*Boyce, Emmerson, Stringer and West: 'Simulation of binary logic circuits by digital computers', The Marconi Review, Vol. XXXIV, No. 181, 2nd. Quarter 1971, pp. 121-142.
lo

Fig. 2. Multi-flow testing procedure produced by CLOIS.

Test	f_{17}	f_{18}
t_{0}	1	1
t_{1}	1	1
t_{2}	1	1
t_{3}	0	0
t_{4}	1	1
t_{5}	1	0
t_{6}	1	1
t_{7}	1	1

Fig. 3. Extra columns for matrix F.

Test	$\left(f_{0} f_{19}\right)$	$\left(f_{0} f_{18}\right)$
t_{0}		
t_{1}		
t_{2}		
t_{3}		
t_{4}	1	1
t_{5}	1	
t_{6}		
t_{7}		

Fig. 4. Extra columns for matrix G_{D}.

It may be of interest to mention that for this example CLOIS took eight seconds to compile the circuit data and fifteen seconds to generate the multi-flow testing procedure. The computer used was an ICL 4/70.
There are two further points in the article which are misleading. The extension of the fault matrix method to produce multi-flow testing procedures does not require as much storage as Mr. Bennetts mentions. The CLOIS programme used two matrices F and G_{D} of sizes 8×14 and 8×13, respectively, as compared to Mr. Bennetts' 8×136.

During the discussion of the path sensitizing method for fault f_{1} it is found that t_{4}, t_{5} and t_{7} all can detect the presence of f_{1}. It is then suggested that t_{4} (or t_{5}) is used as this detects seven faults. If columns had been ignored if they are identical with previously entered columns then he would argue that t_{4} and t_{5} detect three faults each and t_{7} detects four faults, therefore he would have picked t_{7} instead of t_{4}. The resulting minimal set would then have been $t_{7}, t_{3}, t_{2}, t_{1}$. It was just by chance, although fortunate, that his minimal set by the path sensitizing method is the same as that obtained by CLOIS.

The final point is that the footnote on p. 327 should be

$$
n[(n+1) / 2]=\left(n^{2}+n\right) / 2
$$

A. H. Boyce,

Research Division,
Marconi Company,
Great Baddow,
Essex.

The author replies:

It would appear that Mr. Boyce has misunderstood the purpose of the article. It was written as a tutorial introduction to digital circuit fault diagnosis and was not intended to be an exhaustive treatise
-indeed, if he now reads Part II published last month, he will see that I have in fact referred the reader to not only a more general review paper but also separate papers for each technique.

Returning to Mr. Boyce's comments in detail, he is of course absolutely correct in considering separate faults on fan-in/ fan-out lines-a point I made in the footnote to col. 3 p. 326 .

I believe also that Mr. Boyce has confused 'multi-flow testing procedures' (defined on p.326) with the formation of the G_{L} matrix. The theoretical maximum for this matrix is, as stated, 8×136. This is given by $n+1 *$ and although some (2)
reduction based on indistinguishable fault sets can be effected, it is inconceivable that this would reduce to the same size as the G_{D} matrix. What Mr. Boyce has in fact done, is to create a partition based on the F and G_{D} matrices, i.e. he has combined the two techniques of fault matrix and partitioning to derive a detection test set in a similar manner to that indicated by me in Part II (compare the form of his Fig. 2 with my Fig. 11).

The times quoted by Mr. Boyce for deriving the test set using CLOIS are interesting. The approach at Southampton University is based primarily on the Boolean Difference technique and for the circuit in the article the programme takes 11 seconds to accept a topological description, derive the Boolean expression and then proceed to manipulate this to eventually generate a detection test set. This is using the University's ICL 1907 computer.

One final point. The equation in col. 1, p. 327 should read:

$$
t_{i} f_{j}+t_{i} f_{k}=1
$$

R. G. BENNETTS.

*This is an alternate form (used by Kautz incidentally) for $n+1^{c_{2}}$ and unfortunately, the printer thought I had omitted the dividing line.

Sonic scanning for tubeless TV

It was with interest that I read the article, 'Sonic scanning for tubeless TV' by J. J. Belasco, in the July issue. It reminded me of the work done some 10 years ago by Stephen Yands.

A similar flat device was built by him that utilized sonic scanning to display video information on an electroluminescent phosphor (see: 'A solid-state display device', Proc I.R.E. Vol. 50, No. 12, Dec. 1962). Basically, it consisted of a piezoelectric ceramic sheet covered with an electroluminescent phosphor, and sandwiched between a transparent viewing electrode, and a ground electrode. This was scanned by launching travelling elastic waves into the piezoelectric material. A spot could be produced by launching two travelling waves orthogonally, and selecting the increased amplitude at the intersection by a discriminating medium. By varying the relative
timing between the orthogonal waves, the spot could be made to scan a raster.

To my knowledge, although crude Lissajous figures were displayed on such a panel, it never reached the stage of producing acceptable TV images. This panel was a continuous sheet of piezoelectric material since provision was made for twodimensional sonic scanning. The onedimensional sonic scanning array of 625 horizontal strips proposed in the article might possibly provide a better solution. However, the complexity of the number of interconnections and transducers could prove to be a stumbling block.
G. O. TOWLER,

Broomfield,
Chelmsford,
Essex.

Broadcasting frequencies

I should like to endorse, with one reservation, the sentiments of Mr. Higham's remarks on B.B.C. medium-wave broadcasts ('Letters', June issue).

The bad reception, owing to East German and Albanian interference, and phase distortion, renders intolerable reception in many parts of the country. The proffered alternative, the f.m. service, is always 'loud and clear'-but a weakness lies in the poor choice of programmes provided. For example, on one occasion recently, tuning into v.h.f., there was only one programme (jazz) to listen to. Radio 2 was being relayed on Radio 3, and Radio 4 had closed down. This broadcast occupied no fewer than nine frequencies in Band II together with two a.m. outlets; a grand total of 11 simultaneous broadcasts! Three of the above frequencies were those of B.B.C. local radio stations-which relay from Radios 1-4 on average $60-70 \%$ of their broadcasting time. One wonders what could be less local than the relaying of national programmes.

Possibly, the long-awaited 'shot in the arm' for the B.B.C. could well lie in the creation of healthy competition with the promised commercial radio services.

However, I must condemn the concept of 'pirating' any odd frequency to hand. This is the law of the jungle, and causes interference. What is needed-after 23 years-is a complete re-appraisal of the broadcasting plan by the countries involved, and a new scheme drawn up. Following this, coupled with the new commercial stations, sound broadcasting could have a very bright and interesting future.
Stefan Woroniecki,
Lancing,
Sussex.

Circuit Ideas

Level-conscious

trigger system

Schmitt triggers can be coupled together to make a channel selector governed by input signal amplitude. Although shown for d.c. triggering, adaptation for a.c. operation is possible. In Fig. 1 three Schmitt circuits are set to trigger at different voltage inputs. As shown, the higher trigger voltage will also trigger the circuits requiring lower trigger voltages. Fig. 2 shows inhibit feedback current circuits. These are used to short circuit the unwanted outputs as shown in Fig. 3. Diodes.

Fig. 1

Fig. 2
are required to isolate the output circuits of channels 2 and 3 from each other. Signal differentiation greater than 0.2 V can be achieved with careful trigger design.
A. R. BidWELL,

West Molesey,
Surrey.

High input-impedance Schmitt trigger

The need for a high input-impedance trigger circuit is quite common and the usual approach involves using a field effect transistor as a buffer for a bipolar transistor Schmitt or an i.c. comparator. Designs using a junction f.e.t. or m.o.s.f.e.t. in both stages of the Schmitt are not common due to the wide spreads and low mutual conductance of these devices. Recently silicon-gate field-effect transistors have become available with threshold voltages of 1 to 2 V . This spread is sufficiently low to enable the conventional Schmitt circuit to be used. In the circuit shown a silicon-gate pair (M1202, G.E.C. Semiconductors) is used in a standard Schmitt configuration. The circuit differs from normal bipolar transistor practice in only two respects. The resistance values are an order of magnitude higher to allow for the lower mutual conductance of the field-effect transistors and a series input resistance is provided to limit the forward current of the internal protection diode of the M1202. The series resistance is necessary if the input signal is allowed to have a positive polarity with respect to ground. For a negative-going signal the input current to the Schmitt is typically less than 100 pA . The input current

Fig. 3

is due to the reverse leakage current of the M1202 protection diode. The low threshold voltage of the silicon-gate transistors enables the circuit to operate from supply voltages as low as 5 V . With the supply voltage and resistance values shown the circuit provides an upper trip point of 4 V , a lower trip point of 3.1 V and rise and fall times of less than $1 \mu \mathrm{~s}$.
J. A. Roberts,

J. Driscoll.

Witham,
Essex.

Wirewound 'log' pot

Carbon-track potentiometers when used as volume controls often have a very limited life and develop 'intermittents' and crackles. Wire-wound controls are much better in this respect, but unfortunately only linear laws are commonly available, and these are not suitable for faders. An approximation to a

logarithmic law can be obtained by using the arrangement shown. The wirewound track can be centre-tapped quite easily in cheap controls by taking the back off and exercising some ingenuity! Although a better approximation to the ' $10 \% \log ^{\text {' law could be }}$ obtained, (the kink in the curve shows up as a noticeable jump in the sound when doing a fade) the present arrangement seems to be the best compromise.
D. C. Hamill,

Southampton.

Frequencies for Space Communication

World radio conference in Geneva

by D. E. Baptiste*

The first administrative radio conference to allocate frequencies for space telecommunications was held by the International Telecommunication Union in 1963, only six years after the original sputnik first orbited in space. That conference successfully provided frequencies and the necessary technical and regulatory provisions to enable Intelsat to come into being as a commercially viable organization. The facility by which hundreds of millions of the world's population have seen the Olympic games and the various. Apollo missions on television has become so familiar in a relatively short time that it is easy to forget that radio communication through outer space was unknown a decade ago.
Apart from communication satellites; such as Intelsat and the Russian Molniya, there have been meteorological satellites, satellites used for space research; and the use of space techniques by amateurs. The 1963 conference also provided additional frequencies for Radio Astronomy.

Second space conference

The rapid operational and technical development of these space services and the possibility of using satellites for new services made it necessary for the Administrative Council of the I.T.U. to convene a further world administrátive conference. Its main purpose was to provide more frequencies for existing space systems (like Intelsat) to allow for growing traffic needs for international telephone and telegraph traffic and the relaying of television programmes; and for the growing needs of other services such as space research, radio astronomy, meteorological satellites, amateurs and the aeronautical satellite service. Furthermore frequencies were needed for new satellite services: maritime-mobile, broadcasting and earth exploration. In addition the conference had to draw up the necessary technical provisions to enable the new frequency allocations to be used successfully; and to provide regulatory procedures for co-ordination between administrations and the notification and recording of frequency assignments.

[^3]The conference assembled, with over 700 delegates from 100 countries, at the Palais des Expositions, Geneva, on the 7th June. In attendance there were the usual officials of the I.T.U. and a sprinkling of observers of the United Nations and other interested international organizations to see fair play. The conference got off to a good start under the experienced chairmanship of Gunnar Pedersen, Director General of the Danish P.T.T., who had also been chairman of the 1963 conference. No time was lost in breaking down into committees and thence into working groups, so that in a matter of days delegates were deep in discussion on the main aspects.

From the technical point of view it was essential to get down to an early examination of the techinical criteria for sharing between space systems and terrestrial services and for sharing between various space systems so that the delegates concerned with frequency proposals, particularly proposals for new services, should know what was practicable. There were other delegates, concerned with regulatory procedures-co-ordination between administrations, notification and recording of assignments etc.,-who needed to know what technical factors should influence their thinking. This was not a one-way process.. As the conference progressed there was inter-action between the frequency and regulatory committee and the technical committee. In addition there was the main task for the technical committee of considering specific technical proposals from administrations in the light of the preparatory work of the Special Joint Meeting of the C.C.I.R. held in Geneva in February/March 1971; and necessary revision of the technical provisions of the Radio Regulations.
The frequency committee and its main working groups broke down the many frequency proposals of administrations into subject matter. The most important task was to find more space for the communication-satellite service (to be known as the fixed-satellite service). The conference recognized that the frequency spectrum up to 10 GHz was so crowded that there was no scope for introducing more wideband space services. The first relief bands to provide for the next
generation of fixed satellites were therefore found between 10.95 and 14.5 GHz . The importance of a band below 15 GHz is that it is not so affected by rain in temperate climates as frequencies higher up the spectrum. In Region I, which includes western Europe, these bands consisted of three separate 250 MHz segments at the lower end, mainly for use in the space-to-earth direction, and one 500 MHz band $(14-14.5 \mathrm{MHz})$ in the earth-to-space direction. The apparent imbalance between the down and the up bands is explained by the fact that different down bands might be employed in working to an inter-continental satellite between the Americas and Europe from those needed for a European satellite occupying a different arc of the sky. Two of the down bands are also allocated in the earth-to-space direction so that they can be used for feeding broadcasting satellites. This makes for maximum use of the spectrum.

The next relief band-for the third generation of fixed-satellites-was found between 17 and 31 GHz . A total of $2,500 \mathrm{MHz}$ of space each way $(1000 \mathrm{MHz}$ shared with terrestrial services and $1,500 \mathrm{MHz}$ exclusive) was provided. At these frequencies local rain storms can blot out reception. It will be necessary to provide more than one earth station at each terminal, separated by sufficient distance from each other, to avoid this hazard. These frequencies are therefore likely to be used only for high cost intercontinental traffic of the Intelsat type.

Allocations up to $275 \mathbf{G H z}$

The present Radio Regulations allocate frequencies only up to 40 GHz . The spectrum above that is affected by the earth's atmosphere so that communication between earth and space is not generally practicable. There are, however, some exceptions to this rule inasmuch as at certain frequencies there are windows in the atmosphere that permit communication. The conference provided allocations in these windows for fixed-satellites (a total of 32 GHz) stretching from 40 to -275 GHz . In addition frequencies were allocated for space-to-space links, (over 50 GHz) on the space side of the atmospheric fence, away from these
windows. Although these frequencies are not likely to be brought into use within the next 10 years, both the U.S.A. and Japan stated they were working on satellites which would use them. It was important that the conference should fix the allocations so that system design could proceed.

Some countries had a need for a small allocation of frequencies for fixed satellites at around 2000 MHz to enable a satellite system carrying a small traffic load to be used in sparsely populated regions, like Alaska and the Yukon, where there is no existing terrestrial network to conflict with the earth stations. The conference found two small frequency bands 35 MHz wide in the band $2500-2690 \mathrm{MHz}$ for this purpose outside Region I and provided safeguards for countries whose terrestrial systems might be affected.

Space research and radio astronomy

Additional frequency space was provided for space research and radio astronomy ranging from a small 20 kHz radio astronomy band at 21 MHz right up to a band for Radio Astronomy and Space Research at $230-240 \mathrm{GHz}$. Of particular concern to the U.K. was a U.S. proposal for space research in the important $1750-2290 \mathrm{MHz}$ band. The American requirement for an additional 185 MHz in the up direction and 90 MHz in the down direction could have played havoc with this band, which is heavily used in Europe for public telecommunication radio-relay services. There is a fundamental technical need for frequencies for the penetration of deep space to be kept below 2300 MHz . The conference recognized this but kept the frequencies out of Region I except for 85 MHz allocated to Spain. This effectively limits the location of the one high-power station required in Europe to the country in which it is at present located.

Maritime mobile satellites

For the first time frequencies were allocated to the maritime mobile satellite service. A small allocation, in the v.h.f. band used for international shipping, was made for safety and distress purposes. Two bands, 7.5 MHz in each direction, were allocated between 1535 and 1660 MHz , with two small bands (1 MHz each) for combined use by maritime and aeronautical mobile satellite. This should provide a satisfactory service for the larger ocean-going ships. It is not likely to be introduced before 1978 but would provide welcome relief for the congested and unsatisfactory h.f. band. It could provide a reliable high-quality 24 -hour-a-day service integrated into the public automatic telephone network.

Aeronautical mobile-satellites

The conference allocated two $15-\mathrm{MHz}$ bands for use by aeronautical mobile-satellites for civil aircraft in the $1535-1660 \mathrm{MHz}$ band. This should provide adequate frequency space for the
development of satellite communications for aircraft.

Earth-exploration

This is a new type of satellite service including
(a) the meteorological satellite, controlled from the U.S.A. but giving information to world weather forecasting centres, one of which will be in the U.K.; and
(b) other earth-exploration satellites used for obtaining information about the earth-mineral resources, land and sea use. detection of agricultural diseases, atmospheric and water pollution, etc. The information is obtained by satellites from sensors on the earth or in the air and relayed to earth stations.

Frequencies for all these uses were allocated by the conference.

Broadcasting satellites

Frequencies were allocated for the first time for this service in which distinction was drawn between individual reception, requiring very high powers, and community reception in which relatively low powers would be needed. The latter is important as the conference would accept the use of broadcasting satellites in certain bands only on the basis that community reception would be used.

The conference accepted the use of broadcasting satellites in the television u.h.f. band between 620 and 790 MHz , subject to agreement among administrations concerned and affected, and laid down a stringent power limitation to protect the terrestrial broadcasting receivers of other countries. The interest of western European countries was to avoid interference from satellites in this band with their extensively developed broadcasting networks.

Band $2500-2690 \mathrm{MHz}$ was allocated to broadcasting satellites for domestic and regional systems for community reception only, with power limits to protect terrestrial services of other countries. This should be the main band for developing countries and sparsely populated territories in advanced countries where a terrestrial broadcasting network would be too costly.

The main band for broadcasting satellites for use by advanced countries in western Europe will be from $11.7-12.5 \mathrm{GHz}$. This 800 MHz has been allocated in Region I on an equal primary basis to broadcasting satellites, broadcasting, fixed and mobile (except aeronautical mobile) services. The conception is that there should be a frequency assignment planning conference as soon as practicable. At this conference the countries of Europe could decide how much of the 800 MHz should be devoted to European or regional coverage and how much to national coverage; for example, 800 MHz is wide enough to enable each country in western Europe to have four - programmes, because at these frequencies very narrow beams can be used and channels
can be repeated at suitable distances. A new footnote in the Radio Regulations provides that the terrestrial services will be in effect on a secondary basis to the broadcasting satellite service during the frequency planning process so as not to inhibit the planning. Once the plan has been settled, countries will know what frequencies remain outside the channels allocated to them and neighbouring territories for broadcasting satellites. These can then be planned on a national basis for their terrestrial services. Broadcasting satellite channels can be exploited in the first instance for community reception and later used for more powerful satellites giving individual reception to homes when this becomes technically and economically feasible.

The conference also allocated frequencies for broadcasting satellites higher up the spectrum, at $22.5-23 \mathrm{GHz}$ (Region 3 only) $41-43 \mathrm{GHz}$ and $84-86 \mathrm{GHz}$. But these are for long-term study and development rather than for use in the foreseeable future. As regards broadcasting satellites generally, the technical and regulatory constraints prevent broadcasting to other countries without their consent.

Amateur satellites

The conference agreed to the use of satellites by amateurs in the h.f. bands allocated exclusively to amateurs on a world-wide basis ($7,14,21$ and 28 MHz) and one higher band at $24-24.05 \mathrm{GHz}$. But the most useful allocation was at $435-438 \mathrm{MHz}$ which can be used in conjunction with the existing 144-146 MHz band.

Summary

To sum up, the conference, which concluded its six weeks sitting on 17th July, allocated all the important frequencies needed for the continued growth of the Intelsat system for the foreseeable future and beyond; for the new European system if it is required; and provided frequencies for use by new services with adequate safeguards to terrestrial services where safeguards are needed. The revised Radio Regulations will come into force on 1st January 1973.

Elements of Linear Microcircuits

11: F.M. radio receivers

by T. D. Towers,* м.B.E.

The electronics design engineer working in the domestic radio field is turning away from discrete transistors to the numerous special-purpose linear i.cs which are now available. However, it is evident that an i.c. for domestic radio application must meet quite a number of special constraints.

- It must be lower cost to the set manufacturer than discrete-component assemblies.
- Must be capable of being 'second sourced'.
- Its throw-away value must not be too high to permit economic servicing.
- Reliability should be higher than discrete assemblies.
- It should be able to work over widely different voltage rails (which usually means internal voltage regulator stages).
- Current consumption should be as low as discrete designs because dry-battery operation is often required. (This can conflict with the different voltage rail requirement.)
- It should be designed for easy handling, testing, installation and removal.

Before the linear i.c. arrived, a.m./f.m. set manufacturers had already had experience of block modules made with discrete components in the Mullard 'LP' range (LP1169/79 f.m. tuner blocks and LP1164/65, 1170/71 a.m/f.m. i.f. blocks). As a result, they had already solved some of the assembly problems involved in changing over from traditional separate component assemblies to the use of functional assemblies-which is after all what i.cs are.

Partitioning a.m./f.m. receivers

Different manufacturers adopt different approaches to the problem of how to divide up receiver functions for the separate i.c. packages required to make up the set. Until some degree of standardization is reached all we can do at this stage is to look at some typical examples.

If you are interested in the detailed problems of partitioning f.m. domestic radios, you will find a useful discussion of the topic in 'A.M./F.M. monolithic receivers' by P. E. Hermann, L. H. Hoke,
R. L. Petrosky and R. Wood (of Philco-Ford) in I.E.E.E. Transactions on Broadcast and Television Receivers, July 1968, Vol. BTR-14, No. 2 pp. 95-103.

Initially set designers tried to use general purpose professional linear i.cs (such as the $\mu \mathrm{A} 703$ and MC1550) for domestic receivers, but were unsuccessful because they were too costly.

Next, industry turned to developing special i.cs for high-performance professional f.m. applications, such as the RCA CA $3076 \quad 10.7 \mathrm{MHz}$ high-gain amplifier limiter and the CA3075 amplifier limiter detector. These could be integrated into excellent high-gain f.m. systems but the assembly costs could not compete with
conventional discrete transistor assembly in domestic f.m. sets. (A full description of the CA3075/6 and their applications can be found in 'High-performance integrated circuits for high-gain f.m.-i.f. systems' by R. T. Peterson in I.E.E.E. Transactions on Broadcast and Television Receivers, Nov., 1970, Vol. BTR-16, No. 4 pp 257-263.)

Another interesting development that pointed the way to current practice was the Fairchild set of i.cs μ A $117,718,719$, and 720 . These were all the same basic monolithic chip with different intérnal metallizing interconnection patterns which produced devices for various television, f.m. and a.m./f.m. applications. You can find more detail of these in 'Novel

Fig. 1. Coincidence (quadrature) f.m. detector system suited to i.cs in f.m. receivers; (a) simplified block diagram; (b) practical i.c. realization of half-wave detector; (c) full-wave detector.

Fig. 2. Typical circuit using the TAA661 f.m. i.f. amplifier and coincidence detector.
multi-purpose lii.cs introduce new concepts into circuit design' by David Bingham in I.E.E.E. Transactions on Broadcast and Television Receiver; July, 1967, Vol. BTR-13, No. 2 pp 108-115.

Detection

Over the years many different types of f.m. detection have been used. Most of them, such as the 'Fremodyne' (single detuned $L C$ circuit drive to detector), the 'Travis' (two LC circuits detuned on each side of i.f.), and the 'super-regenerative' detector, have fallen out of favour. With discrete transistors, the two systems with the widest commercial use are the Foster-Seeley discriminator (common in the U.S.A.) and the ratio detector (common in Europe). Neither of these is ideally suited to monolithic i.cs because they require carefully tuned balanced $L C$ circuits. With i.cs they are tending to be replaced by the coincidence (quadrature)
detector requiring only one tuned $L C$ circuit; by the phase-locked-loop detector, dispensing with inductances altogether; and by the diode-pump detector (also inductorless).
The diode pump or pulse-counter detector is attractive because it is so easy to set up, but to be really efficient it calls for a low intermediate frequency, around 100 kHz , which tends to rule it out for low-cost domestic receivers.
The coincidence detector appears to be preferred by most designers for $10.7 \mathrm{MHz} /$ i.f.,f.m. detection with i.cs. Fig. 1 illustrates its working. In Fig.1(a), the 10.7 MHz signal, built up to a square wave in a preceding limiting amplifier, is fed into terminal A. From A it passes direct to one terminal \mathbf{C} of the coincidence multiplier in one direction and it is also split off into a second channel B which contains a single tuned circuit (externally connected to the i.c.), the action of which restores the 10.7 MHz square wave to sine-wave form at terminal D . Thus both the square wave

Fig. 3. How the Mullard TBA690 integrated circuit incorporates in a single package all stages of an a.m./f.m. portable 9 V receiver except the f.m. front end, the a.m. /f.m. input stage and the a.m. and f.m. detectors.
and the sine wave are fed to the multiplier circuit. The signal frequency modulation varies the instantaneous frequency of both signals and, since the sine wave is subjected to a phase displacement due to the action of the tuned circuit, the coincidence detector produces an output at E consisting of a series of pulses of mean value proportional to the modulation frequency. Thereafter the integrator (a capacitor shunting the output resistance of the coincidence detector) recovers the audio from the f.m. r.f. signal and provides the necessary de-emphasís or top cut (European time constant $50 \mu \mathrm{~s}$, American $75 \mu \mathrm{~s}$). In i.c. form the detector multiplier circuit can provide half-wave or full-wave detection.

In Fig. 1(b) a half-wave detector, the average value of the output current in R_{L} is proportional to the frequency deviation of the input signal. The full-wave version (more complex, but less affected by noise) is given in Fig.1(c) and uses three, instead of two, pairs of differential long-tail transistors, but is similar in action.

The coincidence detector is becoming popular with i.cs in f.m. sets because the setting up of the detector involves the adjustment of only a single external coil, while giving performance similar to the more traditional, but more difficult to set up, Foster-Seeley and ratio detectors. Besides decreasing assembly and alignment time, the coincidence detector reduces the number of external passive components required.

TAA 661

One example of an i.f. amplifier using a coincidence detector is the SGS TAA661 which incorporates 25 transistors and 18 resistors in a single silicon chip. It is housed in a 14 -lead dual-in-line package and includes a three-stage limiter amplifier, an f.m. detector and an emitter-follower audio buffer pre-amplifier, with an internal voltage regulator circuit permitting operation on rail supplies from 6 to 18 V How simply it can be used in practice is demonstrated in Fig. 2 which shows the practical circuit for taking the output from a discrete component 10.7 MHz f.m. first i.f. amplifier stage and delivering a.f. to the volume control.

TBA 690

The TAA661 is for f.m. only. Some domestic receivers covering f.m. also incorporate a.m. This points to a different line of i.c. development characterized by the Mullard TBA690. This i.c., in a 16 -pin plastic dual-in-line package, comprises the functions within the shaded area of Fig.3, and can be seen to contain everything except the f.m. front end, the f.m. first i.f. (which can be switched to operate as a mixer oscillator on a.m.) and the f.m. and a.m. detectors. The integrated audio amplifier in the TBA690 can provide 500 mW into an 8Ω speaker on a 9 V battery, although the supply can be anything from 4.5 to 9 V . The quiescent current drain on the battery is only 22 mA ; this is comparable with discrete device
designs. (A companion i.c., the TBA700, can operate from 4.5 to 12 V on the rail and at 12 V can supply an output of 1.5 W . into 8Ω.)
It is not immediately evident from Fig. 3 that the TBA690 does not of itself supply the selectivity provided in a discretecomponent receiver by the r.f. front end tuned circuits and the fixed tuned i.f. circuits. In the arrangement of Fig.3, the r.f. selectivity is provided by the separate external input blocks, and the i.f. selectivity is provided by lumped $L C$ or ceramic filter circuits between the a.m. mixer oscillator/f.m. first i.f. and the i.c. input. Equally the two detectors call for external tuned $L C$ transformers. [A new i.c. has just been announced (CA3089, see Literature Received) which combines the following functions: i.f. amplifier, quadrature detector a.f. pre-amp, with outputs for a.g.c., a.f.c., muting (squelch) and tuning meter.-Ed.]

Stereo decoders

One area where monolithic i.c. techniques lend themselves is in stereo decoders. An example of this is the Siemens TBA450. Of the three standard decoder systems (matrix, switch and envelope), the TBA450 uses the matrix decoding system outlined diagrammatically in Fig.4. The output from a standard f.m. front end is taken after the detector, but without de-emphasis applied, and fed into three filters which separate the M (mono L + R) signal below 15 kHz , the S (stereo $\mathrm{L}-\mathrm{R}$) signal from $23-53 \mathrm{kHz}$, and the pilot signal at 19 kHz . The pilot signal is frequency doubled to 38 kHz and then controls a synchronous a.m. demodulator while the M and \mathbf{S} signals are matrixed to give independent outputs of the stereo left and right audio signals. The same system is employed in the TBA450. In this circuit the bandpass amplifiers are active filters which do not use inductances.

Phase-locked-loop

The phase-locked-loop technique referred to in the last article on a.m. receivers offers a way of avoiding the fixed tuned i.f. filters of the f.m. receiver. Fig.5(a) shows the functional p.II. sections in the Signetics NE561B linear integrated circuit, which will provide a demodulated audio output if fed directly with the 10.7 MHz output from a conventional f.m. mixer without any 10.7 MHz tuned circuits. The tuning element in the circuit is a voltage controlled relaxation oscillator whose frequency is determined by non-inductive components. The oscillator is designed so that the operating frequency can be varied over a limited range by a d.c. bias voltage. If the oscillator is rough-tuned near to the 10.7 MHz and its output is applied to the phase comparator, the comparator will give an output determined by the frequency and phase deviation of the v.c.o. from the input signal. This comparator output is amplified and filtered and fed back round the loop through the limiter to adjust the

Filter $1=$ low pass \quad Filter $2=$ bandpass round $38 \mathrm{kHz} \quad$ Filter $3^{\prime}=$ bandpass round 19 kHz
Fig. 4. Stereo decoder integrated circut block diagram of matrix decoder system.
v.c.o. frequency to bring it into frequency and phase step with the f.m. input. Thus the oscillator tracks the input signal and produces a strong continuous signal even if the input is discontinuous or noisy.

So far the circuit has produced a cleaned up, greatly amplified, copy of the input f.m. signal without using inductances. But the main interest of the circuit to us is that within the phase comparator loop an output signal has been obtained which is dependent on the carrier shift. Apart from its use to lock the v.c.o. onto the carrier, it also represents the
audio output of the demodulation system, because the amplitude of the loop control signal is proportional to the carrier frequency deviation . . . which is just the f.m. modulation. This enables the NE561B to be set up in a simple system such as Fig.5(b) to replace the complete 10.7 MHz i.f. strip up to the f.m. detector. As yet, phase-locked-loop i.cs operating directly at the f.m. broadcasting frequencies around 100 MHz are not practicable with existing monolithic technologies, but as the art develops it is possible that the local oscillator too can be dispensed with.

Fig. 5. Phase-locked-loop integrated circuit (Signetics NE561B) enabling complete inductorless substitute for conventional f.m. i.f. strip plus f.m. detector. (a) Internal functional sections of i.c., (b) connection as 10.7 MHz a.m. /f.m. i.f. strip up to volume control.

The multiplier feeding the amplifier A_{3} in Fig.5(a) is an additional a.m. detector that enables the NE561B to be switched to a.m. to provide an a.m./f.m. system. For this the a.m. is fed directly at the broadcast frequency into terminal 4 and the v.c.o. locks onto the carrier; the system providing detected audio output at terminal 1. [In last month's issue an article described a complete p.l.1. stereo decoder on a single chip which is manufactured by RCA.-Ed.]

Digital synthesis

Another approach to eliminating tuned circuits with i.cs is the digital frequency synthesizer, which combines the phase-locked-loop with a master crystal oscillator. Frequency synthesizer circuits have been designed that generate the required local oscillator frequencies for an a.m. and f.m. broadcast receiver. Selection of a station is accomplished by positioning switches to indicate the station's frequency. Fine tuning is not necessary. The receiver will not (for all practical purposes) drift, because the local oscillator is crystal controlled. Low-cost medium-scale integrated circuits (m.s.i.) are the building blocks of this. For a detailed account of this design, you should consult J. Stinehelfer and J. Nichols' 'A. digital frequency synthesizer for an a.m. and f.m. receiver' in I.E.E.E. Transactions on Broadcast and Television Receivers, October 1969, Vol.BTR-15, No.3, pp 235-243.

Thick film hybrid

Instead of packaging i.c. chips in multilead packages and supplying them to set manufacturers to mount with passive components, such as resistors and capacitors, on a printed circuit board, we are already seeing a logical development in which semiconductor manufacturers are themselves mounting the chips in thick film hybrids with the passive components to complete their functions printed and fired on the ceramic substrates. This produces a neat microcircuit suitable for plugging into sockets on the printed circuit board (which now tends to become merely an interconnection network between the microcircuits and the large nonintegratable components) and will remove many of the servicing problems found with discrete components or even linear monolithics soldered into position. With new subminiature i.f. transformers, about 5 mm square, it is now possible to mount them directly onto thick film hybrids.

Conclusions

Much is happening in the application of i.cs to domestic f.m. receivers, and developments are taking place along several different lines at once. It is difficult to see how things will finally develop, but in the not-very-distant future we can expect to find the set makers indicating a preference which will show itself by semiconductor manufacturers beginning to 'second source' some items.
(The concluiding article in this series will deal with i.cs in television receivers.)

Sixty Years Ago

September 1911. Our predecessors on the staff of The Marconigraph devoted much space to the social implications of the ever increasing acceleration of the technology machine. Sometimes the only intention was to make technical reports more readable. Today this is seldom done because the average engineer is bombarded with so much printed material he has time only to glance at a small fraction of it and to read even less. The change in approach is emphasized if one reads (if time allows) early technical articles.

For instance, in a report on the massive radio station at Cape Cod about half a page was devoted to the antics of two dogs kept at the station and the rescue of one of the animals, who had been caught in a trap, was described in detail.

The Cape Cod station was used to transmit the daily news to ships in the Atlantic and had the advantage of an automatic morse transmitter using paper tape input. Apparently once the huge generators were started the noise of the spark transmitter was 'terrifying' and the spark itself could be seen as a flickering light fifteen miles away.

At the receiving end on board a ship the transmission was recorded on paper tape and it was reported that a female passenger who said she understood all, after being shown around the wireless installation, wanted to know how the paper tape went from shore to ship without getting wet!

Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

LONDON

Sept. 1-3
Imperial College
Artificial Intelllgence
(British Computer Soc., 29 Portland P1., London WIN 4AP)
Sept. 6-10
City University
Electrical Network Theory
(I.E.E.E. Symposium, c/o The City University, St. John St., London EC1V 4PB)
Sept. 8 \& 9 Savoy Pl., W.C. 2
High Voltage Insulation in Vacuum
(Inst. Phys., 47 Belgrave Square, London S.W.1) Sept. 13-17
U.S. Trade Center, S.W. 1
U.S. Electromechanical \& Electronic Components
(U.S. Trade Canter, 57 St. James's St, LondonS. W. 1) Sept. 20-24

St. Katherine's, E. 1

Control and Instrumentation Exhibition

(Control \& Instrumentation, 28 Essex St, London W.C.2)

Sept. 28-Oct. 1
Savoy Pl., W.C. 2
Centralized Control Systems
(I.E.E., Savoy Pl., London WC2R OBL)

BRIGHTON

Sept. 7-10
University of Sussex
Human Locomotor Engineering
(I.Mech.E., 1 Birdcagé Walk, London S.W.1)

Sept. 8-10
Electron Mean-free Paths in Metals
Electron Mean-free Paths in Metals
(Inst. Phys., 47 Belgrave Sq., London S.W.1)

CARDIFF

Sept. 17-19
University College
Physics-From School Through Higher Education
(Inst. Phys., 47 Belgrave Sq., London S.W.I)

CRANFIELD

Sept. 1-5 Cranfield Institute of Technology Business and Light Aviation Show
(ITF-Diffe Exhibitions Ltd., 1-19 New Oxford St., London WC1A 1PB)

LANCASTER

Sept. 14-16
The University
Solid State Devices
(Inst: Phys., 47 Belgrave Sq., London S.W.1)
Sept. 23 \& 24 The Universit
Data Processing and Display for Inspection Purposes
(Inst. Phys., 47 Belgrave Sq., London S.W.1)

LOUGHBOROUGH

Sept. 7-10
University of Technology
Displays
(I.E.E., Savoy Place, London WC2R OBL)

MANCHESTER
Sept. 1-3
Multivariable Control System $\begin{gathered}\text { The University } \\ \text { Design and }\end{gathered}$
Applications
(U.K.A.C. 1971 Convention Secretariat, Savoy PI., London WC2R OBL)

SHEFFIELD

Sept., 7-9
The University
Computers in Medical and Biological Research
(I.E.E., Savoy Place, London WC2R OBL)

SWANSEA
Sept. 1-8
University College
British Association Annual Meeting
(B.A., 3 Sanctuary Buildings, 20 Gt. Smith St., London S.W.1)

TEDDINGTON
Sept. 22 \& 23
National Physical Lab.
High Voltage Electron Microscopy
(Inst. Phys., 47 Belgrave Sq., London S.W.1)

OVERSEAS
Sept. 1-3
Sendai
Antennas and Propagation
(Dr. K. Nagai, Inst. of Electronics and Communication Eng., Kikai-Shinko-Kaikan Bldg., Shiba Park 21-1-5, Minato-ku, Tokyo'105)
Sept. 4-12
Milan

Radio-TV Show

(Associazione Nazionale Industrie Elettrotecniche ed Elettroniche, Via Donizetti 30, Milan)
Sept. 10-19
Amsterdam
Firato Electronics Exhibition
(RAI Gebouw N.V., Europaplein 8, Amsterdam)
Sept. 13-19
Budapest
Micronica 71-Electronic Component Show
(Micronica 71, Budapest 5, P.O. Box 454)
Sept. 19-23
Chicago
Electrical/Electronics Insulation
(E. A. Boulter, G.E.C., 1100 Western Ave., West Lynn, Mass. 01905)
Sept. 21-23 San Diego
Engineering in the Ocean Environment
(G. K. Tajima, Bissett-Berman Corp., 3939 Ruffin Road, San Diego, California 92112)
Sept. 23-25
Washington
Broadcast Technical Symposium
(R. M. Morris, 60 Sunset Lake Rd., RDI, Sparta, NJ. 07871)
Sept. 27-29
Turin
Elettronica '71-Conference on Applications of Electronics in Industry
(Elettronica 71, Corso Massimo d'Azeglio 15, 10126 Torino)

The Liniac

A new linear inverting and amplifying circuit and some other applications of low-level Darlington transistors

by J. L. Linsley Hood

One of the most interesting of recent developments in the discrete semiconductor components field has been the use of integrated circuit techniques to provide smallsignal Darlington-connected transistors of the general form shown in Fig. 1(a). A suggested symbol is given in Fig. 1(b), and this is used in the remainder of this article.

While it is practicable to construct Darlington pairs from separate transistors if the collector current of the second transistor is fairly large, at the sort of current levels typically employed in small signal circuitry it is much more difficult. If the second transistor hàs, say, a current gain of 400 and a collector current of 0.5 mA , the collector current of the first device must be less than $1.25 \mu \mathrm{~A}$, and at this order of collector current the current gain of most normal discrete small-signal transistors is very low, and their other characteristics are also impaired.

When, however, a monolithic Darlington transistor is made, the junction areas and doping levels of the input transistor are adjusted so that it will function effectively at a very low collector current. Also, because of the very low collector-to-input base capacitance, it is possible to obtain good performance at moderately high frequencies, even with high dynamic impedance

(a)

(b)

Fig. 1. (a) Darlington transistor arrangements; (b) suggested symbol for monolithic Darlington devices.
collector loads, which give high stage gain values.
Ideally, a low-level amplifier element should have a high input impedance, a relatively low output impedance, a high gain, a low noise level, should be linear, should be simple and tolerant in its power supply requirements. The normal (bipolar) junction transistor does not meet the input and output impedance requirements at all well, and in addition is intrinsically nonlinear as a voltage amplifying element, so that it is almost essential to arrange stages in cascade with substantial amounts of overall negative feedback to remedy these defects. However, on consideration it is apparent that the non-linearity of the bipolar transistor is an input characteristic effect, and for any given base-emitter circuit impedance is directly related to the magnitude of the input signal voltage. Within limits, the output signal swing is unimportant in this respect. It follows from this that for any given output signal level, the higher the gain of the stage the better its linearity will be. The monolithic Darlington transistor offers a satisfactorily high input impedance with a very high value of current gain, and if an arrangement can be found in which this can be induced to give a high voltage gain the major circuit requirements will have been met. Moreover, such a stage will be phase inverting which is very convenient, for a number of applications, whereas the conventional transistor feedback pairs of Fig. 2 are non-inverting systems.

Methods of obtaining high stage gain

Several techniques are available for increasing the stage gain of a conventional transistor amplifier. However, some of these are unhelpful in preserving the linearity of the system, and the principal remaining technique is to employ a collector load which has a dynamic impedance substantially larger than its d.c. resistance. This could be a "bootstrapped" load resistor, an "active" (i.e. signal dependent) load, or a constant-current source. Of these arrangements the third is by far the most straightforward and free from side-effects, and such a constant-current load can be provided by the use of a conventional junction fieldeffect transistor, for which the circuit required, as shown in Fig. 3, is simplicity itself. The characteristics of this arrange-
ment are shown in Fig. 4 for various values of the source resistor R_{1}.

Since the dynamic resistance of such a system is, effectively proportional to the reciprocal of the slope of the drain-current/ drain-voltage graph (i.e., the flatter the higher) it can be seen that there are conditions when this dynamic impedance is very high, and it could then be employed as the load in the collector circuit of a transistor amplifier stage. This would give a very high

Fig. 2. Feedback stabilized non-phaseinverting transistor pairs. (a) $n-p-n / n-p-n$ feedback pair. Gain depends on R_{1}, R_{2} (as shown $M \approx 100$). Input impedance $\approx 68 \mathrm{k} \Omega$. Open loop gain ≈ 2000. (b) $n-p-n / p-n-p$ pair. Gain depends on R_{3}, R_{4} (as shown $M \approx 100$). Input impedance $\approx 50 \mathrm{k} \Omega$. Open loop gain ≈ 2000.
stage gain while still allowing a reasonable value for the collector current, and a convenient range of voltage drop values across the load. Moreover, by the suitable choice of f.e.t. or source resistor the collector current of the amplifying transistor can be precisely defined, which is frequently an advantage.

Circuit conditions for high stage gain

The stage gain of a simple single-stage transistor amplifier is given by the formula

$$
M=\frac{1}{h_{r e}-\frac{h_{i e}}{Z_{L}}\left(\frac{1+h_{o e} \cdot Z_{L}}{h_{f e}}\right)}
$$

If the terms ($h_{i e} \cdot h_{o e}-h_{f e} . h_{r e}$) are written as Δh_{e}, the so-called " h determinant" for the common emitter configuration, this equation simplifies to

$$
M=\frac{h_{f e} \cdot Z_{L}}{\Delta h_{e} \cdot Z_{L}+h_{i e}}
$$

and if Δh_{e} is sufficiently small, as is mostly the case, this approximates to

$$
M \approx \frac{h_{f e} \cdot Z_{L}}{h_{i e}}
$$

If the dynamic value of Z_{L} is large, and the input impedance of the amplifier transistor is small the stage gain can be very

Fig. 3. Constant current load using f.e.t.i depends on f.e.t. and value of R_{1}. Dynamic impedance in range $200 \mathrm{k} \Omega-2 \mathrm{M} \Omega$.
high. (However, $h_{i e}$ depends on the collector current of the transistor, and increases as this is reduced. For this reason, high gains normally require both a certain minimum of collector current and also a drive impedance which is small in relation to $h_{\text {ie }}$.)

As will be seen from Fig. 4, an f.e.t. will act as a high dynamic impedance constantcurrent source even when the source resistance R_{1} has zero value, provided that the source-drain voltage exceeds what is known as the "pinch-off" voltage, which is typically two or three volts. The current which will flow in this condition (zero source-gate bias) is known as the $I_{D S S}$ and will depend on the device. For f.e.ts such as the $2 N 4302$ and the 2 N 5457 this will be in the range $1-3 \mathrm{~mA}-\mathrm{a}$ convenient value of collector current at which to operate a typical small signal Darlington amplifier stage. When such a transistor amplifier is employed with an f.e.t. collector load it is found that stage gains of the order of 2500 to 5000 can be

Fig. 4. Drain current character istics for sharp cut-off f.e.ts.
obtained, even with source impedances of the order of $100 \mathrm{k} \Omega$ or more.

It will be appreciated that an amplifier stage of this type using a high dynamic impedance collector load will have an output impedance which is so high that the shunting effect of almost any external load would lead to a serious reduction in gain. To complete the practical circuit, therefore, an output emitter follower is required, and this can with advantage be a further monolithic Darlington transistor, although in practice a normal high-grain small signal transistor may be nearly as good and somewhat cheaper.

The final form of the proposed high gain circuit combination is shown in Fig. 5(a), and for convenience as a "shorthand" form in Fig. 5(b). This circuit arrangement has been found to be very versatile as a rela-
tively low-frequency amplifier stage, and to possess a number of useful qualities as a phase-inverting circuit element, and the name "liniac" (linear inverting amplifying circuit) is suggested for this configuration.

Liniac circuit characteristics

General considerations. In its simplest form, the liniac consists of a bipolar transistor connected as a grounded-emitter amplifier, à f.e.t. used as a constant current load, and an output emitter follower. If the output circuit impedance is fairly high, say $10 \mathrm{k} \Omega$ or greater, this can be a normal small-signal transistor such as the BCl 109 or BCl 84. Also, if a source resistor is used with the f.e.t. of a value sufficient to reduce the load current to some $10-50 \mu \mathrm{~A}$ (at which level the dynamic impedance is extremely high)

Fig. 5. (a) Basic liniac configuration; (b) symbol proposed for liniac.
and if a very high input impedance is not required, a simple bipolar transistor of similar type can also be used as the amplifier stage. This is the system which is to be preferred if the lowest possible noise level is required, and is still capable of very high stage gains if the drive impedance is fairly low. But, for most applications, a monolithic Darlington device is preferred in this position since this has a lower collector/ base feedback capacitance and therefore gives a better-open-loop h.f. response.

The liniac arrangement can be made with devices of complementary symmetry, with appropriate adjustments to supply polarity, and since the f.e.t. is used as a two-terminal unit either n-channel or p-channel devices can be employed provided that they have suitable $I_{D S S}$ and pinch-off voltage values. A suitable arrangement using a single very low noise $\mathrm{p}-\mathrm{n}-\mathrm{p}$ input transistor is shown in Fig. 6.

Stage gain. Because of the low emittercircuit impedance of the amplifier transistor when a Darlington device is used in this position, and because of the high dynamic impedance of the collector load, the gain of the circuit is very high-typically of the order of several thousands-even when fed from a high source impedance, and is limited, at low frequencies, mainly by the output impedance ($Z_{o e}$) of the amplifier transistor, which is effectively in parallel with the collector load. At higher frequencies, the effect of the collector shunt and Miller capacitances causes the gain to fall at -6 dB /octave. Typical gain/frequency characteristics are shown in Fig. 7.

Distortion characteristics. For the reasons mentioned above, this configuration will be expected to possess a significantly lower order of non-linearity than the conventional bipolar transistor amplifier using a normal resistive load. In the event, the nonlinearity is reduced by the same factor by which the gain of the stage is increased in comparison with the normal bipolar transistor operated at the same collector current. This is typically $10-15$ times, which is a valuable feature in audio amplification circuitry. The output-voltage/total-harmonic distortion characteristics are shown in Fig. 8. Since in normal circuit applications overall negative feedback will be employed, and this will reduce the non-linearity even further, a stage with a gain of $50 \times$ can be built with less than 0.005% t.h.d. at 1 kHz at 1 V r.m.s. output.

Noise levels. The noise characteristics of the circuit, at gain levels in excess of some $20 \times$ (assuming some externally applied negative feedback) depend mainly upon the characteristics of the device used as the amplifier transistor, and on the relationship between the collector current and the input circuit impedance. The best available low-noise small-signal transistors give noise figures which are about twice as good as the equivalent monolithic Darlington connected devices. For this reason, when the liniac circuit is to be used under conditions where the noise level is of importance, such as in the input stage of a high-gain amplifier, it

Fig. 6. Very low noise modified liniac arrangements. Gain 2000-4000.

Fig. 7. Typical open-loop gain/frequency characteristics of liniac using Darlington input stage (as circuit of Fig. 9(a)).

Fig. 8. Output signal voltage/distortion characteristics of liniac stage without negative feedback -Fig. $9(a) . V_{c}\left(T_{1}\right)$ $=8 \mathrm{~V}$.
may be preferred to use the simple bipolar type, but in this case a lower input circuit impedance is essential.
In common with other transistor types the noise level at the output is reduced as the collector-emitter potential is reduced. For example, reducing the collector voltage from 8 V to 2.5 V reduces the broad band noise by about a factor of two, but also, of course, reduces the available output voltage swing. This technique should, therefore, be used with discretion.
At stage gains less than 20 , the noise
contribution due to the f.e.t. may also become important, since the circuit can equally well be visualized as an f.e.t. amplifier with a bipolar constant current load, and if it is intended to use the stage with an output voltage of less than 100 mV , a low-noise f.e.t should be used. The use of an unbypassed source resistor in the f.e.t. circuit will also reduce its noise contribution.

Supply-line ripple rejection. One of the more desirable qualities of small-signal amplifying stages is that they should not be affected to any large extent by ripple, voltage fluctuations or signal feedback from the h.t. supply line. This helps to eliminate hum, instability, and unexpected sources of distortion or cross-talk. Since the collector load of the transistor amplifier stage is a good constant-current source, and in typical circuit applications the input bias is not derived from the h.t. line the output signal is largely isolated from supply fluctuations. This advantage is diminished somewhat by the fact that the amplifier transistor has also a high dynamic impedance, but nevertheless the supply line rejection charac-teristics-assisted by externally applied negative feedback-are much better than those of the normal bipolar amplifier circuit.

Supply and output voltages. In typical liniac circuit applications, such as those shown in Fig. 9 et seq, closed-loop d.c. negative feedback is employed to stabilize the working voltage levels. This allows precise control of the collector potential of the first transistor stage, and thereby determines the potential drop across the f.e.t. collector load. Since it is undesirable that this should operate on the curved portion of its characteristic (cf. Fig. 4) the h.t. voltage level should be chosen so that there is at least 3 V across the f.e.t. at the peaks of the signal swing. Since the amplifier transistor should also be biased so that there is a minimum of some 2 V across it at the bottom end of the signal swing, the appropriate voltage levels may be determined simply if the output voltage swing is specified.

For example, if it is desired that the output should be 2 V r.m.s., which is 2.83 V peak, the collector voltage of the amplifier transistor should be at least 2 plus 2.83 V say 5 V . Similarly the h.t. supply should be 3 V plus 2.83 V above this level-say 11 V . Since the forward base-to-emitter voltage drop of the Darlington transistor is some 0.9 V , the output level corresponding to the desired first transistor collector potential will be 4.1 V , assuming a Darlington device is used as the output emitter follower. If a simple transistor is employed the desired output voltage level will be 4.5 V .

The Darlington transistor used in the first stage will conduct when the base emitter potential exceeds $0.8-0.9 \mathrm{~V} R_{1}$ and R_{3} are chosen to give this-Fig. 9(a). Because of phase shift introduced by the interaction of C_{1} and C_{2} in this particular circuit, there will be a "hump" in the gain curve at about 10 Hz (with the capacitor values quoted) if the circuit is driven from a low-impedance source. If this is inconvenient it can be removed by a suitable input time constant
high-pass $C R$ circuit.
In Fig.9(b) the circuit has been elaborated to incorporate loop negative a.c. feedback to give a very-low-distortion amplifier with a gain of 50 and a wide bandwidth -10 Hz to 80 kHz at 3 dB -with the same d.c. levels and an input imepdance of $1 \mathrm{M} \Omega$.

A simpler wide bandwidth arrangement using a lower input impedance is shown in Fig. 9(c). In this and the previous circuit a "virtual earth" feedback arrangement is employed. It should be remembered that in such cases the gain is dependent on the input circuit impedance as well, and an allowance should be made for this in the design considerations. There are obviously a large number of permutations of these basic circuits, but some specific applications are

Fig. 9. (a) Typical high-gain liniac amplifier stage $V_{\text {out }}=2$ V r.m.s. (max.), Gain ≈ 2500. Input impedance $\approx 100 \mathrm{k} \Omega$. (b) High input impedance liniac arrangement. $V_{\text {out }}=2$ V r.m.s. (max.). Gain ≈ 50. Input impedance $\approx 1 \mathrm{M} \Omega$ (and $120 \mathrm{pF})$. Bandwidth $(-3 \mathrm{~dB}) 10 \mathrm{~Hz}-$ 80 kHz . (c) Low distortion linigc amplifier stage. Gain ≈ 50. T.H.D.< 0.01% at 2 V r.m.s. output (1 kHz).

Fig. 10. Very low noise, low-distortion magnetic pickup input equalization stage. $Z_{\text {in }}=47 \mathrm{k} \Omega$. Gain $=50$ at 1 kHz . T.H.D. $<0.01 \%$ at 0.5 V r.m.s. output at 1 kHz .
shown below, in which facility for output to input loop negative feedback is exploited.

Liniac applications

Magnetic pickup (R.I.A.A.) equalising stage. Because of the very high loop gain which can be obtained with this stage, even when a simple bipolar input transistor is employed, a very low noise, low distortion R.I.A.A. characteristic correction circuit can be made with this arrangement giving a gain of 50 at 1 kHz , and less than 0.01% t.h.d. at up to 0.5 V r.m.s. output. A suitable circuit arrangement is shown in Fig. 10.

Low-distortion oscillator. A very low distortion oscillator, employing a pentode valve amplifier, was described by A. R. Bailey in 1960^{1}. In this the phase shift in a slightly unbalanced parallel " T " circuit is used to provide the necessary positive feedback to sustain oscillation, with the advantage of very good frequency stability. A circuit based on the same principle, but employing a liniac, is shown in Fig. 11. Since the number of variables is somewhat inconvenient for a continuously variable frequency oscillator, it is suggested that the capacitors should be switched to give a series of fixed frequencies.

The distortion given by the prototypes of this, in the frequency range $200 \mathrm{~Hz}-5 \mathrm{kHz}$, is certainly below 0.005% at $1 \mathrm{~V} \mathrm{r.m.s}. \mathrm{out-}$ put. As such this circuit provides a useful reference standard for testing amplifiers, distortion meters and notch filter circuits. Incidentally the resistors used were normal high-quality carbon-film types, and no advantage was found, in terms of any measurable improvement in distortion, in changing over to wire-wound units as originally recommended by Bailey. However, the performance of the thermistor has been found to have an important influence on the overall distortion figure (of five units tried one was found to worsen the distortion to some 0.05%). It is thought that the electrolytic capacitors should also be of high quality.

Pre-amplifier tone control circuit. The very high gain, high input impedance and low noise and distortion characteristics of this circuit make it a natural choice for a Bax-andall-type of negative feedback preamplifier tone control circuit, and a suitable arrangement giving approximately 20 dB of bass and treble lift and cut at 40 Hz and 15 kHz with respect to 800 Hz , is shown in Fig. 12. The worst case (maximum lift) distortion of this circuit is better than 0.02% at

Fig. 11. Very low distortion oscillator. T.H.D. $<0.005 \%$ at 1 Vr.m.s. output.

$1 \mathrm{Vr.m.s}$. output. This is at least 20 times better than the conventional (and very widely used) single transistor circuit under similar worst case conditions.

Other circuits using Darlington transistors

F.E.T.-bipolar feedback pair. Because of the relatively high output impedance of the normal grounded-source junction f.e.t. amplifier, it is not possible to construct f.e.t.

Fig. 12. Liniac employed in tone control stage. Max. output 3 V r.m.s. Source impedance $₹ 10 \mathrm{k} \Omega$. Midpoint gain $10 \times$ $\pm 18 \mathrm{~dB}$ lift/cut at 50 Hz and 15 kHz w.r.t. 800 Hz . Worst case t.h.d. $<0.02 \%$.
-bipolar feedback pairs of a form analogous to the excellent circuit arrangements typified by Figs. 1(b) and 1(c), without the overall gain being much reduced by the inevitable mismatch at the drain of the f.e.t. However, if the second transistor is a Darlington device, the mismatch is avoided, and open loop gains of $4000 \times$ are feasible, in the non-inverting mode. The circuit arrangements is shown in Fig. 13. For comparison, the same circuit with a 2 N 4058 or BC214 as Tr_{2} has only a gain of 100 .

Improved bipolar feedback pair. The circuit of Fig. 2(b) can itself be improved by the

Feedback resistor inserted at X to
provide feedback control of gain
Open loop gain $\simeq 4,000$
Fig. 13. F.E.T./Darlington pair. High-gain high-input impedance.
use of a Darlington transistor as $T r_{2}$. The use of an MPSA65 p-n-p device gives loop gains in excess of 6000 , for example. A suitable circuit of this general type is shown in Fig. 14
D.C. bootstrap circuit. The fact that the emitter of a Darlington transistor will follow the base signal level very accurately, with a constant potential difference of about 1 V , allows the connection of a load resistor between the base and emitter as shown in Fig. 15, which multiplies the effective dynamic impedance of the resistor at all frequencies down to d.c. by a figure which approaches the Darlington transistor current gain. The f.e.t. amplifier circuit has a gain of about 250 .

Fig. 14. Improved bipolar transistor
feedback pair. $Z_{\text {in }} \approx 1.5 \mathrm{M} \Omega$. Gain ≈ 100.

Fig. 15. D.C. bootstrap circuit (phase inverting). Gain ≈ 250.

Inexpensive plastic encapsulated and other relatively low-cost devices of this type are available from Motorola, Fairchild, SGS, and GE. Type numbers are MPSA 12, 13 and 14, BFX 66 and 67, and D16P4 for n-p-n types; and MPSA 65 and 66 (Motorola) for $\mathrm{p}-\mathrm{n}-\mathrm{p}$ devices. The MPSA 12 Motorola unit is a low noise pre-amp type.

Reference

1. Bailey, A. R., Electronic Technology, Feb. 1960, pp. 64-67.

H.F. Predictions September

Solar activity is now steadily declining as this table of lonospheric Index 1 I 2 shows.

	1966	1969	1971
Jan.	15	95	94
Feb.	21	104	85
Mar.	33	127	83
Apr.	37	122	74
May	46	118	70
June	55	119	(70)
July	55	114	(68)
Aug.	53	122	(65)
Sept.	42	115	(63)
Oct.	47	110	(59)
Nov.	64	106	(57)
Dec.	66	108	(55)

Forecast values are given in brackets. The years 1969 and 1970 were almost identical and constitute the maximum of the current sunspot cycle. A minimum is expected in 1975.

Letter from America

The Consumer Electronics Show (C.E.S.) was held at the end of June in the exhibition centre at Chicago's McCormick Place. A few of the 300 exhibitors had extra-mural demonstrations in local hotels and although there was a well-organized charter bus service the humid, steamy heat with temperatures around $100^{\circ} \mathrm{F}$ made travel somewhat uncomfortable. Inside the show the scene was similar to the old Radiolympia in London with rows of elaborate stands, TV displays and loudspeakers making a continuous babel of sound. And, of course, each stand had its group of aggressive salesmen in newly pressed suits with here and there a gaily dressed (?) girl giving out leaflets and carrier bags. But there was a difference-the C.E.S. is for trade only and so the atmosphere was, in some respects, more serious. Also, the large hall was well air-conditioned and, note this, free champagne was given to the visitors on a terrace overlooking Lake Michigan. It certainly beats coffee on Hammersmith Road! Attendance for the four-day show was 36,200 ; more than 20% higher than last year's figure. Some very interesting TV sets were to be seen-including one from JVC shaped like a ball-but emphasis was definitely on audio, and four-channel sound in particular. Almost every stand boasted some kind of demonstration room.

The majority of exhibitors were using matrix, or synthetic, four-channel systems which are proliferating at an alarming rate causing a great deal of confusion. One dealer summed it up by saying "The situation has now got out-of-hand and we don't know which system is best and what will work with which encoder". On the other hand, another dealer was more optimistic and in his view "Most systems are compatible enough for a record or tape made by system A to produce an acceptable four-channel surround sound when played back via a decoder intended for system B". The long-awaited C.B.S. SQ disc system* was being demonstrated at a nearby hotel and comparisons were made with 15 i.p.s. master tapes. One of

[^4] front signals.-Ed.
the records had a commentary by David Frost (very popular this side of the Atlantic) and in spite of the high volume levels, it was one of the most convincing demonstrations I have yet heard. C.B.S. have already announced that they will release at least 50 SQ discs by the end of the year and that agreements have been made with Sony for the production of decoders and playing equipment.

Ampex were using both discrete and matrix systems but most tape recorder firms were content to use discrete four-channel tapes and at least three had cassette machines. The $4 / 8$ track format was also popular

Pioneer released details of a new miniature (Hipac) stereo cartridge. This is one-quarter the size of a standard eight-track type and smaller than a normal cassette. Koss were showing four-channel headphones. Triumph had headphones with a built-in five-transistor radio.

A number of f.m. stations are using Electro-Voice encoders and, Allied, a large chain concern with several hundred shops throughout the country, are busily demonstrating the EV system. Their competitors Lafayette, are equally committed to the Dynaco system which has the merit of requiring little extra equipment.

An extra-mural demonstration was given by Ray Dolby in conjunction with f.m. station WFMT. This station played a selection of tapes some of which. used the Dolby mode. Several Dolby 'black box' equalizers have been lent to listeners in
various locations and comments invited. As might be expected, those equipped with Dolby units-especially in fringe areas-reported spectacular improvements in signal /noise. Most of the listeners without Dolby units (who were advised to turn down their treble controls to produce a more balanced sound) preferred the extra brightness. So far then, tests show that the Dolby system as used for broadcasting is compatible enough to avoid conflict with the F.C. C.
Back at the show for a quick look at TV. Last year many observers predicted a big swing to i.cs but -this has not materialized. The main reason is the higher cost involved. No doubt, higher production will bring down prices-but this is like the old chicken-and-the-egg story. Meanwhile, RCA have dispensed with the valve e.h.t. rectifier in their colour sets, thus making them all solid-state. One model uses no fewer than 12 modules that plug into two p.c. 'mother' boards-fine for the service man. The great majority of exhibitors of TV receivers were Japanese, which underlines the extent of. Far-East competition. GE say they will discontinue production of radio receivers next year-leaving no large U.S. maker of domestic receivers.
The 60 th anniversary edition of the Wireless World brought back some memories and I was especially interested in John Gilbert's letter mentioning Ted Rosen of Ultra. I was a tester for that firm at their Harrow Road factory around 1930 and I well remember a radio receiver called "The Switchboard to Europe". I also have fond memories of Brownie Wireless, maker's of crystal sets and the Wates Company where an Everyman Four was used for testing phono-pickups These monsters tracked at four ounces and were fitted with an attachment for 'swans neck' gramophone tone arms!

But my clearest memory is listening to KDKA with a home constructed 1 -valve set which had a coil wound on a wine glass (lowloss!). These days we have colour TV, videotape, quadraphonic sound, satellite communications and so on. All these are exciting enough but, for me, nothing can compare with the thrill of listening to KDKA from that attic in Camden Town more than 40 years ago.
G. W. TILLETT

Field-sequential Colour Television Receiver

1-Introduction and basic principles

by T. J. Dennis, B.A.

All systems of colour TV in general use today have as their display a system whereby the three primary coloured pictures are spatially superimposed, whether by projection of the red, green and blue images using the Schmitt system, by the use of three c.r.ts and half-silvered mirrors, or with the three pictures on one c.r.t. whose screen consists of triads of independently controllable phosphor dots, as in the R.C.A. Shadowmask ${ }^{1}$ tube.
All three systems are capable of excellent results, but are difficult and expensive to set up. For example, in the projection system complex distortions have to be introduced into the scanning waveforms to correct for the fact that the projectors cannot be co-sited. Much the same problem is encountered with Shadowmask tubes, hence the joys of convergence adjustments. Any system using separate electron sources is prone to grey-scale tracking errors.
The Shadowmask is able to reproduce a range of colours because the spatial colour resolution of the eye is poor: close to a screen the dots can be easily perceived, but the overall impression is still one of the additive colour resultant. Temporal colour resolution is equally weak, as may be seen by rotating a disc carrying segments of, say red and blue, when the colours rapidly merge to magenta as the speed of rotation is increased. This is the basis of the field-sequential process, whereby the three coloured images are presented to the eye in turn. It is the oldest form of colour display, a version having been demonstrated by J. L. Baird in 1928. ${ }^{2}$ In the author's opinion it is capable, within its limitations, of giving results of the highest quality.

Perhaps the major of these limitations is caused by the eye itself: perception of luminance, or brightness, changes in time, as well as in space, are particularly good. While a rotating dise of red and blue will appear magenta, it also carries a marked brightness flicker due to the luminance difference between red and blue. Flicker only disappears when its frequency is

[^5]higher than the flicker-fusion rate of the eye, a highly variable quantity found on average in the region of 30 Hz .

For this reason it is normally considered necessary to increase the basic field rate from that of, say, a 50 field monochrome standard to 150 fields per second in order to maintain the original luminance flicker rate. This demands a trebling of the signal bandwidth, other factors being constant.

Noting the discouraging comments of others on the subject of f.s. systems retaining the existing monochrome field rates ${ }^{3}$, it was decided to attempt to build and operate such a unit, to work from the

[^6]normal broadcast colour transmissions
A standard PAL decoder ${ }^{4}$ provides the three (narrow band) colour difference signals. These are then switched in turn to the grid of a monochrome c.r.t., the change taking place during the field blanking period (see Fig. 1). The luminance (wideband) signal is fed to the c.r.t. cathode as usual, after its passage through a 600 ns delay line. This is practically the only major modification needed to the monochrome receiver which is the source of all the signals used. The net result is that the set can be made to display, field sequentially, the black-and-white equivalents of

[^7]

Fig. 1. Block diagram of field-sequential colour receiver equipment. The input is provided by a normal monochrome receiver.
the red, green and blue images of a colour transmission.

A disc carrying sections of primary red, green and blue filters rotates at $16 \frac{2}{3}$ r.p.s. in front of the c.r.t. Its rotation is phase locked to the field sync pulses to ensure that when the red picture is being scanned, the red filter is in place, and so on.

It may be noted that two-thirds of the available colour information is wasted in this system, but it should also be recalled that considerably more than two-thirds of the energy imparted to the electron beams in the Shadowmask tube is dissipated as heat in the Shadowmask!

Phase lock of the colour wheel is required, to ensure that the correct filter is in place at the correct time. This is achieved by a simple feedback system using a signal derived from a coil wound on a U-shaped transformer limb, and mounted in front of a bar magnet fixed to the centre of the wheel. The coil output waveform is square in form, with slow sinusoidally changing edges. A four-diode bridge is used to gate through an 8 ms portion of this waveform, which has, a manually controllable d.c. potential superimposed on it for coarse speed adjustment. The bridge output is integrated, amplified, and with suitable d.c. level adjustments, used to drive the motor armature via a 2 N 3055 emitter follower.

Assuming phase lock, the gating pulse is placed symmetrically about the midpoint of the positive going edge of the feedback waveform. If the motor speeds up for any reason, the waveform reaches a higher level than it would normally when sampled, and the integrator output moves in a positive direction. Because of the inverting amplifier, the armature voltage is reduced, and the motor slows down. By similar reasoning it can be shown that a reduction in motor speed will also be compensated. Not surprisingly, the system oscillates about its stable position when any velocity transient is applied; setting time from switch-on is about 20 seconds in the prototype, but this is immaterial as it takes the line timebase considerably longer to warm up on the displaying set. Programme switchings, when field sync may be interrupted, tend to upset phase lock, but this effect has not been found troubleseome.

Results

Before embarking on the construction of a PAL decoder, a generator was built to produce the $4 f, 2 f$ and f, where $f=$ line frequency, squarewaves needed for the blue, red and green, respectively, signals of the standard colour bars, viz. white, yellow, cyan, green, magenta, red, blue and black. These were applied to the linear gates. The resulting non-composite output was then passed through an existing camera channel, and emerged with a full set of 405 line-standard sync pulses, for ease of application to a monitor.

The resulting wildly flashing vertical stripes, when viewed through a locked colour wheel, became the familiar bars. Colour fidelity, even with the rather crude ex-stage lighting filters in use, was in general excellent, the yellow being the

Fig. 2. Front view (a) and section (b) of a simple colour wheel.
least well presented as on all colour sets. The reddish tint obtained when observing a white object through the wheel (due to the red filter having excessive transmission) was neatly compensated by the blueish tint of the c.r.t. phosphor.

Passers-by who ventured unsuspecting into the lab. during this stage of development were invited to peer through the disc, and report the colours seen. Most were correct without prompting, but two insisted they saw blue and red separately on the magenta bar. This only tended to happen at high brightness levels, and is an effect not observed by the author.

Owing to interlacing, successive lines
on the screen (not per field), when displaying any but saturated primary colours, will differ in shade. However, since the colour detail resolving power of the eye is poor, the effect could only be seen within about 12 in . of the 14 in . c.r.t. used. Bearing in mind that these initial tests were on 405 lines, with a 625 -line colour picture at normal viewing distance, the effect is unnoticeable.

After the encouraging results obtained with the colour bars, a PAL decoder was built, with slight modifications, notably in elimination of dependence on the line output stage of the receiver: an additional sync separator was added, the line pulses obtained being used to trigger a monostable and produce an accurately timed burst gating pulse. The burst gate itself was in the form of a four-diode bridge, all of which will be discussed more fully next month.

At first the decoder was operated without a delay line; i.e., in the PAL-S mode. Oscilloscope examination of $\mathbf{R}-\mathrm{Y}$ for the colour bars with careful adjustment of L_{6} of the May 1969 W.W. article enabled results to be obtained which did not differ appreciably line by line. Stability over long periods, however, was not good due to mechanical vibration and thermal changes. Hanover bars were then obtained. Addition of a PAL delay line effected a complete cure.
Adjustment of the $\mathbf{R}-\mathbf{Y}, \mathbf{B}-\mathbf{Y}$ and $G-Y$ drives to the sequential switches enabled colour pictures to be obtained whose fidelity was indistinguishable from Shadowmask results, with the advantages of full luminance bandwidth (a notch filter has been found unnecessary; some commercial receivers do not include them), and total elimination of the necessity for complex convergence and grey-scale tracking adjustments. With the latter, even if the filters do not give an exact white, there can be no failure, since the same gun is used for all three pictures. Problems will arise, however, if any attempt is made to provide switched compensation for filters of wildy incorrect characteristic.

As mentioned above, field-sequential systems working at low field rates suffer from luminance flicker effects. Another problem is colour fringing, obtained when there are differences between adjacent fields; i.e., when the scene contains movement.

Fortunately, both have proved a far less serious drawback than was expected.

Perception of flicker depends on many factors including background light level, degree of dark adaption and size of the field under consideration. Thus, viewing a f.s. picture under well lit conditions results in the flicker being highly objectionable: the colours are desaturated, and may not be seen at all. This seems to be true whatever the brilliance of the displayed image, which has in any case to be high to overcome the effects of reflected light from c.r.t. screen and colour wheel.

The improvement when pictures are viewed in either total darkness, or very low ambient lighting is considerable, particularly once dark adaption has taken
place. Flicker due to the luminance difference between the red, green and blue images in a black-and-white transmission is negligible, while there is no sensation of colour at all.

In general, flicker in coloured pictures increases with increasing area of colour, its saturation and luminance level, and is greater for the primary colours, particularly green, than the complementaries. The latter is true, since the mark-space ratio with the saturated primary colours is $1: 2$ (i.e., one field out of three is displayed), while for saturated cyan, magenta and yellow, this ratio is $2: 1$.

Most programme material does not, however, carry large areas of saturated colour, and the viewer may be unaware of flicker, depending on the content of the programme and its degree of viewer involvement'.

A warning is due here: it is probably unwise for anyone susceptible to flicker, as in some cases of epilepsy, to view colour television in this way, as it contains, as well as major components at $16 \frac{2}{3} \mathrm{~Hz}$ and 50 Hz , smaller components at 25 and $8 \frac{1}{3} \mathrm{~Hz}$ due to interlacing. The latter particularly is close to the so-called danger frequency of 7 Hz . However, the author; who does not suffer from epilepsy, has used himself as guinea-pig in viewing trials as long as three hours, with no ill effects, apart from a crick in the neck from the difficult viewing position necessary with the prototype: the colour wheel is 10 in . in diameter, and close to the eye, while the raster is on a 17 in . c.r.t. 4 ft away.

The second problem of colour splitting is, of course, only apparent on images carrying movement; it has, however, been found that any movement has to be quite fast before splitting becomes visible, the gesticulations of an orchestral conductor being particularly susceptible. In most cases, though, the subject of attention in a scene is kept stationary on the screen, while the background moves. An example is a horse-race, where the rails can be seen by a conscious effort as red, green and blue bars.

Possible forms of colour wheel

The prototype colour wheel was a simple affair, and is shown in Fig. 2.

Two aluminium discs were cut out using a woodworker's routing machine. One was $\frac{1}{8} \mathrm{in}$. thick, the other 16 gauge. The three cutouts were then made with the same tool, which proved remarkably efficient, a bolt being placed through the centre of the disc and router plate so that the cutting edge of the router was at the required radial distance. The disc was then rotated slowly, leaving the radial arms of the wheel. Straight sections were cut with a hacksaw. Pieces of red, green and blue gelatine filters (as used for stage lighting) were sandwiched between the discs, which were clamped together by the screws through the machined mounting plate, and 6BA screws into holes tapped in the $\frac{1}{8} \mathrm{in}$. disc periphery.

The angular position of the magnet in

Fig. 3. Spiral colour wheel. The spiral cut-outs are represented by the position of scanning lines seen through the disc at $1 / 12$ th field intervals. This figure is drawn for a raster of dimensions 6×4.5 units, the central area having a diameter of 4 units.
relation to the pickup coil is adjusted so that the required section of filter moves down the c.r.t. with the field scan carrying that colour, giving a maximum segment of the wheel through which the correct colours can be seen. This implies that the colour picture.can only be viewed with one eye through the side of the disc; however, if the viewer moves back about two feet, the right-hand side of the picture can be seen with the left eye and vice versa, with only small (top right, bottom left) areas cut off.

An alternative form. of disc uses spiral areas of colour, which follow the field scan down the screen, and enables the colour picture to be seen through the top of the wheel. The spiral wheel can be made slightly smaller than its simple counterpart, thus a specimen for operation directly in front of a 10 or 11 inch c.r.t. is feasible.

Fig. 4. Disc radius for given raster size. Spiral colour wheel mounted in front of the c.r. tube. Rotation is anticlockwise. The automatic phase-control components are mounted at the rear of the equipment on the colour wheel shaft.

Fig. 3 shows the basic form of the spiral holed wheel, while the calculations for the diameter of it for given raster size are illustrated in Fig. 4.

Let the dimensions of the raster be $4 x$ by $3 x$, assuming a standard $4: 3$ aspect ratio. Then in triangle OAB, $\mathrm{OB}^{2}=r^{2}$

$$
\begin{aligned}
& =\mathbf{A B}^{2}+\mathrm{AO}^{2} \\
& =4 x^{2}+(3 x+y)^{2}
\end{aligned}
$$

$=13 x^{2}+6 x y+y^{2}$, whence, by taking the square root, r can be determined.

The dimension y is determined by the physical size of the driving motor, and other factors such as mounting arrangements. but a useful rule for a minimum value is to make $y=$ one-third picture width.

The radius required for this type of disc is clearly less than that for the simple wheel first described:

For a simple wheel, radius ${ }^{2}=18.25 x^{2}$ $+8 x y+y^{2}$, by similar reasoning to that above, compared with $r^{2}=13 x^{2}+6 x y+y^{2}$ for the spiral disc.

Spirally cut colour drum in front of the cathode-ray tube.

Perspex is an ideal material from which to fabricate a spiral wheel, as the diameter can then be made the minimum possible. It is very easy to work, the routing machine again being ideal for cutting out the two $\frac{1}{8}$ th inch thick discs required. The discs are fitted to an identical mounting boss to that used with the simple wheel, but care should be taken with clamping bolts, as the plastic tends to shatter under pressure. Aluminium discs of radius dimension y should be placed on each side of the Perspex at the centre to spread this load. Periphery clamping screws should be countersunk 6BA types, and no longer than necessary, to minimize windage. Again, they should not be overtightened.

In order to obtain a 9.6 in $\times 7.2$ in (12in diagonal) colour picture, a 23 inch diameter specimen of this type has been manufactured; with successful results. Careful balancing of a wheel of this size is
necessary, and this was carried out by placing it, with a 6 in length of shaft through the centre, between two horizontal edges, and adding pieces of lead to the screws through the protective aluminium discs, until the wheel would remain stationary, in any angular position.

The following instructions, in conjunction with Fig. 3, can be used to construct the spiral holes. The figure can be conveniently drawn on the protective paper covering the Perspex sheets at purchase.

1. Calculate the desired radius of the disc from the selected values of x and y. $(x$ can be determined from the relation $5 x=$ diagonal of raster used, since the diagonal and two of the sides of a $4: 3$ raster make the -3-4-5' triangle of elementary geometry.)
2. Divide the height of the picture into-say-twelve sections of length a (i.e., $a=3 x / 12$).
3. Divide a 120° segment of the disc into the same number of segments, here twelve of ten degrees each, drawing radial lines.

Synchronizing magnet and pick-up coil.
4. Draw a line of length $4 x$ perpendicular to, and bisected by, the radius pointing towards the top of the paper, at a distance $12 a+y$, (i.e., height of picture $+y$), from the centre of the circle.
5. Repeat step (4) with each radial line, moving in an anticlockwise direction, and reducing the distance of the perpendicular from the centre by length a each time, until the 13 th radius is reached, when a line distance y from the centre should be drawn.
6. Repeat steps (3) to (5) for the remaining 120° segments of the circle, starting where the innermost perpendicular of the previous spiral was drawn.

This process builds up an envelope of the spiral holes needed, which can be completed freehand. Using a greater number of increments will, of course, increase the accuracy, but tend to clutter the diag ram somewhat.

Slices of the coloured filters should be cut to shape, and sandwiched between the discs after removal of all paper but that carrying the design. Small pieces of adhesive tape can be used to secure the filters in position during final assembly, after which all areas of the wheel needed to be opaque should be coated with blackboard paint.

Voltage Reference Source

Constant-current drive with $\mathbf{0 . 0 8 \%}$ stability

by H. A. Cole*, m.I.E.R.E.

Specially constructed zener diodes having very low temperature coefficients (less than $\pm 0.002 \% / \mathrm{deg} \mathrm{C}$) are now readily available at moderate cost, and are intended for applications in which a highly stable voltage reference is required. However, unless the operating current of such diodes is maintained within closely defined limits, the advantage of a low temperature coefficient will be lost due to voltage variations occurring across the internal impedance of the diode.

There are many ways in which a constant operating current can be provided for a reference diode but one of the simplest and most effective method is by use of the 'ring-of-two' circuit introduced by Williams in 1966 (references 1). Unfortunately, although this circuit performs extremely well over a wide range of supply voltage variations, its inherent temperature dependence (about $-4 \mathrm{mV} / \mathrm{deg} \mathrm{C}$) makes it unsuitable for use in circuits subjected to wide variations in temperature. The principal cause of its high temperature dependence is variations in $V_{b e}$ of the two transistors (typically $-2 \mathrm{mV} / \mathrm{deg} \mathrm{C}$ each).

At first sight it might appear feasible to compensate for $d V_{b e} d T$ by selecting zener diodes used in the ring with temperature coefficients identical to those of the transistor $V_{b e}$. Unfortunately, although such an arrangement is not impossible, the difficulty of obtaining a zener diode having the desired voltage and temperature coefficient (of the desired sign) is considerable. A better solution is to use zener diodes which have a negligible temperature coefficient and then connect an ordinary forward-biased diode in series with each. An arrangement like this lends itself readily to the use of a dual transistor with matching $V_{b e}$, as the base-emitter junction of one transistor can be used as the compensation diode for variations in $V_{b e}$ of the other transistor. Unfortunately, because of unequal currents in the two junctions, complete compensation cannot be expected. A circuit based on this arrangement, but using transistors with unmatched baseemitter voltages, is now described.
A high-stability reference diode- D_{3} is supplied with a constant current of

[^8]

Fig. 1. To compensate for temperature sensitivity in the transistor $V_{b e}$ of the ring-of-two voltage reference, dual transistors with matching $V_{b e}$ are used. One base-emitter junction is used as the compensation diode for $V_{\text {be }}$ varlations of the other transistor. From Fig. 2, circuit is required to give $7.5 \pm 0.2 \mathrm{~mA}$ through D_{3}.
7.5 mA by the remainder of the circuit connected to operate as a ring-of-two, each half providing 3.75 mA (Fig. 1). The reference voltage for each half of the ring is formed from the series connection of a zener diode having a very low temperature coefficient (typically $+0.5 \mathrm{mV} / \mathrm{deg} \mathrm{C}$ at 3.75 mA), and the base-emitter junction of a transistor operated as a forward-biased diode. The overall temperature coefficient of each series connection is about -1.5 mV / $\operatorname{deg} \mathrm{C}$ and provides reasonable temperature compensation for variations in $V_{b e}$ of the transistor which it supplies. In Fig. 1, therefore, the zener voltage of D_{1}, plus the $V_{b e}$ drop of $T r_{2 b}$ forms a temperaturecompensated reference voltage for the transistor $T r_{2 \mathrm{a}}$. In a similar way $\operatorname{Tr}_{2 \mathrm{a}}$
is provided with a temperature-compensated reference voltage consisting of the drop across D_{2} and the $V_{b e}$ drop of $T r_{1 \mathrm{~b}}$.

The current flowing in each half of the ring is adjusted to the desired operating current by the variable resistors. These are wire-wound trimming potentiometers having temperature coefficients of 80 p.p.m. The fixed resistors are metal-film types of 1% tolerance, having temperature coefficients of 50 p.p.m.

At the recommended operating current of 7.5 mA , the temperature coefficient of D_{3} (type 1 N 825) is at its minimum value, as shown by the curves ${ }^{2}$ of Fig. 2. When the operating current $\left(I_{z}\right)$ of D_{3} is increased to $10 \mathrm{~m}^{\prime} \mathrm{A}(2.5 \mathrm{~mA}$ above the recommended value), the temperature coefficient (measured over the range -55 to $100^{\circ} \mathrm{C}$) is about $+0.002 \% / \mathrm{deg}$ C. A similar coefficient, but of opposite sign, is obtained for the same temperature range when I_{z} is reduced to 5 mA (2.5 mA below the recommended value). It may be concluded, therefore, that the temperature coefficient of D_{3} may be considered independent of operating current, and within the manufacturer's specification of $\pm 0.002 \% /$ $\operatorname{deg} \mathrm{C}$, provided I_{z} is held constarit at any value within $\pm 33 \frac{1}{3} \%$ of 7.5 mA .

The same cannot be said for the dependence of the zener voltage $V_{D_{3}}$ on the operating current as, from the $25^{\circ} \mathrm{C}$ curve of Fig. 2 , an increase of 2.5 mA above the recommended 7.5 mA causes a change in D_{3} of 34 mV , an increase of 0.55%. This is due to the dynamic impedance of D_{3} which is about 12 ohms at $25^{\circ} \mathrm{C}$ and 7.5 mA . A 2.5 mA reduction in the recommended 7.5 mA (at $25^{\circ} \mathrm{C}$) causes a change in D_{3} of 37 mV , a reduction of about 0.6%. Thus

$$
\begin{equation*}
\frac{d V_{D 3}}{d I_{z}}=\frac{0.6 \%}{2.5 \mathrm{~mA}}=0.24 \% / \mathrm{mA} \tag{1}
\end{equation*}
$$

referred to $I_{z}=7.5 \mathrm{~mA}$.
Comparing the two coefficients, a 26% increase in I_{z} from 7.5 to 9.45 mA causes $V_{D 3}$ to change by 0.47%. On the other hand, a 26% increase in temperature from 25 to $100^{\circ} \mathrm{C}$, causes $V_{D 3}$ to change by only 0.15%. The I_{z} coefficient is therefore more than three times greater than the temperature coefficient and in most instances will determine the overall stability of the circuit shown in Fig. 1.

To maintain an overall stability of $V_{D 3}$ versus I_{z} no worse than that of $V_{D 3}$ versus

Fig. 2. Because the $V_{D_{3}}$ stàbility with respect to I_{2} is worse than with temperature-graph shows three times worse $-I_{z}$ is restricted to $7.5 \pm 0.2 \mathrm{~mA}$, for a stability of 0.05\%.
temperature, the total variation in I_{z} should produce a change in $V_{D 3}$ which is small compared with that produced by a total excursion of temperature within the accepted range. Assuming, for example, a working temperature range of 0 to $50^{\circ} \mathrm{C}$, the expected overall stability of $V_{D 3}$ versus temperature is $50 \times 0.002=0.1 \%$.

If the maximum allowable variation of $V_{D 3}$ versus I_{z} is made 0.5%-half that allowed for the total temperature variation -then from expression (1) I_{z} must be maintained within $\pm 0.2 \mathrm{~mA}$ of the recommended value, i.e. I_{z} must lie within the limits 7.3 to 7.7 mA . This, therefore, is the current

Fig. 3. From these measured temperature stability curves, overall stability is 0.065% referred to the $30^{\circ} \mathrm{C}$ value.

Fig. 4. From these measured voltage stability curves overall stability is 0.016% or 1 mV referred to 30 V .
stability demanded from the circuit shown in Fig. 1 for an overall stability of $V_{D 3}$ of $\pm 0.15 \%$.

Experimental results

The performance of the circuit shown in Fig. 1 was evaluated by measuring the currents in each half $\left(I_{1}\right.$ and $\left.I_{2}\right)$ and $V_{D 3}$ for various values of supply voltage (V_{S}) and temperature. Measurements were made using a five-digit voltmeter.

In the first experiment, I_{1} and I_{2} were set approximately equal (at $30^{\circ} \mathrm{C}$) to 3.75 mA $\left(I_{z}=7.5 \mathrm{~mA}\right)$, with $V_{s}=30 \mathrm{~V}$. The temperature was varied from 0 to $50^{\circ} \mathrm{C}$ with V_{s} steady. As can be seen from Fig. $3 I_{z}$ in-

Fig. 5. Relation between currents in the two halves for varying V_{s} shows very close 'tracking'.
creases almost linearly with temperature, its average slope over the full temperature range being about $0.035 \% / \mathrm{deg} \mathrm{C}$. The corresponding slope for $V_{D 3}$ is about $0.002 \% /$ deg C, its overall stability referred to $30^{\circ} \mathrm{C}$ value being better than 0.065%.

In the second experiment, the temperature was held steady at $30^{\circ} \mathrm{C}$ and V_{s} varied over the range 24 to $40 \mathrm{~V}\left(I_{1}=I_{2}=3.75 \mathrm{~mA}\right.$ at $V_{s}=30 \mathrm{~V}$). In Fig. 4 the I_{z} curve has a positive coefficient of about $0.04 \% / \mathrm{V}$. The curve for $V_{D 3}$ has an overall stability (referred to the $30-\mathrm{V}$ value) of better than 1 mV i.e., 0.016%, and within the resolving capability of the voltmeter, this corresponds to a voltage coefficient of less than $0.001 \% / \mathrm{V}$.

The relationship between I_{1}, I_{2} and I_{z}, for variations of V_{s}, is shown in Fig. 5 . Currents I_{1} and I_{2} track very closely at all points and make almost identical contributions to the total current I_{z}.

Conclusion

The circuit shown in Fig. 1, when operated at temperatures between 0 and $50^{\circ} \mathrm{C}$, and with supply voltages between 24 and 40 V , produces a reference voltage which has an overall stability of better than 0.08%.

It is expected that even better results would have been obtained if the dual transistors used in Fig. 1 had matching base-emitter voltages.

References

1. P. Williams 'Constant-current circuit' (letter). Wireless World, Sept. 1966, p. 456.
G. N. E. Pasch, 'Constant-current circuits' (letter). Wireless World, May 1967, p. 228.
P. Williams, 'Ring-of-two reference'. Wireless World, July 1967, p.318-22.
2. Motorola Ltd, 'Temperature-compensated reference diodes 1N821-9'. Data sheet DS8007.

Electronic Building Bricks

15. Measuring information

by James Franklin

Throughout this series there have been frequent references to 'information' and how it may be represented electrically and processed in electronic systems. By now most readers will have understood that this 'information' is not merely something which we read or hear, but can be a varying physical quantity such as the height of the mercury in a thermometer or an electromotive force coming from a microphone. Within electronic systems information is conveyed as signals, waveforms or electric states. When we design communications or other processing systems it is often necessary to be able to measure this infor-mation-or, more precisely, the rate at which the information has to be conveyed. This is because equipment for handling a high rate of information is more difficult to design, and costlier, than equipment for a low information rate (e.g. a closed-circuit television system as against a telephone circuit) so it is uneconomic to provide for a higher information rate than you really need. How, then, are information, and information rate, measured?.

Engineers measure information in units called 'bits', which is a contraction of 'binary digits'. Information rate is measured in bits per second (telegraph engineers call them bauds). The binary digit is an element which may have one or other of two distinct states. Represented on paper these could be 'yes' and ' $n o$ '; the digits ' 1 ' and ' 0 ' as in the binary number system;* a black area and a white area; or a hole and the absence of a hole (in punched cards or tape). Represented in electrical form these states could be the 'on' and 'off' states of a switch; two different voltages; two different currents; the presence of a pulse and the absence of a pulse. Such a principle can be applied to any physical variable.

The binary digit is used as a measure of information for two reasons. First, it allows a choice to be made from two entities and thence, by further sub-division, a choice from a whole family of entities. Secondly, in electrical form the two possible states of the binary digit can be represented very clearly and non-ambiguously (e.g. on and off). Fig. 1 shows how a choice may be made of one entity (the letter F) from a family of

[^9]

Fig. 1. Showing how one symbol may be selected from a set of eight by a series of left/right binary choices.

Fig. 2. The binary choice principle of Fig. 1 applied to values in voltage/time graphs, i.e. signals. At (a) the signal is defined by selection from eight levels of voltage; at (b) by selection from 16 levels.
entities (an eight-letter alphabet) by a series of three binary choices (left or right). Therefore the number of bits of information contained in the knowledge that one letter has been selected from an alphabet of eight ${ }^{\dagger}$ is 3 . If this whole selection is made in, say, a tenth of a second the information rate is 30 bits per second.

Now let us see how this principle can be applied to information in electrical signals. First of all turn Fig. 1 on its side and in place of the eight letters write a family of eight voltages on a scale, then add a horizontal time scale to allow a signal to be represented as a voltage/time graph. The result is Fig. 2(a). We can now select by binary choices any one voltage from a family of eight voltages, and the information contained in the knowledge that this particular voltage has been selected is 3 bits. The signal is not actually drawn in as a continuous voltage/time graph line but is defined approximately by the sequence of points marked where the invisible graph line passes through the individual voltages. If we doubled the number of voltages in the family to 16 the signal would be defined more accurately by more points, as shown in (b), but because more binary choices would be required to allow this, the information content in any one point on the graph would become 4 bits. In theory to define any signal perfectly would require an infinite number of points and votage levels. In practice it is not all that great; for example, a television signal calls for a minimum of 8 binary choices- 8 bitswhich means selection from a family of 256 voltage levels.

The information rate of the signal in Fig. 2 (a) is determined by the time intervals between the voltage points defining the graph, and here this varies between 60 milliseconds (giving 16.6 bits/second) to 360 milliseconds (giving 2.8 bits/second). In practice the engineer has to allow for the highest information rate necessary for the class of signal he is dealing with. For example, a television signal calls for a maximum information rate of about 11 million bits/second, while a broadcast sound signal needs a maximum rate of about $30,000 \mathrm{bits} /$ second and a telephone signal a maximum rate of $8,000 \mathrm{bits} /$ second.

[^10]
Sampling Oscilloscopes and Sampling Adaptors

A simple explanation of how sampling is applied to oscillography and the benefits that can be obtained

by E. B. Callick* and A. Lawson*

The design and development of radar, communications equipment, fast computers, counters and timers depends upon accurate display of high-frequency waveforms. Because currently available general-purpose oscilloscopes do not give acceptable performance above 100 MHz , special wide bandwidth oscilloscopes have been developed, but their design becomes increasingly complex and expensive as the bandwidth is increased. This is due mainly to the difficulty of designing a cathode-ray tube and deflection system to give adequate brightness and deflection sensitivity. The limit set by the present state of the art is around 250 MHz , but within the next few years this may bè extended to 500 MHz with a corresponding increase in cost.

An alternative way of displaying high-frequency waveforms is called signal sampling which is a means for displaying or recording waveforms which are above the upper frequency limit of the indicating instrument. In a typical case, signals at frequencies up to 1 GHz can be displayed using a tube and deflection system with a bandwidth of only 150 kHz . The sampling unit can either be part of the oscilloscope or an entirely separate unit.

Unlike a conventional oscilloscope, on which the waveform of the signal to be observed is drawn during a single \mathbf{X}-sweep in a time related to the period of the input signal, a sampler builds a replica of the waveform over a period covering many cycles of the input signal. It will be assumed, for the purposes of description, that the input signal is applied to a sampling gate which is opened for a very short time once in each input cycle. Each time the gate is opened the sampler measures the input signal and causes a dot (or sample) to appear on the face of the c.r.t. which represents the amplitude of the input waveform at the time the sample was taken. The sampler has a memory circuit which enables each dot to be displayed until shortly before the next sample is taken. It also provides a scan signal which places each dot at the correct position on the X -axis. The frequency at which the gate opens is made lower than the input frequency, so that each sample represents

[^11]a different, later part, of the input signal. Thus a replica of its waveform is built from a number of samples taken over a period equal to many cycles of the signal. Because the memory retains a signal representing the amplitude of the sampled waveform, it is necessary only to increase or decrease that signal by an amount representing the increment in signal amplitude between suc̉cessive samples. This up-dating of the memory is done in a short gating period during and after sampling. It is not essential that a sample be taken during each cycle of the input signal. If the sampling frequency is such that the gate is opened once during every tenth, hundredth or thousandth cycle of the input signal, this' will produce a
delayed by 50 ns before being applied to the sampler. As the trigger and gate generator circuit operate in about 40 ns , this gives a 10 ns visible delay on the display (i.e. the first sample can be takèn 10 ns before the signal arrives at the sampler, so allowing the leading edge of pulses to be displayed).

After the initial trigger signal is derived from the input waveform there is a delay of about 40 ns before the sampler and memory gates are opened and the first sample is taken. During the 2μ s when the memory charges, the display is blanked, the staircase generator advances one step, and the c.r.t. spot moves to the required position where it is displayed until the next sample is taken. The staircase is used for

Fig. 1. A typical oscilloscope sampling system.
corresponding increase in the effective bandwidth of the sampling system, but the time taken to build the replica waveform will also increase in the same proportion. This implies that an authentic display will be obtained only when the input signal is time invariant over the period in which image is built up.

Fig. 1 is a simplified block diagram of a typical sampling system. Fig. 2 shows how a replica of one cycle of input signal is produced. To allow time for the trigger circuit to operate, the input signal is
two purposes; first to position the display spot horizontally during the blanking period and secondly to increase the trigger circuit delay so that successive samples are taken increasingly later after the initial trigger. As this always occurs at the same point on the input signal waveform, the increase in trigger delay with staircase amplitude ensures that successive samples are taken later and later during the input cycle so that the whole of the input signal waveform is sampled as the staircase progresses.

Fig. 2. How one cycle of the input signal is reproduced in a sampling system.

The staircase resets when a fixed level is reached so that a constant amplitude X -scan is obtained. The number of steps per scan can be varied from about 50 to 1000 , allowing the display to be built up from any number of dots (samples) in this range.
The effective scan rate of the display is set by adjusting the sensitivity of the trigger variable delay circuit so that staircase steps cause the required incremental delay between samples. The oscilloscope sensitivity is adjusted by varying the gain of the sample amplifier. If a sufficient number of samples is used to build the display, the dots will merge to give a continuous outline as on a conventional oscilloscope.

A typical sampling oscilloscope may have sampler and memory gating periods of 350 ps and $2 \mu \mathrm{~s}$ respectively. The minimum time between samples is roughly $30 \mu \mathrm{~s}$. The time taken to build a replica is proportional to the sampling interval, so that this should be kept to the minimum, but this makes design of the gating circuits more complex and expensive. The chosen figure of $30 \mu \mathrm{~s}$ is a working compromise between these two conflicting requirements. When the input signal has a period of $32.35 \mu \mathrm{~s}$ or less, one sample is taken every 32.35μ s so that the time taken for one complete X-scan of 1000 samples is roughly 32 ms . For input signals with periods greater than $32.35 \mu \mathrm{~s}$ (frequencies below approximately 30 kHz), one sample is taken from each cycle.

At low frequencies this results in a very slow X-scan. For example, an input signal frequency of 1 kHz (1 ms period) results in an X-scan time of 1 second if 1000 samples are used to build the display. Thus the effectiveness of sampling for visual displays is limited by display flicker for low repetition rate signals unless a long
persistence display tube is used.
The parameters which limit the performance of a sampling system are the signal gating period and the ability of the memory circuit to generate a sigñal which is at all times representative of the input waveform.

The maximum frequency at which the system will operate is determined by the signal gating period because the sampler output is proportion미 to the mean signal level during this time. Thus the sampler output will decrease rapidly when the signal period falls below 700 ps , and be zero at 350 ps. This implies that the frequency response of the system extends well above 1 GHz . It is independent of the bandwidth of the indicating oscilloscope provided this is sufficient for it to follow the variation in memory output from sample to sample. With a memory gating period of 2μ s this implies a bandwidth not less than 150 kHz . This çan be regduced at the expense of brilliance of the trace by extension of the blanking period. In practice, the blanking signal generated usually has a duration slightly longer than the memory gating period, so that acceptable performance can be obtained with oscilloscopes having bandwidths down to 100 kHz .

The fidelity of the sampling system is determined by the ability of the memory to be correctly up-dated during its gating period. In simple terms, the memory is a capacitor charged by a control circuit which can deliver a limited current during the gating period.

Accurate representation of the input signal will therefore depend on the difference in amplitude from sample to sample. With a large number of samples per scan this increment will be small, permitting the sampler to build an accurate replica of the input waveform. As
the number of samples is reduced, the increment will become progressively larger, so that ultimately the memory will not be fully up-dated during its gating period. Thus the response of the sampler to a sinewave input will diminish in amplitude as the frequency increases above a critical value, and representation of a fast rising step function be degraded so that the risetime appears longer. The maximum possible number of samples should therefore be used to ensure accurate representation of the input signal. This will be accompanied by a corresponding increase in the time taken to build the replica waveform. If this is unacceptable, the number of samples per scan may be reduced until distortion of the displayed waveform sets a lower limit to the sampling rate. The response of the sampler is also modified by the delay line transmission characteristics, which become a major obstacle at frequencies much above 1 GHz .

An understanding of the basic principles of sampling enables a sampling oscilloscope or adaptor to be used as easily and reliably as a conventional oscilloscope. The number of samples per scan used to build a replica of the input signal is typically variable over a range of at least 50 to 1000 . This allows the number of samples per scan to be reduced when signals with low repetition rate are examined and so permit building of a replica image in a reasonably short time. Degradation of the waveform which occurs when the number of samples per scan is insufficient to allow an accurate replica to be built may cause inexperienced users to doubt the authenticity of sampled displays. Correct operation is obtained when the maximum possible number of samples per scan is used. Authenticity is then limited by the
intrinsic capability of the instrument.
Against the obvious advantages of sampling both from the operational and cost points of view must be set two inherent properties of sampling systems which may prove to be disadvantageous in some cases. First, 'single shot' operation is not possible, as samples must be taken from many input signal cycles to build a display. Secondly, the scan rate is slow when the input signal repetition rate falls below about 1000 Hz . The effect of slow scan rate can be largely overcome by using a c.r.t. with a long-persistence phosphor so that display flicker is reduced. It should be noted that slow scan rate is
an advantage when it is required to record the sampled waveform, as a wide bandwidth recording system is not required.

An oscilloscope or sampling adaptor such as we have considered is ideal for measurements of c.w. and pulsed waveforms in v.h.f. communications and radar equipment. The typical fastest effective sweep rate of $0.1 \mathrm{~ns} / \mathrm{cm}$ enables fast computer and counter logic waveforms to be examined in detail, and time measurements such as signal path delays and semiconductor signal transit times to be made easily and accurately. Circuit faults caused by parasitic
oscillations or ringing due to fast transients often cannot be detected with general purpose oscilloscopes. Such effects are easily located with a sampling oscilloscope which will often bring to light unsuspected design faults.

A sampling oscilloscope or sampling adaptor is therefore a good alternative to a general purpose oscilloscope at frequencies up to 50 MHz provided that the input signal repetition rate is above about 100 Hz . At higher frequencies its performance is superior to that of expensive special purpose wideband oscilloscopes except when 'single shot' displays are required.

Sound Synthesizers

A sound synthesizer comprises a system of voltage controlled oscillators and amplifiers, modulating networks, and combining and keying facilities. For a synthesizer to be of value to a composer the sound generated must be fully prescribed by switch positions. Only then can the system be brought under sensible control.

Three new synthesizers have been introduced in the U.K.-two as imports from America, the third home grown.

Tonus of Massachusetts make the ARP 2500 and the smaller 2600 systems, both available from F.W.O. Bauch Ltd, 49 Theobald St, Boreham Wood, Herts.

The 2500 system for all its complexity and versatility avoids 'patchcords' by employing a modular bus-bar system with midget slide switches. The input, output and control of each module is determined by a vertical slide that connects it to any horizontal bus-bar.

In this manner controls can be cascaded and waveform shapes combined in almost any pattern. The 2600 system combines keyboard and sound generators in a neat portable assembly operating from the mains. Bauch are holding a series of lecture-demonstrations and readers can ring 01-953 0091 for details.

From Electronic Music Studios (London) Ltd (49 Deodar Road, S.W.15), the Synthi A attache case synthesizer sells at less than $£ 200$ and provides a considerable variety of effects, as may be judged from the photograph.

Elapsed Time Graph for Tape Recording

A simple method for determining the remaining recording time on partially used tapes

by B. W. Lingard*

Any user of a tape recorder will, sooner or later, wish to know the length of recording time still available on partly recorded tracks. If he has been methodical and noted the duration of existing recordings the answer is simple-if not, it is only very approximately obtainable. Graduated "protractors" are available which can be fitted on top of the spool and the time read off However, the graduations are extremely close over the outer third of the reel and are correct only when the reel hub is of the correct diameter and the tape of the nominal thickness. The digital counter reading which on most recorders is proportional to the number of turns of the left-hand supply spool, has no linear relationship to recording time. A straight line graph is not obtainable even if logarithmic graph paper is available. A graph (curved) can be plotted on linear graph paper, but a different graph will have to be plotted for each reel size and tape thickness - in some cases for different makes of tape, because of the variation in hub diameters and tape thickness. What are the relationships concerned?

A reel of tape when full has N_{T} turns and an outer radius of $\boldsymbol{R}_{\mathbf{2}}$ inches. If the hub radius is R_{1} inches it follows that the mean radius is $\left(R_{1}+R_{2}\right) / 2$ and that the tape length
$L_{T}=2 \pi \frac{R_{1}+R_{2}}{2} N_{T}=\pi N_{T}\left(R_{1}+R_{2}\right)$
However, if the tape thickness is T inches it is also apparent that
$N_{T}=\frac{R_{2}-R_{1}}{T}$ and hence $\frac{1}{T}=\frac{N_{T}}{R_{2}-R_{1}}$
If N_{1} turns are supplied from this reel (on the l.h. spool) the radius falls from R_{2} to $R_{2}-N_{1} T$, and the length delivered is

$$
\begin{align*}
L_{1} & =2 \pi \frac{R_{2}+R_{2}-N_{1} T}{2} N_{1} \\
& =\pi N_{1}\left(2 R_{2}-N_{1} T\right) \tag{3}
\end{align*}
$$

Recorded time is proportional to length so that

$$
\begin{equation*}
\text { Time } \propto \frac{2 R_{2}}{T} N_{1}-N_{1}^{2} \tag{4}
\end{equation*}
$$

and the relationship is of the form

$$
y \propto A x-x^{2}
$$

[^12]Strangely enough a suitable graph can be constructed using a square law graph upside down! Consider, with a square law graph each ordinate is placed at a distance from the $1 . \mathrm{h}$. origin proportional to the square of the number of the ordinate i.e. $s \propto x^{2}$. If such a graph is constructed up to the value x_{T} and then inverted the ordinates will now be found to be distant from the new 1.h. origin by

$$
\begin{equation*}
s \propto x_{T}^{2}-\left(x_{T}-x\right)^{2}=2 x_{T} x-x^{2} \tag{5}
\end{equation*}
$$

It follows that if a square law graph is constructed and inverted a graph of time (vertical linear scale) against counter reading will plot as a straight line provided that :

$$
\begin{equation*}
\frac{2 R_{2}}{T}=2 x_{T} \quad \text { or } \quad x_{T}=\frac{R_{2}}{T} \tag{6}
\end{equation*}
$$

In practice T varies between makers (for the same nominal thickness of tape) and it is best to substitute from (2)

$$
\begin{equation*}
x_{T}=\frac{R_{2} N_{T}}{R_{2}-R_{1}} \tag{7}
\end{equation*}
$$

However an additional complication arises in that the counter does not usually count turns directly. If $N=k N^{\prime}$ (where N^{\prime} is the actual counter reading) (4) above is more properly expressed:

$$
\begin{equation*}
\text { Time } \propto \frac{2 R_{2} k}{T} N_{1}^{\prime}-k^{2} N_{1}^{\prime}{ }^{2} \tag{8}
\end{equation*}
$$

and $x_{T}=R_{2} / k T$. But also $N_{T}=k N^{\prime}{ }_{T}$ so that

$$
\begin{equation*}
\dot{x}_{T}=\frac{2 R_{2} k N_{T}^{\prime}}{k\left(R_{2}-R_{1}\right)}=\frac{R_{2} N_{T}^{\prime}}{R_{2}-R_{1}} \tag{9}
\end{equation*}
$$

For one specific tape recorder x_{T} is found to vary as follows :

	S.P.	L.P.	D.P.	
5 in.	1450	2010	2880	
$5 \frac{3}{4}$ in.	1800	2310	3650	x_{T}
7 in.	2050	3060	4280	

If a standard play tape is not normally used a value of $x_{T}=3200$ will be found to give acceptable results.

The graph is constructed as follows:

1. A convenient base to start from is $0-8$ with quarter sub-divisions.
2. The vertical graph lines are set out distant from the 1.h. origin as follows

$$
\begin{array}{cccccc}
1.00 & 1.56 & 2.25 & 3.06 & 4.00 & \text { etc. } \\
\left(1^{2}\right) & \left(1.25^{2}\right) & \left(1.5^{2}\right) & \left(1.75^{2}\right) & \left(2^{2}\right) &
\end{array}
$$

up to $64 \cdot 00\left(=8^{2}\right)$ a suitable scale factor (C) being chosen such that 64 C is somewhat less than the width of the page.
3. The graph is then inverted and the ordinates labelled $0,100,200$, etc. Note that the penultimate ordinate is 2800 and the last 3200 .
4. The horizontal lines are evenly spaced and numbered from 0-130 to fill the space available. This will be suitable for $3 \frac{3}{4}$ i.p.s. tape speed and the normal range of reels.
5. Finally, for any reel of tape of a given size and time gauge, run the tape off the 1.h. spool and note $N^{\prime}{ }_{T}$. Plot on the graph a point N_{T}^{\prime} /nominal time and join it to the labelled origin with a straight line. Generally any time obtained from the graph for a given counter reading will be found to be within 2 minutes of the correct value. Further straight lines can be constructed for other reel sizes and types. It should be noted that at $3 \frac{3}{4}$ i.p.s. nominal times for 1800,1200 and 900 feet are 96,64 and 48 minutes respectively. Note also that " x_{T} " relates to the length of the base line of the original graph in arbitrary units. It is not the same as N_{T}, nor N_{T}^{\prime}, and in all cases given N_{T}^{\prime} (which is the actual point plotted) will be found to be less than 2400 and hence easily accommodated.

A typical graph is shown in the illustration. Where a specific reel size and tape gauge is always used the graph can be constructed with the correct x_{T} when full agreement between graph and measured time will be obtained.

Centimetric Television Broadcasting

Experimental 12 GHz transmissions

by J. C. G. Gilbert, f.I.E.R.E.

At the Radio Administrative Conference held in Geneva in 1959 the centimetric band of 11.7 to 12.7 GHz was reserved for several services including television broadcasting. The German Post Office Telecommunications Research Institute started an investigation into propagation problems in this band and in 1969 Dr. J. Feldmann, who led this investigation, read a paper at the Montreux Television Symposium on the feasibility of TV broadcasting in Band VI*.

Most of the available channels in the v.h.f. and u.h.f. television bands are already in use in Germany, and as she wishes to increase the number of programmes two possible lines of attack are open. One is the possible use of stationary satellites and the other is to explore the use of centimetric transmissions from ground stations. Research spread over several years followed three main topics: (1) the propagation behaviour of centimetric waves, (2) the technical conditions to be satisfied at the transmitter and (3) the technical problems at the receiver.

Centimetric waves in the order of 2.5 cm behave like light waves and are reflected by obstacles and greatly atteriuated by roof structures and walls thus making the use of room aerials impracticable. The atmospheric effects of rain and fading measured over a long period indicate that for 1% of the time a loss of 0.4 dB per km can be expected, while for 99% the propagation is hardly affected.

The research team decided that the transmitter should have the following objectives: it must be capable of highquality pictures and that in order to make the system economically viable the receiving equipment should be cheap, simple, require the minimum of maintenance, and that current commercial TV receivers should be readily adaptable. These considerations therefore defined the transmitter as using vestigial sideband amplitude modulation for vision and frequency modulation for sound. For the earlier measurements a low-power transmitter of some $3-4 \mathrm{~W}$ was used in which both the video and audio signals were combined

[^13]at low level. This system can be used economically up to 100 W . For higher power transmitters up to 1 kW using multicavity klystrons, it has not been found practicable to amplify the vision and sound channels in one tube without introducing cross-modulation. Therefore for higher power transmitters the video and audio channels are kept separate and are combined only at a directional coupler that feeds the transmitting aerial. The specification of the transmitter now in use for experimental transmissions is: Power output 0.1 to 1 kW Modulation

Range
Signal-to-distortion ratio for cross modulation Frequency band Transmitter aerial

51 dB 11.8 to 12.2 GHz omni-directional or aerial with sectorshaped pattern and cosec characteristic
Signal processing

Polarization of far electrical field Stability of trans- better than $\pm 100 \mathrm{~Hz}$ mitter
vision-vestigial sideband a.m.
sound-C.C.I.R.
standard f.m.
$10-15 \mathrm{~km}$ gether (low power) or separate for high powers per month
At the receiver the signal is converted into a spare channel in Bands I, III, IV or V . The receiving aerial uses a parabolic reflector which has a gain of $25-35 \mathrm{~dB}$ for a diameter of 65 cm . The side lobe attenuation in the range of $\pm 10^{\circ}$ off the main beam is $>20 \mathrm{~dB}$ and for the remaining range $>25 \mathrm{~dB}$. Between the output from the aerial and the mixer stage is a band limiter to improve the signal-to-noise ratio, and also prevent the local oscillator radiation. The local oscillator frequency is dependent on the receiver channel to be used, and the stability is stated to be better than $\pm 75 \mathrm{kHz}$ per year. The bandwidth of the converter is at least 80 MHz which gives a total of eight possible channels.

The most important criterion of the receiver converter is that it should have as low as possible a noise figure and freedom from distortion. The use of a push-pull mixer reduces noise considerably as it

Omnidirectional transmitting aerial housed in plastic. Signals are reflected from the 'roof' to the cone and radiated.
suppresses the f.m. noise of the local oscillator. Fortunately the atmospheric and cosmic noise in the 12 GHz band is low and with a vertically polarized receiving aerial it remains below $200^{\circ} \mathrm{K}$. Where one is dealing with a large communal system it becomes economical to use a parametric pre-amplifier which improves the noise figure, but for single receivers Schottkybarrier diodes are used.
Stability of the local oscillator is required to attain a very high standard, and a simple free-running microwave oscillator may vary several megahertz in an hour. In order to achieve the necessary stability a relatively low-frequency crystal oscillator is employed followed by frequency multiplier stages. Provided that mass produced harmonic crystals are aged they are satisfactory and in order to prevent warming up drift, the power to the crystal oscillator is always connected. A pilot signal is radiated by the transmitter as a reference signal which can be fed to the local oscillator thus maintaining its stability within the required limits. Both the pilot signal and the TV signal are converted to the i.f., amplified and the pilot frequency extracted and fed to a frequency discriminator. The output from the frequency

Block schematic of 12 GHz transmitting and receiving system.
'discriminator then provides a control voltage for the stabilization of the local Gunn oscillator.

Research is continuing with alternative methods of frequency stabilization and two suggested methods use a cavity resonator with an extremely inflexible glass construction or alternatively a cavity resonator using a gas pressure controiled membrane which compensates for changes of temperature.

Considerable effort is being applied to the problems of the receiver installation, which demands accurate siting and positioning of the aerial-converter unit. Wind resistance of a solid paraboloid demands a rigid, guyed mast with means of directing the aerial within 1° to the transmitter. Alternative designs make use of a wire mesh paraboloid using very thin rustproof wire with the crossing points welded and with a stiffening rim. The paraboloid can be mounted either at the top of the mast or in front of it. A rectangular waveguide is used as a feeder and it can be terminated either with a horn or preferably with a circular reflector disc about 3 cm in diameter which is supported on a hollow dielectric support. By using miniaturizing techniques the mixer and i.f. amplifier can form part of the waveguide and only the local oscillator is mounted behind the paraboloid.

An alternative form of receiving aerial is a slotted waveguide, and this is acceptable in high field strength areas as its gain is only 15 dB compared with a horn-paraboloid combination of 35 dB .

During a recent visit to the new German Post Office Research Centre demonstrations were given of reception from three transmitters located some 15 km from the receiver. The weather vàried from heavy drizzle to rain but the standard of the received picture was of a very high order. We were also given the opportunity of inspecting a mobile field strength van which has a telescopic mounting for the aerial 40 metres high. Also mounted on the top of the mast is a television camera in line with the receiving aerial. Remote control from the interior of the van enables the operator to rotate the mast head and to automatically record the received field
strength from the remote transmitter on an $\mathrm{X}-\mathrm{Y}$ plotter. Intervening tall buildings are viewed on the television monitor from the mast head camera, and a correlation made with the plotter.

Currently three transmitters are in operation and about 100 receivers placed at strategic positions to assess the variations of received quality with changing atmospheric conditions. It is thought that by mass production methods the cost of the aerial-converter can be as low as $£ 15$ £20 plus the cost of the guyed mast.

Demonstrations of the reception of these transmissions will be given during the Radio \& Television Exhibition in Berlin from August 27th to September 5th.

Acknowledgement is made to Dr. J. Feldmann and his colleagues at the Fernmeldetechnisches Zentralamt in Berlin for much of the information given in this article.

Books Received

D.C. Amplifiers by B. Mirtes, edited in translation by E. W. Firth. The work is primarily concerned with explaining analysis, design and application of directly-coupled differential operational amplifiers employing semiconductors, and of single-ended driftcorrected op-amps. There is a brief treatment of op-amps using thermionic valves. Other d.c. amplifiers covered' include directly -coupled amplifies without feedback, sensitive choppertype amplifiers, electrometer amplifies, d.c. voltage and current stabilizers, and drift-corrected amplifiers designed to amplify low-level floating voltages. The contents fall into three parts. The first includes a practical and theoretical discussion of electronic devices. The second deals with fundmentals of analysis and design of directly-coupled, amplifying
circuits and systems. The third part discusses directly-coupled, chopper-type and driftcorrected operational amplifiers. There are six pages of bibliography and a twelve-page index. Pp.520. Price $£ 4.50$ (cased version only). Iliffe Books, Butterworth \& Co. (Publishers) Ltd, 88 Kingsway, London WC2 6AB.

Selected Papers on Frequency Modulation edited by Jacob Klapper. This collection is divided into four sections-general f.m. theory and basic experiments, f.m. circuit theory, f.m. threshold reduction, and digital f.m. Armstrong's famous paper "A Method of Reducing Disturbances in Radio Signalling by a System of Frequency Modulation" opens the first section. It was Armstrong who first successfully used f.m., demonstrating its greater immunity to noise interference compared with a.m. systems. The compilation is intended as a "reference work for the practitioner, as a guide for those interested in entering the field, and as a textbook in f.m. principles". Forty further references are given in a bibliography at the end. Pp.417. Price £3.75. The imprint is Dover Publications, Inc., but it is a vailable in the U.K. from Constable and Co. Ltd, 10 Orange Street, London WC2H 7EG.

Corrections

Charging. We apologise to readers and to 'Cathode Ray' for the inclusion by the printers of a wrong diagram for Fig. 1 on p. 391 of the August issue. Here is (we hope!) the correct diagram of 'the familiar circuit used to study the charging of a capacitor'.

Stereo Mixer. In Fig.8(a), Part I, May issue, R_{5} is a 'select on test' resistor in the range $200-700 \Omega$ or a $1 \mathrm{k} \Omega$ preset adjusted for 16.5 V at the emitter of Tr_{3}. The voltage at the emitter of $T r_{5}$ in Fig. 7 is 16.5 V . For Fig. $766 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio is referred to $450 \mu \mathrm{~V}$ on 200Ω (not $45 \mu \mathrm{~V}$ as incorrectly stated on p. 300 (June issue)). In Part 2 (June) the series resistor to the main balance control, Fig.11, should be $4.7 \mathrm{k} \Omega$ not 100Ω, the bass control should be a $100 \mathrm{k} \Omega \mathrm{lin}$. not $10 \mathrm{k} \Omega$, and the emitter resistor of $\operatorname{Tr}_{14} 15 \mathrm{k} \Omega$. The residual noise level for Fig. 11 is -98 dB , not -93 dB as quoted in col. 3 p.296. In Fig.13, a $0.22 \mu \mathrm{~F}$ coupling capacitor should be connected between the first $22 \mathrm{k} \Omega$ resistor and the input to give d.c. isolation. In Fig.19(a) the reservoir capacitor should be $2000 \mu \mathrm{~F}$ at 50 V and the current limit is set by $V_{B E 2} / R_{1}$, not $V_{B C 2} / R_{1}$ as stated in the text col. 2 p. 298 .

Darlington Output Transistors. In the protection circuit for use with complementary Darlington output transistors (August issue, p.399) the two complementary transistors were incorrectly shown as MPS 1000 . They should be MPSA20 ($\mathrm{n}-\mathrm{p}-\mathrm{n}$) and MPSA70 ($\mathrm{p}-\mathrm{n}-\mathrm{p}$).

World of Amateur Radio

Amateur sątellite service

A new 'amateur satellite service' has been defined internationally and amateurs will be able to conduct space communications experiments on 7,14,21,28, 144 (already in use) and $435-438 \mathrm{MHz}$ and 24 GHz bands, including the use of geo-stationary orbits. These, then, are the main changes in the world of amateur radio which will result from decisions made at the I.T.U. World Administrative Radio Conference in Geneva*. This outcome is a considerable improvement on what, at one stage, seemed likely. As reported last month, the delegations from a number of European countries-particularly those from Western European countries most closely associated with the Conference of European Posts and Telecommunications (C.E.P.T)-placed little value on the amateur radio service; indeed in some cases this amounted to active hostility towards amateurs. It was only at the last minute-in the Plenary sessions-that many of these improved facilities (at present amateurs can officially conduct space experiments only in the 144 MHz band) were secured by a reversal of some of the recommendations of the Working Parties. Proposals that amateurs should be permitted to use their 1215,5650 and $10,500 \mathrm{MHz}$ bands for space experiments were however not accepted.

Many amateurs feel the need to place on record that their proposals received notable support from the official U.K. delegation, led by Don Baptiste, of Minpostel, and from such countries as New Zealand and the United States. The attitude of the C.E.P.T. administrations appears to be in the tradition of earlier I.T.U. conferences and accounts for the serious disadvantages under which amateurs in Region I operate.
In a press interview after the ending of the Conference, Mr. Baptiste is quoted in The Times as saying of amateurs: "They provide a laboratory of thousands of enthusiasts all over the world and undoubtedly add to the sum of human knowledge".
The presence at Geneva of amateur advisors-such as Roy Stevens, G2B VNfinanced by the national amateur radio

[^14]societies, undoubtedly helped to reverse some of the adverse recommendations of the working parties.

British slow-scan TV' activity

We have referred several times to the growing interest in the U.K. in international slow-scan television operation on the h.f. bands, in which a picture is sent every 7.2 seconds with narrowbandwidth. One of the most successful British exponents of this art is H. Jones (G5ZT and G6ABC/T) of Eggbuckland, near Plymouth. He has had many two-way 'television' exchanges with amateur stations all over the world, including over 100 in the period April to June. Pictures have been exchanged with KL7DRZ (Alaska), VK6ES (Westeri Australia), KP4GN (Puerto Rico), ZL_{1} AOY (New Zealand) a number in Italy and Greece and very many in the United States. Many of his contacts represented the first time British s.s.tv. pictures had been exchanged with stations in the countries concerned. His station is a mixture of home-built and commercially manufactured equipment including Trio transmitter and receiver. According to the latest figures, there are now over 200 stations licensed for amateur television, although the numbet concerned with

slow-scan transmission is still quite small. Minpostel is believed to be sympathetic to the view that means should be found to allow amateur double-sideband TV transmissions to continue when the $70-\mathrm{cm}$ band is narrowed.

More long-delay echoes?

Two years ago ('W.o.A.R.' August 1969), we drew attention to the efforts of a team at the Radioscience Laboratory, Stanford University, California, to enlist amateur co-operation in re-opening the 40 -year-old mystery of long-delay echoes of periods up to and sometimes well beyond five seconds. Such echoes were originally reported by Stormer and Van der Pol in the 1920s.

During the past two years a significant number of new instances of apparently authentic echoes of this type have come to light, including several reported by British amateurs, and the number of useful reports is now approaching 100 . There have also, it must be said, been a number of reports made in good faith which have later proved to have been the result of elaborate hoaxes. Several possible mechanisms for this strange phenomenon have been postulated, including 'way-out' theories that these echoes may be deliberately induced by space probes coming from outside our solar system, although the Stanford investigators believe that the eventual explanation may prove far less spectacular. The team is still seeking any further details of these rarely occurring (if in fact they do occur) echoes.

In brief

M. G. Whitaker, G3iGW, haṣ recently worked several South American stations on 1.8 MHz and also ZD8AY in Ascension Island bringing to 50 the number of countries he has worked on 'Top Band'. . . . Eric Trebilock, a long-time keen listener to amateur stations who lives in Australia, has now had over 300 countries confirmed-a remarkable score for a non-transmitting amateur. Peruvian stations have been authorized to use the prefix OB instead of OA this year to mark 150 years of Peruvian independence. . . . Extended range v.h.f. conditions were much in evidence on 144 MHz during mid-July with many West European stations received in southern England. . . The prefix JE is now in use in Japan. .. . The Scottish V.H.F. Convention is to be held at the Carlton Hotel, Edinburgh, on Sunday, October 3 with speakers including Tom Douglas, G3BA, and Geoff Stone, G3FZL, and there will be an exhibition of equipment (details from V. M. Stewart, GM3OWU, 9 Juniper Avenue, Juniper Green, Midiothian EH14 5AJ).

Pat Hawker, G3VA

Slow-scan picture received by H. Jones from the United States (W4LAS).

Personalities

Stephen S. Forte, ${ }^{\wedge}$ B.Sc., Ph.D., F.I.E.E., and Robert Pace have been appointed joint managing directors. of General Instrument Microelectronics Ltd following the resignation of G. Brookes. Dr Forte joined G.I.M. in 1970 as marketing director having previously been with Marconi-Elliott Microelectronics since its formation in 1964 where he held successively the posts of applications engineering manager, manager for custom circuits and, finally, manager of the m.o.s. products division. Dr. Forte spent several years in the Marconi Company R \& D Laboratories prior to transferring to M.E.M. Mr. Pace, who holds several of the basic patents issued in the m.o.s. field, has been with General Instrument Corp. (parent company of G.I.M.) since 1965 where he held a number of posts including director of engineering and, latterly, assistant to the general manager of the m.o.s. division. Prior to 1965 Mr. Pace was head of engineering at General Mic̣roelectronics. G.I.M. was formed in 1968 to design and manufacture m.o.s. large-scale integrated circuits for the UK. and E.F.T.A. markets.
J. Stuart Sansom, M.I.E.R.E., technical controller of Thames Television (one of the I.T.A. programme contractors for London), is the $1971 / 2$ chairman of council of the Royal Television Society. Mr. Sansom, who is 42, spent two years with the Royal Corps of Signals before joining E.M.I. In 1953 he joined High Definition Films where he worked for four years on telerecording equipment. He then joined Television Wales and the West and in 1959 went to A.B.C. Television where he became chief engineer in 1966.

Ian C. Macarthur has been appointed managing director of the Service Division of RCA Ltd which he joined in 1961. Mr. Macarthur, who is 35 , was formerly manager of the Service Division's government and project
services. He was most recently responsible for all installation, operation and maintenance projects of the company, including the ballistic missile early warning system, the Suffolk radio research facility, the European Space Research Organization station in Redu, Belgium, and the Skynet S.R.D.E. station at Christchurch. Mr. Macarthur replaces Warren Werner, who is returning to the United States to take up a new position in the Service Division's International Marketing Organization.

Semicomps Ltd, of Wembley, Middlesex, have appointed Tony Manning as sales manager. Mr. Manning was with Mullard for 13 years where he was commercial product manager for discrete semiconductors. Before he joined Mullard, he had five years ${ }^{i}$ experience as a development engineer in guided weapons with G.E.C. at Stanmore.

Leonard F. Knott (43) has joined Minster Automation Ltd, of Wimborne, Dorset, as chief engineer. He joins Minster from Plessey, where he was latterly responsible for the engineering of Ministry contracts in the fields of transmission lines and logic switching for use in data handling. His technical experience includes eight years with the Post Office Engineering Department, national service with the Royal Navy Electrical Branch and fourteen years on telephone switching and remote control systems.
J. Don Sinclair was recently appointed managing director of Astro Communication Laboratory (U.K.), of Coventry, the U.K. subsidiary of Aiken Industries Inc. Astro manufacture surveillance and telegmetry receivers and computer peripherals. Mr. Sinclair was previously with Litton Industries as vice-president and general mapager of Litton Precision Products International Inc., the European sales and
marketing group for electronic components and microwave products. He was at one time a director of Amplivox and also has been head of facsimile communication sales with Muirhead. His engineering background in electronics was in microwave systems development at the Cavendish Laboratory, Cambridge.

Exel Electronics Ltd, who recently moved from Reading to Branksome, Poole, Dorset, have announced the appointment of Roy S. Bibby as sales director and Ray J. Chapman as production director. Mr. Bibby, who is 40, joined Exel in June 1970 from Coutant Electronics, to set up and develop a marketing team for the company's new range of digital panel meters. He served with the Royal Signals and spent seven years with Advance Electronics digital division before joining Coutant. Mr. Chapman (31) also joined Exel in June 1970 from Coutant Electronics, to act as production manager. He served his apprenticeship with Fairey Aviation and worked as a draughtsman with Dawe Instruments and design engineer with De La Rue Frigistor.

Daphne F. Jackson, D.Sc., F.Inst:P., A.R.C.S., reader in nuclear physics in the Department of Physics in the University of Surrey, has been appointed professor and head of the department. Dr. Jackson, who is 34, is believed to be the firsi woman to be appointed as head of a physics department in any university in the U.K. She took her degree at Imperial College in 1958, and went to the University of Surrey, then Battersea College of Technology, to take her Ph.D. in the field of theoretical nuclear physics. She joined the staff as an assistant lecturer in 1960 and wa's appointed reader in nuclear physics in 1967. During 1963-64 she visited the University of Washington, Seattle, as research assistant professor and has just accepted an invitation to become visiting professor to the University of Louvain, Belgium.

Bryn Tinton, who joined Ericsson Marine U.K. as technical coordinator in March, is in charge of the new training programme for ships' radio officers now being provided by Ericsson Marine, at the Norway Trade Centre in Pall Mall, London. Before joining Ericsson he spent five years with Cunard Brocklebank, latterly as senior radio officer. He has held an amateur radio licence for eight years. His call sign is G3SWC.
K. R. Sturley, Ph.D., B.Sc., F.I.E.E., who has been professor of communications and head of the Electrical Engineering Depart-
ment of the Ahmadu Bello University, Zaria, Nigeria, for the past three years, is returning to the U.K He has completed his work as chairman of a technical committee of Nigerian telecommunications engineers set up by the Federal Military Government to advise them on the modernization of Nigerian broadcasting. A graduate of Birmingham University Dr. Sturley obtained his doctorate for research in electrothermal storage problems. In 1936 he joined the staff of the Marconi College, Chelmsford, and was assistant principal when he left in 1945 to join the B.B.C. as head of the engineering training department. From 1963 to 1968 he was chief engineer of external broadcasting in the B.BC.

Peter Sinclair, who joined Circaprint Ltd, the printed circuit designers and manufacturers of Maidstone, Kent, last year from Palmer Aero Products Ltd, has been appointed sales manager. Mr. Sinclair, who is 47 , was sales manager of the printed circuits division of Palmer Aero Products.
A. R. Pritchard has joined English Electric Valve Co. Ltd as sales engineer with responsibilities for power valves, power klystrons and vacuum capacitors. Mr. Pritchard was previously with The Marconi Company for 10 years, latterly as sales engineer in the radio communications division.

Recently announced academic appointments include the following: David S. Campbell, D.Sc., technical manager, capacitor division of the Plessey Company, has been appointed to a chair of electrical engineering at Loughborough University of Technology. K. D. Stephen, B.Sc., F.I.E.E., senior lecturer in the department of electrical and electronic engineering in the Heriot-Watt University, Edinburgh, has been appointed to the new full-time post of director of television at the University. Professor J. H. H. Merriman, C.B., O.B.E., F.I.E.E., senior director, telecommunications development, in the Post Office has been appointed by the I.E.E. to serve for four years on the governing body of the Imperial College of Science, London. The University of Birmingham has appointed R. Mellitt, B.Tech., and A. W. Rudge, Ph.D., to be lecturers in electronic and electrical engineering. At the Heriot-Watt University P. H. Etherington, B.A., (asst. lecturer at Kenya Polytechnic) is to be a lecturer in the department of electrical and electronic engineering, and J. Helszajn, M.Sc., Ph.D., is to be a part-time senior research fellow in the department.

H.F. linear amplifier

Racal-Mobilcal's TA-940 100-watt h.f. linear amplifier has been designed to increase the power output of low- and medium-power h.f: s.s.b. manpacks. Coverage of the h.f. range of 1.6 to 30 MHz is provided and continuous 'key-down' operation is possible to full specification - 100 watts output for entire duty cycle. The amplifier will operate with inputs, pre-set internally, between 10 mW and 5 W . Operation is from a negative earth 28 V d.c. power supply. An aerial tuning unit and range of aerial systems are available for use. Racal-Mobilcal Ltd, 464 Basingstock Road, Reading, Berkshire, RG2 0QU.
WW309 for further details

Cassette data recorder

A standard Philips $\frac{1}{8}$ in tape cassette is used on the TEAC R-70 recorder (marketed in the U.K. by the 'Industrial - Import Division of Dodwell Ltd) to provide simultaneous four-channel recording, using f.m. or a.m., with the additional facility of putting announcements on to channel four, using a microphone. The recording range is 0.1 to 625 Hz ($f . \mathrm{m}$.) and 100 Hz to 8 kHz (a.m.) with a tape speed deviation of $\pm 1 \%$ at $4.75 \mathrm{~cm} / \mathrm{s}(1.87 \mathrm{sin} / \mathrm{s})$. Wow and flutter is 0.5% r.m.s., or less, and an 'anti-rolling' tape transport mechanism gives steady tape travel and vibration-resistant operation. The data recorder is not affected by external vibration or dust. Four power sources are available: six dry batteries will provide two hours of recordiñg/playback; an optional rechargeable battery gives four hours of continuous operation; an external 11 to

16 V d.c. power source can be connected; and a built-in 220 V a.c. -10% supply. unit used. A 110 and 115 V a.c. supply unit is available if required. The input impedance is $100 \mathrm{k} \Omega$ (f.m.). An optional input filter can be fitted to improve signal-to-noise ratio. The input signal can be monitored from the check terminal and recorded data can be located using the three-digit built-in tape counter. Size is $100 \times 340 \times 244 \mathrm{~mm}$, and weight approximately 6.5 kg . Price is $£ 750$. Dodwell \& Co Ltd, Industrial Import Division, 18 Finsbury Circus, London E.C. 2

WW310 for further details

Wirewound trimmers

Contelec type 025 and 037 wirewound 22-turn trimming potentiometers, are available from Kynmore. Housed in anodized aluminium cases, the units are claimed to be resistant to the effects of humidity and immersion. Type 025 is for panel-mounting, and type 037 is side-

mounted. Resistance range is 10Ω to $125 \mathrm{k} \Omega$. Both units have a power rating of 1.5 W at $85^{\circ} \mathrm{C}$. Temperature range is -55 to $170^{\circ} \mathrm{C}$. Model 025 is 6.35 mm in diameter, and 34 mm long. Type 037 measures $6.35 \times 9.50 \times 31.77 \mathrm{~mm}$. Kynmore Engineering Co. Ltd, 19 Buckingham Street, London W.C.2.
WW320 for further detalls

Waveform generator

Model F220A waveform generator from Microdot Inc.-available in the U.K. from Texscan Instruments-generates sine, square, triangle, ramp and offset sine waveforms over the frequency range

0.005 Hz to 3 MHz and provides outputs at both 50 and 600Ω impedances. Triggered, gated or tone-burst outputs can be selected in addition to normal c.w. operation and the generator frequency can be controlled by an external d.c. or wideband a.c. voltage. Output is variable up to a maximum of 32.5 V at 600Ω, and Model F220A provides fixed level outputs for each of the waveforms. Accessories available include a power amplifier, signal level monitor and portable power source. Texscan Instruments Ltd, Lord Alexander House, Hemel Hempstead, Herts.
WW323 for further details

Mains input filters

A series of mains input filters from Waycom are primarily designed to offer protection against mains-borne asymmetrical transient voltage spikes. They are suitable for equipment taking up to 4A single phase (3A three phase). The degree of protection offered is such that for a 2 kV pulse with rise time of $0.5 \mu \mathrm{~s}$, the transient current flowing will not exceed 20 mA , which in typical circuitry means voltage transients of less than 200 mV . Waycom Semiconductors Ltd, Wokingham Road, Bracknell, Berks.
WW 302 for further details

Very accurate recording system

A tape recording system manufactured by Gresham Recording Heads is capable of recording and replaying signals in such a way that time intervals are reproduced with an error of less than 0.005%. Noise and distortion are less than 1% in the range $5 \mathrm{~Hz}-90 \mathrm{kHz}$. The analogue signal to be recorded is fed into an A-D converter having a sampling rate of 2×10^{5} samples $/ \mathrm{s}$. Each sample is then converted into an 8 -bit binary word which is fed, in parallel fashion, into 8 channels of a 9 channel digital tape recorder. A timing pulse from a master oscillator having a frequency error less than 1 part in 10^{6} is fed into the 9 th channel of the recorder.

The nine channels, each having a data rate of $200 \mathrm{kilobits} / \mathrm{s}$, are then recorded on 0.5 in magnetic tape at a speed of 120 i.p.s. A 3200 f.r.p.i. (flux reversals per inch) double-gap recording head has been developed to cope with the high recording accuracy. Read output is 22 mV p-p at 150 i.p.s. using an optimum write current of

block diagram of special purpose recording ststem
$50 \pm 10 \mathrm{~mA}$ at 1600 f.r.p.i. Crossfeed (write to read) is less than 0.3 mV p-p and intertrack crosstalk better than 28 dB under worst-case conditions. To reproduce the recording signals, the replayed data is first fed via a time displacement restoration logic unit, and then via a D-A converter to reconstitute the original signal. This converter is followed by a low-pass filter enabling the continual reproduction of the signal within the specified bandwidth to be obtained. The accuracy of the timing of replayed signals is dependent upon the stability of the master oscillator. Gresham Lion Group Ltd, Twickenham Road, Hanworth, Middx.
WW 325 for further details

De-soldering wick

Bradewick de-soldering wick, available from Light Soldering Developments, is impregnated with a flux enabling it to remove molten solder from joints by absorption. It is available in transparent plastic packs in lengths of approximately 1.5 m . There are four widths of wick for use with different wattage soldering irons. Price 90 p per pack. Light Soldering Developments Ltd, 28 Sydenham Road, Croydon, CR9 2LL.
WW329 for further details

Versatile counter-timer

The SM 201 universal counter-timer from SE Laboratories measures frequency, period, period average, time interval, count, pulse width and frequency ratio. Singleor double-line gating with positive or

negative transients or contact closure are possible. Display can be stored if required. Full count is 999999 , plus overrange indication. Input sensitivity of 10 mV and input impedance of $1 \mathrm{M} \Omega / 20 \mathrm{pF}$ permit the use of high-frequency passive probes. Stability is provided by a crystalcontrolled oscillator with a temperature coefficient of less than 1 p.p.m. $/{ }^{\circ} \mathrm{C}$. An external clock can be used. A 3 parts in 10^{9} fast warm-up reference is available as an option. Price $£ 345$ approx. SE Laboratories (Engineering) Ltd, North Feltham Trading Estate, Feltham, Middx. WW324 for further details

Axial-lead polystyrene capacitors

The Mial 616 range of non-encapsulated polystyrene-dielectric capacitors from Waycom have axial leads of 0.6 mm or 0.8 mm diameter, depending on capacitor

size. The range of values is $20-100,000$ pF in tolerances of $\pm 20,10,5$ and 2.5% and a voltage of $25-630 \mathrm{~V}$. Working temperature is from -40 to $85^{\circ} \mathrm{C}$. Waycom 'Ltd, Wokingham Road, Bracknell, Berks. WW321 for further details

Quartz crystal filters

Salford Electrical Instruments have introduced a wide range of crystal filters to meet the selectivity requirements of British Post Office specifications for marine and land-based h .f. communications systems. At $100 \mathrm{kHz}, 1.4 \mathrm{MHz}$ and 1.6 MHz , a single filter can be supplied which meets both transmitter and receiver requirements. Insertion loss is typically 2 dB . At 5.2 MHz
four filters are available to meet either transmitter or receiver specifications, including filtering for A3 (a.m.) and A3H (s.s.b. full carrier) modes. Each of the four filters has a volume of 19 cc . The filters operate over the temperature range -10 to $+55^{\circ} \mathrm{C}$ within their overall response specification. Salford Electrical Instruments Ltd, Peel Works, Barton Lane, Eccles, Manchester M30 $\mathbf{0 H} 1$. WW327 for further details

De-soldering tool

A de-soldering tool, known as the Soldavac, is available from Henri Picard \& Frere. Suction in the Soldavac is created by a spring-loaded plunger, contained within the body of the tool. The tool has steadying rests for the fore and middle fingers, and a trigger placed for thumb pressure.

Once fired, it can be re-loaded using the same hand only, either by the action of the thumb or by pressing the plunger tab against the edge of a table. The trigger also acts as a lever for ejecting the nozzle so that the barrel can be emptied and cleaned. Price 11.95. Henri Picard \& Frere Ltd, 34/35 Furnival Street, London E.C.4

WW319 for further details

Double balanced mixers

A.range of sub-miniature double-balanced mixers in a low-profile flat-pack configuration is available from Anzac through Wessex Electronics Ltd. Type MD- 123 provides conversion loss of 8 dB maximum over the range 10 to 3000 MHz , Inputs to any two ports will produce the sum and difference frequencies at the third port. The device may be used with local oscillator inputs ranging from 7 to 20 dBm . Precision balanced circuits provide

two-tone third-order i.m. ratios of better than 100 dB with -30 dBm input tones. The full range comprises $\mathrm{MD}-123$ $(10-3000 \mathrm{MHz}), \mathrm{MD}-113(10-1000 \mathrm{MHz})$, MD-125 ($0.5-500 \mathrm{MHz}$), and MD-124 ($50 \mathrm{~Hz}-200 \mathrm{MHz}$). Wessex Electronics Ltd., Stover Trading Estate, Yate, Bristol BS17 5QP.
WW301 for further details

Linear-law potentiometers

A range of single-turn precision potentio-meters-the B-Line from Bournsemploys low temperature coefficient longlife elements. The range is available in diameters of $\frac{7}{8} \mathrm{in}, 1 \frac{1}{16} \mathrm{in}$ and 2 in , bushing or servo mount.

Specification:

resistance value	20Ω to $100 \mathrm{k} \Omega$
tolerance	$\pm 10 \%$
power rating at $70^{\circ} \mathrm{C}$	1.0 W for $\frac{7}{8} \frac{7 \mathrm{in}}{}$
	1.25 W for $\frac{\mathrm{Y}}{16} \mathrm{in}$
	2.0 W for 2 in

Max. operating	
temperature	$125^{\circ} \mathrm{C}$
output smoothness	0.1\% of v.r.
linearity	$\begin{aligned} & \text { from } \pm 0.5 \% \text { to } \\ & \pm 0.1 \% \end{aligned}$
insulation resistance	$1000 \mathrm{M} \Omega$
vibration tolerance	15G
shock tolerance	50G

Bourns (Trimpot) Ltd, Hodford House, 17/27 High Street, Hounslow, Middx. WW318 for further details

High-permittivity ceramic

GEC Hirst Research Centre has developed a new class of high permittivity ceramic dielectric for use as a microcircuit substrate at the lower microwave frequencies. The material is a zirconate ceramic of permittivity -35 compared with conventional alumina's -10 . Thus smaller size microstrip circuits can be used at u.h.f. or low microwave frequencies. The photograph shows equivalent ring resonators for use at 5 GHz deposited on (left) a zirconate ceramic substrate and (right) standard alumina substrate, showing a $2: 1$ linear size advantage for the zirconate. The new material possesses a very low dielectric loss ($Q-2000$) and a low controllable temperature coefficient of permittivity, so that temperature-stable resonators can be made in a relatively small size. The ceramic may be used to load phase shifters (e.g. for phased array

aerials) to give higher performance. GEC Hirst Research Centre, East Lane, Wembley, Middlesex.
WW313 for further details

Low distortion oscillator

Model CR116 oscillator in the NF Instruments Co. range of test instruments, available in the U.K. from Tekmar Electronics, covers $5 \mathrm{~Hz}-540 \mathrm{kHz}$ in five ranges. Frequency response is flat $\pm 0.2 \mathrm{~dB}$ from 20 Hz to 50 kHz and distortion down to 0.015% between 200 Hz and 10 kHz . Output level is +16 dB maximum (open circuit), +10 dB when feeding a 600Ω balanced load. Operation is from the mains and the price is $£ 266.62$. A portable version, the CR117CT which employs a NiCd battery, costs £201.96. Tekmar Electronics Ltd, 102 High Street, Harrow-on-the-Hill, Middx.
WW311 for further details.

Wide-range signal generator

Combining the techniques of the frequency sweeper and an a.m./f.m. signal generator the TF2008 from Marconi Instruments covers the range 10 kHz to 510 MHz . This range is provided in eleven switchselected bands and the instrument incorporates two primary signal sources-a manually-controlled oscillator and a
voltage-controlled oscillator. When the latter is in use it can be coupled to an internal sweep-drive generator which gives continuous sweep over the whole, or any part, of each tuning band. Narrow-band sweep is possible when the instrument is used as a manually-tuned signal generator. Price $£ 1700$. Marconi Instruments Ltd, St. Albans, Herts.
WW317 for further details

Digital indicators

Newtron Indicator Tubes from FR Electronics are 7 -segment indicators incorporating directly viewed incandescent filaments allowing viewing angles up to 140°. The units have a normal operating

voltage of 5 V with a segment current drain of 20 mA , and are i.c. compatible. The brightness of the display can be varied to suit all ambient light conditions, permitting viewing even in direct sunlight. FR Electronics, Wimborne, Dorset BH21 2BJ. WW312 for further details

Sensitive reed relays

Pye TMC has introduced a range of sensitive reed relays with a variety of switching modes encapsulated in a tough, stable, moisture-resistant epoxy resin. The range is particularly designed for high-

speed switching and alarm type contacts. A built-in magnetic shield prevents interaction between closely stacked relays. The connections are for printed circuit 0.100 matrix and are polarized to prevent wrong assembly. The relay is available in three variants-latching, normally-closed or normally-open. Pye TMC Ltd, Components Division, Roper Road, Canterbury, Kent.
WW322 for further details

Optical position sensor diode

New to the United Detector Technology range of position-sensing Schottky barrier photodiodes is type SC-50 with an active area 1.40 inches square. In common with the other diodes in this series the SC-50 senses the position of a light spot in two dimensions and gives position sensing information independent of the spot size. Resolution and null sensitivity are independent of incident power changes and the null point may be shifted electrically. Position sensitivity is $0.4 \mu \mathrm{~A} / \mathrm{mW} / 0.001$ in at the spectral peak, and non-linearity at 0.05 in from the centre is $\pm 1 \%$. Techmation Ltd, 58 Edgware Way, Edgware, Middlesex HA8 8JP.
WW304 for further details

Semiconductor tester

A semiconductor tester from Levell, type TB12, measures the characteristics of bipolar transistors, diodes and zener diodes. Leakage currents down to 0.5 nA can be determined from 2 V to 150 V , current gain of transistors checked at collector currents from $1 \mu \mathrm{~A}$ to $100 \mu \mathrm{~A}$, and breakdown voltages up to 100 V

measured at currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and $1 \mu \mathrm{~A}$. The collector-to-emitter saturation voltage of a transistor is measured at collector currents of $1,10,30$ and 100 mA for I_{C} / I_{B} ratios of 10,20 and 30 . The instrument is powered by a 9 V battery and contains a transistor d.c. to d.c. converter to produce 150 V . The state of the battery is indicated by a neon panel lamp. Price £65. Levell Electronics Ltd, Park Road, High Barnet, Herts.
WW308 for further details

Discoidal lead-through capacitors

A range of discoidal lead-through capacitors, type DLT / 10,000 , from Oxley, employ multi-layer construction using a high ' K ' ferro-electric ceramic for high capacitance per unit volume. The discoidal construction, which permits a radial current flow in the capacitor electrodes, is

said to result in self inductance considerably smaller than that inherent in a capacitor having a more conventional construction. The component is mounted in a 2BA clearance hole. The body is a 4BA hexagon section, with a gold finish, the lead-through wire being 20 s.w.g. tinned copper.

Characteristics:

test voltage
250V d.c.
working voltage 100 V d.c.
operating temperature range
-55 to $+125^{\circ} \mathrm{C}$
capacitance
$10,000 \mathrm{pF} \pm 20 \%$ or $+80 \%-10 \%$
Oxley Developments Co. Ltd, Priory Park, Ulverston, North Lancs.
WW314 for further details

Temperature-controlled soldering iron

The Oryx 50, from W. Greenwood Electronic, gives simple adjustment for any temperature between 200 and $400^{\circ} \mathrm{C}$, without changing the tip. Heat settings are accurate to $\pm 2 \%$. Tip temperature variations during soldering are negligible and temperature changes can be made in seconds whilst the iron is on. Oryx 50 operating temperatures can be much lower than with conventional uncontrolled irons. An indicator lamp, controlled by the

thermostat, is built into the handle. The instrument is fitted with a long ironcoated tip as standard. There is a range of eleven tips in all-long-life or copper/ nickel plated to choice. The iron weighs 77 g , is rated at 50 W , and heats up in 45 seconds. Operating voltages are 12 , $24,50,115$ or $210 / 250$ V a.c. Price with long tip is $£ 3.75$. Stand £1.25. W. Greenwood Electronic Ltd, 21 Germain Street, Chesham, Bucks.
WW306 for further details

Digital multimeter

Model 460 self-contained digital multimeter, from Bach-Simpson, provides 26 ranges including alternating current. A battery pack is built in along with a charger unit which operates automatically when the instrument is mains operated. Polarity and over-range indication are automatic. Ranges (which are measured without the use of external shunts) are as follows: volts a.c./d.c. $\quad 100 \mu \mathrm{~V}-1000 \mathrm{~V}$ amps a.c./d.c. $\quad 100 \mathrm{nA}-2 \mathrm{~A}$ resistance
$190 \mathrm{~m} \Omega-20 \mathrm{M} \Omega$
The system is protected against overload.

It weighs 3 kg (with batteries) and measures $11 \times 24 \times 20 \mathrm{~cm}$ (approx.). Price $£ 150$. Bach-Simpson Ltd, 331 Uxbridge Road, Rickmansworth, Herts, WD3 2DS.
WW315 for further details

Push-button switches

A range of illuminated multi-pole Compu-Lite Series 11 push-button switches from Guest International Ltd. are designed for front panel fixing. They are

enclosed and sealed and switch up to 5A at 250 V . Each switch allows one pole to be switched in before the remaining poles make contact. Gold contacts are available for low-level switching.

A wide range of coloured bezels and screen split or full legends can be supplied, and a number of different switching actions is also available. Maximum depth is only 38 mm . Series 11 switches can be made available with AMP-type terminals. Guest International Ltd, Nicholas House, Brigstock Road, Thornton Heath, Surrey. WW307 for further details

Solid tantalum capacitors

A life of 1000 hours operation in the temperature range -55 to $125^{\circ} \mathrm{C}$ is guaranteed for a range of metal-cased solid tantalum electrolytic capacitors available from Seatronics (UK). Capaci-

tance tolerance is $\pm 20 \%$ in the range of 0.35 to $330 \mu \mathrm{~F}$, at voltages from 6.3 to 50 V d.c. Leakage current is $0.002 \mu \mathrm{~A} / \mu \mathrm{FV}$ max., and tan delta is 0.06 max. The $1000-$ off price ranges from 17 p to 72 peach, the latter being the cost of a $50 \mathrm{~V} 22 \mu \mathrm{~F}$ unit. Seatronics (UK) Ltd, 22-25 Finsbury Square, London EC2A 1DT. WW326 for further details

Transistor amplifiers for

3.4 to 4.2 GHz

A series of solid-state amplifiers for the 3.4 to 4.2 GHz range is announced by Watkins-Johinson Company. The WJ-5102 amplifiers provide a 7 dB noise figure, \pm 0.3 dB gain flatness, +25 dBm intercept point and 1.2:1 v.s.w.r. Time-delay distortion is small: linear component is $1 \times 10^{-3} \mathrm{~ns} / \mathrm{MHz}$, parabolic component, $1 \times 10^{\perp 6} \mathrm{~ns} / \mathrm{MHz}^{2}$; residual ripple, 0.2 ns peak-to-peak. The design is a microstrip employing chip components. There is a choice of gains from 10 dB to 50 dB and power output as great as +20 dBm at the 1 dB compression point. These amplifiers are available with or without integrated power supplies. Watkins-Johnson International, Shirley Avenue, Windsor, Berkshire.
WW332 for further details

Polyester foil capacitors

Available in a capacitance range of 1000 pF to $1 \mu \mathrm{~F}$, new ISKRA KMFU high-quality polyester foil capacitors from Guest International are non-inductive

($<20 \mathrm{nH}$). They can be used at high frequencies and with pulse waveforms. Insulation resistance is very high $\left(>30,000 \mathrm{M} Q\right.$ at $20^{\circ} \mathrm{C}, \quad 100 \mathrm{~V}$ d.c.) allowing safe use at high temperatures. Ex-stock voltage range is $125,250,400$, 630 and 1000 V d.c. A 1500 V d.c. capacitor is available to order. Guest International Ltd, Nicholas House, Brigstock Road, Thornton Heath, Surrey. WW330 for further details

Miniature d.c. motors

The Escap 20 series ironless rotor d.c. motors from Portescap employ selfsupporting skew windings, to provide low inertias and short time constants. The motors incorporate gold alloy brushes, precious-metal commutators and selflubricating sintered bronze bearings. Built-in reduction. gearheads with ratios $1: 4,1: 15$ and $1: 59$ can be supplied with the motors which offer output powers from

0.15 to 3.1 W , starting torques from 6 to 132 gcm , and no-load speeds up to 17,300 r.p.m. They measure between 20 and 33 mm long by 20 mm in diameter, and weigh only 20-65g. Portescap (U.K.) Ltd, 204 Elgar Road, Reading RG2 0DD.
WW 328 for further details

Thick-film amplifier/ oscillator modules

Redac have announced a modular select-to-order fixed frequency oscillator and a compatible frequency-selective amplifier. Both modules employ thick-film circuit techniques and require a 12 V supply. Oscillator module, type TF002, offers a fixed frequency of operation in the range 100 Hz to 1 MHz with a tolerance of 1% maintained over 0 to $45^{\circ} \mathrm{C}$. Two outputs are provided-1V at 300Ω and 10 mV at $1 \mathrm{k} \Omega$. Frequency selective type

TF003 gives a voltage gain of 1000 over 100 Hz to 1 MHz with input and output impedances of less than $1 \mathrm{k} \Omega$ and greater than 100Ω respectively. Gain bandwidth is 15%. Size $36 \times 36 \times 10 \mathrm{~mm}$. Redac Software Ltd, Newtown, Tewkesbury, Gloucester, GL20 8HE.
WW303 for further details.

Low thermal e.m.f. reed switch

'The MRA-230 reed switch from FR Electronics has a thermal junction e.m.f. of $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. It is of form A construction (contacts normally open) and its miniature

size can be gauged from the photograph. The switch has been designed for use at r.f. up to 30 MHz . F R Electronics, Wimborne, Dorset BH21 2BJ.
WW316 for further details

Incremental indicator

The Comark incremental indicator type $1211-30$ is a battery powered portable instrument which will measure direct voltages from 0 to 30 mV with a resolution

better than 10 mV . The instrument has an accurate backing-off source built in, which is used to provide 30 ranges up to 1 mV f.s.d. Comark Electronics Ltd, Brookside Avenue, Rustington, Littlehampton, Sussex.
WW305 for further details

Literature Received

For further information on any item include the appropriate $W W$ number on the reader reply card

ACTIVE DEVICES

A 22 -page product summary brochure covers all the integrated circuits in production at Plessey's Swindon factory. Plessey Microelectronics, Cheney Manor, Swindon, Wilts.
MCP Electronics Ltd, Alperton, Wembley, Middlesex, HA0 4PE, are distributors of Telefunken semiconductors and have available a short-form catalogue dealing of their diodes, transistors and integrated circuits
The following data sheets from RCA, Sunbury-onThames, Middlesex, describe new high-frequency transistors and microcircuits:
$2 \mathrm{~N} 6093 \mathrm{j} . \quad 75 \mathrm{~W} \quad$ (р.e.p.), $\quad 2-30 \mathrm{MHz}, \quad 13 \mathrm{~dB}$ gainww403
TA7993. $2 \mathrm{~W}, 2 \mathrm{GHz}, 8.2 \mathrm{~dB}$ gain $(3 \mathrm{~W}, 1 \mathrm{GHz}$, 12dB)WW404 TA7486. $200 \mathrm{~mW}, 1 \mathrm{GHz}, 12 \mathrm{~dB}$ gain ...WW405 TA7994. $5 \mathrm{~W}, 2 \mathrm{GHz}, 7 \mathrm{~dB}$ gain $(13.5 \mathrm{~W}, 1 \mathrm{GHz}$, 11dB)WW406 TA7702/3. Microwave broadband i.c., 225 $400 \mathrm{MHz}, 16 \mathrm{~W}, 6 \mathrm{~dB}$ gain at $V_{c c}=28 \mathrm{~V}$ WW 407
TA7747. Integrated circuit power combiner/ divider $225-400 \mathrm{MHz}$, powers up to 40 W , $Z_{\text {in }}=Z_{\text {out }}=50 \Omega$

AEI Semiconductors, Carholme Rd, Lincoln, have available a revised price list covering their microwave semiconductors, regulator diodes, rectifier diodes, thyristors and triacs, and thyristor/rectifier assemblies
. WW409

PASSIVE COMPONENTS

Toggle, rocker, wafer and slide switches are described in a catalogue from Lorlin Electronic Co. Ltd, Billingshurst, SussexWW410
Miniature d.c. motors (Escap 26 series) with very low rotor inertia for instrumentation are described in a leaflet from Portescap U.K. Ltd, 204 Elgar Rd, Reading RG2 ODD. Reduction gear-heads with ratios from 1.4:1 to 560:1 are also described WW411
Four 13A sockets with a switch and neon indicator in a box form a mains distribution panel that has been added to the Lecktrokit range. A leaflet describes the panel and explains the Lecktrokit system of construction; A.P.T. Electronic Industries Ltd, Chertsey Rd, Byfleet, Surrey WW412
We have received the following literature from Erie Electronics Ltd, South Denes, Gt. Yarmouth, Norfolk:

Stock catalogue listing a wide range of capacitors, resistors, potentiometers and semiconductors WW413
Data sheet $R / 20$. Describes a range of $\frac{1}{8}$ and $\frac{3}{4} W$ resistors 2.2Ω to $5.1 \mathrm{M} \Omega \pm 5 \% \ldots \ldots$ WW 414
Data sheet $R / 21$. Carbon composition resistors, $\frac{1}{4}$ and $\frac{1}{2} \mathrm{~W}, 10 \Omega$ to $22 \mathrm{M} \Omega$ in $\pm 5,10$ and 20% tolerance

Saft (U.K.) Ltd, Castle Works, Station Rd, Hampton, Middlesex, have sent us the following data sheets on cadmium nickel batteries and associated equipment: VR series. Cylindrical 0.5 to 10Ah WW416 VB series. 'Button packs' available in sintered plate or plastic sleeve construction, 2.4 to 12 V , 90 to $1,750 \mathrm{mAH}$.WW417

S1000T. Constant current battery charger for up to 20 cells in series, incorporating a timer; charging rate adjustable from 10 mA to 1 A . WW418
A range of relays, called the 'GPR300 series', manufactured by Pye/TMC, Components Division, Roper Rd, Canterbury, Kent, are the subject of a lẹaflet. Various coiil and contact combinations are possible
. WW419
The plugs and sockets distributed by F. C. Lane Electronics Ltd, Slinfold Lodge, Horsham, Sussex, are described in a short-form catalogue ...WW420

APPLICATION NOTES

We have received three application notes from Waycom Semiconductors Ltd, Wokingham Rd, Bracknell, Berks, RG12 1ND:

1: 'Pulse transformers for thyristor firing circuits' deals with the theory, makes some recommendations and highlights some pitfalls WW421
2: 'Harmonics generated by thyristor controlled circuitry-Part 1^{\prime}. The nature of the problem is discussed and some general LC suppression methods are givenWW422
3: 'Harmonics generated by thyristor controlled circuitry-Part 2'. Deals mostly with the suppression of interference from shunt wound motors from 150 kHz to 30 MHz WW 423
We have received the literature listed below from
RCA, Sunbury-on-Thames, Middlesex:
'An h.f. power transistor for linear applications', discusses the 2N6093 and concludes with a 150 W , wideband ($2-30 \mathrm{MHz}$) linear amplifier designWW424
ST4700. 'Integrated circuit stereo decoder does everything', describes in detail the phase-locked-loop decoder which was mentioned last month (p. 377) WW425
CA3088E. 'A.M. receiver sub-system and generalpurpose array' gives data and circuitry for a new a.m. receiver i.c. WW426
ST4698. 'Advances in f.m. receiver design', describes a new f.m. receiver i.c. which incorporates i.f. stages, detector, a.f.c. output, tuning meter output, a.g.c. output, decoder disable line and facilities for a squelch controlWW427
CA3089E, Data sheet for above WW428
'Recent advances in the design of micropower operational amplifiers', deals with operational amplifiers that have no internal resistors and gives some uses for themWW429
ST3857. 'Microwave power generation using r.f. power transistors' describes the construction of overlay and interdigitated transistors before giving application information WW430
'Power circuits-d.c. to microwave', 448 -page book of circuits and explanations, price $£ 1.30$
'Gunn diode circuit handbook' is a useful 40 -page booklet published by Microwave Associates Ltd, Cradock Rd, Luton, Beds LU4 0JQWW431

EQUIPMENT

Addition, subtraction, multiplication, division, 'chain multiplications', calculations with a stored constant, raising to a power and mixed calculations
may all be done with a pocket printing, calculator from Computer Ancillaries obtd, 'Radio House, Central Trading Estate, Staines, Mididlesex. Results are printed on a cassette of paper type-price is £179. A leaflet gives a full description.WW432
Temperature measurement can be made remotely so that environmental conditions are not disturbed using the KT12 infra-red radiation thermometer which is described in a booklet from the Scientific Instruments Division of Guest International Ltd, Nicholas House, Brigstock Rd, Thornton Heath, Surrey
A new computer, Satellite One, is described in a brochure from Computer Technology Ltd, Eaton Rd, Hemel Hempstead, Herts.
'The complete guide to your digital instrument requirements' is the rather misleading title of a booklet from SE Laboratories (Engineering) Ltd, North Feltham Trading Estate, Feltham, Middlesex. One would expect (from the title) a complete survey of the whole field of digital instruments when in fact only SE Labs' equipment is mentioned. However, a useful section on using digital instrumentationis includedWW435
Details of a comprehensive range of microwave components are given in a 125-page catalogue prepared by Microwave and Electronic Systems Ltd, Lochend Industrial Estate, Newbridge, Midlothian, Scotland
J Beam Engineering Ltd, Rothersthorpe Cres., Northampton, have published leaflets in English, French and German describing a $450-470 \mathrm{MHz}$ glass fibre colinear aerial (type 7058) with a 10 dB gain over a half-wave dipole:
English .. WW437
French . WW438
GermanWW439

An analogue signal converter (type PSC 300), intended for use as an interface unit in instrumentation systems when the process signal and the instrument signal are incompatible, is described in a brochure from Mimic Diagrams and Electronics Ltd, Maxim Rd, Crayford, Kent WW440
An optical colour comparator for setting-up colour television receivers, a colour film assessor and a light-meter calibrated in foot-Lamberts are described in a brochure from Grafikon (Engineers) Ltd, 75 South Western Rd, Twickenham, Middlesex WW441

PROSPECTUSES (1971-'72)

Department of Telecommunication and Electronics, Norwood Technical College, Knight's Hill, London S.E. 27.

Hendon College of Technology, The Burroughs, Hendon NW4 4BT.
Faculty of Engineering, Brighton College of Technology, Pelham St, Brighton BN1 4FA.
Department of Engineering, Twickenham College of Technology, Egerton Rd, Twickenham, Middlesex.
Compendium of Degree Courses 1971, Council for National Academic Awards, 3 Devonshire St, London W1N 2BA.

GENERAL INFORMATION

Our associated book company, The Butterworth Group, 86 Kingsway, London WC2B 6AB, has produced the following catalogues:
produced the following catalogues:
Books on radioWW442
Selected books on radio and television . WW443
Books on televisionWW444
Postgraduate books on electronics WW445
A catalogue of electrical and electronic hobbyist books may be obtained from Tab Books, Blue Ridge Summit, Pennsylvania 17214, U.S.A.
An RCA publication 'Beam-lead devices' graphically explains how this type of chip is constructed. RCA, Sunbury-on-Thames, Middlesex
. WW446
Details of the 3 M wildife recording contest are given in a leaflet available from 3M House, Wigmore St, London W1A 1ET. The first prize is a natural history holiday worth $£ 150$.

Advance OS1000
DC to 15 MHz bandwidth.
$5 \mathrm{mV} / \mathrm{cm}$ dual trace display.
Signal Delay.
Comprehensive trigger facilities
with T.V. sync separator.
Switched X-Y operation.
Bright line auto free-run.
Portable - 20 lbs. weight, size 7 "x11"x17"
Advance OS1000 - £185
Scoop that for value!
OS1000 OSCILLOSCOPE
from the ADVANCE range

ADVANCE
ヨIERTRRONICS
ITMMITHD

5は屄
The best pick-up arm in the world

SME precision pick-up arms offer a standard of design and engineering which has earned them many distinctions. Throughout the world thousands are used daily by enthusiasts, professionals, and broadcasting and recording companies, who appreciate a specification that is eminently suited to the needs of modern high-quality sound reproduction.

Write to SME Limited • Steyning • Sussex • England

How to get what you want without having to try very hard

SINGLE SOURCE MAKES SENSE

Anything you can do to save yourself trouble makes sense. When it comes to ordering smaller quantities of a variety of parts there is a lot to be said for getting everything from one place. We're in business to make that easy for you.
As stockholders of Cinch, Dot and FT products, we are an efficient single source for pretty well everything of this kind you are likely to want in whatever quantity you want it and at short notice. So, whether it's Radio, Electronic and Electrical Components, Metal Pressings, Clips, Fasteners or Assemblies that you need, the easiest way is to get them from us-the most economical too, in the end.

Make United-Carr

 your
SINGLE SOURCE

116 PAGE FREE SINGLE SOURCE CATALOGUE illustrates thousands of stock items, any one of which you might want at any moment, posted on request to Firms and Organisations. Send for your copy now :

United-Carr Supplies Ltd.,
Frederick Road, Stapleford, Notts.
Sandiacre 2828 STD 0602392828

UNITED-CARF
SUPPLIES

If our most compact controlamplifier means more professional results, imagine what ourmost expensive will do.

That's right, even our compact 50 watt AU-101 is geared to help you achieve studio-quality results in your own living room, so you can imagine the possibilities that exist with our awesome top-of-the-line AU-999.

And with Sansui, there's a full selection of quality units in between, so no stereo perfectionist need ever again settle for anything less than very professional results.

Here's how the Sansui control amplifier line shapes up:
AU-999. 180 watts. Perhaps the world's finest. Direct-coupled power amplifier, separable preamplifier, low-noise PNP transistors, Triple Tone Controls. Connects up to three pairs of speaker systems, permits simultaneous. recording with two tape decks, monitoring on one. Wide 10 to $30,000 \mathrm{~Hz}$ power bandwidth, 0.4% or less distortion.

AU-888. 140 watts. Wide 10 to $40,000 \mathrm{~Hz}$ power bandwidth, 0.4% or less distortion. Direct-coupled power amplifier, separable low-noise preamplifier section with PNP transistors, ripple filter supply circuits, Triple Tone Controls. Powers up to three pairs of speaker systems.

AU-666. 100 watts. Power bandwidth: 10 to $40,000 \mathrm{~Hz}$, distortion 0.5% or less. Direct-coupled power amplifier, separable low-noise preamplifier section, complete transistor

England: VERNITRON (UK)LTD. Thornhill Southampton S095QF Tel: Southampton 44811 / Ireland: INTERNATIONAL TRADING CROUP LTD. 5 Cope Street. Pame Street, Dublin 2/West Germany: COMPO HI-FI G.M.B.H. 6 Frankfurt am Main, Reuterweg 65 / Switzerland \& Liechtensteln: EGII, FISCHER \& CO., LTD. ZURICH 8022 Żurich, Gotthardste. 6, Claridenhof / France: HENRI COTTE \& CIE 77, Rue I-R. Thorelle, 77, 92-Bourg-la-Reine / Luxembourg: LUX Hi-Fi 3, rue Glesener, Luxembourg/ Austria: THE VIENNA HICH FIDELITY \& STEREO CO. A 1070 Wien 7, Burggasse 114 / Belgium: MATELECTRIC S.P.R.L. Boulevard Lropold II, 199, 1080 Brussels/ Netherlands: TEMPOFOON N.V. Tilburg, Kapitein Hatterasstrat 8, Postbus 540 / Greece: ELINA LTD. 59 \& 59A Tritis Septemvriou Street, Athens 103 / Italy: GIL BERTO GAUDI s.a.s. 20121 Milano, Corso Di Porta Nuova, 48 / South Africa: GLENS (PTY) LTD. P.O. Box 6406 Johannesburg / Cyprus: ELECTROACOUSTIC SUPPIY CO., LTD., P.O. Box 625 , Limassol / Portugal: CENTELEC LDA. Avenida Fontes Perelra de Melo, 47, 4.0 dto., Lisboa-1/Malta: R. BRIZZI 293, Kingsway, Valletta / Canary Islands: R. HASSARAM Calle la Naval, 87, Las Palmas / SANSUI AUDIO EUROPE S.A. Diacem BIdg., Vestingstraat 53-55, 2000 Antwerp, Belgium / SANSUI AUDIO EUROPE S.A. FRANKFURT OFFICE 6 frankfurt'am Main, Reuterweg 93, West Germany / SANSUI ELECTRIC CO., LTD. 14-1, 2-chome, Izumi, Suginami-ku, Tokyo 168, Japan

SSB|AM|FM|CW Facilities to 500 MHz

The GREEN TG-2400 is the most versatile analyser on the market in its class

It probes parameters of all transmitters (to 1000 W) from HF to UHF $2-1000 \mathrm{MHz}$

The TG-2400 is the only self-contained analyser at this price to satisfy PO requirements for SSB power measurement. There are 450 military, civil and industrial users throughout the world and 60 TG-2400's are used by the British Post Office

Facilities of the TG-2400 include measurement and analysis of:-

- Output power 1-1000 W

■ VSWR \quad RF envelope (CRT display)

- Modulation FM deviation (with TG-2700) The TG-2400 is only one of the advanced instruments designed and built by GREEN in the UK
SYSTEM 2000 consists of the TG-2420 HIGH POWER ABSORPTION LOAD
WATTMETER the TG-2700 modulation analyser and the TG- 2400 output analyser, compacted as a transportable unit

CREEN internationally ${ }^{\text {amont }}$ (wits mo

Thorold Road, London N22 4YE, England. Tel: 01889 2700. Cables: Greenelec London N22. Telex: 933665

LINE REPEATER AMPLIFIERS LOUDSPEAKERS \& AMPLIFIERS TELEPHONE APPARATUS ACOUSTIC HOODS ELECTRONIC EQUIPMENT COMMUNICATIONS EQUIPMENT

Transformers: Mains, Output, Pulse, Driver, Line isolation, Hermetically Sealed, C-Core, Chokes, Knobs, Bobbins, Formers, Connectors, Telephone transmitter and receiver insets, Loudspeaker units and pressure units, Encapsulated components and modules, Plastic mouldings, Fixed frequency Oscillators, Active filters, Attenuators, Junction Boxes, Wood Cabinets, Relay Components

Whilinhthyly

Bench Power Supply
Output 0.50 v .2 A

Superb finish
4" meter
$5 \frac{1}{2} \times 8^{\prime \prime} \times 10^{\prime \prime}$ high
A.P.T. ELEGTRONIC INDUSTRIES LTD

PHILIPS

Philips for the best 'PAL' you could have

Colour television can win or lose you your friends - and your profits. Fast, efficient and reliable installation and after sales service will make sure you're on the winning side. Philips PM 5508 PAL Colour Pattern Generator provides your engineers with all the facilities for on-the-spot colour TV (and monochrome) service - for many adjustments you don't even need an oscilloscope ; just use the receiver's picture tube instead.
Of course, though, a sensitive, 10 MHz double-beam oscilloscope, such as the Philips PM 3230, could increase your advantage further - even over the competition.
If you want to make friends and influence people just contact Pye Unicam straight away. Ask for a leaflet

giving more information on the Philips PM 5508 PAL Colour TV Pattern Generator, the PM 3230 Oscilloscope and other radio and TV service equipment in the Philips range.

Pye Unicam Ltd
York Street Cambridge CB1 2PX
England
Telephone (0223) 58866 Telex 81215

PYE UNICAM LTE

numbers

Set up a QUAD 33 with +1 on the treble control, and you will obtain a response precisely defined; readily and accurately repeatable. This response has a shape rather different from most run of the mill tone controls and there are, as you may guess, good reasons for this.

Then as the listener is not expected to know just what a given response curve does to the signal off the record, we provide a button marked 'cancel'. This enables him to make a direct comparison with the original and so learn just which recording defects need what correction. A QUAD user gets the best out of every record - every time - and enjoys the music to the full.

QUAD

for the closest approach to the original sound

For electronic valves (a really comprehensive range), neon indicator tubes, semi-conductors (a wide variety), integrated circuits.

Teonex offers more than 3,000 devices. They are the Teonex range are nearly always available for competitively priced and they are superlative in performance, because the company imposes strict quality control. Teonex concentrates entirely on export and now operates in more than sixty countries, on immediate delivery
Write now for technical specifications and prices to Teonex Limited, 2a Westbourne Grove Mews, London W11, England. Cables: Tosuply London W11. Telex: 262256
Government or private contract. All popular types in
Electronic valves, neon indicator tubes, semi-conductors and integrated circuits for export

票 soundsinternational

A CLEAR CASE

TYPICAL PRICE: KM 106 (106mm x 83mm)-1mA. 100 off at $£ 2.51$ each.

Anders means meters

Without a shadow of a doubt this latest range of Anders Meters will satisfy every equipment manufacturers' need for good quality meters at extremely competitive prices. The KM Series (illustrated above) comes in 8 case sizes, rectangular and square flush, with clear front shadowless dials and scale lengths from $0.75^{\prime \prime}-6 \cdot 00^{\prime \prime}$.
(a) KL 180° scale meters, in 3 case sizes, with scale lengths from 4.00"-6.00".
(b) Profile Series of edgewise meters are encased in clear plastic and available in 5 case sizes.
(c) CS 240° scale meters have black bakelite cases, in 2 sizes with $4 \cdot 00^{\prime \prime}$ and $5 \cdot 50^{\prime \prime}$ scale lengths.
There is ex stock availability on most of the above types in standard ranges, with fast prototype service. These models are only part of our very large and comprehensive range of instruments. We hold the largest stocks of meters in the United Kingdom. Catalogues and price information on request.

AMDERS ELECTROMILS LIMITED

48/56 Bayham Place, Bayham Street, London, N.W.1. Telephone 01-3879092
Manufacturers and distributors of Electrical Measuring Instruments and Electronic Equipment. Sole U.K. distributors of FRAHM Resonant Reed Frequency Meters and Tachometers.

TPA SERIES-D integrated circuit power amplifiers

Over the past few years we have become one of the foremost manufacturers of professional power amplifiers.
We are now taking THE LEAD IN EUROPE as the first company to use the most advanced power stage and driver stage integrated circuits.

TPA.50-D Spec.
Power Output 100 watts rms into 4 ohms 65 watts rms into 15 ohms
Freq Response $\pm 0 \cdot 1 \mathrm{~dB} 20 \mathrm{~Hz}$ to 20 KHz into 15 ohms. -1 dB at 150 KHz
Total harmonic Less than 0.04% atl levels distortion up to 50 watts rms into 15 ohms
Input sensitivity 0 dBm to 100 mV
Noise
$-100 \mathrm{~dB}$
2μ seconds

For full technical information contact

In just 2 minutes,find out how you can qualify for promotion or a better job in Engineering ...

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn on 'SATISFACTION - OR REFUND OF FEE' terms. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

WHICH SUBJECT WOULD INTEREST YOU:

Mechanica
A.M.S.E. (Mech.)

Inst. of Engineers
Mechanical Eng.
Maintenance Eng.
Welding
General Diescl Eng.
Sheet Metal Work
Eng. Inspection
Eng. Metallurgy
C. \& G. Eng. Crafts C. \& G. Eng. Crafts

Draughtsmanship A.M.I.E.D.

Gen. Draughesmanship Die \& Press Tools Elec. Draughtsmanship Jig \& Tool Design Design of Elec. Machines Technical Drawing Building

Electrical \& Electronic A.M.S.E. (Elec.) C. \& G. Elcc. Eng Gencral Elec. Eng. Installations \& Wiring Electrical Maths. Electrical Science Computer Electronics Electronic Eng.

Radio\& Telecomms. C. \& G. Telecomms C. \& G. Radio Servicing Radio Amatcurs' Exam Radio Operators' Cert. Radio \& TV Enginçering Radio Scrvicing
Practical Tclevision TV Servicing Colour TV
Practiçal Radio \& Electronics (with kit)

Auto \& Aero A.M.I.M.1. MAA/LMI Diploma C. \& G. Auto Eng. Gencral Auto Eng
Motor Mechanics A.R.B. Certs. Gcn. Acro Eng.

Management \& Production Computer Programming Inst. of Markering A.C.W.A. Works Management Work Study Production Eng. Storckceping Estimating Personnel Management Quality Control Electronic Data Processing Numerical Control Planning Enginecring Manning Engincering Materiais Handing Operational
Metrication

Constructional

A.M.S.E. (Civ.) C. \& G. Structural C. \& G. Structural Road Engineering Civil Engineering Building
Air Conditioning Heating \& Ventilating Carpentry \& Joinery Clerk of Works Byilding Drawing Surveying Painting and Decorating. Architecture Builders' Quantitics

General
C.E.I.

Petroleum Tech.
Practical Maths.
Refrigerator
Servicing.
Rubber Technology
Sales Engincer
Timber Trade
Farm Science
Agricultural Eng.
General Plastics
General Certificate of Education Choose from 42 'O' and 'A' Level subjects including: English
Chemisiry Gencral Science Geology Physics
Marhematics Technical Drazeing French
German
Rerman
Spanish
Biology
B.I.E.T. and its ussociared schools have recorded weell over 10,000 G.C.E. successes at ' O ' and 'A' level. WE COVER A WIDE RANGE OF TECHNICAL AND PROFESSIONAL EXAMINATIONS.

Over 3,000 of our Students have obtained City \& Guild Certificates. Thousands of other exam successes.

THEY DID IT-

 SO COULD YOU"My income has almost trebled . . . my life is fuller and happier." - Case History G/321.
"In addition to having my salary doubled, my future is assured."-Case History H/493.
"Completing your Course meant going from a job I detested to a job I love." - Case History B/461.

FIND OUT FOR YOURSELF

These letters-and there are many more on file at Aldermaston Court-speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

Free!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

Dept B7, Aldermaston Court, Reading RG7 4PF. POST THIS COUPON TODAY
(Write if you prefer not to cut this page)

PORTABILITY
 WITH LOW COST

AND HIGH ACCURACY. These are some of the features that make Levell portable voltmeters an essential part of your operation. Add solid state design, large overload ratings, long battery life, and you'll see why Levell instruments are a very good buy. All A type instruments have $3 \frac{1}{4}^{\prime \prime}$ scale meters, and case sizes $5^{\prime \prime} \times 7^{\prime \prime} \times 5^{\prime \prime}$. B types have $5^{\prime \prime}$ mirror scale meters and case sizes $7^{\prime \prime} \times 10^{\prime \prime} \times 6^{\prime \prime}$. Optional extras include mains units and leather cases.

Levell Electronics Ltd Park Road • High Barnet - Herts
Tel : 01-4495028

"manya mickle maks amuckle"
 (small gains mount up)

BRIDGE RECTIFIERS

Four silicon rectifiers interconnected as single-phase full-wave bridge in one four-terminal package. Current handling from 1 to 5A dc. and voltage ratings from 100 to 420 V dc. First code number reflects dc. current and last three dc. voltage ratings $-\mathrm{D} 1100=1 \mathrm{~A}$, 100 V.
Send for Information Bulletin VB

DIGITAL I.C.'s

A range of gates, flip flops, etc. in both 'DTL 930", and TTL "74" series. Normally in dual-in-line packages, but TO5 or flat pack available. NKT codings enable immediate identification with corresponding " 930 " or " 74 "' series; e.g. NKT DIC $936=$ DTL 936 and NKT DIC $7400=$ SN 7400.
Send for Information Bulletin VG

DUAL TRANSISTORS

Two isolated high-gain, lowleakage, low-noise transistor chips mounted in close physical and thermal proximity in an industry standard 6-lead T05 package, and closely matched for $V_{B E}$ and $h_{F E}$ provide best low-drift front end for instrumentation differential amplifiers.
Send for Information Bulletin VD

LINEAR IC'S

NKT has an expanding range of industrial linear I.C. 's, such as the LIC 709C (=uA709C). LIC 723C (=uA723C); and LIC 741C ($=u A 741$ C). Packages are normally 14-lead dual-in-line (indicated by " $/ 14$ ") after type number, but TO5 ("/5") and 8-lead dual-in line (" $/ 8$ ') are available. Send for Information Bulletin VA

DIFF. AMP. PAIRS
Transistors, f.e.t.s. or diodes available in closely matched pairs, loose or in special heat sinks. Available as standards (such as the BCY55 $\mathrm{h}_{\mathrm{FE}} / \mathrm{N}_{\mathrm{BE}}$ matched pair) or with special close-tolerance matching of other parameters such as V_{F}, V_{P}. I I 1 IS. $I_{\text {cBo }}$ or $I_{\text {GSS }}$.
Send for Information Bulletin VH

DIODES

Germanium and Silicon diodes for most switching and small signal purposes including such standards as 1 N 914,1 N4148, OA91, and OA47. Germanium junction high-current diodes also available. Special selections for V_{F}, C_{D}, I_{R}, etc. on request. Thermal biasing diodes a speciality.
Send for Information Bulletin VR

OPTOELECTRONICS

The NKT 7000 range contains infra-red emitting diodes (LED'S). visible light diodes (VLED'S), photo-transistors, photo-scr's, photo-resistors, photo-voltaic cells and optical couplers. Both plastic and hermetic glass-metal-seal packages are available.
Send for Information Bullerin VO

non-transistors from Newmarket Transistors

RECTIFIERS

Small flying lead rectifiers with $\frac{1}{2}$ and 1 A current ratings at voltages from 100 to 1000 V in industry standard package. Apart from such standards as the 1 N4001 4007 series, NKT provides special selections on characteristics such as leakage or forward voltage drop. Send for Information Bulletin VR

MICRO DEVICES

As manufacturers of thick film hybrid circuiss, NKT specialises in the supply of microminiature semiconductor active devices for attachment to film circuits-the range includes unencapsulated chips, leadless inverted devices (LID 's), microtab and flexible lead types Send for Information Bulletin VS

UNIJUNCTIONS

In unijunctions, NKT has available the well tried industry-standard metal-can $2 \mathrm{~N} 2646 / 7$ and 2 N 1671 B , as well as aconomical plastic devices for less onerous applications where cost is the overriding factor.
Send for Information Bulletin VU

THYRISTORS

NKT specialises in the area of low current (up to 1A) thyristors in industrial metal can and economical plastic packages. The range stretches from the plastic NTS 311 ($30 \mathrm{~V}, 0.6 \mathrm{~A}$) to the T05 metal can NTS 1500 ($500 \mathrm{~V}, 1 \mathrm{~A}$) via the T018 NTS 0660 ($60 \mathrm{~V}, 0.6 \mathrm{~A}$). Send for Information Bulletin VT

Distributors
For further details contact one of the distributors listed below.
(In the case of large scale requirements you can save time by referring direct to Newmarket)

Eastern Aero Electrical Services Ltd.
Building 202.
Enfield Road, London (Heathrow) Airport, Hounslow, Middlesex. Tel: 01.7591314

S.D.S. (Portsmouth) Ltd.,

 Hilsea Industrial Estate, Portsmouth P03 5JW Hampshire. Tel: 0715/65311 Telex: 86114I.T.T. Electronic Services Ltd., Edinburgh Way.
Harlow.
Essex.
Tel: 02796-26777
Telex: 81146
L.S.T. Electronic Components Ltd.,

7 Coptfold Road,
Brentwood.
Essex.
Tel: Brentwood 226470
Telex: 99443
G.S.P.K. (Sales) Ltd., Hookstone Park. Harrogate. Yorkshire.
Tel: Harrogate 86258
Telex: 57962
Hird-Brown Electronics Ltd.,
Lever Street.
Bolton BL3 6BJ
Lancashire.
Tel: Bolton 27311
Telex: 63478

Coventry Factors Ltd!.
Coronet House.
Upper Well Street.
Coventry VC1 4AF
Warwickshire.
Tel: 0203-21051/5
Telex: 311243

\#KT

MEWMARKET TRANSISTORS LTD.
EXNING ROAD. NEWMARKET SUFFOLK.
Tel: 0638 . 3381 . Tolex 81358

Features

* Programmable output
L.30F.

Units Availlable	Prices	
L.30A	$0-50 \mathrm{~V}$ at 500 mA	$£ 36$
L.30B	$0-30 \mathrm{~V}$ at 1 A	$£ 36$
L. 30 C	$0-10 \mathrm{~V}$ at 3 A (with adjustable overvoltage	
	crowbar circuit)	$£ 48$
L.30D	$0-30 \mathrm{~V}$ at 2 A	$£ 56$
L.30E	$0-30 \mathrm{~V}$ at 5 A	$£ 82$
L. 30 F	$0-12 \mathrm{~V}$ at 10 A (with adjustable overvoltage	
	crowbar circuit)	$£ 86$
L.30A/T	$2 \times 0-50 \mathrm{~V}$ at 500 mA	$£ 72$
L.30B/T	$2 \times 0-30 \mathrm{~V}$ at 1 A	$£ 72$
L.30D/T	$2 \times 0-30 \mathrm{~V}$ at 2 A	$£ 112$

* Continuous variability of voltage and current settings
* Constant voltage or constant current operation
* Extremely stable output against load/line variations
* Separate on/off switching of mains input and DC output
- Adjustable current limiting facility on all units
- Variable SCR over-voltage crowbar circuit on L.30C and
* Clean functional design with precise monitorlng of voltage and current by clear scale meter

FARNELL INSTRUMENTS LTD.,
Sandbeck Way, Wetherby, Yorkshire Telephone: 0937 3541/6
London Office: Telephone: 01 802/5359

WW- 022 FOR FURTHER DETALLS
PARTS AND COMPONENTS FOR TELECOMMUNICATION ENGINEERING aND EIECRONCS

EXPORT-IMPORT

RC-Elements	\square Resistors
	\square Capacitors
	\square Potentiometers
Electromechanical	\square Connectors, sockets
Components	\square Switches
	\square Relays
	\square Pilot lamps
	\square Rotary buttons
	\square Microphones
Electroacoustic	\square Earphones
Components	\square Loudspeakers
	\square Transformers
	\square Fluorescent tube and mercury-
	\square vapourlamp adapters
Miscellaneous Parts	
and Components	
	\square Perrites
	\square Aerials

IMPORTVacuum tubes, special lamps
Semiconductor devicesIntegrated circuits

BUDAPEST

ELEKTROMODUL

Hungarian Trading Company for Electrotechnical Components
BUDAPEST, XIII., VISEGRADI UTCA 47 a-b
Telephone: 495-340; 495-940. Telex: 22-5154, 22-5155
WW- 024 FOR FURTHIER DETALS

PACIFIC PM PM PROFILES AT $50 / 60 \mathrm{~Hz}$

LOG/LIN RF POWER METER MODEL $1009,10 \mathrm{MHz}$ TO 18GHz 50 dB
\rightarrow OYNAMIC RANGE, BCD OUTPUT 1000 READINGS PER SECOND

Aveley Electric are now marketing the most advanced and complete range of Log and $d B$ instruments available in the world. All Pacific Measurements instruments feature $50 / 60 \mathrm{~Hz}$ operation, $115 / 230 \mathrm{~V}$ Power, and Calibration traceable to the Bureau of Standards. All circuits are 100\% solid-state and carry a one-year warranty.
*Catalogue or individual leaflet is available on request.

aveley electric uro

Arisdale Ave
South Ockendon Essex

Tel: Sth Ockendon 3444 Telex: 24120 Avel Ockendon

LERMYN

All fully coded, all from well-known manufacturers and now available, while stocks last, at better than bulk-buyer's prices! Cash with order only.

THIS MONTH:
1 N4148 Signal Diode
18 for $50 p$ ($=1$ N914)
IN5060 1 Amp Rectifier 400 V
(=A14D) avalanche protected
2N2926 NPN Silicon Transistor
(Red) hfe 55-110
2N2923 NPN Silicon Transistor 7 for 50p hfe 90-180
2N2646 Versatile Unijunction 3 for 100p
Post and packing $10 p$ for 1 or 2 packs; 3 packs or more post free

Order any quantity, till sold (but we regret packs cannot be satoctaided).

7 for 50p 8 for 50 p

P.O. or Cheque payable Jermyn Industries, Vestry Estate, Sevenoaks, Kent.

WW- 054 FOR FURTHER DETAILS
RECORDER AMPLIFIERS AND INSTRUMENTATION SYSTEMS

150
 series DIFFERENTIAL DC AMPLIFIERS

Wide dynamic range-
high common mode rejection
Low noise, low drift performance
Modular or cased presentation also

MINI-AMP FE-251-GA

 differential dc pre-amplifierCompatible modules and cards ensure ease of application and great flexibility.
FYIDE Hectromen Luaboarranais umurio

- LDE 16 OAKHAM COURT, PRESTON (0772) 57560

Different people have very different requirements in $\mathrm{Hi}-\mathrm{Fi}$, so Goldring developed a comprehensive range of stereo magnetic cartridges that are superb in performance and realistrc in price.

From the G800 Super E for those who seek perfection down to the G850 for systems on a budget, the Goldring range offers unsurpassed quality and value.

Your request will bring full details of these and other Goldring products. Goldring Manufacturing Company (GB)Limited, 10 Bayford Street, Hackney, London E8 3SE.
Tel:01-985 1152.
Goldring \odot Series 800
Stereo Magnetic Cartridges.

Thank you gentlemen.

Department of Trade \& Industry, British Rait, Port of London Authority,

United Kingdom Atomic Energy Authority,

Carphones Ltd.,
Caledonian//British United Airways, Central Electricity Generating Board,

AutomobileAssociation, C.W.S. Limited, Chubb Alarms Ltd., City of London Police, Turriff Construction Corp. Marks \& Spencers Ltd.,

Prestcold (Southern) Ltd., Wasco. Electronics Ltd., Appledore Shipbuilders Ltd.

Boots Pure DrugCo. Ltd. British Steel CorporationTubes Division, Calor Gas (J reland) Ltd., Helsinki Transport Board (HKL),

Esso Petroleum Co. Ltd., Ford Motor Co. Ltd.,

Imperial Chemical Industries Ltd., Kellogg \& Co. Ltd., Kodak Ltd., Mobil Oil Co. Ltd.,

Pilkington Bros. Ltd., Spanish Police,
St. Etienne Taxi Union,
Reed Group Ltd.
Shell-Mex \& B.P. Ltd., Royal Malaysian Police, Vauxhall
Motors Ltd., ,

Court LineAviation Ltd Iberia Airlines of Spain, Hawker Siddeley Aviation Ltd, K. L.M. Royal:Dutch Airlines, Pan American World Airways,

Council of the Stock Exchange, Chrysler United. Kingdom Ltd:,

Dartford Tunnel Joint Committee,

EastAfrican External Telecommunications Co. Ltd., Kuwait Oil Co. London Transport Executive, Trust Houses Forte Limited, Zambian Electricity Supply Corporation.All use
STAR mobile or
Starphone pocket radiotelephones.

And they've helped to make us one of the world's leading radiotelephone companies.
Sothanks again, gentlemen.
If you'd like STAR, too, write to: ITT Mobile
Communications Limited, Radlett Works,
Colney St.,
St. Albans, Herts.
Tel: Radlett 4711

YOU REQUIRE
YOU WANT
YOU APPRECIATE
the highest standards of soldering attainable, maximum operator efficiency, minimum risk to components.
the lightest, best engineered 'irons available, consistently reliable performance, minimal maintenance problems.

YOU NEED

 SOLDERING IRONSPlease write or ring for leaflets 5/1001/3
LIGHT SOLDERING DEVELOPMENTS LTD.
28 Sydenham Road, Croydon CR9 2LL
Telephone: 01-688 8589 \& 4559

WW- 030 FOR FURTHIER DETALS

Acoustic Research has measured the response of more than a million high-fidelity speakers.

Here are some things we have learned about listening.

1. The frequency response of a midrange driver unit of an AR-3a, on axis. This corresponds to what one would hear outdoors, listening directly in front of a speaker.

Integrated power output curves.

AR-3a and AR-5 with high-priced magnetic cartridge. It is interesting to see that the cartridge introduces
somewhat more degradation of the signal than the It is interesting to see that the cartridge introduces
somewhat more degradation of the signal than the speaker system, at least in the frequency range observed. Nevertheless, a small adjustment of the amplifier treble control could restore uniformity of response.

2. What happens when a listener moves over to one side of the speaker in 15° increments.

AR-2ax with moderately-priced magnetic cartridge, Although not as accurate is the AR-5 or AR-3a the AR-2ax displays the same kind of performance, that is its integrated power output curve is relatively level. Because its dispersion, especially in the lower midrange. is less uniform the AR-2ax is more dependent on optimum placement than the others.

3. The integrated power output of the AR-3a above 1000 Hz . measured in a special reverberant chamber Reflection from the walls of the chamber mixes together all of the sound emitted by the speaker system in all directions, an effect much more like that of a listening room than the anechoic chamber used for 1 and 2. A speaker system which measured well in both types of chamber would be accurate under almost all listening conditions.

A 'multi-directional' system and a very expensive cartridge Such systems are designed to take advantage of room reflections to smooth response and create spatial effects.

Vertical divisions $\frac{1}{2} d B$

Fidelity means accuracy.
Accuracy distinguishes high-fidelity speaker systems from the speakers in simple radios and gramophones. It is therefore reasonable that evidence of accuracy should take precedence over descriptions of a speaker system's size. shape or theory of design. Acoustic Research offers exact measurement data for AR speaker systems to all who ask for it: music listeners, audio enthusiasts, science teachers. even competitors.

The accuracy of a speaker system can be evaluated by listening tests or by measurement. Both methods give the same information in different ways.

Testing for accuracy.

To perform a listening test, an extremely accurate recording must be made and played back alongside the original source of sound. Amplifier and speaker system controls are adjusted to obtain as close a match as possible; and the speaker system judged by the degree of similarity. Acoustic Research has presented public concerts at which the Fine Arts Quartet and other musicians could be compared with recordings played back through AR speaker systems: even seasoned critics were deceived. Obviously, listening tests cannot be made with commercial recordings of music since the listener has no way of knowing which adjustment is most accurately reproducing the recording.

Objective measurements.
While it is not always convenient to carry out scientifically controlled listening tests, properly conducted measurements can give the same information in permanent, quantitative form. AR knows something about this, having already tested the response of well over a million speakers - every one that we have ever made, and many made by competitors. Our findings are that the most important measurements required to assess the accuracy of a speaker system are (1) frequency response on-axis, (2) frequency response off-axis. (3) integrated power output.

AR speakers are now available in pine, and start at $£ 38.95$ including purchase tax. Write to Bell \& Howell for more information, and a list of dealers.

AR BelleHowell

Bell \& Howell A-V Ltd.
Alperton House, Bridgewater Road, Wembley.
Middlesex HAO 1EG
Telephone: 01-902 8812

Celestion

 NEW CELISTION LOUDSPEAKERS- MODEL: PS12 TC 1798 (15 OHMS) PS12 TC 1920 (8 OHMS) TYPE: DUAL CONE $12{ }^{\prime \prime}$ RANGE: $40 \mathrm{~Hz}-12 \mathrm{KHz}$ POWER: 20 WATTS RMS FLUX: 128,000 MAXWELLS IMPEDANCE: 15 or 8 OHMS PRICE (R.R.P.) $£ 9.00$

MODEL: PS8 TC 9470 TYPE: DUAL CONE $8^{\prime \prime}$ RANGE: $50 \mathrm{~Hz}-12.5 \mathrm{KHz}$ POWER: 6 WATTS RMS FLUX: 38,500 MAXWELLS IMPEDANCE: 15 OHMS PRICE (R.R.P.) £2.90

* Both recommended for Unilex

The Celestion "Ditton 120"
Placed in top Hi-Fi class by reviewers
Supplied in matched pairs - Teak or Walnut
Superb Performance - Economical Price £48.00 pair

CELESTION 'POWER RANGE'

MODEL: G12M
RANGE: $40 \mathrm{~Hz}-8 \mathrm{KHz}$ POWER: 25 WATTS RMS FLUX: 145,000 MAXWELLS IMPEDANCE: 8 or 15 OHMS PRICE (R.R.P.) £12:95

MODEL: G12H RANGE: $40 \mathrm{~Hz}-8 \mathrm{KHz}$ POWER: 30 WATTS RMS FLUX: 180,000 MAXWELLS IMPEDANCE: 8 or 15 OHMS PRICE (R.R.P.) £15•75

'POWER RANGE'

The finest Loudspeakers made for electronic guitars

Loudspeakers for the Perfectionist

Please write for details.

ROLA CELESTION LIMITED

DITTON WORKS, FOXHALL ROAD, IPSWICH, SUFFOLK IP3 8JP Telephone (0473) 73131

Telex 98365

Soft magnetic alloys

telcon offer the widest range

Mumetal alloys

This is the best known and widest used Telcon group of high permeability alloys. They possess low hysteresis and total losses and are available in strip, rod, bar, wire and core form. Typical applications include: many types of transformers, bridge ratio arms, inductors, h.f. chokes, blocking oscillators, filter circuits, magnetic amplifiers, saturable reactors, modulators, flux gate magnometers, storage circuits, shift registers, transformers, logic switching circuits and a variety of magnetic shielding applications.

Radiometal alloys

Almost as well known as the Mumetal group, these high permeability alloys, with their high saturation induction and low electrical losses, are extensively used for transformers and chokes where the operating flux density is higher than is possible with Mumetal and where a higher permeability than that of silicon iron is required. The six grades have a variety of applications including: relay circuits, pulse and radar transformers, transductor and convertor cores, magnetic amplifiers and saturable reactors.

Permendur alloys
Permendur has the highest saturation ferric induction of all known alloys commercially available. It also has a correspondingly high incremental permeability at high inductions. It is extensively used for stator laminations. telephone diaphragms, magnetic circuits of loudspeakers and equipment operating at high temperatures. Its excellent magnetostrictive properties are frequently used in echo sounders and ultrasonic devices. A special grade of alloys, known as 'Rotelloys', which have superior mechanical properties have also been developed for use in high speed rotating equipment such as aircraft generators.

Telcon Metals Lte. Manor Royal, Crawley, Sussex. (Crawley 28800)

WW- 035 FOR FURTHER DETAILS

 \title{We command attention!
}
 \title{
We command attention!
}

(Great Britain) Ltd., 10 Bayford Street,
Hackney, London E8 3 SE. Tel: OI-985 1152

This

 new range of AIR SPACED VARIABLE CAPACITORS and TRIMMERS

CATALOGUE AVAILABLE NOW!

Send today for our NEW LIST 300
detailing our wide range-from
miniature air spaced trimmers up to
large high voltage
transmitting capacitors.

SUB MINIATURE TRANSFORMERS

We have facilities for the manufacture of miniature transformers to customers' own designs-and would welcome any enquiries.

AUDIO MEASURING INSTRUMENTS

Two instruments having a superior performance than any others of this type regardless of price. Now accepted as standard equipment by Broadcasting Authorities, recording studios, magazine equipment test laboratories, and audio research and development laboratories all over the world.

LOW DISTORTION OSCILLATOR

An instrument of high stability providing very pure sine waves and square waves, in the range of 5 Hz to 500 kHz . Hybrid design using valves and semiconductors.
Specification
Frequency Range:
Output Impedance:
Output Votage:
Sine Wave Distortion
Square Wave Rise Time: Monitor Output Meter: Mains Input:
Slze:
Welght:
Price:
$5 \mathrm{~Hz}-500 \mathrm{kHz}$ (5 ranges).
600 Ohms.
10 Volts I.m.s. max.
0.005% coninuously variable
0.005% from 200 Hz to 20 kHz Increasing to Less than 0.10 Hz and 100 kHz .
Scaled 0.1 microseconds.
$100 \vee \mathrm{~V}^{-3}, 0-10$, and dBm .
$17+\times-250 \mathrm{~V} .50 / 60 \mathrm{~Hz}$
$17 \mathrm{t} \times 11 \times 8$ in
251 lb
f 150
£150.

DISTORTION MEASURING SET

A sensitive instrument for the measurement of total harmonic distortion, designed for speedy and accurate use. Capable of measuring distortion products as low as 0.002\%. Direct reading from calibrated meter scale.

Specification

Distorion Range:
Distorition R
Sensitivity :
Meter:
Input Resistance:
High Pass Fiter:
Frequency Response:
Power Requirements:
Size:
Weigh:
Descrlptive technical leaflets are available on request.

RADFORD LABORATORY INSTRUMENTS LTD. BRISTOL BS3 2HZ
Telephone: 0272, 662301

Specify the Motorola Dual Transistor and you get more than just 'two chips in one can'.

You get two perfectly matched transistors giving excellent tracking over a widely varying temperature range.

So not only do you save space with the Motorola Dual Transistor, you gain greater efficiency too.

Here's another thing you should know - the cost of a dual transistor is approximately three-quarters
that of two individual transistors. And that means you pay less for increased performance.

Motorola make four main categories of dual transistor. You're sure to find just what you want among them. Quads are also available.

For more information send for a data sheet. Write to:

Motorola Semiconductors Ltd., Dept.ww4, York House, Empire Way, Wembley, Middlesex. Telephone: OI-903 0944.

Special purpose tape equipment
 -a new problem-solving service by Brenell

We invite enquiries for the design and production of special -purpose equipment to meet any professional or industrial tape requirement.

Our wide experience of high-quality tape recorder engineering ensures the efficient solution of any problem on the basis of standard equipment combinations or specially designed units built to laboratory standards.

- Tape transport - $\frac{1}{4}$ ", $\frac{1}{2}$ " or $1^{\prime \prime}$ reel-to-reel tapes and all types of cassettes
- Recording and replay amplifiers
- Copying equipment, tape or cassette
- Remote control facilities
- Single unit or batch-production

Put your special problem to us.

Brenell Type 19 Tape Deck

Brenell Transistorised Hi-fi Tape Link

I'D RATHER

 HAVE A MINITEST"The SEI MINITEST has made a remarkable impact in the pocket-sized multi-range meter market, by making itself a firm favourite with discerning people in the industry. Let's look into the reasons why.
First, the appearance. Diminutive, neat, wipe-clean cycolac case with shock and magnetic field proof steel liner. Controls are simple and easy to use.
Second, the range. The Minitest measures a.c. and d.c. voltages d.c. current and resistance over 20 ranges to a sensitivity of 20.000 and 2.000 ohms per volt d.c. and a.c. respectively. Third, high voltage probes. These extend the range to 25 or 30 kV d.c. Little wonder the Minitest is preferred!

SALFORD ELECTRICAL

INSTRUMENTS LTD
Peel Works, Barton Lane. Eccles. Manchester M30 OHL
Telephone 061-7895081 Telex 667711 A Member Company of GEC Electrical Components Lid.

[^15]

The iron has passed a 4000 v A.C. test and production models are routine-tested at 2000 V A.C. Officially approved even by the Swiss Electriclty Authorities. Available with our standard long-lite iron-coated bit which fits snugly over the element or with the new 7 Star bit for yet mone efficient heat-transter. 7-Starbits ars iron-coared nickel plated and chromium plated.

With some $400^{\circ} \mathrm{C}$ at the tip rapid recovery of heat and a soldering speed of one joint per second, productivity gains are

Model CCN $240(230-240 v) 15$ watt with long-life bit $3 / 32^{\circ}$ E1.80. spare bis $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime} \underline{25} \underline{\underline{0}}$. Model CCN $240(230-240 \mathrm{~V}) 15$ watt with 7 -Star bit $1 / 8^{\prime \prime}$ E1.95. spare bits $1 / 8^{\circ} 50 \mathrm{p}$. (Prices subject to quantity discount)
from electrical and radio shoos or by Free Post (No stamp required) to;

PRECISION MINIATURE SOLDERING IRONS
ANTEX LTD, FREEPOST, PLYMOUTH PLI IBR.
Telephone: 0752-67377/8 Giro No: 2581001

WW-042 FOR FURTHER DETAILS

used as standards in many industries

- Accurate to $\pm 0.3 \%$ or $\pm 0.1 \%$ as specified
- Not sensitive to voltage or temperature changes, within wide limits
- Unaffected by waveform errors, load, power factor or phase shift
- Operational on A.C., pulsating or . interrupted D.C., and superimposed circuits
- Need only low input power
- Compact and self-contained
- Rugged and dependable

Anders means meters

FRAHM Resonant Reed Frequency Meters are available in plastic and hermetically sealed cases to British and U.S. Government approved specification. Ranges $10-1700 \mathrm{~Hz}$. Literature on these meters and Frahm Resonant Reed Tachometers available on request. Manufacture and Distribution of Electrical Measuring instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery. RIDERS ELETTROMITS LIMITED
48/56 Bayham Place, Bayham Street, London NW1. Tel: 01-3879092

STRIP-CHART PEN RECORDERS \star FROM STOCK

Portable Strip-Chart Recorder Type H352

Writing mechanism	syphon ink pen
Type of movement	Moving coil
Full scale deflection	$1 \mathrm{~mA} \mathrm{D.C}$.
D.C. resistance of movement	10570』
Accuracy	$\pm 1.5 \%$
Chart width	100 mm
Chan speeds (through change gears)	20-60-180-600-
Chart drive	230 V A.C.
Record is produced on curvi-linear	dinates. For accurate
measurements a separate 'zero' me	pen is fitted for use
erence line.	
PRICE, with siel charts	¢52.00

Muhti-range universal Strip-Chàrt Recorder Type H390
Writing mechanism Type of movement Accuracy
Switchabl Switchable ranges:
D.C. Volts
A.C. Volts A.C./D.C. Amps

Chart with reading. PRICE, with 10 charts

Chart speeds thno 100 mm $\begin{array}{ll}\text { Chart drive } & 20 \text { to } 540 \mathrm{~mm} / \mathrm{hour} \\ 230 \mathrm{VA.C}\end{array}$ Record is produced on recti linear coordinates. Separate 'zero'
marking pen is fitted to produce reference line for accurate Record is produced on recti linear coordinates. Separate "zero"
marking pen is fitted to produce reference line for accurate

Moving coil with rectifier syphon ink pen Moving coil with rectifier on A.C. ranges $\pm 1.5 \%$ D.C. $\pm 2.5 \%$ A.C.

150 mV -5-15-50-150-250-500V 5-15-50-150-250-500V 5-15-50-150-250-500mA $1.5-5 \mathrm{Amps}$

Ten-channel event Recorder Type N30
Instrument will provide permanent record of duration and sequence of up to ten operations.

Writing mechanism	Syphon ink pen
Type of movement	Rotary electro-magnetic relay
Relay supply voltage	12 V D.C.
Minimum energizing time	0.1 sec

Mim Minimum energizing time 100 mm
Chart drive 230 A.C. Chart speeds (through change gears) $\quad 20.5400 \mathrm{~mm}$ per hour Record is produced in the form square pulses approx. 2.5 mm high.
$\begin{array}{ll}\text { PRICE, complete with } 10 \text { charts } & \mathbf{5 2 . 0 0}\end{array}$

Z \& I AERO SERVICES LTD.,
 44A WESTBOURNE GROVE, LONDON, W2

Tel: 01-727/5641
Telex 261306

* Made in USSR

WW-OH5 FOR FURTHER DETALLS

J E S AUDIO INSTRUMENTATION

Si451
£35.00
Comprehensive Millivoltmeter
350μ Voiss
20 ranges
Si453
Low distortion $£ 40.00$
Low distortion Oscillator
sine - square - RIAA

CONTINUOUSLY VARIABLE
LOW PASS ACTIVE FILTERS
over the range of:
1 Hz to 11 kHz

CLOSE TOLERANCE CAPACITORS 400 Volts D.C. down to:
$\pm 1.2,5 \%$
made to customers' requirements

Also:
NOL L boXes
wheatstone bridges
UNIVERSAL BRIDCES for aducational purposes

All enquiries to:

LIONMOUNT \& CO. LTD.,

Bellevue Road, New Southgate, London, N.11. Tel: 01-368 7047 WW- 047 FOR FURTHER DETAILS

SPECIAL OFFER! Something all i.c. users should know....

Our I.C. Patchboard Educational Pack Type CK2/E is down in pricel
For a limited period only, that is.
The educational pack comes complete with patchboard for twelve dual-in-line integrated circuits, input switches, output indicators, clock, internal power supply, patch leads, a selection of ten digital integrated circuits, and a comprehensive logic instruction book.
And as a bonus you also get the new handsome cabinet in which it is housed. Absolutely free.
At the special offer price of only $£ 57$, you save $£ 5$ per pack by ordering before 30 th October 71. The basic patchboard type CK2/S is exceptional value too at only $£ 48$.
Ask us for further information NOW.
Limrose Electronics Ltd, Lymm, Cheshire, England.
Tel. Lymm 3019 (STD 092-575-3019)

ENQUIRY SERVICE FOR

PROFESSIONAL READERS

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.

PLEASE USE CAPITAL LETTERS

Pour obtenir tout renseignement complémentaire sur les produits mentionnés dans les articles ou dans les pages publicitaires de ce numéros nous vous prions de remplir une ou plusieurs des cartes ci-jointes en inscrivant le ou les numeros de référence. Vos demandes de renseignement seront transmises aux fabricants intéréssés qui, en temps voulu, vous feront parvenir une réponse. Il est nécessaire d'affranchir les cartes postées a l'ētranger. Ces cartes de service sont valides pendant six mois à partir de la date de publication.

PRIĖRE D'ECRIRE EN LETTRES MAJUSCULES

Weitere Einzelheiten über irgendwelche Artìkel, die auf Redaktion-oder Anzeigenseiten erscheinen, erhalten Sie, indem Sie eine oder mehrere der beigelegten Karten ausfüllen und die Kenn-Nummer(n) angeben, Itre Anfrage wird an den Hersteller weitergeleiter, und Sie werden dann direkt von ihm hören. Karten die im Ausland aufgegeben werden, müssen frankiert werden. Diese Service-Karten sind sechs Monate vom Ausgabetag gültig.

BITTE IN BLOCKSCHRIFT AUSFÜLLEN

Per ulteriori particolari in merito agli articoli menzionati nel testo o nelle pagine pubblicitarie di questo numero Vi preghiamo di completare una o più delle schede allegate citando il numero o i numeri di riferimento. La Vostra richiesta sarà inoltrata ai fabbricanti interessati che Vi risponderanno direttamente. Le schede dall'estero devono essere regolarmente affrancate. Questo scontrino di servizio é valido per sei mesi dalla data di pubblicazione.

SI PREGA DI COMPILARE LE SCHEDE STAMPATELLO

Con objeto de obtener mas detalles de cualquiera de los articulos mencionados en las páginas editoriales o de anuncios de este número sirvase rellenar una o más de las unidas tarjetas citando el número o números de referencia. Sus consultas serán transmitidas a los fabricantes interesados de quines tendrán noticias directamente a su debido tiempo. Las tarjetas enviadas desde el extranjero requieren franqueo. Estas tarjetas de servicio son validas durante 6 meses a parir de la fecha de publicacion.

SIRVASE ESCRIBIR CON LETRAS MAYUSCULAS

DRAKE TRANSFORMERS

INCORPORATING

Mains Transformers
Chokes

Audio Output Transformers
Audio Input Transformers
Saturable Reactors

Current Transformers

Transistor Transformers
Inverter Transformers
Screened Microphone Transformers
Wide Band R.F. Transformers
Resin Cast.Transformers
DRAKE TRANSFORMERS LTD., BILLERICAY, ESSEX

Vortexion

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER USING F.E.T.s.

This is a high fidelity amplifier (0.3% intermodulation distortion) using the circuit of our 100% reliable 100 Watt Amplifier with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer Amplifier, again fully protected against overload and completely free from radio breakthrough.

The mixer is arranged for $2-30 / 60 \Omega$ balanced line microphones, $1-\mathrm{HiZ}$ gram input and 1 -auxiliary input followed by bass and treble controls. 100 volt balanced line output or $5 / 15 \Omega$ and 100 volt line.

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 5-WAY MIXER USING F.E.T.s

 This is similar to the 4 -way version but with 5 inputs and bass cut controls on each of the three low impedance balanced line microphone stages, and a high impedance (10 meg) gram stage with bass and treble controls plus the usual line or tape input. All the input stages are protected against overload by back to back low noise, low intermodulation distortion and freedom from radio breakthrough. A voltage stabilised supply is used for the pre-amplifiers making it independent of mains supply fluctuations and another stabilised supply for the driver stages is arranged to cut off when the output is overloaded or over temperature. The output is 75% efficient and 100 V balanced line or $8-16 \Omega$ output are selected by means of a rear panel switch which has a locking plate indicating the output impedance selected.100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLIFIER with specification as above is here combined with a 4 channel F.E.T. mixer, 2-30/60 Ω balanced microphone inputs, $1-\mathrm{HiZ}$ gram input and 1 -auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms -15 ohms and 100 volt line. Bass and treble controls fitted.
Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic, inputs or 4 low mic. inputs.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms . Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 dB and over 30 times damping factor. Ai 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced and 1 auxiliary input.

VARIABLE TRANSFORMERS ARE ALWAYS AVAILABLE FROM STOCK AT THE LOWEST PRICES

Fully shrouded variable transformers-input 250VAC output 0-260VAC
$1 \mathrm{amp} \quad £ 7.00 \quad 10 \mathrm{amp} £ 22.50$
$2.5 \mathrm{amp} \quad £ 8.05 \quad 12 \mathrm{amp} £ 23.60$
$5 \mathrm{amp} £ 11.75 \quad 20 \mathrm{amp} £ 49.00$
$8 \mathrm{amp} £ 15.90$

Constant voltage transformer stabilises mains voltage to $\pm 1 \%$ output $240 \mathrm{VAC} \pm 1 \%$ input $240 \mathrm{VAC} \pm 20 \%$ capacity 250 Watts price $£ 12.50$ with quantity discounts

New solid state variable voltage control input 240VAC output 25-240VAC

5 amp f9.50
10 amp f 15.20

313 Edgware Rd., London W. 2 Telephone 01-723 2231

C:W from Eidystone

1830 Series

This is a range of solid-state, general purpose communication receivers with reception facilities for CW, AM and SSB in the band 120 kHz to 30 MHz . Incremental facility with 1 kHz readout.

10 Crystal controiled channels:

 100 kHz Calibrator.Operation from standard AC supplies or powered directly from any 12 V DC source.
Competitively priced receiver for general purpose communications: HF point to point: Re-broadcast: Monitoring purposes: Laboratory measurement: Mobile HF Reception.

IIlustrated brochure obtainable from:
Eddystone Radio Limited,
Alvechurch Roā̄, Birmingham B31 3PP
Telephone: 021-475 2231 Telex: 337801

A member of Marconi Communication Systems Limited

Terminate your wiring

Use Hellermann-GKN Compression Terminal Kits. They're ideal for general maintenance work on electrical and electronic equipment - domestic or industrial - and one of the Kits is specially made for automobile electronics.

Take your pick from three different Kits, each one containing 12 of the most popular compression terminals. With or without a hand crimping tool. The terminal packets are re-sealable, and fit into the pockets of the plastic wallet that can either be hung on a wall or folded neatly into a tool bag.

UNIVERSAL with pre-insulated terminals for general electrical maintenance and domestic appliances.
Kit No. 1. - without tool : 6.15 Kit No. 1-CT-including tool
£8.30
MAINTENANCE with pre-insulated terminals for factory and general maintenance.
Kit No. 2 - without tool: $£ 6.15$ Kit No. 2-CT-including tool £8.30
GARAGE with non-insulated terminals and covers used on most automobiles.
Klt. No. 3-without tool : $£ 3.25$ Kit No. 3-CT-including tool : $£ 5.40$

All prices are subject to quantity terms. Each of these Kits can be made up to customers' requirements, subject to quantity.

Write for descriptive leaflet to:
NETTLEFOLD \& MOSER LTD
170-194, Borough High Street, London, SE1 1LA.
Tel: 01-407 7111.

A production tool that balances itselflatest of Wayne Kerr's bridges Capacitance Deviation Bridge B700

For more information, either call David O'Grady on 01-3996751 or write to him at the address below:

WAYNE KERR

Tolworth Close, Tolworth, Surbiton, Surrey Telex: 262333: Cables: Waynkerr Surbiton A member of the Wilmot Breeden group

Capacitance Range 10 pF to $10 \mu \mathrm{~F}$ in six decade ranges. Four digit Standard setting. Accuracy $\pm 0.1 \%$ of measured value of capacitance.
Deviation Range 0 to $\pm 2 \cdot 5 \%$. 0 to $\pm 25 \%$ of set capacitance.
Dissipation Range ($\tan \delta$) 0 to 0.01 . 0 to 0.1.
Limit Settings $\pm 0.2 \%$ to $\pm 20 \%$ in seven steps of capacitance deviation with independent variable high and low limit independent variable high and low limit
controls. 0.001 to $0 \cdot 1$ in seven steps of dissipation factor with independent variable high limit control. Bridge Frequency 1 kHz .
The B700 provides all the facilities required for checking capacitors during manufacture, quality control and batch selection to an accuracy of $0 \cdot 1 \%$. It can be adapted to control sorting, winding or cutting machines and is the latest in the WAYNE KERR series of transformer ratio-arm bridges.

This type of bridge circuit enables small values of capacitance to be accurately measured at the end of long lengths of screened cables, the measurement being unaffected by the capacitance of these cables. Also a very wide range of measurement is provided with the ability to set standard values digitally using only a few precise standard components.

This bridge balances itself automatically. It also produces a highly stable analogue output voltage in proportion to the percentage deviation of the componentunder test from the pre-set nominal capacitance value: A second analogue output voltage is produced in proportion to the dissipation factor of the capacitance.

Both of these voltages are available to operate chart recorders in addition to the panel meter display. Alarm circuits, triggered by these voltages, are also control high or low limit capacitance indicating lights. A high dissipation tolerances, a pass light is switched on. These alarm circuits also provide logic

MODEL 125 EDGEWISE

1.5" SCALE (horizontal or vertical use)

2-3 WEEKS DELIVERY

for standard ranges (also to customers specification)

WW-057 FOR FURTHER DETAILS

Nombrex accuracy!

C.R. TEST BRIDGE MODEL 32 Price $£ 10.50$

Every radio 'ham' needs one and at this low price you are buying a fully transistorised, high quality instrument. Write for full technical leaflets.
Note a few of the specification details below:-

- 6 Ranges covering 1Ω to $100 \mathrm{M} \Omega$

1 pF to 100μ F

- Accuracy $2 \frac{1}{2} \%$ at centre to 5% near ends.
- Separate and clear R \& C scales
- Power Factor measurement up to 70\%
- Neon indication for capacitance leakage
- Battery operated or external supply
- Guaranteed for 12 months

Export enquiries to Norddeutshe Mende Rundfunk KG 28. Bremen 44. Postfach 448360 West Germany. Post \& Packing 35p extra TRADE ENQUIRIES WELCOME
NOMBREX (1969) LTD.
CAMPERDOWN TERRACE, EXMOUTH, DEVON. Tel: 03-952 3515.

WW-056 FOR FURTHER DETAILS

Hatfield get the signal right

Hatfield low:loss Passive Couplers pass a signal from one to a multiple of outlet ports. They can also be used to combine signals. Hybrid Types N. 81 and N. 82 cover a frequency from 3 MHz to 200 MHz
For dividing a signal between two outputs while maintaining optimum VSWR and insertion loss characteristics. Hatfield can also supply an inexpensive VHF Signal Divider (765A) with a frequency range of d.c. to 1 GHz , through power to 1 W maximum. Multicouplers for Antenna systems requiring up to 8 outputs are available to special order. Send for full details of the full range of Hatfield Hybrid units and our Short Form Catalogue.

HATFIELD

forward thinking in electronics
HATFIELD INSTRUMENTS LIMITED
Burrington Way, Plymouth PL5 3LZ. Devon.
Tel. Plymouth (0752) 72773/4 Grams: Sigjen, Plymouth. Telex: 45592 South-East Asia: for prompt service and deliveries. contact:
Haffeld Instruments (NZ) Lid., P.O. Box 561. Napier. New Zealand.

Please send a stamped addressed envelope for full descriptive details

of above units.

$\underset{\substack{\text { Whalesale ond } \\ \text { Retaii enquiries to: }}}{\text { LINEAR PRODUCTS LTD }}$
ELECTRON WORKS, ARMLEY, LEEDS
WW-059 FOR FURTHER DETAILS

- $-\infty \square \square /$
 MILITARY - INDUSTRIAL

COMMERCIAL. EDUCATIONAL
 $\square \square$ Min MICATDIM

AUDIO CONTROL SYSTEMS
HEADSETS
FIELD TELEPHONE EQUIPMENT TANK HARNESS Send now for Literature to Dept:-w w

HAWKER SIDDELEY COMMUNICATIONS
S. G. BROWN LTD KING GEORGE'S AVENUE. WATFORD. HERTFORDSHIRE TEL: WATFORD 23301 TELEX 23412 TELEGRAMS RADIOLINK WATFORD Hawker Siddeley Group supplies-mechanical, electrical and aerospace equipment with world-wide sales and service.

Switchcraft Audio Connectors

Now available ex-stock, all popular Switcheraft audio connectors for studio and ancillary equipment. Featuring the high specification, ready inter-changeability and standardised fitting demanded by the connoisseur. At truly low cost: only 75p for the A3F cord plug, with other 3,4 and 5 pole plug and socket connectors in the same price bracket. Delivery ex-stock, with quantity discounts.

Switchcraft connectors for streamlined strength and efficiency: providing positive contact, safety lock, self-polarisation and cable clamping. The professional design for the professional user.

Sole U.K. Agents ${ }^{\text { }}$
for Switcheraft QG connectors
F.W.O. BAUCH LIMITED 49 Theobald Street, Boreham Wood, Herts.
Tel: $01-9530091$
Telex: 27502
WW- 060 FOR FURTHER DETAILS
DIOTESTOR IN-CIRCUIT TRANSISTOR TESTER

BRITEC LIMITED, 17 Charing Cross Road, London WC2H OER Tel: 01-930 3070

WW- 062 FOR FURTHER DETAILS

ELAPSED TIME INDICATORS
 Current Integrators

The whole range of Elapsed Time Indicators (E.T.I.) consists of:-
CHRONSISTOR (B)-Electro-chemical E.T.I. based on copper for 100. 1.000 and 10.000 hours This one is expendable after use.
MERCRON (9) -Electro-chemical E.T.I. based on mercury for 100, 1.01)0 and 10,000 hours Exists in six different models.
HOROCONTROL (B) -Electro-mechanical E.T.I. for A.C.. or D.C. for 9999.9 , or 999.99 hours

■■ INロUSTRIRL
 INSTRUMENTS LIMITED

MANUFACTURERS OF
TRANSIPACK ${ }^{\circ}$
STATIC POWER
CONVERSION EQUIPMENT

SALES AND LABS: STANLEY ROAD, BROMLEY, KENT. TEL: 01-460 9212/3 AND 01-464 5812
FACTORY: PONSWOOD INDUSTRIAL ESTATE, HASTINGS, SUSSEX. TEL: HASTINGS 7344/5/6

25 MHz Dual Trace Oscilloscope

The most remarkable feature of the new Telequipment D67 oscilloscope is the value for money it offers. Priced at $£ 295$, this dual trace scope offers a 25 MHz bandwidth at $10 \mathrm{mV} /$ div sensitivity, delaying sweep, and 3% measuring accuracy.
Bright displays are obtained by using 10 kV high voltage on the CRT which has a large $8 \times 10 \mathrm{~cm}$ viewing area.

A wide range of sweep rates from $2 \mathrm{sec} / \mathrm{div}$ to $200 \mathrm{~ns} / \mathrm{div}$, and the delayed sweep feature, permit close examination of any part of a complex wave form and also allow for accurate measurement of the time jitter in the input wave form. Users who need to view television signals will also like the D67's ability to trigger at TV field and line rates.
In addition, the D67 has features
ww- 064 FOR FURTHER DETAILS
not usually found in low-priced scopes -regulated power supplies, FET inputs to keep vertical trace drift to a minimum, and fully solid state design for added reliability. The price of $£ 295$ (U.K. only) is lower than that of any comparable scope on the market today.
Further details are available from Telequipment, 313 Chase Road, Southgate, London N14 6JJ Telephone: 01-882 1166. Telex: 262004. A division of Tektronix U.K. Ltd.

Our cover photograph is of part of the vibrations and sound section of Evoluon, the permanent exhibition at Philips, Eindhoven. In this abstract presentation sounds are converted into electronic pulses, transmitted and reconverted into sound. Photographer Paul Brierley.

IN OUR NEXT ISSUE

How a modified f.m. tuner used in conjunction with a simple oscilloscope and a home-made aerial will receive weather pictures from satellites.
A review of television receiver techniques.
Making a turntable and pickup arm.

Contents

411 The Plight of the Microcircuit Industry
412 Sweep-frequency Audio Oscillator by R. J. Ward
417 Announcements
418 Helical V.H.F. Aerial by G. J. Monser
420 Ceramic Discriminator for Narrow-band F.M. by D. Balfour
421 Dual-trace Oscilloscope Unit-2 by W. T. Cocking
425 News of the Month
427 Letters to the Editor
430 Circuit Ideas
431 Frequencies for Space Communication by D. E. Baptiste
433 Elements of Linear Microcircuits-11 by T. D. Towers
436 Conferences \& Exhibitions
437. The Liniac by J. L. Linsley Hood

441 H.F. Predictions
442 Letter from America
443 Field Sequential Colour Television Receiver-1 by T. J. Dennis
446 Voltage Reference Source by H. A. Cole
448 Electronic Building Bricks-15 by J. Franklin
449 Sampling Oscilloscopes \& Sampling Adaptors by E. B. Callick \& A. Lawson
451 Sound Synthesizers
452 Elapsed Time Graph for Tape Recording by B. W. Lingard
453 Centimetric Television Broadcasting by J. C. G. Gilbert
454 Books Received
455 World of Amateur Radio
456 Personalities
457 New Products
462 Literature Received
A95 APPOINTMENTS VACANT
All INDEX TO ADVERTISERS

ibpa

netranamal Bus mess
Pees Associates
I.P.C. Electrical-Electronic Press Ltd

Managing Director: George Fowles
Publishing \& Development Director George H. Mansell
Advertisement Director: Roy N. Gibb
Dorset House, Stamford Street, London, SE 1
© I.P.C. Business Press Ltd, 1971
Brief extracts or comments are allowed provided acknowledgement to the journal is given.

[^16]
Fromse the oneinamillion DVM

SE's Model SM 215 is the most accurate and linear digital volt meter in the world today. It's the one in a million DVM with unequalled performance: typical daily stability ± 1 part per million, coupled with linearity of ± 1 in a million, and annual stability of ± 10 parts per million. Four input ranges covering $0-1,000 \mathrm{~V}$, full-scale $1,100,000$ input current $<5 \mathrm{pA}$ input impedance over $100,000 \mathrm{M} \Omega$

In spite of its superb specification, this DVM is compact and easily portable to give you standards-room precision wherever you need it, plus SE's true value for money. If you need the best DVM there is, write or ring for details about SE's one-in-a-million SM 215. SE measures up to tomorrow's technology

For the first time - a new Amplivox headset offering full communications facilities yet under $20 z$ in weight.

The New Amplivox MINILITE - a breakthrough in super-lightweight headset design. MINILITE is feather light. No wearer fatigue. No wearer discomfort. New accoustic techniques have led to an earpiece that need barely touch the ear. So it's hygienic as well as comfortable. MINILITE is so light that it can be attached to the frame of a normal pair of spectacles. The telescopic 'Boom' is an accoustic tube that gives highest speech intelligibility. For all situations where the wearer has to use a headset continuously

MINILITE pays off handsomely in terms of performance, comfort and operator satisfaction at a truly economical price.
Minilite is Wearer Right
Send for full MINILITE details straight away.

AMPLIVOX COMMUNICAMIONS LIMITED

BERESFORD AVENUE, WEMBLEY, MIDDX., HAO IRU.
Telephone: 01-902 8991. Cables: Amplivox Wembley.

Townley Transformers

better made at a more realistic price

Backed by 20 years experience, Harmsworth, Townley are making low voltage, high current transformers by methods which ensure reliability while keeping prices to the minimum.

We make the coils in cast aluminium, which has good mechanical and heat strength, and we use a modular form of construction which speeds and simplifies the work and reduces the cost to you.

Single-phase or three-phase transformers are available from 2 kVA up to 400 kVA .

Townley transformers are custom built to your individual needs and if you send a full specification we can quote you by returr.
Write or telephone for full details of construction and the information we require for quoting.

Harmsworth, Townley

Harmsworth, Townley \& Co. Ltd.,
Harehill, Todmorden, Lancs.
Telephone: Todmorden 2601

RCA's five new IC arrays give you the design flexibility and cost-effectiveness of discrete devices

RCA linear IC arrays offer cost-conscious design engineers an ideal way to achieve new economies -they are priced as low as $6 p$ ($5 p$ in volumè) per transistor.

Here are five new monolithic, active-device arrays that combine the performance and versatility of discrete devices, with the inherent reliability and match of integrated circuits to provide a new approach to design problem solving.

Check into the:

- CA3081 and CA3082-for 7-segment incandescent and LED display drivers
and other current switching applications including relay control and thyristor triggering.
- CA3083-for high current signál processing, thyristor triggering, and driver applications from DC to 120 MHz .
- CA3084-p-n-p type for dynamic loads, level shifting, bias circuitry, and small-signal amplification (including complementary configurations)
- CA3086-5-transistor array for maximum economy and performance in signal processing systems operating in the DC to 120 MHz range.

For further information on these devices and RCA's complete line of linear IC arrays, see your local RCA Representative or RCA Distributor. For a copy of RCA's Integrated Circuit Product Guide (or a specific technical bulletin by File No.) write to RCA Solid State, Europe, Sunbury-on-Thames, Middx., or on the continent to 2-4, rue du Lievre, 1227 Geneva, Switzerland.

WW-O68 FOR FURTHIRR DETALLS

li's the limitations of this Racal moditation metert that mateit soattrat ite

Amplitude limiting for effective f.m. measurement offers | 5% accuracy for modulating frequencies
from 10 Hz to 50 kHz .
Errors in mean carrier level are limited to less than 1% for a.m.

Spurious deviation is limited to a very low level by a switchable noise filter.

and it's the very instrument for limited budgets

EEV knowhow helps you se

Some people still have the idea that TV cameras need good lighting conditions before they can work effectively. There is, of course, a wide range of vidicons for tungsten or daylight conditions, but until you know about our low light level tubes you haven't really seen anything.

You can, for example, see a black cat in a dark room, clearly, sharply, continuously - with light levels as low as 10^{-5} foot candles. To do this a high-sensitivity 3 -inch image isocon is used fibreoptically coupled to a compact image intensifier which amplifies light 150 times.
Sensitive though this unit is, it can 't be put out of action by bright lights. Applications include night observation, astronomy, microscopy and nuclear physics.

hingsin a different light.

Certain scientific work, or surveillance applications, might demand tubes that are sensitive to infra-red or ultra-violet light. EEV vidicons are available with special photosurfaces to satisfy these requirements. They're also ávailable as short-lag types for high light levels or longlag types for integrating light over $\frac{1}{3}$ to $\frac{1}{2}$ second, the latter for viewing repetitive light of low levels, such as radar screens emit.

In the EEV image isocon range there's a tube that can give radiologists a bright, moving X-ray picture in daylight - without exposing a patient to high X-ray dosage. In fact dose rates as low as 5 micro-Rontgens per second can be used, so enabling prolonged diagnostic study. Ask for details of these or any other EEV camera tubes for industrial and specialist applications.

EEV know how.

brandenburg

Spotight on the new A pha range of all solid state stabilised high voltage supplies -500 V to 60 kV .

(40 pats per millon for 15 minutes - guaranteed)

Alpha stabilised.d.c. high voltage supplies have continuously variable outputs ranging from 500 V to 60 kV , from 0.4 mA to 5 mA . Polarity reversal is achieved within seconds. Solid state inverters, operating at high frequency into a ferrite cored transformer, provide the required voltage, which is rectified by à Cockcroft Walton multiplier. The Alpha range is light and compact, designed for rack mounting or bench use, and its performance meets the requirements of both industrial and laboratory duties.

Output Voltage Control
Output Voltage Indication Output Current Control Output Polarity Output Plug and Socket Output Ripple
Source Impedance Stability
Drift

Continuously variable by coarse and fine potentiometers on front panel
4.5in scale length meter

Current metering jack located on rear panel Reversible (Except on Model 907)
Brandenburg design moulded in polythene 0.01 \%

Less than 2,000 ohms
0.01% (against $\pm 7 \frac{1}{2} \%$ mains change) 40 parts per million per 15 minutes

MODEL 507R (Reversible)
500 V to $5 \mathrm{kV}, 5 \mathrm{~mA}$, d.c.
MODEL 707R (Reversible)
1.5 kV to $15 \mathrm{kV}, 2 \mathrm{~mA}, \mathrm{~d} . \mathrm{c}$

MODEL 807R (Reversible)
3 kV to $30 \mathrm{kV}, 1 \mathrm{~mA}$, d.c.
MODEL 907P (Positive*)
6 kV to $60 \mathrm{kV}, 0.4 \mathrm{~mA}$, d.c.
MODEL 907 N (Negative*) 6 kV to $60 \mathrm{kV}, 0.4 \mathrm{~mA}$, d.c.

* with reṣpect to ground

For full details of Alpha (prices are very competitive) and the complete range of Brandenburg high voltage equipment send now to:

Brandenburg Limited

939 London Road, Thornton Heath, Surrey, CR4 6JE. England.
Tel: 01-689 0441 Telex 946149.
Switzerland: Fritz Weber, In der Rehweid 8, 8122 Pfaffhausen, Zurlch. Telefon: 051-854444.

Super IC-12

Highfidelity Monolithic Integrated Circuit Amplifier

Two years ago Sinclair Radionics announced the World's first monolithic integrated circuit $\mathrm{Hi}-\mathrm{Fi}$ amplifier, the IC.10. Now we are delighted to be able to introduce its successor, the Super IC. 12. This 22 transistor unit has all the virtues of the original IC. 10 plus the following advantages :

1. Higher power.
2. Fewer external components.
3. Lower quiescent consumption.
4. Compatible with Project 60 modules.
5. Specially designed built-in heat sink. No other heat sink needed.
6. Full output into $3,4,5$ or 8 ohms.
7. Works on any voltage from 6 to 28 volts without adjustment.
8. NEW 22 transistor circuit.

Output power 6 watts RMS continuous (12 watts peak).

Frequency Response 5 Hz to $100 \mathrm{KH} 7 \pm$ 1 dB .
Total Harmonic Distortion Less than 1%. (Typical 0.1\%) at all output powers and all frequencies in the audio band.
Load Impedance 3 to 15 ohms.
Power Gain 90dB (1,000,000,000 times) after feedback.
Supply Voltage 6 to 28 volts (Sinclair PZ-5 or PZ-6 power supplies ideal).
Size $22 \times 45 \times 28 \mathrm{~mm}$ including pins and heat sink.

Input Impedance 250 Kohms nominal.
Quiescent current 8 mA at 28 volts.

With the addition of only a very few external resistors and capacitors the Super IC. 12 makes a complete high fidelity audio amplifier suitable for use with pick-up. F.M. tuner etc. Alternatively, for more elaborate systems, modules in the Project-60 range such as the Stereo 60 and A.F.U. may be added. The comprehensive manual supplied with each unit gives full circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include car radios, oscillators etc. The very low quiescent consumption makes the Super IC. 12 -ideal for battery operation.

Price, inc. FREE printed circuit board for mounting.

E2.98 $\begin{gathered}\text { Post }\end{gathered}$

SINCLAIR GENERAL GUARANTEE
Should you not be completely satisfield with your purchase when you receive it from us, return the goods without delay and your money will be refunded in full, including cost of return postage. at once and without question. Full service facilities are available to all Sinclair customers.

Sinclair Project 60

The World's leading range of high fidelity modules

Sinclair Radionics Limited, London Road,
St. Ives, Huntingdonshire PE174HJ.
Tel: St. Ives (048 06) 4311

Project 60 offers more advantage to the constructor and user of high fideiity equipment than any other system in the world.
Performance characteristics are so good they hold their own with any other available system irrespective of price or size.
Project 60 modules are more versatile - using them you cap have anything from a simple record player or car radio amplifier to a sophisticated and powerful stereo tuner-amplifier. Either power amplifier can be used in a wide variety of applications as well as high fidelity. The Stereo 60 pre-amplifier control unit may also be used with any other power amplifier system. as can the AFU filter unit. The stereo FM tuner operates on the unique phase lock loop principle to provide the best ever standards of sensitivity and audio quality. Project 60 modules are very easily connected together by following the 48 page manual supplied free with all Project 60 equipment. The modules are great space savers too and are sold individually boxed in distinctive white and black cartons. With all these wonderful advantages, there remains the most attractive of all - price. When you choose Project 60 you know you are going to get the best high fidelity in the world, yet thanks to Sinclair's vast manufacturing resources (the largest in Europe) prices are fantastically low and everything you buy is covered by the famous Sinclair guarantee of reliability and satisfaction.

Typical Project 60 applications

System	The Units to use	together with	Cost of Units
Simple battery record player	Z. 30	Crystal P.U., 12 V battery volume control	£4.48
Mains powered record player	Z.30, P2.5	Crystal or ceramic P.U. volume control etc.	£9.45
$20+20 \mathrm{~W}$. stereo amplifier for most needs	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo } 60, \\ & \text { PZ.5 } \end{aligned}$	Crystal, ceramic or mag. P.U., F.M. Tuner, etc.	£23.90
$20+20 \mathrm{~W}$. stereo amplifier with high performance spkrs.	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo } 60, \\ & \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U.. F.M. Tuner. Tape Deck, etc.	£26.90
$40+40$ W. R.M.S. de-luxe stereo amplifier	2×2.50 s, Stereo 60 PZ.8, mains trsfrmr	As above	£34.88
Indoor P.A.	Z.50, PZ.8, mains transformer	Mic. guitar, speakers, etc., controls	$£ 19.43$

from a simple amplifier to a complete stereo tuner amplifier with Project 60 modules

Z.30 \& Z. 50 power amplifiers

The Z.30 and $Z .50$ are of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use $Z .30$ or $Z .50$ amplifiers in vour Project 60 system will depend on personal preference, but they are the same size and may be used with other units in the Project 60 range equally well.
SPECIFICATIONS (2.50 units are inter-
changeable with $Z .30$ s in all applications).
Power Outputs
Z. 3015 watts R.M.S. into 8 ohms using 35 volts : 20 watts R.M.S. into 3 ohms using 30 volts. 2.5040 watts R.M.S. into 3 ohms using 40 volts 30 watts R.M.S. into 8 ohms using 50 volts.
Frequency response: 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
Distortion: 0.02% into 8 ohms.
Signal to noise ratio: better than 70 dB unweighted. Input sensitivity: 250 mV into 100 Kahms
For speakers from 3 to 15 ohms impedance.
Size: $14 \times 80 \times 57 \mathrm{~mm}$.
2.30

Built, tested and guaranteed with circuits and instructions manual. $£ 4.48$
2.50

Built, tested and guaranteed with circuits and instructions manual.
$£ 5.48$

Project 60 Stereo F.M. Tuner

First in the

 world to use the phase lock loop principlaThe phase lock loop principle was used for receiving signals from space craft becauserof its vastly improved signal to noise ratio. Now. Sinclair have applied the principle to an F.M. tuner with fantastically good results. Other original features include varicap diode funing. printed circuit coils, an I.C. in the specially designed stereo decoder and squelch circuit for silent tuning between stations. Good reception is possible in difficult areas, and often a few inches of wire are enough for an aerial. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically as the tuning control is rotated, a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with any other high fidelity system.
SPECIFICATIONS—Number of transistors: 16 plus 20 in I.C. Tuning range : 87.5 to 108 MHz . Capture ratio: 1.5 dB . Sensitivity: $2 \mu \mathrm{~V}$ for 30 dB quieting : $7 \mu \mathrm{~V}$ for full limiting. Squelch level: $20 \mu V$. A.F.C. range: $\pm 200 \mathrm{KHz}$. Signal to noise ratio: $>65 \mathrm{~dB}$. Audio frequency response : $10 \mathrm{~Hz}-15 \mathrm{KHz}(\pm 1 \mathrm{~dB})$. Total harmonic distortion: 0.15% for 30% modulation. Stereo decoder operating level: $2 \mu \mathrm{~V}$. Cross talk: 40 dB . Output voltage: $2 \times 150 \mathrm{mV}$ R.M.S. Operating voltage : 25-30 VDC. Indicators: Mains on ; Stereo on ; tuning. Slize : $93 \times 40 \times 207 \mathrm{~mm}$.

Stereo 60 Pre-amp/control unit

Designed for Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout, achieving a really high signal-to-noise ratio and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs.
SPECIFICATIONS-Input sensitivities: Radio - up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A curve $\pm 1 \mathrm{~dB}: 20$ to $25,000 \mathrm{~Hz}$. Ceramic p.u-up to 3 mV : Aux-up to 3 mV . Output: 250 mV . Signal to noise ratio: better than 70 dB . Channel matching: within 1 dB . Tone Signal to noise ratio:better then $15 \mathrm{~dB} 10 \mathrm{KHz}: \mathrm{BASS}+15$ to -15 dB at 100 Hz . Front panel: brushed aluminium with black knobs and controls. Size : $66 \times 40 \times 207 \mathrm{~mm}$ £9.98 Built tested and guaranteed.

A.F.U. High \& Low Pass Filter Unit

For use between Stereo 60 unit and two $Z .30$ s or $Z .50$ s . and is easily mounted. It is unique in that the cut-off frequencies are continuously variable, and as attenuation in the rejected band is rapid ($12 \mathrm{~dB} /$ octave), there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F.U. is suitable for use with any other amplifier system. Two filter stages - rumble (high pass) and scratch (low pass). Supply voltage -15 to 35V. Current -3 mA . H.F. cut-off (-3 dB) variable from 28 KHz to 5 KHz . L.F. cut-off (-3 dB) variable from 25 Hz to 100 Hz . Distortion at 1 KHz (35 V . supply (0.02% at rated output. Size: $66 \times 40 \times 90 \mathrm{~mm}$.

Built tested and guaranteed.
£5.98 directly from us, you are dissatisfied with them, we will refund your money at once. Each module is guaronteed to work perfectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the purchase date. There will be a small charge for service thereafter. No charge for postage by surface mail. Air-mall charged at cost.

To: SINCLAIR RADIONICS LTD LONDON ROAD ST. IVES HUNTINGDONSHIRE PE17. 4HJ
Please send
lenclose cash/cheque/money order,

Name
Address
enclose cash/cheque/money order.

> JOHN SMITH LTD.
> 209 SPON LANE - WEST BROMWICH - STAFFS. TEL. 02I-553 2516 (3 LINES) WOODS LANE CRADLEY HEATH - WARLEY WORGS. TEL. CR 69283 (3 LINES)

WW-076 FOR FURTHER DETAILS

TELEPRINTERS •PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUPMENT

SALE OR HIRE

2-5-6-7-8 TRACK AND MULTIWIRE EQUIPMENT

TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL ACCESSORIES DATEL MOOEM TERMINALS, TELEPRINTER SWITCHBOAROS

Picture Telegraph, Desk-Fax, Morse Equipment: Converters and Stabilised Rectifiers; Line Transformers and Noise Suppressors; Tape Holders, Pullers and Fast Winders; Governed, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass Filters; Teleprinter, Morse, Teledeltos Paper, Tape and Ribbons; Polarised and specialised Relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Connectors, Wires, Cables, Jack and Lamp strips, and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

W. BATEY \& COMPANY

Tel: Tring 3476 (STD 0442 82) Cables: RAHNO TRING
Telex: 82362 , A/B BATEY TRING
WW-078 FOR FURTHER DETAILS

RESISTANCE BRIDGE TYPE P.W.3/E

RANGE.
0.001 ohm to 10 Megohms

ACCURACY $\pm 0.1 \%$
HIGH RESOLUTION WITH ELECTRONIC NULL DETECTOR

PRICE $£ 78.50$ DELIVERY EX-STOCK

A robust general purpose bridge for D.C. resistance measurements with a practical measuring range of from 1 ohm to 10 Megohms when used with its own built in supply and null detector. It has been designed to work under adverse factory or field con= ditions and the control functions are logically arranged and will be quickly understood by personnel not familiar with this type of measurement.

Request full details from:
CROYDON PRECIIIONINSTRUMENT COMPANY
Hampton Road. CROYDON (Postal Code: CR9 2RU)
Telephone 01-684 4025 and 4094
WW-077 FOR FURTHER DETAILS
ENCAPSULATION -
low tool cost method for cylindrical coils and potting. Enquiries also for-

REED RELAYS SOLENOIDS COIL WINDING TRANSFORMERS
to $10 \mathrm{k} . \mathrm{V}$.A. A.c. SOLENOID TYPE SAM
14ozs. to $5 \frac{1}{2} \mathrm{lbs}$ at $3 / 4^{\prime \prime}$
 Knapps Lane, Bristol 5. 0272657228

USED THROUGHOUT THE WORLD, SANWA'S EXPERIENCE OF 30 YEARS ENSURES ACCURACY. RELIABILITY, VERSATILITY, UNSURPASSED TESTER PERFORMANCE COMES WITH EVERY SANWA

6 Manths' Guarantes		Excellent Repair Service	
Model P.2.B.	¢4.87	Modet K-30ThD	£12.60
Madel JP-50	[5.87	Madel F-80TRD	£13.75
Model U-50DN	¢8.00	Model 380-CE	£16.00
Model 360-MTR	¢8. 25	Madel N -101	£18.50
Modei A-303TRo	\$11.00	Model 460-ED	¢21.75
Model AT-1	¢11.37	Model EM.70n	¢45 00
		Madel R. 1 giocb	E60.00

with most meters
Please write for illustrated leaflets of these Sanwa meters
SOLE IMPORTERS IN U.K;

Mullard Unilex modules need no soldering, no knowledge of electronics. They make the stereo amplifier so simple
 that anyone can build
it in an hour, for around $£ 16$.
Connect the record deck and speakers and you've built your stereo system.
For the comprehensive instruction book 'Do-it-yourself Stereo' and stockist list post this coupon today with a 25p P.O.
Mullard UNILEX
Room 512, Mullard House,
Torrington Place,
London WC1E 7HD
Name
Address

ww 9.71
WW-081 FOR FURTHER DETAILS

METER PROBLEMS?

A very wide range of modern design instruments is available for 10/14 days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937
WW-082 FOR FURTHER DETAILS

Your choice in Linstead low cost twin stabilised power supplies

Type S1

$+2 \times 0$ to $20 \mathrm{~V}, 0.5 \mathrm{~A}$ each.
\star Accuracy: voltage $\pm 2 \% \pm 0.1 \mathrm{~V}$.
current $\pm 2 \%$ F.S.D.
$\star \pm 10 \%$ supply voltage gives $\pm 0.1 \%$ output change.
\star Ripple: $\mathbf{3 0 0} \mu \mathrm{V}$ r.m.s.

* Can be used in series for $40 \mathrm{~V}, 0.5 \mathrm{~A}$.
* Can be used in parallel for 20 V .1 A .
* 2 ammeters.
* Indefinite shorting without damage.
- Size: $8 \frac{1}{4} \times 6 \frac{1}{2} \times 6 \frac{1}{2} \mathrm{in}(21 \times 17 \times 17 \mathrm{~cm})$.
* £48.00 net U.K.

Type S7

- 2×0 to $30 \mathrm{~V}, 1 \mathrm{~A}$ each.
\star Accuracy: voltage $\pm 2 \%$ F.S.D.
current $\pm 2 \%$ F.S.D.
$\star \quad \pm 7 \%$ supply voltage gives $\pm 0.1 \%$ output ch ange.
\star Ripple $300 \mu \mathrm{~V}$ r.m.s.
* Can be used in series for $60 \mathrm{~V}, 1 \mathrm{~A}$.
* Can be used in parallel for 30 V .2 A .
* 2 meters, calibrated volts and amperes.
\star Full overload and short circuit protection.
\star Size: $8 \frac{1}{4} \times 6 \frac{1}{2} \times 7 \frac{1}{2}$ in $(21 \times 17 \times 19 \mathrm{~cm})$.
\star £65.00 net U.K.
For full details of both units send the coupon today.

Opportunities Unlimited in RADIO,TELEVISION, ELECTRONCS

C \& G Telecommunication Techns' Certificate C \& G Electronic Servicing Certificate R.T.E.B. Radio/T.V. Servicing Certificate Radio Amateurs' Examination General Certificate of Education, etc.

Which one would qualify you for higher pay?

International Correspondence Schools provide specialized training courses for all these certificates, and with the help of the Schools' experienced tutors you can be sure of early success. You will have the advantage of building on your practical experience and ensuring that you have the technical knowledge so essential for success in electronics.'
And the result? You'll soon be qualified in your field of electronics, and in a position to choose your opportunity.
Find out how ICS can help you. Send for our free prospectus right away.

ALL EXAMINATION STUDENTS ARE COACHED UNTIL SUCCESSFUL

NOW-COLOUR TV SERVICING COURSES

As the demand for colour TV increases, so does today's demand for trained servicing engineers. You can learn the techniques of servicing colour and monochrome TV sets through new home study courses specially prepared for the practical TV engineer.

SELF-BUILD RADIO COURSES

We'll teach you both the theory and practice of valve and transistor circuits, as well as how to service them, while you build your own 5 valve receiver, transistor portable and high grade test instruments. You build equipment of real practical use!

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS.89.
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments

LEDON INSTRUMENTS LTD

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT.

Your Switch Problem Solved!

 SPECIALIST SWITCHES are again givingthe fastest switch
service in the world from thelr new and larger PREMISES IN ROMFORD, ESSEX

Spécialist switches make Rotary and Lever switches,

 types H, DH, HC and LO, to specification. There is one limitation (standard 2 in . long spindles), but this is not important when you are getting the fastest switch service in the world.Delivery of quantities, 1-20 24 hrs.-up to 50 or so 72 hrs.-
If you want around 250 or more, 7-10 days.

Please note our new address:

SPECIALIST SWITCHES
FACTORY No. 8 BRIDGE CLOSE ROMFORD, ESSEX

Write for details and prices:
TELEPHONE: ROMFORD 664/8/9
ww- 086 FOR FURTHER DETAILS
PIEZO-ELECTRIC TRANSDUCER AMPLIFIER

The ANCOM F series is a range of AC INSTRUMENTATION amplifiers for use with Low Sensitivity Transducers. AC or DC OUTPUT COUPLING PIEZO-ELECTRIC ACCELEROMETER MEGOHM RESISTIVE SOURCES

INPUT RESISTANCE
INPUT CAPACITANCE
INPUT NOISE
UNITY GAIN FREQUENCY
SMALL SIGNAL RESPONSE
LOAD RESISTANCE
SUPPLY VOLTAGE

3000 M ohms typ. 4 pf. $1 \mu \mathrm{~V}$ rms (12F-1a)
10 MHz
2 Hz to 1 MHz
1 K ohm minimum
$\pm 10 \mathrm{v}$ to $\pm 15 \mathrm{v}$

The 12F-1 comprises two internal amplifiers, one a fixed low noise pre-amplifier gain +10 and a variable gain, 0.91 to 10 , inverting amplifier.
MAXIMUM SIGNAL to pre-amp stage is 600 mV p-p. OUTPUT is dependent upon gain.

TRANSFORMERS

Mimains ISOLATING SERIES
rimary 200-250 Volts Secondary 240 Volts Contre ALSO AVAILABLE WITH (15/120V SECONDARY WINDINGS

PRIMARY LOW YOLTAGE SERIES (ISOLATED)
PRIMARY 200-250 VOLTS 12 ANDIOR 24 VOLT RANGE

Ref. No.	Amps. $12 \mathrm{~V} 24 \mathrm{~V}$	Weight Ib oz	Size cm.	Secondary Windings		
111	$\begin{array}{lll}0.5 & 0.25\end{array}$	12	$7.6 \times 5.7 \times 4.4$	$0-12 \mathrm{~V}$ at $0.25 \mathrm{~A} \times 2$	0.74	
213	1.00 .5	0	$8.3 \times 5.1 \times 5.1$	0.12 V at $0.5 \mathrm{~A} \times 2$	0.88	
71	2	0	$7.0 \times 6.4 \times 5.7$	$0-12 \mathrm{~V}$ at lax ${ }^{\text {a }}$	1.16	
18	42	4	$8.3 \times 7.0 \times 7.0$	$0-12 V$ at $2 A \times 2$	1.62	
70	63	312	$10.2 \times 7.6 \times 8.6$	$0-12 \mathrm{~V}$ ar 3 A $\times 2$	1.95	
72	10	63	$7.9 \times 10.8 \times 10.2$	$0-12 V$ at 5A X 2	2.58	
17	16	78	$12.1 \times 9.5 \times 10.2$	$0-12 V$ ar $8 A \times 2$	3.95	
115	$20 \quad 10$	1113	$12.1 \times 11.4 \times 10.2$	$0-12 \mathrm{~V}$ at 10A $\times 2$	5.03	
187	$30 \quad 15$	1612	$13.3 \times 12.1 \times 12.1$	$0-12 \mathrm{~V}$ at 15A $\times 2$	9.28	
Ref.	Amps.	Weighe	Size cm.	30 VOLT RANGE Secondary Taps		
${ }_{11}{ }^{\text {O }}$		16 oz .				
112	0.5		$8.3 \times 3.7 \times 4.9$	O-12-15-24-30V	0.88	
79	1.0	20	$7.0 \times 6.4 \times 6.0$."	1.18	
	2.0	3.2	$8.9 \times 7.0 \times 7.6$	"	1.75	
20	3.0	46	$10.2 \times 8.9 \times 8.6$	".	$2 \cdot 16$	
21	4.0	0	$10.2 \times 9.5 \times 8.6$		2.56	
117	6.0	78	$12.1 \times 9.5 \times 10.2$	"	3.79	
89	10.0	122	$14.0 \times 10.2 \times 11.4$		6.21	

Ref.	Amps.	Weight	Size cm.	50 VOLT RANGE Secondary Taps			P\& P
No. 102	0.5		$7.0 \times 7.0 \times 5.7$	0-19-25-33	-40-50V	1.16	N0
103	1.0	210	$8.3 \times 7.3 \times 7.0$			1.69	36
104	$2 \cdot 0$		$10.2 \times 8.9 \times 8.6$	",	".	2.34	42
105	3.0	60	$10.2 \times 10.2 \times 8.3$	",	\because	3.18	52
106	4.0	94	$12.1 \times 11.4 \times 10.2$		"	4.20	52
107	6.0	124	$12.1 \times 11.1 \times 13.3$,	"	6.21	67
118	8.0	189	$13.3 \times 13.3 \times 12.1$	\#,	\because	$8 \cdot 10$	97
119	10.0	1912	$16.5 \times 11.4 \times 15.9$	"	"	10.15	97
Ref.	Amps.	Weight	Size cm.	60 VOL	RANC		
124	0.5	${ }_{2}{ }^{10} 4$	$8.3 \times 9.5 \times 6.7$	0-24-30-	-48-60V	1.18	36
126	1.0		$8.9 \times 7.6 \times 7.6$			1.64	36
127	2.0		$10.2 \times 8.9 \times 8.6$	"'	\because	2.56	42
123	4.0	106	$11.4 \times 9.5 \times 11.4$		\because	5.03	67
120	6.0	1612	$13.3 \times 12.1 \times 12.1$		",	$7 \cdot 28$	82
122	10.0		$16.5 \times 12.7 \times 16.5$		"	12.05	

LEAD ACID BATTERY CHARGER TYPES
CING6ORIZVOLTBATTERIES
 TOTALLY ENCLOSED IISV AUTO TRANSFORMER
115 V 500 Watt totally enclosed auto transformer, mains lead and two 115 V
outlet sockets, 46.85 . P P 67 mp .
QUANTITY PRICES ON APPLICATION ${ }^{*}$ CARRIAGE VIA B.R.S
All ratings are continuous. Standard construction : open with solder lags and wax impregnation. Enclosed styles to order.

MAINS KEYNECTOR FAST ANO SAFE
For fast mains input to one or more electrical appliances up so 13 amps without plugs.
Send far descriptive leafiet. $\mathbf{E 2 . 7 5}$ p \& p $\mathbf{2 5 n p}$
\star Custom production winding service \star Ex stock items same day service

Also stocked: SEMICONDUCTORS • VALVES MULTIMETERS • MAINS KEYNECTOR ELECTROSIL METAL OXIDE RESISTORS

BARRIIE clectronics 11 MOSCOW ROAD, QUEENSWAY LONDON W2 4AH Tel:01-229 6681/2

ELECTRONIC ORGAN DIVIDER BOARDS bullt to
hlgh industrial／computer spec． 5 octave set $£ 15$ ．
Complete with connection data and oscillator details．
COPPER LAMINATE P．C．BOARD $8 \frac{1}{2} \times 5 \frac{1}{2} \times 1 / 16 \mathrm{in} .12 \frac{1}{2} p$ sheet， 5 for 50 p $8 \frac{1}{2} \times 5 \frac{1}{2} \times 1 / 16 \mathrm{ln}$ ． $12 \frac{1}{2}$ p sheet，$\times 6 \times 1 / 16 \mathrm{ln}$ ． 15 p sheet， 4 for 50 p $11 \times 8 \times 1 / 16 \mathrm{in}$ ． 20 p sheet， 3 for 50 p Offcut pack（smallest 4×2 in．） 50 p 300 sq ．in
P\＆P slngle sheet 4 p ．Bargain packs 10 p
P\＆P single sheet 4p．Bargaln packs $10 p$
SPEAKERS AND CABINETS
E．M．I． $19 \times 14 \mathrm{in}$ ． 50 watts（14A／600A）．Four tweeters mounted across main axis．Separate＂＇X－over＂unlt balances both bass and h．f．sections． 20 Hz to $20,000 \mathrm{~Hz}$ ． Bass unit flux $16,500 \mathrm{gss}$ ．A truly magniflcent system． E25．Carf．E1－50．
 over $3 / 8 / 15$ ohm models．£3．75．P．P．25p．
E．M．t． $13 \times 8 \mathrm{ln}$ ．base units（ 10 watt） $3 / 8 / 15$ ohm models £2－25．P．P．25p．
E．M．I． $6 \frac{1}{2}$ In．rnd． 10 watt Woolers． 8 ohm． 13,000 gss
E．M．I． 20 watt（ $13 \times 8 \mathrm{in}$ ）with single twester and ＂X－over＂ 20 Hz to $20,000 \mathrm{~Hz}$ ．Ceramic magnet $11,000 \mathrm{gss}$ ，E8．P．P． 40 p .20 watt bese unit only．E6． P．P．40p．
CABINETS for $13 \times 8 \mathrm{ln}$ ．Speakers made from $\frac{3}{4} \mathrm{in}$ ． teak finish blockboard． 20 watt cabinet $\left(21 \times 15^{2} \times 8\right.$ 立
In．）f6．P．P． 50 p． 10 watt cabinet $(16 \times 11 \times 8$ ． In．）£6．P．P． 50 p．
£ 480.8. P． 40 p．
＂AlRMAX＂7\％in．FANS．Aluminium diecast housing （9 in．） 240 v ．a．c．New．E5．P．P．50p．
KLAXON＂GEARED MOTORS（8 lb－in．） 112 r．p．m．
240 m ． 22.25 ．
BRIDGE MEGGERS（500v．series 2）£18 ea．in good working order．

BRIDGE RECTIFIERS（Mutlard GEX 54INBIPIF）Output 74 volt ．at 18 amps ． $\mathbf{Z} \mathbf{2}$ oe．（brand new）

SULK COMPONENT OFFER．Resistors／Capacitors，All types and values．All new modern components．Over 500 pleces E2．（Trial order 100 pcs ．50p．）We are confident you will re－order．
BERCO WIRE－WOUND POTS．New individually boxed． 200 ohm 25 watt 50p： 725 ohm 50 watt 75p： 300 ohm 100 watt E1 ea．

LEVEL METERS $\left(1 \frac{1}{2} \times \frac{1}{2} \mathrm{in}\right.$ ） 200 micro a
Germany 75 p ea． $2 \times 1 \frac{1}{\frac{1}{2}} \mathrm{in}$ ．（Japan） E 1 ea，
MICROAMMETERS（ 4 in ．sq．Weston）25－0－25 micro－ amps，New／boxed．$£ 2 \cdot 25$ ea．P．P．25p．
PRECISION CAPACITANCE JIGS．Beautfully made with Moore \＆Wright Micrometer Gauge．Type 1．18．5pf to 1220pf．£10 ea．Type 2．9．5pf to 11．5pf．E6 ea． POT CORES LA1／LA2／LA3．50p ea．

LIGHT DIMMERS $(2000$
in．$£ 5.75$ e日．P．P． $25 p$ ．

TRANSFORMERS L．T．TRANSFORMER

Sec．20／40／60v． 2 amp． 22 ea．P．P 40prim，200／260v． L．T．TRANSFORME 22 ea．P．P． 40 p ．
200／240v．Two L．T．TRANSFORMER．Prim． 240 vp ．Sec． $8 / 12 / 20 / 25 \mathrm{v}$ ， 3.5 amp ．£1 ea．P．P． 40 p ．

L．T．TRANSFORMER．Prim．220／240v．Sec． 13 v ． 1.5 amp .65 p .10 .5 v .1 amp ．Model 50p．P．P． 15 p ． L．T．TRANSFORMER．＂ADVANCE VOLTSTAT＂ Prim．190－260v．Sec，6v．r．m．s． 25 watt．£ 2 ea．P．P．30p． H．T．TRANSFORMERS．Prim，200／240v．Sec． $300-0-300 \mathrm{v} .80 \mathrm{~m} . \mathrm{a} .6 .3 \mathrm{v}$ ．c．t． 2 amp ．£1．50 P．P． 40 p ． $350-0-350 \mathrm{v} .60 \mathrm{~m} . a .6 .3 \mathrm{v}$ ，c．t． 2 gmp ．£1．P．P．25p． H．T．TRANSFORMERS（H．D．）Prim．200／240v．Sec． 550v． 2 日mp．$£ 7.50$ ．Carr．$£ 1 ; 440 \mathrm{v} .2 .8 \mathrm{mmp}$ ． 27.50. Carr．£1．Chokes to match £4．Carr．£ 1 ．
STEP－DOWN TRANSFORMERS．Prim．200／240v． Sec． 115 v .120 watt（double wound）．£1－25．P．P．25p； 250 watt（D．W．）．E2．25．P．P．25p； 500 watt（D．W．）．£5． P．P．£1； 600 watt（auto）．£4．50．P．P．75p； 750 watt （auto）．£3．50．P．P．E1．
ADVANCE CONSTANT VOLTAGE．Pilm．190／250v．
Sec． 115 v .2250 watt． Sec． 115 V ． 2250 watt．E15．Carr．£2－50．
REGULATED POWER SUPPLY．（Coutant）Input
$100 / 250 \mathrm{v}$ ．Ourpur $100 / 250 \mathrm{v}$ ．Output $\pm 150 \mathrm{v}$ ．D．C．at $500 \mathrm{~m} / \mathrm{a}$ TWICE． Dimenslons $5 \frac{1}{6} \times 6 \frac{1}{2} \times 11 \frac{1}{2} \mathrm{ln}$ ．Wt． 22 lb ．$£ 20$ each．
120 amp．
120 amp ．AUTO TRANSFORMER． $190 / 270 \mathrm{v}, 50 \mathrm{c} / \mathrm{s}$ ．
Tapped every 5 volts． F 50 er Tapped every 5 volts．£50 ea．（Carf．by arrangement．） COMPUTER TAPES． 2400 ft ．$\frac{7}{4}$ in．On N．A．B．Hubs com
plete with transparent cassette case．£2 ea，P．P． 50 p．

LIQUID LEVEL SWITCH．Detects even mildly conductive liquids l．e．ether eic．N／O－N／C contacts fails to safe．$£ 10$ ea． S．a．e．literature．
＂LONG LIFE＂ELECTROLYTICS（screw terminal）． 25,000 u．f． 40 v ．（（ $4 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{In}$ ．）€ 1 P．P． 10 p ．
10,000 u．f． 75 v ．（ $4 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{In}$ ） $87 \frac{1}{2} \mathrm{p}$ ．P．P． 10 p ． 10,000 u．f． 75 v ．（ $4 \frac{1}{2} \times 2 \frac{1}{2}$ in．） $87 \frac{1}{2}$ p．P．P．P． 10 p ．
7,100 u．f． 40 v ．$(4 \times 2$ in） 7,100 u．f． $40 \mathrm{v} .(4 \times 2$ in．$) 75 \mathrm{p}$. P．P． 10 p.
3,150 u．f． $40 \mathrm{v} .\left(4 \times 1 \frac{1}{2} \ln .\right) 75 \mathrm{p}$. P．P．10p．

TELEPHONE DIALS（New）£1 ea．

 RELAYS（G．P．O．＇3000＇）．All types，Brand new from $37 \frac{1}{\frac{1}{2} p}$ ea． 10 up quotations only． 3 cole／cream p．v．c． 100 yd ．coil f2 200 yd 3 cole／cream p．V．c． 1coil £3．75．P．P． $25 p$ ．
UNISELECTORS（Brand new）25－way

RELAYS

SIEMENS／VARLEY PLUG－IN．Complete with transparent dust covers and bases． 2 pole c／o contacts $35 p$ ea； 6 make contacts 40 p ea．； 4 pole c / o contacts $50 \mathrm{p} \mathrm{ea} .6-12-24-48 \mathrm{v}$ types in stock
12 VOLT H．D．RELAYS $(3 \times 2 \times 1 \mathrm{in}$ ．$)$ with 10 amp．sllver contacts 2 pole c／o 40p ea．； 2 pole 3 way 40p．P．P． 6 p． 24 VOLT H．D．RELAYS $\left(2 \times 2 \times \frac{3}{4} \mathrm{in}\right.$ ．） 10 amp ．contacts．

240 VOLT A．C．RELAYS（ $1 \frac{1}{4} \times 1 \frac{3}{4} \times 1 \mathrm{in}$ ．）G．P．contacts 1 make $2 \mathrm{c} / 0$. 60p＇ea．P．P．Sp．
REED RELAYS 4 make $9 / 12 \mathrm{v}$ ．（ 1,000 ohm．）621p ea， 2 make $37 \frac{1}{3} p$ ea． 1 make $25 p$ ea．Reed Swliches（ $1 \frac{1}{4} \mathrm{in}$ ．）

SUB－MINIATURE REED RELAYS（ $1 \mathrm{in} . \times \frac{1}{4} \mathrm{in}$ ．）．Welght $\frac{1}{6} \mathrm{oz}$ ，Type $1.960 \mathrm{ohm}, 3 / 9 \mathrm{v} .1$ make． $62 \frac{1}{2} \mathrm{p}$ ea．Type 2. 1800 ohm，3／12v． 1 make．75p ea．
E．H．T．GENERATOR MODULE（Mullard VM1049） input 12 volt，output 1800 volt $1 \mathrm{~m} . \mathrm{a}$ ．f4 ea．P．P．25p． SILICON BRIDGES 100 p．l．v． $1 \mathrm{amp}\left(\begin{array}{l}\mathrm{E} \\ \left.\times 8 \mathrm{~g} \times \mathrm{g}_{8} \mathrm{in} .\right) \\ 45 p\end{array}\right.$ 100 p．i．v． $2 \mathrm{amp}\left(1 \frac{1}{4} \times 1 \frac{1}{4} \times \frac{1}{2} \mathrm{in}\right.$ ．$) 75 \mathrm{p}$ ．

PATTRICK \＆KINNIE
191 LONDON ROAD－ROMFORD • ESSEX
ROMFORD 44473
RM79DD

Recommended retail prices: R50 Loudspeaker $£ 98$, R40 Loudspeaker $£ 65$; P100 Amplifier $£ 145$, P50 Amplifier $£ 88$

Dixons majorbreakthroughinCCTVprices

Only the exceptional buying power of Dixons could bring you a $£ 128$ saving on this magnificent video duo.

Previously the camera alone would have cost you £290 - and been good value at the price. And the monitor would have set you back a further $£ 90$.

Now Dixons offer you the camera for an incredible $£ 180$ and the monitor for only $£ 72$.

THE CAMERA.
ITC Viewfinder VF 302
Despite its amazingly low price this magnificent camera boasts a lavish specification.
The complete camera system incorporates a built-in $5^{\prime \prime}$ monitor. All controls are operated from the rear of the camera. All educational applications can be met. Operation is simple and requires no technical expertise. The picture standards are first class and versatility is complete.
Videcon. 1 " t'ube , type 7735 A.
Video output. Composite or non composite. Horizontal resolution more than 550 lines. Signal-to-noise ratio more than 34 dB . RF output 30 mV . Channe/s 3, 4, or 4A. Sync input V.D. 2 to 4 V. H.D. 2 to 4 V . Sensitivity useable at 5 ft . candles min. Light compensation range 4000 to 1. geometric distortion less than 5%. Scanning internal sync.; line lock, random interlace. External sync.

Dimensions less than $7^{\prime \prime} \times 9^{\prime \prime} \times 13^{\prime \prime}$. Weight 19 lbs . Accepts all C mounts lens, and has three standard tripod sockets, tally and intercom. Rackable videcon.

THE MONITOR. ITC PM 52T.
This compact 5 " model has all silicon solid state circuitry and built-in power regulator for resilience. Plug in circuit boards are instantly interchangeable in the unlikely event of servicing becoming necessary. Provision for external sync. drive for studio programme use.

Horizontal resolution more than 500 lines (centre). Signal-to-noise ratio more than 32 dB . Power consumption 20 watts. Size $6^{\prime \prime} \times 6 \frac{12^{\prime \prime}}{} \times 9^{\prime \prime}$. Weight 9 lbs .

Send off this coupon for more information now.

MARSHALL'S INTEGRATED CIRCUITS NEW LOW PRICES • LARGEST RANGE • BRAND NEW • FULLY GUARANTEED SPECIAL OFFER: 5\% DISCOUNT TO ALL SATURDAY CALLERS (JULY AND AUGUST ONLY)

	$\begin{gathered} 1-24 \\ 8 \end{gathered}$	$\begin{gathered} 25-90 \\ \hline \end{gathered}$		1-11	12-24	mulLard FJH101	$\begin{gathered} \text { TTL £ } \\ 0.871 \end{gathered}$		MULLARD IINEAR	5
SN 7420	0.20	0-18	SN74107	0.52	0.49				TAA341	1.82 ${ }^{\text {d }}$
SN7423	0.51	0.47	SN74110	0.80	0.75	FJE121	0.872		242	4.25
8N7405	0.48	0.45	SN74111	1.57	1.45	FJH141	0.871		243	1.50
8N7427	$0 \cdot 48$	0.45	SN74118	1.30	1.26	FJH101	0.871		263	0.774
SN7428	0.80	0.75	8N74119	$1 \cdot 92$	1.80	FJH171	0.81		293	0.974
SN7430	0.23	0.21	8N74121	0.50	0.47	FJP\%91	0.871		300	
8N7432	0.48	0.45	8N74122	1.44	$1 \cdot 35$	FJRZ21	0.871		310	1.25
8N7433	0.80	0.75	8N74123	2.85	2.70	FJ.r101	1.371		320	0.721
8N7437	0.84	0.60	8N74145	1.80	1.75	FJS121	1.87!		350	1.75
8N7438	$0 \cdot 64$	$0 \cdot 60$	SN74150	3.52	3.40	FJJ141	$3 \cdot 121$		435	1.474
SN7440	$0 \cdot 23$	0.21	8N74151	1.40	1.35	FJJ191	1.871		521	1.324
BN7441AN	0.87	0.83	SN74153	1.40	$1 \cdot 35$	FJJ191	1.87		522	$8 \cdot 60$
8N7442	0.85	0.81	SN74154	2.20	$2 \cdot 10$	FJJ251	3-121		530	4.95
SN7443	2.86	2.70	8N74155	$1 \cdot 68$	$1 \cdot 60$	FJY101	0.80		570	1.971
gN7444	2.86	2.70	SN74156	$1 \cdot 68$	$1 \cdot 60$	FJYior			811	4.45
gN7445	2.50	$2 \cdot 40$	SN74157	1.92	1-82	mullard	DTL \&		TAB101	0.971
gN7446	1.00	0.95	8N74160	1.80	${ }^{2} .76$	FCH101	$0.87 \frac{1}{3}$		TAD100	1.97t
8N7448	1.09	${ }_{0}^{0.985}$	SN74162	4.26	4.10	FCH121	$1-05$		TAD110	1.971
SN7449	1.00	0.95	SN74163	4.28	4.10	FCH161	1.05			
SN7450	0.20	0.18	SN74184	$2 \cdot 20$	8.10	FCKior			GENERAL	
gN7461	0.20	0.18	SN74165	2.25	$2 \cdot 15$	FCE201	$1 \cdot 32\}$		ELECTR	\pm
SN7453	0.20	0.18	8N74165	4.45	4.20	FCH23	1.50		PA222	2.60
gN7454	0.20	0.18	8N74167	6.40	6.10	FCJIO	1.82t		P4230	1.40
8N7460	0.20	0.18	SN74170	4.38	$4 \cdot 18$	PCJIL1	1.55		PA234	$0 \cdot 82$
gN7470	0.40	0.38	8N74174	$2 \cdot 40$	$2 \cdot 30$				P1237	$2 \cdot 10$
8N7472	0.32	0.30	SN74175	1.68	$1 \cdot 80$	FCJ201	1.80		P4239	$2 \cdot 10$
8N7473	0.43	0.41	8N74176	2.64	2.55	FCJ211	2.75		PA246	1.60
EN7474	0.43	0.41	8N74177	$2 \cdot 64$	$2 \cdot 55$	FCK 101	4.374		PA264	$1 \cdot 90$
gN7475	0.45	$0 \cdot 44$	8N74180	$2 \cdot 13$	2.05	FCY101	1.05		PA265	2.00 8.05
SN7476	0.45	0.44	8N74181	9.33	9.00				PA424	
EN7482	0.87	0.82	8N74185	$4 \cdot 80$	$4 \cdot 60$	SL403A	2-12		Dats Apoll	cation
EN7483	0.87	0.82	8N74190	1.80	1.70	3 wate 8			heets 5p	type.
8N7484	2.00	1.85	8N74191	1.80	1.70	817010	1.45			
8N7485	3.62	$3 \cdot 40$	8N74192	1-75	1.85	3L702C	$1 \cdot 60$			
8N7486	0.33	$0 \cdot 30$	8N74193	1.75	1.85				TOSHIBA	£
EN7490	0.87	0.84	8N74194	2.87	2.55				TH9013P	$4 \cdot 57$
8N7491AN	1.21	1.10	8N74195	$2 \cdot 25$	$2 \cdot 10$	A661B	2.92 ${ }^{\text {2 }}$		20 watt amp.	
SN7493	0.87 0.87	0.84	SN74198	${ }_{5}^{2 \cdot 64}$	${ }_{5}^{2} \cdot 65$				TH9014P	-85
SN7494	0.87	0.84	8N74199	$5 \cdot 85$	$5 \cdot 85$	TAA7004.	3.75		Data sheets	0.121
8N7495	0.87	0.84	9300	$2 \cdot 10$	1.95					
gN7496	0.87	0.84	9310	$\begin{aligned} & \text { See SN } 74160 \\ & 2.80 \quad 2.60 \end{aligned}$		BRIDGE RECTIFIERS				
8N7497	$8 \cdot 40$	8.00	9311			CIR-KIT	AMP.	PIV		gILicone
GN74100	1.65 1.52	1.53 1.40	${ }_{\text {T15701 }}^{9316}$	See SN74161 See SN74180		1/16" $6^{\prime \prime} 0 \cdot 15$	1.	600	0.40 GRE	AsE
8N74105	1.52	1.40	9601.	See 8N	74122		1.5	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	${ }_{0}^{0.60} \mathbf{0 . 6 7 ~} \mathrm{Th}$	Redpoint hermapath
8 Pin TO-5 I.C. Holders, 20.35 10 Pin TO-5 L.C. Holders, 20.571 12 Pin TO-5 L. C. Holders, £0.62 14 Pin Dual-in-Line I.O. Holders, £0-20 16 Pin Dual-ln-Line I.C. Hofders 20.25				See 8N74122		BOARD	2 4		${ }_{0}^{0.60}$ Therm	
				For PA248	4	200	0.75	z8.)		
				I.O. circult	6	50	$0 \cdot 62$ 2	20		
				as in Data	6	200	$0 \cdot 80$			
				Sheet. $20 \cdot 85$	16	400	1-121			

A. MARSHALL \& SON LTD.

See our Ad. on opposite page for Transistors, Dlodes, Passlve Components and P. \& P. charges. Many more types in stock and arriving daily. PLEASE ENQUIRE.

AMPLIFIERS

I. ASTRODATA

Type 885 WIDE BAND DIFFERENTLAL DC AMPLIFIER.
 2. DYNATRON
2. DYpe 1430A
. 55.00
3. ECKO ELECTRONICS

Type N6428/1 THERMOCOUPLE TRIP AMPLIFIER
. 8750
4. ECKO ELECTRONICS

Type N638A LOGARITHMIC AMPLIFIER...............87.50
5. NEW ELECTRONIC PRODUCTS

Type 644A AMPLIFIER. 210.00
6. W. H. SANDERS 215.00
7. W. H. SANDERS $815 \cdot 00$
8. GRAMPIAN

Type $385 / \mathrm{B}$ 50W AUDIO AMPLIFIER 50 watt rms 100 V line
9. S.E. LABORATORIES

10. NEW ELECTRONIC PRODUCTS $\$ 25 \cdot 00$

Type A64/2 Carrier amplifier £10.00
II. SOLARTRON 820.00
12. GRAHAM \& WHITE INSTRUMENTS
13. MAKER NOT KNOWN
14. SOLATRON
14. SOLATRON Type AA900 DECADE DC AMPLIPTER
15. SAMWELL \& HUTTON
(19 600Ω and $6 \mathrm{~K} \Omega$. \&15-00
16. PYE
Tgpe 11343 indicator amplifier. £10.00
17. SOLARTRON
er amplifier
18. SOLARTRON
£25.00
mak subsonio power amplifier.
. 2500
19. MAKER NOT KNOWN
20. MAKER NOT KNOWN

Type TGA2 AMPLIFTER
810.00 or offer
21. ADMIRALTY Tgpe 3108 PEN RECORDER AMPLIFIER.
$\varepsilon 10.00$
.810 .00

ANALYSERS

1. Avo

Type OT446 TRANSI8TOR ANALYSER for measuring parameters
...... $£ 30 \cdot 00$
2. DAWE INSTRUMENTS

3. DAWE INSTRUMENTS

Type 1401 A PORTABLE OCTAVE BAND ANALTSER. Frequency range: 20 Bz -10KHz

R18.00
4. SOLATRON
equency ra
powered.
5. GENERAL RADIO

Type 760 AF ANALYSER. Frequency range: $2 \cdot 5 \mathrm{~Hz}-7.5 \mathrm{skHz}$.
Battery powered.......................................515.00
6. FENLOW ELECTRONICS

Type sA2 LF SPECTRUM ANALYEEER. Frequency range: 0.3 Hz -
7. DAWE INSTRUMENTS

Type $705 B$ WAVE ANALYSER. Frequency range: $50 \mathrm{~Hz}-16 \mathrm{kHz}$.
8. MARCONI

Type TF45s D/l Wave analyser. Frequency range: 20Hz16kHz...............

21 kHz .
£75.00

ATTENUATORS

75 OHMS

I. MARCONI.
 2. STC

Type 74600 PUsi- BUTTON ATTENUATOR. a-9 dB in 1 dB
steps selected by push buttons............................. 89.50

600 OHMS

3. MUIRHEAD
 1 dB stepa selected by key nwitcher. I/P volts: 20 V rms max. Freo
quency range: DC to 100 Hz . Accuracy: DC $\pm 0.1 \%$; 1006 Hz,
4. MUIRHEAD

5. MUIRHEAD Type A-302-C ' \mathbf{H} ' NETWORK AF ATTENUATOR. Details as
type A-301-A a bove
$29 \cdot 50$
6. MARCONI

Type TF338B VABIABLE ATTENUATOR. Range: $0-105 \mathrm{~dB}$.
Accuracy: $\pm 0.2 \mathrm{~dB} .287 .50 ~$
7 MUIRHEAD
7. MUIRHEAD

Type A-303-D 'T NETWORK AF ATTENUATOR. Range: 5 ,
$10,20,30,40 \mathrm{~dB}$. Other detalls as type A-301-A aboye... 59.50

MISCELLANEOUS

8. FURZEHILL LABORATORIES

Type 1358 AF

9. RHODE \& SHWARZ

Type DPR BN 18042/50 VHF ATTENUATOR, Range: $0-100 \mathrm{~dB}$

BOXES L.C. \& R.

INDUCTANCE

1. RUSSIAN

Type R7005 MUTUAL INDUCTANCE B0X. Range: $0-11-10 \mathrm{mH}$
 Type $\mathrm{R}^{7} 006 \mathrm{MU}$ TUAL INDUOTANCE COIL.

CAPACITANCE

I. CLAUDE LYONS

Type $349-A B-$ PD/T CONDENSER BOX. Range: $0 \cdot 1,0 \cdot 2,0 \cdot 3$,
$0.4,1,2,3,4 \mathrm{~F}$. Made up of a battery of standard capacitors. . $£ 5 \cdot 0$

RESISTANCE

1. MUIRHEAD

Type D-801-D VOLTAGE DIVIDING REEISTANGE BOX Range (voltage ratio): $1: 0.0001$ to unity in stops of 0.0001 . Input resistance: $10 \mathrm{~K} \Omega$. Accuracy: on $\mathrm{DC} \pm 0 \cdot 1 \%$; on AC accuracy 1 la a
2. Sunction of frequency WESTON

Type B2 MOD. 838 RESISTANCE BOX
3. SULLIVAN \& GRIFFITHS
玉15-00
aEsistance box. Range: $0-1100 \mathrm{D}$ in 10 S steps, Accuracy
4. $\mathbf{~ H} \%$ W. SULLIVAN LIMITED

NON-REACTIVE DECADE RESISTANCE BOX. Range: $0-111 \Omega$ in 0.1Ω. Wteps. Accuracy: $\pm 0 \cdot 1 \%$.

BRIDGES

1. AMOS OF EXETER LTD.

Type 220 R-C BRIDGE. Range: R 1 ohm to 1000 Mohm ; C 1 pF
2. DAWE INSTRUMENTS
ype 303B IMPEDANCE COMPARI8ON BRIDGE....... £15:00
3. CINTEL

Type $1862 \mathrm{~F}-\mathrm{O}$ Bridge. Range: R 1 ohm to 300 Mohm ; 0.3
F to 100 metcro
Type 1863 R-C BridaE. Range: R 1 ohm to 300 Mohm; 0.3
F to 100 milcro \mathbf{F}... 829.00
5. EVERETT \& EDGCUMBE

Type 53379 RESI8 TANCE BRIDGE. Range: 0.01 obm to 1 Mohm.
6. FURZEHILL LABORATORIES

Type B 800 TNOREMENTAI, INDUCTANCE BRIDGE. £ 25.00
7. GENERAL RADIO CO.

0-1 Kohm; Reactance 0-5 Kohm............... $\mathbf{\& 2 9} 200$
IMPEDANCE BRIDGE No, (TF 936). Range: Inductance mlcroH to $100 \mathrm{H} ;$ Capacitance 1 pF to 1 microf; Resistance 0.1 ohm to 10 Mohm; High resistance 100 Kohm to 100 Mohm . Q and Tan
80.001 to $20 \mathrm{at} 1 \mathrm{kHz} ; \times 0.08 \mathrm{at} 80 \mathrm{~Hz} ; \times 10$ at 10 kHz . . . E 75.00 80.001 to 20 at kkH
9. MARCONI

Type TF3 301 E 1000KHz INDUCTANCE BRIDGE. Range: 0.01
to 50 microH. Accuracy: better than $\pm 2 \% ~ \pm 0.05$ microH.. $£ 45 \cdot 00$
10. PYE PLATINUM THERMOMETER BRIDGE.................. £15.00

PLATINUM THERMOMETER BRIDGE........................ 15.00
II. WAYNE KERR
Type B601 RF BRIDGE. Range: C $0-0.0024$ microF; R 0-1 Mohm.
12. WAYNE KERR

Type B801A VHF ADMTTANOE BRIDGE. Range: Admiltance
$0-100$ Mohms; Capacitance $0-230 \mathrm{pF}$. Measurement frequency

13. WAYNE KEAR

Type B901 VHF ADMITTANCE BRIDGE. Range: Admilttance -100 Mohms: Capacitance $0-+76 \mathrm{pF}$ and -75 pF . Accurancy:
$\pm 2 \%$

CALIBRATORS

1. M.E.I. LIMITED

Type ZC 3623 CALIBRATOR/WAVEMETER. O/P frequency:
$160-240 \mathrm{MHz}$. 2. MARCONi

Type TP723A UHF CBY\&TAL CALIBRATOR. Measurement range: $360-3000 \mathrm{MHz}$. Accurace: 3 parts in 10^{4} to 1 part in 10^{4}
depending on and increasing with frequency............. $£ 150 \cdot 00$

CONTROLLERS (Temperature)

I. ETHER

'TRANSITROL' TEMPERATURE INDICATOR/CONTROLLER. Type 12-91 Anticipatory Control $0-300^{\circ} \mathrm{C} \ldots \ldots \ldots \ldots \ldots, \ldots 25 \cdot 00$ Type 9902 position control. Ranges: $0-150^{\circ} \mathrm{C} ; 0-600^{\circ} \mathrm{C}, 0-800^{\circ} \mathrm{C}$;
$0-1200^{\circ} \mathrm{C}$ 2. FOSTER INSTRUMENTS

Type 030K SX TEMPERATURE CONTROLLER. Range: $-20^{\circ} \mathrm{C}$
to $+50^{\circ} \mathrm{C}$. .. $215 \cdot 00$
3. HONEYWELL

TEMPERATURE CONTROLLER. Range: $0-1000^{\circ} \mathrm{C}$. . $£ 15 \cdot 00$
4. KELVIN HUGHES
, 10.00

CONSTANT SPEED DRIVE

ELLIOTT BROTHERS

CONBTANT SPEED DRIVE. Some essential tests require a very accurate input in the form of shaft rotation at a selected apeedcalibration of tachogenerators for example. The accuracy of the
instrument is established by a transistorised crystal oscillator, which is theif temperature controlled, glving an acouracy of 1 lpart in 10^{5}.
shaft speeds: $450,650,750,900,1200,1500,1800,2400,3000$.

CONVERTERS

1. CROYDON PRECISION INSTRUMENT

Type 7 (AC-DC VACUO JUNCTION). Voltage ranges: $300 \mathrm{~V}, 150 \mathrm{~V}$,
$75 \mathrm{~V}, 30 \mathrm{~V}, 15 \mathrm{~V}, 7.5 \mathrm{~V}, 100$ ohms/rolt. Curreat ranges: $5.0 \mathrm{~A}: 2.5 \mathrm{~A}$, $1.0 \mathrm{~A}, 500 \mathrm{~mA}, 25 \mathrm{~mA}, 120 \mathrm{~mA}, 70 \mathrm{~mA}, 40 \mathrm{~mA}, 18 \mathrm{~mA}$. Accuracy

2. EX-SERVICES

Type zb001s DC to AC CONVERTER. I/P 12V DC. O/P 230V rms 50 Hz at 100 VA ..
3. SOLARTRON

Type LP942 ANALOGUE-DIGITAL CONVERTER. Range: 1 mV to 10.999 V bipolar. Accuracy: 1 mV or 0.1% of reading. Input Z:
100 Kohm . Output Z: $4 \mathrm{Kohm} . .$. £180.00 4. ROYSTON INSTRUMENTS

Type 400/A/ET FREQUENCY ANALOGUE CONVERTER. 5. SOLARTRON

Type LMon3 VOLTMETER CONVERTER for converting solartron digital voltmeter type LM902.2 to read AC. Internal meter facil.
ity and CRO output. Bange: $15 \mathrm{mV}-500 \mathrm{~V}$ rms.......... $\mathbf{f 9 9} \mathbf{0} 0$

COUNTERS

ELECTRONIC

I. SYSTRON DONNER

Type 10378 DIGIT PREQUENOY AND TIME COUNTER Range:

ELECTRO-MECHANICAL

Print-Out Types
I. SODECO
$\begin{aligned} & \text { Type } 1 \text { Tpb } \\ & 6 \text { DIGIT PRINT-OUT COUNTER } 240 \mathrm{~V} \\ & 10 \text { hmpulses/gec. } \\ & £ 40 \cdot 00\end{aligned}$
2. ENM
845.00

Non-Print-Out Types
3. COUNTING INSTRUMENT TYPE 4294 DIGIT

24V DC 15 impulses/gec. .. . § $_{4} 12 \frac{1}{2}$
4. COUNTING INSTRUMENT TYPE 1206 DIGIT

24V DC 15 impulseg/sec75
5. COUNTINGINSTRUMENT TYPE IOIA 6 DIGIT

48V DCEDER ROOT TYPE BD $134545 \quad 5$ DIGIT
Mechanical operatlon. Ratchet-reset. Inverse Nos.............. \&.0.62
7. VEEDER ROOT 6 DIGIT COUNTER
8. VEEDER ROOT TYPE B38 6 DIGIT
9. VEEDER ROOT 6 DIGIT COUNTER
10. VEEDER ROOT 6 DIGIT COUNTER
£2.75
...... £2.00 230V 50 Hz .
£2.75
II. SODECO TYPE ATCE3E 3 DIGIT COUNTER 12. SODECO TYPE ATCEZ4E 4 DIGIT COUNTER

60V DC 25 impulsee/sec.
60 V DO 25 impulsees/seo.
\&2. $50(600$ coll new)
21. $50(1000$ coll used)
GIT COUNTER
13. SODECO TYPE ATCEFAE 4 DIGIT COUNTER
${ }_{12 \mathrm{~V}}^{12 \mathrm{~V}}$ DC 10 impulses/sec.
$.25 \cdot 25$ (new)
.21 .50 (used)
14. SODECO TYPE ATCEFSE 5 DIGIT COUNTER
15. SODECO TYPE ATCEZSE 5 DIGIT COUNTER

160V ' 25 imputses/sec. 1
16. SODECO TYPE TIF5 PIEH 5 DIGIT COUNTER
110V 50 Hz . 10 impulsea/sec. 2 banks of 5 digits each bank indepeadent
17. COUNTING INSTRUMENT TYPE 1506 4 DIGIT
24 V DC 15 impulses/8ec. Each digit lndependently set counting down
to zero operating main switch.
\&6.50
I8. VEEDER ROOT 6 DIGIT COUNTER
19. HENGSTLER 6 DIGIT COUNTER
£2.00
19. HENGSTLER 6 DIGIT COUNTER
24V DO 500 coit..
20. HENGSTLER 6 DIGIT COUNTER

10 V DC 1100/800.
22-45 (used)
21. ELECTRO-MA
24 V DC 25 impulses/sec.
£4:50

CURVE TRACER

I. cossor

DIODE CURVE TRACER Shows dynamic characteristics of tunnel
and backward diodes on O.R.T................................ $£ 25 \cdot 00$
ALL ORDERS ACCEPTED SUBJECT TO OUR TRADING CONDIDURNG TRADING HOURS OR BEINSPECTED AT OUR PREMISES THROUGZ THE POST.

ELECTRONIC BROKERS LTD.
49-53 Pancras Rd., London, N.W. 1

GENERATORS

SQUARE WAVE GENERATORS

1. SOLARTRON

TONE GENERATORS

2. B.E.M.E.

Type X9827 TONE GENERATOR Range: $3 \cdot 2,3 \cdot 6,4 \cdot 0,4 \cdot 4,4.8$ voltage and current generators 3. ECKO

Thpe isis2a decade volitage \& Current generator This instrument 1s a self-contained unit for providing accurate
voltages and currents which can be varied by small increments voltages and currents which can be varied by amall increments.
Vnitage ranges: $0-1 \mathrm{~V}$ in 0.0001 V steps; $0+10 \mathrm{~V}$ in 0.001 V steps. Current ranges: On 1 volt range $10-5 ;$ to $10-13$; ; On 10 volt range
$10-4$ to $10-11 \mathrm{~A}$. Voltage ranges: $\pm 0.01 \%$. Current serfes realiors:
$10^{5} 11^{6}$ $\pm 100^{6}$ ohms $\pm 0 \cdot 1 \% ; 10^{7}$ ohms $\pm 5 \% ; 10^{8} .10^{4}, 10^{10}, 10^{11}, 10^{18}$ ohm

NOISE GENERATORS

4. WAYNE KERR

NOISE GENERATOR CT410. A portable instrument for measuring the noise factor of radio receiving equipment, metric radar receiverg
and radar wide-band 1. . amplifers in the band $15 \mathrm{kHz-160MHz}$

400 Hz GENERATORS

5. HATFIELD INSTRUMENTS

Type PUM16 400 Hz GENERATOR. Provides 400 Hz 1 ph and 3 ph 6. HATFIELD INSTRUMENTS Type PUM 16/1 133 Hz GENERATOR. Similar to above only 133 Hz

TEST GENERATORS

Type TFile7 TELEGRAPH TEST GENERATOR. This generator delivers high quality keyed RF signals at stable carrier frequeneles of $3.1,6.2$, and 9.3 MHz . On/ofl frequency-shift or frequency shift diplex
(twinplex) keying can be selected, or the carrier can be sinewave (twinplex) keying can. be selected, or the carrier can be sinewave
amplitude modulation. Carrier Frequency: $3 \cdot 1,6 \cdot 2,9 \cdot 3 \mathrm{MHz}$. Frequency \&tability: Better than $\pm 0.001 \%$ for mains variation up to
$\pm 10 \%$ over an ambient temperature range of 20 to $50^{\circ} \mathrm{C} . . .885 .00$

PULSE GENERATORS
8. COSSOR
\qquad
PULSE GENERATOR £15.00

10. KASAMA ELECTRONICS

Type 301A PULSE GENERATOR PRF 0-100K pps. Pulse width II. NAGARD

Type 5002 DOUBLE PULSE GENERATOR PRF $0.1-1 \mathrm{M}$ pps.

SIGNAL GENERATORS

Audio Frequency
12. AIRMEC

Type 257 signal generator. Provides four phase related outputs of identical frequency. A unique feature of this mstrument is that one outpul is continuously variabie in phase relative to a reference. Frequency range: 0.08 Hz to 30 Ez O/P level: 50 peak
undalanced to earth OF impedane: 10Kohm normal PULLL
SPECTFICATION AVAILABLE ON REQUEST......... 295.00 13. ADVANCE

Type BG66 LF SIGNAL GENERATOR. Fregueney range: 5 Hz to 12skHz. Accuracy: $\pm(1 \% ~ \pm 1 \mathrm{~Hz})$. O/P SINE WAVE: $0-30 \mathrm{~V}$ rms
nto 600 ohms; $0-1$ W into 5 ohm . O/P SQUARE WAVE: $0-30 \mathrm{~V}$ pl to pk; $0 / \mathrm{P}$ impedance varies. with O/P level. RIBE \& FALI

RF SIGNAL GENERATORS

14. ADVANCE

Type C2. spot frequeneles selected by 12 push buttons marked Δ to
 15. SIGNAL GENERATOR
 16. AIRMEC

Type 201 STANDARD BIGNAL GENERATOR. This instrument will provide accurate, stable stnusoldal slgnals of pure waveform rom 30 kHz to 30 MHz . Output levels, which are stabilised by an
amplified AGC system can be varied from $1 \mu \mathrm{~V}$ to 1.1 V rms (or 2.2 V roms unmodulated). A high output of 5 V (10 V unmodulated) is also provided from a 300 ohm source impedance. The attentuators are very accurately calibrated and have a constant 75 ohm output
mpedance. Frequency range: $30 \mathrm{k} \mathrm{Hz}-30 \mathrm{MHz} \mathrm{hn} 7$ bands. CRYGTAL CAplIBRATION: $\mathbf{A} 500 \mathrm{kHz}$ crystal oscillator provides between 20 and 50 check points on each band. FULL SPECIFICATION AVAIL.
ABLE ON REQUEST............................... $85 \cdot 0$
17. AIRMEC

Type 701 SIGNAL GENERATOR. Prequency range: $30 k H z-30 \mathrm{MHz}$ In 7 bands.. £95.00 18. COSSOR -
Type-CT202 8IGNAL GENE
Herat
.. £88-00
19. MARCONI

Type TF144H STANDARD SIGNAL GENERATOR. Frequency range: $10 \mathrm{kHz}-72 \mathrm{MHz}$. Crystal check: 400 kHz snd 2 MHz crystals.
gtability: 0.002% in 10 man . Stability: 0.002% in 10 minute interval. FUIL RPECIFICATION
AVAILABLE ON
REQUEST................................ $165 \cdot 00$ 20. MARCONI

Type TFi44O standard signal GENERATOR. Frequeney range : $85 \mathrm{kHz-25MHz}$, Output voltage: $1 \mu \mathrm{~V}-1 \mathrm{~V}$ continuously variable. Output impedance: $1 \mu V$ to 100 mV 10 ohms; $100 \mu \mathrm{~V}$ to $1 \mathrm{IV} 52 \cdot 5$ ohms.
FULI BPECIFICATION AVAILABLE ON REQUEST.... $885 \cdot 00$ 21. MARCONI
21. MARCONI
 22. ADVANCE
 23. ADVANCE

Type 71 sIONAL Generator. Frequency range: $0-320 \mathrm{MHz}$
4. AVO Type CT378 SIGNAI, GENERATOR. Frequency range: $2 \mathrm{MHz}-$
500 MHz . $0 / \mathrm{P}$ voltage: $1 \mu \mathrm{~V}-25 \mathrm{mV}$ into 75 ohm. Internal modulation: 1 kHz to 30% - \rightarrow ine or square.............................. £45.00 25. MARCONI

Type TF801A SIGNAL GENEROTOR. Frequency range: 10 MHz to
 to 80% sine or qquare. $245 \cdot 00$ 26. RCA

Type 710-A UEF sIGNAL GENERATOR. Frequency range: 370 MHz
-s60MHz. Power supply: 117 volts 6Hz 50 Watte............. $825 \cdot 00$ 27. EX-SERVICES

位ATOR. Frequency range: $0-11 \mathrm{~cm}$
28. MARCONI

GAND SIGNAL GENERATOR........... $\mathbf{£ 6 5 0 0}$
Type TP1343/2'X' BAND sIGNaL GENERATOR......... £85.00
30. SANDERS

Type AG480 ' X ' BAND BIGNAL GENERATOR. These high grade generators comprise a kiystron oscillator in as coaxlal cavity from a stable power source. Provision for applying aine wave or pulse
modulation from elther an Internal or external source. Frequency range: $8-11 \cdot 5 \mathrm{kM} \mathrm{Hz}$.. $\& 275 \cdot 00$
31. SANDERS

Type sG478 'X' BAND gIGNAL GENERATOR. Frequency range:
$1 \cdot 3-4-2 \mathrm{kMHz}$. Details as 8G480 above....................... $8875 \cdot 00$

INDICATORS

(See also CONTROLLERS

1. MAKER NOT KNOWN
,00мmz. 10.00
TYpe CTR103 INDICATOR CRO. Range: 0-10MHz. TB speed:
$0,000-20,000 \mathrm{MHz}$
2. B.P.L.

Type LB320 BaLaNCE INDICATOR
4. FOXBORO
ype M9600B MAGNETIO PLOW DYNALO日 INDIGATO
Range: 0 - 40 Litrea/min .

THERMOMETER INDICATORS

5. SANGAMO WESTON 6. SANGAMO WESTON

Type 1T3-3 RAT1OMETER INDICATOR. Range: $-70^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$
7. SANGAMO WESTON

Type $63 / 4$ Ratiometer indicator. ramge. $250 . \mathrm{C}-350^{\circ} \mathrm{C}$
Sype $863 / 5$ RATIOMETER INDICATOR. Range: $50^{\circ} \mathrm{C}-350^{\circ} \mathrm{C}$
9. SANGAMO WESTON

Type 1T3/4 RATIOMETER INDICATOR. Range: $50^{\circ} \mathrm{C}-350^{\circ} \mathrm{C}$

INSULATION TESTERS

EVERSHED \& VIGNOLES (MEGGER) 1. 500 V 'WEE' MEGGER £15-00
2. 100V 'WEE' MEGGER.................................. 218-50
3. $100 \mathrm{~V}{ }^{\circ}$ WEE MEGOER SERIES 3. Ranges: $0.02-20 \mathrm{Mohm}$;
4. CIRCUIT TEATING OHMETER. Ranges $0-1000$ ohms; $100-$ infinlty ohms. Battery operated. Complete with leather E.R. case
5. 100V EARTH TESTER EERIES 2. Range 0-60 ohms . . \&10.50 6. 250V BRIDGE MEGGER SERIES 2. Rangen: Bridge 0.01-999, 7 SOV BPIDCE MEOOER SERIES 2 Ranges: Brdge 0.01-999
 8. 500V INsULATION TESTER SERIES 1. Range: $0-100 \mathrm{Mohm}-$ infinity.. £20-00
9. S00V INsuLATION TESTER SERIES *. Range: 0-100Mohmb-
0. 100 V INSULATION TESTER SERIES 1. Range: $0-5000$ Mohm-
.... 218.50
11. 100V VARLET LOOP TEST BRIDGE MEGGER...... £25.00
18. 1000V BRIDGE MEGGER SERIES *. Rangea: Bridge 0.01-999,
13. 250V INBULATION TESTER 225.00

SPEECH INVERTERS

RCA

The R.C.A. Speech Inverter is a device intended for ube in radio
telephone instaliations where privacy equpponent installations where privacy is a prime consderation. The
ened in conjuinction with the R.C.A. M1-7182 Hybrid Transformers enables parallel two-wsy conversations on a singl telephone pair line at each terminal of the communications system With inversion, speech fed into the transmiteting tnverter circuilt will
feed the radio transmiter teed the radio, transmitter with unintelligible signale. These signal Will rematm unintelligible until they pass through a recelving ginverter
circuit at the other end of the communication channel (Osed oil

MEASURING SETS

DYNAMCO SYSTEMS
TRANSMISSION MEASURING SET. Range: $0-15 \mathrm{db}810 .00$

INSTRUMENT CASES

METERS

MULTIMETERS

1. AVOMETERS

MODEL
817.00
825.00
2. BRADLEY (GEC

TRANBISTORISED MULTLMETER TYPE CT471B. Fully tran sistorized multi-range ingtrument for measurement of roltage up w
1000 MHz (1500 MHz with reduced accuracy) and current up 2 KHz and DC Resistance AC and DC voltage and current divlded into 1

 before despatch. Complete with handbook...... $449 \cdot 50$ Carriage 50p
3. E.I.L. Type 4AA Pbecision multi range meter. An instrument of

 OHMMETERS
4. W. G. PYE

TyPe 10B OHMMETER 500V
89-50
5. E.I.L. Type . MLLOHMETER. Designed for measurement of low and very low resistance. It is a transportable direct reading instrument

Ph METERS

6. CAMBRIDGE INSTRUMENT

Type LI 134995 PL METER. Range: O-12. Probes avaitable from
thanutacturer at approx. E4-00 each. Complete with galvanometer 7. iNOUSTRIAL SCIENTIFIC INSTRUMEN 812.50 Type BA PL MUTE SCIE OIF NSTRUMENTS electrode stand
8. PYE
Type 11071 PL METER (PORTABLE) Range: $2-12 \ldots \ldots . .{ }^{2} 38-00$
PHASEMETERS
9. MUIRHEAD

Type D729-BM

PYROMETERS
1I. INDUSTRIAL PYROMETER
II. INDUSTRIAL PYROMETER
INDUSTBIAL PYROMETER. RAnge: $0-110^{\circ} \mathrm{C}$.
$£ 35 \cdot 00$
$£ 3000$

Range: 0 -6 $60^{\circ} \mathrm{C}$
 RATEMETERS

12. FLEMING RADIO

VIBRATION METERS

13. DAWE INSTRUMENTS

Type 1402 C VIBRATION METER. Range: 2 to 10 kHz . Complete
with probe....................................... $£ 25.00$

VOLTMETERS

14. DYNAMCO

Type 2006 DIGITAL VOLTMETER. Ranger: $100 \mathrm{mV}-1 \mathrm{KV}$ fsd Scale: 4 digitg. Sensltivity: $10 \mu \mathbf{V}$. Supplied with $\mathbf{D} 2$ module and
calibratlon certifcate.................................. $\mathbf{\$ 3 5 0 \cdot 0 0}$ 15. DYNAMCO

Type 2010 DIGITAL VOLTMETER. Ranges: 10 microvolts-1-1KV

16. GLOSTER INSTRUMENTS

Type OE(B1E2123) DIGITAL VOLTMETER................ . $855 \cdot 00$

VALVE VOLTMETERS

18. E.I.L. (CT54) microvac electronic tegtmeter. Type
portable valve voltmeter ol robust construction
Lor une in the laboratiory

Tel: 01-837-7781/2
14. METROEM BATTERY INSULATION TEGTER. Ranges:

INTEGRATORS

I. BEAUMARIS ELECTRONICS
2. NEW ELECTRONIC PRODUCTS
2. NEW ELECTRONIC PRODUCTS camera recorder... \&15-00

Type 6ita True rms valve voltmeter. A senaitive electront
 lorms. Range: 100 mlerovolt to 300 V rme. Frequency: $5 \mathrm{Hx-5005}$. $£ 55 \cdot 0$
 $0.5 \mathrm{~V}, 2 \mathrm{~V}$ fad.
21.
AYO
21. AVO Type CT38 VALVE VOLTMETER.
£15-50

215.00

METERS - continued

23. E.I.L.

Type 26 LABORATORY VALVE VOLTMETER. Ranges: AO/DO
0.2 V to 2s0V fad. Reaistance: 500 ohms to 500 Mohms fed. Frequency range: $30 \mathrm{~Hz}_{2}$
ELECTRONIC TESTMETER. Rangen: Voltage: DC $5 \mathrm{mV}-250 \mathrm{~F}$ \&sd AO $0.1 \mathrm{~V}-250 \mathrm{~V}$ fad. Current: DC 0.5 microamps-1A fed. Frequency
range: DC to 200 MHz 818.00
 Type ELias $D C$ Valve volumeter. Ranges: DC Voltage
$0-250 \mathrm{~V}$ fs in 10 ranges.. 280 26. G.E.C.
 Type BW664 Valve voltmeter. Detalls sa BW4 23 above 28. WiNSTON ELECTRONICS

WATTMETERS

29. MARCONI

Type TP938 AF ABBORPTION WATTMETER. Ranges: 200 micro -watts-6 watts fsd in 10 ranges. Impedance: $2 \cdot 5$ ohms to 20 zohms in
 30. SANGAMOOWESTON Type $567-1-$ S87 AC/DC WATTMETER. Range: 0 to 450 Watt

WAVEMETERS

31. EX-SERVICES
rype W1185/A WAVE METER. Rango: 20 to 100 MHz 32. SULLIVAN \& GRIFFITHS
815.00

Type 7088 WAV EMETER. Range: 10 to 30 kHz .

MODULATOR UNITS

. KELVIN-HUGHES
 DYNAMIO STRAIN MODULATOR UNIT. For use with K-H 2. MUCORAHEAÖ

Type D-632-A LF MODULATOR. For extending the range of the
type D-489-G WAVE ANALYSER DOWA TO 2Hz....... 825.00

PULSE SHAPER

I. LIVINGSTONE CONTROLS Trpe LMO91 PULAR BHAPER d REGISTEA 2. LIVINGSTONE CONTROLS TYPe LMO日2 PULSE GEAPER A RELAY.
Type LM101 PULSE SEAPER \& RELAY.
$235 \cdot 00$
c35. 00
ع35.00

OSCILLOSCOPES

ide range of ogelloscopes in stock including Telegul poent We have a wide range of osclloscopes in stock including Telequl pmont, conthand us with your requirements.

OSCILLOGRAPHS

1. SOUTHERN INSTRUMENTS

Type ME1200 A8 12 CHANNEL OsCTLLOGRAPH. Complete with

OVENS

1. BAIRD \& TATLOCK

2. TOWNSON \& MERCER
830.00

Tspe 6467 VACUUM 0 OVEN. Size Int; 104 in. DIAM. $\times 12 \mathrm{in}$. DEEP. $\left.\begin{array}{l}\text { Power: } \\ 0 \rightarrow 30 \\ 0\end{array}\right)$

OSCILLATORS

LF OSCILLATORS

1. EDISWAN

Type R666 LF OscilLator. Rage: $1 \cdot 4 \mathrm{~Hz}$ to $5 \cdot 5 \mathrm{kHz}$ in 7 ranges

CRYSTAL OSCILLATORS

2. S.T.C.

SWER OSCILLATO...
3. PYE-LING

Type ACOL AUTOMATIC SWEEP LP O8CILLATOR. An automatic from displacement to acceleration characterlotic. Applications Resonance Search and Endurance testing. $\mathrm{Hz}_{2} 5 \mathrm{KHz} 21$ sweep Bpeeds from $0.1-100$ octaves/minute. Variable o/P up to 10 V r.m.s.

DECADE OSCILLATORS

4. MUIRHEAD-WIGAN

Type D-638-A LF DECADE O8CILLATOR. Range: 0.1 Hz to
212 Hz . Power: 1 W into 600 ohm on $\times 100$ range 0.2 W nto 2.5 Kohms 212 Hz . Power: 1 W into 600 ohms on $\times 100$ range 0.2 W into 2.5 Kohms
on $\times 1$ and $\times 0.1$ range................................... $840 \cdot 00$ 5. SOLARTRON

Type Of 103.2A LOW FREQUENOY DECADE OBCILLATOR. Rango: 0.01 Es to $11 \cdot 1 \mathrm{kHz}$ sine and square. Accuracy: $\pm 2 \%$. V out:
10 V rmas. Power: 100 mW into 1 kolmm................... $255 \cdot 00$

TUNING FORK OSCILLATORS

6. TINSLEY

Type 3088 TUNING FORE OBCILLATOR. Complete with frequency

GAUGE OSCILLATORS

7. SOUTHERN INSTRUMENTS
£25•00 HIGH DISCRIMINATION OSCILLATORS 8. MARCONI

Type TF1168 EIGH DISCRIMNATION OSCILLATOR. 2 Hz diperimination at centre frequency contlnuously variable up to

POWER OSCILLATORS
9. GOODMANS

Type SVA POWER OBCILLATOR. Range: 5 Hz to 50kHz in 4 rangen.

VIDEO OSCILLATORS

10. MARCONI

Type TP885 VIDIO OSCILLAATOR. Frequency range: Sine 25 Hz to

OSCILLOSCOPE CAMERAS

1. COSSOR

Type 1428 MK 11 Oacllloscope Camera. Single shot or continuous 2. LANGHAM THOMPSON
2. LANGHAM THOMPSON
Type 200B Osclloscope Camera. Single shot or continuous recording

- SOUTHERN INSTRUMENTS

28500
Type M732 Universal Oscilloscope Camers. Provides both drum and
continuous feed recordiag using 35 mm or 70 mm film or paper. Drum continuous feed recording using 35 mm or 70 mm fitm or paper. Drum
coneds: $4-1200 \mathrm{in} / \mathrm{sec} \mathrm{C} / \mathrm{F}$ speeds: $0.4-100 \mathrm{in} / \mathrm{sec}$ Power supply: speeds: 12 V D. 1200 in/sec C/... 00 4. SOUTHERN INSTRUMENTS
ype 828 Conthouous Feed Oscllloscope Camera C/F apeeds: 0.4-100 m/sec 120 mm alm or paper in 200 ft . nolls. Completo with $\$$ csasettes
5. TELFORD PRODUCTS LTD,
Type 'A' Folspold ${ }^{\text {ocilloscope Camera. This is a current instrument. }}$
220.00

A wide range of adaptors are svailable for most ouclloscopes. Now

POWER SUPPLY UNITS

EX-COMPUTER HIGHLY STABILISED TRAN SISTORISED LOW VOLTAGE POWER SUP. PLIES
These modular units facor-
porate, Overload protection
on both INPUT and OUT. on both INPUT and OUT-
PUT. LOAD regulation of 1% or better. Low R1pple and fast reaponse time. All units
checked and $0 / \mathrm{Hi}$ before des. checked and O/H before des-
patch. I/P VOLTAGE 120 .
130 v . 80 Hx available in following typea
6 volt
8 volt
6 volt
12 volt
122 volt
12
12 volt
20 volt
20
30
vol
48
The
The

BARGAIN-DC STABILISED POWER SUPPLY

UNIT

Brand new solld state modular unit. I/P 110 r. 240 v. 50 Hz . O/P +
 switch. Fuse and warning light. stabilisation 10011 for $+10 \%-15 \%$
mains charge. Equivalent O,P resistance leas than 50 M ohms. Ripple and nolse leas than 10 mV . Amblent Temp. Range 0- $50^{\circ} \mathrm{C}$. Dimenslons

CONSTANT VOLTAGE TRANSFORMERS
Advance CVH 1500 A. Harmonle Altered. I/P $190-260$. 50 Hz .
1 phase. O/P 230 v . 1500 w . Unlty FF. E50.00. Carrlage extra
ADVANCE MT 285ZA

POTENTIOMETERS

I. TINSLEY

Type 5205B PRECIBION POTENTIOMETERS
$255 \cdot 00$
Type 7565 UNIVERSAL PRECIBION POTENTIOMETER. Range: $0-1.7500 \mathrm{~V}$. Esch division of the slide wire equals 100 microvolts. Acouracy: 0.02% or ± 1 sildewire divielon. Muttipliers: 0.1 and 0.01
multipliers give slidewire divisions of 10 and 1 microvolt. ... 295.00 multipliers give s
3. TINSLEY
4. DORAN

DC POTENTIOMETER . $58 \cdot 00$
5. MUIRHEAD

Type D-72-A DO SLIDEWIRE POTENTIOMETER....... . 845.00
6. CAMBRIDGE

Type L215558 SLIDEWIRE POTENTIOMETER........... $230 \cdot 00$
7 CAMBRIDGE
8. MUIRHEAD \quad Type A-Z-A BLIDEWIRE POTENTIOMETER, Range: $0.027-$

Type A-Z-A 1.25 ohms.. $235 \cdot 00$
9. SULLIVAN
10. TINSLEY
Type 4524 SLIDEWIRE POTENTIOMETER. Range: $0.02-$
0.11 ohms.. 28.00
II. PYE PREBECISION VERNIER POTENTIOMETER. Th
inatrument can be used as a laboratory standard and is auitable for submission to the Nstional Physical Laboratory. Range: 10 micro.
volts to 1.90100 V in 1 mlcrovolt atepa. Accuracy: $\pm 0.002 \%$ or

12. TINSLEY
12. TINSLEY \quad Type 4363 VERNIER POTENTIOMETER................... $\mathbf{8 6 5} \cdot 00$
13. CAMBRIDGE
13. CAMBRIDGE
Type L346145 VERNIER POTENTIOMETER.............. 285.00
14. PYE
Type 2002 SINE COsINE POTENTIOMETER 47 K . Precislon com-
ponent by Pye. Model 2002 . Manufactured to rigid Miniatry specificaponent by Pye. Model 2002. Manufactured to rigid Miniatry spec ifica-
tion. The assembly consista of three units mounted in one frame, tion. The assembly consiata of three units mounted in one frame,
Each untt contains two sine and two conine potentiometer sections the sliders being ganged together. Electrical connections, 2 end taps,

PRECISION POTENTIOMETERS

TEN TURN 3600° ROTATION BRAND NEW

Real Ohme	Linearity Per cent	Manufacturers	Model	Price
100/100/100.		.Beckman.	A	28.00
$100 . . .$.	0.5	. Beckman.	As.	23.00
200.	$0 \cdot 5$. Beckman.	A	23.00
500.	. 0.1	. Beckman.	s.	£3. 50
500		.Colverni.	2501.	28.85
800		Poxes.	PY4.	28.00
\$00.		. Colvern.	. 2810.	22.50
${ }_{5} 60$.Colvern.	. $26 / 1000 / 11$.	$23: 00$
500.	$1 \cdot 0$. Relcon.	. $\mathrm{HET} 107 \cdot 10$.	22. 25
18.		.Relcolu.	[EELO710.	28.25
2K.	0.5.	.Beckicman.	. 841101	23.00
2K.	. 0.25	. Beckman.	. 7216.	23.00
2K.		. Rellance..	GPM15.	22.00
2K.		.General Contro	. GPA15/4	22.00
5K.		. Relcon .	. $07-10$	82.50
6K.		. Colvern.	. .CLE2503.	£3.00
10K.	0-5	.Beckman.	A.	23.00
10K.	. 0.1	.Beckman X	A	23.50
10K.	0.1	Colvern. .	. CLR26/1001.	23.50
15K.		.Colvern.	. CLR2402.	23.00
18K		. Beckrcana.	A.	83.00
25K	0-8	Helipot. .	.8A1337.	23.00
29 K .	0.05	.Beckrman.	.8A1244.	24.50
80 K		. Colvern.	.2402.	21.50
30K.		.Beckman.	.8A950.	£3.00
30K	-1	. Beckman.	A.88.	£3.50
30x	0.5	. Beckman.	.8A1692.	23.00

ELECTRONIC BROKERS LTD.
49-53 Pancras Rd., London, N.W. 1

PRECISION POTENTIOMETERScontinued

RECORDERS

PEN RECORDERS

PEN RECORDERS. We have probably the largeet stock of pen recorders in the UK. Litated below are sume exampler from this stock-ir the recorder you require is
oertanly can help you.

(R8) 2 PEN. DC MILLIAMMETER- $0-15 \mathrm{~mA}$. Chart width 8 in . Speed
Tel: 01-837-7781/2
(R9) UNTVERSAL MOLTIPOINT. 1.24 polnt suitable for quantileswith slow rate of change. Chart width 12 ln . Speed: 3 ranges, $6 / 1$ ratio.
Senisitivity $0.100^{\circ} \mathrm{C}$ based on 0.75 mV FBD using Thermo couplo
 (R10) NEW MULTIPOLNT RECORDER. $100-0-100 \mathrm{mV}$. Chart width 6ith. Speed: 20 and 720 min . $/ \mathrm{hr}$. Also available $0.100,0-400^{\circ} \mathrm{C}$ using (R12) MERSTED TEMPERATURE RECORDER. Two Pen $0.200^{\circ} \mathrm{C}$ c/w bulbs and capillary tubing. Mains supply. 24 br. Chart dia.

R13) FIDDEN Mk II SERYOGRAPE single point fitted with turre head to enable conversion to $\&$ point. Uses capaclitive sensing lnput. Chart dia. $11 \ln$. speed: 1 rev. hr. Sensitivity 50 micro Amp. Reaistance 1.950 ohms. Malng supply

(R14) Kont Mk. II sINBLE POINI, Chart width 9f in. Speeds: 1 in .
 point. General purpose slow response sultabie. Temperature, Humid

(R25) SINGLE PEN. DC MILLIAMETER. 0-1mA. Chart width $4 \frac{1}{2}$ In.
 movement. Chart width 7 ln . Speed: 1 ln . $/ \mathrm{hr}$. Clock work drive 8 -day Terminal resistance 100 ohma . Price $£ 29.00$
R39) SINGLE POINT. DC MILLIAMMETER. $t-0-\frac{\xi}{} \mathrm{mA}$. Chatt width $2 \mathrm{in}_{\mathrm{o}}$ Bpeed: $6 \mathrm{ln} . / \mathrm{hr}$. Usea typewriter ribbon mariter. Malns supply
 (RE1/1) TWO PEN. DC MILLIAMMETER. 0-2mA. Chart width 8 in 3peed: 1 in./hr. Clock work drlve. Terminal Resistance 1,68i

RI) SINGLE PEN. SERVORITER MODEL FWS. Chart width 11 In low spaed. Response time 24 secs, for FSD. Suitable Temperature.
Humidity, etc... 275.00

R7) PORTABLE SLNGLE AND FOUR PEN. Suitable recordin quantilies with higg rate of change. Bpeeds: 8 ingle pen $60 \mathrm{in} . / \mathrm{min}$ Mains supply amplifters to suit.. R58) SINGLE PEN. DC MILLLAMMETER 0-5mA. Chart width in. Speed: $1 \mathrm{ln} . / \mathrm{hr}$. Mains supply. (RB7) SINGLE PEN. DC MILLIAMMETER. 0-0.5mA. Chart width 8 in. Bpeed: 1 in . and 6 in ./hr. Terminal Resistance 4,500 ohms (58) SINGLE PEN, DC MLLIAAMMETER, 0-2mA. Chart width 5 in. (R60/1) AO RECORDING WATTMETER MURDAY 8YSTEM, 0-7EW. Chart width 4 in. Clockwort drive, 8-day movement. Maximum
current: 38 amps.ice $£ 88 \cdot 00$
(R34) CAMBRIDGE SINGLE PEN STRIP CBART RECORDER ompic rico
 Power supply $200 / 250 \mathrm{~V}$ 50 Kz. Dimenslons: Width 10, in., helght
31 in., depth 101 in............................. Price $\varepsilon 85 \cdot 00$

R37) FOSTER STRIP CHART RECORDER TYPE 3490\%. Uses a Aif olour halioinch ribbon and mechanical chopper prlaciple to record ata on to a 6 im . chart. Specifications: Chart width 6 in. ; Chart spee $11 \mathrm{~cm} / \mathrm{hr}$. Dimensions: Width $15 \$ \mathrm{in} .$, Height 22 in., depth 13 in
Weight $60 \mathrm{lb} . ~ P r i c e ~$
$80 \cdot 00$

EVERSHED VIGNOLE

3-Channel Mk 1 Pen recorder with Amplifer Rarige F.s.D. $\pm 1.0 \mathrm{~V}$ with sensiukty control set to maximu. 1 . \pm. \pm Accuracy than 30 per cent lesa of smplitude as compared with a DO signal of value equal to the peak $\mathbf{A C}$ amplitude. Chart apeed 12 in./min., chart width 12 in . 3 i in. per channel, Wt. 67\% lb, $8 i z e: 22 \times 21 \times 11 \mathrm{in}$.

FACSIMILE RECORDERS (MUFAX)

D649 G/A 18 ln . Chart Recorder. Helix speed: 60, 90, 120 rev. $/ \mathrm{m} \mathrm{m}$. Transmission speed: $5 / 8 \mathrm{th}$ in. $1 \mathrm{~s} / 16 \mathrm{in}$., it in. per min. Scannlag rate
96 ines/in. Ref. C.3.

U-V RECORDERS

1. HONEYWELL

Type 1706 VISICORDER 6 channel
In almost new condition. This direct reading U/V Recorder can
record up to 6 channela simultaneously from DO 5000 Hz at writing record ap to 6 channela simultaneously from DO 5000 Hz at writing Recording range: $\quad \mathrm{DC}-5000 \mathrm{~Hz}$.
Paper width:
Optical Arm: in . wide.
Optical Arm:
Paper speeds: E.ght speeds from $0.25-32 \mathrm{~lm} . / \mathrm{sec}$. and

$£ 400 \cdot 00$

X-Y PLOTTERS

. ELECTRONIC ASSOCIATE

TYp - IIOOE VARIPLOTTER

X-Y plotter, suitable for recording analogue infonnation. Table slze
$15 \mathrm{in} . \times 10 \mathrm{In}$; slow apeed $20 \mathrm{ln} . /$ sec, $1 / \mathrm{p}$ sensitivity for F.s.D $0-05-20 \mathrm{~V}$ in 9 ranges: Rasic i/p sensitivity Amm 10 m V/in. Pen

2. MOSELEY AUTOGRAPH TYpE 2A

 $15,75,150,750 \mathrm{mV} ; 011,7 t, 15,75,150 \mathrm{~V}$. Y Axis $0-5,10,50,100$
$500 \mathrm{mV} ; 0.1,5,10,50,100 \mathrm{~F}$. Sensitivity not lesa than 200 K ohms N Accuracy: 0.25% Fg on all ranges. Response speeds: 1 sec. for fut
scale. Supplied complete with copy of handbook........... $£ 310 \cdot 00$
3. HOUSTON INSTRUMENTS Type HR 934

Table size: $84 \mathrm{in} . \times 10 \mathrm{ln}$. Dimenaiona: W, $14 \mathrm{ln} .$, H. 8 in, D. $16 \mathrm{in} .$, Wt
 Response speeds: 2 sec. for full scale....... £250 00. Carriage extra.

TAPE RECORDERS DIGITAL

I. HONEYWELL Model 200 INCREMEN. TAL DIGITAL RECORDER Records digital (binary) data on rith a packing denity of 200 bitsfinch. Atmost new nd in excel lent condition. This recorder ofter excellent tralue for many application
avolving date. logging. One only available. Price: $\$ 350.00$
2. Many decke by Potter, Ampex, étc. for 1 in., $\frac{1}{}$ in. and 1 in. tape

TAPE
BRAND NEW COMPUTER TAPES AND EMPTY SPOOLS
Made by well known manufacturers:
in. certifed $2,400 \mathrm{ft}$. 800 b.p.i.

Prices from 8\%5.00.

NUMICATOR TUBES (Nixie Tubes)

End Reading
ORIOM/U (Clear).
asea 20 p each
Side Reading
XN3/FA 38 mm . lead (amber)
X N $3 / \mathrm{F} 98 \mathrm{~mm}$. lead (red).
N $3 A / F 6 \mathrm{~mm}$. lead (red)
XN3A/F 6 mm lead (red)
N 3 A 6 mm lead (clear).
XN11/F 38 mm . lead (red)
X $23 / \mathrm{FA} 38 \mathrm{~mm}$. lead (amber)

Quantity
1-3.
4110.
11.25.
$26-100$
ess base)
2140
$£ 1.35$
21.30
8120

MEMORY PLANES

Ferrite core memory planea with wired Ferrite cores. Used for building our own computer or as an interesting exhibit in the demonstratio of matrices $40 \times 25 \times 4$ cores each one individually addreasable and

POWER SIGNAL GENERATOR

ROHDE SCHWARZ Type SMLR (BN4I091) POWER SIGNAL GENERATOR
100 KHz .30 MHz in 5 ranger. $\pm \%$ O/P $1 \cdot 7$ F. MAX $0 / P$ volts $0-10$
into 60 ohma and 1 micro volt- 3 v . A.M. Modulation to 90%. Thi a high quality laboratory instrument currently priced at 2583 ELEATE.

MOTORS

LOW TORQUE HYSTERESIS MOTOR MA23 Ideal for instrument cha t drives. Extremely qulet, uneful in areas where ambient noise levelf are low. High starting, torque enabio
relative high inertia loads to be driven up to 6 ozi in. Avaliablein 50 Hz $1 /$ r.p.m., 1/5 r.p.m $1 / 12$ r.p.m., $1 / 20$ r.p.m., $1 / 60$ r.p.m. $120 \mathrm{~V} 50 \mathrm{~Hz}_{\mathrm{Hz}} 1 / 8 \mathrm{r}$ r.p.m., $1 / 51$ r.p.m. $1 / 16$ r.p.m., $1 / 24$ r.p.m., $1 / 3$ r.p.m... $1 / 240$ r.p.m.o. $1 / 300$ r.p.m. 1/720 r.p.m. . r.p.m. M.
2150 P . \& P. incluaive.
CLUTCH MOTORS
$240 \mathrm{~V} 50 \mathrm{~Hz} 1 / 12 \mathrm{r} . \mathrm{p} . \mathrm{m} ., 1 / 6$ r.p.m. $1 / 3$ r.p.m. $120 \mathrm{~V} 50 \mathrm{~Hz} 1 / 12$ r.p.m.

NEW LOW INERTIA INTEGRATING MOTORS Electro-Methoda Model. 901 and 906 PL. Permanent magnet D.C. ight loads driving mechanlcal counters performing integration, or a amall power generators, will operate directly of a photo-cell or
thermo couple, etc. 6 V . Nominal. Typlcal parametera. Btarting voltago (no load) 18 mV at 0.37 b mA . Full load speed $1845 \mathrm{s.p.pm}$. (sppros) Moment of Inertis of Armature $1.8 \mathrm{gr}, \mathrm{cm}-\mathrm{cma}$. Weight of Motor 300 gins. (approx.). £15.00.

TRANSISTORS

BRAND
FULLY
GUARANTEED
NEW LIST－NEW PRICES
Send today for your FREE copy．
of our new 1971 list
2N404
2N69B
2N404
2N69
2N67
2N708
2N708A
2N930
2N1131
2N1132
2N1302
2N1302
2N1304
2N1804
2N1805
2
2N1300
2N130
甘
2N2147
2N2180
2N2218 2N2218
2N2222

2N2484
2N2646
$2 N^{2} 204 \mathrm{~A}^{20} 25^{\circ}$
2N2905
N2906 20p
2N2907
2N2926
2N3053 2N3054 2N3702 $2 N 3702$
$2 N 3703$
$2 N$ 2N3704 2N370 2N3710 2N 405 2N545 $2 \mathrm{~N}_{54} 58$ 28301
28302
26308 $2 S 303$
$2 S 304$
40250 40361
40362 AAY AAZ1 AC
A
${ }_{\mathrm{A}}^{\mathrm{ACCl}}{ }^{\mathrm{ACl}}$ ${ }^{\mathrm{ACl}} \mathrm{AC1}$ A

${ }_{\mathrm{A}}^{\mathrm{A}}$

48，

A

路
路

路

分定定
AF18
AF18
As
$4 A_{y}$
AAYY
ASY 29
ASZ21

BAX16
BAY31
BAY38
BC107
BC107
BC108

HENRY＇S ¿am Integrated nireuits WE OFFER FROM STOCK AN EXCLUSIVE RANGE OF BRAND NEW CERAMIC FULL SPECIFICATION LOW COST TTL 7400 INTEGRATED CIRCUITS
 Data available for above series in bookjet form，price 10p．（Ref．No．30．）
Larger quantity prices Extn．4．Dual Inline 14 Pin Sockecs 30 p each； 16 Pin 35p each．

All atud mounting
With accessories．
Larger quantity pri
application．Estr．

P．I．Cur－					
Type voits rent	$1-49$	$50+$	$100+$	$500+$	
SC35A	100	$3 A$	90 D	75 p	65 p

SILICON RECTIFIERS

1 amp miniature wire ended plastic
 IN 4002
IN 4003
IN 4004
IN 4005
IN 4006 1.5 AMP MINIATURE WIRE ENDED PLASTIC Type P．I．V．1－49 $50+100+500+1000+$ $\begin{array}{ccccccc}\text { PL4001 } & 50 & 10 p & \text { ip } & \text { 8p } & \text { 7p } & 6 p \\ \text { PL4002 } & 100 & 11 p & 10 p & \text { pp } & 8 p & 7 p \\ \text { PL4003 } & 200 & 12 p & 11 p & 10 p & 9 p & 8 p\end{array}$ MAM $\begin{array}{rrrrrrr}\text { PL400 } & 800 & 17 p & 15 \mathrm{p} & 13 \mathrm{p} & 12 \mathrm{p} & 10 \mathrm{p} \\ \mathrm{PL} 4007 & 8000 & 20 \mathrm{p} & 17 \mathrm{p} & 15 \mathrm{p} & 13 \mathrm{p} & 11 \mathrm{p}\end{array}$

3 AMP PLASTIC WIRE ENDED RECTIFIERS Type P．I．V． $1-4950+100+500+1000$ $\begin{array}{rrrrrrr}\text { PL7001 } & 50 & 20 \mathrm{p} & 18 \mathrm{p} & 17 \mathrm{p} & 16 \mathrm{p} & 14 \mathrm{p} \\ \mathrm{PL} 7002 & 100 & 20 \mathrm{p} & 19 \mathrm{p} & 18 \mathrm{p} & 17 \mathrm{p} & 15 \mathrm{p}\end{array}$
 $\begin{array}{llllll}\text { PL7007 } & 1000 & \text { 20p } & \text { 28p } & \text { 26p } & \text { 24p }\end{array}$ 22p

MINIATURE POTTED BRIDGE RECTIFIERS （Silicon）Slze $\}$ in．$\times 1$ in．\times in． Tyos P．I．V．Cur－
$1-4950+100+500+$
$\begin{array}{lllllll}1002 & 100 & 2 a m p s & 60 p & 55 p & 50 p & 45 p \\ 2002 & 200 & 2 a m p s & 70 p & 65 p & 60 p & 55 p \\ 4002 & 400 & 2 a m p s & 80 p & 75 p & 70 p & 65 p \\ 6002 & 600 & 2 a m p s & 90 p & 80 p & 75 p & 70 p\end{array}$

$\begin{array}{llllll}4004 & 200 & 4 \text { amps } & 80 p & 75 p & 70 p \\ 4004 & 400 & 4 \text { amps } & 80 p & 65 p \\ 6004 & 600 & 4 \text { amps } & 90 p & 80 p & 75 p \\ 1006 & 100 & 6 \text { amps } & 75 p & 70 p & 65 p \\ 2008 & 200 & 6 \text { amps } & 80 p & 75 p & 70 p \\ 20 p & 65 p\end{array}$

SEMI－CONDUCTORS

LOOK AT THESE PRICES FOR QUANTITIES FROM STOCK

AFII4 Mullard 25p	AFII5 Mullard 25p
$25+20 p$	$25+20 p$
$100+17 p$	$100+17 p$
$600+15 p$	$500+15 p$
AFII6 Mullard 25p	AFII7 Mullard 25p

AFII6 Mullard 25p	AF117 Mullard 25p
$25+20 p$	$25+20 p$
$100+17 p$	$100+17 p$
$500+15 p$	$500+15 p$
2N3055	$75 p$

2N3055 75p	2N
Mullard 115 watt	
Slicon Power	
$25+65 p$	
$100+50 p$	

XENON STROBOSCOPE

A Stroboscope designed primarily for laboratory, industrial and educational spplications where the elaboration and expense of more complex equipment may not be required. Features include simplicity of operation, robust construction. exceptionally low price and buill in reliability.
The instrument is of modern appearance, small. light in weight, convenient to use and portable. A wide range of flashing rates is covered by the large accurately calibrated dial. allowing operation at low frequencies for strobo photographic experiments and at high speeds for observation of rapidly rotating or reciprocating phenomena.

The external triggering facility permits single shot operation by an external closing contact and also provides a synchronising input for high and low speed repettive phenomena which might otherwise be difficult to maintain in exact phase.

Light source.
Flashing rate.
Frequency accuracy.
Triggering.

High intensity Xenon tube mounted in a parabolic reflector.
1-250 flashes/second in 3 ranges.
Typically $\pm 2 \%$ of each full scale.
(a) by intern al oscillator
(b) by external clasing contacts.

Price: $£ 38.50$
Edwards Scientific International Ltd.
Knowle Road, Mirfield, Yorkshire. Tel: 0924844242
WW--090 FOR FURTHER DETALLS

SHORT WAVE MAGAZINE

The journal for the Radio Amateur, established in 1937 and now circulating in all English-speaking countries. In the last 28 years it has become the most widely-read radio amateur magazine in the U.K. Includes regular SWL feature and much operating news covering all bands HF/VHF. Also articles on theory, design and contruction of amateur-band equipment. At least 64 pages every month. Price $22 \frac{1}{2} p$ by order through any newsagent (direct subscription $\mathbf{£ 2 . 7 5}$ (by first class post) year of 12 issues, post free).

$$
\star \quad \star \quad \star
$$

Our Publications Dept. also offers a wide range of books of radio amateur and SWL interest, including the international DX Call Book (published in Chicago) (£3-10), ARRL Handbook (published in USA) ($\mathbf{£ 2}-80$), World Radio/TV Handbook (published in Denmark) (£2-25), DX Zone Map (published by Short Wave Magazine) (85p). Latest editions, post free, from stock-and many others, as listed in any issue of Short Wave Magazine.

SHORT WAVE MAGAZINE, Ltd. 55 Victoria Street • London - S.W:1 (Tel: 01-222 5341/2)

(Counter Service, 9.30-5.15, Mon. to Fri.) (Nearest Station: St. James Park) (Giro A/c No. 5476151)

FM TUNER
 NELSON-JONES

Approved parts for this outstanding design (W.W. A prill971).
Featuring $0.75 \quad \mu \mathrm{~V}$ sensItivity. Mosfet front end. Ceramic I.F. strip. Triple gang tuning. $\frac{1}{2} V$ r.m.s. output level, suitable for phase locked decoder, as below. Designer's own P.C.B.
All parts including P.C.B. S.A.E. please lists.
PHASE LOCKED STEREO DECODER PORTUS AND HAYWOOD
Approved kit for th is superb decoder (W.W. Sept. I970).
Featuring $40 d B$ separation up to 10 kHz . NO COILS. Negligible spurious tones (birdies). Simple setting up. Suitable for wide variety of tuners including the NELSON-JONES TUNER
Complete kit $£ 8.97$, p.p. \& ins. 15 p
Stabilised PSU kit £3.5.5 p.p. 18 p .
LIGHT EMITTING DIODES (Red)
Solid state visible light source, typical life of many years continuous operation. May be used as indicator, light modulator, etc. Maximum current 20 mA .
Only 50p each inc. connection data
INTEGREX LIMITED
P.O. BOX 45 DERBY DE1 1TW

G.E.C. UNISELECTORS FROM STOCK, SOV.'1'LEVEL' ' BRI
IO NON-BRIDGING, 3, 4 AND SLEVEL ALSO AVAILABLE. MERCURY WETTED CONTACT RELAY Elliatt type HG2M 145 ohms. 2N/O 2N/C GEAR GEARED MOTORS. I r.p.m. or 3 r.p.m. 4 watts very powerful, reversible 24 v

MINIATURE DIGITAL INDICATOR, size of digit 1 in ., 28 v . lamps. 0 through 9 with right and lefe hand decimal points, quick disconnect at rear
for easy lamp replacemene, when one of the twelve lamps at the rear of the unit is lighted, the lamp projects the corresponding digit on the candensing lens
through a proiection lens on to the viewing screen at the front of the uniz.
Brand new $\mathbf{\Sigma 2} 50$ each.

BRIDGE MEGGERS, SERIES 1,1000 v., range O/l00M Ohms-Infinity,
complete with Resistance Box $0 / 9999$ Ohms. Brand New in sealed case. The complete with Resiscance Box $0 / 9999$ Ohms. Brand New in ${ }^{5}$.
Maker's price for this instrument is $\$ 189.50$. Our Price $£ 65.00$.

MINIATURE BUZZERS, 12 volts, with tone adjuster $40 p$ each as illustrated, LEDEX ROTARY SOLENOIDS AND CIRCUIT SELECTORS, size $5 S$.
4 pole 11 way and off $£ 5.50 .24$ pol 11 way and off $£ 10.50 .54$ pole OniOff 87.50 . THERMOMETERS, FLUSH MOUNTING TYPE, 3 in . dia., with 3 ft .
of capillary rubing. Range $70.160^{\circ} \mathrm{F}$. $\lfloor 2.25 \mathrm{ea}$. VACUUM PUMPS ROTARY VANE TYPE IN STOCK
 Send for potentiometer list. Wire Wound and Carbon types
available from stock, and our new six page Instrument list.
HIGH SPEED COUNTERS
34 $\operatorname{in}, ~$
x 1 in. 10 counts per second, voltages are available, $6 \mathrm{v.}$,12 v .,
24 v ., 50 v ., or 100 v . Also supplied with auxiliary contacts.

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, - LOW COST QUCK DELIVERY OVER 200 RANGES IN STOCK OTMER

CLEAR PLASTIC METERS BAKELITE PANEL METERS				
	TYPE SW. 100 $100 \times 80 \mathrm{~mm}$.	TYPE S-80		
		80 mm .		
		square fronts		
	20V. D.C. £2.973	в0¢A £3.12		
$50 \mu \mathrm{~A} \ldots .$.	80V. D.C. 28.971	$50-0.50 \mu \mathrm{~A}$. 22.971	E0V. D.C.	22.47\%
$50.0 .50 \mu \mathrm{~A}$ 23.37\%	300 V . D.C. 22.974	$100 \mu \mathrm{~A}$.... 22.971	300 V . D.C.	28.471
	1 amp. D.C. 22.971	$10000.100 \mu \mathrm{~A}$ 全2.87t	1 mmp . D.c.	22.47\%
	$5 \mathrm{amp} . \text { D.C. } 82 \cdot 971$	$500 \mu \mathrm{~A}$.... 82.621	5 mmp . D.C.	22 471
$500 \mu \mathrm{~A}$.. $\mathrm{E}^{3} \cdot 121$	300 V . A.C. 28.971	$1 \mathrm{~mA} \ldots . .$. £2.47\%	300 V . A.C.	22.82t
1 mA 82.974	VU Meter $\mathbf{2 3 . 7 5}$	20V. D.C. .. 82.47t	vU Meter	23.371

'SEW' CLEA

 $50 \mu \mathrm{~A}$ $50.0-50 \mu \mathrm{~A} .$. $200 \mu \mathrm{~A}$ 100.0 1000 $200 \mu \mathrm{~A}$ $500 \mu \mathrm{~A}$

 Type MR.5:P. 2Ifl. aquare fronts.
 | ${ }^{50} \mathrm{ma}$ | £3.10 | 10v. D.c. | £2.00 |
| :---: | :---: | :---: | :---: |
| 50.0-50 $\mu \mathrm{A}$ | £2.60 | 20V. D.C. | 12.00 |
| $100 \mu \mathrm{~A}$ | \&2. 60 | 50v. D.C. | 22.00 |
| 100-0-100 $\mu \mathrm{A}$ | 22.37\% | 300V. D.C. | 22.00 |
| $500 \mu \mathrm{~A}$ | 22.25 | '15V. A.C. | 82.00 |
| lmA | 22.00 | 300 V . A.C. | 82.00 |
| 5 mA | £2.00 | 8 Meter 1ma | \&2.10 |
| 10 mA | £2.00 | VU Meter | 23.10 |
| 50 mA | 22.00 | 1 amp . A.C. | 22.00 |
| 100 mA | 22.00 | 5 mmp . A.C.* | 22.00 |
| 500 mA | 2200 | 10 amp. A.C.* | 22.00 |
| 1 amp. | 22.00 | 20 amp. A.C.* | 22.00 |
| 5 amp . | 28.00 | 30 amp. A.C.* | 22.00 |
| Type Mr.65P, $31 \mathrm{in} . \times 3 \mathrm{Lin}$, fronts | | | |
| $50 \mu \mathrm{~A}$ | 83-371 | 10V. D.C. . . | 22.10 |
| $50-0-50 \mu \mathrm{~A}$ | 22.75 | 20V. D.C. | 22 |
| $100 \mu \mathrm{~A}$ | 28.75 | 50v. D.C. . ${ }^{\text {d }}$ | 28 |
| $100 \cdot 0 \cdot 100 \mu \mathrm{~A}$ | 22.60 | 150V. D.C. . . | ¢2. |
| $200 \mu \mathrm{~A}$ | | 100 V . D.C | £2. |
| $500-0-500 \mu \mathrm{~A}$ | 12.10 | 50V. A.C. \because | 22.10 |
| | 28.10 | 150 V A.C. | $22 \cdot 10$ |
| 5 mA | £2.10 | 300 V . A.C. | \&2. 10 |
| 10 mA | 22.10 | 500 V . A.C. | 22.10 |
| 50 mA | £2. 10 | 8 Meter 1 mA | 22.37\% |
| 100 mA | 22.10 | VU Meter | 23.37t |
| 500 mA | 22.10 | $50 \mathrm{~mA} \mathrm{A.C}$. | £2. 10 |
| 1 mmp . | 22.10 | $100 \mathrm{~mA} \mathrm{A.C}$. * | \&2. 10 |
| 6 mmp . | | ${ }_{500 \mathrm{mmA}}^{200 \mathrm{ma}}$ A.O. | |
| 10 amp . | | 1 mmp . A.C. | |
| ${ }_{20} 20 \mathrm{amp}$. | 22. 10 | 5 amp. A.C. | \&2. |
| 30 mmp . | 22.10 | 10 mmp . A.C.* | 22 |
| 80 mmp . | E2 | 20 amp . A.C.* | |
 * MOVING IRONALL OTHERS MOVING COIL Please add postage

SEW EDUCATIONAL
 METERS Type ED 107 Size overall 100 mm $\times 90 \mathrm{~mm} \times 108 \mathrm{~mm}$ A new range of high quality moving col school experiment and ther bench applica The meter movement is A vailable in the following ranges:-
 ${ }_{8}^{1 \mathrm{ma} A} \ldots$ 1-0.1 m A $1 \mathrm{Ad.o}$. 300 V d.c $500 \mathrm{~mA} / 5 \mathrm{~A}$ d. BV/00V d.o. .

"SEW' BAKELITE PANEL METERS

EDGWISE METERS

Type P.E.70. 3 17/32in. $\times 118 / 32 \mathrm{in} . \times 21 \mathrm{in}$. deep.
 $50-0-50 \mu \mathrm{~A}$
$100 \mu \mathrm{~A}$ $100 \mu \mathrm{~A}$
$100-0-100 \mu$
$200 \mu \mathrm{~A}$ $200 \mu \mathrm{~A}$

Send for illustrated brochure and further detalls on all Sew Panel Meters-Dlscounts for quantitles

MULTIMETERS for GVERY purpose?

MODEL TE-200 20,000 load protection. 0/B/25/125/1,000 ∇. D.C $0 / 10 / 50 / 250 / 1,000$ V. A.C.
$0 / 50 \mu \mathrm{~A} / 250 \mathrm{MA} .0 / 60 \mathrm{~K} / 6$

MODEL TE-70. $30,0000$. P.V M/318/60/300/600/1,200 v.
D.C. $0 / 6 / 30 / 120 / 600 / 1,200$ A.C. $0 / 30 \mu \mathrm{~A} / 3 / 30 / 300 \mathrm{~mA}$. $0 / 16 \mathrm{~K} / 160 \mathrm{~K} / 1.6 \mathrm{M} / 16 \mathrm{M}$
$\mathrm{E} 5.50 \mathrm{P} . \& \mathrm{P} .15 \mathrm{p}$

MODEL TE-12. 20,000 0.P.V /0.6/8/30/120/600/1,200 $3,000 / 6,000$ v. D.O. 0/6/30/120 $600 / 1,200 \quad$ V. A.C. $0 / 60 \mu \mathrm{~A} / 6 /$
$60 / 600 \mathrm{~mA} .0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{Me}$ $60 / 600 \mathrm{~mA} .0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{Meg} . /$
$60 \mathrm{Meg.Q} .50 \mathrm{PF}, .2 \mathrm{MFD}$. \&5.97, P. \& P. 17 p p .

YODEL PLA3G, 20 kg
Volt D.C. $8 \mathrm{k} \cap / \mathrm{Valt}_{\mathrm{A}} \mathrm{C}$
 $120 / 600 \mathrm{~V}$ D.C. $3 / 30 / 120 /$
600 V A.C. $80 / 600 \mu \mathrm{~A} / 60 /$

MOD
With
mirro
With overload 30,000 O.Protection.
mirror scale. 100/250//00/1,000 \quad. $8 / 10 / 25 /$
$0 / 2.8 / 10 / 28 / 100 / 250 / 500 / 1.000$
 $60 \mathrm{meg} \Omega$. $\mathbf{2 8 \cdot 8 7 \%}$, Poet pald.

TMK MODEL TW-20CB FEATURES REBETTABLE
OVFRLOAD BUTTON. Gensltlvity: 20K Q/Volt D.C. 5 K G/Volt A.C. Volte: $0-0.5,2.5,10,50,250$, 250, 1,000V. D.C. Currents: 0 00.05, $0.5,5,50,500 \mathrm{~mA} .-10 \mathrm{amp}$.
Resistance: $0-5 \mathrm{~K} .50 \mathrm{~K}, 0-\mathrm{so0K}$. 5 MEG. Declbels: -20 to +52 db
$\mathbf{2 1 1} \cdot 50$. P \& $\mathrm{P}, 171 \mathrm{p}$.

TMK LAB TESTER
100,000 O.P.V. 6y in. scale 100,000 O.P.V. 61 in. Scale.
Buzzer 8hort Circait Check.
Gezetty
 1,000v. A.O. Volts: 3,10,
$50,20,500,1,00 \mathrm{~V}$. D. O
Current: $10,100 \mathrm{~A}$,

Can be panel or bench mounted. Basic meter measures 1 toit D. and DC volt, current and ohma with optional plug in cards.

Specification

Accuracy: $\pm 0.2, \quad \pm 1 \mathrm{digit}$.
Resolution: 1 ln I :
Number of digite: 3 plus fourth overrange digit.
Overrange: 100% (up to 1.998)
Input inpedance: 1000 Meg ohm
Mearuring cycle: 1 per second.
Adjuetment: Automatle zeroing
Adjustment: Automatle zeroing, full scale reference voltage.
Overload: to 100v. D.C.
Input: Fully floating (3 polea).
Input: Fully floating (3 polen).
Input power: $110-230 \mathrm{v}$. A.C. $50 / 60$ cycles, input power: $11 \mathrm{l}-200 \mathrm{v}$. A. 116 . $1 \mathrm{in} .683 / 16 \mathrm{~m}$. AVAILABLE BRAND NEW AND FULLY
GUARANTEED AT APPROX. HALF PRIOE
£49-97 $\frac{1}{2}$ Carr. 50 p

HONOR TE.10A. 20 \& $\mathrm{B} / \mathrm{Volt}$ \$/25/50/250/500/2.50 $0 / 50 \mu \mathrm{~A} / 2.5 \mathrm{~mA} / 250 \mathrm{~mA} \mathrm{D.C}$.
$0 / 6 \mathrm{~K} / \mathrm{m}$ meg. ohm. -20 to +22 dB. $10-0,100 \mathrm{mld} .0 .100-0.1 \mathrm{mfd}$.

$110 \mathrm{HA} / 6 / 60 / 3 \mathrm{M} / \mathrm{MAA} 12 \mathrm{Amp}$.

$$
\begin{aligned}
& 0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{M} / 200 \mathrm{M} .-20 \text { to }+ \\
& 17 \mathrm{~dB} . ~ \\
& \hline 12.50 \text {. P. \& P. } 17 \mathrm{p} \text {, }
\end{aligned}
$$

HIGH SENSITIVITY A.C. VOLTMETER

10 meg. input 10 ranges:
$.01 / .03 / 1 / .3 / 1 / 3 / 10 / 30 / 100 / 300$ V. R.M.S. 4 cpa. $1.2 \mathrm{Mc/R}$.
Dectiens. -40 to +50 dB. Bupplised brand new complete
with leads and instructions Oneration 230
$£ 17.50 \mathrm{Carr}$ 25p.

TE-65 VALVE VOLTMETER

 High quality inwith 28 ranges.
D.C. volts
i. $5-1,500$
i.
 A.C. volts
Reasistance
tuegohms.
tiregohms, A.C. operation
$220 / 240 \mathrm{v}$. Completio with probe and instructions
\& \mathbf{P}. 30p.
E17.50.
 able; R .
E .5 5 0 .
270° WIDE ANGLE
ImA METERS
MW1-6
MWI-8
80mm.
8quare
gquare
$84.97 t$

G. W, SMITH

\& Co. (Radio) Ltd.
ALSOSEE NEXT TWO PAGES

S=N/-CDNDUCRCRE/V/AMV=S

ALL DEVICES ERAND NEW AND FULLY GUARANTEED

TRANSISTOR DISCOUNTS:-
$12+10 \% ; 25+15 \% ; 100+20 \%$ ANY ONE TYPE POSTAGE ON ALL SEMI-CONDUCTORS 7p EXTRA.
S.A.E, FOR FULL LISTS

INTEGRATED CIRCUITS

SILICON RECTIFIERS MINIATUR
WIRE ENDED PLASTIC

	1 mmp	1.5 amp	3 amp
4 401 s0PIV	8 D	10 p	19 D
4002 100PIV	98	11p	20p
4003 200PIV	10 D	12D	22D
4004 400PIV	10p	12 D	25
4005600 PIV	129	18p	26D
4006800 PIV	15D	17D	27D
4007 1000PTV	20p	20 p	30

DIODES		AND	RECTIFIERS		
1N34A	10p	BA154			37p
1N914	7p	BAX13	12p	OA5	-17p
1N916	7 D	BA $\times 16$	7	OA6	12p
AA119	70	BAY31	7 p	OA10	22 p
AA129	10 p	BAY38	17 D	OA9	100
AAZI3	10 p	BY100	150	OA47	70
AA\%15	12p	BY103	22p	OA70	70
AAZ17	12p	BY122	37.	OA73	10p
Bal00	15 p	BY124	15p	OA79	9p
BA102	22 p	BY126	15p	OA81	70
BA110	32p	BY127	17p	OA85	7 p
Balll	27p	BY164	57p	OA90	7 p
BA112	70 p	BY210	35p	OA91	P
BAll5	70	BYZ11	32p	OA95	7 p
BAI 41	32p	BYZ12	${ }^{30}{ }^{\text {p }}$	O. 4200	7p
BAI 42	32p	BYZ13	25p	OA202	10p
BA144	12p	BYZ18	40p	OA210	17p
BA145	20p	FST3/4	22p		

THYRISTORS					
PIV	50	100	200	300	400
1 A	25 p	27 p	37 D	40 p	47 p
4 A	-	47 p	55 D	57 p	77 p
5 A	-	55 p	65 D	-	75 p
7 A	-	56 p	65 D	-	97 p

REDPOINT HEATSINKS

$\begin{array}{cccc}\text { W-type } & 1.25^{*} \times 5.1^{*} & \text { W.sype } & 1.25^{*} \times 5.1 \\ 2 W_{2} & 22 \mathrm{p} & 4 \mathrm{~W}^{*} & 37 \mathrm{p}\end{array}$ | 2 W | 2° | 22 p | 4 W |
| :--- | :--- | :--- | :--- |
| 3 W | $\mathbf{3}^{\circ}$ | 30 p | 6 W |

ZENER DIODES

2N30.55	75p	AF239	37p
$25+$	62 p	$25+$	32p
$100+$	50p	$100+$	28p
		$500+$	25 p
		$1000+$	20 p
BC113	15p	BC148	110
$25+$	13p	$25^{4}+$	9p
$100+$	12p	$100+$	8 p
$500+$	10p	$800+$	7 D
1000t	8p	$1000+$	${ }^{6 p}$
BYZZ3	25p	HCl68C	15p
$25+$	20p	$25+$	12 D
$100+$	17p	$100+$	10p
$500+$	15p	$500+$	8 p
$1000+$	18p	$1000+$	${ }^{6 p}$
BC107/8/9	109	BC169C	15p
$25+$	日	$25+$	12p
$100+$	8 p	$100+$	10 p
$500+$	7 D	$300+$	8p
$1000+$	69	$1000+$	${ }^{6 p}$
0071	12p	AD161/AD162	35 p
$25+$	10p	$25+$	30 D
$100+$	9 p	$100+$	250
$500+$	$8 p$	$500+$	22 p
$1000+$	7 p	$1000+$	200
0072	12p	BF194	17 p
$25+$	10p	$25+$	$15 p$
$100+$	97	$100+$	13p
500+	8 p	$500+$	12 p
$1000+$	7 p	$1000+$	10p

SEND S.A.E. FOR DISCOUNT PRICE LISTS AND PACKAGE OFFERS!

RECORD DECKS

B.S.R.

Mini Mono C129*
MP60
610 610
610
310

MP60 Pb T.P.D. 1 ${ }_{510}$ T.P.D. 1 210 Pack H.T. 70 \&17 THORENS ${ }^{\text {ER 4 }}$ | TD125 | |
| :--- | :--- |
| TD125AB | 859.65 |
| 94.95 | | $\begin{array}{lr}\text { TX 25 } & 88 \cdot 70 \\ \text { TD 150A II } & 84.60 \\ \text { TD150AB II } & 841.35\end{array}$

- Mono - Be ere

All other models bess Cartridge

RECORD DECK

 PACKAGES Decks supplied read wired in teak veneered with cartridge Gerard 2025 T/C witBonotone 9TABCD

Garrand SP25 III with Golding G8no $£ 18.9 \mathrm{~B}$ metal plinth.)
$\begin{array}{lll}\text { Garrard AP76 with Golding O800.... } & \text { \&30.95 }\end{array}$ B8R MP60 with Audio Technics AT. Golding GL75 with Golding $\mathbf{G 8 0 0}$.

Carriage sop extra any model

SINCLAIR EQUIPMENT
Project 60 . Package Offer

$2 \times$ Z30 amplifier, stereo 60 preamp, PZ5 power supply. $£ 18.75$. Carr. 37 ip. Or with PZ flersteren 60 preamp, pz8 power supply. 220.25 Carr. 37 p . Transformer 1 PR, $\& 2.974$ extra Ad t to any of the above \&4-87t for active fitter 60 FM TUNER £20.97\%. Carr. 37 kp . All other sinclair products in stock. ICl2 $28.50 .2,000$ amplifier $£ 24.50$. Carr. 37 tp . 3,000 Amptine 831.50. Ca
Carr. 37 p .

HOSIDEN DH04S
2-WAY STEREO HEADPHONES
 Each headplanne contains 2 kln . Wonder and a fin. tweeter. Pullet to individual level controls. 28-18,000 e.p.0 8 mpl . with cable and 12 ip.

New sch edition sivio full details of comprehensive range of HI-FI EQUIPMENT COMPONENTS, TEST EQUIPMENT and COMMUNICATIONS EQUIPMENT. FREE DISCOUNT COUPONS VALUE 50p 272 pages, fully illustrated and detailing

SEND NOW! STILLONLY 37 $\frac{1}{2}$ p
$P \& P$ lOp

62 pp .
Also
Chang

TELETON SA Q-206 STEREO AMPLIFIER

Latest exciting release. Brand now model, beauty.
fully styled with walnut case. $6+6$ watts rams. Whited inputs, for mag, xtal, aux, tape. Incor: prates volume, bases, treble sid sliding balance Rec. List $£ 32 \cdot 30$. Our Price $818 \cdot 50$. Carr. 37 . uggested system. 8 AQ 206 amplifier. $8 P 25$ III plinth and cover, 9800 cartridge. pair DJ 3 was

CE10T AMP STEREO TUNER AMPLIFIER SYSTEMS Output 4 watt per channel. Excellent reception AFC, builtin MPX. Cer/XTAL Input. Total List $250 \cdot 25$. OUR PRICE $£ 29-95$. Carr.
Changer, Plinth. cover and stereo cartridge. Ready wired. \&48.50. Carr. \&1

1 TUNER 6 TRAGABISTOR TUNER SIZE ONLY $6 \ln . x+\operatorname{tin} x$ $24 \ln .3$ I.F. stage.
Double tuned dis. criminator, ample
output to feed most amphflera. Operates on 9 volt battery. Coverage $88-108$ Meta. Ready £8.37t. P. \& P. 12 ip.
STEREO MULTIPLEX ADAPTORA, \&4:97
MARCONI CT TFPS6 AF
MARCONI CT4 TF9S6 AF
ABSORPTION WATTMETER
$1 \mu / \mathrm{watt}$ to 6 watts
ECO DA- 20 SOLID STATE

DEELCO DA-20 SOLID STATE

New ingh-quality port1 His to 100 KHz . Square 20 Hz to $20 \mathrm{KHz}^{2}$. Out-
 $215 \mathrm{~mm} \times 150 \mathrm{~mm} \times$

Price 227.50
Carr. 23 .

MARCONI TF.I42E DISTORTION Excellent condition. Fully tested $\varepsilon 90$
TE-20RF SIGNAL GENERATOR

Accurate wide range
signal generator cover.
 calibrated. Directly
R.F. Attenuator. Op o R.F. attenuator. Op-
craton 200/240 vo A.C.
Brand new with log Brand new with tastruc-
tons, $£ 15$.

C.WSTHF: \& 0

YAMABISHI" VARIABLE VOLTAGE TRANSFORMERS Excellent quality - Low price - Immediate delivery

UR-IA SOLID STATE
COMMUNICATION RECEIVER 4 Bands covering $600 \mathrm{ke} / \mathrm{s}-30 \mathrm{mc} / \mathrm{s}$. PET, 8 Meter.
Variable BFO for $88 B$, Built in 8 Beaker. Band spread, Sensitivity Control. $220 / 240 \mathrm{vV}$ AC or 12 v
DC. $12 q^{\circ} \times 4 \xi^{\circ} \times 7^{\circ}$. Brand new with instructions. е25. Carr. 37

UNA 30 RECEIVER
4 Bands covering $5.50 \mathrm{kc} / \mathrm{s} \cdot 30 \mathrm{mc} / \mathrm{s}$. B.F.O. Built in Speaker 220/240v AC. Brand new with inutruc WS62 TRANSCEIVERS
Large quantity available for EXPORT Excellent condition. Enquiries invited LAFAYETTE HA-600 RECEIVER

variable B.F.O., noise limiter, 8 Meter, Band
 Carriage sop.

CRYSTAL
CALIBRATORS NO. 10 Small portable crystal
controlled
wavemeter
 Frequency range 500 $\mathrm{Kc} / \mathrm{M}-10 \mathrm{Mc} / \mathrm{M}$ (up to
$30 \mathrm{Mc} / \mathrm{s}$ on harmonise).
Caller ed Calibrated fill. Power
requirements 300 V.D.C 15mA mad 12 V.D.C.
0.3 A . Excellent condoSOLID STATE VARIABLE AGC.
VOLTAGE REGULATORS
 Compact and panel mounting drays, electrical appllancease continuously variable from

 RANSF Postage 12 k 30v. Step up or step down. Fully ebro

VOLTAGE STABILISER TRANS FORMERS. $180-260 \mathrm{v}$. Input. Output 230 v
Available 150 w or $225 \mathrm{w}, \mathrm{E} 12.50$. Carr, 25 p . 230 VOLT AC. 50 CYCLES RELAYS $\begin{gathered}\text { Brad new. } 3 \text { gets } \\ \text { of cha me over }\end{gathered}$

POWER RHEOSTATS

High quality reramile construction. Winding a embedded in vitreous enamel.
 25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1000 / 1500 / 2500$ or 5000 ohms. 721 D. P. d. P. 7 ip

27 TOTTENHAM CT. RD. LONDON, W. 1

 3 LISLE STREET, LONDON, W.C. 2 34 LISLE STREET, LONDON, W.C. 2 Tel: 01-4379155 311 EDGWARE ROAD, LONDON, W. 2 Tel: 01-2620387open abb monday to sate

Made especially for Lasky'e by famou - Maker

- 12 hour alarm
- Auto "SLEEP"
- Hours, minutes and seconds read-of - Forward and backward time adjustmant - Sllemt operation synchronous mosor - Shock and vibration proof
This unique DIGITAL CLOCK is now available EXCLUSIVELY FROM LASKY'S In chassis form for you to mount in any housing that you choose. All settings AUTO and AUTO ALARM, "sleep" switch. 10 minute division "click" set alarm (up to 12 hour delay). time adjustmem. Ultra simple mechanism and high quality manufacture guarantee reliable operation and
The life. time up to 60 min . and in conjunction with the AUTO setting will swhich on the appliance again next morning.
The clock measures $4 \frac{1}{4} \mathrm{~W} \times 1 \frac{1}{4} \mathrm{H} \times 3 \mathrm{l} \mathrm{D}$ (overall from front of drum to back of switch). SPEC: $210 / 240 \mathrm{VAC}$. 50 Hz operation; switch rating $250 \mathrm{~V}, 3 \mathrm{~A}$. Complete with instructions. HUNDREDS OF APPLICATIONS. COMPLETE WITH SET OF CONTROL KNOBS
SPECIAL QUOTATIONS
LASKY'S PRICE £6.95
pap 18 .
FOR QUANTITIES

BSR McDONALD MP60

High precision, low-mass, counterbalanced pick-up arm,
heavy balanced turntable, viscous cueing device, slide in carridge. 4 pole motor.
LASKYS PRICE $£ 12.50$ POST
With plinth and cover $£ 15.75$ POST 40p.
BSR McDonald units and packages
A. Chassis only. B. Complete with Lasky's plinth and cover. C. Complete with
Lasky's plinth, cover and AO76K car. D. comp. wired on BSR plinth with cover.
Lasky's plinth, cover and A076K cart. D. comp. wired on BSR plinth with cover.
E. As D plus AD76K cartildge.

Model	A	\mathbf{B}	\mathbf{C}	\mathbf{D}	£
610	$£ 15.45$	$£ 18.75$	$£ 22.50$	$£ 24.50$	$£ 28.50$
510	$£ 13.45$	$£ 16.95$	$£ 20.75$	$£ 22.00$	$£ 26.00$
310	$£ 9.95$	$£ 13.45$	$£ 17.25$	$£ 21.00$	$£ 23.50$
MP60	$£ 12.50$	$£ 15.75$	$£ 19.50$	$£ 21.50$	$£ 25.50$

GARRARD DECKS

 Garrard SP 25 Mk .111 KS $£ 11.80 \left\lvert\, \begin{array}{ll}\text { Garrard SP } 25 \mathrm{Mk} \text {.III with 9TA } & \begin{array}{l}\text { Garrard } \\ \text { cartridge }\end{array} 3000 \text { with } \\ \text { 9TA }\end{array}\right.$ Garrard SP 25 Mk.III cartridge95 $\begin{aligned} & \text { cartridge } 2025 \mathrm{TC} \text { with 9TA } \\ & \text { Garrard } \\ & 2025\end{aligned}$
GARRARD PACKAGES POST FOR ALL PACKAGES 50p.
Garrard AP 76 with AD76K cart. and Lasky's plinth and cover
Garrard AP 76 with Shure M44E cart. and Lasky's plinth and cover
Garrard SP 25 Mk. III. AO76K cart. and Lasky s plinth and cover

GARRARD SL55B

Four speed autochanger that accepts up to 8 LP 's. Has all the refinements that Garrard SL turntables are famous for. With lifting device that allows 'spot-on' track selection on all discs and perfect cueing facillties for singles. Wired for mono and stereo. Size 14 in (W) $\times 1$ ilin (D) 4 in above and 3in below unit plate.
LASKY'S PRICE f10.50

Garrard SP 25 Mk.III. Micro M2 100/e cart. and Lasky's plinth and cover

DENSHI BOARD KITS

The Denshi Board system enables the young experimenter and electronics hobbyist to produce wide range of transistor circuits of at all. Each kit utilizes plug-in encapsulated components.

DENSHI KIT SR-1A

Kit comprises: Base board: tuner block, 4 resistors: choke coil: transformer: 28A transistor for RF. 2 diodes; 3 capacitors; battery block; morse key; antenna lead; crystal earphones: varlous bridge and connecting pleces. This kit permits the bullding of 16 basic circuits.

DENSHI KIT SR-3A

dit comprises of: 2 base boards. 50 component and accessory parts inc. 3 transistors and 2 diodes, vol. control. $2 \frac{1}{2}$ in speaker in extenstal mic. baffle housing. cadmlum sulphide photo cell. leads etc. Build at least 100 probects. morse kay, extension mp. whith ba
DENSHI DR-7 (illustrated)
With this kit you can build various types of IF amplifiers and both sudio and power amplifiers which can be used with external auxiliary equipment. Comprises 3 in loud speaker, percapacitors, resistors, tuning capacitor, battery connectors, exiernal prolect terminal blocks, shoulder carrying strap. battery. etc. PLUS 36 page manual of theory and schematics. High impact resistant case. Will house any of the radio receiver circuits thus making an excellent portable radio

SR-1A £3.35 SR-3A £11.00 DR-7 £9.75

207 EDGWARE ROAD, LONDON, W.2.
33 TOTTENHAM CT.RD, LONDON, WIP 9RB.
109 FLEET STREET, LONDON, E.C.4.
152/3 FLEET STREET, LONDON, E.C.4.
HIGH FIDELITY AUDIO CENTRE
42-45 TOTTENHAM CT. RD, LONDON, WIP gRD.
MAIL ORDERS AND CORRESPONDENCE TO 3-15 CAVELL STREET. LONDON. E1 2BN

FOR HIRE -allelibibated and ready to plug in

Accelerometers
Acoustics Equipment
Attenuators
AVOmeters
Bridges
Cable Test Equipment Cameras for Oscilloscopes Communications Test Equipment Computing Calculators
Counters (DC-Microwave)
Crystal Detectors
Data Loggers
Deviation Meters Differential Voltmeters Digital Voltmeters Directional Couplers Directional Detectors Distortion Meters

Electrometers
Electronic Multimeters
Electrostatic Voltmeters
Frequency Counters
Function Generators
Galvanometers (UV)
Gaussmeters
Insulation Testers
Level Recorders (AF)
Line Printers
Link Analysers
Loudness Analysers
Microwave Link Analysers
Modulation Meters
Monitoring Equipment
(Power Supplies)
Multimeters
Noise Generators
Noise Meters
Oscilloscopes
Oscilloscope Calibrators
From the index of the Livingston Hire catalogue all this equipment (from the world's leading manufacturers) is available for hire at short notice, all callbrated and ready to plug in.

SEND FOR YOUR COPY OF THE LIVINGSTON HIRE CATALOGUE

Tel: 01-267 3262

simhtama

BEST BUY IN TTL!!

SIE日RENS QUALITY PLUS BARGAIN PRICES PLUS LST SERVICE - A full design range of high quallity TTL avallable from LST your Officlally Anpointed Siemens Distributors Part No. Description Equal 1-24 25-99 100 up

FLHIOI Quadruple 2-inp
\qquad 121 Dual 4 -input NAND
$\begin{array}{ll}131 & \text { 8-inpur NAND gate } \\ \mid 41 & \text { Dual } 4 \text {-input NAND }\end{array}$ 151 Exufandable dual 2-Wide 2 -input
AND-OR-INVERT 161 Duate $\begin{aligned} & \text { Duide } \\ & \text { AND-OR-INVERT }\end{aligned}$ Expate $\begin{aligned} & \text { gate } \\ & \text { Ende } \\ & 4\end{aligned}$-wide INVERT AND-ORINVERT gate 181 4 -wide 2-input $\begin{gathered}\text { AND-OR-INVERT }\end{gathered}$
191 Quare $\begin{gathered}\text { gardele } 2 \text {-input }\end{gathered}$
NOR gate
QuAND 2 -input
gate with with open
cell ector output 21 Mex inverter
221
Gated full
adder 231 2-bit binary fulloo 241 Four-bis binary

7400 20p 16p 14p 7410 20p 16p 14p $\begin{array}{llll}7420 & 20 \mathrm{p} & 16 \mathrm{p} & 14 \mathrm{p} \\ 7430 & 20 \mathrm{p} & 16 \mathrm{p} & 14 \mathrm{p}\end{array}$ 7440 24p 20p 17p 7450 20p 16p 14p 7451 20p 16p 14p 7453 20p 16p 14p 7454 20p 16p 14p 7402 20p 16p 14p $\begin{array}{llll}7401 & 20 p & 16 p & 14 p \\ 7404 & 25 p & 21 p & 18 p\end{array}$ $\begin{array}{llll}7480 & 67 p & 35 p & \begin{array}{ll}48 p \\ 748 \\ 748 & 87 p\end{array} \\ 73 p & 62 p\end{array}$ $\begin{array}{llll}7483 & \mathbf{4} \cdot 32 & 61.16 \quad 81.00\end{array}$

$$
271 \text { Hex inverter with }
$$

281 BCD 20 decimal
291 Quadrue $\begin{aligned} & \text { oute 2-input }\end{aligned}$
29 Quadruple 2 -input
34 Quadruple 2-Input put 7403 20p 16p 14p
341 $\begin{gathered}\text { Quadruple } 2 \text {-Input } \\ \text { exclusive-OR }\end{gathered}$
exclusive
351 Selement
361 Excess 3 Trigger
361 Excess 3 to decima
371 Excess 3 oray to
381 Quad 2-innut positive
AND gate Totem
391 Quad 2-inpur
AND gate open
collector
FLYIOI Duallector $\begin{gathered}\text { cinput }\end{gathered}$
FLJ 101 J-K flip fiop
$111 \mathrm{~J}-\mathrm{K}$ master-slave 121 Dual J-K K^{p} master131 suave flip-flop Dual J-K master-
slave flip-flop with

Equal $1-24 \cdot 25-99$ 100 up 18p 744 \&1.16 94p $81 p$ $7486 \quad 33 \mathrm{p} \quad 27 \mathrm{p} \quad 23 \mathrm{p}$ $7443<1.45<1.20<1.08$ $7444 \leqslant 1.45<1.20<1.08$
$7408 \quad 25 p \quad 21 p \quad 18 p$ 7409 25p 21p 18 p $\begin{array}{llll}7460 & \text { 20p } & \text { 16p } & 14 p \\ 7470 & 45 p & 37 p & 32 p\end{array}$ 7472 32p 27p 23p 7473 45p 40p 35p

Part No.
51 drig-eype edgo
51 Quad bistable lateh $\begin{array}{llllll} & 7474 & 46 p & 38 p & 33 p \\ 61 & \text { Decadestable counter } & 7495 & 45 p & 40 p & 37 p\end{array}$ $\begin{array}{llllll}71 & \text { Divide-by-12 counter } & 7492 & 80 p & 67 p & 57 p \\ 81 & \text { 85p } & \text { 61p } \\ 141 & \text { bit binary counter } & 7493 & 80 \mathrm{p} & 67 \mathrm{p} & 57 \mathrm{p}\end{array}$
191 4-bit shift register
4 -bit decade
counter with one
line mode control
$74190 \quad$ \&1.80 $\quad<1.48 \quad \$ 1.27$ 211 Synchronous up down with one line
 241 Synchronous up down $7494 \mathrm{Cl} 13 \mathrm{94p} 81 \mathrm{p}$

-bit decade

251 (As abover
$261 \begin{array}{llll}\text { counter } \\ \text { sit shift register } \\ 74193 & <1.74 & \& 1.45 & <1.25\end{array}$
271 Dual J-K master-slave 7496 © 1.48 \&1.22 1.05
lip-flop with pre
and clear
301 Dual quadruple
FLK101 Monostable multi-
FLL IOI BCD to decimal $\begin{array}{llllll} & 74121 & \text { 48p } & 40 p & 34 p\end{array}$ decoder and nixic
driver

CONTRACT DRDER PRICES AND BULK DEANTITY PRICES DUOTED DN REQUEST

AC107

 ${ }_{c}^{\mathrm{A}} 107$

ALL STOCKS ADVERTISED
LAST MONTH STILL AVAILABL
\mathbf{F} NO GIMMICKS!!
\mathbf{R} Our catalogue is Free
E postage appreciated (5p)
NEW PRODUCT ! !

Mfd
1
.2
.4
1.
2.2
4.7
6.8
10
15
 Sancalu ex
7.5 mm
size
7.5 mm
All on
1 sype

BOOKS
G.E. Transistor Manual
R.C. Transistor Manu R.C.A. Transistor Manual
Designers Guide to Britis R.C.A. Hobby Circuits Manual New edition now available. Man
new circuits. Substisution new cificed.
supplied,
Ito Sericond uctor Projects
Zener Diode Handbook
Photo \& Solarcell Hand bo
Photo \& Solarcell Hand book

BZY 88 SERIES ZENERS 400 mW

$\begin{array}{cc}25+12 p & 100+10 p \\ 500+9 p & 1000+8 p\end{array}$
SPECIAL OFFER IN4000
SERIES IAMPRECTIFIERS
p.i.v. I- 49
$50+100+$
IN401
IN 4002
N4001
N4002
N4003
N4004
N 4005
N400
N 400
IN400
IN4006
IN 4007
IN400
IN4006
IN 4007

N400 IN400 IN400 Should

TERMS

TERMS: Cash with order pleas
Postage: lop inland, 25 purope
60p elsewher
All goods carry manufacturers
Counter Sales-Same Address.

\section*{| 85 |
| :--- |
| 25 |
| 2 |
| 2 |
| 2 |
| 2 |}

07 EXAMPLES OF OUR BULK QUANTITY PRICES

LST Ebewroinc
Mail Order Dept. : (PE) 7 Coptfold Road, Brentwood, Essex
Industrial Sales Dept.: Tele: Brentwood $226470 / 1$

DABAR AUDIO MIXER MODULES

A range of audio Pre-amplifier Modutes is now avallable enabling the construction of custom-built audio mixers for studio, P.A. and discotheque installations at reasonable cost and with many facilities usually available only on expensive systems. The Modules, constructed on glass fibre printedcircuit boards, are complete with anodised aluminium black facia plates and four control knobs identified: L.F., H.F., Echo Send and P.F.L. The modules are designed for use with external faders or volume controls and fulfit most requirements in the audio field. Up to ten input modules may be mixed Into the combined Mixer/Line Amplifier Type MX/LNTA which is available on a matching facia plate with V.U. meter. The line amp will deliver +20 dBM . All mixing may be effected with $10 \mathrm{k} \log$ faders.
The modules are fixed with four screws and dimensions are $7 \frac{1}{2} \mathrm{in} \times 2 \frac{3}{3} \mathrm{in}$.
Input modules available
UMI 200-600 ohm MIC
UM2 50 k ohm MIC
UM3 Mag P/U 1.5mV R.I.A.A
UM4 Mag P/U 5 mV R.I.A.A.
UM5 Crystal P/U 500 mV
UM6 High Level Tape/Tuner 500 mV

Mixer/Line amp MX/LNTA: 10 inputs plus expander input: 600 ohm line out with preset for V.U. adjustment

Power Unit for above Modules: Type PU11/30, 30V, 500mA. 100 W slave amplifier-100W into 4 ohm load $13 \frac{3}{4} \mathrm{in} \times 10 \frac{1}{2} \mathrm{in} \times 7 \frac{1}{2} \mathrm{in}$.

Prices: UM1-6, £9 each. MX/LNTA, £12. PU11/30. £8. 100W Slave Amp $£ 80$.
Manual showing mixing arrangements. connection data, etc., 25p. S.A.E. all inquiries. Trade inquiries welcome

QUALITY PARTS
 FOR THE DISCERNING BUILDER

BAILEY PRE-AMPLIFIER still offers lowest distortion level and best overload capability. Edge Connector Mounted Printed Circult in Fibreglass or Paxolin material to choic: Highest quality parts including gain graded transistors, BAILEY 30w POWER AMPLIFIER. Edge Connector Mounted Printed Circuit in Fibreglass or Paxolin material, size $41^{\prime \prime} \times 2 \frac{3}{4}^{\prime \prime}$. This unit and the above Pre-amplifier can both be used in our new Metalwork Assembly
BAILEY 30w POWER SUPPLY. We have now designed a Printed Circuit Board for the power supply, again intended to be used with our Metalwork, which also has edge connector mounting. Available in Fibreglass material only BAILEY 20w AMPLIFIER. Special driver transformer and bifilar wound mains transformer. Printed circults and all parts available for this design.
LINSLEY HOOD CLASS A. Full sets of parts now available to the new specification given in the December, 1970, Wireless World.
FULL KITS OF PARTS including Edge Connector Mounting Printed Circuit now avallable for Linsley Hood AB Design. This unit is fully compatible with our Metalwork Assembly.
SUGDEN CLASS A AMPLIFIER. A Hi-Fi News design. All parts are in stock except the Metalwork.
WADDINGTON STEREO DECODER. Printed circuits now available in fibreglass and paxolin material.
J. R. STUART TAPE CIRCUITS. We will be designing Printed Circuit Boards and supplying parts for this interestIng design.
Full details are given in our Free lists. Please send foolscap s.a.e.

HART ELECTRONICS
PENYLAN MILL, MORDA, OSWESTRY, SY10 9AF SALOP Tel: Oswestry 2894
Personal callers are always welcome at our retail shop, but please note we are closed on Saturdays.

LARGE STOCKS OF SIEMENS COMPONENTS for delivery from stock

ELEGTROVILTE Electronic Component Specialists

EVERYTHING BRAND NEW TO SPEC • LARGE STOCKS • NO SURPLUS

\star SIEMENS

TTL INTEGRATED CIRCUITS FLHIOI（7400）Quad 2－input NAND（op collecter）
FLH201（7401）Quad 2－input NAND（open coll FLH2OI（7401）Quad 2－input NAND FLH211 7404 Huad 2－input NOR
FLH271（7405）Hex Inverter（open collecter） FLHIII（7410）Triple 3－input NAND FLH13（ 7410 Triple 3－input NAND
FLH351
FLHI21
Dual 4－input Schmitt
FLHI41（7440）Dual 4－input NAND o．
FLH28！（7442）BCD to decimal converter
FLHI51（7450）Expandable dual 2 wide 2 inpui
FLHI7I（7453）Expandable 4 wide 2 input
FLYIOI（7460）Dual 4 －input expander
FLJIOI（7470）J－K flip flop
FLJII（7472）J－K master slave flip flop
FLJI41（7474）Dual D－typed
FLJ141（7474）Dual D－type edge trigger flip flop FLJI（7475）Quad bi－stable latch
FLH341（7486）Half adder
\star SIEMENS 5\％TOLERANCE
POLYCARBONATE CAPACITORS
250 V up to $0.1 \mathrm{mF}: 100 \mathrm{~V} 0.1 \mathrm{mF}$ and above $0.01,0.012,0.015,0.018,0.022,0.027$ $0.033,0.039,0.047,0.056,0.068,0.082,0.1,0.12,0.15,0.18$ ， $0.27^{0.22}$

NEW PEAK SOUND SPECIAL OFFER

Fantastic new Englefield 840 amplifier with add－in facilities for stereo tuner，advertised at © 45 ．Special Electrovalue offer，plus chaice of case finish in black，red，blue or green simulated leather． In makers sealed carton and guaranteed．

NEW 1971 CATALOGUE

64 pages－thousands of items well classified，plus pages of valuable information post free 10 p

MISCELLANEOUS ITEMS

$20 p$
$20 p$
$20 p$
$25 p$
$25 p$
$20 p$
$35 p$
$20 p$
$24 p$
$61 \cdot 16$
$20 p$
$20 p$
$20 p$
$45 p$
$32 p$
$45 p$
$45 p$
$45 p$
$33 p$

PLESSEY INTEGRATED CIRCUIT
SLA03D
Application dara
E2．10 net
30W BAILEY AMP．PARTS Transistors Rs and PCB．Por Rs and channel and $\ddot{P C B}$ for 66.46 MAIN LINE AMPLIFIERS To wate kit． 612.60 nett INDICATOR LAMPS NEON chrome bezel，round red amber NR／A，24p；chrome bezel， round clear NR／3． 24 P ．Neon， square red type LS5C／R，18p；
amber type LS5C／A， 18 p ；clear type LS5C／C，18p．All above are for 240 v ，mains operation． Filoment eypese $6 v .004 \mathrm{~A}$
square red type LS5C／R－6v． 30 p ： Squa． 04 A amber eype LSSCiA AV $30 \mathrm{p}: 6 \mathrm{v}$ ．0．04A clear type LS5C／C
 LSSCR－28v．，
45p．Other colours

available in TYGAN SPEAKER MATERIAL | 7 designs， |
| :--- |
| EI |
| 88 sheet． |

ENAMELLED COPPER
WIRE
Even No．SWG only： 2 oz．reels：
$16-22 \mathrm{SWG} 25 \mathrm{p} ; 24-30 \mathrm{SWG} 30 \mathrm{p}$ $16-22$ SWG $25 \mathrm{p} ; 2400$ SWG 30 p ；
32,34 SWG 33p $36-40$ SWG 35 p ．
4 oz ．reels： 16.22 SWG only 41 p.

S－DECS

Components just plug in－saves time－allows re－use of com－
ponents．S－Dec（70 points）， 61.00 ponents．may be remperature－ cycled（208 points），62．50．Also
μ－Decs and $1 C_{\text {carriers．}}$

THERMISTORS
VA1039．VA1040
VA1066，VA1077，Cz－ 6, KA1055，
LIGHT DEPENDENT
RESISTORS
Cadmium Sulphlde type TPMD
（equiv．ORP．12）， 40 p ． BRIDGE RECTIFIERS

$\begin{array}{llll}\text { Silicon } & \text { rms } & \text { Imax } & \\ 1 \text { IB40K } 10 & 70 & 4 \text { A } & E 1.75 \\ \text { WO2 } & 140 & 1 \mathrm{~A} & E 040\end{array}$

Values：
E12 denotes series： $10,12,15,18,22,27,33,39$ ． $47,56,68,82$ and their decades．
E24 denotes series：as E12 plus IS，13，16，20，24，
$30,36,43,51,62,75,91$ $30,36,43,51,62,75,91$ and their decades．

CARBON TRACK POTENTIOMETERS， long spindles．Double wiper ensures minimum noise level．
Single gang linear 1000 to 2.2 Ma ， 12 p ；Single gang log， 4.7 Ka to 2.2 Ma ， 12 p ；Dual gang linear
 2．2M』， 42 p ；Log／antilog， $10 \mathrm{~K}, 47 \mathrm{~K}, \mathrm{IM} \mathrm{\Omega}$ only ${ }^{42 \mathrm{P} \text { ；}}$ D．P．mains switch， $12 p$ extra
Only decades of $10,22 \& 47$ available in ranges quored．
CARBON SKELETON PRE－SETS
Small high quality，type PR，linear only：100』， $220 \Omega, 470 \Omega$ ，IK，2K2，4K7， $10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}$ ， 220K， $470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M} 2,5 \mathrm{M}, 10 \mathrm{Ms}$ ．Vertical or

COLVERN 3 watt Wire－wound Potentiometers． $10 \Omega, 15 \Omega, 25 \Omega, 50 \Omega, 100 \Omega, 150 \Omega, 250 \Omega, 500 \Omega 2$, ZENER DIODES 5% full range E24 values： $400 \mathrm{~mW}: 2.7 \mathrm{~V}$ to $30 \mathrm{~V}, 15 \mathrm{p}$ each；IW： 6.8 V ．to 82 V ， 27 p each； $1.5 \mathrm{~W}: 4.7 \mathrm{~V}$ to $75 \mathrm{~V}, 60 \mathrm{p}$ each．
Clip to increase 1.5 W rating to 3 watts（type 266F），4p．

POSTAGE \＆PACKING

FREE on orders over $\mathbb{C 2}$ ．Please add 10 p if orders under $\mathbb{C 2}$ ． Overseas orders welcome：carriage and insurance charged at

Appointed Distributors for
SIEMENS（UK）LTD．
Appointed Stockists for
MEWMARKET TRANSISTOR

RESISTORS－10\％，5\％，2\％

Code	Power	Tolerance	Range	Values available		$\begin{aligned} & \text { to } 99 \\ & \text { elow). } \end{aligned}$	100 up
c	1／20W	5\％	$82 \Omega-220 \mathrm{~K} \Omega$	E12	9	8	7
c	1／8w	5\％	4．75－470K Ω	E24	1	0.8	0.7
C	1／4W	10\％	$4.7 \Omega-10 \mathrm{M} \Omega$	E12	1	0.8	0.7.
C	1／2W	5\％	$4 \cdot 7 \Omega-10 \mathrm{M} \Omega$	E24	1.2	1	0.9
C	iw	10\％	4．78－10M	E12	$2 \cdot 5$	2	$1 \cdot 8$
MO	1／2W	2\％	108－1MS	E24	4	3.5	3
WW	IW	10\％${ }^{1 / 20 \Omega}$	0．22 $2-3.9 \Omega$	E12	7	7	6
WW	3W	5\％	$12 \Omega-10 \mathrm{~K} \Omega$	E12	7	7	6
WW	7W	5\％	12， 2 －10K Ω	E12	9	9	8

Codes： $\mathbf{C}=$ carban film，high stability，low noise．Prices are in pence each for quantities $\mathrm{MO}=$ metal oxide，Electrosil TR5，ultra low noise．of the same ohmic value and power
$W W=$ wire wound，Plessey．

bargains in new semi－conductors

many at new reouced phices－all power types with free insulating sets

40361	55p	2N2905	44p	2N4291	15p	BCI48	9 p	BFX87	29p
40362	68 p	2N2905A	47p	2N4292	15 p	BC149	10 p	BFX 89	26p
2N696	17p	2N2924	20p	ACl07	46p	BCI53	19p	BFY50	23p
2N697	18p	2N2925	22p	ACl 26	$20 p$	BCI54	20p	BFYSI	20p
2N706	12p	2N2926	$11 p$	AC127	20p	BC157	12p	BFY52	23p
2N930	29p	2N3053	27p	ACI28	20p	BC158	11p	B5×20	16 p
2N1331	29p	2N3055	60p	ACl53K	22p	BCI59	12p	C407	－17p
2N1132	29p	2N3702	13p	ACI76	$16 p$	BCl 67	$11 p$	MCl40	25p
2N1302	19p	2N3703	13p	ACY20	20p	BCl 68	10p	MPS6531	
2N1303	19p	2N3704	13p	ACY22	$16 p$	BC169	$11 p$	MPS6531	35p
2N1304	$26 p$	2N3705	13p	ADI40	63p	BCI7	$14 p$	MPS6534	30p
2NI305	26p	2N3706	13p	ADI42	50p	BC178	13 p	NKT211	25p
2NI306	33p	2N3707	13p	ADI49	58p	BC179	14p	NKT212	25p
2N1307	33p	2N3708	10p	ADI61	33p	BCI82L	$11 p$	NKT214	23p
2N1308	36p	2N3709	$11 p$	ADI62	$36 p$	BC183L	10 p	NKT274	18p
2N1309	36 p	2N3710	13p	AFII4	24p	BC184L	$11 p$	NKT403	$65 p$
2N1613	23p	2N3711	13p	AFII 5	24p	BC212L	$16 p$	NKT405	79p
2 N 1711	26p	2N3819	23p	AF117	22p	BC213L	16 p	OC71	38p
2N1893	$54 p$	2N3904	35p	AFI24	33p	BC214L	16p	OC81	25p
2N2147	95p	2N3906	35p	AF127	22p	BCY70	19p	OC83	20p
2N2218	34 p	2N4058	13p	AF139	33 p	BCY71	33p	ZTX300	14p
2N2218A	44p	2N4059	10 p	AF239	36p	BCY72	15p	ZTX301	$16 p$
2N2219	38p	2N4060	$11 p$	ASY26	27p	BFII5	23p	ZTX302	22p
2N2219A	53p	2N4061	$11 p$	ASY28	27p	BFI67	$18 p$	ZTX303	22p
2N2270	62p	2N4062	12p	BC107	12p	BFI73	19p	ZT $\times 304$	27p
2N2369A	19p	2N4124	$18 p$	BCl08	$11 p$	BF194	14p	ZTX500	18 p
2 N 2483	$35 p$	2N4126	27p	BCl09	12p	BFI95	15p	ZTX501	$21 p$
2N2484	42p	2N4284	15p	BCI25	15p	BFX29	319	ZTX502	25p
2N2646	47p	2N4286	15p	BC126	22p	BFX84	25p	ZTX503	22p
2N2904A	42p	2N4289	15p	BCl47	10p	BFX85	$34 p$	ZTX504	52p

RADIOHM POTENTIOMETERS

CAPACITORS

MULLARD polyester C280 series
$250 \mathrm{~V} 20 \%: 0.01,0.022,0.033,0.047$ 3p each： $0.068,0.1$ ，4p each； $0.15,4 p ; 0.22,5 p .10 \%$ ： $0.33,7 p ; 0.47,8 p ; 0.68$ ， 11 p ； $1 \mu \mathrm{~F}, 14 \mathrm{p}$ ； 1.5μ F， $21 p ; 2 \cdot 2 \mu F, 24 p$ ．
MULLARD SUB－MIN ELECTROLYTICS C426 range，axial lead
Values $(u F / V): 0.64 / 64: 1 / 40: 1.6 / 25 ; 2.5 \div 16: 2.5 / 64$ ． 4／10；4／40； $5 / 64 ; 6 \cdot 4 / 6 \cdot 4 ; 6 \cdot 4 / 25 ; 8 / 4 ; 8 / 40 ; 10 / 2 \cdot 5$ ： $10 / 16 ; 10 / 64 ; 12.5 / 25 ; 16 / 10 ; 16 / 40 ; 20 / 16 ; 20 / 64$ ； $25 / 6 \cdot 4 ; 25 / 25 ; 32 / 4 ; 32 / 10 ; 32 / 40 ; 32 / 64 ; 40 / 16 ;$ 40／2．5；50／6．4； $50 / 25 ; 50 / 40 ; 64 / 4 ; 64 / 10 ; 80 / 2 \cdot 5 ;$ $\begin{array}{lllll}80 / 16 ; & 80 / 25 ; & 100 / 6 \cdot 4 ; & 125 / 4 ; \quad 125 / 10 ; & 125 / 16 ; \\ 160 / 2 \cdot 5 ; & 200 / 6 \cdot 4 ; 200 / 10 ; & 250 / 4 ; 320 / 2 \cdot 5 ; & 320 / 6 \cdot 4 ;\end{array}$ $160 / 2 \cdot 5 ; 200 / 6 \cdot 4 ; 200 / 10 ; 250 / 4 ; 320 / 2 \cdot 5 ; 320 / 6 \cdot 4$ 400

LARGE CAPACITORS

High ripple current types： $1000 / 25,28$ p；1000／50， 41p；1000／100，82p；2000／25，37p；2000／50，57p； $2000 / 100, \quad £ 1.44 ; 2500 / 64,77 p ; 2500 / 70$ ， $98 p ;$ $5000 / 25,62 \mathrm{p}$ ； $5000 / 50$ ，氏i•10； $5000 / 100$ ， $\mathrm{c2} \cdot 91$ ；
$10000 / 50$ ， $62 \cdot 40$ ． $10000 / 50,62 \cdot 40$ ．

HANDBOOK OF TRANSISTOR EQUIVA LENTS \＆SUBSTITUTES 40p（Post 3p if ordered alone．）

COMPONENT DISCOUNTS

0% on orders for components for $£ 5$
10\％or more．
15% on orders for components for E15
5\％or more．
Prices subject to alteration without prior notice．

DETAILED LIST SENT ON REQUEST SHOWROOM AT ADDRESS BELOW

Computer Sales \& Services (Equipment) Ltd 49-53 Pancras Road London NW1
Telephone 01-278 5571
Telex 267307

W.W. AMPLIFIER KITS

100 W AMPLIFIER (OVERLOAD PROTECTION INCLUDED) Designer, Texas instruments Approved.
Matched Set 22 guaranteed Texas transistors, diode, 13 caps,
32 resistors, 3 pots, choke, $2 \mathrm{~h} / \mathrm{sinks} 4 \mathrm{in}$. $\times 4.6 \mathrm{in}$. $\times 1 \cdot 3 \mathrm{in}$. drilled $2 \times$ TO3, fibreglass P.C.B., construction notes.. .. 18.00

$\mathbf{2}$ sets			
F/glass P.C.B.	\ldots	\ldots	0.95

30W BLOMLEY (New approach to class B)
Semiconductor set .. 6.00 Resistors, caps, pots .. 1.95
JoW BAILEY (SINGLE POWER RAIL)
10 transistors $\quad . . \quad 1 \cdot 30$
$\begin{array}{lllll}\text { MJ48I, MJ491, MJE52I, BC182L, BC212L, Zener } & & & 3.35 \\ 16 \text { resistors, } 10 \text { capacitors, } 2 \text { pots } & . . & \ldots & \ldots & \ldots \\ 2.20\end{array}$
16 resistors, 10 capacitors, 2 pots
Please state 8Ω or 15Ω.
$2 \cdot 20$
Please state 8Ω or 15Ω. . LINSLEY HOOD CLASS A (DEC., 1970, CIRCUIT)
LINSLEY HOOD CLASS A (DEC., 1970, CIRCUIT)
4 transistors
1.80 REGULATED 60v. POẄER SUPPLY
A design, suitable for a pair of Bailey or Blomley amplifiers, featuring very effective S/C protection. All components, including mech. parts, heat sink, fuses, etc.
Transistor matching and mica washers at no charge.
Resistors, except power types, iW 5%. Low noise carbon flm.
SEMICONDUCTORS
MANY PRICES DOWN

2N1613	0.20	2N3904	0.27	BFY50	0.20	1840 K 20.	1.40
2N1711	0.25	2N3906	0.27	40361	0. 50	IN916	0.07
2N3053	0.20	2N4058	0.13	40362	0.60	1544	0.05
2N3055	0.60	2N4062	0.12	MJ 481	1.20	15920	$0 \cdot 10$
2N3707	0.11	BC107	0.10	M. 491	1.30	153062	0.25
2N3708	0.07	BC109	0.10	MJE521	0.72	TIP29A	0.50
2N3709	0.09	BCl 25	0.15	MPSA05	0.30	TIP30A	0.60
2N3710	0.09	BCI26	0.22	MPSA55	0.35	TIP31A	0.60
2N3711	0.09	BCI82L	0.10	MPSU05	0.60	TIP32A	0.74
2N3716	2.85	BC184L	0.11	MPSU55	0.70	TIP33A	1.00
2N3819	0.23	BC212L	0.12	MPSH05	0.20	TIP34A	2.00
2N3820	0.55	BFX84	0.25	IBOPT20	0.50	TIP3055	0.60
BRAND	NEW	TOP Q	$\begin{aligned} & \text { LITY } \\ & \text { OR } \\ & \text { POST } \end{aligned}$	COMPON ER ONLY FREE	NTS,	FAST SE	ICE

KING OF THE PAKS BI-PAK guarantee satisfaction or money back

INTEGRATEDCIRCUIT SOCKETS

SOLE DISTRIBUTORS

 SUPER-ELECTRONICS 5. VIOLET HILL,LONDON N.W. 8. 6248281

WW- 092 FOR FURTHER DETAILS
IN 15 MINUTES YOU COULD HAVE CAPACITIVE DISCHARGE ELECTRONIC IGNITION FITTED TO YOUR CAR.
Capachive Discharge Ignition is recognised as being the most efficlent ignition system and

- CONTINUAL PEAK PERFORMANCE
- UP TO 20\% REDUCED FUEL CONSUMPTIOA
- EASIER ALL-WEATHER STARTING
- increased acceleration \& top speed
- longer spark plug life
- increased battery life
- contact burn eliminateo
- PURER EXHAUST GAS EMISSION
- RADIO INTERFERENCE SUPPRESSED

patrol engines-cars
Complete Installation Kit for 12 volt vehicies $\mathbf{£ 1 2 . 9 5}+35 p$ P\&P. State earth polarity of vehiclo-POSITIVE or NEGATIVE earth. Unit Construction Kit aiso available for the radio electronics constructor $£ 9.95+35 p$ P\&P. The construction kit includes instructions and all components for wiring as positive or negative earth, and is complete with the stove enamelled steel case and aluminium base. Al components are available separately.

ELECTRONICS DESIGN ASSOCIATES 82 BATH ST., WALSALL WS 1 3DE.

THE POINT FIVE
The serious transport for .5 and .25 inch tape . . . for studio, broadcast. laboratory, industrial and home use. Extremely safe, with wiring and mechanism fully contained within deep-dish sand-cast aluminium chassis . . . sturdy, cool-running, tropicallised . . . functional, attractive styling in gray or black with metallic frame, nearly dust-proof and easily cleaned. Standard 19 inch $\times 12 \frac{1}{4}$ inch panel, 5 inch depth behind panel. Access to wiring and adjustments without removing deck from mounting. Fully remoteable with any desired number of remote controls in parallel (no series wiring required). All remoting with low-voltage cabling. Push-button operation, solid-state and relay control of solenoid actuators and reel-drive system. Tension control system. Three motors, direct hysteresis capstan drive. Two speeds. choice of $15 / 7 \frac{1}{2}$ or $7 \frac{1}{2} / 3 \frac{3}{4}$ inches per second. Variable-speed spooling. Highest-grade plugin electronics also available as required. Available with wide variety of custom control arrangements, or standard versions as follows:

General Purpose
Broadcast
Igh-speed Mastering Theatre-cue
Prices and literature, phone or write.
JOHN STEED RESEARCH LTD., 220 EDGWARE ROAD, LONDON, W.2, ENGLAND Phone: 01-723 5066

VITAVOX

FOR HIGH QUALITY
MICROPHONES LOUDSPEAKERS

and ancillary equipment

Further information from:
VITAYOX LTD., Westmoreland Rd., London, NW9 5YB
(Tel: 01-204 4234)

Solve your communication problems with this new 4-Station Transistor intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to Subs and Subs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant interdepartmental contacts. Complete with 3 con. necting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. $£ 0.40$ in U.K.

A top quality DE-LUXE transistorised intercom consists of MASTER and SUB for desk/wall mounting. Call, talk or listen from either unit. On/Off switch, volume control. Ideally suitable as "BABY SITTER" or Door Phone. A boon for spastics and invalids. Useful in the home, surgery or business for instant 2 -way conversations, effective range 300 ft . Unsurpassed in OUALITY AND PERFORMANCE. Complete with 66 ft . connecting lead. Battery $£ 0.12$ extra. P. \& P. £0.25.. Price Refund if not satisfied in 7 days.

Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Portable Transistor TELEPMONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one 9 v battery which lasts for months Ready to operate. P. \& P. $£ 0-18$ in U.K. Add $£ 0-12$ for Battery.
Full price refunded if roturned in 7 days.

even successful project leaders have problems

you may even have some yourself

> Redac supply the full spectrum of computer aided design software and services for the electronics industry developed by electronics engineers for electronics engineers. Each week more electronics companies worldwide are discovering the benefits of Redac. Discovering that Redac can help them with design problems.
> Some of these problems we ve listed may be familiar to you.

PROBLEMS

"Specification is too tight"
"Insufficient Design Effort"
"Project Time is too short"
"We should now design using MOS"
"Reduce size and upgrade environmental specification"
> "PCB designs urgently required"

REDAC SOLUTION

REDACAL design service gives your engineers added power and capabilities for circuit analysis and logic design from a terminal in your own offices.

REDAC MOS design facilitiès will get you into MOS technology with less time, cost and problems.
REDAC Thick Film microcircuits are custom
designed to meet your exact requirements.
REDAC PCB Design Service gives you rapid turn-round with accurate results.

Convinced? Well perhaps not yet, but talk it over with us. We are in electronics and we understand your problems.

Write or telephone today to Marketing Manager
REDAC SOFTWARE LIMITED,
Newtown, Tewkesbury, Gloucestershire GL20 8HE. Tewkesbury 2476/79/70

Special offer of AMPEX professional tape heads mu-metal shrouded. (Designed for model AG20). Full
track record, or playback, $£ 3.00$. Erase head $£ 2.00$. Set of track record, or playback, $\mathbf{6 3} \cdot \mathbf{0 0}$. Erase head $\mathbf{6 2}$. 00 . Set of
3 with mounting bracket and cover $\mathbf{C 7} \cdot 50$. Half track 3 with mounting bracket and cover
record only, $\ell 3.00$ each. Carriage paid.

OXLEY P.T.F.E. BARB TERMINALS. Stand off 312" or $\frac{1}{2}$ ". $£ 2.75$ box of 100 ,
HARWIN. Tapped (6 Ba) high voltage "stand off"" insulators, length
per 100 . Carriage Paid.
"BENSON BROS." 12v. D.C. HEAVY DUTY SOLENOID. Size: "overall $x-1 \frac{1}{2}$ " X " Very powerful. Cont. Mated. $11-00$ each. P. \& P.
"DECCO" MAINS SOLENOID. Compact and very powerful. 16 lb. pull. removing tapelve-end-plate. Overall size removing capelve-end-plate
$2^{\prime \prime} \times 22^{\frac{1}{2}} \times 22^{\frac{13}{\prime \prime}}$ high. $\mathrm{ft} \cdot \mathbf{5 0}$.
WEBBER MAINS SOLENOID. Robust and strong.
 olunger has a fixing eye to take up to to bolt. Size:
 MAINS SOLENOID BY MAGNETIC DEYICES price. A two-sided bracket is incorporated for vertical price. A two-sided bracket is incorporated for vertical
or horizontal mounting. Size: $2^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{2^{\prime}} \times 1 \frac{1}{2^{\prime \prime}}$. Pull is approx. 2 lb., plunger travel ${ }^{1}$ " $^{\prime \prime}$. Fixing eye takes up to
t^{*} bolt. Plunger non-captive. New in original makers t"bolt. Plunger nor-captive. New in original makers
boxes. 75 p each, plus 25 p P. \& P. Large number available, special price for quantity.
Perspex enclosed, plug in, with base. Size $1 \frac{1}{2 "}^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{} \times \frac{3^{\prime \prime}}{4}$ MQ $308600 \Omega 24 \mathrm{v} 4 \mathrm{c} / 0.60 \mathrm{p}$ ea., 65.00 per doz. MQ $50810,000 \Omega 100 \mathrm{v} .4 \mathrm{c} / \mathrm{o} .50 \mathrm{pea.}$,64.50 per doz. S.T.C. Midget Field Relay type 4109 EC .12 v .40 mA
1700 , single H.D. make. 53 p each. 170ת. single H.D. make. 53p each.
"B. \& R." $3 \mathrm{c} / \mathrm{o} .10 \mathrm{amp}$. contacts (silver) operates on 2 volts D.C. Draws approx. 1 amp . Size: $2^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime} \times 1 \frac{1}{8}^{\prime \prime}$. E1.00.
"OMRON" OCTAL BASE. A.C. mains. $2 \times 5 \mathrm{amp}$. C/O contacts. Perspex enclosed. 88p.
A.E. Perspex enclosed, plug in, 50Ω 6v. $2 \mathrm{c} / \mathrm{o}$. 63p

E.R.G. $1,000 \Omega 6 \mathrm{v}$. DC. I make encapsulated reed type.

$\begin{array}{ll}\text { NEW '"F.I.R.E."' PLUGGIN } \\ \text { RELAY.-15V. COil } & \text { 50/60 C.P.s. }\end{array}$ RELAY.-115v. Coil 50/60 c.p.s.

 3 heavy duty silver chancontacts. Very robust. 63p.

NEW "IISKRA" 240 V . A.C.
RELAY. ${ }^{3}$
contacts. 63 p .
SIEMENS HIGH SPEED RELAY. Type 89L. 1,70
coil. New 63 p each.
MINIATURE OULATCH MASTER" RELAY 6. 12 , or 24v. D.C. operation. One make
one break, contacts rated 5 amps . at 30 V . Once current is applied, relay remains latched until input polarity is reversed. Manufac-
tured for high asceleracion tured for high acceleration re
quirements by Sperry Gyrosco
 quirements by Sperry Gyroscope Co. Size: Length ${ }^{-\prime \prime}$ dia. ? ${ }^{\text {tin }}$ (ineluding mount). Please state
VINKOR POT CORE ASS. TYPE LA. 2103 (core
 Special quote for quantity.
UNISELECTORS. 8 Bank 25 -way 24 v . Double sweep. Brand new in maker's boxes. E5.25. P. \& P. 25p. ELECTROLYTIC CAPACITORS MULLARD.

 38 ea., $84 \cdot 50$ per doz.
50 p ea., $\mathrm{E4} \cdot 50$ per doz.
HUNTS $1,000 \mu$ F 50v. $1^{\prime \prime}$ dia. $\times 2^{2}, 25$ p ea., $10,000 \mu$ $6 v .1 l^{\prime \prime}$ dia. $\times 2^{\prime \prime}, 30 \mathrm{p}$ ea., 63.00 per doz. $16 \mu \mathrm{~F} 350 \mathrm{v}$.

 ERIE. Ceramicon capacitor. Type CHV4IIP. 500 P.F. 30 KV Size 1.5 dia. $\times 1.44$ long. 50p ea. Carriage paid. HIGH CAPACITY ELECTROLYTICS. Cylinder. type with screw terminals on top. Average size $3^{\prime \prime}$ dia. X 4 " high. "Mallory" $20,000 \mu \mathrm{HF} 30 \mathrm{v}$. D.C. 45 . D.C. surge. Mallory $25,000 \mu$ F 25 v . D.C., 40 v . D.C. surge. Mallory
$35,000 \mu$ F 15 v . D.C., 20 v , D.C. surge. Mallory" $\begin{array}{ll}35,000 \mu \mathrm{~F} & \text { 15v. D.C., } \\ 40,000 \mu \mathrm{~F} & \text { IOv. } \\ \text { D.C., } & 12 \mathrm{v} \text {. D.C. } \\ \text { D.C. surge. "Mallory" "Sprague" }\end{array}$ $4{ }^{40,000 \mu \mathrm{~F}}$ 10v. $\mathrm{D} . \mathrm{C}$. ., 12 v . D. D.C. surge. "General Electric"
 ${ }_{55,000 \mu \mathrm{~F}}{ }^{46} 5 \mathrm{v}$. D.C., 20 v . D.C. surge. 50 p each. Minimum order El .00 on these items. P. \& P. 10p each.

WHERE NO CARRIAGE CHARGE IS
INDICATED PRICE IS INCLUSIVE.
PERSONAL CALLERS WELCOME.

MOTORS AMPEX 7.5v. D.C. MOTOR. This is an ultra-precision tape motor designed for use in the AMPEX model AG20 portable recorder. Torque 450GM/CM. Stall load at 500 ma .
Draws 60 ma on run. $600 \mathrm{rpm}+5 \%$ Draws 60 ma on run. $600 \mathrm{rpm} \pm 5 \%$ suppression. $\mathrm{f}^{\prime \prime}$ dia. $\times 1^{\prime \prime}$ spindle,
 Large quantity available (speciai quotations). Mu-metal enclosure avail-
able 75 p each.

Brand N

 Wantrifug Watkins50 Hz . "DISCUS" contin. Powered by A.E.L continuous rating 2850 rpm
motor. Cowl diameter $10^{\prime \prime \prime}$ Outlet flange 2^{*} I.D. Coupling flange supplied. These superb precision units are ideally suited for Organ construction.保

"PRRECISION FAN CO." (Smiths Industries) DOUBLE ENTRY CENTRIFUGAL FAN/ BLOWER.-This is a bequtifully balanced, particularly quiet running, unit giving approx.
90 cubic f./min. The motor is a 2 pole shaded pole 9 cubic fr. min . The mot or is a 2 pole shaded pole Mycalex, drawing only 240 ma on run. Weight
$2+1 \mathrm{l}$. Sizes: Case dia. 3.1 in., width (case only) $2 \div 125$ in.es: width overall (inc., motor) 5,25 in.,
3.125
aperture 3.125 in by aperture 3.125 in. by 1.85 in. Offer
makers price at $£ 3.25$. P. \& P. 25 p.

SPECIAL SUMMER OFFER

LIMITED PERIOD ONLYFROM NOW UNTIL 31st AUG. 1971 A DISCOUNT OF 20% WILL BE DEDUCTED ON ALL ORDERS OF £7.50 AND OVER

DEAC. RECHARGEABLE PERMA-SEAL Nickel-Cadmium
Batteries Type 900 D . 1.22 v at 900 mA ($10-\mathrm{hr}$. rate). Size 90 mm . \times 13.5
63 p running low.
"TEDDINGTON" CONTROLS THERMOSTAT.-Adjustable between 75° and $100^{\circ} \mathrm{C}$. A further internal adjuster takes the maximum 3^{40} to $120^{\circ} \mathrm{C}$. Cireuit cuts in again at and sensor probe. The thermostat actuates a 15 amp . 250 v . c/o switch.
act actuates a 15 amp. 250 v . c/o switch. incorporated in the adjustment mechanism. 88p.
"GOYEN" PRESSURE SWITCH - Incorporating differential adjustment between 2^{2} and $12^{\prime \prime}$ water gauge (a max of approx. $\frac{1}{2}$ p.s.i.). A single pole
change-over switch rated 15 amps. 250 v . is actuated. Air inlet tube ty dia. Projection $H^{\prime \prime}$. Overall size:
 C1. 25.
 HEAYY DUTY PORTABLE BATTERIES. ex WD. $12 \mathrm{v}, 75 \mathrm{AH}$. Built in stout metal . New carrying handles and nifam socket outlet. Size $151^{\prime \prime \prime}$ th $7 \mathrm{l}^{\prime \prime} \times 101^{\prime \prime}$ high, weight 731 l . 68.75 . Carriage $£ 2$. $4.5{ }^{\circ}$ - 4.5 . 14 size: $1 z^{\prime \prime} \times 1 t^{\prime \prime}-240^{\prime \prime}$ Sec P. \& P. 15p. Prim. $220 / 240 \mathrm{v}$. Sec. $0-5-10-15-20 \mathrm{v}$. at 2 amps. El 25 . P. \& P. 15 p .
ADVANCE CONSTANT VOLTAGE TRANSFORMER. Type CVS 750A. Input $190-260$ V. 50 Hz . $7{ }^{2}{ }^{2}$ (G.B. only).

 Brand New. $\mathbb{E} 12.50$ each P. \& P. 50 p. ELECTRO CONTROL (CHICAGO). Shaded 240 v .50 Hz .200 rpm 10 lb . in 62.50 . . Shaded pole 240 Y . 50 Hzz . 200 rpm . Open frame, shaded pole \& P. 25 p . | $50 \mathrm{~Hz}, 7 \mathrm{rpm} .28 \mathrm{lb} . / \mathrm{in} .80 \mathrm{rpm} .12 \mathrm{lb} . / \mathrm{in} .62 .25 \mathrm{each}$. |
| :--- | P. \& P. 25 p.

"CROUZET" TYPE 965. 115/ $240 \mathrm{v} .50 \mathrm{~Hz} .47 / 68$ watts. 50 rpm .
Stoutly constructed. Size: $2 \mathrm{H}^{4}$ dia. Stoutly constructed. Size: 2 H/" dia $^{\prime \prime}$
$\times 3 t^{\prime \prime}$ long, plus spindle $1^{\prime \prime} \times t^{\prime \prime}$ $\times 3 t^{\prime \prime}$ long, plus spindle $1^{\prime \prime \prime} \times{ }^{\downarrow^{\prime \prime}}$
dia. Anti-clock. $£ 2.75$. P. \& P. 25 .

TYPE 955. Same as above, but $3 \mathrm{rpm} . € 300$. P. \& P. SYNCHRONOUS MOTORS. $220 / 380$ v. $50 / 60 \mathrm{~Hz}$. $250-300$ rpm. $75 p$ each. MYCALEX MAINS. Shaded pole, 1425 rpm . ${ }^{-1 /}$ spindle. 2 for $\leqslant 1 \cdot 25$. Carriage Paid. spindle, weight ib Powerful 88 A . P \& P . 12 P E.M.I. PROFESSIÓNAL TAPE MOTOR. I IO/240 v 50 Hz .1500 rpm , reversible, silent running. 41"" dia.
 £6.00 per pair. P. \& P. 50p each.
"FIBRE GLASS" COPPER CLAD. Top grade. One
 TYPE BELLING \& LEE FUSEHOLDERS TYPE LI382. Size 0. Rating 7A. Breakdown voltage
 posts suitable for soldering or solderless snap-on connectors ($\downarrow^{\prime \prime} \times 0.032^{\prime \prime}$). Current rating 30 A max. List price 30 p. Our price $£ 1.50$ per doz.
"'HONEYWELL" TYPE micro switch is fitted on angled metal mount with spring-loaded plastic rod operating cam. 50p each

PLUNGER SWITCHES. Spring return. 3 P.D.T. 1 amp. Single action. Size: $\boldsymbol{l}^{\prime \prime}$
plus plunger. EI .50 per doz. Carr. Paid.

SLIDER SWITCHES. 3 amp. type D.P.D.T. I" $\times \frac{9_{6}^{\prime \prime}}{T_{6}^{\prime \prime}} \times \frac{1}{4 \prime}^{\prime \prime}$ deep. I amp. type doz. Either type or mixed as required. Carr. Paid.
 cont. current. Size: $\mathbf{2}^{\prime \prime} \times$ i". 5 for $\in 1 \cdot 00$ or $£ 2.00$ per doz. Carr. Paid. Type B. Comprises $8 \times$ RM 625 cells. Nom.
volts. 1.35 each 10.5 v . Overall. $350 \mathrm{ma} / \mathrm{H}$ CAP. $20 / 25 \mathrm{ma}$ cont. current. Size:

A.C./D.C. M/IRON AMMETERS. $0-5$ amps or $0-8$ amps (suitable battery chargers etc.). Perspex front. Size:
$11^{\prime \prime} \times 17^{\prime \prime}$. Any 2 for $\mathrm{El} 1 \cdot 10$. Carr. Paid.

CURRENT FLOW INDICATOR.
deal for all types of battery operated
equipment (portable machines, tape appear when current flows. Coil is $600 \Omega 6 / 12 \mathrm{v}$. Drawing only 8 ma on dia. $+\frac{2^{\prime \prime}}{\mathbf{n}^{\prime \prime}} \times{\frac{1}{3^{\prime \prime}}}^{\prime \prime}$ deep. Fixing centres

BIO-CHEMISTRY AND CHEMISTRY LABORATORIES PLEASE NOTE WE HAVE PURCHASED A NUMBER OF THE GRIFFIN AND GEORGE BIOANALYST CHEMISTRY MODULE G. \& G. CAT. NO. \$54-320. COMPLETE AUTOMATED SYSTEM. BRAND NEW IN ORIGINAL MAKER'S PACKING. CURRENTLY LISTED AT 2925. WE OFFER THESE AT $£ 425$ NETT. CARRIAGE EXTRA.

We welcome orders from established companies cost of Invoicing must bémade on any order amounting cost of linvoicing must be made on any order amounting

FULLY TESTED AND MARKED			
${ }_{\text {ACP }}^{\text {AC } 127}$	$\underset{\substack{150 \\ 130}}{ }$	ocilo	${ }^{238}$
	178	${ }_{\text {octioi }}$	
${ }_{\text {ACl }}^{\text {ACl }} 176$	-	OC201 26301	(esp
${ }_{\text {A }}^{\text {ACF239 }}$	378	${ }^{26303}$	${ }^{13 \mathrm{p}}$
${ }_{\text {AFF } 136}$	50	2N1302.3	${ }_{\text {cki }}^{408}$
	${ }^{375}$	2N1306.7	300
	$\underset{138}{13 \mathrm{p}}$	- ${ }_{\text {2N1 } 113}$	coico
${ }_{8 \times 2}{ }_{\text {BF }}$	$\stackrel{150}{150}$	Powner	
BFY50	${ }_{370}^{200}$	OC20	${ }_{\substack{50 \\ 300}}$
${ }_{\text {Bskr }}$	130	OC25	25p
	$\underset{\substack{13 \mathrm{p} \\ 130}}{10}$		$\underset{\substack{250 \\ 300}}{ }$
			25p
	$\underset{\substack{13 \mathrm{l} \\ 130}}{10}$		- 370
OC44	,138	${ }^{2 N 3055}$	-630
-0c71		${ }^{\text {cose }}$	
\bigcirc	-130	AAY42-OAS	
-			
-		IN914	

PACKS OF YOUR OWN CHOICE UP TO
THE VALUE OF 50p WITH ORDERS OVER E4

CLEARANCE LINES

	1-10	'10.50	50
SL 403 B Audio Amp.	2.00	1.9	1.80
IC. 709C Linear Opp. Amp.	50p	40 p	35
A.EI. Fully marked \& tested Gates	25p	22p	20 p
A. EI. Fully marked \& tested Flipflops	50p	$40 p$	30 p
0C71/72. Fully tested, unmarked	5 p	5p	4 p
Matched Sets, 1-0C44, 2-0C45. Per set	25p	${ }^{20 p}$	i5p
Matched Sets, OC45, 1 st \& 2nd I.F. Per set	$15 p$	12 p	10p
TIC45 Thyristors, 6 6A. 60V. Texas	15p	15 p	12p
0A47 Gold bonded Diodes, marked \& tested	3 p	3 p	2p
IW Zener Diodes: $6.8 \mathrm{~V}, 7.5 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}, 30 \mathrm{~V}$ \& 43 V	$5{ }^{\text {p }}$	4p	3 p
10W Zener Diodes: $7.5 \mathrm{~V}, 11 \mathrm{~V}, 13 \mathrm{~V}, 20 \mathrm{~V} \& 100 \mathrm{~V}$	20p	17p	15p
Micro Switches, S/P, C/0. Popular size	25p	20 p	15p
1 Amp. Bridge Rectifiers, 25V. RMS	25p	$22 p$	20p

$$
\text { Power Units etc. Price: } £ 1 \text { per } 100 \text {. }
$$

COLOUR T.V. LINE OUTPUT TRANSFORMERS.
Designed to give $25 \mathrm{~K} . \mathrm{V}$, when used with PL509 and PY500 valves. As removed from colour recelvers at the factorn. ONLY f 1 each post and packing 23p

BUMPER BUNDLES

These parceis contain all types of surplus electronic These parceis contain alk types of surplus electronic
components, printed paneis. switches, potentiometers. components, printed plat
transistors and diodes; etc.

2 LBS IN WEIGHT FOR f1

OUR VERY POPULAR 3p TRANSISTORS FULLY TESTED \& GUARANTEED

TYPE "A"

PNP Silicon alloy, metal TO-5 can. 2\$300 type. direct replacement for the OC200/203 range

TYPE "B

 PNP Silicon PLASTIC ENGAPSÚLATION, low voltage but good gain, these are of the 2N3702/3 and 2N4059/62 range.
TYPE " ${ }^{\prime}$ "

NPN Silicon
plastic encapsulation
Low Noise Amplifier of the $2 N 3707 / 8 / 9 / 10 / 11$ Series.

TYPE "E"
PNP Germanium AF OR RF
please state on order. Fuilv marked and tested.

BULK BUYING CORNER

NPN/PNP Silicon Planar Transistors. mixed untested, simillar to 2 N706/6A8. BSY26-29. BSY95A, BCY70 etc. $€ 4.25$ per 500 . $£ 8.00$ per 1.000 .

Silicon Planar NPN Plastic Transistors, untested. similar to 2N3707-11 atc.
$€ 4.25$ per 500 . $£ 8.00$ per 1.000 .
Silicon Planar Diodes. 00-7 Glass, similar to OA200/202. BAY31-36. £4.50 per 1,000 .
NPN/PNP Silicon Planar Transistors. Plastic TO-18, similar to BC113/4, 8C153/4. BF153/160 etc.
£ 4.25 per 500 . £ 8.00 per 1.000 .
OC44. OC45 Transistors, fully marked and tested.
500 pius e8p each. 1.000 plus @ 6p each.
0071 Transistors. fully marked and tested.
500 plus ab each. 1.000 plus $5 p$ each.
3823E Field effect Transistors. This is the 2N3823 in plastic case.
case.
500 plus © 13p each. 1.000 plus @ 10 p each.
1 Amp Miniature Plastic Diodes
1N4001. 500 plus 3p each. 1,000 plus 3p each.
N4004. 500 plus 5 p each. 1.000 plus $4 p$ each.
1 N4006. 500 plus $6 p$ each. 1.000 plus $5 p$ each.
iN4007. 500 plus e $8 p$ each. 1,000 plus $7 p$ each.

NEW UNMARKED UNTESTED PAKS

880	8	Dual Trans. Matched $0 / P$ pairs NPN. Sil. ín TO- 5 can	50p
883	200	Trans. manufacturer's rejects all types NPN, PNP, Sil. and Germ	50p
884	100	Silicon Diodes DO- 7 glass equil. to OA200, OA202	50p
886	50	Sit. Diodes sub. min. IN914 and IN9: 16 type	50p
888	50	Sil. Trans, NPN, PNP, equiv. to OC200/1. 2N706A. BSY95A, etc.	Op
860	10	7 watt Xener Diodes Mixed Voltages	50p
H6	40	250 mW . Zener Dlodes Do-7 Min. Glass Type	50p
H10	25	Mixed volts, $1 \frac{1}{2}$ watt Zeners. Top hat type	50p
866	150	High quatity Germ. Diodes Min. glass type	50p
H75	30	Top Hat Silicon Rectifiers. 750 mA . Mixed volts	50p
H16	8	$\dot{\text { Experimenters }}^{\prime}$ Pak of integrated Circuits. Data supplied	50p
H2O	20	BY 126/7 Type Silicon Rectifiers. 1 amp plastic. Mixed volts	50p

NEW TESTED \& GUARANTEED PAKS

		Photo Cells. Sun Batteries . 3 to .5 volt. . 5 to 2 ma .	p
H8	4	BY127 Slicicon Recs. 1000 P.I.V. 1 amp. Plastic. Aeplaces the By 100 .	50p
879	4	1N4007 Sil. Rec. Diodes. 1.000 P.I.V. 1 amp . Plastic.	50
881	10	Reed Switches, mixed types, large and small.	50
${ }^{899}$	200	Mixed Capacitors, Post and packing $13 p$ Approx. Quantity counted by welght.	50p
${ }^{4} 4$	250	Mixed Resistors. Post and packing 10 p. Approx. Quantity counted by weight.	50p
H7	40		50p
н9	2	OCP71 Light Sensitive Photo Transistors.	50p
${ }^{H} 12$	20	NKT155/259 Germ diodes, brand new stock clearance.	50p
H1	10	OC71/75 uncoded black glass type PNP Germ.	50p
H19	10	OC81/81D uncoded white glass type PNP Germ.	50p
${ }^{\text {H28 }}$	20	OC200/1/2/3 PNP silicon uncoded To. 5 Can	50p
	20	47 gold bonded diodes coded MCS2.	

F.E.T. PRICE BREAKTHROUGH

This field effect transistor is the 2N3823 in a plastic encapsulation; coded 3823 E . It is an ideal replacement for the 2N3819. Data Sheet supplied with device.
$1-10=30$ p each, $10-50=25 p$ each, $50+20 \mathrm{peach}$.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a perfectly linear and accurate r counter for any câr.
each
FREE CATALOGUE AND LISTS for: -

ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 50p CASH WITH ORDER PLEASE. Add 10 p post and packing pér order. OVERSEAS ADD EXTRA FOR POSTAGE
P.O. RELAYS

VARIOUS CONTACTS AND
8 for
COIL RESISTANCES.
NO INDIVIDUALSELECTION. ft

TRANSISTOR EQUIVALENT BOOK．LATEST EDITION，
Mikes，Low impedance，dynamic stick type with on／off switch Crystal，hand
Lockable car aerials
Dee－Gee 25 watt pencil bit soldering irons
Speakers， $2 \mathrm{tin}, 8$ ohms
insulating Tape，tin wide， 10 yard roils
Miniature Output Transformers
Rotary 5 witches， 4 pole 3 way or 2 pole 6 way
Switch cleaner，aerosol cans
Miniature type．Both
Electrolytic Capacitors
2，000 uf 25 volt Rev．
10000 ut 35 volt
$10,000 \mu 125$ volt
$10,000 \mu \mathrm{\mu} 25$ voit
$60 \mu \mathrm{~F}+200 \mu \mathrm{f} 300$ volt
400 uf 275 volt
$10 \mu \mathrm{~L} 6$ vole
$10 \mu \mathrm{f} 25$ volt
$16 \mu \mathrm{f} 250$ volt
$16 \mu \mathrm{i} 250$ volt
$32 \mu \mathrm{i}$
275 volt

VEROBOARD

 Spot Face Cutter 38p．Pin Insert Tool 48 p ．Terminal Pins（ 0.1 or 0.15 ） 36 for 18p．Special Offer Pack consisting of 52_{2}^{1} in \times lin boards and a Spot Face
Cutter－ 50 p． Cutter－50p．

RECORD PLAYER CARTRIDGES．Well below normal prices！ G90 Magnetie Stereo Cartridges，Diamond Needle， 6 mV output， 44 ．ACOS GP $67 / 2$（Mono，Crystal）75p．ACOS GP $91 / 3$（Compatible，Crystal） 81 ．ACOS
 94／ID（Stereo，Ceramic，Diamond）E1．88．ACOS GP 95／1（Stereo，Crystal with

TRANSISTORISED FLUORESCENT LIGHTS， 12 vole．All with reverse polarity protection．${ }^{8}$ watt type with reflector，suitable for tents，etc．，$£ 3$. 25 p ． 13 wazt eype，batten wieh switch． 22 in $\times 2$ in \times lin $\mathrm{E5}$ ．Postage／Packing 25 p． THESE CAN BE SENT ON APPROVAL AGAINST FULL PAYMENT．

MULLARD POLYESTER CONDENSERS
1，000pf．1，200pf，1，500pf， $1,800 \mathrm{pf}, 2,200 \mathrm{pf}$ ， 15 p per dozen（all 400 V working）． of 100 of any one type．

RESISTORS

$\frac{1}{2}$ and $\frac{1}{2}$ wate Most values in stock， 50 p per 100 ． 10 p per dozen of any one value． I watt to 50 watts．A Drge percentage of these are multi－tapped droppers for radio／television．Owing to the huge variety these can only be offered＂assorted＂ at 50 p per dozen．

SILVER MICA／CERAMIC／POLYSTYRENE CONDENSERS
Large range in stock， 75 p per 100 of any one value． 15 p per dozen．
RECORDING TAPE BARGAIN：The very best British Made low－noise high－quality Tapet 5 in Standard 38p．Long－play 45p． 5 is in Standard 45p．Long－ play cop．Tin Sta for this Lape．Mighe we sugest that you order now whilst we still have a good stock at these low prices？

STOCKTAKING CLEARANCE！IMPOSSIÉLE TO REPEAT！ We have huge numbers of components in quantities too small to advertise individually．In order to＂clear the decks＂we have made up parcels and paper condensers，controls，transistors，diodes etc．，for a tiny fraction of normal price．It is emphasised that these are mixed parcels only－ contents cannot be stipulated I Sold only by weight．
$\begin{array}{lllll}\text { Gross weight } 2 \mathrm{lb} & \ldots & \therefore & . . & \mathrm{El} \text {（postage 20p）} \\ \text { Gross weight } 5 \mathrm{lb} . & \cdots & \cdots & . . & £ 2 \text {（postage 30p）}\end{array}$

1，000，000 germanium transistors
 （OC71／0C75）
 LOTS OF 100，000－£250 10，000－£30
 $1,000-£ 3 \cdot 50$ 500－£2
 100－50p

TANTALUM CAPACITORS．COMPARE THE PRICE－ONLY IOp EACH ！！！！

Sub－miniature types	Miniature ty pes		$5 \cdot 6$	นf 35	volts
． $047 \mu \mathrm{f} 50$ volts	－022 $\mu \mathrm{f} 20$	volts	8.2	uf 10	volts
－056uf 50 volts	－033 $\mu \mathrm{f} 20$	volts	8.2	uf 35	voles
－ 07 uf 20 volts	－047 $\mu \mathrm{f} 20$	volts	15	䶹f 35	volts
－1 uf 20 volts	－068pf 35	voles	18	uf 35	volts
－1 $\mu \mathrm{ff} 50$ volts	－12 12 f 35	voles	22	uf 15	volts
－ 18 uf 20 voles	－15 $\mu \mathrm{f} 35$	volts	27	－ 1120	volts
． 33 uf 35 volts	－ 22 uf 50	volts	56	uf 15	volts
－ 47 uf 35 volts	－ $47 \mu \mathrm{f} 50$	volts	56	$\mu \mathrm{H} 20$	volts
． 68 Mf 20 volts	． 68 นf 35	voles	150	uf 6	volts
1.0 ¢f 15 volts	． $68 \mu \mathrm{ff} 50$	voles			
2.2 ¢f 3 volts	1.0 ¢f 35	voles	Standard		
2.7 ¢f 15 volts	$1.0 \mu \mathrm{ff} 75$	voles	6.8	uf 50	volts
2.7 uf 35 volts	1.8 Hf 20	volts	7.5	uf 20	volts
3.0 uf 12 volts	2.2 ¢f 20	volts	$8 \cdot 2$	$\mu \mathrm{f} 150$	volts
10.0 uf 1.5 volts	2.7 \％f 50	volts	12	䶹f 35	volts
	3 － 12	voles	12	从f 50	volts
	3.3 ¢f 15	volts	39	uf 20	volts
	$4 . \mu \mathrm{f} 20$	volts	82	䒑f 20	volts
	4.7 uf 35	volts	150	uf 15	volts
	$5.6 \mu \mathrm{f}$	volts	270	$\mu \mathrm{f} 6$	voles

MAINS TRANSISTOR POWER PACK Designed to operate transistor sett and amplibers．Adjuet－
able output $6 v .9 \mathrm{v} ., 12$ volts for up to 500 mA （class B Woridng）．Takes the place of sny of the following batteries： maine transformer rectinier，smoothing and load resiator， plue 18p postage．
NEED A SPECIAL SWITCH？
DOUBLE LEAF CONTACT

AUTO－ELECTRIC CAR AERIAL with dashboard control switch－fully extend－ ositive or negative earth．Supplied complete board switch．24 plus 25p post and ins．

MICRO SWITCH
5 amp．changeover contacts，θ p each，$£ 1 \cdot 00$ 5 amp．changeover contacts，op each，$£ 1.00$
doz． 15 amp．onfor 100 each or $£ 1.05$ doz．
15 amp ．changeover $15 p$ ． 10 for $£ 1.35$ ． MINIATURE WAFER SWITCHES
2 pole， 2 way－ 4 pole， 2 way－ 2 pole， 3 way－ 2 pole， 6 way 1 pole， 12 wry．All at 18 p
each，$£ 1.80$ dozen，your asoortment．

WATERPROOF HEATDNG
ELEMENT
26 yards length 70W．self－regulating
temperature control．50p post free．

EXTRACTOR FAN

Cleans the air at the rate of 10,000 cubic ft．per hour．At the pull of a cooking smella before they dirty decorations．Suitable for kitchens，
 hardly be heard．Compact， $5 t^{\circ}$
casting with $5 t^{\circ}$ fan blades．Sultable casing with
Wherever it is necesasiry．to move tast．Kit comprises moter air tast．Kit comprises motor，fan post and mains or，and fixing bracketa． f 2 plus plip

HEARING AID AMPLIFIERS

 （Ex behind ear deaf sidg） 3 transistors on thny P．C．boar Oxo cube． 81.75 or with sub－miniature microphone and L． 8

\section*{MAINS OPERATED}
 lodel 772 －amall but powerful

 75 p． 1 TT10 1f $^{\prime}$ pull．size $\left.3 \times 2\right\} \times$ 2^{*} e 81.80 plus 20 p post and ins．

MAINS RELAY BARGAIN

 and treble month are some single，double rated at 15 ampas．Operating relays．Contacts
240 V ．A．C．Good Britigh for glize approx． $1 \$ \times 1$ ins．Open construction $\begin{array}{lll}\text { single pole } & 25 p \text { each } & 10 \text { for } 22.25 \\ \text { Treble pole } & 35 p \text { each } & 10 \text { for } 23 \cdot 15\end{array}$

CAR ELECTRIC PLUG

 Fits in place of cigarette inghter．Useful method for making a quick connection into 10 for $\mathrm{x} 3 \cdot 48$ ．
WAFER SWITCHES

Miniature，standsrd and instrument types．All

This is a drum type HONEYWELL PROGRAMMER purposes with trips which are infinitely adjustable for position．
They are also arranged to allow 2 operations per switch per rotation． There are 15 changeov cr micro switches each of 10 amp type operated by the trips thus 15 circuits may be changed per revolution．Drive motor is mains operated reva．per min．Some of the many uses o his timer are Machinery control，Boller Arngg，Dispersing an Price from Makera probably over $\ell 10$ each．Apecial snip price 85% plus 25p post and ins．Don＇t mise this terrific bargaln．

ELECTRIC TIME SWITCH

Made by smiths these are AC．malns operated．NOT can be built finto box with 13 A socket． 2 completely adjustable time periods per 24 hours， 5 amp changeover
contacts will switch circult on or ofl during these periods． fi2． 50 ．past and ine． 23 p．Additional time contacte
50 p pair．

4 AMP VARIAC CONTROLLERS 270 volts with can vanerating undue heat．One obvious circult from zero to ore is to dim lighting．Ex equipment but ilttle used－as good an new offered at approx．haif price－ 25 plus 63 p post and ins．

TANGENTIAL HEATERS
Once again we are able to make a special hargain
offer of these very popular heating units． offer of these very popular heating units． yeara ago are still the latest and best type as
zothing has yet been made which could be agled an improvement on them．The Tangential
unit is atill the only one used in good quality heaters made by Hoover，G．E．C．and quality the
famous names．The unit running AC induction motor with epecial bearings，the tangential impeller and and 2 section heater element wach allowa switching hall and full hest in the case of the 2 kw with a safety cut－out to cut the heaters should the lmpeller stop or the air fiow be finpeded．They are free atanding and need only the simpleat of cases，even a wooden cabingt is suitable（or the plinth of the kitchen cabinet）．Lots of cuatomers missed our
special summer onfer of these heaters last year so order early． $200 / 2402 \mathrm{kw}$ model e .50 ． $200 / 2403 \mathrm{kw}$ model $£ 3 \cdot 50$ ．Control awitch he
ofl 35 p ．Postage and insurance 33 p on heatera

BATTERY CONDITION TESTER

Made by Mallory but suitable for all batteries inade by Ever Ready and
others，most of which are zinc carbon types but also mercury manganese thers，most of which are zinc carbon types but also mercury manganes puts a dummy load on the battery and the meter acale indicatea the condition depending upon which section the pointer rests．The sectio

THIS MONTH＇S SNIP

CENTRIFUGAL FAN

Mains operated，turbo blower type．Pressed steel housing contains motor and impeller．Motor is 110 h h．p．giving considerable air flow but $\times 12^{\text {z }}$ dia．outlet into trunking $10 \frac{1}{\prime \prime}^{\prime \prime} \times 4 \frac{y}{\prime \prime}^{\prime \prime}$ ． £4．95 plus $\& 1$ post and insurance．

CAPACITOR DISCHARGE CAR IGNITION

Hiefinenc canime

 This system which has proved to be amazingly efficient andreliable was first described in the Wireless World about a year ago．We can supply kit of parts for improved and even more
effcient rersion．Price $£ 44$－at plus 30 p post．When ordering DISTRIBUTION PANELS
Just what you need for work bench or lab． $4 \times 13 \mathrm{amp}$
sockets in metal box to take standard 13 amp fused

plugs and on／oil switch with ine
 20 AMP ELECTRICAL PROGRAMMER Learn In your sleep I Have Radio plaging and kettle boiling as
you awake－witch－on lights to ward of intruders－have warmu house to come home to．All these and many other things you
cmn do if you invent in an Electrical Programmer．Made by the can do if you invert in an Electical Programmer．Made by the
famous gunthe Insrument Company．This is eseentiaily a famous smithe Insrument Company．This is essentially a

 deoptage and insurance．

INTEGRATED CIRCUITS

A parcel of integrated circuits made by the fanous Plessey Compsny．A once in a lifetime

 50 diverent ICs available at bargain prices 25 p upwards with oircuits and technical data o each．Complete parcel only $£ 1$ post pald or List and all technical data．

FIRE ALARM BELI

为

AMPLIFIER MAINS TRANSFORMER

 30 V and 250 V ． 2 secondaries，one 50 V if amp，other bV 1 amp for pilot light，etc． $21 \cdot 95$ ．postage 30 p

BARGAIN OF THE YEAR

MICROSONIC RADIOS

7 tranalator Key chain Radio in very pretty case，size
$2 \& \times 2\} \times 1 \frac{1}{2}$ in．- complete with soft leather xipped 2．$\times 2 \% \times$ 1t in．－complete with soft leather xipped invequency range： 530 to $1600 \mathrm{Kol/g}$ ．8ensitivity： Power output： 40 mw ．Antenna：Rerrite rod．Louc
gpeaker：Permanent magnet type．In transit from th apeaker：Permanent magnet type．In transit from the
East，thesenets suffered slight corrosion as the batterle were left in，but when this corrosion is cleared away they should work perfectly－offered without guarante except that they are new， $21 \cdot 25$ plus 13p post and
insurance．Less batteriea．Sir for 87 ，post free．Re－ chargeable batteries 43p per pair．

MULTI－SPEED MOTOR
Replacement in many well－known food mixers． $81 x$ speeds are availsble 800 ， 860 and 1,100 r．p．p．．．from either or both
of the nylon sockets（where the beaters of the food mixers normally goo and $8,000,12,000$ 15，500 r．p．m．（ideal
polishing apeeds）from the main drive polishing speeds）from the main drive
shatt．This drive shaft is it in．dlameter and approximately 1 in ．long．A further
 point about this motor is that being $230 / 240 \mathrm{v}$ ．AC－DC serie wound Its apeed may be further controlled with the us
 useful motor eize approx $2 . \mathrm{in}$ ．dia．$x \mathrm{~S}_{\mathrm{in}} \mathrm{in}$ ．long，mains
$230 / 240 \mathrm{v}$ ．Price 88 p plus 23 p postage and inaurance． 12 or

REED SWITCHES
Glass encased，switches operated by external magnet－gold
welded contacta．We can now offer 3 types： Miniature． $\mathcal{I}^{\prime \prime}$ long x approximater 3 typer： and break up to ta up to 300 V ．Price 13 peach，$£ 1 \cdot 20$ dozen
8 tandard． 2^{2} long x to diarneter．This will break current of up to 1 A ，voltage up to 250 V ．Price 10 p each， 90 p pe Fiat．Flat type， 2^{*} long，Just over H $^{\prime \prime}$ thick，fisttened out， 20 may be packed into a square solenoid．Rating la 200 V may be packed into a squar
Price 30p each，\＆3 per dozen．
Small ceramic mugnets to operate these reed awthes $9 p$ each， 900 dozen．

BALANCED ARMATURE UNITS

These Capsuies are $1 P$ in．diame ter and t in．thick mo can be used in intercome and similar circuit

12 VOLT $1 \frac{1}{2}$ AMP
This comprises doubl
This comprises double－wound 230° 240 msins tranaformer with foll
wave rectifier And $2000 \mathrm{~m} / / \mathrm{d}$ ．
smootbing．Price $\mathrm{EI} \cdot 50$ ． NECTOR

LIGHT DIMMER
For any lamp up to 200 watt．Mounted on Mwitch plate to ft in piace of standard awitch
Virtually no radio interference．Price $21 \cdot \theta 8$
plus 20 p post and ins． TELESCOPIC AERIAL for portable，car radio or
transmitter．Canome plated－ transmitter．Chrome plated－
six sections，extends from $7 i{ }^{\circ}$ to 47° ． Hole in bottom for 6BA screw．
38 KNUCKLRD MODEL FOR P．M． 50 p ．

AC FAN

Small but very powerful maina motor with 5 in ．blades．Ideal for cooling equipment or as extractor．Bilent but very effl－
clent． 90 p，posit 23 p．Mounts clent． 90 p ，post 23p．Mounts
from back or front with 4 BA

π

TREASURE TRACER

 Complete Kit（except wooden battens） to make the metal detector as described editorially in Practical Wireless， Auguat iasue． $28 \cdot 50$ plua 20 p post and
经

LIGHT CELL

Almost zero resistant in gunlight ght，epoxy renin sealed．Size approx，lin．dis．by tin．thick． Rated at 500 MW ．wire ended．43p．suit most eircuita．

保
HIGH ACCURACY THERMOSTAT Uses differential comparator 1．C．with
therrister as probe．Designer claims tem－ perature control to within $1 / 7$ th of a degree．
Complete kit with power pack $£ 5.50$ ．

MOTOR WITH GEARBOX Very powerful 7 r．p．m．，operates from
itandard A．C．msins． $21-50$ ，plus 18 p P．\＆ \mathbf{P} ．

A Now service to Readors．A bulletin bringlig newn of new lines，special snips and＂too lew to advertise＂linee will bo
ported to subscribers during frat week of each month． The bulletin will be called＂Advance Advert News＂and the Bubseription is 609 per year．gubscribery will slao
receive our completed 1971 catalogue when this is published．

Where postage is not stated then orders over 55 are post free．Below 65 add 20p．S．A．E．with enquiries please．

J．BULL（ELECTRICAL）LTD．
Dept．W．W．7，Park Street，Croydon，CRO 1 YD

				KT88 N78 $0 \mathrm{OA}_{2}$ PABC80
	2		£	PC97
B12H	1.75	ECH84	0.45	PC900
CY81	0.35	ECH200	0.62	PCC84
DaF96	0.38	ECL80	0.45	Pcc89
DF96	0.87	ECL82	$0 \cdot 32$	PCC189
DK96	0.41	ECL83	0 －65	PCE800
DL92	0.32	ECL86	0.42	PCF80
DL94	0.40	EF36	0.45	PCF82
DL96	0.41	EF37A	0.45	PCF84
DM70	$0 \cdot 30$	EF39	0.40	PCP86
DY86	0.30	EF40	0.50	PCF200
DY97	$0 \cdot 32$	EF41	0.62	PCF201
DY802	0.48	EF80	0.25	PCF801
E88CC／01	1.80	EF83	0.55	PCF802
E180CC	0.42	EFP5	0.32	PCF805
E181CC	0.90	EF86	0.31	PGF806
E1s2CC	1．05	EF89	0.28	PCP808
eabcso	0.32	EF91	$0 \cdot 15$	PCE200
EAF43	$0-50$	EF92	$0 \cdot 37$	PCL81
EB01	0.15	EF95	$0 \cdot 30$	PCL82
EBC33	0.50	EF183	$0 \cdot 32$	PCL83
EBC41	0.52	EF184	0.35	PCL84
ECC81	0－30	EFL200	0.75	PCL85
EBF80	0.42	EL34	0.52	PCL86
EBF83	0.42	EL41	0.57	PFL200
EBF89	0.30	EL42	0.53	PL36
ECC81	0.30	EL84	0.23	PL81
ECC82	0－28	EL85	0.40	PL82
ECC83	0.30	EL86	0.40 0.35	PL83
$\begin{aligned} & \text { ECC84 } \\ & \text { ECC85 } \end{aligned}$	0.30 0.40	${ }_{\text {ELP9 }}$	0.35 0.35	PL84
ECC86	0.50	EL500	0.85	PL $\mathrm{L}^{\text {000 }}$
ECC88	0.37	EM31	0.25	PL504
ECC189	0.52	EM80	0.40	PY33
ECF80	0.35	EM84		PY80
ECF82	0.35	EM51	0.40	PY81
ECFPs	0.75	EY86	0.35	PY82
ECF801	0.62	EY81	0.35	PY83
ECF802	$0 \cdot 62$	EY88	0.40	PY88
ECH35	0.60	EZ880	0.42 0.25	PY800
ECE42	0.85	E281	0.27	PY801
ECEİ1	0.88	G784	0.58	QQVO
ECH83	0.42	KT66	$1 \cdot 80$	3－10

MARCONI VHF OSCILLATOR TYPE TF 924／J．Complete with power
unit Type TM 4230 ．Frequency range unit Type
$2,100 \mathrm{MHz}$ to $3,750 \mathrm{MHz}$ ，output power 10 to 50 mW ，Klystron Ose with auto－
matic tracking．Facilities for reflection modulation．$£ 125$ ．Carriage $£ 2$ ．
MARCONI YHF ALIGNMENT OSCILLOSCOPE TF 1104．Com－ bined sweep generator and CRO for
VHF，IF and VF analysis．RF ranges $41-216 \mathrm{kHz}$ ．IF range $10-40 \mathrm{MHz}$ ． VF range 5 kHz to 10 MHz ．Oitput $10 \mu \mathrm{~V}$ to 250 MV continuous at 50 ohms．Sweep MARCONI R／C OSCILLATOR MPRE 20 Hz to 200 kHz ．Accuracy $\begin{aligned} & \mathrm{t} \\ & \text { distortion } \\ & \text { less than } 0.5 \% \% \text { ．Stailised }\end{aligned}$ Oscillator，
VALVE VOLTMETER TYPE TF 958 Measures AC 100 mV ； $20 \mathrm{e} / \mathrm{s}$ to $100 \mathrm{mc} / \mathrm{s}$ ，
DC 50 mV to 100 V ，multiplier extends ac range to 1.5 kV ．Balanced input and centre－
zero scale，for DC．AC up to 100 MHz ． 632．50．
MARCONISIGNAL GENERATOR Frequency range 20 ， 1 S
ranges．Directly calibrated frequency dial．Output waverorm：C．W．Sinewave only）．Internal modulation frequency only）．Internal modulation frequency－
$1,000 \mathrm{c} / \mathrm{s}$ ．Output：a ，normal－con－ tinuously variable directly calibrated from $0.1 \mu v-0.5 v . b$ ，high；up to 1 v ．
modulated for 2 v ，unmodulated，output modulated for 2 v ．unmodulated，output
impedance 50 ohms．Fine frequency impedance 50 ohms．Fine frequency built－in crystal calibration for $2 \mathrm{Mc} / \mathrm{s}$ and $10 \mathrm{Mc} / \mathrm{s}$ ．Stabilised voltage supply． in excellent＂as new＂condition． Including necessary and guaranteed． and instruction manual．Price on application．

INTEGRATED CIRCUITS
 MANY OTHERS IN STOCK

${ }_{\mathrm{R}}^{\mathrm{RCA}}{ }_{30}$
 CA 3012 wide band ampl． 150 mW W $\mathbf{~ d i s s}$ ．．．．．．．．．．．．．．．．．．．．．．．．．．

 Mullard 300 ［1．75；TAA $320 \quad \mathbf{6 0 . 7 3}$

REDIFON

Twinplex combiner type AFS 13 E65 Twinplex converter type AFS 12 with P．S．W．$£ 85$
F．S．K．unit type GKI85A $\mathbf{£ 5 8} \cdot 50$ ．

VALVES \＆TRANSISTORS

 PHONE 0I－743 4946

 ＊施管 UBC41
UBF80
UBF89
UCC85
UCF80
UCH42
UCE81
UCL82
UCL83
UV41
UF80
UF89
UL41
UL84
UU5．
UY41
UY85
 フNNNNनー

PLEASE NOTE Unises．aters．ALL EQUIPMENT

MARCONI TEST EQUIPMENT

Limited aval－SIGNAL GENERATOR TF B01／A
only．
able．Full spec
$10-300 \mathrm{Mc} / \mathrm{s}$ ，in 4 bands
 $\begin{array}{ll}\text { and price on } \\ \text { request．} & \text { Output } 0.100 \mathrm{db} \text { below } 200 \mathrm{mV} \text { from } \\ & \end{array}$ 75 ohms source．©85．DITTO but 801／A／1 with additional high level output．E89．Both P．\＆P．El，in－ and instruction ．manual．
TF $144 G$ SIGNAL GENERATOR．To Complete with mains and battery cables，
ete．fls．

HEWLITT PACKARD AUDIO SIGNAL GENERATOR MODEL 206A E89．50．Carriage C．1．50．Full specification for S．A．E．

REMSCOPE TYPE 741 STORAGE

 OSCILLOSCOPE．On trolley，com－ pluge with plug－in trace shifter and twoplaplifiers．Price on applica－ plugein Y amplifiers．Price on applica－
tion．

SIGNAL GENERATOR TYPE CT

 $480.7-12 \mathrm{kMHy}$ in one range，square andpulse modulation and $\mathrm{C} . W$ ．E65． pulse modulation and C．W． SIGNAL GENERATOR TYPE CT 478．As above but $1.3-4.2 \mathrm{kMHz}$ in two ranges $\mathbf{5 5}$ ．
$1 \frac{1}{2} \mathrm{in}$ ，DIA．PANEL METERS． $7 \frac{1}{6}-15 \mathrm{y}$ indicators for cars $\mathbf{£ 0 . 7 7}$ ．
BOONTON Q METER TYPE 160A． Freq．range 50 kHz to 75 MHz ，main capaci－
tor 30 to 500 pF ．Vernier capacitor $\pm 3 \mathrm{pF}$ ： ces range． $0-250$
VALVE CHARACTERISTIC METER
complete with manual $£ 57.50$ ．Carriage Complet

$\$ 1.50$ ．
MULLARD PRECISION VARIABLE CAPACITORTYPE F．2．
15 pF to 336 pF ．Supplied with individual calibration certificate．Brand new in
original packing．il7．Carriage 75p SUSPENSION GALVANOMETERS Pye E25．P．\＆P． 60.60 ．
Cambridge instruments 12．P．\＆P．$£ 0.60$ ．

VACUUM CONDENSERS
 MULTIME TER TYPE CT47IB．This and D．C．current，A．C．and D．C．voltage and D．C．resistance．Built－in battery check As above but MODEL CT 47IA manu－ factured by AVO，full spec and price on 4,5 and 8 bank 25 way uniselectors， 24 V ，guaranteed perfect， $\mathbf{6 3} \mathbf{6 5}$ ； AR88 SPARES．We hold the largest stock
in U．K．Write for list．
 PRECISION VHF FREQUENCY accuracy 0.03% and $300-1,000 \mathrm{Mc} / \mathrm{s}$ with accuracy $0.3 . \%$ ．Additional band on harmonics $5.0-6.25 \mathrm{Mc} / \mathrm{s}$ with ac－ curacy $+2 \times 10-6$ ．Incorporating calibrating
10 quartz
$120 / 220$
v．A．C．mains．
E85． Carriage $£ 2$ ．
MUIRHEAD－WIGAN DECADE OS． ＋Open 9－12．30；1．30－5．30 p．m． t except Thursday 9－1 p．m．

 ordered from us is completely over－

AM／FM SIGNAL GENERATOR TF
937 （CT 218）Frequency 937 （CT 218）．Frequency range 85 kHz
30 mHz .8 bands．Main dial total 56 foot． Built in crystal calibrator 200 kHz and
2 mHz ．RF outpue $1 \mu \mathrm{~V}$ to $\cdot 1 \mathrm{~V}$ ．Fourinternal mod，freq．FM deviation up to 9 kHz ． fll l ． F．M．DEVIATION METER TYPE TF934．Frequency range $2.5-100 \mathrm{MHz}$ Can be used up to 500 MHz ．Deviation
range $0-75 \mathrm{kHz} £ 67 \cdot 50$ ．Carriage $£ 1.50$ ．

SOLARTRON EQUIPMENT

CD 7IIS．2．Double beam．DC
7 MHz ＇scope， $\mathrm{C85}$ ．Carriage EI 50 ．
HARNESS＂A＂\＆＂B＂control units，
junction boxes，headphones，miero junction box
phones，etc．

29／4IFT．AERIALS each consisting of ten 3 ft．，fin．dia．tubular screw－in sections．Ilft．（6－section）whip aeria with adaptor to fit the 7 in ．rod，insu
lated base，stay plate and stay assemblies pegs，reamer，hammer，etc．Absolutely brand new and complete ready to erec in canvas bag，£4．P．\＆P．£0－50．

FOR EXPORT ONLY
53 TRANSMITTERS．AII 53 TRANSMITTERS．All spares
available．COLLINS TCS．Complote
installations and installations and spare parts． 5 KW
COLLINS
TYPE 231 D
THSTMTE tune and manual tuning．Complete
with very comprehensive spares．Full tune and manual tuning．Complete
with very comprehensive spares．Full
specification and price on application． specification and price on application
Complete installations and all spares．No． 19 WIRELESS SETS． H．P．SETS and all spares R． 210
RECEIVERS with all necessary accessories．
PYE PTC 2002N A．M．Ranger Mobile Radio Telephone，brand new and complete， 45 ． th adaptor to fit the 7 in ．rod，insu－ RECEIVERS with all necessary
accessories．

Tubes	
R97	4.50
178	R 5
R517C	C 7.5
	1.32
	9.0
	9.0
	8.00
to Tubes	
G25	2.75
	$3 \cdot 50$
	17.8
cial Valves	
2339	20.0
／7D	37.5
1	5.0
	12.0
	18.0
	16.00
N2A 3． 50	
417A 1.50	
92／E	37.50
	18.00
AY	． 00
	18.00

70 Goldhawk Rd．，London，W． 12 Tel．01－7430899 To view TEST EQUIPMENT please phone for appointment

RSC MK III SUPER 30 HI-FI STEREO AMPLIFIER

FANE 807 HIGH FIDELITY LOUDSPEAKER

 £ 33.75 Or Factory BuILT in cabinet as illustrated
Dep. 88 -and y monthly paymenta $£ 3-86$ (Total $240-74$)
£ 36.75 PRINTED CIRCUITRY, TWENTY sILICON TRANGISTORS, FOUR PRINTED CIRCUITRY, TWENT
DIODES, FOUR RECTIFIERS.
\qquad

OUTPUT: 15 watts R.M.S. (Continuous) into 8 obms,
BUM \& NOISE -75 dB Min. Vol. (Continuous) Into 15 ohms
GARMONTC. DISTORTION: Voll. - 65 dB Full Vol.
PREQUENCYRESPONSE:- 3 dB 7 Hz to 70 KHz
TREBLE CONTROL: +16 dB to -12 dB at 14 KHz
BASS CONTROL: +17 dB to -16 dB at 40 Hz KHz OROSS TALK -58 dB
REAR PANEL SOCKETS ARE FOR 3 PAIRS OF INPUTS (1) P.U. (2)
Radio (3) Tape Amp. Plua pali for tape recorder ofgnal take offinnd 2 pairs

LOUDSPEAKERS Heavy com magnets. Treated Cone surround or indicates Tweeter Cone providiag
extended trequency range ap to 15,000

WHEN ORDERING PLEASE STATE IMPEDANE

 With full wiring diagrama and instructions. Carr. 40 p.
FACTOR BULT WITH 12 MTH GNTEE. Eig 50 . Or dep. $£ 3$ and 9 mnthy pymts. $£ 2 \cdot 15$ (Total $£ 22 \cdot 35$). Or in Teak veneer housing. $£ 23$. Or Dep. f 3 an and
9 mthy. pymts $£ 2.55$ (Total $£ 25 \cdot 85$).

FANE ULTRA HIGH POWER
LOUDSPEAKERS Al power rating are 2 years' Ruaranteei High gux ceramic maznets
Heavy chat chasis. ALL OARRIAGE PREE

 $200-250 \mathrm{v}$ A.C. mains operation. Attractive
silver finished metal facla plate and matching control knobs, Complete KIT of PARTS INCLUDING FULLY WIRED PRINTED CIRCUIT and comprehensive wiring diagram apd instructions. R.S.C. AIO 30 WATT ULTRA LINEAR

 Sensitivity 36 milulvolts. Suitable for High Impedance mic. or
pick-ups, Designed for clubs, Sohools, Theatres, Dance Ealls or
Outdoor Pund Outdoor Punctions, etc. For use with Electronic Organ, Guitar, String Bass, etc. Gram, Radio or
Tape. Reserve L.T. and H.T. for Radio Tuner. Two Inputs with associated volume controls so that two separate inputs such as Gram and "Mike" can be mixed.200-2bu V. A.C. For 3 \& 15Ω
speakers. COMPLETE KRT PARTR WIRNG DIAGRAMS, INSTRUCTIONS. Twin-handied

RSC BASS-REGENT 50 WATT AMPLIFIER

INTEREST CHARGES REFUNDED ON CREDIT SALES SETTLED IN 3 MONTHS	
R.S.C. MANS TRANSFORMERS	
PULLYGUARANTEED,Interleaved and Impregrad	
LLI SHROUDED UP	
${ }_{4}^{425} 0.0-4255.220$	
250 m	
-250v. 100 m	
Buitable for Mulard 510 Amplig	
. $330 \mathrm{~m} .150 \mathrm{~mA} \mathrm{~m}^{6.3 \mathrm{v}}$ 4 0	
GER TRANSFOMMERS 0 -9-15	
8s. $\& 2.00$.	
$30-250 \mathrm{v}$. $50-80$ -150 Fatt., 201 20: 250 . 51-80 \square 22.75. 500	
CUTTPUT TRANSFORMER	
Push-Pull 15.18 watte, sectionally wound 6L6 KT66, etc., for 3 or 15 ת	

AUDIOTRINE A55 HGH QUALITY STEREO SYSTEM

5 + 5 WATT OUTPUT

Garrard. 5200 Changer with low mass pick-up arm and Stereo Cartridge. Controls: TREBLE, BASS, YOLUME, STEREO, BALANCE. Operation on $200-250$ v. A.C. malna. Output rating I.E.F.M.
Larurious Teak Veneer Finished Cablneta.

PAIR OF

 LOUDSPEAKER UNITSPRICE COMPLETE ONLY
. $£ 442$

Terme: Deposit $\mathrm{E}_{5} \cdot 50$ and 8 monthly

SMOOTHING CHOKES
 $\frac{10 \mathrm{H.} 400 \mathrm{~g} 25 \mathrm{p} .}{\text { SPECIAL }}$ HI-FI OFFERS WHARFEDAL Eil Order On WHARFEDALE/F.A.L. 1 Pr. Wharfe dale Super Linton
Speakers. 1 F.A.L. Phase 32
15.15 W. Total Rec. Retail Price ¢87-70 $566 \cdot 50$
Above brand new goods.
following have beenunpacked
LEAK MINI SANOWICH (Teak finish) $\mathbf{E} 18$ ROGERS RAVENSBROOK STERED AMP. E39 TANDBERG 62X Tave Recorder (Stereo) £88 GOLDRING GL68
Transcription Turntable and P.U. £14-50

GOODMANS AUDIOM 91
18^{n} speaker $\quad 19.95$

28watts, r.m.s. 40 Hz to $40 \mathrm{kHz} \pm 3 \mathrm{~dB}$

Viscount III Audio Suite complete
 $\mathbf{x} 49$

PRICES SYSTEM 1
Viscount III R1.01 amplifier $£ 22.00+90 \mathrm{p}$ p\&p $2 \times$ Duo Type II speakers. $\quad £ 14.00+£ 2$ p\&p Garrard SP25 Mk. III with MAG. cartridge, plinth and cover

$\frac{£ 23.00}{£ 59.00}$

Available complete for only $£ 52.00+\mathbf{£ 3 . 5 0} \mathbf{p \& p}$ SPECIFICATION (R100/101)
14 watts per channel into 3 to 4 ohms. Total distortion © 10 W @ 1 kHz O.1\%. P.U. 1 (for ceramic cartridges) 150 mV into 3 Meg. P.U. 2 (for magnetic cartridges) 4 mV (14) 1 kHz int 47 K . equalised within $\pm 1 \mathrm{~dB}$ R. 1.A.A. Redio 150 mV into 220k. (Sensitivities given at full power.) Tape out facilities: headphone socket, power out 250 mW per channel. Ton controls and filter characteristics. Bass: +12 dB to - 78 e 6anz. Bass filter: 6 dB per octave cut. Treble con treble +12 dB to $\tau 12 \mathrm{~dB} @ 15 \mathrm{kHz}$ Trebte filter: 12 dB per octave, signal to noise ratio: (alir controls al max)
P.U. 1 \& radio 65 dB P.U. $2-58 \mathrm{~dB}$. 月100 same as RT10 but P.U. 2 (for crystal cartridges) 450 mV into 3 Meg. Cross talk better than - 35 dB on all inputs. Overfoad characteristics better than 26 dB on all inpuls.
Size 137"×9"x 3 in $^{\prime \prime}$

SYSEM2

As System 1, but with $2 x$
Duo Type III speakers at pair $£ 32.00+£ 3 p \& p$ Available complete for $\mathbf{£ 6 9 , 0 0}+\mathbf{£ 4} \mathbf{p \& p}$ SYSTEM 3
Viscount III Amplifier R100 $£ 17.00+90 p$ p\&p $2 \times$ Duo Type II speakers, pair $£ 14.00+£ 2$ p\&p Garrard SP25 Mk. III with
CER. diamond cartridge
plinth and cover $\quad \mathbf{£ 2 1 . 0 0}+\mathbf{£ 1 . 5 0}$ p\&p

$$
\text { Total } £ 52.00
$$

Available complete for only $\mathbf{£ 4 9 . 0 0}+\mathfrak{£ 3 . 5 0} \mathrm{p} \mathrm{\&} p$ SPEAKERS Duo Type II
Size $17^{\prime \prime} \times 1 \frac{3}{4}^{\prime \prime} \times 6 \frac{3^{\prime \prime}}{}$. Drive unit $13^{\prime \prime} \times 8^{\prime \prime}$ with parasitic tweeter. Max. power 10 watts 3 ohms Simulated Teak cabinet. £14 pair $+£ 2$ p\&p Duo Type III Size $23 \frac{1^{\prime \prime}}{} \times 11 \frac{1}{2}^{\prime \prime} \times 9 \frac{1}{2}^{\prime \prime}$. Drive uni $13 \frac{1}{2}$ " $\times 8 \frac{1}{4}^{\prime \prime}$ with H.F. speaker. Max. power 20 watt at 3 ohms. Freq. range 20 Hz to 20 kHz . Teak veneer cabinet. $\mathbf{£ 3 2}$ pair $+\mathbf{£} 3 p \& p$.

Output Power. 45 watts R.M.S. (Sine wave drive). Frequencr response: -3 db points 30 Hz at 18 KHz Total distonion: less than 2\% at rated output Signal to noise ratio: better than 60 dh Spasker Impedonce: 3,8 or 15 onme Beas Conc: 1, 13 ar 00 Range: ± 13 do ± 12 Treble Control Range: $\pm 12 \mathrm{db}$ at 10 KHz . Inputs: 4 inputs at inputs controlled by separate volume control. 2 inputs at 200 mV into 470 K To protect the output valves, the incorporated fail safe circuit will enable the amplifier to be used at half power. SPEAKERS: Size $20^{\circ} \times 20^{\prime \prime} \times 10^{\prime \prime}$ incorporating $12^{\prime \prime}$ heavy duty 25 watt high flux, quality loudspeaker with cast frame. Cabinets attractively finished in two tone colour scheme-Black and grey.

```
COMPLETE S Plus Or availabie separately
Amplifier: £28.50 plus £1.50 P. & P.
Sound 50 amp and 2 speakers P. & P. Speaker: £12.50 each plus £2.25 P. & P.
```


CONTINENTAL 4-TRACK, 3-SPEED TAPE DECK

 with high impedance headsR.C. 74 tape deck. These speeds-7, 37 and $1 \frac{1}{6} \varphi \mathrm{P}$. 4 -tack recordplayblack head. Plus 4 -track arase head. Posstive pressure pad 5 5ystem Takes any tape spool up to and including 7 . The
R.C. 74 is driven by a powerful $200 / 250 \mathrm{~V} 50$-ycto AC motor. A theaw, accurately balanced. flywhel brings wow and thuter levels dom to approx. 0.3% total al 31 and $7 \frac{1}{1}$ igs. Fasi rewind in both directions
Contrals couldn't be simpler! Just five push buttons that interiock to cut out accidental tape damage. Efficient servo-sction type braking. Easy drop-in tape laading.
The R.C. 74 comes with an attractive moulded deck cover, which has positions for tore and volume controls. The unit is built into rigid die-cast frame, and overali size of the whole unitis 12 * 11 ₹ 6 inches. Every sirgits deck fully tested before dispatch. Spools not supplied Price complete $\mathbf{f 1 5 . 0 0 . ~ P l u s ~} 750$ o. \& o.

TOURIST CAR RADIO

MARK 3
ALL TRANSISTOR

Beautifully desighned to blend with the interiors of all cars. Permeabitity Iuming and long wave loading
 module and tunar logether with comprehensiva insitivetions guarantees success first time 12 voits

Circuit diagman 13p. Free with parts. Spesker, bafllo and fying kit $£ 1,25$ extre plus 20 p P, \& P. Speaker postape free when ordeted with parts.

SET OF PARTS f6. 30

RADIO \& TV COMPONENTS (Acton) LTD 21a High Street, Acton, London, W.3. 6.NG Also 323 Edgware Road, London, w.2. ALL ORDERS BY POST to Acion Goods not dispatched outside U.K Terms' C.W O All encuiries S. A.E.

SERVICE TRADING CO

VARIABLE VOLTAGE TRANSFORMERS

INPUT 230 v. A.C. 50/60 OUTPUT VARIABLE 0/260 v. A.C. BRAND NEW. Keenest prices in the councry. All eypes (and spares) from
\pm to 50 amp. available from stock.
$0-260 \mathrm{v}$. at 1 amp . $0-260 \mathrm{v}$. at 2.5 amps $0-260 \mathrm{v}$. at 5 amps . $0-260 \mathrm{v}$. at 10 amps . $0-260 \mathrm{v}$. at 20 mmps . $0-260$ v. at 25 amps. 0.260 v . at 37.5 amps $0-260 \mathrm{v}$. at 50 amps
65.50
66.75

26.75
89.75

818.75
$£ 18.50$
618.50
625.00
$\mathbf{2 5 7 . 0 0}$
£ 49.00
£ 72.00 £ 92.00

OPEN TYPE (Panel mounting). $\frac{1}{2}$ amp. $\mathbf{E 3 . 9 3}$
 GENERATOR, fitted with motor drive for 230 v. A.C. giving a potential of approx including accessories for carrying out a number of interesting experiments, and full instructions. This instrument is for School demonstrations. E7.50, plus 60p P. \& P. 1
T.M.C. ILLUMINATED LOCKING

PUSH BUTTON KEY SWITCH NO 55288576 co
Comple
Complet Push mounting
enses (GREEN AMBER RED or CIEAR
reference) Price 88p each excluding bulb Post Paid
Discount for quantities of 200 or ove
ALARM BELL
Manufactured by GENTS. 6 inch bell, $3 / 6$ vole D.C. operation
ís.28 $\frac{\text { VIus }}{\text { VOLT }}$ D.C. BLOWER UNIT
Powerful, smooth running, precision made Blower Unit. 5,000 RPM, :54 amps. size $3^{\prime \prime}$ diameter \Varangle
LIGHT SOURCE AND PHOTO CELL MOUNTING
Precision engineered light source
with adjustable lens assembly and
ventilated lamp housing to take
—— $03=$
MBC bulb. Separate photo cell mounting assembly for ORP. 12 or similar cell with optic window. Both units are single hole fixing. Price per pair 2 Kit of parts including ORP. 12 Cadmium sulphide Photocell. Relay Transistor and High Speed Relay for 6 or 12 vole operazions. Price $\mathrm{E1} .25$, plus 12 P P. \& P
ORP. 12 and Circuit 63 p post paid.

220/240 A.C. MAINS MODEL
incorporates mains iransiormer rectifier and special relay with , make, break, H.D. contacts. Price inc
cireuit $£ 2.38$, plus 20 P P. \& P. $-200-250$. A.C. NEON INDICATOR

Car (a) Available in RED or AMBER ai 20 p

MOTOROLA MACII/6 PLASTIC TRIAC 400 PIV 8 AMP
Now avallable EX STOCK supplied complete with full data and applications sheet. Price $\& 1-05$ plus 7p P. \& P
Suizable diac 30 p (RCA40583)

ELECTRONICORGANKIT

 Easy to bulld, solid
state. Two full octaves state. Two full octaves
(less sharps and flats). (less sharps and flats). powered by two penComplete set of parts including speaker, etc., cogether 50 - in T ELECTRONIC PROJECT KIT
0 easy to build Projects. No soldering, no special tool required. The Kit includes Speaker, meter, Relay, fransformer, plus a host of other components and a 56 projects are: Sound Sol Mexample Transiser Radio Amplifier etc., etc. Price ©7.75. P. \& P. 30p. \longrightarrow CRYSTAL RADIO KIT
Complete set of parts including: crystal diode, ferrite aerial, drilled chassis and personal ear-oiece. No soldering, easy to build, full step-by-step inseruction

Posteve and Cazriage show Overnem pleas ansk ar ortatio insue a onfalorae or list.

Town RHEOSTATS
 (NEW)

 Enamel, heavy duty brush assembly designed for continuous duty. AVAILABLE FROM 00 WATT I Ohm 10250 hm 7 F 10 ALU 25 ohm 2 a ., 50 ohm l.4a., $100 \mathrm{ohm} / \mathrm{la}_{\mathrm{rg}} 250 \mathrm{ohm}$. 7 a ., $500 \mathrm{ohm} \cdot 45 \mathrm{a}$., 1 k ohm 280 mA ., 1.5 k ohm $230 \mathrm{~mA} ., 2 \cdot 5 \mathrm{k}$ ohm ${ }^{2} 2 \mathrm{a}$., 5 k ohm 140 mA ., Diameter 3 tin. Shafe length $\frac{3}{5 i n}$, dia. $\frac{15}{6}$ in. $f 1 \cdot 50$. P. \& P. 15 p . 50 WATT $1.12 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{~K} / 1.5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K}$ 5 K ohm. All at $£ 1 \cdot 12, \mathrm{P} . \&$ 5 WATT $10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{~K} / 1 \cdot 5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K} / 3 \cdot 5 \mathrm{~K}$ ohmBlack Silver Skirted knob callbrated in Nos. I-9. It
in. dia. brass bush. Ideal for above Rheostats, I8p ea.
UNISELECTOR SWITCHES-NEW 4 BANK 25 WAY FULL WIPER
ohm coil 24 Y D.C operation 65.88
BANK 25 WAY FULL WIPER
25 ohm coll, 24 v. D.C.
peration. \&6.50, plus 22p P. \& P
8 BANK 25 WAY FULL WIPER

24 v. D.C. operation. £7.63, plus 22p P. \& P.
 3 banks of II positions; plus homing bank. 40 ohm coil. 24-36v. D.C. operation. Carefully removed from equipment and
cested: $£ 1 \cdot 13$, plus 13 p P. \& P.

VERY SPECIAL OFFER

Cannot be repeated. 500 v. 50 Meg Record insulation
STROELSTRODCLSTROEL
r
THREE EASY TO BUILD KITS USING XENON WHIT TRIGGERING CIRCUITS, PROVISION FOR EX The Strobe is one of the moss useful and interestin
instruments in the laboratory or workshop. it is instruments in the laboratory or workshop. It
invaluable for the study of movement and checkin of speeds. Many uses can be found in the psychiatric
and photosraphic fields, also in the entertainment business. It is used a great deal in the motor industry
and is a real sool as well as an interesting sciensific

EXPERIMENTERS "ECONOMY" KIT Adjustable to 36 Flash per sec. All electronic components including Veroboard S.C.R. Uniiunetio NEW INDUSTRIAL KIT
in printed circuit. New tre laboratories etc. Roll HY-LYGHT STROBE halls and the photographic field, and usilizes a silica cube for longer hife expectancy, printed circuit for
easy assembly, also a special trigger coll and output

AND NOW!

THE 'SUPER' HY-LYGHT KIT
Hy-Lyghs strobe. Heavy duty power supply
Incorporating. Mer
Tncorporating. Meavy duty power suppl
Variable speed from 1-23 flash per sec.
Fantastic Octal based tube with massiv. Fantastic Octal based sube with massive electrodes.
Reactor control clrcuit producing an intense brilliant light output of the 'SUPER' HY-LYGHT
fabulous effects with colour filsers. Never before a Strobe Kit with 50 HIGH an
output at so LOW a price. ONLY C 20.00 plus 75 p P: \& P 7-INCH POLISHED REFLECTOR. Ideally suited
for above Strobe Kits. Price 53p and I3p P. ${ }^{\text {a }}$ P. or

RUNNING HOUR METER. 240 volt, 50 eycle, $2^{\frac{1}{2}}$ watt. Calibrated in minutes. Six figure. PRICE;

VENNER ELECTRIC

TIME SWITCH
 TIME SWITCH

200/250 vole Ex-GPO. Tested, perfec
condition. Two ON, two OFF, every 24 hrs at any manuály pre.ser time. Price: 10 amp .
E2.75. 15 amp . 25.20 mmp . 33.75 P. 8 P .
20p. Also available with Solar Dial ON at

INSULATED TERMINAL8 Available in black, red, white,
yellow, blue and green. New 10p each. Post pald,

SEMI-AUTOMATIC "BUG" SUPER SPEED

 MORSE KEY7 adjustments, precision cooled $\sim=1 \%$ speed adjustable
high as desired.

$$
\begin{aligned}
& 10 \text { w.p.m. to } \\
& \text { Weight } 2 \frac{1}{2} \mathrm{lb} \text {. }
\end{aligned}
$$

A S AYS NEW SIEMENS PLESSEVY,
MINITURE RELAYS AT COMPETITIVE PRICE5,
6-9 2 HDM 50p 700 12-24 2 c/o

185 6-12 $4 \mathrm{c} / 0 \quad 73 p^{*} 70015-35 \quad 2 \mathrm{c} / \mathrm{oHD} 73 \mathrm{p}^{*}$ 230 9-18 $2 \mathrm{c} / \mathrm{OHD} 63 \mathrm{p}^{*}$, 1250 24-36 $4 \mathrm{c} / \mathrm{o} \quad 63 \mathrm{p}^{*}$
 $\begin{array}{lllll}600 & 18-324 \mathrm{c} / 0 & 78 \mathrm{p}^{*} & 2400 & 30-48 \\ 5800 & 40-70 & 4 \mathrm{c} / \mathrm{o} & 50 \mathrm{p} & 63 \mathrm{p}^{*}\end{array}$
 (1) Coil ohms; (2) Working d.c. volts; (3) Contacts; (4)
Price $H O=$ Heavy Duty. All Post Paid. ©including Base. MAINS RELAY
230 v . A.C. coil $3 \mathrm{c} / \mathrm{o}, 10 \mathrm{amp}$. A.C. contacts, 50 p
 COMPLETE N
FIT (EX W.D.)

2 metal carrying cases vols 7 AH (12 v .) batteries also $10 \times 1.2 \mathrm{v} .22 \mathrm{AH}$
(12 v.$)$ basteries ($40 \mathrm{bas}-$ ceries in all). I Dual charistor controlled
 harging unit. Designe 22AH batteries simul taneously. Input voltage can be adjusted between
$100-250 \mathrm{v}$. A.C. Built to ministry specification. Ideal power supply for field work. Offered at fraction o makers price. 2 sets of

NICKEL CADMIUM BATTERY

1.2 v. 35 Ah. Size 80 high $\times 3 \times 10 . ~ £ 1.50$ each, plus 20 p Sintered Cadmium Type 1.2 v. 7 AH . Size: height $3 \frac{1}{2}$ in. width $21 \mathrm{in} . \times 1 \frac{3}{10} \mathrm{in}$. Weight: approx. 13 ozs. Ex-R.A F 230 VOLT AC SOLENOID EXTREMELY POWERFUL SOLENOID with approximately 141b. pull, linch travel. Fitted with ${ }_{23} \frac{3}{z}$ inches wide and 3 inches high. Price $\mathbf{\& 2} \cdot \mathbf{0 0}$ including post $\&$ pkgi

 pull. Size
tured by 36 volt 30 amp . A.C. or D.C. Variable L.T. Supply Unit Input $220 / 240$ V. A.C. Output Con-
tinuuusly variable $0-36$ v. A.C./D.C.
Fully isolated Fited in robuse meral Fully isolated. Fitted in robust meral
case with Voltmeter, Ammeter, Pane Indicazor and chrome handles. Inpur and Output fully fused.
Ideally suited for Lab. or Industrial use. 558 plus fin
$230 \mathrm{~V} / 240 \mathrm{~V}$ COMPACT SYNCHRONOUS GEARED MOTORS
\qquad
\qquad
\qquad 2 revs. per hour. Anckwise rotation.
3 revs. per hour. Antiolotion.
5 revs. per hour. Anti-clockwse rotation.
15
 makers' price
All at 75 p

12 YOLT DC MOTOR Powerful 12 volt 1 amp REVER5IBLE
motor. Speed $3,750 \mathrm{rpm}$. Complere with external gear train (removable) 4 giving $x 2$ in in. dia. Price inc. post $95 p$.
PARVALUX TYPES DI9 2301250 VOLT AC REVERSIBLE GEARED MOTORS
30 r.p.m. 40 Ib. ins. Positio drive spiridle adjustable to
different angles. Mounted substantial cast aluminium base. Ex-equipmeng. Tested and really powerful motor offered at a
really powe rful motor offered ata , \& P. Yop
fraction of maker's price, \&6.30, P, \& P.
SPECIAL OFFER RADIO SPARES
 connections. Size $4 \frac{1}{} \times 4 i \times 3 i$ ins. 64-50. P. \& P. 25p.

GARDNERS HEAVY V DUTY HT TRANSFORMERS | Pri.110-220-240v. Sec. 255-0-6a. Conservatively rated. 'C' core |
| :--- |
| Table top connections. Size $10 \times 8 \times 7 \mathrm{in} . \mathrm{E} 12.75$. Carr. $\mathrm{El} \cdot 50$. |

T.E.C. 240-110v. ISOLATION TRANSFORMERS Pri Tapped 10.0 .200 .220 .240 v . sec. Tapped 110.112 .5 -
115 v . Conservatively razed at 9 amps. Tropicalised open frame type. Terminal Board connections. Size $9 \times 9 \times$ 7 ins . Weight 60 lbs . 61500 . Carr. 90 p .
Gardners Pri $200-220240 \mathrm{~V}$. ES Sec. tapped "100-1 $10-$
120 V . Conservatively rated at 2.8 amps. "C" core.
67.75 . Carr. 75 p.
HEAVY DUTY LT TRANSFORMERS
By famous maker. Fully Tropicalised. Pri tapped 100 ,
$110,120,200,220,240 \mathrm{v}$. E.S. Threc Separate Secondaries $27,99 \mathrm{a}, 9 \mathrm{v}$. $9 \mathrm{a.a}$,3 vo . 9 a . Plus $17-0.17 \mathrm{v}$. 0.25 a and 17 v .
0.25 a . Table Top Connections. 44.00 . Carr. 50 p.
PARMEKO "C" CORE TRANSFORMERS
Pri. tapped $110-200-240 \mathrm{v}$. Sec. I 250 v . I97. m/a. Sec.
$161 \mathrm{v} .110 \mathrm{~m} / \mathrm{a}$. $5 \mathrm{sec} .3152 \mathrm{v} .76 \mathrm{~m} / \mathrm{a}$. Sec, $4124 \mathrm{v}$.25 m
 Table top connections. Siz
boxed. 11.75 . P. \& P. 45 p.

REDCLIFFE 'C' CORE TRANSFORMERS All Primaries tapped 200-220-240y. Table top connections. $\mathrm{Sec} .130 \mathrm{v}, 450 \mathrm{~m} / \mathrm{a}$. Three times. $64 \cdot 25$. P. \& P. 40 p . $11-0-11 \mathrm{v} .0$ $176 \mathrm{~m} / \mathrm{a} .7^{7} \mathrm{p}$. P. \& P. 20 p . $22 \mathrm{v} . \mathrm{i} .9 \mathrm{a}$. and $21 \mathrm{v} ., 60 \mathrm{~m} / \mathrm{a}$. 23.5 v, , 0.1a. twice, $75 \mathrm{p} . \mathrm{P} . \&$ P. $20 \mathrm{p}, 6.3 \mathrm{v} ., 10.6 \mathrm{a}$. Conservatively' rated. $61-75$. P. \& P. 25p. 20-24-28-32-36-40v., $250 \mathrm{~m} / \mathrm{a}$. Twice. \&1-50. P. \& P. 30 p. $90-0-90 \mathrm{v} ., 100 \mathrm{~m} / \mathrm{a} .75 \mathrm{p}$. P. \& P. 20 p .

GRESHAM HEAVY DUTY HT CHOKES

 fi-25. P. \& P. 40 p.
GRESHAM HT TRANSFORMERS

PARMEKO E.H.T. TRANSFORMERS Pri. $110,220,{ }^{230}, 250 \mathrm{v} . \mathrm{Sec}$. $1000-0-1000 \mathrm{v}$. $122 \mathrm{~m} / \mathrm{a}$. Potted
type, $63.75, \mathrm{P}, \& \mathrm{P} .50 \mathrm{p}$. Ignition transformers. Pri. 240 v , Sec. $10,000 \mathrm{v} .20 \mathrm{~m} / \mathrm{a}$. Cont. mid point of sec. Earthed to case.
Enclosed in metal case. Size $5 \times 4 \frac{1}{2} \times 4 t$ ins. Weight 11 . Enclosed in metal
E4.50. P. \& P. 75 p .

9 \& 10 CHAPEL ST., LONDON, N.W.I
01-723-7851
01-262-5125
CURRENT RANGE OF BRAND NEW L.T. TRANS CURRENT RANGE OF BRAND NEW LTT. TRANS-
FORMERS. FULLYSHROUDED ("excepted) TERMINAL BLOCK CONNECTIONS. ALL PRIMARIES 220/240y

 $\begin{array}{lllll}\text { IA } & 25-33-40-50 & \ldots & \ldots & 15 \\ \text { IB } & 25-33-40-50 & \cdots & \ldots & 10 \\ \text { IC } & 25-33-40-50 & 6 \\ \text { ID } & 25-33-40-50 & \cdots & \ddots & 3 \\ \text { IA } & 4-16-24-32 & \ddots & & 12\end{array}$

AMERICAN WILLARD
Miniature accumulators $6 \mathrm{~V} .1 \cdot 2$ A.H. SARe $i \times 1 t \times 4 \mathrm{in}$. We.
$5 \frac{1}{2}$ oz. Thesc batteries were designed for meteorological Miniature accumulators $6 v$. $1 \cdot 2$ A.M. Size $\times 1 \frac{1}{2} \times 4$ in. Wt.
$5 \frac{1}{2}$ o. These batteries wesined for meteorological
balloon transmitters. Easily filled with a hypodermic syringe.
$240 \mathrm{v}-110 \mathrm{v}$. or AUTO TRANSFORMERS 100 v . Completely Shrouded fitted with Two-pin American Sockets or terminal blocks. Ple state which type required.
Type

Type	Watts	Approx. Weight	Price	Corr.
1	80	$2 \pm \mathrm{lb}$.	E2.00	30p
2	150	4 lb .	E2.75	35p
3	300	$6 \pm \mathrm{lb}$.	63.75	35p
4	500	$8 \frac{1}{16}$	65.25	45p
5	1000	15 lb .	87.25	50 p
6	1500	25 lb .	69.75	55p
7*	1750	28 lb .	614.75	75p
$8 *$	2250	30 lb .	C17.85	75p

- Completely enclosed in beautifully finished metal case fitted
balloon transmitters. Easily filled
Self sealling. 37p. P. \& P. 10 p .

SCOTCH MAGNETIC TAPE
Type 3M $459+$ in. 3,600 feet. Supplied new in maker
cartons. Fraction of makers price. $£ 3.75$. P. \& P. 40 p.
HAYDON SYNCHRONOUS MOTORS Leng.m. AC. x in. in . diameter. Overall size $2 \frac{1}{2} \times 2 \times 1$
 NEWMARK SYNCH
$220-240 \mathrm{v}, 50$
eveles, ${ }^{3}$ watts ${ }^{8}$. F.p.m.
Overall size $2 \times 2 \times 2 \mathrm{in}$. 50 p. P.P. Iop.,

VENNER SYNCHRONOUS BIO-

$220-240 \mathrm{v} .50$ eycles $40 \mathrm{r} . \mathrm{p} . \mathrm{m}$. automatically reverses wherever spindle stop is placed. Overall size $2 \frac{1}{2} \times 2 \times 1$ in. Spind length $\frac{1}{2}$ in. dla. $1 / 16$ th. An ideal motor fo
forward and reverse motion. 60 p. P.P. 15p.

LOW TENSION SMOOTHING CHOKES By Redcliffe. 100 MH .2 amps. $22 \cdot 50$. P. \& P. ${ }^{45} \mathrm{p}$. Swinging Types
$10 \mathrm{MH} .6 .5 \mathrm{amp}-50 \mathrm{MH} 2$ amps $2.25 . \mathrm{P} .8 \mathrm{~B}$. 45 p . Both type IOMH. $6.5 \mathrm{amp}-50 \mathrm{MH} .2$ amps. 2.25. . P. \& 2 P, 45p. Both rypes In makers cartons. Parmeko 0.13 H . 1.15 amps . Less than $\frac{1}{2}$ ohm Res. $1 / 25$. P. \& P. 25 p.

ADVANCED COMPONENTS CONSTANT

 VOLTAGE TRANSFORMERS Input $190-260 \mathrm{v}$. Output 230 v .75 watts. Type CV 751.E6.50. P. \& P. 50 p . Type CV A $5 / 95$. Input $95-130 \mathrm{v}$., $190-260 \mathrm{v}$. Output. 4 v . rmss t or -1%. 3 watts. Open frame type. $£ 1 \cdot 25, \mathrm{P}$, \& P. 25p.

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms $100 \mathrm{mV}-1$ volt -52.5 ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}$, $40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements $29 \times$ $12 \ddagger \times 10 \mathrm{in}$. New condition. $£ 45$ each, Second hand condition $£ 27.50$ each, Carr. $£ 1.50$.
MARCONI SIGNAL GENERATOR TYPE TF-144H/S: Frequency Range $10 \mathrm{Kc} / \mathrm{s}-72 \mathrm{Mc} / \mathrm{s}$. RF Output $2 \mu \mathrm{~V}-2 \mathrm{~V}$ at 50Ω. Int. Mod. 400 and $1000 \mathrm{c} / \mathrm{s}$. Excellent condition with Manuals. £200.00 each. Carr. £2.
MARCONI UNIVERSAL BRIDGE TF-866A and TF-868: £75.00 each, Carr. £2.

TELEPRINTER CREED TMPE 7B: "as new" condition, in original packing case, $£ 25 \cdot 00$ each. Second-hand condition (excellent order), no parts broken, $\mathbf{£ 1 5 \cdot 0 0}$ each. Carriage both types $£ 2$.

FOR EXPORT ONLY
 BRITISH \& AMERICAN COMMUNICATION EQUIPMENT

VRC.19X Trans-ceiver, $150-170 \mathrm{Mc} / \mathrm{s}, 2$ Channel, 20 Watts, Output $12 / 24 \mathrm{~V}$ d.c. operation. General Electric Transmitter, $410-419 \mathrm{Mc} / \mathrm{s}$, thin line tropo scatter system, with antennae. W.S. Type 88, Crystal controlled, $40-48 \mathrm{Mc} / \mathrm{s}$. W.S. Type
$\mathrm{HF}-156, \mathrm{Mk}$. II, Crystal controlled, $2.5-7.5 \mathrm{Mc} / \mathrm{s}$. W.S. Type 62 , tunable, $1.5-12$ Mc / s. C.44, Mk. II, Radio Telephone, Single Channel, $70-85 \mathrm{Mc} / \mathrm{s}$, 50 watts, output, 230 V . a.c. input. G.E.C. Progress Line Tx Type DO36, $144-174 \mathrm{Mc} / \mathrm{s}$, 50 watt, narrow band width. A.C. input 115 V . BC-640 Tx, $100-156 \mathrm{Mc} / \mathrm{s}, 50$ watt output, 110 or 2300 input. STC TX/Rx Type 9X, TR1985; RT1986; TR1987 and TR1998, $100-156 \mathrm{Mc} / \mathrm{s}$. TRC-1 Tr/Rx, Types T. 14 and R.19;
FM $60-90 \mathrm{Mc} / \mathrm{s}$. With associated equipment available. Redifon GR410 Tx/Rx, SSB, $1.5-20 \mathrm{Mc} / \mathrm{s}$. Sun-Air $\mathrm{Tx} / \mathrm{Rx}$ Type $\mathrm{T}-10-\mathrm{R}$. Collins $\mathrm{Tx} / \mathrm{Rx} / \mathrm{Type} 18 \mathrm{~S} 4 \mathrm{~A}$. Collins Tx/Rx Type ARC $-27,200-400 \mathrm{Mc} / \mathrm{s}, 28 \mathrm{~V}$ d.c. With associated equipment available. ARC-5; ARC-3; and ARC-2 Tx/Rx. BC-375; 433G; 348; 718; 458; 455 Tx/Rx. Directional Finding Equipment CRD. 6 and FRD. 2 complete Sets available and spares. Complete system with full set of Manuals.

FREQUENCY METER BC-221: $\mathbf{1 2 5 - 2 0 , 0 0 0} \mathrm{Kc} / \mathrm{s}$, complete with original calibration charts. Checked out, working order $£ 18.50$ + £1 carr.; OR BC-221 (as received from Ministry), good condition, less charts, $£ 8.50+£ 1$ Carr.
RACK CABINETS: (totally enclosed) for Std. 19 in. Panels. Size 6 ft . high $\times 21 \mathrm{in}$. wide $\times 16 \mathrm{in}$. deep, with rear door. $£ 12$ each, £2.50 Carr. OR 4 ft . high $\times 23 \mathrm{in}$. wide $\times 19$ in. deep, with rear door. $£ 8.50$ each, £2 Carr.

RECEIVER BC-348: Operates from 24V d.c. Freq. Range 200$500 \mathrm{Kc} / \mathrm{s}, 1 \cdot 5-18 \mathrm{Mc} / \mathrm{s}$. Secondhand $£ 20$ each, £1 Carr.
APR-9 SEARCH RECEIVER: Complete with two Tuning Units TN128, 1000-2600 Mc/s, and TN129 2300-4450Mc/s. £250.00 each.

APR-5 UHF RECEIVER: $1000-6000 \mathrm{Mc} / \mathrm{s}, 115 \mathrm{~V}$ a.c. Circuit. Oscillator, 6 IF Stages, Detector, Video Amplifier and Audio Amplifier. £120.00 each, Carr. £2.

USM-24C OSCILLOSCOPE: 3 in . oscilloscope with $2 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$ vertical response, and $8 \mathrm{c} / \mathrm{s}$ to $800 \mathrm{Kc} / \mathrm{s}$ horizontal response. Sensitivity 50 mv . rms/inch. Triggered sweep, built-in trigger pulses and markers. Mains input $\mathrm{rms} /$ inch. Triggered sweep, built-in trigger pulses and markers. Mains inpur
$115 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. Complete with all leads, probes and circuit diagram. 142.50 each, carr. £2.
OS-46/U OSCILLOSCOPE: A general purpose oscilloscope suitable for measuring signals from $0-1000 \mathrm{~V}$ d.c. to over $50,000 \mathrm{c.p.s}$. (Further details on request, S.A.E.) \& 35 each, carr. $£ 1 \cdot 50$.
SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hewlett Packard). A portable, self-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring small amounts of RF power such as measuring standing-wave ratios, antenna and transmission line characteristics, conversion gain, etc. Both the output freq.
and power are indicated on direct-reading dials. $115 \mathrm{~V}, \mathrm{AC}, 50 \mathrm{c} / \mathrm{s}$. Freq.and power are indicated on direct-reading dials. $115 \mathrm{~V}, \mathrm{AC}, 50 \mathrm{c} / \mathrm{s}$. Freq.-
$1800-4000 \mathrm{Mc} / \mathrm{s}$. CW, FM, Modulated Pulse- $40-4000$ pulses per sec. Pulse Width- $0.5-10$ microsecs. Timing-Undelayed or delayed from 3-300 microsecs from external or internal pulse. O/put-1 milliwatt max., 0 to -127 db secs from external or internal pulse. Price: $£ 120$ each $+£ 2$ carr.
variable. O/put Impedance- 50 .
SIGNAL GENERATOR TYPE 902: (P.R.D.). A portable, general-purpose, broadband, microwave signal generator designed for testing and maintenance of aircraft radio and radar receivers in the SHF band. The RF output level is
regulated by a variable attenuator calibrated in dbm. The frequency dial is calibrated in Mc/s. Provision is made for external modulation. Power Supply$115 \mathrm{~V}, \pm 10 \% \mathrm{~A} . \mathrm{C} ., 50 \mathrm{c} / \mathrm{s}$. Freq.- $3650-7300 \mathrm{Mc} / \mathrm{s}$. Internal TransmissionCW, Pulse, FM. External Transmission-Square Wave, Pulse. Power O/put${ }^{0} 135$ each $+£ 2$ carr.
TEST SET TS-147C: Combined signal generator, frequency meter and power meter for $8500-9600 \mathrm{Mc} / \mathrm{s}$. CW or FM signals of known freq. and power or measurement of same. Signal Generator: O/put -7 to - 85 dbm . Trans-mission-FM, PM, CW. Sweep Rate- $0-6 \mathrm{Mc} / \mathrm{s}$ per microsec. Deviation- 0 $40 \mathrm{Mc} / \mathrm{s}$ per sec. Phase Range- $3-50$ microsec. Pulse Repetition Rate-to
4000 pulses per sec. RF Trigger for Sawtooth Sweep- $5-500$ watts peak. 4000 pulses per sec. RF Trigger for Sawtooth Sweep- 5.500 watts peak. $0.2-6$ microsec. duration, 0.5 microsec pulse rise time. Video Trigger for Sawtooth Sweep-Positive polarity, $10-50 \mathrm{~V}$ peak. $0.5-20$ microsec duration at 10% max. amplitude, less than 0.5 microsec rise time between 90% and 10% max. amplitude points. Frequency Meter; Freq. $8470-9360 \mathrm{Mc} / \mathrm{s}$. Accuracy$+2.5 \mathrm{Mc} / \mathrm{s}$ per sec. absolute, $+1.0 \mathrm{Mc} / \mathrm{s} \mathrm{per} \mathrm{sec} .\mathrm{for} \mathrm{freq}$.increments of less
than $60 \mathrm{Mc} / \mathrm{s}$ relative, $+1.0 \mathrm{Mc} / \mathrm{s}$ per sec, at $9310 \mathrm{Mc} / \mathrm{s}$ per sec. calibration than 60 Accuracy measured at $25^{\circ} \mathrm{C}$ and 60 humidity. Power Meter: Inpur: +7 point. Accuracy measured at $25^{\circ} \mathrm{C}$ and 60 humidity. Power Meter: Inp
to +30 dbm . Output $-7 \mathrm{to}-85 \mathrm{dbm}$. Price: $\mathbf{£ 7 5}$ each $+£ 1$ carr.
SIGNAL GENERATOR TS-418/URM49: Covers $400-1000 \mathrm{Mc} / \mathrm{s}$ range. CW, Pulse or AM emission. Power Range $-0-120 \mathrm{dbm}$. Price: $£ 105$ each

+ E1-25 carr.
SIGNAL GENERATOR TS-497B/URR: (Boonton). Freq. $2-400 \mathrm{Mc} / \mathrm{s}$ in 6 bands. Internal Mod. 400 or $1000 \mathrm{c} / \mathrm{s}$ per sec. External Mod. 50 to $10,000 \mathrm{cl} / \mathrm{s}$ per sec. External PM. Percent Mod. 0-30 for sine wave. Am or Pulse Carrier. O/put Voltage $0.1-100,000$ microvolts cont. variable. Impedance 50Ω,
Price: $£ 85$ each $+£ 1.50$ carr.
FREQUENCY METER TS-74 (same TS-174): Heterodyne crystal controlled. Freq, 20-280 Mc/s. Accuracy $.05 \%$. Sensitivity 20 mV . Internal Mod. at $1000 \mathrm{c} / \mathrm{s}$. Power Supply-batteries 6 V and 135 V . Complete with calibration book. (Manufactured for M.O.D. by Telemax. "As new" in cartoris.) $£ 75$ each Fully stabilised Power Supply available at extra cost $£ 7.50$ each. Carr $£ 1 \cdot 50$
CT. 54 VALVE VOLTMETER: Portable battery operated. In strong metal case with full operating instructions. 2.4V-480V. A.C. or D.C. in 6 Ranges, 1Ω to $10 \mathrm{Meg} \Omega$ in 5 Ranges. Indicated on 4 in . scale meter. Complete with probe, excellent condition. £1250, carr. 75p.
CT. 381 FREQUENCY SWEEP SIGNAL GENERATOR: $85 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ and response curve indicator with 6in. CRT tube and separate power supply. Fully stabilised. Price and further details on request.

CANADIAN HEADSET ASSEMBLY: Moving coil headphones 100Ω with chamois leather earmuffs. Small hand microphone complete with switch and moving chamois leacher earmufis.
HEADSET ASSEMBLY TYPE No. 10: Moving coil headphones and micro phone. (Similar to above) new cond. $£ 1.75$, post 25 p; or second-hand cond. 1.25, post 25 p.

HEADSET ASSEMBLY: with lightweight boom microphone. Good secondhand condition. $£ 2 \cdot 50$, post 75 p.
DLR HEADPHONES: $2 \times$ balanced armature earpieces. Low resistance. £1.25 a pair, 25p post.
MOVING COIL INSERT: Ideal for small speakers or microphones. Box of 3 k , post 23p.
HAND MICROPHONE: (recent design) with protective rubber mouthpiece. MICROLINE IMPEDANCE METER MODEL 201: $5300-8100 \mathrm{Mc} / \mathrm{s}$. \&75 MICROLINE
MICROLINE DIRECTIONAL COUPLER MODEL 209: $5260-8100 \mathrm{Mc} / \mathrm{s}$. 24DB. £12.50 each, post 35p.
POWER UNITS AVAILABLE FOR FOLLOWING SETS: 52 set-mains
 No. 19 set $£ 2 \cdot 50$. C12 set $£ 4 \cdot 00$. 88 set $£ 2 \cdot 50$. Carriage all types $£ 1$ extra.
STABILISED BENCH POWER SUPPLY: fully smooth, dual output, positive or negative, $2-6 \mathrm{~V} ; 6-9 \mathrm{~V} ; 9-12 \mathrm{~V}$ and $12-16 \mathrm{~V}$ all at 2 amps d.c. from mains input or negative, $2-6$
£25 + £2 carr.
DIGITAL VOLTMETER \& RATIOMETER Model BIE. 2116, £65, carr. £2. DIGITAL VOLTMETER Model BIE. 2114, £55, carr. £2. (Mnftrs. Blackburn Instruments).
MARKA SWEEP GENERATOR MODEL VIDEO (Kay Electric, USA) £65, carr. $£ 2$.

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps ,
400 c/s 3 phase, $£ 6.50$ each, , post 50 p. 24 v D.C. input, 175 v D.C. @ 40 mA .
output, $£ 1 \cdot 25$ each, post 20 p. output, $£ 1 \cdot 25$ each, post 20 p.
CONDENSERS: $40 \mathrm{mfd}, 440$ v A.C. wkg. 55 each, 50 p post. 30 mfd 600 v wkg. d.c., $£ 3.50$ each, post $50 \mathrm{p} .15 \mathrm{mfd} 330 \mathrm{\nabla}$ a.c., wkg., 75 p each, post 25 p .10 mfd 1000 v .63 p each, post 13 p . 10 mfd 600 v .43 p each, 25 p post. 8 mfd 2500 v . 55 each, carr. 63 p .8 mfd 600 v .43 p each, post $15 \mathrm{p}, 8 \mathrm{mfd} .1 \% 300 \mathrm{v} . \mathrm{D} . \mathrm{C} . ~ £ 1.25$, post $25 \mathrm{p}, 4 \mathrm{mfd}$. 3000 v . wkg. $£ 3$ each, post 37 p .4 mfd 2000 v . £2 each, post 25 p . 4 mfd 600 v .2 for $£ 1.0 .25 \mathrm{mfd}, 2 \mathrm{Kv}, 20 \mathrm{p}$ each, post 10 p .0 .01 mfd MrCA 2.5 Kv .
$£ 1$ for 5 , post 10 p . Capacitor $0.125 \mathrm{mfd}, 27,000 \mathrm{v}$. wkg. $\mathrm{£3} .75$ each, 50 p post. TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price $£ 1 \cdot 25$, post 25 p.
SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, $£ 2.50$ each post 30 p.
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps, $£ 2.50$ each, carr. 75 p. OHMITE VARIABLE RESISTOR: 5 ohms , $5 \frac{1}{2} \mathrm{amps}$; or 40 ohms at $2.6 \mathrm{amps}{ }^{\text {² }}$ Price (either type) \&2 each, 25 p post each.
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s; complete with TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s; complete with
filament transformer 230 v . A.C. Mounted in 19 in . panel, $\mathrm{E4} 4.50$ each, carr. 75 p . POWER SUPPLY UNIT PN-12A: 230V a.c. input $50-60 \mathrm{c} / \mathrm{s}$. 513 V and 1025 V @ 420 mA output. With 2 smoothing chokes $9 H, 2$ Capacitors, 10 Mfd 1500 V and 10 Mfd 600 V . Filament Transformer 230V a.c. input. 4 Rectifying Valves type $5 Z 3$. $2 \times 5 \mathrm{~V}$ windings @ 3 Amps each, and $5 \mathrm{~V} @ 6 \mathrm{Amp}$ and $4 \mathrm{~V} @ 0.25$ Amp. Mounted

${ }^{2} 6.50$ each, carr. 11
 $50-60 \mathrm{c} / \mathrm{s}, 500$ watts. $7^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime}$. Mounted in steel ventilated case. £ 3.50 each,
Carr. 50 p . Carr. 50p.
LT TRANSFORMER: PRI 230 V . Output
$3 \frac{1}{2}^{\prime \prime} \times 4^{* \prime} \times 5^{*}$. Fully shrouded $£ 1.50$ post 50 p. $\times 6$ at 3 amps each winding, $3 \frac{1}{2} \times 4^{\prime \prime} \times 5^{\prime \prime}$. Fully shrouded $£ 1 \cdot 50$ post 50 p .
VARIABLE VOLTAGE REGULATOR TRANSFORMER: Input 230 V A.C.; Output $57 \cdot 5 \mathrm{~V}-230 \mathrm{~V}$ in 16 equal steps $\% / 61$ Amps. £ $22 \cdot 50$ each, carr, $£ 1 \cdot 50$. TRANSFORMER: 230 V A.C. input. 17.75 V @ 35 Amps output. $£ 9 \cdot 50$ each, carr. $£ 1$.
TRANSFORMER: 'C' Core. 230 V A.C. input. $1000-0-1000 \mathrm{~V}$ or $750-0-750 \mathrm{~V}$
$\% / \frac{\mathrm{mA}}{} \mathbf{2 5 6 5 0}$ each, carr. 75 p .
MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. $£ 7.50$ each, 75 p carr.
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, $£ 3.50$ each, post 37 p . APNI ALTTMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$, complete with all valves 28 v. D.C. 3 relays, 11 valves, price $£ 3$ each, carr. 50 p.
ANTENNA WIRE: 100 ft . long. $75 \mathrm{p}+25 \mathrm{p}$ post.
APN -1 INDICATOR METER, 270° Movement. Ideal for making rev, counter.
$£ 1 \cdot 25$, post 25 p . \&1.25, post 25 p.
VARIABLE POWER UNIT: Complete with Zenith variac 0-230V., 9 amps; 2 t in. scale meter reading $0-250 \mathrm{~V}$. Unit is mounted in 19 in. rack.' $£ 15$ each,
$\AA 1.50 \mathrm{p}$ carr.
AIRCRAFT SOLENOID UNIT D.P.S.T.: $24 \mathrm{~V}, 200$ Amps, $£ 2$ each, 25 p post. RADAR SCANNER ASSEMBLY TYPE 122A: Complete with parabolic
reflector (24 in. diameter), motors, suppressors, etc. $£ 35$ each, $£ 2$ carr. reflector (24 in. diameter), motors, suppressors, etc. £35 each, £2 carr.
DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $\pm 1 \% £ 3$ each, 25 p post. 90 ohms per step. 10 positions, total value 900 ohms. 3 Gang. Tolerance $\pm 1 \% £ 3.50$ each, post 25 p.
MARCONI DEVIATION TEST SET TF-934: $2.5-100 \mathrm{Mc} / \mathrm{s}$ (can be extended up to $500 \mathrm{Mc} / \mathrm{s}$ on Harmonics). Dev. Range $0-75 \mathrm{Kc} / \mathrm{s}$ in modulation range $50 \mathrm{c} / \mathrm{s}-$ $15 \mathrm{Kc} / \mathrm{s} .100 / 250 \mathrm{~V}$. a.c. $£ 45$ each, $£ 1.50 \mathrm{carr}$.
CRYSTAL TEST SET TYPE 193: Used for checking crystals in freq. range $3000-10,000 \mathrm{Kc} / \mathrm{s}$. Mains $230 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. Measures crystal current under osciliatory conditions and the equivalent paralel reastance.
conjunction with a freq. meter. $£ 12-50$ each, $£ 1$ carr.
LEDEX SWITCHIING UNIT: 2 ledex switches, 6 Bank and 3 Bank respectively, 6 Pos.; 1 Manual switch, 16 Bank 2 Pos. $£ 4$ each, 50p post.

GEARED MOTOR: 24 c . D.C., current 150 mA , output 1 rpm , $£ 1.50$ each, 25p post. ASSEMBLY UNIT with Letcherbar Tuning Mechanism and
potentiometer, 3 rpm , 22 each 25 p post. SYNCHROS: and other special purpose motors available. List 3p.
DALMOTORS: $24-28 \mathrm{~V}$ d.c. at $45 \mathrm{Amps}, 750$ watts (approx. 1 hp) $12,000 \mathrm{rpm}$. £5 each, 50 p post.
GEARED MOTOR: 28V d.c. 150 rpm (suitable for opening garage doors). £4 each, 50p post.
SMALL GEARED MOTOR: 24 V d.c., output 200 rpm . Meas'm'ts $1 \frac{1}{2} \mathrm{in}$. dia. $\times 3 \frac{1}{2}$ in. long. $£ 2$ each, 23 p post.

FUEI INDICATOR Type 113R: 24 V complete with 2 magnetic counters $0-9999$, with loc
each, 25 p post.

COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic corp. Modectors fitted to receive UG-21/U series plugs. New in ctns., e6.50 each, post 37p. CO-AXIAL SWITCH-Mnftrs. Transco Products Inc., Type M1460-22, 2 pole, 2 throw. (New) $\mathbf{8 6} \cdot 50$ each, post 25 p .1 pole, 4 throw, Type M1460-4. (New) £6.50 each, post 25p.
PRD Electronic Inc. Equipment: FIXED ATTENUATOR; Type 130c, $2 \cdot 0-10.0 \mathrm{KMC/SEC}$. (New) $£ 5$ each, post 25p. FIXED ATTENTUATOR: Type $1157 \mathrm{~S}-1$ (New) 86 each, post 25 p.

IV PANCLIMATIC LABORATORY ELECTRONIC MULTIMETER (77 RANGEII)
 basic ranges (DIRECTLY CALIBRATED).

 D.C. POTENTIAL; $250 \mathrm{mV}, 1 \mathrm{~V}, 2.5 \mathrm{~V}, 10 \mathrm{~V}, 25 \mathrm{~V}, 100 \mathrm{~V}$ 250V. (input resistance $10 \mathrm{M} \Omega$.)D.C. CURRENT; $10 \mu \mathrm{~A}, 25 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 250 \mu \mathrm{~A}, ~ I m A$ 2.5 C. CURRENT; $10 \mu \mathrm{~mA}, 25 \mathrm{~mA}, 100 \mathrm{~mA}, 250 \mathrm{~mA}, 1 \mathrm{~A}$. RESISTANCE; $0-200 \Omega, 0-20 \mathrm{~K} \Omega, 0-2 \mathrm{M} \Omega, 0-1000 \mathrm{M} \Omega$. A.C. POTENTIAL; $100 \mathrm{mV}, 250 \mathrm{mV}, 1 \mathrm{~V}, 2.5 \mathrm{~V}, 10 \mathrm{~V}, 25 \mathrm{~V}$, AOOV, 250 V .
A.C. CURRENT; $10 \mu \mathrm{~A}, 25 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 250 \mu \mathrm{~A}, 1 \mathrm{~mA}$, $2.5 \mathrm{~mA}, 10 \mathrm{~mA}, 25 \mathrm{~mA} .100 \mathrm{~mA}, 250 \mathrm{~mA}$, IA.
POWER: Into 15,50 or $150 \Omega-5 \mathrm{~mW}, 50 \mathrm{~mW}, 500 \mathrm{~mW}$ 5 W . Into 600,2000 or $500 \Omega-5 \mu \mathrm{~W}, 500 \mu \mathrm{~W}, 5 \mathrm{~mW}$. DIFFERENTIAL D.C. POTENTIAL; $250-0-250 \mathrm{mV} 1-0-1 \mathrm{~V}$, $2 \cdot 5-0-2 \cdot 5 \mathrm{~V}, 10-0-10 \mathrm{~V}, 25-0-25 \mathrm{~V}, 100-0.100 \mathrm{~V}$.
Ovarload protection is incorporated. Supply voltage 110 or $200 / 240 \mathrm{~V}$ A.C. 50 Hz . in excellent condition. complete in carrying case, checked on all ranges. E25.75. (C.P. England and Wales.)

MARINE INTERCOMMUNICATION SETS
Designed specifically for communication between Dasigned specifically for communication between a diver and his ship-borne controner, these sets have constructional work, in lact any situation where maintained communication leaving both hands free is desirable and where the unique facility of the integral nylon life line is important.
The complete equipment comprises:
I. A 240 -ft. combined lightweight, brilliant orange life ine/intercom. cable complete with connectors.
2. A weatherproof mike/headset with connector.
3. A haversack for same.
4. A bone conduction audio transmitter/receiver for use by the remote operator
5. An encapsulated Solid State intercom amplifier fitted with fixed connectors and operated by two standard dry cells (not supplied).
These naval kits are offered in brand new condition at \& 15.00 (plus carriage $£ 1-00$). Packed in non-returnable case.

R-C-L BRIDGE TYPE 373 (21 RANGE) This attractive instrument measures RC \& L and in addition has facilities for checking the capacity and leakage of Electralytic Capacitors. The ranges are: $\mathrm{C}-0.5-100 \mathrm{pF}, 1000 \mathrm{pF}, 10,000 \mathrm{pF}, 0.1 \mu \mathrm{~F}, 1 \mu \mathrm{~F}, 10 \mu \mathrm{~F}$, 0ChF. 000 H .列 $1 \mathrm{H}, 10 \mathrm{H}, 100 \mathrm{H}$.
The D.C. polarising voltages available are $0-50 \mathrm{~V}$ and -500V and are set on internal mete
An internal null indicato $0-500 \mu \mathrm{~A}$ and 0.5 mA
Anones or ${ }^{\text {s }}$, Measurem scope may be employed
ial ial, at 50 Hz for " R " and the 5 highest " C ' ranges and at IKHz for the remaining " C " ranges and " L." Power supply requirements are $110-120 \mathrm{~V}$ A.C. or $200-250 \mathrm{~V}$ A.C. ($\times 10 \mathrm{~V}$). The size is $18 \times 13 \times 12$ in. The weight 30 Ib . Price E27.75. (C.P. England and Wales.) SYNCHROS, SERVOMOTORS, SPECIAL PURPOSE MOTORS, POTENTIOMETERS ETC. Our stocks include items by practically every reputable manufacturer in the field for example: Muirhead Evershed and Vignoles, Moore Reed Vernitron, Smiths Giles, Rank-Pullin and many others. Catalogues are available; specific enquiries solicited. Quotes or despatch by return

PLUGS AND SOCKETS
We hold extremely large stocks of R.F. and multiway connectors manufactured by British, American and Continental firms including: Plessey, UItra, Continental Painton, Ether-Electromethods, McMurdo, P.E.T. Transradio, Amphenol, Cannon, Hellerman-Deutsch Belling-Lee etc. as well as standard D.I.N. types e are particularly interested in quantity enquiries requirements-frequenty being able to offer DELIVERY EX STOCK.
We do not at present issue a connector catalague bur quotations are offered by return.
 A.C. MAINS TO 27% D.C. POWER SUPPLY UNITS indefinitely) aro built into un ates (wirativappily provide 700 mA ment case, provision being made for base or side mounting. Cable entry grommets are mounted in the base of the unit against variation in input voltage and output eurrent, and input and output fuses with spares are fitted. The outpu operates a built-in S.P.C.O. relay to switch for instance an alarm circuit. Input voltage is $200-250 \mathrm{v}$ A.C. in 10 v steps terminations to a Grelco block. There is adequate room fo other equipment within the ventilated case, which is $12^{\circ} \times$ $10^{\circ} \times 6^{\circ}$ deep. Our price, brand new in carton with

Servo and Electronic Sales Ltd

Electrical and Servo Control Engineers - Electrical Suppliers - Engineering Stockists - Aeronautical Suppliers Post orders to 43 HIGH STREET, ORPINGTON, KENT. Phone: Orpington 31066/33976/3322

19 MILL ROAD, LYDD, KENT' Works). Phone: Lydd 252
67 LONDON ROAD, CROYDON, SURREY (Retail Branch and Instrument Repairs) Phone: 01-688-1512 (Croydon)

DRY REED INSERTS

Overall length 1.85" (Body length 1.1" Diameter $0.14^{\prime \prime}$ to switeh up to 500 mA at up to 250 v D.C. Gold clad contacts. 62 lp per doz. $£ 3 \cdot 75$ per 100 ; $£ 27 \cdot 50$ per 1,000; $£ 250$ per doz. E3.75 per 100; $227 \cdot 50$.
10,000 . All carriage paid.

Radio and Audio Servicing Handbook
2nd Edition
Gordon J. King AssocIERE, MIPRE, MRTS
This book is a practical guide to the servicing of radio receivers and audio equipment of all types, and is intended especially for the service technician. Many others, however, find it of absorbing interest, among them students, hi-fi and recording enthusiasts, amateur experimenters, radio dealers and sound engineers.
040800018×284 pages illustrated $1970 \quad £ 3.00$ (60 s)

Radio Valve and Transistor Data

9th Edition
Edited by A. Ball
First published in 1949 this book has become an indispensable source of information for all those interested in electronic engineering, from the home constructor to the research worker. Exhaustively revised and updated, the useful and comprehensive information contained in this new edition will add to the already considerable reputation enjoyed by this highly successful book.
$059205796 \quad 6 \quad 256$ pages illustrated $1970 \quad \mathbf{\leq 0 . 7 5}$ (15s)
Available from leading booksellers or
The Butterworth Group
88 Kingsway, London WC2B 6AB

Prototype 52 ft . self-righting Lifeboat demonstrated recently on the Thames, with twin Bantex Aerials. Bantex manufacture aerials
for land, sea and defence communications

Bantex aerials combine good design and reliability in all conditions

For enquiries or full catalogue please contact Ernest Gutman

SEND S.A.E. FOR LISTS GUARANTEE

Satisfaction or money
refunded

guaranteed valves by the leading manufacturers by return service

1 year's guaramtee on own brand, 3 months' on others

AZ31	50p	E880C	621p	EL.803	85p	POC85	42tp	PY83	50p	UL4	57ip	6arb	32.	8EW6	80p	68L7GT	32tp	12 K 7 GT	35p	35A5	55p
AZ50	60p	ECP80/2	471 p	EL 821	${ }^{55 p}$	PCC88	700	PY88	41p	UL84	55 p	6A85	, 35 p	${ }^{6 F 1}$	700	68N7GT	300	1207a	25p	35 B 5	85p
OBL 1	800	ECP86	55 p	ETLIRO	${ }^{76 p}$	PCC89	${ }^{61 p}$	PY500	81.00	UM80/4	45 p	6AB7a	80	6F9\%	40 p	6897	40 p	128 C 7	25 p	35 C 5	35 p
CBL31	85p	ECH35	6710	EM34	80p	PCC189	61.	PZ30	80p	UY41	40p	6at6	45	${ }^{676 G}$	25p	$68 \mathrm{B7}$	37 ip	12897	${ }^{35}$		85p
CY81	35 p	ECH 42	${ }^{68 \mathrm{D}}$	EM71	621p	PCF80	51p	QQU02-6	22.10	UY85	34 p	6AU6	30 D	${ }^{6 F 11}$	$321 p$	678	$32 \dagger$ p	12887	${ }^{265}$	35 D	65p
DAF91	41p	ECH81	51 D	EM80	40 p	PCF82	52\%	Q9U03-10	21.25	U301	85 p	${ }^{6 B 4 B}$	472	${ }^{6 \mathrm{FF} 12}$	22.5	6U4GT	68	12987	25 p	35L6GT	47p
DAF96	41p	ECH83	40p	EM81	422p	PCP84	477	QVO3-12	85p	W729	55p	6BE6	600	6 Fl 3	35 p	0U8	35 p	128 K 7.	40p	35W4	25p
DF91	45 p	ECH84	4718	EM84	37.9	POF86	81.	R19	65 p	Z759	81.224	${ }^{68 \mathrm{BH} 6}$	$42+5$	${ }^{6 F 14}$	${ }^{60 \mathrm{D}}$	${ }_{676 G T}$	$32 \pm$	128L7GT	40 D	$35 z 3$	55p
DF96	45p	ECL80	400	EM87	55 p	PCF200/1	81 8	R20	750	OA^{2}	324p	${ }^{68 \mathrm{BJ} 6}$	4218	${ }_{6 \times 18}$	${ }^{550}$	6X 4	25 p	128N7GT	40 p	$35 \mathrm{Z4G}$	25p
DK91	57 p	ECL 82	48p	EN91	32 tp	PCF801	${ }^{61 p}$	SU21.50A	75 p	0A3	45p	${ }_{68 \mathrm{BK7}}{ }^{\text {6 }}$	50 p	${ }_{6}^{6 F 18}$	40.0	6x59T	$27 \pm$	12887	40 p		
DK96	57 p	ECLI 83	5710	EY51	40p	PCF802	61 p	TT21	22.40	OB2	32 1 D	6BL8	35 p	6 F 22	32 啫	6x8	56p	${ }^{12887}$	32tp	36z59T	37
DL92	374 p	ECL86	49p	EY80	45p	PCP805	${ }^{651}$ p	TT82	22.50	OB3	50 p	6BN5	42 tD	${ }_{6}^{6+23}$	77 p	6Y6G	${ }^{80 p}$	1487	80 p	50 A 5	${ }^{85} \mathrm{p}$
DL94	$37 \pm$	ECLL800	\$1.50	EY81	40p	PCF806	61 p	U18/20	67 ¢ 8	OC3	35 p	6BN6	40 y	6F24	67 pp	7Y4	80 p	20D1	45p	5038	35p
DL96	46p	EF39	$521 p$	EY83	55p	PCF808	67 p	U20	87 p	OD3	$32+\mathrm{p}$	$6 \mathrm{6QP5}$	25	${ }_{6} 6725$	75 p	98W6	42 tp	${ }^{20 \mathrm{Ll}}$	21.00	socs	35 p
DM70	321 D	EF80	400	EY86	${ }^{400}$	PCH200	700	U25	75 p	$3{ }^{304}$	40 D	68R7	75.	${ }^{6 F 26}$	35p	1008	50 p	$20 \mathrm{P1}$	500	50LaCT	
DY86/7	40p	EF83	50p	EY87	42\%p	PCL82	51p	U26	75p	384	35p	6BR8	95 p	6 F 28	70p	10D1	40p	20P3	60p	50LAGT	40 p
DY802	$42 \dagger \mathrm{p}$	EF85	41p	EY88	27p	PCL83	$61 p$	U31	45p	3V4	40 p	6BW6	8210	8F29	32 p	10D2	40p	20P4	21.00	83al	90 p
E55L	22.75	EF86	66p	EZ35	271p	PCL84	51p	U37	21.50	5R4GY	55p	6BW7	609	6F30	35 p	10F1	900	20P5	21.00	85A2	37) p
E88CC	40 p	EF89	400	EZ882	27tp	PCL85	52\%p	U50	${ }^{30}$	5U4G	30p	6B X 6	25 p	6 J 4	47 p	10F9	50 p	25 C 5	45p	90AUY	22.40
F130L	24.50	EF91	42 b D	EZ40	45 p	PCL86	51.	U52	300	5U4GB	3710	${ }^{68 Z 6}$	3218	${ }^{655} 5 \mathrm{GT}$	300	10F18	40.7	25L6GT	379	90 Cl	60p
E180F	95p	EF92	50p	EZ41	45p	PD500	¢1.52t	U76	25p	5V4a	40 D	6 C 4	${ }^{30}$ D	$6 \mathrm{6J} 7$	42 p	10L1	40 p	25240	30 p	90Cu	21.26
EABC80	$52+\mathrm{p}$	EF93	470	EZ80	$27 / \mathrm{p}$	PFLL200	74 p	U78	${ }^{25 p}$	5Y3CT	30 p	${ }_{6050}^{6 C 5}$	35 p	${ }_{6 K 7}^{607}$	50.0	10LD11	${ }_{550} 5$	${ }^{2526 G T}$	50 p	${ }_{807}$	47 !p
EAF42	50 p	EF94	77 p	EZ81	27 p	${ }^{\text {PL }} 36$	${ }^{64 p}$	U193	75	523	45 p	${ }_{6 C D 6 G}$	21.40	${ }_{6}^{6 K 7}$	32 p	$10 \mathrm{P13}$	${ }^{55}$	$30 \wedge 5$	40 p	887	47.5p
ERC33	55p	EF93	6237	EZ90	250	PL38	${ }^{900}$	U193	41 p	5249T	40 p	${ }^{604} 4$	871	${ }_{6}^{6 K 8 G}$	300	10 Pl 4	81.00	30AE3	40 p	8114	21.50
ERC41	472p	EF183	56 p	G810C	25.00	PLR1	61p	U201	35 p	6/30L2	75p	6CA?	627	${ }^{6 K 23}$	50 p	12AB6	50 p	${ }^{30 \mathrm{Cl15}}$	75 p	812A	23.25
EBC81	$32+\mathrm{p}$	EF184	35p	GY501	800	PL81A	623	U281	40 p	6ab4	32 p	${ }_{6088}^{60}$		${ }_{6}^{6} \mathrm{~K} 25 \mathrm{CT}$		12AC6	${ }^{377}{ }^{\text {P1 }}$	30 Cl 7	80 p	813	23.75
EBC90	47 p 400	E280F	22.10 81.00	GZ30	$371 p$ $30 p$	PL82	369 $51 p$	${ }_{\text {U282 }}$	40p	6AFta	477 p	${ }_{\text {6Cd7 }}^{\text {6CDGA }}$	61.15	64697 6.7	${ }_{3}^{45 p}$	12AD6	37 40 40 40	${ }_{30 \mathrm{~F} 5}^{30 \mathrm{Cl}}$	$75 p$ $85 p$	866A	70p
EBF83	400	EF804	¢1.00	Gz32	47\%	PL84	415	U404	$371 p$	6AG7	37 ${ }^{\text {p }}$	6 CH 6	55 p	$6 \mathrm{L1} 8$	30p	12AQ5	400	${ }^{30 \mathrm{FL}} 1$	75p	6642	80 p
EBF89	40p	EF811	75D	G233	37 站	PL500	82t ${ }^{\text {d }}$	U801	21.00	6AF6	50 p	60L6	50 p	6LD20	$32 \nmid p$	12AT6	25p	30 FL 2	92tp	6080	21.374
EB91	26p	EL34	521 D	GZ34	55 p	PL504	$85 p$	UABC80	327 D	6AJ8	29p	6CW4	6210	6N7GT	${ }^{355}$	12AU6	75 p	$30 \mathrm{PL13}$	507	6148	21.50
EC53	50 p	EL36	4775	НК90	32 \ddagger p	PL505	81.45	UBF89	40p	6AK5	30p	6CY5	40 p	6P1	80p	12av6	30 p	30 FL 14	77p	6143B	22.87 \dagger
EC86	${ }_{60 \mathrm{p}}^{60}$	ELA1	555	HL92	${ }^{35 \mathrm{p}}$	PL508	81.00	UBC41	48p	6akb		${ }_{6 \mathrm{D} 3}^{6 \mathrm{Cr}}$	${ }^{60} \mathrm{p}^{\text {p }}$	6P25 RP28	81.05	12AV7	${ }^{45 p}$	${ }_{30 \mathrm{~L}}^{30 \mathrm{~L}}$	${ }^{455}$	6267	
${ }_{\text {EC8 }}^{\text {EC8 }}$	600 300	${ }_{\text {EL4 }}$	5780	HL94	21.370	PL509	81.54 880	UCC85 UCIE 42	${ }_{69 p}^{48 p}$	6al3	42tD		40p	6P28 607	81 ip 3770	${ }_{12 A X 7}^{12 A Y 7}$	309	${ }_{30 \mathrm{Ll17}}^{30 \mathrm{~L}}$		6360	21.25
EC90 EC92	30p	EL81	${ }^{50 \mathrm{D}}$ 41p	KT66	${ }_{81}^{21.371}$	PL802 PL805	86 p 880	UCE42	69p	6als	4210	6-6Cb	671p	607 6879	3750 350		67tp	30 L 17 30 P 12	88p	6363 6039	22.10
EC93	47\% ${ }^{\text {d }}$	EL8s	424	N78	81.05	PY33	62%	UCLS2	51p	6ams	25p	6DQ8B	80p	${ }_{682}$	40 p	12BA6	32 p	$30 \mathrm{P18}$	35 p	7199	76p
ECCs1	40 p	EL86	42 p	Pabcs0	40p	${ }^{\text {PY }} 80$	324	UCL83	$81 p$	6ам6	221p	6D84	75p	684A	55p	128A7	32 p	${ }^{3019} 19$	75 p	7360	81.80
ECC82/3	42 tp	EL90	32 LD	${ }_{\text {PC8 }}{ }^{\text {P6 }} 18$	${ }_{36 \mathrm{p}}^{51 \mathrm{p}}$	PY88	41 4	UF41/2	55p	6aqs	$32+\mathrm{p}$	beas	85p	${ }^{\text {68A }} 7$	${ }_{3}^{37 p}$	12BE8	32tp	${ }_{30 \mathrm{PLL}}{ }^{3}$	77 p	7586	21-25
${ }_{\text {ECCS }}$	42 p	EL91		$\begin{gathered} \text { PC95 } \\ \hline \text { PC97 } \end{gathered}$		PY800	410	UP80/5	$37 \pm$	6AQ6	SOp	6EH7	32 tb	${ }_{6897}^{6897}$	32 ± 8 3720	${ }_{12 \mathrm{BY7}}$	$32+p$ 500	${ }^{30 \mathrm{PLL}} 3$	900 850	9002	$32+p$
$\begin{aligned} & \mathrm{ECCP4} / 5 \\ & \mathrm{ECC88} \end{aligned}$	42tp 55p	ELa60		${ }_{\text {PCCO84 }}$	410	PY882	35 p	UF89	41p	bars	$32\}$	6E57	350	68K7	$32+0$	${ }_{12 \mathrm{~K} 5}$	50 p	35 A ${ }^{\text {a }}$	50 p	9003	80p

New and Budget tubes made by the leading mannfacturers. Guaranteed for 2 years. In the event of fallure under guarantee, replacement is made without the usual time wating forms.

Type	
	MW36-20
	MW36-21
	MW43-69Z
$\begin{aligned} & \text { MW 43-80Z } \\ & \text { AW43-80Z } \end{aligned}$	
AW43-88	
AW47-90	
AW47-91	
447 14W	
	A47-11W
	A47-13W
	A47-26W
	A47-26W/R

CRM171
CRM172
CRM173
CME1702
CME103
CME1706
C17AA
C17AF
CME1705

A1714W
CME1901
CME1902
CME1803
CIPAF
CME1905
CME1906
CME1005
CME1913R

$\underset{£}{\text { New }}$	Budget
	24.50
	24.50
86.60	24.621
20.80	84-621
28.60	44.62)
26.60	24.82)
26.60	24.62
28.60	24-62
26.60	24.624
89-80	24.82)
£5.95	24-87
25.85	24.87
$25 \cdot 95$	24-87
25.95	£4.87
25.95	24.87
88.86\%	27.00
210.271	28.50
¢8.804	87.75
¢9.334	

	Type		New	Budget
	A50-120W/R	CME2013	110.85	
	AW53-80		$28.93+$	26.25
	AW53-88	CME2101	48.93 \%	26.25
	AW59-90			
	AW50-91	CME2303	29.581	87.20
		CME2301		
		CME2303		
		CME2303	29.58\%	27.20
	A59-11W	CME2305		
	A $59-13 \mathrm{~W}$	CME2306	213.65	210.971
	A59-16W	CME2306	213 -85	210-97
	A59-23W	CME2305	212.60	810.50
	A59-23W/R		212.60	¢10.50
	A61-120W/R	CME2413	213.50	211.50
	A85-11W	CME2501	£16-50	814.50
	COLOUR TUBES			
	A49-191X	19 inch	252-50	
	A56-120X	22 inch	857.50	
	A63-11x	25 tnch	£62-50	
	PORTABLE SET TUBES			
	TSD217		211.50	
	$\begin{aligned} & \text { TSD282 } \\ & \text { A28-14W } \end{aligned}$		211-50	
			29.164	
				Not
	CME1601			applied
	CME1002			88.00

TRANSISTORISED UHF TUNER UNITS
NEW AND GUARANTEED ROR 3 MONTHS
Complete with Aerial socket and wires for Radio and Alled TV sets but can Continuous Tunting, $44 \cdot 50$; Push Button, $25 \cdot 00$.

SERVIĆCE AIDS
8witch Cleaner, 55p; Buttch Cleaner with Lubricant, 55p; Freeza 62łp. P. \&P.

Jack Piuga and Sockets		Co-Axtal Pluge
Standard Plugs	10p	Belling Lee (or similar type)
Standard Bockets	12 p	Add 2 p per doz. p. \& p .

G.E.C.	BT454		.. 84.75	G.E.C.	2028	
G.E.C.	BT456	:	.. 24.75	G.E.C.	2041	
G.E.C.	2010		.. 24.75	G.E.C.	2000 serie	
G.E.C.	2013	.	\cdots. 24.75	Phllips	18 TG	
G.E.C.	2014			Pre	Mod. 36	
G.E.C.	${ }_{2043}^{2018}$	\cdots		Pye	Mod. 40	
G.E.C.	2048	.	44.75	Thora	800-850	
STYLII-BRITISH MANUFACTUR						

18p Double Tip "g"
Double Tip "D"
A discount of 10% in also given for the purchase of 3 or more tubes at any one
time. All types of tubes in atock. Carriage and insurance 75 any where in Britain.

SEMICONDUCTORS BRAND NEW MANUFACTURERS MARKINGS NO REMARKED DEVICES

2 N 388 A	. 62 ip	R.O.A.		AF106	42 ± 0	BC142	36 p	BF224	30p
2N614	30p	40253	P.A.	AF114	25 p	BC143	P.A.	BF225	30 p
2N697	20 p	40398	P.A.	AFl15	300	BC147	17!p	BF257	47 ¢
2N688	25p	40458	P.A.	AP116	25p	BC148	15 p	BFX84	30 p
2N706	12tp	2N4061	22tp	AF117	25p	BC149	17¢ ${ }^{\text {d }}$	BFY19	83p
2N706A	121p	2N4062	221p	AF118	60p	BC152	17!p	BFY50	$22 \pm$
2N930	271p	2N4286	171 p	AF119	200	BC157	20 p	BPY51	22 p
2N1132	32 D	2N4291	17 y	AF124	221p	BC158	17 p	BFY52	227 p
2N1303	17 p	AC107	30 D	AF125	20p	BC189B	14p	B8x21	37 tp
2N1305	22 p	AC117	60 p	AF126.	20p	BC169C	$15 p$	0 C 25	50 p
2N1306	25D	AC126	20 D	AF127	17 p	BC171	17 y	0 C 26	$32 \geqslant 0$
2N1307	25p	AC127	25 D	AF139	371 p	BC175	27 ¢p	0 C 28	62 ${ }^{\text {p }}$
2N1711	25p	ACl28	20 p	AF178	45p	BC183	22\%p	OC29	75D
2N2147	72 p	AC154	22.5	AF179	45p	BC184	22+p	OC35	40p
2N2160	578	AC176	25 p	AF180	$52+\mathrm{D}$	BC187	28ip	OC36	$62 \dagger p$
2N2614	30 p	AC187	6210	AF'181	42]p	BC213L		OC42	25p
2N2646	57 p	AC188	37.0	AFF186	$66+$ p	BCY32	37t ${ }^{\text {d }}$	OC44	20 p
2N2905	40 p	ACY17	2715	AF239	421 p	BCY58	$22+0$	OC45	$12 \pm$
2N2926		ACY18	255	A8Y28	28p	BCY70	20p	OC46	15 p
Green	14p	ACY19	25D	BC107	15p	BD115	789	$0 \mathrm{C70}$	15p
Yellow	1810	ACY20	25D	BC108	$15 p$	BD121	85p	0 C 71	$12 \dagger p$
Orange	121p	ACY21	25 p	BC109	15p	BD123	82tp	OC72	12 ¢p
2N3053	27 p	AOY22	20 p	BC113	2710	BD124	62 p	OC74	32 p
2N3055	${ }^{750}$	ACY28	200	BC114	$37+$ D	BD131	971 p	0075	8810
2N3391	80 p	ACY40	200	BC115	32%	BD132	97 ¢ ${ }^{\text {d }}$	0076	22 p
2N3392	200	ACY41	25p	BO116	627 p	BF115	25p	0 C 77	27 p
2N3702	17 p	ACY44	400	BC116A	3715	BF117	47 tD	OC78	25 p
2N3704	28.1	AD140	40p	BC117	39p	BF160	P.A.	OC81	20 p
2N3705	203	AD142	58 p	BC118	$32 \pm$ D	BF162	P.A.	0C81D	20 p
2N3711	200	AD149	57 ¢ ${ }^{\text {d }}$	BCl34	57.0	BF163	35p	0083	25 p
2N3819	${ }^{35} \mathrm{p}$	AD150	$62 \pm$ p	BC135	P.A.	BP167	25p	OC84	25p
2N3826	30D	AD161	37 D	B6136	P.A.	BF173	321p	OC139	321p
2N3905	37p	AD162	37 tD	BC137	P.A.	BF178	35p	OC140	$32+\mathrm{p}$
2N3914	P.A.	AFl02	58 p	BC138	P.A.	BF179	$721 p$	0C170	30p
	DIO	DES \&	TIF	ERS		${ }_{\text {BF1 }}{ }^{\text {Br181 }}$	${ }^{35 p}$	OC171	30p
IN914	7 tp	BZY88		0 A 91	71p	BF184	32pp	OC200	$324 p$
AA119	100	(Series)	32\} ${ }^{\text {D }}$	OA202	10 p	BF194	$22 \pm$ p	OC202	47tp
BA102	28.1	OA5	12 p	BA144	$12+\mathrm{p}$	BF195	271p	0СP71	42¢p
B4115	78	0 A 47	710	BA145	200	BF196	$42 \pm \mathrm{p}$	P346A	25p
BA114	$12+p$		710					TI843	40p
BY100 BY126	2260	OAP79 $\mathbf{O A 8 1}$	90	BA148	${ }^{23 \mathrm{p}}$ P.	BF197 BF198	$31 \geqslant \mathrm{p}$ $48+\mathrm{p}$	P.A. Price on application	
BY127	2210	OAP9	710	BA156	P.A.	BF200	$36 \ddagger$ p		

ADD 3p PER ITEM FOR POST AND PACKING FOR ORDERS UNDER 24 PIECES.

CARTRIDGES

Inc. P.T.

MAGNETIC RECORDMG TAPES by aleading manulacturer

POLYESTER			POLYESTER		$\begin{array}{r} \text { Price } \\ 700 \\ 850 \\ 81.00 \end{array}$
Length	Spool size in.	Price	Learth	Spool Size in.	
8tandard Play			900ft		
800 ft	5 5	${ }_{630}$	12000 t	${ }_{7}$	
1200ft	7	${ }^{609}$	Double Play		
Long Play			1200 tt	5	${ }^{87 p}$
2108 t	3	87 p	1800tt	5	21.10
450 tt	4	43p	24001		81.50

CASSETTES
Boxed in PAssetic Libs
C60
C

Modern TELEPHONES type 706. Two-tone grey and two-tone green. 63.50 ea. P. \& P. 25p ea. Brand new STANDARD GPO
STANDARD GPO DIAL TELEPHONES (black with internal bell. 87p. P. \& P. 25p. Two for $£ 1 \cdot 50$ PHOTOM
PHOTOMULTIPLIERS. EMX 6007X at $\mathbf{£ 8 . 5 0}$ ea. SPECIAL OFFER
5 in. Photomultiplier type, PDP84G by 20 th
Century, $\mathbf{C 3}$ ea. P. \& P. 30p.
TRANSISTOR OSCILLATOR. Variable frequency $40 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{kc} / \mathrm{s}$. ${ }^{5}$ volt square wave o/p, for 6 to 12 v
DC input. Size $1 \mathrm{f} \times 1 \frac{1}{\mathrm{t}} \times 1 \mathrm{tim}$. Not encapsulated. Brand new. Boxed. 57_{p} ea.

RELAYS

G.E.C. Sealed Relays High Speed $24 \mathrm{~V}, 2 \mathrm{~m} 2 \mathrm{~b}-23$ p ea
S.T.C. sealed 2 pole c/o, 2.500 ohms. (okay 24 v) 13 p ea: S.T.C. sealed 2 pole c/o, 2.500 ohms . (okay 24 v) 13 p ea:

12 V 35 p ea.
CARPENTERS polarised Single pole c/o 20 and 65 ohm coll as new, complete with base 37p ea.
Single pole c/o 14 ohm coll 33p ea: Single pole c/o 45 ohm coil 33p es. SIngle pole c/o 4.000 ohm coil 33 p ea.
Varley VP4 Plastic covers 4 pole $\mathrm{c} / \mathrm{o} 5 \mathrm{~K}-30 \mathrm{p}$ ea. $15 \mathrm{~K}-$ 33 p ea.

POTENTIOMETERS
COLYERN 3 POTENTIOMETERS Brand new. 5: 10: 25; 50; 100; 250; 500 ohms; $1 ; 2 \cdot 5 ; 5 ; 10 ; 25 ; 50 \mathrm{k}$ all at 13 p ea; MORGANITE Special Brand new. 2.5: 10: 100;
$250 ; 500 \mathrm{~K} \cdot 2.5 \mathrm{meg} 1 \mathrm{in}$. sealed. 17 p ea. $250 ; 500 K ;$
$B E R C O$
SQ. Brand new. 1 in; 10; 50; $250 ; 500$ ohms: I: $2.5 ; 5: 10 ; 25 ; 50 \mathrm{~K}$ at 25 p ea.
STANDARD 2 meg. log pots. Current type 15 p ea.
INSTRUMENT 3 in . Colvern 5 ohm 35 p ea; 50 k and 100 K 50 p ea.
BOURNE TRIM POTS. 10; 20; $50 ; 100 ; 200 ; 250$;
500 ohms: $1 ; 2.5 ; 5 ; 25 \mathrm{~K}$ at 35; ea. ALMA precision resistors 100K: $400 \mathrm{~K} ; 497 \mathrm{~K}: 998 \mathrm{~K}$: Ameg- $0.1 \% 27_{p}$ ea.. $8.25 \mathrm{k}, 13 \mathrm{~K}-0.1 \% 20 \mathrm{p}$ ea.
SILVER ZIJNC Non-spill. Brand new. Single cell SILVER ZINC Non-spill. Brand new. Single cell
$1.5 V 4 A H$ size $1 \ddagger \times i \times 3 i$. $40 z$ weight $\dot{\ell}$ ea.
 CAPACITORS

MULLARD ELECTROLYTICS

2200MFD 100v $10 \mathrm{~A}\left(50^{\circ} \mathrm{C}\right)$ 75p each
BRAND NEW BOXED

LARGE REDUCTION FOR QUANTITY

ERIE feed through ceramicons $2200 \mathrm{pf}-4 \mathrm{p}$ ea. Sub-min. TRIMMER \& Bquare. 8, bpf. Brand new 13p ea. E.H.T. 2 mfil 5 KV . Brand new. $£ 1.50$ ea.

VISCONOL EHT CAPACITORS | Size $1 \times 2 t \mathrm{ins}$ | | |
| :--- | :--- | :---: |
| 0.05 mfd | 2.5 kV | |
| 0.001 mfd | 5 pV | |
| | 40 p ea. | |
| 0.001 mfd | 10 kV | |
| | 50 p ea. | |

0.01 me 1 $\begin{array}{lll}0.01 \mathrm{mfd} & 10 \mathrm{kV} & 50 \mathrm{p} \text { ea. } \\ 0.002 \mathrm{mfd} & 18 \mathrm{kV} & 65 \mathrm{pea}\end{array}$ $0.001 \mathrm{mfd} 10 \mathrm{kV} 50 \mathrm{p} \quad 0.05 \mathrm{mfd} \quad 15 \mathrm{kV} 80 \mathrm{pea}$.

 Rapld discharge 1 mfd 5.6 KV \& \mid ea. P. \& P. 15^{p}. DUBILIER. Brand new. 1 mfd 15 KVW 30 KVT .. 67 ea.
E.H.T. TRANSFORMERS \& POWER UNITS Complete Assembly 0 to 130 KV DC. Variac ConAs above, but 26 KV DC 3.5 KVA . El 35. Choice of capacitors and chokes, e.g., 400 H 25 MA 60 KV Insulation.
0 to 64KV AC and 20 V 20 A 2 KVA . 665.
$4000-0.4000$ 14-8KVA. 35.
0-2200 2.5 KVA , 15 .
AIL. CARRLAGES AT COST
DECADE DIAL UP SWITCHES. Flnger-tip. Engraved 0/9. Gold plated contacts. Size $21^{\prime \prime}$ high, $2 t^{\circ}$ deep. $\frac{t^{\prime \prime}}{}$ wide. 75 p ea. Bank of 4 with escutcheon plates, etc. ${ }^{2 \frac{1}{2}}{ }^{\prime \prime}$ high, $2 t^{\prime \prime}$ deep, $2 t^{\prime \prime}$ wide. $\mathbf{E 2} \cdot 50$.
PHOTOCELL equivalent OCP 71 13p ea
Photo-resist type Clare 703. (TO5 Case). Two for 50 p . BURGESS Micro Switches V3 5930. Brand new 13p ea. HONEYWELL. Sub-min. Microswitches type 11SM3-T. Brand new. 17p ea.
PANEL mounting lamp holders. Red or green. 9p ea.

MARCONI TF888 SIGNAL GENERATOR.

Freq. $70 \mathrm{kc} / \mathrm{s}-70 \mathrm{mc} / \mathrm{s}$ in 8 ranges Directly read. $500 \mathrm{kc} / \mathrm{s}-5 \mathrm{mc} / \mathrm{s}$ Crystal Calibrator. $1 \mathrm{kc} / \mathrm{s}$ Internal modulation available on terminals as external audio. Built-in power meter 3 to 600 ohms and 10 mw to 1 watt. Large rectangular meter scaled for RF and Power. $50 \mathrm{ohm}, 80 \mathrm{ohm}$ and high level OP sufficient for lining, etc., available on termination unit. Attenuator calibrated to 0.5 micro volt. Size $14 \times 10 \times 5 \frac{1}{2}$ ins. Mains or battery operated. Supplied Brand New in original crates at $£ 30$ each. Carriage $£ 1.50$.

TEST GEAR

OSCILLOSCOPES WM 2 DC $-13 \mathrm{mc} / \mathrm{k}$ e25.

E.M.I. WM $2 \mathrm{DC}-13 \mathrm{mc} / \mathrm{B} 625$. SOLARTRON CD1014 DB. DC- -8 megs. 55. SOLARTRON $\begin{aligned} & \text { condition } 643 \mathrm{DC}-15 \mathrm{mc} / \mathrm{s} \text { Brand new } £ 85 .\end{aligned}$ SOLARTRON Good condition 650 . 13 me 10 CD5 SOLARTRON CD513.2- C42.50. CD523S-45. $\begin{array}{lll} & £ 17.50 . \\ \text { COSSOR } & 1049 \mathrm{Mk} .3 . \mathrm{DB} . \\ \text { HARTLEY } 25 & 134 \mathrm{DR} \text {. }\end{array}$ HARTLEY 1049 Mk . 3. DB. $£ 25$
13 A DR. $£ 25$. All carefully checked and tested. Carriage $£ 1 \cdot 50$ extra. MARCONI
Notse gen. TF1301, £40, Carr $£ 1 \cdot 50$
Vocuum tube Voltmeter TF1041A, $£ 35$
Vacuum tube Voltmeter TF1041A, $£ 35 ; 1041 \mathrm{~B}, \mathrm{£} 45$.
Wide Range Oscllator TF 1370 and TF 1370 A $10 \mathrm{c} / \mathrm{s}-10 \mathrm{mc} / \mathrm{s}$ from $f 140$.
Deviation Meter TF934/2, $£ 50$ ea. Carr. £1-50. Deviation type 719, 630 ea. Carr. 75 p .
TF 1026 Frequency Meter $12 \cdot 50$, Carr. 75 p . TF 1026 Frequency Meter $\mathbb{1}$ 12.50, Carr. 75p
TF
329
Magiiflcation Meter. As ne w condition $£ 60$. TF 195 Audio Generator $£ 10$. Carr . $£ 1 \cdot 50$. TF 801 A Signal generator $£ 35$. Carr. $£ 1 \cdot 50$.
Better grade $£ 55$ ea. Carr. $£ 1.50$.
TF 886 Magniflcation Meter \& 45 . Carr. £1.
TF 369 N. 5 Impedance Bridge from $£ 50$, ea. Carr. T1.50. 14 G Signal Generator. Serviceable. Clean $£ 15$. In exceptional condition $£ 25$. Carr. \&1-50. Valve voltmeter type CT208, $£ 17.50$ ea. Carr. 75p. TF 885 Video Oscillator Sine/Square $£ 35$ Carr. £1.50. TF885/1 £55. Carr. £1.54.

SOLARTRON

Stabilised P.U. SRS 151A. E15. Carr. £1-50.
Stabilised P.U. SRS 152.610 . Carr.
Precision Millivoltmeter VP25. 50 .
Precision Millivoltmeter VP252, $£ 25$, Carr. $£ 1$.
Process Response Analyser. Fine Condition $£ 250$ Osclllator type OS 101. 〔30. Carr. £1.50.
D.C. Amplifler type AA900. £30, Carr $£ 1$.
Testmeter No. 1 £ 12 AVO. Carr. 75p.
Testmeter No. $1 £ 12$ ea. Carr. 75p.
Electronic Testmeter CS 38. Complete $£ 20$ Carr. $£ 1$. CINTEL
Square and Pulse gen. PW 0.05 to 0.3 micro secs. 15 mV to 50 V ; rep rate 5 hz to 250 kz $\mathrm{E20}$. Carr. \&1. AIRMEC
Signal Generator type 701. £25, Carr. $£ 1 \cdot 50$.
AIRMEC Generator type 210 © 20 .
AIRMEC Generator type 210 E120. Carr. $£ 1.50$.
E.M.I. Oscilloscope type WM16. Main frame $\in 125$.
Cholce of Plug in $7 / 2$ DC- $24 \mathrm{mc} / \mathrm{s} \times 2 \mathrm{E} 35: 7 / \mathrm{DCD}$ Cholce of Plug in $7 / 2$ DC- $24 \mathrm{mc} / \mathrm{s} \times 2 \mathrm{E} / 35: 7 / 1 \mathrm{DC}$
40 megs E25. Diferential unit available from $£ 40$. E.M.I. WM8. DC to $15 \mathrm{mc} / \mathrm{s}$, Complete with plug
in pre-amp, from 440 .

BECKMAN MODEL A. Ten turn pot complete with dial. $100 \mathrm{k} 3 \%$ Tol 0.25% only 8.13 ea with dial

 E.H.T. Base B9A in Polystyrene holder with cover. Brand new. 130 ea.NAGARD Double pulse gen type 5002 £50. Carr. £1•50: MARCONI SPECTRUM ANALYSERS type-
OA 1094 from $£ 325$. OA 1094, from $£ 325$.

FIBRE GLASS PRINTED CIRCUIT BOARD. Brand
 Standard 240 V MOTORS by CITENCO reduction gearbox to 19 r.p.m. reversible. C 5 ea .
Single pole 3 -way 250 V AC 15 amp switch. 8p ea. Modern replacement for VCR 138 tube. Flat face 3 in Modern repiacement for $1 \cdot 63$. P. \& P. 25p. Bases 17 p .
Squirrel cage BLOWER ASSEMBLY complete with standard mains input motor. Size $7^{* \prime} \times 2 \frac{1}{*}^{\text {P }}$ dia. only 80 pea P. \& P. 25p ea.

CLAUDE LYONS Main Stabilizer. Type TS-1L-5SO. nput 119-135 volts $47 / 65 \mathrm{cs}$. Output $127+/-0.25 \%$ ri. 22.
E.H.T.Unlt by Brandenburg model $\$.0530 / 10$. $\$ 55$.

MAGNETRONS TYPE CV370. Brand new. Boxed. $£ 8$ ea.

KELVIN \& HUGHES 4 -channel multi-speed recorders complete with amplifiers. $£ 60$ ea.
EVERSHED \& VIGNOLES Recording paper. Brand
new bored. L618H4 $7^{\prime \prime}$ wide, $1^{3^{\prime \prime}}$ dia. 17_{p} roll; $8^{\prime \prime}$ dia. $£ 1$

MARCONI 801B
 A.M. Sịgnal Generator
 10-500 MHZ Output 0.1μ V to 1 V .
 From $£ 140$ ea.

19in. Rack Mounting CABINETS 6ft. high 19 in . deep. Side and rear doors. Fully tapped, $\mathrm{E} 12 \cdot 50$. Carriage at cost. Double Bay complete with doors. Fine condition. $£ 25$. Carriage at cost.

AUDIO FREQUENCY MEASURING SET T.M.S. No. 8 for testing the gain, loss and frequency response of circuits.
Complete with clrcuits and information.

ONLY circuits and information.
O12.50. P. \& P. £1.25
SIGNAL GENERATOR CT53. 8-300 me/s. Complete with chartis. $£ 15$. Carr. $£ 1 \cdot 50$. With Photo-stat copy of charts. $£ 11$-50. Carr. £i. 50 .
WAYNE Kerr Universal Bridge type Cr375. £40 ea. 4 DIGIT RESETTABLE COUNTERS. 1000 ohm coil. Size $1 \frac{1}{\prime} \times \frac{1}{2} \times 4 \frac{1}{6} \mathrm{in}$. As new, by Sorleco of Geneva. $£ 2 \cdot 50$ ea.
As above but 350 ohm. $\mathbf{£ 3} \cdot 50$ ea.
SANGO 50 micro amp $4^{\prime \prime}$ round. Brand new boxed.
E1.38. P. \& P. 38 p . 61.38. P.

SANGO 50 micro amp rectangular meter. Size $2: \times 3$ with 4 separate scales, lever'operated, $0 / 6$ white, $0 / 60$
blue. $0 / 600$ red and set zero. $\$ 1.25$ ea. P. \& P. 17p.

SEEING IS BELIEVING?

STILL AVAILABLE, BC221 complete with correct charts, circuit diagrams, in fine condition
C.R.T:'s 5" type CV1385/ACR13. Brand new with
spec. sheet: 63 pea. P. \& P. 35p. MARCONI Valve Voltmeter 428B/l $C 5$ ea. Carr. £1.
RESISTORS by PIHER. Carbon Film. 1 and 2 Fatt. All 5\% Brand new Perfect. Mixed values. CÓSSOR D.B. Scopes-some models from $£ 15$. MARCONI Absorption Wattmeter 1 micro watt to
6 watts. Type TF956. FANTASTIC at \mathcal{C} ea.
Genuine MULLARD Transistors/Diodes. Tested and guaranteed. OC41. 42, 76, 77: 83: OA5, 10. A11 MAINS MOTORS Et
MAINS MOTORS Standard voltage. Size up on
R/P tape recorders. Extremely quiet. Snip at 400 R/P tape recorders.
ea. P. \& P. 15 p ea.
COMPONENT PACK consisting of 2.2 pole 2 amp push on/off switches; 4 pots 1 double; 1-small double pole vol control; 250 resistors i and watt
many high stabs. Fine value at 50 p per pack. P. \& P. $17 \mathrm{p}_{\text {: }}$
3000 Series relays- 1.5 mixed values (new sind as new. no rubblsh) $£ 1 \cdot 50$. P. \& P. 37 p .
MALLORY CELLS. 15p per set of 5 .
STUART TURNER No. 12 Water pump GPET720/
10FTHD or GPE150/45 FTHD. Complete with 10FT.HD or GPH150/451FT.HD. Complete with standard mains input isolating transformer. Ideai fountains, waterfals, etc. ONLY $\& 5$ ea. P. \& P. \&1-25.

Carriage extra.

Panel awitches DPDT ex en. I3p ea.; DPST Brand new. 17p ea., DPSI 6wice, brand new 25p ea.
Brand new heads for TR50 and TR51 Tape Recorders E. 60

GYROS Large clear plastic topped. Type A $\mathbf{£ 5}$ ea. P. \& P. 75p

ALBRIGHT Heavy Duty Contactor. Single make. 200 amp . 24 V coll. Brand new, boxed. $£$ I eas. incl. P. do P. MUST GOI Solartron Storage oscilloscope QD910.
ClOO only. Carr. extra.

Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order
FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.
EHILTTMEADLTD

7/9 ARTHUR ROAD, READING, BERKS. (reapr Tech. College) Tèl.: Reading 582605/65916

NOW ONE OF THE LEADING FRANCHISED SEMICONDUCTOR DISTRIBUTORS OFFERS NEW BRANDED DEVICES AT INDUSTRIAL TRADE PRICES
 MULLARD, INTERNATIONAL RECTIFIER, SENSITRON, S.G.S., NATIONAL SEMICONDUCTOR
 THIS IS THE FIRST TIME D.T.V. GROUP LTD. HAVE EXTENDED SALES OF THIS RANGE TO PRIVATE READERS OF WIRELESS WORLD
 THIS IS THE FIRST TIME D.T.V. GROUP LTD. HAVE EXTENDED SAL OF THIS RANGE TO PRIVATE READERS OF WIRELESS WORLD BULK QUANTITY PRICES ON REQUEST

We hold one of the largest semiconductor stocks in the u.k.
E.Q.D. APPROVED

LOW COST DIGITAL TTL 7400 RANGE FROM FRANCHISED DISTRIBUTOR STOCK

$\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$					
Compare	these prices!		$\begin{gathered} 1-24 \\ \in p \end{gathered}$	$\begin{gathered} 25-99 \\ \& p \end{gathered}$	$\underset{£_{p}}{100}+$
DM7400N	(SN7400N)	Quad Two-Input Gate	0.250	0.200	0.167
DM740IN	(SN740IN)	Quad Two-Input Gate (Open Collector)	0.250	0.200	0.167
DM7402N	(SN7402N)	Quad Two-Input NOR Gate. .	0.250	0.200	0.167
DM7403N	(SN7403N)	Quad Two-Input Gate (Open Collector)	0.250	0.200	0.167
DM7404N	(SN7404N)	Hex Inverter	0.275	0.225	0.188
DM7405N	(SN7405N)	Hex Inverter (Open Collector)	0.275	0.225	0.188
DM74ION	(SN7410N)	Triple Three-Input Gate	0.250	0.200	0.167
DM7420N	(SN7420N)	Dual Four-Input Gate	0.250	0.200	0.167
DM7430N	(SN7430N)	Eight-Input Gate	0.250	0.200	0.167
DM7440N	(SN7440N)	Dual Four-Input Buffer	0.250	0.200	0.167
DM7450N	(SN7450N)	Expandable Dual AND-ORINVERT Gate	0.250	0.200	0.167
DM745IN	(SN745IN)	Dual AND-OR-INVERT Gate	0.250	0.200	0.167
DM7453N	(5N7453N)	Expandable AND-OR-INVERT Gate	0.250	0.200	0.167
DM7454N	(SN7454N)	AND-OR-INVERT Gate	0.250	0.200	0.167
DM7460N	(SN7460N)	Dual Four-Input Expander	0.250	0.200	0.167
DM7472N	(SN7472N)	J-K Master Slave Flip Flop	0.325	0.263	0.221
DM7473N	(SN7473N)	Dual J-K Flip Flop	0.525	0.417	0.350
DM7474N	(SN7474N)	Dual D Flip Flop ..	0.450	0.363	0.300
DM7476N	(5N7476N)	Dual J-K Flip Flop with Preset and Clear Inputs	0.563	0.450	0.375
DM7486N	(SN7486N)	Quad Exclusive-OR Gate	0.575	0.488	0.425
DM74107N	(SN74107N)	Dual J-K Flip Flop with Vec and GND on Corners	0.525	0.417	0.350

TRANSISTORS
LARGE QUANTITY-PRICES ON APPLICATION

BC 107			1.24	$25+$	2 N 1132			$\begin{array}{r} 1-24 \\ \mathbf{2 5 0} \end{array}$	$25+$
BC 108		\cdots	$\therefore 100$	${ }_{80}$	2 Nl 303	".		$\therefore 16 \mathrm{l}$	13 ¢p
BC 109		\cdots	. ${ }^{10 p}$	8p	2NI304	.		. ${ }^{\text {22 }}$ /p	1812 ${ }^{\text {P }}$
BC 113		..	$\therefore 15 p$	13p	2 N 1305			22tp	181p
BC 114		,	.. 14p	$12 \frac{1}{p}$	$2 \mathrm{~N} / 613$			20	161p
BC 115 16 ${ }^{\text {app }}$	1412 ${ }^{\text {P }}$	2 N 2193	\cdots		. ${ }^{27}{ }^{27}$	20p
BC 116		..	. 15p	13⿺辶 ${ }^{\text {P }}$	2 N 2218			\cdots 23p	$17 \frac{1}{1} \mathrm{P}$
BC 116 A			. 19 p	161p	2N2219	\cdots		.. $23 \frac{1}{4} \mathrm{P}$	$17 \frac{1}{}{ }^{\text {P }}$
BC 118			$\therefore 10 \mathrm{p}$	${ }^{8+p}$	2 N 2221			23, ${ }^{\text {P }}$	17tp
BC 125		-	., 201p	171p	2N2222			23 $\frac{1}{} \mathrm{p}^{\text {P }}$	$17 \frac{1}{19}$
BC 126	\cdots	.	, 201p	$18 \frac{1}{1} \mathrm{P}$	2 N 2369	\cdots		. ${ }^{15}$ p	12p
BC 147		..	$\cdots{ }^{1} 10$	91p	2N2369A	.		\cdots 18p	${ }^{131} \mathrm{l}^{2} \mathrm{p}$
BC 148		\because	$\therefore \quad 98$	${ }_{12 \mathrm{p}}^{8}$		\because		$\cdots{ }^{-} \times 19$	${ }^{23+\mathrm{p}}$
BC 153	\cdots	\ldots	$\therefore 18 \frac{1}{2} \mathrm{p}$	$16 \frac{1}{}$	2N2907	\cdots		$\because 30 \mathrm{p}$	22 $\frac{1}{}{ }^{\text {P }}$
BC 154		.	$\therefore 20 \mathrm{p}$	$17 \frac{1}{1}$	2 N 2924			$\therefore 13 \mathrm{p}$	9 p
BC 178	.	.	. $26 \frac{1}{2} \mathrm{p}$	23p	2 N 2925	\cdots	.	. 14tp	$9 \frac{1}{1} \mathrm{P}$
BC 182			$\cdots{ }^{10 p}$	9 P	2 N 2926			$\cdots{ }^{8 p}$	$7 p$
BC 183	\cdots	-	.. 9tp	${ }^{81}$	2N3011			$\cdots{ }^{15} \frac{1}{\text { P }}$	12p
BC 184	\cdots	\cdots	. $11 p$	91p	2N3053.	\cdots		.. 18p	12 p
BCY 58	.	-	-. 25 p	${ }^{20 p}$	2 N 3055			-. 78	${ }^{62} 18$
BCY 59	.	.	27tp	22p	2 N 3133			$\cdots{ }^{22 p}$	17p
BCY 70	-	.	$\cdots 17 p$	$12+\mathrm{p}$	2 N 3134	\cdots		-. ${ }^{23} \mathrm{p}$	18.18
BCY 71		-.	22tp	15p	2 N 3135			.. 23p	${ }^{16 p}$
BCY 72	.	..	$\cdots{ }^{-12+p}$	10p	2 N 3136	\cdots		.. ${ }^{27 p}$	22.1
BF 115 18.	15p	2N3390	\cdots		.. 30p	25.18
BF 167		..	$\cdots{ }^{21 p}$	17 p	2 N 3391			\cdots 20p	${ }^{17}$
BF 173	\cdots		. 24 ¢p	20p	2N3391A	.		.. 22 ${ }^{\text {¢ }}$ P	19p
BF 180		.	$\ldots 35 \mathrm{p}$	28p	2 N 3392			\therefore 13p	$11 p$
2N697	\cdots		\cdots 15p	121p	2N3393	,		.. 14p	12 p
2N699		\cdots	-. ${ }^{29+1}{ }^{\text {P }}$	22 p	2N3414			.. 14p	12, p
2 N 706		.	. 11 p	${ }^{9} \mathrm{p}$	2N3415			16p	15p
2N708 2N722		\because	${ }_{79}^{16 p}$	${ }_{67 \text { P }}$	2N3643 $27 \frac{1}{1} \mathrm{p}$	22, p
2 N 918				${ }^{\text {67tp }}$	2N3646	.		.. 26tp	$21 \frac{1}{1}$
2 N 929		..	17 P	121 ${ }^{\text {P }}$	2N4392	.		. 61.40	61. 20
2N930	.	.	17p	1212 ${ }^{\text {P }}$	2N4393	.	..	81.42	L1.20

FOR INDUSTRIAL TRADE "SWIFT SERVICE" 60 PAGE CATALOGUE. SEND 35p. TERMS C.W.O. OR C.O:D. EXCEPT FOR EST. ACCOUNTS, GOVERNMENT DEPTS., ETC. PLEASE ADD $10 p$ P. \&P. (U.K.), 50p OVERSEAS As these are trade prices it is regretted that we have to impose a minimum order value of $£ 2 \cdot 50$ U.K., £5 overseas. Orders to:
D.TVE GOU. LTD (Dept. M/OI), 126 HAMILTON ROAD, LONDON SE279 SG

AC/DC MULTIMETER AND TRANSISTOR TESTER TYPE U4341

 500 k ohms. Transistor collector cat-off
carrent 60 microamps. DC gate 10-350.
Sensitivity
3300 o.p.v. AC.
O.p.v. DC and Price complete with probes,
ateel carrying case, $\$ 10.50$.

MINIATURE CERAMIC CAPACITORS 5OV

WORKING

TYPE 4818-high sensitivity for general electionic and TV-radio
 D.O. ranges: $75 \mathrm{mV}-1.5-8-7.5-15-30-60-150-$
$60-120-600 \mu \mathrm{~A}=3-15-60-300 \mathrm{~mA}-1.5 \mathrm{Amp}$. A.C. Fanges: $1.5-3-7.5 \cdot 15-30-60-150-300-600 \mathrm{~V}$. Rebletance: $0.6-5-50-500 \mathrm{kO}$.
Capacity and Transmission level scales.
Accuracy: 1.5% :D.C.; 2% A.C.
Both instruments taut suspenion movements have knife edge
polnters and mirnor acales. poluters and mirror scala,
WHEN ORDERING BY POST PLEASE ADD $£ 0 \cdot 12 \frac{1}{2}$ $(2 / 6)$ IN \mathcal{E} FOR HANDLING AND POSTAGE. ALL MAIL ORDERS MUST BE SENT TO HEAD
OFFICE AND NOT TO RETAIL SHOP.
5% tolerance 22-27-33-39-47-56-68-82-100-120-150-180-220-270. $330-390-470-560-680-820-1000 \mathrm{pF}$.
$+50 \%-20 \%$ tolerance 150
$+50 \%-20 \%$ tolerance $1500-2200-3300-4700-6800-10,000-15,000 \mathrm{pF}$ $+80 \%-20 \%$ tolerance $0.022 \cdot 0 \cdot 033-0.047 \mu \mathrm{~F}$.
All at 28 p per twenty.
Minimum orders 20 of one size.

METAL CASED PAPER CAPACITORS

250 V D.C. Working: 0-05-0.1-0.25-0.5-1.0 $\mu \mathrm{F}$ lerance 10\%
80.04 (4p) each
$500 \mathrm{~V}_{\text {O }}$ D.C. Working: $0.025-0 \cdot 05-0 \cdot 10-0 \cdot 25$ -
.507F tolerance 10%
ع0.04(4p) each MINIMUM QUANTITY (A8SORTED)-20
FOR ORDERS OF 100 PER TYPE PRICE \&3-60 PER 100 MINIMUM QUANTITY (A8sorTED)-20
FOR ORDERS OF 100 PER TYPE PRICE \&3-60 PER 100
Larger quantities-prices on request

TWO NEW OSCILLOSCOPES FROM RUSSIA spares available.

CI-5 SINGLE BEAM OSCILLOSCOPE
$10 \mathrm{mc} / \mathrm{s}$ passband, triggered sweep from 1μ sec, to 3 millifrom $20 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{kc} / \mathrm{s}$. Built-in time marker and amplitude calibrator, 3 -in. cathode ray
 CI-16 DOUBLE BEAM mc / s passband. Separ Y1 and Y2 ampliflers, rectangular 5 in . $\times 4 \mathrm{in}$. cathode ray tube. Califrom 0.2μ sec. to 100 millisec. per cm. Free running Bu'lt-In time base calibration and amplitude calibrator 887 -50 Full detaild on request.

FULLY GUARANTEED

$\left|\begin{array}{ll}\text { PCL } 88 & 8 \\ \text { PCL80.90 } \\ \hline\end{array}\right|$

PLEASE NOTE THAT VALVES LISTED ABOVE ARE NOT NECESSARILY OF U.K. ORIGIN

Head Office:

Abstract

FIRST QUALITY VALVES

APPOINTMENTS VACANT

DISPLAYED SITUATIONS VACANT AND WANTED: $£ 8$ per single col. inch.
LINE advertisements (run-on): 45 p per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of 25 p .
SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions provided a contract is placed in advance
BOX NUMBERS: Replies should be addressed to the Boz number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E.1.
No responsibility accepted for errors.

EXPANDING COMPANY IN SAUDI ARABIA REQUIRES EXPERIENCED CERTIFICATED ENGINEERS
 FOR THE FOLLOWING POSTS CHIEF ENGINEER

B.Sc. or equivalent with 10 or more years experience in Operation and Maintenance of Transmission and Broadcasting Equipment.

ENGINEERS TECHNICIANS

Experience in Operation and Maintenance of Broadcasting Equipment, Studio Equipment and Teleprinters.
Please submit a complete resume and state availability and salary required. Box WW 1270

IF YOU ARE A

RADIO/T.V. ENGINEER
We are interested in making a change and have vacancies for servicing and constructing High Power Studio Electronic Flash Equipment; used in the Photographic field.

Letters only to:-
STROBE EQUIPMENT LTD., 56 Turnmill Street, London, E.C. 1

UNIVERSITY OF LEICESTER

DEPARTMENT OF CHEMISTRY

EXPERIMENTAL OFFICER REQUIRED

Knowledge of modern electronic circuitry essential. Experience of scientific equipment would be an advantage. Duties will include the assistance with the design, development and servicing of research equipment. Salary according to qualifications and experience within the scale $£ 1,002$ to $£ 2,445$ p.a. with F.S.S.U. benefits.
Apply, naming two referaes, to the Head of Department.
,

Advertisements accepted up to THURSDAY, 12 p.m., 9th SEPT., for the OCTOBER issue, subject to space being available.

RADIO OPERATORS

'DO YOU HOLD
PMG II OR PMG | OR NEW GENERAL CERTIFICATE OR
HAD TWO YEARS' RADIO OPERATING EXPERIENCE?
Looking for a secure job with good pay and conditions?
Then apply for a post with the Composite Signals Organization. These are Civil Service posts, with opportunities for service abroad, and of becoming established, i.e., non-contributory pension scheme.

Specialist Training Courses (free accommodation) starting January, April and September, 1972.
If you are British born and resident in the United Kingdom, under 35 years of age (40 for exceptionally well qualified candidates), write NOW for full details and an application form from:-

Government Communications Headquarters,
Recruitment Officer,
Oakley: Priors Road, Cheltenham, Glos. GL52 5AJ.
(Telephone :Cheltenham 21491, Ext. 2270).

Electronics Technician

We are one of Europe's most modern rubber manufacturers and in order to implement our planned programme of continued growth we require an electronics technician for interesting experimental work on our control equipment.
We offer the successful candidate an excellent salary and very good prospects. He should have his O.N.C. and be studying for his H.N.C.
Candidates should write stating age, qualifications and experience to:
Mr. B. Soer; Personnel Manager,
The Cannon Rubber Manufacturers Limited, 881 High Roadd, Tottenham N. 17

Queen's Award to Industry
4.

1341

COUNTY BOROUGH OF READING EDUCATION COMMITTEE AUDIO VISUAL AIDS TECHNICIAN

Salary $£ 1272-£ 1515$ (under review)

Applications are invited from suitably qualified persons for the above post at Highdown Comprehensive School. The successful candidate will be responsible for the demonstration, maintenance and servicing of all equipment including AM/FM radio, VHF/UHF TV, CT/TV with associated video-recording, tape recorders, projectors, language laboratory and reprographic equipment including offset litho. Highdown is a purpose-built comprehensive with 1,200 boys and girls from 11-18 years.
Assistance may be given for mortgage facilities and removal expenses.
Application forms available from the Chief Executive and Town Clerk, P.O. Box 17, Town Hall, Reading, Berks, RG1 1 N

ELECTRONICS ENGINEER

Fly high with Fairey Surveys

Join Fairey Surveys Ltd. as air crew and you'll find yourself flying to almost any part of the world. We need an electronics engineer with at least five years experience to augment the staff of an expanding Airborne Geophysics Department. The work involves all phases of airborne geophysical surveys utilizing up to date equipment which employ both analogue and digital data acquisition systems.
Qualifications: Higher National Certificate in Electronic Engineering or equivalent professional qualification. Geophysical experience would be an advantage. Age 25-35.

Salary in the range $£ 1,600-£ 2.500$
Write with full personal and career details to the Personnel Manager,

Fairey

Fairey Surveys Limited, Reform Road, Maidenhead, Berkshire.

Here's Variety, Interest and Technical Challenge

Radio Technicians with the National Air Traffic Services work on the installation and maintenance of a wide range of electronics equipment: RT, radar, data transmission links, navigation aids, landing systems, closed circuit T.V. and computers. Sophisticated telecoms systems to meet the highly specialised requirements of air traffic control throughout the U.nited Kingdom.

If you are interested in joining, you must be aged 19 or over and have at least one year's practical experience in electronics with preferably an O.N.C. or C. \& G. (Telecoms). Your starting salary would be $£ 1,143$ (at 19) to $£ 1,503$ (at 25 or over); scale max. $£ 1,741$-shift duty allowances. Good career prospects.
Send NOW for full details of how you can become a RadioTechnician. Complete the coupon and return to A. J. Edwards, C.Eng., MIEE, Room 705, The Adelphi, John Adam St., London WC2N 6BQ, marking your envelope 'Recruitment.'

I meet the requirements, please tell me more about the work of a Radio Technician.
NAME
ADDRESS \qquad location in South-Germany? The world's leading manufacturer of precision electronic test and other outstanding benefits to the Technical Writer who joins our technical publications group. You may qualify if you have a sound background in electronics and are an experienced writer. Some knowledge of German would also be advantageous.
Write or phone (reverse charges) Herrenberger Str. 110, GERMANY, Tel.: 07031/667 205

TECHNICAL WRITER

Do you want an attractive salary and a choice working measuring equipment and systems offers these and

Hewlett-Packard GmbH, 703 Böblingen,

EVR: a revolution in telecommunications

TELEVISION AND AUDIO ENGINEERS

Salaries about $£ 2,000$ pa

EVR is a system for playing professionally recorded programmes of sound and vision at low cost, under the control of the viewer.

The film or tele-recorded programme is processed using complex video and audio equipment to produce cartridges which can be reproduced using a simple tele-player and a domestic television receiver.

EVR is not just a plan for the future, it is already in use and cartridges are being delivered to customers now. To meet growing demands, we are about to start shift working at the Processing Station and we need more Maintenance and Operations staff.

Write giving brief details of your qualifications and experience, quoting reference $\mathrm{HM} / I / \mathrm{WW}$, to: The Personnel Manager, EVR Processing Station Christopher Martin Road, Basildon, Essex.

We want men with several years experience of maintaining and operating audio and video television studio equip: ment or who have a good electronics training and at least an ONC or City and Guilds final, together with a knowledge of television techniques.

The Processing Station is in the new town of Basildon. In addition to good salaries, employment conditions and promotion prospects, housing will be available to rent for most new employees.

Electronic Test Engineers

Pye Telecommunications of Cambridge has immediate vacancies for Production Test Engineers.
The work entails checking to an exacting specificationVHF/UHF radio-telephone equipment before customer delivery; applicants must therefore have experience of fault finding and testing electronic equipment, preferably communications equipment. Formal qualifications while desirable, are not as important as practical proficiency. Armed service experience of such work would be perfectly acceptable.
Pye Telecommications is the world's largest exporter of radiotelephone equipment and is engaged in a major expansion programme designed to double present turnover during the next five years. There are therefore excellent opportunities for promotion within the company. Pye also encourages its staff to take higher technical and professional qualifications.
These are genuine career opportunities in an expansionist company, so write or telephone without delay for an application form to:
Mrs. A. E. Darkin,
Pye Telecommunications Limited,
Cambridge Works, Haig Road, Cambridge.
Telephone: Cambridge 51351 Ext. 355

IMPERIAL COLLEGE LONDON SW7 2RH
 Department of Meteorology

ELECTRONICS ENGINEER

required to work on broad range of meteorological instrumentation for ground based, aircraft and balloon borne equipment where simplicity and reliability are of prime importance. Applicants age 25 to 30 should have a degree HND or HNC in Electrical Engineering and preferably IEE Part III, about five years experience in electronics design and fabrication. Salary range $E 1,728$ to E2,592. Apply to Professor P. A. Sheppard at above address.

1321

COVENTRY HOSPITAL MANAGEMENT COMMITTEE
ELEGTRONIGS TEGHNIGIAN WALSGRAVE HOSPITAL

Technician required for the Electronics Department dealing with the organisation and operation of a planned maintenance system for a wide variety of electronic and electro-medical apparatus. Applicants must possess H.N.C., H.N.D. or O.N.C.
in Electronics of Light Current Engineering, or the Final City and Guilds Tele-Communications Engineering Certificate. General experience in the electronic field is necessary and experience of Hospital Equipment an advantage. Salary scale: © $1,356-£ 1,764$, plus overtime if worked.

Applications, stating age, qualifications and experience, together with two referees to: Group Engineer, Coventry Hospital Management Committee, The Birches Annexe, Tamworth Road,
Keresley, Coventry CV7 8NN.

CITY OF LONDON POLYTECHNIC SIR JOHN CASS
 SCHOOL OF SCIENCE \& TECHNOLOGY SENIOR TECHNICIAN

A Senior Technician is required in the Department of Metallurgy and Materials to be responsible for the construction and maintenance of electronic apparatus and instrumentation used for research and teaching purposes.

Applicants should have good practical experience in electronics and be familiar with modern techniques. H.N.C. level with mo

Salary scale: $\{1,494-\{1,884$ p.a. (inclusive of London Weighting' Allowance).

Application form and further details from the Head of Department of Metallurgy and Materials, Sir John Cass School of Science and Technology, Central House, Whitechapef High Street, London EI 7PF.

1360

Sea-going Radio Officers can now make sure of a shore job and good pay.

If you'd like a job ashore, at a United Kingdom Coast Station, the Post Office will start you off on $£ 1,080-£ 1,360$, depending on age, with annual rises up to $£ 1,850$. There are good prospects of promotion to higher posts, opportunities exist for overtime and you would receive additional remuneration for attendance during the late evenings, at night and on Saturday afternoons and Sundays.

You will need to be 21 or over, with a 1st Class Certificate of Competence in Radiotelegraphy issued by the Postmaster General or the Ministry of Posts and

Telecommunications, or a Radiocommunication Operator's General Certificate issued by the Ministry of Posts and
Telecommunications, or an equivalent certificate issued by a Commonwealth administration or the Irish Republic.

Find out more by writing to: The Inspector of Wireless
Telegraphy,
I.M.T.R.

Wireless Telegraph Section (L. 6.) Union House,
St. Martins-le-Grand, London, EC1A 1AR.

Salary up to $£ 2,590$

* 3 year contract * Low Taxation * Subsidised Housing
*Education Allowance *25\% Tax-free Gratuity

THE GOVERNMENT OF ZAMBIA requires

RADIO SPECIALISTS (Police Department)

RADIO

ENGINEERS
(Civil Aviation) * Appointment Grant of up to $\mathbf{£ 2 0 0}$ payable in certain circumstañces

RADIO SPECIALISTS

Duties. Maintenance and installation of police radio equipment throughout Zambia, travelling by road and air.
Equipment. Modern low and medium power H.F., S.S.B. and V.H.F. equipment including multiplex links. Knowledge of maintenance of teleprinters, diesel and petrol generators preferred.
Candidates who will serve in the rank of Inspector of Police (nonuniformed), must have completed a five year apprenticeship or hold a service trade certificaté or 'equivalent qualification and have at least six years post-qualification experience.
Ref.M2Z/61274/WF

RADIO ENGINEERS

Duties. Installation and maintenance of ground terminal radio communication equipment and navigational aids at Airports and Flight Information Centres.
Equipment. Radar systems, H.F. and V.H.F. transmitters and receivers, I.L.S. and D.F. systems and tape recorders. Candidates (under 55 years of age) should have practical experience and a knowledge of theoretical principles within this field. In addition they should have attained one of the following:-
(i) completion of a 5 year apprenticeship.
(ii) a service trade certificate
(iii) an I.C.A.O. certificate
or (iv) equivalent
Ref.M2Z/690315/ WF

[^17]
BRISTOL POLYTECHNIC

Applicatlons are invited for the following post

TECHNICIAN (Grade T.3)

The successful applieant will be responsible for the upkeep and maintenance of the Analogue Computer aboratory in the Deparement of Computer Studies maintenance of ectronic equipment in the Depart ment of Science. It is envisaged that his duties will be divided equally between the two Departments. Applicants for the above post should be over 21 years of age and possess at least an Intermediate City and Guilds qualification in a relevant subject. $61,089-f 1,272$. Additions of $£ 30$ or 651^{\prime} for appro priate City and Guilds of National Certificate priate City
Further details and application forms (to be returned by 1 September, 1971) from Centra Personnel Office, Bristol Polytechnic, Ashley Down Bristol, BS7 9BU. Please quote post reference number $\mathrm{T} 41 / 113$ in all communications.

SITUATIONS VACANT

FULL-TIME technical experlenced salesman re A. quired for retail sales; write glving detalls of age previous experience, salary required to-The Managet

DRAUGFTSMEN. Mechanical and Electrical Toquired by expanding electronics company spectalising in lighting control and audio visual products. This position is salaried and gives ample opportunity for advance ment. Please apply Electrosonics Ltd., 47 Old Woolwich Road, Greenwich. London, S.E.10. Tel. $8584784 . \quad$ [2 ELECTRONICS maintenance and development engineer Is required to take complete responsibllity for technical equipment in studio and dubbing complex. He will also be in charge of specialist audio hire equipment. H.N.C. or degree in an appropriate subject essential. Salary will be in the range $£ 1,750-£ 2,000$ depending Projects Sound Limited, 10 Long Acre, London, W.C. 2

SERVICE ENGINEER. Additional Service Engtneer required for busy, growing, Audio and Colour TV retailer. Full range of modern test equipment in use. First-class working conditions in modern centrally heated single storey premises. Good prospects for future advancement. Substantial salary, re-settlement grant, company car provided (not a van). Good life insurance and pension scheme. Please apply to Merrow Sound

> Electronics Service Engineer for work on numerical machine tool equipment

EMI ELECTRONICS LTD., has a vacancy in the Installation and Maintenance Division, for an Engineer to be responsible for the installation, commissioning and maintenance of numerical control equipment for machine tools. He will be based at Hayes, Middlesex, but the position will involve work in the field in the U.K as well as occasional overseas visits.

Applicants, aged $25-45$, should have reached H.N.C. Electronics standard, and should have experience in fault finding on solid state equipment. A knowledge of pneumatics and machine tools would also be an advantage.

Starting salary would be up to $£ 2,000.00$ per annum, assistance will be given with removal expenses. Company benefits include free Life Assurance and a contributory Pension Scheme. Please apply in writing stating brief career details, or ring:-
R. C. Dwyer, Personnel Department,

EMI Limited, Hayes, Middlesex.
Tel. No. 01-573 3888 Ext. 632.

COMPONENT FACTORS
 ALL COMPONENTS BRAND NEW AND SUBJECT TO MAKER'S GUARANTEE
 P.O. BOX No. 18, LUTON, BEDS. LU1 1SU

[^18]
BRICO ENGINEERING LIMITED

HOLBROOK LANE, COVENTRY Telephone No. Coventry 89014

Following the closure of our Fuel Injection Department on this site, we offer for sale the following surplus equipment. Much of this equipment is less than 2 years old and is generally in a good 'used condition.'

Oscilloscopes	Qty.	Price	Resistance Boxes	Qty.	Price
Solartron CD. 1400.	3 off	¢75 each	Muirhead Decade 0;100K (5 dial)	2 off	E25 each
Telequipment $\mathrm{D}_{4} 43 \mathrm{R}$.	3 off	685 each	Muirhead Decade 0-10K	12 off	$\underline{50}$ each
Tektronic Plug in unit type H.	1 off	645	Pye 4 Dial 0-IOK	8 off	£22 each
Solartron plug in unit CX 1442.	1 off	615	Environmental equipment Sand and Dust Cabinet Medical electronics	I off	£350
Oscilloscope trolley			Bump Test Machine	1 off	¢319
Domain	3 off	¢12 each	Test Equipment		
			Vacuum Pump. Edwards ISP30C Wide range oscillator solartron CO. 1004-3		
Power supplies A.P.T. type TS4. 1012		650 each	Wide range oscillator solartron CO.1004-3 Avo transistor tester TT. 164	$\begin{aligned} & 10 \text { off } \\ & 1 \text { off } \end{aligned}$	$\begin{aligned} & \mathrm{E} 76 \\ & \mathbf{E 5 0} \end{aligned}$
A.P.T. type $12 \mathrm{~V} \cdot 5 \mathrm{~A}^{\text {a }}$	5 off	650 each	Avo BC Oscilloscope Camera type K. 5	1 off	6125
Coutant ASC. 1500	6 off	¢80 each	Comark electronic thermometer type 160C	1 off	635
Coutant LB. 1000.2	1 off	¢62	Comark electronic Selector unit type 163	1 off	${ }_{614} 14$ each
Coutant KS.3000/12	1 off	¢150	Rícardo FM Bridge type P. 4550	1 off	6.50 ${ }^{\text {each }}$
Coutant ASB. 1000	1 off	850	Advance double pulse generator PG. 50020	1 off	6155
Farnell SB.30/10	2 off	\&45 each	Wayne Kerr Universal Bridge B22I	1 off	$¢ 175$
			Radio spares isolating transformer	1 off	
Universal Counter Timers			Lancashire Dynamo Motor \& variable control	3 off	¢100 each
Racal SA.535 B	2 off	\&150 each	Static inverter temp. Gauge type IFC 1000 0-120 ${ }^{\circ}$ (new)	19 off	${ }_{\text {¢ } 120} 12$ each
Racal SA. 535	8 off	¢105 each	Vitatron Linear Recorder type UR400	4 off	8200 each
Racal 835	3 off	El75 each	Vitatron Linear Recorder type URI00	4 off	8200 each

All enquiries to: Mr. S. H. Hardwick.
All equipment may be viewed during normal working hours at the iabove premises. Delivery free on orders over $£ 250 \cdot 00$.

BRICO ENGINEERING LIMITED
HOLBROOK LANE, COVENTRY Telephone: COVENTRY 89014
Following the closure of our Fuel injection Department on this site, we offer for sale the following surplus electronic components: The bulk of thls stock is still In manufacturers' packing and has been stored under strict control.

Ariy pdicel of components will be made up to suit customers requirements. Terms are Cash with order. P. \& P.: 10 p on orders less than 6500
Quantity discount: 5% on orders over $\mathbf{2 5} .00 \quad 10 \%$ on orders over $£ 50.00 \quad 12 \%$ on orders over $£ 100.00$ negotiable on orders greater than $£ 250.00$
All enquiries to: Mr: S. H. Hardwick.

CECHNICIAN required by Geophysical Laboratory, and operate measuring apparatus, to build and test prototypes, to work occasionally away from Reading. H.N.C. (Electronics), Clty and Guilds (Intermediate) or equivalent essential. Starting talary in scale from £ 1,041 p.a. plus settlement for recognised qualification Apply in writing, quoting ref. T66, to Assistant Bursar (Personnel), University of Reading, Whiteknights,

HEATICLESFOR SALE

BUILD IT in a DEWBOX quality plastics cablnet B. 2 in . $\times 2 \frac{1}{2} \mathrm{in} . \times$ any length. D.E.W. Ltd. (W) Ringwood Rd. FERNDOWN, Dorset. S.A.E. for leaflet C.TV. 4 A.E.I. Cameras and 14 in. Monltors $\mathcal{E} 350$. C_{2} s/hand Pye Lynx transistorised Cameras complete with 2 vidicons, 1 lens and high definition monitor $£ 95$. Quanttty of new E.M.I. Vidicons type 9877 C and 9677 M 25 per cent off list price. Ex-B.B.C. Portable Outside Broadcast Equipment consisting Line Transmission
Amp, Mixer and Power supply $£ 95$. 2 New Grundig Amp, Mixer and Power supply $\begin{aligned} & \text { Eam } \\ & \text { Lelephones } \\ & \text { £ } 180 \text {. People interested } \mathrm{In} \text { this }\end{aligned}$ equipment ring 794-7350 during office hours. CONTENTS of Amateur's Radio Home WorkshopCONTENTS of Amateur's Radio Home WorkshopEpoch $10^{\prime \prime}$ Speaker, etc.-Phone 6607376 after
6.30 p.m. for appointment. 6.30 p.m. for appointment.
COLOUR TV CAMERAS complete with lenses, tubes COLOUR TV CAMERAS complete with lenses, tubes or $01-907-0548$ evening.
[1346 COLOUR, UHF and TV Brit. maker's Colour Monitor Panels designed to BBC standards. Pal filter and delay $£ 6$, chrominance $£ 6$, luminance $£ 4 \cdot 50$, encoded video input $£ 2 \cdot 50 \mathrm{P} / \mathrm{P}$ 25p (or set of $4 £ 17 \cdot 50 \mathrm{P} / \mathrm{P}$ 35p). Also quantity Colour TV Camera Panels. Plessey colour scan coils \&5.75 P/P 35p, convergence
coils £3.80 P/P 25p, Blue lateral £1.25 P/P 10 p (or complete set $£ 10 \mathrm{P} / \mathrm{P} 50 \mathrm{p}$). Mullard type colour Scan Coils £3.50 P/P 35p, with latest type convergence coils
for electronic control of static convergence $£ 2 \cdot 50 \mathrm{P} / \mathrm{P}$
25 p 25 p . Colour LOPT assembly incl. EHT output and focus control $£ 3.50 \mathrm{P} / \mathrm{P}$ 35p. luminance/chrominance panel $£ 1 \mathrm{P} / \mathbf{P} 25 \mathrm{p}$. Integrated transistd. decoder unit luminance Delay Line $£ 1.30$ P/P 20p. B9D valve bases for colour valves and PL500 series 121 p P/P 5 p . UHF tuners transistd. incl. slow motion drive, indicator, AE panel £3.95, transistd. push buttion £5.25, Cyldon valve type $£ 1.75 \mathrm{P} / \mathrm{P} 25 \mathrm{p}$, slow motion drive, indicator, ${ }_{6} \mathrm{AE}$ panel 95 p P/ition push button transistorised tuner easily 6 position push button transistorised tuper easily
 $\mathbf{£ 4 . 7 5}$ (or . salvaged $£ 2.50$) P/P 25p. MORPHY $600 /$ 700 series complete UHF conversion kits incl. tuner, drive assy., 625 IF amplider, 7 valves, accessories, housed in special cabinet plinth assembly, ${ }^{27.50}$ or able IF ampliffer and output chassis, $£ 1 \cdot 50 \mathrm{P} / \mathrm{P}$ 30p. Ultra 625 IF AMP chassls and circult $£ 1.50 \mathrm{P} / \mathrm{P}$ 30p. Philips 625 IF AMP panel and circuit, £ 1 P/P 30p. SOBELL/GEC 2015 serles $405 / 625$ printed circult IF panel incl. circult $£ 1.95 \mathrm{P} / \mathrm{P} 30 \mathrm{p}$. UHF list available on request. VHF tuners AB miniature with UHF
injection suitable K.B. Baird, Ferguson $75 \mathrm{p} / \mathrm{P}$
 30p, Cyldon C \& 1 P/P 30p. Pye 13 ch . incremental
$£ 1.25$ P/P 30p. Ekco, Ferranti, Plessey push button tuner with UAF injection $81.50 \mathrm{P} / \mathbf{P}$ 30p. New firetuner with tuners Ferguson, HMV, Marcont type $£ 1.90$ P/P 30p. Philips export continental turret tuners 75 p P/P 30p. Many others available. Large selection
channel coils, LOPTs. Scan Coils. FOPTs avallable chanmel coils, LOPTs, Scan Coils. FOPTS avallable
for most popular makes. Philips 110° Scan Coils $£ 2.85$ P/P 25p. Pye/Labgear transistd. masthead UHF booster £4.25, power unit £3.25. UHF/VHF/FM set back booster, mains operated £5.90 P/P 25 p .-MANOR
SUPPLIES, 172 WEST HND LANE, LONDON, N W 6 SUPPLIES, 172 WEST END LANE, LONDON, N.W. 6
(NO. 28 Bus or W. Hampstead Tube Btation). MAIL ORDER: 64 GOLDERS MANOR DRIVE, LONDON,

DON'T get caught speeding. Protect your valuable driving life. With a Radar Spotter for the rest of your on modern traps. Send remittance now before it's too late. Details only phone, s.a.e. 01-668 3255/660896, Belding \& Bennett (Box 60), Green Lane, Purley Surrey.
FOR SALE large quantity Radio and Electronic books Tin clean condtion. Also sMechanical Eng. Science Road, Rock Ferry, Birkenhead, Cheshire. 102 Canterbury FOR SALE, what offers, large quantities of transistors, AF 186, OC 75, BF $158, \mathrm{BF}$ 159, BF 164. and many thers. Diodes Co esistors, and oue quantities. Carbon and W.W. Resistors, Condensers, Line Output Trans formers, Rectifiers, Transformers, Potentiometers, Relays and hosts of miscellaneous components. Broadfields \& Mayco Disposals, 21 Lodge Lane, N Finchley, N.12. Telephone 01-445 2713 . HEADPHONES (Stereo), Diplomat model by S. G $\begin{array}{lll}17 \text { Hrown. } 10 \text { pairs, bargain, } & \text { £4-95 each.-R. J. W. } \\ \text { [1324 }\end{array}$ LOW cost surplus and secondhand electronic test and scientific equipment chart records, meters, signa ments.-A. Perue, 2 Harbledown Road, Parson's Green Fulham, London, S.W. \mathbf{F}.

VHF. 80-180 miliz Receiver, Tuner, Converter Kit
$\sqrt{\text { remarkable }}$ results from single transistor. $£ 4 \cdot 13$ complete or S.A.E. for free literature. Johnsons
(Radio), Worcester WR1 2DT.
[WW99
1 COLLINS TYPE 30J Radio Transmitter irequencles $140,20,10$ metres, circa 1939. Ollers to:-Yates,
Vandervell Products Ltd., Maidenhead, Berks.
[1320

AERIAL BOOSTERS
 We make three types of transistorised aerial preamplifiers, L 45 U.H.F. television, L12 V.H.F. television, LII V.H.F. F.M. \&2!95. S.A.E. for leaflets.
 T.V. VALVES 5.45p
 MOST TYPES IN STOCK
 VELCO ELECTRONICS
 62 Bridge St., Ramsbottom, Bury, Lancs, Tel. Rams. 3036.,

NEW CATALOGUE No. 18, containing credit vouchers - value 50 p , now available. Manufacturers' new and surplus electric and mechanical components, price $22 \frac{1}{2}$, post free. Arthur Sallis Radio Control Ltd., 28 Gardner
Street. Brighton, Sussex.
[94
O NE Slee R.K. Welding Machine complete with Thyratron Synchronous Timer, suitable for welding miniature assemblies, e.g. Radio Valves. Please telephone: The Administrative Officer, Brooke Bond Liebig Research Centre, 073-525 2411.
PRINTED CIRCUIT board with etching powder ip per sq. in., and size cut, minimum order 50 p -Velco Electronics, 62 Bridge Street, Ramsbottom, Bury Lancs.
[1333
R ADIO Television, over 8,000 models. John Gilbert (01 Television, ib Shepherds Bush Road, London, W. (01-743 8441).
[1359
SERVICE Sheets (1925-1971) for TV's, Radios, Transistors, Tape Recorders, Record Players, etc.; over 8,000 models avallable. S.A.E. enquiries, Hamilton Radio SHARPEN YOUR responses with Brush Clevite ceramic $\mathrm{S}_{\text {1.f. resonators. N\&w TF-04 } 442 \text { identical resonators }}$ need only fixed std.-value capactors to set the band of 4 , with capacitor values, i.f. circuitry, and useful data, £ $1 \cdot 50$, UK post 5 p -Amatronix Ltd, 396 Selscon Road, South Croydon, Surrey, CR2 0DE. SOLATRON LM902.2 D.V.M. with A.C. converter Lx 540 kHz to 54 MHz . 135 . £25. C.R.T.s at $£ 1.50$ each. VCR97, 89D, 89L, 88J, R5161, X537, $4 \mathrm{EP1}$. ECR30 and DG7/6 at £5. 5 SP7 twin gun. Debrie D16 16 mm Sound Projector $\mathcal{E} 68$ Offers considered, must clear space.-Sunbury-on-
[1316 TAYLOR valve tester, Taylor valve voltmeter, Jason Lsig. gen. All good condition and working. Three for £25.-Soundtrack, 149 Leigh-on-Sea. Tel. Southend
74752 . TONS of Electrontc, Hydraulic Apparatus, bolt and 1 screws suitable for F 86 F Fighter, sold by weight Enquiries to Derica, 285/B Vla Tuscolana, Rome, Italy.
Tel. 006-73-73-76. Tel. 006-73-73-76.

SYNTHESISER MODULES

Send s.a.e. for details of voltage-controlled modules for synthesiser construction to:
D.E.W. LTD.

254 Ringwood Road, Ferndown, Dorset

12 VOLT FLUORESCENT LIGHTS

Beat Power Cuts. 12 m s. 8 watt Tube. Ideal for Caravan. Tent Emergency Lighting, etc. Fully Transistorised. Low Battery or $12 v$ Equipment
Unbeatable at £3. 30 post paid
or in kit form £2.90
SALOP ELECTRONICS (DEPT. WW), Callers walcome
23 Wyle Cop, Shrewsbury, Shropshire. S.A,E. for lists
1358

17" BBC/ITV

TELEVISIONS $£ 5$

SPEAKERS

$6^{\prime \prime} \times 4^{\prime \prime}, 7^{\prime \prime} \times 4^{\prime \prime} 30 \mathrm{HM}$
20p plus 8 p P. \& P. each, C.W.O REGULAR DELIVERIES THROUGHOUT ENGLAND

ND NORTHERN IRELAND

TRADETM's
407 Thornton Road. Girlington, Bradford 8, Yorks.

V ACUUM pumps, coating plant, pyrometers, recorders Barrett, 1 Mayo Road. Croydon, CRO 2QP. Burrey.

COURSES

North East London
 Polytechnic

PADDINGTON COLLEGE FOR FURTHER EDUCATION

Special Evening Courses in Engineering at the Polytechnic for the Autumn 1971

Computer Aided Design
Fundamentals of Microelectronics
An Introduction to Modern Techniques of Network Analysis
An Introduction to Combinational Logic Systems

Integrated Circuit Electronics
High Frequency Engineering
Transducer Techniques
An Introduction to the Analysis of Engineering Systems

Saltram Crescent W9 3HW

 Tel: 01-969 2391ELECTRONICS-Available in September day or evening courses in preparation for the C.G.L.I. 433 Part I examination for RADIO: TELEVISION and ELECTRONIC MECHANICS. Subsequent courses at Paddington Technipal College. Enquiries and enrolment September 13 th to 16 th, 10 to 4 and 6.30 to 8.30

TELEVISION AND RADIO TRAINING

(DAY ATTENDANCE COURSES)

This private College provides theoretical and practical training in Radio and TV Servicing. Courses of one year's duration, with daily attendance, are available for beginners and shorter courses for men with previous training in Electronics and Radio. Training courses in Radar and Radio Transmission are also available following the TV course. Write for prospectus to: London Electronics College, Dept. B/5, 20 Penywern Road, Earls Court, London, S.W.5. Tel. 01-373 8721.

ELECTRONIC EQUIPMENT

EMI 101 Oseillascope Mains／Battery operated 0.15 MHz Scope Trolleys
Dawes 443A Audio Siweep Öscillator $20 \mathrm{H}-20 \mathrm{KHz}$ ． Almose new condition
Furzehill G452 LFO Oscillato

HP 400 DVTVM 1.0 mV － 300 RMS $0-4 \mathrm{MHz}$
Furzehill V200A Valve Voltmeter 1 mV －300V RMS
a－lom
$0-10 \mathrm{MHz}$
Advance E2 RF Signal Generator $100 \mathrm{KH}-100 \mathrm{MHz}{ }^{\prime}$ HP 5233 L Liod condition 6 Digit $0-2 \mathrm{MH}$

Dynarmco DM2020 5 digit digital voitmeter
Coutant ED 100 twin 24 V IA Modular PSUs．Neẅ
Rustrack Recorder 4 channel event 12 V drive．
Rustrack Recorder 4 channel event 12 V drive．
Mains operation．
N．E．P． 1060 U $/ V$ Recorder 12 Channel with 5 galvos
Moseley 70358 X－Y Recorder．Almost new
Advance PPG Twin 0－30V 3 A Variable PSU
APT 50200500 V 500 mA PSU
 Weath Paignton sockets．New Audio Generator AG－9U Harmonic Dis－ $\mathbf{6 6 \%}$ tortion Meter HD． 1 Audio Analyser AA－1 and PSU 115 V o／p．The lot
Sfemens Level Recorde
Epsylon 8 Channel I＂Data Tape Recorder ciw $\quad 650$
Savage 250 10．Thrust Shaker and Àmplifier ．．P．O．A．
B \＆K Automatic Sweep Frequency Oscillator ．．．P．O．A．
OTHER EQUIPMENT AVAILABLE INCLUDES OVENS，
FLAW DETECTORS，DROP TESTER，MICROWAVE EOUIPMENT，ETC．GOOD QUALITYTEST EOUIPMENT aLWAYS PURCHASED．

MARTIN ASSOCIATES

Myrorian，Greensward Lane，Arborfield，Nr． Reading ${ }_{z}$ Berks．Tel：Arborfield Cross 610 Please nole we will be closed for staff holldays from 13th August to 22nd August finclusive． 69

WOW \＆FLUTTER METER EMT 420A
BAND PASS FILTER EMT 421A
AF SIGNAL GENERATOR WAYNE KERR 5.121
This equipment was new in 1970. Liquidator＇s Stock available at HALF NEW PRICE． S．G．YOUNG
154／6 Blackfriars Rd．，London，S．E．1． rel：01－928 3131

TV＇s TV＇s TV＇s

SPECIAL OFFER－LIMITED PERIOD ONLY $19^{\prime \prime}$ Slim Thorn 800 TVs 13 Channel．Good
working order．Polshed cabinets．Only 69.50 PLUS working order．Pollshed cabinets．Only $\mathbf{6} 9.50$ PLU £1．50 carr． EX－RENTAL TVs（UNTESTED） Complete with 13 channel tuners．Good cabinets． Carriage \＆I－50 extra． $17^{\prime \prime}$（Semi－Slim $\left(90^{\circ}\right.$ tube）$£ 2.50 ; 17^{\prime \prime} / 21^{\prime \prime}$ Slim $\left(110^{\circ}\right.$
tube） $64.50 ; 19^{\circ}$ glimline $£ 6.50 ; 23^{\circ}$ Slimine 68.50 ； tube） CA 50 ； 19° gimine
19° BBC2 Sets $\mathrm{E} \mid 450$ ．

PERFECT SPEAKERS EX TV
Pm 3 ohm（minlmum order two） 5 in．round． 8 in． b．and p ．

	ALV	E	U1P	NT	
ER91	5p	$30 \mathrm{L15}$	$12{ }^{1} \mathrm{D}$	PL36	22\％${ }^{\text {d }}$
EBF89	121p	$30 \mathrm{P4}$	$12 \frac{1}{1} \mathrm{P}$	PL81	$17 \frac{1}{\text { P }}$
ECC82	12tp	PC97	$17 \frac{1}{1} \mathrm{P}$	PY81	15 p
EC180		${ }^{\text {PCP8 }} 4$	$17 \frac{18}{}{ }^{\text {P }}$	PY800	5p
EF80	121P	PCFES	$7 \pm$	PY89	$2{ }^{\text {\％}}$
EF85	12%	PCO89	12 c	V191	，
EF183	$12 \frac{1}{2} \mathrm{P}$	PCC88	22.8	6 F 23	7tD
EF184	121 $\frac{1}{2}$ P	PCL85	22⿺𠃊⿻丷木口⿱亠𧘇十	6 F 23	710
EY86	$17 \frac{1}{1} \mathrm{p}$	PCL82	171 ${ }^{\text {P }}$	30 PLL	221
30PL13	20p	PCL86	171p	30 P 12	20D
63012	12tp	PCL83	121p	30F6	O

For Ferguson 850， 900 chassis，adaptable for KB， Ekco，T415， 1084 chassis $£ 2.50$ ．p．\＆p．50p．

SLOT METERS－SPECIAL OFFER Smitbs Mk．II 6d．Convertible to 5p（Smiths Kit forts $£ 5$ incl．post and packing．
Please write with SAE for quotations on any spares． TRADE DISPOSALS（Dept．T．S．），Thornbury Roundabout，Leeds Road，Bradford，Yorks．
NOW UNDER NEW MANAGEMENT

BUSINESS OPPORTUNITIES

Electronics Manufacturing Company

with established industrial contacts seeks to acquire on lisence or outright purchase，new products or product ideas in the low cost automation／industrial control fields．Please send full details in absolute confidence to Box No．WW 1347

TEST EQUIPMENT－SURPLUS
 ANDSECONDHAND

SIGNAL generators，oscilloscopes，output meters，wave Svoltmeters，frequency meters，multi－range meters， etc．，etc．，in stock．－R．T．\＆I．Electronics，Ltd．，Ash－
ville Old Hall，Ashville Rd．，London，E．11，Ley． 4986.

RECEIVERS AND AMPLIFIERSH－
 SURPLUS AND SECONDHAND

HRO Rx5s，etc．，AR88，CR100，BRT400，G209，S640； Retc．，etc．，In stock，－R．T．\＆I．Electronics，Ltd．，
Ashvile Old Hä，Ashvile Rd．，London．E．11．Ley． 4986.

NEW GRAM AND SOUND EOUIPMENT

CLASGOW．－Recorders bought，sold，exchanged； cameras，etc．，exchanged for recorders or vice－ Versa．－Victor Morrts， 343 Argyle 8t．，Glasgow，C． 2.

TAPE RECORDING ETC．

I^{F} quallty，durablity matter，consult Britain＇s oldest transfer service，Quality records from your suitable tapes．（Excellent tax－iree fund ralsers for schools．
Modern studio facllites with Steinway Grand．Sound News， 18 Blenheim Road．London，W．4．01－995 1661．［1328 YOUR TAPES TO DISC，－$£ 6,000$ Lathe，From $£ 1.50$ ． High Bank，Hark St．，Carnforth，Lancs．
［70

FOR HIRE

FOR EIRE CCTV equipment，Including cameras， monitors，video tape recorders and tape－any period．
－Detalls from Zoom Television．Chesham 6777 （75

ARTICLES WANTED

WANTED all types of U．B．F．Transistors and Test Equipment．Please state price，－Velco Electronics， 62 Bridge Street，Ramsbottom，Bury，Lancs．Tel．
RAMS（070－682） 3036 ．

WaNTED to buy－all types of electronic test equip－ －Telephone Yateley 83048．Immediate cash available．
FIGHEST CASH PRICES for Revox，Ferrograph，
［102
WanTED，all types of communications recelvers Electronics，Ltd．，Ashville Old Ball，Ashvilio Rd．，Lon－ WANTED，televisions，tape recorders，radiograms， new valves，transistors，etc．Stan Willetts，${ }^{37}$
Eigh St．，West Bromwich，Staffs．Tel．Wes．0186．［72
VALVES WANTED
WE bug new valves，transistors and clean new com－
ponents，large or small quantities，all details，
quotation by return．－Walton＇s Wireless Stores， 55
Worcester St．．Wolverhampton．

SERVICE \＆REPAIRS

INSTRUMENT＇SERVICING AVO，Taylor，etc．，multi－ competitive estimates free，guaranteed repalrs，callbrated， competitive estimates free，guaranteed repars，calibrated，
collection locally．V．W．\＆E．Smith， 69 Chestnut Drive， Leigh 6674，Lancs．

CAPACITYAVAILABLE

A IRTRONICS LTD．，for Coll Winding－large or small A production runs．Also PC Boards Assemblies．Sup－ pliers to P．O．，M．O．D．，etc．Export enquiries welcomed．
32 Walerand Road，London，S．E．13．Tel．01－852 1706 ［61

Coll winding capacity．Transformers，chokes R．F． colls，ete．，to your specification．Sweetnam \＆Brad－ ley Ltd．Bristol Road，Malmesbury，Wilts．，or Tel．
Malmesbury 3491． DESIGN，development，repair，test，and small pro－ ELECTRONICS， 54 Lawford Rd．，London，N．W．5． $01-2670201$.
Meralwork，all types cabinets，chassis，racks， for smail mithing and capstan work up to 1 in．bar． for small matling and capstan work up to 1 in．bar．－ Loughborough．
We undertake the manufacture of transformers work gugly or in quantitles to any specification．Al work guaranteed for 12 months．－Ladbroke Transiormer Co．Ltd．
Tel． $01-969$ 0914．Harrow Road，Kensal Rise，N．W．
［100

We can assist you by manufacturing p．c．bs，control tronic Allied Components Ltd．，BCA Estate，Measham． Stafts．Telephone：＇Measham $\mathbf{8 2 2 5}$ ．

Abstract

\section*{TECHNICALTRAININC}

BECOME＂Technically Quallfled＂in your spare time， radio，TV servicing and maintenance．R．T．E．B．，City in Guilds，etc．，highly informative 120－page Guide－free． Reading RG7 ${ }^{\text {4PF．}}$（Dept．837K）．Aldermaston Court， ［16 CIE，AMSE，City and Guilds，etc．，on＂Satisfaction Postal Courses for all branches of Engineering．Illus－ Prated prospectus FREE．Please state subject of interest．－BIET（Dept．H．18），Aldermaston Court， Reading，RG7 4PF． DNGINEERS－get a technical certificate．Exam and Engineering．Electronics Courses in all branches of Draughts，Building，etc．Write for helpitul FREE Braughts，Building，etc．W．17），Aldermaston Court， Reading，RG7 4PF． TECHNTCAL TRAINING in Radio，TV and Electronics homestudy world－famous ICS，For details of proven home－study courses write：ICS，Dept．443，Intertext House，London，S．W．8．4UJ．

TUITION

COLOUR TV SERVICING．Be ready for the coming vicing colour TV sets through new home－study courses speclaily prepared for the practical TV technician，and approved by leading manufacturer．Full detalls from ICS，（D 558），Intertext House，London，S．W． 8 4UJ．［1263 MEN！You can earn £50 p．w．Learn Computer Computer Operations Training Centre，C．96，Oxford Computer Operations Training Centre，C．96，Oxford
［1070
RADIO and Radar M．P．T，and C．G．L．I．Courses． 8JZ．Write：Principal，Nautical College，Fleetwood，NY7

：Thermistors

－F．J．Hyde DSc，MSc，BSc．
－
－The aim of this book is to give for the
－first time a comprehensive account
－of the properties and applications of
－both positive and negative tempera－
－ture coefficient（NTC and PTC）
－types of thermistors，in order that －their potential usefulness in a wide range of instrumentation and measurement may be made evident． It will prove to be an indispensable reference book for all those in－
－terested in the application of this
－extremely useful circuit component．
－ 0592028070208 pages
－illustrated $1971 \quad \mathbf{~} 3.20$
－
－Available from leading booksellers or
：

The

Butterworth Group
88 Kingwwy London WC28 6 AB

Showrooms and Trade Counter
4－5 Bell Yard London WC2

Aomplate HF Rabeite Antemiai ตมapailith in: SiD mater Gircle

How Hermes did away with vast rhombic or log-periodic antenna farms shoed away by a shrewd array
Take 1 meter diameter loops 4 meters apart and get an omni directional broad-band receiving array
covers 2-32 MHz
optimum beam characteristics for both long and short range communications.
Rosette configuaration of linear arrays gives a number of overlapping high gain beams all available simultaneously, * Using less than one hundredth of the real estate.

Aperiodic Loop Systems are shrewd enough for restricted space, quick set up; roof mountable, or just below ground level.
Governments and military agencies use them
Give up the antenna farm. ASK US

MLOCK ALUMINIUM CHASSIS FRAMES
10흘․ $\times 8 x^{-} \times 6 \frac{1}{2}$ E1 DD 200
P.O. TYPE

20 way 3 pole Jack Strips
$104^{*} \times 3^{\circ} 98 \mathrm{p}$ pp 40 p Ex-equip.
SOLENOIDS 12 VOLT PULLACTION
$2^{\circ} \times 1^{\circ} \times{ }^{\frac{3^{0}}{4}}{ }^{40}{ }^{40} \mathrm{ppp}, 8 \mathrm{p}$
$7 \cdot \times 19^{\circ} \times 13^{\circ}$ 230, AC
$7^{*} \times 19^{\circ} \times 13^{\circ} 230 \mathrm{v}$. AC. Input-6v. $5 \mathrm{amp} \times 2$
8 d .7 .5 amp DC output; Fully transistorized marginal djust. on output $£ 35$ carriage $£ 3$

stabilized ex-equip $£ 27.50$ carlage $£ 2.50$
COUTANT/ROBAND POWER SUPPLIES
28 v . 20 amp DC. output $220 / 50 \mathrm{v}$. AC. Input
Fuliy stabilized, ex-equlis tested. $16^{\circ} \times 16 \frac{1}{2}^{\circ} \times 8 \frac{1}{4}^{*}$
approx. $£ 45$ carrlage $£ 5$
TRANSFORMER
230 v . AC. Input. $6.6^{\circ} \mathrm{V} .122 \mathrm{amp}$ output $6 \frac{1}{3}^{\circ} \times 7 \frac{1^{\circ}}{} \times 9^{\circ}$ Inc. terminals new $£ 15$ carriage $£ 2$
GARDNERS: Potted input 0-250v. AC. output
$18 \mathrm{~V} .500 \mathrm{~m} / \mathrm{amp}: 50 \mathrm{~V} .50 \mathrm{~m} / \mathrm{mp}$ A. $250 \mathrm{~m} / \mathrm{A}$
OXLEYBARB INSULATED FED THRO*
TURRET TAGS box 100 \&1 pp 15p; 15 p doz pp 8 p
garrard 2 track tape decks mag type
230 v . AC... $1 \neq$ lps. 50 v . solenold operated brakes.
deal for, contin. tape players $\boldsymbol{£ 7 \cdot 5 0}$ pp $£ 1 \cdot 25$ now
TELESCOPIC AERIALS
chromed 7° closed 28° extended 6 saction
ball jointed base 23 p pp 8 p new
MULLARD 4 DM160 INDICATORS
in plastic holder/cover ox-equlp.
size approx. 1z. 1
RINTED CIRS: 1 '
ass capacitor/esistors. Powar supply $222 \mathrm{v} 250 \mathrm{~m} / \mathrm{A}$
C. Output 240 v . AC. $£ 1$ po 20 p ox-equip

TOGGLE SWITCHES SID 20 o ex-equip
oecalip new condition 500 doz. DP 13p
FIBRE GLASS TAPE 100 yd. roll: $3^{*} 3 \frac{1}{2}{ }^{*}$ wide
E1 per roll pp 20p
PAINTON type 159 seties connectors working
voltage 350 v AC/DC current max. 3 amp AC/DC
7 pin plug \& socket 50p pp 10p
15 pln plug \& sockat E1 pp 10p
31 pin plug \& socket \&1.50 PP 10p
CASH WITH ORDER

FIELDELECTRICLTD.

3 SHENLEY ROAD; BOREHAMWOOD, HERTS. Adjacent Eistree Malniline Station

Tel: 01-953 6009

SURPLU8 HANDBOOK8

19 set Circuit and Notes
E.R.O. Technical Instructions

38 set Technical Instructions
46 get Working Lnstructions
88 set Technical Instruction
BC. 221 Circuit and Notes
Wavemeter Class D Tech. In 18 set Circuit and Notes
BC. 1000 (31 set) Circuit and Notes
8. 107 Circuit and Notes ${ }^{*}$

AR.88D Instruction Manual
62 set Circuit and Notes
Chircuit Diagram 27tp each poat free." Re11ie/A 35p p/p 4 p
 2 set Sender Colour Code Indicstoceiver circuits 40 p post free.
Colour Code Indicator $121 p \mathrm{p} / \mathrm{p} 2 \dagger \mathrm{p}$.
8.A.E. with all enquiriea, please.
Postage rates apply to U.E. only. Mail order only to:
INSTRUCTIONAL HANDBOOK SUPPLIES
Dept. W.W. Talbot House, 28 Talbot Gardens, LEEDS 8

Hermes Electronics Limited
Suite 315
2020 F Street N. W.
WASHINGTON
D.C., 20006

Telephone 202 296-2978
TWX 710-822-1106

OSMABET LTD.

We make transformers amongst other things. AUTO TRANSFORMERS. $0-110-200-220-240 \mathrm{v}$ a.c. up o

 $0-100-110,10-0-10,20-0-20,30-030,40,0-40,50-0-50 \mathrm{v}$ a
 A-0.1

MIDGET RECTIPIER TRAMSFORMERS. Prim $200 / 240 \mathrm{~V}$
 MT9v $9-0.9 \mathrm{~V} 1 \mathrm{~A} 98 \mathrm{P}$; MT12v 12-0-12v 1A; MT20 $20-0-20 \mathrm{~V}$ 0.75 A \&1. 13 each
w.w. capactior discharge iantion trans FORMER to specification, $£ 2 \cdot 50$ plus 25 p p . \& p . O/P TRANSFORMERS FOR POWER AMPLIFIERS. 30
 up to 400 watt to order to your specification.
MANS TRANSFORMERS FOR POWER AMPLIPIERS,

 LOUDSPEAKERS FOR POWER AMPIFFERS. New

 3.8 and 15 ohms, $£ 4$.
16 ohmg, $£ 1 \cdot 50$ each.
 $10 \mathrm{mg} .81 \cdot 95 ; 7 \times 4 \ln$.
$81 \cdot 80{ }^{3,} 8$ or 15 ohms.
TAPE; RECORDER, MOTORS. Ideal for a varifety of uses, blowers, 1ans, etc., otc. Per pair for
240\% a.c., new, 50p pait, plus 25 p post.
12V LT FLUORESCENT LGETING. Complete 8 watt 12 in \&itting.
PRINTED CIRCUIT ETCHING KTTS. Comprehensive achory pack, with all solutions, and equipment to make
your own P.C. boards, instructions, $\& 1$. 25 . plus 20 p poat
S.A.E. ENQUIRIES-LISTS. MALL ORDER ONLY
KENTLWORTH ROAD, EDG WARE, MIDDX, HA8 Carriage extra on all orderg. Tel: 01-968 881

Thanksto a bulk purchase we can offer BRAND NEW P.V.C. POLYESTER AND MYLAR RECORDING TAPES
Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythen good as any other on the market, in no way are the tapes faulty and are not to be confused with imported, used or sub-standard tapes. 24-hour despatch service.
Should goods not meet with full approval, purchase price and postage will be refunded

STARMAN TAPES

 MIDDXAshford 53020

WW-096 FOR FURTHER DETAILS

AMERICAN

test and communications equipment * GENERAL CATALOGUE AN/104 $1 / 6$ * Manuals offered for most U.S. equipment
SUTTON ELEGTRONICS Salthouse, Nr. Molt, Norfolk. Cley 289

BUILD YOURSELF A TRANSISTOR RADIO

transona five, MEOLUM, long and TRAWLER BANO WITH 3^{3} " SPEAKER

CONSTRUCTORS BARGAINI AMID MakEAS PORTABLE WOODEN
 with chromed rexing covered padded sides. Dien
front. calibrated Medium and Long Wave stations. Complete with 2 printed circuit boards and
Elac $5^{\circ} \times 3^{\prime \prime} 25$ ohm Heavy Duty PM. Spaakp Brand New. Only $\{2.48$, P. \& P. 38p \{Overseas 85p). Must

RADIO EXCHANGE CO. LTD. Dept WW. 61 High Street, Bedfard. 'Phone 023452367

- Opan 10-1, 2.30-4.30. Sat. 9-12

WANTED

surplus transistors, semiconductors, capacitors, cable, electrical goods, radio television and electrical equipment, wire, aluminium, motors, recording accessories and all surplus equipment for SPOT CASH

Buyer will call to inspect anywhere.
Concorde Instrument Co.
28 Cricklewood Broadway
London, N.W. 2
Telephone: 01-452 0161/2/3
Telex: 21492
Cables: CONIST LONDON

CASH IMMEDIATELY AVAILABLE for redundant and surplus stocks of radio, television, telephone and electronic equipment, or in component form such as meters, plugs and sockets, valves, transistors, semi conductors, capacitors, resistors, cables, copper wire, screws and nuts, speakers, etc
The larger the quantity the better we like it

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, London, N12.
Telephone: 014452713014450749 Evenings: 019587624

WE PURCHASE

COMPUTERS, TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGSAND SOCKETS, MOTORS, TRANSISTORS, RESISTORS, CAPACITORS, POTENTIOMETERS, RELAYS TRANSFORMERS ETC ELECTRONIC BROKERS LTD.
49 Pancras Hoad, London, N.W.1. 01-837 7781

EXCLUSIVE OFFERS

AMPEX

Precision Instrumentation and Data TAPE RECORDER-REPRODUCERS

\qquad

 $\begin{array}{cc}5 & \mu \text { seo. Drift free } \\ 1 \text { per withio } \\ 1\end{array}$ week. Power input $105 / 125 \mathrm{~F} 48$ to 400 cycles, 1100, as abore but
TYPCR
4 Ppeeds, $34^{4}, 7 t^{\text {a }}, 15^{2}$ and 30^{-}
 changed to or
lishter and more moder and on-
atructlon than Trpe FR atructlon than Type FR 1000
PRICE
£380 for either type. PrICE
P3its
for er either type. The above comprise B ft. cabinets (19" RACK MOUNTING CABINETS Totally Enclosed
TYPE A: 84^{4} high $\times 24^{\prime \prime}$ deep $\times 24^{*}$ "wide
DOUBLE GDED. These cabinets will take rack panele
 capped al the way down every to for this purpose. Thep are
mounts which ase vertceally
nad borizontally adjustable -these allow the panel| to be receesed when they are Atted with projecting components and ut is desired to enclose them by doors.
tOther features include-all corners and edges rounded.
faterior fitt tings tropicallsed. Remorable bullt in cable Interior fittings troplicalised. Remorable bult in cuble insect proofed tops. Detachable side panels. Full length instantiy detachable doors gitted expanding bolvs if ordered with callinetg. Made in U.S.A.- cost the American
Government $\varepsilon 107$ before devaluation. Finished in grey primer and lin new condition.

PRICE 22.50 eaoh (Carriage extra)
Full lezgth door 5 eath extra
Doors a re not needed if panels are mounted back and front and they are not required to be enclosed.
TYPE C: $80^{\circ} \mathrm{high} \times 27^{\prime \prime}$ deep $\times 22^{\circ}$ wide. Anmerican tandard mirat Grade totally enclosed ventilated 18 rack papen mounting cabinets, madee by Duksite, rack moincts drilled and tapped ail the Way down every tr. Wull length rear door with lateh. Luaphed ingrey these cabincts have been used but are in recommended they are re-sprayed before use.
TYPE D: $76^{\circ \prime}$ bigh $\times 18^{\circ}$ deep $\times 22^{\circ}$ wida. These are Ilghtly smaller and anished in black othervise they are Made by R.C.A. of U.s.A. ALSO OTHER TYPES 80° TO 88* HIGH AVAILABLE Full details of all above available on request. TRA NSPORT: We have made special economical transport arrangements for these cabinet, to ensure they arrive on request.

40 -page list of over 1,000 diferent items in atock available-keep one by jou.	
*Sorensen 3KVA Stabilised Power Supplias 180/260 v. *Avo Electronic Multimeters CT-471A. *Avo 160 Valve Testers. * Ferranti High Speed Tape Resders $8 / 7$ Tracl \star Marconi TF-867 Starderd Signal Generators $15 \mathrm{~K} / \mathrm{cs} / 30 \mathrm{~m} / \mathrm{cs}$.	
	25
* Rhode snd Schwarz E.S.M. $85 / 300 \mathrm{~m} / \mathrm{cs}$	
V.H.F. Receivers * Video Tape Recorder ${ }^{\text {y }}$ Shibaden, excellent	
* Video Tape Recorder t" Shibaden, excellent working order, one only.	
*Labgear Stabilised Power Units D. 4140 ,	
* All Power Regulated Power Supplise 500 จ	
*C.C.T.V. Marconi 625 line BD-971 Camera,	
Control Unit, 14 in., Monitor with Cables complete channel working order..	
Flann Microwave Astenuators $4 / 12 \mathrm{G} / \mathrm{mc}$	
£Portable Tape Deck Tester	
K ceivers. 1.5 to $22.0 \mathrm{~m} / \mathrm{cs}$..............	
E.E.T. 40KY Transformers and associated Eqnipment up to $6 \mathbf{K W}$ available.	
up to 200 feet. New condition	
*Collins R-390 Communications Receivers	
Westor $2 \mid-D . B$. Meters $-10 /+B$.	
*Commercial Broadcasting type Lattice	
WANTED C.C.T.Y. EQUIPMENT Good price paid	
* 54 inch. dia. Meteorological Balloons. * ${ }^{*}$ New Magnetic Recording Tape msde by E.M.I. (USA) 3600 ft on R.A.B. Spools.	
Beckman 5 decade Eput Meters	
t Uniselectors 10 bank 25 way iull wipe ex.	
*Precision Mains Filter Units new...........	
* ${ }^{\text {A po }}$ Geiger Counters new.	

All goods are ex-Government stores.
We have a large quantity of "bits and pioces" We cannot protably halp-all enquiries answered.

P. HARRIS

ORGANFORD - DORSET
BOURNEMOUTH 65051

BETTER GET 'SET'

BEST OFFER YET! Famous BC. 221 Frequency Meter $125 \mathrm{KHZ}-20 \mathrm{MHz}$. Complete Only $\in 13.50$. Carr. $£ 1.50$. Limited number. Order Now!
Marconi golA Signal GeneraMareoni 101 M Signal Generaz
tor. $10-310 \mathrm{MHz}$. In original
transit case. 645 . Carr. 62.50 .

Crystal Calibrator No. IO. Crystal controlled heterodyne wavemeter 30 to 30 MHHz . Power required Test equipment for $62 \mathrm{MM} / R C$.
Only \&4.25. P. \& P. 50 p . Fow only. No. 62 TMIRC
10 MHz . 17.50 .

AERIAL MAST EQUIPMENT

 ${ }_{39}^{20} .75$. Celescopic Masts. $5^{\circ} 2^{\circ}$ extension sections tofit bottom of above fit bottom of abeve mast
to increase height. 81.25 ${ }^{\text {each }}$ (anynumber supplied)
 locking sections) With base
plate and 12 nylon guys plate and 12 nylon guys
with semi-auto ten sioner.

 Carr. 22.75. $\underset{\text { screw-in }}{ }$ RODSS. ${ }^{3} \mathrm{ft}$. screw-in 1- dia. sections. Suitable for many other 25 uses. 10 for 83 . Carr. Caid. 50p. F. A NTEN NA TU NER
T.U.) Cylinder design $10^{\circ} \times$ ty (A.T.U.) Cylinder design X 竍". for tuning most aerials for increased signal strength. A must for serious
operators for RC or TM. Full instructions.
Only
El
75.
7. P. \& P. 25p.
R.F. ANTENNA TUNER Mounted on ceramic former and
feet. ${ }^{\text {Roller }}$ Coaster" design $16 G$ silver or silver plated wheel traversing oin wire on ceramic

 No. \& P. 50p.

No. 19 SET TRANSMITTER RECEIVER

No. 19 TM/RC
Rebuilt. Complete Rebuilt Complete
station with PSU, cables, Mic. Aerial etc. 822.50 . Aerial etc.
Carr. 13 .
No. I9 SET 500uA Meters. Scaled $0-600$ and -15v. Brand New, Boxed. E1.25. Post paid. (Quantity
prices on request.)
R.F. Amplifier. To increase output of No. 19 set. Only

All Noal9 spares in stock
Complete spares in stock with circuirs for No. 19.
equipment. 37 to. Post paid.

Heavy Duty Batteries. New
Heavy Duty Batteries. New
in metal cases wieh carrying handles.

Famous Tale 'ric Field Tale-
phones.
Suitable for farms, phones. Suitable for Farms, tion up to 5 miles or more. Rugged construction, will more.
Rifetime.
Only $E 575$, pair Cast a lifetime. Only $E 5.75$, pair. Car.
EI. TTwin telephone E1. (Twin telephone wire for Ex RAF Periscopes. Made by Kelvin Hughes containing a pre-
cision made optics system proyiding crystal clear wide range
vision
verisms and vision (2 prisms and 8 lenses).
Built in 24\rangle heating circuit to prevent mistheating circuit to Approx. 24 " long with fording.
handles and
rubber handles and rubber eve piece.
Complete, os new, in instrument Complete ${ }^{\text {as }}$ new, in instrument
case. Oniy
ES. Carr. 75 . (Less

Many other Ex-Govt. Surplus ceivers etc. items in small stock. Retoo numerous to mention. Enquiries invited. List 25 p . Post
aid. (Refundable against port chases over $€ 3$.)
C.W.O. Carriage charges apply

Surplus Electronic Trading

Drivers End Lane, Codicote, Hitchin, Herts, Hours of Bueiness: 8-5 Mon.-Frin Telephone: Codicote 242 for appointment.

LOWE ELECTRONICS

119 Cavendish Road, Matlock, Derbyshire Tel: Matlock 2817

SSB Communications Equipment, Test Gear, etc. Importers of Yaesu Musen, F E \& Inoue Equipment.

In addition to our wide range of new equipment, we offer the following second-hand receivers and test gear.
Receivers
Lafayette HA-350 £55 Coilins URR 390 £285 Collins URR 391 £ 250
Collins 51J4 $\mathbf{E 2 7 5}$
Eddystone 888A £60
Heathkit SB301 plus extra CW filter $£ 110$ Inoue IC-700R £60
Sommerkamp FR-500 £110
Test Gear
Marconi TF1331 scope $\mathbf{£ 8 0}$
Marconi TF1221 Het. Converter £60
Signal generators CT212 (85 kHz to 32 MHz AM/FM) $£ 29.50$
BC221's $\mathbf{£ 1 0 - £ 2 0}$ according to condition and \inearity
The above represents only a small proportion of our stock.
Mikes, keys, keyers, monitors, mobile antennas (Tavasu), headsets, intercomms., VTVM's, low voltage regulated p.s.u.'s. SWR bridges, components, etc., etc.
Have you equipment to sell? May pay you to get our quote
Send a large s.a.e. and we will fill it with lists of components, equipment, sundries, etc., etc.

COLOUR TELEVISION PICTURE FAULTS

K. J. Bohlman $\quad \mathbf{2} \cdot 50 \quad$ Postage $6 p$ There are over 120 illustrations, including 88 colour photographs.

TELEVISION SERVICING HANDBOOK by Gordon J. King. $\mathbf{4 . 8 0}$. Postage 12p.
RCA SOLID STATE HOBBY CIRCUITS MANUAL by R.C.A. \&1.05. Postage 10 p .
THE RADIO AMATEUR'S HAND-
BOOK by A.R.R.L. 22.60. Postage 20p.
TRANSISTOR AUDIO \& RADIO
CIRCUITS by Mullard. $£ 1 \cdot 50$. Postage 60p
TRANSISTOR CIRCUITS IN ELECTRONICS by S. S. Haykin \& R. Barrett. 22.50. Postage 15 p.
COLOUR TELEVISION WITH PARTICULAR REFERENCE TO THE PAL SYSTEM by G. N. Patchett. 2.50. Postage 6p.

RADIO VALVE \& TRANSISTOR DATA by A. M. Ball. 75p. Postage 10p.
THE MODERN BOOK CO.
britaln's largest siockist
of British and American Technical Books

19-21 PRAED STREET,

LONDON, W. 21 NP
Phone 7234185
Closed Sat. 1 p.m.
QUARTZ CRYSTAL UNITS from

- 1.4 - 20 MHZ
- fast delivear - HIGH STABILITY - TO DEF 5271-A

TEL. HYTHE 8961
WRITE FOR LEAFLET AT- 1 McKNIGHT CRYSTAL Co. SHIPYARD ESTATE HYTHE SOUTHAMPTON

PRINTED CIRCUITS

PROTOTYPE AND BATCH PRODUCTIONS Instrument Danels and dlals In Metal and Perspex

* SCREEN PROCESS PRINTERS \qquad
Brooklands Platlng Co. Ltd.
Splco's Yard, south End, Croydon CRo Isf 01-686-2128

JOHN SAYS...

RING MODULATOR by Dewtron is professional.
transiormeriess, 5 -transistor, has adjustable $F 1 / F \mathrm{~F}$. rejection. Module E7. Unit EB.90, WAA-WAA Pedal AUTO RHYTHM Trom Dewten unit for walts, foxtrot etc., costs $\mathbf{~} 16.55$ in modules ORGAN PERCUSSION and other lascinating effects. Send 15 p for illust. list. D.E.W. Led.,
234 Ringwood Road, Farndown, Dorset.

[^19]
LAWSON NEW TUBES

Lawson "Century 99" are brand new tubes. Using silver activated screens, micro fine aluminizing, high definition electron guns. resulting in superb performance and very long life.

LAWSON TUBES

 I8CHURCHDOWNRD. MALUERN, WORCS. Telephone: MALVERN 2100 19" $19^{\prime \prime}-25$

TUBES
CME $1602 £ 8 \cdot 501^{17^{\prime \prime} £ 6 \cdot 25}$
$19^{\text {I }} £ 7.251^{11} £ 8.50$ 19" TWIN"PANEL 19" TWIN PANEL £10.25 23^{\prime} TWIN PANEL $£ 15.50$
$19{ }^{\prime}$ PANORAMA $\mathbf{E} 9.38$ 19^{\prime} PANORAMA $£ 9 \cdot 38$
$20^{\prime \prime}$ PANORAMA $£ 9.50$ 23" PANORAMA £ 11.95
A50-120 W/R WW-97 FOR FURTHER DETAHLS

ANDOR ELECTRONICS LTD.

for new
Mullard, Ferranti, R.C.A. Motorola semiconductors
Mullard-resistors-capacitors ZTX108 12p MPF102 42 $\frac{1}{2}$ p AF117 25p ZTX300 15p MPF105 40p BC107 19p ZTX500 15p 2N3053 27p BC109 19p P: \& P. 10p
Visit our new retail shop 45 LOWER HILLGATE STOCKPORT 061-480-9791

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

J. Black

OFFICE: 44 GREEN LANE, HENDON, N.W.4. 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD. N. 16

Tel: 01-249 2260

DESIGNER-APPROVED "W.W." HI-FI KITS

\star LINSLEY HOOD MODULAR PRE-AMP July 1969 no-eompromise design for the purist.
Compactly $\begin{aligned} & \text { built on Lektrokit. } \\ & \text { Layout details. }\end{aligned}$. Compactly built on Lektrokit. Layout details.
Kit price from $\in 7.40$ (mono, mag.p.u. +2 I/P.s). Kit price from $67 \cdot 40$ (mono, mag.p.u.+2 I/P.s.).
Dec 1970 mods. for pre-amp \& low amp available.
Dec 1970 mods. for pre-amp \& low amp avail
t LINSLEY HOOD SIMPLE PRE-AMP
Designer-approved PCB (marked component locations) gives excellent results with ceramic pick-up. Kit includes all parts as in May 1970 article plus front panel. Mono E6.35. Stereo $\mathrm{EII} \cdot 50$ inc. P.p.

* BAILEY 30W AMPLIFIER (Nov. ' ${ }^{68}$)

Mk. IV PCB has extra pre-set for quiescent current.
Output capacitor and PCB mount directly and Output capacitor and PCB mount directly and compactly on specially designed generous heat-sink.
\star LINSLEY HOOD 15-20W AMPLIFIER
July 1970 latest and ultimate design. O/P capacitor, PCB, Tr3, 4 \& 5 mount compactly onto heat-sink. Our kit personally tested and approved by the designer. Gain of O / P TR's >100.
POWER SUPPLIES (simple and stab'd) available.
HIGH QUALITY components inc'g Mullard, Hunts, TCC capacitors, Plessey moulded pre-sets. Op ir's matched $\pm 10 \%$ @ lc=1 amp.
AFTER-SALES SERVICE at reasonable cost.
REPRINTS of any one article at 30 p
DETAILED PRICE LISTS at $5 p$ inc. p.p.
PERSONAL CALLERS WELCOME-BY APPOINTMENT. DESPATCH BY RETURN

A. 1 FACTORS

72 Blake Road, Staplef̣ord, Nottingham
Tel. Noltingham 46051 Giro No. 4876008 (8 a.m. -10 p.m. 7 days/week)

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC. CHILTMEAD LTD.

7. 9, 11 Arthur Road, Reading, Berks.

Tel: 582605

We are a Polish company exporting high stability electronic components which have good mechanical characteristics and long life expectancy.

Valves

TV Picture Tubes

Tape Recorder Heads

We can offer production capacity and the ability to produce tape recorder heads to meet our customers' own specifications.

EXPORTER

Elektrim

舜Polish Foreign Trade Company for Electrical Equipment Ltd. Warszawa 1, Czackiego 15/17, Poland Telegrams: ELEKTRIM-WARSZAWA. Phone: 26-62-71, Telex: 814351 P.O. Box: 638

If you are interested, please send for catalogues and quotations.

WW-98 FOR FURTHER DETAKS

Vary the strength

 of your lighting with a

The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way. The ivory mounting plate of the DIMMASWITCH matches modern electric fittings. The bright chrome control knob activates an on-off switch and controls 40-600 watts of all lights except fluorescents at mains voltages from 200-250 V, 50 Hz . The DIMMASWITCH has built-in radio interference suppression. Price: $£ 3.20$ plus 10 p post and packing Kit Form: $£ 2.70$ plus $10 p$ post and packing Please send C.W.O. to :-

DEXTER \& COMPANY

4 ULVER HOUSE, 19 KING STREET, CHESTER CH1 2AH. Tel: 0244-25883. As supplied to H.M. Government Departments, Hospitals, Local Authorities. etc.
WW-99 FOR FURTHER DETAILS
— \star DUMET- ${ }^{\text {FULLLSPEC }}$

DUMET PRODUCTS MAIL ORDER DEPT,
102, SOUTH STREET, BISHOP'S.STOX 19

Private enquiries, send $5 p$ in stamps for brochure
THE QUARTZ CRYSTAL CO. LTD
Q.C.C. Works, Wellington Crescent, New Malden. Surrey 101-942 0334 \& 2988)

|-N-T-E-R-L-O-C-K-I-N-G I PLASTIC STOBAGE DRAWERS

 Newest. neatest system ever devised for storing small parts and components: resistors, capacitors, diodes, transistors, etc. Rigid plastic units, interlock together in vertical and horizontal combinations. Transparent plastic drawers have label slots/handles on front. Build up any size cabinet for wall, bench or table top.
 BUY AT TRADE PRICES!

Single units (1D) $\mathbf{f 1 . 3 5}$ per dozen size approx ($2 \frac{1}{4}^{\prime \prime}$ high $2 \frac{1}{4}^{\prime \prime}$ wide $5^{\prime \prime}$ deep) 2D $\mathbf{£ 2 . 2 5}$ per dozen. 3D $£ 2.35$ for 8 units. 6D2 $£ 3.65$ for 8 units (230 's in 1 outer) 6D1 £3.30 for 8 units. Postage/Carriage 35 p for orders under $£ 5$. Carriage paid for orders over $£ 5$.

PLUS QUANTITY DISCOUNTS!

Orders $£ 5$ and over DEDUCT 5% in the f Orders $£ 10$ and over DEDUCT $7 \frac{1}{2} \%$ in the $£$ Orders £20 and over DEDUCT 10% in the $£$

QUOTATIONS FOR LARGER OUUANTITIES

THIS ELAC CONE TWEETER IS OF TH VERY LATEST DESIGN ARD GIVES HIGHER STANDARD OF PERFORMANCE THAN MORE EXPENSIVE UNITS.
The moving coil diaphragm gives a good radiation pattern to the higher frequencies and a smooth extension of total response from 1,000 cps to 18,000 cps. size 3 ohm or $15 \mathrm{ohm} \mathrm{fl} \cdot 90$ Post

THE INSTANT BULK TAPE ERASER AND RECORDING HEAD DEMAGNETISER
200/250 A.C.
Leaflet S.A.E. $\quad \mathbf{2 0 3 5} \begin{gathered}\text { Pos } \\ \text { I5p }\end{gathered}$
RETURN OF POST DESPATCH - CALLERS WELCOME HI-FI STOCKISTS - SALES - SERVICE-SPARES
RADID COMPONENT SPECIALISTS
337 WHITEHORSE ROAD, CROYDON. Tel: 01-684-1665

STOP PRESS

KIENZLE ELECTRONIC PRINTERS Type Dl 14 print positions £160.
Type Dl 13 print positions £150.
Type Dl-SW 14 print positions, programmable
carriage £200.
Type Dll-E 14 print positions. £150.
Stands for above £l0.
These printers are fully refurbished and are sold with a 3 months warranty.

AIRMEC Type 853 H.F.
WAVE ANALYSER
A selective measuring set of great versatility suitable for use in the frequency range 30 KHz to 30 MHz . £95.

MUIRHEAD Type D-900 FACSIMILE EQUIPMENT
Complete installation comprising transmitter, receiver and power supply. In very good condition. P.O.A.

ELECTRONIC BROKERS LIMITED
49-53 Pancras Road, London, N.W.1.
Telephone 01-837 7781

CLASSIFIED ADVERTISEMENTS Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

Rate: 45 p ($9 /-$) PER LINE. Average seven words per line. Minimum two lines.
Name and address to be included in charge if used in advertisement.

Box No. Allow two words plus 25p (5/-).
Cheques etc., payable to "Wireless World" and crossed " \& Co."

- Press Day 9th September for October 1971 issue.

NAME

ADDRESS
(

ALL SEMICONDUCTORS WARRANTED

Prices 1-9 as quoted, 10-99 less 10%, 100 up 15%, larger quantities special quote

TRANSISTOR
 MOTORALA MPS 3646
 200 MW 350 MHZ CB040 HFE 30 SILICON NPN. GENERAL PURPOSE 15p EA.
 $17 \frac{1}{2} \mathrm{p}$ EA.

 \section*{VARI-CAP DIODE

 \section*{VARI-CAP DIODE BB105. BB105. 30 PIV 18-28 pf.} 30 PIV 18-28 pf.}

 댄TMIEADLTロ

 댄TMIEADLTロ}

7-9 ARTHUR ROAD, READING, BERKS. (rear Tech. College) Tel.: Reading 582605

INIDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 95-103

[^20]

Is your businessheld together by soldered joints?

If you are manufacturing or servicing electronic equipment your business quite literally depends on solder. You need to be sure that every joint is sound. Ersin Multicore Solder gives you that assurance and reliability. Made from the purest metals, the finest fluxes and the accumulated knowledge of 30 years experience of supplying the electronics industry in more than 63 countries throughout the world, Ersin Multicore Solders minimize the chance of failure. Multicore Solders are available in over 400 specifications and if you are not already using one it would be to your advantage to investigate the wide range. Besides achieving better joints your labour costs will be reduced.

If you have any soldering problems or require details on any of our wide range of solder products please contact us at Multicore Solders Limited, Hemel Hempstead, Herts. Telephone Hemel Hempstead 3636, Telex 82363.

[^0]: Published monthly on 3 rd Monday of preceding month, $17 \frac{1}{2} \mathrm{p}$ (3 s 6 d).
 Editorial \& Advertising offices: Dorset House, Stamford Street, London S.E.1. Telephone 01-928 3333. Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London S.E. 1."
 Subscription \& Distribution offices: 40 Bowling Green Lane, London E.C.1. Telephone 01-837 3636.
 Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.
 Subscription rates: Home, $£ 4.00^{\circ}$ a year. Overseas, 1 year $£ 4.00 ; 3$ years $£ 10.20$ (U.S.A. \& Canada 1 year $\$ 10$, 3 years $\$ 25.50$).

[^1]: †'Second-order active filter circuit for tuned amplifiers and sinusoidal oscillators', E. A. Faulkner and Viscount Downe, Electronic Engineering, vol. 39 1967, p. 287.

[^2]: *Second-turn elements identified by asterisk in drawings.

[^3]: - Head of the Radio Regulatory Division, Ministry of Posts \& Telecommunications, and leader of the U.K. delegation to the Geneva conference.

[^4]: - The compatible C.B.S. 'SQ' (stereo/quadraphonic) system uses a method of circular modulation of the two sides of the disc groove for the left and right back signals, as well as normal modulation for the

[^5]: 'Herold, E. W., 'Methods suitable for TR color kinescopes,' R.C.A. Review, Vol. 12, Sept. 1951, p. 445 et seq.
 ${ }^{2}$ 'TV in natural colours demonstrated', Radio News, Vol. 10, p. 320, October 1928

[^6]: ${ }^{3}$ Goldmark, P. C., et al., 'Color Television', Part I, Proc. I.R.E., Vol. 30, pp. 162-182, April 1942.

[^7]: ${ }^{4}$ See T. D. Towers on principles of colour TV, Jan.Dec., 1967, Wireless World:

[^8]: *A.ER.E., Harwell

[^9]: * A number system based on the radix 2 instead of the familiar radix 10 of the decimal number system.

[^10]: \dagger The generalized formula is: number of bits $=\log _{2} N$ where N is the number of entities in the family.

[^11]: * G. \& E. Bradley Ltd.

[^12]: *Royal Military College of Science, Shrivenham.

[^13]: * Wireless World, July 1969 p. 325

[^14]: See 'Frequencies for Space Communication' p. 431

[^15]: The elementi of the new ANTEX Model CCN soldering iron is completely enclosed inside a ceramic (aluminium oxide) shaft to ensure maximum reliability. This material combines great strength with near-perfectinsulation. Live transistors can be soldered with complete safety; keakage is negligible.

[^16]: Published monthly on 3 rd Monday of preceding month, $17 \frac{1}{2} \mathrm{p}$ (3 s 6 d).
 Editorial \& Advertising offices: Dorset House, Stamford Street, London S.E.1. Telephone 01-928 3333. Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London S.E. 1."
 Subscription \& Distribution offices: 40 Bowling Green Lane, London E.C.1. Telephone 01-837 3636.
 Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.
 Subscription rates: Home, $£ 4.00^{\circ}$ a year. Overseas, 1 year $£ 4.00 ; 3$ years $£ 10.20$ (U.S.A. \& Canada 1 year $\$ 10$, 3 years $\$ 25.50$).

[^17]: Apply to CROWN AGENTS,'M' Division, 4 Millbank, London S.W. 1 for application form and further particulars stating name, age, brief details of qualifications and experience and quoting relevant reference number.

[^18]: TERMS: CASH OR CHEQUE WITH ORDER. POST AND PACKING FREE ON ORDERS ABOVE E5. FOR SMALLER ORDERS PLEASE ADD 10p. DISCOUNT: ORDERS ABOVE $\mathbb{E 1 0}-10 \%$, ABOVE $£ 20-15 \%$. ALL GOODS ADVERTISED ARE TOP GRADE PROFESSIONAL COMPONENTS AND SUBJECT TO A MONEY REFUND GUARANTEE IF NOT SATISFIED. WE HAVE MANY COMPONENTS NOT ADVERTISED, AND ENQUIRIES ARE WELCOME, BUT MUST ENCLOSE AN S.A.E. FOR REPLY.

[^19]: MEONS. PRINTED CIRCUIT BOARDS. INSTRUMENT CASES. MOULDED REED SWITCHES and PIDAM logic modules. CONTIL and BRIGHTLIFE products are al ex-stock. For details see August, 1971 and October, 197 I issues, advertisements. for further details use reader service card. New prices on new leaflet. All customers on mailing list will receive these automatically.

 WEST HYDE DEVELOPMENTS LIMITED, RYEFIELD CRESCENT, NORTHWOOD HILLS, NORTHWOOD, MIDDX.
 Telephone: Northwood 24941/26732 Telex: 923231

[^20]:

 at a price in excess of the recommended maxdmum price shown on the cover; and that it shall not be lent, re-sold, hired out or otherwise disposed of in a mautilated condition or in any unathorised cover by way of Trade or afixed to or as part of any publication or advertising, uterary or pletorlal matter whatsoever.

